0922ab5b915dcc259a6579cdaff9dc3d43f3c1be
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h"
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "output.h"
45 #include "target.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "tree-pass.h"
54 #include "langhooks-def.h"
55 #include "diagnostic.h"
56 #include "tree-diagnostic.h"
57 #include "tree-pretty-print.h"
58 #include "cgraph.h"
59 #include "timevar.h"
60 #include "except.h"
61 #include "debug.h"
62 #include "intl.h"
63
64 /* Tree code classes. */
65
66 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
67 #define END_OF_BASE_TREE_CODES tcc_exceptional,
68
69 const enum tree_code_class tree_code_type[] = {
70 #include "all-tree.def"
71 };
72
73 #undef DEFTREECODE
74 #undef END_OF_BASE_TREE_CODES
75
76 /* Table indexed by tree code giving number of expression
77 operands beyond the fixed part of the node structure.
78 Not used for types or decls. */
79
80 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
81 #define END_OF_BASE_TREE_CODES 0,
82
83 const unsigned char tree_code_length[] = {
84 #include "all-tree.def"
85 };
86
87 #undef DEFTREECODE
88 #undef END_OF_BASE_TREE_CODES
89
90 /* Names of tree components.
91 Used for printing out the tree and error messages. */
92 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
93 #define END_OF_BASE_TREE_CODES "@dummy",
94
95 const char *const tree_code_name[] = {
96 #include "all-tree.def"
97 };
98
99 #undef DEFTREECODE
100 #undef END_OF_BASE_TREE_CODES
101
102 /* Each tree code class has an associated string representation.
103 These must correspond to the tree_code_class entries. */
104
105 const char *const tree_code_class_strings[] =
106 {
107 "exceptional",
108 "constant",
109 "type",
110 "declaration",
111 "reference",
112 "comparison",
113 "unary",
114 "binary",
115 "statement",
116 "vl_exp",
117 "expression"
118 };
119
120 /* obstack.[ch] explicitly declined to prototype this. */
121 extern int _obstack_allocated_p (struct obstack *h, void *obj);
122
123 #ifdef GATHER_STATISTICS
124 /* Statistics-gathering stuff. */
125
126 int tree_node_counts[(int) all_kinds];
127 int tree_node_sizes[(int) all_kinds];
128
129 /* Keep in sync with tree.h:enum tree_node_kind. */
130 static const char * const tree_node_kind_names[] = {
131 "decls",
132 "types",
133 "blocks",
134 "stmts",
135 "refs",
136 "exprs",
137 "constants",
138 "identifiers",
139 "perm_tree_lists",
140 "temp_tree_lists",
141 "vecs",
142 "binfos",
143 "ssa names",
144 "constructors",
145 "random kinds",
146 "lang_decl kinds",
147 "lang_type kinds",
148 "omp clauses",
149 };
150 #endif /* GATHER_STATISTICS */
151
152 /* Unique id for next decl created. */
153 static GTY(()) int next_decl_uid;
154 /* Unique id for next type created. */
155 static GTY(()) int next_type_uid = 1;
156 /* Unique id for next debug decl created. Use negative numbers,
157 to catch erroneous uses. */
158 static GTY(()) int next_debug_decl_uid;
159
160 /* Since we cannot rehash a type after it is in the table, we have to
161 keep the hash code. */
162
163 struct GTY(()) type_hash {
164 unsigned long hash;
165 tree type;
166 };
167
168 /* Initial size of the hash table (rounded to next prime). */
169 #define TYPE_HASH_INITIAL_SIZE 1000
170
171 /* Now here is the hash table. When recording a type, it is added to
172 the slot whose index is the hash code. Note that the hash table is
173 used for several kinds of types (function types, array types and
174 array index range types, for now). While all these live in the
175 same table, they are completely independent, and the hash code is
176 computed differently for each of these. */
177
178 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
179 htab_t type_hash_table;
180
181 /* Hash table and temporary node for larger integer const values. */
182 static GTY (()) tree int_cst_node;
183 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
184 htab_t int_cst_hash_table;
185
186 /* Hash table for optimization flags and target option flags. Use the same
187 hash table for both sets of options. Nodes for building the current
188 optimization and target option nodes. The assumption is most of the time
189 the options created will already be in the hash table, so we avoid
190 allocating and freeing up a node repeatably. */
191 static GTY (()) tree cl_optimization_node;
192 static GTY (()) tree cl_target_option_node;
193 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
194 htab_t cl_option_hash_table;
195
196 /* General tree->tree mapping structure for use in hash tables. */
197
198
199 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
200 htab_t debug_expr_for_decl;
201
202 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
203 htab_t value_expr_for_decl;
204
205 static GTY ((if_marked ("tree_priority_map_marked_p"),
206 param_is (struct tree_priority_map)))
207 htab_t init_priority_for_decl;
208
209 static void set_type_quals (tree, int);
210 static int type_hash_eq (const void *, const void *);
211 static hashval_t type_hash_hash (const void *);
212 static hashval_t int_cst_hash_hash (const void *);
213 static int int_cst_hash_eq (const void *, const void *);
214 static hashval_t cl_option_hash_hash (const void *);
215 static int cl_option_hash_eq (const void *, const void *);
216 static void print_type_hash_statistics (void);
217 static void print_debug_expr_statistics (void);
218 static void print_value_expr_statistics (void);
219 static int type_hash_marked_p (const void *);
220 static unsigned int type_hash_list (const_tree, hashval_t);
221 static unsigned int attribute_hash_list (const_tree, hashval_t);
222
223 tree global_trees[TI_MAX];
224 tree integer_types[itk_none];
225
226 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
227
228 /* Number of operands for each OpenMP clause. */
229 unsigned const char omp_clause_num_ops[] =
230 {
231 0, /* OMP_CLAUSE_ERROR */
232 1, /* OMP_CLAUSE_PRIVATE */
233 1, /* OMP_CLAUSE_SHARED */
234 1, /* OMP_CLAUSE_FIRSTPRIVATE */
235 2, /* OMP_CLAUSE_LASTPRIVATE */
236 4, /* OMP_CLAUSE_REDUCTION */
237 1, /* OMP_CLAUSE_COPYIN */
238 1, /* OMP_CLAUSE_COPYPRIVATE */
239 1, /* OMP_CLAUSE_IF */
240 1, /* OMP_CLAUSE_NUM_THREADS */
241 1, /* OMP_CLAUSE_SCHEDULE */
242 0, /* OMP_CLAUSE_NOWAIT */
243 0, /* OMP_CLAUSE_ORDERED */
244 0, /* OMP_CLAUSE_DEFAULT */
245 3, /* OMP_CLAUSE_COLLAPSE */
246 0 /* OMP_CLAUSE_UNTIED */
247 };
248
249 const char * const omp_clause_code_name[] =
250 {
251 "error_clause",
252 "private",
253 "shared",
254 "firstprivate",
255 "lastprivate",
256 "reduction",
257 "copyin",
258 "copyprivate",
259 "if",
260 "num_threads",
261 "schedule",
262 "nowait",
263 "ordered",
264 "default",
265 "collapse",
266 "untied"
267 };
268
269
270 /* Return the tree node structure used by tree code CODE. */
271
272 static inline enum tree_node_structure_enum
273 tree_node_structure_for_code (enum tree_code code)
274 {
275 switch (TREE_CODE_CLASS (code))
276 {
277 case tcc_declaration:
278 {
279 switch (code)
280 {
281 case FIELD_DECL:
282 return TS_FIELD_DECL;
283 case PARM_DECL:
284 return TS_PARM_DECL;
285 case VAR_DECL:
286 return TS_VAR_DECL;
287 case LABEL_DECL:
288 return TS_LABEL_DECL;
289 case RESULT_DECL:
290 return TS_RESULT_DECL;
291 case DEBUG_EXPR_DECL:
292 return TS_DECL_WRTL;
293 case CONST_DECL:
294 return TS_CONST_DECL;
295 case TYPE_DECL:
296 return TS_TYPE_DECL;
297 case FUNCTION_DECL:
298 return TS_FUNCTION_DECL;
299 default:
300 return TS_DECL_NON_COMMON;
301 }
302 }
303 case tcc_type:
304 return TS_TYPE;
305 case tcc_reference:
306 case tcc_comparison:
307 case tcc_unary:
308 case tcc_binary:
309 case tcc_expression:
310 case tcc_statement:
311 case tcc_vl_exp:
312 return TS_EXP;
313 default: /* tcc_constant and tcc_exceptional */
314 break;
315 }
316 switch (code)
317 {
318 /* tcc_constant cases. */
319 case INTEGER_CST: return TS_INT_CST;
320 case REAL_CST: return TS_REAL_CST;
321 case FIXED_CST: return TS_FIXED_CST;
322 case COMPLEX_CST: return TS_COMPLEX;
323 case VECTOR_CST: return TS_VECTOR;
324 case STRING_CST: return TS_STRING;
325 /* tcc_exceptional cases. */
326 case ERROR_MARK: return TS_COMMON;
327 case IDENTIFIER_NODE: return TS_IDENTIFIER;
328 case TREE_LIST: return TS_LIST;
329 case TREE_VEC: return TS_VEC;
330 case SSA_NAME: return TS_SSA_NAME;
331 case PLACEHOLDER_EXPR: return TS_COMMON;
332 case STATEMENT_LIST: return TS_STATEMENT_LIST;
333 case BLOCK: return TS_BLOCK;
334 case CONSTRUCTOR: return TS_CONSTRUCTOR;
335 case TREE_BINFO: return TS_BINFO;
336 case OMP_CLAUSE: return TS_OMP_CLAUSE;
337 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
338 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
339
340 default:
341 gcc_unreachable ();
342 }
343 }
344
345
346 /* Initialize tree_contains_struct to describe the hierarchy of tree
347 nodes. */
348
349 static void
350 initialize_tree_contains_struct (void)
351 {
352 unsigned i;
353
354 #define MARK_TS_BASE(C) \
355 do { \
356 tree_contains_struct[C][TS_BASE] = 1; \
357 } while (0)
358
359 #define MARK_TS_COMMON(C) \
360 do { \
361 MARK_TS_BASE (C); \
362 tree_contains_struct[C][TS_COMMON] = 1; \
363 } while (0)
364
365 #define MARK_TS_DECL_MINIMAL(C) \
366 do { \
367 MARK_TS_COMMON (C); \
368 tree_contains_struct[C][TS_DECL_MINIMAL] = 1; \
369 } while (0)
370
371 #define MARK_TS_DECL_COMMON(C) \
372 do { \
373 MARK_TS_DECL_MINIMAL (C); \
374 tree_contains_struct[C][TS_DECL_COMMON] = 1; \
375 } while (0)
376
377 #define MARK_TS_DECL_WRTL(C) \
378 do { \
379 MARK_TS_DECL_COMMON (C); \
380 tree_contains_struct[C][TS_DECL_WRTL] = 1; \
381 } while (0)
382
383 #define MARK_TS_DECL_WITH_VIS(C) \
384 do { \
385 MARK_TS_DECL_WRTL (C); \
386 tree_contains_struct[C][TS_DECL_WITH_VIS] = 1; \
387 } while (0)
388
389 #define MARK_TS_DECL_NON_COMMON(C) \
390 do { \
391 MARK_TS_DECL_WITH_VIS (C); \
392 tree_contains_struct[C][TS_DECL_NON_COMMON] = 1; \
393 } while (0)
394
395 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
396 {
397 enum tree_code code;
398 enum tree_node_structure_enum ts_code;
399
400 code = (enum tree_code) i;
401 ts_code = tree_node_structure_for_code (code);
402
403 /* Mark the TS structure itself. */
404 tree_contains_struct[code][ts_code] = 1;
405
406 /* Mark all the structures that TS is derived from. */
407 switch (ts_code)
408 {
409 case TS_COMMON:
410 MARK_TS_BASE (code);
411 break;
412
413 case TS_INT_CST:
414 case TS_REAL_CST:
415 case TS_FIXED_CST:
416 case TS_VECTOR:
417 case TS_STRING:
418 case TS_COMPLEX:
419 case TS_IDENTIFIER:
420 case TS_DECL_MINIMAL:
421 case TS_TYPE:
422 case TS_LIST:
423 case TS_VEC:
424 case TS_EXP:
425 case TS_SSA_NAME:
426 case TS_BLOCK:
427 case TS_BINFO:
428 case TS_STATEMENT_LIST:
429 case TS_CONSTRUCTOR:
430 case TS_OMP_CLAUSE:
431 case TS_OPTIMIZATION:
432 case TS_TARGET_OPTION:
433 MARK_TS_COMMON (code);
434 break;
435
436 case TS_DECL_COMMON:
437 MARK_TS_DECL_MINIMAL (code);
438 break;
439
440 case TS_DECL_WRTL:
441 MARK_TS_DECL_COMMON (code);
442 break;
443
444 case TS_DECL_NON_COMMON:
445 MARK_TS_DECL_WITH_VIS (code);
446 break;
447
448 case TS_DECL_WITH_VIS:
449 case TS_PARM_DECL:
450 case TS_LABEL_DECL:
451 case TS_RESULT_DECL:
452 case TS_CONST_DECL:
453 MARK_TS_DECL_WRTL (code);
454 break;
455
456 case TS_FIELD_DECL:
457 MARK_TS_DECL_COMMON (code);
458 break;
459
460 case TS_VAR_DECL:
461 MARK_TS_DECL_WITH_VIS (code);
462 break;
463
464 case TS_TYPE_DECL:
465 case TS_FUNCTION_DECL:
466 MARK_TS_DECL_NON_COMMON (code);
467 break;
468
469 default:
470 gcc_unreachable ();
471 }
472 }
473
474 /* Basic consistency checks for attributes used in fold. */
475 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
476 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON]);
477 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
478 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
479 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
480 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
481 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
482 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
483 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
484 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
485 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
486 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
487 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_WRTL]);
488 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
489 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
490 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
491 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
492 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
493 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
494 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
495 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
496 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
497 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
498 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
499 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
500 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
501 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
502 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
503 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
504 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
505 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS]);
506 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
507 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
508 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
509 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
510 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
511 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
512 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
513 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
514 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
515 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
516
517 #undef MARK_TS_BASE
518 #undef MARK_TS_COMMON
519 #undef MARK_TS_DECL_MINIMAL
520 #undef MARK_TS_DECL_COMMON
521 #undef MARK_TS_DECL_WRTL
522 #undef MARK_TS_DECL_WITH_VIS
523 #undef MARK_TS_DECL_NON_COMMON
524 }
525
526
527 /* Init tree.c. */
528
529 void
530 init_ttree (void)
531 {
532 /* Initialize the hash table of types. */
533 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
534 type_hash_eq, 0);
535
536 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
537 tree_decl_map_eq, 0);
538
539 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
540 tree_decl_map_eq, 0);
541 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
542 tree_priority_map_eq, 0);
543
544 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
545 int_cst_hash_eq, NULL);
546
547 int_cst_node = make_node (INTEGER_CST);
548
549 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
550 cl_option_hash_eq, NULL);
551
552 cl_optimization_node = make_node (OPTIMIZATION_NODE);
553 cl_target_option_node = make_node (TARGET_OPTION_NODE);
554
555 /* Initialize the tree_contains_struct array. */
556 initialize_tree_contains_struct ();
557 lang_hooks.init_ts ();
558 }
559
560 \f
561 /* The name of the object as the assembler will see it (but before any
562 translations made by ASM_OUTPUT_LABELREF). Often this is the same
563 as DECL_NAME. It is an IDENTIFIER_NODE. */
564 tree
565 decl_assembler_name (tree decl)
566 {
567 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
568 lang_hooks.set_decl_assembler_name (decl);
569 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
570 }
571
572 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
573
574 bool
575 decl_assembler_name_equal (tree decl, const_tree asmname)
576 {
577 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
578 const char *decl_str;
579 const char *asmname_str;
580 bool test = false;
581
582 if (decl_asmname == asmname)
583 return true;
584
585 decl_str = IDENTIFIER_POINTER (decl_asmname);
586 asmname_str = IDENTIFIER_POINTER (asmname);
587
588
589 /* If the target assembler name was set by the user, things are trickier.
590 We have a leading '*' to begin with. After that, it's arguable what
591 is the correct thing to do with -fleading-underscore. Arguably, we've
592 historically been doing the wrong thing in assemble_alias by always
593 printing the leading underscore. Since we're not changing that, make
594 sure user_label_prefix follows the '*' before matching. */
595 if (decl_str[0] == '*')
596 {
597 size_t ulp_len = strlen (user_label_prefix);
598
599 decl_str ++;
600
601 if (ulp_len == 0)
602 test = true;
603 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
604 decl_str += ulp_len, test=true;
605 else
606 decl_str --;
607 }
608 if (asmname_str[0] == '*')
609 {
610 size_t ulp_len = strlen (user_label_prefix);
611
612 asmname_str ++;
613
614 if (ulp_len == 0)
615 test = true;
616 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
617 asmname_str += ulp_len, test=true;
618 else
619 asmname_str --;
620 }
621
622 if (!test)
623 return false;
624 return strcmp (decl_str, asmname_str) == 0;
625 }
626
627 /* Hash asmnames ignoring the user specified marks. */
628
629 hashval_t
630 decl_assembler_name_hash (const_tree asmname)
631 {
632 if (IDENTIFIER_POINTER (asmname)[0] == '*')
633 {
634 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
635 size_t ulp_len = strlen (user_label_prefix);
636
637 if (ulp_len == 0)
638 ;
639 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
640 decl_str += ulp_len;
641
642 return htab_hash_string (decl_str);
643 }
644
645 return htab_hash_string (IDENTIFIER_POINTER (asmname));
646 }
647
648 /* Compute the number of bytes occupied by a tree with code CODE.
649 This function cannot be used for nodes that have variable sizes,
650 including TREE_VEC, STRING_CST, and CALL_EXPR. */
651 size_t
652 tree_code_size (enum tree_code code)
653 {
654 switch (TREE_CODE_CLASS (code))
655 {
656 case tcc_declaration: /* A decl node */
657 {
658 switch (code)
659 {
660 case FIELD_DECL:
661 return sizeof (struct tree_field_decl);
662 case PARM_DECL:
663 return sizeof (struct tree_parm_decl);
664 case VAR_DECL:
665 return sizeof (struct tree_var_decl);
666 case LABEL_DECL:
667 return sizeof (struct tree_label_decl);
668 case RESULT_DECL:
669 return sizeof (struct tree_result_decl);
670 case CONST_DECL:
671 return sizeof (struct tree_const_decl);
672 case TYPE_DECL:
673 return sizeof (struct tree_type_decl);
674 case FUNCTION_DECL:
675 return sizeof (struct tree_function_decl);
676 case DEBUG_EXPR_DECL:
677 return sizeof (struct tree_decl_with_rtl);
678 default:
679 return sizeof (struct tree_decl_non_common);
680 }
681 }
682
683 case tcc_type: /* a type node */
684 return sizeof (struct tree_type);
685
686 case tcc_reference: /* a reference */
687 case tcc_expression: /* an expression */
688 case tcc_statement: /* an expression with side effects */
689 case tcc_comparison: /* a comparison expression */
690 case tcc_unary: /* a unary arithmetic expression */
691 case tcc_binary: /* a binary arithmetic expression */
692 return (sizeof (struct tree_exp)
693 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
694
695 case tcc_constant: /* a constant */
696 switch (code)
697 {
698 case INTEGER_CST: return sizeof (struct tree_int_cst);
699 case REAL_CST: return sizeof (struct tree_real_cst);
700 case FIXED_CST: return sizeof (struct tree_fixed_cst);
701 case COMPLEX_CST: return sizeof (struct tree_complex);
702 case VECTOR_CST: return sizeof (struct tree_vector);
703 case STRING_CST: gcc_unreachable ();
704 default:
705 return lang_hooks.tree_size (code);
706 }
707
708 case tcc_exceptional: /* something random, like an identifier. */
709 switch (code)
710 {
711 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
712 case TREE_LIST: return sizeof (struct tree_list);
713
714 case ERROR_MARK:
715 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
716
717 case TREE_VEC:
718 case OMP_CLAUSE: gcc_unreachable ();
719
720 case SSA_NAME: return sizeof (struct tree_ssa_name);
721
722 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
723 case BLOCK: return sizeof (struct tree_block);
724 case CONSTRUCTOR: return sizeof (struct tree_constructor);
725 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
726 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
727
728 default:
729 return lang_hooks.tree_size (code);
730 }
731
732 default:
733 gcc_unreachable ();
734 }
735 }
736
737 /* Compute the number of bytes occupied by NODE. This routine only
738 looks at TREE_CODE, except for those nodes that have variable sizes. */
739 size_t
740 tree_size (const_tree node)
741 {
742 const enum tree_code code = TREE_CODE (node);
743 switch (code)
744 {
745 case TREE_BINFO:
746 return (offsetof (struct tree_binfo, base_binfos)
747 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
748
749 case TREE_VEC:
750 return (sizeof (struct tree_vec)
751 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
752
753 case STRING_CST:
754 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
755
756 case OMP_CLAUSE:
757 return (sizeof (struct tree_omp_clause)
758 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
759 * sizeof (tree));
760
761 default:
762 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
763 return (sizeof (struct tree_exp)
764 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
765 else
766 return tree_code_size (code);
767 }
768 }
769
770 /* Return a newly allocated node of code CODE. For decl and type
771 nodes, some other fields are initialized. The rest of the node is
772 initialized to zero. This function cannot be used for TREE_VEC or
773 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
774
775 Achoo! I got a code in the node. */
776
777 tree
778 make_node_stat (enum tree_code code MEM_STAT_DECL)
779 {
780 tree t;
781 enum tree_code_class type = TREE_CODE_CLASS (code);
782 size_t length = tree_code_size (code);
783 #ifdef GATHER_STATISTICS
784 tree_node_kind kind;
785
786 switch (type)
787 {
788 case tcc_declaration: /* A decl node */
789 kind = d_kind;
790 break;
791
792 case tcc_type: /* a type node */
793 kind = t_kind;
794 break;
795
796 case tcc_statement: /* an expression with side effects */
797 kind = s_kind;
798 break;
799
800 case tcc_reference: /* a reference */
801 kind = r_kind;
802 break;
803
804 case tcc_expression: /* an expression */
805 case tcc_comparison: /* a comparison expression */
806 case tcc_unary: /* a unary arithmetic expression */
807 case tcc_binary: /* a binary arithmetic expression */
808 kind = e_kind;
809 break;
810
811 case tcc_constant: /* a constant */
812 kind = c_kind;
813 break;
814
815 case tcc_exceptional: /* something random, like an identifier. */
816 switch (code)
817 {
818 case IDENTIFIER_NODE:
819 kind = id_kind;
820 break;
821
822 case TREE_VEC:
823 kind = vec_kind;
824 break;
825
826 case TREE_BINFO:
827 kind = binfo_kind;
828 break;
829
830 case SSA_NAME:
831 kind = ssa_name_kind;
832 break;
833
834 case BLOCK:
835 kind = b_kind;
836 break;
837
838 case CONSTRUCTOR:
839 kind = constr_kind;
840 break;
841
842 default:
843 kind = x_kind;
844 break;
845 }
846 break;
847
848 default:
849 gcc_unreachable ();
850 }
851
852 tree_node_counts[(int) kind]++;
853 tree_node_sizes[(int) kind] += length;
854 #endif
855
856 t = ggc_alloc_zone_cleared_tree_node_stat (
857 (code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone,
858 length PASS_MEM_STAT);
859 TREE_SET_CODE (t, code);
860
861 switch (type)
862 {
863 case tcc_statement:
864 TREE_SIDE_EFFECTS (t) = 1;
865 break;
866
867 case tcc_declaration:
868 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
869 {
870 if (code == FUNCTION_DECL)
871 {
872 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
873 DECL_MODE (t) = FUNCTION_MODE;
874 }
875 else
876 DECL_ALIGN (t) = 1;
877 }
878 DECL_SOURCE_LOCATION (t) = input_location;
879 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
880 DECL_UID (t) = --next_debug_decl_uid;
881 else
882 {
883 DECL_UID (t) = next_decl_uid++;
884 SET_DECL_PT_UID (t, -1);
885 }
886 if (TREE_CODE (t) == LABEL_DECL)
887 LABEL_DECL_UID (t) = -1;
888
889 break;
890
891 case tcc_type:
892 TYPE_UID (t) = next_type_uid++;
893 TYPE_ALIGN (t) = BITS_PER_UNIT;
894 TYPE_USER_ALIGN (t) = 0;
895 TYPE_MAIN_VARIANT (t) = t;
896 TYPE_CANONICAL (t) = t;
897
898 /* Default to no attributes for type, but let target change that. */
899 TYPE_ATTRIBUTES (t) = NULL_TREE;
900 targetm.set_default_type_attributes (t);
901
902 /* We have not yet computed the alias set for this type. */
903 TYPE_ALIAS_SET (t) = -1;
904 break;
905
906 case tcc_constant:
907 TREE_CONSTANT (t) = 1;
908 break;
909
910 case tcc_expression:
911 switch (code)
912 {
913 case INIT_EXPR:
914 case MODIFY_EXPR:
915 case VA_ARG_EXPR:
916 case PREDECREMENT_EXPR:
917 case PREINCREMENT_EXPR:
918 case POSTDECREMENT_EXPR:
919 case POSTINCREMENT_EXPR:
920 /* All of these have side-effects, no matter what their
921 operands are. */
922 TREE_SIDE_EFFECTS (t) = 1;
923 break;
924
925 default:
926 break;
927 }
928 break;
929
930 default:
931 /* Other classes need no special treatment. */
932 break;
933 }
934
935 return t;
936 }
937 \f
938 /* Return a new node with the same contents as NODE except that its
939 TREE_CHAIN is zero and it has a fresh uid. */
940
941 tree
942 copy_node_stat (tree node MEM_STAT_DECL)
943 {
944 tree t;
945 enum tree_code code = TREE_CODE (node);
946 size_t length;
947
948 gcc_assert (code != STATEMENT_LIST);
949
950 length = tree_size (node);
951 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
952 memcpy (t, node, length);
953
954 TREE_CHAIN (t) = 0;
955 TREE_ASM_WRITTEN (t) = 0;
956 TREE_VISITED (t) = 0;
957 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
958 *DECL_VAR_ANN_PTR (t) = 0;
959
960 if (TREE_CODE_CLASS (code) == tcc_declaration)
961 {
962 if (code == DEBUG_EXPR_DECL)
963 DECL_UID (t) = --next_debug_decl_uid;
964 else
965 {
966 DECL_UID (t) = next_decl_uid++;
967 if (DECL_PT_UID_SET_P (node))
968 SET_DECL_PT_UID (t, DECL_PT_UID (node));
969 }
970 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
971 && DECL_HAS_VALUE_EXPR_P (node))
972 {
973 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
974 DECL_HAS_VALUE_EXPR_P (t) = 1;
975 }
976 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
977 {
978 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
979 DECL_HAS_INIT_PRIORITY_P (t) = 1;
980 }
981 }
982 else if (TREE_CODE_CLASS (code) == tcc_type)
983 {
984 TYPE_UID (t) = next_type_uid++;
985 /* The following is so that the debug code for
986 the copy is different from the original type.
987 The two statements usually duplicate each other
988 (because they clear fields of the same union),
989 but the optimizer should catch that. */
990 TYPE_SYMTAB_POINTER (t) = 0;
991 TYPE_SYMTAB_ADDRESS (t) = 0;
992
993 /* Do not copy the values cache. */
994 if (TYPE_CACHED_VALUES_P(t))
995 {
996 TYPE_CACHED_VALUES_P (t) = 0;
997 TYPE_CACHED_VALUES (t) = NULL_TREE;
998 }
999 }
1000
1001 return t;
1002 }
1003
1004 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1005 For example, this can copy a list made of TREE_LIST nodes. */
1006
1007 tree
1008 copy_list (tree list)
1009 {
1010 tree head;
1011 tree prev, next;
1012
1013 if (list == 0)
1014 return 0;
1015
1016 head = prev = copy_node (list);
1017 next = TREE_CHAIN (list);
1018 while (next)
1019 {
1020 TREE_CHAIN (prev) = copy_node (next);
1021 prev = TREE_CHAIN (prev);
1022 next = TREE_CHAIN (next);
1023 }
1024 return head;
1025 }
1026
1027 \f
1028 /* Create an INT_CST node with a LOW value sign extended. */
1029
1030 tree
1031 build_int_cst (tree type, HOST_WIDE_INT low)
1032 {
1033 /* Support legacy code. */
1034 if (!type)
1035 type = integer_type_node;
1036
1037 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
1038 }
1039
1040 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
1041 if it is negative. This function is similar to build_int_cst, but
1042 the extra bits outside of the type precision are cleared. Constants
1043 with these extra bits may confuse the fold so that it detects overflows
1044 even in cases when they do not occur, and in general should be avoided.
1045 We cannot however make this a default behavior of build_int_cst without
1046 more intrusive changes, since there are parts of gcc that rely on the extra
1047 precision of the integer constants. */
1048
1049 tree
1050 build_int_cst_type (tree type, HOST_WIDE_INT low)
1051 {
1052 unsigned HOST_WIDE_INT low1;
1053 HOST_WIDE_INT hi;
1054
1055 gcc_assert (type);
1056
1057 fit_double_type (low, low < 0 ? -1 : 0, &low1, &hi, type);
1058
1059 return build_int_cst_wide (type, low1, hi);
1060 }
1061
1062 /* Constructs tree in type TYPE from with value given by CST. Signedness
1063 of CST is assumed to be the same as the signedness of TYPE. */
1064
1065 tree
1066 double_int_to_tree (tree type, double_int cst)
1067 {
1068 /* Size types *are* sign extended. */
1069 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1070 || (TREE_CODE (type) == INTEGER_TYPE
1071 && TYPE_IS_SIZETYPE (type)));
1072
1073 cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1074
1075 return build_int_cst_wide (type, cst.low, cst.high);
1076 }
1077
1078 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1079 to be the same as the signedness of TYPE. */
1080
1081 bool
1082 double_int_fits_to_tree_p (const_tree type, double_int cst)
1083 {
1084 /* Size types *are* sign extended. */
1085 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1086 || (TREE_CODE (type) == INTEGER_TYPE
1087 && TYPE_IS_SIZETYPE (type)));
1088
1089 double_int ext
1090 = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1091
1092 return double_int_equal_p (cst, ext);
1093 }
1094
1095 /* These are the hash table functions for the hash table of INTEGER_CST
1096 nodes of a sizetype. */
1097
1098 /* Return the hash code code X, an INTEGER_CST. */
1099
1100 static hashval_t
1101 int_cst_hash_hash (const void *x)
1102 {
1103 const_tree const t = (const_tree) x;
1104
1105 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1106 ^ htab_hash_pointer (TREE_TYPE (t)));
1107 }
1108
1109 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1110 is the same as that given by *Y, which is the same. */
1111
1112 static int
1113 int_cst_hash_eq (const void *x, const void *y)
1114 {
1115 const_tree const xt = (const_tree) x;
1116 const_tree const yt = (const_tree) y;
1117
1118 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1119 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1120 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1121 }
1122
1123 /* Create an INT_CST node of TYPE and value HI:LOW.
1124 The returned node is always shared. For small integers we use a
1125 per-type vector cache, for larger ones we use a single hash table. */
1126
1127 tree
1128 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1129 {
1130 tree t;
1131 int ix = -1;
1132 int limit = 0;
1133
1134 gcc_assert (type);
1135
1136 switch (TREE_CODE (type))
1137 {
1138 case POINTER_TYPE:
1139 case REFERENCE_TYPE:
1140 /* Cache NULL pointer. */
1141 if (!hi && !low)
1142 {
1143 limit = 1;
1144 ix = 0;
1145 }
1146 break;
1147
1148 case BOOLEAN_TYPE:
1149 /* Cache false or true. */
1150 limit = 2;
1151 if (!hi && low < 2)
1152 ix = low;
1153 break;
1154
1155 case INTEGER_TYPE:
1156 case OFFSET_TYPE:
1157 if (TYPE_UNSIGNED (type))
1158 {
1159 /* Cache 0..N */
1160 limit = INTEGER_SHARE_LIMIT;
1161 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1162 ix = low;
1163 }
1164 else
1165 {
1166 /* Cache -1..N */
1167 limit = INTEGER_SHARE_LIMIT + 1;
1168 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1169 ix = low + 1;
1170 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1171 ix = 0;
1172 }
1173 break;
1174
1175 case ENUMERAL_TYPE:
1176 break;
1177
1178 default:
1179 gcc_unreachable ();
1180 }
1181
1182 if (ix >= 0)
1183 {
1184 /* Look for it in the type's vector of small shared ints. */
1185 if (!TYPE_CACHED_VALUES_P (type))
1186 {
1187 TYPE_CACHED_VALUES_P (type) = 1;
1188 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1189 }
1190
1191 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1192 if (t)
1193 {
1194 /* Make sure no one is clobbering the shared constant. */
1195 gcc_assert (TREE_TYPE (t) == type);
1196 gcc_assert (TREE_INT_CST_LOW (t) == low);
1197 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1198 }
1199 else
1200 {
1201 /* Create a new shared int. */
1202 t = make_node (INTEGER_CST);
1203
1204 TREE_INT_CST_LOW (t) = low;
1205 TREE_INT_CST_HIGH (t) = hi;
1206 TREE_TYPE (t) = type;
1207
1208 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1209 }
1210 }
1211 else
1212 {
1213 /* Use the cache of larger shared ints. */
1214 void **slot;
1215
1216 TREE_INT_CST_LOW (int_cst_node) = low;
1217 TREE_INT_CST_HIGH (int_cst_node) = hi;
1218 TREE_TYPE (int_cst_node) = type;
1219
1220 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1221 t = (tree) *slot;
1222 if (!t)
1223 {
1224 /* Insert this one into the hash table. */
1225 t = int_cst_node;
1226 *slot = t;
1227 /* Make a new node for next time round. */
1228 int_cst_node = make_node (INTEGER_CST);
1229 }
1230 }
1231
1232 return t;
1233 }
1234
1235 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1236 and the rest are zeros. */
1237
1238 tree
1239 build_low_bits_mask (tree type, unsigned bits)
1240 {
1241 double_int mask;
1242
1243 gcc_assert (bits <= TYPE_PRECISION (type));
1244
1245 if (bits == TYPE_PRECISION (type)
1246 && !TYPE_UNSIGNED (type))
1247 /* Sign extended all-ones mask. */
1248 mask = double_int_minus_one;
1249 else
1250 mask = double_int_mask (bits);
1251
1252 return build_int_cst_wide (type, mask.low, mask.high);
1253 }
1254
1255 /* Checks that X is integer constant that can be expressed in (unsigned)
1256 HOST_WIDE_INT without loss of precision. */
1257
1258 bool
1259 cst_and_fits_in_hwi (const_tree x)
1260 {
1261 if (TREE_CODE (x) != INTEGER_CST)
1262 return false;
1263
1264 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1265 return false;
1266
1267 return (TREE_INT_CST_HIGH (x) == 0
1268 || TREE_INT_CST_HIGH (x) == -1);
1269 }
1270
1271 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1272 are in a list pointed to by VALS. */
1273
1274 tree
1275 build_vector (tree type, tree vals)
1276 {
1277 tree v = make_node (VECTOR_CST);
1278 int over = 0;
1279 tree link;
1280
1281 TREE_VECTOR_CST_ELTS (v) = vals;
1282 TREE_TYPE (v) = type;
1283
1284 /* Iterate through elements and check for overflow. */
1285 for (link = vals; link; link = TREE_CHAIN (link))
1286 {
1287 tree value = TREE_VALUE (link);
1288
1289 /* Don't crash if we get an address constant. */
1290 if (!CONSTANT_CLASS_P (value))
1291 continue;
1292
1293 over |= TREE_OVERFLOW (value);
1294 }
1295
1296 TREE_OVERFLOW (v) = over;
1297 return v;
1298 }
1299
1300 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1301 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1302
1303 tree
1304 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1305 {
1306 tree list = NULL_TREE;
1307 unsigned HOST_WIDE_INT idx;
1308 tree value;
1309
1310 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1311 list = tree_cons (NULL_TREE, value, list);
1312 return build_vector (type, nreverse (list));
1313 }
1314
1315 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1316 are in the VEC pointed to by VALS. */
1317 tree
1318 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1319 {
1320 tree c = make_node (CONSTRUCTOR);
1321 unsigned int i;
1322 constructor_elt *elt;
1323 bool constant_p = true;
1324
1325 TREE_TYPE (c) = type;
1326 CONSTRUCTOR_ELTS (c) = vals;
1327
1328 for (i = 0; VEC_iterate (constructor_elt, vals, i, elt); i++)
1329 if (!TREE_CONSTANT (elt->value))
1330 {
1331 constant_p = false;
1332 break;
1333 }
1334
1335 TREE_CONSTANT (c) = constant_p;
1336
1337 return c;
1338 }
1339
1340 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1341 INDEX and VALUE. */
1342 tree
1343 build_constructor_single (tree type, tree index, tree value)
1344 {
1345 VEC(constructor_elt,gc) *v;
1346 constructor_elt *elt;
1347
1348 v = VEC_alloc (constructor_elt, gc, 1);
1349 elt = VEC_quick_push (constructor_elt, v, NULL);
1350 elt->index = index;
1351 elt->value = value;
1352
1353 return build_constructor (type, v);
1354 }
1355
1356
1357 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1358 are in a list pointed to by VALS. */
1359 tree
1360 build_constructor_from_list (tree type, tree vals)
1361 {
1362 tree t;
1363 VEC(constructor_elt,gc) *v = NULL;
1364
1365 if (vals)
1366 {
1367 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1368 for (t = vals; t; t = TREE_CHAIN (t))
1369 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1370 }
1371
1372 return build_constructor (type, v);
1373 }
1374
1375 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1376
1377 tree
1378 build_fixed (tree type, FIXED_VALUE_TYPE f)
1379 {
1380 tree v;
1381 FIXED_VALUE_TYPE *fp;
1382
1383 v = make_node (FIXED_CST);
1384 fp = ggc_alloc_fixed_value ();
1385 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1386
1387 TREE_TYPE (v) = type;
1388 TREE_FIXED_CST_PTR (v) = fp;
1389 return v;
1390 }
1391
1392 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1393
1394 tree
1395 build_real (tree type, REAL_VALUE_TYPE d)
1396 {
1397 tree v;
1398 REAL_VALUE_TYPE *dp;
1399 int overflow = 0;
1400
1401 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1402 Consider doing it via real_convert now. */
1403
1404 v = make_node (REAL_CST);
1405 dp = ggc_alloc_real_value ();
1406 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1407
1408 TREE_TYPE (v) = type;
1409 TREE_REAL_CST_PTR (v) = dp;
1410 TREE_OVERFLOW (v) = overflow;
1411 return v;
1412 }
1413
1414 /* Return a new REAL_CST node whose type is TYPE
1415 and whose value is the integer value of the INTEGER_CST node I. */
1416
1417 REAL_VALUE_TYPE
1418 real_value_from_int_cst (const_tree type, const_tree i)
1419 {
1420 REAL_VALUE_TYPE d;
1421
1422 /* Clear all bits of the real value type so that we can later do
1423 bitwise comparisons to see if two values are the same. */
1424 memset (&d, 0, sizeof d);
1425
1426 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1427 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1428 TYPE_UNSIGNED (TREE_TYPE (i)));
1429 return d;
1430 }
1431
1432 /* Given a tree representing an integer constant I, return a tree
1433 representing the same value as a floating-point constant of type TYPE. */
1434
1435 tree
1436 build_real_from_int_cst (tree type, const_tree i)
1437 {
1438 tree v;
1439 int overflow = TREE_OVERFLOW (i);
1440
1441 v = build_real (type, real_value_from_int_cst (type, i));
1442
1443 TREE_OVERFLOW (v) |= overflow;
1444 return v;
1445 }
1446
1447 /* Return a newly constructed STRING_CST node whose value is
1448 the LEN characters at STR.
1449 The TREE_TYPE is not initialized. */
1450
1451 tree
1452 build_string (int len, const char *str)
1453 {
1454 tree s;
1455 size_t length;
1456
1457 /* Do not waste bytes provided by padding of struct tree_string. */
1458 length = len + offsetof (struct tree_string, str) + 1;
1459
1460 #ifdef GATHER_STATISTICS
1461 tree_node_counts[(int) c_kind]++;
1462 tree_node_sizes[(int) c_kind] += length;
1463 #endif
1464
1465 s = ggc_alloc_tree_node (length);
1466
1467 memset (s, 0, sizeof (struct tree_common));
1468 TREE_SET_CODE (s, STRING_CST);
1469 TREE_CONSTANT (s) = 1;
1470 TREE_STRING_LENGTH (s) = len;
1471 memcpy (s->string.str, str, len);
1472 s->string.str[len] = '\0';
1473
1474 return s;
1475 }
1476
1477 /* Return a newly constructed COMPLEX_CST node whose value is
1478 specified by the real and imaginary parts REAL and IMAG.
1479 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1480 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1481
1482 tree
1483 build_complex (tree type, tree real, tree imag)
1484 {
1485 tree t = make_node (COMPLEX_CST);
1486
1487 TREE_REALPART (t) = real;
1488 TREE_IMAGPART (t) = imag;
1489 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1490 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1491 return t;
1492 }
1493
1494 /* Return a constant of arithmetic type TYPE which is the
1495 multiplicative identity of the set TYPE. */
1496
1497 tree
1498 build_one_cst (tree type)
1499 {
1500 switch (TREE_CODE (type))
1501 {
1502 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1503 case POINTER_TYPE: case REFERENCE_TYPE:
1504 case OFFSET_TYPE:
1505 return build_int_cst (type, 1);
1506
1507 case REAL_TYPE:
1508 return build_real (type, dconst1);
1509
1510 case FIXED_POINT_TYPE:
1511 /* We can only generate 1 for accum types. */
1512 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1513 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1514
1515 case VECTOR_TYPE:
1516 {
1517 tree scalar, cst;
1518 int i;
1519
1520 scalar = build_one_cst (TREE_TYPE (type));
1521
1522 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1523 cst = NULL_TREE;
1524 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1525 cst = tree_cons (NULL_TREE, scalar, cst);
1526
1527 return build_vector (type, cst);
1528 }
1529
1530 case COMPLEX_TYPE:
1531 return build_complex (type,
1532 build_one_cst (TREE_TYPE (type)),
1533 fold_convert (TREE_TYPE (type), integer_zero_node));
1534
1535 default:
1536 gcc_unreachable ();
1537 }
1538 }
1539
1540 /* Build a BINFO with LEN language slots. */
1541
1542 tree
1543 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1544 {
1545 tree t;
1546 size_t length = (offsetof (struct tree_binfo, base_binfos)
1547 + VEC_embedded_size (tree, base_binfos));
1548
1549 #ifdef GATHER_STATISTICS
1550 tree_node_counts[(int) binfo_kind]++;
1551 tree_node_sizes[(int) binfo_kind] += length;
1552 #endif
1553
1554 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1555
1556 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1557
1558 TREE_SET_CODE (t, TREE_BINFO);
1559
1560 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1561
1562 return t;
1563 }
1564
1565
1566 /* Build a newly constructed TREE_VEC node of length LEN. */
1567
1568 tree
1569 make_tree_vec_stat (int len MEM_STAT_DECL)
1570 {
1571 tree t;
1572 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1573
1574 #ifdef GATHER_STATISTICS
1575 tree_node_counts[(int) vec_kind]++;
1576 tree_node_sizes[(int) vec_kind] += length;
1577 #endif
1578
1579 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1580
1581 TREE_SET_CODE (t, TREE_VEC);
1582 TREE_VEC_LENGTH (t) = len;
1583
1584 return t;
1585 }
1586 \f
1587 /* Return 1 if EXPR is the integer constant zero or a complex constant
1588 of zero. */
1589
1590 int
1591 integer_zerop (const_tree expr)
1592 {
1593 STRIP_NOPS (expr);
1594
1595 return ((TREE_CODE (expr) == INTEGER_CST
1596 && TREE_INT_CST_LOW (expr) == 0
1597 && TREE_INT_CST_HIGH (expr) == 0)
1598 || (TREE_CODE (expr) == COMPLEX_CST
1599 && integer_zerop (TREE_REALPART (expr))
1600 && integer_zerop (TREE_IMAGPART (expr))));
1601 }
1602
1603 /* Return 1 if EXPR is the integer constant one or the corresponding
1604 complex constant. */
1605
1606 int
1607 integer_onep (const_tree expr)
1608 {
1609 STRIP_NOPS (expr);
1610
1611 return ((TREE_CODE (expr) == INTEGER_CST
1612 && TREE_INT_CST_LOW (expr) == 1
1613 && TREE_INT_CST_HIGH (expr) == 0)
1614 || (TREE_CODE (expr) == COMPLEX_CST
1615 && integer_onep (TREE_REALPART (expr))
1616 && integer_zerop (TREE_IMAGPART (expr))));
1617 }
1618
1619 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1620 it contains. Likewise for the corresponding complex constant. */
1621
1622 int
1623 integer_all_onesp (const_tree expr)
1624 {
1625 int prec;
1626 int uns;
1627
1628 STRIP_NOPS (expr);
1629
1630 if (TREE_CODE (expr) == COMPLEX_CST
1631 && integer_all_onesp (TREE_REALPART (expr))
1632 && integer_zerop (TREE_IMAGPART (expr)))
1633 return 1;
1634
1635 else if (TREE_CODE (expr) != INTEGER_CST)
1636 return 0;
1637
1638 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1639 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1640 && TREE_INT_CST_HIGH (expr) == -1)
1641 return 1;
1642 if (!uns)
1643 return 0;
1644
1645 /* Note that using TYPE_PRECISION here is wrong. We care about the
1646 actual bits, not the (arbitrary) range of the type. */
1647 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1648 if (prec >= HOST_BITS_PER_WIDE_INT)
1649 {
1650 HOST_WIDE_INT high_value;
1651 int shift_amount;
1652
1653 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1654
1655 /* Can not handle precisions greater than twice the host int size. */
1656 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1657 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1658 /* Shifting by the host word size is undefined according to the ANSI
1659 standard, so we must handle this as a special case. */
1660 high_value = -1;
1661 else
1662 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1663
1664 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1665 && TREE_INT_CST_HIGH (expr) == high_value);
1666 }
1667 else
1668 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1669 }
1670
1671 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1672 one bit on). */
1673
1674 int
1675 integer_pow2p (const_tree expr)
1676 {
1677 int prec;
1678 HOST_WIDE_INT high, low;
1679
1680 STRIP_NOPS (expr);
1681
1682 if (TREE_CODE (expr) == COMPLEX_CST
1683 && integer_pow2p (TREE_REALPART (expr))
1684 && integer_zerop (TREE_IMAGPART (expr)))
1685 return 1;
1686
1687 if (TREE_CODE (expr) != INTEGER_CST)
1688 return 0;
1689
1690 prec = TYPE_PRECISION (TREE_TYPE (expr));
1691 high = TREE_INT_CST_HIGH (expr);
1692 low = TREE_INT_CST_LOW (expr);
1693
1694 /* First clear all bits that are beyond the type's precision in case
1695 we've been sign extended. */
1696
1697 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1698 ;
1699 else if (prec > HOST_BITS_PER_WIDE_INT)
1700 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1701 else
1702 {
1703 high = 0;
1704 if (prec < HOST_BITS_PER_WIDE_INT)
1705 low &= ~((HOST_WIDE_INT) (-1) << prec);
1706 }
1707
1708 if (high == 0 && low == 0)
1709 return 0;
1710
1711 return ((high == 0 && (low & (low - 1)) == 0)
1712 || (low == 0 && (high & (high - 1)) == 0));
1713 }
1714
1715 /* Return 1 if EXPR is an integer constant other than zero or a
1716 complex constant other than zero. */
1717
1718 int
1719 integer_nonzerop (const_tree expr)
1720 {
1721 STRIP_NOPS (expr);
1722
1723 return ((TREE_CODE (expr) == INTEGER_CST
1724 && (TREE_INT_CST_LOW (expr) != 0
1725 || TREE_INT_CST_HIGH (expr) != 0))
1726 || (TREE_CODE (expr) == COMPLEX_CST
1727 && (integer_nonzerop (TREE_REALPART (expr))
1728 || integer_nonzerop (TREE_IMAGPART (expr)))));
1729 }
1730
1731 /* Return 1 if EXPR is the fixed-point constant zero. */
1732
1733 int
1734 fixed_zerop (const_tree expr)
1735 {
1736 return (TREE_CODE (expr) == FIXED_CST
1737 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1738 }
1739
1740 /* Return the power of two represented by a tree node known to be a
1741 power of two. */
1742
1743 int
1744 tree_log2 (const_tree expr)
1745 {
1746 int prec;
1747 HOST_WIDE_INT high, low;
1748
1749 STRIP_NOPS (expr);
1750
1751 if (TREE_CODE (expr) == COMPLEX_CST)
1752 return tree_log2 (TREE_REALPART (expr));
1753
1754 prec = TYPE_PRECISION (TREE_TYPE (expr));
1755 high = TREE_INT_CST_HIGH (expr);
1756 low = TREE_INT_CST_LOW (expr);
1757
1758 /* First clear all bits that are beyond the type's precision in case
1759 we've been sign extended. */
1760
1761 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1762 ;
1763 else if (prec > HOST_BITS_PER_WIDE_INT)
1764 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1765 else
1766 {
1767 high = 0;
1768 if (prec < HOST_BITS_PER_WIDE_INT)
1769 low &= ~((HOST_WIDE_INT) (-1) << prec);
1770 }
1771
1772 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1773 : exact_log2 (low));
1774 }
1775
1776 /* Similar, but return the largest integer Y such that 2 ** Y is less
1777 than or equal to EXPR. */
1778
1779 int
1780 tree_floor_log2 (const_tree expr)
1781 {
1782 int prec;
1783 HOST_WIDE_INT high, low;
1784
1785 STRIP_NOPS (expr);
1786
1787 if (TREE_CODE (expr) == COMPLEX_CST)
1788 return tree_log2 (TREE_REALPART (expr));
1789
1790 prec = TYPE_PRECISION (TREE_TYPE (expr));
1791 high = TREE_INT_CST_HIGH (expr);
1792 low = TREE_INT_CST_LOW (expr);
1793
1794 /* First clear all bits that are beyond the type's precision in case
1795 we've been sign extended. Ignore if type's precision hasn't been set
1796 since what we are doing is setting it. */
1797
1798 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1799 ;
1800 else if (prec > HOST_BITS_PER_WIDE_INT)
1801 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1802 else
1803 {
1804 high = 0;
1805 if (prec < HOST_BITS_PER_WIDE_INT)
1806 low &= ~((HOST_WIDE_INT) (-1) << prec);
1807 }
1808
1809 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1810 : floor_log2 (low));
1811 }
1812
1813 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1814 decimal float constants, so don't return 1 for them. */
1815
1816 int
1817 real_zerop (const_tree expr)
1818 {
1819 STRIP_NOPS (expr);
1820
1821 return ((TREE_CODE (expr) == REAL_CST
1822 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1823 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1824 || (TREE_CODE (expr) == COMPLEX_CST
1825 && real_zerop (TREE_REALPART (expr))
1826 && real_zerop (TREE_IMAGPART (expr))));
1827 }
1828
1829 /* Return 1 if EXPR is the real constant one in real or complex form.
1830 Trailing zeroes matter for decimal float constants, so don't return
1831 1 for them. */
1832
1833 int
1834 real_onep (const_tree expr)
1835 {
1836 STRIP_NOPS (expr);
1837
1838 return ((TREE_CODE (expr) == REAL_CST
1839 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1840 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1841 || (TREE_CODE (expr) == COMPLEX_CST
1842 && real_onep (TREE_REALPART (expr))
1843 && real_zerop (TREE_IMAGPART (expr))));
1844 }
1845
1846 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1847 for decimal float constants, so don't return 1 for them. */
1848
1849 int
1850 real_twop (const_tree expr)
1851 {
1852 STRIP_NOPS (expr);
1853
1854 return ((TREE_CODE (expr) == REAL_CST
1855 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1856 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1857 || (TREE_CODE (expr) == COMPLEX_CST
1858 && real_twop (TREE_REALPART (expr))
1859 && real_zerop (TREE_IMAGPART (expr))));
1860 }
1861
1862 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1863 matter for decimal float constants, so don't return 1 for them. */
1864
1865 int
1866 real_minus_onep (const_tree expr)
1867 {
1868 STRIP_NOPS (expr);
1869
1870 return ((TREE_CODE (expr) == REAL_CST
1871 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1872 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1873 || (TREE_CODE (expr) == COMPLEX_CST
1874 && real_minus_onep (TREE_REALPART (expr))
1875 && real_zerop (TREE_IMAGPART (expr))));
1876 }
1877
1878 /* Nonzero if EXP is a constant or a cast of a constant. */
1879
1880 int
1881 really_constant_p (const_tree exp)
1882 {
1883 /* This is not quite the same as STRIP_NOPS. It does more. */
1884 while (CONVERT_EXPR_P (exp)
1885 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1886 exp = TREE_OPERAND (exp, 0);
1887 return TREE_CONSTANT (exp);
1888 }
1889 \f
1890 /* Return first list element whose TREE_VALUE is ELEM.
1891 Return 0 if ELEM is not in LIST. */
1892
1893 tree
1894 value_member (tree elem, tree list)
1895 {
1896 while (list)
1897 {
1898 if (elem == TREE_VALUE (list))
1899 return list;
1900 list = TREE_CHAIN (list);
1901 }
1902 return NULL_TREE;
1903 }
1904
1905 /* Return first list element whose TREE_PURPOSE is ELEM.
1906 Return 0 if ELEM is not in LIST. */
1907
1908 tree
1909 purpose_member (const_tree elem, tree list)
1910 {
1911 while (list)
1912 {
1913 if (elem == TREE_PURPOSE (list))
1914 return list;
1915 list = TREE_CHAIN (list);
1916 }
1917 return NULL_TREE;
1918 }
1919
1920 /* Return true if ELEM is in V. */
1921
1922 bool
1923 vec_member (const_tree elem, VEC(tree,gc) *v)
1924 {
1925 unsigned ix;
1926 tree t;
1927 for (ix = 0; VEC_iterate (tree, v, ix, t); ix++)
1928 if (elem == t)
1929 return true;
1930 return false;
1931 }
1932
1933 /* Returns element number IDX (zero-origin) of chain CHAIN, or
1934 NULL_TREE. */
1935
1936 tree
1937 chain_index (int idx, tree chain)
1938 {
1939 for (; chain && idx > 0; --idx)
1940 chain = TREE_CHAIN (chain);
1941 return chain;
1942 }
1943
1944 /* Return nonzero if ELEM is part of the chain CHAIN. */
1945
1946 int
1947 chain_member (const_tree elem, const_tree chain)
1948 {
1949 while (chain)
1950 {
1951 if (elem == chain)
1952 return 1;
1953 chain = TREE_CHAIN (chain);
1954 }
1955
1956 return 0;
1957 }
1958
1959 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1960 We expect a null pointer to mark the end of the chain.
1961 This is the Lisp primitive `length'. */
1962
1963 int
1964 list_length (const_tree t)
1965 {
1966 const_tree p = t;
1967 #ifdef ENABLE_TREE_CHECKING
1968 const_tree q = t;
1969 #endif
1970 int len = 0;
1971
1972 while (p)
1973 {
1974 p = TREE_CHAIN (p);
1975 #ifdef ENABLE_TREE_CHECKING
1976 if (len % 2)
1977 q = TREE_CHAIN (q);
1978 gcc_assert (p != q);
1979 #endif
1980 len++;
1981 }
1982
1983 return len;
1984 }
1985
1986 /* Returns the number of FIELD_DECLs in TYPE. */
1987
1988 int
1989 fields_length (const_tree type)
1990 {
1991 tree t = TYPE_FIELDS (type);
1992 int count = 0;
1993
1994 for (; t; t = TREE_CHAIN (t))
1995 if (TREE_CODE (t) == FIELD_DECL)
1996 ++count;
1997
1998 return count;
1999 }
2000
2001 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2002 UNION_TYPE TYPE, or NULL_TREE if none. */
2003
2004 tree
2005 first_field (const_tree type)
2006 {
2007 tree t = TYPE_FIELDS (type);
2008 while (t && TREE_CODE (t) != FIELD_DECL)
2009 t = TREE_CHAIN (t);
2010 return t;
2011 }
2012
2013 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2014 by modifying the last node in chain 1 to point to chain 2.
2015 This is the Lisp primitive `nconc'. */
2016
2017 tree
2018 chainon (tree op1, tree op2)
2019 {
2020 tree t1;
2021
2022 if (!op1)
2023 return op2;
2024 if (!op2)
2025 return op1;
2026
2027 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2028 continue;
2029 TREE_CHAIN (t1) = op2;
2030
2031 #ifdef ENABLE_TREE_CHECKING
2032 {
2033 tree t2;
2034 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2035 gcc_assert (t2 != t1);
2036 }
2037 #endif
2038
2039 return op1;
2040 }
2041
2042 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2043
2044 tree
2045 tree_last (tree chain)
2046 {
2047 tree next;
2048 if (chain)
2049 while ((next = TREE_CHAIN (chain)))
2050 chain = next;
2051 return chain;
2052 }
2053
2054 /* Reverse the order of elements in the chain T,
2055 and return the new head of the chain (old last element). */
2056
2057 tree
2058 nreverse (tree t)
2059 {
2060 tree prev = 0, decl, next;
2061 for (decl = t; decl; decl = next)
2062 {
2063 next = TREE_CHAIN (decl);
2064 TREE_CHAIN (decl) = prev;
2065 prev = decl;
2066 }
2067 return prev;
2068 }
2069 \f
2070 /* Return a newly created TREE_LIST node whose
2071 purpose and value fields are PARM and VALUE. */
2072
2073 tree
2074 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2075 {
2076 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2077 TREE_PURPOSE (t) = parm;
2078 TREE_VALUE (t) = value;
2079 return t;
2080 }
2081
2082 /* Build a chain of TREE_LIST nodes from a vector. */
2083
2084 tree
2085 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2086 {
2087 tree ret = NULL_TREE;
2088 tree *pp = &ret;
2089 unsigned int i;
2090 tree t;
2091 for (i = 0; VEC_iterate (tree, vec, i, t); ++i)
2092 {
2093 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2094 pp = &TREE_CHAIN (*pp);
2095 }
2096 return ret;
2097 }
2098
2099 /* Return a newly created TREE_LIST node whose
2100 purpose and value fields are PURPOSE and VALUE
2101 and whose TREE_CHAIN is CHAIN. */
2102
2103 tree
2104 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2105 {
2106 tree node;
2107
2108 node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list)
2109 PASS_MEM_STAT);
2110 memset (node, 0, sizeof (struct tree_common));
2111
2112 #ifdef GATHER_STATISTICS
2113 tree_node_counts[(int) x_kind]++;
2114 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
2115 #endif
2116
2117 TREE_SET_CODE (node, TREE_LIST);
2118 TREE_CHAIN (node) = chain;
2119 TREE_PURPOSE (node) = purpose;
2120 TREE_VALUE (node) = value;
2121 return node;
2122 }
2123
2124 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2125 trees. */
2126
2127 VEC(tree,gc) *
2128 ctor_to_vec (tree ctor)
2129 {
2130 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2131 unsigned int ix;
2132 tree val;
2133
2134 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2135 VEC_quick_push (tree, vec, val);
2136
2137 return vec;
2138 }
2139 \f
2140 /* Return the size nominally occupied by an object of type TYPE
2141 when it resides in memory. The value is measured in units of bytes,
2142 and its data type is that normally used for type sizes
2143 (which is the first type created by make_signed_type or
2144 make_unsigned_type). */
2145
2146 tree
2147 size_in_bytes (const_tree type)
2148 {
2149 tree t;
2150
2151 if (type == error_mark_node)
2152 return integer_zero_node;
2153
2154 type = TYPE_MAIN_VARIANT (type);
2155 t = TYPE_SIZE_UNIT (type);
2156
2157 if (t == 0)
2158 {
2159 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2160 return size_zero_node;
2161 }
2162
2163 return t;
2164 }
2165
2166 /* Return the size of TYPE (in bytes) as a wide integer
2167 or return -1 if the size can vary or is larger than an integer. */
2168
2169 HOST_WIDE_INT
2170 int_size_in_bytes (const_tree type)
2171 {
2172 tree t;
2173
2174 if (type == error_mark_node)
2175 return 0;
2176
2177 type = TYPE_MAIN_VARIANT (type);
2178 t = TYPE_SIZE_UNIT (type);
2179 if (t == 0
2180 || TREE_CODE (t) != INTEGER_CST
2181 || TREE_INT_CST_HIGH (t) != 0
2182 /* If the result would appear negative, it's too big to represent. */
2183 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2184 return -1;
2185
2186 return TREE_INT_CST_LOW (t);
2187 }
2188
2189 /* Return the maximum size of TYPE (in bytes) as a wide integer
2190 or return -1 if the size can vary or is larger than an integer. */
2191
2192 HOST_WIDE_INT
2193 max_int_size_in_bytes (const_tree type)
2194 {
2195 HOST_WIDE_INT size = -1;
2196 tree size_tree;
2197
2198 /* If this is an array type, check for a possible MAX_SIZE attached. */
2199
2200 if (TREE_CODE (type) == ARRAY_TYPE)
2201 {
2202 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2203
2204 if (size_tree && host_integerp (size_tree, 1))
2205 size = tree_low_cst (size_tree, 1);
2206 }
2207
2208 /* If we still haven't been able to get a size, see if the language
2209 can compute a maximum size. */
2210
2211 if (size == -1)
2212 {
2213 size_tree = lang_hooks.types.max_size (type);
2214
2215 if (size_tree && host_integerp (size_tree, 1))
2216 size = tree_low_cst (size_tree, 1);
2217 }
2218
2219 return size;
2220 }
2221
2222 /* Returns a tree for the size of EXP in bytes. */
2223
2224 tree
2225 tree_expr_size (const_tree exp)
2226 {
2227 if (DECL_P (exp)
2228 && DECL_SIZE_UNIT (exp) != 0)
2229 return DECL_SIZE_UNIT (exp);
2230 else
2231 return size_in_bytes (TREE_TYPE (exp));
2232 }
2233 \f
2234 /* Return the bit position of FIELD, in bits from the start of the record.
2235 This is a tree of type bitsizetype. */
2236
2237 tree
2238 bit_position (const_tree field)
2239 {
2240 return bit_from_pos (DECL_FIELD_OFFSET (field),
2241 DECL_FIELD_BIT_OFFSET (field));
2242 }
2243
2244 /* Likewise, but return as an integer. It must be representable in
2245 that way (since it could be a signed value, we don't have the
2246 option of returning -1 like int_size_in_byte can. */
2247
2248 HOST_WIDE_INT
2249 int_bit_position (const_tree field)
2250 {
2251 return tree_low_cst (bit_position (field), 0);
2252 }
2253 \f
2254 /* Return the byte position of FIELD, in bytes from the start of the record.
2255 This is a tree of type sizetype. */
2256
2257 tree
2258 byte_position (const_tree field)
2259 {
2260 return byte_from_pos (DECL_FIELD_OFFSET (field),
2261 DECL_FIELD_BIT_OFFSET (field));
2262 }
2263
2264 /* Likewise, but return as an integer. It must be representable in
2265 that way (since it could be a signed value, we don't have the
2266 option of returning -1 like int_size_in_byte can. */
2267
2268 HOST_WIDE_INT
2269 int_byte_position (const_tree field)
2270 {
2271 return tree_low_cst (byte_position (field), 0);
2272 }
2273 \f
2274 /* Return the strictest alignment, in bits, that T is known to have. */
2275
2276 unsigned int
2277 expr_align (const_tree t)
2278 {
2279 unsigned int align0, align1;
2280
2281 switch (TREE_CODE (t))
2282 {
2283 CASE_CONVERT: case NON_LVALUE_EXPR:
2284 /* If we have conversions, we know that the alignment of the
2285 object must meet each of the alignments of the types. */
2286 align0 = expr_align (TREE_OPERAND (t, 0));
2287 align1 = TYPE_ALIGN (TREE_TYPE (t));
2288 return MAX (align0, align1);
2289
2290 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2291 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2292 case CLEANUP_POINT_EXPR:
2293 /* These don't change the alignment of an object. */
2294 return expr_align (TREE_OPERAND (t, 0));
2295
2296 case COND_EXPR:
2297 /* The best we can do is say that the alignment is the least aligned
2298 of the two arms. */
2299 align0 = expr_align (TREE_OPERAND (t, 1));
2300 align1 = expr_align (TREE_OPERAND (t, 2));
2301 return MIN (align0, align1);
2302
2303 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2304 meaningfully, it's always 1. */
2305 case LABEL_DECL: case CONST_DECL:
2306 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2307 case FUNCTION_DECL:
2308 gcc_assert (DECL_ALIGN (t) != 0);
2309 return DECL_ALIGN (t);
2310
2311 default:
2312 break;
2313 }
2314
2315 /* Otherwise take the alignment from that of the type. */
2316 return TYPE_ALIGN (TREE_TYPE (t));
2317 }
2318 \f
2319 /* Return, as a tree node, the number of elements for TYPE (which is an
2320 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2321
2322 tree
2323 array_type_nelts (const_tree type)
2324 {
2325 tree index_type, min, max;
2326
2327 /* If they did it with unspecified bounds, then we should have already
2328 given an error about it before we got here. */
2329 if (! TYPE_DOMAIN (type))
2330 return error_mark_node;
2331
2332 index_type = TYPE_DOMAIN (type);
2333 min = TYPE_MIN_VALUE (index_type);
2334 max = TYPE_MAX_VALUE (index_type);
2335
2336 return (integer_zerop (min)
2337 ? max
2338 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2339 }
2340 \f
2341 /* If arg is static -- a reference to an object in static storage -- then
2342 return the object. This is not the same as the C meaning of `static'.
2343 If arg isn't static, return NULL. */
2344
2345 tree
2346 staticp (tree arg)
2347 {
2348 switch (TREE_CODE (arg))
2349 {
2350 case FUNCTION_DECL:
2351 /* Nested functions are static, even though taking their address will
2352 involve a trampoline as we unnest the nested function and create
2353 the trampoline on the tree level. */
2354 return arg;
2355
2356 case VAR_DECL:
2357 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2358 && ! DECL_THREAD_LOCAL_P (arg)
2359 && ! DECL_DLLIMPORT_P (arg)
2360 ? arg : NULL);
2361
2362 case CONST_DECL:
2363 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2364 ? arg : NULL);
2365
2366 case CONSTRUCTOR:
2367 return TREE_STATIC (arg) ? arg : NULL;
2368
2369 case LABEL_DECL:
2370 case STRING_CST:
2371 return arg;
2372
2373 case COMPONENT_REF:
2374 /* If the thing being referenced is not a field, then it is
2375 something language specific. */
2376 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2377
2378 /* If we are referencing a bitfield, we can't evaluate an
2379 ADDR_EXPR at compile time and so it isn't a constant. */
2380 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2381 return NULL;
2382
2383 return staticp (TREE_OPERAND (arg, 0));
2384
2385 case BIT_FIELD_REF:
2386 return NULL;
2387
2388 case MISALIGNED_INDIRECT_REF:
2389 case ALIGN_INDIRECT_REF:
2390 case INDIRECT_REF:
2391 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2392
2393 case ARRAY_REF:
2394 case ARRAY_RANGE_REF:
2395 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2396 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2397 return staticp (TREE_OPERAND (arg, 0));
2398 else
2399 return NULL;
2400
2401 case COMPOUND_LITERAL_EXPR:
2402 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2403
2404 default:
2405 return NULL;
2406 }
2407 }
2408
2409 \f
2410
2411
2412 /* Return whether OP is a DECL whose address is function-invariant. */
2413
2414 bool
2415 decl_address_invariant_p (const_tree op)
2416 {
2417 /* The conditions below are slightly less strict than the one in
2418 staticp. */
2419
2420 switch (TREE_CODE (op))
2421 {
2422 case PARM_DECL:
2423 case RESULT_DECL:
2424 case LABEL_DECL:
2425 case FUNCTION_DECL:
2426 return true;
2427
2428 case VAR_DECL:
2429 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2430 && !DECL_DLLIMPORT_P (op))
2431 || DECL_THREAD_LOCAL_P (op)
2432 || DECL_CONTEXT (op) == current_function_decl
2433 || decl_function_context (op) == current_function_decl)
2434 return true;
2435 break;
2436
2437 case CONST_DECL:
2438 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2439 || decl_function_context (op) == current_function_decl)
2440 return true;
2441 break;
2442
2443 default:
2444 break;
2445 }
2446
2447 return false;
2448 }
2449
2450 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2451
2452 bool
2453 decl_address_ip_invariant_p (const_tree op)
2454 {
2455 /* The conditions below are slightly less strict than the one in
2456 staticp. */
2457
2458 switch (TREE_CODE (op))
2459 {
2460 case LABEL_DECL:
2461 case FUNCTION_DECL:
2462 case STRING_CST:
2463 return true;
2464
2465 case VAR_DECL:
2466 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2467 && !DECL_DLLIMPORT_P (op))
2468 || DECL_THREAD_LOCAL_P (op))
2469 return true;
2470 break;
2471
2472 case CONST_DECL:
2473 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2474 return true;
2475 break;
2476
2477 default:
2478 break;
2479 }
2480
2481 return false;
2482 }
2483
2484
2485 /* Return true if T is function-invariant (internal function, does
2486 not handle arithmetic; that's handled in skip_simple_arithmetic and
2487 tree_invariant_p). */
2488
2489 static bool tree_invariant_p (tree t);
2490
2491 static bool
2492 tree_invariant_p_1 (tree t)
2493 {
2494 tree op;
2495
2496 if (TREE_CONSTANT (t)
2497 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2498 return true;
2499
2500 switch (TREE_CODE (t))
2501 {
2502 case SAVE_EXPR:
2503 return true;
2504
2505 case ADDR_EXPR:
2506 op = TREE_OPERAND (t, 0);
2507 while (handled_component_p (op))
2508 {
2509 switch (TREE_CODE (op))
2510 {
2511 case ARRAY_REF:
2512 case ARRAY_RANGE_REF:
2513 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2514 || TREE_OPERAND (op, 2) != NULL_TREE
2515 || TREE_OPERAND (op, 3) != NULL_TREE)
2516 return false;
2517 break;
2518
2519 case COMPONENT_REF:
2520 if (TREE_OPERAND (op, 2) != NULL_TREE)
2521 return false;
2522 break;
2523
2524 default:;
2525 }
2526 op = TREE_OPERAND (op, 0);
2527 }
2528
2529 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2530
2531 default:
2532 break;
2533 }
2534
2535 return false;
2536 }
2537
2538 /* Return true if T is function-invariant. */
2539
2540 static bool
2541 tree_invariant_p (tree t)
2542 {
2543 tree inner = skip_simple_arithmetic (t);
2544 return tree_invariant_p_1 (inner);
2545 }
2546
2547 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2548 Do this to any expression which may be used in more than one place,
2549 but must be evaluated only once.
2550
2551 Normally, expand_expr would reevaluate the expression each time.
2552 Calling save_expr produces something that is evaluated and recorded
2553 the first time expand_expr is called on it. Subsequent calls to
2554 expand_expr just reuse the recorded value.
2555
2556 The call to expand_expr that generates code that actually computes
2557 the value is the first call *at compile time*. Subsequent calls
2558 *at compile time* generate code to use the saved value.
2559 This produces correct result provided that *at run time* control
2560 always flows through the insns made by the first expand_expr
2561 before reaching the other places where the save_expr was evaluated.
2562 You, the caller of save_expr, must make sure this is so.
2563
2564 Constants, and certain read-only nodes, are returned with no
2565 SAVE_EXPR because that is safe. Expressions containing placeholders
2566 are not touched; see tree.def for an explanation of what these
2567 are used for. */
2568
2569 tree
2570 save_expr (tree expr)
2571 {
2572 tree t = fold (expr);
2573 tree inner;
2574
2575 /* If the tree evaluates to a constant, then we don't want to hide that
2576 fact (i.e. this allows further folding, and direct checks for constants).
2577 However, a read-only object that has side effects cannot be bypassed.
2578 Since it is no problem to reevaluate literals, we just return the
2579 literal node. */
2580 inner = skip_simple_arithmetic (t);
2581 if (TREE_CODE (inner) == ERROR_MARK)
2582 return inner;
2583
2584 if (tree_invariant_p_1 (inner))
2585 return t;
2586
2587 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2588 it means that the size or offset of some field of an object depends on
2589 the value within another field.
2590
2591 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2592 and some variable since it would then need to be both evaluated once and
2593 evaluated more than once. Front-ends must assure this case cannot
2594 happen by surrounding any such subexpressions in their own SAVE_EXPR
2595 and forcing evaluation at the proper time. */
2596 if (contains_placeholder_p (inner))
2597 return t;
2598
2599 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2600 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2601
2602 /* This expression might be placed ahead of a jump to ensure that the
2603 value was computed on both sides of the jump. So make sure it isn't
2604 eliminated as dead. */
2605 TREE_SIDE_EFFECTS (t) = 1;
2606 return t;
2607 }
2608
2609 /* Look inside EXPR and into any simple arithmetic operations. Return
2610 the innermost non-arithmetic node. */
2611
2612 tree
2613 skip_simple_arithmetic (tree expr)
2614 {
2615 tree inner;
2616
2617 /* We don't care about whether this can be used as an lvalue in this
2618 context. */
2619 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2620 expr = TREE_OPERAND (expr, 0);
2621
2622 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2623 a constant, it will be more efficient to not make another SAVE_EXPR since
2624 it will allow better simplification and GCSE will be able to merge the
2625 computations if they actually occur. */
2626 inner = expr;
2627 while (1)
2628 {
2629 if (UNARY_CLASS_P (inner))
2630 inner = TREE_OPERAND (inner, 0);
2631 else if (BINARY_CLASS_P (inner))
2632 {
2633 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2634 inner = TREE_OPERAND (inner, 0);
2635 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2636 inner = TREE_OPERAND (inner, 1);
2637 else
2638 break;
2639 }
2640 else
2641 break;
2642 }
2643
2644 return inner;
2645 }
2646
2647
2648 /* Return which tree structure is used by T. */
2649
2650 enum tree_node_structure_enum
2651 tree_node_structure (const_tree t)
2652 {
2653 const enum tree_code code = TREE_CODE (t);
2654 return tree_node_structure_for_code (code);
2655 }
2656
2657 /* Set various status flags when building a CALL_EXPR object T. */
2658
2659 static void
2660 process_call_operands (tree t)
2661 {
2662 bool side_effects = TREE_SIDE_EFFECTS (t);
2663 bool read_only = false;
2664 int i = call_expr_flags (t);
2665
2666 /* Calls have side-effects, except those to const or pure functions. */
2667 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2668 side_effects = true;
2669 /* Propagate TREE_READONLY of arguments for const functions. */
2670 if (i & ECF_CONST)
2671 read_only = true;
2672
2673 if (!side_effects || read_only)
2674 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2675 {
2676 tree op = TREE_OPERAND (t, i);
2677 if (op && TREE_SIDE_EFFECTS (op))
2678 side_effects = true;
2679 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2680 read_only = false;
2681 }
2682
2683 TREE_SIDE_EFFECTS (t) = side_effects;
2684 TREE_READONLY (t) = read_only;
2685 }
2686 \f
2687 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2688 or offset that depends on a field within a record. */
2689
2690 bool
2691 contains_placeholder_p (const_tree exp)
2692 {
2693 enum tree_code code;
2694
2695 if (!exp)
2696 return 0;
2697
2698 code = TREE_CODE (exp);
2699 if (code == PLACEHOLDER_EXPR)
2700 return 1;
2701
2702 switch (TREE_CODE_CLASS (code))
2703 {
2704 case tcc_reference:
2705 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2706 position computations since they will be converted into a
2707 WITH_RECORD_EXPR involving the reference, which will assume
2708 here will be valid. */
2709 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2710
2711 case tcc_exceptional:
2712 if (code == TREE_LIST)
2713 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2714 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2715 break;
2716
2717 case tcc_unary:
2718 case tcc_binary:
2719 case tcc_comparison:
2720 case tcc_expression:
2721 switch (code)
2722 {
2723 case COMPOUND_EXPR:
2724 /* Ignoring the first operand isn't quite right, but works best. */
2725 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2726
2727 case COND_EXPR:
2728 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2729 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2730 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2731
2732 case SAVE_EXPR:
2733 /* The save_expr function never wraps anything containing
2734 a PLACEHOLDER_EXPR. */
2735 return 0;
2736
2737 default:
2738 break;
2739 }
2740
2741 switch (TREE_CODE_LENGTH (code))
2742 {
2743 case 1:
2744 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2745 case 2:
2746 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2747 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2748 default:
2749 return 0;
2750 }
2751
2752 case tcc_vl_exp:
2753 switch (code)
2754 {
2755 case CALL_EXPR:
2756 {
2757 const_tree arg;
2758 const_call_expr_arg_iterator iter;
2759 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2760 if (CONTAINS_PLACEHOLDER_P (arg))
2761 return 1;
2762 return 0;
2763 }
2764 default:
2765 return 0;
2766 }
2767
2768 default:
2769 return 0;
2770 }
2771 return 0;
2772 }
2773
2774 /* Return true if any part of the computation of TYPE involves a
2775 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2776 (for QUAL_UNION_TYPE) and field positions. */
2777
2778 static bool
2779 type_contains_placeholder_1 (const_tree type)
2780 {
2781 /* If the size contains a placeholder or the parent type (component type in
2782 the case of arrays) type involves a placeholder, this type does. */
2783 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2784 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2785 || (TREE_TYPE (type) != 0
2786 && type_contains_placeholder_p (TREE_TYPE (type))))
2787 return true;
2788
2789 /* Now do type-specific checks. Note that the last part of the check above
2790 greatly limits what we have to do below. */
2791 switch (TREE_CODE (type))
2792 {
2793 case VOID_TYPE:
2794 case COMPLEX_TYPE:
2795 case ENUMERAL_TYPE:
2796 case BOOLEAN_TYPE:
2797 case POINTER_TYPE:
2798 case OFFSET_TYPE:
2799 case REFERENCE_TYPE:
2800 case METHOD_TYPE:
2801 case FUNCTION_TYPE:
2802 case VECTOR_TYPE:
2803 return false;
2804
2805 case INTEGER_TYPE:
2806 case REAL_TYPE:
2807 case FIXED_POINT_TYPE:
2808 /* Here we just check the bounds. */
2809 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2810 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2811
2812 case ARRAY_TYPE:
2813 /* We're already checked the component type (TREE_TYPE), so just check
2814 the index type. */
2815 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2816
2817 case RECORD_TYPE:
2818 case UNION_TYPE:
2819 case QUAL_UNION_TYPE:
2820 {
2821 tree field;
2822
2823 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2824 if (TREE_CODE (field) == FIELD_DECL
2825 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2826 || (TREE_CODE (type) == QUAL_UNION_TYPE
2827 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2828 || type_contains_placeholder_p (TREE_TYPE (field))))
2829 return true;
2830
2831 return false;
2832 }
2833
2834 default:
2835 gcc_unreachable ();
2836 }
2837 }
2838
2839 bool
2840 type_contains_placeholder_p (tree type)
2841 {
2842 bool result;
2843
2844 /* If the contains_placeholder_bits field has been initialized,
2845 then we know the answer. */
2846 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2847 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2848
2849 /* Indicate that we've seen this type node, and the answer is false.
2850 This is what we want to return if we run into recursion via fields. */
2851 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2852
2853 /* Compute the real value. */
2854 result = type_contains_placeholder_1 (type);
2855
2856 /* Store the real value. */
2857 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2858
2859 return result;
2860 }
2861 \f
2862 /* Push tree EXP onto vector QUEUE if it is not already present. */
2863
2864 static void
2865 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2866 {
2867 unsigned int i;
2868 tree iter;
2869
2870 for (i = 0; VEC_iterate (tree, *queue, i, iter); i++)
2871 if (simple_cst_equal (iter, exp) == 1)
2872 break;
2873
2874 if (!iter)
2875 VEC_safe_push (tree, heap, *queue, exp);
2876 }
2877
2878 /* Given a tree EXP, find all occurences of references to fields
2879 in a PLACEHOLDER_EXPR and place them in vector REFS without
2880 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
2881 we assume here that EXP contains only arithmetic expressions
2882 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
2883 argument list. */
2884
2885 void
2886 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
2887 {
2888 enum tree_code code = TREE_CODE (exp);
2889 tree inner;
2890 int i;
2891
2892 /* We handle TREE_LIST and COMPONENT_REF separately. */
2893 if (code == TREE_LIST)
2894 {
2895 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
2896 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
2897 }
2898 else if (code == COMPONENT_REF)
2899 {
2900 for (inner = TREE_OPERAND (exp, 0);
2901 REFERENCE_CLASS_P (inner);
2902 inner = TREE_OPERAND (inner, 0))
2903 ;
2904
2905 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
2906 push_without_duplicates (exp, refs);
2907 else
2908 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
2909 }
2910 else
2911 switch (TREE_CODE_CLASS (code))
2912 {
2913 case tcc_constant:
2914 break;
2915
2916 case tcc_declaration:
2917 /* Variables allocated to static storage can stay. */
2918 if (!TREE_STATIC (exp))
2919 push_without_duplicates (exp, refs);
2920 break;
2921
2922 case tcc_expression:
2923 /* This is the pattern built in ada/make_aligning_type. */
2924 if (code == ADDR_EXPR
2925 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
2926 {
2927 push_without_duplicates (exp, refs);
2928 break;
2929 }
2930
2931 /* Fall through... */
2932
2933 case tcc_exceptional:
2934 case tcc_unary:
2935 case tcc_binary:
2936 case tcc_comparison:
2937 case tcc_reference:
2938 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
2939 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2940 break;
2941
2942 case tcc_vl_exp:
2943 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
2944 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2945 break;
2946
2947 default:
2948 gcc_unreachable ();
2949 }
2950 }
2951
2952 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2953 return a tree with all occurrences of references to F in a
2954 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
2955 CONST_DECLs. Note that we assume here that EXP contains only
2956 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
2957 occurring only in their argument list. */
2958
2959 tree
2960 substitute_in_expr (tree exp, tree f, tree r)
2961 {
2962 enum tree_code code = TREE_CODE (exp);
2963 tree op0, op1, op2, op3;
2964 tree new_tree;
2965
2966 /* We handle TREE_LIST and COMPONENT_REF separately. */
2967 if (code == TREE_LIST)
2968 {
2969 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2970 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2971 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2972 return exp;
2973
2974 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2975 }
2976 else if (code == COMPONENT_REF)
2977 {
2978 tree inner;
2979
2980 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2981 and it is the right field, replace it with R. */
2982 for (inner = TREE_OPERAND (exp, 0);
2983 REFERENCE_CLASS_P (inner);
2984 inner = TREE_OPERAND (inner, 0))
2985 ;
2986
2987 /* The field. */
2988 op1 = TREE_OPERAND (exp, 1);
2989
2990 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
2991 return r;
2992
2993 /* If this expression hasn't been completed let, leave it alone. */
2994 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
2995 return exp;
2996
2997 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2998 if (op0 == TREE_OPERAND (exp, 0))
2999 return exp;
3000
3001 new_tree
3002 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3003 }
3004 else
3005 switch (TREE_CODE_CLASS (code))
3006 {
3007 case tcc_constant:
3008 return exp;
3009
3010 case tcc_declaration:
3011 if (exp == f)
3012 return r;
3013 else
3014 return exp;
3015
3016 case tcc_expression:
3017 if (exp == f)
3018 return r;
3019
3020 /* Fall through... */
3021
3022 case tcc_exceptional:
3023 case tcc_unary:
3024 case tcc_binary:
3025 case tcc_comparison:
3026 case tcc_reference:
3027 switch (TREE_CODE_LENGTH (code))
3028 {
3029 case 0:
3030 return exp;
3031
3032 case 1:
3033 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3034 if (op0 == TREE_OPERAND (exp, 0))
3035 return exp;
3036
3037 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3038 break;
3039
3040 case 2:
3041 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3042 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3043
3044 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3045 return exp;
3046
3047 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3048 break;
3049
3050 case 3:
3051 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3052 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3053 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3054
3055 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3056 && op2 == TREE_OPERAND (exp, 2))
3057 return exp;
3058
3059 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3060 break;
3061
3062 case 4:
3063 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3064 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3065 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3066 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3067
3068 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3069 && op2 == TREE_OPERAND (exp, 2)
3070 && op3 == TREE_OPERAND (exp, 3))
3071 return exp;
3072
3073 new_tree
3074 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3075 break;
3076
3077 default:
3078 gcc_unreachable ();
3079 }
3080 break;
3081
3082 case tcc_vl_exp:
3083 {
3084 int i;
3085
3086 new_tree = NULL_TREE;
3087
3088 /* If we are trying to replace F with a constant, inline back
3089 functions which do nothing else than computing a value from
3090 the arguments they are passed. This makes it possible to
3091 fold partially or entirely the replacement expression. */
3092 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3093 {
3094 tree t = maybe_inline_call_in_expr (exp);
3095 if (t)
3096 return SUBSTITUTE_IN_EXPR (t, f, r);
3097 }
3098
3099 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3100 {
3101 tree op = TREE_OPERAND (exp, i);
3102 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3103 if (new_op != op)
3104 {
3105 if (!new_tree)
3106 new_tree = copy_node (exp);
3107 TREE_OPERAND (new_tree, i) = new_op;
3108 }
3109 }
3110
3111 if (new_tree)
3112 {
3113 new_tree = fold (new_tree);
3114 if (TREE_CODE (new_tree) == CALL_EXPR)
3115 process_call_operands (new_tree);
3116 }
3117 else
3118 return exp;
3119 }
3120 break;
3121
3122 default:
3123 gcc_unreachable ();
3124 }
3125
3126 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3127 return new_tree;
3128 }
3129
3130 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3131 for it within OBJ, a tree that is an object or a chain of references. */
3132
3133 tree
3134 substitute_placeholder_in_expr (tree exp, tree obj)
3135 {
3136 enum tree_code code = TREE_CODE (exp);
3137 tree op0, op1, op2, op3;
3138 tree new_tree;
3139
3140 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3141 in the chain of OBJ. */
3142 if (code == PLACEHOLDER_EXPR)
3143 {
3144 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3145 tree elt;
3146
3147 for (elt = obj; elt != 0;
3148 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3149 || TREE_CODE (elt) == COND_EXPR)
3150 ? TREE_OPERAND (elt, 1)
3151 : (REFERENCE_CLASS_P (elt)
3152 || UNARY_CLASS_P (elt)
3153 || BINARY_CLASS_P (elt)
3154 || VL_EXP_CLASS_P (elt)
3155 || EXPRESSION_CLASS_P (elt))
3156 ? TREE_OPERAND (elt, 0) : 0))
3157 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3158 return elt;
3159
3160 for (elt = obj; elt != 0;
3161 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3162 || TREE_CODE (elt) == COND_EXPR)
3163 ? TREE_OPERAND (elt, 1)
3164 : (REFERENCE_CLASS_P (elt)
3165 || UNARY_CLASS_P (elt)
3166 || BINARY_CLASS_P (elt)
3167 || VL_EXP_CLASS_P (elt)
3168 || EXPRESSION_CLASS_P (elt))
3169 ? TREE_OPERAND (elt, 0) : 0))
3170 if (POINTER_TYPE_P (TREE_TYPE (elt))
3171 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3172 == need_type))
3173 return fold_build1 (INDIRECT_REF, need_type, elt);
3174
3175 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3176 survives until RTL generation, there will be an error. */
3177 return exp;
3178 }
3179
3180 /* TREE_LIST is special because we need to look at TREE_VALUE
3181 and TREE_CHAIN, not TREE_OPERANDS. */
3182 else if (code == TREE_LIST)
3183 {
3184 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3185 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3186 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3187 return exp;
3188
3189 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3190 }
3191 else
3192 switch (TREE_CODE_CLASS (code))
3193 {
3194 case tcc_constant:
3195 case tcc_declaration:
3196 return exp;
3197
3198 case tcc_exceptional:
3199 case tcc_unary:
3200 case tcc_binary:
3201 case tcc_comparison:
3202 case tcc_expression:
3203 case tcc_reference:
3204 case tcc_statement:
3205 switch (TREE_CODE_LENGTH (code))
3206 {
3207 case 0:
3208 return exp;
3209
3210 case 1:
3211 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3212 if (op0 == TREE_OPERAND (exp, 0))
3213 return exp;
3214
3215 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3216 break;
3217
3218 case 2:
3219 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3220 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3221
3222 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3223 return exp;
3224
3225 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3226 break;
3227
3228 case 3:
3229 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3230 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3231 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3232
3233 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3234 && op2 == TREE_OPERAND (exp, 2))
3235 return exp;
3236
3237 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3238 break;
3239
3240 case 4:
3241 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3242 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3243 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3244 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3245
3246 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3247 && op2 == TREE_OPERAND (exp, 2)
3248 && op3 == TREE_OPERAND (exp, 3))
3249 return exp;
3250
3251 new_tree
3252 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3253 break;
3254
3255 default:
3256 gcc_unreachable ();
3257 }
3258 break;
3259
3260 case tcc_vl_exp:
3261 {
3262 int i;
3263
3264 new_tree = NULL_TREE;
3265
3266 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3267 {
3268 tree op = TREE_OPERAND (exp, i);
3269 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3270 if (new_op != op)
3271 {
3272 if (!new_tree)
3273 new_tree = copy_node (exp);
3274 TREE_OPERAND (new_tree, i) = new_op;
3275 }
3276 }
3277
3278 if (new_tree)
3279 {
3280 new_tree = fold (new_tree);
3281 if (TREE_CODE (new_tree) == CALL_EXPR)
3282 process_call_operands (new_tree);
3283 }
3284 else
3285 return exp;
3286 }
3287 break;
3288
3289 default:
3290 gcc_unreachable ();
3291 }
3292
3293 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3294 return new_tree;
3295 }
3296 \f
3297 /* Stabilize a reference so that we can use it any number of times
3298 without causing its operands to be evaluated more than once.
3299 Returns the stabilized reference. This works by means of save_expr,
3300 so see the caveats in the comments about save_expr.
3301
3302 Also allows conversion expressions whose operands are references.
3303 Any other kind of expression is returned unchanged. */
3304
3305 tree
3306 stabilize_reference (tree ref)
3307 {
3308 tree result;
3309 enum tree_code code = TREE_CODE (ref);
3310
3311 switch (code)
3312 {
3313 case VAR_DECL:
3314 case PARM_DECL:
3315 case RESULT_DECL:
3316 /* No action is needed in this case. */
3317 return ref;
3318
3319 CASE_CONVERT:
3320 case FLOAT_EXPR:
3321 case FIX_TRUNC_EXPR:
3322 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3323 break;
3324
3325 case INDIRECT_REF:
3326 result = build_nt (INDIRECT_REF,
3327 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3328 break;
3329
3330 case COMPONENT_REF:
3331 result = build_nt (COMPONENT_REF,
3332 stabilize_reference (TREE_OPERAND (ref, 0)),
3333 TREE_OPERAND (ref, 1), NULL_TREE);
3334 break;
3335
3336 case BIT_FIELD_REF:
3337 result = build_nt (BIT_FIELD_REF,
3338 stabilize_reference (TREE_OPERAND (ref, 0)),
3339 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3340 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3341 break;
3342
3343 case ARRAY_REF:
3344 result = build_nt (ARRAY_REF,
3345 stabilize_reference (TREE_OPERAND (ref, 0)),
3346 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3347 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3348 break;
3349
3350 case ARRAY_RANGE_REF:
3351 result = build_nt (ARRAY_RANGE_REF,
3352 stabilize_reference (TREE_OPERAND (ref, 0)),
3353 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3354 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3355 break;
3356
3357 case COMPOUND_EXPR:
3358 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3359 it wouldn't be ignored. This matters when dealing with
3360 volatiles. */
3361 return stabilize_reference_1 (ref);
3362
3363 /* If arg isn't a kind of lvalue we recognize, make no change.
3364 Caller should recognize the error for an invalid lvalue. */
3365 default:
3366 return ref;
3367
3368 case ERROR_MARK:
3369 return error_mark_node;
3370 }
3371
3372 TREE_TYPE (result) = TREE_TYPE (ref);
3373 TREE_READONLY (result) = TREE_READONLY (ref);
3374 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3375 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3376
3377 return result;
3378 }
3379
3380 /* Subroutine of stabilize_reference; this is called for subtrees of
3381 references. Any expression with side-effects must be put in a SAVE_EXPR
3382 to ensure that it is only evaluated once.
3383
3384 We don't put SAVE_EXPR nodes around everything, because assigning very
3385 simple expressions to temporaries causes us to miss good opportunities
3386 for optimizations. Among other things, the opportunity to fold in the
3387 addition of a constant into an addressing mode often gets lost, e.g.
3388 "y[i+1] += x;". In general, we take the approach that we should not make
3389 an assignment unless we are forced into it - i.e., that any non-side effect
3390 operator should be allowed, and that cse should take care of coalescing
3391 multiple utterances of the same expression should that prove fruitful. */
3392
3393 tree
3394 stabilize_reference_1 (tree e)
3395 {
3396 tree result;
3397 enum tree_code code = TREE_CODE (e);
3398
3399 /* We cannot ignore const expressions because it might be a reference
3400 to a const array but whose index contains side-effects. But we can
3401 ignore things that are actual constant or that already have been
3402 handled by this function. */
3403
3404 if (tree_invariant_p (e))
3405 return e;
3406
3407 switch (TREE_CODE_CLASS (code))
3408 {
3409 case tcc_exceptional:
3410 case tcc_type:
3411 case tcc_declaration:
3412 case tcc_comparison:
3413 case tcc_statement:
3414 case tcc_expression:
3415 case tcc_reference:
3416 case tcc_vl_exp:
3417 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3418 so that it will only be evaluated once. */
3419 /* The reference (r) and comparison (<) classes could be handled as
3420 below, but it is generally faster to only evaluate them once. */
3421 if (TREE_SIDE_EFFECTS (e))
3422 return save_expr (e);
3423 return e;
3424
3425 case tcc_constant:
3426 /* Constants need no processing. In fact, we should never reach
3427 here. */
3428 return e;
3429
3430 case tcc_binary:
3431 /* Division is slow and tends to be compiled with jumps,
3432 especially the division by powers of 2 that is often
3433 found inside of an array reference. So do it just once. */
3434 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3435 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3436 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3437 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3438 return save_expr (e);
3439 /* Recursively stabilize each operand. */
3440 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3441 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3442 break;
3443
3444 case tcc_unary:
3445 /* Recursively stabilize each operand. */
3446 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3447 break;
3448
3449 default:
3450 gcc_unreachable ();
3451 }
3452
3453 TREE_TYPE (result) = TREE_TYPE (e);
3454 TREE_READONLY (result) = TREE_READONLY (e);
3455 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3456 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3457
3458 return result;
3459 }
3460 \f
3461 /* Low-level constructors for expressions. */
3462
3463 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3464 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3465
3466 void
3467 recompute_tree_invariant_for_addr_expr (tree t)
3468 {
3469 tree node;
3470 bool tc = true, se = false;
3471
3472 /* We started out assuming this address is both invariant and constant, but
3473 does not have side effects. Now go down any handled components and see if
3474 any of them involve offsets that are either non-constant or non-invariant.
3475 Also check for side-effects.
3476
3477 ??? Note that this code makes no attempt to deal with the case where
3478 taking the address of something causes a copy due to misalignment. */
3479
3480 #define UPDATE_FLAGS(NODE) \
3481 do { tree _node = (NODE); \
3482 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3483 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3484
3485 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3486 node = TREE_OPERAND (node, 0))
3487 {
3488 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3489 array reference (probably made temporarily by the G++ front end),
3490 so ignore all the operands. */
3491 if ((TREE_CODE (node) == ARRAY_REF
3492 || TREE_CODE (node) == ARRAY_RANGE_REF)
3493 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3494 {
3495 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3496 if (TREE_OPERAND (node, 2))
3497 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3498 if (TREE_OPERAND (node, 3))
3499 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3500 }
3501 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3502 FIELD_DECL, apparently. The G++ front end can put something else
3503 there, at least temporarily. */
3504 else if (TREE_CODE (node) == COMPONENT_REF
3505 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3506 {
3507 if (TREE_OPERAND (node, 2))
3508 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3509 }
3510 else if (TREE_CODE (node) == BIT_FIELD_REF)
3511 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3512 }
3513
3514 node = lang_hooks.expr_to_decl (node, &tc, &se);
3515
3516 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3517 the address, since &(*a)->b is a form of addition. If it's a constant, the
3518 address is constant too. If it's a decl, its address is constant if the
3519 decl is static. Everything else is not constant and, furthermore,
3520 taking the address of a volatile variable is not volatile. */
3521 if (TREE_CODE (node) == INDIRECT_REF)
3522 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3523 else if (CONSTANT_CLASS_P (node))
3524 ;
3525 else if (DECL_P (node))
3526 tc &= (staticp (node) != NULL_TREE);
3527 else
3528 {
3529 tc = false;
3530 se |= TREE_SIDE_EFFECTS (node);
3531 }
3532
3533
3534 TREE_CONSTANT (t) = tc;
3535 TREE_SIDE_EFFECTS (t) = se;
3536 #undef UPDATE_FLAGS
3537 }
3538
3539 /* Build an expression of code CODE, data type TYPE, and operands as
3540 specified. Expressions and reference nodes can be created this way.
3541 Constants, decls, types and misc nodes cannot be.
3542
3543 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3544 enough for all extant tree codes. */
3545
3546 tree
3547 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3548 {
3549 tree t;
3550
3551 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3552
3553 t = make_node_stat (code PASS_MEM_STAT);
3554 TREE_TYPE (t) = tt;
3555
3556 return t;
3557 }
3558
3559 tree
3560 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3561 {
3562 int length = sizeof (struct tree_exp);
3563 #ifdef GATHER_STATISTICS
3564 tree_node_kind kind;
3565 #endif
3566 tree t;
3567
3568 #ifdef GATHER_STATISTICS
3569 switch (TREE_CODE_CLASS (code))
3570 {
3571 case tcc_statement: /* an expression with side effects */
3572 kind = s_kind;
3573 break;
3574 case tcc_reference: /* a reference */
3575 kind = r_kind;
3576 break;
3577 default:
3578 kind = e_kind;
3579 break;
3580 }
3581
3582 tree_node_counts[(int) kind]++;
3583 tree_node_sizes[(int) kind] += length;
3584 #endif
3585
3586 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3587
3588 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
3589
3590 memset (t, 0, sizeof (struct tree_common));
3591
3592 TREE_SET_CODE (t, code);
3593
3594 TREE_TYPE (t) = type;
3595 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3596 TREE_OPERAND (t, 0) = node;
3597 TREE_BLOCK (t) = NULL_TREE;
3598 if (node && !TYPE_P (node))
3599 {
3600 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3601 TREE_READONLY (t) = TREE_READONLY (node);
3602 }
3603
3604 if (TREE_CODE_CLASS (code) == tcc_statement)
3605 TREE_SIDE_EFFECTS (t) = 1;
3606 else switch (code)
3607 {
3608 case VA_ARG_EXPR:
3609 /* All of these have side-effects, no matter what their
3610 operands are. */
3611 TREE_SIDE_EFFECTS (t) = 1;
3612 TREE_READONLY (t) = 0;
3613 break;
3614
3615 case MISALIGNED_INDIRECT_REF:
3616 case ALIGN_INDIRECT_REF:
3617 case INDIRECT_REF:
3618 /* Whether a dereference is readonly has nothing to do with whether
3619 its operand is readonly. */
3620 TREE_READONLY (t) = 0;
3621 break;
3622
3623 case ADDR_EXPR:
3624 if (node)
3625 recompute_tree_invariant_for_addr_expr (t);
3626 break;
3627
3628 default:
3629 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3630 && node && !TYPE_P (node)
3631 && TREE_CONSTANT (node))
3632 TREE_CONSTANT (t) = 1;
3633 if (TREE_CODE_CLASS (code) == tcc_reference
3634 && node && TREE_THIS_VOLATILE (node))
3635 TREE_THIS_VOLATILE (t) = 1;
3636 break;
3637 }
3638
3639 return t;
3640 }
3641
3642 #define PROCESS_ARG(N) \
3643 do { \
3644 TREE_OPERAND (t, N) = arg##N; \
3645 if (arg##N &&!TYPE_P (arg##N)) \
3646 { \
3647 if (TREE_SIDE_EFFECTS (arg##N)) \
3648 side_effects = 1; \
3649 if (!TREE_READONLY (arg##N) \
3650 && !CONSTANT_CLASS_P (arg##N)) \
3651 (void) (read_only = 0); \
3652 if (!TREE_CONSTANT (arg##N)) \
3653 (void) (constant = 0); \
3654 } \
3655 } while (0)
3656
3657 tree
3658 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3659 {
3660 bool constant, read_only, side_effects;
3661 tree t;
3662
3663 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3664
3665 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3666 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3667 /* When sizetype precision doesn't match that of pointers
3668 we need to be able to build explicit extensions or truncations
3669 of the offset argument. */
3670 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3671 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3672 && TREE_CODE (arg1) == INTEGER_CST);
3673
3674 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3675 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3676 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3677 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3678
3679 t = make_node_stat (code PASS_MEM_STAT);
3680 TREE_TYPE (t) = tt;
3681
3682 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3683 result based on those same flags for the arguments. But if the
3684 arguments aren't really even `tree' expressions, we shouldn't be trying
3685 to do this. */
3686
3687 /* Expressions without side effects may be constant if their
3688 arguments are as well. */
3689 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3690 || TREE_CODE_CLASS (code) == tcc_binary);
3691 read_only = 1;
3692 side_effects = TREE_SIDE_EFFECTS (t);
3693
3694 PROCESS_ARG(0);
3695 PROCESS_ARG(1);
3696
3697 TREE_READONLY (t) = read_only;
3698 TREE_CONSTANT (t) = constant;
3699 TREE_SIDE_EFFECTS (t) = side_effects;
3700 TREE_THIS_VOLATILE (t)
3701 = (TREE_CODE_CLASS (code) == tcc_reference
3702 && arg0 && TREE_THIS_VOLATILE (arg0));
3703
3704 return t;
3705 }
3706
3707
3708 tree
3709 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3710 tree arg2 MEM_STAT_DECL)
3711 {
3712 bool constant, read_only, side_effects;
3713 tree t;
3714
3715 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3716 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3717
3718 t = make_node_stat (code PASS_MEM_STAT);
3719 TREE_TYPE (t) = tt;
3720
3721 read_only = 1;
3722
3723 /* As a special exception, if COND_EXPR has NULL branches, we
3724 assume that it is a gimple statement and always consider
3725 it to have side effects. */
3726 if (code == COND_EXPR
3727 && tt == void_type_node
3728 && arg1 == NULL_TREE
3729 && arg2 == NULL_TREE)
3730 side_effects = true;
3731 else
3732 side_effects = TREE_SIDE_EFFECTS (t);
3733
3734 PROCESS_ARG(0);
3735 PROCESS_ARG(1);
3736 PROCESS_ARG(2);
3737
3738 if (code == COND_EXPR)
3739 TREE_READONLY (t) = read_only;
3740
3741 TREE_SIDE_EFFECTS (t) = side_effects;
3742 TREE_THIS_VOLATILE (t)
3743 = (TREE_CODE_CLASS (code) == tcc_reference
3744 && arg0 && TREE_THIS_VOLATILE (arg0));
3745
3746 return t;
3747 }
3748
3749 tree
3750 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3751 tree arg2, tree arg3 MEM_STAT_DECL)
3752 {
3753 bool constant, read_only, side_effects;
3754 tree t;
3755
3756 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3757
3758 t = make_node_stat (code PASS_MEM_STAT);
3759 TREE_TYPE (t) = tt;
3760
3761 side_effects = TREE_SIDE_EFFECTS (t);
3762
3763 PROCESS_ARG(0);
3764 PROCESS_ARG(1);
3765 PROCESS_ARG(2);
3766 PROCESS_ARG(3);
3767
3768 TREE_SIDE_EFFECTS (t) = side_effects;
3769 TREE_THIS_VOLATILE (t)
3770 = (TREE_CODE_CLASS (code) == tcc_reference
3771 && arg0 && TREE_THIS_VOLATILE (arg0));
3772
3773 return t;
3774 }
3775
3776 tree
3777 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3778 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3779 {
3780 bool constant, read_only, side_effects;
3781 tree t;
3782
3783 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3784
3785 t = make_node_stat (code PASS_MEM_STAT);
3786 TREE_TYPE (t) = tt;
3787
3788 side_effects = TREE_SIDE_EFFECTS (t);
3789
3790 PROCESS_ARG(0);
3791 PROCESS_ARG(1);
3792 PROCESS_ARG(2);
3793 PROCESS_ARG(3);
3794 PROCESS_ARG(4);
3795
3796 TREE_SIDE_EFFECTS (t) = side_effects;
3797 TREE_THIS_VOLATILE (t)
3798 = (TREE_CODE_CLASS (code) == tcc_reference
3799 && arg0 && TREE_THIS_VOLATILE (arg0));
3800
3801 return t;
3802 }
3803
3804 tree
3805 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3806 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3807 {
3808 bool constant, read_only, side_effects;
3809 tree t;
3810
3811 gcc_assert (code == TARGET_MEM_REF);
3812
3813 t = make_node_stat (code PASS_MEM_STAT);
3814 TREE_TYPE (t) = tt;
3815
3816 side_effects = TREE_SIDE_EFFECTS (t);
3817
3818 PROCESS_ARG(0);
3819 PROCESS_ARG(1);
3820 PROCESS_ARG(2);
3821 PROCESS_ARG(3);
3822 PROCESS_ARG(4);
3823 if (code == TARGET_MEM_REF)
3824 side_effects = 0;
3825 PROCESS_ARG(5);
3826
3827 TREE_SIDE_EFFECTS (t) = side_effects;
3828 TREE_THIS_VOLATILE (t)
3829 = (code == TARGET_MEM_REF
3830 && arg5 && TREE_THIS_VOLATILE (arg5));
3831
3832 return t;
3833 }
3834
3835 /* Similar except don't specify the TREE_TYPE
3836 and leave the TREE_SIDE_EFFECTS as 0.
3837 It is permissible for arguments to be null,
3838 or even garbage if their values do not matter. */
3839
3840 tree
3841 build_nt (enum tree_code code, ...)
3842 {
3843 tree t;
3844 int length;
3845 int i;
3846 va_list p;
3847
3848 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3849
3850 va_start (p, code);
3851
3852 t = make_node (code);
3853 length = TREE_CODE_LENGTH (code);
3854
3855 for (i = 0; i < length; i++)
3856 TREE_OPERAND (t, i) = va_arg (p, tree);
3857
3858 va_end (p);
3859 return t;
3860 }
3861
3862 /* Similar to build_nt, but for creating a CALL_EXPR object with a
3863 tree VEC. */
3864
3865 tree
3866 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
3867 {
3868 tree ret, t;
3869 unsigned int ix;
3870
3871 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
3872 CALL_EXPR_FN (ret) = fn;
3873 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
3874 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
3875 CALL_EXPR_ARG (ret, ix) = t;
3876 return ret;
3877 }
3878 \f
3879 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3880 We do NOT enter this node in any sort of symbol table.
3881
3882 LOC is the location of the decl.
3883
3884 layout_decl is used to set up the decl's storage layout.
3885 Other slots are initialized to 0 or null pointers. */
3886
3887 tree
3888 build_decl_stat (location_t loc, enum tree_code code, tree name,
3889 tree type MEM_STAT_DECL)
3890 {
3891 tree t;
3892
3893 t = make_node_stat (code PASS_MEM_STAT);
3894 DECL_SOURCE_LOCATION (t) = loc;
3895
3896 /* if (type == error_mark_node)
3897 type = integer_type_node; */
3898 /* That is not done, deliberately, so that having error_mark_node
3899 as the type can suppress useless errors in the use of this variable. */
3900
3901 DECL_NAME (t) = name;
3902 TREE_TYPE (t) = type;
3903
3904 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3905 layout_decl (t, 0);
3906
3907 return t;
3908 }
3909
3910 /* Builds and returns function declaration with NAME and TYPE. */
3911
3912 tree
3913 build_fn_decl (const char *name, tree type)
3914 {
3915 tree id = get_identifier (name);
3916 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
3917
3918 DECL_EXTERNAL (decl) = 1;
3919 TREE_PUBLIC (decl) = 1;
3920 DECL_ARTIFICIAL (decl) = 1;
3921 TREE_NOTHROW (decl) = 1;
3922
3923 return decl;
3924 }
3925
3926 \f
3927 /* BLOCK nodes are used to represent the structure of binding contours
3928 and declarations, once those contours have been exited and their contents
3929 compiled. This information is used for outputting debugging info. */
3930
3931 tree
3932 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3933 {
3934 tree block = make_node (BLOCK);
3935
3936 BLOCK_VARS (block) = vars;
3937 BLOCK_SUBBLOCKS (block) = subblocks;
3938 BLOCK_SUPERCONTEXT (block) = supercontext;
3939 BLOCK_CHAIN (block) = chain;
3940 return block;
3941 }
3942
3943 \f
3944 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
3945
3946 LOC is the location to use in tree T. */
3947
3948 void
3949 protected_set_expr_location (tree t, location_t loc)
3950 {
3951 if (t && CAN_HAVE_LOCATION_P (t))
3952 SET_EXPR_LOCATION (t, loc);
3953 }
3954 \f
3955 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3956 is ATTRIBUTE. */
3957
3958 tree
3959 build_decl_attribute_variant (tree ddecl, tree attribute)
3960 {
3961 DECL_ATTRIBUTES (ddecl) = attribute;
3962 return ddecl;
3963 }
3964
3965 /* Borrowed from hashtab.c iterative_hash implementation. */
3966 #define mix(a,b,c) \
3967 { \
3968 a -= b; a -= c; a ^= (c>>13); \
3969 b -= c; b -= a; b ^= (a<< 8); \
3970 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3971 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3972 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3973 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3974 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3975 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3976 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3977 }
3978
3979
3980 /* Produce good hash value combining VAL and VAL2. */
3981 hashval_t
3982 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3983 {
3984 /* the golden ratio; an arbitrary value. */
3985 hashval_t a = 0x9e3779b9;
3986
3987 mix (a, val, val2);
3988 return val2;
3989 }
3990
3991 /* Produce good hash value combining VAL and VAL2. */
3992 hashval_t
3993 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3994 {
3995 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3996 return iterative_hash_hashval_t (val, val2);
3997 else
3998 {
3999 hashval_t a = (hashval_t) val;
4000 /* Avoid warnings about shifting of more than the width of the type on
4001 hosts that won't execute this path. */
4002 int zero = 0;
4003 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4004 mix (a, b, val2);
4005 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4006 {
4007 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4008 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4009 mix (a, b, val2);
4010 }
4011 return val2;
4012 }
4013 }
4014
4015 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4016 is ATTRIBUTE and its qualifiers are QUALS.
4017
4018 Record such modified types already made so we don't make duplicates. */
4019
4020 tree
4021 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4022 {
4023 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4024 {
4025 hashval_t hashcode = 0;
4026 tree ntype;
4027 enum tree_code code = TREE_CODE (ttype);
4028
4029 /* Building a distinct copy of a tagged type is inappropriate; it
4030 causes breakage in code that expects there to be a one-to-one
4031 relationship between a struct and its fields.
4032 build_duplicate_type is another solution (as used in
4033 handle_transparent_union_attribute), but that doesn't play well
4034 with the stronger C++ type identity model. */
4035 if (TREE_CODE (ttype) == RECORD_TYPE
4036 || TREE_CODE (ttype) == UNION_TYPE
4037 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4038 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4039 {
4040 warning (OPT_Wattributes,
4041 "ignoring attributes applied to %qT after definition",
4042 TYPE_MAIN_VARIANT (ttype));
4043 return build_qualified_type (ttype, quals);
4044 }
4045
4046 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4047 ntype = build_distinct_type_copy (ttype);
4048
4049 TYPE_ATTRIBUTES (ntype) = attribute;
4050
4051 hashcode = iterative_hash_object (code, hashcode);
4052 if (TREE_TYPE (ntype))
4053 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4054 hashcode);
4055 hashcode = attribute_hash_list (attribute, hashcode);
4056
4057 switch (TREE_CODE (ntype))
4058 {
4059 case FUNCTION_TYPE:
4060 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4061 break;
4062 case ARRAY_TYPE:
4063 if (TYPE_DOMAIN (ntype))
4064 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4065 hashcode);
4066 break;
4067 case INTEGER_TYPE:
4068 hashcode = iterative_hash_object
4069 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4070 hashcode = iterative_hash_object
4071 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4072 break;
4073 case REAL_TYPE:
4074 case FIXED_POINT_TYPE:
4075 {
4076 unsigned int precision = TYPE_PRECISION (ntype);
4077 hashcode = iterative_hash_object (precision, hashcode);
4078 }
4079 break;
4080 default:
4081 break;
4082 }
4083
4084 ntype = type_hash_canon (hashcode, ntype);
4085
4086 /* If the target-dependent attributes make NTYPE different from
4087 its canonical type, we will need to use structural equality
4088 checks for this type. */
4089 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4090 || !targetm.comp_type_attributes (ntype, ttype))
4091 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4092 else if (TYPE_CANONICAL (ntype) == ntype)
4093 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4094
4095 ttype = build_qualified_type (ntype, quals);
4096 }
4097 else if (TYPE_QUALS (ttype) != quals)
4098 ttype = build_qualified_type (ttype, quals);
4099
4100 return ttype;
4101 }
4102
4103
4104 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4105 is ATTRIBUTE.
4106
4107 Record such modified types already made so we don't make duplicates. */
4108
4109 tree
4110 build_type_attribute_variant (tree ttype, tree attribute)
4111 {
4112 return build_type_attribute_qual_variant (ttype, attribute,
4113 TYPE_QUALS (ttype));
4114 }
4115
4116
4117 /* Reset the expression *EXPR_P, a size or position.
4118
4119 ??? We could reset all non-constant sizes or positions. But it's cheap
4120 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4121
4122 We need to reset self-referential sizes or positions because they cannot
4123 be gimplified and thus can contain a CALL_EXPR after the gimplification
4124 is finished, which will run afoul of LTO streaming. And they need to be
4125 reset to something essentially dummy but not constant, so as to preserve
4126 the properties of the object they are attached to. */
4127
4128 static inline void
4129 free_lang_data_in_one_sizepos (tree *expr_p)
4130 {
4131 tree expr = *expr_p;
4132 if (CONTAINS_PLACEHOLDER_P (expr))
4133 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4134 }
4135
4136
4137 /* Reset all the fields in a binfo node BINFO. We only keep
4138 BINFO_VIRTUALS, which is used by gimple_fold_obj_type_ref. */
4139
4140 static void
4141 free_lang_data_in_binfo (tree binfo)
4142 {
4143 unsigned i;
4144 tree t;
4145
4146 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4147
4148 BINFO_VTABLE (binfo) = NULL_TREE;
4149 BINFO_BASE_ACCESSES (binfo) = NULL;
4150 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4151 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4152
4153 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (binfo), i, t); i++)
4154 free_lang_data_in_binfo (t);
4155 }
4156
4157
4158 /* Reset all language specific information still present in TYPE. */
4159
4160 static void
4161 free_lang_data_in_type (tree type)
4162 {
4163 gcc_assert (TYPE_P (type));
4164
4165 /* Give the FE a chance to remove its own data first. */
4166 lang_hooks.free_lang_data (type);
4167
4168 TREE_LANG_FLAG_0 (type) = 0;
4169 TREE_LANG_FLAG_1 (type) = 0;
4170 TREE_LANG_FLAG_2 (type) = 0;
4171 TREE_LANG_FLAG_3 (type) = 0;
4172 TREE_LANG_FLAG_4 (type) = 0;
4173 TREE_LANG_FLAG_5 (type) = 0;
4174 TREE_LANG_FLAG_6 (type) = 0;
4175
4176 if (TREE_CODE (type) == FUNCTION_TYPE)
4177 {
4178 /* Remove the const and volatile qualifiers from arguments. The
4179 C++ front end removes them, but the C front end does not,
4180 leading to false ODR violation errors when merging two
4181 instances of the same function signature compiled by
4182 different front ends. */
4183 tree p;
4184
4185 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4186 {
4187 tree arg_type = TREE_VALUE (p);
4188
4189 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4190 {
4191 int quals = TYPE_QUALS (arg_type)
4192 & ~TYPE_QUAL_CONST
4193 & ~TYPE_QUAL_VOLATILE;
4194 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4195 free_lang_data_in_type (TREE_VALUE (p));
4196 }
4197 }
4198 }
4199
4200 /* Remove members that are not actually FIELD_DECLs from the field
4201 list of an aggregate. These occur in C++. */
4202 if (RECORD_OR_UNION_TYPE_P (type))
4203 {
4204 tree prev, member;
4205
4206 /* Note that TYPE_FIELDS can be shared across distinct
4207 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4208 to be removed, we cannot set its TREE_CHAIN to NULL.
4209 Otherwise, we would not be able to find all the other fields
4210 in the other instances of this TREE_TYPE.
4211
4212 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4213 prev = NULL_TREE;
4214 member = TYPE_FIELDS (type);
4215 while (member)
4216 {
4217 if (TREE_CODE (member) == FIELD_DECL)
4218 {
4219 if (prev)
4220 TREE_CHAIN (prev) = member;
4221 else
4222 TYPE_FIELDS (type) = member;
4223 prev = member;
4224 }
4225
4226 member = TREE_CHAIN (member);
4227 }
4228
4229 if (prev)
4230 TREE_CHAIN (prev) = NULL_TREE;
4231 else
4232 TYPE_FIELDS (type) = NULL_TREE;
4233
4234 TYPE_METHODS (type) = NULL_TREE;
4235 if (TYPE_BINFO (type))
4236 free_lang_data_in_binfo (TYPE_BINFO (type));
4237 }
4238 else
4239 {
4240 /* For non-aggregate types, clear out the language slot (which
4241 overloads TYPE_BINFO). */
4242 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4243
4244 if (INTEGRAL_TYPE_P (type)
4245 || SCALAR_FLOAT_TYPE_P (type)
4246 || FIXED_POINT_TYPE_P (type))
4247 {
4248 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4249 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4250 }
4251 }
4252
4253 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4254 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4255
4256 if (debug_info_level < DINFO_LEVEL_TERSE
4257 || (TYPE_CONTEXT (type)
4258 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_DECL
4259 && TREE_CODE (TYPE_CONTEXT (type)) != NAMESPACE_DECL))
4260 TYPE_CONTEXT (type) = NULL_TREE;
4261
4262 if (debug_info_level < DINFO_LEVEL_TERSE)
4263 TYPE_STUB_DECL (type) = NULL_TREE;
4264 }
4265
4266
4267 /* Return true if DECL may need an assembler name to be set. */
4268
4269 static inline bool
4270 need_assembler_name_p (tree decl)
4271 {
4272 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4273 if (TREE_CODE (decl) != FUNCTION_DECL
4274 && TREE_CODE (decl) != VAR_DECL)
4275 return false;
4276
4277 /* If DECL already has its assembler name set, it does not need a
4278 new one. */
4279 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4280 || DECL_ASSEMBLER_NAME_SET_P (decl))
4281 return false;
4282
4283 /* Abstract decls do not need an assembler name. */
4284 if (DECL_ABSTRACT (decl))
4285 return false;
4286
4287 /* For VAR_DECLs, only static, public and external symbols need an
4288 assembler name. */
4289 if (TREE_CODE (decl) == VAR_DECL
4290 && !TREE_STATIC (decl)
4291 && !TREE_PUBLIC (decl)
4292 && !DECL_EXTERNAL (decl))
4293 return false;
4294
4295 if (TREE_CODE (decl) == FUNCTION_DECL)
4296 {
4297 /* Do not set assembler name on builtins. Allow RTL expansion to
4298 decide whether to expand inline or via a regular call. */
4299 if (DECL_BUILT_IN (decl)
4300 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4301 return false;
4302
4303 /* Functions represented in the callgraph need an assembler name. */
4304 if (cgraph_get_node (decl) != NULL)
4305 return true;
4306
4307 /* Unused and not public functions don't need an assembler name. */
4308 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4309 return false;
4310 }
4311
4312 return true;
4313 }
4314
4315
4316 /* Remove all the non-variable decls from BLOCK. LOCALS is the set of
4317 variables in DECL_STRUCT_FUNCTION (FN)->local_decls. Every decl
4318 in BLOCK that is not in LOCALS is removed. */
4319
4320 static void
4321 free_lang_data_in_block (tree fn, tree block, struct pointer_set_t *locals)
4322 {
4323 tree *tp, t;
4324
4325 tp = &BLOCK_VARS (block);
4326 while (*tp)
4327 {
4328 if (!pointer_set_contains (locals, *tp))
4329 *tp = TREE_CHAIN (*tp);
4330 else
4331 tp = &TREE_CHAIN (*tp);
4332 }
4333
4334 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4335 free_lang_data_in_block (fn, t, locals);
4336 }
4337
4338
4339 /* Reset all language specific information still present in symbol
4340 DECL. */
4341
4342 static void
4343 free_lang_data_in_decl (tree decl)
4344 {
4345 gcc_assert (DECL_P (decl));
4346
4347 /* Give the FE a chance to remove its own data first. */
4348 lang_hooks.free_lang_data (decl);
4349
4350 TREE_LANG_FLAG_0 (decl) = 0;
4351 TREE_LANG_FLAG_1 (decl) = 0;
4352 TREE_LANG_FLAG_2 (decl) = 0;
4353 TREE_LANG_FLAG_3 (decl) = 0;
4354 TREE_LANG_FLAG_4 (decl) = 0;
4355 TREE_LANG_FLAG_5 (decl) = 0;
4356 TREE_LANG_FLAG_6 (decl) = 0;
4357
4358 /* Identifiers need not have a type. */
4359 if (DECL_NAME (decl))
4360 TREE_TYPE (DECL_NAME (decl)) = NULL_TREE;
4361
4362 /* Ignore any intervening types, because we are going to clear their
4363 TYPE_CONTEXT fields. */
4364 if (TREE_CODE (decl) != FIELD_DECL
4365 && TREE_CODE (decl) != FUNCTION_DECL)
4366 DECL_CONTEXT (decl) = decl_function_context (decl);
4367
4368 if (DECL_CONTEXT (decl)
4369 && TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
4370 DECL_CONTEXT (decl) = NULL_TREE;
4371
4372 if (TREE_CODE (decl) == VAR_DECL)
4373 {
4374 tree context = DECL_CONTEXT (decl);
4375
4376 if (context)
4377 {
4378 enum tree_code code = TREE_CODE (context);
4379 if (code == FUNCTION_DECL && DECL_ABSTRACT (context))
4380 {
4381 /* Do not clear the decl context here, that will promote
4382 all vars to global ones. */
4383 DECL_INITIAL (decl) = NULL_TREE;
4384 }
4385
4386 if (TREE_STATIC (decl))
4387 DECL_CONTEXT (decl) = NULL_TREE;
4388 }
4389 }
4390
4391 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4392 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4393 if (TREE_CODE (decl) == FIELD_DECL)
4394 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4395
4396 /* DECL_FCONTEXT is only used for debug info generation. */
4397 if (TREE_CODE (decl) == FIELD_DECL
4398 && debug_info_level < DINFO_LEVEL_TERSE)
4399 DECL_FCONTEXT (decl) = NULL_TREE;
4400
4401 if (TREE_CODE (decl) == FUNCTION_DECL)
4402 {
4403 if (gimple_has_body_p (decl))
4404 {
4405 tree t;
4406 struct pointer_set_t *locals;
4407
4408 /* If DECL has a gimple body, then the context for its
4409 arguments must be DECL. Otherwise, it doesn't really
4410 matter, as we will not be emitting any code for DECL. In
4411 general, there may be other instances of DECL created by
4412 the front end and since PARM_DECLs are generally shared,
4413 their DECL_CONTEXT changes as the replicas of DECL are
4414 created. The only time where DECL_CONTEXT is important
4415 is for the FUNCTION_DECLs that have a gimple body (since
4416 the PARM_DECL will be used in the function's body). */
4417 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4418 DECL_CONTEXT (t) = decl;
4419
4420 /* Collect all the symbols declared in DECL. */
4421 locals = pointer_set_create ();
4422 t = DECL_STRUCT_FUNCTION (decl)->local_decls;
4423 for (; t; t = TREE_CHAIN (t))
4424 {
4425 pointer_set_insert (locals, TREE_VALUE (t));
4426
4427 /* All the local symbols should have DECL as their
4428 context. */
4429 DECL_CONTEXT (TREE_VALUE (t)) = decl;
4430 }
4431
4432 /* Get rid of any decl not in local_decls. */
4433 free_lang_data_in_block (decl, DECL_INITIAL (decl), locals);
4434
4435 pointer_set_destroy (locals);
4436 }
4437
4438 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4439 At this point, it is not needed anymore. */
4440 DECL_SAVED_TREE (decl) = NULL_TREE;
4441 }
4442 else if (TREE_CODE (decl) == VAR_DECL)
4443 {
4444 tree expr = DECL_DEBUG_EXPR (decl);
4445 if (expr
4446 && TREE_CODE (expr) == VAR_DECL
4447 && !TREE_STATIC (expr) && !DECL_EXTERNAL (expr))
4448 SET_DECL_DEBUG_EXPR (decl, NULL_TREE);
4449
4450 if (DECL_EXTERNAL (decl)
4451 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4452 DECL_INITIAL (decl) = NULL_TREE;
4453 }
4454 else if (TREE_CODE (decl) == TYPE_DECL)
4455 {
4456 DECL_INITIAL (decl) = NULL_TREE;
4457
4458 /* DECL_CONTEXT is overloaded as DECL_FIELD_CONTEXT for
4459 FIELD_DECLs, which should be preserved. Otherwise,
4460 we shouldn't be concerned with source-level lexical
4461 nesting beyond this point. */
4462 DECL_CONTEXT (decl) = NULL_TREE;
4463 }
4464 }
4465
4466
4467 /* Data used when collecting DECLs and TYPEs for language data removal. */
4468
4469 struct free_lang_data_d
4470 {
4471 /* Worklist to avoid excessive recursion. */
4472 VEC(tree,heap) *worklist;
4473
4474 /* Set of traversed objects. Used to avoid duplicate visits. */
4475 struct pointer_set_t *pset;
4476
4477 /* Array of symbols to process with free_lang_data_in_decl. */
4478 VEC(tree,heap) *decls;
4479
4480 /* Array of types to process with free_lang_data_in_type. */
4481 VEC(tree,heap) *types;
4482 };
4483
4484
4485 /* Save all language fields needed to generate proper debug information
4486 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4487
4488 static void
4489 save_debug_info_for_decl (tree t)
4490 {
4491 /*struct saved_debug_info_d *sdi;*/
4492
4493 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4494
4495 /* FIXME. Partial implementation for saving debug info removed. */
4496 }
4497
4498
4499 /* Save all language fields needed to generate proper debug information
4500 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4501
4502 static void
4503 save_debug_info_for_type (tree t)
4504 {
4505 /*struct saved_debug_info_d *sdi;*/
4506
4507 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4508
4509 /* FIXME. Partial implementation for saving debug info removed. */
4510 }
4511
4512
4513 /* Add type or decl T to one of the list of tree nodes that need their
4514 language data removed. The lists are held inside FLD. */
4515
4516 static void
4517 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4518 {
4519 if (DECL_P (t))
4520 {
4521 VEC_safe_push (tree, heap, fld->decls, t);
4522 if (debug_info_level > DINFO_LEVEL_TERSE)
4523 save_debug_info_for_decl (t);
4524 }
4525 else if (TYPE_P (t))
4526 {
4527 VEC_safe_push (tree, heap, fld->types, t);
4528 if (debug_info_level > DINFO_LEVEL_TERSE)
4529 save_debug_info_for_type (t);
4530 }
4531 else
4532 gcc_unreachable ();
4533 }
4534
4535 /* Push tree node T into FLD->WORKLIST. */
4536
4537 static inline void
4538 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4539 {
4540 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4541 VEC_safe_push (tree, heap, fld->worklist, (t));
4542 }
4543
4544
4545 /* Operand callback helper for free_lang_data_in_node. *TP is the
4546 subtree operand being considered. */
4547
4548 static tree
4549 find_decls_types_r (tree *tp, int *ws, void *data)
4550 {
4551 tree t = *tp;
4552 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4553
4554 if (TREE_CODE (t) == TREE_LIST)
4555 return NULL_TREE;
4556
4557 /* Language specific nodes will be removed, so there is no need
4558 to gather anything under them. */
4559 if (is_lang_specific (t))
4560 {
4561 *ws = 0;
4562 return NULL_TREE;
4563 }
4564
4565 if (DECL_P (t))
4566 {
4567 /* Note that walk_tree does not traverse every possible field in
4568 decls, so we have to do our own traversals here. */
4569 add_tree_to_fld_list (t, fld);
4570
4571 fld_worklist_push (DECL_NAME (t), fld);
4572 fld_worklist_push (DECL_CONTEXT (t), fld);
4573 fld_worklist_push (DECL_SIZE (t), fld);
4574 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4575
4576 /* We are going to remove everything under DECL_INITIAL for
4577 TYPE_DECLs. No point walking them. */
4578 if (TREE_CODE (t) != TYPE_DECL)
4579 fld_worklist_push (DECL_INITIAL (t), fld);
4580
4581 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4582 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4583
4584 if (TREE_CODE (t) == FUNCTION_DECL)
4585 {
4586 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4587 fld_worklist_push (DECL_RESULT (t), fld);
4588 }
4589 else if (TREE_CODE (t) == TYPE_DECL)
4590 {
4591 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4592 fld_worklist_push (DECL_VINDEX (t), fld);
4593 }
4594 else if (TREE_CODE (t) == FIELD_DECL)
4595 {
4596 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4597 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4598 fld_worklist_push (DECL_QUALIFIER (t), fld);
4599 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4600 fld_worklist_push (DECL_FCONTEXT (t), fld);
4601 }
4602 else if (TREE_CODE (t) == VAR_DECL)
4603 {
4604 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4605 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4606 }
4607
4608 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4609 && DECL_HAS_VALUE_EXPR_P (t))
4610 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4611
4612 if (TREE_CODE (t) != FIELD_DECL)
4613 fld_worklist_push (TREE_CHAIN (t), fld);
4614 *ws = 0;
4615 }
4616 else if (TYPE_P (t))
4617 {
4618 /* Note that walk_tree does not traverse every possible field in
4619 types, so we have to do our own traversals here. */
4620 add_tree_to_fld_list (t, fld);
4621
4622 if (!RECORD_OR_UNION_TYPE_P (t))
4623 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4624 fld_worklist_push (TYPE_SIZE (t), fld);
4625 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4626 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4627 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4628 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4629 fld_worklist_push (TYPE_NAME (t), fld);
4630 fld_worklist_push (TYPE_MINVAL (t), fld);
4631 if (!RECORD_OR_UNION_TYPE_P (t))
4632 fld_worklist_push (TYPE_MAXVAL (t), fld);
4633 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4634 fld_worklist_push (TYPE_NEXT_VARIANT (t), fld);
4635 fld_worklist_push (TYPE_CONTEXT (t), fld);
4636 fld_worklist_push (TYPE_CANONICAL (t), fld);
4637
4638 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4639 {
4640 unsigned i;
4641 tree tem;
4642 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4643 i, tem); ++i)
4644 fld_worklist_push (TREE_TYPE (tem), fld);
4645 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4646 if (tem
4647 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4648 && TREE_CODE (tem) == TREE_LIST)
4649 do
4650 {
4651 fld_worklist_push (TREE_VALUE (tem), fld);
4652 tem = TREE_CHAIN (tem);
4653 }
4654 while (tem);
4655 }
4656 if (RECORD_OR_UNION_TYPE_P (t))
4657 {
4658 tree tem;
4659 /* Push all TYPE_FIELDS - there can be interleaving interesting
4660 and non-interesting things. */
4661 tem = TYPE_FIELDS (t);
4662 while (tem)
4663 {
4664 if (TREE_CODE (tem) == FIELD_DECL)
4665 fld_worklist_push (tem, fld);
4666 tem = TREE_CHAIN (tem);
4667 }
4668 }
4669
4670 fld_worklist_push (TREE_CHAIN (t), fld);
4671 *ws = 0;
4672 }
4673 else if (TREE_CODE (t) == BLOCK)
4674 {
4675 tree tem;
4676 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4677 fld_worklist_push (tem, fld);
4678 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4679 fld_worklist_push (tem, fld);
4680 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4681 }
4682
4683 fld_worklist_push (TREE_TYPE (t), fld);
4684
4685 return NULL_TREE;
4686 }
4687
4688
4689 /* Find decls and types in T. */
4690
4691 static void
4692 find_decls_types (tree t, struct free_lang_data_d *fld)
4693 {
4694 while (1)
4695 {
4696 if (!pointer_set_contains (fld->pset, t))
4697 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4698 if (VEC_empty (tree, fld->worklist))
4699 break;
4700 t = VEC_pop (tree, fld->worklist);
4701 }
4702 }
4703
4704 /* Translate all the types in LIST with the corresponding runtime
4705 types. */
4706
4707 static tree
4708 get_eh_types_for_runtime (tree list)
4709 {
4710 tree head, prev;
4711
4712 if (list == NULL_TREE)
4713 return NULL_TREE;
4714
4715 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4716 prev = head;
4717 list = TREE_CHAIN (list);
4718 while (list)
4719 {
4720 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4721 TREE_CHAIN (prev) = n;
4722 prev = TREE_CHAIN (prev);
4723 list = TREE_CHAIN (list);
4724 }
4725
4726 return head;
4727 }
4728
4729
4730 /* Find decls and types referenced in EH region R and store them in
4731 FLD->DECLS and FLD->TYPES. */
4732
4733 static void
4734 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4735 {
4736 switch (r->type)
4737 {
4738 case ERT_CLEANUP:
4739 break;
4740
4741 case ERT_TRY:
4742 {
4743 eh_catch c;
4744
4745 /* The types referenced in each catch must first be changed to the
4746 EH types used at runtime. This removes references to FE types
4747 in the region. */
4748 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4749 {
4750 c->type_list = get_eh_types_for_runtime (c->type_list);
4751 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4752 }
4753 }
4754 break;
4755
4756 case ERT_ALLOWED_EXCEPTIONS:
4757 r->u.allowed.type_list
4758 = get_eh_types_for_runtime (r->u.allowed.type_list);
4759 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4760 break;
4761
4762 case ERT_MUST_NOT_THROW:
4763 walk_tree (&r->u.must_not_throw.failure_decl,
4764 find_decls_types_r, fld, fld->pset);
4765 break;
4766 }
4767 }
4768
4769
4770 /* Find decls and types referenced in cgraph node N and store them in
4771 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4772 look for *every* kind of DECL and TYPE node reachable from N,
4773 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4774 NAMESPACE_DECLs, etc). */
4775
4776 static void
4777 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4778 {
4779 basic_block bb;
4780 struct function *fn;
4781 tree t;
4782
4783 find_decls_types (n->decl, fld);
4784
4785 if (!gimple_has_body_p (n->decl))
4786 return;
4787
4788 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
4789
4790 fn = DECL_STRUCT_FUNCTION (n->decl);
4791
4792 /* Traverse locals. */
4793 for (t = fn->local_decls; t; t = TREE_CHAIN (t))
4794 find_decls_types (TREE_VALUE (t), fld);
4795
4796 /* Traverse EH regions in FN. */
4797 {
4798 eh_region r;
4799 FOR_ALL_EH_REGION_FN (r, fn)
4800 find_decls_types_in_eh_region (r, fld);
4801 }
4802
4803 /* Traverse every statement in FN. */
4804 FOR_EACH_BB_FN (bb, fn)
4805 {
4806 gimple_stmt_iterator si;
4807 unsigned i;
4808
4809 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4810 {
4811 gimple phi = gsi_stmt (si);
4812
4813 for (i = 0; i < gimple_phi_num_args (phi); i++)
4814 {
4815 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
4816 find_decls_types (*arg_p, fld);
4817 }
4818 }
4819
4820 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4821 {
4822 gimple stmt = gsi_stmt (si);
4823
4824 for (i = 0; i < gimple_num_ops (stmt); i++)
4825 {
4826 tree arg = gimple_op (stmt, i);
4827 find_decls_types (arg, fld);
4828 }
4829 }
4830 }
4831 }
4832
4833
4834 /* Find decls and types referenced in varpool node N and store them in
4835 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4836 look for *every* kind of DECL and TYPE node reachable from N,
4837 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4838 NAMESPACE_DECLs, etc). */
4839
4840 static void
4841 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
4842 {
4843 find_decls_types (v->decl, fld);
4844 }
4845
4846 /* If T needs an assembler name, have one created for it. */
4847
4848 void
4849 assign_assembler_name_if_neeeded (tree t)
4850 {
4851 if (need_assembler_name_p (t))
4852 {
4853 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
4854 diagnostics that use input_location to show locus
4855 information. The problem here is that, at this point,
4856 input_location is generally anchored to the end of the file
4857 (since the parser is long gone), so we don't have a good
4858 position to pin it to.
4859
4860 To alleviate this problem, this uses the location of T's
4861 declaration. Examples of this are
4862 testsuite/g++.dg/template/cond2.C and
4863 testsuite/g++.dg/template/pr35240.C. */
4864 location_t saved_location = input_location;
4865 input_location = DECL_SOURCE_LOCATION (t);
4866
4867 decl_assembler_name (t);
4868
4869 input_location = saved_location;
4870 }
4871 }
4872
4873
4874 /* Free language specific information for every operand and expression
4875 in every node of the call graph. This process operates in three stages:
4876
4877 1- Every callgraph node and varpool node is traversed looking for
4878 decls and types embedded in them. This is a more exhaustive
4879 search than that done by find_referenced_vars, because it will
4880 also collect individual fields, decls embedded in types, etc.
4881
4882 2- All the decls found are sent to free_lang_data_in_decl.
4883
4884 3- All the types found are sent to free_lang_data_in_type.
4885
4886 The ordering between decls and types is important because
4887 free_lang_data_in_decl sets assembler names, which includes
4888 mangling. So types cannot be freed up until assembler names have
4889 been set up. */
4890
4891 static void
4892 free_lang_data_in_cgraph (void)
4893 {
4894 struct cgraph_node *n;
4895 struct varpool_node *v;
4896 struct free_lang_data_d fld;
4897 tree t;
4898 unsigned i;
4899 alias_pair *p;
4900
4901 /* Initialize sets and arrays to store referenced decls and types. */
4902 fld.pset = pointer_set_create ();
4903 fld.worklist = NULL;
4904 fld.decls = VEC_alloc (tree, heap, 100);
4905 fld.types = VEC_alloc (tree, heap, 100);
4906
4907 /* Find decls and types in the body of every function in the callgraph. */
4908 for (n = cgraph_nodes; n; n = n->next)
4909 find_decls_types_in_node (n, &fld);
4910
4911 for (i = 0; VEC_iterate (alias_pair, alias_pairs, i, p); i++)
4912 find_decls_types (p->decl, &fld);
4913
4914 /* Find decls and types in every varpool symbol. */
4915 for (v = varpool_nodes_queue; v; v = v->next_needed)
4916 find_decls_types_in_var (v, &fld);
4917
4918 /* Set the assembler name on every decl found. We need to do this
4919 now because free_lang_data_in_decl will invalidate data needed
4920 for mangling. This breaks mangling on interdependent decls. */
4921 for (i = 0; VEC_iterate (tree, fld.decls, i, t); i++)
4922 assign_assembler_name_if_neeeded (t);
4923
4924 /* Traverse every decl found freeing its language data. */
4925 for (i = 0; VEC_iterate (tree, fld.decls, i, t); i++)
4926 free_lang_data_in_decl (t);
4927
4928 /* Traverse every type found freeing its language data. */
4929 for (i = 0; VEC_iterate (tree, fld.types, i, t); i++)
4930 free_lang_data_in_type (t);
4931
4932 pointer_set_destroy (fld.pset);
4933 VEC_free (tree, heap, fld.worklist);
4934 VEC_free (tree, heap, fld.decls);
4935 VEC_free (tree, heap, fld.types);
4936 }
4937
4938
4939 /* Free resources that are used by FE but are not needed once they are done. */
4940
4941 static unsigned
4942 free_lang_data (void)
4943 {
4944 unsigned i;
4945
4946 /* If we are the LTO frontend we have freed lang-specific data already. */
4947 if (in_lto_p
4948 || !flag_generate_lto)
4949 return 0;
4950
4951 /* Allocate and assign alias sets to the standard integer types
4952 while the slots are still in the way the frontends generated them. */
4953 for (i = 0; i < itk_none; ++i)
4954 if (integer_types[i])
4955 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
4956
4957 /* Traverse the IL resetting language specific information for
4958 operands, expressions, etc. */
4959 free_lang_data_in_cgraph ();
4960
4961 /* Create gimple variants for common types. */
4962 ptrdiff_type_node = integer_type_node;
4963 fileptr_type_node = ptr_type_node;
4964 if (TREE_CODE (boolean_type_node) != BOOLEAN_TYPE
4965 || (TYPE_MODE (boolean_type_node)
4966 != mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0))
4967 || TYPE_PRECISION (boolean_type_node) != 1
4968 || !TYPE_UNSIGNED (boolean_type_node))
4969 {
4970 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
4971 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
4972 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
4973 TYPE_PRECISION (boolean_type_node) = 1;
4974 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
4975 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
4976 }
4977
4978 /* Unify char_type_node with its properly signed variant. */
4979 if (TYPE_UNSIGNED (char_type_node))
4980 unsigned_char_type_node = char_type_node;
4981 else
4982 signed_char_type_node = char_type_node;
4983
4984 /* Reset some langhooks. Do not reset types_compatible_p, it may
4985 still be used indirectly via the get_alias_set langhook. */
4986 lang_hooks.callgraph.analyze_expr = NULL;
4987 lang_hooks.dwarf_name = lhd_dwarf_name;
4988 lang_hooks.decl_printable_name = gimple_decl_printable_name;
4989 lang_hooks.set_decl_assembler_name = lhd_set_decl_assembler_name;
4990
4991 /* Reset diagnostic machinery. */
4992 diagnostic_starter (global_dc) = default_tree_diagnostic_starter;
4993 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
4994 diagnostic_format_decoder (global_dc) = default_tree_printer;
4995
4996 return 0;
4997 }
4998
4999
5000 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5001 {
5002 {
5003 SIMPLE_IPA_PASS,
5004 "*free_lang_data", /* name */
5005 NULL, /* gate */
5006 free_lang_data, /* execute */
5007 NULL, /* sub */
5008 NULL, /* next */
5009 0, /* static_pass_number */
5010 TV_IPA_FREE_LANG_DATA, /* tv_id */
5011 0, /* properties_required */
5012 0, /* properties_provided */
5013 0, /* properties_destroyed */
5014 0, /* todo_flags_start */
5015 TODO_ggc_collect /* todo_flags_finish */
5016 }
5017 };
5018
5019 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5020 or zero if not.
5021
5022 We try both `text' and `__text__', ATTR may be either one. */
5023 /* ??? It might be a reasonable simplification to require ATTR to be only
5024 `text'. One might then also require attribute lists to be stored in
5025 their canonicalized form. */
5026
5027 static int
5028 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
5029 {
5030 int ident_len;
5031 const char *p;
5032
5033 if (TREE_CODE (ident) != IDENTIFIER_NODE)
5034 return 0;
5035
5036 p = IDENTIFIER_POINTER (ident);
5037 ident_len = IDENTIFIER_LENGTH (ident);
5038
5039 if (ident_len == attr_len
5040 && strcmp (attr, p) == 0)
5041 return 1;
5042
5043 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
5044 if (attr[0] == '_')
5045 {
5046 gcc_assert (attr[1] == '_');
5047 gcc_assert (attr[attr_len - 2] == '_');
5048 gcc_assert (attr[attr_len - 1] == '_');
5049 if (ident_len == attr_len - 4
5050 && strncmp (attr + 2, p, attr_len - 4) == 0)
5051 return 1;
5052 }
5053 else
5054 {
5055 if (ident_len == attr_len + 4
5056 && p[0] == '_' && p[1] == '_'
5057 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5058 && strncmp (attr, p + 2, attr_len) == 0)
5059 return 1;
5060 }
5061
5062 return 0;
5063 }
5064
5065 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5066 or zero if not.
5067
5068 We try both `text' and `__text__', ATTR may be either one. */
5069
5070 int
5071 is_attribute_p (const char *attr, const_tree ident)
5072 {
5073 return is_attribute_with_length_p (attr, strlen (attr), ident);
5074 }
5075
5076 /* Given an attribute name and a list of attributes, return a pointer to the
5077 attribute's list element if the attribute is part of the list, or NULL_TREE
5078 if not found. If the attribute appears more than once, this only
5079 returns the first occurrence; the TREE_CHAIN of the return value should
5080 be passed back in if further occurrences are wanted. */
5081
5082 tree
5083 lookup_attribute (const char *attr_name, tree list)
5084 {
5085 tree l;
5086 size_t attr_len = strlen (attr_name);
5087
5088 for (l = list; l; l = TREE_CHAIN (l))
5089 {
5090 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5091 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5092 return l;
5093 }
5094 return NULL_TREE;
5095 }
5096
5097 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5098 modified list. */
5099
5100 tree
5101 remove_attribute (const char *attr_name, tree list)
5102 {
5103 tree *p;
5104 size_t attr_len = strlen (attr_name);
5105
5106 for (p = &list; *p; )
5107 {
5108 tree l = *p;
5109 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5110 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5111 *p = TREE_CHAIN (l);
5112 else
5113 p = &TREE_CHAIN (l);
5114 }
5115
5116 return list;
5117 }
5118
5119 /* Return an attribute list that is the union of a1 and a2. */
5120
5121 tree
5122 merge_attributes (tree a1, tree a2)
5123 {
5124 tree attributes;
5125
5126 /* Either one unset? Take the set one. */
5127
5128 if ((attributes = a1) == 0)
5129 attributes = a2;
5130
5131 /* One that completely contains the other? Take it. */
5132
5133 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5134 {
5135 if (attribute_list_contained (a2, a1))
5136 attributes = a2;
5137 else
5138 {
5139 /* Pick the longest list, and hang on the other list. */
5140
5141 if (list_length (a1) < list_length (a2))
5142 attributes = a2, a2 = a1;
5143
5144 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5145 {
5146 tree a;
5147 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5148 attributes);
5149 a != NULL_TREE;
5150 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5151 TREE_CHAIN (a)))
5152 {
5153 if (TREE_VALUE (a) != NULL
5154 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
5155 && TREE_VALUE (a2) != NULL
5156 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
5157 {
5158 if (simple_cst_list_equal (TREE_VALUE (a),
5159 TREE_VALUE (a2)) == 1)
5160 break;
5161 }
5162 else if (simple_cst_equal (TREE_VALUE (a),
5163 TREE_VALUE (a2)) == 1)
5164 break;
5165 }
5166 if (a == NULL_TREE)
5167 {
5168 a1 = copy_node (a2);
5169 TREE_CHAIN (a1) = attributes;
5170 attributes = a1;
5171 }
5172 }
5173 }
5174 }
5175 return attributes;
5176 }
5177
5178 /* Given types T1 and T2, merge their attributes and return
5179 the result. */
5180
5181 tree
5182 merge_type_attributes (tree t1, tree t2)
5183 {
5184 return merge_attributes (TYPE_ATTRIBUTES (t1),
5185 TYPE_ATTRIBUTES (t2));
5186 }
5187
5188 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5189 the result. */
5190
5191 tree
5192 merge_decl_attributes (tree olddecl, tree newdecl)
5193 {
5194 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5195 DECL_ATTRIBUTES (newdecl));
5196 }
5197
5198 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5199
5200 /* Specialization of merge_decl_attributes for various Windows targets.
5201
5202 This handles the following situation:
5203
5204 __declspec (dllimport) int foo;
5205 int foo;
5206
5207 The second instance of `foo' nullifies the dllimport. */
5208
5209 tree
5210 merge_dllimport_decl_attributes (tree old, tree new_tree)
5211 {
5212 tree a;
5213 int delete_dllimport_p = 1;
5214
5215 /* What we need to do here is remove from `old' dllimport if it doesn't
5216 appear in `new'. dllimport behaves like extern: if a declaration is
5217 marked dllimport and a definition appears later, then the object
5218 is not dllimport'd. We also remove a `new' dllimport if the old list
5219 contains dllexport: dllexport always overrides dllimport, regardless
5220 of the order of declaration. */
5221 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5222 delete_dllimport_p = 0;
5223 else if (DECL_DLLIMPORT_P (new_tree)
5224 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5225 {
5226 DECL_DLLIMPORT_P (new_tree) = 0;
5227 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5228 "dllimport ignored", new_tree);
5229 }
5230 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5231 {
5232 /* Warn about overriding a symbol that has already been used, e.g.:
5233 extern int __attribute__ ((dllimport)) foo;
5234 int* bar () {return &foo;}
5235 int foo;
5236 */
5237 if (TREE_USED (old))
5238 {
5239 warning (0, "%q+D redeclared without dllimport attribute "
5240 "after being referenced with dll linkage", new_tree);
5241 /* If we have used a variable's address with dllimport linkage,
5242 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5243 decl may already have had TREE_CONSTANT computed.
5244 We still remove the attribute so that assembler code refers
5245 to '&foo rather than '_imp__foo'. */
5246 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5247 DECL_DLLIMPORT_P (new_tree) = 1;
5248 }
5249
5250 /* Let an inline definition silently override the external reference,
5251 but otherwise warn about attribute inconsistency. */
5252 else if (TREE_CODE (new_tree) == VAR_DECL
5253 || !DECL_DECLARED_INLINE_P (new_tree))
5254 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5255 "previous dllimport ignored", new_tree);
5256 }
5257 else
5258 delete_dllimport_p = 0;
5259
5260 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5261
5262 if (delete_dllimport_p)
5263 {
5264 tree prev, t;
5265 const size_t attr_len = strlen ("dllimport");
5266
5267 /* Scan the list for dllimport and delete it. */
5268 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
5269 {
5270 if (is_attribute_with_length_p ("dllimport", attr_len,
5271 TREE_PURPOSE (t)))
5272 {
5273 if (prev == NULL_TREE)
5274 a = TREE_CHAIN (a);
5275 else
5276 TREE_CHAIN (prev) = TREE_CHAIN (t);
5277 break;
5278 }
5279 }
5280 }
5281
5282 return a;
5283 }
5284
5285 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5286 struct attribute_spec.handler. */
5287
5288 tree
5289 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5290 bool *no_add_attrs)
5291 {
5292 tree node = *pnode;
5293 bool is_dllimport;
5294
5295 /* These attributes may apply to structure and union types being created,
5296 but otherwise should pass to the declaration involved. */
5297 if (!DECL_P (node))
5298 {
5299 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5300 | (int) ATTR_FLAG_ARRAY_NEXT))
5301 {
5302 *no_add_attrs = true;
5303 return tree_cons (name, args, NULL_TREE);
5304 }
5305 if (TREE_CODE (node) == RECORD_TYPE
5306 || TREE_CODE (node) == UNION_TYPE)
5307 {
5308 node = TYPE_NAME (node);
5309 if (!node)
5310 return NULL_TREE;
5311 }
5312 else
5313 {
5314 warning (OPT_Wattributes, "%qE attribute ignored",
5315 name);
5316 *no_add_attrs = true;
5317 return NULL_TREE;
5318 }
5319 }
5320
5321 if (TREE_CODE (node) != FUNCTION_DECL
5322 && TREE_CODE (node) != VAR_DECL
5323 && TREE_CODE (node) != TYPE_DECL)
5324 {
5325 *no_add_attrs = true;
5326 warning (OPT_Wattributes, "%qE attribute ignored",
5327 name);
5328 return NULL_TREE;
5329 }
5330
5331 if (TREE_CODE (node) == TYPE_DECL
5332 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5333 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5334 {
5335 *no_add_attrs = true;
5336 warning (OPT_Wattributes, "%qE attribute ignored",
5337 name);
5338 return NULL_TREE;
5339 }
5340
5341 is_dllimport = is_attribute_p ("dllimport", name);
5342
5343 /* Report error on dllimport ambiguities seen now before they cause
5344 any damage. */
5345 if (is_dllimport)
5346 {
5347 /* Honor any target-specific overrides. */
5348 if (!targetm.valid_dllimport_attribute_p (node))
5349 *no_add_attrs = true;
5350
5351 else if (TREE_CODE (node) == FUNCTION_DECL
5352 && DECL_DECLARED_INLINE_P (node))
5353 {
5354 warning (OPT_Wattributes, "inline function %q+D declared as "
5355 " dllimport: attribute ignored", node);
5356 *no_add_attrs = true;
5357 }
5358 /* Like MS, treat definition of dllimported variables and
5359 non-inlined functions on declaration as syntax errors. */
5360 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5361 {
5362 error ("function %q+D definition is marked dllimport", node);
5363 *no_add_attrs = true;
5364 }
5365
5366 else if (TREE_CODE (node) == VAR_DECL)
5367 {
5368 if (DECL_INITIAL (node))
5369 {
5370 error ("variable %q+D definition is marked dllimport",
5371 node);
5372 *no_add_attrs = true;
5373 }
5374
5375 /* `extern' needn't be specified with dllimport.
5376 Specify `extern' now and hope for the best. Sigh. */
5377 DECL_EXTERNAL (node) = 1;
5378 /* Also, implicitly give dllimport'd variables declared within
5379 a function global scope, unless declared static. */
5380 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5381 TREE_PUBLIC (node) = 1;
5382 }
5383
5384 if (*no_add_attrs == false)
5385 DECL_DLLIMPORT_P (node) = 1;
5386 }
5387 else if (TREE_CODE (node) == FUNCTION_DECL
5388 && DECL_DECLARED_INLINE_P (node))
5389 /* An exported function, even if inline, must be emitted. */
5390 DECL_EXTERNAL (node) = 0;
5391
5392 /* Report error if symbol is not accessible at global scope. */
5393 if (!TREE_PUBLIC (node)
5394 && (TREE_CODE (node) == VAR_DECL
5395 || TREE_CODE (node) == FUNCTION_DECL))
5396 {
5397 error ("external linkage required for symbol %q+D because of "
5398 "%qE attribute", node, name);
5399 *no_add_attrs = true;
5400 }
5401
5402 /* A dllexport'd entity must have default visibility so that other
5403 program units (shared libraries or the main executable) can see
5404 it. A dllimport'd entity must have default visibility so that
5405 the linker knows that undefined references within this program
5406 unit can be resolved by the dynamic linker. */
5407 if (!*no_add_attrs)
5408 {
5409 if (DECL_VISIBILITY_SPECIFIED (node)
5410 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5411 error ("%qE implies default visibility, but %qD has already "
5412 "been declared with a different visibility",
5413 name, node);
5414 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5415 DECL_VISIBILITY_SPECIFIED (node) = 1;
5416 }
5417
5418 return NULL_TREE;
5419 }
5420
5421 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5422 \f
5423 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5424 of the various TYPE_QUAL values. */
5425
5426 static void
5427 set_type_quals (tree type, int type_quals)
5428 {
5429 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5430 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5431 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5432 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5433 }
5434
5435 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5436
5437 bool
5438 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5439 {
5440 return (TYPE_QUALS (cand) == type_quals
5441 && TYPE_NAME (cand) == TYPE_NAME (base)
5442 /* Apparently this is needed for Objective-C. */
5443 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5444 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5445 TYPE_ATTRIBUTES (base)));
5446 }
5447
5448 /* Return a version of the TYPE, qualified as indicated by the
5449 TYPE_QUALS, if one exists. If no qualified version exists yet,
5450 return NULL_TREE. */
5451
5452 tree
5453 get_qualified_type (tree type, int type_quals)
5454 {
5455 tree t;
5456
5457 if (TYPE_QUALS (type) == type_quals)
5458 return type;
5459
5460 /* Search the chain of variants to see if there is already one there just
5461 like the one we need to have. If so, use that existing one. We must
5462 preserve the TYPE_NAME, since there is code that depends on this. */
5463 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5464 if (check_qualified_type (t, type, type_quals))
5465 return t;
5466
5467 return NULL_TREE;
5468 }
5469
5470 /* Like get_qualified_type, but creates the type if it does not
5471 exist. This function never returns NULL_TREE. */
5472
5473 tree
5474 build_qualified_type (tree type, int type_quals)
5475 {
5476 tree t;
5477
5478 /* See if we already have the appropriate qualified variant. */
5479 t = get_qualified_type (type, type_quals);
5480
5481 /* If not, build it. */
5482 if (!t)
5483 {
5484 t = build_variant_type_copy (type);
5485 set_type_quals (t, type_quals);
5486
5487 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5488 /* Propagate structural equality. */
5489 SET_TYPE_STRUCTURAL_EQUALITY (t);
5490 else if (TYPE_CANONICAL (type) != type)
5491 /* Build the underlying canonical type, since it is different
5492 from TYPE. */
5493 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5494 type_quals);
5495 else
5496 /* T is its own canonical type. */
5497 TYPE_CANONICAL (t) = t;
5498
5499 }
5500
5501 return t;
5502 }
5503
5504 /* Create a new distinct copy of TYPE. The new type is made its own
5505 MAIN_VARIANT. If TYPE requires structural equality checks, the
5506 resulting type requires structural equality checks; otherwise, its
5507 TYPE_CANONICAL points to itself. */
5508
5509 tree
5510 build_distinct_type_copy (tree type)
5511 {
5512 tree t = copy_node (type);
5513
5514 TYPE_POINTER_TO (t) = 0;
5515 TYPE_REFERENCE_TO (t) = 0;
5516
5517 /* Set the canonical type either to a new equivalence class, or
5518 propagate the need for structural equality checks. */
5519 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5520 SET_TYPE_STRUCTURAL_EQUALITY (t);
5521 else
5522 TYPE_CANONICAL (t) = t;
5523
5524 /* Make it its own variant. */
5525 TYPE_MAIN_VARIANT (t) = t;
5526 TYPE_NEXT_VARIANT (t) = 0;
5527
5528 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5529 whose TREE_TYPE is not t. This can also happen in the Ada
5530 frontend when using subtypes. */
5531
5532 return t;
5533 }
5534
5535 /* Create a new variant of TYPE, equivalent but distinct. This is so
5536 the caller can modify it. TYPE_CANONICAL for the return type will
5537 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5538 are considered equal by the language itself (or that both types
5539 require structural equality checks). */
5540
5541 tree
5542 build_variant_type_copy (tree type)
5543 {
5544 tree t, m = TYPE_MAIN_VARIANT (type);
5545
5546 t = build_distinct_type_copy (type);
5547
5548 /* Since we're building a variant, assume that it is a non-semantic
5549 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5550 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5551
5552 /* Add the new type to the chain of variants of TYPE. */
5553 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5554 TYPE_NEXT_VARIANT (m) = t;
5555 TYPE_MAIN_VARIANT (t) = m;
5556
5557 return t;
5558 }
5559 \f
5560 /* Return true if the from tree in both tree maps are equal. */
5561
5562 int
5563 tree_map_base_eq (const void *va, const void *vb)
5564 {
5565 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5566 *const b = (const struct tree_map_base *) vb;
5567 return (a->from == b->from);
5568 }
5569
5570 /* Hash a from tree in a tree_base_map. */
5571
5572 unsigned int
5573 tree_map_base_hash (const void *item)
5574 {
5575 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5576 }
5577
5578 /* Return true if this tree map structure is marked for garbage collection
5579 purposes. We simply return true if the from tree is marked, so that this
5580 structure goes away when the from tree goes away. */
5581
5582 int
5583 tree_map_base_marked_p (const void *p)
5584 {
5585 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5586 }
5587
5588 /* Hash a from tree in a tree_map. */
5589
5590 unsigned int
5591 tree_map_hash (const void *item)
5592 {
5593 return (((const struct tree_map *) item)->hash);
5594 }
5595
5596 /* Hash a from tree in a tree_decl_map. */
5597
5598 unsigned int
5599 tree_decl_map_hash (const void *item)
5600 {
5601 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5602 }
5603
5604 /* Return the initialization priority for DECL. */
5605
5606 priority_type
5607 decl_init_priority_lookup (tree decl)
5608 {
5609 struct tree_priority_map *h;
5610 struct tree_map_base in;
5611
5612 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5613 in.from = decl;
5614 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5615 return h ? h->init : DEFAULT_INIT_PRIORITY;
5616 }
5617
5618 /* Return the finalization priority for DECL. */
5619
5620 priority_type
5621 decl_fini_priority_lookup (tree decl)
5622 {
5623 struct tree_priority_map *h;
5624 struct tree_map_base in;
5625
5626 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5627 in.from = decl;
5628 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5629 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5630 }
5631
5632 /* Return the initialization and finalization priority information for
5633 DECL. If there is no previous priority information, a freshly
5634 allocated structure is returned. */
5635
5636 static struct tree_priority_map *
5637 decl_priority_info (tree decl)
5638 {
5639 struct tree_priority_map in;
5640 struct tree_priority_map *h;
5641 void **loc;
5642
5643 in.base.from = decl;
5644 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5645 h = (struct tree_priority_map *) *loc;
5646 if (!h)
5647 {
5648 h = ggc_alloc_cleared_tree_priority_map ();
5649 *loc = h;
5650 h->base.from = decl;
5651 h->init = DEFAULT_INIT_PRIORITY;
5652 h->fini = DEFAULT_INIT_PRIORITY;
5653 }
5654
5655 return h;
5656 }
5657
5658 /* Set the initialization priority for DECL to PRIORITY. */
5659
5660 void
5661 decl_init_priority_insert (tree decl, priority_type priority)
5662 {
5663 struct tree_priority_map *h;
5664
5665 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5666 h = decl_priority_info (decl);
5667 h->init = priority;
5668 }
5669
5670 /* Set the finalization priority for DECL to PRIORITY. */
5671
5672 void
5673 decl_fini_priority_insert (tree decl, priority_type priority)
5674 {
5675 struct tree_priority_map *h;
5676
5677 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5678 h = decl_priority_info (decl);
5679 h->fini = priority;
5680 }
5681
5682 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5683
5684 static void
5685 print_debug_expr_statistics (void)
5686 {
5687 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5688 (long) htab_size (debug_expr_for_decl),
5689 (long) htab_elements (debug_expr_for_decl),
5690 htab_collisions (debug_expr_for_decl));
5691 }
5692
5693 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5694
5695 static void
5696 print_value_expr_statistics (void)
5697 {
5698 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5699 (long) htab_size (value_expr_for_decl),
5700 (long) htab_elements (value_expr_for_decl),
5701 htab_collisions (value_expr_for_decl));
5702 }
5703
5704 /* Lookup a debug expression for FROM, and return it if we find one. */
5705
5706 tree
5707 decl_debug_expr_lookup (tree from)
5708 {
5709 struct tree_decl_map *h, in;
5710 in.base.from = from;
5711
5712 h = (struct tree_decl_map *)
5713 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
5714 if (h)
5715 return h->to;
5716 return NULL_TREE;
5717 }
5718
5719 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5720
5721 void
5722 decl_debug_expr_insert (tree from, tree to)
5723 {
5724 struct tree_decl_map *h;
5725 void **loc;
5726
5727 h = ggc_alloc_tree_decl_map ();
5728 h->base.from = from;
5729 h->to = to;
5730 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
5731 INSERT);
5732 *(struct tree_decl_map **) loc = h;
5733 }
5734
5735 /* Lookup a value expression for FROM, and return it if we find one. */
5736
5737 tree
5738 decl_value_expr_lookup (tree from)
5739 {
5740 struct tree_decl_map *h, in;
5741 in.base.from = from;
5742
5743 h = (struct tree_decl_map *)
5744 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
5745 if (h)
5746 return h->to;
5747 return NULL_TREE;
5748 }
5749
5750 /* Insert a mapping FROM->TO in the value expression hashtable. */
5751
5752 void
5753 decl_value_expr_insert (tree from, tree to)
5754 {
5755 struct tree_decl_map *h;
5756 void **loc;
5757
5758 h = ggc_alloc_tree_decl_map ();
5759 h->base.from = from;
5760 h->to = to;
5761 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
5762 INSERT);
5763 *(struct tree_decl_map **) loc = h;
5764 }
5765
5766 /* Hashing of types so that we don't make duplicates.
5767 The entry point is `type_hash_canon'. */
5768
5769 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
5770 with types in the TREE_VALUE slots), by adding the hash codes
5771 of the individual types. */
5772
5773 static unsigned int
5774 type_hash_list (const_tree list, hashval_t hashcode)
5775 {
5776 const_tree tail;
5777
5778 for (tail = list; tail; tail = TREE_CHAIN (tail))
5779 if (TREE_VALUE (tail) != error_mark_node)
5780 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
5781 hashcode);
5782
5783 return hashcode;
5784 }
5785
5786 /* These are the Hashtable callback functions. */
5787
5788 /* Returns true iff the types are equivalent. */
5789
5790 static int
5791 type_hash_eq (const void *va, const void *vb)
5792 {
5793 const struct type_hash *const a = (const struct type_hash *) va,
5794 *const b = (const struct type_hash *) vb;
5795
5796 /* First test the things that are the same for all types. */
5797 if (a->hash != b->hash
5798 || TREE_CODE (a->type) != TREE_CODE (b->type)
5799 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
5800 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
5801 TYPE_ATTRIBUTES (b->type))
5802 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
5803 || TYPE_MODE (a->type) != TYPE_MODE (b->type)
5804 || (TREE_CODE (a->type) != COMPLEX_TYPE
5805 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
5806 return 0;
5807
5808 switch (TREE_CODE (a->type))
5809 {
5810 case VOID_TYPE:
5811 case COMPLEX_TYPE:
5812 case POINTER_TYPE:
5813 case REFERENCE_TYPE:
5814 return 1;
5815
5816 case VECTOR_TYPE:
5817 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
5818
5819 case ENUMERAL_TYPE:
5820 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
5821 && !(TYPE_VALUES (a->type)
5822 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
5823 && TYPE_VALUES (b->type)
5824 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
5825 && type_list_equal (TYPE_VALUES (a->type),
5826 TYPE_VALUES (b->type))))
5827 return 0;
5828
5829 /* ... fall through ... */
5830
5831 case INTEGER_TYPE:
5832 case REAL_TYPE:
5833 case BOOLEAN_TYPE:
5834 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
5835 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
5836 TYPE_MAX_VALUE (b->type)))
5837 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
5838 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
5839 TYPE_MIN_VALUE (b->type))));
5840
5841 case FIXED_POINT_TYPE:
5842 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
5843
5844 case OFFSET_TYPE:
5845 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
5846
5847 case METHOD_TYPE:
5848 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
5849 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5850 || (TYPE_ARG_TYPES (a->type)
5851 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5852 && TYPE_ARG_TYPES (b->type)
5853 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5854 && type_list_equal (TYPE_ARG_TYPES (a->type),
5855 TYPE_ARG_TYPES (b->type)))));
5856
5857 case ARRAY_TYPE:
5858 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
5859
5860 case RECORD_TYPE:
5861 case UNION_TYPE:
5862 case QUAL_UNION_TYPE:
5863 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
5864 || (TYPE_FIELDS (a->type)
5865 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
5866 && TYPE_FIELDS (b->type)
5867 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
5868 && type_list_equal (TYPE_FIELDS (a->type),
5869 TYPE_FIELDS (b->type))));
5870
5871 case FUNCTION_TYPE:
5872 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5873 || (TYPE_ARG_TYPES (a->type)
5874 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5875 && TYPE_ARG_TYPES (b->type)
5876 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5877 && type_list_equal (TYPE_ARG_TYPES (a->type),
5878 TYPE_ARG_TYPES (b->type))))
5879 break;
5880 return 0;
5881
5882 default:
5883 return 0;
5884 }
5885
5886 if (lang_hooks.types.type_hash_eq != NULL)
5887 return lang_hooks.types.type_hash_eq (a->type, b->type);
5888
5889 return 1;
5890 }
5891
5892 /* Return the cached hash value. */
5893
5894 static hashval_t
5895 type_hash_hash (const void *item)
5896 {
5897 return ((const struct type_hash *) item)->hash;
5898 }
5899
5900 /* Look in the type hash table for a type isomorphic to TYPE.
5901 If one is found, return it. Otherwise return 0. */
5902
5903 tree
5904 type_hash_lookup (hashval_t hashcode, tree type)
5905 {
5906 struct type_hash *h, in;
5907
5908 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
5909 must call that routine before comparing TYPE_ALIGNs. */
5910 layout_type (type);
5911
5912 in.hash = hashcode;
5913 in.type = type;
5914
5915 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
5916 hashcode);
5917 if (h)
5918 return h->type;
5919 return NULL_TREE;
5920 }
5921
5922 /* Add an entry to the type-hash-table
5923 for a type TYPE whose hash code is HASHCODE. */
5924
5925 void
5926 type_hash_add (hashval_t hashcode, tree type)
5927 {
5928 struct type_hash *h;
5929 void **loc;
5930
5931 h = ggc_alloc_type_hash ();
5932 h->hash = hashcode;
5933 h->type = type;
5934 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
5935 *loc = (void *)h;
5936 }
5937
5938 /* Given TYPE, and HASHCODE its hash code, return the canonical
5939 object for an identical type if one already exists.
5940 Otherwise, return TYPE, and record it as the canonical object.
5941
5942 To use this function, first create a type of the sort you want.
5943 Then compute its hash code from the fields of the type that
5944 make it different from other similar types.
5945 Then call this function and use the value. */
5946
5947 tree
5948 type_hash_canon (unsigned int hashcode, tree type)
5949 {
5950 tree t1;
5951
5952 /* The hash table only contains main variants, so ensure that's what we're
5953 being passed. */
5954 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
5955
5956 if (!lang_hooks.types.hash_types)
5957 return type;
5958
5959 /* See if the type is in the hash table already. If so, return it.
5960 Otherwise, add the type. */
5961 t1 = type_hash_lookup (hashcode, type);
5962 if (t1 != 0)
5963 {
5964 #ifdef GATHER_STATISTICS
5965 tree_node_counts[(int) t_kind]--;
5966 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
5967 #endif
5968 return t1;
5969 }
5970 else
5971 {
5972 type_hash_add (hashcode, type);
5973 return type;
5974 }
5975 }
5976
5977 /* See if the data pointed to by the type hash table is marked. We consider
5978 it marked if the type is marked or if a debug type number or symbol
5979 table entry has been made for the type. This reduces the amount of
5980 debugging output and eliminates that dependency of the debug output on
5981 the number of garbage collections. */
5982
5983 static int
5984 type_hash_marked_p (const void *p)
5985 {
5986 const_tree const type = ((const struct type_hash *) p)->type;
5987
5988 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
5989 }
5990
5991 static void
5992 print_type_hash_statistics (void)
5993 {
5994 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
5995 (long) htab_size (type_hash_table),
5996 (long) htab_elements (type_hash_table),
5997 htab_collisions (type_hash_table));
5998 }
5999
6000 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6001 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6002 by adding the hash codes of the individual attributes. */
6003
6004 static unsigned int
6005 attribute_hash_list (const_tree list, hashval_t hashcode)
6006 {
6007 const_tree tail;
6008
6009 for (tail = list; tail; tail = TREE_CHAIN (tail))
6010 /* ??? Do we want to add in TREE_VALUE too? */
6011 hashcode = iterative_hash_object
6012 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
6013 return hashcode;
6014 }
6015
6016 /* Given two lists of attributes, return true if list l2 is
6017 equivalent to l1. */
6018
6019 int
6020 attribute_list_equal (const_tree l1, const_tree l2)
6021 {
6022 return attribute_list_contained (l1, l2)
6023 && attribute_list_contained (l2, l1);
6024 }
6025
6026 /* Given two lists of attributes, return true if list L2 is
6027 completely contained within L1. */
6028 /* ??? This would be faster if attribute names were stored in a canonicalized
6029 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6030 must be used to show these elements are equivalent (which they are). */
6031 /* ??? It's not clear that attributes with arguments will always be handled
6032 correctly. */
6033
6034 int
6035 attribute_list_contained (const_tree l1, const_tree l2)
6036 {
6037 const_tree t1, t2;
6038
6039 /* First check the obvious, maybe the lists are identical. */
6040 if (l1 == l2)
6041 return 1;
6042
6043 /* Maybe the lists are similar. */
6044 for (t1 = l1, t2 = l2;
6045 t1 != 0 && t2 != 0
6046 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6047 && TREE_VALUE (t1) == TREE_VALUE (t2);
6048 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
6049
6050 /* Maybe the lists are equal. */
6051 if (t1 == 0 && t2 == 0)
6052 return 1;
6053
6054 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6055 {
6056 const_tree attr;
6057 /* This CONST_CAST is okay because lookup_attribute does not
6058 modify its argument and the return value is assigned to a
6059 const_tree. */
6060 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6061 CONST_CAST_TREE(l1));
6062 attr != NULL_TREE;
6063 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6064 TREE_CHAIN (attr)))
6065 {
6066 if (TREE_VALUE (t2) != NULL
6067 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
6068 && TREE_VALUE (attr) != NULL
6069 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
6070 {
6071 if (simple_cst_list_equal (TREE_VALUE (t2),
6072 TREE_VALUE (attr)) == 1)
6073 break;
6074 }
6075 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
6076 break;
6077 }
6078
6079 if (attr == 0)
6080 return 0;
6081 }
6082
6083 return 1;
6084 }
6085
6086 /* Given two lists of types
6087 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6088 return 1 if the lists contain the same types in the same order.
6089 Also, the TREE_PURPOSEs must match. */
6090
6091 int
6092 type_list_equal (const_tree l1, const_tree l2)
6093 {
6094 const_tree t1, t2;
6095
6096 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6097 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6098 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6099 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6100 && (TREE_TYPE (TREE_PURPOSE (t1))
6101 == TREE_TYPE (TREE_PURPOSE (t2))))))
6102 return 0;
6103
6104 return t1 == t2;
6105 }
6106
6107 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6108 given by TYPE. If the argument list accepts variable arguments,
6109 then this function counts only the ordinary arguments. */
6110
6111 int
6112 type_num_arguments (const_tree type)
6113 {
6114 int i = 0;
6115 tree t;
6116
6117 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6118 /* If the function does not take a variable number of arguments,
6119 the last element in the list will have type `void'. */
6120 if (VOID_TYPE_P (TREE_VALUE (t)))
6121 break;
6122 else
6123 ++i;
6124
6125 return i;
6126 }
6127
6128 /* Nonzero if integer constants T1 and T2
6129 represent the same constant value. */
6130
6131 int
6132 tree_int_cst_equal (const_tree t1, const_tree t2)
6133 {
6134 if (t1 == t2)
6135 return 1;
6136
6137 if (t1 == 0 || t2 == 0)
6138 return 0;
6139
6140 if (TREE_CODE (t1) == INTEGER_CST
6141 && TREE_CODE (t2) == INTEGER_CST
6142 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6143 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6144 return 1;
6145
6146 return 0;
6147 }
6148
6149 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6150 The precise way of comparison depends on their data type. */
6151
6152 int
6153 tree_int_cst_lt (const_tree t1, const_tree t2)
6154 {
6155 if (t1 == t2)
6156 return 0;
6157
6158 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6159 {
6160 int t1_sgn = tree_int_cst_sgn (t1);
6161 int t2_sgn = tree_int_cst_sgn (t2);
6162
6163 if (t1_sgn < t2_sgn)
6164 return 1;
6165 else if (t1_sgn > t2_sgn)
6166 return 0;
6167 /* Otherwise, both are non-negative, so we compare them as
6168 unsigned just in case one of them would overflow a signed
6169 type. */
6170 }
6171 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6172 return INT_CST_LT (t1, t2);
6173
6174 return INT_CST_LT_UNSIGNED (t1, t2);
6175 }
6176
6177 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6178
6179 int
6180 tree_int_cst_compare (const_tree t1, const_tree t2)
6181 {
6182 if (tree_int_cst_lt (t1, t2))
6183 return -1;
6184 else if (tree_int_cst_lt (t2, t1))
6185 return 1;
6186 else
6187 return 0;
6188 }
6189
6190 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6191 the host. If POS is zero, the value can be represented in a single
6192 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6193 be represented in a single unsigned HOST_WIDE_INT. */
6194
6195 int
6196 host_integerp (const_tree t, int pos)
6197 {
6198 if (t == NULL_TREE)
6199 return 0;
6200
6201 return (TREE_CODE (t) == INTEGER_CST
6202 && ((TREE_INT_CST_HIGH (t) == 0
6203 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6204 || (! pos && TREE_INT_CST_HIGH (t) == -1
6205 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6206 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6207 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6208 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6209 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6210 }
6211
6212 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6213 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6214 be non-negative. We must be able to satisfy the above conditions. */
6215
6216 HOST_WIDE_INT
6217 tree_low_cst (const_tree t, int pos)
6218 {
6219 gcc_assert (host_integerp (t, pos));
6220 return TREE_INT_CST_LOW (t);
6221 }
6222
6223 /* Return the most significant bit of the integer constant T. */
6224
6225 int
6226 tree_int_cst_msb (const_tree t)
6227 {
6228 int prec;
6229 HOST_WIDE_INT h;
6230 unsigned HOST_WIDE_INT l;
6231
6232 /* Note that using TYPE_PRECISION here is wrong. We care about the
6233 actual bits, not the (arbitrary) range of the type. */
6234 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
6235 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
6236 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
6237 return (l & 1) == 1;
6238 }
6239
6240 /* Return an indication of the sign of the integer constant T.
6241 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6242 Note that -1 will never be returned if T's type is unsigned. */
6243
6244 int
6245 tree_int_cst_sgn (const_tree t)
6246 {
6247 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6248 return 0;
6249 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6250 return 1;
6251 else if (TREE_INT_CST_HIGH (t) < 0)
6252 return -1;
6253 else
6254 return 1;
6255 }
6256
6257 /* Return the minimum number of bits needed to represent VALUE in a
6258 signed or unsigned type, UNSIGNEDP says which. */
6259
6260 unsigned int
6261 tree_int_cst_min_precision (tree value, bool unsignedp)
6262 {
6263 int log;
6264
6265 /* If the value is negative, compute its negative minus 1. The latter
6266 adjustment is because the absolute value of the largest negative value
6267 is one larger than the largest positive value. This is equivalent to
6268 a bit-wise negation, so use that operation instead. */
6269
6270 if (tree_int_cst_sgn (value) < 0)
6271 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6272
6273 /* Return the number of bits needed, taking into account the fact
6274 that we need one more bit for a signed than unsigned type. */
6275
6276 if (integer_zerop (value))
6277 log = 0;
6278 else
6279 log = tree_floor_log2 (value);
6280
6281 return log + 1 + !unsignedp;
6282 }
6283
6284 /* Compare two constructor-element-type constants. Return 1 if the lists
6285 are known to be equal; otherwise return 0. */
6286
6287 int
6288 simple_cst_list_equal (const_tree l1, const_tree l2)
6289 {
6290 while (l1 != NULL_TREE && l2 != NULL_TREE)
6291 {
6292 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6293 return 0;
6294
6295 l1 = TREE_CHAIN (l1);
6296 l2 = TREE_CHAIN (l2);
6297 }
6298
6299 return l1 == l2;
6300 }
6301
6302 /* Return truthvalue of whether T1 is the same tree structure as T2.
6303 Return 1 if they are the same.
6304 Return 0 if they are understandably different.
6305 Return -1 if either contains tree structure not understood by
6306 this function. */
6307
6308 int
6309 simple_cst_equal (const_tree t1, const_tree t2)
6310 {
6311 enum tree_code code1, code2;
6312 int cmp;
6313 int i;
6314
6315 if (t1 == t2)
6316 return 1;
6317 if (t1 == 0 || t2 == 0)
6318 return 0;
6319
6320 code1 = TREE_CODE (t1);
6321 code2 = TREE_CODE (t2);
6322
6323 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6324 {
6325 if (CONVERT_EXPR_CODE_P (code2)
6326 || code2 == NON_LVALUE_EXPR)
6327 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6328 else
6329 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6330 }
6331
6332 else if (CONVERT_EXPR_CODE_P (code2)
6333 || code2 == NON_LVALUE_EXPR)
6334 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6335
6336 if (code1 != code2)
6337 return 0;
6338
6339 switch (code1)
6340 {
6341 case INTEGER_CST:
6342 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6343 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6344
6345 case REAL_CST:
6346 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6347
6348 case FIXED_CST:
6349 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6350
6351 case STRING_CST:
6352 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6353 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6354 TREE_STRING_LENGTH (t1)));
6355
6356 case CONSTRUCTOR:
6357 {
6358 unsigned HOST_WIDE_INT idx;
6359 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6360 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6361
6362 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6363 return false;
6364
6365 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6366 /* ??? Should we handle also fields here? */
6367 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6368 VEC_index (constructor_elt, v2, idx)->value))
6369 return false;
6370 return true;
6371 }
6372
6373 case SAVE_EXPR:
6374 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6375
6376 case CALL_EXPR:
6377 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6378 if (cmp <= 0)
6379 return cmp;
6380 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6381 return 0;
6382 {
6383 const_tree arg1, arg2;
6384 const_call_expr_arg_iterator iter1, iter2;
6385 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6386 arg2 = first_const_call_expr_arg (t2, &iter2);
6387 arg1 && arg2;
6388 arg1 = next_const_call_expr_arg (&iter1),
6389 arg2 = next_const_call_expr_arg (&iter2))
6390 {
6391 cmp = simple_cst_equal (arg1, arg2);
6392 if (cmp <= 0)
6393 return cmp;
6394 }
6395 return arg1 == arg2;
6396 }
6397
6398 case TARGET_EXPR:
6399 /* Special case: if either target is an unallocated VAR_DECL,
6400 it means that it's going to be unified with whatever the
6401 TARGET_EXPR is really supposed to initialize, so treat it
6402 as being equivalent to anything. */
6403 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6404 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6405 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6406 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6407 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6408 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6409 cmp = 1;
6410 else
6411 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6412
6413 if (cmp <= 0)
6414 return cmp;
6415
6416 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6417
6418 case WITH_CLEANUP_EXPR:
6419 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6420 if (cmp <= 0)
6421 return cmp;
6422
6423 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6424
6425 case COMPONENT_REF:
6426 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6427 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6428
6429 return 0;
6430
6431 case VAR_DECL:
6432 case PARM_DECL:
6433 case CONST_DECL:
6434 case FUNCTION_DECL:
6435 return 0;
6436
6437 default:
6438 break;
6439 }
6440
6441 /* This general rule works for most tree codes. All exceptions should be
6442 handled above. If this is a language-specific tree code, we can't
6443 trust what might be in the operand, so say we don't know
6444 the situation. */
6445 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6446 return -1;
6447
6448 switch (TREE_CODE_CLASS (code1))
6449 {
6450 case tcc_unary:
6451 case tcc_binary:
6452 case tcc_comparison:
6453 case tcc_expression:
6454 case tcc_reference:
6455 case tcc_statement:
6456 cmp = 1;
6457 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6458 {
6459 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6460 if (cmp <= 0)
6461 return cmp;
6462 }
6463
6464 return cmp;
6465
6466 default:
6467 return -1;
6468 }
6469 }
6470
6471 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6472 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6473 than U, respectively. */
6474
6475 int
6476 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6477 {
6478 if (tree_int_cst_sgn (t) < 0)
6479 return -1;
6480 else if (TREE_INT_CST_HIGH (t) != 0)
6481 return 1;
6482 else if (TREE_INT_CST_LOW (t) == u)
6483 return 0;
6484 else if (TREE_INT_CST_LOW (t) < u)
6485 return -1;
6486 else
6487 return 1;
6488 }
6489
6490 /* Return true if CODE represents an associative tree code. Otherwise
6491 return false. */
6492 bool
6493 associative_tree_code (enum tree_code code)
6494 {
6495 switch (code)
6496 {
6497 case BIT_IOR_EXPR:
6498 case BIT_AND_EXPR:
6499 case BIT_XOR_EXPR:
6500 case PLUS_EXPR:
6501 case MULT_EXPR:
6502 case MIN_EXPR:
6503 case MAX_EXPR:
6504 return true;
6505
6506 default:
6507 break;
6508 }
6509 return false;
6510 }
6511
6512 /* Return true if CODE represents a commutative tree code. Otherwise
6513 return false. */
6514 bool
6515 commutative_tree_code (enum tree_code code)
6516 {
6517 switch (code)
6518 {
6519 case PLUS_EXPR:
6520 case MULT_EXPR:
6521 case MIN_EXPR:
6522 case MAX_EXPR:
6523 case BIT_IOR_EXPR:
6524 case BIT_XOR_EXPR:
6525 case BIT_AND_EXPR:
6526 case NE_EXPR:
6527 case EQ_EXPR:
6528 case UNORDERED_EXPR:
6529 case ORDERED_EXPR:
6530 case UNEQ_EXPR:
6531 case LTGT_EXPR:
6532 case TRUTH_AND_EXPR:
6533 case TRUTH_XOR_EXPR:
6534 case TRUTH_OR_EXPR:
6535 return true;
6536
6537 default:
6538 break;
6539 }
6540 return false;
6541 }
6542
6543 /* Generate a hash value for an expression. This can be used iteratively
6544 by passing a previous result as the VAL argument.
6545
6546 This function is intended to produce the same hash for expressions which
6547 would compare equal using operand_equal_p. */
6548
6549 hashval_t
6550 iterative_hash_expr (const_tree t, hashval_t val)
6551 {
6552 int i;
6553 enum tree_code code;
6554 char tclass;
6555
6556 if (t == NULL_TREE)
6557 return iterative_hash_hashval_t (0, val);
6558
6559 code = TREE_CODE (t);
6560
6561 switch (code)
6562 {
6563 /* Alas, constants aren't shared, so we can't rely on pointer
6564 identity. */
6565 case INTEGER_CST:
6566 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6567 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6568 case REAL_CST:
6569 {
6570 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6571
6572 return iterative_hash_hashval_t (val2, val);
6573 }
6574 case FIXED_CST:
6575 {
6576 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6577
6578 return iterative_hash_hashval_t (val2, val);
6579 }
6580 case STRING_CST:
6581 return iterative_hash (TREE_STRING_POINTER (t),
6582 TREE_STRING_LENGTH (t), val);
6583 case COMPLEX_CST:
6584 val = iterative_hash_expr (TREE_REALPART (t), val);
6585 return iterative_hash_expr (TREE_IMAGPART (t), val);
6586 case VECTOR_CST:
6587 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6588 case SSA_NAME:
6589 /* We can just compare by pointer. */
6590 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6591 case PLACEHOLDER_EXPR:
6592 /* The node itself doesn't matter. */
6593 return val;
6594 case TREE_LIST:
6595 /* A list of expressions, for a CALL_EXPR or as the elements of a
6596 VECTOR_CST. */
6597 for (; t; t = TREE_CHAIN (t))
6598 val = iterative_hash_expr (TREE_VALUE (t), val);
6599 return val;
6600 case CONSTRUCTOR:
6601 {
6602 unsigned HOST_WIDE_INT idx;
6603 tree field, value;
6604 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6605 {
6606 val = iterative_hash_expr (field, val);
6607 val = iterative_hash_expr (value, val);
6608 }
6609 return val;
6610 }
6611 case FUNCTION_DECL:
6612 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6613 Otherwise nodes that compare equal according to operand_equal_p might
6614 get different hash codes. However, don't do this for machine specific
6615 or front end builtins, since the function code is overloaded in those
6616 cases. */
6617 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6618 && built_in_decls[DECL_FUNCTION_CODE (t)])
6619 {
6620 t = built_in_decls[DECL_FUNCTION_CODE (t)];
6621 code = TREE_CODE (t);
6622 }
6623 /* FALL THROUGH */
6624 default:
6625 tclass = TREE_CODE_CLASS (code);
6626
6627 if (tclass == tcc_declaration)
6628 {
6629 /* DECL's have a unique ID */
6630 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6631 }
6632 else
6633 {
6634 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6635
6636 val = iterative_hash_object (code, val);
6637
6638 /* Don't hash the type, that can lead to having nodes which
6639 compare equal according to operand_equal_p, but which
6640 have different hash codes. */
6641 if (CONVERT_EXPR_CODE_P (code)
6642 || code == NON_LVALUE_EXPR)
6643 {
6644 /* Make sure to include signness in the hash computation. */
6645 val += TYPE_UNSIGNED (TREE_TYPE (t));
6646 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6647 }
6648
6649 else if (commutative_tree_code (code))
6650 {
6651 /* It's a commutative expression. We want to hash it the same
6652 however it appears. We do this by first hashing both operands
6653 and then rehashing based on the order of their independent
6654 hashes. */
6655 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6656 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6657 hashval_t t;
6658
6659 if (one > two)
6660 t = one, one = two, two = t;
6661
6662 val = iterative_hash_hashval_t (one, val);
6663 val = iterative_hash_hashval_t (two, val);
6664 }
6665 else
6666 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6667 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6668 }
6669 return val;
6670 break;
6671 }
6672 }
6673
6674 /* Generate a hash value for a pair of expressions. This can be used
6675 iteratively by passing a previous result as the VAL argument.
6676
6677 The same hash value is always returned for a given pair of expressions,
6678 regardless of the order in which they are presented. This is useful in
6679 hashing the operands of commutative functions. */
6680
6681 hashval_t
6682 iterative_hash_exprs_commutative (const_tree t1,
6683 const_tree t2, hashval_t val)
6684 {
6685 hashval_t one = iterative_hash_expr (t1, 0);
6686 hashval_t two = iterative_hash_expr (t2, 0);
6687 hashval_t t;
6688
6689 if (one > two)
6690 t = one, one = two, two = t;
6691 val = iterative_hash_hashval_t (one, val);
6692 val = iterative_hash_hashval_t (two, val);
6693
6694 return val;
6695 }
6696 \f
6697 /* Constructors for pointer, array and function types.
6698 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
6699 constructed by language-dependent code, not here.) */
6700
6701 /* Construct, lay out and return the type of pointers to TO_TYPE with
6702 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
6703 reference all of memory. If such a type has already been
6704 constructed, reuse it. */
6705
6706 tree
6707 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
6708 bool can_alias_all)
6709 {
6710 tree t;
6711
6712 if (to_type == error_mark_node)
6713 return error_mark_node;
6714
6715 /* If the pointed-to type has the may_alias attribute set, force
6716 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6717 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6718 can_alias_all = true;
6719
6720 /* In some cases, languages will have things that aren't a POINTER_TYPE
6721 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
6722 In that case, return that type without regard to the rest of our
6723 operands.
6724
6725 ??? This is a kludge, but consistent with the way this function has
6726 always operated and there doesn't seem to be a good way to avoid this
6727 at the moment. */
6728 if (TYPE_POINTER_TO (to_type) != 0
6729 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
6730 return TYPE_POINTER_TO (to_type);
6731
6732 /* First, if we already have a type for pointers to TO_TYPE and it's
6733 the proper mode, use it. */
6734 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
6735 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6736 return t;
6737
6738 t = make_node (POINTER_TYPE);
6739
6740 TREE_TYPE (t) = to_type;
6741 SET_TYPE_MODE (t, mode);
6742 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6743 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
6744 TYPE_POINTER_TO (to_type) = t;
6745
6746 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6747 SET_TYPE_STRUCTURAL_EQUALITY (t);
6748 else if (TYPE_CANONICAL (to_type) != to_type)
6749 TYPE_CANONICAL (t)
6750 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
6751 mode, can_alias_all);
6752
6753 /* Lay out the type. This function has many callers that are concerned
6754 with expression-construction, and this simplifies them all. */
6755 layout_type (t);
6756
6757 return t;
6758 }
6759
6760 /* By default build pointers in ptr_mode. */
6761
6762 tree
6763 build_pointer_type (tree to_type)
6764 {
6765 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6766 : TYPE_ADDR_SPACE (to_type);
6767 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6768 return build_pointer_type_for_mode (to_type, pointer_mode, false);
6769 }
6770
6771 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
6772
6773 tree
6774 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
6775 bool can_alias_all)
6776 {
6777 tree t;
6778
6779 if (to_type == error_mark_node)
6780 return error_mark_node;
6781
6782 /* If the pointed-to type has the may_alias attribute set, force
6783 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6784 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6785 can_alias_all = true;
6786
6787 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
6788 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
6789 In that case, return that type without regard to the rest of our
6790 operands.
6791
6792 ??? This is a kludge, but consistent with the way this function has
6793 always operated and there doesn't seem to be a good way to avoid this
6794 at the moment. */
6795 if (TYPE_REFERENCE_TO (to_type) != 0
6796 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
6797 return TYPE_REFERENCE_TO (to_type);
6798
6799 /* First, if we already have a type for pointers to TO_TYPE and it's
6800 the proper mode, use it. */
6801 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
6802 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6803 return t;
6804
6805 t = make_node (REFERENCE_TYPE);
6806
6807 TREE_TYPE (t) = to_type;
6808 SET_TYPE_MODE (t, mode);
6809 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6810 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
6811 TYPE_REFERENCE_TO (to_type) = t;
6812
6813 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6814 SET_TYPE_STRUCTURAL_EQUALITY (t);
6815 else if (TYPE_CANONICAL (to_type) != to_type)
6816 TYPE_CANONICAL (t)
6817 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
6818 mode, can_alias_all);
6819
6820 layout_type (t);
6821
6822 return t;
6823 }
6824
6825
6826 /* Build the node for the type of references-to-TO_TYPE by default
6827 in ptr_mode. */
6828
6829 tree
6830 build_reference_type (tree to_type)
6831 {
6832 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6833 : TYPE_ADDR_SPACE (to_type);
6834 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6835 return build_reference_type_for_mode (to_type, pointer_mode, false);
6836 }
6837
6838 /* Build a type that is compatible with t but has no cv quals anywhere
6839 in its type, thus
6840
6841 const char *const *const * -> char ***. */
6842
6843 tree
6844 build_type_no_quals (tree t)
6845 {
6846 switch (TREE_CODE (t))
6847 {
6848 case POINTER_TYPE:
6849 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6850 TYPE_MODE (t),
6851 TYPE_REF_CAN_ALIAS_ALL (t));
6852 case REFERENCE_TYPE:
6853 return
6854 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6855 TYPE_MODE (t),
6856 TYPE_REF_CAN_ALIAS_ALL (t));
6857 default:
6858 return TYPE_MAIN_VARIANT (t);
6859 }
6860 }
6861
6862 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
6863 MAXVAL should be the maximum value in the domain
6864 (one less than the length of the array).
6865
6866 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
6867 We don't enforce this limit, that is up to caller (e.g. language front end).
6868 The limit exists because the result is a signed type and we don't handle
6869 sizes that use more than one HOST_WIDE_INT. */
6870
6871 tree
6872 build_index_type (tree maxval)
6873 {
6874 tree itype = make_node (INTEGER_TYPE);
6875
6876 TREE_TYPE (itype) = sizetype;
6877 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
6878 TYPE_MIN_VALUE (itype) = size_zero_node;
6879 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
6880 SET_TYPE_MODE (itype, TYPE_MODE (sizetype));
6881 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
6882 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
6883 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
6884 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
6885
6886 if (host_integerp (maxval, 1))
6887 return type_hash_canon (tree_low_cst (maxval, 1), itype);
6888 else
6889 {
6890 /* Since we cannot hash this type, we need to compare it using
6891 structural equality checks. */
6892 SET_TYPE_STRUCTURAL_EQUALITY (itype);
6893 return itype;
6894 }
6895 }
6896
6897 #define MAX_INT_CACHED_PREC \
6898 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
6899 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
6900
6901 /* Builds a signed or unsigned integer type of precision PRECISION.
6902 Used for C bitfields whose precision does not match that of
6903 built-in target types. */
6904 tree
6905 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
6906 int unsignedp)
6907 {
6908 tree itype, ret;
6909
6910 if (unsignedp)
6911 unsignedp = MAX_INT_CACHED_PREC + 1;
6912
6913 if (precision <= MAX_INT_CACHED_PREC)
6914 {
6915 itype = nonstandard_integer_type_cache[precision + unsignedp];
6916 if (itype)
6917 return itype;
6918 }
6919
6920 itype = make_node (INTEGER_TYPE);
6921 TYPE_PRECISION (itype) = precision;
6922
6923 if (unsignedp)
6924 fixup_unsigned_type (itype);
6925 else
6926 fixup_signed_type (itype);
6927
6928 ret = itype;
6929 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
6930 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
6931 if (precision <= MAX_INT_CACHED_PREC && lang_hooks.types.hash_types)
6932 nonstandard_integer_type_cache[precision + unsignedp] = ret;
6933
6934 return ret;
6935 }
6936
6937 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
6938 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
6939 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
6940
6941 tree
6942 build_range_type (tree type, tree lowval, tree highval)
6943 {
6944 tree itype = make_node (INTEGER_TYPE);
6945
6946 TREE_TYPE (itype) = type;
6947 if (type == NULL_TREE)
6948 type = sizetype;
6949
6950 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
6951 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
6952
6953 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
6954 SET_TYPE_MODE (itype, TYPE_MODE (type));
6955 TYPE_SIZE (itype) = TYPE_SIZE (type);
6956 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
6957 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
6958 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
6959
6960 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
6961 return type_hash_canon (tree_low_cst (highval, 0)
6962 - tree_low_cst (lowval, 0),
6963 itype);
6964 else
6965 return itype;
6966 }
6967
6968 /* Return true if the debug information for TYPE, a subtype, should be emitted
6969 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
6970 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
6971 debug info and doesn't reflect the source code. */
6972
6973 bool
6974 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
6975 {
6976 tree base_type = TREE_TYPE (type), low, high;
6977
6978 /* Subrange types have a base type which is an integral type. */
6979 if (!INTEGRAL_TYPE_P (base_type))
6980 return false;
6981
6982 /* Get the real bounds of the subtype. */
6983 if (lang_hooks.types.get_subrange_bounds)
6984 lang_hooks.types.get_subrange_bounds (type, &low, &high);
6985 else
6986 {
6987 low = TYPE_MIN_VALUE (type);
6988 high = TYPE_MAX_VALUE (type);
6989 }
6990
6991 /* If the type and its base type have the same representation and the same
6992 name, then the type is not a subrange but a copy of the base type. */
6993 if ((TREE_CODE (base_type) == INTEGER_TYPE
6994 || TREE_CODE (base_type) == BOOLEAN_TYPE)
6995 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
6996 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
6997 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
6998 {
6999 tree type_name = TYPE_NAME (type);
7000 tree base_type_name = TYPE_NAME (base_type);
7001
7002 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7003 type_name = DECL_NAME (type_name);
7004
7005 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7006 base_type_name = DECL_NAME (base_type_name);
7007
7008 if (type_name == base_type_name)
7009 return false;
7010 }
7011
7012 if (lowval)
7013 *lowval = low;
7014 if (highval)
7015 *highval = high;
7016 return true;
7017 }
7018
7019 /* Just like build_index_type, but takes lowval and highval instead
7020 of just highval (maxval). */
7021
7022 tree
7023 build_index_2_type (tree lowval, tree highval)
7024 {
7025 return build_range_type (sizetype, lowval, highval);
7026 }
7027
7028 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7029 and number of elements specified by the range of values of INDEX_TYPE.
7030 If such a type has already been constructed, reuse it. */
7031
7032 tree
7033 build_array_type (tree elt_type, tree index_type)
7034 {
7035 tree t;
7036 hashval_t hashcode = 0;
7037
7038 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7039 {
7040 error ("arrays of functions are not meaningful");
7041 elt_type = integer_type_node;
7042 }
7043
7044 t = make_node (ARRAY_TYPE);
7045 TREE_TYPE (t) = elt_type;
7046 TYPE_DOMAIN (t) = index_type;
7047 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7048 layout_type (t);
7049
7050 /* If the element type is incomplete at this point we get marked for
7051 structural equality. Do not record these types in the canonical
7052 type hashtable. */
7053 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7054 return t;
7055
7056 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
7057 if (index_type)
7058 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7059 t = type_hash_canon (hashcode, t);
7060
7061 if (TYPE_CANONICAL (t) == t)
7062 {
7063 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7064 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7065 SET_TYPE_STRUCTURAL_EQUALITY (t);
7066 else if (TYPE_CANONICAL (elt_type) != elt_type
7067 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7068 TYPE_CANONICAL (t)
7069 = build_array_type (TYPE_CANONICAL (elt_type),
7070 index_type ? TYPE_CANONICAL (index_type) : NULL);
7071 }
7072
7073 return t;
7074 }
7075
7076 /* Recursively examines the array elements of TYPE, until a non-array
7077 element type is found. */
7078
7079 tree
7080 strip_array_types (tree type)
7081 {
7082 while (TREE_CODE (type) == ARRAY_TYPE)
7083 type = TREE_TYPE (type);
7084
7085 return type;
7086 }
7087
7088 /* Computes the canonical argument types from the argument type list
7089 ARGTYPES.
7090
7091 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7092 on entry to this function, or if any of the ARGTYPES are
7093 structural.
7094
7095 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7096 true on entry to this function, or if any of the ARGTYPES are
7097 non-canonical.
7098
7099 Returns a canonical argument list, which may be ARGTYPES when the
7100 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7101 true) or would not differ from ARGTYPES. */
7102
7103 static tree
7104 maybe_canonicalize_argtypes(tree argtypes,
7105 bool *any_structural_p,
7106 bool *any_noncanonical_p)
7107 {
7108 tree arg;
7109 bool any_noncanonical_argtypes_p = false;
7110
7111 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7112 {
7113 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7114 /* Fail gracefully by stating that the type is structural. */
7115 *any_structural_p = true;
7116 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7117 *any_structural_p = true;
7118 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7119 || TREE_PURPOSE (arg))
7120 /* If the argument has a default argument, we consider it
7121 non-canonical even though the type itself is canonical.
7122 That way, different variants of function and method types
7123 with default arguments will all point to the variant with
7124 no defaults as their canonical type. */
7125 any_noncanonical_argtypes_p = true;
7126 }
7127
7128 if (*any_structural_p)
7129 return argtypes;
7130
7131 if (any_noncanonical_argtypes_p)
7132 {
7133 /* Build the canonical list of argument types. */
7134 tree canon_argtypes = NULL_TREE;
7135 bool is_void = false;
7136
7137 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7138 {
7139 if (arg == void_list_node)
7140 is_void = true;
7141 else
7142 canon_argtypes = tree_cons (NULL_TREE,
7143 TYPE_CANONICAL (TREE_VALUE (arg)),
7144 canon_argtypes);
7145 }
7146
7147 canon_argtypes = nreverse (canon_argtypes);
7148 if (is_void)
7149 canon_argtypes = chainon (canon_argtypes, void_list_node);
7150
7151 /* There is a non-canonical type. */
7152 *any_noncanonical_p = true;
7153 return canon_argtypes;
7154 }
7155
7156 /* The canonical argument types are the same as ARGTYPES. */
7157 return argtypes;
7158 }
7159
7160 /* Construct, lay out and return
7161 the type of functions returning type VALUE_TYPE
7162 given arguments of types ARG_TYPES.
7163 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7164 are data type nodes for the arguments of the function.
7165 If such a type has already been constructed, reuse it. */
7166
7167 tree
7168 build_function_type (tree value_type, tree arg_types)
7169 {
7170 tree t;
7171 hashval_t hashcode = 0;
7172 bool any_structural_p, any_noncanonical_p;
7173 tree canon_argtypes;
7174
7175 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7176 {
7177 error ("function return type cannot be function");
7178 value_type = integer_type_node;
7179 }
7180
7181 /* Make a node of the sort we want. */
7182 t = make_node (FUNCTION_TYPE);
7183 TREE_TYPE (t) = value_type;
7184 TYPE_ARG_TYPES (t) = arg_types;
7185
7186 /* If we already have such a type, use the old one. */
7187 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7188 hashcode = type_hash_list (arg_types, hashcode);
7189 t = type_hash_canon (hashcode, t);
7190
7191 /* Set up the canonical type. */
7192 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7193 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7194 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7195 &any_structural_p,
7196 &any_noncanonical_p);
7197 if (any_structural_p)
7198 SET_TYPE_STRUCTURAL_EQUALITY (t);
7199 else if (any_noncanonical_p)
7200 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7201 canon_argtypes);
7202
7203 if (!COMPLETE_TYPE_P (t))
7204 layout_type (t);
7205 return t;
7206 }
7207
7208 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7209
7210 tree
7211 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7212 {
7213 tree new_type = NULL;
7214 tree args, new_args = NULL, t;
7215 tree new_reversed;
7216 int i = 0;
7217
7218 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7219 args = TREE_CHAIN (args), i++)
7220 if (!bitmap_bit_p (args_to_skip, i))
7221 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7222
7223 new_reversed = nreverse (new_args);
7224 if (args)
7225 {
7226 if (new_reversed)
7227 TREE_CHAIN (new_args) = void_list_node;
7228 else
7229 new_reversed = void_list_node;
7230 }
7231
7232 /* Use copy_node to preserve as much as possible from original type
7233 (debug info, attribute lists etc.)
7234 Exception is METHOD_TYPEs must have THIS argument.
7235 When we are asked to remove it, we need to build new FUNCTION_TYPE
7236 instead. */
7237 if (TREE_CODE (orig_type) != METHOD_TYPE
7238 || !bitmap_bit_p (args_to_skip, 0))
7239 {
7240 new_type = copy_node (orig_type);
7241 TYPE_ARG_TYPES (new_type) = new_reversed;
7242 }
7243 else
7244 {
7245 new_type
7246 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7247 new_reversed));
7248 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7249 }
7250
7251 /* This is a new type, not a copy of an old type. Need to reassociate
7252 variants. We can handle everything except the main variant lazily. */
7253 t = TYPE_MAIN_VARIANT (orig_type);
7254 if (orig_type != t)
7255 {
7256 TYPE_MAIN_VARIANT (new_type) = t;
7257 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7258 TYPE_NEXT_VARIANT (t) = new_type;
7259 }
7260 else
7261 {
7262 TYPE_MAIN_VARIANT (new_type) = new_type;
7263 TYPE_NEXT_VARIANT (new_type) = NULL;
7264 }
7265 return new_type;
7266 }
7267
7268 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7269
7270 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7271 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7272 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7273
7274 tree
7275 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7276 {
7277 tree new_decl = copy_node (orig_decl);
7278 tree new_type;
7279
7280 new_type = TREE_TYPE (orig_decl);
7281 if (prototype_p (new_type))
7282 new_type = build_function_type_skip_args (new_type, args_to_skip);
7283 TREE_TYPE (new_decl) = new_type;
7284
7285 /* For declarations setting DECL_VINDEX (i.e. methods)
7286 we expect first argument to be THIS pointer. */
7287 if (bitmap_bit_p (args_to_skip, 0))
7288 DECL_VINDEX (new_decl) = NULL_TREE;
7289 return new_decl;
7290 }
7291
7292 /* Build a function type. The RETURN_TYPE is the type returned by the
7293 function. If VAARGS is set, no void_type_node is appended to the
7294 the list. ARGP must be always be terminated be a NULL_TREE. */
7295
7296 static tree
7297 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7298 {
7299 tree t, args, last;
7300
7301 t = va_arg (argp, tree);
7302 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7303 args = tree_cons (NULL_TREE, t, args);
7304
7305 if (vaargs)
7306 {
7307 last = args;
7308 if (args != NULL_TREE)
7309 args = nreverse (args);
7310 gcc_assert (last != void_list_node);
7311 }
7312 else if (args == NULL_TREE)
7313 args = void_list_node;
7314 else
7315 {
7316 last = args;
7317 args = nreverse (args);
7318 TREE_CHAIN (last) = void_list_node;
7319 }
7320 args = build_function_type (return_type, args);
7321
7322 return args;
7323 }
7324
7325 /* Build a function type. The RETURN_TYPE is the type returned by the
7326 function. If additional arguments are provided, they are
7327 additional argument types. The list of argument types must always
7328 be terminated by NULL_TREE. */
7329
7330 tree
7331 build_function_type_list (tree return_type, ...)
7332 {
7333 tree args;
7334 va_list p;
7335
7336 va_start (p, return_type);
7337 args = build_function_type_list_1 (false, return_type, p);
7338 va_end (p);
7339 return args;
7340 }
7341
7342 /* Build a variable argument function type. The RETURN_TYPE is the
7343 type returned by the function. If additional arguments are provided,
7344 they are additional argument types. The list of argument types must
7345 always be terminated by NULL_TREE. */
7346
7347 tree
7348 build_varargs_function_type_list (tree return_type, ...)
7349 {
7350 tree args;
7351 va_list p;
7352
7353 va_start (p, return_type);
7354 args = build_function_type_list_1 (true, return_type, p);
7355 va_end (p);
7356
7357 return args;
7358 }
7359
7360 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7361 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7362 for the method. An implicit additional parameter (of type
7363 pointer-to-BASETYPE) is added to the ARGTYPES. */
7364
7365 tree
7366 build_method_type_directly (tree basetype,
7367 tree rettype,
7368 tree argtypes)
7369 {
7370 tree t;
7371 tree ptype;
7372 int hashcode = 0;
7373 bool any_structural_p, any_noncanonical_p;
7374 tree canon_argtypes;
7375
7376 /* Make a node of the sort we want. */
7377 t = make_node (METHOD_TYPE);
7378
7379 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7380 TREE_TYPE (t) = rettype;
7381 ptype = build_pointer_type (basetype);
7382
7383 /* The actual arglist for this function includes a "hidden" argument
7384 which is "this". Put it into the list of argument types. */
7385 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7386 TYPE_ARG_TYPES (t) = argtypes;
7387
7388 /* If we already have such a type, use the old one. */
7389 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7390 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7391 hashcode = type_hash_list (argtypes, hashcode);
7392 t = type_hash_canon (hashcode, t);
7393
7394 /* Set up the canonical type. */
7395 any_structural_p
7396 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7397 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7398 any_noncanonical_p
7399 = (TYPE_CANONICAL (basetype) != basetype
7400 || TYPE_CANONICAL (rettype) != rettype);
7401 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7402 &any_structural_p,
7403 &any_noncanonical_p);
7404 if (any_structural_p)
7405 SET_TYPE_STRUCTURAL_EQUALITY (t);
7406 else if (any_noncanonical_p)
7407 TYPE_CANONICAL (t)
7408 = build_method_type_directly (TYPE_CANONICAL (basetype),
7409 TYPE_CANONICAL (rettype),
7410 canon_argtypes);
7411 if (!COMPLETE_TYPE_P (t))
7412 layout_type (t);
7413
7414 return t;
7415 }
7416
7417 /* Construct, lay out and return the type of methods belonging to class
7418 BASETYPE and whose arguments and values are described by TYPE.
7419 If that type exists already, reuse it.
7420 TYPE must be a FUNCTION_TYPE node. */
7421
7422 tree
7423 build_method_type (tree basetype, tree type)
7424 {
7425 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7426
7427 return build_method_type_directly (basetype,
7428 TREE_TYPE (type),
7429 TYPE_ARG_TYPES (type));
7430 }
7431
7432 /* Construct, lay out and return the type of offsets to a value
7433 of type TYPE, within an object of type BASETYPE.
7434 If a suitable offset type exists already, reuse it. */
7435
7436 tree
7437 build_offset_type (tree basetype, tree type)
7438 {
7439 tree t;
7440 hashval_t hashcode = 0;
7441
7442 /* Make a node of the sort we want. */
7443 t = make_node (OFFSET_TYPE);
7444
7445 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7446 TREE_TYPE (t) = type;
7447
7448 /* If we already have such a type, use the old one. */
7449 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7450 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7451 t = type_hash_canon (hashcode, t);
7452
7453 if (!COMPLETE_TYPE_P (t))
7454 layout_type (t);
7455
7456 if (TYPE_CANONICAL (t) == t)
7457 {
7458 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7459 || TYPE_STRUCTURAL_EQUALITY_P (type))
7460 SET_TYPE_STRUCTURAL_EQUALITY (t);
7461 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7462 || TYPE_CANONICAL (type) != type)
7463 TYPE_CANONICAL (t)
7464 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7465 TYPE_CANONICAL (type));
7466 }
7467
7468 return t;
7469 }
7470
7471 /* Create a complex type whose components are COMPONENT_TYPE. */
7472
7473 tree
7474 build_complex_type (tree component_type)
7475 {
7476 tree t;
7477 hashval_t hashcode;
7478
7479 gcc_assert (INTEGRAL_TYPE_P (component_type)
7480 || SCALAR_FLOAT_TYPE_P (component_type)
7481 || FIXED_POINT_TYPE_P (component_type));
7482
7483 /* Make a node of the sort we want. */
7484 t = make_node (COMPLEX_TYPE);
7485
7486 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7487
7488 /* If we already have such a type, use the old one. */
7489 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7490 t = type_hash_canon (hashcode, t);
7491
7492 if (!COMPLETE_TYPE_P (t))
7493 layout_type (t);
7494
7495 if (TYPE_CANONICAL (t) == t)
7496 {
7497 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7498 SET_TYPE_STRUCTURAL_EQUALITY (t);
7499 else if (TYPE_CANONICAL (component_type) != component_type)
7500 TYPE_CANONICAL (t)
7501 = build_complex_type (TYPE_CANONICAL (component_type));
7502 }
7503
7504 /* We need to create a name, since complex is a fundamental type. */
7505 if (! TYPE_NAME (t))
7506 {
7507 const char *name;
7508 if (component_type == char_type_node)
7509 name = "complex char";
7510 else if (component_type == signed_char_type_node)
7511 name = "complex signed char";
7512 else if (component_type == unsigned_char_type_node)
7513 name = "complex unsigned char";
7514 else if (component_type == short_integer_type_node)
7515 name = "complex short int";
7516 else if (component_type == short_unsigned_type_node)
7517 name = "complex short unsigned int";
7518 else if (component_type == integer_type_node)
7519 name = "complex int";
7520 else if (component_type == unsigned_type_node)
7521 name = "complex unsigned int";
7522 else if (component_type == long_integer_type_node)
7523 name = "complex long int";
7524 else if (component_type == long_unsigned_type_node)
7525 name = "complex long unsigned int";
7526 else if (component_type == long_long_integer_type_node)
7527 name = "complex long long int";
7528 else if (component_type == long_long_unsigned_type_node)
7529 name = "complex long long unsigned int";
7530 else
7531 name = 0;
7532
7533 if (name != 0)
7534 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7535 get_identifier (name), t);
7536 }
7537
7538 return build_qualified_type (t, TYPE_QUALS (component_type));
7539 }
7540
7541 /* If TYPE is a real or complex floating-point type and the target
7542 does not directly support arithmetic on TYPE then return the wider
7543 type to be used for arithmetic on TYPE. Otherwise, return
7544 NULL_TREE. */
7545
7546 tree
7547 excess_precision_type (tree type)
7548 {
7549 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7550 {
7551 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7552 switch (TREE_CODE (type))
7553 {
7554 case REAL_TYPE:
7555 switch (flt_eval_method)
7556 {
7557 case 1:
7558 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7559 return double_type_node;
7560 break;
7561 case 2:
7562 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7563 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7564 return long_double_type_node;
7565 break;
7566 default:
7567 gcc_unreachable ();
7568 }
7569 break;
7570 case COMPLEX_TYPE:
7571 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7572 return NULL_TREE;
7573 switch (flt_eval_method)
7574 {
7575 case 1:
7576 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7577 return complex_double_type_node;
7578 break;
7579 case 2:
7580 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7581 || (TYPE_MODE (TREE_TYPE (type))
7582 == TYPE_MODE (double_type_node)))
7583 return complex_long_double_type_node;
7584 break;
7585 default:
7586 gcc_unreachable ();
7587 }
7588 break;
7589 default:
7590 break;
7591 }
7592 }
7593 return NULL_TREE;
7594 }
7595 \f
7596 /* Return OP, stripped of any conversions to wider types as much as is safe.
7597 Converting the value back to OP's type makes a value equivalent to OP.
7598
7599 If FOR_TYPE is nonzero, we return a value which, if converted to
7600 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7601
7602 OP must have integer, real or enumeral type. Pointers are not allowed!
7603
7604 There are some cases where the obvious value we could return
7605 would regenerate to OP if converted to OP's type,
7606 but would not extend like OP to wider types.
7607 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
7608 For example, if OP is (unsigned short)(signed char)-1,
7609 we avoid returning (signed char)-1 if FOR_TYPE is int,
7610 even though extending that to an unsigned short would regenerate OP,
7611 since the result of extending (signed char)-1 to (int)
7612 is different from (int) OP. */
7613
7614 tree
7615 get_unwidened (tree op, tree for_type)
7616 {
7617 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
7618 tree type = TREE_TYPE (op);
7619 unsigned final_prec
7620 = TYPE_PRECISION (for_type != 0 ? for_type : type);
7621 int uns
7622 = (for_type != 0 && for_type != type
7623 && final_prec > TYPE_PRECISION (type)
7624 && TYPE_UNSIGNED (type));
7625 tree win = op;
7626
7627 while (CONVERT_EXPR_P (op))
7628 {
7629 int bitschange;
7630
7631 /* TYPE_PRECISION on vector types has different meaning
7632 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
7633 so avoid them here. */
7634 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
7635 break;
7636
7637 bitschange = TYPE_PRECISION (TREE_TYPE (op))
7638 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
7639
7640 /* Truncations are many-one so cannot be removed.
7641 Unless we are later going to truncate down even farther. */
7642 if (bitschange < 0
7643 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
7644 break;
7645
7646 /* See what's inside this conversion. If we decide to strip it,
7647 we will set WIN. */
7648 op = TREE_OPERAND (op, 0);
7649
7650 /* If we have not stripped any zero-extensions (uns is 0),
7651 we can strip any kind of extension.
7652 If we have previously stripped a zero-extension,
7653 only zero-extensions can safely be stripped.
7654 Any extension can be stripped if the bits it would produce
7655 are all going to be discarded later by truncating to FOR_TYPE. */
7656
7657 if (bitschange > 0)
7658 {
7659 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
7660 win = op;
7661 /* TYPE_UNSIGNED says whether this is a zero-extension.
7662 Let's avoid computing it if it does not affect WIN
7663 and if UNS will not be needed again. */
7664 if ((uns
7665 || CONVERT_EXPR_P (op))
7666 && TYPE_UNSIGNED (TREE_TYPE (op)))
7667 {
7668 uns = 1;
7669 win = op;
7670 }
7671 }
7672 }
7673
7674 /* If we finally reach a constant see if it fits in for_type and
7675 in that case convert it. */
7676 if (for_type
7677 && TREE_CODE (win) == INTEGER_CST
7678 && TREE_TYPE (win) != for_type
7679 && int_fits_type_p (win, for_type))
7680 win = fold_convert (for_type, win);
7681
7682 return win;
7683 }
7684 \f
7685 /* Return OP or a simpler expression for a narrower value
7686 which can be sign-extended or zero-extended to give back OP.
7687 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
7688 or 0 if the value should be sign-extended. */
7689
7690 tree
7691 get_narrower (tree op, int *unsignedp_ptr)
7692 {
7693 int uns = 0;
7694 int first = 1;
7695 tree win = op;
7696 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
7697
7698 while (TREE_CODE (op) == NOP_EXPR)
7699 {
7700 int bitschange
7701 = (TYPE_PRECISION (TREE_TYPE (op))
7702 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
7703
7704 /* Truncations are many-one so cannot be removed. */
7705 if (bitschange < 0)
7706 break;
7707
7708 /* See what's inside this conversion. If we decide to strip it,
7709 we will set WIN. */
7710
7711 if (bitschange > 0)
7712 {
7713 op = TREE_OPERAND (op, 0);
7714 /* An extension: the outermost one can be stripped,
7715 but remember whether it is zero or sign extension. */
7716 if (first)
7717 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7718 /* Otherwise, if a sign extension has been stripped,
7719 only sign extensions can now be stripped;
7720 if a zero extension has been stripped, only zero-extensions. */
7721 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
7722 break;
7723 first = 0;
7724 }
7725 else /* bitschange == 0 */
7726 {
7727 /* A change in nominal type can always be stripped, but we must
7728 preserve the unsignedness. */
7729 if (first)
7730 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7731 first = 0;
7732 op = TREE_OPERAND (op, 0);
7733 /* Keep trying to narrow, but don't assign op to win if it
7734 would turn an integral type into something else. */
7735 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
7736 continue;
7737 }
7738
7739 win = op;
7740 }
7741
7742 if (TREE_CODE (op) == COMPONENT_REF
7743 /* Since type_for_size always gives an integer type. */
7744 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
7745 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
7746 /* Ensure field is laid out already. */
7747 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
7748 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
7749 {
7750 unsigned HOST_WIDE_INT innerprec
7751 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
7752 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
7753 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
7754 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
7755
7756 /* We can get this structure field in a narrower type that fits it,
7757 but the resulting extension to its nominal type (a fullword type)
7758 must satisfy the same conditions as for other extensions.
7759
7760 Do this only for fields that are aligned (not bit-fields),
7761 because when bit-field insns will be used there is no
7762 advantage in doing this. */
7763
7764 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
7765 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
7766 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
7767 && type != 0)
7768 {
7769 if (first)
7770 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
7771 win = fold_convert (type, op);
7772 }
7773 }
7774
7775 *unsignedp_ptr = uns;
7776 return win;
7777 }
7778 \f
7779 /* Nonzero if integer constant C has a value that is permissible
7780 for type TYPE (an INTEGER_TYPE). */
7781
7782 int
7783 int_fits_type_p (const_tree c, const_tree type)
7784 {
7785 tree type_low_bound, type_high_bound;
7786 bool ok_for_low_bound, ok_for_high_bound, unsc;
7787 double_int dc, dd;
7788
7789 dc = tree_to_double_int (c);
7790 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
7791
7792 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
7793 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
7794 && unsc)
7795 /* So c is an unsigned integer whose type is sizetype and type is not.
7796 sizetype'd integers are sign extended even though they are
7797 unsigned. If the integer value fits in the lower end word of c,
7798 and if the higher end word has all its bits set to 1, that
7799 means the higher end bits are set to 1 only for sign extension.
7800 So let's convert c into an equivalent zero extended unsigned
7801 integer. */
7802 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
7803
7804 retry:
7805 type_low_bound = TYPE_MIN_VALUE (type);
7806 type_high_bound = TYPE_MAX_VALUE (type);
7807
7808 /* If at least one bound of the type is a constant integer, we can check
7809 ourselves and maybe make a decision. If no such decision is possible, but
7810 this type is a subtype, try checking against that. Otherwise, use
7811 fit_double_type, which checks against the precision.
7812
7813 Compute the status for each possibly constant bound, and return if we see
7814 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
7815 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
7816 for "constant known to fit". */
7817
7818 /* Check if c >= type_low_bound. */
7819 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
7820 {
7821 dd = tree_to_double_int (type_low_bound);
7822 if (TREE_CODE (type) == INTEGER_TYPE
7823 && TYPE_IS_SIZETYPE (type)
7824 && TYPE_UNSIGNED (type))
7825 dd = double_int_zext (dd, TYPE_PRECISION (type));
7826 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
7827 {
7828 int c_neg = (!unsc && double_int_negative_p (dc));
7829 int t_neg = (unsc && double_int_negative_p (dd));
7830
7831 if (c_neg && !t_neg)
7832 return 0;
7833 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
7834 return 0;
7835 }
7836 else if (double_int_cmp (dc, dd, unsc) < 0)
7837 return 0;
7838 ok_for_low_bound = true;
7839 }
7840 else
7841 ok_for_low_bound = false;
7842
7843 /* Check if c <= type_high_bound. */
7844 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
7845 {
7846 dd = tree_to_double_int (type_high_bound);
7847 if (TREE_CODE (type) == INTEGER_TYPE
7848 && TYPE_IS_SIZETYPE (type)
7849 && TYPE_UNSIGNED (type))
7850 dd = double_int_zext (dd, TYPE_PRECISION (type));
7851 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
7852 {
7853 int c_neg = (!unsc && double_int_negative_p (dc));
7854 int t_neg = (unsc && double_int_negative_p (dd));
7855
7856 if (t_neg && !c_neg)
7857 return 0;
7858 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
7859 return 0;
7860 }
7861 else if (double_int_cmp (dc, dd, unsc) > 0)
7862 return 0;
7863 ok_for_high_bound = true;
7864 }
7865 else
7866 ok_for_high_bound = false;
7867
7868 /* If the constant fits both bounds, the result is known. */
7869 if (ok_for_low_bound && ok_for_high_bound)
7870 return 1;
7871
7872 /* Perform some generic filtering which may allow making a decision
7873 even if the bounds are not constant. First, negative integers
7874 never fit in unsigned types, */
7875 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
7876 return 0;
7877
7878 /* Second, narrower types always fit in wider ones. */
7879 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
7880 return 1;
7881
7882 /* Third, unsigned integers with top bit set never fit signed types. */
7883 if (! TYPE_UNSIGNED (type) && unsc)
7884 {
7885 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
7886 if (prec < HOST_BITS_PER_WIDE_INT)
7887 {
7888 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
7889 return 0;
7890 }
7891 else if (((((unsigned HOST_WIDE_INT) 1)
7892 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
7893 return 0;
7894 }
7895
7896 /* If we haven't been able to decide at this point, there nothing more we
7897 can check ourselves here. Look at the base type if we have one and it
7898 has the same precision. */
7899 if (TREE_CODE (type) == INTEGER_TYPE
7900 && TREE_TYPE (type) != 0
7901 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
7902 {
7903 type = TREE_TYPE (type);
7904 goto retry;
7905 }
7906
7907 /* Or to fit_double_type, if nothing else. */
7908 return !fit_double_type (dc.low, dc.high, &dc.low, &dc.high, type);
7909 }
7910
7911 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
7912 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
7913 represented (assuming two's-complement arithmetic) within the bit
7914 precision of the type are returned instead. */
7915
7916 void
7917 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
7918 {
7919 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
7920 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
7921 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
7922 TYPE_UNSIGNED (type));
7923 else
7924 {
7925 if (TYPE_UNSIGNED (type))
7926 mpz_set_ui (min, 0);
7927 else
7928 {
7929 double_int mn;
7930 mn = double_int_mask (TYPE_PRECISION (type) - 1);
7931 mn = double_int_sext (double_int_add (mn, double_int_one),
7932 TYPE_PRECISION (type));
7933 mpz_set_double_int (min, mn, false);
7934 }
7935 }
7936
7937 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
7938 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
7939 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
7940 TYPE_UNSIGNED (type));
7941 else
7942 {
7943 if (TYPE_UNSIGNED (type))
7944 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
7945 true);
7946 else
7947 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
7948 true);
7949 }
7950 }
7951
7952 /* Return true if VAR is an automatic variable defined in function FN. */
7953
7954 bool
7955 auto_var_in_fn_p (const_tree var, const_tree fn)
7956 {
7957 return (DECL_P (var) && DECL_CONTEXT (var) == fn
7958 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
7959 || TREE_CODE (var) == PARM_DECL)
7960 && ! TREE_STATIC (var))
7961 || TREE_CODE (var) == LABEL_DECL
7962 || TREE_CODE (var) == RESULT_DECL));
7963 }
7964
7965 /* Subprogram of following function. Called by walk_tree.
7966
7967 Return *TP if it is an automatic variable or parameter of the
7968 function passed in as DATA. */
7969
7970 static tree
7971 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
7972 {
7973 tree fn = (tree) data;
7974
7975 if (TYPE_P (*tp))
7976 *walk_subtrees = 0;
7977
7978 else if (DECL_P (*tp)
7979 && auto_var_in_fn_p (*tp, fn))
7980 return *tp;
7981
7982 return NULL_TREE;
7983 }
7984
7985 /* Returns true if T is, contains, or refers to a type with variable
7986 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
7987 arguments, but not the return type. If FN is nonzero, only return
7988 true if a modifier of the type or position of FN is a variable or
7989 parameter inside FN.
7990
7991 This concept is more general than that of C99 'variably modified types':
7992 in C99, a struct type is never variably modified because a VLA may not
7993 appear as a structure member. However, in GNU C code like:
7994
7995 struct S { int i[f()]; };
7996
7997 is valid, and other languages may define similar constructs. */
7998
7999 bool
8000 variably_modified_type_p (tree type, tree fn)
8001 {
8002 tree t;
8003
8004 /* Test if T is either variable (if FN is zero) or an expression containing
8005 a variable in FN. */
8006 #define RETURN_TRUE_IF_VAR(T) \
8007 do { tree _t = (T); \
8008 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
8009 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8010 return true; } while (0)
8011
8012 if (type == error_mark_node)
8013 return false;
8014
8015 /* If TYPE itself has variable size, it is variably modified. */
8016 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8017 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8018
8019 switch (TREE_CODE (type))
8020 {
8021 case POINTER_TYPE:
8022 case REFERENCE_TYPE:
8023 case VECTOR_TYPE:
8024 if (variably_modified_type_p (TREE_TYPE (type), fn))
8025 return true;
8026 break;
8027
8028 case FUNCTION_TYPE:
8029 case METHOD_TYPE:
8030 /* If TYPE is a function type, it is variably modified if the
8031 return type is variably modified. */
8032 if (variably_modified_type_p (TREE_TYPE (type), fn))
8033 return true;
8034 break;
8035
8036 case INTEGER_TYPE:
8037 case REAL_TYPE:
8038 case FIXED_POINT_TYPE:
8039 case ENUMERAL_TYPE:
8040 case BOOLEAN_TYPE:
8041 /* Scalar types are variably modified if their end points
8042 aren't constant. */
8043 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8044 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8045 break;
8046
8047 case RECORD_TYPE:
8048 case UNION_TYPE:
8049 case QUAL_UNION_TYPE:
8050 /* We can't see if any of the fields are variably-modified by the
8051 definition we normally use, since that would produce infinite
8052 recursion via pointers. */
8053 /* This is variably modified if some field's type is. */
8054 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
8055 if (TREE_CODE (t) == FIELD_DECL)
8056 {
8057 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8058 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8059 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8060
8061 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8062 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8063 }
8064 break;
8065
8066 case ARRAY_TYPE:
8067 /* Do not call ourselves to avoid infinite recursion. This is
8068 variably modified if the element type is. */
8069 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8070 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8071 break;
8072
8073 default:
8074 break;
8075 }
8076
8077 /* The current language may have other cases to check, but in general,
8078 all other types are not variably modified. */
8079 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8080
8081 #undef RETURN_TRUE_IF_VAR
8082 }
8083
8084 /* Given a DECL or TYPE, return the scope in which it was declared, or
8085 NULL_TREE if there is no containing scope. */
8086
8087 tree
8088 get_containing_scope (const_tree t)
8089 {
8090 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8091 }
8092
8093 /* Return the innermost context enclosing DECL that is
8094 a FUNCTION_DECL, or zero if none. */
8095
8096 tree
8097 decl_function_context (const_tree decl)
8098 {
8099 tree context;
8100
8101 if (TREE_CODE (decl) == ERROR_MARK)
8102 return 0;
8103
8104 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8105 where we look up the function at runtime. Such functions always take
8106 a first argument of type 'pointer to real context'.
8107
8108 C++ should really be fixed to use DECL_CONTEXT for the real context,
8109 and use something else for the "virtual context". */
8110 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8111 context
8112 = TYPE_MAIN_VARIANT
8113 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8114 else
8115 context = DECL_CONTEXT (decl);
8116
8117 while (context && TREE_CODE (context) != FUNCTION_DECL)
8118 {
8119 if (TREE_CODE (context) == BLOCK)
8120 context = BLOCK_SUPERCONTEXT (context);
8121 else
8122 context = get_containing_scope (context);
8123 }
8124
8125 return context;
8126 }
8127
8128 /* Return the innermost context enclosing DECL that is
8129 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8130 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8131
8132 tree
8133 decl_type_context (const_tree decl)
8134 {
8135 tree context = DECL_CONTEXT (decl);
8136
8137 while (context)
8138 switch (TREE_CODE (context))
8139 {
8140 case NAMESPACE_DECL:
8141 case TRANSLATION_UNIT_DECL:
8142 return NULL_TREE;
8143
8144 case RECORD_TYPE:
8145 case UNION_TYPE:
8146 case QUAL_UNION_TYPE:
8147 return context;
8148
8149 case TYPE_DECL:
8150 case FUNCTION_DECL:
8151 context = DECL_CONTEXT (context);
8152 break;
8153
8154 case BLOCK:
8155 context = BLOCK_SUPERCONTEXT (context);
8156 break;
8157
8158 default:
8159 gcc_unreachable ();
8160 }
8161
8162 return NULL_TREE;
8163 }
8164
8165 /* CALL is a CALL_EXPR. Return the declaration for the function
8166 called, or NULL_TREE if the called function cannot be
8167 determined. */
8168
8169 tree
8170 get_callee_fndecl (const_tree call)
8171 {
8172 tree addr;
8173
8174 if (call == error_mark_node)
8175 return error_mark_node;
8176
8177 /* It's invalid to call this function with anything but a
8178 CALL_EXPR. */
8179 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8180
8181 /* The first operand to the CALL is the address of the function
8182 called. */
8183 addr = CALL_EXPR_FN (call);
8184
8185 STRIP_NOPS (addr);
8186
8187 /* If this is a readonly function pointer, extract its initial value. */
8188 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8189 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8190 && DECL_INITIAL (addr))
8191 addr = DECL_INITIAL (addr);
8192
8193 /* If the address is just `&f' for some function `f', then we know
8194 that `f' is being called. */
8195 if (TREE_CODE (addr) == ADDR_EXPR
8196 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8197 return TREE_OPERAND (addr, 0);
8198
8199 /* We couldn't figure out what was being called. */
8200 return NULL_TREE;
8201 }
8202
8203 /* Print debugging information about tree nodes generated during the compile,
8204 and any language-specific information. */
8205
8206 void
8207 dump_tree_statistics (void)
8208 {
8209 #ifdef GATHER_STATISTICS
8210 int i;
8211 int total_nodes, total_bytes;
8212 #endif
8213
8214 fprintf (stderr, "\n??? tree nodes created\n\n");
8215 #ifdef GATHER_STATISTICS
8216 fprintf (stderr, "Kind Nodes Bytes\n");
8217 fprintf (stderr, "---------------------------------------\n");
8218 total_nodes = total_bytes = 0;
8219 for (i = 0; i < (int) all_kinds; i++)
8220 {
8221 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8222 tree_node_counts[i], tree_node_sizes[i]);
8223 total_nodes += tree_node_counts[i];
8224 total_bytes += tree_node_sizes[i];
8225 }
8226 fprintf (stderr, "---------------------------------------\n");
8227 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8228 fprintf (stderr, "---------------------------------------\n");
8229 ssanames_print_statistics ();
8230 phinodes_print_statistics ();
8231 #else
8232 fprintf (stderr, "(No per-node statistics)\n");
8233 #endif
8234 print_type_hash_statistics ();
8235 print_debug_expr_statistics ();
8236 print_value_expr_statistics ();
8237 lang_hooks.print_statistics ();
8238 }
8239 \f
8240 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8241
8242 /* Generate a crc32 of a string. */
8243
8244 unsigned
8245 crc32_string (unsigned chksum, const char *string)
8246 {
8247 do
8248 {
8249 unsigned value = *string << 24;
8250 unsigned ix;
8251
8252 for (ix = 8; ix--; value <<= 1)
8253 {
8254 unsigned feedback;
8255
8256 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8257 chksum <<= 1;
8258 chksum ^= feedback;
8259 }
8260 }
8261 while (*string++);
8262 return chksum;
8263 }
8264
8265 /* P is a string that will be used in a symbol. Mask out any characters
8266 that are not valid in that context. */
8267
8268 void
8269 clean_symbol_name (char *p)
8270 {
8271 for (; *p; p++)
8272 if (! (ISALNUM (*p)
8273 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8274 || *p == '$'
8275 #endif
8276 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8277 || *p == '.'
8278 #endif
8279 ))
8280 *p = '_';
8281 }
8282
8283 /* Generate a name for a special-purpose function function.
8284 The generated name may need to be unique across the whole link.
8285 TYPE is some string to identify the purpose of this function to the
8286 linker or collect2; it must start with an uppercase letter,
8287 one of:
8288 I - for constructors
8289 D - for destructors
8290 N - for C++ anonymous namespaces
8291 F - for DWARF unwind frame information. */
8292
8293 tree
8294 get_file_function_name (const char *type)
8295 {
8296 char *buf;
8297 const char *p;
8298 char *q;
8299
8300 /* If we already have a name we know to be unique, just use that. */
8301 if (first_global_object_name)
8302 p = q = ASTRDUP (first_global_object_name);
8303 /* If the target is handling the constructors/destructors, they
8304 will be local to this file and the name is only necessary for
8305 debugging purposes. */
8306 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8307 {
8308 const char *file = main_input_filename;
8309 if (! file)
8310 file = input_filename;
8311 /* Just use the file's basename, because the full pathname
8312 might be quite long. */
8313 p = strrchr (file, '/');
8314 if (p)
8315 p++;
8316 else
8317 p = file;
8318 p = q = ASTRDUP (p);
8319 }
8320 else
8321 {
8322 /* Otherwise, the name must be unique across the entire link.
8323 We don't have anything that we know to be unique to this translation
8324 unit, so use what we do have and throw in some randomness. */
8325 unsigned len;
8326 const char *name = weak_global_object_name;
8327 const char *file = main_input_filename;
8328
8329 if (! name)
8330 name = "";
8331 if (! file)
8332 file = input_filename;
8333
8334 len = strlen (file);
8335 q = (char *) alloca (9 * 2 + len + 1);
8336 memcpy (q, file, len + 1);
8337
8338 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
8339 crc32_string (0, get_random_seed (false)));
8340
8341 p = q;
8342 }
8343
8344 clean_symbol_name (q);
8345 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8346 + strlen (type));
8347
8348 /* Set up the name of the file-level functions we may need.
8349 Use a global object (which is already required to be unique over
8350 the program) rather than the file name (which imposes extra
8351 constraints). */
8352 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8353
8354 return get_identifier (buf);
8355 }
8356 \f
8357 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8358
8359 /* Complain that the tree code of NODE does not match the expected 0
8360 terminated list of trailing codes. The trailing code list can be
8361 empty, for a more vague error message. FILE, LINE, and FUNCTION
8362 are of the caller. */
8363
8364 void
8365 tree_check_failed (const_tree node, const char *file,
8366 int line, const char *function, ...)
8367 {
8368 va_list args;
8369 const char *buffer;
8370 unsigned length = 0;
8371 int code;
8372
8373 va_start (args, function);
8374 while ((code = va_arg (args, int)))
8375 length += 4 + strlen (tree_code_name[code]);
8376 va_end (args);
8377 if (length)
8378 {
8379 char *tmp;
8380 va_start (args, function);
8381 length += strlen ("expected ");
8382 buffer = tmp = (char *) alloca (length);
8383 length = 0;
8384 while ((code = va_arg (args, int)))
8385 {
8386 const char *prefix = length ? " or " : "expected ";
8387
8388 strcpy (tmp + length, prefix);
8389 length += strlen (prefix);
8390 strcpy (tmp + length, tree_code_name[code]);
8391 length += strlen (tree_code_name[code]);
8392 }
8393 va_end (args);
8394 }
8395 else
8396 buffer = "unexpected node";
8397
8398 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8399 buffer, tree_code_name[TREE_CODE (node)],
8400 function, trim_filename (file), line);
8401 }
8402
8403 /* Complain that the tree code of NODE does match the expected 0
8404 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8405 the caller. */
8406
8407 void
8408 tree_not_check_failed (const_tree node, const char *file,
8409 int line, const char *function, ...)
8410 {
8411 va_list args;
8412 char *buffer;
8413 unsigned length = 0;
8414 int code;
8415
8416 va_start (args, function);
8417 while ((code = va_arg (args, int)))
8418 length += 4 + strlen (tree_code_name[code]);
8419 va_end (args);
8420 va_start (args, function);
8421 buffer = (char *) alloca (length);
8422 length = 0;
8423 while ((code = va_arg (args, int)))
8424 {
8425 if (length)
8426 {
8427 strcpy (buffer + length, " or ");
8428 length += 4;
8429 }
8430 strcpy (buffer + length, tree_code_name[code]);
8431 length += strlen (tree_code_name[code]);
8432 }
8433 va_end (args);
8434
8435 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8436 buffer, tree_code_name[TREE_CODE (node)],
8437 function, trim_filename (file), line);
8438 }
8439
8440 /* Similar to tree_check_failed, except that we check for a class of tree
8441 code, given in CL. */
8442
8443 void
8444 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8445 const char *file, int line, const char *function)
8446 {
8447 internal_error
8448 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8449 TREE_CODE_CLASS_STRING (cl),
8450 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8451 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8452 }
8453
8454 /* Similar to tree_check_failed, except that instead of specifying a
8455 dozen codes, use the knowledge that they're all sequential. */
8456
8457 void
8458 tree_range_check_failed (const_tree node, const char *file, int line,
8459 const char *function, enum tree_code c1,
8460 enum tree_code c2)
8461 {
8462 char *buffer;
8463 unsigned length = 0;
8464 unsigned int c;
8465
8466 for (c = c1; c <= c2; ++c)
8467 length += 4 + strlen (tree_code_name[c]);
8468
8469 length += strlen ("expected ");
8470 buffer = (char *) alloca (length);
8471 length = 0;
8472
8473 for (c = c1; c <= c2; ++c)
8474 {
8475 const char *prefix = length ? " or " : "expected ";
8476
8477 strcpy (buffer + length, prefix);
8478 length += strlen (prefix);
8479 strcpy (buffer + length, tree_code_name[c]);
8480 length += strlen (tree_code_name[c]);
8481 }
8482
8483 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8484 buffer, tree_code_name[TREE_CODE (node)],
8485 function, trim_filename (file), line);
8486 }
8487
8488
8489 /* Similar to tree_check_failed, except that we check that a tree does
8490 not have the specified code, given in CL. */
8491
8492 void
8493 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8494 const char *file, int line, const char *function)
8495 {
8496 internal_error
8497 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8498 TREE_CODE_CLASS_STRING (cl),
8499 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8500 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8501 }
8502
8503
8504 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8505
8506 void
8507 omp_clause_check_failed (const_tree node, const char *file, int line,
8508 const char *function, enum omp_clause_code code)
8509 {
8510 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8511 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8512 function, trim_filename (file), line);
8513 }
8514
8515
8516 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8517
8518 void
8519 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8520 const char *function, enum omp_clause_code c1,
8521 enum omp_clause_code c2)
8522 {
8523 char *buffer;
8524 unsigned length = 0;
8525 unsigned int c;
8526
8527 for (c = c1; c <= c2; ++c)
8528 length += 4 + strlen (omp_clause_code_name[c]);
8529
8530 length += strlen ("expected ");
8531 buffer = (char *) alloca (length);
8532 length = 0;
8533
8534 for (c = c1; c <= c2; ++c)
8535 {
8536 const char *prefix = length ? " or " : "expected ";
8537
8538 strcpy (buffer + length, prefix);
8539 length += strlen (prefix);
8540 strcpy (buffer + length, omp_clause_code_name[c]);
8541 length += strlen (omp_clause_code_name[c]);
8542 }
8543
8544 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8545 buffer, omp_clause_code_name[TREE_CODE (node)],
8546 function, trim_filename (file), line);
8547 }
8548
8549
8550 #undef DEFTREESTRUCT
8551 #define DEFTREESTRUCT(VAL, NAME) NAME,
8552
8553 static const char *ts_enum_names[] = {
8554 #include "treestruct.def"
8555 };
8556 #undef DEFTREESTRUCT
8557
8558 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8559
8560 /* Similar to tree_class_check_failed, except that we check for
8561 whether CODE contains the tree structure identified by EN. */
8562
8563 void
8564 tree_contains_struct_check_failed (const_tree node,
8565 const enum tree_node_structure_enum en,
8566 const char *file, int line,
8567 const char *function)
8568 {
8569 internal_error
8570 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8571 TS_ENUM_NAME(en),
8572 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8573 }
8574
8575
8576 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8577 (dynamically sized) vector. */
8578
8579 void
8580 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8581 const char *function)
8582 {
8583 internal_error
8584 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
8585 idx + 1, len, function, trim_filename (file), line);
8586 }
8587
8588 /* Similar to above, except that the check is for the bounds of the operand
8589 vector of an expression node EXP. */
8590
8591 void
8592 tree_operand_check_failed (int idx, const_tree exp, const char *file,
8593 int line, const char *function)
8594 {
8595 int code = TREE_CODE (exp);
8596 internal_error
8597 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
8598 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
8599 function, trim_filename (file), line);
8600 }
8601
8602 /* Similar to above, except that the check is for the number of
8603 operands of an OMP_CLAUSE node. */
8604
8605 void
8606 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
8607 int line, const char *function)
8608 {
8609 internal_error
8610 ("tree check: accessed operand %d of omp_clause %s with %d operands "
8611 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
8612 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
8613 trim_filename (file), line);
8614 }
8615 #endif /* ENABLE_TREE_CHECKING */
8616 \f
8617 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
8618 and mapped to the machine mode MODE. Initialize its fields and build
8619 the information necessary for debugging output. */
8620
8621 static tree
8622 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
8623 {
8624 tree t;
8625 hashval_t hashcode = 0;
8626
8627 t = make_node (VECTOR_TYPE);
8628 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
8629 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
8630 SET_TYPE_MODE (t, mode);
8631
8632 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
8633 SET_TYPE_STRUCTURAL_EQUALITY (t);
8634 else if (TYPE_CANONICAL (innertype) != innertype
8635 || mode != VOIDmode)
8636 TYPE_CANONICAL (t)
8637 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
8638
8639 layout_type (t);
8640
8641 {
8642 tree index = build_int_cst (NULL_TREE, nunits - 1);
8643 tree array = build_array_type (TYPE_MAIN_VARIANT (innertype),
8644 build_index_type (index));
8645 tree rt = make_node (RECORD_TYPE);
8646
8647 TYPE_FIELDS (rt) = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
8648 get_identifier ("f"), array);
8649 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
8650 layout_type (rt);
8651 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
8652 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
8653 the representation type, and we want to find that die when looking up
8654 the vector type. This is most easily achieved by making the TYPE_UID
8655 numbers equal. */
8656 TYPE_UID (rt) = TYPE_UID (t);
8657 }
8658
8659 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
8660 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
8661 hashcode = iterative_hash_host_wide_int (mode, hashcode);
8662 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
8663 t = type_hash_canon (hashcode, t);
8664
8665 /* We have built a main variant, based on the main variant of the
8666 inner type. Use it to build the variant we return. */
8667 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
8668 && TREE_TYPE (t) != innertype)
8669 return build_type_attribute_qual_variant (t,
8670 TYPE_ATTRIBUTES (innertype),
8671 TYPE_QUALS (innertype));
8672
8673 return t;
8674 }
8675
8676 static tree
8677 make_or_reuse_type (unsigned size, int unsignedp)
8678 {
8679 if (size == INT_TYPE_SIZE)
8680 return unsignedp ? unsigned_type_node : integer_type_node;
8681 if (size == CHAR_TYPE_SIZE)
8682 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
8683 if (size == SHORT_TYPE_SIZE)
8684 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
8685 if (size == LONG_TYPE_SIZE)
8686 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
8687 if (size == LONG_LONG_TYPE_SIZE)
8688 return (unsignedp ? long_long_unsigned_type_node
8689 : long_long_integer_type_node);
8690 if (size == 128 && int128_integer_type_node)
8691 return (unsignedp ? int128_unsigned_type_node
8692 : int128_integer_type_node);
8693
8694 if (unsignedp)
8695 return make_unsigned_type (size);
8696 else
8697 return make_signed_type (size);
8698 }
8699
8700 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
8701
8702 static tree
8703 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
8704 {
8705 if (satp)
8706 {
8707 if (size == SHORT_FRACT_TYPE_SIZE)
8708 return unsignedp ? sat_unsigned_short_fract_type_node
8709 : sat_short_fract_type_node;
8710 if (size == FRACT_TYPE_SIZE)
8711 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
8712 if (size == LONG_FRACT_TYPE_SIZE)
8713 return unsignedp ? sat_unsigned_long_fract_type_node
8714 : sat_long_fract_type_node;
8715 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8716 return unsignedp ? sat_unsigned_long_long_fract_type_node
8717 : sat_long_long_fract_type_node;
8718 }
8719 else
8720 {
8721 if (size == SHORT_FRACT_TYPE_SIZE)
8722 return unsignedp ? unsigned_short_fract_type_node
8723 : short_fract_type_node;
8724 if (size == FRACT_TYPE_SIZE)
8725 return unsignedp ? unsigned_fract_type_node : fract_type_node;
8726 if (size == LONG_FRACT_TYPE_SIZE)
8727 return unsignedp ? unsigned_long_fract_type_node
8728 : long_fract_type_node;
8729 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8730 return unsignedp ? unsigned_long_long_fract_type_node
8731 : long_long_fract_type_node;
8732 }
8733
8734 return make_fract_type (size, unsignedp, satp);
8735 }
8736
8737 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
8738
8739 static tree
8740 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
8741 {
8742 if (satp)
8743 {
8744 if (size == SHORT_ACCUM_TYPE_SIZE)
8745 return unsignedp ? sat_unsigned_short_accum_type_node
8746 : sat_short_accum_type_node;
8747 if (size == ACCUM_TYPE_SIZE)
8748 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
8749 if (size == LONG_ACCUM_TYPE_SIZE)
8750 return unsignedp ? sat_unsigned_long_accum_type_node
8751 : sat_long_accum_type_node;
8752 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8753 return unsignedp ? sat_unsigned_long_long_accum_type_node
8754 : sat_long_long_accum_type_node;
8755 }
8756 else
8757 {
8758 if (size == SHORT_ACCUM_TYPE_SIZE)
8759 return unsignedp ? unsigned_short_accum_type_node
8760 : short_accum_type_node;
8761 if (size == ACCUM_TYPE_SIZE)
8762 return unsignedp ? unsigned_accum_type_node : accum_type_node;
8763 if (size == LONG_ACCUM_TYPE_SIZE)
8764 return unsignedp ? unsigned_long_accum_type_node
8765 : long_accum_type_node;
8766 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8767 return unsignedp ? unsigned_long_long_accum_type_node
8768 : long_long_accum_type_node;
8769 }
8770
8771 return make_accum_type (size, unsignedp, satp);
8772 }
8773
8774 /* Create nodes for all integer types (and error_mark_node) using the sizes
8775 of C datatypes. The caller should call set_sizetype soon after calling
8776 this function to select one of the types as sizetype. */
8777
8778 void
8779 build_common_tree_nodes (bool signed_char)
8780 {
8781 error_mark_node = make_node (ERROR_MARK);
8782 TREE_TYPE (error_mark_node) = error_mark_node;
8783
8784 initialize_sizetypes ();
8785
8786 /* Define both `signed char' and `unsigned char'. */
8787 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
8788 TYPE_STRING_FLAG (signed_char_type_node) = 1;
8789 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
8790 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
8791
8792 /* Define `char', which is like either `signed char' or `unsigned char'
8793 but not the same as either. */
8794 char_type_node
8795 = (signed_char
8796 ? make_signed_type (CHAR_TYPE_SIZE)
8797 : make_unsigned_type (CHAR_TYPE_SIZE));
8798 TYPE_STRING_FLAG (char_type_node) = 1;
8799
8800 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
8801 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
8802 integer_type_node = make_signed_type (INT_TYPE_SIZE);
8803 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
8804 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
8805 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
8806 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
8807 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
8808 #if HOST_BITS_PER_WIDE_INT >= 64
8809 /* TODO: This isn't correct, but as logic depends at the moment on
8810 host's instead of target's wide-integer.
8811 If there is a target not supporting TImode, but has an 128-bit
8812 integer-scalar register, this target check needs to be adjusted. */
8813 if (targetm.scalar_mode_supported_p (TImode))
8814 {
8815 int128_integer_type_node = make_signed_type (128);
8816 int128_unsigned_type_node = make_unsigned_type (128);
8817 }
8818 #endif
8819 /* Define a boolean type. This type only represents boolean values but
8820 may be larger than char depending on the value of BOOL_TYPE_SIZE.
8821 Front ends which want to override this size (i.e. Java) can redefine
8822 boolean_type_node before calling build_common_tree_nodes_2. */
8823 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
8824 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
8825 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
8826 TYPE_PRECISION (boolean_type_node) = 1;
8827
8828 /* Fill in the rest of the sized types. Reuse existing type nodes
8829 when possible. */
8830 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
8831 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
8832 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
8833 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
8834 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
8835
8836 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
8837 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
8838 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
8839 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
8840 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
8841
8842 access_public_node = get_identifier ("public");
8843 access_protected_node = get_identifier ("protected");
8844 access_private_node = get_identifier ("private");
8845 }
8846
8847 /* Call this function after calling build_common_tree_nodes and set_sizetype.
8848 It will create several other common tree nodes. */
8849
8850 void
8851 build_common_tree_nodes_2 (int short_double)
8852 {
8853 /* Define these next since types below may used them. */
8854 integer_zero_node = build_int_cst (NULL_TREE, 0);
8855 integer_one_node = build_int_cst (NULL_TREE, 1);
8856 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
8857
8858 size_zero_node = size_int (0);
8859 size_one_node = size_int (1);
8860 bitsize_zero_node = bitsize_int (0);
8861 bitsize_one_node = bitsize_int (1);
8862 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
8863
8864 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
8865 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
8866
8867 void_type_node = make_node (VOID_TYPE);
8868 layout_type (void_type_node);
8869
8870 /* We are not going to have real types in C with less than byte alignment,
8871 so we might as well not have any types that claim to have it. */
8872 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
8873 TYPE_USER_ALIGN (void_type_node) = 0;
8874
8875 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
8876 layout_type (TREE_TYPE (null_pointer_node));
8877
8878 ptr_type_node = build_pointer_type (void_type_node);
8879 const_ptr_type_node
8880 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
8881 fileptr_type_node = ptr_type_node;
8882
8883 float_type_node = make_node (REAL_TYPE);
8884 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
8885 layout_type (float_type_node);
8886
8887 double_type_node = make_node (REAL_TYPE);
8888 if (short_double)
8889 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
8890 else
8891 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
8892 layout_type (double_type_node);
8893
8894 long_double_type_node = make_node (REAL_TYPE);
8895 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
8896 layout_type (long_double_type_node);
8897
8898 float_ptr_type_node = build_pointer_type (float_type_node);
8899 double_ptr_type_node = build_pointer_type (double_type_node);
8900 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
8901 integer_ptr_type_node = build_pointer_type (integer_type_node);
8902
8903 /* Fixed size integer types. */
8904 uint32_type_node = build_nonstandard_integer_type (32, true);
8905 uint64_type_node = build_nonstandard_integer_type (64, true);
8906
8907 /* Decimal float types. */
8908 dfloat32_type_node = make_node (REAL_TYPE);
8909 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
8910 layout_type (dfloat32_type_node);
8911 SET_TYPE_MODE (dfloat32_type_node, SDmode);
8912 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
8913
8914 dfloat64_type_node = make_node (REAL_TYPE);
8915 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
8916 layout_type (dfloat64_type_node);
8917 SET_TYPE_MODE (dfloat64_type_node, DDmode);
8918 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
8919
8920 dfloat128_type_node = make_node (REAL_TYPE);
8921 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
8922 layout_type (dfloat128_type_node);
8923 SET_TYPE_MODE (dfloat128_type_node, TDmode);
8924 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
8925
8926 complex_integer_type_node = build_complex_type (integer_type_node);
8927 complex_float_type_node = build_complex_type (float_type_node);
8928 complex_double_type_node = build_complex_type (double_type_node);
8929 complex_long_double_type_node = build_complex_type (long_double_type_node);
8930
8931 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
8932 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
8933 sat_ ## KIND ## _type_node = \
8934 make_sat_signed_ ## KIND ## _type (SIZE); \
8935 sat_unsigned_ ## KIND ## _type_node = \
8936 make_sat_unsigned_ ## KIND ## _type (SIZE); \
8937 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
8938 unsigned_ ## KIND ## _type_node = \
8939 make_unsigned_ ## KIND ## _type (SIZE);
8940
8941 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
8942 sat_ ## WIDTH ## KIND ## _type_node = \
8943 make_sat_signed_ ## KIND ## _type (SIZE); \
8944 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
8945 make_sat_unsigned_ ## KIND ## _type (SIZE); \
8946 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
8947 unsigned_ ## WIDTH ## KIND ## _type_node = \
8948 make_unsigned_ ## KIND ## _type (SIZE);
8949
8950 /* Make fixed-point type nodes based on four different widths. */
8951 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
8952 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
8953 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
8954 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
8955 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
8956
8957 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
8958 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
8959 NAME ## _type_node = \
8960 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
8961 u ## NAME ## _type_node = \
8962 make_or_reuse_unsigned_ ## KIND ## _type \
8963 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
8964 sat_ ## NAME ## _type_node = \
8965 make_or_reuse_sat_signed_ ## KIND ## _type \
8966 (GET_MODE_BITSIZE (MODE ## mode)); \
8967 sat_u ## NAME ## _type_node = \
8968 make_or_reuse_sat_unsigned_ ## KIND ## _type \
8969 (GET_MODE_BITSIZE (U ## MODE ## mode));
8970
8971 /* Fixed-point type and mode nodes. */
8972 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
8973 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
8974 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
8975 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
8976 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
8977 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
8978 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
8979 MAKE_FIXED_MODE_NODE (accum, ha, HA)
8980 MAKE_FIXED_MODE_NODE (accum, sa, SA)
8981 MAKE_FIXED_MODE_NODE (accum, da, DA)
8982 MAKE_FIXED_MODE_NODE (accum, ta, TA)
8983
8984 {
8985 tree t = targetm.build_builtin_va_list ();
8986
8987 /* Many back-ends define record types without setting TYPE_NAME.
8988 If we copied the record type here, we'd keep the original
8989 record type without a name. This breaks name mangling. So,
8990 don't copy record types and let c_common_nodes_and_builtins()
8991 declare the type to be __builtin_va_list. */
8992 if (TREE_CODE (t) != RECORD_TYPE)
8993 t = build_variant_type_copy (t);
8994
8995 va_list_type_node = t;
8996 }
8997 }
8998
8999 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9000
9001 static void
9002 local_define_builtin (const char *name, tree type, enum built_in_function code,
9003 const char *library_name, int ecf_flags)
9004 {
9005 tree decl;
9006
9007 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9008 library_name, NULL_TREE);
9009 if (ecf_flags & ECF_CONST)
9010 TREE_READONLY (decl) = 1;
9011 if (ecf_flags & ECF_PURE)
9012 DECL_PURE_P (decl) = 1;
9013 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9014 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9015 if (ecf_flags & ECF_NORETURN)
9016 TREE_THIS_VOLATILE (decl) = 1;
9017 if (ecf_flags & ECF_NOTHROW)
9018 TREE_NOTHROW (decl) = 1;
9019 if (ecf_flags & ECF_MALLOC)
9020 DECL_IS_MALLOC (decl) = 1;
9021
9022 built_in_decls[code] = decl;
9023 implicit_built_in_decls[code] = decl;
9024 }
9025
9026 /* Call this function after instantiating all builtins that the language
9027 front end cares about. This will build the rest of the builtins that
9028 are relied upon by the tree optimizers and the middle-end. */
9029
9030 void
9031 build_common_builtin_nodes (void)
9032 {
9033 tree tmp, tmp2, ftype;
9034
9035 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
9036 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9037 {
9038 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9039 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
9040 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9041 ftype = build_function_type (ptr_type_node, tmp);
9042
9043 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
9044 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9045 "memcpy", ECF_NOTHROW);
9046 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9047 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9048 "memmove", ECF_NOTHROW);
9049 }
9050
9051 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
9052 {
9053 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9054 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
9055 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
9056 ftype = build_function_type (integer_type_node, tmp);
9057 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9058 "memcmp", ECF_PURE | ECF_NOTHROW);
9059 }
9060
9061 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
9062 {
9063 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9064 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
9065 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9066 ftype = build_function_type (ptr_type_node, tmp);
9067 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9068 "memset", ECF_NOTHROW);
9069 }
9070
9071 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
9072 {
9073 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9074 ftype = build_function_type (ptr_type_node, tmp);
9075 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9076 "alloca", ECF_MALLOC | ECF_NOTHROW);
9077 }
9078
9079 /* If we're checking the stack, `alloca' can throw. */
9080 if (flag_stack_check)
9081 TREE_NOTHROW (built_in_decls[BUILT_IN_ALLOCA]) = 0;
9082
9083 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9084 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9085 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9086 ftype = build_function_type (void_type_node, tmp);
9087 local_define_builtin ("__builtin_init_trampoline", ftype,
9088 BUILT_IN_INIT_TRAMPOLINE,
9089 "__builtin_init_trampoline", ECF_NOTHROW);
9090
9091 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9092 ftype = build_function_type (ptr_type_node, tmp);
9093 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9094 BUILT_IN_ADJUST_TRAMPOLINE,
9095 "__builtin_adjust_trampoline",
9096 ECF_CONST | ECF_NOTHROW);
9097
9098 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9099 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9100 ftype = build_function_type (void_type_node, tmp);
9101 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9102 BUILT_IN_NONLOCAL_GOTO,
9103 "__builtin_nonlocal_goto",
9104 ECF_NORETURN | ECF_NOTHROW);
9105
9106 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9107 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9108 ftype = build_function_type (void_type_node, tmp);
9109 local_define_builtin ("__builtin_setjmp_setup", ftype,
9110 BUILT_IN_SETJMP_SETUP,
9111 "__builtin_setjmp_setup", ECF_NOTHROW);
9112
9113 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9114 ftype = build_function_type (ptr_type_node, tmp);
9115 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9116 BUILT_IN_SETJMP_DISPATCHER,
9117 "__builtin_setjmp_dispatcher",
9118 ECF_PURE | ECF_NOTHROW);
9119
9120 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9121 ftype = build_function_type (void_type_node, tmp);
9122 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9123 BUILT_IN_SETJMP_RECEIVER,
9124 "__builtin_setjmp_receiver", ECF_NOTHROW);
9125
9126 ftype = build_function_type (ptr_type_node, void_list_node);
9127 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9128 "__builtin_stack_save", ECF_NOTHROW);
9129
9130 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9131 ftype = build_function_type (void_type_node, tmp);
9132 local_define_builtin ("__builtin_stack_restore", ftype,
9133 BUILT_IN_STACK_RESTORE,
9134 "__builtin_stack_restore", ECF_NOTHROW);
9135
9136 ftype = build_function_type (void_type_node, void_list_node);
9137 local_define_builtin ("__builtin_profile_func_enter", ftype,
9138 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
9139 local_define_builtin ("__builtin_profile_func_exit", ftype,
9140 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
9141
9142 /* If there's a possibility that we might use the ARM EABI, build the
9143 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9144 if (targetm.arm_eabi_unwinder)
9145 {
9146 ftype = build_function_type (void_type_node, void_list_node);
9147 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9148 BUILT_IN_CXA_END_CLEANUP,
9149 "__cxa_end_cleanup", ECF_NORETURN);
9150 }
9151
9152 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9153 ftype = build_function_type (void_type_node, tmp);
9154 local_define_builtin ("__builtin_unwind_resume", ftype,
9155 BUILT_IN_UNWIND_RESUME,
9156 (USING_SJLJ_EXCEPTIONS
9157 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9158 ECF_NORETURN);
9159
9160 /* The exception object and filter values from the runtime. The argument
9161 must be zero before exception lowering, i.e. from the front end. After
9162 exception lowering, it will be the region number for the exception
9163 landing pad. These functions are PURE instead of CONST to prevent
9164 them from being hoisted past the exception edge that will initialize
9165 its value in the landing pad. */
9166 tmp = tree_cons (NULL_TREE, integer_type_node, void_list_node);
9167 ftype = build_function_type (ptr_type_node, tmp);
9168 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9169 "__builtin_eh_pointer", ECF_PURE | ECF_NOTHROW);
9170
9171 tmp2 = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9172 ftype = build_function_type (tmp2, tmp);
9173 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9174 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW);
9175
9176 tmp = tree_cons (NULL_TREE, integer_type_node, void_list_node);
9177 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
9178 ftype = build_function_type (void_type_node, tmp);
9179 local_define_builtin ("__builtin_eh_copy_values", ftype,
9180 BUILT_IN_EH_COPY_VALUES,
9181 "__builtin_eh_copy_values", ECF_NOTHROW);
9182
9183 /* Complex multiplication and division. These are handled as builtins
9184 rather than optabs because emit_library_call_value doesn't support
9185 complex. Further, we can do slightly better with folding these
9186 beasties if the real and complex parts of the arguments are separate. */
9187 {
9188 int mode;
9189
9190 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9191 {
9192 char mode_name_buf[4], *q;
9193 const char *p;
9194 enum built_in_function mcode, dcode;
9195 tree type, inner_type;
9196
9197 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9198 if (type == NULL)
9199 continue;
9200 inner_type = TREE_TYPE (type);
9201
9202 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
9203 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9204 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9205 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9206 ftype = build_function_type (type, tmp);
9207
9208 mcode = ((enum built_in_function)
9209 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9210 dcode = ((enum built_in_function)
9211 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9212
9213 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9214 *q = TOLOWER (*p);
9215 *q = '\0';
9216
9217 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
9218 local_define_builtin (built_in_names[mcode], ftype, mcode,
9219 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
9220
9221 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
9222 local_define_builtin (built_in_names[dcode], ftype, dcode,
9223 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
9224 }
9225 }
9226 }
9227
9228 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9229 better way.
9230
9231 If we requested a pointer to a vector, build up the pointers that
9232 we stripped off while looking for the inner type. Similarly for
9233 return values from functions.
9234
9235 The argument TYPE is the top of the chain, and BOTTOM is the
9236 new type which we will point to. */
9237
9238 tree
9239 reconstruct_complex_type (tree type, tree bottom)
9240 {
9241 tree inner, outer;
9242
9243 if (TREE_CODE (type) == POINTER_TYPE)
9244 {
9245 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9246 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9247 TYPE_REF_CAN_ALIAS_ALL (type));
9248 }
9249 else if (TREE_CODE (type) == REFERENCE_TYPE)
9250 {
9251 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9252 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9253 TYPE_REF_CAN_ALIAS_ALL (type));
9254 }
9255 else if (TREE_CODE (type) == ARRAY_TYPE)
9256 {
9257 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9258 outer = build_array_type (inner, TYPE_DOMAIN (type));
9259 }
9260 else if (TREE_CODE (type) == FUNCTION_TYPE)
9261 {
9262 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9263 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9264 }
9265 else if (TREE_CODE (type) == METHOD_TYPE)
9266 {
9267 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9268 /* The build_method_type_directly() routine prepends 'this' to argument list,
9269 so we must compensate by getting rid of it. */
9270 outer
9271 = build_method_type_directly
9272 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9273 inner,
9274 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9275 }
9276 else if (TREE_CODE (type) == OFFSET_TYPE)
9277 {
9278 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9279 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9280 }
9281 else
9282 return bottom;
9283
9284 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9285 TYPE_QUALS (type));
9286 }
9287
9288 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9289 the inner type. */
9290 tree
9291 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9292 {
9293 int nunits;
9294
9295 switch (GET_MODE_CLASS (mode))
9296 {
9297 case MODE_VECTOR_INT:
9298 case MODE_VECTOR_FLOAT:
9299 case MODE_VECTOR_FRACT:
9300 case MODE_VECTOR_UFRACT:
9301 case MODE_VECTOR_ACCUM:
9302 case MODE_VECTOR_UACCUM:
9303 nunits = GET_MODE_NUNITS (mode);
9304 break;
9305
9306 case MODE_INT:
9307 /* Check that there are no leftover bits. */
9308 gcc_assert (GET_MODE_BITSIZE (mode)
9309 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9310
9311 nunits = GET_MODE_BITSIZE (mode)
9312 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9313 break;
9314
9315 default:
9316 gcc_unreachable ();
9317 }
9318
9319 return make_vector_type (innertype, nunits, mode);
9320 }
9321
9322 /* Similarly, but takes the inner type and number of units, which must be
9323 a power of two. */
9324
9325 tree
9326 build_vector_type (tree innertype, int nunits)
9327 {
9328 return make_vector_type (innertype, nunits, VOIDmode);
9329 }
9330
9331 /* Similarly, but takes the inner type and number of units, which must be
9332 a power of two. */
9333
9334 tree
9335 build_opaque_vector_type (tree innertype, int nunits)
9336 {
9337 tree t;
9338 innertype = build_distinct_type_copy (innertype);
9339 t = make_vector_type (innertype, nunits, VOIDmode);
9340 TYPE_VECTOR_OPAQUE (t) = true;
9341 return t;
9342 }
9343
9344
9345 /* Given an initializer INIT, return TRUE if INIT is zero or some
9346 aggregate of zeros. Otherwise return FALSE. */
9347 bool
9348 initializer_zerop (const_tree init)
9349 {
9350 tree elt;
9351
9352 STRIP_NOPS (init);
9353
9354 switch (TREE_CODE (init))
9355 {
9356 case INTEGER_CST:
9357 return integer_zerop (init);
9358
9359 case REAL_CST:
9360 /* ??? Note that this is not correct for C4X float formats. There,
9361 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9362 negative exponent. */
9363 return real_zerop (init)
9364 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9365
9366 case FIXED_CST:
9367 return fixed_zerop (init);
9368
9369 case COMPLEX_CST:
9370 return integer_zerop (init)
9371 || (real_zerop (init)
9372 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9373 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9374
9375 case VECTOR_CST:
9376 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9377 if (!initializer_zerop (TREE_VALUE (elt)))
9378 return false;
9379 return true;
9380
9381 case CONSTRUCTOR:
9382 {
9383 unsigned HOST_WIDE_INT idx;
9384
9385 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9386 if (!initializer_zerop (elt))
9387 return false;
9388 return true;
9389 }
9390
9391 case STRING_CST:
9392 {
9393 int i;
9394
9395 /* We need to loop through all elements to handle cases like
9396 "\0" and "\0foobar". */
9397 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
9398 if (TREE_STRING_POINTER (init)[i] != '\0')
9399 return false;
9400
9401 return true;
9402 }
9403
9404 default:
9405 return false;
9406 }
9407 }
9408
9409 /* Build an empty statement at location LOC. */
9410
9411 tree
9412 build_empty_stmt (location_t loc)
9413 {
9414 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9415 SET_EXPR_LOCATION (t, loc);
9416 return t;
9417 }
9418
9419
9420 /* Build an OpenMP clause with code CODE. LOC is the location of the
9421 clause. */
9422
9423 tree
9424 build_omp_clause (location_t loc, enum omp_clause_code code)
9425 {
9426 tree t;
9427 int size, length;
9428
9429 length = omp_clause_num_ops[code];
9430 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9431
9432 t = ggc_alloc_tree_node (size);
9433 memset (t, 0, size);
9434 TREE_SET_CODE (t, OMP_CLAUSE);
9435 OMP_CLAUSE_SET_CODE (t, code);
9436 OMP_CLAUSE_LOCATION (t) = loc;
9437
9438 #ifdef GATHER_STATISTICS
9439 tree_node_counts[(int) omp_clause_kind]++;
9440 tree_node_sizes[(int) omp_clause_kind] += size;
9441 #endif
9442
9443 return t;
9444 }
9445
9446 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9447 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9448 Except for the CODE and operand count field, other storage for the
9449 object is initialized to zeros. */
9450
9451 tree
9452 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9453 {
9454 tree t;
9455 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9456
9457 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9458 gcc_assert (len >= 1);
9459
9460 #ifdef GATHER_STATISTICS
9461 tree_node_counts[(int) e_kind]++;
9462 tree_node_sizes[(int) e_kind] += length;
9463 #endif
9464
9465 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
9466
9467 TREE_SET_CODE (t, code);
9468
9469 /* Can't use TREE_OPERAND to store the length because if checking is
9470 enabled, it will try to check the length before we store it. :-P */
9471 t->exp.operands[0] = build_int_cst (sizetype, len);
9472
9473 return t;
9474 }
9475
9476
9477 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE
9478 and FN and a null static chain slot. ARGLIST is a TREE_LIST of the
9479 arguments. */
9480
9481 tree
9482 build_call_list (tree return_type, tree fn, tree arglist)
9483 {
9484 tree t;
9485 int i;
9486
9487 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
9488 TREE_TYPE (t) = return_type;
9489 CALL_EXPR_FN (t) = fn;
9490 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9491 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
9492 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
9493 process_call_operands (t);
9494 return t;
9495 }
9496
9497 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9498 FN and a null static chain slot. NARGS is the number of call arguments
9499 which are specified as "..." arguments. */
9500
9501 tree
9502 build_call_nary (tree return_type, tree fn, int nargs, ...)
9503 {
9504 tree ret;
9505 va_list args;
9506 va_start (args, nargs);
9507 ret = build_call_valist (return_type, fn, nargs, args);
9508 va_end (args);
9509 return ret;
9510 }
9511
9512 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9513 FN and a null static chain slot. NARGS is the number of call arguments
9514 which are specified as a va_list ARGS. */
9515
9516 tree
9517 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9518 {
9519 tree t;
9520 int i;
9521
9522 t = build_vl_exp (CALL_EXPR, nargs + 3);
9523 TREE_TYPE (t) = return_type;
9524 CALL_EXPR_FN (t) = fn;
9525 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9526 for (i = 0; i < nargs; i++)
9527 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9528 process_call_operands (t);
9529 return t;
9530 }
9531
9532 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9533 FN and a null static chain slot. NARGS is the number of call arguments
9534 which are specified as a tree array ARGS. */
9535
9536 tree
9537 build_call_array_loc (location_t loc, tree return_type, tree fn,
9538 int nargs, const tree *args)
9539 {
9540 tree t;
9541 int i;
9542
9543 t = build_vl_exp (CALL_EXPR, nargs + 3);
9544 TREE_TYPE (t) = return_type;
9545 CALL_EXPR_FN (t) = fn;
9546 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9547 for (i = 0; i < nargs; i++)
9548 CALL_EXPR_ARG (t, i) = args[i];
9549 process_call_operands (t);
9550 SET_EXPR_LOCATION (t, loc);
9551 return t;
9552 }
9553
9554 /* Like build_call_array, but takes a VEC. */
9555
9556 tree
9557 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9558 {
9559 tree ret, t;
9560 unsigned int ix;
9561
9562 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
9563 TREE_TYPE (ret) = return_type;
9564 CALL_EXPR_FN (ret) = fn;
9565 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
9566 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
9567 CALL_EXPR_ARG (ret, ix) = t;
9568 process_call_operands (ret);
9569 return ret;
9570 }
9571
9572
9573 /* Returns true if it is possible to prove that the index of
9574 an array access REF (an ARRAY_REF expression) falls into the
9575 array bounds. */
9576
9577 bool
9578 in_array_bounds_p (tree ref)
9579 {
9580 tree idx = TREE_OPERAND (ref, 1);
9581 tree min, max;
9582
9583 if (TREE_CODE (idx) != INTEGER_CST)
9584 return false;
9585
9586 min = array_ref_low_bound (ref);
9587 max = array_ref_up_bound (ref);
9588 if (!min
9589 || !max
9590 || TREE_CODE (min) != INTEGER_CST
9591 || TREE_CODE (max) != INTEGER_CST)
9592 return false;
9593
9594 if (tree_int_cst_lt (idx, min)
9595 || tree_int_cst_lt (max, idx))
9596 return false;
9597
9598 return true;
9599 }
9600
9601 /* Returns true if it is possible to prove that the range of
9602 an array access REF (an ARRAY_RANGE_REF expression) falls
9603 into the array bounds. */
9604
9605 bool
9606 range_in_array_bounds_p (tree ref)
9607 {
9608 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
9609 tree range_min, range_max, min, max;
9610
9611 range_min = TYPE_MIN_VALUE (domain_type);
9612 range_max = TYPE_MAX_VALUE (domain_type);
9613 if (!range_min
9614 || !range_max
9615 || TREE_CODE (range_min) != INTEGER_CST
9616 || TREE_CODE (range_max) != INTEGER_CST)
9617 return false;
9618
9619 min = array_ref_low_bound (ref);
9620 max = array_ref_up_bound (ref);
9621 if (!min
9622 || !max
9623 || TREE_CODE (min) != INTEGER_CST
9624 || TREE_CODE (max) != INTEGER_CST)
9625 return false;
9626
9627 if (tree_int_cst_lt (range_min, min)
9628 || tree_int_cst_lt (max, range_max))
9629 return false;
9630
9631 return true;
9632 }
9633
9634 /* Return true if T (assumed to be a DECL) must be assigned a memory
9635 location. */
9636
9637 bool
9638 needs_to_live_in_memory (const_tree t)
9639 {
9640 if (TREE_CODE (t) == SSA_NAME)
9641 t = SSA_NAME_VAR (t);
9642
9643 return (TREE_ADDRESSABLE (t)
9644 || is_global_var (t)
9645 || (TREE_CODE (t) == RESULT_DECL
9646 && aggregate_value_p (t, current_function_decl)));
9647 }
9648
9649 /* There are situations in which a language considers record types
9650 compatible which have different field lists. Decide if two fields
9651 are compatible. It is assumed that the parent records are compatible. */
9652
9653 bool
9654 fields_compatible_p (const_tree f1, const_tree f2)
9655 {
9656 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
9657 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
9658 return false;
9659
9660 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
9661 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
9662 return false;
9663
9664 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
9665 return false;
9666
9667 return true;
9668 }
9669
9670 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
9671
9672 tree
9673 find_compatible_field (tree record, tree orig_field)
9674 {
9675 tree f;
9676
9677 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
9678 if (TREE_CODE (f) == FIELD_DECL
9679 && fields_compatible_p (f, orig_field))
9680 return f;
9681
9682 /* ??? Why isn't this on the main fields list? */
9683 f = TYPE_VFIELD (record);
9684 if (f && TREE_CODE (f) == FIELD_DECL
9685 && fields_compatible_p (f, orig_field))
9686 return f;
9687
9688 /* ??? We should abort here, but Java appears to do Bad Things
9689 with inherited fields. */
9690 return orig_field;
9691 }
9692
9693 /* Return value of a constant X and sign-extend it. */
9694
9695 HOST_WIDE_INT
9696 int_cst_value (const_tree x)
9697 {
9698 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9699 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
9700
9701 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9702 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9703 || TREE_INT_CST_HIGH (x) == -1);
9704
9705 if (bits < HOST_BITS_PER_WIDE_INT)
9706 {
9707 bool negative = ((val >> (bits - 1)) & 1) != 0;
9708 if (negative)
9709 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
9710 else
9711 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
9712 }
9713
9714 return val;
9715 }
9716
9717 /* Return value of a constant X and sign-extend it. */
9718
9719 HOST_WIDEST_INT
9720 widest_int_cst_value (const_tree x)
9721 {
9722 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9723 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
9724
9725 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
9726 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
9727 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
9728 << HOST_BITS_PER_WIDE_INT);
9729 #else
9730 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9731 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9732 || TREE_INT_CST_HIGH (x) == -1);
9733 #endif
9734
9735 if (bits < HOST_BITS_PER_WIDEST_INT)
9736 {
9737 bool negative = ((val >> (bits - 1)) & 1) != 0;
9738 if (negative)
9739 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
9740 else
9741 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
9742 }
9743
9744 return val;
9745 }
9746
9747 /* If TYPE is an integral type, return an equivalent type which is
9748 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
9749 return TYPE itself. */
9750
9751 tree
9752 signed_or_unsigned_type_for (int unsignedp, tree type)
9753 {
9754 tree t = type;
9755 if (POINTER_TYPE_P (type))
9756 {
9757 /* If the pointer points to the normal address space, use the
9758 size_type_node. Otherwise use an appropriate size for the pointer
9759 based on the named address space it points to. */
9760 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
9761 t = size_type_node;
9762 else
9763 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9764 }
9765
9766 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
9767 return t;
9768
9769 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9770 }
9771
9772 /* Returns unsigned variant of TYPE. */
9773
9774 tree
9775 unsigned_type_for (tree type)
9776 {
9777 return signed_or_unsigned_type_for (1, type);
9778 }
9779
9780 /* Returns signed variant of TYPE. */
9781
9782 tree
9783 signed_type_for (tree type)
9784 {
9785 return signed_or_unsigned_type_for (0, type);
9786 }
9787
9788 /* Returns the largest value obtainable by casting something in INNER type to
9789 OUTER type. */
9790
9791 tree
9792 upper_bound_in_type (tree outer, tree inner)
9793 {
9794 unsigned HOST_WIDE_INT lo, hi;
9795 unsigned int det = 0;
9796 unsigned oprec = TYPE_PRECISION (outer);
9797 unsigned iprec = TYPE_PRECISION (inner);
9798 unsigned prec;
9799
9800 /* Compute a unique number for every combination. */
9801 det |= (oprec > iprec) ? 4 : 0;
9802 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
9803 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
9804
9805 /* Determine the exponent to use. */
9806 switch (det)
9807 {
9808 case 0:
9809 case 1:
9810 /* oprec <= iprec, outer: signed, inner: don't care. */
9811 prec = oprec - 1;
9812 break;
9813 case 2:
9814 case 3:
9815 /* oprec <= iprec, outer: unsigned, inner: don't care. */
9816 prec = oprec;
9817 break;
9818 case 4:
9819 /* oprec > iprec, outer: signed, inner: signed. */
9820 prec = iprec - 1;
9821 break;
9822 case 5:
9823 /* oprec > iprec, outer: signed, inner: unsigned. */
9824 prec = iprec;
9825 break;
9826 case 6:
9827 /* oprec > iprec, outer: unsigned, inner: signed. */
9828 prec = oprec;
9829 break;
9830 case 7:
9831 /* oprec > iprec, outer: unsigned, inner: unsigned. */
9832 prec = iprec;
9833 break;
9834 default:
9835 gcc_unreachable ();
9836 }
9837
9838 /* Compute 2^^prec - 1. */
9839 if (prec <= HOST_BITS_PER_WIDE_INT)
9840 {
9841 hi = 0;
9842 lo = ((~(unsigned HOST_WIDE_INT) 0)
9843 >> (HOST_BITS_PER_WIDE_INT - prec));
9844 }
9845 else
9846 {
9847 hi = ((~(unsigned HOST_WIDE_INT) 0)
9848 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
9849 lo = ~(unsigned HOST_WIDE_INT) 0;
9850 }
9851
9852 return build_int_cst_wide (outer, lo, hi);
9853 }
9854
9855 /* Returns the smallest value obtainable by casting something in INNER type to
9856 OUTER type. */
9857
9858 tree
9859 lower_bound_in_type (tree outer, tree inner)
9860 {
9861 unsigned HOST_WIDE_INT lo, hi;
9862 unsigned oprec = TYPE_PRECISION (outer);
9863 unsigned iprec = TYPE_PRECISION (inner);
9864
9865 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
9866 and obtain 0. */
9867 if (TYPE_UNSIGNED (outer)
9868 /* If we are widening something of an unsigned type, OUTER type
9869 contains all values of INNER type. In particular, both INNER
9870 and OUTER types have zero in common. */
9871 || (oprec > iprec && TYPE_UNSIGNED (inner)))
9872 lo = hi = 0;
9873 else
9874 {
9875 /* If we are widening a signed type to another signed type, we
9876 want to obtain -2^^(iprec-1). If we are keeping the
9877 precision or narrowing to a signed type, we want to obtain
9878 -2^(oprec-1). */
9879 unsigned prec = oprec > iprec ? iprec : oprec;
9880
9881 if (prec <= HOST_BITS_PER_WIDE_INT)
9882 {
9883 hi = ~(unsigned HOST_WIDE_INT) 0;
9884 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
9885 }
9886 else
9887 {
9888 hi = ((~(unsigned HOST_WIDE_INT) 0)
9889 << (prec - HOST_BITS_PER_WIDE_INT - 1));
9890 lo = 0;
9891 }
9892 }
9893
9894 return build_int_cst_wide (outer, lo, hi);
9895 }
9896
9897 /* Return nonzero if two operands that are suitable for PHI nodes are
9898 necessarily equal. Specifically, both ARG0 and ARG1 must be either
9899 SSA_NAME or invariant. Note that this is strictly an optimization.
9900 That is, callers of this function can directly call operand_equal_p
9901 and get the same result, only slower. */
9902
9903 int
9904 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
9905 {
9906 if (arg0 == arg1)
9907 return 1;
9908 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
9909 return 0;
9910 return operand_equal_p (arg0, arg1, 0);
9911 }
9912
9913 /* Returns number of zeros at the end of binary representation of X.
9914
9915 ??? Use ffs if available? */
9916
9917 tree
9918 num_ending_zeros (const_tree x)
9919 {
9920 unsigned HOST_WIDE_INT fr, nfr;
9921 unsigned num, abits;
9922 tree type = TREE_TYPE (x);
9923
9924 if (TREE_INT_CST_LOW (x) == 0)
9925 {
9926 num = HOST_BITS_PER_WIDE_INT;
9927 fr = TREE_INT_CST_HIGH (x);
9928 }
9929 else
9930 {
9931 num = 0;
9932 fr = TREE_INT_CST_LOW (x);
9933 }
9934
9935 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
9936 {
9937 nfr = fr >> abits;
9938 if (nfr << abits == fr)
9939 {
9940 num += abits;
9941 fr = nfr;
9942 }
9943 }
9944
9945 if (num > TYPE_PRECISION (type))
9946 num = TYPE_PRECISION (type);
9947
9948 return build_int_cst_type (type, num);
9949 }
9950
9951
9952 #define WALK_SUBTREE(NODE) \
9953 do \
9954 { \
9955 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
9956 if (result) \
9957 return result; \
9958 } \
9959 while (0)
9960
9961 /* This is a subroutine of walk_tree that walks field of TYPE that are to
9962 be walked whenever a type is seen in the tree. Rest of operands and return
9963 value are as for walk_tree. */
9964
9965 static tree
9966 walk_type_fields (tree type, walk_tree_fn func, void *data,
9967 struct pointer_set_t *pset, walk_tree_lh lh)
9968 {
9969 tree result = NULL_TREE;
9970
9971 switch (TREE_CODE (type))
9972 {
9973 case POINTER_TYPE:
9974 case REFERENCE_TYPE:
9975 /* We have to worry about mutually recursive pointers. These can't
9976 be written in C. They can in Ada. It's pathological, but
9977 there's an ACATS test (c38102a) that checks it. Deal with this
9978 by checking if we're pointing to another pointer, that one
9979 points to another pointer, that one does too, and we have no htab.
9980 If so, get a hash table. We check three levels deep to avoid
9981 the cost of the hash table if we don't need one. */
9982 if (POINTER_TYPE_P (TREE_TYPE (type))
9983 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
9984 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
9985 && !pset)
9986 {
9987 result = walk_tree_without_duplicates (&TREE_TYPE (type),
9988 func, data);
9989 if (result)
9990 return result;
9991
9992 break;
9993 }
9994
9995 /* ... fall through ... */
9996
9997 case COMPLEX_TYPE:
9998 WALK_SUBTREE (TREE_TYPE (type));
9999 break;
10000
10001 case METHOD_TYPE:
10002 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10003
10004 /* Fall through. */
10005
10006 case FUNCTION_TYPE:
10007 WALK_SUBTREE (TREE_TYPE (type));
10008 {
10009 tree arg;
10010
10011 /* We never want to walk into default arguments. */
10012 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10013 WALK_SUBTREE (TREE_VALUE (arg));
10014 }
10015 break;
10016
10017 case ARRAY_TYPE:
10018 /* Don't follow this nodes's type if a pointer for fear that
10019 we'll have infinite recursion. If we have a PSET, then we
10020 need not fear. */
10021 if (pset
10022 || (!POINTER_TYPE_P (TREE_TYPE (type))
10023 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10024 WALK_SUBTREE (TREE_TYPE (type));
10025 WALK_SUBTREE (TYPE_DOMAIN (type));
10026 break;
10027
10028 case OFFSET_TYPE:
10029 WALK_SUBTREE (TREE_TYPE (type));
10030 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10031 break;
10032
10033 default:
10034 break;
10035 }
10036
10037 return NULL_TREE;
10038 }
10039
10040 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10041 called with the DATA and the address of each sub-tree. If FUNC returns a
10042 non-NULL value, the traversal is stopped, and the value returned by FUNC
10043 is returned. If PSET is non-NULL it is used to record the nodes visited,
10044 and to avoid visiting a node more than once. */
10045
10046 tree
10047 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10048 struct pointer_set_t *pset, walk_tree_lh lh)
10049 {
10050 enum tree_code code;
10051 int walk_subtrees;
10052 tree result;
10053
10054 #define WALK_SUBTREE_TAIL(NODE) \
10055 do \
10056 { \
10057 tp = & (NODE); \
10058 goto tail_recurse; \
10059 } \
10060 while (0)
10061
10062 tail_recurse:
10063 /* Skip empty subtrees. */
10064 if (!*tp)
10065 return NULL_TREE;
10066
10067 /* Don't walk the same tree twice, if the user has requested
10068 that we avoid doing so. */
10069 if (pset && pointer_set_insert (pset, *tp))
10070 return NULL_TREE;
10071
10072 /* Call the function. */
10073 walk_subtrees = 1;
10074 result = (*func) (tp, &walk_subtrees, data);
10075
10076 /* If we found something, return it. */
10077 if (result)
10078 return result;
10079
10080 code = TREE_CODE (*tp);
10081
10082 /* Even if we didn't, FUNC may have decided that there was nothing
10083 interesting below this point in the tree. */
10084 if (!walk_subtrees)
10085 {
10086 /* But we still need to check our siblings. */
10087 if (code == TREE_LIST)
10088 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10089 else if (code == OMP_CLAUSE)
10090 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10091 else
10092 return NULL_TREE;
10093 }
10094
10095 if (lh)
10096 {
10097 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10098 if (result || !walk_subtrees)
10099 return result;
10100 }
10101
10102 switch (code)
10103 {
10104 case ERROR_MARK:
10105 case IDENTIFIER_NODE:
10106 case INTEGER_CST:
10107 case REAL_CST:
10108 case FIXED_CST:
10109 case VECTOR_CST:
10110 case STRING_CST:
10111 case BLOCK:
10112 case PLACEHOLDER_EXPR:
10113 case SSA_NAME:
10114 case FIELD_DECL:
10115 case RESULT_DECL:
10116 /* None of these have subtrees other than those already walked
10117 above. */
10118 break;
10119
10120 case TREE_LIST:
10121 WALK_SUBTREE (TREE_VALUE (*tp));
10122 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10123 break;
10124
10125 case TREE_VEC:
10126 {
10127 int len = TREE_VEC_LENGTH (*tp);
10128
10129 if (len == 0)
10130 break;
10131
10132 /* Walk all elements but the first. */
10133 while (--len)
10134 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10135
10136 /* Now walk the first one as a tail call. */
10137 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10138 }
10139
10140 case COMPLEX_CST:
10141 WALK_SUBTREE (TREE_REALPART (*tp));
10142 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10143
10144 case CONSTRUCTOR:
10145 {
10146 unsigned HOST_WIDE_INT idx;
10147 constructor_elt *ce;
10148
10149 for (idx = 0;
10150 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10151 idx++)
10152 WALK_SUBTREE (ce->value);
10153 }
10154 break;
10155
10156 case SAVE_EXPR:
10157 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10158
10159 case BIND_EXPR:
10160 {
10161 tree decl;
10162 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
10163 {
10164 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10165 into declarations that are just mentioned, rather than
10166 declared; they don't really belong to this part of the tree.
10167 And, we can see cycles: the initializer for a declaration
10168 can refer to the declaration itself. */
10169 WALK_SUBTREE (DECL_INITIAL (decl));
10170 WALK_SUBTREE (DECL_SIZE (decl));
10171 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10172 }
10173 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10174 }
10175
10176 case STATEMENT_LIST:
10177 {
10178 tree_stmt_iterator i;
10179 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10180 WALK_SUBTREE (*tsi_stmt_ptr (i));
10181 }
10182 break;
10183
10184 case OMP_CLAUSE:
10185 switch (OMP_CLAUSE_CODE (*tp))
10186 {
10187 case OMP_CLAUSE_PRIVATE:
10188 case OMP_CLAUSE_SHARED:
10189 case OMP_CLAUSE_FIRSTPRIVATE:
10190 case OMP_CLAUSE_COPYIN:
10191 case OMP_CLAUSE_COPYPRIVATE:
10192 case OMP_CLAUSE_IF:
10193 case OMP_CLAUSE_NUM_THREADS:
10194 case OMP_CLAUSE_SCHEDULE:
10195 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10196 /* FALLTHRU */
10197
10198 case OMP_CLAUSE_NOWAIT:
10199 case OMP_CLAUSE_ORDERED:
10200 case OMP_CLAUSE_DEFAULT:
10201 case OMP_CLAUSE_UNTIED:
10202 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10203
10204 case OMP_CLAUSE_LASTPRIVATE:
10205 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10206 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10207 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10208
10209 case OMP_CLAUSE_COLLAPSE:
10210 {
10211 int i;
10212 for (i = 0; i < 3; i++)
10213 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10214 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10215 }
10216
10217 case OMP_CLAUSE_REDUCTION:
10218 {
10219 int i;
10220 for (i = 0; i < 4; i++)
10221 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10222 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10223 }
10224
10225 default:
10226 gcc_unreachable ();
10227 }
10228 break;
10229
10230 case TARGET_EXPR:
10231 {
10232 int i, len;
10233
10234 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10235 But, we only want to walk once. */
10236 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10237 for (i = 0; i < len; ++i)
10238 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10239 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10240 }
10241
10242 case DECL_EXPR:
10243 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10244 defining. We only want to walk into these fields of a type in this
10245 case and not in the general case of a mere reference to the type.
10246
10247 The criterion is as follows: if the field can be an expression, it
10248 must be walked only here. This should be in keeping with the fields
10249 that are directly gimplified in gimplify_type_sizes in order for the
10250 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10251 variable-sized types.
10252
10253 Note that DECLs get walked as part of processing the BIND_EXPR. */
10254 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10255 {
10256 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10257 if (TREE_CODE (*type_p) == ERROR_MARK)
10258 return NULL_TREE;
10259
10260 /* Call the function for the type. See if it returns anything or
10261 doesn't want us to continue. If we are to continue, walk both
10262 the normal fields and those for the declaration case. */
10263 result = (*func) (type_p, &walk_subtrees, data);
10264 if (result || !walk_subtrees)
10265 return result;
10266
10267 result = walk_type_fields (*type_p, func, data, pset, lh);
10268 if (result)
10269 return result;
10270
10271 /* If this is a record type, also walk the fields. */
10272 if (RECORD_OR_UNION_TYPE_P (*type_p))
10273 {
10274 tree field;
10275
10276 for (field = TYPE_FIELDS (*type_p); field;
10277 field = TREE_CHAIN (field))
10278 {
10279 /* We'd like to look at the type of the field, but we can
10280 easily get infinite recursion. So assume it's pointed
10281 to elsewhere in the tree. Also, ignore things that
10282 aren't fields. */
10283 if (TREE_CODE (field) != FIELD_DECL)
10284 continue;
10285
10286 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10287 WALK_SUBTREE (DECL_SIZE (field));
10288 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10289 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10290 WALK_SUBTREE (DECL_QUALIFIER (field));
10291 }
10292 }
10293
10294 /* Same for scalar types. */
10295 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10296 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10297 || TREE_CODE (*type_p) == INTEGER_TYPE
10298 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10299 || TREE_CODE (*type_p) == REAL_TYPE)
10300 {
10301 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10302 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10303 }
10304
10305 WALK_SUBTREE (TYPE_SIZE (*type_p));
10306 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10307 }
10308 /* FALLTHRU */
10309
10310 default:
10311 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10312 {
10313 int i, len;
10314
10315 /* Walk over all the sub-trees of this operand. */
10316 len = TREE_OPERAND_LENGTH (*tp);
10317
10318 /* Go through the subtrees. We need to do this in forward order so
10319 that the scope of a FOR_EXPR is handled properly. */
10320 if (len)
10321 {
10322 for (i = 0; i < len - 1; ++i)
10323 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10324 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10325 }
10326 }
10327 /* If this is a type, walk the needed fields in the type. */
10328 else if (TYPE_P (*tp))
10329 return walk_type_fields (*tp, func, data, pset, lh);
10330 break;
10331 }
10332
10333 /* We didn't find what we were looking for. */
10334 return NULL_TREE;
10335
10336 #undef WALK_SUBTREE_TAIL
10337 }
10338 #undef WALK_SUBTREE
10339
10340 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10341
10342 tree
10343 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10344 walk_tree_lh lh)
10345 {
10346 tree result;
10347 struct pointer_set_t *pset;
10348
10349 pset = pointer_set_create ();
10350 result = walk_tree_1 (tp, func, data, pset, lh);
10351 pointer_set_destroy (pset);
10352 return result;
10353 }
10354
10355
10356 tree *
10357 tree_block (tree t)
10358 {
10359 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10360
10361 if (IS_EXPR_CODE_CLASS (c))
10362 return &t->exp.block;
10363 gcc_unreachable ();
10364 return NULL;
10365 }
10366
10367 /* Create a nameless artificial label and put it in the current
10368 function context. The label has a location of LOC. Returns the
10369 newly created label. */
10370
10371 tree
10372 create_artificial_label (location_t loc)
10373 {
10374 tree lab = build_decl (loc,
10375 LABEL_DECL, NULL_TREE, void_type_node);
10376
10377 DECL_ARTIFICIAL (lab) = 1;
10378 DECL_IGNORED_P (lab) = 1;
10379 DECL_CONTEXT (lab) = current_function_decl;
10380 return lab;
10381 }
10382
10383 /* Given a tree, try to return a useful variable name that we can use
10384 to prefix a temporary that is being assigned the value of the tree.
10385 I.E. given <temp> = &A, return A. */
10386
10387 const char *
10388 get_name (tree t)
10389 {
10390 tree stripped_decl;
10391
10392 stripped_decl = t;
10393 STRIP_NOPS (stripped_decl);
10394 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10395 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10396 else
10397 {
10398 switch (TREE_CODE (stripped_decl))
10399 {
10400 case ADDR_EXPR:
10401 return get_name (TREE_OPERAND (stripped_decl, 0));
10402 default:
10403 return NULL;
10404 }
10405 }
10406 }
10407
10408 /* Return true if TYPE has a variable argument list. */
10409
10410 bool
10411 stdarg_p (tree fntype)
10412 {
10413 function_args_iterator args_iter;
10414 tree n = NULL_TREE, t;
10415
10416 if (!fntype)
10417 return false;
10418
10419 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10420 {
10421 n = t;
10422 }
10423
10424 return n != NULL_TREE && n != void_type_node;
10425 }
10426
10427 /* Return true if TYPE has a prototype. */
10428
10429 bool
10430 prototype_p (tree fntype)
10431 {
10432 tree t;
10433
10434 gcc_assert (fntype != NULL_TREE);
10435
10436 t = TYPE_ARG_TYPES (fntype);
10437 return (t != NULL_TREE);
10438 }
10439
10440 /* If BLOCK is inlined from an __attribute__((__artificial__))
10441 routine, return pointer to location from where it has been
10442 called. */
10443 location_t *
10444 block_nonartificial_location (tree block)
10445 {
10446 location_t *ret = NULL;
10447
10448 while (block && TREE_CODE (block) == BLOCK
10449 && BLOCK_ABSTRACT_ORIGIN (block))
10450 {
10451 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10452
10453 while (TREE_CODE (ao) == BLOCK
10454 && BLOCK_ABSTRACT_ORIGIN (ao)
10455 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10456 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10457
10458 if (TREE_CODE (ao) == FUNCTION_DECL)
10459 {
10460 /* If AO is an artificial inline, point RET to the
10461 call site locus at which it has been inlined and continue
10462 the loop, in case AO's caller is also an artificial
10463 inline. */
10464 if (DECL_DECLARED_INLINE_P (ao)
10465 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10466 ret = &BLOCK_SOURCE_LOCATION (block);
10467 else
10468 break;
10469 }
10470 else if (TREE_CODE (ao) != BLOCK)
10471 break;
10472
10473 block = BLOCK_SUPERCONTEXT (block);
10474 }
10475 return ret;
10476 }
10477
10478
10479 /* If EXP is inlined from an __attribute__((__artificial__))
10480 function, return the location of the original call expression. */
10481
10482 location_t
10483 tree_nonartificial_location (tree exp)
10484 {
10485 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10486
10487 if (loc)
10488 return *loc;
10489 else
10490 return EXPR_LOCATION (exp);
10491 }
10492
10493
10494 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10495 nodes. */
10496
10497 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10498
10499 static hashval_t
10500 cl_option_hash_hash (const void *x)
10501 {
10502 const_tree const t = (const_tree) x;
10503 const char *p;
10504 size_t i;
10505 size_t len = 0;
10506 hashval_t hash = 0;
10507
10508 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10509 {
10510 p = (const char *)TREE_OPTIMIZATION (t);
10511 len = sizeof (struct cl_optimization);
10512 }
10513
10514 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10515 {
10516 p = (const char *)TREE_TARGET_OPTION (t);
10517 len = sizeof (struct cl_target_option);
10518 }
10519
10520 else
10521 gcc_unreachable ();
10522
10523 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10524 something else. */
10525 for (i = 0; i < len; i++)
10526 if (p[i])
10527 hash = (hash << 4) ^ ((i << 2) | p[i]);
10528
10529 return hash;
10530 }
10531
10532 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10533 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10534 same. */
10535
10536 static int
10537 cl_option_hash_eq (const void *x, const void *y)
10538 {
10539 const_tree const xt = (const_tree) x;
10540 const_tree const yt = (const_tree) y;
10541 const char *xp;
10542 const char *yp;
10543 size_t len;
10544
10545 if (TREE_CODE (xt) != TREE_CODE (yt))
10546 return 0;
10547
10548 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10549 {
10550 xp = (const char *)TREE_OPTIMIZATION (xt);
10551 yp = (const char *)TREE_OPTIMIZATION (yt);
10552 len = sizeof (struct cl_optimization);
10553 }
10554
10555 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10556 {
10557 xp = (const char *)TREE_TARGET_OPTION (xt);
10558 yp = (const char *)TREE_TARGET_OPTION (yt);
10559 len = sizeof (struct cl_target_option);
10560 }
10561
10562 else
10563 gcc_unreachable ();
10564
10565 return (memcmp (xp, yp, len) == 0);
10566 }
10567
10568 /* Build an OPTIMIZATION_NODE based on the current options. */
10569
10570 tree
10571 build_optimization_node (void)
10572 {
10573 tree t;
10574 void **slot;
10575
10576 /* Use the cache of optimization nodes. */
10577
10578 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node));
10579
10580 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10581 t = (tree) *slot;
10582 if (!t)
10583 {
10584 /* Insert this one into the hash table. */
10585 t = cl_optimization_node;
10586 *slot = t;
10587
10588 /* Make a new node for next time round. */
10589 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10590 }
10591
10592 return t;
10593 }
10594
10595 /* Build a TARGET_OPTION_NODE based on the current options. */
10596
10597 tree
10598 build_target_option_node (void)
10599 {
10600 tree t;
10601 void **slot;
10602
10603 /* Use the cache of optimization nodes. */
10604
10605 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node));
10606
10607 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
10608 t = (tree) *slot;
10609 if (!t)
10610 {
10611 /* Insert this one into the hash table. */
10612 t = cl_target_option_node;
10613 *slot = t;
10614
10615 /* Make a new node for next time round. */
10616 cl_target_option_node = make_node (TARGET_OPTION_NODE);
10617 }
10618
10619 return t;
10620 }
10621
10622 /* Determine the "ultimate origin" of a block. The block may be an inlined
10623 instance of an inlined instance of a block which is local to an inline
10624 function, so we have to trace all of the way back through the origin chain
10625 to find out what sort of node actually served as the original seed for the
10626 given block. */
10627
10628 tree
10629 block_ultimate_origin (const_tree block)
10630 {
10631 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
10632
10633 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
10634 nodes in the function to point to themselves; ignore that if
10635 we're trying to output the abstract instance of this function. */
10636 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
10637 return NULL_TREE;
10638
10639 if (immediate_origin == NULL_TREE)
10640 return NULL_TREE;
10641 else
10642 {
10643 tree ret_val;
10644 tree lookahead = immediate_origin;
10645
10646 do
10647 {
10648 ret_val = lookahead;
10649 lookahead = (TREE_CODE (ret_val) == BLOCK
10650 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
10651 }
10652 while (lookahead != NULL && lookahead != ret_val);
10653
10654 /* The block's abstract origin chain may not be the *ultimate* origin of
10655 the block. It could lead to a DECL that has an abstract origin set.
10656 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
10657 will give us if it has one). Note that DECL's abstract origins are
10658 supposed to be the most distant ancestor (or so decl_ultimate_origin
10659 claims), so we don't need to loop following the DECL origins. */
10660 if (DECL_P (ret_val))
10661 return DECL_ORIGIN (ret_val);
10662
10663 return ret_val;
10664 }
10665 }
10666
10667 /* Return true if T1 and T2 are equivalent lists. */
10668
10669 bool
10670 list_equal_p (const_tree t1, const_tree t2)
10671 {
10672 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
10673 if (TREE_VALUE (t1) != TREE_VALUE (t2))
10674 return false;
10675 return !t1 && !t2;
10676 }
10677
10678 /* Return true iff conversion in EXP generates no instruction. Mark
10679 it inline so that we fully inline into the stripping functions even
10680 though we have two uses of this function. */
10681
10682 static inline bool
10683 tree_nop_conversion (const_tree exp)
10684 {
10685 tree outer_type, inner_type;
10686
10687 if (!CONVERT_EXPR_P (exp)
10688 && TREE_CODE (exp) != NON_LVALUE_EXPR)
10689 return false;
10690 if (TREE_OPERAND (exp, 0) == error_mark_node)
10691 return false;
10692
10693 outer_type = TREE_TYPE (exp);
10694 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10695
10696 if (!inner_type)
10697 return false;
10698
10699 /* Use precision rather then machine mode when we can, which gives
10700 the correct answer even for submode (bit-field) types. */
10701 if ((INTEGRAL_TYPE_P (outer_type)
10702 || POINTER_TYPE_P (outer_type)
10703 || TREE_CODE (outer_type) == OFFSET_TYPE)
10704 && (INTEGRAL_TYPE_P (inner_type)
10705 || POINTER_TYPE_P (inner_type)
10706 || TREE_CODE (inner_type) == OFFSET_TYPE))
10707 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
10708
10709 /* Otherwise fall back on comparing machine modes (e.g. for
10710 aggregate types, floats). */
10711 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
10712 }
10713
10714 /* Return true iff conversion in EXP generates no instruction. Don't
10715 consider conversions changing the signedness. */
10716
10717 static bool
10718 tree_sign_nop_conversion (const_tree exp)
10719 {
10720 tree outer_type, inner_type;
10721
10722 if (!tree_nop_conversion (exp))
10723 return false;
10724
10725 outer_type = TREE_TYPE (exp);
10726 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10727
10728 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
10729 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
10730 }
10731
10732 /* Strip conversions from EXP according to tree_nop_conversion and
10733 return the resulting expression. */
10734
10735 tree
10736 tree_strip_nop_conversions (tree exp)
10737 {
10738 while (tree_nop_conversion (exp))
10739 exp = TREE_OPERAND (exp, 0);
10740 return exp;
10741 }
10742
10743 /* Strip conversions from EXP according to tree_sign_nop_conversion
10744 and return the resulting expression. */
10745
10746 tree
10747 tree_strip_sign_nop_conversions (tree exp)
10748 {
10749 while (tree_sign_nop_conversion (exp))
10750 exp = TREE_OPERAND (exp, 0);
10751 return exp;
10752 }
10753
10754 static GTY(()) tree gcc_eh_personality_decl;
10755
10756 /* Return the GCC personality function decl. */
10757
10758 tree
10759 lhd_gcc_personality (void)
10760 {
10761 if (!gcc_eh_personality_decl)
10762 gcc_eh_personality_decl
10763 = build_personality_function (USING_SJLJ_EXCEPTIONS
10764 ? "__gcc_personality_sj0"
10765 : "__gcc_personality_v0");
10766
10767 return gcc_eh_personality_decl;
10768 }
10769
10770 /* Try to find a base info of BINFO that would have its field decl at offset
10771 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
10772 found, return, otherwise return NULL_TREE. */
10773
10774 tree
10775 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
10776 {
10777 tree type;
10778
10779 if (offset == 0)
10780 return binfo;
10781
10782 type = TREE_TYPE (binfo);
10783 while (offset > 0)
10784 {
10785 tree base_binfo, found_binfo;
10786 HOST_WIDE_INT pos, size;
10787 tree fld;
10788 int i;
10789
10790 if (TREE_CODE (type) != RECORD_TYPE)
10791 return NULL_TREE;
10792
10793 for (fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld))
10794 {
10795 if (TREE_CODE (fld) != FIELD_DECL)
10796 continue;
10797
10798 pos = int_bit_position (fld);
10799 size = tree_low_cst (DECL_SIZE (fld), 1);
10800 if (pos <= offset && (pos + size) > offset)
10801 break;
10802 }
10803 if (!fld)
10804 return NULL_TREE;
10805
10806 found_binfo = NULL_TREE;
10807 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
10808 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
10809 {
10810 found_binfo = base_binfo;
10811 break;
10812 }
10813
10814 if (!found_binfo)
10815 return NULL_TREE;
10816
10817 type = TREE_TYPE (fld);
10818 binfo = found_binfo;
10819 offset -= pos;
10820 }
10821 if (type != expected_type)
10822 return NULL_TREE;
10823 return binfo;
10824 }
10825
10826 /* Returns true if X is a typedef decl. */
10827
10828 bool
10829 is_typedef_decl (tree x)
10830 {
10831 return (x && TREE_CODE (x) == TYPE_DECL
10832 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
10833 }
10834
10835 /* Returns true iff TYPE is a type variant created for a typedef. */
10836
10837 bool
10838 typedef_variant_p (tree type)
10839 {
10840 return is_typedef_decl (TYPE_NAME (type));
10841 }
10842
10843 #include "gt-tree.h"