tree-vrp.c (extract_range_from_unary_expr_1): Implement -X as 0 - X.
[gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "diagnostic-core.h"
37 #include "intl.h"
38 #include "cfgloop.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-chrec.h"
42 #include "gimple-fold.h"
43 #include "expr.h"
44 #include "optabs.h"
45
46
47 /* Type of value ranges. See value_range_d for a description of these
48 types. */
49 enum value_range_type { VR_UNDEFINED, VR_RANGE, VR_ANTI_RANGE, VR_VARYING };
50
51 /* Range of values that can be associated with an SSA_NAME after VRP
52 has executed. */
53 struct value_range_d
54 {
55 /* Lattice value represented by this range. */
56 enum value_range_type type;
57
58 /* Minimum and maximum values represented by this range. These
59 values should be interpreted as follows:
60
61 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
62 be NULL.
63
64 - If TYPE == VR_RANGE then MIN holds the minimum value and
65 MAX holds the maximum value of the range [MIN, MAX].
66
67 - If TYPE == ANTI_RANGE the variable is known to NOT
68 take any values in the range [MIN, MAX]. */
69 tree min;
70 tree max;
71
72 /* Set of SSA names whose value ranges are equivalent to this one.
73 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
74 bitmap equiv;
75 };
76
77 typedef struct value_range_d value_range_t;
78
79 /* Set of SSA names found live during the RPO traversal of the function
80 for still active basic-blocks. */
81 static sbitmap *live;
82
83 /* Return true if the SSA name NAME is live on the edge E. */
84
85 static bool
86 live_on_edge (edge e, tree name)
87 {
88 return (live[e->dest->index]
89 && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
90 }
91
92 /* Local functions. */
93 static int compare_values (tree val1, tree val2);
94 static int compare_values_warnv (tree val1, tree val2, bool *);
95 static void vrp_meet (value_range_t *, value_range_t *);
96 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
97 tree, tree, bool, bool *,
98 bool *);
99
100 /* Location information for ASSERT_EXPRs. Each instance of this
101 structure describes an ASSERT_EXPR for an SSA name. Since a single
102 SSA name may have more than one assertion associated with it, these
103 locations are kept in a linked list attached to the corresponding
104 SSA name. */
105 struct assert_locus_d
106 {
107 /* Basic block where the assertion would be inserted. */
108 basic_block bb;
109
110 /* Some assertions need to be inserted on an edge (e.g., assertions
111 generated by COND_EXPRs). In those cases, BB will be NULL. */
112 edge e;
113
114 /* Pointer to the statement that generated this assertion. */
115 gimple_stmt_iterator si;
116
117 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
118 enum tree_code comp_code;
119
120 /* Value being compared against. */
121 tree val;
122
123 /* Expression to compare. */
124 tree expr;
125
126 /* Next node in the linked list. */
127 struct assert_locus_d *next;
128 };
129
130 typedef struct assert_locus_d *assert_locus_t;
131
132 /* If bit I is present, it means that SSA name N_i has a list of
133 assertions that should be inserted in the IL. */
134 static bitmap need_assert_for;
135
136 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
137 holds a list of ASSERT_LOCUS_T nodes that describe where
138 ASSERT_EXPRs for SSA name N_I should be inserted. */
139 static assert_locus_t *asserts_for;
140
141 /* Value range array. After propagation, VR_VALUE[I] holds the range
142 of values that SSA name N_I may take. */
143 static unsigned num_vr_values;
144 static value_range_t **vr_value;
145 static bool values_propagated;
146
147 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
148 number of executable edges we saw the last time we visited the
149 node. */
150 static int *vr_phi_edge_counts;
151
152 typedef struct {
153 gimple stmt;
154 tree vec;
155 } switch_update;
156
157 static VEC (edge, heap) *to_remove_edges;
158 DEF_VEC_O(switch_update);
159 DEF_VEC_ALLOC_O(switch_update, heap);
160 static VEC (switch_update, heap) *to_update_switch_stmts;
161
162
163 /* Return the maximum value for TYPE. */
164
165 static inline tree
166 vrp_val_max (const_tree type)
167 {
168 if (!INTEGRAL_TYPE_P (type))
169 return NULL_TREE;
170
171 return TYPE_MAX_VALUE (type);
172 }
173
174 /* Return the minimum value for TYPE. */
175
176 static inline tree
177 vrp_val_min (const_tree type)
178 {
179 if (!INTEGRAL_TYPE_P (type))
180 return NULL_TREE;
181
182 return TYPE_MIN_VALUE (type);
183 }
184
185 /* Return whether VAL is equal to the maximum value of its type. This
186 will be true for a positive overflow infinity. We can't do a
187 simple equality comparison with TYPE_MAX_VALUE because C typedefs
188 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
189 to the integer constant with the same value in the type. */
190
191 static inline bool
192 vrp_val_is_max (const_tree val)
193 {
194 tree type_max = vrp_val_max (TREE_TYPE (val));
195 return (val == type_max
196 || (type_max != NULL_TREE
197 && operand_equal_p (val, type_max, 0)));
198 }
199
200 /* Return whether VAL is equal to the minimum value of its type. This
201 will be true for a negative overflow infinity. */
202
203 static inline bool
204 vrp_val_is_min (const_tree val)
205 {
206 tree type_min = vrp_val_min (TREE_TYPE (val));
207 return (val == type_min
208 || (type_min != NULL_TREE
209 && operand_equal_p (val, type_min, 0)));
210 }
211
212
213 /* Return whether TYPE should use an overflow infinity distinct from
214 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
215 represent a signed overflow during VRP computations. An infinity
216 is distinct from a half-range, which will go from some number to
217 TYPE_{MIN,MAX}_VALUE. */
218
219 static inline bool
220 needs_overflow_infinity (const_tree type)
221 {
222 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
223 }
224
225 /* Return whether TYPE can support our overflow infinity
226 representation: we use the TREE_OVERFLOW flag, which only exists
227 for constants. If TYPE doesn't support this, we don't optimize
228 cases which would require signed overflow--we drop them to
229 VARYING. */
230
231 static inline bool
232 supports_overflow_infinity (const_tree type)
233 {
234 tree min = vrp_val_min (type), max = vrp_val_max (type);
235 #ifdef ENABLE_CHECKING
236 gcc_assert (needs_overflow_infinity (type));
237 #endif
238 return (min != NULL_TREE
239 && CONSTANT_CLASS_P (min)
240 && max != NULL_TREE
241 && CONSTANT_CLASS_P (max));
242 }
243
244 /* VAL is the maximum or minimum value of a type. Return a
245 corresponding overflow infinity. */
246
247 static inline tree
248 make_overflow_infinity (tree val)
249 {
250 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
251 val = copy_node (val);
252 TREE_OVERFLOW (val) = 1;
253 return val;
254 }
255
256 /* Return a negative overflow infinity for TYPE. */
257
258 static inline tree
259 negative_overflow_infinity (tree type)
260 {
261 gcc_checking_assert (supports_overflow_infinity (type));
262 return make_overflow_infinity (vrp_val_min (type));
263 }
264
265 /* Return a positive overflow infinity for TYPE. */
266
267 static inline tree
268 positive_overflow_infinity (tree type)
269 {
270 gcc_checking_assert (supports_overflow_infinity (type));
271 return make_overflow_infinity (vrp_val_max (type));
272 }
273
274 /* Return whether VAL is a negative overflow infinity. */
275
276 static inline bool
277 is_negative_overflow_infinity (const_tree val)
278 {
279 return (needs_overflow_infinity (TREE_TYPE (val))
280 && CONSTANT_CLASS_P (val)
281 && TREE_OVERFLOW (val)
282 && vrp_val_is_min (val));
283 }
284
285 /* Return whether VAL is a positive overflow infinity. */
286
287 static inline bool
288 is_positive_overflow_infinity (const_tree val)
289 {
290 return (needs_overflow_infinity (TREE_TYPE (val))
291 && CONSTANT_CLASS_P (val)
292 && TREE_OVERFLOW (val)
293 && vrp_val_is_max (val));
294 }
295
296 /* Return whether VAL is a positive or negative overflow infinity. */
297
298 static inline bool
299 is_overflow_infinity (const_tree val)
300 {
301 return (needs_overflow_infinity (TREE_TYPE (val))
302 && CONSTANT_CLASS_P (val)
303 && TREE_OVERFLOW (val)
304 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
305 }
306
307 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
308
309 static inline bool
310 stmt_overflow_infinity (gimple stmt)
311 {
312 if (is_gimple_assign (stmt)
313 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
314 GIMPLE_SINGLE_RHS)
315 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
316 return false;
317 }
318
319 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
320 the same value with TREE_OVERFLOW clear. This can be used to avoid
321 confusing a regular value with an overflow value. */
322
323 static inline tree
324 avoid_overflow_infinity (tree val)
325 {
326 if (!is_overflow_infinity (val))
327 return val;
328
329 if (vrp_val_is_max (val))
330 return vrp_val_max (TREE_TYPE (val));
331 else
332 {
333 gcc_checking_assert (vrp_val_is_min (val));
334 return vrp_val_min (TREE_TYPE (val));
335 }
336 }
337
338
339 /* Return true if ARG is marked with the nonnull attribute in the
340 current function signature. */
341
342 static bool
343 nonnull_arg_p (const_tree arg)
344 {
345 tree t, attrs, fntype;
346 unsigned HOST_WIDE_INT arg_num;
347
348 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
349
350 /* The static chain decl is always non null. */
351 if (arg == cfun->static_chain_decl)
352 return true;
353
354 fntype = TREE_TYPE (current_function_decl);
355 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
356
357 /* If "nonnull" wasn't specified, we know nothing about the argument. */
358 if (attrs == NULL_TREE)
359 return false;
360
361 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
362 if (TREE_VALUE (attrs) == NULL_TREE)
363 return true;
364
365 /* Get the position number for ARG in the function signature. */
366 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
367 t;
368 t = DECL_CHAIN (t), arg_num++)
369 {
370 if (t == arg)
371 break;
372 }
373
374 gcc_assert (t == arg);
375
376 /* Now see if ARG_NUM is mentioned in the nonnull list. */
377 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
378 {
379 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
380 return true;
381 }
382
383 return false;
384 }
385
386
387 /* Set value range VR to VR_VARYING. */
388
389 static inline void
390 set_value_range_to_varying (value_range_t *vr)
391 {
392 vr->type = VR_VARYING;
393 vr->min = vr->max = NULL_TREE;
394 if (vr->equiv)
395 bitmap_clear (vr->equiv);
396 }
397
398
399 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
400
401 static void
402 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
403 tree max, bitmap equiv)
404 {
405 #if defined ENABLE_CHECKING
406 /* Check the validity of the range. */
407 if (t == VR_RANGE || t == VR_ANTI_RANGE)
408 {
409 int cmp;
410
411 gcc_assert (min && max);
412
413 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
414 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
415
416 cmp = compare_values (min, max);
417 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
418
419 if (needs_overflow_infinity (TREE_TYPE (min)))
420 gcc_assert (!is_overflow_infinity (min)
421 || !is_overflow_infinity (max));
422 }
423
424 if (t == VR_UNDEFINED || t == VR_VARYING)
425 gcc_assert (min == NULL_TREE && max == NULL_TREE);
426
427 if (t == VR_UNDEFINED || t == VR_VARYING)
428 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
429 #endif
430
431 vr->type = t;
432 vr->min = min;
433 vr->max = max;
434
435 /* Since updating the equivalence set involves deep copying the
436 bitmaps, only do it if absolutely necessary. */
437 if (vr->equiv == NULL
438 && equiv != NULL)
439 vr->equiv = BITMAP_ALLOC (NULL);
440
441 if (equiv != vr->equiv)
442 {
443 if (equiv && !bitmap_empty_p (equiv))
444 bitmap_copy (vr->equiv, equiv);
445 else
446 bitmap_clear (vr->equiv);
447 }
448 }
449
450
451 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
452 This means adjusting T, MIN and MAX representing the case of a
453 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
454 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
455 In corner cases where MAX+1 or MIN-1 wraps this will fall back
456 to varying.
457 This routine exists to ease canonicalization in the case where we
458 extract ranges from var + CST op limit. */
459
460 static void
461 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
462 tree min, tree max, bitmap equiv)
463 {
464 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
465 if ((t != VR_RANGE
466 && t != VR_ANTI_RANGE)
467 || TREE_CODE (min) != INTEGER_CST
468 || TREE_CODE (max) != INTEGER_CST)
469 {
470 set_value_range (vr, t, min, max, equiv);
471 return;
472 }
473
474 /* Wrong order for min and max, to swap them and the VR type we need
475 to adjust them. */
476 if (tree_int_cst_lt (max, min))
477 {
478 tree one = build_int_cst (TREE_TYPE (min), 1);
479 tree tmp = int_const_binop (PLUS_EXPR, max, one);
480 max = int_const_binop (MINUS_EXPR, min, one);
481 min = tmp;
482
483 /* There's one corner case, if we had [C+1, C] before we now have
484 that again. But this represents an empty value range, so drop
485 to varying in this case. */
486 if (tree_int_cst_lt (max, min))
487 {
488 set_value_range_to_varying (vr);
489 return;
490 }
491
492 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
493 }
494
495 /* Anti-ranges that can be represented as ranges should be so. */
496 if (t == VR_ANTI_RANGE)
497 {
498 bool is_min = vrp_val_is_min (min);
499 bool is_max = vrp_val_is_max (max);
500
501 if (is_min && is_max)
502 {
503 /* We cannot deal with empty ranges, drop to varying. */
504 set_value_range_to_varying (vr);
505 return;
506 }
507 else if (is_min
508 /* As a special exception preserve non-null ranges. */
509 && !(TYPE_UNSIGNED (TREE_TYPE (min))
510 && integer_zerop (max)))
511 {
512 tree one = build_int_cst (TREE_TYPE (max), 1);
513 min = int_const_binop (PLUS_EXPR, max, one);
514 max = vrp_val_max (TREE_TYPE (max));
515 t = VR_RANGE;
516 }
517 else if (is_max)
518 {
519 tree one = build_int_cst (TREE_TYPE (min), 1);
520 max = int_const_binop (MINUS_EXPR, min, one);
521 min = vrp_val_min (TREE_TYPE (min));
522 t = VR_RANGE;
523 }
524 }
525
526 set_value_range (vr, t, min, max, equiv);
527 }
528
529 /* Copy value range FROM into value range TO. */
530
531 static inline void
532 copy_value_range (value_range_t *to, value_range_t *from)
533 {
534 set_value_range (to, from->type, from->min, from->max, from->equiv);
535 }
536
537 /* Set value range VR to a single value. This function is only called
538 with values we get from statements, and exists to clear the
539 TREE_OVERFLOW flag so that we don't think we have an overflow
540 infinity when we shouldn't. */
541
542 static inline void
543 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
544 {
545 gcc_assert (is_gimple_min_invariant (val));
546 val = avoid_overflow_infinity (val);
547 set_value_range (vr, VR_RANGE, val, val, equiv);
548 }
549
550 /* Set value range VR to a non-negative range of type TYPE.
551 OVERFLOW_INFINITY indicates whether to use an overflow infinity
552 rather than TYPE_MAX_VALUE; this should be true if we determine
553 that the range is nonnegative based on the assumption that signed
554 overflow does not occur. */
555
556 static inline void
557 set_value_range_to_nonnegative (value_range_t *vr, tree type,
558 bool overflow_infinity)
559 {
560 tree zero;
561
562 if (overflow_infinity && !supports_overflow_infinity (type))
563 {
564 set_value_range_to_varying (vr);
565 return;
566 }
567
568 zero = build_int_cst (type, 0);
569 set_value_range (vr, VR_RANGE, zero,
570 (overflow_infinity
571 ? positive_overflow_infinity (type)
572 : TYPE_MAX_VALUE (type)),
573 vr->equiv);
574 }
575
576 /* Set value range VR to a non-NULL range of type TYPE. */
577
578 static inline void
579 set_value_range_to_nonnull (value_range_t *vr, tree type)
580 {
581 tree zero = build_int_cst (type, 0);
582 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
583 }
584
585
586 /* Set value range VR to a NULL range of type TYPE. */
587
588 static inline void
589 set_value_range_to_null (value_range_t *vr, tree type)
590 {
591 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
592 }
593
594
595 /* Set value range VR to a range of a truthvalue of type TYPE. */
596
597 static inline void
598 set_value_range_to_truthvalue (value_range_t *vr, tree type)
599 {
600 if (TYPE_PRECISION (type) == 1)
601 set_value_range_to_varying (vr);
602 else
603 set_value_range (vr, VR_RANGE,
604 build_int_cst (type, 0), build_int_cst (type, 1),
605 vr->equiv);
606 }
607
608
609 /* Set value range VR to VR_UNDEFINED. */
610
611 static inline void
612 set_value_range_to_undefined (value_range_t *vr)
613 {
614 vr->type = VR_UNDEFINED;
615 vr->min = vr->max = NULL_TREE;
616 if (vr->equiv)
617 bitmap_clear (vr->equiv);
618 }
619
620
621 /* If abs (min) < abs (max), set VR to [-max, max], if
622 abs (min) >= abs (max), set VR to [-min, min]. */
623
624 static void
625 abs_extent_range (value_range_t *vr, tree min, tree max)
626 {
627 int cmp;
628
629 gcc_assert (TREE_CODE (min) == INTEGER_CST);
630 gcc_assert (TREE_CODE (max) == INTEGER_CST);
631 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
632 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
633 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
634 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
635 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
636 {
637 set_value_range_to_varying (vr);
638 return;
639 }
640 cmp = compare_values (min, max);
641 if (cmp == -1)
642 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
643 else if (cmp == 0 || cmp == 1)
644 {
645 max = min;
646 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
647 }
648 else
649 {
650 set_value_range_to_varying (vr);
651 return;
652 }
653 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
654 }
655
656
657 /* Return value range information for VAR.
658
659 If we have no values ranges recorded (ie, VRP is not running), then
660 return NULL. Otherwise create an empty range if none existed for VAR. */
661
662 static value_range_t *
663 get_value_range (const_tree var)
664 {
665 static const struct value_range_d vr_const_varying
666 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
667 value_range_t *vr;
668 tree sym;
669 unsigned ver = SSA_NAME_VERSION (var);
670
671 /* If we have no recorded ranges, then return NULL. */
672 if (! vr_value)
673 return NULL;
674
675 /* If we query the range for a new SSA name return an unmodifiable VARYING.
676 We should get here at most from the substitute-and-fold stage which
677 will never try to change values. */
678 if (ver >= num_vr_values)
679 return CONST_CAST (value_range_t *, &vr_const_varying);
680
681 vr = vr_value[ver];
682 if (vr)
683 return vr;
684
685 /* After propagation finished do not allocate new value-ranges. */
686 if (values_propagated)
687 return CONST_CAST (value_range_t *, &vr_const_varying);
688
689 /* Create a default value range. */
690 vr_value[ver] = vr = XCNEW (value_range_t);
691
692 /* Defer allocating the equivalence set. */
693 vr->equiv = NULL;
694
695 /* If VAR is a default definition of a parameter, the variable can
696 take any value in VAR's type. */
697 sym = SSA_NAME_VAR (var);
698 if (SSA_NAME_IS_DEFAULT_DEF (var)
699 && TREE_CODE (sym) == PARM_DECL)
700 {
701 /* Try to use the "nonnull" attribute to create ~[0, 0]
702 anti-ranges for pointers. Note that this is only valid with
703 default definitions of PARM_DECLs. */
704 if (POINTER_TYPE_P (TREE_TYPE (sym))
705 && nonnull_arg_p (sym))
706 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
707 else
708 set_value_range_to_varying (vr);
709 }
710
711 return vr;
712 }
713
714 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
715
716 static inline bool
717 vrp_operand_equal_p (const_tree val1, const_tree val2)
718 {
719 if (val1 == val2)
720 return true;
721 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
722 return false;
723 if (is_overflow_infinity (val1))
724 return is_overflow_infinity (val2);
725 return true;
726 }
727
728 /* Return true, if the bitmaps B1 and B2 are equal. */
729
730 static inline bool
731 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
732 {
733 return (b1 == b2
734 || ((!b1 || bitmap_empty_p (b1))
735 && (!b2 || bitmap_empty_p (b2)))
736 || (b1 && b2
737 && bitmap_equal_p (b1, b2)));
738 }
739
740 /* Update the value range and equivalence set for variable VAR to
741 NEW_VR. Return true if NEW_VR is different from VAR's previous
742 value.
743
744 NOTE: This function assumes that NEW_VR is a temporary value range
745 object created for the sole purpose of updating VAR's range. The
746 storage used by the equivalence set from NEW_VR will be freed by
747 this function. Do not call update_value_range when NEW_VR
748 is the range object associated with another SSA name. */
749
750 static inline bool
751 update_value_range (const_tree var, value_range_t *new_vr)
752 {
753 value_range_t *old_vr;
754 bool is_new;
755
756 /* Update the value range, if necessary. */
757 old_vr = get_value_range (var);
758 is_new = old_vr->type != new_vr->type
759 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
760 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
761 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
762
763 if (is_new)
764 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
765 new_vr->equiv);
766
767 BITMAP_FREE (new_vr->equiv);
768
769 return is_new;
770 }
771
772
773 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
774 point where equivalence processing can be turned on/off. */
775
776 static void
777 add_equivalence (bitmap *equiv, const_tree var)
778 {
779 unsigned ver = SSA_NAME_VERSION (var);
780 value_range_t *vr = vr_value[ver];
781
782 if (*equiv == NULL)
783 *equiv = BITMAP_ALLOC (NULL);
784 bitmap_set_bit (*equiv, ver);
785 if (vr && vr->equiv)
786 bitmap_ior_into (*equiv, vr->equiv);
787 }
788
789
790 /* Return true if VR is ~[0, 0]. */
791
792 static inline bool
793 range_is_nonnull (value_range_t *vr)
794 {
795 return vr->type == VR_ANTI_RANGE
796 && integer_zerop (vr->min)
797 && integer_zerop (vr->max);
798 }
799
800
801 /* Return true if VR is [0, 0]. */
802
803 static inline bool
804 range_is_null (value_range_t *vr)
805 {
806 return vr->type == VR_RANGE
807 && integer_zerop (vr->min)
808 && integer_zerop (vr->max);
809 }
810
811 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
812 a singleton. */
813
814 static inline bool
815 range_int_cst_p (value_range_t *vr)
816 {
817 return (vr->type == VR_RANGE
818 && TREE_CODE (vr->max) == INTEGER_CST
819 && TREE_CODE (vr->min) == INTEGER_CST
820 && !TREE_OVERFLOW (vr->max)
821 && !TREE_OVERFLOW (vr->min));
822 }
823
824 /* Return true if VR is a INTEGER_CST singleton. */
825
826 static inline bool
827 range_int_cst_singleton_p (value_range_t *vr)
828 {
829 return (range_int_cst_p (vr)
830 && tree_int_cst_equal (vr->min, vr->max));
831 }
832
833 /* Return true if value range VR involves at least one symbol. */
834
835 static inline bool
836 symbolic_range_p (value_range_t *vr)
837 {
838 return (!is_gimple_min_invariant (vr->min)
839 || !is_gimple_min_invariant (vr->max));
840 }
841
842 /* Return true if value range VR uses an overflow infinity. */
843
844 static inline bool
845 overflow_infinity_range_p (value_range_t *vr)
846 {
847 return (vr->type == VR_RANGE
848 && (is_overflow_infinity (vr->min)
849 || is_overflow_infinity (vr->max)));
850 }
851
852 /* Return false if we can not make a valid comparison based on VR;
853 this will be the case if it uses an overflow infinity and overflow
854 is not undefined (i.e., -fno-strict-overflow is in effect).
855 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
856 uses an overflow infinity. */
857
858 static bool
859 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
860 {
861 gcc_assert (vr->type == VR_RANGE);
862 if (is_overflow_infinity (vr->min))
863 {
864 *strict_overflow_p = true;
865 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
866 return false;
867 }
868 if (is_overflow_infinity (vr->max))
869 {
870 *strict_overflow_p = true;
871 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
872 return false;
873 }
874 return true;
875 }
876
877
878 /* Return true if the result of assignment STMT is know to be non-negative.
879 If the return value is based on the assumption that signed overflow is
880 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
881 *STRICT_OVERFLOW_P.*/
882
883 static bool
884 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
885 {
886 enum tree_code code = gimple_assign_rhs_code (stmt);
887 switch (get_gimple_rhs_class (code))
888 {
889 case GIMPLE_UNARY_RHS:
890 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
891 gimple_expr_type (stmt),
892 gimple_assign_rhs1 (stmt),
893 strict_overflow_p);
894 case GIMPLE_BINARY_RHS:
895 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
896 gimple_expr_type (stmt),
897 gimple_assign_rhs1 (stmt),
898 gimple_assign_rhs2 (stmt),
899 strict_overflow_p);
900 case GIMPLE_TERNARY_RHS:
901 return false;
902 case GIMPLE_SINGLE_RHS:
903 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
904 strict_overflow_p);
905 case GIMPLE_INVALID_RHS:
906 gcc_unreachable ();
907 default:
908 gcc_unreachable ();
909 }
910 }
911
912 /* Return true if return value of call STMT is know to be non-negative.
913 If the return value is based on the assumption that signed overflow is
914 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
915 *STRICT_OVERFLOW_P.*/
916
917 static bool
918 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
919 {
920 tree arg0 = gimple_call_num_args (stmt) > 0 ?
921 gimple_call_arg (stmt, 0) : NULL_TREE;
922 tree arg1 = gimple_call_num_args (stmt) > 1 ?
923 gimple_call_arg (stmt, 1) : NULL_TREE;
924
925 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
926 gimple_call_fndecl (stmt),
927 arg0,
928 arg1,
929 strict_overflow_p);
930 }
931
932 /* Return true if STMT is know to to compute a non-negative value.
933 If the return value is based on the assumption that signed overflow is
934 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
935 *STRICT_OVERFLOW_P.*/
936
937 static bool
938 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
939 {
940 switch (gimple_code (stmt))
941 {
942 case GIMPLE_ASSIGN:
943 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
944 case GIMPLE_CALL:
945 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
946 default:
947 gcc_unreachable ();
948 }
949 }
950
951 /* Return true if the result of assignment STMT is know to be non-zero.
952 If the return value is based on the assumption that signed overflow is
953 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
954 *STRICT_OVERFLOW_P.*/
955
956 static bool
957 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
958 {
959 enum tree_code code = gimple_assign_rhs_code (stmt);
960 switch (get_gimple_rhs_class (code))
961 {
962 case GIMPLE_UNARY_RHS:
963 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
964 gimple_expr_type (stmt),
965 gimple_assign_rhs1 (stmt),
966 strict_overflow_p);
967 case GIMPLE_BINARY_RHS:
968 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
969 gimple_expr_type (stmt),
970 gimple_assign_rhs1 (stmt),
971 gimple_assign_rhs2 (stmt),
972 strict_overflow_p);
973 case GIMPLE_TERNARY_RHS:
974 return false;
975 case GIMPLE_SINGLE_RHS:
976 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
977 strict_overflow_p);
978 case GIMPLE_INVALID_RHS:
979 gcc_unreachable ();
980 default:
981 gcc_unreachable ();
982 }
983 }
984
985 /* Return true if STMT is know to to compute a non-zero value.
986 If the return value is based on the assumption that signed overflow is
987 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
988 *STRICT_OVERFLOW_P.*/
989
990 static bool
991 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
992 {
993 switch (gimple_code (stmt))
994 {
995 case GIMPLE_ASSIGN:
996 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
997 case GIMPLE_CALL:
998 return gimple_alloca_call_p (stmt);
999 default:
1000 gcc_unreachable ();
1001 }
1002 }
1003
1004 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1005 obtained so far. */
1006
1007 static bool
1008 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1009 {
1010 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1011 return true;
1012
1013 /* If we have an expression of the form &X->a, then the expression
1014 is nonnull if X is nonnull. */
1015 if (is_gimple_assign (stmt)
1016 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1017 {
1018 tree expr = gimple_assign_rhs1 (stmt);
1019 tree base = get_base_address (TREE_OPERAND (expr, 0));
1020
1021 if (base != NULL_TREE
1022 && TREE_CODE (base) == MEM_REF
1023 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1024 {
1025 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1026 if (range_is_nonnull (vr))
1027 return true;
1028 }
1029 }
1030
1031 return false;
1032 }
1033
1034 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1035 a gimple invariant, or SSA_NAME +- CST. */
1036
1037 static bool
1038 valid_value_p (tree expr)
1039 {
1040 if (TREE_CODE (expr) == SSA_NAME)
1041 return true;
1042
1043 if (TREE_CODE (expr) == PLUS_EXPR
1044 || TREE_CODE (expr) == MINUS_EXPR)
1045 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1046 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1047
1048 return is_gimple_min_invariant (expr);
1049 }
1050
1051 /* Return
1052 1 if VAL < VAL2
1053 0 if !(VAL < VAL2)
1054 -2 if those are incomparable. */
1055 static inline int
1056 operand_less_p (tree val, tree val2)
1057 {
1058 /* LT is folded faster than GE and others. Inline the common case. */
1059 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1060 {
1061 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1062 return INT_CST_LT_UNSIGNED (val, val2);
1063 else
1064 {
1065 if (INT_CST_LT (val, val2))
1066 return 1;
1067 }
1068 }
1069 else
1070 {
1071 tree tcmp;
1072
1073 fold_defer_overflow_warnings ();
1074
1075 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1076
1077 fold_undefer_and_ignore_overflow_warnings ();
1078
1079 if (!tcmp
1080 || TREE_CODE (tcmp) != INTEGER_CST)
1081 return -2;
1082
1083 if (!integer_zerop (tcmp))
1084 return 1;
1085 }
1086
1087 /* val >= val2, not considering overflow infinity. */
1088 if (is_negative_overflow_infinity (val))
1089 return is_negative_overflow_infinity (val2) ? 0 : 1;
1090 else if (is_positive_overflow_infinity (val2))
1091 return is_positive_overflow_infinity (val) ? 0 : 1;
1092
1093 return 0;
1094 }
1095
1096 /* Compare two values VAL1 and VAL2. Return
1097
1098 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1099 -1 if VAL1 < VAL2,
1100 0 if VAL1 == VAL2,
1101 +1 if VAL1 > VAL2, and
1102 +2 if VAL1 != VAL2
1103
1104 This is similar to tree_int_cst_compare but supports pointer values
1105 and values that cannot be compared at compile time.
1106
1107 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1108 true if the return value is only valid if we assume that signed
1109 overflow is undefined. */
1110
1111 static int
1112 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1113 {
1114 if (val1 == val2)
1115 return 0;
1116
1117 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1118 both integers. */
1119 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1120 == POINTER_TYPE_P (TREE_TYPE (val2)));
1121 /* Convert the two values into the same type. This is needed because
1122 sizetype causes sign extension even for unsigned types. */
1123 val2 = fold_convert (TREE_TYPE (val1), val2);
1124 STRIP_USELESS_TYPE_CONVERSION (val2);
1125
1126 if ((TREE_CODE (val1) == SSA_NAME
1127 || TREE_CODE (val1) == PLUS_EXPR
1128 || TREE_CODE (val1) == MINUS_EXPR)
1129 && (TREE_CODE (val2) == SSA_NAME
1130 || TREE_CODE (val2) == PLUS_EXPR
1131 || TREE_CODE (val2) == MINUS_EXPR))
1132 {
1133 tree n1, c1, n2, c2;
1134 enum tree_code code1, code2;
1135
1136 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1137 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1138 same name, return -2. */
1139 if (TREE_CODE (val1) == SSA_NAME)
1140 {
1141 code1 = SSA_NAME;
1142 n1 = val1;
1143 c1 = NULL_TREE;
1144 }
1145 else
1146 {
1147 code1 = TREE_CODE (val1);
1148 n1 = TREE_OPERAND (val1, 0);
1149 c1 = TREE_OPERAND (val1, 1);
1150 if (tree_int_cst_sgn (c1) == -1)
1151 {
1152 if (is_negative_overflow_infinity (c1))
1153 return -2;
1154 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1155 if (!c1)
1156 return -2;
1157 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1158 }
1159 }
1160
1161 if (TREE_CODE (val2) == SSA_NAME)
1162 {
1163 code2 = SSA_NAME;
1164 n2 = val2;
1165 c2 = NULL_TREE;
1166 }
1167 else
1168 {
1169 code2 = TREE_CODE (val2);
1170 n2 = TREE_OPERAND (val2, 0);
1171 c2 = TREE_OPERAND (val2, 1);
1172 if (tree_int_cst_sgn (c2) == -1)
1173 {
1174 if (is_negative_overflow_infinity (c2))
1175 return -2;
1176 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1177 if (!c2)
1178 return -2;
1179 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1180 }
1181 }
1182
1183 /* Both values must use the same name. */
1184 if (n1 != n2)
1185 return -2;
1186
1187 if (code1 == SSA_NAME
1188 && code2 == SSA_NAME)
1189 /* NAME == NAME */
1190 return 0;
1191
1192 /* If overflow is defined we cannot simplify more. */
1193 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1194 return -2;
1195
1196 if (strict_overflow_p != NULL
1197 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1198 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1199 *strict_overflow_p = true;
1200
1201 if (code1 == SSA_NAME)
1202 {
1203 if (code2 == PLUS_EXPR)
1204 /* NAME < NAME + CST */
1205 return -1;
1206 else if (code2 == MINUS_EXPR)
1207 /* NAME > NAME - CST */
1208 return 1;
1209 }
1210 else if (code1 == PLUS_EXPR)
1211 {
1212 if (code2 == SSA_NAME)
1213 /* NAME + CST > NAME */
1214 return 1;
1215 else if (code2 == PLUS_EXPR)
1216 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1217 return compare_values_warnv (c1, c2, strict_overflow_p);
1218 else if (code2 == MINUS_EXPR)
1219 /* NAME + CST1 > NAME - CST2 */
1220 return 1;
1221 }
1222 else if (code1 == MINUS_EXPR)
1223 {
1224 if (code2 == SSA_NAME)
1225 /* NAME - CST < NAME */
1226 return -1;
1227 else if (code2 == PLUS_EXPR)
1228 /* NAME - CST1 < NAME + CST2 */
1229 return -1;
1230 else if (code2 == MINUS_EXPR)
1231 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1232 C1 and C2 are swapped in the call to compare_values. */
1233 return compare_values_warnv (c2, c1, strict_overflow_p);
1234 }
1235
1236 gcc_unreachable ();
1237 }
1238
1239 /* We cannot compare non-constants. */
1240 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1241 return -2;
1242
1243 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1244 {
1245 /* We cannot compare overflowed values, except for overflow
1246 infinities. */
1247 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1248 {
1249 if (strict_overflow_p != NULL)
1250 *strict_overflow_p = true;
1251 if (is_negative_overflow_infinity (val1))
1252 return is_negative_overflow_infinity (val2) ? 0 : -1;
1253 else if (is_negative_overflow_infinity (val2))
1254 return 1;
1255 else if (is_positive_overflow_infinity (val1))
1256 return is_positive_overflow_infinity (val2) ? 0 : 1;
1257 else if (is_positive_overflow_infinity (val2))
1258 return -1;
1259 return -2;
1260 }
1261
1262 return tree_int_cst_compare (val1, val2);
1263 }
1264 else
1265 {
1266 tree t;
1267
1268 /* First see if VAL1 and VAL2 are not the same. */
1269 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1270 return 0;
1271
1272 /* If VAL1 is a lower address than VAL2, return -1. */
1273 if (operand_less_p (val1, val2) == 1)
1274 return -1;
1275
1276 /* If VAL1 is a higher address than VAL2, return +1. */
1277 if (operand_less_p (val2, val1) == 1)
1278 return 1;
1279
1280 /* If VAL1 is different than VAL2, return +2.
1281 For integer constants we either have already returned -1 or 1
1282 or they are equivalent. We still might succeed in proving
1283 something about non-trivial operands. */
1284 if (TREE_CODE (val1) != INTEGER_CST
1285 || TREE_CODE (val2) != INTEGER_CST)
1286 {
1287 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1288 if (t && integer_onep (t))
1289 return 2;
1290 }
1291
1292 return -2;
1293 }
1294 }
1295
1296 /* Compare values like compare_values_warnv, but treat comparisons of
1297 nonconstants which rely on undefined overflow as incomparable. */
1298
1299 static int
1300 compare_values (tree val1, tree val2)
1301 {
1302 bool sop;
1303 int ret;
1304
1305 sop = false;
1306 ret = compare_values_warnv (val1, val2, &sop);
1307 if (sop
1308 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1309 ret = -2;
1310 return ret;
1311 }
1312
1313
1314 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1315 0 if VAL is not inside VR,
1316 -2 if we cannot tell either way.
1317
1318 FIXME, the current semantics of this functions are a bit quirky
1319 when taken in the context of VRP. In here we do not care
1320 about VR's type. If VR is the anti-range ~[3, 5] the call
1321 value_inside_range (4, VR) will return 1.
1322
1323 This is counter-intuitive in a strict sense, but the callers
1324 currently expect this. They are calling the function
1325 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1326 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1327 themselves.
1328
1329 This also applies to value_ranges_intersect_p and
1330 range_includes_zero_p. The semantics of VR_RANGE and
1331 VR_ANTI_RANGE should be encoded here, but that also means
1332 adapting the users of these functions to the new semantics.
1333
1334 Benchmark compile/20001226-1.c compilation time after changing this
1335 function. */
1336
1337 static inline int
1338 value_inside_range (tree val, value_range_t * vr)
1339 {
1340 int cmp1, cmp2;
1341
1342 cmp1 = operand_less_p (val, vr->min);
1343 if (cmp1 == -2)
1344 return -2;
1345 if (cmp1 == 1)
1346 return 0;
1347
1348 cmp2 = operand_less_p (vr->max, val);
1349 if (cmp2 == -2)
1350 return -2;
1351
1352 return !cmp2;
1353 }
1354
1355
1356 /* Return true if value ranges VR0 and VR1 have a non-empty
1357 intersection.
1358
1359 Benchmark compile/20001226-1.c compilation time after changing this
1360 function.
1361 */
1362
1363 static inline bool
1364 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1365 {
1366 /* The value ranges do not intersect if the maximum of the first range is
1367 less than the minimum of the second range or vice versa.
1368 When those relations are unknown, we can't do any better. */
1369 if (operand_less_p (vr0->max, vr1->min) != 0)
1370 return false;
1371 if (operand_less_p (vr1->max, vr0->min) != 0)
1372 return false;
1373 return true;
1374 }
1375
1376
1377 /* Return true if VR includes the value zero, false otherwise. FIXME,
1378 currently this will return false for an anti-range like ~[-4, 3].
1379 This will be wrong when the semantics of value_inside_range are
1380 modified (currently the users of this function expect these
1381 semantics). */
1382
1383 static inline bool
1384 range_includes_zero_p (value_range_t *vr)
1385 {
1386 tree zero;
1387
1388 gcc_assert (vr->type != VR_UNDEFINED
1389 && vr->type != VR_VARYING
1390 && !symbolic_range_p (vr));
1391
1392 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1393 return (value_inside_range (zero, vr) == 1);
1394 }
1395
1396 /* Return true if *VR is know to only contain nonnegative values. */
1397
1398 static inline bool
1399 value_range_nonnegative_p (value_range_t *vr)
1400 {
1401 if (vr->type == VR_RANGE)
1402 {
1403 int result = compare_values (vr->min, integer_zero_node);
1404 return (result == 0 || result == 1);
1405 }
1406 else if (vr->type == VR_ANTI_RANGE)
1407 {
1408 int result = compare_values (vr->max, integer_zero_node);
1409 return result == -1;
1410 }
1411
1412 return false;
1413 }
1414
1415 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1416 false otherwise or if no value range information is available. */
1417
1418 bool
1419 ssa_name_nonnegative_p (const_tree t)
1420 {
1421 value_range_t *vr = get_value_range (t);
1422
1423 if (INTEGRAL_TYPE_P (t)
1424 && TYPE_UNSIGNED (t))
1425 return true;
1426
1427 if (!vr)
1428 return false;
1429
1430 return value_range_nonnegative_p (vr);
1431 }
1432
1433 /* If *VR has a value rante that is a single constant value return that,
1434 otherwise return NULL_TREE. */
1435
1436 static tree
1437 value_range_constant_singleton (value_range_t *vr)
1438 {
1439 if (vr->type == VR_RANGE
1440 && operand_equal_p (vr->min, vr->max, 0)
1441 && is_gimple_min_invariant (vr->min))
1442 return vr->min;
1443
1444 return NULL_TREE;
1445 }
1446
1447 /* If OP has a value range with a single constant value return that,
1448 otherwise return NULL_TREE. This returns OP itself if OP is a
1449 constant. */
1450
1451 static tree
1452 op_with_constant_singleton_value_range (tree op)
1453 {
1454 if (is_gimple_min_invariant (op))
1455 return op;
1456
1457 if (TREE_CODE (op) != SSA_NAME)
1458 return NULL_TREE;
1459
1460 return value_range_constant_singleton (get_value_range (op));
1461 }
1462
1463 /* Return true if op is in a boolean [0, 1] value-range. */
1464
1465 static bool
1466 op_with_boolean_value_range_p (tree op)
1467 {
1468 value_range_t *vr;
1469
1470 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1471 return true;
1472
1473 if (integer_zerop (op)
1474 || integer_onep (op))
1475 return true;
1476
1477 if (TREE_CODE (op) != SSA_NAME)
1478 return false;
1479
1480 vr = get_value_range (op);
1481 return (vr->type == VR_RANGE
1482 && integer_zerop (vr->min)
1483 && integer_onep (vr->max));
1484 }
1485
1486 /* Extract value range information from an ASSERT_EXPR EXPR and store
1487 it in *VR_P. */
1488
1489 static void
1490 extract_range_from_assert (value_range_t *vr_p, tree expr)
1491 {
1492 tree var, cond, limit, min, max, type;
1493 value_range_t *var_vr, *limit_vr;
1494 enum tree_code cond_code;
1495
1496 var = ASSERT_EXPR_VAR (expr);
1497 cond = ASSERT_EXPR_COND (expr);
1498
1499 gcc_assert (COMPARISON_CLASS_P (cond));
1500
1501 /* Find VAR in the ASSERT_EXPR conditional. */
1502 if (var == TREE_OPERAND (cond, 0)
1503 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1504 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1505 {
1506 /* If the predicate is of the form VAR COMP LIMIT, then we just
1507 take LIMIT from the RHS and use the same comparison code. */
1508 cond_code = TREE_CODE (cond);
1509 limit = TREE_OPERAND (cond, 1);
1510 cond = TREE_OPERAND (cond, 0);
1511 }
1512 else
1513 {
1514 /* If the predicate is of the form LIMIT COMP VAR, then we need
1515 to flip around the comparison code to create the proper range
1516 for VAR. */
1517 cond_code = swap_tree_comparison (TREE_CODE (cond));
1518 limit = TREE_OPERAND (cond, 0);
1519 cond = TREE_OPERAND (cond, 1);
1520 }
1521
1522 limit = avoid_overflow_infinity (limit);
1523
1524 type = TREE_TYPE (limit);
1525 gcc_assert (limit != var);
1526
1527 /* For pointer arithmetic, we only keep track of pointer equality
1528 and inequality. */
1529 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1530 {
1531 set_value_range_to_varying (vr_p);
1532 return;
1533 }
1534
1535 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1536 try to use LIMIT's range to avoid creating symbolic ranges
1537 unnecessarily. */
1538 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1539
1540 /* LIMIT's range is only interesting if it has any useful information. */
1541 if (limit_vr
1542 && (limit_vr->type == VR_UNDEFINED
1543 || limit_vr->type == VR_VARYING
1544 || symbolic_range_p (limit_vr)))
1545 limit_vr = NULL;
1546
1547 /* Initially, the new range has the same set of equivalences of
1548 VAR's range. This will be revised before returning the final
1549 value. Since assertions may be chained via mutually exclusive
1550 predicates, we will need to trim the set of equivalences before
1551 we are done. */
1552 gcc_assert (vr_p->equiv == NULL);
1553 add_equivalence (&vr_p->equiv, var);
1554
1555 /* Extract a new range based on the asserted comparison for VAR and
1556 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1557 will only use it for equality comparisons (EQ_EXPR). For any
1558 other kind of assertion, we cannot derive a range from LIMIT's
1559 anti-range that can be used to describe the new range. For
1560 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1561 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1562 no single range for x_2 that could describe LE_EXPR, so we might
1563 as well build the range [b_4, +INF] for it.
1564 One special case we handle is extracting a range from a
1565 range test encoded as (unsigned)var + CST <= limit. */
1566 if (TREE_CODE (cond) == NOP_EXPR
1567 || TREE_CODE (cond) == PLUS_EXPR)
1568 {
1569 if (TREE_CODE (cond) == PLUS_EXPR)
1570 {
1571 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1572 TREE_OPERAND (cond, 1));
1573 max = int_const_binop (PLUS_EXPR, limit, min);
1574 cond = TREE_OPERAND (cond, 0);
1575 }
1576 else
1577 {
1578 min = build_int_cst (TREE_TYPE (var), 0);
1579 max = limit;
1580 }
1581
1582 /* Make sure to not set TREE_OVERFLOW on the final type
1583 conversion. We are willingly interpreting large positive
1584 unsigned values as negative singed values here. */
1585 min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
1586 0, false);
1587 max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
1588 0, false);
1589
1590 /* We can transform a max, min range to an anti-range or
1591 vice-versa. Use set_and_canonicalize_value_range which does
1592 this for us. */
1593 if (cond_code == LE_EXPR)
1594 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1595 min, max, vr_p->equiv);
1596 else if (cond_code == GT_EXPR)
1597 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1598 min, max, vr_p->equiv);
1599 else
1600 gcc_unreachable ();
1601 }
1602 else if (cond_code == EQ_EXPR)
1603 {
1604 enum value_range_type range_type;
1605
1606 if (limit_vr)
1607 {
1608 range_type = limit_vr->type;
1609 min = limit_vr->min;
1610 max = limit_vr->max;
1611 }
1612 else
1613 {
1614 range_type = VR_RANGE;
1615 min = limit;
1616 max = limit;
1617 }
1618
1619 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1620
1621 /* When asserting the equality VAR == LIMIT and LIMIT is another
1622 SSA name, the new range will also inherit the equivalence set
1623 from LIMIT. */
1624 if (TREE_CODE (limit) == SSA_NAME)
1625 add_equivalence (&vr_p->equiv, limit);
1626 }
1627 else if (cond_code == NE_EXPR)
1628 {
1629 /* As described above, when LIMIT's range is an anti-range and
1630 this assertion is an inequality (NE_EXPR), then we cannot
1631 derive anything from the anti-range. For instance, if
1632 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1633 not imply that VAR's range is [0, 0]. So, in the case of
1634 anti-ranges, we just assert the inequality using LIMIT and
1635 not its anti-range.
1636
1637 If LIMIT_VR is a range, we can only use it to build a new
1638 anti-range if LIMIT_VR is a single-valued range. For
1639 instance, if LIMIT_VR is [0, 1], the predicate
1640 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1641 Rather, it means that for value 0 VAR should be ~[0, 0]
1642 and for value 1, VAR should be ~[1, 1]. We cannot
1643 represent these ranges.
1644
1645 The only situation in which we can build a valid
1646 anti-range is when LIMIT_VR is a single-valued range
1647 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1648 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1649 if (limit_vr
1650 && limit_vr->type == VR_RANGE
1651 && compare_values (limit_vr->min, limit_vr->max) == 0)
1652 {
1653 min = limit_vr->min;
1654 max = limit_vr->max;
1655 }
1656 else
1657 {
1658 /* In any other case, we cannot use LIMIT's range to build a
1659 valid anti-range. */
1660 min = max = limit;
1661 }
1662
1663 /* If MIN and MAX cover the whole range for their type, then
1664 just use the original LIMIT. */
1665 if (INTEGRAL_TYPE_P (type)
1666 && vrp_val_is_min (min)
1667 && vrp_val_is_max (max))
1668 min = max = limit;
1669
1670 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1671 }
1672 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1673 {
1674 min = TYPE_MIN_VALUE (type);
1675
1676 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1677 max = limit;
1678 else
1679 {
1680 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1681 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1682 LT_EXPR. */
1683 max = limit_vr->max;
1684 }
1685
1686 /* If the maximum value forces us to be out of bounds, simply punt.
1687 It would be pointless to try and do anything more since this
1688 all should be optimized away above us. */
1689 if ((cond_code == LT_EXPR
1690 && compare_values (max, min) == 0)
1691 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1692 set_value_range_to_varying (vr_p);
1693 else
1694 {
1695 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1696 if (cond_code == LT_EXPR)
1697 {
1698 tree one = build_int_cst (type, 1);
1699 max = fold_build2 (MINUS_EXPR, type, max, one);
1700 if (EXPR_P (max))
1701 TREE_NO_WARNING (max) = 1;
1702 }
1703
1704 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1705 }
1706 }
1707 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1708 {
1709 max = TYPE_MAX_VALUE (type);
1710
1711 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1712 min = limit;
1713 else
1714 {
1715 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1716 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1717 GT_EXPR. */
1718 min = limit_vr->min;
1719 }
1720
1721 /* If the minimum value forces us to be out of bounds, simply punt.
1722 It would be pointless to try and do anything more since this
1723 all should be optimized away above us. */
1724 if ((cond_code == GT_EXPR
1725 && compare_values (min, max) == 0)
1726 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1727 set_value_range_to_varying (vr_p);
1728 else
1729 {
1730 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1731 if (cond_code == GT_EXPR)
1732 {
1733 tree one = build_int_cst (type, 1);
1734 min = fold_build2 (PLUS_EXPR, type, min, one);
1735 if (EXPR_P (min))
1736 TREE_NO_WARNING (min) = 1;
1737 }
1738
1739 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1740 }
1741 }
1742 else
1743 gcc_unreachable ();
1744
1745 /* If VAR already had a known range, it may happen that the new
1746 range we have computed and VAR's range are not compatible. For
1747 instance,
1748
1749 if (p_5 == NULL)
1750 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1751 x_7 = p_6->fld;
1752 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1753
1754 While the above comes from a faulty program, it will cause an ICE
1755 later because p_8 and p_6 will have incompatible ranges and at
1756 the same time will be considered equivalent. A similar situation
1757 would arise from
1758
1759 if (i_5 > 10)
1760 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1761 if (i_5 < 5)
1762 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1763
1764 Again i_6 and i_7 will have incompatible ranges. It would be
1765 pointless to try and do anything with i_7's range because
1766 anything dominated by 'if (i_5 < 5)' will be optimized away.
1767 Note, due to the wa in which simulation proceeds, the statement
1768 i_7 = ASSERT_EXPR <...> we would never be visited because the
1769 conditional 'if (i_5 < 5)' always evaluates to false. However,
1770 this extra check does not hurt and may protect against future
1771 changes to VRP that may get into a situation similar to the
1772 NULL pointer dereference example.
1773
1774 Note that these compatibility tests are only needed when dealing
1775 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1776 are both anti-ranges, they will always be compatible, because two
1777 anti-ranges will always have a non-empty intersection. */
1778
1779 var_vr = get_value_range (var);
1780
1781 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1782 ranges or anti-ranges. */
1783 if (vr_p->type == VR_VARYING
1784 || vr_p->type == VR_UNDEFINED
1785 || var_vr->type == VR_VARYING
1786 || var_vr->type == VR_UNDEFINED
1787 || symbolic_range_p (vr_p)
1788 || symbolic_range_p (var_vr))
1789 return;
1790
1791 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1792 {
1793 /* If the two ranges have a non-empty intersection, we can
1794 refine the resulting range. Since the assert expression
1795 creates an equivalency and at the same time it asserts a
1796 predicate, we can take the intersection of the two ranges to
1797 get better precision. */
1798 if (value_ranges_intersect_p (var_vr, vr_p))
1799 {
1800 /* Use the larger of the two minimums. */
1801 if (compare_values (vr_p->min, var_vr->min) == -1)
1802 min = var_vr->min;
1803 else
1804 min = vr_p->min;
1805
1806 /* Use the smaller of the two maximums. */
1807 if (compare_values (vr_p->max, var_vr->max) == 1)
1808 max = var_vr->max;
1809 else
1810 max = vr_p->max;
1811
1812 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1813 }
1814 else
1815 {
1816 /* The two ranges do not intersect, set the new range to
1817 VARYING, because we will not be able to do anything
1818 meaningful with it. */
1819 set_value_range_to_varying (vr_p);
1820 }
1821 }
1822 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1823 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1824 {
1825 /* A range and an anti-range will cancel each other only if
1826 their ends are the same. For instance, in the example above,
1827 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1828 so VR_P should be set to VR_VARYING. */
1829 if (compare_values (var_vr->min, vr_p->min) == 0
1830 && compare_values (var_vr->max, vr_p->max) == 0)
1831 set_value_range_to_varying (vr_p);
1832 else
1833 {
1834 tree min, max, anti_min, anti_max, real_min, real_max;
1835 int cmp;
1836
1837 /* We want to compute the logical AND of the two ranges;
1838 there are three cases to consider.
1839
1840
1841 1. The VR_ANTI_RANGE range is completely within the
1842 VR_RANGE and the endpoints of the ranges are
1843 different. In that case the resulting range
1844 should be whichever range is more precise.
1845 Typically that will be the VR_RANGE.
1846
1847 2. The VR_ANTI_RANGE is completely disjoint from
1848 the VR_RANGE. In this case the resulting range
1849 should be the VR_RANGE.
1850
1851 3. There is some overlap between the VR_ANTI_RANGE
1852 and the VR_RANGE.
1853
1854 3a. If the high limit of the VR_ANTI_RANGE resides
1855 within the VR_RANGE, then the result is a new
1856 VR_RANGE starting at the high limit of the
1857 VR_ANTI_RANGE + 1 and extending to the
1858 high limit of the original VR_RANGE.
1859
1860 3b. If the low limit of the VR_ANTI_RANGE resides
1861 within the VR_RANGE, then the result is a new
1862 VR_RANGE starting at the low limit of the original
1863 VR_RANGE and extending to the low limit of the
1864 VR_ANTI_RANGE - 1. */
1865 if (vr_p->type == VR_ANTI_RANGE)
1866 {
1867 anti_min = vr_p->min;
1868 anti_max = vr_p->max;
1869 real_min = var_vr->min;
1870 real_max = var_vr->max;
1871 }
1872 else
1873 {
1874 anti_min = var_vr->min;
1875 anti_max = var_vr->max;
1876 real_min = vr_p->min;
1877 real_max = vr_p->max;
1878 }
1879
1880
1881 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1882 not including any endpoints. */
1883 if (compare_values (anti_max, real_max) == -1
1884 && compare_values (anti_min, real_min) == 1)
1885 {
1886 /* If the range is covering the whole valid range of
1887 the type keep the anti-range. */
1888 if (!vrp_val_is_min (real_min)
1889 || !vrp_val_is_max (real_max))
1890 set_value_range (vr_p, VR_RANGE, real_min,
1891 real_max, vr_p->equiv);
1892 }
1893 /* Case 2, VR_ANTI_RANGE completely disjoint from
1894 VR_RANGE. */
1895 else if (compare_values (anti_min, real_max) == 1
1896 || compare_values (anti_max, real_min) == -1)
1897 {
1898 set_value_range (vr_p, VR_RANGE, real_min,
1899 real_max, vr_p->equiv);
1900 }
1901 /* Case 3a, the anti-range extends into the low
1902 part of the real range. Thus creating a new
1903 low for the real range. */
1904 else if (((cmp = compare_values (anti_max, real_min)) == 1
1905 || cmp == 0)
1906 && compare_values (anti_max, real_max) == -1)
1907 {
1908 gcc_assert (!is_positive_overflow_infinity (anti_max));
1909 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1910 && vrp_val_is_max (anti_max))
1911 {
1912 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1913 {
1914 set_value_range_to_varying (vr_p);
1915 return;
1916 }
1917 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1918 }
1919 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1920 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1921 anti_max,
1922 build_int_cst (TREE_TYPE (var_vr->min), 1));
1923 else
1924 min = fold_build_pointer_plus_hwi (anti_max, 1);
1925 max = real_max;
1926 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1927 }
1928 /* Case 3b, the anti-range extends into the high
1929 part of the real range. Thus creating a new
1930 higher for the real range. */
1931 else if (compare_values (anti_min, real_min) == 1
1932 && ((cmp = compare_values (anti_min, real_max)) == -1
1933 || cmp == 0))
1934 {
1935 gcc_assert (!is_negative_overflow_infinity (anti_min));
1936 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1937 && vrp_val_is_min (anti_min))
1938 {
1939 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1940 {
1941 set_value_range_to_varying (vr_p);
1942 return;
1943 }
1944 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1945 }
1946 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1947 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1948 anti_min,
1949 build_int_cst (TREE_TYPE (var_vr->min), 1));
1950 else
1951 max = fold_build_pointer_plus_hwi (anti_min, -1);
1952 min = real_min;
1953 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1954 }
1955 }
1956 }
1957 }
1958
1959
1960 /* Extract range information from SSA name VAR and store it in VR. If
1961 VAR has an interesting range, use it. Otherwise, create the
1962 range [VAR, VAR] and return it. This is useful in situations where
1963 we may have conditionals testing values of VARYING names. For
1964 instance,
1965
1966 x_3 = y_5;
1967 if (x_3 > y_5)
1968 ...
1969
1970 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1971 always false. */
1972
1973 static void
1974 extract_range_from_ssa_name (value_range_t *vr, tree var)
1975 {
1976 value_range_t *var_vr = get_value_range (var);
1977
1978 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1979 copy_value_range (vr, var_vr);
1980 else
1981 set_value_range (vr, VR_RANGE, var, var, NULL);
1982
1983 add_equivalence (&vr->equiv, var);
1984 }
1985
1986
1987 /* Wrapper around int_const_binop. If the operation overflows and we
1988 are not using wrapping arithmetic, then adjust the result to be
1989 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1990 NULL_TREE if we need to use an overflow infinity representation but
1991 the type does not support it. */
1992
1993 static tree
1994 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1995 {
1996 tree res;
1997
1998 res = int_const_binop (code, val1, val2);
1999
2000 /* If we are using unsigned arithmetic, operate symbolically
2001 on -INF and +INF as int_const_binop only handles signed overflow. */
2002 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
2003 {
2004 int checkz = compare_values (res, val1);
2005 bool overflow = false;
2006
2007 /* Ensure that res = val1 [+*] val2 >= val1
2008 or that res = val1 - val2 <= val1. */
2009 if ((code == PLUS_EXPR
2010 && !(checkz == 1 || checkz == 0))
2011 || (code == MINUS_EXPR
2012 && !(checkz == 0 || checkz == -1)))
2013 {
2014 overflow = true;
2015 }
2016 /* Checking for multiplication overflow is done by dividing the
2017 output of the multiplication by the first input of the
2018 multiplication. If the result of that division operation is
2019 not equal to the second input of the multiplication, then the
2020 multiplication overflowed. */
2021 else if (code == MULT_EXPR && !integer_zerop (val1))
2022 {
2023 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
2024 res,
2025 val1);
2026 int check = compare_values (tmp, val2);
2027
2028 if (check != 0)
2029 overflow = true;
2030 }
2031
2032 if (overflow)
2033 {
2034 res = copy_node (res);
2035 TREE_OVERFLOW (res) = 1;
2036 }
2037
2038 }
2039 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
2040 /* If the singed operation wraps then int_const_binop has done
2041 everything we want. */
2042 ;
2043 else if ((TREE_OVERFLOW (res)
2044 && !TREE_OVERFLOW (val1)
2045 && !TREE_OVERFLOW (val2))
2046 || is_overflow_infinity (val1)
2047 || is_overflow_infinity (val2))
2048 {
2049 /* If the operation overflowed but neither VAL1 nor VAL2 are
2050 overflown, return -INF or +INF depending on the operation
2051 and the combination of signs of the operands. */
2052 int sgn1 = tree_int_cst_sgn (val1);
2053 int sgn2 = tree_int_cst_sgn (val2);
2054
2055 if (needs_overflow_infinity (TREE_TYPE (res))
2056 && !supports_overflow_infinity (TREE_TYPE (res)))
2057 return NULL_TREE;
2058
2059 /* We have to punt on adding infinities of different signs,
2060 since we can't tell what the sign of the result should be.
2061 Likewise for subtracting infinities of the same sign. */
2062 if (((code == PLUS_EXPR && sgn1 != sgn2)
2063 || (code == MINUS_EXPR && sgn1 == sgn2))
2064 && is_overflow_infinity (val1)
2065 && is_overflow_infinity (val2))
2066 return NULL_TREE;
2067
2068 /* Don't try to handle division or shifting of infinities. */
2069 if ((code == TRUNC_DIV_EXPR
2070 || code == FLOOR_DIV_EXPR
2071 || code == CEIL_DIV_EXPR
2072 || code == EXACT_DIV_EXPR
2073 || code == ROUND_DIV_EXPR
2074 || code == RSHIFT_EXPR)
2075 && (is_overflow_infinity (val1)
2076 || is_overflow_infinity (val2)))
2077 return NULL_TREE;
2078
2079 /* Notice that we only need to handle the restricted set of
2080 operations handled by extract_range_from_binary_expr.
2081 Among them, only multiplication, addition and subtraction
2082 can yield overflow without overflown operands because we
2083 are working with integral types only... except in the
2084 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2085 for division too. */
2086
2087 /* For multiplication, the sign of the overflow is given
2088 by the comparison of the signs of the operands. */
2089 if ((code == MULT_EXPR && sgn1 == sgn2)
2090 /* For addition, the operands must be of the same sign
2091 to yield an overflow. Its sign is therefore that
2092 of one of the operands, for example the first. For
2093 infinite operands X + -INF is negative, not positive. */
2094 || (code == PLUS_EXPR
2095 && (sgn1 >= 0
2096 ? !is_negative_overflow_infinity (val2)
2097 : is_positive_overflow_infinity (val2)))
2098 /* For subtraction, non-infinite operands must be of
2099 different signs to yield an overflow. Its sign is
2100 therefore that of the first operand or the opposite of
2101 that of the second operand. A first operand of 0 counts
2102 as positive here, for the corner case 0 - (-INF), which
2103 overflows, but must yield +INF. For infinite operands 0
2104 - INF is negative, not positive. */
2105 || (code == MINUS_EXPR
2106 && (sgn1 >= 0
2107 ? !is_positive_overflow_infinity (val2)
2108 : is_negative_overflow_infinity (val2)))
2109 /* We only get in here with positive shift count, so the
2110 overflow direction is the same as the sign of val1.
2111 Actually rshift does not overflow at all, but we only
2112 handle the case of shifting overflowed -INF and +INF. */
2113 || (code == RSHIFT_EXPR
2114 && sgn1 >= 0)
2115 /* For division, the only case is -INF / -1 = +INF. */
2116 || code == TRUNC_DIV_EXPR
2117 || code == FLOOR_DIV_EXPR
2118 || code == CEIL_DIV_EXPR
2119 || code == EXACT_DIV_EXPR
2120 || code == ROUND_DIV_EXPR)
2121 return (needs_overflow_infinity (TREE_TYPE (res))
2122 ? positive_overflow_infinity (TREE_TYPE (res))
2123 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2124 else
2125 return (needs_overflow_infinity (TREE_TYPE (res))
2126 ? negative_overflow_infinity (TREE_TYPE (res))
2127 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2128 }
2129
2130 return res;
2131 }
2132
2133
2134 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
2135 bitmask if some bit is unset, it means for all numbers in the range
2136 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2137 bitmask if some bit is set, it means for all numbers in the range
2138 the bit is 1, otherwise it might be 0 or 1. */
2139
2140 static bool
2141 zero_nonzero_bits_from_vr (value_range_t *vr,
2142 double_int *may_be_nonzero,
2143 double_int *must_be_nonzero)
2144 {
2145 *may_be_nonzero = double_int_minus_one;
2146 *must_be_nonzero = double_int_zero;
2147 if (!range_int_cst_p (vr))
2148 return false;
2149
2150 if (range_int_cst_singleton_p (vr))
2151 {
2152 *may_be_nonzero = tree_to_double_int (vr->min);
2153 *must_be_nonzero = *may_be_nonzero;
2154 }
2155 else if (tree_int_cst_sgn (vr->min) >= 0
2156 || tree_int_cst_sgn (vr->max) < 0)
2157 {
2158 double_int dmin = tree_to_double_int (vr->min);
2159 double_int dmax = tree_to_double_int (vr->max);
2160 double_int xor_mask = double_int_xor (dmin, dmax);
2161 *may_be_nonzero = double_int_ior (dmin, dmax);
2162 *must_be_nonzero = double_int_and (dmin, dmax);
2163 if (xor_mask.high != 0)
2164 {
2165 unsigned HOST_WIDE_INT mask
2166 = ((unsigned HOST_WIDE_INT) 1
2167 << floor_log2 (xor_mask.high)) - 1;
2168 may_be_nonzero->low = ALL_ONES;
2169 may_be_nonzero->high |= mask;
2170 must_be_nonzero->low = 0;
2171 must_be_nonzero->high &= ~mask;
2172 }
2173 else if (xor_mask.low != 0)
2174 {
2175 unsigned HOST_WIDE_INT mask
2176 = ((unsigned HOST_WIDE_INT) 1
2177 << floor_log2 (xor_mask.low)) - 1;
2178 may_be_nonzero->low |= mask;
2179 must_be_nonzero->low &= ~mask;
2180 }
2181 }
2182
2183 return true;
2184 }
2185
2186
2187 /* Extract range information from a binary operation CODE based on
2188 the ranges of each of its operands, *VR0 and *VR1 with resulting
2189 type EXPR_TYPE. The resulting range is stored in *VR. */
2190
2191 static void
2192 extract_range_from_binary_expr_1 (value_range_t *vr,
2193 enum tree_code code, tree expr_type,
2194 value_range_t *vr0_, value_range_t *vr1_)
2195 {
2196 value_range_t vr0 = *vr0_, vr1 = *vr1_;
2197 enum value_range_type type;
2198 tree min, max;
2199 int cmp;
2200
2201 /* Not all binary expressions can be applied to ranges in a
2202 meaningful way. Handle only arithmetic operations. */
2203 if (code != PLUS_EXPR
2204 && code != MINUS_EXPR
2205 && code != POINTER_PLUS_EXPR
2206 && code != MULT_EXPR
2207 && code != TRUNC_DIV_EXPR
2208 && code != FLOOR_DIV_EXPR
2209 && code != CEIL_DIV_EXPR
2210 && code != EXACT_DIV_EXPR
2211 && code != ROUND_DIV_EXPR
2212 && code != TRUNC_MOD_EXPR
2213 && code != RSHIFT_EXPR
2214 && code != MIN_EXPR
2215 && code != MAX_EXPR
2216 && code != BIT_AND_EXPR
2217 && code != BIT_IOR_EXPR
2218 && code != BIT_XOR_EXPR)
2219 {
2220 set_value_range_to_varying (vr);
2221 return;
2222 }
2223
2224 /* If both ranges are UNDEFINED, so is the result. */
2225 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2226 {
2227 set_value_range_to_undefined (vr);
2228 return;
2229 }
2230 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2231 code. At some point we may want to special-case operations that
2232 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2233 operand. */
2234 else if (vr0.type == VR_UNDEFINED)
2235 set_value_range_to_varying (&vr0);
2236 else if (vr1.type == VR_UNDEFINED)
2237 set_value_range_to_varying (&vr1);
2238
2239 /* The type of the resulting value range defaults to VR0.TYPE. */
2240 type = vr0.type;
2241
2242 /* Refuse to operate on VARYING ranges, ranges of different kinds
2243 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2244 because we may be able to derive a useful range even if one of
2245 the operands is VR_VARYING or symbolic range. Similarly for
2246 divisions. TODO, we may be able to derive anti-ranges in
2247 some cases. */
2248 if (code != BIT_AND_EXPR
2249 && code != BIT_IOR_EXPR
2250 && code != TRUNC_DIV_EXPR
2251 && code != FLOOR_DIV_EXPR
2252 && code != CEIL_DIV_EXPR
2253 && code != EXACT_DIV_EXPR
2254 && code != ROUND_DIV_EXPR
2255 && code != TRUNC_MOD_EXPR
2256 && (vr0.type == VR_VARYING
2257 || vr1.type == VR_VARYING
2258 || vr0.type != vr1.type
2259 || symbolic_range_p (&vr0)
2260 || symbolic_range_p (&vr1)))
2261 {
2262 set_value_range_to_varying (vr);
2263 return;
2264 }
2265
2266 /* Now evaluate the expression to determine the new range. */
2267 if (POINTER_TYPE_P (expr_type))
2268 {
2269 if (code == MIN_EXPR || code == MAX_EXPR)
2270 {
2271 /* For MIN/MAX expressions with pointers, we only care about
2272 nullness, if both are non null, then the result is nonnull.
2273 If both are null, then the result is null. Otherwise they
2274 are varying. */
2275 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2276 set_value_range_to_nonnull (vr, expr_type);
2277 else if (range_is_null (&vr0) && range_is_null (&vr1))
2278 set_value_range_to_null (vr, expr_type);
2279 else
2280 set_value_range_to_varying (vr);
2281 }
2282 else if (code == POINTER_PLUS_EXPR)
2283 {
2284 /* For pointer types, we are really only interested in asserting
2285 whether the expression evaluates to non-NULL. */
2286 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2287 set_value_range_to_nonnull (vr, expr_type);
2288 else if (range_is_null (&vr0) && range_is_null (&vr1))
2289 set_value_range_to_null (vr, expr_type);
2290 else
2291 set_value_range_to_varying (vr);
2292 }
2293 else if (code == BIT_AND_EXPR)
2294 {
2295 /* For pointer types, we are really only interested in asserting
2296 whether the expression evaluates to non-NULL. */
2297 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2298 set_value_range_to_nonnull (vr, expr_type);
2299 else if (range_is_null (&vr0) || range_is_null (&vr1))
2300 set_value_range_to_null (vr, expr_type);
2301 else
2302 set_value_range_to_varying (vr);
2303 }
2304 else
2305 set_value_range_to_varying (vr);
2306
2307 return;
2308 }
2309
2310 /* For integer ranges, apply the operation to each end of the
2311 range and see what we end up with. */
2312 if (code == PLUS_EXPR
2313 || code == MIN_EXPR
2314 || code == MAX_EXPR)
2315 {
2316 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2317 VR_VARYING. It would take more effort to compute a precise
2318 range for such a case. For example, if we have op0 == 1 and
2319 op1 == -1 with their ranges both being ~[0,0], we would have
2320 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2321 Note that we are guaranteed to have vr0.type == vr1.type at
2322 this point. */
2323 if (vr0.type == VR_ANTI_RANGE)
2324 {
2325 if (code == PLUS_EXPR)
2326 {
2327 set_value_range_to_varying (vr);
2328 return;
2329 }
2330 /* For MIN_EXPR and MAX_EXPR with two VR_ANTI_RANGEs,
2331 the resulting VR_ANTI_RANGE is the same - intersection
2332 of the two ranges. */
2333 min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
2334 max = vrp_int_const_binop (MIN_EXPR, vr0.max, vr1.max);
2335 }
2336 else
2337 {
2338 /* For operations that make the resulting range directly
2339 proportional to the original ranges, apply the operation to
2340 the same end of each range. */
2341 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2342 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2343 }
2344
2345 /* If both additions overflowed the range kind is still correct.
2346 This happens regularly with subtracting something in unsigned
2347 arithmetic.
2348 ??? See PR30318 for all the cases we do not handle. */
2349 if (code == PLUS_EXPR
2350 && (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2351 && (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2352 {
2353 min = build_int_cst_wide (TREE_TYPE (min),
2354 TREE_INT_CST_LOW (min),
2355 TREE_INT_CST_HIGH (min));
2356 max = build_int_cst_wide (TREE_TYPE (max),
2357 TREE_INT_CST_LOW (max),
2358 TREE_INT_CST_HIGH (max));
2359 }
2360 }
2361 else if (code == MULT_EXPR
2362 || code == TRUNC_DIV_EXPR
2363 || code == FLOOR_DIV_EXPR
2364 || code == CEIL_DIV_EXPR
2365 || code == EXACT_DIV_EXPR
2366 || code == ROUND_DIV_EXPR
2367 || code == RSHIFT_EXPR)
2368 {
2369 tree val[4];
2370 size_t i;
2371 bool sop;
2372
2373 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2374 drop to VR_VARYING. It would take more effort to compute a
2375 precise range for such a case. For example, if we have
2376 op0 == 65536 and op1 == 65536 with their ranges both being
2377 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2378 we cannot claim that the product is in ~[0,0]. Note that we
2379 are guaranteed to have vr0.type == vr1.type at this
2380 point. */
2381 if (code == MULT_EXPR
2382 && vr0.type == VR_ANTI_RANGE
2383 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2384 {
2385 set_value_range_to_varying (vr);
2386 return;
2387 }
2388
2389 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2390 then drop to VR_VARYING. Outside of this range we get undefined
2391 behavior from the shift operation. We cannot even trust
2392 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2393 shifts, and the operation at the tree level may be widened. */
2394 if (code == RSHIFT_EXPR)
2395 {
2396 if (vr1.type != VR_RANGE
2397 || !value_range_nonnegative_p (&vr1)
2398 || TREE_CODE (vr1.max) != INTEGER_CST
2399 || compare_tree_int (vr1.max,
2400 TYPE_PRECISION (expr_type) - 1) == 1)
2401 {
2402 set_value_range_to_varying (vr);
2403 return;
2404 }
2405 }
2406
2407 else if ((code == TRUNC_DIV_EXPR
2408 || code == FLOOR_DIV_EXPR
2409 || code == CEIL_DIV_EXPR
2410 || code == EXACT_DIV_EXPR
2411 || code == ROUND_DIV_EXPR)
2412 && (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
2413 {
2414 /* For division, if op1 has VR_RANGE but op0 does not, something
2415 can be deduced just from that range. Say [min, max] / [4, max]
2416 gives [min / 4, max / 4] range. */
2417 if (vr1.type == VR_RANGE
2418 && !symbolic_range_p (&vr1)
2419 && !range_includes_zero_p (&vr1))
2420 {
2421 vr0.type = type = VR_RANGE;
2422 vr0.min = vrp_val_min (expr_type);
2423 vr0.max = vrp_val_max (expr_type);
2424 }
2425 else
2426 {
2427 set_value_range_to_varying (vr);
2428 return;
2429 }
2430 }
2431
2432 /* For divisions, if flag_non_call_exceptions is true, we must
2433 not eliminate a division by zero. */
2434 if ((code == TRUNC_DIV_EXPR
2435 || code == FLOOR_DIV_EXPR
2436 || code == CEIL_DIV_EXPR
2437 || code == EXACT_DIV_EXPR
2438 || code == ROUND_DIV_EXPR)
2439 && cfun->can_throw_non_call_exceptions
2440 && (vr1.type != VR_RANGE
2441 || symbolic_range_p (&vr1)
2442 || range_includes_zero_p (&vr1)))
2443 {
2444 set_value_range_to_varying (vr);
2445 return;
2446 }
2447
2448 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2449 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2450 include 0. */
2451 if ((code == TRUNC_DIV_EXPR
2452 || code == FLOOR_DIV_EXPR
2453 || code == CEIL_DIV_EXPR
2454 || code == EXACT_DIV_EXPR
2455 || code == ROUND_DIV_EXPR)
2456 && vr0.type == VR_RANGE
2457 && (vr1.type != VR_RANGE
2458 || symbolic_range_p (&vr1)
2459 || range_includes_zero_p (&vr1)))
2460 {
2461 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2462 int cmp;
2463
2464 sop = false;
2465 min = NULL_TREE;
2466 max = NULL_TREE;
2467 if (TYPE_UNSIGNED (expr_type)
2468 || value_range_nonnegative_p (&vr1))
2469 {
2470 /* For unsigned division or when divisor is known
2471 to be non-negative, the range has to cover
2472 all numbers from 0 to max for positive max
2473 and all numbers from min to 0 for negative min. */
2474 cmp = compare_values (vr0.max, zero);
2475 if (cmp == -1)
2476 max = zero;
2477 else if (cmp == 0 || cmp == 1)
2478 max = vr0.max;
2479 else
2480 type = VR_VARYING;
2481 cmp = compare_values (vr0.min, zero);
2482 if (cmp == 1)
2483 min = zero;
2484 else if (cmp == 0 || cmp == -1)
2485 min = vr0.min;
2486 else
2487 type = VR_VARYING;
2488 }
2489 else
2490 {
2491 /* Otherwise the range is -max .. max or min .. -min
2492 depending on which bound is bigger in absolute value,
2493 as the division can change the sign. */
2494 abs_extent_range (vr, vr0.min, vr0.max);
2495 return;
2496 }
2497 if (type == VR_VARYING)
2498 {
2499 set_value_range_to_varying (vr);
2500 return;
2501 }
2502 }
2503
2504 /* Multiplications and divisions are a bit tricky to handle,
2505 depending on the mix of signs we have in the two ranges, we
2506 need to operate on different values to get the minimum and
2507 maximum values for the new range. One approach is to figure
2508 out all the variations of range combinations and do the
2509 operations.
2510
2511 However, this involves several calls to compare_values and it
2512 is pretty convoluted. It's simpler to do the 4 operations
2513 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2514 MAX1) and then figure the smallest and largest values to form
2515 the new range. */
2516 else
2517 {
2518 gcc_assert ((vr0.type == VR_RANGE
2519 || (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
2520 && vr0.type == vr1.type);
2521
2522 /* Compute the 4 cross operations. */
2523 sop = false;
2524 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
2525 if (val[0] == NULL_TREE)
2526 sop = true;
2527
2528 if (vr1.max == vr1.min)
2529 val[1] = NULL_TREE;
2530 else
2531 {
2532 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2533 if (val[1] == NULL_TREE)
2534 sop = true;
2535 }
2536
2537 if (vr0.max == vr0.min)
2538 val[2] = NULL_TREE;
2539 else
2540 {
2541 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2542 if (val[2] == NULL_TREE)
2543 sop = true;
2544 }
2545
2546 if (vr0.min == vr0.max || vr1.min == vr1.max)
2547 val[3] = NULL_TREE;
2548 else
2549 {
2550 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2551 if (val[3] == NULL_TREE)
2552 sop = true;
2553 }
2554
2555 if (sop)
2556 {
2557 set_value_range_to_varying (vr);
2558 return;
2559 }
2560
2561 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2562 of VAL[i]. */
2563 min = val[0];
2564 max = val[0];
2565 for (i = 1; i < 4; i++)
2566 {
2567 if (!is_gimple_min_invariant (min)
2568 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2569 || !is_gimple_min_invariant (max)
2570 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2571 break;
2572
2573 if (val[i])
2574 {
2575 if (!is_gimple_min_invariant (val[i])
2576 || (TREE_OVERFLOW (val[i])
2577 && !is_overflow_infinity (val[i])))
2578 {
2579 /* If we found an overflowed value, set MIN and MAX
2580 to it so that we set the resulting range to
2581 VARYING. */
2582 min = max = val[i];
2583 break;
2584 }
2585
2586 if (compare_values (val[i], min) == -1)
2587 min = val[i];
2588
2589 if (compare_values (val[i], max) == 1)
2590 max = val[i];
2591 }
2592 }
2593 }
2594 }
2595 else if (code == TRUNC_MOD_EXPR)
2596 {
2597 if (vr1.type != VR_RANGE
2598 || symbolic_range_p (&vr1)
2599 || range_includes_zero_p (&vr1)
2600 || vrp_val_is_min (vr1.min))
2601 {
2602 set_value_range_to_varying (vr);
2603 return;
2604 }
2605 type = VR_RANGE;
2606 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2607 max = fold_unary_to_constant (ABS_EXPR, expr_type, vr1.min);
2608 if (tree_int_cst_lt (max, vr1.max))
2609 max = vr1.max;
2610 max = int_const_binop (MINUS_EXPR, max, integer_one_node);
2611 /* If the dividend is non-negative the modulus will be
2612 non-negative as well. */
2613 if (TYPE_UNSIGNED (expr_type)
2614 || value_range_nonnegative_p (&vr0))
2615 min = build_int_cst (TREE_TYPE (max), 0);
2616 else
2617 min = fold_unary_to_constant (NEGATE_EXPR, expr_type, max);
2618 }
2619 else if (code == MINUS_EXPR)
2620 {
2621 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2622 VR_VARYING. It would take more effort to compute a precise
2623 range for such a case. For example, if we have op0 == 1 and
2624 op1 == 1 with their ranges both being ~[0,0], we would have
2625 op0 - op1 == 0, so we cannot claim that the difference is in
2626 ~[0,0]. Note that we are guaranteed to have
2627 vr0.type == vr1.type at this point. */
2628 if (vr0.type == VR_ANTI_RANGE)
2629 {
2630 set_value_range_to_varying (vr);
2631 return;
2632 }
2633
2634 /* For MINUS_EXPR, apply the operation to the opposite ends of
2635 each range. */
2636 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2637 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2638 }
2639 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
2640 {
2641 bool int_cst_range0, int_cst_range1;
2642 double_int may_be_nonzero0, may_be_nonzero1;
2643 double_int must_be_nonzero0, must_be_nonzero1;
2644
2645 int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
2646 &must_be_nonzero0);
2647 int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
2648 &must_be_nonzero1);
2649
2650 type = VR_RANGE;
2651 if (code == BIT_AND_EXPR)
2652 {
2653 double_int dmax;
2654 min = double_int_to_tree (expr_type,
2655 double_int_and (must_be_nonzero0,
2656 must_be_nonzero1));
2657 dmax = double_int_and (may_be_nonzero0, may_be_nonzero1);
2658 /* If both input ranges contain only negative values we can
2659 truncate the result range maximum to the minimum of the
2660 input range maxima. */
2661 if (int_cst_range0 && int_cst_range1
2662 && tree_int_cst_sgn (vr0.max) < 0
2663 && tree_int_cst_sgn (vr1.max) < 0)
2664 {
2665 dmax = double_int_min (dmax, tree_to_double_int (vr0.max),
2666 TYPE_UNSIGNED (expr_type));
2667 dmax = double_int_min (dmax, tree_to_double_int (vr1.max),
2668 TYPE_UNSIGNED (expr_type));
2669 }
2670 /* If either input range contains only non-negative values
2671 we can truncate the result range maximum to the respective
2672 maximum of the input range. */
2673 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
2674 dmax = double_int_min (dmax, tree_to_double_int (vr0.max),
2675 TYPE_UNSIGNED (expr_type));
2676 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
2677 dmax = double_int_min (dmax, tree_to_double_int (vr1.max),
2678 TYPE_UNSIGNED (expr_type));
2679 max = double_int_to_tree (expr_type, dmax);
2680 }
2681 else if (code == BIT_IOR_EXPR)
2682 {
2683 double_int dmin;
2684 max = double_int_to_tree (expr_type,
2685 double_int_ior (may_be_nonzero0,
2686 may_be_nonzero1));
2687 dmin = double_int_ior (must_be_nonzero0, must_be_nonzero1);
2688 /* If the input ranges contain only positive values we can
2689 truncate the minimum of the result range to the maximum
2690 of the input range minima. */
2691 if (int_cst_range0 && int_cst_range1
2692 && tree_int_cst_sgn (vr0.min) >= 0
2693 && tree_int_cst_sgn (vr1.min) >= 0)
2694 {
2695 dmin = double_int_max (dmin, tree_to_double_int (vr0.min),
2696 TYPE_UNSIGNED (expr_type));
2697 dmin = double_int_max (dmin, tree_to_double_int (vr1.min),
2698 TYPE_UNSIGNED (expr_type));
2699 }
2700 /* If either input range contains only negative values
2701 we can truncate the minimum of the result range to the
2702 respective minimum range. */
2703 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
2704 dmin = double_int_max (dmin, tree_to_double_int (vr0.min),
2705 TYPE_UNSIGNED (expr_type));
2706 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
2707 dmin = double_int_max (dmin, tree_to_double_int (vr1.min),
2708 TYPE_UNSIGNED (expr_type));
2709 min = double_int_to_tree (expr_type, dmin);
2710 }
2711 else if (code == BIT_XOR_EXPR)
2712 {
2713 double_int result_zero_bits, result_one_bits;
2714 result_zero_bits
2715 = double_int_ior (double_int_and (must_be_nonzero0,
2716 must_be_nonzero1),
2717 double_int_not
2718 (double_int_ior (may_be_nonzero0,
2719 may_be_nonzero1)));
2720 result_one_bits
2721 = double_int_ior (double_int_and
2722 (must_be_nonzero0,
2723 double_int_not (may_be_nonzero1)),
2724 double_int_and
2725 (must_be_nonzero1,
2726 double_int_not (may_be_nonzero0)));
2727 max = double_int_to_tree (expr_type,
2728 double_int_not (result_zero_bits));
2729 min = double_int_to_tree (expr_type, result_one_bits);
2730 /* If the range has all positive or all negative values the
2731 result is better than VARYING. */
2732 if (tree_int_cst_sgn (min) < 0
2733 || tree_int_cst_sgn (max) >= 0)
2734 ;
2735 else
2736 max = min = NULL_TREE;
2737 }
2738 else
2739 {
2740 set_value_range_to_varying (vr);
2741 return;
2742 }
2743 }
2744 else
2745 gcc_unreachable ();
2746
2747 /* If either MIN or MAX overflowed, then set the resulting range to
2748 VARYING. But we do accept an overflow infinity
2749 representation. */
2750 if (min == NULL_TREE
2751 || !is_gimple_min_invariant (min)
2752 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2753 || max == NULL_TREE
2754 || !is_gimple_min_invariant (max)
2755 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2756 {
2757 set_value_range_to_varying (vr);
2758 return;
2759 }
2760
2761 /* We punt if:
2762 1) [-INF, +INF]
2763 2) [-INF, +-INF(OVF)]
2764 3) [+-INF(OVF), +INF]
2765 4) [+-INF(OVF), +-INF(OVF)]
2766 We learn nothing when we have INF and INF(OVF) on both sides.
2767 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2768 overflow. */
2769 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2770 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2771 {
2772 set_value_range_to_varying (vr);
2773 return;
2774 }
2775
2776 cmp = compare_values (min, max);
2777 if (cmp == -2 || cmp == 1)
2778 {
2779 /* If the new range has its limits swapped around (MIN > MAX),
2780 then the operation caused one of them to wrap around, mark
2781 the new range VARYING. */
2782 set_value_range_to_varying (vr);
2783 }
2784 else
2785 set_value_range (vr, type, min, max, NULL);
2786 }
2787
2788 /* Extract range information from a binary expression OP0 CODE OP1 based on
2789 the ranges of each of its operands with resulting type EXPR_TYPE.
2790 The resulting range is stored in *VR. */
2791
2792 static void
2793 extract_range_from_binary_expr (value_range_t *vr,
2794 enum tree_code code,
2795 tree expr_type, tree op0, tree op1)
2796 {
2797 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2798 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2799
2800 /* Get value ranges for each operand. For constant operands, create
2801 a new value range with the operand to simplify processing. */
2802 if (TREE_CODE (op0) == SSA_NAME)
2803 vr0 = *(get_value_range (op0));
2804 else if (is_gimple_min_invariant (op0))
2805 set_value_range_to_value (&vr0, op0, NULL);
2806 else
2807 set_value_range_to_varying (&vr0);
2808
2809 if (TREE_CODE (op1) == SSA_NAME)
2810 vr1 = *(get_value_range (op1));
2811 else if (is_gimple_min_invariant (op1))
2812 set_value_range_to_value (&vr1, op1, NULL);
2813 else
2814 set_value_range_to_varying (&vr1);
2815
2816 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
2817 }
2818
2819 /* Extract range information from a unary operation CODE based on
2820 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
2821 The The resulting range is stored in *VR. */
2822
2823 static void
2824 extract_range_from_unary_expr_1 (value_range_t *vr,
2825 enum tree_code code, tree type,
2826 value_range_t *vr0_, tree op0_type)
2827 {
2828 value_range_t vr0 = *vr0_;
2829 tree min, max;
2830 int cmp;
2831
2832 /* If VR0 is UNDEFINED, so is the result. */
2833 if (vr0.type == VR_UNDEFINED)
2834 {
2835 set_value_range_to_undefined (vr);
2836 return;
2837 }
2838
2839 /* Refuse to operate on certain unary expressions for which we
2840 cannot easily determine a resulting range. */
2841 if (code == FIX_TRUNC_EXPR
2842 || code == FLOAT_EXPR
2843 || code == CONJ_EXPR)
2844 {
2845 set_value_range_to_varying (vr);
2846 return;
2847 }
2848
2849 /* Refuse to operate on symbolic ranges, or if neither operand is
2850 a pointer or integral type. */
2851 if ((!INTEGRAL_TYPE_P (op0_type)
2852 && !POINTER_TYPE_P (op0_type))
2853 || (vr0.type != VR_VARYING
2854 && symbolic_range_p (&vr0)))
2855 {
2856 set_value_range_to_varying (vr);
2857 return;
2858 }
2859
2860 /* If the expression involves pointers, we are only interested in
2861 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2862 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (op0_type))
2863 {
2864 if (range_is_nonnull (&vr0))
2865 set_value_range_to_nonnull (vr, type);
2866 else if (range_is_null (&vr0))
2867 set_value_range_to_null (vr, type);
2868 else
2869 set_value_range_to_varying (vr);
2870 return;
2871 }
2872
2873 /* Handle unary expressions on integer ranges. */
2874 if (CONVERT_EXPR_CODE_P (code)
2875 && INTEGRAL_TYPE_P (type)
2876 && INTEGRAL_TYPE_P (op0_type))
2877 {
2878 tree inner_type = op0_type;
2879 tree outer_type = type;
2880
2881 /* If VR0 is varying and we increase the type precision, assume
2882 a full range for the following transformation. */
2883 if (vr0.type == VR_VARYING
2884 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2885 {
2886 vr0.type = VR_RANGE;
2887 vr0.min = TYPE_MIN_VALUE (inner_type);
2888 vr0.max = TYPE_MAX_VALUE (inner_type);
2889 }
2890
2891 /* If VR0 is a constant range or anti-range and the conversion is
2892 not truncating we can convert the min and max values and
2893 canonicalize the resulting range. Otherwise we can do the
2894 conversion if the size of the range is less than what the
2895 precision of the target type can represent and the range is
2896 not an anti-range. */
2897 if ((vr0.type == VR_RANGE
2898 || vr0.type == VR_ANTI_RANGE)
2899 && TREE_CODE (vr0.min) == INTEGER_CST
2900 && TREE_CODE (vr0.max) == INTEGER_CST
2901 && (!is_overflow_infinity (vr0.min)
2902 || (vr0.type == VR_RANGE
2903 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2904 && needs_overflow_infinity (outer_type)
2905 && supports_overflow_infinity (outer_type)))
2906 && (!is_overflow_infinity (vr0.max)
2907 || (vr0.type == VR_RANGE
2908 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2909 && needs_overflow_infinity (outer_type)
2910 && supports_overflow_infinity (outer_type)))
2911 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2912 || (vr0.type == VR_RANGE
2913 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2914 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
2915 size_int (TYPE_PRECISION (outer_type)))))))
2916 {
2917 tree new_min, new_max;
2918 new_min = force_fit_type_double (outer_type,
2919 tree_to_double_int (vr0.min),
2920 0, false);
2921 new_max = force_fit_type_double (outer_type,
2922 tree_to_double_int (vr0.max),
2923 0, false);
2924 if (is_overflow_infinity (vr0.min))
2925 new_min = negative_overflow_infinity (outer_type);
2926 if (is_overflow_infinity (vr0.max))
2927 new_max = positive_overflow_infinity (outer_type);
2928 set_and_canonicalize_value_range (vr, vr0.type,
2929 new_min, new_max, NULL);
2930 return;
2931 }
2932
2933 set_value_range_to_varying (vr);
2934 return;
2935 }
2936
2937 /* Conversion of a VR_VARYING value to a wider type can result
2938 in a usable range. So wait until after we've handled conversions
2939 before dropping the result to VR_VARYING if we had a source
2940 operand that is VR_VARYING. */
2941 if (vr0.type == VR_VARYING)
2942 {
2943 set_value_range_to_varying (vr);
2944 return;
2945 }
2946
2947 /* Apply the operation to each end of the range and see what we end
2948 up with. */
2949 if (code == NEGATE_EXPR)
2950 {
2951 /* -X is simply 0 - X, so re-use existing code that also handles
2952 anti-ranges fine. */
2953 value_range_t zero = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2954 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
2955 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
2956 return;
2957 }
2958 else if (code == ABS_EXPR
2959 && !TYPE_UNSIGNED (type))
2960 {
2961 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2962 useful range. */
2963 if (!TYPE_OVERFLOW_UNDEFINED (type)
2964 && ((vr0.type == VR_RANGE
2965 && vrp_val_is_min (vr0.min))
2966 || (vr0.type == VR_ANTI_RANGE
2967 && !vrp_val_is_min (vr0.min)
2968 && !range_includes_zero_p (&vr0))))
2969 {
2970 set_value_range_to_varying (vr);
2971 return;
2972 }
2973
2974 /* ABS_EXPR may flip the range around, if the original range
2975 included negative values. */
2976 if (is_overflow_infinity (vr0.min))
2977 min = positive_overflow_infinity (type);
2978 else if (!vrp_val_is_min (vr0.min))
2979 min = fold_unary_to_constant (code, type, vr0.min);
2980 else if (!needs_overflow_infinity (type))
2981 min = TYPE_MAX_VALUE (type);
2982 else if (supports_overflow_infinity (type))
2983 min = positive_overflow_infinity (type);
2984 else
2985 {
2986 set_value_range_to_varying (vr);
2987 return;
2988 }
2989
2990 if (is_overflow_infinity (vr0.max))
2991 max = positive_overflow_infinity (type);
2992 else if (!vrp_val_is_min (vr0.max))
2993 max = fold_unary_to_constant (code, type, vr0.max);
2994 else if (!needs_overflow_infinity (type))
2995 max = TYPE_MAX_VALUE (type);
2996 else if (supports_overflow_infinity (type)
2997 /* We shouldn't generate [+INF, +INF] as set_value_range
2998 doesn't like this and ICEs. */
2999 && !is_positive_overflow_infinity (min))
3000 max = positive_overflow_infinity (type);
3001 else
3002 {
3003 set_value_range_to_varying (vr);
3004 return;
3005 }
3006
3007 cmp = compare_values (min, max);
3008
3009 /* If a VR_ANTI_RANGEs contains zero, then we have
3010 ~[-INF, min(MIN, MAX)]. */
3011 if (vr0.type == VR_ANTI_RANGE)
3012 {
3013 if (range_includes_zero_p (&vr0))
3014 {
3015 /* Take the lower of the two values. */
3016 if (cmp != 1)
3017 max = min;
3018
3019 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3020 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3021 flag_wrapv is set and the original anti-range doesn't include
3022 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3023 if (TYPE_OVERFLOW_WRAPS (type))
3024 {
3025 tree type_min_value = TYPE_MIN_VALUE (type);
3026
3027 min = (vr0.min != type_min_value
3028 ? int_const_binop (PLUS_EXPR, type_min_value,
3029 integer_one_node)
3030 : type_min_value);
3031 }
3032 else
3033 {
3034 if (overflow_infinity_range_p (&vr0))
3035 min = negative_overflow_infinity (type);
3036 else
3037 min = TYPE_MIN_VALUE (type);
3038 }
3039 }
3040 else
3041 {
3042 /* All else has failed, so create the range [0, INF], even for
3043 flag_wrapv since TYPE_MIN_VALUE is in the original
3044 anti-range. */
3045 vr0.type = VR_RANGE;
3046 min = build_int_cst (type, 0);
3047 if (needs_overflow_infinity (type))
3048 {
3049 if (supports_overflow_infinity (type))
3050 max = positive_overflow_infinity (type);
3051 else
3052 {
3053 set_value_range_to_varying (vr);
3054 return;
3055 }
3056 }
3057 else
3058 max = TYPE_MAX_VALUE (type);
3059 }
3060 }
3061
3062 /* If the range contains zero then we know that the minimum value in the
3063 range will be zero. */
3064 else if (range_includes_zero_p (&vr0))
3065 {
3066 if (cmp == 1)
3067 max = min;
3068 min = build_int_cst (type, 0);
3069 }
3070 else
3071 {
3072 /* If the range was reversed, swap MIN and MAX. */
3073 if (cmp == 1)
3074 {
3075 tree t = min;
3076 min = max;
3077 max = t;
3078 }
3079 }
3080 }
3081 else if (code == BIT_NOT_EXPR)
3082 {
3083 /* ~X is simply -1 - X, so re-use existing code that also handles
3084 anti-ranges fine. */
3085 value_range_t minusone = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3086 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3087 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3088 type, &minusone, &vr0);
3089 return;
3090 }
3091 else
3092 {
3093 /* Otherwise, operate on each end of the range. */
3094 min = fold_unary_to_constant (code, type, vr0.min);
3095 max = fold_unary_to_constant (code, type, vr0.max);
3096
3097 if (needs_overflow_infinity (type))
3098 {
3099 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
3100
3101 /* If both sides have overflowed, we don't know
3102 anything. */
3103 if ((is_overflow_infinity (vr0.min)
3104 || TREE_OVERFLOW (min))
3105 && (is_overflow_infinity (vr0.max)
3106 || TREE_OVERFLOW (max)))
3107 {
3108 set_value_range_to_varying (vr);
3109 return;
3110 }
3111
3112 if (is_overflow_infinity (vr0.min))
3113 min = vr0.min;
3114 else if (TREE_OVERFLOW (min))
3115 {
3116 if (supports_overflow_infinity (type))
3117 min = (tree_int_cst_sgn (min) >= 0
3118 ? positive_overflow_infinity (TREE_TYPE (min))
3119 : negative_overflow_infinity (TREE_TYPE (min)));
3120 else
3121 {
3122 set_value_range_to_varying (vr);
3123 return;
3124 }
3125 }
3126
3127 if (is_overflow_infinity (vr0.max))
3128 max = vr0.max;
3129 else if (TREE_OVERFLOW (max))
3130 {
3131 if (supports_overflow_infinity (type))
3132 max = (tree_int_cst_sgn (max) >= 0
3133 ? positive_overflow_infinity (TREE_TYPE (max))
3134 : negative_overflow_infinity (TREE_TYPE (max)));
3135 else
3136 {
3137 set_value_range_to_varying (vr);
3138 return;
3139 }
3140 }
3141 }
3142 }
3143
3144 cmp = compare_values (min, max);
3145 if (cmp == -2 || cmp == 1)
3146 {
3147 /* If the new range has its limits swapped around (MIN > MAX),
3148 then the operation caused one of them to wrap around, mark
3149 the new range VARYING. */
3150 set_value_range_to_varying (vr);
3151 }
3152 else
3153 set_value_range (vr, vr0.type, min, max, NULL);
3154 }
3155
3156
3157 /* Extract range information from a unary expression CODE OP0 based on
3158 the range of its operand with resulting type TYPE.
3159 The resulting range is stored in *VR. */
3160
3161 static void
3162 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
3163 tree type, tree op0)
3164 {
3165 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3166
3167 /* Get value ranges for the operand. For constant operands, create
3168 a new value range with the operand to simplify processing. */
3169 if (TREE_CODE (op0) == SSA_NAME)
3170 vr0 = *(get_value_range (op0));
3171 else if (is_gimple_min_invariant (op0))
3172 set_value_range_to_value (&vr0, op0, NULL);
3173 else
3174 set_value_range_to_varying (&vr0);
3175
3176 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3177 }
3178
3179
3180 /* Extract range information from a conditional expression EXPR based on
3181 the ranges of each of its operands and the expression code. */
3182
3183 static void
3184 extract_range_from_cond_expr (value_range_t *vr, tree expr)
3185 {
3186 tree op0, op1;
3187 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3188 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3189
3190 /* Get value ranges for each operand. For constant operands, create
3191 a new value range with the operand to simplify processing. */
3192 op0 = COND_EXPR_THEN (expr);
3193 if (TREE_CODE (op0) == SSA_NAME)
3194 vr0 = *(get_value_range (op0));
3195 else if (is_gimple_min_invariant (op0))
3196 set_value_range_to_value (&vr0, op0, NULL);
3197 else
3198 set_value_range_to_varying (&vr0);
3199
3200 op1 = COND_EXPR_ELSE (expr);
3201 if (TREE_CODE (op1) == SSA_NAME)
3202 vr1 = *(get_value_range (op1));
3203 else if (is_gimple_min_invariant (op1))
3204 set_value_range_to_value (&vr1, op1, NULL);
3205 else
3206 set_value_range_to_varying (&vr1);
3207
3208 /* The resulting value range is the union of the operand ranges */
3209 vrp_meet (&vr0, &vr1);
3210 copy_value_range (vr, &vr0);
3211 }
3212
3213
3214 /* Extract range information from a comparison expression EXPR based
3215 on the range of its operand and the expression code. */
3216
3217 static void
3218 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3219 tree type, tree op0, tree op1)
3220 {
3221 bool sop = false;
3222 tree val;
3223
3224 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3225 NULL);
3226
3227 /* A disadvantage of using a special infinity as an overflow
3228 representation is that we lose the ability to record overflow
3229 when we don't have an infinity. So we have to ignore a result
3230 which relies on overflow. */
3231
3232 if (val && !is_overflow_infinity (val) && !sop)
3233 {
3234 /* Since this expression was found on the RHS of an assignment,
3235 its type may be different from _Bool. Convert VAL to EXPR's
3236 type. */
3237 val = fold_convert (type, val);
3238 if (is_gimple_min_invariant (val))
3239 set_value_range_to_value (vr, val, vr->equiv);
3240 else
3241 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3242 }
3243 else
3244 /* The result of a comparison is always true or false. */
3245 set_value_range_to_truthvalue (vr, type);
3246 }
3247
3248 /* Try to derive a nonnegative or nonzero range out of STMT relying
3249 primarily on generic routines in fold in conjunction with range data.
3250 Store the result in *VR */
3251
3252 static void
3253 extract_range_basic (value_range_t *vr, gimple stmt)
3254 {
3255 bool sop = false;
3256 tree type = gimple_expr_type (stmt);
3257
3258 if (INTEGRAL_TYPE_P (type)
3259 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3260 set_value_range_to_nonnegative (vr, type,
3261 sop || stmt_overflow_infinity (stmt));
3262 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3263 && !sop)
3264 set_value_range_to_nonnull (vr, type);
3265 else
3266 set_value_range_to_varying (vr);
3267 }
3268
3269
3270 /* Try to compute a useful range out of assignment STMT and store it
3271 in *VR. */
3272
3273 static void
3274 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3275 {
3276 enum tree_code code = gimple_assign_rhs_code (stmt);
3277
3278 if (code == ASSERT_EXPR)
3279 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3280 else if (code == SSA_NAME)
3281 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3282 else if (TREE_CODE_CLASS (code) == tcc_binary)
3283 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3284 gimple_expr_type (stmt),
3285 gimple_assign_rhs1 (stmt),
3286 gimple_assign_rhs2 (stmt));
3287 else if (TREE_CODE_CLASS (code) == tcc_unary)
3288 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3289 gimple_expr_type (stmt),
3290 gimple_assign_rhs1 (stmt));
3291 else if (code == COND_EXPR)
3292 extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
3293 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3294 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3295 gimple_expr_type (stmt),
3296 gimple_assign_rhs1 (stmt),
3297 gimple_assign_rhs2 (stmt));
3298 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3299 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3300 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3301 else
3302 set_value_range_to_varying (vr);
3303
3304 if (vr->type == VR_VARYING)
3305 extract_range_basic (vr, stmt);
3306 }
3307
3308 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3309 would be profitable to adjust VR using scalar evolution information
3310 for VAR. If so, update VR with the new limits. */
3311
3312 static void
3313 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3314 gimple stmt, tree var)
3315 {
3316 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3317 enum ev_direction dir;
3318
3319 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3320 better opportunities than a regular range, but I'm not sure. */
3321 if (vr->type == VR_ANTI_RANGE)
3322 return;
3323
3324 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3325
3326 /* Like in PR19590, scev can return a constant function. */
3327 if (is_gimple_min_invariant (chrec))
3328 {
3329 set_value_range_to_value (vr, chrec, vr->equiv);
3330 return;
3331 }
3332
3333 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3334 return;
3335
3336 init = initial_condition_in_loop_num (chrec, loop->num);
3337 tem = op_with_constant_singleton_value_range (init);
3338 if (tem)
3339 init = tem;
3340 step = evolution_part_in_loop_num (chrec, loop->num);
3341 tem = op_with_constant_singleton_value_range (step);
3342 if (tem)
3343 step = tem;
3344
3345 /* If STEP is symbolic, we can't know whether INIT will be the
3346 minimum or maximum value in the range. Also, unless INIT is
3347 a simple expression, compare_values and possibly other functions
3348 in tree-vrp won't be able to handle it. */
3349 if (step == NULL_TREE
3350 || !is_gimple_min_invariant (step)
3351 || !valid_value_p (init))
3352 return;
3353
3354 dir = scev_direction (chrec);
3355 if (/* Do not adjust ranges if we do not know whether the iv increases
3356 or decreases, ... */
3357 dir == EV_DIR_UNKNOWN
3358 /* ... or if it may wrap. */
3359 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3360 true))
3361 return;
3362
3363 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3364 negative_overflow_infinity and positive_overflow_infinity,
3365 because we have concluded that the loop probably does not
3366 wrap. */
3367
3368 type = TREE_TYPE (var);
3369 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3370 tmin = lower_bound_in_type (type, type);
3371 else
3372 tmin = TYPE_MIN_VALUE (type);
3373 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3374 tmax = upper_bound_in_type (type, type);
3375 else
3376 tmax = TYPE_MAX_VALUE (type);
3377
3378 /* Try to use estimated number of iterations for the loop to constrain the
3379 final value in the evolution. */
3380 if (TREE_CODE (step) == INTEGER_CST
3381 && is_gimple_val (init)
3382 && (TREE_CODE (init) != SSA_NAME
3383 || get_value_range (init)->type == VR_RANGE))
3384 {
3385 double_int nit;
3386
3387 if (estimated_loop_iterations (loop, true, &nit))
3388 {
3389 value_range_t maxvr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3390 double_int dtmp;
3391 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
3392 int overflow = 0;
3393
3394 dtmp = double_int_mul_with_sign (tree_to_double_int (step), nit,
3395 unsigned_p, &overflow);
3396 /* If the multiplication overflowed we can't do a meaningful
3397 adjustment. Likewise if the result doesn't fit in the type
3398 of the induction variable. For a signed type we have to
3399 check whether the result has the expected signedness which
3400 is that of the step as number of iterations is unsigned. */
3401 if (!overflow
3402 && double_int_fits_to_tree_p (TREE_TYPE (init), dtmp)
3403 && (unsigned_p
3404 || ((dtmp.high ^ TREE_INT_CST_HIGH (step)) >= 0)))
3405 {
3406 tem = double_int_to_tree (TREE_TYPE (init), dtmp);
3407 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3408 TREE_TYPE (init), init, tem);
3409 /* Likewise if the addition did. */
3410 if (maxvr.type == VR_RANGE)
3411 {
3412 tmin = maxvr.min;
3413 tmax = maxvr.max;
3414 }
3415 }
3416 }
3417 }
3418
3419 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3420 {
3421 min = tmin;
3422 max = tmax;
3423
3424 /* For VARYING or UNDEFINED ranges, just about anything we get
3425 from scalar evolutions should be better. */
3426
3427 if (dir == EV_DIR_DECREASES)
3428 max = init;
3429 else
3430 min = init;
3431
3432 /* If we would create an invalid range, then just assume we
3433 know absolutely nothing. This may be over-conservative,
3434 but it's clearly safe, and should happen only in unreachable
3435 parts of code, or for invalid programs. */
3436 if (compare_values (min, max) == 1)
3437 return;
3438
3439 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3440 }
3441 else if (vr->type == VR_RANGE)
3442 {
3443 min = vr->min;
3444 max = vr->max;
3445
3446 if (dir == EV_DIR_DECREASES)
3447 {
3448 /* INIT is the maximum value. If INIT is lower than VR->MAX
3449 but no smaller than VR->MIN, set VR->MAX to INIT. */
3450 if (compare_values (init, max) == -1)
3451 max = init;
3452
3453 /* According to the loop information, the variable does not
3454 overflow. If we think it does, probably because of an
3455 overflow due to arithmetic on a different INF value,
3456 reset now. */
3457 if (is_negative_overflow_infinity (min)
3458 || compare_values (min, tmin) == -1)
3459 min = tmin;
3460
3461 }
3462 else
3463 {
3464 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3465 if (compare_values (init, min) == 1)
3466 min = init;
3467
3468 if (is_positive_overflow_infinity (max)
3469 || compare_values (tmax, max) == -1)
3470 max = tmax;
3471 }
3472
3473 /* If we just created an invalid range with the minimum
3474 greater than the maximum, we fail conservatively.
3475 This should happen only in unreachable
3476 parts of code, or for invalid programs. */
3477 if (compare_values (min, max) == 1)
3478 return;
3479
3480 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3481 }
3482 }
3483
3484 /* Return true if VAR may overflow at STMT. This checks any available
3485 loop information to see if we can determine that VAR does not
3486 overflow. */
3487
3488 static bool
3489 vrp_var_may_overflow (tree var, gimple stmt)
3490 {
3491 struct loop *l;
3492 tree chrec, init, step;
3493
3494 if (current_loops == NULL)
3495 return true;
3496
3497 l = loop_containing_stmt (stmt);
3498 if (l == NULL
3499 || !loop_outer (l))
3500 return true;
3501
3502 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3503 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3504 return true;
3505
3506 init = initial_condition_in_loop_num (chrec, l->num);
3507 step = evolution_part_in_loop_num (chrec, l->num);
3508
3509 if (step == NULL_TREE
3510 || !is_gimple_min_invariant (step)
3511 || !valid_value_p (init))
3512 return true;
3513
3514 /* If we get here, we know something useful about VAR based on the
3515 loop information. If it wraps, it may overflow. */
3516
3517 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3518 true))
3519 return true;
3520
3521 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3522 {
3523 print_generic_expr (dump_file, var, 0);
3524 fprintf (dump_file, ": loop information indicates does not overflow\n");
3525 }
3526
3527 return false;
3528 }
3529
3530
3531 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3532
3533 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3534 all the values in the ranges.
3535
3536 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3537
3538 - Return NULL_TREE if it is not always possible to determine the
3539 value of the comparison.
3540
3541 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3542 overflow infinity was used in the test. */
3543
3544
3545 static tree
3546 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3547 bool *strict_overflow_p)
3548 {
3549 /* VARYING or UNDEFINED ranges cannot be compared. */
3550 if (vr0->type == VR_VARYING
3551 || vr0->type == VR_UNDEFINED
3552 || vr1->type == VR_VARYING
3553 || vr1->type == VR_UNDEFINED)
3554 return NULL_TREE;
3555
3556 /* Anti-ranges need to be handled separately. */
3557 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3558 {
3559 /* If both are anti-ranges, then we cannot compute any
3560 comparison. */
3561 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3562 return NULL_TREE;
3563
3564 /* These comparisons are never statically computable. */
3565 if (comp == GT_EXPR
3566 || comp == GE_EXPR
3567 || comp == LT_EXPR
3568 || comp == LE_EXPR)
3569 return NULL_TREE;
3570
3571 /* Equality can be computed only between a range and an
3572 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3573 if (vr0->type == VR_RANGE)
3574 {
3575 /* To simplify processing, make VR0 the anti-range. */
3576 value_range_t *tmp = vr0;
3577 vr0 = vr1;
3578 vr1 = tmp;
3579 }
3580
3581 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3582
3583 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3584 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3585 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3586
3587 return NULL_TREE;
3588 }
3589
3590 if (!usable_range_p (vr0, strict_overflow_p)
3591 || !usable_range_p (vr1, strict_overflow_p))
3592 return NULL_TREE;
3593
3594 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3595 operands around and change the comparison code. */
3596 if (comp == GT_EXPR || comp == GE_EXPR)
3597 {
3598 value_range_t *tmp;
3599 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3600 tmp = vr0;
3601 vr0 = vr1;
3602 vr1 = tmp;
3603 }
3604
3605 if (comp == EQ_EXPR)
3606 {
3607 /* Equality may only be computed if both ranges represent
3608 exactly one value. */
3609 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3610 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3611 {
3612 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3613 strict_overflow_p);
3614 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3615 strict_overflow_p);
3616 if (cmp_min == 0 && cmp_max == 0)
3617 return boolean_true_node;
3618 else if (cmp_min != -2 && cmp_max != -2)
3619 return boolean_false_node;
3620 }
3621 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3622 else if (compare_values_warnv (vr0->min, vr1->max,
3623 strict_overflow_p) == 1
3624 || compare_values_warnv (vr1->min, vr0->max,
3625 strict_overflow_p) == 1)
3626 return boolean_false_node;
3627
3628 return NULL_TREE;
3629 }
3630 else if (comp == NE_EXPR)
3631 {
3632 int cmp1, cmp2;
3633
3634 /* If VR0 is completely to the left or completely to the right
3635 of VR1, they are always different. Notice that we need to
3636 make sure that both comparisons yield similar results to
3637 avoid comparing values that cannot be compared at
3638 compile-time. */
3639 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3640 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3641 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3642 return boolean_true_node;
3643
3644 /* If VR0 and VR1 represent a single value and are identical,
3645 return false. */
3646 else if (compare_values_warnv (vr0->min, vr0->max,
3647 strict_overflow_p) == 0
3648 && compare_values_warnv (vr1->min, vr1->max,
3649 strict_overflow_p) == 0
3650 && compare_values_warnv (vr0->min, vr1->min,
3651 strict_overflow_p) == 0
3652 && compare_values_warnv (vr0->max, vr1->max,
3653 strict_overflow_p) == 0)
3654 return boolean_false_node;
3655
3656 /* Otherwise, they may or may not be different. */
3657 else
3658 return NULL_TREE;
3659 }
3660 else if (comp == LT_EXPR || comp == LE_EXPR)
3661 {
3662 int tst;
3663
3664 /* If VR0 is to the left of VR1, return true. */
3665 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3666 if ((comp == LT_EXPR && tst == -1)
3667 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3668 {
3669 if (overflow_infinity_range_p (vr0)
3670 || overflow_infinity_range_p (vr1))
3671 *strict_overflow_p = true;
3672 return boolean_true_node;
3673 }
3674
3675 /* If VR0 is to the right of VR1, return false. */
3676 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3677 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3678 || (comp == LE_EXPR && tst == 1))
3679 {
3680 if (overflow_infinity_range_p (vr0)
3681 || overflow_infinity_range_p (vr1))
3682 *strict_overflow_p = true;
3683 return boolean_false_node;
3684 }
3685
3686 /* Otherwise, we don't know. */
3687 return NULL_TREE;
3688 }
3689
3690 gcc_unreachable ();
3691 }
3692
3693
3694 /* Given a value range VR, a value VAL and a comparison code COMP, return
3695 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3696 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3697 always returns false. Return NULL_TREE if it is not always
3698 possible to determine the value of the comparison. Also set
3699 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3700 infinity was used in the test. */
3701
3702 static tree
3703 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3704 bool *strict_overflow_p)
3705 {
3706 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3707 return NULL_TREE;
3708
3709 /* Anti-ranges need to be handled separately. */
3710 if (vr->type == VR_ANTI_RANGE)
3711 {
3712 /* For anti-ranges, the only predicates that we can compute at
3713 compile time are equality and inequality. */
3714 if (comp == GT_EXPR
3715 || comp == GE_EXPR
3716 || comp == LT_EXPR
3717 || comp == LE_EXPR)
3718 return NULL_TREE;
3719
3720 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3721 if (value_inside_range (val, vr) == 1)
3722 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3723
3724 return NULL_TREE;
3725 }
3726
3727 if (!usable_range_p (vr, strict_overflow_p))
3728 return NULL_TREE;
3729
3730 if (comp == EQ_EXPR)
3731 {
3732 /* EQ_EXPR may only be computed if VR represents exactly
3733 one value. */
3734 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3735 {
3736 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3737 if (cmp == 0)
3738 return boolean_true_node;
3739 else if (cmp == -1 || cmp == 1 || cmp == 2)
3740 return boolean_false_node;
3741 }
3742 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3743 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3744 return boolean_false_node;
3745
3746 return NULL_TREE;
3747 }
3748 else if (comp == NE_EXPR)
3749 {
3750 /* If VAL is not inside VR, then they are always different. */
3751 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3752 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3753 return boolean_true_node;
3754
3755 /* If VR represents exactly one value equal to VAL, then return
3756 false. */
3757 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3758 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3759 return boolean_false_node;
3760
3761 /* Otherwise, they may or may not be different. */
3762 return NULL_TREE;
3763 }
3764 else if (comp == LT_EXPR || comp == LE_EXPR)
3765 {
3766 int tst;
3767
3768 /* If VR is to the left of VAL, return true. */
3769 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3770 if ((comp == LT_EXPR && tst == -1)
3771 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3772 {
3773 if (overflow_infinity_range_p (vr))
3774 *strict_overflow_p = true;
3775 return boolean_true_node;
3776 }
3777
3778 /* If VR is to the right of VAL, return false. */
3779 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3780 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3781 || (comp == LE_EXPR && tst == 1))
3782 {
3783 if (overflow_infinity_range_p (vr))
3784 *strict_overflow_p = true;
3785 return boolean_false_node;
3786 }
3787
3788 /* Otherwise, we don't know. */
3789 return NULL_TREE;
3790 }
3791 else if (comp == GT_EXPR || comp == GE_EXPR)
3792 {
3793 int tst;
3794
3795 /* If VR is to the right of VAL, return true. */
3796 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3797 if ((comp == GT_EXPR && tst == 1)
3798 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3799 {
3800 if (overflow_infinity_range_p (vr))
3801 *strict_overflow_p = true;
3802 return boolean_true_node;
3803 }
3804
3805 /* If VR is to the left of VAL, return false. */
3806 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3807 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3808 || (comp == GE_EXPR && tst == -1))
3809 {
3810 if (overflow_infinity_range_p (vr))
3811 *strict_overflow_p = true;
3812 return boolean_false_node;
3813 }
3814
3815 /* Otherwise, we don't know. */
3816 return NULL_TREE;
3817 }
3818
3819 gcc_unreachable ();
3820 }
3821
3822
3823 /* Debugging dumps. */
3824
3825 void dump_value_range (FILE *, value_range_t *);
3826 void debug_value_range (value_range_t *);
3827 void dump_all_value_ranges (FILE *);
3828 void debug_all_value_ranges (void);
3829 void dump_vr_equiv (FILE *, bitmap);
3830 void debug_vr_equiv (bitmap);
3831
3832
3833 /* Dump value range VR to FILE. */
3834
3835 void
3836 dump_value_range (FILE *file, value_range_t *vr)
3837 {
3838 if (vr == NULL)
3839 fprintf (file, "[]");
3840 else if (vr->type == VR_UNDEFINED)
3841 fprintf (file, "UNDEFINED");
3842 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3843 {
3844 tree type = TREE_TYPE (vr->min);
3845
3846 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3847
3848 if (is_negative_overflow_infinity (vr->min))
3849 fprintf (file, "-INF(OVF)");
3850 else if (INTEGRAL_TYPE_P (type)
3851 && !TYPE_UNSIGNED (type)
3852 && vrp_val_is_min (vr->min))
3853 fprintf (file, "-INF");
3854 else
3855 print_generic_expr (file, vr->min, 0);
3856
3857 fprintf (file, ", ");
3858
3859 if (is_positive_overflow_infinity (vr->max))
3860 fprintf (file, "+INF(OVF)");
3861 else if (INTEGRAL_TYPE_P (type)
3862 && vrp_val_is_max (vr->max))
3863 fprintf (file, "+INF");
3864 else
3865 print_generic_expr (file, vr->max, 0);
3866
3867 fprintf (file, "]");
3868
3869 if (vr->equiv)
3870 {
3871 bitmap_iterator bi;
3872 unsigned i, c = 0;
3873
3874 fprintf (file, " EQUIVALENCES: { ");
3875
3876 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3877 {
3878 print_generic_expr (file, ssa_name (i), 0);
3879 fprintf (file, " ");
3880 c++;
3881 }
3882
3883 fprintf (file, "} (%u elements)", c);
3884 }
3885 }
3886 else if (vr->type == VR_VARYING)
3887 fprintf (file, "VARYING");
3888 else
3889 fprintf (file, "INVALID RANGE");
3890 }
3891
3892
3893 /* Dump value range VR to stderr. */
3894
3895 DEBUG_FUNCTION void
3896 debug_value_range (value_range_t *vr)
3897 {
3898 dump_value_range (stderr, vr);
3899 fprintf (stderr, "\n");
3900 }
3901
3902
3903 /* Dump value ranges of all SSA_NAMEs to FILE. */
3904
3905 void
3906 dump_all_value_ranges (FILE *file)
3907 {
3908 size_t i;
3909
3910 for (i = 0; i < num_vr_values; i++)
3911 {
3912 if (vr_value[i])
3913 {
3914 print_generic_expr (file, ssa_name (i), 0);
3915 fprintf (file, ": ");
3916 dump_value_range (file, vr_value[i]);
3917 fprintf (file, "\n");
3918 }
3919 }
3920
3921 fprintf (file, "\n");
3922 }
3923
3924
3925 /* Dump all value ranges to stderr. */
3926
3927 DEBUG_FUNCTION void
3928 debug_all_value_ranges (void)
3929 {
3930 dump_all_value_ranges (stderr);
3931 }
3932
3933
3934 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3935 create a new SSA name N and return the assertion assignment
3936 'V = ASSERT_EXPR <V, V OP W>'. */
3937
3938 static gimple
3939 build_assert_expr_for (tree cond, tree v)
3940 {
3941 tree n;
3942 gimple assertion;
3943
3944 gcc_assert (TREE_CODE (v) == SSA_NAME);
3945 n = duplicate_ssa_name (v, NULL);
3946
3947 if (COMPARISON_CLASS_P (cond))
3948 {
3949 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3950 assertion = gimple_build_assign (n, a);
3951 }
3952 else if (TREE_CODE (cond) == SSA_NAME)
3953 {
3954 /* Given V, build the assignment N = true. */
3955 gcc_assert (v == cond);
3956 assertion = gimple_build_assign (n, boolean_true_node);
3957 }
3958 else
3959 gcc_unreachable ();
3960
3961 SSA_NAME_DEF_STMT (n) = assertion;
3962
3963 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3964 operand of the ASSERT_EXPR. Register the new name and the old one
3965 in the replacement table so that we can fix the SSA web after
3966 adding all the ASSERT_EXPRs. */
3967 register_new_name_mapping (n, v);
3968
3969 return assertion;
3970 }
3971
3972
3973 /* Return false if EXPR is a predicate expression involving floating
3974 point values. */
3975
3976 static inline bool
3977 fp_predicate (gimple stmt)
3978 {
3979 GIMPLE_CHECK (stmt, GIMPLE_COND);
3980
3981 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
3982 }
3983
3984
3985 /* If the range of values taken by OP can be inferred after STMT executes,
3986 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3987 describes the inferred range. Return true if a range could be
3988 inferred. */
3989
3990 static bool
3991 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3992 {
3993 *val_p = NULL_TREE;
3994 *comp_code_p = ERROR_MARK;
3995
3996 /* Do not attempt to infer anything in names that flow through
3997 abnormal edges. */
3998 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3999 return false;
4000
4001 /* Similarly, don't infer anything from statements that may throw
4002 exceptions. */
4003 if (stmt_could_throw_p (stmt))
4004 return false;
4005
4006 /* If STMT is the last statement of a basic block with no
4007 successors, there is no point inferring anything about any of its
4008 operands. We would not be able to find a proper insertion point
4009 for the assertion, anyway. */
4010 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
4011 return false;
4012
4013 /* We can only assume that a pointer dereference will yield
4014 non-NULL if -fdelete-null-pointer-checks is enabled. */
4015 if (flag_delete_null_pointer_checks
4016 && POINTER_TYPE_P (TREE_TYPE (op))
4017 && gimple_code (stmt) != GIMPLE_ASM)
4018 {
4019 unsigned num_uses, num_loads, num_stores;
4020
4021 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
4022 if (num_loads + num_stores > 0)
4023 {
4024 *val_p = build_int_cst (TREE_TYPE (op), 0);
4025 *comp_code_p = NE_EXPR;
4026 return true;
4027 }
4028 }
4029
4030 return false;
4031 }
4032
4033
4034 void dump_asserts_for (FILE *, tree);
4035 void debug_asserts_for (tree);
4036 void dump_all_asserts (FILE *);
4037 void debug_all_asserts (void);
4038
4039 /* Dump all the registered assertions for NAME to FILE. */
4040
4041 void
4042 dump_asserts_for (FILE *file, tree name)
4043 {
4044 assert_locus_t loc;
4045
4046 fprintf (file, "Assertions to be inserted for ");
4047 print_generic_expr (file, name, 0);
4048 fprintf (file, "\n");
4049
4050 loc = asserts_for[SSA_NAME_VERSION (name)];
4051 while (loc)
4052 {
4053 fprintf (file, "\t");
4054 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4055 fprintf (file, "\n\tBB #%d", loc->bb->index);
4056 if (loc->e)
4057 {
4058 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4059 loc->e->dest->index);
4060 dump_edge_info (file, loc->e, 0);
4061 }
4062 fprintf (file, "\n\tPREDICATE: ");
4063 print_generic_expr (file, name, 0);
4064 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
4065 print_generic_expr (file, loc->val, 0);
4066 fprintf (file, "\n\n");
4067 loc = loc->next;
4068 }
4069
4070 fprintf (file, "\n");
4071 }
4072
4073
4074 /* Dump all the registered assertions for NAME to stderr. */
4075
4076 DEBUG_FUNCTION void
4077 debug_asserts_for (tree name)
4078 {
4079 dump_asserts_for (stderr, name);
4080 }
4081
4082
4083 /* Dump all the registered assertions for all the names to FILE. */
4084
4085 void
4086 dump_all_asserts (FILE *file)
4087 {
4088 unsigned i;
4089 bitmap_iterator bi;
4090
4091 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4092 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4093 dump_asserts_for (file, ssa_name (i));
4094 fprintf (file, "\n");
4095 }
4096
4097
4098 /* Dump all the registered assertions for all the names to stderr. */
4099
4100 DEBUG_FUNCTION void
4101 debug_all_asserts (void)
4102 {
4103 dump_all_asserts (stderr);
4104 }
4105
4106
4107 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4108 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4109 E->DEST, then register this location as a possible insertion point
4110 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4111
4112 BB, E and SI provide the exact insertion point for the new
4113 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4114 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4115 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4116 must not be NULL. */
4117
4118 static void
4119 register_new_assert_for (tree name, tree expr,
4120 enum tree_code comp_code,
4121 tree val,
4122 basic_block bb,
4123 edge e,
4124 gimple_stmt_iterator si)
4125 {
4126 assert_locus_t n, loc, last_loc;
4127 basic_block dest_bb;
4128
4129 gcc_checking_assert (bb == NULL || e == NULL);
4130
4131 if (e == NULL)
4132 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4133 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4134
4135 /* Never build an assert comparing against an integer constant with
4136 TREE_OVERFLOW set. This confuses our undefined overflow warning
4137 machinery. */
4138 if (TREE_CODE (val) == INTEGER_CST
4139 && TREE_OVERFLOW (val))
4140 val = build_int_cst_wide (TREE_TYPE (val),
4141 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
4142
4143 /* The new assertion A will be inserted at BB or E. We need to
4144 determine if the new location is dominated by a previously
4145 registered location for A. If we are doing an edge insertion,
4146 assume that A will be inserted at E->DEST. Note that this is not
4147 necessarily true.
4148
4149 If E is a critical edge, it will be split. But even if E is
4150 split, the new block will dominate the same set of blocks that
4151 E->DEST dominates.
4152
4153 The reverse, however, is not true, blocks dominated by E->DEST
4154 will not be dominated by the new block created to split E. So,
4155 if the insertion location is on a critical edge, we will not use
4156 the new location to move another assertion previously registered
4157 at a block dominated by E->DEST. */
4158 dest_bb = (bb) ? bb : e->dest;
4159
4160 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4161 VAL at a block dominating DEST_BB, then we don't need to insert a new
4162 one. Similarly, if the same assertion already exists at a block
4163 dominated by DEST_BB and the new location is not on a critical
4164 edge, then update the existing location for the assertion (i.e.,
4165 move the assertion up in the dominance tree).
4166
4167 Note, this is implemented as a simple linked list because there
4168 should not be more than a handful of assertions registered per
4169 name. If this becomes a performance problem, a table hashed by
4170 COMP_CODE and VAL could be implemented. */
4171 loc = asserts_for[SSA_NAME_VERSION (name)];
4172 last_loc = loc;
4173 while (loc)
4174 {
4175 if (loc->comp_code == comp_code
4176 && (loc->val == val
4177 || operand_equal_p (loc->val, val, 0))
4178 && (loc->expr == expr
4179 || operand_equal_p (loc->expr, expr, 0)))
4180 {
4181 /* If the assertion NAME COMP_CODE VAL has already been
4182 registered at a basic block that dominates DEST_BB, then
4183 we don't need to insert the same assertion again. Note
4184 that we don't check strict dominance here to avoid
4185 replicating the same assertion inside the same basic
4186 block more than once (e.g., when a pointer is
4187 dereferenced several times inside a block).
4188
4189 An exception to this rule are edge insertions. If the
4190 new assertion is to be inserted on edge E, then it will
4191 dominate all the other insertions that we may want to
4192 insert in DEST_BB. So, if we are doing an edge
4193 insertion, don't do this dominance check. */
4194 if (e == NULL
4195 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
4196 return;
4197
4198 /* Otherwise, if E is not a critical edge and DEST_BB
4199 dominates the existing location for the assertion, move
4200 the assertion up in the dominance tree by updating its
4201 location information. */
4202 if ((e == NULL || !EDGE_CRITICAL_P (e))
4203 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4204 {
4205 loc->bb = dest_bb;
4206 loc->e = e;
4207 loc->si = si;
4208 return;
4209 }
4210 }
4211
4212 /* Update the last node of the list and move to the next one. */
4213 last_loc = loc;
4214 loc = loc->next;
4215 }
4216
4217 /* If we didn't find an assertion already registered for
4218 NAME COMP_CODE VAL, add a new one at the end of the list of
4219 assertions associated with NAME. */
4220 n = XNEW (struct assert_locus_d);
4221 n->bb = dest_bb;
4222 n->e = e;
4223 n->si = si;
4224 n->comp_code = comp_code;
4225 n->val = val;
4226 n->expr = expr;
4227 n->next = NULL;
4228
4229 if (last_loc)
4230 last_loc->next = n;
4231 else
4232 asserts_for[SSA_NAME_VERSION (name)] = n;
4233
4234 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4235 }
4236
4237 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4238 Extract a suitable test code and value and store them into *CODE_P and
4239 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4240
4241 If no extraction was possible, return FALSE, otherwise return TRUE.
4242
4243 If INVERT is true, then we invert the result stored into *CODE_P. */
4244
4245 static bool
4246 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4247 tree cond_op0, tree cond_op1,
4248 bool invert, enum tree_code *code_p,
4249 tree *val_p)
4250 {
4251 enum tree_code comp_code;
4252 tree val;
4253
4254 /* Otherwise, we have a comparison of the form NAME COMP VAL
4255 or VAL COMP NAME. */
4256 if (name == cond_op1)
4257 {
4258 /* If the predicate is of the form VAL COMP NAME, flip
4259 COMP around because we need to register NAME as the
4260 first operand in the predicate. */
4261 comp_code = swap_tree_comparison (cond_code);
4262 val = cond_op0;
4263 }
4264 else
4265 {
4266 /* The comparison is of the form NAME COMP VAL, so the
4267 comparison code remains unchanged. */
4268 comp_code = cond_code;
4269 val = cond_op1;
4270 }
4271
4272 /* Invert the comparison code as necessary. */
4273 if (invert)
4274 comp_code = invert_tree_comparison (comp_code, 0);
4275
4276 /* VRP does not handle float types. */
4277 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4278 return false;
4279
4280 /* Do not register always-false predicates.
4281 FIXME: this works around a limitation in fold() when dealing with
4282 enumerations. Given 'enum { N1, N2 } x;', fold will not
4283 fold 'if (x > N2)' to 'if (0)'. */
4284 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4285 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4286 {
4287 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4288 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4289
4290 if (comp_code == GT_EXPR
4291 && (!max
4292 || compare_values (val, max) == 0))
4293 return false;
4294
4295 if (comp_code == LT_EXPR
4296 && (!min
4297 || compare_values (val, min) == 0))
4298 return false;
4299 }
4300 *code_p = comp_code;
4301 *val_p = val;
4302 return true;
4303 }
4304
4305 /* Try to register an edge assertion for SSA name NAME on edge E for
4306 the condition COND contributing to the conditional jump pointed to by BSI.
4307 Invert the condition COND if INVERT is true.
4308 Return true if an assertion for NAME could be registered. */
4309
4310 static bool
4311 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4312 enum tree_code cond_code,
4313 tree cond_op0, tree cond_op1, bool invert)
4314 {
4315 tree val;
4316 enum tree_code comp_code;
4317 bool retval = false;
4318
4319 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4320 cond_op0,
4321 cond_op1,
4322 invert, &comp_code, &val))
4323 return false;
4324
4325 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4326 reachable from E. */
4327 if (live_on_edge (e, name)
4328 && !has_single_use (name))
4329 {
4330 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4331 retval = true;
4332 }
4333
4334 /* In the case of NAME <= CST and NAME being defined as
4335 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4336 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4337 This catches range and anti-range tests. */
4338 if ((comp_code == LE_EXPR
4339 || comp_code == GT_EXPR)
4340 && TREE_CODE (val) == INTEGER_CST
4341 && TYPE_UNSIGNED (TREE_TYPE (val)))
4342 {
4343 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4344 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4345
4346 /* Extract CST2 from the (optional) addition. */
4347 if (is_gimple_assign (def_stmt)
4348 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4349 {
4350 name2 = gimple_assign_rhs1 (def_stmt);
4351 cst2 = gimple_assign_rhs2 (def_stmt);
4352 if (TREE_CODE (name2) == SSA_NAME
4353 && TREE_CODE (cst2) == INTEGER_CST)
4354 def_stmt = SSA_NAME_DEF_STMT (name2);
4355 }
4356
4357 /* Extract NAME2 from the (optional) sign-changing cast. */
4358 if (gimple_assign_cast_p (def_stmt))
4359 {
4360 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4361 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4362 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4363 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4364 name3 = gimple_assign_rhs1 (def_stmt);
4365 }
4366
4367 /* If name3 is used later, create an ASSERT_EXPR for it. */
4368 if (name3 != NULL_TREE
4369 && TREE_CODE (name3) == SSA_NAME
4370 && (cst2 == NULL_TREE
4371 || TREE_CODE (cst2) == INTEGER_CST)
4372 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4373 && live_on_edge (e, name3)
4374 && !has_single_use (name3))
4375 {
4376 tree tmp;
4377
4378 /* Build an expression for the range test. */
4379 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4380 if (cst2 != NULL_TREE)
4381 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4382
4383 if (dump_file)
4384 {
4385 fprintf (dump_file, "Adding assert for ");
4386 print_generic_expr (dump_file, name3, 0);
4387 fprintf (dump_file, " from ");
4388 print_generic_expr (dump_file, tmp, 0);
4389 fprintf (dump_file, "\n");
4390 }
4391
4392 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4393
4394 retval = true;
4395 }
4396
4397 /* If name2 is used later, create an ASSERT_EXPR for it. */
4398 if (name2 != NULL_TREE
4399 && TREE_CODE (name2) == SSA_NAME
4400 && TREE_CODE (cst2) == INTEGER_CST
4401 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4402 && live_on_edge (e, name2)
4403 && !has_single_use (name2))
4404 {
4405 tree tmp;
4406
4407 /* Build an expression for the range test. */
4408 tmp = name2;
4409 if (TREE_TYPE (name) != TREE_TYPE (name2))
4410 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4411 if (cst2 != NULL_TREE)
4412 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4413
4414 if (dump_file)
4415 {
4416 fprintf (dump_file, "Adding assert for ");
4417 print_generic_expr (dump_file, name2, 0);
4418 fprintf (dump_file, " from ");
4419 print_generic_expr (dump_file, tmp, 0);
4420 fprintf (dump_file, "\n");
4421 }
4422
4423 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4424
4425 retval = true;
4426 }
4427 }
4428
4429 return retval;
4430 }
4431
4432 /* OP is an operand of a truth value expression which is known to have
4433 a particular value. Register any asserts for OP and for any
4434 operands in OP's defining statement.
4435
4436 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4437 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4438
4439 static bool
4440 register_edge_assert_for_1 (tree op, enum tree_code code,
4441 edge e, gimple_stmt_iterator bsi)
4442 {
4443 bool retval = false;
4444 gimple op_def;
4445 tree val;
4446 enum tree_code rhs_code;
4447
4448 /* We only care about SSA_NAMEs. */
4449 if (TREE_CODE (op) != SSA_NAME)
4450 return false;
4451
4452 /* We know that OP will have a zero or nonzero value. If OP is used
4453 more than once go ahead and register an assert for OP.
4454
4455 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4456 it will always be set for OP (because OP is used in a COND_EXPR in
4457 the subgraph). */
4458 if (!has_single_use (op))
4459 {
4460 val = build_int_cst (TREE_TYPE (op), 0);
4461 register_new_assert_for (op, op, code, val, NULL, e, bsi);
4462 retval = true;
4463 }
4464
4465 /* Now look at how OP is set. If it's set from a comparison,
4466 a truth operation or some bit operations, then we may be able
4467 to register information about the operands of that assignment. */
4468 op_def = SSA_NAME_DEF_STMT (op);
4469 if (gimple_code (op_def) != GIMPLE_ASSIGN)
4470 return retval;
4471
4472 rhs_code = gimple_assign_rhs_code (op_def);
4473
4474 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
4475 {
4476 bool invert = (code == EQ_EXPR ? true : false);
4477 tree op0 = gimple_assign_rhs1 (op_def);
4478 tree op1 = gimple_assign_rhs2 (op_def);
4479
4480 if (TREE_CODE (op0) == SSA_NAME)
4481 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
4482 invert);
4483 if (TREE_CODE (op1) == SSA_NAME)
4484 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
4485 invert);
4486 }
4487 else if ((code == NE_EXPR
4488 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
4489 || (code == EQ_EXPR
4490 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
4491 {
4492 /* Recurse on each operand. */
4493 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4494 code, e, bsi);
4495 retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
4496 code, e, bsi);
4497 }
4498 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
4499 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
4500 {
4501 /* Recurse, flipping CODE. */
4502 code = invert_tree_comparison (code, false);
4503 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4504 code, e, bsi);
4505 }
4506 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
4507 {
4508 /* Recurse through the copy. */
4509 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4510 code, e, bsi);
4511 }
4512 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
4513 {
4514 /* Recurse through the type conversion. */
4515 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4516 code, e, bsi);
4517 }
4518
4519 return retval;
4520 }
4521
4522 /* Try to register an edge assertion for SSA name NAME on edge E for
4523 the condition COND contributing to the conditional jump pointed to by SI.
4524 Return true if an assertion for NAME could be registered. */
4525
4526 static bool
4527 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
4528 enum tree_code cond_code, tree cond_op0,
4529 tree cond_op1)
4530 {
4531 tree val;
4532 enum tree_code comp_code;
4533 bool retval = false;
4534 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
4535
4536 /* Do not attempt to infer anything in names that flow through
4537 abnormal edges. */
4538 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
4539 return false;
4540
4541 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4542 cond_op0, cond_op1,
4543 is_else_edge,
4544 &comp_code, &val))
4545 return false;
4546
4547 /* Register ASSERT_EXPRs for name. */
4548 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
4549 cond_op1, is_else_edge);
4550
4551
4552 /* If COND is effectively an equality test of an SSA_NAME against
4553 the value zero or one, then we may be able to assert values
4554 for SSA_NAMEs which flow into COND. */
4555
4556 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
4557 statement of NAME we can assert both operands of the BIT_AND_EXPR
4558 have nonzero value. */
4559 if (((comp_code == EQ_EXPR && integer_onep (val))
4560 || (comp_code == NE_EXPR && integer_zerop (val))))
4561 {
4562 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4563
4564 if (is_gimple_assign (def_stmt)
4565 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
4566 {
4567 tree op0 = gimple_assign_rhs1 (def_stmt);
4568 tree op1 = gimple_assign_rhs2 (def_stmt);
4569 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4570 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
4571 }
4572 }
4573
4574 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
4575 statement of NAME we can assert both operands of the BIT_IOR_EXPR
4576 have zero value. */
4577 if (((comp_code == EQ_EXPR && integer_zerop (val))
4578 || (comp_code == NE_EXPR && integer_onep (val))))
4579 {
4580 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4581
4582 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4583 necessarily zero value, or if type-precision is one. */
4584 if (is_gimple_assign (def_stmt)
4585 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
4586 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
4587 || comp_code == EQ_EXPR)))
4588 {
4589 tree op0 = gimple_assign_rhs1 (def_stmt);
4590 tree op1 = gimple_assign_rhs2 (def_stmt);
4591 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4592 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4593 }
4594 }
4595
4596 return retval;
4597 }
4598
4599
4600 /* Determine whether the outgoing edges of BB should receive an
4601 ASSERT_EXPR for each of the operands of BB's LAST statement.
4602 The last statement of BB must be a COND_EXPR.
4603
4604 If any of the sub-graphs rooted at BB have an interesting use of
4605 the predicate operands, an assert location node is added to the
4606 list of assertions for the corresponding operands. */
4607
4608 static bool
4609 find_conditional_asserts (basic_block bb, gimple last)
4610 {
4611 bool need_assert;
4612 gimple_stmt_iterator bsi;
4613 tree op;
4614 edge_iterator ei;
4615 edge e;
4616 ssa_op_iter iter;
4617
4618 need_assert = false;
4619 bsi = gsi_for_stmt (last);
4620
4621 /* Look for uses of the operands in each of the sub-graphs
4622 rooted at BB. We need to check each of the outgoing edges
4623 separately, so that we know what kind of ASSERT_EXPR to
4624 insert. */
4625 FOR_EACH_EDGE (e, ei, bb->succs)
4626 {
4627 if (e->dest == bb)
4628 continue;
4629
4630 /* Register the necessary assertions for each operand in the
4631 conditional predicate. */
4632 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4633 {
4634 need_assert |= register_edge_assert_for (op, e, bsi,
4635 gimple_cond_code (last),
4636 gimple_cond_lhs (last),
4637 gimple_cond_rhs (last));
4638 }
4639 }
4640
4641 return need_assert;
4642 }
4643
4644 struct case_info
4645 {
4646 tree expr;
4647 basic_block bb;
4648 };
4649
4650 /* Compare two case labels sorting first by the destination bb index
4651 and then by the case value. */
4652
4653 static int
4654 compare_case_labels (const void *p1, const void *p2)
4655 {
4656 const struct case_info *ci1 = (const struct case_info *) p1;
4657 const struct case_info *ci2 = (const struct case_info *) p2;
4658 int idx1 = ci1->bb->index;
4659 int idx2 = ci2->bb->index;
4660
4661 if (idx1 < idx2)
4662 return -1;
4663 else if (idx1 == idx2)
4664 {
4665 /* Make sure the default label is first in a group. */
4666 if (!CASE_LOW (ci1->expr))
4667 return -1;
4668 else if (!CASE_LOW (ci2->expr))
4669 return 1;
4670 else
4671 return tree_int_cst_compare (CASE_LOW (ci1->expr),
4672 CASE_LOW (ci2->expr));
4673 }
4674 else
4675 return 1;
4676 }
4677
4678 /* Determine whether the outgoing edges of BB should receive an
4679 ASSERT_EXPR for each of the operands of BB's LAST statement.
4680 The last statement of BB must be a SWITCH_EXPR.
4681
4682 If any of the sub-graphs rooted at BB have an interesting use of
4683 the predicate operands, an assert location node is added to the
4684 list of assertions for the corresponding operands. */
4685
4686 static bool
4687 find_switch_asserts (basic_block bb, gimple last)
4688 {
4689 bool need_assert;
4690 gimple_stmt_iterator bsi;
4691 tree op;
4692 edge e;
4693 struct case_info *ci;
4694 size_t n = gimple_switch_num_labels (last);
4695 #if GCC_VERSION >= 4000
4696 unsigned int idx;
4697 #else
4698 /* Work around GCC 3.4 bug (PR 37086). */
4699 volatile unsigned int idx;
4700 #endif
4701
4702 need_assert = false;
4703 bsi = gsi_for_stmt (last);
4704 op = gimple_switch_index (last);
4705 if (TREE_CODE (op) != SSA_NAME)
4706 return false;
4707
4708 /* Build a vector of case labels sorted by destination label. */
4709 ci = XNEWVEC (struct case_info, n);
4710 for (idx = 0; idx < n; ++idx)
4711 {
4712 ci[idx].expr = gimple_switch_label (last, idx);
4713 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
4714 }
4715 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
4716
4717 for (idx = 0; idx < n; ++idx)
4718 {
4719 tree min, max;
4720 tree cl = ci[idx].expr;
4721 basic_block cbb = ci[idx].bb;
4722
4723 min = CASE_LOW (cl);
4724 max = CASE_HIGH (cl);
4725
4726 /* If there are multiple case labels with the same destination
4727 we need to combine them to a single value range for the edge. */
4728 if (idx + 1 < n && cbb == ci[idx + 1].bb)
4729 {
4730 /* Skip labels until the last of the group. */
4731 do {
4732 ++idx;
4733 } while (idx < n && cbb == ci[idx].bb);
4734 --idx;
4735
4736 /* Pick up the maximum of the case label range. */
4737 if (CASE_HIGH (ci[idx].expr))
4738 max = CASE_HIGH (ci[idx].expr);
4739 else
4740 max = CASE_LOW (ci[idx].expr);
4741 }
4742
4743 /* Nothing to do if the range includes the default label until we
4744 can register anti-ranges. */
4745 if (min == NULL_TREE)
4746 continue;
4747
4748 /* Find the edge to register the assert expr on. */
4749 e = find_edge (bb, cbb);
4750
4751 /* Register the necessary assertions for the operand in the
4752 SWITCH_EXPR. */
4753 need_assert |= register_edge_assert_for (op, e, bsi,
4754 max ? GE_EXPR : EQ_EXPR,
4755 op,
4756 fold_convert (TREE_TYPE (op),
4757 min));
4758 if (max)
4759 {
4760 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4761 op,
4762 fold_convert (TREE_TYPE (op),
4763 max));
4764 }
4765 }
4766
4767 XDELETEVEC (ci);
4768 return need_assert;
4769 }
4770
4771
4772 /* Traverse all the statements in block BB looking for statements that
4773 may generate useful assertions for the SSA names in their operand.
4774 If a statement produces a useful assertion A for name N_i, then the
4775 list of assertions already generated for N_i is scanned to
4776 determine if A is actually needed.
4777
4778 If N_i already had the assertion A at a location dominating the
4779 current location, then nothing needs to be done. Otherwise, the
4780 new location for A is recorded instead.
4781
4782 1- For every statement S in BB, all the variables used by S are
4783 added to bitmap FOUND_IN_SUBGRAPH.
4784
4785 2- If statement S uses an operand N in a way that exposes a known
4786 value range for N, then if N was not already generated by an
4787 ASSERT_EXPR, create a new assert location for N. For instance,
4788 if N is a pointer and the statement dereferences it, we can
4789 assume that N is not NULL.
4790
4791 3- COND_EXPRs are a special case of #2. We can derive range
4792 information from the predicate but need to insert different
4793 ASSERT_EXPRs for each of the sub-graphs rooted at the
4794 conditional block. If the last statement of BB is a conditional
4795 expression of the form 'X op Y', then
4796
4797 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4798
4799 b) If the conditional is the only entry point to the sub-graph
4800 corresponding to the THEN_CLAUSE, recurse into it. On
4801 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4802 an ASSERT_EXPR is added for the corresponding variable.
4803
4804 c) Repeat step (b) on the ELSE_CLAUSE.
4805
4806 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4807
4808 For instance,
4809
4810 if (a == 9)
4811 b = a;
4812 else
4813 b = c + 1;
4814
4815 In this case, an assertion on the THEN clause is useful to
4816 determine that 'a' is always 9 on that edge. However, an assertion
4817 on the ELSE clause would be unnecessary.
4818
4819 4- If BB does not end in a conditional expression, then we recurse
4820 into BB's dominator children.
4821
4822 At the end of the recursive traversal, every SSA name will have a
4823 list of locations where ASSERT_EXPRs should be added. When a new
4824 location for name N is found, it is registered by calling
4825 register_new_assert_for. That function keeps track of all the
4826 registered assertions to prevent adding unnecessary assertions.
4827 For instance, if a pointer P_4 is dereferenced more than once in a
4828 dominator tree, only the location dominating all the dereference of
4829 P_4 will receive an ASSERT_EXPR.
4830
4831 If this function returns true, then it means that there are names
4832 for which we need to generate ASSERT_EXPRs. Those assertions are
4833 inserted by process_assert_insertions. */
4834
4835 static bool
4836 find_assert_locations_1 (basic_block bb, sbitmap live)
4837 {
4838 gimple_stmt_iterator si;
4839 gimple last;
4840 gimple phi;
4841 bool need_assert;
4842
4843 need_assert = false;
4844 last = last_stmt (bb);
4845
4846 /* If BB's last statement is a conditional statement involving integer
4847 operands, determine if we need to add ASSERT_EXPRs. */
4848 if (last
4849 && gimple_code (last) == GIMPLE_COND
4850 && !fp_predicate (last)
4851 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4852 need_assert |= find_conditional_asserts (bb, last);
4853
4854 /* If BB's last statement is a switch statement involving integer
4855 operands, determine if we need to add ASSERT_EXPRs. */
4856 if (last
4857 && gimple_code (last) == GIMPLE_SWITCH
4858 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4859 need_assert |= find_switch_asserts (bb, last);
4860
4861 /* Traverse all the statements in BB marking used names and looking
4862 for statements that may infer assertions for their used operands. */
4863 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4864 {
4865 gimple stmt;
4866 tree op;
4867 ssa_op_iter i;
4868
4869 stmt = gsi_stmt (si);
4870
4871 if (is_gimple_debug (stmt))
4872 continue;
4873
4874 /* See if we can derive an assertion for any of STMT's operands. */
4875 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4876 {
4877 tree value;
4878 enum tree_code comp_code;
4879
4880 /* Mark OP in our live bitmap. */
4881 SET_BIT (live, SSA_NAME_VERSION (op));
4882
4883 /* If OP is used in such a way that we can infer a value
4884 range for it, and we don't find a previous assertion for
4885 it, create a new assertion location node for OP. */
4886 if (infer_value_range (stmt, op, &comp_code, &value))
4887 {
4888 /* If we are able to infer a nonzero value range for OP,
4889 then walk backwards through the use-def chain to see if OP
4890 was set via a typecast.
4891
4892 If so, then we can also infer a nonzero value range
4893 for the operand of the NOP_EXPR. */
4894 if (comp_code == NE_EXPR && integer_zerop (value))
4895 {
4896 tree t = op;
4897 gimple def_stmt = SSA_NAME_DEF_STMT (t);
4898
4899 while (is_gimple_assign (def_stmt)
4900 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
4901 && TREE_CODE
4902 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
4903 && POINTER_TYPE_P
4904 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
4905 {
4906 t = gimple_assign_rhs1 (def_stmt);
4907 def_stmt = SSA_NAME_DEF_STMT (t);
4908
4909 /* Note we want to register the assert for the
4910 operand of the NOP_EXPR after SI, not after the
4911 conversion. */
4912 if (! has_single_use (t))
4913 {
4914 register_new_assert_for (t, t, comp_code, value,
4915 bb, NULL, si);
4916 need_assert = true;
4917 }
4918 }
4919 }
4920
4921 /* If OP is used only once, namely in this STMT, don't
4922 bother creating an ASSERT_EXPR for it. Such an
4923 ASSERT_EXPR would do nothing but increase compile time. */
4924 if (!has_single_use (op))
4925 {
4926 register_new_assert_for (op, op, comp_code, value,
4927 bb, NULL, si);
4928 need_assert = true;
4929 }
4930 }
4931 }
4932 }
4933
4934 /* Traverse all PHI nodes in BB marking used operands. */
4935 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
4936 {
4937 use_operand_p arg_p;
4938 ssa_op_iter i;
4939 phi = gsi_stmt (si);
4940
4941 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4942 {
4943 tree arg = USE_FROM_PTR (arg_p);
4944 if (TREE_CODE (arg) == SSA_NAME)
4945 SET_BIT (live, SSA_NAME_VERSION (arg));
4946 }
4947 }
4948
4949 return need_assert;
4950 }
4951
4952 /* Do an RPO walk over the function computing SSA name liveness
4953 on-the-fly and deciding on assert expressions to insert.
4954 Returns true if there are assert expressions to be inserted. */
4955
4956 static bool
4957 find_assert_locations (void)
4958 {
4959 int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4960 int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4961 int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4962 int rpo_cnt, i;
4963 bool need_asserts;
4964
4965 live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
4966 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
4967 for (i = 0; i < rpo_cnt; ++i)
4968 bb_rpo[rpo[i]] = i;
4969
4970 need_asserts = false;
4971 for (i = rpo_cnt-1; i >= 0; --i)
4972 {
4973 basic_block bb = BASIC_BLOCK (rpo[i]);
4974 edge e;
4975 edge_iterator ei;
4976
4977 if (!live[rpo[i]])
4978 {
4979 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
4980 sbitmap_zero (live[rpo[i]]);
4981 }
4982
4983 /* Process BB and update the live information with uses in
4984 this block. */
4985 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
4986
4987 /* Merge liveness into the predecessor blocks and free it. */
4988 if (!sbitmap_empty_p (live[rpo[i]]))
4989 {
4990 int pred_rpo = i;
4991 FOR_EACH_EDGE (e, ei, bb->preds)
4992 {
4993 int pred = e->src->index;
4994 if (e->flags & EDGE_DFS_BACK)
4995 continue;
4996
4997 if (!live[pred])
4998 {
4999 live[pred] = sbitmap_alloc (num_ssa_names);
5000 sbitmap_zero (live[pred]);
5001 }
5002 sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
5003
5004 if (bb_rpo[pred] < pred_rpo)
5005 pred_rpo = bb_rpo[pred];
5006 }
5007
5008 /* Record the RPO number of the last visited block that needs
5009 live information from this block. */
5010 last_rpo[rpo[i]] = pred_rpo;
5011 }
5012 else
5013 {
5014 sbitmap_free (live[rpo[i]]);
5015 live[rpo[i]] = NULL;
5016 }
5017
5018 /* We can free all successors live bitmaps if all their
5019 predecessors have been visited already. */
5020 FOR_EACH_EDGE (e, ei, bb->succs)
5021 if (last_rpo[e->dest->index] == i
5022 && live[e->dest->index])
5023 {
5024 sbitmap_free (live[e->dest->index]);
5025 live[e->dest->index] = NULL;
5026 }
5027 }
5028
5029 XDELETEVEC (rpo);
5030 XDELETEVEC (bb_rpo);
5031 XDELETEVEC (last_rpo);
5032 for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
5033 if (live[i])
5034 sbitmap_free (live[i]);
5035 XDELETEVEC (live);
5036
5037 return need_asserts;
5038 }
5039
5040 /* Create an ASSERT_EXPR for NAME and insert it in the location
5041 indicated by LOC. Return true if we made any edge insertions. */
5042
5043 static bool
5044 process_assert_insertions_for (tree name, assert_locus_t loc)
5045 {
5046 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5047 gimple stmt;
5048 tree cond;
5049 gimple assert_stmt;
5050 edge_iterator ei;
5051 edge e;
5052
5053 /* If we have X <=> X do not insert an assert expr for that. */
5054 if (loc->expr == loc->val)
5055 return false;
5056
5057 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
5058 assert_stmt = build_assert_expr_for (cond, name);
5059 if (loc->e)
5060 {
5061 /* We have been asked to insert the assertion on an edge. This
5062 is used only by COND_EXPR and SWITCH_EXPR assertions. */
5063 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
5064 || (gimple_code (gsi_stmt (loc->si))
5065 == GIMPLE_SWITCH));
5066
5067 gsi_insert_on_edge (loc->e, assert_stmt);
5068 return true;
5069 }
5070
5071 /* Otherwise, we can insert right after LOC->SI iff the
5072 statement must not be the last statement in the block. */
5073 stmt = gsi_stmt (loc->si);
5074 if (!stmt_ends_bb_p (stmt))
5075 {
5076 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
5077 return false;
5078 }
5079
5080 /* If STMT must be the last statement in BB, we can only insert new
5081 assertions on the non-abnormal edge out of BB. Note that since
5082 STMT is not control flow, there may only be one non-abnormal edge
5083 out of BB. */
5084 FOR_EACH_EDGE (e, ei, loc->bb->succs)
5085 if (!(e->flags & EDGE_ABNORMAL))
5086 {
5087 gsi_insert_on_edge (e, assert_stmt);
5088 return true;
5089 }
5090
5091 gcc_unreachable ();
5092 }
5093
5094
5095 /* Process all the insertions registered for every name N_i registered
5096 in NEED_ASSERT_FOR. The list of assertions to be inserted are
5097 found in ASSERTS_FOR[i]. */
5098
5099 static void
5100 process_assert_insertions (void)
5101 {
5102 unsigned i;
5103 bitmap_iterator bi;
5104 bool update_edges_p = false;
5105 int num_asserts = 0;
5106
5107 if (dump_file && (dump_flags & TDF_DETAILS))
5108 dump_all_asserts (dump_file);
5109
5110 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
5111 {
5112 assert_locus_t loc = asserts_for[i];
5113 gcc_assert (loc);
5114
5115 while (loc)
5116 {
5117 assert_locus_t next = loc->next;
5118 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
5119 free (loc);
5120 loc = next;
5121 num_asserts++;
5122 }
5123 }
5124
5125 if (update_edges_p)
5126 gsi_commit_edge_inserts ();
5127
5128 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
5129 num_asserts);
5130 }
5131
5132
5133 /* Traverse the flowgraph looking for conditional jumps to insert range
5134 expressions. These range expressions are meant to provide information
5135 to optimizations that need to reason in terms of value ranges. They
5136 will not be expanded into RTL. For instance, given:
5137
5138 x = ...
5139 y = ...
5140 if (x < y)
5141 y = x - 2;
5142 else
5143 x = y + 3;
5144
5145 this pass will transform the code into:
5146
5147 x = ...
5148 y = ...
5149 if (x < y)
5150 {
5151 x = ASSERT_EXPR <x, x < y>
5152 y = x - 2
5153 }
5154 else
5155 {
5156 y = ASSERT_EXPR <y, x <= y>
5157 x = y + 3
5158 }
5159
5160 The idea is that once copy and constant propagation have run, other
5161 optimizations will be able to determine what ranges of values can 'x'
5162 take in different paths of the code, simply by checking the reaching
5163 definition of 'x'. */
5164
5165 static void
5166 insert_range_assertions (void)
5167 {
5168 need_assert_for = BITMAP_ALLOC (NULL);
5169 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
5170
5171 calculate_dominance_info (CDI_DOMINATORS);
5172
5173 if (find_assert_locations ())
5174 {
5175 process_assert_insertions ();
5176 update_ssa (TODO_update_ssa_no_phi);
5177 }
5178
5179 if (dump_file && (dump_flags & TDF_DETAILS))
5180 {
5181 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
5182 dump_function_to_file (current_function_decl, dump_file, dump_flags);
5183 }
5184
5185 free (asserts_for);
5186 BITMAP_FREE (need_assert_for);
5187 }
5188
5189 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
5190 and "struct" hacks. If VRP can determine that the
5191 array subscript is a constant, check if it is outside valid
5192 range. If the array subscript is a RANGE, warn if it is
5193 non-overlapping with valid range.
5194 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
5195
5196 static void
5197 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
5198 {
5199 value_range_t* vr = NULL;
5200 tree low_sub, up_sub;
5201 tree low_bound, up_bound, up_bound_p1;
5202 tree base;
5203
5204 if (TREE_NO_WARNING (ref))
5205 return;
5206
5207 low_sub = up_sub = TREE_OPERAND (ref, 1);
5208 up_bound = array_ref_up_bound (ref);
5209
5210 /* Can not check flexible arrays. */
5211 if (!up_bound
5212 || TREE_CODE (up_bound) != INTEGER_CST)
5213 return;
5214
5215 /* Accesses to trailing arrays via pointers may access storage
5216 beyond the types array bounds. */
5217 base = get_base_address (ref);
5218 if (base && TREE_CODE (base) == MEM_REF)
5219 {
5220 tree cref, next = NULL_TREE;
5221
5222 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
5223 return;
5224
5225 cref = TREE_OPERAND (ref, 0);
5226 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
5227 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
5228 next && TREE_CODE (next) != FIELD_DECL;
5229 next = DECL_CHAIN (next))
5230 ;
5231
5232 /* If this is the last field in a struct type or a field in a
5233 union type do not warn. */
5234 if (!next)
5235 return;
5236 }
5237
5238 low_bound = array_ref_low_bound (ref);
5239 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node);
5240
5241 if (TREE_CODE (low_sub) == SSA_NAME)
5242 {
5243 vr = get_value_range (low_sub);
5244 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
5245 {
5246 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
5247 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
5248 }
5249 }
5250
5251 if (vr && vr->type == VR_ANTI_RANGE)
5252 {
5253 if (TREE_CODE (up_sub) == INTEGER_CST
5254 && tree_int_cst_lt (up_bound, up_sub)
5255 && TREE_CODE (low_sub) == INTEGER_CST
5256 && tree_int_cst_lt (low_sub, low_bound))
5257 {
5258 warning_at (location, OPT_Warray_bounds,
5259 "array subscript is outside array bounds");
5260 TREE_NO_WARNING (ref) = 1;
5261 }
5262 }
5263 else if (TREE_CODE (up_sub) == INTEGER_CST
5264 && (ignore_off_by_one
5265 ? (tree_int_cst_lt (up_bound, up_sub)
5266 && !tree_int_cst_equal (up_bound_p1, up_sub))
5267 : (tree_int_cst_lt (up_bound, up_sub)
5268 || tree_int_cst_equal (up_bound_p1, up_sub))))
5269 {
5270 warning_at (location, OPT_Warray_bounds,
5271 "array subscript is above array bounds");
5272 TREE_NO_WARNING (ref) = 1;
5273 }
5274 else if (TREE_CODE (low_sub) == INTEGER_CST
5275 && tree_int_cst_lt (low_sub, low_bound))
5276 {
5277 warning_at (location, OPT_Warray_bounds,
5278 "array subscript is below array bounds");
5279 TREE_NO_WARNING (ref) = 1;
5280 }
5281 }
5282
5283 /* Searches if the expr T, located at LOCATION computes
5284 address of an ARRAY_REF, and call check_array_ref on it. */
5285
5286 static void
5287 search_for_addr_array (tree t, location_t location)
5288 {
5289 while (TREE_CODE (t) == SSA_NAME)
5290 {
5291 gimple g = SSA_NAME_DEF_STMT (t);
5292
5293 if (gimple_code (g) != GIMPLE_ASSIGN)
5294 return;
5295
5296 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
5297 != GIMPLE_SINGLE_RHS)
5298 return;
5299
5300 t = gimple_assign_rhs1 (g);
5301 }
5302
5303
5304 /* We are only interested in addresses of ARRAY_REF's. */
5305 if (TREE_CODE (t) != ADDR_EXPR)
5306 return;
5307
5308 /* Check each ARRAY_REFs in the reference chain. */
5309 do
5310 {
5311 if (TREE_CODE (t) == ARRAY_REF)
5312 check_array_ref (location, t, true /*ignore_off_by_one*/);
5313
5314 t = TREE_OPERAND (t, 0);
5315 }
5316 while (handled_component_p (t));
5317
5318 if (TREE_CODE (t) == MEM_REF
5319 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
5320 && !TREE_NO_WARNING (t))
5321 {
5322 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
5323 tree low_bound, up_bound, el_sz;
5324 double_int idx;
5325 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
5326 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
5327 || !TYPE_DOMAIN (TREE_TYPE (tem)))
5328 return;
5329
5330 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5331 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5332 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
5333 if (!low_bound
5334 || TREE_CODE (low_bound) != INTEGER_CST
5335 || !up_bound
5336 || TREE_CODE (up_bound) != INTEGER_CST
5337 || !el_sz
5338 || TREE_CODE (el_sz) != INTEGER_CST)
5339 return;
5340
5341 idx = mem_ref_offset (t);
5342 idx = double_int_sdiv (idx, tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
5343 if (double_int_scmp (idx, double_int_zero) < 0)
5344 {
5345 warning_at (location, OPT_Warray_bounds,
5346 "array subscript is below array bounds");
5347 TREE_NO_WARNING (t) = 1;
5348 }
5349 else if (double_int_scmp (idx,
5350 double_int_add
5351 (double_int_add
5352 (tree_to_double_int (up_bound),
5353 double_int_neg
5354 (tree_to_double_int (low_bound))),
5355 double_int_one)) > 0)
5356 {
5357 warning_at (location, OPT_Warray_bounds,
5358 "array subscript is above array bounds");
5359 TREE_NO_WARNING (t) = 1;
5360 }
5361 }
5362 }
5363
5364 /* walk_tree() callback that checks if *TP is
5365 an ARRAY_REF inside an ADDR_EXPR (in which an array
5366 subscript one outside the valid range is allowed). Call
5367 check_array_ref for each ARRAY_REF found. The location is
5368 passed in DATA. */
5369
5370 static tree
5371 check_array_bounds (tree *tp, int *walk_subtree, void *data)
5372 {
5373 tree t = *tp;
5374 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5375 location_t location;
5376
5377 if (EXPR_HAS_LOCATION (t))
5378 location = EXPR_LOCATION (t);
5379 else
5380 {
5381 location_t *locp = (location_t *) wi->info;
5382 location = *locp;
5383 }
5384
5385 *walk_subtree = TRUE;
5386
5387 if (TREE_CODE (t) == ARRAY_REF)
5388 check_array_ref (location, t, false /*ignore_off_by_one*/);
5389
5390 if (TREE_CODE (t) == MEM_REF
5391 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
5392 search_for_addr_array (TREE_OPERAND (t, 0), location);
5393
5394 if (TREE_CODE (t) == ADDR_EXPR)
5395 *walk_subtree = FALSE;
5396
5397 return NULL_TREE;
5398 }
5399
5400 /* Walk over all statements of all reachable BBs and call check_array_bounds
5401 on them. */
5402
5403 static void
5404 check_all_array_refs (void)
5405 {
5406 basic_block bb;
5407 gimple_stmt_iterator si;
5408
5409 FOR_EACH_BB (bb)
5410 {
5411 edge_iterator ei;
5412 edge e;
5413 bool executable = false;
5414
5415 /* Skip blocks that were found to be unreachable. */
5416 FOR_EACH_EDGE (e, ei, bb->preds)
5417 executable |= !!(e->flags & EDGE_EXECUTABLE);
5418 if (!executable)
5419 continue;
5420
5421 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5422 {
5423 gimple stmt = gsi_stmt (si);
5424 struct walk_stmt_info wi;
5425 if (!gimple_has_location (stmt))
5426 continue;
5427
5428 if (is_gimple_call (stmt))
5429 {
5430 size_t i;
5431 size_t n = gimple_call_num_args (stmt);
5432 for (i = 0; i < n; i++)
5433 {
5434 tree arg = gimple_call_arg (stmt, i);
5435 search_for_addr_array (arg, gimple_location (stmt));
5436 }
5437 }
5438 else
5439 {
5440 memset (&wi, 0, sizeof (wi));
5441 wi.info = CONST_CAST (void *, (const void *)
5442 gimple_location_ptr (stmt));
5443
5444 walk_gimple_op (gsi_stmt (si),
5445 check_array_bounds,
5446 &wi);
5447 }
5448 }
5449 }
5450 }
5451
5452 /* Convert range assertion expressions into the implied copies and
5453 copy propagate away the copies. Doing the trivial copy propagation
5454 here avoids the need to run the full copy propagation pass after
5455 VRP.
5456
5457 FIXME, this will eventually lead to copy propagation removing the
5458 names that had useful range information attached to them. For
5459 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5460 then N_i will have the range [3, +INF].
5461
5462 However, by converting the assertion into the implied copy
5463 operation N_i = N_j, we will then copy-propagate N_j into the uses
5464 of N_i and lose the range information. We may want to hold on to
5465 ASSERT_EXPRs a little while longer as the ranges could be used in
5466 things like jump threading.
5467
5468 The problem with keeping ASSERT_EXPRs around is that passes after
5469 VRP need to handle them appropriately.
5470
5471 Another approach would be to make the range information a first
5472 class property of the SSA_NAME so that it can be queried from
5473 any pass. This is made somewhat more complex by the need for
5474 multiple ranges to be associated with one SSA_NAME. */
5475
5476 static void
5477 remove_range_assertions (void)
5478 {
5479 basic_block bb;
5480 gimple_stmt_iterator si;
5481
5482 /* Note that the BSI iterator bump happens at the bottom of the
5483 loop and no bump is necessary if we're removing the statement
5484 referenced by the current BSI. */
5485 FOR_EACH_BB (bb)
5486 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
5487 {
5488 gimple stmt = gsi_stmt (si);
5489 gimple use_stmt;
5490
5491 if (is_gimple_assign (stmt)
5492 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5493 {
5494 tree rhs = gimple_assign_rhs1 (stmt);
5495 tree var;
5496 tree cond = fold (ASSERT_EXPR_COND (rhs));
5497 use_operand_p use_p;
5498 imm_use_iterator iter;
5499
5500 gcc_assert (cond != boolean_false_node);
5501
5502 /* Propagate the RHS into every use of the LHS. */
5503 var = ASSERT_EXPR_VAR (rhs);
5504 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
5505 gimple_assign_lhs (stmt))
5506 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5507 {
5508 SET_USE (use_p, var);
5509 gcc_assert (TREE_CODE (var) == SSA_NAME);
5510 }
5511
5512 /* And finally, remove the copy, it is not needed. */
5513 gsi_remove (&si, true);
5514 release_defs (stmt);
5515 }
5516 else
5517 gsi_next (&si);
5518 }
5519 }
5520
5521
5522 /* Return true if STMT is interesting for VRP. */
5523
5524 static bool
5525 stmt_interesting_for_vrp (gimple stmt)
5526 {
5527 if (gimple_code (stmt) == GIMPLE_PHI
5528 && is_gimple_reg (gimple_phi_result (stmt))
5529 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
5530 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
5531 return true;
5532 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5533 {
5534 tree lhs = gimple_get_lhs (stmt);
5535
5536 /* In general, assignments with virtual operands are not useful
5537 for deriving ranges, with the obvious exception of calls to
5538 builtin functions. */
5539 if (lhs && TREE_CODE (lhs) == SSA_NAME
5540 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5541 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5542 && ((is_gimple_call (stmt)
5543 && gimple_call_fndecl (stmt) != NULL_TREE
5544 && DECL_BUILT_IN (gimple_call_fndecl (stmt)))
5545 || !gimple_vuse (stmt)))
5546 return true;
5547 }
5548 else if (gimple_code (stmt) == GIMPLE_COND
5549 || gimple_code (stmt) == GIMPLE_SWITCH)
5550 return true;
5551
5552 return false;
5553 }
5554
5555
5556 /* Initialize local data structures for VRP. */
5557
5558 static void
5559 vrp_initialize (void)
5560 {
5561 basic_block bb;
5562
5563 values_propagated = false;
5564 num_vr_values = num_ssa_names;
5565 vr_value = XCNEWVEC (value_range_t *, num_vr_values);
5566 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
5567
5568 FOR_EACH_BB (bb)
5569 {
5570 gimple_stmt_iterator si;
5571
5572 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5573 {
5574 gimple phi = gsi_stmt (si);
5575 if (!stmt_interesting_for_vrp (phi))
5576 {
5577 tree lhs = PHI_RESULT (phi);
5578 set_value_range_to_varying (get_value_range (lhs));
5579 prop_set_simulate_again (phi, false);
5580 }
5581 else
5582 prop_set_simulate_again (phi, true);
5583 }
5584
5585 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5586 {
5587 gimple stmt = gsi_stmt (si);
5588
5589 /* If the statement is a control insn, then we do not
5590 want to avoid simulating the statement once. Failure
5591 to do so means that those edges will never get added. */
5592 if (stmt_ends_bb_p (stmt))
5593 prop_set_simulate_again (stmt, true);
5594 else if (!stmt_interesting_for_vrp (stmt))
5595 {
5596 ssa_op_iter i;
5597 tree def;
5598 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
5599 set_value_range_to_varying (get_value_range (def));
5600 prop_set_simulate_again (stmt, false);
5601 }
5602 else
5603 prop_set_simulate_again (stmt, true);
5604 }
5605 }
5606 }
5607
5608 /* Return the singleton value-range for NAME or NAME. */
5609
5610 static inline tree
5611 vrp_valueize (tree name)
5612 {
5613 if (TREE_CODE (name) == SSA_NAME)
5614 {
5615 value_range_t *vr = get_value_range (name);
5616 if (vr->type == VR_RANGE
5617 && (vr->min == vr->max
5618 || operand_equal_p (vr->min, vr->max, 0)))
5619 return vr->min;
5620 }
5621 return name;
5622 }
5623
5624 /* Visit assignment STMT. If it produces an interesting range, record
5625 the SSA name in *OUTPUT_P. */
5626
5627 static enum ssa_prop_result
5628 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
5629 {
5630 tree def, lhs;
5631 ssa_op_iter iter;
5632 enum gimple_code code = gimple_code (stmt);
5633 lhs = gimple_get_lhs (stmt);
5634
5635 /* We only keep track of ranges in integral and pointer types. */
5636 if (TREE_CODE (lhs) == SSA_NAME
5637 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5638 /* It is valid to have NULL MIN/MAX values on a type. See
5639 build_range_type. */
5640 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
5641 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
5642 || POINTER_TYPE_P (TREE_TYPE (lhs))))
5643 {
5644 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5645
5646 /* Try folding the statement to a constant first. */
5647 tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
5648 if (tem && !is_overflow_infinity (tem))
5649 set_value_range (&new_vr, VR_RANGE, tem, tem, NULL);
5650 /* Then dispatch to value-range extracting functions. */
5651 else if (code == GIMPLE_CALL)
5652 extract_range_basic (&new_vr, stmt);
5653 else
5654 extract_range_from_assignment (&new_vr, stmt);
5655
5656 if (update_value_range (lhs, &new_vr))
5657 {
5658 *output_p = lhs;
5659
5660 if (dump_file && (dump_flags & TDF_DETAILS))
5661 {
5662 fprintf (dump_file, "Found new range for ");
5663 print_generic_expr (dump_file, lhs, 0);
5664 fprintf (dump_file, ": ");
5665 dump_value_range (dump_file, &new_vr);
5666 fprintf (dump_file, "\n\n");
5667 }
5668
5669 if (new_vr.type == VR_VARYING)
5670 return SSA_PROP_VARYING;
5671
5672 return SSA_PROP_INTERESTING;
5673 }
5674
5675 return SSA_PROP_NOT_INTERESTING;
5676 }
5677
5678 /* Every other statement produces no useful ranges. */
5679 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5680 set_value_range_to_varying (get_value_range (def));
5681
5682 return SSA_PROP_VARYING;
5683 }
5684
5685 /* Helper that gets the value range of the SSA_NAME with version I
5686 or a symbolic range containing the SSA_NAME only if the value range
5687 is varying or undefined. */
5688
5689 static inline value_range_t
5690 get_vr_for_comparison (int i)
5691 {
5692 value_range_t vr = *get_value_range (ssa_name (i));
5693
5694 /* If name N_i does not have a valid range, use N_i as its own
5695 range. This allows us to compare against names that may
5696 have N_i in their ranges. */
5697 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5698 {
5699 vr.type = VR_RANGE;
5700 vr.min = ssa_name (i);
5701 vr.max = ssa_name (i);
5702 }
5703
5704 return vr;
5705 }
5706
5707 /* Compare all the value ranges for names equivalent to VAR with VAL
5708 using comparison code COMP. Return the same value returned by
5709 compare_range_with_value, including the setting of
5710 *STRICT_OVERFLOW_P. */
5711
5712 static tree
5713 compare_name_with_value (enum tree_code comp, tree var, tree val,
5714 bool *strict_overflow_p)
5715 {
5716 bitmap_iterator bi;
5717 unsigned i;
5718 bitmap e;
5719 tree retval, t;
5720 int used_strict_overflow;
5721 bool sop;
5722 value_range_t equiv_vr;
5723
5724 /* Get the set of equivalences for VAR. */
5725 e = get_value_range (var)->equiv;
5726
5727 /* Start at -1. Set it to 0 if we do a comparison without relying
5728 on overflow, or 1 if all comparisons rely on overflow. */
5729 used_strict_overflow = -1;
5730
5731 /* Compare vars' value range with val. */
5732 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5733 sop = false;
5734 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
5735 if (retval)
5736 used_strict_overflow = sop ? 1 : 0;
5737
5738 /* If the equiv set is empty we have done all work we need to do. */
5739 if (e == NULL)
5740 {
5741 if (retval
5742 && used_strict_overflow > 0)
5743 *strict_overflow_p = true;
5744 return retval;
5745 }
5746
5747 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5748 {
5749 equiv_vr = get_vr_for_comparison (i);
5750 sop = false;
5751 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
5752 if (t)
5753 {
5754 /* If we get different answers from different members
5755 of the equivalence set this check must be in a dead
5756 code region. Folding it to a trap representation
5757 would be correct here. For now just return don't-know. */
5758 if (retval != NULL
5759 && t != retval)
5760 {
5761 retval = NULL_TREE;
5762 break;
5763 }
5764 retval = t;
5765
5766 if (!sop)
5767 used_strict_overflow = 0;
5768 else if (used_strict_overflow < 0)
5769 used_strict_overflow = 1;
5770 }
5771 }
5772
5773 if (retval
5774 && used_strict_overflow > 0)
5775 *strict_overflow_p = true;
5776
5777 return retval;
5778 }
5779
5780
5781 /* Given a comparison code COMP and names N1 and N2, compare all the
5782 ranges equivalent to N1 against all the ranges equivalent to N2
5783 to determine the value of N1 COMP N2. Return the same value
5784 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5785 whether we relied on an overflow infinity in the comparison. */
5786
5787
5788 static tree
5789 compare_names (enum tree_code comp, tree n1, tree n2,
5790 bool *strict_overflow_p)
5791 {
5792 tree t, retval;
5793 bitmap e1, e2;
5794 bitmap_iterator bi1, bi2;
5795 unsigned i1, i2;
5796 int used_strict_overflow;
5797 static bitmap_obstack *s_obstack = NULL;
5798 static bitmap s_e1 = NULL, s_e2 = NULL;
5799
5800 /* Compare the ranges of every name equivalent to N1 against the
5801 ranges of every name equivalent to N2. */
5802 e1 = get_value_range (n1)->equiv;
5803 e2 = get_value_range (n2)->equiv;
5804
5805 /* Use the fake bitmaps if e1 or e2 are not available. */
5806 if (s_obstack == NULL)
5807 {
5808 s_obstack = XNEW (bitmap_obstack);
5809 bitmap_obstack_initialize (s_obstack);
5810 s_e1 = BITMAP_ALLOC (s_obstack);
5811 s_e2 = BITMAP_ALLOC (s_obstack);
5812 }
5813 if (e1 == NULL)
5814 e1 = s_e1;
5815 if (e2 == NULL)
5816 e2 = s_e2;
5817
5818 /* Add N1 and N2 to their own set of equivalences to avoid
5819 duplicating the body of the loop just to check N1 and N2
5820 ranges. */
5821 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5822 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5823
5824 /* If the equivalence sets have a common intersection, then the two
5825 names can be compared without checking their ranges. */
5826 if (bitmap_intersect_p (e1, e2))
5827 {
5828 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5829 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5830
5831 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5832 ? boolean_true_node
5833 : boolean_false_node;
5834 }
5835
5836 /* Start at -1. Set it to 0 if we do a comparison without relying
5837 on overflow, or 1 if all comparisons rely on overflow. */
5838 used_strict_overflow = -1;
5839
5840 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5841 N2 to their own set of equivalences to avoid duplicating the body
5842 of the loop just to check N1 and N2 ranges. */
5843 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5844 {
5845 value_range_t vr1 = get_vr_for_comparison (i1);
5846
5847 t = retval = NULL_TREE;
5848 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5849 {
5850 bool sop = false;
5851
5852 value_range_t vr2 = get_vr_for_comparison (i2);
5853
5854 t = compare_ranges (comp, &vr1, &vr2, &sop);
5855 if (t)
5856 {
5857 /* If we get different answers from different members
5858 of the equivalence set this check must be in a dead
5859 code region. Folding it to a trap representation
5860 would be correct here. For now just return don't-know. */
5861 if (retval != NULL
5862 && t != retval)
5863 {
5864 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5865 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5866 return NULL_TREE;
5867 }
5868 retval = t;
5869
5870 if (!sop)
5871 used_strict_overflow = 0;
5872 else if (used_strict_overflow < 0)
5873 used_strict_overflow = 1;
5874 }
5875 }
5876
5877 if (retval)
5878 {
5879 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5880 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5881 if (used_strict_overflow > 0)
5882 *strict_overflow_p = true;
5883 return retval;
5884 }
5885 }
5886
5887 /* None of the equivalent ranges are useful in computing this
5888 comparison. */
5889 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5890 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5891 return NULL_TREE;
5892 }
5893
5894 /* Helper function for vrp_evaluate_conditional_warnv. */
5895
5896 static tree
5897 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
5898 tree op0, tree op1,
5899 bool * strict_overflow_p)
5900 {
5901 value_range_t *vr0, *vr1;
5902
5903 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5904 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5905
5906 if (vr0 && vr1)
5907 return compare_ranges (code, vr0, vr1, strict_overflow_p);
5908 else if (vr0 && vr1 == NULL)
5909 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
5910 else if (vr0 == NULL && vr1)
5911 return (compare_range_with_value
5912 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
5913 return NULL;
5914 }
5915
5916 /* Helper function for vrp_evaluate_conditional_warnv. */
5917
5918 static tree
5919 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5920 tree op1, bool use_equiv_p,
5921 bool *strict_overflow_p, bool *only_ranges)
5922 {
5923 tree ret;
5924 if (only_ranges)
5925 *only_ranges = true;
5926
5927 /* We only deal with integral and pointer types. */
5928 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5929 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5930 return NULL_TREE;
5931
5932 if (use_equiv_p)
5933 {
5934 if (only_ranges
5935 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
5936 (code, op0, op1, strict_overflow_p)))
5937 return ret;
5938 *only_ranges = false;
5939 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
5940 return compare_names (code, op0, op1, strict_overflow_p);
5941 else if (TREE_CODE (op0) == SSA_NAME)
5942 return compare_name_with_value (code, op0, op1, strict_overflow_p);
5943 else if (TREE_CODE (op1) == SSA_NAME)
5944 return (compare_name_with_value
5945 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
5946 }
5947 else
5948 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
5949 strict_overflow_p);
5950 return NULL_TREE;
5951 }
5952
5953 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5954 information. Return NULL if the conditional can not be evaluated.
5955 The ranges of all the names equivalent with the operands in COND
5956 will be used when trying to compute the value. If the result is
5957 based on undefined signed overflow, issue a warning if
5958 appropriate. */
5959
5960 static tree
5961 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
5962 {
5963 bool sop;
5964 tree ret;
5965 bool only_ranges;
5966
5967 /* Some passes and foldings leak constants with overflow flag set
5968 into the IL. Avoid doing wrong things with these and bail out. */
5969 if ((TREE_CODE (op0) == INTEGER_CST
5970 && TREE_OVERFLOW (op0))
5971 || (TREE_CODE (op1) == INTEGER_CST
5972 && TREE_OVERFLOW (op1)))
5973 return NULL_TREE;
5974
5975 sop = false;
5976 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
5977 &only_ranges);
5978
5979 if (ret && sop)
5980 {
5981 enum warn_strict_overflow_code wc;
5982 const char* warnmsg;
5983
5984 if (is_gimple_min_invariant (ret))
5985 {
5986 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
5987 warnmsg = G_("assuming signed overflow does not occur when "
5988 "simplifying conditional to constant");
5989 }
5990 else
5991 {
5992 wc = WARN_STRICT_OVERFLOW_COMPARISON;
5993 warnmsg = G_("assuming signed overflow does not occur when "
5994 "simplifying conditional");
5995 }
5996
5997 if (issue_strict_overflow_warning (wc))
5998 {
5999 location_t location;
6000
6001 if (!gimple_has_location (stmt))
6002 location = input_location;
6003 else
6004 location = gimple_location (stmt);
6005 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
6006 }
6007 }
6008
6009 if (warn_type_limits
6010 && ret && only_ranges
6011 && TREE_CODE_CLASS (code) == tcc_comparison
6012 && TREE_CODE (op0) == SSA_NAME)
6013 {
6014 /* If the comparison is being folded and the operand on the LHS
6015 is being compared against a constant value that is outside of
6016 the natural range of OP0's type, then the predicate will
6017 always fold regardless of the value of OP0. If -Wtype-limits
6018 was specified, emit a warning. */
6019 tree type = TREE_TYPE (op0);
6020 value_range_t *vr0 = get_value_range (op0);
6021
6022 if (vr0->type != VR_VARYING
6023 && INTEGRAL_TYPE_P (type)
6024 && vrp_val_is_min (vr0->min)
6025 && vrp_val_is_max (vr0->max)
6026 && is_gimple_min_invariant (op1))
6027 {
6028 location_t location;
6029
6030 if (!gimple_has_location (stmt))
6031 location = input_location;
6032 else
6033 location = gimple_location (stmt);
6034
6035 warning_at (location, OPT_Wtype_limits,
6036 integer_zerop (ret)
6037 ? G_("comparison always false "
6038 "due to limited range of data type")
6039 : G_("comparison always true "
6040 "due to limited range of data type"));
6041 }
6042 }
6043
6044 return ret;
6045 }
6046
6047
6048 /* Visit conditional statement STMT. If we can determine which edge
6049 will be taken out of STMT's basic block, record it in
6050 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6051 SSA_PROP_VARYING. */
6052
6053 static enum ssa_prop_result
6054 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
6055 {
6056 tree val;
6057 bool sop;
6058
6059 *taken_edge_p = NULL;
6060
6061 if (dump_file && (dump_flags & TDF_DETAILS))
6062 {
6063 tree use;
6064 ssa_op_iter i;
6065
6066 fprintf (dump_file, "\nVisiting conditional with predicate: ");
6067 print_gimple_stmt (dump_file, stmt, 0, 0);
6068 fprintf (dump_file, "\nWith known ranges\n");
6069
6070 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
6071 {
6072 fprintf (dump_file, "\t");
6073 print_generic_expr (dump_file, use, 0);
6074 fprintf (dump_file, ": ");
6075 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
6076 }
6077
6078 fprintf (dump_file, "\n");
6079 }
6080
6081 /* Compute the value of the predicate COND by checking the known
6082 ranges of each of its operands.
6083
6084 Note that we cannot evaluate all the equivalent ranges here
6085 because those ranges may not yet be final and with the current
6086 propagation strategy, we cannot determine when the value ranges
6087 of the names in the equivalence set have changed.
6088
6089 For instance, given the following code fragment
6090
6091 i_5 = PHI <8, i_13>
6092 ...
6093 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
6094 if (i_14 == 1)
6095 ...
6096
6097 Assume that on the first visit to i_14, i_5 has the temporary
6098 range [8, 8] because the second argument to the PHI function is
6099 not yet executable. We derive the range ~[0, 0] for i_14 and the
6100 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
6101 the first time, since i_14 is equivalent to the range [8, 8], we
6102 determine that the predicate is always false.
6103
6104 On the next round of propagation, i_13 is determined to be
6105 VARYING, which causes i_5 to drop down to VARYING. So, another
6106 visit to i_14 is scheduled. In this second visit, we compute the
6107 exact same range and equivalence set for i_14, namely ~[0, 0] and
6108 { i_5 }. But we did not have the previous range for i_5
6109 registered, so vrp_visit_assignment thinks that the range for
6110 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
6111 is not visited again, which stops propagation from visiting
6112 statements in the THEN clause of that if().
6113
6114 To properly fix this we would need to keep the previous range
6115 value for the names in the equivalence set. This way we would've
6116 discovered that from one visit to the other i_5 changed from
6117 range [8, 8] to VR_VARYING.
6118
6119 However, fixing this apparent limitation may not be worth the
6120 additional checking. Testing on several code bases (GCC, DLV,
6121 MICO, TRAMP3D and SPEC2000) showed that doing this results in
6122 4 more predicates folded in SPEC. */
6123 sop = false;
6124
6125 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
6126 gimple_cond_lhs (stmt),
6127 gimple_cond_rhs (stmt),
6128 false, &sop, NULL);
6129 if (val)
6130 {
6131 if (!sop)
6132 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
6133 else
6134 {
6135 if (dump_file && (dump_flags & TDF_DETAILS))
6136 fprintf (dump_file,
6137 "\nIgnoring predicate evaluation because "
6138 "it assumes that signed overflow is undefined");
6139 val = NULL_TREE;
6140 }
6141 }
6142
6143 if (dump_file && (dump_flags & TDF_DETAILS))
6144 {
6145 fprintf (dump_file, "\nPredicate evaluates to: ");
6146 if (val == NULL_TREE)
6147 fprintf (dump_file, "DON'T KNOW\n");
6148 else
6149 print_generic_stmt (dump_file, val, 0);
6150 }
6151
6152 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
6153 }
6154
6155 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
6156 that includes the value VAL. The search is restricted to the range
6157 [START_IDX, n - 1] where n is the size of VEC.
6158
6159 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
6160 returned.
6161
6162 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
6163 it is placed in IDX and false is returned.
6164
6165 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
6166 returned. */
6167
6168 static bool
6169 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
6170 {
6171 size_t n = gimple_switch_num_labels (stmt);
6172 size_t low, high;
6173
6174 /* Find case label for minimum of the value range or the next one.
6175 At each iteration we are searching in [low, high - 1]. */
6176
6177 for (low = start_idx, high = n; high != low; )
6178 {
6179 tree t;
6180 int cmp;
6181 /* Note that i != high, so we never ask for n. */
6182 size_t i = (high + low) / 2;
6183 t = gimple_switch_label (stmt, i);
6184
6185 /* Cache the result of comparing CASE_LOW and val. */
6186 cmp = tree_int_cst_compare (CASE_LOW (t), val);
6187
6188 if (cmp == 0)
6189 {
6190 /* Ranges cannot be empty. */
6191 *idx = i;
6192 return true;
6193 }
6194 else if (cmp > 0)
6195 high = i;
6196 else
6197 {
6198 low = i + 1;
6199 if (CASE_HIGH (t) != NULL
6200 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
6201 {
6202 *idx = i;
6203 return true;
6204 }
6205 }
6206 }
6207
6208 *idx = high;
6209 return false;
6210 }
6211
6212 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
6213 for values between MIN and MAX. The first index is placed in MIN_IDX. The
6214 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
6215 then MAX_IDX < MIN_IDX.
6216 Returns true if the default label is not needed. */
6217
6218 static bool
6219 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
6220 size_t *max_idx)
6221 {
6222 size_t i, j;
6223 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
6224 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
6225
6226 if (i == j
6227 && min_take_default
6228 && max_take_default)
6229 {
6230 /* Only the default case label reached.
6231 Return an empty range. */
6232 *min_idx = 1;
6233 *max_idx = 0;
6234 return false;
6235 }
6236 else
6237 {
6238 bool take_default = min_take_default || max_take_default;
6239 tree low, high;
6240 size_t k;
6241
6242 if (max_take_default)
6243 j--;
6244
6245 /* If the case label range is continuous, we do not need
6246 the default case label. Verify that. */
6247 high = CASE_LOW (gimple_switch_label (stmt, i));
6248 if (CASE_HIGH (gimple_switch_label (stmt, i)))
6249 high = CASE_HIGH (gimple_switch_label (stmt, i));
6250 for (k = i + 1; k <= j; ++k)
6251 {
6252 low = CASE_LOW (gimple_switch_label (stmt, k));
6253 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
6254 {
6255 take_default = true;
6256 break;
6257 }
6258 high = low;
6259 if (CASE_HIGH (gimple_switch_label (stmt, k)))
6260 high = CASE_HIGH (gimple_switch_label (stmt, k));
6261 }
6262
6263 *min_idx = i;
6264 *max_idx = j;
6265 return !take_default;
6266 }
6267 }
6268
6269 /* Visit switch statement STMT. If we can determine which edge
6270 will be taken out of STMT's basic block, record it in
6271 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6272 SSA_PROP_VARYING. */
6273
6274 static enum ssa_prop_result
6275 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
6276 {
6277 tree op, val;
6278 value_range_t *vr;
6279 size_t i = 0, j = 0;
6280 bool take_default;
6281
6282 *taken_edge_p = NULL;
6283 op = gimple_switch_index (stmt);
6284 if (TREE_CODE (op) != SSA_NAME)
6285 return SSA_PROP_VARYING;
6286
6287 vr = get_value_range (op);
6288 if (dump_file && (dump_flags & TDF_DETAILS))
6289 {
6290 fprintf (dump_file, "\nVisiting switch expression with operand ");
6291 print_generic_expr (dump_file, op, 0);
6292 fprintf (dump_file, " with known range ");
6293 dump_value_range (dump_file, vr);
6294 fprintf (dump_file, "\n");
6295 }
6296
6297 if (vr->type != VR_RANGE
6298 || symbolic_range_p (vr))
6299 return SSA_PROP_VARYING;
6300
6301 /* Find the single edge that is taken from the switch expression. */
6302 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6303
6304 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6305 label */
6306 if (j < i)
6307 {
6308 gcc_assert (take_default);
6309 val = gimple_switch_default_label (stmt);
6310 }
6311 else
6312 {
6313 /* Check if labels with index i to j and maybe the default label
6314 are all reaching the same label. */
6315
6316 val = gimple_switch_label (stmt, i);
6317 if (take_default
6318 && CASE_LABEL (gimple_switch_default_label (stmt))
6319 != CASE_LABEL (val))
6320 {
6321 if (dump_file && (dump_flags & TDF_DETAILS))
6322 fprintf (dump_file, " not a single destination for this "
6323 "range\n");
6324 return SSA_PROP_VARYING;
6325 }
6326 for (++i; i <= j; ++i)
6327 {
6328 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
6329 {
6330 if (dump_file && (dump_flags & TDF_DETAILS))
6331 fprintf (dump_file, " not a single destination for this "
6332 "range\n");
6333 return SSA_PROP_VARYING;
6334 }
6335 }
6336 }
6337
6338 *taken_edge_p = find_edge (gimple_bb (stmt),
6339 label_to_block (CASE_LABEL (val)));
6340
6341 if (dump_file && (dump_flags & TDF_DETAILS))
6342 {
6343 fprintf (dump_file, " will take edge to ");
6344 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
6345 }
6346
6347 return SSA_PROP_INTERESTING;
6348 }
6349
6350
6351 /* Evaluate statement STMT. If the statement produces a useful range,
6352 return SSA_PROP_INTERESTING and record the SSA name with the
6353 interesting range into *OUTPUT_P.
6354
6355 If STMT is a conditional branch and we can determine its truth
6356 value, the taken edge is recorded in *TAKEN_EDGE_P.
6357
6358 If STMT produces a varying value, return SSA_PROP_VARYING. */
6359
6360 static enum ssa_prop_result
6361 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
6362 {
6363 tree def;
6364 ssa_op_iter iter;
6365
6366 if (dump_file && (dump_flags & TDF_DETAILS))
6367 {
6368 fprintf (dump_file, "\nVisiting statement:\n");
6369 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
6370 fprintf (dump_file, "\n");
6371 }
6372
6373 if (!stmt_interesting_for_vrp (stmt))
6374 gcc_assert (stmt_ends_bb_p (stmt));
6375 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6376 {
6377 /* In general, assignments with virtual operands are not useful
6378 for deriving ranges, with the obvious exception of calls to
6379 builtin functions. */
6380 if ((is_gimple_call (stmt)
6381 && gimple_call_fndecl (stmt) != NULL_TREE
6382 && DECL_BUILT_IN (gimple_call_fndecl (stmt)))
6383 || !gimple_vuse (stmt))
6384 return vrp_visit_assignment_or_call (stmt, output_p);
6385 }
6386 else if (gimple_code (stmt) == GIMPLE_COND)
6387 return vrp_visit_cond_stmt (stmt, taken_edge_p);
6388 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6389 return vrp_visit_switch_stmt (stmt, taken_edge_p);
6390
6391 /* All other statements produce nothing of interest for VRP, so mark
6392 their outputs varying and prevent further simulation. */
6393 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6394 set_value_range_to_varying (get_value_range (def));
6395
6396 return SSA_PROP_VARYING;
6397 }
6398
6399
6400 /* Meet operation for value ranges. Given two value ranges VR0 and
6401 VR1, store in VR0 a range that contains both VR0 and VR1. This
6402 may not be the smallest possible such range. */
6403
6404 static void
6405 vrp_meet (value_range_t *vr0, value_range_t *vr1)
6406 {
6407 if (vr0->type == VR_UNDEFINED)
6408 {
6409 copy_value_range (vr0, vr1);
6410 return;
6411 }
6412
6413 if (vr1->type == VR_UNDEFINED)
6414 {
6415 /* Nothing to do. VR0 already has the resulting range. */
6416 return;
6417 }
6418
6419 if (vr0->type == VR_VARYING)
6420 {
6421 /* Nothing to do. VR0 already has the resulting range. */
6422 return;
6423 }
6424
6425 if (vr1->type == VR_VARYING)
6426 {
6427 set_value_range_to_varying (vr0);
6428 return;
6429 }
6430
6431 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
6432 {
6433 int cmp;
6434 tree min, max;
6435
6436 /* Compute the convex hull of the ranges. The lower limit of
6437 the new range is the minimum of the two ranges. If they
6438 cannot be compared, then give up. */
6439 cmp = compare_values (vr0->min, vr1->min);
6440 if (cmp == 0 || cmp == 1)
6441 min = vr1->min;
6442 else if (cmp == -1)
6443 min = vr0->min;
6444 else
6445 goto give_up;
6446
6447 /* Similarly, the upper limit of the new range is the maximum
6448 of the two ranges. If they cannot be compared, then
6449 give up. */
6450 cmp = compare_values (vr0->max, vr1->max);
6451 if (cmp == 0 || cmp == -1)
6452 max = vr1->max;
6453 else if (cmp == 1)
6454 max = vr0->max;
6455 else
6456 goto give_up;
6457
6458 /* Check for useless ranges. */
6459 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
6460 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
6461 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
6462 goto give_up;
6463
6464 /* The resulting set of equivalences is the intersection of
6465 the two sets. */
6466 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6467 bitmap_and_into (vr0->equiv, vr1->equiv);
6468 else if (vr0->equiv && !vr1->equiv)
6469 bitmap_clear (vr0->equiv);
6470
6471 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
6472 }
6473 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
6474 {
6475 /* Two anti-ranges meet only if their complements intersect.
6476 Only handle the case of identical ranges. */
6477 if (compare_values (vr0->min, vr1->min) == 0
6478 && compare_values (vr0->max, vr1->max) == 0
6479 && compare_values (vr0->min, vr0->max) == 0)
6480 {
6481 /* The resulting set of equivalences is the intersection of
6482 the two sets. */
6483 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6484 bitmap_and_into (vr0->equiv, vr1->equiv);
6485 else if (vr0->equiv && !vr1->equiv)
6486 bitmap_clear (vr0->equiv);
6487 }
6488 else
6489 goto give_up;
6490 }
6491 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
6492 {
6493 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6494 only handle the case where the ranges have an empty intersection.
6495 The result of the meet operation is the anti-range. */
6496 if (!symbolic_range_p (vr0)
6497 && !symbolic_range_p (vr1)
6498 && !value_ranges_intersect_p (vr0, vr1))
6499 {
6500 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6501 set. We need to compute the intersection of the two
6502 equivalence sets. */
6503 if (vr1->type == VR_ANTI_RANGE)
6504 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
6505
6506 /* The resulting set of equivalences is the intersection of
6507 the two sets. */
6508 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6509 bitmap_and_into (vr0->equiv, vr1->equiv);
6510 else if (vr0->equiv && !vr1->equiv)
6511 bitmap_clear (vr0->equiv);
6512 }
6513 else
6514 goto give_up;
6515 }
6516 else
6517 gcc_unreachable ();
6518
6519 return;
6520
6521 give_up:
6522 /* Failed to find an efficient meet. Before giving up and setting
6523 the result to VARYING, see if we can at least derive a useful
6524 anti-range. FIXME, all this nonsense about distinguishing
6525 anti-ranges from ranges is necessary because of the odd
6526 semantics of range_includes_zero_p and friends. */
6527 if (!symbolic_range_p (vr0)
6528 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
6529 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
6530 && !symbolic_range_p (vr1)
6531 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
6532 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
6533 {
6534 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
6535
6536 /* Since this meet operation did not result from the meeting of
6537 two equivalent names, VR0 cannot have any equivalences. */
6538 if (vr0->equiv)
6539 bitmap_clear (vr0->equiv);
6540 }
6541 else
6542 set_value_range_to_varying (vr0);
6543 }
6544
6545
6546 /* Visit all arguments for PHI node PHI that flow through executable
6547 edges. If a valid value range can be derived from all the incoming
6548 value ranges, set a new range for the LHS of PHI. */
6549
6550 static enum ssa_prop_result
6551 vrp_visit_phi_node (gimple phi)
6552 {
6553 size_t i;
6554 tree lhs = PHI_RESULT (phi);
6555 value_range_t *lhs_vr = get_value_range (lhs);
6556 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6557 int edges, old_edges;
6558 struct loop *l;
6559
6560 if (dump_file && (dump_flags & TDF_DETAILS))
6561 {
6562 fprintf (dump_file, "\nVisiting PHI node: ");
6563 print_gimple_stmt (dump_file, phi, 0, dump_flags);
6564 }
6565
6566 edges = 0;
6567 for (i = 0; i < gimple_phi_num_args (phi); i++)
6568 {
6569 edge e = gimple_phi_arg_edge (phi, i);
6570
6571 if (dump_file && (dump_flags & TDF_DETAILS))
6572 {
6573 fprintf (dump_file,
6574 "\n Argument #%d (%d -> %d %sexecutable)\n",
6575 (int) i, e->src->index, e->dest->index,
6576 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
6577 }
6578
6579 if (e->flags & EDGE_EXECUTABLE)
6580 {
6581 tree arg = PHI_ARG_DEF (phi, i);
6582 value_range_t vr_arg;
6583
6584 ++edges;
6585
6586 if (TREE_CODE (arg) == SSA_NAME)
6587 {
6588 vr_arg = *(get_value_range (arg));
6589 }
6590 else
6591 {
6592 if (is_overflow_infinity (arg))
6593 {
6594 arg = copy_node (arg);
6595 TREE_OVERFLOW (arg) = 0;
6596 }
6597
6598 vr_arg.type = VR_RANGE;
6599 vr_arg.min = arg;
6600 vr_arg.max = arg;
6601 vr_arg.equiv = NULL;
6602 }
6603
6604 if (dump_file && (dump_flags & TDF_DETAILS))
6605 {
6606 fprintf (dump_file, "\t");
6607 print_generic_expr (dump_file, arg, dump_flags);
6608 fprintf (dump_file, "\n\tValue: ");
6609 dump_value_range (dump_file, &vr_arg);
6610 fprintf (dump_file, "\n");
6611 }
6612
6613 vrp_meet (&vr_result, &vr_arg);
6614
6615 if (vr_result.type == VR_VARYING)
6616 break;
6617 }
6618 }
6619
6620 if (vr_result.type == VR_VARYING)
6621 goto varying;
6622 else if (vr_result.type == VR_UNDEFINED)
6623 goto update_range;
6624
6625 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
6626 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
6627
6628 /* To prevent infinite iterations in the algorithm, derive ranges
6629 when the new value is slightly bigger or smaller than the
6630 previous one. We don't do this if we have seen a new executable
6631 edge; this helps us avoid an overflow infinity for conditionals
6632 which are not in a loop. */
6633 if (edges > 0
6634 && gimple_phi_num_args (phi) > 1
6635 && edges == old_edges)
6636 {
6637 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
6638 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
6639
6640 /* For non VR_RANGE or for pointers fall back to varying if
6641 the range changed. */
6642 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
6643 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6644 && (cmp_min != 0 || cmp_max != 0))
6645 goto varying;
6646
6647 /* If the new minimum is smaller or larger than the previous
6648 one, go all the way to -INF. In the first case, to avoid
6649 iterating millions of times to reach -INF, and in the
6650 other case to avoid infinite bouncing between different
6651 minimums. */
6652 if (cmp_min > 0 || cmp_min < 0)
6653 {
6654 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
6655 || !vrp_var_may_overflow (lhs, phi))
6656 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
6657 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
6658 vr_result.min =
6659 negative_overflow_infinity (TREE_TYPE (vr_result.min));
6660 }
6661
6662 /* Similarly, if the new maximum is smaller or larger than
6663 the previous one, go all the way to +INF. */
6664 if (cmp_max < 0 || cmp_max > 0)
6665 {
6666 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6667 || !vrp_var_may_overflow (lhs, phi))
6668 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6669 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6670 vr_result.max =
6671 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6672 }
6673
6674 /* If we dropped either bound to +-INF then if this is a loop
6675 PHI node SCEV may known more about its value-range. */
6676 if ((cmp_min > 0 || cmp_min < 0
6677 || cmp_max < 0 || cmp_max > 0)
6678 && current_loops
6679 && (l = loop_containing_stmt (phi))
6680 && l->header == gimple_bb (phi))
6681 adjust_range_with_scev (&vr_result, l, phi, lhs);
6682
6683 /* If we will end up with a (-INF, +INF) range, set it to
6684 VARYING. Same if the previous max value was invalid for
6685 the type and we end up with vr_result.min > vr_result.max. */
6686 if ((vrp_val_is_max (vr_result.max)
6687 && vrp_val_is_min (vr_result.min))
6688 || compare_values (vr_result.min,
6689 vr_result.max) > 0)
6690 goto varying;
6691 }
6692
6693 /* If the new range is different than the previous value, keep
6694 iterating. */
6695 update_range:
6696 if (update_value_range (lhs, &vr_result))
6697 {
6698 if (dump_file && (dump_flags & TDF_DETAILS))
6699 {
6700 fprintf (dump_file, "Found new range for ");
6701 print_generic_expr (dump_file, lhs, 0);
6702 fprintf (dump_file, ": ");
6703 dump_value_range (dump_file, &vr_result);
6704 fprintf (dump_file, "\n\n");
6705 }
6706
6707 return SSA_PROP_INTERESTING;
6708 }
6709
6710 /* Nothing changed, don't add outgoing edges. */
6711 return SSA_PROP_NOT_INTERESTING;
6712
6713 /* No match found. Set the LHS to VARYING. */
6714 varying:
6715 set_value_range_to_varying (lhs_vr);
6716 return SSA_PROP_VARYING;
6717 }
6718
6719 /* Simplify boolean operations if the source is known
6720 to be already a boolean. */
6721 static bool
6722 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6723 {
6724 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6725 tree lhs, op0, op1;
6726 bool need_conversion;
6727
6728 /* We handle only !=/== case here. */
6729 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
6730
6731 op0 = gimple_assign_rhs1 (stmt);
6732 if (!op_with_boolean_value_range_p (op0))
6733 return false;
6734
6735 op1 = gimple_assign_rhs2 (stmt);
6736 if (!op_with_boolean_value_range_p (op1))
6737 return false;
6738
6739 /* Reduce number of cases to handle to NE_EXPR. As there is no
6740 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
6741 if (rhs_code == EQ_EXPR)
6742 {
6743 if (TREE_CODE (op1) == INTEGER_CST)
6744 op1 = int_const_binop (BIT_XOR_EXPR, op1, integer_one_node);
6745 else
6746 return false;
6747 }
6748
6749 lhs = gimple_assign_lhs (stmt);
6750 need_conversion
6751 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
6752
6753 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
6754 if (need_conversion
6755 && !TYPE_UNSIGNED (TREE_TYPE (op0))
6756 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
6757 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
6758 return false;
6759
6760 /* For A != 0 we can substitute A itself. */
6761 if (integer_zerop (op1))
6762 gimple_assign_set_rhs_with_ops (gsi,
6763 need_conversion
6764 ? NOP_EXPR : TREE_CODE (op0),
6765 op0, NULL_TREE);
6766 /* For A != B we substitute A ^ B. Either with conversion. */
6767 else if (need_conversion)
6768 {
6769 gimple newop;
6770 tree tem = create_tmp_reg (TREE_TYPE (op0), NULL);
6771 newop = gimple_build_assign_with_ops (BIT_XOR_EXPR, tem, op0, op1);
6772 tem = make_ssa_name (tem, newop);
6773 gimple_assign_set_lhs (newop, tem);
6774 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
6775 update_stmt (newop);
6776 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem, NULL_TREE);
6777 }
6778 /* Or without. */
6779 else
6780 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
6781 update_stmt (gsi_stmt (*gsi));
6782
6783 return true;
6784 }
6785
6786 /* Simplify a division or modulo operator to a right shift or
6787 bitwise and if the first operand is unsigned or is greater
6788 than zero and the second operand is an exact power of two. */
6789
6790 static bool
6791 simplify_div_or_mod_using_ranges (gimple stmt)
6792 {
6793 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6794 tree val = NULL;
6795 tree op0 = gimple_assign_rhs1 (stmt);
6796 tree op1 = gimple_assign_rhs2 (stmt);
6797 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
6798
6799 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
6800 {
6801 val = integer_one_node;
6802 }
6803 else
6804 {
6805 bool sop = false;
6806
6807 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6808
6809 if (val
6810 && sop
6811 && integer_onep (val)
6812 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6813 {
6814 location_t location;
6815
6816 if (!gimple_has_location (stmt))
6817 location = input_location;
6818 else
6819 location = gimple_location (stmt);
6820 warning_at (location, OPT_Wstrict_overflow,
6821 "assuming signed overflow does not occur when "
6822 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
6823 }
6824 }
6825
6826 if (val && integer_onep (val))
6827 {
6828 tree t;
6829
6830 if (rhs_code == TRUNC_DIV_EXPR)
6831 {
6832 t = build_int_cst (integer_type_node, tree_log2 (op1));
6833 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
6834 gimple_assign_set_rhs1 (stmt, op0);
6835 gimple_assign_set_rhs2 (stmt, t);
6836 }
6837 else
6838 {
6839 t = build_int_cst (TREE_TYPE (op1), 1);
6840 t = int_const_binop (MINUS_EXPR, op1, t);
6841 t = fold_convert (TREE_TYPE (op0), t);
6842
6843 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
6844 gimple_assign_set_rhs1 (stmt, op0);
6845 gimple_assign_set_rhs2 (stmt, t);
6846 }
6847
6848 update_stmt (stmt);
6849 return true;
6850 }
6851
6852 return false;
6853 }
6854
6855 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6856 ABS_EXPR. If the operand is <= 0, then simplify the
6857 ABS_EXPR into a NEGATE_EXPR. */
6858
6859 static bool
6860 simplify_abs_using_ranges (gimple stmt)
6861 {
6862 tree val = NULL;
6863 tree op = gimple_assign_rhs1 (stmt);
6864 tree type = TREE_TYPE (op);
6865 value_range_t *vr = get_value_range (op);
6866
6867 if (TYPE_UNSIGNED (type))
6868 {
6869 val = integer_zero_node;
6870 }
6871 else if (vr)
6872 {
6873 bool sop = false;
6874
6875 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
6876 if (!val)
6877 {
6878 sop = false;
6879 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6880 &sop);
6881
6882 if (val)
6883 {
6884 if (integer_zerop (val))
6885 val = integer_one_node;
6886 else if (integer_onep (val))
6887 val = integer_zero_node;
6888 }
6889 }
6890
6891 if (val
6892 && (integer_onep (val) || integer_zerop (val)))
6893 {
6894 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6895 {
6896 location_t location;
6897
6898 if (!gimple_has_location (stmt))
6899 location = input_location;
6900 else
6901 location = gimple_location (stmt);
6902 warning_at (location, OPT_Wstrict_overflow,
6903 "assuming signed overflow does not occur when "
6904 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
6905 }
6906
6907 gimple_assign_set_rhs1 (stmt, op);
6908 if (integer_onep (val))
6909 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
6910 else
6911 gimple_assign_set_rhs_code (stmt, SSA_NAME);
6912 update_stmt (stmt);
6913 return true;
6914 }
6915 }
6916
6917 return false;
6918 }
6919
6920 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
6921 If all the bits that are being cleared by & are already
6922 known to be zero from VR, or all the bits that are being
6923 set by | are already known to be one from VR, the bit
6924 operation is redundant. */
6925
6926 static bool
6927 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6928 {
6929 tree op0 = gimple_assign_rhs1 (stmt);
6930 tree op1 = gimple_assign_rhs2 (stmt);
6931 tree op = NULL_TREE;
6932 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6933 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6934 double_int may_be_nonzero0, may_be_nonzero1;
6935 double_int must_be_nonzero0, must_be_nonzero1;
6936 double_int mask;
6937
6938 if (TREE_CODE (op0) == SSA_NAME)
6939 vr0 = *(get_value_range (op0));
6940 else if (is_gimple_min_invariant (op0))
6941 set_value_range_to_value (&vr0, op0, NULL);
6942 else
6943 return false;
6944
6945 if (TREE_CODE (op1) == SSA_NAME)
6946 vr1 = *(get_value_range (op1));
6947 else if (is_gimple_min_invariant (op1))
6948 set_value_range_to_value (&vr1, op1, NULL);
6949 else
6950 return false;
6951
6952 if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
6953 return false;
6954 if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
6955 return false;
6956
6957 switch (gimple_assign_rhs_code (stmt))
6958 {
6959 case BIT_AND_EXPR:
6960 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
6961 if (double_int_zero_p (mask))
6962 {
6963 op = op0;
6964 break;
6965 }
6966 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
6967 if (double_int_zero_p (mask))
6968 {
6969 op = op1;
6970 break;
6971 }
6972 break;
6973 case BIT_IOR_EXPR:
6974 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
6975 if (double_int_zero_p (mask))
6976 {
6977 op = op1;
6978 break;
6979 }
6980 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
6981 if (double_int_zero_p (mask))
6982 {
6983 op = op0;
6984 break;
6985 }
6986 break;
6987 default:
6988 gcc_unreachable ();
6989 }
6990
6991 if (op == NULL_TREE)
6992 return false;
6993
6994 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
6995 update_stmt (gsi_stmt (*gsi));
6996 return true;
6997 }
6998
6999 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
7000 a known value range VR.
7001
7002 If there is one and only one value which will satisfy the
7003 conditional, then return that value. Else return NULL. */
7004
7005 static tree
7006 test_for_singularity (enum tree_code cond_code, tree op0,
7007 tree op1, value_range_t *vr)
7008 {
7009 tree min = NULL;
7010 tree max = NULL;
7011
7012 /* Extract minimum/maximum values which satisfy the
7013 the conditional as it was written. */
7014 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
7015 {
7016 /* This should not be negative infinity; there is no overflow
7017 here. */
7018 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
7019
7020 max = op1;
7021 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
7022 {
7023 tree one = build_int_cst (TREE_TYPE (op0), 1);
7024 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
7025 if (EXPR_P (max))
7026 TREE_NO_WARNING (max) = 1;
7027 }
7028 }
7029 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
7030 {
7031 /* This should not be positive infinity; there is no overflow
7032 here. */
7033 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
7034
7035 min = op1;
7036 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
7037 {
7038 tree one = build_int_cst (TREE_TYPE (op0), 1);
7039 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
7040 if (EXPR_P (min))
7041 TREE_NO_WARNING (min) = 1;
7042 }
7043 }
7044
7045 /* Now refine the minimum and maximum values using any
7046 value range information we have for op0. */
7047 if (min && max)
7048 {
7049 if (compare_values (vr->min, min) == 1)
7050 min = vr->min;
7051 if (compare_values (vr->max, max) == -1)
7052 max = vr->max;
7053
7054 /* If the new min/max values have converged to a single value,
7055 then there is only one value which can satisfy the condition,
7056 return that value. */
7057 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
7058 return min;
7059 }
7060 return NULL;
7061 }
7062
7063 /* Simplify a conditional using a relational operator to an equality
7064 test if the range information indicates only one value can satisfy
7065 the original conditional. */
7066
7067 static bool
7068 simplify_cond_using_ranges (gimple stmt)
7069 {
7070 tree op0 = gimple_cond_lhs (stmt);
7071 tree op1 = gimple_cond_rhs (stmt);
7072 enum tree_code cond_code = gimple_cond_code (stmt);
7073
7074 if (cond_code != NE_EXPR
7075 && cond_code != EQ_EXPR
7076 && TREE_CODE (op0) == SSA_NAME
7077 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7078 && is_gimple_min_invariant (op1))
7079 {
7080 value_range_t *vr = get_value_range (op0);
7081
7082 /* If we have range information for OP0, then we might be
7083 able to simplify this conditional. */
7084 if (vr->type == VR_RANGE)
7085 {
7086 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
7087
7088 if (new_tree)
7089 {
7090 if (dump_file)
7091 {
7092 fprintf (dump_file, "Simplified relational ");
7093 print_gimple_stmt (dump_file, stmt, 0, 0);
7094 fprintf (dump_file, " into ");
7095 }
7096
7097 gimple_cond_set_code (stmt, EQ_EXPR);
7098 gimple_cond_set_lhs (stmt, op0);
7099 gimple_cond_set_rhs (stmt, new_tree);
7100
7101 update_stmt (stmt);
7102
7103 if (dump_file)
7104 {
7105 print_gimple_stmt (dump_file, stmt, 0, 0);
7106 fprintf (dump_file, "\n");
7107 }
7108
7109 return true;
7110 }
7111
7112 /* Try again after inverting the condition. We only deal
7113 with integral types here, so no need to worry about
7114 issues with inverting FP comparisons. */
7115 cond_code = invert_tree_comparison (cond_code, false);
7116 new_tree = test_for_singularity (cond_code, op0, op1, vr);
7117
7118 if (new_tree)
7119 {
7120 if (dump_file)
7121 {
7122 fprintf (dump_file, "Simplified relational ");
7123 print_gimple_stmt (dump_file, stmt, 0, 0);
7124 fprintf (dump_file, " into ");
7125 }
7126
7127 gimple_cond_set_code (stmt, NE_EXPR);
7128 gimple_cond_set_lhs (stmt, op0);
7129 gimple_cond_set_rhs (stmt, new_tree);
7130
7131 update_stmt (stmt);
7132
7133 if (dump_file)
7134 {
7135 print_gimple_stmt (dump_file, stmt, 0, 0);
7136 fprintf (dump_file, "\n");
7137 }
7138
7139 return true;
7140 }
7141 }
7142 }
7143
7144 return false;
7145 }
7146
7147 /* Simplify a switch statement using the value range of the switch
7148 argument. */
7149
7150 static bool
7151 simplify_switch_using_ranges (gimple stmt)
7152 {
7153 tree op = gimple_switch_index (stmt);
7154 value_range_t *vr;
7155 bool take_default;
7156 edge e;
7157 edge_iterator ei;
7158 size_t i = 0, j = 0, n, n2;
7159 tree vec2;
7160 switch_update su;
7161
7162 if (TREE_CODE (op) == SSA_NAME)
7163 {
7164 vr = get_value_range (op);
7165
7166 /* We can only handle integer ranges. */
7167 if (vr->type != VR_RANGE
7168 || symbolic_range_p (vr))
7169 return false;
7170
7171 /* Find case label for min/max of the value range. */
7172 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
7173 }
7174 else if (TREE_CODE (op) == INTEGER_CST)
7175 {
7176 take_default = !find_case_label_index (stmt, 1, op, &i);
7177 if (take_default)
7178 {
7179 i = 1;
7180 j = 0;
7181 }
7182 else
7183 {
7184 j = i;
7185 }
7186 }
7187 else
7188 return false;
7189
7190 n = gimple_switch_num_labels (stmt);
7191
7192 /* Bail out if this is just all edges taken. */
7193 if (i == 1
7194 && j == n - 1
7195 && take_default)
7196 return false;
7197
7198 /* Build a new vector of taken case labels. */
7199 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
7200 n2 = 0;
7201
7202 /* Add the default edge, if necessary. */
7203 if (take_default)
7204 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
7205
7206 for (; i <= j; ++i, ++n2)
7207 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
7208
7209 /* Mark needed edges. */
7210 for (i = 0; i < n2; ++i)
7211 {
7212 e = find_edge (gimple_bb (stmt),
7213 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
7214 e->aux = (void *)-1;
7215 }
7216
7217 /* Queue not needed edges for later removal. */
7218 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
7219 {
7220 if (e->aux == (void *)-1)
7221 {
7222 e->aux = NULL;
7223 continue;
7224 }
7225
7226 if (dump_file && (dump_flags & TDF_DETAILS))
7227 {
7228 fprintf (dump_file, "removing unreachable case label\n");
7229 }
7230 VEC_safe_push (edge, heap, to_remove_edges, e);
7231 e->flags &= ~EDGE_EXECUTABLE;
7232 }
7233
7234 /* And queue an update for the stmt. */
7235 su.stmt = stmt;
7236 su.vec = vec2;
7237 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
7238 return false;
7239 }
7240
7241 /* Simplify an integral conversion from an SSA name in STMT. */
7242
7243 static bool
7244 simplify_conversion_using_ranges (gimple stmt)
7245 {
7246 tree innerop, middleop, finaltype;
7247 gimple def_stmt;
7248 value_range_t *innervr;
7249 double_int innermin, innermax, middlemin, middlemax;
7250
7251 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
7252 if (!INTEGRAL_TYPE_P (finaltype))
7253 return false;
7254 middleop = gimple_assign_rhs1 (stmt);
7255 def_stmt = SSA_NAME_DEF_STMT (middleop);
7256 if (!is_gimple_assign (def_stmt)
7257 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
7258 return false;
7259 innerop = gimple_assign_rhs1 (def_stmt);
7260 if (TREE_CODE (innerop) != SSA_NAME)
7261 return false;
7262
7263 /* Get the value-range of the inner operand. */
7264 innervr = get_value_range (innerop);
7265 if (innervr->type != VR_RANGE
7266 || TREE_CODE (innervr->min) != INTEGER_CST
7267 || TREE_CODE (innervr->max) != INTEGER_CST)
7268 return false;
7269
7270 /* Simulate the conversion chain to check if the result is equal if
7271 the middle conversion is removed. */
7272 innermin = tree_to_double_int (innervr->min);
7273 innermax = tree_to_double_int (innervr->max);
7274 middlemin = double_int_ext (innermin, TYPE_PRECISION (TREE_TYPE (middleop)),
7275 TYPE_UNSIGNED (TREE_TYPE (middleop)));
7276 middlemax = double_int_ext (innermax, TYPE_PRECISION (TREE_TYPE (middleop)),
7277 TYPE_UNSIGNED (TREE_TYPE (middleop)));
7278 /* If the middle values do not represent a proper range fail. */
7279 if (double_int_cmp (middlemin, middlemax,
7280 TYPE_UNSIGNED (TREE_TYPE (middleop))) > 0)
7281 return false;
7282 if (!double_int_equal_p (double_int_ext (middlemin,
7283 TYPE_PRECISION (finaltype),
7284 TYPE_UNSIGNED (finaltype)),
7285 double_int_ext (innermin,
7286 TYPE_PRECISION (finaltype),
7287 TYPE_UNSIGNED (finaltype)))
7288 || !double_int_equal_p (double_int_ext (middlemax,
7289 TYPE_PRECISION (finaltype),
7290 TYPE_UNSIGNED (finaltype)),
7291 double_int_ext (innermax,
7292 TYPE_PRECISION (finaltype),
7293 TYPE_UNSIGNED (finaltype))))
7294 return false;
7295
7296 gimple_assign_set_rhs1 (stmt, innerop);
7297 update_stmt (stmt);
7298 return true;
7299 }
7300
7301 /* Return whether the value range *VR fits in an integer type specified
7302 by PRECISION and UNSIGNED_P. */
7303
7304 static bool
7305 range_fits_type_p (value_range_t *vr, unsigned precision, bool unsigned_p)
7306 {
7307 tree src_type;
7308 unsigned src_precision;
7309 double_int tem;
7310
7311 /* We can only handle integral and pointer types. */
7312 src_type = TREE_TYPE (vr->min);
7313 if (!INTEGRAL_TYPE_P (src_type)
7314 && !POINTER_TYPE_P (src_type))
7315 return false;
7316
7317 /* An extension is always fine, so is an identity transform. */
7318 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
7319 if (src_precision < precision
7320 || (src_precision == precision
7321 && TYPE_UNSIGNED (src_type) == unsigned_p))
7322 return true;
7323
7324 /* Now we can only handle ranges with constant bounds. */
7325 if (vr->type != VR_RANGE
7326 || TREE_CODE (vr->min) != INTEGER_CST
7327 || TREE_CODE (vr->max) != INTEGER_CST)
7328 return false;
7329
7330 /* For precision-preserving sign-changes the MSB of the double-int
7331 has to be clear. */
7332 if (src_precision == precision
7333 && (TREE_INT_CST_HIGH (vr->min) | TREE_INT_CST_HIGH (vr->max)) < 0)
7334 return false;
7335
7336 /* Then we can perform the conversion on both ends and compare
7337 the result for equality. */
7338 tem = double_int_ext (tree_to_double_int (vr->min), precision, unsigned_p);
7339 if (!double_int_equal_p (tree_to_double_int (vr->min), tem))
7340 return false;
7341 tem = double_int_ext (tree_to_double_int (vr->max), precision, unsigned_p);
7342 if (!double_int_equal_p (tree_to_double_int (vr->max), tem))
7343 return false;
7344
7345 return true;
7346 }
7347
7348 /* Simplify a conversion from integral SSA name to float in STMT. */
7349
7350 static bool
7351 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
7352 {
7353 tree rhs1 = gimple_assign_rhs1 (stmt);
7354 value_range_t *vr = get_value_range (rhs1);
7355 enum machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
7356 enum machine_mode mode;
7357 tree tem;
7358 gimple conv;
7359
7360 /* We can only handle constant ranges. */
7361 if (vr->type != VR_RANGE
7362 || TREE_CODE (vr->min) != INTEGER_CST
7363 || TREE_CODE (vr->max) != INTEGER_CST)
7364 return false;
7365
7366 /* First check if we can use a signed type in place of an unsigned. */
7367 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
7368 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
7369 != CODE_FOR_nothing)
7370 && range_fits_type_p (vr, GET_MODE_PRECISION
7371 (TYPE_MODE (TREE_TYPE (rhs1))), 0))
7372 mode = TYPE_MODE (TREE_TYPE (rhs1));
7373 /* If we can do the conversion in the current input mode do nothing. */
7374 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
7375 TYPE_UNSIGNED (TREE_TYPE (rhs1))))
7376 return false;
7377 /* Otherwise search for a mode we can use, starting from the narrowest
7378 integer mode available. */
7379 else
7380 {
7381 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
7382 do
7383 {
7384 /* If we cannot do a signed conversion to float from mode
7385 or if the value-range does not fit in the signed type
7386 try with a wider mode. */
7387 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
7388 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), 0))
7389 break;
7390
7391 mode = GET_MODE_WIDER_MODE (mode);
7392 /* But do not widen the input. Instead leave that to the
7393 optabs expansion code. */
7394 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
7395 return false;
7396 }
7397 while (mode != VOIDmode);
7398 if (mode == VOIDmode)
7399 return false;
7400 }
7401
7402 /* It works, insert a truncation or sign-change before the
7403 float conversion. */
7404 tem = create_tmp_var (build_nonstandard_integer_type
7405 (GET_MODE_PRECISION (mode), 0), NULL);
7406 conv = gimple_build_assign_with_ops (NOP_EXPR, tem, rhs1, NULL_TREE);
7407 tem = make_ssa_name (tem, conv);
7408 gimple_assign_set_lhs (conv, tem);
7409 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
7410 gimple_assign_set_rhs1 (stmt, tem);
7411 update_stmt (stmt);
7412
7413 return true;
7414 }
7415
7416 /* Simplify STMT using ranges if possible. */
7417
7418 static bool
7419 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
7420 {
7421 gimple stmt = gsi_stmt (*gsi);
7422 if (is_gimple_assign (stmt))
7423 {
7424 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
7425 tree rhs1 = gimple_assign_rhs1 (stmt);
7426
7427 switch (rhs_code)
7428 {
7429 case EQ_EXPR:
7430 case NE_EXPR:
7431 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
7432 if the RHS is zero or one, and the LHS are known to be boolean
7433 values. */
7434 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7435 return simplify_truth_ops_using_ranges (gsi, stmt);
7436 break;
7437
7438 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
7439 and BIT_AND_EXPR respectively if the first operand is greater
7440 than zero and the second operand is an exact power of two. */
7441 case TRUNC_DIV_EXPR:
7442 case TRUNC_MOD_EXPR:
7443 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
7444 && integer_pow2p (gimple_assign_rhs2 (stmt)))
7445 return simplify_div_or_mod_using_ranges (stmt);
7446 break;
7447
7448 /* Transform ABS (X) into X or -X as appropriate. */
7449 case ABS_EXPR:
7450 if (TREE_CODE (rhs1) == SSA_NAME
7451 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7452 return simplify_abs_using_ranges (stmt);
7453 break;
7454
7455 case BIT_AND_EXPR:
7456 case BIT_IOR_EXPR:
7457 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
7458 if all the bits being cleared are already cleared or
7459 all the bits being set are already set. */
7460 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7461 return simplify_bit_ops_using_ranges (gsi, stmt);
7462 break;
7463
7464 CASE_CONVERT:
7465 if (TREE_CODE (rhs1) == SSA_NAME
7466 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7467 return simplify_conversion_using_ranges (stmt);
7468 break;
7469
7470 case FLOAT_EXPR:
7471 if (TREE_CODE (rhs1) == SSA_NAME
7472 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7473 return simplify_float_conversion_using_ranges (gsi, stmt);
7474 break;
7475
7476 default:
7477 break;
7478 }
7479 }
7480 else if (gimple_code (stmt) == GIMPLE_COND)
7481 return simplify_cond_using_ranges (stmt);
7482 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7483 return simplify_switch_using_ranges (stmt);
7484
7485 return false;
7486 }
7487
7488 /* If the statement pointed by SI has a predicate whose value can be
7489 computed using the value range information computed by VRP, compute
7490 its value and return true. Otherwise, return false. */
7491
7492 static bool
7493 fold_predicate_in (gimple_stmt_iterator *si)
7494 {
7495 bool assignment_p = false;
7496 tree val;
7497 gimple stmt = gsi_stmt (*si);
7498
7499 if (is_gimple_assign (stmt)
7500 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
7501 {
7502 assignment_p = true;
7503 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
7504 gimple_assign_rhs1 (stmt),
7505 gimple_assign_rhs2 (stmt),
7506 stmt);
7507 }
7508 else if (gimple_code (stmt) == GIMPLE_COND)
7509 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
7510 gimple_cond_lhs (stmt),
7511 gimple_cond_rhs (stmt),
7512 stmt);
7513 else
7514 return false;
7515
7516 if (val)
7517 {
7518 if (assignment_p)
7519 val = fold_convert (gimple_expr_type (stmt), val);
7520
7521 if (dump_file)
7522 {
7523 fprintf (dump_file, "Folding predicate ");
7524 print_gimple_expr (dump_file, stmt, 0, 0);
7525 fprintf (dump_file, " to ");
7526 print_generic_expr (dump_file, val, 0);
7527 fprintf (dump_file, "\n");
7528 }
7529
7530 if (is_gimple_assign (stmt))
7531 gimple_assign_set_rhs_from_tree (si, val);
7532 else
7533 {
7534 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
7535 if (integer_zerop (val))
7536 gimple_cond_make_false (stmt);
7537 else if (integer_onep (val))
7538 gimple_cond_make_true (stmt);
7539 else
7540 gcc_unreachable ();
7541 }
7542
7543 return true;
7544 }
7545
7546 return false;
7547 }
7548
7549 /* Callback for substitute_and_fold folding the stmt at *SI. */
7550
7551 static bool
7552 vrp_fold_stmt (gimple_stmt_iterator *si)
7553 {
7554 if (fold_predicate_in (si))
7555 return true;
7556
7557 return simplify_stmt_using_ranges (si);
7558 }
7559
7560 /* Stack of dest,src equivalency pairs that need to be restored after
7561 each attempt to thread a block's incoming edge to an outgoing edge.
7562
7563 A NULL entry is used to mark the end of pairs which need to be
7564 restored. */
7565 static VEC(tree,heap) *stack;
7566
7567 /* A trivial wrapper so that we can present the generic jump threading
7568 code with a simple API for simplifying statements. STMT is the
7569 statement we want to simplify, WITHIN_STMT provides the location
7570 for any overflow warnings. */
7571
7572 static tree
7573 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
7574 {
7575 /* We only use VRP information to simplify conditionals. This is
7576 overly conservative, but it's unclear if doing more would be
7577 worth the compile time cost. */
7578 if (gimple_code (stmt) != GIMPLE_COND)
7579 return NULL;
7580
7581 return vrp_evaluate_conditional (gimple_cond_code (stmt),
7582 gimple_cond_lhs (stmt),
7583 gimple_cond_rhs (stmt), within_stmt);
7584 }
7585
7586 /* Blocks which have more than one predecessor and more than
7587 one successor present jump threading opportunities, i.e.,
7588 when the block is reached from a specific predecessor, we
7589 may be able to determine which of the outgoing edges will
7590 be traversed. When this optimization applies, we are able
7591 to avoid conditionals at runtime and we may expose secondary
7592 optimization opportunities.
7593
7594 This routine is effectively a driver for the generic jump
7595 threading code. It basically just presents the generic code
7596 with edges that may be suitable for jump threading.
7597
7598 Unlike DOM, we do not iterate VRP if jump threading was successful.
7599 While iterating may expose new opportunities for VRP, it is expected
7600 those opportunities would be very limited and the compile time cost
7601 to expose those opportunities would be significant.
7602
7603 As jump threading opportunities are discovered, they are registered
7604 for later realization. */
7605
7606 static void
7607 identify_jump_threads (void)
7608 {
7609 basic_block bb;
7610 gimple dummy;
7611 int i;
7612 edge e;
7613
7614 /* Ugh. When substituting values earlier in this pass we can
7615 wipe the dominance information. So rebuild the dominator
7616 information as we need it within the jump threading code. */
7617 calculate_dominance_info (CDI_DOMINATORS);
7618
7619 /* We do not allow VRP information to be used for jump threading
7620 across a back edge in the CFG. Otherwise it becomes too
7621 difficult to avoid eliminating loop exit tests. Of course
7622 EDGE_DFS_BACK is not accurate at this time so we have to
7623 recompute it. */
7624 mark_dfs_back_edges ();
7625
7626 /* Do not thread across edges we are about to remove. Just marking
7627 them as EDGE_DFS_BACK will do. */
7628 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7629 e->flags |= EDGE_DFS_BACK;
7630
7631 /* Allocate our unwinder stack to unwind any temporary equivalences
7632 that might be recorded. */
7633 stack = VEC_alloc (tree, heap, 20);
7634
7635 /* To avoid lots of silly node creation, we create a single
7636 conditional and just modify it in-place when attempting to
7637 thread jumps. */
7638 dummy = gimple_build_cond (EQ_EXPR,
7639 integer_zero_node, integer_zero_node,
7640 NULL, NULL);
7641
7642 /* Walk through all the blocks finding those which present a
7643 potential jump threading opportunity. We could set this up
7644 as a dominator walker and record data during the walk, but
7645 I doubt it's worth the effort for the classes of jump
7646 threading opportunities we are trying to identify at this
7647 point in compilation. */
7648 FOR_EACH_BB (bb)
7649 {
7650 gimple last;
7651
7652 /* If the generic jump threading code does not find this block
7653 interesting, then there is nothing to do. */
7654 if (! potentially_threadable_block (bb))
7655 continue;
7656
7657 /* We only care about blocks ending in a COND_EXPR. While there
7658 may be some value in handling SWITCH_EXPR here, I doubt it's
7659 terribly important. */
7660 last = gsi_stmt (gsi_last_bb (bb));
7661
7662 /* We're basically looking for a switch or any kind of conditional with
7663 integral or pointer type arguments. Note the type of the second
7664 argument will be the same as the first argument, so no need to
7665 check it explicitly. */
7666 if (gimple_code (last) == GIMPLE_SWITCH
7667 || (gimple_code (last) == GIMPLE_COND
7668 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
7669 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
7670 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
7671 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
7672 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
7673 {
7674 edge_iterator ei;
7675
7676 /* We've got a block with multiple predecessors and multiple
7677 successors which also ends in a suitable conditional or
7678 switch statement. For each predecessor, see if we can thread
7679 it to a specific successor. */
7680 FOR_EACH_EDGE (e, ei, bb->preds)
7681 {
7682 /* Do not thread across back edges or abnormal edges
7683 in the CFG. */
7684 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
7685 continue;
7686
7687 thread_across_edge (dummy, e, true, &stack,
7688 simplify_stmt_for_jump_threading);
7689 }
7690 }
7691 }
7692
7693 /* We do not actually update the CFG or SSA graphs at this point as
7694 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7695 handle ASSERT_EXPRs gracefully. */
7696 }
7697
7698 /* We identified all the jump threading opportunities earlier, but could
7699 not transform the CFG at that time. This routine transforms the
7700 CFG and arranges for the dominator tree to be rebuilt if necessary.
7701
7702 Note the SSA graph update will occur during the normal TODO
7703 processing by the pass manager. */
7704 static void
7705 finalize_jump_threads (void)
7706 {
7707 thread_through_all_blocks (false);
7708 VEC_free (tree, heap, stack);
7709 }
7710
7711
7712 /* Traverse all the blocks folding conditionals with known ranges. */
7713
7714 static void
7715 vrp_finalize (void)
7716 {
7717 size_t i;
7718
7719 values_propagated = true;
7720
7721 if (dump_file)
7722 {
7723 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
7724 dump_all_value_ranges (dump_file);
7725 fprintf (dump_file, "\n");
7726 }
7727
7728 substitute_and_fold (op_with_constant_singleton_value_range,
7729 vrp_fold_stmt, false);
7730
7731 if (warn_array_bounds)
7732 check_all_array_refs ();
7733
7734 /* We must identify jump threading opportunities before we release
7735 the datastructures built by VRP. */
7736 identify_jump_threads ();
7737
7738 /* Free allocated memory. */
7739 for (i = 0; i < num_vr_values; i++)
7740 if (vr_value[i])
7741 {
7742 BITMAP_FREE (vr_value[i]->equiv);
7743 free (vr_value[i]);
7744 }
7745
7746 free (vr_value);
7747 free (vr_phi_edge_counts);
7748
7749 /* So that we can distinguish between VRP data being available
7750 and not available. */
7751 vr_value = NULL;
7752 vr_phi_edge_counts = NULL;
7753 }
7754
7755
7756 /* Main entry point to VRP (Value Range Propagation). This pass is
7757 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7758 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7759 Programming Language Design and Implementation, pp. 67-78, 1995.
7760 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7761
7762 This is essentially an SSA-CCP pass modified to deal with ranges
7763 instead of constants.
7764
7765 While propagating ranges, we may find that two or more SSA name
7766 have equivalent, though distinct ranges. For instance,
7767
7768 1 x_9 = p_3->a;
7769 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7770 3 if (p_4 == q_2)
7771 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7772 5 endif
7773 6 if (q_2)
7774
7775 In the code above, pointer p_5 has range [q_2, q_2], but from the
7776 code we can also determine that p_5 cannot be NULL and, if q_2 had
7777 a non-varying range, p_5's range should also be compatible with it.
7778
7779 These equivalences are created by two expressions: ASSERT_EXPR and
7780 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7781 result of another assertion, then we can use the fact that p_5 and
7782 p_4 are equivalent when evaluating p_5's range.
7783
7784 Together with value ranges, we also propagate these equivalences
7785 between names so that we can take advantage of information from
7786 multiple ranges when doing final replacement. Note that this
7787 equivalency relation is transitive but not symmetric.
7788
7789 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7790 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7791 in contexts where that assertion does not hold (e.g., in line 6).
7792
7793 TODO, the main difference between this pass and Patterson's is that
7794 we do not propagate edge probabilities. We only compute whether
7795 edges can be taken or not. That is, instead of having a spectrum
7796 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7797 DON'T KNOW. In the future, it may be worthwhile to propagate
7798 probabilities to aid branch prediction. */
7799
7800 static unsigned int
7801 execute_vrp (void)
7802 {
7803 int i;
7804 edge e;
7805 switch_update *su;
7806
7807 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
7808 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
7809 scev_initialize ();
7810
7811 insert_range_assertions ();
7812
7813 /* Estimate number of iterations - but do not use undefined behavior
7814 for this. We can't do this lazily as other functions may compute
7815 this using undefined behavior. */
7816 free_numbers_of_iterations_estimates ();
7817 estimate_numbers_of_iterations (false);
7818
7819 to_remove_edges = VEC_alloc (edge, heap, 10);
7820 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
7821 threadedge_initialize_values ();
7822
7823 vrp_initialize ();
7824 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
7825 vrp_finalize ();
7826
7827 free_numbers_of_iterations_estimates ();
7828
7829 /* ASSERT_EXPRs must be removed before finalizing jump threads
7830 as finalizing jump threads calls the CFG cleanup code which
7831 does not properly handle ASSERT_EXPRs. */
7832 remove_range_assertions ();
7833
7834 /* If we exposed any new variables, go ahead and put them into
7835 SSA form now, before we handle jump threading. This simplifies
7836 interactions between rewriting of _DECL nodes into SSA form
7837 and rewriting SSA_NAME nodes into SSA form after block
7838 duplication and CFG manipulation. */
7839 update_ssa (TODO_update_ssa);
7840
7841 finalize_jump_threads ();
7842
7843 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7844 CFG in a broken state and requires a cfg_cleanup run. */
7845 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7846 remove_edge (e);
7847 /* Update SWITCH_EXPR case label vector. */
7848 FOR_EACH_VEC_ELT (switch_update, to_update_switch_stmts, i, su)
7849 {
7850 size_t j;
7851 size_t n = TREE_VEC_LENGTH (su->vec);
7852 tree label;
7853 gimple_switch_set_num_labels (su->stmt, n);
7854 for (j = 0; j < n; j++)
7855 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
7856 /* As we may have replaced the default label with a regular one
7857 make sure to make it a real default label again. This ensures
7858 optimal expansion. */
7859 label = gimple_switch_default_label (su->stmt);
7860 CASE_LOW (label) = NULL_TREE;
7861 CASE_HIGH (label) = NULL_TREE;
7862 }
7863
7864 if (VEC_length (edge, to_remove_edges) > 0)
7865 free_dominance_info (CDI_DOMINATORS);
7866
7867 VEC_free (edge, heap, to_remove_edges);
7868 VEC_free (switch_update, heap, to_update_switch_stmts);
7869 threadedge_finalize_values ();
7870
7871 scev_finalize ();
7872 loop_optimizer_finalize ();
7873 return 0;
7874 }
7875
7876 static bool
7877 gate_vrp (void)
7878 {
7879 return flag_tree_vrp != 0;
7880 }
7881
7882 struct gimple_opt_pass pass_vrp =
7883 {
7884 {
7885 GIMPLE_PASS,
7886 "vrp", /* name */
7887 gate_vrp, /* gate */
7888 execute_vrp, /* execute */
7889 NULL, /* sub */
7890 NULL, /* next */
7891 0, /* static_pass_number */
7892 TV_TREE_VRP, /* tv_id */
7893 PROP_ssa, /* properties_required */
7894 0, /* properties_provided */
7895 0, /* properties_destroyed */
7896 0, /* todo_flags_start */
7897 TODO_cleanup_cfg
7898 | TODO_update_ssa
7899 | TODO_verify_ssa
7900 | TODO_verify_flow
7901 | TODO_ggc_collect /* todo_flags_finish */
7902 }
7903 };