re PR tree-optimization/43000 (VRP miscompiles python with -fwrapv)
[gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "flags.h"
27 #include "tree.h"
28 #include "basic-block.h"
29 #include "tree-flow.h"
30 #include "tree-pass.h"
31 #include "tree-dump.h"
32 #include "timevar.h"
33 #include "diagnostic.h"
34 #include "toplev.h"
35 #include "intl.h"
36 #include "cfgloop.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-propagate.h"
39 #include "tree-chrec.h"
40
41
42 /* Set of SSA names found live during the RPO traversal of the function
43 for still active basic-blocks. */
44 static sbitmap *live;
45
46 /* Return true if the SSA name NAME is live on the edge E. */
47
48 static bool
49 live_on_edge (edge e, tree name)
50 {
51 return (live[e->dest->index]
52 && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
53 }
54
55 /* Local functions. */
56 static int compare_values (tree val1, tree val2);
57 static int compare_values_warnv (tree val1, tree val2, bool *);
58 static void vrp_meet (value_range_t *, value_range_t *);
59 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
60 tree, tree, bool, bool *,
61 bool *);
62
63 /* Location information for ASSERT_EXPRs. Each instance of this
64 structure describes an ASSERT_EXPR for an SSA name. Since a single
65 SSA name may have more than one assertion associated with it, these
66 locations are kept in a linked list attached to the corresponding
67 SSA name. */
68 struct assert_locus_d
69 {
70 /* Basic block where the assertion would be inserted. */
71 basic_block bb;
72
73 /* Some assertions need to be inserted on an edge (e.g., assertions
74 generated by COND_EXPRs). In those cases, BB will be NULL. */
75 edge e;
76
77 /* Pointer to the statement that generated this assertion. */
78 gimple_stmt_iterator si;
79
80 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
81 enum tree_code comp_code;
82
83 /* Value being compared against. */
84 tree val;
85
86 /* Expression to compare. */
87 tree expr;
88
89 /* Next node in the linked list. */
90 struct assert_locus_d *next;
91 };
92
93 typedef struct assert_locus_d *assert_locus_t;
94
95 /* If bit I is present, it means that SSA name N_i has a list of
96 assertions that should be inserted in the IL. */
97 static bitmap need_assert_for;
98
99 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
100 holds a list of ASSERT_LOCUS_T nodes that describe where
101 ASSERT_EXPRs for SSA name N_I should be inserted. */
102 static assert_locus_t *asserts_for;
103
104 /* Value range array. After propagation, VR_VALUE[I] holds the range
105 of values that SSA name N_I may take. */
106 static value_range_t **vr_value;
107
108 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
109 number of executable edges we saw the last time we visited the
110 node. */
111 static int *vr_phi_edge_counts;
112
113 typedef struct {
114 gimple stmt;
115 tree vec;
116 } switch_update;
117
118 static VEC (edge, heap) *to_remove_edges;
119 DEF_VEC_O(switch_update);
120 DEF_VEC_ALLOC_O(switch_update, heap);
121 static VEC (switch_update, heap) *to_update_switch_stmts;
122
123
124 /* Return the maximum value for TYPE. */
125
126 static inline tree
127 vrp_val_max (const_tree type)
128 {
129 if (!INTEGRAL_TYPE_P (type))
130 return NULL_TREE;
131
132 return TYPE_MAX_VALUE (type);
133 }
134
135 /* Return the minimum value for TYPE. */
136
137 static inline tree
138 vrp_val_min (const_tree type)
139 {
140 if (!INTEGRAL_TYPE_P (type))
141 return NULL_TREE;
142
143 return TYPE_MIN_VALUE (type);
144 }
145
146 /* Return whether VAL is equal to the maximum value of its type. This
147 will be true for a positive overflow infinity. We can't do a
148 simple equality comparison with TYPE_MAX_VALUE because C typedefs
149 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
150 to the integer constant with the same value in the type. */
151
152 static inline bool
153 vrp_val_is_max (const_tree val)
154 {
155 tree type_max = vrp_val_max (TREE_TYPE (val));
156 return (val == type_max
157 || (type_max != NULL_TREE
158 && operand_equal_p (val, type_max, 0)));
159 }
160
161 /* Return whether VAL is equal to the minimum value of its type. This
162 will be true for a negative overflow infinity. */
163
164 static inline bool
165 vrp_val_is_min (const_tree val)
166 {
167 tree type_min = vrp_val_min (TREE_TYPE (val));
168 return (val == type_min
169 || (type_min != NULL_TREE
170 && operand_equal_p (val, type_min, 0)));
171 }
172
173
174 /* Return whether TYPE should use an overflow infinity distinct from
175 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
176 represent a signed overflow during VRP computations. An infinity
177 is distinct from a half-range, which will go from some number to
178 TYPE_{MIN,MAX}_VALUE. */
179
180 static inline bool
181 needs_overflow_infinity (const_tree type)
182 {
183 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
184 }
185
186 /* Return whether TYPE can support our overflow infinity
187 representation: we use the TREE_OVERFLOW flag, which only exists
188 for constants. If TYPE doesn't support this, we don't optimize
189 cases which would require signed overflow--we drop them to
190 VARYING. */
191
192 static inline bool
193 supports_overflow_infinity (const_tree type)
194 {
195 tree min = vrp_val_min (type), max = vrp_val_max (type);
196 #ifdef ENABLE_CHECKING
197 gcc_assert (needs_overflow_infinity (type));
198 #endif
199 return (min != NULL_TREE
200 && CONSTANT_CLASS_P (min)
201 && max != NULL_TREE
202 && CONSTANT_CLASS_P (max));
203 }
204
205 /* VAL is the maximum or minimum value of a type. Return a
206 corresponding overflow infinity. */
207
208 static inline tree
209 make_overflow_infinity (tree val)
210 {
211 #ifdef ENABLE_CHECKING
212 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
213 #endif
214 val = copy_node (val);
215 TREE_OVERFLOW (val) = 1;
216 return val;
217 }
218
219 /* Return a negative overflow infinity for TYPE. */
220
221 static inline tree
222 negative_overflow_infinity (tree type)
223 {
224 #ifdef ENABLE_CHECKING
225 gcc_assert (supports_overflow_infinity (type));
226 #endif
227 return make_overflow_infinity (vrp_val_min (type));
228 }
229
230 /* Return a positive overflow infinity for TYPE. */
231
232 static inline tree
233 positive_overflow_infinity (tree type)
234 {
235 #ifdef ENABLE_CHECKING
236 gcc_assert (supports_overflow_infinity (type));
237 #endif
238 return make_overflow_infinity (vrp_val_max (type));
239 }
240
241 /* Return whether VAL is a negative overflow infinity. */
242
243 static inline bool
244 is_negative_overflow_infinity (const_tree val)
245 {
246 return (needs_overflow_infinity (TREE_TYPE (val))
247 && CONSTANT_CLASS_P (val)
248 && TREE_OVERFLOW (val)
249 && vrp_val_is_min (val));
250 }
251
252 /* Return whether VAL is a positive overflow infinity. */
253
254 static inline bool
255 is_positive_overflow_infinity (const_tree val)
256 {
257 return (needs_overflow_infinity (TREE_TYPE (val))
258 && CONSTANT_CLASS_P (val)
259 && TREE_OVERFLOW (val)
260 && vrp_val_is_max (val));
261 }
262
263 /* Return whether VAL is a positive or negative overflow infinity. */
264
265 static inline bool
266 is_overflow_infinity (const_tree val)
267 {
268 return (needs_overflow_infinity (TREE_TYPE (val))
269 && CONSTANT_CLASS_P (val)
270 && TREE_OVERFLOW (val)
271 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
272 }
273
274 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
275
276 static inline bool
277 stmt_overflow_infinity (gimple stmt)
278 {
279 if (is_gimple_assign (stmt)
280 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
281 GIMPLE_SINGLE_RHS)
282 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
283 return false;
284 }
285
286 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
287 the same value with TREE_OVERFLOW clear. This can be used to avoid
288 confusing a regular value with an overflow value. */
289
290 static inline tree
291 avoid_overflow_infinity (tree val)
292 {
293 if (!is_overflow_infinity (val))
294 return val;
295
296 if (vrp_val_is_max (val))
297 return vrp_val_max (TREE_TYPE (val));
298 else
299 {
300 #ifdef ENABLE_CHECKING
301 gcc_assert (vrp_val_is_min (val));
302 #endif
303 return vrp_val_min (TREE_TYPE (val));
304 }
305 }
306
307
308 /* Return true if ARG is marked with the nonnull attribute in the
309 current function signature. */
310
311 static bool
312 nonnull_arg_p (const_tree arg)
313 {
314 tree t, attrs, fntype;
315 unsigned HOST_WIDE_INT arg_num;
316
317 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
318
319 /* The static chain decl is always non null. */
320 if (arg == cfun->static_chain_decl)
321 return true;
322
323 fntype = TREE_TYPE (current_function_decl);
324 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
325
326 /* If "nonnull" wasn't specified, we know nothing about the argument. */
327 if (attrs == NULL_TREE)
328 return false;
329
330 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
331 if (TREE_VALUE (attrs) == NULL_TREE)
332 return true;
333
334 /* Get the position number for ARG in the function signature. */
335 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
336 t;
337 t = TREE_CHAIN (t), arg_num++)
338 {
339 if (t == arg)
340 break;
341 }
342
343 gcc_assert (t == arg);
344
345 /* Now see if ARG_NUM is mentioned in the nonnull list. */
346 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
347 {
348 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
349 return true;
350 }
351
352 return false;
353 }
354
355
356 /* Set value range VR to VR_VARYING. */
357
358 static inline void
359 set_value_range_to_varying (value_range_t *vr)
360 {
361 vr->type = VR_VARYING;
362 vr->min = vr->max = NULL_TREE;
363 if (vr->equiv)
364 bitmap_clear (vr->equiv);
365 }
366
367
368 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
369
370 static void
371 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
372 tree max, bitmap equiv)
373 {
374 #if defined ENABLE_CHECKING
375 /* Check the validity of the range. */
376 if (t == VR_RANGE || t == VR_ANTI_RANGE)
377 {
378 int cmp;
379
380 gcc_assert (min && max);
381
382 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
383 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
384
385 cmp = compare_values (min, max);
386 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
387
388 if (needs_overflow_infinity (TREE_TYPE (min)))
389 gcc_assert (!is_overflow_infinity (min)
390 || !is_overflow_infinity (max));
391 }
392
393 if (t == VR_UNDEFINED || t == VR_VARYING)
394 gcc_assert (min == NULL_TREE && max == NULL_TREE);
395
396 if (t == VR_UNDEFINED || t == VR_VARYING)
397 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
398 #endif
399
400 vr->type = t;
401 vr->min = min;
402 vr->max = max;
403
404 /* Since updating the equivalence set involves deep copying the
405 bitmaps, only do it if absolutely necessary. */
406 if (vr->equiv == NULL
407 && equiv != NULL)
408 vr->equiv = BITMAP_ALLOC (NULL);
409
410 if (equiv != vr->equiv)
411 {
412 if (equiv && !bitmap_empty_p (equiv))
413 bitmap_copy (vr->equiv, equiv);
414 else
415 bitmap_clear (vr->equiv);
416 }
417 }
418
419
420 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
421 This means adjusting T, MIN and MAX representing the case of a
422 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
423 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
424 In corner cases where MAX+1 or MIN-1 wraps this will fall back
425 to varying.
426 This routine exists to ease canonicalization in the case where we
427 extract ranges from var + CST op limit. */
428
429 static void
430 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
431 tree min, tree max, bitmap equiv)
432 {
433 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
434 if ((t != VR_RANGE
435 && t != VR_ANTI_RANGE)
436 || TREE_CODE (min) != INTEGER_CST
437 || TREE_CODE (max) != INTEGER_CST)
438 {
439 set_value_range (vr, t, min, max, equiv);
440 return;
441 }
442
443 /* Wrong order for min and max, to swap them and the VR type we need
444 to adjust them. */
445 if (tree_int_cst_lt (max, min))
446 {
447 tree one = build_int_cst (TREE_TYPE (min), 1);
448 tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
449 max = int_const_binop (MINUS_EXPR, min, one, 0);
450 min = tmp;
451
452 /* There's one corner case, if we had [C+1, C] before we now have
453 that again. But this represents an empty value range, so drop
454 to varying in this case. */
455 if (tree_int_cst_lt (max, min))
456 {
457 set_value_range_to_varying (vr);
458 return;
459 }
460
461 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
462 }
463
464 /* Anti-ranges that can be represented as ranges should be so. */
465 if (t == VR_ANTI_RANGE)
466 {
467 bool is_min = vrp_val_is_min (min);
468 bool is_max = vrp_val_is_max (max);
469
470 if (is_min && is_max)
471 {
472 /* We cannot deal with empty ranges, drop to varying. */
473 set_value_range_to_varying (vr);
474 return;
475 }
476 else if (is_min
477 /* As a special exception preserve non-null ranges. */
478 && !(TYPE_UNSIGNED (TREE_TYPE (min))
479 && integer_zerop (max)))
480 {
481 tree one = build_int_cst (TREE_TYPE (max), 1);
482 min = int_const_binop (PLUS_EXPR, max, one, 0);
483 max = vrp_val_max (TREE_TYPE (max));
484 t = VR_RANGE;
485 }
486 else if (is_max)
487 {
488 tree one = build_int_cst (TREE_TYPE (min), 1);
489 max = int_const_binop (MINUS_EXPR, min, one, 0);
490 min = vrp_val_min (TREE_TYPE (min));
491 t = VR_RANGE;
492 }
493 }
494
495 set_value_range (vr, t, min, max, equiv);
496 }
497
498 /* Copy value range FROM into value range TO. */
499
500 static inline void
501 copy_value_range (value_range_t *to, value_range_t *from)
502 {
503 set_value_range (to, from->type, from->min, from->max, from->equiv);
504 }
505
506 /* Set value range VR to a single value. This function is only called
507 with values we get from statements, and exists to clear the
508 TREE_OVERFLOW flag so that we don't think we have an overflow
509 infinity when we shouldn't. */
510
511 static inline void
512 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
513 {
514 gcc_assert (is_gimple_min_invariant (val));
515 val = avoid_overflow_infinity (val);
516 set_value_range (vr, VR_RANGE, val, val, equiv);
517 }
518
519 /* Set value range VR to a non-negative range of type TYPE.
520 OVERFLOW_INFINITY indicates whether to use an overflow infinity
521 rather than TYPE_MAX_VALUE; this should be true if we determine
522 that the range is nonnegative based on the assumption that signed
523 overflow does not occur. */
524
525 static inline void
526 set_value_range_to_nonnegative (value_range_t *vr, tree type,
527 bool overflow_infinity)
528 {
529 tree zero;
530
531 if (overflow_infinity && !supports_overflow_infinity (type))
532 {
533 set_value_range_to_varying (vr);
534 return;
535 }
536
537 zero = build_int_cst (type, 0);
538 set_value_range (vr, VR_RANGE, zero,
539 (overflow_infinity
540 ? positive_overflow_infinity (type)
541 : TYPE_MAX_VALUE (type)),
542 vr->equiv);
543 }
544
545 /* Set value range VR to a non-NULL range of type TYPE. */
546
547 static inline void
548 set_value_range_to_nonnull (value_range_t *vr, tree type)
549 {
550 tree zero = build_int_cst (type, 0);
551 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
552 }
553
554
555 /* Set value range VR to a NULL range of type TYPE. */
556
557 static inline void
558 set_value_range_to_null (value_range_t *vr, tree type)
559 {
560 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
561 }
562
563
564 /* Set value range VR to a range of a truthvalue of type TYPE. */
565
566 static inline void
567 set_value_range_to_truthvalue (value_range_t *vr, tree type)
568 {
569 if (TYPE_PRECISION (type) == 1)
570 set_value_range_to_varying (vr);
571 else
572 set_value_range (vr, VR_RANGE,
573 build_int_cst (type, 0), build_int_cst (type, 1),
574 vr->equiv);
575 }
576
577
578 /* Set value range VR to VR_UNDEFINED. */
579
580 static inline void
581 set_value_range_to_undefined (value_range_t *vr)
582 {
583 vr->type = VR_UNDEFINED;
584 vr->min = vr->max = NULL_TREE;
585 if (vr->equiv)
586 bitmap_clear (vr->equiv);
587 }
588
589
590 /* If abs (min) < abs (max), set VR to [-max, max], if
591 abs (min) >= abs (max), set VR to [-min, min]. */
592
593 static void
594 abs_extent_range (value_range_t *vr, tree min, tree max)
595 {
596 int cmp;
597
598 gcc_assert (TREE_CODE (min) == INTEGER_CST);
599 gcc_assert (TREE_CODE (max) == INTEGER_CST);
600 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
601 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
602 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
603 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
604 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
605 {
606 set_value_range_to_varying (vr);
607 return;
608 }
609 cmp = compare_values (min, max);
610 if (cmp == -1)
611 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
612 else if (cmp == 0 || cmp == 1)
613 {
614 max = min;
615 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
616 }
617 else
618 {
619 set_value_range_to_varying (vr);
620 return;
621 }
622 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
623 }
624
625
626 /* Return value range information for VAR.
627
628 If we have no values ranges recorded (ie, VRP is not running), then
629 return NULL. Otherwise create an empty range if none existed for VAR. */
630
631 static value_range_t *
632 get_value_range (const_tree var)
633 {
634 value_range_t *vr;
635 tree sym;
636 unsigned ver = SSA_NAME_VERSION (var);
637
638 /* If we have no recorded ranges, then return NULL. */
639 if (! vr_value)
640 return NULL;
641
642 vr = vr_value[ver];
643 if (vr)
644 return vr;
645
646 /* Create a default value range. */
647 vr_value[ver] = vr = XCNEW (value_range_t);
648
649 /* Defer allocating the equivalence set. */
650 vr->equiv = NULL;
651
652 /* If VAR is a default definition, the variable can take any value
653 in VAR's type. */
654 sym = SSA_NAME_VAR (var);
655 if (SSA_NAME_IS_DEFAULT_DEF (var))
656 {
657 /* Try to use the "nonnull" attribute to create ~[0, 0]
658 anti-ranges for pointers. Note that this is only valid with
659 default definitions of PARM_DECLs. */
660 if (TREE_CODE (sym) == PARM_DECL
661 && POINTER_TYPE_P (TREE_TYPE (sym))
662 && nonnull_arg_p (sym))
663 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
664 else
665 set_value_range_to_varying (vr);
666 }
667
668 return vr;
669 }
670
671 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
672
673 static inline bool
674 vrp_operand_equal_p (const_tree val1, const_tree val2)
675 {
676 if (val1 == val2)
677 return true;
678 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
679 return false;
680 if (is_overflow_infinity (val1))
681 return is_overflow_infinity (val2);
682 return true;
683 }
684
685 /* Return true, if the bitmaps B1 and B2 are equal. */
686
687 static inline bool
688 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
689 {
690 return (b1 == b2
691 || (b1 && b2
692 && bitmap_equal_p (b1, b2)));
693 }
694
695 /* Update the value range and equivalence set for variable VAR to
696 NEW_VR. Return true if NEW_VR is different from VAR's previous
697 value.
698
699 NOTE: This function assumes that NEW_VR is a temporary value range
700 object created for the sole purpose of updating VAR's range. The
701 storage used by the equivalence set from NEW_VR will be freed by
702 this function. Do not call update_value_range when NEW_VR
703 is the range object associated with another SSA name. */
704
705 static inline bool
706 update_value_range (const_tree var, value_range_t *new_vr)
707 {
708 value_range_t *old_vr;
709 bool is_new;
710
711 /* Update the value range, if necessary. */
712 old_vr = get_value_range (var);
713 is_new = old_vr->type != new_vr->type
714 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
715 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
716 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
717
718 if (is_new)
719 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
720 new_vr->equiv);
721
722 BITMAP_FREE (new_vr->equiv);
723
724 return is_new;
725 }
726
727
728 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
729 point where equivalence processing can be turned on/off. */
730
731 static void
732 add_equivalence (bitmap *equiv, const_tree var)
733 {
734 unsigned ver = SSA_NAME_VERSION (var);
735 value_range_t *vr = vr_value[ver];
736
737 if (*equiv == NULL)
738 *equiv = BITMAP_ALLOC (NULL);
739 bitmap_set_bit (*equiv, ver);
740 if (vr && vr->equiv)
741 bitmap_ior_into (*equiv, vr->equiv);
742 }
743
744
745 /* Return true if VR is ~[0, 0]. */
746
747 static inline bool
748 range_is_nonnull (value_range_t *vr)
749 {
750 return vr->type == VR_ANTI_RANGE
751 && integer_zerop (vr->min)
752 && integer_zerop (vr->max);
753 }
754
755
756 /* Return true if VR is [0, 0]. */
757
758 static inline bool
759 range_is_null (value_range_t *vr)
760 {
761 return vr->type == VR_RANGE
762 && integer_zerop (vr->min)
763 && integer_zerop (vr->max);
764 }
765
766
767 /* Return true if value range VR involves at least one symbol. */
768
769 static inline bool
770 symbolic_range_p (value_range_t *vr)
771 {
772 return (!is_gimple_min_invariant (vr->min)
773 || !is_gimple_min_invariant (vr->max));
774 }
775
776 /* Return true if value range VR uses an overflow infinity. */
777
778 static inline bool
779 overflow_infinity_range_p (value_range_t *vr)
780 {
781 return (vr->type == VR_RANGE
782 && (is_overflow_infinity (vr->min)
783 || is_overflow_infinity (vr->max)));
784 }
785
786 /* Return false if we can not make a valid comparison based on VR;
787 this will be the case if it uses an overflow infinity and overflow
788 is not undefined (i.e., -fno-strict-overflow is in effect).
789 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
790 uses an overflow infinity. */
791
792 static bool
793 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
794 {
795 gcc_assert (vr->type == VR_RANGE);
796 if (is_overflow_infinity (vr->min))
797 {
798 *strict_overflow_p = true;
799 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
800 return false;
801 }
802 if (is_overflow_infinity (vr->max))
803 {
804 *strict_overflow_p = true;
805 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
806 return false;
807 }
808 return true;
809 }
810
811
812 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
813 ranges obtained so far. */
814
815 static bool
816 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
817 {
818 return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
819 || (TREE_CODE (expr) == SSA_NAME
820 && ssa_name_nonnegative_p (expr)));
821 }
822
823 /* Return true if the result of assignment STMT is know to be non-negative.
824 If the return value is based on the assumption that signed overflow is
825 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
826 *STRICT_OVERFLOW_P.*/
827
828 static bool
829 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
830 {
831 enum tree_code code = gimple_assign_rhs_code (stmt);
832 switch (get_gimple_rhs_class (code))
833 {
834 case GIMPLE_UNARY_RHS:
835 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
836 gimple_expr_type (stmt),
837 gimple_assign_rhs1 (stmt),
838 strict_overflow_p);
839 case GIMPLE_BINARY_RHS:
840 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
841 gimple_expr_type (stmt),
842 gimple_assign_rhs1 (stmt),
843 gimple_assign_rhs2 (stmt),
844 strict_overflow_p);
845 case GIMPLE_SINGLE_RHS:
846 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
847 strict_overflow_p);
848 case GIMPLE_INVALID_RHS:
849 gcc_unreachable ();
850 default:
851 gcc_unreachable ();
852 }
853 }
854
855 /* Return true if return value of call STMT is know to be non-negative.
856 If the return value is based on the assumption that signed overflow is
857 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
858 *STRICT_OVERFLOW_P.*/
859
860 static bool
861 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
862 {
863 tree arg0 = gimple_call_num_args (stmt) > 0 ?
864 gimple_call_arg (stmt, 0) : NULL_TREE;
865 tree arg1 = gimple_call_num_args (stmt) > 1 ?
866 gimple_call_arg (stmt, 1) : NULL_TREE;
867
868 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
869 gimple_call_fndecl (stmt),
870 arg0,
871 arg1,
872 strict_overflow_p);
873 }
874
875 /* Return true if STMT is know to to compute a non-negative value.
876 If the return value is based on the assumption that signed overflow is
877 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
878 *STRICT_OVERFLOW_P.*/
879
880 static bool
881 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
882 {
883 switch (gimple_code (stmt))
884 {
885 case GIMPLE_ASSIGN:
886 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
887 case GIMPLE_CALL:
888 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
889 default:
890 gcc_unreachable ();
891 }
892 }
893
894 /* Return true if the result of assignment STMT is know to be non-zero.
895 If the return value is based on the assumption that signed overflow is
896 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
897 *STRICT_OVERFLOW_P.*/
898
899 static bool
900 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
901 {
902 enum tree_code code = gimple_assign_rhs_code (stmt);
903 switch (get_gimple_rhs_class (code))
904 {
905 case GIMPLE_UNARY_RHS:
906 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
907 gimple_expr_type (stmt),
908 gimple_assign_rhs1 (stmt),
909 strict_overflow_p);
910 case GIMPLE_BINARY_RHS:
911 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
912 gimple_expr_type (stmt),
913 gimple_assign_rhs1 (stmt),
914 gimple_assign_rhs2 (stmt),
915 strict_overflow_p);
916 case GIMPLE_SINGLE_RHS:
917 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
918 strict_overflow_p);
919 case GIMPLE_INVALID_RHS:
920 gcc_unreachable ();
921 default:
922 gcc_unreachable ();
923 }
924 }
925
926 /* Return true if STMT is know to to compute a non-zero value.
927 If the return value is based on the assumption that signed overflow is
928 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
929 *STRICT_OVERFLOW_P.*/
930
931 static bool
932 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
933 {
934 switch (gimple_code (stmt))
935 {
936 case GIMPLE_ASSIGN:
937 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
938 case GIMPLE_CALL:
939 return gimple_alloca_call_p (stmt);
940 default:
941 gcc_unreachable ();
942 }
943 }
944
945 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
946 obtained so far. */
947
948 static bool
949 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
950 {
951 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
952 return true;
953
954 /* If we have an expression of the form &X->a, then the expression
955 is nonnull if X is nonnull. */
956 if (is_gimple_assign (stmt)
957 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
958 {
959 tree expr = gimple_assign_rhs1 (stmt);
960 tree base = get_base_address (TREE_OPERAND (expr, 0));
961
962 if (base != NULL_TREE
963 && TREE_CODE (base) == INDIRECT_REF
964 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
965 {
966 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
967 if (range_is_nonnull (vr))
968 return true;
969 }
970 }
971
972 return false;
973 }
974
975 /* Returns true if EXPR is a valid value (as expected by compare_values) --
976 a gimple invariant, or SSA_NAME +- CST. */
977
978 static bool
979 valid_value_p (tree expr)
980 {
981 if (TREE_CODE (expr) == SSA_NAME)
982 return true;
983
984 if (TREE_CODE (expr) == PLUS_EXPR
985 || TREE_CODE (expr) == MINUS_EXPR)
986 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
987 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
988
989 return is_gimple_min_invariant (expr);
990 }
991
992 /* Return
993 1 if VAL < VAL2
994 0 if !(VAL < VAL2)
995 -2 if those are incomparable. */
996 static inline int
997 operand_less_p (tree val, tree val2)
998 {
999 /* LT is folded faster than GE and others. Inline the common case. */
1000 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1001 {
1002 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1003 return INT_CST_LT_UNSIGNED (val, val2);
1004 else
1005 {
1006 if (INT_CST_LT (val, val2))
1007 return 1;
1008 }
1009 }
1010 else
1011 {
1012 tree tcmp;
1013
1014 fold_defer_overflow_warnings ();
1015
1016 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1017
1018 fold_undefer_and_ignore_overflow_warnings ();
1019
1020 if (!tcmp
1021 || TREE_CODE (tcmp) != INTEGER_CST)
1022 return -2;
1023
1024 if (!integer_zerop (tcmp))
1025 return 1;
1026 }
1027
1028 /* val >= val2, not considering overflow infinity. */
1029 if (is_negative_overflow_infinity (val))
1030 return is_negative_overflow_infinity (val2) ? 0 : 1;
1031 else if (is_positive_overflow_infinity (val2))
1032 return is_positive_overflow_infinity (val) ? 0 : 1;
1033
1034 return 0;
1035 }
1036
1037 /* Compare two values VAL1 and VAL2. Return
1038
1039 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1040 -1 if VAL1 < VAL2,
1041 0 if VAL1 == VAL2,
1042 +1 if VAL1 > VAL2, and
1043 +2 if VAL1 != VAL2
1044
1045 This is similar to tree_int_cst_compare but supports pointer values
1046 and values that cannot be compared at compile time.
1047
1048 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1049 true if the return value is only valid if we assume that signed
1050 overflow is undefined. */
1051
1052 static int
1053 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1054 {
1055 if (val1 == val2)
1056 return 0;
1057
1058 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1059 both integers. */
1060 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1061 == POINTER_TYPE_P (TREE_TYPE (val2)));
1062 /* Convert the two values into the same type. This is needed because
1063 sizetype causes sign extension even for unsigned types. */
1064 val2 = fold_convert (TREE_TYPE (val1), val2);
1065 STRIP_USELESS_TYPE_CONVERSION (val2);
1066
1067 if ((TREE_CODE (val1) == SSA_NAME
1068 || TREE_CODE (val1) == PLUS_EXPR
1069 || TREE_CODE (val1) == MINUS_EXPR)
1070 && (TREE_CODE (val2) == SSA_NAME
1071 || TREE_CODE (val2) == PLUS_EXPR
1072 || TREE_CODE (val2) == MINUS_EXPR))
1073 {
1074 tree n1, c1, n2, c2;
1075 enum tree_code code1, code2;
1076
1077 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1078 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1079 same name, return -2. */
1080 if (TREE_CODE (val1) == SSA_NAME)
1081 {
1082 code1 = SSA_NAME;
1083 n1 = val1;
1084 c1 = NULL_TREE;
1085 }
1086 else
1087 {
1088 code1 = TREE_CODE (val1);
1089 n1 = TREE_OPERAND (val1, 0);
1090 c1 = TREE_OPERAND (val1, 1);
1091 if (tree_int_cst_sgn (c1) == -1)
1092 {
1093 if (is_negative_overflow_infinity (c1))
1094 return -2;
1095 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1096 if (!c1)
1097 return -2;
1098 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1099 }
1100 }
1101
1102 if (TREE_CODE (val2) == SSA_NAME)
1103 {
1104 code2 = SSA_NAME;
1105 n2 = val2;
1106 c2 = NULL_TREE;
1107 }
1108 else
1109 {
1110 code2 = TREE_CODE (val2);
1111 n2 = TREE_OPERAND (val2, 0);
1112 c2 = TREE_OPERAND (val2, 1);
1113 if (tree_int_cst_sgn (c2) == -1)
1114 {
1115 if (is_negative_overflow_infinity (c2))
1116 return -2;
1117 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1118 if (!c2)
1119 return -2;
1120 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1121 }
1122 }
1123
1124 /* Both values must use the same name. */
1125 if (n1 != n2)
1126 return -2;
1127
1128 if (code1 == SSA_NAME
1129 && code2 == SSA_NAME)
1130 /* NAME == NAME */
1131 return 0;
1132
1133 /* If overflow is defined we cannot simplify more. */
1134 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1135 return -2;
1136
1137 if (strict_overflow_p != NULL
1138 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1139 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1140 *strict_overflow_p = true;
1141
1142 if (code1 == SSA_NAME)
1143 {
1144 if (code2 == PLUS_EXPR)
1145 /* NAME < NAME + CST */
1146 return -1;
1147 else if (code2 == MINUS_EXPR)
1148 /* NAME > NAME - CST */
1149 return 1;
1150 }
1151 else if (code1 == PLUS_EXPR)
1152 {
1153 if (code2 == SSA_NAME)
1154 /* NAME + CST > NAME */
1155 return 1;
1156 else if (code2 == PLUS_EXPR)
1157 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1158 return compare_values_warnv (c1, c2, strict_overflow_p);
1159 else if (code2 == MINUS_EXPR)
1160 /* NAME + CST1 > NAME - CST2 */
1161 return 1;
1162 }
1163 else if (code1 == MINUS_EXPR)
1164 {
1165 if (code2 == SSA_NAME)
1166 /* NAME - CST < NAME */
1167 return -1;
1168 else if (code2 == PLUS_EXPR)
1169 /* NAME - CST1 < NAME + CST2 */
1170 return -1;
1171 else if (code2 == MINUS_EXPR)
1172 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1173 C1 and C2 are swapped in the call to compare_values. */
1174 return compare_values_warnv (c2, c1, strict_overflow_p);
1175 }
1176
1177 gcc_unreachable ();
1178 }
1179
1180 /* We cannot compare non-constants. */
1181 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1182 return -2;
1183
1184 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1185 {
1186 /* We cannot compare overflowed values, except for overflow
1187 infinities. */
1188 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1189 {
1190 if (strict_overflow_p != NULL)
1191 *strict_overflow_p = true;
1192 if (is_negative_overflow_infinity (val1))
1193 return is_negative_overflow_infinity (val2) ? 0 : -1;
1194 else if (is_negative_overflow_infinity (val2))
1195 return 1;
1196 else if (is_positive_overflow_infinity (val1))
1197 return is_positive_overflow_infinity (val2) ? 0 : 1;
1198 else if (is_positive_overflow_infinity (val2))
1199 return -1;
1200 return -2;
1201 }
1202
1203 return tree_int_cst_compare (val1, val2);
1204 }
1205 else
1206 {
1207 tree t;
1208
1209 /* First see if VAL1 and VAL2 are not the same. */
1210 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1211 return 0;
1212
1213 /* If VAL1 is a lower address than VAL2, return -1. */
1214 if (operand_less_p (val1, val2) == 1)
1215 return -1;
1216
1217 /* If VAL1 is a higher address than VAL2, return +1. */
1218 if (operand_less_p (val2, val1) == 1)
1219 return 1;
1220
1221 /* If VAL1 is different than VAL2, return +2.
1222 For integer constants we either have already returned -1 or 1
1223 or they are equivalent. We still might succeed in proving
1224 something about non-trivial operands. */
1225 if (TREE_CODE (val1) != INTEGER_CST
1226 || TREE_CODE (val2) != INTEGER_CST)
1227 {
1228 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1229 if (t && integer_onep (t))
1230 return 2;
1231 }
1232
1233 return -2;
1234 }
1235 }
1236
1237 /* Compare values like compare_values_warnv, but treat comparisons of
1238 nonconstants which rely on undefined overflow as incomparable. */
1239
1240 static int
1241 compare_values (tree val1, tree val2)
1242 {
1243 bool sop;
1244 int ret;
1245
1246 sop = false;
1247 ret = compare_values_warnv (val1, val2, &sop);
1248 if (sop
1249 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1250 ret = -2;
1251 return ret;
1252 }
1253
1254
1255 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1256 0 if VAL is not inside VR,
1257 -2 if we cannot tell either way.
1258
1259 FIXME, the current semantics of this functions are a bit quirky
1260 when taken in the context of VRP. In here we do not care
1261 about VR's type. If VR is the anti-range ~[3, 5] the call
1262 value_inside_range (4, VR) will return 1.
1263
1264 This is counter-intuitive in a strict sense, but the callers
1265 currently expect this. They are calling the function
1266 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1267 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1268 themselves.
1269
1270 This also applies to value_ranges_intersect_p and
1271 range_includes_zero_p. The semantics of VR_RANGE and
1272 VR_ANTI_RANGE should be encoded here, but that also means
1273 adapting the users of these functions to the new semantics.
1274
1275 Benchmark compile/20001226-1.c compilation time after changing this
1276 function. */
1277
1278 static inline int
1279 value_inside_range (tree val, value_range_t * vr)
1280 {
1281 int cmp1, cmp2;
1282
1283 cmp1 = operand_less_p (val, vr->min);
1284 if (cmp1 == -2)
1285 return -2;
1286 if (cmp1 == 1)
1287 return 0;
1288
1289 cmp2 = operand_less_p (vr->max, val);
1290 if (cmp2 == -2)
1291 return -2;
1292
1293 return !cmp2;
1294 }
1295
1296
1297 /* Return true if value ranges VR0 and VR1 have a non-empty
1298 intersection.
1299
1300 Benchmark compile/20001226-1.c compilation time after changing this
1301 function.
1302 */
1303
1304 static inline bool
1305 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1306 {
1307 /* The value ranges do not intersect if the maximum of the first range is
1308 less than the minimum of the second range or vice versa.
1309 When those relations are unknown, we can't do any better. */
1310 if (operand_less_p (vr0->max, vr1->min) != 0)
1311 return false;
1312 if (operand_less_p (vr1->max, vr0->min) != 0)
1313 return false;
1314 return true;
1315 }
1316
1317
1318 /* Return true if VR includes the value zero, false otherwise. FIXME,
1319 currently this will return false for an anti-range like ~[-4, 3].
1320 This will be wrong when the semantics of value_inside_range are
1321 modified (currently the users of this function expect these
1322 semantics). */
1323
1324 static inline bool
1325 range_includes_zero_p (value_range_t *vr)
1326 {
1327 tree zero;
1328
1329 gcc_assert (vr->type != VR_UNDEFINED
1330 && vr->type != VR_VARYING
1331 && !symbolic_range_p (vr));
1332
1333 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1334 return (value_inside_range (zero, vr) == 1);
1335 }
1336
1337 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1338 false otherwise or if no value range information is available. */
1339
1340 bool
1341 ssa_name_nonnegative_p (const_tree t)
1342 {
1343 value_range_t *vr = get_value_range (t);
1344
1345 if (!vr)
1346 return false;
1347
1348 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1349 which would return a useful value should be encoded as a VR_RANGE. */
1350 if (vr->type == VR_RANGE)
1351 {
1352 int result = compare_values (vr->min, integer_zero_node);
1353
1354 return (result == 0 || result == 1);
1355 }
1356 return false;
1357 }
1358
1359 /* If OP has a value range with a single constant value return that,
1360 otherwise return NULL_TREE. This returns OP itself if OP is a
1361 constant. */
1362
1363 static tree
1364 op_with_constant_singleton_value_range (tree op)
1365 {
1366 value_range_t *vr;
1367
1368 if (is_gimple_min_invariant (op))
1369 return op;
1370
1371 if (TREE_CODE (op) != SSA_NAME)
1372 return NULL_TREE;
1373
1374 vr = get_value_range (op);
1375 if (vr->type == VR_RANGE
1376 && operand_equal_p (vr->min, vr->max, 0)
1377 && is_gimple_min_invariant (vr->min))
1378 return vr->min;
1379
1380 return NULL_TREE;
1381 }
1382
1383
1384 /* Extract value range information from an ASSERT_EXPR EXPR and store
1385 it in *VR_P. */
1386
1387 static void
1388 extract_range_from_assert (value_range_t *vr_p, tree expr)
1389 {
1390 tree var, cond, limit, min, max, type;
1391 value_range_t *var_vr, *limit_vr;
1392 enum tree_code cond_code;
1393
1394 var = ASSERT_EXPR_VAR (expr);
1395 cond = ASSERT_EXPR_COND (expr);
1396
1397 gcc_assert (COMPARISON_CLASS_P (cond));
1398
1399 /* Find VAR in the ASSERT_EXPR conditional. */
1400 if (var == TREE_OPERAND (cond, 0)
1401 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1402 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1403 {
1404 /* If the predicate is of the form VAR COMP LIMIT, then we just
1405 take LIMIT from the RHS and use the same comparison code. */
1406 cond_code = TREE_CODE (cond);
1407 limit = TREE_OPERAND (cond, 1);
1408 cond = TREE_OPERAND (cond, 0);
1409 }
1410 else
1411 {
1412 /* If the predicate is of the form LIMIT COMP VAR, then we need
1413 to flip around the comparison code to create the proper range
1414 for VAR. */
1415 cond_code = swap_tree_comparison (TREE_CODE (cond));
1416 limit = TREE_OPERAND (cond, 0);
1417 cond = TREE_OPERAND (cond, 1);
1418 }
1419
1420 limit = avoid_overflow_infinity (limit);
1421
1422 type = TREE_TYPE (limit);
1423 gcc_assert (limit != var);
1424
1425 /* For pointer arithmetic, we only keep track of pointer equality
1426 and inequality. */
1427 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1428 {
1429 set_value_range_to_varying (vr_p);
1430 return;
1431 }
1432
1433 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1434 try to use LIMIT's range to avoid creating symbolic ranges
1435 unnecessarily. */
1436 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1437
1438 /* LIMIT's range is only interesting if it has any useful information. */
1439 if (limit_vr
1440 && (limit_vr->type == VR_UNDEFINED
1441 || limit_vr->type == VR_VARYING
1442 || symbolic_range_p (limit_vr)))
1443 limit_vr = NULL;
1444
1445 /* Initially, the new range has the same set of equivalences of
1446 VAR's range. This will be revised before returning the final
1447 value. Since assertions may be chained via mutually exclusive
1448 predicates, we will need to trim the set of equivalences before
1449 we are done. */
1450 gcc_assert (vr_p->equiv == NULL);
1451 add_equivalence (&vr_p->equiv, var);
1452
1453 /* Extract a new range based on the asserted comparison for VAR and
1454 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1455 will only use it for equality comparisons (EQ_EXPR). For any
1456 other kind of assertion, we cannot derive a range from LIMIT's
1457 anti-range that can be used to describe the new range. For
1458 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1459 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1460 no single range for x_2 that could describe LE_EXPR, so we might
1461 as well build the range [b_4, +INF] for it.
1462 One special case we handle is extracting a range from a
1463 range test encoded as (unsigned)var + CST <= limit. */
1464 if (TREE_CODE (cond) == NOP_EXPR
1465 || TREE_CODE (cond) == PLUS_EXPR)
1466 {
1467 if (TREE_CODE (cond) == PLUS_EXPR)
1468 {
1469 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1470 TREE_OPERAND (cond, 1));
1471 max = int_const_binop (PLUS_EXPR, limit, min, 0);
1472 cond = TREE_OPERAND (cond, 0);
1473 }
1474 else
1475 {
1476 min = build_int_cst (TREE_TYPE (var), 0);
1477 max = limit;
1478 }
1479
1480 /* Make sure to not set TREE_OVERFLOW on the final type
1481 conversion. We are willingly interpreting large positive
1482 unsigned values as negative singed values here. */
1483 min = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (min),
1484 TREE_INT_CST_HIGH (min), 0, false);
1485 max = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (max),
1486 TREE_INT_CST_HIGH (max), 0, false);
1487
1488 /* We can transform a max, min range to an anti-range or
1489 vice-versa. Use set_and_canonicalize_value_range which does
1490 this for us. */
1491 if (cond_code == LE_EXPR)
1492 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1493 min, max, vr_p->equiv);
1494 else if (cond_code == GT_EXPR)
1495 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1496 min, max, vr_p->equiv);
1497 else
1498 gcc_unreachable ();
1499 }
1500 else if (cond_code == EQ_EXPR)
1501 {
1502 enum value_range_type range_type;
1503
1504 if (limit_vr)
1505 {
1506 range_type = limit_vr->type;
1507 min = limit_vr->min;
1508 max = limit_vr->max;
1509 }
1510 else
1511 {
1512 range_type = VR_RANGE;
1513 min = limit;
1514 max = limit;
1515 }
1516
1517 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1518
1519 /* When asserting the equality VAR == LIMIT and LIMIT is another
1520 SSA name, the new range will also inherit the equivalence set
1521 from LIMIT. */
1522 if (TREE_CODE (limit) == SSA_NAME)
1523 add_equivalence (&vr_p->equiv, limit);
1524 }
1525 else if (cond_code == NE_EXPR)
1526 {
1527 /* As described above, when LIMIT's range is an anti-range and
1528 this assertion is an inequality (NE_EXPR), then we cannot
1529 derive anything from the anti-range. For instance, if
1530 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1531 not imply that VAR's range is [0, 0]. So, in the case of
1532 anti-ranges, we just assert the inequality using LIMIT and
1533 not its anti-range.
1534
1535 If LIMIT_VR is a range, we can only use it to build a new
1536 anti-range if LIMIT_VR is a single-valued range. For
1537 instance, if LIMIT_VR is [0, 1], the predicate
1538 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1539 Rather, it means that for value 0 VAR should be ~[0, 0]
1540 and for value 1, VAR should be ~[1, 1]. We cannot
1541 represent these ranges.
1542
1543 The only situation in which we can build a valid
1544 anti-range is when LIMIT_VR is a single-valued range
1545 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1546 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1547 if (limit_vr
1548 && limit_vr->type == VR_RANGE
1549 && compare_values (limit_vr->min, limit_vr->max) == 0)
1550 {
1551 min = limit_vr->min;
1552 max = limit_vr->max;
1553 }
1554 else
1555 {
1556 /* In any other case, we cannot use LIMIT's range to build a
1557 valid anti-range. */
1558 min = max = limit;
1559 }
1560
1561 /* If MIN and MAX cover the whole range for their type, then
1562 just use the original LIMIT. */
1563 if (INTEGRAL_TYPE_P (type)
1564 && vrp_val_is_min (min)
1565 && vrp_val_is_max (max))
1566 min = max = limit;
1567
1568 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1569 }
1570 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1571 {
1572 min = TYPE_MIN_VALUE (type);
1573
1574 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1575 max = limit;
1576 else
1577 {
1578 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1579 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1580 LT_EXPR. */
1581 max = limit_vr->max;
1582 }
1583
1584 /* If the maximum value forces us to be out of bounds, simply punt.
1585 It would be pointless to try and do anything more since this
1586 all should be optimized away above us. */
1587 if ((cond_code == LT_EXPR
1588 && compare_values (max, min) == 0)
1589 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1590 set_value_range_to_varying (vr_p);
1591 else
1592 {
1593 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1594 if (cond_code == LT_EXPR)
1595 {
1596 tree one = build_int_cst (type, 1);
1597 max = fold_build2 (MINUS_EXPR, type, max, one);
1598 if (EXPR_P (max))
1599 TREE_NO_WARNING (max) = 1;
1600 }
1601
1602 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1603 }
1604 }
1605 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1606 {
1607 max = TYPE_MAX_VALUE (type);
1608
1609 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1610 min = limit;
1611 else
1612 {
1613 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1614 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1615 GT_EXPR. */
1616 min = limit_vr->min;
1617 }
1618
1619 /* If the minimum value forces us to be out of bounds, simply punt.
1620 It would be pointless to try and do anything more since this
1621 all should be optimized away above us. */
1622 if ((cond_code == GT_EXPR
1623 && compare_values (min, max) == 0)
1624 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1625 set_value_range_to_varying (vr_p);
1626 else
1627 {
1628 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1629 if (cond_code == GT_EXPR)
1630 {
1631 tree one = build_int_cst (type, 1);
1632 min = fold_build2 (PLUS_EXPR, type, min, one);
1633 if (EXPR_P (min))
1634 TREE_NO_WARNING (min) = 1;
1635 }
1636
1637 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1638 }
1639 }
1640 else
1641 gcc_unreachable ();
1642
1643 /* If VAR already had a known range, it may happen that the new
1644 range we have computed and VAR's range are not compatible. For
1645 instance,
1646
1647 if (p_5 == NULL)
1648 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1649 x_7 = p_6->fld;
1650 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1651
1652 While the above comes from a faulty program, it will cause an ICE
1653 later because p_8 and p_6 will have incompatible ranges and at
1654 the same time will be considered equivalent. A similar situation
1655 would arise from
1656
1657 if (i_5 > 10)
1658 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1659 if (i_5 < 5)
1660 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1661
1662 Again i_6 and i_7 will have incompatible ranges. It would be
1663 pointless to try and do anything with i_7's range because
1664 anything dominated by 'if (i_5 < 5)' will be optimized away.
1665 Note, due to the wa in which simulation proceeds, the statement
1666 i_7 = ASSERT_EXPR <...> we would never be visited because the
1667 conditional 'if (i_5 < 5)' always evaluates to false. However,
1668 this extra check does not hurt and may protect against future
1669 changes to VRP that may get into a situation similar to the
1670 NULL pointer dereference example.
1671
1672 Note that these compatibility tests are only needed when dealing
1673 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1674 are both anti-ranges, they will always be compatible, because two
1675 anti-ranges will always have a non-empty intersection. */
1676
1677 var_vr = get_value_range (var);
1678
1679 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1680 ranges or anti-ranges. */
1681 if (vr_p->type == VR_VARYING
1682 || vr_p->type == VR_UNDEFINED
1683 || var_vr->type == VR_VARYING
1684 || var_vr->type == VR_UNDEFINED
1685 || symbolic_range_p (vr_p)
1686 || symbolic_range_p (var_vr))
1687 return;
1688
1689 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1690 {
1691 /* If the two ranges have a non-empty intersection, we can
1692 refine the resulting range. Since the assert expression
1693 creates an equivalency and at the same time it asserts a
1694 predicate, we can take the intersection of the two ranges to
1695 get better precision. */
1696 if (value_ranges_intersect_p (var_vr, vr_p))
1697 {
1698 /* Use the larger of the two minimums. */
1699 if (compare_values (vr_p->min, var_vr->min) == -1)
1700 min = var_vr->min;
1701 else
1702 min = vr_p->min;
1703
1704 /* Use the smaller of the two maximums. */
1705 if (compare_values (vr_p->max, var_vr->max) == 1)
1706 max = var_vr->max;
1707 else
1708 max = vr_p->max;
1709
1710 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1711 }
1712 else
1713 {
1714 /* The two ranges do not intersect, set the new range to
1715 VARYING, because we will not be able to do anything
1716 meaningful with it. */
1717 set_value_range_to_varying (vr_p);
1718 }
1719 }
1720 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1721 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1722 {
1723 /* A range and an anti-range will cancel each other only if
1724 their ends are the same. For instance, in the example above,
1725 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1726 so VR_P should be set to VR_VARYING. */
1727 if (compare_values (var_vr->min, vr_p->min) == 0
1728 && compare_values (var_vr->max, vr_p->max) == 0)
1729 set_value_range_to_varying (vr_p);
1730 else
1731 {
1732 tree min, max, anti_min, anti_max, real_min, real_max;
1733 int cmp;
1734
1735 /* We want to compute the logical AND of the two ranges;
1736 there are three cases to consider.
1737
1738
1739 1. The VR_ANTI_RANGE range is completely within the
1740 VR_RANGE and the endpoints of the ranges are
1741 different. In that case the resulting range
1742 should be whichever range is more precise.
1743 Typically that will be the VR_RANGE.
1744
1745 2. The VR_ANTI_RANGE is completely disjoint from
1746 the VR_RANGE. In this case the resulting range
1747 should be the VR_RANGE.
1748
1749 3. There is some overlap between the VR_ANTI_RANGE
1750 and the VR_RANGE.
1751
1752 3a. If the high limit of the VR_ANTI_RANGE resides
1753 within the VR_RANGE, then the result is a new
1754 VR_RANGE starting at the high limit of the
1755 VR_ANTI_RANGE + 1 and extending to the
1756 high limit of the original VR_RANGE.
1757
1758 3b. If the low limit of the VR_ANTI_RANGE resides
1759 within the VR_RANGE, then the result is a new
1760 VR_RANGE starting at the low limit of the original
1761 VR_RANGE and extending to the low limit of the
1762 VR_ANTI_RANGE - 1. */
1763 if (vr_p->type == VR_ANTI_RANGE)
1764 {
1765 anti_min = vr_p->min;
1766 anti_max = vr_p->max;
1767 real_min = var_vr->min;
1768 real_max = var_vr->max;
1769 }
1770 else
1771 {
1772 anti_min = var_vr->min;
1773 anti_max = var_vr->max;
1774 real_min = vr_p->min;
1775 real_max = vr_p->max;
1776 }
1777
1778
1779 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1780 not including any endpoints. */
1781 if (compare_values (anti_max, real_max) == -1
1782 && compare_values (anti_min, real_min) == 1)
1783 {
1784 /* If the range is covering the whole valid range of
1785 the type keep the anti-range. */
1786 if (!vrp_val_is_min (real_min)
1787 || !vrp_val_is_max (real_max))
1788 set_value_range (vr_p, VR_RANGE, real_min,
1789 real_max, vr_p->equiv);
1790 }
1791 /* Case 2, VR_ANTI_RANGE completely disjoint from
1792 VR_RANGE. */
1793 else if (compare_values (anti_min, real_max) == 1
1794 || compare_values (anti_max, real_min) == -1)
1795 {
1796 set_value_range (vr_p, VR_RANGE, real_min,
1797 real_max, vr_p->equiv);
1798 }
1799 /* Case 3a, the anti-range extends into the low
1800 part of the real range. Thus creating a new
1801 low for the real range. */
1802 else if (((cmp = compare_values (anti_max, real_min)) == 1
1803 || cmp == 0)
1804 && compare_values (anti_max, real_max) == -1)
1805 {
1806 gcc_assert (!is_positive_overflow_infinity (anti_max));
1807 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1808 && vrp_val_is_max (anti_max))
1809 {
1810 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1811 {
1812 set_value_range_to_varying (vr_p);
1813 return;
1814 }
1815 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1816 }
1817 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1818 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1819 anti_max,
1820 build_int_cst (TREE_TYPE (var_vr->min), 1));
1821 else
1822 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1823 anti_max, size_int (1));
1824 max = real_max;
1825 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1826 }
1827 /* Case 3b, the anti-range extends into the high
1828 part of the real range. Thus creating a new
1829 higher for the real range. */
1830 else if (compare_values (anti_min, real_min) == 1
1831 && ((cmp = compare_values (anti_min, real_max)) == -1
1832 || cmp == 0))
1833 {
1834 gcc_assert (!is_negative_overflow_infinity (anti_min));
1835 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1836 && vrp_val_is_min (anti_min))
1837 {
1838 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1839 {
1840 set_value_range_to_varying (vr_p);
1841 return;
1842 }
1843 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1844 }
1845 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1846 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1847 anti_min,
1848 build_int_cst (TREE_TYPE (var_vr->min), 1));
1849 else
1850 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1851 anti_min,
1852 size_int (-1));
1853 min = real_min;
1854 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1855 }
1856 }
1857 }
1858 }
1859
1860
1861 /* Extract range information from SSA name VAR and store it in VR. If
1862 VAR has an interesting range, use it. Otherwise, create the
1863 range [VAR, VAR] and return it. This is useful in situations where
1864 we may have conditionals testing values of VARYING names. For
1865 instance,
1866
1867 x_3 = y_5;
1868 if (x_3 > y_5)
1869 ...
1870
1871 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1872 always false. */
1873
1874 static void
1875 extract_range_from_ssa_name (value_range_t *vr, tree var)
1876 {
1877 value_range_t *var_vr = get_value_range (var);
1878
1879 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1880 copy_value_range (vr, var_vr);
1881 else
1882 set_value_range (vr, VR_RANGE, var, var, NULL);
1883
1884 add_equivalence (&vr->equiv, var);
1885 }
1886
1887
1888 /* Wrapper around int_const_binop. If the operation overflows and we
1889 are not using wrapping arithmetic, then adjust the result to be
1890 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1891 NULL_TREE if we need to use an overflow infinity representation but
1892 the type does not support it. */
1893
1894 static tree
1895 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1896 {
1897 tree res;
1898
1899 res = int_const_binop (code, val1, val2, 0);
1900
1901 /* If we are using unsigned arithmetic, operate symbolically
1902 on -INF and +INF as int_const_binop only handles signed overflow. */
1903 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1904 {
1905 int checkz = compare_values (res, val1);
1906 bool overflow = false;
1907
1908 /* Ensure that res = val1 [+*] val2 >= val1
1909 or that res = val1 - val2 <= val1. */
1910 if ((code == PLUS_EXPR
1911 && !(checkz == 1 || checkz == 0))
1912 || (code == MINUS_EXPR
1913 && !(checkz == 0 || checkz == -1)))
1914 {
1915 overflow = true;
1916 }
1917 /* Checking for multiplication overflow is done by dividing the
1918 output of the multiplication by the first input of the
1919 multiplication. If the result of that division operation is
1920 not equal to the second input of the multiplication, then the
1921 multiplication overflowed. */
1922 else if (code == MULT_EXPR && !integer_zerop (val1))
1923 {
1924 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1925 res,
1926 val1, 0);
1927 int check = compare_values (tmp, val2);
1928
1929 if (check != 0)
1930 overflow = true;
1931 }
1932
1933 if (overflow)
1934 {
1935 res = copy_node (res);
1936 TREE_OVERFLOW (res) = 1;
1937 }
1938
1939 }
1940 else if ((TREE_OVERFLOW (res)
1941 && !TREE_OVERFLOW (val1)
1942 && !TREE_OVERFLOW (val2))
1943 || is_overflow_infinity (val1)
1944 || is_overflow_infinity (val2))
1945 {
1946 /* If the operation overflowed but neither VAL1 nor VAL2 are
1947 overflown, return -INF or +INF depending on the operation
1948 and the combination of signs of the operands. */
1949 int sgn1 = tree_int_cst_sgn (val1);
1950 int sgn2 = tree_int_cst_sgn (val2);
1951
1952 if (needs_overflow_infinity (TREE_TYPE (res))
1953 && !supports_overflow_infinity (TREE_TYPE (res)))
1954 return NULL_TREE;
1955
1956 /* We have to punt on adding infinities of different signs,
1957 since we can't tell what the sign of the result should be.
1958 Likewise for subtracting infinities of the same sign. */
1959 if (((code == PLUS_EXPR && sgn1 != sgn2)
1960 || (code == MINUS_EXPR && sgn1 == sgn2))
1961 && is_overflow_infinity (val1)
1962 && is_overflow_infinity (val2))
1963 return NULL_TREE;
1964
1965 /* Don't try to handle division or shifting of infinities. */
1966 if ((code == TRUNC_DIV_EXPR
1967 || code == FLOOR_DIV_EXPR
1968 || code == CEIL_DIV_EXPR
1969 || code == EXACT_DIV_EXPR
1970 || code == ROUND_DIV_EXPR
1971 || code == RSHIFT_EXPR)
1972 && (is_overflow_infinity (val1)
1973 || is_overflow_infinity (val2)))
1974 return NULL_TREE;
1975
1976 /* Notice that we only need to handle the restricted set of
1977 operations handled by extract_range_from_binary_expr.
1978 Among them, only multiplication, addition and subtraction
1979 can yield overflow without overflown operands because we
1980 are working with integral types only... except in the
1981 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1982 for division too. */
1983
1984 /* For multiplication, the sign of the overflow is given
1985 by the comparison of the signs of the operands. */
1986 if ((code == MULT_EXPR && sgn1 == sgn2)
1987 /* For addition, the operands must be of the same sign
1988 to yield an overflow. Its sign is therefore that
1989 of one of the operands, for example the first. For
1990 infinite operands X + -INF is negative, not positive. */
1991 || (code == PLUS_EXPR
1992 && (sgn1 >= 0
1993 ? !is_negative_overflow_infinity (val2)
1994 : is_positive_overflow_infinity (val2)))
1995 /* For subtraction, non-infinite operands must be of
1996 different signs to yield an overflow. Its sign is
1997 therefore that of the first operand or the opposite of
1998 that of the second operand. A first operand of 0 counts
1999 as positive here, for the corner case 0 - (-INF), which
2000 overflows, but must yield +INF. For infinite operands 0
2001 - INF is negative, not positive. */
2002 || (code == MINUS_EXPR
2003 && (sgn1 >= 0
2004 ? !is_positive_overflow_infinity (val2)
2005 : is_negative_overflow_infinity (val2)))
2006 /* We only get in here with positive shift count, so the
2007 overflow direction is the same as the sign of val1.
2008 Actually rshift does not overflow at all, but we only
2009 handle the case of shifting overflowed -INF and +INF. */
2010 || (code == RSHIFT_EXPR
2011 && sgn1 >= 0)
2012 /* For division, the only case is -INF / -1 = +INF. */
2013 || code == TRUNC_DIV_EXPR
2014 || code == FLOOR_DIV_EXPR
2015 || code == CEIL_DIV_EXPR
2016 || code == EXACT_DIV_EXPR
2017 || code == ROUND_DIV_EXPR)
2018 return (needs_overflow_infinity (TREE_TYPE (res))
2019 ? positive_overflow_infinity (TREE_TYPE (res))
2020 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2021 else
2022 return (needs_overflow_infinity (TREE_TYPE (res))
2023 ? negative_overflow_infinity (TREE_TYPE (res))
2024 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2025 }
2026
2027 return res;
2028 }
2029
2030
2031 /* Extract range information from a binary expression EXPR based on
2032 the ranges of each of its operands and the expression code. */
2033
2034 static void
2035 extract_range_from_binary_expr (value_range_t *vr,
2036 enum tree_code code,
2037 tree expr_type, tree op0, tree op1)
2038 {
2039 enum value_range_type type;
2040 tree min, max;
2041 int cmp;
2042 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2043 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2044
2045 /* Not all binary expressions can be applied to ranges in a
2046 meaningful way. Handle only arithmetic operations. */
2047 if (code != PLUS_EXPR
2048 && code != MINUS_EXPR
2049 && code != POINTER_PLUS_EXPR
2050 && code != MULT_EXPR
2051 && code != TRUNC_DIV_EXPR
2052 && code != FLOOR_DIV_EXPR
2053 && code != CEIL_DIV_EXPR
2054 && code != EXACT_DIV_EXPR
2055 && code != ROUND_DIV_EXPR
2056 && code != RSHIFT_EXPR
2057 && code != MIN_EXPR
2058 && code != MAX_EXPR
2059 && code != BIT_AND_EXPR
2060 && code != BIT_IOR_EXPR
2061 && code != TRUTH_AND_EXPR
2062 && code != TRUTH_OR_EXPR)
2063 {
2064 /* We can still do constant propagation here. */
2065 tree const_op0 = op_with_constant_singleton_value_range (op0);
2066 tree const_op1 = op_with_constant_singleton_value_range (op1);
2067 if (const_op0 || const_op1)
2068 {
2069 tree tem = fold_binary (code, expr_type,
2070 const_op0 ? const_op0 : op0,
2071 const_op1 ? const_op1 : op1);
2072 if (tem
2073 && is_gimple_min_invariant (tem)
2074 && !is_overflow_infinity (tem))
2075 {
2076 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2077 return;
2078 }
2079 }
2080 set_value_range_to_varying (vr);
2081 return;
2082 }
2083
2084 /* Get value ranges for each operand. For constant operands, create
2085 a new value range with the operand to simplify processing. */
2086 if (TREE_CODE (op0) == SSA_NAME)
2087 vr0 = *(get_value_range (op0));
2088 else if (is_gimple_min_invariant (op0))
2089 set_value_range_to_value (&vr0, op0, NULL);
2090 else
2091 set_value_range_to_varying (&vr0);
2092
2093 if (TREE_CODE (op1) == SSA_NAME)
2094 vr1 = *(get_value_range (op1));
2095 else if (is_gimple_min_invariant (op1))
2096 set_value_range_to_value (&vr1, op1, NULL);
2097 else
2098 set_value_range_to_varying (&vr1);
2099
2100 /* If either range is UNDEFINED, so is the result. */
2101 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
2102 {
2103 set_value_range_to_undefined (vr);
2104 return;
2105 }
2106
2107 /* The type of the resulting value range defaults to VR0.TYPE. */
2108 type = vr0.type;
2109
2110 /* Refuse to operate on VARYING ranges, ranges of different kinds
2111 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2112 because we may be able to derive a useful range even if one of
2113 the operands is VR_VARYING or symbolic range. Similarly for
2114 divisions. TODO, we may be able to derive anti-ranges in
2115 some cases. */
2116 if (code != BIT_AND_EXPR
2117 && code != TRUTH_AND_EXPR
2118 && code != TRUTH_OR_EXPR
2119 && code != TRUNC_DIV_EXPR
2120 && code != FLOOR_DIV_EXPR
2121 && code != CEIL_DIV_EXPR
2122 && code != EXACT_DIV_EXPR
2123 && code != ROUND_DIV_EXPR
2124 && (vr0.type == VR_VARYING
2125 || vr1.type == VR_VARYING
2126 || vr0.type != vr1.type
2127 || symbolic_range_p (&vr0)
2128 || symbolic_range_p (&vr1)))
2129 {
2130 set_value_range_to_varying (vr);
2131 return;
2132 }
2133
2134 /* Now evaluate the expression to determine the new range. */
2135 if (POINTER_TYPE_P (expr_type)
2136 || POINTER_TYPE_P (TREE_TYPE (op0))
2137 || POINTER_TYPE_P (TREE_TYPE (op1)))
2138 {
2139 if (code == MIN_EXPR || code == MAX_EXPR)
2140 {
2141 /* For MIN/MAX expressions with pointers, we only care about
2142 nullness, if both are non null, then the result is nonnull.
2143 If both are null, then the result is null. Otherwise they
2144 are varying. */
2145 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2146 set_value_range_to_nonnull (vr, expr_type);
2147 else if (range_is_null (&vr0) && range_is_null (&vr1))
2148 set_value_range_to_null (vr, expr_type);
2149 else
2150 set_value_range_to_varying (vr);
2151
2152 return;
2153 }
2154 gcc_assert (code == POINTER_PLUS_EXPR);
2155 /* For pointer types, we are really only interested in asserting
2156 whether the expression evaluates to non-NULL. */
2157 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2158 set_value_range_to_nonnull (vr, expr_type);
2159 else if (range_is_null (&vr0) && range_is_null (&vr1))
2160 set_value_range_to_null (vr, expr_type);
2161 else
2162 set_value_range_to_varying (vr);
2163
2164 return;
2165 }
2166
2167 /* For integer ranges, apply the operation to each end of the
2168 range and see what we end up with. */
2169 if (code == TRUTH_AND_EXPR
2170 || code == TRUTH_OR_EXPR)
2171 {
2172 /* If one of the operands is zero, we know that the whole
2173 expression evaluates zero. */
2174 if (code == TRUTH_AND_EXPR
2175 && ((vr0.type == VR_RANGE
2176 && integer_zerop (vr0.min)
2177 && integer_zerop (vr0.max))
2178 || (vr1.type == VR_RANGE
2179 && integer_zerop (vr1.min)
2180 && integer_zerop (vr1.max))))
2181 {
2182 type = VR_RANGE;
2183 min = max = build_int_cst (expr_type, 0);
2184 }
2185 /* If one of the operands is one, we know that the whole
2186 expression evaluates one. */
2187 else if (code == TRUTH_OR_EXPR
2188 && ((vr0.type == VR_RANGE
2189 && integer_onep (vr0.min)
2190 && integer_onep (vr0.max))
2191 || (vr1.type == VR_RANGE
2192 && integer_onep (vr1.min)
2193 && integer_onep (vr1.max))))
2194 {
2195 type = VR_RANGE;
2196 min = max = build_int_cst (expr_type, 1);
2197 }
2198 else if (vr0.type != VR_VARYING
2199 && vr1.type != VR_VARYING
2200 && vr0.type == vr1.type
2201 && !symbolic_range_p (&vr0)
2202 && !overflow_infinity_range_p (&vr0)
2203 && !symbolic_range_p (&vr1)
2204 && !overflow_infinity_range_p (&vr1))
2205 {
2206 /* Boolean expressions cannot be folded with int_const_binop. */
2207 min = fold_binary (code, expr_type, vr0.min, vr1.min);
2208 max = fold_binary (code, expr_type, vr0.max, vr1.max);
2209 }
2210 else
2211 {
2212 /* The result of a TRUTH_*_EXPR is always true or false. */
2213 set_value_range_to_truthvalue (vr, expr_type);
2214 return;
2215 }
2216 }
2217 else if (code == PLUS_EXPR
2218 || code == MIN_EXPR
2219 || code == MAX_EXPR)
2220 {
2221 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2222 VR_VARYING. It would take more effort to compute a precise
2223 range for such a case. For example, if we have op0 == 1 and
2224 op1 == -1 with their ranges both being ~[0,0], we would have
2225 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2226 Note that we are guaranteed to have vr0.type == vr1.type at
2227 this point. */
2228 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
2229 {
2230 set_value_range_to_varying (vr);
2231 return;
2232 }
2233
2234 /* For operations that make the resulting range directly
2235 proportional to the original ranges, apply the operation to
2236 the same end of each range. */
2237 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2238 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2239
2240 /* If both additions overflowed the range kind is still correct.
2241 This happens regularly with subtracting something in unsigned
2242 arithmetic.
2243 ??? See PR30318 for all the cases we do not handle. */
2244 if (code == PLUS_EXPR
2245 && (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2246 && (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2247 {
2248 min = build_int_cst_wide (TREE_TYPE (min),
2249 TREE_INT_CST_LOW (min),
2250 TREE_INT_CST_HIGH (min));
2251 max = build_int_cst_wide (TREE_TYPE (max),
2252 TREE_INT_CST_LOW (max),
2253 TREE_INT_CST_HIGH (max));
2254 }
2255 }
2256 else if (code == MULT_EXPR
2257 || code == TRUNC_DIV_EXPR
2258 || code == FLOOR_DIV_EXPR
2259 || code == CEIL_DIV_EXPR
2260 || code == EXACT_DIV_EXPR
2261 || code == ROUND_DIV_EXPR
2262 || code == RSHIFT_EXPR)
2263 {
2264 tree val[4];
2265 size_t i;
2266 bool sop;
2267
2268 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2269 drop to VR_VARYING. It would take more effort to compute a
2270 precise range for such a case. For example, if we have
2271 op0 == 65536 and op1 == 65536 with their ranges both being
2272 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2273 we cannot claim that the product is in ~[0,0]. Note that we
2274 are guaranteed to have vr0.type == vr1.type at this
2275 point. */
2276 if (code == MULT_EXPR
2277 && vr0.type == VR_ANTI_RANGE
2278 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
2279 {
2280 set_value_range_to_varying (vr);
2281 return;
2282 }
2283
2284 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2285 then drop to VR_VARYING. Outside of this range we get undefined
2286 behavior from the shift operation. We cannot even trust
2287 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2288 shifts, and the operation at the tree level may be widened. */
2289 if (code == RSHIFT_EXPR)
2290 {
2291 if (vr1.type == VR_ANTI_RANGE
2292 || !vrp_expr_computes_nonnegative (op1, &sop)
2293 || (operand_less_p
2294 (build_int_cst (TREE_TYPE (vr1.max),
2295 TYPE_PRECISION (expr_type) - 1),
2296 vr1.max) != 0))
2297 {
2298 set_value_range_to_varying (vr);
2299 return;
2300 }
2301 }
2302
2303 else if ((code == TRUNC_DIV_EXPR
2304 || code == FLOOR_DIV_EXPR
2305 || code == CEIL_DIV_EXPR
2306 || code == EXACT_DIV_EXPR
2307 || code == ROUND_DIV_EXPR)
2308 && (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
2309 {
2310 /* For division, if op1 has VR_RANGE but op0 does not, something
2311 can be deduced just from that range. Say [min, max] / [4, max]
2312 gives [min / 4, max / 4] range. */
2313 if (vr1.type == VR_RANGE
2314 && !symbolic_range_p (&vr1)
2315 && !range_includes_zero_p (&vr1))
2316 {
2317 vr0.type = type = VR_RANGE;
2318 vr0.min = vrp_val_min (TREE_TYPE (op0));
2319 vr0.max = vrp_val_max (TREE_TYPE (op1));
2320 }
2321 else
2322 {
2323 set_value_range_to_varying (vr);
2324 return;
2325 }
2326 }
2327
2328 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2329 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2330 include 0. */
2331 if ((code == TRUNC_DIV_EXPR
2332 || code == FLOOR_DIV_EXPR
2333 || code == CEIL_DIV_EXPR
2334 || code == EXACT_DIV_EXPR
2335 || code == ROUND_DIV_EXPR)
2336 && vr0.type == VR_RANGE
2337 && (vr1.type != VR_RANGE
2338 || symbolic_range_p (&vr1)
2339 || range_includes_zero_p (&vr1)))
2340 {
2341 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2342 int cmp;
2343
2344 sop = false;
2345 min = NULL_TREE;
2346 max = NULL_TREE;
2347 if (vrp_expr_computes_nonnegative (op1, &sop) && !sop)
2348 {
2349 /* For unsigned division or when divisor is known
2350 to be non-negative, the range has to cover
2351 all numbers from 0 to max for positive max
2352 and all numbers from min to 0 for negative min. */
2353 cmp = compare_values (vr0.max, zero);
2354 if (cmp == -1)
2355 max = zero;
2356 else if (cmp == 0 || cmp == 1)
2357 max = vr0.max;
2358 else
2359 type = VR_VARYING;
2360 cmp = compare_values (vr0.min, zero);
2361 if (cmp == 1)
2362 min = zero;
2363 else if (cmp == 0 || cmp == -1)
2364 min = vr0.min;
2365 else
2366 type = VR_VARYING;
2367 }
2368 else
2369 {
2370 /* Otherwise the range is -max .. max or min .. -min
2371 depending on which bound is bigger in absolute value,
2372 as the division can change the sign. */
2373 abs_extent_range (vr, vr0.min, vr0.max);
2374 return;
2375 }
2376 if (type == VR_VARYING)
2377 {
2378 set_value_range_to_varying (vr);
2379 return;
2380 }
2381 }
2382
2383 /* Multiplications and divisions are a bit tricky to handle,
2384 depending on the mix of signs we have in the two ranges, we
2385 need to operate on different values to get the minimum and
2386 maximum values for the new range. One approach is to figure
2387 out all the variations of range combinations and do the
2388 operations.
2389
2390 However, this involves several calls to compare_values and it
2391 is pretty convoluted. It's simpler to do the 4 operations
2392 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2393 MAX1) and then figure the smallest and largest values to form
2394 the new range. */
2395 else
2396 {
2397 gcc_assert ((vr0.type == VR_RANGE
2398 || (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
2399 && vr0.type == vr1.type);
2400
2401 /* Compute the 4 cross operations. */
2402 sop = false;
2403 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
2404 if (val[0] == NULL_TREE)
2405 sop = true;
2406
2407 if (vr1.max == vr1.min)
2408 val[1] = NULL_TREE;
2409 else
2410 {
2411 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2412 if (val[1] == NULL_TREE)
2413 sop = true;
2414 }
2415
2416 if (vr0.max == vr0.min)
2417 val[2] = NULL_TREE;
2418 else
2419 {
2420 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2421 if (val[2] == NULL_TREE)
2422 sop = true;
2423 }
2424
2425 if (vr0.min == vr0.max || vr1.min == vr1.max)
2426 val[3] = NULL_TREE;
2427 else
2428 {
2429 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2430 if (val[3] == NULL_TREE)
2431 sop = true;
2432 }
2433
2434 if (sop)
2435 {
2436 set_value_range_to_varying (vr);
2437 return;
2438 }
2439
2440 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2441 of VAL[i]. */
2442 min = val[0];
2443 max = val[0];
2444 for (i = 1; i < 4; i++)
2445 {
2446 if (!is_gimple_min_invariant (min)
2447 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2448 || !is_gimple_min_invariant (max)
2449 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2450 break;
2451
2452 if (val[i])
2453 {
2454 if (!is_gimple_min_invariant (val[i])
2455 || (TREE_OVERFLOW (val[i])
2456 && !is_overflow_infinity (val[i])))
2457 {
2458 /* If we found an overflowed value, set MIN and MAX
2459 to it so that we set the resulting range to
2460 VARYING. */
2461 min = max = val[i];
2462 break;
2463 }
2464
2465 if (compare_values (val[i], min) == -1)
2466 min = val[i];
2467
2468 if (compare_values (val[i], max) == 1)
2469 max = val[i];
2470 }
2471 }
2472 }
2473 }
2474 else if (code == MINUS_EXPR)
2475 {
2476 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2477 VR_VARYING. It would take more effort to compute a precise
2478 range for such a case. For example, if we have op0 == 1 and
2479 op1 == 1 with their ranges both being ~[0,0], we would have
2480 op0 - op1 == 0, so we cannot claim that the difference is in
2481 ~[0,0]. Note that we are guaranteed to have
2482 vr0.type == vr1.type at this point. */
2483 if (vr0.type == VR_ANTI_RANGE)
2484 {
2485 set_value_range_to_varying (vr);
2486 return;
2487 }
2488
2489 /* For MINUS_EXPR, apply the operation to the opposite ends of
2490 each range. */
2491 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2492 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2493 }
2494 else if (code == BIT_AND_EXPR)
2495 {
2496 if (vr0.type == VR_RANGE
2497 && vr0.min == vr0.max
2498 && TREE_CODE (vr0.max) == INTEGER_CST
2499 && !TREE_OVERFLOW (vr0.max)
2500 && tree_int_cst_sgn (vr0.max) >= 0)
2501 {
2502 min = build_int_cst (expr_type, 0);
2503 max = vr0.max;
2504 }
2505 else if (vr1.type == VR_RANGE
2506 && vr1.min == vr1.max
2507 && TREE_CODE (vr1.max) == INTEGER_CST
2508 && !TREE_OVERFLOW (vr1.max)
2509 && tree_int_cst_sgn (vr1.max) >= 0)
2510 {
2511 type = VR_RANGE;
2512 min = build_int_cst (expr_type, 0);
2513 max = vr1.max;
2514 }
2515 else
2516 {
2517 set_value_range_to_varying (vr);
2518 return;
2519 }
2520 }
2521 else if (code == BIT_IOR_EXPR)
2522 {
2523 if (vr0.type == VR_RANGE
2524 && vr1.type == VR_RANGE
2525 && TREE_CODE (vr0.min) == INTEGER_CST
2526 && TREE_CODE (vr1.min) == INTEGER_CST
2527 && TREE_CODE (vr0.max) == INTEGER_CST
2528 && TREE_CODE (vr1.max) == INTEGER_CST
2529 && tree_int_cst_sgn (vr0.min) >= 0
2530 && tree_int_cst_sgn (vr1.min) >= 0)
2531 {
2532 double_int vr0_max = tree_to_double_int (vr0.max);
2533 double_int vr1_max = tree_to_double_int (vr1.max);
2534 double_int ior_max;
2535
2536 /* Set all bits to the right of the most significant one to 1.
2537 For example, [0, 4] | [4, 4] = [4, 7]. */
2538 ior_max.low = vr0_max.low | vr1_max.low;
2539 ior_max.high = vr0_max.high | vr1_max.high;
2540 if (ior_max.high != 0)
2541 {
2542 ior_max.low = ~(unsigned HOST_WIDE_INT)0u;
2543 ior_max.high |= ((HOST_WIDE_INT) 1
2544 << floor_log2 (ior_max.high)) - 1;
2545 }
2546 else if (ior_max.low != 0)
2547 ior_max.low |= ((unsigned HOST_WIDE_INT) 1u
2548 << floor_log2 (ior_max.low)) - 1;
2549
2550 /* Both of these endpoints are conservative. */
2551 min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
2552 max = double_int_to_tree (expr_type, ior_max);
2553 }
2554 else
2555 {
2556 set_value_range_to_varying (vr);
2557 return;
2558 }
2559 }
2560 else
2561 gcc_unreachable ();
2562
2563 /* If either MIN or MAX overflowed, then set the resulting range to
2564 VARYING. But we do accept an overflow infinity
2565 representation. */
2566 if (min == NULL_TREE
2567 || !is_gimple_min_invariant (min)
2568 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2569 || max == NULL_TREE
2570 || !is_gimple_min_invariant (max)
2571 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2572 {
2573 set_value_range_to_varying (vr);
2574 return;
2575 }
2576
2577 /* We punt if:
2578 1) [-INF, +INF]
2579 2) [-INF, +-INF(OVF)]
2580 3) [+-INF(OVF), +INF]
2581 4) [+-INF(OVF), +-INF(OVF)]
2582 We learn nothing when we have INF and INF(OVF) on both sides.
2583 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2584 overflow. */
2585 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2586 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2587 {
2588 set_value_range_to_varying (vr);
2589 return;
2590 }
2591
2592 cmp = compare_values (min, max);
2593 if (cmp == -2 || cmp == 1)
2594 {
2595 /* If the new range has its limits swapped around (MIN > MAX),
2596 then the operation caused one of them to wrap around, mark
2597 the new range VARYING. */
2598 set_value_range_to_varying (vr);
2599 }
2600 else
2601 set_value_range (vr, type, min, max, NULL);
2602 }
2603
2604
2605 /* Extract range information from a unary expression EXPR based on
2606 the range of its operand and the expression code. */
2607
2608 static void
2609 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
2610 tree type, tree op0)
2611 {
2612 tree min, max;
2613 int cmp;
2614 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2615
2616 /* Refuse to operate on certain unary expressions for which we
2617 cannot easily determine a resulting range. */
2618 if (code == FIX_TRUNC_EXPR
2619 || code == FLOAT_EXPR
2620 || code == BIT_NOT_EXPR
2621 || code == CONJ_EXPR)
2622 {
2623 /* We can still do constant propagation here. */
2624 if ((op0 = op_with_constant_singleton_value_range (op0)) != NULL_TREE)
2625 {
2626 tree tem = fold_unary (code, type, op0);
2627 if (tem
2628 && is_gimple_min_invariant (tem)
2629 && !is_overflow_infinity (tem))
2630 {
2631 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2632 return;
2633 }
2634 }
2635 set_value_range_to_varying (vr);
2636 return;
2637 }
2638
2639 /* Get value ranges for the operand. For constant operands, create
2640 a new value range with the operand to simplify processing. */
2641 if (TREE_CODE (op0) == SSA_NAME)
2642 vr0 = *(get_value_range (op0));
2643 else if (is_gimple_min_invariant (op0))
2644 set_value_range_to_value (&vr0, op0, NULL);
2645 else
2646 set_value_range_to_varying (&vr0);
2647
2648 /* If VR0 is UNDEFINED, so is the result. */
2649 if (vr0.type == VR_UNDEFINED)
2650 {
2651 set_value_range_to_undefined (vr);
2652 return;
2653 }
2654
2655 /* Refuse to operate on symbolic ranges, or if neither operand is
2656 a pointer or integral type. */
2657 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2658 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2659 || (vr0.type != VR_VARYING
2660 && symbolic_range_p (&vr0)))
2661 {
2662 set_value_range_to_varying (vr);
2663 return;
2664 }
2665
2666 /* If the expression involves pointers, we are only interested in
2667 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2668 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
2669 {
2670 bool sop;
2671
2672 sop = false;
2673 if (range_is_nonnull (&vr0)
2674 || (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
2675 && !sop))
2676 set_value_range_to_nonnull (vr, type);
2677 else if (range_is_null (&vr0))
2678 set_value_range_to_null (vr, type);
2679 else
2680 set_value_range_to_varying (vr);
2681
2682 return;
2683 }
2684
2685 /* Handle unary expressions on integer ranges. */
2686 if (CONVERT_EXPR_CODE_P (code)
2687 && INTEGRAL_TYPE_P (type)
2688 && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2689 {
2690 tree inner_type = TREE_TYPE (op0);
2691 tree outer_type = type;
2692
2693 /* If VR0 is varying and we increase the type precision, assume
2694 a full range for the following transformation. */
2695 if (vr0.type == VR_VARYING
2696 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2697 {
2698 vr0.type = VR_RANGE;
2699 vr0.min = TYPE_MIN_VALUE (inner_type);
2700 vr0.max = TYPE_MAX_VALUE (inner_type);
2701 }
2702
2703 /* If VR0 is a constant range or anti-range and the conversion is
2704 not truncating we can convert the min and max values and
2705 canonicalize the resulting range. Otherwise we can do the
2706 conversion if the size of the range is less than what the
2707 precision of the target type can represent and the range is
2708 not an anti-range. */
2709 if ((vr0.type == VR_RANGE
2710 || vr0.type == VR_ANTI_RANGE)
2711 && TREE_CODE (vr0.min) == INTEGER_CST
2712 && TREE_CODE (vr0.max) == INTEGER_CST
2713 && !is_overflow_infinity (vr0.min)
2714 && !is_overflow_infinity (vr0.max)
2715 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2716 || (vr0.type == VR_RANGE
2717 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2718 int_const_binop (MINUS_EXPR, vr0.max, vr0.min, 0),
2719 size_int (TYPE_PRECISION (outer_type)), 0)))))
2720 {
2721 tree new_min, new_max;
2722 new_min = force_fit_type_double (outer_type,
2723 TREE_INT_CST_LOW (vr0.min),
2724 TREE_INT_CST_HIGH (vr0.min), 0, 0);
2725 new_max = force_fit_type_double (outer_type,
2726 TREE_INT_CST_LOW (vr0.max),
2727 TREE_INT_CST_HIGH (vr0.max), 0, 0);
2728 set_and_canonicalize_value_range (vr, vr0.type,
2729 new_min, new_max, NULL);
2730 return;
2731 }
2732
2733 set_value_range_to_varying (vr);
2734 return;
2735 }
2736
2737 /* Conversion of a VR_VARYING value to a wider type can result
2738 in a usable range. So wait until after we've handled conversions
2739 before dropping the result to VR_VARYING if we had a source
2740 operand that is VR_VARYING. */
2741 if (vr0.type == VR_VARYING)
2742 {
2743 set_value_range_to_varying (vr);
2744 return;
2745 }
2746
2747 /* Apply the operation to each end of the range and see what we end
2748 up with. */
2749 if (code == NEGATE_EXPR
2750 && !TYPE_UNSIGNED (type))
2751 {
2752 /* NEGATE_EXPR flips the range around. We need to treat
2753 TYPE_MIN_VALUE specially. */
2754 if (is_positive_overflow_infinity (vr0.max))
2755 min = negative_overflow_infinity (type);
2756 else if (is_negative_overflow_infinity (vr0.max))
2757 min = positive_overflow_infinity (type);
2758 else if (!vrp_val_is_min (vr0.max))
2759 min = fold_unary_to_constant (code, type, vr0.max);
2760 else if (needs_overflow_infinity (type))
2761 {
2762 if (supports_overflow_infinity (type)
2763 && !is_overflow_infinity (vr0.min)
2764 && !vrp_val_is_min (vr0.min))
2765 min = positive_overflow_infinity (type);
2766 else
2767 {
2768 set_value_range_to_varying (vr);
2769 return;
2770 }
2771 }
2772 else
2773 min = TYPE_MIN_VALUE (type);
2774
2775 if (is_positive_overflow_infinity (vr0.min))
2776 max = negative_overflow_infinity (type);
2777 else if (is_negative_overflow_infinity (vr0.min))
2778 max = positive_overflow_infinity (type);
2779 else if (!vrp_val_is_min (vr0.min))
2780 max = fold_unary_to_constant (code, type, vr0.min);
2781 else if (needs_overflow_infinity (type))
2782 {
2783 if (supports_overflow_infinity (type))
2784 max = positive_overflow_infinity (type);
2785 else
2786 {
2787 set_value_range_to_varying (vr);
2788 return;
2789 }
2790 }
2791 else
2792 max = TYPE_MIN_VALUE (type);
2793 }
2794 else if (code == NEGATE_EXPR
2795 && TYPE_UNSIGNED (type))
2796 {
2797 if (!range_includes_zero_p (&vr0))
2798 {
2799 max = fold_unary_to_constant (code, type, vr0.min);
2800 min = fold_unary_to_constant (code, type, vr0.max);
2801 }
2802 else
2803 {
2804 if (range_is_null (&vr0))
2805 set_value_range_to_null (vr, type);
2806 else
2807 set_value_range_to_varying (vr);
2808 return;
2809 }
2810 }
2811 else if (code == ABS_EXPR
2812 && !TYPE_UNSIGNED (type))
2813 {
2814 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2815 useful range. */
2816 if (!TYPE_OVERFLOW_UNDEFINED (type)
2817 && ((vr0.type == VR_RANGE
2818 && vrp_val_is_min (vr0.min))
2819 || (vr0.type == VR_ANTI_RANGE
2820 && !vrp_val_is_min (vr0.min)
2821 && !range_includes_zero_p (&vr0))))
2822 {
2823 set_value_range_to_varying (vr);
2824 return;
2825 }
2826
2827 /* ABS_EXPR may flip the range around, if the original range
2828 included negative values. */
2829 if (is_overflow_infinity (vr0.min))
2830 min = positive_overflow_infinity (type);
2831 else if (!vrp_val_is_min (vr0.min))
2832 min = fold_unary_to_constant (code, type, vr0.min);
2833 else if (!needs_overflow_infinity (type))
2834 min = TYPE_MAX_VALUE (type);
2835 else if (supports_overflow_infinity (type))
2836 min = positive_overflow_infinity (type);
2837 else
2838 {
2839 set_value_range_to_varying (vr);
2840 return;
2841 }
2842
2843 if (is_overflow_infinity (vr0.max))
2844 max = positive_overflow_infinity (type);
2845 else if (!vrp_val_is_min (vr0.max))
2846 max = fold_unary_to_constant (code, type, vr0.max);
2847 else if (!needs_overflow_infinity (type))
2848 max = TYPE_MAX_VALUE (type);
2849 else if (supports_overflow_infinity (type)
2850 /* We shouldn't generate [+INF, +INF] as set_value_range
2851 doesn't like this and ICEs. */
2852 && !is_positive_overflow_infinity (min))
2853 max = positive_overflow_infinity (type);
2854 else
2855 {
2856 set_value_range_to_varying (vr);
2857 return;
2858 }
2859
2860 cmp = compare_values (min, max);
2861
2862 /* If a VR_ANTI_RANGEs contains zero, then we have
2863 ~[-INF, min(MIN, MAX)]. */
2864 if (vr0.type == VR_ANTI_RANGE)
2865 {
2866 if (range_includes_zero_p (&vr0))
2867 {
2868 /* Take the lower of the two values. */
2869 if (cmp != 1)
2870 max = min;
2871
2872 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2873 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2874 flag_wrapv is set and the original anti-range doesn't include
2875 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2876 if (TYPE_OVERFLOW_WRAPS (type))
2877 {
2878 tree type_min_value = TYPE_MIN_VALUE (type);
2879
2880 min = (vr0.min != type_min_value
2881 ? int_const_binop (PLUS_EXPR, type_min_value,
2882 integer_one_node, 0)
2883 : type_min_value);
2884 }
2885 else
2886 {
2887 if (overflow_infinity_range_p (&vr0))
2888 min = negative_overflow_infinity (type);
2889 else
2890 min = TYPE_MIN_VALUE (type);
2891 }
2892 }
2893 else
2894 {
2895 /* All else has failed, so create the range [0, INF], even for
2896 flag_wrapv since TYPE_MIN_VALUE is in the original
2897 anti-range. */
2898 vr0.type = VR_RANGE;
2899 min = build_int_cst (type, 0);
2900 if (needs_overflow_infinity (type))
2901 {
2902 if (supports_overflow_infinity (type))
2903 max = positive_overflow_infinity (type);
2904 else
2905 {
2906 set_value_range_to_varying (vr);
2907 return;
2908 }
2909 }
2910 else
2911 max = TYPE_MAX_VALUE (type);
2912 }
2913 }
2914
2915 /* If the range contains zero then we know that the minimum value in the
2916 range will be zero. */
2917 else if (range_includes_zero_p (&vr0))
2918 {
2919 if (cmp == 1)
2920 max = min;
2921 min = build_int_cst (type, 0);
2922 }
2923 else
2924 {
2925 /* If the range was reversed, swap MIN and MAX. */
2926 if (cmp == 1)
2927 {
2928 tree t = min;
2929 min = max;
2930 max = t;
2931 }
2932 }
2933 }
2934 else
2935 {
2936 /* Otherwise, operate on each end of the range. */
2937 min = fold_unary_to_constant (code, type, vr0.min);
2938 max = fold_unary_to_constant (code, type, vr0.max);
2939
2940 if (needs_overflow_infinity (type))
2941 {
2942 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2943
2944 /* If both sides have overflowed, we don't know
2945 anything. */
2946 if ((is_overflow_infinity (vr0.min)
2947 || TREE_OVERFLOW (min))
2948 && (is_overflow_infinity (vr0.max)
2949 || TREE_OVERFLOW (max)))
2950 {
2951 set_value_range_to_varying (vr);
2952 return;
2953 }
2954
2955 if (is_overflow_infinity (vr0.min))
2956 min = vr0.min;
2957 else if (TREE_OVERFLOW (min))
2958 {
2959 if (supports_overflow_infinity (type))
2960 min = (tree_int_cst_sgn (min) >= 0
2961 ? positive_overflow_infinity (TREE_TYPE (min))
2962 : negative_overflow_infinity (TREE_TYPE (min)));
2963 else
2964 {
2965 set_value_range_to_varying (vr);
2966 return;
2967 }
2968 }
2969
2970 if (is_overflow_infinity (vr0.max))
2971 max = vr0.max;
2972 else if (TREE_OVERFLOW (max))
2973 {
2974 if (supports_overflow_infinity (type))
2975 max = (tree_int_cst_sgn (max) >= 0
2976 ? positive_overflow_infinity (TREE_TYPE (max))
2977 : negative_overflow_infinity (TREE_TYPE (max)));
2978 else
2979 {
2980 set_value_range_to_varying (vr);
2981 return;
2982 }
2983 }
2984 }
2985 }
2986
2987 cmp = compare_values (min, max);
2988 if (cmp == -2 || cmp == 1)
2989 {
2990 /* If the new range has its limits swapped around (MIN > MAX),
2991 then the operation caused one of them to wrap around, mark
2992 the new range VARYING. */
2993 set_value_range_to_varying (vr);
2994 }
2995 else
2996 set_value_range (vr, vr0.type, min, max, NULL);
2997 }
2998
2999
3000 /* Extract range information from a conditional expression EXPR based on
3001 the ranges of each of its operands and the expression code. */
3002
3003 static void
3004 extract_range_from_cond_expr (value_range_t *vr, tree expr)
3005 {
3006 tree op0, op1;
3007 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3008 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3009
3010 /* Get value ranges for each operand. For constant operands, create
3011 a new value range with the operand to simplify processing. */
3012 op0 = COND_EXPR_THEN (expr);
3013 if (TREE_CODE (op0) == SSA_NAME)
3014 vr0 = *(get_value_range (op0));
3015 else if (is_gimple_min_invariant (op0))
3016 set_value_range_to_value (&vr0, op0, NULL);
3017 else
3018 set_value_range_to_varying (&vr0);
3019
3020 op1 = COND_EXPR_ELSE (expr);
3021 if (TREE_CODE (op1) == SSA_NAME)
3022 vr1 = *(get_value_range (op1));
3023 else if (is_gimple_min_invariant (op1))
3024 set_value_range_to_value (&vr1, op1, NULL);
3025 else
3026 set_value_range_to_varying (&vr1);
3027
3028 /* The resulting value range is the union of the operand ranges */
3029 vrp_meet (&vr0, &vr1);
3030 copy_value_range (vr, &vr0);
3031 }
3032
3033
3034 /* Extract range information from a comparison expression EXPR based
3035 on the range of its operand and the expression code. */
3036
3037 static void
3038 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3039 tree type, tree op0, tree op1)
3040 {
3041 bool sop = false;
3042 tree val;
3043
3044 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3045 NULL);
3046
3047 /* A disadvantage of using a special infinity as an overflow
3048 representation is that we lose the ability to record overflow
3049 when we don't have an infinity. So we have to ignore a result
3050 which relies on overflow. */
3051
3052 if (val && !is_overflow_infinity (val) && !sop)
3053 {
3054 /* Since this expression was found on the RHS of an assignment,
3055 its type may be different from _Bool. Convert VAL to EXPR's
3056 type. */
3057 val = fold_convert (type, val);
3058 if (is_gimple_min_invariant (val))
3059 set_value_range_to_value (vr, val, vr->equiv);
3060 else
3061 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3062 }
3063 else
3064 /* The result of a comparison is always true or false. */
3065 set_value_range_to_truthvalue (vr, type);
3066 }
3067
3068 /* Try to derive a nonnegative or nonzero range out of STMT relying
3069 primarily on generic routines in fold in conjunction with range data.
3070 Store the result in *VR */
3071
3072 static void
3073 extract_range_basic (value_range_t *vr, gimple stmt)
3074 {
3075 bool sop = false;
3076 tree type = gimple_expr_type (stmt);
3077
3078 if (INTEGRAL_TYPE_P (type)
3079 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3080 set_value_range_to_nonnegative (vr, type,
3081 sop || stmt_overflow_infinity (stmt));
3082 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3083 && !sop)
3084 set_value_range_to_nonnull (vr, type);
3085 else
3086 set_value_range_to_varying (vr);
3087 }
3088
3089
3090 /* Try to compute a useful range out of assignment STMT and store it
3091 in *VR. */
3092
3093 static void
3094 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3095 {
3096 enum tree_code code = gimple_assign_rhs_code (stmt);
3097
3098 if (code == ASSERT_EXPR)
3099 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3100 else if (code == SSA_NAME)
3101 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3102 else if (TREE_CODE_CLASS (code) == tcc_binary
3103 || code == TRUTH_AND_EXPR
3104 || code == TRUTH_OR_EXPR
3105 || code == TRUTH_XOR_EXPR)
3106 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3107 gimple_expr_type (stmt),
3108 gimple_assign_rhs1 (stmt),
3109 gimple_assign_rhs2 (stmt));
3110 else if (TREE_CODE_CLASS (code) == tcc_unary)
3111 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3112 gimple_expr_type (stmt),
3113 gimple_assign_rhs1 (stmt));
3114 else if (code == COND_EXPR)
3115 extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
3116 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3117 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3118 gimple_expr_type (stmt),
3119 gimple_assign_rhs1 (stmt),
3120 gimple_assign_rhs2 (stmt));
3121 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3122 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3123 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3124 else
3125 set_value_range_to_varying (vr);
3126
3127 if (vr->type == VR_VARYING)
3128 extract_range_basic (vr, stmt);
3129 }
3130
3131 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3132 would be profitable to adjust VR using scalar evolution information
3133 for VAR. If so, update VR with the new limits. */
3134
3135 static void
3136 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3137 gimple stmt, tree var)
3138 {
3139 tree init, step, chrec, tmin, tmax, min, max, type;
3140 enum ev_direction dir;
3141
3142 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3143 better opportunities than a regular range, but I'm not sure. */
3144 if (vr->type == VR_ANTI_RANGE)
3145 return;
3146
3147 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3148
3149 /* Like in PR19590, scev can return a constant function. */
3150 if (is_gimple_min_invariant (chrec))
3151 {
3152 set_value_range_to_value (vr, chrec, vr->equiv);
3153 return;
3154 }
3155
3156 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3157 return;
3158
3159 init = initial_condition_in_loop_num (chrec, loop->num);
3160 step = evolution_part_in_loop_num (chrec, loop->num);
3161
3162 /* If STEP is symbolic, we can't know whether INIT will be the
3163 minimum or maximum value in the range. Also, unless INIT is
3164 a simple expression, compare_values and possibly other functions
3165 in tree-vrp won't be able to handle it. */
3166 if (step == NULL_TREE
3167 || !is_gimple_min_invariant (step)
3168 || !valid_value_p (init))
3169 return;
3170
3171 dir = scev_direction (chrec);
3172 if (/* Do not adjust ranges if we do not know whether the iv increases
3173 or decreases, ... */
3174 dir == EV_DIR_UNKNOWN
3175 /* ... or if it may wrap. */
3176 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3177 true))
3178 return;
3179
3180 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3181 negative_overflow_infinity and positive_overflow_infinity,
3182 because we have concluded that the loop probably does not
3183 wrap. */
3184
3185 type = TREE_TYPE (var);
3186 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3187 tmin = lower_bound_in_type (type, type);
3188 else
3189 tmin = TYPE_MIN_VALUE (type);
3190 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3191 tmax = upper_bound_in_type (type, type);
3192 else
3193 tmax = TYPE_MAX_VALUE (type);
3194
3195 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3196 {
3197 min = tmin;
3198 max = tmax;
3199
3200 /* For VARYING or UNDEFINED ranges, just about anything we get
3201 from scalar evolutions should be better. */
3202
3203 if (dir == EV_DIR_DECREASES)
3204 max = init;
3205 else
3206 min = init;
3207
3208 /* If we would create an invalid range, then just assume we
3209 know absolutely nothing. This may be over-conservative,
3210 but it's clearly safe, and should happen only in unreachable
3211 parts of code, or for invalid programs. */
3212 if (compare_values (min, max) == 1)
3213 return;
3214
3215 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3216 }
3217 else if (vr->type == VR_RANGE)
3218 {
3219 min = vr->min;
3220 max = vr->max;
3221
3222 if (dir == EV_DIR_DECREASES)
3223 {
3224 /* INIT is the maximum value. If INIT is lower than VR->MAX
3225 but no smaller than VR->MIN, set VR->MAX to INIT. */
3226 if (compare_values (init, max) == -1)
3227 {
3228 max = init;
3229
3230 /* If we just created an invalid range with the minimum
3231 greater than the maximum, we fail conservatively.
3232 This should happen only in unreachable
3233 parts of code, or for invalid programs. */
3234 if (compare_values (min, max) == 1)
3235 return;
3236 }
3237
3238 /* According to the loop information, the variable does not
3239 overflow. If we think it does, probably because of an
3240 overflow due to arithmetic on a different INF value,
3241 reset now. */
3242 if (is_negative_overflow_infinity (min))
3243 min = tmin;
3244 }
3245 else
3246 {
3247 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3248 if (compare_values (init, min) == 1)
3249 {
3250 min = init;
3251
3252 /* Again, avoid creating invalid range by failing. */
3253 if (compare_values (min, max) == 1)
3254 return;
3255 }
3256
3257 if (is_positive_overflow_infinity (max))
3258 max = tmax;
3259 }
3260
3261 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3262 }
3263 }
3264
3265 /* Return true if VAR may overflow at STMT. This checks any available
3266 loop information to see if we can determine that VAR does not
3267 overflow. */
3268
3269 static bool
3270 vrp_var_may_overflow (tree var, gimple stmt)
3271 {
3272 struct loop *l;
3273 tree chrec, init, step;
3274
3275 if (current_loops == NULL)
3276 return true;
3277
3278 l = loop_containing_stmt (stmt);
3279 if (l == NULL)
3280 return true;
3281
3282 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3283 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3284 return true;
3285
3286 init = initial_condition_in_loop_num (chrec, l->num);
3287 step = evolution_part_in_loop_num (chrec, l->num);
3288
3289 if (step == NULL_TREE
3290 || !is_gimple_min_invariant (step)
3291 || !valid_value_p (init))
3292 return true;
3293
3294 /* If we get here, we know something useful about VAR based on the
3295 loop information. If it wraps, it may overflow. */
3296
3297 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3298 true))
3299 return true;
3300
3301 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3302 {
3303 print_generic_expr (dump_file, var, 0);
3304 fprintf (dump_file, ": loop information indicates does not overflow\n");
3305 }
3306
3307 return false;
3308 }
3309
3310
3311 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3312
3313 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3314 all the values in the ranges.
3315
3316 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3317
3318 - Return NULL_TREE if it is not always possible to determine the
3319 value of the comparison.
3320
3321 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3322 overflow infinity was used in the test. */
3323
3324
3325 static tree
3326 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3327 bool *strict_overflow_p)
3328 {
3329 /* VARYING or UNDEFINED ranges cannot be compared. */
3330 if (vr0->type == VR_VARYING
3331 || vr0->type == VR_UNDEFINED
3332 || vr1->type == VR_VARYING
3333 || vr1->type == VR_UNDEFINED)
3334 return NULL_TREE;
3335
3336 /* Anti-ranges need to be handled separately. */
3337 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3338 {
3339 /* If both are anti-ranges, then we cannot compute any
3340 comparison. */
3341 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3342 return NULL_TREE;
3343
3344 /* These comparisons are never statically computable. */
3345 if (comp == GT_EXPR
3346 || comp == GE_EXPR
3347 || comp == LT_EXPR
3348 || comp == LE_EXPR)
3349 return NULL_TREE;
3350
3351 /* Equality can be computed only between a range and an
3352 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3353 if (vr0->type == VR_RANGE)
3354 {
3355 /* To simplify processing, make VR0 the anti-range. */
3356 value_range_t *tmp = vr0;
3357 vr0 = vr1;
3358 vr1 = tmp;
3359 }
3360
3361 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3362
3363 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3364 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3365 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3366
3367 return NULL_TREE;
3368 }
3369
3370 if (!usable_range_p (vr0, strict_overflow_p)
3371 || !usable_range_p (vr1, strict_overflow_p))
3372 return NULL_TREE;
3373
3374 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3375 operands around and change the comparison code. */
3376 if (comp == GT_EXPR || comp == GE_EXPR)
3377 {
3378 value_range_t *tmp;
3379 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3380 tmp = vr0;
3381 vr0 = vr1;
3382 vr1 = tmp;
3383 }
3384
3385 if (comp == EQ_EXPR)
3386 {
3387 /* Equality may only be computed if both ranges represent
3388 exactly one value. */
3389 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3390 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3391 {
3392 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3393 strict_overflow_p);
3394 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3395 strict_overflow_p);
3396 if (cmp_min == 0 && cmp_max == 0)
3397 return boolean_true_node;
3398 else if (cmp_min != -2 && cmp_max != -2)
3399 return boolean_false_node;
3400 }
3401 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3402 else if (compare_values_warnv (vr0->min, vr1->max,
3403 strict_overflow_p) == 1
3404 || compare_values_warnv (vr1->min, vr0->max,
3405 strict_overflow_p) == 1)
3406 return boolean_false_node;
3407
3408 return NULL_TREE;
3409 }
3410 else if (comp == NE_EXPR)
3411 {
3412 int cmp1, cmp2;
3413
3414 /* If VR0 is completely to the left or completely to the right
3415 of VR1, they are always different. Notice that we need to
3416 make sure that both comparisons yield similar results to
3417 avoid comparing values that cannot be compared at
3418 compile-time. */
3419 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3420 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3421 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3422 return boolean_true_node;
3423
3424 /* If VR0 and VR1 represent a single value and are identical,
3425 return false. */
3426 else if (compare_values_warnv (vr0->min, vr0->max,
3427 strict_overflow_p) == 0
3428 && compare_values_warnv (vr1->min, vr1->max,
3429 strict_overflow_p) == 0
3430 && compare_values_warnv (vr0->min, vr1->min,
3431 strict_overflow_p) == 0
3432 && compare_values_warnv (vr0->max, vr1->max,
3433 strict_overflow_p) == 0)
3434 return boolean_false_node;
3435
3436 /* Otherwise, they may or may not be different. */
3437 else
3438 return NULL_TREE;
3439 }
3440 else if (comp == LT_EXPR || comp == LE_EXPR)
3441 {
3442 int tst;
3443
3444 /* If VR0 is to the left of VR1, return true. */
3445 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3446 if ((comp == LT_EXPR && tst == -1)
3447 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3448 {
3449 if (overflow_infinity_range_p (vr0)
3450 || overflow_infinity_range_p (vr1))
3451 *strict_overflow_p = true;
3452 return boolean_true_node;
3453 }
3454
3455 /* If VR0 is to the right of VR1, return false. */
3456 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3457 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3458 || (comp == LE_EXPR && tst == 1))
3459 {
3460 if (overflow_infinity_range_p (vr0)
3461 || overflow_infinity_range_p (vr1))
3462 *strict_overflow_p = true;
3463 return boolean_false_node;
3464 }
3465
3466 /* Otherwise, we don't know. */
3467 return NULL_TREE;
3468 }
3469
3470 gcc_unreachable ();
3471 }
3472
3473
3474 /* Given a value range VR, a value VAL and a comparison code COMP, return
3475 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3476 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3477 always returns false. Return NULL_TREE if it is not always
3478 possible to determine the value of the comparison. Also set
3479 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3480 infinity was used in the test. */
3481
3482 static tree
3483 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3484 bool *strict_overflow_p)
3485 {
3486 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3487 return NULL_TREE;
3488
3489 /* Anti-ranges need to be handled separately. */
3490 if (vr->type == VR_ANTI_RANGE)
3491 {
3492 /* For anti-ranges, the only predicates that we can compute at
3493 compile time are equality and inequality. */
3494 if (comp == GT_EXPR
3495 || comp == GE_EXPR
3496 || comp == LT_EXPR
3497 || comp == LE_EXPR)
3498 return NULL_TREE;
3499
3500 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3501 if (value_inside_range (val, vr) == 1)
3502 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3503
3504 return NULL_TREE;
3505 }
3506
3507 if (!usable_range_p (vr, strict_overflow_p))
3508 return NULL_TREE;
3509
3510 if (comp == EQ_EXPR)
3511 {
3512 /* EQ_EXPR may only be computed if VR represents exactly
3513 one value. */
3514 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3515 {
3516 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3517 if (cmp == 0)
3518 return boolean_true_node;
3519 else if (cmp == -1 || cmp == 1 || cmp == 2)
3520 return boolean_false_node;
3521 }
3522 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3523 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3524 return boolean_false_node;
3525
3526 return NULL_TREE;
3527 }
3528 else if (comp == NE_EXPR)
3529 {
3530 /* If VAL is not inside VR, then they are always different. */
3531 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3532 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3533 return boolean_true_node;
3534
3535 /* If VR represents exactly one value equal to VAL, then return
3536 false. */
3537 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3538 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3539 return boolean_false_node;
3540
3541 /* Otherwise, they may or may not be different. */
3542 return NULL_TREE;
3543 }
3544 else if (comp == LT_EXPR || comp == LE_EXPR)
3545 {
3546 int tst;
3547
3548 /* If VR is to the left of VAL, return true. */
3549 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3550 if ((comp == LT_EXPR && tst == -1)
3551 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3552 {
3553 if (overflow_infinity_range_p (vr))
3554 *strict_overflow_p = true;
3555 return boolean_true_node;
3556 }
3557
3558 /* If VR is to the right of VAL, return false. */
3559 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3560 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3561 || (comp == LE_EXPR && tst == 1))
3562 {
3563 if (overflow_infinity_range_p (vr))
3564 *strict_overflow_p = true;
3565 return boolean_false_node;
3566 }
3567
3568 /* Otherwise, we don't know. */
3569 return NULL_TREE;
3570 }
3571 else if (comp == GT_EXPR || comp == GE_EXPR)
3572 {
3573 int tst;
3574
3575 /* If VR is to the right of VAL, return true. */
3576 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3577 if ((comp == GT_EXPR && tst == 1)
3578 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3579 {
3580 if (overflow_infinity_range_p (vr))
3581 *strict_overflow_p = true;
3582 return boolean_true_node;
3583 }
3584
3585 /* If VR is to the left of VAL, return false. */
3586 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3587 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3588 || (comp == GE_EXPR && tst == -1))
3589 {
3590 if (overflow_infinity_range_p (vr))
3591 *strict_overflow_p = true;
3592 return boolean_false_node;
3593 }
3594
3595 /* Otherwise, we don't know. */
3596 return NULL_TREE;
3597 }
3598
3599 gcc_unreachable ();
3600 }
3601
3602
3603 /* Debugging dumps. */
3604
3605 void dump_value_range (FILE *, value_range_t *);
3606 void debug_value_range (value_range_t *);
3607 void dump_all_value_ranges (FILE *);
3608 void debug_all_value_ranges (void);
3609 void dump_vr_equiv (FILE *, bitmap);
3610 void debug_vr_equiv (bitmap);
3611
3612
3613 /* Dump value range VR to FILE. */
3614
3615 void
3616 dump_value_range (FILE *file, value_range_t *vr)
3617 {
3618 if (vr == NULL)
3619 fprintf (file, "[]");
3620 else if (vr->type == VR_UNDEFINED)
3621 fprintf (file, "UNDEFINED");
3622 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3623 {
3624 tree type = TREE_TYPE (vr->min);
3625
3626 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3627
3628 if (is_negative_overflow_infinity (vr->min))
3629 fprintf (file, "-INF(OVF)");
3630 else if (INTEGRAL_TYPE_P (type)
3631 && !TYPE_UNSIGNED (type)
3632 && vrp_val_is_min (vr->min))
3633 fprintf (file, "-INF");
3634 else
3635 print_generic_expr (file, vr->min, 0);
3636
3637 fprintf (file, ", ");
3638
3639 if (is_positive_overflow_infinity (vr->max))
3640 fprintf (file, "+INF(OVF)");
3641 else if (INTEGRAL_TYPE_P (type)
3642 && vrp_val_is_max (vr->max))
3643 fprintf (file, "+INF");
3644 else
3645 print_generic_expr (file, vr->max, 0);
3646
3647 fprintf (file, "]");
3648
3649 if (vr->equiv)
3650 {
3651 bitmap_iterator bi;
3652 unsigned i, c = 0;
3653
3654 fprintf (file, " EQUIVALENCES: { ");
3655
3656 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3657 {
3658 print_generic_expr (file, ssa_name (i), 0);
3659 fprintf (file, " ");
3660 c++;
3661 }
3662
3663 fprintf (file, "} (%u elements)", c);
3664 }
3665 }
3666 else if (vr->type == VR_VARYING)
3667 fprintf (file, "VARYING");
3668 else
3669 fprintf (file, "INVALID RANGE");
3670 }
3671
3672
3673 /* Dump value range VR to stderr. */
3674
3675 void
3676 debug_value_range (value_range_t *vr)
3677 {
3678 dump_value_range (stderr, vr);
3679 fprintf (stderr, "\n");
3680 }
3681
3682
3683 /* Dump value ranges of all SSA_NAMEs to FILE. */
3684
3685 void
3686 dump_all_value_ranges (FILE *file)
3687 {
3688 size_t i;
3689
3690 for (i = 0; i < num_ssa_names; i++)
3691 {
3692 if (vr_value[i])
3693 {
3694 print_generic_expr (file, ssa_name (i), 0);
3695 fprintf (file, ": ");
3696 dump_value_range (file, vr_value[i]);
3697 fprintf (file, "\n");
3698 }
3699 }
3700
3701 fprintf (file, "\n");
3702 }
3703
3704
3705 /* Dump all value ranges to stderr. */
3706
3707 void
3708 debug_all_value_ranges (void)
3709 {
3710 dump_all_value_ranges (stderr);
3711 }
3712
3713
3714 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3715 create a new SSA name N and return the assertion assignment
3716 'V = ASSERT_EXPR <V, V OP W>'. */
3717
3718 static gimple
3719 build_assert_expr_for (tree cond, tree v)
3720 {
3721 tree n;
3722 gimple assertion;
3723
3724 gcc_assert (TREE_CODE (v) == SSA_NAME);
3725 n = duplicate_ssa_name (v, NULL);
3726
3727 if (COMPARISON_CLASS_P (cond))
3728 {
3729 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3730 assertion = gimple_build_assign (n, a);
3731 }
3732 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3733 {
3734 /* Given !V, build the assignment N = false. */
3735 tree op0 = TREE_OPERAND (cond, 0);
3736 gcc_assert (op0 == v);
3737 assertion = gimple_build_assign (n, boolean_false_node);
3738 }
3739 else if (TREE_CODE (cond) == SSA_NAME)
3740 {
3741 /* Given V, build the assignment N = true. */
3742 gcc_assert (v == cond);
3743 assertion = gimple_build_assign (n, boolean_true_node);
3744 }
3745 else
3746 gcc_unreachable ();
3747
3748 SSA_NAME_DEF_STMT (n) = assertion;
3749
3750 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3751 operand of the ASSERT_EXPR. Register the new name and the old one
3752 in the replacement table so that we can fix the SSA web after
3753 adding all the ASSERT_EXPRs. */
3754 register_new_name_mapping (n, v);
3755
3756 return assertion;
3757 }
3758
3759
3760 /* Return false if EXPR is a predicate expression involving floating
3761 point values. */
3762
3763 static inline bool
3764 fp_predicate (gimple stmt)
3765 {
3766 GIMPLE_CHECK (stmt, GIMPLE_COND);
3767
3768 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
3769 }
3770
3771
3772 /* If the range of values taken by OP can be inferred after STMT executes,
3773 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3774 describes the inferred range. Return true if a range could be
3775 inferred. */
3776
3777 static bool
3778 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3779 {
3780 *val_p = NULL_TREE;
3781 *comp_code_p = ERROR_MARK;
3782
3783 /* Do not attempt to infer anything in names that flow through
3784 abnormal edges. */
3785 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3786 return false;
3787
3788 /* Similarly, don't infer anything from statements that may throw
3789 exceptions. */
3790 if (stmt_could_throw_p (stmt))
3791 return false;
3792
3793 /* If STMT is the last statement of a basic block with no
3794 successors, there is no point inferring anything about any of its
3795 operands. We would not be able to find a proper insertion point
3796 for the assertion, anyway. */
3797 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
3798 return false;
3799
3800 /* We can only assume that a pointer dereference will yield
3801 non-NULL if -fdelete-null-pointer-checks is enabled. */
3802 if (flag_delete_null_pointer_checks
3803 && POINTER_TYPE_P (TREE_TYPE (op))
3804 && gimple_code (stmt) != GIMPLE_ASM)
3805 {
3806 unsigned num_uses, num_loads, num_stores;
3807
3808 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
3809 if (num_loads + num_stores > 0)
3810 {
3811 *val_p = build_int_cst (TREE_TYPE (op), 0);
3812 *comp_code_p = NE_EXPR;
3813 return true;
3814 }
3815 }
3816
3817 return false;
3818 }
3819
3820
3821 void dump_asserts_for (FILE *, tree);
3822 void debug_asserts_for (tree);
3823 void dump_all_asserts (FILE *);
3824 void debug_all_asserts (void);
3825
3826 /* Dump all the registered assertions for NAME to FILE. */
3827
3828 void
3829 dump_asserts_for (FILE *file, tree name)
3830 {
3831 assert_locus_t loc;
3832
3833 fprintf (file, "Assertions to be inserted for ");
3834 print_generic_expr (file, name, 0);
3835 fprintf (file, "\n");
3836
3837 loc = asserts_for[SSA_NAME_VERSION (name)];
3838 while (loc)
3839 {
3840 fprintf (file, "\t");
3841 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
3842 fprintf (file, "\n\tBB #%d", loc->bb->index);
3843 if (loc->e)
3844 {
3845 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3846 loc->e->dest->index);
3847 dump_edge_info (file, loc->e, 0);
3848 }
3849 fprintf (file, "\n\tPREDICATE: ");
3850 print_generic_expr (file, name, 0);
3851 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3852 print_generic_expr (file, loc->val, 0);
3853 fprintf (file, "\n\n");
3854 loc = loc->next;
3855 }
3856
3857 fprintf (file, "\n");
3858 }
3859
3860
3861 /* Dump all the registered assertions for NAME to stderr. */
3862
3863 void
3864 debug_asserts_for (tree name)
3865 {
3866 dump_asserts_for (stderr, name);
3867 }
3868
3869
3870 /* Dump all the registered assertions for all the names to FILE. */
3871
3872 void
3873 dump_all_asserts (FILE *file)
3874 {
3875 unsigned i;
3876 bitmap_iterator bi;
3877
3878 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3879 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3880 dump_asserts_for (file, ssa_name (i));
3881 fprintf (file, "\n");
3882 }
3883
3884
3885 /* Dump all the registered assertions for all the names to stderr. */
3886
3887 void
3888 debug_all_asserts (void)
3889 {
3890 dump_all_asserts (stderr);
3891 }
3892
3893
3894 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3895 'EXPR COMP_CODE VAL' at a location that dominates block BB or
3896 E->DEST, then register this location as a possible insertion point
3897 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
3898
3899 BB, E and SI provide the exact insertion point for the new
3900 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3901 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3902 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3903 must not be NULL. */
3904
3905 static void
3906 register_new_assert_for (tree name, tree expr,
3907 enum tree_code comp_code,
3908 tree val,
3909 basic_block bb,
3910 edge e,
3911 gimple_stmt_iterator si)
3912 {
3913 assert_locus_t n, loc, last_loc;
3914 basic_block dest_bb;
3915
3916 #if defined ENABLE_CHECKING
3917 gcc_assert (bb == NULL || e == NULL);
3918
3919 if (e == NULL)
3920 gcc_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
3921 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
3922 #endif
3923
3924 /* Never build an assert comparing against an integer constant with
3925 TREE_OVERFLOW set. This confuses our undefined overflow warning
3926 machinery. */
3927 if (TREE_CODE (val) == INTEGER_CST
3928 && TREE_OVERFLOW (val))
3929 val = build_int_cst_wide (TREE_TYPE (val),
3930 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
3931
3932 /* The new assertion A will be inserted at BB or E. We need to
3933 determine if the new location is dominated by a previously
3934 registered location for A. If we are doing an edge insertion,
3935 assume that A will be inserted at E->DEST. Note that this is not
3936 necessarily true.
3937
3938 If E is a critical edge, it will be split. But even if E is
3939 split, the new block will dominate the same set of blocks that
3940 E->DEST dominates.
3941
3942 The reverse, however, is not true, blocks dominated by E->DEST
3943 will not be dominated by the new block created to split E. So,
3944 if the insertion location is on a critical edge, we will not use
3945 the new location to move another assertion previously registered
3946 at a block dominated by E->DEST. */
3947 dest_bb = (bb) ? bb : e->dest;
3948
3949 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3950 VAL at a block dominating DEST_BB, then we don't need to insert a new
3951 one. Similarly, if the same assertion already exists at a block
3952 dominated by DEST_BB and the new location is not on a critical
3953 edge, then update the existing location for the assertion (i.e.,
3954 move the assertion up in the dominance tree).
3955
3956 Note, this is implemented as a simple linked list because there
3957 should not be more than a handful of assertions registered per
3958 name. If this becomes a performance problem, a table hashed by
3959 COMP_CODE and VAL could be implemented. */
3960 loc = asserts_for[SSA_NAME_VERSION (name)];
3961 last_loc = loc;
3962 while (loc)
3963 {
3964 if (loc->comp_code == comp_code
3965 && (loc->val == val
3966 || operand_equal_p (loc->val, val, 0))
3967 && (loc->expr == expr
3968 || operand_equal_p (loc->expr, expr, 0)))
3969 {
3970 /* If the assertion NAME COMP_CODE VAL has already been
3971 registered at a basic block that dominates DEST_BB, then
3972 we don't need to insert the same assertion again. Note
3973 that we don't check strict dominance here to avoid
3974 replicating the same assertion inside the same basic
3975 block more than once (e.g., when a pointer is
3976 dereferenced several times inside a block).
3977
3978 An exception to this rule are edge insertions. If the
3979 new assertion is to be inserted on edge E, then it will
3980 dominate all the other insertions that we may want to
3981 insert in DEST_BB. So, if we are doing an edge
3982 insertion, don't do this dominance check. */
3983 if (e == NULL
3984 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3985 return;
3986
3987 /* Otherwise, if E is not a critical edge and DEST_BB
3988 dominates the existing location for the assertion, move
3989 the assertion up in the dominance tree by updating its
3990 location information. */
3991 if ((e == NULL || !EDGE_CRITICAL_P (e))
3992 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3993 {
3994 loc->bb = dest_bb;
3995 loc->e = e;
3996 loc->si = si;
3997 return;
3998 }
3999 }
4000
4001 /* Update the last node of the list and move to the next one. */
4002 last_loc = loc;
4003 loc = loc->next;
4004 }
4005
4006 /* If we didn't find an assertion already registered for
4007 NAME COMP_CODE VAL, add a new one at the end of the list of
4008 assertions associated with NAME. */
4009 n = XNEW (struct assert_locus_d);
4010 n->bb = dest_bb;
4011 n->e = e;
4012 n->si = si;
4013 n->comp_code = comp_code;
4014 n->val = val;
4015 n->expr = expr;
4016 n->next = NULL;
4017
4018 if (last_loc)
4019 last_loc->next = n;
4020 else
4021 asserts_for[SSA_NAME_VERSION (name)] = n;
4022
4023 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4024 }
4025
4026 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4027 Extract a suitable test code and value and store them into *CODE_P and
4028 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4029
4030 If no extraction was possible, return FALSE, otherwise return TRUE.
4031
4032 If INVERT is true, then we invert the result stored into *CODE_P. */
4033
4034 static bool
4035 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4036 tree cond_op0, tree cond_op1,
4037 bool invert, enum tree_code *code_p,
4038 tree *val_p)
4039 {
4040 enum tree_code comp_code;
4041 tree val;
4042
4043 /* Otherwise, we have a comparison of the form NAME COMP VAL
4044 or VAL COMP NAME. */
4045 if (name == cond_op1)
4046 {
4047 /* If the predicate is of the form VAL COMP NAME, flip
4048 COMP around because we need to register NAME as the
4049 first operand in the predicate. */
4050 comp_code = swap_tree_comparison (cond_code);
4051 val = cond_op0;
4052 }
4053 else
4054 {
4055 /* The comparison is of the form NAME COMP VAL, so the
4056 comparison code remains unchanged. */
4057 comp_code = cond_code;
4058 val = cond_op1;
4059 }
4060
4061 /* Invert the comparison code as necessary. */
4062 if (invert)
4063 comp_code = invert_tree_comparison (comp_code, 0);
4064
4065 /* VRP does not handle float types. */
4066 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4067 return false;
4068
4069 /* Do not register always-false predicates.
4070 FIXME: this works around a limitation in fold() when dealing with
4071 enumerations. Given 'enum { N1, N2 } x;', fold will not
4072 fold 'if (x > N2)' to 'if (0)'. */
4073 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4074 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4075 {
4076 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4077 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4078
4079 if (comp_code == GT_EXPR
4080 && (!max
4081 || compare_values (val, max) == 0))
4082 return false;
4083
4084 if (comp_code == LT_EXPR
4085 && (!min
4086 || compare_values (val, min) == 0))
4087 return false;
4088 }
4089 *code_p = comp_code;
4090 *val_p = val;
4091 return true;
4092 }
4093
4094 /* Try to register an edge assertion for SSA name NAME on edge E for
4095 the condition COND contributing to the conditional jump pointed to by BSI.
4096 Invert the condition COND if INVERT is true.
4097 Return true if an assertion for NAME could be registered. */
4098
4099 static bool
4100 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4101 enum tree_code cond_code,
4102 tree cond_op0, tree cond_op1, bool invert)
4103 {
4104 tree val;
4105 enum tree_code comp_code;
4106 bool retval = false;
4107
4108 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4109 cond_op0,
4110 cond_op1,
4111 invert, &comp_code, &val))
4112 return false;
4113
4114 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4115 reachable from E. */
4116 if (live_on_edge (e, name)
4117 && !has_single_use (name))
4118 {
4119 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4120 retval = true;
4121 }
4122
4123 /* In the case of NAME <= CST and NAME being defined as
4124 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4125 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4126 This catches range and anti-range tests. */
4127 if ((comp_code == LE_EXPR
4128 || comp_code == GT_EXPR)
4129 && TREE_CODE (val) == INTEGER_CST
4130 && TYPE_UNSIGNED (TREE_TYPE (val)))
4131 {
4132 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4133 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4134
4135 /* Extract CST2 from the (optional) addition. */
4136 if (is_gimple_assign (def_stmt)
4137 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4138 {
4139 name2 = gimple_assign_rhs1 (def_stmt);
4140 cst2 = gimple_assign_rhs2 (def_stmt);
4141 if (TREE_CODE (name2) == SSA_NAME
4142 && TREE_CODE (cst2) == INTEGER_CST)
4143 def_stmt = SSA_NAME_DEF_STMT (name2);
4144 }
4145
4146 /* Extract NAME2 from the (optional) sign-changing cast. */
4147 if (gimple_assign_cast_p (def_stmt))
4148 {
4149 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4150 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4151 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4152 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4153 name3 = gimple_assign_rhs1 (def_stmt);
4154 }
4155
4156 /* If name3 is used later, create an ASSERT_EXPR for it. */
4157 if (name3 != NULL_TREE
4158 && TREE_CODE (name3) == SSA_NAME
4159 && (cst2 == NULL_TREE
4160 || TREE_CODE (cst2) == INTEGER_CST)
4161 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4162 && live_on_edge (e, name3)
4163 && !has_single_use (name3))
4164 {
4165 tree tmp;
4166
4167 /* Build an expression for the range test. */
4168 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4169 if (cst2 != NULL_TREE)
4170 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4171
4172 if (dump_file)
4173 {
4174 fprintf (dump_file, "Adding assert for ");
4175 print_generic_expr (dump_file, name3, 0);
4176 fprintf (dump_file, " from ");
4177 print_generic_expr (dump_file, tmp, 0);
4178 fprintf (dump_file, "\n");
4179 }
4180
4181 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4182
4183 retval = true;
4184 }
4185
4186 /* If name2 is used later, create an ASSERT_EXPR for it. */
4187 if (name2 != NULL_TREE
4188 && TREE_CODE (name2) == SSA_NAME
4189 && TREE_CODE (cst2) == INTEGER_CST
4190 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4191 && live_on_edge (e, name2)
4192 && !has_single_use (name2))
4193 {
4194 tree tmp;
4195
4196 /* Build an expression for the range test. */
4197 tmp = name2;
4198 if (TREE_TYPE (name) != TREE_TYPE (name2))
4199 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4200 if (cst2 != NULL_TREE)
4201 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4202
4203 if (dump_file)
4204 {
4205 fprintf (dump_file, "Adding assert for ");
4206 print_generic_expr (dump_file, name2, 0);
4207 fprintf (dump_file, " from ");
4208 print_generic_expr (dump_file, tmp, 0);
4209 fprintf (dump_file, "\n");
4210 }
4211
4212 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4213
4214 retval = true;
4215 }
4216 }
4217
4218 return retval;
4219 }
4220
4221 /* OP is an operand of a truth value expression which is known to have
4222 a particular value. Register any asserts for OP and for any
4223 operands in OP's defining statement.
4224
4225 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4226 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4227
4228 static bool
4229 register_edge_assert_for_1 (tree op, enum tree_code code,
4230 edge e, gimple_stmt_iterator bsi)
4231 {
4232 bool retval = false;
4233 gimple op_def;
4234 tree val;
4235 enum tree_code rhs_code;
4236
4237 /* We only care about SSA_NAMEs. */
4238 if (TREE_CODE (op) != SSA_NAME)
4239 return false;
4240
4241 /* We know that OP will have a zero or nonzero value. If OP is used
4242 more than once go ahead and register an assert for OP.
4243
4244 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4245 it will always be set for OP (because OP is used in a COND_EXPR in
4246 the subgraph). */
4247 if (!has_single_use (op))
4248 {
4249 val = build_int_cst (TREE_TYPE (op), 0);
4250 register_new_assert_for (op, op, code, val, NULL, e, bsi);
4251 retval = true;
4252 }
4253
4254 /* Now look at how OP is set. If it's set from a comparison,
4255 a truth operation or some bit operations, then we may be able
4256 to register information about the operands of that assignment. */
4257 op_def = SSA_NAME_DEF_STMT (op);
4258 if (gimple_code (op_def) != GIMPLE_ASSIGN)
4259 return retval;
4260
4261 rhs_code = gimple_assign_rhs_code (op_def);
4262
4263 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
4264 {
4265 bool invert = (code == EQ_EXPR ? true : false);
4266 tree op0 = gimple_assign_rhs1 (op_def);
4267 tree op1 = gimple_assign_rhs2 (op_def);
4268
4269 if (TREE_CODE (op0) == SSA_NAME)
4270 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
4271 invert);
4272 if (TREE_CODE (op1) == SSA_NAME)
4273 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
4274 invert);
4275 }
4276 else if ((code == NE_EXPR
4277 && (gimple_assign_rhs_code (op_def) == TRUTH_AND_EXPR
4278 || gimple_assign_rhs_code (op_def) == BIT_AND_EXPR))
4279 || (code == EQ_EXPR
4280 && (gimple_assign_rhs_code (op_def) == TRUTH_OR_EXPR
4281 || gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)))
4282 {
4283 /* Recurse on each operand. */
4284 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4285 code, e, bsi);
4286 retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
4287 code, e, bsi);
4288 }
4289 else if (gimple_assign_rhs_code (op_def) == TRUTH_NOT_EXPR)
4290 {
4291 /* Recurse, flipping CODE. */
4292 code = invert_tree_comparison (code, false);
4293 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4294 code, e, bsi);
4295 }
4296 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
4297 {
4298 /* Recurse through the copy. */
4299 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4300 code, e, bsi);
4301 }
4302 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
4303 {
4304 /* Recurse through the type conversion. */
4305 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4306 code, e, bsi);
4307 }
4308
4309 return retval;
4310 }
4311
4312 /* Try to register an edge assertion for SSA name NAME on edge E for
4313 the condition COND contributing to the conditional jump pointed to by SI.
4314 Return true if an assertion for NAME could be registered. */
4315
4316 static bool
4317 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
4318 enum tree_code cond_code, tree cond_op0,
4319 tree cond_op1)
4320 {
4321 tree val;
4322 enum tree_code comp_code;
4323 bool retval = false;
4324 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
4325
4326 /* Do not attempt to infer anything in names that flow through
4327 abnormal edges. */
4328 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
4329 return false;
4330
4331 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4332 cond_op0, cond_op1,
4333 is_else_edge,
4334 &comp_code, &val))
4335 return false;
4336
4337 /* Register ASSERT_EXPRs for name. */
4338 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
4339 cond_op1, is_else_edge);
4340
4341
4342 /* If COND is effectively an equality test of an SSA_NAME against
4343 the value zero or one, then we may be able to assert values
4344 for SSA_NAMEs which flow into COND. */
4345
4346 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
4347 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
4348 have nonzero value. */
4349 if (((comp_code == EQ_EXPR && integer_onep (val))
4350 || (comp_code == NE_EXPR && integer_zerop (val))))
4351 {
4352 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4353
4354 if (is_gimple_assign (def_stmt)
4355 && (gimple_assign_rhs_code (def_stmt) == TRUTH_AND_EXPR
4356 || gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR))
4357 {
4358 tree op0 = gimple_assign_rhs1 (def_stmt);
4359 tree op1 = gimple_assign_rhs2 (def_stmt);
4360 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4361 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
4362 }
4363 }
4364
4365 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
4366 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
4367 have zero value. */
4368 if (((comp_code == EQ_EXPR && integer_zerop (val))
4369 || (comp_code == NE_EXPR && integer_onep (val))))
4370 {
4371 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4372
4373 if (is_gimple_assign (def_stmt)
4374 && (gimple_assign_rhs_code (def_stmt) == TRUTH_OR_EXPR
4375 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4376 necessarily zero value. */
4377 || (comp_code == EQ_EXPR
4378 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR))))
4379 {
4380 tree op0 = gimple_assign_rhs1 (def_stmt);
4381 tree op1 = gimple_assign_rhs2 (def_stmt);
4382 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4383 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4384 }
4385 }
4386
4387 return retval;
4388 }
4389
4390
4391 /* Determine whether the outgoing edges of BB should receive an
4392 ASSERT_EXPR for each of the operands of BB's LAST statement.
4393 The last statement of BB must be a COND_EXPR.
4394
4395 If any of the sub-graphs rooted at BB have an interesting use of
4396 the predicate operands, an assert location node is added to the
4397 list of assertions for the corresponding operands. */
4398
4399 static bool
4400 find_conditional_asserts (basic_block bb, gimple last)
4401 {
4402 bool need_assert;
4403 gimple_stmt_iterator bsi;
4404 tree op;
4405 edge_iterator ei;
4406 edge e;
4407 ssa_op_iter iter;
4408
4409 need_assert = false;
4410 bsi = gsi_for_stmt (last);
4411
4412 /* Look for uses of the operands in each of the sub-graphs
4413 rooted at BB. We need to check each of the outgoing edges
4414 separately, so that we know what kind of ASSERT_EXPR to
4415 insert. */
4416 FOR_EACH_EDGE (e, ei, bb->succs)
4417 {
4418 if (e->dest == bb)
4419 continue;
4420
4421 /* Register the necessary assertions for each operand in the
4422 conditional predicate. */
4423 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4424 {
4425 need_assert |= register_edge_assert_for (op, e, bsi,
4426 gimple_cond_code (last),
4427 gimple_cond_lhs (last),
4428 gimple_cond_rhs (last));
4429 }
4430 }
4431
4432 return need_assert;
4433 }
4434
4435 /* Compare two case labels sorting first by the destination label uid
4436 and then by the case value. */
4437
4438 static int
4439 compare_case_labels (const void *p1, const void *p2)
4440 {
4441 const_tree const case1 = *(const_tree const*)p1;
4442 const_tree const case2 = *(const_tree const*)p2;
4443 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
4444 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
4445
4446 if (uid1 < uid2)
4447 return -1;
4448 else if (uid1 == uid2)
4449 {
4450 /* Make sure the default label is first in a group. */
4451 if (!CASE_LOW (case1))
4452 return -1;
4453 else if (!CASE_LOW (case2))
4454 return 1;
4455 else
4456 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
4457 }
4458 else
4459 return 1;
4460 }
4461
4462 /* Determine whether the outgoing edges of BB should receive an
4463 ASSERT_EXPR for each of the operands of BB's LAST statement.
4464 The last statement of BB must be a SWITCH_EXPR.
4465
4466 If any of the sub-graphs rooted at BB have an interesting use of
4467 the predicate operands, an assert location node is added to the
4468 list of assertions for the corresponding operands. */
4469
4470 static bool
4471 find_switch_asserts (basic_block bb, gimple last)
4472 {
4473 bool need_assert;
4474 gimple_stmt_iterator bsi;
4475 tree op;
4476 edge e;
4477 tree vec2;
4478 size_t n = gimple_switch_num_labels(last);
4479 #if GCC_VERSION >= 4000
4480 unsigned int idx;
4481 #else
4482 /* Work around GCC 3.4 bug (PR 37086). */
4483 volatile unsigned int idx;
4484 #endif
4485
4486 need_assert = false;
4487 bsi = gsi_for_stmt (last);
4488 op = gimple_switch_index (last);
4489 if (TREE_CODE (op) != SSA_NAME)
4490 return false;
4491
4492 /* Build a vector of case labels sorted by destination label. */
4493 vec2 = make_tree_vec (n);
4494 for (idx = 0; idx < n; ++idx)
4495 TREE_VEC_ELT (vec2, idx) = gimple_switch_label (last, idx);
4496 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
4497
4498 for (idx = 0; idx < n; ++idx)
4499 {
4500 tree min, max;
4501 tree cl = TREE_VEC_ELT (vec2, idx);
4502
4503 min = CASE_LOW (cl);
4504 max = CASE_HIGH (cl);
4505
4506 /* If there are multiple case labels with the same destination
4507 we need to combine them to a single value range for the edge. */
4508 if (idx + 1 < n
4509 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
4510 {
4511 /* Skip labels until the last of the group. */
4512 do {
4513 ++idx;
4514 } while (idx < n
4515 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
4516 --idx;
4517
4518 /* Pick up the maximum of the case label range. */
4519 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
4520 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
4521 else
4522 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
4523 }
4524
4525 /* Nothing to do if the range includes the default label until we
4526 can register anti-ranges. */
4527 if (min == NULL_TREE)
4528 continue;
4529
4530 /* Find the edge to register the assert expr on. */
4531 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
4532
4533 /* Register the necessary assertions for the operand in the
4534 SWITCH_EXPR. */
4535 need_assert |= register_edge_assert_for (op, e, bsi,
4536 max ? GE_EXPR : EQ_EXPR,
4537 op,
4538 fold_convert (TREE_TYPE (op),
4539 min));
4540 if (max)
4541 {
4542 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4543 op,
4544 fold_convert (TREE_TYPE (op),
4545 max));
4546 }
4547 }
4548
4549 return need_assert;
4550 }
4551
4552
4553 /* Traverse all the statements in block BB looking for statements that
4554 may generate useful assertions for the SSA names in their operand.
4555 If a statement produces a useful assertion A for name N_i, then the
4556 list of assertions already generated for N_i is scanned to
4557 determine if A is actually needed.
4558
4559 If N_i already had the assertion A at a location dominating the
4560 current location, then nothing needs to be done. Otherwise, the
4561 new location for A is recorded instead.
4562
4563 1- For every statement S in BB, all the variables used by S are
4564 added to bitmap FOUND_IN_SUBGRAPH.
4565
4566 2- If statement S uses an operand N in a way that exposes a known
4567 value range for N, then if N was not already generated by an
4568 ASSERT_EXPR, create a new assert location for N. For instance,
4569 if N is a pointer and the statement dereferences it, we can
4570 assume that N is not NULL.
4571
4572 3- COND_EXPRs are a special case of #2. We can derive range
4573 information from the predicate but need to insert different
4574 ASSERT_EXPRs for each of the sub-graphs rooted at the
4575 conditional block. If the last statement of BB is a conditional
4576 expression of the form 'X op Y', then
4577
4578 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4579
4580 b) If the conditional is the only entry point to the sub-graph
4581 corresponding to the THEN_CLAUSE, recurse into it. On
4582 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4583 an ASSERT_EXPR is added for the corresponding variable.
4584
4585 c) Repeat step (b) on the ELSE_CLAUSE.
4586
4587 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4588
4589 For instance,
4590
4591 if (a == 9)
4592 b = a;
4593 else
4594 b = c + 1;
4595
4596 In this case, an assertion on the THEN clause is useful to
4597 determine that 'a' is always 9 on that edge. However, an assertion
4598 on the ELSE clause would be unnecessary.
4599
4600 4- If BB does not end in a conditional expression, then we recurse
4601 into BB's dominator children.
4602
4603 At the end of the recursive traversal, every SSA name will have a
4604 list of locations where ASSERT_EXPRs should be added. When a new
4605 location for name N is found, it is registered by calling
4606 register_new_assert_for. That function keeps track of all the
4607 registered assertions to prevent adding unnecessary assertions.
4608 For instance, if a pointer P_4 is dereferenced more than once in a
4609 dominator tree, only the location dominating all the dereference of
4610 P_4 will receive an ASSERT_EXPR.
4611
4612 If this function returns true, then it means that there are names
4613 for which we need to generate ASSERT_EXPRs. Those assertions are
4614 inserted by process_assert_insertions. */
4615
4616 static bool
4617 find_assert_locations_1 (basic_block bb, sbitmap live)
4618 {
4619 gimple_stmt_iterator si;
4620 gimple last;
4621 gimple phi;
4622 bool need_assert;
4623
4624 need_assert = false;
4625 last = last_stmt (bb);
4626
4627 /* If BB's last statement is a conditional statement involving integer
4628 operands, determine if we need to add ASSERT_EXPRs. */
4629 if (last
4630 && gimple_code (last) == GIMPLE_COND
4631 && !fp_predicate (last)
4632 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4633 need_assert |= find_conditional_asserts (bb, last);
4634
4635 /* If BB's last statement is a switch statement involving integer
4636 operands, determine if we need to add ASSERT_EXPRs. */
4637 if (last
4638 && gimple_code (last) == GIMPLE_SWITCH
4639 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4640 need_assert |= find_switch_asserts (bb, last);
4641
4642 /* Traverse all the statements in BB marking used names and looking
4643 for statements that may infer assertions for their used operands. */
4644 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4645 {
4646 gimple stmt;
4647 tree op;
4648 ssa_op_iter i;
4649
4650 stmt = gsi_stmt (si);
4651
4652 if (is_gimple_debug (stmt))
4653 continue;
4654
4655 /* See if we can derive an assertion for any of STMT's operands. */
4656 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4657 {
4658 tree value;
4659 enum tree_code comp_code;
4660
4661 /* Mark OP in our live bitmap. */
4662 SET_BIT (live, SSA_NAME_VERSION (op));
4663
4664 /* If OP is used in such a way that we can infer a value
4665 range for it, and we don't find a previous assertion for
4666 it, create a new assertion location node for OP. */
4667 if (infer_value_range (stmt, op, &comp_code, &value))
4668 {
4669 /* If we are able to infer a nonzero value range for OP,
4670 then walk backwards through the use-def chain to see if OP
4671 was set via a typecast.
4672
4673 If so, then we can also infer a nonzero value range
4674 for the operand of the NOP_EXPR. */
4675 if (comp_code == NE_EXPR && integer_zerop (value))
4676 {
4677 tree t = op;
4678 gimple def_stmt = SSA_NAME_DEF_STMT (t);
4679
4680 while (is_gimple_assign (def_stmt)
4681 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
4682 && TREE_CODE
4683 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
4684 && POINTER_TYPE_P
4685 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
4686 {
4687 t = gimple_assign_rhs1 (def_stmt);
4688 def_stmt = SSA_NAME_DEF_STMT (t);
4689
4690 /* Note we want to register the assert for the
4691 operand of the NOP_EXPR after SI, not after the
4692 conversion. */
4693 if (! has_single_use (t))
4694 {
4695 register_new_assert_for (t, t, comp_code, value,
4696 bb, NULL, si);
4697 need_assert = true;
4698 }
4699 }
4700 }
4701
4702 /* If OP is used only once, namely in this STMT, don't
4703 bother creating an ASSERT_EXPR for it. Such an
4704 ASSERT_EXPR would do nothing but increase compile time. */
4705 if (!has_single_use (op))
4706 {
4707 register_new_assert_for (op, op, comp_code, value,
4708 bb, NULL, si);
4709 need_assert = true;
4710 }
4711 }
4712 }
4713 }
4714
4715 /* Traverse all PHI nodes in BB marking used operands. */
4716 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
4717 {
4718 use_operand_p arg_p;
4719 ssa_op_iter i;
4720 phi = gsi_stmt (si);
4721
4722 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4723 {
4724 tree arg = USE_FROM_PTR (arg_p);
4725 if (TREE_CODE (arg) == SSA_NAME)
4726 SET_BIT (live, SSA_NAME_VERSION (arg));
4727 }
4728 }
4729
4730 return need_assert;
4731 }
4732
4733 /* Do an RPO walk over the function computing SSA name liveness
4734 on-the-fly and deciding on assert expressions to insert.
4735 Returns true if there are assert expressions to be inserted. */
4736
4737 static bool
4738 find_assert_locations (void)
4739 {
4740 int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4741 int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4742 int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4743 int rpo_cnt, i;
4744 bool need_asserts;
4745
4746 live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
4747 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
4748 for (i = 0; i < rpo_cnt; ++i)
4749 bb_rpo[rpo[i]] = i;
4750
4751 need_asserts = false;
4752 for (i = rpo_cnt-1; i >= 0; --i)
4753 {
4754 basic_block bb = BASIC_BLOCK (rpo[i]);
4755 edge e;
4756 edge_iterator ei;
4757
4758 if (!live[rpo[i]])
4759 {
4760 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
4761 sbitmap_zero (live[rpo[i]]);
4762 }
4763
4764 /* Process BB and update the live information with uses in
4765 this block. */
4766 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
4767
4768 /* Merge liveness into the predecessor blocks and free it. */
4769 if (!sbitmap_empty_p (live[rpo[i]]))
4770 {
4771 int pred_rpo = i;
4772 FOR_EACH_EDGE (e, ei, bb->preds)
4773 {
4774 int pred = e->src->index;
4775 if (e->flags & EDGE_DFS_BACK)
4776 continue;
4777
4778 if (!live[pred])
4779 {
4780 live[pred] = sbitmap_alloc (num_ssa_names);
4781 sbitmap_zero (live[pred]);
4782 }
4783 sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
4784
4785 if (bb_rpo[pred] < pred_rpo)
4786 pred_rpo = bb_rpo[pred];
4787 }
4788
4789 /* Record the RPO number of the last visited block that needs
4790 live information from this block. */
4791 last_rpo[rpo[i]] = pred_rpo;
4792 }
4793 else
4794 {
4795 sbitmap_free (live[rpo[i]]);
4796 live[rpo[i]] = NULL;
4797 }
4798
4799 /* We can free all successors live bitmaps if all their
4800 predecessors have been visited already. */
4801 FOR_EACH_EDGE (e, ei, bb->succs)
4802 if (last_rpo[e->dest->index] == i
4803 && live[e->dest->index])
4804 {
4805 sbitmap_free (live[e->dest->index]);
4806 live[e->dest->index] = NULL;
4807 }
4808 }
4809
4810 XDELETEVEC (rpo);
4811 XDELETEVEC (bb_rpo);
4812 XDELETEVEC (last_rpo);
4813 for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
4814 if (live[i])
4815 sbitmap_free (live[i]);
4816 XDELETEVEC (live);
4817
4818 return need_asserts;
4819 }
4820
4821 /* Create an ASSERT_EXPR for NAME and insert it in the location
4822 indicated by LOC. Return true if we made any edge insertions. */
4823
4824 static bool
4825 process_assert_insertions_for (tree name, assert_locus_t loc)
4826 {
4827 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4828 gimple stmt;
4829 tree cond;
4830 gimple assert_stmt;
4831 edge_iterator ei;
4832 edge e;
4833
4834 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
4835 assert_stmt = build_assert_expr_for (cond, name);
4836 if (loc->e)
4837 {
4838 /* We have been asked to insert the assertion on an edge. This
4839 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4840 #if defined ENABLE_CHECKING
4841 gcc_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
4842 || gimple_code (gsi_stmt (loc->si)) == GIMPLE_SWITCH);
4843 #endif
4844
4845 gsi_insert_on_edge (loc->e, assert_stmt);
4846 return true;
4847 }
4848
4849 /* Otherwise, we can insert right after LOC->SI iff the
4850 statement must not be the last statement in the block. */
4851 stmt = gsi_stmt (loc->si);
4852 if (!stmt_ends_bb_p (stmt))
4853 {
4854 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
4855 return false;
4856 }
4857
4858 /* If STMT must be the last statement in BB, we can only insert new
4859 assertions on the non-abnormal edge out of BB. Note that since
4860 STMT is not control flow, there may only be one non-abnormal edge
4861 out of BB. */
4862 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4863 if (!(e->flags & EDGE_ABNORMAL))
4864 {
4865 gsi_insert_on_edge (e, assert_stmt);
4866 return true;
4867 }
4868
4869 gcc_unreachable ();
4870 }
4871
4872
4873 /* Process all the insertions registered for every name N_i registered
4874 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4875 found in ASSERTS_FOR[i]. */
4876
4877 static void
4878 process_assert_insertions (void)
4879 {
4880 unsigned i;
4881 bitmap_iterator bi;
4882 bool update_edges_p = false;
4883 int num_asserts = 0;
4884
4885 if (dump_file && (dump_flags & TDF_DETAILS))
4886 dump_all_asserts (dump_file);
4887
4888 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4889 {
4890 assert_locus_t loc = asserts_for[i];
4891 gcc_assert (loc);
4892
4893 while (loc)
4894 {
4895 assert_locus_t next = loc->next;
4896 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4897 free (loc);
4898 loc = next;
4899 num_asserts++;
4900 }
4901 }
4902
4903 if (update_edges_p)
4904 gsi_commit_edge_inserts ();
4905
4906 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
4907 num_asserts);
4908 }
4909
4910
4911 /* Traverse the flowgraph looking for conditional jumps to insert range
4912 expressions. These range expressions are meant to provide information
4913 to optimizations that need to reason in terms of value ranges. They
4914 will not be expanded into RTL. For instance, given:
4915
4916 x = ...
4917 y = ...
4918 if (x < y)
4919 y = x - 2;
4920 else
4921 x = y + 3;
4922
4923 this pass will transform the code into:
4924
4925 x = ...
4926 y = ...
4927 if (x < y)
4928 {
4929 x = ASSERT_EXPR <x, x < y>
4930 y = x - 2
4931 }
4932 else
4933 {
4934 y = ASSERT_EXPR <y, x <= y>
4935 x = y + 3
4936 }
4937
4938 The idea is that once copy and constant propagation have run, other
4939 optimizations will be able to determine what ranges of values can 'x'
4940 take in different paths of the code, simply by checking the reaching
4941 definition of 'x'. */
4942
4943 static void
4944 insert_range_assertions (void)
4945 {
4946 need_assert_for = BITMAP_ALLOC (NULL);
4947 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
4948
4949 calculate_dominance_info (CDI_DOMINATORS);
4950
4951 if (find_assert_locations ())
4952 {
4953 process_assert_insertions ();
4954 update_ssa (TODO_update_ssa_no_phi);
4955 }
4956
4957 if (dump_file && (dump_flags & TDF_DETAILS))
4958 {
4959 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4960 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4961 }
4962
4963 free (asserts_for);
4964 BITMAP_FREE (need_assert_for);
4965 }
4966
4967 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4968 and "struct" hacks. If VRP can determine that the
4969 array subscript is a constant, check if it is outside valid
4970 range. If the array subscript is a RANGE, warn if it is
4971 non-overlapping with valid range.
4972 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4973
4974 static void
4975 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
4976 {
4977 value_range_t* vr = NULL;
4978 tree low_sub, up_sub;
4979 tree low_bound, up_bound = array_ref_up_bound (ref);
4980
4981 low_sub = up_sub = TREE_OPERAND (ref, 1);
4982
4983 if (!up_bound || TREE_NO_WARNING (ref)
4984 || TREE_CODE (up_bound) != INTEGER_CST
4985 /* Can not check flexible arrays. */
4986 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
4987 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
4988 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
4989 /* Accesses after the end of arrays of size 0 (gcc
4990 extension) and 1 are likely intentional ("struct
4991 hack"). */
4992 || compare_tree_int (up_bound, 1) <= 0)
4993 return;
4994
4995 low_bound = array_ref_low_bound (ref);
4996
4997 if (TREE_CODE (low_sub) == SSA_NAME)
4998 {
4999 vr = get_value_range (low_sub);
5000 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
5001 {
5002 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
5003 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
5004 }
5005 }
5006
5007 if (vr && vr->type == VR_ANTI_RANGE)
5008 {
5009 if (TREE_CODE (up_sub) == INTEGER_CST
5010 && tree_int_cst_lt (up_bound, up_sub)
5011 && TREE_CODE (low_sub) == INTEGER_CST
5012 && tree_int_cst_lt (low_sub, low_bound))
5013 {
5014 warning_at (location, OPT_Warray_bounds,
5015 "array subscript is outside array bounds");
5016 TREE_NO_WARNING (ref) = 1;
5017 }
5018 }
5019 else if (TREE_CODE (up_sub) == INTEGER_CST
5020 && tree_int_cst_lt (up_bound, up_sub)
5021 && !tree_int_cst_equal (up_bound, up_sub)
5022 && (!ignore_off_by_one
5023 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
5024 up_bound,
5025 integer_one_node,
5026 0),
5027 up_sub)))
5028 {
5029 warning_at (location, OPT_Warray_bounds,
5030 "array subscript is above array bounds");
5031 TREE_NO_WARNING (ref) = 1;
5032 }
5033 else if (TREE_CODE (low_sub) == INTEGER_CST
5034 && tree_int_cst_lt (low_sub, low_bound))
5035 {
5036 warning_at (location, OPT_Warray_bounds,
5037 "array subscript is below array bounds");
5038 TREE_NO_WARNING (ref) = 1;
5039 }
5040 }
5041
5042 /* Searches if the expr T, located at LOCATION computes
5043 address of an ARRAY_REF, and call check_array_ref on it. */
5044
5045 static void
5046 search_for_addr_array (tree t, location_t location)
5047 {
5048 while (TREE_CODE (t) == SSA_NAME)
5049 {
5050 gimple g = SSA_NAME_DEF_STMT (t);
5051
5052 if (gimple_code (g) != GIMPLE_ASSIGN)
5053 return;
5054
5055 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
5056 != GIMPLE_SINGLE_RHS)
5057 return;
5058
5059 t = gimple_assign_rhs1 (g);
5060 }
5061
5062
5063 /* We are only interested in addresses of ARRAY_REF's. */
5064 if (TREE_CODE (t) != ADDR_EXPR)
5065 return;
5066
5067 /* Check each ARRAY_REFs in the reference chain. */
5068 do
5069 {
5070 if (TREE_CODE (t) == ARRAY_REF)
5071 check_array_ref (location, t, true /*ignore_off_by_one*/);
5072
5073 t = TREE_OPERAND (t, 0);
5074 }
5075 while (handled_component_p (t));
5076 }
5077
5078 /* walk_tree() callback that checks if *TP is
5079 an ARRAY_REF inside an ADDR_EXPR (in which an array
5080 subscript one outside the valid range is allowed). Call
5081 check_array_ref for each ARRAY_REF found. The location is
5082 passed in DATA. */
5083
5084 static tree
5085 check_array_bounds (tree *tp, int *walk_subtree, void *data)
5086 {
5087 tree t = *tp;
5088 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5089 location_t location;
5090
5091 if (EXPR_HAS_LOCATION (t))
5092 location = EXPR_LOCATION (t);
5093 else
5094 {
5095 location_t *locp = (location_t *) wi->info;
5096 location = *locp;
5097 }
5098
5099 *walk_subtree = TRUE;
5100
5101 if (TREE_CODE (t) == ARRAY_REF)
5102 check_array_ref (location, t, false /*ignore_off_by_one*/);
5103
5104 if (TREE_CODE (t) == INDIRECT_REF
5105 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
5106 search_for_addr_array (TREE_OPERAND (t, 0), location);
5107
5108 if (TREE_CODE (t) == ADDR_EXPR)
5109 *walk_subtree = FALSE;
5110
5111 return NULL_TREE;
5112 }
5113
5114 /* Walk over all statements of all reachable BBs and call check_array_bounds
5115 on them. */
5116
5117 static void
5118 check_all_array_refs (void)
5119 {
5120 basic_block bb;
5121 gimple_stmt_iterator si;
5122
5123 FOR_EACH_BB (bb)
5124 {
5125 edge_iterator ei;
5126 edge e;
5127 bool executable = false;
5128
5129 /* Skip blocks that were found to be unreachable. */
5130 FOR_EACH_EDGE (e, ei, bb->preds)
5131 executable |= !!(e->flags & EDGE_EXECUTABLE);
5132 if (!executable)
5133 continue;
5134
5135 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5136 {
5137 gimple stmt = gsi_stmt (si);
5138 struct walk_stmt_info wi;
5139 if (!gimple_has_location (stmt))
5140 continue;
5141
5142 if (is_gimple_call (stmt))
5143 {
5144 size_t i;
5145 size_t n = gimple_call_num_args (stmt);
5146 for (i = 0; i < n; i++)
5147 {
5148 tree arg = gimple_call_arg (stmt, i);
5149 search_for_addr_array (arg, gimple_location (stmt));
5150 }
5151 }
5152 else
5153 {
5154 memset (&wi, 0, sizeof (wi));
5155 wi.info = CONST_CAST (void *, (const void *)
5156 gimple_location_ptr (stmt));
5157
5158 walk_gimple_op (gsi_stmt (si),
5159 check_array_bounds,
5160 &wi);
5161 }
5162 }
5163 }
5164 }
5165
5166 /* Convert range assertion expressions into the implied copies and
5167 copy propagate away the copies. Doing the trivial copy propagation
5168 here avoids the need to run the full copy propagation pass after
5169 VRP.
5170
5171 FIXME, this will eventually lead to copy propagation removing the
5172 names that had useful range information attached to them. For
5173 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5174 then N_i will have the range [3, +INF].
5175
5176 However, by converting the assertion into the implied copy
5177 operation N_i = N_j, we will then copy-propagate N_j into the uses
5178 of N_i and lose the range information. We may want to hold on to
5179 ASSERT_EXPRs a little while longer as the ranges could be used in
5180 things like jump threading.
5181
5182 The problem with keeping ASSERT_EXPRs around is that passes after
5183 VRP need to handle them appropriately.
5184
5185 Another approach would be to make the range information a first
5186 class property of the SSA_NAME so that it can be queried from
5187 any pass. This is made somewhat more complex by the need for
5188 multiple ranges to be associated with one SSA_NAME. */
5189
5190 static void
5191 remove_range_assertions (void)
5192 {
5193 basic_block bb;
5194 gimple_stmt_iterator si;
5195
5196 /* Note that the BSI iterator bump happens at the bottom of the
5197 loop and no bump is necessary if we're removing the statement
5198 referenced by the current BSI. */
5199 FOR_EACH_BB (bb)
5200 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
5201 {
5202 gimple stmt = gsi_stmt (si);
5203 gimple use_stmt;
5204
5205 if (is_gimple_assign (stmt)
5206 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5207 {
5208 tree rhs = gimple_assign_rhs1 (stmt);
5209 tree var;
5210 tree cond = fold (ASSERT_EXPR_COND (rhs));
5211 use_operand_p use_p;
5212 imm_use_iterator iter;
5213
5214 gcc_assert (cond != boolean_false_node);
5215
5216 /* Propagate the RHS into every use of the LHS. */
5217 var = ASSERT_EXPR_VAR (rhs);
5218 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
5219 gimple_assign_lhs (stmt))
5220 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5221 {
5222 SET_USE (use_p, var);
5223 gcc_assert (TREE_CODE (var) == SSA_NAME);
5224 }
5225
5226 /* And finally, remove the copy, it is not needed. */
5227 gsi_remove (&si, true);
5228 release_defs (stmt);
5229 }
5230 else
5231 gsi_next (&si);
5232 }
5233 }
5234
5235
5236 /* Return true if STMT is interesting for VRP. */
5237
5238 static bool
5239 stmt_interesting_for_vrp (gimple stmt)
5240 {
5241 if (gimple_code (stmt) == GIMPLE_PHI
5242 && is_gimple_reg (gimple_phi_result (stmt))
5243 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
5244 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
5245 return true;
5246 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5247 {
5248 tree lhs = gimple_get_lhs (stmt);
5249
5250 /* In general, assignments with virtual operands are not useful
5251 for deriving ranges, with the obvious exception of calls to
5252 builtin functions. */
5253 if (lhs && TREE_CODE (lhs) == SSA_NAME
5254 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5255 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5256 && ((is_gimple_call (stmt)
5257 && gimple_call_fndecl (stmt) != NULL_TREE
5258 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
5259 || !gimple_vuse (stmt)))
5260 return true;
5261 }
5262 else if (gimple_code (stmt) == GIMPLE_COND
5263 || gimple_code (stmt) == GIMPLE_SWITCH)
5264 return true;
5265
5266 return false;
5267 }
5268
5269
5270 /* Initialize local data structures for VRP. */
5271
5272 static void
5273 vrp_initialize (void)
5274 {
5275 basic_block bb;
5276
5277 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
5278 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
5279
5280 FOR_EACH_BB (bb)
5281 {
5282 gimple_stmt_iterator si;
5283
5284 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5285 {
5286 gimple phi = gsi_stmt (si);
5287 if (!stmt_interesting_for_vrp (phi))
5288 {
5289 tree lhs = PHI_RESULT (phi);
5290 set_value_range_to_varying (get_value_range (lhs));
5291 prop_set_simulate_again (phi, false);
5292 }
5293 else
5294 prop_set_simulate_again (phi, true);
5295 }
5296
5297 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5298 {
5299 gimple stmt = gsi_stmt (si);
5300
5301 /* If the statement is a control insn, then we do not
5302 want to avoid simulating the statement once. Failure
5303 to do so means that those edges will never get added. */
5304 if (stmt_ends_bb_p (stmt))
5305 prop_set_simulate_again (stmt, true);
5306 else if (!stmt_interesting_for_vrp (stmt))
5307 {
5308 ssa_op_iter i;
5309 tree def;
5310 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
5311 set_value_range_to_varying (get_value_range (def));
5312 prop_set_simulate_again (stmt, false);
5313 }
5314 else
5315 prop_set_simulate_again (stmt, true);
5316 }
5317 }
5318 }
5319
5320
5321 /* Visit assignment STMT. If it produces an interesting range, record
5322 the SSA name in *OUTPUT_P. */
5323
5324 static enum ssa_prop_result
5325 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
5326 {
5327 tree def, lhs;
5328 ssa_op_iter iter;
5329 enum gimple_code code = gimple_code (stmt);
5330 lhs = gimple_get_lhs (stmt);
5331
5332 /* We only keep track of ranges in integral and pointer types. */
5333 if (TREE_CODE (lhs) == SSA_NAME
5334 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5335 /* It is valid to have NULL MIN/MAX values on a type. See
5336 build_range_type. */
5337 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
5338 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
5339 || POINTER_TYPE_P (TREE_TYPE (lhs))))
5340 {
5341 struct loop *l;
5342 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5343
5344 if (code == GIMPLE_CALL)
5345 extract_range_basic (&new_vr, stmt);
5346 else
5347 extract_range_from_assignment (&new_vr, stmt);
5348
5349 /* If STMT is inside a loop, we may be able to know something
5350 else about the range of LHS by examining scalar evolution
5351 information. */
5352 if (current_loops && (l = loop_containing_stmt (stmt)))
5353 adjust_range_with_scev (&new_vr, l, stmt, lhs);
5354
5355 if (update_value_range (lhs, &new_vr))
5356 {
5357 *output_p = lhs;
5358
5359 if (dump_file && (dump_flags & TDF_DETAILS))
5360 {
5361 fprintf (dump_file, "Found new range for ");
5362 print_generic_expr (dump_file, lhs, 0);
5363 fprintf (dump_file, ": ");
5364 dump_value_range (dump_file, &new_vr);
5365 fprintf (dump_file, "\n\n");
5366 }
5367
5368 if (new_vr.type == VR_VARYING)
5369 return SSA_PROP_VARYING;
5370
5371 return SSA_PROP_INTERESTING;
5372 }
5373
5374 return SSA_PROP_NOT_INTERESTING;
5375 }
5376
5377 /* Every other statement produces no useful ranges. */
5378 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5379 set_value_range_to_varying (get_value_range (def));
5380
5381 return SSA_PROP_VARYING;
5382 }
5383
5384 /* Helper that gets the value range of the SSA_NAME with version I
5385 or a symbolic range containing the SSA_NAME only if the value range
5386 is varying or undefined. */
5387
5388 static inline value_range_t
5389 get_vr_for_comparison (int i)
5390 {
5391 value_range_t vr = *(vr_value[i]);
5392
5393 /* If name N_i does not have a valid range, use N_i as its own
5394 range. This allows us to compare against names that may
5395 have N_i in their ranges. */
5396 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5397 {
5398 vr.type = VR_RANGE;
5399 vr.min = ssa_name (i);
5400 vr.max = ssa_name (i);
5401 }
5402
5403 return vr;
5404 }
5405
5406 /* Compare all the value ranges for names equivalent to VAR with VAL
5407 using comparison code COMP. Return the same value returned by
5408 compare_range_with_value, including the setting of
5409 *STRICT_OVERFLOW_P. */
5410
5411 static tree
5412 compare_name_with_value (enum tree_code comp, tree var, tree val,
5413 bool *strict_overflow_p)
5414 {
5415 bitmap_iterator bi;
5416 unsigned i;
5417 bitmap e;
5418 tree retval, t;
5419 int used_strict_overflow;
5420 bool sop;
5421 value_range_t equiv_vr;
5422
5423 /* Get the set of equivalences for VAR. */
5424 e = get_value_range (var)->equiv;
5425
5426 /* Start at -1. Set it to 0 if we do a comparison without relying
5427 on overflow, or 1 if all comparisons rely on overflow. */
5428 used_strict_overflow = -1;
5429
5430 /* Compare vars' value range with val. */
5431 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5432 sop = false;
5433 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
5434 if (retval)
5435 used_strict_overflow = sop ? 1 : 0;
5436
5437 /* If the equiv set is empty we have done all work we need to do. */
5438 if (e == NULL)
5439 {
5440 if (retval
5441 && used_strict_overflow > 0)
5442 *strict_overflow_p = true;
5443 return retval;
5444 }
5445
5446 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5447 {
5448 equiv_vr = get_vr_for_comparison (i);
5449 sop = false;
5450 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
5451 if (t)
5452 {
5453 /* If we get different answers from different members
5454 of the equivalence set this check must be in a dead
5455 code region. Folding it to a trap representation
5456 would be correct here. For now just return don't-know. */
5457 if (retval != NULL
5458 && t != retval)
5459 {
5460 retval = NULL_TREE;
5461 break;
5462 }
5463 retval = t;
5464
5465 if (!sop)
5466 used_strict_overflow = 0;
5467 else if (used_strict_overflow < 0)
5468 used_strict_overflow = 1;
5469 }
5470 }
5471
5472 if (retval
5473 && used_strict_overflow > 0)
5474 *strict_overflow_p = true;
5475
5476 return retval;
5477 }
5478
5479
5480 /* Given a comparison code COMP and names N1 and N2, compare all the
5481 ranges equivalent to N1 against all the ranges equivalent to N2
5482 to determine the value of N1 COMP N2. Return the same value
5483 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5484 whether we relied on an overflow infinity in the comparison. */
5485
5486
5487 static tree
5488 compare_names (enum tree_code comp, tree n1, tree n2,
5489 bool *strict_overflow_p)
5490 {
5491 tree t, retval;
5492 bitmap e1, e2;
5493 bitmap_iterator bi1, bi2;
5494 unsigned i1, i2;
5495 int used_strict_overflow;
5496 static bitmap_obstack *s_obstack = NULL;
5497 static bitmap s_e1 = NULL, s_e2 = NULL;
5498
5499 /* Compare the ranges of every name equivalent to N1 against the
5500 ranges of every name equivalent to N2. */
5501 e1 = get_value_range (n1)->equiv;
5502 e2 = get_value_range (n2)->equiv;
5503
5504 /* Use the fake bitmaps if e1 or e2 are not available. */
5505 if (s_obstack == NULL)
5506 {
5507 s_obstack = XNEW (bitmap_obstack);
5508 bitmap_obstack_initialize (s_obstack);
5509 s_e1 = BITMAP_ALLOC (s_obstack);
5510 s_e2 = BITMAP_ALLOC (s_obstack);
5511 }
5512 if (e1 == NULL)
5513 e1 = s_e1;
5514 if (e2 == NULL)
5515 e2 = s_e2;
5516
5517 /* Add N1 and N2 to their own set of equivalences to avoid
5518 duplicating the body of the loop just to check N1 and N2
5519 ranges. */
5520 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5521 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5522
5523 /* If the equivalence sets have a common intersection, then the two
5524 names can be compared without checking their ranges. */
5525 if (bitmap_intersect_p (e1, e2))
5526 {
5527 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5528 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5529
5530 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5531 ? boolean_true_node
5532 : boolean_false_node;
5533 }
5534
5535 /* Start at -1. Set it to 0 if we do a comparison without relying
5536 on overflow, or 1 if all comparisons rely on overflow. */
5537 used_strict_overflow = -1;
5538
5539 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5540 N2 to their own set of equivalences to avoid duplicating the body
5541 of the loop just to check N1 and N2 ranges. */
5542 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5543 {
5544 value_range_t vr1 = get_vr_for_comparison (i1);
5545
5546 t = retval = NULL_TREE;
5547 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5548 {
5549 bool sop = false;
5550
5551 value_range_t vr2 = get_vr_for_comparison (i2);
5552
5553 t = compare_ranges (comp, &vr1, &vr2, &sop);
5554 if (t)
5555 {
5556 /* If we get different answers from different members
5557 of the equivalence set this check must be in a dead
5558 code region. Folding it to a trap representation
5559 would be correct here. For now just return don't-know. */
5560 if (retval != NULL
5561 && t != retval)
5562 {
5563 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5564 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5565 return NULL_TREE;
5566 }
5567 retval = t;
5568
5569 if (!sop)
5570 used_strict_overflow = 0;
5571 else if (used_strict_overflow < 0)
5572 used_strict_overflow = 1;
5573 }
5574 }
5575
5576 if (retval)
5577 {
5578 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5579 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5580 if (used_strict_overflow > 0)
5581 *strict_overflow_p = true;
5582 return retval;
5583 }
5584 }
5585
5586 /* None of the equivalent ranges are useful in computing this
5587 comparison. */
5588 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5589 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5590 return NULL_TREE;
5591 }
5592
5593 /* Helper function for vrp_evaluate_conditional_warnv. */
5594
5595 static tree
5596 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
5597 tree op0, tree op1,
5598 bool * strict_overflow_p)
5599 {
5600 value_range_t *vr0, *vr1;
5601
5602 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5603 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5604
5605 if (vr0 && vr1)
5606 return compare_ranges (code, vr0, vr1, strict_overflow_p);
5607 else if (vr0 && vr1 == NULL)
5608 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
5609 else if (vr0 == NULL && vr1)
5610 return (compare_range_with_value
5611 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
5612 return NULL;
5613 }
5614
5615 /* Helper function for vrp_evaluate_conditional_warnv. */
5616
5617 static tree
5618 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5619 tree op1, bool use_equiv_p,
5620 bool *strict_overflow_p, bool *only_ranges)
5621 {
5622 tree ret;
5623 if (only_ranges)
5624 *only_ranges = true;
5625
5626 /* We only deal with integral and pointer types. */
5627 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5628 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5629 return NULL_TREE;
5630
5631 if (use_equiv_p)
5632 {
5633 if (only_ranges
5634 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
5635 (code, op0, op1, strict_overflow_p)))
5636 return ret;
5637 *only_ranges = false;
5638 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
5639 return compare_names (code, op0, op1, strict_overflow_p);
5640 else if (TREE_CODE (op0) == SSA_NAME)
5641 return compare_name_with_value (code, op0, op1, strict_overflow_p);
5642 else if (TREE_CODE (op1) == SSA_NAME)
5643 return (compare_name_with_value
5644 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
5645 }
5646 else
5647 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
5648 strict_overflow_p);
5649 return NULL_TREE;
5650 }
5651
5652 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5653 information. Return NULL if the conditional can not be evaluated.
5654 The ranges of all the names equivalent with the operands in COND
5655 will be used when trying to compute the value. If the result is
5656 based on undefined signed overflow, issue a warning if
5657 appropriate. */
5658
5659 static tree
5660 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
5661 {
5662 bool sop;
5663 tree ret;
5664 bool only_ranges;
5665
5666 /* Some passes and foldings leak constants with overflow flag set
5667 into the IL. Avoid doing wrong things with these and bail out. */
5668 if ((TREE_CODE (op0) == INTEGER_CST
5669 && TREE_OVERFLOW (op0))
5670 || (TREE_CODE (op1) == INTEGER_CST
5671 && TREE_OVERFLOW (op1)))
5672 return NULL_TREE;
5673
5674 sop = false;
5675 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
5676 &only_ranges);
5677
5678 if (ret && sop)
5679 {
5680 enum warn_strict_overflow_code wc;
5681 const char* warnmsg;
5682
5683 if (is_gimple_min_invariant (ret))
5684 {
5685 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
5686 warnmsg = G_("assuming signed overflow does not occur when "
5687 "simplifying conditional to constant");
5688 }
5689 else
5690 {
5691 wc = WARN_STRICT_OVERFLOW_COMPARISON;
5692 warnmsg = G_("assuming signed overflow does not occur when "
5693 "simplifying conditional");
5694 }
5695
5696 if (issue_strict_overflow_warning (wc))
5697 {
5698 location_t location;
5699
5700 if (!gimple_has_location (stmt))
5701 location = input_location;
5702 else
5703 location = gimple_location (stmt);
5704 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
5705 }
5706 }
5707
5708 if (warn_type_limits
5709 && ret && only_ranges
5710 && TREE_CODE_CLASS (code) == tcc_comparison
5711 && TREE_CODE (op0) == SSA_NAME)
5712 {
5713 /* If the comparison is being folded and the operand on the LHS
5714 is being compared against a constant value that is outside of
5715 the natural range of OP0's type, then the predicate will
5716 always fold regardless of the value of OP0. If -Wtype-limits
5717 was specified, emit a warning. */
5718 tree type = TREE_TYPE (op0);
5719 value_range_t *vr0 = get_value_range (op0);
5720
5721 if (vr0->type != VR_VARYING
5722 && INTEGRAL_TYPE_P (type)
5723 && vrp_val_is_min (vr0->min)
5724 && vrp_val_is_max (vr0->max)
5725 && is_gimple_min_invariant (op1))
5726 {
5727 location_t location;
5728
5729 if (!gimple_has_location (stmt))
5730 location = input_location;
5731 else
5732 location = gimple_location (stmt);
5733
5734 warning_at (location, OPT_Wtype_limits,
5735 integer_zerop (ret)
5736 ? G_("comparison always false "
5737 "due to limited range of data type")
5738 : G_("comparison always true "
5739 "due to limited range of data type"));
5740 }
5741 }
5742
5743 return ret;
5744 }
5745
5746
5747 /* Visit conditional statement STMT. If we can determine which edge
5748 will be taken out of STMT's basic block, record it in
5749 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5750 SSA_PROP_VARYING. */
5751
5752 static enum ssa_prop_result
5753 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
5754 {
5755 tree val;
5756 bool sop;
5757
5758 *taken_edge_p = NULL;
5759
5760 if (dump_file && (dump_flags & TDF_DETAILS))
5761 {
5762 tree use;
5763 ssa_op_iter i;
5764
5765 fprintf (dump_file, "\nVisiting conditional with predicate: ");
5766 print_gimple_stmt (dump_file, stmt, 0, 0);
5767 fprintf (dump_file, "\nWith known ranges\n");
5768
5769 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5770 {
5771 fprintf (dump_file, "\t");
5772 print_generic_expr (dump_file, use, 0);
5773 fprintf (dump_file, ": ");
5774 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
5775 }
5776
5777 fprintf (dump_file, "\n");
5778 }
5779
5780 /* Compute the value of the predicate COND by checking the known
5781 ranges of each of its operands.
5782
5783 Note that we cannot evaluate all the equivalent ranges here
5784 because those ranges may not yet be final and with the current
5785 propagation strategy, we cannot determine when the value ranges
5786 of the names in the equivalence set have changed.
5787
5788 For instance, given the following code fragment
5789
5790 i_5 = PHI <8, i_13>
5791 ...
5792 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
5793 if (i_14 == 1)
5794 ...
5795
5796 Assume that on the first visit to i_14, i_5 has the temporary
5797 range [8, 8] because the second argument to the PHI function is
5798 not yet executable. We derive the range ~[0, 0] for i_14 and the
5799 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
5800 the first time, since i_14 is equivalent to the range [8, 8], we
5801 determine that the predicate is always false.
5802
5803 On the next round of propagation, i_13 is determined to be
5804 VARYING, which causes i_5 to drop down to VARYING. So, another
5805 visit to i_14 is scheduled. In this second visit, we compute the
5806 exact same range and equivalence set for i_14, namely ~[0, 0] and
5807 { i_5 }. But we did not have the previous range for i_5
5808 registered, so vrp_visit_assignment thinks that the range for
5809 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
5810 is not visited again, which stops propagation from visiting
5811 statements in the THEN clause of that if().
5812
5813 To properly fix this we would need to keep the previous range
5814 value for the names in the equivalence set. This way we would've
5815 discovered that from one visit to the other i_5 changed from
5816 range [8, 8] to VR_VARYING.
5817
5818 However, fixing this apparent limitation may not be worth the
5819 additional checking. Testing on several code bases (GCC, DLV,
5820 MICO, TRAMP3D and SPEC2000) showed that doing this results in
5821 4 more predicates folded in SPEC. */
5822 sop = false;
5823
5824 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
5825 gimple_cond_lhs (stmt),
5826 gimple_cond_rhs (stmt),
5827 false, &sop, NULL);
5828 if (val)
5829 {
5830 if (!sop)
5831 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
5832 else
5833 {
5834 if (dump_file && (dump_flags & TDF_DETAILS))
5835 fprintf (dump_file,
5836 "\nIgnoring predicate evaluation because "
5837 "it assumes that signed overflow is undefined");
5838 val = NULL_TREE;
5839 }
5840 }
5841
5842 if (dump_file && (dump_flags & TDF_DETAILS))
5843 {
5844 fprintf (dump_file, "\nPredicate evaluates to: ");
5845 if (val == NULL_TREE)
5846 fprintf (dump_file, "DON'T KNOW\n");
5847 else
5848 print_generic_stmt (dump_file, val, 0);
5849 }
5850
5851 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5852 }
5853
5854 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
5855 that includes the value VAL. The search is restricted to the range
5856 [START_IDX, n - 1] where n is the size of VEC.
5857
5858 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
5859 returned.
5860
5861 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
5862 it is placed in IDX and false is returned.
5863
5864 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
5865 returned. */
5866
5867 static bool
5868 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
5869 {
5870 size_t n = gimple_switch_num_labels (stmt);
5871 size_t low, high;
5872
5873 /* Find case label for minimum of the value range or the next one.
5874 At each iteration we are searching in [low, high - 1]. */
5875
5876 for (low = start_idx, high = n; high != low; )
5877 {
5878 tree t;
5879 int cmp;
5880 /* Note that i != high, so we never ask for n. */
5881 size_t i = (high + low) / 2;
5882 t = gimple_switch_label (stmt, i);
5883
5884 /* Cache the result of comparing CASE_LOW and val. */
5885 cmp = tree_int_cst_compare (CASE_LOW (t), val);
5886
5887 if (cmp == 0)
5888 {
5889 /* Ranges cannot be empty. */
5890 *idx = i;
5891 return true;
5892 }
5893 else if (cmp > 0)
5894 high = i;
5895 else
5896 {
5897 low = i + 1;
5898 if (CASE_HIGH (t) != NULL
5899 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
5900 {
5901 *idx = i;
5902 return true;
5903 }
5904 }
5905 }
5906
5907 *idx = high;
5908 return false;
5909 }
5910
5911 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
5912 for values between MIN and MAX. The first index is placed in MIN_IDX. The
5913 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
5914 then MAX_IDX < MIN_IDX.
5915 Returns true if the default label is not needed. */
5916
5917 static bool
5918 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
5919 size_t *max_idx)
5920 {
5921 size_t i, j;
5922 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
5923 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
5924
5925 if (i == j
5926 && min_take_default
5927 && max_take_default)
5928 {
5929 /* Only the default case label reached.
5930 Return an empty range. */
5931 *min_idx = 1;
5932 *max_idx = 0;
5933 return false;
5934 }
5935 else
5936 {
5937 bool take_default = min_take_default || max_take_default;
5938 tree low, high;
5939 size_t k;
5940
5941 if (max_take_default)
5942 j--;
5943
5944 /* If the case label range is continuous, we do not need
5945 the default case label. Verify that. */
5946 high = CASE_LOW (gimple_switch_label (stmt, i));
5947 if (CASE_HIGH (gimple_switch_label (stmt, i)))
5948 high = CASE_HIGH (gimple_switch_label (stmt, i));
5949 for (k = i + 1; k <= j; ++k)
5950 {
5951 low = CASE_LOW (gimple_switch_label (stmt, k));
5952 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high, 0)))
5953 {
5954 take_default = true;
5955 break;
5956 }
5957 high = low;
5958 if (CASE_HIGH (gimple_switch_label (stmt, k)))
5959 high = CASE_HIGH (gimple_switch_label (stmt, k));
5960 }
5961
5962 *min_idx = i;
5963 *max_idx = j;
5964 return !take_default;
5965 }
5966 }
5967
5968 /* Visit switch statement STMT. If we can determine which edge
5969 will be taken out of STMT's basic block, record it in
5970 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5971 SSA_PROP_VARYING. */
5972
5973 static enum ssa_prop_result
5974 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
5975 {
5976 tree op, val;
5977 value_range_t *vr;
5978 size_t i = 0, j = 0;
5979 bool take_default;
5980
5981 *taken_edge_p = NULL;
5982 op = gimple_switch_index (stmt);
5983 if (TREE_CODE (op) != SSA_NAME)
5984 return SSA_PROP_VARYING;
5985
5986 vr = get_value_range (op);
5987 if (dump_file && (dump_flags & TDF_DETAILS))
5988 {
5989 fprintf (dump_file, "\nVisiting switch expression with operand ");
5990 print_generic_expr (dump_file, op, 0);
5991 fprintf (dump_file, " with known range ");
5992 dump_value_range (dump_file, vr);
5993 fprintf (dump_file, "\n");
5994 }
5995
5996 if (vr->type != VR_RANGE
5997 || symbolic_range_p (vr))
5998 return SSA_PROP_VARYING;
5999
6000 /* Find the single edge that is taken from the switch expression. */
6001 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6002
6003 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6004 label */
6005 if (j < i)
6006 {
6007 gcc_assert (take_default);
6008 val = gimple_switch_default_label (stmt);
6009 }
6010 else
6011 {
6012 /* Check if labels with index i to j and maybe the default label
6013 are all reaching the same label. */
6014
6015 val = gimple_switch_label (stmt, i);
6016 if (take_default
6017 && CASE_LABEL (gimple_switch_default_label (stmt))
6018 != CASE_LABEL (val))
6019 {
6020 if (dump_file && (dump_flags & TDF_DETAILS))
6021 fprintf (dump_file, " not a single destination for this "
6022 "range\n");
6023 return SSA_PROP_VARYING;
6024 }
6025 for (++i; i <= j; ++i)
6026 {
6027 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
6028 {
6029 if (dump_file && (dump_flags & TDF_DETAILS))
6030 fprintf (dump_file, " not a single destination for this "
6031 "range\n");
6032 return SSA_PROP_VARYING;
6033 }
6034 }
6035 }
6036
6037 *taken_edge_p = find_edge (gimple_bb (stmt),
6038 label_to_block (CASE_LABEL (val)));
6039
6040 if (dump_file && (dump_flags & TDF_DETAILS))
6041 {
6042 fprintf (dump_file, " will take edge to ");
6043 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
6044 }
6045
6046 return SSA_PROP_INTERESTING;
6047 }
6048
6049
6050 /* Evaluate statement STMT. If the statement produces a useful range,
6051 return SSA_PROP_INTERESTING and record the SSA name with the
6052 interesting range into *OUTPUT_P.
6053
6054 If STMT is a conditional branch and we can determine its truth
6055 value, the taken edge is recorded in *TAKEN_EDGE_P.
6056
6057 If STMT produces a varying value, return SSA_PROP_VARYING. */
6058
6059 static enum ssa_prop_result
6060 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
6061 {
6062 tree def;
6063 ssa_op_iter iter;
6064
6065 if (dump_file && (dump_flags & TDF_DETAILS))
6066 {
6067 fprintf (dump_file, "\nVisiting statement:\n");
6068 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
6069 fprintf (dump_file, "\n");
6070 }
6071
6072 if (!stmt_interesting_for_vrp (stmt))
6073 gcc_assert (stmt_ends_bb_p (stmt));
6074 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6075 {
6076 /* In general, assignments with virtual operands are not useful
6077 for deriving ranges, with the obvious exception of calls to
6078 builtin functions. */
6079
6080 if ((is_gimple_call (stmt)
6081 && gimple_call_fndecl (stmt) != NULL_TREE
6082 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
6083 || !gimple_vuse (stmt))
6084 return vrp_visit_assignment_or_call (stmt, output_p);
6085 }
6086 else if (gimple_code (stmt) == GIMPLE_COND)
6087 return vrp_visit_cond_stmt (stmt, taken_edge_p);
6088 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6089 return vrp_visit_switch_stmt (stmt, taken_edge_p);
6090
6091 /* All other statements produce nothing of interest for VRP, so mark
6092 their outputs varying and prevent further simulation. */
6093 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6094 set_value_range_to_varying (get_value_range (def));
6095
6096 return SSA_PROP_VARYING;
6097 }
6098
6099
6100 /* Meet operation for value ranges. Given two value ranges VR0 and
6101 VR1, store in VR0 a range that contains both VR0 and VR1. This
6102 may not be the smallest possible such range. */
6103
6104 static void
6105 vrp_meet (value_range_t *vr0, value_range_t *vr1)
6106 {
6107 if (vr0->type == VR_UNDEFINED)
6108 {
6109 copy_value_range (vr0, vr1);
6110 return;
6111 }
6112
6113 if (vr1->type == VR_UNDEFINED)
6114 {
6115 /* Nothing to do. VR0 already has the resulting range. */
6116 return;
6117 }
6118
6119 if (vr0->type == VR_VARYING)
6120 {
6121 /* Nothing to do. VR0 already has the resulting range. */
6122 return;
6123 }
6124
6125 if (vr1->type == VR_VARYING)
6126 {
6127 set_value_range_to_varying (vr0);
6128 return;
6129 }
6130
6131 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
6132 {
6133 int cmp;
6134 tree min, max;
6135
6136 /* Compute the convex hull of the ranges. The lower limit of
6137 the new range is the minimum of the two ranges. If they
6138 cannot be compared, then give up. */
6139 cmp = compare_values (vr0->min, vr1->min);
6140 if (cmp == 0 || cmp == 1)
6141 min = vr1->min;
6142 else if (cmp == -1)
6143 min = vr0->min;
6144 else
6145 goto give_up;
6146
6147 /* Similarly, the upper limit of the new range is the maximum
6148 of the two ranges. If they cannot be compared, then
6149 give up. */
6150 cmp = compare_values (vr0->max, vr1->max);
6151 if (cmp == 0 || cmp == -1)
6152 max = vr1->max;
6153 else if (cmp == 1)
6154 max = vr0->max;
6155 else
6156 goto give_up;
6157
6158 /* Check for useless ranges. */
6159 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
6160 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
6161 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
6162 goto give_up;
6163
6164 /* The resulting set of equivalences is the intersection of
6165 the two sets. */
6166 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6167 bitmap_and_into (vr0->equiv, vr1->equiv);
6168 else if (vr0->equiv && !vr1->equiv)
6169 bitmap_clear (vr0->equiv);
6170
6171 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
6172 }
6173 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
6174 {
6175 /* Two anti-ranges meet only if their complements intersect.
6176 Only handle the case of identical ranges. */
6177 if (compare_values (vr0->min, vr1->min) == 0
6178 && compare_values (vr0->max, vr1->max) == 0
6179 && compare_values (vr0->min, vr0->max) == 0)
6180 {
6181 /* The resulting set of equivalences is the intersection of
6182 the two sets. */
6183 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6184 bitmap_and_into (vr0->equiv, vr1->equiv);
6185 else if (vr0->equiv && !vr1->equiv)
6186 bitmap_clear (vr0->equiv);
6187 }
6188 else
6189 goto give_up;
6190 }
6191 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
6192 {
6193 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6194 only handle the case where the ranges have an empty intersection.
6195 The result of the meet operation is the anti-range. */
6196 if (!symbolic_range_p (vr0)
6197 && !symbolic_range_p (vr1)
6198 && !value_ranges_intersect_p (vr0, vr1))
6199 {
6200 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6201 set. We need to compute the intersection of the two
6202 equivalence sets. */
6203 if (vr1->type == VR_ANTI_RANGE)
6204 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
6205
6206 /* The resulting set of equivalences is the intersection of
6207 the two sets. */
6208 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6209 bitmap_and_into (vr0->equiv, vr1->equiv);
6210 else if (vr0->equiv && !vr1->equiv)
6211 bitmap_clear (vr0->equiv);
6212 }
6213 else
6214 goto give_up;
6215 }
6216 else
6217 gcc_unreachable ();
6218
6219 return;
6220
6221 give_up:
6222 /* Failed to find an efficient meet. Before giving up and setting
6223 the result to VARYING, see if we can at least derive a useful
6224 anti-range. FIXME, all this nonsense about distinguishing
6225 anti-ranges from ranges is necessary because of the odd
6226 semantics of range_includes_zero_p and friends. */
6227 if (!symbolic_range_p (vr0)
6228 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
6229 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
6230 && !symbolic_range_p (vr1)
6231 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
6232 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
6233 {
6234 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
6235
6236 /* Since this meet operation did not result from the meeting of
6237 two equivalent names, VR0 cannot have any equivalences. */
6238 if (vr0->equiv)
6239 bitmap_clear (vr0->equiv);
6240 }
6241 else
6242 set_value_range_to_varying (vr0);
6243 }
6244
6245
6246 /* Visit all arguments for PHI node PHI that flow through executable
6247 edges. If a valid value range can be derived from all the incoming
6248 value ranges, set a new range for the LHS of PHI. */
6249
6250 static enum ssa_prop_result
6251 vrp_visit_phi_node (gimple phi)
6252 {
6253 size_t i;
6254 tree lhs = PHI_RESULT (phi);
6255 value_range_t *lhs_vr = get_value_range (lhs);
6256 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6257 int edges, old_edges;
6258
6259 copy_value_range (&vr_result, lhs_vr);
6260
6261 if (dump_file && (dump_flags & TDF_DETAILS))
6262 {
6263 fprintf (dump_file, "\nVisiting PHI node: ");
6264 print_gimple_stmt (dump_file, phi, 0, dump_flags);
6265 }
6266
6267 edges = 0;
6268 for (i = 0; i < gimple_phi_num_args (phi); i++)
6269 {
6270 edge e = gimple_phi_arg_edge (phi, i);
6271
6272 if (dump_file && (dump_flags & TDF_DETAILS))
6273 {
6274 fprintf (dump_file,
6275 "\n Argument #%d (%d -> %d %sexecutable)\n",
6276 (int) i, e->src->index, e->dest->index,
6277 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
6278 }
6279
6280 if (e->flags & EDGE_EXECUTABLE)
6281 {
6282 tree arg = PHI_ARG_DEF (phi, i);
6283 value_range_t vr_arg;
6284
6285 ++edges;
6286
6287 if (TREE_CODE (arg) == SSA_NAME)
6288 {
6289 vr_arg = *(get_value_range (arg));
6290 }
6291 else
6292 {
6293 if (is_overflow_infinity (arg))
6294 {
6295 arg = copy_node (arg);
6296 TREE_OVERFLOW (arg) = 0;
6297 }
6298
6299 vr_arg.type = VR_RANGE;
6300 vr_arg.min = arg;
6301 vr_arg.max = arg;
6302 vr_arg.equiv = NULL;
6303 }
6304
6305 if (dump_file && (dump_flags & TDF_DETAILS))
6306 {
6307 fprintf (dump_file, "\t");
6308 print_generic_expr (dump_file, arg, dump_flags);
6309 fprintf (dump_file, "\n\tValue: ");
6310 dump_value_range (dump_file, &vr_arg);
6311 fprintf (dump_file, "\n");
6312 }
6313
6314 vrp_meet (&vr_result, &vr_arg);
6315
6316 if (vr_result.type == VR_VARYING)
6317 break;
6318 }
6319 }
6320
6321 if (vr_result.type == VR_VARYING)
6322 goto varying;
6323
6324 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
6325 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
6326
6327 /* To prevent infinite iterations in the algorithm, derive ranges
6328 when the new value is slightly bigger or smaller than the
6329 previous one. We don't do this if we have seen a new executable
6330 edge; this helps us avoid an overflow infinity for conditionals
6331 which are not in a loop. */
6332 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
6333 && edges <= old_edges)
6334 {
6335 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
6336 {
6337 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
6338 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
6339
6340 /* If the new minimum is smaller or larger than the previous
6341 one, go all the way to -INF. In the first case, to avoid
6342 iterating millions of times to reach -INF, and in the
6343 other case to avoid infinite bouncing between different
6344 minimums. */
6345 if (cmp_min > 0 || cmp_min < 0)
6346 {
6347 /* If we will end up with a (-INF, +INF) range, set it to
6348 VARYING. Same if the previous max value was invalid for
6349 the type and we'd end up with vr_result.min > vr_result.max. */
6350 if (vrp_val_is_max (vr_result.max)
6351 || compare_values (TYPE_MIN_VALUE (TREE_TYPE (vr_result.min)),
6352 vr_result.max) > 0)
6353 goto varying;
6354
6355 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
6356 || !vrp_var_may_overflow (lhs, phi))
6357 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
6358 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
6359 vr_result.min =
6360 negative_overflow_infinity (TREE_TYPE (vr_result.min));
6361 else
6362 goto varying;
6363 }
6364
6365 /* Similarly, if the new maximum is smaller or larger than
6366 the previous one, go all the way to +INF. */
6367 if (cmp_max < 0 || cmp_max > 0)
6368 {
6369 /* If we will end up with a (-INF, +INF) range, set it to
6370 VARYING. Same if the previous min value was invalid for
6371 the type and we'd end up with vr_result.max < vr_result.min. */
6372 if (vrp_val_is_min (vr_result.min)
6373 || compare_values (TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)),
6374 vr_result.min) < 0)
6375 goto varying;
6376
6377 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6378 || !vrp_var_may_overflow (lhs, phi))
6379 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6380 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6381 vr_result.max =
6382 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6383 else
6384 goto varying;
6385 }
6386 }
6387 }
6388
6389 /* If the new range is different than the previous value, keep
6390 iterating. */
6391 if (update_value_range (lhs, &vr_result))
6392 return SSA_PROP_INTERESTING;
6393
6394 /* Nothing changed, don't add outgoing edges. */
6395 return SSA_PROP_NOT_INTERESTING;
6396
6397 /* No match found. Set the LHS to VARYING. */
6398 varying:
6399 set_value_range_to_varying (lhs_vr);
6400 return SSA_PROP_VARYING;
6401 }
6402
6403 /* Simplify boolean operations if the source is known
6404 to be already a boolean. */
6405 static bool
6406 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6407 {
6408 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6409 tree val = NULL;
6410 tree op0, op1;
6411 value_range_t *vr;
6412 bool sop = false;
6413 bool need_conversion;
6414
6415 op0 = gimple_assign_rhs1 (stmt);
6416 if (TYPE_PRECISION (TREE_TYPE (op0)) != 1)
6417 {
6418 if (TREE_CODE (op0) != SSA_NAME)
6419 return false;
6420 vr = get_value_range (op0);
6421
6422 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6423 if (!val || !integer_onep (val))
6424 return false;
6425
6426 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6427 if (!val || !integer_onep (val))
6428 return false;
6429 }
6430
6431 if (rhs_code == TRUTH_NOT_EXPR)
6432 {
6433 rhs_code = NE_EXPR;
6434 op1 = build_int_cst (TREE_TYPE (op0), 1);
6435 }
6436 else
6437 {
6438 op1 = gimple_assign_rhs2 (stmt);
6439
6440 /* Reduce number of cases to handle. */
6441 if (is_gimple_min_invariant (op1))
6442 {
6443 /* Exclude anything that should have been already folded. */
6444 if (rhs_code != EQ_EXPR
6445 && rhs_code != NE_EXPR
6446 && rhs_code != TRUTH_XOR_EXPR)
6447 return false;
6448
6449 if (!integer_zerop (op1)
6450 && !integer_onep (op1)
6451 && !integer_all_onesp (op1))
6452 return false;
6453
6454 /* Limit the number of cases we have to consider. */
6455 if (rhs_code == EQ_EXPR)
6456 {
6457 rhs_code = NE_EXPR;
6458 op1 = fold_unary (TRUTH_NOT_EXPR, TREE_TYPE (op1), op1);
6459 }
6460 }
6461 else
6462 {
6463 /* Punt on A == B as there is no BIT_XNOR_EXPR. */
6464 if (rhs_code == EQ_EXPR)
6465 return false;
6466
6467 if (TYPE_PRECISION (TREE_TYPE (op1)) != 1)
6468 {
6469 vr = get_value_range (op1);
6470 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6471 if (!val || !integer_onep (val))
6472 return false;
6473
6474 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6475 if (!val || !integer_onep (val))
6476 return false;
6477 }
6478 }
6479 }
6480
6481 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6482 {
6483 location_t location;
6484
6485 if (!gimple_has_location (stmt))
6486 location = input_location;
6487 else
6488 location = gimple_location (stmt);
6489
6490 if (rhs_code == TRUTH_AND_EXPR || rhs_code == TRUTH_OR_EXPR)
6491 warning_at (location, OPT_Wstrict_overflow,
6492 _("assuming signed overflow does not occur when "
6493 "simplifying && or || to & or |"));
6494 else
6495 warning_at (location, OPT_Wstrict_overflow,
6496 _("assuming signed overflow does not occur when "
6497 "simplifying ==, != or ! to identity or ^"));
6498 }
6499
6500 need_conversion =
6501 !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)),
6502 TREE_TYPE (op0));
6503
6504 /* Make sure to not sign-extend -1 as a boolean value. */
6505 if (need_conversion
6506 && !TYPE_UNSIGNED (TREE_TYPE (op0))
6507 && TYPE_PRECISION (TREE_TYPE (op0)) == 1)
6508 return false;
6509
6510 switch (rhs_code)
6511 {
6512 case TRUTH_AND_EXPR:
6513 rhs_code = BIT_AND_EXPR;
6514 break;
6515 case TRUTH_OR_EXPR:
6516 rhs_code = BIT_IOR_EXPR;
6517 break;
6518 case TRUTH_XOR_EXPR:
6519 case NE_EXPR:
6520 if (integer_zerop (op1))
6521 {
6522 gimple_assign_set_rhs_with_ops (gsi,
6523 need_conversion ? NOP_EXPR : SSA_NAME,
6524 op0, NULL);
6525 update_stmt (gsi_stmt (*gsi));
6526 return true;
6527 }
6528
6529 rhs_code = BIT_XOR_EXPR;
6530 break;
6531 default:
6532 gcc_unreachable ();
6533 }
6534
6535 if (need_conversion)
6536 return false;
6537
6538 gimple_assign_set_rhs_with_ops (gsi, rhs_code, op0, op1);
6539 update_stmt (gsi_stmt (*gsi));
6540 return true;
6541 }
6542
6543 /* Simplify a division or modulo operator to a right shift or
6544 bitwise and if the first operand is unsigned or is greater
6545 than zero and the second operand is an exact power of two. */
6546
6547 static bool
6548 simplify_div_or_mod_using_ranges (gimple stmt)
6549 {
6550 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6551 tree val = NULL;
6552 tree op0 = gimple_assign_rhs1 (stmt);
6553 tree op1 = gimple_assign_rhs2 (stmt);
6554 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
6555
6556 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
6557 {
6558 val = integer_one_node;
6559 }
6560 else
6561 {
6562 bool sop = false;
6563
6564 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6565
6566 if (val
6567 && sop
6568 && integer_onep (val)
6569 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6570 {
6571 location_t location;
6572
6573 if (!gimple_has_location (stmt))
6574 location = input_location;
6575 else
6576 location = gimple_location (stmt);
6577 warning_at (location, OPT_Wstrict_overflow,
6578 "assuming signed overflow does not occur when "
6579 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
6580 }
6581 }
6582
6583 if (val && integer_onep (val))
6584 {
6585 tree t;
6586
6587 if (rhs_code == TRUNC_DIV_EXPR)
6588 {
6589 t = build_int_cst (NULL_TREE, tree_log2 (op1));
6590 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
6591 gimple_assign_set_rhs1 (stmt, op0);
6592 gimple_assign_set_rhs2 (stmt, t);
6593 }
6594 else
6595 {
6596 t = build_int_cst (TREE_TYPE (op1), 1);
6597 t = int_const_binop (MINUS_EXPR, op1, t, 0);
6598 t = fold_convert (TREE_TYPE (op0), t);
6599
6600 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
6601 gimple_assign_set_rhs1 (stmt, op0);
6602 gimple_assign_set_rhs2 (stmt, t);
6603 }
6604
6605 update_stmt (stmt);
6606 return true;
6607 }
6608
6609 return false;
6610 }
6611
6612 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6613 ABS_EXPR. If the operand is <= 0, then simplify the
6614 ABS_EXPR into a NEGATE_EXPR. */
6615
6616 static bool
6617 simplify_abs_using_ranges (gimple stmt)
6618 {
6619 tree val = NULL;
6620 tree op = gimple_assign_rhs1 (stmt);
6621 tree type = TREE_TYPE (op);
6622 value_range_t *vr = get_value_range (op);
6623
6624 if (TYPE_UNSIGNED (type))
6625 {
6626 val = integer_zero_node;
6627 }
6628 else if (vr)
6629 {
6630 bool sop = false;
6631
6632 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
6633 if (!val)
6634 {
6635 sop = false;
6636 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6637 &sop);
6638
6639 if (val)
6640 {
6641 if (integer_zerop (val))
6642 val = integer_one_node;
6643 else if (integer_onep (val))
6644 val = integer_zero_node;
6645 }
6646 }
6647
6648 if (val
6649 && (integer_onep (val) || integer_zerop (val)))
6650 {
6651 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6652 {
6653 location_t location;
6654
6655 if (!gimple_has_location (stmt))
6656 location = input_location;
6657 else
6658 location = gimple_location (stmt);
6659 warning_at (location, OPT_Wstrict_overflow,
6660 "assuming signed overflow does not occur when "
6661 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
6662 }
6663
6664 gimple_assign_set_rhs1 (stmt, op);
6665 if (integer_onep (val))
6666 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
6667 else
6668 gimple_assign_set_rhs_code (stmt, SSA_NAME);
6669 update_stmt (stmt);
6670 return true;
6671 }
6672 }
6673
6674 return false;
6675 }
6676
6677 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
6678 a known value range VR.
6679
6680 If there is one and only one value which will satisfy the
6681 conditional, then return that value. Else return NULL. */
6682
6683 static tree
6684 test_for_singularity (enum tree_code cond_code, tree op0,
6685 tree op1, value_range_t *vr)
6686 {
6687 tree min = NULL;
6688 tree max = NULL;
6689
6690 /* Extract minimum/maximum values which satisfy the
6691 the conditional as it was written. */
6692 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
6693 {
6694 /* This should not be negative infinity; there is no overflow
6695 here. */
6696 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
6697
6698 max = op1;
6699 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
6700 {
6701 tree one = build_int_cst (TREE_TYPE (op0), 1);
6702 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
6703 if (EXPR_P (max))
6704 TREE_NO_WARNING (max) = 1;
6705 }
6706 }
6707 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
6708 {
6709 /* This should not be positive infinity; there is no overflow
6710 here. */
6711 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
6712
6713 min = op1;
6714 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
6715 {
6716 tree one = build_int_cst (TREE_TYPE (op0), 1);
6717 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
6718 if (EXPR_P (min))
6719 TREE_NO_WARNING (min) = 1;
6720 }
6721 }
6722
6723 /* Now refine the minimum and maximum values using any
6724 value range information we have for op0. */
6725 if (min && max)
6726 {
6727 if (compare_values (vr->min, min) == 1)
6728 min = vr->min;
6729 if (compare_values (vr->max, max) == -1)
6730 max = vr->max;
6731
6732 /* If the new min/max values have converged to a single value,
6733 then there is only one value which can satisfy the condition,
6734 return that value. */
6735 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
6736 return min;
6737 }
6738 return NULL;
6739 }
6740
6741 /* Simplify a conditional using a relational operator to an equality
6742 test if the range information indicates only one value can satisfy
6743 the original conditional. */
6744
6745 static bool
6746 simplify_cond_using_ranges (gimple stmt)
6747 {
6748 tree op0 = gimple_cond_lhs (stmt);
6749 tree op1 = gimple_cond_rhs (stmt);
6750 enum tree_code cond_code = gimple_cond_code (stmt);
6751
6752 if (cond_code != NE_EXPR
6753 && cond_code != EQ_EXPR
6754 && TREE_CODE (op0) == SSA_NAME
6755 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
6756 && is_gimple_min_invariant (op1))
6757 {
6758 value_range_t *vr = get_value_range (op0);
6759
6760 /* If we have range information for OP0, then we might be
6761 able to simplify this conditional. */
6762 if (vr->type == VR_RANGE)
6763 {
6764 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
6765
6766 if (new_tree)
6767 {
6768 if (dump_file)
6769 {
6770 fprintf (dump_file, "Simplified relational ");
6771 print_gimple_stmt (dump_file, stmt, 0, 0);
6772 fprintf (dump_file, " into ");
6773 }
6774
6775 gimple_cond_set_code (stmt, EQ_EXPR);
6776 gimple_cond_set_lhs (stmt, op0);
6777 gimple_cond_set_rhs (stmt, new_tree);
6778
6779 update_stmt (stmt);
6780
6781 if (dump_file)
6782 {
6783 print_gimple_stmt (dump_file, stmt, 0, 0);
6784 fprintf (dump_file, "\n");
6785 }
6786
6787 return true;
6788 }
6789
6790 /* Try again after inverting the condition. We only deal
6791 with integral types here, so no need to worry about
6792 issues with inverting FP comparisons. */
6793 cond_code = invert_tree_comparison (cond_code, false);
6794 new_tree = test_for_singularity (cond_code, op0, op1, vr);
6795
6796 if (new_tree)
6797 {
6798 if (dump_file)
6799 {
6800 fprintf (dump_file, "Simplified relational ");
6801 print_gimple_stmt (dump_file, stmt, 0, 0);
6802 fprintf (dump_file, " into ");
6803 }
6804
6805 gimple_cond_set_code (stmt, NE_EXPR);
6806 gimple_cond_set_lhs (stmt, op0);
6807 gimple_cond_set_rhs (stmt, new_tree);
6808
6809 update_stmt (stmt);
6810
6811 if (dump_file)
6812 {
6813 print_gimple_stmt (dump_file, stmt, 0, 0);
6814 fprintf (dump_file, "\n");
6815 }
6816
6817 return true;
6818 }
6819 }
6820 }
6821
6822 return false;
6823 }
6824
6825 /* Simplify a switch statement using the value range of the switch
6826 argument. */
6827
6828 static bool
6829 simplify_switch_using_ranges (gimple stmt)
6830 {
6831 tree op = gimple_switch_index (stmt);
6832 value_range_t *vr;
6833 bool take_default;
6834 edge e;
6835 edge_iterator ei;
6836 size_t i = 0, j = 0, n, n2;
6837 tree vec2;
6838 switch_update su;
6839
6840 if (TREE_CODE (op) == SSA_NAME)
6841 {
6842 vr = get_value_range (op);
6843
6844 /* We can only handle integer ranges. */
6845 if (vr->type != VR_RANGE
6846 || symbolic_range_p (vr))
6847 return false;
6848
6849 /* Find case label for min/max of the value range. */
6850 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6851 }
6852 else if (TREE_CODE (op) == INTEGER_CST)
6853 {
6854 take_default = !find_case_label_index (stmt, 1, op, &i);
6855 if (take_default)
6856 {
6857 i = 1;
6858 j = 0;
6859 }
6860 else
6861 {
6862 j = i;
6863 }
6864 }
6865 else
6866 return false;
6867
6868 n = gimple_switch_num_labels (stmt);
6869
6870 /* Bail out if this is just all edges taken. */
6871 if (i == 1
6872 && j == n - 1
6873 && take_default)
6874 return false;
6875
6876 /* Build a new vector of taken case labels. */
6877 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
6878 n2 = 0;
6879
6880 /* Add the default edge, if necessary. */
6881 if (take_default)
6882 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
6883
6884 for (; i <= j; ++i, ++n2)
6885 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
6886
6887 /* Mark needed edges. */
6888 for (i = 0; i < n2; ++i)
6889 {
6890 e = find_edge (gimple_bb (stmt),
6891 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
6892 e->aux = (void *)-1;
6893 }
6894
6895 /* Queue not needed edges for later removal. */
6896 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
6897 {
6898 if (e->aux == (void *)-1)
6899 {
6900 e->aux = NULL;
6901 continue;
6902 }
6903
6904 if (dump_file && (dump_flags & TDF_DETAILS))
6905 {
6906 fprintf (dump_file, "removing unreachable case label\n");
6907 }
6908 VEC_safe_push (edge, heap, to_remove_edges, e);
6909 e->flags &= ~EDGE_EXECUTABLE;
6910 }
6911
6912 /* And queue an update for the stmt. */
6913 su.stmt = stmt;
6914 su.vec = vec2;
6915 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
6916 return false;
6917 }
6918
6919 /* Simplify STMT using ranges if possible. */
6920
6921 static bool
6922 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
6923 {
6924 gimple stmt = gsi_stmt (*gsi);
6925 if (is_gimple_assign (stmt))
6926 {
6927 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6928
6929 switch (rhs_code)
6930 {
6931 case EQ_EXPR:
6932 case NE_EXPR:
6933 case TRUTH_NOT_EXPR:
6934 case TRUTH_AND_EXPR:
6935 case TRUTH_OR_EXPR:
6936 case TRUTH_XOR_EXPR:
6937 /* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
6938 or identity if the RHS is zero or one, and the LHS are known
6939 to be boolean values. Transform all TRUTH_*_EXPR into
6940 BIT_*_EXPR if both arguments are known to be boolean values. */
6941 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
6942 return simplify_truth_ops_using_ranges (gsi, stmt);
6943 break;
6944
6945 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
6946 and BIT_AND_EXPR respectively if the first operand is greater
6947 than zero and the second operand is an exact power of two. */
6948 case TRUNC_DIV_EXPR:
6949 case TRUNC_MOD_EXPR:
6950 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6951 && integer_pow2p (gimple_assign_rhs2 (stmt)))
6952 return simplify_div_or_mod_using_ranges (stmt);
6953 break;
6954
6955 /* Transform ABS (X) into X or -X as appropriate. */
6956 case ABS_EXPR:
6957 if (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
6958 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
6959 return simplify_abs_using_ranges (stmt);
6960 break;
6961
6962 default:
6963 break;
6964 }
6965 }
6966 else if (gimple_code (stmt) == GIMPLE_COND)
6967 return simplify_cond_using_ranges (stmt);
6968 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6969 return simplify_switch_using_ranges (stmt);
6970
6971 return false;
6972 }
6973
6974 /* If the statement pointed by SI has a predicate whose value can be
6975 computed using the value range information computed by VRP, compute
6976 its value and return true. Otherwise, return false. */
6977
6978 static bool
6979 fold_predicate_in (gimple_stmt_iterator *si)
6980 {
6981 bool assignment_p = false;
6982 tree val;
6983 gimple stmt = gsi_stmt (*si);
6984
6985 if (is_gimple_assign (stmt)
6986 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
6987 {
6988 assignment_p = true;
6989 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
6990 gimple_assign_rhs1 (stmt),
6991 gimple_assign_rhs2 (stmt),
6992 stmt);
6993 }
6994 else if (gimple_code (stmt) == GIMPLE_COND)
6995 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
6996 gimple_cond_lhs (stmt),
6997 gimple_cond_rhs (stmt),
6998 stmt);
6999 else
7000 return false;
7001
7002 if (val)
7003 {
7004 if (assignment_p)
7005 val = fold_convert (gimple_expr_type (stmt), val);
7006
7007 if (dump_file)
7008 {
7009 fprintf (dump_file, "Folding predicate ");
7010 print_gimple_expr (dump_file, stmt, 0, 0);
7011 fprintf (dump_file, " to ");
7012 print_generic_expr (dump_file, val, 0);
7013 fprintf (dump_file, "\n");
7014 }
7015
7016 if (is_gimple_assign (stmt))
7017 gimple_assign_set_rhs_from_tree (si, val);
7018 else
7019 {
7020 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
7021 if (integer_zerop (val))
7022 gimple_cond_make_false (stmt);
7023 else if (integer_onep (val))
7024 gimple_cond_make_true (stmt);
7025 else
7026 gcc_unreachable ();
7027 }
7028
7029 return true;
7030 }
7031
7032 return false;
7033 }
7034
7035 /* Callback for substitute_and_fold folding the stmt at *SI. */
7036
7037 static bool
7038 vrp_fold_stmt (gimple_stmt_iterator *si)
7039 {
7040 if (fold_predicate_in (si))
7041 return true;
7042
7043 return simplify_stmt_using_ranges (si);
7044 }
7045
7046 /* Stack of dest,src equivalency pairs that need to be restored after
7047 each attempt to thread a block's incoming edge to an outgoing edge.
7048
7049 A NULL entry is used to mark the end of pairs which need to be
7050 restored. */
7051 static VEC(tree,heap) *stack;
7052
7053 /* A trivial wrapper so that we can present the generic jump threading
7054 code with a simple API for simplifying statements. STMT is the
7055 statement we want to simplify, WITHIN_STMT provides the location
7056 for any overflow warnings. */
7057
7058 static tree
7059 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
7060 {
7061 /* We only use VRP information to simplify conditionals. This is
7062 overly conservative, but it's unclear if doing more would be
7063 worth the compile time cost. */
7064 if (gimple_code (stmt) != GIMPLE_COND)
7065 return NULL;
7066
7067 return vrp_evaluate_conditional (gimple_cond_code (stmt),
7068 gimple_cond_lhs (stmt),
7069 gimple_cond_rhs (stmt), within_stmt);
7070 }
7071
7072 /* Blocks which have more than one predecessor and more than
7073 one successor present jump threading opportunities, i.e.,
7074 when the block is reached from a specific predecessor, we
7075 may be able to determine which of the outgoing edges will
7076 be traversed. When this optimization applies, we are able
7077 to avoid conditionals at runtime and we may expose secondary
7078 optimization opportunities.
7079
7080 This routine is effectively a driver for the generic jump
7081 threading code. It basically just presents the generic code
7082 with edges that may be suitable for jump threading.
7083
7084 Unlike DOM, we do not iterate VRP if jump threading was successful.
7085 While iterating may expose new opportunities for VRP, it is expected
7086 those opportunities would be very limited and the compile time cost
7087 to expose those opportunities would be significant.
7088
7089 As jump threading opportunities are discovered, they are registered
7090 for later realization. */
7091
7092 static void
7093 identify_jump_threads (void)
7094 {
7095 basic_block bb;
7096 gimple dummy;
7097 int i;
7098 edge e;
7099
7100 /* Ugh. When substituting values earlier in this pass we can
7101 wipe the dominance information. So rebuild the dominator
7102 information as we need it within the jump threading code. */
7103 calculate_dominance_info (CDI_DOMINATORS);
7104
7105 /* We do not allow VRP information to be used for jump threading
7106 across a back edge in the CFG. Otherwise it becomes too
7107 difficult to avoid eliminating loop exit tests. Of course
7108 EDGE_DFS_BACK is not accurate at this time so we have to
7109 recompute it. */
7110 mark_dfs_back_edges ();
7111
7112 /* Do not thread across edges we are about to remove. Just marking
7113 them as EDGE_DFS_BACK will do. */
7114 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
7115 e->flags |= EDGE_DFS_BACK;
7116
7117 /* Allocate our unwinder stack to unwind any temporary equivalences
7118 that might be recorded. */
7119 stack = VEC_alloc (tree, heap, 20);
7120
7121 /* To avoid lots of silly node creation, we create a single
7122 conditional and just modify it in-place when attempting to
7123 thread jumps. */
7124 dummy = gimple_build_cond (EQ_EXPR,
7125 integer_zero_node, integer_zero_node,
7126 NULL, NULL);
7127
7128 /* Walk through all the blocks finding those which present a
7129 potential jump threading opportunity. We could set this up
7130 as a dominator walker and record data during the walk, but
7131 I doubt it's worth the effort for the classes of jump
7132 threading opportunities we are trying to identify at this
7133 point in compilation. */
7134 FOR_EACH_BB (bb)
7135 {
7136 gimple last;
7137
7138 /* If the generic jump threading code does not find this block
7139 interesting, then there is nothing to do. */
7140 if (! potentially_threadable_block (bb))
7141 continue;
7142
7143 /* We only care about blocks ending in a COND_EXPR. While there
7144 may be some value in handling SWITCH_EXPR here, I doubt it's
7145 terribly important. */
7146 last = gsi_stmt (gsi_last_bb (bb));
7147 if (gimple_code (last) != GIMPLE_COND)
7148 continue;
7149
7150 /* We're basically looking for any kind of conditional with
7151 integral type arguments. */
7152 if (TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
7153 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
7154 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
7155 || is_gimple_min_invariant (gimple_cond_rhs (last)))
7156 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_rhs (last))))
7157 {
7158 edge_iterator ei;
7159
7160 /* We've got a block with multiple predecessors and multiple
7161 successors which also ends in a suitable conditional. For
7162 each predecessor, see if we can thread it to a specific
7163 successor. */
7164 FOR_EACH_EDGE (e, ei, bb->preds)
7165 {
7166 /* Do not thread across back edges or abnormal edges
7167 in the CFG. */
7168 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
7169 continue;
7170
7171 thread_across_edge (dummy, e, true, &stack,
7172 simplify_stmt_for_jump_threading);
7173 }
7174 }
7175 }
7176
7177 /* We do not actually update the CFG or SSA graphs at this point as
7178 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7179 handle ASSERT_EXPRs gracefully. */
7180 }
7181
7182 /* We identified all the jump threading opportunities earlier, but could
7183 not transform the CFG at that time. This routine transforms the
7184 CFG and arranges for the dominator tree to be rebuilt if necessary.
7185
7186 Note the SSA graph update will occur during the normal TODO
7187 processing by the pass manager. */
7188 static void
7189 finalize_jump_threads (void)
7190 {
7191 thread_through_all_blocks (false);
7192 VEC_free (tree, heap, stack);
7193 }
7194
7195
7196 /* Traverse all the blocks folding conditionals with known ranges. */
7197
7198 static void
7199 vrp_finalize (void)
7200 {
7201 size_t i;
7202 prop_value_t *single_val_range;
7203 bool do_value_subst_p;
7204
7205 if (dump_file)
7206 {
7207 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
7208 dump_all_value_ranges (dump_file);
7209 fprintf (dump_file, "\n");
7210 }
7211
7212 /* We may have ended with ranges that have exactly one value. Those
7213 values can be substituted as any other const propagated
7214 value using substitute_and_fold. */
7215 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
7216
7217 do_value_subst_p = false;
7218 for (i = 0; i < num_ssa_names; i++)
7219 if (vr_value[i]
7220 && vr_value[i]->type == VR_RANGE
7221 && vr_value[i]->min == vr_value[i]->max
7222 && is_gimple_min_invariant (vr_value[i]->min))
7223 {
7224 single_val_range[i].value = vr_value[i]->min;
7225 do_value_subst_p = true;
7226 }
7227
7228 if (!do_value_subst_p)
7229 {
7230 /* We found no single-valued ranges, don't waste time trying to
7231 do single value substitution in substitute_and_fold. */
7232 free (single_val_range);
7233 single_val_range = NULL;
7234 }
7235
7236 substitute_and_fold (single_val_range, vrp_fold_stmt);
7237
7238 if (warn_array_bounds)
7239 check_all_array_refs ();
7240
7241 /* We must identify jump threading opportunities before we release
7242 the datastructures built by VRP. */
7243 identify_jump_threads ();
7244
7245 /* Free allocated memory. */
7246 for (i = 0; i < num_ssa_names; i++)
7247 if (vr_value[i])
7248 {
7249 BITMAP_FREE (vr_value[i]->equiv);
7250 free (vr_value[i]);
7251 }
7252
7253 free (single_val_range);
7254 free (vr_value);
7255 free (vr_phi_edge_counts);
7256
7257 /* So that we can distinguish between VRP data being available
7258 and not available. */
7259 vr_value = NULL;
7260 vr_phi_edge_counts = NULL;
7261 }
7262
7263
7264 /* Main entry point to VRP (Value Range Propagation). This pass is
7265 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7266 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7267 Programming Language Design and Implementation, pp. 67-78, 1995.
7268 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7269
7270 This is essentially an SSA-CCP pass modified to deal with ranges
7271 instead of constants.
7272
7273 While propagating ranges, we may find that two or more SSA name
7274 have equivalent, though distinct ranges. For instance,
7275
7276 1 x_9 = p_3->a;
7277 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7278 3 if (p_4 == q_2)
7279 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7280 5 endif
7281 6 if (q_2)
7282
7283 In the code above, pointer p_5 has range [q_2, q_2], but from the
7284 code we can also determine that p_5 cannot be NULL and, if q_2 had
7285 a non-varying range, p_5's range should also be compatible with it.
7286
7287 These equivalences are created by two expressions: ASSERT_EXPR and
7288 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7289 result of another assertion, then we can use the fact that p_5 and
7290 p_4 are equivalent when evaluating p_5's range.
7291
7292 Together with value ranges, we also propagate these equivalences
7293 between names so that we can take advantage of information from
7294 multiple ranges when doing final replacement. Note that this
7295 equivalency relation is transitive but not symmetric.
7296
7297 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7298 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7299 in contexts where that assertion does not hold (e.g., in line 6).
7300
7301 TODO, the main difference between this pass and Patterson's is that
7302 we do not propagate edge probabilities. We only compute whether
7303 edges can be taken or not. That is, instead of having a spectrum
7304 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7305 DON'T KNOW. In the future, it may be worthwhile to propagate
7306 probabilities to aid branch prediction. */
7307
7308 static unsigned int
7309 execute_vrp (void)
7310 {
7311 int i;
7312 edge e;
7313 switch_update *su;
7314
7315 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
7316 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
7317 scev_initialize ();
7318
7319 insert_range_assertions ();
7320
7321 to_remove_edges = VEC_alloc (edge, heap, 10);
7322 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
7323 threadedge_initialize_values ();
7324
7325 vrp_initialize ();
7326 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
7327 vrp_finalize ();
7328
7329 /* ASSERT_EXPRs must be removed before finalizing jump threads
7330 as finalizing jump threads calls the CFG cleanup code which
7331 does not properly handle ASSERT_EXPRs. */
7332 remove_range_assertions ();
7333
7334 /* If we exposed any new variables, go ahead and put them into
7335 SSA form now, before we handle jump threading. This simplifies
7336 interactions between rewriting of _DECL nodes into SSA form
7337 and rewriting SSA_NAME nodes into SSA form after block
7338 duplication and CFG manipulation. */
7339 update_ssa (TODO_update_ssa);
7340
7341 finalize_jump_threads ();
7342
7343 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7344 CFG in a broken state and requires a cfg_cleanup run. */
7345 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
7346 remove_edge (e);
7347 /* Update SWITCH_EXPR case label vector. */
7348 for (i = 0; VEC_iterate (switch_update, to_update_switch_stmts, i, su); ++i)
7349 {
7350 size_t j;
7351 size_t n = TREE_VEC_LENGTH (su->vec);
7352 tree label;
7353 gimple_switch_set_num_labels (su->stmt, n);
7354 for (j = 0; j < n; j++)
7355 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
7356 /* As we may have replaced the default label with a regular one
7357 make sure to make it a real default label again. This ensures
7358 optimal expansion. */
7359 label = gimple_switch_default_label (su->stmt);
7360 CASE_LOW (label) = NULL_TREE;
7361 CASE_HIGH (label) = NULL_TREE;
7362 }
7363
7364 if (VEC_length (edge, to_remove_edges) > 0)
7365 free_dominance_info (CDI_DOMINATORS);
7366
7367 VEC_free (edge, heap, to_remove_edges);
7368 VEC_free (switch_update, heap, to_update_switch_stmts);
7369 threadedge_finalize_values ();
7370
7371 scev_finalize ();
7372 loop_optimizer_finalize ();
7373 return 0;
7374 }
7375
7376 static bool
7377 gate_vrp (void)
7378 {
7379 return flag_tree_vrp != 0;
7380 }
7381
7382 struct gimple_opt_pass pass_vrp =
7383 {
7384 {
7385 GIMPLE_PASS,
7386 "vrp", /* name */
7387 gate_vrp, /* gate */
7388 execute_vrp, /* execute */
7389 NULL, /* sub */
7390 NULL, /* next */
7391 0, /* static_pass_number */
7392 TV_TREE_VRP, /* tv_id */
7393 PROP_ssa, /* properties_required */
7394 0, /* properties_provided */
7395 0, /* properties_destroyed */
7396 0, /* todo_flags_start */
7397 TODO_cleanup_cfg
7398 | TODO_ggc_collect
7399 | TODO_verify_ssa
7400 | TODO_dump_func
7401 | TODO_update_ssa /* todo_flags_finish */
7402 }
7403 };