08b51bacbff3c208d8a0b9d72db8920838b82a72
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 88, 92, 93, 94, 1995 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* This file contains the low level primitives for operating on tree nodes,
22 including allocation, list operations, interning of identifiers,
23 construction of data type nodes and statement nodes,
24 and construction of type conversion nodes. It also contains
25 tables index by tree code that describe how to take apart
26 nodes of that code.
27
28 It is intended to be language-independent, but occasionally
29 calls language-dependent routines defined (for C) in typecheck.c.
30
31 The low-level allocation routines oballoc and permalloc
32 are used also for allocating many other kinds of objects
33 by all passes of the compiler. */
34
35 #include <setjmp.h>
36 #include "config.h"
37 #include "flags.h"
38 #include "tree.h"
39 #include "function.h"
40 #include "obstack.h"
41 #ifdef __STDC__
42 #include <stdarg.h>
43 #else
44 #include <varargs.h>
45 #endif
46 #include <stdio.h>
47
48 #define obstack_chunk_alloc xmalloc
49 #define obstack_chunk_free free
50
51 /* Tree nodes of permanent duration are allocated in this obstack.
52 They are the identifier nodes, and everything outside of
53 the bodies and parameters of function definitions. */
54
55 struct obstack permanent_obstack;
56
57 /* The initial RTL, and all ..._TYPE nodes, in a function
58 are allocated in this obstack. Usually they are freed at the
59 end of the function, but if the function is inline they are saved.
60 For top-level functions, this is maybepermanent_obstack.
61 Separate obstacks are made for nested functions. */
62
63 struct obstack *function_maybepermanent_obstack;
64
65 /* This is the function_maybepermanent_obstack for top-level functions. */
66
67 struct obstack maybepermanent_obstack;
68
69 /* This is a list of function_maybepermanent_obstacks for top-level inline
70 functions that are compiled in the middle of compiling other functions. */
71
72 struct simple_obstack_stack *toplev_inline_obstacks;
73
74 /* This is a list of function_maybepermanent_obstacks for inline functions
75 nested in the current function that were compiled in the middle of
76 compiling other functions. */
77
78 struct simple_obstack_stack *inline_obstacks;
79
80 /* The contents of the current function definition are allocated
81 in this obstack, and all are freed at the end of the function.
82 For top-level functions, this is temporary_obstack.
83 Separate obstacks are made for nested functions. */
84
85 struct obstack *function_obstack;
86
87 /* This is used for reading initializers of global variables. */
88
89 struct obstack temporary_obstack;
90
91 /* The tree nodes of an expression are allocated
92 in this obstack, and all are freed at the end of the expression. */
93
94 struct obstack momentary_obstack;
95
96 /* The tree nodes of a declarator are allocated
97 in this obstack, and all are freed when the declarator
98 has been parsed. */
99
100 static struct obstack temp_decl_obstack;
101
102 /* This points at either permanent_obstack
103 or the current function_maybepermanent_obstack. */
104
105 struct obstack *saveable_obstack;
106
107 /* This is same as saveable_obstack during parse and expansion phase;
108 it points to the current function's obstack during optimization.
109 This is the obstack to be used for creating rtl objects. */
110
111 struct obstack *rtl_obstack;
112
113 /* This points at either permanent_obstack or the current function_obstack. */
114
115 struct obstack *current_obstack;
116
117 /* This points at either permanent_obstack or the current function_obstack
118 or momentary_obstack. */
119
120 struct obstack *expression_obstack;
121
122 /* Stack of obstack selections for push_obstacks and pop_obstacks. */
123
124 struct obstack_stack
125 {
126 struct obstack_stack *next;
127 struct obstack *current;
128 struct obstack *saveable;
129 struct obstack *expression;
130 struct obstack *rtl;
131 };
132
133 struct obstack_stack *obstack_stack;
134
135 /* Obstack for allocating struct obstack_stack entries. */
136
137 static struct obstack obstack_stack_obstack;
138
139 /* Addresses of first objects in some obstacks.
140 This is for freeing their entire contents. */
141 char *maybepermanent_firstobj;
142 char *temporary_firstobj;
143 char *momentary_firstobj;
144 char *temp_decl_firstobj;
145
146 /* This is used to preserve objects (mainly array initializers) that need to
147 live until the end of the current function, but no further. */
148 char *momentary_function_firstobj;
149
150 /* Nonzero means all ..._TYPE nodes should be allocated permanently. */
151
152 int all_types_permanent;
153
154 /* Stack of places to restore the momentary obstack back to. */
155
156 struct momentary_level
157 {
158 /* Pointer back to previous such level. */
159 struct momentary_level *prev;
160 /* First object allocated within this level. */
161 char *base;
162 /* Value of expression_obstack saved at entry to this level. */
163 struct obstack *obstack;
164 };
165
166 struct momentary_level *momentary_stack;
167
168 /* Table indexed by tree code giving a string containing a character
169 classifying the tree code. Possibilities are
170 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
171
172 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
173
174 char *standard_tree_code_type[] = {
175 #include "tree.def"
176 };
177 #undef DEFTREECODE
178
179 /* Table indexed by tree code giving number of expression
180 operands beyond the fixed part of the node structure.
181 Not used for types or decls. */
182
183 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
184
185 int standard_tree_code_length[] = {
186 #include "tree.def"
187 };
188 #undef DEFTREECODE
189
190 /* Names of tree components.
191 Used for printing out the tree and error messages. */
192 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
193
194 char *standard_tree_code_name[] = {
195 #include "tree.def"
196 };
197 #undef DEFTREECODE
198
199 /* Table indexed by tree code giving a string containing a character
200 classifying the tree code. Possibilities are
201 t, d, s, c, r, e, <, 1 and 2. See tree.def for details. */
202
203 char **tree_code_type;
204
205 /* Table indexed by tree code giving number of expression
206 operands beyond the fixed part of the node structure.
207 Not used for types or decls. */
208
209 int *tree_code_length;
210
211 /* Table indexed by tree code giving name of tree code, as a string. */
212
213 char **tree_code_name;
214
215 /* Statistics-gathering stuff. */
216 typedef enum
217 {
218 d_kind,
219 t_kind,
220 b_kind,
221 s_kind,
222 r_kind,
223 e_kind,
224 c_kind,
225 id_kind,
226 op_id_kind,
227 perm_list_kind,
228 temp_list_kind,
229 vec_kind,
230 x_kind,
231 lang_decl,
232 lang_type,
233 all_kinds
234 } tree_node_kind;
235
236 int tree_node_counts[(int)all_kinds];
237 int tree_node_sizes[(int)all_kinds];
238 int id_string_size = 0;
239
240 char *tree_node_kind_names[] = {
241 "decls",
242 "types",
243 "blocks",
244 "stmts",
245 "refs",
246 "exprs",
247 "constants",
248 "identifiers",
249 "op_identifiers",
250 "perm_tree_lists",
251 "temp_tree_lists",
252 "vecs",
253 "random kinds",
254 "lang_decl kinds",
255 "lang_type kinds"
256 };
257
258 /* Hash table for uniquizing IDENTIFIER_NODEs by name. */
259
260 #define MAX_HASH_TABLE 1009
261 static tree hash_table[MAX_HASH_TABLE]; /* id hash buckets */
262
263 /* 0 while creating built-in identifiers. */
264 static int do_identifier_warnings;
265
266 /* Unique id for next decl created. */
267 static int next_decl_uid;
268 /* Unique id for next type created. */
269 static int next_type_uid = 1;
270
271 /* Here is how primitive or already-canonicalized types' hash
272 codes are made. */
273 #define TYPE_HASH(TYPE) ((HOST_WIDE_INT) (TYPE) & 0777777)
274
275 extern char *mode_name[];
276
277 void gcc_obstack_init ();
278 \f
279 /* Init the principal obstacks. */
280
281 void
282 init_obstacks ()
283 {
284 gcc_obstack_init (&obstack_stack_obstack);
285 gcc_obstack_init (&permanent_obstack);
286
287 gcc_obstack_init (&temporary_obstack);
288 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
289 gcc_obstack_init (&momentary_obstack);
290 momentary_firstobj = (char *) obstack_alloc (&momentary_obstack, 0);
291 momentary_function_firstobj = momentary_firstobj;
292 gcc_obstack_init (&maybepermanent_obstack);
293 maybepermanent_firstobj
294 = (char *) obstack_alloc (&maybepermanent_obstack, 0);
295 gcc_obstack_init (&temp_decl_obstack);
296 temp_decl_firstobj = (char *) obstack_alloc (&temp_decl_obstack, 0);
297
298 function_obstack = &temporary_obstack;
299 function_maybepermanent_obstack = &maybepermanent_obstack;
300 current_obstack = &permanent_obstack;
301 expression_obstack = &permanent_obstack;
302 rtl_obstack = saveable_obstack = &permanent_obstack;
303
304 /* Init the hash table of identifiers. */
305 bzero ((char *) hash_table, sizeof hash_table);
306 }
307
308 void
309 gcc_obstack_init (obstack)
310 struct obstack *obstack;
311 {
312 /* Let particular systems override the size of a chunk. */
313 #ifndef OBSTACK_CHUNK_SIZE
314 #define OBSTACK_CHUNK_SIZE 0
315 #endif
316 /* Let them override the alloc and free routines too. */
317 #ifndef OBSTACK_CHUNK_ALLOC
318 #define OBSTACK_CHUNK_ALLOC xmalloc
319 #endif
320 #ifndef OBSTACK_CHUNK_FREE
321 #define OBSTACK_CHUNK_FREE free
322 #endif
323 _obstack_begin (obstack, OBSTACK_CHUNK_SIZE, 0,
324 (void *(*) ()) OBSTACK_CHUNK_ALLOC,
325 (void (*) ()) OBSTACK_CHUNK_FREE);
326 }
327
328 /* Save all variables describing the current status into the structure *P.
329 This is used before starting a nested function.
330
331 CONTEXT is the decl_function_context for the function we're about to
332 compile; if it isn't current_function_decl, we have to play some games. */
333
334 void
335 save_tree_status (p, context)
336 struct function *p;
337 tree context;
338 {
339 p->all_types_permanent = all_types_permanent;
340 p->momentary_stack = momentary_stack;
341 p->maybepermanent_firstobj = maybepermanent_firstobj;
342 p->momentary_firstobj = momentary_firstobj;
343 p->momentary_function_firstobj = momentary_function_firstobj;
344 p->function_obstack = function_obstack;
345 p->function_maybepermanent_obstack = function_maybepermanent_obstack;
346 p->current_obstack = current_obstack;
347 p->expression_obstack = expression_obstack;
348 p->saveable_obstack = saveable_obstack;
349 p->rtl_obstack = rtl_obstack;
350 p->inline_obstacks = inline_obstacks;
351
352 if (context == current_function_decl)
353 /* Objects that need to be saved in this function can be in the nonsaved
354 obstack of the enclosing function since they can't possibly be needed
355 once it has returned. */
356 function_maybepermanent_obstack = function_obstack;
357 else
358 {
359 /* We're compiling a function which isn't nested in the current
360 function. We need to create a new maybepermanent_obstack for this
361 function, since it can't go onto any of the existing obstacks. */
362 struct simple_obstack_stack **head;
363 struct simple_obstack_stack *current;
364
365 if (context == NULL_TREE)
366 head = &toplev_inline_obstacks;
367 else
368 {
369 struct function *f = find_function_data (context);
370 head = &f->inline_obstacks;
371 }
372
373 current = ((struct simple_obstack_stack *)
374 xmalloc (sizeof (struct simple_obstack_stack)));
375
376 current->obstack = (struct obstack *) xmalloc (sizeof (struct obstack));
377 function_maybepermanent_obstack = current->obstack;
378 gcc_obstack_init (function_maybepermanent_obstack);
379
380 current->next = *head;
381 *head = current;
382 }
383
384 maybepermanent_firstobj
385 = (char *) obstack_finish (function_maybepermanent_obstack);
386
387 function_obstack = (struct obstack *) xmalloc (sizeof (struct obstack));
388 gcc_obstack_init (function_obstack);
389
390 current_obstack = &permanent_obstack;
391 expression_obstack = &permanent_obstack;
392 rtl_obstack = saveable_obstack = &permanent_obstack;
393
394 momentary_firstobj = (char *) obstack_finish (&momentary_obstack);
395 momentary_function_firstobj = momentary_firstobj;
396 }
397
398 /* Restore all variables describing the current status from the structure *P.
399 This is used after a nested function. */
400
401 void
402 restore_tree_status (p)
403 struct function *p;
404 {
405 all_types_permanent = p->all_types_permanent;
406 momentary_stack = p->momentary_stack;
407
408 obstack_free (&momentary_obstack, momentary_function_firstobj);
409
410 /* Free saveable storage used by the function just compiled and not
411 saved.
412
413 CAUTION: This is in function_obstack of the containing function.
414 So we must be sure that we never allocate from that obstack during
415 the compilation of a nested function if we expect it to survive
416 past the nested function's end. */
417 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
418
419 obstack_free (function_obstack, 0);
420 free (function_obstack);
421
422 momentary_firstobj = p->momentary_firstobj;
423 momentary_function_firstobj = p->momentary_function_firstobj;
424 maybepermanent_firstobj = p->maybepermanent_firstobj;
425 function_obstack = p->function_obstack;
426 function_maybepermanent_obstack = p->function_maybepermanent_obstack;
427 current_obstack = p->current_obstack;
428 expression_obstack = p->expression_obstack;
429 saveable_obstack = p->saveable_obstack;
430 rtl_obstack = p->rtl_obstack;
431 inline_obstacks = p->inline_obstacks;
432 }
433 \f
434 /* Start allocating on the temporary (per function) obstack.
435 This is done in start_function before parsing the function body,
436 and before each initialization at top level, and to go back
437 to temporary allocation after doing permanent_allocation. */
438
439 void
440 temporary_allocation ()
441 {
442 /* Note that function_obstack at top level points to temporary_obstack.
443 But within a nested function context, it is a separate obstack. */
444 current_obstack = function_obstack;
445 expression_obstack = function_obstack;
446 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
447 momentary_stack = 0;
448 inline_obstacks = 0;
449 }
450
451 /* Start allocating on the permanent obstack but don't
452 free the temporary data. After calling this, call
453 `permanent_allocation' to fully resume permanent allocation status. */
454
455 void
456 end_temporary_allocation ()
457 {
458 current_obstack = &permanent_obstack;
459 expression_obstack = &permanent_obstack;
460 rtl_obstack = saveable_obstack = &permanent_obstack;
461 }
462
463 /* Resume allocating on the temporary obstack, undoing
464 effects of `end_temporary_allocation'. */
465
466 void
467 resume_temporary_allocation ()
468 {
469 current_obstack = function_obstack;
470 expression_obstack = function_obstack;
471 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
472 }
473
474 /* While doing temporary allocation, switch to allocating in such a
475 way as to save all nodes if the function is inlined. Call
476 resume_temporary_allocation to go back to ordinary temporary
477 allocation. */
478
479 void
480 saveable_allocation ()
481 {
482 /* Note that function_obstack at top level points to temporary_obstack.
483 But within a nested function context, it is a separate obstack. */
484 expression_obstack = current_obstack = saveable_obstack;
485 }
486
487 /* Switch to current obstack CURRENT and maybepermanent obstack SAVEABLE,
488 recording the previously current obstacks on a stack.
489 This does not free any storage in any obstack. */
490
491 void
492 push_obstacks (current, saveable)
493 struct obstack *current, *saveable;
494 {
495 struct obstack_stack *p
496 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
497 (sizeof (struct obstack_stack)));
498
499 p->current = current_obstack;
500 p->saveable = saveable_obstack;
501 p->expression = expression_obstack;
502 p->rtl = rtl_obstack;
503 p->next = obstack_stack;
504 obstack_stack = p;
505
506 current_obstack = current;
507 expression_obstack = current;
508 rtl_obstack = saveable_obstack = saveable;
509 }
510
511 /* Save the current set of obstacks, but don't change them. */
512
513 void
514 push_obstacks_nochange ()
515 {
516 struct obstack_stack *p
517 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
518 (sizeof (struct obstack_stack)));
519
520 p->current = current_obstack;
521 p->saveable = saveable_obstack;
522 p->expression = expression_obstack;
523 p->rtl = rtl_obstack;
524 p->next = obstack_stack;
525 obstack_stack = p;
526 }
527
528 /* Pop the obstack selection stack. */
529
530 void
531 pop_obstacks ()
532 {
533 struct obstack_stack *p = obstack_stack;
534 obstack_stack = p->next;
535
536 current_obstack = p->current;
537 saveable_obstack = p->saveable;
538 expression_obstack = p->expression;
539 rtl_obstack = p->rtl;
540
541 obstack_free (&obstack_stack_obstack, p);
542 }
543
544 /* Nonzero if temporary allocation is currently in effect.
545 Zero if currently doing permanent allocation. */
546
547 int
548 allocation_temporary_p ()
549 {
550 return current_obstack != &permanent_obstack;
551 }
552
553 /* Go back to allocating on the permanent obstack
554 and free everything in the temporary obstack.
555
556 FUNCTION_END is true only if we have just finished compiling a function.
557 In that case, we also free preserved initial values on the momentary
558 obstack. */
559
560 void
561 permanent_allocation (function_end)
562 int function_end;
563 {
564 /* Free up previous temporary obstack data */
565 obstack_free (&temporary_obstack, temporary_firstobj);
566 if (function_end)
567 {
568 obstack_free (&momentary_obstack, momentary_function_firstobj);
569 momentary_firstobj = momentary_function_firstobj;
570 }
571 else
572 obstack_free (&momentary_obstack, momentary_firstobj);
573 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
574 obstack_free (&temp_decl_obstack, temp_decl_firstobj);
575
576 /* Free up the maybepermanent_obstacks for any of our nested functions
577 which were compiled at a lower level. */
578 while (inline_obstacks)
579 {
580 struct simple_obstack_stack *current = inline_obstacks;
581 inline_obstacks = current->next;
582 obstack_free (current->obstack, 0);
583 free (current->obstack);
584 free (current);
585 }
586
587 current_obstack = &permanent_obstack;
588 expression_obstack = &permanent_obstack;
589 rtl_obstack = saveable_obstack = &permanent_obstack;
590 }
591
592 /* Save permanently everything on the maybepermanent_obstack. */
593
594 void
595 preserve_data ()
596 {
597 maybepermanent_firstobj
598 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
599 }
600
601 void
602 preserve_initializer ()
603 {
604 struct momentary_level *tem;
605 char *old_momentary;
606
607 temporary_firstobj
608 = (char *) obstack_alloc (&temporary_obstack, 0);
609 maybepermanent_firstobj
610 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
611
612 old_momentary = momentary_firstobj;
613 momentary_firstobj
614 = (char *) obstack_alloc (&momentary_obstack, 0);
615 if (momentary_firstobj != old_momentary)
616 for (tem = momentary_stack; tem; tem = tem->prev)
617 tem->base = momentary_firstobj;
618 }
619
620 /* Start allocating new rtl in current_obstack.
621 Use resume_temporary_allocation
622 to go back to allocating rtl in saveable_obstack. */
623
624 void
625 rtl_in_current_obstack ()
626 {
627 rtl_obstack = current_obstack;
628 }
629
630 /* Start allocating rtl from saveable_obstack. Intended to be used after
631 a call to push_obstacks_nochange. */
632
633 void
634 rtl_in_saveable_obstack ()
635 {
636 rtl_obstack = saveable_obstack;
637 }
638 \f
639 /* Allocate SIZE bytes in the current obstack
640 and return a pointer to them.
641 In practice the current obstack is always the temporary one. */
642
643 char *
644 oballoc (size)
645 int size;
646 {
647 return (char *) obstack_alloc (current_obstack, size);
648 }
649
650 /* Free the object PTR in the current obstack
651 as well as everything allocated since PTR.
652 In practice the current obstack is always the temporary one. */
653
654 void
655 obfree (ptr)
656 char *ptr;
657 {
658 obstack_free (current_obstack, ptr);
659 }
660
661 /* Allocate SIZE bytes in the permanent obstack
662 and return a pointer to them. */
663
664 char *
665 permalloc (size)
666 int size;
667 {
668 return (char *) obstack_alloc (&permanent_obstack, size);
669 }
670
671 /* Allocate NELEM items of SIZE bytes in the permanent obstack
672 and return a pointer to them. The storage is cleared before
673 returning the value. */
674
675 char *
676 perm_calloc (nelem, size)
677 int nelem;
678 long size;
679 {
680 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
681 bzero (rval, nelem * size);
682 return rval;
683 }
684
685 /* Allocate SIZE bytes in the saveable obstack
686 and return a pointer to them. */
687
688 char *
689 savealloc (size)
690 int size;
691 {
692 return (char *) obstack_alloc (saveable_obstack, size);
693 }
694 \f
695 /* Print out which obstack an object is in. */
696
697 void
698 print_obstack_name (object, file, prefix)
699 char *object;
700 FILE *file;
701 char *prefix;
702 {
703 struct obstack *obstack = NULL;
704 char *obstack_name = NULL;
705 struct function *p;
706
707 for (p = outer_function_chain; p; p = p->next)
708 {
709 if (_obstack_allocated_p (p->function_obstack, object))
710 {
711 obstack = p->function_obstack;
712 obstack_name = "containing function obstack";
713 }
714 if (_obstack_allocated_p (p->function_maybepermanent_obstack, object))
715 {
716 obstack = p->function_maybepermanent_obstack;
717 obstack_name = "containing function maybepermanent obstack";
718 }
719 }
720
721 if (_obstack_allocated_p (&obstack_stack_obstack, object))
722 {
723 obstack = &obstack_stack_obstack;
724 obstack_name = "obstack_stack_obstack";
725 }
726 else if (_obstack_allocated_p (function_obstack, object))
727 {
728 obstack = function_obstack;
729 obstack_name = "function obstack";
730 }
731 else if (_obstack_allocated_p (&permanent_obstack, object))
732 {
733 obstack = &permanent_obstack;
734 obstack_name = "permanent_obstack";
735 }
736 else if (_obstack_allocated_p (&momentary_obstack, object))
737 {
738 obstack = &momentary_obstack;
739 obstack_name = "momentary_obstack";
740 }
741 else if (_obstack_allocated_p (function_maybepermanent_obstack, object))
742 {
743 obstack = function_maybepermanent_obstack;
744 obstack_name = "function maybepermanent obstack";
745 }
746 else if (_obstack_allocated_p (&temp_decl_obstack, object))
747 {
748 obstack = &temp_decl_obstack;
749 obstack_name = "temp_decl_obstack";
750 }
751
752 /* Check to see if the object is in the free area of the obstack. */
753 if (obstack != NULL)
754 {
755 if (object >= obstack->next_free
756 && object < obstack->chunk_limit)
757 fprintf (file, "%s in free portion of obstack %s",
758 prefix, obstack_name);
759 else
760 fprintf (file, "%s allocated from %s", prefix, obstack_name);
761 }
762 else
763 fprintf (file, "%s not allocated from any obstack", prefix);
764 }
765
766 void
767 debug_obstack (object)
768 char *object;
769 {
770 print_obstack_name (object, stderr, "object");
771 fprintf (stderr, ".\n");
772 }
773
774 /* Return 1 if OBJ is in the permanent obstack.
775 This is slow, and should be used only for debugging.
776 Use TREE_PERMANENT for other purposes. */
777
778 int
779 object_permanent_p (obj)
780 tree obj;
781 {
782 return _obstack_allocated_p (&permanent_obstack, obj);
783 }
784 \f
785 /* Start a level of momentary allocation.
786 In C, each compound statement has its own level
787 and that level is freed at the end of each statement.
788 All expression nodes are allocated in the momentary allocation level. */
789
790 void
791 push_momentary ()
792 {
793 struct momentary_level *tem
794 = (struct momentary_level *) obstack_alloc (&momentary_obstack,
795 sizeof (struct momentary_level));
796 tem->prev = momentary_stack;
797 tem->base = (char *) obstack_base (&momentary_obstack);
798 tem->obstack = expression_obstack;
799 momentary_stack = tem;
800 expression_obstack = &momentary_obstack;
801 }
802
803 /* Set things up so the next clear_momentary will only clear memory
804 past our present position in momentary_obstack. */
805
806 void
807 preserve_momentary ()
808 {
809 momentary_stack->base = (char *) obstack_base (&momentary_obstack);
810 }
811
812 /* Free all the storage in the current momentary-allocation level.
813 In C, this happens at the end of each statement. */
814
815 void
816 clear_momentary ()
817 {
818 obstack_free (&momentary_obstack, momentary_stack->base);
819 }
820
821 /* Discard a level of momentary allocation.
822 In C, this happens at the end of each compound statement.
823 Restore the status of expression node allocation
824 that was in effect before this level was created. */
825
826 void
827 pop_momentary ()
828 {
829 struct momentary_level *tem = momentary_stack;
830 momentary_stack = tem->prev;
831 expression_obstack = tem->obstack;
832 /* We can't free TEM from the momentary_obstack, because there might
833 be objects above it which have been saved. We can free back to the
834 stack of the level we are popping off though. */
835 obstack_free (&momentary_obstack, tem->base);
836 }
837
838 /* Pop back to the previous level of momentary allocation,
839 but don't free any momentary data just yet. */
840
841 void
842 pop_momentary_nofree ()
843 {
844 struct momentary_level *tem = momentary_stack;
845 momentary_stack = tem->prev;
846 expression_obstack = tem->obstack;
847 }
848
849 /* Call when starting to parse a declaration:
850 make expressions in the declaration last the length of the function.
851 Returns an argument that should be passed to resume_momentary later. */
852
853 int
854 suspend_momentary ()
855 {
856 register int tem = expression_obstack == &momentary_obstack;
857 expression_obstack = saveable_obstack;
858 return tem;
859 }
860
861 /* Call when finished parsing a declaration:
862 restore the treatment of node-allocation that was
863 in effect before the suspension.
864 YES should be the value previously returned by suspend_momentary. */
865
866 void
867 resume_momentary (yes)
868 int yes;
869 {
870 if (yes)
871 expression_obstack = &momentary_obstack;
872 }
873 \f
874 /* Init the tables indexed by tree code.
875 Note that languages can add to these tables to define their own codes. */
876
877 void
878 init_tree_codes ()
879 {
880 tree_code_type = (char **) xmalloc (sizeof (standard_tree_code_type));
881 tree_code_length = (int *) xmalloc (sizeof (standard_tree_code_length));
882 tree_code_name = (char **) xmalloc (sizeof (standard_tree_code_name));
883 bcopy ((char *) standard_tree_code_type, (char *) tree_code_type,
884 sizeof (standard_tree_code_type));
885 bcopy ((char *) standard_tree_code_length, (char *) tree_code_length,
886 sizeof (standard_tree_code_length));
887 bcopy ((char *) standard_tree_code_name, (char *) tree_code_name,
888 sizeof (standard_tree_code_name));
889 }
890
891 /* Return a newly allocated node of code CODE.
892 Initialize the node's unique id and its TREE_PERMANENT flag.
893 For decl and type nodes, some other fields are initialized.
894 The rest of the node is initialized to zero.
895
896 Achoo! I got a code in the node. */
897
898 tree
899 make_node (code)
900 enum tree_code code;
901 {
902 register tree t;
903 register int type = TREE_CODE_CLASS (code);
904 register int length;
905 register struct obstack *obstack = current_obstack;
906 register int i;
907 register tree_node_kind kind;
908
909 switch (type)
910 {
911 case 'd': /* A decl node */
912 #ifdef GATHER_STATISTICS
913 kind = d_kind;
914 #endif
915 length = sizeof (struct tree_decl);
916 /* All decls in an inline function need to be saved. */
917 if (obstack != &permanent_obstack)
918 obstack = saveable_obstack;
919
920 /* PARM_DECLs go on the context of the parent. If this is a nested
921 function, then we must allocate the PARM_DECL on the parent's
922 obstack, so that they will live to the end of the parent's
923 closing brace. This is necessary in case we try to inline the
924 function into its parent.
925
926 PARM_DECLs of top-level functions do not have this problem. However,
927 we allocate them where we put the FUNCTION_DECL for languages such as
928 Ada that need to consult some flags in the PARM_DECLs of the function
929 when calling it.
930
931 See comment in restore_tree_status for why we can't put this
932 in function_obstack. */
933 if (code == PARM_DECL && obstack != &permanent_obstack)
934 {
935 tree context = 0;
936 if (current_function_decl)
937 context = decl_function_context (current_function_decl);
938
939 if (context)
940 obstack
941 = find_function_data (context)->function_maybepermanent_obstack;
942 }
943 break;
944
945 case 't': /* a type node */
946 #ifdef GATHER_STATISTICS
947 kind = t_kind;
948 #endif
949 length = sizeof (struct tree_type);
950 /* All data types are put where we can preserve them if nec. */
951 if (obstack != &permanent_obstack)
952 obstack = all_types_permanent ? &permanent_obstack : saveable_obstack;
953 break;
954
955 case 'b': /* a lexical block */
956 #ifdef GATHER_STATISTICS
957 kind = b_kind;
958 #endif
959 length = sizeof (struct tree_block);
960 /* All BLOCK nodes are put where we can preserve them if nec. */
961 if (obstack != &permanent_obstack)
962 obstack = saveable_obstack;
963 break;
964
965 case 's': /* an expression with side effects */
966 #ifdef GATHER_STATISTICS
967 kind = s_kind;
968 goto usual_kind;
969 #endif
970 case 'r': /* a reference */
971 #ifdef GATHER_STATISTICS
972 kind = r_kind;
973 goto usual_kind;
974 #endif
975 case 'e': /* an expression */
976 case '<': /* a comparison expression */
977 case '1': /* a unary arithmetic expression */
978 case '2': /* a binary arithmetic expression */
979 #ifdef GATHER_STATISTICS
980 kind = e_kind;
981 usual_kind:
982 #endif
983 obstack = expression_obstack;
984 /* All BIND_EXPR nodes are put where we can preserve them if nec. */
985 if (code == BIND_EXPR && obstack != &permanent_obstack)
986 obstack = saveable_obstack;
987 length = sizeof (struct tree_exp)
988 + (tree_code_length[(int) code] - 1) * sizeof (char *);
989 break;
990
991 case 'c': /* a constant */
992 #ifdef GATHER_STATISTICS
993 kind = c_kind;
994 #endif
995 obstack = expression_obstack;
996
997 /* We can't use tree_code_length for INTEGER_CST, since the number of
998 words is machine-dependent due to varying length of HOST_WIDE_INT,
999 which might be wider than a pointer (e.g., long long). Similarly
1000 for REAL_CST, since the number of words is machine-dependent due
1001 to varying size and alignment of `double'. */
1002
1003 if (code == INTEGER_CST)
1004 length = sizeof (struct tree_int_cst);
1005 else if (code == REAL_CST)
1006 length = sizeof (struct tree_real_cst);
1007 else
1008 length = sizeof (struct tree_common)
1009 + tree_code_length[(int) code] * sizeof (char *);
1010 break;
1011
1012 case 'x': /* something random, like an identifier. */
1013 #ifdef GATHER_STATISTICS
1014 if (code == IDENTIFIER_NODE)
1015 kind = id_kind;
1016 else if (code == OP_IDENTIFIER)
1017 kind = op_id_kind;
1018 else if (code == TREE_VEC)
1019 kind = vec_kind;
1020 else
1021 kind = x_kind;
1022 #endif
1023 length = sizeof (struct tree_common)
1024 + tree_code_length[(int) code] * sizeof (char *);
1025 /* Identifier nodes are always permanent since they are
1026 unique in a compiler run. */
1027 if (code == IDENTIFIER_NODE) obstack = &permanent_obstack;
1028 break;
1029
1030 default:
1031 abort ();
1032 }
1033
1034 t = (tree) obstack_alloc (obstack, length);
1035
1036 #ifdef GATHER_STATISTICS
1037 tree_node_counts[(int)kind]++;
1038 tree_node_sizes[(int)kind] += length;
1039 #endif
1040
1041 /* Clear a word at a time. */
1042 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1043 ((int *) t)[i] = 0;
1044 /* Clear any extra bytes. */
1045 for (i = length / sizeof (int) * sizeof (int); i < length; i++)
1046 ((char *) t)[i] = 0;
1047
1048 TREE_SET_CODE (t, code);
1049 if (obstack == &permanent_obstack)
1050 TREE_PERMANENT (t) = 1;
1051
1052 switch (type)
1053 {
1054 case 's':
1055 TREE_SIDE_EFFECTS (t) = 1;
1056 TREE_TYPE (t) = void_type_node;
1057 break;
1058
1059 case 'd':
1060 if (code != FUNCTION_DECL)
1061 DECL_ALIGN (t) = 1;
1062 DECL_IN_SYSTEM_HEADER (t)
1063 = in_system_header && (obstack == &permanent_obstack);
1064 DECL_SOURCE_LINE (t) = lineno;
1065 DECL_SOURCE_FILE (t) = (input_filename) ? input_filename : "<built-in>";
1066 DECL_UID (t) = next_decl_uid++;
1067 break;
1068
1069 case 't':
1070 TYPE_UID (t) = next_type_uid++;
1071 TYPE_ALIGN (t) = 1;
1072 TYPE_MAIN_VARIANT (t) = t;
1073 TYPE_OBSTACK (t) = obstack;
1074 TYPE_ATTRIBUTES (t) = NULL_TREE;
1075 #ifdef SET_DEFAULT_TYPE_ATTRIBUTES
1076 SET_DEFAULT_TYPE_ATTRIBUTES (t);
1077 #endif
1078 break;
1079
1080 case 'c':
1081 TREE_CONSTANT (t) = 1;
1082 break;
1083 }
1084
1085 return t;
1086 }
1087 \f
1088 /* Return a new node with the same contents as NODE
1089 except that its TREE_CHAIN is zero and it has a fresh uid. */
1090
1091 tree
1092 copy_node (node)
1093 tree node;
1094 {
1095 register tree t;
1096 register enum tree_code code = TREE_CODE (node);
1097 register int length;
1098 register int i;
1099
1100 switch (TREE_CODE_CLASS (code))
1101 {
1102 case 'd': /* A decl node */
1103 length = sizeof (struct tree_decl);
1104 break;
1105
1106 case 't': /* a type node */
1107 length = sizeof (struct tree_type);
1108 break;
1109
1110 case 'b': /* a lexical block node */
1111 length = sizeof (struct tree_block);
1112 break;
1113
1114 case 'r': /* a reference */
1115 case 'e': /* an expression */
1116 case 's': /* an expression with side effects */
1117 case '<': /* a comparison expression */
1118 case '1': /* a unary arithmetic expression */
1119 case '2': /* a binary arithmetic expression */
1120 length = sizeof (struct tree_exp)
1121 + (tree_code_length[(int) code] - 1) * sizeof (char *);
1122 break;
1123
1124 case 'c': /* a constant */
1125 /* We can't use tree_code_length for INTEGER_CST, since the number of
1126 words is machine-dependent due to varying length of HOST_WIDE_INT,
1127 which might be wider than a pointer (e.g., long long). Similarly
1128 for REAL_CST, since the number of words is machine-dependent due
1129 to varying size and alignment of `double'. */
1130 if (code == INTEGER_CST)
1131 {
1132 length = sizeof (struct tree_int_cst);
1133 break;
1134 }
1135 else if (code == REAL_CST)
1136 {
1137 length = sizeof (struct tree_real_cst);
1138 break;
1139 }
1140
1141 case 'x': /* something random, like an identifier. */
1142 length = sizeof (struct tree_common)
1143 + tree_code_length[(int) code] * sizeof (char *);
1144 if (code == TREE_VEC)
1145 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
1146 }
1147
1148 t = (tree) obstack_alloc (current_obstack, length);
1149
1150 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1151 ((int *) t)[i] = ((int *) node)[i];
1152 /* Clear any extra bytes. */
1153 for (i = length / sizeof (int) * sizeof (int); i < length; i++)
1154 ((char *) t)[i] = ((char *) node)[i];
1155
1156 TREE_CHAIN (t) = 0;
1157
1158 if (TREE_CODE_CLASS (code) == 'd')
1159 DECL_UID (t) = next_decl_uid++;
1160 else if (TREE_CODE_CLASS (code) == 't')
1161 {
1162 TYPE_UID (t) = next_type_uid++;
1163 TYPE_OBSTACK (t) = current_obstack;
1164 }
1165
1166 TREE_PERMANENT (t) = (current_obstack == &permanent_obstack);
1167
1168 return t;
1169 }
1170
1171 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1172 For example, this can copy a list made of TREE_LIST nodes. */
1173
1174 tree
1175 copy_list (list)
1176 tree list;
1177 {
1178 tree head;
1179 register tree prev, next;
1180
1181 if (list == 0)
1182 return 0;
1183
1184 head = prev = copy_node (list);
1185 next = TREE_CHAIN (list);
1186 while (next)
1187 {
1188 TREE_CHAIN (prev) = copy_node (next);
1189 prev = TREE_CHAIN (prev);
1190 next = TREE_CHAIN (next);
1191 }
1192 return head;
1193 }
1194 \f
1195 #define HASHBITS 30
1196
1197 /* Return an IDENTIFIER_NODE whose name is TEXT (a null-terminated string).
1198 If an identifier with that name has previously been referred to,
1199 the same node is returned this time. */
1200
1201 tree
1202 get_identifier (text)
1203 register char *text;
1204 {
1205 register int hi;
1206 register int i;
1207 register tree idp;
1208 register int len, hash_len;
1209
1210 /* Compute length of text in len. */
1211 for (len = 0; text[len]; len++);
1212
1213 /* Decide how much of that length to hash on */
1214 hash_len = len;
1215 if (warn_id_clash && len > id_clash_len)
1216 hash_len = id_clash_len;
1217
1218 /* Compute hash code */
1219 hi = hash_len * 613 + (unsigned)text[0];
1220 for (i = 1; i < hash_len; i += 2)
1221 hi = ((hi * 613) + (unsigned)(text[i]));
1222
1223 hi &= (1 << HASHBITS) - 1;
1224 hi %= MAX_HASH_TABLE;
1225
1226 /* Search table for identifier */
1227 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1228 if (IDENTIFIER_LENGTH (idp) == len
1229 && IDENTIFIER_POINTER (idp)[0] == text[0]
1230 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1231 return idp; /* <-- return if found */
1232
1233 /* Not found; optionally warn about a similar identifier */
1234 if (warn_id_clash && do_identifier_warnings && len >= id_clash_len)
1235 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1236 if (!strncmp (IDENTIFIER_POINTER (idp), text, id_clash_len))
1237 {
1238 warning ("`%s' and `%s' identical in first %d characters",
1239 IDENTIFIER_POINTER (idp), text, id_clash_len);
1240 break;
1241 }
1242
1243 if (tree_code_length[(int) IDENTIFIER_NODE] < 0)
1244 abort (); /* set_identifier_size hasn't been called. */
1245
1246 /* Not found, create one, add to chain */
1247 idp = make_node (IDENTIFIER_NODE);
1248 IDENTIFIER_LENGTH (idp) = len;
1249 #ifdef GATHER_STATISTICS
1250 id_string_size += len;
1251 #endif
1252
1253 IDENTIFIER_POINTER (idp) = obstack_copy0 (&permanent_obstack, text, len);
1254
1255 TREE_CHAIN (idp) = hash_table[hi];
1256 hash_table[hi] = idp;
1257 return idp; /* <-- return if created */
1258 }
1259
1260 /* Enable warnings on similar identifiers (if requested).
1261 Done after the built-in identifiers are created. */
1262
1263 void
1264 start_identifier_warnings ()
1265 {
1266 do_identifier_warnings = 1;
1267 }
1268
1269 /* Record the size of an identifier node for the language in use.
1270 SIZE is the total size in bytes.
1271 This is called by the language-specific files. This must be
1272 called before allocating any identifiers. */
1273
1274 void
1275 set_identifier_size (size)
1276 int size;
1277 {
1278 tree_code_length[(int) IDENTIFIER_NODE]
1279 = (size - sizeof (struct tree_common)) / sizeof (tree);
1280 }
1281 \f
1282 /* Return a newly constructed INTEGER_CST node whose constant value
1283 is specified by the two ints LOW and HI.
1284 The TREE_TYPE is set to `int'.
1285
1286 This function should be used via the `build_int_2' macro. */
1287
1288 tree
1289 build_int_2_wide (low, hi)
1290 HOST_WIDE_INT low, hi;
1291 {
1292 register tree t = make_node (INTEGER_CST);
1293 TREE_INT_CST_LOW (t) = low;
1294 TREE_INT_CST_HIGH (t) = hi;
1295 TREE_TYPE (t) = integer_type_node;
1296 return t;
1297 }
1298
1299 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1300
1301 tree
1302 build_real (type, d)
1303 tree type;
1304 REAL_VALUE_TYPE d;
1305 {
1306 tree v;
1307 int overflow = 0;
1308
1309 /* Check for valid float value for this type on this target machine;
1310 if not, can print error message and store a valid value in D. */
1311 #ifdef CHECK_FLOAT_VALUE
1312 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1313 #endif
1314
1315 v = make_node (REAL_CST);
1316 TREE_TYPE (v) = type;
1317 TREE_REAL_CST (v) = d;
1318 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1319 return v;
1320 }
1321
1322 /* Return a new REAL_CST node whose type is TYPE
1323 and whose value is the integer value of the INTEGER_CST node I. */
1324
1325 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1326
1327 REAL_VALUE_TYPE
1328 real_value_from_int_cst (i)
1329 tree i;
1330 {
1331 REAL_VALUE_TYPE d;
1332 REAL_VALUE_TYPE e;
1333 /* Some 386 compilers mishandle unsigned int to float conversions,
1334 so introduce a temporary variable E to avoid those bugs. */
1335
1336 #ifdef REAL_ARITHMETIC
1337 if (! TREE_UNSIGNED (TREE_TYPE (i)))
1338 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i));
1339 else
1340 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i));
1341 #else /* not REAL_ARITHMETIC */
1342 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
1343 {
1344 d = (double) (~ TREE_INT_CST_HIGH (i));
1345 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1346 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1347 d *= e;
1348 e = (double) (unsigned HOST_WIDE_INT) (~ TREE_INT_CST_LOW (i));
1349 d += e;
1350 d = (- d - 1.0);
1351 }
1352 else
1353 {
1354 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
1355 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1356 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1357 d *= e;
1358 e = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (i);
1359 d += e;
1360 }
1361 #endif /* not REAL_ARITHMETIC */
1362 return d;
1363 }
1364
1365 /* This function can't be implemented if we can't do arithmetic
1366 on the float representation. */
1367
1368 tree
1369 build_real_from_int_cst (type, i)
1370 tree type;
1371 tree i;
1372 {
1373 tree v;
1374 int overflow = TREE_OVERFLOW (i);
1375 REAL_VALUE_TYPE d;
1376 jmp_buf float_error;
1377
1378 v = make_node (REAL_CST);
1379 TREE_TYPE (v) = type;
1380
1381 if (setjmp (float_error))
1382 {
1383 d = dconst0;
1384 overflow = 1;
1385 goto got_it;
1386 }
1387
1388 set_float_handler (float_error);
1389
1390 d = REAL_VALUE_TRUNCATE (TYPE_MODE (type), real_value_from_int_cst (i));
1391
1392 /* Check for valid float value for this type on this target machine. */
1393
1394 got_it:
1395 set_float_handler (NULL_PTR);
1396
1397 #ifdef CHECK_FLOAT_VALUE
1398 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1399 #endif
1400
1401 TREE_REAL_CST (v) = d;
1402 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1403 return v;
1404 }
1405
1406 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1407
1408 /* Return a newly constructed STRING_CST node whose value is
1409 the LEN characters at STR.
1410 The TREE_TYPE is not initialized. */
1411
1412 tree
1413 build_string (len, str)
1414 int len;
1415 char *str;
1416 {
1417 /* Put the string in saveable_obstack since it will be placed in the RTL
1418 for an "asm" statement and will also be kept around a while if
1419 deferring constant output in varasm.c. */
1420
1421 register tree s = make_node (STRING_CST);
1422 TREE_STRING_LENGTH (s) = len;
1423 TREE_STRING_POINTER (s) = obstack_copy0 (saveable_obstack, str, len);
1424 return s;
1425 }
1426
1427 /* Return a newly constructed COMPLEX_CST node whose value is
1428 specified by the real and imaginary parts REAL and IMAG.
1429 Both REAL and IMAG should be constant nodes.
1430 The TREE_TYPE is not initialized. */
1431
1432 tree
1433 build_complex (real, imag)
1434 tree real, imag;
1435 {
1436 register tree t = make_node (COMPLEX_CST);
1437
1438 TREE_REALPART (t) = real;
1439 TREE_IMAGPART (t) = imag;
1440 TREE_TYPE (t) = build_complex_type (TREE_TYPE (real));
1441 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1442 TREE_CONSTANT_OVERFLOW (t)
1443 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1444 return t;
1445 }
1446
1447 /* Build a newly constructed TREE_VEC node of length LEN. */
1448 tree
1449 make_tree_vec (len)
1450 int len;
1451 {
1452 register tree t;
1453 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
1454 register struct obstack *obstack = current_obstack;
1455 register int i;
1456
1457 #ifdef GATHER_STATISTICS
1458 tree_node_counts[(int)vec_kind]++;
1459 tree_node_sizes[(int)vec_kind] += length;
1460 #endif
1461
1462 t = (tree) obstack_alloc (obstack, length);
1463
1464 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1465 ((int *) t)[i] = 0;
1466
1467 TREE_SET_CODE (t, TREE_VEC);
1468 TREE_VEC_LENGTH (t) = len;
1469 if (obstack == &permanent_obstack)
1470 TREE_PERMANENT (t) = 1;
1471
1472 return t;
1473 }
1474 \f
1475 /* Return 1 if EXPR is the integer constant zero or a complex constant
1476 of zero. */
1477
1478 int
1479 integer_zerop (expr)
1480 tree expr;
1481 {
1482 STRIP_NOPS (expr);
1483
1484 return ((TREE_CODE (expr) == INTEGER_CST
1485 && TREE_INT_CST_LOW (expr) == 0
1486 && TREE_INT_CST_HIGH (expr) == 0)
1487 || (TREE_CODE (expr) == COMPLEX_CST
1488 && integer_zerop (TREE_REALPART (expr))
1489 && integer_zerop (TREE_IMAGPART (expr))));
1490 }
1491
1492 /* Return 1 if EXPR is the integer constant one or the corresponding
1493 complex constant. */
1494
1495 int
1496 integer_onep (expr)
1497 tree expr;
1498 {
1499 STRIP_NOPS (expr);
1500
1501 return ((TREE_CODE (expr) == INTEGER_CST
1502 && TREE_INT_CST_LOW (expr) == 1
1503 && TREE_INT_CST_HIGH (expr) == 0)
1504 || (TREE_CODE (expr) == COMPLEX_CST
1505 && integer_onep (TREE_REALPART (expr))
1506 && integer_zerop (TREE_IMAGPART (expr))));
1507 }
1508
1509 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1510 it contains. Likewise for the corresponding complex constant. */
1511
1512 int
1513 integer_all_onesp (expr)
1514 tree expr;
1515 {
1516 register int prec;
1517 register int uns;
1518
1519 STRIP_NOPS (expr);
1520
1521 if (TREE_CODE (expr) == COMPLEX_CST
1522 && integer_all_onesp (TREE_REALPART (expr))
1523 && integer_zerop (TREE_IMAGPART (expr)))
1524 return 1;
1525
1526 else if (TREE_CODE (expr) != INTEGER_CST)
1527 return 0;
1528
1529 uns = TREE_UNSIGNED (TREE_TYPE (expr));
1530 if (!uns)
1531 return TREE_INT_CST_LOW (expr) == -1 && TREE_INT_CST_HIGH (expr) == -1;
1532
1533 /* Note that using TYPE_PRECISION here is wrong. We care about the
1534 actual bits, not the (arbitrary) range of the type. */
1535 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1536 if (prec >= HOST_BITS_PER_WIDE_INT)
1537 {
1538 int high_value, shift_amount;
1539
1540 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1541
1542 if (shift_amount > HOST_BITS_PER_WIDE_INT)
1543 /* Can not handle precisions greater than twice the host int size. */
1544 abort ();
1545 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
1546 /* Shifting by the host word size is undefined according to the ANSI
1547 standard, so we must handle this as a special case. */
1548 high_value = -1;
1549 else
1550 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1551
1552 return TREE_INT_CST_LOW (expr) == -1
1553 && TREE_INT_CST_HIGH (expr) == high_value;
1554 }
1555 else
1556 return TREE_INT_CST_LOW (expr) == ((HOST_WIDE_INT) 1 << prec) - 1;
1557 }
1558
1559 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1560 one bit on). */
1561
1562 int
1563 integer_pow2p (expr)
1564 tree expr;
1565 {
1566 HOST_WIDE_INT high, low;
1567
1568 STRIP_NOPS (expr);
1569
1570 if (TREE_CODE (expr) == COMPLEX_CST
1571 && integer_pow2p (TREE_REALPART (expr))
1572 && integer_zerop (TREE_IMAGPART (expr)))
1573 return 1;
1574
1575 if (TREE_CODE (expr) != INTEGER_CST)
1576 return 0;
1577
1578 high = TREE_INT_CST_HIGH (expr);
1579 low = TREE_INT_CST_LOW (expr);
1580
1581 if (high == 0 && low == 0)
1582 return 0;
1583
1584 return ((high == 0 && (low & (low - 1)) == 0)
1585 || (low == 0 && (high & (high - 1)) == 0));
1586 }
1587
1588 /* Return 1 if EXPR is the real constant zero. */
1589
1590 int
1591 real_zerop (expr)
1592 tree expr;
1593 {
1594 STRIP_NOPS (expr);
1595
1596 return ((TREE_CODE (expr) == REAL_CST
1597 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1598 || (TREE_CODE (expr) == COMPLEX_CST
1599 && real_zerop (TREE_REALPART (expr))
1600 && real_zerop (TREE_IMAGPART (expr))));
1601 }
1602
1603 /* Return 1 if EXPR is the real constant one in real or complex form. */
1604
1605 int
1606 real_onep (expr)
1607 tree expr;
1608 {
1609 STRIP_NOPS (expr);
1610
1611 return ((TREE_CODE (expr) == REAL_CST
1612 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1613 || (TREE_CODE (expr) == COMPLEX_CST
1614 && real_onep (TREE_REALPART (expr))
1615 && real_zerop (TREE_IMAGPART (expr))));
1616 }
1617
1618 /* Return 1 if EXPR is the real constant two. */
1619
1620 int
1621 real_twop (expr)
1622 tree expr;
1623 {
1624 STRIP_NOPS (expr);
1625
1626 return ((TREE_CODE (expr) == REAL_CST
1627 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1628 || (TREE_CODE (expr) == COMPLEX_CST
1629 && real_twop (TREE_REALPART (expr))
1630 && real_zerop (TREE_IMAGPART (expr))));
1631 }
1632
1633 /* Nonzero if EXP is a constant or a cast of a constant. */
1634
1635 int
1636 really_constant_p (exp)
1637 tree exp;
1638 {
1639 /* This is not quite the same as STRIP_NOPS. It does more. */
1640 while (TREE_CODE (exp) == NOP_EXPR
1641 || TREE_CODE (exp) == CONVERT_EXPR
1642 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1643 exp = TREE_OPERAND (exp, 0);
1644 return TREE_CONSTANT (exp);
1645 }
1646 \f
1647 /* Return first list element whose TREE_VALUE is ELEM.
1648 Return 0 if ELEM is not in LIST. */
1649
1650 tree
1651 value_member (elem, list)
1652 tree elem, list;
1653 {
1654 while (list)
1655 {
1656 if (elem == TREE_VALUE (list))
1657 return list;
1658 list = TREE_CHAIN (list);
1659 }
1660 return NULL_TREE;
1661 }
1662
1663 /* Return first list element whose TREE_PURPOSE is ELEM.
1664 Return 0 if ELEM is not in LIST. */
1665
1666 tree
1667 purpose_member (elem, list)
1668 tree elem, list;
1669 {
1670 while (list)
1671 {
1672 if (elem == TREE_PURPOSE (list))
1673 return list;
1674 list = TREE_CHAIN (list);
1675 }
1676 return NULL_TREE;
1677 }
1678
1679 /* Return first list element whose BINFO_TYPE is ELEM.
1680 Return 0 if ELEM is not in LIST. */
1681
1682 tree
1683 binfo_member (elem, list)
1684 tree elem, list;
1685 {
1686 while (list)
1687 {
1688 if (elem == BINFO_TYPE (list))
1689 return list;
1690 list = TREE_CHAIN (list);
1691 }
1692 return NULL_TREE;
1693 }
1694
1695 /* Return nonzero if ELEM is part of the chain CHAIN. */
1696
1697 int
1698 chain_member (elem, chain)
1699 tree elem, chain;
1700 {
1701 while (chain)
1702 {
1703 if (elem == chain)
1704 return 1;
1705 chain = TREE_CHAIN (chain);
1706 }
1707
1708 return 0;
1709 }
1710
1711 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1712 chain CHAIN. */
1713 /* ??? This function was added for machine specific attributes but is no
1714 longer used. It could be deleted if we could confirm all front ends
1715 don't use it. */
1716
1717 int
1718 chain_member_value (elem, chain)
1719 tree elem, chain;
1720 {
1721 while (chain)
1722 {
1723 if (elem == TREE_VALUE (chain))
1724 return 1;
1725 chain = TREE_CHAIN (chain);
1726 }
1727
1728 return 0;
1729 }
1730
1731 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1732 for any piece of chain CHAIN. */
1733 /* ??? This function was added for machine specific attributes but is no
1734 longer used. It could be deleted if we could confirm all front ends
1735 don't use it. */
1736
1737 int
1738 chain_member_purpose (elem, chain)
1739 tree elem, chain;
1740 {
1741 while (chain)
1742 {
1743 if (elem == TREE_PURPOSE (chain))
1744 return 1;
1745 chain = TREE_CHAIN (chain);
1746 }
1747
1748 return 0;
1749 }
1750
1751 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1752 We expect a null pointer to mark the end of the chain.
1753 This is the Lisp primitive `length'. */
1754
1755 int
1756 list_length (t)
1757 tree t;
1758 {
1759 register tree tail;
1760 register int len = 0;
1761
1762 for (tail = t; tail; tail = TREE_CHAIN (tail))
1763 len++;
1764
1765 return len;
1766 }
1767
1768 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1769 by modifying the last node in chain 1 to point to chain 2.
1770 This is the Lisp primitive `nconc'. */
1771
1772 tree
1773 chainon (op1, op2)
1774 tree op1, op2;
1775 {
1776
1777 if (op1)
1778 {
1779 register tree t1;
1780 register tree t2;
1781
1782 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1783 ;
1784 TREE_CHAIN (t1) = op2;
1785 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1786 if (t2 == t1)
1787 abort (); /* Circularity created. */
1788 return op1;
1789 }
1790 else return op2;
1791 }
1792
1793 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1794
1795 tree
1796 tree_last (chain)
1797 register tree chain;
1798 {
1799 register tree next;
1800 if (chain)
1801 while (next = TREE_CHAIN (chain))
1802 chain = next;
1803 return chain;
1804 }
1805
1806 /* Reverse the order of elements in the chain T,
1807 and return the new head of the chain (old last element). */
1808
1809 tree
1810 nreverse (t)
1811 tree t;
1812 {
1813 register tree prev = 0, decl, next;
1814 for (decl = t; decl; decl = next)
1815 {
1816 next = TREE_CHAIN (decl);
1817 TREE_CHAIN (decl) = prev;
1818 prev = decl;
1819 }
1820 return prev;
1821 }
1822
1823 /* Given a chain CHAIN of tree nodes,
1824 construct and return a list of those nodes. */
1825
1826 tree
1827 listify (chain)
1828 tree chain;
1829 {
1830 tree result = NULL_TREE;
1831 tree in_tail = chain;
1832 tree out_tail = NULL_TREE;
1833
1834 while (in_tail)
1835 {
1836 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1837 if (out_tail)
1838 TREE_CHAIN (out_tail) = next;
1839 else
1840 result = next;
1841 out_tail = next;
1842 in_tail = TREE_CHAIN (in_tail);
1843 }
1844
1845 return result;
1846 }
1847 \f
1848 /* Return a newly created TREE_LIST node whose
1849 purpose and value fields are PARM and VALUE. */
1850
1851 tree
1852 build_tree_list (parm, value)
1853 tree parm, value;
1854 {
1855 register tree t = make_node (TREE_LIST);
1856 TREE_PURPOSE (t) = parm;
1857 TREE_VALUE (t) = value;
1858 return t;
1859 }
1860
1861 /* Similar, but build on the temp_decl_obstack. */
1862
1863 tree
1864 build_decl_list (parm, value)
1865 tree parm, value;
1866 {
1867 register tree node;
1868 register struct obstack *ambient_obstack = current_obstack;
1869 current_obstack = &temp_decl_obstack;
1870 node = build_tree_list (parm, value);
1871 current_obstack = ambient_obstack;
1872 return node;
1873 }
1874
1875 /* Return a newly created TREE_LIST node whose
1876 purpose and value fields are PARM and VALUE
1877 and whose TREE_CHAIN is CHAIN. */
1878
1879 tree
1880 tree_cons (purpose, value, chain)
1881 tree purpose, value, chain;
1882 {
1883 #if 0
1884 register tree node = make_node (TREE_LIST);
1885 #else
1886 register int i;
1887 register tree node = (tree) obstack_alloc (current_obstack, sizeof (struct tree_list));
1888 #ifdef GATHER_STATISTICS
1889 tree_node_counts[(int)x_kind]++;
1890 tree_node_sizes[(int)x_kind] += sizeof (struct tree_list);
1891 #endif
1892
1893 for (i = (sizeof (struct tree_common) / sizeof (int)) - 1; i >= 0; i--)
1894 ((int *) node)[i] = 0;
1895
1896 TREE_SET_CODE (node, TREE_LIST);
1897 if (current_obstack == &permanent_obstack)
1898 TREE_PERMANENT (node) = 1;
1899 #endif
1900
1901 TREE_CHAIN (node) = chain;
1902 TREE_PURPOSE (node) = purpose;
1903 TREE_VALUE (node) = value;
1904 return node;
1905 }
1906
1907 /* Similar, but build on the temp_decl_obstack. */
1908
1909 tree
1910 decl_tree_cons (purpose, value, chain)
1911 tree purpose, value, chain;
1912 {
1913 register tree node;
1914 register struct obstack *ambient_obstack = current_obstack;
1915 current_obstack = &temp_decl_obstack;
1916 node = tree_cons (purpose, value, chain);
1917 current_obstack = ambient_obstack;
1918 return node;
1919 }
1920
1921 /* Same as `tree_cons' but make a permanent object. */
1922
1923 tree
1924 perm_tree_cons (purpose, value, chain)
1925 tree purpose, value, chain;
1926 {
1927 register tree node;
1928 register struct obstack *ambient_obstack = current_obstack;
1929 current_obstack = &permanent_obstack;
1930
1931 node = tree_cons (purpose, value, chain);
1932 current_obstack = ambient_obstack;
1933 return node;
1934 }
1935
1936 /* Same as `tree_cons', but make this node temporary, regardless. */
1937
1938 tree
1939 temp_tree_cons (purpose, value, chain)
1940 tree purpose, value, chain;
1941 {
1942 register tree node;
1943 register struct obstack *ambient_obstack = current_obstack;
1944 current_obstack = &temporary_obstack;
1945
1946 node = tree_cons (purpose, value, chain);
1947 current_obstack = ambient_obstack;
1948 return node;
1949 }
1950
1951 /* Same as `tree_cons', but save this node if the function's RTL is saved. */
1952
1953 tree
1954 saveable_tree_cons (purpose, value, chain)
1955 tree purpose, value, chain;
1956 {
1957 register tree node;
1958 register struct obstack *ambient_obstack = current_obstack;
1959 current_obstack = saveable_obstack;
1960
1961 node = tree_cons (purpose, value, chain);
1962 current_obstack = ambient_obstack;
1963 return node;
1964 }
1965 \f
1966 /* Return the size nominally occupied by an object of type TYPE
1967 when it resides in memory. The value is measured in units of bytes,
1968 and its data type is that normally used for type sizes
1969 (which is the first type created by make_signed_type or
1970 make_unsigned_type). */
1971
1972 tree
1973 size_in_bytes (type)
1974 tree type;
1975 {
1976 tree t;
1977
1978 if (type == error_mark_node)
1979 return integer_zero_node;
1980 type = TYPE_MAIN_VARIANT (type);
1981 if (TYPE_SIZE (type) == 0)
1982 {
1983 incomplete_type_error (NULL_TREE, type);
1984 return integer_zero_node;
1985 }
1986 t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
1987 size_int (BITS_PER_UNIT));
1988 if (TREE_CODE (t) == INTEGER_CST)
1989 force_fit_type (t, 0);
1990 return t;
1991 }
1992
1993 /* Return the size of TYPE (in bytes) as an integer,
1994 or return -1 if the size can vary. */
1995
1996 int
1997 int_size_in_bytes (type)
1998 tree type;
1999 {
2000 unsigned int size;
2001 if (type == error_mark_node)
2002 return 0;
2003 type = TYPE_MAIN_VARIANT (type);
2004 if (TYPE_SIZE (type) == 0)
2005 return -1;
2006 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2007 return -1;
2008 if (TREE_INT_CST_HIGH (TYPE_SIZE (type)) != 0)
2009 {
2010 tree t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
2011 size_int (BITS_PER_UNIT));
2012 return TREE_INT_CST_LOW (t);
2013 }
2014 size = TREE_INT_CST_LOW (TYPE_SIZE (type));
2015 return (size + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
2016 }
2017 \f
2018 /* Return, as a tree node, the number of elements for TYPE (which is an
2019 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2020
2021 tree
2022 array_type_nelts (type)
2023 tree type;
2024 {
2025 tree index_type = TYPE_DOMAIN (type);
2026
2027 return (integer_zerop (TYPE_MIN_VALUE (index_type))
2028 ? TYPE_MAX_VALUE (index_type)
2029 : fold (build (MINUS_EXPR, TREE_TYPE (TYPE_MAX_VALUE (index_type)),
2030 TYPE_MAX_VALUE (index_type),
2031 TYPE_MIN_VALUE (index_type))));
2032 }
2033 \f
2034 /* Return nonzero if arg is static -- a reference to an object in
2035 static storage. This is not the same as the C meaning of `static'. */
2036
2037 int
2038 staticp (arg)
2039 tree arg;
2040 {
2041 switch (TREE_CODE (arg))
2042 {
2043 case FUNCTION_DECL:
2044 /* Nested functions aren't static, since taking their address
2045 involves a trampoline. */
2046 return decl_function_context (arg) == 0;
2047 case VAR_DECL:
2048 return TREE_STATIC (arg) || DECL_EXTERNAL (arg);
2049
2050 case CONSTRUCTOR:
2051 return TREE_STATIC (arg);
2052
2053 case STRING_CST:
2054 return 1;
2055
2056 case COMPONENT_REF:
2057 case BIT_FIELD_REF:
2058 return staticp (TREE_OPERAND (arg, 0));
2059
2060 case INDIRECT_REF:
2061 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
2062
2063 case ARRAY_REF:
2064 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2065 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2066 return staticp (TREE_OPERAND (arg, 0));
2067 }
2068
2069 return 0;
2070 }
2071 \f
2072 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2073 Do this to any expression which may be used in more than one place,
2074 but must be evaluated only once.
2075
2076 Normally, expand_expr would reevaluate the expression each time.
2077 Calling save_expr produces something that is evaluated and recorded
2078 the first time expand_expr is called on it. Subsequent calls to
2079 expand_expr just reuse the recorded value.
2080
2081 The call to expand_expr that generates code that actually computes
2082 the value is the first call *at compile time*. Subsequent calls
2083 *at compile time* generate code to use the saved value.
2084 This produces correct result provided that *at run time* control
2085 always flows through the insns made by the first expand_expr
2086 before reaching the other places where the save_expr was evaluated.
2087 You, the caller of save_expr, must make sure this is so.
2088
2089 Constants, and certain read-only nodes, are returned with no
2090 SAVE_EXPR because that is safe. Expressions containing placeholders
2091 are not touched; see tree.def for an explanation of what these
2092 are used for. */
2093
2094 tree
2095 save_expr (expr)
2096 tree expr;
2097 {
2098 register tree t = fold (expr);
2099
2100 /* We don't care about whether this can be used as an lvalue in this
2101 context. */
2102 while (TREE_CODE (t) == NON_LVALUE_EXPR)
2103 t = TREE_OPERAND (t, 0);
2104
2105 /* If the tree evaluates to a constant, then we don't want to hide that
2106 fact (i.e. this allows further folding, and direct checks for constants).
2107 However, a read-only object that has side effects cannot be bypassed.
2108 Since it is no problem to reevaluate literals, we just return the
2109 literal node. */
2110
2111 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
2112 || TREE_CODE (t) == SAVE_EXPR)
2113 return t;
2114
2115 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2116 it means that the size or offset of some field of an object depends on
2117 the value within another field.
2118
2119 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2120 and some variable since it would then need to be both evaluated once and
2121 evaluated more than once. Front-ends must assure this case cannot
2122 happen by surrounding any such subexpressions in their own SAVE_EXPR
2123 and forcing evaluation at the proper time. */
2124 if (contains_placeholder_p (t))
2125 return t;
2126
2127 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
2128
2129 /* This expression might be placed ahead of a jump to ensure that the
2130 value was computed on both sides of the jump. So make sure it isn't
2131 eliminated as dead. */
2132 TREE_SIDE_EFFECTS (t) = 1;
2133 return t;
2134 }
2135 \f
2136 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2137 or offset that depends on a field within a record.
2138
2139 Note that we only allow such expressions within simple arithmetic
2140 or a COND_EXPR. */
2141
2142 int
2143 contains_placeholder_p (exp)
2144 tree exp;
2145 {
2146 register enum tree_code code = TREE_CODE (exp);
2147 tree inner;
2148
2149 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
2150 in it since it is supplying a value for it. */
2151 if (code == WITH_RECORD_EXPR)
2152 return 0;
2153
2154 switch (TREE_CODE_CLASS (code))
2155 {
2156 case 'r':
2157 for (inner = TREE_OPERAND (exp, 0);
2158 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2159 inner = TREE_OPERAND (inner, 0))
2160 ;
2161 return TREE_CODE (inner) == PLACEHOLDER_EXPR;
2162
2163 case '1':
2164 case '2': case '<':
2165 case 'e':
2166 switch (tree_code_length[(int) code])
2167 {
2168 case 1:
2169 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2170 case 2:
2171 return (code != RTL_EXPR
2172 && code != CONSTRUCTOR
2173 && ! (code == SAVE_EXPR && SAVE_EXPR_RTL (exp) != 0)
2174 && code != WITH_RECORD_EXPR
2175 && (contains_placeholder_p (TREE_OPERAND (exp, 0))
2176 || contains_placeholder_p (TREE_OPERAND (exp, 1))));
2177 case 3:
2178 return (code == COND_EXPR
2179 && (contains_placeholder_p (TREE_OPERAND (exp, 0))
2180 || contains_placeholder_p (TREE_OPERAND (exp, 1))
2181 || contains_placeholder_p (TREE_OPERAND (exp, 2))));
2182 }
2183 }
2184
2185 return 0;
2186 }
2187 \f
2188 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2189 return a tree with all occurrences of references to F in a
2190 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2191 contains only arithmetic expressions. */
2192
2193 tree
2194 substitute_in_expr (exp, f, r)
2195 tree exp;
2196 tree f;
2197 tree r;
2198 {
2199 enum tree_code code = TREE_CODE (exp);
2200 tree new = 0;
2201 tree inner;
2202
2203 switch (TREE_CODE_CLASS (code))
2204 {
2205 case 'c':
2206 case 'd':
2207 return exp;
2208
2209 case 'x':
2210 if (code == PLACEHOLDER_EXPR)
2211 return exp;
2212 break;
2213
2214 case '1':
2215 case '2':
2216 case '<':
2217 case 'e':
2218 switch (tree_code_length[(int) code])
2219 {
2220 case 1:
2221 new = fold (build1 (code, TREE_TYPE (exp),
2222 substitute_in_expr (TREE_OPERAND (exp, 0),
2223 f, r)));
2224 break;
2225
2226 case 2:
2227 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2228 could, but we don't support it. */
2229 if (code == RTL_EXPR)
2230 return exp;
2231 else if (code == CONSTRUCTOR)
2232 abort ();
2233
2234 new = fold (build (code, TREE_TYPE (exp),
2235 substitute_in_expr (TREE_OPERAND (exp, 0), f, r),
2236 substitute_in_expr (TREE_OPERAND (exp, 1),
2237 f, r)));
2238 break;
2239
2240 case 3:
2241 /* It cannot be that anything inside a SAVE_EXPR contains a
2242 PLACEHOLDER_EXPR. */
2243 if (code == SAVE_EXPR)
2244 return exp;
2245
2246 if (code != COND_EXPR)
2247 abort ();
2248
2249 new = fold (build (code, TREE_TYPE (exp),
2250 substitute_in_expr (TREE_OPERAND (exp, 0), f, r),
2251 substitute_in_expr (TREE_OPERAND (exp, 1), f, r),
2252 substitute_in_expr (TREE_OPERAND (exp, 2),
2253 f, r)));
2254 }
2255
2256 break;
2257
2258 case 'r':
2259 switch (code)
2260 {
2261 case COMPONENT_REF:
2262 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2263 and it is the right field, replace it with R. */
2264 for (inner = TREE_OPERAND (exp, 0);
2265 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2266 inner = TREE_OPERAND (inner, 0))
2267 ;
2268 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2269 && TREE_OPERAND (exp, 1) == f)
2270 return r;
2271
2272 new = fold (build (code, TREE_TYPE (exp),
2273 substitute_in_expr (TREE_OPERAND (exp, 0), f, r),
2274 TREE_OPERAND (exp, 1)));
2275 break;
2276
2277 case BIT_FIELD_REF:
2278 new = fold (build (code, TREE_TYPE (exp),
2279 substitute_in_expr (TREE_OPERAND (exp, 0), f, r),
2280 substitute_in_expr (TREE_OPERAND (exp, 1), f, r),
2281 substitute_in_expr (TREE_OPERAND (exp, 2), f, r)));
2282 break;
2283
2284 case INDIRECT_REF:
2285 case BUFFER_REF:
2286 new = fold (build1 (code, TREE_TYPE (exp),
2287 substitute_in_expr (TREE_OPERAND (exp, 0),
2288 f, r)));
2289 break;
2290
2291 case OFFSET_REF:
2292 new = fold (build (code, TREE_TYPE (exp),
2293 substitute_in_expr (TREE_OPERAND (exp, 0), f, r),
2294 substitute_in_expr (TREE_OPERAND (exp, 1), f, r)));
2295 break;
2296 }
2297 }
2298
2299 /* If it wasn't one of the cases we handle, give up. */
2300 if (new == 0)
2301 abort ();
2302
2303 TREE_READONLY (new) = TREE_READONLY (exp);
2304 return new;
2305 }
2306 \f
2307 /* Given a type T, a FIELD_DECL F, and a replacement value R,
2308 return a new type with all size expressions that contain F
2309 updated by replacing F with R. */
2310
2311 tree
2312 substitute_in_type (t, f, r)
2313 tree t, f, r;
2314 {
2315 switch (TREE_CODE (t))
2316 {
2317 case POINTER_TYPE:
2318 case VOID_TYPE:
2319 return t;
2320 case INTEGER_TYPE:
2321 case ENUMERAL_TYPE:
2322 case BOOLEAN_TYPE:
2323 case CHAR_TYPE:
2324 if ((TREE_CODE (TYPE_MIN_VALUE (t)) != INTEGER_CST
2325 && contains_placeholder_p (TYPE_MIN_VALUE (t)))
2326 || (TREE_CODE (TYPE_MAX_VALUE (t)) != INTEGER_CST
2327 && contains_placeholder_p (TYPE_MAX_VALUE (t))))
2328 return build_range_type (t,
2329 substitute_in_expr (TYPE_MIN_VALUE (t), f, r),
2330 substitute_in_expr (TYPE_MAX_VALUE (t), f, r));
2331 return t;
2332
2333 case REAL_TYPE:
2334 if ((TYPE_MIN_VALUE (t) != 0
2335 && TREE_CODE (TYPE_MIN_VALUE (t)) != REAL_CST
2336 && contains_placeholder_p (TYPE_MIN_VALUE (t)))
2337 || (TYPE_MAX_VALUE (t) != 0
2338 && TREE_CODE (TYPE_MAX_VALUE (t)) != REAL_CST
2339 && contains_placeholder_p (TYPE_MAX_VALUE (t))))
2340 {
2341 t = build_type_copy (t);
2342
2343 if (TYPE_MIN_VALUE (t))
2344 TYPE_MIN_VALUE (t) = substitute_in_expr (TYPE_MIN_VALUE (t), f, r);
2345 if (TYPE_MAX_VALUE (t))
2346 TYPE_MAX_VALUE (t) = substitute_in_expr (TYPE_MAX_VALUE (t), f, r);
2347 }
2348 return t;
2349
2350 case COMPLEX_TYPE:
2351 return build_complex_type (substitute_in_type (TREE_TYPE (t), f, r));
2352
2353 case OFFSET_TYPE:
2354 case METHOD_TYPE:
2355 case REFERENCE_TYPE:
2356 case FILE_TYPE:
2357 case SET_TYPE:
2358 case FUNCTION_TYPE:
2359 case LANG_TYPE:
2360 /* Don't know how to do these yet. */
2361 abort ();
2362
2363 case ARRAY_TYPE:
2364 t = build_array_type (substitute_in_type (TREE_TYPE (t), f, r),
2365 substitute_in_type (TYPE_DOMAIN (t), f, r));
2366 TYPE_SIZE (t) = 0;
2367 layout_type (t);
2368 return t;
2369
2370 case RECORD_TYPE:
2371 case UNION_TYPE:
2372 case QUAL_UNION_TYPE:
2373 {
2374 tree new = copy_node (t);
2375 tree field;
2376 tree last_field = 0;
2377
2378 /* Start out with no fields, make new fields, and chain them
2379 in. */
2380
2381 TYPE_FIELDS (new) = 0;
2382 TYPE_SIZE (new) = 0;
2383
2384 for (field = TYPE_FIELDS (t); field;
2385 field = TREE_CHAIN (field))
2386 {
2387 tree new_field = copy_node (field);
2388
2389 TREE_TYPE (new_field)
2390 = substitute_in_type (TREE_TYPE (new_field), f, r);
2391
2392 /* If this is an anonymous field and the type of this field is
2393 a UNION_TYPE or RECORD_TYPE with no elements, ignore it. If
2394 the type just has one element, treat that as the field.
2395 But don't do this if we are processing a QUAL_UNION_TYPE. */
2396 if (TREE_CODE (t) != QUAL_UNION_TYPE && DECL_NAME (new_field) == 0
2397 && (TREE_CODE (TREE_TYPE (new_field)) == UNION_TYPE
2398 || TREE_CODE (TREE_TYPE (new_field)) == RECORD_TYPE))
2399 {
2400 if (TYPE_FIELDS (TREE_TYPE (new_field)) == 0)
2401 continue;
2402
2403 if (TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (new_field))) == 0)
2404 new_field = TYPE_FIELDS (TREE_TYPE (new_field));
2405 }
2406
2407 DECL_CONTEXT (new_field) = new;
2408 DECL_SIZE (new_field) = 0;
2409
2410 if (TREE_CODE (t) == QUAL_UNION_TYPE)
2411 {
2412 /* Do the substitution inside the qualifier and if we find
2413 that this field will not be present, omit it. */
2414 DECL_QUALIFIER (new_field)
2415 = substitute_in_expr (DECL_QUALIFIER (field), f, r);
2416 if (integer_zerop (DECL_QUALIFIER (new_field)))
2417 continue;
2418 }
2419
2420 if (last_field == 0)
2421 TYPE_FIELDS (new) = new_field;
2422 else
2423 TREE_CHAIN (last_field) = new_field;
2424
2425 last_field = new_field;
2426
2427 /* If this is a qualified type and this field will always be
2428 present, we are done. */
2429 if (TREE_CODE (t) == QUAL_UNION_TYPE
2430 && integer_onep (DECL_QUALIFIER (new_field)))
2431 break;
2432 }
2433
2434 /* If this used to be a qualified union type, but we now know what
2435 field will be present, make this a normal union. */
2436 if (TREE_CODE (new) == QUAL_UNION_TYPE
2437 && (TYPE_FIELDS (new) == 0
2438 || integer_onep (DECL_QUALIFIER (TYPE_FIELDS (new)))))
2439 TREE_SET_CODE (new, UNION_TYPE);
2440
2441 layout_type (new);
2442 return new;
2443 }
2444 }
2445 }
2446 \f
2447 /* Stabilize a reference so that we can use it any number of times
2448 without causing its operands to be evaluated more than once.
2449 Returns the stabilized reference. This works by means of save_expr,
2450 so see the caveats in the comments about save_expr.
2451
2452 Also allows conversion expressions whose operands are references.
2453 Any other kind of expression is returned unchanged. */
2454
2455 tree
2456 stabilize_reference (ref)
2457 tree ref;
2458 {
2459 register tree result;
2460 register enum tree_code code = TREE_CODE (ref);
2461
2462 switch (code)
2463 {
2464 case VAR_DECL:
2465 case PARM_DECL:
2466 case RESULT_DECL:
2467 /* No action is needed in this case. */
2468 return ref;
2469
2470 case NOP_EXPR:
2471 case CONVERT_EXPR:
2472 case FLOAT_EXPR:
2473 case FIX_TRUNC_EXPR:
2474 case FIX_FLOOR_EXPR:
2475 case FIX_ROUND_EXPR:
2476 case FIX_CEIL_EXPR:
2477 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2478 break;
2479
2480 case INDIRECT_REF:
2481 result = build_nt (INDIRECT_REF,
2482 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2483 break;
2484
2485 case COMPONENT_REF:
2486 result = build_nt (COMPONENT_REF,
2487 stabilize_reference (TREE_OPERAND (ref, 0)),
2488 TREE_OPERAND (ref, 1));
2489 break;
2490
2491 case BIT_FIELD_REF:
2492 result = build_nt (BIT_FIELD_REF,
2493 stabilize_reference (TREE_OPERAND (ref, 0)),
2494 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2495 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2496 break;
2497
2498 case ARRAY_REF:
2499 result = build_nt (ARRAY_REF,
2500 stabilize_reference (TREE_OPERAND (ref, 0)),
2501 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2502 break;
2503
2504 case COMPOUND_EXPR:
2505 result = build_nt (COMPOUND_EXPR,
2506 stabilize_reference_1 (TREE_OPERAND (ref, 0)),
2507 stabilize_reference (TREE_OPERAND (ref, 1)));
2508 break;
2509
2510 case RTL_EXPR:
2511 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2512 save_expr (build1 (ADDR_EXPR,
2513 build_pointer_type (TREE_TYPE (ref)),
2514 ref)));
2515 break;
2516
2517
2518 /* If arg isn't a kind of lvalue we recognize, make no change.
2519 Caller should recognize the error for an invalid lvalue. */
2520 default:
2521 return ref;
2522
2523 case ERROR_MARK:
2524 return error_mark_node;
2525 }
2526
2527 TREE_TYPE (result) = TREE_TYPE (ref);
2528 TREE_READONLY (result) = TREE_READONLY (ref);
2529 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2530 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2531 TREE_RAISES (result) = TREE_RAISES (ref);
2532
2533 return result;
2534 }
2535
2536 /* Subroutine of stabilize_reference; this is called for subtrees of
2537 references. Any expression with side-effects must be put in a SAVE_EXPR
2538 to ensure that it is only evaluated once.
2539
2540 We don't put SAVE_EXPR nodes around everything, because assigning very
2541 simple expressions to temporaries causes us to miss good opportunities
2542 for optimizations. Among other things, the opportunity to fold in the
2543 addition of a constant into an addressing mode often gets lost, e.g.
2544 "y[i+1] += x;". In general, we take the approach that we should not make
2545 an assignment unless we are forced into it - i.e., that any non-side effect
2546 operator should be allowed, and that cse should take care of coalescing
2547 multiple utterances of the same expression should that prove fruitful. */
2548
2549 tree
2550 stabilize_reference_1 (e)
2551 tree e;
2552 {
2553 register tree result;
2554 register enum tree_code code = TREE_CODE (e);
2555
2556 /* We cannot ignore const expressions because it might be a reference
2557 to a const array but whose index contains side-effects. But we can
2558 ignore things that are actual constant or that already have been
2559 handled by this function. */
2560
2561 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2562 return e;
2563
2564 switch (TREE_CODE_CLASS (code))
2565 {
2566 case 'x':
2567 case 't':
2568 case 'd':
2569 case 'b':
2570 case '<':
2571 case 's':
2572 case 'e':
2573 case 'r':
2574 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2575 so that it will only be evaluated once. */
2576 /* The reference (r) and comparison (<) classes could be handled as
2577 below, but it is generally faster to only evaluate them once. */
2578 if (TREE_SIDE_EFFECTS (e))
2579 return save_expr (e);
2580 return e;
2581
2582 case 'c':
2583 /* Constants need no processing. In fact, we should never reach
2584 here. */
2585 return e;
2586
2587 case '2':
2588 /* Division is slow and tends to be compiled with jumps,
2589 especially the division by powers of 2 that is often
2590 found inside of an array reference. So do it just once. */
2591 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2592 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2593 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2594 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2595 return save_expr (e);
2596 /* Recursively stabilize each operand. */
2597 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2598 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2599 break;
2600
2601 case '1':
2602 /* Recursively stabilize each operand. */
2603 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2604 break;
2605
2606 default:
2607 abort ();
2608 }
2609
2610 TREE_TYPE (result) = TREE_TYPE (e);
2611 TREE_READONLY (result) = TREE_READONLY (e);
2612 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2613 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2614 TREE_RAISES (result) = TREE_RAISES (e);
2615
2616 return result;
2617 }
2618 \f
2619 /* Low-level constructors for expressions. */
2620
2621 /* Build an expression of code CODE, data type TYPE,
2622 and operands as specified by the arguments ARG1 and following arguments.
2623 Expressions and reference nodes can be created this way.
2624 Constants, decls, types and misc nodes cannot be. */
2625
2626 tree
2627 build VPROTO((enum tree_code code, tree tt, ...))
2628 {
2629 #ifndef __STDC__
2630 enum tree_code code;
2631 tree tt;
2632 #endif
2633 va_list p;
2634 register tree t;
2635 register int length;
2636 register int i;
2637
2638 VA_START (p, tt);
2639
2640 #ifndef __STDC__
2641 code = va_arg (p, enum tree_code);
2642 tt = va_arg (p, tree);
2643 #endif
2644
2645 t = make_node (code);
2646 length = tree_code_length[(int) code];
2647 TREE_TYPE (t) = tt;
2648
2649 if (length == 2)
2650 {
2651 /* This is equivalent to the loop below, but faster. */
2652 register tree arg0 = va_arg (p, tree);
2653 register tree arg1 = va_arg (p, tree);
2654 TREE_OPERAND (t, 0) = arg0;
2655 TREE_OPERAND (t, 1) = arg1;
2656 if ((arg0 && TREE_SIDE_EFFECTS (arg0))
2657 || (arg1 && TREE_SIDE_EFFECTS (arg1)))
2658 TREE_SIDE_EFFECTS (t) = 1;
2659 TREE_RAISES (t)
2660 = (arg0 && TREE_RAISES (arg0)) || (arg1 && TREE_RAISES (arg1));
2661 }
2662 else if (length == 1)
2663 {
2664 register tree arg0 = va_arg (p, tree);
2665
2666 /* Call build1 for this! */
2667 if (TREE_CODE_CLASS (code) != 's')
2668 abort ();
2669 TREE_OPERAND (t, 0) = arg0;
2670 if (arg0 && TREE_SIDE_EFFECTS (arg0))
2671 TREE_SIDE_EFFECTS (t) = 1;
2672 TREE_RAISES (t) = (arg0 && TREE_RAISES (arg0));
2673 }
2674 else
2675 {
2676 for (i = 0; i < length; i++)
2677 {
2678 register tree operand = va_arg (p, tree);
2679 TREE_OPERAND (t, i) = operand;
2680 if (operand)
2681 {
2682 if (TREE_SIDE_EFFECTS (operand))
2683 TREE_SIDE_EFFECTS (t) = 1;
2684 if (TREE_RAISES (operand))
2685 TREE_RAISES (t) = 1;
2686 }
2687 }
2688 }
2689 va_end (p);
2690 return t;
2691 }
2692
2693 /* Same as above, but only builds for unary operators.
2694 Saves lions share of calls to `build'; cuts down use
2695 of varargs, which is expensive for RISC machines. */
2696 tree
2697 build1 (code, type, node)
2698 enum tree_code code;
2699 tree type;
2700 tree node;
2701 {
2702 register struct obstack *obstack = current_obstack;
2703 register int i, length;
2704 register tree_node_kind kind;
2705 register tree t;
2706
2707 #ifdef GATHER_STATISTICS
2708 if (TREE_CODE_CLASS (code) == 'r')
2709 kind = r_kind;
2710 else
2711 kind = e_kind;
2712 #endif
2713
2714 obstack = expression_obstack;
2715 length = sizeof (struct tree_exp);
2716
2717 t = (tree) obstack_alloc (obstack, length);
2718
2719 #ifdef GATHER_STATISTICS
2720 tree_node_counts[(int)kind]++;
2721 tree_node_sizes[(int)kind] += length;
2722 #endif
2723
2724 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
2725 ((int *) t)[i] = 0;
2726
2727 TREE_TYPE (t) = type;
2728 TREE_SET_CODE (t, code);
2729
2730 if (obstack == &permanent_obstack)
2731 TREE_PERMANENT (t) = 1;
2732
2733 TREE_OPERAND (t, 0) = node;
2734 if (node)
2735 {
2736 if (TREE_SIDE_EFFECTS (node))
2737 TREE_SIDE_EFFECTS (t) = 1;
2738 if (TREE_RAISES (node))
2739 TREE_RAISES (t) = 1;
2740 }
2741
2742 return t;
2743 }
2744
2745 /* Similar except don't specify the TREE_TYPE
2746 and leave the TREE_SIDE_EFFECTS as 0.
2747 It is permissible for arguments to be null,
2748 or even garbage if their values do not matter. */
2749
2750 tree
2751 build_nt VPROTO((enum tree_code code, ...))
2752 {
2753 #ifndef __STDC__
2754 enum tree_code code;
2755 #endif
2756 va_list p;
2757 register tree t;
2758 register int length;
2759 register int i;
2760
2761 VA_START (p, code);
2762
2763 #ifndef __STDC__
2764 code = va_arg (p, enum tree_code);
2765 #endif
2766
2767 t = make_node (code);
2768 length = tree_code_length[(int) code];
2769
2770 for (i = 0; i < length; i++)
2771 TREE_OPERAND (t, i) = va_arg (p, tree);
2772
2773 va_end (p);
2774 return t;
2775 }
2776
2777 /* Similar to `build_nt', except we build
2778 on the temp_decl_obstack, regardless. */
2779
2780 tree
2781 build_parse_node VPROTO((enum tree_code code, ...))
2782 {
2783 #ifndef __STDC__
2784 enum tree_code code;
2785 #endif
2786 register struct obstack *ambient_obstack = expression_obstack;
2787 va_list p;
2788 register tree t;
2789 register int length;
2790 register int i;
2791
2792 VA_START (p, code);
2793
2794 #ifndef __STDC__
2795 code = va_arg (p, enum tree_code);
2796 #endif
2797
2798 expression_obstack = &temp_decl_obstack;
2799
2800 t = make_node (code);
2801 length = tree_code_length[(int) code];
2802
2803 for (i = 0; i < length; i++)
2804 TREE_OPERAND (t, i) = va_arg (p, tree);
2805
2806 va_end (p);
2807 expression_obstack = ambient_obstack;
2808 return t;
2809 }
2810
2811 #if 0
2812 /* Commented out because this wants to be done very
2813 differently. See cp-lex.c. */
2814 tree
2815 build_op_identifier (op1, op2)
2816 tree op1, op2;
2817 {
2818 register tree t = make_node (OP_IDENTIFIER);
2819 TREE_PURPOSE (t) = op1;
2820 TREE_VALUE (t) = op2;
2821 return t;
2822 }
2823 #endif
2824 \f
2825 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2826 We do NOT enter this node in any sort of symbol table.
2827
2828 layout_decl is used to set up the decl's storage layout.
2829 Other slots are initialized to 0 or null pointers. */
2830
2831 tree
2832 build_decl (code, name, type)
2833 enum tree_code code;
2834 tree name, type;
2835 {
2836 register tree t;
2837
2838 t = make_node (code);
2839
2840 /* if (type == error_mark_node)
2841 type = integer_type_node; */
2842 /* That is not done, deliberately, so that having error_mark_node
2843 as the type can suppress useless errors in the use of this variable. */
2844
2845 DECL_NAME (t) = name;
2846 DECL_ASSEMBLER_NAME (t) = name;
2847 TREE_TYPE (t) = type;
2848
2849 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2850 layout_decl (t, 0);
2851 else if (code == FUNCTION_DECL)
2852 DECL_MODE (t) = FUNCTION_MODE;
2853
2854 return t;
2855 }
2856 \f
2857 /* BLOCK nodes are used to represent the structure of binding contours
2858 and declarations, once those contours have been exited and their contents
2859 compiled. This information is used for outputting debugging info. */
2860
2861 tree
2862 build_block (vars, tags, subblocks, supercontext, chain)
2863 tree vars, tags, subblocks, supercontext, chain;
2864 {
2865 register tree block = make_node (BLOCK);
2866 BLOCK_VARS (block) = vars;
2867 BLOCK_TYPE_TAGS (block) = tags;
2868 BLOCK_SUBBLOCKS (block) = subblocks;
2869 BLOCK_SUPERCONTEXT (block) = supercontext;
2870 BLOCK_CHAIN (block) = chain;
2871 return block;
2872 }
2873 \f
2874 /* Return a declaration like DDECL except that its DECL_MACHINE_ATTRIBUTE
2875 is ATTRIBUTE. */
2876
2877 tree
2878 build_decl_attribute_variant (ddecl, attribute)
2879 tree ddecl, attribute;
2880 {
2881 DECL_MACHINE_ATTRIBUTES (ddecl) = attribute;
2882 return ddecl;
2883 }
2884
2885 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2886 is ATTRIBUTE.
2887
2888 Record such modified types already made so we don't make duplicates. */
2889
2890 tree
2891 build_type_attribute_variant (ttype, attribute)
2892 tree ttype, attribute;
2893 {
2894 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2895 {
2896 register int hashcode;
2897 register struct obstack *ambient_obstack = current_obstack;
2898 tree ntype;
2899
2900 if (ambient_obstack != &permanent_obstack)
2901 current_obstack = TYPE_OBSTACK (ttype);
2902
2903 ntype = copy_node (ttype);
2904 current_obstack = ambient_obstack;
2905
2906 TYPE_POINTER_TO (ntype) = 0;
2907 TYPE_REFERENCE_TO (ntype) = 0;
2908 TYPE_ATTRIBUTES (ntype) = attribute;
2909
2910 /* Create a new main variant of TYPE. */
2911 TYPE_MAIN_VARIANT (ntype) = ntype;
2912 TYPE_NEXT_VARIANT (ntype) = 0;
2913 TYPE_READONLY (ntype) = TYPE_VOLATILE (ntype) = 0;
2914
2915 hashcode = TYPE_HASH (TREE_CODE (ntype))
2916 + TYPE_HASH (TREE_TYPE (ntype))
2917 + attribute_hash_list (attribute);
2918
2919 switch (TREE_CODE (ntype))
2920 {
2921 case FUNCTION_TYPE:
2922 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2923 break;
2924 case ARRAY_TYPE:
2925 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2926 break;
2927 case INTEGER_TYPE:
2928 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2929 break;
2930 case REAL_TYPE:
2931 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2932 break;
2933 }
2934
2935 ntype = type_hash_canon (hashcode, ntype);
2936 ttype = build_type_variant (ntype, TYPE_READONLY (ttype),
2937 TYPE_VOLATILE (ttype));
2938 }
2939
2940 return ttype;
2941 }
2942
2943 /* Return a 1 if ATTR_NAME and ATTR_ARGS is valid for either declaration DECL
2944 or type TYPE and 0 otherwise. Validity is determined the configuration
2945 macros VALID_MACHINE_DECL_ATTRIBUTE and VALID_MACHINE_TYPE_ATTRIBUTE. */
2946
2947 int
2948 valid_machine_attribute (attr_name, attr_args, decl, type)
2949 tree attr_name, attr_args;
2950 tree decl;
2951 tree type;
2952 {
2953 int valid = 0;
2954 tree decl_attr_list = decl != 0 ? DECL_MACHINE_ATTRIBUTES (decl) : 0;
2955 tree type_attr_list = TYPE_ATTRIBUTES (type);
2956
2957 if (TREE_CODE (attr_name) != IDENTIFIER_NODE)
2958 abort ();
2959
2960 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
2961 if (decl != 0
2962 && VALID_MACHINE_DECL_ATTRIBUTE (decl, decl_attr_list, attr_name, attr_args))
2963 {
2964 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
2965 decl_attr_list);
2966
2967 if (attr != NULL_TREE)
2968 {
2969 /* Override existing arguments. Declarations are unique so we can
2970 modify this in place. */
2971 TREE_VALUE (attr) = attr_args;
2972 }
2973 else
2974 {
2975 decl_attr_list = tree_cons (attr_name, attr_args, decl_attr_list);
2976 decl = build_decl_attribute_variant (decl, decl_attr_list);
2977 }
2978
2979 valid = 1;
2980 }
2981 #endif
2982
2983 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
2984 if (VALID_MACHINE_TYPE_ATTRIBUTE (type, type_attr_list, attr_name, attr_args))
2985 {
2986 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
2987 type_attr_list);
2988
2989 if (attr != NULL_TREE)
2990 {
2991 /* Override existing arguments.
2992 ??? This currently works since attribute arguments are not
2993 included in `attribute_hash_list'. Something more complicated
2994 may be needed in the future. */
2995 TREE_VALUE (attr) = attr_args;
2996 }
2997 else
2998 {
2999 type_attr_list = tree_cons (attr_name, attr_args, type_attr_list);
3000 type = build_type_attribute_variant (type, type_attr_list);
3001 }
3002 if (decl != 0)
3003 TREE_TYPE (decl) = type;
3004 valid = 1;
3005 }
3006
3007 /* Handle putting a type attribute on pointer-to-function-type by putting
3008 the attribute on the function type. */
3009 else if (TREE_CODE (type) == POINTER_TYPE
3010 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3011 && VALID_MACHINE_TYPE_ATTRIBUTE (TREE_TYPE (type), type_attr_list,
3012 attr_name, attr_args))
3013 {
3014 tree inner_type = TREE_TYPE (type);
3015 tree inner_attr_list = TYPE_ATTRIBUTES (inner_type);
3016 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3017 type_attr_list);
3018
3019 if (attr != NULL_TREE)
3020 TREE_VALUE (attr) = attr_args;
3021 else
3022 {
3023 inner_attr_list = tree_cons (attr_name, attr_args, inner_attr_list);
3024 inner_type = build_type_attribute_variant (inner_type,
3025 inner_attr_list);
3026 }
3027
3028 if (decl != 0)
3029 TREE_TYPE (decl) = build_pointer_type (inner_type);
3030
3031 valid = 1;
3032 }
3033 #endif
3034
3035 return valid;
3036 }
3037
3038 /* Return non-zero if IDENT is a valid name for attribute ATTR,
3039 or zero if not.
3040
3041 We try both `text' and `__text__', ATTR may be either one. */
3042 /* ??? It might be a reasonable simplification to require ATTR to be only
3043 `text'. One might then also require attribute lists to be stored in
3044 their canonicalized form. */
3045
3046 int
3047 is_attribute_p (attr, ident)
3048 char *attr;
3049 tree ident;
3050 {
3051 int ident_len, attr_len;
3052 char *p;
3053
3054 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3055 return 0;
3056
3057 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
3058 return 1;
3059
3060 p = IDENTIFIER_POINTER (ident);
3061 ident_len = strlen (p);
3062 attr_len = strlen (attr);
3063
3064 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3065 if (attr[0] == '_')
3066 {
3067 if (attr[1] != '_'
3068 || attr[attr_len - 2] != '_'
3069 || attr[attr_len - 1] != '_')
3070 abort ();
3071 if (ident_len == attr_len - 4
3072 && strncmp (attr + 2, p, attr_len - 4) == 0)
3073 return 1;
3074 }
3075 else
3076 {
3077 if (ident_len == attr_len + 4
3078 && p[0] == '_' && p[1] == '_'
3079 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3080 && strncmp (attr, p + 2, attr_len) == 0)
3081 return 1;
3082 }
3083
3084 return 0;
3085 }
3086
3087 /* Given an attribute name and a list of attributes, return a pointer to the
3088 attribute's list element if the attribute is part of the list, or NULL_TREE
3089 if not found. */
3090
3091 tree
3092 lookup_attribute (attr_name, list)
3093 char *attr_name;
3094 tree list;
3095 {
3096 tree l;
3097
3098 for (l = list; l; l = TREE_CHAIN (l))
3099 {
3100 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
3101 abort ();
3102 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
3103 return l;
3104 }
3105
3106 return NULL_TREE;
3107 }
3108 \f
3109 /* Return a type like TYPE except that its TYPE_READONLY is CONSTP
3110 and its TYPE_VOLATILE is VOLATILEP.
3111
3112 Such variant types already made are recorded so that duplicates
3113 are not made.
3114
3115 A variant types should never be used as the type of an expression.
3116 Always copy the variant information into the TREE_READONLY
3117 and TREE_THIS_VOLATILE of the expression, and then give the expression
3118 as its type the "main variant", the variant whose TYPE_READONLY
3119 and TYPE_VOLATILE are zero. Use TYPE_MAIN_VARIANT to find the
3120 main variant. */
3121
3122 tree
3123 build_type_variant (type, constp, volatilep)
3124 tree type;
3125 int constp, volatilep;
3126 {
3127 register tree t;
3128
3129 /* Treat any nonzero argument as 1. */
3130 constp = !!constp;
3131 volatilep = !!volatilep;
3132
3133 /* Search the chain of variants to see if there is already one there just
3134 like the one we need to have. If so, use that existing one. We must
3135 preserve the TYPE_NAME, since there is code that depends on this. */
3136
3137 for (t = TYPE_MAIN_VARIANT(type); t; t = TYPE_NEXT_VARIANT (t))
3138 if (constp == TYPE_READONLY (t) && volatilep == TYPE_VOLATILE (t)
3139 && TYPE_NAME (t) == TYPE_NAME (type))
3140 return t;
3141
3142 /* We need a new one. */
3143
3144 t = build_type_copy (type);
3145 TYPE_READONLY (t) = constp;
3146 TYPE_VOLATILE (t) = volatilep;
3147
3148 return t;
3149 }
3150
3151 /* Give TYPE a new main variant: NEW_MAIN.
3152 This is the right thing to do only when something else
3153 about TYPE is modified in place. */
3154
3155 void
3156 change_main_variant (type, new_main)
3157 tree type, new_main;
3158 {
3159 tree t;
3160 tree omain = TYPE_MAIN_VARIANT (type);
3161
3162 /* Remove TYPE from the TYPE_NEXT_VARIANT chain of its main variant. */
3163 if (TYPE_NEXT_VARIANT (omain) == type)
3164 TYPE_NEXT_VARIANT (omain) = TYPE_NEXT_VARIANT (type);
3165 else
3166 for (t = TYPE_NEXT_VARIANT (omain); t && TYPE_NEXT_VARIANT (t);
3167 t = TYPE_NEXT_VARIANT (t))
3168 if (TYPE_NEXT_VARIANT (t) == type)
3169 {
3170 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (type);
3171 break;
3172 }
3173
3174 TYPE_MAIN_VARIANT (type) = new_main;
3175 TYPE_NEXT_VARIANT (type) = TYPE_NEXT_VARIANT (new_main);
3176 TYPE_NEXT_VARIANT (new_main) = type;
3177 }
3178
3179 /* Create a new variant of TYPE, equivalent but distinct.
3180 This is so the caller can modify it. */
3181
3182 tree
3183 build_type_copy (type)
3184 tree type;
3185 {
3186 register tree t, m = TYPE_MAIN_VARIANT (type);
3187 register struct obstack *ambient_obstack = current_obstack;
3188
3189 current_obstack = TYPE_OBSTACK (type);
3190 t = copy_node (type);
3191 current_obstack = ambient_obstack;
3192
3193 TYPE_POINTER_TO (t) = 0;
3194 TYPE_REFERENCE_TO (t) = 0;
3195
3196 /* Add this type to the chain of variants of TYPE. */
3197 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3198 TYPE_NEXT_VARIANT (m) = t;
3199
3200 return t;
3201 }
3202 \f
3203 /* Hashing of types so that we don't make duplicates.
3204 The entry point is `type_hash_canon'. */
3205
3206 /* Each hash table slot is a bucket containing a chain
3207 of these structures. */
3208
3209 struct type_hash
3210 {
3211 struct type_hash *next; /* Next structure in the bucket. */
3212 int hashcode; /* Hash code of this type. */
3213 tree type; /* The type recorded here. */
3214 };
3215
3216 /* Now here is the hash table. When recording a type, it is added
3217 to the slot whose index is the hash code mod the table size.
3218 Note that the hash table is used for several kinds of types
3219 (function types, array types and array index range types, for now).
3220 While all these live in the same table, they are completely independent,
3221 and the hash code is computed differently for each of these. */
3222
3223 #define TYPE_HASH_SIZE 59
3224 struct type_hash *type_hash_table[TYPE_HASH_SIZE];
3225
3226 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3227 with types in the TREE_VALUE slots), by adding the hash codes
3228 of the individual types. */
3229
3230 int
3231 type_hash_list (list)
3232 tree list;
3233 {
3234 register int hashcode;
3235 register tree tail;
3236 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3237 hashcode += TYPE_HASH (TREE_VALUE (tail));
3238 return hashcode;
3239 }
3240
3241 /* Look in the type hash table for a type isomorphic to TYPE.
3242 If one is found, return it. Otherwise return 0. */
3243
3244 tree
3245 type_hash_lookup (hashcode, type)
3246 int hashcode;
3247 tree type;
3248 {
3249 register struct type_hash *h;
3250 for (h = type_hash_table[hashcode % TYPE_HASH_SIZE]; h; h = h->next)
3251 if (h->hashcode == hashcode
3252 && TREE_CODE (h->type) == TREE_CODE (type)
3253 && TREE_TYPE (h->type) == TREE_TYPE (type)
3254 && attribute_list_equal (TYPE_ATTRIBUTES (h->type),
3255 TYPE_ATTRIBUTES (type))
3256 && (TYPE_MAX_VALUE (h->type) == TYPE_MAX_VALUE (type)
3257 || tree_int_cst_equal (TYPE_MAX_VALUE (h->type),
3258 TYPE_MAX_VALUE (type)))
3259 && (TYPE_MIN_VALUE (h->type) == TYPE_MIN_VALUE (type)
3260 || tree_int_cst_equal (TYPE_MIN_VALUE (h->type),
3261 TYPE_MIN_VALUE (type)))
3262 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3263 && (TYPE_DOMAIN (h->type) == TYPE_DOMAIN (type)
3264 || (TYPE_DOMAIN (h->type)
3265 && TREE_CODE (TYPE_DOMAIN (h->type)) == TREE_LIST
3266 && TYPE_DOMAIN (type)
3267 && TREE_CODE (TYPE_DOMAIN (type)) == TREE_LIST
3268 && type_list_equal (TYPE_DOMAIN (h->type),
3269 TYPE_DOMAIN (type)))))
3270 return h->type;
3271 return 0;
3272 }
3273
3274 /* Add an entry to the type-hash-table
3275 for a type TYPE whose hash code is HASHCODE. */
3276
3277 void
3278 type_hash_add (hashcode, type)
3279 int hashcode;
3280 tree type;
3281 {
3282 register struct type_hash *h;
3283
3284 h = (struct type_hash *) oballoc (sizeof (struct type_hash));
3285 h->hashcode = hashcode;
3286 h->type = type;
3287 h->next = type_hash_table[hashcode % TYPE_HASH_SIZE];
3288 type_hash_table[hashcode % TYPE_HASH_SIZE] = h;
3289 }
3290
3291 /* Given TYPE, and HASHCODE its hash code, return the canonical
3292 object for an identical type if one already exists.
3293 Otherwise, return TYPE, and record it as the canonical object
3294 if it is a permanent object.
3295
3296 To use this function, first create a type of the sort you want.
3297 Then compute its hash code from the fields of the type that
3298 make it different from other similar types.
3299 Then call this function and use the value.
3300 This function frees the type you pass in if it is a duplicate. */
3301
3302 /* Set to 1 to debug without canonicalization. Never set by program. */
3303 int debug_no_type_hash = 0;
3304
3305 tree
3306 type_hash_canon (hashcode, type)
3307 int hashcode;
3308 tree type;
3309 {
3310 tree t1;
3311
3312 if (debug_no_type_hash)
3313 return type;
3314
3315 t1 = type_hash_lookup (hashcode, type);
3316 if (t1 != 0)
3317 {
3318 obstack_free (TYPE_OBSTACK (type), type);
3319 #ifdef GATHER_STATISTICS
3320 tree_node_counts[(int)t_kind]--;
3321 tree_node_sizes[(int)t_kind] -= sizeof (struct tree_type);
3322 #endif
3323 return t1;
3324 }
3325
3326 /* If this is a permanent type, record it for later reuse. */
3327 if (TREE_PERMANENT (type))
3328 type_hash_add (hashcode, type);
3329
3330 return type;
3331 }
3332
3333 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3334 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3335 by adding the hash codes of the individual attributes. */
3336
3337 int
3338 attribute_hash_list (list)
3339 tree list;
3340 {
3341 register int hashcode;
3342 register tree tail;
3343 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3344 /* ??? Do we want to add in TREE_VALUE too? */
3345 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3346 return hashcode;
3347 }
3348
3349 /* Given two lists of attributes, return true if list l2 is
3350 equivalent to l1. */
3351
3352 int
3353 attribute_list_equal (l1, l2)
3354 tree l1, l2;
3355 {
3356 return attribute_list_contained (l1, l2)
3357 && attribute_list_contained (l2, l1);
3358 }
3359
3360 /* Given two lists of attributes, return true if list L2 is
3361 completely contained within L1. */
3362 /* ??? This would be faster if attribute names were stored in a canonicalized
3363 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3364 must be used to show these elements are equivalent (which they are). */
3365 /* ??? It's not clear that attributes with arguments will always be handled
3366 correctly. */
3367
3368 int
3369 attribute_list_contained (l1, l2)
3370 tree l1, l2;
3371 {
3372 register tree t1, t2;
3373
3374 /* First check the obvious, maybe the lists are identical. */
3375 if (l1 == l2)
3376 return 1;
3377
3378 /* Maybe the lists are similar. */
3379 for (t1 = l1, t2 = l2;
3380 t1 && t2
3381 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3382 && TREE_VALUE (t1) == TREE_VALUE (t2);
3383 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3384
3385 /* Maybe the lists are equal. */
3386 if (t1 == 0 && t2 == 0)
3387 return 1;
3388
3389 for (; t2; t2 = TREE_CHAIN (t2))
3390 {
3391 tree attr
3392 = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3393
3394 if (attr == NULL_TREE)
3395 return 0;
3396 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3397 return 0;
3398 }
3399
3400 return 1;
3401 }
3402
3403 /* Given two lists of types
3404 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3405 return 1 if the lists contain the same types in the same order.
3406 Also, the TREE_PURPOSEs must match. */
3407
3408 int
3409 type_list_equal (l1, l2)
3410 tree l1, l2;
3411 {
3412 register tree t1, t2;
3413
3414 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3415 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3416 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3417 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3418 && (TREE_TYPE (TREE_PURPOSE (t1))
3419 == TREE_TYPE (TREE_PURPOSE (t2))))))
3420 return 0;
3421
3422 return t1 == t2;
3423 }
3424
3425 /* Nonzero if integer constants T1 and T2
3426 represent the same constant value. */
3427
3428 int
3429 tree_int_cst_equal (t1, t2)
3430 tree t1, t2;
3431 {
3432 if (t1 == t2)
3433 return 1;
3434 if (t1 == 0 || t2 == 0)
3435 return 0;
3436 if (TREE_CODE (t1) == INTEGER_CST
3437 && TREE_CODE (t2) == INTEGER_CST
3438 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3439 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3440 return 1;
3441 return 0;
3442 }
3443
3444 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3445 The precise way of comparison depends on their data type. */
3446
3447 int
3448 tree_int_cst_lt (t1, t2)
3449 tree t1, t2;
3450 {
3451 if (t1 == t2)
3452 return 0;
3453
3454 if (!TREE_UNSIGNED (TREE_TYPE (t1)))
3455 return INT_CST_LT (t1, t2);
3456 return INT_CST_LT_UNSIGNED (t1, t2);
3457 }
3458
3459 /* Return an indication of the sign of the integer constant T.
3460 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3461 Note that -1 will never be returned it T's type is unsigned. */
3462
3463 int
3464 tree_int_cst_sgn (t)
3465 tree t;
3466 {
3467 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3468 return 0;
3469 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3470 return 1;
3471 else if (TREE_INT_CST_HIGH (t) < 0)
3472 return -1;
3473 else
3474 return 1;
3475 }
3476
3477 /* Compare two constructor-element-type constants. Return 1 if the lists
3478 are known to be equal; otherwise return 0. */
3479
3480 int
3481 simple_cst_list_equal (l1, l2)
3482 tree l1, l2;
3483 {
3484 while (l1 != NULL_TREE && l2 != NULL_TREE)
3485 {
3486 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3487 return 0;
3488
3489 l1 = TREE_CHAIN (l1);
3490 l2 = TREE_CHAIN (l2);
3491 }
3492
3493 return (l1 == l2);
3494 }
3495
3496 /* Return truthvalue of whether T1 is the same tree structure as T2.
3497 Return 1 if they are the same.
3498 Return 0 if they are understandably different.
3499 Return -1 if either contains tree structure not understood by
3500 this function. */
3501
3502 int
3503 simple_cst_equal (t1, t2)
3504 tree t1, t2;
3505 {
3506 register enum tree_code code1, code2;
3507 int cmp;
3508
3509 if (t1 == t2)
3510 return 1;
3511 if (t1 == 0 || t2 == 0)
3512 return 0;
3513
3514 code1 = TREE_CODE (t1);
3515 code2 = TREE_CODE (t2);
3516
3517 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3518 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR || code2 == NON_LVALUE_EXPR)
3519 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3520 else
3521 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3522 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3523 || code2 == NON_LVALUE_EXPR)
3524 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3525
3526 if (code1 != code2)
3527 return 0;
3528
3529 switch (code1)
3530 {
3531 case INTEGER_CST:
3532 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3533 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
3534
3535 case REAL_CST:
3536 return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3537
3538 case STRING_CST:
3539 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3540 && !bcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3541 TREE_STRING_LENGTH (t1));
3542
3543 case CONSTRUCTOR:
3544 abort ();
3545
3546 case SAVE_EXPR:
3547 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3548
3549 case CALL_EXPR:
3550 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3551 if (cmp <= 0)
3552 return cmp;
3553 return simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3554
3555 case TARGET_EXPR:
3556 /* Special case: if either target is an unallocated VAR_DECL,
3557 it means that it's going to be unified with whatever the
3558 TARGET_EXPR is really supposed to initialize, so treat it
3559 as being equivalent to anything. */
3560 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3561 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3562 && DECL_RTL (TREE_OPERAND (t1, 0)) == 0)
3563 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3564 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3565 && DECL_RTL (TREE_OPERAND (t2, 0)) == 0))
3566 cmp = 1;
3567 else
3568 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3569 if (cmp <= 0)
3570 return cmp;
3571 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3572
3573 case WITH_CLEANUP_EXPR:
3574 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3575 if (cmp <= 0)
3576 return cmp;
3577 return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
3578
3579 case COMPONENT_REF:
3580 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3581 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3582 return 0;
3583
3584 case VAR_DECL:
3585 case PARM_DECL:
3586 case CONST_DECL:
3587 case FUNCTION_DECL:
3588 return 0;
3589 }
3590
3591 /* This general rule works for most tree codes. All exceptions should be
3592 handled above. If this is a language-specific tree code, we can't
3593 trust what might be in the operand, so say we don't know
3594 the situation. */
3595 if (code1
3596 >= sizeof standard_tree_code_type / sizeof standard_tree_code_type[0])
3597 return -1;
3598
3599 switch (TREE_CODE_CLASS (code1))
3600 {
3601 int i;
3602 case '1':
3603 case '2':
3604 case '<':
3605 case 'e':
3606 case 'r':
3607 case 's':
3608 cmp = 1;
3609 for (i=0; i<tree_code_length[(int) code1]; ++i)
3610 {
3611 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3612 if (cmp <= 0)
3613 return cmp;
3614 }
3615 return cmp;
3616 }
3617
3618 return -1;
3619 }
3620 \f
3621 /* Constructors for pointer, array and function types.
3622 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3623 constructed by language-dependent code, not here.) */
3624
3625 /* Construct, lay out and return the type of pointers to TO_TYPE.
3626 If such a type has already been constructed, reuse it. */
3627
3628 tree
3629 build_pointer_type (to_type)
3630 tree to_type;
3631 {
3632 register tree t = TYPE_POINTER_TO (to_type);
3633
3634 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3635
3636 if (t)
3637 return t;
3638
3639 /* We need a new one. Put this in the same obstack as TO_TYPE. */
3640 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
3641 t = make_node (POINTER_TYPE);
3642 pop_obstacks ();
3643
3644 TREE_TYPE (t) = to_type;
3645
3646 /* Record this type as the pointer to TO_TYPE. */
3647 TYPE_POINTER_TO (to_type) = t;
3648
3649 /* Lay out the type. This function has many callers that are concerned
3650 with expression-construction, and this simplifies them all.
3651 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3652 layout_type (t);
3653
3654 return t;
3655 }
3656
3657 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3658 MAXVAL should be the maximum value in the domain
3659 (one less than the length of the array). */
3660
3661 tree
3662 build_index_type (maxval)
3663 tree maxval;
3664 {
3665 register tree itype = make_node (INTEGER_TYPE);
3666 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3667 TYPE_MIN_VALUE (itype) = build_int_2 (0, 0);
3668 TREE_TYPE (TYPE_MIN_VALUE (itype)) = sizetype;
3669 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3670 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3671 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3672 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3673 if (TREE_CODE (maxval) == INTEGER_CST)
3674 {
3675 int maxint = (int) TREE_INT_CST_LOW (maxval);
3676 /* If the domain should be empty, make sure the maxval
3677 remains -1 and is not spoiled by truncation. */
3678 if (INT_CST_LT (maxval, integer_zero_node))
3679 {
3680 TYPE_MAX_VALUE (itype) = build_int_2 (-1, -1);
3681 TREE_TYPE (TYPE_MAX_VALUE (itype)) = sizetype;
3682 }
3683 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
3684 }
3685 else
3686 return itype;
3687 }
3688
3689 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3690 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3691 low bound LOWVAL and high bound HIGHVAL.
3692 if TYPE==NULL_TREE, sizetype is used. */
3693
3694 tree
3695 build_range_type (type, lowval, highval)
3696 tree type, lowval, highval;
3697 {
3698 register tree itype = make_node (INTEGER_TYPE);
3699 TREE_TYPE (itype) = type;
3700 if (type == NULL_TREE)
3701 type = sizetype;
3702 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3703 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3704 TYPE_MAX_VALUE (itype) = convert (type, highval);
3705 TYPE_MODE (itype) = TYPE_MODE (type);
3706 TYPE_SIZE (itype) = TYPE_SIZE (type);
3707 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3708 if ((TREE_CODE (lowval) == INTEGER_CST)
3709 && (TREE_CODE (highval) == INTEGER_CST))
3710 {
3711 HOST_WIDE_INT highint = TREE_INT_CST_LOW (highval);
3712 HOST_WIDE_INT lowint = TREE_INT_CST_LOW (lowval);
3713 int maxint = (int) (highint - lowint);
3714 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
3715 }
3716 else
3717 return itype;
3718 }
3719
3720 /* Just like build_index_type, but takes lowval and highval instead
3721 of just highval (maxval). */
3722
3723 tree
3724 build_index_2_type (lowval,highval)
3725 tree lowval, highval;
3726 {
3727 return build_range_type (NULL_TREE, lowval, highval);
3728 }
3729
3730 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
3731 Needed because when index types are not hashed, equal index types
3732 built at different times appear distinct, even though structurally,
3733 they are not. */
3734
3735 int
3736 index_type_equal (itype1, itype2)
3737 tree itype1, itype2;
3738 {
3739 if (TREE_CODE (itype1) != TREE_CODE (itype2))
3740 return 0;
3741 if (TREE_CODE (itype1) == INTEGER_TYPE)
3742 {
3743 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
3744 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
3745 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
3746 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
3747 return 0;
3748 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
3749 TYPE_MIN_VALUE (itype2))
3750 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
3751 TYPE_MAX_VALUE (itype2)))
3752 return 1;
3753 }
3754
3755 return 0;
3756 }
3757
3758 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3759 and number of elements specified by the range of values of INDEX_TYPE.
3760 If such a type has already been constructed, reuse it. */
3761
3762 tree
3763 build_array_type (elt_type, index_type)
3764 tree elt_type, index_type;
3765 {
3766 register tree t;
3767 int hashcode;
3768
3769 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3770 {
3771 error ("arrays of functions are not meaningful");
3772 elt_type = integer_type_node;
3773 }
3774
3775 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3776 build_pointer_type (elt_type);
3777
3778 /* Allocate the array after the pointer type,
3779 in case we free it in type_hash_canon. */
3780 t = make_node (ARRAY_TYPE);
3781 TREE_TYPE (t) = elt_type;
3782 TYPE_DOMAIN (t) = index_type;
3783
3784 if (index_type == 0)
3785 {
3786 return t;
3787 }
3788
3789 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3790 t = type_hash_canon (hashcode, t);
3791
3792 #if 0 /* This led to crashes, because it could put a temporary node
3793 on the TYPE_NEXT_VARIANT chain of a permanent one. */
3794 /* The main variant of an array type should always
3795 be an array whose element type is the main variant. */
3796 if (elt_type != TYPE_MAIN_VARIANT (elt_type))
3797 change_main_variant (t, build_array_type (TYPE_MAIN_VARIANT (elt_type),
3798 index_type));
3799 #endif
3800
3801 if (TYPE_SIZE (t) == 0)
3802 layout_type (t);
3803 return t;
3804 }
3805
3806 /* Construct, lay out and return
3807 the type of functions returning type VALUE_TYPE
3808 given arguments of types ARG_TYPES.
3809 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3810 are data type nodes for the arguments of the function.
3811 If such a type has already been constructed, reuse it. */
3812
3813 tree
3814 build_function_type (value_type, arg_types)
3815 tree value_type, arg_types;
3816 {
3817 register tree t;
3818 int hashcode;
3819
3820 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3821 {
3822 error ("function return type cannot be function");
3823 value_type = integer_type_node;
3824 }
3825
3826 /* Make a node of the sort we want. */
3827 t = make_node (FUNCTION_TYPE);
3828 TREE_TYPE (t) = value_type;
3829 TYPE_ARG_TYPES (t) = arg_types;
3830
3831 /* If we already have such a type, use the old one and free this one. */
3832 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3833 t = type_hash_canon (hashcode, t);
3834
3835 if (TYPE_SIZE (t) == 0)
3836 layout_type (t);
3837 return t;
3838 }
3839
3840 /* Build the node for the type of references-to-TO_TYPE. */
3841
3842 tree
3843 build_reference_type (to_type)
3844 tree to_type;
3845 {
3846 register tree t = TYPE_REFERENCE_TO (to_type);
3847 register struct obstack *ambient_obstack = current_obstack;
3848 register struct obstack *ambient_saveable_obstack = saveable_obstack;
3849
3850 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3851
3852 if (t)
3853 return t;
3854
3855 /* We need a new one. If TO_TYPE is permanent, make this permanent too. */
3856 if (TREE_PERMANENT (to_type))
3857 {
3858 current_obstack = &permanent_obstack;
3859 saveable_obstack = &permanent_obstack;
3860 }
3861
3862 t = make_node (REFERENCE_TYPE);
3863 TREE_TYPE (t) = to_type;
3864
3865 /* Record this type as the pointer to TO_TYPE. */
3866 TYPE_REFERENCE_TO (to_type) = t;
3867
3868 layout_type (t);
3869
3870 current_obstack = ambient_obstack;
3871 saveable_obstack = ambient_saveable_obstack;
3872 return t;
3873 }
3874
3875 /* Construct, lay out and return the type of methods belonging to class
3876 BASETYPE and whose arguments and values are described by TYPE.
3877 If that type exists already, reuse it.
3878 TYPE must be a FUNCTION_TYPE node. */
3879
3880 tree
3881 build_method_type (basetype, type)
3882 tree basetype, type;
3883 {
3884 register tree t;
3885 int hashcode;
3886
3887 /* Make a node of the sort we want. */
3888 t = make_node (METHOD_TYPE);
3889
3890 if (TREE_CODE (type) != FUNCTION_TYPE)
3891 abort ();
3892
3893 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3894 TREE_TYPE (t) = TREE_TYPE (type);
3895
3896 /* The actual arglist for this function includes a "hidden" argument
3897 which is "this". Put it into the list of argument types. */
3898
3899 TYPE_ARG_TYPES (t)
3900 = tree_cons (NULL_TREE,
3901 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3902
3903 /* If we already have such a type, use the old one and free this one. */
3904 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3905 t = type_hash_canon (hashcode, t);
3906
3907 if (TYPE_SIZE (t) == 0)
3908 layout_type (t);
3909
3910 return t;
3911 }
3912
3913 /* Construct, lay out and return the type of offsets to a value
3914 of type TYPE, within an object of type BASETYPE.
3915 If a suitable offset type exists already, reuse it. */
3916
3917 tree
3918 build_offset_type (basetype, type)
3919 tree basetype, type;
3920 {
3921 register tree t;
3922 int hashcode;
3923
3924 /* Make a node of the sort we want. */
3925 t = make_node (OFFSET_TYPE);
3926
3927 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3928 TREE_TYPE (t) = type;
3929
3930 /* If we already have such a type, use the old one and free this one. */
3931 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3932 t = type_hash_canon (hashcode, t);
3933
3934 if (TYPE_SIZE (t) == 0)
3935 layout_type (t);
3936
3937 return t;
3938 }
3939
3940 /* Create a complex type whose components are COMPONENT_TYPE. */
3941
3942 tree
3943 build_complex_type (component_type)
3944 tree component_type;
3945 {
3946 register tree t;
3947 int hashcode;
3948
3949 /* Make a node of the sort we want. */
3950 t = make_node (COMPLEX_TYPE);
3951
3952 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3953 TYPE_VOLATILE (t) = TYPE_VOLATILE (component_type);
3954 TYPE_READONLY (t) = TYPE_READONLY (component_type);
3955
3956 /* If we already have such a type, use the old one and free this one. */
3957 hashcode = TYPE_HASH (component_type);
3958 t = type_hash_canon (hashcode, t);
3959
3960 if (TYPE_SIZE (t) == 0)
3961 layout_type (t);
3962
3963 return t;
3964 }
3965 \f
3966 /* Return OP, stripped of any conversions to wider types as much as is safe.
3967 Converting the value back to OP's type makes a value equivalent to OP.
3968
3969 If FOR_TYPE is nonzero, we return a value which, if converted to
3970 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
3971
3972 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
3973 narrowest type that can hold the value, even if they don't exactly fit.
3974 Otherwise, bit-field references are changed to a narrower type
3975 only if they can be fetched directly from memory in that type.
3976
3977 OP must have integer, real or enumeral type. Pointers are not allowed!
3978
3979 There are some cases where the obvious value we could return
3980 would regenerate to OP if converted to OP's type,
3981 but would not extend like OP to wider types.
3982 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
3983 For example, if OP is (unsigned short)(signed char)-1,
3984 we avoid returning (signed char)-1 if FOR_TYPE is int,
3985 even though extending that to an unsigned short would regenerate OP,
3986 since the result of extending (signed char)-1 to (int)
3987 is different from (int) OP. */
3988
3989 tree
3990 get_unwidened (op, for_type)
3991 register tree op;
3992 tree for_type;
3993 {
3994 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
3995 /* TYPE_PRECISION is safe in place of type_precision since
3996 pointer types are not allowed. */
3997 register tree type = TREE_TYPE (op);
3998 register unsigned final_prec
3999 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4000 register int uns
4001 = (for_type != 0 && for_type != type
4002 && final_prec > TYPE_PRECISION (type)
4003 && TREE_UNSIGNED (type));
4004 register tree win = op;
4005
4006 while (TREE_CODE (op) == NOP_EXPR)
4007 {
4008 register int bitschange
4009 = TYPE_PRECISION (TREE_TYPE (op))
4010 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4011
4012 /* Truncations are many-one so cannot be removed.
4013 Unless we are later going to truncate down even farther. */
4014 if (bitschange < 0
4015 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4016 break;
4017
4018 /* See what's inside this conversion. If we decide to strip it,
4019 we will set WIN. */
4020 op = TREE_OPERAND (op, 0);
4021
4022 /* If we have not stripped any zero-extensions (uns is 0),
4023 we can strip any kind of extension.
4024 If we have previously stripped a zero-extension,
4025 only zero-extensions can safely be stripped.
4026 Any extension can be stripped if the bits it would produce
4027 are all going to be discarded later by truncating to FOR_TYPE. */
4028
4029 if (bitschange > 0)
4030 {
4031 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4032 win = op;
4033 /* TREE_UNSIGNED says whether this is a zero-extension.
4034 Let's avoid computing it if it does not affect WIN
4035 and if UNS will not be needed again. */
4036 if ((uns || TREE_CODE (op) == NOP_EXPR)
4037 && TREE_UNSIGNED (TREE_TYPE (op)))
4038 {
4039 uns = 1;
4040 win = op;
4041 }
4042 }
4043 }
4044
4045 if (TREE_CODE (op) == COMPONENT_REF
4046 /* Since type_for_size always gives an integer type. */
4047 && TREE_CODE (type) != REAL_TYPE)
4048 {
4049 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4050 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4051
4052 /* We can get this structure field in the narrowest type it fits in.
4053 If FOR_TYPE is 0, do this only for a field that matches the
4054 narrower type exactly and is aligned for it
4055 The resulting extension to its nominal type (a fullword type)
4056 must fit the same conditions as for other extensions. */
4057
4058 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4059 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4060 && (! uns || final_prec <= innerprec
4061 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4062 && type != 0)
4063 {
4064 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4065 TREE_OPERAND (op, 1));
4066 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4067 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4068 TREE_RAISES (win) = TREE_RAISES (op);
4069 }
4070 }
4071 return win;
4072 }
4073 \f
4074 /* Return OP or a simpler expression for a narrower value
4075 which can be sign-extended or zero-extended to give back OP.
4076 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4077 or 0 if the value should be sign-extended. */
4078
4079 tree
4080 get_narrower (op, unsignedp_ptr)
4081 register tree op;
4082 int *unsignedp_ptr;
4083 {
4084 register int uns = 0;
4085 int first = 1;
4086 register tree win = op;
4087
4088 while (TREE_CODE (op) == NOP_EXPR)
4089 {
4090 register int bitschange
4091 = TYPE_PRECISION (TREE_TYPE (op))
4092 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4093
4094 /* Truncations are many-one so cannot be removed. */
4095 if (bitschange < 0)
4096 break;
4097
4098 /* See what's inside this conversion. If we decide to strip it,
4099 we will set WIN. */
4100 op = TREE_OPERAND (op, 0);
4101
4102 if (bitschange > 0)
4103 {
4104 /* An extension: the outermost one can be stripped,
4105 but remember whether it is zero or sign extension. */
4106 if (first)
4107 uns = TREE_UNSIGNED (TREE_TYPE (op));
4108 /* Otherwise, if a sign extension has been stripped,
4109 only sign extensions can now be stripped;
4110 if a zero extension has been stripped, only zero-extensions. */
4111 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4112 break;
4113 first = 0;
4114 }
4115 else /* bitschange == 0 */
4116 {
4117 /* A change in nominal type can always be stripped, but we must
4118 preserve the unsignedness. */
4119 if (first)
4120 uns = TREE_UNSIGNED (TREE_TYPE (op));
4121 first = 0;
4122 }
4123
4124 win = op;
4125 }
4126
4127 if (TREE_CODE (op) == COMPONENT_REF
4128 /* Since type_for_size always gives an integer type. */
4129 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE)
4130 {
4131 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4132 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4133
4134 /* We can get this structure field in a narrower type that fits it,
4135 but the resulting extension to its nominal type (a fullword type)
4136 must satisfy the same conditions as for other extensions.
4137
4138 Do this only for fields that are aligned (not bit-fields),
4139 because when bit-field insns will be used there is no
4140 advantage in doing this. */
4141
4142 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4143 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4144 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4145 && type != 0)
4146 {
4147 if (first)
4148 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4149 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4150 TREE_OPERAND (op, 1));
4151 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4152 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4153 TREE_RAISES (win) = TREE_RAISES (op);
4154 }
4155 }
4156 *unsignedp_ptr = uns;
4157 return win;
4158 }
4159 \f
4160 /* Return the precision of a type, for arithmetic purposes.
4161 Supports all types on which arithmetic is possible
4162 (including pointer types).
4163 It's not clear yet what will be right for complex types. */
4164
4165 int
4166 type_precision (type)
4167 register tree type;
4168 {
4169 return ((TREE_CODE (type) == INTEGER_TYPE
4170 || TREE_CODE (type) == ENUMERAL_TYPE
4171 || TREE_CODE (type) == REAL_TYPE)
4172 ? TYPE_PRECISION (type) : POINTER_SIZE);
4173 }
4174
4175 /* Nonzero if integer constant C has a value that is permissible
4176 for type TYPE (an INTEGER_TYPE). */
4177
4178 int
4179 int_fits_type_p (c, type)
4180 tree c, type;
4181 {
4182 if (TREE_UNSIGNED (type))
4183 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4184 && INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c))
4185 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4186 && INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))));
4187 else
4188 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4189 && INT_CST_LT (TYPE_MAX_VALUE (type), c))
4190 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4191 && INT_CST_LT (c, TYPE_MIN_VALUE (type))));
4192 }
4193
4194 /* Return the innermost context enclosing DECL that is
4195 a FUNCTION_DECL, or zero if none. */
4196
4197 tree
4198 decl_function_context (decl)
4199 tree decl;
4200 {
4201 tree context;
4202
4203 if (TREE_CODE (decl) == ERROR_MARK)
4204 return 0;
4205
4206 if (TREE_CODE (decl) == SAVE_EXPR)
4207 context = SAVE_EXPR_CONTEXT (decl);
4208 else
4209 context = DECL_CONTEXT (decl);
4210
4211 while (context && TREE_CODE (context) != FUNCTION_DECL)
4212 {
4213 if (TREE_CODE (context) == RECORD_TYPE
4214 || TREE_CODE (context) == UNION_TYPE)
4215 context = NULL_TREE;
4216 else if (TREE_CODE (context) == TYPE_DECL)
4217 context = DECL_CONTEXT (context);
4218 else if (TREE_CODE (context) == BLOCK)
4219 context = BLOCK_SUPERCONTEXT (context);
4220 else
4221 /* Unhandled CONTEXT !? */
4222 abort ();
4223 }
4224
4225 return context;
4226 }
4227
4228 /* Return the innermost context enclosing DECL that is
4229 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4230 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4231
4232 tree
4233 decl_type_context (decl)
4234 tree decl;
4235 {
4236 tree context = DECL_CONTEXT (decl);
4237
4238 while (context)
4239 {
4240 if (TREE_CODE (context) == RECORD_TYPE
4241 || TREE_CODE (context) == UNION_TYPE
4242 || TREE_CODE (context) == QUAL_UNION_TYPE)
4243 return context;
4244 if (TREE_CODE (context) == TYPE_DECL
4245 || TREE_CODE (context) == FUNCTION_DECL)
4246 context = DECL_CONTEXT (context);
4247 else if (TREE_CODE (context) == BLOCK)
4248 context = BLOCK_SUPERCONTEXT (context);
4249 else
4250 /* Unhandled CONTEXT!? */
4251 abort ();
4252 }
4253 return NULL_TREE;
4254 }
4255
4256 void
4257 print_obstack_statistics (str, o)
4258 char *str;
4259 struct obstack *o;
4260 {
4261 struct _obstack_chunk *chunk = o->chunk;
4262 int n_chunks = 0;
4263 int n_alloc = 0;
4264
4265 while (chunk)
4266 {
4267 n_chunks += 1;
4268 n_alloc += chunk->limit - &chunk->contents[0];
4269 chunk = chunk->prev;
4270 }
4271 fprintf (stderr, "obstack %s: %d bytes, %d chunks\n",
4272 str, n_alloc, n_chunks);
4273 }
4274 void
4275 dump_tree_statistics ()
4276 {
4277 int i;
4278 int total_nodes, total_bytes;
4279
4280 fprintf (stderr, "\n??? tree nodes created\n\n");
4281 #ifdef GATHER_STATISTICS
4282 fprintf (stderr, "Kind Nodes Bytes\n");
4283 fprintf (stderr, "-------------------------------------\n");
4284 total_nodes = total_bytes = 0;
4285 for (i = 0; i < (int) all_kinds; i++)
4286 {
4287 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4288 tree_node_counts[i], tree_node_sizes[i]);
4289 total_nodes += tree_node_counts[i];
4290 total_bytes += tree_node_sizes[i];
4291 }
4292 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
4293 fprintf (stderr, "-------------------------------------\n");
4294 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4295 fprintf (stderr, "-------------------------------------\n");
4296 #else
4297 fprintf (stderr, "(No per-node statistics)\n");
4298 #endif
4299 print_lang_statistics ();
4300 }
4301 \f
4302 #define FILE_FUNCTION_PREFIX_LEN 9
4303
4304 #ifndef NO_DOLLAR_IN_LABEL
4305 #define FILE_FUNCTION_FORMAT "_GLOBAL_$D$%s"
4306 #else /* NO_DOLLAR_IN_LABEL */
4307 #ifndef NO_DOT_IN_LABEL
4308 #define FILE_FUNCTION_FORMAT "_GLOBAL_.D.%s"
4309 #else /* NO_DOT_IN_LABEL */
4310 #define FILE_FUNCTION_FORMAT "_GLOBAL__D_%s"
4311 #endif /* NO_DOT_IN_LABEL */
4312 #endif /* NO_DOLLAR_IN_LABEL */
4313
4314 extern char * first_global_object_name;
4315
4316 /* If KIND=='I', return a suitable global initializer (constructor) name.
4317 If KIND=='D', return a suitable global clean-up (destructor) name. */
4318
4319 tree
4320 get_file_function_name (kind)
4321 int kind;
4322 {
4323 char *buf;
4324 register char *p;
4325
4326 if (first_global_object_name)
4327 p = first_global_object_name;
4328 else if (main_input_filename)
4329 p = main_input_filename;
4330 else
4331 p = input_filename;
4332
4333 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p));
4334
4335 /* Set up the name of the file-level functions we may need. */
4336 /* Use a global object (which is already required to be unique over
4337 the program) rather than the file name (which imposes extra
4338 constraints). -- Raeburn@MIT.EDU, 10 Jan 1990. */
4339 sprintf (buf, FILE_FUNCTION_FORMAT, p);
4340
4341 /* Don't need to pull weird characters out of global names. */
4342 if (p != first_global_object_name)
4343 {
4344 for (p = buf+11; *p; p++)
4345 if (! ((*p >= '0' && *p <= '9')
4346 #if 0 /* we always want labels, which are valid C++ identifiers (+ `$') */
4347 #ifndef ASM_IDENTIFY_GCC /* this is required if `.' is invalid -- k. raeburn */
4348 || *p == '.'
4349 #endif
4350 #endif
4351 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4352 || *p == '$'
4353 #endif
4354 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4355 || *p == '.'
4356 #endif
4357 || (*p >= 'A' && *p <= 'Z')
4358 || (*p >= 'a' && *p <= 'z')))
4359 *p = '_';
4360 }
4361
4362 buf[FILE_FUNCTION_PREFIX_LEN] = kind;
4363
4364 return get_identifier (buf);
4365 }
4366 \f
4367 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4368 The result is placed in BUFFER (which has length BIT_SIZE),
4369 with one bit in each char ('\000' or '\001').
4370
4371 If the constructor is constant, NULL_TREE is returned.
4372 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4373
4374 tree
4375 get_set_constructor_bits (init, buffer, bit_size)
4376 tree init;
4377 char *buffer;
4378 int bit_size;
4379 {
4380 int i;
4381 tree vals;
4382 HOST_WIDE_INT domain_min
4383 = TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))));
4384 tree non_const_bits = NULL_TREE;
4385 for (i = 0; i < bit_size; i++)
4386 buffer[i] = 0;
4387
4388 for (vals = TREE_OPERAND (init, 1);
4389 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4390 {
4391 if (TREE_CODE (TREE_VALUE (vals)) != INTEGER_CST
4392 || (TREE_PURPOSE (vals) != NULL_TREE
4393 && TREE_CODE (TREE_PURPOSE (vals)) != INTEGER_CST))
4394 non_const_bits =
4395 tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4396 else if (TREE_PURPOSE (vals) != NULL_TREE)
4397 {
4398 /* Set a range of bits to ones. */
4399 HOST_WIDE_INT lo_index
4400 = TREE_INT_CST_LOW (TREE_PURPOSE (vals)) - domain_min;
4401 HOST_WIDE_INT hi_index
4402 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
4403 if (lo_index < 0 || lo_index >= bit_size
4404 || hi_index < 0 || hi_index >= bit_size)
4405 abort ();
4406 for ( ; lo_index <= hi_index; lo_index++)
4407 buffer[lo_index] = 1;
4408 }
4409 else
4410 {
4411 /* Set a single bit to one. */
4412 HOST_WIDE_INT index
4413 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
4414 if (index < 0 || index >= bit_size)
4415 {
4416 error ("invalid initializer for bit string");
4417 return NULL_TREE;
4418 }
4419 buffer[index] = 1;
4420 }
4421 }
4422 return non_const_bits;
4423 }
4424
4425 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4426 The result is placed in BUFFER (which is an array of bytes).
4427 If the constructor is constant, NULL_TREE is returned.
4428 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4429
4430 tree
4431 get_set_constructor_bytes (init, buffer, wd_size)
4432 tree init;
4433 unsigned char *buffer;
4434 int wd_size;
4435 {
4436 int i;
4437 tree vals = TREE_OPERAND (init, 1);
4438 int set_word_size = BITS_PER_UNIT;
4439 int bit_size = wd_size * set_word_size;
4440 int bit_pos = 0;
4441 unsigned char *bytep = buffer;
4442 char *bit_buffer = (char*)alloca(bit_size);
4443 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4444
4445 for (i = 0; i < wd_size; i++)
4446 buffer[i] = 0;
4447
4448 for (i = 0; i < bit_size; i++)
4449 {
4450 if (bit_buffer[i])
4451 {
4452 if (BYTES_BIG_ENDIAN)
4453 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4454 else
4455 *bytep |= 1 << bit_pos;
4456 }
4457 bit_pos++;
4458 if (bit_pos >= set_word_size)
4459 bit_pos = 0, bytep++;
4460 }
4461 return non_const_bits;
4462 }