tree-data-ref.c (subscript_dependence_tester_1): Call free_conflict_function.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "fixed-value.h"
54
55 /* Each tree code class has an associated string representation.
56 These must correspond to the tree_code_class entries. */
57
58 const char *const tree_code_class_strings[] =
59 {
60 "exceptional",
61 "constant",
62 "type",
63 "declaration",
64 "reference",
65 "comparison",
66 "unary",
67 "binary",
68 "statement",
69 "vl_exp",
70 "expression",
71 "gimple_stmt"
72 };
73
74 /* obstack.[ch] explicitly declined to prototype this. */
75 extern int _obstack_allocated_p (struct obstack *h, void *obj);
76
77 #ifdef GATHER_STATISTICS
78 /* Statistics-gathering stuff. */
79
80 int tree_node_counts[(int) all_kinds];
81 int tree_node_sizes[(int) all_kinds];
82
83 /* Keep in sync with tree.h:enum tree_node_kind. */
84 static const char * const tree_node_kind_names[] = {
85 "decls",
86 "types",
87 "blocks",
88 "stmts",
89 "refs",
90 "exprs",
91 "constants",
92 "identifiers",
93 "perm_tree_lists",
94 "temp_tree_lists",
95 "vecs",
96 "binfos",
97 "phi_nodes",
98 "ssa names",
99 "constructors",
100 "random kinds",
101 "lang_decl kinds",
102 "lang_type kinds",
103 "omp clauses",
104 "gimple statements"
105 };
106 #endif /* GATHER_STATISTICS */
107
108 /* Unique id for next decl created. */
109 static GTY(()) int next_decl_uid;
110 /* Unique id for next type created. */
111 static GTY(()) int next_type_uid = 1;
112
113 /* Since we cannot rehash a type after it is in the table, we have to
114 keep the hash code. */
115
116 struct type_hash GTY(())
117 {
118 unsigned long hash;
119 tree type;
120 };
121
122 /* Initial size of the hash table (rounded to next prime). */
123 #define TYPE_HASH_INITIAL_SIZE 1000
124
125 /* Now here is the hash table. When recording a type, it is added to
126 the slot whose index is the hash code. Note that the hash table is
127 used for several kinds of types (function types, array types and
128 array index range types, for now). While all these live in the
129 same table, they are completely independent, and the hash code is
130 computed differently for each of these. */
131
132 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
133 htab_t type_hash_table;
134
135 /* Hash table and temporary node for larger integer const values. */
136 static GTY (()) tree int_cst_node;
137 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
138 htab_t int_cst_hash_table;
139
140 /* General tree->tree mapping structure for use in hash tables. */
141
142
143 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
144 htab_t debug_expr_for_decl;
145
146 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
147 htab_t value_expr_for_decl;
148
149 static GTY ((if_marked ("tree_priority_map_marked_p"),
150 param_is (struct tree_priority_map)))
151 htab_t init_priority_for_decl;
152
153 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
154 htab_t restrict_base_for_decl;
155
156 static void set_type_quals (tree, int);
157 static int type_hash_eq (const void *, const void *);
158 static hashval_t type_hash_hash (const void *);
159 static hashval_t int_cst_hash_hash (const void *);
160 static int int_cst_hash_eq (const void *, const void *);
161 static void print_type_hash_statistics (void);
162 static void print_debug_expr_statistics (void);
163 static void print_value_expr_statistics (void);
164 static int type_hash_marked_p (const void *);
165 static unsigned int type_hash_list (const_tree, hashval_t);
166 static unsigned int attribute_hash_list (const_tree, hashval_t);
167
168 tree global_trees[TI_MAX];
169 tree integer_types[itk_none];
170
171 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
172
173 /* Number of operands for each OpenMP clause. */
174 unsigned const char omp_clause_num_ops[] =
175 {
176 0, /* OMP_CLAUSE_ERROR */
177 1, /* OMP_CLAUSE_PRIVATE */
178 1, /* OMP_CLAUSE_SHARED */
179 1, /* OMP_CLAUSE_FIRSTPRIVATE */
180 1, /* OMP_CLAUSE_LASTPRIVATE */
181 4, /* OMP_CLAUSE_REDUCTION */
182 1, /* OMP_CLAUSE_COPYIN */
183 1, /* OMP_CLAUSE_COPYPRIVATE */
184 1, /* OMP_CLAUSE_IF */
185 1, /* OMP_CLAUSE_NUM_THREADS */
186 1, /* OMP_CLAUSE_SCHEDULE */
187 0, /* OMP_CLAUSE_NOWAIT */
188 0, /* OMP_CLAUSE_ORDERED */
189 0 /* OMP_CLAUSE_DEFAULT */
190 };
191
192 const char * const omp_clause_code_name[] =
193 {
194 "error_clause",
195 "private",
196 "shared",
197 "firstprivate",
198 "lastprivate",
199 "reduction",
200 "copyin",
201 "copyprivate",
202 "if",
203 "num_threads",
204 "schedule",
205 "nowait",
206 "ordered",
207 "default"
208 };
209 \f
210 /* Init tree.c. */
211
212 void
213 init_ttree (void)
214 {
215 /* Initialize the hash table of types. */
216 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
217 type_hash_eq, 0);
218
219 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
220 tree_map_eq, 0);
221
222 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
223 tree_map_eq, 0);
224 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
225 tree_priority_map_eq, 0);
226 restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
227 tree_map_eq, 0);
228
229 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
230 int_cst_hash_eq, NULL);
231
232 int_cst_node = make_node (INTEGER_CST);
233
234 tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
235 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
236 tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
237
238
239 tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
240 tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
241 tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
242 tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
243 tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
244 tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
245 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
246 tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
247 tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
248
249
250 tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
251 tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
252 tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
253 tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
254 tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
255 tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1;
256
257 tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
258 tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
259 tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
260 tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
261 tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
262 tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
263 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
264 tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
265 tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
266 tree_contains_struct[STRUCT_FIELD_TAG][TS_DECL_MINIMAL] = 1;
267 tree_contains_struct[NAME_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
268 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
269 tree_contains_struct[MEMORY_PARTITION_TAG][TS_DECL_MINIMAL] = 1;
270
271 tree_contains_struct[STRUCT_FIELD_TAG][TS_MEMORY_TAG] = 1;
272 tree_contains_struct[NAME_MEMORY_TAG][TS_MEMORY_TAG] = 1;
273 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_MEMORY_TAG] = 1;
274 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_TAG] = 1;
275
276 tree_contains_struct[STRUCT_FIELD_TAG][TS_STRUCT_FIELD_TAG] = 1;
277 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_PARTITION_TAG] = 1;
278
279 tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
280 tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
281 tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
282 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
283
284 tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
285 tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
286 tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
287 tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
288 tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
289 tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
290 tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
291 tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
292
293 lang_hooks.init_ts ();
294 }
295
296 \f
297 /* The name of the object as the assembler will see it (but before any
298 translations made by ASM_OUTPUT_LABELREF). Often this is the same
299 as DECL_NAME. It is an IDENTIFIER_NODE. */
300 tree
301 decl_assembler_name (tree decl)
302 {
303 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
304 lang_hooks.set_decl_assembler_name (decl);
305 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
306 }
307
308 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
309
310 bool
311 decl_assembler_name_equal (tree decl, tree asmname)
312 {
313 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
314
315 if (decl_asmname == asmname)
316 return true;
317
318 /* If the target assembler name was set by the user, things are trickier.
319 We have a leading '*' to begin with. After that, it's arguable what
320 is the correct thing to do with -fleading-underscore. Arguably, we've
321 historically been doing the wrong thing in assemble_alias by always
322 printing the leading underscore. Since we're not changing that, make
323 sure user_label_prefix follows the '*' before matching. */
324 if (IDENTIFIER_POINTER (decl_asmname)[0] == '*')
325 {
326 const char *decl_str = IDENTIFIER_POINTER (decl_asmname) + 1;
327 size_t ulp_len = strlen (user_label_prefix);
328
329 if (ulp_len == 0)
330 ;
331 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
332 decl_str += ulp_len;
333 else
334 return false;
335
336 return strcmp (decl_str, IDENTIFIER_POINTER (asmname)) == 0;
337 }
338
339 return false;
340 }
341
342 /* Compute the number of bytes occupied by a tree with code CODE.
343 This function cannot be used for nodes that have variable sizes,
344 including TREE_VEC, PHI_NODE, STRING_CST, and CALL_EXPR. */
345 size_t
346 tree_code_size (enum tree_code code)
347 {
348 switch (TREE_CODE_CLASS (code))
349 {
350 case tcc_declaration: /* A decl node */
351 {
352 switch (code)
353 {
354 case FIELD_DECL:
355 return sizeof (struct tree_field_decl);
356 case PARM_DECL:
357 return sizeof (struct tree_parm_decl);
358 case VAR_DECL:
359 return sizeof (struct tree_var_decl);
360 case LABEL_DECL:
361 return sizeof (struct tree_label_decl);
362 case RESULT_DECL:
363 return sizeof (struct tree_result_decl);
364 case CONST_DECL:
365 return sizeof (struct tree_const_decl);
366 case TYPE_DECL:
367 return sizeof (struct tree_type_decl);
368 case FUNCTION_DECL:
369 return sizeof (struct tree_function_decl);
370 case NAME_MEMORY_TAG:
371 case SYMBOL_MEMORY_TAG:
372 return sizeof (struct tree_memory_tag);
373 case STRUCT_FIELD_TAG:
374 return sizeof (struct tree_struct_field_tag);
375 case MEMORY_PARTITION_TAG:
376 return sizeof (struct tree_memory_partition_tag);
377 default:
378 return sizeof (struct tree_decl_non_common);
379 }
380 }
381
382 case tcc_type: /* a type node */
383 return sizeof (struct tree_type);
384
385 case tcc_reference: /* a reference */
386 case tcc_expression: /* an expression */
387 case tcc_statement: /* an expression with side effects */
388 case tcc_comparison: /* a comparison expression */
389 case tcc_unary: /* a unary arithmetic expression */
390 case tcc_binary: /* a binary arithmetic expression */
391 return (sizeof (struct tree_exp)
392 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
393
394 case tcc_gimple_stmt:
395 return (sizeof (struct gimple_stmt)
396 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
397
398 case tcc_constant: /* a constant */
399 switch (code)
400 {
401 case INTEGER_CST: return sizeof (struct tree_int_cst);
402 case REAL_CST: return sizeof (struct tree_real_cst);
403 case FIXED_CST: return sizeof (struct tree_fixed_cst);
404 case COMPLEX_CST: return sizeof (struct tree_complex);
405 case VECTOR_CST: return sizeof (struct tree_vector);
406 case STRING_CST: gcc_unreachable ();
407 default:
408 return lang_hooks.tree_size (code);
409 }
410
411 case tcc_exceptional: /* something random, like an identifier. */
412 switch (code)
413 {
414 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
415 case TREE_LIST: return sizeof (struct tree_list);
416
417 case ERROR_MARK:
418 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
419
420 case TREE_VEC:
421 case OMP_CLAUSE:
422 case PHI_NODE: gcc_unreachable ();
423
424 case SSA_NAME: return sizeof (struct tree_ssa_name);
425
426 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
427 case BLOCK: return sizeof (struct tree_block);
428 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
429 case CONSTRUCTOR: return sizeof (struct tree_constructor);
430
431 default:
432 return lang_hooks.tree_size (code);
433 }
434
435 default:
436 gcc_unreachable ();
437 }
438 }
439
440 /* Compute the number of bytes occupied by NODE. This routine only
441 looks at TREE_CODE, except for those nodes that have variable sizes. */
442 size_t
443 tree_size (const_tree node)
444 {
445 const enum tree_code code = TREE_CODE (node);
446 switch (code)
447 {
448 case PHI_NODE:
449 return (sizeof (struct tree_phi_node)
450 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
451
452 case TREE_BINFO:
453 return (offsetof (struct tree_binfo, base_binfos)
454 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
455
456 case TREE_VEC:
457 return (sizeof (struct tree_vec)
458 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
459
460 case STRING_CST:
461 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
462
463 case OMP_CLAUSE:
464 return (sizeof (struct tree_omp_clause)
465 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
466 * sizeof (tree));
467
468 default:
469 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
470 return (sizeof (struct tree_exp)
471 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
472 else
473 return tree_code_size (code);
474 }
475 }
476
477 /* Return a newly allocated node of code CODE. For decl and type
478 nodes, some other fields are initialized. The rest of the node is
479 initialized to zero. This function cannot be used for PHI_NODE,
480 TREE_VEC or OMP_CLAUSE nodes, which is enforced by asserts in
481 tree_code_size.
482
483 Achoo! I got a code in the node. */
484
485 tree
486 make_node_stat (enum tree_code code MEM_STAT_DECL)
487 {
488 tree t;
489 enum tree_code_class type = TREE_CODE_CLASS (code);
490 size_t length = tree_code_size (code);
491 #ifdef GATHER_STATISTICS
492 tree_node_kind kind;
493
494 switch (type)
495 {
496 case tcc_declaration: /* A decl node */
497 kind = d_kind;
498 break;
499
500 case tcc_type: /* a type node */
501 kind = t_kind;
502 break;
503
504 case tcc_statement: /* an expression with side effects */
505 kind = s_kind;
506 break;
507
508 case tcc_reference: /* a reference */
509 kind = r_kind;
510 break;
511
512 case tcc_expression: /* an expression */
513 case tcc_comparison: /* a comparison expression */
514 case tcc_unary: /* a unary arithmetic expression */
515 case tcc_binary: /* a binary arithmetic expression */
516 kind = e_kind;
517 break;
518
519 case tcc_constant: /* a constant */
520 kind = c_kind;
521 break;
522
523 case tcc_gimple_stmt:
524 kind = gimple_stmt_kind;
525 break;
526
527 case tcc_exceptional: /* something random, like an identifier. */
528 switch (code)
529 {
530 case IDENTIFIER_NODE:
531 kind = id_kind;
532 break;
533
534 case TREE_VEC:
535 kind = vec_kind;
536 break;
537
538 case TREE_BINFO:
539 kind = binfo_kind;
540 break;
541
542 case PHI_NODE:
543 kind = phi_kind;
544 break;
545
546 case SSA_NAME:
547 kind = ssa_name_kind;
548 break;
549
550 case BLOCK:
551 kind = b_kind;
552 break;
553
554 case CONSTRUCTOR:
555 kind = constr_kind;
556 break;
557
558 default:
559 kind = x_kind;
560 break;
561 }
562 break;
563
564 default:
565 gcc_unreachable ();
566 }
567
568 tree_node_counts[(int) kind]++;
569 tree_node_sizes[(int) kind] += length;
570 #endif
571
572 if (code == IDENTIFIER_NODE)
573 t = ggc_alloc_zone_pass_stat (length, &tree_id_zone);
574 else
575 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
576
577 memset (t, 0, length);
578
579 TREE_SET_CODE (t, code);
580
581 switch (type)
582 {
583 case tcc_statement:
584 TREE_SIDE_EFFECTS (t) = 1;
585 break;
586
587 case tcc_declaration:
588 if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
589 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
590 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
591 {
592 if (code == FUNCTION_DECL)
593 {
594 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
595 DECL_MODE (t) = FUNCTION_MODE;
596 }
597 else
598 DECL_ALIGN (t) = 1;
599 /* We have not yet computed the alias set for this declaration. */
600 DECL_POINTER_ALIAS_SET (t) = -1;
601 }
602 DECL_SOURCE_LOCATION (t) = input_location;
603 DECL_UID (t) = next_decl_uid++;
604
605 break;
606
607 case tcc_type:
608 TYPE_UID (t) = next_type_uid++;
609 TYPE_ALIGN (t) = BITS_PER_UNIT;
610 TYPE_USER_ALIGN (t) = 0;
611 TYPE_MAIN_VARIANT (t) = t;
612 TYPE_CANONICAL (t) = t;
613
614 /* Default to no attributes for type, but let target change that. */
615 TYPE_ATTRIBUTES (t) = NULL_TREE;
616 targetm.set_default_type_attributes (t);
617
618 /* We have not yet computed the alias set for this type. */
619 TYPE_ALIAS_SET (t) = -1;
620 break;
621
622 case tcc_constant:
623 TREE_CONSTANT (t) = 1;
624 TREE_INVARIANT (t) = 1;
625 break;
626
627 case tcc_expression:
628 switch (code)
629 {
630 case INIT_EXPR:
631 case MODIFY_EXPR:
632 case VA_ARG_EXPR:
633 case PREDECREMENT_EXPR:
634 case PREINCREMENT_EXPR:
635 case POSTDECREMENT_EXPR:
636 case POSTINCREMENT_EXPR:
637 /* All of these have side-effects, no matter what their
638 operands are. */
639 TREE_SIDE_EFFECTS (t) = 1;
640 break;
641
642 default:
643 break;
644 }
645 break;
646
647 case tcc_gimple_stmt:
648 switch (code)
649 {
650 case GIMPLE_MODIFY_STMT:
651 TREE_SIDE_EFFECTS (t) = 1;
652 break;
653
654 default:
655 break;
656 }
657
658 default:
659 /* Other classes need no special treatment. */
660 break;
661 }
662
663 return t;
664 }
665 \f
666 /* Return a new node with the same contents as NODE except that its
667 TREE_CHAIN is zero and it has a fresh uid. */
668
669 tree
670 copy_node_stat (tree node MEM_STAT_DECL)
671 {
672 tree t;
673 enum tree_code code = TREE_CODE (node);
674 size_t length;
675
676 gcc_assert (code != STATEMENT_LIST);
677
678 length = tree_size (node);
679 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
680 memcpy (t, node, length);
681
682 if (!GIMPLE_TUPLE_P (node))
683 TREE_CHAIN (t) = 0;
684 TREE_ASM_WRITTEN (t) = 0;
685 TREE_VISITED (t) = 0;
686 t->base.ann = 0;
687
688 if (TREE_CODE_CLASS (code) == tcc_declaration)
689 {
690 DECL_UID (t) = next_decl_uid++;
691 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
692 && DECL_HAS_VALUE_EXPR_P (node))
693 {
694 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
695 DECL_HAS_VALUE_EXPR_P (t) = 1;
696 }
697 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
698 {
699 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
700 DECL_HAS_INIT_PRIORITY_P (t) = 1;
701 }
702 if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
703 {
704 SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
705 DECL_BASED_ON_RESTRICT_P (t) = 1;
706 }
707 }
708 else if (TREE_CODE_CLASS (code) == tcc_type)
709 {
710 TYPE_UID (t) = next_type_uid++;
711 /* The following is so that the debug code for
712 the copy is different from the original type.
713 The two statements usually duplicate each other
714 (because they clear fields of the same union),
715 but the optimizer should catch that. */
716 TYPE_SYMTAB_POINTER (t) = 0;
717 TYPE_SYMTAB_ADDRESS (t) = 0;
718
719 /* Do not copy the values cache. */
720 if (TYPE_CACHED_VALUES_P(t))
721 {
722 TYPE_CACHED_VALUES_P (t) = 0;
723 TYPE_CACHED_VALUES (t) = NULL_TREE;
724 }
725 }
726
727 return t;
728 }
729
730 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
731 For example, this can copy a list made of TREE_LIST nodes. */
732
733 tree
734 copy_list (tree list)
735 {
736 tree head;
737 tree prev, next;
738
739 if (list == 0)
740 return 0;
741
742 head = prev = copy_node (list);
743 next = TREE_CHAIN (list);
744 while (next)
745 {
746 TREE_CHAIN (prev) = copy_node (next);
747 prev = TREE_CHAIN (prev);
748 next = TREE_CHAIN (next);
749 }
750 return head;
751 }
752
753 \f
754 /* Create an INT_CST node with a LOW value sign extended. */
755
756 tree
757 build_int_cst (tree type, HOST_WIDE_INT low)
758 {
759 /* Support legacy code. */
760 if (!type)
761 type = integer_type_node;
762
763 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
764 }
765
766 /* Create an INT_CST node with a LOW value zero extended. */
767
768 tree
769 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
770 {
771 return build_int_cst_wide (type, low, 0);
772 }
773
774 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
775 if it is negative. This function is similar to build_int_cst, but
776 the extra bits outside of the type precision are cleared. Constants
777 with these extra bits may confuse the fold so that it detects overflows
778 even in cases when they do not occur, and in general should be avoided.
779 We cannot however make this a default behavior of build_int_cst without
780 more intrusive changes, since there are parts of gcc that rely on the extra
781 precision of the integer constants. */
782
783 tree
784 build_int_cst_type (tree type, HOST_WIDE_INT low)
785 {
786 unsigned HOST_WIDE_INT low1;
787 HOST_WIDE_INT hi;
788
789 gcc_assert (type);
790
791 fit_double_type (low, low < 0 ? -1 : 0, &low1, &hi, type);
792
793 return build_int_cst_wide (type, low1, hi);
794 }
795
796 /* Create an INT_CST node of TYPE and value HI:LOW. The value is truncated
797 and sign extended according to the value range of TYPE. */
798
799 tree
800 build_int_cst_wide_type (tree type,
801 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high)
802 {
803 fit_double_type (low, high, &low, &high, type);
804 return build_int_cst_wide (type, low, high);
805 }
806
807 /* These are the hash table functions for the hash table of INTEGER_CST
808 nodes of a sizetype. */
809
810 /* Return the hash code code X, an INTEGER_CST. */
811
812 static hashval_t
813 int_cst_hash_hash (const void *x)
814 {
815 const_tree const t = (const_tree) x;
816
817 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
818 ^ htab_hash_pointer (TREE_TYPE (t)));
819 }
820
821 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
822 is the same as that given by *Y, which is the same. */
823
824 static int
825 int_cst_hash_eq (const void *x, const void *y)
826 {
827 const_tree const xt = (const_tree) x;
828 const_tree const yt = (const_tree) y;
829
830 return (TREE_TYPE (xt) == TREE_TYPE (yt)
831 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
832 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
833 }
834
835 /* Create an INT_CST node of TYPE and value HI:LOW.
836 The returned node is always shared. For small integers we use a
837 per-type vector cache, for larger ones we use a single hash table. */
838
839 tree
840 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
841 {
842 tree t;
843 int ix = -1;
844 int limit = 0;
845
846 gcc_assert (type);
847
848 switch (TREE_CODE (type))
849 {
850 case POINTER_TYPE:
851 case REFERENCE_TYPE:
852 /* Cache NULL pointer. */
853 if (!hi && !low)
854 {
855 limit = 1;
856 ix = 0;
857 }
858 break;
859
860 case BOOLEAN_TYPE:
861 /* Cache false or true. */
862 limit = 2;
863 if (!hi && low < 2)
864 ix = low;
865 break;
866
867 case INTEGER_TYPE:
868 case OFFSET_TYPE:
869 if (TYPE_UNSIGNED (type))
870 {
871 /* Cache 0..N */
872 limit = INTEGER_SHARE_LIMIT;
873 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
874 ix = low;
875 }
876 else
877 {
878 /* Cache -1..N */
879 limit = INTEGER_SHARE_LIMIT + 1;
880 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
881 ix = low + 1;
882 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
883 ix = 0;
884 }
885 break;
886
887 case ENUMERAL_TYPE:
888 break;
889
890 default:
891 gcc_unreachable ();
892 }
893
894 if (ix >= 0)
895 {
896 /* Look for it in the type's vector of small shared ints. */
897 if (!TYPE_CACHED_VALUES_P (type))
898 {
899 TYPE_CACHED_VALUES_P (type) = 1;
900 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
901 }
902
903 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
904 if (t)
905 {
906 /* Make sure no one is clobbering the shared constant. */
907 gcc_assert (TREE_TYPE (t) == type);
908 gcc_assert (TREE_INT_CST_LOW (t) == low);
909 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
910 }
911 else
912 {
913 /* Create a new shared int. */
914 t = make_node (INTEGER_CST);
915
916 TREE_INT_CST_LOW (t) = low;
917 TREE_INT_CST_HIGH (t) = hi;
918 TREE_TYPE (t) = type;
919
920 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
921 }
922 }
923 else
924 {
925 /* Use the cache of larger shared ints. */
926 void **slot;
927
928 TREE_INT_CST_LOW (int_cst_node) = low;
929 TREE_INT_CST_HIGH (int_cst_node) = hi;
930 TREE_TYPE (int_cst_node) = type;
931
932 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
933 t = *slot;
934 if (!t)
935 {
936 /* Insert this one into the hash table. */
937 t = int_cst_node;
938 *slot = t;
939 /* Make a new node for next time round. */
940 int_cst_node = make_node (INTEGER_CST);
941 }
942 }
943
944 return t;
945 }
946
947 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
948 and the rest are zeros. */
949
950 tree
951 build_low_bits_mask (tree type, unsigned bits)
952 {
953 unsigned HOST_WIDE_INT low;
954 HOST_WIDE_INT high;
955 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
956
957 gcc_assert (bits <= TYPE_PRECISION (type));
958
959 if (bits == TYPE_PRECISION (type)
960 && !TYPE_UNSIGNED (type))
961 {
962 /* Sign extended all-ones mask. */
963 low = all_ones;
964 high = -1;
965 }
966 else if (bits <= HOST_BITS_PER_WIDE_INT)
967 {
968 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
969 high = 0;
970 }
971 else
972 {
973 bits -= HOST_BITS_PER_WIDE_INT;
974 low = all_ones;
975 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
976 }
977
978 return build_int_cst_wide (type, low, high);
979 }
980
981 /* Checks that X is integer constant that can be expressed in (unsigned)
982 HOST_WIDE_INT without loss of precision. */
983
984 bool
985 cst_and_fits_in_hwi (const_tree x)
986 {
987 if (TREE_CODE (x) != INTEGER_CST)
988 return false;
989
990 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
991 return false;
992
993 return (TREE_INT_CST_HIGH (x) == 0
994 || TREE_INT_CST_HIGH (x) == -1);
995 }
996
997 /* Return a new VECTOR_CST node whose type is TYPE and whose values
998 are in a list pointed to by VALS. */
999
1000 tree
1001 build_vector (tree type, tree vals)
1002 {
1003 tree v = make_node (VECTOR_CST);
1004 int over = 0;
1005 tree link;
1006
1007 TREE_VECTOR_CST_ELTS (v) = vals;
1008 TREE_TYPE (v) = type;
1009
1010 /* Iterate through elements and check for overflow. */
1011 for (link = vals; link; link = TREE_CHAIN (link))
1012 {
1013 tree value = TREE_VALUE (link);
1014
1015 /* Don't crash if we get an address constant. */
1016 if (!CONSTANT_CLASS_P (value))
1017 continue;
1018
1019 over |= TREE_OVERFLOW (value);
1020 }
1021
1022 TREE_OVERFLOW (v) = over;
1023 return v;
1024 }
1025
1026 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1027 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1028
1029 tree
1030 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1031 {
1032 tree list = NULL_TREE;
1033 unsigned HOST_WIDE_INT idx;
1034 tree value;
1035
1036 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1037 list = tree_cons (NULL_TREE, value, list);
1038 return build_vector (type, nreverse (list));
1039 }
1040
1041 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1042 are in the VEC pointed to by VALS. */
1043 tree
1044 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1045 {
1046 tree c = make_node (CONSTRUCTOR);
1047 TREE_TYPE (c) = type;
1048 CONSTRUCTOR_ELTS (c) = vals;
1049 return c;
1050 }
1051
1052 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1053 INDEX and VALUE. */
1054 tree
1055 build_constructor_single (tree type, tree index, tree value)
1056 {
1057 VEC(constructor_elt,gc) *v;
1058 constructor_elt *elt;
1059 tree t;
1060
1061 v = VEC_alloc (constructor_elt, gc, 1);
1062 elt = VEC_quick_push (constructor_elt, v, NULL);
1063 elt->index = index;
1064 elt->value = value;
1065
1066 t = build_constructor (type, v);
1067 TREE_CONSTANT (t) = TREE_CONSTANT (value);
1068 return t;
1069 }
1070
1071
1072 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1073 are in a list pointed to by VALS. */
1074 tree
1075 build_constructor_from_list (tree type, tree vals)
1076 {
1077 tree t, val;
1078 VEC(constructor_elt,gc) *v = NULL;
1079 bool constant_p = true;
1080
1081 if (vals)
1082 {
1083 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1084 for (t = vals; t; t = TREE_CHAIN (t))
1085 {
1086 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1087 val = TREE_VALUE (t);
1088 elt->index = TREE_PURPOSE (t);
1089 elt->value = val;
1090 if (!TREE_CONSTANT (val))
1091 constant_p = false;
1092 }
1093 }
1094
1095 t = build_constructor (type, v);
1096 TREE_CONSTANT (t) = constant_p;
1097 return t;
1098 }
1099
1100 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1101
1102 tree
1103 build_fixed (tree type, FIXED_VALUE_TYPE f)
1104 {
1105 tree v;
1106 FIXED_VALUE_TYPE *fp;
1107
1108 v = make_node (FIXED_CST);
1109 fp = ggc_alloc (sizeof (FIXED_VALUE_TYPE));
1110 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1111
1112 TREE_TYPE (v) = type;
1113 TREE_FIXED_CST_PTR (v) = fp;
1114 return v;
1115 }
1116
1117 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1118
1119 tree
1120 build_real (tree type, REAL_VALUE_TYPE d)
1121 {
1122 tree v;
1123 REAL_VALUE_TYPE *dp;
1124 int overflow = 0;
1125
1126 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1127 Consider doing it via real_convert now. */
1128
1129 v = make_node (REAL_CST);
1130 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
1131 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1132
1133 TREE_TYPE (v) = type;
1134 TREE_REAL_CST_PTR (v) = dp;
1135 TREE_OVERFLOW (v) = overflow;
1136 return v;
1137 }
1138
1139 /* Return a new REAL_CST node whose type is TYPE
1140 and whose value is the integer value of the INTEGER_CST node I. */
1141
1142 REAL_VALUE_TYPE
1143 real_value_from_int_cst (const_tree type, const_tree i)
1144 {
1145 REAL_VALUE_TYPE d;
1146
1147 /* Clear all bits of the real value type so that we can later do
1148 bitwise comparisons to see if two values are the same. */
1149 memset (&d, 0, sizeof d);
1150
1151 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1152 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1153 TYPE_UNSIGNED (TREE_TYPE (i)));
1154 return d;
1155 }
1156
1157 /* Given a tree representing an integer constant I, return a tree
1158 representing the same value as a floating-point constant of type TYPE. */
1159
1160 tree
1161 build_real_from_int_cst (tree type, const_tree i)
1162 {
1163 tree v;
1164 int overflow = TREE_OVERFLOW (i);
1165
1166 v = build_real (type, real_value_from_int_cst (type, i));
1167
1168 TREE_OVERFLOW (v) |= overflow;
1169 return v;
1170 }
1171
1172 /* Return a newly constructed STRING_CST node whose value is
1173 the LEN characters at STR.
1174 The TREE_TYPE is not initialized. */
1175
1176 tree
1177 build_string (int len, const char *str)
1178 {
1179 tree s;
1180 size_t length;
1181
1182 /* Do not waste bytes provided by padding of struct tree_string. */
1183 length = len + offsetof (struct tree_string, str) + 1;
1184
1185 #ifdef GATHER_STATISTICS
1186 tree_node_counts[(int) c_kind]++;
1187 tree_node_sizes[(int) c_kind] += length;
1188 #endif
1189
1190 s = ggc_alloc_tree (length);
1191
1192 memset (s, 0, sizeof (struct tree_common));
1193 TREE_SET_CODE (s, STRING_CST);
1194 TREE_CONSTANT (s) = 1;
1195 TREE_INVARIANT (s) = 1;
1196 TREE_STRING_LENGTH (s) = len;
1197 memcpy (s->string.str, str, len);
1198 s->string.str[len] = '\0';
1199
1200 return s;
1201 }
1202
1203 /* Return a newly constructed COMPLEX_CST node whose value is
1204 specified by the real and imaginary parts REAL and IMAG.
1205 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1206 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1207
1208 tree
1209 build_complex (tree type, tree real, tree imag)
1210 {
1211 tree t = make_node (COMPLEX_CST);
1212
1213 TREE_REALPART (t) = real;
1214 TREE_IMAGPART (t) = imag;
1215 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1216 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1217 return t;
1218 }
1219
1220 /* Return a constant of arithmetic type TYPE which is the
1221 multiplicative identity of the set TYPE. */
1222
1223 tree
1224 build_one_cst (tree type)
1225 {
1226 switch (TREE_CODE (type))
1227 {
1228 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1229 case POINTER_TYPE: case REFERENCE_TYPE:
1230 case OFFSET_TYPE:
1231 return build_int_cst (type, 1);
1232
1233 case REAL_TYPE:
1234 return build_real (type, dconst1);
1235
1236 case FIXED_POINT_TYPE:
1237 /* We can only generate 1 for accum types. */
1238 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1239 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1240
1241 case VECTOR_TYPE:
1242 {
1243 tree scalar, cst;
1244 int i;
1245
1246 scalar = build_one_cst (TREE_TYPE (type));
1247
1248 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1249 cst = NULL_TREE;
1250 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1251 cst = tree_cons (NULL_TREE, scalar, cst);
1252
1253 return build_vector (type, cst);
1254 }
1255
1256 case COMPLEX_TYPE:
1257 return build_complex (type,
1258 build_one_cst (TREE_TYPE (type)),
1259 fold_convert (TREE_TYPE (type), integer_zero_node));
1260
1261 default:
1262 gcc_unreachable ();
1263 }
1264 }
1265
1266 /* Build a BINFO with LEN language slots. */
1267
1268 tree
1269 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1270 {
1271 tree t;
1272 size_t length = (offsetof (struct tree_binfo, base_binfos)
1273 + VEC_embedded_size (tree, base_binfos));
1274
1275 #ifdef GATHER_STATISTICS
1276 tree_node_counts[(int) binfo_kind]++;
1277 tree_node_sizes[(int) binfo_kind] += length;
1278 #endif
1279
1280 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1281
1282 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1283
1284 TREE_SET_CODE (t, TREE_BINFO);
1285
1286 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1287
1288 return t;
1289 }
1290
1291
1292 /* Build a newly constructed TREE_VEC node of length LEN. */
1293
1294 tree
1295 make_tree_vec_stat (int len MEM_STAT_DECL)
1296 {
1297 tree t;
1298 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1299
1300 #ifdef GATHER_STATISTICS
1301 tree_node_counts[(int) vec_kind]++;
1302 tree_node_sizes[(int) vec_kind] += length;
1303 #endif
1304
1305 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1306
1307 memset (t, 0, length);
1308
1309 TREE_SET_CODE (t, TREE_VEC);
1310 TREE_VEC_LENGTH (t) = len;
1311
1312 return t;
1313 }
1314 \f
1315 /* Return 1 if EXPR is the integer constant zero or a complex constant
1316 of zero. */
1317
1318 int
1319 integer_zerop (const_tree expr)
1320 {
1321 STRIP_NOPS (expr);
1322
1323 return ((TREE_CODE (expr) == INTEGER_CST
1324 && TREE_INT_CST_LOW (expr) == 0
1325 && TREE_INT_CST_HIGH (expr) == 0)
1326 || (TREE_CODE (expr) == COMPLEX_CST
1327 && integer_zerop (TREE_REALPART (expr))
1328 && integer_zerop (TREE_IMAGPART (expr))));
1329 }
1330
1331 /* Return 1 if EXPR is the integer constant one or the corresponding
1332 complex constant. */
1333
1334 int
1335 integer_onep (const_tree expr)
1336 {
1337 STRIP_NOPS (expr);
1338
1339 return ((TREE_CODE (expr) == INTEGER_CST
1340 && TREE_INT_CST_LOW (expr) == 1
1341 && TREE_INT_CST_HIGH (expr) == 0)
1342 || (TREE_CODE (expr) == COMPLEX_CST
1343 && integer_onep (TREE_REALPART (expr))
1344 && integer_zerop (TREE_IMAGPART (expr))));
1345 }
1346
1347 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1348 it contains. Likewise for the corresponding complex constant. */
1349
1350 int
1351 integer_all_onesp (const_tree expr)
1352 {
1353 int prec;
1354 int uns;
1355
1356 STRIP_NOPS (expr);
1357
1358 if (TREE_CODE (expr) == COMPLEX_CST
1359 && integer_all_onesp (TREE_REALPART (expr))
1360 && integer_zerop (TREE_IMAGPART (expr)))
1361 return 1;
1362
1363 else if (TREE_CODE (expr) != INTEGER_CST)
1364 return 0;
1365
1366 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1367 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1368 && TREE_INT_CST_HIGH (expr) == -1)
1369 return 1;
1370 if (!uns)
1371 return 0;
1372
1373 /* Note that using TYPE_PRECISION here is wrong. We care about the
1374 actual bits, not the (arbitrary) range of the type. */
1375 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1376 if (prec >= HOST_BITS_PER_WIDE_INT)
1377 {
1378 HOST_WIDE_INT high_value;
1379 int shift_amount;
1380
1381 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1382
1383 /* Can not handle precisions greater than twice the host int size. */
1384 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1385 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1386 /* Shifting by the host word size is undefined according to the ANSI
1387 standard, so we must handle this as a special case. */
1388 high_value = -1;
1389 else
1390 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1391
1392 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1393 && TREE_INT_CST_HIGH (expr) == high_value);
1394 }
1395 else
1396 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1397 }
1398
1399 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1400 one bit on). */
1401
1402 int
1403 integer_pow2p (const_tree expr)
1404 {
1405 int prec;
1406 HOST_WIDE_INT high, low;
1407
1408 STRIP_NOPS (expr);
1409
1410 if (TREE_CODE (expr) == COMPLEX_CST
1411 && integer_pow2p (TREE_REALPART (expr))
1412 && integer_zerop (TREE_IMAGPART (expr)))
1413 return 1;
1414
1415 if (TREE_CODE (expr) != INTEGER_CST)
1416 return 0;
1417
1418 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1419 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1420 high = TREE_INT_CST_HIGH (expr);
1421 low = TREE_INT_CST_LOW (expr);
1422
1423 /* First clear all bits that are beyond the type's precision in case
1424 we've been sign extended. */
1425
1426 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1427 ;
1428 else if (prec > HOST_BITS_PER_WIDE_INT)
1429 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1430 else
1431 {
1432 high = 0;
1433 if (prec < HOST_BITS_PER_WIDE_INT)
1434 low &= ~((HOST_WIDE_INT) (-1) << prec);
1435 }
1436
1437 if (high == 0 && low == 0)
1438 return 0;
1439
1440 return ((high == 0 && (low & (low - 1)) == 0)
1441 || (low == 0 && (high & (high - 1)) == 0));
1442 }
1443
1444 /* Return 1 if EXPR is an integer constant other than zero or a
1445 complex constant other than zero. */
1446
1447 int
1448 integer_nonzerop (const_tree expr)
1449 {
1450 STRIP_NOPS (expr);
1451
1452 return ((TREE_CODE (expr) == INTEGER_CST
1453 && (TREE_INT_CST_LOW (expr) != 0
1454 || TREE_INT_CST_HIGH (expr) != 0))
1455 || (TREE_CODE (expr) == COMPLEX_CST
1456 && (integer_nonzerop (TREE_REALPART (expr))
1457 || integer_nonzerop (TREE_IMAGPART (expr)))));
1458 }
1459
1460 /* Return 1 if EXPR is the fixed-point constant zero. */
1461
1462 int
1463 fixed_zerop (const_tree expr)
1464 {
1465 return (TREE_CODE (expr) == FIXED_CST
1466 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1467 }
1468
1469 /* Return the power of two represented by a tree node known to be a
1470 power of two. */
1471
1472 int
1473 tree_log2 (const_tree expr)
1474 {
1475 int prec;
1476 HOST_WIDE_INT high, low;
1477
1478 STRIP_NOPS (expr);
1479
1480 if (TREE_CODE (expr) == COMPLEX_CST)
1481 return tree_log2 (TREE_REALPART (expr));
1482
1483 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1484 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1485
1486 high = TREE_INT_CST_HIGH (expr);
1487 low = TREE_INT_CST_LOW (expr);
1488
1489 /* First clear all bits that are beyond the type's precision in case
1490 we've been sign extended. */
1491
1492 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1493 ;
1494 else if (prec > HOST_BITS_PER_WIDE_INT)
1495 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1496 else
1497 {
1498 high = 0;
1499 if (prec < HOST_BITS_PER_WIDE_INT)
1500 low &= ~((HOST_WIDE_INT) (-1) << prec);
1501 }
1502
1503 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1504 : exact_log2 (low));
1505 }
1506
1507 /* Similar, but return the largest integer Y such that 2 ** Y is less
1508 than or equal to EXPR. */
1509
1510 int
1511 tree_floor_log2 (const_tree expr)
1512 {
1513 int prec;
1514 HOST_WIDE_INT high, low;
1515
1516 STRIP_NOPS (expr);
1517
1518 if (TREE_CODE (expr) == COMPLEX_CST)
1519 return tree_log2 (TREE_REALPART (expr));
1520
1521 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1522 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1523
1524 high = TREE_INT_CST_HIGH (expr);
1525 low = TREE_INT_CST_LOW (expr);
1526
1527 /* First clear all bits that are beyond the type's precision in case
1528 we've been sign extended. Ignore if type's precision hasn't been set
1529 since what we are doing is setting it. */
1530
1531 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1532 ;
1533 else if (prec > HOST_BITS_PER_WIDE_INT)
1534 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1535 else
1536 {
1537 high = 0;
1538 if (prec < HOST_BITS_PER_WIDE_INT)
1539 low &= ~((HOST_WIDE_INT) (-1) << prec);
1540 }
1541
1542 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1543 : floor_log2 (low));
1544 }
1545
1546 /* Return 1 if EXPR is the real constant zero. */
1547
1548 int
1549 real_zerop (const_tree expr)
1550 {
1551 STRIP_NOPS (expr);
1552
1553 return ((TREE_CODE (expr) == REAL_CST
1554 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1555 || (TREE_CODE (expr) == COMPLEX_CST
1556 && real_zerop (TREE_REALPART (expr))
1557 && real_zerop (TREE_IMAGPART (expr))));
1558 }
1559
1560 /* Return 1 if EXPR is the real constant one in real or complex form. */
1561
1562 int
1563 real_onep (const_tree expr)
1564 {
1565 STRIP_NOPS (expr);
1566
1567 return ((TREE_CODE (expr) == REAL_CST
1568 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1569 || (TREE_CODE (expr) == COMPLEX_CST
1570 && real_onep (TREE_REALPART (expr))
1571 && real_zerop (TREE_IMAGPART (expr))));
1572 }
1573
1574 /* Return 1 if EXPR is the real constant two. */
1575
1576 int
1577 real_twop (const_tree expr)
1578 {
1579 STRIP_NOPS (expr);
1580
1581 return ((TREE_CODE (expr) == REAL_CST
1582 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1583 || (TREE_CODE (expr) == COMPLEX_CST
1584 && real_twop (TREE_REALPART (expr))
1585 && real_zerop (TREE_IMAGPART (expr))));
1586 }
1587
1588 /* Return 1 if EXPR is the real constant minus one. */
1589
1590 int
1591 real_minus_onep (const_tree expr)
1592 {
1593 STRIP_NOPS (expr);
1594
1595 return ((TREE_CODE (expr) == REAL_CST
1596 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1597 || (TREE_CODE (expr) == COMPLEX_CST
1598 && real_minus_onep (TREE_REALPART (expr))
1599 && real_zerop (TREE_IMAGPART (expr))));
1600 }
1601
1602 /* Nonzero if EXP is a constant or a cast of a constant. */
1603
1604 int
1605 really_constant_p (const_tree exp)
1606 {
1607 /* This is not quite the same as STRIP_NOPS. It does more. */
1608 while (TREE_CODE (exp) == NOP_EXPR
1609 || TREE_CODE (exp) == CONVERT_EXPR
1610 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1611 exp = TREE_OPERAND (exp, 0);
1612 return TREE_CONSTANT (exp);
1613 }
1614 \f
1615 /* Return first list element whose TREE_VALUE is ELEM.
1616 Return 0 if ELEM is not in LIST. */
1617
1618 tree
1619 value_member (tree elem, tree list)
1620 {
1621 while (list)
1622 {
1623 if (elem == TREE_VALUE (list))
1624 return list;
1625 list = TREE_CHAIN (list);
1626 }
1627 return NULL_TREE;
1628 }
1629
1630 /* Return first list element whose TREE_PURPOSE is ELEM.
1631 Return 0 if ELEM is not in LIST. */
1632
1633 tree
1634 purpose_member (const_tree elem, tree list)
1635 {
1636 while (list)
1637 {
1638 if (elem == TREE_PURPOSE (list))
1639 return list;
1640 list = TREE_CHAIN (list);
1641 }
1642 return NULL_TREE;
1643 }
1644
1645 /* Return nonzero if ELEM is part of the chain CHAIN. */
1646
1647 int
1648 chain_member (const_tree elem, const_tree chain)
1649 {
1650 while (chain)
1651 {
1652 if (elem == chain)
1653 return 1;
1654 chain = TREE_CHAIN (chain);
1655 }
1656
1657 return 0;
1658 }
1659
1660 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1661 We expect a null pointer to mark the end of the chain.
1662 This is the Lisp primitive `length'. */
1663
1664 int
1665 list_length (const_tree t)
1666 {
1667 const_tree p = t;
1668 #ifdef ENABLE_TREE_CHECKING
1669 const_tree q = t;
1670 #endif
1671 int len = 0;
1672
1673 while (p)
1674 {
1675 p = TREE_CHAIN (p);
1676 #ifdef ENABLE_TREE_CHECKING
1677 if (len % 2)
1678 q = TREE_CHAIN (q);
1679 gcc_assert (p != q);
1680 #endif
1681 len++;
1682 }
1683
1684 return len;
1685 }
1686
1687 /* Returns the number of FIELD_DECLs in TYPE. */
1688
1689 int
1690 fields_length (const_tree type)
1691 {
1692 tree t = TYPE_FIELDS (type);
1693 int count = 0;
1694
1695 for (; t; t = TREE_CHAIN (t))
1696 if (TREE_CODE (t) == FIELD_DECL)
1697 ++count;
1698
1699 return count;
1700 }
1701
1702 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1703 by modifying the last node in chain 1 to point to chain 2.
1704 This is the Lisp primitive `nconc'. */
1705
1706 tree
1707 chainon (tree op1, tree op2)
1708 {
1709 tree t1;
1710
1711 if (!op1)
1712 return op2;
1713 if (!op2)
1714 return op1;
1715
1716 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1717 continue;
1718 TREE_CHAIN (t1) = op2;
1719
1720 #ifdef ENABLE_TREE_CHECKING
1721 {
1722 tree t2;
1723 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1724 gcc_assert (t2 != t1);
1725 }
1726 #endif
1727
1728 return op1;
1729 }
1730
1731 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1732
1733 tree
1734 tree_last (tree chain)
1735 {
1736 tree next;
1737 if (chain)
1738 while ((next = TREE_CHAIN (chain)))
1739 chain = next;
1740 return chain;
1741 }
1742
1743 /* Reverse the order of elements in the chain T,
1744 and return the new head of the chain (old last element). */
1745
1746 tree
1747 nreverse (tree t)
1748 {
1749 tree prev = 0, decl, next;
1750 for (decl = t; decl; decl = next)
1751 {
1752 next = TREE_CHAIN (decl);
1753 TREE_CHAIN (decl) = prev;
1754 prev = decl;
1755 }
1756 return prev;
1757 }
1758 \f
1759 /* Return a newly created TREE_LIST node whose
1760 purpose and value fields are PARM and VALUE. */
1761
1762 tree
1763 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1764 {
1765 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1766 TREE_PURPOSE (t) = parm;
1767 TREE_VALUE (t) = value;
1768 return t;
1769 }
1770
1771 /* Return a newly created TREE_LIST node whose
1772 purpose and value fields are PURPOSE and VALUE
1773 and whose TREE_CHAIN is CHAIN. */
1774
1775 tree
1776 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1777 {
1778 tree node;
1779
1780 node = ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
1781
1782 memset (node, 0, sizeof (struct tree_common));
1783
1784 #ifdef GATHER_STATISTICS
1785 tree_node_counts[(int) x_kind]++;
1786 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1787 #endif
1788
1789 TREE_SET_CODE (node, TREE_LIST);
1790 TREE_CHAIN (node) = chain;
1791 TREE_PURPOSE (node) = purpose;
1792 TREE_VALUE (node) = value;
1793 return node;
1794 }
1795
1796 \f
1797 /* Return the size nominally occupied by an object of type TYPE
1798 when it resides in memory. The value is measured in units of bytes,
1799 and its data type is that normally used for type sizes
1800 (which is the first type created by make_signed_type or
1801 make_unsigned_type). */
1802
1803 tree
1804 size_in_bytes (const_tree type)
1805 {
1806 tree t;
1807
1808 if (type == error_mark_node)
1809 return integer_zero_node;
1810
1811 type = TYPE_MAIN_VARIANT (type);
1812 t = TYPE_SIZE_UNIT (type);
1813
1814 if (t == 0)
1815 {
1816 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1817 return size_zero_node;
1818 }
1819
1820 return t;
1821 }
1822
1823 /* Return the size of TYPE (in bytes) as a wide integer
1824 or return -1 if the size can vary or is larger than an integer. */
1825
1826 HOST_WIDE_INT
1827 int_size_in_bytes (const_tree type)
1828 {
1829 tree t;
1830
1831 if (type == error_mark_node)
1832 return 0;
1833
1834 type = TYPE_MAIN_VARIANT (type);
1835 t = TYPE_SIZE_UNIT (type);
1836 if (t == 0
1837 || TREE_CODE (t) != INTEGER_CST
1838 || TREE_INT_CST_HIGH (t) != 0
1839 /* If the result would appear negative, it's too big to represent. */
1840 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1841 return -1;
1842
1843 return TREE_INT_CST_LOW (t);
1844 }
1845
1846 /* Return the maximum size of TYPE (in bytes) as a wide integer
1847 or return -1 if the size can vary or is larger than an integer. */
1848
1849 HOST_WIDE_INT
1850 max_int_size_in_bytes (const_tree type)
1851 {
1852 HOST_WIDE_INT size = -1;
1853 tree size_tree;
1854
1855 /* If this is an array type, check for a possible MAX_SIZE attached. */
1856
1857 if (TREE_CODE (type) == ARRAY_TYPE)
1858 {
1859 size_tree = TYPE_ARRAY_MAX_SIZE (type);
1860
1861 if (size_tree && host_integerp (size_tree, 1))
1862 size = tree_low_cst (size_tree, 1);
1863 }
1864
1865 /* If we still haven't been able to get a size, see if the language
1866 can compute a maximum size. */
1867
1868 if (size == -1)
1869 {
1870 size_tree = lang_hooks.types.max_size (type);
1871
1872 if (size_tree && host_integerp (size_tree, 1))
1873 size = tree_low_cst (size_tree, 1);
1874 }
1875
1876 return size;
1877 }
1878 \f
1879 /* Return the bit position of FIELD, in bits from the start of the record.
1880 This is a tree of type bitsizetype. */
1881
1882 tree
1883 bit_position (const_tree field)
1884 {
1885 return bit_from_pos (DECL_FIELD_OFFSET (field),
1886 DECL_FIELD_BIT_OFFSET (field));
1887 }
1888
1889 /* Likewise, but return as an integer. It must be representable in
1890 that way (since it could be a signed value, we don't have the
1891 option of returning -1 like int_size_in_byte can. */
1892
1893 HOST_WIDE_INT
1894 int_bit_position (const_tree field)
1895 {
1896 return tree_low_cst (bit_position (field), 0);
1897 }
1898 \f
1899 /* Return the byte position of FIELD, in bytes from the start of the record.
1900 This is a tree of type sizetype. */
1901
1902 tree
1903 byte_position (const_tree field)
1904 {
1905 return byte_from_pos (DECL_FIELD_OFFSET (field),
1906 DECL_FIELD_BIT_OFFSET (field));
1907 }
1908
1909 /* Likewise, but return as an integer. It must be representable in
1910 that way (since it could be a signed value, we don't have the
1911 option of returning -1 like int_size_in_byte can. */
1912
1913 HOST_WIDE_INT
1914 int_byte_position (const_tree field)
1915 {
1916 return tree_low_cst (byte_position (field), 0);
1917 }
1918 \f
1919 /* Return the strictest alignment, in bits, that T is known to have. */
1920
1921 unsigned int
1922 expr_align (const_tree t)
1923 {
1924 unsigned int align0, align1;
1925
1926 switch (TREE_CODE (t))
1927 {
1928 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1929 /* If we have conversions, we know that the alignment of the
1930 object must meet each of the alignments of the types. */
1931 align0 = expr_align (TREE_OPERAND (t, 0));
1932 align1 = TYPE_ALIGN (TREE_TYPE (t));
1933 return MAX (align0, align1);
1934
1935 case GIMPLE_MODIFY_STMT:
1936 /* We should never ask for the alignment of a gimple statement. */
1937 gcc_unreachable ();
1938
1939 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1940 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1941 case CLEANUP_POINT_EXPR:
1942 /* These don't change the alignment of an object. */
1943 return expr_align (TREE_OPERAND (t, 0));
1944
1945 case COND_EXPR:
1946 /* The best we can do is say that the alignment is the least aligned
1947 of the two arms. */
1948 align0 = expr_align (TREE_OPERAND (t, 1));
1949 align1 = expr_align (TREE_OPERAND (t, 2));
1950 return MIN (align0, align1);
1951
1952 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
1953 meaningfully, it's always 1. */
1954 case LABEL_DECL: case CONST_DECL:
1955 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1956 case FUNCTION_DECL:
1957 gcc_assert (DECL_ALIGN (t) != 0);
1958 return DECL_ALIGN (t);
1959
1960 default:
1961 break;
1962 }
1963
1964 /* Otherwise take the alignment from that of the type. */
1965 return TYPE_ALIGN (TREE_TYPE (t));
1966 }
1967 \f
1968 /* Return, as a tree node, the number of elements for TYPE (which is an
1969 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1970
1971 tree
1972 array_type_nelts (const_tree type)
1973 {
1974 tree index_type, min, max;
1975
1976 /* If they did it with unspecified bounds, then we should have already
1977 given an error about it before we got here. */
1978 if (! TYPE_DOMAIN (type))
1979 return error_mark_node;
1980
1981 index_type = TYPE_DOMAIN (type);
1982 min = TYPE_MIN_VALUE (index_type);
1983 max = TYPE_MAX_VALUE (index_type);
1984
1985 return (integer_zerop (min)
1986 ? max
1987 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
1988 }
1989 \f
1990 /* If arg is static -- a reference to an object in static storage -- then
1991 return the object. This is not the same as the C meaning of `static'.
1992 If arg isn't static, return NULL. */
1993
1994 tree
1995 staticp (tree arg)
1996 {
1997 switch (TREE_CODE (arg))
1998 {
1999 case FUNCTION_DECL:
2000 /* Nested functions are static, even though taking their address will
2001 involve a trampoline as we unnest the nested function and create
2002 the trampoline on the tree level. */
2003 return arg;
2004
2005 case VAR_DECL:
2006 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2007 && ! DECL_THREAD_LOCAL_P (arg)
2008 && ! DECL_DLLIMPORT_P (arg)
2009 ? arg : NULL);
2010
2011 case CONST_DECL:
2012 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2013 ? arg : NULL);
2014
2015 case CONSTRUCTOR:
2016 return TREE_STATIC (arg) ? arg : NULL;
2017
2018 case LABEL_DECL:
2019 case STRING_CST:
2020 return arg;
2021
2022 case COMPONENT_REF:
2023 /* If the thing being referenced is not a field, then it is
2024 something language specific. */
2025 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
2026 return (*lang_hooks.staticp) (arg);
2027
2028 /* If we are referencing a bitfield, we can't evaluate an
2029 ADDR_EXPR at compile time and so it isn't a constant. */
2030 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2031 return NULL;
2032
2033 return staticp (TREE_OPERAND (arg, 0));
2034
2035 case BIT_FIELD_REF:
2036 return NULL;
2037
2038 case MISALIGNED_INDIRECT_REF:
2039 case ALIGN_INDIRECT_REF:
2040 case INDIRECT_REF:
2041 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2042
2043 case ARRAY_REF:
2044 case ARRAY_RANGE_REF:
2045 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2046 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2047 return staticp (TREE_OPERAND (arg, 0));
2048 else
2049 return false;
2050
2051 default:
2052 if ((unsigned int) TREE_CODE (arg)
2053 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
2054 return lang_hooks.staticp (arg);
2055 else
2056 return NULL;
2057 }
2058 }
2059 \f
2060 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2061 Do this to any expression which may be used in more than one place,
2062 but must be evaluated only once.
2063
2064 Normally, expand_expr would reevaluate the expression each time.
2065 Calling save_expr produces something that is evaluated and recorded
2066 the first time expand_expr is called on it. Subsequent calls to
2067 expand_expr just reuse the recorded value.
2068
2069 The call to expand_expr that generates code that actually computes
2070 the value is the first call *at compile time*. Subsequent calls
2071 *at compile time* generate code to use the saved value.
2072 This produces correct result provided that *at run time* control
2073 always flows through the insns made by the first expand_expr
2074 before reaching the other places where the save_expr was evaluated.
2075 You, the caller of save_expr, must make sure this is so.
2076
2077 Constants, and certain read-only nodes, are returned with no
2078 SAVE_EXPR because that is safe. Expressions containing placeholders
2079 are not touched; see tree.def for an explanation of what these
2080 are used for. */
2081
2082 tree
2083 save_expr (tree expr)
2084 {
2085 tree t = fold (expr);
2086 tree inner;
2087
2088 /* If the tree evaluates to a constant, then we don't want to hide that
2089 fact (i.e. this allows further folding, and direct checks for constants).
2090 However, a read-only object that has side effects cannot be bypassed.
2091 Since it is no problem to reevaluate literals, we just return the
2092 literal node. */
2093 inner = skip_simple_arithmetic (t);
2094
2095 if (TREE_INVARIANT (inner)
2096 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
2097 || TREE_CODE (inner) == SAVE_EXPR
2098 || TREE_CODE (inner) == ERROR_MARK)
2099 return t;
2100
2101 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2102 it means that the size or offset of some field of an object depends on
2103 the value within another field.
2104
2105 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2106 and some variable since it would then need to be both evaluated once and
2107 evaluated more than once. Front-ends must assure this case cannot
2108 happen by surrounding any such subexpressions in their own SAVE_EXPR
2109 and forcing evaluation at the proper time. */
2110 if (contains_placeholder_p (inner))
2111 return t;
2112
2113 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2114
2115 /* This expression might be placed ahead of a jump to ensure that the
2116 value was computed on both sides of the jump. So make sure it isn't
2117 eliminated as dead. */
2118 TREE_SIDE_EFFECTS (t) = 1;
2119 TREE_INVARIANT (t) = 1;
2120 return t;
2121 }
2122
2123 /* Look inside EXPR and into any simple arithmetic operations. Return
2124 the innermost non-arithmetic node. */
2125
2126 tree
2127 skip_simple_arithmetic (tree expr)
2128 {
2129 tree inner;
2130
2131 /* We don't care about whether this can be used as an lvalue in this
2132 context. */
2133 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2134 expr = TREE_OPERAND (expr, 0);
2135
2136 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2137 a constant, it will be more efficient to not make another SAVE_EXPR since
2138 it will allow better simplification and GCSE will be able to merge the
2139 computations if they actually occur. */
2140 inner = expr;
2141 while (1)
2142 {
2143 if (UNARY_CLASS_P (inner))
2144 inner = TREE_OPERAND (inner, 0);
2145 else if (BINARY_CLASS_P (inner))
2146 {
2147 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
2148 inner = TREE_OPERAND (inner, 0);
2149 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
2150 inner = TREE_OPERAND (inner, 1);
2151 else
2152 break;
2153 }
2154 else
2155 break;
2156 }
2157
2158 return inner;
2159 }
2160
2161 /* Return which tree structure is used by T. */
2162
2163 enum tree_node_structure_enum
2164 tree_node_structure (const_tree t)
2165 {
2166 const enum tree_code code = TREE_CODE (t);
2167
2168 switch (TREE_CODE_CLASS (code))
2169 {
2170 case tcc_declaration:
2171 {
2172 switch (code)
2173 {
2174 case FIELD_DECL:
2175 return TS_FIELD_DECL;
2176 case PARM_DECL:
2177 return TS_PARM_DECL;
2178 case VAR_DECL:
2179 return TS_VAR_DECL;
2180 case LABEL_DECL:
2181 return TS_LABEL_DECL;
2182 case RESULT_DECL:
2183 return TS_RESULT_DECL;
2184 case CONST_DECL:
2185 return TS_CONST_DECL;
2186 case TYPE_DECL:
2187 return TS_TYPE_DECL;
2188 case FUNCTION_DECL:
2189 return TS_FUNCTION_DECL;
2190 case SYMBOL_MEMORY_TAG:
2191 case NAME_MEMORY_TAG:
2192 case STRUCT_FIELD_TAG:
2193 case MEMORY_PARTITION_TAG:
2194 return TS_MEMORY_TAG;
2195 default:
2196 return TS_DECL_NON_COMMON;
2197 }
2198 }
2199 case tcc_type:
2200 return TS_TYPE;
2201 case tcc_reference:
2202 case tcc_comparison:
2203 case tcc_unary:
2204 case tcc_binary:
2205 case tcc_expression:
2206 case tcc_statement:
2207 case tcc_vl_exp:
2208 return TS_EXP;
2209 case tcc_gimple_stmt:
2210 return TS_GIMPLE_STATEMENT;
2211 default: /* tcc_constant and tcc_exceptional */
2212 break;
2213 }
2214 switch (code)
2215 {
2216 /* tcc_constant cases. */
2217 case INTEGER_CST: return TS_INT_CST;
2218 case REAL_CST: return TS_REAL_CST;
2219 case FIXED_CST: return TS_FIXED_CST;
2220 case COMPLEX_CST: return TS_COMPLEX;
2221 case VECTOR_CST: return TS_VECTOR;
2222 case STRING_CST: return TS_STRING;
2223 /* tcc_exceptional cases. */
2224 /* FIXME tuples: eventually this should be TS_BASE. For now, nothing
2225 returns TS_BASE. */
2226 case ERROR_MARK: return TS_COMMON;
2227 case IDENTIFIER_NODE: return TS_IDENTIFIER;
2228 case TREE_LIST: return TS_LIST;
2229 case TREE_VEC: return TS_VEC;
2230 case PHI_NODE: return TS_PHI_NODE;
2231 case SSA_NAME: return TS_SSA_NAME;
2232 case PLACEHOLDER_EXPR: return TS_COMMON;
2233 case STATEMENT_LIST: return TS_STATEMENT_LIST;
2234 case BLOCK: return TS_BLOCK;
2235 case CONSTRUCTOR: return TS_CONSTRUCTOR;
2236 case TREE_BINFO: return TS_BINFO;
2237 case VALUE_HANDLE: return TS_VALUE_HANDLE;
2238 case OMP_CLAUSE: return TS_OMP_CLAUSE;
2239
2240 default:
2241 gcc_unreachable ();
2242 }
2243 }
2244 \f
2245 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2246 or offset that depends on a field within a record. */
2247
2248 bool
2249 contains_placeholder_p (const_tree exp)
2250 {
2251 enum tree_code code;
2252
2253 if (!exp)
2254 return 0;
2255
2256 code = TREE_CODE (exp);
2257 if (code == PLACEHOLDER_EXPR)
2258 return 1;
2259
2260 switch (TREE_CODE_CLASS (code))
2261 {
2262 case tcc_reference:
2263 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2264 position computations since they will be converted into a
2265 WITH_RECORD_EXPR involving the reference, which will assume
2266 here will be valid. */
2267 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2268
2269 case tcc_exceptional:
2270 if (code == TREE_LIST)
2271 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2272 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2273 break;
2274
2275 case tcc_unary:
2276 case tcc_binary:
2277 case tcc_comparison:
2278 case tcc_expression:
2279 switch (code)
2280 {
2281 case COMPOUND_EXPR:
2282 /* Ignoring the first operand isn't quite right, but works best. */
2283 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2284
2285 case COND_EXPR:
2286 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2287 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2288 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2289
2290 default:
2291 break;
2292 }
2293
2294 switch (TREE_CODE_LENGTH (code))
2295 {
2296 case 1:
2297 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2298 case 2:
2299 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2300 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2301 default:
2302 return 0;
2303 }
2304
2305 case tcc_vl_exp:
2306 switch (code)
2307 {
2308 case CALL_EXPR:
2309 {
2310 const_tree arg;
2311 const_call_expr_arg_iterator iter;
2312 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2313 if (CONTAINS_PLACEHOLDER_P (arg))
2314 return 1;
2315 return 0;
2316 }
2317 default:
2318 return 0;
2319 }
2320
2321 default:
2322 return 0;
2323 }
2324 return 0;
2325 }
2326
2327 /* Return true if any part of the computation of TYPE involves a
2328 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2329 (for QUAL_UNION_TYPE) and field positions. */
2330
2331 static bool
2332 type_contains_placeholder_1 (const_tree type)
2333 {
2334 /* If the size contains a placeholder or the parent type (component type in
2335 the case of arrays) type involves a placeholder, this type does. */
2336 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2337 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2338 || (TREE_TYPE (type) != 0
2339 && type_contains_placeholder_p (TREE_TYPE (type))))
2340 return true;
2341
2342 /* Now do type-specific checks. Note that the last part of the check above
2343 greatly limits what we have to do below. */
2344 switch (TREE_CODE (type))
2345 {
2346 case VOID_TYPE:
2347 case COMPLEX_TYPE:
2348 case ENUMERAL_TYPE:
2349 case BOOLEAN_TYPE:
2350 case POINTER_TYPE:
2351 case OFFSET_TYPE:
2352 case REFERENCE_TYPE:
2353 case METHOD_TYPE:
2354 case FUNCTION_TYPE:
2355 case VECTOR_TYPE:
2356 return false;
2357
2358 case INTEGER_TYPE:
2359 case REAL_TYPE:
2360 case FIXED_POINT_TYPE:
2361 /* Here we just check the bounds. */
2362 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2363 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2364
2365 case ARRAY_TYPE:
2366 /* We're already checked the component type (TREE_TYPE), so just check
2367 the index type. */
2368 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2369
2370 case RECORD_TYPE:
2371 case UNION_TYPE:
2372 case QUAL_UNION_TYPE:
2373 {
2374 tree field;
2375
2376 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2377 if (TREE_CODE (field) == FIELD_DECL
2378 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2379 || (TREE_CODE (type) == QUAL_UNION_TYPE
2380 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2381 || type_contains_placeholder_p (TREE_TYPE (field))))
2382 return true;
2383
2384 return false;
2385 }
2386
2387 default:
2388 gcc_unreachable ();
2389 }
2390 }
2391
2392 bool
2393 type_contains_placeholder_p (tree type)
2394 {
2395 bool result;
2396
2397 /* If the contains_placeholder_bits field has been initialized,
2398 then we know the answer. */
2399 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2400 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2401
2402 /* Indicate that we've seen this type node, and the answer is false.
2403 This is what we want to return if we run into recursion via fields. */
2404 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2405
2406 /* Compute the real value. */
2407 result = type_contains_placeholder_1 (type);
2408
2409 /* Store the real value. */
2410 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2411
2412 return result;
2413 }
2414 \f
2415 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2416 return a tree with all occurrences of references to F in a
2417 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2418 contains only arithmetic expressions or a CALL_EXPR with a
2419 PLACEHOLDER_EXPR occurring only in its arglist. */
2420
2421 tree
2422 substitute_in_expr (tree exp, tree f, tree r)
2423 {
2424 enum tree_code code = TREE_CODE (exp);
2425 tree op0, op1, op2, op3;
2426 tree new;
2427 tree inner;
2428
2429 /* We handle TREE_LIST and COMPONENT_REF separately. */
2430 if (code == TREE_LIST)
2431 {
2432 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2433 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2434 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2435 return exp;
2436
2437 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2438 }
2439 else if (code == COMPONENT_REF)
2440 {
2441 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2442 and it is the right field, replace it with R. */
2443 for (inner = TREE_OPERAND (exp, 0);
2444 REFERENCE_CLASS_P (inner);
2445 inner = TREE_OPERAND (inner, 0))
2446 ;
2447 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2448 && TREE_OPERAND (exp, 1) == f)
2449 return r;
2450
2451 /* If this expression hasn't been completed let, leave it alone. */
2452 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2453 return exp;
2454
2455 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2456 if (op0 == TREE_OPERAND (exp, 0))
2457 return exp;
2458
2459 new = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
2460 op0, TREE_OPERAND (exp, 1), NULL_TREE);
2461 }
2462 else
2463 switch (TREE_CODE_CLASS (code))
2464 {
2465 case tcc_constant:
2466 case tcc_declaration:
2467 return exp;
2468
2469 case tcc_exceptional:
2470 case tcc_unary:
2471 case tcc_binary:
2472 case tcc_comparison:
2473 case tcc_expression:
2474 case tcc_reference:
2475 switch (TREE_CODE_LENGTH (code))
2476 {
2477 case 0:
2478 return exp;
2479
2480 case 1:
2481 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2482 if (op0 == TREE_OPERAND (exp, 0))
2483 return exp;
2484
2485 new = fold_build1 (code, TREE_TYPE (exp), op0);
2486 break;
2487
2488 case 2:
2489 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2490 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2491
2492 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2493 return exp;
2494
2495 new = fold_build2 (code, TREE_TYPE (exp), op0, op1);
2496 break;
2497
2498 case 3:
2499 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2500 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2501 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2502
2503 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2504 && op2 == TREE_OPERAND (exp, 2))
2505 return exp;
2506
2507 new = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2508 break;
2509
2510 case 4:
2511 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2512 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2513 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2514 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
2515
2516 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2517 && op2 == TREE_OPERAND (exp, 2)
2518 && op3 == TREE_OPERAND (exp, 3))
2519 return exp;
2520
2521 new = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2522 break;
2523
2524 default:
2525 gcc_unreachable ();
2526 }
2527 break;
2528
2529 case tcc_vl_exp:
2530 {
2531 tree copy = NULL_TREE;
2532 int i;
2533 int n = TREE_OPERAND_LENGTH (exp);
2534 for (i = 1; i < n; i++)
2535 {
2536 tree op = TREE_OPERAND (exp, i);
2537 tree newop = SUBSTITUTE_IN_EXPR (op, f, r);
2538 if (newop != op)
2539 {
2540 copy = copy_node (exp);
2541 TREE_OPERAND (copy, i) = newop;
2542 }
2543 }
2544 if (copy)
2545 new = fold (copy);
2546 else
2547 return exp;
2548 }
2549
2550 default:
2551 gcc_unreachable ();
2552 }
2553
2554 TREE_READONLY (new) = TREE_READONLY (exp);
2555 return new;
2556 }
2557
2558 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2559 for it within OBJ, a tree that is an object or a chain of references. */
2560
2561 tree
2562 substitute_placeholder_in_expr (tree exp, tree obj)
2563 {
2564 enum tree_code code = TREE_CODE (exp);
2565 tree op0, op1, op2, op3;
2566
2567 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2568 in the chain of OBJ. */
2569 if (code == PLACEHOLDER_EXPR)
2570 {
2571 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2572 tree elt;
2573
2574 for (elt = obj; elt != 0;
2575 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2576 || TREE_CODE (elt) == COND_EXPR)
2577 ? TREE_OPERAND (elt, 1)
2578 : (REFERENCE_CLASS_P (elt)
2579 || UNARY_CLASS_P (elt)
2580 || BINARY_CLASS_P (elt)
2581 || VL_EXP_CLASS_P (elt)
2582 || EXPRESSION_CLASS_P (elt))
2583 ? TREE_OPERAND (elt, 0) : 0))
2584 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2585 return elt;
2586
2587 for (elt = obj; elt != 0;
2588 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2589 || TREE_CODE (elt) == COND_EXPR)
2590 ? TREE_OPERAND (elt, 1)
2591 : (REFERENCE_CLASS_P (elt)
2592 || UNARY_CLASS_P (elt)
2593 || BINARY_CLASS_P (elt)
2594 || VL_EXP_CLASS_P (elt)
2595 || EXPRESSION_CLASS_P (elt))
2596 ? TREE_OPERAND (elt, 0) : 0))
2597 if (POINTER_TYPE_P (TREE_TYPE (elt))
2598 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2599 == need_type))
2600 return fold_build1 (INDIRECT_REF, need_type, elt);
2601
2602 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2603 survives until RTL generation, there will be an error. */
2604 return exp;
2605 }
2606
2607 /* TREE_LIST is special because we need to look at TREE_VALUE
2608 and TREE_CHAIN, not TREE_OPERANDS. */
2609 else if (code == TREE_LIST)
2610 {
2611 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2612 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2613 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2614 return exp;
2615
2616 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2617 }
2618 else
2619 switch (TREE_CODE_CLASS (code))
2620 {
2621 case tcc_constant:
2622 case tcc_declaration:
2623 return exp;
2624
2625 case tcc_exceptional:
2626 case tcc_unary:
2627 case tcc_binary:
2628 case tcc_comparison:
2629 case tcc_expression:
2630 case tcc_reference:
2631 case tcc_statement:
2632 switch (TREE_CODE_LENGTH (code))
2633 {
2634 case 0:
2635 return exp;
2636
2637 case 1:
2638 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2639 if (op0 == TREE_OPERAND (exp, 0))
2640 return exp;
2641 else
2642 return fold_build1 (code, TREE_TYPE (exp), op0);
2643
2644 case 2:
2645 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2646 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2647
2648 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2649 return exp;
2650 else
2651 return fold_build2 (code, TREE_TYPE (exp), op0, op1);
2652
2653 case 3:
2654 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2655 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2656 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2657
2658 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2659 && op2 == TREE_OPERAND (exp, 2))
2660 return exp;
2661 else
2662 return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2663
2664 case 4:
2665 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2666 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2667 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2668 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2669
2670 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2671 && op2 == TREE_OPERAND (exp, 2)
2672 && op3 == TREE_OPERAND (exp, 3))
2673 return exp;
2674 else
2675 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2676
2677 default:
2678 gcc_unreachable ();
2679 }
2680 break;
2681
2682 case tcc_vl_exp:
2683 {
2684 tree copy = NULL_TREE;
2685 int i;
2686 int n = TREE_OPERAND_LENGTH (exp);
2687 for (i = 1; i < n; i++)
2688 {
2689 tree op = TREE_OPERAND (exp, i);
2690 tree newop = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
2691 if (newop != op)
2692 {
2693 if (!copy)
2694 copy = copy_node (exp);
2695 TREE_OPERAND (copy, i) = newop;
2696 }
2697 }
2698 if (copy)
2699 return fold (copy);
2700 else
2701 return exp;
2702 }
2703
2704 default:
2705 gcc_unreachable ();
2706 }
2707 }
2708 \f
2709 /* Stabilize a reference so that we can use it any number of times
2710 without causing its operands to be evaluated more than once.
2711 Returns the stabilized reference. This works by means of save_expr,
2712 so see the caveats in the comments about save_expr.
2713
2714 Also allows conversion expressions whose operands are references.
2715 Any other kind of expression is returned unchanged. */
2716
2717 tree
2718 stabilize_reference (tree ref)
2719 {
2720 tree result;
2721 enum tree_code code = TREE_CODE (ref);
2722
2723 switch (code)
2724 {
2725 case VAR_DECL:
2726 case PARM_DECL:
2727 case RESULT_DECL:
2728 /* No action is needed in this case. */
2729 return ref;
2730
2731 case NOP_EXPR:
2732 case CONVERT_EXPR:
2733 case FLOAT_EXPR:
2734 case FIX_TRUNC_EXPR:
2735 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2736 break;
2737
2738 case INDIRECT_REF:
2739 result = build_nt (INDIRECT_REF,
2740 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2741 break;
2742
2743 case COMPONENT_REF:
2744 result = build_nt (COMPONENT_REF,
2745 stabilize_reference (TREE_OPERAND (ref, 0)),
2746 TREE_OPERAND (ref, 1), NULL_TREE);
2747 break;
2748
2749 case BIT_FIELD_REF:
2750 result = build_nt (BIT_FIELD_REF,
2751 stabilize_reference (TREE_OPERAND (ref, 0)),
2752 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2753 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2754 break;
2755
2756 case ARRAY_REF:
2757 result = build_nt (ARRAY_REF,
2758 stabilize_reference (TREE_OPERAND (ref, 0)),
2759 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2760 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2761 break;
2762
2763 case ARRAY_RANGE_REF:
2764 result = build_nt (ARRAY_RANGE_REF,
2765 stabilize_reference (TREE_OPERAND (ref, 0)),
2766 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2767 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2768 break;
2769
2770 case COMPOUND_EXPR:
2771 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2772 it wouldn't be ignored. This matters when dealing with
2773 volatiles. */
2774 return stabilize_reference_1 (ref);
2775
2776 /* If arg isn't a kind of lvalue we recognize, make no change.
2777 Caller should recognize the error for an invalid lvalue. */
2778 default:
2779 return ref;
2780
2781 case ERROR_MARK:
2782 return error_mark_node;
2783 }
2784
2785 TREE_TYPE (result) = TREE_TYPE (ref);
2786 TREE_READONLY (result) = TREE_READONLY (ref);
2787 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2788 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2789
2790 return result;
2791 }
2792
2793 /* Subroutine of stabilize_reference; this is called for subtrees of
2794 references. Any expression with side-effects must be put in a SAVE_EXPR
2795 to ensure that it is only evaluated once.
2796
2797 We don't put SAVE_EXPR nodes around everything, because assigning very
2798 simple expressions to temporaries causes us to miss good opportunities
2799 for optimizations. Among other things, the opportunity to fold in the
2800 addition of a constant into an addressing mode often gets lost, e.g.
2801 "y[i+1] += x;". In general, we take the approach that we should not make
2802 an assignment unless we are forced into it - i.e., that any non-side effect
2803 operator should be allowed, and that cse should take care of coalescing
2804 multiple utterances of the same expression should that prove fruitful. */
2805
2806 tree
2807 stabilize_reference_1 (tree e)
2808 {
2809 tree result;
2810 enum tree_code code = TREE_CODE (e);
2811
2812 /* We cannot ignore const expressions because it might be a reference
2813 to a const array but whose index contains side-effects. But we can
2814 ignore things that are actual constant or that already have been
2815 handled by this function. */
2816
2817 if (TREE_INVARIANT (e))
2818 return e;
2819
2820 switch (TREE_CODE_CLASS (code))
2821 {
2822 case tcc_exceptional:
2823 case tcc_type:
2824 case tcc_declaration:
2825 case tcc_comparison:
2826 case tcc_statement:
2827 case tcc_expression:
2828 case tcc_reference:
2829 case tcc_vl_exp:
2830 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2831 so that it will only be evaluated once. */
2832 /* The reference (r) and comparison (<) classes could be handled as
2833 below, but it is generally faster to only evaluate them once. */
2834 if (TREE_SIDE_EFFECTS (e))
2835 return save_expr (e);
2836 return e;
2837
2838 case tcc_constant:
2839 /* Constants need no processing. In fact, we should never reach
2840 here. */
2841 return e;
2842
2843 case tcc_binary:
2844 /* Division is slow and tends to be compiled with jumps,
2845 especially the division by powers of 2 that is often
2846 found inside of an array reference. So do it just once. */
2847 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2848 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2849 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2850 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2851 return save_expr (e);
2852 /* Recursively stabilize each operand. */
2853 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2854 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2855 break;
2856
2857 case tcc_unary:
2858 /* Recursively stabilize each operand. */
2859 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2860 break;
2861
2862 default:
2863 gcc_unreachable ();
2864 }
2865
2866 TREE_TYPE (result) = TREE_TYPE (e);
2867 TREE_READONLY (result) = TREE_READONLY (e);
2868 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2869 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2870 TREE_INVARIANT (result) = 1;
2871
2872 return result;
2873 }
2874 \f
2875 /* Low-level constructors for expressions. */
2876
2877 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2878 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2879
2880 void
2881 recompute_tree_invariant_for_addr_expr (tree t)
2882 {
2883 tree node;
2884 bool tc = true, ti = true, se = false;
2885
2886 /* We started out assuming this address is both invariant and constant, but
2887 does not have side effects. Now go down any handled components and see if
2888 any of them involve offsets that are either non-constant or non-invariant.
2889 Also check for side-effects.
2890
2891 ??? Note that this code makes no attempt to deal with the case where
2892 taking the address of something causes a copy due to misalignment. */
2893
2894 #define UPDATE_TITCSE(NODE) \
2895 do { tree _node = (NODE); \
2896 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2897 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2898 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2899
2900 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2901 node = TREE_OPERAND (node, 0))
2902 {
2903 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2904 array reference (probably made temporarily by the G++ front end),
2905 so ignore all the operands. */
2906 if ((TREE_CODE (node) == ARRAY_REF
2907 || TREE_CODE (node) == ARRAY_RANGE_REF)
2908 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2909 {
2910 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2911 if (TREE_OPERAND (node, 2))
2912 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2913 if (TREE_OPERAND (node, 3))
2914 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2915 }
2916 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2917 FIELD_DECL, apparently. The G++ front end can put something else
2918 there, at least temporarily. */
2919 else if (TREE_CODE (node) == COMPONENT_REF
2920 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2921 {
2922 if (TREE_OPERAND (node, 2))
2923 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2924 }
2925 else if (TREE_CODE (node) == BIT_FIELD_REF)
2926 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2927 }
2928
2929 node = lang_hooks.expr_to_decl (node, &tc, &ti, &se);
2930
2931 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2932 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2933 invariant and constant if the decl is static. It's also invariant if it's
2934 a decl in the current function. Taking the address of a volatile variable
2935 is not volatile. If it's a constant, the address is both invariant and
2936 constant. Otherwise it's neither. */
2937 if (TREE_CODE (node) == INDIRECT_REF)
2938 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2939 else if (DECL_P (node))
2940 {
2941 if (staticp (node))
2942 ;
2943 else if (decl_function_context (node) == current_function_decl
2944 /* Addresses of thread-local variables are invariant. */
2945 || (TREE_CODE (node) == VAR_DECL
2946 && DECL_THREAD_LOCAL_P (node)))
2947 tc = false;
2948 else
2949 ti = tc = false;
2950 }
2951 else if (CONSTANT_CLASS_P (node))
2952 ;
2953 else
2954 {
2955 ti = tc = false;
2956 se |= TREE_SIDE_EFFECTS (node);
2957 }
2958
2959 TREE_CONSTANT (t) = tc;
2960 TREE_INVARIANT (t) = ti;
2961 TREE_SIDE_EFFECTS (t) = se;
2962 #undef UPDATE_TITCSE
2963 }
2964
2965 /* Build an expression of code CODE, data type TYPE, and operands as
2966 specified. Expressions and reference nodes can be created this way.
2967 Constants, decls, types and misc nodes cannot be.
2968
2969 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2970 enough for all extant tree codes. */
2971
2972 tree
2973 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2974 {
2975 tree t;
2976
2977 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2978
2979 t = make_node_stat (code PASS_MEM_STAT);
2980 TREE_TYPE (t) = tt;
2981
2982 return t;
2983 }
2984
2985 tree
2986 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2987 {
2988 int length = sizeof (struct tree_exp);
2989 #ifdef GATHER_STATISTICS
2990 tree_node_kind kind;
2991 #endif
2992 tree t;
2993
2994 #ifdef GATHER_STATISTICS
2995 switch (TREE_CODE_CLASS (code))
2996 {
2997 case tcc_statement: /* an expression with side effects */
2998 kind = s_kind;
2999 break;
3000 case tcc_reference: /* a reference */
3001 kind = r_kind;
3002 break;
3003 default:
3004 kind = e_kind;
3005 break;
3006 }
3007
3008 tree_node_counts[(int) kind]++;
3009 tree_node_sizes[(int) kind] += length;
3010 #endif
3011
3012 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3013
3014 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
3015
3016 memset (t, 0, sizeof (struct tree_common));
3017
3018 TREE_SET_CODE (t, code);
3019
3020 TREE_TYPE (t) = type;
3021 #ifdef USE_MAPPED_LOCATION
3022 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3023 #else
3024 SET_EXPR_LOCUS (t, NULL);
3025 #endif
3026 TREE_OPERAND (t, 0) = node;
3027 TREE_BLOCK (t) = NULL_TREE;
3028 if (node && !TYPE_P (node))
3029 {
3030 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3031 TREE_READONLY (t) = TREE_READONLY (node);
3032 }
3033
3034 if (TREE_CODE_CLASS (code) == tcc_statement)
3035 TREE_SIDE_EFFECTS (t) = 1;
3036 else switch (code)
3037 {
3038 case VA_ARG_EXPR:
3039 /* All of these have side-effects, no matter what their
3040 operands are. */
3041 TREE_SIDE_EFFECTS (t) = 1;
3042 TREE_READONLY (t) = 0;
3043 break;
3044
3045 case MISALIGNED_INDIRECT_REF:
3046 case ALIGN_INDIRECT_REF:
3047 case INDIRECT_REF:
3048 /* Whether a dereference is readonly has nothing to do with whether
3049 its operand is readonly. */
3050 TREE_READONLY (t) = 0;
3051 break;
3052
3053 case ADDR_EXPR:
3054 if (node)
3055 recompute_tree_invariant_for_addr_expr (t);
3056 break;
3057
3058 default:
3059 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3060 && node && !TYPE_P (node)
3061 && TREE_CONSTANT (node))
3062 TREE_CONSTANT (t) = 1;
3063 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3064 && node && TREE_INVARIANT (node))
3065 TREE_INVARIANT (t) = 1;
3066 if (TREE_CODE_CLASS (code) == tcc_reference
3067 && node && TREE_THIS_VOLATILE (node))
3068 TREE_THIS_VOLATILE (t) = 1;
3069 break;
3070 }
3071
3072 return t;
3073 }
3074
3075 #define PROCESS_ARG(N) \
3076 do { \
3077 TREE_OPERAND (t, N) = arg##N; \
3078 if (arg##N &&!TYPE_P (arg##N)) \
3079 { \
3080 if (TREE_SIDE_EFFECTS (arg##N)) \
3081 side_effects = 1; \
3082 if (!TREE_READONLY (arg##N)) \
3083 read_only = 0; \
3084 if (!TREE_CONSTANT (arg##N)) \
3085 constant = 0; \
3086 if (!TREE_INVARIANT (arg##N)) \
3087 invariant = 0; \
3088 } \
3089 } while (0)
3090
3091 tree
3092 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3093 {
3094 bool constant, read_only, side_effects, invariant;
3095 tree t;
3096
3097 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3098
3099 #if 1
3100 /* FIXME tuples: Statement's aren't expressions! */
3101 if (code == GIMPLE_MODIFY_STMT)
3102 return build_gimple_modify_stmt_stat (arg0, arg1 PASS_MEM_STAT);
3103 #else
3104 /* Must use build_gimple_modify_stmt to construct GIMPLE_MODIFY_STMTs. */
3105 gcc_assert (code != GIMPLE_MODIFY_STMT);
3106 #endif
3107
3108 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3109 && arg0 && arg1 && tt && POINTER_TYPE_P (tt))
3110 gcc_assert (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST);
3111
3112 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3113 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3114 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3115 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3116
3117 t = make_node_stat (code PASS_MEM_STAT);
3118 TREE_TYPE (t) = tt;
3119
3120 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3121 result based on those same flags for the arguments. But if the
3122 arguments aren't really even `tree' expressions, we shouldn't be trying
3123 to do this. */
3124
3125 /* Expressions without side effects may be constant if their
3126 arguments are as well. */
3127 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3128 || TREE_CODE_CLASS (code) == tcc_binary);
3129 read_only = 1;
3130 side_effects = TREE_SIDE_EFFECTS (t);
3131 invariant = constant;
3132
3133 PROCESS_ARG(0);
3134 PROCESS_ARG(1);
3135
3136 TREE_READONLY (t) = read_only;
3137 TREE_CONSTANT (t) = constant;
3138 TREE_INVARIANT (t) = invariant;
3139 TREE_SIDE_EFFECTS (t) = side_effects;
3140 TREE_THIS_VOLATILE (t)
3141 = (TREE_CODE_CLASS (code) == tcc_reference
3142 && arg0 && TREE_THIS_VOLATILE (arg0));
3143
3144 return t;
3145 }
3146
3147
3148 /* Build a GIMPLE_MODIFY_STMT node. This tree code doesn't have a
3149 type, so we can't use build2 (a.k.a. build2_stat). */
3150
3151 tree
3152 build_gimple_modify_stmt_stat (tree arg0, tree arg1 MEM_STAT_DECL)
3153 {
3154 tree t;
3155
3156 t = make_node_stat (GIMPLE_MODIFY_STMT PASS_MEM_STAT);
3157 /* ?? We don't care about setting flags for tuples... */
3158 GIMPLE_STMT_OPERAND (t, 0) = arg0;
3159 GIMPLE_STMT_OPERAND (t, 1) = arg1;
3160 return t;
3161 }
3162
3163 tree
3164 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3165 tree arg2 MEM_STAT_DECL)
3166 {
3167 bool constant, read_only, side_effects, invariant;
3168 tree t;
3169
3170 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3171 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3172
3173 t = make_node_stat (code PASS_MEM_STAT);
3174 TREE_TYPE (t) = tt;
3175
3176 /* As a special exception, if COND_EXPR has NULL branches, we
3177 assume that it is a gimple statement and always consider
3178 it to have side effects. */
3179 if (code == COND_EXPR
3180 && tt == void_type_node
3181 && arg1 == NULL_TREE
3182 && arg2 == NULL_TREE)
3183 side_effects = true;
3184 else
3185 side_effects = TREE_SIDE_EFFECTS (t);
3186
3187 PROCESS_ARG(0);
3188 PROCESS_ARG(1);
3189 PROCESS_ARG(2);
3190
3191 TREE_SIDE_EFFECTS (t) = side_effects;
3192 TREE_THIS_VOLATILE (t)
3193 = (TREE_CODE_CLASS (code) == tcc_reference
3194 && arg0 && TREE_THIS_VOLATILE (arg0));
3195
3196 return t;
3197 }
3198
3199 tree
3200 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3201 tree arg2, tree arg3 MEM_STAT_DECL)
3202 {
3203 bool constant, read_only, side_effects, invariant;
3204 tree t;
3205
3206 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3207
3208 t = make_node_stat (code PASS_MEM_STAT);
3209 TREE_TYPE (t) = tt;
3210
3211 side_effects = TREE_SIDE_EFFECTS (t);
3212
3213 PROCESS_ARG(0);
3214 PROCESS_ARG(1);
3215 PROCESS_ARG(2);
3216 PROCESS_ARG(3);
3217
3218 TREE_SIDE_EFFECTS (t) = side_effects;
3219 TREE_THIS_VOLATILE (t)
3220 = (TREE_CODE_CLASS (code) == tcc_reference
3221 && arg0 && TREE_THIS_VOLATILE (arg0));
3222
3223 return t;
3224 }
3225
3226 tree
3227 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3228 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3229 {
3230 bool constant, read_only, side_effects, invariant;
3231 tree t;
3232
3233 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3234
3235 t = make_node_stat (code PASS_MEM_STAT);
3236 TREE_TYPE (t) = tt;
3237
3238 side_effects = TREE_SIDE_EFFECTS (t);
3239
3240 PROCESS_ARG(0);
3241 PROCESS_ARG(1);
3242 PROCESS_ARG(2);
3243 PROCESS_ARG(3);
3244 PROCESS_ARG(4);
3245
3246 TREE_SIDE_EFFECTS (t) = side_effects;
3247 TREE_THIS_VOLATILE (t)
3248 = (TREE_CODE_CLASS (code) == tcc_reference
3249 && arg0 && TREE_THIS_VOLATILE (arg0));
3250
3251 return t;
3252 }
3253
3254 tree
3255 build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3256 tree arg2, tree arg3, tree arg4, tree arg5,
3257 tree arg6 MEM_STAT_DECL)
3258 {
3259 bool constant, read_only, side_effects, invariant;
3260 tree t;
3261
3262 gcc_assert (code == TARGET_MEM_REF);
3263
3264 t = make_node_stat (code PASS_MEM_STAT);
3265 TREE_TYPE (t) = tt;
3266
3267 side_effects = TREE_SIDE_EFFECTS (t);
3268
3269 PROCESS_ARG(0);
3270 PROCESS_ARG(1);
3271 PROCESS_ARG(2);
3272 PROCESS_ARG(3);
3273 PROCESS_ARG(4);
3274 PROCESS_ARG(5);
3275 PROCESS_ARG(6);
3276
3277 TREE_SIDE_EFFECTS (t) = side_effects;
3278 TREE_THIS_VOLATILE (t) = 0;
3279
3280 return t;
3281 }
3282
3283 /* Similar except don't specify the TREE_TYPE
3284 and leave the TREE_SIDE_EFFECTS as 0.
3285 It is permissible for arguments to be null,
3286 or even garbage if their values do not matter. */
3287
3288 tree
3289 build_nt (enum tree_code code, ...)
3290 {
3291 tree t;
3292 int length;
3293 int i;
3294 va_list p;
3295
3296 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3297
3298 va_start (p, code);
3299
3300 t = make_node (code);
3301 length = TREE_CODE_LENGTH (code);
3302
3303 for (i = 0; i < length; i++)
3304 TREE_OPERAND (t, i) = va_arg (p, tree);
3305
3306 va_end (p);
3307 return t;
3308 }
3309
3310 /* Similar to build_nt, but for creating a CALL_EXPR object with
3311 ARGLIST passed as a list. */
3312
3313 tree
3314 build_nt_call_list (tree fn, tree arglist)
3315 {
3316 tree t;
3317 int i;
3318
3319 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
3320 CALL_EXPR_FN (t) = fn;
3321 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
3322 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
3323 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
3324 return t;
3325 }
3326 \f
3327 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3328 We do NOT enter this node in any sort of symbol table.
3329
3330 layout_decl is used to set up the decl's storage layout.
3331 Other slots are initialized to 0 or null pointers. */
3332
3333 tree
3334 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
3335 {
3336 tree t;
3337
3338 t = make_node_stat (code PASS_MEM_STAT);
3339
3340 /* if (type == error_mark_node)
3341 type = integer_type_node; */
3342 /* That is not done, deliberately, so that having error_mark_node
3343 as the type can suppress useless errors in the use of this variable. */
3344
3345 DECL_NAME (t) = name;
3346 TREE_TYPE (t) = type;
3347
3348 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3349 layout_decl (t, 0);
3350
3351 return t;
3352 }
3353
3354 /* Builds and returns function declaration with NAME and TYPE. */
3355
3356 tree
3357 build_fn_decl (const char *name, tree type)
3358 {
3359 tree id = get_identifier (name);
3360 tree decl = build_decl (FUNCTION_DECL, id, type);
3361
3362 DECL_EXTERNAL (decl) = 1;
3363 TREE_PUBLIC (decl) = 1;
3364 DECL_ARTIFICIAL (decl) = 1;
3365 TREE_NOTHROW (decl) = 1;
3366
3367 return decl;
3368 }
3369
3370 \f
3371 /* BLOCK nodes are used to represent the structure of binding contours
3372 and declarations, once those contours have been exited and their contents
3373 compiled. This information is used for outputting debugging info. */
3374
3375 tree
3376 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3377 {
3378 tree block = make_node (BLOCK);
3379
3380 BLOCK_VARS (block) = vars;
3381 BLOCK_SUBBLOCKS (block) = subblocks;
3382 BLOCK_SUPERCONTEXT (block) = supercontext;
3383 BLOCK_CHAIN (block) = chain;
3384 return block;
3385 }
3386
3387 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
3388 /* ??? gengtype doesn't handle conditionals */
3389 static GTY(()) source_locus last_annotated_node;
3390 #endif
3391
3392 #ifdef USE_MAPPED_LOCATION
3393
3394 expanded_location
3395 expand_location (source_location loc)
3396 {
3397 expanded_location xloc;
3398 if (loc == 0)
3399 {
3400 xloc.file = NULL;
3401 xloc.line = 0;
3402 xloc.column = 0;
3403 }
3404 else
3405 {
3406 const struct line_map *map = linemap_lookup (line_table, loc);
3407 xloc.file = map->to_file;
3408 xloc.line = SOURCE_LINE (map, loc);
3409 xloc.column = SOURCE_COLUMN (map, loc);
3410 };
3411 return xloc;
3412 }
3413
3414 #else
3415
3416 /* Record the exact location where an expression or an identifier were
3417 encountered. */
3418
3419 void
3420 annotate_with_file_line (tree node, const char *file, int line)
3421 {
3422 location_t *new_loc;
3423
3424 /* Roughly one percent of the calls to this function are to annotate
3425 a node with the same information already attached to that node!
3426 Just return instead of wasting memory. */
3427 if (EXPR_LOCUS (node)
3428 && EXPR_LINENO (node) == line
3429 && (EXPR_FILENAME (node) == file
3430 || !strcmp (EXPR_FILENAME (node), file)))
3431 {
3432 last_annotated_node = EXPR_LOCUS (node);
3433 return;
3434 }
3435
3436 /* In heavily macroized code (such as GCC itself) this single
3437 entry cache can reduce the number of allocations by more
3438 than half. */
3439 if (last_annotated_node
3440 && last_annotated_node->line == line
3441 && (last_annotated_node->file == file
3442 || !strcmp (last_annotated_node->file, file)))
3443 {
3444 SET_EXPR_LOCUS (node, last_annotated_node);
3445 return;
3446 }
3447
3448 new_loc = GGC_NEW (location_t);
3449 new_loc->file = file;
3450 new_loc->line = line;
3451 SET_EXPR_LOCUS (node, new_loc);
3452 last_annotated_node = new_loc;
3453 }
3454
3455 void
3456 annotate_with_locus (tree node, location_t locus)
3457 {
3458 annotate_with_file_line (node, locus.file, locus.line);
3459 }
3460 #endif
3461 \f
3462 /* Source location accessor functions. */
3463
3464
3465 /* The source location of this expression. Non-tree_exp nodes such as
3466 decls and constants can be shared among multiple locations, so
3467 return nothing. */
3468 location_t
3469 expr_location (const_tree node)
3470 {
3471 #ifdef USE_MAPPED_LOCATION
3472 if (GIMPLE_STMT_P (node))
3473 return GIMPLE_STMT_LOCUS (node);
3474 return EXPR_P (node) ? node->exp.locus : UNKNOWN_LOCATION;
3475 #else
3476 if (GIMPLE_STMT_P (node))
3477 return EXPR_HAS_LOCATION (node)
3478 ? *GIMPLE_STMT_LOCUS (node) : UNKNOWN_LOCATION;
3479 return EXPR_HAS_LOCATION (node) ? *node->exp.locus : UNKNOWN_LOCATION;
3480 #endif
3481 }
3482
3483 void
3484 set_expr_location (tree node, location_t locus)
3485 {
3486 #ifdef USE_MAPPED_LOCATION
3487 if (GIMPLE_STMT_P (node))
3488 GIMPLE_STMT_LOCUS (node) = locus;
3489 else
3490 EXPR_CHECK (node)->exp.locus = locus;
3491 #else
3492 annotate_with_locus (node, locus);
3493 #endif
3494 }
3495
3496 bool
3497 expr_has_location (const_tree node)
3498 {
3499 #ifdef USE_MAPPED_LOCATION
3500 return expr_location (node) != UNKNOWN_LOCATION;
3501 #else
3502 return expr_locus (node) != NULL;
3503 #endif
3504 }
3505
3506 #ifdef USE_MAPPED_LOCATION
3507 source_location *
3508 #else
3509 source_locus
3510 #endif
3511 expr_locus (const_tree node)
3512 {
3513 #ifdef USE_MAPPED_LOCATION
3514 if (GIMPLE_STMT_P (node))
3515 return CONST_CAST (source_location *, &GIMPLE_STMT_LOCUS (node));
3516 return (EXPR_P (node)
3517 ? CONST_CAST (source_location *, &node->exp.locus)
3518 : (source_location *) NULL);
3519 #else
3520 if (GIMPLE_STMT_P (node))
3521 return GIMPLE_STMT_LOCUS (node);
3522 return EXPR_P (node) ? node->exp.locus : (source_locus) NULL;
3523 #endif
3524 }
3525
3526 void
3527 set_expr_locus (tree node,
3528 #ifdef USE_MAPPED_LOCATION
3529 source_location *loc
3530 #else
3531 source_locus loc
3532 #endif
3533 )
3534 {
3535 #ifdef USE_MAPPED_LOCATION
3536 if (loc == NULL)
3537 {
3538 if (GIMPLE_STMT_P (node))
3539 GIMPLE_STMT_LOCUS (node) = UNKNOWN_LOCATION;
3540 else
3541 EXPR_CHECK (node)->exp.locus = UNKNOWN_LOCATION;
3542 }
3543 else
3544 {
3545 if (GIMPLE_STMT_P (node))
3546 GIMPLE_STMT_LOCUS (node) = *loc;
3547 else
3548 EXPR_CHECK (node)->exp.locus = *loc;
3549 }
3550 #else
3551 if (GIMPLE_STMT_P (node))
3552 GIMPLE_STMT_LOCUS (node) = loc;
3553 else
3554 EXPR_CHECK (node)->exp.locus = loc;
3555 #endif
3556 }
3557
3558 /* Return the file name of the location of NODE. */
3559 const char *
3560 expr_filename (const_tree node)
3561 {
3562 if (GIMPLE_STMT_P (node))
3563 return LOCATION_FILE (location_from_locus (GIMPLE_STMT_LOCUS (node)));
3564 return LOCATION_FILE (location_from_locus (EXPR_CHECK (node)->exp.locus));
3565 }
3566
3567 /* Return the line number of the location of NODE. */
3568 int
3569 expr_lineno (const_tree node)
3570 {
3571 if (GIMPLE_STMT_P (node))
3572 return LOCATION_LINE (location_from_locus (GIMPLE_STMT_LOCUS (node)));
3573 return LOCATION_LINE (location_from_locus (EXPR_CHECK (node)->exp.locus));
3574 }
3575
3576 \f
3577 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3578 is ATTRIBUTE. */
3579
3580 tree
3581 build_decl_attribute_variant (tree ddecl, tree attribute)
3582 {
3583 DECL_ATTRIBUTES (ddecl) = attribute;
3584 return ddecl;
3585 }
3586
3587 /* Borrowed from hashtab.c iterative_hash implementation. */
3588 #define mix(a,b,c) \
3589 { \
3590 a -= b; a -= c; a ^= (c>>13); \
3591 b -= c; b -= a; b ^= (a<< 8); \
3592 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3593 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3594 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3595 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3596 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3597 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3598 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3599 }
3600
3601
3602 /* Produce good hash value combining VAL and VAL2. */
3603 static inline hashval_t
3604 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3605 {
3606 /* the golden ratio; an arbitrary value. */
3607 hashval_t a = 0x9e3779b9;
3608
3609 mix (a, val, val2);
3610 return val2;
3611 }
3612
3613 /* Produce good hash value combining PTR and VAL2. */
3614 static inline hashval_t
3615 iterative_hash_pointer (const void *ptr, hashval_t val2)
3616 {
3617 if (sizeof (ptr) == sizeof (hashval_t))
3618 return iterative_hash_hashval_t ((size_t) ptr, val2);
3619 else
3620 {
3621 hashval_t a = (hashval_t) (size_t) ptr;
3622 /* Avoid warnings about shifting of more than the width of the type on
3623 hosts that won't execute this path. */
3624 int zero = 0;
3625 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
3626 mix (a, b, val2);
3627 return val2;
3628 }
3629 }
3630
3631 /* Produce good hash value combining VAL and VAL2. */
3632 static inline hashval_t
3633 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3634 {
3635 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3636 return iterative_hash_hashval_t (val, val2);
3637 else
3638 {
3639 hashval_t a = (hashval_t) val;
3640 /* Avoid warnings about shifting of more than the width of the type on
3641 hosts that won't execute this path. */
3642 int zero = 0;
3643 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
3644 mix (a, b, val2);
3645 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
3646 {
3647 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
3648 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
3649 mix (a, b, val2);
3650 }
3651 return val2;
3652 }
3653 }
3654
3655 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3656 is ATTRIBUTE and its qualifiers are QUALS.
3657
3658 Record such modified types already made so we don't make duplicates. */
3659
3660 static tree
3661 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
3662 {
3663 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3664 {
3665 hashval_t hashcode = 0;
3666 tree ntype;
3667 enum tree_code code = TREE_CODE (ttype);
3668
3669 /* Building a distinct copy of a tagged type is inappropriate; it
3670 causes breakage in code that expects there to be a one-to-one
3671 relationship between a struct and its fields.
3672 build_duplicate_type is another solution (as used in
3673 handle_transparent_union_attribute), but that doesn't play well
3674 with the stronger C++ type identity model. */
3675 if (TREE_CODE (ttype) == RECORD_TYPE
3676 || TREE_CODE (ttype) == UNION_TYPE
3677 || TREE_CODE (ttype) == QUAL_UNION_TYPE
3678 || TREE_CODE (ttype) == ENUMERAL_TYPE)
3679 {
3680 warning (OPT_Wattributes,
3681 "ignoring attributes applied to %qT after definition",
3682 TYPE_MAIN_VARIANT (ttype));
3683 return build_qualified_type (ttype, quals);
3684 }
3685
3686 ntype = build_distinct_type_copy (ttype);
3687
3688 TYPE_ATTRIBUTES (ntype) = attribute;
3689 set_type_quals (ntype, TYPE_UNQUALIFIED);
3690
3691 hashcode = iterative_hash_object (code, hashcode);
3692 if (TREE_TYPE (ntype))
3693 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3694 hashcode);
3695 hashcode = attribute_hash_list (attribute, hashcode);
3696
3697 switch (TREE_CODE (ntype))
3698 {
3699 case FUNCTION_TYPE:
3700 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3701 break;
3702 case ARRAY_TYPE:
3703 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3704 hashcode);
3705 break;
3706 case INTEGER_TYPE:
3707 hashcode = iterative_hash_object
3708 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3709 hashcode = iterative_hash_object
3710 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3711 break;
3712 case REAL_TYPE:
3713 case FIXED_POINT_TYPE:
3714 {
3715 unsigned int precision = TYPE_PRECISION (ntype);
3716 hashcode = iterative_hash_object (precision, hashcode);
3717 }
3718 break;
3719 default:
3720 break;
3721 }
3722
3723 ntype = type_hash_canon (hashcode, ntype);
3724
3725 /* If the target-dependent attributes make NTYPE different from
3726 its canonical type, we will need to use structural equality
3727 checks for this qualified type. */
3728 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
3729 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
3730 || !targetm.comp_type_attributes (ntype, ttype))
3731 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
3732 else
3733 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
3734
3735 ttype = build_qualified_type (ntype, quals);
3736 }
3737
3738 return ttype;
3739 }
3740
3741
3742 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3743 is ATTRIBUTE.
3744
3745 Record such modified types already made so we don't make duplicates. */
3746
3747 tree
3748 build_type_attribute_variant (tree ttype, tree attribute)
3749 {
3750 return build_type_attribute_qual_variant (ttype, attribute,
3751 TYPE_QUALS (ttype));
3752 }
3753
3754 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3755 or zero if not.
3756
3757 We try both `text' and `__text__', ATTR may be either one. */
3758 /* ??? It might be a reasonable simplification to require ATTR to be only
3759 `text'. One might then also require attribute lists to be stored in
3760 their canonicalized form. */
3761
3762 static int
3763 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
3764 {
3765 int ident_len;
3766 const char *p;
3767
3768 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3769 return 0;
3770
3771 p = IDENTIFIER_POINTER (ident);
3772 ident_len = IDENTIFIER_LENGTH (ident);
3773
3774 if (ident_len == attr_len
3775 && strcmp (attr, p) == 0)
3776 return 1;
3777
3778 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3779 if (attr[0] == '_')
3780 {
3781 gcc_assert (attr[1] == '_');
3782 gcc_assert (attr[attr_len - 2] == '_');
3783 gcc_assert (attr[attr_len - 1] == '_');
3784 if (ident_len == attr_len - 4
3785 && strncmp (attr + 2, p, attr_len - 4) == 0)
3786 return 1;
3787 }
3788 else
3789 {
3790 if (ident_len == attr_len + 4
3791 && p[0] == '_' && p[1] == '_'
3792 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3793 && strncmp (attr, p + 2, attr_len) == 0)
3794 return 1;
3795 }
3796
3797 return 0;
3798 }
3799
3800 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3801 or zero if not.
3802
3803 We try both `text' and `__text__', ATTR may be either one. */
3804
3805 int
3806 is_attribute_p (const char *attr, const_tree ident)
3807 {
3808 return is_attribute_with_length_p (attr, strlen (attr), ident);
3809 }
3810
3811 /* Given an attribute name and a list of attributes, return a pointer to the
3812 attribute's list element if the attribute is part of the list, or NULL_TREE
3813 if not found. If the attribute appears more than once, this only
3814 returns the first occurrence; the TREE_CHAIN of the return value should
3815 be passed back in if further occurrences are wanted. */
3816
3817 tree
3818 lookup_attribute (const char *attr_name, tree list)
3819 {
3820 tree l;
3821 size_t attr_len = strlen (attr_name);
3822
3823 for (l = list; l; l = TREE_CHAIN (l))
3824 {
3825 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3826 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3827 return l;
3828 }
3829 return NULL_TREE;
3830 }
3831
3832 /* Remove any instances of attribute ATTR_NAME in LIST and return the
3833 modified list. */
3834
3835 tree
3836 remove_attribute (const char *attr_name, tree list)
3837 {
3838 tree *p;
3839 size_t attr_len = strlen (attr_name);
3840
3841 for (p = &list; *p; )
3842 {
3843 tree l = *p;
3844 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3845 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3846 *p = TREE_CHAIN (l);
3847 else
3848 p = &TREE_CHAIN (l);
3849 }
3850
3851 return list;
3852 }
3853
3854 /* Return an attribute list that is the union of a1 and a2. */
3855
3856 tree
3857 merge_attributes (tree a1, tree a2)
3858 {
3859 tree attributes;
3860
3861 /* Either one unset? Take the set one. */
3862
3863 if ((attributes = a1) == 0)
3864 attributes = a2;
3865
3866 /* One that completely contains the other? Take it. */
3867
3868 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3869 {
3870 if (attribute_list_contained (a2, a1))
3871 attributes = a2;
3872 else
3873 {
3874 /* Pick the longest list, and hang on the other list. */
3875
3876 if (list_length (a1) < list_length (a2))
3877 attributes = a2, a2 = a1;
3878
3879 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3880 {
3881 tree a;
3882 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3883 attributes);
3884 a != NULL_TREE;
3885 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3886 TREE_CHAIN (a)))
3887 {
3888 if (TREE_VALUE (a) != NULL
3889 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
3890 && TREE_VALUE (a2) != NULL
3891 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
3892 {
3893 if (simple_cst_list_equal (TREE_VALUE (a),
3894 TREE_VALUE (a2)) == 1)
3895 break;
3896 }
3897 else if (simple_cst_equal (TREE_VALUE (a),
3898 TREE_VALUE (a2)) == 1)
3899 break;
3900 }
3901 if (a == NULL_TREE)
3902 {
3903 a1 = copy_node (a2);
3904 TREE_CHAIN (a1) = attributes;
3905 attributes = a1;
3906 }
3907 }
3908 }
3909 }
3910 return attributes;
3911 }
3912
3913 /* Given types T1 and T2, merge their attributes and return
3914 the result. */
3915
3916 tree
3917 merge_type_attributes (tree t1, tree t2)
3918 {
3919 return merge_attributes (TYPE_ATTRIBUTES (t1),
3920 TYPE_ATTRIBUTES (t2));
3921 }
3922
3923 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3924 the result. */
3925
3926 tree
3927 merge_decl_attributes (tree olddecl, tree newdecl)
3928 {
3929 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3930 DECL_ATTRIBUTES (newdecl));
3931 }
3932
3933 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3934
3935 /* Specialization of merge_decl_attributes for various Windows targets.
3936
3937 This handles the following situation:
3938
3939 __declspec (dllimport) int foo;
3940 int foo;
3941
3942 The second instance of `foo' nullifies the dllimport. */
3943
3944 tree
3945 merge_dllimport_decl_attributes (tree old, tree new)
3946 {
3947 tree a;
3948 int delete_dllimport_p = 1;
3949
3950 /* What we need to do here is remove from `old' dllimport if it doesn't
3951 appear in `new'. dllimport behaves like extern: if a declaration is
3952 marked dllimport and a definition appears later, then the object
3953 is not dllimport'd. We also remove a `new' dllimport if the old list
3954 contains dllexport: dllexport always overrides dllimport, regardless
3955 of the order of declaration. */
3956 if (!VAR_OR_FUNCTION_DECL_P (new))
3957 delete_dllimport_p = 0;
3958 else if (DECL_DLLIMPORT_P (new)
3959 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
3960 {
3961 DECL_DLLIMPORT_P (new) = 0;
3962 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
3963 "dllimport ignored", new);
3964 }
3965 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new))
3966 {
3967 /* Warn about overriding a symbol that has already been used. eg:
3968 extern int __attribute__ ((dllimport)) foo;
3969 int* bar () {return &foo;}
3970 int foo;
3971 */
3972 if (TREE_USED (old))
3973 {
3974 warning (0, "%q+D redeclared without dllimport attribute "
3975 "after being referenced with dll linkage", new);
3976 /* If we have used a variable's address with dllimport linkage,
3977 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
3978 decl may already have had TREE_INVARIANT and TREE_CONSTANT
3979 computed.
3980 We still remove the attribute so that assembler code refers
3981 to '&foo rather than '_imp__foo'. */
3982 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
3983 DECL_DLLIMPORT_P (new) = 1;
3984 }
3985
3986 /* Let an inline definition silently override the external reference,
3987 but otherwise warn about attribute inconsistency. */
3988 else if (TREE_CODE (new) == VAR_DECL
3989 || !DECL_DECLARED_INLINE_P (new))
3990 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
3991 "previous dllimport ignored", new);
3992 }
3993 else
3994 delete_dllimport_p = 0;
3995
3996 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new));
3997
3998 if (delete_dllimport_p)
3999 {
4000 tree prev, t;
4001 const size_t attr_len = strlen ("dllimport");
4002
4003 /* Scan the list for dllimport and delete it. */
4004 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
4005 {
4006 if (is_attribute_with_length_p ("dllimport", attr_len,
4007 TREE_PURPOSE (t)))
4008 {
4009 if (prev == NULL_TREE)
4010 a = TREE_CHAIN (a);
4011 else
4012 TREE_CHAIN (prev) = TREE_CHAIN (t);
4013 break;
4014 }
4015 }
4016 }
4017
4018 return a;
4019 }
4020
4021 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
4022 struct attribute_spec.handler. */
4023
4024 tree
4025 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
4026 bool *no_add_attrs)
4027 {
4028 tree node = *pnode;
4029
4030 /* These attributes may apply to structure and union types being created,
4031 but otherwise should pass to the declaration involved. */
4032 if (!DECL_P (node))
4033 {
4034 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
4035 | (int) ATTR_FLAG_ARRAY_NEXT))
4036 {
4037 *no_add_attrs = true;
4038 return tree_cons (name, args, NULL_TREE);
4039 }
4040 if (TREE_CODE (node) == RECORD_TYPE
4041 || TREE_CODE (node) == UNION_TYPE)
4042 {
4043 node = TYPE_NAME (node);
4044 if (!node)
4045 return NULL_TREE;
4046 }
4047 else
4048 {
4049 warning (OPT_Wattributes, "%qs attribute ignored",
4050 IDENTIFIER_POINTER (name));
4051 *no_add_attrs = true;
4052 return NULL_TREE;
4053 }
4054 }
4055
4056 if (TREE_CODE (node) != FUNCTION_DECL
4057 && TREE_CODE (node) != VAR_DECL
4058 && TREE_CODE (node) != TYPE_DECL)
4059 {
4060 *no_add_attrs = true;
4061 warning (OPT_Wattributes, "%qs attribute ignored",
4062 IDENTIFIER_POINTER (name));
4063 return NULL_TREE;
4064 }
4065
4066 /* Report error on dllimport ambiguities seen now before they cause
4067 any damage. */
4068 else if (is_attribute_p ("dllimport", name))
4069 {
4070 /* Honor any target-specific overrides. */
4071 if (!targetm.valid_dllimport_attribute_p (node))
4072 *no_add_attrs = true;
4073
4074 else if (TREE_CODE (node) == FUNCTION_DECL
4075 && DECL_DECLARED_INLINE_P (node))
4076 {
4077 warning (OPT_Wattributes, "inline function %q+D declared as "
4078 " dllimport: attribute ignored", node);
4079 *no_add_attrs = true;
4080 }
4081 /* Like MS, treat definition of dllimported variables and
4082 non-inlined functions on declaration as syntax errors. */
4083 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
4084 {
4085 error ("function %q+D definition is marked dllimport", node);
4086 *no_add_attrs = true;
4087 }
4088
4089 else if (TREE_CODE (node) == VAR_DECL)
4090 {
4091 if (DECL_INITIAL (node))
4092 {
4093 error ("variable %q+D definition is marked dllimport",
4094 node);
4095 *no_add_attrs = true;
4096 }
4097
4098 /* `extern' needn't be specified with dllimport.
4099 Specify `extern' now and hope for the best. Sigh. */
4100 DECL_EXTERNAL (node) = 1;
4101 /* Also, implicitly give dllimport'd variables declared within
4102 a function global scope, unless declared static. */
4103 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
4104 TREE_PUBLIC (node) = 1;
4105 }
4106
4107 if (*no_add_attrs == false)
4108 DECL_DLLIMPORT_P (node) = 1;
4109 }
4110
4111 /* Report error if symbol is not accessible at global scope. */
4112 if (!TREE_PUBLIC (node)
4113 && (TREE_CODE (node) == VAR_DECL
4114 || TREE_CODE (node) == FUNCTION_DECL))
4115 {
4116 error ("external linkage required for symbol %q+D because of "
4117 "%qs attribute", node, IDENTIFIER_POINTER (name));
4118 *no_add_attrs = true;
4119 }
4120
4121 /* A dllexport'd entity must have default visibility so that other
4122 program units (shared libraries or the main executable) can see
4123 it. A dllimport'd entity must have default visibility so that
4124 the linker knows that undefined references within this program
4125 unit can be resolved by the dynamic linker. */
4126 if (!*no_add_attrs)
4127 {
4128 if (DECL_VISIBILITY_SPECIFIED (node)
4129 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
4130 error ("%qs implies default visibility, but %qD has already "
4131 "been declared with a different visibility",
4132 IDENTIFIER_POINTER (name), node);
4133 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
4134 DECL_VISIBILITY_SPECIFIED (node) = 1;
4135 }
4136
4137 return NULL_TREE;
4138 }
4139
4140 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
4141 \f
4142 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
4143 of the various TYPE_QUAL values. */
4144
4145 static void
4146 set_type_quals (tree type, int type_quals)
4147 {
4148 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
4149 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
4150 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
4151 }
4152
4153 /* Returns true iff cand is equivalent to base with type_quals. */
4154
4155 bool
4156 check_qualified_type (const_tree cand, const_tree base, int type_quals)
4157 {
4158 return (TYPE_QUALS (cand) == type_quals
4159 && TYPE_NAME (cand) == TYPE_NAME (base)
4160 /* Apparently this is needed for Objective-C. */
4161 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
4162 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
4163 TYPE_ATTRIBUTES (base)));
4164 }
4165
4166 /* Return a version of the TYPE, qualified as indicated by the
4167 TYPE_QUALS, if one exists. If no qualified version exists yet,
4168 return NULL_TREE. */
4169
4170 tree
4171 get_qualified_type (tree type, int type_quals)
4172 {
4173 tree t;
4174
4175 if (TYPE_QUALS (type) == type_quals)
4176 return type;
4177
4178 /* Search the chain of variants to see if there is already one there just
4179 like the one we need to have. If so, use that existing one. We must
4180 preserve the TYPE_NAME, since there is code that depends on this. */
4181 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
4182 if (check_qualified_type (t, type, type_quals))
4183 return t;
4184
4185 return NULL_TREE;
4186 }
4187
4188 /* Like get_qualified_type, but creates the type if it does not
4189 exist. This function never returns NULL_TREE. */
4190
4191 tree
4192 build_qualified_type (tree type, int type_quals)
4193 {
4194 tree t;
4195
4196 /* See if we already have the appropriate qualified variant. */
4197 t = get_qualified_type (type, type_quals);
4198
4199 /* If not, build it. */
4200 if (!t)
4201 {
4202 t = build_variant_type_copy (type);
4203 set_type_quals (t, type_quals);
4204
4205 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4206 /* Propagate structural equality. */
4207 SET_TYPE_STRUCTURAL_EQUALITY (t);
4208 else if (TYPE_CANONICAL (type) != type)
4209 /* Build the underlying canonical type, since it is different
4210 from TYPE. */
4211 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
4212 type_quals);
4213 else
4214 /* T is its own canonical type. */
4215 TYPE_CANONICAL (t) = t;
4216
4217 }
4218
4219 return t;
4220 }
4221
4222 /* Create a new distinct copy of TYPE. The new type is made its own
4223 MAIN_VARIANT. If TYPE requires structural equality checks, the
4224 resulting type requires structural equality checks; otherwise, its
4225 TYPE_CANONICAL points to itself. */
4226
4227 tree
4228 build_distinct_type_copy (tree type)
4229 {
4230 tree t = copy_node (type);
4231
4232 TYPE_POINTER_TO (t) = 0;
4233 TYPE_REFERENCE_TO (t) = 0;
4234
4235 /* Set the canonical type either to a new equivalence class, or
4236 propagate the need for structural equality checks. */
4237 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4238 SET_TYPE_STRUCTURAL_EQUALITY (t);
4239 else
4240 TYPE_CANONICAL (t) = t;
4241
4242 /* Make it its own variant. */
4243 TYPE_MAIN_VARIANT (t) = t;
4244 TYPE_NEXT_VARIANT (t) = 0;
4245
4246 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
4247 whose TREE_TYPE is not t. This can also happen in the Ada
4248 frontend when using subtypes. */
4249
4250 return t;
4251 }
4252
4253 /* Create a new variant of TYPE, equivalent but distinct. This is so
4254 the caller can modify it. TYPE_CANONICAL for the return type will
4255 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
4256 are considered equal by the language itself (or that both types
4257 require structural equality checks). */
4258
4259 tree
4260 build_variant_type_copy (tree type)
4261 {
4262 tree t, m = TYPE_MAIN_VARIANT (type);
4263
4264 t = build_distinct_type_copy (type);
4265
4266 /* Since we're building a variant, assume that it is a non-semantic
4267 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
4268 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
4269
4270 /* Add the new type to the chain of variants of TYPE. */
4271 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
4272 TYPE_NEXT_VARIANT (m) = t;
4273 TYPE_MAIN_VARIANT (t) = m;
4274
4275 return t;
4276 }
4277 \f
4278 /* Return true if the from tree in both tree maps are equal. */
4279
4280 int
4281 tree_map_base_eq (const void *va, const void *vb)
4282 {
4283 const struct tree_map_base *const a = va, *const b = vb;
4284 return (a->from == b->from);
4285 }
4286
4287 /* Hash a from tree in a tree_map. */
4288
4289 unsigned int
4290 tree_map_base_hash (const void *item)
4291 {
4292 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
4293 }
4294
4295 /* Return true if this tree map structure is marked for garbage collection
4296 purposes. We simply return true if the from tree is marked, so that this
4297 structure goes away when the from tree goes away. */
4298
4299 int
4300 tree_map_base_marked_p (const void *p)
4301 {
4302 return ggc_marked_p (((const struct tree_map_base *) p)->from);
4303 }
4304
4305 unsigned int
4306 tree_map_hash (const void *item)
4307 {
4308 return (((const struct tree_map *) item)->hash);
4309 }
4310
4311 /* Return the initialization priority for DECL. */
4312
4313 priority_type
4314 decl_init_priority_lookup (tree decl)
4315 {
4316 struct tree_priority_map *h;
4317 struct tree_map_base in;
4318
4319 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
4320 in.from = decl;
4321 h = htab_find (init_priority_for_decl, &in);
4322 return h ? h->init : DEFAULT_INIT_PRIORITY;
4323 }
4324
4325 /* Return the finalization priority for DECL. */
4326
4327 priority_type
4328 decl_fini_priority_lookup (tree decl)
4329 {
4330 struct tree_priority_map *h;
4331 struct tree_map_base in;
4332
4333 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
4334 in.from = decl;
4335 h = htab_find (init_priority_for_decl, &in);
4336 return h ? h->fini : DEFAULT_INIT_PRIORITY;
4337 }
4338
4339 /* Return the initialization and finalization priority information for
4340 DECL. If there is no previous priority information, a freshly
4341 allocated structure is returned. */
4342
4343 static struct tree_priority_map *
4344 decl_priority_info (tree decl)
4345 {
4346 struct tree_priority_map in;
4347 struct tree_priority_map *h;
4348 void **loc;
4349
4350 in.base.from = decl;
4351 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
4352 h = *loc;
4353 if (!h)
4354 {
4355 h = GGC_CNEW (struct tree_priority_map);
4356 *loc = h;
4357 h->base.from = decl;
4358 h->init = DEFAULT_INIT_PRIORITY;
4359 h->fini = DEFAULT_INIT_PRIORITY;
4360 }
4361
4362 return h;
4363 }
4364
4365 /* Set the initialization priority for DECL to PRIORITY. */
4366
4367 void
4368 decl_init_priority_insert (tree decl, priority_type priority)
4369 {
4370 struct tree_priority_map *h;
4371
4372 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
4373 h = decl_priority_info (decl);
4374 h->init = priority;
4375 }
4376
4377 /* Set the finalization priority for DECL to PRIORITY. */
4378
4379 void
4380 decl_fini_priority_insert (tree decl, priority_type priority)
4381 {
4382 struct tree_priority_map *h;
4383
4384 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
4385 h = decl_priority_info (decl);
4386 h->fini = priority;
4387 }
4388
4389 /* Look up a restrict qualified base decl for FROM. */
4390
4391 tree
4392 decl_restrict_base_lookup (tree from)
4393 {
4394 struct tree_map *h;
4395 struct tree_map in;
4396
4397 in.base.from = from;
4398 h = htab_find_with_hash (restrict_base_for_decl, &in,
4399 htab_hash_pointer (from));
4400 return h ? h->to : NULL_TREE;
4401 }
4402
4403 /* Record the restrict qualified base TO for FROM. */
4404
4405 void
4406 decl_restrict_base_insert (tree from, tree to)
4407 {
4408 struct tree_map *h;
4409 void **loc;
4410
4411 h = ggc_alloc (sizeof (struct tree_map));
4412 h->hash = htab_hash_pointer (from);
4413 h->base.from = from;
4414 h->to = to;
4415 loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
4416 *(struct tree_map **) loc = h;
4417 }
4418
4419 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
4420
4421 static void
4422 print_debug_expr_statistics (void)
4423 {
4424 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
4425 (long) htab_size (debug_expr_for_decl),
4426 (long) htab_elements (debug_expr_for_decl),
4427 htab_collisions (debug_expr_for_decl));
4428 }
4429
4430 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
4431
4432 static void
4433 print_value_expr_statistics (void)
4434 {
4435 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
4436 (long) htab_size (value_expr_for_decl),
4437 (long) htab_elements (value_expr_for_decl),
4438 htab_collisions (value_expr_for_decl));
4439 }
4440
4441 /* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
4442 don't print anything if the table is empty. */
4443
4444 static void
4445 print_restrict_base_statistics (void)
4446 {
4447 if (htab_elements (restrict_base_for_decl) != 0)
4448 fprintf (stderr,
4449 "RESTRICT_BASE hash: size %ld, %ld elements, %f collisions\n",
4450 (long) htab_size (restrict_base_for_decl),
4451 (long) htab_elements (restrict_base_for_decl),
4452 htab_collisions (restrict_base_for_decl));
4453 }
4454
4455 /* Lookup a debug expression for FROM, and return it if we find one. */
4456
4457 tree
4458 decl_debug_expr_lookup (tree from)
4459 {
4460 struct tree_map *h, in;
4461 in.base.from = from;
4462
4463 h = htab_find_with_hash (debug_expr_for_decl, &in, htab_hash_pointer (from));
4464 if (h)
4465 return h->to;
4466 return NULL_TREE;
4467 }
4468
4469 /* Insert a mapping FROM->TO in the debug expression hashtable. */
4470
4471 void
4472 decl_debug_expr_insert (tree from, tree to)
4473 {
4474 struct tree_map *h;
4475 void **loc;
4476
4477 h = ggc_alloc (sizeof (struct tree_map));
4478 h->hash = htab_hash_pointer (from);
4479 h->base.from = from;
4480 h->to = to;
4481 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
4482 *(struct tree_map **) loc = h;
4483 }
4484
4485 /* Lookup a value expression for FROM, and return it if we find one. */
4486
4487 tree
4488 decl_value_expr_lookup (tree from)
4489 {
4490 struct tree_map *h, in;
4491 in.base.from = from;
4492
4493 h = htab_find_with_hash (value_expr_for_decl, &in, htab_hash_pointer (from));
4494 if (h)
4495 return h->to;
4496 return NULL_TREE;
4497 }
4498
4499 /* Insert a mapping FROM->TO in the value expression hashtable. */
4500
4501 void
4502 decl_value_expr_insert (tree from, tree to)
4503 {
4504 struct tree_map *h;
4505 void **loc;
4506
4507 h = ggc_alloc (sizeof (struct tree_map));
4508 h->hash = htab_hash_pointer (from);
4509 h->base.from = from;
4510 h->to = to;
4511 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
4512 *(struct tree_map **) loc = h;
4513 }
4514
4515 /* Hashing of types so that we don't make duplicates.
4516 The entry point is `type_hash_canon'. */
4517
4518 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
4519 with types in the TREE_VALUE slots), by adding the hash codes
4520 of the individual types. */
4521
4522 static unsigned int
4523 type_hash_list (const_tree list, hashval_t hashcode)
4524 {
4525 const_tree tail;
4526
4527 for (tail = list; tail; tail = TREE_CHAIN (tail))
4528 if (TREE_VALUE (tail) != error_mark_node)
4529 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
4530 hashcode);
4531
4532 return hashcode;
4533 }
4534
4535 /* These are the Hashtable callback functions. */
4536
4537 /* Returns true iff the types are equivalent. */
4538
4539 static int
4540 type_hash_eq (const void *va, const void *vb)
4541 {
4542 const struct type_hash *const a = va, *const b = vb;
4543
4544 /* First test the things that are the same for all types. */
4545 if (a->hash != b->hash
4546 || TREE_CODE (a->type) != TREE_CODE (b->type)
4547 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
4548 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
4549 TYPE_ATTRIBUTES (b->type))
4550 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
4551 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
4552 return 0;
4553
4554 switch (TREE_CODE (a->type))
4555 {
4556 case VOID_TYPE:
4557 case COMPLEX_TYPE:
4558 case POINTER_TYPE:
4559 case REFERENCE_TYPE:
4560 return 1;
4561
4562 case VECTOR_TYPE:
4563 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
4564
4565 case ENUMERAL_TYPE:
4566 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
4567 && !(TYPE_VALUES (a->type)
4568 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
4569 && TYPE_VALUES (b->type)
4570 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
4571 && type_list_equal (TYPE_VALUES (a->type),
4572 TYPE_VALUES (b->type))))
4573 return 0;
4574
4575 /* ... fall through ... */
4576
4577 case INTEGER_TYPE:
4578 case REAL_TYPE:
4579 case BOOLEAN_TYPE:
4580 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4581 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4582 TYPE_MAX_VALUE (b->type)))
4583 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4584 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4585 TYPE_MIN_VALUE (b->type))));
4586
4587 case FIXED_POINT_TYPE:
4588 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
4589
4590 case OFFSET_TYPE:
4591 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4592
4593 case METHOD_TYPE:
4594 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4595 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4596 || (TYPE_ARG_TYPES (a->type)
4597 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4598 && TYPE_ARG_TYPES (b->type)
4599 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4600 && type_list_equal (TYPE_ARG_TYPES (a->type),
4601 TYPE_ARG_TYPES (b->type)))));
4602
4603 case ARRAY_TYPE:
4604 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4605
4606 case RECORD_TYPE:
4607 case UNION_TYPE:
4608 case QUAL_UNION_TYPE:
4609 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4610 || (TYPE_FIELDS (a->type)
4611 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4612 && TYPE_FIELDS (b->type)
4613 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4614 && type_list_equal (TYPE_FIELDS (a->type),
4615 TYPE_FIELDS (b->type))));
4616
4617 case FUNCTION_TYPE:
4618 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4619 || (TYPE_ARG_TYPES (a->type)
4620 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4621 && TYPE_ARG_TYPES (b->type)
4622 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4623 && type_list_equal (TYPE_ARG_TYPES (a->type),
4624 TYPE_ARG_TYPES (b->type))))
4625 break;
4626 return 0;
4627
4628 default:
4629 return 0;
4630 }
4631
4632 if (lang_hooks.types.type_hash_eq != NULL)
4633 return lang_hooks.types.type_hash_eq (a->type, b->type);
4634
4635 return 1;
4636 }
4637
4638 /* Return the cached hash value. */
4639
4640 static hashval_t
4641 type_hash_hash (const void *item)
4642 {
4643 return ((const struct type_hash *) item)->hash;
4644 }
4645
4646 /* Look in the type hash table for a type isomorphic to TYPE.
4647 If one is found, return it. Otherwise return 0. */
4648
4649 tree
4650 type_hash_lookup (hashval_t hashcode, tree type)
4651 {
4652 struct type_hash *h, in;
4653
4654 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4655 must call that routine before comparing TYPE_ALIGNs. */
4656 layout_type (type);
4657
4658 in.hash = hashcode;
4659 in.type = type;
4660
4661 h = htab_find_with_hash (type_hash_table, &in, hashcode);
4662 if (h)
4663 return h->type;
4664 return NULL_TREE;
4665 }
4666
4667 /* Add an entry to the type-hash-table
4668 for a type TYPE whose hash code is HASHCODE. */
4669
4670 void
4671 type_hash_add (hashval_t hashcode, tree type)
4672 {
4673 struct type_hash *h;
4674 void **loc;
4675
4676 h = ggc_alloc (sizeof (struct type_hash));
4677 h->hash = hashcode;
4678 h->type = type;
4679 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
4680 *loc = (void *)h;
4681 }
4682
4683 /* Given TYPE, and HASHCODE its hash code, return the canonical
4684 object for an identical type if one already exists.
4685 Otherwise, return TYPE, and record it as the canonical object.
4686
4687 To use this function, first create a type of the sort you want.
4688 Then compute its hash code from the fields of the type that
4689 make it different from other similar types.
4690 Then call this function and use the value. */
4691
4692 tree
4693 type_hash_canon (unsigned int hashcode, tree type)
4694 {
4695 tree t1;
4696
4697 /* The hash table only contains main variants, so ensure that's what we're
4698 being passed. */
4699 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
4700
4701 if (!lang_hooks.types.hash_types)
4702 return type;
4703
4704 /* See if the type is in the hash table already. If so, return it.
4705 Otherwise, add the type. */
4706 t1 = type_hash_lookup (hashcode, type);
4707 if (t1 != 0)
4708 {
4709 #ifdef GATHER_STATISTICS
4710 tree_node_counts[(int) t_kind]--;
4711 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
4712 #endif
4713 return t1;
4714 }
4715 else
4716 {
4717 type_hash_add (hashcode, type);
4718 return type;
4719 }
4720 }
4721
4722 /* See if the data pointed to by the type hash table is marked. We consider
4723 it marked if the type is marked or if a debug type number or symbol
4724 table entry has been made for the type. This reduces the amount of
4725 debugging output and eliminates that dependency of the debug output on
4726 the number of garbage collections. */
4727
4728 static int
4729 type_hash_marked_p (const void *p)
4730 {
4731 const_tree const type = ((const struct type_hash *) p)->type;
4732
4733 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
4734 }
4735
4736 static void
4737 print_type_hash_statistics (void)
4738 {
4739 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
4740 (long) htab_size (type_hash_table),
4741 (long) htab_elements (type_hash_table),
4742 htab_collisions (type_hash_table));
4743 }
4744
4745 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4746 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4747 by adding the hash codes of the individual attributes. */
4748
4749 static unsigned int
4750 attribute_hash_list (const_tree list, hashval_t hashcode)
4751 {
4752 const_tree tail;
4753
4754 for (tail = list; tail; tail = TREE_CHAIN (tail))
4755 /* ??? Do we want to add in TREE_VALUE too? */
4756 hashcode = iterative_hash_object
4757 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
4758 return hashcode;
4759 }
4760
4761 /* Given two lists of attributes, return true if list l2 is
4762 equivalent to l1. */
4763
4764 int
4765 attribute_list_equal (const_tree l1, const_tree l2)
4766 {
4767 return attribute_list_contained (l1, l2)
4768 && attribute_list_contained (l2, l1);
4769 }
4770
4771 /* Given two lists of attributes, return true if list L2 is
4772 completely contained within L1. */
4773 /* ??? This would be faster if attribute names were stored in a canonicalized
4774 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4775 must be used to show these elements are equivalent (which they are). */
4776 /* ??? It's not clear that attributes with arguments will always be handled
4777 correctly. */
4778
4779 int
4780 attribute_list_contained (const_tree l1, const_tree l2)
4781 {
4782 const_tree t1, t2;
4783
4784 /* First check the obvious, maybe the lists are identical. */
4785 if (l1 == l2)
4786 return 1;
4787
4788 /* Maybe the lists are similar. */
4789 for (t1 = l1, t2 = l2;
4790 t1 != 0 && t2 != 0
4791 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4792 && TREE_VALUE (t1) == TREE_VALUE (t2);
4793 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4794
4795 /* Maybe the lists are equal. */
4796 if (t1 == 0 && t2 == 0)
4797 return 1;
4798
4799 for (; t2 != 0; t2 = TREE_CHAIN (t2))
4800 {
4801 const_tree attr;
4802 /* This CONST_CAST is okay because lookup_attribute does not
4803 modify its argument and the return value is assigned to a
4804 const_tree. */
4805 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4806 CONST_CAST_TREE(l1));
4807 attr != NULL_TREE;
4808 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4809 TREE_CHAIN (attr)))
4810 {
4811 if (TREE_VALUE (t2) != NULL
4812 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
4813 && TREE_VALUE (attr) != NULL
4814 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
4815 {
4816 if (simple_cst_list_equal (TREE_VALUE (t2),
4817 TREE_VALUE (attr)) == 1)
4818 break;
4819 }
4820 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
4821 break;
4822 }
4823
4824 if (attr == 0)
4825 return 0;
4826 }
4827
4828 return 1;
4829 }
4830
4831 /* Given two lists of types
4832 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4833 return 1 if the lists contain the same types in the same order.
4834 Also, the TREE_PURPOSEs must match. */
4835
4836 int
4837 type_list_equal (const_tree l1, const_tree l2)
4838 {
4839 const_tree t1, t2;
4840
4841 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4842 if (TREE_VALUE (t1) != TREE_VALUE (t2)
4843 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4844 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4845 && (TREE_TYPE (TREE_PURPOSE (t1))
4846 == TREE_TYPE (TREE_PURPOSE (t2))))))
4847 return 0;
4848
4849 return t1 == t2;
4850 }
4851
4852 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
4853 given by TYPE. If the argument list accepts variable arguments,
4854 then this function counts only the ordinary arguments. */
4855
4856 int
4857 type_num_arguments (const_tree type)
4858 {
4859 int i = 0;
4860 tree t;
4861
4862 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
4863 /* If the function does not take a variable number of arguments,
4864 the last element in the list will have type `void'. */
4865 if (VOID_TYPE_P (TREE_VALUE (t)))
4866 break;
4867 else
4868 ++i;
4869
4870 return i;
4871 }
4872
4873 /* Nonzero if integer constants T1 and T2
4874 represent the same constant value. */
4875
4876 int
4877 tree_int_cst_equal (const_tree t1, const_tree t2)
4878 {
4879 if (t1 == t2)
4880 return 1;
4881
4882 if (t1 == 0 || t2 == 0)
4883 return 0;
4884
4885 if (TREE_CODE (t1) == INTEGER_CST
4886 && TREE_CODE (t2) == INTEGER_CST
4887 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4888 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4889 return 1;
4890
4891 return 0;
4892 }
4893
4894 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4895 The precise way of comparison depends on their data type. */
4896
4897 int
4898 tree_int_cst_lt (const_tree t1, const_tree t2)
4899 {
4900 if (t1 == t2)
4901 return 0;
4902
4903 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
4904 {
4905 int t1_sgn = tree_int_cst_sgn (t1);
4906 int t2_sgn = tree_int_cst_sgn (t2);
4907
4908 if (t1_sgn < t2_sgn)
4909 return 1;
4910 else if (t1_sgn > t2_sgn)
4911 return 0;
4912 /* Otherwise, both are non-negative, so we compare them as
4913 unsigned just in case one of them would overflow a signed
4914 type. */
4915 }
4916 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
4917 return INT_CST_LT (t1, t2);
4918
4919 return INT_CST_LT_UNSIGNED (t1, t2);
4920 }
4921
4922 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
4923
4924 int
4925 tree_int_cst_compare (const_tree t1, const_tree t2)
4926 {
4927 if (tree_int_cst_lt (t1, t2))
4928 return -1;
4929 else if (tree_int_cst_lt (t2, t1))
4930 return 1;
4931 else
4932 return 0;
4933 }
4934
4935 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
4936 the host. If POS is zero, the value can be represented in a single
4937 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
4938 be represented in a single unsigned HOST_WIDE_INT. */
4939
4940 int
4941 host_integerp (const_tree t, int pos)
4942 {
4943 return (TREE_CODE (t) == INTEGER_CST
4944 && ((TREE_INT_CST_HIGH (t) == 0
4945 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4946 || (! pos && TREE_INT_CST_HIGH (t) == -1
4947 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
4948 && (!TYPE_UNSIGNED (TREE_TYPE (t))
4949 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
4950 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
4951 || (pos && TREE_INT_CST_HIGH (t) == 0)));
4952 }
4953
4954 /* Return the HOST_WIDE_INT least significant bits of T if it is an
4955 INTEGER_CST and there is no overflow. POS is nonzero if the result must
4956 be non-negative. We must be able to satisfy the above conditions. */
4957
4958 HOST_WIDE_INT
4959 tree_low_cst (const_tree t, int pos)
4960 {
4961 gcc_assert (host_integerp (t, pos));
4962 return TREE_INT_CST_LOW (t);
4963 }
4964
4965 /* Return the most significant bit of the integer constant T. */
4966
4967 int
4968 tree_int_cst_msb (const_tree t)
4969 {
4970 int prec;
4971 HOST_WIDE_INT h;
4972 unsigned HOST_WIDE_INT l;
4973
4974 /* Note that using TYPE_PRECISION here is wrong. We care about the
4975 actual bits, not the (arbitrary) range of the type. */
4976 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
4977 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
4978 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
4979 return (l & 1) == 1;
4980 }
4981
4982 /* Return an indication of the sign of the integer constant T.
4983 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
4984 Note that -1 will never be returned if T's type is unsigned. */
4985
4986 int
4987 tree_int_cst_sgn (const_tree t)
4988 {
4989 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4990 return 0;
4991 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
4992 return 1;
4993 else if (TREE_INT_CST_HIGH (t) < 0)
4994 return -1;
4995 else
4996 return 1;
4997 }
4998
4999 /* Compare two constructor-element-type constants. Return 1 if the lists
5000 are known to be equal; otherwise return 0. */
5001
5002 int
5003 simple_cst_list_equal (const_tree l1, const_tree l2)
5004 {
5005 while (l1 != NULL_TREE && l2 != NULL_TREE)
5006 {
5007 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
5008 return 0;
5009
5010 l1 = TREE_CHAIN (l1);
5011 l2 = TREE_CHAIN (l2);
5012 }
5013
5014 return l1 == l2;
5015 }
5016
5017 /* Return truthvalue of whether T1 is the same tree structure as T2.
5018 Return 1 if they are the same.
5019 Return 0 if they are understandably different.
5020 Return -1 if either contains tree structure not understood by
5021 this function. */
5022
5023 int
5024 simple_cst_equal (const_tree t1, const_tree t2)
5025 {
5026 enum tree_code code1, code2;
5027 int cmp;
5028 int i;
5029
5030 if (t1 == t2)
5031 return 1;
5032 if (t1 == 0 || t2 == 0)
5033 return 0;
5034
5035 code1 = TREE_CODE (t1);
5036 code2 = TREE_CODE (t2);
5037
5038 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
5039 {
5040 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
5041 || code2 == NON_LVALUE_EXPR)
5042 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5043 else
5044 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
5045 }
5046
5047 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
5048 || code2 == NON_LVALUE_EXPR)
5049 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
5050
5051 if (code1 != code2)
5052 return 0;
5053
5054 switch (code1)
5055 {
5056 case INTEGER_CST:
5057 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
5058 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
5059
5060 case REAL_CST:
5061 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
5062
5063 case FIXED_CST:
5064 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
5065
5066 case STRING_CST:
5067 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
5068 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
5069 TREE_STRING_LENGTH (t1)));
5070
5071 case CONSTRUCTOR:
5072 {
5073 unsigned HOST_WIDE_INT idx;
5074 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
5075 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
5076
5077 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
5078 return false;
5079
5080 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
5081 /* ??? Should we handle also fields here? */
5082 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
5083 VEC_index (constructor_elt, v2, idx)->value))
5084 return false;
5085 return true;
5086 }
5087
5088 case SAVE_EXPR:
5089 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5090
5091 case CALL_EXPR:
5092 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
5093 if (cmp <= 0)
5094 return cmp;
5095 if (call_expr_nargs (t1) != call_expr_nargs (t2))
5096 return 0;
5097 {
5098 const_tree arg1, arg2;
5099 const_call_expr_arg_iterator iter1, iter2;
5100 for (arg1 = first_const_call_expr_arg (t1, &iter1),
5101 arg2 = first_const_call_expr_arg (t2, &iter2);
5102 arg1 && arg2;
5103 arg1 = next_const_call_expr_arg (&iter1),
5104 arg2 = next_const_call_expr_arg (&iter2))
5105 {
5106 cmp = simple_cst_equal (arg1, arg2);
5107 if (cmp <= 0)
5108 return cmp;
5109 }
5110 return arg1 == arg2;
5111 }
5112
5113 case TARGET_EXPR:
5114 /* Special case: if either target is an unallocated VAR_DECL,
5115 it means that it's going to be unified with whatever the
5116 TARGET_EXPR is really supposed to initialize, so treat it
5117 as being equivalent to anything. */
5118 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
5119 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
5120 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
5121 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
5122 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
5123 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
5124 cmp = 1;
5125 else
5126 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5127
5128 if (cmp <= 0)
5129 return cmp;
5130
5131 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
5132
5133 case WITH_CLEANUP_EXPR:
5134 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5135 if (cmp <= 0)
5136 return cmp;
5137
5138 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
5139
5140 case COMPONENT_REF:
5141 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
5142 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5143
5144 return 0;
5145
5146 case VAR_DECL:
5147 case PARM_DECL:
5148 case CONST_DECL:
5149 case FUNCTION_DECL:
5150 return 0;
5151
5152 default:
5153 break;
5154 }
5155
5156 /* This general rule works for most tree codes. All exceptions should be
5157 handled above. If this is a language-specific tree code, we can't
5158 trust what might be in the operand, so say we don't know
5159 the situation. */
5160 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
5161 return -1;
5162
5163 switch (TREE_CODE_CLASS (code1))
5164 {
5165 case tcc_unary:
5166 case tcc_binary:
5167 case tcc_comparison:
5168 case tcc_expression:
5169 case tcc_reference:
5170 case tcc_statement:
5171 cmp = 1;
5172 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
5173 {
5174 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
5175 if (cmp <= 0)
5176 return cmp;
5177 }
5178
5179 return cmp;
5180
5181 default:
5182 return -1;
5183 }
5184 }
5185
5186 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
5187 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
5188 than U, respectively. */
5189
5190 int
5191 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
5192 {
5193 if (tree_int_cst_sgn (t) < 0)
5194 return -1;
5195 else if (TREE_INT_CST_HIGH (t) != 0)
5196 return 1;
5197 else if (TREE_INT_CST_LOW (t) == u)
5198 return 0;
5199 else if (TREE_INT_CST_LOW (t) < u)
5200 return -1;
5201 else
5202 return 1;
5203 }
5204
5205 /* Return true if CODE represents an associative tree code. Otherwise
5206 return false. */
5207 bool
5208 associative_tree_code (enum tree_code code)
5209 {
5210 switch (code)
5211 {
5212 case BIT_IOR_EXPR:
5213 case BIT_AND_EXPR:
5214 case BIT_XOR_EXPR:
5215 case PLUS_EXPR:
5216 case MULT_EXPR:
5217 case MIN_EXPR:
5218 case MAX_EXPR:
5219 return true;
5220
5221 default:
5222 break;
5223 }
5224 return false;
5225 }
5226
5227 /* Return true if CODE represents a commutative tree code. Otherwise
5228 return false. */
5229 bool
5230 commutative_tree_code (enum tree_code code)
5231 {
5232 switch (code)
5233 {
5234 case PLUS_EXPR:
5235 case MULT_EXPR:
5236 case MIN_EXPR:
5237 case MAX_EXPR:
5238 case BIT_IOR_EXPR:
5239 case BIT_XOR_EXPR:
5240 case BIT_AND_EXPR:
5241 case NE_EXPR:
5242 case EQ_EXPR:
5243 case UNORDERED_EXPR:
5244 case ORDERED_EXPR:
5245 case UNEQ_EXPR:
5246 case LTGT_EXPR:
5247 case TRUTH_AND_EXPR:
5248 case TRUTH_XOR_EXPR:
5249 case TRUTH_OR_EXPR:
5250 return true;
5251
5252 default:
5253 break;
5254 }
5255 return false;
5256 }
5257
5258 /* Generate a hash value for an expression. This can be used iteratively
5259 by passing a previous result as the "val" argument.
5260
5261 This function is intended to produce the same hash for expressions which
5262 would compare equal using operand_equal_p. */
5263
5264 hashval_t
5265 iterative_hash_expr (const_tree t, hashval_t val)
5266 {
5267 int i;
5268 enum tree_code code;
5269 char class;
5270
5271 if (t == NULL_TREE)
5272 return iterative_hash_pointer (t, val);
5273
5274 code = TREE_CODE (t);
5275
5276 switch (code)
5277 {
5278 /* Alas, constants aren't shared, so we can't rely on pointer
5279 identity. */
5280 case INTEGER_CST:
5281 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
5282 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
5283 case REAL_CST:
5284 {
5285 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
5286
5287 return iterative_hash_hashval_t (val2, val);
5288 }
5289 case FIXED_CST:
5290 {
5291 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
5292
5293 return iterative_hash_hashval_t (val2, val);
5294 }
5295 case STRING_CST:
5296 return iterative_hash (TREE_STRING_POINTER (t),
5297 TREE_STRING_LENGTH (t), val);
5298 case COMPLEX_CST:
5299 val = iterative_hash_expr (TREE_REALPART (t), val);
5300 return iterative_hash_expr (TREE_IMAGPART (t), val);
5301 case VECTOR_CST:
5302 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
5303
5304 case SSA_NAME:
5305 case VALUE_HANDLE:
5306 /* we can just compare by pointer. */
5307 return iterative_hash_pointer (t, val);
5308
5309 case TREE_LIST:
5310 /* A list of expressions, for a CALL_EXPR or as the elements of a
5311 VECTOR_CST. */
5312 for (; t; t = TREE_CHAIN (t))
5313 val = iterative_hash_expr (TREE_VALUE (t), val);
5314 return val;
5315 case CONSTRUCTOR:
5316 {
5317 unsigned HOST_WIDE_INT idx;
5318 tree field, value;
5319 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
5320 {
5321 val = iterative_hash_expr (field, val);
5322 val = iterative_hash_expr (value, val);
5323 }
5324 return val;
5325 }
5326 case FUNCTION_DECL:
5327 /* When referring to a built-in FUNCTION_DECL, use the
5328 __builtin__ form. Otherwise nodes that compare equal
5329 according to operand_equal_p might get different
5330 hash codes. */
5331 if (DECL_BUILT_IN (t))
5332 {
5333 val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
5334 val);
5335 return val;
5336 }
5337 /* else FALL THROUGH */
5338 default:
5339 class = TREE_CODE_CLASS (code);
5340
5341 if (class == tcc_declaration)
5342 {
5343 /* DECL's have a unique ID */
5344 val = iterative_hash_host_wide_int (DECL_UID (t), val);
5345 }
5346 else
5347 {
5348 gcc_assert (IS_EXPR_CODE_CLASS (class));
5349
5350 val = iterative_hash_object (code, val);
5351
5352 /* Don't hash the type, that can lead to having nodes which
5353 compare equal according to operand_equal_p, but which
5354 have different hash codes. */
5355 if (code == NOP_EXPR
5356 || code == CONVERT_EXPR
5357 || code == NON_LVALUE_EXPR)
5358 {
5359 /* Make sure to include signness in the hash computation. */
5360 val += TYPE_UNSIGNED (TREE_TYPE (t));
5361 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
5362 }
5363
5364 else if (commutative_tree_code (code))
5365 {
5366 /* It's a commutative expression. We want to hash it the same
5367 however it appears. We do this by first hashing both operands
5368 and then rehashing based on the order of their independent
5369 hashes. */
5370 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
5371 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
5372 hashval_t t;
5373
5374 if (one > two)
5375 t = one, one = two, two = t;
5376
5377 val = iterative_hash_hashval_t (one, val);
5378 val = iterative_hash_hashval_t (two, val);
5379 }
5380 else
5381 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
5382 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
5383 }
5384 return val;
5385 break;
5386 }
5387 }
5388 \f
5389 /* Constructors for pointer, array and function types.
5390 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
5391 constructed by language-dependent code, not here.) */
5392
5393 /* Construct, lay out and return the type of pointers to TO_TYPE with
5394 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
5395 reference all of memory. If such a type has already been
5396 constructed, reuse it. */
5397
5398 tree
5399 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
5400 bool can_alias_all)
5401 {
5402 tree t;
5403
5404 if (to_type == error_mark_node)
5405 return error_mark_node;
5406
5407 /* In some cases, languages will have things that aren't a POINTER_TYPE
5408 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
5409 In that case, return that type without regard to the rest of our
5410 operands.
5411
5412 ??? This is a kludge, but consistent with the way this function has
5413 always operated and there doesn't seem to be a good way to avoid this
5414 at the moment. */
5415 if (TYPE_POINTER_TO (to_type) != 0
5416 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
5417 return TYPE_POINTER_TO (to_type);
5418
5419 /* First, if we already have a type for pointers to TO_TYPE and it's
5420 the proper mode, use it. */
5421 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
5422 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5423 return t;
5424
5425 t = make_node (POINTER_TYPE);
5426
5427 TREE_TYPE (t) = to_type;
5428 TYPE_MODE (t) = mode;
5429 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5430 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
5431 TYPE_POINTER_TO (to_type) = t;
5432
5433 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5434 SET_TYPE_STRUCTURAL_EQUALITY (t);
5435 else if (TYPE_CANONICAL (to_type) != to_type)
5436 TYPE_CANONICAL (t)
5437 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
5438 mode, can_alias_all);
5439
5440 /* Lay out the type. This function has many callers that are concerned
5441 with expression-construction, and this simplifies them all. */
5442 layout_type (t);
5443
5444 return t;
5445 }
5446
5447 /* By default build pointers in ptr_mode. */
5448
5449 tree
5450 build_pointer_type (tree to_type)
5451 {
5452 return build_pointer_type_for_mode (to_type, ptr_mode, false);
5453 }
5454
5455 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
5456
5457 tree
5458 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
5459 bool can_alias_all)
5460 {
5461 tree t;
5462
5463 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
5464 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
5465 In that case, return that type without regard to the rest of our
5466 operands.
5467
5468 ??? This is a kludge, but consistent with the way this function has
5469 always operated and there doesn't seem to be a good way to avoid this
5470 at the moment. */
5471 if (TYPE_REFERENCE_TO (to_type) != 0
5472 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
5473 return TYPE_REFERENCE_TO (to_type);
5474
5475 /* First, if we already have a type for pointers to TO_TYPE and it's
5476 the proper mode, use it. */
5477 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
5478 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5479 return t;
5480
5481 t = make_node (REFERENCE_TYPE);
5482
5483 TREE_TYPE (t) = to_type;
5484 TYPE_MODE (t) = mode;
5485 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5486 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
5487 TYPE_REFERENCE_TO (to_type) = t;
5488
5489 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5490 SET_TYPE_STRUCTURAL_EQUALITY (t);
5491 else if (TYPE_CANONICAL (to_type) != to_type)
5492 TYPE_CANONICAL (t)
5493 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
5494 mode, can_alias_all);
5495
5496 layout_type (t);
5497
5498 return t;
5499 }
5500
5501
5502 /* Build the node for the type of references-to-TO_TYPE by default
5503 in ptr_mode. */
5504
5505 tree
5506 build_reference_type (tree to_type)
5507 {
5508 return build_reference_type_for_mode (to_type, ptr_mode, false);
5509 }
5510
5511 /* Build a type that is compatible with t but has no cv quals anywhere
5512 in its type, thus
5513
5514 const char *const *const * -> char ***. */
5515
5516 tree
5517 build_type_no_quals (tree t)
5518 {
5519 switch (TREE_CODE (t))
5520 {
5521 case POINTER_TYPE:
5522 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5523 TYPE_MODE (t),
5524 TYPE_REF_CAN_ALIAS_ALL (t));
5525 case REFERENCE_TYPE:
5526 return
5527 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5528 TYPE_MODE (t),
5529 TYPE_REF_CAN_ALIAS_ALL (t));
5530 default:
5531 return TYPE_MAIN_VARIANT (t);
5532 }
5533 }
5534
5535 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
5536 MAXVAL should be the maximum value in the domain
5537 (one less than the length of the array).
5538
5539 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
5540 We don't enforce this limit, that is up to caller (e.g. language front end).
5541 The limit exists because the result is a signed type and we don't handle
5542 sizes that use more than one HOST_WIDE_INT. */
5543
5544 tree
5545 build_index_type (tree maxval)
5546 {
5547 tree itype = make_node (INTEGER_TYPE);
5548
5549 TREE_TYPE (itype) = sizetype;
5550 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
5551 TYPE_MIN_VALUE (itype) = size_zero_node;
5552 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
5553 TYPE_MODE (itype) = TYPE_MODE (sizetype);
5554 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
5555 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
5556 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
5557 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
5558
5559 if (host_integerp (maxval, 1))
5560 return type_hash_canon (tree_low_cst (maxval, 1), itype);
5561 else
5562 {
5563 /* Since we cannot hash this type, we need to compare it using
5564 structural equality checks. */
5565 SET_TYPE_STRUCTURAL_EQUALITY (itype);
5566 return itype;
5567 }
5568 }
5569
5570 /* Builds a signed or unsigned integer type of precision PRECISION.
5571 Used for C bitfields whose precision does not match that of
5572 built-in target types. */
5573 tree
5574 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
5575 int unsignedp)
5576 {
5577 tree itype = make_node (INTEGER_TYPE);
5578
5579 TYPE_PRECISION (itype) = precision;
5580
5581 if (unsignedp)
5582 fixup_unsigned_type (itype);
5583 else
5584 fixup_signed_type (itype);
5585
5586 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
5587 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
5588
5589 return itype;
5590 }
5591
5592 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
5593 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
5594 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
5595
5596 tree
5597 build_range_type (tree type, tree lowval, tree highval)
5598 {
5599 tree itype = make_node (INTEGER_TYPE);
5600
5601 TREE_TYPE (itype) = type;
5602 if (type == NULL_TREE)
5603 type = sizetype;
5604
5605 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
5606 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
5607
5608 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
5609 TYPE_MODE (itype) = TYPE_MODE (type);
5610 TYPE_SIZE (itype) = TYPE_SIZE (type);
5611 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
5612 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
5613 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
5614
5615 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
5616 return type_hash_canon (tree_low_cst (highval, 0)
5617 - tree_low_cst (lowval, 0),
5618 itype);
5619 else
5620 return itype;
5621 }
5622
5623 /* Just like build_index_type, but takes lowval and highval instead
5624 of just highval (maxval). */
5625
5626 tree
5627 build_index_2_type (tree lowval, tree highval)
5628 {
5629 return build_range_type (sizetype, lowval, highval);
5630 }
5631
5632 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
5633 and number of elements specified by the range of values of INDEX_TYPE.
5634 If such a type has already been constructed, reuse it. */
5635
5636 tree
5637 build_array_type (tree elt_type, tree index_type)
5638 {
5639 tree t;
5640 hashval_t hashcode = 0;
5641
5642 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
5643 {
5644 error ("arrays of functions are not meaningful");
5645 elt_type = integer_type_node;
5646 }
5647
5648 t = make_node (ARRAY_TYPE);
5649 TREE_TYPE (t) = elt_type;
5650 TYPE_DOMAIN (t) = index_type;
5651
5652 if (index_type == 0)
5653 {
5654 tree save = t;
5655 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5656 t = type_hash_canon (hashcode, t);
5657 if (save == t)
5658 layout_type (t);
5659
5660 if (TYPE_CANONICAL (t) == t)
5661 {
5662 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type))
5663 SET_TYPE_STRUCTURAL_EQUALITY (t);
5664 else if (TYPE_CANONICAL (elt_type) != elt_type)
5665 TYPE_CANONICAL (t)
5666 = build_array_type (TYPE_CANONICAL (elt_type), index_type);
5667 }
5668
5669 return t;
5670 }
5671
5672 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5673 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
5674 t = type_hash_canon (hashcode, t);
5675
5676 if (!COMPLETE_TYPE_P (t))
5677 layout_type (t);
5678
5679 if (TYPE_CANONICAL (t) == t)
5680 {
5681 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
5682 || TYPE_STRUCTURAL_EQUALITY_P (index_type))
5683 SET_TYPE_STRUCTURAL_EQUALITY (t);
5684 else if (TYPE_CANONICAL (elt_type) != elt_type
5685 || TYPE_CANONICAL (index_type) != index_type)
5686 TYPE_CANONICAL (t)
5687 = build_array_type (TYPE_CANONICAL (elt_type),
5688 TYPE_CANONICAL (index_type));
5689 }
5690
5691 return t;
5692 }
5693
5694 /* Return the TYPE of the elements comprising
5695 the innermost dimension of ARRAY. */
5696
5697 tree
5698 get_inner_array_type (const_tree array)
5699 {
5700 tree type = TREE_TYPE (array);
5701
5702 while (TREE_CODE (type) == ARRAY_TYPE)
5703 type = TREE_TYPE (type);
5704
5705 return type;
5706 }
5707
5708 /* Computes the canonical argument types from the argument type list
5709 ARGTYPES.
5710
5711 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
5712 on entry to this function, or if any of the ARGTYPES are
5713 structural.
5714
5715 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
5716 true on entry to this function, or if any of the ARGTYPES are
5717 non-canonical.
5718
5719 Returns a canonical argument list, which may be ARGTYPES when the
5720 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
5721 true) or would not differ from ARGTYPES. */
5722
5723 static tree
5724 maybe_canonicalize_argtypes(tree argtypes,
5725 bool *any_structural_p,
5726 bool *any_noncanonical_p)
5727 {
5728 tree arg;
5729 bool any_noncanonical_argtypes_p = false;
5730
5731 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
5732 {
5733 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
5734 /* Fail gracefully by stating that the type is structural. */
5735 *any_structural_p = true;
5736 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
5737 *any_structural_p = true;
5738 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
5739 || TREE_PURPOSE (arg))
5740 /* If the argument has a default argument, we consider it
5741 non-canonical even though the type itself is canonical.
5742 That way, different variants of function and method types
5743 with default arguments will all point to the variant with
5744 no defaults as their canonical type. */
5745 any_noncanonical_argtypes_p = true;
5746 }
5747
5748 if (*any_structural_p)
5749 return argtypes;
5750
5751 if (any_noncanonical_argtypes_p)
5752 {
5753 /* Build the canonical list of argument types. */
5754 tree canon_argtypes = NULL_TREE;
5755 bool is_void = false;
5756
5757 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
5758 {
5759 if (arg == void_list_node)
5760 is_void = true;
5761 else
5762 canon_argtypes = tree_cons (NULL_TREE,
5763 TYPE_CANONICAL (TREE_VALUE (arg)),
5764 canon_argtypes);
5765 }
5766
5767 canon_argtypes = nreverse (canon_argtypes);
5768 if (is_void)
5769 canon_argtypes = chainon (canon_argtypes, void_list_node);
5770
5771 /* There is a non-canonical type. */
5772 *any_noncanonical_p = true;
5773 return canon_argtypes;
5774 }
5775
5776 /* The canonical argument types are the same as ARGTYPES. */
5777 return argtypes;
5778 }
5779
5780 /* Construct, lay out and return
5781 the type of functions returning type VALUE_TYPE
5782 given arguments of types ARG_TYPES.
5783 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
5784 are data type nodes for the arguments of the function.
5785 If such a type has already been constructed, reuse it. */
5786
5787 tree
5788 build_function_type (tree value_type, tree arg_types)
5789 {
5790 tree t;
5791 hashval_t hashcode = 0;
5792 bool any_structural_p, any_noncanonical_p;
5793 tree canon_argtypes;
5794
5795 if (TREE_CODE (value_type) == FUNCTION_TYPE)
5796 {
5797 error ("function return type cannot be function");
5798 value_type = integer_type_node;
5799 }
5800
5801 /* Make a node of the sort we want. */
5802 t = make_node (FUNCTION_TYPE);
5803 TREE_TYPE (t) = value_type;
5804 TYPE_ARG_TYPES (t) = arg_types;
5805
5806 /* If we already have such a type, use the old one. */
5807 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
5808 hashcode = type_hash_list (arg_types, hashcode);
5809 t = type_hash_canon (hashcode, t);
5810
5811 /* Set up the canonical type. */
5812 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
5813 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
5814 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
5815 &any_structural_p,
5816 &any_noncanonical_p);
5817 if (any_structural_p)
5818 SET_TYPE_STRUCTURAL_EQUALITY (t);
5819 else if (any_noncanonical_p)
5820 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
5821 canon_argtypes);
5822
5823 if (!COMPLETE_TYPE_P (t))
5824 layout_type (t);
5825 return t;
5826 }
5827
5828 /* Build a function type. The RETURN_TYPE is the type returned by the
5829 function. If additional arguments are provided, they are
5830 additional argument types. The list of argument types must always
5831 be terminated by NULL_TREE. */
5832
5833 tree
5834 build_function_type_list (tree return_type, ...)
5835 {
5836 tree t, args, last;
5837 va_list p;
5838
5839 va_start (p, return_type);
5840
5841 t = va_arg (p, tree);
5842 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
5843 args = tree_cons (NULL_TREE, t, args);
5844
5845 if (args == NULL_TREE)
5846 args = void_list_node;
5847 else
5848 {
5849 last = args;
5850 args = nreverse (args);
5851 TREE_CHAIN (last) = void_list_node;
5852 }
5853 args = build_function_type (return_type, args);
5854
5855 va_end (p);
5856 return args;
5857 }
5858
5859 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
5860 and ARGTYPES (a TREE_LIST) are the return type and arguments types
5861 for the method. An implicit additional parameter (of type
5862 pointer-to-BASETYPE) is added to the ARGTYPES. */
5863
5864 tree
5865 build_method_type_directly (tree basetype,
5866 tree rettype,
5867 tree argtypes)
5868 {
5869 tree t;
5870 tree ptype;
5871 int hashcode = 0;
5872 bool any_structural_p, any_noncanonical_p;
5873 tree canon_argtypes;
5874
5875 /* Make a node of the sort we want. */
5876 t = make_node (METHOD_TYPE);
5877
5878 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5879 TREE_TYPE (t) = rettype;
5880 ptype = build_pointer_type (basetype);
5881
5882 /* The actual arglist for this function includes a "hidden" argument
5883 which is "this". Put it into the list of argument types. */
5884 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
5885 TYPE_ARG_TYPES (t) = argtypes;
5886
5887 /* If we already have such a type, use the old one. */
5888 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5889 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
5890 hashcode = type_hash_list (argtypes, hashcode);
5891 t = type_hash_canon (hashcode, t);
5892
5893 /* Set up the canonical type. */
5894 any_structural_p
5895 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
5896 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
5897 any_noncanonical_p
5898 = (TYPE_CANONICAL (basetype) != basetype
5899 || TYPE_CANONICAL (rettype) != rettype);
5900 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
5901 &any_structural_p,
5902 &any_noncanonical_p);
5903 if (any_structural_p)
5904 SET_TYPE_STRUCTURAL_EQUALITY (t);
5905 else if (any_noncanonical_p)
5906 TYPE_CANONICAL (t)
5907 = build_method_type_directly (TYPE_CANONICAL (basetype),
5908 TYPE_CANONICAL (rettype),
5909 canon_argtypes);
5910 if (!COMPLETE_TYPE_P (t))
5911 layout_type (t);
5912
5913 return t;
5914 }
5915
5916 /* Construct, lay out and return the type of methods belonging to class
5917 BASETYPE and whose arguments and values are described by TYPE.
5918 If that type exists already, reuse it.
5919 TYPE must be a FUNCTION_TYPE node. */
5920
5921 tree
5922 build_method_type (tree basetype, tree type)
5923 {
5924 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
5925
5926 return build_method_type_directly (basetype,
5927 TREE_TYPE (type),
5928 TYPE_ARG_TYPES (type));
5929 }
5930
5931 /* Construct, lay out and return the type of offsets to a value
5932 of type TYPE, within an object of type BASETYPE.
5933 If a suitable offset type exists already, reuse it. */
5934
5935 tree
5936 build_offset_type (tree basetype, tree type)
5937 {
5938 tree t;
5939 hashval_t hashcode = 0;
5940
5941 /* Make a node of the sort we want. */
5942 t = make_node (OFFSET_TYPE);
5943
5944 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5945 TREE_TYPE (t) = type;
5946
5947 /* If we already have such a type, use the old one. */
5948 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5949 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
5950 t = type_hash_canon (hashcode, t);
5951
5952 if (!COMPLETE_TYPE_P (t))
5953 layout_type (t);
5954
5955 if (TYPE_CANONICAL (t) == t)
5956 {
5957 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
5958 || TYPE_STRUCTURAL_EQUALITY_P (type))
5959 SET_TYPE_STRUCTURAL_EQUALITY (t);
5960 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
5961 || TYPE_CANONICAL (type) != type)
5962 TYPE_CANONICAL (t)
5963 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
5964 TYPE_CANONICAL (type));
5965 }
5966
5967 return t;
5968 }
5969
5970 /* Create a complex type whose components are COMPONENT_TYPE. */
5971
5972 tree
5973 build_complex_type (tree component_type)
5974 {
5975 tree t;
5976 hashval_t hashcode;
5977
5978 /* Make a node of the sort we want. */
5979 t = make_node (COMPLEX_TYPE);
5980
5981 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
5982
5983 /* If we already have such a type, use the old one. */
5984 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
5985 t = type_hash_canon (hashcode, t);
5986
5987 if (!COMPLETE_TYPE_P (t))
5988 layout_type (t);
5989
5990 if (TYPE_CANONICAL (t) == t)
5991 {
5992 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
5993 SET_TYPE_STRUCTURAL_EQUALITY (t);
5994 else if (TYPE_CANONICAL (component_type) != component_type)
5995 TYPE_CANONICAL (t)
5996 = build_complex_type (TYPE_CANONICAL (component_type));
5997 }
5998
5999 /* We need to create a name, since complex is a fundamental type. */
6000 if (! TYPE_NAME (t))
6001 {
6002 const char *name;
6003 if (component_type == char_type_node)
6004 name = "complex char";
6005 else if (component_type == signed_char_type_node)
6006 name = "complex signed char";
6007 else if (component_type == unsigned_char_type_node)
6008 name = "complex unsigned char";
6009 else if (component_type == short_integer_type_node)
6010 name = "complex short int";
6011 else if (component_type == short_unsigned_type_node)
6012 name = "complex short unsigned int";
6013 else if (component_type == integer_type_node)
6014 name = "complex int";
6015 else if (component_type == unsigned_type_node)
6016 name = "complex unsigned int";
6017 else if (component_type == long_integer_type_node)
6018 name = "complex long int";
6019 else if (component_type == long_unsigned_type_node)
6020 name = "complex long unsigned int";
6021 else if (component_type == long_long_integer_type_node)
6022 name = "complex long long int";
6023 else if (component_type == long_long_unsigned_type_node)
6024 name = "complex long long unsigned int";
6025 else
6026 name = 0;
6027
6028 if (name != 0)
6029 TYPE_NAME (t) = build_decl (TYPE_DECL, get_identifier (name), t);
6030 }
6031
6032 return build_qualified_type (t, TYPE_QUALS (component_type));
6033 }
6034 \f
6035 /* Return OP, stripped of any conversions to wider types as much as is safe.
6036 Converting the value back to OP's type makes a value equivalent to OP.
6037
6038 If FOR_TYPE is nonzero, we return a value which, if converted to
6039 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
6040
6041 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
6042 narrowest type that can hold the value, even if they don't exactly fit.
6043 Otherwise, bit-field references are changed to a narrower type
6044 only if they can be fetched directly from memory in that type.
6045
6046 OP must have integer, real or enumeral type. Pointers are not allowed!
6047
6048 There are some cases where the obvious value we could return
6049 would regenerate to OP if converted to OP's type,
6050 but would not extend like OP to wider types.
6051 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
6052 For example, if OP is (unsigned short)(signed char)-1,
6053 we avoid returning (signed char)-1 if FOR_TYPE is int,
6054 even though extending that to an unsigned short would regenerate OP,
6055 since the result of extending (signed char)-1 to (int)
6056 is different from (int) OP. */
6057
6058 tree
6059 get_unwidened (tree op, tree for_type)
6060 {
6061 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
6062 tree type = TREE_TYPE (op);
6063 unsigned final_prec
6064 = TYPE_PRECISION (for_type != 0 ? for_type : type);
6065 int uns
6066 = (for_type != 0 && for_type != type
6067 && final_prec > TYPE_PRECISION (type)
6068 && TYPE_UNSIGNED (type));
6069 tree win = op;
6070
6071 while (TREE_CODE (op) == NOP_EXPR
6072 || TREE_CODE (op) == CONVERT_EXPR)
6073 {
6074 int bitschange;
6075
6076 /* TYPE_PRECISION on vector types has different meaning
6077 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
6078 so avoid them here. */
6079 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
6080 break;
6081
6082 bitschange = TYPE_PRECISION (TREE_TYPE (op))
6083 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
6084
6085 /* Truncations are many-one so cannot be removed.
6086 Unless we are later going to truncate down even farther. */
6087 if (bitschange < 0
6088 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
6089 break;
6090
6091 /* See what's inside this conversion. If we decide to strip it,
6092 we will set WIN. */
6093 op = TREE_OPERAND (op, 0);
6094
6095 /* If we have not stripped any zero-extensions (uns is 0),
6096 we can strip any kind of extension.
6097 If we have previously stripped a zero-extension,
6098 only zero-extensions can safely be stripped.
6099 Any extension can be stripped if the bits it would produce
6100 are all going to be discarded later by truncating to FOR_TYPE. */
6101
6102 if (bitschange > 0)
6103 {
6104 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
6105 win = op;
6106 /* TYPE_UNSIGNED says whether this is a zero-extension.
6107 Let's avoid computing it if it does not affect WIN
6108 and if UNS will not be needed again. */
6109 if ((uns
6110 || TREE_CODE (op) == NOP_EXPR
6111 || TREE_CODE (op) == CONVERT_EXPR)
6112 && TYPE_UNSIGNED (TREE_TYPE (op)))
6113 {
6114 uns = 1;
6115 win = op;
6116 }
6117 }
6118 }
6119
6120 if (TREE_CODE (op) == COMPONENT_REF
6121 /* Since type_for_size always gives an integer type. */
6122 && TREE_CODE (type) != REAL_TYPE
6123 && TREE_CODE (type) != FIXED_POINT_TYPE
6124 /* Don't crash if field not laid out yet. */
6125 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
6126 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
6127 {
6128 unsigned int innerprec
6129 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
6130 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
6131 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
6132 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
6133
6134 /* We can get this structure field in the narrowest type it fits in.
6135 If FOR_TYPE is 0, do this only for a field that matches the
6136 narrower type exactly and is aligned for it
6137 The resulting extension to its nominal type (a fullword type)
6138 must fit the same conditions as for other extensions. */
6139
6140 if (type != 0
6141 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
6142 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
6143 && (! uns || final_prec <= innerprec || unsignedp))
6144 {
6145 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
6146 TREE_OPERAND (op, 1), NULL_TREE);
6147 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
6148 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
6149 }
6150 }
6151
6152 return win;
6153 }
6154 \f
6155 /* Return OP or a simpler expression for a narrower value
6156 which can be sign-extended or zero-extended to give back OP.
6157 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
6158 or 0 if the value should be sign-extended. */
6159
6160 tree
6161 get_narrower (tree op, int *unsignedp_ptr)
6162 {
6163 int uns = 0;
6164 int first = 1;
6165 tree win = op;
6166 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
6167
6168 while (TREE_CODE (op) == NOP_EXPR)
6169 {
6170 int bitschange
6171 = (TYPE_PRECISION (TREE_TYPE (op))
6172 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
6173
6174 /* Truncations are many-one so cannot be removed. */
6175 if (bitschange < 0)
6176 break;
6177
6178 /* See what's inside this conversion. If we decide to strip it,
6179 we will set WIN. */
6180
6181 if (bitschange > 0)
6182 {
6183 op = TREE_OPERAND (op, 0);
6184 /* An extension: the outermost one can be stripped,
6185 but remember whether it is zero or sign extension. */
6186 if (first)
6187 uns = TYPE_UNSIGNED (TREE_TYPE (op));
6188 /* Otherwise, if a sign extension has been stripped,
6189 only sign extensions can now be stripped;
6190 if a zero extension has been stripped, only zero-extensions. */
6191 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
6192 break;
6193 first = 0;
6194 }
6195 else /* bitschange == 0 */
6196 {
6197 /* A change in nominal type can always be stripped, but we must
6198 preserve the unsignedness. */
6199 if (first)
6200 uns = TYPE_UNSIGNED (TREE_TYPE (op));
6201 first = 0;
6202 op = TREE_OPERAND (op, 0);
6203 /* Keep trying to narrow, but don't assign op to win if it
6204 would turn an integral type into something else. */
6205 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
6206 continue;
6207 }
6208
6209 win = op;
6210 }
6211
6212 if (TREE_CODE (op) == COMPONENT_REF
6213 /* Since type_for_size always gives an integer type. */
6214 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
6215 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
6216 /* Ensure field is laid out already. */
6217 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
6218 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
6219 {
6220 unsigned HOST_WIDE_INT innerprec
6221 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
6222 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
6223 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
6224 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
6225
6226 /* We can get this structure field in a narrower type that fits it,
6227 but the resulting extension to its nominal type (a fullword type)
6228 must satisfy the same conditions as for other extensions.
6229
6230 Do this only for fields that are aligned (not bit-fields),
6231 because when bit-field insns will be used there is no
6232 advantage in doing this. */
6233
6234 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
6235 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
6236 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
6237 && type != 0)
6238 {
6239 if (first)
6240 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
6241 win = fold_convert (type, op);
6242 }
6243 }
6244
6245 *unsignedp_ptr = uns;
6246 return win;
6247 }
6248 \f
6249 /* Nonzero if integer constant C has a value that is permissible
6250 for type TYPE (an INTEGER_TYPE). */
6251
6252 int
6253 int_fits_type_p (const_tree c, const_tree type)
6254 {
6255 tree type_low_bound = TYPE_MIN_VALUE (type);
6256 tree type_high_bound = TYPE_MAX_VALUE (type);
6257 bool ok_for_low_bound, ok_for_high_bound;
6258 unsigned HOST_WIDE_INT low;
6259 HOST_WIDE_INT high;
6260
6261 /* If at least one bound of the type is a constant integer, we can check
6262 ourselves and maybe make a decision. If no such decision is possible, but
6263 this type is a subtype, try checking against that. Otherwise, use
6264 fit_double_type, which checks against the precision.
6265
6266 Compute the status for each possibly constant bound, and return if we see
6267 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
6268 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
6269 for "constant known to fit". */
6270
6271 /* Check if C >= type_low_bound. */
6272 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
6273 {
6274 if (tree_int_cst_lt (c, type_low_bound))
6275 return 0;
6276 ok_for_low_bound = true;
6277 }
6278 else
6279 ok_for_low_bound = false;
6280
6281 /* Check if c <= type_high_bound. */
6282 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
6283 {
6284 if (tree_int_cst_lt (type_high_bound, c))
6285 return 0;
6286 ok_for_high_bound = true;
6287 }
6288 else
6289 ok_for_high_bound = false;
6290
6291 /* If the constant fits both bounds, the result is known. */
6292 if (ok_for_low_bound && ok_for_high_bound)
6293 return 1;
6294
6295 /* Perform some generic filtering which may allow making a decision
6296 even if the bounds are not constant. First, negative integers
6297 never fit in unsigned types, */
6298 if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
6299 return 0;
6300
6301 /* Second, narrower types always fit in wider ones. */
6302 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
6303 return 1;
6304
6305 /* Third, unsigned integers with top bit set never fit signed types. */
6306 if (! TYPE_UNSIGNED (type)
6307 && TYPE_UNSIGNED (TREE_TYPE (c))
6308 && tree_int_cst_msb (c))
6309 return 0;
6310
6311 /* If we haven't been able to decide at this point, there nothing more we
6312 can check ourselves here. Look at the base type if we have one and it
6313 has the same precision. */
6314 if (TREE_CODE (type) == INTEGER_TYPE
6315 && TREE_TYPE (type) != 0
6316 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
6317 return int_fits_type_p (c, TREE_TYPE (type));
6318
6319 /* Or to fit_double_type, if nothing else. */
6320 low = TREE_INT_CST_LOW (c);
6321 high = TREE_INT_CST_HIGH (c);
6322 return !fit_double_type (low, high, &low, &high, type);
6323 }
6324
6325 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
6326 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
6327 represented (assuming two's-complement arithmetic) within the bit
6328 precision of the type are returned instead. */
6329
6330 void
6331 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
6332 {
6333 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
6334 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
6335 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
6336 TYPE_UNSIGNED (type));
6337 else
6338 {
6339 if (TYPE_UNSIGNED (type))
6340 mpz_set_ui (min, 0);
6341 else
6342 {
6343 double_int mn;
6344 mn = double_int_mask (TYPE_PRECISION (type) - 1);
6345 mn = double_int_sext (double_int_add (mn, double_int_one),
6346 TYPE_PRECISION (type));
6347 mpz_set_double_int (min, mn, false);
6348 }
6349 }
6350
6351 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
6352 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
6353 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
6354 TYPE_UNSIGNED (type));
6355 else
6356 {
6357 if (TYPE_UNSIGNED (type))
6358 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
6359 true);
6360 else
6361 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
6362 true);
6363 }
6364 }
6365
6366 /* auto_var_in_fn_p is called to determine whether VAR is an automatic
6367 variable defined in function FN. */
6368
6369 bool
6370 auto_var_in_fn_p (const_tree var, const_tree fn)
6371 {
6372 return (DECL_P (var) && DECL_CONTEXT (var) == fn
6373 && (((TREE_CODE (var) == VAR_DECL || TREE_CODE (var) == PARM_DECL)
6374 && ! TREE_STATIC (var))
6375 || TREE_CODE (var) == LABEL_DECL
6376 || TREE_CODE (var) == RESULT_DECL));
6377 }
6378
6379 /* Subprogram of following function. Called by walk_tree.
6380
6381 Return *TP if it is an automatic variable or parameter of the
6382 function passed in as DATA. */
6383
6384 static tree
6385 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
6386 {
6387 tree fn = (tree) data;
6388
6389 if (TYPE_P (*tp))
6390 *walk_subtrees = 0;
6391
6392 else if (DECL_P (*tp)
6393 && auto_var_in_fn_p (*tp, fn))
6394 return *tp;
6395
6396 return NULL_TREE;
6397 }
6398
6399 /* Returns true if T is, contains, or refers to a type with variable
6400 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
6401 arguments, but not the return type. If FN is nonzero, only return
6402 true if a modifier of the type or position of FN is a variable or
6403 parameter inside FN.
6404
6405 This concept is more general than that of C99 'variably modified types':
6406 in C99, a struct type is never variably modified because a VLA may not
6407 appear as a structure member. However, in GNU C code like:
6408
6409 struct S { int i[f()]; };
6410
6411 is valid, and other languages may define similar constructs. */
6412
6413 bool
6414 variably_modified_type_p (tree type, tree fn)
6415 {
6416 tree t;
6417
6418 /* Test if T is either variable (if FN is zero) or an expression containing
6419 a variable in FN. */
6420 #define RETURN_TRUE_IF_VAR(T) \
6421 do { tree _t = (T); \
6422 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
6423 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
6424 return true; } while (0)
6425
6426 if (type == error_mark_node)
6427 return false;
6428
6429 /* If TYPE itself has variable size, it is variably modified. */
6430 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
6431 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
6432
6433 switch (TREE_CODE (type))
6434 {
6435 case POINTER_TYPE:
6436 case REFERENCE_TYPE:
6437 case VECTOR_TYPE:
6438 if (variably_modified_type_p (TREE_TYPE (type), fn))
6439 return true;
6440 break;
6441
6442 case FUNCTION_TYPE:
6443 case METHOD_TYPE:
6444 /* If TYPE is a function type, it is variably modified if the
6445 return type is variably modified. */
6446 if (variably_modified_type_p (TREE_TYPE (type), fn))
6447 return true;
6448 break;
6449
6450 case INTEGER_TYPE:
6451 case REAL_TYPE:
6452 case FIXED_POINT_TYPE:
6453 case ENUMERAL_TYPE:
6454 case BOOLEAN_TYPE:
6455 /* Scalar types are variably modified if their end points
6456 aren't constant. */
6457 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
6458 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
6459 break;
6460
6461 case RECORD_TYPE:
6462 case UNION_TYPE:
6463 case QUAL_UNION_TYPE:
6464 /* We can't see if any of the fields are variably-modified by the
6465 definition we normally use, since that would produce infinite
6466 recursion via pointers. */
6467 /* This is variably modified if some field's type is. */
6468 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
6469 if (TREE_CODE (t) == FIELD_DECL)
6470 {
6471 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
6472 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
6473 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
6474
6475 if (TREE_CODE (type) == QUAL_UNION_TYPE)
6476 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
6477 }
6478 break;
6479
6480 case ARRAY_TYPE:
6481 /* Do not call ourselves to avoid infinite recursion. This is
6482 variably modified if the element type is. */
6483 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
6484 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
6485 break;
6486
6487 default:
6488 break;
6489 }
6490
6491 /* The current language may have other cases to check, but in general,
6492 all other types are not variably modified. */
6493 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
6494
6495 #undef RETURN_TRUE_IF_VAR
6496 }
6497
6498 /* Given a DECL or TYPE, return the scope in which it was declared, or
6499 NULL_TREE if there is no containing scope. */
6500
6501 tree
6502 get_containing_scope (const_tree t)
6503 {
6504 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
6505 }
6506
6507 /* Return the innermost context enclosing DECL that is
6508 a FUNCTION_DECL, or zero if none. */
6509
6510 tree
6511 decl_function_context (const_tree decl)
6512 {
6513 tree context;
6514
6515 if (TREE_CODE (decl) == ERROR_MARK)
6516 return 0;
6517
6518 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
6519 where we look up the function at runtime. Such functions always take
6520 a first argument of type 'pointer to real context'.
6521
6522 C++ should really be fixed to use DECL_CONTEXT for the real context,
6523 and use something else for the "virtual context". */
6524 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
6525 context
6526 = TYPE_MAIN_VARIANT
6527 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
6528 else
6529 context = DECL_CONTEXT (decl);
6530
6531 while (context && TREE_CODE (context) != FUNCTION_DECL)
6532 {
6533 if (TREE_CODE (context) == BLOCK)
6534 context = BLOCK_SUPERCONTEXT (context);
6535 else
6536 context = get_containing_scope (context);
6537 }
6538
6539 return context;
6540 }
6541
6542 /* Return the innermost context enclosing DECL that is
6543 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
6544 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
6545
6546 tree
6547 decl_type_context (const_tree decl)
6548 {
6549 tree context = DECL_CONTEXT (decl);
6550
6551 while (context)
6552 switch (TREE_CODE (context))
6553 {
6554 case NAMESPACE_DECL:
6555 case TRANSLATION_UNIT_DECL:
6556 return NULL_TREE;
6557
6558 case RECORD_TYPE:
6559 case UNION_TYPE:
6560 case QUAL_UNION_TYPE:
6561 return context;
6562
6563 case TYPE_DECL:
6564 case FUNCTION_DECL:
6565 context = DECL_CONTEXT (context);
6566 break;
6567
6568 case BLOCK:
6569 context = BLOCK_SUPERCONTEXT (context);
6570 break;
6571
6572 default:
6573 gcc_unreachable ();
6574 }
6575
6576 return NULL_TREE;
6577 }
6578
6579 /* CALL is a CALL_EXPR. Return the declaration for the function
6580 called, or NULL_TREE if the called function cannot be
6581 determined. */
6582
6583 tree
6584 get_callee_fndecl (const_tree call)
6585 {
6586 tree addr;
6587
6588 if (call == error_mark_node)
6589 return error_mark_node;
6590
6591 /* It's invalid to call this function with anything but a
6592 CALL_EXPR. */
6593 gcc_assert (TREE_CODE (call) == CALL_EXPR);
6594
6595 /* The first operand to the CALL is the address of the function
6596 called. */
6597 addr = CALL_EXPR_FN (call);
6598
6599 STRIP_NOPS (addr);
6600
6601 /* If this is a readonly function pointer, extract its initial value. */
6602 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
6603 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
6604 && DECL_INITIAL (addr))
6605 addr = DECL_INITIAL (addr);
6606
6607 /* If the address is just `&f' for some function `f', then we know
6608 that `f' is being called. */
6609 if (TREE_CODE (addr) == ADDR_EXPR
6610 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
6611 return TREE_OPERAND (addr, 0);
6612
6613 /* We couldn't figure out what was being called. Maybe the front
6614 end has some idea. */
6615 return lang_hooks.lang_get_callee_fndecl (call);
6616 }
6617
6618 /* Print debugging information about tree nodes generated during the compile,
6619 and any language-specific information. */
6620
6621 void
6622 dump_tree_statistics (void)
6623 {
6624 #ifdef GATHER_STATISTICS
6625 int i;
6626 int total_nodes, total_bytes;
6627 #endif
6628
6629 fprintf (stderr, "\n??? tree nodes created\n\n");
6630 #ifdef GATHER_STATISTICS
6631 fprintf (stderr, "Kind Nodes Bytes\n");
6632 fprintf (stderr, "---------------------------------------\n");
6633 total_nodes = total_bytes = 0;
6634 for (i = 0; i < (int) all_kinds; i++)
6635 {
6636 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
6637 tree_node_counts[i], tree_node_sizes[i]);
6638 total_nodes += tree_node_counts[i];
6639 total_bytes += tree_node_sizes[i];
6640 }
6641 fprintf (stderr, "---------------------------------------\n");
6642 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
6643 fprintf (stderr, "---------------------------------------\n");
6644 ssanames_print_statistics ();
6645 phinodes_print_statistics ();
6646 #else
6647 fprintf (stderr, "(No per-node statistics)\n");
6648 #endif
6649 print_type_hash_statistics ();
6650 print_debug_expr_statistics ();
6651 print_value_expr_statistics ();
6652 print_restrict_base_statistics ();
6653 lang_hooks.print_statistics ();
6654 }
6655 \f
6656 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
6657
6658 /* Generate a crc32 of a string. */
6659
6660 unsigned
6661 crc32_string (unsigned chksum, const char *string)
6662 {
6663 do
6664 {
6665 unsigned value = *string << 24;
6666 unsigned ix;
6667
6668 for (ix = 8; ix--; value <<= 1)
6669 {
6670 unsigned feedback;
6671
6672 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
6673 chksum <<= 1;
6674 chksum ^= feedback;
6675 }
6676 }
6677 while (*string++);
6678 return chksum;
6679 }
6680
6681 /* P is a string that will be used in a symbol. Mask out any characters
6682 that are not valid in that context. */
6683
6684 void
6685 clean_symbol_name (char *p)
6686 {
6687 for (; *p; p++)
6688 if (! (ISALNUM (*p)
6689 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
6690 || *p == '$'
6691 #endif
6692 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
6693 || *p == '.'
6694 #endif
6695 ))
6696 *p = '_';
6697 }
6698
6699 /* Generate a name for a special-purpose function function.
6700 The generated name may need to be unique across the whole link.
6701 TYPE is some string to identify the purpose of this function to the
6702 linker or collect2; it must start with an uppercase letter,
6703 one of:
6704 I - for constructors
6705 D - for destructors
6706 N - for C++ anonymous namespaces
6707 F - for DWARF unwind frame information. */
6708
6709 tree
6710 get_file_function_name (const char *type)
6711 {
6712 char *buf;
6713 const char *p;
6714 char *q;
6715
6716 /* If we already have a name we know to be unique, just use that. */
6717 if (first_global_object_name)
6718 p = first_global_object_name;
6719 /* If the target is handling the constructors/destructors, they
6720 will be local to this file and the name is only necessary for
6721 debugging purposes. */
6722 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
6723 {
6724 const char *file = main_input_filename;
6725 if (! file)
6726 file = input_filename;
6727 /* Just use the file's basename, because the full pathname
6728 might be quite long. */
6729 p = strrchr (file, '/');
6730 if (p)
6731 p++;
6732 else
6733 p = file;
6734 p = q = ASTRDUP (p);
6735 clean_symbol_name (q);
6736 }
6737 else
6738 {
6739 /* Otherwise, the name must be unique across the entire link.
6740 We don't have anything that we know to be unique to this translation
6741 unit, so use what we do have and throw in some randomness. */
6742 unsigned len;
6743 const char *name = weak_global_object_name;
6744 const char *file = main_input_filename;
6745
6746 if (! name)
6747 name = "";
6748 if (! file)
6749 file = input_filename;
6750
6751 len = strlen (file);
6752 q = alloca (9 * 2 + len + 1);
6753 memcpy (q, file, len + 1);
6754 clean_symbol_name (q);
6755
6756 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
6757 crc32_string (0, get_random_seed (false)));
6758
6759 p = q;
6760 }
6761
6762 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
6763
6764 /* Set up the name of the file-level functions we may need.
6765 Use a global object (which is already required to be unique over
6766 the program) rather than the file name (which imposes extra
6767 constraints). */
6768 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
6769
6770 return get_identifier (buf);
6771 }
6772 \f
6773 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
6774
6775 /* Complain that the tree code of NODE does not match the expected 0
6776 terminated list of trailing codes. The trailing code list can be
6777 empty, for a more vague error message. FILE, LINE, and FUNCTION
6778 are of the caller. */
6779
6780 void
6781 tree_check_failed (const_tree node, const char *file,
6782 int line, const char *function, ...)
6783 {
6784 va_list args;
6785 const char *buffer;
6786 unsigned length = 0;
6787 int code;
6788
6789 va_start (args, function);
6790 while ((code = va_arg (args, int)))
6791 length += 4 + strlen (tree_code_name[code]);
6792 va_end (args);
6793 if (length)
6794 {
6795 char *tmp;
6796 va_start (args, function);
6797 length += strlen ("expected ");
6798 buffer = tmp = alloca (length);
6799 length = 0;
6800 while ((code = va_arg (args, int)))
6801 {
6802 const char *prefix = length ? " or " : "expected ";
6803
6804 strcpy (tmp + length, prefix);
6805 length += strlen (prefix);
6806 strcpy (tmp + length, tree_code_name[code]);
6807 length += strlen (tree_code_name[code]);
6808 }
6809 va_end (args);
6810 }
6811 else
6812 buffer = "unexpected node";
6813
6814 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6815 buffer, tree_code_name[TREE_CODE (node)],
6816 function, trim_filename (file), line);
6817 }
6818
6819 /* Complain that the tree code of NODE does match the expected 0
6820 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
6821 the caller. */
6822
6823 void
6824 tree_not_check_failed (const_tree node, const char *file,
6825 int line, const char *function, ...)
6826 {
6827 va_list args;
6828 char *buffer;
6829 unsigned length = 0;
6830 int code;
6831
6832 va_start (args, function);
6833 while ((code = va_arg (args, int)))
6834 length += 4 + strlen (tree_code_name[code]);
6835 va_end (args);
6836 va_start (args, function);
6837 buffer = alloca (length);
6838 length = 0;
6839 while ((code = va_arg (args, int)))
6840 {
6841 if (length)
6842 {
6843 strcpy (buffer + length, " or ");
6844 length += 4;
6845 }
6846 strcpy (buffer + length, tree_code_name[code]);
6847 length += strlen (tree_code_name[code]);
6848 }
6849 va_end (args);
6850
6851 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
6852 buffer, tree_code_name[TREE_CODE (node)],
6853 function, trim_filename (file), line);
6854 }
6855
6856 /* Similar to tree_check_failed, except that we check for a class of tree
6857 code, given in CL. */
6858
6859 void
6860 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
6861 const char *file, int line, const char *function)
6862 {
6863 internal_error
6864 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
6865 TREE_CODE_CLASS_STRING (cl),
6866 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6867 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6868 }
6869
6870 /* Similar to tree_check_failed, except that instead of specifying a
6871 dozen codes, use the knowledge that they're all sequential. */
6872
6873 void
6874 tree_range_check_failed (const_tree node, const char *file, int line,
6875 const char *function, enum tree_code c1,
6876 enum tree_code c2)
6877 {
6878 char *buffer;
6879 unsigned length = 0;
6880 enum tree_code c;
6881
6882 for (c = c1; c <= c2; ++c)
6883 length += 4 + strlen (tree_code_name[c]);
6884
6885 length += strlen ("expected ");
6886 buffer = alloca (length);
6887 length = 0;
6888
6889 for (c = c1; c <= c2; ++c)
6890 {
6891 const char *prefix = length ? " or " : "expected ";
6892
6893 strcpy (buffer + length, prefix);
6894 length += strlen (prefix);
6895 strcpy (buffer + length, tree_code_name[c]);
6896 length += strlen (tree_code_name[c]);
6897 }
6898
6899 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6900 buffer, tree_code_name[TREE_CODE (node)],
6901 function, trim_filename (file), line);
6902 }
6903
6904
6905 /* Similar to tree_check_failed, except that we check that a tree does
6906 not have the specified code, given in CL. */
6907
6908 void
6909 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
6910 const char *file, int line, const char *function)
6911 {
6912 internal_error
6913 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
6914 TREE_CODE_CLASS_STRING (cl),
6915 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6916 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6917 }
6918
6919
6920 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
6921
6922 void
6923 omp_clause_check_failed (const_tree node, const char *file, int line,
6924 const char *function, enum omp_clause_code code)
6925 {
6926 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
6927 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
6928 function, trim_filename (file), line);
6929 }
6930
6931
6932 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
6933
6934 void
6935 omp_clause_range_check_failed (const_tree node, const char *file, int line,
6936 const char *function, enum omp_clause_code c1,
6937 enum omp_clause_code c2)
6938 {
6939 char *buffer;
6940 unsigned length = 0;
6941 enum omp_clause_code c;
6942
6943 for (c = c1; c <= c2; ++c)
6944 length += 4 + strlen (omp_clause_code_name[c]);
6945
6946 length += strlen ("expected ");
6947 buffer = alloca (length);
6948 length = 0;
6949
6950 for (c = c1; c <= c2; ++c)
6951 {
6952 const char *prefix = length ? " or " : "expected ";
6953
6954 strcpy (buffer + length, prefix);
6955 length += strlen (prefix);
6956 strcpy (buffer + length, omp_clause_code_name[c]);
6957 length += strlen (omp_clause_code_name[c]);
6958 }
6959
6960 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6961 buffer, omp_clause_code_name[TREE_CODE (node)],
6962 function, trim_filename (file), line);
6963 }
6964
6965
6966 #undef DEFTREESTRUCT
6967 #define DEFTREESTRUCT(VAL, NAME) NAME,
6968
6969 static const char *ts_enum_names[] = {
6970 #include "treestruct.def"
6971 };
6972 #undef DEFTREESTRUCT
6973
6974 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
6975
6976 /* Similar to tree_class_check_failed, except that we check for
6977 whether CODE contains the tree structure identified by EN. */
6978
6979 void
6980 tree_contains_struct_check_failed (const_tree node,
6981 const enum tree_node_structure_enum en,
6982 const char *file, int line,
6983 const char *function)
6984 {
6985 internal_error
6986 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
6987 TS_ENUM_NAME(en),
6988 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6989 }
6990
6991
6992 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
6993 (dynamically sized) vector. */
6994
6995 void
6996 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
6997 const char *function)
6998 {
6999 internal_error
7000 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
7001 idx + 1, len, function, trim_filename (file), line);
7002 }
7003
7004 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
7005 (dynamically sized) vector. */
7006
7007 void
7008 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
7009 const char *function)
7010 {
7011 internal_error
7012 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
7013 idx + 1, len, function, trim_filename (file), line);
7014 }
7015
7016 /* Similar to above, except that the check is for the bounds of the operand
7017 vector of an expression node EXP. */
7018
7019 void
7020 tree_operand_check_failed (int idx, const_tree exp, const char *file,
7021 int line, const char *function)
7022 {
7023 int code = TREE_CODE (exp);
7024 internal_error
7025 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
7026 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
7027 function, trim_filename (file), line);
7028 }
7029
7030 /* Similar to above, except that the check is for the number of
7031 operands of an OMP_CLAUSE node. */
7032
7033 void
7034 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
7035 int line, const char *function)
7036 {
7037 internal_error
7038 ("tree check: accessed operand %d of omp_clause %s with %d operands "
7039 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
7040 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
7041 trim_filename (file), line);
7042 }
7043 #endif /* ENABLE_TREE_CHECKING */
7044 \f
7045 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
7046 and mapped to the machine mode MODE. Initialize its fields and build
7047 the information necessary for debugging output. */
7048
7049 static tree
7050 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
7051 {
7052 tree t;
7053 hashval_t hashcode = 0;
7054
7055 /* Build a main variant, based on the main variant of the inner type, then
7056 use it to build the variant we return. */
7057 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
7058 && TYPE_MAIN_VARIANT (innertype) != innertype)
7059 return build_type_attribute_qual_variant (
7060 make_vector_type (TYPE_MAIN_VARIANT (innertype), nunits, mode),
7061 TYPE_ATTRIBUTES (innertype),
7062 TYPE_QUALS (innertype));
7063
7064 t = make_node (VECTOR_TYPE);
7065 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
7066 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
7067 TYPE_MODE (t) = mode;
7068 TYPE_READONLY (t) = TYPE_READONLY (innertype);
7069 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
7070
7071 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
7072 SET_TYPE_STRUCTURAL_EQUALITY (t);
7073 else if (TYPE_CANONICAL (innertype) != innertype
7074 || mode != VOIDmode)
7075 TYPE_CANONICAL (t)
7076 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
7077
7078 layout_type (t);
7079
7080 {
7081 tree index = build_int_cst (NULL_TREE, nunits - 1);
7082 tree array = build_array_type (innertype, build_index_type (index));
7083 tree rt = make_node (RECORD_TYPE);
7084
7085 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
7086 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
7087 layout_type (rt);
7088 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
7089 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
7090 the representation type, and we want to find that die when looking up
7091 the vector type. This is most easily achieved by making the TYPE_UID
7092 numbers equal. */
7093 TYPE_UID (rt) = TYPE_UID (t);
7094 }
7095
7096 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
7097 hashcode = iterative_hash_host_wide_int (mode, hashcode);
7098 hashcode = iterative_hash_object (TYPE_HASH (innertype), hashcode);
7099 return type_hash_canon (hashcode, t);
7100 }
7101
7102 static tree
7103 make_or_reuse_type (unsigned size, int unsignedp)
7104 {
7105 if (size == INT_TYPE_SIZE)
7106 return unsignedp ? unsigned_type_node : integer_type_node;
7107 if (size == CHAR_TYPE_SIZE)
7108 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
7109 if (size == SHORT_TYPE_SIZE)
7110 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
7111 if (size == LONG_TYPE_SIZE)
7112 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
7113 if (size == LONG_LONG_TYPE_SIZE)
7114 return (unsignedp ? long_long_unsigned_type_node
7115 : long_long_integer_type_node);
7116
7117 if (unsignedp)
7118 return make_unsigned_type (size);
7119 else
7120 return make_signed_type (size);
7121 }
7122
7123 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
7124
7125 static tree
7126 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
7127 {
7128 if (satp)
7129 {
7130 if (size == SHORT_FRACT_TYPE_SIZE)
7131 return unsignedp ? sat_unsigned_short_fract_type_node
7132 : sat_short_fract_type_node;
7133 if (size == FRACT_TYPE_SIZE)
7134 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
7135 if (size == LONG_FRACT_TYPE_SIZE)
7136 return unsignedp ? sat_unsigned_long_fract_type_node
7137 : sat_long_fract_type_node;
7138 if (size == LONG_LONG_FRACT_TYPE_SIZE)
7139 return unsignedp ? sat_unsigned_long_long_fract_type_node
7140 : sat_long_long_fract_type_node;
7141 }
7142 else
7143 {
7144 if (size == SHORT_FRACT_TYPE_SIZE)
7145 return unsignedp ? unsigned_short_fract_type_node
7146 : short_fract_type_node;
7147 if (size == FRACT_TYPE_SIZE)
7148 return unsignedp ? unsigned_fract_type_node : fract_type_node;
7149 if (size == LONG_FRACT_TYPE_SIZE)
7150 return unsignedp ? unsigned_long_fract_type_node
7151 : long_fract_type_node;
7152 if (size == LONG_LONG_FRACT_TYPE_SIZE)
7153 return unsignedp ? unsigned_long_long_fract_type_node
7154 : long_long_fract_type_node;
7155 }
7156
7157 return make_fract_type (size, unsignedp, satp);
7158 }
7159
7160 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
7161
7162 static tree
7163 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
7164 {
7165 if (satp)
7166 {
7167 if (size == SHORT_ACCUM_TYPE_SIZE)
7168 return unsignedp ? sat_unsigned_short_accum_type_node
7169 : sat_short_accum_type_node;
7170 if (size == ACCUM_TYPE_SIZE)
7171 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
7172 if (size == LONG_ACCUM_TYPE_SIZE)
7173 return unsignedp ? sat_unsigned_long_accum_type_node
7174 : sat_long_accum_type_node;
7175 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
7176 return unsignedp ? sat_unsigned_long_long_accum_type_node
7177 : sat_long_long_accum_type_node;
7178 }
7179 else
7180 {
7181 if (size == SHORT_ACCUM_TYPE_SIZE)
7182 return unsignedp ? unsigned_short_accum_type_node
7183 : short_accum_type_node;
7184 if (size == ACCUM_TYPE_SIZE)
7185 return unsignedp ? unsigned_accum_type_node : accum_type_node;
7186 if (size == LONG_ACCUM_TYPE_SIZE)
7187 return unsignedp ? unsigned_long_accum_type_node
7188 : long_accum_type_node;
7189 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
7190 return unsignedp ? unsigned_long_long_accum_type_node
7191 : long_long_accum_type_node;
7192 }
7193
7194 return make_accum_type (size, unsignedp, satp);
7195 }
7196
7197 /* Create nodes for all integer types (and error_mark_node) using the sizes
7198 of C datatypes. The caller should call set_sizetype soon after calling
7199 this function to select one of the types as sizetype. */
7200
7201 void
7202 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
7203 {
7204 error_mark_node = make_node (ERROR_MARK);
7205 TREE_TYPE (error_mark_node) = error_mark_node;
7206
7207 initialize_sizetypes (signed_sizetype);
7208
7209 /* Define both `signed char' and `unsigned char'. */
7210 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
7211 TYPE_STRING_FLAG (signed_char_type_node) = 1;
7212 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
7213 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
7214
7215 /* Define `char', which is like either `signed char' or `unsigned char'
7216 but not the same as either. */
7217 char_type_node
7218 = (signed_char
7219 ? make_signed_type (CHAR_TYPE_SIZE)
7220 : make_unsigned_type (CHAR_TYPE_SIZE));
7221 TYPE_STRING_FLAG (char_type_node) = 1;
7222
7223 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
7224 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
7225 integer_type_node = make_signed_type (INT_TYPE_SIZE);
7226 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
7227 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
7228 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
7229 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
7230 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
7231
7232 /* Define a boolean type. This type only represents boolean values but
7233 may be larger than char depending on the value of BOOL_TYPE_SIZE.
7234 Front ends which want to override this size (i.e. Java) can redefine
7235 boolean_type_node before calling build_common_tree_nodes_2. */
7236 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
7237 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
7238 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
7239 TYPE_PRECISION (boolean_type_node) = 1;
7240
7241 /* Fill in the rest of the sized types. Reuse existing type nodes
7242 when possible. */
7243 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
7244 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
7245 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
7246 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
7247 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
7248
7249 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
7250 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
7251 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
7252 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
7253 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
7254
7255 access_public_node = get_identifier ("public");
7256 access_protected_node = get_identifier ("protected");
7257 access_private_node = get_identifier ("private");
7258 }
7259
7260 /* Call this function after calling build_common_tree_nodes and set_sizetype.
7261 It will create several other common tree nodes. */
7262
7263 void
7264 build_common_tree_nodes_2 (int short_double)
7265 {
7266 /* Define these next since types below may used them. */
7267 integer_zero_node = build_int_cst (NULL_TREE, 0);
7268 integer_one_node = build_int_cst (NULL_TREE, 1);
7269 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
7270
7271 size_zero_node = size_int (0);
7272 size_one_node = size_int (1);
7273 bitsize_zero_node = bitsize_int (0);
7274 bitsize_one_node = bitsize_int (1);
7275 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
7276
7277 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
7278 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
7279
7280 void_type_node = make_node (VOID_TYPE);
7281 layout_type (void_type_node);
7282
7283 /* We are not going to have real types in C with less than byte alignment,
7284 so we might as well not have any types that claim to have it. */
7285 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
7286 TYPE_USER_ALIGN (void_type_node) = 0;
7287
7288 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
7289 layout_type (TREE_TYPE (null_pointer_node));
7290
7291 ptr_type_node = build_pointer_type (void_type_node);
7292 const_ptr_type_node
7293 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
7294 fileptr_type_node = ptr_type_node;
7295
7296 float_type_node = make_node (REAL_TYPE);
7297 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
7298 layout_type (float_type_node);
7299
7300 double_type_node = make_node (REAL_TYPE);
7301 if (short_double)
7302 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
7303 else
7304 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
7305 layout_type (double_type_node);
7306
7307 long_double_type_node = make_node (REAL_TYPE);
7308 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
7309 layout_type (long_double_type_node);
7310
7311 float_ptr_type_node = build_pointer_type (float_type_node);
7312 double_ptr_type_node = build_pointer_type (double_type_node);
7313 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
7314 integer_ptr_type_node = build_pointer_type (integer_type_node);
7315
7316 /* Fixed size integer types. */
7317 uint32_type_node = build_nonstandard_integer_type (32, true);
7318 uint64_type_node = build_nonstandard_integer_type (64, true);
7319
7320 /* Decimal float types. */
7321 dfloat32_type_node = make_node (REAL_TYPE);
7322 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
7323 layout_type (dfloat32_type_node);
7324 TYPE_MODE (dfloat32_type_node) = SDmode;
7325 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
7326
7327 dfloat64_type_node = make_node (REAL_TYPE);
7328 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
7329 layout_type (dfloat64_type_node);
7330 TYPE_MODE (dfloat64_type_node) = DDmode;
7331 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
7332
7333 dfloat128_type_node = make_node (REAL_TYPE);
7334 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
7335 layout_type (dfloat128_type_node);
7336 TYPE_MODE (dfloat128_type_node) = TDmode;
7337 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
7338
7339 complex_integer_type_node = build_complex_type (integer_type_node);
7340 complex_float_type_node = build_complex_type (float_type_node);
7341 complex_double_type_node = build_complex_type (double_type_node);
7342 complex_long_double_type_node = build_complex_type (long_double_type_node);
7343
7344 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
7345 #define MAKE_FIXED_TYPE_NODE(KIND,WIDTH,SIZE) \
7346 sat_ ## WIDTH ## KIND ## _type_node = \
7347 make_sat_signed_ ## KIND ## _type (SIZE); \
7348 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
7349 make_sat_unsigned_ ## KIND ## _type (SIZE); \
7350 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
7351 unsigned_ ## WIDTH ## KIND ## _type_node = \
7352 make_unsigned_ ## KIND ## _type (SIZE);
7353
7354 /* Make fixed-point type nodes based on four different widths. */
7355 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
7356 MAKE_FIXED_TYPE_NODE (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
7357 MAKE_FIXED_TYPE_NODE (N1, , N2 ## _TYPE_SIZE) \
7358 MAKE_FIXED_TYPE_NODE (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
7359 MAKE_FIXED_TYPE_NODE (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
7360
7361 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
7362 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
7363 NAME ## _type_node = \
7364 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
7365 u ## NAME ## _type_node = \
7366 make_or_reuse_unsigned_ ## KIND ## _type \
7367 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
7368 sat_ ## NAME ## _type_node = \
7369 make_or_reuse_sat_signed_ ## KIND ## _type \
7370 (GET_MODE_BITSIZE (MODE ## mode)); \
7371 sat_u ## NAME ## _type_node = \
7372 make_or_reuse_sat_unsigned_ ## KIND ## _type \
7373 (GET_MODE_BITSIZE (U ## MODE ## mode));
7374
7375 /* Fixed-point type and mode nodes. */
7376 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
7377 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
7378 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
7379 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
7380 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
7381 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
7382 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
7383 MAKE_FIXED_MODE_NODE (accum, ha, HA)
7384 MAKE_FIXED_MODE_NODE (accum, sa, SA)
7385 MAKE_FIXED_MODE_NODE (accum, da, DA)
7386 MAKE_FIXED_MODE_NODE (accum, ta, TA)
7387
7388 {
7389 tree t = targetm.build_builtin_va_list ();
7390
7391 /* Many back-ends define record types without setting TYPE_NAME.
7392 If we copied the record type here, we'd keep the original
7393 record type without a name. This breaks name mangling. So,
7394 don't copy record types and let c_common_nodes_and_builtins()
7395 declare the type to be __builtin_va_list. */
7396 if (TREE_CODE (t) != RECORD_TYPE)
7397 t = build_variant_type_copy (t);
7398
7399 va_list_type_node = t;
7400 }
7401 }
7402
7403 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
7404
7405 static void
7406 local_define_builtin (const char *name, tree type, enum built_in_function code,
7407 const char *library_name, int ecf_flags)
7408 {
7409 tree decl;
7410
7411 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
7412 library_name, NULL_TREE);
7413 if (ecf_flags & ECF_CONST)
7414 TREE_READONLY (decl) = 1;
7415 if (ecf_flags & ECF_PURE)
7416 DECL_IS_PURE (decl) = 1;
7417 if (ecf_flags & ECF_NORETURN)
7418 TREE_THIS_VOLATILE (decl) = 1;
7419 if (ecf_flags & ECF_NOTHROW)
7420 TREE_NOTHROW (decl) = 1;
7421 if (ecf_flags & ECF_MALLOC)
7422 DECL_IS_MALLOC (decl) = 1;
7423
7424 built_in_decls[code] = decl;
7425 implicit_built_in_decls[code] = decl;
7426 }
7427
7428 /* Call this function after instantiating all builtins that the language
7429 front end cares about. This will build the rest of the builtins that
7430 are relied upon by the tree optimizers and the middle-end. */
7431
7432 void
7433 build_common_builtin_nodes (void)
7434 {
7435 tree tmp, ftype;
7436
7437 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
7438 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
7439 {
7440 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7441 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7442 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7443 ftype = build_function_type (ptr_type_node, tmp);
7444
7445 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
7446 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
7447 "memcpy", ECF_NOTHROW);
7448 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
7449 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
7450 "memmove", ECF_NOTHROW);
7451 }
7452
7453 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
7454 {
7455 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7456 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7457 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7458 ftype = build_function_type (integer_type_node, tmp);
7459 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
7460 "memcmp", ECF_PURE | ECF_NOTHROW);
7461 }
7462
7463 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
7464 {
7465 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7466 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
7467 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7468 ftype = build_function_type (ptr_type_node, tmp);
7469 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
7470 "memset", ECF_NOTHROW);
7471 }
7472
7473 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
7474 {
7475 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7476 ftype = build_function_type (ptr_type_node, tmp);
7477 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
7478 "alloca", ECF_NOTHROW | ECF_MALLOC);
7479 }
7480
7481 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7482 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7483 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7484 ftype = build_function_type (void_type_node, tmp);
7485 local_define_builtin ("__builtin_init_trampoline", ftype,
7486 BUILT_IN_INIT_TRAMPOLINE,
7487 "__builtin_init_trampoline", ECF_NOTHROW);
7488
7489 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7490 ftype = build_function_type (ptr_type_node, tmp);
7491 local_define_builtin ("__builtin_adjust_trampoline", ftype,
7492 BUILT_IN_ADJUST_TRAMPOLINE,
7493 "__builtin_adjust_trampoline",
7494 ECF_CONST | ECF_NOTHROW);
7495
7496 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7497 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7498 ftype = build_function_type (void_type_node, tmp);
7499 local_define_builtin ("__builtin_nonlocal_goto", ftype,
7500 BUILT_IN_NONLOCAL_GOTO,
7501 "__builtin_nonlocal_goto",
7502 ECF_NORETURN | ECF_NOTHROW);
7503
7504 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7505 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7506 ftype = build_function_type (void_type_node, tmp);
7507 local_define_builtin ("__builtin_setjmp_setup", ftype,
7508 BUILT_IN_SETJMP_SETUP,
7509 "__builtin_setjmp_setup", ECF_NOTHROW);
7510
7511 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7512 ftype = build_function_type (ptr_type_node, tmp);
7513 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
7514 BUILT_IN_SETJMP_DISPATCHER,
7515 "__builtin_setjmp_dispatcher",
7516 ECF_PURE | ECF_NOTHROW);
7517
7518 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7519 ftype = build_function_type (void_type_node, tmp);
7520 local_define_builtin ("__builtin_setjmp_receiver", ftype,
7521 BUILT_IN_SETJMP_RECEIVER,
7522 "__builtin_setjmp_receiver", ECF_NOTHROW);
7523
7524 ftype = build_function_type (ptr_type_node, void_list_node);
7525 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
7526 "__builtin_stack_save", ECF_NOTHROW);
7527
7528 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7529 ftype = build_function_type (void_type_node, tmp);
7530 local_define_builtin ("__builtin_stack_restore", ftype,
7531 BUILT_IN_STACK_RESTORE,
7532 "__builtin_stack_restore", ECF_NOTHROW);
7533
7534 ftype = build_function_type (void_type_node, void_list_node);
7535 local_define_builtin ("__builtin_profile_func_enter", ftype,
7536 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
7537 local_define_builtin ("__builtin_profile_func_exit", ftype,
7538 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
7539
7540 /* Complex multiplication and division. These are handled as builtins
7541 rather than optabs because emit_library_call_value doesn't support
7542 complex. Further, we can do slightly better with folding these
7543 beasties if the real and complex parts of the arguments are separate. */
7544 {
7545 enum machine_mode mode;
7546
7547 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
7548 {
7549 char mode_name_buf[4], *q;
7550 const char *p;
7551 enum built_in_function mcode, dcode;
7552 tree type, inner_type;
7553
7554 type = lang_hooks.types.type_for_mode (mode, 0);
7555 if (type == NULL)
7556 continue;
7557 inner_type = TREE_TYPE (type);
7558
7559 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
7560 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7561 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7562 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7563 ftype = build_function_type (type, tmp);
7564
7565 mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7566 dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7567
7568 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
7569 *q = TOLOWER (*p);
7570 *q = '\0';
7571
7572 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
7573 local_define_builtin (built_in_names[mcode], ftype, mcode,
7574 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
7575
7576 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
7577 local_define_builtin (built_in_names[dcode], ftype, dcode,
7578 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
7579 }
7580 }
7581 }
7582
7583 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
7584 better way.
7585
7586 If we requested a pointer to a vector, build up the pointers that
7587 we stripped off while looking for the inner type. Similarly for
7588 return values from functions.
7589
7590 The argument TYPE is the top of the chain, and BOTTOM is the
7591 new type which we will point to. */
7592
7593 tree
7594 reconstruct_complex_type (tree type, tree bottom)
7595 {
7596 tree inner, outer;
7597
7598 if (TREE_CODE (type) == POINTER_TYPE)
7599 {
7600 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7601 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
7602 TYPE_REF_CAN_ALIAS_ALL (type));
7603 }
7604 else if (TREE_CODE (type) == REFERENCE_TYPE)
7605 {
7606 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7607 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
7608 TYPE_REF_CAN_ALIAS_ALL (type));
7609 }
7610 else if (TREE_CODE (type) == ARRAY_TYPE)
7611 {
7612 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7613 outer = build_array_type (inner, TYPE_DOMAIN (type));
7614 }
7615 else if (TREE_CODE (type) == FUNCTION_TYPE)
7616 {
7617 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7618 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
7619 }
7620 else if (TREE_CODE (type) == METHOD_TYPE)
7621 {
7622 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7623 /* The build_method_type_directly() routine prepends 'this' to argument list,
7624 so we must compensate by getting rid of it. */
7625 outer
7626 = build_method_type_directly
7627 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
7628 inner,
7629 TREE_CHAIN (TYPE_ARG_TYPES (type)));
7630 }
7631 else
7632 return bottom;
7633
7634 return build_qualified_type (outer, TYPE_QUALS (type));
7635 }
7636
7637 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
7638 the inner type. */
7639 tree
7640 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
7641 {
7642 int nunits;
7643
7644 switch (GET_MODE_CLASS (mode))
7645 {
7646 case MODE_VECTOR_INT:
7647 case MODE_VECTOR_FLOAT:
7648 case MODE_VECTOR_FRACT:
7649 case MODE_VECTOR_UFRACT:
7650 case MODE_VECTOR_ACCUM:
7651 case MODE_VECTOR_UACCUM:
7652 nunits = GET_MODE_NUNITS (mode);
7653 break;
7654
7655 case MODE_INT:
7656 /* Check that there are no leftover bits. */
7657 gcc_assert (GET_MODE_BITSIZE (mode)
7658 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
7659
7660 nunits = GET_MODE_BITSIZE (mode)
7661 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
7662 break;
7663
7664 default:
7665 gcc_unreachable ();
7666 }
7667
7668 return make_vector_type (innertype, nunits, mode);
7669 }
7670
7671 /* Similarly, but takes the inner type and number of units, which must be
7672 a power of two. */
7673
7674 tree
7675 build_vector_type (tree innertype, int nunits)
7676 {
7677 return make_vector_type (innertype, nunits, VOIDmode);
7678 }
7679
7680
7681 /* Build RESX_EXPR with given REGION_NUMBER. */
7682 tree
7683 build_resx (int region_number)
7684 {
7685 tree t;
7686 t = build1 (RESX_EXPR, void_type_node,
7687 build_int_cst (NULL_TREE, region_number));
7688 return t;
7689 }
7690
7691 /* Given an initializer INIT, return TRUE if INIT is zero or some
7692 aggregate of zeros. Otherwise return FALSE. */
7693 bool
7694 initializer_zerop (const_tree init)
7695 {
7696 tree elt;
7697
7698 STRIP_NOPS (init);
7699
7700 switch (TREE_CODE (init))
7701 {
7702 case INTEGER_CST:
7703 return integer_zerop (init);
7704
7705 case REAL_CST:
7706 /* ??? Note that this is not correct for C4X float formats. There,
7707 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
7708 negative exponent. */
7709 return real_zerop (init)
7710 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
7711
7712 case FIXED_CST:
7713 return fixed_zerop (init);
7714
7715 case COMPLEX_CST:
7716 return integer_zerop (init)
7717 || (real_zerop (init)
7718 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
7719 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
7720
7721 case VECTOR_CST:
7722 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
7723 if (!initializer_zerop (TREE_VALUE (elt)))
7724 return false;
7725 return true;
7726
7727 case CONSTRUCTOR:
7728 {
7729 unsigned HOST_WIDE_INT idx;
7730
7731 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
7732 if (!initializer_zerop (elt))
7733 return false;
7734 return true;
7735 }
7736
7737 default:
7738 return false;
7739 }
7740 }
7741
7742 /* Build an empty statement. */
7743
7744 tree
7745 build_empty_stmt (void)
7746 {
7747 return build1 (NOP_EXPR, void_type_node, size_zero_node);
7748 }
7749
7750
7751 /* Build an OpenMP clause with code CODE. */
7752
7753 tree
7754 build_omp_clause (enum omp_clause_code code)
7755 {
7756 tree t;
7757 int size, length;
7758
7759 length = omp_clause_num_ops[code];
7760 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
7761
7762 t = ggc_alloc (size);
7763 memset (t, 0, size);
7764 TREE_SET_CODE (t, OMP_CLAUSE);
7765 OMP_CLAUSE_SET_CODE (t, code);
7766
7767 #ifdef GATHER_STATISTICS
7768 tree_node_counts[(int) omp_clause_kind]++;
7769 tree_node_sizes[(int) omp_clause_kind] += size;
7770 #endif
7771
7772 return t;
7773 }
7774
7775 /* Set various status flags when building a CALL_EXPR object T. */
7776
7777 static void
7778 process_call_operands (tree t)
7779 {
7780 bool side_effects;
7781
7782 side_effects = TREE_SIDE_EFFECTS (t);
7783 if (!side_effects)
7784 {
7785 int i, n;
7786 n = TREE_OPERAND_LENGTH (t);
7787 for (i = 1; i < n; i++)
7788 {
7789 tree op = TREE_OPERAND (t, i);
7790 if (op && TREE_SIDE_EFFECTS (op))
7791 {
7792 side_effects = 1;
7793 break;
7794 }
7795 }
7796 }
7797 if (!side_effects)
7798 {
7799 int i;
7800
7801 /* Calls have side-effects, except those to const or
7802 pure functions. */
7803 i = call_expr_flags (t);
7804 if (!(i & (ECF_CONST | ECF_PURE)))
7805 side_effects = 1;
7806 }
7807 TREE_SIDE_EFFECTS (t) = side_effects;
7808 }
7809
7810 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
7811 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
7812 Except for the CODE and operand count field, other storage for the
7813 object is initialized to zeros. */
7814
7815 tree
7816 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
7817 {
7818 tree t;
7819 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
7820
7821 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
7822 gcc_assert (len >= 1);
7823
7824 #ifdef GATHER_STATISTICS
7825 tree_node_counts[(int) e_kind]++;
7826 tree_node_sizes[(int) e_kind] += length;
7827 #endif
7828
7829 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
7830
7831 memset (t, 0, length);
7832
7833 TREE_SET_CODE (t, code);
7834
7835 /* Can't use TREE_OPERAND to store the length because if checking is
7836 enabled, it will try to check the length before we store it. :-P */
7837 t->exp.operands[0] = build_int_cst (sizetype, len);
7838
7839 return t;
7840 }
7841
7842
7843 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE
7844 and FN and a null static chain slot. ARGLIST is a TREE_LIST of the
7845 arguments. */
7846
7847 tree
7848 build_call_list (tree return_type, tree fn, tree arglist)
7849 {
7850 tree t;
7851 int i;
7852
7853 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
7854 TREE_TYPE (t) = return_type;
7855 CALL_EXPR_FN (t) = fn;
7856 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7857 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
7858 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
7859 process_call_operands (t);
7860 return t;
7861 }
7862
7863 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7864 FN and a null static chain slot. NARGS is the number of call arguments
7865 which are specified as "..." arguments. */
7866
7867 tree
7868 build_call_nary (tree return_type, tree fn, int nargs, ...)
7869 {
7870 tree ret;
7871 va_list args;
7872 va_start (args, nargs);
7873 ret = build_call_valist (return_type, fn, nargs, args);
7874 va_end (args);
7875 return ret;
7876 }
7877
7878 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7879 FN and a null static chain slot. NARGS is the number of call arguments
7880 which are specified as a va_list ARGS. */
7881
7882 tree
7883 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
7884 {
7885 tree t;
7886 int i;
7887
7888 t = build_vl_exp (CALL_EXPR, nargs + 3);
7889 TREE_TYPE (t) = return_type;
7890 CALL_EXPR_FN (t) = fn;
7891 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7892 for (i = 0; i < nargs; i++)
7893 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
7894 process_call_operands (t);
7895 return t;
7896 }
7897
7898 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7899 FN and a null static chain slot. NARGS is the number of call arguments
7900 which are specified as a tree array ARGS. */
7901
7902 tree
7903 build_call_array (tree return_type, tree fn, int nargs, tree *args)
7904 {
7905 tree t;
7906 int i;
7907
7908 t = build_vl_exp (CALL_EXPR, nargs + 3);
7909 TREE_TYPE (t) = return_type;
7910 CALL_EXPR_FN (t) = fn;
7911 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7912 for (i = 0; i < nargs; i++)
7913 CALL_EXPR_ARG (t, i) = args[i];
7914 process_call_operands (t);
7915 return t;
7916 }
7917
7918
7919 /* Returns true if it is possible to prove that the index of
7920 an array access REF (an ARRAY_REF expression) falls into the
7921 array bounds. */
7922
7923 bool
7924 in_array_bounds_p (tree ref)
7925 {
7926 tree idx = TREE_OPERAND (ref, 1);
7927 tree min, max;
7928
7929 if (TREE_CODE (idx) != INTEGER_CST)
7930 return false;
7931
7932 min = array_ref_low_bound (ref);
7933 max = array_ref_up_bound (ref);
7934 if (!min
7935 || !max
7936 || TREE_CODE (min) != INTEGER_CST
7937 || TREE_CODE (max) != INTEGER_CST)
7938 return false;
7939
7940 if (tree_int_cst_lt (idx, min)
7941 || tree_int_cst_lt (max, idx))
7942 return false;
7943
7944 return true;
7945 }
7946
7947 /* Returns true if it is possible to prove that the range of
7948 an array access REF (an ARRAY_RANGE_REF expression) falls
7949 into the array bounds. */
7950
7951 bool
7952 range_in_array_bounds_p (tree ref)
7953 {
7954 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
7955 tree range_min, range_max, min, max;
7956
7957 range_min = TYPE_MIN_VALUE (domain_type);
7958 range_max = TYPE_MAX_VALUE (domain_type);
7959 if (!range_min
7960 || !range_max
7961 || TREE_CODE (range_min) != INTEGER_CST
7962 || TREE_CODE (range_max) != INTEGER_CST)
7963 return false;
7964
7965 min = array_ref_low_bound (ref);
7966 max = array_ref_up_bound (ref);
7967 if (!min
7968 || !max
7969 || TREE_CODE (min) != INTEGER_CST
7970 || TREE_CODE (max) != INTEGER_CST)
7971 return false;
7972
7973 if (tree_int_cst_lt (range_min, min)
7974 || tree_int_cst_lt (max, range_max))
7975 return false;
7976
7977 return true;
7978 }
7979
7980 /* Return true if T (assumed to be a DECL) must be assigned a memory
7981 location. */
7982
7983 bool
7984 needs_to_live_in_memory (const_tree t)
7985 {
7986 if (TREE_CODE (t) == SSA_NAME)
7987 t = SSA_NAME_VAR (t);
7988
7989 return (TREE_ADDRESSABLE (t)
7990 || is_global_var (t)
7991 || (TREE_CODE (t) == RESULT_DECL
7992 && aggregate_value_p (t, current_function_decl)));
7993 }
7994
7995 /* There are situations in which a language considers record types
7996 compatible which have different field lists. Decide if two fields
7997 are compatible. It is assumed that the parent records are compatible. */
7998
7999 bool
8000 fields_compatible_p (const_tree f1, const_tree f2)
8001 {
8002 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
8003 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
8004 return false;
8005
8006 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
8007 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
8008 return false;
8009
8010 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
8011 return false;
8012
8013 return true;
8014 }
8015
8016 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
8017
8018 tree
8019 find_compatible_field (tree record, tree orig_field)
8020 {
8021 tree f;
8022
8023 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
8024 if (TREE_CODE (f) == FIELD_DECL
8025 && fields_compatible_p (f, orig_field))
8026 return f;
8027
8028 /* ??? Why isn't this on the main fields list? */
8029 f = TYPE_VFIELD (record);
8030 if (f && TREE_CODE (f) == FIELD_DECL
8031 && fields_compatible_p (f, orig_field))
8032 return f;
8033
8034 /* ??? We should abort here, but Java appears to do Bad Things
8035 with inherited fields. */
8036 return orig_field;
8037 }
8038
8039 /* Return value of a constant X. */
8040
8041 HOST_WIDE_INT
8042 int_cst_value (const_tree x)
8043 {
8044 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
8045 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
8046 bool negative = ((val >> (bits - 1)) & 1) != 0;
8047
8048 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
8049
8050 if (negative)
8051 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
8052 else
8053 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
8054
8055 return val;
8056 }
8057
8058 /* If TYPE is an integral type, return an equivalent type which is
8059 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
8060 return TYPE itself. */
8061
8062 tree
8063 signed_or_unsigned_type_for (int unsignedp, tree type)
8064 {
8065 tree t = type;
8066 if (POINTER_TYPE_P (type))
8067 t = size_type_node;
8068
8069 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
8070 return t;
8071
8072 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
8073 }
8074
8075 /* Returns unsigned variant of TYPE. */
8076
8077 tree
8078 unsigned_type_for (tree type)
8079 {
8080 return signed_or_unsigned_type_for (1, type);
8081 }
8082
8083 /* Returns signed variant of TYPE. */
8084
8085 tree
8086 signed_type_for (tree type)
8087 {
8088 return signed_or_unsigned_type_for (0, type);
8089 }
8090
8091 /* Returns the largest value obtainable by casting something in INNER type to
8092 OUTER type. */
8093
8094 tree
8095 upper_bound_in_type (tree outer, tree inner)
8096 {
8097 unsigned HOST_WIDE_INT lo, hi;
8098 unsigned int det = 0;
8099 unsigned oprec = TYPE_PRECISION (outer);
8100 unsigned iprec = TYPE_PRECISION (inner);
8101 unsigned prec;
8102
8103 /* Compute a unique number for every combination. */
8104 det |= (oprec > iprec) ? 4 : 0;
8105 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
8106 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
8107
8108 /* Determine the exponent to use. */
8109 switch (det)
8110 {
8111 case 0:
8112 case 1:
8113 /* oprec <= iprec, outer: signed, inner: don't care. */
8114 prec = oprec - 1;
8115 break;
8116 case 2:
8117 case 3:
8118 /* oprec <= iprec, outer: unsigned, inner: don't care. */
8119 prec = oprec;
8120 break;
8121 case 4:
8122 /* oprec > iprec, outer: signed, inner: signed. */
8123 prec = iprec - 1;
8124 break;
8125 case 5:
8126 /* oprec > iprec, outer: signed, inner: unsigned. */
8127 prec = iprec;
8128 break;
8129 case 6:
8130 /* oprec > iprec, outer: unsigned, inner: signed. */
8131 prec = oprec;
8132 break;
8133 case 7:
8134 /* oprec > iprec, outer: unsigned, inner: unsigned. */
8135 prec = iprec;
8136 break;
8137 default:
8138 gcc_unreachable ();
8139 }
8140
8141 /* Compute 2^^prec - 1. */
8142 if (prec <= HOST_BITS_PER_WIDE_INT)
8143 {
8144 hi = 0;
8145 lo = ((~(unsigned HOST_WIDE_INT) 0)
8146 >> (HOST_BITS_PER_WIDE_INT - prec));
8147 }
8148 else
8149 {
8150 hi = ((~(unsigned HOST_WIDE_INT) 0)
8151 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
8152 lo = ~(unsigned HOST_WIDE_INT) 0;
8153 }
8154
8155 return build_int_cst_wide (outer, lo, hi);
8156 }
8157
8158 /* Returns the smallest value obtainable by casting something in INNER type to
8159 OUTER type. */
8160
8161 tree
8162 lower_bound_in_type (tree outer, tree inner)
8163 {
8164 unsigned HOST_WIDE_INT lo, hi;
8165 unsigned oprec = TYPE_PRECISION (outer);
8166 unsigned iprec = TYPE_PRECISION (inner);
8167
8168 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
8169 and obtain 0. */
8170 if (TYPE_UNSIGNED (outer)
8171 /* If we are widening something of an unsigned type, OUTER type
8172 contains all values of INNER type. In particular, both INNER
8173 and OUTER types have zero in common. */
8174 || (oprec > iprec && TYPE_UNSIGNED (inner)))
8175 lo = hi = 0;
8176 else
8177 {
8178 /* If we are widening a signed type to another signed type, we
8179 want to obtain -2^^(iprec-1). If we are keeping the
8180 precision or narrowing to a signed type, we want to obtain
8181 -2^(oprec-1). */
8182 unsigned prec = oprec > iprec ? iprec : oprec;
8183
8184 if (prec <= HOST_BITS_PER_WIDE_INT)
8185 {
8186 hi = ~(unsigned HOST_WIDE_INT) 0;
8187 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
8188 }
8189 else
8190 {
8191 hi = ((~(unsigned HOST_WIDE_INT) 0)
8192 << (prec - HOST_BITS_PER_WIDE_INT - 1));
8193 lo = 0;
8194 }
8195 }
8196
8197 return build_int_cst_wide (outer, lo, hi);
8198 }
8199
8200 /* Return nonzero if two operands that are suitable for PHI nodes are
8201 necessarily equal. Specifically, both ARG0 and ARG1 must be either
8202 SSA_NAME or invariant. Note that this is strictly an optimization.
8203 That is, callers of this function can directly call operand_equal_p
8204 and get the same result, only slower. */
8205
8206 int
8207 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
8208 {
8209 if (arg0 == arg1)
8210 return 1;
8211 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
8212 return 0;
8213 return operand_equal_p (arg0, arg1, 0);
8214 }
8215
8216 /* Returns number of zeros at the end of binary representation of X.
8217
8218 ??? Use ffs if available? */
8219
8220 tree
8221 num_ending_zeros (const_tree x)
8222 {
8223 unsigned HOST_WIDE_INT fr, nfr;
8224 unsigned num, abits;
8225 tree type = TREE_TYPE (x);
8226
8227 if (TREE_INT_CST_LOW (x) == 0)
8228 {
8229 num = HOST_BITS_PER_WIDE_INT;
8230 fr = TREE_INT_CST_HIGH (x);
8231 }
8232 else
8233 {
8234 num = 0;
8235 fr = TREE_INT_CST_LOW (x);
8236 }
8237
8238 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
8239 {
8240 nfr = fr >> abits;
8241 if (nfr << abits == fr)
8242 {
8243 num += abits;
8244 fr = nfr;
8245 }
8246 }
8247
8248 if (num > TYPE_PRECISION (type))
8249 num = TYPE_PRECISION (type);
8250
8251 return build_int_cst_type (type, num);
8252 }
8253
8254
8255 #define WALK_SUBTREE(NODE) \
8256 do \
8257 { \
8258 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
8259 if (result) \
8260 return result; \
8261 } \
8262 while (0)
8263
8264 /* This is a subroutine of walk_tree that walks field of TYPE that are to
8265 be walked whenever a type is seen in the tree. Rest of operands and return
8266 value are as for walk_tree. */
8267
8268 static tree
8269 walk_type_fields (tree type, walk_tree_fn func, void *data,
8270 struct pointer_set_t *pset, walk_tree_lh lh)
8271 {
8272 tree result = NULL_TREE;
8273
8274 switch (TREE_CODE (type))
8275 {
8276 case POINTER_TYPE:
8277 case REFERENCE_TYPE:
8278 /* We have to worry about mutually recursive pointers. These can't
8279 be written in C. They can in Ada. It's pathological, but
8280 there's an ACATS test (c38102a) that checks it. Deal with this
8281 by checking if we're pointing to another pointer, that one
8282 points to another pointer, that one does too, and we have no htab.
8283 If so, get a hash table. We check three levels deep to avoid
8284 the cost of the hash table if we don't need one. */
8285 if (POINTER_TYPE_P (TREE_TYPE (type))
8286 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
8287 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
8288 && !pset)
8289 {
8290 result = walk_tree_without_duplicates (&TREE_TYPE (type),
8291 func, data);
8292 if (result)
8293 return result;
8294
8295 break;
8296 }
8297
8298 /* ... fall through ... */
8299
8300 case COMPLEX_TYPE:
8301 WALK_SUBTREE (TREE_TYPE (type));
8302 break;
8303
8304 case METHOD_TYPE:
8305 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
8306
8307 /* Fall through. */
8308
8309 case FUNCTION_TYPE:
8310 WALK_SUBTREE (TREE_TYPE (type));
8311 {
8312 tree arg;
8313
8314 /* We never want to walk into default arguments. */
8315 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
8316 WALK_SUBTREE (TREE_VALUE (arg));
8317 }
8318 break;
8319
8320 case ARRAY_TYPE:
8321 /* Don't follow this nodes's type if a pointer for fear that
8322 we'll have infinite recursion. If we have a PSET, then we
8323 need not fear. */
8324 if (pset
8325 || (!POINTER_TYPE_P (TREE_TYPE (type))
8326 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
8327 WALK_SUBTREE (TREE_TYPE (type));
8328 WALK_SUBTREE (TYPE_DOMAIN (type));
8329 break;
8330
8331 case OFFSET_TYPE:
8332 WALK_SUBTREE (TREE_TYPE (type));
8333 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
8334 break;
8335
8336 default:
8337 break;
8338 }
8339
8340 return NULL_TREE;
8341 }
8342
8343 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
8344 called with the DATA and the address of each sub-tree. If FUNC returns a
8345 non-NULL value, the traversal is stopped, and the value returned by FUNC
8346 is returned. If PSET is non-NULL it is used to record the nodes visited,
8347 and to avoid visiting a node more than once. */
8348
8349 tree
8350 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
8351 struct pointer_set_t *pset, walk_tree_lh lh)
8352 {
8353 enum tree_code code;
8354 int walk_subtrees;
8355 tree result;
8356
8357 #define WALK_SUBTREE_TAIL(NODE) \
8358 do \
8359 { \
8360 tp = & (NODE); \
8361 goto tail_recurse; \
8362 } \
8363 while (0)
8364
8365 tail_recurse:
8366 /* Skip empty subtrees. */
8367 if (!*tp)
8368 return NULL_TREE;
8369
8370 /* Don't walk the same tree twice, if the user has requested
8371 that we avoid doing so. */
8372 if (pset && pointer_set_insert (pset, *tp))
8373 return NULL_TREE;
8374
8375 /* Call the function. */
8376 walk_subtrees = 1;
8377 result = (*func) (tp, &walk_subtrees, data);
8378
8379 /* If we found something, return it. */
8380 if (result)
8381 return result;
8382
8383 code = TREE_CODE (*tp);
8384
8385 /* Even if we didn't, FUNC may have decided that there was nothing
8386 interesting below this point in the tree. */
8387 if (!walk_subtrees)
8388 {
8389 /* But we still need to check our siblings. */
8390 if (code == TREE_LIST)
8391 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
8392 else if (code == OMP_CLAUSE)
8393 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8394 else
8395 return NULL_TREE;
8396 }
8397
8398 if (lh)
8399 {
8400 result = (*lh) (tp, &walk_subtrees, func, data, pset);
8401 if (result || !walk_subtrees)
8402 return result;
8403 }
8404
8405 switch (code)
8406 {
8407 case ERROR_MARK:
8408 case IDENTIFIER_NODE:
8409 case INTEGER_CST:
8410 case REAL_CST:
8411 case FIXED_CST:
8412 case VECTOR_CST:
8413 case STRING_CST:
8414 case BLOCK:
8415 case PLACEHOLDER_EXPR:
8416 case SSA_NAME:
8417 case FIELD_DECL:
8418 case RESULT_DECL:
8419 /* None of these have subtrees other than those already walked
8420 above. */
8421 break;
8422
8423 case TREE_LIST:
8424 WALK_SUBTREE (TREE_VALUE (*tp));
8425 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
8426 break;
8427
8428 case TREE_VEC:
8429 {
8430 int len = TREE_VEC_LENGTH (*tp);
8431
8432 if (len == 0)
8433 break;
8434
8435 /* Walk all elements but the first. */
8436 while (--len)
8437 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
8438
8439 /* Now walk the first one as a tail call. */
8440 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
8441 }
8442
8443 case COMPLEX_CST:
8444 WALK_SUBTREE (TREE_REALPART (*tp));
8445 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
8446
8447 case CONSTRUCTOR:
8448 {
8449 unsigned HOST_WIDE_INT idx;
8450 constructor_elt *ce;
8451
8452 for (idx = 0;
8453 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
8454 idx++)
8455 WALK_SUBTREE (ce->value);
8456 }
8457 break;
8458
8459 case SAVE_EXPR:
8460 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
8461
8462 case BIND_EXPR:
8463 {
8464 tree decl;
8465 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
8466 {
8467 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
8468 into declarations that are just mentioned, rather than
8469 declared; they don't really belong to this part of the tree.
8470 And, we can see cycles: the initializer for a declaration
8471 can refer to the declaration itself. */
8472 WALK_SUBTREE (DECL_INITIAL (decl));
8473 WALK_SUBTREE (DECL_SIZE (decl));
8474 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
8475 }
8476 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
8477 }
8478
8479 case STATEMENT_LIST:
8480 {
8481 tree_stmt_iterator i;
8482 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
8483 WALK_SUBTREE (*tsi_stmt_ptr (i));
8484 }
8485 break;
8486
8487 case OMP_CLAUSE:
8488 switch (OMP_CLAUSE_CODE (*tp))
8489 {
8490 case OMP_CLAUSE_PRIVATE:
8491 case OMP_CLAUSE_SHARED:
8492 case OMP_CLAUSE_FIRSTPRIVATE:
8493 case OMP_CLAUSE_LASTPRIVATE:
8494 case OMP_CLAUSE_COPYIN:
8495 case OMP_CLAUSE_COPYPRIVATE:
8496 case OMP_CLAUSE_IF:
8497 case OMP_CLAUSE_NUM_THREADS:
8498 case OMP_CLAUSE_SCHEDULE:
8499 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
8500 /* FALLTHRU */
8501
8502 case OMP_CLAUSE_NOWAIT:
8503 case OMP_CLAUSE_ORDERED:
8504 case OMP_CLAUSE_DEFAULT:
8505 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8506
8507 case OMP_CLAUSE_REDUCTION:
8508 {
8509 int i;
8510 for (i = 0; i < 4; i++)
8511 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
8512 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8513 }
8514
8515 default:
8516 gcc_unreachable ();
8517 }
8518 break;
8519
8520 case TARGET_EXPR:
8521 {
8522 int i, len;
8523
8524 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
8525 But, we only want to walk once. */
8526 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
8527 for (i = 0; i < len; ++i)
8528 WALK_SUBTREE (TREE_OPERAND (*tp, i));
8529 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
8530 }
8531
8532 case DECL_EXPR:
8533 /* If this is a TYPE_DECL, walk into the fields of the type that it's
8534 defining. We only want to walk into these fields of a type in this
8535 case and not in the general case of a mere reference to the type.
8536
8537 The criterion is as follows: if the field can be an expression, it
8538 must be walked only here. This should be in keeping with the fields
8539 that are directly gimplified in gimplify_type_sizes in order for the
8540 mark/copy-if-shared/unmark machinery of the gimplifier to work with
8541 variable-sized types.
8542
8543 Note that DECLs get walked as part of processing the BIND_EXPR. */
8544 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
8545 {
8546 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
8547 if (TREE_CODE (*type_p) == ERROR_MARK)
8548 return NULL_TREE;
8549
8550 /* Call the function for the type. See if it returns anything or
8551 doesn't want us to continue. If we are to continue, walk both
8552 the normal fields and those for the declaration case. */
8553 result = (*func) (type_p, &walk_subtrees, data);
8554 if (result || !walk_subtrees)
8555 return result;
8556
8557 result = walk_type_fields (*type_p, func, data, pset, lh);
8558 if (result)
8559 return result;
8560
8561 /* If this is a record type, also walk the fields. */
8562 if (TREE_CODE (*type_p) == RECORD_TYPE
8563 || TREE_CODE (*type_p) == UNION_TYPE
8564 || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
8565 {
8566 tree field;
8567
8568 for (field = TYPE_FIELDS (*type_p); field;
8569 field = TREE_CHAIN (field))
8570 {
8571 /* We'd like to look at the type of the field, but we can
8572 easily get infinite recursion. So assume it's pointed
8573 to elsewhere in the tree. Also, ignore things that
8574 aren't fields. */
8575 if (TREE_CODE (field) != FIELD_DECL)
8576 continue;
8577
8578 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
8579 WALK_SUBTREE (DECL_SIZE (field));
8580 WALK_SUBTREE (DECL_SIZE_UNIT (field));
8581 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
8582 WALK_SUBTREE (DECL_QUALIFIER (field));
8583 }
8584 }
8585
8586 /* Same for scalar types. */
8587 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
8588 || TREE_CODE (*type_p) == ENUMERAL_TYPE
8589 || TREE_CODE (*type_p) == INTEGER_TYPE
8590 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
8591 || TREE_CODE (*type_p) == REAL_TYPE)
8592 {
8593 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
8594 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
8595 }
8596
8597 WALK_SUBTREE (TYPE_SIZE (*type_p));
8598 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
8599 }
8600 /* FALLTHRU */
8601
8602 default:
8603 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))
8604 || IS_GIMPLE_STMT_CODE_CLASS (TREE_CODE_CLASS (code)))
8605 {
8606 int i, len;
8607
8608 /* Walk over all the sub-trees of this operand. */
8609 len = TREE_OPERAND_LENGTH (*tp);
8610
8611 /* Go through the subtrees. We need to do this in forward order so
8612 that the scope of a FOR_EXPR is handled properly. */
8613 if (len)
8614 {
8615 for (i = 0; i < len - 1; ++i)
8616 WALK_SUBTREE (GENERIC_TREE_OPERAND (*tp, i));
8617 WALK_SUBTREE_TAIL (GENERIC_TREE_OPERAND (*tp, len - 1));
8618 }
8619 }
8620 /* If this is a type, walk the needed fields in the type. */
8621 else if (TYPE_P (*tp))
8622 return walk_type_fields (*tp, func, data, pset, lh);
8623 break;
8624 }
8625
8626 /* We didn't find what we were looking for. */
8627 return NULL_TREE;
8628
8629 #undef WALK_SUBTREE_TAIL
8630 }
8631 #undef WALK_SUBTREE
8632
8633 /* Like walk_tree, but does not walk duplicate nodes more than once. */
8634
8635 tree
8636 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
8637 walk_tree_lh lh)
8638 {
8639 tree result;
8640 struct pointer_set_t *pset;
8641
8642 pset = pointer_set_create ();
8643 result = walk_tree_1 (tp, func, data, pset, lh);
8644 pointer_set_destroy (pset);
8645 return result;
8646 }
8647
8648
8649 /* Return true if STMT is an empty statement or contains nothing but
8650 empty statements. */
8651
8652 bool
8653 empty_body_p (tree stmt)
8654 {
8655 tree_stmt_iterator i;
8656 tree body;
8657
8658 if (IS_EMPTY_STMT (stmt))
8659 return true;
8660 else if (TREE_CODE (stmt) == BIND_EXPR)
8661 body = BIND_EXPR_BODY (stmt);
8662 else if (TREE_CODE (stmt) == STATEMENT_LIST)
8663 body = stmt;
8664 else
8665 return false;
8666
8667 for (i = tsi_start (body); !tsi_end_p (i); tsi_next (&i))
8668 if (!empty_body_p (tsi_stmt (i)))
8669 return false;
8670
8671 return true;
8672 }
8673
8674 tree *
8675 tree_block (tree t)
8676 {
8677 char const c = TREE_CODE_CLASS (TREE_CODE (t));
8678
8679 if (IS_EXPR_CODE_CLASS (c))
8680 return &t->exp.block;
8681 else if (IS_GIMPLE_STMT_CODE_CLASS (c))
8682 return &GIMPLE_STMT_BLOCK (t);
8683 gcc_unreachable ();
8684 return NULL;
8685 }
8686
8687 tree *
8688 generic_tree_operand (tree node, int i)
8689 {
8690 if (GIMPLE_STMT_P (node))
8691 return &GIMPLE_STMT_OPERAND (node, i);
8692 return &TREE_OPERAND (node, i);
8693 }
8694
8695 tree *
8696 generic_tree_type (tree node)
8697 {
8698 if (GIMPLE_STMT_P (node))
8699 return &void_type_node;
8700 return &TREE_TYPE (node);
8701 }
8702
8703 /* Build and return a TREE_LIST of arguments in the CALL_EXPR exp.
8704 FIXME: don't use this function. It exists for compatibility with
8705 the old representation of CALL_EXPRs where a list was used to hold the
8706 arguments. Places that currently extract the arglist from a CALL_EXPR
8707 ought to be rewritten to use the CALL_EXPR itself. */
8708 tree
8709 call_expr_arglist (tree exp)
8710 {
8711 tree arglist = NULL_TREE;
8712 int i;
8713 for (i = call_expr_nargs (exp) - 1; i >= 0; i--)
8714 arglist = tree_cons (NULL_TREE, CALL_EXPR_ARG (exp, i), arglist);
8715 return arglist;
8716 }
8717
8718 /* Return true if TYPE has a variable argument list. */
8719
8720 bool
8721 stdarg_p (tree fntype)
8722 {
8723 function_args_iterator args_iter;
8724 tree n = NULL_TREE, t;
8725
8726 if (!fntype)
8727 return false;
8728
8729 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
8730 {
8731 n = t;
8732 }
8733
8734 return n != NULL_TREE && n != void_type_node;
8735 }
8736
8737 /* Return true if TYPE has a prototype. */
8738
8739 bool
8740 prototype_p (tree fntype)
8741 {
8742 tree t;
8743
8744 gcc_assert (fntype != NULL_TREE);
8745
8746 t = TYPE_ARG_TYPES (fntype);
8747 return (t != NULL_TREE);
8748 }
8749
8750 /* Return the number of arguments that a function has. */
8751
8752 int
8753 function_args_count (tree fntype)
8754 {
8755 function_args_iterator args_iter;
8756 tree t;
8757 int num = 0;
8758
8759 if (fntype)
8760 {
8761 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
8762 {
8763 num++;
8764 }
8765 }
8766
8767 return num;
8768 }
8769
8770 /* If BLOCK is inlined from an __attribute__((__artificial__))
8771 routine, return pointer to location from where it has been
8772 called. */
8773 location_t *
8774 block_nonartificial_location (tree block)
8775 {
8776 location_t *ret = NULL;
8777
8778 while (block && TREE_CODE (block) == BLOCK
8779 && BLOCK_ABSTRACT_ORIGIN (block))
8780 {
8781 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
8782
8783 while (TREE_CODE (ao) == BLOCK && BLOCK_ABSTRACT_ORIGIN (ao))
8784 ao = BLOCK_ABSTRACT_ORIGIN (ao);
8785
8786 if (TREE_CODE (ao) == FUNCTION_DECL)
8787 {
8788 /* If AO is an artificial inline, point RET to the
8789 call site locus at which it has been inlined and continue
8790 the loop, in case AO's caller is also an artificial
8791 inline. */
8792 if (DECL_DECLARED_INLINE_P (ao)
8793 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
8794 ret = &BLOCK_SOURCE_LOCATION (block);
8795 else
8796 break;
8797 }
8798 else if (TREE_CODE (ao) != BLOCK)
8799 break;
8800
8801 block = BLOCK_SUPERCONTEXT (block);
8802 }
8803 return ret;
8804 }
8805
8806 #include "gt-tree.h"