tree-vrp.c (find_assert_locations): Pre-seed live bitmaps for loop latches from heade...
[gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "flags.h"
27 #include "tree.h"
28 #include "basic-block.h"
29 #include "gimple.h"
30 #include "gimple-ssa.h"
31 #include "tree-cfg.h"
32 #include "tree-phinodes.h"
33 #include "ssa-iterators.h"
34 #include "tree-ssanames.h"
35 #include "tree-ssa-loop-manip.h"
36 #include "tree-ssa-loop-niter.h"
37 #include "tree-ssa-loop.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "tree-pass.h"
41 #include "tree-dump.h"
42 #include "gimple-pretty-print.h"
43 #include "diagnostic-core.h"
44 #include "intl.h"
45 #include "cfgloop.h"
46 #include "tree-scalar-evolution.h"
47 #include "tree-ssa-propagate.h"
48 #include "tree-chrec.h"
49 #include "tree-ssa-threadupdate.h"
50 #include "expr.h"
51 #include "optabs.h"
52 #include "tree-ssa-threadedge.h"
53
54
55
56 /* Range of values that can be associated with an SSA_NAME after VRP
57 has executed. */
58 struct value_range_d
59 {
60 /* Lattice value represented by this range. */
61 enum value_range_type type;
62
63 /* Minimum and maximum values represented by this range. These
64 values should be interpreted as follows:
65
66 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
67 be NULL.
68
69 - If TYPE == VR_RANGE then MIN holds the minimum value and
70 MAX holds the maximum value of the range [MIN, MAX].
71
72 - If TYPE == ANTI_RANGE the variable is known to NOT
73 take any values in the range [MIN, MAX]. */
74 tree min;
75 tree max;
76
77 /* Set of SSA names whose value ranges are equivalent to this one.
78 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
79 bitmap equiv;
80 };
81
82 typedef struct value_range_d value_range_t;
83
84 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
85
86 /* Set of SSA names found live during the RPO traversal of the function
87 for still active basic-blocks. */
88 static sbitmap *live;
89
90 /* Return true if the SSA name NAME is live on the edge E. */
91
92 static bool
93 live_on_edge (edge e, tree name)
94 {
95 return (live[e->dest->index]
96 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
97 }
98
99 /* Local functions. */
100 static int compare_values (tree val1, tree val2);
101 static int compare_values_warnv (tree val1, tree val2, bool *);
102 static void vrp_meet (value_range_t *, value_range_t *);
103 static void vrp_intersect_ranges (value_range_t *, value_range_t *);
104 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
105 tree, tree, bool, bool *,
106 bool *);
107
108 /* Location information for ASSERT_EXPRs. Each instance of this
109 structure describes an ASSERT_EXPR for an SSA name. Since a single
110 SSA name may have more than one assertion associated with it, these
111 locations are kept in a linked list attached to the corresponding
112 SSA name. */
113 struct assert_locus_d
114 {
115 /* Basic block where the assertion would be inserted. */
116 basic_block bb;
117
118 /* Some assertions need to be inserted on an edge (e.g., assertions
119 generated by COND_EXPRs). In those cases, BB will be NULL. */
120 edge e;
121
122 /* Pointer to the statement that generated this assertion. */
123 gimple_stmt_iterator si;
124
125 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
126 enum tree_code comp_code;
127
128 /* Value being compared against. */
129 tree val;
130
131 /* Expression to compare. */
132 tree expr;
133
134 /* Next node in the linked list. */
135 struct assert_locus_d *next;
136 };
137
138 typedef struct assert_locus_d *assert_locus_t;
139
140 /* If bit I is present, it means that SSA name N_i has a list of
141 assertions that should be inserted in the IL. */
142 static bitmap need_assert_for;
143
144 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
145 holds a list of ASSERT_LOCUS_T nodes that describe where
146 ASSERT_EXPRs for SSA name N_I should be inserted. */
147 static assert_locus_t *asserts_for;
148
149 /* Value range array. After propagation, VR_VALUE[I] holds the range
150 of values that SSA name N_I may take. */
151 static unsigned num_vr_values;
152 static value_range_t **vr_value;
153 static bool values_propagated;
154
155 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
156 number of executable edges we saw the last time we visited the
157 node. */
158 static int *vr_phi_edge_counts;
159
160 typedef struct {
161 gimple stmt;
162 tree vec;
163 } switch_update;
164
165 static vec<edge> to_remove_edges;
166 static vec<switch_update> to_update_switch_stmts;
167
168
169 /* Return the maximum value for TYPE. */
170
171 static inline tree
172 vrp_val_max (const_tree type)
173 {
174 if (!INTEGRAL_TYPE_P (type))
175 return NULL_TREE;
176
177 return TYPE_MAX_VALUE (type);
178 }
179
180 /* Return the minimum value for TYPE. */
181
182 static inline tree
183 vrp_val_min (const_tree type)
184 {
185 if (!INTEGRAL_TYPE_P (type))
186 return NULL_TREE;
187
188 return TYPE_MIN_VALUE (type);
189 }
190
191 /* Return whether VAL is equal to the maximum value of its type. This
192 will be true for a positive overflow infinity. We can't do a
193 simple equality comparison with TYPE_MAX_VALUE because C typedefs
194 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
195 to the integer constant with the same value in the type. */
196
197 static inline bool
198 vrp_val_is_max (const_tree val)
199 {
200 tree type_max = vrp_val_max (TREE_TYPE (val));
201 return (val == type_max
202 || (type_max != NULL_TREE
203 && operand_equal_p (val, type_max, 0)));
204 }
205
206 /* Return whether VAL is equal to the minimum value of its type. This
207 will be true for a negative overflow infinity. */
208
209 static inline bool
210 vrp_val_is_min (const_tree val)
211 {
212 tree type_min = vrp_val_min (TREE_TYPE (val));
213 return (val == type_min
214 || (type_min != NULL_TREE
215 && operand_equal_p (val, type_min, 0)));
216 }
217
218
219 /* Return whether TYPE should use an overflow infinity distinct from
220 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
221 represent a signed overflow during VRP computations. An infinity
222 is distinct from a half-range, which will go from some number to
223 TYPE_{MIN,MAX}_VALUE. */
224
225 static inline bool
226 needs_overflow_infinity (const_tree type)
227 {
228 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
229 }
230
231 /* Return whether TYPE can support our overflow infinity
232 representation: we use the TREE_OVERFLOW flag, which only exists
233 for constants. If TYPE doesn't support this, we don't optimize
234 cases which would require signed overflow--we drop them to
235 VARYING. */
236
237 static inline bool
238 supports_overflow_infinity (const_tree type)
239 {
240 tree min = vrp_val_min (type), max = vrp_val_max (type);
241 #ifdef ENABLE_CHECKING
242 gcc_assert (needs_overflow_infinity (type));
243 #endif
244 return (min != NULL_TREE
245 && CONSTANT_CLASS_P (min)
246 && max != NULL_TREE
247 && CONSTANT_CLASS_P (max));
248 }
249
250 /* VAL is the maximum or minimum value of a type. Return a
251 corresponding overflow infinity. */
252
253 static inline tree
254 make_overflow_infinity (tree val)
255 {
256 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
257 val = copy_node (val);
258 TREE_OVERFLOW (val) = 1;
259 return val;
260 }
261
262 /* Return a negative overflow infinity for TYPE. */
263
264 static inline tree
265 negative_overflow_infinity (tree type)
266 {
267 gcc_checking_assert (supports_overflow_infinity (type));
268 return make_overflow_infinity (vrp_val_min (type));
269 }
270
271 /* Return a positive overflow infinity for TYPE. */
272
273 static inline tree
274 positive_overflow_infinity (tree type)
275 {
276 gcc_checking_assert (supports_overflow_infinity (type));
277 return make_overflow_infinity (vrp_val_max (type));
278 }
279
280 /* Return whether VAL is a negative overflow infinity. */
281
282 static inline bool
283 is_negative_overflow_infinity (const_tree val)
284 {
285 return (needs_overflow_infinity (TREE_TYPE (val))
286 && CONSTANT_CLASS_P (val)
287 && TREE_OVERFLOW (val)
288 && vrp_val_is_min (val));
289 }
290
291 /* Return whether VAL is a positive overflow infinity. */
292
293 static inline bool
294 is_positive_overflow_infinity (const_tree val)
295 {
296 return (needs_overflow_infinity (TREE_TYPE (val))
297 && CONSTANT_CLASS_P (val)
298 && TREE_OVERFLOW (val)
299 && vrp_val_is_max (val));
300 }
301
302 /* Return whether VAL is a positive or negative overflow infinity. */
303
304 static inline bool
305 is_overflow_infinity (const_tree val)
306 {
307 return (needs_overflow_infinity (TREE_TYPE (val))
308 && CONSTANT_CLASS_P (val)
309 && TREE_OVERFLOW (val)
310 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
311 }
312
313 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
314
315 static inline bool
316 stmt_overflow_infinity (gimple stmt)
317 {
318 if (is_gimple_assign (stmt)
319 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
320 GIMPLE_SINGLE_RHS)
321 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
322 return false;
323 }
324
325 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
326 the same value with TREE_OVERFLOW clear. This can be used to avoid
327 confusing a regular value with an overflow value. */
328
329 static inline tree
330 avoid_overflow_infinity (tree val)
331 {
332 if (!is_overflow_infinity (val))
333 return val;
334
335 if (vrp_val_is_max (val))
336 return vrp_val_max (TREE_TYPE (val));
337 else
338 {
339 gcc_checking_assert (vrp_val_is_min (val));
340 return vrp_val_min (TREE_TYPE (val));
341 }
342 }
343
344
345 /* Return true if ARG is marked with the nonnull attribute in the
346 current function signature. */
347
348 static bool
349 nonnull_arg_p (const_tree arg)
350 {
351 tree t, attrs, fntype;
352 unsigned HOST_WIDE_INT arg_num;
353
354 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
355
356 /* The static chain decl is always non null. */
357 if (arg == cfun->static_chain_decl)
358 return true;
359
360 fntype = TREE_TYPE (current_function_decl);
361 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
362 {
363 attrs = lookup_attribute ("nonnull", attrs);
364
365 /* If "nonnull" wasn't specified, we know nothing about the argument. */
366 if (attrs == NULL_TREE)
367 return false;
368
369 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
370 if (TREE_VALUE (attrs) == NULL_TREE)
371 return true;
372
373 /* Get the position number for ARG in the function signature. */
374 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
375 t;
376 t = DECL_CHAIN (t), arg_num++)
377 {
378 if (t == arg)
379 break;
380 }
381
382 gcc_assert (t == arg);
383
384 /* Now see if ARG_NUM is mentioned in the nonnull list. */
385 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
386 {
387 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
388 return true;
389 }
390 }
391
392 return false;
393 }
394
395
396 /* Set value range VR to VR_UNDEFINED. */
397
398 static inline void
399 set_value_range_to_undefined (value_range_t *vr)
400 {
401 vr->type = VR_UNDEFINED;
402 vr->min = vr->max = NULL_TREE;
403 if (vr->equiv)
404 bitmap_clear (vr->equiv);
405 }
406
407
408 /* Set value range VR to VR_VARYING. */
409
410 static inline void
411 set_value_range_to_varying (value_range_t *vr)
412 {
413 vr->type = VR_VARYING;
414 vr->min = vr->max = NULL_TREE;
415 if (vr->equiv)
416 bitmap_clear (vr->equiv);
417 }
418
419
420 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
421
422 static void
423 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
424 tree max, bitmap equiv)
425 {
426 #if defined ENABLE_CHECKING
427 /* Check the validity of the range. */
428 if (t == VR_RANGE || t == VR_ANTI_RANGE)
429 {
430 int cmp;
431
432 gcc_assert (min && max);
433
434 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
435 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
436
437 cmp = compare_values (min, max);
438 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
439
440 if (needs_overflow_infinity (TREE_TYPE (min)))
441 gcc_assert (!is_overflow_infinity (min)
442 || !is_overflow_infinity (max));
443 }
444
445 if (t == VR_UNDEFINED || t == VR_VARYING)
446 gcc_assert (min == NULL_TREE && max == NULL_TREE);
447
448 if (t == VR_UNDEFINED || t == VR_VARYING)
449 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
450 #endif
451
452 vr->type = t;
453 vr->min = min;
454 vr->max = max;
455
456 /* Since updating the equivalence set involves deep copying the
457 bitmaps, only do it if absolutely necessary. */
458 if (vr->equiv == NULL
459 && equiv != NULL)
460 vr->equiv = BITMAP_ALLOC (NULL);
461
462 if (equiv != vr->equiv)
463 {
464 if (equiv && !bitmap_empty_p (equiv))
465 bitmap_copy (vr->equiv, equiv);
466 else
467 bitmap_clear (vr->equiv);
468 }
469 }
470
471
472 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
473 This means adjusting T, MIN and MAX representing the case of a
474 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
475 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
476 In corner cases where MAX+1 or MIN-1 wraps this will fall back
477 to varying.
478 This routine exists to ease canonicalization in the case where we
479 extract ranges from var + CST op limit. */
480
481 static void
482 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
483 tree min, tree max, bitmap equiv)
484 {
485 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
486 if (t == VR_UNDEFINED)
487 {
488 set_value_range_to_undefined (vr);
489 return;
490 }
491 else if (t == VR_VARYING)
492 {
493 set_value_range_to_varying (vr);
494 return;
495 }
496
497 /* Nothing to canonicalize for symbolic ranges. */
498 if (TREE_CODE (min) != INTEGER_CST
499 || TREE_CODE (max) != INTEGER_CST)
500 {
501 set_value_range (vr, t, min, max, equiv);
502 return;
503 }
504
505 /* Wrong order for min and max, to swap them and the VR type we need
506 to adjust them. */
507 if (tree_int_cst_lt (max, min))
508 {
509 tree one, tmp;
510
511 /* For one bit precision if max < min, then the swapped
512 range covers all values, so for VR_RANGE it is varying and
513 for VR_ANTI_RANGE empty range, so drop to varying as well. */
514 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
515 {
516 set_value_range_to_varying (vr);
517 return;
518 }
519
520 one = build_int_cst (TREE_TYPE (min), 1);
521 tmp = int_const_binop (PLUS_EXPR, max, one);
522 max = int_const_binop (MINUS_EXPR, min, one);
523 min = tmp;
524
525 /* There's one corner case, if we had [C+1, C] before we now have
526 that again. But this represents an empty value range, so drop
527 to varying in this case. */
528 if (tree_int_cst_lt (max, min))
529 {
530 set_value_range_to_varying (vr);
531 return;
532 }
533
534 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
535 }
536
537 /* Anti-ranges that can be represented as ranges should be so. */
538 if (t == VR_ANTI_RANGE)
539 {
540 bool is_min = vrp_val_is_min (min);
541 bool is_max = vrp_val_is_max (max);
542
543 if (is_min && is_max)
544 {
545 /* We cannot deal with empty ranges, drop to varying.
546 ??? This could be VR_UNDEFINED instead. */
547 set_value_range_to_varying (vr);
548 return;
549 }
550 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
551 && (is_min || is_max))
552 {
553 /* Non-empty boolean ranges can always be represented
554 as a singleton range. */
555 if (is_min)
556 min = max = vrp_val_max (TREE_TYPE (min));
557 else
558 min = max = vrp_val_min (TREE_TYPE (min));
559 t = VR_RANGE;
560 }
561 else if (is_min
562 /* As a special exception preserve non-null ranges. */
563 && !(TYPE_UNSIGNED (TREE_TYPE (min))
564 && integer_zerop (max)))
565 {
566 tree one = build_int_cst (TREE_TYPE (max), 1);
567 min = int_const_binop (PLUS_EXPR, max, one);
568 max = vrp_val_max (TREE_TYPE (max));
569 t = VR_RANGE;
570 }
571 else if (is_max)
572 {
573 tree one = build_int_cst (TREE_TYPE (min), 1);
574 max = int_const_binop (MINUS_EXPR, min, one);
575 min = vrp_val_min (TREE_TYPE (min));
576 t = VR_RANGE;
577 }
578 }
579
580 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
581 if (needs_overflow_infinity (TREE_TYPE (min))
582 && is_overflow_infinity (min)
583 && is_overflow_infinity (max))
584 {
585 set_value_range_to_varying (vr);
586 return;
587 }
588
589 set_value_range (vr, t, min, max, equiv);
590 }
591
592 /* Copy value range FROM into value range TO. */
593
594 static inline void
595 copy_value_range (value_range_t *to, value_range_t *from)
596 {
597 set_value_range (to, from->type, from->min, from->max, from->equiv);
598 }
599
600 /* Set value range VR to a single value. This function is only called
601 with values we get from statements, and exists to clear the
602 TREE_OVERFLOW flag so that we don't think we have an overflow
603 infinity when we shouldn't. */
604
605 static inline void
606 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
607 {
608 gcc_assert (is_gimple_min_invariant (val));
609 val = avoid_overflow_infinity (val);
610 set_value_range (vr, VR_RANGE, val, val, equiv);
611 }
612
613 /* Set value range VR to a non-negative range of type TYPE.
614 OVERFLOW_INFINITY indicates whether to use an overflow infinity
615 rather than TYPE_MAX_VALUE; this should be true if we determine
616 that the range is nonnegative based on the assumption that signed
617 overflow does not occur. */
618
619 static inline void
620 set_value_range_to_nonnegative (value_range_t *vr, tree type,
621 bool overflow_infinity)
622 {
623 tree zero;
624
625 if (overflow_infinity && !supports_overflow_infinity (type))
626 {
627 set_value_range_to_varying (vr);
628 return;
629 }
630
631 zero = build_int_cst (type, 0);
632 set_value_range (vr, VR_RANGE, zero,
633 (overflow_infinity
634 ? positive_overflow_infinity (type)
635 : TYPE_MAX_VALUE (type)),
636 vr->equiv);
637 }
638
639 /* Set value range VR to a non-NULL range of type TYPE. */
640
641 static inline void
642 set_value_range_to_nonnull (value_range_t *vr, tree type)
643 {
644 tree zero = build_int_cst (type, 0);
645 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
646 }
647
648
649 /* Set value range VR to a NULL range of type TYPE. */
650
651 static inline void
652 set_value_range_to_null (value_range_t *vr, tree type)
653 {
654 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
655 }
656
657
658 /* Set value range VR to a range of a truthvalue of type TYPE. */
659
660 static inline void
661 set_value_range_to_truthvalue (value_range_t *vr, tree type)
662 {
663 if (TYPE_PRECISION (type) == 1)
664 set_value_range_to_varying (vr);
665 else
666 set_value_range (vr, VR_RANGE,
667 build_int_cst (type, 0), build_int_cst (type, 1),
668 vr->equiv);
669 }
670
671
672 /* If abs (min) < abs (max), set VR to [-max, max], if
673 abs (min) >= abs (max), set VR to [-min, min]. */
674
675 static void
676 abs_extent_range (value_range_t *vr, tree min, tree max)
677 {
678 int cmp;
679
680 gcc_assert (TREE_CODE (min) == INTEGER_CST);
681 gcc_assert (TREE_CODE (max) == INTEGER_CST);
682 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
683 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
684 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
685 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
686 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
687 {
688 set_value_range_to_varying (vr);
689 return;
690 }
691 cmp = compare_values (min, max);
692 if (cmp == -1)
693 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
694 else if (cmp == 0 || cmp == 1)
695 {
696 max = min;
697 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
698 }
699 else
700 {
701 set_value_range_to_varying (vr);
702 return;
703 }
704 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
705 }
706
707
708 /* Return value range information for VAR.
709
710 If we have no values ranges recorded (ie, VRP is not running), then
711 return NULL. Otherwise create an empty range if none existed for VAR. */
712
713 static value_range_t *
714 get_value_range (const_tree var)
715 {
716 static const struct value_range_d vr_const_varying
717 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
718 value_range_t *vr;
719 tree sym;
720 unsigned ver = SSA_NAME_VERSION (var);
721
722 /* If we have no recorded ranges, then return NULL. */
723 if (! vr_value)
724 return NULL;
725
726 /* If we query the range for a new SSA name return an unmodifiable VARYING.
727 We should get here at most from the substitute-and-fold stage which
728 will never try to change values. */
729 if (ver >= num_vr_values)
730 return CONST_CAST (value_range_t *, &vr_const_varying);
731
732 vr = vr_value[ver];
733 if (vr)
734 return vr;
735
736 /* After propagation finished do not allocate new value-ranges. */
737 if (values_propagated)
738 return CONST_CAST (value_range_t *, &vr_const_varying);
739
740 /* Create a default value range. */
741 vr_value[ver] = vr = XCNEW (value_range_t);
742
743 /* Defer allocating the equivalence set. */
744 vr->equiv = NULL;
745
746 /* If VAR is a default definition of a parameter, the variable can
747 take any value in VAR's type. */
748 if (SSA_NAME_IS_DEFAULT_DEF (var))
749 {
750 sym = SSA_NAME_VAR (var);
751 if (TREE_CODE (sym) == PARM_DECL)
752 {
753 /* Try to use the "nonnull" attribute to create ~[0, 0]
754 anti-ranges for pointers. Note that this is only valid with
755 default definitions of PARM_DECLs. */
756 if (POINTER_TYPE_P (TREE_TYPE (sym))
757 && nonnull_arg_p (sym))
758 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
759 else
760 set_value_range_to_varying (vr);
761 }
762 else if (TREE_CODE (sym) == RESULT_DECL
763 && DECL_BY_REFERENCE (sym))
764 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
765 }
766
767 return vr;
768 }
769
770 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
771
772 static inline bool
773 vrp_operand_equal_p (const_tree val1, const_tree val2)
774 {
775 if (val1 == val2)
776 return true;
777 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
778 return false;
779 if (is_overflow_infinity (val1))
780 return is_overflow_infinity (val2);
781 return true;
782 }
783
784 /* Return true, if the bitmaps B1 and B2 are equal. */
785
786 static inline bool
787 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
788 {
789 return (b1 == b2
790 || ((!b1 || bitmap_empty_p (b1))
791 && (!b2 || bitmap_empty_p (b2)))
792 || (b1 && b2
793 && bitmap_equal_p (b1, b2)));
794 }
795
796 /* Update the value range and equivalence set for variable VAR to
797 NEW_VR. Return true if NEW_VR is different from VAR's previous
798 value.
799
800 NOTE: This function assumes that NEW_VR is a temporary value range
801 object created for the sole purpose of updating VAR's range. The
802 storage used by the equivalence set from NEW_VR will be freed by
803 this function. Do not call update_value_range when NEW_VR
804 is the range object associated with another SSA name. */
805
806 static inline bool
807 update_value_range (const_tree var, value_range_t *new_vr)
808 {
809 value_range_t *old_vr;
810 bool is_new;
811
812 /* Update the value range, if necessary. */
813 old_vr = get_value_range (var);
814 is_new = old_vr->type != new_vr->type
815 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
816 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
817 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
818
819 if (is_new)
820 {
821 /* Do not allow transitions up the lattice. The following
822 is slightly more awkward than just new_vr->type < old_vr->type
823 because VR_RANGE and VR_ANTI_RANGE need to be considered
824 the same. We may not have is_new when transitioning to
825 UNDEFINED or from VARYING. */
826 if (new_vr->type == VR_UNDEFINED
827 || old_vr->type == VR_VARYING)
828 set_value_range_to_varying (old_vr);
829 else
830 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
831 new_vr->equiv);
832 }
833
834 BITMAP_FREE (new_vr->equiv);
835
836 return is_new;
837 }
838
839
840 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
841 point where equivalence processing can be turned on/off. */
842
843 static void
844 add_equivalence (bitmap *equiv, const_tree var)
845 {
846 unsigned ver = SSA_NAME_VERSION (var);
847 value_range_t *vr = vr_value[ver];
848
849 if (*equiv == NULL)
850 *equiv = BITMAP_ALLOC (NULL);
851 bitmap_set_bit (*equiv, ver);
852 if (vr && vr->equiv)
853 bitmap_ior_into (*equiv, vr->equiv);
854 }
855
856
857 /* Return true if VR is ~[0, 0]. */
858
859 static inline bool
860 range_is_nonnull (value_range_t *vr)
861 {
862 return vr->type == VR_ANTI_RANGE
863 && integer_zerop (vr->min)
864 && integer_zerop (vr->max);
865 }
866
867
868 /* Return true if VR is [0, 0]. */
869
870 static inline bool
871 range_is_null (value_range_t *vr)
872 {
873 return vr->type == VR_RANGE
874 && integer_zerop (vr->min)
875 && integer_zerop (vr->max);
876 }
877
878 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
879 a singleton. */
880
881 static inline bool
882 range_int_cst_p (value_range_t *vr)
883 {
884 return (vr->type == VR_RANGE
885 && TREE_CODE (vr->max) == INTEGER_CST
886 && TREE_CODE (vr->min) == INTEGER_CST);
887 }
888
889 /* Return true if VR is a INTEGER_CST singleton. */
890
891 static inline bool
892 range_int_cst_singleton_p (value_range_t *vr)
893 {
894 return (range_int_cst_p (vr)
895 && !is_overflow_infinity (vr->min)
896 && !is_overflow_infinity (vr->max)
897 && tree_int_cst_equal (vr->min, vr->max));
898 }
899
900 /* Return true if value range VR involves at least one symbol. */
901
902 static inline bool
903 symbolic_range_p (value_range_t *vr)
904 {
905 return (!is_gimple_min_invariant (vr->min)
906 || !is_gimple_min_invariant (vr->max));
907 }
908
909 /* Return true if value range VR uses an overflow infinity. */
910
911 static inline bool
912 overflow_infinity_range_p (value_range_t *vr)
913 {
914 return (vr->type == VR_RANGE
915 && (is_overflow_infinity (vr->min)
916 || is_overflow_infinity (vr->max)));
917 }
918
919 /* Return false if we can not make a valid comparison based on VR;
920 this will be the case if it uses an overflow infinity and overflow
921 is not undefined (i.e., -fno-strict-overflow is in effect).
922 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
923 uses an overflow infinity. */
924
925 static bool
926 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
927 {
928 gcc_assert (vr->type == VR_RANGE);
929 if (is_overflow_infinity (vr->min))
930 {
931 *strict_overflow_p = true;
932 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
933 return false;
934 }
935 if (is_overflow_infinity (vr->max))
936 {
937 *strict_overflow_p = true;
938 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
939 return false;
940 }
941 return true;
942 }
943
944
945 /* Return true if the result of assignment STMT is know to be non-negative.
946 If the return value is based on the assumption that signed overflow is
947 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
948 *STRICT_OVERFLOW_P.*/
949
950 static bool
951 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
952 {
953 enum tree_code code = gimple_assign_rhs_code (stmt);
954 switch (get_gimple_rhs_class (code))
955 {
956 case GIMPLE_UNARY_RHS:
957 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
958 gimple_expr_type (stmt),
959 gimple_assign_rhs1 (stmt),
960 strict_overflow_p);
961 case GIMPLE_BINARY_RHS:
962 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
963 gimple_expr_type (stmt),
964 gimple_assign_rhs1 (stmt),
965 gimple_assign_rhs2 (stmt),
966 strict_overflow_p);
967 case GIMPLE_TERNARY_RHS:
968 return false;
969 case GIMPLE_SINGLE_RHS:
970 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
971 strict_overflow_p);
972 case GIMPLE_INVALID_RHS:
973 gcc_unreachable ();
974 default:
975 gcc_unreachable ();
976 }
977 }
978
979 /* Return true if return value of call STMT is know to be non-negative.
980 If the return value is based on the assumption that signed overflow is
981 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
982 *STRICT_OVERFLOW_P.*/
983
984 static bool
985 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
986 {
987 tree arg0 = gimple_call_num_args (stmt) > 0 ?
988 gimple_call_arg (stmt, 0) : NULL_TREE;
989 tree arg1 = gimple_call_num_args (stmt) > 1 ?
990 gimple_call_arg (stmt, 1) : NULL_TREE;
991
992 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
993 gimple_call_fndecl (stmt),
994 arg0,
995 arg1,
996 strict_overflow_p);
997 }
998
999 /* Return true if STMT is know to to compute a non-negative value.
1000 If the return value is based on the assumption that signed overflow is
1001 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1002 *STRICT_OVERFLOW_P.*/
1003
1004 static bool
1005 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1006 {
1007 switch (gimple_code (stmt))
1008 {
1009 case GIMPLE_ASSIGN:
1010 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
1011 case GIMPLE_CALL:
1012 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
1013 default:
1014 gcc_unreachable ();
1015 }
1016 }
1017
1018 /* Return true if the result of assignment STMT is know to be non-zero.
1019 If the return value is based on the assumption that signed overflow is
1020 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1021 *STRICT_OVERFLOW_P.*/
1022
1023 static bool
1024 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1025 {
1026 enum tree_code code = gimple_assign_rhs_code (stmt);
1027 switch (get_gimple_rhs_class (code))
1028 {
1029 case GIMPLE_UNARY_RHS:
1030 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1031 gimple_expr_type (stmt),
1032 gimple_assign_rhs1 (stmt),
1033 strict_overflow_p);
1034 case GIMPLE_BINARY_RHS:
1035 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1036 gimple_expr_type (stmt),
1037 gimple_assign_rhs1 (stmt),
1038 gimple_assign_rhs2 (stmt),
1039 strict_overflow_p);
1040 case GIMPLE_TERNARY_RHS:
1041 return false;
1042 case GIMPLE_SINGLE_RHS:
1043 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
1044 strict_overflow_p);
1045 case GIMPLE_INVALID_RHS:
1046 gcc_unreachable ();
1047 default:
1048 gcc_unreachable ();
1049 }
1050 }
1051
1052 /* Return true if STMT is known to compute a non-zero value.
1053 If the return value is based on the assumption that signed overflow is
1054 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1055 *STRICT_OVERFLOW_P.*/
1056
1057 static bool
1058 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1059 {
1060 switch (gimple_code (stmt))
1061 {
1062 case GIMPLE_ASSIGN:
1063 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1064 case GIMPLE_CALL:
1065 {
1066 tree fndecl = gimple_call_fndecl (stmt);
1067 if (!fndecl) return false;
1068 if (flag_delete_null_pointer_checks && !flag_check_new
1069 && DECL_IS_OPERATOR_NEW (fndecl)
1070 && !TREE_NOTHROW (fndecl))
1071 return true;
1072 if (flag_delete_null_pointer_checks &&
1073 lookup_attribute ("returns_nonnull",
1074 TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
1075 return true;
1076 return gimple_alloca_call_p (stmt);
1077 }
1078 default:
1079 gcc_unreachable ();
1080 }
1081 }
1082
1083 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1084 obtained so far. */
1085
1086 static bool
1087 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1088 {
1089 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1090 return true;
1091
1092 /* If we have an expression of the form &X->a, then the expression
1093 is nonnull if X is nonnull. */
1094 if (is_gimple_assign (stmt)
1095 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1096 {
1097 tree expr = gimple_assign_rhs1 (stmt);
1098 tree base = get_base_address (TREE_OPERAND (expr, 0));
1099
1100 if (base != NULL_TREE
1101 && TREE_CODE (base) == MEM_REF
1102 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1103 {
1104 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1105 if (range_is_nonnull (vr))
1106 return true;
1107 }
1108 }
1109
1110 return false;
1111 }
1112
1113 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1114 a gimple invariant, or SSA_NAME +- CST. */
1115
1116 static bool
1117 valid_value_p (tree expr)
1118 {
1119 if (TREE_CODE (expr) == SSA_NAME)
1120 return true;
1121
1122 if (TREE_CODE (expr) == PLUS_EXPR
1123 || TREE_CODE (expr) == MINUS_EXPR)
1124 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1125 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1126
1127 return is_gimple_min_invariant (expr);
1128 }
1129
1130 /* Return
1131 1 if VAL < VAL2
1132 0 if !(VAL < VAL2)
1133 -2 if those are incomparable. */
1134 static inline int
1135 operand_less_p (tree val, tree val2)
1136 {
1137 /* LT is folded faster than GE and others. Inline the common case. */
1138 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1139 {
1140 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1141 return INT_CST_LT_UNSIGNED (val, val2);
1142 else
1143 {
1144 if (INT_CST_LT (val, val2))
1145 return 1;
1146 }
1147 }
1148 else
1149 {
1150 tree tcmp;
1151
1152 fold_defer_overflow_warnings ();
1153
1154 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1155
1156 fold_undefer_and_ignore_overflow_warnings ();
1157
1158 if (!tcmp
1159 || TREE_CODE (tcmp) != INTEGER_CST)
1160 return -2;
1161
1162 if (!integer_zerop (tcmp))
1163 return 1;
1164 }
1165
1166 /* val >= val2, not considering overflow infinity. */
1167 if (is_negative_overflow_infinity (val))
1168 return is_negative_overflow_infinity (val2) ? 0 : 1;
1169 else if (is_positive_overflow_infinity (val2))
1170 return is_positive_overflow_infinity (val) ? 0 : 1;
1171
1172 return 0;
1173 }
1174
1175 /* Compare two values VAL1 and VAL2. Return
1176
1177 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1178 -1 if VAL1 < VAL2,
1179 0 if VAL1 == VAL2,
1180 +1 if VAL1 > VAL2, and
1181 +2 if VAL1 != VAL2
1182
1183 This is similar to tree_int_cst_compare but supports pointer values
1184 and values that cannot be compared at compile time.
1185
1186 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1187 true if the return value is only valid if we assume that signed
1188 overflow is undefined. */
1189
1190 static int
1191 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1192 {
1193 if (val1 == val2)
1194 return 0;
1195
1196 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1197 both integers. */
1198 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1199 == POINTER_TYPE_P (TREE_TYPE (val2)));
1200 /* Convert the two values into the same type. This is needed because
1201 sizetype causes sign extension even for unsigned types. */
1202 val2 = fold_convert (TREE_TYPE (val1), val2);
1203 STRIP_USELESS_TYPE_CONVERSION (val2);
1204
1205 if ((TREE_CODE (val1) == SSA_NAME
1206 || TREE_CODE (val1) == PLUS_EXPR
1207 || TREE_CODE (val1) == MINUS_EXPR)
1208 && (TREE_CODE (val2) == SSA_NAME
1209 || TREE_CODE (val2) == PLUS_EXPR
1210 || TREE_CODE (val2) == MINUS_EXPR))
1211 {
1212 tree n1, c1, n2, c2;
1213 enum tree_code code1, code2;
1214
1215 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1216 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1217 same name, return -2. */
1218 if (TREE_CODE (val1) == SSA_NAME)
1219 {
1220 code1 = SSA_NAME;
1221 n1 = val1;
1222 c1 = NULL_TREE;
1223 }
1224 else
1225 {
1226 code1 = TREE_CODE (val1);
1227 n1 = TREE_OPERAND (val1, 0);
1228 c1 = TREE_OPERAND (val1, 1);
1229 if (tree_int_cst_sgn (c1) == -1)
1230 {
1231 if (is_negative_overflow_infinity (c1))
1232 return -2;
1233 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1234 if (!c1)
1235 return -2;
1236 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1237 }
1238 }
1239
1240 if (TREE_CODE (val2) == SSA_NAME)
1241 {
1242 code2 = SSA_NAME;
1243 n2 = val2;
1244 c2 = NULL_TREE;
1245 }
1246 else
1247 {
1248 code2 = TREE_CODE (val2);
1249 n2 = TREE_OPERAND (val2, 0);
1250 c2 = TREE_OPERAND (val2, 1);
1251 if (tree_int_cst_sgn (c2) == -1)
1252 {
1253 if (is_negative_overflow_infinity (c2))
1254 return -2;
1255 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1256 if (!c2)
1257 return -2;
1258 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1259 }
1260 }
1261
1262 /* Both values must use the same name. */
1263 if (n1 != n2)
1264 return -2;
1265
1266 if (code1 == SSA_NAME
1267 && code2 == SSA_NAME)
1268 /* NAME == NAME */
1269 return 0;
1270
1271 /* If overflow is defined we cannot simplify more. */
1272 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1273 return -2;
1274
1275 if (strict_overflow_p != NULL
1276 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1277 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1278 *strict_overflow_p = true;
1279
1280 if (code1 == SSA_NAME)
1281 {
1282 if (code2 == PLUS_EXPR)
1283 /* NAME < NAME + CST */
1284 return -1;
1285 else if (code2 == MINUS_EXPR)
1286 /* NAME > NAME - CST */
1287 return 1;
1288 }
1289 else if (code1 == PLUS_EXPR)
1290 {
1291 if (code2 == SSA_NAME)
1292 /* NAME + CST > NAME */
1293 return 1;
1294 else if (code2 == PLUS_EXPR)
1295 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1296 return compare_values_warnv (c1, c2, strict_overflow_p);
1297 else if (code2 == MINUS_EXPR)
1298 /* NAME + CST1 > NAME - CST2 */
1299 return 1;
1300 }
1301 else if (code1 == MINUS_EXPR)
1302 {
1303 if (code2 == SSA_NAME)
1304 /* NAME - CST < NAME */
1305 return -1;
1306 else if (code2 == PLUS_EXPR)
1307 /* NAME - CST1 < NAME + CST2 */
1308 return -1;
1309 else if (code2 == MINUS_EXPR)
1310 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1311 C1 and C2 are swapped in the call to compare_values. */
1312 return compare_values_warnv (c2, c1, strict_overflow_p);
1313 }
1314
1315 gcc_unreachable ();
1316 }
1317
1318 /* We cannot compare non-constants. */
1319 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1320 return -2;
1321
1322 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1323 {
1324 /* We cannot compare overflowed values, except for overflow
1325 infinities. */
1326 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1327 {
1328 if (strict_overflow_p != NULL)
1329 *strict_overflow_p = true;
1330 if (is_negative_overflow_infinity (val1))
1331 return is_negative_overflow_infinity (val2) ? 0 : -1;
1332 else if (is_negative_overflow_infinity (val2))
1333 return 1;
1334 else if (is_positive_overflow_infinity (val1))
1335 return is_positive_overflow_infinity (val2) ? 0 : 1;
1336 else if (is_positive_overflow_infinity (val2))
1337 return -1;
1338 return -2;
1339 }
1340
1341 return tree_int_cst_compare (val1, val2);
1342 }
1343 else
1344 {
1345 tree t;
1346
1347 /* First see if VAL1 and VAL2 are not the same. */
1348 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1349 return 0;
1350
1351 /* If VAL1 is a lower address than VAL2, return -1. */
1352 if (operand_less_p (val1, val2) == 1)
1353 return -1;
1354
1355 /* If VAL1 is a higher address than VAL2, return +1. */
1356 if (operand_less_p (val2, val1) == 1)
1357 return 1;
1358
1359 /* If VAL1 is different than VAL2, return +2.
1360 For integer constants we either have already returned -1 or 1
1361 or they are equivalent. We still might succeed in proving
1362 something about non-trivial operands. */
1363 if (TREE_CODE (val1) != INTEGER_CST
1364 || TREE_CODE (val2) != INTEGER_CST)
1365 {
1366 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1367 if (t && integer_onep (t))
1368 return 2;
1369 }
1370
1371 return -2;
1372 }
1373 }
1374
1375 /* Compare values like compare_values_warnv, but treat comparisons of
1376 nonconstants which rely on undefined overflow as incomparable. */
1377
1378 static int
1379 compare_values (tree val1, tree val2)
1380 {
1381 bool sop;
1382 int ret;
1383
1384 sop = false;
1385 ret = compare_values_warnv (val1, val2, &sop);
1386 if (sop
1387 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1388 ret = -2;
1389 return ret;
1390 }
1391
1392
1393 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1394 0 if VAL is not inside [MIN, MAX],
1395 -2 if we cannot tell either way.
1396
1397 Benchmark compile/20001226-1.c compilation time after changing this
1398 function. */
1399
1400 static inline int
1401 value_inside_range (tree val, tree min, tree max)
1402 {
1403 int cmp1, cmp2;
1404
1405 cmp1 = operand_less_p (val, min);
1406 if (cmp1 == -2)
1407 return -2;
1408 if (cmp1 == 1)
1409 return 0;
1410
1411 cmp2 = operand_less_p (max, val);
1412 if (cmp2 == -2)
1413 return -2;
1414
1415 return !cmp2;
1416 }
1417
1418
1419 /* Return true if value ranges VR0 and VR1 have a non-empty
1420 intersection.
1421
1422 Benchmark compile/20001226-1.c compilation time after changing this
1423 function.
1424 */
1425
1426 static inline bool
1427 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1428 {
1429 /* The value ranges do not intersect if the maximum of the first range is
1430 less than the minimum of the second range or vice versa.
1431 When those relations are unknown, we can't do any better. */
1432 if (operand_less_p (vr0->max, vr1->min) != 0)
1433 return false;
1434 if (operand_less_p (vr1->max, vr0->min) != 0)
1435 return false;
1436 return true;
1437 }
1438
1439
1440 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1441 include the value zero, -2 if we cannot tell. */
1442
1443 static inline int
1444 range_includes_zero_p (tree min, tree max)
1445 {
1446 tree zero = build_int_cst (TREE_TYPE (min), 0);
1447 return value_inside_range (zero, min, max);
1448 }
1449
1450 /* Return true if *VR is know to only contain nonnegative values. */
1451
1452 static inline bool
1453 value_range_nonnegative_p (value_range_t *vr)
1454 {
1455 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1456 which would return a useful value should be encoded as a
1457 VR_RANGE. */
1458 if (vr->type == VR_RANGE)
1459 {
1460 int result = compare_values (vr->min, integer_zero_node);
1461 return (result == 0 || result == 1);
1462 }
1463
1464 return false;
1465 }
1466
1467 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1468 false otherwise or if no value range information is available. */
1469
1470 bool
1471 ssa_name_nonnegative_p (const_tree t)
1472 {
1473 value_range_t *vr = get_value_range (t);
1474
1475 if (INTEGRAL_TYPE_P (t)
1476 && TYPE_UNSIGNED (t))
1477 return true;
1478
1479 if (!vr)
1480 return false;
1481
1482 return value_range_nonnegative_p (vr);
1483 }
1484
1485 /* If *VR has a value rante that is a single constant value return that,
1486 otherwise return NULL_TREE. */
1487
1488 static tree
1489 value_range_constant_singleton (value_range_t *vr)
1490 {
1491 if (vr->type == VR_RANGE
1492 && operand_equal_p (vr->min, vr->max, 0)
1493 && is_gimple_min_invariant (vr->min))
1494 return vr->min;
1495
1496 return NULL_TREE;
1497 }
1498
1499 /* If OP has a value range with a single constant value return that,
1500 otherwise return NULL_TREE. This returns OP itself if OP is a
1501 constant. */
1502
1503 static tree
1504 op_with_constant_singleton_value_range (tree op)
1505 {
1506 if (is_gimple_min_invariant (op))
1507 return op;
1508
1509 if (TREE_CODE (op) != SSA_NAME)
1510 return NULL_TREE;
1511
1512 return value_range_constant_singleton (get_value_range (op));
1513 }
1514
1515 /* Return true if op is in a boolean [0, 1] value-range. */
1516
1517 static bool
1518 op_with_boolean_value_range_p (tree op)
1519 {
1520 value_range_t *vr;
1521
1522 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1523 return true;
1524
1525 if (integer_zerop (op)
1526 || integer_onep (op))
1527 return true;
1528
1529 if (TREE_CODE (op) != SSA_NAME)
1530 return false;
1531
1532 vr = get_value_range (op);
1533 return (vr->type == VR_RANGE
1534 && integer_zerop (vr->min)
1535 && integer_onep (vr->max));
1536 }
1537
1538 /* Extract value range information from an ASSERT_EXPR EXPR and store
1539 it in *VR_P. */
1540
1541 static void
1542 extract_range_from_assert (value_range_t *vr_p, tree expr)
1543 {
1544 tree var, cond, limit, min, max, type;
1545 value_range_t *limit_vr;
1546 enum tree_code cond_code;
1547
1548 var = ASSERT_EXPR_VAR (expr);
1549 cond = ASSERT_EXPR_COND (expr);
1550
1551 gcc_assert (COMPARISON_CLASS_P (cond));
1552
1553 /* Find VAR in the ASSERT_EXPR conditional. */
1554 if (var == TREE_OPERAND (cond, 0)
1555 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1556 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1557 {
1558 /* If the predicate is of the form VAR COMP LIMIT, then we just
1559 take LIMIT from the RHS and use the same comparison code. */
1560 cond_code = TREE_CODE (cond);
1561 limit = TREE_OPERAND (cond, 1);
1562 cond = TREE_OPERAND (cond, 0);
1563 }
1564 else
1565 {
1566 /* If the predicate is of the form LIMIT COMP VAR, then we need
1567 to flip around the comparison code to create the proper range
1568 for VAR. */
1569 cond_code = swap_tree_comparison (TREE_CODE (cond));
1570 limit = TREE_OPERAND (cond, 0);
1571 cond = TREE_OPERAND (cond, 1);
1572 }
1573
1574 limit = avoid_overflow_infinity (limit);
1575
1576 type = TREE_TYPE (var);
1577 gcc_assert (limit != var);
1578
1579 /* For pointer arithmetic, we only keep track of pointer equality
1580 and inequality. */
1581 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1582 {
1583 set_value_range_to_varying (vr_p);
1584 return;
1585 }
1586
1587 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1588 try to use LIMIT's range to avoid creating symbolic ranges
1589 unnecessarily. */
1590 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1591
1592 /* LIMIT's range is only interesting if it has any useful information. */
1593 if (limit_vr
1594 && (limit_vr->type == VR_UNDEFINED
1595 || limit_vr->type == VR_VARYING
1596 || symbolic_range_p (limit_vr)))
1597 limit_vr = NULL;
1598
1599 /* Initially, the new range has the same set of equivalences of
1600 VAR's range. This will be revised before returning the final
1601 value. Since assertions may be chained via mutually exclusive
1602 predicates, we will need to trim the set of equivalences before
1603 we are done. */
1604 gcc_assert (vr_p->equiv == NULL);
1605 add_equivalence (&vr_p->equiv, var);
1606
1607 /* Extract a new range based on the asserted comparison for VAR and
1608 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1609 will only use it for equality comparisons (EQ_EXPR). For any
1610 other kind of assertion, we cannot derive a range from LIMIT's
1611 anti-range that can be used to describe the new range. For
1612 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1613 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1614 no single range for x_2 that could describe LE_EXPR, so we might
1615 as well build the range [b_4, +INF] for it.
1616 One special case we handle is extracting a range from a
1617 range test encoded as (unsigned)var + CST <= limit. */
1618 if (TREE_CODE (cond) == NOP_EXPR
1619 || TREE_CODE (cond) == PLUS_EXPR)
1620 {
1621 if (TREE_CODE (cond) == PLUS_EXPR)
1622 {
1623 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1624 TREE_OPERAND (cond, 1));
1625 max = int_const_binop (PLUS_EXPR, limit, min);
1626 cond = TREE_OPERAND (cond, 0);
1627 }
1628 else
1629 {
1630 min = build_int_cst (TREE_TYPE (var), 0);
1631 max = limit;
1632 }
1633
1634 /* Make sure to not set TREE_OVERFLOW on the final type
1635 conversion. We are willingly interpreting large positive
1636 unsigned values as negative singed values here. */
1637 min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
1638 0, false);
1639 max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
1640 0, false);
1641
1642 /* We can transform a max, min range to an anti-range or
1643 vice-versa. Use set_and_canonicalize_value_range which does
1644 this for us. */
1645 if (cond_code == LE_EXPR)
1646 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1647 min, max, vr_p->equiv);
1648 else if (cond_code == GT_EXPR)
1649 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1650 min, max, vr_p->equiv);
1651 else
1652 gcc_unreachable ();
1653 }
1654 else if (cond_code == EQ_EXPR)
1655 {
1656 enum value_range_type range_type;
1657
1658 if (limit_vr)
1659 {
1660 range_type = limit_vr->type;
1661 min = limit_vr->min;
1662 max = limit_vr->max;
1663 }
1664 else
1665 {
1666 range_type = VR_RANGE;
1667 min = limit;
1668 max = limit;
1669 }
1670
1671 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1672
1673 /* When asserting the equality VAR == LIMIT and LIMIT is another
1674 SSA name, the new range will also inherit the equivalence set
1675 from LIMIT. */
1676 if (TREE_CODE (limit) == SSA_NAME)
1677 add_equivalence (&vr_p->equiv, limit);
1678 }
1679 else if (cond_code == NE_EXPR)
1680 {
1681 /* As described above, when LIMIT's range is an anti-range and
1682 this assertion is an inequality (NE_EXPR), then we cannot
1683 derive anything from the anti-range. For instance, if
1684 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1685 not imply that VAR's range is [0, 0]. So, in the case of
1686 anti-ranges, we just assert the inequality using LIMIT and
1687 not its anti-range.
1688
1689 If LIMIT_VR is a range, we can only use it to build a new
1690 anti-range if LIMIT_VR is a single-valued range. For
1691 instance, if LIMIT_VR is [0, 1], the predicate
1692 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1693 Rather, it means that for value 0 VAR should be ~[0, 0]
1694 and for value 1, VAR should be ~[1, 1]. We cannot
1695 represent these ranges.
1696
1697 The only situation in which we can build a valid
1698 anti-range is when LIMIT_VR is a single-valued range
1699 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1700 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1701 if (limit_vr
1702 && limit_vr->type == VR_RANGE
1703 && compare_values (limit_vr->min, limit_vr->max) == 0)
1704 {
1705 min = limit_vr->min;
1706 max = limit_vr->max;
1707 }
1708 else
1709 {
1710 /* In any other case, we cannot use LIMIT's range to build a
1711 valid anti-range. */
1712 min = max = limit;
1713 }
1714
1715 /* If MIN and MAX cover the whole range for their type, then
1716 just use the original LIMIT. */
1717 if (INTEGRAL_TYPE_P (type)
1718 && vrp_val_is_min (min)
1719 && vrp_val_is_max (max))
1720 min = max = limit;
1721
1722 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1723 min, max, vr_p->equiv);
1724 }
1725 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1726 {
1727 min = TYPE_MIN_VALUE (type);
1728
1729 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1730 max = limit;
1731 else
1732 {
1733 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1734 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1735 LT_EXPR. */
1736 max = limit_vr->max;
1737 }
1738
1739 /* If the maximum value forces us to be out of bounds, simply punt.
1740 It would be pointless to try and do anything more since this
1741 all should be optimized away above us. */
1742 if ((cond_code == LT_EXPR
1743 && compare_values (max, min) == 0)
1744 || is_overflow_infinity (max))
1745 set_value_range_to_varying (vr_p);
1746 else
1747 {
1748 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1749 if (cond_code == LT_EXPR)
1750 {
1751 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1752 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1753 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1754 build_int_cst (TREE_TYPE (max), -1));
1755 else
1756 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1757 build_int_cst (TREE_TYPE (max), 1));
1758 if (EXPR_P (max))
1759 TREE_NO_WARNING (max) = 1;
1760 }
1761
1762 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1763 }
1764 }
1765 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1766 {
1767 max = TYPE_MAX_VALUE (type);
1768
1769 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1770 min = limit;
1771 else
1772 {
1773 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1774 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1775 GT_EXPR. */
1776 min = limit_vr->min;
1777 }
1778
1779 /* If the minimum value forces us to be out of bounds, simply punt.
1780 It would be pointless to try and do anything more since this
1781 all should be optimized away above us. */
1782 if ((cond_code == GT_EXPR
1783 && compare_values (min, max) == 0)
1784 || is_overflow_infinity (min))
1785 set_value_range_to_varying (vr_p);
1786 else
1787 {
1788 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1789 if (cond_code == GT_EXPR)
1790 {
1791 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1792 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1793 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1794 build_int_cst (TREE_TYPE (min), -1));
1795 else
1796 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1797 build_int_cst (TREE_TYPE (min), 1));
1798 if (EXPR_P (min))
1799 TREE_NO_WARNING (min) = 1;
1800 }
1801
1802 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1803 }
1804 }
1805 else
1806 gcc_unreachable ();
1807
1808 /* Finally intersect the new range with what we already know about var. */
1809 vrp_intersect_ranges (vr_p, get_value_range (var));
1810 }
1811
1812
1813 /* Extract range information from SSA name VAR and store it in VR. If
1814 VAR has an interesting range, use it. Otherwise, create the
1815 range [VAR, VAR] and return it. This is useful in situations where
1816 we may have conditionals testing values of VARYING names. For
1817 instance,
1818
1819 x_3 = y_5;
1820 if (x_3 > y_5)
1821 ...
1822
1823 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1824 always false. */
1825
1826 static void
1827 extract_range_from_ssa_name (value_range_t *vr, tree var)
1828 {
1829 value_range_t *var_vr = get_value_range (var);
1830
1831 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1832 copy_value_range (vr, var_vr);
1833 else
1834 set_value_range (vr, VR_RANGE, var, var, NULL);
1835
1836 add_equivalence (&vr->equiv, var);
1837 }
1838
1839
1840 /* Wrapper around int_const_binop. If the operation overflows and we
1841 are not using wrapping arithmetic, then adjust the result to be
1842 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1843 NULL_TREE if we need to use an overflow infinity representation but
1844 the type does not support it. */
1845
1846 static tree
1847 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1848 {
1849 tree res;
1850
1851 res = int_const_binop (code, val1, val2);
1852
1853 /* If we are using unsigned arithmetic, operate symbolically
1854 on -INF and +INF as int_const_binop only handles signed overflow. */
1855 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1856 {
1857 int checkz = compare_values (res, val1);
1858 bool overflow = false;
1859
1860 /* Ensure that res = val1 [+*] val2 >= val1
1861 or that res = val1 - val2 <= val1. */
1862 if ((code == PLUS_EXPR
1863 && !(checkz == 1 || checkz == 0))
1864 || (code == MINUS_EXPR
1865 && !(checkz == 0 || checkz == -1)))
1866 {
1867 overflow = true;
1868 }
1869 /* Checking for multiplication overflow is done by dividing the
1870 output of the multiplication by the first input of the
1871 multiplication. If the result of that division operation is
1872 not equal to the second input of the multiplication, then the
1873 multiplication overflowed. */
1874 else if (code == MULT_EXPR && !integer_zerop (val1))
1875 {
1876 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1877 res,
1878 val1);
1879 int check = compare_values (tmp, val2);
1880
1881 if (check != 0)
1882 overflow = true;
1883 }
1884
1885 if (overflow)
1886 {
1887 res = copy_node (res);
1888 TREE_OVERFLOW (res) = 1;
1889 }
1890
1891 }
1892 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1893 /* If the singed operation wraps then int_const_binop has done
1894 everything we want. */
1895 ;
1896 else if ((TREE_OVERFLOW (res)
1897 && !TREE_OVERFLOW (val1)
1898 && !TREE_OVERFLOW (val2))
1899 || is_overflow_infinity (val1)
1900 || is_overflow_infinity (val2))
1901 {
1902 /* If the operation overflowed but neither VAL1 nor VAL2 are
1903 overflown, return -INF or +INF depending on the operation
1904 and the combination of signs of the operands. */
1905 int sgn1 = tree_int_cst_sgn (val1);
1906 int sgn2 = tree_int_cst_sgn (val2);
1907
1908 if (needs_overflow_infinity (TREE_TYPE (res))
1909 && !supports_overflow_infinity (TREE_TYPE (res)))
1910 return NULL_TREE;
1911
1912 /* We have to punt on adding infinities of different signs,
1913 since we can't tell what the sign of the result should be.
1914 Likewise for subtracting infinities of the same sign. */
1915 if (((code == PLUS_EXPR && sgn1 != sgn2)
1916 || (code == MINUS_EXPR && sgn1 == sgn2))
1917 && is_overflow_infinity (val1)
1918 && is_overflow_infinity (val2))
1919 return NULL_TREE;
1920
1921 /* Don't try to handle division or shifting of infinities. */
1922 if ((code == TRUNC_DIV_EXPR
1923 || code == FLOOR_DIV_EXPR
1924 || code == CEIL_DIV_EXPR
1925 || code == EXACT_DIV_EXPR
1926 || code == ROUND_DIV_EXPR
1927 || code == RSHIFT_EXPR)
1928 && (is_overflow_infinity (val1)
1929 || is_overflow_infinity (val2)))
1930 return NULL_TREE;
1931
1932 /* Notice that we only need to handle the restricted set of
1933 operations handled by extract_range_from_binary_expr.
1934 Among them, only multiplication, addition and subtraction
1935 can yield overflow without overflown operands because we
1936 are working with integral types only... except in the
1937 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1938 for division too. */
1939
1940 /* For multiplication, the sign of the overflow is given
1941 by the comparison of the signs of the operands. */
1942 if ((code == MULT_EXPR && sgn1 == sgn2)
1943 /* For addition, the operands must be of the same sign
1944 to yield an overflow. Its sign is therefore that
1945 of one of the operands, for example the first. For
1946 infinite operands X + -INF is negative, not positive. */
1947 || (code == PLUS_EXPR
1948 && (sgn1 >= 0
1949 ? !is_negative_overflow_infinity (val2)
1950 : is_positive_overflow_infinity (val2)))
1951 /* For subtraction, non-infinite operands must be of
1952 different signs to yield an overflow. Its sign is
1953 therefore that of the first operand or the opposite of
1954 that of the second operand. A first operand of 0 counts
1955 as positive here, for the corner case 0 - (-INF), which
1956 overflows, but must yield +INF. For infinite operands 0
1957 - INF is negative, not positive. */
1958 || (code == MINUS_EXPR
1959 && (sgn1 >= 0
1960 ? !is_positive_overflow_infinity (val2)
1961 : is_negative_overflow_infinity (val2)))
1962 /* We only get in here with positive shift count, so the
1963 overflow direction is the same as the sign of val1.
1964 Actually rshift does not overflow at all, but we only
1965 handle the case of shifting overflowed -INF and +INF. */
1966 || (code == RSHIFT_EXPR
1967 && sgn1 >= 0)
1968 /* For division, the only case is -INF / -1 = +INF. */
1969 || code == TRUNC_DIV_EXPR
1970 || code == FLOOR_DIV_EXPR
1971 || code == CEIL_DIV_EXPR
1972 || code == EXACT_DIV_EXPR
1973 || code == ROUND_DIV_EXPR)
1974 return (needs_overflow_infinity (TREE_TYPE (res))
1975 ? positive_overflow_infinity (TREE_TYPE (res))
1976 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1977 else
1978 return (needs_overflow_infinity (TREE_TYPE (res))
1979 ? negative_overflow_infinity (TREE_TYPE (res))
1980 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1981 }
1982
1983 return res;
1984 }
1985
1986
1987 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
1988 bitmask if some bit is unset, it means for all numbers in the range
1989 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1990 bitmask if some bit is set, it means for all numbers in the range
1991 the bit is 1, otherwise it might be 0 or 1. */
1992
1993 static bool
1994 zero_nonzero_bits_from_vr (value_range_t *vr,
1995 double_int *may_be_nonzero,
1996 double_int *must_be_nonzero)
1997 {
1998 *may_be_nonzero = double_int_minus_one;
1999 *must_be_nonzero = double_int_zero;
2000 if (!range_int_cst_p (vr)
2001 || is_overflow_infinity (vr->min)
2002 || is_overflow_infinity (vr->max))
2003 return false;
2004
2005 if (range_int_cst_singleton_p (vr))
2006 {
2007 *may_be_nonzero = tree_to_double_int (vr->min);
2008 *must_be_nonzero = *may_be_nonzero;
2009 }
2010 else if (tree_int_cst_sgn (vr->min) >= 0
2011 || tree_int_cst_sgn (vr->max) < 0)
2012 {
2013 double_int dmin = tree_to_double_int (vr->min);
2014 double_int dmax = tree_to_double_int (vr->max);
2015 double_int xor_mask = dmin ^ dmax;
2016 *may_be_nonzero = dmin | dmax;
2017 *must_be_nonzero = dmin & dmax;
2018 if (xor_mask.high != 0)
2019 {
2020 unsigned HOST_WIDE_INT mask
2021 = ((unsigned HOST_WIDE_INT) 1
2022 << floor_log2 (xor_mask.high)) - 1;
2023 may_be_nonzero->low = ALL_ONES;
2024 may_be_nonzero->high |= mask;
2025 must_be_nonzero->low = 0;
2026 must_be_nonzero->high &= ~mask;
2027 }
2028 else if (xor_mask.low != 0)
2029 {
2030 unsigned HOST_WIDE_INT mask
2031 = ((unsigned HOST_WIDE_INT) 1
2032 << floor_log2 (xor_mask.low)) - 1;
2033 may_be_nonzero->low |= mask;
2034 must_be_nonzero->low &= ~mask;
2035 }
2036 }
2037
2038 return true;
2039 }
2040
2041 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2042 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2043 false otherwise. If *AR can be represented with a single range
2044 *VR1 will be VR_UNDEFINED. */
2045
2046 static bool
2047 ranges_from_anti_range (value_range_t *ar,
2048 value_range_t *vr0, value_range_t *vr1)
2049 {
2050 tree type = TREE_TYPE (ar->min);
2051
2052 vr0->type = VR_UNDEFINED;
2053 vr1->type = VR_UNDEFINED;
2054
2055 if (ar->type != VR_ANTI_RANGE
2056 || TREE_CODE (ar->min) != INTEGER_CST
2057 || TREE_CODE (ar->max) != INTEGER_CST
2058 || !vrp_val_min (type)
2059 || !vrp_val_max (type))
2060 return false;
2061
2062 if (!vrp_val_is_min (ar->min))
2063 {
2064 vr0->type = VR_RANGE;
2065 vr0->min = vrp_val_min (type);
2066 vr0->max
2067 = double_int_to_tree (type,
2068 tree_to_double_int (ar->min) - double_int_one);
2069 }
2070 if (!vrp_val_is_max (ar->max))
2071 {
2072 vr1->type = VR_RANGE;
2073 vr1->min
2074 = double_int_to_tree (type,
2075 tree_to_double_int (ar->max) + double_int_one);
2076 vr1->max = vrp_val_max (type);
2077 }
2078 if (vr0->type == VR_UNDEFINED)
2079 {
2080 *vr0 = *vr1;
2081 vr1->type = VR_UNDEFINED;
2082 }
2083
2084 return vr0->type != VR_UNDEFINED;
2085 }
2086
2087 /* Helper to extract a value-range *VR for a multiplicative operation
2088 *VR0 CODE *VR1. */
2089
2090 static void
2091 extract_range_from_multiplicative_op_1 (value_range_t *vr,
2092 enum tree_code code,
2093 value_range_t *vr0, value_range_t *vr1)
2094 {
2095 enum value_range_type type;
2096 tree val[4];
2097 size_t i;
2098 tree min, max;
2099 bool sop;
2100 int cmp;
2101
2102 /* Multiplications, divisions and shifts are a bit tricky to handle,
2103 depending on the mix of signs we have in the two ranges, we
2104 need to operate on different values to get the minimum and
2105 maximum values for the new range. One approach is to figure
2106 out all the variations of range combinations and do the
2107 operations.
2108
2109 However, this involves several calls to compare_values and it
2110 is pretty convoluted. It's simpler to do the 4 operations
2111 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2112 MAX1) and then figure the smallest and largest values to form
2113 the new range. */
2114 gcc_assert (code == MULT_EXPR
2115 || code == TRUNC_DIV_EXPR
2116 || code == FLOOR_DIV_EXPR
2117 || code == CEIL_DIV_EXPR
2118 || code == EXACT_DIV_EXPR
2119 || code == ROUND_DIV_EXPR
2120 || code == RSHIFT_EXPR
2121 || code == LSHIFT_EXPR);
2122 gcc_assert ((vr0->type == VR_RANGE
2123 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2124 && vr0->type == vr1->type);
2125
2126 type = vr0->type;
2127
2128 /* Compute the 4 cross operations. */
2129 sop = false;
2130 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2131 if (val[0] == NULL_TREE)
2132 sop = true;
2133
2134 if (vr1->max == vr1->min)
2135 val[1] = NULL_TREE;
2136 else
2137 {
2138 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2139 if (val[1] == NULL_TREE)
2140 sop = true;
2141 }
2142
2143 if (vr0->max == vr0->min)
2144 val[2] = NULL_TREE;
2145 else
2146 {
2147 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2148 if (val[2] == NULL_TREE)
2149 sop = true;
2150 }
2151
2152 if (vr0->min == vr0->max || vr1->min == vr1->max)
2153 val[3] = NULL_TREE;
2154 else
2155 {
2156 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2157 if (val[3] == NULL_TREE)
2158 sop = true;
2159 }
2160
2161 if (sop)
2162 {
2163 set_value_range_to_varying (vr);
2164 return;
2165 }
2166
2167 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2168 of VAL[i]. */
2169 min = val[0];
2170 max = val[0];
2171 for (i = 1; i < 4; i++)
2172 {
2173 if (!is_gimple_min_invariant (min)
2174 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2175 || !is_gimple_min_invariant (max)
2176 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2177 break;
2178
2179 if (val[i])
2180 {
2181 if (!is_gimple_min_invariant (val[i])
2182 || (TREE_OVERFLOW (val[i])
2183 && !is_overflow_infinity (val[i])))
2184 {
2185 /* If we found an overflowed value, set MIN and MAX
2186 to it so that we set the resulting range to
2187 VARYING. */
2188 min = max = val[i];
2189 break;
2190 }
2191
2192 if (compare_values (val[i], min) == -1)
2193 min = val[i];
2194
2195 if (compare_values (val[i], max) == 1)
2196 max = val[i];
2197 }
2198 }
2199
2200 /* If either MIN or MAX overflowed, then set the resulting range to
2201 VARYING. But we do accept an overflow infinity
2202 representation. */
2203 if (min == NULL_TREE
2204 || !is_gimple_min_invariant (min)
2205 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2206 || max == NULL_TREE
2207 || !is_gimple_min_invariant (max)
2208 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2209 {
2210 set_value_range_to_varying (vr);
2211 return;
2212 }
2213
2214 /* We punt if:
2215 1) [-INF, +INF]
2216 2) [-INF, +-INF(OVF)]
2217 3) [+-INF(OVF), +INF]
2218 4) [+-INF(OVF), +-INF(OVF)]
2219 We learn nothing when we have INF and INF(OVF) on both sides.
2220 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2221 overflow. */
2222 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2223 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2224 {
2225 set_value_range_to_varying (vr);
2226 return;
2227 }
2228
2229 cmp = compare_values (min, max);
2230 if (cmp == -2 || cmp == 1)
2231 {
2232 /* If the new range has its limits swapped around (MIN > MAX),
2233 then the operation caused one of them to wrap around, mark
2234 the new range VARYING. */
2235 set_value_range_to_varying (vr);
2236 }
2237 else
2238 set_value_range (vr, type, min, max, NULL);
2239 }
2240
2241 /* Some quadruple precision helpers. */
2242 static int
2243 quad_int_cmp (double_int l0, double_int h0,
2244 double_int l1, double_int h1, bool uns)
2245 {
2246 int c = h0.cmp (h1, uns);
2247 if (c != 0) return c;
2248 return l0.ucmp (l1);
2249 }
2250
2251 static void
2252 quad_int_pair_sort (double_int *l0, double_int *h0,
2253 double_int *l1, double_int *h1, bool uns)
2254 {
2255 if (quad_int_cmp (*l0, *h0, *l1, *h1, uns) > 0)
2256 {
2257 double_int tmp;
2258 tmp = *l0; *l0 = *l1; *l1 = tmp;
2259 tmp = *h0; *h0 = *h1; *h1 = tmp;
2260 }
2261 }
2262
2263 /* Extract range information from a binary operation CODE based on
2264 the ranges of each of its operands, *VR0 and *VR1 with resulting
2265 type EXPR_TYPE. The resulting range is stored in *VR. */
2266
2267 static void
2268 extract_range_from_binary_expr_1 (value_range_t *vr,
2269 enum tree_code code, tree expr_type,
2270 value_range_t *vr0_, value_range_t *vr1_)
2271 {
2272 value_range_t vr0 = *vr0_, vr1 = *vr1_;
2273 value_range_t vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
2274 enum value_range_type type;
2275 tree min = NULL_TREE, max = NULL_TREE;
2276 int cmp;
2277
2278 if (!INTEGRAL_TYPE_P (expr_type)
2279 && !POINTER_TYPE_P (expr_type))
2280 {
2281 set_value_range_to_varying (vr);
2282 return;
2283 }
2284
2285 /* Not all binary expressions can be applied to ranges in a
2286 meaningful way. Handle only arithmetic operations. */
2287 if (code != PLUS_EXPR
2288 && code != MINUS_EXPR
2289 && code != POINTER_PLUS_EXPR
2290 && code != MULT_EXPR
2291 && code != TRUNC_DIV_EXPR
2292 && code != FLOOR_DIV_EXPR
2293 && code != CEIL_DIV_EXPR
2294 && code != EXACT_DIV_EXPR
2295 && code != ROUND_DIV_EXPR
2296 && code != TRUNC_MOD_EXPR
2297 && code != RSHIFT_EXPR
2298 && code != LSHIFT_EXPR
2299 && code != MIN_EXPR
2300 && code != MAX_EXPR
2301 && code != BIT_AND_EXPR
2302 && code != BIT_IOR_EXPR
2303 && code != BIT_XOR_EXPR)
2304 {
2305 set_value_range_to_varying (vr);
2306 return;
2307 }
2308
2309 /* If both ranges are UNDEFINED, so is the result. */
2310 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2311 {
2312 set_value_range_to_undefined (vr);
2313 return;
2314 }
2315 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2316 code. At some point we may want to special-case operations that
2317 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2318 operand. */
2319 else if (vr0.type == VR_UNDEFINED)
2320 set_value_range_to_varying (&vr0);
2321 else if (vr1.type == VR_UNDEFINED)
2322 set_value_range_to_varying (&vr1);
2323
2324 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2325 and express ~[] op X as ([]' op X) U ([]'' op X). */
2326 if (vr0.type == VR_ANTI_RANGE
2327 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2328 {
2329 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2330 if (vrtem1.type != VR_UNDEFINED)
2331 {
2332 value_range_t vrres = VR_INITIALIZER;
2333 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2334 &vrtem1, vr1_);
2335 vrp_meet (vr, &vrres);
2336 }
2337 return;
2338 }
2339 /* Likewise for X op ~[]. */
2340 if (vr1.type == VR_ANTI_RANGE
2341 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2342 {
2343 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2344 if (vrtem1.type != VR_UNDEFINED)
2345 {
2346 value_range_t vrres = VR_INITIALIZER;
2347 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2348 vr0_, &vrtem1);
2349 vrp_meet (vr, &vrres);
2350 }
2351 return;
2352 }
2353
2354 /* The type of the resulting value range defaults to VR0.TYPE. */
2355 type = vr0.type;
2356
2357 /* Refuse to operate on VARYING ranges, ranges of different kinds
2358 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2359 because we may be able to derive a useful range even if one of
2360 the operands is VR_VARYING or symbolic range. Similarly for
2361 divisions. TODO, we may be able to derive anti-ranges in
2362 some cases. */
2363 if (code != BIT_AND_EXPR
2364 && code != BIT_IOR_EXPR
2365 && code != TRUNC_DIV_EXPR
2366 && code != FLOOR_DIV_EXPR
2367 && code != CEIL_DIV_EXPR
2368 && code != EXACT_DIV_EXPR
2369 && code != ROUND_DIV_EXPR
2370 && code != TRUNC_MOD_EXPR
2371 && code != MIN_EXPR
2372 && code != MAX_EXPR
2373 && (vr0.type == VR_VARYING
2374 || vr1.type == VR_VARYING
2375 || vr0.type != vr1.type
2376 || symbolic_range_p (&vr0)
2377 || symbolic_range_p (&vr1)))
2378 {
2379 set_value_range_to_varying (vr);
2380 return;
2381 }
2382
2383 /* Now evaluate the expression to determine the new range. */
2384 if (POINTER_TYPE_P (expr_type))
2385 {
2386 if (code == MIN_EXPR || code == MAX_EXPR)
2387 {
2388 /* For MIN/MAX expressions with pointers, we only care about
2389 nullness, if both are non null, then the result is nonnull.
2390 If both are null, then the result is null. Otherwise they
2391 are varying. */
2392 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2393 set_value_range_to_nonnull (vr, expr_type);
2394 else if (range_is_null (&vr0) && range_is_null (&vr1))
2395 set_value_range_to_null (vr, expr_type);
2396 else
2397 set_value_range_to_varying (vr);
2398 }
2399 else if (code == POINTER_PLUS_EXPR)
2400 {
2401 /* For pointer types, we are really only interested in asserting
2402 whether the expression evaluates to non-NULL. */
2403 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2404 set_value_range_to_nonnull (vr, expr_type);
2405 else if (range_is_null (&vr0) && range_is_null (&vr1))
2406 set_value_range_to_null (vr, expr_type);
2407 else
2408 set_value_range_to_varying (vr);
2409 }
2410 else if (code == BIT_AND_EXPR)
2411 {
2412 /* For pointer types, we are really only interested in asserting
2413 whether the expression evaluates to non-NULL. */
2414 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2415 set_value_range_to_nonnull (vr, expr_type);
2416 else if (range_is_null (&vr0) || range_is_null (&vr1))
2417 set_value_range_to_null (vr, expr_type);
2418 else
2419 set_value_range_to_varying (vr);
2420 }
2421 else
2422 set_value_range_to_varying (vr);
2423
2424 return;
2425 }
2426
2427 /* For integer ranges, apply the operation to each end of the
2428 range and see what we end up with. */
2429 if (code == PLUS_EXPR || code == MINUS_EXPR)
2430 {
2431 /* If we have a PLUS_EXPR with two VR_RANGE integer constant
2432 ranges compute the precise range for such case if possible. */
2433 if (range_int_cst_p (&vr0)
2434 && range_int_cst_p (&vr1)
2435 /* We need as many bits as the possibly unsigned inputs. */
2436 && TYPE_PRECISION (expr_type) <= HOST_BITS_PER_DOUBLE_INT)
2437 {
2438 double_int min0 = tree_to_double_int (vr0.min);
2439 double_int max0 = tree_to_double_int (vr0.max);
2440 double_int min1 = tree_to_double_int (vr1.min);
2441 double_int max1 = tree_to_double_int (vr1.max);
2442 bool uns = TYPE_UNSIGNED (expr_type);
2443 double_int type_min
2444 = double_int::min_value (TYPE_PRECISION (expr_type), uns);
2445 double_int type_max
2446 = double_int::max_value (TYPE_PRECISION (expr_type), uns);
2447 double_int dmin, dmax;
2448 int min_ovf = 0;
2449 int max_ovf = 0;
2450
2451 if (code == PLUS_EXPR)
2452 {
2453 dmin = min0 + min1;
2454 dmax = max0 + max1;
2455
2456 /* Check for overflow in double_int. */
2457 if (min1.cmp (double_int_zero, uns) != dmin.cmp (min0, uns))
2458 min_ovf = min0.cmp (dmin, uns);
2459 if (max1.cmp (double_int_zero, uns) != dmax.cmp (max0, uns))
2460 max_ovf = max0.cmp (dmax, uns);
2461 }
2462 else /* if (code == MINUS_EXPR) */
2463 {
2464 dmin = min0 - max1;
2465 dmax = max0 - min1;
2466
2467 if (double_int_zero.cmp (max1, uns) != dmin.cmp (min0, uns))
2468 min_ovf = min0.cmp (max1, uns);
2469 if (double_int_zero.cmp (min1, uns) != dmax.cmp (max0, uns))
2470 max_ovf = max0.cmp (min1, uns);
2471 }
2472
2473 /* For non-wrapping arithmetic look at possibly smaller
2474 value-ranges of the type. */
2475 if (!TYPE_OVERFLOW_WRAPS (expr_type))
2476 {
2477 if (vrp_val_min (expr_type))
2478 type_min = tree_to_double_int (vrp_val_min (expr_type));
2479 if (vrp_val_max (expr_type))
2480 type_max = tree_to_double_int (vrp_val_max (expr_type));
2481 }
2482
2483 /* Check for type overflow. */
2484 if (min_ovf == 0)
2485 {
2486 if (dmin.cmp (type_min, uns) == -1)
2487 min_ovf = -1;
2488 else if (dmin.cmp (type_max, uns) == 1)
2489 min_ovf = 1;
2490 }
2491 if (max_ovf == 0)
2492 {
2493 if (dmax.cmp (type_min, uns) == -1)
2494 max_ovf = -1;
2495 else if (dmax.cmp (type_max, uns) == 1)
2496 max_ovf = 1;
2497 }
2498
2499 if (TYPE_OVERFLOW_WRAPS (expr_type))
2500 {
2501 /* If overflow wraps, truncate the values and adjust the
2502 range kind and bounds appropriately. */
2503 double_int tmin
2504 = dmin.ext (TYPE_PRECISION (expr_type), uns);
2505 double_int tmax
2506 = dmax.ext (TYPE_PRECISION (expr_type), uns);
2507 if (min_ovf == max_ovf)
2508 {
2509 /* No overflow or both overflow or underflow. The
2510 range kind stays VR_RANGE. */
2511 min = double_int_to_tree (expr_type, tmin);
2512 max = double_int_to_tree (expr_type, tmax);
2513 }
2514 else if (min_ovf == -1
2515 && max_ovf == 1)
2516 {
2517 /* Underflow and overflow, drop to VR_VARYING. */
2518 set_value_range_to_varying (vr);
2519 return;
2520 }
2521 else
2522 {
2523 /* Min underflow or max overflow. The range kind
2524 changes to VR_ANTI_RANGE. */
2525 bool covers = false;
2526 double_int tem = tmin;
2527 gcc_assert ((min_ovf == -1 && max_ovf == 0)
2528 || (max_ovf == 1 && min_ovf == 0));
2529 type = VR_ANTI_RANGE;
2530 tmin = tmax + double_int_one;
2531 if (tmin.cmp (tmax, uns) < 0)
2532 covers = true;
2533 tmax = tem + double_int_minus_one;
2534 if (tmax.cmp (tem, uns) > 0)
2535 covers = true;
2536 /* If the anti-range would cover nothing, drop to varying.
2537 Likewise if the anti-range bounds are outside of the
2538 types values. */
2539 if (covers || tmin.cmp (tmax, uns) > 0)
2540 {
2541 set_value_range_to_varying (vr);
2542 return;
2543 }
2544 min = double_int_to_tree (expr_type, tmin);
2545 max = double_int_to_tree (expr_type, tmax);
2546 }
2547 }
2548 else
2549 {
2550 /* If overflow does not wrap, saturate to the types min/max
2551 value. */
2552 if (min_ovf == -1)
2553 {
2554 if (needs_overflow_infinity (expr_type)
2555 && supports_overflow_infinity (expr_type))
2556 min = negative_overflow_infinity (expr_type);
2557 else
2558 min = double_int_to_tree (expr_type, type_min);
2559 }
2560 else if (min_ovf == 1)
2561 {
2562 if (needs_overflow_infinity (expr_type)
2563 && supports_overflow_infinity (expr_type))
2564 min = positive_overflow_infinity (expr_type);
2565 else
2566 min = double_int_to_tree (expr_type, type_max);
2567 }
2568 else
2569 min = double_int_to_tree (expr_type, dmin);
2570
2571 if (max_ovf == -1)
2572 {
2573 if (needs_overflow_infinity (expr_type)
2574 && supports_overflow_infinity (expr_type))
2575 max = negative_overflow_infinity (expr_type);
2576 else
2577 max = double_int_to_tree (expr_type, type_min);
2578 }
2579 else if (max_ovf == 1)
2580 {
2581 if (needs_overflow_infinity (expr_type)
2582 && supports_overflow_infinity (expr_type))
2583 max = positive_overflow_infinity (expr_type);
2584 else
2585 max = double_int_to_tree (expr_type, type_max);
2586 }
2587 else
2588 max = double_int_to_tree (expr_type, dmax);
2589 }
2590 if (needs_overflow_infinity (expr_type)
2591 && supports_overflow_infinity (expr_type))
2592 {
2593 if (is_negative_overflow_infinity (vr0.min)
2594 || (code == PLUS_EXPR
2595 ? is_negative_overflow_infinity (vr1.min)
2596 : is_positive_overflow_infinity (vr1.max)))
2597 min = negative_overflow_infinity (expr_type);
2598 if (is_positive_overflow_infinity (vr0.max)
2599 || (code == PLUS_EXPR
2600 ? is_positive_overflow_infinity (vr1.max)
2601 : is_negative_overflow_infinity (vr1.min)))
2602 max = positive_overflow_infinity (expr_type);
2603 }
2604 }
2605 else
2606 {
2607 /* For other cases, for example if we have a PLUS_EXPR with two
2608 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2609 to compute a precise range for such a case.
2610 ??? General even mixed range kind operations can be expressed
2611 by for example transforming ~[3, 5] + [1, 2] to range-only
2612 operations and a union primitive:
2613 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2614 [-INF+1, 4] U [6, +INF(OVF)]
2615 though usually the union is not exactly representable with
2616 a single range or anti-range as the above is
2617 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2618 but one could use a scheme similar to equivalences for this. */
2619 set_value_range_to_varying (vr);
2620 return;
2621 }
2622 }
2623 else if (code == MIN_EXPR
2624 || code == MAX_EXPR)
2625 {
2626 if (vr0.type == VR_RANGE
2627 && !symbolic_range_p (&vr0))
2628 {
2629 type = VR_RANGE;
2630 if (vr1.type == VR_RANGE
2631 && !symbolic_range_p (&vr1))
2632 {
2633 /* For operations that make the resulting range directly
2634 proportional to the original ranges, apply the operation to
2635 the same end of each range. */
2636 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2637 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2638 }
2639 else if (code == MIN_EXPR)
2640 {
2641 min = vrp_val_min (expr_type);
2642 max = vr0.max;
2643 }
2644 else if (code == MAX_EXPR)
2645 {
2646 min = vr0.min;
2647 max = vrp_val_max (expr_type);
2648 }
2649 }
2650 else if (vr1.type == VR_RANGE
2651 && !symbolic_range_p (&vr1))
2652 {
2653 type = VR_RANGE;
2654 if (code == MIN_EXPR)
2655 {
2656 min = vrp_val_min (expr_type);
2657 max = vr1.max;
2658 }
2659 else if (code == MAX_EXPR)
2660 {
2661 min = vr1.min;
2662 max = vrp_val_max (expr_type);
2663 }
2664 }
2665 else
2666 {
2667 set_value_range_to_varying (vr);
2668 return;
2669 }
2670 }
2671 else if (code == MULT_EXPR)
2672 {
2673 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2674 drop to varying. */
2675 if (range_int_cst_p (&vr0)
2676 && range_int_cst_p (&vr1)
2677 && TYPE_OVERFLOW_WRAPS (expr_type))
2678 {
2679 double_int min0, max0, min1, max1, sizem1, size;
2680 double_int prod0l, prod0h, prod1l, prod1h,
2681 prod2l, prod2h, prod3l, prod3h;
2682 bool uns0, uns1, uns;
2683
2684 sizem1 = double_int::max_value (TYPE_PRECISION (expr_type), true);
2685 size = sizem1 + double_int_one;
2686
2687 min0 = tree_to_double_int (vr0.min);
2688 max0 = tree_to_double_int (vr0.max);
2689 min1 = tree_to_double_int (vr1.min);
2690 max1 = tree_to_double_int (vr1.max);
2691
2692 uns0 = TYPE_UNSIGNED (expr_type);
2693 uns1 = uns0;
2694
2695 /* Canonicalize the intervals. */
2696 if (TYPE_UNSIGNED (expr_type))
2697 {
2698 double_int min2 = size - min0;
2699 if (!min2.is_zero () && min2.cmp (max0, true) < 0)
2700 {
2701 min0 = -min2;
2702 max0 -= size;
2703 uns0 = false;
2704 }
2705
2706 min2 = size - min1;
2707 if (!min2.is_zero () && min2.cmp (max1, true) < 0)
2708 {
2709 min1 = -min2;
2710 max1 -= size;
2711 uns1 = false;
2712 }
2713 }
2714 uns = uns0 & uns1;
2715
2716 bool overflow;
2717 prod0l = min0.wide_mul_with_sign (min1, true, &prod0h, &overflow);
2718 if (!uns0 && min0.is_negative ())
2719 prod0h -= min1;
2720 if (!uns1 && min1.is_negative ())
2721 prod0h -= min0;
2722
2723 prod1l = min0.wide_mul_with_sign (max1, true, &prod1h, &overflow);
2724 if (!uns0 && min0.is_negative ())
2725 prod1h -= max1;
2726 if (!uns1 && max1.is_negative ())
2727 prod1h -= min0;
2728
2729 prod2l = max0.wide_mul_with_sign (min1, true, &prod2h, &overflow);
2730 if (!uns0 && max0.is_negative ())
2731 prod2h -= min1;
2732 if (!uns1 && min1.is_negative ())
2733 prod2h -= max0;
2734
2735 prod3l = max0.wide_mul_with_sign (max1, true, &prod3h, &overflow);
2736 if (!uns0 && max0.is_negative ())
2737 prod3h -= max1;
2738 if (!uns1 && max1.is_negative ())
2739 prod3h -= max0;
2740
2741 /* Sort the 4 products. */
2742 quad_int_pair_sort (&prod0l, &prod0h, &prod3l, &prod3h, uns);
2743 quad_int_pair_sort (&prod1l, &prod1h, &prod2l, &prod2h, uns);
2744 quad_int_pair_sort (&prod0l, &prod0h, &prod1l, &prod1h, uns);
2745 quad_int_pair_sort (&prod2l, &prod2h, &prod3l, &prod3h, uns);
2746
2747 /* Max - min. */
2748 if (prod0l.is_zero ())
2749 {
2750 prod1l = double_int_zero;
2751 prod1h = -prod0h;
2752 }
2753 else
2754 {
2755 prod1l = -prod0l;
2756 prod1h = ~prod0h;
2757 }
2758 prod2l = prod3l + prod1l;
2759 prod2h = prod3h + prod1h;
2760 if (prod2l.ult (prod3l))
2761 prod2h += double_int_one; /* carry */
2762
2763 if (!prod2h.is_zero ()
2764 || prod2l.cmp (sizem1, true) >= 0)
2765 {
2766 /* the range covers all values. */
2767 set_value_range_to_varying (vr);
2768 return;
2769 }
2770
2771 /* The following should handle the wrapping and selecting
2772 VR_ANTI_RANGE for us. */
2773 min = double_int_to_tree (expr_type, prod0l);
2774 max = double_int_to_tree (expr_type, prod3l);
2775 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2776 return;
2777 }
2778
2779 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2780 drop to VR_VARYING. It would take more effort to compute a
2781 precise range for such a case. For example, if we have
2782 op0 == 65536 and op1 == 65536 with their ranges both being
2783 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2784 we cannot claim that the product is in ~[0,0]. Note that we
2785 are guaranteed to have vr0.type == vr1.type at this
2786 point. */
2787 if (vr0.type == VR_ANTI_RANGE
2788 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2789 {
2790 set_value_range_to_varying (vr);
2791 return;
2792 }
2793
2794 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2795 return;
2796 }
2797 else if (code == RSHIFT_EXPR
2798 || code == LSHIFT_EXPR)
2799 {
2800 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2801 then drop to VR_VARYING. Outside of this range we get undefined
2802 behavior from the shift operation. We cannot even trust
2803 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2804 shifts, and the operation at the tree level may be widened. */
2805 if (range_int_cst_p (&vr1)
2806 && compare_tree_int (vr1.min, 0) >= 0
2807 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2808 {
2809 if (code == RSHIFT_EXPR)
2810 {
2811 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2812 return;
2813 }
2814 /* We can map lshifts by constants to MULT_EXPR handling. */
2815 else if (code == LSHIFT_EXPR
2816 && range_int_cst_singleton_p (&vr1))
2817 {
2818 bool saved_flag_wrapv;
2819 value_range_t vr1p = VR_INITIALIZER;
2820 vr1p.type = VR_RANGE;
2821 vr1p.min
2822 = double_int_to_tree (expr_type,
2823 double_int_one
2824 .llshift (TREE_INT_CST_LOW (vr1.min),
2825 TYPE_PRECISION (expr_type)));
2826 vr1p.max = vr1p.min;
2827 /* We have to use a wrapping multiply though as signed overflow
2828 on lshifts is implementation defined in C89. */
2829 saved_flag_wrapv = flag_wrapv;
2830 flag_wrapv = 1;
2831 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
2832 &vr0, &vr1p);
2833 flag_wrapv = saved_flag_wrapv;
2834 return;
2835 }
2836 else if (code == LSHIFT_EXPR
2837 && range_int_cst_p (&vr0))
2838 {
2839 int prec = TYPE_PRECISION (expr_type);
2840 int overflow_pos = prec;
2841 int bound_shift;
2842 double_int bound, complement, low_bound, high_bound;
2843 bool uns = TYPE_UNSIGNED (expr_type);
2844 bool in_bounds = false;
2845
2846 if (!uns)
2847 overflow_pos -= 1;
2848
2849 bound_shift = overflow_pos - TREE_INT_CST_LOW (vr1.max);
2850 /* If bound_shift == HOST_BITS_PER_DOUBLE_INT, the llshift can
2851 overflow. However, for that to happen, vr1.max needs to be
2852 zero, which means vr1 is a singleton range of zero, which
2853 means it should be handled by the previous LSHIFT_EXPR
2854 if-clause. */
2855 bound = double_int_one.llshift (bound_shift, prec);
2856 complement = ~(bound - double_int_one);
2857
2858 if (uns)
2859 {
2860 low_bound = bound.zext (prec);
2861 high_bound = complement.zext (prec);
2862 if (tree_to_double_int (vr0.max).ult (low_bound))
2863 {
2864 /* [5, 6] << [1, 2] == [10, 24]. */
2865 /* We're shifting out only zeroes, the value increases
2866 monotonically. */
2867 in_bounds = true;
2868 }
2869 else if (high_bound.ult (tree_to_double_int (vr0.min)))
2870 {
2871 /* [0xffffff00, 0xffffffff] << [1, 2]
2872 == [0xfffffc00, 0xfffffffe]. */
2873 /* We're shifting out only ones, the value decreases
2874 monotonically. */
2875 in_bounds = true;
2876 }
2877 }
2878 else
2879 {
2880 /* [-1, 1] << [1, 2] == [-4, 4]. */
2881 low_bound = complement.sext (prec);
2882 high_bound = bound;
2883 if (tree_to_double_int (vr0.max).slt (high_bound)
2884 && low_bound.slt (tree_to_double_int (vr0.min)))
2885 {
2886 /* For non-negative numbers, we're shifting out only
2887 zeroes, the value increases monotonically.
2888 For negative numbers, we're shifting out only ones, the
2889 value decreases monotomically. */
2890 in_bounds = true;
2891 }
2892 }
2893
2894 if (in_bounds)
2895 {
2896 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2897 return;
2898 }
2899 }
2900 }
2901 set_value_range_to_varying (vr);
2902 return;
2903 }
2904 else if (code == TRUNC_DIV_EXPR
2905 || code == FLOOR_DIV_EXPR
2906 || code == CEIL_DIV_EXPR
2907 || code == EXACT_DIV_EXPR
2908 || code == ROUND_DIV_EXPR)
2909 {
2910 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2911 {
2912 /* For division, if op1 has VR_RANGE but op0 does not, something
2913 can be deduced just from that range. Say [min, max] / [4, max]
2914 gives [min / 4, max / 4] range. */
2915 if (vr1.type == VR_RANGE
2916 && !symbolic_range_p (&vr1)
2917 && range_includes_zero_p (vr1.min, vr1.max) == 0)
2918 {
2919 vr0.type = type = VR_RANGE;
2920 vr0.min = vrp_val_min (expr_type);
2921 vr0.max = vrp_val_max (expr_type);
2922 }
2923 else
2924 {
2925 set_value_range_to_varying (vr);
2926 return;
2927 }
2928 }
2929
2930 /* For divisions, if flag_non_call_exceptions is true, we must
2931 not eliminate a division by zero. */
2932 if (cfun->can_throw_non_call_exceptions
2933 && (vr1.type != VR_RANGE
2934 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2935 {
2936 set_value_range_to_varying (vr);
2937 return;
2938 }
2939
2940 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2941 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2942 include 0. */
2943 if (vr0.type == VR_RANGE
2944 && (vr1.type != VR_RANGE
2945 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2946 {
2947 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2948 int cmp;
2949
2950 min = NULL_TREE;
2951 max = NULL_TREE;
2952 if (TYPE_UNSIGNED (expr_type)
2953 || value_range_nonnegative_p (&vr1))
2954 {
2955 /* For unsigned division or when divisor is known
2956 to be non-negative, the range has to cover
2957 all numbers from 0 to max for positive max
2958 and all numbers from min to 0 for negative min. */
2959 cmp = compare_values (vr0.max, zero);
2960 if (cmp == -1)
2961 max = zero;
2962 else if (cmp == 0 || cmp == 1)
2963 max = vr0.max;
2964 else
2965 type = VR_VARYING;
2966 cmp = compare_values (vr0.min, zero);
2967 if (cmp == 1)
2968 min = zero;
2969 else if (cmp == 0 || cmp == -1)
2970 min = vr0.min;
2971 else
2972 type = VR_VARYING;
2973 }
2974 else
2975 {
2976 /* Otherwise the range is -max .. max or min .. -min
2977 depending on which bound is bigger in absolute value,
2978 as the division can change the sign. */
2979 abs_extent_range (vr, vr0.min, vr0.max);
2980 return;
2981 }
2982 if (type == VR_VARYING)
2983 {
2984 set_value_range_to_varying (vr);
2985 return;
2986 }
2987 }
2988 else
2989 {
2990 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2991 return;
2992 }
2993 }
2994 else if (code == TRUNC_MOD_EXPR)
2995 {
2996 if (vr1.type != VR_RANGE
2997 || range_includes_zero_p (vr1.min, vr1.max) != 0
2998 || vrp_val_is_min (vr1.min))
2999 {
3000 set_value_range_to_varying (vr);
3001 return;
3002 }
3003 type = VR_RANGE;
3004 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
3005 max = fold_unary_to_constant (ABS_EXPR, expr_type, vr1.min);
3006 if (tree_int_cst_lt (max, vr1.max))
3007 max = vr1.max;
3008 max = int_const_binop (MINUS_EXPR, max, integer_one_node);
3009 /* If the dividend is non-negative the modulus will be
3010 non-negative as well. */
3011 if (TYPE_UNSIGNED (expr_type)
3012 || value_range_nonnegative_p (&vr0))
3013 min = build_int_cst (TREE_TYPE (max), 0);
3014 else
3015 min = fold_unary_to_constant (NEGATE_EXPR, expr_type, max);
3016 }
3017 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
3018 {
3019 bool int_cst_range0, int_cst_range1;
3020 double_int may_be_nonzero0, may_be_nonzero1;
3021 double_int must_be_nonzero0, must_be_nonzero1;
3022
3023 int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
3024 &must_be_nonzero0);
3025 int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
3026 &must_be_nonzero1);
3027
3028 type = VR_RANGE;
3029 if (code == BIT_AND_EXPR)
3030 {
3031 double_int dmax;
3032 min = double_int_to_tree (expr_type,
3033 must_be_nonzero0 & must_be_nonzero1);
3034 dmax = may_be_nonzero0 & may_be_nonzero1;
3035 /* If both input ranges contain only negative values we can
3036 truncate the result range maximum to the minimum of the
3037 input range maxima. */
3038 if (int_cst_range0 && int_cst_range1
3039 && tree_int_cst_sgn (vr0.max) < 0
3040 && tree_int_cst_sgn (vr1.max) < 0)
3041 {
3042 dmax = dmax.min (tree_to_double_int (vr0.max),
3043 TYPE_UNSIGNED (expr_type));
3044 dmax = dmax.min (tree_to_double_int (vr1.max),
3045 TYPE_UNSIGNED (expr_type));
3046 }
3047 /* If either input range contains only non-negative values
3048 we can truncate the result range maximum to the respective
3049 maximum of the input range. */
3050 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
3051 dmax = dmax.min (tree_to_double_int (vr0.max),
3052 TYPE_UNSIGNED (expr_type));
3053 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
3054 dmax = dmax.min (tree_to_double_int (vr1.max),
3055 TYPE_UNSIGNED (expr_type));
3056 max = double_int_to_tree (expr_type, dmax);
3057 }
3058 else if (code == BIT_IOR_EXPR)
3059 {
3060 double_int dmin;
3061 max = double_int_to_tree (expr_type,
3062 may_be_nonzero0 | may_be_nonzero1);
3063 dmin = must_be_nonzero0 | must_be_nonzero1;
3064 /* If the input ranges contain only positive values we can
3065 truncate the minimum of the result range to the maximum
3066 of the input range minima. */
3067 if (int_cst_range0 && int_cst_range1
3068 && tree_int_cst_sgn (vr0.min) >= 0
3069 && tree_int_cst_sgn (vr1.min) >= 0)
3070 {
3071 dmin = dmin.max (tree_to_double_int (vr0.min),
3072 TYPE_UNSIGNED (expr_type));
3073 dmin = dmin.max (tree_to_double_int (vr1.min),
3074 TYPE_UNSIGNED (expr_type));
3075 }
3076 /* If either input range contains only negative values
3077 we can truncate the minimum of the result range to the
3078 respective minimum range. */
3079 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
3080 dmin = dmin.max (tree_to_double_int (vr0.min),
3081 TYPE_UNSIGNED (expr_type));
3082 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
3083 dmin = dmin.max (tree_to_double_int (vr1.min),
3084 TYPE_UNSIGNED (expr_type));
3085 min = double_int_to_tree (expr_type, dmin);
3086 }
3087 else if (code == BIT_XOR_EXPR)
3088 {
3089 double_int result_zero_bits, result_one_bits;
3090 result_zero_bits = (must_be_nonzero0 & must_be_nonzero1)
3091 | ~(may_be_nonzero0 | may_be_nonzero1);
3092 result_one_bits = must_be_nonzero0.and_not (may_be_nonzero1)
3093 | must_be_nonzero1.and_not (may_be_nonzero0);
3094 max = double_int_to_tree (expr_type, ~result_zero_bits);
3095 min = double_int_to_tree (expr_type, result_one_bits);
3096 /* If the range has all positive or all negative values the
3097 result is better than VARYING. */
3098 if (tree_int_cst_sgn (min) < 0
3099 || tree_int_cst_sgn (max) >= 0)
3100 ;
3101 else
3102 max = min = NULL_TREE;
3103 }
3104 }
3105 else
3106 gcc_unreachable ();
3107
3108 /* If either MIN or MAX overflowed, then set the resulting range to
3109 VARYING. But we do accept an overflow infinity
3110 representation. */
3111 if (min == NULL_TREE
3112 || !is_gimple_min_invariant (min)
3113 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
3114 || max == NULL_TREE
3115 || !is_gimple_min_invariant (max)
3116 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
3117 {
3118 set_value_range_to_varying (vr);
3119 return;
3120 }
3121
3122 /* We punt if:
3123 1) [-INF, +INF]
3124 2) [-INF, +-INF(OVF)]
3125 3) [+-INF(OVF), +INF]
3126 4) [+-INF(OVF), +-INF(OVF)]
3127 We learn nothing when we have INF and INF(OVF) on both sides.
3128 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3129 overflow. */
3130 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
3131 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
3132 {
3133 set_value_range_to_varying (vr);
3134 return;
3135 }
3136
3137 cmp = compare_values (min, max);
3138 if (cmp == -2 || cmp == 1)
3139 {
3140 /* If the new range has its limits swapped around (MIN > MAX),
3141 then the operation caused one of them to wrap around, mark
3142 the new range VARYING. */
3143 set_value_range_to_varying (vr);
3144 }
3145 else
3146 set_value_range (vr, type, min, max, NULL);
3147 }
3148
3149 /* Extract range information from a binary expression OP0 CODE OP1 based on
3150 the ranges of each of its operands with resulting type EXPR_TYPE.
3151 The resulting range is stored in *VR. */
3152
3153 static void
3154 extract_range_from_binary_expr (value_range_t *vr,
3155 enum tree_code code,
3156 tree expr_type, tree op0, tree op1)
3157 {
3158 value_range_t vr0 = VR_INITIALIZER;
3159 value_range_t vr1 = VR_INITIALIZER;
3160
3161 /* Get value ranges for each operand. For constant operands, create
3162 a new value range with the operand to simplify processing. */
3163 if (TREE_CODE (op0) == SSA_NAME)
3164 vr0 = *(get_value_range (op0));
3165 else if (is_gimple_min_invariant (op0))
3166 set_value_range_to_value (&vr0, op0, NULL);
3167 else
3168 set_value_range_to_varying (&vr0);
3169
3170 if (TREE_CODE (op1) == SSA_NAME)
3171 vr1 = *(get_value_range (op1));
3172 else if (is_gimple_min_invariant (op1))
3173 set_value_range_to_value (&vr1, op1, NULL);
3174 else
3175 set_value_range_to_varying (&vr1);
3176
3177 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3178 }
3179
3180 /* Extract range information from a unary operation CODE based on
3181 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3182 The The resulting range is stored in *VR. */
3183
3184 static void
3185 extract_range_from_unary_expr_1 (value_range_t *vr,
3186 enum tree_code code, tree type,
3187 value_range_t *vr0_, tree op0_type)
3188 {
3189 value_range_t vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3190
3191 /* VRP only operates on integral and pointer types. */
3192 if (!(INTEGRAL_TYPE_P (op0_type)
3193 || POINTER_TYPE_P (op0_type))
3194 || !(INTEGRAL_TYPE_P (type)
3195 || POINTER_TYPE_P (type)))
3196 {
3197 set_value_range_to_varying (vr);
3198 return;
3199 }
3200
3201 /* If VR0 is UNDEFINED, so is the result. */
3202 if (vr0.type == VR_UNDEFINED)
3203 {
3204 set_value_range_to_undefined (vr);
3205 return;
3206 }
3207
3208 /* Handle operations that we express in terms of others. */
3209 if (code == PAREN_EXPR)
3210 {
3211 /* PAREN_EXPR is a simple copy. */
3212 copy_value_range (vr, &vr0);
3213 return;
3214 }
3215 else if (code == NEGATE_EXPR)
3216 {
3217 /* -X is simply 0 - X, so re-use existing code that also handles
3218 anti-ranges fine. */
3219 value_range_t zero = VR_INITIALIZER;
3220 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3221 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3222 return;
3223 }
3224 else if (code == BIT_NOT_EXPR)
3225 {
3226 /* ~X is simply -1 - X, so re-use existing code that also handles
3227 anti-ranges fine. */
3228 value_range_t minusone = VR_INITIALIZER;
3229 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3230 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3231 type, &minusone, &vr0);
3232 return;
3233 }
3234
3235 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3236 and express op ~[] as (op []') U (op []''). */
3237 if (vr0.type == VR_ANTI_RANGE
3238 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3239 {
3240 extract_range_from_unary_expr_1 (vr, code, type, &vrtem0, op0_type);
3241 if (vrtem1.type != VR_UNDEFINED)
3242 {
3243 value_range_t vrres = VR_INITIALIZER;
3244 extract_range_from_unary_expr_1 (&vrres, code, type,
3245 &vrtem1, op0_type);
3246 vrp_meet (vr, &vrres);
3247 }
3248 return;
3249 }
3250
3251 if (CONVERT_EXPR_CODE_P (code))
3252 {
3253 tree inner_type = op0_type;
3254 tree outer_type = type;
3255
3256 /* If the expression evaluates to a pointer, we are only interested in
3257 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3258 if (POINTER_TYPE_P (type))
3259 {
3260 if (range_is_nonnull (&vr0))
3261 set_value_range_to_nonnull (vr, type);
3262 else if (range_is_null (&vr0))
3263 set_value_range_to_null (vr, type);
3264 else
3265 set_value_range_to_varying (vr);
3266 return;
3267 }
3268
3269 /* If VR0 is varying and we increase the type precision, assume
3270 a full range for the following transformation. */
3271 if (vr0.type == VR_VARYING
3272 && INTEGRAL_TYPE_P (inner_type)
3273 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3274 {
3275 vr0.type = VR_RANGE;
3276 vr0.min = TYPE_MIN_VALUE (inner_type);
3277 vr0.max = TYPE_MAX_VALUE (inner_type);
3278 }
3279
3280 /* If VR0 is a constant range or anti-range and the conversion is
3281 not truncating we can convert the min and max values and
3282 canonicalize the resulting range. Otherwise we can do the
3283 conversion if the size of the range is less than what the
3284 precision of the target type can represent and the range is
3285 not an anti-range. */
3286 if ((vr0.type == VR_RANGE
3287 || vr0.type == VR_ANTI_RANGE)
3288 && TREE_CODE (vr0.min) == INTEGER_CST
3289 && TREE_CODE (vr0.max) == INTEGER_CST
3290 && (!is_overflow_infinity (vr0.min)
3291 || (vr0.type == VR_RANGE
3292 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3293 && needs_overflow_infinity (outer_type)
3294 && supports_overflow_infinity (outer_type)))
3295 && (!is_overflow_infinity (vr0.max)
3296 || (vr0.type == VR_RANGE
3297 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3298 && needs_overflow_infinity (outer_type)
3299 && supports_overflow_infinity (outer_type)))
3300 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3301 || (vr0.type == VR_RANGE
3302 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3303 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3304 size_int (TYPE_PRECISION (outer_type)))))))
3305 {
3306 tree new_min, new_max;
3307 if (is_overflow_infinity (vr0.min))
3308 new_min = negative_overflow_infinity (outer_type);
3309 else
3310 new_min = force_fit_type_double (outer_type,
3311 tree_to_double_int (vr0.min),
3312 0, false);
3313 if (is_overflow_infinity (vr0.max))
3314 new_max = positive_overflow_infinity (outer_type);
3315 else
3316 new_max = force_fit_type_double (outer_type,
3317 tree_to_double_int (vr0.max),
3318 0, false);
3319 set_and_canonicalize_value_range (vr, vr0.type,
3320 new_min, new_max, NULL);
3321 return;
3322 }
3323
3324 set_value_range_to_varying (vr);
3325 return;
3326 }
3327 else if (code == ABS_EXPR)
3328 {
3329 tree min, max;
3330 int cmp;
3331
3332 /* Pass through vr0 in the easy cases. */
3333 if (TYPE_UNSIGNED (type)
3334 || value_range_nonnegative_p (&vr0))
3335 {
3336 copy_value_range (vr, &vr0);
3337 return;
3338 }
3339
3340 /* For the remaining varying or symbolic ranges we can't do anything
3341 useful. */
3342 if (vr0.type == VR_VARYING
3343 || symbolic_range_p (&vr0))
3344 {
3345 set_value_range_to_varying (vr);
3346 return;
3347 }
3348
3349 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3350 useful range. */
3351 if (!TYPE_OVERFLOW_UNDEFINED (type)
3352 && ((vr0.type == VR_RANGE
3353 && vrp_val_is_min (vr0.min))
3354 || (vr0.type == VR_ANTI_RANGE
3355 && !vrp_val_is_min (vr0.min))))
3356 {
3357 set_value_range_to_varying (vr);
3358 return;
3359 }
3360
3361 /* ABS_EXPR may flip the range around, if the original range
3362 included negative values. */
3363 if (is_overflow_infinity (vr0.min))
3364 min = positive_overflow_infinity (type);
3365 else if (!vrp_val_is_min (vr0.min))
3366 min = fold_unary_to_constant (code, type, vr0.min);
3367 else if (!needs_overflow_infinity (type))
3368 min = TYPE_MAX_VALUE (type);
3369 else if (supports_overflow_infinity (type))
3370 min = positive_overflow_infinity (type);
3371 else
3372 {
3373 set_value_range_to_varying (vr);
3374 return;
3375 }
3376
3377 if (is_overflow_infinity (vr0.max))
3378 max = positive_overflow_infinity (type);
3379 else if (!vrp_val_is_min (vr0.max))
3380 max = fold_unary_to_constant (code, type, vr0.max);
3381 else if (!needs_overflow_infinity (type))
3382 max = TYPE_MAX_VALUE (type);
3383 else if (supports_overflow_infinity (type)
3384 /* We shouldn't generate [+INF, +INF] as set_value_range
3385 doesn't like this and ICEs. */
3386 && !is_positive_overflow_infinity (min))
3387 max = positive_overflow_infinity (type);
3388 else
3389 {
3390 set_value_range_to_varying (vr);
3391 return;
3392 }
3393
3394 cmp = compare_values (min, max);
3395
3396 /* If a VR_ANTI_RANGEs contains zero, then we have
3397 ~[-INF, min(MIN, MAX)]. */
3398 if (vr0.type == VR_ANTI_RANGE)
3399 {
3400 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3401 {
3402 /* Take the lower of the two values. */
3403 if (cmp != 1)
3404 max = min;
3405
3406 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3407 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3408 flag_wrapv is set and the original anti-range doesn't include
3409 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3410 if (TYPE_OVERFLOW_WRAPS (type))
3411 {
3412 tree type_min_value = TYPE_MIN_VALUE (type);
3413
3414 min = (vr0.min != type_min_value
3415 ? int_const_binop (PLUS_EXPR, type_min_value,
3416 integer_one_node)
3417 : type_min_value);
3418 }
3419 else
3420 {
3421 if (overflow_infinity_range_p (&vr0))
3422 min = negative_overflow_infinity (type);
3423 else
3424 min = TYPE_MIN_VALUE (type);
3425 }
3426 }
3427 else
3428 {
3429 /* All else has failed, so create the range [0, INF], even for
3430 flag_wrapv since TYPE_MIN_VALUE is in the original
3431 anti-range. */
3432 vr0.type = VR_RANGE;
3433 min = build_int_cst (type, 0);
3434 if (needs_overflow_infinity (type))
3435 {
3436 if (supports_overflow_infinity (type))
3437 max = positive_overflow_infinity (type);
3438 else
3439 {
3440 set_value_range_to_varying (vr);
3441 return;
3442 }
3443 }
3444 else
3445 max = TYPE_MAX_VALUE (type);
3446 }
3447 }
3448
3449 /* If the range contains zero then we know that the minimum value in the
3450 range will be zero. */
3451 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3452 {
3453 if (cmp == 1)
3454 max = min;
3455 min = build_int_cst (type, 0);
3456 }
3457 else
3458 {
3459 /* If the range was reversed, swap MIN and MAX. */
3460 if (cmp == 1)
3461 {
3462 tree t = min;
3463 min = max;
3464 max = t;
3465 }
3466 }
3467
3468 cmp = compare_values (min, max);
3469 if (cmp == -2 || cmp == 1)
3470 {
3471 /* If the new range has its limits swapped around (MIN > MAX),
3472 then the operation caused one of them to wrap around, mark
3473 the new range VARYING. */
3474 set_value_range_to_varying (vr);
3475 }
3476 else
3477 set_value_range (vr, vr0.type, min, max, NULL);
3478 return;
3479 }
3480
3481 /* For unhandled operations fall back to varying. */
3482 set_value_range_to_varying (vr);
3483 return;
3484 }
3485
3486
3487 /* Extract range information from a unary expression CODE OP0 based on
3488 the range of its operand with resulting type TYPE.
3489 The resulting range is stored in *VR. */
3490
3491 static void
3492 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
3493 tree type, tree op0)
3494 {
3495 value_range_t vr0 = VR_INITIALIZER;
3496
3497 /* Get value ranges for the operand. For constant operands, create
3498 a new value range with the operand to simplify processing. */
3499 if (TREE_CODE (op0) == SSA_NAME)
3500 vr0 = *(get_value_range (op0));
3501 else if (is_gimple_min_invariant (op0))
3502 set_value_range_to_value (&vr0, op0, NULL);
3503 else
3504 set_value_range_to_varying (&vr0);
3505
3506 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3507 }
3508
3509
3510 /* Extract range information from a conditional expression STMT based on
3511 the ranges of each of its operands and the expression code. */
3512
3513 static void
3514 extract_range_from_cond_expr (value_range_t *vr, gimple stmt)
3515 {
3516 tree op0, op1;
3517 value_range_t vr0 = VR_INITIALIZER;
3518 value_range_t vr1 = VR_INITIALIZER;
3519
3520 /* Get value ranges for each operand. For constant operands, create
3521 a new value range with the operand to simplify processing. */
3522 op0 = gimple_assign_rhs2 (stmt);
3523 if (TREE_CODE (op0) == SSA_NAME)
3524 vr0 = *(get_value_range (op0));
3525 else if (is_gimple_min_invariant (op0))
3526 set_value_range_to_value (&vr0, op0, NULL);
3527 else
3528 set_value_range_to_varying (&vr0);
3529
3530 op1 = gimple_assign_rhs3 (stmt);
3531 if (TREE_CODE (op1) == SSA_NAME)
3532 vr1 = *(get_value_range (op1));
3533 else if (is_gimple_min_invariant (op1))
3534 set_value_range_to_value (&vr1, op1, NULL);
3535 else
3536 set_value_range_to_varying (&vr1);
3537
3538 /* The resulting value range is the union of the operand ranges */
3539 copy_value_range (vr, &vr0);
3540 vrp_meet (vr, &vr1);
3541 }
3542
3543
3544 /* Extract range information from a comparison expression EXPR based
3545 on the range of its operand and the expression code. */
3546
3547 static void
3548 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3549 tree type, tree op0, tree op1)
3550 {
3551 bool sop = false;
3552 tree val;
3553
3554 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3555 NULL);
3556
3557 /* A disadvantage of using a special infinity as an overflow
3558 representation is that we lose the ability to record overflow
3559 when we don't have an infinity. So we have to ignore a result
3560 which relies on overflow. */
3561
3562 if (val && !is_overflow_infinity (val) && !sop)
3563 {
3564 /* Since this expression was found on the RHS of an assignment,
3565 its type may be different from _Bool. Convert VAL to EXPR's
3566 type. */
3567 val = fold_convert (type, val);
3568 if (is_gimple_min_invariant (val))
3569 set_value_range_to_value (vr, val, vr->equiv);
3570 else
3571 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3572 }
3573 else
3574 /* The result of a comparison is always true or false. */
3575 set_value_range_to_truthvalue (vr, type);
3576 }
3577
3578 /* Try to derive a nonnegative or nonzero range out of STMT relying
3579 primarily on generic routines in fold in conjunction with range data.
3580 Store the result in *VR */
3581
3582 static void
3583 extract_range_basic (value_range_t *vr, gimple stmt)
3584 {
3585 bool sop = false;
3586 tree type = gimple_expr_type (stmt);
3587
3588 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
3589 {
3590 tree fndecl = gimple_call_fndecl (stmt), arg;
3591 int mini, maxi, zerov = 0, prec;
3592
3593 switch (DECL_FUNCTION_CODE (fndecl))
3594 {
3595 case BUILT_IN_CONSTANT_P:
3596 /* If the call is __builtin_constant_p and the argument is a
3597 function parameter resolve it to false. This avoids bogus
3598 array bound warnings.
3599 ??? We could do this as early as inlining is finished. */
3600 arg = gimple_call_arg (stmt, 0);
3601 if (TREE_CODE (arg) == SSA_NAME
3602 && SSA_NAME_IS_DEFAULT_DEF (arg)
3603 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
3604 {
3605 set_value_range_to_null (vr, type);
3606 return;
3607 }
3608 break;
3609 /* Both __builtin_ffs* and __builtin_popcount return
3610 [0, prec]. */
3611 CASE_INT_FN (BUILT_IN_FFS):
3612 CASE_INT_FN (BUILT_IN_POPCOUNT):
3613 arg = gimple_call_arg (stmt, 0);
3614 prec = TYPE_PRECISION (TREE_TYPE (arg));
3615 mini = 0;
3616 maxi = prec;
3617 if (TREE_CODE (arg) == SSA_NAME)
3618 {
3619 value_range_t *vr0 = get_value_range (arg);
3620 /* If arg is non-zero, then ffs or popcount
3621 are non-zero. */
3622 if (((vr0->type == VR_RANGE
3623 && integer_nonzerop (vr0->min))
3624 || (vr0->type == VR_ANTI_RANGE
3625 && integer_zerop (vr0->min)))
3626 && !is_overflow_infinity (vr0->min))
3627 mini = 1;
3628 /* If some high bits are known to be zero,
3629 we can decrease the maximum. */
3630 if (vr0->type == VR_RANGE
3631 && TREE_CODE (vr0->max) == INTEGER_CST
3632 && !is_overflow_infinity (vr0->max))
3633 maxi = tree_floor_log2 (vr0->max) + 1;
3634 }
3635 goto bitop_builtin;
3636 /* __builtin_parity* returns [0, 1]. */
3637 CASE_INT_FN (BUILT_IN_PARITY):
3638 mini = 0;
3639 maxi = 1;
3640 goto bitop_builtin;
3641 /* __builtin_c[lt]z* return [0, prec-1], except for
3642 when the argument is 0, but that is undefined behavior.
3643 On many targets where the CLZ RTL or optab value is defined
3644 for 0 the value is prec, so include that in the range
3645 by default. */
3646 CASE_INT_FN (BUILT_IN_CLZ):
3647 arg = gimple_call_arg (stmt, 0);
3648 prec = TYPE_PRECISION (TREE_TYPE (arg));
3649 mini = 0;
3650 maxi = prec;
3651 if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
3652 != CODE_FOR_nothing
3653 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3654 zerov)
3655 /* Handle only the single common value. */
3656 && zerov != prec)
3657 /* Magic value to give up, unless vr0 proves
3658 arg is non-zero. */
3659 mini = -2;
3660 if (TREE_CODE (arg) == SSA_NAME)
3661 {
3662 value_range_t *vr0 = get_value_range (arg);
3663 /* From clz of VR_RANGE minimum we can compute
3664 result maximum. */
3665 if (vr0->type == VR_RANGE
3666 && TREE_CODE (vr0->min) == INTEGER_CST
3667 && !is_overflow_infinity (vr0->min))
3668 {
3669 maxi = prec - 1 - tree_floor_log2 (vr0->min);
3670 if (maxi != prec)
3671 mini = 0;
3672 }
3673 else if (vr0->type == VR_ANTI_RANGE
3674 && integer_zerop (vr0->min)
3675 && !is_overflow_infinity (vr0->min))
3676 {
3677 maxi = prec - 1;
3678 mini = 0;
3679 }
3680 if (mini == -2)
3681 break;
3682 /* From clz of VR_RANGE maximum we can compute
3683 result minimum. */
3684 if (vr0->type == VR_RANGE
3685 && TREE_CODE (vr0->max) == INTEGER_CST
3686 && !is_overflow_infinity (vr0->max))
3687 {
3688 mini = prec - 1 - tree_floor_log2 (vr0->max);
3689 if (mini == prec)
3690 break;
3691 }
3692 }
3693 if (mini == -2)
3694 break;
3695 goto bitop_builtin;
3696 /* __builtin_ctz* return [0, prec-1], except for
3697 when the argument is 0, but that is undefined behavior.
3698 If there is a ctz optab for this mode and
3699 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
3700 otherwise just assume 0 won't be seen. */
3701 CASE_INT_FN (BUILT_IN_CTZ):
3702 arg = gimple_call_arg (stmt, 0);
3703 prec = TYPE_PRECISION (TREE_TYPE (arg));
3704 mini = 0;
3705 maxi = prec - 1;
3706 if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
3707 != CODE_FOR_nothing
3708 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3709 zerov))
3710 {
3711 /* Handle only the two common values. */
3712 if (zerov == -1)
3713 mini = -1;
3714 else if (zerov == prec)
3715 maxi = prec;
3716 else
3717 /* Magic value to give up, unless vr0 proves
3718 arg is non-zero. */
3719 mini = -2;
3720 }
3721 if (TREE_CODE (arg) == SSA_NAME)
3722 {
3723 value_range_t *vr0 = get_value_range (arg);
3724 /* If arg is non-zero, then use [0, prec - 1]. */
3725 if (((vr0->type == VR_RANGE
3726 && integer_nonzerop (vr0->min))
3727 || (vr0->type == VR_ANTI_RANGE
3728 && integer_zerop (vr0->min)))
3729 && !is_overflow_infinity (vr0->min))
3730 {
3731 mini = 0;
3732 maxi = prec - 1;
3733 }
3734 /* If some high bits are known to be zero,
3735 we can decrease the result maximum. */
3736 if (vr0->type == VR_RANGE
3737 && TREE_CODE (vr0->max) == INTEGER_CST
3738 && !is_overflow_infinity (vr0->max))
3739 {
3740 maxi = tree_floor_log2 (vr0->max);
3741 /* For vr0 [0, 0] give up. */
3742 if (maxi == -1)
3743 break;
3744 }
3745 }
3746 if (mini == -2)
3747 break;
3748 goto bitop_builtin;
3749 /* __builtin_clrsb* returns [0, prec-1]. */
3750 CASE_INT_FN (BUILT_IN_CLRSB):
3751 arg = gimple_call_arg (stmt, 0);
3752 prec = TYPE_PRECISION (TREE_TYPE (arg));
3753 mini = 0;
3754 maxi = prec - 1;
3755 goto bitop_builtin;
3756 bitop_builtin:
3757 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
3758 build_int_cst (type, maxi), NULL);
3759 return;
3760 default:
3761 break;
3762 }
3763 }
3764 if (INTEGRAL_TYPE_P (type)
3765 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3766 set_value_range_to_nonnegative (vr, type,
3767 sop || stmt_overflow_infinity (stmt));
3768 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3769 && !sop)
3770 set_value_range_to_nonnull (vr, type);
3771 else
3772 set_value_range_to_varying (vr);
3773 }
3774
3775
3776 /* Try to compute a useful range out of assignment STMT and store it
3777 in *VR. */
3778
3779 static void
3780 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3781 {
3782 enum tree_code code = gimple_assign_rhs_code (stmt);
3783
3784 if (code == ASSERT_EXPR)
3785 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3786 else if (code == SSA_NAME)
3787 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3788 else if (TREE_CODE_CLASS (code) == tcc_binary)
3789 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3790 gimple_expr_type (stmt),
3791 gimple_assign_rhs1 (stmt),
3792 gimple_assign_rhs2 (stmt));
3793 else if (TREE_CODE_CLASS (code) == tcc_unary)
3794 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3795 gimple_expr_type (stmt),
3796 gimple_assign_rhs1 (stmt));
3797 else if (code == COND_EXPR)
3798 extract_range_from_cond_expr (vr, stmt);
3799 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3800 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3801 gimple_expr_type (stmt),
3802 gimple_assign_rhs1 (stmt),
3803 gimple_assign_rhs2 (stmt));
3804 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3805 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3806 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3807 else
3808 set_value_range_to_varying (vr);
3809
3810 if (vr->type == VR_VARYING)
3811 extract_range_basic (vr, stmt);
3812 }
3813
3814 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3815 would be profitable to adjust VR using scalar evolution information
3816 for VAR. If so, update VR with the new limits. */
3817
3818 static void
3819 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3820 gimple stmt, tree var)
3821 {
3822 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3823 enum ev_direction dir;
3824
3825 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3826 better opportunities than a regular range, but I'm not sure. */
3827 if (vr->type == VR_ANTI_RANGE)
3828 return;
3829
3830 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3831
3832 /* Like in PR19590, scev can return a constant function. */
3833 if (is_gimple_min_invariant (chrec))
3834 {
3835 set_value_range_to_value (vr, chrec, vr->equiv);
3836 return;
3837 }
3838
3839 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3840 return;
3841
3842 init = initial_condition_in_loop_num (chrec, loop->num);
3843 tem = op_with_constant_singleton_value_range (init);
3844 if (tem)
3845 init = tem;
3846 step = evolution_part_in_loop_num (chrec, loop->num);
3847 tem = op_with_constant_singleton_value_range (step);
3848 if (tem)
3849 step = tem;
3850
3851 /* If STEP is symbolic, we can't know whether INIT will be the
3852 minimum or maximum value in the range. Also, unless INIT is
3853 a simple expression, compare_values and possibly other functions
3854 in tree-vrp won't be able to handle it. */
3855 if (step == NULL_TREE
3856 || !is_gimple_min_invariant (step)
3857 || !valid_value_p (init))
3858 return;
3859
3860 dir = scev_direction (chrec);
3861 if (/* Do not adjust ranges if we do not know whether the iv increases
3862 or decreases, ... */
3863 dir == EV_DIR_UNKNOWN
3864 /* ... or if it may wrap. */
3865 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3866 true))
3867 return;
3868
3869 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3870 negative_overflow_infinity and positive_overflow_infinity,
3871 because we have concluded that the loop probably does not
3872 wrap. */
3873
3874 type = TREE_TYPE (var);
3875 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3876 tmin = lower_bound_in_type (type, type);
3877 else
3878 tmin = TYPE_MIN_VALUE (type);
3879 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3880 tmax = upper_bound_in_type (type, type);
3881 else
3882 tmax = TYPE_MAX_VALUE (type);
3883
3884 /* Try to use estimated number of iterations for the loop to constrain the
3885 final value in the evolution. */
3886 if (TREE_CODE (step) == INTEGER_CST
3887 && is_gimple_val (init)
3888 && (TREE_CODE (init) != SSA_NAME
3889 || get_value_range (init)->type == VR_RANGE))
3890 {
3891 double_int nit;
3892
3893 /* We are only entering here for loop header PHI nodes, so using
3894 the number of latch executions is the correct thing to use. */
3895 if (max_loop_iterations (loop, &nit))
3896 {
3897 value_range_t maxvr = VR_INITIALIZER;
3898 double_int dtmp;
3899 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
3900 bool overflow = false;
3901
3902 dtmp = tree_to_double_int (step)
3903 .mul_with_sign (nit, unsigned_p, &overflow);
3904 /* If the multiplication overflowed we can't do a meaningful
3905 adjustment. Likewise if the result doesn't fit in the type
3906 of the induction variable. For a signed type we have to
3907 check whether the result has the expected signedness which
3908 is that of the step as number of iterations is unsigned. */
3909 if (!overflow
3910 && double_int_fits_to_tree_p (TREE_TYPE (init), dtmp)
3911 && (unsigned_p
3912 || ((dtmp.high ^ TREE_INT_CST_HIGH (step)) >= 0)))
3913 {
3914 tem = double_int_to_tree (TREE_TYPE (init), dtmp);
3915 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3916 TREE_TYPE (init), init, tem);
3917 /* Likewise if the addition did. */
3918 if (maxvr.type == VR_RANGE)
3919 {
3920 tmin = maxvr.min;
3921 tmax = maxvr.max;
3922 }
3923 }
3924 }
3925 }
3926
3927 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3928 {
3929 min = tmin;
3930 max = tmax;
3931
3932 /* For VARYING or UNDEFINED ranges, just about anything we get
3933 from scalar evolutions should be better. */
3934
3935 if (dir == EV_DIR_DECREASES)
3936 max = init;
3937 else
3938 min = init;
3939
3940 /* If we would create an invalid range, then just assume we
3941 know absolutely nothing. This may be over-conservative,
3942 but it's clearly safe, and should happen only in unreachable
3943 parts of code, or for invalid programs. */
3944 if (compare_values (min, max) == 1)
3945 return;
3946
3947 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3948 }
3949 else if (vr->type == VR_RANGE)
3950 {
3951 min = vr->min;
3952 max = vr->max;
3953
3954 if (dir == EV_DIR_DECREASES)
3955 {
3956 /* INIT is the maximum value. If INIT is lower than VR->MAX
3957 but no smaller than VR->MIN, set VR->MAX to INIT. */
3958 if (compare_values (init, max) == -1)
3959 max = init;
3960
3961 /* According to the loop information, the variable does not
3962 overflow. If we think it does, probably because of an
3963 overflow due to arithmetic on a different INF value,
3964 reset now. */
3965 if (is_negative_overflow_infinity (min)
3966 || compare_values (min, tmin) == -1)
3967 min = tmin;
3968
3969 }
3970 else
3971 {
3972 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3973 if (compare_values (init, min) == 1)
3974 min = init;
3975
3976 if (is_positive_overflow_infinity (max)
3977 || compare_values (tmax, max) == -1)
3978 max = tmax;
3979 }
3980
3981 /* If we just created an invalid range with the minimum
3982 greater than the maximum, we fail conservatively.
3983 This should happen only in unreachable
3984 parts of code, or for invalid programs. */
3985 if (compare_values (min, max) == 1)
3986 return;
3987
3988 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3989 }
3990 }
3991
3992 /* Return true if VAR may overflow at STMT. This checks any available
3993 loop information to see if we can determine that VAR does not
3994 overflow. */
3995
3996 static bool
3997 vrp_var_may_overflow (tree var, gimple stmt)
3998 {
3999 struct loop *l;
4000 tree chrec, init, step;
4001
4002 if (current_loops == NULL)
4003 return true;
4004
4005 l = loop_containing_stmt (stmt);
4006 if (l == NULL
4007 || !loop_outer (l))
4008 return true;
4009
4010 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
4011 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
4012 return true;
4013
4014 init = initial_condition_in_loop_num (chrec, l->num);
4015 step = evolution_part_in_loop_num (chrec, l->num);
4016
4017 if (step == NULL_TREE
4018 || !is_gimple_min_invariant (step)
4019 || !valid_value_p (init))
4020 return true;
4021
4022 /* If we get here, we know something useful about VAR based on the
4023 loop information. If it wraps, it may overflow. */
4024
4025 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
4026 true))
4027 return true;
4028
4029 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
4030 {
4031 print_generic_expr (dump_file, var, 0);
4032 fprintf (dump_file, ": loop information indicates does not overflow\n");
4033 }
4034
4035 return false;
4036 }
4037
4038
4039 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4040
4041 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4042 all the values in the ranges.
4043
4044 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4045
4046 - Return NULL_TREE if it is not always possible to determine the
4047 value of the comparison.
4048
4049 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4050 overflow infinity was used in the test. */
4051
4052
4053 static tree
4054 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
4055 bool *strict_overflow_p)
4056 {
4057 /* VARYING or UNDEFINED ranges cannot be compared. */
4058 if (vr0->type == VR_VARYING
4059 || vr0->type == VR_UNDEFINED
4060 || vr1->type == VR_VARYING
4061 || vr1->type == VR_UNDEFINED)
4062 return NULL_TREE;
4063
4064 /* Anti-ranges need to be handled separately. */
4065 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4066 {
4067 /* If both are anti-ranges, then we cannot compute any
4068 comparison. */
4069 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4070 return NULL_TREE;
4071
4072 /* These comparisons are never statically computable. */
4073 if (comp == GT_EXPR
4074 || comp == GE_EXPR
4075 || comp == LT_EXPR
4076 || comp == LE_EXPR)
4077 return NULL_TREE;
4078
4079 /* Equality can be computed only between a range and an
4080 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4081 if (vr0->type == VR_RANGE)
4082 {
4083 /* To simplify processing, make VR0 the anti-range. */
4084 value_range_t *tmp = vr0;
4085 vr0 = vr1;
4086 vr1 = tmp;
4087 }
4088
4089 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4090
4091 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4092 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
4093 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4094
4095 return NULL_TREE;
4096 }
4097
4098 if (!usable_range_p (vr0, strict_overflow_p)
4099 || !usable_range_p (vr1, strict_overflow_p))
4100 return NULL_TREE;
4101
4102 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4103 operands around and change the comparison code. */
4104 if (comp == GT_EXPR || comp == GE_EXPR)
4105 {
4106 value_range_t *tmp;
4107 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4108 tmp = vr0;
4109 vr0 = vr1;
4110 vr1 = tmp;
4111 }
4112
4113 if (comp == EQ_EXPR)
4114 {
4115 /* Equality may only be computed if both ranges represent
4116 exactly one value. */
4117 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4118 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4119 {
4120 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4121 strict_overflow_p);
4122 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4123 strict_overflow_p);
4124 if (cmp_min == 0 && cmp_max == 0)
4125 return boolean_true_node;
4126 else if (cmp_min != -2 && cmp_max != -2)
4127 return boolean_false_node;
4128 }
4129 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4130 else if (compare_values_warnv (vr0->min, vr1->max,
4131 strict_overflow_p) == 1
4132 || compare_values_warnv (vr1->min, vr0->max,
4133 strict_overflow_p) == 1)
4134 return boolean_false_node;
4135
4136 return NULL_TREE;
4137 }
4138 else if (comp == NE_EXPR)
4139 {
4140 int cmp1, cmp2;
4141
4142 /* If VR0 is completely to the left or completely to the right
4143 of VR1, they are always different. Notice that we need to
4144 make sure that both comparisons yield similar results to
4145 avoid comparing values that cannot be compared at
4146 compile-time. */
4147 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4148 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4149 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4150 return boolean_true_node;
4151
4152 /* If VR0 and VR1 represent a single value and are identical,
4153 return false. */
4154 else if (compare_values_warnv (vr0->min, vr0->max,
4155 strict_overflow_p) == 0
4156 && compare_values_warnv (vr1->min, vr1->max,
4157 strict_overflow_p) == 0
4158 && compare_values_warnv (vr0->min, vr1->min,
4159 strict_overflow_p) == 0
4160 && compare_values_warnv (vr0->max, vr1->max,
4161 strict_overflow_p) == 0)
4162 return boolean_false_node;
4163
4164 /* Otherwise, they may or may not be different. */
4165 else
4166 return NULL_TREE;
4167 }
4168 else if (comp == LT_EXPR || comp == LE_EXPR)
4169 {
4170 int tst;
4171
4172 /* If VR0 is to the left of VR1, return true. */
4173 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4174 if ((comp == LT_EXPR && tst == -1)
4175 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4176 {
4177 if (overflow_infinity_range_p (vr0)
4178 || overflow_infinity_range_p (vr1))
4179 *strict_overflow_p = true;
4180 return boolean_true_node;
4181 }
4182
4183 /* If VR0 is to the right of VR1, return false. */
4184 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4185 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4186 || (comp == LE_EXPR && tst == 1))
4187 {
4188 if (overflow_infinity_range_p (vr0)
4189 || overflow_infinity_range_p (vr1))
4190 *strict_overflow_p = true;
4191 return boolean_false_node;
4192 }
4193
4194 /* Otherwise, we don't know. */
4195 return NULL_TREE;
4196 }
4197
4198 gcc_unreachable ();
4199 }
4200
4201
4202 /* Given a value range VR, a value VAL and a comparison code COMP, return
4203 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4204 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4205 always returns false. Return NULL_TREE if it is not always
4206 possible to determine the value of the comparison. Also set
4207 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4208 infinity was used in the test. */
4209
4210 static tree
4211 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
4212 bool *strict_overflow_p)
4213 {
4214 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4215 return NULL_TREE;
4216
4217 /* Anti-ranges need to be handled separately. */
4218 if (vr->type == VR_ANTI_RANGE)
4219 {
4220 /* For anti-ranges, the only predicates that we can compute at
4221 compile time are equality and inequality. */
4222 if (comp == GT_EXPR
4223 || comp == GE_EXPR
4224 || comp == LT_EXPR
4225 || comp == LE_EXPR)
4226 return NULL_TREE;
4227
4228 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4229 if (value_inside_range (val, vr->min, vr->max) == 1)
4230 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4231
4232 return NULL_TREE;
4233 }
4234
4235 if (!usable_range_p (vr, strict_overflow_p))
4236 return NULL_TREE;
4237
4238 if (comp == EQ_EXPR)
4239 {
4240 /* EQ_EXPR may only be computed if VR represents exactly
4241 one value. */
4242 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4243 {
4244 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4245 if (cmp == 0)
4246 return boolean_true_node;
4247 else if (cmp == -1 || cmp == 1 || cmp == 2)
4248 return boolean_false_node;
4249 }
4250 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4251 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4252 return boolean_false_node;
4253
4254 return NULL_TREE;
4255 }
4256 else if (comp == NE_EXPR)
4257 {
4258 /* If VAL is not inside VR, then they are always different. */
4259 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4260 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4261 return boolean_true_node;
4262
4263 /* If VR represents exactly one value equal to VAL, then return
4264 false. */
4265 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4266 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4267 return boolean_false_node;
4268
4269 /* Otherwise, they may or may not be different. */
4270 return NULL_TREE;
4271 }
4272 else if (comp == LT_EXPR || comp == LE_EXPR)
4273 {
4274 int tst;
4275
4276 /* If VR is to the left of VAL, return true. */
4277 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4278 if ((comp == LT_EXPR && tst == -1)
4279 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4280 {
4281 if (overflow_infinity_range_p (vr))
4282 *strict_overflow_p = true;
4283 return boolean_true_node;
4284 }
4285
4286 /* If VR is to the right of VAL, return false. */
4287 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4288 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4289 || (comp == LE_EXPR && tst == 1))
4290 {
4291 if (overflow_infinity_range_p (vr))
4292 *strict_overflow_p = true;
4293 return boolean_false_node;
4294 }
4295
4296 /* Otherwise, we don't know. */
4297 return NULL_TREE;
4298 }
4299 else if (comp == GT_EXPR || comp == GE_EXPR)
4300 {
4301 int tst;
4302
4303 /* If VR is to the right of VAL, return true. */
4304 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4305 if ((comp == GT_EXPR && tst == 1)
4306 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4307 {
4308 if (overflow_infinity_range_p (vr))
4309 *strict_overflow_p = true;
4310 return boolean_true_node;
4311 }
4312
4313 /* If VR is to the left of VAL, return false. */
4314 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4315 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4316 || (comp == GE_EXPR && tst == -1))
4317 {
4318 if (overflow_infinity_range_p (vr))
4319 *strict_overflow_p = true;
4320 return boolean_false_node;
4321 }
4322
4323 /* Otherwise, we don't know. */
4324 return NULL_TREE;
4325 }
4326
4327 gcc_unreachable ();
4328 }
4329
4330
4331 /* Debugging dumps. */
4332
4333 void dump_value_range (FILE *, value_range_t *);
4334 void debug_value_range (value_range_t *);
4335 void dump_all_value_ranges (FILE *);
4336 void debug_all_value_ranges (void);
4337 void dump_vr_equiv (FILE *, bitmap);
4338 void debug_vr_equiv (bitmap);
4339
4340
4341 /* Dump value range VR to FILE. */
4342
4343 void
4344 dump_value_range (FILE *file, value_range_t *vr)
4345 {
4346 if (vr == NULL)
4347 fprintf (file, "[]");
4348 else if (vr->type == VR_UNDEFINED)
4349 fprintf (file, "UNDEFINED");
4350 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4351 {
4352 tree type = TREE_TYPE (vr->min);
4353
4354 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4355
4356 if (is_negative_overflow_infinity (vr->min))
4357 fprintf (file, "-INF(OVF)");
4358 else if (INTEGRAL_TYPE_P (type)
4359 && !TYPE_UNSIGNED (type)
4360 && vrp_val_is_min (vr->min))
4361 fprintf (file, "-INF");
4362 else
4363 print_generic_expr (file, vr->min, 0);
4364
4365 fprintf (file, ", ");
4366
4367 if (is_positive_overflow_infinity (vr->max))
4368 fprintf (file, "+INF(OVF)");
4369 else if (INTEGRAL_TYPE_P (type)
4370 && vrp_val_is_max (vr->max))
4371 fprintf (file, "+INF");
4372 else
4373 print_generic_expr (file, vr->max, 0);
4374
4375 fprintf (file, "]");
4376
4377 if (vr->equiv)
4378 {
4379 bitmap_iterator bi;
4380 unsigned i, c = 0;
4381
4382 fprintf (file, " EQUIVALENCES: { ");
4383
4384 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4385 {
4386 print_generic_expr (file, ssa_name (i), 0);
4387 fprintf (file, " ");
4388 c++;
4389 }
4390
4391 fprintf (file, "} (%u elements)", c);
4392 }
4393 }
4394 else if (vr->type == VR_VARYING)
4395 fprintf (file, "VARYING");
4396 else
4397 fprintf (file, "INVALID RANGE");
4398 }
4399
4400
4401 /* Dump value range VR to stderr. */
4402
4403 DEBUG_FUNCTION void
4404 debug_value_range (value_range_t *vr)
4405 {
4406 dump_value_range (stderr, vr);
4407 fprintf (stderr, "\n");
4408 }
4409
4410
4411 /* Dump value ranges of all SSA_NAMEs to FILE. */
4412
4413 void
4414 dump_all_value_ranges (FILE *file)
4415 {
4416 size_t i;
4417
4418 for (i = 0; i < num_vr_values; i++)
4419 {
4420 if (vr_value[i])
4421 {
4422 print_generic_expr (file, ssa_name (i), 0);
4423 fprintf (file, ": ");
4424 dump_value_range (file, vr_value[i]);
4425 fprintf (file, "\n");
4426 }
4427 }
4428
4429 fprintf (file, "\n");
4430 }
4431
4432
4433 /* Dump all value ranges to stderr. */
4434
4435 DEBUG_FUNCTION void
4436 debug_all_value_ranges (void)
4437 {
4438 dump_all_value_ranges (stderr);
4439 }
4440
4441
4442 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4443 create a new SSA name N and return the assertion assignment
4444 'V = ASSERT_EXPR <V, V OP W>'. */
4445
4446 static gimple
4447 build_assert_expr_for (tree cond, tree v)
4448 {
4449 tree a;
4450 gimple assertion;
4451
4452 gcc_assert (TREE_CODE (v) == SSA_NAME
4453 && COMPARISON_CLASS_P (cond));
4454
4455 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4456 assertion = gimple_build_assign (NULL_TREE, a);
4457
4458 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4459 operand of the ASSERT_EXPR. Create it so the new name and the old one
4460 are registered in the replacement table so that we can fix the SSA web
4461 after adding all the ASSERT_EXPRs. */
4462 create_new_def_for (v, assertion, NULL);
4463
4464 return assertion;
4465 }
4466
4467
4468 /* Return false if EXPR is a predicate expression involving floating
4469 point values. */
4470
4471 static inline bool
4472 fp_predicate (gimple stmt)
4473 {
4474 GIMPLE_CHECK (stmt, GIMPLE_COND);
4475
4476 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4477 }
4478
4479 /* If the range of values taken by OP can be inferred after STMT executes,
4480 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4481 describes the inferred range. Return true if a range could be
4482 inferred. */
4483
4484 static bool
4485 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4486 {
4487 *val_p = NULL_TREE;
4488 *comp_code_p = ERROR_MARK;
4489
4490 /* Do not attempt to infer anything in names that flow through
4491 abnormal edges. */
4492 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4493 return false;
4494
4495 /* Similarly, don't infer anything from statements that may throw
4496 exceptions. ??? Relax this requirement? */
4497 if (stmt_could_throw_p (stmt))
4498 return false;
4499
4500 /* If STMT is the last statement of a basic block with no
4501 successors, there is no point inferring anything about any of its
4502 operands. We would not be able to find a proper insertion point
4503 for the assertion, anyway. */
4504 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
4505 return false;
4506
4507 if (infer_nonnull_range (stmt, op))
4508 {
4509 *val_p = build_int_cst (TREE_TYPE (op), 0);
4510 *comp_code_p = NE_EXPR;
4511 return true;
4512 }
4513
4514 return false;
4515 }
4516
4517
4518 void dump_asserts_for (FILE *, tree);
4519 void debug_asserts_for (tree);
4520 void dump_all_asserts (FILE *);
4521 void debug_all_asserts (void);
4522
4523 /* Dump all the registered assertions for NAME to FILE. */
4524
4525 void
4526 dump_asserts_for (FILE *file, tree name)
4527 {
4528 assert_locus_t loc;
4529
4530 fprintf (file, "Assertions to be inserted for ");
4531 print_generic_expr (file, name, 0);
4532 fprintf (file, "\n");
4533
4534 loc = asserts_for[SSA_NAME_VERSION (name)];
4535 while (loc)
4536 {
4537 fprintf (file, "\t");
4538 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4539 fprintf (file, "\n\tBB #%d", loc->bb->index);
4540 if (loc->e)
4541 {
4542 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4543 loc->e->dest->index);
4544 dump_edge_info (file, loc->e, dump_flags, 0);
4545 }
4546 fprintf (file, "\n\tPREDICATE: ");
4547 print_generic_expr (file, name, 0);
4548 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
4549 print_generic_expr (file, loc->val, 0);
4550 fprintf (file, "\n\n");
4551 loc = loc->next;
4552 }
4553
4554 fprintf (file, "\n");
4555 }
4556
4557
4558 /* Dump all the registered assertions for NAME to stderr. */
4559
4560 DEBUG_FUNCTION void
4561 debug_asserts_for (tree name)
4562 {
4563 dump_asserts_for (stderr, name);
4564 }
4565
4566
4567 /* Dump all the registered assertions for all the names to FILE. */
4568
4569 void
4570 dump_all_asserts (FILE *file)
4571 {
4572 unsigned i;
4573 bitmap_iterator bi;
4574
4575 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4576 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4577 dump_asserts_for (file, ssa_name (i));
4578 fprintf (file, "\n");
4579 }
4580
4581
4582 /* Dump all the registered assertions for all the names to stderr. */
4583
4584 DEBUG_FUNCTION void
4585 debug_all_asserts (void)
4586 {
4587 dump_all_asserts (stderr);
4588 }
4589
4590
4591 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4592 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4593 E->DEST, then register this location as a possible insertion point
4594 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4595
4596 BB, E and SI provide the exact insertion point for the new
4597 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4598 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4599 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4600 must not be NULL. */
4601
4602 static void
4603 register_new_assert_for (tree name, tree expr,
4604 enum tree_code comp_code,
4605 tree val,
4606 basic_block bb,
4607 edge e,
4608 gimple_stmt_iterator si)
4609 {
4610 assert_locus_t n, loc, last_loc;
4611 basic_block dest_bb;
4612
4613 gcc_checking_assert (bb == NULL || e == NULL);
4614
4615 if (e == NULL)
4616 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4617 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4618
4619 /* Never build an assert comparing against an integer constant with
4620 TREE_OVERFLOW set. This confuses our undefined overflow warning
4621 machinery. */
4622 if (TREE_OVERFLOW_P (val))
4623 val = drop_tree_overflow (val);
4624
4625 /* The new assertion A will be inserted at BB or E. We need to
4626 determine if the new location is dominated by a previously
4627 registered location for A. If we are doing an edge insertion,
4628 assume that A will be inserted at E->DEST. Note that this is not
4629 necessarily true.
4630
4631 If E is a critical edge, it will be split. But even if E is
4632 split, the new block will dominate the same set of blocks that
4633 E->DEST dominates.
4634
4635 The reverse, however, is not true, blocks dominated by E->DEST
4636 will not be dominated by the new block created to split E. So,
4637 if the insertion location is on a critical edge, we will not use
4638 the new location to move another assertion previously registered
4639 at a block dominated by E->DEST. */
4640 dest_bb = (bb) ? bb : e->dest;
4641
4642 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4643 VAL at a block dominating DEST_BB, then we don't need to insert a new
4644 one. Similarly, if the same assertion already exists at a block
4645 dominated by DEST_BB and the new location is not on a critical
4646 edge, then update the existing location for the assertion (i.e.,
4647 move the assertion up in the dominance tree).
4648
4649 Note, this is implemented as a simple linked list because there
4650 should not be more than a handful of assertions registered per
4651 name. If this becomes a performance problem, a table hashed by
4652 COMP_CODE and VAL could be implemented. */
4653 loc = asserts_for[SSA_NAME_VERSION (name)];
4654 last_loc = loc;
4655 while (loc)
4656 {
4657 if (loc->comp_code == comp_code
4658 && (loc->val == val
4659 || operand_equal_p (loc->val, val, 0))
4660 && (loc->expr == expr
4661 || operand_equal_p (loc->expr, expr, 0)))
4662 {
4663 /* If E is not a critical edge and DEST_BB
4664 dominates the existing location for the assertion, move
4665 the assertion up in the dominance tree by updating its
4666 location information. */
4667 if ((e == NULL || !EDGE_CRITICAL_P (e))
4668 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4669 {
4670 loc->bb = dest_bb;
4671 loc->e = e;
4672 loc->si = si;
4673 return;
4674 }
4675 }
4676
4677 /* Update the last node of the list and move to the next one. */
4678 last_loc = loc;
4679 loc = loc->next;
4680 }
4681
4682 /* If we didn't find an assertion already registered for
4683 NAME COMP_CODE VAL, add a new one at the end of the list of
4684 assertions associated with NAME. */
4685 n = XNEW (struct assert_locus_d);
4686 n->bb = dest_bb;
4687 n->e = e;
4688 n->si = si;
4689 n->comp_code = comp_code;
4690 n->val = val;
4691 n->expr = expr;
4692 n->next = NULL;
4693
4694 if (last_loc)
4695 last_loc->next = n;
4696 else
4697 asserts_for[SSA_NAME_VERSION (name)] = n;
4698
4699 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4700 }
4701
4702 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4703 Extract a suitable test code and value and store them into *CODE_P and
4704 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4705
4706 If no extraction was possible, return FALSE, otherwise return TRUE.
4707
4708 If INVERT is true, then we invert the result stored into *CODE_P. */
4709
4710 static bool
4711 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4712 tree cond_op0, tree cond_op1,
4713 bool invert, enum tree_code *code_p,
4714 tree *val_p)
4715 {
4716 enum tree_code comp_code;
4717 tree val;
4718
4719 /* Otherwise, we have a comparison of the form NAME COMP VAL
4720 or VAL COMP NAME. */
4721 if (name == cond_op1)
4722 {
4723 /* If the predicate is of the form VAL COMP NAME, flip
4724 COMP around because we need to register NAME as the
4725 first operand in the predicate. */
4726 comp_code = swap_tree_comparison (cond_code);
4727 val = cond_op0;
4728 }
4729 else
4730 {
4731 /* The comparison is of the form NAME COMP VAL, so the
4732 comparison code remains unchanged. */
4733 comp_code = cond_code;
4734 val = cond_op1;
4735 }
4736
4737 /* Invert the comparison code as necessary. */
4738 if (invert)
4739 comp_code = invert_tree_comparison (comp_code, 0);
4740
4741 /* VRP does not handle float types. */
4742 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4743 return false;
4744
4745 /* Do not register always-false predicates.
4746 FIXME: this works around a limitation in fold() when dealing with
4747 enumerations. Given 'enum { N1, N2 } x;', fold will not
4748 fold 'if (x > N2)' to 'if (0)'. */
4749 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4750 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4751 {
4752 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4753 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4754
4755 if (comp_code == GT_EXPR
4756 && (!max
4757 || compare_values (val, max) == 0))
4758 return false;
4759
4760 if (comp_code == LT_EXPR
4761 && (!min
4762 || compare_values (val, min) == 0))
4763 return false;
4764 }
4765 *code_p = comp_code;
4766 *val_p = val;
4767 return true;
4768 }
4769
4770 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
4771 (otherwise return VAL). VAL and MASK must be zero-extended for
4772 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
4773 (to transform signed values into unsigned) and at the end xor
4774 SGNBIT back. */
4775
4776 static double_int
4777 masked_increment (double_int val, double_int mask, double_int sgnbit,
4778 unsigned int prec)
4779 {
4780 double_int bit = double_int_one, res;
4781 unsigned int i;
4782
4783 val ^= sgnbit;
4784 for (i = 0; i < prec; i++, bit += bit)
4785 {
4786 res = mask;
4787 if ((res & bit).is_zero ())
4788 continue;
4789 res = bit - double_int_one;
4790 res = (val + bit).and_not (res);
4791 res &= mask;
4792 if (res.ugt (val))
4793 return res ^ sgnbit;
4794 }
4795 return val ^ sgnbit;
4796 }
4797
4798 /* Try to register an edge assertion for SSA name NAME on edge E for
4799 the condition COND contributing to the conditional jump pointed to by BSI.
4800 Invert the condition COND if INVERT is true.
4801 Return true if an assertion for NAME could be registered. */
4802
4803 static bool
4804 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4805 enum tree_code cond_code,
4806 tree cond_op0, tree cond_op1, bool invert)
4807 {
4808 tree val;
4809 enum tree_code comp_code;
4810 bool retval = false;
4811
4812 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4813 cond_op0,
4814 cond_op1,
4815 invert, &comp_code, &val))
4816 return false;
4817
4818 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4819 reachable from E. */
4820 if (live_on_edge (e, name)
4821 && !has_single_use (name))
4822 {
4823 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4824 retval = true;
4825 }
4826
4827 /* In the case of NAME <= CST and NAME being defined as
4828 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4829 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4830 This catches range and anti-range tests. */
4831 if ((comp_code == LE_EXPR
4832 || comp_code == GT_EXPR)
4833 && TREE_CODE (val) == INTEGER_CST
4834 && TYPE_UNSIGNED (TREE_TYPE (val)))
4835 {
4836 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4837 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4838
4839 /* Extract CST2 from the (optional) addition. */
4840 if (is_gimple_assign (def_stmt)
4841 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4842 {
4843 name2 = gimple_assign_rhs1 (def_stmt);
4844 cst2 = gimple_assign_rhs2 (def_stmt);
4845 if (TREE_CODE (name2) == SSA_NAME
4846 && TREE_CODE (cst2) == INTEGER_CST)
4847 def_stmt = SSA_NAME_DEF_STMT (name2);
4848 }
4849
4850 /* Extract NAME2 from the (optional) sign-changing cast. */
4851 if (gimple_assign_cast_p (def_stmt))
4852 {
4853 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4854 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4855 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4856 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4857 name3 = gimple_assign_rhs1 (def_stmt);
4858 }
4859
4860 /* If name3 is used later, create an ASSERT_EXPR for it. */
4861 if (name3 != NULL_TREE
4862 && TREE_CODE (name3) == SSA_NAME
4863 && (cst2 == NULL_TREE
4864 || TREE_CODE (cst2) == INTEGER_CST)
4865 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4866 && live_on_edge (e, name3)
4867 && !has_single_use (name3))
4868 {
4869 tree tmp;
4870
4871 /* Build an expression for the range test. */
4872 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4873 if (cst2 != NULL_TREE)
4874 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4875
4876 if (dump_file)
4877 {
4878 fprintf (dump_file, "Adding assert for ");
4879 print_generic_expr (dump_file, name3, 0);
4880 fprintf (dump_file, " from ");
4881 print_generic_expr (dump_file, tmp, 0);
4882 fprintf (dump_file, "\n");
4883 }
4884
4885 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4886
4887 retval = true;
4888 }
4889
4890 /* If name2 is used later, create an ASSERT_EXPR for it. */
4891 if (name2 != NULL_TREE
4892 && TREE_CODE (name2) == SSA_NAME
4893 && TREE_CODE (cst2) == INTEGER_CST
4894 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4895 && live_on_edge (e, name2)
4896 && !has_single_use (name2))
4897 {
4898 tree tmp;
4899
4900 /* Build an expression for the range test. */
4901 tmp = name2;
4902 if (TREE_TYPE (name) != TREE_TYPE (name2))
4903 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4904 if (cst2 != NULL_TREE)
4905 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4906
4907 if (dump_file)
4908 {
4909 fprintf (dump_file, "Adding assert for ");
4910 print_generic_expr (dump_file, name2, 0);
4911 fprintf (dump_file, " from ");
4912 print_generic_expr (dump_file, tmp, 0);
4913 fprintf (dump_file, "\n");
4914 }
4915
4916 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4917
4918 retval = true;
4919 }
4920 }
4921
4922 /* In the case of post-in/decrement tests like if (i++) ... and uses
4923 of the in/decremented value on the edge the extra name we want to
4924 assert for is not on the def chain of the name compared. Instead
4925 it is in the set of use stmts. */
4926 if ((comp_code == NE_EXPR
4927 || comp_code == EQ_EXPR)
4928 && TREE_CODE (val) == INTEGER_CST)
4929 {
4930 imm_use_iterator ui;
4931 gimple use_stmt;
4932 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
4933 {
4934 /* Cut off to use-stmts that are in the predecessor. */
4935 if (gimple_bb (use_stmt) != e->src)
4936 continue;
4937
4938 if (!is_gimple_assign (use_stmt))
4939 continue;
4940
4941 enum tree_code code = gimple_assign_rhs_code (use_stmt);
4942 if (code != PLUS_EXPR
4943 && code != MINUS_EXPR)
4944 continue;
4945
4946 tree cst = gimple_assign_rhs2 (use_stmt);
4947 if (TREE_CODE (cst) != INTEGER_CST)
4948 continue;
4949
4950 tree name2 = gimple_assign_lhs (use_stmt);
4951 if (live_on_edge (e, name2))
4952 {
4953 cst = int_const_binop (code, val, cst);
4954 register_new_assert_for (name2, name2, comp_code, cst,
4955 NULL, e, bsi);
4956 retval = true;
4957 }
4958 }
4959 }
4960
4961 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
4962 && TREE_CODE (val) == INTEGER_CST)
4963 {
4964 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4965 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
4966 tree val2 = NULL_TREE;
4967 double_int mask = double_int_zero;
4968 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
4969 unsigned int nprec = prec;
4970 enum tree_code rhs_code = ERROR_MARK;
4971
4972 if (is_gimple_assign (def_stmt))
4973 rhs_code = gimple_assign_rhs_code (def_stmt);
4974
4975 /* Add asserts for NAME cmp CST and NAME being defined
4976 as NAME = (int) NAME2. */
4977 if (!TYPE_UNSIGNED (TREE_TYPE (val))
4978 && (comp_code == LE_EXPR || comp_code == LT_EXPR
4979 || comp_code == GT_EXPR || comp_code == GE_EXPR)
4980 && gimple_assign_cast_p (def_stmt))
4981 {
4982 name2 = gimple_assign_rhs1 (def_stmt);
4983 if (CONVERT_EXPR_CODE_P (rhs_code)
4984 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4985 && TYPE_UNSIGNED (TREE_TYPE (name2))
4986 && prec == TYPE_PRECISION (TREE_TYPE (name2))
4987 && (comp_code == LE_EXPR || comp_code == GT_EXPR
4988 || !tree_int_cst_equal (val,
4989 TYPE_MIN_VALUE (TREE_TYPE (val))))
4990 && live_on_edge (e, name2)
4991 && !has_single_use (name2))
4992 {
4993 tree tmp, cst;
4994 enum tree_code new_comp_code = comp_code;
4995
4996 cst = fold_convert (TREE_TYPE (name2),
4997 TYPE_MIN_VALUE (TREE_TYPE (val)));
4998 /* Build an expression for the range test. */
4999 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
5000 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
5001 fold_convert (TREE_TYPE (name2), val));
5002 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5003 {
5004 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
5005 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
5006 build_int_cst (TREE_TYPE (name2), 1));
5007 }
5008
5009 if (dump_file)
5010 {
5011 fprintf (dump_file, "Adding assert for ");
5012 print_generic_expr (dump_file, name2, 0);
5013 fprintf (dump_file, " from ");
5014 print_generic_expr (dump_file, tmp, 0);
5015 fprintf (dump_file, "\n");
5016 }
5017
5018 register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
5019 e, bsi);
5020
5021 retval = true;
5022 }
5023 }
5024
5025 /* Add asserts for NAME cmp CST and NAME being defined as
5026 NAME = NAME2 >> CST2.
5027
5028 Extract CST2 from the right shift. */
5029 if (rhs_code == RSHIFT_EXPR)
5030 {
5031 name2 = gimple_assign_rhs1 (def_stmt);
5032 cst2 = gimple_assign_rhs2 (def_stmt);
5033 if (TREE_CODE (name2) == SSA_NAME
5034 && host_integerp (cst2, 1)
5035 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5036 && IN_RANGE (tree_low_cst (cst2, 1), 1, prec - 1)
5037 && prec <= HOST_BITS_PER_DOUBLE_INT
5038 && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
5039 && live_on_edge (e, name2)
5040 && !has_single_use (name2))
5041 {
5042 mask = double_int::mask (tree_low_cst (cst2, 1));
5043 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5044 }
5045 }
5046 if (val2 != NULL_TREE
5047 && TREE_CODE (val2) == INTEGER_CST
5048 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5049 TREE_TYPE (val),
5050 val2, cst2), val))
5051 {
5052 enum tree_code new_comp_code = comp_code;
5053 tree tmp, new_val;
5054
5055 tmp = name2;
5056 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5057 {
5058 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5059 {
5060 tree type = build_nonstandard_integer_type (prec, 1);
5061 tmp = build1 (NOP_EXPR, type, name2);
5062 val2 = fold_convert (type, val2);
5063 }
5064 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
5065 new_val = double_int_to_tree (TREE_TYPE (tmp), mask);
5066 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5067 }
5068 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5069 {
5070 double_int minval
5071 = double_int::min_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
5072 new_val = val2;
5073 if (minval == tree_to_double_int (new_val))
5074 new_val = NULL_TREE;
5075 }
5076 else
5077 {
5078 double_int maxval
5079 = double_int::max_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
5080 mask |= tree_to_double_int (val2);
5081 if (mask == maxval)
5082 new_val = NULL_TREE;
5083 else
5084 new_val = double_int_to_tree (TREE_TYPE (val2), mask);
5085 }
5086
5087 if (new_val)
5088 {
5089 if (dump_file)
5090 {
5091 fprintf (dump_file, "Adding assert for ");
5092 print_generic_expr (dump_file, name2, 0);
5093 fprintf (dump_file, " from ");
5094 print_generic_expr (dump_file, tmp, 0);
5095 fprintf (dump_file, "\n");
5096 }
5097
5098 register_new_assert_for (name2, tmp, new_comp_code, new_val,
5099 NULL, e, bsi);
5100 retval = true;
5101 }
5102 }
5103
5104 /* Add asserts for NAME cmp CST and NAME being defined as
5105 NAME = NAME2 & CST2.
5106
5107 Extract CST2 from the and.
5108
5109 Also handle
5110 NAME = (unsigned) NAME2;
5111 casts where NAME's type is unsigned and has smaller precision
5112 than NAME2's type as if it was NAME = NAME2 & MASK. */
5113 names[0] = NULL_TREE;
5114 names[1] = NULL_TREE;
5115 cst2 = NULL_TREE;
5116 if (rhs_code == BIT_AND_EXPR
5117 || (CONVERT_EXPR_CODE_P (rhs_code)
5118 && TREE_CODE (TREE_TYPE (val)) == INTEGER_TYPE
5119 && TYPE_UNSIGNED (TREE_TYPE (val))
5120 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5121 > prec
5122 && !retval))
5123 {
5124 name2 = gimple_assign_rhs1 (def_stmt);
5125 if (rhs_code == BIT_AND_EXPR)
5126 cst2 = gimple_assign_rhs2 (def_stmt);
5127 else
5128 {
5129 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5130 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5131 }
5132 if (TREE_CODE (name2) == SSA_NAME
5133 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5134 && TREE_CODE (cst2) == INTEGER_CST
5135 && !integer_zerop (cst2)
5136 && nprec <= HOST_BITS_PER_DOUBLE_INT
5137 && (nprec > 1
5138 || TYPE_UNSIGNED (TREE_TYPE (val))))
5139 {
5140 gimple def_stmt2 = SSA_NAME_DEF_STMT (name2);
5141 if (gimple_assign_cast_p (def_stmt2))
5142 {
5143 names[1] = gimple_assign_rhs1 (def_stmt2);
5144 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5145 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5146 || (TYPE_PRECISION (TREE_TYPE (name2))
5147 != TYPE_PRECISION (TREE_TYPE (names[1])))
5148 || !live_on_edge (e, names[1])
5149 || has_single_use (names[1]))
5150 names[1] = NULL_TREE;
5151 }
5152 if (live_on_edge (e, name2)
5153 && !has_single_use (name2))
5154 names[0] = name2;
5155 }
5156 }
5157 if (names[0] || names[1])
5158 {
5159 double_int minv, maxv = double_int_zero, valv, cst2v;
5160 double_int tem, sgnbit;
5161 bool valid_p = false, valn = false, cst2n = false;
5162 enum tree_code ccode = comp_code;
5163
5164 valv = tree_to_double_int (val).zext (nprec);
5165 cst2v = tree_to_double_int (cst2).zext (nprec);
5166 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5167 {
5168 valn = valv.sext (nprec).is_negative ();
5169 cst2n = cst2v.sext (nprec).is_negative ();
5170 }
5171 /* If CST2 doesn't have most significant bit set,
5172 but VAL is negative, we have comparison like
5173 if ((x & 0x123) > -4) (always true). Just give up. */
5174 if (!cst2n && valn)
5175 ccode = ERROR_MARK;
5176 if (cst2n)
5177 sgnbit = double_int_one.llshift (nprec - 1, nprec).zext (nprec);
5178 else
5179 sgnbit = double_int_zero;
5180 minv = valv & cst2v;
5181 switch (ccode)
5182 {
5183 case EQ_EXPR:
5184 /* Minimum unsigned value for equality is VAL & CST2
5185 (should be equal to VAL, otherwise we probably should
5186 have folded the comparison into false) and
5187 maximum unsigned value is VAL | ~CST2. */
5188 maxv = valv | ~cst2v;
5189 maxv = maxv.zext (nprec);
5190 valid_p = true;
5191 break;
5192 case NE_EXPR:
5193 tem = valv | ~cst2v;
5194 tem = tem.zext (nprec);
5195 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5196 if (valv.is_zero ())
5197 {
5198 cst2n = false;
5199 sgnbit = double_int_zero;
5200 goto gt_expr;
5201 }
5202 /* If (VAL | ~CST2) is all ones, handle it as
5203 (X & CST2) < VAL. */
5204 if (tem == double_int::mask (nprec))
5205 {
5206 cst2n = false;
5207 valn = false;
5208 sgnbit = double_int_zero;
5209 goto lt_expr;
5210 }
5211 if (!cst2n
5212 && cst2v.sext (nprec).is_negative ())
5213 sgnbit
5214 = double_int_one.llshift (nprec - 1, nprec).zext (nprec);
5215 if (!sgnbit.is_zero ())
5216 {
5217 if (valv == sgnbit)
5218 {
5219 cst2n = true;
5220 valn = true;
5221 goto gt_expr;
5222 }
5223 if (tem == double_int::mask (nprec - 1))
5224 {
5225 cst2n = true;
5226 goto lt_expr;
5227 }
5228 if (!cst2n)
5229 sgnbit = double_int_zero;
5230 }
5231 break;
5232 case GE_EXPR:
5233 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5234 is VAL and maximum unsigned value is ~0. For signed
5235 comparison, if CST2 doesn't have most significant bit
5236 set, handle it similarly. If CST2 has MSB set,
5237 the minimum is the same, and maximum is ~0U/2. */
5238 if (minv != valv)
5239 {
5240 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5241 VAL. */
5242 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5243 if (minv == valv)
5244 break;
5245 }
5246 maxv = double_int::mask (nprec - (cst2n ? 1 : 0));
5247 valid_p = true;
5248 break;
5249 case GT_EXPR:
5250 gt_expr:
5251 /* Find out smallest MINV where MINV > VAL
5252 && (MINV & CST2) == MINV, if any. If VAL is signed and
5253 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5254 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5255 if (minv == valv)
5256 break;
5257 maxv = double_int::mask (nprec - (cst2n ? 1 : 0));
5258 valid_p = true;
5259 break;
5260 case LE_EXPR:
5261 /* Minimum unsigned value for <= is 0 and maximum
5262 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5263 Otherwise, find smallest VAL2 where VAL2 > VAL
5264 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5265 as maximum.
5266 For signed comparison, if CST2 doesn't have most
5267 significant bit set, handle it similarly. If CST2 has
5268 MSB set, the maximum is the same and minimum is INT_MIN. */
5269 if (minv == valv)
5270 maxv = valv;
5271 else
5272 {
5273 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5274 if (maxv == valv)
5275 break;
5276 maxv -= double_int_one;
5277 }
5278 maxv |= ~cst2v;
5279 maxv = maxv.zext (nprec);
5280 minv = sgnbit;
5281 valid_p = true;
5282 break;
5283 case LT_EXPR:
5284 lt_expr:
5285 /* Minimum unsigned value for < is 0 and maximum
5286 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5287 Otherwise, find smallest VAL2 where VAL2 > VAL
5288 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5289 as maximum.
5290 For signed comparison, if CST2 doesn't have most
5291 significant bit set, handle it similarly. If CST2 has
5292 MSB set, the maximum is the same and minimum is INT_MIN. */
5293 if (minv == valv)
5294 {
5295 if (valv == sgnbit)
5296 break;
5297 maxv = valv;
5298 }
5299 else
5300 {
5301 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5302 if (maxv == valv)
5303 break;
5304 }
5305 maxv -= double_int_one;
5306 maxv |= ~cst2v;
5307 maxv = maxv.zext (nprec);
5308 minv = sgnbit;
5309 valid_p = true;
5310 break;
5311 default:
5312 break;
5313 }
5314 if (valid_p
5315 && (maxv - minv).zext (nprec) != double_int::mask (nprec))
5316 {
5317 tree tmp, new_val, type;
5318 int i;
5319
5320 for (i = 0; i < 2; i++)
5321 if (names[i])
5322 {
5323 double_int maxv2 = maxv;
5324 tmp = names[i];
5325 type = TREE_TYPE (names[i]);
5326 if (!TYPE_UNSIGNED (type))
5327 {
5328 type = build_nonstandard_integer_type (nprec, 1);
5329 tmp = build1 (NOP_EXPR, type, names[i]);
5330 }
5331 if (!minv.is_zero ())
5332 {
5333 tmp = build2 (PLUS_EXPR, type, tmp,
5334 double_int_to_tree (type, -minv));
5335 maxv2 = maxv - minv;
5336 }
5337 new_val = double_int_to_tree (type, maxv2);
5338
5339 if (dump_file)
5340 {
5341 fprintf (dump_file, "Adding assert for ");
5342 print_generic_expr (dump_file, names[i], 0);
5343 fprintf (dump_file, " from ");
5344 print_generic_expr (dump_file, tmp, 0);
5345 fprintf (dump_file, "\n");
5346 }
5347
5348 register_new_assert_for (names[i], tmp, LE_EXPR,
5349 new_val, NULL, e, bsi);
5350 retval = true;
5351 }
5352 }
5353 }
5354 }
5355
5356 return retval;
5357 }
5358
5359 /* OP is an operand of a truth value expression which is known to have
5360 a particular value. Register any asserts for OP and for any
5361 operands in OP's defining statement.
5362
5363 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5364 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5365
5366 static bool
5367 register_edge_assert_for_1 (tree op, enum tree_code code,
5368 edge e, gimple_stmt_iterator bsi)
5369 {
5370 bool retval = false;
5371 gimple op_def;
5372 tree val;
5373 enum tree_code rhs_code;
5374
5375 /* We only care about SSA_NAMEs. */
5376 if (TREE_CODE (op) != SSA_NAME)
5377 return false;
5378
5379 /* We know that OP will have a zero or nonzero value. If OP is used
5380 more than once go ahead and register an assert for OP.
5381
5382 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
5383 it will always be set for OP (because OP is used in a COND_EXPR in
5384 the subgraph). */
5385 if (!has_single_use (op))
5386 {
5387 val = build_int_cst (TREE_TYPE (op), 0);
5388 register_new_assert_for (op, op, code, val, NULL, e, bsi);
5389 retval = true;
5390 }
5391
5392 /* Now look at how OP is set. If it's set from a comparison,
5393 a truth operation or some bit operations, then we may be able
5394 to register information about the operands of that assignment. */
5395 op_def = SSA_NAME_DEF_STMT (op);
5396 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5397 return retval;
5398
5399 rhs_code = gimple_assign_rhs_code (op_def);
5400
5401 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5402 {
5403 bool invert = (code == EQ_EXPR ? true : false);
5404 tree op0 = gimple_assign_rhs1 (op_def);
5405 tree op1 = gimple_assign_rhs2 (op_def);
5406
5407 if (TREE_CODE (op0) == SSA_NAME)
5408 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
5409 invert);
5410 if (TREE_CODE (op1) == SSA_NAME)
5411 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
5412 invert);
5413 }
5414 else if ((code == NE_EXPR
5415 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5416 || (code == EQ_EXPR
5417 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5418 {
5419 /* Recurse on each operand. */
5420 tree op0 = gimple_assign_rhs1 (op_def);
5421 tree op1 = gimple_assign_rhs2 (op_def);
5422 if (TREE_CODE (op0) == SSA_NAME
5423 && has_single_use (op0))
5424 retval |= register_edge_assert_for_1 (op0, code, e, bsi);
5425 if (TREE_CODE (op1) == SSA_NAME
5426 && has_single_use (op1))
5427 retval |= register_edge_assert_for_1 (op1, code, e, bsi);
5428 }
5429 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5430 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
5431 {
5432 /* Recurse, flipping CODE. */
5433 code = invert_tree_comparison (code, false);
5434 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5435 code, e, bsi);
5436 }
5437 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
5438 {
5439 /* Recurse through the copy. */
5440 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5441 code, e, bsi);
5442 }
5443 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
5444 {
5445 /* Recurse through the type conversion. */
5446 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5447 code, e, bsi);
5448 }
5449
5450 return retval;
5451 }
5452
5453 /* Try to register an edge assertion for SSA name NAME on edge E for
5454 the condition COND contributing to the conditional jump pointed to by SI.
5455 Return true if an assertion for NAME could be registered. */
5456
5457 static bool
5458 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
5459 enum tree_code cond_code, tree cond_op0,
5460 tree cond_op1)
5461 {
5462 tree val;
5463 enum tree_code comp_code;
5464 bool retval = false;
5465 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5466
5467 /* Do not attempt to infer anything in names that flow through
5468 abnormal edges. */
5469 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5470 return false;
5471
5472 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5473 cond_op0, cond_op1,
5474 is_else_edge,
5475 &comp_code, &val))
5476 return false;
5477
5478 /* Register ASSERT_EXPRs for name. */
5479 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
5480 cond_op1, is_else_edge);
5481
5482
5483 /* If COND is effectively an equality test of an SSA_NAME against
5484 the value zero or one, then we may be able to assert values
5485 for SSA_NAMEs which flow into COND. */
5486
5487 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5488 statement of NAME we can assert both operands of the BIT_AND_EXPR
5489 have nonzero value. */
5490 if (((comp_code == EQ_EXPR && integer_onep (val))
5491 || (comp_code == NE_EXPR && integer_zerop (val))))
5492 {
5493 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5494
5495 if (is_gimple_assign (def_stmt)
5496 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5497 {
5498 tree op0 = gimple_assign_rhs1 (def_stmt);
5499 tree op1 = gimple_assign_rhs2 (def_stmt);
5500 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
5501 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
5502 }
5503 }
5504
5505 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5506 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5507 have zero value. */
5508 if (((comp_code == EQ_EXPR && integer_zerop (val))
5509 || (comp_code == NE_EXPR && integer_onep (val))))
5510 {
5511 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5512
5513 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5514 necessarily zero value, or if type-precision is one. */
5515 if (is_gimple_assign (def_stmt)
5516 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5517 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5518 || comp_code == EQ_EXPR)))
5519 {
5520 tree op0 = gimple_assign_rhs1 (def_stmt);
5521 tree op1 = gimple_assign_rhs2 (def_stmt);
5522 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
5523 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
5524 }
5525 }
5526
5527 return retval;
5528 }
5529
5530
5531 /* Determine whether the outgoing edges of BB should receive an
5532 ASSERT_EXPR for each of the operands of BB's LAST statement.
5533 The last statement of BB must be a COND_EXPR.
5534
5535 If any of the sub-graphs rooted at BB have an interesting use of
5536 the predicate operands, an assert location node is added to the
5537 list of assertions for the corresponding operands. */
5538
5539 static bool
5540 find_conditional_asserts (basic_block bb, gimple last)
5541 {
5542 bool need_assert;
5543 gimple_stmt_iterator bsi;
5544 tree op;
5545 edge_iterator ei;
5546 edge e;
5547 ssa_op_iter iter;
5548
5549 need_assert = false;
5550 bsi = gsi_for_stmt (last);
5551
5552 /* Look for uses of the operands in each of the sub-graphs
5553 rooted at BB. We need to check each of the outgoing edges
5554 separately, so that we know what kind of ASSERT_EXPR to
5555 insert. */
5556 FOR_EACH_EDGE (e, ei, bb->succs)
5557 {
5558 if (e->dest == bb)
5559 continue;
5560
5561 /* Register the necessary assertions for each operand in the
5562 conditional predicate. */
5563 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5564 {
5565 need_assert |= register_edge_assert_for (op, e, bsi,
5566 gimple_cond_code (last),
5567 gimple_cond_lhs (last),
5568 gimple_cond_rhs (last));
5569 }
5570 }
5571
5572 return need_assert;
5573 }
5574
5575 struct case_info
5576 {
5577 tree expr;
5578 basic_block bb;
5579 };
5580
5581 /* Compare two case labels sorting first by the destination bb index
5582 and then by the case value. */
5583
5584 static int
5585 compare_case_labels (const void *p1, const void *p2)
5586 {
5587 const struct case_info *ci1 = (const struct case_info *) p1;
5588 const struct case_info *ci2 = (const struct case_info *) p2;
5589 int idx1 = ci1->bb->index;
5590 int idx2 = ci2->bb->index;
5591
5592 if (idx1 < idx2)
5593 return -1;
5594 else if (idx1 == idx2)
5595 {
5596 /* Make sure the default label is first in a group. */
5597 if (!CASE_LOW (ci1->expr))
5598 return -1;
5599 else if (!CASE_LOW (ci2->expr))
5600 return 1;
5601 else
5602 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5603 CASE_LOW (ci2->expr));
5604 }
5605 else
5606 return 1;
5607 }
5608
5609 /* Determine whether the outgoing edges of BB should receive an
5610 ASSERT_EXPR for each of the operands of BB's LAST statement.
5611 The last statement of BB must be a SWITCH_EXPR.
5612
5613 If any of the sub-graphs rooted at BB have an interesting use of
5614 the predicate operands, an assert location node is added to the
5615 list of assertions for the corresponding operands. */
5616
5617 static bool
5618 find_switch_asserts (basic_block bb, gimple last)
5619 {
5620 bool need_assert;
5621 gimple_stmt_iterator bsi;
5622 tree op;
5623 edge e;
5624 struct case_info *ci;
5625 size_t n = gimple_switch_num_labels (last);
5626 #if GCC_VERSION >= 4000
5627 unsigned int idx;
5628 #else
5629 /* Work around GCC 3.4 bug (PR 37086). */
5630 volatile unsigned int idx;
5631 #endif
5632
5633 need_assert = false;
5634 bsi = gsi_for_stmt (last);
5635 op = gimple_switch_index (last);
5636 if (TREE_CODE (op) != SSA_NAME)
5637 return false;
5638
5639 /* Build a vector of case labels sorted by destination label. */
5640 ci = XNEWVEC (struct case_info, n);
5641 for (idx = 0; idx < n; ++idx)
5642 {
5643 ci[idx].expr = gimple_switch_label (last, idx);
5644 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
5645 }
5646 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
5647
5648 for (idx = 0; idx < n; ++idx)
5649 {
5650 tree min, max;
5651 tree cl = ci[idx].expr;
5652 basic_block cbb = ci[idx].bb;
5653
5654 min = CASE_LOW (cl);
5655 max = CASE_HIGH (cl);
5656
5657 /* If there are multiple case labels with the same destination
5658 we need to combine them to a single value range for the edge. */
5659 if (idx + 1 < n && cbb == ci[idx + 1].bb)
5660 {
5661 /* Skip labels until the last of the group. */
5662 do {
5663 ++idx;
5664 } while (idx < n && cbb == ci[idx].bb);
5665 --idx;
5666
5667 /* Pick up the maximum of the case label range. */
5668 if (CASE_HIGH (ci[idx].expr))
5669 max = CASE_HIGH (ci[idx].expr);
5670 else
5671 max = CASE_LOW (ci[idx].expr);
5672 }
5673
5674 /* Nothing to do if the range includes the default label until we
5675 can register anti-ranges. */
5676 if (min == NULL_TREE)
5677 continue;
5678
5679 /* Find the edge to register the assert expr on. */
5680 e = find_edge (bb, cbb);
5681
5682 /* Register the necessary assertions for the operand in the
5683 SWITCH_EXPR. */
5684 need_assert |= register_edge_assert_for (op, e, bsi,
5685 max ? GE_EXPR : EQ_EXPR,
5686 op,
5687 fold_convert (TREE_TYPE (op),
5688 min));
5689 if (max)
5690 {
5691 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
5692 op,
5693 fold_convert (TREE_TYPE (op),
5694 max));
5695 }
5696 }
5697
5698 XDELETEVEC (ci);
5699 return need_assert;
5700 }
5701
5702
5703 /* Traverse all the statements in block BB looking for statements that
5704 may generate useful assertions for the SSA names in their operand.
5705 If a statement produces a useful assertion A for name N_i, then the
5706 list of assertions already generated for N_i is scanned to
5707 determine if A is actually needed.
5708
5709 If N_i already had the assertion A at a location dominating the
5710 current location, then nothing needs to be done. Otherwise, the
5711 new location for A is recorded instead.
5712
5713 1- For every statement S in BB, all the variables used by S are
5714 added to bitmap FOUND_IN_SUBGRAPH.
5715
5716 2- If statement S uses an operand N in a way that exposes a known
5717 value range for N, then if N was not already generated by an
5718 ASSERT_EXPR, create a new assert location for N. For instance,
5719 if N is a pointer and the statement dereferences it, we can
5720 assume that N is not NULL.
5721
5722 3- COND_EXPRs are a special case of #2. We can derive range
5723 information from the predicate but need to insert different
5724 ASSERT_EXPRs for each of the sub-graphs rooted at the
5725 conditional block. If the last statement of BB is a conditional
5726 expression of the form 'X op Y', then
5727
5728 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
5729
5730 b) If the conditional is the only entry point to the sub-graph
5731 corresponding to the THEN_CLAUSE, recurse into it. On
5732 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
5733 an ASSERT_EXPR is added for the corresponding variable.
5734
5735 c) Repeat step (b) on the ELSE_CLAUSE.
5736
5737 d) Mark X and Y in FOUND_IN_SUBGRAPH.
5738
5739 For instance,
5740
5741 if (a == 9)
5742 b = a;
5743 else
5744 b = c + 1;
5745
5746 In this case, an assertion on the THEN clause is useful to
5747 determine that 'a' is always 9 on that edge. However, an assertion
5748 on the ELSE clause would be unnecessary.
5749
5750 4- If BB does not end in a conditional expression, then we recurse
5751 into BB's dominator children.
5752
5753 At the end of the recursive traversal, every SSA name will have a
5754 list of locations where ASSERT_EXPRs should be added. When a new
5755 location for name N is found, it is registered by calling
5756 register_new_assert_for. That function keeps track of all the
5757 registered assertions to prevent adding unnecessary assertions.
5758 For instance, if a pointer P_4 is dereferenced more than once in a
5759 dominator tree, only the location dominating all the dereference of
5760 P_4 will receive an ASSERT_EXPR.
5761
5762 If this function returns true, then it means that there are names
5763 for which we need to generate ASSERT_EXPRs. Those assertions are
5764 inserted by process_assert_insertions. */
5765
5766 static bool
5767 find_assert_locations_1 (basic_block bb, sbitmap live)
5768 {
5769 gimple_stmt_iterator si;
5770 gimple last;
5771 bool need_assert;
5772
5773 need_assert = false;
5774 last = last_stmt (bb);
5775
5776 /* If BB's last statement is a conditional statement involving integer
5777 operands, determine if we need to add ASSERT_EXPRs. */
5778 if (last
5779 && gimple_code (last) == GIMPLE_COND
5780 && !fp_predicate (last)
5781 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5782 need_assert |= find_conditional_asserts (bb, last);
5783
5784 /* If BB's last statement is a switch statement involving integer
5785 operands, determine if we need to add ASSERT_EXPRs. */
5786 if (last
5787 && gimple_code (last) == GIMPLE_SWITCH
5788 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5789 need_assert |= find_switch_asserts (bb, last);
5790
5791 /* Traverse all the statements in BB marking used names and looking
5792 for statements that may infer assertions for their used operands. */
5793 for (si = gsi_last_bb (bb); !gsi_end_p (si); gsi_prev (&si))
5794 {
5795 gimple stmt;
5796 tree op;
5797 ssa_op_iter i;
5798
5799 stmt = gsi_stmt (si);
5800
5801 if (is_gimple_debug (stmt))
5802 continue;
5803
5804 /* See if we can derive an assertion for any of STMT's operands. */
5805 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5806 {
5807 tree value;
5808 enum tree_code comp_code;
5809
5810 /* If op is not live beyond this stmt, do not bother to insert
5811 asserts for it. */
5812 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
5813 continue;
5814
5815 /* If OP is used in such a way that we can infer a value
5816 range for it, and we don't find a previous assertion for
5817 it, create a new assertion location node for OP. */
5818 if (infer_value_range (stmt, op, &comp_code, &value))
5819 {
5820 /* If we are able to infer a nonzero value range for OP,
5821 then walk backwards through the use-def chain to see if OP
5822 was set via a typecast.
5823
5824 If so, then we can also infer a nonzero value range
5825 for the operand of the NOP_EXPR. */
5826 if (comp_code == NE_EXPR && integer_zerop (value))
5827 {
5828 tree t = op;
5829 gimple def_stmt = SSA_NAME_DEF_STMT (t);
5830
5831 while (is_gimple_assign (def_stmt)
5832 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
5833 && TREE_CODE
5834 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
5835 && POINTER_TYPE_P
5836 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
5837 {
5838 t = gimple_assign_rhs1 (def_stmt);
5839 def_stmt = SSA_NAME_DEF_STMT (t);
5840
5841 /* Note we want to register the assert for the
5842 operand of the NOP_EXPR after SI, not after the
5843 conversion. */
5844 if (! has_single_use (t))
5845 {
5846 register_new_assert_for (t, t, comp_code, value,
5847 bb, NULL, si);
5848 need_assert = true;
5849 }
5850 }
5851 }
5852
5853 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
5854 need_assert = true;
5855 }
5856 }
5857
5858 /* Update live. */
5859 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5860 bitmap_set_bit (live, SSA_NAME_VERSION (op));
5861 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
5862 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
5863 }
5864
5865 /* Traverse all PHI nodes in BB, updating live. */
5866 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5867 {
5868 use_operand_p arg_p;
5869 ssa_op_iter i;
5870 gimple phi = gsi_stmt (si);
5871 tree res = gimple_phi_result (phi);
5872
5873 if (virtual_operand_p (res))
5874 continue;
5875
5876 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
5877 {
5878 tree arg = USE_FROM_PTR (arg_p);
5879 if (TREE_CODE (arg) == SSA_NAME)
5880 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
5881 }
5882
5883 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
5884 }
5885
5886 return need_assert;
5887 }
5888
5889 /* Do an RPO walk over the function computing SSA name liveness
5890 on-the-fly and deciding on assert expressions to insert.
5891 Returns true if there are assert expressions to be inserted. */
5892
5893 static bool
5894 find_assert_locations (void)
5895 {
5896 int *rpo = XNEWVEC (int, last_basic_block);
5897 int *bb_rpo = XNEWVEC (int, last_basic_block);
5898 int *last_rpo = XCNEWVEC (int, last_basic_block);
5899 int rpo_cnt, i;
5900 bool need_asserts;
5901
5902 live = XCNEWVEC (sbitmap, last_basic_block);
5903 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
5904 for (i = 0; i < rpo_cnt; ++i)
5905 bb_rpo[rpo[i]] = i;
5906
5907 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
5908 the order we compute liveness and insert asserts we otherwise
5909 fail to insert asserts into the loop latch. */
5910 loop_p loop;
5911 loop_iterator li;
5912 FOR_EACH_LOOP (li, loop, 0)
5913 {
5914 i = loop->latch->index;
5915 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
5916 for (gimple_stmt_iterator gsi = gsi_start_phis (loop->header);
5917 !gsi_end_p (gsi); gsi_next (&gsi))
5918 {
5919 gimple phi = gsi_stmt (gsi);
5920 if (virtual_operand_p (gimple_phi_result (phi)))
5921 continue;
5922 tree arg = gimple_phi_arg_def (phi, j);
5923 if (TREE_CODE (arg) == SSA_NAME)
5924 {
5925 if (live[i] == NULL)
5926 {
5927 live[i] = sbitmap_alloc (num_ssa_names);
5928 bitmap_clear (live[i]);
5929 }
5930 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
5931 }
5932 }
5933 }
5934
5935 need_asserts = false;
5936 for (i = rpo_cnt - 1; i >= 0; --i)
5937 {
5938 basic_block bb = BASIC_BLOCK (rpo[i]);
5939 edge e;
5940 edge_iterator ei;
5941
5942 if (!live[rpo[i]])
5943 {
5944 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
5945 bitmap_clear (live[rpo[i]]);
5946 }
5947
5948 /* Process BB and update the live information with uses in
5949 this block. */
5950 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
5951
5952 /* Merge liveness into the predecessor blocks and free it. */
5953 if (!bitmap_empty_p (live[rpo[i]]))
5954 {
5955 int pred_rpo = i;
5956 FOR_EACH_EDGE (e, ei, bb->preds)
5957 {
5958 int pred = e->src->index;
5959 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
5960 continue;
5961
5962 if (!live[pred])
5963 {
5964 live[pred] = sbitmap_alloc (num_ssa_names);
5965 bitmap_clear (live[pred]);
5966 }
5967 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
5968
5969 if (bb_rpo[pred] < pred_rpo)
5970 pred_rpo = bb_rpo[pred];
5971 }
5972
5973 /* Record the RPO number of the last visited block that needs
5974 live information from this block. */
5975 last_rpo[rpo[i]] = pred_rpo;
5976 }
5977 else
5978 {
5979 sbitmap_free (live[rpo[i]]);
5980 live[rpo[i]] = NULL;
5981 }
5982
5983 /* We can free all successors live bitmaps if all their
5984 predecessors have been visited already. */
5985 FOR_EACH_EDGE (e, ei, bb->succs)
5986 if (last_rpo[e->dest->index] == i
5987 && live[e->dest->index])
5988 {
5989 sbitmap_free (live[e->dest->index]);
5990 live[e->dest->index] = NULL;
5991 }
5992 }
5993
5994 XDELETEVEC (rpo);
5995 XDELETEVEC (bb_rpo);
5996 XDELETEVEC (last_rpo);
5997 for (i = 0; i < last_basic_block; ++i)
5998 if (live[i])
5999 sbitmap_free (live[i]);
6000 XDELETEVEC (live);
6001
6002 return need_asserts;
6003 }
6004
6005 /* Create an ASSERT_EXPR for NAME and insert it in the location
6006 indicated by LOC. Return true if we made any edge insertions. */
6007
6008 static bool
6009 process_assert_insertions_for (tree name, assert_locus_t loc)
6010 {
6011 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6012 gimple stmt;
6013 tree cond;
6014 gimple assert_stmt;
6015 edge_iterator ei;
6016 edge e;
6017
6018 /* If we have X <=> X do not insert an assert expr for that. */
6019 if (loc->expr == loc->val)
6020 return false;
6021
6022 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
6023 assert_stmt = build_assert_expr_for (cond, name);
6024 if (loc->e)
6025 {
6026 /* We have been asked to insert the assertion on an edge. This
6027 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6028 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
6029 || (gimple_code (gsi_stmt (loc->si))
6030 == GIMPLE_SWITCH));
6031
6032 gsi_insert_on_edge (loc->e, assert_stmt);
6033 return true;
6034 }
6035
6036 /* Otherwise, we can insert right after LOC->SI iff the
6037 statement must not be the last statement in the block. */
6038 stmt = gsi_stmt (loc->si);
6039 if (!stmt_ends_bb_p (stmt))
6040 {
6041 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
6042 return false;
6043 }
6044
6045 /* If STMT must be the last statement in BB, we can only insert new
6046 assertions on the non-abnormal edge out of BB. Note that since
6047 STMT is not control flow, there may only be one non-abnormal edge
6048 out of BB. */
6049 FOR_EACH_EDGE (e, ei, loc->bb->succs)
6050 if (!(e->flags & EDGE_ABNORMAL))
6051 {
6052 gsi_insert_on_edge (e, assert_stmt);
6053 return true;
6054 }
6055
6056 gcc_unreachable ();
6057 }
6058
6059
6060 /* Process all the insertions registered for every name N_i registered
6061 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6062 found in ASSERTS_FOR[i]. */
6063
6064 static void
6065 process_assert_insertions (void)
6066 {
6067 unsigned i;
6068 bitmap_iterator bi;
6069 bool update_edges_p = false;
6070 int num_asserts = 0;
6071
6072 if (dump_file && (dump_flags & TDF_DETAILS))
6073 dump_all_asserts (dump_file);
6074
6075 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6076 {
6077 assert_locus_t loc = asserts_for[i];
6078 gcc_assert (loc);
6079
6080 while (loc)
6081 {
6082 assert_locus_t next = loc->next;
6083 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6084 free (loc);
6085 loc = next;
6086 num_asserts++;
6087 }
6088 }
6089
6090 if (update_edges_p)
6091 gsi_commit_edge_inserts ();
6092
6093 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6094 num_asserts);
6095 }
6096
6097
6098 /* Traverse the flowgraph looking for conditional jumps to insert range
6099 expressions. These range expressions are meant to provide information
6100 to optimizations that need to reason in terms of value ranges. They
6101 will not be expanded into RTL. For instance, given:
6102
6103 x = ...
6104 y = ...
6105 if (x < y)
6106 y = x - 2;
6107 else
6108 x = y + 3;
6109
6110 this pass will transform the code into:
6111
6112 x = ...
6113 y = ...
6114 if (x < y)
6115 {
6116 x = ASSERT_EXPR <x, x < y>
6117 y = x - 2
6118 }
6119 else
6120 {
6121 y = ASSERT_EXPR <y, x <= y>
6122 x = y + 3
6123 }
6124
6125 The idea is that once copy and constant propagation have run, other
6126 optimizations will be able to determine what ranges of values can 'x'
6127 take in different paths of the code, simply by checking the reaching
6128 definition of 'x'. */
6129
6130 static void
6131 insert_range_assertions (void)
6132 {
6133 need_assert_for = BITMAP_ALLOC (NULL);
6134 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
6135
6136 calculate_dominance_info (CDI_DOMINATORS);
6137
6138 if (find_assert_locations ())
6139 {
6140 process_assert_insertions ();
6141 update_ssa (TODO_update_ssa_no_phi);
6142 }
6143
6144 if (dump_file && (dump_flags & TDF_DETAILS))
6145 {
6146 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6147 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6148 }
6149
6150 free (asserts_for);
6151 BITMAP_FREE (need_assert_for);
6152 }
6153
6154 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6155 and "struct" hacks. If VRP can determine that the
6156 array subscript is a constant, check if it is outside valid
6157 range. If the array subscript is a RANGE, warn if it is
6158 non-overlapping with valid range.
6159 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6160
6161 static void
6162 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6163 {
6164 value_range_t* vr = NULL;
6165 tree low_sub, up_sub;
6166 tree low_bound, up_bound, up_bound_p1;
6167 tree base;
6168
6169 if (TREE_NO_WARNING (ref))
6170 return;
6171
6172 low_sub = up_sub = TREE_OPERAND (ref, 1);
6173 up_bound = array_ref_up_bound (ref);
6174
6175 /* Can not check flexible arrays. */
6176 if (!up_bound
6177 || TREE_CODE (up_bound) != INTEGER_CST)
6178 return;
6179
6180 /* Accesses to trailing arrays via pointers may access storage
6181 beyond the types array bounds. */
6182 base = get_base_address (ref);
6183 if (base && TREE_CODE (base) == MEM_REF)
6184 {
6185 tree cref, next = NULL_TREE;
6186
6187 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
6188 return;
6189
6190 cref = TREE_OPERAND (ref, 0);
6191 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
6192 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
6193 next && TREE_CODE (next) != FIELD_DECL;
6194 next = DECL_CHAIN (next))
6195 ;
6196
6197 /* If this is the last field in a struct type or a field in a
6198 union type do not warn. */
6199 if (!next)
6200 return;
6201 }
6202
6203 low_bound = array_ref_low_bound (ref);
6204 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node);
6205
6206 if (TREE_CODE (low_sub) == SSA_NAME)
6207 {
6208 vr = get_value_range (low_sub);
6209 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6210 {
6211 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6212 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6213 }
6214 }
6215
6216 if (vr && vr->type == VR_ANTI_RANGE)
6217 {
6218 if (TREE_CODE (up_sub) == INTEGER_CST
6219 && tree_int_cst_lt (up_bound, up_sub)
6220 && TREE_CODE (low_sub) == INTEGER_CST
6221 && tree_int_cst_lt (low_sub, low_bound))
6222 {
6223 warning_at (location, OPT_Warray_bounds,
6224 "array subscript is outside array bounds");
6225 TREE_NO_WARNING (ref) = 1;
6226 }
6227 }
6228 else if (TREE_CODE (up_sub) == INTEGER_CST
6229 && (ignore_off_by_one
6230 ? (tree_int_cst_lt (up_bound, up_sub)
6231 && !tree_int_cst_equal (up_bound_p1, up_sub))
6232 : (tree_int_cst_lt (up_bound, up_sub)
6233 || tree_int_cst_equal (up_bound_p1, up_sub))))
6234 {
6235 if (dump_file && (dump_flags & TDF_DETAILS))
6236 {
6237 fprintf (dump_file, "Array bound warning for ");
6238 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6239 fprintf (dump_file, "\n");
6240 }
6241 warning_at (location, OPT_Warray_bounds,
6242 "array subscript is above array bounds");
6243 TREE_NO_WARNING (ref) = 1;
6244 }
6245 else if (TREE_CODE (low_sub) == INTEGER_CST
6246 && tree_int_cst_lt (low_sub, low_bound))
6247 {
6248 if (dump_file && (dump_flags & TDF_DETAILS))
6249 {
6250 fprintf (dump_file, "Array bound warning for ");
6251 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6252 fprintf (dump_file, "\n");
6253 }
6254 warning_at (location, OPT_Warray_bounds,
6255 "array subscript is below array bounds");
6256 TREE_NO_WARNING (ref) = 1;
6257 }
6258 }
6259
6260 /* Searches if the expr T, located at LOCATION computes
6261 address of an ARRAY_REF, and call check_array_ref on it. */
6262
6263 static void
6264 search_for_addr_array (tree t, location_t location)
6265 {
6266 while (TREE_CODE (t) == SSA_NAME)
6267 {
6268 gimple g = SSA_NAME_DEF_STMT (t);
6269
6270 if (gimple_code (g) != GIMPLE_ASSIGN)
6271 return;
6272
6273 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
6274 != GIMPLE_SINGLE_RHS)
6275 return;
6276
6277 t = gimple_assign_rhs1 (g);
6278 }
6279
6280
6281 /* We are only interested in addresses of ARRAY_REF's. */
6282 if (TREE_CODE (t) != ADDR_EXPR)
6283 return;
6284
6285 /* Check each ARRAY_REFs in the reference chain. */
6286 do
6287 {
6288 if (TREE_CODE (t) == ARRAY_REF)
6289 check_array_ref (location, t, true /*ignore_off_by_one*/);
6290
6291 t = TREE_OPERAND (t, 0);
6292 }
6293 while (handled_component_p (t));
6294
6295 if (TREE_CODE (t) == MEM_REF
6296 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6297 && !TREE_NO_WARNING (t))
6298 {
6299 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6300 tree low_bound, up_bound, el_sz;
6301 double_int idx;
6302 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6303 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6304 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6305 return;
6306
6307 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6308 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6309 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6310 if (!low_bound
6311 || TREE_CODE (low_bound) != INTEGER_CST
6312 || !up_bound
6313 || TREE_CODE (up_bound) != INTEGER_CST
6314 || !el_sz
6315 || TREE_CODE (el_sz) != INTEGER_CST)
6316 return;
6317
6318 idx = mem_ref_offset (t);
6319 idx = idx.sdiv (tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
6320 if (idx.slt (double_int_zero))
6321 {
6322 if (dump_file && (dump_flags & TDF_DETAILS))
6323 {
6324 fprintf (dump_file, "Array bound warning for ");
6325 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6326 fprintf (dump_file, "\n");
6327 }
6328 warning_at (location, OPT_Warray_bounds,
6329 "array subscript is below array bounds");
6330 TREE_NO_WARNING (t) = 1;
6331 }
6332 else if (idx.sgt (tree_to_double_int (up_bound)
6333 - tree_to_double_int (low_bound)
6334 + double_int_one))
6335 {
6336 if (dump_file && (dump_flags & TDF_DETAILS))
6337 {
6338 fprintf (dump_file, "Array bound warning for ");
6339 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6340 fprintf (dump_file, "\n");
6341 }
6342 warning_at (location, OPT_Warray_bounds,
6343 "array subscript is above array bounds");
6344 TREE_NO_WARNING (t) = 1;
6345 }
6346 }
6347 }
6348
6349 /* walk_tree() callback that checks if *TP is
6350 an ARRAY_REF inside an ADDR_EXPR (in which an array
6351 subscript one outside the valid range is allowed). Call
6352 check_array_ref for each ARRAY_REF found. The location is
6353 passed in DATA. */
6354
6355 static tree
6356 check_array_bounds (tree *tp, int *walk_subtree, void *data)
6357 {
6358 tree t = *tp;
6359 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6360 location_t location;
6361
6362 if (EXPR_HAS_LOCATION (t))
6363 location = EXPR_LOCATION (t);
6364 else
6365 {
6366 location_t *locp = (location_t *) wi->info;
6367 location = *locp;
6368 }
6369
6370 *walk_subtree = TRUE;
6371
6372 if (TREE_CODE (t) == ARRAY_REF)
6373 check_array_ref (location, t, false /*ignore_off_by_one*/);
6374
6375 if (TREE_CODE (t) == MEM_REF
6376 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
6377 search_for_addr_array (TREE_OPERAND (t, 0), location);
6378
6379 if (TREE_CODE (t) == ADDR_EXPR)
6380 *walk_subtree = FALSE;
6381
6382 return NULL_TREE;
6383 }
6384
6385 /* Walk over all statements of all reachable BBs and call check_array_bounds
6386 on them. */
6387
6388 static void
6389 check_all_array_refs (void)
6390 {
6391 basic_block bb;
6392 gimple_stmt_iterator si;
6393
6394 FOR_EACH_BB (bb)
6395 {
6396 edge_iterator ei;
6397 edge e;
6398 bool executable = false;
6399
6400 /* Skip blocks that were found to be unreachable. */
6401 FOR_EACH_EDGE (e, ei, bb->preds)
6402 executable |= !!(e->flags & EDGE_EXECUTABLE);
6403 if (!executable)
6404 continue;
6405
6406 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6407 {
6408 gimple stmt = gsi_stmt (si);
6409 struct walk_stmt_info wi;
6410 if (!gimple_has_location (stmt))
6411 continue;
6412
6413 if (is_gimple_call (stmt))
6414 {
6415 size_t i;
6416 size_t n = gimple_call_num_args (stmt);
6417 for (i = 0; i < n; i++)
6418 {
6419 tree arg = gimple_call_arg (stmt, i);
6420 search_for_addr_array (arg, gimple_location (stmt));
6421 }
6422 }
6423 else
6424 {
6425 memset (&wi, 0, sizeof (wi));
6426 wi.info = CONST_CAST (void *, (const void *)
6427 gimple_location_ptr (stmt));
6428
6429 walk_gimple_op (gsi_stmt (si),
6430 check_array_bounds,
6431 &wi);
6432 }
6433 }
6434 }
6435 }
6436
6437 /* Return true if all imm uses of VAR are either in STMT, or
6438 feed (optionally through a chain of single imm uses) GIMPLE_COND
6439 in basic block COND_BB. */
6440
6441 static bool
6442 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple stmt, basic_block cond_bb)
6443 {
6444 use_operand_p use_p, use2_p;
6445 imm_use_iterator iter;
6446
6447 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
6448 if (USE_STMT (use_p) != stmt)
6449 {
6450 gimple use_stmt = USE_STMT (use_p), use_stmt2;
6451 if (is_gimple_debug (use_stmt))
6452 continue;
6453 while (is_gimple_assign (use_stmt)
6454 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
6455 && single_imm_use (gimple_assign_lhs (use_stmt),
6456 &use2_p, &use_stmt2))
6457 use_stmt = use_stmt2;
6458 if (gimple_code (use_stmt) != GIMPLE_COND
6459 || gimple_bb (use_stmt) != cond_bb)
6460 return false;
6461 }
6462 return true;
6463 }
6464
6465 /* Handle
6466 _4 = x_3 & 31;
6467 if (_4 != 0)
6468 goto <bb 6>;
6469 else
6470 goto <bb 7>;
6471 <bb 6>:
6472 __builtin_unreachable ();
6473 <bb 7>:
6474 x_5 = ASSERT_EXPR <x_3, ...>;
6475 If x_3 has no other immediate uses (checked by caller),
6476 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6477 from the non-zero bitmask. */
6478
6479 static void
6480 maybe_set_nonzero_bits (basic_block bb, tree var)
6481 {
6482 edge e = single_pred_edge (bb);
6483 basic_block cond_bb = e->src;
6484 gimple stmt = last_stmt (cond_bb);
6485 tree cst;
6486
6487 if (stmt == NULL
6488 || gimple_code (stmt) != GIMPLE_COND
6489 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
6490 ? EQ_EXPR : NE_EXPR)
6491 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
6492 || !integer_zerop (gimple_cond_rhs (stmt)))
6493 return;
6494
6495 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
6496 if (!is_gimple_assign (stmt)
6497 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
6498 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
6499 return;
6500 if (gimple_assign_rhs1 (stmt) != var)
6501 {
6502 gimple stmt2;
6503
6504 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
6505 return;
6506 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
6507 if (!gimple_assign_cast_p (stmt2)
6508 || gimple_assign_rhs1 (stmt2) != var
6509 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
6510 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6511 != TYPE_PRECISION (TREE_TYPE (var))))
6512 return;
6513 }
6514 cst = gimple_assign_rhs2 (stmt);
6515 set_nonzero_bits (var, (get_nonzero_bits (var)
6516 & ~tree_to_double_int (cst)));
6517 }
6518
6519 /* Convert range assertion expressions into the implied copies and
6520 copy propagate away the copies. Doing the trivial copy propagation
6521 here avoids the need to run the full copy propagation pass after
6522 VRP.
6523
6524 FIXME, this will eventually lead to copy propagation removing the
6525 names that had useful range information attached to them. For
6526 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6527 then N_i will have the range [3, +INF].
6528
6529 However, by converting the assertion into the implied copy
6530 operation N_i = N_j, we will then copy-propagate N_j into the uses
6531 of N_i and lose the range information. We may want to hold on to
6532 ASSERT_EXPRs a little while longer as the ranges could be used in
6533 things like jump threading.
6534
6535 The problem with keeping ASSERT_EXPRs around is that passes after
6536 VRP need to handle them appropriately.
6537
6538 Another approach would be to make the range information a first
6539 class property of the SSA_NAME so that it can be queried from
6540 any pass. This is made somewhat more complex by the need for
6541 multiple ranges to be associated with one SSA_NAME. */
6542
6543 static void
6544 remove_range_assertions (void)
6545 {
6546 basic_block bb;
6547 gimple_stmt_iterator si;
6548 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6549 a basic block preceeded by GIMPLE_COND branching to it and
6550 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6551 int is_unreachable;
6552
6553 /* Note that the BSI iterator bump happens at the bottom of the
6554 loop and no bump is necessary if we're removing the statement
6555 referenced by the current BSI. */
6556 FOR_EACH_BB (bb)
6557 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
6558 {
6559 gimple stmt = gsi_stmt (si);
6560 gimple use_stmt;
6561
6562 if (is_gimple_assign (stmt)
6563 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
6564 {
6565 tree lhs = gimple_assign_lhs (stmt);
6566 tree rhs = gimple_assign_rhs1 (stmt);
6567 tree var;
6568 tree cond = fold (ASSERT_EXPR_COND (rhs));
6569 use_operand_p use_p;
6570 imm_use_iterator iter;
6571
6572 gcc_assert (cond != boolean_false_node);
6573
6574 var = ASSERT_EXPR_VAR (rhs);
6575 gcc_assert (TREE_CODE (var) == SSA_NAME);
6576
6577 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
6578 && SSA_NAME_RANGE_INFO (lhs))
6579 {
6580 if (is_unreachable == -1)
6581 {
6582 is_unreachable = 0;
6583 if (single_pred_p (bb)
6584 && assert_unreachable_fallthru_edge_p
6585 (single_pred_edge (bb)))
6586 is_unreachable = 1;
6587 }
6588 /* Handle
6589 if (x_7 >= 10 && x_7 < 20)
6590 __builtin_unreachable ();
6591 x_8 = ASSERT_EXPR <x_7, ...>;
6592 if the only uses of x_7 are in the ASSERT_EXPR and
6593 in the condition. In that case, we can copy the
6594 range info from x_8 computed in this pass also
6595 for x_7. */
6596 if (is_unreachable
6597 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
6598 single_pred (bb)))
6599 {
6600 set_range_info (var, SSA_NAME_RANGE_INFO (lhs)->min,
6601 SSA_NAME_RANGE_INFO (lhs)->max);
6602 maybe_set_nonzero_bits (bb, var);
6603 }
6604 }
6605
6606 /* Propagate the RHS into every use of the LHS. */
6607 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
6608 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
6609 SET_USE (use_p, var);
6610
6611 /* And finally, remove the copy, it is not needed. */
6612 gsi_remove (&si, true);
6613 release_defs (stmt);
6614 }
6615 else
6616 {
6617 gsi_next (&si);
6618 is_unreachable = 0;
6619 }
6620 }
6621 }
6622
6623
6624 /* Return true if STMT is interesting for VRP. */
6625
6626 static bool
6627 stmt_interesting_for_vrp (gimple stmt)
6628 {
6629 if (gimple_code (stmt) == GIMPLE_PHI)
6630 {
6631 tree res = gimple_phi_result (stmt);
6632 return (!virtual_operand_p (res)
6633 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
6634 || POINTER_TYPE_P (TREE_TYPE (res))));
6635 }
6636 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6637 {
6638 tree lhs = gimple_get_lhs (stmt);
6639
6640 /* In general, assignments with virtual operands are not useful
6641 for deriving ranges, with the obvious exception of calls to
6642 builtin functions. */
6643 if (lhs && TREE_CODE (lhs) == SSA_NAME
6644 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6645 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6646 && (is_gimple_call (stmt)
6647 || !gimple_vuse (stmt)))
6648 return true;
6649 }
6650 else if (gimple_code (stmt) == GIMPLE_COND
6651 || gimple_code (stmt) == GIMPLE_SWITCH)
6652 return true;
6653
6654 return false;
6655 }
6656
6657
6658 /* Initialize local data structures for VRP. */
6659
6660 static void
6661 vrp_initialize (void)
6662 {
6663 basic_block bb;
6664
6665 values_propagated = false;
6666 num_vr_values = num_ssa_names;
6667 vr_value = XCNEWVEC (value_range_t *, num_vr_values);
6668 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
6669
6670 FOR_EACH_BB (bb)
6671 {
6672 gimple_stmt_iterator si;
6673
6674 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
6675 {
6676 gimple phi = gsi_stmt (si);
6677 if (!stmt_interesting_for_vrp (phi))
6678 {
6679 tree lhs = PHI_RESULT (phi);
6680 set_value_range_to_varying (get_value_range (lhs));
6681 prop_set_simulate_again (phi, false);
6682 }
6683 else
6684 prop_set_simulate_again (phi, true);
6685 }
6686
6687 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6688 {
6689 gimple stmt = gsi_stmt (si);
6690
6691 /* If the statement is a control insn, then we do not
6692 want to avoid simulating the statement once. Failure
6693 to do so means that those edges will never get added. */
6694 if (stmt_ends_bb_p (stmt))
6695 prop_set_simulate_again (stmt, true);
6696 else if (!stmt_interesting_for_vrp (stmt))
6697 {
6698 ssa_op_iter i;
6699 tree def;
6700 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
6701 set_value_range_to_varying (get_value_range (def));
6702 prop_set_simulate_again (stmt, false);
6703 }
6704 else
6705 prop_set_simulate_again (stmt, true);
6706 }
6707 }
6708 }
6709
6710 /* Return the singleton value-range for NAME or NAME. */
6711
6712 static inline tree
6713 vrp_valueize (tree name)
6714 {
6715 if (TREE_CODE (name) == SSA_NAME)
6716 {
6717 value_range_t *vr = get_value_range (name);
6718 if (vr->type == VR_RANGE
6719 && (vr->min == vr->max
6720 || operand_equal_p (vr->min, vr->max, 0)))
6721 return vr->min;
6722 }
6723 return name;
6724 }
6725
6726 /* Visit assignment STMT. If it produces an interesting range, record
6727 the SSA name in *OUTPUT_P. */
6728
6729 static enum ssa_prop_result
6730 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
6731 {
6732 tree def, lhs;
6733 ssa_op_iter iter;
6734 enum gimple_code code = gimple_code (stmt);
6735 lhs = gimple_get_lhs (stmt);
6736
6737 /* We only keep track of ranges in integral and pointer types. */
6738 if (TREE_CODE (lhs) == SSA_NAME
6739 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6740 /* It is valid to have NULL MIN/MAX values on a type. See
6741 build_range_type. */
6742 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
6743 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
6744 || POINTER_TYPE_P (TREE_TYPE (lhs))))
6745 {
6746 value_range_t new_vr = VR_INITIALIZER;
6747
6748 /* Try folding the statement to a constant first. */
6749 tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
6750 if (tem && !is_overflow_infinity (tem))
6751 set_value_range (&new_vr, VR_RANGE, tem, tem, NULL);
6752 /* Then dispatch to value-range extracting functions. */
6753 else if (code == GIMPLE_CALL)
6754 extract_range_basic (&new_vr, stmt);
6755 else
6756 extract_range_from_assignment (&new_vr, stmt);
6757
6758 if (update_value_range (lhs, &new_vr))
6759 {
6760 *output_p = lhs;
6761
6762 if (dump_file && (dump_flags & TDF_DETAILS))
6763 {
6764 fprintf (dump_file, "Found new range for ");
6765 print_generic_expr (dump_file, lhs, 0);
6766 fprintf (dump_file, ": ");
6767 dump_value_range (dump_file, &new_vr);
6768 fprintf (dump_file, "\n\n");
6769 }
6770
6771 if (new_vr.type == VR_VARYING)
6772 return SSA_PROP_VARYING;
6773
6774 return SSA_PROP_INTERESTING;
6775 }
6776
6777 return SSA_PROP_NOT_INTERESTING;
6778 }
6779
6780 /* Every other statement produces no useful ranges. */
6781 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6782 set_value_range_to_varying (get_value_range (def));
6783
6784 return SSA_PROP_VARYING;
6785 }
6786
6787 /* Helper that gets the value range of the SSA_NAME with version I
6788 or a symbolic range containing the SSA_NAME only if the value range
6789 is varying or undefined. */
6790
6791 static inline value_range_t
6792 get_vr_for_comparison (int i)
6793 {
6794 value_range_t vr = *get_value_range (ssa_name (i));
6795
6796 /* If name N_i does not have a valid range, use N_i as its own
6797 range. This allows us to compare against names that may
6798 have N_i in their ranges. */
6799 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
6800 {
6801 vr.type = VR_RANGE;
6802 vr.min = ssa_name (i);
6803 vr.max = ssa_name (i);
6804 }
6805
6806 return vr;
6807 }
6808
6809 /* Compare all the value ranges for names equivalent to VAR with VAL
6810 using comparison code COMP. Return the same value returned by
6811 compare_range_with_value, including the setting of
6812 *STRICT_OVERFLOW_P. */
6813
6814 static tree
6815 compare_name_with_value (enum tree_code comp, tree var, tree val,
6816 bool *strict_overflow_p)
6817 {
6818 bitmap_iterator bi;
6819 unsigned i;
6820 bitmap e;
6821 tree retval, t;
6822 int used_strict_overflow;
6823 bool sop;
6824 value_range_t equiv_vr;
6825
6826 /* Get the set of equivalences for VAR. */
6827 e = get_value_range (var)->equiv;
6828
6829 /* Start at -1. Set it to 0 if we do a comparison without relying
6830 on overflow, or 1 if all comparisons rely on overflow. */
6831 used_strict_overflow = -1;
6832
6833 /* Compare vars' value range with val. */
6834 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
6835 sop = false;
6836 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
6837 if (retval)
6838 used_strict_overflow = sop ? 1 : 0;
6839
6840 /* If the equiv set is empty we have done all work we need to do. */
6841 if (e == NULL)
6842 {
6843 if (retval
6844 && used_strict_overflow > 0)
6845 *strict_overflow_p = true;
6846 return retval;
6847 }
6848
6849 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
6850 {
6851 equiv_vr = get_vr_for_comparison (i);
6852 sop = false;
6853 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
6854 if (t)
6855 {
6856 /* If we get different answers from different members
6857 of the equivalence set this check must be in a dead
6858 code region. Folding it to a trap representation
6859 would be correct here. For now just return don't-know. */
6860 if (retval != NULL
6861 && t != retval)
6862 {
6863 retval = NULL_TREE;
6864 break;
6865 }
6866 retval = t;
6867
6868 if (!sop)
6869 used_strict_overflow = 0;
6870 else if (used_strict_overflow < 0)
6871 used_strict_overflow = 1;
6872 }
6873 }
6874
6875 if (retval
6876 && used_strict_overflow > 0)
6877 *strict_overflow_p = true;
6878
6879 return retval;
6880 }
6881
6882
6883 /* Given a comparison code COMP and names N1 and N2, compare all the
6884 ranges equivalent to N1 against all the ranges equivalent to N2
6885 to determine the value of N1 COMP N2. Return the same value
6886 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
6887 whether we relied on an overflow infinity in the comparison. */
6888
6889
6890 static tree
6891 compare_names (enum tree_code comp, tree n1, tree n2,
6892 bool *strict_overflow_p)
6893 {
6894 tree t, retval;
6895 bitmap e1, e2;
6896 bitmap_iterator bi1, bi2;
6897 unsigned i1, i2;
6898 int used_strict_overflow;
6899 static bitmap_obstack *s_obstack = NULL;
6900 static bitmap s_e1 = NULL, s_e2 = NULL;
6901
6902 /* Compare the ranges of every name equivalent to N1 against the
6903 ranges of every name equivalent to N2. */
6904 e1 = get_value_range (n1)->equiv;
6905 e2 = get_value_range (n2)->equiv;
6906
6907 /* Use the fake bitmaps if e1 or e2 are not available. */
6908 if (s_obstack == NULL)
6909 {
6910 s_obstack = XNEW (bitmap_obstack);
6911 bitmap_obstack_initialize (s_obstack);
6912 s_e1 = BITMAP_ALLOC (s_obstack);
6913 s_e2 = BITMAP_ALLOC (s_obstack);
6914 }
6915 if (e1 == NULL)
6916 e1 = s_e1;
6917 if (e2 == NULL)
6918 e2 = s_e2;
6919
6920 /* Add N1 and N2 to their own set of equivalences to avoid
6921 duplicating the body of the loop just to check N1 and N2
6922 ranges. */
6923 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
6924 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
6925
6926 /* If the equivalence sets have a common intersection, then the two
6927 names can be compared without checking their ranges. */
6928 if (bitmap_intersect_p (e1, e2))
6929 {
6930 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6931 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6932
6933 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
6934 ? boolean_true_node
6935 : boolean_false_node;
6936 }
6937
6938 /* Start at -1. Set it to 0 if we do a comparison without relying
6939 on overflow, or 1 if all comparisons rely on overflow. */
6940 used_strict_overflow = -1;
6941
6942 /* Otherwise, compare all the equivalent ranges. First, add N1 and
6943 N2 to their own set of equivalences to avoid duplicating the body
6944 of the loop just to check N1 and N2 ranges. */
6945 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
6946 {
6947 value_range_t vr1 = get_vr_for_comparison (i1);
6948
6949 t = retval = NULL_TREE;
6950 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
6951 {
6952 bool sop = false;
6953
6954 value_range_t vr2 = get_vr_for_comparison (i2);
6955
6956 t = compare_ranges (comp, &vr1, &vr2, &sop);
6957 if (t)
6958 {
6959 /* If we get different answers from different members
6960 of the equivalence set this check must be in a dead
6961 code region. Folding it to a trap representation
6962 would be correct here. For now just return don't-know. */
6963 if (retval != NULL
6964 && t != retval)
6965 {
6966 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6967 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6968 return NULL_TREE;
6969 }
6970 retval = t;
6971
6972 if (!sop)
6973 used_strict_overflow = 0;
6974 else if (used_strict_overflow < 0)
6975 used_strict_overflow = 1;
6976 }
6977 }
6978
6979 if (retval)
6980 {
6981 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6982 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6983 if (used_strict_overflow > 0)
6984 *strict_overflow_p = true;
6985 return retval;
6986 }
6987 }
6988
6989 /* None of the equivalent ranges are useful in computing this
6990 comparison. */
6991 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6992 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6993 return NULL_TREE;
6994 }
6995
6996 /* Helper function for vrp_evaluate_conditional_warnv. */
6997
6998 static tree
6999 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
7000 tree op0, tree op1,
7001 bool * strict_overflow_p)
7002 {
7003 value_range_t *vr0, *vr1;
7004
7005 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
7006 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
7007
7008 if (vr0 && vr1)
7009 return compare_ranges (code, vr0, vr1, strict_overflow_p);
7010 else if (vr0 && vr1 == NULL)
7011 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
7012 else if (vr0 == NULL && vr1)
7013 return (compare_range_with_value
7014 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
7015 return NULL;
7016 }
7017
7018 /* Helper function for vrp_evaluate_conditional_warnv. */
7019
7020 static tree
7021 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
7022 tree op1, bool use_equiv_p,
7023 bool *strict_overflow_p, bool *only_ranges)
7024 {
7025 tree ret;
7026 if (only_ranges)
7027 *only_ranges = true;
7028
7029 /* We only deal with integral and pointer types. */
7030 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
7031 && !POINTER_TYPE_P (TREE_TYPE (op0)))
7032 return NULL_TREE;
7033
7034 if (use_equiv_p)
7035 {
7036 if (only_ranges
7037 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
7038 (code, op0, op1, strict_overflow_p)))
7039 return ret;
7040 *only_ranges = false;
7041 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
7042 return compare_names (code, op0, op1, strict_overflow_p);
7043 else if (TREE_CODE (op0) == SSA_NAME)
7044 return compare_name_with_value (code, op0, op1, strict_overflow_p);
7045 else if (TREE_CODE (op1) == SSA_NAME)
7046 return (compare_name_with_value
7047 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
7048 }
7049 else
7050 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
7051 strict_overflow_p);
7052 return NULL_TREE;
7053 }
7054
7055 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7056 information. Return NULL if the conditional can not be evaluated.
7057 The ranges of all the names equivalent with the operands in COND
7058 will be used when trying to compute the value. If the result is
7059 based on undefined signed overflow, issue a warning if
7060 appropriate. */
7061
7062 static tree
7063 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
7064 {
7065 bool sop;
7066 tree ret;
7067 bool only_ranges;
7068
7069 /* Some passes and foldings leak constants with overflow flag set
7070 into the IL. Avoid doing wrong things with these and bail out. */
7071 if ((TREE_CODE (op0) == INTEGER_CST
7072 && TREE_OVERFLOW (op0))
7073 || (TREE_CODE (op1) == INTEGER_CST
7074 && TREE_OVERFLOW (op1)))
7075 return NULL_TREE;
7076
7077 sop = false;
7078 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
7079 &only_ranges);
7080
7081 if (ret && sop)
7082 {
7083 enum warn_strict_overflow_code wc;
7084 const char* warnmsg;
7085
7086 if (is_gimple_min_invariant (ret))
7087 {
7088 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7089 warnmsg = G_("assuming signed overflow does not occur when "
7090 "simplifying conditional to constant");
7091 }
7092 else
7093 {
7094 wc = WARN_STRICT_OVERFLOW_COMPARISON;
7095 warnmsg = G_("assuming signed overflow does not occur when "
7096 "simplifying conditional");
7097 }
7098
7099 if (issue_strict_overflow_warning (wc))
7100 {
7101 location_t location;
7102
7103 if (!gimple_has_location (stmt))
7104 location = input_location;
7105 else
7106 location = gimple_location (stmt);
7107 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
7108 }
7109 }
7110
7111 if (warn_type_limits
7112 && ret && only_ranges
7113 && TREE_CODE_CLASS (code) == tcc_comparison
7114 && TREE_CODE (op0) == SSA_NAME)
7115 {
7116 /* If the comparison is being folded and the operand on the LHS
7117 is being compared against a constant value that is outside of
7118 the natural range of OP0's type, then the predicate will
7119 always fold regardless of the value of OP0. If -Wtype-limits
7120 was specified, emit a warning. */
7121 tree type = TREE_TYPE (op0);
7122 value_range_t *vr0 = get_value_range (op0);
7123
7124 if (vr0->type != VR_VARYING
7125 && INTEGRAL_TYPE_P (type)
7126 && vrp_val_is_min (vr0->min)
7127 && vrp_val_is_max (vr0->max)
7128 && is_gimple_min_invariant (op1))
7129 {
7130 location_t location;
7131
7132 if (!gimple_has_location (stmt))
7133 location = input_location;
7134 else
7135 location = gimple_location (stmt);
7136
7137 warning_at (location, OPT_Wtype_limits,
7138 integer_zerop (ret)
7139 ? G_("comparison always false "
7140 "due to limited range of data type")
7141 : G_("comparison always true "
7142 "due to limited range of data type"));
7143 }
7144 }
7145
7146 return ret;
7147 }
7148
7149
7150 /* Visit conditional statement STMT. If we can determine which edge
7151 will be taken out of STMT's basic block, record it in
7152 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7153 SSA_PROP_VARYING. */
7154
7155 static enum ssa_prop_result
7156 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
7157 {
7158 tree val;
7159 bool sop;
7160
7161 *taken_edge_p = NULL;
7162
7163 if (dump_file && (dump_flags & TDF_DETAILS))
7164 {
7165 tree use;
7166 ssa_op_iter i;
7167
7168 fprintf (dump_file, "\nVisiting conditional with predicate: ");
7169 print_gimple_stmt (dump_file, stmt, 0, 0);
7170 fprintf (dump_file, "\nWith known ranges\n");
7171
7172 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7173 {
7174 fprintf (dump_file, "\t");
7175 print_generic_expr (dump_file, use, 0);
7176 fprintf (dump_file, ": ");
7177 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7178 }
7179
7180 fprintf (dump_file, "\n");
7181 }
7182
7183 /* Compute the value of the predicate COND by checking the known
7184 ranges of each of its operands.
7185
7186 Note that we cannot evaluate all the equivalent ranges here
7187 because those ranges may not yet be final and with the current
7188 propagation strategy, we cannot determine when the value ranges
7189 of the names in the equivalence set have changed.
7190
7191 For instance, given the following code fragment
7192
7193 i_5 = PHI <8, i_13>
7194 ...
7195 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7196 if (i_14 == 1)
7197 ...
7198
7199 Assume that on the first visit to i_14, i_5 has the temporary
7200 range [8, 8] because the second argument to the PHI function is
7201 not yet executable. We derive the range ~[0, 0] for i_14 and the
7202 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7203 the first time, since i_14 is equivalent to the range [8, 8], we
7204 determine that the predicate is always false.
7205
7206 On the next round of propagation, i_13 is determined to be
7207 VARYING, which causes i_5 to drop down to VARYING. So, another
7208 visit to i_14 is scheduled. In this second visit, we compute the
7209 exact same range and equivalence set for i_14, namely ~[0, 0] and
7210 { i_5 }. But we did not have the previous range for i_5
7211 registered, so vrp_visit_assignment thinks that the range for
7212 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7213 is not visited again, which stops propagation from visiting
7214 statements in the THEN clause of that if().
7215
7216 To properly fix this we would need to keep the previous range
7217 value for the names in the equivalence set. This way we would've
7218 discovered that from one visit to the other i_5 changed from
7219 range [8, 8] to VR_VARYING.
7220
7221 However, fixing this apparent limitation may not be worth the
7222 additional checking. Testing on several code bases (GCC, DLV,
7223 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7224 4 more predicates folded in SPEC. */
7225 sop = false;
7226
7227 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7228 gimple_cond_lhs (stmt),
7229 gimple_cond_rhs (stmt),
7230 false, &sop, NULL);
7231 if (val)
7232 {
7233 if (!sop)
7234 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7235 else
7236 {
7237 if (dump_file && (dump_flags & TDF_DETAILS))
7238 fprintf (dump_file,
7239 "\nIgnoring predicate evaluation because "
7240 "it assumes that signed overflow is undefined");
7241 val = NULL_TREE;
7242 }
7243 }
7244
7245 if (dump_file && (dump_flags & TDF_DETAILS))
7246 {
7247 fprintf (dump_file, "\nPredicate evaluates to: ");
7248 if (val == NULL_TREE)
7249 fprintf (dump_file, "DON'T KNOW\n");
7250 else
7251 print_generic_stmt (dump_file, val, 0);
7252 }
7253
7254 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
7255 }
7256
7257 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7258 that includes the value VAL. The search is restricted to the range
7259 [START_IDX, n - 1] where n is the size of VEC.
7260
7261 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7262 returned.
7263
7264 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7265 it is placed in IDX and false is returned.
7266
7267 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7268 returned. */
7269
7270 static bool
7271 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
7272 {
7273 size_t n = gimple_switch_num_labels (stmt);
7274 size_t low, high;
7275
7276 /* Find case label for minimum of the value range or the next one.
7277 At each iteration we are searching in [low, high - 1]. */
7278
7279 for (low = start_idx, high = n; high != low; )
7280 {
7281 tree t;
7282 int cmp;
7283 /* Note that i != high, so we never ask for n. */
7284 size_t i = (high + low) / 2;
7285 t = gimple_switch_label (stmt, i);
7286
7287 /* Cache the result of comparing CASE_LOW and val. */
7288 cmp = tree_int_cst_compare (CASE_LOW (t), val);
7289
7290 if (cmp == 0)
7291 {
7292 /* Ranges cannot be empty. */
7293 *idx = i;
7294 return true;
7295 }
7296 else if (cmp > 0)
7297 high = i;
7298 else
7299 {
7300 low = i + 1;
7301 if (CASE_HIGH (t) != NULL
7302 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
7303 {
7304 *idx = i;
7305 return true;
7306 }
7307 }
7308 }
7309
7310 *idx = high;
7311 return false;
7312 }
7313
7314 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7315 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7316 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7317 then MAX_IDX < MIN_IDX.
7318 Returns true if the default label is not needed. */
7319
7320 static bool
7321 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
7322 size_t *max_idx)
7323 {
7324 size_t i, j;
7325 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
7326 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
7327
7328 if (i == j
7329 && min_take_default
7330 && max_take_default)
7331 {
7332 /* Only the default case label reached.
7333 Return an empty range. */
7334 *min_idx = 1;
7335 *max_idx = 0;
7336 return false;
7337 }
7338 else
7339 {
7340 bool take_default = min_take_default || max_take_default;
7341 tree low, high;
7342 size_t k;
7343
7344 if (max_take_default)
7345 j--;
7346
7347 /* If the case label range is continuous, we do not need
7348 the default case label. Verify that. */
7349 high = CASE_LOW (gimple_switch_label (stmt, i));
7350 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7351 high = CASE_HIGH (gimple_switch_label (stmt, i));
7352 for (k = i + 1; k <= j; ++k)
7353 {
7354 low = CASE_LOW (gimple_switch_label (stmt, k));
7355 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
7356 {
7357 take_default = true;
7358 break;
7359 }
7360 high = low;
7361 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7362 high = CASE_HIGH (gimple_switch_label (stmt, k));
7363 }
7364
7365 *min_idx = i;
7366 *max_idx = j;
7367 return !take_default;
7368 }
7369 }
7370
7371 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7372 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7373 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7374 Returns true if the default label is not needed. */
7375
7376 static bool
7377 find_case_label_ranges (gimple stmt, value_range_t *vr, size_t *min_idx1,
7378 size_t *max_idx1, size_t *min_idx2,
7379 size_t *max_idx2)
7380 {
7381 size_t i, j, k, l;
7382 unsigned int n = gimple_switch_num_labels (stmt);
7383 bool take_default;
7384 tree case_low, case_high;
7385 tree min = vr->min, max = vr->max;
7386
7387 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7388
7389 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7390
7391 /* Set second range to emtpy. */
7392 *min_idx2 = 1;
7393 *max_idx2 = 0;
7394
7395 if (vr->type == VR_RANGE)
7396 {
7397 *min_idx1 = i;
7398 *max_idx1 = j;
7399 return !take_default;
7400 }
7401
7402 /* Set first range to all case labels. */
7403 *min_idx1 = 1;
7404 *max_idx1 = n - 1;
7405
7406 if (i > j)
7407 return false;
7408
7409 /* Make sure all the values of case labels [i , j] are contained in
7410 range [MIN, MAX]. */
7411 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7412 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7413 if (tree_int_cst_compare (case_low, min) < 0)
7414 i += 1;
7415 if (case_high != NULL_TREE
7416 && tree_int_cst_compare (max, case_high) < 0)
7417 j -= 1;
7418
7419 if (i > j)
7420 return false;
7421
7422 /* If the range spans case labels [i, j], the corresponding anti-range spans
7423 the labels [1, i - 1] and [j + 1, n - 1]. */
7424 k = j + 1;
7425 l = n - 1;
7426 if (k > l)
7427 {
7428 k = 1;
7429 l = 0;
7430 }
7431
7432 j = i - 1;
7433 i = 1;
7434 if (i > j)
7435 {
7436 i = k;
7437 j = l;
7438 k = 1;
7439 l = 0;
7440 }
7441
7442 *min_idx1 = i;
7443 *max_idx1 = j;
7444 *min_idx2 = k;
7445 *max_idx2 = l;
7446 return false;
7447 }
7448
7449 /* Visit switch statement STMT. If we can determine which edge
7450 will be taken out of STMT's basic block, record it in
7451 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7452 SSA_PROP_VARYING. */
7453
7454 static enum ssa_prop_result
7455 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
7456 {
7457 tree op, val;
7458 value_range_t *vr;
7459 size_t i = 0, j = 0, k, l;
7460 bool take_default;
7461
7462 *taken_edge_p = NULL;
7463 op = gimple_switch_index (stmt);
7464 if (TREE_CODE (op) != SSA_NAME)
7465 return SSA_PROP_VARYING;
7466
7467 vr = get_value_range (op);
7468 if (dump_file && (dump_flags & TDF_DETAILS))
7469 {
7470 fprintf (dump_file, "\nVisiting switch expression with operand ");
7471 print_generic_expr (dump_file, op, 0);
7472 fprintf (dump_file, " with known range ");
7473 dump_value_range (dump_file, vr);
7474 fprintf (dump_file, "\n");
7475 }
7476
7477 if ((vr->type != VR_RANGE
7478 && vr->type != VR_ANTI_RANGE)
7479 || symbolic_range_p (vr))
7480 return SSA_PROP_VARYING;
7481
7482 /* Find the single edge that is taken from the switch expression. */
7483 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
7484
7485 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7486 label */
7487 if (j < i)
7488 {
7489 gcc_assert (take_default);
7490 val = gimple_switch_default_label (stmt);
7491 }
7492 else
7493 {
7494 /* Check if labels with index i to j and maybe the default label
7495 are all reaching the same label. */
7496
7497 val = gimple_switch_label (stmt, i);
7498 if (take_default
7499 && CASE_LABEL (gimple_switch_default_label (stmt))
7500 != CASE_LABEL (val))
7501 {
7502 if (dump_file && (dump_flags & TDF_DETAILS))
7503 fprintf (dump_file, " not a single destination for this "
7504 "range\n");
7505 return SSA_PROP_VARYING;
7506 }
7507 for (++i; i <= j; ++i)
7508 {
7509 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
7510 {
7511 if (dump_file && (dump_flags & TDF_DETAILS))
7512 fprintf (dump_file, " not a single destination for this "
7513 "range\n");
7514 return SSA_PROP_VARYING;
7515 }
7516 }
7517 for (; k <= l; ++k)
7518 {
7519 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
7520 {
7521 if (dump_file && (dump_flags & TDF_DETAILS))
7522 fprintf (dump_file, " not a single destination for this "
7523 "range\n");
7524 return SSA_PROP_VARYING;
7525 }
7526 }
7527 }
7528
7529 *taken_edge_p = find_edge (gimple_bb (stmt),
7530 label_to_block (CASE_LABEL (val)));
7531
7532 if (dump_file && (dump_flags & TDF_DETAILS))
7533 {
7534 fprintf (dump_file, " will take edge to ");
7535 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
7536 }
7537
7538 return SSA_PROP_INTERESTING;
7539 }
7540
7541
7542 /* Evaluate statement STMT. If the statement produces a useful range,
7543 return SSA_PROP_INTERESTING and record the SSA name with the
7544 interesting range into *OUTPUT_P.
7545
7546 If STMT is a conditional branch and we can determine its truth
7547 value, the taken edge is recorded in *TAKEN_EDGE_P.
7548
7549 If STMT produces a varying value, return SSA_PROP_VARYING. */
7550
7551 static enum ssa_prop_result
7552 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
7553 {
7554 tree def;
7555 ssa_op_iter iter;
7556
7557 if (dump_file && (dump_flags & TDF_DETAILS))
7558 {
7559 fprintf (dump_file, "\nVisiting statement:\n");
7560 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
7561 fprintf (dump_file, "\n");
7562 }
7563
7564 if (!stmt_interesting_for_vrp (stmt))
7565 gcc_assert (stmt_ends_bb_p (stmt));
7566 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7567 return vrp_visit_assignment_or_call (stmt, output_p);
7568 else if (gimple_code (stmt) == GIMPLE_COND)
7569 return vrp_visit_cond_stmt (stmt, taken_edge_p);
7570 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7571 return vrp_visit_switch_stmt (stmt, taken_edge_p);
7572
7573 /* All other statements produce nothing of interest for VRP, so mark
7574 their outputs varying and prevent further simulation. */
7575 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
7576 set_value_range_to_varying (get_value_range (def));
7577
7578 return SSA_PROP_VARYING;
7579 }
7580
7581 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7582 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7583 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7584 possible such range. The resulting range is not canonicalized. */
7585
7586 static void
7587 union_ranges (enum value_range_type *vr0type,
7588 tree *vr0min, tree *vr0max,
7589 enum value_range_type vr1type,
7590 tree vr1min, tree vr1max)
7591 {
7592 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7593 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7594
7595 /* [] is vr0, () is vr1 in the following classification comments. */
7596 if (mineq && maxeq)
7597 {
7598 /* [( )] */
7599 if (*vr0type == vr1type)
7600 /* Nothing to do for equal ranges. */
7601 ;
7602 else if ((*vr0type == VR_RANGE
7603 && vr1type == VR_ANTI_RANGE)
7604 || (*vr0type == VR_ANTI_RANGE
7605 && vr1type == VR_RANGE))
7606 {
7607 /* For anti-range with range union the result is varying. */
7608 goto give_up;
7609 }
7610 else
7611 gcc_unreachable ();
7612 }
7613 else if (operand_less_p (*vr0max, vr1min) == 1
7614 || operand_less_p (vr1max, *vr0min) == 1)
7615 {
7616 /* [ ] ( ) or ( ) [ ]
7617 If the ranges have an empty intersection, result of the union
7618 operation is the anti-range or if both are anti-ranges
7619 it covers all. */
7620 if (*vr0type == VR_ANTI_RANGE
7621 && vr1type == VR_ANTI_RANGE)
7622 goto give_up;
7623 else if (*vr0type == VR_ANTI_RANGE
7624 && vr1type == VR_RANGE)
7625 ;
7626 else if (*vr0type == VR_RANGE
7627 && vr1type == VR_ANTI_RANGE)
7628 {
7629 *vr0type = vr1type;
7630 *vr0min = vr1min;
7631 *vr0max = vr1max;
7632 }
7633 else if (*vr0type == VR_RANGE
7634 && vr1type == VR_RANGE)
7635 {
7636 /* The result is the convex hull of both ranges. */
7637 if (operand_less_p (*vr0max, vr1min) == 1)
7638 {
7639 /* If the result can be an anti-range, create one. */
7640 if (TREE_CODE (*vr0max) == INTEGER_CST
7641 && TREE_CODE (vr1min) == INTEGER_CST
7642 && vrp_val_is_min (*vr0min)
7643 && vrp_val_is_max (vr1max))
7644 {
7645 tree min = int_const_binop (PLUS_EXPR,
7646 *vr0max, integer_one_node);
7647 tree max = int_const_binop (MINUS_EXPR,
7648 vr1min, integer_one_node);
7649 if (!operand_less_p (max, min))
7650 {
7651 *vr0type = VR_ANTI_RANGE;
7652 *vr0min = min;
7653 *vr0max = max;
7654 }
7655 else
7656 *vr0max = vr1max;
7657 }
7658 else
7659 *vr0max = vr1max;
7660 }
7661 else
7662 {
7663 /* If the result can be an anti-range, create one. */
7664 if (TREE_CODE (vr1max) == INTEGER_CST
7665 && TREE_CODE (*vr0min) == INTEGER_CST
7666 && vrp_val_is_min (vr1min)
7667 && vrp_val_is_max (*vr0max))
7668 {
7669 tree min = int_const_binop (PLUS_EXPR,
7670 vr1max, integer_one_node);
7671 tree max = int_const_binop (MINUS_EXPR,
7672 *vr0min, integer_one_node);
7673 if (!operand_less_p (max, min))
7674 {
7675 *vr0type = VR_ANTI_RANGE;
7676 *vr0min = min;
7677 *vr0max = max;
7678 }
7679 else
7680 *vr0min = vr1min;
7681 }
7682 else
7683 *vr0min = vr1min;
7684 }
7685 }
7686 else
7687 gcc_unreachable ();
7688 }
7689 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
7690 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
7691 {
7692 /* [ ( ) ] or [( ) ] or [ ( )] */
7693 if (*vr0type == VR_RANGE
7694 && vr1type == VR_RANGE)
7695 ;
7696 else if (*vr0type == VR_ANTI_RANGE
7697 && vr1type == VR_ANTI_RANGE)
7698 {
7699 *vr0type = vr1type;
7700 *vr0min = vr1min;
7701 *vr0max = vr1max;
7702 }
7703 else if (*vr0type == VR_ANTI_RANGE
7704 && vr1type == VR_RANGE)
7705 {
7706 /* Arbitrarily choose the right or left gap. */
7707 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
7708 *vr0max = int_const_binop (MINUS_EXPR, vr1min, integer_one_node);
7709 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
7710 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7711 else
7712 goto give_up;
7713 }
7714 else if (*vr0type == VR_RANGE
7715 && vr1type == VR_ANTI_RANGE)
7716 /* The result covers everything. */
7717 goto give_up;
7718 else
7719 gcc_unreachable ();
7720 }
7721 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
7722 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
7723 {
7724 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7725 if (*vr0type == VR_RANGE
7726 && vr1type == VR_RANGE)
7727 {
7728 *vr0type = vr1type;
7729 *vr0min = vr1min;
7730 *vr0max = vr1max;
7731 }
7732 else if (*vr0type == VR_ANTI_RANGE
7733 && vr1type == VR_ANTI_RANGE)
7734 ;
7735 else if (*vr0type == VR_RANGE
7736 && vr1type == VR_ANTI_RANGE)
7737 {
7738 *vr0type = VR_ANTI_RANGE;
7739 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
7740 {
7741 *vr0max = int_const_binop (MINUS_EXPR, *vr0min, integer_one_node);
7742 *vr0min = vr1min;
7743 }
7744 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
7745 {
7746 *vr0min = int_const_binop (PLUS_EXPR, *vr0max, integer_one_node);
7747 *vr0max = vr1max;
7748 }
7749 else
7750 goto give_up;
7751 }
7752 else if (*vr0type == VR_ANTI_RANGE
7753 && vr1type == VR_RANGE)
7754 /* The result covers everything. */
7755 goto give_up;
7756 else
7757 gcc_unreachable ();
7758 }
7759 else if ((operand_less_p (vr1min, *vr0max) == 1
7760 || operand_equal_p (vr1min, *vr0max, 0))
7761 && operand_less_p (*vr0min, vr1min) == 1)
7762 {
7763 /* [ ( ] ) or [ ]( ) */
7764 if (*vr0type == VR_RANGE
7765 && vr1type == VR_RANGE)
7766 *vr0max = vr1max;
7767 else if (*vr0type == VR_ANTI_RANGE
7768 && vr1type == VR_ANTI_RANGE)
7769 *vr0min = vr1min;
7770 else if (*vr0type == VR_ANTI_RANGE
7771 && vr1type == VR_RANGE)
7772 {
7773 if (TREE_CODE (vr1min) == INTEGER_CST)
7774 *vr0max = int_const_binop (MINUS_EXPR, vr1min, integer_one_node);
7775 else
7776 goto give_up;
7777 }
7778 else if (*vr0type == VR_RANGE
7779 && vr1type == VR_ANTI_RANGE)
7780 {
7781 if (TREE_CODE (*vr0max) == INTEGER_CST)
7782 {
7783 *vr0type = vr1type;
7784 *vr0min = int_const_binop (PLUS_EXPR, *vr0max, integer_one_node);
7785 *vr0max = vr1max;
7786 }
7787 else
7788 goto give_up;
7789 }
7790 else
7791 gcc_unreachable ();
7792 }
7793 else if ((operand_less_p (*vr0min, vr1max) == 1
7794 || operand_equal_p (*vr0min, vr1max, 0))
7795 && operand_less_p (vr1min, *vr0min) == 1)
7796 {
7797 /* ( [ ) ] or ( )[ ] */
7798 if (*vr0type == VR_RANGE
7799 && vr1type == VR_RANGE)
7800 *vr0min = vr1min;
7801 else if (*vr0type == VR_ANTI_RANGE
7802 && vr1type == VR_ANTI_RANGE)
7803 *vr0max = vr1max;
7804 else if (*vr0type == VR_ANTI_RANGE
7805 && vr1type == VR_RANGE)
7806 {
7807 if (TREE_CODE (vr1max) == INTEGER_CST)
7808 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7809 else
7810 goto give_up;
7811 }
7812 else if (*vr0type == VR_RANGE
7813 && vr1type == VR_ANTI_RANGE)
7814 {
7815 if (TREE_CODE (*vr0min) == INTEGER_CST)
7816 {
7817 *vr0type = vr1type;
7818 *vr0min = vr1min;
7819 *vr0max = int_const_binop (MINUS_EXPR, *vr0min, integer_one_node);
7820 }
7821 else
7822 goto give_up;
7823 }
7824 else
7825 gcc_unreachable ();
7826 }
7827 else
7828 goto give_up;
7829
7830 return;
7831
7832 give_up:
7833 *vr0type = VR_VARYING;
7834 *vr0min = NULL_TREE;
7835 *vr0max = NULL_TREE;
7836 }
7837
7838 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7839 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7840 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7841 possible such range. The resulting range is not canonicalized. */
7842
7843 static void
7844 intersect_ranges (enum value_range_type *vr0type,
7845 tree *vr0min, tree *vr0max,
7846 enum value_range_type vr1type,
7847 tree vr1min, tree vr1max)
7848 {
7849 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7850 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7851
7852 /* [] is vr0, () is vr1 in the following classification comments. */
7853 if (mineq && maxeq)
7854 {
7855 /* [( )] */
7856 if (*vr0type == vr1type)
7857 /* Nothing to do for equal ranges. */
7858 ;
7859 else if ((*vr0type == VR_RANGE
7860 && vr1type == VR_ANTI_RANGE)
7861 || (*vr0type == VR_ANTI_RANGE
7862 && vr1type == VR_RANGE))
7863 {
7864 /* For anti-range with range intersection the result is empty. */
7865 *vr0type = VR_UNDEFINED;
7866 *vr0min = NULL_TREE;
7867 *vr0max = NULL_TREE;
7868 }
7869 else
7870 gcc_unreachable ();
7871 }
7872 else if (operand_less_p (*vr0max, vr1min) == 1
7873 || operand_less_p (vr1max, *vr0min) == 1)
7874 {
7875 /* [ ] ( ) or ( ) [ ]
7876 If the ranges have an empty intersection, the result of the
7877 intersect operation is the range for intersecting an
7878 anti-range with a range or empty when intersecting two ranges. */
7879 if (*vr0type == VR_RANGE
7880 && vr1type == VR_ANTI_RANGE)
7881 ;
7882 else if (*vr0type == VR_ANTI_RANGE
7883 && vr1type == VR_RANGE)
7884 {
7885 *vr0type = vr1type;
7886 *vr0min = vr1min;
7887 *vr0max = vr1max;
7888 }
7889 else if (*vr0type == VR_RANGE
7890 && vr1type == VR_RANGE)
7891 {
7892 *vr0type = VR_UNDEFINED;
7893 *vr0min = NULL_TREE;
7894 *vr0max = NULL_TREE;
7895 }
7896 else if (*vr0type == VR_ANTI_RANGE
7897 && vr1type == VR_ANTI_RANGE)
7898 {
7899 /* If the anti-ranges are adjacent to each other merge them. */
7900 if (TREE_CODE (*vr0max) == INTEGER_CST
7901 && TREE_CODE (vr1min) == INTEGER_CST
7902 && operand_less_p (*vr0max, vr1min) == 1
7903 && integer_onep (int_const_binop (MINUS_EXPR,
7904 vr1min, *vr0max)))
7905 *vr0max = vr1max;
7906 else if (TREE_CODE (vr1max) == INTEGER_CST
7907 && TREE_CODE (*vr0min) == INTEGER_CST
7908 && operand_less_p (vr1max, *vr0min) == 1
7909 && integer_onep (int_const_binop (MINUS_EXPR,
7910 *vr0min, vr1max)))
7911 *vr0min = vr1min;
7912 /* Else arbitrarily take VR0. */
7913 }
7914 }
7915 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
7916 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
7917 {
7918 /* [ ( ) ] or [( ) ] or [ ( )] */
7919 if (*vr0type == VR_RANGE
7920 && vr1type == VR_RANGE)
7921 {
7922 /* If both are ranges the result is the inner one. */
7923 *vr0type = vr1type;
7924 *vr0min = vr1min;
7925 *vr0max = vr1max;
7926 }
7927 else if (*vr0type == VR_RANGE
7928 && vr1type == VR_ANTI_RANGE)
7929 {
7930 /* Choose the right gap if the left one is empty. */
7931 if (mineq)
7932 {
7933 if (TREE_CODE (vr1max) == INTEGER_CST)
7934 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7935 else
7936 *vr0min = vr1max;
7937 }
7938 /* Choose the left gap if the right one is empty. */
7939 else if (maxeq)
7940 {
7941 if (TREE_CODE (vr1min) == INTEGER_CST)
7942 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
7943 integer_one_node);
7944 else
7945 *vr0max = vr1min;
7946 }
7947 /* Choose the anti-range if the range is effectively varying. */
7948 else if (vrp_val_is_min (*vr0min)
7949 && vrp_val_is_max (*vr0max))
7950 {
7951 *vr0type = vr1type;
7952 *vr0min = vr1min;
7953 *vr0max = vr1max;
7954 }
7955 /* Else choose the range. */
7956 }
7957 else if (*vr0type == VR_ANTI_RANGE
7958 && vr1type == VR_ANTI_RANGE)
7959 /* If both are anti-ranges the result is the outer one. */
7960 ;
7961 else if (*vr0type == VR_ANTI_RANGE
7962 && vr1type == VR_RANGE)
7963 {
7964 /* The intersection is empty. */
7965 *vr0type = VR_UNDEFINED;
7966 *vr0min = NULL_TREE;
7967 *vr0max = NULL_TREE;
7968 }
7969 else
7970 gcc_unreachable ();
7971 }
7972 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
7973 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
7974 {
7975 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7976 if (*vr0type == VR_RANGE
7977 && vr1type == VR_RANGE)
7978 /* Choose the inner range. */
7979 ;
7980 else if (*vr0type == VR_ANTI_RANGE
7981 && vr1type == VR_RANGE)
7982 {
7983 /* Choose the right gap if the left is empty. */
7984 if (mineq)
7985 {
7986 *vr0type = VR_RANGE;
7987 if (TREE_CODE (*vr0max) == INTEGER_CST)
7988 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
7989 integer_one_node);
7990 else
7991 *vr0min = *vr0max;
7992 *vr0max = vr1max;
7993 }
7994 /* Choose the left gap if the right is empty. */
7995 else if (maxeq)
7996 {
7997 *vr0type = VR_RANGE;
7998 if (TREE_CODE (*vr0min) == INTEGER_CST)
7999 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8000 integer_one_node);
8001 else
8002 *vr0max = *vr0min;
8003 *vr0min = vr1min;
8004 }
8005 /* Choose the anti-range if the range is effectively varying. */
8006 else if (vrp_val_is_min (vr1min)
8007 && vrp_val_is_max (vr1max))
8008 ;
8009 /* Else choose the range. */
8010 else
8011 {
8012 *vr0type = vr1type;
8013 *vr0min = vr1min;
8014 *vr0max = vr1max;
8015 }
8016 }
8017 else if (*vr0type == VR_ANTI_RANGE
8018 && vr1type == VR_ANTI_RANGE)
8019 {
8020 /* If both are anti-ranges the result is the outer one. */
8021 *vr0type = vr1type;
8022 *vr0min = vr1min;
8023 *vr0max = vr1max;
8024 }
8025 else if (vr1type == VR_ANTI_RANGE
8026 && *vr0type == VR_RANGE)
8027 {
8028 /* The intersection is empty. */
8029 *vr0type = VR_UNDEFINED;
8030 *vr0min = NULL_TREE;
8031 *vr0max = NULL_TREE;
8032 }
8033 else
8034 gcc_unreachable ();
8035 }
8036 else if ((operand_less_p (vr1min, *vr0max) == 1
8037 || operand_equal_p (vr1min, *vr0max, 0))
8038 && operand_less_p (*vr0min, vr1min) == 1)
8039 {
8040 /* [ ( ] ) or [ ]( ) */
8041 if (*vr0type == VR_ANTI_RANGE
8042 && vr1type == VR_ANTI_RANGE)
8043 *vr0max = vr1max;
8044 else if (*vr0type == VR_RANGE
8045 && vr1type == VR_RANGE)
8046 *vr0min = vr1min;
8047 else if (*vr0type == VR_RANGE
8048 && vr1type == VR_ANTI_RANGE)
8049 {
8050 if (TREE_CODE (vr1min) == INTEGER_CST)
8051 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8052 integer_one_node);
8053 else
8054 *vr0max = vr1min;
8055 }
8056 else if (*vr0type == VR_ANTI_RANGE
8057 && vr1type == VR_RANGE)
8058 {
8059 *vr0type = VR_RANGE;
8060 if (TREE_CODE (*vr0max) == INTEGER_CST)
8061 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8062 integer_one_node);
8063 else
8064 *vr0min = *vr0max;
8065 *vr0max = vr1max;
8066 }
8067 else
8068 gcc_unreachable ();
8069 }
8070 else if ((operand_less_p (*vr0min, vr1max) == 1
8071 || operand_equal_p (*vr0min, vr1max, 0))
8072 && operand_less_p (vr1min, *vr0min) == 1)
8073 {
8074 /* ( [ ) ] or ( )[ ] */
8075 if (*vr0type == VR_ANTI_RANGE
8076 && vr1type == VR_ANTI_RANGE)
8077 *vr0min = vr1min;
8078 else if (*vr0type == VR_RANGE
8079 && vr1type == VR_RANGE)
8080 *vr0max = vr1max;
8081 else if (*vr0type == VR_RANGE
8082 && vr1type == VR_ANTI_RANGE)
8083 {
8084 if (TREE_CODE (vr1max) == INTEGER_CST)
8085 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8086 integer_one_node);
8087 else
8088 *vr0min = vr1max;
8089 }
8090 else if (*vr0type == VR_ANTI_RANGE
8091 && vr1type == VR_RANGE)
8092 {
8093 *vr0type = VR_RANGE;
8094 if (TREE_CODE (*vr0min) == INTEGER_CST)
8095 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8096 integer_one_node);
8097 else
8098 *vr0max = *vr0min;
8099 *vr0min = vr1min;
8100 }
8101 else
8102 gcc_unreachable ();
8103 }
8104
8105 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8106 result for the intersection. That's always a conservative
8107 correct estimate. */
8108
8109 return;
8110 }
8111
8112
8113 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8114 in *VR0. This may not be the smallest possible such range. */
8115
8116 static void
8117 vrp_intersect_ranges_1 (value_range_t *vr0, value_range_t *vr1)
8118 {
8119 value_range_t saved;
8120
8121 /* If either range is VR_VARYING the other one wins. */
8122 if (vr1->type == VR_VARYING)
8123 return;
8124 if (vr0->type == VR_VARYING)
8125 {
8126 copy_value_range (vr0, vr1);
8127 return;
8128 }
8129
8130 /* When either range is VR_UNDEFINED the resulting range is
8131 VR_UNDEFINED, too. */
8132 if (vr0->type == VR_UNDEFINED)
8133 return;
8134 if (vr1->type == VR_UNDEFINED)
8135 {
8136 set_value_range_to_undefined (vr0);
8137 return;
8138 }
8139
8140 /* Save the original vr0 so we can return it as conservative intersection
8141 result when our worker turns things to varying. */
8142 saved = *vr0;
8143 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
8144 vr1->type, vr1->min, vr1->max);
8145 /* Make sure to canonicalize the result though as the inversion of a
8146 VR_RANGE can still be a VR_RANGE. */
8147 set_and_canonicalize_value_range (vr0, vr0->type,
8148 vr0->min, vr0->max, vr0->equiv);
8149 /* If that failed, use the saved original VR0. */
8150 if (vr0->type == VR_VARYING)
8151 {
8152 *vr0 = saved;
8153 return;
8154 }
8155 /* If the result is VR_UNDEFINED there is no need to mess with
8156 the equivalencies. */
8157 if (vr0->type == VR_UNDEFINED)
8158 return;
8159
8160 /* The resulting set of equivalences for range intersection is the union of
8161 the two sets. */
8162 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8163 bitmap_ior_into (vr0->equiv, vr1->equiv);
8164 else if (vr1->equiv && !vr0->equiv)
8165 bitmap_copy (vr0->equiv, vr1->equiv);
8166 }
8167
8168 static void
8169 vrp_intersect_ranges (value_range_t *vr0, value_range_t *vr1)
8170 {
8171 if (dump_file && (dump_flags & TDF_DETAILS))
8172 {
8173 fprintf (dump_file, "Intersecting\n ");
8174 dump_value_range (dump_file, vr0);
8175 fprintf (dump_file, "\nand\n ");
8176 dump_value_range (dump_file, vr1);
8177 fprintf (dump_file, "\n");
8178 }
8179 vrp_intersect_ranges_1 (vr0, vr1);
8180 if (dump_file && (dump_flags & TDF_DETAILS))
8181 {
8182 fprintf (dump_file, "to\n ");
8183 dump_value_range (dump_file, vr0);
8184 fprintf (dump_file, "\n");
8185 }
8186 }
8187
8188 /* Meet operation for value ranges. Given two value ranges VR0 and
8189 VR1, store in VR0 a range that contains both VR0 and VR1. This
8190 may not be the smallest possible such range. */
8191
8192 static void
8193 vrp_meet_1 (value_range_t *vr0, value_range_t *vr1)
8194 {
8195 value_range_t saved;
8196
8197 if (vr0->type == VR_UNDEFINED)
8198 {
8199 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
8200 return;
8201 }
8202
8203 if (vr1->type == VR_UNDEFINED)
8204 {
8205 /* VR0 already has the resulting range. */
8206 return;
8207 }
8208
8209 if (vr0->type == VR_VARYING)
8210 {
8211 /* Nothing to do. VR0 already has the resulting range. */
8212 return;
8213 }
8214
8215 if (vr1->type == VR_VARYING)
8216 {
8217 set_value_range_to_varying (vr0);
8218 return;
8219 }
8220
8221 saved = *vr0;
8222 union_ranges (&vr0->type, &vr0->min, &vr0->max,
8223 vr1->type, vr1->min, vr1->max);
8224 if (vr0->type == VR_VARYING)
8225 {
8226 /* Failed to find an efficient meet. Before giving up and setting
8227 the result to VARYING, see if we can at least derive a useful
8228 anti-range. FIXME, all this nonsense about distinguishing
8229 anti-ranges from ranges is necessary because of the odd
8230 semantics of range_includes_zero_p and friends. */
8231 if (((saved.type == VR_RANGE
8232 && range_includes_zero_p (saved.min, saved.max) == 0)
8233 || (saved.type == VR_ANTI_RANGE
8234 && range_includes_zero_p (saved.min, saved.max) == 1))
8235 && ((vr1->type == VR_RANGE
8236 && range_includes_zero_p (vr1->min, vr1->max) == 0)
8237 || (vr1->type == VR_ANTI_RANGE
8238 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
8239 {
8240 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
8241
8242 /* Since this meet operation did not result from the meeting of
8243 two equivalent names, VR0 cannot have any equivalences. */
8244 if (vr0->equiv)
8245 bitmap_clear (vr0->equiv);
8246 return;
8247 }
8248
8249 set_value_range_to_varying (vr0);
8250 return;
8251 }
8252 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
8253 vr0->equiv);
8254 if (vr0->type == VR_VARYING)
8255 return;
8256
8257 /* The resulting set of equivalences is always the intersection of
8258 the two sets. */
8259 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8260 bitmap_and_into (vr0->equiv, vr1->equiv);
8261 else if (vr0->equiv && !vr1->equiv)
8262 bitmap_clear (vr0->equiv);
8263 }
8264
8265 static void
8266 vrp_meet (value_range_t *vr0, value_range_t *vr1)
8267 {
8268 if (dump_file && (dump_flags & TDF_DETAILS))
8269 {
8270 fprintf (dump_file, "Meeting\n ");
8271 dump_value_range (dump_file, vr0);
8272 fprintf (dump_file, "\nand\n ");
8273 dump_value_range (dump_file, vr1);
8274 fprintf (dump_file, "\n");
8275 }
8276 vrp_meet_1 (vr0, vr1);
8277 if (dump_file && (dump_flags & TDF_DETAILS))
8278 {
8279 fprintf (dump_file, "to\n ");
8280 dump_value_range (dump_file, vr0);
8281 fprintf (dump_file, "\n");
8282 }
8283 }
8284
8285
8286 /* Visit all arguments for PHI node PHI that flow through executable
8287 edges. If a valid value range can be derived from all the incoming
8288 value ranges, set a new range for the LHS of PHI. */
8289
8290 static enum ssa_prop_result
8291 vrp_visit_phi_node (gimple phi)
8292 {
8293 size_t i;
8294 tree lhs = PHI_RESULT (phi);
8295 value_range_t *lhs_vr = get_value_range (lhs);
8296 value_range_t vr_result = VR_INITIALIZER;
8297 bool first = true;
8298 int edges, old_edges;
8299 struct loop *l;
8300
8301 if (dump_file && (dump_flags & TDF_DETAILS))
8302 {
8303 fprintf (dump_file, "\nVisiting PHI node: ");
8304 print_gimple_stmt (dump_file, phi, 0, dump_flags);
8305 }
8306
8307 edges = 0;
8308 for (i = 0; i < gimple_phi_num_args (phi); i++)
8309 {
8310 edge e = gimple_phi_arg_edge (phi, i);
8311
8312 if (dump_file && (dump_flags & TDF_DETAILS))
8313 {
8314 fprintf (dump_file,
8315 "\n Argument #%d (%d -> %d %sexecutable)\n",
8316 (int) i, e->src->index, e->dest->index,
8317 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
8318 }
8319
8320 if (e->flags & EDGE_EXECUTABLE)
8321 {
8322 tree arg = PHI_ARG_DEF (phi, i);
8323 value_range_t vr_arg;
8324
8325 ++edges;
8326
8327 if (TREE_CODE (arg) == SSA_NAME)
8328 {
8329 vr_arg = *(get_value_range (arg));
8330 /* Do not allow equivalences or symbolic ranges to leak in from
8331 backedges. That creates invalid equivalencies.
8332 See PR53465 and PR54767. */
8333 if (e->flags & EDGE_DFS_BACK
8334 && (vr_arg.type == VR_RANGE
8335 || vr_arg.type == VR_ANTI_RANGE))
8336 {
8337 vr_arg.equiv = NULL;
8338 if (symbolic_range_p (&vr_arg))
8339 {
8340 vr_arg.type = VR_VARYING;
8341 vr_arg.min = NULL_TREE;
8342 vr_arg.max = NULL_TREE;
8343 }
8344 }
8345 }
8346 else
8347 {
8348 if (is_overflow_infinity (arg))
8349 arg = drop_tree_overflow (arg);
8350
8351 vr_arg.type = VR_RANGE;
8352 vr_arg.min = arg;
8353 vr_arg.max = arg;
8354 vr_arg.equiv = NULL;
8355 }
8356
8357 if (dump_file && (dump_flags & TDF_DETAILS))
8358 {
8359 fprintf (dump_file, "\t");
8360 print_generic_expr (dump_file, arg, dump_flags);
8361 fprintf (dump_file, "\n\tValue: ");
8362 dump_value_range (dump_file, &vr_arg);
8363 fprintf (dump_file, "\n");
8364 }
8365
8366 if (first)
8367 copy_value_range (&vr_result, &vr_arg);
8368 else
8369 vrp_meet (&vr_result, &vr_arg);
8370 first = false;
8371
8372 if (vr_result.type == VR_VARYING)
8373 break;
8374 }
8375 }
8376
8377 if (vr_result.type == VR_VARYING)
8378 goto varying;
8379 else if (vr_result.type == VR_UNDEFINED)
8380 goto update_range;
8381
8382 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
8383 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
8384
8385 /* To prevent infinite iterations in the algorithm, derive ranges
8386 when the new value is slightly bigger or smaller than the
8387 previous one. We don't do this if we have seen a new executable
8388 edge; this helps us avoid an overflow infinity for conditionals
8389 which are not in a loop. If the old value-range was VR_UNDEFINED
8390 use the updated range and iterate one more time. */
8391 if (edges > 0
8392 && gimple_phi_num_args (phi) > 1
8393 && edges == old_edges
8394 && lhs_vr->type != VR_UNDEFINED)
8395 {
8396 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
8397 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
8398
8399 /* For non VR_RANGE or for pointers fall back to varying if
8400 the range changed. */
8401 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
8402 || POINTER_TYPE_P (TREE_TYPE (lhs)))
8403 && (cmp_min != 0 || cmp_max != 0))
8404 goto varying;
8405
8406 /* If the new minimum is smaller or larger than the previous
8407 one, go all the way to -INF. In the first case, to avoid
8408 iterating millions of times to reach -INF, and in the
8409 other case to avoid infinite bouncing between different
8410 minimums. */
8411 if (cmp_min > 0 || cmp_min < 0)
8412 {
8413 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
8414 || !vrp_var_may_overflow (lhs, phi))
8415 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
8416 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
8417 vr_result.min =
8418 negative_overflow_infinity (TREE_TYPE (vr_result.min));
8419 }
8420
8421 /* Similarly, if the new maximum is smaller or larger than
8422 the previous one, go all the way to +INF. */
8423 if (cmp_max < 0 || cmp_max > 0)
8424 {
8425 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
8426 || !vrp_var_may_overflow (lhs, phi))
8427 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
8428 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
8429 vr_result.max =
8430 positive_overflow_infinity (TREE_TYPE (vr_result.max));
8431 }
8432
8433 /* If we dropped either bound to +-INF then if this is a loop
8434 PHI node SCEV may known more about its value-range. */
8435 if ((cmp_min > 0 || cmp_min < 0
8436 || cmp_max < 0 || cmp_max > 0)
8437 && current_loops
8438 && (l = loop_containing_stmt (phi))
8439 && l->header == gimple_bb (phi))
8440 adjust_range_with_scev (&vr_result, l, phi, lhs);
8441
8442 /* If we will end up with a (-INF, +INF) range, set it to
8443 VARYING. Same if the previous max value was invalid for
8444 the type and we end up with vr_result.min > vr_result.max. */
8445 if ((vrp_val_is_max (vr_result.max)
8446 && vrp_val_is_min (vr_result.min))
8447 || compare_values (vr_result.min,
8448 vr_result.max) > 0)
8449 goto varying;
8450 }
8451
8452 /* If the new range is different than the previous value, keep
8453 iterating. */
8454 update_range:
8455 if (update_value_range (lhs, &vr_result))
8456 {
8457 if (dump_file && (dump_flags & TDF_DETAILS))
8458 {
8459 fprintf (dump_file, "Found new range for ");
8460 print_generic_expr (dump_file, lhs, 0);
8461 fprintf (dump_file, ": ");
8462 dump_value_range (dump_file, &vr_result);
8463 fprintf (dump_file, "\n\n");
8464 }
8465
8466 return SSA_PROP_INTERESTING;
8467 }
8468
8469 /* Nothing changed, don't add outgoing edges. */
8470 return SSA_PROP_NOT_INTERESTING;
8471
8472 /* No match found. Set the LHS to VARYING. */
8473 varying:
8474 set_value_range_to_varying (lhs_vr);
8475 return SSA_PROP_VARYING;
8476 }
8477
8478 /* Simplify boolean operations if the source is known
8479 to be already a boolean. */
8480 static bool
8481 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8482 {
8483 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8484 tree lhs, op0, op1;
8485 bool need_conversion;
8486
8487 /* We handle only !=/== case here. */
8488 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
8489
8490 op0 = gimple_assign_rhs1 (stmt);
8491 if (!op_with_boolean_value_range_p (op0))
8492 return false;
8493
8494 op1 = gimple_assign_rhs2 (stmt);
8495 if (!op_with_boolean_value_range_p (op1))
8496 return false;
8497
8498 /* Reduce number of cases to handle to NE_EXPR. As there is no
8499 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8500 if (rhs_code == EQ_EXPR)
8501 {
8502 if (TREE_CODE (op1) == INTEGER_CST)
8503 op1 = int_const_binop (BIT_XOR_EXPR, op1, integer_one_node);
8504 else
8505 return false;
8506 }
8507
8508 lhs = gimple_assign_lhs (stmt);
8509 need_conversion
8510 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
8511
8512 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
8513 if (need_conversion
8514 && !TYPE_UNSIGNED (TREE_TYPE (op0))
8515 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
8516 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
8517 return false;
8518
8519 /* For A != 0 we can substitute A itself. */
8520 if (integer_zerop (op1))
8521 gimple_assign_set_rhs_with_ops (gsi,
8522 need_conversion
8523 ? NOP_EXPR : TREE_CODE (op0),
8524 op0, NULL_TREE);
8525 /* For A != B we substitute A ^ B. Either with conversion. */
8526 else if (need_conversion)
8527 {
8528 tree tem = make_ssa_name (TREE_TYPE (op0), NULL);
8529 gimple newop = gimple_build_assign_with_ops (BIT_XOR_EXPR, tem, op0, op1);
8530 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
8531 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem, NULL_TREE);
8532 }
8533 /* Or without. */
8534 else
8535 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
8536 update_stmt (gsi_stmt (*gsi));
8537
8538 return true;
8539 }
8540
8541 /* Simplify a division or modulo operator to a right shift or
8542 bitwise and if the first operand is unsigned or is greater
8543 than zero and the second operand is an exact power of two. */
8544
8545 static bool
8546 simplify_div_or_mod_using_ranges (gimple stmt)
8547 {
8548 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8549 tree val = NULL;
8550 tree op0 = gimple_assign_rhs1 (stmt);
8551 tree op1 = gimple_assign_rhs2 (stmt);
8552 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
8553
8554 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
8555 {
8556 val = integer_one_node;
8557 }
8558 else
8559 {
8560 bool sop = false;
8561
8562 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
8563
8564 if (val
8565 && sop
8566 && integer_onep (val)
8567 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8568 {
8569 location_t location;
8570
8571 if (!gimple_has_location (stmt))
8572 location = input_location;
8573 else
8574 location = gimple_location (stmt);
8575 warning_at (location, OPT_Wstrict_overflow,
8576 "assuming signed overflow does not occur when "
8577 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
8578 }
8579 }
8580
8581 if (val && integer_onep (val))
8582 {
8583 tree t;
8584
8585 if (rhs_code == TRUNC_DIV_EXPR)
8586 {
8587 t = build_int_cst (integer_type_node, tree_log2 (op1));
8588 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
8589 gimple_assign_set_rhs1 (stmt, op0);
8590 gimple_assign_set_rhs2 (stmt, t);
8591 }
8592 else
8593 {
8594 t = build_int_cst (TREE_TYPE (op1), 1);
8595 t = int_const_binop (MINUS_EXPR, op1, t);
8596 t = fold_convert (TREE_TYPE (op0), t);
8597
8598 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
8599 gimple_assign_set_rhs1 (stmt, op0);
8600 gimple_assign_set_rhs2 (stmt, t);
8601 }
8602
8603 update_stmt (stmt);
8604 return true;
8605 }
8606
8607 return false;
8608 }
8609
8610 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
8611 ABS_EXPR. If the operand is <= 0, then simplify the
8612 ABS_EXPR into a NEGATE_EXPR. */
8613
8614 static bool
8615 simplify_abs_using_ranges (gimple stmt)
8616 {
8617 tree val = NULL;
8618 tree op = gimple_assign_rhs1 (stmt);
8619 tree type = TREE_TYPE (op);
8620 value_range_t *vr = get_value_range (op);
8621
8622 if (TYPE_UNSIGNED (type))
8623 {
8624 val = integer_zero_node;
8625 }
8626 else if (vr)
8627 {
8628 bool sop = false;
8629
8630 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
8631 if (!val)
8632 {
8633 sop = false;
8634 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
8635 &sop);
8636
8637 if (val)
8638 {
8639 if (integer_zerop (val))
8640 val = integer_one_node;
8641 else if (integer_onep (val))
8642 val = integer_zero_node;
8643 }
8644 }
8645
8646 if (val
8647 && (integer_onep (val) || integer_zerop (val)))
8648 {
8649 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8650 {
8651 location_t location;
8652
8653 if (!gimple_has_location (stmt))
8654 location = input_location;
8655 else
8656 location = gimple_location (stmt);
8657 warning_at (location, OPT_Wstrict_overflow,
8658 "assuming signed overflow does not occur when "
8659 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
8660 }
8661
8662 gimple_assign_set_rhs1 (stmt, op);
8663 if (integer_onep (val))
8664 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
8665 else
8666 gimple_assign_set_rhs_code (stmt, SSA_NAME);
8667 update_stmt (stmt);
8668 return true;
8669 }
8670 }
8671
8672 return false;
8673 }
8674
8675 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
8676 If all the bits that are being cleared by & are already
8677 known to be zero from VR, or all the bits that are being
8678 set by | are already known to be one from VR, the bit
8679 operation is redundant. */
8680
8681 static bool
8682 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8683 {
8684 tree op0 = gimple_assign_rhs1 (stmt);
8685 tree op1 = gimple_assign_rhs2 (stmt);
8686 tree op = NULL_TREE;
8687 value_range_t vr0 = VR_INITIALIZER;
8688 value_range_t vr1 = VR_INITIALIZER;
8689 double_int may_be_nonzero0, may_be_nonzero1;
8690 double_int must_be_nonzero0, must_be_nonzero1;
8691 double_int mask;
8692
8693 if (TREE_CODE (op0) == SSA_NAME)
8694 vr0 = *(get_value_range (op0));
8695 else if (is_gimple_min_invariant (op0))
8696 set_value_range_to_value (&vr0, op0, NULL);
8697 else
8698 return false;
8699
8700 if (TREE_CODE (op1) == SSA_NAME)
8701 vr1 = *(get_value_range (op1));
8702 else if (is_gimple_min_invariant (op1))
8703 set_value_range_to_value (&vr1, op1, NULL);
8704 else
8705 return false;
8706
8707 if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
8708 return false;
8709 if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
8710 return false;
8711
8712 switch (gimple_assign_rhs_code (stmt))
8713 {
8714 case BIT_AND_EXPR:
8715 mask = may_be_nonzero0.and_not (must_be_nonzero1);
8716 if (mask.is_zero ())
8717 {
8718 op = op0;
8719 break;
8720 }
8721 mask = may_be_nonzero1.and_not (must_be_nonzero0);
8722 if (mask.is_zero ())
8723 {
8724 op = op1;
8725 break;
8726 }
8727 break;
8728 case BIT_IOR_EXPR:
8729 mask = may_be_nonzero0.and_not (must_be_nonzero1);
8730 if (mask.is_zero ())
8731 {
8732 op = op1;
8733 break;
8734 }
8735 mask = may_be_nonzero1.and_not (must_be_nonzero0);
8736 if (mask.is_zero ())
8737 {
8738 op = op0;
8739 break;
8740 }
8741 break;
8742 default:
8743 gcc_unreachable ();
8744 }
8745
8746 if (op == NULL_TREE)
8747 return false;
8748
8749 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
8750 update_stmt (gsi_stmt (*gsi));
8751 return true;
8752 }
8753
8754 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
8755 a known value range VR.
8756
8757 If there is one and only one value which will satisfy the
8758 conditional, then return that value. Else return NULL. */
8759
8760 static tree
8761 test_for_singularity (enum tree_code cond_code, tree op0,
8762 tree op1, value_range_t *vr)
8763 {
8764 tree min = NULL;
8765 tree max = NULL;
8766
8767 /* Extract minimum/maximum values which satisfy the
8768 the conditional as it was written. */
8769 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
8770 {
8771 /* This should not be negative infinity; there is no overflow
8772 here. */
8773 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
8774
8775 max = op1;
8776 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
8777 {
8778 tree one = build_int_cst (TREE_TYPE (op0), 1);
8779 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
8780 if (EXPR_P (max))
8781 TREE_NO_WARNING (max) = 1;
8782 }
8783 }
8784 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
8785 {
8786 /* This should not be positive infinity; there is no overflow
8787 here. */
8788 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
8789
8790 min = op1;
8791 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
8792 {
8793 tree one = build_int_cst (TREE_TYPE (op0), 1);
8794 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
8795 if (EXPR_P (min))
8796 TREE_NO_WARNING (min) = 1;
8797 }
8798 }
8799
8800 /* Now refine the minimum and maximum values using any
8801 value range information we have for op0. */
8802 if (min && max)
8803 {
8804 if (compare_values (vr->min, min) == 1)
8805 min = vr->min;
8806 if (compare_values (vr->max, max) == -1)
8807 max = vr->max;
8808
8809 /* If the new min/max values have converged to a single value,
8810 then there is only one value which can satisfy the condition,
8811 return that value. */
8812 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
8813 return min;
8814 }
8815 return NULL;
8816 }
8817
8818 /* Return whether the value range *VR fits in an integer type specified
8819 by PRECISION and UNSIGNED_P. */
8820
8821 static bool
8822 range_fits_type_p (value_range_t *vr, unsigned precision, bool unsigned_p)
8823 {
8824 tree src_type;
8825 unsigned src_precision;
8826 double_int tem;
8827
8828 /* We can only handle integral and pointer types. */
8829 src_type = TREE_TYPE (vr->min);
8830 if (!INTEGRAL_TYPE_P (src_type)
8831 && !POINTER_TYPE_P (src_type))
8832 return false;
8833
8834 /* An extension is fine unless VR is signed and unsigned_p,
8835 and so is an identity transform. */
8836 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
8837 if ((src_precision < precision
8838 && !(unsigned_p && !TYPE_UNSIGNED (src_type)))
8839 || (src_precision == precision
8840 && TYPE_UNSIGNED (src_type) == unsigned_p))
8841 return true;
8842
8843 /* Now we can only handle ranges with constant bounds. */
8844 if (vr->type != VR_RANGE
8845 || TREE_CODE (vr->min) != INTEGER_CST
8846 || TREE_CODE (vr->max) != INTEGER_CST)
8847 return false;
8848
8849 /* For sign changes, the MSB of the double_int has to be clear.
8850 An unsigned value with its MSB set cannot be represented by
8851 a signed double_int, while a negative value cannot be represented
8852 by an unsigned double_int. */
8853 if (TYPE_UNSIGNED (src_type) != unsigned_p
8854 && (TREE_INT_CST_HIGH (vr->min) | TREE_INT_CST_HIGH (vr->max)) < 0)
8855 return false;
8856
8857 /* Then we can perform the conversion on both ends and compare
8858 the result for equality. */
8859 tem = tree_to_double_int (vr->min).ext (precision, unsigned_p);
8860 if (tree_to_double_int (vr->min) != tem)
8861 return false;
8862 tem = tree_to_double_int (vr->max).ext (precision, unsigned_p);
8863 if (tree_to_double_int (vr->max) != tem)
8864 return false;
8865
8866 return true;
8867 }
8868
8869 /* Simplify a conditional using a relational operator to an equality
8870 test if the range information indicates only one value can satisfy
8871 the original conditional. */
8872
8873 static bool
8874 simplify_cond_using_ranges (gimple stmt)
8875 {
8876 tree op0 = gimple_cond_lhs (stmt);
8877 tree op1 = gimple_cond_rhs (stmt);
8878 enum tree_code cond_code = gimple_cond_code (stmt);
8879
8880 if (cond_code != NE_EXPR
8881 && cond_code != EQ_EXPR
8882 && TREE_CODE (op0) == SSA_NAME
8883 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8884 && is_gimple_min_invariant (op1))
8885 {
8886 value_range_t *vr = get_value_range (op0);
8887
8888 /* If we have range information for OP0, then we might be
8889 able to simplify this conditional. */
8890 if (vr->type == VR_RANGE)
8891 {
8892 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
8893
8894 if (new_tree)
8895 {
8896 if (dump_file)
8897 {
8898 fprintf (dump_file, "Simplified relational ");
8899 print_gimple_stmt (dump_file, stmt, 0, 0);
8900 fprintf (dump_file, " into ");
8901 }
8902
8903 gimple_cond_set_code (stmt, EQ_EXPR);
8904 gimple_cond_set_lhs (stmt, op0);
8905 gimple_cond_set_rhs (stmt, new_tree);
8906
8907 update_stmt (stmt);
8908
8909 if (dump_file)
8910 {
8911 print_gimple_stmt (dump_file, stmt, 0, 0);
8912 fprintf (dump_file, "\n");
8913 }
8914
8915 return true;
8916 }
8917
8918 /* Try again after inverting the condition. We only deal
8919 with integral types here, so no need to worry about
8920 issues with inverting FP comparisons. */
8921 cond_code = invert_tree_comparison (cond_code, false);
8922 new_tree = test_for_singularity (cond_code, op0, op1, vr);
8923
8924 if (new_tree)
8925 {
8926 if (dump_file)
8927 {
8928 fprintf (dump_file, "Simplified relational ");
8929 print_gimple_stmt (dump_file, stmt, 0, 0);
8930 fprintf (dump_file, " into ");
8931 }
8932
8933 gimple_cond_set_code (stmt, NE_EXPR);
8934 gimple_cond_set_lhs (stmt, op0);
8935 gimple_cond_set_rhs (stmt, new_tree);
8936
8937 update_stmt (stmt);
8938
8939 if (dump_file)
8940 {
8941 print_gimple_stmt (dump_file, stmt, 0, 0);
8942 fprintf (dump_file, "\n");
8943 }
8944
8945 return true;
8946 }
8947 }
8948 }
8949
8950 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
8951 see if OP0 was set by a type conversion where the source of
8952 the conversion is another SSA_NAME with a range that fits
8953 into the range of OP0's type.
8954
8955 If so, the conversion is redundant as the earlier SSA_NAME can be
8956 used for the comparison directly if we just massage the constant in the
8957 comparison. */
8958 if (TREE_CODE (op0) == SSA_NAME
8959 && TREE_CODE (op1) == INTEGER_CST)
8960 {
8961 gimple def_stmt = SSA_NAME_DEF_STMT (op0);
8962 tree innerop;
8963
8964 if (!is_gimple_assign (def_stmt)
8965 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
8966 return false;
8967
8968 innerop = gimple_assign_rhs1 (def_stmt);
8969
8970 if (TREE_CODE (innerop) == SSA_NAME
8971 && !POINTER_TYPE_P (TREE_TYPE (innerop)))
8972 {
8973 value_range_t *vr = get_value_range (innerop);
8974
8975 if (range_int_cst_p (vr)
8976 && range_fits_type_p (vr,
8977 TYPE_PRECISION (TREE_TYPE (op0)),
8978 TYPE_UNSIGNED (TREE_TYPE (op0)))
8979 && int_fits_type_p (op1, TREE_TYPE (innerop))
8980 /* The range must not have overflowed, or if it did overflow
8981 we must not be wrapping/trapping overflow and optimizing
8982 with strict overflow semantics. */
8983 && ((!is_negative_overflow_infinity (vr->min)
8984 && !is_positive_overflow_infinity (vr->max))
8985 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop))))
8986 {
8987 /* If the range overflowed and the user has asked for warnings
8988 when strict overflow semantics were used to optimize code,
8989 issue an appropriate warning. */
8990 if ((is_negative_overflow_infinity (vr->min)
8991 || is_positive_overflow_infinity (vr->max))
8992 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL))
8993 {
8994 location_t location;
8995
8996 if (!gimple_has_location (stmt))
8997 location = input_location;
8998 else
8999 location = gimple_location (stmt);
9000 warning_at (location, OPT_Wstrict_overflow,
9001 "assuming signed overflow does not occur when "
9002 "simplifying conditional");
9003 }
9004
9005 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
9006 gimple_cond_set_lhs (stmt, innerop);
9007 gimple_cond_set_rhs (stmt, newconst);
9008 return true;
9009 }
9010 }
9011 }
9012
9013 return false;
9014 }
9015
9016 /* Simplify a switch statement using the value range of the switch
9017 argument. */
9018
9019 static bool
9020 simplify_switch_using_ranges (gimple stmt)
9021 {
9022 tree op = gimple_switch_index (stmt);
9023 value_range_t *vr;
9024 bool take_default;
9025 edge e;
9026 edge_iterator ei;
9027 size_t i = 0, j = 0, n, n2;
9028 tree vec2;
9029 switch_update su;
9030 size_t k = 1, l = 0;
9031
9032 if (TREE_CODE (op) == SSA_NAME)
9033 {
9034 vr = get_value_range (op);
9035
9036 /* We can only handle integer ranges. */
9037 if ((vr->type != VR_RANGE
9038 && vr->type != VR_ANTI_RANGE)
9039 || symbolic_range_p (vr))
9040 return false;
9041
9042 /* Find case label for min/max of the value range. */
9043 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
9044 }
9045 else if (TREE_CODE (op) == INTEGER_CST)
9046 {
9047 take_default = !find_case_label_index (stmt, 1, op, &i);
9048 if (take_default)
9049 {
9050 i = 1;
9051 j = 0;
9052 }
9053 else
9054 {
9055 j = i;
9056 }
9057 }
9058 else
9059 return false;
9060
9061 n = gimple_switch_num_labels (stmt);
9062
9063 /* Bail out if this is just all edges taken. */
9064 if (i == 1
9065 && j == n - 1
9066 && take_default)
9067 return false;
9068
9069 /* Build a new vector of taken case labels. */
9070 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
9071 n2 = 0;
9072
9073 /* Add the default edge, if necessary. */
9074 if (take_default)
9075 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
9076
9077 for (; i <= j; ++i, ++n2)
9078 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
9079
9080 for (; k <= l; ++k, ++n2)
9081 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
9082
9083 /* Mark needed edges. */
9084 for (i = 0; i < n2; ++i)
9085 {
9086 e = find_edge (gimple_bb (stmt),
9087 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
9088 e->aux = (void *)-1;
9089 }
9090
9091 /* Queue not needed edges for later removal. */
9092 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
9093 {
9094 if (e->aux == (void *)-1)
9095 {
9096 e->aux = NULL;
9097 continue;
9098 }
9099
9100 if (dump_file && (dump_flags & TDF_DETAILS))
9101 {
9102 fprintf (dump_file, "removing unreachable case label\n");
9103 }
9104 to_remove_edges.safe_push (e);
9105 e->flags &= ~EDGE_EXECUTABLE;
9106 }
9107
9108 /* And queue an update for the stmt. */
9109 su.stmt = stmt;
9110 su.vec = vec2;
9111 to_update_switch_stmts.safe_push (su);
9112 return false;
9113 }
9114
9115 /* Simplify an integral conversion from an SSA name in STMT. */
9116
9117 static bool
9118 simplify_conversion_using_ranges (gimple stmt)
9119 {
9120 tree innerop, middleop, finaltype;
9121 gimple def_stmt;
9122 value_range_t *innervr;
9123 bool inner_unsigned_p, middle_unsigned_p, final_unsigned_p;
9124 unsigned inner_prec, middle_prec, final_prec;
9125 double_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
9126
9127 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
9128 if (!INTEGRAL_TYPE_P (finaltype))
9129 return false;
9130 middleop = gimple_assign_rhs1 (stmt);
9131 def_stmt = SSA_NAME_DEF_STMT (middleop);
9132 if (!is_gimple_assign (def_stmt)
9133 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9134 return false;
9135 innerop = gimple_assign_rhs1 (def_stmt);
9136 if (TREE_CODE (innerop) != SSA_NAME
9137 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
9138 return false;
9139
9140 /* Get the value-range of the inner operand. */
9141 innervr = get_value_range (innerop);
9142 if (innervr->type != VR_RANGE
9143 || TREE_CODE (innervr->min) != INTEGER_CST
9144 || TREE_CODE (innervr->max) != INTEGER_CST)
9145 return false;
9146
9147 /* Simulate the conversion chain to check if the result is equal if
9148 the middle conversion is removed. */
9149 innermin = tree_to_double_int (innervr->min);
9150 innermax = tree_to_double_int (innervr->max);
9151
9152 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
9153 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
9154 final_prec = TYPE_PRECISION (finaltype);
9155
9156 /* If the first conversion is not injective, the second must not
9157 be widening. */
9158 if ((innermax - innermin).ugt (double_int::mask (middle_prec))
9159 && middle_prec < final_prec)
9160 return false;
9161 /* We also want a medium value so that we can track the effect that
9162 narrowing conversions with sign change have. */
9163 inner_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (innerop));
9164 if (inner_unsigned_p)
9165 innermed = double_int::mask (inner_prec).lrshift (1, inner_prec);
9166 else
9167 innermed = double_int_zero;
9168 if (innermin.cmp (innermed, inner_unsigned_p) >= 0
9169 || innermed.cmp (innermax, inner_unsigned_p) >= 0)
9170 innermed = innermin;
9171
9172 middle_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (middleop));
9173 middlemin = innermin.ext (middle_prec, middle_unsigned_p);
9174 middlemed = innermed.ext (middle_prec, middle_unsigned_p);
9175 middlemax = innermax.ext (middle_prec, middle_unsigned_p);
9176
9177 /* Require that the final conversion applied to both the original
9178 and the intermediate range produces the same result. */
9179 final_unsigned_p = TYPE_UNSIGNED (finaltype);
9180 if (middlemin.ext (final_prec, final_unsigned_p)
9181 != innermin.ext (final_prec, final_unsigned_p)
9182 || middlemed.ext (final_prec, final_unsigned_p)
9183 != innermed.ext (final_prec, final_unsigned_p)
9184 || middlemax.ext (final_prec, final_unsigned_p)
9185 != innermax.ext (final_prec, final_unsigned_p))
9186 return false;
9187
9188 gimple_assign_set_rhs1 (stmt, innerop);
9189 update_stmt (stmt);
9190 return true;
9191 }
9192
9193 /* Simplify a conversion from integral SSA name to float in STMT. */
9194
9195 static bool
9196 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9197 {
9198 tree rhs1 = gimple_assign_rhs1 (stmt);
9199 value_range_t *vr = get_value_range (rhs1);
9200 enum machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
9201 enum machine_mode mode;
9202 tree tem;
9203 gimple conv;
9204
9205 /* We can only handle constant ranges. */
9206 if (vr->type != VR_RANGE
9207 || TREE_CODE (vr->min) != INTEGER_CST
9208 || TREE_CODE (vr->max) != INTEGER_CST)
9209 return false;
9210
9211 /* First check if we can use a signed type in place of an unsigned. */
9212 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
9213 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
9214 != CODE_FOR_nothing)
9215 && range_fits_type_p (vr, GET_MODE_PRECISION
9216 (TYPE_MODE (TREE_TYPE (rhs1))), 0))
9217 mode = TYPE_MODE (TREE_TYPE (rhs1));
9218 /* If we can do the conversion in the current input mode do nothing. */
9219 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
9220 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
9221 return false;
9222 /* Otherwise search for a mode we can use, starting from the narrowest
9223 integer mode available. */
9224 else
9225 {
9226 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
9227 do
9228 {
9229 /* If we cannot do a signed conversion to float from mode
9230 or if the value-range does not fit in the signed type
9231 try with a wider mode. */
9232 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
9233 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), 0))
9234 break;
9235
9236 mode = GET_MODE_WIDER_MODE (mode);
9237 /* But do not widen the input. Instead leave that to the
9238 optabs expansion code. */
9239 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
9240 return false;
9241 }
9242 while (mode != VOIDmode);
9243 if (mode == VOIDmode)
9244 return false;
9245 }
9246
9247 /* It works, insert a truncation or sign-change before the
9248 float conversion. */
9249 tem = make_ssa_name (build_nonstandard_integer_type
9250 (GET_MODE_PRECISION (mode), 0), NULL);
9251 conv = gimple_build_assign_with_ops (NOP_EXPR, tem, rhs1, NULL_TREE);
9252 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
9253 gimple_assign_set_rhs1 (stmt, tem);
9254 update_stmt (stmt);
9255
9256 return true;
9257 }
9258
9259 /* Simplify STMT using ranges if possible. */
9260
9261 static bool
9262 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
9263 {
9264 gimple stmt = gsi_stmt (*gsi);
9265 if (is_gimple_assign (stmt))
9266 {
9267 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9268 tree rhs1 = gimple_assign_rhs1 (stmt);
9269
9270 switch (rhs_code)
9271 {
9272 case EQ_EXPR:
9273 case NE_EXPR:
9274 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
9275 if the RHS is zero or one, and the LHS are known to be boolean
9276 values. */
9277 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9278 return simplify_truth_ops_using_ranges (gsi, stmt);
9279 break;
9280
9281 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
9282 and BIT_AND_EXPR respectively if the first operand is greater
9283 than zero and the second operand is an exact power of two. */
9284 case TRUNC_DIV_EXPR:
9285 case TRUNC_MOD_EXPR:
9286 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
9287 && integer_pow2p (gimple_assign_rhs2 (stmt)))
9288 return simplify_div_or_mod_using_ranges (stmt);
9289 break;
9290
9291 /* Transform ABS (X) into X or -X as appropriate. */
9292 case ABS_EXPR:
9293 if (TREE_CODE (rhs1) == SSA_NAME
9294 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9295 return simplify_abs_using_ranges (stmt);
9296 break;
9297
9298 case BIT_AND_EXPR:
9299 case BIT_IOR_EXPR:
9300 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
9301 if all the bits being cleared are already cleared or
9302 all the bits being set are already set. */
9303 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9304 return simplify_bit_ops_using_ranges (gsi, stmt);
9305 break;
9306
9307 CASE_CONVERT:
9308 if (TREE_CODE (rhs1) == SSA_NAME
9309 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9310 return simplify_conversion_using_ranges (stmt);
9311 break;
9312
9313 case FLOAT_EXPR:
9314 if (TREE_CODE (rhs1) == SSA_NAME
9315 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9316 return simplify_float_conversion_using_ranges (gsi, stmt);
9317 break;
9318
9319 default:
9320 break;
9321 }
9322 }
9323 else if (gimple_code (stmt) == GIMPLE_COND)
9324 return simplify_cond_using_ranges (stmt);
9325 else if (gimple_code (stmt) == GIMPLE_SWITCH)
9326 return simplify_switch_using_ranges (stmt);
9327
9328 return false;
9329 }
9330
9331 /* If the statement pointed by SI has a predicate whose value can be
9332 computed using the value range information computed by VRP, compute
9333 its value and return true. Otherwise, return false. */
9334
9335 static bool
9336 fold_predicate_in (gimple_stmt_iterator *si)
9337 {
9338 bool assignment_p = false;
9339 tree val;
9340 gimple stmt = gsi_stmt (*si);
9341
9342 if (is_gimple_assign (stmt)
9343 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
9344 {
9345 assignment_p = true;
9346 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
9347 gimple_assign_rhs1 (stmt),
9348 gimple_assign_rhs2 (stmt),
9349 stmt);
9350 }
9351 else if (gimple_code (stmt) == GIMPLE_COND)
9352 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
9353 gimple_cond_lhs (stmt),
9354 gimple_cond_rhs (stmt),
9355 stmt);
9356 else
9357 return false;
9358
9359 if (val)
9360 {
9361 if (assignment_p)
9362 val = fold_convert (gimple_expr_type (stmt), val);
9363
9364 if (dump_file)
9365 {
9366 fprintf (dump_file, "Folding predicate ");
9367 print_gimple_expr (dump_file, stmt, 0, 0);
9368 fprintf (dump_file, " to ");
9369 print_generic_expr (dump_file, val, 0);
9370 fprintf (dump_file, "\n");
9371 }
9372
9373 if (is_gimple_assign (stmt))
9374 gimple_assign_set_rhs_from_tree (si, val);
9375 else
9376 {
9377 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
9378 if (integer_zerop (val))
9379 gimple_cond_make_false (stmt);
9380 else if (integer_onep (val))
9381 gimple_cond_make_true (stmt);
9382 else
9383 gcc_unreachable ();
9384 }
9385
9386 return true;
9387 }
9388
9389 return false;
9390 }
9391
9392 /* Callback for substitute_and_fold folding the stmt at *SI. */
9393
9394 static bool
9395 vrp_fold_stmt (gimple_stmt_iterator *si)
9396 {
9397 if (fold_predicate_in (si))
9398 return true;
9399
9400 return simplify_stmt_using_ranges (si);
9401 }
9402
9403 /* Stack of dest,src equivalency pairs that need to be restored after
9404 each attempt to thread a block's incoming edge to an outgoing edge.
9405
9406 A NULL entry is used to mark the end of pairs which need to be
9407 restored. */
9408 static vec<tree> equiv_stack;
9409
9410 /* A trivial wrapper so that we can present the generic jump threading
9411 code with a simple API for simplifying statements. STMT is the
9412 statement we want to simplify, WITHIN_STMT provides the location
9413 for any overflow warnings. */
9414
9415 static tree
9416 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
9417 {
9418 if (gimple_code (stmt) == GIMPLE_COND)
9419 return vrp_evaluate_conditional (gimple_cond_code (stmt),
9420 gimple_cond_lhs (stmt),
9421 gimple_cond_rhs (stmt), within_stmt);
9422
9423 if (gimple_code (stmt) == GIMPLE_ASSIGN)
9424 {
9425 value_range_t new_vr = VR_INITIALIZER;
9426 tree lhs = gimple_assign_lhs (stmt);
9427
9428 if (TREE_CODE (lhs) == SSA_NAME
9429 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
9430 || POINTER_TYPE_P (TREE_TYPE (lhs))))
9431 {
9432 extract_range_from_assignment (&new_vr, stmt);
9433 if (range_int_cst_singleton_p (&new_vr))
9434 return new_vr.min;
9435 }
9436 }
9437
9438 return NULL_TREE;
9439 }
9440
9441 /* Blocks which have more than one predecessor and more than
9442 one successor present jump threading opportunities, i.e.,
9443 when the block is reached from a specific predecessor, we
9444 may be able to determine which of the outgoing edges will
9445 be traversed. When this optimization applies, we are able
9446 to avoid conditionals at runtime and we may expose secondary
9447 optimization opportunities.
9448
9449 This routine is effectively a driver for the generic jump
9450 threading code. It basically just presents the generic code
9451 with edges that may be suitable for jump threading.
9452
9453 Unlike DOM, we do not iterate VRP if jump threading was successful.
9454 While iterating may expose new opportunities for VRP, it is expected
9455 those opportunities would be very limited and the compile time cost
9456 to expose those opportunities would be significant.
9457
9458 As jump threading opportunities are discovered, they are registered
9459 for later realization. */
9460
9461 static void
9462 identify_jump_threads (void)
9463 {
9464 basic_block bb;
9465 gimple dummy;
9466 int i;
9467 edge e;
9468
9469 /* Ugh. When substituting values earlier in this pass we can
9470 wipe the dominance information. So rebuild the dominator
9471 information as we need it within the jump threading code. */
9472 calculate_dominance_info (CDI_DOMINATORS);
9473
9474 /* We do not allow VRP information to be used for jump threading
9475 across a back edge in the CFG. Otherwise it becomes too
9476 difficult to avoid eliminating loop exit tests. Of course
9477 EDGE_DFS_BACK is not accurate at this time so we have to
9478 recompute it. */
9479 mark_dfs_back_edges ();
9480
9481 /* Do not thread across edges we are about to remove. Just marking
9482 them as EDGE_DFS_BACK will do. */
9483 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
9484 e->flags |= EDGE_DFS_BACK;
9485
9486 /* Allocate our unwinder stack to unwind any temporary equivalences
9487 that might be recorded. */
9488 equiv_stack.create (20);
9489
9490 /* To avoid lots of silly node creation, we create a single
9491 conditional and just modify it in-place when attempting to
9492 thread jumps. */
9493 dummy = gimple_build_cond (EQ_EXPR,
9494 integer_zero_node, integer_zero_node,
9495 NULL, NULL);
9496
9497 /* Walk through all the blocks finding those which present a
9498 potential jump threading opportunity. We could set this up
9499 as a dominator walker and record data during the walk, but
9500 I doubt it's worth the effort for the classes of jump
9501 threading opportunities we are trying to identify at this
9502 point in compilation. */
9503 FOR_EACH_BB (bb)
9504 {
9505 gimple last;
9506
9507 /* If the generic jump threading code does not find this block
9508 interesting, then there is nothing to do. */
9509 if (! potentially_threadable_block (bb))
9510 continue;
9511
9512 /* We only care about blocks ending in a COND_EXPR. While there
9513 may be some value in handling SWITCH_EXPR here, I doubt it's
9514 terribly important. */
9515 last = gsi_stmt (gsi_last_bb (bb));
9516
9517 /* We're basically looking for a switch or any kind of conditional with
9518 integral or pointer type arguments. Note the type of the second
9519 argument will be the same as the first argument, so no need to
9520 check it explicitly. */
9521 if (gimple_code (last) == GIMPLE_SWITCH
9522 || (gimple_code (last) == GIMPLE_COND
9523 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
9524 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
9525 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
9526 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
9527 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
9528 {
9529 edge_iterator ei;
9530
9531 /* We've got a block with multiple predecessors and multiple
9532 successors which also ends in a suitable conditional or
9533 switch statement. For each predecessor, see if we can thread
9534 it to a specific successor. */
9535 FOR_EACH_EDGE (e, ei, bb->preds)
9536 {
9537 /* Do not thread across back edges or abnormal edges
9538 in the CFG. */
9539 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
9540 continue;
9541
9542 thread_across_edge (dummy, e, true, &equiv_stack,
9543 simplify_stmt_for_jump_threading);
9544 }
9545 }
9546 }
9547
9548 /* We do not actually update the CFG or SSA graphs at this point as
9549 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
9550 handle ASSERT_EXPRs gracefully. */
9551 }
9552
9553 /* We identified all the jump threading opportunities earlier, but could
9554 not transform the CFG at that time. This routine transforms the
9555 CFG and arranges for the dominator tree to be rebuilt if necessary.
9556
9557 Note the SSA graph update will occur during the normal TODO
9558 processing by the pass manager. */
9559 static void
9560 finalize_jump_threads (void)
9561 {
9562 thread_through_all_blocks (false);
9563 equiv_stack.release ();
9564 }
9565
9566
9567 /* Traverse all the blocks folding conditionals with known ranges. */
9568
9569 static void
9570 vrp_finalize (void)
9571 {
9572 size_t i;
9573
9574 values_propagated = true;
9575
9576 if (dump_file)
9577 {
9578 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
9579 dump_all_value_ranges (dump_file);
9580 fprintf (dump_file, "\n");
9581 }
9582
9583 substitute_and_fold (op_with_constant_singleton_value_range,
9584 vrp_fold_stmt, false);
9585
9586 if (warn_array_bounds)
9587 check_all_array_refs ();
9588
9589 /* We must identify jump threading opportunities before we release
9590 the datastructures built by VRP. */
9591 identify_jump_threads ();
9592
9593 /* Set value range to non pointer SSA_NAMEs. */
9594 for (i = 0; i < num_vr_values; i++)
9595 if (vr_value[i])
9596 {
9597 tree name = ssa_name (i);
9598
9599 if (!name
9600 || POINTER_TYPE_P (TREE_TYPE (name))
9601 || (vr_value[i]->type == VR_VARYING)
9602 || (vr_value[i]->type == VR_UNDEFINED))
9603 continue;
9604
9605 if ((TREE_CODE (vr_value[i]->min) == INTEGER_CST)
9606 && (TREE_CODE (vr_value[i]->max) == INTEGER_CST))
9607 {
9608 if (vr_value[i]->type == VR_RANGE)
9609 set_range_info (name,
9610 tree_to_double_int (vr_value[i]->min),
9611 tree_to_double_int (vr_value[i]->max));
9612 else if (vr_value[i]->type == VR_ANTI_RANGE)
9613 {
9614 /* VR_ANTI_RANGE ~[min, max] is encoded compactly as
9615 [max + 1, min - 1] without additional attributes.
9616 When min value > max value, we know that it is
9617 VR_ANTI_RANGE; it is VR_RANGE otherwise. */
9618
9619 /* ~[0,0] anti-range is represented as
9620 range. */
9621 if (TYPE_UNSIGNED (TREE_TYPE (name))
9622 && integer_zerop (vr_value[i]->min)
9623 && integer_zerop (vr_value[i]->max))
9624 set_range_info (name,
9625 double_int_one,
9626 double_int::max_value
9627 (TYPE_PRECISION (TREE_TYPE (name)), true));
9628 else
9629 set_range_info (name,
9630 tree_to_double_int (vr_value[i]->max)
9631 + double_int_one,
9632 tree_to_double_int (vr_value[i]->min)
9633 - double_int_one);
9634 }
9635 }
9636 }
9637
9638 /* Free allocated memory. */
9639 for (i = 0; i < num_vr_values; i++)
9640 if (vr_value[i])
9641 {
9642 BITMAP_FREE (vr_value[i]->equiv);
9643 free (vr_value[i]);
9644 }
9645
9646 free (vr_value);
9647 free (vr_phi_edge_counts);
9648
9649 /* So that we can distinguish between VRP data being available
9650 and not available. */
9651 vr_value = NULL;
9652 vr_phi_edge_counts = NULL;
9653 }
9654
9655
9656 /* Main entry point to VRP (Value Range Propagation). This pass is
9657 loosely based on J. R. C. Patterson, ``Accurate Static Branch
9658 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
9659 Programming Language Design and Implementation, pp. 67-78, 1995.
9660 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
9661
9662 This is essentially an SSA-CCP pass modified to deal with ranges
9663 instead of constants.
9664
9665 While propagating ranges, we may find that two or more SSA name
9666 have equivalent, though distinct ranges. For instance,
9667
9668 1 x_9 = p_3->a;
9669 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
9670 3 if (p_4 == q_2)
9671 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
9672 5 endif
9673 6 if (q_2)
9674
9675 In the code above, pointer p_5 has range [q_2, q_2], but from the
9676 code we can also determine that p_5 cannot be NULL and, if q_2 had
9677 a non-varying range, p_5's range should also be compatible with it.
9678
9679 These equivalences are created by two expressions: ASSERT_EXPR and
9680 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
9681 result of another assertion, then we can use the fact that p_5 and
9682 p_4 are equivalent when evaluating p_5's range.
9683
9684 Together with value ranges, we also propagate these equivalences
9685 between names so that we can take advantage of information from
9686 multiple ranges when doing final replacement. Note that this
9687 equivalency relation is transitive but not symmetric.
9688
9689 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
9690 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
9691 in contexts where that assertion does not hold (e.g., in line 6).
9692
9693 TODO, the main difference between this pass and Patterson's is that
9694 we do not propagate edge probabilities. We only compute whether
9695 edges can be taken or not. That is, instead of having a spectrum
9696 of jump probabilities between 0 and 1, we only deal with 0, 1 and
9697 DON'T KNOW. In the future, it may be worthwhile to propagate
9698 probabilities to aid branch prediction. */
9699
9700 static unsigned int
9701 execute_vrp (void)
9702 {
9703 int i;
9704 edge e;
9705 switch_update *su;
9706
9707 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
9708 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
9709 scev_initialize ();
9710
9711 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
9712 Inserting assertions may split edges which will invalidate
9713 EDGE_DFS_BACK. */
9714 insert_range_assertions ();
9715
9716 to_remove_edges.create (10);
9717 to_update_switch_stmts.create (5);
9718 threadedge_initialize_values ();
9719
9720 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
9721 mark_dfs_back_edges ();
9722
9723 vrp_initialize ();
9724 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
9725 vrp_finalize ();
9726
9727 free_numbers_of_iterations_estimates ();
9728
9729 /* ASSERT_EXPRs must be removed before finalizing jump threads
9730 as finalizing jump threads calls the CFG cleanup code which
9731 does not properly handle ASSERT_EXPRs. */
9732 remove_range_assertions ();
9733
9734 /* If we exposed any new variables, go ahead and put them into
9735 SSA form now, before we handle jump threading. This simplifies
9736 interactions between rewriting of _DECL nodes into SSA form
9737 and rewriting SSA_NAME nodes into SSA form after block
9738 duplication and CFG manipulation. */
9739 update_ssa (TODO_update_ssa);
9740
9741 finalize_jump_threads ();
9742
9743 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
9744 CFG in a broken state and requires a cfg_cleanup run. */
9745 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
9746 remove_edge (e);
9747 /* Update SWITCH_EXPR case label vector. */
9748 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
9749 {
9750 size_t j;
9751 size_t n = TREE_VEC_LENGTH (su->vec);
9752 tree label;
9753 gimple_switch_set_num_labels (su->stmt, n);
9754 for (j = 0; j < n; j++)
9755 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
9756 /* As we may have replaced the default label with a regular one
9757 make sure to make it a real default label again. This ensures
9758 optimal expansion. */
9759 label = gimple_switch_label (su->stmt, 0);
9760 CASE_LOW (label) = NULL_TREE;
9761 CASE_HIGH (label) = NULL_TREE;
9762 }
9763
9764 if (to_remove_edges.length () > 0)
9765 {
9766 free_dominance_info (CDI_DOMINATORS);
9767 if (current_loops)
9768 loops_state_set (LOOPS_NEED_FIXUP);
9769 }
9770
9771 to_remove_edges.release ();
9772 to_update_switch_stmts.release ();
9773 threadedge_finalize_values ();
9774
9775 scev_finalize ();
9776 loop_optimizer_finalize ();
9777 return 0;
9778 }
9779
9780 static bool
9781 gate_vrp (void)
9782 {
9783 return flag_tree_vrp != 0;
9784 }
9785
9786 namespace {
9787
9788 const pass_data pass_data_vrp =
9789 {
9790 GIMPLE_PASS, /* type */
9791 "vrp", /* name */
9792 OPTGROUP_NONE, /* optinfo_flags */
9793 true, /* has_gate */
9794 true, /* has_execute */
9795 TV_TREE_VRP, /* tv_id */
9796 PROP_ssa, /* properties_required */
9797 0, /* properties_provided */
9798 0, /* properties_destroyed */
9799 0, /* todo_flags_start */
9800 ( TODO_cleanup_cfg | TODO_update_ssa
9801 | TODO_verify_ssa
9802 | TODO_verify_flow ), /* todo_flags_finish */
9803 };
9804
9805 class pass_vrp : public gimple_opt_pass
9806 {
9807 public:
9808 pass_vrp (gcc::context *ctxt)
9809 : gimple_opt_pass (pass_data_vrp, ctxt)
9810 {}
9811
9812 /* opt_pass methods: */
9813 opt_pass * clone () { return new pass_vrp (m_ctxt); }
9814 bool gate () { return gate_vrp (); }
9815 unsigned int execute () { return execute_vrp (); }
9816
9817 }; // class pass_vrp
9818
9819 } // anon namespace
9820
9821 gimple_opt_pass *
9822 make_pass_vrp (gcc::context *ctxt)
9823 {
9824 return new pass_vrp (ctxt);
9825 }