Makefile.in (OBJS): Add gimple-ssa-isolate-paths.o
[gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "flags.h"
27 #include "tree.h"
28 #include "basic-block.h"
29 #include "gimple.h"
30 #include "gimple-ssa.h"
31 #include "tree-cfg.h"
32 #include "tree-phinodes.h"
33 #include "ssa-iterators.h"
34 #include "tree-ssanames.h"
35 #include "tree-ssa-loop-manip.h"
36 #include "tree-ssa-loop-niter.h"
37 #include "tree-ssa-loop.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "tree-pass.h"
41 #include "tree-dump.h"
42 #include "gimple-pretty-print.h"
43 #include "diagnostic-core.h"
44 #include "intl.h"
45 #include "cfgloop.h"
46 #include "tree-scalar-evolution.h"
47 #include "tree-ssa-propagate.h"
48 #include "tree-chrec.h"
49 #include "tree-ssa-threadupdate.h"
50 #include "expr.h"
51 #include "optabs.h"
52 #include "tree-ssa-threadedge.h"
53
54
55
56 /* Range of values that can be associated with an SSA_NAME after VRP
57 has executed. */
58 struct value_range_d
59 {
60 /* Lattice value represented by this range. */
61 enum value_range_type type;
62
63 /* Minimum and maximum values represented by this range. These
64 values should be interpreted as follows:
65
66 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
67 be NULL.
68
69 - If TYPE == VR_RANGE then MIN holds the minimum value and
70 MAX holds the maximum value of the range [MIN, MAX].
71
72 - If TYPE == ANTI_RANGE the variable is known to NOT
73 take any values in the range [MIN, MAX]. */
74 tree min;
75 tree max;
76
77 /* Set of SSA names whose value ranges are equivalent to this one.
78 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
79 bitmap equiv;
80 };
81
82 typedef struct value_range_d value_range_t;
83
84 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
85
86 /* Set of SSA names found live during the RPO traversal of the function
87 for still active basic-blocks. */
88 static sbitmap *live;
89
90 /* Return true if the SSA name NAME is live on the edge E. */
91
92 static bool
93 live_on_edge (edge e, tree name)
94 {
95 return (live[e->dest->index]
96 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
97 }
98
99 /* Local functions. */
100 static int compare_values (tree val1, tree val2);
101 static int compare_values_warnv (tree val1, tree val2, bool *);
102 static void vrp_meet (value_range_t *, value_range_t *);
103 static void vrp_intersect_ranges (value_range_t *, value_range_t *);
104 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
105 tree, tree, bool, bool *,
106 bool *);
107
108 /* Location information for ASSERT_EXPRs. Each instance of this
109 structure describes an ASSERT_EXPR for an SSA name. Since a single
110 SSA name may have more than one assertion associated with it, these
111 locations are kept in a linked list attached to the corresponding
112 SSA name. */
113 struct assert_locus_d
114 {
115 /* Basic block where the assertion would be inserted. */
116 basic_block bb;
117
118 /* Some assertions need to be inserted on an edge (e.g., assertions
119 generated by COND_EXPRs). In those cases, BB will be NULL. */
120 edge e;
121
122 /* Pointer to the statement that generated this assertion. */
123 gimple_stmt_iterator si;
124
125 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
126 enum tree_code comp_code;
127
128 /* Value being compared against. */
129 tree val;
130
131 /* Expression to compare. */
132 tree expr;
133
134 /* Next node in the linked list. */
135 struct assert_locus_d *next;
136 };
137
138 typedef struct assert_locus_d *assert_locus_t;
139
140 /* If bit I is present, it means that SSA name N_i has a list of
141 assertions that should be inserted in the IL. */
142 static bitmap need_assert_for;
143
144 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
145 holds a list of ASSERT_LOCUS_T nodes that describe where
146 ASSERT_EXPRs for SSA name N_I should be inserted. */
147 static assert_locus_t *asserts_for;
148
149 /* Value range array. After propagation, VR_VALUE[I] holds the range
150 of values that SSA name N_I may take. */
151 static unsigned num_vr_values;
152 static value_range_t **vr_value;
153 static bool values_propagated;
154
155 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
156 number of executable edges we saw the last time we visited the
157 node. */
158 static int *vr_phi_edge_counts;
159
160 typedef struct {
161 gimple stmt;
162 tree vec;
163 } switch_update;
164
165 static vec<edge> to_remove_edges;
166 static vec<switch_update> to_update_switch_stmts;
167
168
169 /* Return the maximum value for TYPE. */
170
171 static inline tree
172 vrp_val_max (const_tree type)
173 {
174 if (!INTEGRAL_TYPE_P (type))
175 return NULL_TREE;
176
177 return TYPE_MAX_VALUE (type);
178 }
179
180 /* Return the minimum value for TYPE. */
181
182 static inline tree
183 vrp_val_min (const_tree type)
184 {
185 if (!INTEGRAL_TYPE_P (type))
186 return NULL_TREE;
187
188 return TYPE_MIN_VALUE (type);
189 }
190
191 /* Return whether VAL is equal to the maximum value of its type. This
192 will be true for a positive overflow infinity. We can't do a
193 simple equality comparison with TYPE_MAX_VALUE because C typedefs
194 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
195 to the integer constant with the same value in the type. */
196
197 static inline bool
198 vrp_val_is_max (const_tree val)
199 {
200 tree type_max = vrp_val_max (TREE_TYPE (val));
201 return (val == type_max
202 || (type_max != NULL_TREE
203 && operand_equal_p (val, type_max, 0)));
204 }
205
206 /* Return whether VAL is equal to the minimum value of its type. This
207 will be true for a negative overflow infinity. */
208
209 static inline bool
210 vrp_val_is_min (const_tree val)
211 {
212 tree type_min = vrp_val_min (TREE_TYPE (val));
213 return (val == type_min
214 || (type_min != NULL_TREE
215 && operand_equal_p (val, type_min, 0)));
216 }
217
218
219 /* Return whether TYPE should use an overflow infinity distinct from
220 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
221 represent a signed overflow during VRP computations. An infinity
222 is distinct from a half-range, which will go from some number to
223 TYPE_{MIN,MAX}_VALUE. */
224
225 static inline bool
226 needs_overflow_infinity (const_tree type)
227 {
228 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
229 }
230
231 /* Return whether TYPE can support our overflow infinity
232 representation: we use the TREE_OVERFLOW flag, which only exists
233 for constants. If TYPE doesn't support this, we don't optimize
234 cases which would require signed overflow--we drop them to
235 VARYING. */
236
237 static inline bool
238 supports_overflow_infinity (const_tree type)
239 {
240 tree min = vrp_val_min (type), max = vrp_val_max (type);
241 #ifdef ENABLE_CHECKING
242 gcc_assert (needs_overflow_infinity (type));
243 #endif
244 return (min != NULL_TREE
245 && CONSTANT_CLASS_P (min)
246 && max != NULL_TREE
247 && CONSTANT_CLASS_P (max));
248 }
249
250 /* VAL is the maximum or minimum value of a type. Return a
251 corresponding overflow infinity. */
252
253 static inline tree
254 make_overflow_infinity (tree val)
255 {
256 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
257 val = copy_node (val);
258 TREE_OVERFLOW (val) = 1;
259 return val;
260 }
261
262 /* Return a negative overflow infinity for TYPE. */
263
264 static inline tree
265 negative_overflow_infinity (tree type)
266 {
267 gcc_checking_assert (supports_overflow_infinity (type));
268 return make_overflow_infinity (vrp_val_min (type));
269 }
270
271 /* Return a positive overflow infinity for TYPE. */
272
273 static inline tree
274 positive_overflow_infinity (tree type)
275 {
276 gcc_checking_assert (supports_overflow_infinity (type));
277 return make_overflow_infinity (vrp_val_max (type));
278 }
279
280 /* Return whether VAL is a negative overflow infinity. */
281
282 static inline bool
283 is_negative_overflow_infinity (const_tree val)
284 {
285 return (needs_overflow_infinity (TREE_TYPE (val))
286 && CONSTANT_CLASS_P (val)
287 && TREE_OVERFLOW (val)
288 && vrp_val_is_min (val));
289 }
290
291 /* Return whether VAL is a positive overflow infinity. */
292
293 static inline bool
294 is_positive_overflow_infinity (const_tree val)
295 {
296 return (needs_overflow_infinity (TREE_TYPE (val))
297 && CONSTANT_CLASS_P (val)
298 && TREE_OVERFLOW (val)
299 && vrp_val_is_max (val));
300 }
301
302 /* Return whether VAL is a positive or negative overflow infinity. */
303
304 static inline bool
305 is_overflow_infinity (const_tree val)
306 {
307 return (needs_overflow_infinity (TREE_TYPE (val))
308 && CONSTANT_CLASS_P (val)
309 && TREE_OVERFLOW (val)
310 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
311 }
312
313 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
314
315 static inline bool
316 stmt_overflow_infinity (gimple stmt)
317 {
318 if (is_gimple_assign (stmt)
319 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
320 GIMPLE_SINGLE_RHS)
321 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
322 return false;
323 }
324
325 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
326 the same value with TREE_OVERFLOW clear. This can be used to avoid
327 confusing a regular value with an overflow value. */
328
329 static inline tree
330 avoid_overflow_infinity (tree val)
331 {
332 if (!is_overflow_infinity (val))
333 return val;
334
335 if (vrp_val_is_max (val))
336 return vrp_val_max (TREE_TYPE (val));
337 else
338 {
339 gcc_checking_assert (vrp_val_is_min (val));
340 return vrp_val_min (TREE_TYPE (val));
341 }
342 }
343
344
345 /* Return true if ARG is marked with the nonnull attribute in the
346 current function signature. */
347
348 static bool
349 nonnull_arg_p (const_tree arg)
350 {
351 tree t, attrs, fntype;
352 unsigned HOST_WIDE_INT arg_num;
353
354 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
355
356 /* The static chain decl is always non null. */
357 if (arg == cfun->static_chain_decl)
358 return true;
359
360 fntype = TREE_TYPE (current_function_decl);
361 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
362 {
363 attrs = lookup_attribute ("nonnull", attrs);
364
365 /* If "nonnull" wasn't specified, we know nothing about the argument. */
366 if (attrs == NULL_TREE)
367 return false;
368
369 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
370 if (TREE_VALUE (attrs) == NULL_TREE)
371 return true;
372
373 /* Get the position number for ARG in the function signature. */
374 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
375 t;
376 t = DECL_CHAIN (t), arg_num++)
377 {
378 if (t == arg)
379 break;
380 }
381
382 gcc_assert (t == arg);
383
384 /* Now see if ARG_NUM is mentioned in the nonnull list. */
385 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
386 {
387 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
388 return true;
389 }
390 }
391
392 return false;
393 }
394
395
396 /* Set value range VR to VR_UNDEFINED. */
397
398 static inline void
399 set_value_range_to_undefined (value_range_t *vr)
400 {
401 vr->type = VR_UNDEFINED;
402 vr->min = vr->max = NULL_TREE;
403 if (vr->equiv)
404 bitmap_clear (vr->equiv);
405 }
406
407
408 /* Set value range VR to VR_VARYING. */
409
410 static inline void
411 set_value_range_to_varying (value_range_t *vr)
412 {
413 vr->type = VR_VARYING;
414 vr->min = vr->max = NULL_TREE;
415 if (vr->equiv)
416 bitmap_clear (vr->equiv);
417 }
418
419
420 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
421
422 static void
423 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
424 tree max, bitmap equiv)
425 {
426 #if defined ENABLE_CHECKING
427 /* Check the validity of the range. */
428 if (t == VR_RANGE || t == VR_ANTI_RANGE)
429 {
430 int cmp;
431
432 gcc_assert (min && max);
433
434 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
435 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
436
437 cmp = compare_values (min, max);
438 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
439
440 if (needs_overflow_infinity (TREE_TYPE (min)))
441 gcc_assert (!is_overflow_infinity (min)
442 || !is_overflow_infinity (max));
443 }
444
445 if (t == VR_UNDEFINED || t == VR_VARYING)
446 gcc_assert (min == NULL_TREE && max == NULL_TREE);
447
448 if (t == VR_UNDEFINED || t == VR_VARYING)
449 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
450 #endif
451
452 vr->type = t;
453 vr->min = min;
454 vr->max = max;
455
456 /* Since updating the equivalence set involves deep copying the
457 bitmaps, only do it if absolutely necessary. */
458 if (vr->equiv == NULL
459 && equiv != NULL)
460 vr->equiv = BITMAP_ALLOC (NULL);
461
462 if (equiv != vr->equiv)
463 {
464 if (equiv && !bitmap_empty_p (equiv))
465 bitmap_copy (vr->equiv, equiv);
466 else
467 bitmap_clear (vr->equiv);
468 }
469 }
470
471
472 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
473 This means adjusting T, MIN and MAX representing the case of a
474 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
475 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
476 In corner cases where MAX+1 or MIN-1 wraps this will fall back
477 to varying.
478 This routine exists to ease canonicalization in the case where we
479 extract ranges from var + CST op limit. */
480
481 static void
482 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
483 tree min, tree max, bitmap equiv)
484 {
485 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
486 if (t == VR_UNDEFINED)
487 {
488 set_value_range_to_undefined (vr);
489 return;
490 }
491 else if (t == VR_VARYING)
492 {
493 set_value_range_to_varying (vr);
494 return;
495 }
496
497 /* Nothing to canonicalize for symbolic ranges. */
498 if (TREE_CODE (min) != INTEGER_CST
499 || TREE_CODE (max) != INTEGER_CST)
500 {
501 set_value_range (vr, t, min, max, equiv);
502 return;
503 }
504
505 /* Wrong order for min and max, to swap them and the VR type we need
506 to adjust them. */
507 if (tree_int_cst_lt (max, min))
508 {
509 tree one, tmp;
510
511 /* For one bit precision if max < min, then the swapped
512 range covers all values, so for VR_RANGE it is varying and
513 for VR_ANTI_RANGE empty range, so drop to varying as well. */
514 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
515 {
516 set_value_range_to_varying (vr);
517 return;
518 }
519
520 one = build_int_cst (TREE_TYPE (min), 1);
521 tmp = int_const_binop (PLUS_EXPR, max, one);
522 max = int_const_binop (MINUS_EXPR, min, one);
523 min = tmp;
524
525 /* There's one corner case, if we had [C+1, C] before we now have
526 that again. But this represents an empty value range, so drop
527 to varying in this case. */
528 if (tree_int_cst_lt (max, min))
529 {
530 set_value_range_to_varying (vr);
531 return;
532 }
533
534 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
535 }
536
537 /* Anti-ranges that can be represented as ranges should be so. */
538 if (t == VR_ANTI_RANGE)
539 {
540 bool is_min = vrp_val_is_min (min);
541 bool is_max = vrp_val_is_max (max);
542
543 if (is_min && is_max)
544 {
545 /* We cannot deal with empty ranges, drop to varying.
546 ??? This could be VR_UNDEFINED instead. */
547 set_value_range_to_varying (vr);
548 return;
549 }
550 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
551 && (is_min || is_max))
552 {
553 /* Non-empty boolean ranges can always be represented
554 as a singleton range. */
555 if (is_min)
556 min = max = vrp_val_max (TREE_TYPE (min));
557 else
558 min = max = vrp_val_min (TREE_TYPE (min));
559 t = VR_RANGE;
560 }
561 else if (is_min
562 /* As a special exception preserve non-null ranges. */
563 && !(TYPE_UNSIGNED (TREE_TYPE (min))
564 && integer_zerop (max)))
565 {
566 tree one = build_int_cst (TREE_TYPE (max), 1);
567 min = int_const_binop (PLUS_EXPR, max, one);
568 max = vrp_val_max (TREE_TYPE (max));
569 t = VR_RANGE;
570 }
571 else if (is_max)
572 {
573 tree one = build_int_cst (TREE_TYPE (min), 1);
574 max = int_const_binop (MINUS_EXPR, min, one);
575 min = vrp_val_min (TREE_TYPE (min));
576 t = VR_RANGE;
577 }
578 }
579
580 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
581 if (needs_overflow_infinity (TREE_TYPE (min))
582 && is_overflow_infinity (min)
583 && is_overflow_infinity (max))
584 {
585 set_value_range_to_varying (vr);
586 return;
587 }
588
589 set_value_range (vr, t, min, max, equiv);
590 }
591
592 /* Copy value range FROM into value range TO. */
593
594 static inline void
595 copy_value_range (value_range_t *to, value_range_t *from)
596 {
597 set_value_range (to, from->type, from->min, from->max, from->equiv);
598 }
599
600 /* Set value range VR to a single value. This function is only called
601 with values we get from statements, and exists to clear the
602 TREE_OVERFLOW flag so that we don't think we have an overflow
603 infinity when we shouldn't. */
604
605 static inline void
606 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
607 {
608 gcc_assert (is_gimple_min_invariant (val));
609 val = avoid_overflow_infinity (val);
610 set_value_range (vr, VR_RANGE, val, val, equiv);
611 }
612
613 /* Set value range VR to a non-negative range of type TYPE.
614 OVERFLOW_INFINITY indicates whether to use an overflow infinity
615 rather than TYPE_MAX_VALUE; this should be true if we determine
616 that the range is nonnegative based on the assumption that signed
617 overflow does not occur. */
618
619 static inline void
620 set_value_range_to_nonnegative (value_range_t *vr, tree type,
621 bool overflow_infinity)
622 {
623 tree zero;
624
625 if (overflow_infinity && !supports_overflow_infinity (type))
626 {
627 set_value_range_to_varying (vr);
628 return;
629 }
630
631 zero = build_int_cst (type, 0);
632 set_value_range (vr, VR_RANGE, zero,
633 (overflow_infinity
634 ? positive_overflow_infinity (type)
635 : TYPE_MAX_VALUE (type)),
636 vr->equiv);
637 }
638
639 /* Set value range VR to a non-NULL range of type TYPE. */
640
641 static inline void
642 set_value_range_to_nonnull (value_range_t *vr, tree type)
643 {
644 tree zero = build_int_cst (type, 0);
645 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
646 }
647
648
649 /* Set value range VR to a NULL range of type TYPE. */
650
651 static inline void
652 set_value_range_to_null (value_range_t *vr, tree type)
653 {
654 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
655 }
656
657
658 /* Set value range VR to a range of a truthvalue of type TYPE. */
659
660 static inline void
661 set_value_range_to_truthvalue (value_range_t *vr, tree type)
662 {
663 if (TYPE_PRECISION (type) == 1)
664 set_value_range_to_varying (vr);
665 else
666 set_value_range (vr, VR_RANGE,
667 build_int_cst (type, 0), build_int_cst (type, 1),
668 vr->equiv);
669 }
670
671
672 /* If abs (min) < abs (max), set VR to [-max, max], if
673 abs (min) >= abs (max), set VR to [-min, min]. */
674
675 static void
676 abs_extent_range (value_range_t *vr, tree min, tree max)
677 {
678 int cmp;
679
680 gcc_assert (TREE_CODE (min) == INTEGER_CST);
681 gcc_assert (TREE_CODE (max) == INTEGER_CST);
682 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
683 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
684 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
685 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
686 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
687 {
688 set_value_range_to_varying (vr);
689 return;
690 }
691 cmp = compare_values (min, max);
692 if (cmp == -1)
693 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
694 else if (cmp == 0 || cmp == 1)
695 {
696 max = min;
697 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
698 }
699 else
700 {
701 set_value_range_to_varying (vr);
702 return;
703 }
704 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
705 }
706
707
708 /* Return value range information for VAR.
709
710 If we have no values ranges recorded (ie, VRP is not running), then
711 return NULL. Otherwise create an empty range if none existed for VAR. */
712
713 static value_range_t *
714 get_value_range (const_tree var)
715 {
716 static const struct value_range_d vr_const_varying
717 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
718 value_range_t *vr;
719 tree sym;
720 unsigned ver = SSA_NAME_VERSION (var);
721
722 /* If we have no recorded ranges, then return NULL. */
723 if (! vr_value)
724 return NULL;
725
726 /* If we query the range for a new SSA name return an unmodifiable VARYING.
727 We should get here at most from the substitute-and-fold stage which
728 will never try to change values. */
729 if (ver >= num_vr_values)
730 return CONST_CAST (value_range_t *, &vr_const_varying);
731
732 vr = vr_value[ver];
733 if (vr)
734 return vr;
735
736 /* After propagation finished do not allocate new value-ranges. */
737 if (values_propagated)
738 return CONST_CAST (value_range_t *, &vr_const_varying);
739
740 /* Create a default value range. */
741 vr_value[ver] = vr = XCNEW (value_range_t);
742
743 /* Defer allocating the equivalence set. */
744 vr->equiv = NULL;
745
746 /* If VAR is a default definition of a parameter, the variable can
747 take any value in VAR's type. */
748 if (SSA_NAME_IS_DEFAULT_DEF (var))
749 {
750 sym = SSA_NAME_VAR (var);
751 if (TREE_CODE (sym) == PARM_DECL)
752 {
753 /* Try to use the "nonnull" attribute to create ~[0, 0]
754 anti-ranges for pointers. Note that this is only valid with
755 default definitions of PARM_DECLs. */
756 if (POINTER_TYPE_P (TREE_TYPE (sym))
757 && nonnull_arg_p (sym))
758 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
759 else
760 set_value_range_to_varying (vr);
761 }
762 else if (TREE_CODE (sym) == RESULT_DECL
763 && DECL_BY_REFERENCE (sym))
764 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
765 }
766
767 return vr;
768 }
769
770 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
771
772 static inline bool
773 vrp_operand_equal_p (const_tree val1, const_tree val2)
774 {
775 if (val1 == val2)
776 return true;
777 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
778 return false;
779 if (is_overflow_infinity (val1))
780 return is_overflow_infinity (val2);
781 return true;
782 }
783
784 /* Return true, if the bitmaps B1 and B2 are equal. */
785
786 static inline bool
787 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
788 {
789 return (b1 == b2
790 || ((!b1 || bitmap_empty_p (b1))
791 && (!b2 || bitmap_empty_p (b2)))
792 || (b1 && b2
793 && bitmap_equal_p (b1, b2)));
794 }
795
796 /* Update the value range and equivalence set for variable VAR to
797 NEW_VR. Return true if NEW_VR is different from VAR's previous
798 value.
799
800 NOTE: This function assumes that NEW_VR is a temporary value range
801 object created for the sole purpose of updating VAR's range. The
802 storage used by the equivalence set from NEW_VR will be freed by
803 this function. Do not call update_value_range when NEW_VR
804 is the range object associated with another SSA name. */
805
806 static inline bool
807 update_value_range (const_tree var, value_range_t *new_vr)
808 {
809 value_range_t *old_vr;
810 bool is_new;
811
812 /* Update the value range, if necessary. */
813 old_vr = get_value_range (var);
814 is_new = old_vr->type != new_vr->type
815 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
816 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
817 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
818
819 if (is_new)
820 {
821 /* Do not allow transitions up the lattice. The following
822 is slightly more awkward than just new_vr->type < old_vr->type
823 because VR_RANGE and VR_ANTI_RANGE need to be considered
824 the same. We may not have is_new when transitioning to
825 UNDEFINED or from VARYING. */
826 if (new_vr->type == VR_UNDEFINED
827 || old_vr->type == VR_VARYING)
828 set_value_range_to_varying (old_vr);
829 else
830 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
831 new_vr->equiv);
832 }
833
834 BITMAP_FREE (new_vr->equiv);
835
836 return is_new;
837 }
838
839
840 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
841 point where equivalence processing can be turned on/off. */
842
843 static void
844 add_equivalence (bitmap *equiv, const_tree var)
845 {
846 unsigned ver = SSA_NAME_VERSION (var);
847 value_range_t *vr = vr_value[ver];
848
849 if (*equiv == NULL)
850 *equiv = BITMAP_ALLOC (NULL);
851 bitmap_set_bit (*equiv, ver);
852 if (vr && vr->equiv)
853 bitmap_ior_into (*equiv, vr->equiv);
854 }
855
856
857 /* Return true if VR is ~[0, 0]. */
858
859 static inline bool
860 range_is_nonnull (value_range_t *vr)
861 {
862 return vr->type == VR_ANTI_RANGE
863 && integer_zerop (vr->min)
864 && integer_zerop (vr->max);
865 }
866
867
868 /* Return true if VR is [0, 0]. */
869
870 static inline bool
871 range_is_null (value_range_t *vr)
872 {
873 return vr->type == VR_RANGE
874 && integer_zerop (vr->min)
875 && integer_zerop (vr->max);
876 }
877
878 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
879 a singleton. */
880
881 static inline bool
882 range_int_cst_p (value_range_t *vr)
883 {
884 return (vr->type == VR_RANGE
885 && TREE_CODE (vr->max) == INTEGER_CST
886 && TREE_CODE (vr->min) == INTEGER_CST);
887 }
888
889 /* Return true if VR is a INTEGER_CST singleton. */
890
891 static inline bool
892 range_int_cst_singleton_p (value_range_t *vr)
893 {
894 return (range_int_cst_p (vr)
895 && !TREE_OVERFLOW (vr->min)
896 && !TREE_OVERFLOW (vr->max)
897 && tree_int_cst_equal (vr->min, vr->max));
898 }
899
900 /* Return true if value range VR involves at least one symbol. */
901
902 static inline bool
903 symbolic_range_p (value_range_t *vr)
904 {
905 return (!is_gimple_min_invariant (vr->min)
906 || !is_gimple_min_invariant (vr->max));
907 }
908
909 /* Return true if value range VR uses an overflow infinity. */
910
911 static inline bool
912 overflow_infinity_range_p (value_range_t *vr)
913 {
914 return (vr->type == VR_RANGE
915 && (is_overflow_infinity (vr->min)
916 || is_overflow_infinity (vr->max)));
917 }
918
919 /* Return false if we can not make a valid comparison based on VR;
920 this will be the case if it uses an overflow infinity and overflow
921 is not undefined (i.e., -fno-strict-overflow is in effect).
922 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
923 uses an overflow infinity. */
924
925 static bool
926 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
927 {
928 gcc_assert (vr->type == VR_RANGE);
929 if (is_overflow_infinity (vr->min))
930 {
931 *strict_overflow_p = true;
932 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
933 return false;
934 }
935 if (is_overflow_infinity (vr->max))
936 {
937 *strict_overflow_p = true;
938 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
939 return false;
940 }
941 return true;
942 }
943
944
945 /* Return true if the result of assignment STMT is know to be non-negative.
946 If the return value is based on the assumption that signed overflow is
947 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
948 *STRICT_OVERFLOW_P.*/
949
950 static bool
951 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
952 {
953 enum tree_code code = gimple_assign_rhs_code (stmt);
954 switch (get_gimple_rhs_class (code))
955 {
956 case GIMPLE_UNARY_RHS:
957 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
958 gimple_expr_type (stmt),
959 gimple_assign_rhs1 (stmt),
960 strict_overflow_p);
961 case GIMPLE_BINARY_RHS:
962 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
963 gimple_expr_type (stmt),
964 gimple_assign_rhs1 (stmt),
965 gimple_assign_rhs2 (stmt),
966 strict_overflow_p);
967 case GIMPLE_TERNARY_RHS:
968 return false;
969 case GIMPLE_SINGLE_RHS:
970 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
971 strict_overflow_p);
972 case GIMPLE_INVALID_RHS:
973 gcc_unreachable ();
974 default:
975 gcc_unreachable ();
976 }
977 }
978
979 /* Return true if return value of call STMT is know to be non-negative.
980 If the return value is based on the assumption that signed overflow is
981 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
982 *STRICT_OVERFLOW_P.*/
983
984 static bool
985 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
986 {
987 tree arg0 = gimple_call_num_args (stmt) > 0 ?
988 gimple_call_arg (stmt, 0) : NULL_TREE;
989 tree arg1 = gimple_call_num_args (stmt) > 1 ?
990 gimple_call_arg (stmt, 1) : NULL_TREE;
991
992 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
993 gimple_call_fndecl (stmt),
994 arg0,
995 arg1,
996 strict_overflow_p);
997 }
998
999 /* Return true if STMT is know to to compute a non-negative value.
1000 If the return value is based on the assumption that signed overflow is
1001 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1002 *STRICT_OVERFLOW_P.*/
1003
1004 static bool
1005 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1006 {
1007 switch (gimple_code (stmt))
1008 {
1009 case GIMPLE_ASSIGN:
1010 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
1011 case GIMPLE_CALL:
1012 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
1013 default:
1014 gcc_unreachable ();
1015 }
1016 }
1017
1018 /* Return true if the result of assignment STMT is know to be non-zero.
1019 If the return value is based on the assumption that signed overflow is
1020 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1021 *STRICT_OVERFLOW_P.*/
1022
1023 static bool
1024 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1025 {
1026 enum tree_code code = gimple_assign_rhs_code (stmt);
1027 switch (get_gimple_rhs_class (code))
1028 {
1029 case GIMPLE_UNARY_RHS:
1030 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1031 gimple_expr_type (stmt),
1032 gimple_assign_rhs1 (stmt),
1033 strict_overflow_p);
1034 case GIMPLE_BINARY_RHS:
1035 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1036 gimple_expr_type (stmt),
1037 gimple_assign_rhs1 (stmt),
1038 gimple_assign_rhs2 (stmt),
1039 strict_overflow_p);
1040 case GIMPLE_TERNARY_RHS:
1041 return false;
1042 case GIMPLE_SINGLE_RHS:
1043 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
1044 strict_overflow_p);
1045 case GIMPLE_INVALID_RHS:
1046 gcc_unreachable ();
1047 default:
1048 gcc_unreachable ();
1049 }
1050 }
1051
1052 /* Return true if STMT is known to compute a non-zero value.
1053 If the return value is based on the assumption that signed overflow is
1054 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1055 *STRICT_OVERFLOW_P.*/
1056
1057 static bool
1058 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1059 {
1060 switch (gimple_code (stmt))
1061 {
1062 case GIMPLE_ASSIGN:
1063 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1064 case GIMPLE_CALL:
1065 {
1066 tree fndecl = gimple_call_fndecl (stmt);
1067 if (!fndecl) return false;
1068 if (flag_delete_null_pointer_checks && !flag_check_new
1069 && DECL_IS_OPERATOR_NEW (fndecl)
1070 && !TREE_NOTHROW (fndecl))
1071 return true;
1072 if (flag_delete_null_pointer_checks &&
1073 lookup_attribute ("returns_nonnull",
1074 TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
1075 return true;
1076 return gimple_alloca_call_p (stmt);
1077 }
1078 default:
1079 gcc_unreachable ();
1080 }
1081 }
1082
1083 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1084 obtained so far. */
1085
1086 static bool
1087 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1088 {
1089 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1090 return true;
1091
1092 /* If we have an expression of the form &X->a, then the expression
1093 is nonnull if X is nonnull. */
1094 if (is_gimple_assign (stmt)
1095 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1096 {
1097 tree expr = gimple_assign_rhs1 (stmt);
1098 tree base = get_base_address (TREE_OPERAND (expr, 0));
1099
1100 if (base != NULL_TREE
1101 && TREE_CODE (base) == MEM_REF
1102 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1103 {
1104 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1105 if (range_is_nonnull (vr))
1106 return true;
1107 }
1108 }
1109
1110 return false;
1111 }
1112
1113 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1114 a gimple invariant, or SSA_NAME +- CST. */
1115
1116 static bool
1117 valid_value_p (tree expr)
1118 {
1119 if (TREE_CODE (expr) == SSA_NAME)
1120 return true;
1121
1122 if (TREE_CODE (expr) == PLUS_EXPR
1123 || TREE_CODE (expr) == MINUS_EXPR)
1124 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1125 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1126
1127 return is_gimple_min_invariant (expr);
1128 }
1129
1130 /* Return
1131 1 if VAL < VAL2
1132 0 if !(VAL < VAL2)
1133 -2 if those are incomparable. */
1134 static inline int
1135 operand_less_p (tree val, tree val2)
1136 {
1137 /* LT is folded faster than GE and others. Inline the common case. */
1138 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1139 {
1140 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1141 return INT_CST_LT_UNSIGNED (val, val2);
1142 else
1143 {
1144 if (INT_CST_LT (val, val2))
1145 return 1;
1146 }
1147 }
1148 else
1149 {
1150 tree tcmp;
1151
1152 fold_defer_overflow_warnings ();
1153
1154 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1155
1156 fold_undefer_and_ignore_overflow_warnings ();
1157
1158 if (!tcmp
1159 || TREE_CODE (tcmp) != INTEGER_CST)
1160 return -2;
1161
1162 if (!integer_zerop (tcmp))
1163 return 1;
1164 }
1165
1166 /* val >= val2, not considering overflow infinity. */
1167 if (is_negative_overflow_infinity (val))
1168 return is_negative_overflow_infinity (val2) ? 0 : 1;
1169 else if (is_positive_overflow_infinity (val2))
1170 return is_positive_overflow_infinity (val) ? 0 : 1;
1171
1172 return 0;
1173 }
1174
1175 /* Compare two values VAL1 and VAL2. Return
1176
1177 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1178 -1 if VAL1 < VAL2,
1179 0 if VAL1 == VAL2,
1180 +1 if VAL1 > VAL2, and
1181 +2 if VAL1 != VAL2
1182
1183 This is similar to tree_int_cst_compare but supports pointer values
1184 and values that cannot be compared at compile time.
1185
1186 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1187 true if the return value is only valid if we assume that signed
1188 overflow is undefined. */
1189
1190 static int
1191 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1192 {
1193 if (val1 == val2)
1194 return 0;
1195
1196 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1197 both integers. */
1198 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1199 == POINTER_TYPE_P (TREE_TYPE (val2)));
1200 /* Convert the two values into the same type. This is needed because
1201 sizetype causes sign extension even for unsigned types. */
1202 val2 = fold_convert (TREE_TYPE (val1), val2);
1203 STRIP_USELESS_TYPE_CONVERSION (val2);
1204
1205 if ((TREE_CODE (val1) == SSA_NAME
1206 || TREE_CODE (val1) == PLUS_EXPR
1207 || TREE_CODE (val1) == MINUS_EXPR)
1208 && (TREE_CODE (val2) == SSA_NAME
1209 || TREE_CODE (val2) == PLUS_EXPR
1210 || TREE_CODE (val2) == MINUS_EXPR))
1211 {
1212 tree n1, c1, n2, c2;
1213 enum tree_code code1, code2;
1214
1215 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1216 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1217 same name, return -2. */
1218 if (TREE_CODE (val1) == SSA_NAME)
1219 {
1220 code1 = SSA_NAME;
1221 n1 = val1;
1222 c1 = NULL_TREE;
1223 }
1224 else
1225 {
1226 code1 = TREE_CODE (val1);
1227 n1 = TREE_OPERAND (val1, 0);
1228 c1 = TREE_OPERAND (val1, 1);
1229 if (tree_int_cst_sgn (c1) == -1)
1230 {
1231 if (is_negative_overflow_infinity (c1))
1232 return -2;
1233 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1234 if (!c1)
1235 return -2;
1236 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1237 }
1238 }
1239
1240 if (TREE_CODE (val2) == SSA_NAME)
1241 {
1242 code2 = SSA_NAME;
1243 n2 = val2;
1244 c2 = NULL_TREE;
1245 }
1246 else
1247 {
1248 code2 = TREE_CODE (val2);
1249 n2 = TREE_OPERAND (val2, 0);
1250 c2 = TREE_OPERAND (val2, 1);
1251 if (tree_int_cst_sgn (c2) == -1)
1252 {
1253 if (is_negative_overflow_infinity (c2))
1254 return -2;
1255 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1256 if (!c2)
1257 return -2;
1258 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1259 }
1260 }
1261
1262 /* Both values must use the same name. */
1263 if (n1 != n2)
1264 return -2;
1265
1266 if (code1 == SSA_NAME
1267 && code2 == SSA_NAME)
1268 /* NAME == NAME */
1269 return 0;
1270
1271 /* If overflow is defined we cannot simplify more. */
1272 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1273 return -2;
1274
1275 if (strict_overflow_p != NULL
1276 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1277 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1278 *strict_overflow_p = true;
1279
1280 if (code1 == SSA_NAME)
1281 {
1282 if (code2 == PLUS_EXPR)
1283 /* NAME < NAME + CST */
1284 return -1;
1285 else if (code2 == MINUS_EXPR)
1286 /* NAME > NAME - CST */
1287 return 1;
1288 }
1289 else if (code1 == PLUS_EXPR)
1290 {
1291 if (code2 == SSA_NAME)
1292 /* NAME + CST > NAME */
1293 return 1;
1294 else if (code2 == PLUS_EXPR)
1295 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1296 return compare_values_warnv (c1, c2, strict_overflow_p);
1297 else if (code2 == MINUS_EXPR)
1298 /* NAME + CST1 > NAME - CST2 */
1299 return 1;
1300 }
1301 else if (code1 == MINUS_EXPR)
1302 {
1303 if (code2 == SSA_NAME)
1304 /* NAME - CST < NAME */
1305 return -1;
1306 else if (code2 == PLUS_EXPR)
1307 /* NAME - CST1 < NAME + CST2 */
1308 return -1;
1309 else if (code2 == MINUS_EXPR)
1310 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1311 C1 and C2 are swapped in the call to compare_values. */
1312 return compare_values_warnv (c2, c1, strict_overflow_p);
1313 }
1314
1315 gcc_unreachable ();
1316 }
1317
1318 /* We cannot compare non-constants. */
1319 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1320 return -2;
1321
1322 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1323 {
1324 /* We cannot compare overflowed values, except for overflow
1325 infinities. */
1326 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1327 {
1328 if (strict_overflow_p != NULL)
1329 *strict_overflow_p = true;
1330 if (is_negative_overflow_infinity (val1))
1331 return is_negative_overflow_infinity (val2) ? 0 : -1;
1332 else if (is_negative_overflow_infinity (val2))
1333 return 1;
1334 else if (is_positive_overflow_infinity (val1))
1335 return is_positive_overflow_infinity (val2) ? 0 : 1;
1336 else if (is_positive_overflow_infinity (val2))
1337 return -1;
1338 return -2;
1339 }
1340
1341 return tree_int_cst_compare (val1, val2);
1342 }
1343 else
1344 {
1345 tree t;
1346
1347 /* First see if VAL1 and VAL2 are not the same. */
1348 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1349 return 0;
1350
1351 /* If VAL1 is a lower address than VAL2, return -1. */
1352 if (operand_less_p (val1, val2) == 1)
1353 return -1;
1354
1355 /* If VAL1 is a higher address than VAL2, return +1. */
1356 if (operand_less_p (val2, val1) == 1)
1357 return 1;
1358
1359 /* If VAL1 is different than VAL2, return +2.
1360 For integer constants we either have already returned -1 or 1
1361 or they are equivalent. We still might succeed in proving
1362 something about non-trivial operands. */
1363 if (TREE_CODE (val1) != INTEGER_CST
1364 || TREE_CODE (val2) != INTEGER_CST)
1365 {
1366 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1367 if (t && integer_onep (t))
1368 return 2;
1369 }
1370
1371 return -2;
1372 }
1373 }
1374
1375 /* Compare values like compare_values_warnv, but treat comparisons of
1376 nonconstants which rely on undefined overflow as incomparable. */
1377
1378 static int
1379 compare_values (tree val1, tree val2)
1380 {
1381 bool sop;
1382 int ret;
1383
1384 sop = false;
1385 ret = compare_values_warnv (val1, val2, &sop);
1386 if (sop
1387 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1388 ret = -2;
1389 return ret;
1390 }
1391
1392
1393 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1394 0 if VAL is not inside [MIN, MAX],
1395 -2 if we cannot tell either way.
1396
1397 Benchmark compile/20001226-1.c compilation time after changing this
1398 function. */
1399
1400 static inline int
1401 value_inside_range (tree val, tree min, tree max)
1402 {
1403 int cmp1, cmp2;
1404
1405 cmp1 = operand_less_p (val, min);
1406 if (cmp1 == -2)
1407 return -2;
1408 if (cmp1 == 1)
1409 return 0;
1410
1411 cmp2 = operand_less_p (max, val);
1412 if (cmp2 == -2)
1413 return -2;
1414
1415 return !cmp2;
1416 }
1417
1418
1419 /* Return true if value ranges VR0 and VR1 have a non-empty
1420 intersection.
1421
1422 Benchmark compile/20001226-1.c compilation time after changing this
1423 function.
1424 */
1425
1426 static inline bool
1427 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1428 {
1429 /* The value ranges do not intersect if the maximum of the first range is
1430 less than the minimum of the second range or vice versa.
1431 When those relations are unknown, we can't do any better. */
1432 if (operand_less_p (vr0->max, vr1->min) != 0)
1433 return false;
1434 if (operand_less_p (vr1->max, vr0->min) != 0)
1435 return false;
1436 return true;
1437 }
1438
1439
1440 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1441 include the value zero, -2 if we cannot tell. */
1442
1443 static inline int
1444 range_includes_zero_p (tree min, tree max)
1445 {
1446 tree zero = build_int_cst (TREE_TYPE (min), 0);
1447 return value_inside_range (zero, min, max);
1448 }
1449
1450 /* Return true if *VR is know to only contain nonnegative values. */
1451
1452 static inline bool
1453 value_range_nonnegative_p (value_range_t *vr)
1454 {
1455 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1456 which would return a useful value should be encoded as a
1457 VR_RANGE. */
1458 if (vr->type == VR_RANGE)
1459 {
1460 int result = compare_values (vr->min, integer_zero_node);
1461 return (result == 0 || result == 1);
1462 }
1463
1464 return false;
1465 }
1466
1467 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1468 false otherwise or if no value range information is available. */
1469
1470 bool
1471 ssa_name_nonnegative_p (const_tree t)
1472 {
1473 value_range_t *vr = get_value_range (t);
1474
1475 if (INTEGRAL_TYPE_P (t)
1476 && TYPE_UNSIGNED (t))
1477 return true;
1478
1479 if (!vr)
1480 return false;
1481
1482 return value_range_nonnegative_p (vr);
1483 }
1484
1485 /* If *VR has a value rante that is a single constant value return that,
1486 otherwise return NULL_TREE. */
1487
1488 static tree
1489 value_range_constant_singleton (value_range_t *vr)
1490 {
1491 if (vr->type == VR_RANGE
1492 && operand_equal_p (vr->min, vr->max, 0)
1493 && is_gimple_min_invariant (vr->min))
1494 return vr->min;
1495
1496 return NULL_TREE;
1497 }
1498
1499 /* If OP has a value range with a single constant value return that,
1500 otherwise return NULL_TREE. This returns OP itself if OP is a
1501 constant. */
1502
1503 static tree
1504 op_with_constant_singleton_value_range (tree op)
1505 {
1506 if (is_gimple_min_invariant (op))
1507 return op;
1508
1509 if (TREE_CODE (op) != SSA_NAME)
1510 return NULL_TREE;
1511
1512 return value_range_constant_singleton (get_value_range (op));
1513 }
1514
1515 /* Return true if op is in a boolean [0, 1] value-range. */
1516
1517 static bool
1518 op_with_boolean_value_range_p (tree op)
1519 {
1520 value_range_t *vr;
1521
1522 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1523 return true;
1524
1525 if (integer_zerop (op)
1526 || integer_onep (op))
1527 return true;
1528
1529 if (TREE_CODE (op) != SSA_NAME)
1530 return false;
1531
1532 vr = get_value_range (op);
1533 return (vr->type == VR_RANGE
1534 && integer_zerop (vr->min)
1535 && integer_onep (vr->max));
1536 }
1537
1538 /* Extract value range information from an ASSERT_EXPR EXPR and store
1539 it in *VR_P. */
1540
1541 static void
1542 extract_range_from_assert (value_range_t *vr_p, tree expr)
1543 {
1544 tree var, cond, limit, min, max, type;
1545 value_range_t *limit_vr;
1546 enum tree_code cond_code;
1547
1548 var = ASSERT_EXPR_VAR (expr);
1549 cond = ASSERT_EXPR_COND (expr);
1550
1551 gcc_assert (COMPARISON_CLASS_P (cond));
1552
1553 /* Find VAR in the ASSERT_EXPR conditional. */
1554 if (var == TREE_OPERAND (cond, 0)
1555 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1556 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1557 {
1558 /* If the predicate is of the form VAR COMP LIMIT, then we just
1559 take LIMIT from the RHS and use the same comparison code. */
1560 cond_code = TREE_CODE (cond);
1561 limit = TREE_OPERAND (cond, 1);
1562 cond = TREE_OPERAND (cond, 0);
1563 }
1564 else
1565 {
1566 /* If the predicate is of the form LIMIT COMP VAR, then we need
1567 to flip around the comparison code to create the proper range
1568 for VAR. */
1569 cond_code = swap_tree_comparison (TREE_CODE (cond));
1570 limit = TREE_OPERAND (cond, 0);
1571 cond = TREE_OPERAND (cond, 1);
1572 }
1573
1574 limit = avoid_overflow_infinity (limit);
1575
1576 type = TREE_TYPE (var);
1577 gcc_assert (limit != var);
1578
1579 /* For pointer arithmetic, we only keep track of pointer equality
1580 and inequality. */
1581 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1582 {
1583 set_value_range_to_varying (vr_p);
1584 return;
1585 }
1586
1587 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1588 try to use LIMIT's range to avoid creating symbolic ranges
1589 unnecessarily. */
1590 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1591
1592 /* LIMIT's range is only interesting if it has any useful information. */
1593 if (limit_vr
1594 && (limit_vr->type == VR_UNDEFINED
1595 || limit_vr->type == VR_VARYING
1596 || symbolic_range_p (limit_vr)))
1597 limit_vr = NULL;
1598
1599 /* Initially, the new range has the same set of equivalences of
1600 VAR's range. This will be revised before returning the final
1601 value. Since assertions may be chained via mutually exclusive
1602 predicates, we will need to trim the set of equivalences before
1603 we are done. */
1604 gcc_assert (vr_p->equiv == NULL);
1605 add_equivalence (&vr_p->equiv, var);
1606
1607 /* Extract a new range based on the asserted comparison for VAR and
1608 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1609 will only use it for equality comparisons (EQ_EXPR). For any
1610 other kind of assertion, we cannot derive a range from LIMIT's
1611 anti-range that can be used to describe the new range. For
1612 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1613 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1614 no single range for x_2 that could describe LE_EXPR, so we might
1615 as well build the range [b_4, +INF] for it.
1616 One special case we handle is extracting a range from a
1617 range test encoded as (unsigned)var + CST <= limit. */
1618 if (TREE_CODE (cond) == NOP_EXPR
1619 || TREE_CODE (cond) == PLUS_EXPR)
1620 {
1621 if (TREE_CODE (cond) == PLUS_EXPR)
1622 {
1623 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1624 TREE_OPERAND (cond, 1));
1625 max = int_const_binop (PLUS_EXPR, limit, min);
1626 cond = TREE_OPERAND (cond, 0);
1627 }
1628 else
1629 {
1630 min = build_int_cst (TREE_TYPE (var), 0);
1631 max = limit;
1632 }
1633
1634 /* Make sure to not set TREE_OVERFLOW on the final type
1635 conversion. We are willingly interpreting large positive
1636 unsigned values as negative singed values here. */
1637 min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
1638 0, false);
1639 max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
1640 0, false);
1641
1642 /* We can transform a max, min range to an anti-range or
1643 vice-versa. Use set_and_canonicalize_value_range which does
1644 this for us. */
1645 if (cond_code == LE_EXPR)
1646 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1647 min, max, vr_p->equiv);
1648 else if (cond_code == GT_EXPR)
1649 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1650 min, max, vr_p->equiv);
1651 else
1652 gcc_unreachable ();
1653 }
1654 else if (cond_code == EQ_EXPR)
1655 {
1656 enum value_range_type range_type;
1657
1658 if (limit_vr)
1659 {
1660 range_type = limit_vr->type;
1661 min = limit_vr->min;
1662 max = limit_vr->max;
1663 }
1664 else
1665 {
1666 range_type = VR_RANGE;
1667 min = limit;
1668 max = limit;
1669 }
1670
1671 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1672
1673 /* When asserting the equality VAR == LIMIT and LIMIT is another
1674 SSA name, the new range will also inherit the equivalence set
1675 from LIMIT. */
1676 if (TREE_CODE (limit) == SSA_NAME)
1677 add_equivalence (&vr_p->equiv, limit);
1678 }
1679 else if (cond_code == NE_EXPR)
1680 {
1681 /* As described above, when LIMIT's range is an anti-range and
1682 this assertion is an inequality (NE_EXPR), then we cannot
1683 derive anything from the anti-range. For instance, if
1684 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1685 not imply that VAR's range is [0, 0]. So, in the case of
1686 anti-ranges, we just assert the inequality using LIMIT and
1687 not its anti-range.
1688
1689 If LIMIT_VR is a range, we can only use it to build a new
1690 anti-range if LIMIT_VR is a single-valued range. For
1691 instance, if LIMIT_VR is [0, 1], the predicate
1692 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1693 Rather, it means that for value 0 VAR should be ~[0, 0]
1694 and for value 1, VAR should be ~[1, 1]. We cannot
1695 represent these ranges.
1696
1697 The only situation in which we can build a valid
1698 anti-range is when LIMIT_VR is a single-valued range
1699 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1700 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1701 if (limit_vr
1702 && limit_vr->type == VR_RANGE
1703 && compare_values (limit_vr->min, limit_vr->max) == 0)
1704 {
1705 min = limit_vr->min;
1706 max = limit_vr->max;
1707 }
1708 else
1709 {
1710 /* In any other case, we cannot use LIMIT's range to build a
1711 valid anti-range. */
1712 min = max = limit;
1713 }
1714
1715 /* If MIN and MAX cover the whole range for their type, then
1716 just use the original LIMIT. */
1717 if (INTEGRAL_TYPE_P (type)
1718 && vrp_val_is_min (min)
1719 && vrp_val_is_max (max))
1720 min = max = limit;
1721
1722 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1723 min, max, vr_p->equiv);
1724 }
1725 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1726 {
1727 min = TYPE_MIN_VALUE (type);
1728
1729 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1730 max = limit;
1731 else
1732 {
1733 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1734 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1735 LT_EXPR. */
1736 max = limit_vr->max;
1737 }
1738
1739 /* If the maximum value forces us to be out of bounds, simply punt.
1740 It would be pointless to try and do anything more since this
1741 all should be optimized away above us. */
1742 if ((cond_code == LT_EXPR
1743 && compare_values (max, min) == 0)
1744 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1745 set_value_range_to_varying (vr_p);
1746 else
1747 {
1748 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1749 if (cond_code == LT_EXPR)
1750 {
1751 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1752 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1753 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1754 build_int_cst (TREE_TYPE (max), -1));
1755 else
1756 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1757 build_int_cst (TREE_TYPE (max), 1));
1758 if (EXPR_P (max))
1759 TREE_NO_WARNING (max) = 1;
1760 }
1761
1762 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1763 }
1764 }
1765 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1766 {
1767 max = TYPE_MAX_VALUE (type);
1768
1769 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1770 min = limit;
1771 else
1772 {
1773 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1774 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1775 GT_EXPR. */
1776 min = limit_vr->min;
1777 }
1778
1779 /* If the minimum value forces us to be out of bounds, simply punt.
1780 It would be pointless to try and do anything more since this
1781 all should be optimized away above us. */
1782 if ((cond_code == GT_EXPR
1783 && compare_values (min, max) == 0)
1784 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1785 set_value_range_to_varying (vr_p);
1786 else
1787 {
1788 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1789 if (cond_code == GT_EXPR)
1790 {
1791 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1792 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1793 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1794 build_int_cst (TREE_TYPE (min), -1));
1795 else
1796 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1797 build_int_cst (TREE_TYPE (min), 1));
1798 if (EXPR_P (min))
1799 TREE_NO_WARNING (min) = 1;
1800 }
1801
1802 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1803 }
1804 }
1805 else
1806 gcc_unreachable ();
1807
1808 /* Finally intersect the new range with what we already know about var. */
1809 vrp_intersect_ranges (vr_p, get_value_range (var));
1810 }
1811
1812
1813 /* Extract range information from SSA name VAR and store it in VR. If
1814 VAR has an interesting range, use it. Otherwise, create the
1815 range [VAR, VAR] and return it. This is useful in situations where
1816 we may have conditionals testing values of VARYING names. For
1817 instance,
1818
1819 x_3 = y_5;
1820 if (x_3 > y_5)
1821 ...
1822
1823 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1824 always false. */
1825
1826 static void
1827 extract_range_from_ssa_name (value_range_t *vr, tree var)
1828 {
1829 value_range_t *var_vr = get_value_range (var);
1830
1831 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1832 copy_value_range (vr, var_vr);
1833 else
1834 set_value_range (vr, VR_RANGE, var, var, NULL);
1835
1836 add_equivalence (&vr->equiv, var);
1837 }
1838
1839
1840 /* Wrapper around int_const_binop. If the operation overflows and we
1841 are not using wrapping arithmetic, then adjust the result to be
1842 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1843 NULL_TREE if we need to use an overflow infinity representation but
1844 the type does not support it. */
1845
1846 static tree
1847 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1848 {
1849 tree res;
1850
1851 res = int_const_binop (code, val1, val2);
1852
1853 /* If we are using unsigned arithmetic, operate symbolically
1854 on -INF and +INF as int_const_binop only handles signed overflow. */
1855 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1856 {
1857 int checkz = compare_values (res, val1);
1858 bool overflow = false;
1859
1860 /* Ensure that res = val1 [+*] val2 >= val1
1861 or that res = val1 - val2 <= val1. */
1862 if ((code == PLUS_EXPR
1863 && !(checkz == 1 || checkz == 0))
1864 || (code == MINUS_EXPR
1865 && !(checkz == 0 || checkz == -1)))
1866 {
1867 overflow = true;
1868 }
1869 /* Checking for multiplication overflow is done by dividing the
1870 output of the multiplication by the first input of the
1871 multiplication. If the result of that division operation is
1872 not equal to the second input of the multiplication, then the
1873 multiplication overflowed. */
1874 else if (code == MULT_EXPR && !integer_zerop (val1))
1875 {
1876 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1877 res,
1878 val1);
1879 int check = compare_values (tmp, val2);
1880
1881 if (check != 0)
1882 overflow = true;
1883 }
1884
1885 if (overflow)
1886 {
1887 res = copy_node (res);
1888 TREE_OVERFLOW (res) = 1;
1889 }
1890
1891 }
1892 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1893 /* If the singed operation wraps then int_const_binop has done
1894 everything we want. */
1895 ;
1896 else if ((TREE_OVERFLOW (res)
1897 && !TREE_OVERFLOW (val1)
1898 && !TREE_OVERFLOW (val2))
1899 || is_overflow_infinity (val1)
1900 || is_overflow_infinity (val2))
1901 {
1902 /* If the operation overflowed but neither VAL1 nor VAL2 are
1903 overflown, return -INF or +INF depending on the operation
1904 and the combination of signs of the operands. */
1905 int sgn1 = tree_int_cst_sgn (val1);
1906 int sgn2 = tree_int_cst_sgn (val2);
1907
1908 if (needs_overflow_infinity (TREE_TYPE (res))
1909 && !supports_overflow_infinity (TREE_TYPE (res)))
1910 return NULL_TREE;
1911
1912 /* We have to punt on adding infinities of different signs,
1913 since we can't tell what the sign of the result should be.
1914 Likewise for subtracting infinities of the same sign. */
1915 if (((code == PLUS_EXPR && sgn1 != sgn2)
1916 || (code == MINUS_EXPR && sgn1 == sgn2))
1917 && is_overflow_infinity (val1)
1918 && is_overflow_infinity (val2))
1919 return NULL_TREE;
1920
1921 /* Don't try to handle division or shifting of infinities. */
1922 if ((code == TRUNC_DIV_EXPR
1923 || code == FLOOR_DIV_EXPR
1924 || code == CEIL_DIV_EXPR
1925 || code == EXACT_DIV_EXPR
1926 || code == ROUND_DIV_EXPR
1927 || code == RSHIFT_EXPR)
1928 && (is_overflow_infinity (val1)
1929 || is_overflow_infinity (val2)))
1930 return NULL_TREE;
1931
1932 /* Notice that we only need to handle the restricted set of
1933 operations handled by extract_range_from_binary_expr.
1934 Among them, only multiplication, addition and subtraction
1935 can yield overflow without overflown operands because we
1936 are working with integral types only... except in the
1937 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1938 for division too. */
1939
1940 /* For multiplication, the sign of the overflow is given
1941 by the comparison of the signs of the operands. */
1942 if ((code == MULT_EXPR && sgn1 == sgn2)
1943 /* For addition, the operands must be of the same sign
1944 to yield an overflow. Its sign is therefore that
1945 of one of the operands, for example the first. For
1946 infinite operands X + -INF is negative, not positive. */
1947 || (code == PLUS_EXPR
1948 && (sgn1 >= 0
1949 ? !is_negative_overflow_infinity (val2)
1950 : is_positive_overflow_infinity (val2)))
1951 /* For subtraction, non-infinite operands must be of
1952 different signs to yield an overflow. Its sign is
1953 therefore that of the first operand or the opposite of
1954 that of the second operand. A first operand of 0 counts
1955 as positive here, for the corner case 0 - (-INF), which
1956 overflows, but must yield +INF. For infinite operands 0
1957 - INF is negative, not positive. */
1958 || (code == MINUS_EXPR
1959 && (sgn1 >= 0
1960 ? !is_positive_overflow_infinity (val2)
1961 : is_negative_overflow_infinity (val2)))
1962 /* We only get in here with positive shift count, so the
1963 overflow direction is the same as the sign of val1.
1964 Actually rshift does not overflow at all, but we only
1965 handle the case of shifting overflowed -INF and +INF. */
1966 || (code == RSHIFT_EXPR
1967 && sgn1 >= 0)
1968 /* For division, the only case is -INF / -1 = +INF. */
1969 || code == TRUNC_DIV_EXPR
1970 || code == FLOOR_DIV_EXPR
1971 || code == CEIL_DIV_EXPR
1972 || code == EXACT_DIV_EXPR
1973 || code == ROUND_DIV_EXPR)
1974 return (needs_overflow_infinity (TREE_TYPE (res))
1975 ? positive_overflow_infinity (TREE_TYPE (res))
1976 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1977 else
1978 return (needs_overflow_infinity (TREE_TYPE (res))
1979 ? negative_overflow_infinity (TREE_TYPE (res))
1980 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1981 }
1982
1983 return res;
1984 }
1985
1986
1987 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
1988 bitmask if some bit is unset, it means for all numbers in the range
1989 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1990 bitmask if some bit is set, it means for all numbers in the range
1991 the bit is 1, otherwise it might be 0 or 1. */
1992
1993 static bool
1994 zero_nonzero_bits_from_vr (value_range_t *vr,
1995 double_int *may_be_nonzero,
1996 double_int *must_be_nonzero)
1997 {
1998 *may_be_nonzero = double_int_minus_one;
1999 *must_be_nonzero = double_int_zero;
2000 if (!range_int_cst_p (vr)
2001 || TREE_OVERFLOW (vr->min)
2002 || TREE_OVERFLOW (vr->max))
2003 return false;
2004
2005 if (range_int_cst_singleton_p (vr))
2006 {
2007 *may_be_nonzero = tree_to_double_int (vr->min);
2008 *must_be_nonzero = *may_be_nonzero;
2009 }
2010 else if (tree_int_cst_sgn (vr->min) >= 0
2011 || tree_int_cst_sgn (vr->max) < 0)
2012 {
2013 double_int dmin = tree_to_double_int (vr->min);
2014 double_int dmax = tree_to_double_int (vr->max);
2015 double_int xor_mask = dmin ^ dmax;
2016 *may_be_nonzero = dmin | dmax;
2017 *must_be_nonzero = dmin & dmax;
2018 if (xor_mask.high != 0)
2019 {
2020 unsigned HOST_WIDE_INT mask
2021 = ((unsigned HOST_WIDE_INT) 1
2022 << floor_log2 (xor_mask.high)) - 1;
2023 may_be_nonzero->low = ALL_ONES;
2024 may_be_nonzero->high |= mask;
2025 must_be_nonzero->low = 0;
2026 must_be_nonzero->high &= ~mask;
2027 }
2028 else if (xor_mask.low != 0)
2029 {
2030 unsigned HOST_WIDE_INT mask
2031 = ((unsigned HOST_WIDE_INT) 1
2032 << floor_log2 (xor_mask.low)) - 1;
2033 may_be_nonzero->low |= mask;
2034 must_be_nonzero->low &= ~mask;
2035 }
2036 }
2037
2038 return true;
2039 }
2040
2041 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2042 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2043 false otherwise. If *AR can be represented with a single range
2044 *VR1 will be VR_UNDEFINED. */
2045
2046 static bool
2047 ranges_from_anti_range (value_range_t *ar,
2048 value_range_t *vr0, value_range_t *vr1)
2049 {
2050 tree type = TREE_TYPE (ar->min);
2051
2052 vr0->type = VR_UNDEFINED;
2053 vr1->type = VR_UNDEFINED;
2054
2055 if (ar->type != VR_ANTI_RANGE
2056 || TREE_CODE (ar->min) != INTEGER_CST
2057 || TREE_CODE (ar->max) != INTEGER_CST
2058 || !vrp_val_min (type)
2059 || !vrp_val_max (type))
2060 return false;
2061
2062 if (!vrp_val_is_min (ar->min))
2063 {
2064 vr0->type = VR_RANGE;
2065 vr0->min = vrp_val_min (type);
2066 vr0->max
2067 = double_int_to_tree (type,
2068 tree_to_double_int (ar->min) - double_int_one);
2069 }
2070 if (!vrp_val_is_max (ar->max))
2071 {
2072 vr1->type = VR_RANGE;
2073 vr1->min
2074 = double_int_to_tree (type,
2075 tree_to_double_int (ar->max) + double_int_one);
2076 vr1->max = vrp_val_max (type);
2077 }
2078 if (vr0->type == VR_UNDEFINED)
2079 {
2080 *vr0 = *vr1;
2081 vr1->type = VR_UNDEFINED;
2082 }
2083
2084 return vr0->type != VR_UNDEFINED;
2085 }
2086
2087 /* Helper to extract a value-range *VR for a multiplicative operation
2088 *VR0 CODE *VR1. */
2089
2090 static void
2091 extract_range_from_multiplicative_op_1 (value_range_t *vr,
2092 enum tree_code code,
2093 value_range_t *vr0, value_range_t *vr1)
2094 {
2095 enum value_range_type type;
2096 tree val[4];
2097 size_t i;
2098 tree min, max;
2099 bool sop;
2100 int cmp;
2101
2102 /* Multiplications, divisions and shifts are a bit tricky to handle,
2103 depending on the mix of signs we have in the two ranges, we
2104 need to operate on different values to get the minimum and
2105 maximum values for the new range. One approach is to figure
2106 out all the variations of range combinations and do the
2107 operations.
2108
2109 However, this involves several calls to compare_values and it
2110 is pretty convoluted. It's simpler to do the 4 operations
2111 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2112 MAX1) and then figure the smallest and largest values to form
2113 the new range. */
2114 gcc_assert (code == MULT_EXPR
2115 || code == TRUNC_DIV_EXPR
2116 || code == FLOOR_DIV_EXPR
2117 || code == CEIL_DIV_EXPR
2118 || code == EXACT_DIV_EXPR
2119 || code == ROUND_DIV_EXPR
2120 || code == RSHIFT_EXPR
2121 || code == LSHIFT_EXPR);
2122 gcc_assert ((vr0->type == VR_RANGE
2123 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2124 && vr0->type == vr1->type);
2125
2126 type = vr0->type;
2127
2128 /* Compute the 4 cross operations. */
2129 sop = false;
2130 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2131 if (val[0] == NULL_TREE)
2132 sop = true;
2133
2134 if (vr1->max == vr1->min)
2135 val[1] = NULL_TREE;
2136 else
2137 {
2138 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2139 if (val[1] == NULL_TREE)
2140 sop = true;
2141 }
2142
2143 if (vr0->max == vr0->min)
2144 val[2] = NULL_TREE;
2145 else
2146 {
2147 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2148 if (val[2] == NULL_TREE)
2149 sop = true;
2150 }
2151
2152 if (vr0->min == vr0->max || vr1->min == vr1->max)
2153 val[3] = NULL_TREE;
2154 else
2155 {
2156 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2157 if (val[3] == NULL_TREE)
2158 sop = true;
2159 }
2160
2161 if (sop)
2162 {
2163 set_value_range_to_varying (vr);
2164 return;
2165 }
2166
2167 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2168 of VAL[i]. */
2169 min = val[0];
2170 max = val[0];
2171 for (i = 1; i < 4; i++)
2172 {
2173 if (!is_gimple_min_invariant (min)
2174 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2175 || !is_gimple_min_invariant (max)
2176 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2177 break;
2178
2179 if (val[i])
2180 {
2181 if (!is_gimple_min_invariant (val[i])
2182 || (TREE_OVERFLOW (val[i])
2183 && !is_overflow_infinity (val[i])))
2184 {
2185 /* If we found an overflowed value, set MIN and MAX
2186 to it so that we set the resulting range to
2187 VARYING. */
2188 min = max = val[i];
2189 break;
2190 }
2191
2192 if (compare_values (val[i], min) == -1)
2193 min = val[i];
2194
2195 if (compare_values (val[i], max) == 1)
2196 max = val[i];
2197 }
2198 }
2199
2200 /* If either MIN or MAX overflowed, then set the resulting range to
2201 VARYING. But we do accept an overflow infinity
2202 representation. */
2203 if (min == NULL_TREE
2204 || !is_gimple_min_invariant (min)
2205 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2206 || max == NULL_TREE
2207 || !is_gimple_min_invariant (max)
2208 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2209 {
2210 set_value_range_to_varying (vr);
2211 return;
2212 }
2213
2214 /* We punt if:
2215 1) [-INF, +INF]
2216 2) [-INF, +-INF(OVF)]
2217 3) [+-INF(OVF), +INF]
2218 4) [+-INF(OVF), +-INF(OVF)]
2219 We learn nothing when we have INF and INF(OVF) on both sides.
2220 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2221 overflow. */
2222 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2223 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2224 {
2225 set_value_range_to_varying (vr);
2226 return;
2227 }
2228
2229 cmp = compare_values (min, max);
2230 if (cmp == -2 || cmp == 1)
2231 {
2232 /* If the new range has its limits swapped around (MIN > MAX),
2233 then the operation caused one of them to wrap around, mark
2234 the new range VARYING. */
2235 set_value_range_to_varying (vr);
2236 }
2237 else
2238 set_value_range (vr, type, min, max, NULL);
2239 }
2240
2241 /* Some quadruple precision helpers. */
2242 static int
2243 quad_int_cmp (double_int l0, double_int h0,
2244 double_int l1, double_int h1, bool uns)
2245 {
2246 int c = h0.cmp (h1, uns);
2247 if (c != 0) return c;
2248 return l0.ucmp (l1);
2249 }
2250
2251 static void
2252 quad_int_pair_sort (double_int *l0, double_int *h0,
2253 double_int *l1, double_int *h1, bool uns)
2254 {
2255 if (quad_int_cmp (*l0, *h0, *l1, *h1, uns) > 0)
2256 {
2257 double_int tmp;
2258 tmp = *l0; *l0 = *l1; *l1 = tmp;
2259 tmp = *h0; *h0 = *h1; *h1 = tmp;
2260 }
2261 }
2262
2263 /* Extract range information from a binary operation CODE based on
2264 the ranges of each of its operands, *VR0 and *VR1 with resulting
2265 type EXPR_TYPE. The resulting range is stored in *VR. */
2266
2267 static void
2268 extract_range_from_binary_expr_1 (value_range_t *vr,
2269 enum tree_code code, tree expr_type,
2270 value_range_t *vr0_, value_range_t *vr1_)
2271 {
2272 value_range_t vr0 = *vr0_, vr1 = *vr1_;
2273 value_range_t vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
2274 enum value_range_type type;
2275 tree min = NULL_TREE, max = NULL_TREE;
2276 int cmp;
2277
2278 if (!INTEGRAL_TYPE_P (expr_type)
2279 && !POINTER_TYPE_P (expr_type))
2280 {
2281 set_value_range_to_varying (vr);
2282 return;
2283 }
2284
2285 /* Not all binary expressions can be applied to ranges in a
2286 meaningful way. Handle only arithmetic operations. */
2287 if (code != PLUS_EXPR
2288 && code != MINUS_EXPR
2289 && code != POINTER_PLUS_EXPR
2290 && code != MULT_EXPR
2291 && code != TRUNC_DIV_EXPR
2292 && code != FLOOR_DIV_EXPR
2293 && code != CEIL_DIV_EXPR
2294 && code != EXACT_DIV_EXPR
2295 && code != ROUND_DIV_EXPR
2296 && code != TRUNC_MOD_EXPR
2297 && code != RSHIFT_EXPR
2298 && code != LSHIFT_EXPR
2299 && code != MIN_EXPR
2300 && code != MAX_EXPR
2301 && code != BIT_AND_EXPR
2302 && code != BIT_IOR_EXPR
2303 && code != BIT_XOR_EXPR)
2304 {
2305 set_value_range_to_varying (vr);
2306 return;
2307 }
2308
2309 /* If both ranges are UNDEFINED, so is the result. */
2310 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2311 {
2312 set_value_range_to_undefined (vr);
2313 return;
2314 }
2315 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2316 code. At some point we may want to special-case operations that
2317 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2318 operand. */
2319 else if (vr0.type == VR_UNDEFINED)
2320 set_value_range_to_varying (&vr0);
2321 else if (vr1.type == VR_UNDEFINED)
2322 set_value_range_to_varying (&vr1);
2323
2324 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2325 and express ~[] op X as ([]' op X) U ([]'' op X). */
2326 if (vr0.type == VR_ANTI_RANGE
2327 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2328 {
2329 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2330 if (vrtem1.type != VR_UNDEFINED)
2331 {
2332 value_range_t vrres = VR_INITIALIZER;
2333 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2334 &vrtem1, vr1_);
2335 vrp_meet (vr, &vrres);
2336 }
2337 return;
2338 }
2339 /* Likewise for X op ~[]. */
2340 if (vr1.type == VR_ANTI_RANGE
2341 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2342 {
2343 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2344 if (vrtem1.type != VR_UNDEFINED)
2345 {
2346 value_range_t vrres = VR_INITIALIZER;
2347 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2348 vr0_, &vrtem1);
2349 vrp_meet (vr, &vrres);
2350 }
2351 return;
2352 }
2353
2354 /* The type of the resulting value range defaults to VR0.TYPE. */
2355 type = vr0.type;
2356
2357 /* Refuse to operate on VARYING ranges, ranges of different kinds
2358 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2359 because we may be able to derive a useful range even if one of
2360 the operands is VR_VARYING or symbolic range. Similarly for
2361 divisions. TODO, we may be able to derive anti-ranges in
2362 some cases. */
2363 if (code != BIT_AND_EXPR
2364 && code != BIT_IOR_EXPR
2365 && code != TRUNC_DIV_EXPR
2366 && code != FLOOR_DIV_EXPR
2367 && code != CEIL_DIV_EXPR
2368 && code != EXACT_DIV_EXPR
2369 && code != ROUND_DIV_EXPR
2370 && code != TRUNC_MOD_EXPR
2371 && code != MIN_EXPR
2372 && code != MAX_EXPR
2373 && (vr0.type == VR_VARYING
2374 || vr1.type == VR_VARYING
2375 || vr0.type != vr1.type
2376 || symbolic_range_p (&vr0)
2377 || symbolic_range_p (&vr1)))
2378 {
2379 set_value_range_to_varying (vr);
2380 return;
2381 }
2382
2383 /* Now evaluate the expression to determine the new range. */
2384 if (POINTER_TYPE_P (expr_type))
2385 {
2386 if (code == MIN_EXPR || code == MAX_EXPR)
2387 {
2388 /* For MIN/MAX expressions with pointers, we only care about
2389 nullness, if both are non null, then the result is nonnull.
2390 If both are null, then the result is null. Otherwise they
2391 are varying. */
2392 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2393 set_value_range_to_nonnull (vr, expr_type);
2394 else if (range_is_null (&vr0) && range_is_null (&vr1))
2395 set_value_range_to_null (vr, expr_type);
2396 else
2397 set_value_range_to_varying (vr);
2398 }
2399 else if (code == POINTER_PLUS_EXPR)
2400 {
2401 /* For pointer types, we are really only interested in asserting
2402 whether the expression evaluates to non-NULL. */
2403 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2404 set_value_range_to_nonnull (vr, expr_type);
2405 else if (range_is_null (&vr0) && range_is_null (&vr1))
2406 set_value_range_to_null (vr, expr_type);
2407 else
2408 set_value_range_to_varying (vr);
2409 }
2410 else if (code == BIT_AND_EXPR)
2411 {
2412 /* For pointer types, we are really only interested in asserting
2413 whether the expression evaluates to non-NULL. */
2414 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2415 set_value_range_to_nonnull (vr, expr_type);
2416 else if (range_is_null (&vr0) || range_is_null (&vr1))
2417 set_value_range_to_null (vr, expr_type);
2418 else
2419 set_value_range_to_varying (vr);
2420 }
2421 else
2422 set_value_range_to_varying (vr);
2423
2424 return;
2425 }
2426
2427 /* For integer ranges, apply the operation to each end of the
2428 range and see what we end up with. */
2429 if (code == PLUS_EXPR || code == MINUS_EXPR)
2430 {
2431 /* If we have a PLUS_EXPR with two VR_RANGE integer constant
2432 ranges compute the precise range for such case if possible. */
2433 if (range_int_cst_p (&vr0)
2434 && range_int_cst_p (&vr1)
2435 /* We need as many bits as the possibly unsigned inputs. */
2436 && TYPE_PRECISION (expr_type) <= HOST_BITS_PER_DOUBLE_INT)
2437 {
2438 double_int min0 = tree_to_double_int (vr0.min);
2439 double_int max0 = tree_to_double_int (vr0.max);
2440 double_int min1 = tree_to_double_int (vr1.min);
2441 double_int max1 = tree_to_double_int (vr1.max);
2442 bool uns = TYPE_UNSIGNED (expr_type);
2443 double_int type_min
2444 = double_int::min_value (TYPE_PRECISION (expr_type), uns);
2445 double_int type_max
2446 = double_int::max_value (TYPE_PRECISION (expr_type), uns);
2447 double_int dmin, dmax;
2448 int min_ovf = 0;
2449 int max_ovf = 0;
2450
2451 if (code == PLUS_EXPR)
2452 {
2453 dmin = min0 + min1;
2454 dmax = max0 + max1;
2455
2456 /* Check for overflow in double_int. */
2457 if (min1.cmp (double_int_zero, uns) != dmin.cmp (min0, uns))
2458 min_ovf = min0.cmp (dmin, uns);
2459 if (max1.cmp (double_int_zero, uns) != dmax.cmp (max0, uns))
2460 max_ovf = max0.cmp (dmax, uns);
2461 }
2462 else /* if (code == MINUS_EXPR) */
2463 {
2464 dmin = min0 - max1;
2465 dmax = max0 - min1;
2466
2467 if (double_int_zero.cmp (max1, uns) != dmin.cmp (min0, uns))
2468 min_ovf = min0.cmp (max1, uns);
2469 if (double_int_zero.cmp (min1, uns) != dmax.cmp (max0, uns))
2470 max_ovf = max0.cmp (min1, uns);
2471 }
2472
2473 /* For non-wrapping arithmetic look at possibly smaller
2474 value-ranges of the type. */
2475 if (!TYPE_OVERFLOW_WRAPS (expr_type))
2476 {
2477 if (vrp_val_min (expr_type))
2478 type_min = tree_to_double_int (vrp_val_min (expr_type));
2479 if (vrp_val_max (expr_type))
2480 type_max = tree_to_double_int (vrp_val_max (expr_type));
2481 }
2482
2483 /* Check for type overflow. */
2484 if (min_ovf == 0)
2485 {
2486 if (dmin.cmp (type_min, uns) == -1)
2487 min_ovf = -1;
2488 else if (dmin.cmp (type_max, uns) == 1)
2489 min_ovf = 1;
2490 }
2491 if (max_ovf == 0)
2492 {
2493 if (dmax.cmp (type_min, uns) == -1)
2494 max_ovf = -1;
2495 else if (dmax.cmp (type_max, uns) == 1)
2496 max_ovf = 1;
2497 }
2498
2499 if (TYPE_OVERFLOW_WRAPS (expr_type))
2500 {
2501 /* If overflow wraps, truncate the values and adjust the
2502 range kind and bounds appropriately. */
2503 double_int tmin
2504 = dmin.ext (TYPE_PRECISION (expr_type), uns);
2505 double_int tmax
2506 = dmax.ext (TYPE_PRECISION (expr_type), uns);
2507 if (min_ovf == max_ovf)
2508 {
2509 /* No overflow or both overflow or underflow. The
2510 range kind stays VR_RANGE. */
2511 min = double_int_to_tree (expr_type, tmin);
2512 max = double_int_to_tree (expr_type, tmax);
2513 }
2514 else if (min_ovf == -1
2515 && max_ovf == 1)
2516 {
2517 /* Underflow and overflow, drop to VR_VARYING. */
2518 set_value_range_to_varying (vr);
2519 return;
2520 }
2521 else
2522 {
2523 /* Min underflow or max overflow. The range kind
2524 changes to VR_ANTI_RANGE. */
2525 bool covers = false;
2526 double_int tem = tmin;
2527 gcc_assert ((min_ovf == -1 && max_ovf == 0)
2528 || (max_ovf == 1 && min_ovf == 0));
2529 type = VR_ANTI_RANGE;
2530 tmin = tmax + double_int_one;
2531 if (tmin.cmp (tmax, uns) < 0)
2532 covers = true;
2533 tmax = tem + double_int_minus_one;
2534 if (tmax.cmp (tem, uns) > 0)
2535 covers = true;
2536 /* If the anti-range would cover nothing, drop to varying.
2537 Likewise if the anti-range bounds are outside of the
2538 types values. */
2539 if (covers || tmin.cmp (tmax, uns) > 0)
2540 {
2541 set_value_range_to_varying (vr);
2542 return;
2543 }
2544 min = double_int_to_tree (expr_type, tmin);
2545 max = double_int_to_tree (expr_type, tmax);
2546 }
2547 }
2548 else
2549 {
2550 /* If overflow does not wrap, saturate to the types min/max
2551 value. */
2552 if (min_ovf == -1)
2553 {
2554 if (needs_overflow_infinity (expr_type)
2555 && supports_overflow_infinity (expr_type))
2556 min = negative_overflow_infinity (expr_type);
2557 else
2558 min = double_int_to_tree (expr_type, type_min);
2559 }
2560 else if (min_ovf == 1)
2561 {
2562 if (needs_overflow_infinity (expr_type)
2563 && supports_overflow_infinity (expr_type))
2564 min = positive_overflow_infinity (expr_type);
2565 else
2566 min = double_int_to_tree (expr_type, type_max);
2567 }
2568 else
2569 min = double_int_to_tree (expr_type, dmin);
2570
2571 if (max_ovf == -1)
2572 {
2573 if (needs_overflow_infinity (expr_type)
2574 && supports_overflow_infinity (expr_type))
2575 max = negative_overflow_infinity (expr_type);
2576 else
2577 max = double_int_to_tree (expr_type, type_min);
2578 }
2579 else if (max_ovf == 1)
2580 {
2581 if (needs_overflow_infinity (expr_type)
2582 && supports_overflow_infinity (expr_type))
2583 max = positive_overflow_infinity (expr_type);
2584 else
2585 max = double_int_to_tree (expr_type, type_max);
2586 }
2587 else
2588 max = double_int_to_tree (expr_type, dmax);
2589 }
2590 if (needs_overflow_infinity (expr_type)
2591 && supports_overflow_infinity (expr_type))
2592 {
2593 if (is_negative_overflow_infinity (vr0.min)
2594 || (code == PLUS_EXPR
2595 ? is_negative_overflow_infinity (vr1.min)
2596 : is_positive_overflow_infinity (vr1.max)))
2597 min = negative_overflow_infinity (expr_type);
2598 if (is_positive_overflow_infinity (vr0.max)
2599 || (code == PLUS_EXPR
2600 ? is_positive_overflow_infinity (vr1.max)
2601 : is_negative_overflow_infinity (vr1.min)))
2602 max = positive_overflow_infinity (expr_type);
2603 }
2604 }
2605 else
2606 {
2607 /* For other cases, for example if we have a PLUS_EXPR with two
2608 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2609 to compute a precise range for such a case.
2610 ??? General even mixed range kind operations can be expressed
2611 by for example transforming ~[3, 5] + [1, 2] to range-only
2612 operations and a union primitive:
2613 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2614 [-INF+1, 4] U [6, +INF(OVF)]
2615 though usually the union is not exactly representable with
2616 a single range or anti-range as the above is
2617 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2618 but one could use a scheme similar to equivalences for this. */
2619 set_value_range_to_varying (vr);
2620 return;
2621 }
2622 }
2623 else if (code == MIN_EXPR
2624 || code == MAX_EXPR)
2625 {
2626 if (vr0.type == VR_RANGE
2627 && !symbolic_range_p (&vr0))
2628 {
2629 type = VR_RANGE;
2630 if (vr1.type == VR_RANGE
2631 && !symbolic_range_p (&vr1))
2632 {
2633 /* For operations that make the resulting range directly
2634 proportional to the original ranges, apply the operation to
2635 the same end of each range. */
2636 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2637 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2638 }
2639 else if (code == MIN_EXPR)
2640 {
2641 min = vrp_val_min (expr_type);
2642 max = vr0.max;
2643 }
2644 else if (code == MAX_EXPR)
2645 {
2646 min = vr0.min;
2647 max = vrp_val_max (expr_type);
2648 }
2649 }
2650 else if (vr1.type == VR_RANGE
2651 && !symbolic_range_p (&vr1))
2652 {
2653 type = VR_RANGE;
2654 if (code == MIN_EXPR)
2655 {
2656 min = vrp_val_min (expr_type);
2657 max = vr1.max;
2658 }
2659 else if (code == MAX_EXPR)
2660 {
2661 min = vr1.min;
2662 max = vrp_val_max (expr_type);
2663 }
2664 }
2665 else
2666 {
2667 set_value_range_to_varying (vr);
2668 return;
2669 }
2670 }
2671 else if (code == MULT_EXPR)
2672 {
2673 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2674 drop to varying. */
2675 if (range_int_cst_p (&vr0)
2676 && range_int_cst_p (&vr1)
2677 && TYPE_OVERFLOW_WRAPS (expr_type))
2678 {
2679 double_int min0, max0, min1, max1, sizem1, size;
2680 double_int prod0l, prod0h, prod1l, prod1h,
2681 prod2l, prod2h, prod3l, prod3h;
2682 bool uns0, uns1, uns;
2683
2684 sizem1 = double_int::max_value (TYPE_PRECISION (expr_type), true);
2685 size = sizem1 + double_int_one;
2686
2687 min0 = tree_to_double_int (vr0.min);
2688 max0 = tree_to_double_int (vr0.max);
2689 min1 = tree_to_double_int (vr1.min);
2690 max1 = tree_to_double_int (vr1.max);
2691
2692 uns0 = TYPE_UNSIGNED (expr_type);
2693 uns1 = uns0;
2694
2695 /* Canonicalize the intervals. */
2696 if (TYPE_UNSIGNED (expr_type))
2697 {
2698 double_int min2 = size - min0;
2699 if (!min2.is_zero () && min2.cmp (max0, true) < 0)
2700 {
2701 min0 = -min2;
2702 max0 -= size;
2703 uns0 = false;
2704 }
2705
2706 min2 = size - min1;
2707 if (!min2.is_zero () && min2.cmp (max1, true) < 0)
2708 {
2709 min1 = -min2;
2710 max1 -= size;
2711 uns1 = false;
2712 }
2713 }
2714 uns = uns0 & uns1;
2715
2716 bool overflow;
2717 prod0l = min0.wide_mul_with_sign (min1, true, &prod0h, &overflow);
2718 if (!uns0 && min0.is_negative ())
2719 prod0h -= min1;
2720 if (!uns1 && min1.is_negative ())
2721 prod0h -= min0;
2722
2723 prod1l = min0.wide_mul_with_sign (max1, true, &prod1h, &overflow);
2724 if (!uns0 && min0.is_negative ())
2725 prod1h -= max1;
2726 if (!uns1 && max1.is_negative ())
2727 prod1h -= min0;
2728
2729 prod2l = max0.wide_mul_with_sign (min1, true, &prod2h, &overflow);
2730 if (!uns0 && max0.is_negative ())
2731 prod2h -= min1;
2732 if (!uns1 && min1.is_negative ())
2733 prod2h -= max0;
2734
2735 prod3l = max0.wide_mul_with_sign (max1, true, &prod3h, &overflow);
2736 if (!uns0 && max0.is_negative ())
2737 prod3h -= max1;
2738 if (!uns1 && max1.is_negative ())
2739 prod3h -= max0;
2740
2741 /* Sort the 4 products. */
2742 quad_int_pair_sort (&prod0l, &prod0h, &prod3l, &prod3h, uns);
2743 quad_int_pair_sort (&prod1l, &prod1h, &prod2l, &prod2h, uns);
2744 quad_int_pair_sort (&prod0l, &prod0h, &prod1l, &prod1h, uns);
2745 quad_int_pair_sort (&prod2l, &prod2h, &prod3l, &prod3h, uns);
2746
2747 /* Max - min. */
2748 if (prod0l.is_zero ())
2749 {
2750 prod1l = double_int_zero;
2751 prod1h = -prod0h;
2752 }
2753 else
2754 {
2755 prod1l = -prod0l;
2756 prod1h = ~prod0h;
2757 }
2758 prod2l = prod3l + prod1l;
2759 prod2h = prod3h + prod1h;
2760 if (prod2l.ult (prod3l))
2761 prod2h += double_int_one; /* carry */
2762
2763 if (!prod2h.is_zero ()
2764 || prod2l.cmp (sizem1, true) >= 0)
2765 {
2766 /* the range covers all values. */
2767 set_value_range_to_varying (vr);
2768 return;
2769 }
2770
2771 /* The following should handle the wrapping and selecting
2772 VR_ANTI_RANGE for us. */
2773 min = double_int_to_tree (expr_type, prod0l);
2774 max = double_int_to_tree (expr_type, prod3l);
2775 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2776 return;
2777 }
2778
2779 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2780 drop to VR_VARYING. It would take more effort to compute a
2781 precise range for such a case. For example, if we have
2782 op0 == 65536 and op1 == 65536 with their ranges both being
2783 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2784 we cannot claim that the product is in ~[0,0]. Note that we
2785 are guaranteed to have vr0.type == vr1.type at this
2786 point. */
2787 if (vr0.type == VR_ANTI_RANGE
2788 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2789 {
2790 set_value_range_to_varying (vr);
2791 return;
2792 }
2793
2794 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2795 return;
2796 }
2797 else if (code == RSHIFT_EXPR
2798 || code == LSHIFT_EXPR)
2799 {
2800 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2801 then drop to VR_VARYING. Outside of this range we get undefined
2802 behavior from the shift operation. We cannot even trust
2803 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2804 shifts, and the operation at the tree level may be widened. */
2805 if (range_int_cst_p (&vr1)
2806 && compare_tree_int (vr1.min, 0) >= 0
2807 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2808 {
2809 if (code == RSHIFT_EXPR)
2810 {
2811 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2812 return;
2813 }
2814 /* We can map lshifts by constants to MULT_EXPR handling. */
2815 else if (code == LSHIFT_EXPR
2816 && range_int_cst_singleton_p (&vr1))
2817 {
2818 bool saved_flag_wrapv;
2819 value_range_t vr1p = VR_INITIALIZER;
2820 vr1p.type = VR_RANGE;
2821 vr1p.min
2822 = double_int_to_tree (expr_type,
2823 double_int_one
2824 .llshift (TREE_INT_CST_LOW (vr1.min),
2825 TYPE_PRECISION (expr_type)));
2826 vr1p.max = vr1p.min;
2827 /* We have to use a wrapping multiply though as signed overflow
2828 on lshifts is implementation defined in C89. */
2829 saved_flag_wrapv = flag_wrapv;
2830 flag_wrapv = 1;
2831 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
2832 &vr0, &vr1p);
2833 flag_wrapv = saved_flag_wrapv;
2834 return;
2835 }
2836 else if (code == LSHIFT_EXPR
2837 && range_int_cst_p (&vr0))
2838 {
2839 int prec = TYPE_PRECISION (expr_type);
2840 int overflow_pos = prec;
2841 int bound_shift;
2842 double_int bound, complement, low_bound, high_bound;
2843 bool uns = TYPE_UNSIGNED (expr_type);
2844 bool in_bounds = false;
2845
2846 if (!uns)
2847 overflow_pos -= 1;
2848
2849 bound_shift = overflow_pos - TREE_INT_CST_LOW (vr1.max);
2850 /* If bound_shift == HOST_BITS_PER_DOUBLE_INT, the llshift can
2851 overflow. However, for that to happen, vr1.max needs to be
2852 zero, which means vr1 is a singleton range of zero, which
2853 means it should be handled by the previous LSHIFT_EXPR
2854 if-clause. */
2855 bound = double_int_one.llshift (bound_shift, prec);
2856 complement = ~(bound - double_int_one);
2857
2858 if (uns)
2859 {
2860 low_bound = bound.zext (prec);
2861 high_bound = complement.zext (prec);
2862 if (tree_to_double_int (vr0.max).ult (low_bound))
2863 {
2864 /* [5, 6] << [1, 2] == [10, 24]. */
2865 /* We're shifting out only zeroes, the value increases
2866 monotonically. */
2867 in_bounds = true;
2868 }
2869 else if (high_bound.ult (tree_to_double_int (vr0.min)))
2870 {
2871 /* [0xffffff00, 0xffffffff] << [1, 2]
2872 == [0xfffffc00, 0xfffffffe]. */
2873 /* We're shifting out only ones, the value decreases
2874 monotonically. */
2875 in_bounds = true;
2876 }
2877 }
2878 else
2879 {
2880 /* [-1, 1] << [1, 2] == [-4, 4]. */
2881 low_bound = complement.sext (prec);
2882 high_bound = bound;
2883 if (tree_to_double_int (vr0.max).slt (high_bound)
2884 && low_bound.slt (tree_to_double_int (vr0.min)))
2885 {
2886 /* For non-negative numbers, we're shifting out only
2887 zeroes, the value increases monotonically.
2888 For negative numbers, we're shifting out only ones, the
2889 value decreases monotomically. */
2890 in_bounds = true;
2891 }
2892 }
2893
2894 if (in_bounds)
2895 {
2896 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2897 return;
2898 }
2899 }
2900 }
2901 set_value_range_to_varying (vr);
2902 return;
2903 }
2904 else if (code == TRUNC_DIV_EXPR
2905 || code == FLOOR_DIV_EXPR
2906 || code == CEIL_DIV_EXPR
2907 || code == EXACT_DIV_EXPR
2908 || code == ROUND_DIV_EXPR)
2909 {
2910 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2911 {
2912 /* For division, if op1 has VR_RANGE but op0 does not, something
2913 can be deduced just from that range. Say [min, max] / [4, max]
2914 gives [min / 4, max / 4] range. */
2915 if (vr1.type == VR_RANGE
2916 && !symbolic_range_p (&vr1)
2917 && range_includes_zero_p (vr1.min, vr1.max) == 0)
2918 {
2919 vr0.type = type = VR_RANGE;
2920 vr0.min = vrp_val_min (expr_type);
2921 vr0.max = vrp_val_max (expr_type);
2922 }
2923 else
2924 {
2925 set_value_range_to_varying (vr);
2926 return;
2927 }
2928 }
2929
2930 /* For divisions, if flag_non_call_exceptions is true, we must
2931 not eliminate a division by zero. */
2932 if (cfun->can_throw_non_call_exceptions
2933 && (vr1.type != VR_RANGE
2934 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2935 {
2936 set_value_range_to_varying (vr);
2937 return;
2938 }
2939
2940 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2941 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2942 include 0. */
2943 if (vr0.type == VR_RANGE
2944 && (vr1.type != VR_RANGE
2945 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2946 {
2947 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2948 int cmp;
2949
2950 min = NULL_TREE;
2951 max = NULL_TREE;
2952 if (TYPE_UNSIGNED (expr_type)
2953 || value_range_nonnegative_p (&vr1))
2954 {
2955 /* For unsigned division or when divisor is known
2956 to be non-negative, the range has to cover
2957 all numbers from 0 to max for positive max
2958 and all numbers from min to 0 for negative min. */
2959 cmp = compare_values (vr0.max, zero);
2960 if (cmp == -1)
2961 max = zero;
2962 else if (cmp == 0 || cmp == 1)
2963 max = vr0.max;
2964 else
2965 type = VR_VARYING;
2966 cmp = compare_values (vr0.min, zero);
2967 if (cmp == 1)
2968 min = zero;
2969 else if (cmp == 0 || cmp == -1)
2970 min = vr0.min;
2971 else
2972 type = VR_VARYING;
2973 }
2974 else
2975 {
2976 /* Otherwise the range is -max .. max or min .. -min
2977 depending on which bound is bigger in absolute value,
2978 as the division can change the sign. */
2979 abs_extent_range (vr, vr0.min, vr0.max);
2980 return;
2981 }
2982 if (type == VR_VARYING)
2983 {
2984 set_value_range_to_varying (vr);
2985 return;
2986 }
2987 }
2988 else
2989 {
2990 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2991 return;
2992 }
2993 }
2994 else if (code == TRUNC_MOD_EXPR)
2995 {
2996 if (vr1.type != VR_RANGE
2997 || range_includes_zero_p (vr1.min, vr1.max) != 0
2998 || vrp_val_is_min (vr1.min))
2999 {
3000 set_value_range_to_varying (vr);
3001 return;
3002 }
3003 type = VR_RANGE;
3004 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
3005 max = fold_unary_to_constant (ABS_EXPR, expr_type, vr1.min);
3006 if (tree_int_cst_lt (max, vr1.max))
3007 max = vr1.max;
3008 max = int_const_binop (MINUS_EXPR, max, integer_one_node);
3009 /* If the dividend is non-negative the modulus will be
3010 non-negative as well. */
3011 if (TYPE_UNSIGNED (expr_type)
3012 || value_range_nonnegative_p (&vr0))
3013 min = build_int_cst (TREE_TYPE (max), 0);
3014 else
3015 min = fold_unary_to_constant (NEGATE_EXPR, expr_type, max);
3016 }
3017 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
3018 {
3019 bool int_cst_range0, int_cst_range1;
3020 double_int may_be_nonzero0, may_be_nonzero1;
3021 double_int must_be_nonzero0, must_be_nonzero1;
3022
3023 int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
3024 &must_be_nonzero0);
3025 int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
3026 &must_be_nonzero1);
3027
3028 type = VR_RANGE;
3029 if (code == BIT_AND_EXPR)
3030 {
3031 double_int dmax;
3032 min = double_int_to_tree (expr_type,
3033 must_be_nonzero0 & must_be_nonzero1);
3034 dmax = may_be_nonzero0 & may_be_nonzero1;
3035 /* If both input ranges contain only negative values we can
3036 truncate the result range maximum to the minimum of the
3037 input range maxima. */
3038 if (int_cst_range0 && int_cst_range1
3039 && tree_int_cst_sgn (vr0.max) < 0
3040 && tree_int_cst_sgn (vr1.max) < 0)
3041 {
3042 dmax = dmax.min (tree_to_double_int (vr0.max),
3043 TYPE_UNSIGNED (expr_type));
3044 dmax = dmax.min (tree_to_double_int (vr1.max),
3045 TYPE_UNSIGNED (expr_type));
3046 }
3047 /* If either input range contains only non-negative values
3048 we can truncate the result range maximum to the respective
3049 maximum of the input range. */
3050 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
3051 dmax = dmax.min (tree_to_double_int (vr0.max),
3052 TYPE_UNSIGNED (expr_type));
3053 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
3054 dmax = dmax.min (tree_to_double_int (vr1.max),
3055 TYPE_UNSIGNED (expr_type));
3056 max = double_int_to_tree (expr_type, dmax);
3057 }
3058 else if (code == BIT_IOR_EXPR)
3059 {
3060 double_int dmin;
3061 max = double_int_to_tree (expr_type,
3062 may_be_nonzero0 | may_be_nonzero1);
3063 dmin = must_be_nonzero0 | must_be_nonzero1;
3064 /* If the input ranges contain only positive values we can
3065 truncate the minimum of the result range to the maximum
3066 of the input range minima. */
3067 if (int_cst_range0 && int_cst_range1
3068 && tree_int_cst_sgn (vr0.min) >= 0
3069 && tree_int_cst_sgn (vr1.min) >= 0)
3070 {
3071 dmin = dmin.max (tree_to_double_int (vr0.min),
3072 TYPE_UNSIGNED (expr_type));
3073 dmin = dmin.max (tree_to_double_int (vr1.min),
3074 TYPE_UNSIGNED (expr_type));
3075 }
3076 /* If either input range contains only negative values
3077 we can truncate the minimum of the result range to the
3078 respective minimum range. */
3079 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
3080 dmin = dmin.max (tree_to_double_int (vr0.min),
3081 TYPE_UNSIGNED (expr_type));
3082 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
3083 dmin = dmin.max (tree_to_double_int (vr1.min),
3084 TYPE_UNSIGNED (expr_type));
3085 min = double_int_to_tree (expr_type, dmin);
3086 }
3087 else if (code == BIT_XOR_EXPR)
3088 {
3089 double_int result_zero_bits, result_one_bits;
3090 result_zero_bits = (must_be_nonzero0 & must_be_nonzero1)
3091 | ~(may_be_nonzero0 | may_be_nonzero1);
3092 result_one_bits = must_be_nonzero0.and_not (may_be_nonzero1)
3093 | must_be_nonzero1.and_not (may_be_nonzero0);
3094 max = double_int_to_tree (expr_type, ~result_zero_bits);
3095 min = double_int_to_tree (expr_type, result_one_bits);
3096 /* If the range has all positive or all negative values the
3097 result is better than VARYING. */
3098 if (tree_int_cst_sgn (min) < 0
3099 || tree_int_cst_sgn (max) >= 0)
3100 ;
3101 else
3102 max = min = NULL_TREE;
3103 }
3104 }
3105 else
3106 gcc_unreachable ();
3107
3108 /* If either MIN or MAX overflowed, then set the resulting range to
3109 VARYING. But we do accept an overflow infinity
3110 representation. */
3111 if (min == NULL_TREE
3112 || !is_gimple_min_invariant (min)
3113 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
3114 || max == NULL_TREE
3115 || !is_gimple_min_invariant (max)
3116 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
3117 {
3118 set_value_range_to_varying (vr);
3119 return;
3120 }
3121
3122 /* We punt if:
3123 1) [-INF, +INF]
3124 2) [-INF, +-INF(OVF)]
3125 3) [+-INF(OVF), +INF]
3126 4) [+-INF(OVF), +-INF(OVF)]
3127 We learn nothing when we have INF and INF(OVF) on both sides.
3128 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3129 overflow. */
3130 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
3131 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
3132 {
3133 set_value_range_to_varying (vr);
3134 return;
3135 }
3136
3137 cmp = compare_values (min, max);
3138 if (cmp == -2 || cmp == 1)
3139 {
3140 /* If the new range has its limits swapped around (MIN > MAX),
3141 then the operation caused one of them to wrap around, mark
3142 the new range VARYING. */
3143 set_value_range_to_varying (vr);
3144 }
3145 else
3146 set_value_range (vr, type, min, max, NULL);
3147 }
3148
3149 /* Extract range information from a binary expression OP0 CODE OP1 based on
3150 the ranges of each of its operands with resulting type EXPR_TYPE.
3151 The resulting range is stored in *VR. */
3152
3153 static void
3154 extract_range_from_binary_expr (value_range_t *vr,
3155 enum tree_code code,
3156 tree expr_type, tree op0, tree op1)
3157 {
3158 value_range_t vr0 = VR_INITIALIZER;
3159 value_range_t vr1 = VR_INITIALIZER;
3160
3161 /* Get value ranges for each operand. For constant operands, create
3162 a new value range with the operand to simplify processing. */
3163 if (TREE_CODE (op0) == SSA_NAME)
3164 vr0 = *(get_value_range (op0));
3165 else if (is_gimple_min_invariant (op0))
3166 set_value_range_to_value (&vr0, op0, NULL);
3167 else
3168 set_value_range_to_varying (&vr0);
3169
3170 if (TREE_CODE (op1) == SSA_NAME)
3171 vr1 = *(get_value_range (op1));
3172 else if (is_gimple_min_invariant (op1))
3173 set_value_range_to_value (&vr1, op1, NULL);
3174 else
3175 set_value_range_to_varying (&vr1);
3176
3177 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3178 }
3179
3180 /* Extract range information from a unary operation CODE based on
3181 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3182 The The resulting range is stored in *VR. */
3183
3184 static void
3185 extract_range_from_unary_expr_1 (value_range_t *vr,
3186 enum tree_code code, tree type,
3187 value_range_t *vr0_, tree op0_type)
3188 {
3189 value_range_t vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3190
3191 /* VRP only operates on integral and pointer types. */
3192 if (!(INTEGRAL_TYPE_P (op0_type)
3193 || POINTER_TYPE_P (op0_type))
3194 || !(INTEGRAL_TYPE_P (type)
3195 || POINTER_TYPE_P (type)))
3196 {
3197 set_value_range_to_varying (vr);
3198 return;
3199 }
3200
3201 /* If VR0 is UNDEFINED, so is the result. */
3202 if (vr0.type == VR_UNDEFINED)
3203 {
3204 set_value_range_to_undefined (vr);
3205 return;
3206 }
3207
3208 /* Handle operations that we express in terms of others. */
3209 if (code == PAREN_EXPR)
3210 {
3211 /* PAREN_EXPR is a simple copy. */
3212 copy_value_range (vr, &vr0);
3213 return;
3214 }
3215 else if (code == NEGATE_EXPR)
3216 {
3217 /* -X is simply 0 - X, so re-use existing code that also handles
3218 anti-ranges fine. */
3219 value_range_t zero = VR_INITIALIZER;
3220 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3221 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3222 return;
3223 }
3224 else if (code == BIT_NOT_EXPR)
3225 {
3226 /* ~X is simply -1 - X, so re-use existing code that also handles
3227 anti-ranges fine. */
3228 value_range_t minusone = VR_INITIALIZER;
3229 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3230 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3231 type, &minusone, &vr0);
3232 return;
3233 }
3234
3235 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3236 and express op ~[] as (op []') U (op []''). */
3237 if (vr0.type == VR_ANTI_RANGE
3238 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3239 {
3240 extract_range_from_unary_expr_1 (vr, code, type, &vrtem0, op0_type);
3241 if (vrtem1.type != VR_UNDEFINED)
3242 {
3243 value_range_t vrres = VR_INITIALIZER;
3244 extract_range_from_unary_expr_1 (&vrres, code, type,
3245 &vrtem1, op0_type);
3246 vrp_meet (vr, &vrres);
3247 }
3248 return;
3249 }
3250
3251 if (CONVERT_EXPR_CODE_P (code))
3252 {
3253 tree inner_type = op0_type;
3254 tree outer_type = type;
3255
3256 /* If the expression evaluates to a pointer, we are only interested in
3257 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3258 if (POINTER_TYPE_P (type))
3259 {
3260 if (range_is_nonnull (&vr0))
3261 set_value_range_to_nonnull (vr, type);
3262 else if (range_is_null (&vr0))
3263 set_value_range_to_null (vr, type);
3264 else
3265 set_value_range_to_varying (vr);
3266 return;
3267 }
3268
3269 /* If VR0 is varying and we increase the type precision, assume
3270 a full range for the following transformation. */
3271 if (vr0.type == VR_VARYING
3272 && INTEGRAL_TYPE_P (inner_type)
3273 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3274 {
3275 vr0.type = VR_RANGE;
3276 vr0.min = TYPE_MIN_VALUE (inner_type);
3277 vr0.max = TYPE_MAX_VALUE (inner_type);
3278 }
3279
3280 /* If VR0 is a constant range or anti-range and the conversion is
3281 not truncating we can convert the min and max values and
3282 canonicalize the resulting range. Otherwise we can do the
3283 conversion if the size of the range is less than what the
3284 precision of the target type can represent and the range is
3285 not an anti-range. */
3286 if ((vr0.type == VR_RANGE
3287 || vr0.type == VR_ANTI_RANGE)
3288 && TREE_CODE (vr0.min) == INTEGER_CST
3289 && TREE_CODE (vr0.max) == INTEGER_CST
3290 && (!is_overflow_infinity (vr0.min)
3291 || (vr0.type == VR_RANGE
3292 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3293 && needs_overflow_infinity (outer_type)
3294 && supports_overflow_infinity (outer_type)))
3295 && (!is_overflow_infinity (vr0.max)
3296 || (vr0.type == VR_RANGE
3297 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3298 && needs_overflow_infinity (outer_type)
3299 && supports_overflow_infinity (outer_type)))
3300 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3301 || (vr0.type == VR_RANGE
3302 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3303 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3304 size_int (TYPE_PRECISION (outer_type)))))))
3305 {
3306 tree new_min, new_max;
3307 if (is_overflow_infinity (vr0.min))
3308 new_min = negative_overflow_infinity (outer_type);
3309 else
3310 new_min = force_fit_type_double (outer_type,
3311 tree_to_double_int (vr0.min),
3312 0, false);
3313 if (is_overflow_infinity (vr0.max))
3314 new_max = positive_overflow_infinity (outer_type);
3315 else
3316 new_max = force_fit_type_double (outer_type,
3317 tree_to_double_int (vr0.max),
3318 0, false);
3319 set_and_canonicalize_value_range (vr, vr0.type,
3320 new_min, new_max, NULL);
3321 return;
3322 }
3323
3324 set_value_range_to_varying (vr);
3325 return;
3326 }
3327 else if (code == ABS_EXPR)
3328 {
3329 tree min, max;
3330 int cmp;
3331
3332 /* Pass through vr0 in the easy cases. */
3333 if (TYPE_UNSIGNED (type)
3334 || value_range_nonnegative_p (&vr0))
3335 {
3336 copy_value_range (vr, &vr0);
3337 return;
3338 }
3339
3340 /* For the remaining varying or symbolic ranges we can't do anything
3341 useful. */
3342 if (vr0.type == VR_VARYING
3343 || symbolic_range_p (&vr0))
3344 {
3345 set_value_range_to_varying (vr);
3346 return;
3347 }
3348
3349 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3350 useful range. */
3351 if (!TYPE_OVERFLOW_UNDEFINED (type)
3352 && ((vr0.type == VR_RANGE
3353 && vrp_val_is_min (vr0.min))
3354 || (vr0.type == VR_ANTI_RANGE
3355 && !vrp_val_is_min (vr0.min))))
3356 {
3357 set_value_range_to_varying (vr);
3358 return;
3359 }
3360
3361 /* ABS_EXPR may flip the range around, if the original range
3362 included negative values. */
3363 if (is_overflow_infinity (vr0.min))
3364 min = positive_overflow_infinity (type);
3365 else if (!vrp_val_is_min (vr0.min))
3366 min = fold_unary_to_constant (code, type, vr0.min);
3367 else if (!needs_overflow_infinity (type))
3368 min = TYPE_MAX_VALUE (type);
3369 else if (supports_overflow_infinity (type))
3370 min = positive_overflow_infinity (type);
3371 else
3372 {
3373 set_value_range_to_varying (vr);
3374 return;
3375 }
3376
3377 if (is_overflow_infinity (vr0.max))
3378 max = positive_overflow_infinity (type);
3379 else if (!vrp_val_is_min (vr0.max))
3380 max = fold_unary_to_constant (code, type, vr0.max);
3381 else if (!needs_overflow_infinity (type))
3382 max = TYPE_MAX_VALUE (type);
3383 else if (supports_overflow_infinity (type)
3384 /* We shouldn't generate [+INF, +INF] as set_value_range
3385 doesn't like this and ICEs. */
3386 && !is_positive_overflow_infinity (min))
3387 max = positive_overflow_infinity (type);
3388 else
3389 {
3390 set_value_range_to_varying (vr);
3391 return;
3392 }
3393
3394 cmp = compare_values (min, max);
3395
3396 /* If a VR_ANTI_RANGEs contains zero, then we have
3397 ~[-INF, min(MIN, MAX)]. */
3398 if (vr0.type == VR_ANTI_RANGE)
3399 {
3400 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3401 {
3402 /* Take the lower of the two values. */
3403 if (cmp != 1)
3404 max = min;
3405
3406 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3407 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3408 flag_wrapv is set and the original anti-range doesn't include
3409 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3410 if (TYPE_OVERFLOW_WRAPS (type))
3411 {
3412 tree type_min_value = TYPE_MIN_VALUE (type);
3413
3414 min = (vr0.min != type_min_value
3415 ? int_const_binop (PLUS_EXPR, type_min_value,
3416 integer_one_node)
3417 : type_min_value);
3418 }
3419 else
3420 {
3421 if (overflow_infinity_range_p (&vr0))
3422 min = negative_overflow_infinity (type);
3423 else
3424 min = TYPE_MIN_VALUE (type);
3425 }
3426 }
3427 else
3428 {
3429 /* All else has failed, so create the range [0, INF], even for
3430 flag_wrapv since TYPE_MIN_VALUE is in the original
3431 anti-range. */
3432 vr0.type = VR_RANGE;
3433 min = build_int_cst (type, 0);
3434 if (needs_overflow_infinity (type))
3435 {
3436 if (supports_overflow_infinity (type))
3437 max = positive_overflow_infinity (type);
3438 else
3439 {
3440 set_value_range_to_varying (vr);
3441 return;
3442 }
3443 }
3444 else
3445 max = TYPE_MAX_VALUE (type);
3446 }
3447 }
3448
3449 /* If the range contains zero then we know that the minimum value in the
3450 range will be zero. */
3451 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3452 {
3453 if (cmp == 1)
3454 max = min;
3455 min = build_int_cst (type, 0);
3456 }
3457 else
3458 {
3459 /* If the range was reversed, swap MIN and MAX. */
3460 if (cmp == 1)
3461 {
3462 tree t = min;
3463 min = max;
3464 max = t;
3465 }
3466 }
3467
3468 cmp = compare_values (min, max);
3469 if (cmp == -2 || cmp == 1)
3470 {
3471 /* If the new range has its limits swapped around (MIN > MAX),
3472 then the operation caused one of them to wrap around, mark
3473 the new range VARYING. */
3474 set_value_range_to_varying (vr);
3475 }
3476 else
3477 set_value_range (vr, vr0.type, min, max, NULL);
3478 return;
3479 }
3480
3481 /* For unhandled operations fall back to varying. */
3482 set_value_range_to_varying (vr);
3483 return;
3484 }
3485
3486
3487 /* Extract range information from a unary expression CODE OP0 based on
3488 the range of its operand with resulting type TYPE.
3489 The resulting range is stored in *VR. */
3490
3491 static void
3492 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
3493 tree type, tree op0)
3494 {
3495 value_range_t vr0 = VR_INITIALIZER;
3496
3497 /* Get value ranges for the operand. For constant operands, create
3498 a new value range with the operand to simplify processing. */
3499 if (TREE_CODE (op0) == SSA_NAME)
3500 vr0 = *(get_value_range (op0));
3501 else if (is_gimple_min_invariant (op0))
3502 set_value_range_to_value (&vr0, op0, NULL);
3503 else
3504 set_value_range_to_varying (&vr0);
3505
3506 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3507 }
3508
3509
3510 /* Extract range information from a conditional expression STMT based on
3511 the ranges of each of its operands and the expression code. */
3512
3513 static void
3514 extract_range_from_cond_expr (value_range_t *vr, gimple stmt)
3515 {
3516 tree op0, op1;
3517 value_range_t vr0 = VR_INITIALIZER;
3518 value_range_t vr1 = VR_INITIALIZER;
3519
3520 /* Get value ranges for each operand. For constant operands, create
3521 a new value range with the operand to simplify processing. */
3522 op0 = gimple_assign_rhs2 (stmt);
3523 if (TREE_CODE (op0) == SSA_NAME)
3524 vr0 = *(get_value_range (op0));
3525 else if (is_gimple_min_invariant (op0))
3526 set_value_range_to_value (&vr0, op0, NULL);
3527 else
3528 set_value_range_to_varying (&vr0);
3529
3530 op1 = gimple_assign_rhs3 (stmt);
3531 if (TREE_CODE (op1) == SSA_NAME)
3532 vr1 = *(get_value_range (op1));
3533 else if (is_gimple_min_invariant (op1))
3534 set_value_range_to_value (&vr1, op1, NULL);
3535 else
3536 set_value_range_to_varying (&vr1);
3537
3538 /* The resulting value range is the union of the operand ranges */
3539 copy_value_range (vr, &vr0);
3540 vrp_meet (vr, &vr1);
3541 }
3542
3543
3544 /* Extract range information from a comparison expression EXPR based
3545 on the range of its operand and the expression code. */
3546
3547 static void
3548 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3549 tree type, tree op0, tree op1)
3550 {
3551 bool sop = false;
3552 tree val;
3553
3554 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3555 NULL);
3556
3557 /* A disadvantage of using a special infinity as an overflow
3558 representation is that we lose the ability to record overflow
3559 when we don't have an infinity. So we have to ignore a result
3560 which relies on overflow. */
3561
3562 if (val && !is_overflow_infinity (val) && !sop)
3563 {
3564 /* Since this expression was found on the RHS of an assignment,
3565 its type may be different from _Bool. Convert VAL to EXPR's
3566 type. */
3567 val = fold_convert (type, val);
3568 if (is_gimple_min_invariant (val))
3569 set_value_range_to_value (vr, val, vr->equiv);
3570 else
3571 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3572 }
3573 else
3574 /* The result of a comparison is always true or false. */
3575 set_value_range_to_truthvalue (vr, type);
3576 }
3577
3578 /* Try to derive a nonnegative or nonzero range out of STMT relying
3579 primarily on generic routines in fold in conjunction with range data.
3580 Store the result in *VR */
3581
3582 static void
3583 extract_range_basic (value_range_t *vr, gimple stmt)
3584 {
3585 bool sop = false;
3586 tree type = gimple_expr_type (stmt);
3587
3588 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
3589 {
3590 tree fndecl = gimple_call_fndecl (stmt), arg;
3591 int mini, maxi, zerov = 0, prec;
3592
3593 switch (DECL_FUNCTION_CODE (fndecl))
3594 {
3595 case BUILT_IN_CONSTANT_P:
3596 /* If the call is __builtin_constant_p and the argument is a
3597 function parameter resolve it to false. This avoids bogus
3598 array bound warnings.
3599 ??? We could do this as early as inlining is finished. */
3600 arg = gimple_call_arg (stmt, 0);
3601 if (TREE_CODE (arg) == SSA_NAME
3602 && SSA_NAME_IS_DEFAULT_DEF (arg)
3603 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
3604 {
3605 set_value_range_to_null (vr, type);
3606 return;
3607 }
3608 break;
3609 /* Both __builtin_ffs* and __builtin_popcount return
3610 [0, prec]. */
3611 CASE_INT_FN (BUILT_IN_FFS):
3612 CASE_INT_FN (BUILT_IN_POPCOUNT):
3613 arg = gimple_call_arg (stmt, 0);
3614 prec = TYPE_PRECISION (TREE_TYPE (arg));
3615 mini = 0;
3616 maxi = prec;
3617 if (TREE_CODE (arg) == SSA_NAME)
3618 {
3619 value_range_t *vr0 = get_value_range (arg);
3620 /* If arg is non-zero, then ffs or popcount
3621 are non-zero. */
3622 if (((vr0->type == VR_RANGE
3623 && integer_nonzerop (vr0->min))
3624 || (vr0->type == VR_ANTI_RANGE
3625 && integer_zerop (vr0->min)))
3626 && !TREE_OVERFLOW (vr0->min))
3627 mini = 1;
3628 /* If some high bits are known to be zero,
3629 we can decrease the maximum. */
3630 if (vr0->type == VR_RANGE
3631 && TREE_CODE (vr0->max) == INTEGER_CST
3632 && !TREE_OVERFLOW (vr0->max))
3633 maxi = tree_floor_log2 (vr0->max) + 1;
3634 }
3635 goto bitop_builtin;
3636 /* __builtin_parity* returns [0, 1]. */
3637 CASE_INT_FN (BUILT_IN_PARITY):
3638 mini = 0;
3639 maxi = 1;
3640 goto bitop_builtin;
3641 /* __builtin_c[lt]z* return [0, prec-1], except for
3642 when the argument is 0, but that is undefined behavior.
3643 On many targets where the CLZ RTL or optab value is defined
3644 for 0 the value is prec, so include that in the range
3645 by default. */
3646 CASE_INT_FN (BUILT_IN_CLZ):
3647 arg = gimple_call_arg (stmt, 0);
3648 prec = TYPE_PRECISION (TREE_TYPE (arg));
3649 mini = 0;
3650 maxi = prec;
3651 if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
3652 != CODE_FOR_nothing
3653 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3654 zerov)
3655 /* Handle only the single common value. */
3656 && zerov != prec)
3657 /* Magic value to give up, unless vr0 proves
3658 arg is non-zero. */
3659 mini = -2;
3660 if (TREE_CODE (arg) == SSA_NAME)
3661 {
3662 value_range_t *vr0 = get_value_range (arg);
3663 /* From clz of VR_RANGE minimum we can compute
3664 result maximum. */
3665 if (vr0->type == VR_RANGE
3666 && TREE_CODE (vr0->min) == INTEGER_CST
3667 && !TREE_OVERFLOW (vr0->min))
3668 {
3669 maxi = prec - 1 - tree_floor_log2 (vr0->min);
3670 if (maxi != prec)
3671 mini = 0;
3672 }
3673 else if (vr0->type == VR_ANTI_RANGE
3674 && integer_zerop (vr0->min)
3675 && !TREE_OVERFLOW (vr0->min))
3676 {
3677 maxi = prec - 1;
3678 mini = 0;
3679 }
3680 if (mini == -2)
3681 break;
3682 /* From clz of VR_RANGE maximum we can compute
3683 result minimum. */
3684 if (vr0->type == VR_RANGE
3685 && TREE_CODE (vr0->max) == INTEGER_CST
3686 && !TREE_OVERFLOW (vr0->max))
3687 {
3688 mini = prec - 1 - tree_floor_log2 (vr0->max);
3689 if (mini == prec)
3690 break;
3691 }
3692 }
3693 if (mini == -2)
3694 break;
3695 goto bitop_builtin;
3696 /* __builtin_ctz* return [0, prec-1], except for
3697 when the argument is 0, but that is undefined behavior.
3698 If there is a ctz optab for this mode and
3699 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
3700 otherwise just assume 0 won't be seen. */
3701 CASE_INT_FN (BUILT_IN_CTZ):
3702 arg = gimple_call_arg (stmt, 0);
3703 prec = TYPE_PRECISION (TREE_TYPE (arg));
3704 mini = 0;
3705 maxi = prec - 1;
3706 if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
3707 != CODE_FOR_nothing
3708 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3709 zerov))
3710 {
3711 /* Handle only the two common values. */
3712 if (zerov == -1)
3713 mini = -1;
3714 else if (zerov == prec)
3715 maxi = prec;
3716 else
3717 /* Magic value to give up, unless vr0 proves
3718 arg is non-zero. */
3719 mini = -2;
3720 }
3721 if (TREE_CODE (arg) == SSA_NAME)
3722 {
3723 value_range_t *vr0 = get_value_range (arg);
3724 /* If arg is non-zero, then use [0, prec - 1]. */
3725 if (((vr0->type == VR_RANGE
3726 && integer_nonzerop (vr0->min))
3727 || (vr0->type == VR_ANTI_RANGE
3728 && integer_zerop (vr0->min)))
3729 && !TREE_OVERFLOW (vr0->min))
3730 {
3731 mini = 0;
3732 maxi = prec - 1;
3733 }
3734 /* If some high bits are known to be zero,
3735 we can decrease the result maximum. */
3736 if (vr0->type == VR_RANGE
3737 && TREE_CODE (vr0->max) == INTEGER_CST
3738 && !TREE_OVERFLOW (vr0->max))
3739 {
3740 maxi = tree_floor_log2 (vr0->max);
3741 /* For vr0 [0, 0] give up. */
3742 if (maxi == -1)
3743 break;
3744 }
3745 }
3746 if (mini == -2)
3747 break;
3748 goto bitop_builtin;
3749 /* __builtin_clrsb* returns [0, prec-1]. */
3750 CASE_INT_FN (BUILT_IN_CLRSB):
3751 arg = gimple_call_arg (stmt, 0);
3752 prec = TYPE_PRECISION (TREE_TYPE (arg));
3753 mini = 0;
3754 maxi = prec - 1;
3755 goto bitop_builtin;
3756 bitop_builtin:
3757 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
3758 build_int_cst (type, maxi), NULL);
3759 return;
3760 default:
3761 break;
3762 }
3763 }
3764 if (INTEGRAL_TYPE_P (type)
3765 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3766 set_value_range_to_nonnegative (vr, type,
3767 sop || stmt_overflow_infinity (stmt));
3768 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3769 && !sop)
3770 set_value_range_to_nonnull (vr, type);
3771 else
3772 set_value_range_to_varying (vr);
3773 }
3774
3775
3776 /* Try to compute a useful range out of assignment STMT and store it
3777 in *VR. */
3778
3779 static void
3780 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3781 {
3782 enum tree_code code = gimple_assign_rhs_code (stmt);
3783
3784 if (code == ASSERT_EXPR)
3785 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3786 else if (code == SSA_NAME)
3787 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3788 else if (TREE_CODE_CLASS (code) == tcc_binary)
3789 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3790 gimple_expr_type (stmt),
3791 gimple_assign_rhs1 (stmt),
3792 gimple_assign_rhs2 (stmt));
3793 else if (TREE_CODE_CLASS (code) == tcc_unary)
3794 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3795 gimple_expr_type (stmt),
3796 gimple_assign_rhs1 (stmt));
3797 else if (code == COND_EXPR)
3798 extract_range_from_cond_expr (vr, stmt);
3799 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3800 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3801 gimple_expr_type (stmt),
3802 gimple_assign_rhs1 (stmt),
3803 gimple_assign_rhs2 (stmt));
3804 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3805 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3806 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3807 else
3808 set_value_range_to_varying (vr);
3809
3810 if (vr->type == VR_VARYING)
3811 extract_range_basic (vr, stmt);
3812 }
3813
3814 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3815 would be profitable to adjust VR using scalar evolution information
3816 for VAR. If so, update VR with the new limits. */
3817
3818 static void
3819 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3820 gimple stmt, tree var)
3821 {
3822 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3823 enum ev_direction dir;
3824
3825 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3826 better opportunities than a regular range, but I'm not sure. */
3827 if (vr->type == VR_ANTI_RANGE)
3828 return;
3829
3830 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3831
3832 /* Like in PR19590, scev can return a constant function. */
3833 if (is_gimple_min_invariant (chrec))
3834 {
3835 set_value_range_to_value (vr, chrec, vr->equiv);
3836 return;
3837 }
3838
3839 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3840 return;
3841
3842 init = initial_condition_in_loop_num (chrec, loop->num);
3843 tem = op_with_constant_singleton_value_range (init);
3844 if (tem)
3845 init = tem;
3846 step = evolution_part_in_loop_num (chrec, loop->num);
3847 tem = op_with_constant_singleton_value_range (step);
3848 if (tem)
3849 step = tem;
3850
3851 /* If STEP is symbolic, we can't know whether INIT will be the
3852 minimum or maximum value in the range. Also, unless INIT is
3853 a simple expression, compare_values and possibly other functions
3854 in tree-vrp won't be able to handle it. */
3855 if (step == NULL_TREE
3856 || !is_gimple_min_invariant (step)
3857 || !valid_value_p (init))
3858 return;
3859
3860 dir = scev_direction (chrec);
3861 if (/* Do not adjust ranges if we do not know whether the iv increases
3862 or decreases, ... */
3863 dir == EV_DIR_UNKNOWN
3864 /* ... or if it may wrap. */
3865 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3866 true))
3867 return;
3868
3869 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3870 negative_overflow_infinity and positive_overflow_infinity,
3871 because we have concluded that the loop probably does not
3872 wrap. */
3873
3874 type = TREE_TYPE (var);
3875 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3876 tmin = lower_bound_in_type (type, type);
3877 else
3878 tmin = TYPE_MIN_VALUE (type);
3879 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3880 tmax = upper_bound_in_type (type, type);
3881 else
3882 tmax = TYPE_MAX_VALUE (type);
3883
3884 /* Try to use estimated number of iterations for the loop to constrain the
3885 final value in the evolution. */
3886 if (TREE_CODE (step) == INTEGER_CST
3887 && is_gimple_val (init)
3888 && (TREE_CODE (init) != SSA_NAME
3889 || get_value_range (init)->type == VR_RANGE))
3890 {
3891 double_int nit;
3892
3893 /* We are only entering here for loop header PHI nodes, so using
3894 the number of latch executions is the correct thing to use. */
3895 if (max_loop_iterations (loop, &nit))
3896 {
3897 value_range_t maxvr = VR_INITIALIZER;
3898 double_int dtmp;
3899 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
3900 bool overflow = false;
3901
3902 dtmp = tree_to_double_int (step)
3903 .mul_with_sign (nit, unsigned_p, &overflow);
3904 /* If the multiplication overflowed we can't do a meaningful
3905 adjustment. Likewise if the result doesn't fit in the type
3906 of the induction variable. For a signed type we have to
3907 check whether the result has the expected signedness which
3908 is that of the step as number of iterations is unsigned. */
3909 if (!overflow
3910 && double_int_fits_to_tree_p (TREE_TYPE (init), dtmp)
3911 && (unsigned_p
3912 || ((dtmp.high ^ TREE_INT_CST_HIGH (step)) >= 0)))
3913 {
3914 tem = double_int_to_tree (TREE_TYPE (init), dtmp);
3915 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3916 TREE_TYPE (init), init, tem);
3917 /* Likewise if the addition did. */
3918 if (maxvr.type == VR_RANGE)
3919 {
3920 tmin = maxvr.min;
3921 tmax = maxvr.max;
3922 }
3923 }
3924 }
3925 }
3926
3927 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3928 {
3929 min = tmin;
3930 max = tmax;
3931
3932 /* For VARYING or UNDEFINED ranges, just about anything we get
3933 from scalar evolutions should be better. */
3934
3935 if (dir == EV_DIR_DECREASES)
3936 max = init;
3937 else
3938 min = init;
3939
3940 /* If we would create an invalid range, then just assume we
3941 know absolutely nothing. This may be over-conservative,
3942 but it's clearly safe, and should happen only in unreachable
3943 parts of code, or for invalid programs. */
3944 if (compare_values (min, max) == 1)
3945 return;
3946
3947 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3948 }
3949 else if (vr->type == VR_RANGE)
3950 {
3951 min = vr->min;
3952 max = vr->max;
3953
3954 if (dir == EV_DIR_DECREASES)
3955 {
3956 /* INIT is the maximum value. If INIT is lower than VR->MAX
3957 but no smaller than VR->MIN, set VR->MAX to INIT. */
3958 if (compare_values (init, max) == -1)
3959 max = init;
3960
3961 /* According to the loop information, the variable does not
3962 overflow. If we think it does, probably because of an
3963 overflow due to arithmetic on a different INF value,
3964 reset now. */
3965 if (is_negative_overflow_infinity (min)
3966 || compare_values (min, tmin) == -1)
3967 min = tmin;
3968
3969 }
3970 else
3971 {
3972 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3973 if (compare_values (init, min) == 1)
3974 min = init;
3975
3976 if (is_positive_overflow_infinity (max)
3977 || compare_values (tmax, max) == -1)
3978 max = tmax;
3979 }
3980
3981 /* If we just created an invalid range with the minimum
3982 greater than the maximum, we fail conservatively.
3983 This should happen only in unreachable
3984 parts of code, or for invalid programs. */
3985 if (compare_values (min, max) == 1)
3986 return;
3987
3988 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3989 }
3990 }
3991
3992 /* Return true if VAR may overflow at STMT. This checks any available
3993 loop information to see if we can determine that VAR does not
3994 overflow. */
3995
3996 static bool
3997 vrp_var_may_overflow (tree var, gimple stmt)
3998 {
3999 struct loop *l;
4000 tree chrec, init, step;
4001
4002 if (current_loops == NULL)
4003 return true;
4004
4005 l = loop_containing_stmt (stmt);
4006 if (l == NULL
4007 || !loop_outer (l))
4008 return true;
4009
4010 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
4011 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
4012 return true;
4013
4014 init = initial_condition_in_loop_num (chrec, l->num);
4015 step = evolution_part_in_loop_num (chrec, l->num);
4016
4017 if (step == NULL_TREE
4018 || !is_gimple_min_invariant (step)
4019 || !valid_value_p (init))
4020 return true;
4021
4022 /* If we get here, we know something useful about VAR based on the
4023 loop information. If it wraps, it may overflow. */
4024
4025 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
4026 true))
4027 return true;
4028
4029 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
4030 {
4031 print_generic_expr (dump_file, var, 0);
4032 fprintf (dump_file, ": loop information indicates does not overflow\n");
4033 }
4034
4035 return false;
4036 }
4037
4038
4039 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4040
4041 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4042 all the values in the ranges.
4043
4044 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4045
4046 - Return NULL_TREE if it is not always possible to determine the
4047 value of the comparison.
4048
4049 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4050 overflow infinity was used in the test. */
4051
4052
4053 static tree
4054 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
4055 bool *strict_overflow_p)
4056 {
4057 /* VARYING or UNDEFINED ranges cannot be compared. */
4058 if (vr0->type == VR_VARYING
4059 || vr0->type == VR_UNDEFINED
4060 || vr1->type == VR_VARYING
4061 || vr1->type == VR_UNDEFINED)
4062 return NULL_TREE;
4063
4064 /* Anti-ranges need to be handled separately. */
4065 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4066 {
4067 /* If both are anti-ranges, then we cannot compute any
4068 comparison. */
4069 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4070 return NULL_TREE;
4071
4072 /* These comparisons are never statically computable. */
4073 if (comp == GT_EXPR
4074 || comp == GE_EXPR
4075 || comp == LT_EXPR
4076 || comp == LE_EXPR)
4077 return NULL_TREE;
4078
4079 /* Equality can be computed only between a range and an
4080 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4081 if (vr0->type == VR_RANGE)
4082 {
4083 /* To simplify processing, make VR0 the anti-range. */
4084 value_range_t *tmp = vr0;
4085 vr0 = vr1;
4086 vr1 = tmp;
4087 }
4088
4089 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4090
4091 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4092 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
4093 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4094
4095 return NULL_TREE;
4096 }
4097
4098 if (!usable_range_p (vr0, strict_overflow_p)
4099 || !usable_range_p (vr1, strict_overflow_p))
4100 return NULL_TREE;
4101
4102 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4103 operands around and change the comparison code. */
4104 if (comp == GT_EXPR || comp == GE_EXPR)
4105 {
4106 value_range_t *tmp;
4107 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4108 tmp = vr0;
4109 vr0 = vr1;
4110 vr1 = tmp;
4111 }
4112
4113 if (comp == EQ_EXPR)
4114 {
4115 /* Equality may only be computed if both ranges represent
4116 exactly one value. */
4117 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4118 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4119 {
4120 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4121 strict_overflow_p);
4122 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4123 strict_overflow_p);
4124 if (cmp_min == 0 && cmp_max == 0)
4125 return boolean_true_node;
4126 else if (cmp_min != -2 && cmp_max != -2)
4127 return boolean_false_node;
4128 }
4129 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4130 else if (compare_values_warnv (vr0->min, vr1->max,
4131 strict_overflow_p) == 1
4132 || compare_values_warnv (vr1->min, vr0->max,
4133 strict_overflow_p) == 1)
4134 return boolean_false_node;
4135
4136 return NULL_TREE;
4137 }
4138 else if (comp == NE_EXPR)
4139 {
4140 int cmp1, cmp2;
4141
4142 /* If VR0 is completely to the left or completely to the right
4143 of VR1, they are always different. Notice that we need to
4144 make sure that both comparisons yield similar results to
4145 avoid comparing values that cannot be compared at
4146 compile-time. */
4147 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4148 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4149 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4150 return boolean_true_node;
4151
4152 /* If VR0 and VR1 represent a single value and are identical,
4153 return false. */
4154 else if (compare_values_warnv (vr0->min, vr0->max,
4155 strict_overflow_p) == 0
4156 && compare_values_warnv (vr1->min, vr1->max,
4157 strict_overflow_p) == 0
4158 && compare_values_warnv (vr0->min, vr1->min,
4159 strict_overflow_p) == 0
4160 && compare_values_warnv (vr0->max, vr1->max,
4161 strict_overflow_p) == 0)
4162 return boolean_false_node;
4163
4164 /* Otherwise, they may or may not be different. */
4165 else
4166 return NULL_TREE;
4167 }
4168 else if (comp == LT_EXPR || comp == LE_EXPR)
4169 {
4170 int tst;
4171
4172 /* If VR0 is to the left of VR1, return true. */
4173 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4174 if ((comp == LT_EXPR && tst == -1)
4175 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4176 {
4177 if (overflow_infinity_range_p (vr0)
4178 || overflow_infinity_range_p (vr1))
4179 *strict_overflow_p = true;
4180 return boolean_true_node;
4181 }
4182
4183 /* If VR0 is to the right of VR1, return false. */
4184 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4185 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4186 || (comp == LE_EXPR && tst == 1))
4187 {
4188 if (overflow_infinity_range_p (vr0)
4189 || overflow_infinity_range_p (vr1))
4190 *strict_overflow_p = true;
4191 return boolean_false_node;
4192 }
4193
4194 /* Otherwise, we don't know. */
4195 return NULL_TREE;
4196 }
4197
4198 gcc_unreachable ();
4199 }
4200
4201
4202 /* Given a value range VR, a value VAL and a comparison code COMP, return
4203 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4204 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4205 always returns false. Return NULL_TREE if it is not always
4206 possible to determine the value of the comparison. Also set
4207 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4208 infinity was used in the test. */
4209
4210 static tree
4211 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
4212 bool *strict_overflow_p)
4213 {
4214 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4215 return NULL_TREE;
4216
4217 /* Anti-ranges need to be handled separately. */
4218 if (vr->type == VR_ANTI_RANGE)
4219 {
4220 /* For anti-ranges, the only predicates that we can compute at
4221 compile time are equality and inequality. */
4222 if (comp == GT_EXPR
4223 || comp == GE_EXPR
4224 || comp == LT_EXPR
4225 || comp == LE_EXPR)
4226 return NULL_TREE;
4227
4228 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4229 if (value_inside_range (val, vr->min, vr->max) == 1)
4230 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4231
4232 return NULL_TREE;
4233 }
4234
4235 if (!usable_range_p (vr, strict_overflow_p))
4236 return NULL_TREE;
4237
4238 if (comp == EQ_EXPR)
4239 {
4240 /* EQ_EXPR may only be computed if VR represents exactly
4241 one value. */
4242 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4243 {
4244 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4245 if (cmp == 0)
4246 return boolean_true_node;
4247 else if (cmp == -1 || cmp == 1 || cmp == 2)
4248 return boolean_false_node;
4249 }
4250 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4251 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4252 return boolean_false_node;
4253
4254 return NULL_TREE;
4255 }
4256 else if (comp == NE_EXPR)
4257 {
4258 /* If VAL is not inside VR, then they are always different. */
4259 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4260 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4261 return boolean_true_node;
4262
4263 /* If VR represents exactly one value equal to VAL, then return
4264 false. */
4265 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4266 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4267 return boolean_false_node;
4268
4269 /* Otherwise, they may or may not be different. */
4270 return NULL_TREE;
4271 }
4272 else if (comp == LT_EXPR || comp == LE_EXPR)
4273 {
4274 int tst;
4275
4276 /* If VR is to the left of VAL, return true. */
4277 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4278 if ((comp == LT_EXPR && tst == -1)
4279 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4280 {
4281 if (overflow_infinity_range_p (vr))
4282 *strict_overflow_p = true;
4283 return boolean_true_node;
4284 }
4285
4286 /* If VR is to the right of VAL, return false. */
4287 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4288 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4289 || (comp == LE_EXPR && tst == 1))
4290 {
4291 if (overflow_infinity_range_p (vr))
4292 *strict_overflow_p = true;
4293 return boolean_false_node;
4294 }
4295
4296 /* Otherwise, we don't know. */
4297 return NULL_TREE;
4298 }
4299 else if (comp == GT_EXPR || comp == GE_EXPR)
4300 {
4301 int tst;
4302
4303 /* If VR is to the right of VAL, return true. */
4304 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4305 if ((comp == GT_EXPR && tst == 1)
4306 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4307 {
4308 if (overflow_infinity_range_p (vr))
4309 *strict_overflow_p = true;
4310 return boolean_true_node;
4311 }
4312
4313 /* If VR is to the left of VAL, return false. */
4314 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4315 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4316 || (comp == GE_EXPR && tst == -1))
4317 {
4318 if (overflow_infinity_range_p (vr))
4319 *strict_overflow_p = true;
4320 return boolean_false_node;
4321 }
4322
4323 /* Otherwise, we don't know. */
4324 return NULL_TREE;
4325 }
4326
4327 gcc_unreachable ();
4328 }
4329
4330
4331 /* Debugging dumps. */
4332
4333 void dump_value_range (FILE *, value_range_t *);
4334 void debug_value_range (value_range_t *);
4335 void dump_all_value_ranges (FILE *);
4336 void debug_all_value_ranges (void);
4337 void dump_vr_equiv (FILE *, bitmap);
4338 void debug_vr_equiv (bitmap);
4339
4340
4341 /* Dump value range VR to FILE. */
4342
4343 void
4344 dump_value_range (FILE *file, value_range_t *vr)
4345 {
4346 if (vr == NULL)
4347 fprintf (file, "[]");
4348 else if (vr->type == VR_UNDEFINED)
4349 fprintf (file, "UNDEFINED");
4350 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4351 {
4352 tree type = TREE_TYPE (vr->min);
4353
4354 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4355
4356 if (is_negative_overflow_infinity (vr->min))
4357 fprintf (file, "-INF(OVF)");
4358 else if (INTEGRAL_TYPE_P (type)
4359 && !TYPE_UNSIGNED (type)
4360 && vrp_val_is_min (vr->min))
4361 fprintf (file, "-INF");
4362 else
4363 print_generic_expr (file, vr->min, 0);
4364
4365 fprintf (file, ", ");
4366
4367 if (is_positive_overflow_infinity (vr->max))
4368 fprintf (file, "+INF(OVF)");
4369 else if (INTEGRAL_TYPE_P (type)
4370 && vrp_val_is_max (vr->max))
4371 fprintf (file, "+INF");
4372 else
4373 print_generic_expr (file, vr->max, 0);
4374
4375 fprintf (file, "]");
4376
4377 if (vr->equiv)
4378 {
4379 bitmap_iterator bi;
4380 unsigned i, c = 0;
4381
4382 fprintf (file, " EQUIVALENCES: { ");
4383
4384 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4385 {
4386 print_generic_expr (file, ssa_name (i), 0);
4387 fprintf (file, " ");
4388 c++;
4389 }
4390
4391 fprintf (file, "} (%u elements)", c);
4392 }
4393 }
4394 else if (vr->type == VR_VARYING)
4395 fprintf (file, "VARYING");
4396 else
4397 fprintf (file, "INVALID RANGE");
4398 }
4399
4400
4401 /* Dump value range VR to stderr. */
4402
4403 DEBUG_FUNCTION void
4404 debug_value_range (value_range_t *vr)
4405 {
4406 dump_value_range (stderr, vr);
4407 fprintf (stderr, "\n");
4408 }
4409
4410
4411 /* Dump value ranges of all SSA_NAMEs to FILE. */
4412
4413 void
4414 dump_all_value_ranges (FILE *file)
4415 {
4416 size_t i;
4417
4418 for (i = 0; i < num_vr_values; i++)
4419 {
4420 if (vr_value[i])
4421 {
4422 print_generic_expr (file, ssa_name (i), 0);
4423 fprintf (file, ": ");
4424 dump_value_range (file, vr_value[i]);
4425 fprintf (file, "\n");
4426 }
4427 }
4428
4429 fprintf (file, "\n");
4430 }
4431
4432
4433 /* Dump all value ranges to stderr. */
4434
4435 DEBUG_FUNCTION void
4436 debug_all_value_ranges (void)
4437 {
4438 dump_all_value_ranges (stderr);
4439 }
4440
4441
4442 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4443 create a new SSA name N and return the assertion assignment
4444 'V = ASSERT_EXPR <V, V OP W>'. */
4445
4446 static gimple
4447 build_assert_expr_for (tree cond, tree v)
4448 {
4449 tree a;
4450 gimple assertion;
4451
4452 gcc_assert (TREE_CODE (v) == SSA_NAME
4453 && COMPARISON_CLASS_P (cond));
4454
4455 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4456 assertion = gimple_build_assign (NULL_TREE, a);
4457
4458 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4459 operand of the ASSERT_EXPR. Create it so the new name and the old one
4460 are registered in the replacement table so that we can fix the SSA web
4461 after adding all the ASSERT_EXPRs. */
4462 create_new_def_for (v, assertion, NULL);
4463
4464 return assertion;
4465 }
4466
4467
4468 /* Return false if EXPR is a predicate expression involving floating
4469 point values. */
4470
4471 static inline bool
4472 fp_predicate (gimple stmt)
4473 {
4474 GIMPLE_CHECK (stmt, GIMPLE_COND);
4475
4476 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4477 }
4478
4479 /* If the range of values taken by OP can be inferred after STMT executes,
4480 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4481 describes the inferred range. Return true if a range could be
4482 inferred. */
4483
4484 static bool
4485 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4486 {
4487 *val_p = NULL_TREE;
4488 *comp_code_p = ERROR_MARK;
4489
4490 /* Do not attempt to infer anything in names that flow through
4491 abnormal edges. */
4492 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4493 return false;
4494
4495 /* Similarly, don't infer anything from statements that may throw
4496 exceptions. ??? Relax this requirement? */
4497 if (stmt_could_throw_p (stmt))
4498 return false;
4499
4500 /* If STMT is the last statement of a basic block with no
4501 successors, there is no point inferring anything about any of its
4502 operands. We would not be able to find a proper insertion point
4503 for the assertion, anyway. */
4504 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
4505 return false;
4506
4507 if (infer_nonnull_range (stmt, op))
4508 {
4509 *val_p = build_int_cst (TREE_TYPE (op), 0);
4510 *comp_code_p = NE_EXPR;
4511 return true;
4512 }
4513
4514 return false;
4515 }
4516
4517
4518 void dump_asserts_for (FILE *, tree);
4519 void debug_asserts_for (tree);
4520 void dump_all_asserts (FILE *);
4521 void debug_all_asserts (void);
4522
4523 /* Dump all the registered assertions for NAME to FILE. */
4524
4525 void
4526 dump_asserts_for (FILE *file, tree name)
4527 {
4528 assert_locus_t loc;
4529
4530 fprintf (file, "Assertions to be inserted for ");
4531 print_generic_expr (file, name, 0);
4532 fprintf (file, "\n");
4533
4534 loc = asserts_for[SSA_NAME_VERSION (name)];
4535 while (loc)
4536 {
4537 fprintf (file, "\t");
4538 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4539 fprintf (file, "\n\tBB #%d", loc->bb->index);
4540 if (loc->e)
4541 {
4542 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4543 loc->e->dest->index);
4544 dump_edge_info (file, loc->e, dump_flags, 0);
4545 }
4546 fprintf (file, "\n\tPREDICATE: ");
4547 print_generic_expr (file, name, 0);
4548 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
4549 print_generic_expr (file, loc->val, 0);
4550 fprintf (file, "\n\n");
4551 loc = loc->next;
4552 }
4553
4554 fprintf (file, "\n");
4555 }
4556
4557
4558 /* Dump all the registered assertions for NAME to stderr. */
4559
4560 DEBUG_FUNCTION void
4561 debug_asserts_for (tree name)
4562 {
4563 dump_asserts_for (stderr, name);
4564 }
4565
4566
4567 /* Dump all the registered assertions for all the names to FILE. */
4568
4569 void
4570 dump_all_asserts (FILE *file)
4571 {
4572 unsigned i;
4573 bitmap_iterator bi;
4574
4575 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4576 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4577 dump_asserts_for (file, ssa_name (i));
4578 fprintf (file, "\n");
4579 }
4580
4581
4582 /* Dump all the registered assertions for all the names to stderr. */
4583
4584 DEBUG_FUNCTION void
4585 debug_all_asserts (void)
4586 {
4587 dump_all_asserts (stderr);
4588 }
4589
4590
4591 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4592 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4593 E->DEST, then register this location as a possible insertion point
4594 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4595
4596 BB, E and SI provide the exact insertion point for the new
4597 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4598 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4599 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4600 must not be NULL. */
4601
4602 static void
4603 register_new_assert_for (tree name, tree expr,
4604 enum tree_code comp_code,
4605 tree val,
4606 basic_block bb,
4607 edge e,
4608 gimple_stmt_iterator si)
4609 {
4610 assert_locus_t n, loc, last_loc;
4611 basic_block dest_bb;
4612
4613 gcc_checking_assert (bb == NULL || e == NULL);
4614
4615 if (e == NULL)
4616 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4617 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4618
4619 /* Never build an assert comparing against an integer constant with
4620 TREE_OVERFLOW set. This confuses our undefined overflow warning
4621 machinery. */
4622 if (TREE_CODE (val) == INTEGER_CST
4623 && TREE_OVERFLOW (val))
4624 val = build_int_cst_wide (TREE_TYPE (val),
4625 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
4626
4627 /* The new assertion A will be inserted at BB or E. We need to
4628 determine if the new location is dominated by a previously
4629 registered location for A. If we are doing an edge insertion,
4630 assume that A will be inserted at E->DEST. Note that this is not
4631 necessarily true.
4632
4633 If E is a critical edge, it will be split. But even if E is
4634 split, the new block will dominate the same set of blocks that
4635 E->DEST dominates.
4636
4637 The reverse, however, is not true, blocks dominated by E->DEST
4638 will not be dominated by the new block created to split E. So,
4639 if the insertion location is on a critical edge, we will not use
4640 the new location to move another assertion previously registered
4641 at a block dominated by E->DEST. */
4642 dest_bb = (bb) ? bb : e->dest;
4643
4644 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4645 VAL at a block dominating DEST_BB, then we don't need to insert a new
4646 one. Similarly, if the same assertion already exists at a block
4647 dominated by DEST_BB and the new location is not on a critical
4648 edge, then update the existing location for the assertion (i.e.,
4649 move the assertion up in the dominance tree).
4650
4651 Note, this is implemented as a simple linked list because there
4652 should not be more than a handful of assertions registered per
4653 name. If this becomes a performance problem, a table hashed by
4654 COMP_CODE and VAL could be implemented. */
4655 loc = asserts_for[SSA_NAME_VERSION (name)];
4656 last_loc = loc;
4657 while (loc)
4658 {
4659 if (loc->comp_code == comp_code
4660 && (loc->val == val
4661 || operand_equal_p (loc->val, val, 0))
4662 && (loc->expr == expr
4663 || operand_equal_p (loc->expr, expr, 0)))
4664 {
4665 /* If E is not a critical edge and DEST_BB
4666 dominates the existing location for the assertion, move
4667 the assertion up in the dominance tree by updating its
4668 location information. */
4669 if ((e == NULL || !EDGE_CRITICAL_P (e))
4670 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4671 {
4672 loc->bb = dest_bb;
4673 loc->e = e;
4674 loc->si = si;
4675 return;
4676 }
4677 }
4678
4679 /* Update the last node of the list and move to the next one. */
4680 last_loc = loc;
4681 loc = loc->next;
4682 }
4683
4684 /* If we didn't find an assertion already registered for
4685 NAME COMP_CODE VAL, add a new one at the end of the list of
4686 assertions associated with NAME. */
4687 n = XNEW (struct assert_locus_d);
4688 n->bb = dest_bb;
4689 n->e = e;
4690 n->si = si;
4691 n->comp_code = comp_code;
4692 n->val = val;
4693 n->expr = expr;
4694 n->next = NULL;
4695
4696 if (last_loc)
4697 last_loc->next = n;
4698 else
4699 asserts_for[SSA_NAME_VERSION (name)] = n;
4700
4701 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4702 }
4703
4704 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4705 Extract a suitable test code and value and store them into *CODE_P and
4706 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4707
4708 If no extraction was possible, return FALSE, otherwise return TRUE.
4709
4710 If INVERT is true, then we invert the result stored into *CODE_P. */
4711
4712 static bool
4713 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4714 tree cond_op0, tree cond_op1,
4715 bool invert, enum tree_code *code_p,
4716 tree *val_p)
4717 {
4718 enum tree_code comp_code;
4719 tree val;
4720
4721 /* Otherwise, we have a comparison of the form NAME COMP VAL
4722 or VAL COMP NAME. */
4723 if (name == cond_op1)
4724 {
4725 /* If the predicate is of the form VAL COMP NAME, flip
4726 COMP around because we need to register NAME as the
4727 first operand in the predicate. */
4728 comp_code = swap_tree_comparison (cond_code);
4729 val = cond_op0;
4730 }
4731 else
4732 {
4733 /* The comparison is of the form NAME COMP VAL, so the
4734 comparison code remains unchanged. */
4735 comp_code = cond_code;
4736 val = cond_op1;
4737 }
4738
4739 /* Invert the comparison code as necessary. */
4740 if (invert)
4741 comp_code = invert_tree_comparison (comp_code, 0);
4742
4743 /* VRP does not handle float types. */
4744 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4745 return false;
4746
4747 /* Do not register always-false predicates.
4748 FIXME: this works around a limitation in fold() when dealing with
4749 enumerations. Given 'enum { N1, N2 } x;', fold will not
4750 fold 'if (x > N2)' to 'if (0)'. */
4751 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4752 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4753 {
4754 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4755 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4756
4757 if (comp_code == GT_EXPR
4758 && (!max
4759 || compare_values (val, max) == 0))
4760 return false;
4761
4762 if (comp_code == LT_EXPR
4763 && (!min
4764 || compare_values (val, min) == 0))
4765 return false;
4766 }
4767 *code_p = comp_code;
4768 *val_p = val;
4769 return true;
4770 }
4771
4772 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
4773 (otherwise return VAL). VAL and MASK must be zero-extended for
4774 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
4775 (to transform signed values into unsigned) and at the end xor
4776 SGNBIT back. */
4777
4778 static double_int
4779 masked_increment (double_int val, double_int mask, double_int sgnbit,
4780 unsigned int prec)
4781 {
4782 double_int bit = double_int_one, res;
4783 unsigned int i;
4784
4785 val ^= sgnbit;
4786 for (i = 0; i < prec; i++, bit += bit)
4787 {
4788 res = mask;
4789 if ((res & bit).is_zero ())
4790 continue;
4791 res = bit - double_int_one;
4792 res = (val + bit).and_not (res);
4793 res &= mask;
4794 if (res.ugt (val))
4795 return res ^ sgnbit;
4796 }
4797 return val ^ sgnbit;
4798 }
4799
4800 /* Try to register an edge assertion for SSA name NAME on edge E for
4801 the condition COND contributing to the conditional jump pointed to by BSI.
4802 Invert the condition COND if INVERT is true.
4803 Return true if an assertion for NAME could be registered. */
4804
4805 static bool
4806 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4807 enum tree_code cond_code,
4808 tree cond_op0, tree cond_op1, bool invert)
4809 {
4810 tree val;
4811 enum tree_code comp_code;
4812 bool retval = false;
4813
4814 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4815 cond_op0,
4816 cond_op1,
4817 invert, &comp_code, &val))
4818 return false;
4819
4820 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4821 reachable from E. */
4822 if (live_on_edge (e, name)
4823 && !has_single_use (name))
4824 {
4825 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4826 retval = true;
4827 }
4828
4829 /* In the case of NAME <= CST and NAME being defined as
4830 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4831 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4832 This catches range and anti-range tests. */
4833 if ((comp_code == LE_EXPR
4834 || comp_code == GT_EXPR)
4835 && TREE_CODE (val) == INTEGER_CST
4836 && TYPE_UNSIGNED (TREE_TYPE (val)))
4837 {
4838 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4839 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4840
4841 /* Extract CST2 from the (optional) addition. */
4842 if (is_gimple_assign (def_stmt)
4843 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4844 {
4845 name2 = gimple_assign_rhs1 (def_stmt);
4846 cst2 = gimple_assign_rhs2 (def_stmt);
4847 if (TREE_CODE (name2) == SSA_NAME
4848 && TREE_CODE (cst2) == INTEGER_CST)
4849 def_stmt = SSA_NAME_DEF_STMT (name2);
4850 }
4851
4852 /* Extract NAME2 from the (optional) sign-changing cast. */
4853 if (gimple_assign_cast_p (def_stmt))
4854 {
4855 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4856 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4857 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4858 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4859 name3 = gimple_assign_rhs1 (def_stmt);
4860 }
4861
4862 /* If name3 is used later, create an ASSERT_EXPR for it. */
4863 if (name3 != NULL_TREE
4864 && TREE_CODE (name3) == SSA_NAME
4865 && (cst2 == NULL_TREE
4866 || TREE_CODE (cst2) == INTEGER_CST)
4867 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4868 && live_on_edge (e, name3)
4869 && !has_single_use (name3))
4870 {
4871 tree tmp;
4872
4873 /* Build an expression for the range test. */
4874 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4875 if (cst2 != NULL_TREE)
4876 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4877
4878 if (dump_file)
4879 {
4880 fprintf (dump_file, "Adding assert for ");
4881 print_generic_expr (dump_file, name3, 0);
4882 fprintf (dump_file, " from ");
4883 print_generic_expr (dump_file, tmp, 0);
4884 fprintf (dump_file, "\n");
4885 }
4886
4887 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4888
4889 retval = true;
4890 }
4891
4892 /* If name2 is used later, create an ASSERT_EXPR for it. */
4893 if (name2 != NULL_TREE
4894 && TREE_CODE (name2) == SSA_NAME
4895 && TREE_CODE (cst2) == INTEGER_CST
4896 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4897 && live_on_edge (e, name2)
4898 && !has_single_use (name2))
4899 {
4900 tree tmp;
4901
4902 /* Build an expression for the range test. */
4903 tmp = name2;
4904 if (TREE_TYPE (name) != TREE_TYPE (name2))
4905 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4906 if (cst2 != NULL_TREE)
4907 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4908
4909 if (dump_file)
4910 {
4911 fprintf (dump_file, "Adding assert for ");
4912 print_generic_expr (dump_file, name2, 0);
4913 fprintf (dump_file, " from ");
4914 print_generic_expr (dump_file, tmp, 0);
4915 fprintf (dump_file, "\n");
4916 }
4917
4918 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4919
4920 retval = true;
4921 }
4922 }
4923
4924 /* In the case of post-in/decrement tests like if (i++) ... and uses
4925 of the in/decremented value on the edge the extra name we want to
4926 assert for is not on the def chain of the name compared. Instead
4927 it is in the set of use stmts. */
4928 if ((comp_code == NE_EXPR
4929 || comp_code == EQ_EXPR)
4930 && TREE_CODE (val) == INTEGER_CST)
4931 {
4932 imm_use_iterator ui;
4933 gimple use_stmt;
4934 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
4935 {
4936 /* Cut off to use-stmts that are in the predecessor. */
4937 if (gimple_bb (use_stmt) != e->src)
4938 continue;
4939
4940 if (!is_gimple_assign (use_stmt))
4941 continue;
4942
4943 enum tree_code code = gimple_assign_rhs_code (use_stmt);
4944 if (code != PLUS_EXPR
4945 && code != MINUS_EXPR)
4946 continue;
4947
4948 tree cst = gimple_assign_rhs2 (use_stmt);
4949 if (TREE_CODE (cst) != INTEGER_CST)
4950 continue;
4951
4952 tree name2 = gimple_assign_lhs (use_stmt);
4953 if (live_on_edge (e, name2))
4954 {
4955 cst = int_const_binop (code, val, cst);
4956 register_new_assert_for (name2, name2, comp_code, cst,
4957 NULL, e, bsi);
4958 retval = true;
4959 }
4960 }
4961 }
4962
4963 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
4964 && TREE_CODE (val) == INTEGER_CST)
4965 {
4966 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4967 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
4968 tree val2 = NULL_TREE;
4969 double_int mask = double_int_zero;
4970 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
4971 unsigned int nprec = prec;
4972 enum tree_code rhs_code = ERROR_MARK;
4973
4974 if (is_gimple_assign (def_stmt))
4975 rhs_code = gimple_assign_rhs_code (def_stmt);
4976
4977 /* Add asserts for NAME cmp CST and NAME being defined
4978 as NAME = (int) NAME2. */
4979 if (!TYPE_UNSIGNED (TREE_TYPE (val))
4980 && (comp_code == LE_EXPR || comp_code == LT_EXPR
4981 || comp_code == GT_EXPR || comp_code == GE_EXPR)
4982 && gimple_assign_cast_p (def_stmt))
4983 {
4984 name2 = gimple_assign_rhs1 (def_stmt);
4985 if (CONVERT_EXPR_CODE_P (rhs_code)
4986 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4987 && TYPE_UNSIGNED (TREE_TYPE (name2))
4988 && prec == TYPE_PRECISION (TREE_TYPE (name2))
4989 && (comp_code == LE_EXPR || comp_code == GT_EXPR
4990 || !tree_int_cst_equal (val,
4991 TYPE_MIN_VALUE (TREE_TYPE (val))))
4992 && live_on_edge (e, name2)
4993 && !has_single_use (name2))
4994 {
4995 tree tmp, cst;
4996 enum tree_code new_comp_code = comp_code;
4997
4998 cst = fold_convert (TREE_TYPE (name2),
4999 TYPE_MIN_VALUE (TREE_TYPE (val)));
5000 /* Build an expression for the range test. */
5001 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
5002 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
5003 fold_convert (TREE_TYPE (name2), val));
5004 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5005 {
5006 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
5007 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
5008 build_int_cst (TREE_TYPE (name2), 1));
5009 }
5010
5011 if (dump_file)
5012 {
5013 fprintf (dump_file, "Adding assert for ");
5014 print_generic_expr (dump_file, name2, 0);
5015 fprintf (dump_file, " from ");
5016 print_generic_expr (dump_file, tmp, 0);
5017 fprintf (dump_file, "\n");
5018 }
5019
5020 register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
5021 e, bsi);
5022
5023 retval = true;
5024 }
5025 }
5026
5027 /* Add asserts for NAME cmp CST and NAME being defined as
5028 NAME = NAME2 >> CST2.
5029
5030 Extract CST2 from the right shift. */
5031 if (rhs_code == RSHIFT_EXPR)
5032 {
5033 name2 = gimple_assign_rhs1 (def_stmt);
5034 cst2 = gimple_assign_rhs2 (def_stmt);
5035 if (TREE_CODE (name2) == SSA_NAME
5036 && host_integerp (cst2, 1)
5037 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5038 && IN_RANGE (tree_low_cst (cst2, 1), 1, prec - 1)
5039 && prec <= HOST_BITS_PER_DOUBLE_INT
5040 && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
5041 && live_on_edge (e, name2)
5042 && !has_single_use (name2))
5043 {
5044 mask = double_int::mask (tree_low_cst (cst2, 1));
5045 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5046 }
5047 }
5048 if (val2 != NULL_TREE
5049 && TREE_CODE (val2) == INTEGER_CST
5050 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5051 TREE_TYPE (val),
5052 val2, cst2), val))
5053 {
5054 enum tree_code new_comp_code = comp_code;
5055 tree tmp, new_val;
5056
5057 tmp = name2;
5058 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5059 {
5060 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5061 {
5062 tree type = build_nonstandard_integer_type (prec, 1);
5063 tmp = build1 (NOP_EXPR, type, name2);
5064 val2 = fold_convert (type, val2);
5065 }
5066 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
5067 new_val = double_int_to_tree (TREE_TYPE (tmp), mask);
5068 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5069 }
5070 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5071 {
5072 double_int minval
5073 = double_int::min_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
5074 new_val = val2;
5075 if (minval == tree_to_double_int (new_val))
5076 new_val = NULL_TREE;
5077 }
5078 else
5079 {
5080 double_int maxval
5081 = double_int::max_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
5082 mask |= tree_to_double_int (val2);
5083 if (mask == maxval)
5084 new_val = NULL_TREE;
5085 else
5086 new_val = double_int_to_tree (TREE_TYPE (val2), mask);
5087 }
5088
5089 if (new_val)
5090 {
5091 if (dump_file)
5092 {
5093 fprintf (dump_file, "Adding assert for ");
5094 print_generic_expr (dump_file, name2, 0);
5095 fprintf (dump_file, " from ");
5096 print_generic_expr (dump_file, tmp, 0);
5097 fprintf (dump_file, "\n");
5098 }
5099
5100 register_new_assert_for (name2, tmp, new_comp_code, new_val,
5101 NULL, e, bsi);
5102 retval = true;
5103 }
5104 }
5105
5106 /* Add asserts for NAME cmp CST and NAME being defined as
5107 NAME = NAME2 & CST2.
5108
5109 Extract CST2 from the and.
5110
5111 Also handle
5112 NAME = (unsigned) NAME2;
5113 casts where NAME's type is unsigned and has smaller precision
5114 than NAME2's type as if it was NAME = NAME2 & MASK. */
5115 names[0] = NULL_TREE;
5116 names[1] = NULL_TREE;
5117 cst2 = NULL_TREE;
5118 if (rhs_code == BIT_AND_EXPR
5119 || (CONVERT_EXPR_CODE_P (rhs_code)
5120 && TREE_CODE (TREE_TYPE (val)) == INTEGER_TYPE
5121 && TYPE_UNSIGNED (TREE_TYPE (val))
5122 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5123 > prec
5124 && !retval))
5125 {
5126 name2 = gimple_assign_rhs1 (def_stmt);
5127 if (rhs_code == BIT_AND_EXPR)
5128 cst2 = gimple_assign_rhs2 (def_stmt);
5129 else
5130 {
5131 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5132 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5133 }
5134 if (TREE_CODE (name2) == SSA_NAME
5135 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5136 && TREE_CODE (cst2) == INTEGER_CST
5137 && !integer_zerop (cst2)
5138 && nprec <= HOST_BITS_PER_DOUBLE_INT
5139 && (nprec > 1
5140 || TYPE_UNSIGNED (TREE_TYPE (val))))
5141 {
5142 gimple def_stmt2 = SSA_NAME_DEF_STMT (name2);
5143 if (gimple_assign_cast_p (def_stmt2))
5144 {
5145 names[1] = gimple_assign_rhs1 (def_stmt2);
5146 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5147 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5148 || (TYPE_PRECISION (TREE_TYPE (name2))
5149 != TYPE_PRECISION (TREE_TYPE (names[1])))
5150 || !live_on_edge (e, names[1])
5151 || has_single_use (names[1]))
5152 names[1] = NULL_TREE;
5153 }
5154 if (live_on_edge (e, name2)
5155 && !has_single_use (name2))
5156 names[0] = name2;
5157 }
5158 }
5159 if (names[0] || names[1])
5160 {
5161 double_int minv, maxv = double_int_zero, valv, cst2v;
5162 double_int tem, sgnbit;
5163 bool valid_p = false, valn = false, cst2n = false;
5164 enum tree_code ccode = comp_code;
5165
5166 valv = tree_to_double_int (val).zext (nprec);
5167 cst2v = tree_to_double_int (cst2).zext (nprec);
5168 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5169 {
5170 valn = valv.sext (nprec).is_negative ();
5171 cst2n = cst2v.sext (nprec).is_negative ();
5172 }
5173 /* If CST2 doesn't have most significant bit set,
5174 but VAL is negative, we have comparison like
5175 if ((x & 0x123) > -4) (always true). Just give up. */
5176 if (!cst2n && valn)
5177 ccode = ERROR_MARK;
5178 if (cst2n)
5179 sgnbit = double_int_one.llshift (nprec - 1, nprec).zext (nprec);
5180 else
5181 sgnbit = double_int_zero;
5182 minv = valv & cst2v;
5183 switch (ccode)
5184 {
5185 case EQ_EXPR:
5186 /* Minimum unsigned value for equality is VAL & CST2
5187 (should be equal to VAL, otherwise we probably should
5188 have folded the comparison into false) and
5189 maximum unsigned value is VAL | ~CST2. */
5190 maxv = valv | ~cst2v;
5191 maxv = maxv.zext (nprec);
5192 valid_p = true;
5193 break;
5194 case NE_EXPR:
5195 tem = valv | ~cst2v;
5196 tem = tem.zext (nprec);
5197 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5198 if (valv.is_zero ())
5199 {
5200 cst2n = false;
5201 sgnbit = double_int_zero;
5202 goto gt_expr;
5203 }
5204 /* If (VAL | ~CST2) is all ones, handle it as
5205 (X & CST2) < VAL. */
5206 if (tem == double_int::mask (nprec))
5207 {
5208 cst2n = false;
5209 valn = false;
5210 sgnbit = double_int_zero;
5211 goto lt_expr;
5212 }
5213 if (!cst2n
5214 && cst2v.sext (nprec).is_negative ())
5215 sgnbit
5216 = double_int_one.llshift (nprec - 1, nprec).zext (nprec);
5217 if (!sgnbit.is_zero ())
5218 {
5219 if (valv == sgnbit)
5220 {
5221 cst2n = true;
5222 valn = true;
5223 goto gt_expr;
5224 }
5225 if (tem == double_int::mask (nprec - 1))
5226 {
5227 cst2n = true;
5228 goto lt_expr;
5229 }
5230 if (!cst2n)
5231 sgnbit = double_int_zero;
5232 }
5233 break;
5234 case GE_EXPR:
5235 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5236 is VAL and maximum unsigned value is ~0. For signed
5237 comparison, if CST2 doesn't have most significant bit
5238 set, handle it similarly. If CST2 has MSB set,
5239 the minimum is the same, and maximum is ~0U/2. */
5240 if (minv != valv)
5241 {
5242 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5243 VAL. */
5244 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5245 if (minv == valv)
5246 break;
5247 }
5248 maxv = double_int::mask (nprec - (cst2n ? 1 : 0));
5249 valid_p = true;
5250 break;
5251 case GT_EXPR:
5252 gt_expr:
5253 /* Find out smallest MINV where MINV > VAL
5254 && (MINV & CST2) == MINV, if any. If VAL is signed and
5255 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5256 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5257 if (minv == valv)
5258 break;
5259 maxv = double_int::mask (nprec - (cst2n ? 1 : 0));
5260 valid_p = true;
5261 break;
5262 case LE_EXPR:
5263 /* Minimum unsigned value for <= is 0 and maximum
5264 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5265 Otherwise, find smallest VAL2 where VAL2 > VAL
5266 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5267 as maximum.
5268 For signed comparison, if CST2 doesn't have most
5269 significant bit set, handle it similarly. If CST2 has
5270 MSB set, the maximum is the same and minimum is INT_MIN. */
5271 if (minv == valv)
5272 maxv = valv;
5273 else
5274 {
5275 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5276 if (maxv == valv)
5277 break;
5278 maxv -= double_int_one;
5279 }
5280 maxv |= ~cst2v;
5281 maxv = maxv.zext (nprec);
5282 minv = sgnbit;
5283 valid_p = true;
5284 break;
5285 case LT_EXPR:
5286 lt_expr:
5287 /* Minimum unsigned value for < is 0 and maximum
5288 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5289 Otherwise, find smallest VAL2 where VAL2 > VAL
5290 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5291 as maximum.
5292 For signed comparison, if CST2 doesn't have most
5293 significant bit set, handle it similarly. If CST2 has
5294 MSB set, the maximum is the same and minimum is INT_MIN. */
5295 if (minv == valv)
5296 {
5297 if (valv == sgnbit)
5298 break;
5299 maxv = valv;
5300 }
5301 else
5302 {
5303 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5304 if (maxv == valv)
5305 break;
5306 }
5307 maxv -= double_int_one;
5308 maxv |= ~cst2v;
5309 maxv = maxv.zext (nprec);
5310 minv = sgnbit;
5311 valid_p = true;
5312 break;
5313 default:
5314 break;
5315 }
5316 if (valid_p
5317 && (maxv - minv).zext (nprec) != double_int::mask (nprec))
5318 {
5319 tree tmp, new_val, type;
5320 int i;
5321
5322 for (i = 0; i < 2; i++)
5323 if (names[i])
5324 {
5325 double_int maxv2 = maxv;
5326 tmp = names[i];
5327 type = TREE_TYPE (names[i]);
5328 if (!TYPE_UNSIGNED (type))
5329 {
5330 type = build_nonstandard_integer_type (nprec, 1);
5331 tmp = build1 (NOP_EXPR, type, names[i]);
5332 }
5333 if (!minv.is_zero ())
5334 {
5335 tmp = build2 (PLUS_EXPR, type, tmp,
5336 double_int_to_tree (type, -minv));
5337 maxv2 = maxv - minv;
5338 }
5339 new_val = double_int_to_tree (type, maxv2);
5340
5341 if (dump_file)
5342 {
5343 fprintf (dump_file, "Adding assert for ");
5344 print_generic_expr (dump_file, names[i], 0);
5345 fprintf (dump_file, " from ");
5346 print_generic_expr (dump_file, tmp, 0);
5347 fprintf (dump_file, "\n");
5348 }
5349
5350 register_new_assert_for (names[i], tmp, LE_EXPR,
5351 new_val, NULL, e, bsi);
5352 retval = true;
5353 }
5354 }
5355 }
5356 }
5357
5358 return retval;
5359 }
5360
5361 /* OP is an operand of a truth value expression which is known to have
5362 a particular value. Register any asserts for OP and for any
5363 operands in OP's defining statement.
5364
5365 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5366 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5367
5368 static bool
5369 register_edge_assert_for_1 (tree op, enum tree_code code,
5370 edge e, gimple_stmt_iterator bsi)
5371 {
5372 bool retval = false;
5373 gimple op_def;
5374 tree val;
5375 enum tree_code rhs_code;
5376
5377 /* We only care about SSA_NAMEs. */
5378 if (TREE_CODE (op) != SSA_NAME)
5379 return false;
5380
5381 /* We know that OP will have a zero or nonzero value. If OP is used
5382 more than once go ahead and register an assert for OP.
5383
5384 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
5385 it will always be set for OP (because OP is used in a COND_EXPR in
5386 the subgraph). */
5387 if (!has_single_use (op))
5388 {
5389 val = build_int_cst (TREE_TYPE (op), 0);
5390 register_new_assert_for (op, op, code, val, NULL, e, bsi);
5391 retval = true;
5392 }
5393
5394 /* Now look at how OP is set. If it's set from a comparison,
5395 a truth operation or some bit operations, then we may be able
5396 to register information about the operands of that assignment. */
5397 op_def = SSA_NAME_DEF_STMT (op);
5398 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5399 return retval;
5400
5401 rhs_code = gimple_assign_rhs_code (op_def);
5402
5403 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5404 {
5405 bool invert = (code == EQ_EXPR ? true : false);
5406 tree op0 = gimple_assign_rhs1 (op_def);
5407 tree op1 = gimple_assign_rhs2 (op_def);
5408
5409 if (TREE_CODE (op0) == SSA_NAME)
5410 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
5411 invert);
5412 if (TREE_CODE (op1) == SSA_NAME)
5413 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
5414 invert);
5415 }
5416 else if ((code == NE_EXPR
5417 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5418 || (code == EQ_EXPR
5419 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5420 {
5421 /* Recurse on each operand. */
5422 tree op0 = gimple_assign_rhs1 (op_def);
5423 tree op1 = gimple_assign_rhs2 (op_def);
5424 if (TREE_CODE (op0) == SSA_NAME
5425 && has_single_use (op0))
5426 retval |= register_edge_assert_for_1 (op0, code, e, bsi);
5427 if (TREE_CODE (op1) == SSA_NAME
5428 && has_single_use (op1))
5429 retval |= register_edge_assert_for_1 (op1, code, e, bsi);
5430 }
5431 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5432 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
5433 {
5434 /* Recurse, flipping CODE. */
5435 code = invert_tree_comparison (code, false);
5436 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5437 code, e, bsi);
5438 }
5439 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
5440 {
5441 /* Recurse through the copy. */
5442 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5443 code, e, bsi);
5444 }
5445 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
5446 {
5447 /* Recurse through the type conversion. */
5448 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5449 code, e, bsi);
5450 }
5451
5452 return retval;
5453 }
5454
5455 /* Try to register an edge assertion for SSA name NAME on edge E for
5456 the condition COND contributing to the conditional jump pointed to by SI.
5457 Return true if an assertion for NAME could be registered. */
5458
5459 static bool
5460 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
5461 enum tree_code cond_code, tree cond_op0,
5462 tree cond_op1)
5463 {
5464 tree val;
5465 enum tree_code comp_code;
5466 bool retval = false;
5467 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5468
5469 /* Do not attempt to infer anything in names that flow through
5470 abnormal edges. */
5471 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5472 return false;
5473
5474 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5475 cond_op0, cond_op1,
5476 is_else_edge,
5477 &comp_code, &val))
5478 return false;
5479
5480 /* Register ASSERT_EXPRs for name. */
5481 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
5482 cond_op1, is_else_edge);
5483
5484
5485 /* If COND is effectively an equality test of an SSA_NAME against
5486 the value zero or one, then we may be able to assert values
5487 for SSA_NAMEs which flow into COND. */
5488
5489 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5490 statement of NAME we can assert both operands of the BIT_AND_EXPR
5491 have nonzero value. */
5492 if (((comp_code == EQ_EXPR && integer_onep (val))
5493 || (comp_code == NE_EXPR && integer_zerop (val))))
5494 {
5495 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5496
5497 if (is_gimple_assign (def_stmt)
5498 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5499 {
5500 tree op0 = gimple_assign_rhs1 (def_stmt);
5501 tree op1 = gimple_assign_rhs2 (def_stmt);
5502 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
5503 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
5504 }
5505 }
5506
5507 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5508 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5509 have zero value. */
5510 if (((comp_code == EQ_EXPR && integer_zerop (val))
5511 || (comp_code == NE_EXPR && integer_onep (val))))
5512 {
5513 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5514
5515 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5516 necessarily zero value, or if type-precision is one. */
5517 if (is_gimple_assign (def_stmt)
5518 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5519 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5520 || comp_code == EQ_EXPR)))
5521 {
5522 tree op0 = gimple_assign_rhs1 (def_stmt);
5523 tree op1 = gimple_assign_rhs2 (def_stmt);
5524 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
5525 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
5526 }
5527 }
5528
5529 return retval;
5530 }
5531
5532
5533 /* Determine whether the outgoing edges of BB should receive an
5534 ASSERT_EXPR for each of the operands of BB's LAST statement.
5535 The last statement of BB must be a COND_EXPR.
5536
5537 If any of the sub-graphs rooted at BB have an interesting use of
5538 the predicate operands, an assert location node is added to the
5539 list of assertions for the corresponding operands. */
5540
5541 static bool
5542 find_conditional_asserts (basic_block bb, gimple last)
5543 {
5544 bool need_assert;
5545 gimple_stmt_iterator bsi;
5546 tree op;
5547 edge_iterator ei;
5548 edge e;
5549 ssa_op_iter iter;
5550
5551 need_assert = false;
5552 bsi = gsi_for_stmt (last);
5553
5554 /* Look for uses of the operands in each of the sub-graphs
5555 rooted at BB. We need to check each of the outgoing edges
5556 separately, so that we know what kind of ASSERT_EXPR to
5557 insert. */
5558 FOR_EACH_EDGE (e, ei, bb->succs)
5559 {
5560 if (e->dest == bb)
5561 continue;
5562
5563 /* Register the necessary assertions for each operand in the
5564 conditional predicate. */
5565 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5566 {
5567 need_assert |= register_edge_assert_for (op, e, bsi,
5568 gimple_cond_code (last),
5569 gimple_cond_lhs (last),
5570 gimple_cond_rhs (last));
5571 }
5572 }
5573
5574 return need_assert;
5575 }
5576
5577 struct case_info
5578 {
5579 tree expr;
5580 basic_block bb;
5581 };
5582
5583 /* Compare two case labels sorting first by the destination bb index
5584 and then by the case value. */
5585
5586 static int
5587 compare_case_labels (const void *p1, const void *p2)
5588 {
5589 const struct case_info *ci1 = (const struct case_info *) p1;
5590 const struct case_info *ci2 = (const struct case_info *) p2;
5591 int idx1 = ci1->bb->index;
5592 int idx2 = ci2->bb->index;
5593
5594 if (idx1 < idx2)
5595 return -1;
5596 else if (idx1 == idx2)
5597 {
5598 /* Make sure the default label is first in a group. */
5599 if (!CASE_LOW (ci1->expr))
5600 return -1;
5601 else if (!CASE_LOW (ci2->expr))
5602 return 1;
5603 else
5604 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5605 CASE_LOW (ci2->expr));
5606 }
5607 else
5608 return 1;
5609 }
5610
5611 /* Determine whether the outgoing edges of BB should receive an
5612 ASSERT_EXPR for each of the operands of BB's LAST statement.
5613 The last statement of BB must be a SWITCH_EXPR.
5614
5615 If any of the sub-graphs rooted at BB have an interesting use of
5616 the predicate operands, an assert location node is added to the
5617 list of assertions for the corresponding operands. */
5618
5619 static bool
5620 find_switch_asserts (basic_block bb, gimple last)
5621 {
5622 bool need_assert;
5623 gimple_stmt_iterator bsi;
5624 tree op;
5625 edge e;
5626 struct case_info *ci;
5627 size_t n = gimple_switch_num_labels (last);
5628 #if GCC_VERSION >= 4000
5629 unsigned int idx;
5630 #else
5631 /* Work around GCC 3.4 bug (PR 37086). */
5632 volatile unsigned int idx;
5633 #endif
5634
5635 need_assert = false;
5636 bsi = gsi_for_stmt (last);
5637 op = gimple_switch_index (last);
5638 if (TREE_CODE (op) != SSA_NAME)
5639 return false;
5640
5641 /* Build a vector of case labels sorted by destination label. */
5642 ci = XNEWVEC (struct case_info, n);
5643 for (idx = 0; idx < n; ++idx)
5644 {
5645 ci[idx].expr = gimple_switch_label (last, idx);
5646 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
5647 }
5648 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
5649
5650 for (idx = 0; idx < n; ++idx)
5651 {
5652 tree min, max;
5653 tree cl = ci[idx].expr;
5654 basic_block cbb = ci[idx].bb;
5655
5656 min = CASE_LOW (cl);
5657 max = CASE_HIGH (cl);
5658
5659 /* If there are multiple case labels with the same destination
5660 we need to combine them to a single value range for the edge. */
5661 if (idx + 1 < n && cbb == ci[idx + 1].bb)
5662 {
5663 /* Skip labels until the last of the group. */
5664 do {
5665 ++idx;
5666 } while (idx < n && cbb == ci[idx].bb);
5667 --idx;
5668
5669 /* Pick up the maximum of the case label range. */
5670 if (CASE_HIGH (ci[idx].expr))
5671 max = CASE_HIGH (ci[idx].expr);
5672 else
5673 max = CASE_LOW (ci[idx].expr);
5674 }
5675
5676 /* Nothing to do if the range includes the default label until we
5677 can register anti-ranges. */
5678 if (min == NULL_TREE)
5679 continue;
5680
5681 /* Find the edge to register the assert expr on. */
5682 e = find_edge (bb, cbb);
5683
5684 /* Register the necessary assertions for the operand in the
5685 SWITCH_EXPR. */
5686 need_assert |= register_edge_assert_for (op, e, bsi,
5687 max ? GE_EXPR : EQ_EXPR,
5688 op,
5689 fold_convert (TREE_TYPE (op),
5690 min));
5691 if (max)
5692 {
5693 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
5694 op,
5695 fold_convert (TREE_TYPE (op),
5696 max));
5697 }
5698 }
5699
5700 XDELETEVEC (ci);
5701 return need_assert;
5702 }
5703
5704
5705 /* Traverse all the statements in block BB looking for statements that
5706 may generate useful assertions for the SSA names in their operand.
5707 If a statement produces a useful assertion A for name N_i, then the
5708 list of assertions already generated for N_i is scanned to
5709 determine if A is actually needed.
5710
5711 If N_i already had the assertion A at a location dominating the
5712 current location, then nothing needs to be done. Otherwise, the
5713 new location for A is recorded instead.
5714
5715 1- For every statement S in BB, all the variables used by S are
5716 added to bitmap FOUND_IN_SUBGRAPH.
5717
5718 2- If statement S uses an operand N in a way that exposes a known
5719 value range for N, then if N was not already generated by an
5720 ASSERT_EXPR, create a new assert location for N. For instance,
5721 if N is a pointer and the statement dereferences it, we can
5722 assume that N is not NULL.
5723
5724 3- COND_EXPRs are a special case of #2. We can derive range
5725 information from the predicate but need to insert different
5726 ASSERT_EXPRs for each of the sub-graphs rooted at the
5727 conditional block. If the last statement of BB is a conditional
5728 expression of the form 'X op Y', then
5729
5730 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
5731
5732 b) If the conditional is the only entry point to the sub-graph
5733 corresponding to the THEN_CLAUSE, recurse into it. On
5734 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
5735 an ASSERT_EXPR is added for the corresponding variable.
5736
5737 c) Repeat step (b) on the ELSE_CLAUSE.
5738
5739 d) Mark X and Y in FOUND_IN_SUBGRAPH.
5740
5741 For instance,
5742
5743 if (a == 9)
5744 b = a;
5745 else
5746 b = c + 1;
5747
5748 In this case, an assertion on the THEN clause is useful to
5749 determine that 'a' is always 9 on that edge. However, an assertion
5750 on the ELSE clause would be unnecessary.
5751
5752 4- If BB does not end in a conditional expression, then we recurse
5753 into BB's dominator children.
5754
5755 At the end of the recursive traversal, every SSA name will have a
5756 list of locations where ASSERT_EXPRs should be added. When a new
5757 location for name N is found, it is registered by calling
5758 register_new_assert_for. That function keeps track of all the
5759 registered assertions to prevent adding unnecessary assertions.
5760 For instance, if a pointer P_4 is dereferenced more than once in a
5761 dominator tree, only the location dominating all the dereference of
5762 P_4 will receive an ASSERT_EXPR.
5763
5764 If this function returns true, then it means that there are names
5765 for which we need to generate ASSERT_EXPRs. Those assertions are
5766 inserted by process_assert_insertions. */
5767
5768 static bool
5769 find_assert_locations_1 (basic_block bb, sbitmap live)
5770 {
5771 gimple_stmt_iterator si;
5772 gimple last;
5773 bool need_assert;
5774
5775 need_assert = false;
5776 last = last_stmt (bb);
5777
5778 /* If BB's last statement is a conditional statement involving integer
5779 operands, determine if we need to add ASSERT_EXPRs. */
5780 if (last
5781 && gimple_code (last) == GIMPLE_COND
5782 && !fp_predicate (last)
5783 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5784 need_assert |= find_conditional_asserts (bb, last);
5785
5786 /* If BB's last statement is a switch statement involving integer
5787 operands, determine if we need to add ASSERT_EXPRs. */
5788 if (last
5789 && gimple_code (last) == GIMPLE_SWITCH
5790 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5791 need_assert |= find_switch_asserts (bb, last);
5792
5793 /* Traverse all the statements in BB marking used names and looking
5794 for statements that may infer assertions for their used operands. */
5795 for (si = gsi_last_bb (bb); !gsi_end_p (si); gsi_prev (&si))
5796 {
5797 gimple stmt;
5798 tree op;
5799 ssa_op_iter i;
5800
5801 stmt = gsi_stmt (si);
5802
5803 if (is_gimple_debug (stmt))
5804 continue;
5805
5806 /* See if we can derive an assertion for any of STMT's operands. */
5807 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5808 {
5809 tree value;
5810 enum tree_code comp_code;
5811
5812 /* If op is not live beyond this stmt, do not bother to insert
5813 asserts for it. */
5814 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
5815 continue;
5816
5817 /* If OP is used in such a way that we can infer a value
5818 range for it, and we don't find a previous assertion for
5819 it, create a new assertion location node for OP. */
5820 if (infer_value_range (stmt, op, &comp_code, &value))
5821 {
5822 /* If we are able to infer a nonzero value range for OP,
5823 then walk backwards through the use-def chain to see if OP
5824 was set via a typecast.
5825
5826 If so, then we can also infer a nonzero value range
5827 for the operand of the NOP_EXPR. */
5828 if (comp_code == NE_EXPR && integer_zerop (value))
5829 {
5830 tree t = op;
5831 gimple def_stmt = SSA_NAME_DEF_STMT (t);
5832
5833 while (is_gimple_assign (def_stmt)
5834 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
5835 && TREE_CODE
5836 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
5837 && POINTER_TYPE_P
5838 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
5839 {
5840 t = gimple_assign_rhs1 (def_stmt);
5841 def_stmt = SSA_NAME_DEF_STMT (t);
5842
5843 /* Note we want to register the assert for the
5844 operand of the NOP_EXPR after SI, not after the
5845 conversion. */
5846 if (! has_single_use (t))
5847 {
5848 register_new_assert_for (t, t, comp_code, value,
5849 bb, NULL, si);
5850 need_assert = true;
5851 }
5852 }
5853 }
5854
5855 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
5856 need_assert = true;
5857 }
5858 }
5859
5860 /* Update live. */
5861 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5862 bitmap_set_bit (live, SSA_NAME_VERSION (op));
5863 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
5864 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
5865 }
5866
5867 /* Traverse all PHI nodes in BB, updating live. */
5868 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5869 {
5870 use_operand_p arg_p;
5871 ssa_op_iter i;
5872 gimple phi = gsi_stmt (si);
5873 tree res = gimple_phi_result (phi);
5874
5875 if (virtual_operand_p (res))
5876 continue;
5877
5878 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
5879 {
5880 tree arg = USE_FROM_PTR (arg_p);
5881 if (TREE_CODE (arg) == SSA_NAME)
5882 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
5883 }
5884
5885 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
5886 }
5887
5888 return need_assert;
5889 }
5890
5891 /* Do an RPO walk over the function computing SSA name liveness
5892 on-the-fly and deciding on assert expressions to insert.
5893 Returns true if there are assert expressions to be inserted. */
5894
5895 static bool
5896 find_assert_locations (void)
5897 {
5898 int *rpo = XNEWVEC (int, last_basic_block);
5899 int *bb_rpo = XNEWVEC (int, last_basic_block);
5900 int *last_rpo = XCNEWVEC (int, last_basic_block);
5901 int rpo_cnt, i;
5902 bool need_asserts;
5903
5904 live = XCNEWVEC (sbitmap, last_basic_block);
5905 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
5906 for (i = 0; i < rpo_cnt; ++i)
5907 bb_rpo[rpo[i]] = i;
5908
5909 need_asserts = false;
5910 for (i = rpo_cnt - 1; i >= 0; --i)
5911 {
5912 basic_block bb = BASIC_BLOCK (rpo[i]);
5913 edge e;
5914 edge_iterator ei;
5915
5916 if (!live[rpo[i]])
5917 {
5918 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
5919 bitmap_clear (live[rpo[i]]);
5920 }
5921
5922 /* Process BB and update the live information with uses in
5923 this block. */
5924 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
5925
5926 /* Merge liveness into the predecessor blocks and free it. */
5927 if (!bitmap_empty_p (live[rpo[i]]))
5928 {
5929 int pred_rpo = i;
5930 FOR_EACH_EDGE (e, ei, bb->preds)
5931 {
5932 int pred = e->src->index;
5933 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
5934 continue;
5935
5936 if (!live[pred])
5937 {
5938 live[pred] = sbitmap_alloc (num_ssa_names);
5939 bitmap_clear (live[pred]);
5940 }
5941 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
5942
5943 if (bb_rpo[pred] < pred_rpo)
5944 pred_rpo = bb_rpo[pred];
5945 }
5946
5947 /* Record the RPO number of the last visited block that needs
5948 live information from this block. */
5949 last_rpo[rpo[i]] = pred_rpo;
5950 }
5951 else
5952 {
5953 sbitmap_free (live[rpo[i]]);
5954 live[rpo[i]] = NULL;
5955 }
5956
5957 /* We can free all successors live bitmaps if all their
5958 predecessors have been visited already. */
5959 FOR_EACH_EDGE (e, ei, bb->succs)
5960 if (last_rpo[e->dest->index] == i
5961 && live[e->dest->index])
5962 {
5963 sbitmap_free (live[e->dest->index]);
5964 live[e->dest->index] = NULL;
5965 }
5966 }
5967
5968 XDELETEVEC (rpo);
5969 XDELETEVEC (bb_rpo);
5970 XDELETEVEC (last_rpo);
5971 for (i = 0; i < last_basic_block; ++i)
5972 if (live[i])
5973 sbitmap_free (live[i]);
5974 XDELETEVEC (live);
5975
5976 return need_asserts;
5977 }
5978
5979 /* Create an ASSERT_EXPR for NAME and insert it in the location
5980 indicated by LOC. Return true if we made any edge insertions. */
5981
5982 static bool
5983 process_assert_insertions_for (tree name, assert_locus_t loc)
5984 {
5985 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5986 gimple stmt;
5987 tree cond;
5988 gimple assert_stmt;
5989 edge_iterator ei;
5990 edge e;
5991
5992 /* If we have X <=> X do not insert an assert expr for that. */
5993 if (loc->expr == loc->val)
5994 return false;
5995
5996 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
5997 assert_stmt = build_assert_expr_for (cond, name);
5998 if (loc->e)
5999 {
6000 /* We have been asked to insert the assertion on an edge. This
6001 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6002 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
6003 || (gimple_code (gsi_stmt (loc->si))
6004 == GIMPLE_SWITCH));
6005
6006 gsi_insert_on_edge (loc->e, assert_stmt);
6007 return true;
6008 }
6009
6010 /* Otherwise, we can insert right after LOC->SI iff the
6011 statement must not be the last statement in the block. */
6012 stmt = gsi_stmt (loc->si);
6013 if (!stmt_ends_bb_p (stmt))
6014 {
6015 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
6016 return false;
6017 }
6018
6019 /* If STMT must be the last statement in BB, we can only insert new
6020 assertions on the non-abnormal edge out of BB. Note that since
6021 STMT is not control flow, there may only be one non-abnormal edge
6022 out of BB. */
6023 FOR_EACH_EDGE (e, ei, loc->bb->succs)
6024 if (!(e->flags & EDGE_ABNORMAL))
6025 {
6026 gsi_insert_on_edge (e, assert_stmt);
6027 return true;
6028 }
6029
6030 gcc_unreachable ();
6031 }
6032
6033
6034 /* Process all the insertions registered for every name N_i registered
6035 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6036 found in ASSERTS_FOR[i]. */
6037
6038 static void
6039 process_assert_insertions (void)
6040 {
6041 unsigned i;
6042 bitmap_iterator bi;
6043 bool update_edges_p = false;
6044 int num_asserts = 0;
6045
6046 if (dump_file && (dump_flags & TDF_DETAILS))
6047 dump_all_asserts (dump_file);
6048
6049 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6050 {
6051 assert_locus_t loc = asserts_for[i];
6052 gcc_assert (loc);
6053
6054 while (loc)
6055 {
6056 assert_locus_t next = loc->next;
6057 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6058 free (loc);
6059 loc = next;
6060 num_asserts++;
6061 }
6062 }
6063
6064 if (update_edges_p)
6065 gsi_commit_edge_inserts ();
6066
6067 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6068 num_asserts);
6069 }
6070
6071
6072 /* Traverse the flowgraph looking for conditional jumps to insert range
6073 expressions. These range expressions are meant to provide information
6074 to optimizations that need to reason in terms of value ranges. They
6075 will not be expanded into RTL. For instance, given:
6076
6077 x = ...
6078 y = ...
6079 if (x < y)
6080 y = x - 2;
6081 else
6082 x = y + 3;
6083
6084 this pass will transform the code into:
6085
6086 x = ...
6087 y = ...
6088 if (x < y)
6089 {
6090 x = ASSERT_EXPR <x, x < y>
6091 y = x - 2
6092 }
6093 else
6094 {
6095 y = ASSERT_EXPR <y, x <= y>
6096 x = y + 3
6097 }
6098
6099 The idea is that once copy and constant propagation have run, other
6100 optimizations will be able to determine what ranges of values can 'x'
6101 take in different paths of the code, simply by checking the reaching
6102 definition of 'x'. */
6103
6104 static void
6105 insert_range_assertions (void)
6106 {
6107 need_assert_for = BITMAP_ALLOC (NULL);
6108 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
6109
6110 calculate_dominance_info (CDI_DOMINATORS);
6111
6112 if (find_assert_locations ())
6113 {
6114 process_assert_insertions ();
6115 update_ssa (TODO_update_ssa_no_phi);
6116 }
6117
6118 if (dump_file && (dump_flags & TDF_DETAILS))
6119 {
6120 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6121 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6122 }
6123
6124 free (asserts_for);
6125 BITMAP_FREE (need_assert_for);
6126 }
6127
6128 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6129 and "struct" hacks. If VRP can determine that the
6130 array subscript is a constant, check if it is outside valid
6131 range. If the array subscript is a RANGE, warn if it is
6132 non-overlapping with valid range.
6133 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6134
6135 static void
6136 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6137 {
6138 value_range_t* vr = NULL;
6139 tree low_sub, up_sub;
6140 tree low_bound, up_bound, up_bound_p1;
6141 tree base;
6142
6143 if (TREE_NO_WARNING (ref))
6144 return;
6145
6146 low_sub = up_sub = TREE_OPERAND (ref, 1);
6147 up_bound = array_ref_up_bound (ref);
6148
6149 /* Can not check flexible arrays. */
6150 if (!up_bound
6151 || TREE_CODE (up_bound) != INTEGER_CST)
6152 return;
6153
6154 /* Accesses to trailing arrays via pointers may access storage
6155 beyond the types array bounds. */
6156 base = get_base_address (ref);
6157 if (base && TREE_CODE (base) == MEM_REF)
6158 {
6159 tree cref, next = NULL_TREE;
6160
6161 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
6162 return;
6163
6164 cref = TREE_OPERAND (ref, 0);
6165 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
6166 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
6167 next && TREE_CODE (next) != FIELD_DECL;
6168 next = DECL_CHAIN (next))
6169 ;
6170
6171 /* If this is the last field in a struct type or a field in a
6172 union type do not warn. */
6173 if (!next)
6174 return;
6175 }
6176
6177 low_bound = array_ref_low_bound (ref);
6178 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node);
6179
6180 if (TREE_CODE (low_sub) == SSA_NAME)
6181 {
6182 vr = get_value_range (low_sub);
6183 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6184 {
6185 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6186 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6187 }
6188 }
6189
6190 if (vr && vr->type == VR_ANTI_RANGE)
6191 {
6192 if (TREE_CODE (up_sub) == INTEGER_CST
6193 && tree_int_cst_lt (up_bound, up_sub)
6194 && TREE_CODE (low_sub) == INTEGER_CST
6195 && tree_int_cst_lt (low_sub, low_bound))
6196 {
6197 warning_at (location, OPT_Warray_bounds,
6198 "array subscript is outside array bounds");
6199 TREE_NO_WARNING (ref) = 1;
6200 }
6201 }
6202 else if (TREE_CODE (up_sub) == INTEGER_CST
6203 && (ignore_off_by_one
6204 ? (tree_int_cst_lt (up_bound, up_sub)
6205 && !tree_int_cst_equal (up_bound_p1, up_sub))
6206 : (tree_int_cst_lt (up_bound, up_sub)
6207 || tree_int_cst_equal (up_bound_p1, up_sub))))
6208 {
6209 if (dump_file && (dump_flags & TDF_DETAILS))
6210 {
6211 fprintf (dump_file, "Array bound warning for ");
6212 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6213 fprintf (dump_file, "\n");
6214 }
6215 warning_at (location, OPT_Warray_bounds,
6216 "array subscript is above array bounds");
6217 TREE_NO_WARNING (ref) = 1;
6218 }
6219 else if (TREE_CODE (low_sub) == INTEGER_CST
6220 && tree_int_cst_lt (low_sub, low_bound))
6221 {
6222 if (dump_file && (dump_flags & TDF_DETAILS))
6223 {
6224 fprintf (dump_file, "Array bound warning for ");
6225 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6226 fprintf (dump_file, "\n");
6227 }
6228 warning_at (location, OPT_Warray_bounds,
6229 "array subscript is below array bounds");
6230 TREE_NO_WARNING (ref) = 1;
6231 }
6232 }
6233
6234 /* Searches if the expr T, located at LOCATION computes
6235 address of an ARRAY_REF, and call check_array_ref on it. */
6236
6237 static void
6238 search_for_addr_array (tree t, location_t location)
6239 {
6240 while (TREE_CODE (t) == SSA_NAME)
6241 {
6242 gimple g = SSA_NAME_DEF_STMT (t);
6243
6244 if (gimple_code (g) != GIMPLE_ASSIGN)
6245 return;
6246
6247 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
6248 != GIMPLE_SINGLE_RHS)
6249 return;
6250
6251 t = gimple_assign_rhs1 (g);
6252 }
6253
6254
6255 /* We are only interested in addresses of ARRAY_REF's. */
6256 if (TREE_CODE (t) != ADDR_EXPR)
6257 return;
6258
6259 /* Check each ARRAY_REFs in the reference chain. */
6260 do
6261 {
6262 if (TREE_CODE (t) == ARRAY_REF)
6263 check_array_ref (location, t, true /*ignore_off_by_one*/);
6264
6265 t = TREE_OPERAND (t, 0);
6266 }
6267 while (handled_component_p (t));
6268
6269 if (TREE_CODE (t) == MEM_REF
6270 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6271 && !TREE_NO_WARNING (t))
6272 {
6273 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6274 tree low_bound, up_bound, el_sz;
6275 double_int idx;
6276 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6277 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6278 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6279 return;
6280
6281 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6282 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6283 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6284 if (!low_bound
6285 || TREE_CODE (low_bound) != INTEGER_CST
6286 || !up_bound
6287 || TREE_CODE (up_bound) != INTEGER_CST
6288 || !el_sz
6289 || TREE_CODE (el_sz) != INTEGER_CST)
6290 return;
6291
6292 idx = mem_ref_offset (t);
6293 idx = idx.sdiv (tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
6294 if (idx.slt (double_int_zero))
6295 {
6296 if (dump_file && (dump_flags & TDF_DETAILS))
6297 {
6298 fprintf (dump_file, "Array bound warning for ");
6299 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6300 fprintf (dump_file, "\n");
6301 }
6302 warning_at (location, OPT_Warray_bounds,
6303 "array subscript is below array bounds");
6304 TREE_NO_WARNING (t) = 1;
6305 }
6306 else if (idx.sgt (tree_to_double_int (up_bound)
6307 - tree_to_double_int (low_bound)
6308 + double_int_one))
6309 {
6310 if (dump_file && (dump_flags & TDF_DETAILS))
6311 {
6312 fprintf (dump_file, "Array bound warning for ");
6313 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6314 fprintf (dump_file, "\n");
6315 }
6316 warning_at (location, OPT_Warray_bounds,
6317 "array subscript is above array bounds");
6318 TREE_NO_WARNING (t) = 1;
6319 }
6320 }
6321 }
6322
6323 /* walk_tree() callback that checks if *TP is
6324 an ARRAY_REF inside an ADDR_EXPR (in which an array
6325 subscript one outside the valid range is allowed). Call
6326 check_array_ref for each ARRAY_REF found. The location is
6327 passed in DATA. */
6328
6329 static tree
6330 check_array_bounds (tree *tp, int *walk_subtree, void *data)
6331 {
6332 tree t = *tp;
6333 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6334 location_t location;
6335
6336 if (EXPR_HAS_LOCATION (t))
6337 location = EXPR_LOCATION (t);
6338 else
6339 {
6340 location_t *locp = (location_t *) wi->info;
6341 location = *locp;
6342 }
6343
6344 *walk_subtree = TRUE;
6345
6346 if (TREE_CODE (t) == ARRAY_REF)
6347 check_array_ref (location, t, false /*ignore_off_by_one*/);
6348
6349 if (TREE_CODE (t) == MEM_REF
6350 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
6351 search_for_addr_array (TREE_OPERAND (t, 0), location);
6352
6353 if (TREE_CODE (t) == ADDR_EXPR)
6354 *walk_subtree = FALSE;
6355
6356 return NULL_TREE;
6357 }
6358
6359 /* Walk over all statements of all reachable BBs and call check_array_bounds
6360 on them. */
6361
6362 static void
6363 check_all_array_refs (void)
6364 {
6365 basic_block bb;
6366 gimple_stmt_iterator si;
6367
6368 FOR_EACH_BB (bb)
6369 {
6370 edge_iterator ei;
6371 edge e;
6372 bool executable = false;
6373
6374 /* Skip blocks that were found to be unreachable. */
6375 FOR_EACH_EDGE (e, ei, bb->preds)
6376 executable |= !!(e->flags & EDGE_EXECUTABLE);
6377 if (!executable)
6378 continue;
6379
6380 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6381 {
6382 gimple stmt = gsi_stmt (si);
6383 struct walk_stmt_info wi;
6384 if (!gimple_has_location (stmt))
6385 continue;
6386
6387 if (is_gimple_call (stmt))
6388 {
6389 size_t i;
6390 size_t n = gimple_call_num_args (stmt);
6391 for (i = 0; i < n; i++)
6392 {
6393 tree arg = gimple_call_arg (stmt, i);
6394 search_for_addr_array (arg, gimple_location (stmt));
6395 }
6396 }
6397 else
6398 {
6399 memset (&wi, 0, sizeof (wi));
6400 wi.info = CONST_CAST (void *, (const void *)
6401 gimple_location_ptr (stmt));
6402
6403 walk_gimple_op (gsi_stmt (si),
6404 check_array_bounds,
6405 &wi);
6406 }
6407 }
6408 }
6409 }
6410
6411 /* Return true if all imm uses of VAR are either in STMT, or
6412 feed (optionally through a chain of single imm uses) GIMPLE_COND
6413 in basic block COND_BB. */
6414
6415 static bool
6416 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple stmt, basic_block cond_bb)
6417 {
6418 use_operand_p use_p, use2_p;
6419 imm_use_iterator iter;
6420
6421 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
6422 if (USE_STMT (use_p) != stmt)
6423 {
6424 gimple use_stmt = USE_STMT (use_p), use_stmt2;
6425 if (is_gimple_debug (use_stmt))
6426 continue;
6427 while (is_gimple_assign (use_stmt)
6428 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
6429 && single_imm_use (gimple_assign_lhs (use_stmt),
6430 &use2_p, &use_stmt2))
6431 use_stmt = use_stmt2;
6432 if (gimple_code (use_stmt) != GIMPLE_COND
6433 || gimple_bb (use_stmt) != cond_bb)
6434 return false;
6435 }
6436 return true;
6437 }
6438
6439 /* Handle
6440 _4 = x_3 & 31;
6441 if (_4 != 0)
6442 goto <bb 6>;
6443 else
6444 goto <bb 7>;
6445 <bb 6>:
6446 __builtin_unreachable ();
6447 <bb 7>:
6448 x_5 = ASSERT_EXPR <x_3, ...>;
6449 If x_3 has no other immediate uses (checked by caller),
6450 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6451 from the non-zero bitmask. */
6452
6453 static void
6454 maybe_set_nonzero_bits (basic_block bb, tree var)
6455 {
6456 edge e = single_pred_edge (bb);
6457 basic_block cond_bb = e->src;
6458 gimple stmt = last_stmt (cond_bb);
6459 tree cst;
6460
6461 if (stmt == NULL
6462 || gimple_code (stmt) != GIMPLE_COND
6463 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
6464 ? EQ_EXPR : NE_EXPR)
6465 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
6466 || !integer_zerop (gimple_cond_rhs (stmt)))
6467 return;
6468
6469 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
6470 if (!is_gimple_assign (stmt)
6471 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
6472 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
6473 return;
6474 if (gimple_assign_rhs1 (stmt) != var)
6475 {
6476 gimple stmt2;
6477
6478 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
6479 return;
6480 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
6481 if (!gimple_assign_cast_p (stmt2)
6482 || gimple_assign_rhs1 (stmt2) != var
6483 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
6484 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6485 != TYPE_PRECISION (TREE_TYPE (var))))
6486 return;
6487 }
6488 cst = gimple_assign_rhs2 (stmt);
6489 set_nonzero_bits (var, (get_nonzero_bits (var)
6490 & ~tree_to_double_int (cst)));
6491 }
6492
6493 /* Convert range assertion expressions into the implied copies and
6494 copy propagate away the copies. Doing the trivial copy propagation
6495 here avoids the need to run the full copy propagation pass after
6496 VRP.
6497
6498 FIXME, this will eventually lead to copy propagation removing the
6499 names that had useful range information attached to them. For
6500 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6501 then N_i will have the range [3, +INF].
6502
6503 However, by converting the assertion into the implied copy
6504 operation N_i = N_j, we will then copy-propagate N_j into the uses
6505 of N_i and lose the range information. We may want to hold on to
6506 ASSERT_EXPRs a little while longer as the ranges could be used in
6507 things like jump threading.
6508
6509 The problem with keeping ASSERT_EXPRs around is that passes after
6510 VRP need to handle them appropriately.
6511
6512 Another approach would be to make the range information a first
6513 class property of the SSA_NAME so that it can be queried from
6514 any pass. This is made somewhat more complex by the need for
6515 multiple ranges to be associated with one SSA_NAME. */
6516
6517 static void
6518 remove_range_assertions (void)
6519 {
6520 basic_block bb;
6521 gimple_stmt_iterator si;
6522 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6523 a basic block preceeded by GIMPLE_COND branching to it and
6524 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6525 int is_unreachable;
6526
6527 /* Note that the BSI iterator bump happens at the bottom of the
6528 loop and no bump is necessary if we're removing the statement
6529 referenced by the current BSI. */
6530 FOR_EACH_BB (bb)
6531 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
6532 {
6533 gimple stmt = gsi_stmt (si);
6534 gimple use_stmt;
6535
6536 if (is_gimple_assign (stmt)
6537 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
6538 {
6539 tree lhs = gimple_assign_lhs (stmt);
6540 tree rhs = gimple_assign_rhs1 (stmt);
6541 tree var;
6542 tree cond = fold (ASSERT_EXPR_COND (rhs));
6543 use_operand_p use_p;
6544 imm_use_iterator iter;
6545
6546 gcc_assert (cond != boolean_false_node);
6547
6548 var = ASSERT_EXPR_VAR (rhs);
6549 gcc_assert (TREE_CODE (var) == SSA_NAME);
6550
6551 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
6552 && SSA_NAME_RANGE_INFO (lhs))
6553 {
6554 if (is_unreachable == -1)
6555 {
6556 is_unreachable = 0;
6557 if (single_pred_p (bb)
6558 && assert_unreachable_fallthru_edge_p
6559 (single_pred_edge (bb)))
6560 is_unreachable = 1;
6561 }
6562 /* Handle
6563 if (x_7 >= 10 && x_7 < 20)
6564 __builtin_unreachable ();
6565 x_8 = ASSERT_EXPR <x_7, ...>;
6566 if the only uses of x_7 are in the ASSERT_EXPR and
6567 in the condition. In that case, we can copy the
6568 range info from x_8 computed in this pass also
6569 for x_7. */
6570 if (is_unreachable
6571 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
6572 single_pred (bb)))
6573 {
6574 set_range_info (var, SSA_NAME_RANGE_INFO (lhs)->min,
6575 SSA_NAME_RANGE_INFO (lhs)->max);
6576 maybe_set_nonzero_bits (bb, var);
6577 }
6578 }
6579
6580 /* Propagate the RHS into every use of the LHS. */
6581 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
6582 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
6583 SET_USE (use_p, var);
6584
6585 /* And finally, remove the copy, it is not needed. */
6586 gsi_remove (&si, true);
6587 release_defs (stmt);
6588 }
6589 else
6590 {
6591 gsi_next (&si);
6592 is_unreachable = 0;
6593 }
6594 }
6595 }
6596
6597
6598 /* Return true if STMT is interesting for VRP. */
6599
6600 static bool
6601 stmt_interesting_for_vrp (gimple stmt)
6602 {
6603 if (gimple_code (stmt) == GIMPLE_PHI)
6604 {
6605 tree res = gimple_phi_result (stmt);
6606 return (!virtual_operand_p (res)
6607 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
6608 || POINTER_TYPE_P (TREE_TYPE (res))));
6609 }
6610 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6611 {
6612 tree lhs = gimple_get_lhs (stmt);
6613
6614 /* In general, assignments with virtual operands are not useful
6615 for deriving ranges, with the obvious exception of calls to
6616 builtin functions. */
6617 if (lhs && TREE_CODE (lhs) == SSA_NAME
6618 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6619 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6620 && (is_gimple_call (stmt)
6621 || !gimple_vuse (stmt)))
6622 return true;
6623 }
6624 else if (gimple_code (stmt) == GIMPLE_COND
6625 || gimple_code (stmt) == GIMPLE_SWITCH)
6626 return true;
6627
6628 return false;
6629 }
6630
6631
6632 /* Initialize local data structures for VRP. */
6633
6634 static void
6635 vrp_initialize (void)
6636 {
6637 basic_block bb;
6638
6639 values_propagated = false;
6640 num_vr_values = num_ssa_names;
6641 vr_value = XCNEWVEC (value_range_t *, num_vr_values);
6642 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
6643
6644 FOR_EACH_BB (bb)
6645 {
6646 gimple_stmt_iterator si;
6647
6648 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
6649 {
6650 gimple phi = gsi_stmt (si);
6651 if (!stmt_interesting_for_vrp (phi))
6652 {
6653 tree lhs = PHI_RESULT (phi);
6654 set_value_range_to_varying (get_value_range (lhs));
6655 prop_set_simulate_again (phi, false);
6656 }
6657 else
6658 prop_set_simulate_again (phi, true);
6659 }
6660
6661 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6662 {
6663 gimple stmt = gsi_stmt (si);
6664
6665 /* If the statement is a control insn, then we do not
6666 want to avoid simulating the statement once. Failure
6667 to do so means that those edges will never get added. */
6668 if (stmt_ends_bb_p (stmt))
6669 prop_set_simulate_again (stmt, true);
6670 else if (!stmt_interesting_for_vrp (stmt))
6671 {
6672 ssa_op_iter i;
6673 tree def;
6674 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
6675 set_value_range_to_varying (get_value_range (def));
6676 prop_set_simulate_again (stmt, false);
6677 }
6678 else
6679 prop_set_simulate_again (stmt, true);
6680 }
6681 }
6682 }
6683
6684 /* Return the singleton value-range for NAME or NAME. */
6685
6686 static inline tree
6687 vrp_valueize (tree name)
6688 {
6689 if (TREE_CODE (name) == SSA_NAME)
6690 {
6691 value_range_t *vr = get_value_range (name);
6692 if (vr->type == VR_RANGE
6693 && (vr->min == vr->max
6694 || operand_equal_p (vr->min, vr->max, 0)))
6695 return vr->min;
6696 }
6697 return name;
6698 }
6699
6700 /* Visit assignment STMT. If it produces an interesting range, record
6701 the SSA name in *OUTPUT_P. */
6702
6703 static enum ssa_prop_result
6704 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
6705 {
6706 tree def, lhs;
6707 ssa_op_iter iter;
6708 enum gimple_code code = gimple_code (stmt);
6709 lhs = gimple_get_lhs (stmt);
6710
6711 /* We only keep track of ranges in integral and pointer types. */
6712 if (TREE_CODE (lhs) == SSA_NAME
6713 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6714 /* It is valid to have NULL MIN/MAX values on a type. See
6715 build_range_type. */
6716 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
6717 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
6718 || POINTER_TYPE_P (TREE_TYPE (lhs))))
6719 {
6720 value_range_t new_vr = VR_INITIALIZER;
6721
6722 /* Try folding the statement to a constant first. */
6723 tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
6724 if (tem && !is_overflow_infinity (tem))
6725 set_value_range (&new_vr, VR_RANGE, tem, tem, NULL);
6726 /* Then dispatch to value-range extracting functions. */
6727 else if (code == GIMPLE_CALL)
6728 extract_range_basic (&new_vr, stmt);
6729 else
6730 extract_range_from_assignment (&new_vr, stmt);
6731
6732 if (update_value_range (lhs, &new_vr))
6733 {
6734 *output_p = lhs;
6735
6736 if (dump_file && (dump_flags & TDF_DETAILS))
6737 {
6738 fprintf (dump_file, "Found new range for ");
6739 print_generic_expr (dump_file, lhs, 0);
6740 fprintf (dump_file, ": ");
6741 dump_value_range (dump_file, &new_vr);
6742 fprintf (dump_file, "\n\n");
6743 }
6744
6745 if (new_vr.type == VR_VARYING)
6746 return SSA_PROP_VARYING;
6747
6748 return SSA_PROP_INTERESTING;
6749 }
6750
6751 return SSA_PROP_NOT_INTERESTING;
6752 }
6753
6754 /* Every other statement produces no useful ranges. */
6755 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6756 set_value_range_to_varying (get_value_range (def));
6757
6758 return SSA_PROP_VARYING;
6759 }
6760
6761 /* Helper that gets the value range of the SSA_NAME with version I
6762 or a symbolic range containing the SSA_NAME only if the value range
6763 is varying or undefined. */
6764
6765 static inline value_range_t
6766 get_vr_for_comparison (int i)
6767 {
6768 value_range_t vr = *get_value_range (ssa_name (i));
6769
6770 /* If name N_i does not have a valid range, use N_i as its own
6771 range. This allows us to compare against names that may
6772 have N_i in their ranges. */
6773 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
6774 {
6775 vr.type = VR_RANGE;
6776 vr.min = ssa_name (i);
6777 vr.max = ssa_name (i);
6778 }
6779
6780 return vr;
6781 }
6782
6783 /* Compare all the value ranges for names equivalent to VAR with VAL
6784 using comparison code COMP. Return the same value returned by
6785 compare_range_with_value, including the setting of
6786 *STRICT_OVERFLOW_P. */
6787
6788 static tree
6789 compare_name_with_value (enum tree_code comp, tree var, tree val,
6790 bool *strict_overflow_p)
6791 {
6792 bitmap_iterator bi;
6793 unsigned i;
6794 bitmap e;
6795 tree retval, t;
6796 int used_strict_overflow;
6797 bool sop;
6798 value_range_t equiv_vr;
6799
6800 /* Get the set of equivalences for VAR. */
6801 e = get_value_range (var)->equiv;
6802
6803 /* Start at -1. Set it to 0 if we do a comparison without relying
6804 on overflow, or 1 if all comparisons rely on overflow. */
6805 used_strict_overflow = -1;
6806
6807 /* Compare vars' value range with val. */
6808 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
6809 sop = false;
6810 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
6811 if (retval)
6812 used_strict_overflow = sop ? 1 : 0;
6813
6814 /* If the equiv set is empty we have done all work we need to do. */
6815 if (e == NULL)
6816 {
6817 if (retval
6818 && used_strict_overflow > 0)
6819 *strict_overflow_p = true;
6820 return retval;
6821 }
6822
6823 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
6824 {
6825 equiv_vr = get_vr_for_comparison (i);
6826 sop = false;
6827 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
6828 if (t)
6829 {
6830 /* If we get different answers from different members
6831 of the equivalence set this check must be in a dead
6832 code region. Folding it to a trap representation
6833 would be correct here. For now just return don't-know. */
6834 if (retval != NULL
6835 && t != retval)
6836 {
6837 retval = NULL_TREE;
6838 break;
6839 }
6840 retval = t;
6841
6842 if (!sop)
6843 used_strict_overflow = 0;
6844 else if (used_strict_overflow < 0)
6845 used_strict_overflow = 1;
6846 }
6847 }
6848
6849 if (retval
6850 && used_strict_overflow > 0)
6851 *strict_overflow_p = true;
6852
6853 return retval;
6854 }
6855
6856
6857 /* Given a comparison code COMP and names N1 and N2, compare all the
6858 ranges equivalent to N1 against all the ranges equivalent to N2
6859 to determine the value of N1 COMP N2. Return the same value
6860 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
6861 whether we relied on an overflow infinity in the comparison. */
6862
6863
6864 static tree
6865 compare_names (enum tree_code comp, tree n1, tree n2,
6866 bool *strict_overflow_p)
6867 {
6868 tree t, retval;
6869 bitmap e1, e2;
6870 bitmap_iterator bi1, bi2;
6871 unsigned i1, i2;
6872 int used_strict_overflow;
6873 static bitmap_obstack *s_obstack = NULL;
6874 static bitmap s_e1 = NULL, s_e2 = NULL;
6875
6876 /* Compare the ranges of every name equivalent to N1 against the
6877 ranges of every name equivalent to N2. */
6878 e1 = get_value_range (n1)->equiv;
6879 e2 = get_value_range (n2)->equiv;
6880
6881 /* Use the fake bitmaps if e1 or e2 are not available. */
6882 if (s_obstack == NULL)
6883 {
6884 s_obstack = XNEW (bitmap_obstack);
6885 bitmap_obstack_initialize (s_obstack);
6886 s_e1 = BITMAP_ALLOC (s_obstack);
6887 s_e2 = BITMAP_ALLOC (s_obstack);
6888 }
6889 if (e1 == NULL)
6890 e1 = s_e1;
6891 if (e2 == NULL)
6892 e2 = s_e2;
6893
6894 /* Add N1 and N2 to their own set of equivalences to avoid
6895 duplicating the body of the loop just to check N1 and N2
6896 ranges. */
6897 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
6898 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
6899
6900 /* If the equivalence sets have a common intersection, then the two
6901 names can be compared without checking their ranges. */
6902 if (bitmap_intersect_p (e1, e2))
6903 {
6904 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6905 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6906
6907 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
6908 ? boolean_true_node
6909 : boolean_false_node;
6910 }
6911
6912 /* Start at -1. Set it to 0 if we do a comparison without relying
6913 on overflow, or 1 if all comparisons rely on overflow. */
6914 used_strict_overflow = -1;
6915
6916 /* Otherwise, compare all the equivalent ranges. First, add N1 and
6917 N2 to their own set of equivalences to avoid duplicating the body
6918 of the loop just to check N1 and N2 ranges. */
6919 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
6920 {
6921 value_range_t vr1 = get_vr_for_comparison (i1);
6922
6923 t = retval = NULL_TREE;
6924 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
6925 {
6926 bool sop = false;
6927
6928 value_range_t vr2 = get_vr_for_comparison (i2);
6929
6930 t = compare_ranges (comp, &vr1, &vr2, &sop);
6931 if (t)
6932 {
6933 /* If we get different answers from different members
6934 of the equivalence set this check must be in a dead
6935 code region. Folding it to a trap representation
6936 would be correct here. For now just return don't-know. */
6937 if (retval != NULL
6938 && t != retval)
6939 {
6940 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6941 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6942 return NULL_TREE;
6943 }
6944 retval = t;
6945
6946 if (!sop)
6947 used_strict_overflow = 0;
6948 else if (used_strict_overflow < 0)
6949 used_strict_overflow = 1;
6950 }
6951 }
6952
6953 if (retval)
6954 {
6955 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6956 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6957 if (used_strict_overflow > 0)
6958 *strict_overflow_p = true;
6959 return retval;
6960 }
6961 }
6962
6963 /* None of the equivalent ranges are useful in computing this
6964 comparison. */
6965 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6966 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6967 return NULL_TREE;
6968 }
6969
6970 /* Helper function for vrp_evaluate_conditional_warnv. */
6971
6972 static tree
6973 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
6974 tree op0, tree op1,
6975 bool * strict_overflow_p)
6976 {
6977 value_range_t *vr0, *vr1;
6978
6979 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
6980 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
6981
6982 if (vr0 && vr1)
6983 return compare_ranges (code, vr0, vr1, strict_overflow_p);
6984 else if (vr0 && vr1 == NULL)
6985 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
6986 else if (vr0 == NULL && vr1)
6987 return (compare_range_with_value
6988 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
6989 return NULL;
6990 }
6991
6992 /* Helper function for vrp_evaluate_conditional_warnv. */
6993
6994 static tree
6995 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
6996 tree op1, bool use_equiv_p,
6997 bool *strict_overflow_p, bool *only_ranges)
6998 {
6999 tree ret;
7000 if (only_ranges)
7001 *only_ranges = true;
7002
7003 /* We only deal with integral and pointer types. */
7004 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
7005 && !POINTER_TYPE_P (TREE_TYPE (op0)))
7006 return NULL_TREE;
7007
7008 if (use_equiv_p)
7009 {
7010 if (only_ranges
7011 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
7012 (code, op0, op1, strict_overflow_p)))
7013 return ret;
7014 *only_ranges = false;
7015 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
7016 return compare_names (code, op0, op1, strict_overflow_p);
7017 else if (TREE_CODE (op0) == SSA_NAME)
7018 return compare_name_with_value (code, op0, op1, strict_overflow_p);
7019 else if (TREE_CODE (op1) == SSA_NAME)
7020 return (compare_name_with_value
7021 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
7022 }
7023 else
7024 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
7025 strict_overflow_p);
7026 return NULL_TREE;
7027 }
7028
7029 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7030 information. Return NULL if the conditional can not be evaluated.
7031 The ranges of all the names equivalent with the operands in COND
7032 will be used when trying to compute the value. If the result is
7033 based on undefined signed overflow, issue a warning if
7034 appropriate. */
7035
7036 static tree
7037 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
7038 {
7039 bool sop;
7040 tree ret;
7041 bool only_ranges;
7042
7043 /* Some passes and foldings leak constants with overflow flag set
7044 into the IL. Avoid doing wrong things with these and bail out. */
7045 if ((TREE_CODE (op0) == INTEGER_CST
7046 && TREE_OVERFLOW (op0))
7047 || (TREE_CODE (op1) == INTEGER_CST
7048 && TREE_OVERFLOW (op1)))
7049 return NULL_TREE;
7050
7051 sop = false;
7052 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
7053 &only_ranges);
7054
7055 if (ret && sop)
7056 {
7057 enum warn_strict_overflow_code wc;
7058 const char* warnmsg;
7059
7060 if (is_gimple_min_invariant (ret))
7061 {
7062 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7063 warnmsg = G_("assuming signed overflow does not occur when "
7064 "simplifying conditional to constant");
7065 }
7066 else
7067 {
7068 wc = WARN_STRICT_OVERFLOW_COMPARISON;
7069 warnmsg = G_("assuming signed overflow does not occur when "
7070 "simplifying conditional");
7071 }
7072
7073 if (issue_strict_overflow_warning (wc))
7074 {
7075 location_t location;
7076
7077 if (!gimple_has_location (stmt))
7078 location = input_location;
7079 else
7080 location = gimple_location (stmt);
7081 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
7082 }
7083 }
7084
7085 if (warn_type_limits
7086 && ret && only_ranges
7087 && TREE_CODE_CLASS (code) == tcc_comparison
7088 && TREE_CODE (op0) == SSA_NAME)
7089 {
7090 /* If the comparison is being folded and the operand on the LHS
7091 is being compared against a constant value that is outside of
7092 the natural range of OP0's type, then the predicate will
7093 always fold regardless of the value of OP0. If -Wtype-limits
7094 was specified, emit a warning. */
7095 tree type = TREE_TYPE (op0);
7096 value_range_t *vr0 = get_value_range (op0);
7097
7098 if (vr0->type != VR_VARYING
7099 && INTEGRAL_TYPE_P (type)
7100 && vrp_val_is_min (vr0->min)
7101 && vrp_val_is_max (vr0->max)
7102 && is_gimple_min_invariant (op1))
7103 {
7104 location_t location;
7105
7106 if (!gimple_has_location (stmt))
7107 location = input_location;
7108 else
7109 location = gimple_location (stmt);
7110
7111 warning_at (location, OPT_Wtype_limits,
7112 integer_zerop (ret)
7113 ? G_("comparison always false "
7114 "due to limited range of data type")
7115 : G_("comparison always true "
7116 "due to limited range of data type"));
7117 }
7118 }
7119
7120 return ret;
7121 }
7122
7123
7124 /* Visit conditional statement STMT. If we can determine which edge
7125 will be taken out of STMT's basic block, record it in
7126 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7127 SSA_PROP_VARYING. */
7128
7129 static enum ssa_prop_result
7130 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
7131 {
7132 tree val;
7133 bool sop;
7134
7135 *taken_edge_p = NULL;
7136
7137 if (dump_file && (dump_flags & TDF_DETAILS))
7138 {
7139 tree use;
7140 ssa_op_iter i;
7141
7142 fprintf (dump_file, "\nVisiting conditional with predicate: ");
7143 print_gimple_stmt (dump_file, stmt, 0, 0);
7144 fprintf (dump_file, "\nWith known ranges\n");
7145
7146 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7147 {
7148 fprintf (dump_file, "\t");
7149 print_generic_expr (dump_file, use, 0);
7150 fprintf (dump_file, ": ");
7151 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7152 }
7153
7154 fprintf (dump_file, "\n");
7155 }
7156
7157 /* Compute the value of the predicate COND by checking the known
7158 ranges of each of its operands.
7159
7160 Note that we cannot evaluate all the equivalent ranges here
7161 because those ranges may not yet be final and with the current
7162 propagation strategy, we cannot determine when the value ranges
7163 of the names in the equivalence set have changed.
7164
7165 For instance, given the following code fragment
7166
7167 i_5 = PHI <8, i_13>
7168 ...
7169 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7170 if (i_14 == 1)
7171 ...
7172
7173 Assume that on the first visit to i_14, i_5 has the temporary
7174 range [8, 8] because the second argument to the PHI function is
7175 not yet executable. We derive the range ~[0, 0] for i_14 and the
7176 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7177 the first time, since i_14 is equivalent to the range [8, 8], we
7178 determine that the predicate is always false.
7179
7180 On the next round of propagation, i_13 is determined to be
7181 VARYING, which causes i_5 to drop down to VARYING. So, another
7182 visit to i_14 is scheduled. In this second visit, we compute the
7183 exact same range and equivalence set for i_14, namely ~[0, 0] and
7184 { i_5 }. But we did not have the previous range for i_5
7185 registered, so vrp_visit_assignment thinks that the range for
7186 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7187 is not visited again, which stops propagation from visiting
7188 statements in the THEN clause of that if().
7189
7190 To properly fix this we would need to keep the previous range
7191 value for the names in the equivalence set. This way we would've
7192 discovered that from one visit to the other i_5 changed from
7193 range [8, 8] to VR_VARYING.
7194
7195 However, fixing this apparent limitation may not be worth the
7196 additional checking. Testing on several code bases (GCC, DLV,
7197 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7198 4 more predicates folded in SPEC. */
7199 sop = false;
7200
7201 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7202 gimple_cond_lhs (stmt),
7203 gimple_cond_rhs (stmt),
7204 false, &sop, NULL);
7205 if (val)
7206 {
7207 if (!sop)
7208 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7209 else
7210 {
7211 if (dump_file && (dump_flags & TDF_DETAILS))
7212 fprintf (dump_file,
7213 "\nIgnoring predicate evaluation because "
7214 "it assumes that signed overflow is undefined");
7215 val = NULL_TREE;
7216 }
7217 }
7218
7219 if (dump_file && (dump_flags & TDF_DETAILS))
7220 {
7221 fprintf (dump_file, "\nPredicate evaluates to: ");
7222 if (val == NULL_TREE)
7223 fprintf (dump_file, "DON'T KNOW\n");
7224 else
7225 print_generic_stmt (dump_file, val, 0);
7226 }
7227
7228 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
7229 }
7230
7231 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7232 that includes the value VAL. The search is restricted to the range
7233 [START_IDX, n - 1] where n is the size of VEC.
7234
7235 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7236 returned.
7237
7238 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7239 it is placed in IDX and false is returned.
7240
7241 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7242 returned. */
7243
7244 static bool
7245 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
7246 {
7247 size_t n = gimple_switch_num_labels (stmt);
7248 size_t low, high;
7249
7250 /* Find case label for minimum of the value range or the next one.
7251 At each iteration we are searching in [low, high - 1]. */
7252
7253 for (low = start_idx, high = n; high != low; )
7254 {
7255 tree t;
7256 int cmp;
7257 /* Note that i != high, so we never ask for n. */
7258 size_t i = (high + low) / 2;
7259 t = gimple_switch_label (stmt, i);
7260
7261 /* Cache the result of comparing CASE_LOW and val. */
7262 cmp = tree_int_cst_compare (CASE_LOW (t), val);
7263
7264 if (cmp == 0)
7265 {
7266 /* Ranges cannot be empty. */
7267 *idx = i;
7268 return true;
7269 }
7270 else if (cmp > 0)
7271 high = i;
7272 else
7273 {
7274 low = i + 1;
7275 if (CASE_HIGH (t) != NULL
7276 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
7277 {
7278 *idx = i;
7279 return true;
7280 }
7281 }
7282 }
7283
7284 *idx = high;
7285 return false;
7286 }
7287
7288 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7289 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7290 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7291 then MAX_IDX < MIN_IDX.
7292 Returns true if the default label is not needed. */
7293
7294 static bool
7295 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
7296 size_t *max_idx)
7297 {
7298 size_t i, j;
7299 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
7300 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
7301
7302 if (i == j
7303 && min_take_default
7304 && max_take_default)
7305 {
7306 /* Only the default case label reached.
7307 Return an empty range. */
7308 *min_idx = 1;
7309 *max_idx = 0;
7310 return false;
7311 }
7312 else
7313 {
7314 bool take_default = min_take_default || max_take_default;
7315 tree low, high;
7316 size_t k;
7317
7318 if (max_take_default)
7319 j--;
7320
7321 /* If the case label range is continuous, we do not need
7322 the default case label. Verify that. */
7323 high = CASE_LOW (gimple_switch_label (stmt, i));
7324 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7325 high = CASE_HIGH (gimple_switch_label (stmt, i));
7326 for (k = i + 1; k <= j; ++k)
7327 {
7328 low = CASE_LOW (gimple_switch_label (stmt, k));
7329 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
7330 {
7331 take_default = true;
7332 break;
7333 }
7334 high = low;
7335 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7336 high = CASE_HIGH (gimple_switch_label (stmt, k));
7337 }
7338
7339 *min_idx = i;
7340 *max_idx = j;
7341 return !take_default;
7342 }
7343 }
7344
7345 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7346 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7347 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7348 Returns true if the default label is not needed. */
7349
7350 static bool
7351 find_case_label_ranges (gimple stmt, value_range_t *vr, size_t *min_idx1,
7352 size_t *max_idx1, size_t *min_idx2,
7353 size_t *max_idx2)
7354 {
7355 size_t i, j, k, l;
7356 unsigned int n = gimple_switch_num_labels (stmt);
7357 bool take_default;
7358 tree case_low, case_high;
7359 tree min = vr->min, max = vr->max;
7360
7361 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7362
7363 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7364
7365 /* Set second range to emtpy. */
7366 *min_idx2 = 1;
7367 *max_idx2 = 0;
7368
7369 if (vr->type == VR_RANGE)
7370 {
7371 *min_idx1 = i;
7372 *max_idx1 = j;
7373 return !take_default;
7374 }
7375
7376 /* Set first range to all case labels. */
7377 *min_idx1 = 1;
7378 *max_idx1 = n - 1;
7379
7380 if (i > j)
7381 return false;
7382
7383 /* Make sure all the values of case labels [i , j] are contained in
7384 range [MIN, MAX]. */
7385 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7386 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7387 if (tree_int_cst_compare (case_low, min) < 0)
7388 i += 1;
7389 if (case_high != NULL_TREE
7390 && tree_int_cst_compare (max, case_high) < 0)
7391 j -= 1;
7392
7393 if (i > j)
7394 return false;
7395
7396 /* If the range spans case labels [i, j], the corresponding anti-range spans
7397 the labels [1, i - 1] and [j + 1, n - 1]. */
7398 k = j + 1;
7399 l = n - 1;
7400 if (k > l)
7401 {
7402 k = 1;
7403 l = 0;
7404 }
7405
7406 j = i - 1;
7407 i = 1;
7408 if (i > j)
7409 {
7410 i = k;
7411 j = l;
7412 k = 1;
7413 l = 0;
7414 }
7415
7416 *min_idx1 = i;
7417 *max_idx1 = j;
7418 *min_idx2 = k;
7419 *max_idx2 = l;
7420 return false;
7421 }
7422
7423 /* Visit switch statement STMT. If we can determine which edge
7424 will be taken out of STMT's basic block, record it in
7425 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7426 SSA_PROP_VARYING. */
7427
7428 static enum ssa_prop_result
7429 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
7430 {
7431 tree op, val;
7432 value_range_t *vr;
7433 size_t i = 0, j = 0, k, l;
7434 bool take_default;
7435
7436 *taken_edge_p = NULL;
7437 op = gimple_switch_index (stmt);
7438 if (TREE_CODE (op) != SSA_NAME)
7439 return SSA_PROP_VARYING;
7440
7441 vr = get_value_range (op);
7442 if (dump_file && (dump_flags & TDF_DETAILS))
7443 {
7444 fprintf (dump_file, "\nVisiting switch expression with operand ");
7445 print_generic_expr (dump_file, op, 0);
7446 fprintf (dump_file, " with known range ");
7447 dump_value_range (dump_file, vr);
7448 fprintf (dump_file, "\n");
7449 }
7450
7451 if ((vr->type != VR_RANGE
7452 && vr->type != VR_ANTI_RANGE)
7453 || symbolic_range_p (vr))
7454 return SSA_PROP_VARYING;
7455
7456 /* Find the single edge that is taken from the switch expression. */
7457 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
7458
7459 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7460 label */
7461 if (j < i)
7462 {
7463 gcc_assert (take_default);
7464 val = gimple_switch_default_label (stmt);
7465 }
7466 else
7467 {
7468 /* Check if labels with index i to j and maybe the default label
7469 are all reaching the same label. */
7470
7471 val = gimple_switch_label (stmt, i);
7472 if (take_default
7473 && CASE_LABEL (gimple_switch_default_label (stmt))
7474 != CASE_LABEL (val))
7475 {
7476 if (dump_file && (dump_flags & TDF_DETAILS))
7477 fprintf (dump_file, " not a single destination for this "
7478 "range\n");
7479 return SSA_PROP_VARYING;
7480 }
7481 for (++i; i <= j; ++i)
7482 {
7483 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
7484 {
7485 if (dump_file && (dump_flags & TDF_DETAILS))
7486 fprintf (dump_file, " not a single destination for this "
7487 "range\n");
7488 return SSA_PROP_VARYING;
7489 }
7490 }
7491 for (; k <= l; ++k)
7492 {
7493 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
7494 {
7495 if (dump_file && (dump_flags & TDF_DETAILS))
7496 fprintf (dump_file, " not a single destination for this "
7497 "range\n");
7498 return SSA_PROP_VARYING;
7499 }
7500 }
7501 }
7502
7503 *taken_edge_p = find_edge (gimple_bb (stmt),
7504 label_to_block (CASE_LABEL (val)));
7505
7506 if (dump_file && (dump_flags & TDF_DETAILS))
7507 {
7508 fprintf (dump_file, " will take edge to ");
7509 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
7510 }
7511
7512 return SSA_PROP_INTERESTING;
7513 }
7514
7515
7516 /* Evaluate statement STMT. If the statement produces a useful range,
7517 return SSA_PROP_INTERESTING and record the SSA name with the
7518 interesting range into *OUTPUT_P.
7519
7520 If STMT is a conditional branch and we can determine its truth
7521 value, the taken edge is recorded in *TAKEN_EDGE_P.
7522
7523 If STMT produces a varying value, return SSA_PROP_VARYING. */
7524
7525 static enum ssa_prop_result
7526 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
7527 {
7528 tree def;
7529 ssa_op_iter iter;
7530
7531 if (dump_file && (dump_flags & TDF_DETAILS))
7532 {
7533 fprintf (dump_file, "\nVisiting statement:\n");
7534 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
7535 fprintf (dump_file, "\n");
7536 }
7537
7538 if (!stmt_interesting_for_vrp (stmt))
7539 gcc_assert (stmt_ends_bb_p (stmt));
7540 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7541 return vrp_visit_assignment_or_call (stmt, output_p);
7542 else if (gimple_code (stmt) == GIMPLE_COND)
7543 return vrp_visit_cond_stmt (stmt, taken_edge_p);
7544 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7545 return vrp_visit_switch_stmt (stmt, taken_edge_p);
7546
7547 /* All other statements produce nothing of interest for VRP, so mark
7548 their outputs varying and prevent further simulation. */
7549 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
7550 set_value_range_to_varying (get_value_range (def));
7551
7552 return SSA_PROP_VARYING;
7553 }
7554
7555 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7556 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7557 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7558 possible such range. The resulting range is not canonicalized. */
7559
7560 static void
7561 union_ranges (enum value_range_type *vr0type,
7562 tree *vr0min, tree *vr0max,
7563 enum value_range_type vr1type,
7564 tree vr1min, tree vr1max)
7565 {
7566 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7567 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7568
7569 /* [] is vr0, () is vr1 in the following classification comments. */
7570 if (mineq && maxeq)
7571 {
7572 /* [( )] */
7573 if (*vr0type == vr1type)
7574 /* Nothing to do for equal ranges. */
7575 ;
7576 else if ((*vr0type == VR_RANGE
7577 && vr1type == VR_ANTI_RANGE)
7578 || (*vr0type == VR_ANTI_RANGE
7579 && vr1type == VR_RANGE))
7580 {
7581 /* For anti-range with range union the result is varying. */
7582 goto give_up;
7583 }
7584 else
7585 gcc_unreachable ();
7586 }
7587 else if (operand_less_p (*vr0max, vr1min) == 1
7588 || operand_less_p (vr1max, *vr0min) == 1)
7589 {
7590 /* [ ] ( ) or ( ) [ ]
7591 If the ranges have an empty intersection, result of the union
7592 operation is the anti-range or if both are anti-ranges
7593 it covers all. */
7594 if (*vr0type == VR_ANTI_RANGE
7595 && vr1type == VR_ANTI_RANGE)
7596 goto give_up;
7597 else if (*vr0type == VR_ANTI_RANGE
7598 && vr1type == VR_RANGE)
7599 ;
7600 else if (*vr0type == VR_RANGE
7601 && vr1type == VR_ANTI_RANGE)
7602 {
7603 *vr0type = vr1type;
7604 *vr0min = vr1min;
7605 *vr0max = vr1max;
7606 }
7607 else if (*vr0type == VR_RANGE
7608 && vr1type == VR_RANGE)
7609 {
7610 /* The result is the convex hull of both ranges. */
7611 if (operand_less_p (*vr0max, vr1min) == 1)
7612 {
7613 /* If the result can be an anti-range, create one. */
7614 if (TREE_CODE (*vr0max) == INTEGER_CST
7615 && TREE_CODE (vr1min) == INTEGER_CST
7616 && vrp_val_is_min (*vr0min)
7617 && vrp_val_is_max (vr1max))
7618 {
7619 tree min = int_const_binop (PLUS_EXPR,
7620 *vr0max, integer_one_node);
7621 tree max = int_const_binop (MINUS_EXPR,
7622 vr1min, integer_one_node);
7623 if (!operand_less_p (max, min))
7624 {
7625 *vr0type = VR_ANTI_RANGE;
7626 *vr0min = min;
7627 *vr0max = max;
7628 }
7629 else
7630 *vr0max = vr1max;
7631 }
7632 else
7633 *vr0max = vr1max;
7634 }
7635 else
7636 {
7637 /* If the result can be an anti-range, create one. */
7638 if (TREE_CODE (vr1max) == INTEGER_CST
7639 && TREE_CODE (*vr0min) == INTEGER_CST
7640 && vrp_val_is_min (vr1min)
7641 && vrp_val_is_max (*vr0max))
7642 {
7643 tree min = int_const_binop (PLUS_EXPR,
7644 vr1max, integer_one_node);
7645 tree max = int_const_binop (MINUS_EXPR,
7646 *vr0min, integer_one_node);
7647 if (!operand_less_p (max, min))
7648 {
7649 *vr0type = VR_ANTI_RANGE;
7650 *vr0min = min;
7651 *vr0max = max;
7652 }
7653 else
7654 *vr0min = vr1min;
7655 }
7656 else
7657 *vr0min = vr1min;
7658 }
7659 }
7660 else
7661 gcc_unreachable ();
7662 }
7663 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
7664 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
7665 {
7666 /* [ ( ) ] or [( ) ] or [ ( )] */
7667 if (*vr0type == VR_RANGE
7668 && vr1type == VR_RANGE)
7669 ;
7670 else if (*vr0type == VR_ANTI_RANGE
7671 && vr1type == VR_ANTI_RANGE)
7672 {
7673 *vr0type = vr1type;
7674 *vr0min = vr1min;
7675 *vr0max = vr1max;
7676 }
7677 else if (*vr0type == VR_ANTI_RANGE
7678 && vr1type == VR_RANGE)
7679 {
7680 /* Arbitrarily choose the right or left gap. */
7681 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
7682 *vr0max = int_const_binop (MINUS_EXPR, vr1min, integer_one_node);
7683 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
7684 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7685 else
7686 goto give_up;
7687 }
7688 else if (*vr0type == VR_RANGE
7689 && vr1type == VR_ANTI_RANGE)
7690 /* The result covers everything. */
7691 goto give_up;
7692 else
7693 gcc_unreachable ();
7694 }
7695 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
7696 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
7697 {
7698 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7699 if (*vr0type == VR_RANGE
7700 && vr1type == VR_RANGE)
7701 {
7702 *vr0type = vr1type;
7703 *vr0min = vr1min;
7704 *vr0max = vr1max;
7705 }
7706 else if (*vr0type == VR_ANTI_RANGE
7707 && vr1type == VR_ANTI_RANGE)
7708 ;
7709 else if (*vr0type == VR_RANGE
7710 && vr1type == VR_ANTI_RANGE)
7711 {
7712 *vr0type = VR_ANTI_RANGE;
7713 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
7714 {
7715 *vr0max = int_const_binop (MINUS_EXPR, *vr0min, integer_one_node);
7716 *vr0min = vr1min;
7717 }
7718 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
7719 {
7720 *vr0min = int_const_binop (PLUS_EXPR, *vr0max, integer_one_node);
7721 *vr0max = vr1max;
7722 }
7723 else
7724 goto give_up;
7725 }
7726 else if (*vr0type == VR_ANTI_RANGE
7727 && vr1type == VR_RANGE)
7728 /* The result covers everything. */
7729 goto give_up;
7730 else
7731 gcc_unreachable ();
7732 }
7733 else if ((operand_less_p (vr1min, *vr0max) == 1
7734 || operand_equal_p (vr1min, *vr0max, 0))
7735 && operand_less_p (*vr0min, vr1min) == 1)
7736 {
7737 /* [ ( ] ) or [ ]( ) */
7738 if (*vr0type == VR_RANGE
7739 && vr1type == VR_RANGE)
7740 *vr0max = vr1max;
7741 else if (*vr0type == VR_ANTI_RANGE
7742 && vr1type == VR_ANTI_RANGE)
7743 *vr0min = vr1min;
7744 else if (*vr0type == VR_ANTI_RANGE
7745 && vr1type == VR_RANGE)
7746 {
7747 if (TREE_CODE (vr1min) == INTEGER_CST)
7748 *vr0max = int_const_binop (MINUS_EXPR, vr1min, integer_one_node);
7749 else
7750 goto give_up;
7751 }
7752 else if (*vr0type == VR_RANGE
7753 && vr1type == VR_ANTI_RANGE)
7754 {
7755 if (TREE_CODE (*vr0max) == INTEGER_CST)
7756 {
7757 *vr0type = vr1type;
7758 *vr0min = int_const_binop (PLUS_EXPR, *vr0max, integer_one_node);
7759 *vr0max = vr1max;
7760 }
7761 else
7762 goto give_up;
7763 }
7764 else
7765 gcc_unreachable ();
7766 }
7767 else if ((operand_less_p (*vr0min, vr1max) == 1
7768 || operand_equal_p (*vr0min, vr1max, 0))
7769 && operand_less_p (vr1min, *vr0min) == 1)
7770 {
7771 /* ( [ ) ] or ( )[ ] */
7772 if (*vr0type == VR_RANGE
7773 && vr1type == VR_RANGE)
7774 *vr0min = vr1min;
7775 else if (*vr0type == VR_ANTI_RANGE
7776 && vr1type == VR_ANTI_RANGE)
7777 *vr0max = vr1max;
7778 else if (*vr0type == VR_ANTI_RANGE
7779 && vr1type == VR_RANGE)
7780 {
7781 if (TREE_CODE (vr1max) == INTEGER_CST)
7782 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7783 else
7784 goto give_up;
7785 }
7786 else if (*vr0type == VR_RANGE
7787 && vr1type == VR_ANTI_RANGE)
7788 {
7789 if (TREE_CODE (*vr0min) == INTEGER_CST)
7790 {
7791 *vr0type = vr1type;
7792 *vr0min = vr1min;
7793 *vr0max = int_const_binop (MINUS_EXPR, *vr0min, integer_one_node);
7794 }
7795 else
7796 goto give_up;
7797 }
7798 else
7799 gcc_unreachable ();
7800 }
7801 else
7802 goto give_up;
7803
7804 return;
7805
7806 give_up:
7807 *vr0type = VR_VARYING;
7808 *vr0min = NULL_TREE;
7809 *vr0max = NULL_TREE;
7810 }
7811
7812 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7813 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7814 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7815 possible such range. The resulting range is not canonicalized. */
7816
7817 static void
7818 intersect_ranges (enum value_range_type *vr0type,
7819 tree *vr0min, tree *vr0max,
7820 enum value_range_type vr1type,
7821 tree vr1min, tree vr1max)
7822 {
7823 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7824 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7825
7826 /* [] is vr0, () is vr1 in the following classification comments. */
7827 if (mineq && maxeq)
7828 {
7829 /* [( )] */
7830 if (*vr0type == vr1type)
7831 /* Nothing to do for equal ranges. */
7832 ;
7833 else if ((*vr0type == VR_RANGE
7834 && vr1type == VR_ANTI_RANGE)
7835 || (*vr0type == VR_ANTI_RANGE
7836 && vr1type == VR_RANGE))
7837 {
7838 /* For anti-range with range intersection the result is empty. */
7839 *vr0type = VR_UNDEFINED;
7840 *vr0min = NULL_TREE;
7841 *vr0max = NULL_TREE;
7842 }
7843 else
7844 gcc_unreachable ();
7845 }
7846 else if (operand_less_p (*vr0max, vr1min) == 1
7847 || operand_less_p (vr1max, *vr0min) == 1)
7848 {
7849 /* [ ] ( ) or ( ) [ ]
7850 If the ranges have an empty intersection, the result of the
7851 intersect operation is the range for intersecting an
7852 anti-range with a range or empty when intersecting two ranges. */
7853 if (*vr0type == VR_RANGE
7854 && vr1type == VR_ANTI_RANGE)
7855 ;
7856 else if (*vr0type == VR_ANTI_RANGE
7857 && vr1type == VR_RANGE)
7858 {
7859 *vr0type = vr1type;
7860 *vr0min = vr1min;
7861 *vr0max = vr1max;
7862 }
7863 else if (*vr0type == VR_RANGE
7864 && vr1type == VR_RANGE)
7865 {
7866 *vr0type = VR_UNDEFINED;
7867 *vr0min = NULL_TREE;
7868 *vr0max = NULL_TREE;
7869 }
7870 else if (*vr0type == VR_ANTI_RANGE
7871 && vr1type == VR_ANTI_RANGE)
7872 {
7873 /* If the anti-ranges are adjacent to each other merge them. */
7874 if (TREE_CODE (*vr0max) == INTEGER_CST
7875 && TREE_CODE (vr1min) == INTEGER_CST
7876 && operand_less_p (*vr0max, vr1min) == 1
7877 && integer_onep (int_const_binop (MINUS_EXPR,
7878 vr1min, *vr0max)))
7879 *vr0max = vr1max;
7880 else if (TREE_CODE (vr1max) == INTEGER_CST
7881 && TREE_CODE (*vr0min) == INTEGER_CST
7882 && operand_less_p (vr1max, *vr0min) == 1
7883 && integer_onep (int_const_binop (MINUS_EXPR,
7884 *vr0min, vr1max)))
7885 *vr0min = vr1min;
7886 /* Else arbitrarily take VR0. */
7887 }
7888 }
7889 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
7890 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
7891 {
7892 /* [ ( ) ] or [( ) ] or [ ( )] */
7893 if (*vr0type == VR_RANGE
7894 && vr1type == VR_RANGE)
7895 {
7896 /* If both are ranges the result is the inner one. */
7897 *vr0type = vr1type;
7898 *vr0min = vr1min;
7899 *vr0max = vr1max;
7900 }
7901 else if (*vr0type == VR_RANGE
7902 && vr1type == VR_ANTI_RANGE)
7903 {
7904 /* Choose the right gap if the left one is empty. */
7905 if (mineq)
7906 {
7907 if (TREE_CODE (vr1max) == INTEGER_CST)
7908 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7909 else
7910 *vr0min = vr1max;
7911 }
7912 /* Choose the left gap if the right one is empty. */
7913 else if (maxeq)
7914 {
7915 if (TREE_CODE (vr1min) == INTEGER_CST)
7916 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
7917 integer_one_node);
7918 else
7919 *vr0max = vr1min;
7920 }
7921 /* Choose the anti-range if the range is effectively varying. */
7922 else if (vrp_val_is_min (*vr0min)
7923 && vrp_val_is_max (*vr0max))
7924 {
7925 *vr0type = vr1type;
7926 *vr0min = vr1min;
7927 *vr0max = vr1max;
7928 }
7929 /* Else choose the range. */
7930 }
7931 else if (*vr0type == VR_ANTI_RANGE
7932 && vr1type == VR_ANTI_RANGE)
7933 /* If both are anti-ranges the result is the outer one. */
7934 ;
7935 else if (*vr0type == VR_ANTI_RANGE
7936 && vr1type == VR_RANGE)
7937 {
7938 /* The intersection is empty. */
7939 *vr0type = VR_UNDEFINED;
7940 *vr0min = NULL_TREE;
7941 *vr0max = NULL_TREE;
7942 }
7943 else
7944 gcc_unreachable ();
7945 }
7946 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
7947 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
7948 {
7949 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7950 if (*vr0type == VR_RANGE
7951 && vr1type == VR_RANGE)
7952 /* Choose the inner range. */
7953 ;
7954 else if (*vr0type == VR_ANTI_RANGE
7955 && vr1type == VR_RANGE)
7956 {
7957 /* Choose the right gap if the left is empty. */
7958 if (mineq)
7959 {
7960 *vr0type = VR_RANGE;
7961 if (TREE_CODE (*vr0max) == INTEGER_CST)
7962 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
7963 integer_one_node);
7964 else
7965 *vr0min = *vr0max;
7966 *vr0max = vr1max;
7967 }
7968 /* Choose the left gap if the right is empty. */
7969 else if (maxeq)
7970 {
7971 *vr0type = VR_RANGE;
7972 if (TREE_CODE (*vr0min) == INTEGER_CST)
7973 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
7974 integer_one_node);
7975 else
7976 *vr0max = *vr0min;
7977 *vr0min = vr1min;
7978 }
7979 /* Choose the anti-range if the range is effectively varying. */
7980 else if (vrp_val_is_min (vr1min)
7981 && vrp_val_is_max (vr1max))
7982 ;
7983 /* Else choose the range. */
7984 else
7985 {
7986 *vr0type = vr1type;
7987 *vr0min = vr1min;
7988 *vr0max = vr1max;
7989 }
7990 }
7991 else if (*vr0type == VR_ANTI_RANGE
7992 && vr1type == VR_ANTI_RANGE)
7993 {
7994 /* If both are anti-ranges the result is the outer one. */
7995 *vr0type = vr1type;
7996 *vr0min = vr1min;
7997 *vr0max = vr1max;
7998 }
7999 else if (vr1type == VR_ANTI_RANGE
8000 && *vr0type == VR_RANGE)
8001 {
8002 /* The intersection is empty. */
8003 *vr0type = VR_UNDEFINED;
8004 *vr0min = NULL_TREE;
8005 *vr0max = NULL_TREE;
8006 }
8007 else
8008 gcc_unreachable ();
8009 }
8010 else if ((operand_less_p (vr1min, *vr0max) == 1
8011 || operand_equal_p (vr1min, *vr0max, 0))
8012 && operand_less_p (*vr0min, vr1min) == 1)
8013 {
8014 /* [ ( ] ) or [ ]( ) */
8015 if (*vr0type == VR_ANTI_RANGE
8016 && vr1type == VR_ANTI_RANGE)
8017 *vr0max = vr1max;
8018 else if (*vr0type == VR_RANGE
8019 && vr1type == VR_RANGE)
8020 *vr0min = vr1min;
8021 else if (*vr0type == VR_RANGE
8022 && vr1type == VR_ANTI_RANGE)
8023 {
8024 if (TREE_CODE (vr1min) == INTEGER_CST)
8025 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8026 integer_one_node);
8027 else
8028 *vr0max = vr1min;
8029 }
8030 else if (*vr0type == VR_ANTI_RANGE
8031 && vr1type == VR_RANGE)
8032 {
8033 *vr0type = VR_RANGE;
8034 if (TREE_CODE (*vr0max) == INTEGER_CST)
8035 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8036 integer_one_node);
8037 else
8038 *vr0min = *vr0max;
8039 *vr0max = vr1max;
8040 }
8041 else
8042 gcc_unreachable ();
8043 }
8044 else if ((operand_less_p (*vr0min, vr1max) == 1
8045 || operand_equal_p (*vr0min, vr1max, 0))
8046 && operand_less_p (vr1min, *vr0min) == 1)
8047 {
8048 /* ( [ ) ] or ( )[ ] */
8049 if (*vr0type == VR_ANTI_RANGE
8050 && vr1type == VR_ANTI_RANGE)
8051 *vr0min = vr1min;
8052 else if (*vr0type == VR_RANGE
8053 && vr1type == VR_RANGE)
8054 *vr0max = vr1max;
8055 else if (*vr0type == VR_RANGE
8056 && vr1type == VR_ANTI_RANGE)
8057 {
8058 if (TREE_CODE (vr1max) == INTEGER_CST)
8059 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8060 integer_one_node);
8061 else
8062 *vr0min = vr1max;
8063 }
8064 else if (*vr0type == VR_ANTI_RANGE
8065 && vr1type == VR_RANGE)
8066 {
8067 *vr0type = VR_RANGE;
8068 if (TREE_CODE (*vr0min) == INTEGER_CST)
8069 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8070 integer_one_node);
8071 else
8072 *vr0max = *vr0min;
8073 *vr0min = vr1min;
8074 }
8075 else
8076 gcc_unreachable ();
8077 }
8078
8079 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8080 result for the intersection. That's always a conservative
8081 correct estimate. */
8082
8083 return;
8084 }
8085
8086
8087 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8088 in *VR0. This may not be the smallest possible such range. */
8089
8090 static void
8091 vrp_intersect_ranges_1 (value_range_t *vr0, value_range_t *vr1)
8092 {
8093 value_range_t saved;
8094
8095 /* If either range is VR_VARYING the other one wins. */
8096 if (vr1->type == VR_VARYING)
8097 return;
8098 if (vr0->type == VR_VARYING)
8099 {
8100 copy_value_range (vr0, vr1);
8101 return;
8102 }
8103
8104 /* When either range is VR_UNDEFINED the resulting range is
8105 VR_UNDEFINED, too. */
8106 if (vr0->type == VR_UNDEFINED)
8107 return;
8108 if (vr1->type == VR_UNDEFINED)
8109 {
8110 set_value_range_to_undefined (vr0);
8111 return;
8112 }
8113
8114 /* Save the original vr0 so we can return it as conservative intersection
8115 result when our worker turns things to varying. */
8116 saved = *vr0;
8117 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
8118 vr1->type, vr1->min, vr1->max);
8119 /* Make sure to canonicalize the result though as the inversion of a
8120 VR_RANGE can still be a VR_RANGE. */
8121 set_and_canonicalize_value_range (vr0, vr0->type,
8122 vr0->min, vr0->max, vr0->equiv);
8123 /* If that failed, use the saved original VR0. */
8124 if (vr0->type == VR_VARYING)
8125 {
8126 *vr0 = saved;
8127 return;
8128 }
8129 /* If the result is VR_UNDEFINED there is no need to mess with
8130 the equivalencies. */
8131 if (vr0->type == VR_UNDEFINED)
8132 return;
8133
8134 /* The resulting set of equivalences for range intersection is the union of
8135 the two sets. */
8136 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8137 bitmap_ior_into (vr0->equiv, vr1->equiv);
8138 else if (vr1->equiv && !vr0->equiv)
8139 bitmap_copy (vr0->equiv, vr1->equiv);
8140 }
8141
8142 static void
8143 vrp_intersect_ranges (value_range_t *vr0, value_range_t *vr1)
8144 {
8145 if (dump_file && (dump_flags & TDF_DETAILS))
8146 {
8147 fprintf (dump_file, "Intersecting\n ");
8148 dump_value_range (dump_file, vr0);
8149 fprintf (dump_file, "\nand\n ");
8150 dump_value_range (dump_file, vr1);
8151 fprintf (dump_file, "\n");
8152 }
8153 vrp_intersect_ranges_1 (vr0, vr1);
8154 if (dump_file && (dump_flags & TDF_DETAILS))
8155 {
8156 fprintf (dump_file, "to\n ");
8157 dump_value_range (dump_file, vr0);
8158 fprintf (dump_file, "\n");
8159 }
8160 }
8161
8162 /* Meet operation for value ranges. Given two value ranges VR0 and
8163 VR1, store in VR0 a range that contains both VR0 and VR1. This
8164 may not be the smallest possible such range. */
8165
8166 static void
8167 vrp_meet_1 (value_range_t *vr0, value_range_t *vr1)
8168 {
8169 value_range_t saved;
8170
8171 if (vr0->type == VR_UNDEFINED)
8172 {
8173 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
8174 return;
8175 }
8176
8177 if (vr1->type == VR_UNDEFINED)
8178 {
8179 /* VR0 already has the resulting range. */
8180 return;
8181 }
8182
8183 if (vr0->type == VR_VARYING)
8184 {
8185 /* Nothing to do. VR0 already has the resulting range. */
8186 return;
8187 }
8188
8189 if (vr1->type == VR_VARYING)
8190 {
8191 set_value_range_to_varying (vr0);
8192 return;
8193 }
8194
8195 saved = *vr0;
8196 union_ranges (&vr0->type, &vr0->min, &vr0->max,
8197 vr1->type, vr1->min, vr1->max);
8198 if (vr0->type == VR_VARYING)
8199 {
8200 /* Failed to find an efficient meet. Before giving up and setting
8201 the result to VARYING, see if we can at least derive a useful
8202 anti-range. FIXME, all this nonsense about distinguishing
8203 anti-ranges from ranges is necessary because of the odd
8204 semantics of range_includes_zero_p and friends. */
8205 if (((saved.type == VR_RANGE
8206 && range_includes_zero_p (saved.min, saved.max) == 0)
8207 || (saved.type == VR_ANTI_RANGE
8208 && range_includes_zero_p (saved.min, saved.max) == 1))
8209 && ((vr1->type == VR_RANGE
8210 && range_includes_zero_p (vr1->min, vr1->max) == 0)
8211 || (vr1->type == VR_ANTI_RANGE
8212 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
8213 {
8214 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
8215
8216 /* Since this meet operation did not result from the meeting of
8217 two equivalent names, VR0 cannot have any equivalences. */
8218 if (vr0->equiv)
8219 bitmap_clear (vr0->equiv);
8220 return;
8221 }
8222
8223 set_value_range_to_varying (vr0);
8224 return;
8225 }
8226 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
8227 vr0->equiv);
8228 if (vr0->type == VR_VARYING)
8229 return;
8230
8231 /* The resulting set of equivalences is always the intersection of
8232 the two sets. */
8233 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8234 bitmap_and_into (vr0->equiv, vr1->equiv);
8235 else if (vr0->equiv && !vr1->equiv)
8236 bitmap_clear (vr0->equiv);
8237 }
8238
8239 static void
8240 vrp_meet (value_range_t *vr0, value_range_t *vr1)
8241 {
8242 if (dump_file && (dump_flags & TDF_DETAILS))
8243 {
8244 fprintf (dump_file, "Meeting\n ");
8245 dump_value_range (dump_file, vr0);
8246 fprintf (dump_file, "\nand\n ");
8247 dump_value_range (dump_file, vr1);
8248 fprintf (dump_file, "\n");
8249 }
8250 vrp_meet_1 (vr0, vr1);
8251 if (dump_file && (dump_flags & TDF_DETAILS))
8252 {
8253 fprintf (dump_file, "to\n ");
8254 dump_value_range (dump_file, vr0);
8255 fprintf (dump_file, "\n");
8256 }
8257 }
8258
8259
8260 /* Visit all arguments for PHI node PHI that flow through executable
8261 edges. If a valid value range can be derived from all the incoming
8262 value ranges, set a new range for the LHS of PHI. */
8263
8264 static enum ssa_prop_result
8265 vrp_visit_phi_node (gimple phi)
8266 {
8267 size_t i;
8268 tree lhs = PHI_RESULT (phi);
8269 value_range_t *lhs_vr = get_value_range (lhs);
8270 value_range_t vr_result = VR_INITIALIZER;
8271 bool first = true;
8272 int edges, old_edges;
8273 struct loop *l;
8274
8275 if (dump_file && (dump_flags & TDF_DETAILS))
8276 {
8277 fprintf (dump_file, "\nVisiting PHI node: ");
8278 print_gimple_stmt (dump_file, phi, 0, dump_flags);
8279 }
8280
8281 edges = 0;
8282 for (i = 0; i < gimple_phi_num_args (phi); i++)
8283 {
8284 edge e = gimple_phi_arg_edge (phi, i);
8285
8286 if (dump_file && (dump_flags & TDF_DETAILS))
8287 {
8288 fprintf (dump_file,
8289 "\n Argument #%d (%d -> %d %sexecutable)\n",
8290 (int) i, e->src->index, e->dest->index,
8291 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
8292 }
8293
8294 if (e->flags & EDGE_EXECUTABLE)
8295 {
8296 tree arg = PHI_ARG_DEF (phi, i);
8297 value_range_t vr_arg;
8298
8299 ++edges;
8300
8301 if (TREE_CODE (arg) == SSA_NAME)
8302 {
8303 vr_arg = *(get_value_range (arg));
8304 /* Do not allow equivalences or symbolic ranges to leak in from
8305 backedges. That creates invalid equivalencies.
8306 See PR53465 and PR54767. */
8307 if (e->flags & EDGE_DFS_BACK
8308 && (vr_arg.type == VR_RANGE
8309 || vr_arg.type == VR_ANTI_RANGE))
8310 {
8311 vr_arg.equiv = NULL;
8312 if (symbolic_range_p (&vr_arg))
8313 {
8314 vr_arg.type = VR_VARYING;
8315 vr_arg.min = NULL_TREE;
8316 vr_arg.max = NULL_TREE;
8317 }
8318 }
8319 }
8320 else
8321 {
8322 if (is_overflow_infinity (arg))
8323 {
8324 arg = copy_node (arg);
8325 TREE_OVERFLOW (arg) = 0;
8326 }
8327
8328 vr_arg.type = VR_RANGE;
8329 vr_arg.min = arg;
8330 vr_arg.max = arg;
8331 vr_arg.equiv = NULL;
8332 }
8333
8334 if (dump_file && (dump_flags & TDF_DETAILS))
8335 {
8336 fprintf (dump_file, "\t");
8337 print_generic_expr (dump_file, arg, dump_flags);
8338 fprintf (dump_file, "\n\tValue: ");
8339 dump_value_range (dump_file, &vr_arg);
8340 fprintf (dump_file, "\n");
8341 }
8342
8343 if (first)
8344 copy_value_range (&vr_result, &vr_arg);
8345 else
8346 vrp_meet (&vr_result, &vr_arg);
8347 first = false;
8348
8349 if (vr_result.type == VR_VARYING)
8350 break;
8351 }
8352 }
8353
8354 if (vr_result.type == VR_VARYING)
8355 goto varying;
8356 else if (vr_result.type == VR_UNDEFINED)
8357 goto update_range;
8358
8359 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
8360 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
8361
8362 /* To prevent infinite iterations in the algorithm, derive ranges
8363 when the new value is slightly bigger or smaller than the
8364 previous one. We don't do this if we have seen a new executable
8365 edge; this helps us avoid an overflow infinity for conditionals
8366 which are not in a loop. If the old value-range was VR_UNDEFINED
8367 use the updated range and iterate one more time. */
8368 if (edges > 0
8369 && gimple_phi_num_args (phi) > 1
8370 && edges == old_edges
8371 && lhs_vr->type != VR_UNDEFINED)
8372 {
8373 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
8374 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
8375
8376 /* For non VR_RANGE or for pointers fall back to varying if
8377 the range changed. */
8378 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
8379 || POINTER_TYPE_P (TREE_TYPE (lhs)))
8380 && (cmp_min != 0 || cmp_max != 0))
8381 goto varying;
8382
8383 /* If the new minimum is smaller or larger than the previous
8384 one, go all the way to -INF. In the first case, to avoid
8385 iterating millions of times to reach -INF, and in the
8386 other case to avoid infinite bouncing between different
8387 minimums. */
8388 if (cmp_min > 0 || cmp_min < 0)
8389 {
8390 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
8391 || !vrp_var_may_overflow (lhs, phi))
8392 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
8393 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
8394 vr_result.min =
8395 negative_overflow_infinity (TREE_TYPE (vr_result.min));
8396 }
8397
8398 /* Similarly, if the new maximum is smaller or larger than
8399 the previous one, go all the way to +INF. */
8400 if (cmp_max < 0 || cmp_max > 0)
8401 {
8402 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
8403 || !vrp_var_may_overflow (lhs, phi))
8404 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
8405 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
8406 vr_result.max =
8407 positive_overflow_infinity (TREE_TYPE (vr_result.max));
8408 }
8409
8410 /* If we dropped either bound to +-INF then if this is a loop
8411 PHI node SCEV may known more about its value-range. */
8412 if ((cmp_min > 0 || cmp_min < 0
8413 || cmp_max < 0 || cmp_max > 0)
8414 && current_loops
8415 && (l = loop_containing_stmt (phi))
8416 && l->header == gimple_bb (phi))
8417 adjust_range_with_scev (&vr_result, l, phi, lhs);
8418
8419 /* If we will end up with a (-INF, +INF) range, set it to
8420 VARYING. Same if the previous max value was invalid for
8421 the type and we end up with vr_result.min > vr_result.max. */
8422 if ((vrp_val_is_max (vr_result.max)
8423 && vrp_val_is_min (vr_result.min))
8424 || compare_values (vr_result.min,
8425 vr_result.max) > 0)
8426 goto varying;
8427 }
8428
8429 /* If the new range is different than the previous value, keep
8430 iterating. */
8431 update_range:
8432 if (update_value_range (lhs, &vr_result))
8433 {
8434 if (dump_file && (dump_flags & TDF_DETAILS))
8435 {
8436 fprintf (dump_file, "Found new range for ");
8437 print_generic_expr (dump_file, lhs, 0);
8438 fprintf (dump_file, ": ");
8439 dump_value_range (dump_file, &vr_result);
8440 fprintf (dump_file, "\n\n");
8441 }
8442
8443 return SSA_PROP_INTERESTING;
8444 }
8445
8446 /* Nothing changed, don't add outgoing edges. */
8447 return SSA_PROP_NOT_INTERESTING;
8448
8449 /* No match found. Set the LHS to VARYING. */
8450 varying:
8451 set_value_range_to_varying (lhs_vr);
8452 return SSA_PROP_VARYING;
8453 }
8454
8455 /* Simplify boolean operations if the source is known
8456 to be already a boolean. */
8457 static bool
8458 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8459 {
8460 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8461 tree lhs, op0, op1;
8462 bool need_conversion;
8463
8464 /* We handle only !=/== case here. */
8465 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
8466
8467 op0 = gimple_assign_rhs1 (stmt);
8468 if (!op_with_boolean_value_range_p (op0))
8469 return false;
8470
8471 op1 = gimple_assign_rhs2 (stmt);
8472 if (!op_with_boolean_value_range_p (op1))
8473 return false;
8474
8475 /* Reduce number of cases to handle to NE_EXPR. As there is no
8476 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8477 if (rhs_code == EQ_EXPR)
8478 {
8479 if (TREE_CODE (op1) == INTEGER_CST)
8480 op1 = int_const_binop (BIT_XOR_EXPR, op1, integer_one_node);
8481 else
8482 return false;
8483 }
8484
8485 lhs = gimple_assign_lhs (stmt);
8486 need_conversion
8487 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
8488
8489 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
8490 if (need_conversion
8491 && !TYPE_UNSIGNED (TREE_TYPE (op0))
8492 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
8493 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
8494 return false;
8495
8496 /* For A != 0 we can substitute A itself. */
8497 if (integer_zerop (op1))
8498 gimple_assign_set_rhs_with_ops (gsi,
8499 need_conversion
8500 ? NOP_EXPR : TREE_CODE (op0),
8501 op0, NULL_TREE);
8502 /* For A != B we substitute A ^ B. Either with conversion. */
8503 else if (need_conversion)
8504 {
8505 tree tem = make_ssa_name (TREE_TYPE (op0), NULL);
8506 gimple newop = gimple_build_assign_with_ops (BIT_XOR_EXPR, tem, op0, op1);
8507 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
8508 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem, NULL_TREE);
8509 }
8510 /* Or without. */
8511 else
8512 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
8513 update_stmt (gsi_stmt (*gsi));
8514
8515 return true;
8516 }
8517
8518 /* Simplify a division or modulo operator to a right shift or
8519 bitwise and if the first operand is unsigned or is greater
8520 than zero and the second operand is an exact power of two. */
8521
8522 static bool
8523 simplify_div_or_mod_using_ranges (gimple stmt)
8524 {
8525 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8526 tree val = NULL;
8527 tree op0 = gimple_assign_rhs1 (stmt);
8528 tree op1 = gimple_assign_rhs2 (stmt);
8529 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
8530
8531 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
8532 {
8533 val = integer_one_node;
8534 }
8535 else
8536 {
8537 bool sop = false;
8538
8539 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
8540
8541 if (val
8542 && sop
8543 && integer_onep (val)
8544 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8545 {
8546 location_t location;
8547
8548 if (!gimple_has_location (stmt))
8549 location = input_location;
8550 else
8551 location = gimple_location (stmt);
8552 warning_at (location, OPT_Wstrict_overflow,
8553 "assuming signed overflow does not occur when "
8554 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
8555 }
8556 }
8557
8558 if (val && integer_onep (val))
8559 {
8560 tree t;
8561
8562 if (rhs_code == TRUNC_DIV_EXPR)
8563 {
8564 t = build_int_cst (integer_type_node, tree_log2 (op1));
8565 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
8566 gimple_assign_set_rhs1 (stmt, op0);
8567 gimple_assign_set_rhs2 (stmt, t);
8568 }
8569 else
8570 {
8571 t = build_int_cst (TREE_TYPE (op1), 1);
8572 t = int_const_binop (MINUS_EXPR, op1, t);
8573 t = fold_convert (TREE_TYPE (op0), t);
8574
8575 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
8576 gimple_assign_set_rhs1 (stmt, op0);
8577 gimple_assign_set_rhs2 (stmt, t);
8578 }
8579
8580 update_stmt (stmt);
8581 return true;
8582 }
8583
8584 return false;
8585 }
8586
8587 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
8588 ABS_EXPR. If the operand is <= 0, then simplify the
8589 ABS_EXPR into a NEGATE_EXPR. */
8590
8591 static bool
8592 simplify_abs_using_ranges (gimple stmt)
8593 {
8594 tree val = NULL;
8595 tree op = gimple_assign_rhs1 (stmt);
8596 tree type = TREE_TYPE (op);
8597 value_range_t *vr = get_value_range (op);
8598
8599 if (TYPE_UNSIGNED (type))
8600 {
8601 val = integer_zero_node;
8602 }
8603 else if (vr)
8604 {
8605 bool sop = false;
8606
8607 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
8608 if (!val)
8609 {
8610 sop = false;
8611 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
8612 &sop);
8613
8614 if (val)
8615 {
8616 if (integer_zerop (val))
8617 val = integer_one_node;
8618 else if (integer_onep (val))
8619 val = integer_zero_node;
8620 }
8621 }
8622
8623 if (val
8624 && (integer_onep (val) || integer_zerop (val)))
8625 {
8626 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8627 {
8628 location_t location;
8629
8630 if (!gimple_has_location (stmt))
8631 location = input_location;
8632 else
8633 location = gimple_location (stmt);
8634 warning_at (location, OPT_Wstrict_overflow,
8635 "assuming signed overflow does not occur when "
8636 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
8637 }
8638
8639 gimple_assign_set_rhs1 (stmt, op);
8640 if (integer_onep (val))
8641 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
8642 else
8643 gimple_assign_set_rhs_code (stmt, SSA_NAME);
8644 update_stmt (stmt);
8645 return true;
8646 }
8647 }
8648
8649 return false;
8650 }
8651
8652 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
8653 If all the bits that are being cleared by & are already
8654 known to be zero from VR, or all the bits that are being
8655 set by | are already known to be one from VR, the bit
8656 operation is redundant. */
8657
8658 static bool
8659 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8660 {
8661 tree op0 = gimple_assign_rhs1 (stmt);
8662 tree op1 = gimple_assign_rhs2 (stmt);
8663 tree op = NULL_TREE;
8664 value_range_t vr0 = VR_INITIALIZER;
8665 value_range_t vr1 = VR_INITIALIZER;
8666 double_int may_be_nonzero0, may_be_nonzero1;
8667 double_int must_be_nonzero0, must_be_nonzero1;
8668 double_int mask;
8669
8670 if (TREE_CODE (op0) == SSA_NAME)
8671 vr0 = *(get_value_range (op0));
8672 else if (is_gimple_min_invariant (op0))
8673 set_value_range_to_value (&vr0, op0, NULL);
8674 else
8675 return false;
8676
8677 if (TREE_CODE (op1) == SSA_NAME)
8678 vr1 = *(get_value_range (op1));
8679 else if (is_gimple_min_invariant (op1))
8680 set_value_range_to_value (&vr1, op1, NULL);
8681 else
8682 return false;
8683
8684 if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
8685 return false;
8686 if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
8687 return false;
8688
8689 switch (gimple_assign_rhs_code (stmt))
8690 {
8691 case BIT_AND_EXPR:
8692 mask = may_be_nonzero0.and_not (must_be_nonzero1);
8693 if (mask.is_zero ())
8694 {
8695 op = op0;
8696 break;
8697 }
8698 mask = may_be_nonzero1.and_not (must_be_nonzero0);
8699 if (mask.is_zero ())
8700 {
8701 op = op1;
8702 break;
8703 }
8704 break;
8705 case BIT_IOR_EXPR:
8706 mask = may_be_nonzero0.and_not (must_be_nonzero1);
8707 if (mask.is_zero ())
8708 {
8709 op = op1;
8710 break;
8711 }
8712 mask = may_be_nonzero1.and_not (must_be_nonzero0);
8713 if (mask.is_zero ())
8714 {
8715 op = op0;
8716 break;
8717 }
8718 break;
8719 default:
8720 gcc_unreachable ();
8721 }
8722
8723 if (op == NULL_TREE)
8724 return false;
8725
8726 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
8727 update_stmt (gsi_stmt (*gsi));
8728 return true;
8729 }
8730
8731 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
8732 a known value range VR.
8733
8734 If there is one and only one value which will satisfy the
8735 conditional, then return that value. Else return NULL. */
8736
8737 static tree
8738 test_for_singularity (enum tree_code cond_code, tree op0,
8739 tree op1, value_range_t *vr)
8740 {
8741 tree min = NULL;
8742 tree max = NULL;
8743
8744 /* Extract minimum/maximum values which satisfy the
8745 the conditional as it was written. */
8746 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
8747 {
8748 /* This should not be negative infinity; there is no overflow
8749 here. */
8750 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
8751
8752 max = op1;
8753 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
8754 {
8755 tree one = build_int_cst (TREE_TYPE (op0), 1);
8756 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
8757 if (EXPR_P (max))
8758 TREE_NO_WARNING (max) = 1;
8759 }
8760 }
8761 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
8762 {
8763 /* This should not be positive infinity; there is no overflow
8764 here. */
8765 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
8766
8767 min = op1;
8768 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
8769 {
8770 tree one = build_int_cst (TREE_TYPE (op0), 1);
8771 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
8772 if (EXPR_P (min))
8773 TREE_NO_WARNING (min) = 1;
8774 }
8775 }
8776
8777 /* Now refine the minimum and maximum values using any
8778 value range information we have for op0. */
8779 if (min && max)
8780 {
8781 if (compare_values (vr->min, min) == 1)
8782 min = vr->min;
8783 if (compare_values (vr->max, max) == -1)
8784 max = vr->max;
8785
8786 /* If the new min/max values have converged to a single value,
8787 then there is only one value which can satisfy the condition,
8788 return that value. */
8789 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
8790 return min;
8791 }
8792 return NULL;
8793 }
8794
8795 /* Return whether the value range *VR fits in an integer type specified
8796 by PRECISION and UNSIGNED_P. */
8797
8798 static bool
8799 range_fits_type_p (value_range_t *vr, unsigned precision, bool unsigned_p)
8800 {
8801 tree src_type;
8802 unsigned src_precision;
8803 double_int tem;
8804
8805 /* We can only handle integral and pointer types. */
8806 src_type = TREE_TYPE (vr->min);
8807 if (!INTEGRAL_TYPE_P (src_type)
8808 && !POINTER_TYPE_P (src_type))
8809 return false;
8810
8811 /* An extension is fine unless VR is signed and unsigned_p,
8812 and so is an identity transform. */
8813 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
8814 if ((src_precision < precision
8815 && !(unsigned_p && !TYPE_UNSIGNED (src_type)))
8816 || (src_precision == precision
8817 && TYPE_UNSIGNED (src_type) == unsigned_p))
8818 return true;
8819
8820 /* Now we can only handle ranges with constant bounds. */
8821 if (vr->type != VR_RANGE
8822 || TREE_CODE (vr->min) != INTEGER_CST
8823 || TREE_CODE (vr->max) != INTEGER_CST)
8824 return false;
8825
8826 /* For sign changes, the MSB of the double_int has to be clear.
8827 An unsigned value with its MSB set cannot be represented by
8828 a signed double_int, while a negative value cannot be represented
8829 by an unsigned double_int. */
8830 if (TYPE_UNSIGNED (src_type) != unsigned_p
8831 && (TREE_INT_CST_HIGH (vr->min) | TREE_INT_CST_HIGH (vr->max)) < 0)
8832 return false;
8833
8834 /* Then we can perform the conversion on both ends and compare
8835 the result for equality. */
8836 tem = tree_to_double_int (vr->min).ext (precision, unsigned_p);
8837 if (tree_to_double_int (vr->min) != tem)
8838 return false;
8839 tem = tree_to_double_int (vr->max).ext (precision, unsigned_p);
8840 if (tree_to_double_int (vr->max) != tem)
8841 return false;
8842
8843 return true;
8844 }
8845
8846 /* Simplify a conditional using a relational operator to an equality
8847 test if the range information indicates only one value can satisfy
8848 the original conditional. */
8849
8850 static bool
8851 simplify_cond_using_ranges (gimple stmt)
8852 {
8853 tree op0 = gimple_cond_lhs (stmt);
8854 tree op1 = gimple_cond_rhs (stmt);
8855 enum tree_code cond_code = gimple_cond_code (stmt);
8856
8857 if (cond_code != NE_EXPR
8858 && cond_code != EQ_EXPR
8859 && TREE_CODE (op0) == SSA_NAME
8860 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8861 && is_gimple_min_invariant (op1))
8862 {
8863 value_range_t *vr = get_value_range (op0);
8864
8865 /* If we have range information for OP0, then we might be
8866 able to simplify this conditional. */
8867 if (vr->type == VR_RANGE)
8868 {
8869 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
8870
8871 if (new_tree)
8872 {
8873 if (dump_file)
8874 {
8875 fprintf (dump_file, "Simplified relational ");
8876 print_gimple_stmt (dump_file, stmt, 0, 0);
8877 fprintf (dump_file, " into ");
8878 }
8879
8880 gimple_cond_set_code (stmt, EQ_EXPR);
8881 gimple_cond_set_lhs (stmt, op0);
8882 gimple_cond_set_rhs (stmt, new_tree);
8883
8884 update_stmt (stmt);
8885
8886 if (dump_file)
8887 {
8888 print_gimple_stmt (dump_file, stmt, 0, 0);
8889 fprintf (dump_file, "\n");
8890 }
8891
8892 return true;
8893 }
8894
8895 /* Try again after inverting the condition. We only deal
8896 with integral types here, so no need to worry about
8897 issues with inverting FP comparisons. */
8898 cond_code = invert_tree_comparison (cond_code, false);
8899 new_tree = test_for_singularity (cond_code, op0, op1, vr);
8900
8901 if (new_tree)
8902 {
8903 if (dump_file)
8904 {
8905 fprintf (dump_file, "Simplified relational ");
8906 print_gimple_stmt (dump_file, stmt, 0, 0);
8907 fprintf (dump_file, " into ");
8908 }
8909
8910 gimple_cond_set_code (stmt, NE_EXPR);
8911 gimple_cond_set_lhs (stmt, op0);
8912 gimple_cond_set_rhs (stmt, new_tree);
8913
8914 update_stmt (stmt);
8915
8916 if (dump_file)
8917 {
8918 print_gimple_stmt (dump_file, stmt, 0, 0);
8919 fprintf (dump_file, "\n");
8920 }
8921
8922 return true;
8923 }
8924 }
8925 }
8926
8927 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
8928 see if OP0 was set by a type conversion where the source of
8929 the conversion is another SSA_NAME with a range that fits
8930 into the range of OP0's type.
8931
8932 If so, the conversion is redundant as the earlier SSA_NAME can be
8933 used for the comparison directly if we just massage the constant in the
8934 comparison. */
8935 if (TREE_CODE (op0) == SSA_NAME
8936 && TREE_CODE (op1) == INTEGER_CST)
8937 {
8938 gimple def_stmt = SSA_NAME_DEF_STMT (op0);
8939 tree innerop;
8940
8941 if (!is_gimple_assign (def_stmt)
8942 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
8943 return false;
8944
8945 innerop = gimple_assign_rhs1 (def_stmt);
8946
8947 if (TREE_CODE (innerop) == SSA_NAME
8948 && !POINTER_TYPE_P (TREE_TYPE (innerop)))
8949 {
8950 value_range_t *vr = get_value_range (innerop);
8951
8952 if (range_int_cst_p (vr)
8953 && range_fits_type_p (vr,
8954 TYPE_PRECISION (TREE_TYPE (op0)),
8955 TYPE_UNSIGNED (TREE_TYPE (op0)))
8956 && int_fits_type_p (op1, TREE_TYPE (innerop))
8957 /* The range must not have overflowed, or if it did overflow
8958 we must not be wrapping/trapping overflow and optimizing
8959 with strict overflow semantics. */
8960 && ((!is_negative_overflow_infinity (vr->min)
8961 && !is_positive_overflow_infinity (vr->max))
8962 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop))))
8963 {
8964 /* If the range overflowed and the user has asked for warnings
8965 when strict overflow semantics were used to optimize code,
8966 issue an appropriate warning. */
8967 if ((is_negative_overflow_infinity (vr->min)
8968 || is_positive_overflow_infinity (vr->max))
8969 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL))
8970 {
8971 location_t location;
8972
8973 if (!gimple_has_location (stmt))
8974 location = input_location;
8975 else
8976 location = gimple_location (stmt);
8977 warning_at (location, OPT_Wstrict_overflow,
8978 "assuming signed overflow does not occur when "
8979 "simplifying conditional");
8980 }
8981
8982 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
8983 gimple_cond_set_lhs (stmt, innerop);
8984 gimple_cond_set_rhs (stmt, newconst);
8985 return true;
8986 }
8987 }
8988 }
8989
8990 return false;
8991 }
8992
8993 /* Simplify a switch statement using the value range of the switch
8994 argument. */
8995
8996 static bool
8997 simplify_switch_using_ranges (gimple stmt)
8998 {
8999 tree op = gimple_switch_index (stmt);
9000 value_range_t *vr;
9001 bool take_default;
9002 edge e;
9003 edge_iterator ei;
9004 size_t i = 0, j = 0, n, n2;
9005 tree vec2;
9006 switch_update su;
9007 size_t k = 1, l = 0;
9008
9009 if (TREE_CODE (op) == SSA_NAME)
9010 {
9011 vr = get_value_range (op);
9012
9013 /* We can only handle integer ranges. */
9014 if ((vr->type != VR_RANGE
9015 && vr->type != VR_ANTI_RANGE)
9016 || symbolic_range_p (vr))
9017 return false;
9018
9019 /* Find case label for min/max of the value range. */
9020 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
9021 }
9022 else if (TREE_CODE (op) == INTEGER_CST)
9023 {
9024 take_default = !find_case_label_index (stmt, 1, op, &i);
9025 if (take_default)
9026 {
9027 i = 1;
9028 j = 0;
9029 }
9030 else
9031 {
9032 j = i;
9033 }
9034 }
9035 else
9036 return false;
9037
9038 n = gimple_switch_num_labels (stmt);
9039
9040 /* Bail out if this is just all edges taken. */
9041 if (i == 1
9042 && j == n - 1
9043 && take_default)
9044 return false;
9045
9046 /* Build a new vector of taken case labels. */
9047 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
9048 n2 = 0;
9049
9050 /* Add the default edge, if necessary. */
9051 if (take_default)
9052 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
9053
9054 for (; i <= j; ++i, ++n2)
9055 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
9056
9057 for (; k <= l; ++k, ++n2)
9058 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
9059
9060 /* Mark needed edges. */
9061 for (i = 0; i < n2; ++i)
9062 {
9063 e = find_edge (gimple_bb (stmt),
9064 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
9065 e->aux = (void *)-1;
9066 }
9067
9068 /* Queue not needed edges for later removal. */
9069 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
9070 {
9071 if (e->aux == (void *)-1)
9072 {
9073 e->aux = NULL;
9074 continue;
9075 }
9076
9077 if (dump_file && (dump_flags & TDF_DETAILS))
9078 {
9079 fprintf (dump_file, "removing unreachable case label\n");
9080 }
9081 to_remove_edges.safe_push (e);
9082 e->flags &= ~EDGE_EXECUTABLE;
9083 }
9084
9085 /* And queue an update for the stmt. */
9086 su.stmt = stmt;
9087 su.vec = vec2;
9088 to_update_switch_stmts.safe_push (su);
9089 return false;
9090 }
9091
9092 /* Simplify an integral conversion from an SSA name in STMT. */
9093
9094 static bool
9095 simplify_conversion_using_ranges (gimple stmt)
9096 {
9097 tree innerop, middleop, finaltype;
9098 gimple def_stmt;
9099 value_range_t *innervr;
9100 bool inner_unsigned_p, middle_unsigned_p, final_unsigned_p;
9101 unsigned inner_prec, middle_prec, final_prec;
9102 double_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
9103
9104 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
9105 if (!INTEGRAL_TYPE_P (finaltype))
9106 return false;
9107 middleop = gimple_assign_rhs1 (stmt);
9108 def_stmt = SSA_NAME_DEF_STMT (middleop);
9109 if (!is_gimple_assign (def_stmt)
9110 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9111 return false;
9112 innerop = gimple_assign_rhs1 (def_stmt);
9113 if (TREE_CODE (innerop) != SSA_NAME
9114 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
9115 return false;
9116
9117 /* Get the value-range of the inner operand. */
9118 innervr = get_value_range (innerop);
9119 if (innervr->type != VR_RANGE
9120 || TREE_CODE (innervr->min) != INTEGER_CST
9121 || TREE_CODE (innervr->max) != INTEGER_CST)
9122 return false;
9123
9124 /* Simulate the conversion chain to check if the result is equal if
9125 the middle conversion is removed. */
9126 innermin = tree_to_double_int (innervr->min);
9127 innermax = tree_to_double_int (innervr->max);
9128
9129 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
9130 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
9131 final_prec = TYPE_PRECISION (finaltype);
9132
9133 /* If the first conversion is not injective, the second must not
9134 be widening. */
9135 if ((innermax - innermin).ugt (double_int::mask (middle_prec))
9136 && middle_prec < final_prec)
9137 return false;
9138 /* We also want a medium value so that we can track the effect that
9139 narrowing conversions with sign change have. */
9140 inner_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (innerop));
9141 if (inner_unsigned_p)
9142 innermed = double_int::mask (inner_prec).lrshift (1, inner_prec);
9143 else
9144 innermed = double_int_zero;
9145 if (innermin.cmp (innermed, inner_unsigned_p) >= 0
9146 || innermed.cmp (innermax, inner_unsigned_p) >= 0)
9147 innermed = innermin;
9148
9149 middle_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (middleop));
9150 middlemin = innermin.ext (middle_prec, middle_unsigned_p);
9151 middlemed = innermed.ext (middle_prec, middle_unsigned_p);
9152 middlemax = innermax.ext (middle_prec, middle_unsigned_p);
9153
9154 /* Require that the final conversion applied to both the original
9155 and the intermediate range produces the same result. */
9156 final_unsigned_p = TYPE_UNSIGNED (finaltype);
9157 if (middlemin.ext (final_prec, final_unsigned_p)
9158 != innermin.ext (final_prec, final_unsigned_p)
9159 || middlemed.ext (final_prec, final_unsigned_p)
9160 != innermed.ext (final_prec, final_unsigned_p)
9161 || middlemax.ext (final_prec, final_unsigned_p)
9162 != innermax.ext (final_prec, final_unsigned_p))
9163 return false;
9164
9165 gimple_assign_set_rhs1 (stmt, innerop);
9166 update_stmt (stmt);
9167 return true;
9168 }
9169
9170 /* Simplify a conversion from integral SSA name to float in STMT. */
9171
9172 static bool
9173 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9174 {
9175 tree rhs1 = gimple_assign_rhs1 (stmt);
9176 value_range_t *vr = get_value_range (rhs1);
9177 enum machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
9178 enum machine_mode mode;
9179 tree tem;
9180 gimple conv;
9181
9182 /* We can only handle constant ranges. */
9183 if (vr->type != VR_RANGE
9184 || TREE_CODE (vr->min) != INTEGER_CST
9185 || TREE_CODE (vr->max) != INTEGER_CST)
9186 return false;
9187
9188 /* First check if we can use a signed type in place of an unsigned. */
9189 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
9190 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
9191 != CODE_FOR_nothing)
9192 && range_fits_type_p (vr, GET_MODE_PRECISION
9193 (TYPE_MODE (TREE_TYPE (rhs1))), 0))
9194 mode = TYPE_MODE (TREE_TYPE (rhs1));
9195 /* If we can do the conversion in the current input mode do nothing. */
9196 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
9197 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
9198 return false;
9199 /* Otherwise search for a mode we can use, starting from the narrowest
9200 integer mode available. */
9201 else
9202 {
9203 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
9204 do
9205 {
9206 /* If we cannot do a signed conversion to float from mode
9207 or if the value-range does not fit in the signed type
9208 try with a wider mode. */
9209 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
9210 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), 0))
9211 break;
9212
9213 mode = GET_MODE_WIDER_MODE (mode);
9214 /* But do not widen the input. Instead leave that to the
9215 optabs expansion code. */
9216 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
9217 return false;
9218 }
9219 while (mode != VOIDmode);
9220 if (mode == VOIDmode)
9221 return false;
9222 }
9223
9224 /* It works, insert a truncation or sign-change before the
9225 float conversion. */
9226 tem = make_ssa_name (build_nonstandard_integer_type
9227 (GET_MODE_PRECISION (mode), 0), NULL);
9228 conv = gimple_build_assign_with_ops (NOP_EXPR, tem, rhs1, NULL_TREE);
9229 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
9230 gimple_assign_set_rhs1 (stmt, tem);
9231 update_stmt (stmt);
9232
9233 return true;
9234 }
9235
9236 /* Simplify STMT using ranges if possible. */
9237
9238 static bool
9239 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
9240 {
9241 gimple stmt = gsi_stmt (*gsi);
9242 if (is_gimple_assign (stmt))
9243 {
9244 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9245 tree rhs1 = gimple_assign_rhs1 (stmt);
9246
9247 switch (rhs_code)
9248 {
9249 case EQ_EXPR:
9250 case NE_EXPR:
9251 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
9252 if the RHS is zero or one, and the LHS are known to be boolean
9253 values. */
9254 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9255 return simplify_truth_ops_using_ranges (gsi, stmt);
9256 break;
9257
9258 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
9259 and BIT_AND_EXPR respectively if the first operand is greater
9260 than zero and the second operand is an exact power of two. */
9261 case TRUNC_DIV_EXPR:
9262 case TRUNC_MOD_EXPR:
9263 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
9264 && integer_pow2p (gimple_assign_rhs2 (stmt)))
9265 return simplify_div_or_mod_using_ranges (stmt);
9266 break;
9267
9268 /* Transform ABS (X) into X or -X as appropriate. */
9269 case ABS_EXPR:
9270 if (TREE_CODE (rhs1) == SSA_NAME
9271 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9272 return simplify_abs_using_ranges (stmt);
9273 break;
9274
9275 case BIT_AND_EXPR:
9276 case BIT_IOR_EXPR:
9277 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
9278 if all the bits being cleared are already cleared or
9279 all the bits being set are already set. */
9280 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9281 return simplify_bit_ops_using_ranges (gsi, stmt);
9282 break;
9283
9284 CASE_CONVERT:
9285 if (TREE_CODE (rhs1) == SSA_NAME
9286 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9287 return simplify_conversion_using_ranges (stmt);
9288 break;
9289
9290 case FLOAT_EXPR:
9291 if (TREE_CODE (rhs1) == SSA_NAME
9292 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9293 return simplify_float_conversion_using_ranges (gsi, stmt);
9294 break;
9295
9296 default:
9297 break;
9298 }
9299 }
9300 else if (gimple_code (stmt) == GIMPLE_COND)
9301 return simplify_cond_using_ranges (stmt);
9302 else if (gimple_code (stmt) == GIMPLE_SWITCH)
9303 return simplify_switch_using_ranges (stmt);
9304
9305 return false;
9306 }
9307
9308 /* If the statement pointed by SI has a predicate whose value can be
9309 computed using the value range information computed by VRP, compute
9310 its value and return true. Otherwise, return false. */
9311
9312 static bool
9313 fold_predicate_in (gimple_stmt_iterator *si)
9314 {
9315 bool assignment_p = false;
9316 tree val;
9317 gimple stmt = gsi_stmt (*si);
9318
9319 if (is_gimple_assign (stmt)
9320 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
9321 {
9322 assignment_p = true;
9323 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
9324 gimple_assign_rhs1 (stmt),
9325 gimple_assign_rhs2 (stmt),
9326 stmt);
9327 }
9328 else if (gimple_code (stmt) == GIMPLE_COND)
9329 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
9330 gimple_cond_lhs (stmt),
9331 gimple_cond_rhs (stmt),
9332 stmt);
9333 else
9334 return false;
9335
9336 if (val)
9337 {
9338 if (assignment_p)
9339 val = fold_convert (gimple_expr_type (stmt), val);
9340
9341 if (dump_file)
9342 {
9343 fprintf (dump_file, "Folding predicate ");
9344 print_gimple_expr (dump_file, stmt, 0, 0);
9345 fprintf (dump_file, " to ");
9346 print_generic_expr (dump_file, val, 0);
9347 fprintf (dump_file, "\n");
9348 }
9349
9350 if (is_gimple_assign (stmt))
9351 gimple_assign_set_rhs_from_tree (si, val);
9352 else
9353 {
9354 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
9355 if (integer_zerop (val))
9356 gimple_cond_make_false (stmt);
9357 else if (integer_onep (val))
9358 gimple_cond_make_true (stmt);
9359 else
9360 gcc_unreachable ();
9361 }
9362
9363 return true;
9364 }
9365
9366 return false;
9367 }
9368
9369 /* Callback for substitute_and_fold folding the stmt at *SI. */
9370
9371 static bool
9372 vrp_fold_stmt (gimple_stmt_iterator *si)
9373 {
9374 if (fold_predicate_in (si))
9375 return true;
9376
9377 return simplify_stmt_using_ranges (si);
9378 }
9379
9380 /* Stack of dest,src equivalency pairs that need to be restored after
9381 each attempt to thread a block's incoming edge to an outgoing edge.
9382
9383 A NULL entry is used to mark the end of pairs which need to be
9384 restored. */
9385 static vec<tree> equiv_stack;
9386
9387 /* A trivial wrapper so that we can present the generic jump threading
9388 code with a simple API for simplifying statements. STMT is the
9389 statement we want to simplify, WITHIN_STMT provides the location
9390 for any overflow warnings. */
9391
9392 static tree
9393 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
9394 {
9395 if (gimple_code (stmt) == GIMPLE_COND)
9396 return vrp_evaluate_conditional (gimple_cond_code (stmt),
9397 gimple_cond_lhs (stmt),
9398 gimple_cond_rhs (stmt), within_stmt);
9399
9400 if (gimple_code (stmt) == GIMPLE_ASSIGN)
9401 {
9402 value_range_t new_vr = VR_INITIALIZER;
9403 tree lhs = gimple_assign_lhs (stmt);
9404
9405 if (TREE_CODE (lhs) == SSA_NAME
9406 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
9407 || POINTER_TYPE_P (TREE_TYPE (lhs))))
9408 {
9409 extract_range_from_assignment (&new_vr, stmt);
9410 if (range_int_cst_singleton_p (&new_vr))
9411 return new_vr.min;
9412 }
9413 }
9414
9415 return NULL_TREE;
9416 }
9417
9418 /* Blocks which have more than one predecessor and more than
9419 one successor present jump threading opportunities, i.e.,
9420 when the block is reached from a specific predecessor, we
9421 may be able to determine which of the outgoing edges will
9422 be traversed. When this optimization applies, we are able
9423 to avoid conditionals at runtime and we may expose secondary
9424 optimization opportunities.
9425
9426 This routine is effectively a driver for the generic jump
9427 threading code. It basically just presents the generic code
9428 with edges that may be suitable for jump threading.
9429
9430 Unlike DOM, we do not iterate VRP if jump threading was successful.
9431 While iterating may expose new opportunities for VRP, it is expected
9432 those opportunities would be very limited and the compile time cost
9433 to expose those opportunities would be significant.
9434
9435 As jump threading opportunities are discovered, they are registered
9436 for later realization. */
9437
9438 static void
9439 identify_jump_threads (void)
9440 {
9441 basic_block bb;
9442 gimple dummy;
9443 int i;
9444 edge e;
9445
9446 /* Ugh. When substituting values earlier in this pass we can
9447 wipe the dominance information. So rebuild the dominator
9448 information as we need it within the jump threading code. */
9449 calculate_dominance_info (CDI_DOMINATORS);
9450
9451 /* We do not allow VRP information to be used for jump threading
9452 across a back edge in the CFG. Otherwise it becomes too
9453 difficult to avoid eliminating loop exit tests. Of course
9454 EDGE_DFS_BACK is not accurate at this time so we have to
9455 recompute it. */
9456 mark_dfs_back_edges ();
9457
9458 /* Do not thread across edges we are about to remove. Just marking
9459 them as EDGE_DFS_BACK will do. */
9460 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
9461 e->flags |= EDGE_DFS_BACK;
9462
9463 /* Allocate our unwinder stack to unwind any temporary equivalences
9464 that might be recorded. */
9465 equiv_stack.create (20);
9466
9467 /* To avoid lots of silly node creation, we create a single
9468 conditional and just modify it in-place when attempting to
9469 thread jumps. */
9470 dummy = gimple_build_cond (EQ_EXPR,
9471 integer_zero_node, integer_zero_node,
9472 NULL, NULL);
9473
9474 /* Walk through all the blocks finding those which present a
9475 potential jump threading opportunity. We could set this up
9476 as a dominator walker and record data during the walk, but
9477 I doubt it's worth the effort for the classes of jump
9478 threading opportunities we are trying to identify at this
9479 point in compilation. */
9480 FOR_EACH_BB (bb)
9481 {
9482 gimple last;
9483
9484 /* If the generic jump threading code does not find this block
9485 interesting, then there is nothing to do. */
9486 if (! potentially_threadable_block (bb))
9487 continue;
9488
9489 /* We only care about blocks ending in a COND_EXPR. While there
9490 may be some value in handling SWITCH_EXPR here, I doubt it's
9491 terribly important. */
9492 last = gsi_stmt (gsi_last_bb (bb));
9493
9494 /* We're basically looking for a switch or any kind of conditional with
9495 integral or pointer type arguments. Note the type of the second
9496 argument will be the same as the first argument, so no need to
9497 check it explicitly. */
9498 if (gimple_code (last) == GIMPLE_SWITCH
9499 || (gimple_code (last) == GIMPLE_COND
9500 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
9501 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
9502 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
9503 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
9504 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
9505 {
9506 edge_iterator ei;
9507
9508 /* We've got a block with multiple predecessors and multiple
9509 successors which also ends in a suitable conditional or
9510 switch statement. For each predecessor, see if we can thread
9511 it to a specific successor. */
9512 FOR_EACH_EDGE (e, ei, bb->preds)
9513 {
9514 /* Do not thread across back edges or abnormal edges
9515 in the CFG. */
9516 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
9517 continue;
9518
9519 thread_across_edge (dummy, e, true, &equiv_stack,
9520 simplify_stmt_for_jump_threading);
9521 }
9522 }
9523 }
9524
9525 /* We do not actually update the CFG or SSA graphs at this point as
9526 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
9527 handle ASSERT_EXPRs gracefully. */
9528 }
9529
9530 /* We identified all the jump threading opportunities earlier, but could
9531 not transform the CFG at that time. This routine transforms the
9532 CFG and arranges for the dominator tree to be rebuilt if necessary.
9533
9534 Note the SSA graph update will occur during the normal TODO
9535 processing by the pass manager. */
9536 static void
9537 finalize_jump_threads (void)
9538 {
9539 thread_through_all_blocks (false);
9540 equiv_stack.release ();
9541 }
9542
9543
9544 /* Traverse all the blocks folding conditionals with known ranges. */
9545
9546 static void
9547 vrp_finalize (void)
9548 {
9549 size_t i;
9550
9551 values_propagated = true;
9552
9553 if (dump_file)
9554 {
9555 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
9556 dump_all_value_ranges (dump_file);
9557 fprintf (dump_file, "\n");
9558 }
9559
9560 substitute_and_fold (op_with_constant_singleton_value_range,
9561 vrp_fold_stmt, false);
9562
9563 if (warn_array_bounds)
9564 check_all_array_refs ();
9565
9566 /* We must identify jump threading opportunities before we release
9567 the datastructures built by VRP. */
9568 identify_jump_threads ();
9569
9570 /* Set value range to non pointer SSA_NAMEs. */
9571 for (i = 0; i < num_vr_values; i++)
9572 if (vr_value[i])
9573 {
9574 tree name = ssa_name (i);
9575
9576 if (!name
9577 || POINTER_TYPE_P (TREE_TYPE (name))
9578 || (vr_value[i]->type == VR_VARYING)
9579 || (vr_value[i]->type == VR_UNDEFINED))
9580 continue;
9581
9582 if ((TREE_CODE (vr_value[i]->min) == INTEGER_CST)
9583 && (TREE_CODE (vr_value[i]->max) == INTEGER_CST))
9584 {
9585 if (vr_value[i]->type == VR_RANGE)
9586 set_range_info (name,
9587 tree_to_double_int (vr_value[i]->min),
9588 tree_to_double_int (vr_value[i]->max));
9589 else if (vr_value[i]->type == VR_ANTI_RANGE)
9590 {
9591 /* VR_ANTI_RANGE ~[min, max] is encoded compactly as
9592 [max + 1, min - 1] without additional attributes.
9593 When min value > max value, we know that it is
9594 VR_ANTI_RANGE; it is VR_RANGE otherwise. */
9595
9596 /* ~[0,0] anti-range is represented as
9597 range. */
9598 if (TYPE_UNSIGNED (TREE_TYPE (name))
9599 && integer_zerop (vr_value[i]->min)
9600 && integer_zerop (vr_value[i]->max))
9601 set_range_info (name,
9602 double_int_one,
9603 double_int::max_value
9604 (TYPE_PRECISION (TREE_TYPE (name)), true));
9605 else
9606 set_range_info (name,
9607 tree_to_double_int (vr_value[i]->max)
9608 + double_int_one,
9609 tree_to_double_int (vr_value[i]->min)
9610 - double_int_one);
9611 }
9612 }
9613 }
9614
9615 /* Free allocated memory. */
9616 for (i = 0; i < num_vr_values; i++)
9617 if (vr_value[i])
9618 {
9619 BITMAP_FREE (vr_value[i]->equiv);
9620 free (vr_value[i]);
9621 }
9622
9623 free (vr_value);
9624 free (vr_phi_edge_counts);
9625
9626 /* So that we can distinguish between VRP data being available
9627 and not available. */
9628 vr_value = NULL;
9629 vr_phi_edge_counts = NULL;
9630 }
9631
9632
9633 /* Main entry point to VRP (Value Range Propagation). This pass is
9634 loosely based on J. R. C. Patterson, ``Accurate Static Branch
9635 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
9636 Programming Language Design and Implementation, pp. 67-78, 1995.
9637 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
9638
9639 This is essentially an SSA-CCP pass modified to deal with ranges
9640 instead of constants.
9641
9642 While propagating ranges, we may find that two or more SSA name
9643 have equivalent, though distinct ranges. For instance,
9644
9645 1 x_9 = p_3->a;
9646 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
9647 3 if (p_4 == q_2)
9648 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
9649 5 endif
9650 6 if (q_2)
9651
9652 In the code above, pointer p_5 has range [q_2, q_2], but from the
9653 code we can also determine that p_5 cannot be NULL and, if q_2 had
9654 a non-varying range, p_5's range should also be compatible with it.
9655
9656 These equivalences are created by two expressions: ASSERT_EXPR and
9657 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
9658 result of another assertion, then we can use the fact that p_5 and
9659 p_4 are equivalent when evaluating p_5's range.
9660
9661 Together with value ranges, we also propagate these equivalences
9662 between names so that we can take advantage of information from
9663 multiple ranges when doing final replacement. Note that this
9664 equivalency relation is transitive but not symmetric.
9665
9666 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
9667 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
9668 in contexts where that assertion does not hold (e.g., in line 6).
9669
9670 TODO, the main difference between this pass and Patterson's is that
9671 we do not propagate edge probabilities. We only compute whether
9672 edges can be taken or not. That is, instead of having a spectrum
9673 of jump probabilities between 0 and 1, we only deal with 0, 1 and
9674 DON'T KNOW. In the future, it may be worthwhile to propagate
9675 probabilities to aid branch prediction. */
9676
9677 static unsigned int
9678 execute_vrp (void)
9679 {
9680 int i;
9681 edge e;
9682 switch_update *su;
9683
9684 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
9685 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
9686 scev_initialize ();
9687
9688 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
9689 Inserting assertions may split edges which will invalidate
9690 EDGE_DFS_BACK. */
9691 insert_range_assertions ();
9692
9693 to_remove_edges.create (10);
9694 to_update_switch_stmts.create (5);
9695 threadedge_initialize_values ();
9696
9697 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
9698 mark_dfs_back_edges ();
9699
9700 vrp_initialize ();
9701 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
9702 vrp_finalize ();
9703
9704 free_numbers_of_iterations_estimates ();
9705
9706 /* ASSERT_EXPRs must be removed before finalizing jump threads
9707 as finalizing jump threads calls the CFG cleanup code which
9708 does not properly handle ASSERT_EXPRs. */
9709 remove_range_assertions ();
9710
9711 /* If we exposed any new variables, go ahead and put them into
9712 SSA form now, before we handle jump threading. This simplifies
9713 interactions between rewriting of _DECL nodes into SSA form
9714 and rewriting SSA_NAME nodes into SSA form after block
9715 duplication and CFG manipulation. */
9716 update_ssa (TODO_update_ssa);
9717
9718 finalize_jump_threads ();
9719
9720 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
9721 CFG in a broken state and requires a cfg_cleanup run. */
9722 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
9723 remove_edge (e);
9724 /* Update SWITCH_EXPR case label vector. */
9725 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
9726 {
9727 size_t j;
9728 size_t n = TREE_VEC_LENGTH (su->vec);
9729 tree label;
9730 gimple_switch_set_num_labels (su->stmt, n);
9731 for (j = 0; j < n; j++)
9732 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
9733 /* As we may have replaced the default label with a regular one
9734 make sure to make it a real default label again. This ensures
9735 optimal expansion. */
9736 label = gimple_switch_label (su->stmt, 0);
9737 CASE_LOW (label) = NULL_TREE;
9738 CASE_HIGH (label) = NULL_TREE;
9739 }
9740
9741 if (to_remove_edges.length () > 0)
9742 {
9743 free_dominance_info (CDI_DOMINATORS);
9744 if (current_loops)
9745 loops_state_set (LOOPS_NEED_FIXUP);
9746 }
9747
9748 to_remove_edges.release ();
9749 to_update_switch_stmts.release ();
9750 threadedge_finalize_values ();
9751
9752 scev_finalize ();
9753 loop_optimizer_finalize ();
9754 return 0;
9755 }
9756
9757 static bool
9758 gate_vrp (void)
9759 {
9760 return flag_tree_vrp != 0;
9761 }
9762
9763 namespace {
9764
9765 const pass_data pass_data_vrp =
9766 {
9767 GIMPLE_PASS, /* type */
9768 "vrp", /* name */
9769 OPTGROUP_NONE, /* optinfo_flags */
9770 true, /* has_gate */
9771 true, /* has_execute */
9772 TV_TREE_VRP, /* tv_id */
9773 PROP_ssa, /* properties_required */
9774 0, /* properties_provided */
9775 0, /* properties_destroyed */
9776 0, /* todo_flags_start */
9777 ( TODO_cleanup_cfg | TODO_update_ssa
9778 | TODO_verify_ssa
9779 | TODO_verify_flow ), /* todo_flags_finish */
9780 };
9781
9782 class pass_vrp : public gimple_opt_pass
9783 {
9784 public:
9785 pass_vrp (gcc::context *ctxt)
9786 : gimple_opt_pass (pass_data_vrp, ctxt)
9787 {}
9788
9789 /* opt_pass methods: */
9790 opt_pass * clone () { return new pass_vrp (m_ctxt); }
9791 bool gate () { return gate_vrp (); }
9792 unsigned int execute () { return execute_vrp (); }
9793
9794 }; // class pass_vrp
9795
9796 } // anon namespace
9797
9798 gimple_opt_pass *
9799 make_pass_vrp (gcc::context *ctxt)
9800 {
9801 return new pass_vrp (ctxt);
9802 }