0f505c2db01758590a2ad16cbf258f33e7552348
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent but can occasionally
28 calls language-dependent routines. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "params.h"
58 #include "langhooks-def.h"
59 #include "tree-diagnostic.h"
60 #include "except.h"
61 #include "builtins.h"
62 #include "print-tree.h"
63 #include "ipa-utils.h"
64 #include "selftest.h"
65 #include "stringpool.h"
66 #include "attribs.h"
67 #include "rtl.h"
68 #include "regs.h"
69
70 /* Tree code classes. */
71
72 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
73 #define END_OF_BASE_TREE_CODES tcc_exceptional,
74
75 const enum tree_code_class tree_code_type[] = {
76 #include "all-tree.def"
77 };
78
79 #undef DEFTREECODE
80 #undef END_OF_BASE_TREE_CODES
81
82 /* Table indexed by tree code giving number of expression
83 operands beyond the fixed part of the node structure.
84 Not used for types or decls. */
85
86 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
87 #define END_OF_BASE_TREE_CODES 0,
88
89 const unsigned char tree_code_length[] = {
90 #include "all-tree.def"
91 };
92
93 #undef DEFTREECODE
94 #undef END_OF_BASE_TREE_CODES
95
96 /* Names of tree components.
97 Used for printing out the tree and error messages. */
98 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
99 #define END_OF_BASE_TREE_CODES "@dummy",
100
101 static const char *const tree_code_name[] = {
102 #include "all-tree.def"
103 };
104
105 #undef DEFTREECODE
106 #undef END_OF_BASE_TREE_CODES
107
108 /* Each tree code class has an associated string representation.
109 These must correspond to the tree_code_class entries. */
110
111 const char *const tree_code_class_strings[] =
112 {
113 "exceptional",
114 "constant",
115 "type",
116 "declaration",
117 "reference",
118 "comparison",
119 "unary",
120 "binary",
121 "statement",
122 "vl_exp",
123 "expression"
124 };
125
126 /* obstack.[ch] explicitly declined to prototype this. */
127 extern int _obstack_allocated_p (struct obstack *h, void *obj);
128
129 /* Statistics-gathering stuff. */
130
131 static int tree_code_counts[MAX_TREE_CODES];
132 int tree_node_counts[(int) all_kinds];
133 int tree_node_sizes[(int) all_kinds];
134
135 /* Keep in sync with tree.h:enum tree_node_kind. */
136 static const char * const tree_node_kind_names[] = {
137 "decls",
138 "types",
139 "blocks",
140 "stmts",
141 "refs",
142 "exprs",
143 "constants",
144 "identifiers",
145 "vecs",
146 "binfos",
147 "ssa names",
148 "constructors",
149 "random kinds",
150 "lang_decl kinds",
151 "lang_type kinds",
152 "omp clauses",
153 };
154
155 /* Unique id for next decl created. */
156 static GTY(()) int next_decl_uid;
157 /* Unique id for next type created. */
158 static GTY(()) unsigned next_type_uid = 1;
159 /* Unique id for next debug decl created. Use negative numbers,
160 to catch erroneous uses. */
161 static GTY(()) int next_debug_decl_uid;
162
163 /* Since we cannot rehash a type after it is in the table, we have to
164 keep the hash code. */
165
166 struct GTY((for_user)) type_hash {
167 unsigned long hash;
168 tree type;
169 };
170
171 /* Initial size of the hash table (rounded to next prime). */
172 #define TYPE_HASH_INITIAL_SIZE 1000
173
174 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
175 {
176 static hashval_t hash (type_hash *t) { return t->hash; }
177 static bool equal (type_hash *a, type_hash *b);
178
179 static int
180 keep_cache_entry (type_hash *&t)
181 {
182 return ggc_marked_p (t->type);
183 }
184 };
185
186 /* Now here is the hash table. When recording a type, it is added to
187 the slot whose index is the hash code. Note that the hash table is
188 used for several kinds of types (function types, array types and
189 array index range types, for now). While all these live in the
190 same table, they are completely independent, and the hash code is
191 computed differently for each of these. */
192
193 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
194
195 /* Hash table and temporary node for larger integer const values. */
196 static GTY (()) tree int_cst_node;
197
198 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
199 {
200 static hashval_t hash (tree t);
201 static bool equal (tree x, tree y);
202 };
203
204 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
205
206 /* Hash table for optimization flags and target option flags. Use the same
207 hash table for both sets of options. Nodes for building the current
208 optimization and target option nodes. The assumption is most of the time
209 the options created will already be in the hash table, so we avoid
210 allocating and freeing up a node repeatably. */
211 static GTY (()) tree cl_optimization_node;
212 static GTY (()) tree cl_target_option_node;
213
214 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
215 {
216 static hashval_t hash (tree t);
217 static bool equal (tree x, tree y);
218 };
219
220 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
221
222 /* General tree->tree mapping structure for use in hash tables. */
223
224
225 static GTY ((cache))
226 hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
227
228 static GTY ((cache))
229 hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
230
231 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
232 {
233 static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
234
235 static bool
236 equal (tree_vec_map *a, tree_vec_map *b)
237 {
238 return a->base.from == b->base.from;
239 }
240
241 static int
242 keep_cache_entry (tree_vec_map *&m)
243 {
244 return ggc_marked_p (m->base.from);
245 }
246 };
247
248 static GTY ((cache))
249 hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
250
251 static void set_type_quals (tree, int);
252 static void print_type_hash_statistics (void);
253 static void print_debug_expr_statistics (void);
254 static void print_value_expr_statistics (void);
255
256 tree global_trees[TI_MAX];
257 tree integer_types[itk_none];
258
259 bool int_n_enabled_p[NUM_INT_N_ENTS];
260 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
261
262 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
263
264 /* Number of operands for each OpenMP clause. */
265 unsigned const char omp_clause_num_ops[] =
266 {
267 0, /* OMP_CLAUSE_ERROR */
268 1, /* OMP_CLAUSE_PRIVATE */
269 1, /* OMP_CLAUSE_SHARED */
270 1, /* OMP_CLAUSE_FIRSTPRIVATE */
271 2, /* OMP_CLAUSE_LASTPRIVATE */
272 5, /* OMP_CLAUSE_REDUCTION */
273 1, /* OMP_CLAUSE_COPYIN */
274 1, /* OMP_CLAUSE_COPYPRIVATE */
275 3, /* OMP_CLAUSE_LINEAR */
276 2, /* OMP_CLAUSE_ALIGNED */
277 1, /* OMP_CLAUSE_DEPEND */
278 1, /* OMP_CLAUSE_UNIFORM */
279 1, /* OMP_CLAUSE_TO_DECLARE */
280 1, /* OMP_CLAUSE_LINK */
281 2, /* OMP_CLAUSE_FROM */
282 2, /* OMP_CLAUSE_TO */
283 2, /* OMP_CLAUSE_MAP */
284 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
285 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
286 2, /* OMP_CLAUSE__CACHE_ */
287 2, /* OMP_CLAUSE_GANG */
288 1, /* OMP_CLAUSE_ASYNC */
289 1, /* OMP_CLAUSE_WAIT */
290 0, /* OMP_CLAUSE_AUTO */
291 0, /* OMP_CLAUSE_SEQ */
292 1, /* OMP_CLAUSE__LOOPTEMP_ */
293 1, /* OMP_CLAUSE_IF */
294 1, /* OMP_CLAUSE_NUM_THREADS */
295 1, /* OMP_CLAUSE_SCHEDULE */
296 0, /* OMP_CLAUSE_NOWAIT */
297 1, /* OMP_CLAUSE_ORDERED */
298 0, /* OMP_CLAUSE_DEFAULT */
299 3, /* OMP_CLAUSE_COLLAPSE */
300 0, /* OMP_CLAUSE_UNTIED */
301 1, /* OMP_CLAUSE_FINAL */
302 0, /* OMP_CLAUSE_MERGEABLE */
303 1, /* OMP_CLAUSE_DEVICE */
304 1, /* OMP_CLAUSE_DIST_SCHEDULE */
305 0, /* OMP_CLAUSE_INBRANCH */
306 0, /* OMP_CLAUSE_NOTINBRANCH */
307 1, /* OMP_CLAUSE_NUM_TEAMS */
308 1, /* OMP_CLAUSE_THREAD_LIMIT */
309 0, /* OMP_CLAUSE_PROC_BIND */
310 1, /* OMP_CLAUSE_SAFELEN */
311 1, /* OMP_CLAUSE_SIMDLEN */
312 0, /* OMP_CLAUSE_FOR */
313 0, /* OMP_CLAUSE_PARALLEL */
314 0, /* OMP_CLAUSE_SECTIONS */
315 0, /* OMP_CLAUSE_TASKGROUP */
316 1, /* OMP_CLAUSE_PRIORITY */
317 1, /* OMP_CLAUSE_GRAINSIZE */
318 1, /* OMP_CLAUSE_NUM_TASKS */
319 0, /* OMP_CLAUSE_NOGROUP */
320 0, /* OMP_CLAUSE_THREADS */
321 0, /* OMP_CLAUSE_SIMD */
322 1, /* OMP_CLAUSE_HINT */
323 0, /* OMP_CLAUSE_DEFALTMAP */
324 1, /* OMP_CLAUSE__SIMDUID_ */
325 0, /* OMP_CLAUSE__SIMT_ */
326 1, /* OMP_CLAUSE__CILK_FOR_COUNT_ */
327 0, /* OMP_CLAUSE_INDEPENDENT */
328 1, /* OMP_CLAUSE_WORKER */
329 1, /* OMP_CLAUSE_VECTOR */
330 1, /* OMP_CLAUSE_NUM_GANGS */
331 1, /* OMP_CLAUSE_NUM_WORKERS */
332 1, /* OMP_CLAUSE_VECTOR_LENGTH */
333 3, /* OMP_CLAUSE_TILE */
334 2, /* OMP_CLAUSE__GRIDDIM_ */
335 };
336
337 const char * const omp_clause_code_name[] =
338 {
339 "error_clause",
340 "private",
341 "shared",
342 "firstprivate",
343 "lastprivate",
344 "reduction",
345 "copyin",
346 "copyprivate",
347 "linear",
348 "aligned",
349 "depend",
350 "uniform",
351 "to",
352 "link",
353 "from",
354 "to",
355 "map",
356 "use_device_ptr",
357 "is_device_ptr",
358 "_cache_",
359 "gang",
360 "async",
361 "wait",
362 "auto",
363 "seq",
364 "_looptemp_",
365 "if",
366 "num_threads",
367 "schedule",
368 "nowait",
369 "ordered",
370 "default",
371 "collapse",
372 "untied",
373 "final",
374 "mergeable",
375 "device",
376 "dist_schedule",
377 "inbranch",
378 "notinbranch",
379 "num_teams",
380 "thread_limit",
381 "proc_bind",
382 "safelen",
383 "simdlen",
384 "for",
385 "parallel",
386 "sections",
387 "taskgroup",
388 "priority",
389 "grainsize",
390 "num_tasks",
391 "nogroup",
392 "threads",
393 "simd",
394 "hint",
395 "defaultmap",
396 "_simduid_",
397 "_simt_",
398 "_Cilk_for_count_",
399 "independent",
400 "worker",
401 "vector",
402 "num_gangs",
403 "num_workers",
404 "vector_length",
405 "tile",
406 "_griddim_"
407 };
408
409
410 /* Return the tree node structure used by tree code CODE. */
411
412 static inline enum tree_node_structure_enum
413 tree_node_structure_for_code (enum tree_code code)
414 {
415 switch (TREE_CODE_CLASS (code))
416 {
417 case tcc_declaration:
418 {
419 switch (code)
420 {
421 case FIELD_DECL:
422 return TS_FIELD_DECL;
423 case PARM_DECL:
424 return TS_PARM_DECL;
425 case VAR_DECL:
426 return TS_VAR_DECL;
427 case LABEL_DECL:
428 return TS_LABEL_DECL;
429 case RESULT_DECL:
430 return TS_RESULT_DECL;
431 case DEBUG_EXPR_DECL:
432 return TS_DECL_WRTL;
433 case CONST_DECL:
434 return TS_CONST_DECL;
435 case TYPE_DECL:
436 return TS_TYPE_DECL;
437 case FUNCTION_DECL:
438 return TS_FUNCTION_DECL;
439 case TRANSLATION_UNIT_DECL:
440 return TS_TRANSLATION_UNIT_DECL;
441 default:
442 return TS_DECL_NON_COMMON;
443 }
444 }
445 case tcc_type:
446 return TS_TYPE_NON_COMMON;
447 case tcc_reference:
448 case tcc_comparison:
449 case tcc_unary:
450 case tcc_binary:
451 case tcc_expression:
452 case tcc_statement:
453 case tcc_vl_exp:
454 return TS_EXP;
455 default: /* tcc_constant and tcc_exceptional */
456 break;
457 }
458 switch (code)
459 {
460 /* tcc_constant cases. */
461 case VOID_CST: return TS_TYPED;
462 case INTEGER_CST: return TS_INT_CST;
463 case REAL_CST: return TS_REAL_CST;
464 case FIXED_CST: return TS_FIXED_CST;
465 case COMPLEX_CST: return TS_COMPLEX;
466 case VECTOR_CST: return TS_VECTOR;
467 case STRING_CST: return TS_STRING;
468 /* tcc_exceptional cases. */
469 case ERROR_MARK: return TS_COMMON;
470 case IDENTIFIER_NODE: return TS_IDENTIFIER;
471 case TREE_LIST: return TS_LIST;
472 case TREE_VEC: return TS_VEC;
473 case SSA_NAME: return TS_SSA_NAME;
474 case PLACEHOLDER_EXPR: return TS_COMMON;
475 case STATEMENT_LIST: return TS_STATEMENT_LIST;
476 case BLOCK: return TS_BLOCK;
477 case CONSTRUCTOR: return TS_CONSTRUCTOR;
478 case TREE_BINFO: return TS_BINFO;
479 case OMP_CLAUSE: return TS_OMP_CLAUSE;
480 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
481 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
482
483 default:
484 gcc_unreachable ();
485 }
486 }
487
488
489 /* Initialize tree_contains_struct to describe the hierarchy of tree
490 nodes. */
491
492 static void
493 initialize_tree_contains_struct (void)
494 {
495 unsigned i;
496
497 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
498 {
499 enum tree_code code;
500 enum tree_node_structure_enum ts_code;
501
502 code = (enum tree_code) i;
503 ts_code = tree_node_structure_for_code (code);
504
505 /* Mark the TS structure itself. */
506 tree_contains_struct[code][ts_code] = 1;
507
508 /* Mark all the structures that TS is derived from. */
509 switch (ts_code)
510 {
511 case TS_TYPED:
512 case TS_BLOCK:
513 case TS_OPTIMIZATION:
514 case TS_TARGET_OPTION:
515 MARK_TS_BASE (code);
516 break;
517
518 case TS_COMMON:
519 case TS_INT_CST:
520 case TS_REAL_CST:
521 case TS_FIXED_CST:
522 case TS_VECTOR:
523 case TS_STRING:
524 case TS_COMPLEX:
525 case TS_SSA_NAME:
526 case TS_CONSTRUCTOR:
527 case TS_EXP:
528 case TS_STATEMENT_LIST:
529 MARK_TS_TYPED (code);
530 break;
531
532 case TS_IDENTIFIER:
533 case TS_DECL_MINIMAL:
534 case TS_TYPE_COMMON:
535 case TS_LIST:
536 case TS_VEC:
537 case TS_BINFO:
538 case TS_OMP_CLAUSE:
539 MARK_TS_COMMON (code);
540 break;
541
542 case TS_TYPE_WITH_LANG_SPECIFIC:
543 MARK_TS_TYPE_COMMON (code);
544 break;
545
546 case TS_TYPE_NON_COMMON:
547 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
548 break;
549
550 case TS_DECL_COMMON:
551 MARK_TS_DECL_MINIMAL (code);
552 break;
553
554 case TS_DECL_WRTL:
555 case TS_CONST_DECL:
556 MARK_TS_DECL_COMMON (code);
557 break;
558
559 case TS_DECL_NON_COMMON:
560 MARK_TS_DECL_WITH_VIS (code);
561 break;
562
563 case TS_DECL_WITH_VIS:
564 case TS_PARM_DECL:
565 case TS_LABEL_DECL:
566 case TS_RESULT_DECL:
567 MARK_TS_DECL_WRTL (code);
568 break;
569
570 case TS_FIELD_DECL:
571 MARK_TS_DECL_COMMON (code);
572 break;
573
574 case TS_VAR_DECL:
575 MARK_TS_DECL_WITH_VIS (code);
576 break;
577
578 case TS_TYPE_DECL:
579 case TS_FUNCTION_DECL:
580 MARK_TS_DECL_NON_COMMON (code);
581 break;
582
583 case TS_TRANSLATION_UNIT_DECL:
584 MARK_TS_DECL_COMMON (code);
585 break;
586
587 default:
588 gcc_unreachable ();
589 }
590 }
591
592 /* Basic consistency checks for attributes used in fold. */
593 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
594 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
595 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
596 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
597 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
598 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
599 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
600 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
601 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
602 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
603 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
604 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
605 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
606 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
607 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
608 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
609 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
610 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
611 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
612 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
613 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
614 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
615 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
616 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
617 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
618 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
619 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
620 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
621 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
622 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
623 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
624 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
625 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
626 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
627 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
628 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
629 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
630 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
631 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
632 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
633 }
634
635
636 /* Init tree.c. */
637
638 void
639 init_ttree (void)
640 {
641 /* Initialize the hash table of types. */
642 type_hash_table
643 = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
644
645 debug_expr_for_decl
646 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
647
648 value_expr_for_decl
649 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
650
651 int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
652
653 int_cst_node = make_int_cst (1, 1);
654
655 cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
656
657 cl_optimization_node = make_node (OPTIMIZATION_NODE);
658 cl_target_option_node = make_node (TARGET_OPTION_NODE);
659
660 /* Initialize the tree_contains_struct array. */
661 initialize_tree_contains_struct ();
662 lang_hooks.init_ts ();
663 }
664
665 \f
666 /* The name of the object as the assembler will see it (but before any
667 translations made by ASM_OUTPUT_LABELREF). Often this is the same
668 as DECL_NAME. It is an IDENTIFIER_NODE. */
669 tree
670 decl_assembler_name (tree decl)
671 {
672 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
673 lang_hooks.set_decl_assembler_name (decl);
674 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
675 }
676
677 /* When the target supports COMDAT groups, this indicates which group the
678 DECL is associated with. This can be either an IDENTIFIER_NODE or a
679 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
680 tree
681 decl_comdat_group (const_tree node)
682 {
683 struct symtab_node *snode = symtab_node::get (node);
684 if (!snode)
685 return NULL;
686 return snode->get_comdat_group ();
687 }
688
689 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
690 tree
691 decl_comdat_group_id (const_tree node)
692 {
693 struct symtab_node *snode = symtab_node::get (node);
694 if (!snode)
695 return NULL;
696 return snode->get_comdat_group_id ();
697 }
698
699 /* When the target supports named section, return its name as IDENTIFIER_NODE
700 or NULL if it is in no section. */
701 const char *
702 decl_section_name (const_tree node)
703 {
704 struct symtab_node *snode = symtab_node::get (node);
705 if (!snode)
706 return NULL;
707 return snode->get_section ();
708 }
709
710 /* Set section name of NODE to VALUE (that is expected to be
711 identifier node) */
712 void
713 set_decl_section_name (tree node, const char *value)
714 {
715 struct symtab_node *snode;
716
717 if (value == NULL)
718 {
719 snode = symtab_node::get (node);
720 if (!snode)
721 return;
722 }
723 else if (VAR_P (node))
724 snode = varpool_node::get_create (node);
725 else
726 snode = cgraph_node::get_create (node);
727 snode->set_section (value);
728 }
729
730 /* Return TLS model of a variable NODE. */
731 enum tls_model
732 decl_tls_model (const_tree node)
733 {
734 struct varpool_node *snode = varpool_node::get (node);
735 if (!snode)
736 return TLS_MODEL_NONE;
737 return snode->tls_model;
738 }
739
740 /* Set TLS model of variable NODE to MODEL. */
741 void
742 set_decl_tls_model (tree node, enum tls_model model)
743 {
744 struct varpool_node *vnode;
745
746 if (model == TLS_MODEL_NONE)
747 {
748 vnode = varpool_node::get (node);
749 if (!vnode)
750 return;
751 }
752 else
753 vnode = varpool_node::get_create (node);
754 vnode->tls_model = model;
755 }
756
757 /* Compute the number of bytes occupied by a tree with code CODE.
758 This function cannot be used for nodes that have variable sizes,
759 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
760 size_t
761 tree_code_size (enum tree_code code)
762 {
763 switch (TREE_CODE_CLASS (code))
764 {
765 case tcc_declaration: /* A decl node */
766 {
767 switch (code)
768 {
769 case FIELD_DECL:
770 return sizeof (struct tree_field_decl);
771 case PARM_DECL:
772 return sizeof (struct tree_parm_decl);
773 case VAR_DECL:
774 return sizeof (struct tree_var_decl);
775 case LABEL_DECL:
776 return sizeof (struct tree_label_decl);
777 case RESULT_DECL:
778 return sizeof (struct tree_result_decl);
779 case CONST_DECL:
780 return sizeof (struct tree_const_decl);
781 case TYPE_DECL:
782 return sizeof (struct tree_type_decl);
783 case FUNCTION_DECL:
784 return sizeof (struct tree_function_decl);
785 case DEBUG_EXPR_DECL:
786 return sizeof (struct tree_decl_with_rtl);
787 case TRANSLATION_UNIT_DECL:
788 return sizeof (struct tree_translation_unit_decl);
789 case NAMESPACE_DECL:
790 case IMPORTED_DECL:
791 case NAMELIST_DECL:
792 return sizeof (struct tree_decl_non_common);
793 default:
794 return lang_hooks.tree_size (code);
795 }
796 }
797
798 case tcc_type: /* a type node */
799 return sizeof (struct tree_type_non_common);
800
801 case tcc_reference: /* a reference */
802 case tcc_expression: /* an expression */
803 case tcc_statement: /* an expression with side effects */
804 case tcc_comparison: /* a comparison expression */
805 case tcc_unary: /* a unary arithmetic expression */
806 case tcc_binary: /* a binary arithmetic expression */
807 return (sizeof (struct tree_exp)
808 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
809
810 case tcc_constant: /* a constant */
811 switch (code)
812 {
813 case VOID_CST: return sizeof (struct tree_typed);
814 case INTEGER_CST: gcc_unreachable ();
815 case REAL_CST: return sizeof (struct tree_real_cst);
816 case FIXED_CST: return sizeof (struct tree_fixed_cst);
817 case COMPLEX_CST: return sizeof (struct tree_complex);
818 case VECTOR_CST: return sizeof (struct tree_vector);
819 case STRING_CST: gcc_unreachable ();
820 default:
821 return lang_hooks.tree_size (code);
822 }
823
824 case tcc_exceptional: /* something random, like an identifier. */
825 switch (code)
826 {
827 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
828 case TREE_LIST: return sizeof (struct tree_list);
829
830 case ERROR_MARK:
831 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
832
833 case TREE_VEC:
834 case OMP_CLAUSE: gcc_unreachable ();
835
836 case SSA_NAME: return sizeof (struct tree_ssa_name);
837
838 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
839 case BLOCK: return sizeof (struct tree_block);
840 case CONSTRUCTOR: return sizeof (struct tree_constructor);
841 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
842 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
843
844 default:
845 return lang_hooks.tree_size (code);
846 }
847
848 default:
849 gcc_unreachable ();
850 }
851 }
852
853 /* Compute the number of bytes occupied by NODE. This routine only
854 looks at TREE_CODE, except for those nodes that have variable sizes. */
855 size_t
856 tree_size (const_tree node)
857 {
858 const enum tree_code code = TREE_CODE (node);
859 switch (code)
860 {
861 case INTEGER_CST:
862 return (sizeof (struct tree_int_cst)
863 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
864
865 case TREE_BINFO:
866 return (offsetof (struct tree_binfo, base_binfos)
867 + vec<tree, va_gc>
868 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
869
870 case TREE_VEC:
871 return (sizeof (struct tree_vec)
872 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
873
874 case VECTOR_CST:
875 return (sizeof (struct tree_vector)
876 + (VECTOR_CST_NELTS (node) - 1) * sizeof (tree));
877
878 case STRING_CST:
879 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
880
881 case OMP_CLAUSE:
882 return (sizeof (struct tree_omp_clause)
883 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
884 * sizeof (tree));
885
886 default:
887 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
888 return (sizeof (struct tree_exp)
889 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
890 else
891 return tree_code_size (code);
892 }
893 }
894
895 /* Record interesting allocation statistics for a tree node with CODE
896 and LENGTH. */
897
898 static void
899 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
900 size_t length ATTRIBUTE_UNUSED)
901 {
902 enum tree_code_class type = TREE_CODE_CLASS (code);
903 tree_node_kind kind;
904
905 if (!GATHER_STATISTICS)
906 return;
907
908 switch (type)
909 {
910 case tcc_declaration: /* A decl node */
911 kind = d_kind;
912 break;
913
914 case tcc_type: /* a type node */
915 kind = t_kind;
916 break;
917
918 case tcc_statement: /* an expression with side effects */
919 kind = s_kind;
920 break;
921
922 case tcc_reference: /* a reference */
923 kind = r_kind;
924 break;
925
926 case tcc_expression: /* an expression */
927 case tcc_comparison: /* a comparison expression */
928 case tcc_unary: /* a unary arithmetic expression */
929 case tcc_binary: /* a binary arithmetic expression */
930 kind = e_kind;
931 break;
932
933 case tcc_constant: /* a constant */
934 kind = c_kind;
935 break;
936
937 case tcc_exceptional: /* something random, like an identifier. */
938 switch (code)
939 {
940 case IDENTIFIER_NODE:
941 kind = id_kind;
942 break;
943
944 case TREE_VEC:
945 kind = vec_kind;
946 break;
947
948 case TREE_BINFO:
949 kind = binfo_kind;
950 break;
951
952 case SSA_NAME:
953 kind = ssa_name_kind;
954 break;
955
956 case BLOCK:
957 kind = b_kind;
958 break;
959
960 case CONSTRUCTOR:
961 kind = constr_kind;
962 break;
963
964 case OMP_CLAUSE:
965 kind = omp_clause_kind;
966 break;
967
968 default:
969 kind = x_kind;
970 break;
971 }
972 break;
973
974 case tcc_vl_exp:
975 kind = e_kind;
976 break;
977
978 default:
979 gcc_unreachable ();
980 }
981
982 tree_code_counts[(int) code]++;
983 tree_node_counts[(int) kind]++;
984 tree_node_sizes[(int) kind] += length;
985 }
986
987 /* Allocate and return a new UID from the DECL_UID namespace. */
988
989 int
990 allocate_decl_uid (void)
991 {
992 return next_decl_uid++;
993 }
994
995 /* Return a newly allocated node of code CODE. For decl and type
996 nodes, some other fields are initialized. The rest of the node is
997 initialized to zero. This function cannot be used for TREE_VEC,
998 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
999 tree_code_size.
1000
1001 Achoo! I got a code in the node. */
1002
1003 tree
1004 make_node (enum tree_code code MEM_STAT_DECL)
1005 {
1006 tree t;
1007 enum tree_code_class type = TREE_CODE_CLASS (code);
1008 size_t length = tree_code_size (code);
1009
1010 record_node_allocation_statistics (code, length);
1011
1012 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1013 TREE_SET_CODE (t, code);
1014
1015 switch (type)
1016 {
1017 case tcc_statement:
1018 TREE_SIDE_EFFECTS (t) = 1;
1019 break;
1020
1021 case tcc_declaration:
1022 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1023 {
1024 if (code == FUNCTION_DECL)
1025 {
1026 SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1027 SET_DECL_MODE (t, FUNCTION_MODE);
1028 }
1029 else
1030 SET_DECL_ALIGN (t, 1);
1031 }
1032 DECL_SOURCE_LOCATION (t) = input_location;
1033 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1034 DECL_UID (t) = --next_debug_decl_uid;
1035 else
1036 {
1037 DECL_UID (t) = allocate_decl_uid ();
1038 SET_DECL_PT_UID (t, -1);
1039 }
1040 if (TREE_CODE (t) == LABEL_DECL)
1041 LABEL_DECL_UID (t) = -1;
1042
1043 break;
1044
1045 case tcc_type:
1046 TYPE_UID (t) = next_type_uid++;
1047 SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1048 TYPE_USER_ALIGN (t) = 0;
1049 TYPE_MAIN_VARIANT (t) = t;
1050 TYPE_CANONICAL (t) = t;
1051
1052 /* Default to no attributes for type, but let target change that. */
1053 TYPE_ATTRIBUTES (t) = NULL_TREE;
1054 targetm.set_default_type_attributes (t);
1055
1056 /* We have not yet computed the alias set for this type. */
1057 TYPE_ALIAS_SET (t) = -1;
1058 break;
1059
1060 case tcc_constant:
1061 TREE_CONSTANT (t) = 1;
1062 break;
1063
1064 case tcc_expression:
1065 switch (code)
1066 {
1067 case INIT_EXPR:
1068 case MODIFY_EXPR:
1069 case VA_ARG_EXPR:
1070 case PREDECREMENT_EXPR:
1071 case PREINCREMENT_EXPR:
1072 case POSTDECREMENT_EXPR:
1073 case POSTINCREMENT_EXPR:
1074 /* All of these have side-effects, no matter what their
1075 operands are. */
1076 TREE_SIDE_EFFECTS (t) = 1;
1077 break;
1078
1079 default:
1080 break;
1081 }
1082 break;
1083
1084 case tcc_exceptional:
1085 switch (code)
1086 {
1087 case TARGET_OPTION_NODE:
1088 TREE_TARGET_OPTION(t)
1089 = ggc_cleared_alloc<struct cl_target_option> ();
1090 break;
1091
1092 case OPTIMIZATION_NODE:
1093 TREE_OPTIMIZATION (t)
1094 = ggc_cleared_alloc<struct cl_optimization> ();
1095 break;
1096
1097 default:
1098 break;
1099 }
1100 break;
1101
1102 default:
1103 /* Other classes need no special treatment. */
1104 break;
1105 }
1106
1107 return t;
1108 }
1109
1110 /* Free tree node. */
1111
1112 void
1113 free_node (tree node)
1114 {
1115 enum tree_code code = TREE_CODE (node);
1116 if (GATHER_STATISTICS)
1117 {
1118 tree_code_counts[(int) TREE_CODE (node)]--;
1119 tree_node_counts[(int) t_kind]--;
1120 tree_node_sizes[(int) t_kind] -= tree_size (node);
1121 }
1122 if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1123 vec_free (CONSTRUCTOR_ELTS (node));
1124 else if (code == BLOCK)
1125 vec_free (BLOCK_NONLOCALIZED_VARS (node));
1126 else if (code == TREE_BINFO)
1127 vec_free (BINFO_BASE_ACCESSES (node));
1128 ggc_free (node);
1129 }
1130 \f
1131 /* Return a new node with the same contents as NODE except that its
1132 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1133
1134 tree
1135 copy_node (tree node MEM_STAT_DECL)
1136 {
1137 tree t;
1138 enum tree_code code = TREE_CODE (node);
1139 size_t length;
1140
1141 gcc_assert (code != STATEMENT_LIST);
1142
1143 length = tree_size (node);
1144 record_node_allocation_statistics (code, length);
1145 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1146 memcpy (t, node, length);
1147
1148 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1149 TREE_CHAIN (t) = 0;
1150 TREE_ASM_WRITTEN (t) = 0;
1151 TREE_VISITED (t) = 0;
1152
1153 if (TREE_CODE_CLASS (code) == tcc_declaration)
1154 {
1155 if (code == DEBUG_EXPR_DECL)
1156 DECL_UID (t) = --next_debug_decl_uid;
1157 else
1158 {
1159 DECL_UID (t) = allocate_decl_uid ();
1160 if (DECL_PT_UID_SET_P (node))
1161 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1162 }
1163 if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1164 && DECL_HAS_VALUE_EXPR_P (node))
1165 {
1166 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1167 DECL_HAS_VALUE_EXPR_P (t) = 1;
1168 }
1169 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1170 if (VAR_P (node))
1171 {
1172 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1173 t->decl_with_vis.symtab_node = NULL;
1174 }
1175 if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1176 {
1177 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1178 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1179 }
1180 if (TREE_CODE (node) == FUNCTION_DECL)
1181 {
1182 DECL_STRUCT_FUNCTION (t) = NULL;
1183 t->decl_with_vis.symtab_node = NULL;
1184 }
1185 }
1186 else if (TREE_CODE_CLASS (code) == tcc_type)
1187 {
1188 TYPE_UID (t) = next_type_uid++;
1189 /* The following is so that the debug code for
1190 the copy is different from the original type.
1191 The two statements usually duplicate each other
1192 (because they clear fields of the same union),
1193 but the optimizer should catch that. */
1194 TYPE_SYMTAB_POINTER (t) = 0;
1195 TYPE_SYMTAB_ADDRESS (t) = 0;
1196
1197 /* Do not copy the values cache. */
1198 if (TYPE_CACHED_VALUES_P (t))
1199 {
1200 TYPE_CACHED_VALUES_P (t) = 0;
1201 TYPE_CACHED_VALUES (t) = NULL_TREE;
1202 }
1203 }
1204 else if (code == TARGET_OPTION_NODE)
1205 {
1206 TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1207 memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1208 sizeof (struct cl_target_option));
1209 }
1210 else if (code == OPTIMIZATION_NODE)
1211 {
1212 TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1213 memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1214 sizeof (struct cl_optimization));
1215 }
1216
1217 return t;
1218 }
1219
1220 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1221 For example, this can copy a list made of TREE_LIST nodes. */
1222
1223 tree
1224 copy_list (tree list)
1225 {
1226 tree head;
1227 tree prev, next;
1228
1229 if (list == 0)
1230 return 0;
1231
1232 head = prev = copy_node (list);
1233 next = TREE_CHAIN (list);
1234 while (next)
1235 {
1236 TREE_CHAIN (prev) = copy_node (next);
1237 prev = TREE_CHAIN (prev);
1238 next = TREE_CHAIN (next);
1239 }
1240 return head;
1241 }
1242
1243 \f
1244 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1245 INTEGER_CST with value CST and type TYPE. */
1246
1247 static unsigned int
1248 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1249 {
1250 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1251 /* We need extra HWIs if CST is an unsigned integer with its
1252 upper bit set. */
1253 if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1254 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1255 return cst.get_len ();
1256 }
1257
1258 /* Return a new INTEGER_CST with value CST and type TYPE. */
1259
1260 static tree
1261 build_new_int_cst (tree type, const wide_int &cst)
1262 {
1263 unsigned int len = cst.get_len ();
1264 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1265 tree nt = make_int_cst (len, ext_len);
1266
1267 if (len < ext_len)
1268 {
1269 --ext_len;
1270 TREE_INT_CST_ELT (nt, ext_len)
1271 = zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1272 for (unsigned int i = len; i < ext_len; ++i)
1273 TREE_INT_CST_ELT (nt, i) = -1;
1274 }
1275 else if (TYPE_UNSIGNED (type)
1276 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1277 {
1278 len--;
1279 TREE_INT_CST_ELT (nt, len)
1280 = zext_hwi (cst.elt (len),
1281 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1282 }
1283
1284 for (unsigned int i = 0; i < len; i++)
1285 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1286 TREE_TYPE (nt) = type;
1287 return nt;
1288 }
1289
1290 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1291
1292 tree
1293 build_int_cst (tree type, HOST_WIDE_INT low)
1294 {
1295 /* Support legacy code. */
1296 if (!type)
1297 type = integer_type_node;
1298
1299 return wide_int_to_tree (type, wi::shwi (low, TYPE_PRECISION (type)));
1300 }
1301
1302 tree
1303 build_int_cstu (tree type, unsigned HOST_WIDE_INT cst)
1304 {
1305 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1306 }
1307
1308 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1309
1310 tree
1311 build_int_cst_type (tree type, HOST_WIDE_INT low)
1312 {
1313 gcc_assert (type);
1314 return wide_int_to_tree (type, wi::shwi (low, TYPE_PRECISION (type)));
1315 }
1316
1317 /* Constructs tree in type TYPE from with value given by CST. Signedness
1318 of CST is assumed to be the same as the signedness of TYPE. */
1319
1320 tree
1321 double_int_to_tree (tree type, double_int cst)
1322 {
1323 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1324 }
1325
1326 /* We force the wide_int CST to the range of the type TYPE by sign or
1327 zero extending it. OVERFLOWABLE indicates if we are interested in
1328 overflow of the value, when >0 we are only interested in signed
1329 overflow, for <0 we are interested in any overflow. OVERFLOWED
1330 indicates whether overflow has already occurred. CONST_OVERFLOWED
1331 indicates whether constant overflow has already occurred. We force
1332 T's value to be within range of T's type (by setting to 0 or 1 all
1333 the bits outside the type's range). We set TREE_OVERFLOWED if,
1334 OVERFLOWED is nonzero,
1335 or OVERFLOWABLE is >0 and signed overflow occurs
1336 or OVERFLOWABLE is <0 and any overflow occurs
1337 We return a new tree node for the extended wide_int. The node
1338 is shared if no overflow flags are set. */
1339
1340
1341 tree
1342 force_fit_type (tree type, const wide_int_ref &cst,
1343 int overflowable, bool overflowed)
1344 {
1345 signop sign = TYPE_SIGN (type);
1346
1347 /* If we need to set overflow flags, return a new unshared node. */
1348 if (overflowed || !wi::fits_to_tree_p (cst, type))
1349 {
1350 if (overflowed
1351 || overflowable < 0
1352 || (overflowable > 0 && sign == SIGNED))
1353 {
1354 wide_int tmp = wide_int::from (cst, TYPE_PRECISION (type), sign);
1355 tree t = build_new_int_cst (type, tmp);
1356 TREE_OVERFLOW (t) = 1;
1357 return t;
1358 }
1359 }
1360
1361 /* Else build a shared node. */
1362 return wide_int_to_tree (type, cst);
1363 }
1364
1365 /* These are the hash table functions for the hash table of INTEGER_CST
1366 nodes of a sizetype. */
1367
1368 /* Return the hash code X, an INTEGER_CST. */
1369
1370 hashval_t
1371 int_cst_hasher::hash (tree x)
1372 {
1373 const_tree const t = x;
1374 hashval_t code = TYPE_UID (TREE_TYPE (t));
1375 int i;
1376
1377 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1378 code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1379
1380 return code;
1381 }
1382
1383 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1384 is the same as that given by *Y, which is the same. */
1385
1386 bool
1387 int_cst_hasher::equal (tree x, tree y)
1388 {
1389 const_tree const xt = x;
1390 const_tree const yt = y;
1391
1392 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1393 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1394 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1395 return false;
1396
1397 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1398 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1399 return false;
1400
1401 return true;
1402 }
1403
1404 /* Create an INT_CST node of TYPE and value CST.
1405 The returned node is always shared. For small integers we use a
1406 per-type vector cache, for larger ones we use a single hash table.
1407 The value is extended from its precision according to the sign of
1408 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1409 the upper bits and ensures that hashing and value equality based
1410 upon the underlying HOST_WIDE_INTs works without masking. */
1411
1412 tree
1413 wide_int_to_tree (tree type, const wide_int_ref &pcst)
1414 {
1415 tree t;
1416 int ix = -1;
1417 int limit = 0;
1418
1419 gcc_assert (type);
1420 unsigned int prec = TYPE_PRECISION (type);
1421 signop sgn = TYPE_SIGN (type);
1422
1423 /* Verify that everything is canonical. */
1424 int l = pcst.get_len ();
1425 if (l > 1)
1426 {
1427 if (pcst.elt (l - 1) == 0)
1428 gcc_checking_assert (pcst.elt (l - 2) < 0);
1429 if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1430 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1431 }
1432
1433 wide_int cst = wide_int::from (pcst, prec, sgn);
1434 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1435
1436 if (ext_len == 1)
1437 {
1438 /* We just need to store a single HOST_WIDE_INT. */
1439 HOST_WIDE_INT hwi;
1440 if (TYPE_UNSIGNED (type))
1441 hwi = cst.to_uhwi ();
1442 else
1443 hwi = cst.to_shwi ();
1444
1445 switch (TREE_CODE (type))
1446 {
1447 case NULLPTR_TYPE:
1448 gcc_assert (hwi == 0);
1449 /* Fallthru. */
1450
1451 case POINTER_TYPE:
1452 case REFERENCE_TYPE:
1453 case POINTER_BOUNDS_TYPE:
1454 /* Cache NULL pointer and zero bounds. */
1455 if (hwi == 0)
1456 {
1457 limit = 1;
1458 ix = 0;
1459 }
1460 break;
1461
1462 case BOOLEAN_TYPE:
1463 /* Cache false or true. */
1464 limit = 2;
1465 if (IN_RANGE (hwi, 0, 1))
1466 ix = hwi;
1467 break;
1468
1469 case INTEGER_TYPE:
1470 case OFFSET_TYPE:
1471 if (TYPE_SIGN (type) == UNSIGNED)
1472 {
1473 /* Cache [0, N). */
1474 limit = INTEGER_SHARE_LIMIT;
1475 if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1476 ix = hwi;
1477 }
1478 else
1479 {
1480 /* Cache [-1, N). */
1481 limit = INTEGER_SHARE_LIMIT + 1;
1482 if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1483 ix = hwi + 1;
1484 }
1485 break;
1486
1487 case ENUMERAL_TYPE:
1488 break;
1489
1490 default:
1491 gcc_unreachable ();
1492 }
1493
1494 if (ix >= 0)
1495 {
1496 /* Look for it in the type's vector of small shared ints. */
1497 if (!TYPE_CACHED_VALUES_P (type))
1498 {
1499 TYPE_CACHED_VALUES_P (type) = 1;
1500 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1501 }
1502
1503 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1504 if (t)
1505 /* Make sure no one is clobbering the shared constant. */
1506 gcc_checking_assert (TREE_TYPE (t) == type
1507 && TREE_INT_CST_NUNITS (t) == 1
1508 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1509 && TREE_INT_CST_EXT_NUNITS (t) == 1
1510 && TREE_INT_CST_ELT (t, 0) == hwi);
1511 else
1512 {
1513 /* Create a new shared int. */
1514 t = build_new_int_cst (type, cst);
1515 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1516 }
1517 }
1518 else
1519 {
1520 /* Use the cache of larger shared ints, using int_cst_node as
1521 a temporary. */
1522
1523 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1524 TREE_TYPE (int_cst_node) = type;
1525
1526 tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1527 t = *slot;
1528 if (!t)
1529 {
1530 /* Insert this one into the hash table. */
1531 t = int_cst_node;
1532 *slot = t;
1533 /* Make a new node for next time round. */
1534 int_cst_node = make_int_cst (1, 1);
1535 }
1536 }
1537 }
1538 else
1539 {
1540 /* The value either hashes properly or we drop it on the floor
1541 for the gc to take care of. There will not be enough of them
1542 to worry about. */
1543
1544 tree nt = build_new_int_cst (type, cst);
1545 tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1546 t = *slot;
1547 if (!t)
1548 {
1549 /* Insert this one into the hash table. */
1550 t = nt;
1551 *slot = t;
1552 }
1553 }
1554
1555 return t;
1556 }
1557
1558 void
1559 cache_integer_cst (tree t)
1560 {
1561 tree type = TREE_TYPE (t);
1562 int ix = -1;
1563 int limit = 0;
1564 int prec = TYPE_PRECISION (type);
1565
1566 gcc_assert (!TREE_OVERFLOW (t));
1567
1568 switch (TREE_CODE (type))
1569 {
1570 case NULLPTR_TYPE:
1571 gcc_assert (integer_zerop (t));
1572 /* Fallthru. */
1573
1574 case POINTER_TYPE:
1575 case REFERENCE_TYPE:
1576 /* Cache NULL pointer. */
1577 if (integer_zerop (t))
1578 {
1579 limit = 1;
1580 ix = 0;
1581 }
1582 break;
1583
1584 case BOOLEAN_TYPE:
1585 /* Cache false or true. */
1586 limit = 2;
1587 if (wi::ltu_p (t, 2))
1588 ix = TREE_INT_CST_ELT (t, 0);
1589 break;
1590
1591 case INTEGER_TYPE:
1592 case OFFSET_TYPE:
1593 if (TYPE_UNSIGNED (type))
1594 {
1595 /* Cache 0..N */
1596 limit = INTEGER_SHARE_LIMIT;
1597
1598 /* This is a little hokie, but if the prec is smaller than
1599 what is necessary to hold INTEGER_SHARE_LIMIT, then the
1600 obvious test will not get the correct answer. */
1601 if (prec < HOST_BITS_PER_WIDE_INT)
1602 {
1603 if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1604 ix = tree_to_uhwi (t);
1605 }
1606 else if (wi::ltu_p (t, INTEGER_SHARE_LIMIT))
1607 ix = tree_to_uhwi (t);
1608 }
1609 else
1610 {
1611 /* Cache -1..N */
1612 limit = INTEGER_SHARE_LIMIT + 1;
1613
1614 if (integer_minus_onep (t))
1615 ix = 0;
1616 else if (!wi::neg_p (t))
1617 {
1618 if (prec < HOST_BITS_PER_WIDE_INT)
1619 {
1620 if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1621 ix = tree_to_shwi (t) + 1;
1622 }
1623 else if (wi::ltu_p (t, INTEGER_SHARE_LIMIT))
1624 ix = tree_to_shwi (t) + 1;
1625 }
1626 }
1627 break;
1628
1629 case ENUMERAL_TYPE:
1630 break;
1631
1632 default:
1633 gcc_unreachable ();
1634 }
1635
1636 if (ix >= 0)
1637 {
1638 /* Look for it in the type's vector of small shared ints. */
1639 if (!TYPE_CACHED_VALUES_P (type))
1640 {
1641 TYPE_CACHED_VALUES_P (type) = 1;
1642 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1643 }
1644
1645 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1646 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1647 }
1648 else
1649 {
1650 /* Use the cache of larger shared ints. */
1651 tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1652 /* If there is already an entry for the number verify it's the
1653 same. */
1654 if (*slot)
1655 gcc_assert (wi::eq_p (tree (*slot), t));
1656 else
1657 /* Otherwise insert this one into the hash table. */
1658 *slot = t;
1659 }
1660 }
1661
1662
1663 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1664 and the rest are zeros. */
1665
1666 tree
1667 build_low_bits_mask (tree type, unsigned bits)
1668 {
1669 gcc_assert (bits <= TYPE_PRECISION (type));
1670
1671 return wide_int_to_tree (type, wi::mask (bits, false,
1672 TYPE_PRECISION (type)));
1673 }
1674
1675 /* Checks that X is integer constant that can be expressed in (unsigned)
1676 HOST_WIDE_INT without loss of precision. */
1677
1678 bool
1679 cst_and_fits_in_hwi (const_tree x)
1680 {
1681 return (TREE_CODE (x) == INTEGER_CST
1682 && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
1683 }
1684
1685 /* Build a newly constructed VECTOR_CST node of length LEN. */
1686
1687 tree
1688 make_vector (unsigned len MEM_STAT_DECL)
1689 {
1690 tree t;
1691 unsigned length = (len - 1) * sizeof (tree) + sizeof (struct tree_vector);
1692
1693 record_node_allocation_statistics (VECTOR_CST, length);
1694
1695 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1696
1697 TREE_SET_CODE (t, VECTOR_CST);
1698 TREE_CONSTANT (t) = 1;
1699 VECTOR_CST_NELTS (t) = len;
1700
1701 return t;
1702 }
1703
1704 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1705 are in a list pointed to by VALS. */
1706
1707 tree
1708 build_vector (tree type, tree *vals MEM_STAT_DECL)
1709 {
1710 int over = 0;
1711 unsigned cnt = 0;
1712 tree v = make_vector (TYPE_VECTOR_SUBPARTS (type));
1713 TREE_TYPE (v) = type;
1714
1715 /* Iterate through elements and check for overflow. */
1716 for (cnt = 0; cnt < TYPE_VECTOR_SUBPARTS (type); ++cnt)
1717 {
1718 tree value = vals[cnt];
1719
1720 VECTOR_CST_ELT (v, cnt) = value;
1721
1722 /* Don't crash if we get an address constant. */
1723 if (!CONSTANT_CLASS_P (value))
1724 continue;
1725
1726 over |= TREE_OVERFLOW (value);
1727 }
1728
1729 TREE_OVERFLOW (v) = over;
1730 return v;
1731 }
1732
1733 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1734 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1735
1736 tree
1737 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1738 {
1739 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
1740 unsigned HOST_WIDE_INT idx, pos = 0;
1741 tree value;
1742
1743 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1744 {
1745 if (TREE_CODE (value) == VECTOR_CST)
1746 for (unsigned i = 0; i < VECTOR_CST_NELTS (value); ++i)
1747 vec[pos++] = VECTOR_CST_ELT (value, i);
1748 else
1749 vec[pos++] = value;
1750 }
1751 while (pos < TYPE_VECTOR_SUBPARTS (type))
1752 vec[pos++] = build_zero_cst (TREE_TYPE (type));
1753
1754 return build_vector (type, vec);
1755 }
1756
1757 /* Build a vector of type VECTYPE where all the elements are SCs. */
1758 tree
1759 build_vector_from_val (tree vectype, tree sc)
1760 {
1761 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1762
1763 if (sc == error_mark_node)
1764 return sc;
1765
1766 /* Verify that the vector type is suitable for SC. Note that there
1767 is some inconsistency in the type-system with respect to restrict
1768 qualifications of pointers. Vector types always have a main-variant
1769 element type and the qualification is applied to the vector-type.
1770 So TREE_TYPE (vector-type) does not return a properly qualified
1771 vector element-type. */
1772 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1773 TREE_TYPE (vectype)));
1774
1775 if (CONSTANT_CLASS_P (sc))
1776 {
1777 tree *v = XALLOCAVEC (tree, nunits);
1778 for (i = 0; i < nunits; ++i)
1779 v[i] = sc;
1780 return build_vector (vectype, v);
1781 }
1782 else
1783 {
1784 vec<constructor_elt, va_gc> *v;
1785 vec_alloc (v, nunits);
1786 for (i = 0; i < nunits; ++i)
1787 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1788 return build_constructor (vectype, v);
1789 }
1790 }
1791
1792 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
1793 calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
1794
1795 void
1796 recompute_constructor_flags (tree c)
1797 {
1798 unsigned int i;
1799 tree val;
1800 bool constant_p = true;
1801 bool side_effects_p = false;
1802 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1803
1804 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1805 {
1806 /* Mostly ctors will have elts that don't have side-effects, so
1807 the usual case is to scan all the elements. Hence a single
1808 loop for both const and side effects, rather than one loop
1809 each (with early outs). */
1810 if (!TREE_CONSTANT (val))
1811 constant_p = false;
1812 if (TREE_SIDE_EFFECTS (val))
1813 side_effects_p = true;
1814 }
1815
1816 TREE_SIDE_EFFECTS (c) = side_effects_p;
1817 TREE_CONSTANT (c) = constant_p;
1818 }
1819
1820 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
1821 CONSTRUCTOR C. */
1822
1823 void
1824 verify_constructor_flags (tree c)
1825 {
1826 unsigned int i;
1827 tree val;
1828 bool constant_p = TREE_CONSTANT (c);
1829 bool side_effects_p = TREE_SIDE_EFFECTS (c);
1830 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1831
1832 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1833 {
1834 if (constant_p && !TREE_CONSTANT (val))
1835 internal_error ("non-constant element in constant CONSTRUCTOR");
1836 if (!side_effects_p && TREE_SIDE_EFFECTS (val))
1837 internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
1838 }
1839 }
1840
1841 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1842 are in the vec pointed to by VALS. */
1843 tree
1844 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1845 {
1846 tree c = make_node (CONSTRUCTOR);
1847
1848 TREE_TYPE (c) = type;
1849 CONSTRUCTOR_ELTS (c) = vals;
1850
1851 recompute_constructor_flags (c);
1852
1853 return c;
1854 }
1855
1856 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1857 INDEX and VALUE. */
1858 tree
1859 build_constructor_single (tree type, tree index, tree value)
1860 {
1861 vec<constructor_elt, va_gc> *v;
1862 constructor_elt elt = {index, value};
1863
1864 vec_alloc (v, 1);
1865 v->quick_push (elt);
1866
1867 return build_constructor (type, v);
1868 }
1869
1870
1871 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1872 are in a list pointed to by VALS. */
1873 tree
1874 build_constructor_from_list (tree type, tree vals)
1875 {
1876 tree t;
1877 vec<constructor_elt, va_gc> *v = NULL;
1878
1879 if (vals)
1880 {
1881 vec_alloc (v, list_length (vals));
1882 for (t = vals; t; t = TREE_CHAIN (t))
1883 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1884 }
1885
1886 return build_constructor (type, v);
1887 }
1888
1889 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
1890 of elements, provided as index/value pairs. */
1891
1892 tree
1893 build_constructor_va (tree type, int nelts, ...)
1894 {
1895 vec<constructor_elt, va_gc> *v = NULL;
1896 va_list p;
1897
1898 va_start (p, nelts);
1899 vec_alloc (v, nelts);
1900 while (nelts--)
1901 {
1902 tree index = va_arg (p, tree);
1903 tree value = va_arg (p, tree);
1904 CONSTRUCTOR_APPEND_ELT (v, index, value);
1905 }
1906 va_end (p);
1907 return build_constructor (type, v);
1908 }
1909
1910 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1911
1912 tree
1913 build_fixed (tree type, FIXED_VALUE_TYPE f)
1914 {
1915 tree v;
1916 FIXED_VALUE_TYPE *fp;
1917
1918 v = make_node (FIXED_CST);
1919 fp = ggc_alloc<fixed_value> ();
1920 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1921
1922 TREE_TYPE (v) = type;
1923 TREE_FIXED_CST_PTR (v) = fp;
1924 return v;
1925 }
1926
1927 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1928
1929 tree
1930 build_real (tree type, REAL_VALUE_TYPE d)
1931 {
1932 tree v;
1933 REAL_VALUE_TYPE *dp;
1934 int overflow = 0;
1935
1936 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1937 Consider doing it via real_convert now. */
1938
1939 v = make_node (REAL_CST);
1940 dp = ggc_alloc<real_value> ();
1941 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1942
1943 TREE_TYPE (v) = type;
1944 TREE_REAL_CST_PTR (v) = dp;
1945 TREE_OVERFLOW (v) = overflow;
1946 return v;
1947 }
1948
1949 /* Like build_real, but first truncate D to the type. */
1950
1951 tree
1952 build_real_truncate (tree type, REAL_VALUE_TYPE d)
1953 {
1954 return build_real (type, real_value_truncate (TYPE_MODE (type), d));
1955 }
1956
1957 /* Return a new REAL_CST node whose type is TYPE
1958 and whose value is the integer value of the INTEGER_CST node I. */
1959
1960 REAL_VALUE_TYPE
1961 real_value_from_int_cst (const_tree type, const_tree i)
1962 {
1963 REAL_VALUE_TYPE d;
1964
1965 /* Clear all bits of the real value type so that we can later do
1966 bitwise comparisons to see if two values are the same. */
1967 memset (&d, 0, sizeof d);
1968
1969 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, i,
1970 TYPE_SIGN (TREE_TYPE (i)));
1971 return d;
1972 }
1973
1974 /* Given a tree representing an integer constant I, return a tree
1975 representing the same value as a floating-point constant of type TYPE. */
1976
1977 tree
1978 build_real_from_int_cst (tree type, const_tree i)
1979 {
1980 tree v;
1981 int overflow = TREE_OVERFLOW (i);
1982
1983 v = build_real (type, real_value_from_int_cst (type, i));
1984
1985 TREE_OVERFLOW (v) |= overflow;
1986 return v;
1987 }
1988
1989 /* Return a newly constructed STRING_CST node whose value is
1990 the LEN characters at STR.
1991 Note that for a C string literal, LEN should include the trailing NUL.
1992 The TREE_TYPE is not initialized. */
1993
1994 tree
1995 build_string (int len, const char *str)
1996 {
1997 tree s;
1998 size_t length;
1999
2000 /* Do not waste bytes provided by padding of struct tree_string. */
2001 length = len + offsetof (struct tree_string, str) + 1;
2002
2003 record_node_allocation_statistics (STRING_CST, length);
2004
2005 s = (tree) ggc_internal_alloc (length);
2006
2007 memset (s, 0, sizeof (struct tree_typed));
2008 TREE_SET_CODE (s, STRING_CST);
2009 TREE_CONSTANT (s) = 1;
2010 TREE_STRING_LENGTH (s) = len;
2011 memcpy (s->string.str, str, len);
2012 s->string.str[len] = '\0';
2013
2014 return s;
2015 }
2016
2017 /* Return a newly constructed COMPLEX_CST node whose value is
2018 specified by the real and imaginary parts REAL and IMAG.
2019 Both REAL and IMAG should be constant nodes. TYPE, if specified,
2020 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
2021
2022 tree
2023 build_complex (tree type, tree real, tree imag)
2024 {
2025 tree t = make_node (COMPLEX_CST);
2026
2027 TREE_REALPART (t) = real;
2028 TREE_IMAGPART (t) = imag;
2029 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2030 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2031 return t;
2032 }
2033
2034 /* Build a complex (inf +- 0i), such as for the result of cproj.
2035 TYPE is the complex tree type of the result. If NEG is true, the
2036 imaginary zero is negative. */
2037
2038 tree
2039 build_complex_inf (tree type, bool neg)
2040 {
2041 REAL_VALUE_TYPE rinf, rzero = dconst0;
2042
2043 real_inf (&rinf);
2044 rzero.sign = neg;
2045 return build_complex (type, build_real (TREE_TYPE (type), rinf),
2046 build_real (TREE_TYPE (type), rzero));
2047 }
2048
2049 /* Return the constant 1 in type TYPE. If TYPE has several elements, each
2050 element is set to 1. In particular, this is 1 + i for complex types. */
2051
2052 tree
2053 build_each_one_cst (tree type)
2054 {
2055 if (TREE_CODE (type) == COMPLEX_TYPE)
2056 {
2057 tree scalar = build_one_cst (TREE_TYPE (type));
2058 return build_complex (type, scalar, scalar);
2059 }
2060 else
2061 return build_one_cst (type);
2062 }
2063
2064 /* Return a constant of arithmetic type TYPE which is the
2065 multiplicative identity of the set TYPE. */
2066
2067 tree
2068 build_one_cst (tree type)
2069 {
2070 switch (TREE_CODE (type))
2071 {
2072 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2073 case POINTER_TYPE: case REFERENCE_TYPE:
2074 case OFFSET_TYPE:
2075 return build_int_cst (type, 1);
2076
2077 case REAL_TYPE:
2078 return build_real (type, dconst1);
2079
2080 case FIXED_POINT_TYPE:
2081 /* We can only generate 1 for accum types. */
2082 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2083 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2084
2085 case VECTOR_TYPE:
2086 {
2087 tree scalar = build_one_cst (TREE_TYPE (type));
2088
2089 return build_vector_from_val (type, scalar);
2090 }
2091
2092 case COMPLEX_TYPE:
2093 return build_complex (type,
2094 build_one_cst (TREE_TYPE (type)),
2095 build_zero_cst (TREE_TYPE (type)));
2096
2097 default:
2098 gcc_unreachable ();
2099 }
2100 }
2101
2102 /* Return an integer of type TYPE containing all 1's in as much precision as
2103 it contains, or a complex or vector whose subparts are such integers. */
2104
2105 tree
2106 build_all_ones_cst (tree type)
2107 {
2108 if (TREE_CODE (type) == COMPLEX_TYPE)
2109 {
2110 tree scalar = build_all_ones_cst (TREE_TYPE (type));
2111 return build_complex (type, scalar, scalar);
2112 }
2113 else
2114 return build_minus_one_cst (type);
2115 }
2116
2117 /* Return a constant of arithmetic type TYPE which is the
2118 opposite of the multiplicative identity of the set TYPE. */
2119
2120 tree
2121 build_minus_one_cst (tree type)
2122 {
2123 switch (TREE_CODE (type))
2124 {
2125 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2126 case POINTER_TYPE: case REFERENCE_TYPE:
2127 case OFFSET_TYPE:
2128 return build_int_cst (type, -1);
2129
2130 case REAL_TYPE:
2131 return build_real (type, dconstm1);
2132
2133 case FIXED_POINT_TYPE:
2134 /* We can only generate 1 for accum types. */
2135 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2136 return build_fixed (type,
2137 fixed_from_double_int (double_int_minus_one,
2138 SCALAR_TYPE_MODE (type)));
2139
2140 case VECTOR_TYPE:
2141 {
2142 tree scalar = build_minus_one_cst (TREE_TYPE (type));
2143
2144 return build_vector_from_val (type, scalar);
2145 }
2146
2147 case COMPLEX_TYPE:
2148 return build_complex (type,
2149 build_minus_one_cst (TREE_TYPE (type)),
2150 build_zero_cst (TREE_TYPE (type)));
2151
2152 default:
2153 gcc_unreachable ();
2154 }
2155 }
2156
2157 /* Build 0 constant of type TYPE. This is used by constructor folding
2158 and thus the constant should be represented in memory by
2159 zero(es). */
2160
2161 tree
2162 build_zero_cst (tree type)
2163 {
2164 switch (TREE_CODE (type))
2165 {
2166 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2167 case POINTER_TYPE: case REFERENCE_TYPE:
2168 case OFFSET_TYPE: case NULLPTR_TYPE:
2169 return build_int_cst (type, 0);
2170
2171 case REAL_TYPE:
2172 return build_real (type, dconst0);
2173
2174 case FIXED_POINT_TYPE:
2175 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2176
2177 case VECTOR_TYPE:
2178 {
2179 tree scalar = build_zero_cst (TREE_TYPE (type));
2180
2181 return build_vector_from_val (type, scalar);
2182 }
2183
2184 case COMPLEX_TYPE:
2185 {
2186 tree zero = build_zero_cst (TREE_TYPE (type));
2187
2188 return build_complex (type, zero, zero);
2189 }
2190
2191 default:
2192 if (!AGGREGATE_TYPE_P (type))
2193 return fold_convert (type, integer_zero_node);
2194 return build_constructor (type, NULL);
2195 }
2196 }
2197
2198
2199 /* Build a BINFO with LEN language slots. */
2200
2201 tree
2202 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2203 {
2204 tree t;
2205 size_t length = (offsetof (struct tree_binfo, base_binfos)
2206 + vec<tree, va_gc>::embedded_size (base_binfos));
2207
2208 record_node_allocation_statistics (TREE_BINFO, length);
2209
2210 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2211
2212 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2213
2214 TREE_SET_CODE (t, TREE_BINFO);
2215
2216 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2217
2218 return t;
2219 }
2220
2221 /* Create a CASE_LABEL_EXPR tree node and return it. */
2222
2223 tree
2224 build_case_label (tree low_value, tree high_value, tree label_decl)
2225 {
2226 tree t = make_node (CASE_LABEL_EXPR);
2227
2228 TREE_TYPE (t) = void_type_node;
2229 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2230
2231 CASE_LOW (t) = low_value;
2232 CASE_HIGH (t) = high_value;
2233 CASE_LABEL (t) = label_decl;
2234 CASE_CHAIN (t) = NULL_TREE;
2235
2236 return t;
2237 }
2238
2239 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2240 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2241 The latter determines the length of the HOST_WIDE_INT vector. */
2242
2243 tree
2244 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2245 {
2246 tree t;
2247 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2248 + sizeof (struct tree_int_cst));
2249
2250 gcc_assert (len);
2251 record_node_allocation_statistics (INTEGER_CST, length);
2252
2253 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2254
2255 TREE_SET_CODE (t, INTEGER_CST);
2256 TREE_INT_CST_NUNITS (t) = len;
2257 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2258 /* to_offset can only be applied to trees that are offset_int-sized
2259 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2260 must be exactly the precision of offset_int and so LEN is correct. */
2261 if (ext_len <= OFFSET_INT_ELTS)
2262 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2263 else
2264 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2265
2266 TREE_CONSTANT (t) = 1;
2267
2268 return t;
2269 }
2270
2271 /* Build a newly constructed TREE_VEC node of length LEN. */
2272
2273 tree
2274 make_tree_vec (int len MEM_STAT_DECL)
2275 {
2276 tree t;
2277 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2278
2279 record_node_allocation_statistics (TREE_VEC, length);
2280
2281 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2282
2283 TREE_SET_CODE (t, TREE_VEC);
2284 TREE_VEC_LENGTH (t) = len;
2285
2286 return t;
2287 }
2288
2289 /* Grow a TREE_VEC node to new length LEN. */
2290
2291 tree
2292 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2293 {
2294 gcc_assert (TREE_CODE (v) == TREE_VEC);
2295
2296 int oldlen = TREE_VEC_LENGTH (v);
2297 gcc_assert (len > oldlen);
2298
2299 size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2300 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2301
2302 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2303
2304 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2305
2306 TREE_VEC_LENGTH (v) = len;
2307
2308 return v;
2309 }
2310 \f
2311 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2312 fixed, and scalar, complex or vector. */
2313
2314 int
2315 zerop (const_tree expr)
2316 {
2317 return (integer_zerop (expr)
2318 || real_zerop (expr)
2319 || fixed_zerop (expr));
2320 }
2321
2322 /* Return 1 if EXPR is the integer constant zero or a complex constant
2323 of zero. */
2324
2325 int
2326 integer_zerop (const_tree expr)
2327 {
2328 switch (TREE_CODE (expr))
2329 {
2330 case INTEGER_CST:
2331 return wi::eq_p (expr, 0);
2332 case COMPLEX_CST:
2333 return (integer_zerop (TREE_REALPART (expr))
2334 && integer_zerop (TREE_IMAGPART (expr)));
2335 case VECTOR_CST:
2336 {
2337 unsigned i;
2338 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2339 if (!integer_zerop (VECTOR_CST_ELT (expr, i)))
2340 return false;
2341 return true;
2342 }
2343 default:
2344 return false;
2345 }
2346 }
2347
2348 /* Return 1 if EXPR is the integer constant one or the corresponding
2349 complex constant. */
2350
2351 int
2352 integer_onep (const_tree expr)
2353 {
2354 switch (TREE_CODE (expr))
2355 {
2356 case INTEGER_CST:
2357 return wi::eq_p (wi::to_widest (expr), 1);
2358 case COMPLEX_CST:
2359 return (integer_onep (TREE_REALPART (expr))
2360 && integer_zerop (TREE_IMAGPART (expr)));
2361 case VECTOR_CST:
2362 {
2363 unsigned i;
2364 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2365 if (!integer_onep (VECTOR_CST_ELT (expr, i)))
2366 return false;
2367 return true;
2368 }
2369 default:
2370 return false;
2371 }
2372 }
2373
2374 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2375 return 1 if every piece is the integer constant one. */
2376
2377 int
2378 integer_each_onep (const_tree expr)
2379 {
2380 if (TREE_CODE (expr) == COMPLEX_CST)
2381 return (integer_onep (TREE_REALPART (expr))
2382 && integer_onep (TREE_IMAGPART (expr)));
2383 else
2384 return integer_onep (expr);
2385 }
2386
2387 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2388 it contains, or a complex or vector whose subparts are such integers. */
2389
2390 int
2391 integer_all_onesp (const_tree expr)
2392 {
2393 if (TREE_CODE (expr) == COMPLEX_CST
2394 && integer_all_onesp (TREE_REALPART (expr))
2395 && integer_all_onesp (TREE_IMAGPART (expr)))
2396 return 1;
2397
2398 else if (TREE_CODE (expr) == VECTOR_CST)
2399 {
2400 unsigned i;
2401 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2402 if (!integer_all_onesp (VECTOR_CST_ELT (expr, i)))
2403 return 0;
2404 return 1;
2405 }
2406
2407 else if (TREE_CODE (expr) != INTEGER_CST)
2408 return 0;
2409
2410 return wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED) == expr;
2411 }
2412
2413 /* Return 1 if EXPR is the integer constant minus one. */
2414
2415 int
2416 integer_minus_onep (const_tree expr)
2417 {
2418 if (TREE_CODE (expr) == COMPLEX_CST)
2419 return (integer_all_onesp (TREE_REALPART (expr))
2420 && integer_zerop (TREE_IMAGPART (expr)));
2421 else
2422 return integer_all_onesp (expr);
2423 }
2424
2425 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2426 one bit on). */
2427
2428 int
2429 integer_pow2p (const_tree expr)
2430 {
2431 if (TREE_CODE (expr) == COMPLEX_CST
2432 && integer_pow2p (TREE_REALPART (expr))
2433 && integer_zerop (TREE_IMAGPART (expr)))
2434 return 1;
2435
2436 if (TREE_CODE (expr) != INTEGER_CST)
2437 return 0;
2438
2439 return wi::popcount (expr) == 1;
2440 }
2441
2442 /* Return 1 if EXPR is an integer constant other than zero or a
2443 complex constant other than zero. */
2444
2445 int
2446 integer_nonzerop (const_tree expr)
2447 {
2448 return ((TREE_CODE (expr) == INTEGER_CST
2449 && !wi::eq_p (expr, 0))
2450 || (TREE_CODE (expr) == COMPLEX_CST
2451 && (integer_nonzerop (TREE_REALPART (expr))
2452 || integer_nonzerop (TREE_IMAGPART (expr)))));
2453 }
2454
2455 /* Return 1 if EXPR is the integer constant one. For vector,
2456 return 1 if every piece is the integer constant minus one
2457 (representing the value TRUE). */
2458
2459 int
2460 integer_truep (const_tree expr)
2461 {
2462 if (TREE_CODE (expr) == VECTOR_CST)
2463 return integer_all_onesp (expr);
2464 return integer_onep (expr);
2465 }
2466
2467 /* Return 1 if EXPR is the fixed-point constant zero. */
2468
2469 int
2470 fixed_zerop (const_tree expr)
2471 {
2472 return (TREE_CODE (expr) == FIXED_CST
2473 && TREE_FIXED_CST (expr).data.is_zero ());
2474 }
2475
2476 /* Return the power of two represented by a tree node known to be a
2477 power of two. */
2478
2479 int
2480 tree_log2 (const_tree expr)
2481 {
2482 if (TREE_CODE (expr) == COMPLEX_CST)
2483 return tree_log2 (TREE_REALPART (expr));
2484
2485 return wi::exact_log2 (expr);
2486 }
2487
2488 /* Similar, but return the largest integer Y such that 2 ** Y is less
2489 than or equal to EXPR. */
2490
2491 int
2492 tree_floor_log2 (const_tree expr)
2493 {
2494 if (TREE_CODE (expr) == COMPLEX_CST)
2495 return tree_log2 (TREE_REALPART (expr));
2496
2497 return wi::floor_log2 (expr);
2498 }
2499
2500 /* Return number of known trailing zero bits in EXPR, or, if the value of
2501 EXPR is known to be zero, the precision of it's type. */
2502
2503 unsigned int
2504 tree_ctz (const_tree expr)
2505 {
2506 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2507 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2508 return 0;
2509
2510 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2511 switch (TREE_CODE (expr))
2512 {
2513 case INTEGER_CST:
2514 ret1 = wi::ctz (expr);
2515 return MIN (ret1, prec);
2516 case SSA_NAME:
2517 ret1 = wi::ctz (get_nonzero_bits (expr));
2518 return MIN (ret1, prec);
2519 case PLUS_EXPR:
2520 case MINUS_EXPR:
2521 case BIT_IOR_EXPR:
2522 case BIT_XOR_EXPR:
2523 case MIN_EXPR:
2524 case MAX_EXPR:
2525 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2526 if (ret1 == 0)
2527 return ret1;
2528 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2529 return MIN (ret1, ret2);
2530 case POINTER_PLUS_EXPR:
2531 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2532 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2533 /* Second operand is sizetype, which could be in theory
2534 wider than pointer's precision. Make sure we never
2535 return more than prec. */
2536 ret2 = MIN (ret2, prec);
2537 return MIN (ret1, ret2);
2538 case BIT_AND_EXPR:
2539 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2540 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2541 return MAX (ret1, ret2);
2542 case MULT_EXPR:
2543 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2544 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2545 return MIN (ret1 + ret2, prec);
2546 case LSHIFT_EXPR:
2547 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2548 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2549 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2550 {
2551 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2552 return MIN (ret1 + ret2, prec);
2553 }
2554 return ret1;
2555 case RSHIFT_EXPR:
2556 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2557 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2558 {
2559 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2560 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2561 if (ret1 > ret2)
2562 return ret1 - ret2;
2563 }
2564 return 0;
2565 case TRUNC_DIV_EXPR:
2566 case CEIL_DIV_EXPR:
2567 case FLOOR_DIV_EXPR:
2568 case ROUND_DIV_EXPR:
2569 case EXACT_DIV_EXPR:
2570 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2571 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2572 {
2573 int l = tree_log2 (TREE_OPERAND (expr, 1));
2574 if (l >= 0)
2575 {
2576 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2577 ret2 = l;
2578 if (ret1 > ret2)
2579 return ret1 - ret2;
2580 }
2581 }
2582 return 0;
2583 CASE_CONVERT:
2584 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2585 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2586 ret1 = prec;
2587 return MIN (ret1, prec);
2588 case SAVE_EXPR:
2589 return tree_ctz (TREE_OPERAND (expr, 0));
2590 case COND_EXPR:
2591 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2592 if (ret1 == 0)
2593 return 0;
2594 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2595 return MIN (ret1, ret2);
2596 case COMPOUND_EXPR:
2597 return tree_ctz (TREE_OPERAND (expr, 1));
2598 case ADDR_EXPR:
2599 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2600 if (ret1 > BITS_PER_UNIT)
2601 {
2602 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2603 return MIN (ret1, prec);
2604 }
2605 return 0;
2606 default:
2607 return 0;
2608 }
2609 }
2610
2611 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2612 decimal float constants, so don't return 1 for them. */
2613
2614 int
2615 real_zerop (const_tree expr)
2616 {
2617 switch (TREE_CODE (expr))
2618 {
2619 case REAL_CST:
2620 return real_equal (&TREE_REAL_CST (expr), &dconst0)
2621 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2622 case COMPLEX_CST:
2623 return real_zerop (TREE_REALPART (expr))
2624 && real_zerop (TREE_IMAGPART (expr));
2625 case VECTOR_CST:
2626 {
2627 unsigned i;
2628 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2629 if (!real_zerop (VECTOR_CST_ELT (expr, i)))
2630 return false;
2631 return true;
2632 }
2633 default:
2634 return false;
2635 }
2636 }
2637
2638 /* Return 1 if EXPR is the real constant one in real or complex form.
2639 Trailing zeroes matter for decimal float constants, so don't return
2640 1 for them. */
2641
2642 int
2643 real_onep (const_tree expr)
2644 {
2645 switch (TREE_CODE (expr))
2646 {
2647 case REAL_CST:
2648 return real_equal (&TREE_REAL_CST (expr), &dconst1)
2649 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2650 case COMPLEX_CST:
2651 return real_onep (TREE_REALPART (expr))
2652 && real_zerop (TREE_IMAGPART (expr));
2653 case VECTOR_CST:
2654 {
2655 unsigned i;
2656 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2657 if (!real_onep (VECTOR_CST_ELT (expr, i)))
2658 return false;
2659 return true;
2660 }
2661 default:
2662 return false;
2663 }
2664 }
2665
2666 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2667 matter for decimal float constants, so don't return 1 for them. */
2668
2669 int
2670 real_minus_onep (const_tree expr)
2671 {
2672 switch (TREE_CODE (expr))
2673 {
2674 case REAL_CST:
2675 return real_equal (&TREE_REAL_CST (expr), &dconstm1)
2676 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2677 case COMPLEX_CST:
2678 return real_minus_onep (TREE_REALPART (expr))
2679 && real_zerop (TREE_IMAGPART (expr));
2680 case VECTOR_CST:
2681 {
2682 unsigned i;
2683 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2684 if (!real_minus_onep (VECTOR_CST_ELT (expr, i)))
2685 return false;
2686 return true;
2687 }
2688 default:
2689 return false;
2690 }
2691 }
2692
2693 /* Nonzero if EXP is a constant or a cast of a constant. */
2694
2695 int
2696 really_constant_p (const_tree exp)
2697 {
2698 /* This is not quite the same as STRIP_NOPS. It does more. */
2699 while (CONVERT_EXPR_P (exp)
2700 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2701 exp = TREE_OPERAND (exp, 0);
2702 return TREE_CONSTANT (exp);
2703 }
2704 \f
2705 /* Return first list element whose TREE_VALUE is ELEM.
2706 Return 0 if ELEM is not in LIST. */
2707
2708 tree
2709 value_member (tree elem, tree list)
2710 {
2711 while (list)
2712 {
2713 if (elem == TREE_VALUE (list))
2714 return list;
2715 list = TREE_CHAIN (list);
2716 }
2717 return NULL_TREE;
2718 }
2719
2720 /* Return first list element whose TREE_PURPOSE is ELEM.
2721 Return 0 if ELEM is not in LIST. */
2722
2723 tree
2724 purpose_member (const_tree elem, tree list)
2725 {
2726 while (list)
2727 {
2728 if (elem == TREE_PURPOSE (list))
2729 return list;
2730 list = TREE_CHAIN (list);
2731 }
2732 return NULL_TREE;
2733 }
2734
2735 /* Return true if ELEM is in V. */
2736
2737 bool
2738 vec_member (const_tree elem, vec<tree, va_gc> *v)
2739 {
2740 unsigned ix;
2741 tree t;
2742 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2743 if (elem == t)
2744 return true;
2745 return false;
2746 }
2747
2748 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2749 NULL_TREE. */
2750
2751 tree
2752 chain_index (int idx, tree chain)
2753 {
2754 for (; chain && idx > 0; --idx)
2755 chain = TREE_CHAIN (chain);
2756 return chain;
2757 }
2758
2759 /* Return nonzero if ELEM is part of the chain CHAIN. */
2760
2761 int
2762 chain_member (const_tree elem, const_tree chain)
2763 {
2764 while (chain)
2765 {
2766 if (elem == chain)
2767 return 1;
2768 chain = DECL_CHAIN (chain);
2769 }
2770
2771 return 0;
2772 }
2773
2774 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2775 We expect a null pointer to mark the end of the chain.
2776 This is the Lisp primitive `length'. */
2777
2778 int
2779 list_length (const_tree t)
2780 {
2781 const_tree p = t;
2782 #ifdef ENABLE_TREE_CHECKING
2783 const_tree q = t;
2784 #endif
2785 int len = 0;
2786
2787 while (p)
2788 {
2789 p = TREE_CHAIN (p);
2790 #ifdef ENABLE_TREE_CHECKING
2791 if (len % 2)
2792 q = TREE_CHAIN (q);
2793 gcc_assert (p != q);
2794 #endif
2795 len++;
2796 }
2797
2798 return len;
2799 }
2800
2801 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2802 UNION_TYPE TYPE, or NULL_TREE if none. */
2803
2804 tree
2805 first_field (const_tree type)
2806 {
2807 tree t = TYPE_FIELDS (type);
2808 while (t && TREE_CODE (t) != FIELD_DECL)
2809 t = TREE_CHAIN (t);
2810 return t;
2811 }
2812
2813 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2814 by modifying the last node in chain 1 to point to chain 2.
2815 This is the Lisp primitive `nconc'. */
2816
2817 tree
2818 chainon (tree op1, tree op2)
2819 {
2820 tree t1;
2821
2822 if (!op1)
2823 return op2;
2824 if (!op2)
2825 return op1;
2826
2827 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2828 continue;
2829 TREE_CHAIN (t1) = op2;
2830
2831 #ifdef ENABLE_TREE_CHECKING
2832 {
2833 tree t2;
2834 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2835 gcc_assert (t2 != t1);
2836 }
2837 #endif
2838
2839 return op1;
2840 }
2841
2842 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2843
2844 tree
2845 tree_last (tree chain)
2846 {
2847 tree next;
2848 if (chain)
2849 while ((next = TREE_CHAIN (chain)))
2850 chain = next;
2851 return chain;
2852 }
2853
2854 /* Reverse the order of elements in the chain T,
2855 and return the new head of the chain (old last element). */
2856
2857 tree
2858 nreverse (tree t)
2859 {
2860 tree prev = 0, decl, next;
2861 for (decl = t; decl; decl = next)
2862 {
2863 /* We shouldn't be using this function to reverse BLOCK chains; we
2864 have blocks_nreverse for that. */
2865 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2866 next = TREE_CHAIN (decl);
2867 TREE_CHAIN (decl) = prev;
2868 prev = decl;
2869 }
2870 return prev;
2871 }
2872 \f
2873 /* Return a newly created TREE_LIST node whose
2874 purpose and value fields are PARM and VALUE. */
2875
2876 tree
2877 build_tree_list (tree parm, tree value MEM_STAT_DECL)
2878 {
2879 tree t = make_node (TREE_LIST PASS_MEM_STAT);
2880 TREE_PURPOSE (t) = parm;
2881 TREE_VALUE (t) = value;
2882 return t;
2883 }
2884
2885 /* Build a chain of TREE_LIST nodes from a vector. */
2886
2887 tree
2888 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
2889 {
2890 tree ret = NULL_TREE;
2891 tree *pp = &ret;
2892 unsigned int i;
2893 tree t;
2894 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
2895 {
2896 *pp = build_tree_list (NULL, t PASS_MEM_STAT);
2897 pp = &TREE_CHAIN (*pp);
2898 }
2899 return ret;
2900 }
2901
2902 /* Return a newly created TREE_LIST node whose
2903 purpose and value fields are PURPOSE and VALUE
2904 and whose TREE_CHAIN is CHAIN. */
2905
2906 tree
2907 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
2908 {
2909 tree node;
2910
2911 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
2912 memset (node, 0, sizeof (struct tree_common));
2913
2914 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2915
2916 TREE_SET_CODE (node, TREE_LIST);
2917 TREE_CHAIN (node) = chain;
2918 TREE_PURPOSE (node) = purpose;
2919 TREE_VALUE (node) = value;
2920 return node;
2921 }
2922
2923 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2924 trees. */
2925
2926 vec<tree, va_gc> *
2927 ctor_to_vec (tree ctor)
2928 {
2929 vec<tree, va_gc> *vec;
2930 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
2931 unsigned int ix;
2932 tree val;
2933
2934 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2935 vec->quick_push (val);
2936
2937 return vec;
2938 }
2939 \f
2940 /* Return the size nominally occupied by an object of type TYPE
2941 when it resides in memory. The value is measured in units of bytes,
2942 and its data type is that normally used for type sizes
2943 (which is the first type created by make_signed_type or
2944 make_unsigned_type). */
2945
2946 tree
2947 size_in_bytes_loc (location_t loc, const_tree type)
2948 {
2949 tree t;
2950
2951 if (type == error_mark_node)
2952 return integer_zero_node;
2953
2954 type = TYPE_MAIN_VARIANT (type);
2955 t = TYPE_SIZE_UNIT (type);
2956
2957 if (t == 0)
2958 {
2959 lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
2960 return size_zero_node;
2961 }
2962
2963 return t;
2964 }
2965
2966 /* Return the size of TYPE (in bytes) as a wide integer
2967 or return -1 if the size can vary or is larger than an integer. */
2968
2969 HOST_WIDE_INT
2970 int_size_in_bytes (const_tree type)
2971 {
2972 tree t;
2973
2974 if (type == error_mark_node)
2975 return 0;
2976
2977 type = TYPE_MAIN_VARIANT (type);
2978 t = TYPE_SIZE_UNIT (type);
2979
2980 if (t && tree_fits_uhwi_p (t))
2981 return TREE_INT_CST_LOW (t);
2982 else
2983 return -1;
2984 }
2985
2986 /* Return the maximum size of TYPE (in bytes) as a wide integer
2987 or return -1 if the size can vary or is larger than an integer. */
2988
2989 HOST_WIDE_INT
2990 max_int_size_in_bytes (const_tree type)
2991 {
2992 HOST_WIDE_INT size = -1;
2993 tree size_tree;
2994
2995 /* If this is an array type, check for a possible MAX_SIZE attached. */
2996
2997 if (TREE_CODE (type) == ARRAY_TYPE)
2998 {
2999 size_tree = TYPE_ARRAY_MAX_SIZE (type);
3000
3001 if (size_tree && tree_fits_uhwi_p (size_tree))
3002 size = tree_to_uhwi (size_tree);
3003 }
3004
3005 /* If we still haven't been able to get a size, see if the language
3006 can compute a maximum size. */
3007
3008 if (size == -1)
3009 {
3010 size_tree = lang_hooks.types.max_size (type);
3011
3012 if (size_tree && tree_fits_uhwi_p (size_tree))
3013 size = tree_to_uhwi (size_tree);
3014 }
3015
3016 return size;
3017 }
3018 \f
3019 /* Return the bit position of FIELD, in bits from the start of the record.
3020 This is a tree of type bitsizetype. */
3021
3022 tree
3023 bit_position (const_tree field)
3024 {
3025 return bit_from_pos (DECL_FIELD_OFFSET (field),
3026 DECL_FIELD_BIT_OFFSET (field));
3027 }
3028 \f
3029 /* Return the byte position of FIELD, in bytes from the start of the record.
3030 This is a tree of type sizetype. */
3031
3032 tree
3033 byte_position (const_tree field)
3034 {
3035 return byte_from_pos (DECL_FIELD_OFFSET (field),
3036 DECL_FIELD_BIT_OFFSET (field));
3037 }
3038
3039 /* Likewise, but return as an integer. It must be representable in
3040 that way (since it could be a signed value, we don't have the
3041 option of returning -1 like int_size_in_byte can. */
3042
3043 HOST_WIDE_INT
3044 int_byte_position (const_tree field)
3045 {
3046 return tree_to_shwi (byte_position (field));
3047 }
3048 \f
3049 /* Return the strictest alignment, in bits, that T is known to have. */
3050
3051 unsigned int
3052 expr_align (const_tree t)
3053 {
3054 unsigned int align0, align1;
3055
3056 switch (TREE_CODE (t))
3057 {
3058 CASE_CONVERT: case NON_LVALUE_EXPR:
3059 /* If we have conversions, we know that the alignment of the
3060 object must meet each of the alignments of the types. */
3061 align0 = expr_align (TREE_OPERAND (t, 0));
3062 align1 = TYPE_ALIGN (TREE_TYPE (t));
3063 return MAX (align0, align1);
3064
3065 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
3066 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
3067 case CLEANUP_POINT_EXPR:
3068 /* These don't change the alignment of an object. */
3069 return expr_align (TREE_OPERAND (t, 0));
3070
3071 case COND_EXPR:
3072 /* The best we can do is say that the alignment is the least aligned
3073 of the two arms. */
3074 align0 = expr_align (TREE_OPERAND (t, 1));
3075 align1 = expr_align (TREE_OPERAND (t, 2));
3076 return MIN (align0, align1);
3077
3078 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
3079 meaningfully, it's always 1. */
3080 case LABEL_DECL: case CONST_DECL:
3081 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
3082 case FUNCTION_DECL:
3083 gcc_assert (DECL_ALIGN (t) != 0);
3084 return DECL_ALIGN (t);
3085
3086 default:
3087 break;
3088 }
3089
3090 /* Otherwise take the alignment from that of the type. */
3091 return TYPE_ALIGN (TREE_TYPE (t));
3092 }
3093 \f
3094 /* Return, as a tree node, the number of elements for TYPE (which is an
3095 ARRAY_TYPE) minus one. This counts only elements of the top array. */
3096
3097 tree
3098 array_type_nelts (const_tree type)
3099 {
3100 tree index_type, min, max;
3101
3102 /* If they did it with unspecified bounds, then we should have already
3103 given an error about it before we got here. */
3104 if (! TYPE_DOMAIN (type))
3105 return error_mark_node;
3106
3107 index_type = TYPE_DOMAIN (type);
3108 min = TYPE_MIN_VALUE (index_type);
3109 max = TYPE_MAX_VALUE (index_type);
3110
3111 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
3112 if (!max)
3113 return error_mark_node;
3114
3115 return (integer_zerop (min)
3116 ? max
3117 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3118 }
3119 \f
3120 /* If arg is static -- a reference to an object in static storage -- then
3121 return the object. This is not the same as the C meaning of `static'.
3122 If arg isn't static, return NULL. */
3123
3124 tree
3125 staticp (tree arg)
3126 {
3127 switch (TREE_CODE (arg))
3128 {
3129 case FUNCTION_DECL:
3130 /* Nested functions are static, even though taking their address will
3131 involve a trampoline as we unnest the nested function and create
3132 the trampoline on the tree level. */
3133 return arg;
3134
3135 case VAR_DECL:
3136 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3137 && ! DECL_THREAD_LOCAL_P (arg)
3138 && ! DECL_DLLIMPORT_P (arg)
3139 ? arg : NULL);
3140
3141 case CONST_DECL:
3142 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3143 ? arg : NULL);
3144
3145 case CONSTRUCTOR:
3146 return TREE_STATIC (arg) ? arg : NULL;
3147
3148 case LABEL_DECL:
3149 case STRING_CST:
3150 return arg;
3151
3152 case COMPONENT_REF:
3153 /* If the thing being referenced is not a field, then it is
3154 something language specific. */
3155 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3156
3157 /* If we are referencing a bitfield, we can't evaluate an
3158 ADDR_EXPR at compile time and so it isn't a constant. */
3159 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3160 return NULL;
3161
3162 return staticp (TREE_OPERAND (arg, 0));
3163
3164 case BIT_FIELD_REF:
3165 return NULL;
3166
3167 case INDIRECT_REF:
3168 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3169
3170 case ARRAY_REF:
3171 case ARRAY_RANGE_REF:
3172 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3173 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3174 return staticp (TREE_OPERAND (arg, 0));
3175 else
3176 return NULL;
3177
3178 case COMPOUND_LITERAL_EXPR:
3179 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3180
3181 default:
3182 return NULL;
3183 }
3184 }
3185
3186 \f
3187
3188
3189 /* Return whether OP is a DECL whose address is function-invariant. */
3190
3191 bool
3192 decl_address_invariant_p (const_tree op)
3193 {
3194 /* The conditions below are slightly less strict than the one in
3195 staticp. */
3196
3197 switch (TREE_CODE (op))
3198 {
3199 case PARM_DECL:
3200 case RESULT_DECL:
3201 case LABEL_DECL:
3202 case FUNCTION_DECL:
3203 return true;
3204
3205 case VAR_DECL:
3206 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3207 || DECL_THREAD_LOCAL_P (op)
3208 || DECL_CONTEXT (op) == current_function_decl
3209 || decl_function_context (op) == current_function_decl)
3210 return true;
3211 break;
3212
3213 case CONST_DECL:
3214 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3215 || decl_function_context (op) == current_function_decl)
3216 return true;
3217 break;
3218
3219 default:
3220 break;
3221 }
3222
3223 return false;
3224 }
3225
3226 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3227
3228 bool
3229 decl_address_ip_invariant_p (const_tree op)
3230 {
3231 /* The conditions below are slightly less strict than the one in
3232 staticp. */
3233
3234 switch (TREE_CODE (op))
3235 {
3236 case LABEL_DECL:
3237 case FUNCTION_DECL:
3238 case STRING_CST:
3239 return true;
3240
3241 case VAR_DECL:
3242 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3243 && !DECL_DLLIMPORT_P (op))
3244 || DECL_THREAD_LOCAL_P (op))
3245 return true;
3246 break;
3247
3248 case CONST_DECL:
3249 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3250 return true;
3251 break;
3252
3253 default:
3254 break;
3255 }
3256
3257 return false;
3258 }
3259
3260
3261 /* Return true if T is function-invariant (internal function, does
3262 not handle arithmetic; that's handled in skip_simple_arithmetic and
3263 tree_invariant_p). */
3264
3265 static bool
3266 tree_invariant_p_1 (tree t)
3267 {
3268 tree op;
3269
3270 if (TREE_CONSTANT (t)
3271 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3272 return true;
3273
3274 switch (TREE_CODE (t))
3275 {
3276 case SAVE_EXPR:
3277 return true;
3278
3279 case ADDR_EXPR:
3280 op = TREE_OPERAND (t, 0);
3281 while (handled_component_p (op))
3282 {
3283 switch (TREE_CODE (op))
3284 {
3285 case ARRAY_REF:
3286 case ARRAY_RANGE_REF:
3287 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3288 || TREE_OPERAND (op, 2) != NULL_TREE
3289 || TREE_OPERAND (op, 3) != NULL_TREE)
3290 return false;
3291 break;
3292
3293 case COMPONENT_REF:
3294 if (TREE_OPERAND (op, 2) != NULL_TREE)
3295 return false;
3296 break;
3297
3298 default:;
3299 }
3300 op = TREE_OPERAND (op, 0);
3301 }
3302
3303 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3304
3305 default:
3306 break;
3307 }
3308
3309 return false;
3310 }
3311
3312 /* Return true if T is function-invariant. */
3313
3314 bool
3315 tree_invariant_p (tree t)
3316 {
3317 tree inner = skip_simple_arithmetic (t);
3318 return tree_invariant_p_1 (inner);
3319 }
3320
3321 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3322 Do this to any expression which may be used in more than one place,
3323 but must be evaluated only once.
3324
3325 Normally, expand_expr would reevaluate the expression each time.
3326 Calling save_expr produces something that is evaluated and recorded
3327 the first time expand_expr is called on it. Subsequent calls to
3328 expand_expr just reuse the recorded value.
3329
3330 The call to expand_expr that generates code that actually computes
3331 the value is the first call *at compile time*. Subsequent calls
3332 *at compile time* generate code to use the saved value.
3333 This produces correct result provided that *at run time* control
3334 always flows through the insns made by the first expand_expr
3335 before reaching the other places where the save_expr was evaluated.
3336 You, the caller of save_expr, must make sure this is so.
3337
3338 Constants, and certain read-only nodes, are returned with no
3339 SAVE_EXPR because that is safe. Expressions containing placeholders
3340 are not touched; see tree.def for an explanation of what these
3341 are used for. */
3342
3343 tree
3344 save_expr (tree expr)
3345 {
3346 tree inner;
3347
3348 /* If the tree evaluates to a constant, then we don't want to hide that
3349 fact (i.e. this allows further folding, and direct checks for constants).
3350 However, a read-only object that has side effects cannot be bypassed.
3351 Since it is no problem to reevaluate literals, we just return the
3352 literal node. */
3353 inner = skip_simple_arithmetic (expr);
3354 if (TREE_CODE (inner) == ERROR_MARK)
3355 return inner;
3356
3357 if (tree_invariant_p_1 (inner))
3358 return expr;
3359
3360 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3361 it means that the size or offset of some field of an object depends on
3362 the value within another field.
3363
3364 Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3365 and some variable since it would then need to be both evaluated once and
3366 evaluated more than once. Front-ends must assure this case cannot
3367 happen by surrounding any such subexpressions in their own SAVE_EXPR
3368 and forcing evaluation at the proper time. */
3369 if (contains_placeholder_p (inner))
3370 return expr;
3371
3372 expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3373
3374 /* This expression might be placed ahead of a jump to ensure that the
3375 value was computed on both sides of the jump. So make sure it isn't
3376 eliminated as dead. */
3377 TREE_SIDE_EFFECTS (expr) = 1;
3378 return expr;
3379 }
3380
3381 /* Look inside EXPR into any simple arithmetic operations. Return the
3382 outermost non-arithmetic or non-invariant node. */
3383
3384 tree
3385 skip_simple_arithmetic (tree expr)
3386 {
3387 /* We don't care about whether this can be used as an lvalue in this
3388 context. */
3389 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3390 expr = TREE_OPERAND (expr, 0);
3391
3392 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3393 a constant, it will be more efficient to not make another SAVE_EXPR since
3394 it will allow better simplification and GCSE will be able to merge the
3395 computations if they actually occur. */
3396 while (true)
3397 {
3398 if (UNARY_CLASS_P (expr))
3399 expr = TREE_OPERAND (expr, 0);
3400 else if (BINARY_CLASS_P (expr))
3401 {
3402 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3403 expr = TREE_OPERAND (expr, 0);
3404 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3405 expr = TREE_OPERAND (expr, 1);
3406 else
3407 break;
3408 }
3409 else
3410 break;
3411 }
3412
3413 return expr;
3414 }
3415
3416 /* Look inside EXPR into simple arithmetic operations involving constants.
3417 Return the outermost non-arithmetic or non-constant node. */
3418
3419 tree
3420 skip_simple_constant_arithmetic (tree expr)
3421 {
3422 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3423 expr = TREE_OPERAND (expr, 0);
3424
3425 while (true)
3426 {
3427 if (UNARY_CLASS_P (expr))
3428 expr = TREE_OPERAND (expr, 0);
3429 else if (BINARY_CLASS_P (expr))
3430 {
3431 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3432 expr = TREE_OPERAND (expr, 0);
3433 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3434 expr = TREE_OPERAND (expr, 1);
3435 else
3436 break;
3437 }
3438 else
3439 break;
3440 }
3441
3442 return expr;
3443 }
3444
3445 /* Return which tree structure is used by T. */
3446
3447 enum tree_node_structure_enum
3448 tree_node_structure (const_tree t)
3449 {
3450 const enum tree_code code = TREE_CODE (t);
3451 return tree_node_structure_for_code (code);
3452 }
3453
3454 /* Set various status flags when building a CALL_EXPR object T. */
3455
3456 static void
3457 process_call_operands (tree t)
3458 {
3459 bool side_effects = TREE_SIDE_EFFECTS (t);
3460 bool read_only = false;
3461 int i = call_expr_flags (t);
3462
3463 /* Calls have side-effects, except those to const or pure functions. */
3464 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3465 side_effects = true;
3466 /* Propagate TREE_READONLY of arguments for const functions. */
3467 if (i & ECF_CONST)
3468 read_only = true;
3469
3470 if (!side_effects || read_only)
3471 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3472 {
3473 tree op = TREE_OPERAND (t, i);
3474 if (op && TREE_SIDE_EFFECTS (op))
3475 side_effects = true;
3476 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3477 read_only = false;
3478 }
3479
3480 TREE_SIDE_EFFECTS (t) = side_effects;
3481 TREE_READONLY (t) = read_only;
3482 }
3483 \f
3484 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3485 size or offset that depends on a field within a record. */
3486
3487 bool
3488 contains_placeholder_p (const_tree exp)
3489 {
3490 enum tree_code code;
3491
3492 if (!exp)
3493 return 0;
3494
3495 code = TREE_CODE (exp);
3496 if (code == PLACEHOLDER_EXPR)
3497 return 1;
3498
3499 switch (TREE_CODE_CLASS (code))
3500 {
3501 case tcc_reference:
3502 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3503 position computations since they will be converted into a
3504 WITH_RECORD_EXPR involving the reference, which will assume
3505 here will be valid. */
3506 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3507
3508 case tcc_exceptional:
3509 if (code == TREE_LIST)
3510 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3511 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3512 break;
3513
3514 case tcc_unary:
3515 case tcc_binary:
3516 case tcc_comparison:
3517 case tcc_expression:
3518 switch (code)
3519 {
3520 case COMPOUND_EXPR:
3521 /* Ignoring the first operand isn't quite right, but works best. */
3522 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3523
3524 case COND_EXPR:
3525 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3526 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3527 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3528
3529 case SAVE_EXPR:
3530 /* The save_expr function never wraps anything containing
3531 a PLACEHOLDER_EXPR. */
3532 return 0;
3533
3534 default:
3535 break;
3536 }
3537
3538 switch (TREE_CODE_LENGTH (code))
3539 {
3540 case 1:
3541 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3542 case 2:
3543 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3544 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3545 default:
3546 return 0;
3547 }
3548
3549 case tcc_vl_exp:
3550 switch (code)
3551 {
3552 case CALL_EXPR:
3553 {
3554 const_tree arg;
3555 const_call_expr_arg_iterator iter;
3556 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3557 if (CONTAINS_PLACEHOLDER_P (arg))
3558 return 1;
3559 return 0;
3560 }
3561 default:
3562 return 0;
3563 }
3564
3565 default:
3566 return 0;
3567 }
3568 return 0;
3569 }
3570
3571 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3572 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3573 field positions. */
3574
3575 static bool
3576 type_contains_placeholder_1 (const_tree type)
3577 {
3578 /* If the size contains a placeholder or the parent type (component type in
3579 the case of arrays) type involves a placeholder, this type does. */
3580 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3581 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3582 || (!POINTER_TYPE_P (type)
3583 && TREE_TYPE (type)
3584 && type_contains_placeholder_p (TREE_TYPE (type))))
3585 return true;
3586
3587 /* Now do type-specific checks. Note that the last part of the check above
3588 greatly limits what we have to do below. */
3589 switch (TREE_CODE (type))
3590 {
3591 case VOID_TYPE:
3592 case POINTER_BOUNDS_TYPE:
3593 case COMPLEX_TYPE:
3594 case ENUMERAL_TYPE:
3595 case BOOLEAN_TYPE:
3596 case POINTER_TYPE:
3597 case OFFSET_TYPE:
3598 case REFERENCE_TYPE:
3599 case METHOD_TYPE:
3600 case FUNCTION_TYPE:
3601 case VECTOR_TYPE:
3602 case NULLPTR_TYPE:
3603 return false;
3604
3605 case INTEGER_TYPE:
3606 case REAL_TYPE:
3607 case FIXED_POINT_TYPE:
3608 /* Here we just check the bounds. */
3609 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3610 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3611
3612 case ARRAY_TYPE:
3613 /* We have already checked the component type above, so just check
3614 the domain type. Flexible array members have a null domain. */
3615 return TYPE_DOMAIN (type) ?
3616 type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
3617
3618 case RECORD_TYPE:
3619 case UNION_TYPE:
3620 case QUAL_UNION_TYPE:
3621 {
3622 tree field;
3623
3624 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3625 if (TREE_CODE (field) == FIELD_DECL
3626 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3627 || (TREE_CODE (type) == QUAL_UNION_TYPE
3628 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3629 || type_contains_placeholder_p (TREE_TYPE (field))))
3630 return true;
3631
3632 return false;
3633 }
3634
3635 default:
3636 gcc_unreachable ();
3637 }
3638 }
3639
3640 /* Wrapper around above function used to cache its result. */
3641
3642 bool
3643 type_contains_placeholder_p (tree type)
3644 {
3645 bool result;
3646
3647 /* If the contains_placeholder_bits field has been initialized,
3648 then we know the answer. */
3649 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3650 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3651
3652 /* Indicate that we've seen this type node, and the answer is false.
3653 This is what we want to return if we run into recursion via fields. */
3654 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3655
3656 /* Compute the real value. */
3657 result = type_contains_placeholder_1 (type);
3658
3659 /* Store the real value. */
3660 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3661
3662 return result;
3663 }
3664 \f
3665 /* Push tree EXP onto vector QUEUE if it is not already present. */
3666
3667 static void
3668 push_without_duplicates (tree exp, vec<tree> *queue)
3669 {
3670 unsigned int i;
3671 tree iter;
3672
3673 FOR_EACH_VEC_ELT (*queue, i, iter)
3674 if (simple_cst_equal (iter, exp) == 1)
3675 break;
3676
3677 if (!iter)
3678 queue->safe_push (exp);
3679 }
3680
3681 /* Given a tree EXP, find all occurrences of references to fields
3682 in a PLACEHOLDER_EXPR and place them in vector REFS without
3683 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3684 we assume here that EXP contains only arithmetic expressions
3685 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3686 argument list. */
3687
3688 void
3689 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3690 {
3691 enum tree_code code = TREE_CODE (exp);
3692 tree inner;
3693 int i;
3694
3695 /* We handle TREE_LIST and COMPONENT_REF separately. */
3696 if (code == TREE_LIST)
3697 {
3698 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3699 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3700 }
3701 else if (code == COMPONENT_REF)
3702 {
3703 for (inner = TREE_OPERAND (exp, 0);
3704 REFERENCE_CLASS_P (inner);
3705 inner = TREE_OPERAND (inner, 0))
3706 ;
3707
3708 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3709 push_without_duplicates (exp, refs);
3710 else
3711 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3712 }
3713 else
3714 switch (TREE_CODE_CLASS (code))
3715 {
3716 case tcc_constant:
3717 break;
3718
3719 case tcc_declaration:
3720 /* Variables allocated to static storage can stay. */
3721 if (!TREE_STATIC (exp))
3722 push_without_duplicates (exp, refs);
3723 break;
3724
3725 case tcc_expression:
3726 /* This is the pattern built in ada/make_aligning_type. */
3727 if (code == ADDR_EXPR
3728 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3729 {
3730 push_without_duplicates (exp, refs);
3731 break;
3732 }
3733
3734 /* Fall through. */
3735
3736 case tcc_exceptional:
3737 case tcc_unary:
3738 case tcc_binary:
3739 case tcc_comparison:
3740 case tcc_reference:
3741 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3742 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3743 break;
3744
3745 case tcc_vl_exp:
3746 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3747 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3748 break;
3749
3750 default:
3751 gcc_unreachable ();
3752 }
3753 }
3754
3755 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3756 return a tree with all occurrences of references to F in a
3757 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3758 CONST_DECLs. Note that we assume here that EXP contains only
3759 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3760 occurring only in their argument list. */
3761
3762 tree
3763 substitute_in_expr (tree exp, tree f, tree r)
3764 {
3765 enum tree_code code = TREE_CODE (exp);
3766 tree op0, op1, op2, op3;
3767 tree new_tree;
3768
3769 /* We handle TREE_LIST and COMPONENT_REF separately. */
3770 if (code == TREE_LIST)
3771 {
3772 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3773 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3774 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3775 return exp;
3776
3777 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3778 }
3779 else if (code == COMPONENT_REF)
3780 {
3781 tree inner;
3782
3783 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3784 and it is the right field, replace it with R. */
3785 for (inner = TREE_OPERAND (exp, 0);
3786 REFERENCE_CLASS_P (inner);
3787 inner = TREE_OPERAND (inner, 0))
3788 ;
3789
3790 /* The field. */
3791 op1 = TREE_OPERAND (exp, 1);
3792
3793 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3794 return r;
3795
3796 /* If this expression hasn't been completed let, leave it alone. */
3797 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3798 return exp;
3799
3800 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3801 if (op0 == TREE_OPERAND (exp, 0))
3802 return exp;
3803
3804 new_tree
3805 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3806 }
3807 else
3808 switch (TREE_CODE_CLASS (code))
3809 {
3810 case tcc_constant:
3811 return exp;
3812
3813 case tcc_declaration:
3814 if (exp == f)
3815 return r;
3816 else
3817 return exp;
3818
3819 case tcc_expression:
3820 if (exp == f)
3821 return r;
3822
3823 /* Fall through. */
3824
3825 case tcc_exceptional:
3826 case tcc_unary:
3827 case tcc_binary:
3828 case tcc_comparison:
3829 case tcc_reference:
3830 switch (TREE_CODE_LENGTH (code))
3831 {
3832 case 0:
3833 return exp;
3834
3835 case 1:
3836 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3837 if (op0 == TREE_OPERAND (exp, 0))
3838 return exp;
3839
3840 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3841 break;
3842
3843 case 2:
3844 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3845 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3846
3847 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3848 return exp;
3849
3850 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3851 break;
3852
3853 case 3:
3854 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3855 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3856 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3857
3858 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3859 && op2 == TREE_OPERAND (exp, 2))
3860 return exp;
3861
3862 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3863 break;
3864
3865 case 4:
3866 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3867 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3868 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3869 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3870
3871 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3872 && op2 == TREE_OPERAND (exp, 2)
3873 && op3 == TREE_OPERAND (exp, 3))
3874 return exp;
3875
3876 new_tree
3877 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3878 break;
3879
3880 default:
3881 gcc_unreachable ();
3882 }
3883 break;
3884
3885 case tcc_vl_exp:
3886 {
3887 int i;
3888
3889 new_tree = NULL_TREE;
3890
3891 /* If we are trying to replace F with a constant or with another
3892 instance of one of the arguments of the call, inline back
3893 functions which do nothing else than computing a value from
3894 the arguments they are passed. This makes it possible to
3895 fold partially or entirely the replacement expression. */
3896 if (code == CALL_EXPR)
3897 {
3898 bool maybe_inline = false;
3899 if (CONSTANT_CLASS_P (r))
3900 maybe_inline = true;
3901 else
3902 for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
3903 if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
3904 {
3905 maybe_inline = true;
3906 break;
3907 }
3908 if (maybe_inline)
3909 {
3910 tree t = maybe_inline_call_in_expr (exp);
3911 if (t)
3912 return SUBSTITUTE_IN_EXPR (t, f, r);
3913 }
3914 }
3915
3916 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3917 {
3918 tree op = TREE_OPERAND (exp, i);
3919 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3920 if (new_op != op)
3921 {
3922 if (!new_tree)
3923 new_tree = copy_node (exp);
3924 TREE_OPERAND (new_tree, i) = new_op;
3925 }
3926 }
3927
3928 if (new_tree)
3929 {
3930 new_tree = fold (new_tree);
3931 if (TREE_CODE (new_tree) == CALL_EXPR)
3932 process_call_operands (new_tree);
3933 }
3934 else
3935 return exp;
3936 }
3937 break;
3938
3939 default:
3940 gcc_unreachable ();
3941 }
3942
3943 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3944
3945 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3946 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3947
3948 return new_tree;
3949 }
3950
3951 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3952 for it within OBJ, a tree that is an object or a chain of references. */
3953
3954 tree
3955 substitute_placeholder_in_expr (tree exp, tree obj)
3956 {
3957 enum tree_code code = TREE_CODE (exp);
3958 tree op0, op1, op2, op3;
3959 tree new_tree;
3960
3961 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3962 in the chain of OBJ. */
3963 if (code == PLACEHOLDER_EXPR)
3964 {
3965 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3966 tree elt;
3967
3968 for (elt = obj; elt != 0;
3969 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3970 || TREE_CODE (elt) == COND_EXPR)
3971 ? TREE_OPERAND (elt, 1)
3972 : (REFERENCE_CLASS_P (elt)
3973 || UNARY_CLASS_P (elt)
3974 || BINARY_CLASS_P (elt)
3975 || VL_EXP_CLASS_P (elt)
3976 || EXPRESSION_CLASS_P (elt))
3977 ? TREE_OPERAND (elt, 0) : 0))
3978 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3979 return elt;
3980
3981 for (elt = obj; elt != 0;
3982 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3983 || TREE_CODE (elt) == COND_EXPR)
3984 ? TREE_OPERAND (elt, 1)
3985 : (REFERENCE_CLASS_P (elt)
3986 || UNARY_CLASS_P (elt)
3987 || BINARY_CLASS_P (elt)
3988 || VL_EXP_CLASS_P (elt)
3989 || EXPRESSION_CLASS_P (elt))
3990 ? TREE_OPERAND (elt, 0) : 0))
3991 if (POINTER_TYPE_P (TREE_TYPE (elt))
3992 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3993 == need_type))
3994 return fold_build1 (INDIRECT_REF, need_type, elt);
3995
3996 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3997 survives until RTL generation, there will be an error. */
3998 return exp;
3999 }
4000
4001 /* TREE_LIST is special because we need to look at TREE_VALUE
4002 and TREE_CHAIN, not TREE_OPERANDS. */
4003 else if (code == TREE_LIST)
4004 {
4005 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4006 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4007 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4008 return exp;
4009
4010 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4011 }
4012 else
4013 switch (TREE_CODE_CLASS (code))
4014 {
4015 case tcc_constant:
4016 case tcc_declaration:
4017 return exp;
4018
4019 case tcc_exceptional:
4020 case tcc_unary:
4021 case tcc_binary:
4022 case tcc_comparison:
4023 case tcc_expression:
4024 case tcc_reference:
4025 case tcc_statement:
4026 switch (TREE_CODE_LENGTH (code))
4027 {
4028 case 0:
4029 return exp;
4030
4031 case 1:
4032 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4033 if (op0 == TREE_OPERAND (exp, 0))
4034 return exp;
4035
4036 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4037 break;
4038
4039 case 2:
4040 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4041 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4042
4043 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4044 return exp;
4045
4046 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4047 break;
4048
4049 case 3:
4050 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4051 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4052 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4053
4054 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4055 && op2 == TREE_OPERAND (exp, 2))
4056 return exp;
4057
4058 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4059 break;
4060
4061 case 4:
4062 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4063 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4064 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4065 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4066
4067 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4068 && op2 == TREE_OPERAND (exp, 2)
4069 && op3 == TREE_OPERAND (exp, 3))
4070 return exp;
4071
4072 new_tree
4073 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4074 break;
4075
4076 default:
4077 gcc_unreachable ();
4078 }
4079 break;
4080
4081 case tcc_vl_exp:
4082 {
4083 int i;
4084
4085 new_tree = NULL_TREE;
4086
4087 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4088 {
4089 tree op = TREE_OPERAND (exp, i);
4090 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4091 if (new_op != op)
4092 {
4093 if (!new_tree)
4094 new_tree = copy_node (exp);
4095 TREE_OPERAND (new_tree, i) = new_op;
4096 }
4097 }
4098
4099 if (new_tree)
4100 {
4101 new_tree = fold (new_tree);
4102 if (TREE_CODE (new_tree) == CALL_EXPR)
4103 process_call_operands (new_tree);
4104 }
4105 else
4106 return exp;
4107 }
4108 break;
4109
4110 default:
4111 gcc_unreachable ();
4112 }
4113
4114 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4115
4116 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4117 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4118
4119 return new_tree;
4120 }
4121 \f
4122
4123 /* Subroutine of stabilize_reference; this is called for subtrees of
4124 references. Any expression with side-effects must be put in a SAVE_EXPR
4125 to ensure that it is only evaluated once.
4126
4127 We don't put SAVE_EXPR nodes around everything, because assigning very
4128 simple expressions to temporaries causes us to miss good opportunities
4129 for optimizations. Among other things, the opportunity to fold in the
4130 addition of a constant into an addressing mode often gets lost, e.g.
4131 "y[i+1] += x;". In general, we take the approach that we should not make
4132 an assignment unless we are forced into it - i.e., that any non-side effect
4133 operator should be allowed, and that cse should take care of coalescing
4134 multiple utterances of the same expression should that prove fruitful. */
4135
4136 static tree
4137 stabilize_reference_1 (tree e)
4138 {
4139 tree result;
4140 enum tree_code code = TREE_CODE (e);
4141
4142 /* We cannot ignore const expressions because it might be a reference
4143 to a const array but whose index contains side-effects. But we can
4144 ignore things that are actual constant or that already have been
4145 handled by this function. */
4146
4147 if (tree_invariant_p (e))
4148 return e;
4149
4150 switch (TREE_CODE_CLASS (code))
4151 {
4152 case tcc_exceptional:
4153 case tcc_type:
4154 case tcc_declaration:
4155 case tcc_comparison:
4156 case tcc_statement:
4157 case tcc_expression:
4158 case tcc_reference:
4159 case tcc_vl_exp:
4160 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4161 so that it will only be evaluated once. */
4162 /* The reference (r) and comparison (<) classes could be handled as
4163 below, but it is generally faster to only evaluate them once. */
4164 if (TREE_SIDE_EFFECTS (e))
4165 return save_expr (e);
4166 return e;
4167
4168 case tcc_constant:
4169 /* Constants need no processing. In fact, we should never reach
4170 here. */
4171 return e;
4172
4173 case tcc_binary:
4174 /* Division is slow and tends to be compiled with jumps,
4175 especially the division by powers of 2 that is often
4176 found inside of an array reference. So do it just once. */
4177 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4178 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4179 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4180 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4181 return save_expr (e);
4182 /* Recursively stabilize each operand. */
4183 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4184 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4185 break;
4186
4187 case tcc_unary:
4188 /* Recursively stabilize each operand. */
4189 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4190 break;
4191
4192 default:
4193 gcc_unreachable ();
4194 }
4195
4196 TREE_TYPE (result) = TREE_TYPE (e);
4197 TREE_READONLY (result) = TREE_READONLY (e);
4198 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4199 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4200
4201 return result;
4202 }
4203
4204 /* Stabilize a reference so that we can use it any number of times
4205 without causing its operands to be evaluated more than once.
4206 Returns the stabilized reference. This works by means of save_expr,
4207 so see the caveats in the comments about save_expr.
4208
4209 Also allows conversion expressions whose operands are references.
4210 Any other kind of expression is returned unchanged. */
4211
4212 tree
4213 stabilize_reference (tree ref)
4214 {
4215 tree result;
4216 enum tree_code code = TREE_CODE (ref);
4217
4218 switch (code)
4219 {
4220 case VAR_DECL:
4221 case PARM_DECL:
4222 case RESULT_DECL:
4223 /* No action is needed in this case. */
4224 return ref;
4225
4226 CASE_CONVERT:
4227 case FLOAT_EXPR:
4228 case FIX_TRUNC_EXPR:
4229 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4230 break;
4231
4232 case INDIRECT_REF:
4233 result = build_nt (INDIRECT_REF,
4234 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4235 break;
4236
4237 case COMPONENT_REF:
4238 result = build_nt (COMPONENT_REF,
4239 stabilize_reference (TREE_OPERAND (ref, 0)),
4240 TREE_OPERAND (ref, 1), NULL_TREE);
4241 break;
4242
4243 case BIT_FIELD_REF:
4244 result = build_nt (BIT_FIELD_REF,
4245 stabilize_reference (TREE_OPERAND (ref, 0)),
4246 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4247 REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4248 break;
4249
4250 case ARRAY_REF:
4251 result = build_nt (ARRAY_REF,
4252 stabilize_reference (TREE_OPERAND (ref, 0)),
4253 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4254 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4255 break;
4256
4257 case ARRAY_RANGE_REF:
4258 result = build_nt (ARRAY_RANGE_REF,
4259 stabilize_reference (TREE_OPERAND (ref, 0)),
4260 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4261 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4262 break;
4263
4264 case COMPOUND_EXPR:
4265 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4266 it wouldn't be ignored. This matters when dealing with
4267 volatiles. */
4268 return stabilize_reference_1 (ref);
4269
4270 /* If arg isn't a kind of lvalue we recognize, make no change.
4271 Caller should recognize the error for an invalid lvalue. */
4272 default:
4273 return ref;
4274
4275 case ERROR_MARK:
4276 return error_mark_node;
4277 }
4278
4279 TREE_TYPE (result) = TREE_TYPE (ref);
4280 TREE_READONLY (result) = TREE_READONLY (ref);
4281 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4282 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4283
4284 return result;
4285 }
4286 \f
4287 /* Low-level constructors for expressions. */
4288
4289 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4290 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4291
4292 void
4293 recompute_tree_invariant_for_addr_expr (tree t)
4294 {
4295 tree node;
4296 bool tc = true, se = false;
4297
4298 gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4299
4300 /* We started out assuming this address is both invariant and constant, but
4301 does not have side effects. Now go down any handled components and see if
4302 any of them involve offsets that are either non-constant or non-invariant.
4303 Also check for side-effects.
4304
4305 ??? Note that this code makes no attempt to deal with the case where
4306 taking the address of something causes a copy due to misalignment. */
4307
4308 #define UPDATE_FLAGS(NODE) \
4309 do { tree _node = (NODE); \
4310 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4311 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4312
4313 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4314 node = TREE_OPERAND (node, 0))
4315 {
4316 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4317 array reference (probably made temporarily by the G++ front end),
4318 so ignore all the operands. */
4319 if ((TREE_CODE (node) == ARRAY_REF
4320 || TREE_CODE (node) == ARRAY_RANGE_REF)
4321 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4322 {
4323 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4324 if (TREE_OPERAND (node, 2))
4325 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4326 if (TREE_OPERAND (node, 3))
4327 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4328 }
4329 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4330 FIELD_DECL, apparently. The G++ front end can put something else
4331 there, at least temporarily. */
4332 else if (TREE_CODE (node) == COMPONENT_REF
4333 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4334 {
4335 if (TREE_OPERAND (node, 2))
4336 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4337 }
4338 }
4339
4340 node = lang_hooks.expr_to_decl (node, &tc, &se);
4341
4342 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4343 the address, since &(*a)->b is a form of addition. If it's a constant, the
4344 address is constant too. If it's a decl, its address is constant if the
4345 decl is static. Everything else is not constant and, furthermore,
4346 taking the address of a volatile variable is not volatile. */
4347 if (TREE_CODE (node) == INDIRECT_REF
4348 || TREE_CODE (node) == MEM_REF)
4349 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4350 else if (CONSTANT_CLASS_P (node))
4351 ;
4352 else if (DECL_P (node))
4353 tc &= (staticp (node) != NULL_TREE);
4354 else
4355 {
4356 tc = false;
4357 se |= TREE_SIDE_EFFECTS (node);
4358 }
4359
4360
4361 TREE_CONSTANT (t) = tc;
4362 TREE_SIDE_EFFECTS (t) = se;
4363 #undef UPDATE_FLAGS
4364 }
4365
4366 /* Build an expression of code CODE, data type TYPE, and operands as
4367 specified. Expressions and reference nodes can be created this way.
4368 Constants, decls, types and misc nodes cannot be.
4369
4370 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4371 enough for all extant tree codes. */
4372
4373 tree
4374 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4375 {
4376 tree t;
4377
4378 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4379
4380 t = make_node (code PASS_MEM_STAT);
4381 TREE_TYPE (t) = tt;
4382
4383 return t;
4384 }
4385
4386 tree
4387 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4388 {
4389 int length = sizeof (struct tree_exp);
4390 tree t;
4391
4392 record_node_allocation_statistics (code, length);
4393
4394 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4395
4396 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4397
4398 memset (t, 0, sizeof (struct tree_common));
4399
4400 TREE_SET_CODE (t, code);
4401
4402 TREE_TYPE (t) = type;
4403 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4404 TREE_OPERAND (t, 0) = node;
4405 if (node && !TYPE_P (node))
4406 {
4407 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4408 TREE_READONLY (t) = TREE_READONLY (node);
4409 }
4410
4411 if (TREE_CODE_CLASS (code) == tcc_statement)
4412 TREE_SIDE_EFFECTS (t) = 1;
4413 else switch (code)
4414 {
4415 case VA_ARG_EXPR:
4416 /* All of these have side-effects, no matter what their
4417 operands are. */
4418 TREE_SIDE_EFFECTS (t) = 1;
4419 TREE_READONLY (t) = 0;
4420 break;
4421
4422 case INDIRECT_REF:
4423 /* Whether a dereference is readonly has nothing to do with whether
4424 its operand is readonly. */
4425 TREE_READONLY (t) = 0;
4426 break;
4427
4428 case ADDR_EXPR:
4429 if (node)
4430 recompute_tree_invariant_for_addr_expr (t);
4431 break;
4432
4433 default:
4434 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4435 && node && !TYPE_P (node)
4436 && TREE_CONSTANT (node))
4437 TREE_CONSTANT (t) = 1;
4438 if (TREE_CODE_CLASS (code) == tcc_reference
4439 && node && TREE_THIS_VOLATILE (node))
4440 TREE_THIS_VOLATILE (t) = 1;
4441 break;
4442 }
4443
4444 return t;
4445 }
4446
4447 #define PROCESS_ARG(N) \
4448 do { \
4449 TREE_OPERAND (t, N) = arg##N; \
4450 if (arg##N &&!TYPE_P (arg##N)) \
4451 { \
4452 if (TREE_SIDE_EFFECTS (arg##N)) \
4453 side_effects = 1; \
4454 if (!TREE_READONLY (arg##N) \
4455 && !CONSTANT_CLASS_P (arg##N)) \
4456 (void) (read_only = 0); \
4457 if (!TREE_CONSTANT (arg##N)) \
4458 (void) (constant = 0); \
4459 } \
4460 } while (0)
4461
4462 tree
4463 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4464 {
4465 bool constant, read_only, side_effects, div_by_zero;
4466 tree t;
4467
4468 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4469
4470 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4471 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4472 /* When sizetype precision doesn't match that of pointers
4473 we need to be able to build explicit extensions or truncations
4474 of the offset argument. */
4475 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4476 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4477 && TREE_CODE (arg1) == INTEGER_CST);
4478
4479 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4480 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4481 && ptrofftype_p (TREE_TYPE (arg1)));
4482
4483 t = make_node (code PASS_MEM_STAT);
4484 TREE_TYPE (t) = tt;
4485
4486 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4487 result based on those same flags for the arguments. But if the
4488 arguments aren't really even `tree' expressions, we shouldn't be trying
4489 to do this. */
4490
4491 /* Expressions without side effects may be constant if their
4492 arguments are as well. */
4493 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4494 || TREE_CODE_CLASS (code) == tcc_binary);
4495 read_only = 1;
4496 side_effects = TREE_SIDE_EFFECTS (t);
4497
4498 switch (code)
4499 {
4500 case TRUNC_DIV_EXPR:
4501 case CEIL_DIV_EXPR:
4502 case FLOOR_DIV_EXPR:
4503 case ROUND_DIV_EXPR:
4504 case EXACT_DIV_EXPR:
4505 case CEIL_MOD_EXPR:
4506 case FLOOR_MOD_EXPR:
4507 case ROUND_MOD_EXPR:
4508 case TRUNC_MOD_EXPR:
4509 div_by_zero = integer_zerop (arg1);
4510 break;
4511 default:
4512 div_by_zero = false;
4513 }
4514
4515 PROCESS_ARG (0);
4516 PROCESS_ARG (1);
4517
4518 TREE_SIDE_EFFECTS (t) = side_effects;
4519 if (code == MEM_REF)
4520 {
4521 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4522 {
4523 tree o = TREE_OPERAND (arg0, 0);
4524 TREE_READONLY (t) = TREE_READONLY (o);
4525 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4526 }
4527 }
4528 else
4529 {
4530 TREE_READONLY (t) = read_only;
4531 /* Don't mark X / 0 as constant. */
4532 TREE_CONSTANT (t) = constant && !div_by_zero;
4533 TREE_THIS_VOLATILE (t)
4534 = (TREE_CODE_CLASS (code) == tcc_reference
4535 && arg0 && TREE_THIS_VOLATILE (arg0));
4536 }
4537
4538 return t;
4539 }
4540
4541
4542 tree
4543 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
4544 tree arg2 MEM_STAT_DECL)
4545 {
4546 bool constant, read_only, side_effects;
4547 tree t;
4548
4549 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4550 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4551
4552 t = make_node (code PASS_MEM_STAT);
4553 TREE_TYPE (t) = tt;
4554
4555 read_only = 1;
4556
4557 /* As a special exception, if COND_EXPR has NULL branches, we
4558 assume that it is a gimple statement and always consider
4559 it to have side effects. */
4560 if (code == COND_EXPR
4561 && tt == void_type_node
4562 && arg1 == NULL_TREE
4563 && arg2 == NULL_TREE)
4564 side_effects = true;
4565 else
4566 side_effects = TREE_SIDE_EFFECTS (t);
4567
4568 PROCESS_ARG (0);
4569 PROCESS_ARG (1);
4570 PROCESS_ARG (2);
4571
4572 if (code == COND_EXPR)
4573 TREE_READONLY (t) = read_only;
4574
4575 TREE_SIDE_EFFECTS (t) = side_effects;
4576 TREE_THIS_VOLATILE (t)
4577 = (TREE_CODE_CLASS (code) == tcc_reference
4578 && arg0 && TREE_THIS_VOLATILE (arg0));
4579
4580 return t;
4581 }
4582
4583 tree
4584 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
4585 tree arg2, tree arg3 MEM_STAT_DECL)
4586 {
4587 bool constant, read_only, side_effects;
4588 tree t;
4589
4590 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4591
4592 t = make_node (code PASS_MEM_STAT);
4593 TREE_TYPE (t) = tt;
4594
4595 side_effects = TREE_SIDE_EFFECTS (t);
4596
4597 PROCESS_ARG (0);
4598 PROCESS_ARG (1);
4599 PROCESS_ARG (2);
4600 PROCESS_ARG (3);
4601
4602 TREE_SIDE_EFFECTS (t) = side_effects;
4603 TREE_THIS_VOLATILE (t)
4604 = (TREE_CODE_CLASS (code) == tcc_reference
4605 && arg0 && TREE_THIS_VOLATILE (arg0));
4606
4607 return t;
4608 }
4609
4610 tree
4611 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
4612 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4613 {
4614 bool constant, read_only, side_effects;
4615 tree t;
4616
4617 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4618
4619 t = make_node (code PASS_MEM_STAT);
4620 TREE_TYPE (t) = tt;
4621
4622 side_effects = TREE_SIDE_EFFECTS (t);
4623
4624 PROCESS_ARG (0);
4625 PROCESS_ARG (1);
4626 PROCESS_ARG (2);
4627 PROCESS_ARG (3);
4628 PROCESS_ARG (4);
4629
4630 TREE_SIDE_EFFECTS (t) = side_effects;
4631 if (code == TARGET_MEM_REF)
4632 {
4633 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4634 {
4635 tree o = TREE_OPERAND (arg0, 0);
4636 TREE_READONLY (t) = TREE_READONLY (o);
4637 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4638 }
4639 }
4640 else
4641 TREE_THIS_VOLATILE (t)
4642 = (TREE_CODE_CLASS (code) == tcc_reference
4643 && arg0 && TREE_THIS_VOLATILE (arg0));
4644
4645 return t;
4646 }
4647
4648 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4649 on the pointer PTR. */
4650
4651 tree
4652 build_simple_mem_ref_loc (location_t loc, tree ptr)
4653 {
4654 HOST_WIDE_INT offset = 0;
4655 tree ptype = TREE_TYPE (ptr);
4656 tree tem;
4657 /* For convenience allow addresses that collapse to a simple base
4658 and offset. */
4659 if (TREE_CODE (ptr) == ADDR_EXPR
4660 && (handled_component_p (TREE_OPERAND (ptr, 0))
4661 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4662 {
4663 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4664 gcc_assert (ptr);
4665 ptr = build_fold_addr_expr (ptr);
4666 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4667 }
4668 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4669 ptr, build_int_cst (ptype, offset));
4670 SET_EXPR_LOCATION (tem, loc);
4671 return tem;
4672 }
4673
4674 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4675
4676 offset_int
4677 mem_ref_offset (const_tree t)
4678 {
4679 return offset_int::from (TREE_OPERAND (t, 1), SIGNED);
4680 }
4681
4682 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4683 offsetted by OFFSET units. */
4684
4685 tree
4686 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4687 {
4688 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4689 build_fold_addr_expr (base),
4690 build_int_cst (ptr_type_node, offset));
4691 tree addr = build1 (ADDR_EXPR, type, ref);
4692 recompute_tree_invariant_for_addr_expr (addr);
4693 return addr;
4694 }
4695
4696 /* Similar except don't specify the TREE_TYPE
4697 and leave the TREE_SIDE_EFFECTS as 0.
4698 It is permissible for arguments to be null,
4699 or even garbage if their values do not matter. */
4700
4701 tree
4702 build_nt (enum tree_code code, ...)
4703 {
4704 tree t;
4705 int length;
4706 int i;
4707 va_list p;
4708
4709 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4710
4711 va_start (p, code);
4712
4713 t = make_node (code);
4714 length = TREE_CODE_LENGTH (code);
4715
4716 for (i = 0; i < length; i++)
4717 TREE_OPERAND (t, i) = va_arg (p, tree);
4718
4719 va_end (p);
4720 return t;
4721 }
4722
4723 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4724 tree vec. */
4725
4726 tree
4727 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4728 {
4729 tree ret, t;
4730 unsigned int ix;
4731
4732 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4733 CALL_EXPR_FN (ret) = fn;
4734 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4735 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4736 CALL_EXPR_ARG (ret, ix) = t;
4737 return ret;
4738 }
4739 \f
4740 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4741 We do NOT enter this node in any sort of symbol table.
4742
4743 LOC is the location of the decl.
4744
4745 layout_decl is used to set up the decl's storage layout.
4746 Other slots are initialized to 0 or null pointers. */
4747
4748 tree
4749 build_decl (location_t loc, enum tree_code code, tree name,
4750 tree type MEM_STAT_DECL)
4751 {
4752 tree t;
4753
4754 t = make_node (code PASS_MEM_STAT);
4755 DECL_SOURCE_LOCATION (t) = loc;
4756
4757 /* if (type == error_mark_node)
4758 type = integer_type_node; */
4759 /* That is not done, deliberately, so that having error_mark_node
4760 as the type can suppress useless errors in the use of this variable. */
4761
4762 DECL_NAME (t) = name;
4763 TREE_TYPE (t) = type;
4764
4765 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4766 layout_decl (t, 0);
4767
4768 return t;
4769 }
4770
4771 /* Builds and returns function declaration with NAME and TYPE. */
4772
4773 tree
4774 build_fn_decl (const char *name, tree type)
4775 {
4776 tree id = get_identifier (name);
4777 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4778
4779 DECL_EXTERNAL (decl) = 1;
4780 TREE_PUBLIC (decl) = 1;
4781 DECL_ARTIFICIAL (decl) = 1;
4782 TREE_NOTHROW (decl) = 1;
4783
4784 return decl;
4785 }
4786
4787 vec<tree, va_gc> *all_translation_units;
4788
4789 /* Builds a new translation-unit decl with name NAME, queues it in the
4790 global list of translation-unit decls and returns it. */
4791
4792 tree
4793 build_translation_unit_decl (tree name)
4794 {
4795 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4796 name, NULL_TREE);
4797 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4798 vec_safe_push (all_translation_units, tu);
4799 return tu;
4800 }
4801
4802 \f
4803 /* BLOCK nodes are used to represent the structure of binding contours
4804 and declarations, once those contours have been exited and their contents
4805 compiled. This information is used for outputting debugging info. */
4806
4807 tree
4808 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4809 {
4810 tree block = make_node (BLOCK);
4811
4812 BLOCK_VARS (block) = vars;
4813 BLOCK_SUBBLOCKS (block) = subblocks;
4814 BLOCK_SUPERCONTEXT (block) = supercontext;
4815 BLOCK_CHAIN (block) = chain;
4816 return block;
4817 }
4818
4819 \f
4820 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4821
4822 LOC is the location to use in tree T. */
4823
4824 void
4825 protected_set_expr_location (tree t, location_t loc)
4826 {
4827 if (CAN_HAVE_LOCATION_P (t))
4828 SET_EXPR_LOCATION (t, loc);
4829 }
4830 \f
4831 /* Reset the expression *EXPR_P, a size or position.
4832
4833 ??? We could reset all non-constant sizes or positions. But it's cheap
4834 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4835
4836 We need to reset self-referential sizes or positions because they cannot
4837 be gimplified and thus can contain a CALL_EXPR after the gimplification
4838 is finished, which will run afoul of LTO streaming. And they need to be
4839 reset to something essentially dummy but not constant, so as to preserve
4840 the properties of the object they are attached to. */
4841
4842 static inline void
4843 free_lang_data_in_one_sizepos (tree *expr_p)
4844 {
4845 tree expr = *expr_p;
4846 if (CONTAINS_PLACEHOLDER_P (expr))
4847 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4848 }
4849
4850
4851 /* Reset all the fields in a binfo node BINFO. We only keep
4852 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
4853
4854 static void
4855 free_lang_data_in_binfo (tree binfo)
4856 {
4857 unsigned i;
4858 tree t;
4859
4860 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4861
4862 BINFO_VIRTUALS (binfo) = NULL_TREE;
4863 BINFO_BASE_ACCESSES (binfo) = NULL;
4864 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4865 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4866
4867 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
4868 free_lang_data_in_binfo (t);
4869 }
4870
4871
4872 /* Reset all language specific information still present in TYPE. */
4873
4874 static void
4875 free_lang_data_in_type (tree type)
4876 {
4877 gcc_assert (TYPE_P (type));
4878
4879 /* Give the FE a chance to remove its own data first. */
4880 lang_hooks.free_lang_data (type);
4881
4882 TREE_LANG_FLAG_0 (type) = 0;
4883 TREE_LANG_FLAG_1 (type) = 0;
4884 TREE_LANG_FLAG_2 (type) = 0;
4885 TREE_LANG_FLAG_3 (type) = 0;
4886 TREE_LANG_FLAG_4 (type) = 0;
4887 TREE_LANG_FLAG_5 (type) = 0;
4888 TREE_LANG_FLAG_6 (type) = 0;
4889
4890 if (TREE_CODE (type) == FUNCTION_TYPE)
4891 {
4892 /* Remove the const and volatile qualifiers from arguments. The
4893 C++ front end removes them, but the C front end does not,
4894 leading to false ODR violation errors when merging two
4895 instances of the same function signature compiled by
4896 different front ends. */
4897 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4898 {
4899 tree arg_type = TREE_VALUE (p);
4900
4901 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4902 {
4903 int quals = TYPE_QUALS (arg_type)
4904 & ~TYPE_QUAL_CONST
4905 & ~TYPE_QUAL_VOLATILE;
4906 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4907 free_lang_data_in_type (TREE_VALUE (p));
4908 }
4909 /* C++ FE uses TREE_PURPOSE to store initial values. */
4910 TREE_PURPOSE (p) = NULL;
4911 }
4912 }
4913 else if (TREE_CODE (type) == METHOD_TYPE)
4914 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4915 /* C++ FE uses TREE_PURPOSE to store initial values. */
4916 TREE_PURPOSE (p) = NULL;
4917 else if (RECORD_OR_UNION_TYPE_P (type))
4918 {
4919 /* Remove members that are not FIELD_DECLs (and maybe
4920 TYPE_DECLs) from the field list of an aggregate. These occur
4921 in C++. */
4922 for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
4923 if (TREE_CODE (member) == FIELD_DECL
4924 || (TREE_CODE (member) == TYPE_DECL
4925 && !DECL_IGNORED_P (member)
4926 && debug_info_level > DINFO_LEVEL_TERSE
4927 && !is_redundant_typedef (member)))
4928 prev = &DECL_CHAIN (member);
4929 else
4930 *prev = DECL_CHAIN (member);
4931
4932 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
4933 and danagle the pointer from time to time. */
4934 if (TYPE_VFIELD (type) && TREE_CODE (TYPE_VFIELD (type)) != FIELD_DECL)
4935 TYPE_VFIELD (type) = NULL_TREE;
4936
4937 if (TYPE_BINFO (type))
4938 {
4939 free_lang_data_in_binfo (TYPE_BINFO (type));
4940 /* We need to preserve link to bases and virtual table for all
4941 polymorphic types to make devirtualization machinery working.
4942 Debug output cares only about bases, but output also
4943 virtual table pointers so merging of -fdevirtualize and
4944 -fno-devirtualize units is easier. */
4945 if ((!BINFO_VTABLE (TYPE_BINFO (type))
4946 || !flag_devirtualize)
4947 && ((!BINFO_N_BASE_BINFOS (TYPE_BINFO (type))
4948 && !BINFO_VTABLE (TYPE_BINFO (type)))
4949 || debug_info_level != DINFO_LEVEL_NONE))
4950 TYPE_BINFO (type) = NULL;
4951 }
4952 }
4953 else if (INTEGRAL_TYPE_P (type)
4954 || SCALAR_FLOAT_TYPE_P (type)
4955 || FIXED_POINT_TYPE_P (type))
4956 {
4957 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4958 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4959 }
4960
4961 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4962
4963 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4964 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4965
4966 if (TYPE_CONTEXT (type)
4967 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
4968 {
4969 tree ctx = TYPE_CONTEXT (type);
4970 do
4971 {
4972 ctx = BLOCK_SUPERCONTEXT (ctx);
4973 }
4974 while (ctx && TREE_CODE (ctx) == BLOCK);
4975 TYPE_CONTEXT (type) = ctx;
4976 }
4977 }
4978
4979
4980 /* Return true if DECL may need an assembler name to be set. */
4981
4982 static inline bool
4983 need_assembler_name_p (tree decl)
4984 {
4985 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
4986 Rule merging. This makes type_odr_p to return true on those types during
4987 LTO and by comparing the mangled name, we can say what types are intended
4988 to be equivalent across compilation unit.
4989
4990 We do not store names of type_in_anonymous_namespace_p.
4991
4992 Record, union and enumeration type have linkage that allows use
4993 to check type_in_anonymous_namespace_p. We do not mangle compound types
4994 that always can be compared structurally.
4995
4996 Similarly for builtin types, we compare properties of their main variant.
4997 A special case are integer types where mangling do make differences
4998 between char/signed char/unsigned char etc. Storing name for these makes
4999 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
5000 See cp/mangle.c:write_builtin_type for details. */
5001
5002 if (flag_lto_odr_type_mering
5003 && TREE_CODE (decl) == TYPE_DECL
5004 && DECL_NAME (decl)
5005 && decl == TYPE_NAME (TREE_TYPE (decl))
5006 && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
5007 && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5008 && (type_with_linkage_p (TREE_TYPE (decl))
5009 || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5010 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5011 return !DECL_ASSEMBLER_NAME_SET_P (decl);
5012 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5013 if (!VAR_OR_FUNCTION_DECL_P (decl))
5014 return false;
5015
5016 /* If DECL already has its assembler name set, it does not need a
5017 new one. */
5018 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5019 || DECL_ASSEMBLER_NAME_SET_P (decl))
5020 return false;
5021
5022 /* Abstract decls do not need an assembler name. */
5023 if (DECL_ABSTRACT_P (decl))
5024 return false;
5025
5026 /* For VAR_DECLs, only static, public and external symbols need an
5027 assembler name. */
5028 if (VAR_P (decl)
5029 && !TREE_STATIC (decl)
5030 && !TREE_PUBLIC (decl)
5031 && !DECL_EXTERNAL (decl))
5032 return false;
5033
5034 if (TREE_CODE (decl) == FUNCTION_DECL)
5035 {
5036 /* Do not set assembler name on builtins. Allow RTL expansion to
5037 decide whether to expand inline or via a regular call. */
5038 if (DECL_BUILT_IN (decl)
5039 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5040 return false;
5041
5042 /* Functions represented in the callgraph need an assembler name. */
5043 if (cgraph_node::get (decl) != NULL)
5044 return true;
5045
5046 /* Unused and not public functions don't need an assembler name. */
5047 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5048 return false;
5049 }
5050
5051 return true;
5052 }
5053
5054
5055 /* Reset all language specific information still present in symbol
5056 DECL. */
5057
5058 static void
5059 free_lang_data_in_decl (tree decl)
5060 {
5061 gcc_assert (DECL_P (decl));
5062
5063 /* Give the FE a chance to remove its own data first. */
5064 lang_hooks.free_lang_data (decl);
5065
5066 TREE_LANG_FLAG_0 (decl) = 0;
5067 TREE_LANG_FLAG_1 (decl) = 0;
5068 TREE_LANG_FLAG_2 (decl) = 0;
5069 TREE_LANG_FLAG_3 (decl) = 0;
5070 TREE_LANG_FLAG_4 (decl) = 0;
5071 TREE_LANG_FLAG_5 (decl) = 0;
5072 TREE_LANG_FLAG_6 (decl) = 0;
5073
5074 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5075 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5076 if (TREE_CODE (decl) == FIELD_DECL)
5077 {
5078 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5079 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5080 DECL_QUALIFIER (decl) = NULL_TREE;
5081 }
5082
5083 if (TREE_CODE (decl) == FUNCTION_DECL)
5084 {
5085 struct cgraph_node *node;
5086 if (!(node = cgraph_node::get (decl))
5087 || (!node->definition && !node->clones))
5088 {
5089 if (node)
5090 node->release_body ();
5091 else
5092 {
5093 release_function_body (decl);
5094 DECL_ARGUMENTS (decl) = NULL;
5095 DECL_RESULT (decl) = NULL;
5096 DECL_INITIAL (decl) = error_mark_node;
5097 }
5098 }
5099 if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p))
5100 {
5101 tree t;
5102
5103 /* If DECL has a gimple body, then the context for its
5104 arguments must be DECL. Otherwise, it doesn't really
5105 matter, as we will not be emitting any code for DECL. In
5106 general, there may be other instances of DECL created by
5107 the front end and since PARM_DECLs are generally shared,
5108 their DECL_CONTEXT changes as the replicas of DECL are
5109 created. The only time where DECL_CONTEXT is important
5110 is for the FUNCTION_DECLs that have a gimple body (since
5111 the PARM_DECL will be used in the function's body). */
5112 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5113 DECL_CONTEXT (t) = decl;
5114 if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5115 DECL_FUNCTION_SPECIFIC_TARGET (decl)
5116 = target_option_default_node;
5117 if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5118 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5119 = optimization_default_node;
5120 }
5121
5122 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5123 At this point, it is not needed anymore. */
5124 DECL_SAVED_TREE (decl) = NULL_TREE;
5125
5126 /* Clear the abstract origin if it refers to a method.
5127 Otherwise dwarf2out.c will ICE as we splice functions out of
5128 TYPE_FIELDS and thus the origin will not be output
5129 correctly. */
5130 if (DECL_ABSTRACT_ORIGIN (decl)
5131 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5132 && RECORD_OR_UNION_TYPE_P
5133 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5134 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5135
5136 /* Sometimes the C++ frontend doesn't manage to transform a temporary
5137 DECL_VINDEX referring to itself into a vtable slot number as it
5138 should. Happens with functions that are copied and then forgotten
5139 about. Just clear it, it won't matter anymore. */
5140 if (DECL_VINDEX (decl) && !tree_fits_shwi_p (DECL_VINDEX (decl)))
5141 DECL_VINDEX (decl) = NULL_TREE;
5142 }
5143 else if (VAR_P (decl))
5144 {
5145 if ((DECL_EXTERNAL (decl)
5146 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5147 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5148 DECL_INITIAL (decl) = NULL_TREE;
5149 }
5150 else if (TREE_CODE (decl) == TYPE_DECL)
5151 {
5152 DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
5153 DECL_VISIBILITY_SPECIFIED (decl) = 0;
5154 DECL_INITIAL (decl) = NULL_TREE;
5155 }
5156 else if (TREE_CODE (decl) == FIELD_DECL)
5157 DECL_INITIAL (decl) = NULL_TREE;
5158 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5159 && DECL_INITIAL (decl)
5160 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5161 {
5162 /* Strip builtins from the translation-unit BLOCK. We still have targets
5163 without builtin_decl_explicit support and also builtins are shared
5164 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5165 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5166 while (*nextp)
5167 {
5168 tree var = *nextp;
5169 if (TREE_CODE (var) == FUNCTION_DECL
5170 && DECL_BUILT_IN (var))
5171 *nextp = TREE_CHAIN (var);
5172 else
5173 nextp = &TREE_CHAIN (var);
5174 }
5175 }
5176 }
5177
5178
5179 /* Data used when collecting DECLs and TYPEs for language data removal. */
5180
5181 struct free_lang_data_d
5182 {
5183 free_lang_data_d () : decls (100), types (100) {}
5184
5185 /* Worklist to avoid excessive recursion. */
5186 auto_vec<tree> worklist;
5187
5188 /* Set of traversed objects. Used to avoid duplicate visits. */
5189 hash_set<tree> pset;
5190
5191 /* Array of symbols to process with free_lang_data_in_decl. */
5192 auto_vec<tree> decls;
5193
5194 /* Array of types to process with free_lang_data_in_type. */
5195 auto_vec<tree> types;
5196 };
5197
5198
5199 /* Save all language fields needed to generate proper debug information
5200 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
5201
5202 static void
5203 save_debug_info_for_decl (tree t)
5204 {
5205 /*struct saved_debug_info_d *sdi;*/
5206
5207 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
5208
5209 /* FIXME. Partial implementation for saving debug info removed. */
5210 }
5211
5212
5213 /* Save all language fields needed to generate proper debug information
5214 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
5215
5216 static void
5217 save_debug_info_for_type (tree t)
5218 {
5219 /*struct saved_debug_info_d *sdi;*/
5220
5221 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
5222
5223 /* FIXME. Partial implementation for saving debug info removed. */
5224 }
5225
5226
5227 /* Add type or decl T to one of the list of tree nodes that need their
5228 language data removed. The lists are held inside FLD. */
5229
5230 static void
5231 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5232 {
5233 if (DECL_P (t))
5234 {
5235 fld->decls.safe_push (t);
5236 if (debug_info_level > DINFO_LEVEL_TERSE)
5237 save_debug_info_for_decl (t);
5238 }
5239 else if (TYPE_P (t))
5240 {
5241 fld->types.safe_push (t);
5242 if (debug_info_level > DINFO_LEVEL_TERSE)
5243 save_debug_info_for_type (t);
5244 }
5245 else
5246 gcc_unreachable ();
5247 }
5248
5249 /* Push tree node T into FLD->WORKLIST. */
5250
5251 static inline void
5252 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5253 {
5254 if (t && !is_lang_specific (t) && !fld->pset.contains (t))
5255 fld->worklist.safe_push ((t));
5256 }
5257
5258
5259 /* Operand callback helper for free_lang_data_in_node. *TP is the
5260 subtree operand being considered. */
5261
5262 static tree
5263 find_decls_types_r (tree *tp, int *ws, void *data)
5264 {
5265 tree t = *tp;
5266 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5267
5268 if (TREE_CODE (t) == TREE_LIST)
5269 return NULL_TREE;
5270
5271 /* Language specific nodes will be removed, so there is no need
5272 to gather anything under them. */
5273 if (is_lang_specific (t))
5274 {
5275 *ws = 0;
5276 return NULL_TREE;
5277 }
5278
5279 if (DECL_P (t))
5280 {
5281 /* Note that walk_tree does not traverse every possible field in
5282 decls, so we have to do our own traversals here. */
5283 add_tree_to_fld_list (t, fld);
5284
5285 fld_worklist_push (DECL_NAME (t), fld);
5286 fld_worklist_push (DECL_CONTEXT (t), fld);
5287 fld_worklist_push (DECL_SIZE (t), fld);
5288 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5289
5290 /* We are going to remove everything under DECL_INITIAL for
5291 TYPE_DECLs. No point walking them. */
5292 if (TREE_CODE (t) != TYPE_DECL)
5293 fld_worklist_push (DECL_INITIAL (t), fld);
5294
5295 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5296 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5297
5298 if (TREE_CODE (t) == FUNCTION_DECL)
5299 {
5300 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5301 fld_worklist_push (DECL_RESULT (t), fld);
5302 }
5303 else if (TREE_CODE (t) == TYPE_DECL)
5304 {
5305 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
5306 }
5307 else if (TREE_CODE (t) == FIELD_DECL)
5308 {
5309 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5310 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5311 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5312 fld_worklist_push (DECL_FCONTEXT (t), fld);
5313 }
5314
5315 if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
5316 && DECL_HAS_VALUE_EXPR_P (t))
5317 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5318
5319 if (TREE_CODE (t) != FIELD_DECL
5320 && TREE_CODE (t) != TYPE_DECL)
5321 fld_worklist_push (TREE_CHAIN (t), fld);
5322 *ws = 0;
5323 }
5324 else if (TYPE_P (t))
5325 {
5326 /* Note that walk_tree does not traverse every possible field in
5327 types, so we have to do our own traversals here. */
5328 add_tree_to_fld_list (t, fld);
5329
5330 if (!RECORD_OR_UNION_TYPE_P (t))
5331 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5332 fld_worklist_push (TYPE_SIZE (t), fld);
5333 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5334 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5335 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5336 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5337 fld_worklist_push (TYPE_NAME (t), fld);
5338 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
5339 them and thus do not and want not to reach unused pointer types
5340 this way. */
5341 if (!POINTER_TYPE_P (t))
5342 fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
5343 /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types. */
5344 if (!RECORD_OR_UNION_TYPE_P (t))
5345 fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
5346 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5347 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5348 do not and want not to reach unused variants this way. */
5349 if (TYPE_CONTEXT (t))
5350 {
5351 tree ctx = TYPE_CONTEXT (t);
5352 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5353 So push that instead. */
5354 while (ctx && TREE_CODE (ctx) == BLOCK)
5355 ctx = BLOCK_SUPERCONTEXT (ctx);
5356 fld_worklist_push (ctx, fld);
5357 }
5358 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5359 and want not to reach unused types this way. */
5360
5361 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5362 {
5363 unsigned i;
5364 tree tem;
5365 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5366 fld_worklist_push (TREE_TYPE (tem), fld);
5367 fld_worklist_push (BINFO_VIRTUALS (TYPE_BINFO (t)), fld);
5368 }
5369 if (RECORD_OR_UNION_TYPE_P (t))
5370 {
5371 tree tem;
5372 /* Push all TYPE_FIELDS - there can be interleaving interesting
5373 and non-interesting things. */
5374 tem = TYPE_FIELDS (t);
5375 while (tem)
5376 {
5377 if (TREE_CODE (tem) == FIELD_DECL
5378 || (TREE_CODE (tem) == TYPE_DECL
5379 && !DECL_IGNORED_P (tem)
5380 && debug_info_level > DINFO_LEVEL_TERSE
5381 && !is_redundant_typedef (tem)))
5382 fld_worklist_push (tem, fld);
5383 tem = TREE_CHAIN (tem);
5384 }
5385 }
5386
5387 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5388 *ws = 0;
5389 }
5390 else if (TREE_CODE (t) == BLOCK)
5391 {
5392 tree tem;
5393 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
5394 fld_worklist_push (tem, fld);
5395 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5396 fld_worklist_push (tem, fld);
5397 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5398 }
5399
5400 if (TREE_CODE (t) != IDENTIFIER_NODE
5401 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5402 fld_worklist_push (TREE_TYPE (t), fld);
5403
5404 return NULL_TREE;
5405 }
5406
5407
5408 /* Find decls and types in T. */
5409
5410 static void
5411 find_decls_types (tree t, struct free_lang_data_d *fld)
5412 {
5413 while (1)
5414 {
5415 if (!fld->pset.contains (t))
5416 walk_tree (&t, find_decls_types_r, fld, &fld->pset);
5417 if (fld->worklist.is_empty ())
5418 break;
5419 t = fld->worklist.pop ();
5420 }
5421 }
5422
5423 /* Translate all the types in LIST with the corresponding runtime
5424 types. */
5425
5426 static tree
5427 get_eh_types_for_runtime (tree list)
5428 {
5429 tree head, prev;
5430
5431 if (list == NULL_TREE)
5432 return NULL_TREE;
5433
5434 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5435 prev = head;
5436 list = TREE_CHAIN (list);
5437 while (list)
5438 {
5439 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5440 TREE_CHAIN (prev) = n;
5441 prev = TREE_CHAIN (prev);
5442 list = TREE_CHAIN (list);
5443 }
5444
5445 return head;
5446 }
5447
5448
5449 /* Find decls and types referenced in EH region R and store them in
5450 FLD->DECLS and FLD->TYPES. */
5451
5452 static void
5453 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5454 {
5455 switch (r->type)
5456 {
5457 case ERT_CLEANUP:
5458 break;
5459
5460 case ERT_TRY:
5461 {
5462 eh_catch c;
5463
5464 /* The types referenced in each catch must first be changed to the
5465 EH types used at runtime. This removes references to FE types
5466 in the region. */
5467 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5468 {
5469 c->type_list = get_eh_types_for_runtime (c->type_list);
5470 walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
5471 }
5472 }
5473 break;
5474
5475 case ERT_ALLOWED_EXCEPTIONS:
5476 r->u.allowed.type_list
5477 = get_eh_types_for_runtime (r->u.allowed.type_list);
5478 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
5479 break;
5480
5481 case ERT_MUST_NOT_THROW:
5482 walk_tree (&r->u.must_not_throw.failure_decl,
5483 find_decls_types_r, fld, &fld->pset);
5484 break;
5485 }
5486 }
5487
5488
5489 /* Find decls and types referenced in cgraph node N and store them in
5490 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5491 look for *every* kind of DECL and TYPE node reachable from N,
5492 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5493 NAMESPACE_DECLs, etc). */
5494
5495 static void
5496 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5497 {
5498 basic_block bb;
5499 struct function *fn;
5500 unsigned ix;
5501 tree t;
5502
5503 find_decls_types (n->decl, fld);
5504
5505 if (!gimple_has_body_p (n->decl))
5506 return;
5507
5508 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5509
5510 fn = DECL_STRUCT_FUNCTION (n->decl);
5511
5512 /* Traverse locals. */
5513 FOR_EACH_LOCAL_DECL (fn, ix, t)
5514 find_decls_types (t, fld);
5515
5516 /* Traverse EH regions in FN. */
5517 {
5518 eh_region r;
5519 FOR_ALL_EH_REGION_FN (r, fn)
5520 find_decls_types_in_eh_region (r, fld);
5521 }
5522
5523 /* Traverse every statement in FN. */
5524 FOR_EACH_BB_FN (bb, fn)
5525 {
5526 gphi_iterator psi;
5527 gimple_stmt_iterator si;
5528 unsigned i;
5529
5530 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
5531 {
5532 gphi *phi = psi.phi ();
5533
5534 for (i = 0; i < gimple_phi_num_args (phi); i++)
5535 {
5536 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5537 find_decls_types (*arg_p, fld);
5538 }
5539 }
5540
5541 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5542 {
5543 gimple *stmt = gsi_stmt (si);
5544
5545 if (is_gimple_call (stmt))
5546 find_decls_types (gimple_call_fntype (stmt), fld);
5547
5548 for (i = 0; i < gimple_num_ops (stmt); i++)
5549 {
5550 tree arg = gimple_op (stmt, i);
5551 find_decls_types (arg, fld);
5552 }
5553 }
5554 }
5555 }
5556
5557
5558 /* Find decls and types referenced in varpool node N and store them in
5559 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5560 look for *every* kind of DECL and TYPE node reachable from N,
5561 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5562 NAMESPACE_DECLs, etc). */
5563
5564 static void
5565 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
5566 {
5567 find_decls_types (v->decl, fld);
5568 }
5569
5570 /* If T needs an assembler name, have one created for it. */
5571
5572 void
5573 assign_assembler_name_if_needed (tree t)
5574 {
5575 if (need_assembler_name_p (t))
5576 {
5577 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5578 diagnostics that use input_location to show locus
5579 information. The problem here is that, at this point,
5580 input_location is generally anchored to the end of the file
5581 (since the parser is long gone), so we don't have a good
5582 position to pin it to.
5583
5584 To alleviate this problem, this uses the location of T's
5585 declaration. Examples of this are
5586 testsuite/g++.dg/template/cond2.C and
5587 testsuite/g++.dg/template/pr35240.C. */
5588 location_t saved_location = input_location;
5589 input_location = DECL_SOURCE_LOCATION (t);
5590
5591 decl_assembler_name (t);
5592
5593 input_location = saved_location;
5594 }
5595 }
5596
5597
5598 /* Free language specific information for every operand and expression
5599 in every node of the call graph. This process operates in three stages:
5600
5601 1- Every callgraph node and varpool node is traversed looking for
5602 decls and types embedded in them. This is a more exhaustive
5603 search than that done by find_referenced_vars, because it will
5604 also collect individual fields, decls embedded in types, etc.
5605
5606 2- All the decls found are sent to free_lang_data_in_decl.
5607
5608 3- All the types found are sent to free_lang_data_in_type.
5609
5610 The ordering between decls and types is important because
5611 free_lang_data_in_decl sets assembler names, which includes
5612 mangling. So types cannot be freed up until assembler names have
5613 been set up. */
5614
5615 static void
5616 free_lang_data_in_cgraph (void)
5617 {
5618 struct cgraph_node *n;
5619 varpool_node *v;
5620 struct free_lang_data_d fld;
5621 tree t;
5622 unsigned i;
5623 alias_pair *p;
5624
5625 /* Find decls and types in the body of every function in the callgraph. */
5626 FOR_EACH_FUNCTION (n)
5627 find_decls_types_in_node (n, &fld);
5628
5629 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5630 find_decls_types (p->decl, &fld);
5631
5632 /* Find decls and types in every varpool symbol. */
5633 FOR_EACH_VARIABLE (v)
5634 find_decls_types_in_var (v, &fld);
5635
5636 /* Set the assembler name on every decl found. We need to do this
5637 now because free_lang_data_in_decl will invalidate data needed
5638 for mangling. This breaks mangling on interdependent decls. */
5639 FOR_EACH_VEC_ELT (fld.decls, i, t)
5640 assign_assembler_name_if_needed (t);
5641
5642 /* Traverse every decl found freeing its language data. */
5643 FOR_EACH_VEC_ELT (fld.decls, i, t)
5644 free_lang_data_in_decl (t);
5645
5646 /* Traverse every type found freeing its language data. */
5647 FOR_EACH_VEC_ELT (fld.types, i, t)
5648 free_lang_data_in_type (t);
5649 if (flag_checking)
5650 {
5651 FOR_EACH_VEC_ELT (fld.types, i, t)
5652 verify_type (t);
5653 }
5654 }
5655
5656
5657 /* Free resources that are used by FE but are not needed once they are done. */
5658
5659 static unsigned
5660 free_lang_data (void)
5661 {
5662 unsigned i;
5663
5664 /* If we are the LTO frontend we have freed lang-specific data already. */
5665 if (in_lto_p
5666 || (!flag_generate_lto && !flag_generate_offload))
5667 return 0;
5668
5669 /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one. */
5670 if (vec_safe_is_empty (all_translation_units))
5671 build_translation_unit_decl (NULL_TREE);
5672
5673 /* Allocate and assign alias sets to the standard integer types
5674 while the slots are still in the way the frontends generated them. */
5675 for (i = 0; i < itk_none; ++i)
5676 if (integer_types[i])
5677 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5678
5679 /* Traverse the IL resetting language specific information for
5680 operands, expressions, etc. */
5681 free_lang_data_in_cgraph ();
5682
5683 /* Create gimple variants for common types. */
5684 for (unsigned i = 0;
5685 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
5686 ++i)
5687 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
5688
5689 /* Reset some langhooks. Do not reset types_compatible_p, it may
5690 still be used indirectly via the get_alias_set langhook. */
5691 lang_hooks.dwarf_name = lhd_dwarf_name;
5692 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5693 lang_hooks.gimplify_expr = lhd_gimplify_expr;
5694
5695 /* We do not want the default decl_assembler_name implementation,
5696 rather if we have fixed everything we want a wrapper around it
5697 asserting that all non-local symbols already got their assembler
5698 name and only produce assembler names for local symbols. Or rather
5699 make sure we never call decl_assembler_name on local symbols and
5700 devise a separate, middle-end private scheme for it. */
5701
5702 /* Reset diagnostic machinery. */
5703 tree_diagnostics_defaults (global_dc);
5704
5705 return 0;
5706 }
5707
5708
5709 namespace {
5710
5711 const pass_data pass_data_ipa_free_lang_data =
5712 {
5713 SIMPLE_IPA_PASS, /* type */
5714 "*free_lang_data", /* name */
5715 OPTGROUP_NONE, /* optinfo_flags */
5716 TV_IPA_FREE_LANG_DATA, /* tv_id */
5717 0, /* properties_required */
5718 0, /* properties_provided */
5719 0, /* properties_destroyed */
5720 0, /* todo_flags_start */
5721 0, /* todo_flags_finish */
5722 };
5723
5724 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
5725 {
5726 public:
5727 pass_ipa_free_lang_data (gcc::context *ctxt)
5728 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
5729 {}
5730
5731 /* opt_pass methods: */
5732 virtual unsigned int execute (function *) { return free_lang_data (); }
5733
5734 }; // class pass_ipa_free_lang_data
5735
5736 } // anon namespace
5737
5738 simple_ipa_opt_pass *
5739 make_pass_ipa_free_lang_data (gcc::context *ctxt)
5740 {
5741 return new pass_ipa_free_lang_data (ctxt);
5742 }
5743 \f
5744 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5745 of the various TYPE_QUAL values. */
5746
5747 static void
5748 set_type_quals (tree type, int type_quals)
5749 {
5750 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5751 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5752 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5753 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
5754 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5755 }
5756
5757 /* Returns true iff CAND and BASE have equivalent language-specific
5758 qualifiers. */
5759
5760 bool
5761 check_lang_type (const_tree cand, const_tree base)
5762 {
5763 if (lang_hooks.types.type_hash_eq == NULL)
5764 return true;
5765 /* type_hash_eq currently only applies to these types. */
5766 if (TREE_CODE (cand) != FUNCTION_TYPE
5767 && TREE_CODE (cand) != METHOD_TYPE)
5768 return true;
5769 return lang_hooks.types.type_hash_eq (cand, base);
5770 }
5771
5772 /* Returns true iff unqualified CAND and BASE are equivalent. */
5773
5774 bool
5775 check_base_type (const_tree cand, const_tree base)
5776 {
5777 return (TYPE_NAME (cand) == TYPE_NAME (base)
5778 /* Apparently this is needed for Objective-C. */
5779 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5780 /* Check alignment. */
5781 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5782 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5783 TYPE_ATTRIBUTES (base)));
5784 }
5785
5786 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5787
5788 bool
5789 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5790 {
5791 return (TYPE_QUALS (cand) == type_quals
5792 && check_base_type (cand, base)
5793 && check_lang_type (cand, base));
5794 }
5795
5796 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5797
5798 static bool
5799 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5800 {
5801 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5802 && TYPE_NAME (cand) == TYPE_NAME (base)
5803 /* Apparently this is needed for Objective-C. */
5804 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5805 /* Check alignment. */
5806 && TYPE_ALIGN (cand) == align
5807 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5808 TYPE_ATTRIBUTES (base))
5809 && check_lang_type (cand, base));
5810 }
5811
5812 /* This function checks to see if TYPE matches the size one of the built-in
5813 atomic types, and returns that core atomic type. */
5814
5815 static tree
5816 find_atomic_core_type (tree type)
5817 {
5818 tree base_atomic_type;
5819
5820 /* Only handle complete types. */
5821 if (TYPE_SIZE (type) == NULL_TREE)
5822 return NULL_TREE;
5823
5824 HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
5825 switch (type_size)
5826 {
5827 case 8:
5828 base_atomic_type = atomicQI_type_node;
5829 break;
5830
5831 case 16:
5832 base_atomic_type = atomicHI_type_node;
5833 break;
5834
5835 case 32:
5836 base_atomic_type = atomicSI_type_node;
5837 break;
5838
5839 case 64:
5840 base_atomic_type = atomicDI_type_node;
5841 break;
5842
5843 case 128:
5844 base_atomic_type = atomicTI_type_node;
5845 break;
5846
5847 default:
5848 base_atomic_type = NULL_TREE;
5849 }
5850
5851 return base_atomic_type;
5852 }
5853
5854 /* Return a version of the TYPE, qualified as indicated by the
5855 TYPE_QUALS, if one exists. If no qualified version exists yet,
5856 return NULL_TREE. */
5857
5858 tree
5859 get_qualified_type (tree type, int type_quals)
5860 {
5861 tree t;
5862
5863 if (TYPE_QUALS (type) == type_quals)
5864 return type;
5865
5866 /* Search the chain of variants to see if there is already one there just
5867 like the one we need to have. If so, use that existing one. We must
5868 preserve the TYPE_NAME, since there is code that depends on this. */
5869 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5870 if (check_qualified_type (t, type, type_quals))
5871 return t;
5872
5873 return NULL_TREE;
5874 }
5875
5876 /* Like get_qualified_type, but creates the type if it does not
5877 exist. This function never returns NULL_TREE. */
5878
5879 tree
5880 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
5881 {
5882 tree t;
5883
5884 /* See if we already have the appropriate qualified variant. */
5885 t = get_qualified_type (type, type_quals);
5886
5887 /* If not, build it. */
5888 if (!t)
5889 {
5890 t = build_variant_type_copy (type PASS_MEM_STAT);
5891 set_type_quals (t, type_quals);
5892
5893 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
5894 {
5895 /* See if this object can map to a basic atomic type. */
5896 tree atomic_type = find_atomic_core_type (type);
5897 if (atomic_type)
5898 {
5899 /* Ensure the alignment of this type is compatible with
5900 the required alignment of the atomic type. */
5901 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
5902 SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
5903 }
5904 }
5905
5906 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5907 /* Propagate structural equality. */
5908 SET_TYPE_STRUCTURAL_EQUALITY (t);
5909 else if (TYPE_CANONICAL (type) != type)
5910 /* Build the underlying canonical type, since it is different
5911 from TYPE. */
5912 {
5913 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
5914 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
5915 }
5916 else
5917 /* T is its own canonical type. */
5918 TYPE_CANONICAL (t) = t;
5919
5920 }
5921
5922 return t;
5923 }
5924
5925 /* Create a variant of type T with alignment ALIGN. */
5926
5927 tree
5928 build_aligned_type (tree type, unsigned int align)
5929 {
5930 tree t;
5931
5932 if (TYPE_PACKED (type)
5933 || TYPE_ALIGN (type) == align)
5934 return type;
5935
5936 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5937 if (check_aligned_type (t, type, align))
5938 return t;
5939
5940 t = build_variant_type_copy (type);
5941 SET_TYPE_ALIGN (t, align);
5942 TYPE_USER_ALIGN (t) = 1;
5943
5944 return t;
5945 }
5946
5947 /* Create a new distinct copy of TYPE. The new type is made its own
5948 MAIN_VARIANT. If TYPE requires structural equality checks, the
5949 resulting type requires structural equality checks; otherwise, its
5950 TYPE_CANONICAL points to itself. */
5951
5952 tree
5953 build_distinct_type_copy (tree type MEM_STAT_DECL)
5954 {
5955 tree t = copy_node (type PASS_MEM_STAT);
5956
5957 TYPE_POINTER_TO (t) = 0;
5958 TYPE_REFERENCE_TO (t) = 0;
5959
5960 /* Set the canonical type either to a new equivalence class, or
5961 propagate the need for structural equality checks. */
5962 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5963 SET_TYPE_STRUCTURAL_EQUALITY (t);
5964 else
5965 TYPE_CANONICAL (t) = t;
5966
5967 /* Make it its own variant. */
5968 TYPE_MAIN_VARIANT (t) = t;
5969 TYPE_NEXT_VARIANT (t) = 0;
5970
5971 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5972 whose TREE_TYPE is not t. This can also happen in the Ada
5973 frontend when using subtypes. */
5974
5975 return t;
5976 }
5977
5978 /* Create a new variant of TYPE, equivalent but distinct. This is so
5979 the caller can modify it. TYPE_CANONICAL for the return type will
5980 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5981 are considered equal by the language itself (or that both types
5982 require structural equality checks). */
5983
5984 tree
5985 build_variant_type_copy (tree type MEM_STAT_DECL)
5986 {
5987 tree t, m = TYPE_MAIN_VARIANT (type);
5988
5989 t = build_distinct_type_copy (type PASS_MEM_STAT);
5990
5991 /* Since we're building a variant, assume that it is a non-semantic
5992 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5993 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5994 /* Type variants have no alias set defined. */
5995 TYPE_ALIAS_SET (t) = -1;
5996
5997 /* Add the new type to the chain of variants of TYPE. */
5998 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5999 TYPE_NEXT_VARIANT (m) = t;
6000 TYPE_MAIN_VARIANT (t) = m;
6001
6002 return t;
6003 }
6004 \f
6005 /* Return true if the from tree in both tree maps are equal. */
6006
6007 int
6008 tree_map_base_eq (const void *va, const void *vb)
6009 {
6010 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6011 *const b = (const struct tree_map_base *) vb;
6012 return (a->from == b->from);
6013 }
6014
6015 /* Hash a from tree in a tree_base_map. */
6016
6017 unsigned int
6018 tree_map_base_hash (const void *item)
6019 {
6020 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6021 }
6022
6023 /* Return true if this tree map structure is marked for garbage collection
6024 purposes. We simply return true if the from tree is marked, so that this
6025 structure goes away when the from tree goes away. */
6026
6027 int
6028 tree_map_base_marked_p (const void *p)
6029 {
6030 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6031 }
6032
6033 /* Hash a from tree in a tree_map. */
6034
6035 unsigned int
6036 tree_map_hash (const void *item)
6037 {
6038 return (((const struct tree_map *) item)->hash);
6039 }
6040
6041 /* Hash a from tree in a tree_decl_map. */
6042
6043 unsigned int
6044 tree_decl_map_hash (const void *item)
6045 {
6046 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6047 }
6048
6049 /* Return the initialization priority for DECL. */
6050
6051 priority_type
6052 decl_init_priority_lookup (tree decl)
6053 {
6054 symtab_node *snode = symtab_node::get (decl);
6055
6056 if (!snode)
6057 return DEFAULT_INIT_PRIORITY;
6058 return
6059 snode->get_init_priority ();
6060 }
6061
6062 /* Return the finalization priority for DECL. */
6063
6064 priority_type
6065 decl_fini_priority_lookup (tree decl)
6066 {
6067 cgraph_node *node = cgraph_node::get (decl);
6068
6069 if (!node)
6070 return DEFAULT_INIT_PRIORITY;
6071 return
6072 node->get_fini_priority ();
6073 }
6074
6075 /* Set the initialization priority for DECL to PRIORITY. */
6076
6077 void
6078 decl_init_priority_insert (tree decl, priority_type priority)
6079 {
6080 struct symtab_node *snode;
6081
6082 if (priority == DEFAULT_INIT_PRIORITY)
6083 {
6084 snode = symtab_node::get (decl);
6085 if (!snode)
6086 return;
6087 }
6088 else if (VAR_P (decl))
6089 snode = varpool_node::get_create (decl);
6090 else
6091 snode = cgraph_node::get_create (decl);
6092 snode->set_init_priority (priority);
6093 }
6094
6095 /* Set the finalization priority for DECL to PRIORITY. */
6096
6097 void
6098 decl_fini_priority_insert (tree decl, priority_type priority)
6099 {
6100 struct cgraph_node *node;
6101
6102 if (priority == DEFAULT_INIT_PRIORITY)
6103 {
6104 node = cgraph_node::get (decl);
6105 if (!node)
6106 return;
6107 }
6108 else
6109 node = cgraph_node::get_create (decl);
6110 node->set_fini_priority (priority);
6111 }
6112
6113 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6114
6115 static void
6116 print_debug_expr_statistics (void)
6117 {
6118 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6119 (long) debug_expr_for_decl->size (),
6120 (long) debug_expr_for_decl->elements (),
6121 debug_expr_for_decl->collisions ());
6122 }
6123
6124 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6125
6126 static void
6127 print_value_expr_statistics (void)
6128 {
6129 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6130 (long) value_expr_for_decl->size (),
6131 (long) value_expr_for_decl->elements (),
6132 value_expr_for_decl->collisions ());
6133 }
6134
6135 /* Lookup a debug expression for FROM, and return it if we find one. */
6136
6137 tree
6138 decl_debug_expr_lookup (tree from)
6139 {
6140 struct tree_decl_map *h, in;
6141 in.base.from = from;
6142
6143 h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6144 if (h)
6145 return h->to;
6146 return NULL_TREE;
6147 }
6148
6149 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6150
6151 void
6152 decl_debug_expr_insert (tree from, tree to)
6153 {
6154 struct tree_decl_map *h;
6155
6156 h = ggc_alloc<tree_decl_map> ();
6157 h->base.from = from;
6158 h->to = to;
6159 *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6160 }
6161
6162 /* Lookup a value expression for FROM, and return it if we find one. */
6163
6164 tree
6165 decl_value_expr_lookup (tree from)
6166 {
6167 struct tree_decl_map *h, in;
6168 in.base.from = from;
6169
6170 h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6171 if (h)
6172 return h->to;
6173 return NULL_TREE;
6174 }
6175
6176 /* Insert a mapping FROM->TO in the value expression hashtable. */
6177
6178 void
6179 decl_value_expr_insert (tree from, tree to)
6180 {
6181 struct tree_decl_map *h;
6182
6183 h = ggc_alloc<tree_decl_map> ();
6184 h->base.from = from;
6185 h->to = to;
6186 *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6187 }
6188
6189 /* Lookup a vector of debug arguments for FROM, and return it if we
6190 find one. */
6191
6192 vec<tree, va_gc> **
6193 decl_debug_args_lookup (tree from)
6194 {
6195 struct tree_vec_map *h, in;
6196
6197 if (!DECL_HAS_DEBUG_ARGS_P (from))
6198 return NULL;
6199 gcc_checking_assert (debug_args_for_decl != NULL);
6200 in.base.from = from;
6201 h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6202 if (h)
6203 return &h->to;
6204 return NULL;
6205 }
6206
6207 /* Insert a mapping FROM->empty vector of debug arguments in the value
6208 expression hashtable. */
6209
6210 vec<tree, va_gc> **
6211 decl_debug_args_insert (tree from)
6212 {
6213 struct tree_vec_map *h;
6214 tree_vec_map **loc;
6215
6216 if (DECL_HAS_DEBUG_ARGS_P (from))
6217 return decl_debug_args_lookup (from);
6218 if (debug_args_for_decl == NULL)
6219 debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6220 h = ggc_alloc<tree_vec_map> ();
6221 h->base.from = from;
6222 h->to = NULL;
6223 loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6224 *loc = h;
6225 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6226 return &h->to;
6227 }
6228
6229 /* Hashing of types so that we don't make duplicates.
6230 The entry point is `type_hash_canon'. */
6231
6232 /* Generate the default hash code for TYPE. This is designed for
6233 speed, rather than maximum entropy. */
6234
6235 hashval_t
6236 type_hash_canon_hash (tree type)
6237 {
6238 inchash::hash hstate;
6239
6240 hstate.add_int (TREE_CODE (type));
6241
6242 if (TREE_TYPE (type))
6243 hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
6244
6245 for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
6246 /* Just the identifier is adequate to distinguish. */
6247 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
6248
6249 switch (TREE_CODE (type))
6250 {
6251 case METHOD_TYPE:
6252 hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
6253 /* FALLTHROUGH. */
6254 case FUNCTION_TYPE:
6255 for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6256 if (TREE_VALUE (t) != error_mark_node)
6257 hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
6258 break;
6259
6260 case OFFSET_TYPE:
6261 hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
6262 break;
6263
6264 case ARRAY_TYPE:
6265 {
6266 if (TYPE_DOMAIN (type))
6267 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
6268 if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
6269 {
6270 unsigned typeless = TYPE_TYPELESS_STORAGE (type);
6271 hstate.add_object (typeless);
6272 }
6273 }
6274 break;
6275
6276 case INTEGER_TYPE:
6277 {
6278 tree t = TYPE_MAX_VALUE (type);
6279 if (!t)
6280 t = TYPE_MIN_VALUE (type);
6281 for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
6282 hstate.add_object (TREE_INT_CST_ELT (t, i));
6283 break;
6284 }
6285
6286 case REAL_TYPE:
6287 case FIXED_POINT_TYPE:
6288 {
6289 unsigned prec = TYPE_PRECISION (type);
6290 hstate.add_object (prec);
6291 break;
6292 }
6293
6294 case VECTOR_TYPE:
6295 {
6296 unsigned nunits = TYPE_VECTOR_SUBPARTS (type);
6297 hstate.add_object (nunits);
6298 break;
6299 }
6300
6301 default:
6302 break;
6303 }
6304
6305 return hstate.end ();
6306 }
6307
6308 /* These are the Hashtable callback functions. */
6309
6310 /* Returns true iff the types are equivalent. */
6311
6312 bool
6313 type_cache_hasher::equal (type_hash *a, type_hash *b)
6314 {
6315 /* First test the things that are the same for all types. */
6316 if (a->hash != b->hash
6317 || TREE_CODE (a->type) != TREE_CODE (b->type)
6318 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6319 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6320 TYPE_ATTRIBUTES (b->type))
6321 || (TREE_CODE (a->type) != COMPLEX_TYPE
6322 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6323 return 0;
6324
6325 /* Be careful about comparing arrays before and after the element type
6326 has been completed; don't compare TYPE_ALIGN unless both types are
6327 complete. */
6328 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6329 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6330 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6331 return 0;
6332
6333 switch (TREE_CODE (a->type))
6334 {
6335 case VOID_TYPE:
6336 case COMPLEX_TYPE:
6337 case POINTER_TYPE:
6338 case REFERENCE_TYPE:
6339 case NULLPTR_TYPE:
6340 return 1;
6341
6342 case VECTOR_TYPE:
6343 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6344
6345 case ENUMERAL_TYPE:
6346 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6347 && !(TYPE_VALUES (a->type)
6348 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6349 && TYPE_VALUES (b->type)
6350 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6351 && type_list_equal (TYPE_VALUES (a->type),
6352 TYPE_VALUES (b->type))))
6353 return 0;
6354
6355 /* fall through */
6356
6357 case INTEGER_TYPE:
6358 case REAL_TYPE:
6359 case BOOLEAN_TYPE:
6360 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6361 return false;
6362 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6363 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6364 TYPE_MAX_VALUE (b->type)))
6365 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6366 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6367 TYPE_MIN_VALUE (b->type))));
6368
6369 case FIXED_POINT_TYPE:
6370 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6371
6372 case OFFSET_TYPE:
6373 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6374
6375 case METHOD_TYPE:
6376 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6377 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6378 || (TYPE_ARG_TYPES (a->type)
6379 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6380 && TYPE_ARG_TYPES (b->type)
6381 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6382 && type_list_equal (TYPE_ARG_TYPES (a->type),
6383 TYPE_ARG_TYPES (b->type)))))
6384 break;
6385 return 0;
6386 case ARRAY_TYPE:
6387 /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
6388 where the flag should be inherited from the element type
6389 and can change after ARRAY_TYPEs are created; on non-aggregates
6390 compare it and hash it, scalars will never have that flag set
6391 and we need to differentiate between arrays created by different
6392 front-ends or middle-end created arrays. */
6393 return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
6394 && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
6395 || (TYPE_TYPELESS_STORAGE (a->type)
6396 == TYPE_TYPELESS_STORAGE (b->type))));
6397
6398 case RECORD_TYPE:
6399 case UNION_TYPE:
6400 case QUAL_UNION_TYPE:
6401 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6402 || (TYPE_FIELDS (a->type)
6403 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6404 && TYPE_FIELDS (b->type)
6405 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6406 && type_list_equal (TYPE_FIELDS (a->type),
6407 TYPE_FIELDS (b->type))));
6408
6409 case FUNCTION_TYPE:
6410 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6411 || (TYPE_ARG_TYPES (a->type)
6412 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6413 && TYPE_ARG_TYPES (b->type)
6414 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6415 && type_list_equal (TYPE_ARG_TYPES (a->type),
6416 TYPE_ARG_TYPES (b->type))))
6417 break;
6418 return 0;
6419
6420 default:
6421 return 0;
6422 }
6423
6424 if (lang_hooks.types.type_hash_eq != NULL)
6425 return lang_hooks.types.type_hash_eq (a->type, b->type);
6426
6427 return 1;
6428 }
6429
6430 /* Given TYPE, and HASHCODE its hash code, return the canonical
6431 object for an identical type if one already exists.
6432 Otherwise, return TYPE, and record it as the canonical object.
6433
6434 To use this function, first create a type of the sort you want.
6435 Then compute its hash code from the fields of the type that
6436 make it different from other similar types.
6437 Then call this function and use the value. */
6438
6439 tree
6440 type_hash_canon (unsigned int hashcode, tree type)
6441 {
6442 type_hash in;
6443 type_hash **loc;
6444
6445 /* The hash table only contains main variants, so ensure that's what we're
6446 being passed. */
6447 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6448
6449 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6450 must call that routine before comparing TYPE_ALIGNs. */
6451 layout_type (type);
6452
6453 in.hash = hashcode;
6454 in.type = type;
6455
6456 loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
6457 if (*loc)
6458 {
6459 tree t1 = ((type_hash *) *loc)->type;
6460 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1);
6461 if (TYPE_UID (type) + 1 == next_type_uid)
6462 --next_type_uid;
6463 /* Free also min/max values and the cache for integer
6464 types. This can't be done in free_node, as LTO frees
6465 those on its own. */
6466 if (TREE_CODE (type) == INTEGER_TYPE)
6467 {
6468 if (TYPE_MIN_VALUE (type)
6469 && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
6470 ggc_free (TYPE_MIN_VALUE (type));
6471 if (TYPE_MAX_VALUE (type)
6472 && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
6473 ggc_free (TYPE_MAX_VALUE (type));
6474 if (TYPE_CACHED_VALUES_P (type))
6475 ggc_free (TYPE_CACHED_VALUES (type));
6476 }
6477 free_node (type);
6478 return t1;
6479 }
6480 else
6481 {
6482 struct type_hash *h;
6483
6484 h = ggc_alloc<type_hash> ();
6485 h->hash = hashcode;
6486 h->type = type;
6487 *loc = h;
6488
6489 return type;
6490 }
6491 }
6492
6493 static void
6494 print_type_hash_statistics (void)
6495 {
6496 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6497 (long) type_hash_table->size (),
6498 (long) type_hash_table->elements (),
6499 type_hash_table->collisions ());
6500 }
6501
6502 /* Given two lists of types
6503 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6504 return 1 if the lists contain the same types in the same order.
6505 Also, the TREE_PURPOSEs must match. */
6506
6507 int
6508 type_list_equal (const_tree l1, const_tree l2)
6509 {
6510 const_tree t1, t2;
6511
6512 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6513 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6514 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6515 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6516 && (TREE_TYPE (TREE_PURPOSE (t1))
6517 == TREE_TYPE (TREE_PURPOSE (t2))))))
6518 return 0;
6519
6520 return t1 == t2;
6521 }
6522
6523 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6524 given by TYPE. If the argument list accepts variable arguments,
6525 then this function counts only the ordinary arguments. */
6526
6527 int
6528 type_num_arguments (const_tree type)
6529 {
6530 int i = 0;
6531 tree t;
6532
6533 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6534 /* If the function does not take a variable number of arguments,
6535 the last element in the list will have type `void'. */
6536 if (VOID_TYPE_P (TREE_VALUE (t)))
6537 break;
6538 else
6539 ++i;
6540
6541 return i;
6542 }
6543
6544 /* Nonzero if integer constants T1 and T2
6545 represent the same constant value. */
6546
6547 int
6548 tree_int_cst_equal (const_tree t1, const_tree t2)
6549 {
6550 if (t1 == t2)
6551 return 1;
6552
6553 if (t1 == 0 || t2 == 0)
6554 return 0;
6555
6556 if (TREE_CODE (t1) == INTEGER_CST
6557 && TREE_CODE (t2) == INTEGER_CST
6558 && wi::to_widest (t1) == wi::to_widest (t2))
6559 return 1;
6560
6561 return 0;
6562 }
6563
6564 /* Return true if T is an INTEGER_CST whose numerical value (extended
6565 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
6566
6567 bool
6568 tree_fits_shwi_p (const_tree t)
6569 {
6570 return (t != NULL_TREE
6571 && TREE_CODE (t) == INTEGER_CST
6572 && wi::fits_shwi_p (wi::to_widest (t)));
6573 }
6574
6575 /* Return true if T is an INTEGER_CST whose numerical value (extended
6576 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
6577
6578 bool
6579 tree_fits_uhwi_p (const_tree t)
6580 {
6581 return (t != NULL_TREE
6582 && TREE_CODE (t) == INTEGER_CST
6583 && wi::fits_uhwi_p (wi::to_widest (t)));
6584 }
6585
6586 /* T is an INTEGER_CST whose numerical value (extended according to
6587 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
6588 HOST_WIDE_INT. */
6589
6590 HOST_WIDE_INT
6591 tree_to_shwi (const_tree t)
6592 {
6593 gcc_assert (tree_fits_shwi_p (t));
6594 return TREE_INT_CST_LOW (t);
6595 }
6596
6597 /* T is an INTEGER_CST whose numerical value (extended according to
6598 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
6599 HOST_WIDE_INT. */
6600
6601 unsigned HOST_WIDE_INT
6602 tree_to_uhwi (const_tree t)
6603 {
6604 gcc_assert (tree_fits_uhwi_p (t));
6605 return TREE_INT_CST_LOW (t);
6606 }
6607
6608 /* Return the most significant (sign) bit of T. */
6609
6610 int
6611 tree_int_cst_sign_bit (const_tree t)
6612 {
6613 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
6614
6615 return wi::extract_uhwi (t, bitno, 1);
6616 }
6617
6618 /* Return an indication of the sign of the integer constant T.
6619 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6620 Note that -1 will never be returned if T's type is unsigned. */
6621
6622 int
6623 tree_int_cst_sgn (const_tree t)
6624 {
6625 if (wi::eq_p (t, 0))
6626 return 0;
6627 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6628 return 1;
6629 else if (wi::neg_p (t))
6630 return -1;
6631 else
6632 return 1;
6633 }
6634
6635 /* Return the minimum number of bits needed to represent VALUE in a
6636 signed or unsigned type, UNSIGNEDP says which. */
6637
6638 unsigned int
6639 tree_int_cst_min_precision (tree value, signop sgn)
6640 {
6641 /* If the value is negative, compute its negative minus 1. The latter
6642 adjustment is because the absolute value of the largest negative value
6643 is one larger than the largest positive value. This is equivalent to
6644 a bit-wise negation, so use that operation instead. */
6645
6646 if (tree_int_cst_sgn (value) < 0)
6647 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6648
6649 /* Return the number of bits needed, taking into account the fact
6650 that we need one more bit for a signed than unsigned type.
6651 If value is 0 or -1, the minimum precision is 1 no matter
6652 whether unsignedp is true or false. */
6653
6654 if (integer_zerop (value))
6655 return 1;
6656 else
6657 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
6658 }
6659
6660 /* Return truthvalue of whether T1 is the same tree structure as T2.
6661 Return 1 if they are the same.
6662 Return 0 if they are understandably different.
6663 Return -1 if either contains tree structure not understood by
6664 this function. */
6665
6666 int
6667 simple_cst_equal (const_tree t1, const_tree t2)
6668 {
6669 enum tree_code code1, code2;
6670 int cmp;
6671 int i;
6672
6673 if (t1 == t2)
6674 return 1;
6675 if (t1 == 0 || t2 == 0)
6676 return 0;
6677
6678 code1 = TREE_CODE (t1);
6679 code2 = TREE_CODE (t2);
6680
6681 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6682 {
6683 if (CONVERT_EXPR_CODE_P (code2)
6684 || code2 == NON_LVALUE_EXPR)
6685 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6686 else
6687 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6688 }
6689
6690 else if (CONVERT_EXPR_CODE_P (code2)
6691 || code2 == NON_LVALUE_EXPR)
6692 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6693
6694 if (code1 != code2)
6695 return 0;
6696
6697 switch (code1)
6698 {
6699 case INTEGER_CST:
6700 return wi::to_widest (t1) == wi::to_widest (t2);
6701
6702 case REAL_CST:
6703 return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
6704
6705 case FIXED_CST:
6706 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6707
6708 case STRING_CST:
6709 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6710 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6711 TREE_STRING_LENGTH (t1)));
6712
6713 case CONSTRUCTOR:
6714 {
6715 unsigned HOST_WIDE_INT idx;
6716 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
6717 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
6718
6719 if (vec_safe_length (v1) != vec_safe_length (v2))
6720 return false;
6721
6722 for (idx = 0; idx < vec_safe_length (v1); ++idx)
6723 /* ??? Should we handle also fields here? */
6724 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
6725 return false;
6726 return true;
6727 }
6728
6729 case SAVE_EXPR:
6730 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6731
6732 case CALL_EXPR:
6733 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6734 if (cmp <= 0)
6735 return cmp;
6736 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6737 return 0;
6738 {
6739 const_tree arg1, arg2;
6740 const_call_expr_arg_iterator iter1, iter2;
6741 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6742 arg2 = first_const_call_expr_arg (t2, &iter2);
6743 arg1 && arg2;
6744 arg1 = next_const_call_expr_arg (&iter1),
6745 arg2 = next_const_call_expr_arg (&iter2))
6746 {
6747 cmp = simple_cst_equal (arg1, arg2);
6748 if (cmp <= 0)
6749 return cmp;
6750 }
6751 return arg1 == arg2;
6752 }
6753
6754 case TARGET_EXPR:
6755 /* Special case: if either target is an unallocated VAR_DECL,
6756 it means that it's going to be unified with whatever the
6757 TARGET_EXPR is really supposed to initialize, so treat it
6758 as being equivalent to anything. */
6759 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6760 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6761 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6762 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6763 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6764 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6765 cmp = 1;
6766 else
6767 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6768
6769 if (cmp <= 0)
6770 return cmp;
6771
6772 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6773
6774 case WITH_CLEANUP_EXPR:
6775 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6776 if (cmp <= 0)
6777 return cmp;
6778
6779 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6780
6781 case COMPONENT_REF:
6782 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6783 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6784
6785 return 0;
6786
6787 case VAR_DECL:
6788 case PARM_DECL:
6789 case CONST_DECL:
6790 case FUNCTION_DECL:
6791 return 0;
6792
6793 default:
6794 break;
6795 }
6796
6797 /* This general rule works for most tree codes. All exceptions should be
6798 handled above. If this is a language-specific tree code, we can't
6799 trust what might be in the operand, so say we don't know
6800 the situation. */
6801 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6802 return -1;
6803
6804 switch (TREE_CODE_CLASS (code1))
6805 {
6806 case tcc_unary:
6807 case tcc_binary:
6808 case tcc_comparison:
6809 case tcc_expression:
6810 case tcc_reference:
6811 case tcc_statement:
6812 cmp = 1;
6813 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6814 {
6815 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6816 if (cmp <= 0)
6817 return cmp;
6818 }
6819
6820 return cmp;
6821
6822 default:
6823 return -1;
6824 }
6825 }
6826
6827 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6828 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6829 than U, respectively. */
6830
6831 int
6832 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6833 {
6834 if (tree_int_cst_sgn (t) < 0)
6835 return -1;
6836 else if (!tree_fits_uhwi_p (t))
6837 return 1;
6838 else if (TREE_INT_CST_LOW (t) == u)
6839 return 0;
6840 else if (TREE_INT_CST_LOW (t) < u)
6841 return -1;
6842 else
6843 return 1;
6844 }
6845
6846 /* Return true if SIZE represents a constant size that is in bounds of
6847 what the middle-end and the backend accepts (covering not more than
6848 half of the address-space). */
6849
6850 bool
6851 valid_constant_size_p (const_tree size)
6852 {
6853 if (! tree_fits_uhwi_p (size)
6854 || TREE_OVERFLOW (size)
6855 || tree_int_cst_sign_bit (size) != 0)
6856 return false;
6857 return true;
6858 }
6859
6860 /* Return the precision of the type, or for a complex or vector type the
6861 precision of the type of its elements. */
6862
6863 unsigned int
6864 element_precision (const_tree type)
6865 {
6866 if (!TYPE_P (type))
6867 type = TREE_TYPE (type);
6868 enum tree_code code = TREE_CODE (type);
6869 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
6870 type = TREE_TYPE (type);
6871
6872 return TYPE_PRECISION (type);
6873 }
6874
6875 /* Return true if CODE represents an associative tree code. Otherwise
6876 return false. */
6877 bool
6878 associative_tree_code (enum tree_code code)
6879 {
6880 switch (code)
6881 {
6882 case BIT_IOR_EXPR:
6883 case BIT_AND_EXPR:
6884 case BIT_XOR_EXPR:
6885 case PLUS_EXPR:
6886 case MULT_EXPR:
6887 case MIN_EXPR:
6888 case MAX_EXPR:
6889 return true;
6890
6891 default:
6892 break;
6893 }
6894 return false;
6895 }
6896
6897 /* Return true if CODE represents a commutative tree code. Otherwise
6898 return false. */
6899 bool
6900 commutative_tree_code (enum tree_code code)
6901 {
6902 switch (code)
6903 {
6904 case PLUS_EXPR:
6905 case MULT_EXPR:
6906 case MULT_HIGHPART_EXPR:
6907 case MIN_EXPR:
6908 case MAX_EXPR:
6909 case BIT_IOR_EXPR:
6910 case BIT_XOR_EXPR:
6911 case BIT_AND_EXPR:
6912 case NE_EXPR:
6913 case EQ_EXPR:
6914 case UNORDERED_EXPR:
6915 case ORDERED_EXPR:
6916 case UNEQ_EXPR:
6917 case LTGT_EXPR:
6918 case TRUTH_AND_EXPR:
6919 case TRUTH_XOR_EXPR:
6920 case TRUTH_OR_EXPR:
6921 case WIDEN_MULT_EXPR:
6922 case VEC_WIDEN_MULT_HI_EXPR:
6923 case VEC_WIDEN_MULT_LO_EXPR:
6924 case VEC_WIDEN_MULT_EVEN_EXPR:
6925 case VEC_WIDEN_MULT_ODD_EXPR:
6926 return true;
6927
6928 default:
6929 break;
6930 }
6931 return false;
6932 }
6933
6934 /* Return true if CODE represents a ternary tree code for which the
6935 first two operands are commutative. Otherwise return false. */
6936 bool
6937 commutative_ternary_tree_code (enum tree_code code)
6938 {
6939 switch (code)
6940 {
6941 case WIDEN_MULT_PLUS_EXPR:
6942 case WIDEN_MULT_MINUS_EXPR:
6943 case DOT_PROD_EXPR:
6944 case FMA_EXPR:
6945 return true;
6946
6947 default:
6948 break;
6949 }
6950 return false;
6951 }
6952
6953 /* Returns true if CODE can overflow. */
6954
6955 bool
6956 operation_can_overflow (enum tree_code code)
6957 {
6958 switch (code)
6959 {
6960 case PLUS_EXPR:
6961 case MINUS_EXPR:
6962 case MULT_EXPR:
6963 case LSHIFT_EXPR:
6964 /* Can overflow in various ways. */
6965 return true;
6966 case TRUNC_DIV_EXPR:
6967 case EXACT_DIV_EXPR:
6968 case FLOOR_DIV_EXPR:
6969 case CEIL_DIV_EXPR:
6970 /* For INT_MIN / -1. */
6971 return true;
6972 case NEGATE_EXPR:
6973 case ABS_EXPR:
6974 /* For -INT_MIN. */
6975 return true;
6976 default:
6977 /* These operators cannot overflow. */
6978 return false;
6979 }
6980 }
6981
6982 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
6983 ftrapv doesn't generate trapping insns for CODE. */
6984
6985 bool
6986 operation_no_trapping_overflow (tree type, enum tree_code code)
6987 {
6988 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
6989
6990 /* We don't generate instructions that trap on overflow for complex or vector
6991 types. */
6992 if (!INTEGRAL_TYPE_P (type))
6993 return true;
6994
6995 if (!TYPE_OVERFLOW_TRAPS (type))
6996 return true;
6997
6998 switch (code)
6999 {
7000 case PLUS_EXPR:
7001 case MINUS_EXPR:
7002 case MULT_EXPR:
7003 case NEGATE_EXPR:
7004 case ABS_EXPR:
7005 /* These operators can overflow, and -ftrapv generates trapping code for
7006 these. */
7007 return false;
7008 case TRUNC_DIV_EXPR:
7009 case EXACT_DIV_EXPR:
7010 case FLOOR_DIV_EXPR:
7011 case CEIL_DIV_EXPR:
7012 case LSHIFT_EXPR:
7013 /* These operators can overflow, but -ftrapv does not generate trapping
7014 code for these. */
7015 return true;
7016 default:
7017 /* These operators cannot overflow. */
7018 return true;
7019 }
7020 }
7021
7022 namespace inchash
7023 {
7024
7025 /* Generate a hash value for an expression. This can be used iteratively
7026 by passing a previous result as the HSTATE argument.
7027
7028 This function is intended to produce the same hash for expressions which
7029 would compare equal using operand_equal_p. */
7030 void
7031 add_expr (const_tree t, inchash::hash &hstate, unsigned int flags)
7032 {
7033 int i;
7034 enum tree_code code;
7035 enum tree_code_class tclass;
7036
7037 if (t == NULL_TREE || t == error_mark_node)
7038 {
7039 hstate.merge_hash (0);
7040 return;
7041 }
7042
7043 if (!(flags & OEP_ADDRESS_OF))
7044 STRIP_NOPS (t);
7045
7046 code = TREE_CODE (t);
7047
7048 switch (code)
7049 {
7050 /* Alas, constants aren't shared, so we can't rely on pointer
7051 identity. */
7052 case VOID_CST:
7053 hstate.merge_hash (0);
7054 return;
7055 case INTEGER_CST:
7056 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7057 for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++)
7058 hstate.add_wide_int (TREE_INT_CST_ELT (t, i));
7059 return;
7060 case REAL_CST:
7061 {
7062 unsigned int val2;
7063 if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t))
7064 val2 = rvc_zero;
7065 else
7066 val2 = real_hash (TREE_REAL_CST_PTR (t));
7067 hstate.merge_hash (val2);
7068 return;
7069 }
7070 case FIXED_CST:
7071 {
7072 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7073 hstate.merge_hash (val2);
7074 return;
7075 }
7076 case STRING_CST:
7077 hstate.add ((const void *) TREE_STRING_POINTER (t),
7078 TREE_STRING_LENGTH (t));
7079 return;
7080 case COMPLEX_CST:
7081 inchash::add_expr (TREE_REALPART (t), hstate, flags);
7082 inchash::add_expr (TREE_IMAGPART (t), hstate, flags);
7083 return;
7084 case VECTOR_CST:
7085 {
7086 unsigned i;
7087 for (i = 0; i < VECTOR_CST_NELTS (t); ++i)
7088 inchash::add_expr (VECTOR_CST_ELT (t, i), hstate, flags);
7089 return;
7090 }
7091 case SSA_NAME:
7092 /* We can just compare by pointer. */
7093 hstate.add_wide_int (SSA_NAME_VERSION (t));
7094 return;
7095 case PLACEHOLDER_EXPR:
7096 /* The node itself doesn't matter. */
7097 return;
7098 case BLOCK:
7099 case OMP_CLAUSE:
7100 /* Ignore. */
7101 return;
7102 case TREE_LIST:
7103 /* A list of expressions, for a CALL_EXPR or as the elements of a
7104 VECTOR_CST. */
7105 for (; t; t = TREE_CHAIN (t))
7106 inchash::add_expr (TREE_VALUE (t), hstate, flags);
7107 return;
7108 case CONSTRUCTOR:
7109 {
7110 unsigned HOST_WIDE_INT idx;
7111 tree field, value;
7112 flags &= ~OEP_ADDRESS_OF;
7113 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7114 {
7115 inchash::add_expr (field, hstate, flags);
7116 inchash::add_expr (value, hstate, flags);
7117 }
7118 return;
7119 }
7120 case STATEMENT_LIST:
7121 {
7122 tree_stmt_iterator i;
7123 for (i = tsi_start (CONST_CAST_TREE (t));
7124 !tsi_end_p (i); tsi_next (&i))
7125 inchash::add_expr (tsi_stmt (i), hstate, flags);
7126 return;
7127 }
7128 case TREE_VEC:
7129 for (i = 0; i < TREE_VEC_LENGTH (t); ++i)
7130 inchash::add_expr (TREE_VEC_ELT (t, i), hstate, flags);
7131 return;
7132 case FUNCTION_DECL:
7133 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7134 Otherwise nodes that compare equal according to operand_equal_p might
7135 get different hash codes. However, don't do this for machine specific
7136 or front end builtins, since the function code is overloaded in those
7137 cases. */
7138 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7139 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7140 {
7141 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7142 code = TREE_CODE (t);
7143 }
7144 /* FALL THROUGH */
7145 default:
7146 tclass = TREE_CODE_CLASS (code);
7147
7148 if (tclass == tcc_declaration)
7149 {
7150 /* DECL's have a unique ID */
7151 hstate.add_wide_int (DECL_UID (t));
7152 }
7153 else if (tclass == tcc_comparison && !commutative_tree_code (code))
7154 {
7155 /* For comparisons that can be swapped, use the lower
7156 tree code. */
7157 enum tree_code ccode = swap_tree_comparison (code);
7158 if (code < ccode)
7159 ccode = code;
7160 hstate.add_object (ccode);
7161 inchash::add_expr (TREE_OPERAND (t, ccode != code), hstate, flags);
7162 inchash::add_expr (TREE_OPERAND (t, ccode == code), hstate, flags);
7163 }
7164 else if (CONVERT_EXPR_CODE_P (code))
7165 {
7166 /* NOP_EXPR and CONVERT_EXPR are considered equal by
7167 operand_equal_p. */
7168 enum tree_code ccode = NOP_EXPR;
7169 hstate.add_object (ccode);
7170
7171 /* Don't hash the type, that can lead to having nodes which
7172 compare equal according to operand_equal_p, but which
7173 have different hash codes. Make sure to include signedness
7174 in the hash computation. */
7175 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7176 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7177 }
7178 /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl. */
7179 else if (code == MEM_REF
7180 && (flags & OEP_ADDRESS_OF) != 0
7181 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
7182 && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
7183 && integer_zerop (TREE_OPERAND (t, 1)))
7184 inchash::add_expr (TREE_OPERAND (TREE_OPERAND (t, 0), 0),
7185 hstate, flags);
7186 /* Don't ICE on FE specific trees, or their arguments etc.
7187 during operand_equal_p hash verification. */
7188 else if (!IS_EXPR_CODE_CLASS (tclass))
7189 gcc_assert (flags & OEP_HASH_CHECK);
7190 else
7191 {
7192 unsigned int sflags = flags;
7193
7194 hstate.add_object (code);
7195
7196 switch (code)
7197 {
7198 case ADDR_EXPR:
7199 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7200 flags |= OEP_ADDRESS_OF;
7201 sflags = flags;
7202 break;
7203
7204 case INDIRECT_REF:
7205 case MEM_REF:
7206 case TARGET_MEM_REF:
7207 flags &= ~OEP_ADDRESS_OF;
7208 sflags = flags;
7209 break;
7210
7211 case ARRAY_REF:
7212 case ARRAY_RANGE_REF:
7213 case COMPONENT_REF:
7214 case BIT_FIELD_REF:
7215 sflags &= ~OEP_ADDRESS_OF;
7216 break;
7217
7218 case COND_EXPR:
7219 flags &= ~OEP_ADDRESS_OF;
7220 break;
7221
7222 case FMA_EXPR:
7223 case WIDEN_MULT_PLUS_EXPR:
7224 case WIDEN_MULT_MINUS_EXPR:
7225 {
7226 /* The multiplication operands are commutative. */
7227 inchash::hash one, two;
7228 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7229 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7230 hstate.add_commutative (one, two);
7231 inchash::add_expr (TREE_OPERAND (t, 2), two, flags);
7232 return;
7233 }
7234
7235 case CALL_EXPR:
7236 if (CALL_EXPR_FN (t) == NULL_TREE)
7237 hstate.add_int (CALL_EXPR_IFN (t));
7238 break;
7239
7240 case TARGET_EXPR:
7241 /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
7242 Usually different TARGET_EXPRs just should use
7243 different temporaries in their slots. */
7244 inchash::add_expr (TARGET_EXPR_SLOT (t), hstate, flags);
7245 return;
7246
7247 default:
7248 break;
7249 }
7250
7251 /* Don't hash the type, that can lead to having nodes which
7252 compare equal according to operand_equal_p, but which
7253 have different hash codes. */
7254 if (code == NON_LVALUE_EXPR)
7255 {
7256 /* Make sure to include signness in the hash computation. */
7257 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7258 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7259 }
7260
7261 else if (commutative_tree_code (code))
7262 {
7263 /* It's a commutative expression. We want to hash it the same
7264 however it appears. We do this by first hashing both operands
7265 and then rehashing based on the order of their independent
7266 hashes. */
7267 inchash::hash one, two;
7268 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7269 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7270 hstate.add_commutative (one, two);
7271 }
7272 else
7273 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7274 inchash::add_expr (TREE_OPERAND (t, i), hstate,
7275 i == 0 ? flags : sflags);
7276 }
7277 return;
7278 }
7279 }
7280
7281 }
7282
7283 /* Constructors for pointer, array and function types.
7284 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7285 constructed by language-dependent code, not here.) */
7286
7287 /* Construct, lay out and return the type of pointers to TO_TYPE with
7288 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7289 reference all of memory. If such a type has already been
7290 constructed, reuse it. */
7291
7292 tree
7293 build_pointer_type_for_mode (tree to_type, machine_mode mode,
7294 bool can_alias_all)
7295 {
7296 tree t;
7297 bool could_alias = can_alias_all;
7298
7299 if (to_type == error_mark_node)
7300 return error_mark_node;
7301
7302 /* If the pointed-to type has the may_alias attribute set, force
7303 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7304 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7305 can_alias_all = true;
7306
7307 /* In some cases, languages will have things that aren't a POINTER_TYPE
7308 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7309 In that case, return that type without regard to the rest of our
7310 operands.
7311
7312 ??? This is a kludge, but consistent with the way this function has
7313 always operated and there doesn't seem to be a good way to avoid this
7314 at the moment. */
7315 if (TYPE_POINTER_TO (to_type) != 0
7316 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7317 return TYPE_POINTER_TO (to_type);
7318
7319 /* First, if we already have a type for pointers to TO_TYPE and it's
7320 the proper mode, use it. */
7321 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7322 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7323 return t;
7324
7325 t = make_node (POINTER_TYPE);
7326
7327 TREE_TYPE (t) = to_type;
7328 SET_TYPE_MODE (t, mode);
7329 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7330 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7331 TYPE_POINTER_TO (to_type) = t;
7332
7333 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7334 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7335 SET_TYPE_STRUCTURAL_EQUALITY (t);
7336 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7337 TYPE_CANONICAL (t)
7338 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7339 mode, false);
7340
7341 /* Lay out the type. This function has many callers that are concerned
7342 with expression-construction, and this simplifies them all. */
7343 layout_type (t);
7344
7345 return t;
7346 }
7347
7348 /* By default build pointers in ptr_mode. */
7349
7350 tree
7351 build_pointer_type (tree to_type)
7352 {
7353 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7354 : TYPE_ADDR_SPACE (to_type);
7355 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7356 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7357 }
7358
7359 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7360
7361 tree
7362 build_reference_type_for_mode (tree to_type, machine_mode mode,
7363 bool can_alias_all)
7364 {
7365 tree t;
7366 bool could_alias = can_alias_all;
7367
7368 if (to_type == error_mark_node)
7369 return error_mark_node;
7370
7371 /* If the pointed-to type has the may_alias attribute set, force
7372 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7373 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7374 can_alias_all = true;
7375
7376 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7377 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7378 In that case, return that type without regard to the rest of our
7379 operands.
7380
7381 ??? This is a kludge, but consistent with the way this function has
7382 always operated and there doesn't seem to be a good way to avoid this
7383 at the moment. */
7384 if (TYPE_REFERENCE_TO (to_type) != 0
7385 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7386 return TYPE_REFERENCE_TO (to_type);
7387
7388 /* First, if we already have a type for pointers to TO_TYPE and it's
7389 the proper mode, use it. */
7390 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7391 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7392 return t;
7393
7394 t = make_node (REFERENCE_TYPE);
7395
7396 TREE_TYPE (t) = to_type;
7397 SET_TYPE_MODE (t, mode);
7398 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7399 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7400 TYPE_REFERENCE_TO (to_type) = t;
7401
7402 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7403 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7404 SET_TYPE_STRUCTURAL_EQUALITY (t);
7405 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7406 TYPE_CANONICAL (t)
7407 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7408 mode, false);
7409
7410 layout_type (t);
7411
7412 return t;
7413 }
7414
7415
7416 /* Build the node for the type of references-to-TO_TYPE by default
7417 in ptr_mode. */
7418
7419 tree
7420 build_reference_type (tree to_type)
7421 {
7422 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7423 : TYPE_ADDR_SPACE (to_type);
7424 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7425 return build_reference_type_for_mode (to_type, pointer_mode, false);
7426 }
7427
7428 #define MAX_INT_CACHED_PREC \
7429 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7430 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7431
7432 /* Builds a signed or unsigned integer type of precision PRECISION.
7433 Used for C bitfields whose precision does not match that of
7434 built-in target types. */
7435 tree
7436 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7437 int unsignedp)
7438 {
7439 tree itype, ret;
7440
7441 if (unsignedp)
7442 unsignedp = MAX_INT_CACHED_PREC + 1;
7443
7444 if (precision <= MAX_INT_CACHED_PREC)
7445 {
7446 itype = nonstandard_integer_type_cache[precision + unsignedp];
7447 if (itype)
7448 return itype;
7449 }
7450
7451 itype = make_node (INTEGER_TYPE);
7452 TYPE_PRECISION (itype) = precision;
7453
7454 if (unsignedp)
7455 fixup_unsigned_type (itype);
7456 else
7457 fixup_signed_type (itype);
7458
7459 ret = itype;
7460 if (tree_fits_uhwi_p (TYPE_MAX_VALUE (itype)))
7461 ret = type_hash_canon (tree_to_uhwi (TYPE_MAX_VALUE (itype)), itype);
7462 if (precision <= MAX_INT_CACHED_PREC)
7463 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7464
7465 return ret;
7466 }
7467
7468 #define MAX_BOOL_CACHED_PREC \
7469 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7470 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
7471
7472 /* Builds a boolean type of precision PRECISION.
7473 Used for boolean vectors to choose proper vector element size. */
7474 tree
7475 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
7476 {
7477 tree type;
7478
7479 if (precision <= MAX_BOOL_CACHED_PREC)
7480 {
7481 type = nonstandard_boolean_type_cache[precision];
7482 if (type)
7483 return type;
7484 }
7485
7486 type = make_node (BOOLEAN_TYPE);
7487 TYPE_PRECISION (type) = precision;
7488 fixup_signed_type (type);
7489
7490 if (precision <= MAX_INT_CACHED_PREC)
7491 nonstandard_boolean_type_cache[precision] = type;
7492
7493 return type;
7494 }
7495
7496 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7497 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7498 is true, reuse such a type that has already been constructed. */
7499
7500 static tree
7501 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7502 {
7503 tree itype = make_node (INTEGER_TYPE);
7504
7505 TREE_TYPE (itype) = type;
7506
7507 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7508 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7509
7510 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7511 SET_TYPE_MODE (itype, TYPE_MODE (type));
7512 TYPE_SIZE (itype) = TYPE_SIZE (type);
7513 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7514 SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
7515 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7516 SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
7517
7518 if (!shared)
7519 return itype;
7520
7521 if ((TYPE_MIN_VALUE (itype)
7522 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7523 || (TYPE_MAX_VALUE (itype)
7524 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7525 {
7526 /* Since we cannot reliably merge this type, we need to compare it using
7527 structural equality checks. */
7528 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7529 return itype;
7530 }
7531
7532 hashval_t hash = type_hash_canon_hash (itype);
7533 itype = type_hash_canon (hash, itype);
7534
7535 return itype;
7536 }
7537
7538 /* Wrapper around build_range_type_1 with SHARED set to true. */
7539
7540 tree
7541 build_range_type (tree type, tree lowval, tree highval)
7542 {
7543 return build_range_type_1 (type, lowval, highval, true);
7544 }
7545
7546 /* Wrapper around build_range_type_1 with SHARED set to false. */
7547
7548 tree
7549 build_nonshared_range_type (tree type, tree lowval, tree highval)
7550 {
7551 return build_range_type_1 (type, lowval, highval, false);
7552 }
7553
7554 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7555 MAXVAL should be the maximum value in the domain
7556 (one less than the length of the array).
7557
7558 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7559 We don't enforce this limit, that is up to caller (e.g. language front end).
7560 The limit exists because the result is a signed type and we don't handle
7561 sizes that use more than one HOST_WIDE_INT. */
7562
7563 tree
7564 build_index_type (tree maxval)
7565 {
7566 return build_range_type (sizetype, size_zero_node, maxval);
7567 }
7568
7569 /* Return true if the debug information for TYPE, a subtype, should be emitted
7570 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7571 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7572 debug info and doesn't reflect the source code. */
7573
7574 bool
7575 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7576 {
7577 tree base_type = TREE_TYPE (type), low, high;
7578
7579 /* Subrange types have a base type which is an integral type. */
7580 if (!INTEGRAL_TYPE_P (base_type))
7581 return false;
7582
7583 /* Get the real bounds of the subtype. */
7584 if (lang_hooks.types.get_subrange_bounds)
7585 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7586 else
7587 {
7588 low = TYPE_MIN_VALUE (type);
7589 high = TYPE_MAX_VALUE (type);
7590 }
7591
7592 /* If the type and its base type have the same representation and the same
7593 name, then the type is not a subrange but a copy of the base type. */
7594 if ((TREE_CODE (base_type) == INTEGER_TYPE
7595 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7596 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7597 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7598 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
7599 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
7600 return false;
7601
7602 if (lowval)
7603 *lowval = low;
7604 if (highval)
7605 *highval = high;
7606 return true;
7607 }
7608
7609 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7610 and number of elements specified by the range of values of INDEX_TYPE.
7611 If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
7612 If SHARED is true, reuse such a type that has already been constructed. */
7613
7614 static tree
7615 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
7616 bool shared)
7617 {
7618 tree t;
7619
7620 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7621 {
7622 error ("arrays of functions are not meaningful");
7623 elt_type = integer_type_node;
7624 }
7625
7626 t = make_node (ARRAY_TYPE);
7627 TREE_TYPE (t) = elt_type;
7628 TYPE_DOMAIN (t) = index_type;
7629 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7630 TYPE_TYPELESS_STORAGE (t) = typeless_storage;
7631 layout_type (t);
7632
7633 /* If the element type is incomplete at this point we get marked for
7634 structural equality. Do not record these types in the canonical
7635 type hashtable. */
7636 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7637 return t;
7638
7639 if (shared)
7640 {
7641 hashval_t hash = type_hash_canon_hash (t);
7642 t = type_hash_canon (hash, t);
7643 }
7644
7645 if (TYPE_CANONICAL (t) == t)
7646 {
7647 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7648 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
7649 || in_lto_p)
7650 SET_TYPE_STRUCTURAL_EQUALITY (t);
7651 else if (TYPE_CANONICAL (elt_type) != elt_type
7652 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7653 TYPE_CANONICAL (t)
7654 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7655 index_type
7656 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7657 typeless_storage, shared);
7658 }
7659
7660 return t;
7661 }
7662
7663 /* Wrapper around build_array_type_1 with SHARED set to true. */
7664
7665 tree
7666 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
7667 {
7668 return build_array_type_1 (elt_type, index_type, typeless_storage, true);
7669 }
7670
7671 /* Wrapper around build_array_type_1 with SHARED set to false. */
7672
7673 tree
7674 build_nonshared_array_type (tree elt_type, tree index_type)
7675 {
7676 return build_array_type_1 (elt_type, index_type, false, false);
7677 }
7678
7679 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7680 sizetype. */
7681
7682 tree
7683 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7684 {
7685 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7686 }
7687
7688 /* Recursively examines the array elements of TYPE, until a non-array
7689 element type is found. */
7690
7691 tree
7692 strip_array_types (tree type)
7693 {
7694 while (TREE_CODE (type) == ARRAY_TYPE)
7695 type = TREE_TYPE (type);
7696
7697 return type;
7698 }
7699
7700 /* Computes the canonical argument types from the argument type list
7701 ARGTYPES.
7702
7703 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7704 on entry to this function, or if any of the ARGTYPES are
7705 structural.
7706
7707 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7708 true on entry to this function, or if any of the ARGTYPES are
7709 non-canonical.
7710
7711 Returns a canonical argument list, which may be ARGTYPES when the
7712 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7713 true) or would not differ from ARGTYPES. */
7714
7715 static tree
7716 maybe_canonicalize_argtypes (tree argtypes,
7717 bool *any_structural_p,
7718 bool *any_noncanonical_p)
7719 {
7720 tree arg;
7721 bool any_noncanonical_argtypes_p = false;
7722
7723 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7724 {
7725 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7726 /* Fail gracefully by stating that the type is structural. */
7727 *any_structural_p = true;
7728 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7729 *any_structural_p = true;
7730 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7731 || TREE_PURPOSE (arg))
7732 /* If the argument has a default argument, we consider it
7733 non-canonical even though the type itself is canonical.
7734 That way, different variants of function and method types
7735 with default arguments will all point to the variant with
7736 no defaults as their canonical type. */
7737 any_noncanonical_argtypes_p = true;
7738 }
7739
7740 if (*any_structural_p)
7741 return argtypes;
7742
7743 if (any_noncanonical_argtypes_p)
7744 {
7745 /* Build the canonical list of argument types. */
7746 tree canon_argtypes = NULL_TREE;
7747 bool is_void = false;
7748
7749 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7750 {
7751 if (arg == void_list_node)
7752 is_void = true;
7753 else
7754 canon_argtypes = tree_cons (NULL_TREE,
7755 TYPE_CANONICAL (TREE_VALUE (arg)),
7756 canon_argtypes);
7757 }
7758
7759 canon_argtypes = nreverse (canon_argtypes);
7760 if (is_void)
7761 canon_argtypes = chainon (canon_argtypes, void_list_node);
7762
7763 /* There is a non-canonical type. */
7764 *any_noncanonical_p = true;
7765 return canon_argtypes;
7766 }
7767
7768 /* The canonical argument types are the same as ARGTYPES. */
7769 return argtypes;
7770 }
7771
7772 /* Construct, lay out and return
7773 the type of functions returning type VALUE_TYPE
7774 given arguments of types ARG_TYPES.
7775 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7776 are data type nodes for the arguments of the function.
7777 If such a type has already been constructed, reuse it. */
7778
7779 tree
7780 build_function_type (tree value_type, tree arg_types)
7781 {
7782 tree t;
7783 inchash::hash hstate;
7784 bool any_structural_p, any_noncanonical_p;
7785 tree canon_argtypes;
7786
7787 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7788 {
7789 error ("function return type cannot be function");
7790 value_type = integer_type_node;
7791 }
7792
7793 /* Make a node of the sort we want. */
7794 t = make_node (FUNCTION_TYPE);
7795 TREE_TYPE (t) = value_type;
7796 TYPE_ARG_TYPES (t) = arg_types;
7797
7798 /* If we already have such a type, use the old one. */
7799 hashval_t hash = type_hash_canon_hash (t);
7800 t = type_hash_canon (hash, t);
7801
7802 /* Set up the canonical type. */
7803 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7804 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7805 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7806 &any_structural_p,
7807 &any_noncanonical_p);
7808 if (any_structural_p)
7809 SET_TYPE_STRUCTURAL_EQUALITY (t);
7810 else if (any_noncanonical_p)
7811 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7812 canon_argtypes);
7813
7814 if (!COMPLETE_TYPE_P (t))
7815 layout_type (t);
7816 return t;
7817 }
7818
7819 /* Build a function type. The RETURN_TYPE is the type returned by the
7820 function. If VAARGS is set, no void_type_node is appended to the
7821 list. ARGP must be always be terminated be a NULL_TREE. */
7822
7823 static tree
7824 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7825 {
7826 tree t, args, last;
7827
7828 t = va_arg (argp, tree);
7829 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7830 args = tree_cons (NULL_TREE, t, args);
7831
7832 if (vaargs)
7833 {
7834 last = args;
7835 if (args != NULL_TREE)
7836 args = nreverse (args);
7837 gcc_assert (last != void_list_node);
7838 }
7839 else if (args == NULL_TREE)
7840 args = void_list_node;
7841 else
7842 {
7843 last = args;
7844 args = nreverse (args);
7845 TREE_CHAIN (last) = void_list_node;
7846 }
7847 args = build_function_type (return_type, args);
7848
7849 return args;
7850 }
7851
7852 /* Build a function type. The RETURN_TYPE is the type returned by the
7853 function. If additional arguments are provided, they are
7854 additional argument types. The list of argument types must always
7855 be terminated by NULL_TREE. */
7856
7857 tree
7858 build_function_type_list (tree return_type, ...)
7859 {
7860 tree args;
7861 va_list p;
7862
7863 va_start (p, return_type);
7864 args = build_function_type_list_1 (false, return_type, p);
7865 va_end (p);
7866 return args;
7867 }
7868
7869 /* Build a variable argument function type. The RETURN_TYPE is the
7870 type returned by the function. If additional arguments are provided,
7871 they are additional argument types. The list of argument types must
7872 always be terminated by NULL_TREE. */
7873
7874 tree
7875 build_varargs_function_type_list (tree return_type, ...)
7876 {
7877 tree args;
7878 va_list p;
7879
7880 va_start (p, return_type);
7881 args = build_function_type_list_1 (true, return_type, p);
7882 va_end (p);
7883
7884 return args;
7885 }
7886
7887 /* Build a function type. RETURN_TYPE is the type returned by the
7888 function; VAARGS indicates whether the function takes varargs. The
7889 function takes N named arguments, the types of which are provided in
7890 ARG_TYPES. */
7891
7892 static tree
7893 build_function_type_array_1 (bool vaargs, tree return_type, int n,
7894 tree *arg_types)
7895 {
7896 int i;
7897 tree t = vaargs ? NULL_TREE : void_list_node;
7898
7899 for (i = n - 1; i >= 0; i--)
7900 t = tree_cons (NULL_TREE, arg_types[i], t);
7901
7902 return build_function_type (return_type, t);
7903 }
7904
7905 /* Build a function type. RETURN_TYPE is the type returned by the
7906 function. The function takes N named arguments, the types of which
7907 are provided in ARG_TYPES. */
7908
7909 tree
7910 build_function_type_array (tree return_type, int n, tree *arg_types)
7911 {
7912 return build_function_type_array_1 (false, return_type, n, arg_types);
7913 }
7914
7915 /* Build a variable argument function type. RETURN_TYPE is the type
7916 returned by the function. The function takes N named arguments, the
7917 types of which are provided in ARG_TYPES. */
7918
7919 tree
7920 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
7921 {
7922 return build_function_type_array_1 (true, return_type, n, arg_types);
7923 }
7924
7925 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7926 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7927 for the method. An implicit additional parameter (of type
7928 pointer-to-BASETYPE) is added to the ARGTYPES. */
7929
7930 tree
7931 build_method_type_directly (tree basetype,
7932 tree rettype,
7933 tree argtypes)
7934 {
7935 tree t;
7936 tree ptype;
7937 bool any_structural_p, any_noncanonical_p;
7938 tree canon_argtypes;
7939
7940 /* Make a node of the sort we want. */
7941 t = make_node (METHOD_TYPE);
7942
7943 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7944 TREE_TYPE (t) = rettype;
7945 ptype = build_pointer_type (basetype);
7946
7947 /* The actual arglist for this function includes a "hidden" argument
7948 which is "this". Put it into the list of argument types. */
7949 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7950 TYPE_ARG_TYPES (t) = argtypes;
7951
7952 /* If we already have such a type, use the old one. */
7953 hashval_t hash = type_hash_canon_hash (t);
7954 t = type_hash_canon (hash, t);
7955
7956 /* Set up the canonical type. */
7957 any_structural_p
7958 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7959 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7960 any_noncanonical_p
7961 = (TYPE_CANONICAL (basetype) != basetype
7962 || TYPE_CANONICAL (rettype) != rettype);
7963 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7964 &any_structural_p,
7965 &any_noncanonical_p);
7966 if (any_structural_p)
7967 SET_TYPE_STRUCTURAL_EQUALITY (t);
7968 else if (any_noncanonical_p)
7969 TYPE_CANONICAL (t)
7970 = build_method_type_directly (TYPE_CANONICAL (basetype),
7971 TYPE_CANONICAL (rettype),
7972 canon_argtypes);
7973 if (!COMPLETE_TYPE_P (t))
7974 layout_type (t);
7975
7976 return t;
7977 }
7978
7979 /* Construct, lay out and return the type of methods belonging to class
7980 BASETYPE and whose arguments and values are described by TYPE.
7981 If that type exists already, reuse it.
7982 TYPE must be a FUNCTION_TYPE node. */
7983
7984 tree
7985 build_method_type (tree basetype, tree type)
7986 {
7987 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7988
7989 return build_method_type_directly (basetype,
7990 TREE_TYPE (type),
7991 TYPE_ARG_TYPES (type));
7992 }
7993
7994 /* Construct, lay out and return the type of offsets to a value
7995 of type TYPE, within an object of type BASETYPE.
7996 If a suitable offset type exists already, reuse it. */
7997
7998 tree
7999 build_offset_type (tree basetype, tree type)
8000 {
8001 tree t;
8002
8003 /* Make a node of the sort we want. */
8004 t = make_node (OFFSET_TYPE);
8005
8006 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8007 TREE_TYPE (t) = type;
8008
8009 /* If we already have such a type, use the old one. */
8010 hashval_t hash = type_hash_canon_hash (t);
8011 t = type_hash_canon (hash, t);
8012
8013 if (!COMPLETE_TYPE_P (t))
8014 layout_type (t);
8015
8016 if (TYPE_CANONICAL (t) == t)
8017 {
8018 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8019 || TYPE_STRUCTURAL_EQUALITY_P (type))
8020 SET_TYPE_STRUCTURAL_EQUALITY (t);
8021 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8022 || TYPE_CANONICAL (type) != type)
8023 TYPE_CANONICAL (t)
8024 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8025 TYPE_CANONICAL (type));
8026 }
8027
8028 return t;
8029 }
8030
8031 /* Create a complex type whose components are COMPONENT_TYPE.
8032
8033 If NAMED is true, the type is given a TYPE_NAME. We do not always
8034 do so because this creates a DECL node and thus make the DECL_UIDs
8035 dependent on the type canonicalization hashtable, which is GC-ed,
8036 so the DECL_UIDs would not be stable wrt garbage collection. */
8037
8038 tree
8039 build_complex_type (tree component_type, bool named)
8040 {
8041 tree t;
8042
8043 gcc_assert (INTEGRAL_TYPE_P (component_type)
8044 || SCALAR_FLOAT_TYPE_P (component_type)
8045 || FIXED_POINT_TYPE_P (component_type));
8046
8047 /* Make a node of the sort we want. */
8048 t = make_node (COMPLEX_TYPE);
8049
8050 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
8051
8052 /* If we already have such a type, use the old one. */
8053 hashval_t hash = type_hash_canon_hash (t);
8054 t = type_hash_canon (hash, t);
8055
8056 if (!COMPLETE_TYPE_P (t))
8057 layout_type (t);
8058
8059 if (TYPE_CANONICAL (t) == t)
8060 {
8061 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
8062 SET_TYPE_STRUCTURAL_EQUALITY (t);
8063 else if (TYPE_CANONICAL (component_type) != component_type)
8064 TYPE_CANONICAL (t)
8065 = build_complex_type (TYPE_CANONICAL (component_type), named);
8066 }
8067
8068 /* We need to create a name, since complex is a fundamental type. */
8069 if (!TYPE_NAME (t) && named)
8070 {
8071 const char *name;
8072 if (component_type == char_type_node)
8073 name = "complex char";
8074 else if (component_type == signed_char_type_node)
8075 name = "complex signed char";
8076 else if (component_type == unsigned_char_type_node)
8077 name = "complex unsigned char";
8078 else if (component_type == short_integer_type_node)
8079 name = "complex short int";
8080 else if (component_type == short_unsigned_type_node)
8081 name = "complex short unsigned int";
8082 else if (component_type == integer_type_node)
8083 name = "complex int";
8084 else if (component_type == unsigned_type_node)
8085 name = "complex unsigned int";
8086 else if (component_type == long_integer_type_node)
8087 name = "complex long int";
8088 else if (component_type == long_unsigned_type_node)
8089 name = "complex long unsigned int";
8090 else if (component_type == long_long_integer_type_node)
8091 name = "complex long long int";
8092 else if (component_type == long_long_unsigned_type_node)
8093 name = "complex long long unsigned int";
8094 else
8095 name = 0;
8096
8097 if (name != 0)
8098 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8099 get_identifier (name), t);
8100 }
8101
8102 return build_qualified_type (t, TYPE_QUALS (component_type));
8103 }
8104
8105 /* If TYPE is a real or complex floating-point type and the target
8106 does not directly support arithmetic on TYPE then return the wider
8107 type to be used for arithmetic on TYPE. Otherwise, return
8108 NULL_TREE. */
8109
8110 tree
8111 excess_precision_type (tree type)
8112 {
8113 /* The target can give two different responses to the question of
8114 which excess precision mode it would like depending on whether we
8115 are in -fexcess-precision=standard or -fexcess-precision=fast. */
8116
8117 enum excess_precision_type requested_type
8118 = (flag_excess_precision == EXCESS_PRECISION_FAST
8119 ? EXCESS_PRECISION_TYPE_FAST
8120 : EXCESS_PRECISION_TYPE_STANDARD);
8121
8122 enum flt_eval_method target_flt_eval_method
8123 = targetm.c.excess_precision (requested_type);
8124
8125 /* The target should not ask for unpredictable float evaluation (though
8126 it might advertise that implicitly the evaluation is unpredictable,
8127 but we don't care about that here, it will have been reported
8128 elsewhere). If it does ask for unpredictable evaluation, we have
8129 nothing to do here. */
8130 gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
8131
8132 /* Nothing to do. The target has asked for all types we know about
8133 to be computed with their native precision and range. */
8134 if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
8135 return NULL_TREE;
8136
8137 /* The target will promote this type in a target-dependent way, so excess
8138 precision ought to leave it alone. */
8139 if (targetm.promoted_type (type) != NULL_TREE)
8140 return NULL_TREE;
8141
8142 machine_mode float16_type_mode = (float16_type_node
8143 ? TYPE_MODE (float16_type_node)
8144 : VOIDmode);
8145 machine_mode float_type_mode = TYPE_MODE (float_type_node);
8146 machine_mode double_type_mode = TYPE_MODE (double_type_node);
8147
8148 switch (TREE_CODE (type))
8149 {
8150 case REAL_TYPE:
8151 {
8152 machine_mode type_mode = TYPE_MODE (type);
8153 switch (target_flt_eval_method)
8154 {
8155 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8156 if (type_mode == float16_type_mode)
8157 return float_type_node;
8158 break;
8159 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8160 if (type_mode == float16_type_mode
8161 || type_mode == float_type_mode)
8162 return double_type_node;
8163 break;
8164 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8165 if (type_mode == float16_type_mode
8166 || type_mode == float_type_mode
8167 || type_mode == double_type_mode)
8168 return long_double_type_node;
8169 break;
8170 default:
8171 gcc_unreachable ();
8172 }
8173 break;
8174 }
8175 case COMPLEX_TYPE:
8176 {
8177 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8178 return NULL_TREE;
8179 machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
8180 switch (target_flt_eval_method)
8181 {
8182 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8183 if (type_mode == float16_type_mode)
8184 return complex_float_type_node;
8185 break;
8186 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8187 if (type_mode == float16_type_mode
8188 || type_mode == float_type_mode)
8189 return complex_double_type_node;
8190 break;
8191 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8192 if (type_mode == float16_type_mode
8193 || type_mode == float_type_mode
8194 || type_mode == double_type_mode)
8195 return complex_long_double_type_node;
8196 break;
8197 default:
8198 gcc_unreachable ();
8199 }
8200 break;
8201 }
8202 default:
8203 break;
8204 }
8205
8206 return NULL_TREE;
8207 }
8208 \f
8209 /* Return OP, stripped of any conversions to wider types as much as is safe.
8210 Converting the value back to OP's type makes a value equivalent to OP.
8211
8212 If FOR_TYPE is nonzero, we return a value which, if converted to
8213 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8214
8215 OP must have integer, real or enumeral type. Pointers are not allowed!
8216
8217 There are some cases where the obvious value we could return
8218 would regenerate to OP if converted to OP's type,
8219 but would not extend like OP to wider types.
8220 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8221 For example, if OP is (unsigned short)(signed char)-1,
8222 we avoid returning (signed char)-1 if FOR_TYPE is int,
8223 even though extending that to an unsigned short would regenerate OP,
8224 since the result of extending (signed char)-1 to (int)
8225 is different from (int) OP. */
8226
8227 tree
8228 get_unwidened (tree op, tree for_type)
8229 {
8230 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8231 tree type = TREE_TYPE (op);
8232 unsigned final_prec
8233 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8234 int uns
8235 = (for_type != 0 && for_type != type
8236 && final_prec > TYPE_PRECISION (type)
8237 && TYPE_UNSIGNED (type));
8238 tree win = op;
8239
8240 while (CONVERT_EXPR_P (op))
8241 {
8242 int bitschange;
8243
8244 /* TYPE_PRECISION on vector types has different meaning
8245 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8246 so avoid them here. */
8247 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8248 break;
8249
8250 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8251 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8252
8253 /* Truncations are many-one so cannot be removed.
8254 Unless we are later going to truncate down even farther. */
8255 if (bitschange < 0
8256 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8257 break;
8258
8259 /* See what's inside this conversion. If we decide to strip it,
8260 we will set WIN. */
8261 op = TREE_OPERAND (op, 0);
8262
8263 /* If we have not stripped any zero-extensions (uns is 0),
8264 we can strip any kind of extension.
8265 If we have previously stripped a zero-extension,
8266 only zero-extensions can safely be stripped.
8267 Any extension can be stripped if the bits it would produce
8268 are all going to be discarded later by truncating to FOR_TYPE. */
8269
8270 if (bitschange > 0)
8271 {
8272 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8273 win = op;
8274 /* TYPE_UNSIGNED says whether this is a zero-extension.
8275 Let's avoid computing it if it does not affect WIN
8276 and if UNS will not be needed again. */
8277 if ((uns
8278 || CONVERT_EXPR_P (op))
8279 && TYPE_UNSIGNED (TREE_TYPE (op)))
8280 {
8281 uns = 1;
8282 win = op;
8283 }
8284 }
8285 }
8286
8287 /* If we finally reach a constant see if it fits in sth smaller and
8288 in that case convert it. */
8289 if (TREE_CODE (win) == INTEGER_CST)
8290 {
8291 tree wtype = TREE_TYPE (win);
8292 unsigned prec = wi::min_precision (win, TYPE_SIGN (wtype));
8293 if (for_type)
8294 prec = MAX (prec, final_prec);
8295 if (prec < TYPE_PRECISION (wtype))
8296 {
8297 tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
8298 if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
8299 win = fold_convert (t, win);
8300 }
8301 }
8302
8303 return win;
8304 }
8305 \f
8306 /* Return OP or a simpler expression for a narrower value
8307 which can be sign-extended or zero-extended to give back OP.
8308 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8309 or 0 if the value should be sign-extended. */
8310
8311 tree
8312 get_narrower (tree op, int *unsignedp_ptr)
8313 {
8314 int uns = 0;
8315 int first = 1;
8316 tree win = op;
8317 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8318
8319 while (TREE_CODE (op) == NOP_EXPR)
8320 {
8321 int bitschange
8322 = (TYPE_PRECISION (TREE_TYPE (op))
8323 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8324
8325 /* Truncations are many-one so cannot be removed. */
8326 if (bitschange < 0)
8327 break;
8328
8329 /* See what's inside this conversion. If we decide to strip it,
8330 we will set WIN. */
8331
8332 if (bitschange > 0)
8333 {
8334 op = TREE_OPERAND (op, 0);
8335 /* An extension: the outermost one can be stripped,
8336 but remember whether it is zero or sign extension. */
8337 if (first)
8338 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8339 /* Otherwise, if a sign extension has been stripped,
8340 only sign extensions can now be stripped;
8341 if a zero extension has been stripped, only zero-extensions. */
8342 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8343 break;
8344 first = 0;
8345 }
8346 else /* bitschange == 0 */
8347 {
8348 /* A change in nominal type can always be stripped, but we must
8349 preserve the unsignedness. */
8350 if (first)
8351 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8352 first = 0;
8353 op = TREE_OPERAND (op, 0);
8354 /* Keep trying to narrow, but don't assign op to win if it
8355 would turn an integral type into something else. */
8356 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8357 continue;
8358 }
8359
8360 win = op;
8361 }
8362
8363 if (TREE_CODE (op) == COMPONENT_REF
8364 /* Since type_for_size always gives an integer type. */
8365 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8366 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8367 /* Ensure field is laid out already. */
8368 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8369 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8370 {
8371 unsigned HOST_WIDE_INT innerprec
8372 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8373 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8374 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8375 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8376
8377 /* We can get this structure field in a narrower type that fits it,
8378 but the resulting extension to its nominal type (a fullword type)
8379 must satisfy the same conditions as for other extensions.
8380
8381 Do this only for fields that are aligned (not bit-fields),
8382 because when bit-field insns will be used there is no
8383 advantage in doing this. */
8384
8385 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8386 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8387 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8388 && type != 0)
8389 {
8390 if (first)
8391 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8392 win = fold_convert (type, op);
8393 }
8394 }
8395
8396 *unsignedp_ptr = uns;
8397 return win;
8398 }
8399 \f
8400 /* Return true if integer constant C has a value that is permissible
8401 for TYPE, an integral type. */
8402
8403 bool
8404 int_fits_type_p (const_tree c, const_tree type)
8405 {
8406 tree type_low_bound, type_high_bound;
8407 bool ok_for_low_bound, ok_for_high_bound;
8408 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8409
8410 /* Non-standard boolean types can have arbitrary precision but various
8411 transformations assume that they can only take values 0 and +/-1. */
8412 if (TREE_CODE (type) == BOOLEAN_TYPE)
8413 return wi::fits_to_boolean_p (c, type);
8414
8415 retry:
8416 type_low_bound = TYPE_MIN_VALUE (type);
8417 type_high_bound = TYPE_MAX_VALUE (type);
8418
8419 /* If at least one bound of the type is a constant integer, we can check
8420 ourselves and maybe make a decision. If no such decision is possible, but
8421 this type is a subtype, try checking against that. Otherwise, use
8422 fits_to_tree_p, which checks against the precision.
8423
8424 Compute the status for each possibly constant bound, and return if we see
8425 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8426 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8427 for "constant known to fit". */
8428
8429 /* Check if c >= type_low_bound. */
8430 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8431 {
8432 if (tree_int_cst_lt (c, type_low_bound))
8433 return false;
8434 ok_for_low_bound = true;
8435 }
8436 else
8437 ok_for_low_bound = false;
8438
8439 /* Check if c <= type_high_bound. */
8440 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8441 {
8442 if (tree_int_cst_lt (type_high_bound, c))
8443 return false;
8444 ok_for_high_bound = true;
8445 }
8446 else
8447 ok_for_high_bound = false;
8448
8449 /* If the constant fits both bounds, the result is known. */
8450 if (ok_for_low_bound && ok_for_high_bound)
8451 return true;
8452
8453 /* Perform some generic filtering which may allow making a decision
8454 even if the bounds are not constant. First, negative integers
8455 never fit in unsigned types, */
8456 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (c))
8457 return false;
8458
8459 /* Second, narrower types always fit in wider ones. */
8460 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8461 return true;
8462
8463 /* Third, unsigned integers with top bit set never fit signed types. */
8464 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
8465 {
8466 int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
8467 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
8468 {
8469 /* When a tree_cst is converted to a wide-int, the precision
8470 is taken from the type. However, if the precision of the
8471 mode underneath the type is smaller than that, it is
8472 possible that the value will not fit. The test below
8473 fails if any bit is set between the sign bit of the
8474 underlying mode and the top bit of the type. */
8475 if (wi::ne_p (wi::zext (c, prec - 1), c))
8476 return false;
8477 }
8478 else if (wi::neg_p (c))
8479 return false;
8480 }
8481
8482 /* If we haven't been able to decide at this point, there nothing more we
8483 can check ourselves here. Look at the base type if we have one and it
8484 has the same precision. */
8485 if (TREE_CODE (type) == INTEGER_TYPE
8486 && TREE_TYPE (type) != 0
8487 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8488 {
8489 type = TREE_TYPE (type);
8490 goto retry;
8491 }
8492
8493 /* Or to fits_to_tree_p, if nothing else. */
8494 return wi::fits_to_tree_p (c, type);
8495 }
8496
8497 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8498 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8499 represented (assuming two's-complement arithmetic) within the bit
8500 precision of the type are returned instead. */
8501
8502 void
8503 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8504 {
8505 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8506 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8507 wi::to_mpz (TYPE_MIN_VALUE (type), min, TYPE_SIGN (type));
8508 else
8509 {
8510 if (TYPE_UNSIGNED (type))
8511 mpz_set_ui (min, 0);
8512 else
8513 {
8514 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
8515 wi::to_mpz (mn, min, SIGNED);
8516 }
8517 }
8518
8519 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8520 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8521 wi::to_mpz (TYPE_MAX_VALUE (type), max, TYPE_SIGN (type));
8522 else
8523 {
8524 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
8525 wi::to_mpz (mn, max, TYPE_SIGN (type));
8526 }
8527 }
8528
8529 /* Return true if VAR is an automatic variable defined in function FN. */
8530
8531 bool
8532 auto_var_in_fn_p (const_tree var, const_tree fn)
8533 {
8534 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8535 && ((((VAR_P (var) && ! DECL_EXTERNAL (var))
8536 || TREE_CODE (var) == PARM_DECL)
8537 && ! TREE_STATIC (var))
8538 || TREE_CODE (var) == LABEL_DECL
8539 || TREE_CODE (var) == RESULT_DECL));
8540 }
8541
8542 /* Subprogram of following function. Called by walk_tree.
8543
8544 Return *TP if it is an automatic variable or parameter of the
8545 function passed in as DATA. */
8546
8547 static tree
8548 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8549 {
8550 tree fn = (tree) data;
8551
8552 if (TYPE_P (*tp))
8553 *walk_subtrees = 0;
8554
8555 else if (DECL_P (*tp)
8556 && auto_var_in_fn_p (*tp, fn))
8557 return *tp;
8558
8559 return NULL_TREE;
8560 }
8561
8562 /* Returns true if T is, contains, or refers to a type with variable
8563 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8564 arguments, but not the return type. If FN is nonzero, only return
8565 true if a modifier of the type or position of FN is a variable or
8566 parameter inside FN.
8567
8568 This concept is more general than that of C99 'variably modified types':
8569 in C99, a struct type is never variably modified because a VLA may not
8570 appear as a structure member. However, in GNU C code like:
8571
8572 struct S { int i[f()]; };
8573
8574 is valid, and other languages may define similar constructs. */
8575
8576 bool
8577 variably_modified_type_p (tree type, tree fn)
8578 {
8579 tree t;
8580
8581 /* Test if T is either variable (if FN is zero) or an expression containing
8582 a variable in FN. If TYPE isn't gimplified, return true also if
8583 gimplify_one_sizepos would gimplify the expression into a local
8584 variable. */
8585 #define RETURN_TRUE_IF_VAR(T) \
8586 do { tree _t = (T); \
8587 if (_t != NULL_TREE \
8588 && _t != error_mark_node \
8589 && TREE_CODE (_t) != INTEGER_CST \
8590 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8591 && (!fn \
8592 || (!TYPE_SIZES_GIMPLIFIED (type) \
8593 && !is_gimple_sizepos (_t)) \
8594 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8595 return true; } while (0)
8596
8597 if (type == error_mark_node)
8598 return false;
8599
8600 /* If TYPE itself has variable size, it is variably modified. */
8601 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8602 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8603
8604 switch (TREE_CODE (type))
8605 {
8606 case POINTER_TYPE:
8607 case REFERENCE_TYPE:
8608 case VECTOR_TYPE:
8609 /* Ada can have pointer types refering to themselves indirectly. */
8610 if (TREE_VISITED (type))
8611 return false;
8612 TREE_VISITED (type) = true;
8613 if (variably_modified_type_p (TREE_TYPE (type), fn))
8614 {
8615 TREE_VISITED (type) = false;
8616 return true;
8617 }
8618 TREE_VISITED (type) = false;
8619 break;
8620
8621 case FUNCTION_TYPE:
8622 case METHOD_TYPE:
8623 /* If TYPE is a function type, it is variably modified if the
8624 return type is variably modified. */
8625 if (variably_modified_type_p (TREE_TYPE (type), fn))
8626 return true;
8627 break;
8628
8629 case INTEGER_TYPE:
8630 case REAL_TYPE:
8631 case FIXED_POINT_TYPE:
8632 case ENUMERAL_TYPE:
8633 case BOOLEAN_TYPE:
8634 /* Scalar types are variably modified if their end points
8635 aren't constant. */
8636 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8637 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8638 break;
8639
8640 case RECORD_TYPE:
8641 case UNION_TYPE:
8642 case QUAL_UNION_TYPE:
8643 /* We can't see if any of the fields are variably-modified by the
8644 definition we normally use, since that would produce infinite
8645 recursion via pointers. */
8646 /* This is variably modified if some field's type is. */
8647 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8648 if (TREE_CODE (t) == FIELD_DECL)
8649 {
8650 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8651 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8652 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8653
8654 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8655 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8656 }
8657 break;
8658
8659 case ARRAY_TYPE:
8660 /* Do not call ourselves to avoid infinite recursion. This is
8661 variably modified if the element type is. */
8662 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8663 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8664 break;
8665
8666 default:
8667 break;
8668 }
8669
8670 /* The current language may have other cases to check, but in general,
8671 all other types are not variably modified. */
8672 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8673
8674 #undef RETURN_TRUE_IF_VAR
8675 }
8676
8677 /* Given a DECL or TYPE, return the scope in which it was declared, or
8678 NULL_TREE if there is no containing scope. */
8679
8680 tree
8681 get_containing_scope (const_tree t)
8682 {
8683 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8684 }
8685
8686 /* Return the innermost context enclosing DECL that is
8687 a FUNCTION_DECL, or zero if none. */
8688
8689 tree
8690 decl_function_context (const_tree decl)
8691 {
8692 tree context;
8693
8694 if (TREE_CODE (decl) == ERROR_MARK)
8695 return 0;
8696
8697 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8698 where we look up the function at runtime. Such functions always take
8699 a first argument of type 'pointer to real context'.
8700
8701 C++ should really be fixed to use DECL_CONTEXT for the real context,
8702 and use something else for the "virtual context". */
8703 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8704 context
8705 = TYPE_MAIN_VARIANT
8706 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8707 else
8708 context = DECL_CONTEXT (decl);
8709
8710 while (context && TREE_CODE (context) != FUNCTION_DECL)
8711 {
8712 if (TREE_CODE (context) == BLOCK)
8713 context = BLOCK_SUPERCONTEXT (context);
8714 else
8715 context = get_containing_scope (context);
8716 }
8717
8718 return context;
8719 }
8720
8721 /* Return the innermost context enclosing DECL that is
8722 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8723 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8724
8725 tree
8726 decl_type_context (const_tree decl)
8727 {
8728 tree context = DECL_CONTEXT (decl);
8729
8730 while (context)
8731 switch (TREE_CODE (context))
8732 {
8733 case NAMESPACE_DECL:
8734 case TRANSLATION_UNIT_DECL:
8735 return NULL_TREE;
8736
8737 case RECORD_TYPE:
8738 case UNION_TYPE:
8739 case QUAL_UNION_TYPE:
8740 return context;
8741
8742 case TYPE_DECL:
8743 case FUNCTION_DECL:
8744 context = DECL_CONTEXT (context);
8745 break;
8746
8747 case BLOCK:
8748 context = BLOCK_SUPERCONTEXT (context);
8749 break;
8750
8751 default:
8752 gcc_unreachable ();
8753 }
8754
8755 return NULL_TREE;
8756 }
8757
8758 /* CALL is a CALL_EXPR. Return the declaration for the function
8759 called, or NULL_TREE if the called function cannot be
8760 determined. */
8761
8762 tree
8763 get_callee_fndecl (const_tree call)
8764 {
8765 tree addr;
8766
8767 if (call == error_mark_node)
8768 return error_mark_node;
8769
8770 /* It's invalid to call this function with anything but a
8771 CALL_EXPR. */
8772 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8773
8774 /* The first operand to the CALL is the address of the function
8775 called. */
8776 addr = CALL_EXPR_FN (call);
8777
8778 /* If there is no function, return early. */
8779 if (addr == NULL_TREE)
8780 return NULL_TREE;
8781
8782 STRIP_NOPS (addr);
8783
8784 /* If this is a readonly function pointer, extract its initial value. */
8785 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8786 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8787 && DECL_INITIAL (addr))
8788 addr = DECL_INITIAL (addr);
8789
8790 /* If the address is just `&f' for some function `f', then we know
8791 that `f' is being called. */
8792 if (TREE_CODE (addr) == ADDR_EXPR
8793 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8794 return TREE_OPERAND (addr, 0);
8795
8796 /* We couldn't figure out what was being called. */
8797 return NULL_TREE;
8798 }
8799
8800 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
8801 return the associated function code, otherwise return CFN_LAST. */
8802
8803 combined_fn
8804 get_call_combined_fn (const_tree call)
8805 {
8806 /* It's invalid to call this function with anything but a CALL_EXPR. */
8807 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8808
8809 if (!CALL_EXPR_FN (call))
8810 return as_combined_fn (CALL_EXPR_IFN (call));
8811
8812 tree fndecl = get_callee_fndecl (call);
8813 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
8814 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
8815
8816 return CFN_LAST;
8817 }
8818
8819 #define TREE_MEM_USAGE_SPACES 40
8820
8821 /* Print debugging information about tree nodes generated during the compile,
8822 and any language-specific information. */
8823
8824 void
8825 dump_tree_statistics (void)
8826 {
8827 if (GATHER_STATISTICS)
8828 {
8829 int i;
8830 int total_nodes, total_bytes;
8831 fprintf (stderr, "\nKind Nodes Bytes\n");
8832 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
8833 total_nodes = total_bytes = 0;
8834 for (i = 0; i < (int) all_kinds; i++)
8835 {
8836 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8837 tree_node_counts[i], tree_node_sizes[i]);
8838 total_nodes += tree_node_counts[i];
8839 total_bytes += tree_node_sizes[i];
8840 }
8841 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
8842 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8843 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
8844 fprintf (stderr, "Code Nodes\n");
8845 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
8846 for (i = 0; i < (int) MAX_TREE_CODES; i++)
8847 fprintf (stderr, "%-32s %7d\n", get_tree_code_name ((enum tree_code) i),
8848 tree_code_counts[i]);
8849 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
8850 fprintf (stderr, "\n");
8851 ssanames_print_statistics ();
8852 fprintf (stderr, "\n");
8853 phinodes_print_statistics ();
8854 fprintf (stderr, "\n");
8855 }
8856 else
8857 fprintf (stderr, "(No per-node statistics)\n");
8858
8859 print_type_hash_statistics ();
8860 print_debug_expr_statistics ();
8861 print_value_expr_statistics ();
8862 lang_hooks.print_statistics ();
8863 }
8864 \f
8865 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8866
8867 /* Generate a crc32 of the low BYTES bytes of VALUE. */
8868
8869 unsigned
8870 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
8871 {
8872 /* This relies on the raw feedback's top 4 bits being zero. */
8873 #define FEEDBACK(X) ((X) * 0x04c11db7)
8874 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
8875 ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
8876 static const unsigned syndromes[16] =
8877 {
8878 SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
8879 SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
8880 SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
8881 SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
8882 };
8883 #undef FEEDBACK
8884 #undef SYNDROME
8885
8886 value <<= (32 - bytes * 8);
8887 for (unsigned ix = bytes * 2; ix--; value <<= 4)
8888 {
8889 unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
8890
8891 chksum = (chksum << 4) ^ feedback;
8892 }
8893
8894 return chksum;
8895 }
8896
8897 /* Generate a crc32 of a string. */
8898
8899 unsigned
8900 crc32_string (unsigned chksum, const char *string)
8901 {
8902 do
8903 chksum = crc32_byte (chksum, *string);
8904 while (*string++);
8905 return chksum;
8906 }
8907
8908 /* P is a string that will be used in a symbol. Mask out any characters
8909 that are not valid in that context. */
8910
8911 void
8912 clean_symbol_name (char *p)
8913 {
8914 for (; *p; p++)
8915 if (! (ISALNUM (*p)
8916 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8917 || *p == '$'
8918 #endif
8919 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8920 || *p == '.'
8921 #endif
8922 ))
8923 *p = '_';
8924 }
8925
8926 /* For anonymous aggregate types, we need some sort of name to
8927 hold on to. In practice, this should not appear, but it should
8928 not be harmful if it does. */
8929 bool
8930 anon_aggrname_p(const_tree id_node)
8931 {
8932 #ifndef NO_DOT_IN_LABEL
8933 return (IDENTIFIER_POINTER (id_node)[0] == '.'
8934 && IDENTIFIER_POINTER (id_node)[1] == '_');
8935 #else /* NO_DOT_IN_LABEL */
8936 #ifndef NO_DOLLAR_IN_LABEL
8937 return (IDENTIFIER_POINTER (id_node)[0] == '$' \
8938 && IDENTIFIER_POINTER (id_node)[1] == '_');
8939 #else /* NO_DOLLAR_IN_LABEL */
8940 #define ANON_AGGRNAME_PREFIX "__anon_"
8941 return (!strncmp (IDENTIFIER_POINTER (id_node), ANON_AGGRNAME_PREFIX,
8942 sizeof (ANON_AGGRNAME_PREFIX) - 1));
8943 #endif /* NO_DOLLAR_IN_LABEL */
8944 #endif /* NO_DOT_IN_LABEL */
8945 }
8946
8947 /* Return a format for an anonymous aggregate name. */
8948 const char *
8949 anon_aggrname_format()
8950 {
8951 #ifndef NO_DOT_IN_LABEL
8952 return "._%d";
8953 #else /* NO_DOT_IN_LABEL */
8954 #ifndef NO_DOLLAR_IN_LABEL
8955 return "$_%d";
8956 #else /* NO_DOLLAR_IN_LABEL */
8957 return "__anon_%d";
8958 #endif /* NO_DOLLAR_IN_LABEL */
8959 #endif /* NO_DOT_IN_LABEL */
8960 }
8961
8962 /* Generate a name for a special-purpose function.
8963 The generated name may need to be unique across the whole link.
8964 Changes to this function may also require corresponding changes to
8965 xstrdup_mask_random.
8966 TYPE is some string to identify the purpose of this function to the
8967 linker or collect2; it must start with an uppercase letter,
8968 one of:
8969 I - for constructors
8970 D - for destructors
8971 N - for C++ anonymous namespaces
8972 F - for DWARF unwind frame information. */
8973
8974 tree
8975 get_file_function_name (const char *type)
8976 {
8977 char *buf;
8978 const char *p;
8979 char *q;
8980
8981 /* If we already have a name we know to be unique, just use that. */
8982 if (first_global_object_name)
8983 p = q = ASTRDUP (first_global_object_name);
8984 /* If the target is handling the constructors/destructors, they
8985 will be local to this file and the name is only necessary for
8986 debugging purposes.
8987 We also assign sub_I and sub_D sufixes to constructors called from
8988 the global static constructors. These are always local. */
8989 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8990 || (strncmp (type, "sub_", 4) == 0
8991 && (type[4] == 'I' || type[4] == 'D')))
8992 {
8993 const char *file = main_input_filename;
8994 if (! file)
8995 file = LOCATION_FILE (input_location);
8996 /* Just use the file's basename, because the full pathname
8997 might be quite long. */
8998 p = q = ASTRDUP (lbasename (file));
8999 }
9000 else
9001 {
9002 /* Otherwise, the name must be unique across the entire link.
9003 We don't have anything that we know to be unique to this translation
9004 unit, so use what we do have and throw in some randomness. */
9005 unsigned len;
9006 const char *name = weak_global_object_name;
9007 const char *file = main_input_filename;
9008
9009 if (! name)
9010 name = "";
9011 if (! file)
9012 file = LOCATION_FILE (input_location);
9013
9014 len = strlen (file);
9015 q = (char *) alloca (9 + 19 + len + 1);
9016 memcpy (q, file, len + 1);
9017
9018 snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9019 crc32_string (0, name), get_random_seed (false));
9020
9021 p = q;
9022 }
9023
9024 clean_symbol_name (q);
9025 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9026 + strlen (type));
9027
9028 /* Set up the name of the file-level functions we may need.
9029 Use a global object (which is already required to be unique over
9030 the program) rather than the file name (which imposes extra
9031 constraints). */
9032 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9033
9034 return get_identifier (buf);
9035 }
9036 \f
9037 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9038
9039 /* Complain that the tree code of NODE does not match the expected 0
9040 terminated list of trailing codes. The trailing code list can be
9041 empty, for a more vague error message. FILE, LINE, and FUNCTION
9042 are of the caller. */
9043
9044 void
9045 tree_check_failed (const_tree node, const char *file,
9046 int line, const char *function, ...)
9047 {
9048 va_list args;
9049 const char *buffer;
9050 unsigned length = 0;
9051 enum tree_code code;
9052
9053 va_start (args, function);
9054 while ((code = (enum tree_code) va_arg (args, int)))
9055 length += 4 + strlen (get_tree_code_name (code));
9056 va_end (args);
9057 if (length)
9058 {
9059 char *tmp;
9060 va_start (args, function);
9061 length += strlen ("expected ");
9062 buffer = tmp = (char *) alloca (length);
9063 length = 0;
9064 while ((code = (enum tree_code) va_arg (args, int)))
9065 {
9066 const char *prefix = length ? " or " : "expected ";
9067
9068 strcpy (tmp + length, prefix);
9069 length += strlen (prefix);
9070 strcpy (tmp + length, get_tree_code_name (code));
9071 length += strlen (get_tree_code_name (code));
9072 }
9073 va_end (args);
9074 }
9075 else
9076 buffer = "unexpected node";
9077
9078 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9079 buffer, get_tree_code_name (TREE_CODE (node)),
9080 function, trim_filename (file), line);
9081 }
9082
9083 /* Complain that the tree code of NODE does match the expected 0
9084 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9085 the caller. */
9086
9087 void
9088 tree_not_check_failed (const_tree node, const char *file,
9089 int line, const char *function, ...)
9090 {
9091 va_list args;
9092 char *buffer;
9093 unsigned length = 0;
9094 enum tree_code code;
9095
9096 va_start (args, function);
9097 while ((code = (enum tree_code) va_arg (args, int)))
9098 length += 4 + strlen (get_tree_code_name (code));
9099 va_end (args);
9100 va_start (args, function);
9101 buffer = (char *) alloca (length);
9102 length = 0;
9103 while ((code = (enum tree_code) va_arg (args, int)))
9104 {
9105 if (length)
9106 {
9107 strcpy (buffer + length, " or ");
9108 length += 4;
9109 }
9110 strcpy (buffer + length, get_tree_code_name (code));
9111 length += strlen (get_tree_code_name (code));
9112 }
9113 va_end (args);
9114
9115 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9116 buffer, get_tree_code_name (TREE_CODE (node)),
9117 function, trim_filename (file), line);
9118 }
9119
9120 /* Similar to tree_check_failed, except that we check for a class of tree
9121 code, given in CL. */
9122
9123 void
9124 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9125 const char *file, int line, const char *function)
9126 {
9127 internal_error
9128 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9129 TREE_CODE_CLASS_STRING (cl),
9130 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9131 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9132 }
9133
9134 /* Similar to tree_check_failed, except that instead of specifying a
9135 dozen codes, use the knowledge that they're all sequential. */
9136
9137 void
9138 tree_range_check_failed (const_tree node, const char *file, int line,
9139 const char *function, enum tree_code c1,
9140 enum tree_code c2)
9141 {
9142 char *buffer;
9143 unsigned length = 0;
9144 unsigned int c;
9145
9146 for (c = c1; c <= c2; ++c)
9147 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9148
9149 length += strlen ("expected ");
9150 buffer = (char *) alloca (length);
9151 length = 0;
9152
9153 for (c = c1; c <= c2; ++c)
9154 {
9155 const char *prefix = length ? " or " : "expected ";
9156
9157 strcpy (buffer + length, prefix);
9158 length += strlen (prefix);
9159 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9160 length += strlen (get_tree_code_name ((enum tree_code) c));
9161 }
9162
9163 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9164 buffer, get_tree_code_name (TREE_CODE (node)),
9165 function, trim_filename (file), line);
9166 }
9167
9168
9169 /* Similar to tree_check_failed, except that we check that a tree does
9170 not have the specified code, given in CL. */
9171
9172 void
9173 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9174 const char *file, int line, const char *function)
9175 {
9176 internal_error
9177 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9178 TREE_CODE_CLASS_STRING (cl),
9179 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9180 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9181 }
9182
9183
9184 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9185
9186 void
9187 omp_clause_check_failed (const_tree node, const char *file, int line,
9188 const char *function, enum omp_clause_code code)
9189 {
9190 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9191 omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9192 function, trim_filename (file), line);
9193 }
9194
9195
9196 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9197
9198 void
9199 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9200 const char *function, enum omp_clause_code c1,
9201 enum omp_clause_code c2)
9202 {
9203 char *buffer;
9204 unsigned length = 0;
9205 unsigned int c;
9206
9207 for (c = c1; c <= c2; ++c)
9208 length += 4 + strlen (omp_clause_code_name[c]);
9209
9210 length += strlen ("expected ");
9211 buffer = (char *) alloca (length);
9212 length = 0;
9213
9214 for (c = c1; c <= c2; ++c)
9215 {
9216 const char *prefix = length ? " or " : "expected ";
9217
9218 strcpy (buffer + length, prefix);
9219 length += strlen (prefix);
9220 strcpy (buffer + length, omp_clause_code_name[c]);
9221 length += strlen (omp_clause_code_name[c]);
9222 }
9223
9224 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9225 buffer, omp_clause_code_name[TREE_CODE (node)],
9226 function, trim_filename (file), line);
9227 }
9228
9229
9230 #undef DEFTREESTRUCT
9231 #define DEFTREESTRUCT(VAL, NAME) NAME,
9232
9233 static const char *ts_enum_names[] = {
9234 #include "treestruct.def"
9235 };
9236 #undef DEFTREESTRUCT
9237
9238 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9239
9240 /* Similar to tree_class_check_failed, except that we check for
9241 whether CODE contains the tree structure identified by EN. */
9242
9243 void
9244 tree_contains_struct_check_failed (const_tree node,
9245 const enum tree_node_structure_enum en,
9246 const char *file, int line,
9247 const char *function)
9248 {
9249 internal_error
9250 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9251 TS_ENUM_NAME (en),
9252 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9253 }
9254
9255
9256 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9257 (dynamically sized) vector. */
9258
9259 void
9260 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9261 const char *function)
9262 {
9263 internal_error
9264 ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
9265 idx + 1, len, function, trim_filename (file), line);
9266 }
9267
9268 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9269 (dynamically sized) vector. */
9270
9271 void
9272 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9273 const char *function)
9274 {
9275 internal_error
9276 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9277 idx + 1, len, function, trim_filename (file), line);
9278 }
9279
9280 /* Similar to above, except that the check is for the bounds of the operand
9281 vector of an expression node EXP. */
9282
9283 void
9284 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9285 int line, const char *function)
9286 {
9287 enum tree_code code = TREE_CODE (exp);
9288 internal_error
9289 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9290 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9291 function, trim_filename (file), line);
9292 }
9293
9294 /* Similar to above, except that the check is for the number of
9295 operands of an OMP_CLAUSE node. */
9296
9297 void
9298 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9299 int line, const char *function)
9300 {
9301 internal_error
9302 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9303 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9304 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9305 trim_filename (file), line);
9306 }
9307 #endif /* ENABLE_TREE_CHECKING */
9308 \f
9309 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9310 and mapped to the machine mode MODE. Initialize its fields and build
9311 the information necessary for debugging output. */
9312
9313 static tree
9314 make_vector_type (tree innertype, int nunits, machine_mode mode)
9315 {
9316 tree t;
9317 tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
9318
9319 t = make_node (VECTOR_TYPE);
9320 TREE_TYPE (t) = mv_innertype;
9321 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9322 SET_TYPE_MODE (t, mode);
9323
9324 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
9325 SET_TYPE_STRUCTURAL_EQUALITY (t);
9326 else if ((TYPE_CANONICAL (mv_innertype) != innertype
9327 || mode != VOIDmode)
9328 && !VECTOR_BOOLEAN_TYPE_P (t))
9329 TYPE_CANONICAL (t)
9330 = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
9331
9332 layout_type (t);
9333
9334 hashval_t hash = type_hash_canon_hash (t);
9335 t = type_hash_canon (hash, t);
9336
9337 /* We have built a main variant, based on the main variant of the
9338 inner type. Use it to build the variant we return. */
9339 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9340 && TREE_TYPE (t) != innertype)
9341 return build_type_attribute_qual_variant (t,
9342 TYPE_ATTRIBUTES (innertype),
9343 TYPE_QUALS (innertype));
9344
9345 return t;
9346 }
9347
9348 static tree
9349 make_or_reuse_type (unsigned size, int unsignedp)
9350 {
9351 int i;
9352
9353 if (size == INT_TYPE_SIZE)
9354 return unsignedp ? unsigned_type_node : integer_type_node;
9355 if (size == CHAR_TYPE_SIZE)
9356 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9357 if (size == SHORT_TYPE_SIZE)
9358 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9359 if (size == LONG_TYPE_SIZE)
9360 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9361 if (size == LONG_LONG_TYPE_SIZE)
9362 return (unsignedp ? long_long_unsigned_type_node
9363 : long_long_integer_type_node);
9364
9365 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9366 if (size == int_n_data[i].bitsize
9367 && int_n_enabled_p[i])
9368 return (unsignedp ? int_n_trees[i].unsigned_type
9369 : int_n_trees[i].signed_type);
9370
9371 if (unsignedp)
9372 return make_unsigned_type (size);
9373 else
9374 return make_signed_type (size);
9375 }
9376
9377 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9378
9379 static tree
9380 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9381 {
9382 if (satp)
9383 {
9384 if (size == SHORT_FRACT_TYPE_SIZE)
9385 return unsignedp ? sat_unsigned_short_fract_type_node
9386 : sat_short_fract_type_node;
9387 if (size == FRACT_TYPE_SIZE)
9388 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9389 if (size == LONG_FRACT_TYPE_SIZE)
9390 return unsignedp ? sat_unsigned_long_fract_type_node
9391 : sat_long_fract_type_node;
9392 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9393 return unsignedp ? sat_unsigned_long_long_fract_type_node
9394 : sat_long_long_fract_type_node;
9395 }
9396 else
9397 {
9398 if (size == SHORT_FRACT_TYPE_SIZE)
9399 return unsignedp ? unsigned_short_fract_type_node
9400 : short_fract_type_node;
9401 if (size == FRACT_TYPE_SIZE)
9402 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9403 if (size == LONG_FRACT_TYPE_SIZE)
9404 return unsignedp ? unsigned_long_fract_type_node
9405 : long_fract_type_node;
9406 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9407 return unsignedp ? unsigned_long_long_fract_type_node
9408 : long_long_fract_type_node;
9409 }
9410
9411 return make_fract_type (size, unsignedp, satp);
9412 }
9413
9414 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9415
9416 static tree
9417 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9418 {
9419 if (satp)
9420 {
9421 if (size == SHORT_ACCUM_TYPE_SIZE)
9422 return unsignedp ? sat_unsigned_short_accum_type_node
9423 : sat_short_accum_type_node;
9424 if (size == ACCUM_TYPE_SIZE)
9425 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9426 if (size == LONG_ACCUM_TYPE_SIZE)
9427 return unsignedp ? sat_unsigned_long_accum_type_node
9428 : sat_long_accum_type_node;
9429 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9430 return unsignedp ? sat_unsigned_long_long_accum_type_node
9431 : sat_long_long_accum_type_node;
9432 }
9433 else
9434 {
9435 if (size == SHORT_ACCUM_TYPE_SIZE)
9436 return unsignedp ? unsigned_short_accum_type_node
9437 : short_accum_type_node;
9438 if (size == ACCUM_TYPE_SIZE)
9439 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9440 if (size == LONG_ACCUM_TYPE_SIZE)
9441 return unsignedp ? unsigned_long_accum_type_node
9442 : long_accum_type_node;
9443 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9444 return unsignedp ? unsigned_long_long_accum_type_node
9445 : long_long_accum_type_node;
9446 }
9447
9448 return make_accum_type (size, unsignedp, satp);
9449 }
9450
9451
9452 /* Create an atomic variant node for TYPE. This routine is called
9453 during initialization of data types to create the 5 basic atomic
9454 types. The generic build_variant_type function requires these to
9455 already be set up in order to function properly, so cannot be
9456 called from there. If ALIGN is non-zero, then ensure alignment is
9457 overridden to this value. */
9458
9459 static tree
9460 build_atomic_base (tree type, unsigned int align)
9461 {
9462 tree t;
9463
9464 /* Make sure its not already registered. */
9465 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
9466 return t;
9467
9468 t = build_variant_type_copy (type);
9469 set_type_quals (t, TYPE_QUAL_ATOMIC);
9470
9471 if (align)
9472 SET_TYPE_ALIGN (t, align);
9473
9474 return t;
9475 }
9476
9477 /* Information about the _FloatN and _FloatNx types. This must be in
9478 the same order as the corresponding TI_* enum values. */
9479 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
9480 {
9481 { 16, false },
9482 { 32, false },
9483 { 64, false },
9484 { 128, false },
9485 { 32, true },
9486 { 64, true },
9487 { 128, true },
9488 };
9489
9490
9491 /* Create nodes for all integer types (and error_mark_node) using the sizes
9492 of C datatypes. SIGNED_CHAR specifies whether char is signed. */
9493
9494 void
9495 build_common_tree_nodes (bool signed_char)
9496 {
9497 int i;
9498
9499 error_mark_node = make_node (ERROR_MARK);
9500 TREE_TYPE (error_mark_node) = error_mark_node;
9501
9502 initialize_sizetypes ();
9503
9504 /* Define both `signed char' and `unsigned char'. */
9505 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9506 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9507 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9508 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9509
9510 /* Define `char', which is like either `signed char' or `unsigned char'
9511 but not the same as either. */
9512 char_type_node
9513 = (signed_char
9514 ? make_signed_type (CHAR_TYPE_SIZE)
9515 : make_unsigned_type (CHAR_TYPE_SIZE));
9516 TYPE_STRING_FLAG (char_type_node) = 1;
9517
9518 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9519 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9520 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9521 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9522 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9523 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9524 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9525 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9526
9527 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9528 {
9529 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
9530 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
9531 TYPE_SIZE (int_n_trees[i].signed_type) = bitsize_int (int_n_data[i].bitsize);
9532 TYPE_SIZE (int_n_trees[i].unsigned_type) = bitsize_int (int_n_data[i].bitsize);
9533
9534 if (int_n_data[i].bitsize > LONG_LONG_TYPE_SIZE
9535 && int_n_enabled_p[i])
9536 {
9537 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
9538 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
9539 }
9540 }
9541
9542 /* Define a boolean type. This type only represents boolean values but
9543 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
9544 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9545 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9546 TYPE_PRECISION (boolean_type_node) = 1;
9547 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9548
9549 /* Define what type to use for size_t. */
9550 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9551 size_type_node = unsigned_type_node;
9552 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9553 size_type_node = long_unsigned_type_node;
9554 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9555 size_type_node = long_long_unsigned_type_node;
9556 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9557 size_type_node = short_unsigned_type_node;
9558 else
9559 {
9560 int i;
9561
9562 size_type_node = NULL_TREE;
9563 for (i = 0; i < NUM_INT_N_ENTS; i++)
9564 if (int_n_enabled_p[i])
9565 {
9566 char name[50];
9567 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
9568
9569 if (strcmp (name, SIZE_TYPE) == 0)
9570 {
9571 size_type_node = int_n_trees[i].unsigned_type;
9572 }
9573 }
9574 if (size_type_node == NULL_TREE)
9575 gcc_unreachable ();
9576 }
9577
9578 /* Define what type to use for ptrdiff_t. */
9579 if (strcmp (PTRDIFF_TYPE, "int") == 0)
9580 ptrdiff_type_node = integer_type_node;
9581 else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
9582 ptrdiff_type_node = long_integer_type_node;
9583 else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
9584 ptrdiff_type_node = long_long_integer_type_node;
9585 else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
9586 ptrdiff_type_node = short_integer_type_node;
9587 else
9588 {
9589 ptrdiff_type_node = NULL_TREE;
9590 for (int i = 0; i < NUM_INT_N_ENTS; i++)
9591 if (int_n_enabled_p[i])
9592 {
9593 char name[50];
9594 sprintf (name, "__int%d", int_n_data[i].bitsize);
9595 if (strcmp (name, PTRDIFF_TYPE) == 0)
9596 ptrdiff_type_node = int_n_trees[i].signed_type;
9597 }
9598 if (ptrdiff_type_node == NULL_TREE)
9599 gcc_unreachable ();
9600 }
9601
9602 /* Fill in the rest of the sized types. Reuse existing type nodes
9603 when possible. */
9604 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9605 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9606 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9607 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9608 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9609
9610 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9611 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9612 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9613 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9614 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9615
9616 /* Don't call build_qualified type for atomics. That routine does
9617 special processing for atomics, and until they are initialized
9618 it's better not to make that call.
9619
9620 Check to see if there is a target override for atomic types. */
9621
9622 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
9623 targetm.atomic_align_for_mode (QImode));
9624 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
9625 targetm.atomic_align_for_mode (HImode));
9626 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
9627 targetm.atomic_align_for_mode (SImode));
9628 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
9629 targetm.atomic_align_for_mode (DImode));
9630 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
9631 targetm.atomic_align_for_mode (TImode));
9632
9633 access_public_node = get_identifier ("public");
9634 access_protected_node = get_identifier ("protected");
9635 access_private_node = get_identifier ("private");
9636
9637 /* Define these next since types below may used them. */
9638 integer_zero_node = build_int_cst (integer_type_node, 0);
9639 integer_one_node = build_int_cst (integer_type_node, 1);
9640 integer_three_node = build_int_cst (integer_type_node, 3);
9641 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9642
9643 size_zero_node = size_int (0);
9644 size_one_node = size_int (1);
9645 bitsize_zero_node = bitsize_int (0);
9646 bitsize_one_node = bitsize_int (1);
9647 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9648
9649 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9650 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9651
9652 void_type_node = make_node (VOID_TYPE);
9653 layout_type (void_type_node);
9654
9655 pointer_bounds_type_node = targetm.chkp_bound_type ();
9656
9657 /* We are not going to have real types in C with less than byte alignment,
9658 so we might as well not have any types that claim to have it. */
9659 SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
9660 TYPE_USER_ALIGN (void_type_node) = 0;
9661
9662 void_node = make_node (VOID_CST);
9663 TREE_TYPE (void_node) = void_type_node;
9664
9665 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9666 layout_type (TREE_TYPE (null_pointer_node));
9667
9668 ptr_type_node = build_pointer_type (void_type_node);
9669 const_ptr_type_node
9670 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9671 for (unsigned i = 0;
9672 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
9673 ++i)
9674 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
9675
9676 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
9677
9678 float_type_node = make_node (REAL_TYPE);
9679 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9680 layout_type (float_type_node);
9681
9682 double_type_node = make_node (REAL_TYPE);
9683 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9684 layout_type (double_type_node);
9685
9686 long_double_type_node = make_node (REAL_TYPE);
9687 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9688 layout_type (long_double_type_node);
9689
9690 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
9691 {
9692 int n = floatn_nx_types[i].n;
9693 bool extended = floatn_nx_types[i].extended;
9694 scalar_float_mode mode;
9695 if (!targetm.floatn_mode (n, extended).exists (&mode))
9696 continue;
9697 int precision = GET_MODE_PRECISION (mode);
9698 /* Work around the rs6000 KFmode having precision 113 not
9699 128. */
9700 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
9701 gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
9702 int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
9703 if (!extended)
9704 gcc_assert (min_precision == n);
9705 if (precision < min_precision)
9706 precision = min_precision;
9707 FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
9708 TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
9709 layout_type (FLOATN_NX_TYPE_NODE (i));
9710 SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
9711 }
9712
9713 float_ptr_type_node = build_pointer_type (float_type_node);
9714 double_ptr_type_node = build_pointer_type (double_type_node);
9715 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9716 integer_ptr_type_node = build_pointer_type (integer_type_node);
9717
9718 /* Fixed size integer types. */
9719 uint16_type_node = make_or_reuse_type (16, 1);
9720 uint32_type_node = make_or_reuse_type (32, 1);
9721 uint64_type_node = make_or_reuse_type (64, 1);
9722
9723 /* Decimal float types. */
9724 dfloat32_type_node = make_node (REAL_TYPE);
9725 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9726 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9727 layout_type (dfloat32_type_node);
9728 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9729
9730 dfloat64_type_node = make_node (REAL_TYPE);
9731 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9732 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9733 layout_type (dfloat64_type_node);
9734 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9735
9736 dfloat128_type_node = make_node (REAL_TYPE);
9737 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9738 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9739 layout_type (dfloat128_type_node);
9740 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9741
9742 complex_integer_type_node = build_complex_type (integer_type_node, true);
9743 complex_float_type_node = build_complex_type (float_type_node, true);
9744 complex_double_type_node = build_complex_type (double_type_node, true);
9745 complex_long_double_type_node = build_complex_type (long_double_type_node,
9746 true);
9747
9748 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
9749 {
9750 if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
9751 COMPLEX_FLOATN_NX_TYPE_NODE (i)
9752 = build_complex_type (FLOATN_NX_TYPE_NODE (i));
9753 }
9754
9755 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9756 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9757 sat_ ## KIND ## _type_node = \
9758 make_sat_signed_ ## KIND ## _type (SIZE); \
9759 sat_unsigned_ ## KIND ## _type_node = \
9760 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9761 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9762 unsigned_ ## KIND ## _type_node = \
9763 make_unsigned_ ## KIND ## _type (SIZE);
9764
9765 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9766 sat_ ## WIDTH ## KIND ## _type_node = \
9767 make_sat_signed_ ## KIND ## _type (SIZE); \
9768 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9769 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9770 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9771 unsigned_ ## WIDTH ## KIND ## _type_node = \
9772 make_unsigned_ ## KIND ## _type (SIZE);
9773
9774 /* Make fixed-point type nodes based on four different widths. */
9775 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9776 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9777 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9778 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9779 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9780
9781 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9782 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9783 NAME ## _type_node = \
9784 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9785 u ## NAME ## _type_node = \
9786 make_or_reuse_unsigned_ ## KIND ## _type \
9787 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9788 sat_ ## NAME ## _type_node = \
9789 make_or_reuse_sat_signed_ ## KIND ## _type \
9790 (GET_MODE_BITSIZE (MODE ## mode)); \
9791 sat_u ## NAME ## _type_node = \
9792 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9793 (GET_MODE_BITSIZE (U ## MODE ## mode));
9794
9795 /* Fixed-point type and mode nodes. */
9796 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9797 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9798 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9799 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9800 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9801 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9802 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9803 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9804 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9805 MAKE_FIXED_MODE_NODE (accum, da, DA)
9806 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9807
9808 {
9809 tree t = targetm.build_builtin_va_list ();
9810
9811 /* Many back-ends define record types without setting TYPE_NAME.
9812 If we copied the record type here, we'd keep the original
9813 record type without a name. This breaks name mangling. So,
9814 don't copy record types and let c_common_nodes_and_builtins()
9815 declare the type to be __builtin_va_list. */
9816 if (TREE_CODE (t) != RECORD_TYPE)
9817 t = build_variant_type_copy (t);
9818
9819 va_list_type_node = t;
9820 }
9821 }
9822
9823 /* Modify DECL for given flags.
9824 TM_PURE attribute is set only on types, so the function will modify
9825 DECL's type when ECF_TM_PURE is used. */
9826
9827 void
9828 set_call_expr_flags (tree decl, int flags)
9829 {
9830 if (flags & ECF_NOTHROW)
9831 TREE_NOTHROW (decl) = 1;
9832 if (flags & ECF_CONST)
9833 TREE_READONLY (decl) = 1;
9834 if (flags & ECF_PURE)
9835 DECL_PURE_P (decl) = 1;
9836 if (flags & ECF_LOOPING_CONST_OR_PURE)
9837 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9838 if (flags & ECF_NOVOPS)
9839 DECL_IS_NOVOPS (decl) = 1;
9840 if (flags & ECF_NORETURN)
9841 TREE_THIS_VOLATILE (decl) = 1;
9842 if (flags & ECF_MALLOC)
9843 DECL_IS_MALLOC (decl) = 1;
9844 if (flags & ECF_RETURNS_TWICE)
9845 DECL_IS_RETURNS_TWICE (decl) = 1;
9846 if (flags & ECF_LEAF)
9847 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9848 NULL, DECL_ATTRIBUTES (decl));
9849 if (flags & ECF_COLD)
9850 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
9851 NULL, DECL_ATTRIBUTES (decl));
9852 if (flags & ECF_RET1)
9853 DECL_ATTRIBUTES (decl)
9854 = tree_cons (get_identifier ("fn spec"),
9855 build_tree_list (NULL_TREE, build_string (1, "1")),
9856 DECL_ATTRIBUTES (decl));
9857 if ((flags & ECF_TM_PURE) && flag_tm)
9858 apply_tm_attr (decl, get_identifier ("transaction_pure"));
9859 /* Looping const or pure is implied by noreturn.
9860 There is currently no way to declare looping const or looping pure alone. */
9861 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
9862 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
9863 }
9864
9865
9866 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9867
9868 static void
9869 local_define_builtin (const char *name, tree type, enum built_in_function code,
9870 const char *library_name, int ecf_flags)
9871 {
9872 tree decl;
9873
9874 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9875 library_name, NULL_TREE);
9876 set_call_expr_flags (decl, ecf_flags);
9877
9878 set_builtin_decl (code, decl, true);
9879 }
9880
9881 /* Call this function after instantiating all builtins that the language
9882 front end cares about. This will build the rest of the builtins
9883 and internal functions that are relied upon by the tree optimizers and
9884 the middle-end. */
9885
9886 void
9887 build_common_builtin_nodes (void)
9888 {
9889 tree tmp, ftype;
9890 int ecf_flags;
9891
9892 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
9893 || !builtin_decl_explicit_p (BUILT_IN_ABORT))
9894 {
9895 ftype = build_function_type (void_type_node, void_list_node);
9896 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
9897 local_define_builtin ("__builtin_unreachable", ftype,
9898 BUILT_IN_UNREACHABLE,
9899 "__builtin_unreachable",
9900 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
9901 | ECF_CONST | ECF_COLD);
9902 if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
9903 local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
9904 "abort",
9905 ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
9906 }
9907
9908 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
9909 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9910 {
9911 ftype = build_function_type_list (ptr_type_node,
9912 ptr_type_node, const_ptr_type_node,
9913 size_type_node, NULL_TREE);
9914
9915 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
9916 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9917 "memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
9918 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9919 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9920 "memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
9921 }
9922
9923 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
9924 {
9925 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9926 const_ptr_type_node, size_type_node,
9927 NULL_TREE);
9928 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9929 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9930 }
9931
9932 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
9933 {
9934 ftype = build_function_type_list (ptr_type_node,
9935 ptr_type_node, integer_type_node,
9936 size_type_node, NULL_TREE);
9937 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9938 "memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
9939 }
9940
9941 /* If we're checking the stack, `alloca' can throw. */
9942 const int alloca_flags
9943 = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
9944
9945 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
9946 {
9947 ftype = build_function_type_list (ptr_type_node,
9948 size_type_node, NULL_TREE);
9949 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9950 "alloca", alloca_flags);
9951 }
9952
9953 ftype = build_function_type_list (ptr_type_node, size_type_node,
9954 size_type_node, NULL_TREE);
9955 local_define_builtin ("__builtin_alloca_with_align", ftype,
9956 BUILT_IN_ALLOCA_WITH_ALIGN,
9957 "__builtin_alloca_with_align",
9958 alloca_flags);
9959
9960 ftype = build_function_type_list (void_type_node,
9961 ptr_type_node, ptr_type_node,
9962 ptr_type_node, NULL_TREE);
9963 local_define_builtin ("__builtin_init_trampoline", ftype,
9964 BUILT_IN_INIT_TRAMPOLINE,
9965 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9966 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
9967 BUILT_IN_INIT_HEAP_TRAMPOLINE,
9968 "__builtin_init_heap_trampoline",
9969 ECF_NOTHROW | ECF_LEAF);
9970 local_define_builtin ("__builtin_init_descriptor", ftype,
9971 BUILT_IN_INIT_DESCRIPTOR,
9972 "__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
9973
9974 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9975 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9976 BUILT_IN_ADJUST_TRAMPOLINE,
9977 "__builtin_adjust_trampoline",
9978 ECF_CONST | ECF_NOTHROW);
9979 local_define_builtin ("__builtin_adjust_descriptor", ftype,
9980 BUILT_IN_ADJUST_DESCRIPTOR,
9981 "__builtin_adjust_descriptor",
9982 ECF_CONST | ECF_NOTHROW);
9983
9984 ftype = build_function_type_list (void_type_node,
9985 ptr_type_node, ptr_type_node, NULL_TREE);
9986 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9987 BUILT_IN_NONLOCAL_GOTO,
9988 "__builtin_nonlocal_goto",
9989 ECF_NORETURN | ECF_NOTHROW);
9990
9991 ftype = build_function_type_list (void_type_node,
9992 ptr_type_node, ptr_type_node, NULL_TREE);
9993 local_define_builtin ("__builtin_setjmp_setup", ftype,
9994 BUILT_IN_SETJMP_SETUP,
9995 "__builtin_setjmp_setup", ECF_NOTHROW);
9996
9997 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9998 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9999 BUILT_IN_SETJMP_RECEIVER,
10000 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10001
10002 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10003 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10004 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10005
10006 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10007 local_define_builtin ("__builtin_stack_restore", ftype,
10008 BUILT_IN_STACK_RESTORE,
10009 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10010
10011 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10012 const_ptr_type_node, size_type_node,
10013 NULL_TREE);
10014 local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10015 "__builtin_memcmp_eq",
10016 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10017
10018 /* If there's a possibility that we might use the ARM EABI, build the
10019 alternate __cxa_end_cleanup node used to resume from C++. */
10020 if (targetm.arm_eabi_unwinder)
10021 {
10022 ftype = build_function_type_list (void_type_node, NULL_TREE);
10023 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10024 BUILT_IN_CXA_END_CLEANUP,
10025 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10026 }
10027
10028 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10029 local_define_builtin ("__builtin_unwind_resume", ftype,
10030 BUILT_IN_UNWIND_RESUME,
10031 ((targetm_common.except_unwind_info (&global_options)
10032 == UI_SJLJ)
10033 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10034 ECF_NORETURN);
10035
10036 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10037 {
10038 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10039 NULL_TREE);
10040 local_define_builtin ("__builtin_return_address", ftype,
10041 BUILT_IN_RETURN_ADDRESS,
10042 "__builtin_return_address",
10043 ECF_NOTHROW);
10044 }
10045
10046 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10047 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10048 {
10049 ftype = build_function_type_list (void_type_node, ptr_type_node,
10050 ptr_type_node, NULL_TREE);
10051 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10052 local_define_builtin ("__cyg_profile_func_enter", ftype,
10053 BUILT_IN_PROFILE_FUNC_ENTER,
10054 "__cyg_profile_func_enter", 0);
10055 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10056 local_define_builtin ("__cyg_profile_func_exit", ftype,
10057 BUILT_IN_PROFILE_FUNC_EXIT,
10058 "__cyg_profile_func_exit", 0);
10059 }
10060
10061 /* The exception object and filter values from the runtime. The argument
10062 must be zero before exception lowering, i.e. from the front end. After
10063 exception lowering, it will be the region number for the exception
10064 landing pad. These functions are PURE instead of CONST to prevent
10065 them from being hoisted past the exception edge that will initialize
10066 its value in the landing pad. */
10067 ftype = build_function_type_list (ptr_type_node,
10068 integer_type_node, NULL_TREE);
10069 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10070 /* Only use TM_PURE if we have TM language support. */
10071 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10072 ecf_flags |= ECF_TM_PURE;
10073 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10074 "__builtin_eh_pointer", ecf_flags);
10075
10076 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10077 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10078 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10079 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10080
10081 ftype = build_function_type_list (void_type_node,
10082 integer_type_node, integer_type_node,
10083 NULL_TREE);
10084 local_define_builtin ("__builtin_eh_copy_values", ftype,
10085 BUILT_IN_EH_COPY_VALUES,
10086 "__builtin_eh_copy_values", ECF_NOTHROW);
10087
10088 /* Complex multiplication and division. These are handled as builtins
10089 rather than optabs because emit_library_call_value doesn't support
10090 complex. Further, we can do slightly better with folding these
10091 beasties if the real and complex parts of the arguments are separate. */
10092 {
10093 int mode;
10094
10095 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10096 {
10097 char mode_name_buf[4], *q;
10098 const char *p;
10099 enum built_in_function mcode, dcode;
10100 tree type, inner_type;
10101 const char *prefix = "__";
10102
10103 if (targetm.libfunc_gnu_prefix)
10104 prefix = "__gnu_";
10105
10106 type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10107 if (type == NULL)
10108 continue;
10109 inner_type = TREE_TYPE (type);
10110
10111 ftype = build_function_type_list (type, inner_type, inner_type,
10112 inner_type, inner_type, NULL_TREE);
10113
10114 mcode = ((enum built_in_function)
10115 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10116 dcode = ((enum built_in_function)
10117 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10118
10119 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10120 *q = TOLOWER (*p);
10121 *q = '\0';
10122
10123 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10124 NULL);
10125 local_define_builtin (built_in_names[mcode], ftype, mcode,
10126 built_in_names[mcode],
10127 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10128
10129 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10130 NULL);
10131 local_define_builtin (built_in_names[dcode], ftype, dcode,
10132 built_in_names[dcode],
10133 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10134 }
10135 }
10136
10137 init_internal_fns ();
10138 }
10139
10140 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10141 better way.
10142
10143 If we requested a pointer to a vector, build up the pointers that
10144 we stripped off while looking for the inner type. Similarly for
10145 return values from functions.
10146
10147 The argument TYPE is the top of the chain, and BOTTOM is the
10148 new type which we will point to. */
10149
10150 tree
10151 reconstruct_complex_type (tree type, tree bottom)
10152 {
10153 tree inner, outer;
10154
10155 if (TREE_CODE (type) == POINTER_TYPE)
10156 {
10157 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10158 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10159 TYPE_REF_CAN_ALIAS_ALL (type));
10160 }
10161 else if (TREE_CODE (type) == REFERENCE_TYPE)
10162 {
10163 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10164 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10165 TYPE_REF_CAN_ALIAS_ALL (type));
10166 }
10167 else if (TREE_CODE (type) == ARRAY_TYPE)
10168 {
10169 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10170 outer = build_array_type (inner, TYPE_DOMAIN (type));
10171 }
10172 else if (TREE_CODE (type) == FUNCTION_TYPE)
10173 {
10174 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10175 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10176 }
10177 else if (TREE_CODE (type) == METHOD_TYPE)
10178 {
10179 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10180 /* The build_method_type_directly() routine prepends 'this' to argument list,
10181 so we must compensate by getting rid of it. */
10182 outer
10183 = build_method_type_directly
10184 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10185 inner,
10186 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10187 }
10188 else if (TREE_CODE (type) == OFFSET_TYPE)
10189 {
10190 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10191 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10192 }
10193 else
10194 return bottom;
10195
10196 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10197 TYPE_QUALS (type));
10198 }
10199
10200 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10201 the inner type. */
10202 tree
10203 build_vector_type_for_mode (tree innertype, machine_mode mode)
10204 {
10205 int nunits;
10206 unsigned int bitsize;
10207
10208 switch (GET_MODE_CLASS (mode))
10209 {
10210 case MODE_VECTOR_INT:
10211 case MODE_VECTOR_FLOAT:
10212 case MODE_VECTOR_FRACT:
10213 case MODE_VECTOR_UFRACT:
10214 case MODE_VECTOR_ACCUM:
10215 case MODE_VECTOR_UACCUM:
10216 nunits = GET_MODE_NUNITS (mode);
10217 break;
10218
10219 case MODE_INT:
10220 /* Check that there are no leftover bits. */
10221 bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
10222 gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10223 nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10224 break;
10225
10226 default:
10227 gcc_unreachable ();
10228 }
10229
10230 return make_vector_type (innertype, nunits, mode);
10231 }
10232
10233 /* Similarly, but takes the inner type and number of units, which must be
10234 a power of two. */
10235
10236 tree
10237 build_vector_type (tree innertype, int nunits)
10238 {
10239 return make_vector_type (innertype, nunits, VOIDmode);
10240 }
10241
10242 /* Build truth vector with specified length and number of units. */
10243
10244 tree
10245 build_truth_vector_type (unsigned nunits, unsigned vector_size)
10246 {
10247 machine_mode mask_mode
10248 = targetm.vectorize.get_mask_mode (nunits, vector_size).else_blk ();
10249
10250 unsigned HOST_WIDE_INT vsize;
10251 if (mask_mode == BLKmode)
10252 vsize = vector_size * BITS_PER_UNIT;
10253 else
10254 vsize = GET_MODE_BITSIZE (mask_mode);
10255
10256 unsigned HOST_WIDE_INT esize = vsize / nunits;
10257 gcc_assert (esize * nunits == vsize);
10258
10259 tree bool_type = build_nonstandard_boolean_type (esize);
10260
10261 return make_vector_type (bool_type, nunits, mask_mode);
10262 }
10263
10264 /* Returns a vector type corresponding to a comparison of VECTYPE. */
10265
10266 tree
10267 build_same_sized_truth_vector_type (tree vectype)
10268 {
10269 if (VECTOR_BOOLEAN_TYPE_P (vectype))
10270 return vectype;
10271
10272 unsigned HOST_WIDE_INT size = GET_MODE_SIZE (TYPE_MODE (vectype));
10273
10274 if (!size)
10275 size = tree_to_uhwi (TYPE_SIZE_UNIT (vectype));
10276
10277 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype), size);
10278 }
10279
10280 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
10281
10282 tree
10283 build_opaque_vector_type (tree innertype, int nunits)
10284 {
10285 tree t = make_vector_type (innertype, nunits, VOIDmode);
10286 tree cand;
10287 /* We always build the non-opaque variant before the opaque one,
10288 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10289 cand = TYPE_NEXT_VARIANT (t);
10290 if (cand
10291 && TYPE_VECTOR_OPAQUE (cand)
10292 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10293 return cand;
10294 /* Othewise build a variant type and make sure to queue it after
10295 the non-opaque type. */
10296 cand = build_distinct_type_copy (t);
10297 TYPE_VECTOR_OPAQUE (cand) = true;
10298 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10299 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10300 TYPE_NEXT_VARIANT (t) = cand;
10301 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10302 return cand;
10303 }
10304
10305
10306 /* Given an initializer INIT, return TRUE if INIT is zero or some
10307 aggregate of zeros. Otherwise return FALSE. */
10308 bool
10309 initializer_zerop (const_tree init)
10310 {
10311 tree elt;
10312
10313 STRIP_NOPS (init);
10314
10315 switch (TREE_CODE (init))
10316 {
10317 case INTEGER_CST:
10318 return integer_zerop (init);
10319
10320 case REAL_CST:
10321 /* ??? Note that this is not correct for C4X float formats. There,
10322 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10323 negative exponent. */
10324 return real_zerop (init)
10325 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
10326
10327 case FIXED_CST:
10328 return fixed_zerop (init);
10329
10330 case COMPLEX_CST:
10331 return integer_zerop (init)
10332 || (real_zerop (init)
10333 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10334 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
10335
10336 case VECTOR_CST:
10337 {
10338 unsigned i;
10339 for (i = 0; i < VECTOR_CST_NELTS (init); ++i)
10340 if (!initializer_zerop (VECTOR_CST_ELT (init, i)))
10341 return false;
10342 return true;
10343 }
10344
10345 case CONSTRUCTOR:
10346 {
10347 unsigned HOST_WIDE_INT idx;
10348
10349 if (TREE_CLOBBER_P (init))
10350 return false;
10351 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10352 if (!initializer_zerop (elt))
10353 return false;
10354 return true;
10355 }
10356
10357 case STRING_CST:
10358 {
10359 int i;
10360
10361 /* We need to loop through all elements to handle cases like
10362 "\0" and "\0foobar". */
10363 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10364 if (TREE_STRING_POINTER (init)[i] != '\0')
10365 return false;
10366
10367 return true;
10368 }
10369
10370 default:
10371 return false;
10372 }
10373 }
10374
10375 /* Check if vector VEC consists of all the equal elements and
10376 that the number of elements corresponds to the type of VEC.
10377 The function returns first element of the vector
10378 or NULL_TREE if the vector is not uniform. */
10379 tree
10380 uniform_vector_p (const_tree vec)
10381 {
10382 tree first, t;
10383 unsigned i;
10384
10385 if (vec == NULL_TREE)
10386 return NULL_TREE;
10387
10388 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10389
10390 if (TREE_CODE (vec) == VECTOR_CST)
10391 {
10392 first = VECTOR_CST_ELT (vec, 0);
10393 for (i = 1; i < VECTOR_CST_NELTS (vec); ++i)
10394 if (!operand_equal_p (first, VECTOR_CST_ELT (vec, i), 0))
10395 return NULL_TREE;
10396
10397 return first;
10398 }
10399
10400 else if (TREE_CODE (vec) == CONSTRUCTOR)
10401 {
10402 first = error_mark_node;
10403
10404 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10405 {
10406 if (i == 0)
10407 {
10408 first = t;
10409 continue;
10410 }
10411 if (!operand_equal_p (first, t, 0))
10412 return NULL_TREE;
10413 }
10414 if (i != TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)))
10415 return NULL_TREE;
10416
10417 return first;
10418 }
10419
10420 return NULL_TREE;
10421 }
10422
10423 /* Build an empty statement at location LOC. */
10424
10425 tree
10426 build_empty_stmt (location_t loc)
10427 {
10428 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10429 SET_EXPR_LOCATION (t, loc);
10430 return t;
10431 }
10432
10433
10434 /* Build an OpenMP clause with code CODE. LOC is the location of the
10435 clause. */
10436
10437 tree
10438 build_omp_clause (location_t loc, enum omp_clause_code code)
10439 {
10440 tree t;
10441 int size, length;
10442
10443 length = omp_clause_num_ops[code];
10444 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10445
10446 record_node_allocation_statistics (OMP_CLAUSE, size);
10447
10448 t = (tree) ggc_internal_alloc (size);
10449 memset (t, 0, size);
10450 TREE_SET_CODE (t, OMP_CLAUSE);
10451 OMP_CLAUSE_SET_CODE (t, code);
10452 OMP_CLAUSE_LOCATION (t) = loc;
10453
10454 return t;
10455 }
10456
10457 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10458 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10459 Except for the CODE and operand count field, other storage for the
10460 object is initialized to zeros. */
10461
10462 tree
10463 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
10464 {
10465 tree t;
10466 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10467
10468 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10469 gcc_assert (len >= 1);
10470
10471 record_node_allocation_statistics (code, length);
10472
10473 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10474
10475 TREE_SET_CODE (t, code);
10476
10477 /* Can't use TREE_OPERAND to store the length because if checking is
10478 enabled, it will try to check the length before we store it. :-P */
10479 t->exp.operands[0] = build_int_cst (sizetype, len);
10480
10481 return t;
10482 }
10483
10484 /* Helper function for build_call_* functions; build a CALL_EXPR with
10485 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10486 the argument slots. */
10487
10488 static tree
10489 build_call_1 (tree return_type, tree fn, int nargs)
10490 {
10491 tree t;
10492
10493 t = build_vl_exp (CALL_EXPR, nargs + 3);
10494 TREE_TYPE (t) = return_type;
10495 CALL_EXPR_FN (t) = fn;
10496 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10497
10498 return t;
10499 }
10500
10501 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10502 FN and a null static chain slot. NARGS is the number of call arguments
10503 which are specified as "..." arguments. */
10504
10505 tree
10506 build_call_nary (tree return_type, tree fn, int nargs, ...)
10507 {
10508 tree ret;
10509 va_list args;
10510 va_start (args, nargs);
10511 ret = build_call_valist (return_type, fn, nargs, args);
10512 va_end (args);
10513 return ret;
10514 }
10515
10516 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10517 FN and a null static chain slot. NARGS is the number of call arguments
10518 which are specified as a va_list ARGS. */
10519
10520 tree
10521 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10522 {
10523 tree t;
10524 int i;
10525
10526 t = build_call_1 (return_type, fn, nargs);
10527 for (i = 0; i < nargs; i++)
10528 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10529 process_call_operands (t);
10530 return t;
10531 }
10532
10533 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10534 FN and a null static chain slot. NARGS is the number of call arguments
10535 which are specified as a tree array ARGS. */
10536
10537 tree
10538 build_call_array_loc (location_t loc, tree return_type, tree fn,
10539 int nargs, const tree *args)
10540 {
10541 tree t;
10542 int i;
10543
10544 t = build_call_1 (return_type, fn, nargs);
10545 for (i = 0; i < nargs; i++)
10546 CALL_EXPR_ARG (t, i) = args[i];
10547 process_call_operands (t);
10548 SET_EXPR_LOCATION (t, loc);
10549 return t;
10550 }
10551
10552 /* Like build_call_array, but takes a vec. */
10553
10554 tree
10555 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10556 {
10557 tree ret, t;
10558 unsigned int ix;
10559
10560 ret = build_call_1 (return_type, fn, vec_safe_length (args));
10561 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10562 CALL_EXPR_ARG (ret, ix) = t;
10563 process_call_operands (ret);
10564 return ret;
10565 }
10566
10567 /* Conveniently construct a function call expression. FNDECL names the
10568 function to be called and N arguments are passed in the array
10569 ARGARRAY. */
10570
10571 tree
10572 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
10573 {
10574 tree fntype = TREE_TYPE (fndecl);
10575 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
10576
10577 return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
10578 }
10579
10580 /* Conveniently construct a function call expression. FNDECL names the
10581 function to be called and the arguments are passed in the vector
10582 VEC. */
10583
10584 tree
10585 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
10586 {
10587 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
10588 vec_safe_address (vec));
10589 }
10590
10591
10592 /* Conveniently construct a function call expression. FNDECL names the
10593 function to be called, N is the number of arguments, and the "..."
10594 parameters are the argument expressions. */
10595
10596 tree
10597 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
10598 {
10599 va_list ap;
10600 tree *argarray = XALLOCAVEC (tree, n);
10601 int i;
10602
10603 va_start (ap, n);
10604 for (i = 0; i < n; i++)
10605 argarray[i] = va_arg (ap, tree);
10606 va_end (ap);
10607 return build_call_expr_loc_array (loc, fndecl, n, argarray);
10608 }
10609
10610 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
10611 varargs macros aren't supported by all bootstrap compilers. */
10612
10613 tree
10614 build_call_expr (tree fndecl, int n, ...)
10615 {
10616 va_list ap;
10617 tree *argarray = XALLOCAVEC (tree, n);
10618 int i;
10619
10620 va_start (ap, n);
10621 for (i = 0; i < n; i++)
10622 argarray[i] = va_arg (ap, tree);
10623 va_end (ap);
10624 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
10625 }
10626
10627 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
10628 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
10629 It will get gimplified later into an ordinary internal function. */
10630
10631 tree
10632 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
10633 tree type, int n, const tree *args)
10634 {
10635 tree t = build_call_1 (type, NULL_TREE, n);
10636 for (int i = 0; i < n; ++i)
10637 CALL_EXPR_ARG (t, i) = args[i];
10638 SET_EXPR_LOCATION (t, loc);
10639 CALL_EXPR_IFN (t) = ifn;
10640 return t;
10641 }
10642
10643 /* Build internal call expression. This is just like CALL_EXPR, except
10644 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
10645 internal function. */
10646
10647 tree
10648 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
10649 tree type, int n, ...)
10650 {
10651 va_list ap;
10652 tree *argarray = XALLOCAVEC (tree, n);
10653 int i;
10654
10655 va_start (ap, n);
10656 for (i = 0; i < n; i++)
10657 argarray[i] = va_arg (ap, tree);
10658 va_end (ap);
10659 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
10660 }
10661
10662 /* Return a function call to FN, if the target is guaranteed to support it,
10663 or null otherwise.
10664
10665 N is the number of arguments, passed in the "...", and TYPE is the
10666 type of the return value. */
10667
10668 tree
10669 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
10670 int n, ...)
10671 {
10672 va_list ap;
10673 tree *argarray = XALLOCAVEC (tree, n);
10674 int i;
10675
10676 va_start (ap, n);
10677 for (i = 0; i < n; i++)
10678 argarray[i] = va_arg (ap, tree);
10679 va_end (ap);
10680 if (internal_fn_p (fn))
10681 {
10682 internal_fn ifn = as_internal_fn (fn);
10683 if (direct_internal_fn_p (ifn))
10684 {
10685 tree_pair types = direct_internal_fn_types (ifn, type, argarray);
10686 if (!direct_internal_fn_supported_p (ifn, types,
10687 OPTIMIZE_FOR_BOTH))
10688 return NULL_TREE;
10689 }
10690 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
10691 }
10692 else
10693 {
10694 tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
10695 if (!fndecl)
10696 return NULL_TREE;
10697 return build_call_expr_loc_array (loc, fndecl, n, argarray);
10698 }
10699 }
10700
10701 /* Create a new constant string literal and return a char* pointer to it.
10702 The STRING_CST value is the LEN characters at STR. */
10703 tree
10704 build_string_literal (int len, const char *str)
10705 {
10706 tree t, elem, index, type;
10707
10708 t = build_string (len, str);
10709 elem = build_type_variant (char_type_node, 1, 0);
10710 index = build_index_type (size_int (len - 1));
10711 type = build_array_type (elem, index);
10712 TREE_TYPE (t) = type;
10713 TREE_CONSTANT (t) = 1;
10714 TREE_READONLY (t) = 1;
10715 TREE_STATIC (t) = 1;
10716
10717 type = build_pointer_type (elem);
10718 t = build1 (ADDR_EXPR, type,
10719 build4 (ARRAY_REF, elem,
10720 t, integer_zero_node, NULL_TREE, NULL_TREE));
10721 return t;
10722 }
10723
10724
10725
10726 /* Return true if T (assumed to be a DECL) must be assigned a memory
10727 location. */
10728
10729 bool
10730 needs_to_live_in_memory (const_tree t)
10731 {
10732 return (TREE_ADDRESSABLE (t)
10733 || is_global_var (t)
10734 || (TREE_CODE (t) == RESULT_DECL
10735 && !DECL_BY_REFERENCE (t)
10736 && aggregate_value_p (t, current_function_decl)));
10737 }
10738
10739 /* Return value of a constant X and sign-extend it. */
10740
10741 HOST_WIDE_INT
10742 int_cst_value (const_tree x)
10743 {
10744 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10745 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
10746
10747 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10748 gcc_assert (cst_and_fits_in_hwi (x));
10749
10750 if (bits < HOST_BITS_PER_WIDE_INT)
10751 {
10752 bool negative = ((val >> (bits - 1)) & 1) != 0;
10753 if (negative)
10754 val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
10755 else
10756 val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
10757 }
10758
10759 return val;
10760 }
10761
10762 /* If TYPE is an integral or pointer type, return an integer type with
10763 the same precision which is unsigned iff UNSIGNEDP is true, or itself
10764 if TYPE is already an integer type of signedness UNSIGNEDP. */
10765
10766 tree
10767 signed_or_unsigned_type_for (int unsignedp, tree type)
10768 {
10769 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
10770 return type;
10771
10772 if (TREE_CODE (type) == VECTOR_TYPE)
10773 {
10774 tree inner = TREE_TYPE (type);
10775 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
10776 if (!inner2)
10777 return NULL_TREE;
10778 if (inner == inner2)
10779 return type;
10780 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
10781 }
10782
10783 if (!INTEGRAL_TYPE_P (type)
10784 && !POINTER_TYPE_P (type)
10785 && TREE_CODE (type) != OFFSET_TYPE)
10786 return NULL_TREE;
10787
10788 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
10789 }
10790
10791 /* If TYPE is an integral or pointer type, return an integer type with
10792 the same precision which is unsigned, or itself if TYPE is already an
10793 unsigned integer type. */
10794
10795 tree
10796 unsigned_type_for (tree type)
10797 {
10798 return signed_or_unsigned_type_for (1, type);
10799 }
10800
10801 /* If TYPE is an integral or pointer type, return an integer type with
10802 the same precision which is signed, or itself if TYPE is already a
10803 signed integer type. */
10804
10805 tree
10806 signed_type_for (tree type)
10807 {
10808 return signed_or_unsigned_type_for (0, type);
10809 }
10810
10811 /* If TYPE is a vector type, return a signed integer vector type with the
10812 same width and number of subparts. Otherwise return boolean_type_node. */
10813
10814 tree
10815 truth_type_for (tree type)
10816 {
10817 if (TREE_CODE (type) == VECTOR_TYPE)
10818 {
10819 if (VECTOR_BOOLEAN_TYPE_P (type))
10820 return type;
10821 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (type),
10822 GET_MODE_SIZE (TYPE_MODE (type)));
10823 }
10824 else
10825 return boolean_type_node;
10826 }
10827
10828 /* Returns the largest value obtainable by casting something in INNER type to
10829 OUTER type. */
10830
10831 tree
10832 upper_bound_in_type (tree outer, tree inner)
10833 {
10834 unsigned int det = 0;
10835 unsigned oprec = TYPE_PRECISION (outer);
10836 unsigned iprec = TYPE_PRECISION (inner);
10837 unsigned prec;
10838
10839 /* Compute a unique number for every combination. */
10840 det |= (oprec > iprec) ? 4 : 0;
10841 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10842 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10843
10844 /* Determine the exponent to use. */
10845 switch (det)
10846 {
10847 case 0:
10848 case 1:
10849 /* oprec <= iprec, outer: signed, inner: don't care. */
10850 prec = oprec - 1;
10851 break;
10852 case 2:
10853 case 3:
10854 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10855 prec = oprec;
10856 break;
10857 case 4:
10858 /* oprec > iprec, outer: signed, inner: signed. */
10859 prec = iprec - 1;
10860 break;
10861 case 5:
10862 /* oprec > iprec, outer: signed, inner: unsigned. */
10863 prec = iprec;
10864 break;
10865 case 6:
10866 /* oprec > iprec, outer: unsigned, inner: signed. */
10867 prec = oprec;
10868 break;
10869 case 7:
10870 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10871 prec = iprec;
10872 break;
10873 default:
10874 gcc_unreachable ();
10875 }
10876
10877 return wide_int_to_tree (outer,
10878 wi::mask (prec, false, TYPE_PRECISION (outer)));
10879 }
10880
10881 /* Returns the smallest value obtainable by casting something in INNER type to
10882 OUTER type. */
10883
10884 tree
10885 lower_bound_in_type (tree outer, tree inner)
10886 {
10887 unsigned oprec = TYPE_PRECISION (outer);
10888 unsigned iprec = TYPE_PRECISION (inner);
10889
10890 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10891 and obtain 0. */
10892 if (TYPE_UNSIGNED (outer)
10893 /* If we are widening something of an unsigned type, OUTER type
10894 contains all values of INNER type. In particular, both INNER
10895 and OUTER types have zero in common. */
10896 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10897 return build_int_cst (outer, 0);
10898 else
10899 {
10900 /* If we are widening a signed type to another signed type, we
10901 want to obtain -2^^(iprec-1). If we are keeping the
10902 precision or narrowing to a signed type, we want to obtain
10903 -2^(oprec-1). */
10904 unsigned prec = oprec > iprec ? iprec : oprec;
10905 return wide_int_to_tree (outer,
10906 wi::mask (prec - 1, true,
10907 TYPE_PRECISION (outer)));
10908 }
10909 }
10910
10911 /* Return nonzero if two operands that are suitable for PHI nodes are
10912 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10913 SSA_NAME or invariant. Note that this is strictly an optimization.
10914 That is, callers of this function can directly call operand_equal_p
10915 and get the same result, only slower. */
10916
10917 int
10918 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10919 {
10920 if (arg0 == arg1)
10921 return 1;
10922 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10923 return 0;
10924 return operand_equal_p (arg0, arg1, 0);
10925 }
10926
10927 /* Returns number of zeros at the end of binary representation of X. */
10928
10929 tree
10930 num_ending_zeros (const_tree x)
10931 {
10932 return build_int_cst (TREE_TYPE (x), wi::ctz (x));
10933 }
10934
10935
10936 #define WALK_SUBTREE(NODE) \
10937 do \
10938 { \
10939 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10940 if (result) \
10941 return result; \
10942 } \
10943 while (0)
10944
10945 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10946 be walked whenever a type is seen in the tree. Rest of operands and return
10947 value are as for walk_tree. */
10948
10949 static tree
10950 walk_type_fields (tree type, walk_tree_fn func, void *data,
10951 hash_set<tree> *pset, walk_tree_lh lh)
10952 {
10953 tree result = NULL_TREE;
10954
10955 switch (TREE_CODE (type))
10956 {
10957 case POINTER_TYPE:
10958 case REFERENCE_TYPE:
10959 case VECTOR_TYPE:
10960 /* We have to worry about mutually recursive pointers. These can't
10961 be written in C. They can in Ada. It's pathological, but
10962 there's an ACATS test (c38102a) that checks it. Deal with this
10963 by checking if we're pointing to another pointer, that one
10964 points to another pointer, that one does too, and we have no htab.
10965 If so, get a hash table. We check three levels deep to avoid
10966 the cost of the hash table if we don't need one. */
10967 if (POINTER_TYPE_P (TREE_TYPE (type))
10968 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10969 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10970 && !pset)
10971 {
10972 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10973 func, data);
10974 if (result)
10975 return result;
10976
10977 break;
10978 }
10979
10980 /* fall through */
10981
10982 case COMPLEX_TYPE:
10983 WALK_SUBTREE (TREE_TYPE (type));
10984 break;
10985
10986 case METHOD_TYPE:
10987 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10988
10989 /* Fall through. */
10990
10991 case FUNCTION_TYPE:
10992 WALK_SUBTREE (TREE_TYPE (type));
10993 {
10994 tree arg;
10995
10996 /* We never want to walk into default arguments. */
10997 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10998 WALK_SUBTREE (TREE_VALUE (arg));
10999 }
11000 break;
11001
11002 case ARRAY_TYPE:
11003 /* Don't follow this nodes's type if a pointer for fear that
11004 we'll have infinite recursion. If we have a PSET, then we
11005 need not fear. */
11006 if (pset
11007 || (!POINTER_TYPE_P (TREE_TYPE (type))
11008 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
11009 WALK_SUBTREE (TREE_TYPE (type));
11010 WALK_SUBTREE (TYPE_DOMAIN (type));
11011 break;
11012
11013 case OFFSET_TYPE:
11014 WALK_SUBTREE (TREE_TYPE (type));
11015 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
11016 break;
11017
11018 default:
11019 break;
11020 }
11021
11022 return NULL_TREE;
11023 }
11024
11025 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
11026 called with the DATA and the address of each sub-tree. If FUNC returns a
11027 non-NULL value, the traversal is stopped, and the value returned by FUNC
11028 is returned. If PSET is non-NULL it is used to record the nodes visited,
11029 and to avoid visiting a node more than once. */
11030
11031 tree
11032 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
11033 hash_set<tree> *pset, walk_tree_lh lh)
11034 {
11035 enum tree_code code;
11036 int walk_subtrees;
11037 tree result;
11038
11039 #define WALK_SUBTREE_TAIL(NODE) \
11040 do \
11041 { \
11042 tp = & (NODE); \
11043 goto tail_recurse; \
11044 } \
11045 while (0)
11046
11047 tail_recurse:
11048 /* Skip empty subtrees. */
11049 if (!*tp)
11050 return NULL_TREE;
11051
11052 /* Don't walk the same tree twice, if the user has requested
11053 that we avoid doing so. */
11054 if (pset && pset->add (*tp))
11055 return NULL_TREE;
11056
11057 /* Call the function. */
11058 walk_subtrees = 1;
11059 result = (*func) (tp, &walk_subtrees, data);
11060
11061 /* If we found something, return it. */
11062 if (result)
11063 return result;
11064
11065 code = TREE_CODE (*tp);
11066
11067 /* Even if we didn't, FUNC may have decided that there was nothing
11068 interesting below this point in the tree. */
11069 if (!walk_subtrees)
11070 {
11071 /* But we still need to check our siblings. */
11072 if (code == TREE_LIST)
11073 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11074 else if (code == OMP_CLAUSE)
11075 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11076 else
11077 return NULL_TREE;
11078 }
11079
11080 if (lh)
11081 {
11082 result = (*lh) (tp, &walk_subtrees, func, data, pset);
11083 if (result || !walk_subtrees)
11084 return result;
11085 }
11086
11087 switch (code)
11088 {
11089 case ERROR_MARK:
11090 case IDENTIFIER_NODE:
11091 case INTEGER_CST:
11092 case REAL_CST:
11093 case FIXED_CST:
11094 case VECTOR_CST:
11095 case STRING_CST:
11096 case BLOCK:
11097 case PLACEHOLDER_EXPR:
11098 case SSA_NAME:
11099 case FIELD_DECL:
11100 case RESULT_DECL:
11101 /* None of these have subtrees other than those already walked
11102 above. */
11103 break;
11104
11105 case TREE_LIST:
11106 WALK_SUBTREE (TREE_VALUE (*tp));
11107 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11108 break;
11109
11110 case TREE_VEC:
11111 {
11112 int len = TREE_VEC_LENGTH (*tp);
11113
11114 if (len == 0)
11115 break;
11116
11117 /* Walk all elements but the first. */
11118 while (--len)
11119 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
11120
11121 /* Now walk the first one as a tail call. */
11122 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
11123 }
11124
11125 case COMPLEX_CST:
11126 WALK_SUBTREE (TREE_REALPART (*tp));
11127 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
11128
11129 case CONSTRUCTOR:
11130 {
11131 unsigned HOST_WIDE_INT idx;
11132 constructor_elt *ce;
11133
11134 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
11135 idx++)
11136 WALK_SUBTREE (ce->value);
11137 }
11138 break;
11139
11140 case SAVE_EXPR:
11141 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
11142
11143 case BIND_EXPR:
11144 {
11145 tree decl;
11146 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11147 {
11148 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11149 into declarations that are just mentioned, rather than
11150 declared; they don't really belong to this part of the tree.
11151 And, we can see cycles: the initializer for a declaration
11152 can refer to the declaration itself. */
11153 WALK_SUBTREE (DECL_INITIAL (decl));
11154 WALK_SUBTREE (DECL_SIZE (decl));
11155 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11156 }
11157 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11158 }
11159
11160 case STATEMENT_LIST:
11161 {
11162 tree_stmt_iterator i;
11163 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11164 WALK_SUBTREE (*tsi_stmt_ptr (i));
11165 }
11166 break;
11167
11168 case OMP_CLAUSE:
11169 switch (OMP_CLAUSE_CODE (*tp))
11170 {
11171 case OMP_CLAUSE_GANG:
11172 case OMP_CLAUSE__GRIDDIM_:
11173 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11174 /* FALLTHRU */
11175
11176 case OMP_CLAUSE_ASYNC:
11177 case OMP_CLAUSE_WAIT:
11178 case OMP_CLAUSE_WORKER:
11179 case OMP_CLAUSE_VECTOR:
11180 case OMP_CLAUSE_NUM_GANGS:
11181 case OMP_CLAUSE_NUM_WORKERS:
11182 case OMP_CLAUSE_VECTOR_LENGTH:
11183 case OMP_CLAUSE_PRIVATE:
11184 case OMP_CLAUSE_SHARED:
11185 case OMP_CLAUSE_FIRSTPRIVATE:
11186 case OMP_CLAUSE_COPYIN:
11187 case OMP_CLAUSE_COPYPRIVATE:
11188 case OMP_CLAUSE_FINAL:
11189 case OMP_CLAUSE_IF:
11190 case OMP_CLAUSE_NUM_THREADS:
11191 case OMP_CLAUSE_SCHEDULE:
11192 case OMP_CLAUSE_UNIFORM:
11193 case OMP_CLAUSE_DEPEND:
11194 case OMP_CLAUSE_NUM_TEAMS:
11195 case OMP_CLAUSE_THREAD_LIMIT:
11196 case OMP_CLAUSE_DEVICE:
11197 case OMP_CLAUSE_DIST_SCHEDULE:
11198 case OMP_CLAUSE_SAFELEN:
11199 case OMP_CLAUSE_SIMDLEN:
11200 case OMP_CLAUSE_ORDERED:
11201 case OMP_CLAUSE_PRIORITY:
11202 case OMP_CLAUSE_GRAINSIZE:
11203 case OMP_CLAUSE_NUM_TASKS:
11204 case OMP_CLAUSE_HINT:
11205 case OMP_CLAUSE_TO_DECLARE:
11206 case OMP_CLAUSE_LINK:
11207 case OMP_CLAUSE_USE_DEVICE_PTR:
11208 case OMP_CLAUSE_IS_DEVICE_PTR:
11209 case OMP_CLAUSE__LOOPTEMP_:
11210 case OMP_CLAUSE__SIMDUID_:
11211 case OMP_CLAUSE__CILK_FOR_COUNT_:
11212 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11213 /* FALLTHRU */
11214
11215 case OMP_CLAUSE_INDEPENDENT:
11216 case OMP_CLAUSE_NOWAIT:
11217 case OMP_CLAUSE_DEFAULT:
11218 case OMP_CLAUSE_UNTIED:
11219 case OMP_CLAUSE_MERGEABLE:
11220 case OMP_CLAUSE_PROC_BIND:
11221 case OMP_CLAUSE_INBRANCH:
11222 case OMP_CLAUSE_NOTINBRANCH:
11223 case OMP_CLAUSE_FOR:
11224 case OMP_CLAUSE_PARALLEL:
11225 case OMP_CLAUSE_SECTIONS:
11226 case OMP_CLAUSE_TASKGROUP:
11227 case OMP_CLAUSE_NOGROUP:
11228 case OMP_CLAUSE_THREADS:
11229 case OMP_CLAUSE_SIMD:
11230 case OMP_CLAUSE_DEFAULTMAP:
11231 case OMP_CLAUSE_AUTO:
11232 case OMP_CLAUSE_SEQ:
11233 case OMP_CLAUSE_TILE:
11234 case OMP_CLAUSE__SIMT_:
11235 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11236
11237 case OMP_CLAUSE_LASTPRIVATE:
11238 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11239 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11240 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11241
11242 case OMP_CLAUSE_COLLAPSE:
11243 {
11244 int i;
11245 for (i = 0; i < 3; i++)
11246 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11247 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11248 }
11249
11250 case OMP_CLAUSE_LINEAR:
11251 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11252 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
11253 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
11254 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11255
11256 case OMP_CLAUSE_ALIGNED:
11257 case OMP_CLAUSE_FROM:
11258 case OMP_CLAUSE_TO:
11259 case OMP_CLAUSE_MAP:
11260 case OMP_CLAUSE__CACHE_:
11261 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11262 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11263 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11264
11265 case OMP_CLAUSE_REDUCTION:
11266 {
11267 int i;
11268 for (i = 0; i < 5; i++)
11269 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11270 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11271 }
11272
11273 default:
11274 gcc_unreachable ();
11275 }
11276 break;
11277
11278 case TARGET_EXPR:
11279 {
11280 int i, len;
11281
11282 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11283 But, we only want to walk once. */
11284 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11285 for (i = 0; i < len; ++i)
11286 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11287 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11288 }
11289
11290 case DECL_EXPR:
11291 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11292 defining. We only want to walk into these fields of a type in this
11293 case and not in the general case of a mere reference to the type.
11294
11295 The criterion is as follows: if the field can be an expression, it
11296 must be walked only here. This should be in keeping with the fields
11297 that are directly gimplified in gimplify_type_sizes in order for the
11298 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11299 variable-sized types.
11300
11301 Note that DECLs get walked as part of processing the BIND_EXPR. */
11302 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11303 {
11304 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11305 if (TREE_CODE (*type_p) == ERROR_MARK)
11306 return NULL_TREE;
11307
11308 /* Call the function for the type. See if it returns anything or
11309 doesn't want us to continue. If we are to continue, walk both
11310 the normal fields and those for the declaration case. */
11311 result = (*func) (type_p, &walk_subtrees, data);
11312 if (result || !walk_subtrees)
11313 return result;
11314
11315 /* But do not walk a pointed-to type since it may itself need to
11316 be walked in the declaration case if it isn't anonymous. */
11317 if (!POINTER_TYPE_P (*type_p))
11318 {
11319 result = walk_type_fields (*type_p, func, data, pset, lh);
11320 if (result)
11321 return result;
11322 }
11323
11324 /* If this is a record type, also walk the fields. */
11325 if (RECORD_OR_UNION_TYPE_P (*type_p))
11326 {
11327 tree field;
11328
11329 for (field = TYPE_FIELDS (*type_p); field;
11330 field = DECL_CHAIN (field))
11331 {
11332 /* We'd like to look at the type of the field, but we can
11333 easily get infinite recursion. So assume it's pointed
11334 to elsewhere in the tree. Also, ignore things that
11335 aren't fields. */
11336 if (TREE_CODE (field) != FIELD_DECL)
11337 continue;
11338
11339 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11340 WALK_SUBTREE (DECL_SIZE (field));
11341 WALK_SUBTREE (DECL_SIZE_UNIT (field));
11342 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
11343 WALK_SUBTREE (DECL_QUALIFIER (field));
11344 }
11345 }
11346
11347 /* Same for scalar types. */
11348 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
11349 || TREE_CODE (*type_p) == ENUMERAL_TYPE
11350 || TREE_CODE (*type_p) == INTEGER_TYPE
11351 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
11352 || TREE_CODE (*type_p) == REAL_TYPE)
11353 {
11354 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
11355 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
11356 }
11357
11358 WALK_SUBTREE (TYPE_SIZE (*type_p));
11359 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
11360 }
11361 /* FALLTHRU */
11362
11363 default:
11364 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11365 {
11366 int i, len;
11367
11368 /* Walk over all the sub-trees of this operand. */
11369 len = TREE_OPERAND_LENGTH (*tp);
11370
11371 /* Go through the subtrees. We need to do this in forward order so
11372 that the scope of a FOR_EXPR is handled properly. */
11373 if (len)
11374 {
11375 for (i = 0; i < len - 1; ++i)
11376 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11377 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
11378 }
11379 }
11380 /* If this is a type, walk the needed fields in the type. */
11381 else if (TYPE_P (*tp))
11382 return walk_type_fields (*tp, func, data, pset, lh);
11383 break;
11384 }
11385
11386 /* We didn't find what we were looking for. */
11387 return NULL_TREE;
11388
11389 #undef WALK_SUBTREE_TAIL
11390 }
11391 #undef WALK_SUBTREE
11392
11393 /* Like walk_tree, but does not walk duplicate nodes more than once. */
11394
11395 tree
11396 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11397 walk_tree_lh lh)
11398 {
11399 tree result;
11400
11401 hash_set<tree> pset;
11402 result = walk_tree_1 (tp, func, data, &pset, lh);
11403 return result;
11404 }
11405
11406
11407 tree
11408 tree_block (tree t)
11409 {
11410 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11411
11412 if (IS_EXPR_CODE_CLASS (c))
11413 return LOCATION_BLOCK (t->exp.locus);
11414 gcc_unreachable ();
11415 return NULL;
11416 }
11417
11418 void
11419 tree_set_block (tree t, tree b)
11420 {
11421 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11422
11423 if (IS_EXPR_CODE_CLASS (c))
11424 {
11425 t->exp.locus = set_block (t->exp.locus, b);
11426 }
11427 else
11428 gcc_unreachable ();
11429 }
11430
11431 /* Create a nameless artificial label and put it in the current
11432 function context. The label has a location of LOC. Returns the
11433 newly created label. */
11434
11435 tree
11436 create_artificial_label (location_t loc)
11437 {
11438 tree lab = build_decl (loc,
11439 LABEL_DECL, NULL_TREE, void_type_node);
11440
11441 DECL_ARTIFICIAL (lab) = 1;
11442 DECL_IGNORED_P (lab) = 1;
11443 DECL_CONTEXT (lab) = current_function_decl;
11444 return lab;
11445 }
11446
11447 /* Given a tree, try to return a useful variable name that we can use
11448 to prefix a temporary that is being assigned the value of the tree.
11449 I.E. given <temp> = &A, return A. */
11450
11451 const char *
11452 get_name (tree t)
11453 {
11454 tree stripped_decl;
11455
11456 stripped_decl = t;
11457 STRIP_NOPS (stripped_decl);
11458 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11459 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11460 else if (TREE_CODE (stripped_decl) == SSA_NAME)
11461 {
11462 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11463 if (!name)
11464 return NULL;
11465 return IDENTIFIER_POINTER (name);
11466 }
11467 else
11468 {
11469 switch (TREE_CODE (stripped_decl))
11470 {
11471 case ADDR_EXPR:
11472 return get_name (TREE_OPERAND (stripped_decl, 0));
11473 default:
11474 return NULL;
11475 }
11476 }
11477 }
11478
11479 /* Return true if TYPE has a variable argument list. */
11480
11481 bool
11482 stdarg_p (const_tree fntype)
11483 {
11484 function_args_iterator args_iter;
11485 tree n = NULL_TREE, t;
11486
11487 if (!fntype)
11488 return false;
11489
11490 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
11491 {
11492 n = t;
11493 }
11494
11495 return n != NULL_TREE && n != void_type_node;
11496 }
11497
11498 /* Return true if TYPE has a prototype. */
11499
11500 bool
11501 prototype_p (const_tree fntype)
11502 {
11503 tree t;
11504
11505 gcc_assert (fntype != NULL_TREE);
11506
11507 t = TYPE_ARG_TYPES (fntype);
11508 return (t != NULL_TREE);
11509 }
11510
11511 /* If BLOCK is inlined from an __attribute__((__artificial__))
11512 routine, return pointer to location from where it has been
11513 called. */
11514 location_t *
11515 block_nonartificial_location (tree block)
11516 {
11517 location_t *ret = NULL;
11518
11519 while (block && TREE_CODE (block) == BLOCK
11520 && BLOCK_ABSTRACT_ORIGIN (block))
11521 {
11522 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11523
11524 while (TREE_CODE (ao) == BLOCK
11525 && BLOCK_ABSTRACT_ORIGIN (ao)
11526 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11527 ao = BLOCK_ABSTRACT_ORIGIN (ao);
11528
11529 if (TREE_CODE (ao) == FUNCTION_DECL)
11530 {
11531 /* If AO is an artificial inline, point RET to the
11532 call site locus at which it has been inlined and continue
11533 the loop, in case AO's caller is also an artificial
11534 inline. */
11535 if (DECL_DECLARED_INLINE_P (ao)
11536 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11537 ret = &BLOCK_SOURCE_LOCATION (block);
11538 else
11539 break;
11540 }
11541 else if (TREE_CODE (ao) != BLOCK)
11542 break;
11543
11544 block = BLOCK_SUPERCONTEXT (block);
11545 }
11546 return ret;
11547 }
11548
11549
11550 /* If EXP is inlined from an __attribute__((__artificial__))
11551 function, return the location of the original call expression. */
11552
11553 location_t
11554 tree_nonartificial_location (tree exp)
11555 {
11556 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11557
11558 if (loc)
11559 return *loc;
11560 else
11561 return EXPR_LOCATION (exp);
11562 }
11563
11564
11565 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11566 nodes. */
11567
11568 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
11569
11570 hashval_t
11571 cl_option_hasher::hash (tree x)
11572 {
11573 const_tree const t = x;
11574 const char *p;
11575 size_t i;
11576 size_t len = 0;
11577 hashval_t hash = 0;
11578
11579 if (TREE_CODE (t) == OPTIMIZATION_NODE)
11580 {
11581 p = (const char *)TREE_OPTIMIZATION (t);
11582 len = sizeof (struct cl_optimization);
11583 }
11584
11585 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11586 return cl_target_option_hash (TREE_TARGET_OPTION (t));
11587
11588 else
11589 gcc_unreachable ();
11590
11591 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11592 something else. */
11593 for (i = 0; i < len; i++)
11594 if (p[i])
11595 hash = (hash << 4) ^ ((i << 2) | p[i]);
11596
11597 return hash;
11598 }
11599
11600 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11601 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11602 same. */
11603
11604 bool
11605 cl_option_hasher::equal (tree x, tree y)
11606 {
11607 const_tree const xt = x;
11608 const_tree const yt = y;
11609 const char *xp;
11610 const char *yp;
11611 size_t len;
11612
11613 if (TREE_CODE (xt) != TREE_CODE (yt))
11614 return 0;
11615
11616 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11617 {
11618 xp = (const char *)TREE_OPTIMIZATION (xt);
11619 yp = (const char *)TREE_OPTIMIZATION (yt);
11620 len = sizeof (struct cl_optimization);
11621 }
11622
11623 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11624 {
11625 return cl_target_option_eq (TREE_TARGET_OPTION (xt),
11626 TREE_TARGET_OPTION (yt));
11627 }
11628
11629 else
11630 gcc_unreachable ();
11631
11632 return (memcmp (xp, yp, len) == 0);
11633 }
11634
11635 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
11636
11637 tree
11638 build_optimization_node (struct gcc_options *opts)
11639 {
11640 tree t;
11641
11642 /* Use the cache of optimization nodes. */
11643
11644 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11645 opts);
11646
11647 tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
11648 t = *slot;
11649 if (!t)
11650 {
11651 /* Insert this one into the hash table. */
11652 t = cl_optimization_node;
11653 *slot = t;
11654
11655 /* Make a new node for next time round. */
11656 cl_optimization_node = make_node (OPTIMIZATION_NODE);
11657 }
11658
11659 return t;
11660 }
11661
11662 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
11663
11664 tree
11665 build_target_option_node (struct gcc_options *opts)
11666 {
11667 tree t;
11668
11669 /* Use the cache of optimization nodes. */
11670
11671 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
11672 opts);
11673
11674 tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
11675 t = *slot;
11676 if (!t)
11677 {
11678 /* Insert this one into the hash table. */
11679 t = cl_target_option_node;
11680 *slot = t;
11681
11682 /* Make a new node for next time round. */
11683 cl_target_option_node = make_node (TARGET_OPTION_NODE);
11684 }
11685
11686 return t;
11687 }
11688
11689 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
11690 so that they aren't saved during PCH writing. */
11691
11692 void
11693 prepare_target_option_nodes_for_pch (void)
11694 {
11695 hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
11696 for (; iter != cl_option_hash_table->end (); ++iter)
11697 if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
11698 TREE_TARGET_GLOBALS (*iter) = NULL;
11699 }
11700
11701 /* Determine the "ultimate origin" of a block. The block may be an inlined
11702 instance of an inlined instance of a block which is local to an inline
11703 function, so we have to trace all of the way back through the origin chain
11704 to find out what sort of node actually served as the original seed for the
11705 given block. */
11706
11707 tree
11708 block_ultimate_origin (const_tree block)
11709 {
11710 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
11711
11712 /* BLOCK_ABSTRACT_ORIGIN can point to itself; ignore that if
11713 we're trying to output the abstract instance of this function. */
11714 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
11715 return NULL_TREE;
11716
11717 if (immediate_origin == NULL_TREE)
11718 return NULL_TREE;
11719 else
11720 {
11721 tree ret_val;
11722 tree lookahead = immediate_origin;
11723
11724 do
11725 {
11726 ret_val = lookahead;
11727 lookahead = (TREE_CODE (ret_val) == BLOCK
11728 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
11729 }
11730 while (lookahead != NULL && lookahead != ret_val);
11731
11732 /* The block's abstract origin chain may not be the *ultimate* origin of
11733 the block. It could lead to a DECL that has an abstract origin set.
11734 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
11735 will give us if it has one). Note that DECL's abstract origins are
11736 supposed to be the most distant ancestor (or so decl_ultimate_origin
11737 claims), so we don't need to loop following the DECL origins. */
11738 if (DECL_P (ret_val))
11739 return DECL_ORIGIN (ret_val);
11740
11741 return ret_val;
11742 }
11743 }
11744
11745 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
11746 no instruction. */
11747
11748 bool
11749 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
11750 {
11751 /* Do not strip casts into or out of differing address spaces. */
11752 if (POINTER_TYPE_P (outer_type)
11753 && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
11754 {
11755 if (!POINTER_TYPE_P (inner_type)
11756 || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
11757 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
11758 return false;
11759 }
11760 else if (POINTER_TYPE_P (inner_type)
11761 && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
11762 {
11763 /* We already know that outer_type is not a pointer with
11764 a non-generic address space. */
11765 return false;
11766 }
11767
11768 /* Use precision rather then machine mode when we can, which gives
11769 the correct answer even for submode (bit-field) types. */
11770 if ((INTEGRAL_TYPE_P (outer_type)
11771 || POINTER_TYPE_P (outer_type)
11772 || TREE_CODE (outer_type) == OFFSET_TYPE)
11773 && (INTEGRAL_TYPE_P (inner_type)
11774 || POINTER_TYPE_P (inner_type)
11775 || TREE_CODE (inner_type) == OFFSET_TYPE))
11776 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
11777
11778 /* Otherwise fall back on comparing machine modes (e.g. for
11779 aggregate types, floats). */
11780 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
11781 }
11782
11783 /* Return true iff conversion in EXP generates no instruction. Mark
11784 it inline so that we fully inline into the stripping functions even
11785 though we have two uses of this function. */
11786
11787 static inline bool
11788 tree_nop_conversion (const_tree exp)
11789 {
11790 tree outer_type, inner_type;
11791
11792 if (!CONVERT_EXPR_P (exp)
11793 && TREE_CODE (exp) != NON_LVALUE_EXPR)
11794 return false;
11795 if (TREE_OPERAND (exp, 0) == error_mark_node)
11796 return false;
11797
11798 outer_type = TREE_TYPE (exp);
11799 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11800
11801 if (!inner_type)
11802 return false;
11803
11804 return tree_nop_conversion_p (outer_type, inner_type);
11805 }
11806
11807 /* Return true iff conversion in EXP generates no instruction. Don't
11808 consider conversions changing the signedness. */
11809
11810 static bool
11811 tree_sign_nop_conversion (const_tree exp)
11812 {
11813 tree outer_type, inner_type;
11814
11815 if (!tree_nop_conversion (exp))
11816 return false;
11817
11818 outer_type = TREE_TYPE (exp);
11819 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11820
11821 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11822 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11823 }
11824
11825 /* Strip conversions from EXP according to tree_nop_conversion and
11826 return the resulting expression. */
11827
11828 tree
11829 tree_strip_nop_conversions (tree exp)
11830 {
11831 while (tree_nop_conversion (exp))
11832 exp = TREE_OPERAND (exp, 0);
11833 return exp;
11834 }
11835
11836 /* Strip conversions from EXP according to tree_sign_nop_conversion
11837 and return the resulting expression. */
11838
11839 tree
11840 tree_strip_sign_nop_conversions (tree exp)
11841 {
11842 while (tree_sign_nop_conversion (exp))
11843 exp = TREE_OPERAND (exp, 0);
11844 return exp;
11845 }
11846
11847 /* Avoid any floating point extensions from EXP. */
11848 tree
11849 strip_float_extensions (tree exp)
11850 {
11851 tree sub, expt, subt;
11852
11853 /* For floating point constant look up the narrowest type that can hold
11854 it properly and handle it like (type)(narrowest_type)constant.
11855 This way we can optimize for instance a=a*2.0 where "a" is float
11856 but 2.0 is double constant. */
11857 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
11858 {
11859 REAL_VALUE_TYPE orig;
11860 tree type = NULL;
11861
11862 orig = TREE_REAL_CST (exp);
11863 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
11864 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
11865 type = float_type_node;
11866 else if (TYPE_PRECISION (TREE_TYPE (exp))
11867 > TYPE_PRECISION (double_type_node)
11868 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
11869 type = double_type_node;
11870 if (type)
11871 return build_real_truncate (type, orig);
11872 }
11873
11874 if (!CONVERT_EXPR_P (exp))
11875 return exp;
11876
11877 sub = TREE_OPERAND (exp, 0);
11878 subt = TREE_TYPE (sub);
11879 expt = TREE_TYPE (exp);
11880
11881 if (!FLOAT_TYPE_P (subt))
11882 return exp;
11883
11884 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
11885 return exp;
11886
11887 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
11888 return exp;
11889
11890 return strip_float_extensions (sub);
11891 }
11892
11893 /* Strip out all handled components that produce invariant
11894 offsets. */
11895
11896 const_tree
11897 strip_invariant_refs (const_tree op)
11898 {
11899 while (handled_component_p (op))
11900 {
11901 switch (TREE_CODE (op))
11902 {
11903 case ARRAY_REF:
11904 case ARRAY_RANGE_REF:
11905 if (!is_gimple_constant (TREE_OPERAND (op, 1))
11906 || TREE_OPERAND (op, 2) != NULL_TREE
11907 || TREE_OPERAND (op, 3) != NULL_TREE)
11908 return NULL;
11909 break;
11910
11911 case COMPONENT_REF:
11912 if (TREE_OPERAND (op, 2) != NULL_TREE)
11913 return NULL;
11914 break;
11915
11916 default:;
11917 }
11918 op = TREE_OPERAND (op, 0);
11919 }
11920
11921 return op;
11922 }
11923
11924 static GTY(()) tree gcc_eh_personality_decl;
11925
11926 /* Return the GCC personality function decl. */
11927
11928 tree
11929 lhd_gcc_personality (void)
11930 {
11931 if (!gcc_eh_personality_decl)
11932 gcc_eh_personality_decl = build_personality_function ("gcc");
11933 return gcc_eh_personality_decl;
11934 }
11935
11936 /* TARGET is a call target of GIMPLE call statement
11937 (obtained by gimple_call_fn). Return true if it is
11938 OBJ_TYPE_REF representing an virtual call of C++ method.
11939 (As opposed to OBJ_TYPE_REF representing objc calls
11940 through a cast where middle-end devirtualization machinery
11941 can't apply.) */
11942
11943 bool
11944 virtual_method_call_p (const_tree target)
11945 {
11946 if (TREE_CODE (target) != OBJ_TYPE_REF)
11947 return false;
11948 tree t = TREE_TYPE (target);
11949 gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
11950 t = TREE_TYPE (t);
11951 if (TREE_CODE (t) == FUNCTION_TYPE)
11952 return false;
11953 gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
11954 /* If we do not have BINFO associated, it means that type was built
11955 without devirtualization enabled. Do not consider this a virtual
11956 call. */
11957 if (!TYPE_BINFO (obj_type_ref_class (target)))
11958 return false;
11959 return true;
11960 }
11961
11962 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
11963
11964 tree
11965 obj_type_ref_class (const_tree ref)
11966 {
11967 gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
11968 ref = TREE_TYPE (ref);
11969 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11970 ref = TREE_TYPE (ref);
11971 /* We look for type THIS points to. ObjC also builds
11972 OBJ_TYPE_REF with non-method calls, Their first parameter
11973 ID however also corresponds to class type. */
11974 gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
11975 || TREE_CODE (ref) == FUNCTION_TYPE);
11976 ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
11977 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11978 return TREE_TYPE (ref);
11979 }
11980
11981 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
11982
11983 static tree
11984 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
11985 {
11986 unsigned int i;
11987 tree base_binfo, b;
11988
11989 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
11990 if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
11991 && types_same_for_odr (TREE_TYPE (base_binfo), type))
11992 return base_binfo;
11993 else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
11994 return b;
11995 return NULL;
11996 }
11997
11998 /* Try to find a base info of BINFO that would have its field decl at offset
11999 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
12000 found, return, otherwise return NULL_TREE. */
12001
12002 tree
12003 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
12004 {
12005 tree type = BINFO_TYPE (binfo);
12006
12007 while (true)
12008 {
12009 HOST_WIDE_INT pos, size;
12010 tree fld;
12011 int i;
12012
12013 if (types_same_for_odr (type, expected_type))
12014 return binfo;
12015 if (offset < 0)
12016 return NULL_TREE;
12017
12018 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
12019 {
12020 if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
12021 continue;
12022
12023 pos = int_bit_position (fld);
12024 size = tree_to_uhwi (DECL_SIZE (fld));
12025 if (pos <= offset && (pos + size) > offset)
12026 break;
12027 }
12028 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
12029 return NULL_TREE;
12030
12031 /* Offset 0 indicates the primary base, whose vtable contents are
12032 represented in the binfo for the derived class. */
12033 else if (offset != 0)
12034 {
12035 tree found_binfo = NULL, base_binfo;
12036 /* Offsets in BINFO are in bytes relative to the whole structure
12037 while POS is in bits relative to the containing field. */
12038 int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
12039 / BITS_PER_UNIT);
12040
12041 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12042 if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
12043 && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
12044 {
12045 found_binfo = base_binfo;
12046 break;
12047 }
12048 if (found_binfo)
12049 binfo = found_binfo;
12050 else
12051 binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
12052 binfo_offset);
12053 }
12054
12055 type = TREE_TYPE (fld);
12056 offset -= pos;
12057 }
12058 }
12059
12060 /* Returns true if X is a typedef decl. */
12061
12062 bool
12063 is_typedef_decl (const_tree x)
12064 {
12065 return (x && TREE_CODE (x) == TYPE_DECL
12066 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
12067 }
12068
12069 /* Returns true iff TYPE is a type variant created for a typedef. */
12070
12071 bool
12072 typedef_variant_p (const_tree type)
12073 {
12074 return is_typedef_decl (TYPE_NAME (type));
12075 }
12076
12077 /* Warn about a use of an identifier which was marked deprecated. */
12078 void
12079 warn_deprecated_use (tree node, tree attr)
12080 {
12081 const char *msg;
12082
12083 if (node == 0 || !warn_deprecated_decl)
12084 return;
12085
12086 if (!attr)
12087 {
12088 if (DECL_P (node))
12089 attr = DECL_ATTRIBUTES (node);
12090 else if (TYPE_P (node))
12091 {
12092 tree decl = TYPE_STUB_DECL (node);
12093 if (decl)
12094 attr = lookup_attribute ("deprecated",
12095 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
12096 }
12097 }
12098
12099 if (attr)
12100 attr = lookup_attribute ("deprecated", attr);
12101
12102 if (attr)
12103 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
12104 else
12105 msg = NULL;
12106
12107 bool w;
12108 if (DECL_P (node))
12109 {
12110 if (msg)
12111 w = warning (OPT_Wdeprecated_declarations,
12112 "%qD is deprecated: %s", node, msg);
12113 else
12114 w = warning (OPT_Wdeprecated_declarations,
12115 "%qD is deprecated", node);
12116 if (w)
12117 inform (DECL_SOURCE_LOCATION (node), "declared here");
12118 }
12119 else if (TYPE_P (node))
12120 {
12121 tree what = NULL_TREE;
12122 tree decl = TYPE_STUB_DECL (node);
12123
12124 if (TYPE_NAME (node))
12125 {
12126 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
12127 what = TYPE_NAME (node);
12128 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
12129 && DECL_NAME (TYPE_NAME (node)))
12130 what = DECL_NAME (TYPE_NAME (node));
12131 }
12132
12133 if (decl)
12134 {
12135 if (what)
12136 {
12137 if (msg)
12138 w = warning (OPT_Wdeprecated_declarations,
12139 "%qE is deprecated: %s", what, msg);
12140 else
12141 w = warning (OPT_Wdeprecated_declarations,
12142 "%qE is deprecated", what);
12143 }
12144 else
12145 {
12146 if (msg)
12147 w = warning (OPT_Wdeprecated_declarations,
12148 "type is deprecated: %s", msg);
12149 else
12150 w = warning (OPT_Wdeprecated_declarations,
12151 "type is deprecated");
12152 }
12153 if (w)
12154 inform (DECL_SOURCE_LOCATION (decl), "declared here");
12155 }
12156 else
12157 {
12158 if (what)
12159 {
12160 if (msg)
12161 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
12162 what, msg);
12163 else
12164 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
12165 }
12166 else
12167 {
12168 if (msg)
12169 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
12170 msg);
12171 else
12172 warning (OPT_Wdeprecated_declarations, "type is deprecated");
12173 }
12174 }
12175 }
12176 }
12177
12178 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12179 somewhere in it. */
12180
12181 bool
12182 contains_bitfld_component_ref_p (const_tree ref)
12183 {
12184 while (handled_component_p (ref))
12185 {
12186 if (TREE_CODE (ref) == COMPONENT_REF
12187 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12188 return true;
12189 ref = TREE_OPERAND (ref, 0);
12190 }
12191
12192 return false;
12193 }
12194
12195 /* Try to determine whether a TRY_CATCH expression can fall through.
12196 This is a subroutine of block_may_fallthru. */
12197
12198 static bool
12199 try_catch_may_fallthru (const_tree stmt)
12200 {
12201 tree_stmt_iterator i;
12202
12203 /* If the TRY block can fall through, the whole TRY_CATCH can
12204 fall through. */
12205 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
12206 return true;
12207
12208 i = tsi_start (TREE_OPERAND (stmt, 1));
12209 switch (TREE_CODE (tsi_stmt (i)))
12210 {
12211 case CATCH_EXPR:
12212 /* We expect to see a sequence of CATCH_EXPR trees, each with a
12213 catch expression and a body. The whole TRY_CATCH may fall
12214 through iff any of the catch bodies falls through. */
12215 for (; !tsi_end_p (i); tsi_next (&i))
12216 {
12217 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
12218 return true;
12219 }
12220 return false;
12221
12222 case EH_FILTER_EXPR:
12223 /* The exception filter expression only matters if there is an
12224 exception. If the exception does not match EH_FILTER_TYPES,
12225 we will execute EH_FILTER_FAILURE, and we will fall through
12226 if that falls through. If the exception does match
12227 EH_FILTER_TYPES, the stack unwinder will continue up the
12228 stack, so we will not fall through. We don't know whether we
12229 will throw an exception which matches EH_FILTER_TYPES or not,
12230 so we just ignore EH_FILTER_TYPES and assume that we might
12231 throw an exception which doesn't match. */
12232 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
12233
12234 default:
12235 /* This case represents statements to be executed when an
12236 exception occurs. Those statements are implicitly followed
12237 by a RESX statement to resume execution after the exception.
12238 So in this case the TRY_CATCH never falls through. */
12239 return false;
12240 }
12241 }
12242
12243 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
12244 need not be 100% accurate; simply be conservative and return true if we
12245 don't know. This is used only to avoid stupidly generating extra code.
12246 If we're wrong, we'll just delete the extra code later. */
12247
12248 bool
12249 block_may_fallthru (const_tree block)
12250 {
12251 /* This CONST_CAST is okay because expr_last returns its argument
12252 unmodified and we assign it to a const_tree. */
12253 const_tree stmt = expr_last (CONST_CAST_TREE (block));
12254
12255 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
12256 {
12257 case GOTO_EXPR:
12258 case RETURN_EXPR:
12259 /* Easy cases. If the last statement of the block implies
12260 control transfer, then we can't fall through. */
12261 return false;
12262
12263 case SWITCH_EXPR:
12264 /* If SWITCH_LABELS is set, this is lowered, and represents a
12265 branch to a selected label and hence can not fall through.
12266 Otherwise SWITCH_BODY is set, and the switch can fall
12267 through. */
12268 return SWITCH_LABELS (stmt) == NULL_TREE;
12269
12270 case COND_EXPR:
12271 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
12272 return true;
12273 return block_may_fallthru (COND_EXPR_ELSE (stmt));
12274
12275 case BIND_EXPR:
12276 return block_may_fallthru (BIND_EXPR_BODY (stmt));
12277
12278 case TRY_CATCH_EXPR:
12279 return try_catch_may_fallthru (stmt);
12280
12281 case TRY_FINALLY_EXPR:
12282 /* The finally clause is always executed after the try clause,
12283 so if it does not fall through, then the try-finally will not
12284 fall through. Otherwise, if the try clause does not fall
12285 through, then when the finally clause falls through it will
12286 resume execution wherever the try clause was going. So the
12287 whole try-finally will only fall through if both the try
12288 clause and the finally clause fall through. */
12289 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
12290 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
12291
12292 case MODIFY_EXPR:
12293 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
12294 stmt = TREE_OPERAND (stmt, 1);
12295 else
12296 return true;
12297 /* FALLTHRU */
12298
12299 case CALL_EXPR:
12300 /* Functions that do not return do not fall through. */
12301 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
12302
12303 case CLEANUP_POINT_EXPR:
12304 return block_may_fallthru (TREE_OPERAND (stmt, 0));
12305
12306 case TARGET_EXPR:
12307 return block_may_fallthru (TREE_OPERAND (stmt, 1));
12308
12309 case ERROR_MARK:
12310 return true;
12311
12312 default:
12313 return lang_hooks.block_may_fallthru (stmt);
12314 }
12315 }
12316
12317 /* True if we are using EH to handle cleanups. */
12318 static bool using_eh_for_cleanups_flag = false;
12319
12320 /* This routine is called from front ends to indicate eh should be used for
12321 cleanups. */
12322 void
12323 using_eh_for_cleanups (void)
12324 {
12325 using_eh_for_cleanups_flag = true;
12326 }
12327
12328 /* Query whether EH is used for cleanups. */
12329 bool
12330 using_eh_for_cleanups_p (void)
12331 {
12332 return using_eh_for_cleanups_flag;
12333 }
12334
12335 /* Wrapper for tree_code_name to ensure that tree code is valid */
12336 const char *
12337 get_tree_code_name (enum tree_code code)
12338 {
12339 const char *invalid = "<invalid tree code>";
12340
12341 if (code >= MAX_TREE_CODES)
12342 return invalid;
12343
12344 return tree_code_name[code];
12345 }
12346
12347 /* Drops the TREE_OVERFLOW flag from T. */
12348
12349 tree
12350 drop_tree_overflow (tree t)
12351 {
12352 gcc_checking_assert (TREE_OVERFLOW (t));
12353
12354 /* For tree codes with a sharing machinery re-build the result. */
12355 if (TREE_CODE (t) == INTEGER_CST)
12356 return wide_int_to_tree (TREE_TYPE (t), t);
12357
12358 /* Otherwise, as all tcc_constants are possibly shared, copy the node
12359 and drop the flag. */
12360 t = copy_node (t);
12361 TREE_OVERFLOW (t) = 0;
12362
12363 /* For constants that contain nested constants, drop the flag
12364 from those as well. */
12365 if (TREE_CODE (t) == COMPLEX_CST)
12366 {
12367 if (TREE_OVERFLOW (TREE_REALPART (t)))
12368 TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
12369 if (TREE_OVERFLOW (TREE_IMAGPART (t)))
12370 TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
12371 }
12372 if (TREE_CODE (t) == VECTOR_CST)
12373 {
12374 for (unsigned i = 0; i < VECTOR_CST_NELTS (t); ++i)
12375 {
12376 tree& elt = VECTOR_CST_ELT (t, i);
12377 if (TREE_OVERFLOW (elt))
12378 elt = drop_tree_overflow (elt);
12379 }
12380 }
12381 return t;
12382 }
12383
12384 /* Given a memory reference expression T, return its base address.
12385 The base address of a memory reference expression is the main
12386 object being referenced. For instance, the base address for
12387 'array[i].fld[j]' is 'array'. You can think of this as stripping
12388 away the offset part from a memory address.
12389
12390 This function calls handled_component_p to strip away all the inner
12391 parts of the memory reference until it reaches the base object. */
12392
12393 tree
12394 get_base_address (tree t)
12395 {
12396 while (handled_component_p (t))
12397 t = TREE_OPERAND (t, 0);
12398
12399 if ((TREE_CODE (t) == MEM_REF
12400 || TREE_CODE (t) == TARGET_MEM_REF)
12401 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
12402 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
12403
12404 /* ??? Either the alias oracle or all callers need to properly deal
12405 with WITH_SIZE_EXPRs before we can look through those. */
12406 if (TREE_CODE (t) == WITH_SIZE_EXPR)
12407 return NULL_TREE;
12408
12409 return t;
12410 }
12411
12412 /* Return a tree of sizetype representing the size, in bytes, of the element
12413 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12414
12415 tree
12416 array_ref_element_size (tree exp)
12417 {
12418 tree aligned_size = TREE_OPERAND (exp, 3);
12419 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
12420 location_t loc = EXPR_LOCATION (exp);
12421
12422 /* If a size was specified in the ARRAY_REF, it's the size measured
12423 in alignment units of the element type. So multiply by that value. */
12424 if (aligned_size)
12425 {
12426 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12427 sizetype from another type of the same width and signedness. */
12428 if (TREE_TYPE (aligned_size) != sizetype)
12429 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
12430 return size_binop_loc (loc, MULT_EXPR, aligned_size,
12431 size_int (TYPE_ALIGN_UNIT (elmt_type)));
12432 }
12433
12434 /* Otherwise, take the size from that of the element type. Substitute
12435 any PLACEHOLDER_EXPR that we have. */
12436 else
12437 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
12438 }
12439
12440 /* Return a tree representing the lower bound of the array mentioned in
12441 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12442
12443 tree
12444 array_ref_low_bound (tree exp)
12445 {
12446 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12447
12448 /* If a lower bound is specified in EXP, use it. */
12449 if (TREE_OPERAND (exp, 2))
12450 return TREE_OPERAND (exp, 2);
12451
12452 /* Otherwise, if there is a domain type and it has a lower bound, use it,
12453 substituting for a PLACEHOLDER_EXPR as needed. */
12454 if (domain_type && TYPE_MIN_VALUE (domain_type))
12455 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
12456
12457 /* Otherwise, return a zero of the appropriate type. */
12458 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
12459 }
12460
12461 /* Return a tree representing the upper bound of the array mentioned in
12462 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12463
12464 tree
12465 array_ref_up_bound (tree exp)
12466 {
12467 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12468
12469 /* If there is a domain type and it has an upper bound, use it, substituting
12470 for a PLACEHOLDER_EXPR as needed. */
12471 if (domain_type && TYPE_MAX_VALUE (domain_type))
12472 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
12473
12474 /* Otherwise fail. */
12475 return NULL_TREE;
12476 }
12477
12478 /* Returns true if REF is an array reference or a component reference
12479 to an array at the end of a structure.
12480 If this is the case, the array may be allocated larger
12481 than its upper bound implies. */
12482
12483 bool
12484 array_at_struct_end_p (tree ref)
12485 {
12486 tree atype;
12487
12488 if (TREE_CODE (ref) == ARRAY_REF
12489 || TREE_CODE (ref) == ARRAY_RANGE_REF)
12490 {
12491 atype = TREE_TYPE (TREE_OPERAND (ref, 0));
12492 ref = TREE_OPERAND (ref, 0);
12493 }
12494 else if (TREE_CODE (ref) == COMPONENT_REF
12495 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
12496 atype = TREE_TYPE (TREE_OPERAND (ref, 1));
12497 else
12498 return false;
12499
12500 while (handled_component_p (ref))
12501 {
12502 /* If the reference chain contains a component reference to a
12503 non-union type and there follows another field the reference
12504 is not at the end of a structure. */
12505 if (TREE_CODE (ref) == COMPONENT_REF)
12506 {
12507 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
12508 {
12509 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
12510 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
12511 nextf = DECL_CHAIN (nextf);
12512 if (nextf)
12513 return false;
12514 }
12515 }
12516 /* If we have a multi-dimensional array we do not consider
12517 a non-innermost dimension as flex array if the whole
12518 multi-dimensional array is at struct end.
12519 Same for an array of aggregates with a trailing array
12520 member. */
12521 else if (TREE_CODE (ref) == ARRAY_REF)
12522 return false;
12523 else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
12524 ;
12525 /* If we view an underlying object as sth else then what we
12526 gathered up to now is what we have to rely on. */
12527 else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
12528 break;
12529 else
12530 gcc_unreachable ();
12531
12532 ref = TREE_OPERAND (ref, 0);
12533 }
12534
12535 /* The array now is at struct end. Treat flexible arrays as
12536 always subject to extend, even into just padding constrained by
12537 an underlying decl. */
12538 if (! TYPE_SIZE (atype))
12539 return true;
12540
12541 tree size = NULL;
12542
12543 if (TREE_CODE (ref) == MEM_REF
12544 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
12545 {
12546 size = TYPE_SIZE (TREE_TYPE (ref));
12547 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
12548 }
12549
12550 /* If the reference is based on a declared entity, the size of the array
12551 is constrained by its given domain. (Do not trust commons PR/69368). */
12552 if (DECL_P (ref)
12553 /* Be sure the size of MEM_REF target match. For example:
12554
12555 char buf[10];
12556 struct foo *str = (struct foo *)&buf;
12557
12558 str->trailin_array[2] = 1;
12559
12560 is valid because BUF allocate enough space. */
12561
12562 && (!size || (DECL_SIZE (ref) != NULL
12563 && operand_equal_p (DECL_SIZE (ref), size, 0)))
12564 && !(flag_unconstrained_commons
12565 && VAR_P (ref) && DECL_COMMON (ref)))
12566 return false;
12567
12568 return true;
12569 }
12570
12571 /* Return a tree representing the offset, in bytes, of the field referenced
12572 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
12573
12574 tree
12575 component_ref_field_offset (tree exp)
12576 {
12577 tree aligned_offset = TREE_OPERAND (exp, 2);
12578 tree field = TREE_OPERAND (exp, 1);
12579 location_t loc = EXPR_LOCATION (exp);
12580
12581 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
12582 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
12583 value. */
12584 if (aligned_offset)
12585 {
12586 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12587 sizetype from another type of the same width and signedness. */
12588 if (TREE_TYPE (aligned_offset) != sizetype)
12589 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
12590 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
12591 size_int (DECL_OFFSET_ALIGN (field)
12592 / BITS_PER_UNIT));
12593 }
12594
12595 /* Otherwise, take the offset from that of the field. Substitute
12596 any PLACEHOLDER_EXPR that we have. */
12597 else
12598 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
12599 }
12600
12601 /* Return the machine mode of T. For vectors, returns the mode of the
12602 inner type. The main use case is to feed the result to HONOR_NANS,
12603 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
12604
12605 machine_mode
12606 element_mode (const_tree t)
12607 {
12608 if (!TYPE_P (t))
12609 t = TREE_TYPE (t);
12610 if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
12611 t = TREE_TYPE (t);
12612 return TYPE_MODE (t);
12613 }
12614
12615 /* Vector types need to re-check the target flags each time we report
12616 the machine mode. We need to do this because attribute target can
12617 change the result of vector_mode_supported_p and have_regs_of_mode
12618 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
12619 change on a per-function basis. */
12620 /* ??? Possibly a better solution is to run through all the types
12621 referenced by a function and re-compute the TYPE_MODE once, rather
12622 than make the TYPE_MODE macro call a function. */
12623
12624 machine_mode
12625 vector_type_mode (const_tree t)
12626 {
12627 machine_mode mode;
12628
12629 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
12630
12631 mode = t->type_common.mode;
12632 if (VECTOR_MODE_P (mode)
12633 && (!targetm.vector_mode_supported_p (mode)
12634 || !have_regs_of_mode[mode]))
12635 {
12636 scalar_int_mode innermode;
12637
12638 /* For integers, try mapping it to a same-sized scalar mode. */
12639 if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
12640 {
12641 unsigned int size = (TYPE_VECTOR_SUBPARTS (t)
12642 * GET_MODE_BITSIZE (innermode));
12643 scalar_int_mode mode;
12644 if (int_mode_for_size (size, 0).exists (&mode)
12645 && have_regs_of_mode[mode])
12646 return mode;
12647 }
12648
12649 return BLKmode;
12650 }
12651
12652 return mode;
12653 }
12654
12655 /* Verify that basic properties of T match TV and thus T can be a variant of
12656 TV. TV should be the more specified variant (i.e. the main variant). */
12657
12658 static bool
12659 verify_type_variant (const_tree t, tree tv)
12660 {
12661 /* Type variant can differ by:
12662
12663 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
12664 ENCODE_QUAL_ADDR_SPACE.
12665 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
12666 in this case some values may not be set in the variant types
12667 (see TYPE_COMPLETE_P checks).
12668 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
12669 - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
12670 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
12671 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
12672 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
12673 this is necessary to make it possible to merge types form different TUs
12674 - arrays, pointers and references may have TREE_TYPE that is a variant
12675 of TREE_TYPE of their main variants.
12676 - aggregates may have new TYPE_FIELDS list that list variants of
12677 the main variant TYPE_FIELDS.
12678 - vector types may differ by TYPE_VECTOR_OPAQUE
12679 */
12680
12681 /* Convenience macro for matching individual fields. */
12682 #define verify_variant_match(flag) \
12683 do { \
12684 if (flag (tv) != flag (t)) \
12685 { \
12686 error ("type variant differs by " #flag "."); \
12687 debug_tree (tv); \
12688 return false; \
12689 } \
12690 } while (false)
12691
12692 /* tree_base checks. */
12693
12694 verify_variant_match (TREE_CODE);
12695 /* FIXME: Ada builds non-artificial variants of artificial types. */
12696 if (TYPE_ARTIFICIAL (tv) && 0)
12697 verify_variant_match (TYPE_ARTIFICIAL);
12698 if (POINTER_TYPE_P (tv))
12699 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
12700 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
12701 verify_variant_match (TYPE_UNSIGNED);
12702 verify_variant_match (TYPE_PACKED);
12703 if (TREE_CODE (t) == REFERENCE_TYPE)
12704 verify_variant_match (TYPE_REF_IS_RVALUE);
12705 if (AGGREGATE_TYPE_P (t))
12706 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
12707 else
12708 verify_variant_match (TYPE_SATURATING);
12709 /* FIXME: This check trigger during libstdc++ build. */
12710 if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
12711 verify_variant_match (TYPE_FINAL_P);
12712
12713 /* tree_type_common checks. */
12714
12715 if (COMPLETE_TYPE_P (t))
12716 {
12717 verify_variant_match (TYPE_MODE);
12718 if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
12719 && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
12720 verify_variant_match (TYPE_SIZE);
12721 if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
12722 && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
12723 && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
12724 {
12725 gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
12726 TYPE_SIZE_UNIT (tv), 0));
12727 error ("type variant has different TYPE_SIZE_UNIT");
12728 debug_tree (tv);
12729 error ("type variant's TYPE_SIZE_UNIT");
12730 debug_tree (TYPE_SIZE_UNIT (tv));
12731 error ("type's TYPE_SIZE_UNIT");
12732 debug_tree (TYPE_SIZE_UNIT (t));
12733 return false;
12734 }
12735 }
12736 verify_variant_match (TYPE_PRECISION);
12737 verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
12738 if (RECORD_OR_UNION_TYPE_P (t))
12739 verify_variant_match (TYPE_TRANSPARENT_AGGR);
12740 else if (TREE_CODE (t) == ARRAY_TYPE)
12741 verify_variant_match (TYPE_NONALIASED_COMPONENT);
12742 /* During LTO we merge variant lists from diferent translation units
12743 that may differ BY TYPE_CONTEXT that in turn may point
12744 to TRANSLATION_UNIT_DECL.
12745 Ada also builds variants of types with different TYPE_CONTEXT. */
12746 if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
12747 verify_variant_match (TYPE_CONTEXT);
12748 verify_variant_match (TYPE_STRING_FLAG);
12749 if (TYPE_ALIAS_SET_KNOWN_P (t))
12750 {
12751 error ("type variant with TYPE_ALIAS_SET_KNOWN_P");
12752 debug_tree (tv);
12753 return false;
12754 }
12755
12756 /* tree_type_non_common checks. */
12757
12758 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
12759 and dangle the pointer from time to time. */
12760 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
12761 && (in_lto_p || !TYPE_VFIELD (tv)
12762 || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
12763 {
12764 error ("type variant has different TYPE_VFIELD");
12765 debug_tree (tv);
12766 return false;
12767 }
12768 if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
12769 || TREE_CODE (t) == INTEGER_TYPE
12770 || TREE_CODE (t) == BOOLEAN_TYPE
12771 || TREE_CODE (t) == REAL_TYPE
12772 || TREE_CODE (t) == FIXED_POINT_TYPE)
12773 {
12774 verify_variant_match (TYPE_MAX_VALUE);
12775 verify_variant_match (TYPE_MIN_VALUE);
12776 }
12777 if (TREE_CODE (t) == METHOD_TYPE)
12778 verify_variant_match (TYPE_METHOD_BASETYPE);
12779 if (TREE_CODE (t) == OFFSET_TYPE)
12780 verify_variant_match (TYPE_OFFSET_BASETYPE);
12781 if (TREE_CODE (t) == ARRAY_TYPE)
12782 verify_variant_match (TYPE_ARRAY_MAX_SIZE);
12783 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
12784 or even type's main variant. This is needed to make bootstrap pass
12785 and the bug seems new in GCC 5.
12786 C++ FE should be updated to make this consistent and we should check
12787 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
12788 is a match with main variant.
12789
12790 Also disable the check for Java for now because of parser hack that builds
12791 first an dummy BINFO and then sometimes replace it by real BINFO in some
12792 of the copies. */
12793 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
12794 && TYPE_BINFO (t) != TYPE_BINFO (tv)
12795 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
12796 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
12797 at LTO time only. */
12798 && (in_lto_p && odr_type_p (t)))
12799 {
12800 error ("type variant has different TYPE_BINFO");
12801 debug_tree (tv);
12802 error ("type variant's TYPE_BINFO");
12803 debug_tree (TYPE_BINFO (tv));
12804 error ("type's TYPE_BINFO");
12805 debug_tree (TYPE_BINFO (t));
12806 return false;
12807 }
12808
12809 /* Check various uses of TYPE_VALUES_RAW. */
12810 if (TREE_CODE (t) == ENUMERAL_TYPE)
12811 verify_variant_match (TYPE_VALUES);
12812 else if (TREE_CODE (t) == ARRAY_TYPE)
12813 verify_variant_match (TYPE_DOMAIN);
12814 /* Permit incomplete variants of complete type. While FEs may complete
12815 all variants, this does not happen for C++ templates in all cases. */
12816 else if (RECORD_OR_UNION_TYPE_P (t)
12817 && COMPLETE_TYPE_P (t)
12818 && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
12819 {
12820 tree f1, f2;
12821
12822 /* Fortran builds qualified variants as new records with items of
12823 qualified type. Verify that they looks same. */
12824 for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
12825 f1 && f2;
12826 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
12827 if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
12828 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
12829 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
12830 /* FIXME: gfc_nonrestricted_type builds all types as variants
12831 with exception of pointer types. It deeply copies the type
12832 which means that we may end up with a variant type
12833 referring non-variant pointer. We may change it to
12834 produce types as variants, too, like
12835 objc_get_protocol_qualified_type does. */
12836 && !POINTER_TYPE_P (TREE_TYPE (f1)))
12837 || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
12838 || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
12839 break;
12840 if (f1 || f2)
12841 {
12842 error ("type variant has different TYPE_FIELDS");
12843 debug_tree (tv);
12844 error ("first mismatch is field");
12845 debug_tree (f1);
12846 error ("and field");
12847 debug_tree (f2);
12848 return false;
12849 }
12850 }
12851 else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
12852 verify_variant_match (TYPE_ARG_TYPES);
12853 /* For C++ the qualified variant of array type is really an array type
12854 of qualified TREE_TYPE.
12855 objc builds variants of pointer where pointer to type is a variant, too
12856 in objc_get_protocol_qualified_type. */
12857 if (TREE_TYPE (t) != TREE_TYPE (tv)
12858 && ((TREE_CODE (t) != ARRAY_TYPE
12859 && !POINTER_TYPE_P (t))
12860 || TYPE_MAIN_VARIANT (TREE_TYPE (t))
12861 != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
12862 {
12863 error ("type variant has different TREE_TYPE");
12864 debug_tree (tv);
12865 error ("type variant's TREE_TYPE");
12866 debug_tree (TREE_TYPE (tv));
12867 error ("type's TREE_TYPE");
12868 debug_tree (TREE_TYPE (t));
12869 return false;
12870 }
12871 if (type_with_alias_set_p (t)
12872 && !gimple_canonical_types_compatible_p (t, tv, false))
12873 {
12874 error ("type is not compatible with its variant");
12875 debug_tree (tv);
12876 error ("type variant's TREE_TYPE");
12877 debug_tree (TREE_TYPE (tv));
12878 error ("type's TREE_TYPE");
12879 debug_tree (TREE_TYPE (t));
12880 return false;
12881 }
12882 return true;
12883 #undef verify_variant_match
12884 }
12885
12886
12887 /* The TYPE_CANONICAL merging machinery. It should closely resemble
12888 the middle-end types_compatible_p function. It needs to avoid
12889 claiming types are different for types that should be treated
12890 the same with respect to TBAA. Canonical types are also used
12891 for IL consistency checks via the useless_type_conversion_p
12892 predicate which does not handle all type kinds itself but falls
12893 back to pointer-comparison of TYPE_CANONICAL for aggregates
12894 for example. */
12895
12896 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
12897 type calculation because we need to allow inter-operability between signed
12898 and unsigned variants. */
12899
12900 bool
12901 type_with_interoperable_signedness (const_tree type)
12902 {
12903 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
12904 signed char and unsigned char. Similarly fortran FE builds
12905 C_SIZE_T as signed type, while C defines it unsigned. */
12906
12907 return tree_code_for_canonical_type_merging (TREE_CODE (type))
12908 == INTEGER_TYPE
12909 && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
12910 || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
12911 }
12912
12913 /* Return true iff T1 and T2 are structurally identical for what
12914 TBAA is concerned.
12915 This function is used both by lto.c canonical type merging and by the
12916 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
12917 that have TYPE_CANONICAL defined and assume them equivalent. This is useful
12918 only for LTO because only in these cases TYPE_CANONICAL equivalence
12919 correspond to one defined by gimple_canonical_types_compatible_p. */
12920
12921 bool
12922 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
12923 bool trust_type_canonical)
12924 {
12925 /* Type variants should be same as the main variant. When not doing sanity
12926 checking to verify this fact, go to main variants and save some work. */
12927 if (trust_type_canonical)
12928 {
12929 t1 = TYPE_MAIN_VARIANT (t1);
12930 t2 = TYPE_MAIN_VARIANT (t2);
12931 }
12932
12933 /* Check first for the obvious case of pointer identity. */
12934 if (t1 == t2)
12935 return true;
12936
12937 /* Check that we have two types to compare. */
12938 if (t1 == NULL_TREE || t2 == NULL_TREE)
12939 return false;
12940
12941 /* We consider complete types always compatible with incomplete type.
12942 This does not make sense for canonical type calculation and thus we
12943 need to ensure that we are never called on it.
12944
12945 FIXME: For more correctness the function probably should have three modes
12946 1) mode assuming that types are complete mathcing their structure
12947 2) mode allowing incomplete types but producing equivalence classes
12948 and thus ignoring all info from complete types
12949 3) mode allowing incomplete types to match complete but checking
12950 compatibility between complete types.
12951
12952 1 and 2 can be used for canonical type calculation. 3 is the real
12953 definition of type compatibility that can be used i.e. for warnings during
12954 declaration merging. */
12955
12956 gcc_assert (!trust_type_canonical
12957 || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
12958 /* If the types have been previously registered and found equal
12959 they still are. */
12960
12961 if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
12962 && trust_type_canonical)
12963 {
12964 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
12965 they are always NULL, but they are set to non-NULL for types
12966 constructed by build_pointer_type and variants. In this case the
12967 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
12968 all pointers are considered equal. Be sure to not return false
12969 negatives. */
12970 gcc_checking_assert (canonical_type_used_p (t1)
12971 && canonical_type_used_p (t2));
12972 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
12973 }
12974
12975 /* Can't be the same type if the types don't have the same code. */
12976 enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
12977 if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
12978 return false;
12979
12980 /* Qualifiers do not matter for canonical type comparison purposes. */
12981
12982 /* Void types and nullptr types are always the same. */
12983 if (TREE_CODE (t1) == VOID_TYPE
12984 || TREE_CODE (t1) == NULLPTR_TYPE)
12985 return true;
12986
12987 /* Can't be the same type if they have different mode. */
12988 if (TYPE_MODE (t1) != TYPE_MODE (t2))
12989 return false;
12990
12991 /* Non-aggregate types can be handled cheaply. */
12992 if (INTEGRAL_TYPE_P (t1)
12993 || SCALAR_FLOAT_TYPE_P (t1)
12994 || FIXED_POINT_TYPE_P (t1)
12995 || TREE_CODE (t1) == VECTOR_TYPE
12996 || TREE_CODE (t1) == COMPLEX_TYPE
12997 || TREE_CODE (t1) == OFFSET_TYPE
12998 || POINTER_TYPE_P (t1))
12999 {
13000 /* Can't be the same type if they have different recision. */
13001 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
13002 return false;
13003
13004 /* In some cases the signed and unsigned types are required to be
13005 inter-operable. */
13006 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
13007 && !type_with_interoperable_signedness (t1))
13008 return false;
13009
13010 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
13011 interoperable with "signed char". Unless all frontends are revisited
13012 to agree on these types, we must ignore the flag completely. */
13013
13014 /* Fortran standard define C_PTR type that is compatible with every
13015 C pointer. For this reason we need to glob all pointers into one.
13016 Still pointers in different address spaces are not compatible. */
13017 if (POINTER_TYPE_P (t1))
13018 {
13019 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
13020 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
13021 return false;
13022 }
13023
13024 /* Tail-recurse to components. */
13025 if (TREE_CODE (t1) == VECTOR_TYPE
13026 || TREE_CODE (t1) == COMPLEX_TYPE)
13027 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
13028 TREE_TYPE (t2),
13029 trust_type_canonical);
13030
13031 return true;
13032 }
13033
13034 /* Do type-specific comparisons. */
13035 switch (TREE_CODE (t1))
13036 {
13037 case ARRAY_TYPE:
13038 /* Array types are the same if the element types are the same and
13039 the number of elements are the same. */
13040 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13041 trust_type_canonical)
13042 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
13043 || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
13044 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
13045 return false;
13046 else
13047 {
13048 tree i1 = TYPE_DOMAIN (t1);
13049 tree i2 = TYPE_DOMAIN (t2);
13050
13051 /* For an incomplete external array, the type domain can be
13052 NULL_TREE. Check this condition also. */
13053 if (i1 == NULL_TREE && i2 == NULL_TREE)
13054 return true;
13055 else if (i1 == NULL_TREE || i2 == NULL_TREE)
13056 return false;
13057 else
13058 {
13059 tree min1 = TYPE_MIN_VALUE (i1);
13060 tree min2 = TYPE_MIN_VALUE (i2);
13061 tree max1 = TYPE_MAX_VALUE (i1);
13062 tree max2 = TYPE_MAX_VALUE (i2);
13063
13064 /* The minimum/maximum values have to be the same. */
13065 if ((min1 == min2
13066 || (min1 && min2
13067 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
13068 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
13069 || operand_equal_p (min1, min2, 0))))
13070 && (max1 == max2
13071 || (max1 && max2
13072 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
13073 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
13074 || operand_equal_p (max1, max2, 0)))))
13075 return true;
13076 else
13077 return false;
13078 }
13079 }
13080
13081 case METHOD_TYPE:
13082 case FUNCTION_TYPE:
13083 /* Function types are the same if the return type and arguments types
13084 are the same. */
13085 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13086 trust_type_canonical))
13087 return false;
13088
13089 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
13090 return true;
13091 else
13092 {
13093 tree parms1, parms2;
13094
13095 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
13096 parms1 && parms2;
13097 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
13098 {
13099 if (!gimple_canonical_types_compatible_p
13100 (TREE_VALUE (parms1), TREE_VALUE (parms2),
13101 trust_type_canonical))
13102 return false;
13103 }
13104
13105 if (parms1 || parms2)
13106 return false;
13107
13108 return true;
13109 }
13110
13111 case RECORD_TYPE:
13112 case UNION_TYPE:
13113 case QUAL_UNION_TYPE:
13114 {
13115 tree f1, f2;
13116
13117 /* Don't try to compare variants of an incomplete type, before
13118 TYPE_FIELDS has been copied around. */
13119 if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
13120 return true;
13121
13122
13123 if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
13124 return false;
13125
13126 /* For aggregate types, all the fields must be the same. */
13127 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
13128 f1 || f2;
13129 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13130 {
13131 /* Skip non-fields and zero-sized fields. */
13132 while (f1 && (TREE_CODE (f1) != FIELD_DECL
13133 || (DECL_SIZE (f1)
13134 && integer_zerop (DECL_SIZE (f1)))))
13135 f1 = TREE_CHAIN (f1);
13136 while (f2 && (TREE_CODE (f2) != FIELD_DECL
13137 || (DECL_SIZE (f2)
13138 && integer_zerop (DECL_SIZE (f2)))))
13139 f2 = TREE_CHAIN (f2);
13140 if (!f1 || !f2)
13141 break;
13142 /* The fields must have the same name, offset and type. */
13143 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
13144 || !gimple_compare_field_offset (f1, f2)
13145 || !gimple_canonical_types_compatible_p
13146 (TREE_TYPE (f1), TREE_TYPE (f2),
13147 trust_type_canonical))
13148 return false;
13149 }
13150
13151 /* If one aggregate has more fields than the other, they
13152 are not the same. */
13153 if (f1 || f2)
13154 return false;
13155
13156 return true;
13157 }
13158
13159 default:
13160 /* Consider all types with language specific trees in them mutually
13161 compatible. This is executed only from verify_type and false
13162 positives can be tolerated. */
13163 gcc_assert (!in_lto_p);
13164 return true;
13165 }
13166 }
13167
13168 /* Verify type T. */
13169
13170 void
13171 verify_type (const_tree t)
13172 {
13173 bool error_found = false;
13174 tree mv = TYPE_MAIN_VARIANT (t);
13175 if (!mv)
13176 {
13177 error ("Main variant is not defined");
13178 error_found = true;
13179 }
13180 else if (mv != TYPE_MAIN_VARIANT (mv))
13181 {
13182 error ("TYPE_MAIN_VARIANT has different TYPE_MAIN_VARIANT");
13183 debug_tree (mv);
13184 error_found = true;
13185 }
13186 else if (t != mv && !verify_type_variant (t, mv))
13187 error_found = true;
13188
13189 tree ct = TYPE_CANONICAL (t);
13190 if (!ct)
13191 ;
13192 else if (TYPE_CANONICAL (t) != ct)
13193 {
13194 error ("TYPE_CANONICAL has different TYPE_CANONICAL");
13195 debug_tree (ct);
13196 error_found = true;
13197 }
13198 /* Method and function types can not be used to address memory and thus
13199 TYPE_CANONICAL really matters only for determining useless conversions.
13200
13201 FIXME: C++ FE produce declarations of builtin functions that are not
13202 compatible with main variants. */
13203 else if (TREE_CODE (t) == FUNCTION_TYPE)
13204 ;
13205 else if (t != ct
13206 /* FIXME: gimple_canonical_types_compatible_p can not compare types
13207 with variably sized arrays because their sizes possibly
13208 gimplified to different variables. */
13209 && !variably_modified_type_p (ct, NULL)
13210 && !gimple_canonical_types_compatible_p (t, ct, false))
13211 {
13212 error ("TYPE_CANONICAL is not compatible");
13213 debug_tree (ct);
13214 error_found = true;
13215 }
13216
13217 if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
13218 && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
13219 {
13220 error ("TYPE_MODE of TYPE_CANONICAL is not compatible");
13221 debug_tree (ct);
13222 error_found = true;
13223 }
13224 if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
13225 {
13226 error ("TYPE_CANONICAL of main variant is not main variant");
13227 debug_tree (ct);
13228 debug_tree (TYPE_MAIN_VARIANT (ct));
13229 error_found = true;
13230 }
13231
13232
13233 /* Check various uses of TYPE_MIN_VALUE_RAW. */
13234 if (RECORD_OR_UNION_TYPE_P (t))
13235 {
13236 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13237 and danagle the pointer from time to time. */
13238 if (TYPE_VFIELD (t)
13239 && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
13240 && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
13241 {
13242 error ("TYPE_VFIELD is not FIELD_DECL nor TREE_LIST");
13243 debug_tree (TYPE_VFIELD (t));
13244 error_found = true;
13245 }
13246 }
13247 else if (TREE_CODE (t) == POINTER_TYPE)
13248 {
13249 if (TYPE_NEXT_PTR_TO (t)
13250 && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
13251 {
13252 error ("TYPE_NEXT_PTR_TO is not POINTER_TYPE");
13253 debug_tree (TYPE_NEXT_PTR_TO (t));
13254 error_found = true;
13255 }
13256 }
13257 else if (TREE_CODE (t) == REFERENCE_TYPE)
13258 {
13259 if (TYPE_NEXT_REF_TO (t)
13260 && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
13261 {
13262 error ("TYPE_NEXT_REF_TO is not REFERENCE_TYPE");
13263 debug_tree (TYPE_NEXT_REF_TO (t));
13264 error_found = true;
13265 }
13266 }
13267 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13268 || TREE_CODE (t) == FIXED_POINT_TYPE)
13269 {
13270 /* FIXME: The following check should pass:
13271 useless_type_conversion_p (const_cast <tree> (t),
13272 TREE_TYPE (TYPE_MIN_VALUE (t))
13273 but does not for C sizetypes in LTO. */
13274 }
13275
13276 /* Check various uses of TYPE_MAXVAL_RAW. */
13277 if (RECORD_OR_UNION_TYPE_P (t))
13278 {
13279 if (!TYPE_BINFO (t))
13280 ;
13281 else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
13282 {
13283 error ("TYPE_BINFO is not TREE_BINFO");
13284 debug_tree (TYPE_BINFO (t));
13285 error_found = true;
13286 }
13287 else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
13288 {
13289 error ("TYPE_BINFO type is not TYPE_MAIN_VARIANT");
13290 debug_tree (TREE_TYPE (TYPE_BINFO (t)));
13291 error_found = true;
13292 }
13293 }
13294 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
13295 {
13296 if (TYPE_METHOD_BASETYPE (t)
13297 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
13298 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
13299 {
13300 error ("TYPE_METHOD_BASETYPE is not record nor union");
13301 debug_tree (TYPE_METHOD_BASETYPE (t));
13302 error_found = true;
13303 }
13304 }
13305 else if (TREE_CODE (t) == OFFSET_TYPE)
13306 {
13307 if (TYPE_OFFSET_BASETYPE (t)
13308 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
13309 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
13310 {
13311 error ("TYPE_OFFSET_BASETYPE is not record nor union");
13312 debug_tree (TYPE_OFFSET_BASETYPE (t));
13313 error_found = true;
13314 }
13315 }
13316 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13317 || TREE_CODE (t) == FIXED_POINT_TYPE)
13318 {
13319 /* FIXME: The following check should pass:
13320 useless_type_conversion_p (const_cast <tree> (t),
13321 TREE_TYPE (TYPE_MAX_VALUE (t))
13322 but does not for C sizetypes in LTO. */
13323 }
13324 else if (TREE_CODE (t) == ARRAY_TYPE)
13325 {
13326 if (TYPE_ARRAY_MAX_SIZE (t)
13327 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
13328 {
13329 error ("TYPE_ARRAY_MAX_SIZE not INTEGER_CST");
13330 debug_tree (TYPE_ARRAY_MAX_SIZE (t));
13331 error_found = true;
13332 }
13333 }
13334 else if (TYPE_MAX_VALUE_RAW (t))
13335 {
13336 error ("TYPE_MAX_VALUE_RAW non-NULL");
13337 debug_tree (TYPE_MAX_VALUE_RAW (t));
13338 error_found = true;
13339 }
13340
13341 if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
13342 {
13343 error ("TYPE_LANG_SLOT_1 (binfo) field is non-NULL");
13344 debug_tree (TYPE_LANG_SLOT_1 (t));
13345 error_found = true;
13346 }
13347
13348 /* Check various uses of TYPE_VALUES_RAW. */
13349 if (TREE_CODE (t) == ENUMERAL_TYPE)
13350 for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
13351 {
13352 tree value = TREE_VALUE (l);
13353 tree name = TREE_PURPOSE (l);
13354
13355 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
13356 CONST_DECL of ENUMERAL TYPE. */
13357 if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
13358 {
13359 error ("Enum value is not CONST_DECL or INTEGER_CST");
13360 debug_tree (value);
13361 debug_tree (name);
13362 error_found = true;
13363 }
13364 if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
13365 && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
13366 {
13367 error ("Enum value type is not INTEGER_TYPE nor convertible to the enum");
13368 debug_tree (value);
13369 debug_tree (name);
13370 error_found = true;
13371 }
13372 if (TREE_CODE (name) != IDENTIFIER_NODE)
13373 {
13374 error ("Enum value name is not IDENTIFIER_NODE");
13375 debug_tree (value);
13376 debug_tree (name);
13377 error_found = true;
13378 }
13379 }
13380 else if (TREE_CODE (t) == ARRAY_TYPE)
13381 {
13382 if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
13383 {
13384 error ("Array TYPE_DOMAIN is not integer type");
13385 debug_tree (TYPE_DOMAIN (t));
13386 error_found = true;
13387 }
13388 }
13389 else if (RECORD_OR_UNION_TYPE_P (t))
13390 {
13391 if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
13392 {
13393 error ("TYPE_FIELDS defined in incomplete type");
13394 error_found = true;
13395 }
13396 for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
13397 {
13398 /* TODO: verify properties of decls. */
13399 if (TREE_CODE (fld) == FIELD_DECL)
13400 ;
13401 else if (TREE_CODE (fld) == TYPE_DECL)
13402 ;
13403 else if (TREE_CODE (fld) == CONST_DECL)
13404 ;
13405 else if (VAR_P (fld))
13406 ;
13407 else if (TREE_CODE (fld) == TEMPLATE_DECL)
13408 ;
13409 else if (TREE_CODE (fld) == USING_DECL)
13410 ;
13411 else if (TREE_CODE (fld) == FUNCTION_DECL)
13412 ;
13413 else
13414 {
13415 error ("Wrong tree in TYPE_FIELDS list");
13416 debug_tree (fld);
13417 error_found = true;
13418 }
13419 }
13420 }
13421 else if (TREE_CODE (t) == INTEGER_TYPE
13422 || TREE_CODE (t) == BOOLEAN_TYPE
13423 || TREE_CODE (t) == OFFSET_TYPE
13424 || TREE_CODE (t) == REFERENCE_TYPE
13425 || TREE_CODE (t) == NULLPTR_TYPE
13426 || TREE_CODE (t) == POINTER_TYPE)
13427 {
13428 if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
13429 {
13430 error ("TYPE_CACHED_VALUES_P is %i while TYPE_CACHED_VALUES is %p",
13431 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
13432 error_found = true;
13433 }
13434 else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
13435 {
13436 error ("TYPE_CACHED_VALUES is not TREE_VEC");
13437 debug_tree (TYPE_CACHED_VALUES (t));
13438 error_found = true;
13439 }
13440 /* Verify just enough of cache to ensure that no one copied it to new type.
13441 All copying should go by copy_node that should clear it. */
13442 else if (TYPE_CACHED_VALUES_P (t))
13443 {
13444 int i;
13445 for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
13446 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
13447 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
13448 {
13449 error ("wrong TYPE_CACHED_VALUES entry");
13450 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
13451 error_found = true;
13452 break;
13453 }
13454 }
13455 }
13456 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
13457 for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
13458 {
13459 /* C++ FE uses TREE_PURPOSE to store initial values. */
13460 if (TREE_PURPOSE (l) && in_lto_p)
13461 {
13462 error ("TREE_PURPOSE is non-NULL in TYPE_ARG_TYPES list");
13463 debug_tree (l);
13464 error_found = true;
13465 }
13466 if (!TYPE_P (TREE_VALUE (l)))
13467 {
13468 error ("Wrong entry in TYPE_ARG_TYPES list");
13469 debug_tree (l);
13470 error_found = true;
13471 }
13472 }
13473 else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
13474 {
13475 error ("TYPE_VALUES_RAW field is non-NULL");
13476 debug_tree (TYPE_VALUES_RAW (t));
13477 error_found = true;
13478 }
13479 if (TREE_CODE (t) != INTEGER_TYPE
13480 && TREE_CODE (t) != BOOLEAN_TYPE
13481 && TREE_CODE (t) != OFFSET_TYPE
13482 && TREE_CODE (t) != REFERENCE_TYPE
13483 && TREE_CODE (t) != NULLPTR_TYPE
13484 && TREE_CODE (t) != POINTER_TYPE
13485 && TYPE_CACHED_VALUES_P (t))
13486 {
13487 error ("TYPE_CACHED_VALUES_P is set while it should not");
13488 error_found = true;
13489 }
13490 if (TYPE_STRING_FLAG (t)
13491 && TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != INTEGER_TYPE)
13492 {
13493 error ("TYPE_STRING_FLAG is set on wrong type code");
13494 error_found = true;
13495 }
13496
13497 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
13498 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
13499 of a type. */
13500 if (TREE_CODE (t) == METHOD_TYPE
13501 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
13502 {
13503 error ("TYPE_METHOD_BASETYPE is not main variant");
13504 error_found = true;
13505 }
13506
13507 if (error_found)
13508 {
13509 debug_tree (const_cast <tree> (t));
13510 internal_error ("verify_type failed");
13511 }
13512 }
13513
13514
13515 /* Return 1 if ARG interpreted as signed in its precision is known to be
13516 always positive or 2 if ARG is known to be always negative, or 3 if
13517 ARG may be positive or negative. */
13518
13519 int
13520 get_range_pos_neg (tree arg)
13521 {
13522 if (arg == error_mark_node)
13523 return 3;
13524
13525 int prec = TYPE_PRECISION (TREE_TYPE (arg));
13526 int cnt = 0;
13527 if (TREE_CODE (arg) == INTEGER_CST)
13528 {
13529 wide_int w = wi::sext (arg, prec);
13530 if (wi::neg_p (w))
13531 return 2;
13532 else
13533 return 1;
13534 }
13535 while (CONVERT_EXPR_P (arg)
13536 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
13537 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
13538 {
13539 arg = TREE_OPERAND (arg, 0);
13540 /* Narrower value zero extended into wider type
13541 will always result in positive values. */
13542 if (TYPE_UNSIGNED (TREE_TYPE (arg))
13543 && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
13544 return 1;
13545 prec = TYPE_PRECISION (TREE_TYPE (arg));
13546 if (++cnt > 30)
13547 return 3;
13548 }
13549
13550 if (TREE_CODE (arg) != SSA_NAME)
13551 return 3;
13552 wide_int arg_min, arg_max;
13553 while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
13554 {
13555 gimple *g = SSA_NAME_DEF_STMT (arg);
13556 if (is_gimple_assign (g)
13557 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
13558 {
13559 tree t = gimple_assign_rhs1 (g);
13560 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
13561 && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
13562 {
13563 if (TYPE_UNSIGNED (TREE_TYPE (t))
13564 && TYPE_PRECISION (TREE_TYPE (t)) < prec)
13565 return 1;
13566 prec = TYPE_PRECISION (TREE_TYPE (t));
13567 arg = t;
13568 if (++cnt > 30)
13569 return 3;
13570 continue;
13571 }
13572 }
13573 return 3;
13574 }
13575 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
13576 {
13577 /* For unsigned values, the "positive" range comes
13578 below the "negative" range. */
13579 if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
13580 return 1;
13581 if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
13582 return 2;
13583 }
13584 else
13585 {
13586 if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
13587 return 1;
13588 if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
13589 return 2;
13590 }
13591 return 3;
13592 }
13593
13594
13595
13596
13597 /* Return true if ARG is marked with the nonnull attribute in the
13598 current function signature. */
13599
13600 bool
13601 nonnull_arg_p (const_tree arg)
13602 {
13603 tree t, attrs, fntype;
13604 unsigned HOST_WIDE_INT arg_num;
13605
13606 gcc_assert (TREE_CODE (arg) == PARM_DECL
13607 && (POINTER_TYPE_P (TREE_TYPE (arg))
13608 || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
13609
13610 /* The static chain decl is always non null. */
13611 if (arg == cfun->static_chain_decl)
13612 return true;
13613
13614 /* THIS argument of method is always non-NULL. */
13615 if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
13616 && arg == DECL_ARGUMENTS (cfun->decl)
13617 && flag_delete_null_pointer_checks)
13618 return true;
13619
13620 /* Values passed by reference are always non-NULL. */
13621 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
13622 && flag_delete_null_pointer_checks)
13623 return true;
13624
13625 fntype = TREE_TYPE (cfun->decl);
13626 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
13627 {
13628 attrs = lookup_attribute ("nonnull", attrs);
13629
13630 /* If "nonnull" wasn't specified, we know nothing about the argument. */
13631 if (attrs == NULL_TREE)
13632 return false;
13633
13634 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
13635 if (TREE_VALUE (attrs) == NULL_TREE)
13636 return true;
13637
13638 /* Get the position number for ARG in the function signature. */
13639 for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
13640 t;
13641 t = DECL_CHAIN (t), arg_num++)
13642 {
13643 if (t == arg)
13644 break;
13645 }
13646
13647 gcc_assert (t == arg);
13648
13649 /* Now see if ARG_NUM is mentioned in the nonnull list. */
13650 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
13651 {
13652 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
13653 return true;
13654 }
13655 }
13656
13657 return false;
13658 }
13659
13660 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
13661 information. */
13662
13663 location_t
13664 set_block (location_t loc, tree block)
13665 {
13666 location_t pure_loc = get_pure_location (loc);
13667 source_range src_range = get_range_from_loc (line_table, loc);
13668 return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
13669 }
13670
13671 location_t
13672 set_source_range (tree expr, location_t start, location_t finish)
13673 {
13674 source_range src_range;
13675 src_range.m_start = start;
13676 src_range.m_finish = finish;
13677 return set_source_range (expr, src_range);
13678 }
13679
13680 location_t
13681 set_source_range (tree expr, source_range src_range)
13682 {
13683 if (!EXPR_P (expr))
13684 return UNKNOWN_LOCATION;
13685
13686 location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
13687 location_t adhoc = COMBINE_LOCATION_DATA (line_table,
13688 pure_loc,
13689 src_range,
13690 NULL);
13691 SET_EXPR_LOCATION (expr, adhoc);
13692 return adhoc;
13693 }
13694
13695 /* Return the name of combined function FN, for debugging purposes. */
13696
13697 const char *
13698 combined_fn_name (combined_fn fn)
13699 {
13700 if (builtin_fn_p (fn))
13701 {
13702 tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
13703 return IDENTIFIER_POINTER (DECL_NAME (fndecl));
13704 }
13705 else
13706 return internal_fn_name (as_internal_fn (fn));
13707 }
13708
13709 /* Return a bitmap with a bit set corresponding to each argument in
13710 a function call type FNTYPE declared with attribute nonnull,
13711 or null if none of the function's argument are nonnull. The caller
13712 must free the bitmap. */
13713
13714 bitmap
13715 get_nonnull_args (const_tree fntype)
13716 {
13717 if (fntype == NULL_TREE)
13718 return NULL;
13719
13720 tree attrs = TYPE_ATTRIBUTES (fntype);
13721 if (!attrs)
13722 return NULL;
13723
13724 bitmap argmap = NULL;
13725
13726 /* A function declaration can specify multiple attribute nonnull,
13727 each with zero or more arguments. The loop below creates a bitmap
13728 representing a union of all the arguments. An empty (but non-null)
13729 bitmap means that all arguments have been declaraed nonnull. */
13730 for ( ; attrs; attrs = TREE_CHAIN (attrs))
13731 {
13732 attrs = lookup_attribute ("nonnull", attrs);
13733 if (!attrs)
13734 break;
13735
13736 if (!argmap)
13737 argmap = BITMAP_ALLOC (NULL);
13738
13739 if (!TREE_VALUE (attrs))
13740 {
13741 /* Clear the bitmap in case a previous attribute nonnull
13742 set it and this one overrides it for all arguments. */
13743 bitmap_clear (argmap);
13744 return argmap;
13745 }
13746
13747 /* Iterate over the indices of the format arguments declared nonnull
13748 and set a bit for each. */
13749 for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
13750 {
13751 unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
13752 bitmap_set_bit (argmap, val);
13753 }
13754 }
13755
13756 return argmap;
13757 }
13758
13759 /* List of pointer types used to declare builtins before we have seen their
13760 real declaration.
13761
13762 Keep the size up to date in tree.h ! */
13763 const builtin_structptr_type builtin_structptr_types[6] =
13764 {
13765 { fileptr_type_node, ptr_type_node, "FILE" },
13766 { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
13767 { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
13768 { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
13769 { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
13770 { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
13771 };
13772
13773 #if CHECKING_P
13774
13775 namespace selftest {
13776
13777 /* Selftests for tree. */
13778
13779 /* Verify that integer constants are sane. */
13780
13781 static void
13782 test_integer_constants ()
13783 {
13784 ASSERT_TRUE (integer_type_node != NULL);
13785 ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
13786
13787 tree type = integer_type_node;
13788
13789 tree zero = build_zero_cst (type);
13790 ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
13791 ASSERT_EQ (type, TREE_TYPE (zero));
13792
13793 tree one = build_int_cst (type, 1);
13794 ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
13795 ASSERT_EQ (type, TREE_TYPE (zero));
13796 }
13797
13798 /* Verify identifiers. */
13799
13800 static void
13801 test_identifiers ()
13802 {
13803 tree identifier = get_identifier ("foo");
13804 ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
13805 ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
13806 }
13807
13808 /* Verify LABEL_DECL. */
13809
13810 static void
13811 test_labels ()
13812 {
13813 tree identifier = get_identifier ("err");
13814 tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
13815 identifier, void_type_node);
13816 ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
13817 ASSERT_FALSE (FORCED_LABEL (label_decl));
13818 }
13819
13820 /* Run all of the selftests within this file. */
13821
13822 void
13823 tree_c_tests ()
13824 {
13825 test_integer_constants ();
13826 test_identifiers ();
13827 test_labels ();
13828 }
13829
13830 } // namespace selftest
13831
13832 #endif /* CHECKING_P */
13833
13834 #include "gt-tree.h"