ipa-devirt.c (odr_types_equivalent_p): Expect constants than const decls in TREE_VALU...
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent but can occasionally
28 calls language-dependent routines. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "params.h"
58 #include "langhooks-def.h"
59 #include "tree-diagnostic.h"
60 #include "except.h"
61 #include "builtins.h"
62 #include "print-tree.h"
63 #include "ipa-utils.h"
64 #include "selftest.h"
65 #include "stringpool.h"
66 #include "attribs.h"
67 #include "rtl.h"
68 #include "regs.h"
69 #include "tree-vector-builder.h"
70
71 /* Tree code classes. */
72
73 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
74 #define END_OF_BASE_TREE_CODES tcc_exceptional,
75
76 const enum tree_code_class tree_code_type[] = {
77 #include "all-tree.def"
78 };
79
80 #undef DEFTREECODE
81 #undef END_OF_BASE_TREE_CODES
82
83 /* Table indexed by tree code giving number of expression
84 operands beyond the fixed part of the node structure.
85 Not used for types or decls. */
86
87 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
88 #define END_OF_BASE_TREE_CODES 0,
89
90 const unsigned char tree_code_length[] = {
91 #include "all-tree.def"
92 };
93
94 #undef DEFTREECODE
95 #undef END_OF_BASE_TREE_CODES
96
97 /* Names of tree components.
98 Used for printing out the tree and error messages. */
99 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
100 #define END_OF_BASE_TREE_CODES "@dummy",
101
102 static const char *const tree_code_name[] = {
103 #include "all-tree.def"
104 };
105
106 #undef DEFTREECODE
107 #undef END_OF_BASE_TREE_CODES
108
109 /* Each tree code class has an associated string representation.
110 These must correspond to the tree_code_class entries. */
111
112 const char *const tree_code_class_strings[] =
113 {
114 "exceptional",
115 "constant",
116 "type",
117 "declaration",
118 "reference",
119 "comparison",
120 "unary",
121 "binary",
122 "statement",
123 "vl_exp",
124 "expression"
125 };
126
127 /* obstack.[ch] explicitly declined to prototype this. */
128 extern int _obstack_allocated_p (struct obstack *h, void *obj);
129
130 /* Statistics-gathering stuff. */
131
132 static uint64_t tree_code_counts[MAX_TREE_CODES];
133 uint64_t tree_node_counts[(int) all_kinds];
134 uint64_t tree_node_sizes[(int) all_kinds];
135
136 /* Keep in sync with tree.h:enum tree_node_kind. */
137 static const char * const tree_node_kind_names[] = {
138 "decls",
139 "types",
140 "blocks",
141 "stmts",
142 "refs",
143 "exprs",
144 "constants",
145 "identifiers",
146 "vecs",
147 "binfos",
148 "ssa names",
149 "constructors",
150 "random kinds",
151 "lang_decl kinds",
152 "lang_type kinds",
153 "omp clauses",
154 };
155
156 /* Unique id for next decl created. */
157 static GTY(()) int next_decl_uid;
158 /* Unique id for next type created. */
159 static GTY(()) unsigned next_type_uid = 1;
160 /* Unique id for next debug decl created. Use negative numbers,
161 to catch erroneous uses. */
162 static GTY(()) int next_debug_decl_uid;
163
164 /* Since we cannot rehash a type after it is in the table, we have to
165 keep the hash code. */
166
167 struct GTY((for_user)) type_hash {
168 unsigned long hash;
169 tree type;
170 };
171
172 /* Initial size of the hash table (rounded to next prime). */
173 #define TYPE_HASH_INITIAL_SIZE 1000
174
175 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
176 {
177 static hashval_t hash (type_hash *t) { return t->hash; }
178 static bool equal (type_hash *a, type_hash *b);
179
180 static int
181 keep_cache_entry (type_hash *&t)
182 {
183 return ggc_marked_p (t->type);
184 }
185 };
186
187 /* Now here is the hash table. When recording a type, it is added to
188 the slot whose index is the hash code. Note that the hash table is
189 used for several kinds of types (function types, array types and
190 array index range types, for now). While all these live in the
191 same table, they are completely independent, and the hash code is
192 computed differently for each of these. */
193
194 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
195
196 /* Hash table and temporary node for larger integer const values. */
197 static GTY (()) tree int_cst_node;
198
199 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
200 {
201 static hashval_t hash (tree t);
202 static bool equal (tree x, tree y);
203 };
204
205 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
206
207 /* Class and variable for making sure that there is a single POLY_INT_CST
208 for a given value. */
209 struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
210 {
211 typedef std::pair<tree, const poly_wide_int *> compare_type;
212 static hashval_t hash (tree t);
213 static bool equal (tree x, const compare_type &y);
214 };
215
216 static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
217
218 /* Hash table for optimization flags and target option flags. Use the same
219 hash table for both sets of options. Nodes for building the current
220 optimization and target option nodes. The assumption is most of the time
221 the options created will already be in the hash table, so we avoid
222 allocating and freeing up a node repeatably. */
223 static GTY (()) tree cl_optimization_node;
224 static GTY (()) tree cl_target_option_node;
225
226 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
227 {
228 static hashval_t hash (tree t);
229 static bool equal (tree x, tree y);
230 };
231
232 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
233
234 /* General tree->tree mapping structure for use in hash tables. */
235
236
237 static GTY ((cache))
238 hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
239
240 static GTY ((cache))
241 hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
242
243 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
244 {
245 static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
246
247 static bool
248 equal (tree_vec_map *a, tree_vec_map *b)
249 {
250 return a->base.from == b->base.from;
251 }
252
253 static int
254 keep_cache_entry (tree_vec_map *&m)
255 {
256 return ggc_marked_p (m->base.from);
257 }
258 };
259
260 static GTY ((cache))
261 hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
262
263 static void set_type_quals (tree, int);
264 static void print_type_hash_statistics (void);
265 static void print_debug_expr_statistics (void);
266 static void print_value_expr_statistics (void);
267
268 tree global_trees[TI_MAX];
269 tree integer_types[itk_none];
270
271 bool int_n_enabled_p[NUM_INT_N_ENTS];
272 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
273
274 bool tree_contains_struct[MAX_TREE_CODES][64];
275
276 /* Number of operands for each OpenMP clause. */
277 unsigned const char omp_clause_num_ops[] =
278 {
279 0, /* OMP_CLAUSE_ERROR */
280 1, /* OMP_CLAUSE_PRIVATE */
281 1, /* OMP_CLAUSE_SHARED */
282 1, /* OMP_CLAUSE_FIRSTPRIVATE */
283 2, /* OMP_CLAUSE_LASTPRIVATE */
284 5, /* OMP_CLAUSE_REDUCTION */
285 1, /* OMP_CLAUSE_COPYIN */
286 1, /* OMP_CLAUSE_COPYPRIVATE */
287 3, /* OMP_CLAUSE_LINEAR */
288 2, /* OMP_CLAUSE_ALIGNED */
289 1, /* OMP_CLAUSE_DEPEND */
290 1, /* OMP_CLAUSE_UNIFORM */
291 1, /* OMP_CLAUSE_TO_DECLARE */
292 1, /* OMP_CLAUSE_LINK */
293 2, /* OMP_CLAUSE_FROM */
294 2, /* OMP_CLAUSE_TO */
295 2, /* OMP_CLAUSE_MAP */
296 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
297 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
298 2, /* OMP_CLAUSE__CACHE_ */
299 2, /* OMP_CLAUSE_GANG */
300 1, /* OMP_CLAUSE_ASYNC */
301 1, /* OMP_CLAUSE_WAIT */
302 0, /* OMP_CLAUSE_AUTO */
303 0, /* OMP_CLAUSE_SEQ */
304 1, /* OMP_CLAUSE__LOOPTEMP_ */
305 1, /* OMP_CLAUSE_IF */
306 1, /* OMP_CLAUSE_NUM_THREADS */
307 1, /* OMP_CLAUSE_SCHEDULE */
308 0, /* OMP_CLAUSE_NOWAIT */
309 1, /* OMP_CLAUSE_ORDERED */
310 0, /* OMP_CLAUSE_DEFAULT */
311 3, /* OMP_CLAUSE_COLLAPSE */
312 0, /* OMP_CLAUSE_UNTIED */
313 1, /* OMP_CLAUSE_FINAL */
314 0, /* OMP_CLAUSE_MERGEABLE */
315 1, /* OMP_CLAUSE_DEVICE */
316 1, /* OMP_CLAUSE_DIST_SCHEDULE */
317 0, /* OMP_CLAUSE_INBRANCH */
318 0, /* OMP_CLAUSE_NOTINBRANCH */
319 1, /* OMP_CLAUSE_NUM_TEAMS */
320 1, /* OMP_CLAUSE_THREAD_LIMIT */
321 0, /* OMP_CLAUSE_PROC_BIND */
322 1, /* OMP_CLAUSE_SAFELEN */
323 1, /* OMP_CLAUSE_SIMDLEN */
324 0, /* OMP_CLAUSE_FOR */
325 0, /* OMP_CLAUSE_PARALLEL */
326 0, /* OMP_CLAUSE_SECTIONS */
327 0, /* OMP_CLAUSE_TASKGROUP */
328 1, /* OMP_CLAUSE_PRIORITY */
329 1, /* OMP_CLAUSE_GRAINSIZE */
330 1, /* OMP_CLAUSE_NUM_TASKS */
331 0, /* OMP_CLAUSE_NOGROUP */
332 0, /* OMP_CLAUSE_THREADS */
333 0, /* OMP_CLAUSE_SIMD */
334 1, /* OMP_CLAUSE_HINT */
335 0, /* OMP_CLAUSE_DEFALTMAP */
336 1, /* OMP_CLAUSE__SIMDUID_ */
337 0, /* OMP_CLAUSE__SIMT_ */
338 0, /* OMP_CLAUSE_INDEPENDENT */
339 1, /* OMP_CLAUSE_WORKER */
340 1, /* OMP_CLAUSE_VECTOR */
341 1, /* OMP_CLAUSE_NUM_GANGS */
342 1, /* OMP_CLAUSE_NUM_WORKERS */
343 1, /* OMP_CLAUSE_VECTOR_LENGTH */
344 3, /* OMP_CLAUSE_TILE */
345 2, /* OMP_CLAUSE__GRIDDIM_ */
346 0, /* OMP_CLAUSE_IF_PRESENT */
347 0, /* OMP_CLAUSE_FINALIZE */
348 };
349
350 const char * const omp_clause_code_name[] =
351 {
352 "error_clause",
353 "private",
354 "shared",
355 "firstprivate",
356 "lastprivate",
357 "reduction",
358 "copyin",
359 "copyprivate",
360 "linear",
361 "aligned",
362 "depend",
363 "uniform",
364 "to",
365 "link",
366 "from",
367 "to",
368 "map",
369 "use_device_ptr",
370 "is_device_ptr",
371 "_cache_",
372 "gang",
373 "async",
374 "wait",
375 "auto",
376 "seq",
377 "_looptemp_",
378 "if",
379 "num_threads",
380 "schedule",
381 "nowait",
382 "ordered",
383 "default",
384 "collapse",
385 "untied",
386 "final",
387 "mergeable",
388 "device",
389 "dist_schedule",
390 "inbranch",
391 "notinbranch",
392 "num_teams",
393 "thread_limit",
394 "proc_bind",
395 "safelen",
396 "simdlen",
397 "for",
398 "parallel",
399 "sections",
400 "taskgroup",
401 "priority",
402 "grainsize",
403 "num_tasks",
404 "nogroup",
405 "threads",
406 "simd",
407 "hint",
408 "defaultmap",
409 "_simduid_",
410 "_simt_",
411 "independent",
412 "worker",
413 "vector",
414 "num_gangs",
415 "num_workers",
416 "vector_length",
417 "tile",
418 "_griddim_",
419 "if_present",
420 "finalize",
421 };
422
423
424 /* Return the tree node structure used by tree code CODE. */
425
426 static inline enum tree_node_structure_enum
427 tree_node_structure_for_code (enum tree_code code)
428 {
429 switch (TREE_CODE_CLASS (code))
430 {
431 case tcc_declaration:
432 {
433 switch (code)
434 {
435 case FIELD_DECL:
436 return TS_FIELD_DECL;
437 case PARM_DECL:
438 return TS_PARM_DECL;
439 case VAR_DECL:
440 return TS_VAR_DECL;
441 case LABEL_DECL:
442 return TS_LABEL_DECL;
443 case RESULT_DECL:
444 return TS_RESULT_DECL;
445 case DEBUG_EXPR_DECL:
446 return TS_DECL_WRTL;
447 case CONST_DECL:
448 return TS_CONST_DECL;
449 case TYPE_DECL:
450 return TS_TYPE_DECL;
451 case FUNCTION_DECL:
452 return TS_FUNCTION_DECL;
453 case TRANSLATION_UNIT_DECL:
454 return TS_TRANSLATION_UNIT_DECL;
455 default:
456 return TS_DECL_NON_COMMON;
457 }
458 }
459 case tcc_type:
460 return TS_TYPE_NON_COMMON;
461 case tcc_reference:
462 case tcc_comparison:
463 case tcc_unary:
464 case tcc_binary:
465 case tcc_expression:
466 case tcc_statement:
467 case tcc_vl_exp:
468 return TS_EXP;
469 default: /* tcc_constant and tcc_exceptional */
470 break;
471 }
472 switch (code)
473 {
474 /* tcc_constant cases. */
475 case VOID_CST: return TS_TYPED;
476 case INTEGER_CST: return TS_INT_CST;
477 case POLY_INT_CST: return TS_POLY_INT_CST;
478 case REAL_CST: return TS_REAL_CST;
479 case FIXED_CST: return TS_FIXED_CST;
480 case COMPLEX_CST: return TS_COMPLEX;
481 case VECTOR_CST: return TS_VECTOR;
482 case STRING_CST: return TS_STRING;
483 /* tcc_exceptional cases. */
484 case ERROR_MARK: return TS_COMMON;
485 case IDENTIFIER_NODE: return TS_IDENTIFIER;
486 case TREE_LIST: return TS_LIST;
487 case TREE_VEC: return TS_VEC;
488 case SSA_NAME: return TS_SSA_NAME;
489 case PLACEHOLDER_EXPR: return TS_COMMON;
490 case STATEMENT_LIST: return TS_STATEMENT_LIST;
491 case BLOCK: return TS_BLOCK;
492 case CONSTRUCTOR: return TS_CONSTRUCTOR;
493 case TREE_BINFO: return TS_BINFO;
494 case OMP_CLAUSE: return TS_OMP_CLAUSE;
495 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
496 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
497
498 default:
499 gcc_unreachable ();
500 }
501 }
502
503
504 /* Initialize tree_contains_struct to describe the hierarchy of tree
505 nodes. */
506
507 static void
508 initialize_tree_contains_struct (void)
509 {
510 unsigned i;
511
512 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
513 {
514 enum tree_code code;
515 enum tree_node_structure_enum ts_code;
516
517 code = (enum tree_code) i;
518 ts_code = tree_node_structure_for_code (code);
519
520 /* Mark the TS structure itself. */
521 tree_contains_struct[code][ts_code] = 1;
522
523 /* Mark all the structures that TS is derived from. */
524 switch (ts_code)
525 {
526 case TS_TYPED:
527 case TS_BLOCK:
528 case TS_OPTIMIZATION:
529 case TS_TARGET_OPTION:
530 MARK_TS_BASE (code);
531 break;
532
533 case TS_COMMON:
534 case TS_INT_CST:
535 case TS_POLY_INT_CST:
536 case TS_REAL_CST:
537 case TS_FIXED_CST:
538 case TS_VECTOR:
539 case TS_STRING:
540 case TS_COMPLEX:
541 case TS_SSA_NAME:
542 case TS_CONSTRUCTOR:
543 case TS_EXP:
544 case TS_STATEMENT_LIST:
545 MARK_TS_TYPED (code);
546 break;
547
548 case TS_IDENTIFIER:
549 case TS_DECL_MINIMAL:
550 case TS_TYPE_COMMON:
551 case TS_LIST:
552 case TS_VEC:
553 case TS_BINFO:
554 case TS_OMP_CLAUSE:
555 MARK_TS_COMMON (code);
556 break;
557
558 case TS_TYPE_WITH_LANG_SPECIFIC:
559 MARK_TS_TYPE_COMMON (code);
560 break;
561
562 case TS_TYPE_NON_COMMON:
563 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
564 break;
565
566 case TS_DECL_COMMON:
567 MARK_TS_DECL_MINIMAL (code);
568 break;
569
570 case TS_DECL_WRTL:
571 case TS_CONST_DECL:
572 MARK_TS_DECL_COMMON (code);
573 break;
574
575 case TS_DECL_NON_COMMON:
576 MARK_TS_DECL_WITH_VIS (code);
577 break;
578
579 case TS_DECL_WITH_VIS:
580 case TS_PARM_DECL:
581 case TS_LABEL_DECL:
582 case TS_RESULT_DECL:
583 MARK_TS_DECL_WRTL (code);
584 break;
585
586 case TS_FIELD_DECL:
587 MARK_TS_DECL_COMMON (code);
588 break;
589
590 case TS_VAR_DECL:
591 MARK_TS_DECL_WITH_VIS (code);
592 break;
593
594 case TS_TYPE_DECL:
595 case TS_FUNCTION_DECL:
596 MARK_TS_DECL_NON_COMMON (code);
597 break;
598
599 case TS_TRANSLATION_UNIT_DECL:
600 MARK_TS_DECL_COMMON (code);
601 break;
602
603 default:
604 gcc_unreachable ();
605 }
606 }
607
608 /* Basic consistency checks for attributes used in fold. */
609 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
610 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
611 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
612 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
613 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
614 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
615 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
616 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
617 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
618 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
619 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
620 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
621 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
622 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
623 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
624 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
625 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
626 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
627 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
628 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
629 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
630 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
631 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
632 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
633 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
634 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
635 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
636 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
637 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
638 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
639 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
640 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
641 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
642 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
643 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
644 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
645 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
646 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
647 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
648 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
649 }
650
651
652 /* Init tree.c. */
653
654 void
655 init_ttree (void)
656 {
657 /* Initialize the hash table of types. */
658 type_hash_table
659 = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
660
661 debug_expr_for_decl
662 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
663
664 value_expr_for_decl
665 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
666
667 int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
668
669 poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
670
671 int_cst_node = make_int_cst (1, 1);
672
673 cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
674
675 cl_optimization_node = make_node (OPTIMIZATION_NODE);
676 cl_target_option_node = make_node (TARGET_OPTION_NODE);
677
678 /* Initialize the tree_contains_struct array. */
679 initialize_tree_contains_struct ();
680 lang_hooks.init_ts ();
681 }
682
683 \f
684 /* The name of the object as the assembler will see it (but before any
685 translations made by ASM_OUTPUT_LABELREF). Often this is the same
686 as DECL_NAME. It is an IDENTIFIER_NODE. */
687 tree
688 decl_assembler_name (tree decl)
689 {
690 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
691 lang_hooks.set_decl_assembler_name (decl);
692 return DECL_ASSEMBLER_NAME_RAW (decl);
693 }
694
695 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
696 (either of which may be NULL). Inform the FE, if this changes the
697 name. */
698
699 void
700 overwrite_decl_assembler_name (tree decl, tree name)
701 {
702 if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
703 lang_hooks.overwrite_decl_assembler_name (decl, name);
704 }
705
706 /* When the target supports COMDAT groups, this indicates which group the
707 DECL is associated with. This can be either an IDENTIFIER_NODE or a
708 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
709 tree
710 decl_comdat_group (const_tree node)
711 {
712 struct symtab_node *snode = symtab_node::get (node);
713 if (!snode)
714 return NULL;
715 return snode->get_comdat_group ();
716 }
717
718 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
719 tree
720 decl_comdat_group_id (const_tree node)
721 {
722 struct symtab_node *snode = symtab_node::get (node);
723 if (!snode)
724 return NULL;
725 return snode->get_comdat_group_id ();
726 }
727
728 /* When the target supports named section, return its name as IDENTIFIER_NODE
729 or NULL if it is in no section. */
730 const char *
731 decl_section_name (const_tree node)
732 {
733 struct symtab_node *snode = symtab_node::get (node);
734 if (!snode)
735 return NULL;
736 return snode->get_section ();
737 }
738
739 /* Set section name of NODE to VALUE (that is expected to be
740 identifier node) */
741 void
742 set_decl_section_name (tree node, const char *value)
743 {
744 struct symtab_node *snode;
745
746 if (value == NULL)
747 {
748 snode = symtab_node::get (node);
749 if (!snode)
750 return;
751 }
752 else if (VAR_P (node))
753 snode = varpool_node::get_create (node);
754 else
755 snode = cgraph_node::get_create (node);
756 snode->set_section (value);
757 }
758
759 /* Return TLS model of a variable NODE. */
760 enum tls_model
761 decl_tls_model (const_tree node)
762 {
763 struct varpool_node *snode = varpool_node::get (node);
764 if (!snode)
765 return TLS_MODEL_NONE;
766 return snode->tls_model;
767 }
768
769 /* Set TLS model of variable NODE to MODEL. */
770 void
771 set_decl_tls_model (tree node, enum tls_model model)
772 {
773 struct varpool_node *vnode;
774
775 if (model == TLS_MODEL_NONE)
776 {
777 vnode = varpool_node::get (node);
778 if (!vnode)
779 return;
780 }
781 else
782 vnode = varpool_node::get_create (node);
783 vnode->tls_model = model;
784 }
785
786 /* Compute the number of bytes occupied by a tree with code CODE.
787 This function cannot be used for nodes that have variable sizes,
788 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
789 size_t
790 tree_code_size (enum tree_code code)
791 {
792 switch (TREE_CODE_CLASS (code))
793 {
794 case tcc_declaration: /* A decl node */
795 switch (code)
796 {
797 case FIELD_DECL: return sizeof (tree_field_decl);
798 case PARM_DECL: return sizeof (tree_parm_decl);
799 case VAR_DECL: return sizeof (tree_var_decl);
800 case LABEL_DECL: return sizeof (tree_label_decl);
801 case RESULT_DECL: return sizeof (tree_result_decl);
802 case CONST_DECL: return sizeof (tree_const_decl);
803 case TYPE_DECL: return sizeof (tree_type_decl);
804 case FUNCTION_DECL: return sizeof (tree_function_decl);
805 case DEBUG_EXPR_DECL: return sizeof (tree_decl_with_rtl);
806 case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
807 case NAMESPACE_DECL:
808 case IMPORTED_DECL:
809 case NAMELIST_DECL: return sizeof (tree_decl_non_common);
810 default:
811 gcc_checking_assert (code >= NUM_TREE_CODES);
812 return lang_hooks.tree_size (code);
813 }
814
815 case tcc_type: /* a type node */
816 switch (code)
817 {
818 case OFFSET_TYPE:
819 case ENUMERAL_TYPE:
820 case BOOLEAN_TYPE:
821 case INTEGER_TYPE:
822 case REAL_TYPE:
823 case POINTER_TYPE:
824 case REFERENCE_TYPE:
825 case NULLPTR_TYPE:
826 case FIXED_POINT_TYPE:
827 case COMPLEX_TYPE:
828 case VECTOR_TYPE:
829 case ARRAY_TYPE:
830 case RECORD_TYPE:
831 case UNION_TYPE:
832 case QUAL_UNION_TYPE:
833 case VOID_TYPE:
834 case FUNCTION_TYPE:
835 case METHOD_TYPE:
836 case LANG_TYPE: return sizeof (tree_type_non_common);
837 default:
838 gcc_checking_assert (code >= NUM_TREE_CODES);
839 return lang_hooks.tree_size (code);
840 }
841
842 case tcc_reference: /* a reference */
843 case tcc_expression: /* an expression */
844 case tcc_statement: /* an expression with side effects */
845 case tcc_comparison: /* a comparison expression */
846 case tcc_unary: /* a unary arithmetic expression */
847 case tcc_binary: /* a binary arithmetic expression */
848 return (sizeof (struct tree_exp)
849 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
850
851 case tcc_constant: /* a constant */
852 switch (code)
853 {
854 case VOID_CST: return sizeof (tree_typed);
855 case INTEGER_CST: gcc_unreachable ();
856 case POLY_INT_CST: return sizeof (tree_poly_int_cst);
857 case REAL_CST: return sizeof (tree_real_cst);
858 case FIXED_CST: return sizeof (tree_fixed_cst);
859 case COMPLEX_CST: return sizeof (tree_complex);
860 case VECTOR_CST: gcc_unreachable ();
861 case STRING_CST: gcc_unreachable ();
862 default:
863 gcc_checking_assert (code >= NUM_TREE_CODES);
864 return lang_hooks.tree_size (code);
865 }
866
867 case tcc_exceptional: /* something random, like an identifier. */
868 switch (code)
869 {
870 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
871 case TREE_LIST: return sizeof (tree_list);
872
873 case ERROR_MARK:
874 case PLACEHOLDER_EXPR: return sizeof (tree_common);
875
876 case TREE_VEC: gcc_unreachable ();
877 case OMP_CLAUSE: gcc_unreachable ();
878
879 case SSA_NAME: return sizeof (tree_ssa_name);
880
881 case STATEMENT_LIST: return sizeof (tree_statement_list);
882 case BLOCK: return sizeof (struct tree_block);
883 case CONSTRUCTOR: return sizeof (tree_constructor);
884 case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
885 case TARGET_OPTION_NODE: return sizeof (tree_target_option);
886
887 default:
888 gcc_checking_assert (code >= NUM_TREE_CODES);
889 return lang_hooks.tree_size (code);
890 }
891
892 default:
893 gcc_unreachable ();
894 }
895 }
896
897 /* Compute the number of bytes occupied by NODE. This routine only
898 looks at TREE_CODE, except for those nodes that have variable sizes. */
899 size_t
900 tree_size (const_tree node)
901 {
902 const enum tree_code code = TREE_CODE (node);
903 switch (code)
904 {
905 case INTEGER_CST:
906 return (sizeof (struct tree_int_cst)
907 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
908
909 case TREE_BINFO:
910 return (offsetof (struct tree_binfo, base_binfos)
911 + vec<tree, va_gc>
912 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
913
914 case TREE_VEC:
915 return (sizeof (struct tree_vec)
916 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
917
918 case VECTOR_CST:
919 return (sizeof (struct tree_vector)
920 + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
921
922 case STRING_CST:
923 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
924
925 case OMP_CLAUSE:
926 return (sizeof (struct tree_omp_clause)
927 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
928 * sizeof (tree));
929
930 default:
931 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
932 return (sizeof (struct tree_exp)
933 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
934 else
935 return tree_code_size (code);
936 }
937 }
938
939 /* Return tree node kind based on tree CODE. */
940
941 static tree_node_kind
942 get_stats_node_kind (enum tree_code code)
943 {
944 enum tree_code_class type = TREE_CODE_CLASS (code);
945
946 switch (type)
947 {
948 case tcc_declaration: /* A decl node */
949 return d_kind;
950 case tcc_type: /* a type node */
951 return t_kind;
952 case tcc_statement: /* an expression with side effects */
953 return s_kind;
954 case tcc_reference: /* a reference */
955 return r_kind;
956 case tcc_expression: /* an expression */
957 case tcc_comparison: /* a comparison expression */
958 case tcc_unary: /* a unary arithmetic expression */
959 case tcc_binary: /* a binary arithmetic expression */
960 return e_kind;
961 case tcc_constant: /* a constant */
962 return c_kind;
963 case tcc_exceptional: /* something random, like an identifier. */
964 switch (code)
965 {
966 case IDENTIFIER_NODE:
967 return id_kind;
968 case TREE_VEC:
969 return vec_kind;
970 case TREE_BINFO:
971 return binfo_kind;
972 case SSA_NAME:
973 return ssa_name_kind;
974 case BLOCK:
975 return b_kind;
976 case CONSTRUCTOR:
977 return constr_kind;
978 case OMP_CLAUSE:
979 return omp_clause_kind;
980 default:
981 return x_kind;
982 }
983 break;
984 case tcc_vl_exp:
985 return e_kind;
986 default:
987 gcc_unreachable ();
988 }
989 }
990
991 /* Record interesting allocation statistics for a tree node with CODE
992 and LENGTH. */
993
994 static void
995 record_node_allocation_statistics (enum tree_code code, size_t length)
996 {
997 if (!GATHER_STATISTICS)
998 return;
999
1000 tree_node_kind kind = get_stats_node_kind (code);
1001
1002 tree_code_counts[(int) code]++;
1003 tree_node_counts[(int) kind]++;
1004 tree_node_sizes[(int) kind] += length;
1005 }
1006
1007 /* Allocate and return a new UID from the DECL_UID namespace. */
1008
1009 int
1010 allocate_decl_uid (void)
1011 {
1012 return next_decl_uid++;
1013 }
1014
1015 /* Return a newly allocated node of code CODE. For decl and type
1016 nodes, some other fields are initialized. The rest of the node is
1017 initialized to zero. This function cannot be used for TREE_VEC,
1018 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1019 tree_code_size.
1020
1021 Achoo! I got a code in the node. */
1022
1023 tree
1024 make_node (enum tree_code code MEM_STAT_DECL)
1025 {
1026 tree t;
1027 enum tree_code_class type = TREE_CODE_CLASS (code);
1028 size_t length = tree_code_size (code);
1029
1030 record_node_allocation_statistics (code, length);
1031
1032 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1033 TREE_SET_CODE (t, code);
1034
1035 switch (type)
1036 {
1037 case tcc_statement:
1038 if (code != DEBUG_BEGIN_STMT)
1039 TREE_SIDE_EFFECTS (t) = 1;
1040 break;
1041
1042 case tcc_declaration:
1043 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1044 {
1045 if (code == FUNCTION_DECL)
1046 {
1047 SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1048 SET_DECL_MODE (t, FUNCTION_MODE);
1049 }
1050 else
1051 SET_DECL_ALIGN (t, 1);
1052 }
1053 DECL_SOURCE_LOCATION (t) = input_location;
1054 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1055 DECL_UID (t) = --next_debug_decl_uid;
1056 else
1057 {
1058 DECL_UID (t) = allocate_decl_uid ();
1059 SET_DECL_PT_UID (t, -1);
1060 }
1061 if (TREE_CODE (t) == LABEL_DECL)
1062 LABEL_DECL_UID (t) = -1;
1063
1064 break;
1065
1066 case tcc_type:
1067 TYPE_UID (t) = next_type_uid++;
1068 SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1069 TYPE_USER_ALIGN (t) = 0;
1070 TYPE_MAIN_VARIANT (t) = t;
1071 TYPE_CANONICAL (t) = t;
1072
1073 /* Default to no attributes for type, but let target change that. */
1074 TYPE_ATTRIBUTES (t) = NULL_TREE;
1075 targetm.set_default_type_attributes (t);
1076
1077 /* We have not yet computed the alias set for this type. */
1078 TYPE_ALIAS_SET (t) = -1;
1079 break;
1080
1081 case tcc_constant:
1082 TREE_CONSTANT (t) = 1;
1083 break;
1084
1085 case tcc_expression:
1086 switch (code)
1087 {
1088 case INIT_EXPR:
1089 case MODIFY_EXPR:
1090 case VA_ARG_EXPR:
1091 case PREDECREMENT_EXPR:
1092 case PREINCREMENT_EXPR:
1093 case POSTDECREMENT_EXPR:
1094 case POSTINCREMENT_EXPR:
1095 /* All of these have side-effects, no matter what their
1096 operands are. */
1097 TREE_SIDE_EFFECTS (t) = 1;
1098 break;
1099
1100 default:
1101 break;
1102 }
1103 break;
1104
1105 case tcc_exceptional:
1106 switch (code)
1107 {
1108 case TARGET_OPTION_NODE:
1109 TREE_TARGET_OPTION(t)
1110 = ggc_cleared_alloc<struct cl_target_option> ();
1111 break;
1112
1113 case OPTIMIZATION_NODE:
1114 TREE_OPTIMIZATION (t)
1115 = ggc_cleared_alloc<struct cl_optimization> ();
1116 break;
1117
1118 default:
1119 break;
1120 }
1121 break;
1122
1123 default:
1124 /* Other classes need no special treatment. */
1125 break;
1126 }
1127
1128 return t;
1129 }
1130
1131 /* Free tree node. */
1132
1133 void
1134 free_node (tree node)
1135 {
1136 enum tree_code code = TREE_CODE (node);
1137 if (GATHER_STATISTICS)
1138 {
1139 enum tree_node_kind kind = get_stats_node_kind (code);
1140
1141 gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
1142 gcc_checking_assert (tree_node_counts[(int) kind] != 0);
1143 gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
1144
1145 tree_code_counts[(int) TREE_CODE (node)]--;
1146 tree_node_counts[(int) kind]--;
1147 tree_node_sizes[(int) kind] -= tree_size (node);
1148 }
1149 if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1150 vec_free (CONSTRUCTOR_ELTS (node));
1151 else if (code == BLOCK)
1152 vec_free (BLOCK_NONLOCALIZED_VARS (node));
1153 else if (code == TREE_BINFO)
1154 vec_free (BINFO_BASE_ACCESSES (node));
1155 ggc_free (node);
1156 }
1157 \f
1158 /* Return a new node with the same contents as NODE except that its
1159 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1160
1161 tree
1162 copy_node (tree node MEM_STAT_DECL)
1163 {
1164 tree t;
1165 enum tree_code code = TREE_CODE (node);
1166 size_t length;
1167
1168 gcc_assert (code != STATEMENT_LIST);
1169
1170 length = tree_size (node);
1171 record_node_allocation_statistics (code, length);
1172 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1173 memcpy (t, node, length);
1174
1175 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1176 TREE_CHAIN (t) = 0;
1177 TREE_ASM_WRITTEN (t) = 0;
1178 TREE_VISITED (t) = 0;
1179
1180 if (TREE_CODE_CLASS (code) == tcc_declaration)
1181 {
1182 if (code == DEBUG_EXPR_DECL)
1183 DECL_UID (t) = --next_debug_decl_uid;
1184 else
1185 {
1186 DECL_UID (t) = allocate_decl_uid ();
1187 if (DECL_PT_UID_SET_P (node))
1188 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1189 }
1190 if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1191 && DECL_HAS_VALUE_EXPR_P (node))
1192 {
1193 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1194 DECL_HAS_VALUE_EXPR_P (t) = 1;
1195 }
1196 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1197 if (VAR_P (node))
1198 {
1199 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1200 t->decl_with_vis.symtab_node = NULL;
1201 }
1202 if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1203 {
1204 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1205 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1206 }
1207 if (TREE_CODE (node) == FUNCTION_DECL)
1208 {
1209 DECL_STRUCT_FUNCTION (t) = NULL;
1210 t->decl_with_vis.symtab_node = NULL;
1211 }
1212 }
1213 else if (TREE_CODE_CLASS (code) == tcc_type)
1214 {
1215 TYPE_UID (t) = next_type_uid++;
1216 /* The following is so that the debug code for
1217 the copy is different from the original type.
1218 The two statements usually duplicate each other
1219 (because they clear fields of the same union),
1220 but the optimizer should catch that. */
1221 TYPE_SYMTAB_ADDRESS (t) = 0;
1222 TYPE_SYMTAB_DIE (t) = 0;
1223
1224 /* Do not copy the values cache. */
1225 if (TYPE_CACHED_VALUES_P (t))
1226 {
1227 TYPE_CACHED_VALUES_P (t) = 0;
1228 TYPE_CACHED_VALUES (t) = NULL_TREE;
1229 }
1230 }
1231 else if (code == TARGET_OPTION_NODE)
1232 {
1233 TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1234 memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1235 sizeof (struct cl_target_option));
1236 }
1237 else if (code == OPTIMIZATION_NODE)
1238 {
1239 TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1240 memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1241 sizeof (struct cl_optimization));
1242 }
1243
1244 return t;
1245 }
1246
1247 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1248 For example, this can copy a list made of TREE_LIST nodes. */
1249
1250 tree
1251 copy_list (tree list)
1252 {
1253 tree head;
1254 tree prev, next;
1255
1256 if (list == 0)
1257 return 0;
1258
1259 head = prev = copy_node (list);
1260 next = TREE_CHAIN (list);
1261 while (next)
1262 {
1263 TREE_CHAIN (prev) = copy_node (next);
1264 prev = TREE_CHAIN (prev);
1265 next = TREE_CHAIN (next);
1266 }
1267 return head;
1268 }
1269
1270 \f
1271 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1272 INTEGER_CST with value CST and type TYPE. */
1273
1274 static unsigned int
1275 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1276 {
1277 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1278 /* We need extra HWIs if CST is an unsigned integer with its
1279 upper bit set. */
1280 if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1281 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1282 return cst.get_len ();
1283 }
1284
1285 /* Return a new INTEGER_CST with value CST and type TYPE. */
1286
1287 static tree
1288 build_new_int_cst (tree type, const wide_int &cst)
1289 {
1290 unsigned int len = cst.get_len ();
1291 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1292 tree nt = make_int_cst (len, ext_len);
1293
1294 if (len < ext_len)
1295 {
1296 --ext_len;
1297 TREE_INT_CST_ELT (nt, ext_len)
1298 = zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1299 for (unsigned int i = len; i < ext_len; ++i)
1300 TREE_INT_CST_ELT (nt, i) = -1;
1301 }
1302 else if (TYPE_UNSIGNED (type)
1303 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1304 {
1305 len--;
1306 TREE_INT_CST_ELT (nt, len)
1307 = zext_hwi (cst.elt (len),
1308 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1309 }
1310
1311 for (unsigned int i = 0; i < len; i++)
1312 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1313 TREE_TYPE (nt) = type;
1314 return nt;
1315 }
1316
1317 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */
1318
1319 static tree
1320 build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
1321 CXX_MEM_STAT_INFO)
1322 {
1323 size_t length = sizeof (struct tree_poly_int_cst);
1324 record_node_allocation_statistics (POLY_INT_CST, length);
1325
1326 tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1327
1328 TREE_SET_CODE (t, POLY_INT_CST);
1329 TREE_CONSTANT (t) = 1;
1330 TREE_TYPE (t) = type;
1331 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1332 POLY_INT_CST_COEFF (t, i) = coeffs[i];
1333 return t;
1334 }
1335
1336 /* Create a constant tree that contains CST sign-extended to TYPE. */
1337
1338 tree
1339 build_int_cst (tree type, poly_int64 cst)
1340 {
1341 /* Support legacy code. */
1342 if (!type)
1343 type = integer_type_node;
1344
1345 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1346 }
1347
1348 /* Create a constant tree that contains CST zero-extended to TYPE. */
1349
1350 tree
1351 build_int_cstu (tree type, poly_uint64 cst)
1352 {
1353 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1354 }
1355
1356 /* Create a constant tree that contains CST sign-extended to TYPE. */
1357
1358 tree
1359 build_int_cst_type (tree type, poly_int64 cst)
1360 {
1361 gcc_assert (type);
1362 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1363 }
1364
1365 /* Constructs tree in type TYPE from with value given by CST. Signedness
1366 of CST is assumed to be the same as the signedness of TYPE. */
1367
1368 tree
1369 double_int_to_tree (tree type, double_int cst)
1370 {
1371 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1372 }
1373
1374 /* We force the wide_int CST to the range of the type TYPE by sign or
1375 zero extending it. OVERFLOWABLE indicates if we are interested in
1376 overflow of the value, when >0 we are only interested in signed
1377 overflow, for <0 we are interested in any overflow. OVERFLOWED
1378 indicates whether overflow has already occurred. CONST_OVERFLOWED
1379 indicates whether constant overflow has already occurred. We force
1380 T's value to be within range of T's type (by setting to 0 or 1 all
1381 the bits outside the type's range). We set TREE_OVERFLOWED if,
1382 OVERFLOWED is nonzero,
1383 or OVERFLOWABLE is >0 and signed overflow occurs
1384 or OVERFLOWABLE is <0 and any overflow occurs
1385 We return a new tree node for the extended wide_int. The node
1386 is shared if no overflow flags are set. */
1387
1388
1389 tree
1390 force_fit_type (tree type, const poly_wide_int_ref &cst,
1391 int overflowable, bool overflowed)
1392 {
1393 signop sign = TYPE_SIGN (type);
1394
1395 /* If we need to set overflow flags, return a new unshared node. */
1396 if (overflowed || !wi::fits_to_tree_p (cst, type))
1397 {
1398 if (overflowed
1399 || overflowable < 0
1400 || (overflowable > 0 && sign == SIGNED))
1401 {
1402 poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
1403 sign);
1404 tree t;
1405 if (tmp.is_constant ())
1406 t = build_new_int_cst (type, tmp.coeffs[0]);
1407 else
1408 {
1409 tree coeffs[NUM_POLY_INT_COEFFS];
1410 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1411 {
1412 coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
1413 TREE_OVERFLOW (coeffs[i]) = 1;
1414 }
1415 t = build_new_poly_int_cst (type, coeffs);
1416 }
1417 TREE_OVERFLOW (t) = 1;
1418 return t;
1419 }
1420 }
1421
1422 /* Else build a shared node. */
1423 return wide_int_to_tree (type, cst);
1424 }
1425
1426 /* These are the hash table functions for the hash table of INTEGER_CST
1427 nodes of a sizetype. */
1428
1429 /* Return the hash code X, an INTEGER_CST. */
1430
1431 hashval_t
1432 int_cst_hasher::hash (tree x)
1433 {
1434 const_tree const t = x;
1435 hashval_t code = TYPE_UID (TREE_TYPE (t));
1436 int i;
1437
1438 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1439 code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1440
1441 return code;
1442 }
1443
1444 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1445 is the same as that given by *Y, which is the same. */
1446
1447 bool
1448 int_cst_hasher::equal (tree x, tree y)
1449 {
1450 const_tree const xt = x;
1451 const_tree const yt = y;
1452
1453 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1454 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1455 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1456 return false;
1457
1458 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1459 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1460 return false;
1461
1462 return true;
1463 }
1464
1465 /* Create an INT_CST node of TYPE and value CST.
1466 The returned node is always shared. For small integers we use a
1467 per-type vector cache, for larger ones we use a single hash table.
1468 The value is extended from its precision according to the sign of
1469 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1470 the upper bits and ensures that hashing and value equality based
1471 upon the underlying HOST_WIDE_INTs works without masking. */
1472
1473 static tree
1474 wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
1475 {
1476 tree t;
1477 int ix = -1;
1478 int limit = 0;
1479
1480 gcc_assert (type);
1481 unsigned int prec = TYPE_PRECISION (type);
1482 signop sgn = TYPE_SIGN (type);
1483
1484 /* Verify that everything is canonical. */
1485 int l = pcst.get_len ();
1486 if (l > 1)
1487 {
1488 if (pcst.elt (l - 1) == 0)
1489 gcc_checking_assert (pcst.elt (l - 2) < 0);
1490 if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1491 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1492 }
1493
1494 wide_int cst = wide_int::from (pcst, prec, sgn);
1495 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1496
1497 if (ext_len == 1)
1498 {
1499 /* We just need to store a single HOST_WIDE_INT. */
1500 HOST_WIDE_INT hwi;
1501 if (TYPE_UNSIGNED (type))
1502 hwi = cst.to_uhwi ();
1503 else
1504 hwi = cst.to_shwi ();
1505
1506 switch (TREE_CODE (type))
1507 {
1508 case NULLPTR_TYPE:
1509 gcc_assert (hwi == 0);
1510 /* Fallthru. */
1511
1512 case POINTER_TYPE:
1513 case REFERENCE_TYPE:
1514 /* Cache NULL pointer and zero bounds. */
1515 if (hwi == 0)
1516 {
1517 limit = 1;
1518 ix = 0;
1519 }
1520 break;
1521
1522 case BOOLEAN_TYPE:
1523 /* Cache false or true. */
1524 limit = 2;
1525 if (IN_RANGE (hwi, 0, 1))
1526 ix = hwi;
1527 break;
1528
1529 case INTEGER_TYPE:
1530 case OFFSET_TYPE:
1531 if (TYPE_SIGN (type) == UNSIGNED)
1532 {
1533 /* Cache [0, N). */
1534 limit = INTEGER_SHARE_LIMIT;
1535 if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1536 ix = hwi;
1537 }
1538 else
1539 {
1540 /* Cache [-1, N). */
1541 limit = INTEGER_SHARE_LIMIT + 1;
1542 if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1543 ix = hwi + 1;
1544 }
1545 break;
1546
1547 case ENUMERAL_TYPE:
1548 break;
1549
1550 default:
1551 gcc_unreachable ();
1552 }
1553
1554 if (ix >= 0)
1555 {
1556 /* Look for it in the type's vector of small shared ints. */
1557 if (!TYPE_CACHED_VALUES_P (type))
1558 {
1559 TYPE_CACHED_VALUES_P (type) = 1;
1560 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1561 }
1562
1563 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1564 if (t)
1565 /* Make sure no one is clobbering the shared constant. */
1566 gcc_checking_assert (TREE_TYPE (t) == type
1567 && TREE_INT_CST_NUNITS (t) == 1
1568 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1569 && TREE_INT_CST_EXT_NUNITS (t) == 1
1570 && TREE_INT_CST_ELT (t, 0) == hwi);
1571 else
1572 {
1573 /* Create a new shared int. */
1574 t = build_new_int_cst (type, cst);
1575 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1576 }
1577 }
1578 else
1579 {
1580 /* Use the cache of larger shared ints, using int_cst_node as
1581 a temporary. */
1582
1583 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1584 TREE_TYPE (int_cst_node) = type;
1585
1586 tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1587 t = *slot;
1588 if (!t)
1589 {
1590 /* Insert this one into the hash table. */
1591 t = int_cst_node;
1592 *slot = t;
1593 /* Make a new node for next time round. */
1594 int_cst_node = make_int_cst (1, 1);
1595 }
1596 }
1597 }
1598 else
1599 {
1600 /* The value either hashes properly or we drop it on the floor
1601 for the gc to take care of. There will not be enough of them
1602 to worry about. */
1603
1604 tree nt = build_new_int_cst (type, cst);
1605 tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1606 t = *slot;
1607 if (!t)
1608 {
1609 /* Insert this one into the hash table. */
1610 t = nt;
1611 *slot = t;
1612 }
1613 else
1614 ggc_free (nt);
1615 }
1616
1617 return t;
1618 }
1619
1620 hashval_t
1621 poly_int_cst_hasher::hash (tree t)
1622 {
1623 inchash::hash hstate;
1624
1625 hstate.add_int (TYPE_UID (TREE_TYPE (t)));
1626 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1627 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
1628
1629 return hstate.end ();
1630 }
1631
1632 bool
1633 poly_int_cst_hasher::equal (tree x, const compare_type &y)
1634 {
1635 if (TREE_TYPE (x) != y.first)
1636 return false;
1637 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1638 if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
1639 return false;
1640 return true;
1641 }
1642
1643 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1644 The elements must also have type TYPE. */
1645
1646 tree
1647 build_poly_int_cst (tree type, const poly_wide_int_ref &values)
1648 {
1649 unsigned int prec = TYPE_PRECISION (type);
1650 gcc_assert (prec <= values.coeffs[0].get_precision ());
1651 poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
1652
1653 inchash::hash h;
1654 h.add_int (TYPE_UID (type));
1655 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1656 h.add_wide_int (c.coeffs[i]);
1657 poly_int_cst_hasher::compare_type comp (type, &c);
1658 tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
1659 INSERT);
1660 if (*slot == NULL_TREE)
1661 {
1662 tree coeffs[NUM_POLY_INT_COEFFS];
1663 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1664 coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
1665 *slot = build_new_poly_int_cst (type, coeffs);
1666 }
1667 return *slot;
1668 }
1669
1670 /* Create a constant tree with value VALUE in type TYPE. */
1671
1672 tree
1673 wide_int_to_tree (tree type, const poly_wide_int_ref &value)
1674 {
1675 if (value.is_constant ())
1676 return wide_int_to_tree_1 (type, value.coeffs[0]);
1677 return build_poly_int_cst (type, value);
1678 }
1679
1680 void
1681 cache_integer_cst (tree t)
1682 {
1683 tree type = TREE_TYPE (t);
1684 int ix = -1;
1685 int limit = 0;
1686 int prec = TYPE_PRECISION (type);
1687
1688 gcc_assert (!TREE_OVERFLOW (t));
1689
1690 switch (TREE_CODE (type))
1691 {
1692 case NULLPTR_TYPE:
1693 gcc_assert (integer_zerop (t));
1694 /* Fallthru. */
1695
1696 case POINTER_TYPE:
1697 case REFERENCE_TYPE:
1698 /* Cache NULL pointer. */
1699 if (integer_zerop (t))
1700 {
1701 limit = 1;
1702 ix = 0;
1703 }
1704 break;
1705
1706 case BOOLEAN_TYPE:
1707 /* Cache false or true. */
1708 limit = 2;
1709 if (wi::ltu_p (wi::to_wide (t), 2))
1710 ix = TREE_INT_CST_ELT (t, 0);
1711 break;
1712
1713 case INTEGER_TYPE:
1714 case OFFSET_TYPE:
1715 if (TYPE_UNSIGNED (type))
1716 {
1717 /* Cache 0..N */
1718 limit = INTEGER_SHARE_LIMIT;
1719
1720 /* This is a little hokie, but if the prec is smaller than
1721 what is necessary to hold INTEGER_SHARE_LIMIT, then the
1722 obvious test will not get the correct answer. */
1723 if (prec < HOST_BITS_PER_WIDE_INT)
1724 {
1725 if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1726 ix = tree_to_uhwi (t);
1727 }
1728 else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1729 ix = tree_to_uhwi (t);
1730 }
1731 else
1732 {
1733 /* Cache -1..N */
1734 limit = INTEGER_SHARE_LIMIT + 1;
1735
1736 if (integer_minus_onep (t))
1737 ix = 0;
1738 else if (!wi::neg_p (wi::to_wide (t)))
1739 {
1740 if (prec < HOST_BITS_PER_WIDE_INT)
1741 {
1742 if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1743 ix = tree_to_shwi (t) + 1;
1744 }
1745 else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1746 ix = tree_to_shwi (t) + 1;
1747 }
1748 }
1749 break;
1750
1751 case ENUMERAL_TYPE:
1752 break;
1753
1754 default:
1755 gcc_unreachable ();
1756 }
1757
1758 if (ix >= 0)
1759 {
1760 /* Look for it in the type's vector of small shared ints. */
1761 if (!TYPE_CACHED_VALUES_P (type))
1762 {
1763 TYPE_CACHED_VALUES_P (type) = 1;
1764 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1765 }
1766
1767 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1768 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1769 }
1770 else
1771 {
1772 /* Use the cache of larger shared ints. */
1773 tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1774 /* If there is already an entry for the number verify it's the
1775 same. */
1776 if (*slot)
1777 gcc_assert (wi::to_wide (tree (*slot)) == wi::to_wide (t));
1778 else
1779 /* Otherwise insert this one into the hash table. */
1780 *slot = t;
1781 }
1782 }
1783
1784
1785 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1786 and the rest are zeros. */
1787
1788 tree
1789 build_low_bits_mask (tree type, unsigned bits)
1790 {
1791 gcc_assert (bits <= TYPE_PRECISION (type));
1792
1793 return wide_int_to_tree (type, wi::mask (bits, false,
1794 TYPE_PRECISION (type)));
1795 }
1796
1797 /* Checks that X is integer constant that can be expressed in (unsigned)
1798 HOST_WIDE_INT without loss of precision. */
1799
1800 bool
1801 cst_and_fits_in_hwi (const_tree x)
1802 {
1803 return (TREE_CODE (x) == INTEGER_CST
1804 && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
1805 }
1806
1807 /* Build a newly constructed VECTOR_CST with the given values of
1808 (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */
1809
1810 tree
1811 make_vector (unsigned log2_npatterns,
1812 unsigned int nelts_per_pattern MEM_STAT_DECL)
1813 {
1814 gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
1815 tree t;
1816 unsigned npatterns = 1 << log2_npatterns;
1817 unsigned encoded_nelts = npatterns * nelts_per_pattern;
1818 unsigned length = (sizeof (struct tree_vector)
1819 + (encoded_nelts - 1) * sizeof (tree));
1820
1821 record_node_allocation_statistics (VECTOR_CST, length);
1822
1823 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1824
1825 TREE_SET_CODE (t, VECTOR_CST);
1826 TREE_CONSTANT (t) = 1;
1827 VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
1828 VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
1829
1830 return t;
1831 }
1832
1833 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1834 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1835
1836 tree
1837 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1838 {
1839 unsigned HOST_WIDE_INT idx, nelts;
1840 tree value;
1841
1842 /* We can't construct a VECTOR_CST for a variable number of elements. */
1843 nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
1844 tree_vector_builder vec (type, nelts, 1);
1845 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1846 {
1847 if (TREE_CODE (value) == VECTOR_CST)
1848 {
1849 /* If NELTS is constant then this must be too. */
1850 unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
1851 for (unsigned i = 0; i < sub_nelts; ++i)
1852 vec.quick_push (VECTOR_CST_ELT (value, i));
1853 }
1854 else
1855 vec.quick_push (value);
1856 }
1857 while (vec.length () < nelts)
1858 vec.quick_push (build_zero_cst (TREE_TYPE (type)));
1859
1860 return vec.build ();
1861 }
1862
1863 /* Build a vector of type VECTYPE where all the elements are SCs. */
1864 tree
1865 build_vector_from_val (tree vectype, tree sc)
1866 {
1867 unsigned HOST_WIDE_INT i, nunits;
1868
1869 if (sc == error_mark_node)
1870 return sc;
1871
1872 /* Verify that the vector type is suitable for SC. Note that there
1873 is some inconsistency in the type-system with respect to restrict
1874 qualifications of pointers. Vector types always have a main-variant
1875 element type and the qualification is applied to the vector-type.
1876 So TREE_TYPE (vector-type) does not return a properly qualified
1877 vector element-type. */
1878 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1879 TREE_TYPE (vectype)));
1880
1881 if (CONSTANT_CLASS_P (sc))
1882 {
1883 tree_vector_builder v (vectype, 1, 1);
1884 v.quick_push (sc);
1885 return v.build ();
1886 }
1887 else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
1888 return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
1889 else
1890 {
1891 vec<constructor_elt, va_gc> *v;
1892 vec_alloc (v, nunits);
1893 for (i = 0; i < nunits; ++i)
1894 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1895 return build_constructor (vectype, v);
1896 }
1897 }
1898
1899 /* Build a vector series of type TYPE in which element I has the value
1900 BASE + I * STEP. The result is a constant if BASE and STEP are constant
1901 and a VEC_SERIES_EXPR otherwise. */
1902
1903 tree
1904 build_vec_series (tree type, tree base, tree step)
1905 {
1906 if (integer_zerop (step))
1907 return build_vector_from_val (type, base);
1908 if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
1909 {
1910 tree_vector_builder builder (type, 1, 3);
1911 tree elt1 = wide_int_to_tree (TREE_TYPE (base),
1912 wi::to_wide (base) + wi::to_wide (step));
1913 tree elt2 = wide_int_to_tree (TREE_TYPE (base),
1914 wi::to_wide (elt1) + wi::to_wide (step));
1915 builder.quick_push (base);
1916 builder.quick_push (elt1);
1917 builder.quick_push (elt2);
1918 return builder.build ();
1919 }
1920 return build2 (VEC_SERIES_EXPR, type, base, step);
1921 }
1922
1923 /* Return a vector with the same number of units and number of bits
1924 as VEC_TYPE, but in which the elements are a linear series of unsigned
1925 integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */
1926
1927 tree
1928 build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
1929 {
1930 tree index_vec_type = vec_type;
1931 tree index_elt_type = TREE_TYPE (vec_type);
1932 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
1933 if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
1934 {
1935 index_elt_type = build_nonstandard_integer_type
1936 (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
1937 index_vec_type = build_vector_type (index_elt_type, nunits);
1938 }
1939
1940 tree_vector_builder v (index_vec_type, 1, 3);
1941 for (unsigned int i = 0; i < 3; ++i)
1942 v.quick_push (build_int_cstu (index_elt_type, base + i * step));
1943 return v.build ();
1944 }
1945
1946 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
1947 calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
1948
1949 void
1950 recompute_constructor_flags (tree c)
1951 {
1952 unsigned int i;
1953 tree val;
1954 bool constant_p = true;
1955 bool side_effects_p = false;
1956 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1957
1958 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1959 {
1960 /* Mostly ctors will have elts that don't have side-effects, so
1961 the usual case is to scan all the elements. Hence a single
1962 loop for both const and side effects, rather than one loop
1963 each (with early outs). */
1964 if (!TREE_CONSTANT (val))
1965 constant_p = false;
1966 if (TREE_SIDE_EFFECTS (val))
1967 side_effects_p = true;
1968 }
1969
1970 TREE_SIDE_EFFECTS (c) = side_effects_p;
1971 TREE_CONSTANT (c) = constant_p;
1972 }
1973
1974 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
1975 CONSTRUCTOR C. */
1976
1977 void
1978 verify_constructor_flags (tree c)
1979 {
1980 unsigned int i;
1981 tree val;
1982 bool constant_p = TREE_CONSTANT (c);
1983 bool side_effects_p = TREE_SIDE_EFFECTS (c);
1984 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1985
1986 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1987 {
1988 if (constant_p && !TREE_CONSTANT (val))
1989 internal_error ("non-constant element in constant CONSTRUCTOR");
1990 if (!side_effects_p && TREE_SIDE_EFFECTS (val))
1991 internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
1992 }
1993 }
1994
1995 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1996 are in the vec pointed to by VALS. */
1997 tree
1998 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1999 {
2000 tree c = make_node (CONSTRUCTOR);
2001
2002 TREE_TYPE (c) = type;
2003 CONSTRUCTOR_ELTS (c) = vals;
2004
2005 recompute_constructor_flags (c);
2006
2007 return c;
2008 }
2009
2010 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
2011 INDEX and VALUE. */
2012 tree
2013 build_constructor_single (tree type, tree index, tree value)
2014 {
2015 vec<constructor_elt, va_gc> *v;
2016 constructor_elt elt = {index, value};
2017
2018 vec_alloc (v, 1);
2019 v->quick_push (elt);
2020
2021 return build_constructor (type, v);
2022 }
2023
2024
2025 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2026 are in a list pointed to by VALS. */
2027 tree
2028 build_constructor_from_list (tree type, tree vals)
2029 {
2030 tree t;
2031 vec<constructor_elt, va_gc> *v = NULL;
2032
2033 if (vals)
2034 {
2035 vec_alloc (v, list_length (vals));
2036 for (t = vals; t; t = TREE_CHAIN (t))
2037 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
2038 }
2039
2040 return build_constructor (type, v);
2041 }
2042
2043 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
2044 of elements, provided as index/value pairs. */
2045
2046 tree
2047 build_constructor_va (tree type, int nelts, ...)
2048 {
2049 vec<constructor_elt, va_gc> *v = NULL;
2050 va_list p;
2051
2052 va_start (p, nelts);
2053 vec_alloc (v, nelts);
2054 while (nelts--)
2055 {
2056 tree index = va_arg (p, tree);
2057 tree value = va_arg (p, tree);
2058 CONSTRUCTOR_APPEND_ELT (v, index, value);
2059 }
2060 va_end (p);
2061 return build_constructor (type, v);
2062 }
2063
2064 /* Return a node of type TYPE for which TREE_CLOBBER_P is true. */
2065
2066 tree
2067 build_clobber (tree type)
2068 {
2069 tree clobber = build_constructor (type, NULL);
2070 TREE_THIS_VOLATILE (clobber) = true;
2071 return clobber;
2072 }
2073
2074 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
2075
2076 tree
2077 build_fixed (tree type, FIXED_VALUE_TYPE f)
2078 {
2079 tree v;
2080 FIXED_VALUE_TYPE *fp;
2081
2082 v = make_node (FIXED_CST);
2083 fp = ggc_alloc<fixed_value> ();
2084 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
2085
2086 TREE_TYPE (v) = type;
2087 TREE_FIXED_CST_PTR (v) = fp;
2088 return v;
2089 }
2090
2091 /* Return a new REAL_CST node whose type is TYPE and value is D. */
2092
2093 tree
2094 build_real (tree type, REAL_VALUE_TYPE d)
2095 {
2096 tree v;
2097 REAL_VALUE_TYPE *dp;
2098 int overflow = 0;
2099
2100 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2101 Consider doing it via real_convert now. */
2102
2103 v = make_node (REAL_CST);
2104 dp = ggc_alloc<real_value> ();
2105 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
2106
2107 TREE_TYPE (v) = type;
2108 TREE_REAL_CST_PTR (v) = dp;
2109 TREE_OVERFLOW (v) = overflow;
2110 return v;
2111 }
2112
2113 /* Like build_real, but first truncate D to the type. */
2114
2115 tree
2116 build_real_truncate (tree type, REAL_VALUE_TYPE d)
2117 {
2118 return build_real (type, real_value_truncate (TYPE_MODE (type), d));
2119 }
2120
2121 /* Return a new REAL_CST node whose type is TYPE
2122 and whose value is the integer value of the INTEGER_CST node I. */
2123
2124 REAL_VALUE_TYPE
2125 real_value_from_int_cst (const_tree type, const_tree i)
2126 {
2127 REAL_VALUE_TYPE d;
2128
2129 /* Clear all bits of the real value type so that we can later do
2130 bitwise comparisons to see if two values are the same. */
2131 memset (&d, 0, sizeof d);
2132
2133 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
2134 TYPE_SIGN (TREE_TYPE (i)));
2135 return d;
2136 }
2137
2138 /* Given a tree representing an integer constant I, return a tree
2139 representing the same value as a floating-point constant of type TYPE. */
2140
2141 tree
2142 build_real_from_int_cst (tree type, const_tree i)
2143 {
2144 tree v;
2145 int overflow = TREE_OVERFLOW (i);
2146
2147 v = build_real (type, real_value_from_int_cst (type, i));
2148
2149 TREE_OVERFLOW (v) |= overflow;
2150 return v;
2151 }
2152
2153 /* Return a newly constructed STRING_CST node whose value is
2154 the LEN characters at STR.
2155 Note that for a C string literal, LEN should include the trailing NUL.
2156 The TREE_TYPE is not initialized. */
2157
2158 tree
2159 build_string (int len, const char *str)
2160 {
2161 tree s;
2162 size_t length;
2163
2164 /* Do not waste bytes provided by padding of struct tree_string. */
2165 length = len + offsetof (struct tree_string, str) + 1;
2166
2167 record_node_allocation_statistics (STRING_CST, length);
2168
2169 s = (tree) ggc_internal_alloc (length);
2170
2171 memset (s, 0, sizeof (struct tree_typed));
2172 TREE_SET_CODE (s, STRING_CST);
2173 TREE_CONSTANT (s) = 1;
2174 TREE_STRING_LENGTH (s) = len;
2175 memcpy (s->string.str, str, len);
2176 s->string.str[len] = '\0';
2177
2178 return s;
2179 }
2180
2181 /* Return a newly constructed COMPLEX_CST node whose value is
2182 specified by the real and imaginary parts REAL and IMAG.
2183 Both REAL and IMAG should be constant nodes. TYPE, if specified,
2184 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
2185
2186 tree
2187 build_complex (tree type, tree real, tree imag)
2188 {
2189 tree t = make_node (COMPLEX_CST);
2190
2191 TREE_REALPART (t) = real;
2192 TREE_IMAGPART (t) = imag;
2193 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2194 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2195 return t;
2196 }
2197
2198 /* Build a complex (inf +- 0i), such as for the result of cproj.
2199 TYPE is the complex tree type of the result. If NEG is true, the
2200 imaginary zero is negative. */
2201
2202 tree
2203 build_complex_inf (tree type, bool neg)
2204 {
2205 REAL_VALUE_TYPE rinf, rzero = dconst0;
2206
2207 real_inf (&rinf);
2208 rzero.sign = neg;
2209 return build_complex (type, build_real (TREE_TYPE (type), rinf),
2210 build_real (TREE_TYPE (type), rzero));
2211 }
2212
2213 /* Return the constant 1 in type TYPE. If TYPE has several elements, each
2214 element is set to 1. In particular, this is 1 + i for complex types. */
2215
2216 tree
2217 build_each_one_cst (tree type)
2218 {
2219 if (TREE_CODE (type) == COMPLEX_TYPE)
2220 {
2221 tree scalar = build_one_cst (TREE_TYPE (type));
2222 return build_complex (type, scalar, scalar);
2223 }
2224 else
2225 return build_one_cst (type);
2226 }
2227
2228 /* Return a constant of arithmetic type TYPE which is the
2229 multiplicative identity of the set TYPE. */
2230
2231 tree
2232 build_one_cst (tree type)
2233 {
2234 switch (TREE_CODE (type))
2235 {
2236 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2237 case POINTER_TYPE: case REFERENCE_TYPE:
2238 case OFFSET_TYPE:
2239 return build_int_cst (type, 1);
2240
2241 case REAL_TYPE:
2242 return build_real (type, dconst1);
2243
2244 case FIXED_POINT_TYPE:
2245 /* We can only generate 1 for accum types. */
2246 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2247 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2248
2249 case VECTOR_TYPE:
2250 {
2251 tree scalar = build_one_cst (TREE_TYPE (type));
2252
2253 return build_vector_from_val (type, scalar);
2254 }
2255
2256 case COMPLEX_TYPE:
2257 return build_complex (type,
2258 build_one_cst (TREE_TYPE (type)),
2259 build_zero_cst (TREE_TYPE (type)));
2260
2261 default:
2262 gcc_unreachable ();
2263 }
2264 }
2265
2266 /* Return an integer of type TYPE containing all 1's in as much precision as
2267 it contains, or a complex or vector whose subparts are such integers. */
2268
2269 tree
2270 build_all_ones_cst (tree type)
2271 {
2272 if (TREE_CODE (type) == COMPLEX_TYPE)
2273 {
2274 tree scalar = build_all_ones_cst (TREE_TYPE (type));
2275 return build_complex (type, scalar, scalar);
2276 }
2277 else
2278 return build_minus_one_cst (type);
2279 }
2280
2281 /* Return a constant of arithmetic type TYPE which is the
2282 opposite of the multiplicative identity of the set TYPE. */
2283
2284 tree
2285 build_minus_one_cst (tree type)
2286 {
2287 switch (TREE_CODE (type))
2288 {
2289 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2290 case POINTER_TYPE: case REFERENCE_TYPE:
2291 case OFFSET_TYPE:
2292 return build_int_cst (type, -1);
2293
2294 case REAL_TYPE:
2295 return build_real (type, dconstm1);
2296
2297 case FIXED_POINT_TYPE:
2298 /* We can only generate 1 for accum types. */
2299 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2300 return build_fixed (type,
2301 fixed_from_double_int (double_int_minus_one,
2302 SCALAR_TYPE_MODE (type)));
2303
2304 case VECTOR_TYPE:
2305 {
2306 tree scalar = build_minus_one_cst (TREE_TYPE (type));
2307
2308 return build_vector_from_val (type, scalar);
2309 }
2310
2311 case COMPLEX_TYPE:
2312 return build_complex (type,
2313 build_minus_one_cst (TREE_TYPE (type)),
2314 build_zero_cst (TREE_TYPE (type)));
2315
2316 default:
2317 gcc_unreachable ();
2318 }
2319 }
2320
2321 /* Build 0 constant of type TYPE. This is used by constructor folding
2322 and thus the constant should be represented in memory by
2323 zero(es). */
2324
2325 tree
2326 build_zero_cst (tree type)
2327 {
2328 switch (TREE_CODE (type))
2329 {
2330 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2331 case POINTER_TYPE: case REFERENCE_TYPE:
2332 case OFFSET_TYPE: case NULLPTR_TYPE:
2333 return build_int_cst (type, 0);
2334
2335 case REAL_TYPE:
2336 return build_real (type, dconst0);
2337
2338 case FIXED_POINT_TYPE:
2339 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2340
2341 case VECTOR_TYPE:
2342 {
2343 tree scalar = build_zero_cst (TREE_TYPE (type));
2344
2345 return build_vector_from_val (type, scalar);
2346 }
2347
2348 case COMPLEX_TYPE:
2349 {
2350 tree zero = build_zero_cst (TREE_TYPE (type));
2351
2352 return build_complex (type, zero, zero);
2353 }
2354
2355 default:
2356 if (!AGGREGATE_TYPE_P (type))
2357 return fold_convert (type, integer_zero_node);
2358 return build_constructor (type, NULL);
2359 }
2360 }
2361
2362
2363 /* Build a BINFO with LEN language slots. */
2364
2365 tree
2366 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2367 {
2368 tree t;
2369 size_t length = (offsetof (struct tree_binfo, base_binfos)
2370 + vec<tree, va_gc>::embedded_size (base_binfos));
2371
2372 record_node_allocation_statistics (TREE_BINFO, length);
2373
2374 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2375
2376 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2377
2378 TREE_SET_CODE (t, TREE_BINFO);
2379
2380 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2381
2382 return t;
2383 }
2384
2385 /* Create a CASE_LABEL_EXPR tree node and return it. */
2386
2387 tree
2388 build_case_label (tree low_value, tree high_value, tree label_decl)
2389 {
2390 tree t = make_node (CASE_LABEL_EXPR);
2391
2392 TREE_TYPE (t) = void_type_node;
2393 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2394
2395 CASE_LOW (t) = low_value;
2396 CASE_HIGH (t) = high_value;
2397 CASE_LABEL (t) = label_decl;
2398 CASE_CHAIN (t) = NULL_TREE;
2399
2400 return t;
2401 }
2402
2403 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2404 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2405 The latter determines the length of the HOST_WIDE_INT vector. */
2406
2407 tree
2408 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2409 {
2410 tree t;
2411 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2412 + sizeof (struct tree_int_cst));
2413
2414 gcc_assert (len);
2415 record_node_allocation_statistics (INTEGER_CST, length);
2416
2417 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2418
2419 TREE_SET_CODE (t, INTEGER_CST);
2420 TREE_INT_CST_NUNITS (t) = len;
2421 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2422 /* to_offset can only be applied to trees that are offset_int-sized
2423 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2424 must be exactly the precision of offset_int and so LEN is correct. */
2425 if (ext_len <= OFFSET_INT_ELTS)
2426 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2427 else
2428 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2429
2430 TREE_CONSTANT (t) = 1;
2431
2432 return t;
2433 }
2434
2435 /* Build a newly constructed TREE_VEC node of length LEN. */
2436
2437 tree
2438 make_tree_vec (int len MEM_STAT_DECL)
2439 {
2440 tree t;
2441 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2442
2443 record_node_allocation_statistics (TREE_VEC, length);
2444
2445 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2446
2447 TREE_SET_CODE (t, TREE_VEC);
2448 TREE_VEC_LENGTH (t) = len;
2449
2450 return t;
2451 }
2452
2453 /* Grow a TREE_VEC node to new length LEN. */
2454
2455 tree
2456 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2457 {
2458 gcc_assert (TREE_CODE (v) == TREE_VEC);
2459
2460 int oldlen = TREE_VEC_LENGTH (v);
2461 gcc_assert (len > oldlen);
2462
2463 size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2464 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2465
2466 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2467
2468 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2469
2470 TREE_VEC_LENGTH (v) = len;
2471
2472 return v;
2473 }
2474 \f
2475 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2476 fixed, and scalar, complex or vector. */
2477
2478 bool
2479 zerop (const_tree expr)
2480 {
2481 return (integer_zerop (expr)
2482 || real_zerop (expr)
2483 || fixed_zerop (expr));
2484 }
2485
2486 /* Return 1 if EXPR is the integer constant zero or a complex constant
2487 of zero. */
2488
2489 bool
2490 integer_zerop (const_tree expr)
2491 {
2492 switch (TREE_CODE (expr))
2493 {
2494 case INTEGER_CST:
2495 return wi::to_wide (expr) == 0;
2496 case COMPLEX_CST:
2497 return (integer_zerop (TREE_REALPART (expr))
2498 && integer_zerop (TREE_IMAGPART (expr)));
2499 case VECTOR_CST:
2500 return (VECTOR_CST_NPATTERNS (expr) == 1
2501 && VECTOR_CST_DUPLICATE_P (expr)
2502 && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
2503 default:
2504 return false;
2505 }
2506 }
2507
2508 /* Return 1 if EXPR is the integer constant one or the corresponding
2509 complex constant. */
2510
2511 bool
2512 integer_onep (const_tree expr)
2513 {
2514 switch (TREE_CODE (expr))
2515 {
2516 case INTEGER_CST:
2517 return wi::eq_p (wi::to_widest (expr), 1);
2518 case COMPLEX_CST:
2519 return (integer_onep (TREE_REALPART (expr))
2520 && integer_zerop (TREE_IMAGPART (expr)));
2521 case VECTOR_CST:
2522 return (VECTOR_CST_NPATTERNS (expr) == 1
2523 && VECTOR_CST_DUPLICATE_P (expr)
2524 && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2525 default:
2526 return false;
2527 }
2528 }
2529
2530 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2531 return 1 if every piece is the integer constant one. */
2532
2533 bool
2534 integer_each_onep (const_tree expr)
2535 {
2536 if (TREE_CODE (expr) == COMPLEX_CST)
2537 return (integer_onep (TREE_REALPART (expr))
2538 && integer_onep (TREE_IMAGPART (expr)));
2539 else
2540 return integer_onep (expr);
2541 }
2542
2543 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2544 it contains, or a complex or vector whose subparts are such integers. */
2545
2546 bool
2547 integer_all_onesp (const_tree expr)
2548 {
2549 if (TREE_CODE (expr) == COMPLEX_CST
2550 && integer_all_onesp (TREE_REALPART (expr))
2551 && integer_all_onesp (TREE_IMAGPART (expr)))
2552 return true;
2553
2554 else if (TREE_CODE (expr) == VECTOR_CST)
2555 return (VECTOR_CST_NPATTERNS (expr) == 1
2556 && VECTOR_CST_DUPLICATE_P (expr)
2557 && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
2558
2559 else if (TREE_CODE (expr) != INTEGER_CST)
2560 return false;
2561
2562 return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
2563 == wi::to_wide (expr));
2564 }
2565
2566 /* Return 1 if EXPR is the integer constant minus one. */
2567
2568 bool
2569 integer_minus_onep (const_tree expr)
2570 {
2571 if (TREE_CODE (expr) == COMPLEX_CST)
2572 return (integer_all_onesp (TREE_REALPART (expr))
2573 && integer_zerop (TREE_IMAGPART (expr)));
2574 else
2575 return integer_all_onesp (expr);
2576 }
2577
2578 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2579 one bit on). */
2580
2581 bool
2582 integer_pow2p (const_tree expr)
2583 {
2584 if (TREE_CODE (expr) == COMPLEX_CST
2585 && integer_pow2p (TREE_REALPART (expr))
2586 && integer_zerop (TREE_IMAGPART (expr)))
2587 return true;
2588
2589 if (TREE_CODE (expr) != INTEGER_CST)
2590 return false;
2591
2592 return wi::popcount (wi::to_wide (expr)) == 1;
2593 }
2594
2595 /* Return 1 if EXPR is an integer constant other than zero or a
2596 complex constant other than zero. */
2597
2598 bool
2599 integer_nonzerop (const_tree expr)
2600 {
2601 return ((TREE_CODE (expr) == INTEGER_CST
2602 && wi::to_wide (expr) != 0)
2603 || (TREE_CODE (expr) == COMPLEX_CST
2604 && (integer_nonzerop (TREE_REALPART (expr))
2605 || integer_nonzerop (TREE_IMAGPART (expr)))));
2606 }
2607
2608 /* Return 1 if EXPR is the integer constant one. For vector,
2609 return 1 if every piece is the integer constant minus one
2610 (representing the value TRUE). */
2611
2612 bool
2613 integer_truep (const_tree expr)
2614 {
2615 if (TREE_CODE (expr) == VECTOR_CST)
2616 return integer_all_onesp (expr);
2617 return integer_onep (expr);
2618 }
2619
2620 /* Return 1 if EXPR is the fixed-point constant zero. */
2621
2622 bool
2623 fixed_zerop (const_tree expr)
2624 {
2625 return (TREE_CODE (expr) == FIXED_CST
2626 && TREE_FIXED_CST (expr).data.is_zero ());
2627 }
2628
2629 /* Return the power of two represented by a tree node known to be a
2630 power of two. */
2631
2632 int
2633 tree_log2 (const_tree expr)
2634 {
2635 if (TREE_CODE (expr) == COMPLEX_CST)
2636 return tree_log2 (TREE_REALPART (expr));
2637
2638 return wi::exact_log2 (wi::to_wide (expr));
2639 }
2640
2641 /* Similar, but return the largest integer Y such that 2 ** Y is less
2642 than or equal to EXPR. */
2643
2644 int
2645 tree_floor_log2 (const_tree expr)
2646 {
2647 if (TREE_CODE (expr) == COMPLEX_CST)
2648 return tree_log2 (TREE_REALPART (expr));
2649
2650 return wi::floor_log2 (wi::to_wide (expr));
2651 }
2652
2653 /* Return number of known trailing zero bits in EXPR, or, if the value of
2654 EXPR is known to be zero, the precision of it's type. */
2655
2656 unsigned int
2657 tree_ctz (const_tree expr)
2658 {
2659 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2660 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2661 return 0;
2662
2663 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2664 switch (TREE_CODE (expr))
2665 {
2666 case INTEGER_CST:
2667 ret1 = wi::ctz (wi::to_wide (expr));
2668 return MIN (ret1, prec);
2669 case SSA_NAME:
2670 ret1 = wi::ctz (get_nonzero_bits (expr));
2671 return MIN (ret1, prec);
2672 case PLUS_EXPR:
2673 case MINUS_EXPR:
2674 case BIT_IOR_EXPR:
2675 case BIT_XOR_EXPR:
2676 case MIN_EXPR:
2677 case MAX_EXPR:
2678 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2679 if (ret1 == 0)
2680 return ret1;
2681 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2682 return MIN (ret1, ret2);
2683 case POINTER_PLUS_EXPR:
2684 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2685 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2686 /* Second operand is sizetype, which could be in theory
2687 wider than pointer's precision. Make sure we never
2688 return more than prec. */
2689 ret2 = MIN (ret2, prec);
2690 return MIN (ret1, ret2);
2691 case BIT_AND_EXPR:
2692 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2693 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2694 return MAX (ret1, ret2);
2695 case MULT_EXPR:
2696 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2697 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2698 return MIN (ret1 + ret2, prec);
2699 case LSHIFT_EXPR:
2700 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2701 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2702 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2703 {
2704 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2705 return MIN (ret1 + ret2, prec);
2706 }
2707 return ret1;
2708 case RSHIFT_EXPR:
2709 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2710 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2711 {
2712 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2713 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2714 if (ret1 > ret2)
2715 return ret1 - ret2;
2716 }
2717 return 0;
2718 case TRUNC_DIV_EXPR:
2719 case CEIL_DIV_EXPR:
2720 case FLOOR_DIV_EXPR:
2721 case ROUND_DIV_EXPR:
2722 case EXACT_DIV_EXPR:
2723 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2724 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2725 {
2726 int l = tree_log2 (TREE_OPERAND (expr, 1));
2727 if (l >= 0)
2728 {
2729 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2730 ret2 = l;
2731 if (ret1 > ret2)
2732 return ret1 - ret2;
2733 }
2734 }
2735 return 0;
2736 CASE_CONVERT:
2737 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2738 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2739 ret1 = prec;
2740 return MIN (ret1, prec);
2741 case SAVE_EXPR:
2742 return tree_ctz (TREE_OPERAND (expr, 0));
2743 case COND_EXPR:
2744 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2745 if (ret1 == 0)
2746 return 0;
2747 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2748 return MIN (ret1, ret2);
2749 case COMPOUND_EXPR:
2750 return tree_ctz (TREE_OPERAND (expr, 1));
2751 case ADDR_EXPR:
2752 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2753 if (ret1 > BITS_PER_UNIT)
2754 {
2755 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2756 return MIN (ret1, prec);
2757 }
2758 return 0;
2759 default:
2760 return 0;
2761 }
2762 }
2763
2764 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2765 decimal float constants, so don't return 1 for them. */
2766
2767 bool
2768 real_zerop (const_tree expr)
2769 {
2770 switch (TREE_CODE (expr))
2771 {
2772 case REAL_CST:
2773 return real_equal (&TREE_REAL_CST (expr), &dconst0)
2774 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2775 case COMPLEX_CST:
2776 return real_zerop (TREE_REALPART (expr))
2777 && real_zerop (TREE_IMAGPART (expr));
2778 case VECTOR_CST:
2779 {
2780 /* Don't simply check for a duplicate because the predicate
2781 accepts both +0.0 and -0.0. */
2782 unsigned count = vector_cst_encoded_nelts (expr);
2783 for (unsigned int i = 0; i < count; ++i)
2784 if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
2785 return false;
2786 return true;
2787 }
2788 default:
2789 return false;
2790 }
2791 }
2792
2793 /* Return 1 if EXPR is the real constant one in real or complex form.
2794 Trailing zeroes matter for decimal float constants, so don't return
2795 1 for them. */
2796
2797 bool
2798 real_onep (const_tree expr)
2799 {
2800 switch (TREE_CODE (expr))
2801 {
2802 case REAL_CST:
2803 return real_equal (&TREE_REAL_CST (expr), &dconst1)
2804 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2805 case COMPLEX_CST:
2806 return real_onep (TREE_REALPART (expr))
2807 && real_zerop (TREE_IMAGPART (expr));
2808 case VECTOR_CST:
2809 return (VECTOR_CST_NPATTERNS (expr) == 1
2810 && VECTOR_CST_DUPLICATE_P (expr)
2811 && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2812 default:
2813 return false;
2814 }
2815 }
2816
2817 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2818 matter for decimal float constants, so don't return 1 for them. */
2819
2820 bool
2821 real_minus_onep (const_tree expr)
2822 {
2823 switch (TREE_CODE (expr))
2824 {
2825 case REAL_CST:
2826 return real_equal (&TREE_REAL_CST (expr), &dconstm1)
2827 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2828 case COMPLEX_CST:
2829 return real_minus_onep (TREE_REALPART (expr))
2830 && real_zerop (TREE_IMAGPART (expr));
2831 case VECTOR_CST:
2832 return (VECTOR_CST_NPATTERNS (expr) == 1
2833 && VECTOR_CST_DUPLICATE_P (expr)
2834 && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2835 default:
2836 return false;
2837 }
2838 }
2839
2840 /* Nonzero if EXP is a constant or a cast of a constant. */
2841
2842 bool
2843 really_constant_p (const_tree exp)
2844 {
2845 /* This is not quite the same as STRIP_NOPS. It does more. */
2846 while (CONVERT_EXPR_P (exp)
2847 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2848 exp = TREE_OPERAND (exp, 0);
2849 return TREE_CONSTANT (exp);
2850 }
2851
2852 /* Return true if T holds a polynomial pointer difference, storing it in
2853 *VALUE if so. A true return means that T's precision is no greater
2854 than 64 bits, which is the largest address space we support, so *VALUE
2855 never loses precision. However, the signedness of the result does
2856 not necessarily match the signedness of T: sometimes an unsigned type
2857 like sizetype is used to encode a value that is actually negative. */
2858
2859 bool
2860 ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
2861 {
2862 if (!t)
2863 return false;
2864 if (TREE_CODE (t) == INTEGER_CST)
2865 {
2866 if (!cst_and_fits_in_hwi (t))
2867 return false;
2868 *value = int_cst_value (t);
2869 return true;
2870 }
2871 if (POLY_INT_CST_P (t))
2872 {
2873 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2874 if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
2875 return false;
2876 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2877 value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
2878 return true;
2879 }
2880 return false;
2881 }
2882
2883 poly_int64
2884 tree_to_poly_int64 (const_tree t)
2885 {
2886 gcc_assert (tree_fits_poly_int64_p (t));
2887 if (POLY_INT_CST_P (t))
2888 return poly_int_cst_value (t).force_shwi ();
2889 return TREE_INT_CST_LOW (t);
2890 }
2891
2892 poly_uint64
2893 tree_to_poly_uint64 (const_tree t)
2894 {
2895 gcc_assert (tree_fits_poly_uint64_p (t));
2896 if (POLY_INT_CST_P (t))
2897 return poly_int_cst_value (t).force_uhwi ();
2898 return TREE_INT_CST_LOW (t);
2899 }
2900 \f
2901 /* Return first list element whose TREE_VALUE is ELEM.
2902 Return 0 if ELEM is not in LIST. */
2903
2904 tree
2905 value_member (tree elem, tree list)
2906 {
2907 while (list)
2908 {
2909 if (elem == TREE_VALUE (list))
2910 return list;
2911 list = TREE_CHAIN (list);
2912 }
2913 return NULL_TREE;
2914 }
2915
2916 /* Return first list element whose TREE_PURPOSE is ELEM.
2917 Return 0 if ELEM is not in LIST. */
2918
2919 tree
2920 purpose_member (const_tree elem, tree list)
2921 {
2922 while (list)
2923 {
2924 if (elem == TREE_PURPOSE (list))
2925 return list;
2926 list = TREE_CHAIN (list);
2927 }
2928 return NULL_TREE;
2929 }
2930
2931 /* Return true if ELEM is in V. */
2932
2933 bool
2934 vec_member (const_tree elem, vec<tree, va_gc> *v)
2935 {
2936 unsigned ix;
2937 tree t;
2938 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2939 if (elem == t)
2940 return true;
2941 return false;
2942 }
2943
2944 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2945 NULL_TREE. */
2946
2947 tree
2948 chain_index (int idx, tree chain)
2949 {
2950 for (; chain && idx > 0; --idx)
2951 chain = TREE_CHAIN (chain);
2952 return chain;
2953 }
2954
2955 /* Return nonzero if ELEM is part of the chain CHAIN. */
2956
2957 bool
2958 chain_member (const_tree elem, const_tree chain)
2959 {
2960 while (chain)
2961 {
2962 if (elem == chain)
2963 return true;
2964 chain = DECL_CHAIN (chain);
2965 }
2966
2967 return false;
2968 }
2969
2970 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2971 We expect a null pointer to mark the end of the chain.
2972 This is the Lisp primitive `length'. */
2973
2974 int
2975 list_length (const_tree t)
2976 {
2977 const_tree p = t;
2978 #ifdef ENABLE_TREE_CHECKING
2979 const_tree q = t;
2980 #endif
2981 int len = 0;
2982
2983 while (p)
2984 {
2985 p = TREE_CHAIN (p);
2986 #ifdef ENABLE_TREE_CHECKING
2987 if (len % 2)
2988 q = TREE_CHAIN (q);
2989 gcc_assert (p != q);
2990 #endif
2991 len++;
2992 }
2993
2994 return len;
2995 }
2996
2997 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2998 UNION_TYPE TYPE, or NULL_TREE if none. */
2999
3000 tree
3001 first_field (const_tree type)
3002 {
3003 tree t = TYPE_FIELDS (type);
3004 while (t && TREE_CODE (t) != FIELD_DECL)
3005 t = TREE_CHAIN (t);
3006 return t;
3007 }
3008
3009 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
3010 by modifying the last node in chain 1 to point to chain 2.
3011 This is the Lisp primitive `nconc'. */
3012
3013 tree
3014 chainon (tree op1, tree op2)
3015 {
3016 tree t1;
3017
3018 if (!op1)
3019 return op2;
3020 if (!op2)
3021 return op1;
3022
3023 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
3024 continue;
3025 TREE_CHAIN (t1) = op2;
3026
3027 #ifdef ENABLE_TREE_CHECKING
3028 {
3029 tree t2;
3030 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
3031 gcc_assert (t2 != t1);
3032 }
3033 #endif
3034
3035 return op1;
3036 }
3037
3038 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
3039
3040 tree
3041 tree_last (tree chain)
3042 {
3043 tree next;
3044 if (chain)
3045 while ((next = TREE_CHAIN (chain)))
3046 chain = next;
3047 return chain;
3048 }
3049
3050 /* Reverse the order of elements in the chain T,
3051 and return the new head of the chain (old last element). */
3052
3053 tree
3054 nreverse (tree t)
3055 {
3056 tree prev = 0, decl, next;
3057 for (decl = t; decl; decl = next)
3058 {
3059 /* We shouldn't be using this function to reverse BLOCK chains; we
3060 have blocks_nreverse for that. */
3061 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
3062 next = TREE_CHAIN (decl);
3063 TREE_CHAIN (decl) = prev;
3064 prev = decl;
3065 }
3066 return prev;
3067 }
3068 \f
3069 /* Return a newly created TREE_LIST node whose
3070 purpose and value fields are PARM and VALUE. */
3071
3072 tree
3073 build_tree_list (tree parm, tree value MEM_STAT_DECL)
3074 {
3075 tree t = make_node (TREE_LIST PASS_MEM_STAT);
3076 TREE_PURPOSE (t) = parm;
3077 TREE_VALUE (t) = value;
3078 return t;
3079 }
3080
3081 /* Build a chain of TREE_LIST nodes from a vector. */
3082
3083 tree
3084 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
3085 {
3086 tree ret = NULL_TREE;
3087 tree *pp = &ret;
3088 unsigned int i;
3089 tree t;
3090 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
3091 {
3092 *pp = build_tree_list (NULL, t PASS_MEM_STAT);
3093 pp = &TREE_CHAIN (*pp);
3094 }
3095 return ret;
3096 }
3097
3098 /* Return a newly created TREE_LIST node whose
3099 purpose and value fields are PURPOSE and VALUE
3100 and whose TREE_CHAIN is CHAIN. */
3101
3102 tree
3103 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
3104 {
3105 tree node;
3106
3107 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
3108 memset (node, 0, sizeof (struct tree_common));
3109
3110 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
3111
3112 TREE_SET_CODE (node, TREE_LIST);
3113 TREE_CHAIN (node) = chain;
3114 TREE_PURPOSE (node) = purpose;
3115 TREE_VALUE (node) = value;
3116 return node;
3117 }
3118
3119 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3120 trees. */
3121
3122 vec<tree, va_gc> *
3123 ctor_to_vec (tree ctor)
3124 {
3125 vec<tree, va_gc> *vec;
3126 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
3127 unsigned int ix;
3128 tree val;
3129
3130 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
3131 vec->quick_push (val);
3132
3133 return vec;
3134 }
3135 \f
3136 /* Return the size nominally occupied by an object of type TYPE
3137 when it resides in memory. The value is measured in units of bytes,
3138 and its data type is that normally used for type sizes
3139 (which is the first type created by make_signed_type or
3140 make_unsigned_type). */
3141
3142 tree
3143 size_in_bytes_loc (location_t loc, const_tree type)
3144 {
3145 tree t;
3146
3147 if (type == error_mark_node)
3148 return integer_zero_node;
3149
3150 type = TYPE_MAIN_VARIANT (type);
3151 t = TYPE_SIZE_UNIT (type);
3152
3153 if (t == 0)
3154 {
3155 lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
3156 return size_zero_node;
3157 }
3158
3159 return t;
3160 }
3161
3162 /* Return the size of TYPE (in bytes) as a wide integer
3163 or return -1 if the size can vary or is larger than an integer. */
3164
3165 HOST_WIDE_INT
3166 int_size_in_bytes (const_tree type)
3167 {
3168 tree t;
3169
3170 if (type == error_mark_node)
3171 return 0;
3172
3173 type = TYPE_MAIN_VARIANT (type);
3174 t = TYPE_SIZE_UNIT (type);
3175
3176 if (t && tree_fits_uhwi_p (t))
3177 return TREE_INT_CST_LOW (t);
3178 else
3179 return -1;
3180 }
3181
3182 /* Return the maximum size of TYPE (in bytes) as a wide integer
3183 or return -1 if the size can vary or is larger than an integer. */
3184
3185 HOST_WIDE_INT
3186 max_int_size_in_bytes (const_tree type)
3187 {
3188 HOST_WIDE_INT size = -1;
3189 tree size_tree;
3190
3191 /* If this is an array type, check for a possible MAX_SIZE attached. */
3192
3193 if (TREE_CODE (type) == ARRAY_TYPE)
3194 {
3195 size_tree = TYPE_ARRAY_MAX_SIZE (type);
3196
3197 if (size_tree && tree_fits_uhwi_p (size_tree))
3198 size = tree_to_uhwi (size_tree);
3199 }
3200
3201 /* If we still haven't been able to get a size, see if the language
3202 can compute a maximum size. */
3203
3204 if (size == -1)
3205 {
3206 size_tree = lang_hooks.types.max_size (type);
3207
3208 if (size_tree && tree_fits_uhwi_p (size_tree))
3209 size = tree_to_uhwi (size_tree);
3210 }
3211
3212 return size;
3213 }
3214 \f
3215 /* Return the bit position of FIELD, in bits from the start of the record.
3216 This is a tree of type bitsizetype. */
3217
3218 tree
3219 bit_position (const_tree field)
3220 {
3221 return bit_from_pos (DECL_FIELD_OFFSET (field),
3222 DECL_FIELD_BIT_OFFSET (field));
3223 }
3224 \f
3225 /* Return the byte position of FIELD, in bytes from the start of the record.
3226 This is a tree of type sizetype. */
3227
3228 tree
3229 byte_position (const_tree field)
3230 {
3231 return byte_from_pos (DECL_FIELD_OFFSET (field),
3232 DECL_FIELD_BIT_OFFSET (field));
3233 }
3234
3235 /* Likewise, but return as an integer. It must be representable in
3236 that way (since it could be a signed value, we don't have the
3237 option of returning -1 like int_size_in_byte can. */
3238
3239 HOST_WIDE_INT
3240 int_byte_position (const_tree field)
3241 {
3242 return tree_to_shwi (byte_position (field));
3243 }
3244 \f
3245 /* Return the strictest alignment, in bits, that T is known to have. */
3246
3247 unsigned int
3248 expr_align (const_tree t)
3249 {
3250 unsigned int align0, align1;
3251
3252 switch (TREE_CODE (t))
3253 {
3254 CASE_CONVERT: case NON_LVALUE_EXPR:
3255 /* If we have conversions, we know that the alignment of the
3256 object must meet each of the alignments of the types. */
3257 align0 = expr_align (TREE_OPERAND (t, 0));
3258 align1 = TYPE_ALIGN (TREE_TYPE (t));
3259 return MAX (align0, align1);
3260
3261 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
3262 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
3263 case CLEANUP_POINT_EXPR:
3264 /* These don't change the alignment of an object. */
3265 return expr_align (TREE_OPERAND (t, 0));
3266
3267 case COND_EXPR:
3268 /* The best we can do is say that the alignment is the least aligned
3269 of the two arms. */
3270 align0 = expr_align (TREE_OPERAND (t, 1));
3271 align1 = expr_align (TREE_OPERAND (t, 2));
3272 return MIN (align0, align1);
3273
3274 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
3275 meaningfully, it's always 1. */
3276 case LABEL_DECL: case CONST_DECL:
3277 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
3278 case FUNCTION_DECL:
3279 gcc_assert (DECL_ALIGN (t) != 0);
3280 return DECL_ALIGN (t);
3281
3282 default:
3283 break;
3284 }
3285
3286 /* Otherwise take the alignment from that of the type. */
3287 return TYPE_ALIGN (TREE_TYPE (t));
3288 }
3289 \f
3290 /* Return, as a tree node, the number of elements for TYPE (which is an
3291 ARRAY_TYPE) minus one. This counts only elements of the top array. */
3292
3293 tree
3294 array_type_nelts (const_tree type)
3295 {
3296 tree index_type, min, max;
3297
3298 /* If they did it with unspecified bounds, then we should have already
3299 given an error about it before we got here. */
3300 if (! TYPE_DOMAIN (type))
3301 return error_mark_node;
3302
3303 index_type = TYPE_DOMAIN (type);
3304 min = TYPE_MIN_VALUE (index_type);
3305 max = TYPE_MAX_VALUE (index_type);
3306
3307 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
3308 if (!max)
3309 return error_mark_node;
3310
3311 return (integer_zerop (min)
3312 ? max
3313 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3314 }
3315 \f
3316 /* If arg is static -- a reference to an object in static storage -- then
3317 return the object. This is not the same as the C meaning of `static'.
3318 If arg isn't static, return NULL. */
3319
3320 tree
3321 staticp (tree arg)
3322 {
3323 switch (TREE_CODE (arg))
3324 {
3325 case FUNCTION_DECL:
3326 /* Nested functions are static, even though taking their address will
3327 involve a trampoline as we unnest the nested function and create
3328 the trampoline on the tree level. */
3329 return arg;
3330
3331 case VAR_DECL:
3332 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3333 && ! DECL_THREAD_LOCAL_P (arg)
3334 && ! DECL_DLLIMPORT_P (arg)
3335 ? arg : NULL);
3336
3337 case CONST_DECL:
3338 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3339 ? arg : NULL);
3340
3341 case CONSTRUCTOR:
3342 return TREE_STATIC (arg) ? arg : NULL;
3343
3344 case LABEL_DECL:
3345 case STRING_CST:
3346 return arg;
3347
3348 case COMPONENT_REF:
3349 /* If the thing being referenced is not a field, then it is
3350 something language specific. */
3351 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3352
3353 /* If we are referencing a bitfield, we can't evaluate an
3354 ADDR_EXPR at compile time and so it isn't a constant. */
3355 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3356 return NULL;
3357
3358 return staticp (TREE_OPERAND (arg, 0));
3359
3360 case BIT_FIELD_REF:
3361 return NULL;
3362
3363 case INDIRECT_REF:
3364 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3365
3366 case ARRAY_REF:
3367 case ARRAY_RANGE_REF:
3368 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3369 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3370 return staticp (TREE_OPERAND (arg, 0));
3371 else
3372 return NULL;
3373
3374 case COMPOUND_LITERAL_EXPR:
3375 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3376
3377 default:
3378 return NULL;
3379 }
3380 }
3381
3382 \f
3383
3384
3385 /* Return whether OP is a DECL whose address is function-invariant. */
3386
3387 bool
3388 decl_address_invariant_p (const_tree op)
3389 {
3390 /* The conditions below are slightly less strict than the one in
3391 staticp. */
3392
3393 switch (TREE_CODE (op))
3394 {
3395 case PARM_DECL:
3396 case RESULT_DECL:
3397 case LABEL_DECL:
3398 case FUNCTION_DECL:
3399 return true;
3400
3401 case VAR_DECL:
3402 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3403 || DECL_THREAD_LOCAL_P (op)
3404 || DECL_CONTEXT (op) == current_function_decl
3405 || decl_function_context (op) == current_function_decl)
3406 return true;
3407 break;
3408
3409 case CONST_DECL:
3410 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3411 || decl_function_context (op) == current_function_decl)
3412 return true;
3413 break;
3414
3415 default:
3416 break;
3417 }
3418
3419 return false;
3420 }
3421
3422 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3423
3424 bool
3425 decl_address_ip_invariant_p (const_tree op)
3426 {
3427 /* The conditions below are slightly less strict than the one in
3428 staticp. */
3429
3430 switch (TREE_CODE (op))
3431 {
3432 case LABEL_DECL:
3433 case FUNCTION_DECL:
3434 case STRING_CST:
3435 return true;
3436
3437 case VAR_DECL:
3438 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3439 && !DECL_DLLIMPORT_P (op))
3440 || DECL_THREAD_LOCAL_P (op))
3441 return true;
3442 break;
3443
3444 case CONST_DECL:
3445 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3446 return true;
3447 break;
3448
3449 default:
3450 break;
3451 }
3452
3453 return false;
3454 }
3455
3456
3457 /* Return true if T is function-invariant (internal function, does
3458 not handle arithmetic; that's handled in skip_simple_arithmetic and
3459 tree_invariant_p). */
3460
3461 static bool
3462 tree_invariant_p_1 (tree t)
3463 {
3464 tree op;
3465
3466 if (TREE_CONSTANT (t)
3467 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3468 return true;
3469
3470 switch (TREE_CODE (t))
3471 {
3472 case SAVE_EXPR:
3473 return true;
3474
3475 case ADDR_EXPR:
3476 op = TREE_OPERAND (t, 0);
3477 while (handled_component_p (op))
3478 {
3479 switch (TREE_CODE (op))
3480 {
3481 case ARRAY_REF:
3482 case ARRAY_RANGE_REF:
3483 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3484 || TREE_OPERAND (op, 2) != NULL_TREE
3485 || TREE_OPERAND (op, 3) != NULL_TREE)
3486 return false;
3487 break;
3488
3489 case COMPONENT_REF:
3490 if (TREE_OPERAND (op, 2) != NULL_TREE)
3491 return false;
3492 break;
3493
3494 default:;
3495 }
3496 op = TREE_OPERAND (op, 0);
3497 }
3498
3499 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3500
3501 default:
3502 break;
3503 }
3504
3505 return false;
3506 }
3507
3508 /* Return true if T is function-invariant. */
3509
3510 bool
3511 tree_invariant_p (tree t)
3512 {
3513 tree inner = skip_simple_arithmetic (t);
3514 return tree_invariant_p_1 (inner);
3515 }
3516
3517 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3518 Do this to any expression which may be used in more than one place,
3519 but must be evaluated only once.
3520
3521 Normally, expand_expr would reevaluate the expression each time.
3522 Calling save_expr produces something that is evaluated and recorded
3523 the first time expand_expr is called on it. Subsequent calls to
3524 expand_expr just reuse the recorded value.
3525
3526 The call to expand_expr that generates code that actually computes
3527 the value is the first call *at compile time*. Subsequent calls
3528 *at compile time* generate code to use the saved value.
3529 This produces correct result provided that *at run time* control
3530 always flows through the insns made by the first expand_expr
3531 before reaching the other places where the save_expr was evaluated.
3532 You, the caller of save_expr, must make sure this is so.
3533
3534 Constants, and certain read-only nodes, are returned with no
3535 SAVE_EXPR because that is safe. Expressions containing placeholders
3536 are not touched; see tree.def for an explanation of what these
3537 are used for. */
3538
3539 tree
3540 save_expr (tree expr)
3541 {
3542 tree inner;
3543
3544 /* If the tree evaluates to a constant, then we don't want to hide that
3545 fact (i.e. this allows further folding, and direct checks for constants).
3546 However, a read-only object that has side effects cannot be bypassed.
3547 Since it is no problem to reevaluate literals, we just return the
3548 literal node. */
3549 inner = skip_simple_arithmetic (expr);
3550 if (TREE_CODE (inner) == ERROR_MARK)
3551 return inner;
3552
3553 if (tree_invariant_p_1 (inner))
3554 return expr;
3555
3556 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3557 it means that the size or offset of some field of an object depends on
3558 the value within another field.
3559
3560 Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3561 and some variable since it would then need to be both evaluated once and
3562 evaluated more than once. Front-ends must assure this case cannot
3563 happen by surrounding any such subexpressions in their own SAVE_EXPR
3564 and forcing evaluation at the proper time. */
3565 if (contains_placeholder_p (inner))
3566 return expr;
3567
3568 expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3569
3570 /* This expression might be placed ahead of a jump to ensure that the
3571 value was computed on both sides of the jump. So make sure it isn't
3572 eliminated as dead. */
3573 TREE_SIDE_EFFECTS (expr) = 1;
3574 return expr;
3575 }
3576
3577 /* Look inside EXPR into any simple arithmetic operations. Return the
3578 outermost non-arithmetic or non-invariant node. */
3579
3580 tree
3581 skip_simple_arithmetic (tree expr)
3582 {
3583 /* We don't care about whether this can be used as an lvalue in this
3584 context. */
3585 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3586 expr = TREE_OPERAND (expr, 0);
3587
3588 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3589 a constant, it will be more efficient to not make another SAVE_EXPR since
3590 it will allow better simplification and GCSE will be able to merge the
3591 computations if they actually occur. */
3592 while (true)
3593 {
3594 if (UNARY_CLASS_P (expr))
3595 expr = TREE_OPERAND (expr, 0);
3596 else if (BINARY_CLASS_P (expr))
3597 {
3598 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3599 expr = TREE_OPERAND (expr, 0);
3600 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3601 expr = TREE_OPERAND (expr, 1);
3602 else
3603 break;
3604 }
3605 else
3606 break;
3607 }
3608
3609 return expr;
3610 }
3611
3612 /* Look inside EXPR into simple arithmetic operations involving constants.
3613 Return the outermost non-arithmetic or non-constant node. */
3614
3615 tree
3616 skip_simple_constant_arithmetic (tree expr)
3617 {
3618 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3619 expr = TREE_OPERAND (expr, 0);
3620
3621 while (true)
3622 {
3623 if (UNARY_CLASS_P (expr))
3624 expr = TREE_OPERAND (expr, 0);
3625 else if (BINARY_CLASS_P (expr))
3626 {
3627 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3628 expr = TREE_OPERAND (expr, 0);
3629 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3630 expr = TREE_OPERAND (expr, 1);
3631 else
3632 break;
3633 }
3634 else
3635 break;
3636 }
3637
3638 return expr;
3639 }
3640
3641 /* Return which tree structure is used by T. */
3642
3643 enum tree_node_structure_enum
3644 tree_node_structure (const_tree t)
3645 {
3646 const enum tree_code code = TREE_CODE (t);
3647 return tree_node_structure_for_code (code);
3648 }
3649
3650 /* Set various status flags when building a CALL_EXPR object T. */
3651
3652 static void
3653 process_call_operands (tree t)
3654 {
3655 bool side_effects = TREE_SIDE_EFFECTS (t);
3656 bool read_only = false;
3657 int i = call_expr_flags (t);
3658
3659 /* Calls have side-effects, except those to const or pure functions. */
3660 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3661 side_effects = true;
3662 /* Propagate TREE_READONLY of arguments for const functions. */
3663 if (i & ECF_CONST)
3664 read_only = true;
3665
3666 if (!side_effects || read_only)
3667 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3668 {
3669 tree op = TREE_OPERAND (t, i);
3670 if (op && TREE_SIDE_EFFECTS (op))
3671 side_effects = true;
3672 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3673 read_only = false;
3674 }
3675
3676 TREE_SIDE_EFFECTS (t) = side_effects;
3677 TREE_READONLY (t) = read_only;
3678 }
3679 \f
3680 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3681 size or offset that depends on a field within a record. */
3682
3683 bool
3684 contains_placeholder_p (const_tree exp)
3685 {
3686 enum tree_code code;
3687
3688 if (!exp)
3689 return 0;
3690
3691 code = TREE_CODE (exp);
3692 if (code == PLACEHOLDER_EXPR)
3693 return 1;
3694
3695 switch (TREE_CODE_CLASS (code))
3696 {
3697 case tcc_reference:
3698 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3699 position computations since they will be converted into a
3700 WITH_RECORD_EXPR involving the reference, which will assume
3701 here will be valid. */
3702 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3703
3704 case tcc_exceptional:
3705 if (code == TREE_LIST)
3706 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3707 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3708 break;
3709
3710 case tcc_unary:
3711 case tcc_binary:
3712 case tcc_comparison:
3713 case tcc_expression:
3714 switch (code)
3715 {
3716 case COMPOUND_EXPR:
3717 /* Ignoring the first operand isn't quite right, but works best. */
3718 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3719
3720 case COND_EXPR:
3721 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3722 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3723 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3724
3725 case SAVE_EXPR:
3726 /* The save_expr function never wraps anything containing
3727 a PLACEHOLDER_EXPR. */
3728 return 0;
3729
3730 default:
3731 break;
3732 }
3733
3734 switch (TREE_CODE_LENGTH (code))
3735 {
3736 case 1:
3737 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3738 case 2:
3739 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3740 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3741 default:
3742 return 0;
3743 }
3744
3745 case tcc_vl_exp:
3746 switch (code)
3747 {
3748 case CALL_EXPR:
3749 {
3750 const_tree arg;
3751 const_call_expr_arg_iterator iter;
3752 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3753 if (CONTAINS_PLACEHOLDER_P (arg))
3754 return 1;
3755 return 0;
3756 }
3757 default:
3758 return 0;
3759 }
3760
3761 default:
3762 return 0;
3763 }
3764 return 0;
3765 }
3766
3767 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3768 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3769 field positions. */
3770
3771 static bool
3772 type_contains_placeholder_1 (const_tree type)
3773 {
3774 /* If the size contains a placeholder or the parent type (component type in
3775 the case of arrays) type involves a placeholder, this type does. */
3776 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3777 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3778 || (!POINTER_TYPE_P (type)
3779 && TREE_TYPE (type)
3780 && type_contains_placeholder_p (TREE_TYPE (type))))
3781 return true;
3782
3783 /* Now do type-specific checks. Note that the last part of the check above
3784 greatly limits what we have to do below. */
3785 switch (TREE_CODE (type))
3786 {
3787 case VOID_TYPE:
3788 case COMPLEX_TYPE:
3789 case ENUMERAL_TYPE:
3790 case BOOLEAN_TYPE:
3791 case POINTER_TYPE:
3792 case OFFSET_TYPE:
3793 case REFERENCE_TYPE:
3794 case METHOD_TYPE:
3795 case FUNCTION_TYPE:
3796 case VECTOR_TYPE:
3797 case NULLPTR_TYPE:
3798 return false;
3799
3800 case INTEGER_TYPE:
3801 case REAL_TYPE:
3802 case FIXED_POINT_TYPE:
3803 /* Here we just check the bounds. */
3804 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3805 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3806
3807 case ARRAY_TYPE:
3808 /* We have already checked the component type above, so just check
3809 the domain type. Flexible array members have a null domain. */
3810 return TYPE_DOMAIN (type) ?
3811 type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
3812
3813 case RECORD_TYPE:
3814 case UNION_TYPE:
3815 case QUAL_UNION_TYPE:
3816 {
3817 tree field;
3818
3819 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3820 if (TREE_CODE (field) == FIELD_DECL
3821 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3822 || (TREE_CODE (type) == QUAL_UNION_TYPE
3823 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3824 || type_contains_placeholder_p (TREE_TYPE (field))))
3825 return true;
3826
3827 return false;
3828 }
3829
3830 default:
3831 gcc_unreachable ();
3832 }
3833 }
3834
3835 /* Wrapper around above function used to cache its result. */
3836
3837 bool
3838 type_contains_placeholder_p (tree type)
3839 {
3840 bool result;
3841
3842 /* If the contains_placeholder_bits field has been initialized,
3843 then we know the answer. */
3844 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3845 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3846
3847 /* Indicate that we've seen this type node, and the answer is false.
3848 This is what we want to return if we run into recursion via fields. */
3849 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3850
3851 /* Compute the real value. */
3852 result = type_contains_placeholder_1 (type);
3853
3854 /* Store the real value. */
3855 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3856
3857 return result;
3858 }
3859 \f
3860 /* Push tree EXP onto vector QUEUE if it is not already present. */
3861
3862 static void
3863 push_without_duplicates (tree exp, vec<tree> *queue)
3864 {
3865 unsigned int i;
3866 tree iter;
3867
3868 FOR_EACH_VEC_ELT (*queue, i, iter)
3869 if (simple_cst_equal (iter, exp) == 1)
3870 break;
3871
3872 if (!iter)
3873 queue->safe_push (exp);
3874 }
3875
3876 /* Given a tree EXP, find all occurrences of references to fields
3877 in a PLACEHOLDER_EXPR and place them in vector REFS without
3878 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3879 we assume here that EXP contains only arithmetic expressions
3880 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3881 argument list. */
3882
3883 void
3884 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3885 {
3886 enum tree_code code = TREE_CODE (exp);
3887 tree inner;
3888 int i;
3889
3890 /* We handle TREE_LIST and COMPONENT_REF separately. */
3891 if (code == TREE_LIST)
3892 {
3893 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3894 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3895 }
3896 else if (code == COMPONENT_REF)
3897 {
3898 for (inner = TREE_OPERAND (exp, 0);
3899 REFERENCE_CLASS_P (inner);
3900 inner = TREE_OPERAND (inner, 0))
3901 ;
3902
3903 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3904 push_without_duplicates (exp, refs);
3905 else
3906 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3907 }
3908 else
3909 switch (TREE_CODE_CLASS (code))
3910 {
3911 case tcc_constant:
3912 break;
3913
3914 case tcc_declaration:
3915 /* Variables allocated to static storage can stay. */
3916 if (!TREE_STATIC (exp))
3917 push_without_duplicates (exp, refs);
3918 break;
3919
3920 case tcc_expression:
3921 /* This is the pattern built in ada/make_aligning_type. */
3922 if (code == ADDR_EXPR
3923 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3924 {
3925 push_without_duplicates (exp, refs);
3926 break;
3927 }
3928
3929 /* Fall through. */
3930
3931 case tcc_exceptional:
3932 case tcc_unary:
3933 case tcc_binary:
3934 case tcc_comparison:
3935 case tcc_reference:
3936 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3937 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3938 break;
3939
3940 case tcc_vl_exp:
3941 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3942 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3943 break;
3944
3945 default:
3946 gcc_unreachable ();
3947 }
3948 }
3949
3950 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3951 return a tree with all occurrences of references to F in a
3952 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3953 CONST_DECLs. Note that we assume here that EXP contains only
3954 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3955 occurring only in their argument list. */
3956
3957 tree
3958 substitute_in_expr (tree exp, tree f, tree r)
3959 {
3960 enum tree_code code = TREE_CODE (exp);
3961 tree op0, op1, op2, op3;
3962 tree new_tree;
3963
3964 /* We handle TREE_LIST and COMPONENT_REF separately. */
3965 if (code == TREE_LIST)
3966 {
3967 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3968 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3969 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3970 return exp;
3971
3972 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3973 }
3974 else if (code == COMPONENT_REF)
3975 {
3976 tree inner;
3977
3978 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3979 and it is the right field, replace it with R. */
3980 for (inner = TREE_OPERAND (exp, 0);
3981 REFERENCE_CLASS_P (inner);
3982 inner = TREE_OPERAND (inner, 0))
3983 ;
3984
3985 /* The field. */
3986 op1 = TREE_OPERAND (exp, 1);
3987
3988 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3989 return r;
3990
3991 /* If this expression hasn't been completed let, leave it alone. */
3992 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3993 return exp;
3994
3995 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3996 if (op0 == TREE_OPERAND (exp, 0))
3997 return exp;
3998
3999 new_tree
4000 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
4001 }
4002 else
4003 switch (TREE_CODE_CLASS (code))
4004 {
4005 case tcc_constant:
4006 return exp;
4007
4008 case tcc_declaration:
4009 if (exp == f)
4010 return r;
4011 else
4012 return exp;
4013
4014 case tcc_expression:
4015 if (exp == f)
4016 return r;
4017
4018 /* Fall through. */
4019
4020 case tcc_exceptional:
4021 case tcc_unary:
4022 case tcc_binary:
4023 case tcc_comparison:
4024 case tcc_reference:
4025 switch (TREE_CODE_LENGTH (code))
4026 {
4027 case 0:
4028 return exp;
4029
4030 case 1:
4031 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4032 if (op0 == TREE_OPERAND (exp, 0))
4033 return exp;
4034
4035 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4036 break;
4037
4038 case 2:
4039 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4040 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4041
4042 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4043 return exp;
4044
4045 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4046 break;
4047
4048 case 3:
4049 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4050 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4051 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4052
4053 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4054 && op2 == TREE_OPERAND (exp, 2))
4055 return exp;
4056
4057 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4058 break;
4059
4060 case 4:
4061 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4062 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4063 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4064 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
4065
4066 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4067 && op2 == TREE_OPERAND (exp, 2)
4068 && op3 == TREE_OPERAND (exp, 3))
4069 return exp;
4070
4071 new_tree
4072 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4073 break;
4074
4075 default:
4076 gcc_unreachable ();
4077 }
4078 break;
4079
4080 case tcc_vl_exp:
4081 {
4082 int i;
4083
4084 new_tree = NULL_TREE;
4085
4086 /* If we are trying to replace F with a constant or with another
4087 instance of one of the arguments of the call, inline back
4088 functions which do nothing else than computing a value from
4089 the arguments they are passed. This makes it possible to
4090 fold partially or entirely the replacement expression. */
4091 if (code == CALL_EXPR)
4092 {
4093 bool maybe_inline = false;
4094 if (CONSTANT_CLASS_P (r))
4095 maybe_inline = true;
4096 else
4097 for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
4098 if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
4099 {
4100 maybe_inline = true;
4101 break;
4102 }
4103 if (maybe_inline)
4104 {
4105 tree t = maybe_inline_call_in_expr (exp);
4106 if (t)
4107 return SUBSTITUTE_IN_EXPR (t, f, r);
4108 }
4109 }
4110
4111 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4112 {
4113 tree op = TREE_OPERAND (exp, i);
4114 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
4115 if (new_op != op)
4116 {
4117 if (!new_tree)
4118 new_tree = copy_node (exp);
4119 TREE_OPERAND (new_tree, i) = new_op;
4120 }
4121 }
4122
4123 if (new_tree)
4124 {
4125 new_tree = fold (new_tree);
4126 if (TREE_CODE (new_tree) == CALL_EXPR)
4127 process_call_operands (new_tree);
4128 }
4129 else
4130 return exp;
4131 }
4132 break;
4133
4134 default:
4135 gcc_unreachable ();
4136 }
4137
4138 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4139
4140 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4141 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4142
4143 return new_tree;
4144 }
4145
4146 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4147 for it within OBJ, a tree that is an object or a chain of references. */
4148
4149 tree
4150 substitute_placeholder_in_expr (tree exp, tree obj)
4151 {
4152 enum tree_code code = TREE_CODE (exp);
4153 tree op0, op1, op2, op3;
4154 tree new_tree;
4155
4156 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4157 in the chain of OBJ. */
4158 if (code == PLACEHOLDER_EXPR)
4159 {
4160 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
4161 tree elt;
4162
4163 for (elt = obj; elt != 0;
4164 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4165 || TREE_CODE (elt) == COND_EXPR)
4166 ? TREE_OPERAND (elt, 1)
4167 : (REFERENCE_CLASS_P (elt)
4168 || UNARY_CLASS_P (elt)
4169 || BINARY_CLASS_P (elt)
4170 || VL_EXP_CLASS_P (elt)
4171 || EXPRESSION_CLASS_P (elt))
4172 ? TREE_OPERAND (elt, 0) : 0))
4173 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
4174 return elt;
4175
4176 for (elt = obj; elt != 0;
4177 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4178 || TREE_CODE (elt) == COND_EXPR)
4179 ? TREE_OPERAND (elt, 1)
4180 : (REFERENCE_CLASS_P (elt)
4181 || UNARY_CLASS_P (elt)
4182 || BINARY_CLASS_P (elt)
4183 || VL_EXP_CLASS_P (elt)
4184 || EXPRESSION_CLASS_P (elt))
4185 ? TREE_OPERAND (elt, 0) : 0))
4186 if (POINTER_TYPE_P (TREE_TYPE (elt))
4187 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
4188 == need_type))
4189 return fold_build1 (INDIRECT_REF, need_type, elt);
4190
4191 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
4192 survives until RTL generation, there will be an error. */
4193 return exp;
4194 }
4195
4196 /* TREE_LIST is special because we need to look at TREE_VALUE
4197 and TREE_CHAIN, not TREE_OPERANDS. */
4198 else if (code == TREE_LIST)
4199 {
4200 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4201 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4202 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4203 return exp;
4204
4205 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4206 }
4207 else
4208 switch (TREE_CODE_CLASS (code))
4209 {
4210 case tcc_constant:
4211 case tcc_declaration:
4212 return exp;
4213
4214 case tcc_exceptional:
4215 case tcc_unary:
4216 case tcc_binary:
4217 case tcc_comparison:
4218 case tcc_expression:
4219 case tcc_reference:
4220 case tcc_statement:
4221 switch (TREE_CODE_LENGTH (code))
4222 {
4223 case 0:
4224 return exp;
4225
4226 case 1:
4227 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4228 if (op0 == TREE_OPERAND (exp, 0))
4229 return exp;
4230
4231 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4232 break;
4233
4234 case 2:
4235 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4236 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4237
4238 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4239 return exp;
4240
4241 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4242 break;
4243
4244 case 3:
4245 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4246 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4247 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4248
4249 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4250 && op2 == TREE_OPERAND (exp, 2))
4251 return exp;
4252
4253 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4254 break;
4255
4256 case 4:
4257 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4258 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4259 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4260 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4261
4262 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4263 && op2 == TREE_OPERAND (exp, 2)
4264 && op3 == TREE_OPERAND (exp, 3))
4265 return exp;
4266
4267 new_tree
4268 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4269 break;
4270
4271 default:
4272 gcc_unreachable ();
4273 }
4274 break;
4275
4276 case tcc_vl_exp:
4277 {
4278 int i;
4279
4280 new_tree = NULL_TREE;
4281
4282 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4283 {
4284 tree op = TREE_OPERAND (exp, i);
4285 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4286 if (new_op != op)
4287 {
4288 if (!new_tree)
4289 new_tree = copy_node (exp);
4290 TREE_OPERAND (new_tree, i) = new_op;
4291 }
4292 }
4293
4294 if (new_tree)
4295 {
4296 new_tree = fold (new_tree);
4297 if (TREE_CODE (new_tree) == CALL_EXPR)
4298 process_call_operands (new_tree);
4299 }
4300 else
4301 return exp;
4302 }
4303 break;
4304
4305 default:
4306 gcc_unreachable ();
4307 }
4308
4309 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4310
4311 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4312 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4313
4314 return new_tree;
4315 }
4316 \f
4317
4318 /* Subroutine of stabilize_reference; this is called for subtrees of
4319 references. Any expression with side-effects must be put in a SAVE_EXPR
4320 to ensure that it is only evaluated once.
4321
4322 We don't put SAVE_EXPR nodes around everything, because assigning very
4323 simple expressions to temporaries causes us to miss good opportunities
4324 for optimizations. Among other things, the opportunity to fold in the
4325 addition of a constant into an addressing mode often gets lost, e.g.
4326 "y[i+1] += x;". In general, we take the approach that we should not make
4327 an assignment unless we are forced into it - i.e., that any non-side effect
4328 operator should be allowed, and that cse should take care of coalescing
4329 multiple utterances of the same expression should that prove fruitful. */
4330
4331 static tree
4332 stabilize_reference_1 (tree e)
4333 {
4334 tree result;
4335 enum tree_code code = TREE_CODE (e);
4336
4337 /* We cannot ignore const expressions because it might be a reference
4338 to a const array but whose index contains side-effects. But we can
4339 ignore things that are actual constant or that already have been
4340 handled by this function. */
4341
4342 if (tree_invariant_p (e))
4343 return e;
4344
4345 switch (TREE_CODE_CLASS (code))
4346 {
4347 case tcc_exceptional:
4348 /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
4349 have side-effects. */
4350 if (code == STATEMENT_LIST)
4351 return save_expr (e);
4352 /* FALLTHRU */
4353 case tcc_type:
4354 case tcc_declaration:
4355 case tcc_comparison:
4356 case tcc_statement:
4357 case tcc_expression:
4358 case tcc_reference:
4359 case tcc_vl_exp:
4360 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4361 so that it will only be evaluated once. */
4362 /* The reference (r) and comparison (<) classes could be handled as
4363 below, but it is generally faster to only evaluate them once. */
4364 if (TREE_SIDE_EFFECTS (e))
4365 return save_expr (e);
4366 return e;
4367
4368 case tcc_constant:
4369 /* Constants need no processing. In fact, we should never reach
4370 here. */
4371 return e;
4372
4373 case tcc_binary:
4374 /* Division is slow and tends to be compiled with jumps,
4375 especially the division by powers of 2 that is often
4376 found inside of an array reference. So do it just once. */
4377 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4378 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4379 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4380 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4381 return save_expr (e);
4382 /* Recursively stabilize each operand. */
4383 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4384 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4385 break;
4386
4387 case tcc_unary:
4388 /* Recursively stabilize each operand. */
4389 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4390 break;
4391
4392 default:
4393 gcc_unreachable ();
4394 }
4395
4396 TREE_TYPE (result) = TREE_TYPE (e);
4397 TREE_READONLY (result) = TREE_READONLY (e);
4398 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4399 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4400
4401 return result;
4402 }
4403
4404 /* Stabilize a reference so that we can use it any number of times
4405 without causing its operands to be evaluated more than once.
4406 Returns the stabilized reference. This works by means of save_expr,
4407 so see the caveats in the comments about save_expr.
4408
4409 Also allows conversion expressions whose operands are references.
4410 Any other kind of expression is returned unchanged. */
4411
4412 tree
4413 stabilize_reference (tree ref)
4414 {
4415 tree result;
4416 enum tree_code code = TREE_CODE (ref);
4417
4418 switch (code)
4419 {
4420 case VAR_DECL:
4421 case PARM_DECL:
4422 case RESULT_DECL:
4423 /* No action is needed in this case. */
4424 return ref;
4425
4426 CASE_CONVERT:
4427 case FLOAT_EXPR:
4428 case FIX_TRUNC_EXPR:
4429 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4430 break;
4431
4432 case INDIRECT_REF:
4433 result = build_nt (INDIRECT_REF,
4434 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4435 break;
4436
4437 case COMPONENT_REF:
4438 result = build_nt (COMPONENT_REF,
4439 stabilize_reference (TREE_OPERAND (ref, 0)),
4440 TREE_OPERAND (ref, 1), NULL_TREE);
4441 break;
4442
4443 case BIT_FIELD_REF:
4444 result = build_nt (BIT_FIELD_REF,
4445 stabilize_reference (TREE_OPERAND (ref, 0)),
4446 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4447 REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4448 break;
4449
4450 case ARRAY_REF:
4451 result = build_nt (ARRAY_REF,
4452 stabilize_reference (TREE_OPERAND (ref, 0)),
4453 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4454 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4455 break;
4456
4457 case ARRAY_RANGE_REF:
4458 result = build_nt (ARRAY_RANGE_REF,
4459 stabilize_reference (TREE_OPERAND (ref, 0)),
4460 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4461 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4462 break;
4463
4464 case COMPOUND_EXPR:
4465 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4466 it wouldn't be ignored. This matters when dealing with
4467 volatiles. */
4468 return stabilize_reference_1 (ref);
4469
4470 /* If arg isn't a kind of lvalue we recognize, make no change.
4471 Caller should recognize the error for an invalid lvalue. */
4472 default:
4473 return ref;
4474
4475 case ERROR_MARK:
4476 return error_mark_node;
4477 }
4478
4479 TREE_TYPE (result) = TREE_TYPE (ref);
4480 TREE_READONLY (result) = TREE_READONLY (ref);
4481 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4482 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4483
4484 return result;
4485 }
4486 \f
4487 /* Low-level constructors for expressions. */
4488
4489 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4490 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4491
4492 void
4493 recompute_tree_invariant_for_addr_expr (tree t)
4494 {
4495 tree node;
4496 bool tc = true, se = false;
4497
4498 gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4499
4500 /* We started out assuming this address is both invariant and constant, but
4501 does not have side effects. Now go down any handled components and see if
4502 any of them involve offsets that are either non-constant or non-invariant.
4503 Also check for side-effects.
4504
4505 ??? Note that this code makes no attempt to deal with the case where
4506 taking the address of something causes a copy due to misalignment. */
4507
4508 #define UPDATE_FLAGS(NODE) \
4509 do { tree _node = (NODE); \
4510 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4511 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4512
4513 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4514 node = TREE_OPERAND (node, 0))
4515 {
4516 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4517 array reference (probably made temporarily by the G++ front end),
4518 so ignore all the operands. */
4519 if ((TREE_CODE (node) == ARRAY_REF
4520 || TREE_CODE (node) == ARRAY_RANGE_REF)
4521 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4522 {
4523 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4524 if (TREE_OPERAND (node, 2))
4525 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4526 if (TREE_OPERAND (node, 3))
4527 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4528 }
4529 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4530 FIELD_DECL, apparently. The G++ front end can put something else
4531 there, at least temporarily. */
4532 else if (TREE_CODE (node) == COMPONENT_REF
4533 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4534 {
4535 if (TREE_OPERAND (node, 2))
4536 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4537 }
4538 }
4539
4540 node = lang_hooks.expr_to_decl (node, &tc, &se);
4541
4542 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4543 the address, since &(*a)->b is a form of addition. If it's a constant, the
4544 address is constant too. If it's a decl, its address is constant if the
4545 decl is static. Everything else is not constant and, furthermore,
4546 taking the address of a volatile variable is not volatile. */
4547 if (TREE_CODE (node) == INDIRECT_REF
4548 || TREE_CODE (node) == MEM_REF)
4549 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4550 else if (CONSTANT_CLASS_P (node))
4551 ;
4552 else if (DECL_P (node))
4553 tc &= (staticp (node) != NULL_TREE);
4554 else
4555 {
4556 tc = false;
4557 se |= TREE_SIDE_EFFECTS (node);
4558 }
4559
4560
4561 TREE_CONSTANT (t) = tc;
4562 TREE_SIDE_EFFECTS (t) = se;
4563 #undef UPDATE_FLAGS
4564 }
4565
4566 /* Build an expression of code CODE, data type TYPE, and operands as
4567 specified. Expressions and reference nodes can be created this way.
4568 Constants, decls, types and misc nodes cannot be.
4569
4570 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4571 enough for all extant tree codes. */
4572
4573 tree
4574 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4575 {
4576 tree t;
4577
4578 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4579
4580 t = make_node (code PASS_MEM_STAT);
4581 TREE_TYPE (t) = tt;
4582
4583 return t;
4584 }
4585
4586 tree
4587 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4588 {
4589 int length = sizeof (struct tree_exp);
4590 tree t;
4591
4592 record_node_allocation_statistics (code, length);
4593
4594 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4595
4596 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4597
4598 memset (t, 0, sizeof (struct tree_common));
4599
4600 TREE_SET_CODE (t, code);
4601
4602 TREE_TYPE (t) = type;
4603 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4604 TREE_OPERAND (t, 0) = node;
4605 if (node && !TYPE_P (node))
4606 {
4607 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4608 TREE_READONLY (t) = TREE_READONLY (node);
4609 }
4610
4611 if (TREE_CODE_CLASS (code) == tcc_statement)
4612 {
4613 if (code != DEBUG_BEGIN_STMT)
4614 TREE_SIDE_EFFECTS (t) = 1;
4615 }
4616 else switch (code)
4617 {
4618 case VA_ARG_EXPR:
4619 /* All of these have side-effects, no matter what their
4620 operands are. */
4621 TREE_SIDE_EFFECTS (t) = 1;
4622 TREE_READONLY (t) = 0;
4623 break;
4624
4625 case INDIRECT_REF:
4626 /* Whether a dereference is readonly has nothing to do with whether
4627 its operand is readonly. */
4628 TREE_READONLY (t) = 0;
4629 break;
4630
4631 case ADDR_EXPR:
4632 if (node)
4633 recompute_tree_invariant_for_addr_expr (t);
4634 break;
4635
4636 default:
4637 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4638 && node && !TYPE_P (node)
4639 && TREE_CONSTANT (node))
4640 TREE_CONSTANT (t) = 1;
4641 if (TREE_CODE_CLASS (code) == tcc_reference
4642 && node && TREE_THIS_VOLATILE (node))
4643 TREE_THIS_VOLATILE (t) = 1;
4644 break;
4645 }
4646
4647 return t;
4648 }
4649
4650 #define PROCESS_ARG(N) \
4651 do { \
4652 TREE_OPERAND (t, N) = arg##N; \
4653 if (arg##N &&!TYPE_P (arg##N)) \
4654 { \
4655 if (TREE_SIDE_EFFECTS (arg##N)) \
4656 side_effects = 1; \
4657 if (!TREE_READONLY (arg##N) \
4658 && !CONSTANT_CLASS_P (arg##N)) \
4659 (void) (read_only = 0); \
4660 if (!TREE_CONSTANT (arg##N)) \
4661 (void) (constant = 0); \
4662 } \
4663 } while (0)
4664
4665 tree
4666 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4667 {
4668 bool constant, read_only, side_effects, div_by_zero;
4669 tree t;
4670
4671 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4672
4673 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4674 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4675 /* When sizetype precision doesn't match that of pointers
4676 we need to be able to build explicit extensions or truncations
4677 of the offset argument. */
4678 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4679 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4680 && TREE_CODE (arg1) == INTEGER_CST);
4681
4682 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4683 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4684 && ptrofftype_p (TREE_TYPE (arg1)));
4685
4686 t = make_node (code PASS_MEM_STAT);
4687 TREE_TYPE (t) = tt;
4688
4689 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4690 result based on those same flags for the arguments. But if the
4691 arguments aren't really even `tree' expressions, we shouldn't be trying
4692 to do this. */
4693
4694 /* Expressions without side effects may be constant if their
4695 arguments are as well. */
4696 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4697 || TREE_CODE_CLASS (code) == tcc_binary);
4698 read_only = 1;
4699 side_effects = TREE_SIDE_EFFECTS (t);
4700
4701 switch (code)
4702 {
4703 case TRUNC_DIV_EXPR:
4704 case CEIL_DIV_EXPR:
4705 case FLOOR_DIV_EXPR:
4706 case ROUND_DIV_EXPR:
4707 case EXACT_DIV_EXPR:
4708 case CEIL_MOD_EXPR:
4709 case FLOOR_MOD_EXPR:
4710 case ROUND_MOD_EXPR:
4711 case TRUNC_MOD_EXPR:
4712 div_by_zero = integer_zerop (arg1);
4713 break;
4714 default:
4715 div_by_zero = false;
4716 }
4717
4718 PROCESS_ARG (0);
4719 PROCESS_ARG (1);
4720
4721 TREE_SIDE_EFFECTS (t) = side_effects;
4722 if (code == MEM_REF)
4723 {
4724 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4725 {
4726 tree o = TREE_OPERAND (arg0, 0);
4727 TREE_READONLY (t) = TREE_READONLY (o);
4728 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4729 }
4730 }
4731 else
4732 {
4733 TREE_READONLY (t) = read_only;
4734 /* Don't mark X / 0 as constant. */
4735 TREE_CONSTANT (t) = constant && !div_by_zero;
4736 TREE_THIS_VOLATILE (t)
4737 = (TREE_CODE_CLASS (code) == tcc_reference
4738 && arg0 && TREE_THIS_VOLATILE (arg0));
4739 }
4740
4741 return t;
4742 }
4743
4744
4745 tree
4746 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
4747 tree arg2 MEM_STAT_DECL)
4748 {
4749 bool constant, read_only, side_effects;
4750 tree t;
4751
4752 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4753 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4754
4755 t = make_node (code PASS_MEM_STAT);
4756 TREE_TYPE (t) = tt;
4757
4758 read_only = 1;
4759
4760 /* As a special exception, if COND_EXPR has NULL branches, we
4761 assume that it is a gimple statement and always consider
4762 it to have side effects. */
4763 if (code == COND_EXPR
4764 && tt == void_type_node
4765 && arg1 == NULL_TREE
4766 && arg2 == NULL_TREE)
4767 side_effects = true;
4768 else
4769 side_effects = TREE_SIDE_EFFECTS (t);
4770
4771 PROCESS_ARG (0);
4772 PROCESS_ARG (1);
4773 PROCESS_ARG (2);
4774
4775 if (code == COND_EXPR)
4776 TREE_READONLY (t) = read_only;
4777
4778 TREE_SIDE_EFFECTS (t) = side_effects;
4779 TREE_THIS_VOLATILE (t)
4780 = (TREE_CODE_CLASS (code) == tcc_reference
4781 && arg0 && TREE_THIS_VOLATILE (arg0));
4782
4783 return t;
4784 }
4785
4786 tree
4787 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
4788 tree arg2, tree arg3 MEM_STAT_DECL)
4789 {
4790 bool constant, read_only, side_effects;
4791 tree t;
4792
4793 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4794
4795 t = make_node (code PASS_MEM_STAT);
4796 TREE_TYPE (t) = tt;
4797
4798 side_effects = TREE_SIDE_EFFECTS (t);
4799
4800 PROCESS_ARG (0);
4801 PROCESS_ARG (1);
4802 PROCESS_ARG (2);
4803 PROCESS_ARG (3);
4804
4805 TREE_SIDE_EFFECTS (t) = side_effects;
4806 TREE_THIS_VOLATILE (t)
4807 = (TREE_CODE_CLASS (code) == tcc_reference
4808 && arg0 && TREE_THIS_VOLATILE (arg0));
4809
4810 return t;
4811 }
4812
4813 tree
4814 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
4815 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4816 {
4817 bool constant, read_only, side_effects;
4818 tree t;
4819
4820 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4821
4822 t = make_node (code PASS_MEM_STAT);
4823 TREE_TYPE (t) = tt;
4824
4825 side_effects = TREE_SIDE_EFFECTS (t);
4826
4827 PROCESS_ARG (0);
4828 PROCESS_ARG (1);
4829 PROCESS_ARG (2);
4830 PROCESS_ARG (3);
4831 PROCESS_ARG (4);
4832
4833 TREE_SIDE_EFFECTS (t) = side_effects;
4834 if (code == TARGET_MEM_REF)
4835 {
4836 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4837 {
4838 tree o = TREE_OPERAND (arg0, 0);
4839 TREE_READONLY (t) = TREE_READONLY (o);
4840 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4841 }
4842 }
4843 else
4844 TREE_THIS_VOLATILE (t)
4845 = (TREE_CODE_CLASS (code) == tcc_reference
4846 && arg0 && TREE_THIS_VOLATILE (arg0));
4847
4848 return t;
4849 }
4850
4851 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4852 on the pointer PTR. */
4853
4854 tree
4855 build_simple_mem_ref_loc (location_t loc, tree ptr)
4856 {
4857 poly_int64 offset = 0;
4858 tree ptype = TREE_TYPE (ptr);
4859 tree tem;
4860 /* For convenience allow addresses that collapse to a simple base
4861 and offset. */
4862 if (TREE_CODE (ptr) == ADDR_EXPR
4863 && (handled_component_p (TREE_OPERAND (ptr, 0))
4864 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4865 {
4866 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4867 gcc_assert (ptr);
4868 if (TREE_CODE (ptr) == MEM_REF)
4869 {
4870 offset += mem_ref_offset (ptr).force_shwi ();
4871 ptr = TREE_OPERAND (ptr, 0);
4872 }
4873 else
4874 ptr = build_fold_addr_expr (ptr);
4875 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4876 }
4877 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4878 ptr, build_int_cst (ptype, offset));
4879 SET_EXPR_LOCATION (tem, loc);
4880 return tem;
4881 }
4882
4883 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4884
4885 poly_offset_int
4886 mem_ref_offset (const_tree t)
4887 {
4888 return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
4889 SIGNED);
4890 }
4891
4892 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4893 offsetted by OFFSET units. */
4894
4895 tree
4896 build_invariant_address (tree type, tree base, poly_int64 offset)
4897 {
4898 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4899 build_fold_addr_expr (base),
4900 build_int_cst (ptr_type_node, offset));
4901 tree addr = build1 (ADDR_EXPR, type, ref);
4902 recompute_tree_invariant_for_addr_expr (addr);
4903 return addr;
4904 }
4905
4906 /* Similar except don't specify the TREE_TYPE
4907 and leave the TREE_SIDE_EFFECTS as 0.
4908 It is permissible for arguments to be null,
4909 or even garbage if their values do not matter. */
4910
4911 tree
4912 build_nt (enum tree_code code, ...)
4913 {
4914 tree t;
4915 int length;
4916 int i;
4917 va_list p;
4918
4919 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4920
4921 va_start (p, code);
4922
4923 t = make_node (code);
4924 length = TREE_CODE_LENGTH (code);
4925
4926 for (i = 0; i < length; i++)
4927 TREE_OPERAND (t, i) = va_arg (p, tree);
4928
4929 va_end (p);
4930 return t;
4931 }
4932
4933 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4934 tree vec. */
4935
4936 tree
4937 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4938 {
4939 tree ret, t;
4940 unsigned int ix;
4941
4942 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4943 CALL_EXPR_FN (ret) = fn;
4944 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4945 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4946 CALL_EXPR_ARG (ret, ix) = t;
4947 return ret;
4948 }
4949 \f
4950 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4951 We do NOT enter this node in any sort of symbol table.
4952
4953 LOC is the location of the decl.
4954
4955 layout_decl is used to set up the decl's storage layout.
4956 Other slots are initialized to 0 or null pointers. */
4957
4958 tree
4959 build_decl (location_t loc, enum tree_code code, tree name,
4960 tree type MEM_STAT_DECL)
4961 {
4962 tree t;
4963
4964 t = make_node (code PASS_MEM_STAT);
4965 DECL_SOURCE_LOCATION (t) = loc;
4966
4967 /* if (type == error_mark_node)
4968 type = integer_type_node; */
4969 /* That is not done, deliberately, so that having error_mark_node
4970 as the type can suppress useless errors in the use of this variable. */
4971
4972 DECL_NAME (t) = name;
4973 TREE_TYPE (t) = type;
4974
4975 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4976 layout_decl (t, 0);
4977
4978 return t;
4979 }
4980
4981 /* Builds and returns function declaration with NAME and TYPE. */
4982
4983 tree
4984 build_fn_decl (const char *name, tree type)
4985 {
4986 tree id = get_identifier (name);
4987 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4988
4989 DECL_EXTERNAL (decl) = 1;
4990 TREE_PUBLIC (decl) = 1;
4991 DECL_ARTIFICIAL (decl) = 1;
4992 TREE_NOTHROW (decl) = 1;
4993
4994 return decl;
4995 }
4996
4997 vec<tree, va_gc> *all_translation_units;
4998
4999 /* Builds a new translation-unit decl with name NAME, queues it in the
5000 global list of translation-unit decls and returns it. */
5001
5002 tree
5003 build_translation_unit_decl (tree name)
5004 {
5005 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
5006 name, NULL_TREE);
5007 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
5008 vec_safe_push (all_translation_units, tu);
5009 return tu;
5010 }
5011
5012 \f
5013 /* BLOCK nodes are used to represent the structure of binding contours
5014 and declarations, once those contours have been exited and their contents
5015 compiled. This information is used for outputting debugging info. */
5016
5017 tree
5018 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
5019 {
5020 tree block = make_node (BLOCK);
5021
5022 BLOCK_VARS (block) = vars;
5023 BLOCK_SUBBLOCKS (block) = subblocks;
5024 BLOCK_SUPERCONTEXT (block) = supercontext;
5025 BLOCK_CHAIN (block) = chain;
5026 return block;
5027 }
5028
5029 \f
5030 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5031
5032 LOC is the location to use in tree T. */
5033
5034 void
5035 protected_set_expr_location (tree t, location_t loc)
5036 {
5037 if (CAN_HAVE_LOCATION_P (t))
5038 SET_EXPR_LOCATION (t, loc);
5039 }
5040
5041 /* Data used when collecting DECLs and TYPEs for language data removal. */
5042
5043 struct free_lang_data_d
5044 {
5045 free_lang_data_d () : decls (100), types (100) {}
5046
5047 /* Worklist to avoid excessive recursion. */
5048 auto_vec<tree> worklist;
5049
5050 /* Set of traversed objects. Used to avoid duplicate visits. */
5051 hash_set<tree> pset;
5052
5053 /* Array of symbols to process with free_lang_data_in_decl. */
5054 auto_vec<tree> decls;
5055
5056 /* Array of types to process with free_lang_data_in_type. */
5057 auto_vec<tree> types;
5058 };
5059
5060
5061 /* Add type or decl T to one of the list of tree nodes that need their
5062 language data removed. The lists are held inside FLD. */
5063
5064 static void
5065 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5066 {
5067 if (DECL_P (t))
5068 fld->decls.safe_push (t);
5069 else if (TYPE_P (t))
5070 fld->types.safe_push (t);
5071 else
5072 gcc_unreachable ();
5073 }
5074
5075 /* Push tree node T into FLD->WORKLIST. */
5076
5077 static inline void
5078 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5079 {
5080 if (t && !is_lang_specific (t) && !fld->pset.contains (t))
5081 fld->worklist.safe_push ((t));
5082 }
5083
5084
5085 \f
5086 /* Return simplified TYPE_NAME of TYPE. */
5087
5088 static tree
5089 fld_simplified_type_name (tree type)
5090 {
5091 if (!TYPE_NAME (type) || TREE_CODE (TYPE_NAME (type)) != TYPE_DECL)
5092 return TYPE_NAME (type);
5093 /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
5094 TYPE_DECL if the type doesn't have linkage.
5095 this must match fld_ */
5096 if (type != TYPE_MAIN_VARIANT (type) || ! type_with_linkage_p (type))
5097 return DECL_NAME (TYPE_NAME (type));
5098 return TYPE_NAME (type);
5099 }
5100
5101 /* Do same comparsion as check_qualified_type skipping lang part of type
5102 and be more permissive about type names: we only care that names are
5103 same (for diagnostics) and that ODR names are the same. */
5104
5105 static bool
5106 fld_type_variant_equal_p (tree t, tree v)
5107 {
5108 if (TYPE_QUALS (t) != TYPE_QUALS (v)
5109 /* We want to match incomplete variants with complete types.
5110 In this case we need to ignore alignment. */
5111 || ((!RECORD_OR_UNION_TYPE_P (t) || COMPLETE_TYPE_P (v))
5112 && TYPE_ALIGN (t) != TYPE_ALIGN (v))
5113 || fld_simplified_type_name (t) != fld_simplified_type_name (v)
5114 || !attribute_list_equal (TYPE_ATTRIBUTES (t),
5115 TYPE_ATTRIBUTES (v)))
5116 return false;
5117
5118 return true;
5119 }
5120
5121 /* Find variant of FIRST that match T and create new one if necessary. */
5122
5123 static tree
5124 fld_type_variant (tree first, tree t, struct free_lang_data_d *fld)
5125 {
5126 if (first == TYPE_MAIN_VARIANT (t))
5127 return t;
5128 for (tree v = first; v; v = TYPE_NEXT_VARIANT (v))
5129 if (fld_type_variant_equal_p (t, v))
5130 return v;
5131 tree v = build_variant_type_copy (first);
5132 TYPE_READONLY (v) = TYPE_READONLY (t);
5133 TYPE_VOLATILE (v) = TYPE_VOLATILE (t);
5134 TYPE_ATOMIC (v) = TYPE_ATOMIC (t);
5135 TYPE_RESTRICT (v) = TYPE_RESTRICT (t);
5136 TYPE_ADDR_SPACE (v) = TYPE_ADDR_SPACE (t);
5137 TYPE_NAME (v) = TYPE_NAME (t);
5138 TYPE_ATTRIBUTES (v) = TYPE_ATTRIBUTES (t);
5139 TYPE_CANONICAL (v) = TYPE_CANONICAL (t);
5140 /* Variants of incomplete types should have alignment
5141 set to BITS_PER_UNIT. Do not copy the actual alignment. */
5142 if (!RECORD_OR_UNION_TYPE_P (v) || COMPLETE_TYPE_P (v))
5143 SET_TYPE_ALIGN (v, TYPE_ALIGN (t));
5144 gcc_checking_assert (fld_type_variant_equal_p (t,v));
5145 add_tree_to_fld_list (v, fld);
5146 return v;
5147 }
5148
5149 /* Map complete types to incomplete types. */
5150
5151 static hash_map<tree, tree> *fld_incomplete_types;
5152
5153 /* For T being aggregate type try to turn it into a incomplete variant.
5154 Return T if no simplification is possible. */
5155
5156 static tree
5157 fld_incomplete_type_of (tree t, struct free_lang_data_d *fld)
5158 {
5159 if (!t)
5160 return NULL;
5161 if (POINTER_TYPE_P (t))
5162 {
5163 tree t2 = fld_incomplete_type_of (TREE_TYPE (t), fld);
5164 if (t2 != TREE_TYPE (t))
5165 {
5166 tree first;
5167 if (TREE_CODE (t) == POINTER_TYPE)
5168 first = build_pointer_type_for_mode (t2, TYPE_MODE (t),
5169 TYPE_REF_CAN_ALIAS_ALL (t));
5170 else
5171 first = build_reference_type_for_mode (t2, TYPE_MODE (t),
5172 TYPE_REF_CAN_ALIAS_ALL (t));
5173 gcc_assert (TYPE_CANONICAL (t2) != t2
5174 && TYPE_CANONICAL (t2) == TYPE_CANONICAL (TREE_TYPE (t)));
5175 add_tree_to_fld_list (first, fld);
5176 return fld_type_variant (first, t, fld);
5177 }
5178 return t;
5179 }
5180 if (!RECORD_OR_UNION_TYPE_P (t) || !COMPLETE_TYPE_P (t))
5181 return t;
5182 if (TYPE_MAIN_VARIANT (t) == t)
5183 {
5184 bool existed;
5185 tree &copy
5186 = fld_incomplete_types->get_or_insert (t, &existed);
5187
5188 if (!existed)
5189 {
5190 copy = build_distinct_type_copy (t);
5191
5192 /* It is possible type was not seen by free_lang_data yet. */
5193 add_tree_to_fld_list (copy, fld);
5194 TYPE_SIZE (copy) = NULL;
5195 SET_TYPE_MODE (copy, VOIDmode);
5196 SET_TYPE_ALIGN (copy, BITS_PER_UNIT);
5197 TYPE_SIZE_UNIT (copy) = NULL;
5198 TYPE_CANONICAL (copy) = TYPE_CANONICAL (t);
5199 TYPE_TYPELESS_STORAGE (copy) = 0;
5200 if (AGGREGATE_TYPE_P (t))
5201 {
5202 TYPE_FIELDS (copy) = NULL;
5203 TYPE_BINFO (copy) = NULL;
5204 }
5205 else
5206 TYPE_VALUES (copy) = NULL;
5207 }
5208 return copy;
5209 }
5210 return (fld_type_variant
5211 (fld_incomplete_type_of (TYPE_MAIN_VARIANT (t), fld), t, fld));
5212 }
5213
5214 /* Simplify type T for scenarios where we do not need complete pointer
5215 types. */
5216
5217 static tree
5218 fld_simplified_type (tree t, struct free_lang_data_d *fld)
5219 {
5220 if (t && POINTER_TYPE_P (t))
5221 return fld_incomplete_type_of (t, fld);
5222 return t;
5223 }
5224
5225 /* Reset the expression *EXPR_P, a size or position.
5226
5227 ??? We could reset all non-constant sizes or positions. But it's cheap
5228 enough to not do so and refrain from adding workarounds to dwarf2out.c.
5229
5230 We need to reset self-referential sizes or positions because they cannot
5231 be gimplified and thus can contain a CALL_EXPR after the gimplification
5232 is finished, which will run afoul of LTO streaming. And they need to be
5233 reset to something essentially dummy but not constant, so as to preserve
5234 the properties of the object they are attached to. */
5235
5236 static inline void
5237 free_lang_data_in_one_sizepos (tree *expr_p)
5238 {
5239 tree expr = *expr_p;
5240 if (CONTAINS_PLACEHOLDER_P (expr))
5241 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
5242 }
5243
5244
5245 /* Reset all the fields in a binfo node BINFO. We only keep
5246 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
5247
5248 static void
5249 free_lang_data_in_binfo (tree binfo)
5250 {
5251 unsigned i;
5252 tree t;
5253
5254 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
5255
5256 BINFO_VIRTUALS (binfo) = NULL_TREE;
5257 BINFO_BASE_ACCESSES (binfo) = NULL;
5258 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
5259 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
5260 BINFO_VPTR_FIELD (binfo) = NULL_TREE;
5261
5262 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
5263 free_lang_data_in_binfo (t);
5264 }
5265
5266
5267 /* Reset all language specific information still present in TYPE. */
5268
5269 static void
5270 free_lang_data_in_type (tree type, struct free_lang_data_d *fld)
5271 {
5272 gcc_assert (TYPE_P (type));
5273
5274 /* Give the FE a chance to remove its own data first. */
5275 lang_hooks.free_lang_data (type);
5276
5277 TREE_LANG_FLAG_0 (type) = 0;
5278 TREE_LANG_FLAG_1 (type) = 0;
5279 TREE_LANG_FLAG_2 (type) = 0;
5280 TREE_LANG_FLAG_3 (type) = 0;
5281 TREE_LANG_FLAG_4 (type) = 0;
5282 TREE_LANG_FLAG_5 (type) = 0;
5283 TREE_LANG_FLAG_6 (type) = 0;
5284
5285 TYPE_NEEDS_CONSTRUCTING (type) = 0;
5286
5287 if (TREE_CODE (type) == FUNCTION_TYPE)
5288 {
5289 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5290 /* Remove the const and volatile qualifiers from arguments. The
5291 C++ front end removes them, but the C front end does not,
5292 leading to false ODR violation errors when merging two
5293 instances of the same function signature compiled by
5294 different front ends. */
5295 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5296 {
5297 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5298 tree arg_type = TREE_VALUE (p);
5299
5300 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
5301 {
5302 int quals = TYPE_QUALS (arg_type)
5303 & ~TYPE_QUAL_CONST
5304 & ~TYPE_QUAL_VOLATILE;
5305 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
5306 free_lang_data_in_type (TREE_VALUE (p), fld);
5307 }
5308 /* C++ FE uses TREE_PURPOSE to store initial values. */
5309 TREE_PURPOSE (p) = NULL;
5310 }
5311 }
5312 else if (TREE_CODE (type) == METHOD_TYPE)
5313 {
5314 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5315 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5316 {
5317 /* C++ FE uses TREE_PURPOSE to store initial values. */
5318 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5319 TREE_PURPOSE (p) = NULL;
5320 }
5321 }
5322 else if (RECORD_OR_UNION_TYPE_P (type))
5323 {
5324 /* Remove members that are not FIELD_DECLs from the field list
5325 of an aggregate. These occur in C++. */
5326 for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
5327 if (TREE_CODE (member) == FIELD_DECL)
5328 prev = &DECL_CHAIN (member);
5329 else
5330 *prev = DECL_CHAIN (member);
5331
5332 TYPE_VFIELD (type) = NULL_TREE;
5333
5334 if (TYPE_BINFO (type))
5335 {
5336 free_lang_data_in_binfo (TYPE_BINFO (type));
5337 /* We need to preserve link to bases and virtual table for all
5338 polymorphic types to make devirtualization machinery working. */
5339 if (!BINFO_VTABLE (TYPE_BINFO (type))
5340 || !flag_devirtualize)
5341 TYPE_BINFO (type) = NULL;
5342 }
5343 }
5344 else if (INTEGRAL_TYPE_P (type)
5345 || SCALAR_FLOAT_TYPE_P (type)
5346 || FIXED_POINT_TYPE_P (type))
5347 {
5348 if (TREE_CODE (type) == ENUMERAL_TYPE)
5349 {
5350 /* Type values are used only for C++ ODR checking. Drop them
5351 for all type variants and non-ODR types. */
5352 if (TYPE_MAIN_VARIANT (type) != type
5353 || !type_with_linkage_p (type))
5354 TYPE_VALUES (type) = NULL;
5355 else
5356 /* Simplify representation by recording only values rather
5357 than const decls. */
5358 for (tree e = TYPE_VALUES (type); e; e = TREE_CHAIN (e))
5359 if (TREE_CODE (TREE_VALUE (e)) == CONST_DECL)
5360 TREE_VALUE (e) = DECL_INITIAL (TREE_VALUE (e));
5361 }
5362 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
5363 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
5364 }
5365
5366 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
5367
5368 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
5369 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
5370
5371 if (TYPE_CONTEXT (type)
5372 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
5373 {
5374 tree ctx = TYPE_CONTEXT (type);
5375 do
5376 {
5377 ctx = BLOCK_SUPERCONTEXT (ctx);
5378 }
5379 while (ctx && TREE_CODE (ctx) == BLOCK);
5380 TYPE_CONTEXT (type) = ctx;
5381 }
5382
5383 /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
5384 TYPE_DECL if the type doesn't have linkage.
5385 this must match fld_ */
5386 if (type != TYPE_MAIN_VARIANT (type) || ! type_with_linkage_p (type))
5387 TYPE_STUB_DECL (type) = NULL;
5388 TYPE_NAME (type) = fld_simplified_type_name (type);
5389 }
5390
5391
5392 /* Return true if DECL may need an assembler name to be set. */
5393
5394 static inline bool
5395 need_assembler_name_p (tree decl)
5396 {
5397 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5398 Rule merging. This makes type_odr_p to return true on those types during
5399 LTO and by comparing the mangled name, we can say what types are intended
5400 to be equivalent across compilation unit.
5401
5402 We do not store names of type_in_anonymous_namespace_p.
5403
5404 Record, union and enumeration type have linkage that allows use
5405 to check type_in_anonymous_namespace_p. We do not mangle compound types
5406 that always can be compared structurally.
5407
5408 Similarly for builtin types, we compare properties of their main variant.
5409 A special case are integer types where mangling do make differences
5410 between char/signed char/unsigned char etc. Storing name for these makes
5411 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
5412 See cp/mangle.c:write_builtin_type for details. */
5413
5414 if (flag_lto_odr_type_mering
5415 && TREE_CODE (decl) == TYPE_DECL
5416 && DECL_NAME (decl)
5417 && decl == TYPE_NAME (TREE_TYPE (decl))
5418 && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
5419 && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5420 && (type_with_linkage_p (TREE_TYPE (decl))
5421 || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5422 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5423 return !DECL_ASSEMBLER_NAME_SET_P (decl);
5424 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5425 if (!VAR_OR_FUNCTION_DECL_P (decl))
5426 return false;
5427
5428 /* If DECL already has its assembler name set, it does not need a
5429 new one. */
5430 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5431 || DECL_ASSEMBLER_NAME_SET_P (decl))
5432 return false;
5433
5434 /* Abstract decls do not need an assembler name. */
5435 if (DECL_ABSTRACT_P (decl))
5436 return false;
5437
5438 /* For VAR_DECLs, only static, public and external symbols need an
5439 assembler name. */
5440 if (VAR_P (decl)
5441 && !TREE_STATIC (decl)
5442 && !TREE_PUBLIC (decl)
5443 && !DECL_EXTERNAL (decl))
5444 return false;
5445
5446 if (TREE_CODE (decl) == FUNCTION_DECL)
5447 {
5448 /* Do not set assembler name on builtins. Allow RTL expansion to
5449 decide whether to expand inline or via a regular call. */
5450 if (fndecl_built_in_p (decl)
5451 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5452 return false;
5453
5454 /* Functions represented in the callgraph need an assembler name. */
5455 if (cgraph_node::get (decl) != NULL)
5456 return true;
5457
5458 /* Unused and not public functions don't need an assembler name. */
5459 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5460 return false;
5461 }
5462
5463 return true;
5464 }
5465
5466
5467 /* Reset all language specific information still present in symbol
5468 DECL. */
5469
5470 static void
5471 free_lang_data_in_decl (tree decl, struct free_lang_data_d *fld)
5472 {
5473 gcc_assert (DECL_P (decl));
5474
5475 /* Give the FE a chance to remove its own data first. */
5476 lang_hooks.free_lang_data (decl);
5477
5478 TREE_LANG_FLAG_0 (decl) = 0;
5479 TREE_LANG_FLAG_1 (decl) = 0;
5480 TREE_LANG_FLAG_2 (decl) = 0;
5481 TREE_LANG_FLAG_3 (decl) = 0;
5482 TREE_LANG_FLAG_4 (decl) = 0;
5483 TREE_LANG_FLAG_5 (decl) = 0;
5484 TREE_LANG_FLAG_6 (decl) = 0;
5485
5486 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5487 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5488 if (TREE_CODE (decl) == FIELD_DECL)
5489 {
5490 DECL_FCONTEXT (decl) = NULL;
5491 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5492 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5493 DECL_QUALIFIER (decl) = NULL_TREE;
5494 }
5495
5496 if (TREE_CODE (decl) == FUNCTION_DECL)
5497 {
5498 struct cgraph_node *node;
5499 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5500 if (!(node = cgraph_node::get (decl))
5501 || (!node->definition && !node->clones))
5502 {
5503 if (node)
5504 node->release_body ();
5505 else
5506 {
5507 release_function_body (decl);
5508 DECL_ARGUMENTS (decl) = NULL;
5509 DECL_RESULT (decl) = NULL;
5510 DECL_INITIAL (decl) = error_mark_node;
5511 }
5512 }
5513 if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p))
5514 {
5515 tree t;
5516
5517 /* If DECL has a gimple body, then the context for its
5518 arguments must be DECL. Otherwise, it doesn't really
5519 matter, as we will not be emitting any code for DECL. In
5520 general, there may be other instances of DECL created by
5521 the front end and since PARM_DECLs are generally shared,
5522 their DECL_CONTEXT changes as the replicas of DECL are
5523 created. The only time where DECL_CONTEXT is important
5524 is for the FUNCTION_DECLs that have a gimple body (since
5525 the PARM_DECL will be used in the function's body). */
5526 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5527 DECL_CONTEXT (t) = decl;
5528 if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5529 DECL_FUNCTION_SPECIFIC_TARGET (decl)
5530 = target_option_default_node;
5531 if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5532 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5533 = optimization_default_node;
5534 }
5535
5536 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5537 At this point, it is not needed anymore. */
5538 DECL_SAVED_TREE (decl) = NULL_TREE;
5539
5540 /* Clear the abstract origin if it refers to a method.
5541 Otherwise dwarf2out.c will ICE as we splice functions out of
5542 TYPE_FIELDS and thus the origin will not be output
5543 correctly. */
5544 if (DECL_ABSTRACT_ORIGIN (decl)
5545 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5546 && RECORD_OR_UNION_TYPE_P
5547 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5548 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5549
5550 DECL_VINDEX (decl) = NULL_TREE;
5551 }
5552 else if (VAR_P (decl))
5553 {
5554 if ((DECL_EXTERNAL (decl)
5555 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5556 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5557 DECL_INITIAL (decl) = NULL_TREE;
5558 }
5559 else if (TREE_CODE (decl) == TYPE_DECL)
5560 {
5561 DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
5562 DECL_VISIBILITY_SPECIFIED (decl) = 0;
5563 DECL_INITIAL (decl) = NULL_TREE;
5564 DECL_ORIGINAL_TYPE (decl) = NULL_TREE;
5565 TREE_TYPE (decl) = void_type_node;
5566 SET_DECL_ALIGN (decl, 0);
5567 }
5568 else if (TREE_CODE (decl) == FIELD_DECL)
5569 {
5570 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5571 DECL_INITIAL (decl) = NULL_TREE;
5572 }
5573 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5574 && DECL_INITIAL (decl)
5575 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5576 {
5577 /* Strip builtins from the translation-unit BLOCK. We still have targets
5578 without builtin_decl_explicit support and also builtins are shared
5579 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5580 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5581 while (*nextp)
5582 {
5583 tree var = *nextp;
5584 if (fndecl_built_in_p (var))
5585 *nextp = TREE_CHAIN (var);
5586 else
5587 nextp = &TREE_CHAIN (var);
5588 }
5589 }
5590 /* We need to keep field decls associated with their trees. Otherwise tree
5591 merging may merge some fileds and keep others disjoint wich in turn will
5592 not do well with TREE_CHAIN pointers linking them.
5593
5594 Also do not drop containing types for virtual methods and tables because
5595 these are needed by devirtualization. */
5596 if (TREE_CODE (decl) != FIELD_DECL
5597 && ((TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != FUNCTION_DECL)
5598 || !DECL_VIRTUAL_P (decl)))
5599 {
5600 tree ctx = DECL_CONTEXT (decl);
5601 /* Variably modified types are needed for tree_is_indexable to decide
5602 whether the type needs to go to local or global section.
5603 This code is semi-broken but for now it is easiest to keep contexts
5604 as expected. */
5605 if (ctx && TYPE_P (ctx)
5606 && !variably_modified_type_p (ctx, NULL_TREE))
5607 {
5608 while (ctx && TYPE_P (ctx))
5609 ctx = TYPE_CONTEXT (ctx);
5610 DECL_CONTEXT (decl) = ctx;
5611 }
5612 }
5613 }
5614
5615
5616 /* Operand callback helper for free_lang_data_in_node. *TP is the
5617 subtree operand being considered. */
5618
5619 static tree
5620 find_decls_types_r (tree *tp, int *ws, void *data)
5621 {
5622 tree t = *tp;
5623 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5624
5625 if (TREE_CODE (t) == TREE_LIST)
5626 return NULL_TREE;
5627
5628 /* Language specific nodes will be removed, so there is no need
5629 to gather anything under them. */
5630 if (is_lang_specific (t))
5631 {
5632 *ws = 0;
5633 return NULL_TREE;
5634 }
5635
5636 if (DECL_P (t))
5637 {
5638 /* Note that walk_tree does not traverse every possible field in
5639 decls, so we have to do our own traversals here. */
5640 add_tree_to_fld_list (t, fld);
5641
5642 fld_worklist_push (DECL_NAME (t), fld);
5643 fld_worklist_push (DECL_CONTEXT (t), fld);
5644 fld_worklist_push (DECL_SIZE (t), fld);
5645 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5646
5647 /* We are going to remove everything under DECL_INITIAL for
5648 TYPE_DECLs. No point walking them. */
5649 if (TREE_CODE (t) != TYPE_DECL)
5650 fld_worklist_push (DECL_INITIAL (t), fld);
5651
5652 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5653 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5654
5655 if (TREE_CODE (t) == FUNCTION_DECL)
5656 {
5657 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5658 fld_worklist_push (DECL_RESULT (t), fld);
5659 }
5660 else if (TREE_CODE (t) == FIELD_DECL)
5661 {
5662 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5663 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5664 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5665 fld_worklist_push (DECL_FCONTEXT (t), fld);
5666 }
5667
5668 if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
5669 && DECL_HAS_VALUE_EXPR_P (t))
5670 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5671
5672 if (TREE_CODE (t) != FIELD_DECL
5673 && TREE_CODE (t) != TYPE_DECL)
5674 fld_worklist_push (TREE_CHAIN (t), fld);
5675 *ws = 0;
5676 }
5677 else if (TYPE_P (t))
5678 {
5679 /* Note that walk_tree does not traverse every possible field in
5680 types, so we have to do our own traversals here. */
5681 add_tree_to_fld_list (t, fld);
5682
5683 if (!RECORD_OR_UNION_TYPE_P (t))
5684 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5685 fld_worklist_push (TYPE_SIZE (t), fld);
5686 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5687 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5688 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5689 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5690 fld_worklist_push (TYPE_NAME (t), fld);
5691 /* While we do not stream TYPE_POINTER_TO and TYPE_REFERENCE_TO
5692 lists, we may look types up in these lists and use them while
5693 optimizing the function body. Thus we need to free lang data
5694 in them. */
5695 if (TREE_CODE (t) == POINTER_TYPE)
5696 fld_worklist_push (TYPE_NEXT_PTR_TO (t), fld);
5697 if (TREE_CODE (t) == REFERENCE_TYPE)
5698 fld_worklist_push (TYPE_NEXT_REF_TO (t), fld);
5699 if (!POINTER_TYPE_P (t))
5700 fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
5701 /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types. */
5702 if (!RECORD_OR_UNION_TYPE_P (t))
5703 fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
5704 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5705 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5706 do not and want not to reach unused variants this way. */
5707 if (TYPE_CONTEXT (t))
5708 {
5709 tree ctx = TYPE_CONTEXT (t);
5710 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5711 So push that instead. */
5712 while (ctx && TREE_CODE (ctx) == BLOCK)
5713 ctx = BLOCK_SUPERCONTEXT (ctx);
5714 fld_worklist_push (ctx, fld);
5715 }
5716 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5717 and want not to reach unused types this way. */
5718
5719 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5720 {
5721 unsigned i;
5722 tree tem;
5723 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5724 fld_worklist_push (TREE_TYPE (tem), fld);
5725 fld_worklist_push (BINFO_TYPE (TYPE_BINFO (t)), fld);
5726 fld_worklist_push (BINFO_VTABLE (TYPE_BINFO (t)), fld);
5727 }
5728 if (RECORD_OR_UNION_TYPE_P (t))
5729 {
5730 tree tem;
5731 /* Push all TYPE_FIELDS - there can be interleaving interesting
5732 and non-interesting things. */
5733 tem = TYPE_FIELDS (t);
5734 while (tem)
5735 {
5736 if (TREE_CODE (tem) == FIELD_DECL)
5737 fld_worklist_push (tem, fld);
5738 tem = TREE_CHAIN (tem);
5739 }
5740 }
5741 if (FUNC_OR_METHOD_TYPE_P (t))
5742 fld_worklist_push (TYPE_METHOD_BASETYPE (t), fld);
5743
5744 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5745 *ws = 0;
5746 }
5747 else if (TREE_CODE (t) == BLOCK)
5748 {
5749 for (tree *tem = &BLOCK_VARS (t); *tem; )
5750 {
5751 if (TREE_CODE (*tem) != VAR_DECL
5752 || !auto_var_in_fn_p (*tem, DECL_CONTEXT (*tem)))
5753 {
5754 gcc_assert (TREE_CODE (*tem) != RESULT_DECL
5755 && TREE_CODE (*tem) != PARM_DECL);
5756 *tem = TREE_CHAIN (*tem);
5757 }
5758 else
5759 {
5760 fld_worklist_push (*tem, fld);
5761 tem = &TREE_CHAIN (*tem);
5762 }
5763 }
5764 for (tree tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5765 fld_worklist_push (tem, fld);
5766 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5767 }
5768
5769 if (TREE_CODE (t) != IDENTIFIER_NODE
5770 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5771 fld_worklist_push (TREE_TYPE (t), fld);
5772
5773 return NULL_TREE;
5774 }
5775
5776
5777 /* Find decls and types in T. */
5778
5779 static void
5780 find_decls_types (tree t, struct free_lang_data_d *fld)
5781 {
5782 while (1)
5783 {
5784 if (!fld->pset.contains (t))
5785 walk_tree (&t, find_decls_types_r, fld, &fld->pset);
5786 if (fld->worklist.is_empty ())
5787 break;
5788 t = fld->worklist.pop ();
5789 }
5790 }
5791
5792 /* Translate all the types in LIST with the corresponding runtime
5793 types. */
5794
5795 static tree
5796 get_eh_types_for_runtime (tree list)
5797 {
5798 tree head, prev;
5799
5800 if (list == NULL_TREE)
5801 return NULL_TREE;
5802
5803 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5804 prev = head;
5805 list = TREE_CHAIN (list);
5806 while (list)
5807 {
5808 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5809 TREE_CHAIN (prev) = n;
5810 prev = TREE_CHAIN (prev);
5811 list = TREE_CHAIN (list);
5812 }
5813
5814 return head;
5815 }
5816
5817
5818 /* Find decls and types referenced in EH region R and store them in
5819 FLD->DECLS and FLD->TYPES. */
5820
5821 static void
5822 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5823 {
5824 switch (r->type)
5825 {
5826 case ERT_CLEANUP:
5827 break;
5828
5829 case ERT_TRY:
5830 {
5831 eh_catch c;
5832
5833 /* The types referenced in each catch must first be changed to the
5834 EH types used at runtime. This removes references to FE types
5835 in the region. */
5836 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5837 {
5838 c->type_list = get_eh_types_for_runtime (c->type_list);
5839 walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
5840 }
5841 }
5842 break;
5843
5844 case ERT_ALLOWED_EXCEPTIONS:
5845 r->u.allowed.type_list
5846 = get_eh_types_for_runtime (r->u.allowed.type_list);
5847 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
5848 break;
5849
5850 case ERT_MUST_NOT_THROW:
5851 walk_tree (&r->u.must_not_throw.failure_decl,
5852 find_decls_types_r, fld, &fld->pset);
5853 break;
5854 }
5855 }
5856
5857
5858 /* Find decls and types referenced in cgraph node N and store them in
5859 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5860 look for *every* kind of DECL and TYPE node reachable from N,
5861 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5862 NAMESPACE_DECLs, etc). */
5863
5864 static void
5865 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5866 {
5867 basic_block bb;
5868 struct function *fn;
5869 unsigned ix;
5870 tree t;
5871
5872 find_decls_types (n->decl, fld);
5873
5874 if (!gimple_has_body_p (n->decl))
5875 return;
5876
5877 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5878
5879 fn = DECL_STRUCT_FUNCTION (n->decl);
5880
5881 /* Traverse locals. */
5882 FOR_EACH_LOCAL_DECL (fn, ix, t)
5883 find_decls_types (t, fld);
5884
5885 /* Traverse EH regions in FN. */
5886 {
5887 eh_region r;
5888 FOR_ALL_EH_REGION_FN (r, fn)
5889 find_decls_types_in_eh_region (r, fld);
5890 }
5891
5892 /* Traverse every statement in FN. */
5893 FOR_EACH_BB_FN (bb, fn)
5894 {
5895 gphi_iterator psi;
5896 gimple_stmt_iterator si;
5897 unsigned i;
5898
5899 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
5900 {
5901 gphi *phi = psi.phi ();
5902
5903 for (i = 0; i < gimple_phi_num_args (phi); i++)
5904 {
5905 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5906 find_decls_types (*arg_p, fld);
5907 }
5908 }
5909
5910 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5911 {
5912 gimple *stmt = gsi_stmt (si);
5913
5914 if (is_gimple_call (stmt))
5915 find_decls_types (gimple_call_fntype (stmt), fld);
5916
5917 for (i = 0; i < gimple_num_ops (stmt); i++)
5918 {
5919 tree arg = gimple_op (stmt, i);
5920 find_decls_types (arg, fld);
5921 }
5922 }
5923 }
5924 }
5925
5926
5927 /* Find decls and types referenced in varpool node N and store them in
5928 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5929 look for *every* kind of DECL and TYPE node reachable from N,
5930 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5931 NAMESPACE_DECLs, etc). */
5932
5933 static void
5934 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
5935 {
5936 find_decls_types (v->decl, fld);
5937 }
5938
5939 /* If T needs an assembler name, have one created for it. */
5940
5941 void
5942 assign_assembler_name_if_needed (tree t)
5943 {
5944 if (need_assembler_name_p (t))
5945 {
5946 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5947 diagnostics that use input_location to show locus
5948 information. The problem here is that, at this point,
5949 input_location is generally anchored to the end of the file
5950 (since the parser is long gone), so we don't have a good
5951 position to pin it to.
5952
5953 To alleviate this problem, this uses the location of T's
5954 declaration. Examples of this are
5955 testsuite/g++.dg/template/cond2.C and
5956 testsuite/g++.dg/template/pr35240.C. */
5957 location_t saved_location = input_location;
5958 input_location = DECL_SOURCE_LOCATION (t);
5959
5960 decl_assembler_name (t);
5961
5962 input_location = saved_location;
5963 }
5964 }
5965
5966
5967 /* Free language specific information for every operand and expression
5968 in every node of the call graph. This process operates in three stages:
5969
5970 1- Every callgraph node and varpool node is traversed looking for
5971 decls and types embedded in them. This is a more exhaustive
5972 search than that done by find_referenced_vars, because it will
5973 also collect individual fields, decls embedded in types, etc.
5974
5975 2- All the decls found are sent to free_lang_data_in_decl.
5976
5977 3- All the types found are sent to free_lang_data_in_type.
5978
5979 The ordering between decls and types is important because
5980 free_lang_data_in_decl sets assembler names, which includes
5981 mangling. So types cannot be freed up until assembler names have
5982 been set up. */
5983
5984 static void
5985 free_lang_data_in_cgraph (void)
5986 {
5987 struct cgraph_node *n;
5988 varpool_node *v;
5989 struct free_lang_data_d fld;
5990 tree t;
5991 unsigned i;
5992 alias_pair *p;
5993
5994 /* Find decls and types in the body of every function in the callgraph. */
5995 FOR_EACH_FUNCTION (n)
5996 find_decls_types_in_node (n, &fld);
5997
5998 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5999 find_decls_types (p->decl, &fld);
6000
6001 /* Find decls and types in every varpool symbol. */
6002 FOR_EACH_VARIABLE (v)
6003 find_decls_types_in_var (v, &fld);
6004
6005 /* Set the assembler name on every decl found. We need to do this
6006 now because free_lang_data_in_decl will invalidate data needed
6007 for mangling. This breaks mangling on interdependent decls. */
6008 FOR_EACH_VEC_ELT (fld.decls, i, t)
6009 assign_assembler_name_if_needed (t);
6010
6011 /* Traverse every decl found freeing its language data. */
6012 FOR_EACH_VEC_ELT (fld.decls, i, t)
6013 free_lang_data_in_decl (t, &fld);
6014
6015 /* Traverse every type found freeing its language data. */
6016 FOR_EACH_VEC_ELT (fld.types, i, t)
6017 free_lang_data_in_type (t, &fld);
6018 if (flag_checking)
6019 {
6020 FOR_EACH_VEC_ELT (fld.types, i, t)
6021 verify_type (t);
6022 }
6023 }
6024
6025
6026 /* Free resources that are used by FE but are not needed once they are done. */
6027
6028 static unsigned
6029 free_lang_data (void)
6030 {
6031 unsigned i;
6032
6033 /* If we are the LTO frontend we have freed lang-specific data already. */
6034 if (in_lto_p
6035 || (!flag_generate_lto && !flag_generate_offload))
6036 return 0;
6037
6038 fld_incomplete_types = new hash_map<tree, tree>;
6039
6040 /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one. */
6041 if (vec_safe_is_empty (all_translation_units))
6042 build_translation_unit_decl (NULL_TREE);
6043
6044 /* Allocate and assign alias sets to the standard integer types
6045 while the slots are still in the way the frontends generated them. */
6046 for (i = 0; i < itk_none; ++i)
6047 if (integer_types[i])
6048 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
6049
6050 /* Traverse the IL resetting language specific information for
6051 operands, expressions, etc. */
6052 free_lang_data_in_cgraph ();
6053
6054 /* Create gimple variants for common types. */
6055 for (unsigned i = 0;
6056 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
6057 ++i)
6058 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
6059
6060 /* Reset some langhooks. Do not reset types_compatible_p, it may
6061 still be used indirectly via the get_alias_set langhook. */
6062 lang_hooks.dwarf_name = lhd_dwarf_name;
6063 lang_hooks.decl_printable_name = gimple_decl_printable_name;
6064 lang_hooks.gimplify_expr = lhd_gimplify_expr;
6065 lang_hooks.overwrite_decl_assembler_name = lhd_overwrite_decl_assembler_name;
6066 lang_hooks.print_xnode = lhd_print_tree_nothing;
6067 lang_hooks.print_decl = lhd_print_tree_nothing;
6068 lang_hooks.print_type = lhd_print_tree_nothing;
6069 lang_hooks.print_identifier = lhd_print_tree_nothing;
6070
6071 lang_hooks.tree_inlining.var_mod_type_p = hook_bool_tree_tree_false;
6072
6073 /* We do not want the default decl_assembler_name implementation,
6074 rather if we have fixed everything we want a wrapper around it
6075 asserting that all non-local symbols already got their assembler
6076 name and only produce assembler names for local symbols. Or rather
6077 make sure we never call decl_assembler_name on local symbols and
6078 devise a separate, middle-end private scheme for it. */
6079
6080 /* Reset diagnostic machinery. */
6081 tree_diagnostics_defaults (global_dc);
6082
6083 rebuild_type_inheritance_graph ();
6084
6085 delete fld_incomplete_types;
6086
6087 return 0;
6088 }
6089
6090
6091 namespace {
6092
6093 const pass_data pass_data_ipa_free_lang_data =
6094 {
6095 SIMPLE_IPA_PASS, /* type */
6096 "*free_lang_data", /* name */
6097 OPTGROUP_NONE, /* optinfo_flags */
6098 TV_IPA_FREE_LANG_DATA, /* tv_id */
6099 0, /* properties_required */
6100 0, /* properties_provided */
6101 0, /* properties_destroyed */
6102 0, /* todo_flags_start */
6103 0, /* todo_flags_finish */
6104 };
6105
6106 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
6107 {
6108 public:
6109 pass_ipa_free_lang_data (gcc::context *ctxt)
6110 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
6111 {}
6112
6113 /* opt_pass methods: */
6114 virtual unsigned int execute (function *) { return free_lang_data (); }
6115
6116 }; // class pass_ipa_free_lang_data
6117
6118 } // anon namespace
6119
6120 simple_ipa_opt_pass *
6121 make_pass_ipa_free_lang_data (gcc::context *ctxt)
6122 {
6123 return new pass_ipa_free_lang_data (ctxt);
6124 }
6125 \f
6126 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
6127 of the various TYPE_QUAL values. */
6128
6129 static void
6130 set_type_quals (tree type, int type_quals)
6131 {
6132 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
6133 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
6134 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
6135 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
6136 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
6137 }
6138
6139 /* Returns true iff CAND and BASE have equivalent language-specific
6140 qualifiers. */
6141
6142 bool
6143 check_lang_type (const_tree cand, const_tree base)
6144 {
6145 if (lang_hooks.types.type_hash_eq == NULL)
6146 return true;
6147 /* type_hash_eq currently only applies to these types. */
6148 if (TREE_CODE (cand) != FUNCTION_TYPE
6149 && TREE_CODE (cand) != METHOD_TYPE)
6150 return true;
6151 return lang_hooks.types.type_hash_eq (cand, base);
6152 }
6153
6154 /* Returns true iff unqualified CAND and BASE are equivalent. */
6155
6156 bool
6157 check_base_type (const_tree cand, const_tree base)
6158 {
6159 return (TYPE_NAME (cand) == TYPE_NAME (base)
6160 /* Apparently this is needed for Objective-C. */
6161 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6162 /* Check alignment. */
6163 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
6164 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6165 TYPE_ATTRIBUTES (base)));
6166 }
6167
6168 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
6169
6170 bool
6171 check_qualified_type (const_tree cand, const_tree base, int type_quals)
6172 {
6173 return (TYPE_QUALS (cand) == type_quals
6174 && check_base_type (cand, base)
6175 && check_lang_type (cand, base));
6176 }
6177
6178 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
6179
6180 static bool
6181 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6182 {
6183 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6184 && TYPE_NAME (cand) == TYPE_NAME (base)
6185 /* Apparently this is needed for Objective-C. */
6186 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6187 /* Check alignment. */
6188 && TYPE_ALIGN (cand) == align
6189 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6190 TYPE_ATTRIBUTES (base))
6191 && check_lang_type (cand, base));
6192 }
6193
6194 /* This function checks to see if TYPE matches the size one of the built-in
6195 atomic types, and returns that core atomic type. */
6196
6197 static tree
6198 find_atomic_core_type (tree type)
6199 {
6200 tree base_atomic_type;
6201
6202 /* Only handle complete types. */
6203 if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
6204 return NULL_TREE;
6205
6206 switch (tree_to_uhwi (TYPE_SIZE (type)))
6207 {
6208 case 8:
6209 base_atomic_type = atomicQI_type_node;
6210 break;
6211
6212 case 16:
6213 base_atomic_type = atomicHI_type_node;
6214 break;
6215
6216 case 32:
6217 base_atomic_type = atomicSI_type_node;
6218 break;
6219
6220 case 64:
6221 base_atomic_type = atomicDI_type_node;
6222 break;
6223
6224 case 128:
6225 base_atomic_type = atomicTI_type_node;
6226 break;
6227
6228 default:
6229 base_atomic_type = NULL_TREE;
6230 }
6231
6232 return base_atomic_type;
6233 }
6234
6235 /* Return a version of the TYPE, qualified as indicated by the
6236 TYPE_QUALS, if one exists. If no qualified version exists yet,
6237 return NULL_TREE. */
6238
6239 tree
6240 get_qualified_type (tree type, int type_quals)
6241 {
6242 tree t;
6243
6244 if (TYPE_QUALS (type) == type_quals)
6245 return type;
6246
6247 /* Search the chain of variants to see if there is already one there just
6248 like the one we need to have. If so, use that existing one. We must
6249 preserve the TYPE_NAME, since there is code that depends on this. */
6250 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6251 if (check_qualified_type (t, type, type_quals))
6252 return t;
6253
6254 return NULL_TREE;
6255 }
6256
6257 /* Like get_qualified_type, but creates the type if it does not
6258 exist. This function never returns NULL_TREE. */
6259
6260 tree
6261 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
6262 {
6263 tree t;
6264
6265 /* See if we already have the appropriate qualified variant. */
6266 t = get_qualified_type (type, type_quals);
6267
6268 /* If not, build it. */
6269 if (!t)
6270 {
6271 t = build_variant_type_copy (type PASS_MEM_STAT);
6272 set_type_quals (t, type_quals);
6273
6274 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6275 {
6276 /* See if this object can map to a basic atomic type. */
6277 tree atomic_type = find_atomic_core_type (type);
6278 if (atomic_type)
6279 {
6280 /* Ensure the alignment of this type is compatible with
6281 the required alignment of the atomic type. */
6282 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6283 SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
6284 }
6285 }
6286
6287 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6288 /* Propagate structural equality. */
6289 SET_TYPE_STRUCTURAL_EQUALITY (t);
6290 else if (TYPE_CANONICAL (type) != type)
6291 /* Build the underlying canonical type, since it is different
6292 from TYPE. */
6293 {
6294 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6295 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6296 }
6297 else
6298 /* T is its own canonical type. */
6299 TYPE_CANONICAL (t) = t;
6300
6301 }
6302
6303 return t;
6304 }
6305
6306 /* Create a variant of type T with alignment ALIGN. */
6307
6308 tree
6309 build_aligned_type (tree type, unsigned int align)
6310 {
6311 tree t;
6312
6313 if (TYPE_PACKED (type)
6314 || TYPE_ALIGN (type) == align)
6315 return type;
6316
6317 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6318 if (check_aligned_type (t, type, align))
6319 return t;
6320
6321 t = build_variant_type_copy (type);
6322 SET_TYPE_ALIGN (t, align);
6323 TYPE_USER_ALIGN (t) = 1;
6324
6325 return t;
6326 }
6327
6328 /* Create a new distinct copy of TYPE. The new type is made its own
6329 MAIN_VARIANT. If TYPE requires structural equality checks, the
6330 resulting type requires structural equality checks; otherwise, its
6331 TYPE_CANONICAL points to itself. */
6332
6333 tree
6334 build_distinct_type_copy (tree type MEM_STAT_DECL)
6335 {
6336 tree t = copy_node (type PASS_MEM_STAT);
6337
6338 TYPE_POINTER_TO (t) = 0;
6339 TYPE_REFERENCE_TO (t) = 0;
6340
6341 /* Set the canonical type either to a new equivalence class, or
6342 propagate the need for structural equality checks. */
6343 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6344 SET_TYPE_STRUCTURAL_EQUALITY (t);
6345 else
6346 TYPE_CANONICAL (t) = t;
6347
6348 /* Make it its own variant. */
6349 TYPE_MAIN_VARIANT (t) = t;
6350 TYPE_NEXT_VARIANT (t) = 0;
6351
6352 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6353 whose TREE_TYPE is not t. This can also happen in the Ada
6354 frontend when using subtypes. */
6355
6356 return t;
6357 }
6358
6359 /* Create a new variant of TYPE, equivalent but distinct. This is so
6360 the caller can modify it. TYPE_CANONICAL for the return type will
6361 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6362 are considered equal by the language itself (or that both types
6363 require structural equality checks). */
6364
6365 tree
6366 build_variant_type_copy (tree type MEM_STAT_DECL)
6367 {
6368 tree t, m = TYPE_MAIN_VARIANT (type);
6369
6370 t = build_distinct_type_copy (type PASS_MEM_STAT);
6371
6372 /* Since we're building a variant, assume that it is a non-semantic
6373 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6374 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6375 /* Type variants have no alias set defined. */
6376 TYPE_ALIAS_SET (t) = -1;
6377
6378 /* Add the new type to the chain of variants of TYPE. */
6379 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6380 TYPE_NEXT_VARIANT (m) = t;
6381 TYPE_MAIN_VARIANT (t) = m;
6382
6383 return t;
6384 }
6385 \f
6386 /* Return true if the from tree in both tree maps are equal. */
6387
6388 int
6389 tree_map_base_eq (const void *va, const void *vb)
6390 {
6391 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6392 *const b = (const struct tree_map_base *) vb;
6393 return (a->from == b->from);
6394 }
6395
6396 /* Hash a from tree in a tree_base_map. */
6397
6398 unsigned int
6399 tree_map_base_hash (const void *item)
6400 {
6401 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6402 }
6403
6404 /* Return true if this tree map structure is marked for garbage collection
6405 purposes. We simply return true if the from tree is marked, so that this
6406 structure goes away when the from tree goes away. */
6407
6408 int
6409 tree_map_base_marked_p (const void *p)
6410 {
6411 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6412 }
6413
6414 /* Hash a from tree in a tree_map. */
6415
6416 unsigned int
6417 tree_map_hash (const void *item)
6418 {
6419 return (((const struct tree_map *) item)->hash);
6420 }
6421
6422 /* Hash a from tree in a tree_decl_map. */
6423
6424 unsigned int
6425 tree_decl_map_hash (const void *item)
6426 {
6427 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6428 }
6429
6430 /* Return the initialization priority for DECL. */
6431
6432 priority_type
6433 decl_init_priority_lookup (tree decl)
6434 {
6435 symtab_node *snode = symtab_node::get (decl);
6436
6437 if (!snode)
6438 return DEFAULT_INIT_PRIORITY;
6439 return
6440 snode->get_init_priority ();
6441 }
6442
6443 /* Return the finalization priority for DECL. */
6444
6445 priority_type
6446 decl_fini_priority_lookup (tree decl)
6447 {
6448 cgraph_node *node = cgraph_node::get (decl);
6449
6450 if (!node)
6451 return DEFAULT_INIT_PRIORITY;
6452 return
6453 node->get_fini_priority ();
6454 }
6455
6456 /* Set the initialization priority for DECL to PRIORITY. */
6457
6458 void
6459 decl_init_priority_insert (tree decl, priority_type priority)
6460 {
6461 struct symtab_node *snode;
6462
6463 if (priority == DEFAULT_INIT_PRIORITY)
6464 {
6465 snode = symtab_node::get (decl);
6466 if (!snode)
6467 return;
6468 }
6469 else if (VAR_P (decl))
6470 snode = varpool_node::get_create (decl);
6471 else
6472 snode = cgraph_node::get_create (decl);
6473 snode->set_init_priority (priority);
6474 }
6475
6476 /* Set the finalization priority for DECL to PRIORITY. */
6477
6478 void
6479 decl_fini_priority_insert (tree decl, priority_type priority)
6480 {
6481 struct cgraph_node *node;
6482
6483 if (priority == DEFAULT_INIT_PRIORITY)
6484 {
6485 node = cgraph_node::get (decl);
6486 if (!node)
6487 return;
6488 }
6489 else
6490 node = cgraph_node::get_create (decl);
6491 node->set_fini_priority (priority);
6492 }
6493
6494 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6495
6496 static void
6497 print_debug_expr_statistics (void)
6498 {
6499 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6500 (long) debug_expr_for_decl->size (),
6501 (long) debug_expr_for_decl->elements (),
6502 debug_expr_for_decl->collisions ());
6503 }
6504
6505 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6506
6507 static void
6508 print_value_expr_statistics (void)
6509 {
6510 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6511 (long) value_expr_for_decl->size (),
6512 (long) value_expr_for_decl->elements (),
6513 value_expr_for_decl->collisions ());
6514 }
6515
6516 /* Lookup a debug expression for FROM, and return it if we find one. */
6517
6518 tree
6519 decl_debug_expr_lookup (tree from)
6520 {
6521 struct tree_decl_map *h, in;
6522 in.base.from = from;
6523
6524 h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6525 if (h)
6526 return h->to;
6527 return NULL_TREE;
6528 }
6529
6530 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6531
6532 void
6533 decl_debug_expr_insert (tree from, tree to)
6534 {
6535 struct tree_decl_map *h;
6536
6537 h = ggc_alloc<tree_decl_map> ();
6538 h->base.from = from;
6539 h->to = to;
6540 *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6541 }
6542
6543 /* Lookup a value expression for FROM, and return it if we find one. */
6544
6545 tree
6546 decl_value_expr_lookup (tree from)
6547 {
6548 struct tree_decl_map *h, in;
6549 in.base.from = from;
6550
6551 h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6552 if (h)
6553 return h->to;
6554 return NULL_TREE;
6555 }
6556
6557 /* Insert a mapping FROM->TO in the value expression hashtable. */
6558
6559 void
6560 decl_value_expr_insert (tree from, tree to)
6561 {
6562 struct tree_decl_map *h;
6563
6564 h = ggc_alloc<tree_decl_map> ();
6565 h->base.from = from;
6566 h->to = to;
6567 *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6568 }
6569
6570 /* Lookup a vector of debug arguments for FROM, and return it if we
6571 find one. */
6572
6573 vec<tree, va_gc> **
6574 decl_debug_args_lookup (tree from)
6575 {
6576 struct tree_vec_map *h, in;
6577
6578 if (!DECL_HAS_DEBUG_ARGS_P (from))
6579 return NULL;
6580 gcc_checking_assert (debug_args_for_decl != NULL);
6581 in.base.from = from;
6582 h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6583 if (h)
6584 return &h->to;
6585 return NULL;
6586 }
6587
6588 /* Insert a mapping FROM->empty vector of debug arguments in the value
6589 expression hashtable. */
6590
6591 vec<tree, va_gc> **
6592 decl_debug_args_insert (tree from)
6593 {
6594 struct tree_vec_map *h;
6595 tree_vec_map **loc;
6596
6597 if (DECL_HAS_DEBUG_ARGS_P (from))
6598 return decl_debug_args_lookup (from);
6599 if (debug_args_for_decl == NULL)
6600 debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6601 h = ggc_alloc<tree_vec_map> ();
6602 h->base.from = from;
6603 h->to = NULL;
6604 loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6605 *loc = h;
6606 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6607 return &h->to;
6608 }
6609
6610 /* Hashing of types so that we don't make duplicates.
6611 The entry point is `type_hash_canon'. */
6612
6613 /* Generate the default hash code for TYPE. This is designed for
6614 speed, rather than maximum entropy. */
6615
6616 hashval_t
6617 type_hash_canon_hash (tree type)
6618 {
6619 inchash::hash hstate;
6620
6621 hstate.add_int (TREE_CODE (type));
6622
6623 if (TREE_TYPE (type))
6624 hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
6625
6626 for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
6627 /* Just the identifier is adequate to distinguish. */
6628 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
6629
6630 switch (TREE_CODE (type))
6631 {
6632 case METHOD_TYPE:
6633 hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
6634 /* FALLTHROUGH. */
6635 case FUNCTION_TYPE:
6636 for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6637 if (TREE_VALUE (t) != error_mark_node)
6638 hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
6639 break;
6640
6641 case OFFSET_TYPE:
6642 hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
6643 break;
6644
6645 case ARRAY_TYPE:
6646 {
6647 if (TYPE_DOMAIN (type))
6648 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
6649 if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
6650 {
6651 unsigned typeless = TYPE_TYPELESS_STORAGE (type);
6652 hstate.add_object (typeless);
6653 }
6654 }
6655 break;
6656
6657 case INTEGER_TYPE:
6658 {
6659 tree t = TYPE_MAX_VALUE (type);
6660 if (!t)
6661 t = TYPE_MIN_VALUE (type);
6662 for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
6663 hstate.add_object (TREE_INT_CST_ELT (t, i));
6664 break;
6665 }
6666
6667 case REAL_TYPE:
6668 case FIXED_POINT_TYPE:
6669 {
6670 unsigned prec = TYPE_PRECISION (type);
6671 hstate.add_object (prec);
6672 break;
6673 }
6674
6675 case VECTOR_TYPE:
6676 hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
6677 break;
6678
6679 default:
6680 break;
6681 }
6682
6683 return hstate.end ();
6684 }
6685
6686 /* These are the Hashtable callback functions. */
6687
6688 /* Returns true iff the types are equivalent. */
6689
6690 bool
6691 type_cache_hasher::equal (type_hash *a, type_hash *b)
6692 {
6693 /* First test the things that are the same for all types. */
6694 if (a->hash != b->hash
6695 || TREE_CODE (a->type) != TREE_CODE (b->type)
6696 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6697 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6698 TYPE_ATTRIBUTES (b->type))
6699 || (TREE_CODE (a->type) != COMPLEX_TYPE
6700 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6701 return 0;
6702
6703 /* Be careful about comparing arrays before and after the element type
6704 has been completed; don't compare TYPE_ALIGN unless both types are
6705 complete. */
6706 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6707 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6708 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6709 return 0;
6710
6711 switch (TREE_CODE (a->type))
6712 {
6713 case VOID_TYPE:
6714 case COMPLEX_TYPE:
6715 case POINTER_TYPE:
6716 case REFERENCE_TYPE:
6717 case NULLPTR_TYPE:
6718 return 1;
6719
6720 case VECTOR_TYPE:
6721 return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
6722 TYPE_VECTOR_SUBPARTS (b->type));
6723
6724 case ENUMERAL_TYPE:
6725 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6726 && !(TYPE_VALUES (a->type)
6727 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6728 && TYPE_VALUES (b->type)
6729 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6730 && type_list_equal (TYPE_VALUES (a->type),
6731 TYPE_VALUES (b->type))))
6732 return 0;
6733
6734 /* fall through */
6735
6736 case INTEGER_TYPE:
6737 case REAL_TYPE:
6738 case BOOLEAN_TYPE:
6739 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6740 return false;
6741 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6742 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6743 TYPE_MAX_VALUE (b->type)))
6744 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6745 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6746 TYPE_MIN_VALUE (b->type))));
6747
6748 case FIXED_POINT_TYPE:
6749 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6750
6751 case OFFSET_TYPE:
6752 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6753
6754 case METHOD_TYPE:
6755 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6756 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6757 || (TYPE_ARG_TYPES (a->type)
6758 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6759 && TYPE_ARG_TYPES (b->type)
6760 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6761 && type_list_equal (TYPE_ARG_TYPES (a->type),
6762 TYPE_ARG_TYPES (b->type)))))
6763 break;
6764 return 0;
6765 case ARRAY_TYPE:
6766 /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
6767 where the flag should be inherited from the element type
6768 and can change after ARRAY_TYPEs are created; on non-aggregates
6769 compare it and hash it, scalars will never have that flag set
6770 and we need to differentiate between arrays created by different
6771 front-ends or middle-end created arrays. */
6772 return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
6773 && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
6774 || (TYPE_TYPELESS_STORAGE (a->type)
6775 == TYPE_TYPELESS_STORAGE (b->type))));
6776
6777 case RECORD_TYPE:
6778 case UNION_TYPE:
6779 case QUAL_UNION_TYPE:
6780 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6781 || (TYPE_FIELDS (a->type)
6782 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6783 && TYPE_FIELDS (b->type)
6784 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6785 && type_list_equal (TYPE_FIELDS (a->type),
6786 TYPE_FIELDS (b->type))));
6787
6788 case FUNCTION_TYPE:
6789 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6790 || (TYPE_ARG_TYPES (a->type)
6791 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6792 && TYPE_ARG_TYPES (b->type)
6793 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6794 && type_list_equal (TYPE_ARG_TYPES (a->type),
6795 TYPE_ARG_TYPES (b->type))))
6796 break;
6797 return 0;
6798
6799 default:
6800 return 0;
6801 }
6802
6803 if (lang_hooks.types.type_hash_eq != NULL)
6804 return lang_hooks.types.type_hash_eq (a->type, b->type);
6805
6806 return 1;
6807 }
6808
6809 /* Given TYPE, and HASHCODE its hash code, return the canonical
6810 object for an identical type if one already exists.
6811 Otherwise, return TYPE, and record it as the canonical object.
6812
6813 To use this function, first create a type of the sort you want.
6814 Then compute its hash code from the fields of the type that
6815 make it different from other similar types.
6816 Then call this function and use the value. */
6817
6818 tree
6819 type_hash_canon (unsigned int hashcode, tree type)
6820 {
6821 type_hash in;
6822 type_hash **loc;
6823
6824 /* The hash table only contains main variants, so ensure that's what we're
6825 being passed. */
6826 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6827
6828 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6829 must call that routine before comparing TYPE_ALIGNs. */
6830 layout_type (type);
6831
6832 in.hash = hashcode;
6833 in.type = type;
6834
6835 loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
6836 if (*loc)
6837 {
6838 tree t1 = ((type_hash *) *loc)->type;
6839 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1
6840 && t1 != type);
6841 if (TYPE_UID (type) + 1 == next_type_uid)
6842 --next_type_uid;
6843 /* Free also min/max values and the cache for integer
6844 types. This can't be done in free_node, as LTO frees
6845 those on its own. */
6846 if (TREE_CODE (type) == INTEGER_TYPE)
6847 {
6848 if (TYPE_MIN_VALUE (type)
6849 && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
6850 {
6851 /* Zero is always in TYPE_CACHED_VALUES. */
6852 if (! TYPE_UNSIGNED (type))
6853 int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
6854 ggc_free (TYPE_MIN_VALUE (type));
6855 }
6856 if (TYPE_MAX_VALUE (type)
6857 && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
6858 {
6859 int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
6860 ggc_free (TYPE_MAX_VALUE (type));
6861 }
6862 if (TYPE_CACHED_VALUES_P (type))
6863 ggc_free (TYPE_CACHED_VALUES (type));
6864 }
6865 free_node (type);
6866 return t1;
6867 }
6868 else
6869 {
6870 struct type_hash *h;
6871
6872 h = ggc_alloc<type_hash> ();
6873 h->hash = hashcode;
6874 h->type = type;
6875 *loc = h;
6876
6877 return type;
6878 }
6879 }
6880
6881 static void
6882 print_type_hash_statistics (void)
6883 {
6884 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6885 (long) type_hash_table->size (),
6886 (long) type_hash_table->elements (),
6887 type_hash_table->collisions ());
6888 }
6889
6890 /* Given two lists of types
6891 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6892 return 1 if the lists contain the same types in the same order.
6893 Also, the TREE_PURPOSEs must match. */
6894
6895 bool
6896 type_list_equal (const_tree l1, const_tree l2)
6897 {
6898 const_tree t1, t2;
6899
6900 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6901 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6902 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6903 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6904 && (TREE_TYPE (TREE_PURPOSE (t1))
6905 == TREE_TYPE (TREE_PURPOSE (t2))))))
6906 return false;
6907
6908 return t1 == t2;
6909 }
6910
6911 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6912 given by TYPE. If the argument list accepts variable arguments,
6913 then this function counts only the ordinary arguments. */
6914
6915 int
6916 type_num_arguments (const_tree type)
6917 {
6918 int i = 0;
6919 tree t;
6920
6921 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6922 /* If the function does not take a variable number of arguments,
6923 the last element in the list will have type `void'. */
6924 if (VOID_TYPE_P (TREE_VALUE (t)))
6925 break;
6926 else
6927 ++i;
6928
6929 return i;
6930 }
6931
6932 /* Nonzero if integer constants T1 and T2
6933 represent the same constant value. */
6934
6935 int
6936 tree_int_cst_equal (const_tree t1, const_tree t2)
6937 {
6938 if (t1 == t2)
6939 return 1;
6940
6941 if (t1 == 0 || t2 == 0)
6942 return 0;
6943
6944 if (TREE_CODE (t1) == INTEGER_CST
6945 && TREE_CODE (t2) == INTEGER_CST
6946 && wi::to_widest (t1) == wi::to_widest (t2))
6947 return 1;
6948
6949 return 0;
6950 }
6951
6952 /* Return true if T is an INTEGER_CST whose numerical value (extended
6953 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
6954
6955 bool
6956 tree_fits_shwi_p (const_tree t)
6957 {
6958 return (t != NULL_TREE
6959 && TREE_CODE (t) == INTEGER_CST
6960 && wi::fits_shwi_p (wi::to_widest (t)));
6961 }
6962
6963 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6964 value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */
6965
6966 bool
6967 tree_fits_poly_int64_p (const_tree t)
6968 {
6969 if (t == NULL_TREE)
6970 return false;
6971 if (POLY_INT_CST_P (t))
6972 {
6973 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
6974 if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
6975 return false;
6976 return true;
6977 }
6978 return (TREE_CODE (t) == INTEGER_CST
6979 && wi::fits_shwi_p (wi::to_widest (t)));
6980 }
6981
6982 /* Return true if T is an INTEGER_CST whose numerical value (extended
6983 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
6984
6985 bool
6986 tree_fits_uhwi_p (const_tree t)
6987 {
6988 return (t != NULL_TREE
6989 && TREE_CODE (t) == INTEGER_CST
6990 && wi::fits_uhwi_p (wi::to_widest (t)));
6991 }
6992
6993 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6994 value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */
6995
6996 bool
6997 tree_fits_poly_uint64_p (const_tree t)
6998 {
6999 if (t == NULL_TREE)
7000 return false;
7001 if (POLY_INT_CST_P (t))
7002 {
7003 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
7004 if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
7005 return false;
7006 return true;
7007 }
7008 return (TREE_CODE (t) == INTEGER_CST
7009 && wi::fits_uhwi_p (wi::to_widest (t)));
7010 }
7011
7012 /* T is an INTEGER_CST whose numerical value (extended according to
7013 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
7014 HOST_WIDE_INT. */
7015
7016 HOST_WIDE_INT
7017 tree_to_shwi (const_tree t)
7018 {
7019 gcc_assert (tree_fits_shwi_p (t));
7020 return TREE_INT_CST_LOW (t);
7021 }
7022
7023 /* T is an INTEGER_CST whose numerical value (extended according to
7024 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
7025 HOST_WIDE_INT. */
7026
7027 unsigned HOST_WIDE_INT
7028 tree_to_uhwi (const_tree t)
7029 {
7030 gcc_assert (tree_fits_uhwi_p (t));
7031 return TREE_INT_CST_LOW (t);
7032 }
7033
7034 /* Return the most significant (sign) bit of T. */
7035
7036 int
7037 tree_int_cst_sign_bit (const_tree t)
7038 {
7039 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
7040
7041 return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
7042 }
7043
7044 /* Return an indication of the sign of the integer constant T.
7045 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
7046 Note that -1 will never be returned if T's type is unsigned. */
7047
7048 int
7049 tree_int_cst_sgn (const_tree t)
7050 {
7051 if (wi::to_wide (t) == 0)
7052 return 0;
7053 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
7054 return 1;
7055 else if (wi::neg_p (wi::to_wide (t)))
7056 return -1;
7057 else
7058 return 1;
7059 }
7060
7061 /* Return the minimum number of bits needed to represent VALUE in a
7062 signed or unsigned type, UNSIGNEDP says which. */
7063
7064 unsigned int
7065 tree_int_cst_min_precision (tree value, signop sgn)
7066 {
7067 /* If the value is negative, compute its negative minus 1. The latter
7068 adjustment is because the absolute value of the largest negative value
7069 is one larger than the largest positive value. This is equivalent to
7070 a bit-wise negation, so use that operation instead. */
7071
7072 if (tree_int_cst_sgn (value) < 0)
7073 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
7074
7075 /* Return the number of bits needed, taking into account the fact
7076 that we need one more bit for a signed than unsigned type.
7077 If value is 0 or -1, the minimum precision is 1 no matter
7078 whether unsignedp is true or false. */
7079
7080 if (integer_zerop (value))
7081 return 1;
7082 else
7083 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
7084 }
7085
7086 /* Return truthvalue of whether T1 is the same tree structure as T2.
7087 Return 1 if they are the same.
7088 Return 0 if they are understandably different.
7089 Return -1 if either contains tree structure not understood by
7090 this function. */
7091
7092 int
7093 simple_cst_equal (const_tree t1, const_tree t2)
7094 {
7095 enum tree_code code1, code2;
7096 int cmp;
7097 int i;
7098
7099 if (t1 == t2)
7100 return 1;
7101 if (t1 == 0 || t2 == 0)
7102 return 0;
7103
7104 code1 = TREE_CODE (t1);
7105 code2 = TREE_CODE (t2);
7106
7107 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
7108 {
7109 if (CONVERT_EXPR_CODE_P (code2)
7110 || code2 == NON_LVALUE_EXPR)
7111 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7112 else
7113 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
7114 }
7115
7116 else if (CONVERT_EXPR_CODE_P (code2)
7117 || code2 == NON_LVALUE_EXPR)
7118 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
7119
7120 if (code1 != code2)
7121 return 0;
7122
7123 switch (code1)
7124 {
7125 case INTEGER_CST:
7126 return wi::to_widest (t1) == wi::to_widest (t2);
7127
7128 case REAL_CST:
7129 return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
7130
7131 case FIXED_CST:
7132 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
7133
7134 case STRING_CST:
7135 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
7136 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
7137 TREE_STRING_LENGTH (t1)));
7138
7139 case CONSTRUCTOR:
7140 {
7141 unsigned HOST_WIDE_INT idx;
7142 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
7143 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
7144
7145 if (vec_safe_length (v1) != vec_safe_length (v2))
7146 return false;
7147
7148 for (idx = 0; idx < vec_safe_length (v1); ++idx)
7149 /* ??? Should we handle also fields here? */
7150 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7151 return false;
7152 return true;
7153 }
7154
7155 case SAVE_EXPR:
7156 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7157
7158 case CALL_EXPR:
7159 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7160 if (cmp <= 0)
7161 return cmp;
7162 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7163 return 0;
7164 {
7165 const_tree arg1, arg2;
7166 const_call_expr_arg_iterator iter1, iter2;
7167 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7168 arg2 = first_const_call_expr_arg (t2, &iter2);
7169 arg1 && arg2;
7170 arg1 = next_const_call_expr_arg (&iter1),
7171 arg2 = next_const_call_expr_arg (&iter2))
7172 {
7173 cmp = simple_cst_equal (arg1, arg2);
7174 if (cmp <= 0)
7175 return cmp;
7176 }
7177 return arg1 == arg2;
7178 }
7179
7180 case TARGET_EXPR:
7181 /* Special case: if either target is an unallocated VAR_DECL,
7182 it means that it's going to be unified with whatever the
7183 TARGET_EXPR is really supposed to initialize, so treat it
7184 as being equivalent to anything. */
7185 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7186 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7187 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7188 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7189 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7190 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7191 cmp = 1;
7192 else
7193 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7194
7195 if (cmp <= 0)
7196 return cmp;
7197
7198 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7199
7200 case WITH_CLEANUP_EXPR:
7201 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7202 if (cmp <= 0)
7203 return cmp;
7204
7205 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7206
7207 case COMPONENT_REF:
7208 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7209 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7210
7211 return 0;
7212
7213 case VAR_DECL:
7214 case PARM_DECL:
7215 case CONST_DECL:
7216 case FUNCTION_DECL:
7217 return 0;
7218
7219 default:
7220 if (POLY_INT_CST_P (t1))
7221 /* A false return means maybe_ne rather than known_ne. */
7222 return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
7223 TYPE_SIGN (TREE_TYPE (t1))),
7224 poly_widest_int::from (poly_int_cst_value (t2),
7225 TYPE_SIGN (TREE_TYPE (t2))));
7226 break;
7227 }
7228
7229 /* This general rule works for most tree codes. All exceptions should be
7230 handled above. If this is a language-specific tree code, we can't
7231 trust what might be in the operand, so say we don't know
7232 the situation. */
7233 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7234 return -1;
7235
7236 switch (TREE_CODE_CLASS (code1))
7237 {
7238 case tcc_unary:
7239 case tcc_binary:
7240 case tcc_comparison:
7241 case tcc_expression:
7242 case tcc_reference:
7243 case tcc_statement:
7244 cmp = 1;
7245 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7246 {
7247 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7248 if (cmp <= 0)
7249 return cmp;
7250 }
7251
7252 return cmp;
7253
7254 default:
7255 return -1;
7256 }
7257 }
7258
7259 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7260 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7261 than U, respectively. */
7262
7263 int
7264 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7265 {
7266 if (tree_int_cst_sgn (t) < 0)
7267 return -1;
7268 else if (!tree_fits_uhwi_p (t))
7269 return 1;
7270 else if (TREE_INT_CST_LOW (t) == u)
7271 return 0;
7272 else if (TREE_INT_CST_LOW (t) < u)
7273 return -1;
7274 else
7275 return 1;
7276 }
7277
7278 /* Return true if SIZE represents a constant size that is in bounds of
7279 what the middle-end and the backend accepts (covering not more than
7280 half of the address-space). */
7281
7282 bool
7283 valid_constant_size_p (const_tree size)
7284 {
7285 if (POLY_INT_CST_P (size))
7286 {
7287 if (TREE_OVERFLOW (size))
7288 return false;
7289 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7290 if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
7291 return false;
7292 return true;
7293 }
7294 if (! tree_fits_uhwi_p (size)
7295 || TREE_OVERFLOW (size)
7296 || tree_int_cst_sign_bit (size) != 0)
7297 return false;
7298 return true;
7299 }
7300
7301 /* Return the precision of the type, or for a complex or vector type the
7302 precision of the type of its elements. */
7303
7304 unsigned int
7305 element_precision (const_tree type)
7306 {
7307 if (!TYPE_P (type))
7308 type = TREE_TYPE (type);
7309 enum tree_code code = TREE_CODE (type);
7310 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7311 type = TREE_TYPE (type);
7312
7313 return TYPE_PRECISION (type);
7314 }
7315
7316 /* Return true if CODE represents an associative tree code. Otherwise
7317 return false. */
7318 bool
7319 associative_tree_code (enum tree_code code)
7320 {
7321 switch (code)
7322 {
7323 case BIT_IOR_EXPR:
7324 case BIT_AND_EXPR:
7325 case BIT_XOR_EXPR:
7326 case PLUS_EXPR:
7327 case MULT_EXPR:
7328 case MIN_EXPR:
7329 case MAX_EXPR:
7330 return true;
7331
7332 default:
7333 break;
7334 }
7335 return false;
7336 }
7337
7338 /* Return true if CODE represents a commutative tree code. Otherwise
7339 return false. */
7340 bool
7341 commutative_tree_code (enum tree_code code)
7342 {
7343 switch (code)
7344 {
7345 case PLUS_EXPR:
7346 case MULT_EXPR:
7347 case MULT_HIGHPART_EXPR:
7348 case MIN_EXPR:
7349 case MAX_EXPR:
7350 case BIT_IOR_EXPR:
7351 case BIT_XOR_EXPR:
7352 case BIT_AND_EXPR:
7353 case NE_EXPR:
7354 case EQ_EXPR:
7355 case UNORDERED_EXPR:
7356 case ORDERED_EXPR:
7357 case UNEQ_EXPR:
7358 case LTGT_EXPR:
7359 case TRUTH_AND_EXPR:
7360 case TRUTH_XOR_EXPR:
7361 case TRUTH_OR_EXPR:
7362 case WIDEN_MULT_EXPR:
7363 case VEC_WIDEN_MULT_HI_EXPR:
7364 case VEC_WIDEN_MULT_LO_EXPR:
7365 case VEC_WIDEN_MULT_EVEN_EXPR:
7366 case VEC_WIDEN_MULT_ODD_EXPR:
7367 return true;
7368
7369 default:
7370 break;
7371 }
7372 return false;
7373 }
7374
7375 /* Return true if CODE represents a ternary tree code for which the
7376 first two operands are commutative. Otherwise return false. */
7377 bool
7378 commutative_ternary_tree_code (enum tree_code code)
7379 {
7380 switch (code)
7381 {
7382 case WIDEN_MULT_PLUS_EXPR:
7383 case WIDEN_MULT_MINUS_EXPR:
7384 case DOT_PROD_EXPR:
7385 return true;
7386
7387 default:
7388 break;
7389 }
7390 return false;
7391 }
7392
7393 /* Returns true if CODE can overflow. */
7394
7395 bool
7396 operation_can_overflow (enum tree_code code)
7397 {
7398 switch (code)
7399 {
7400 case PLUS_EXPR:
7401 case MINUS_EXPR:
7402 case MULT_EXPR:
7403 case LSHIFT_EXPR:
7404 /* Can overflow in various ways. */
7405 return true;
7406 case TRUNC_DIV_EXPR:
7407 case EXACT_DIV_EXPR:
7408 case FLOOR_DIV_EXPR:
7409 case CEIL_DIV_EXPR:
7410 /* For INT_MIN / -1. */
7411 return true;
7412 case NEGATE_EXPR:
7413 case ABS_EXPR:
7414 /* For -INT_MIN. */
7415 return true;
7416 default:
7417 /* These operators cannot overflow. */
7418 return false;
7419 }
7420 }
7421
7422 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7423 ftrapv doesn't generate trapping insns for CODE. */
7424
7425 bool
7426 operation_no_trapping_overflow (tree type, enum tree_code code)
7427 {
7428 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
7429
7430 /* We don't generate instructions that trap on overflow for complex or vector
7431 types. */
7432 if (!INTEGRAL_TYPE_P (type))
7433 return true;
7434
7435 if (!TYPE_OVERFLOW_TRAPS (type))
7436 return true;
7437
7438 switch (code)
7439 {
7440 case PLUS_EXPR:
7441 case MINUS_EXPR:
7442 case MULT_EXPR:
7443 case NEGATE_EXPR:
7444 case ABS_EXPR:
7445 /* These operators can overflow, and -ftrapv generates trapping code for
7446 these. */
7447 return false;
7448 case TRUNC_DIV_EXPR:
7449 case EXACT_DIV_EXPR:
7450 case FLOOR_DIV_EXPR:
7451 case CEIL_DIV_EXPR:
7452 case LSHIFT_EXPR:
7453 /* These operators can overflow, but -ftrapv does not generate trapping
7454 code for these. */
7455 return true;
7456 default:
7457 /* These operators cannot overflow. */
7458 return true;
7459 }
7460 }
7461
7462 namespace inchash
7463 {
7464
7465 /* Generate a hash value for an expression. This can be used iteratively
7466 by passing a previous result as the HSTATE argument.
7467
7468 This function is intended to produce the same hash for expressions which
7469 would compare equal using operand_equal_p. */
7470 void
7471 add_expr (const_tree t, inchash::hash &hstate, unsigned int flags)
7472 {
7473 int i;
7474 enum tree_code code;
7475 enum tree_code_class tclass;
7476
7477 if (t == NULL_TREE || t == error_mark_node)
7478 {
7479 hstate.merge_hash (0);
7480 return;
7481 }
7482
7483 if (!(flags & OEP_ADDRESS_OF))
7484 STRIP_NOPS (t);
7485
7486 code = TREE_CODE (t);
7487
7488 switch (code)
7489 {
7490 /* Alas, constants aren't shared, so we can't rely on pointer
7491 identity. */
7492 case VOID_CST:
7493 hstate.merge_hash (0);
7494 return;
7495 case INTEGER_CST:
7496 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7497 for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++)
7498 hstate.add_hwi (TREE_INT_CST_ELT (t, i));
7499 return;
7500 case REAL_CST:
7501 {
7502 unsigned int val2;
7503 if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t))
7504 val2 = rvc_zero;
7505 else
7506 val2 = real_hash (TREE_REAL_CST_PTR (t));
7507 hstate.merge_hash (val2);
7508 return;
7509 }
7510 case FIXED_CST:
7511 {
7512 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7513 hstate.merge_hash (val2);
7514 return;
7515 }
7516 case STRING_CST:
7517 hstate.add ((const void *) TREE_STRING_POINTER (t),
7518 TREE_STRING_LENGTH (t));
7519 return;
7520 case COMPLEX_CST:
7521 inchash::add_expr (TREE_REALPART (t), hstate, flags);
7522 inchash::add_expr (TREE_IMAGPART (t), hstate, flags);
7523 return;
7524 case VECTOR_CST:
7525 {
7526 hstate.add_int (VECTOR_CST_NPATTERNS (t));
7527 hstate.add_int (VECTOR_CST_NELTS_PER_PATTERN (t));
7528 unsigned int count = vector_cst_encoded_nelts (t);
7529 for (unsigned int i = 0; i < count; ++i)
7530 inchash::add_expr (VECTOR_CST_ENCODED_ELT (t, i), hstate, flags);
7531 return;
7532 }
7533 case SSA_NAME:
7534 /* We can just compare by pointer. */
7535 hstate.add_hwi (SSA_NAME_VERSION (t));
7536 return;
7537 case PLACEHOLDER_EXPR:
7538 /* The node itself doesn't matter. */
7539 return;
7540 case BLOCK:
7541 case OMP_CLAUSE:
7542 /* Ignore. */
7543 return;
7544 case TREE_LIST:
7545 /* A list of expressions, for a CALL_EXPR or as the elements of a
7546 VECTOR_CST. */
7547 for (; t; t = TREE_CHAIN (t))
7548 inchash::add_expr (TREE_VALUE (t), hstate, flags);
7549 return;
7550 case CONSTRUCTOR:
7551 {
7552 unsigned HOST_WIDE_INT idx;
7553 tree field, value;
7554 flags &= ~OEP_ADDRESS_OF;
7555 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7556 {
7557 inchash::add_expr (field, hstate, flags);
7558 inchash::add_expr (value, hstate, flags);
7559 }
7560 return;
7561 }
7562 case STATEMENT_LIST:
7563 {
7564 tree_stmt_iterator i;
7565 for (i = tsi_start (CONST_CAST_TREE (t));
7566 !tsi_end_p (i); tsi_next (&i))
7567 inchash::add_expr (tsi_stmt (i), hstate, flags);
7568 return;
7569 }
7570 case TREE_VEC:
7571 for (i = 0; i < TREE_VEC_LENGTH (t); ++i)
7572 inchash::add_expr (TREE_VEC_ELT (t, i), hstate, flags);
7573 return;
7574 case IDENTIFIER_NODE:
7575 hstate.add_object (IDENTIFIER_HASH_VALUE (t));
7576 return;
7577 case FUNCTION_DECL:
7578 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7579 Otherwise nodes that compare equal according to operand_equal_p might
7580 get different hash codes. However, don't do this for machine specific
7581 or front end builtins, since the function code is overloaded in those
7582 cases. */
7583 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7584 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7585 {
7586 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7587 code = TREE_CODE (t);
7588 }
7589 /* FALL THROUGH */
7590 default:
7591 if (POLY_INT_CST_P (t))
7592 {
7593 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7594 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
7595 return;
7596 }
7597 tclass = TREE_CODE_CLASS (code);
7598
7599 if (tclass == tcc_declaration)
7600 {
7601 /* DECL's have a unique ID */
7602 hstate.add_hwi (DECL_UID (t));
7603 }
7604 else if (tclass == tcc_comparison && !commutative_tree_code (code))
7605 {
7606 /* For comparisons that can be swapped, use the lower
7607 tree code. */
7608 enum tree_code ccode = swap_tree_comparison (code);
7609 if (code < ccode)
7610 ccode = code;
7611 hstate.add_object (ccode);
7612 inchash::add_expr (TREE_OPERAND (t, ccode != code), hstate, flags);
7613 inchash::add_expr (TREE_OPERAND (t, ccode == code), hstate, flags);
7614 }
7615 else if (CONVERT_EXPR_CODE_P (code))
7616 {
7617 /* NOP_EXPR and CONVERT_EXPR are considered equal by
7618 operand_equal_p. */
7619 enum tree_code ccode = NOP_EXPR;
7620 hstate.add_object (ccode);
7621
7622 /* Don't hash the type, that can lead to having nodes which
7623 compare equal according to operand_equal_p, but which
7624 have different hash codes. Make sure to include signedness
7625 in the hash computation. */
7626 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7627 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7628 }
7629 /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl. */
7630 else if (code == MEM_REF
7631 && (flags & OEP_ADDRESS_OF) != 0
7632 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
7633 && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
7634 && integer_zerop (TREE_OPERAND (t, 1)))
7635 inchash::add_expr (TREE_OPERAND (TREE_OPERAND (t, 0), 0),
7636 hstate, flags);
7637 /* Don't ICE on FE specific trees, or their arguments etc.
7638 during operand_equal_p hash verification. */
7639 else if (!IS_EXPR_CODE_CLASS (tclass))
7640 gcc_assert (flags & OEP_HASH_CHECK);
7641 else
7642 {
7643 unsigned int sflags = flags;
7644
7645 hstate.add_object (code);
7646
7647 switch (code)
7648 {
7649 case ADDR_EXPR:
7650 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7651 flags |= OEP_ADDRESS_OF;
7652 sflags = flags;
7653 break;
7654
7655 case INDIRECT_REF:
7656 case MEM_REF:
7657 case TARGET_MEM_REF:
7658 flags &= ~OEP_ADDRESS_OF;
7659 sflags = flags;
7660 break;
7661
7662 case ARRAY_REF:
7663 case ARRAY_RANGE_REF:
7664 case COMPONENT_REF:
7665 case BIT_FIELD_REF:
7666 sflags &= ~OEP_ADDRESS_OF;
7667 break;
7668
7669 case COND_EXPR:
7670 flags &= ~OEP_ADDRESS_OF;
7671 break;
7672
7673 case WIDEN_MULT_PLUS_EXPR:
7674 case WIDEN_MULT_MINUS_EXPR:
7675 {
7676 /* The multiplication operands are commutative. */
7677 inchash::hash one, two;
7678 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7679 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7680 hstate.add_commutative (one, two);
7681 inchash::add_expr (TREE_OPERAND (t, 2), two, flags);
7682 return;
7683 }
7684
7685 case CALL_EXPR:
7686 if (CALL_EXPR_FN (t) == NULL_TREE)
7687 hstate.add_int (CALL_EXPR_IFN (t));
7688 break;
7689
7690 case TARGET_EXPR:
7691 /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
7692 Usually different TARGET_EXPRs just should use
7693 different temporaries in their slots. */
7694 inchash::add_expr (TARGET_EXPR_SLOT (t), hstate, flags);
7695 return;
7696
7697 default:
7698 break;
7699 }
7700
7701 /* Don't hash the type, that can lead to having nodes which
7702 compare equal according to operand_equal_p, but which
7703 have different hash codes. */
7704 if (code == NON_LVALUE_EXPR)
7705 {
7706 /* Make sure to include signness in the hash computation. */
7707 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7708 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7709 }
7710
7711 else if (commutative_tree_code (code))
7712 {
7713 /* It's a commutative expression. We want to hash it the same
7714 however it appears. We do this by first hashing both operands
7715 and then rehashing based on the order of their independent
7716 hashes. */
7717 inchash::hash one, two;
7718 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7719 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7720 hstate.add_commutative (one, two);
7721 }
7722 else
7723 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7724 inchash::add_expr (TREE_OPERAND (t, i), hstate,
7725 i == 0 ? flags : sflags);
7726 }
7727 return;
7728 }
7729 }
7730
7731 }
7732
7733 /* Constructors for pointer, array and function types.
7734 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7735 constructed by language-dependent code, not here.) */
7736
7737 /* Construct, lay out and return the type of pointers to TO_TYPE with
7738 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7739 reference all of memory. If such a type has already been
7740 constructed, reuse it. */
7741
7742 tree
7743 build_pointer_type_for_mode (tree to_type, machine_mode mode,
7744 bool can_alias_all)
7745 {
7746 tree t;
7747 bool could_alias = can_alias_all;
7748
7749 if (to_type == error_mark_node)
7750 return error_mark_node;
7751
7752 /* If the pointed-to type has the may_alias attribute set, force
7753 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7754 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7755 can_alias_all = true;
7756
7757 /* In some cases, languages will have things that aren't a POINTER_TYPE
7758 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7759 In that case, return that type without regard to the rest of our
7760 operands.
7761
7762 ??? This is a kludge, but consistent with the way this function has
7763 always operated and there doesn't seem to be a good way to avoid this
7764 at the moment. */
7765 if (TYPE_POINTER_TO (to_type) != 0
7766 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7767 return TYPE_POINTER_TO (to_type);
7768
7769 /* First, if we already have a type for pointers to TO_TYPE and it's
7770 the proper mode, use it. */
7771 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7772 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7773 return t;
7774
7775 t = make_node (POINTER_TYPE);
7776
7777 TREE_TYPE (t) = to_type;
7778 SET_TYPE_MODE (t, mode);
7779 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7780 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7781 TYPE_POINTER_TO (to_type) = t;
7782
7783 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7784 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7785 SET_TYPE_STRUCTURAL_EQUALITY (t);
7786 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7787 TYPE_CANONICAL (t)
7788 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7789 mode, false);
7790
7791 /* Lay out the type. This function has many callers that are concerned
7792 with expression-construction, and this simplifies them all. */
7793 layout_type (t);
7794
7795 return t;
7796 }
7797
7798 /* By default build pointers in ptr_mode. */
7799
7800 tree
7801 build_pointer_type (tree to_type)
7802 {
7803 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7804 : TYPE_ADDR_SPACE (to_type);
7805 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7806 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7807 }
7808
7809 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7810
7811 tree
7812 build_reference_type_for_mode (tree to_type, machine_mode mode,
7813 bool can_alias_all)
7814 {
7815 tree t;
7816 bool could_alias = can_alias_all;
7817
7818 if (to_type == error_mark_node)
7819 return error_mark_node;
7820
7821 /* If the pointed-to type has the may_alias attribute set, force
7822 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7823 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7824 can_alias_all = true;
7825
7826 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7827 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7828 In that case, return that type without regard to the rest of our
7829 operands.
7830
7831 ??? This is a kludge, but consistent with the way this function has
7832 always operated and there doesn't seem to be a good way to avoid this
7833 at the moment. */
7834 if (TYPE_REFERENCE_TO (to_type) != 0
7835 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7836 return TYPE_REFERENCE_TO (to_type);
7837
7838 /* First, if we already have a type for pointers to TO_TYPE and it's
7839 the proper mode, use it. */
7840 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7841 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7842 return t;
7843
7844 t = make_node (REFERENCE_TYPE);
7845
7846 TREE_TYPE (t) = to_type;
7847 SET_TYPE_MODE (t, mode);
7848 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7849 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7850 TYPE_REFERENCE_TO (to_type) = t;
7851
7852 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7853 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7854 SET_TYPE_STRUCTURAL_EQUALITY (t);
7855 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7856 TYPE_CANONICAL (t)
7857 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7858 mode, false);
7859
7860 layout_type (t);
7861
7862 return t;
7863 }
7864
7865
7866 /* Build the node for the type of references-to-TO_TYPE by default
7867 in ptr_mode. */
7868
7869 tree
7870 build_reference_type (tree to_type)
7871 {
7872 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7873 : TYPE_ADDR_SPACE (to_type);
7874 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7875 return build_reference_type_for_mode (to_type, pointer_mode, false);
7876 }
7877
7878 #define MAX_INT_CACHED_PREC \
7879 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7880 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7881
7882 /* Builds a signed or unsigned integer type of precision PRECISION.
7883 Used for C bitfields whose precision does not match that of
7884 built-in target types. */
7885 tree
7886 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7887 int unsignedp)
7888 {
7889 tree itype, ret;
7890
7891 if (unsignedp)
7892 unsignedp = MAX_INT_CACHED_PREC + 1;
7893
7894 if (precision <= MAX_INT_CACHED_PREC)
7895 {
7896 itype = nonstandard_integer_type_cache[precision + unsignedp];
7897 if (itype)
7898 return itype;
7899 }
7900
7901 itype = make_node (INTEGER_TYPE);
7902 TYPE_PRECISION (itype) = precision;
7903
7904 if (unsignedp)
7905 fixup_unsigned_type (itype);
7906 else
7907 fixup_signed_type (itype);
7908
7909 ret = itype;
7910
7911 inchash::hash hstate;
7912 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
7913 ret = type_hash_canon (hstate.end (), itype);
7914 if (precision <= MAX_INT_CACHED_PREC)
7915 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7916
7917 return ret;
7918 }
7919
7920 #define MAX_BOOL_CACHED_PREC \
7921 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7922 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
7923
7924 /* Builds a boolean type of precision PRECISION.
7925 Used for boolean vectors to choose proper vector element size. */
7926 tree
7927 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
7928 {
7929 tree type;
7930
7931 if (precision <= MAX_BOOL_CACHED_PREC)
7932 {
7933 type = nonstandard_boolean_type_cache[precision];
7934 if (type)
7935 return type;
7936 }
7937
7938 type = make_node (BOOLEAN_TYPE);
7939 TYPE_PRECISION (type) = precision;
7940 fixup_signed_type (type);
7941
7942 if (precision <= MAX_INT_CACHED_PREC)
7943 nonstandard_boolean_type_cache[precision] = type;
7944
7945 return type;
7946 }
7947
7948 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7949 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7950 is true, reuse such a type that has already been constructed. */
7951
7952 static tree
7953 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7954 {
7955 tree itype = make_node (INTEGER_TYPE);
7956
7957 TREE_TYPE (itype) = type;
7958
7959 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7960 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7961
7962 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7963 SET_TYPE_MODE (itype, TYPE_MODE (type));
7964 TYPE_SIZE (itype) = TYPE_SIZE (type);
7965 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7966 SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
7967 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7968 SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
7969
7970 if (!shared)
7971 return itype;
7972
7973 if ((TYPE_MIN_VALUE (itype)
7974 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7975 || (TYPE_MAX_VALUE (itype)
7976 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7977 {
7978 /* Since we cannot reliably merge this type, we need to compare it using
7979 structural equality checks. */
7980 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7981 return itype;
7982 }
7983
7984 hashval_t hash = type_hash_canon_hash (itype);
7985 itype = type_hash_canon (hash, itype);
7986
7987 return itype;
7988 }
7989
7990 /* Wrapper around build_range_type_1 with SHARED set to true. */
7991
7992 tree
7993 build_range_type (tree type, tree lowval, tree highval)
7994 {
7995 return build_range_type_1 (type, lowval, highval, true);
7996 }
7997
7998 /* Wrapper around build_range_type_1 with SHARED set to false. */
7999
8000 tree
8001 build_nonshared_range_type (tree type, tree lowval, tree highval)
8002 {
8003 return build_range_type_1 (type, lowval, highval, false);
8004 }
8005
8006 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
8007 MAXVAL should be the maximum value in the domain
8008 (one less than the length of the array).
8009
8010 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
8011 We don't enforce this limit, that is up to caller (e.g. language front end).
8012 The limit exists because the result is a signed type and we don't handle
8013 sizes that use more than one HOST_WIDE_INT. */
8014
8015 tree
8016 build_index_type (tree maxval)
8017 {
8018 return build_range_type (sizetype, size_zero_node, maxval);
8019 }
8020
8021 /* Return true if the debug information for TYPE, a subtype, should be emitted
8022 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
8023 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
8024 debug info and doesn't reflect the source code. */
8025
8026 bool
8027 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
8028 {
8029 tree base_type = TREE_TYPE (type), low, high;
8030
8031 /* Subrange types have a base type which is an integral type. */
8032 if (!INTEGRAL_TYPE_P (base_type))
8033 return false;
8034
8035 /* Get the real bounds of the subtype. */
8036 if (lang_hooks.types.get_subrange_bounds)
8037 lang_hooks.types.get_subrange_bounds (type, &low, &high);
8038 else
8039 {
8040 low = TYPE_MIN_VALUE (type);
8041 high = TYPE_MAX_VALUE (type);
8042 }
8043
8044 /* If the type and its base type have the same representation and the same
8045 name, then the type is not a subrange but a copy of the base type. */
8046 if ((TREE_CODE (base_type) == INTEGER_TYPE
8047 || TREE_CODE (base_type) == BOOLEAN_TYPE)
8048 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
8049 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
8050 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
8051 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
8052 return false;
8053
8054 if (lowval)
8055 *lowval = low;
8056 if (highval)
8057 *highval = high;
8058 return true;
8059 }
8060
8061 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
8062 and number of elements specified by the range of values of INDEX_TYPE.
8063 If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
8064 If SHARED is true, reuse such a type that has already been constructed. */
8065
8066 static tree
8067 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
8068 bool shared)
8069 {
8070 tree t;
8071
8072 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
8073 {
8074 error ("arrays of functions are not meaningful");
8075 elt_type = integer_type_node;
8076 }
8077
8078 t = make_node (ARRAY_TYPE);
8079 TREE_TYPE (t) = elt_type;
8080 TYPE_DOMAIN (t) = index_type;
8081 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
8082 TYPE_TYPELESS_STORAGE (t) = typeless_storage;
8083 layout_type (t);
8084
8085 /* If the element type is incomplete at this point we get marked for
8086 structural equality. Do not record these types in the canonical
8087 type hashtable. */
8088 if (TYPE_STRUCTURAL_EQUALITY_P (t))
8089 return t;
8090
8091 if (shared)
8092 {
8093 hashval_t hash = type_hash_canon_hash (t);
8094 t = type_hash_canon (hash, t);
8095 }
8096
8097 if (TYPE_CANONICAL (t) == t)
8098 {
8099 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
8100 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
8101 || in_lto_p)
8102 SET_TYPE_STRUCTURAL_EQUALITY (t);
8103 else if (TYPE_CANONICAL (elt_type) != elt_type
8104 || (index_type && TYPE_CANONICAL (index_type) != index_type))
8105 TYPE_CANONICAL (t)
8106 = build_array_type_1 (TYPE_CANONICAL (elt_type),
8107 index_type
8108 ? TYPE_CANONICAL (index_type) : NULL_TREE,
8109 typeless_storage, shared);
8110 }
8111
8112 return t;
8113 }
8114
8115 /* Wrapper around build_array_type_1 with SHARED set to true. */
8116
8117 tree
8118 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
8119 {
8120 return build_array_type_1 (elt_type, index_type, typeless_storage, true);
8121 }
8122
8123 /* Wrapper around build_array_type_1 with SHARED set to false. */
8124
8125 tree
8126 build_nonshared_array_type (tree elt_type, tree index_type)
8127 {
8128 return build_array_type_1 (elt_type, index_type, false, false);
8129 }
8130
8131 /* Return a representation of ELT_TYPE[NELTS], using indices of type
8132 sizetype. */
8133
8134 tree
8135 build_array_type_nelts (tree elt_type, poly_uint64 nelts)
8136 {
8137 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
8138 }
8139
8140 /* Recursively examines the array elements of TYPE, until a non-array
8141 element type is found. */
8142
8143 tree
8144 strip_array_types (tree type)
8145 {
8146 while (TREE_CODE (type) == ARRAY_TYPE)
8147 type = TREE_TYPE (type);
8148
8149 return type;
8150 }
8151
8152 /* Computes the canonical argument types from the argument type list
8153 ARGTYPES.
8154
8155 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
8156 on entry to this function, or if any of the ARGTYPES are
8157 structural.
8158
8159 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
8160 true on entry to this function, or if any of the ARGTYPES are
8161 non-canonical.
8162
8163 Returns a canonical argument list, which may be ARGTYPES when the
8164 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
8165 true) or would not differ from ARGTYPES. */
8166
8167 static tree
8168 maybe_canonicalize_argtypes (tree argtypes,
8169 bool *any_structural_p,
8170 bool *any_noncanonical_p)
8171 {
8172 tree arg;
8173 bool any_noncanonical_argtypes_p = false;
8174
8175 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
8176 {
8177 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
8178 /* Fail gracefully by stating that the type is structural. */
8179 *any_structural_p = true;
8180 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
8181 *any_structural_p = true;
8182 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
8183 || TREE_PURPOSE (arg))
8184 /* If the argument has a default argument, we consider it
8185 non-canonical even though the type itself is canonical.
8186 That way, different variants of function and method types
8187 with default arguments will all point to the variant with
8188 no defaults as their canonical type. */
8189 any_noncanonical_argtypes_p = true;
8190 }
8191
8192 if (*any_structural_p)
8193 return argtypes;
8194
8195 if (any_noncanonical_argtypes_p)
8196 {
8197 /* Build the canonical list of argument types. */
8198 tree canon_argtypes = NULL_TREE;
8199 bool is_void = false;
8200
8201 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
8202 {
8203 if (arg == void_list_node)
8204 is_void = true;
8205 else
8206 canon_argtypes = tree_cons (NULL_TREE,
8207 TYPE_CANONICAL (TREE_VALUE (arg)),
8208 canon_argtypes);
8209 }
8210
8211 canon_argtypes = nreverse (canon_argtypes);
8212 if (is_void)
8213 canon_argtypes = chainon (canon_argtypes, void_list_node);
8214
8215 /* There is a non-canonical type. */
8216 *any_noncanonical_p = true;
8217 return canon_argtypes;
8218 }
8219
8220 /* The canonical argument types are the same as ARGTYPES. */
8221 return argtypes;
8222 }
8223
8224 /* Construct, lay out and return
8225 the type of functions returning type VALUE_TYPE
8226 given arguments of types ARG_TYPES.
8227 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8228 are data type nodes for the arguments of the function.
8229 If such a type has already been constructed, reuse it. */
8230
8231 tree
8232 build_function_type (tree value_type, tree arg_types)
8233 {
8234 tree t;
8235 inchash::hash hstate;
8236 bool any_structural_p, any_noncanonical_p;
8237 tree canon_argtypes;
8238
8239 if (TREE_CODE (value_type) == FUNCTION_TYPE)
8240 {
8241 error ("function return type cannot be function");
8242 value_type = integer_type_node;
8243 }
8244
8245 /* Make a node of the sort we want. */
8246 t = make_node (FUNCTION_TYPE);
8247 TREE_TYPE (t) = value_type;
8248 TYPE_ARG_TYPES (t) = arg_types;
8249
8250 /* If we already have such a type, use the old one. */
8251 hashval_t hash = type_hash_canon_hash (t);
8252 t = type_hash_canon (hash, t);
8253
8254 /* Set up the canonical type. */
8255 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8256 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8257 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8258 &any_structural_p,
8259 &any_noncanonical_p);
8260 if (any_structural_p)
8261 SET_TYPE_STRUCTURAL_EQUALITY (t);
8262 else if (any_noncanonical_p)
8263 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8264 canon_argtypes);
8265
8266 if (!COMPLETE_TYPE_P (t))
8267 layout_type (t);
8268 return t;
8269 }
8270
8271 /* Build a function type. The RETURN_TYPE is the type returned by the
8272 function. If VAARGS is set, no void_type_node is appended to the
8273 list. ARGP must be always be terminated be a NULL_TREE. */
8274
8275 static tree
8276 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8277 {
8278 tree t, args, last;
8279
8280 t = va_arg (argp, tree);
8281 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8282 args = tree_cons (NULL_TREE, t, args);
8283
8284 if (vaargs)
8285 {
8286 last = args;
8287 if (args != NULL_TREE)
8288 args = nreverse (args);
8289 gcc_assert (last != void_list_node);
8290 }
8291 else if (args == NULL_TREE)
8292 args = void_list_node;
8293 else
8294 {
8295 last = args;
8296 args = nreverse (args);
8297 TREE_CHAIN (last) = void_list_node;
8298 }
8299 args = build_function_type (return_type, args);
8300
8301 return args;
8302 }
8303
8304 /* Build a function type. The RETURN_TYPE is the type returned by the
8305 function. If additional arguments are provided, they are
8306 additional argument types. The list of argument types must always
8307 be terminated by NULL_TREE. */
8308
8309 tree
8310 build_function_type_list (tree return_type, ...)
8311 {
8312 tree args;
8313 va_list p;
8314
8315 va_start (p, return_type);
8316 args = build_function_type_list_1 (false, return_type, p);
8317 va_end (p);
8318 return args;
8319 }
8320
8321 /* Build a variable argument function type. The RETURN_TYPE is the
8322 type returned by the function. If additional arguments are provided,
8323 they are additional argument types. The list of argument types must
8324 always be terminated by NULL_TREE. */
8325
8326 tree
8327 build_varargs_function_type_list (tree return_type, ...)
8328 {
8329 tree args;
8330 va_list p;
8331
8332 va_start (p, return_type);
8333 args = build_function_type_list_1 (true, return_type, p);
8334 va_end (p);
8335
8336 return args;
8337 }
8338
8339 /* Build a function type. RETURN_TYPE is the type returned by the
8340 function; VAARGS indicates whether the function takes varargs. The
8341 function takes N named arguments, the types of which are provided in
8342 ARG_TYPES. */
8343
8344 static tree
8345 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8346 tree *arg_types)
8347 {
8348 int i;
8349 tree t = vaargs ? NULL_TREE : void_list_node;
8350
8351 for (i = n - 1; i >= 0; i--)
8352 t = tree_cons (NULL_TREE, arg_types[i], t);
8353
8354 return build_function_type (return_type, t);
8355 }
8356
8357 /* Build a function type. RETURN_TYPE is the type returned by the
8358 function. The function takes N named arguments, the types of which
8359 are provided in ARG_TYPES. */
8360
8361 tree
8362 build_function_type_array (tree return_type, int n, tree *arg_types)
8363 {
8364 return build_function_type_array_1 (false, return_type, n, arg_types);
8365 }
8366
8367 /* Build a variable argument function type. RETURN_TYPE is the type
8368 returned by the function. The function takes N named arguments, the
8369 types of which are provided in ARG_TYPES. */
8370
8371 tree
8372 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8373 {
8374 return build_function_type_array_1 (true, return_type, n, arg_types);
8375 }
8376
8377 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8378 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8379 for the method. An implicit additional parameter (of type
8380 pointer-to-BASETYPE) is added to the ARGTYPES. */
8381
8382 tree
8383 build_method_type_directly (tree basetype,
8384 tree rettype,
8385 tree argtypes)
8386 {
8387 tree t;
8388 tree ptype;
8389 bool any_structural_p, any_noncanonical_p;
8390 tree canon_argtypes;
8391
8392 /* Make a node of the sort we want. */
8393 t = make_node (METHOD_TYPE);
8394
8395 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8396 TREE_TYPE (t) = rettype;
8397 ptype = build_pointer_type (basetype);
8398
8399 /* The actual arglist for this function includes a "hidden" argument
8400 which is "this". Put it into the list of argument types. */
8401 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8402 TYPE_ARG_TYPES (t) = argtypes;
8403
8404 /* If we already have such a type, use the old one. */
8405 hashval_t hash = type_hash_canon_hash (t);
8406 t = type_hash_canon (hash, t);
8407
8408 /* Set up the canonical type. */
8409 any_structural_p
8410 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8411 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8412 any_noncanonical_p
8413 = (TYPE_CANONICAL (basetype) != basetype
8414 || TYPE_CANONICAL (rettype) != rettype);
8415 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8416 &any_structural_p,
8417 &any_noncanonical_p);
8418 if (any_structural_p)
8419 SET_TYPE_STRUCTURAL_EQUALITY (t);
8420 else if (any_noncanonical_p)
8421 TYPE_CANONICAL (t)
8422 = build_method_type_directly (TYPE_CANONICAL (basetype),
8423 TYPE_CANONICAL (rettype),
8424 canon_argtypes);
8425 if (!COMPLETE_TYPE_P (t))
8426 layout_type (t);
8427
8428 return t;
8429 }
8430
8431 /* Construct, lay out and return the type of methods belonging to class
8432 BASETYPE and whose arguments and values are described by TYPE.
8433 If that type exists already, reuse it.
8434 TYPE must be a FUNCTION_TYPE node. */
8435
8436 tree
8437 build_method_type (tree basetype, tree type)
8438 {
8439 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8440
8441 return build_method_type_directly (basetype,
8442 TREE_TYPE (type),
8443 TYPE_ARG_TYPES (type));
8444 }
8445
8446 /* Construct, lay out and return the type of offsets to a value
8447 of type TYPE, within an object of type BASETYPE.
8448 If a suitable offset type exists already, reuse it. */
8449
8450 tree
8451 build_offset_type (tree basetype, tree type)
8452 {
8453 tree t;
8454
8455 /* Make a node of the sort we want. */
8456 t = make_node (OFFSET_TYPE);
8457
8458 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8459 TREE_TYPE (t) = type;
8460
8461 /* If we already have such a type, use the old one. */
8462 hashval_t hash = type_hash_canon_hash (t);
8463 t = type_hash_canon (hash, t);
8464
8465 if (!COMPLETE_TYPE_P (t))
8466 layout_type (t);
8467
8468 if (TYPE_CANONICAL (t) == t)
8469 {
8470 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8471 || TYPE_STRUCTURAL_EQUALITY_P (type))
8472 SET_TYPE_STRUCTURAL_EQUALITY (t);
8473 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8474 || TYPE_CANONICAL (type) != type)
8475 TYPE_CANONICAL (t)
8476 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8477 TYPE_CANONICAL (type));
8478 }
8479
8480 return t;
8481 }
8482
8483 /* Create a complex type whose components are COMPONENT_TYPE.
8484
8485 If NAMED is true, the type is given a TYPE_NAME. We do not always
8486 do so because this creates a DECL node and thus make the DECL_UIDs
8487 dependent on the type canonicalization hashtable, which is GC-ed,
8488 so the DECL_UIDs would not be stable wrt garbage collection. */
8489
8490 tree
8491 build_complex_type (tree component_type, bool named)
8492 {
8493 gcc_assert (INTEGRAL_TYPE_P (component_type)
8494 || SCALAR_FLOAT_TYPE_P (component_type)
8495 || FIXED_POINT_TYPE_P (component_type));
8496
8497 /* Make a node of the sort we want. */
8498 tree probe = make_node (COMPLEX_TYPE);
8499
8500 TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
8501
8502 /* If we already have such a type, use the old one. */
8503 hashval_t hash = type_hash_canon_hash (probe);
8504 tree t = type_hash_canon (hash, probe);
8505
8506 if (t == probe)
8507 {
8508 /* We created a new type. The hash insertion will have laid
8509 out the type. We need to check the canonicalization and
8510 maybe set the name. */
8511 gcc_checking_assert (COMPLETE_TYPE_P (t)
8512 && !TYPE_NAME (t)
8513 && TYPE_CANONICAL (t) == t);
8514
8515 if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
8516 SET_TYPE_STRUCTURAL_EQUALITY (t);
8517 else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
8518 TYPE_CANONICAL (t)
8519 = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
8520
8521 /* We need to create a name, since complex is a fundamental type. */
8522 if (named)
8523 {
8524 const char *name = NULL;
8525
8526 if (TREE_TYPE (t) == char_type_node)
8527 name = "complex char";
8528 else if (TREE_TYPE (t) == signed_char_type_node)
8529 name = "complex signed char";
8530 else if (TREE_TYPE (t) == unsigned_char_type_node)
8531 name = "complex unsigned char";
8532 else if (TREE_TYPE (t) == short_integer_type_node)
8533 name = "complex short int";
8534 else if (TREE_TYPE (t) == short_unsigned_type_node)
8535 name = "complex short unsigned int";
8536 else if (TREE_TYPE (t) == integer_type_node)
8537 name = "complex int";
8538 else if (TREE_TYPE (t) == unsigned_type_node)
8539 name = "complex unsigned int";
8540 else if (TREE_TYPE (t) == long_integer_type_node)
8541 name = "complex long int";
8542 else if (TREE_TYPE (t) == long_unsigned_type_node)
8543 name = "complex long unsigned int";
8544 else if (TREE_TYPE (t) == long_long_integer_type_node)
8545 name = "complex long long int";
8546 else if (TREE_TYPE (t) == long_long_unsigned_type_node)
8547 name = "complex long long unsigned int";
8548
8549 if (name != NULL)
8550 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8551 get_identifier (name), t);
8552 }
8553 }
8554
8555 return build_qualified_type (t, TYPE_QUALS (component_type));
8556 }
8557
8558 /* If TYPE is a real or complex floating-point type and the target
8559 does not directly support arithmetic on TYPE then return the wider
8560 type to be used for arithmetic on TYPE. Otherwise, return
8561 NULL_TREE. */
8562
8563 tree
8564 excess_precision_type (tree type)
8565 {
8566 /* The target can give two different responses to the question of
8567 which excess precision mode it would like depending on whether we
8568 are in -fexcess-precision=standard or -fexcess-precision=fast. */
8569
8570 enum excess_precision_type requested_type
8571 = (flag_excess_precision == EXCESS_PRECISION_FAST
8572 ? EXCESS_PRECISION_TYPE_FAST
8573 : EXCESS_PRECISION_TYPE_STANDARD);
8574
8575 enum flt_eval_method target_flt_eval_method
8576 = targetm.c.excess_precision (requested_type);
8577
8578 /* The target should not ask for unpredictable float evaluation (though
8579 it might advertise that implicitly the evaluation is unpredictable,
8580 but we don't care about that here, it will have been reported
8581 elsewhere). If it does ask for unpredictable evaluation, we have
8582 nothing to do here. */
8583 gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
8584
8585 /* Nothing to do. The target has asked for all types we know about
8586 to be computed with their native precision and range. */
8587 if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
8588 return NULL_TREE;
8589
8590 /* The target will promote this type in a target-dependent way, so excess
8591 precision ought to leave it alone. */
8592 if (targetm.promoted_type (type) != NULL_TREE)
8593 return NULL_TREE;
8594
8595 machine_mode float16_type_mode = (float16_type_node
8596 ? TYPE_MODE (float16_type_node)
8597 : VOIDmode);
8598 machine_mode float_type_mode = TYPE_MODE (float_type_node);
8599 machine_mode double_type_mode = TYPE_MODE (double_type_node);
8600
8601 switch (TREE_CODE (type))
8602 {
8603 case REAL_TYPE:
8604 {
8605 machine_mode type_mode = TYPE_MODE (type);
8606 switch (target_flt_eval_method)
8607 {
8608 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8609 if (type_mode == float16_type_mode)
8610 return float_type_node;
8611 break;
8612 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8613 if (type_mode == float16_type_mode
8614 || type_mode == float_type_mode)
8615 return double_type_node;
8616 break;
8617 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8618 if (type_mode == float16_type_mode
8619 || type_mode == float_type_mode
8620 || type_mode == double_type_mode)
8621 return long_double_type_node;
8622 break;
8623 default:
8624 gcc_unreachable ();
8625 }
8626 break;
8627 }
8628 case COMPLEX_TYPE:
8629 {
8630 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8631 return NULL_TREE;
8632 machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
8633 switch (target_flt_eval_method)
8634 {
8635 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8636 if (type_mode == float16_type_mode)
8637 return complex_float_type_node;
8638 break;
8639 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8640 if (type_mode == float16_type_mode
8641 || type_mode == float_type_mode)
8642 return complex_double_type_node;
8643 break;
8644 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8645 if (type_mode == float16_type_mode
8646 || type_mode == float_type_mode
8647 || type_mode == double_type_mode)
8648 return complex_long_double_type_node;
8649 break;
8650 default:
8651 gcc_unreachable ();
8652 }
8653 break;
8654 }
8655 default:
8656 break;
8657 }
8658
8659 return NULL_TREE;
8660 }
8661 \f
8662 /* Return OP, stripped of any conversions to wider types as much as is safe.
8663 Converting the value back to OP's type makes a value equivalent to OP.
8664
8665 If FOR_TYPE is nonzero, we return a value which, if converted to
8666 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8667
8668 OP must have integer, real or enumeral type. Pointers are not allowed!
8669
8670 There are some cases where the obvious value we could return
8671 would regenerate to OP if converted to OP's type,
8672 but would not extend like OP to wider types.
8673 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8674 For example, if OP is (unsigned short)(signed char)-1,
8675 we avoid returning (signed char)-1 if FOR_TYPE is int,
8676 even though extending that to an unsigned short would regenerate OP,
8677 since the result of extending (signed char)-1 to (int)
8678 is different from (int) OP. */
8679
8680 tree
8681 get_unwidened (tree op, tree for_type)
8682 {
8683 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8684 tree type = TREE_TYPE (op);
8685 unsigned final_prec
8686 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8687 int uns
8688 = (for_type != 0 && for_type != type
8689 && final_prec > TYPE_PRECISION (type)
8690 && TYPE_UNSIGNED (type));
8691 tree win = op;
8692
8693 while (CONVERT_EXPR_P (op))
8694 {
8695 int bitschange;
8696
8697 /* TYPE_PRECISION on vector types has different meaning
8698 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8699 so avoid them here. */
8700 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8701 break;
8702
8703 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8704 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8705
8706 /* Truncations are many-one so cannot be removed.
8707 Unless we are later going to truncate down even farther. */
8708 if (bitschange < 0
8709 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8710 break;
8711
8712 /* See what's inside this conversion. If we decide to strip it,
8713 we will set WIN. */
8714 op = TREE_OPERAND (op, 0);
8715
8716 /* If we have not stripped any zero-extensions (uns is 0),
8717 we can strip any kind of extension.
8718 If we have previously stripped a zero-extension,
8719 only zero-extensions can safely be stripped.
8720 Any extension can be stripped if the bits it would produce
8721 are all going to be discarded later by truncating to FOR_TYPE. */
8722
8723 if (bitschange > 0)
8724 {
8725 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8726 win = op;
8727 /* TYPE_UNSIGNED says whether this is a zero-extension.
8728 Let's avoid computing it if it does not affect WIN
8729 and if UNS will not be needed again. */
8730 if ((uns
8731 || CONVERT_EXPR_P (op))
8732 && TYPE_UNSIGNED (TREE_TYPE (op)))
8733 {
8734 uns = 1;
8735 win = op;
8736 }
8737 }
8738 }
8739
8740 /* If we finally reach a constant see if it fits in sth smaller and
8741 in that case convert it. */
8742 if (TREE_CODE (win) == INTEGER_CST)
8743 {
8744 tree wtype = TREE_TYPE (win);
8745 unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
8746 if (for_type)
8747 prec = MAX (prec, final_prec);
8748 if (prec < TYPE_PRECISION (wtype))
8749 {
8750 tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
8751 if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
8752 win = fold_convert (t, win);
8753 }
8754 }
8755
8756 return win;
8757 }
8758 \f
8759 /* Return OP or a simpler expression for a narrower value
8760 which can be sign-extended or zero-extended to give back OP.
8761 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8762 or 0 if the value should be sign-extended. */
8763
8764 tree
8765 get_narrower (tree op, int *unsignedp_ptr)
8766 {
8767 int uns = 0;
8768 int first = 1;
8769 tree win = op;
8770 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8771
8772 while (TREE_CODE (op) == NOP_EXPR)
8773 {
8774 int bitschange
8775 = (TYPE_PRECISION (TREE_TYPE (op))
8776 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8777
8778 /* Truncations are many-one so cannot be removed. */
8779 if (bitschange < 0)
8780 break;
8781
8782 /* See what's inside this conversion. If we decide to strip it,
8783 we will set WIN. */
8784
8785 if (bitschange > 0)
8786 {
8787 op = TREE_OPERAND (op, 0);
8788 /* An extension: the outermost one can be stripped,
8789 but remember whether it is zero or sign extension. */
8790 if (first)
8791 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8792 /* Otherwise, if a sign extension has been stripped,
8793 only sign extensions can now be stripped;
8794 if a zero extension has been stripped, only zero-extensions. */
8795 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8796 break;
8797 first = 0;
8798 }
8799 else /* bitschange == 0 */
8800 {
8801 /* A change in nominal type can always be stripped, but we must
8802 preserve the unsignedness. */
8803 if (first)
8804 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8805 first = 0;
8806 op = TREE_OPERAND (op, 0);
8807 /* Keep trying to narrow, but don't assign op to win if it
8808 would turn an integral type into something else. */
8809 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8810 continue;
8811 }
8812
8813 win = op;
8814 }
8815
8816 if (TREE_CODE (op) == COMPONENT_REF
8817 /* Since type_for_size always gives an integer type. */
8818 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8819 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8820 /* Ensure field is laid out already. */
8821 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8822 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8823 {
8824 unsigned HOST_WIDE_INT innerprec
8825 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8826 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8827 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8828 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8829
8830 /* We can get this structure field in a narrower type that fits it,
8831 but the resulting extension to its nominal type (a fullword type)
8832 must satisfy the same conditions as for other extensions.
8833
8834 Do this only for fields that are aligned (not bit-fields),
8835 because when bit-field insns will be used there is no
8836 advantage in doing this. */
8837
8838 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8839 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8840 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8841 && type != 0)
8842 {
8843 if (first)
8844 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8845 win = fold_convert (type, op);
8846 }
8847 }
8848
8849 *unsignedp_ptr = uns;
8850 return win;
8851 }
8852 \f
8853 /* Return true if integer constant C has a value that is permissible
8854 for TYPE, an integral type. */
8855
8856 bool
8857 int_fits_type_p (const_tree c, const_tree type)
8858 {
8859 tree type_low_bound, type_high_bound;
8860 bool ok_for_low_bound, ok_for_high_bound;
8861 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8862
8863 /* Non-standard boolean types can have arbitrary precision but various
8864 transformations assume that they can only take values 0 and +/-1. */
8865 if (TREE_CODE (type) == BOOLEAN_TYPE)
8866 return wi::fits_to_boolean_p (wi::to_wide (c), type);
8867
8868 retry:
8869 type_low_bound = TYPE_MIN_VALUE (type);
8870 type_high_bound = TYPE_MAX_VALUE (type);
8871
8872 /* If at least one bound of the type is a constant integer, we can check
8873 ourselves and maybe make a decision. If no such decision is possible, but
8874 this type is a subtype, try checking against that. Otherwise, use
8875 fits_to_tree_p, which checks against the precision.
8876
8877 Compute the status for each possibly constant bound, and return if we see
8878 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8879 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8880 for "constant known to fit". */
8881
8882 /* Check if c >= type_low_bound. */
8883 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8884 {
8885 if (tree_int_cst_lt (c, type_low_bound))
8886 return false;
8887 ok_for_low_bound = true;
8888 }
8889 else
8890 ok_for_low_bound = false;
8891
8892 /* Check if c <= type_high_bound. */
8893 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8894 {
8895 if (tree_int_cst_lt (type_high_bound, c))
8896 return false;
8897 ok_for_high_bound = true;
8898 }
8899 else
8900 ok_for_high_bound = false;
8901
8902 /* If the constant fits both bounds, the result is known. */
8903 if (ok_for_low_bound && ok_for_high_bound)
8904 return true;
8905
8906 /* Perform some generic filtering which may allow making a decision
8907 even if the bounds are not constant. First, negative integers
8908 never fit in unsigned types, */
8909 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
8910 return false;
8911
8912 /* Second, narrower types always fit in wider ones. */
8913 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8914 return true;
8915
8916 /* Third, unsigned integers with top bit set never fit signed types. */
8917 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
8918 {
8919 int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
8920 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
8921 {
8922 /* When a tree_cst is converted to a wide-int, the precision
8923 is taken from the type. However, if the precision of the
8924 mode underneath the type is smaller than that, it is
8925 possible that the value will not fit. The test below
8926 fails if any bit is set between the sign bit of the
8927 underlying mode and the top bit of the type. */
8928 if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
8929 return false;
8930 }
8931 else if (wi::neg_p (wi::to_wide (c)))
8932 return false;
8933 }
8934
8935 /* If we haven't been able to decide at this point, there nothing more we
8936 can check ourselves here. Look at the base type if we have one and it
8937 has the same precision. */
8938 if (TREE_CODE (type) == INTEGER_TYPE
8939 && TREE_TYPE (type) != 0
8940 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8941 {
8942 type = TREE_TYPE (type);
8943 goto retry;
8944 }
8945
8946 /* Or to fits_to_tree_p, if nothing else. */
8947 return wi::fits_to_tree_p (wi::to_wide (c), type);
8948 }
8949
8950 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8951 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8952 represented (assuming two's-complement arithmetic) within the bit
8953 precision of the type are returned instead. */
8954
8955 void
8956 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8957 {
8958 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8959 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8960 wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
8961 else
8962 {
8963 if (TYPE_UNSIGNED (type))
8964 mpz_set_ui (min, 0);
8965 else
8966 {
8967 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
8968 wi::to_mpz (mn, min, SIGNED);
8969 }
8970 }
8971
8972 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8973 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8974 wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
8975 else
8976 {
8977 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
8978 wi::to_mpz (mn, max, TYPE_SIGN (type));
8979 }
8980 }
8981
8982 /* Return true if VAR is an automatic variable defined in function FN. */
8983
8984 bool
8985 auto_var_in_fn_p (const_tree var, const_tree fn)
8986 {
8987 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8988 && ((((VAR_P (var) && ! DECL_EXTERNAL (var))
8989 || TREE_CODE (var) == PARM_DECL)
8990 && ! TREE_STATIC (var))
8991 || TREE_CODE (var) == LABEL_DECL
8992 || TREE_CODE (var) == RESULT_DECL));
8993 }
8994
8995 /* Subprogram of following function. Called by walk_tree.
8996
8997 Return *TP if it is an automatic variable or parameter of the
8998 function passed in as DATA. */
8999
9000 static tree
9001 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
9002 {
9003 tree fn = (tree) data;
9004
9005 if (TYPE_P (*tp))
9006 *walk_subtrees = 0;
9007
9008 else if (DECL_P (*tp)
9009 && auto_var_in_fn_p (*tp, fn))
9010 return *tp;
9011
9012 return NULL_TREE;
9013 }
9014
9015 /* Returns true if T is, contains, or refers to a type with variable
9016 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
9017 arguments, but not the return type. If FN is nonzero, only return
9018 true if a modifier of the type or position of FN is a variable or
9019 parameter inside FN.
9020
9021 This concept is more general than that of C99 'variably modified types':
9022 in C99, a struct type is never variably modified because a VLA may not
9023 appear as a structure member. However, in GNU C code like:
9024
9025 struct S { int i[f()]; };
9026
9027 is valid, and other languages may define similar constructs. */
9028
9029 bool
9030 variably_modified_type_p (tree type, tree fn)
9031 {
9032 tree t;
9033
9034 /* Test if T is either variable (if FN is zero) or an expression containing
9035 a variable in FN. If TYPE isn't gimplified, return true also if
9036 gimplify_one_sizepos would gimplify the expression into a local
9037 variable. */
9038 #define RETURN_TRUE_IF_VAR(T) \
9039 do { tree _t = (T); \
9040 if (_t != NULL_TREE \
9041 && _t != error_mark_node \
9042 && !CONSTANT_CLASS_P (_t) \
9043 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
9044 && (!fn \
9045 || (!TYPE_SIZES_GIMPLIFIED (type) \
9046 && (TREE_CODE (_t) != VAR_DECL \
9047 && !CONTAINS_PLACEHOLDER_P (_t))) \
9048 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
9049 return true; } while (0)
9050
9051 if (type == error_mark_node)
9052 return false;
9053
9054 /* If TYPE itself has variable size, it is variably modified. */
9055 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
9056 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
9057
9058 switch (TREE_CODE (type))
9059 {
9060 case POINTER_TYPE:
9061 case REFERENCE_TYPE:
9062 case VECTOR_TYPE:
9063 /* Ada can have pointer types refering to themselves indirectly. */
9064 if (TREE_VISITED (type))
9065 return false;
9066 TREE_VISITED (type) = true;
9067 if (variably_modified_type_p (TREE_TYPE (type), fn))
9068 {
9069 TREE_VISITED (type) = false;
9070 return true;
9071 }
9072 TREE_VISITED (type) = false;
9073 break;
9074
9075 case FUNCTION_TYPE:
9076 case METHOD_TYPE:
9077 /* If TYPE is a function type, it is variably modified if the
9078 return type is variably modified. */
9079 if (variably_modified_type_p (TREE_TYPE (type), fn))
9080 return true;
9081 break;
9082
9083 case INTEGER_TYPE:
9084 case REAL_TYPE:
9085 case FIXED_POINT_TYPE:
9086 case ENUMERAL_TYPE:
9087 case BOOLEAN_TYPE:
9088 /* Scalar types are variably modified if their end points
9089 aren't constant. */
9090 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
9091 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
9092 break;
9093
9094 case RECORD_TYPE:
9095 case UNION_TYPE:
9096 case QUAL_UNION_TYPE:
9097 /* We can't see if any of the fields are variably-modified by the
9098 definition we normally use, since that would produce infinite
9099 recursion via pointers. */
9100 /* This is variably modified if some field's type is. */
9101 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
9102 if (TREE_CODE (t) == FIELD_DECL)
9103 {
9104 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
9105 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
9106 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
9107
9108 if (TREE_CODE (type) == QUAL_UNION_TYPE)
9109 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
9110 }
9111 break;
9112
9113 case ARRAY_TYPE:
9114 /* Do not call ourselves to avoid infinite recursion. This is
9115 variably modified if the element type is. */
9116 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
9117 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
9118 break;
9119
9120 default:
9121 break;
9122 }
9123
9124 /* The current language may have other cases to check, but in general,
9125 all other types are not variably modified. */
9126 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
9127
9128 #undef RETURN_TRUE_IF_VAR
9129 }
9130
9131 /* Given a DECL or TYPE, return the scope in which it was declared, or
9132 NULL_TREE if there is no containing scope. */
9133
9134 tree
9135 get_containing_scope (const_tree t)
9136 {
9137 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
9138 }
9139
9140 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
9141
9142 const_tree
9143 get_ultimate_context (const_tree decl)
9144 {
9145 while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
9146 {
9147 if (TREE_CODE (decl) == BLOCK)
9148 decl = BLOCK_SUPERCONTEXT (decl);
9149 else
9150 decl = get_containing_scope (decl);
9151 }
9152 return decl;
9153 }
9154
9155 /* Return the innermost context enclosing DECL that is
9156 a FUNCTION_DECL, or zero if none. */
9157
9158 tree
9159 decl_function_context (const_tree decl)
9160 {
9161 tree context;
9162
9163 if (TREE_CODE (decl) == ERROR_MARK)
9164 return 0;
9165
9166 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
9167 where we look up the function at runtime. Such functions always take
9168 a first argument of type 'pointer to real context'.
9169
9170 C++ should really be fixed to use DECL_CONTEXT for the real context,
9171 and use something else for the "virtual context". */
9172 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl))
9173 context
9174 = TYPE_MAIN_VARIANT
9175 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
9176 else
9177 context = DECL_CONTEXT (decl);
9178
9179 while (context && TREE_CODE (context) != FUNCTION_DECL)
9180 {
9181 if (TREE_CODE (context) == BLOCK)
9182 context = BLOCK_SUPERCONTEXT (context);
9183 else
9184 context = get_containing_scope (context);
9185 }
9186
9187 return context;
9188 }
9189
9190 /* Return the innermost context enclosing DECL that is
9191 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
9192 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
9193
9194 tree
9195 decl_type_context (const_tree decl)
9196 {
9197 tree context = DECL_CONTEXT (decl);
9198
9199 while (context)
9200 switch (TREE_CODE (context))
9201 {
9202 case NAMESPACE_DECL:
9203 case TRANSLATION_UNIT_DECL:
9204 return NULL_TREE;
9205
9206 case RECORD_TYPE:
9207 case UNION_TYPE:
9208 case QUAL_UNION_TYPE:
9209 return context;
9210
9211 case TYPE_DECL:
9212 case FUNCTION_DECL:
9213 context = DECL_CONTEXT (context);
9214 break;
9215
9216 case BLOCK:
9217 context = BLOCK_SUPERCONTEXT (context);
9218 break;
9219
9220 default:
9221 gcc_unreachable ();
9222 }
9223
9224 return NULL_TREE;
9225 }
9226
9227 /* CALL is a CALL_EXPR. Return the declaration for the function
9228 called, or NULL_TREE if the called function cannot be
9229 determined. */
9230
9231 tree
9232 get_callee_fndecl (const_tree call)
9233 {
9234 tree addr;
9235
9236 if (call == error_mark_node)
9237 return error_mark_node;
9238
9239 /* It's invalid to call this function with anything but a
9240 CALL_EXPR. */
9241 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9242
9243 /* The first operand to the CALL is the address of the function
9244 called. */
9245 addr = CALL_EXPR_FN (call);
9246
9247 /* If there is no function, return early. */
9248 if (addr == NULL_TREE)
9249 return NULL_TREE;
9250
9251 STRIP_NOPS (addr);
9252
9253 /* If this is a readonly function pointer, extract its initial value. */
9254 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
9255 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
9256 && DECL_INITIAL (addr))
9257 addr = DECL_INITIAL (addr);
9258
9259 /* If the address is just `&f' for some function `f', then we know
9260 that `f' is being called. */
9261 if (TREE_CODE (addr) == ADDR_EXPR
9262 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
9263 return TREE_OPERAND (addr, 0);
9264
9265 /* We couldn't figure out what was being called. */
9266 return NULL_TREE;
9267 }
9268
9269 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9270 return the associated function code, otherwise return CFN_LAST. */
9271
9272 combined_fn
9273 get_call_combined_fn (const_tree call)
9274 {
9275 /* It's invalid to call this function with anything but a CALL_EXPR. */
9276 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9277
9278 if (!CALL_EXPR_FN (call))
9279 return as_combined_fn (CALL_EXPR_IFN (call));
9280
9281 tree fndecl = get_callee_fndecl (call);
9282 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
9283 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
9284
9285 return CFN_LAST;
9286 }
9287
9288 /* Comparator of indices based on tree_node_counts. */
9289
9290 static int
9291 tree_nodes_cmp (const void *p1, const void *p2)
9292 {
9293 const unsigned *n1 = (const unsigned *)p1;
9294 const unsigned *n2 = (const unsigned *)p2;
9295
9296 return tree_node_counts[*n1] - tree_node_counts[*n2];
9297 }
9298
9299 /* Comparator of indices based on tree_code_counts. */
9300
9301 static int
9302 tree_codes_cmp (const void *p1, const void *p2)
9303 {
9304 const unsigned *n1 = (const unsigned *)p1;
9305 const unsigned *n2 = (const unsigned *)p2;
9306
9307 return tree_code_counts[*n1] - tree_code_counts[*n2];
9308 }
9309
9310 #define TREE_MEM_USAGE_SPACES 40
9311
9312 /* Print debugging information about tree nodes generated during the compile,
9313 and any language-specific information. */
9314
9315 void
9316 dump_tree_statistics (void)
9317 {
9318 if (GATHER_STATISTICS)
9319 {
9320 uint64_t total_nodes, total_bytes;
9321 fprintf (stderr, "\nKind Nodes Bytes\n");
9322 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9323 total_nodes = total_bytes = 0;
9324
9325 {
9326 auto_vec<unsigned> indices (all_kinds);
9327 for (unsigned i = 0; i < all_kinds; i++)
9328 indices.quick_push (i);
9329 indices.qsort (tree_nodes_cmp);
9330
9331 for (unsigned i = 0; i < (int) all_kinds; i++)
9332 {
9333 unsigned j = indices[i];
9334 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n",
9335 tree_node_kind_names[i], SIZE_AMOUNT (tree_node_counts[j]),
9336 SIZE_AMOUNT (tree_node_sizes[j]));
9337 total_nodes += tree_node_counts[j];
9338 total_bytes += tree_node_sizes[j];
9339 }
9340 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9341 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n", "Total",
9342 SIZE_AMOUNT (total_nodes), SIZE_AMOUNT (total_bytes));
9343 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9344 }
9345
9346 {
9347 fprintf (stderr, "Code Nodes\n");
9348 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9349
9350 auto_vec<unsigned> indices (MAX_TREE_CODES);
9351 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9352 indices.quick_push (i);
9353 indices.qsort (tree_codes_cmp);
9354
9355 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9356 {
9357 unsigned j = indices[i];
9358 fprintf (stderr, "%-32s %6" PRIu64 "%c\n",
9359 get_tree_code_name ((enum tree_code) j),
9360 SIZE_AMOUNT (tree_code_counts[j]));
9361 }
9362 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9363 fprintf (stderr, "\n");
9364 ssanames_print_statistics ();
9365 fprintf (stderr, "\n");
9366 phinodes_print_statistics ();
9367 fprintf (stderr, "\n");
9368 }
9369 }
9370 else
9371 fprintf (stderr, "(No per-node statistics)\n");
9372
9373 print_type_hash_statistics ();
9374 print_debug_expr_statistics ();
9375 print_value_expr_statistics ();
9376 lang_hooks.print_statistics ();
9377 }
9378 \f
9379 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9380
9381 /* Generate a crc32 of the low BYTES bytes of VALUE. */
9382
9383 unsigned
9384 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
9385 {
9386 /* This relies on the raw feedback's top 4 bits being zero. */
9387 #define FEEDBACK(X) ((X) * 0x04c11db7)
9388 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
9389 ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
9390 static const unsigned syndromes[16] =
9391 {
9392 SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
9393 SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
9394 SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
9395 SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
9396 };
9397 #undef FEEDBACK
9398 #undef SYNDROME
9399
9400 value <<= (32 - bytes * 8);
9401 for (unsigned ix = bytes * 2; ix--; value <<= 4)
9402 {
9403 unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
9404
9405 chksum = (chksum << 4) ^ feedback;
9406 }
9407
9408 return chksum;
9409 }
9410
9411 /* Generate a crc32 of a string. */
9412
9413 unsigned
9414 crc32_string (unsigned chksum, const char *string)
9415 {
9416 do
9417 chksum = crc32_byte (chksum, *string);
9418 while (*string++);
9419 return chksum;
9420 }
9421
9422 /* P is a string that will be used in a symbol. Mask out any characters
9423 that are not valid in that context. */
9424
9425 void
9426 clean_symbol_name (char *p)
9427 {
9428 for (; *p; p++)
9429 if (! (ISALNUM (*p)
9430 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9431 || *p == '$'
9432 #endif
9433 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9434 || *p == '.'
9435 #endif
9436 ))
9437 *p = '_';
9438 }
9439
9440 /* For anonymous aggregate types, we need some sort of name to
9441 hold on to. In practice, this should not appear, but it should
9442 not be harmful if it does. */
9443 bool
9444 anon_aggrname_p(const_tree id_node)
9445 {
9446 #ifndef NO_DOT_IN_LABEL
9447 return (IDENTIFIER_POINTER (id_node)[0] == '.'
9448 && IDENTIFIER_POINTER (id_node)[1] == '_');
9449 #else /* NO_DOT_IN_LABEL */
9450 #ifndef NO_DOLLAR_IN_LABEL
9451 return (IDENTIFIER_POINTER (id_node)[0] == '$' \
9452 && IDENTIFIER_POINTER (id_node)[1] == '_');
9453 #else /* NO_DOLLAR_IN_LABEL */
9454 #define ANON_AGGRNAME_PREFIX "__anon_"
9455 return (!strncmp (IDENTIFIER_POINTER (id_node), ANON_AGGRNAME_PREFIX,
9456 sizeof (ANON_AGGRNAME_PREFIX) - 1));
9457 #endif /* NO_DOLLAR_IN_LABEL */
9458 #endif /* NO_DOT_IN_LABEL */
9459 }
9460
9461 /* Return a format for an anonymous aggregate name. */
9462 const char *
9463 anon_aggrname_format()
9464 {
9465 #ifndef NO_DOT_IN_LABEL
9466 return "._%d";
9467 #else /* NO_DOT_IN_LABEL */
9468 #ifndef NO_DOLLAR_IN_LABEL
9469 return "$_%d";
9470 #else /* NO_DOLLAR_IN_LABEL */
9471 return "__anon_%d";
9472 #endif /* NO_DOLLAR_IN_LABEL */
9473 #endif /* NO_DOT_IN_LABEL */
9474 }
9475
9476 /* Generate a name for a special-purpose function.
9477 The generated name may need to be unique across the whole link.
9478 Changes to this function may also require corresponding changes to
9479 xstrdup_mask_random.
9480 TYPE is some string to identify the purpose of this function to the
9481 linker or collect2; it must start with an uppercase letter,
9482 one of:
9483 I - for constructors
9484 D - for destructors
9485 N - for C++ anonymous namespaces
9486 F - for DWARF unwind frame information. */
9487
9488 tree
9489 get_file_function_name (const char *type)
9490 {
9491 char *buf;
9492 const char *p;
9493 char *q;
9494
9495 /* If we already have a name we know to be unique, just use that. */
9496 if (first_global_object_name)
9497 p = q = ASTRDUP (first_global_object_name);
9498 /* If the target is handling the constructors/destructors, they
9499 will be local to this file and the name is only necessary for
9500 debugging purposes.
9501 We also assign sub_I and sub_D sufixes to constructors called from
9502 the global static constructors. These are always local. */
9503 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9504 || (strncmp (type, "sub_", 4) == 0
9505 && (type[4] == 'I' || type[4] == 'D')))
9506 {
9507 const char *file = main_input_filename;
9508 if (! file)
9509 file = LOCATION_FILE (input_location);
9510 /* Just use the file's basename, because the full pathname
9511 might be quite long. */
9512 p = q = ASTRDUP (lbasename (file));
9513 }
9514 else
9515 {
9516 /* Otherwise, the name must be unique across the entire link.
9517 We don't have anything that we know to be unique to this translation
9518 unit, so use what we do have and throw in some randomness. */
9519 unsigned len;
9520 const char *name = weak_global_object_name;
9521 const char *file = main_input_filename;
9522
9523 if (! name)
9524 name = "";
9525 if (! file)
9526 file = LOCATION_FILE (input_location);
9527
9528 len = strlen (file);
9529 q = (char *) alloca (9 + 19 + len + 1);
9530 memcpy (q, file, len + 1);
9531
9532 snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9533 crc32_string (0, name), get_random_seed (false));
9534
9535 p = q;
9536 }
9537
9538 clean_symbol_name (q);
9539 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9540 + strlen (type));
9541
9542 /* Set up the name of the file-level functions we may need.
9543 Use a global object (which is already required to be unique over
9544 the program) rather than the file name (which imposes extra
9545 constraints). */
9546 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9547
9548 return get_identifier (buf);
9549 }
9550 \f
9551 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9552
9553 /* Complain that the tree code of NODE does not match the expected 0
9554 terminated list of trailing codes. The trailing code list can be
9555 empty, for a more vague error message. FILE, LINE, and FUNCTION
9556 are of the caller. */
9557
9558 void
9559 tree_check_failed (const_tree node, const char *file,
9560 int line, const char *function, ...)
9561 {
9562 va_list args;
9563 const char *buffer;
9564 unsigned length = 0;
9565 enum tree_code code;
9566
9567 va_start (args, function);
9568 while ((code = (enum tree_code) va_arg (args, int)))
9569 length += 4 + strlen (get_tree_code_name (code));
9570 va_end (args);
9571 if (length)
9572 {
9573 char *tmp;
9574 va_start (args, function);
9575 length += strlen ("expected ");
9576 buffer = tmp = (char *) alloca (length);
9577 length = 0;
9578 while ((code = (enum tree_code) va_arg (args, int)))
9579 {
9580 const char *prefix = length ? " or " : "expected ";
9581
9582 strcpy (tmp + length, prefix);
9583 length += strlen (prefix);
9584 strcpy (tmp + length, get_tree_code_name (code));
9585 length += strlen (get_tree_code_name (code));
9586 }
9587 va_end (args);
9588 }
9589 else
9590 buffer = "unexpected node";
9591
9592 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9593 buffer, get_tree_code_name (TREE_CODE (node)),
9594 function, trim_filename (file), line);
9595 }
9596
9597 /* Complain that the tree code of NODE does match the expected 0
9598 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9599 the caller. */
9600
9601 void
9602 tree_not_check_failed (const_tree node, const char *file,
9603 int line, const char *function, ...)
9604 {
9605 va_list args;
9606 char *buffer;
9607 unsigned length = 0;
9608 enum tree_code code;
9609
9610 va_start (args, function);
9611 while ((code = (enum tree_code) va_arg (args, int)))
9612 length += 4 + strlen (get_tree_code_name (code));
9613 va_end (args);
9614 va_start (args, function);
9615 buffer = (char *) alloca (length);
9616 length = 0;
9617 while ((code = (enum tree_code) va_arg (args, int)))
9618 {
9619 if (length)
9620 {
9621 strcpy (buffer + length, " or ");
9622 length += 4;
9623 }
9624 strcpy (buffer + length, get_tree_code_name (code));
9625 length += strlen (get_tree_code_name (code));
9626 }
9627 va_end (args);
9628
9629 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9630 buffer, get_tree_code_name (TREE_CODE (node)),
9631 function, trim_filename (file), line);
9632 }
9633
9634 /* Similar to tree_check_failed, except that we check for a class of tree
9635 code, given in CL. */
9636
9637 void
9638 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9639 const char *file, int line, const char *function)
9640 {
9641 internal_error
9642 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9643 TREE_CODE_CLASS_STRING (cl),
9644 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9645 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9646 }
9647
9648 /* Similar to tree_check_failed, except that instead of specifying a
9649 dozen codes, use the knowledge that they're all sequential. */
9650
9651 void
9652 tree_range_check_failed (const_tree node, const char *file, int line,
9653 const char *function, enum tree_code c1,
9654 enum tree_code c2)
9655 {
9656 char *buffer;
9657 unsigned length = 0;
9658 unsigned int c;
9659
9660 for (c = c1; c <= c2; ++c)
9661 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9662
9663 length += strlen ("expected ");
9664 buffer = (char *) alloca (length);
9665 length = 0;
9666
9667 for (c = c1; c <= c2; ++c)
9668 {
9669 const char *prefix = length ? " or " : "expected ";
9670
9671 strcpy (buffer + length, prefix);
9672 length += strlen (prefix);
9673 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9674 length += strlen (get_tree_code_name ((enum tree_code) c));
9675 }
9676
9677 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9678 buffer, get_tree_code_name (TREE_CODE (node)),
9679 function, trim_filename (file), line);
9680 }
9681
9682
9683 /* Similar to tree_check_failed, except that we check that a tree does
9684 not have the specified code, given in CL. */
9685
9686 void
9687 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9688 const char *file, int line, const char *function)
9689 {
9690 internal_error
9691 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9692 TREE_CODE_CLASS_STRING (cl),
9693 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9694 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9695 }
9696
9697
9698 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9699
9700 void
9701 omp_clause_check_failed (const_tree node, const char *file, int line,
9702 const char *function, enum omp_clause_code code)
9703 {
9704 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9705 omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9706 function, trim_filename (file), line);
9707 }
9708
9709
9710 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9711
9712 void
9713 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9714 const char *function, enum omp_clause_code c1,
9715 enum omp_clause_code c2)
9716 {
9717 char *buffer;
9718 unsigned length = 0;
9719 unsigned int c;
9720
9721 for (c = c1; c <= c2; ++c)
9722 length += 4 + strlen (omp_clause_code_name[c]);
9723
9724 length += strlen ("expected ");
9725 buffer = (char *) alloca (length);
9726 length = 0;
9727
9728 for (c = c1; c <= c2; ++c)
9729 {
9730 const char *prefix = length ? " or " : "expected ";
9731
9732 strcpy (buffer + length, prefix);
9733 length += strlen (prefix);
9734 strcpy (buffer + length, omp_clause_code_name[c]);
9735 length += strlen (omp_clause_code_name[c]);
9736 }
9737
9738 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9739 buffer, omp_clause_code_name[TREE_CODE (node)],
9740 function, trim_filename (file), line);
9741 }
9742
9743
9744 #undef DEFTREESTRUCT
9745 #define DEFTREESTRUCT(VAL, NAME) NAME,
9746
9747 static const char *ts_enum_names[] = {
9748 #include "treestruct.def"
9749 };
9750 #undef DEFTREESTRUCT
9751
9752 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9753
9754 /* Similar to tree_class_check_failed, except that we check for
9755 whether CODE contains the tree structure identified by EN. */
9756
9757 void
9758 tree_contains_struct_check_failed (const_tree node,
9759 const enum tree_node_structure_enum en,
9760 const char *file, int line,
9761 const char *function)
9762 {
9763 internal_error
9764 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9765 TS_ENUM_NAME (en),
9766 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9767 }
9768
9769
9770 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9771 (dynamically sized) vector. */
9772
9773 void
9774 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9775 const char *function)
9776 {
9777 internal_error
9778 ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
9779 idx + 1, len, function, trim_filename (file), line);
9780 }
9781
9782 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9783 (dynamically sized) vector. */
9784
9785 void
9786 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9787 const char *function)
9788 {
9789 internal_error
9790 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9791 idx + 1, len, function, trim_filename (file), line);
9792 }
9793
9794 /* Similar to above, except that the check is for the bounds of the operand
9795 vector of an expression node EXP. */
9796
9797 void
9798 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9799 int line, const char *function)
9800 {
9801 enum tree_code code = TREE_CODE (exp);
9802 internal_error
9803 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9804 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9805 function, trim_filename (file), line);
9806 }
9807
9808 /* Similar to above, except that the check is for the number of
9809 operands of an OMP_CLAUSE node. */
9810
9811 void
9812 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9813 int line, const char *function)
9814 {
9815 internal_error
9816 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9817 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9818 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9819 trim_filename (file), line);
9820 }
9821 #endif /* ENABLE_TREE_CHECKING */
9822 \f
9823 /* Create a new vector type node holding NUNITS units of type INNERTYPE,
9824 and mapped to the machine mode MODE. Initialize its fields and build
9825 the information necessary for debugging output. */
9826
9827 static tree
9828 make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
9829 {
9830 tree t;
9831 tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
9832
9833 t = make_node (VECTOR_TYPE);
9834 TREE_TYPE (t) = mv_innertype;
9835 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9836 SET_TYPE_MODE (t, mode);
9837
9838 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
9839 SET_TYPE_STRUCTURAL_EQUALITY (t);
9840 else if ((TYPE_CANONICAL (mv_innertype) != innertype
9841 || mode != VOIDmode)
9842 && !VECTOR_BOOLEAN_TYPE_P (t))
9843 TYPE_CANONICAL (t)
9844 = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
9845
9846 layout_type (t);
9847
9848 hashval_t hash = type_hash_canon_hash (t);
9849 t = type_hash_canon (hash, t);
9850
9851 /* We have built a main variant, based on the main variant of the
9852 inner type. Use it to build the variant we return. */
9853 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9854 && TREE_TYPE (t) != innertype)
9855 return build_type_attribute_qual_variant (t,
9856 TYPE_ATTRIBUTES (innertype),
9857 TYPE_QUALS (innertype));
9858
9859 return t;
9860 }
9861
9862 static tree
9863 make_or_reuse_type (unsigned size, int unsignedp)
9864 {
9865 int i;
9866
9867 if (size == INT_TYPE_SIZE)
9868 return unsignedp ? unsigned_type_node : integer_type_node;
9869 if (size == CHAR_TYPE_SIZE)
9870 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9871 if (size == SHORT_TYPE_SIZE)
9872 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9873 if (size == LONG_TYPE_SIZE)
9874 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9875 if (size == LONG_LONG_TYPE_SIZE)
9876 return (unsignedp ? long_long_unsigned_type_node
9877 : long_long_integer_type_node);
9878
9879 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9880 if (size == int_n_data[i].bitsize
9881 && int_n_enabled_p[i])
9882 return (unsignedp ? int_n_trees[i].unsigned_type
9883 : int_n_trees[i].signed_type);
9884
9885 if (unsignedp)
9886 return make_unsigned_type (size);
9887 else
9888 return make_signed_type (size);
9889 }
9890
9891 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9892
9893 static tree
9894 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9895 {
9896 if (satp)
9897 {
9898 if (size == SHORT_FRACT_TYPE_SIZE)
9899 return unsignedp ? sat_unsigned_short_fract_type_node
9900 : sat_short_fract_type_node;
9901 if (size == FRACT_TYPE_SIZE)
9902 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9903 if (size == LONG_FRACT_TYPE_SIZE)
9904 return unsignedp ? sat_unsigned_long_fract_type_node
9905 : sat_long_fract_type_node;
9906 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9907 return unsignedp ? sat_unsigned_long_long_fract_type_node
9908 : sat_long_long_fract_type_node;
9909 }
9910 else
9911 {
9912 if (size == SHORT_FRACT_TYPE_SIZE)
9913 return unsignedp ? unsigned_short_fract_type_node
9914 : short_fract_type_node;
9915 if (size == FRACT_TYPE_SIZE)
9916 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9917 if (size == LONG_FRACT_TYPE_SIZE)
9918 return unsignedp ? unsigned_long_fract_type_node
9919 : long_fract_type_node;
9920 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9921 return unsignedp ? unsigned_long_long_fract_type_node
9922 : long_long_fract_type_node;
9923 }
9924
9925 return make_fract_type (size, unsignedp, satp);
9926 }
9927
9928 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9929
9930 static tree
9931 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9932 {
9933 if (satp)
9934 {
9935 if (size == SHORT_ACCUM_TYPE_SIZE)
9936 return unsignedp ? sat_unsigned_short_accum_type_node
9937 : sat_short_accum_type_node;
9938 if (size == ACCUM_TYPE_SIZE)
9939 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9940 if (size == LONG_ACCUM_TYPE_SIZE)
9941 return unsignedp ? sat_unsigned_long_accum_type_node
9942 : sat_long_accum_type_node;
9943 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9944 return unsignedp ? sat_unsigned_long_long_accum_type_node
9945 : sat_long_long_accum_type_node;
9946 }
9947 else
9948 {
9949 if (size == SHORT_ACCUM_TYPE_SIZE)
9950 return unsignedp ? unsigned_short_accum_type_node
9951 : short_accum_type_node;
9952 if (size == ACCUM_TYPE_SIZE)
9953 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9954 if (size == LONG_ACCUM_TYPE_SIZE)
9955 return unsignedp ? unsigned_long_accum_type_node
9956 : long_accum_type_node;
9957 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9958 return unsignedp ? unsigned_long_long_accum_type_node
9959 : long_long_accum_type_node;
9960 }
9961
9962 return make_accum_type (size, unsignedp, satp);
9963 }
9964
9965
9966 /* Create an atomic variant node for TYPE. This routine is called
9967 during initialization of data types to create the 5 basic atomic
9968 types. The generic build_variant_type function requires these to
9969 already be set up in order to function properly, so cannot be
9970 called from there. If ALIGN is non-zero, then ensure alignment is
9971 overridden to this value. */
9972
9973 static tree
9974 build_atomic_base (tree type, unsigned int align)
9975 {
9976 tree t;
9977
9978 /* Make sure its not already registered. */
9979 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
9980 return t;
9981
9982 t = build_variant_type_copy (type);
9983 set_type_quals (t, TYPE_QUAL_ATOMIC);
9984
9985 if (align)
9986 SET_TYPE_ALIGN (t, align);
9987
9988 return t;
9989 }
9990
9991 /* Information about the _FloatN and _FloatNx types. This must be in
9992 the same order as the corresponding TI_* enum values. */
9993 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
9994 {
9995 { 16, false },
9996 { 32, false },
9997 { 64, false },
9998 { 128, false },
9999 { 32, true },
10000 { 64, true },
10001 { 128, true },
10002 };
10003
10004
10005 /* Create nodes for all integer types (and error_mark_node) using the sizes
10006 of C datatypes. SIGNED_CHAR specifies whether char is signed. */
10007
10008 void
10009 build_common_tree_nodes (bool signed_char)
10010 {
10011 int i;
10012
10013 error_mark_node = make_node (ERROR_MARK);
10014 TREE_TYPE (error_mark_node) = error_mark_node;
10015
10016 initialize_sizetypes ();
10017
10018 /* Define both `signed char' and `unsigned char'. */
10019 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
10020 TYPE_STRING_FLAG (signed_char_type_node) = 1;
10021 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
10022 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
10023
10024 /* Define `char', which is like either `signed char' or `unsigned char'
10025 but not the same as either. */
10026 char_type_node
10027 = (signed_char
10028 ? make_signed_type (CHAR_TYPE_SIZE)
10029 : make_unsigned_type (CHAR_TYPE_SIZE));
10030 TYPE_STRING_FLAG (char_type_node) = 1;
10031
10032 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
10033 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
10034 integer_type_node = make_signed_type (INT_TYPE_SIZE);
10035 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
10036 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
10037 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
10038 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
10039 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
10040
10041 for (i = 0; i < NUM_INT_N_ENTS; i ++)
10042 {
10043 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
10044 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
10045
10046 if (int_n_enabled_p[i])
10047 {
10048 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
10049 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
10050 }
10051 }
10052
10053 /* Define a boolean type. This type only represents boolean values but
10054 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
10055 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
10056 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
10057 TYPE_PRECISION (boolean_type_node) = 1;
10058 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
10059
10060 /* Define what type to use for size_t. */
10061 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
10062 size_type_node = unsigned_type_node;
10063 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
10064 size_type_node = long_unsigned_type_node;
10065 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
10066 size_type_node = long_long_unsigned_type_node;
10067 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
10068 size_type_node = short_unsigned_type_node;
10069 else
10070 {
10071 int i;
10072
10073 size_type_node = NULL_TREE;
10074 for (i = 0; i < NUM_INT_N_ENTS; i++)
10075 if (int_n_enabled_p[i])
10076 {
10077 char name[50];
10078 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
10079
10080 if (strcmp (name, SIZE_TYPE) == 0)
10081 {
10082 size_type_node = int_n_trees[i].unsigned_type;
10083 }
10084 }
10085 if (size_type_node == NULL_TREE)
10086 gcc_unreachable ();
10087 }
10088
10089 /* Define what type to use for ptrdiff_t. */
10090 if (strcmp (PTRDIFF_TYPE, "int") == 0)
10091 ptrdiff_type_node = integer_type_node;
10092 else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
10093 ptrdiff_type_node = long_integer_type_node;
10094 else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
10095 ptrdiff_type_node = long_long_integer_type_node;
10096 else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
10097 ptrdiff_type_node = short_integer_type_node;
10098 else
10099 {
10100 ptrdiff_type_node = NULL_TREE;
10101 for (int i = 0; i < NUM_INT_N_ENTS; i++)
10102 if (int_n_enabled_p[i])
10103 {
10104 char name[50];
10105 sprintf (name, "__int%d", int_n_data[i].bitsize);
10106 if (strcmp (name, PTRDIFF_TYPE) == 0)
10107 ptrdiff_type_node = int_n_trees[i].signed_type;
10108 }
10109 if (ptrdiff_type_node == NULL_TREE)
10110 gcc_unreachable ();
10111 }
10112
10113 /* Fill in the rest of the sized types. Reuse existing type nodes
10114 when possible. */
10115 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
10116 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
10117 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
10118 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
10119 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
10120
10121 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
10122 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
10123 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
10124 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
10125 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
10126
10127 /* Don't call build_qualified type for atomics. That routine does
10128 special processing for atomics, and until they are initialized
10129 it's better not to make that call.
10130
10131 Check to see if there is a target override for atomic types. */
10132
10133 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
10134 targetm.atomic_align_for_mode (QImode));
10135 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
10136 targetm.atomic_align_for_mode (HImode));
10137 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
10138 targetm.atomic_align_for_mode (SImode));
10139 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
10140 targetm.atomic_align_for_mode (DImode));
10141 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
10142 targetm.atomic_align_for_mode (TImode));
10143
10144 access_public_node = get_identifier ("public");
10145 access_protected_node = get_identifier ("protected");
10146 access_private_node = get_identifier ("private");
10147
10148 /* Define these next since types below may used them. */
10149 integer_zero_node = build_int_cst (integer_type_node, 0);
10150 integer_one_node = build_int_cst (integer_type_node, 1);
10151 integer_three_node = build_int_cst (integer_type_node, 3);
10152 integer_minus_one_node = build_int_cst (integer_type_node, -1);
10153
10154 size_zero_node = size_int (0);
10155 size_one_node = size_int (1);
10156 bitsize_zero_node = bitsize_int (0);
10157 bitsize_one_node = bitsize_int (1);
10158 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
10159
10160 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
10161 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
10162
10163 void_type_node = make_node (VOID_TYPE);
10164 layout_type (void_type_node);
10165
10166 /* We are not going to have real types in C with less than byte alignment,
10167 so we might as well not have any types that claim to have it. */
10168 SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
10169 TYPE_USER_ALIGN (void_type_node) = 0;
10170
10171 void_node = make_node (VOID_CST);
10172 TREE_TYPE (void_node) = void_type_node;
10173
10174 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
10175 layout_type (TREE_TYPE (null_pointer_node));
10176
10177 ptr_type_node = build_pointer_type (void_type_node);
10178 const_ptr_type_node
10179 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
10180 for (unsigned i = 0;
10181 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
10182 ++i)
10183 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
10184
10185 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
10186
10187 float_type_node = make_node (REAL_TYPE);
10188 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
10189 layout_type (float_type_node);
10190
10191 double_type_node = make_node (REAL_TYPE);
10192 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
10193 layout_type (double_type_node);
10194
10195 long_double_type_node = make_node (REAL_TYPE);
10196 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
10197 layout_type (long_double_type_node);
10198
10199 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10200 {
10201 int n = floatn_nx_types[i].n;
10202 bool extended = floatn_nx_types[i].extended;
10203 scalar_float_mode mode;
10204 if (!targetm.floatn_mode (n, extended).exists (&mode))
10205 continue;
10206 int precision = GET_MODE_PRECISION (mode);
10207 /* Work around the rs6000 KFmode having precision 113 not
10208 128. */
10209 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
10210 gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
10211 int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
10212 if (!extended)
10213 gcc_assert (min_precision == n);
10214 if (precision < min_precision)
10215 precision = min_precision;
10216 FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
10217 TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
10218 layout_type (FLOATN_NX_TYPE_NODE (i));
10219 SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
10220 }
10221
10222 float_ptr_type_node = build_pointer_type (float_type_node);
10223 double_ptr_type_node = build_pointer_type (double_type_node);
10224 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
10225 integer_ptr_type_node = build_pointer_type (integer_type_node);
10226
10227 /* Fixed size integer types. */
10228 uint16_type_node = make_or_reuse_type (16, 1);
10229 uint32_type_node = make_or_reuse_type (32, 1);
10230 uint64_type_node = make_or_reuse_type (64, 1);
10231
10232 /* Decimal float types. */
10233 dfloat32_type_node = make_node (REAL_TYPE);
10234 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
10235 SET_TYPE_MODE (dfloat32_type_node, SDmode);
10236 layout_type (dfloat32_type_node);
10237 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
10238
10239 dfloat64_type_node = make_node (REAL_TYPE);
10240 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
10241 SET_TYPE_MODE (dfloat64_type_node, DDmode);
10242 layout_type (dfloat64_type_node);
10243 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
10244
10245 dfloat128_type_node = make_node (REAL_TYPE);
10246 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
10247 SET_TYPE_MODE (dfloat128_type_node, TDmode);
10248 layout_type (dfloat128_type_node);
10249 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
10250
10251 complex_integer_type_node = build_complex_type (integer_type_node, true);
10252 complex_float_type_node = build_complex_type (float_type_node, true);
10253 complex_double_type_node = build_complex_type (double_type_node, true);
10254 complex_long_double_type_node = build_complex_type (long_double_type_node,
10255 true);
10256
10257 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10258 {
10259 if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
10260 COMPLEX_FLOATN_NX_TYPE_NODE (i)
10261 = build_complex_type (FLOATN_NX_TYPE_NODE (i));
10262 }
10263
10264 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
10265 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10266 sat_ ## KIND ## _type_node = \
10267 make_sat_signed_ ## KIND ## _type (SIZE); \
10268 sat_unsigned_ ## KIND ## _type_node = \
10269 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10270 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10271 unsigned_ ## KIND ## _type_node = \
10272 make_unsigned_ ## KIND ## _type (SIZE);
10273
10274 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10275 sat_ ## WIDTH ## KIND ## _type_node = \
10276 make_sat_signed_ ## KIND ## _type (SIZE); \
10277 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10278 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10279 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10280 unsigned_ ## WIDTH ## KIND ## _type_node = \
10281 make_unsigned_ ## KIND ## _type (SIZE);
10282
10283 /* Make fixed-point type nodes based on four different widths. */
10284 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10285 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10286 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10287 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10288 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10289
10290 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
10291 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10292 NAME ## _type_node = \
10293 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10294 u ## NAME ## _type_node = \
10295 make_or_reuse_unsigned_ ## KIND ## _type \
10296 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10297 sat_ ## NAME ## _type_node = \
10298 make_or_reuse_sat_signed_ ## KIND ## _type \
10299 (GET_MODE_BITSIZE (MODE ## mode)); \
10300 sat_u ## NAME ## _type_node = \
10301 make_or_reuse_sat_unsigned_ ## KIND ## _type \
10302 (GET_MODE_BITSIZE (U ## MODE ## mode));
10303
10304 /* Fixed-point type and mode nodes. */
10305 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
10306 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
10307 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
10308 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
10309 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
10310 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
10311 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
10312 MAKE_FIXED_MODE_NODE (accum, ha, HA)
10313 MAKE_FIXED_MODE_NODE (accum, sa, SA)
10314 MAKE_FIXED_MODE_NODE (accum, da, DA)
10315 MAKE_FIXED_MODE_NODE (accum, ta, TA)
10316
10317 {
10318 tree t = targetm.build_builtin_va_list ();
10319
10320 /* Many back-ends define record types without setting TYPE_NAME.
10321 If we copied the record type here, we'd keep the original
10322 record type without a name. This breaks name mangling. So,
10323 don't copy record types and let c_common_nodes_and_builtins()
10324 declare the type to be __builtin_va_list. */
10325 if (TREE_CODE (t) != RECORD_TYPE)
10326 t = build_variant_type_copy (t);
10327
10328 va_list_type_node = t;
10329 }
10330 }
10331
10332 /* Modify DECL for given flags.
10333 TM_PURE attribute is set only on types, so the function will modify
10334 DECL's type when ECF_TM_PURE is used. */
10335
10336 void
10337 set_call_expr_flags (tree decl, int flags)
10338 {
10339 if (flags & ECF_NOTHROW)
10340 TREE_NOTHROW (decl) = 1;
10341 if (flags & ECF_CONST)
10342 TREE_READONLY (decl) = 1;
10343 if (flags & ECF_PURE)
10344 DECL_PURE_P (decl) = 1;
10345 if (flags & ECF_LOOPING_CONST_OR_PURE)
10346 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
10347 if (flags & ECF_NOVOPS)
10348 DECL_IS_NOVOPS (decl) = 1;
10349 if (flags & ECF_NORETURN)
10350 TREE_THIS_VOLATILE (decl) = 1;
10351 if (flags & ECF_MALLOC)
10352 DECL_IS_MALLOC (decl) = 1;
10353 if (flags & ECF_RETURNS_TWICE)
10354 DECL_IS_RETURNS_TWICE (decl) = 1;
10355 if (flags & ECF_LEAF)
10356 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
10357 NULL, DECL_ATTRIBUTES (decl));
10358 if (flags & ECF_COLD)
10359 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
10360 NULL, DECL_ATTRIBUTES (decl));
10361 if (flags & ECF_RET1)
10362 DECL_ATTRIBUTES (decl)
10363 = tree_cons (get_identifier ("fn spec"),
10364 build_tree_list (NULL_TREE, build_string (1, "1")),
10365 DECL_ATTRIBUTES (decl));
10366 if ((flags & ECF_TM_PURE) && flag_tm)
10367 apply_tm_attr (decl, get_identifier ("transaction_pure"));
10368 /* Looping const or pure is implied by noreturn.
10369 There is currently no way to declare looping const or looping pure alone. */
10370 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
10371 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
10372 }
10373
10374
10375 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
10376
10377 static void
10378 local_define_builtin (const char *name, tree type, enum built_in_function code,
10379 const char *library_name, int ecf_flags)
10380 {
10381 tree decl;
10382
10383 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
10384 library_name, NULL_TREE);
10385 set_call_expr_flags (decl, ecf_flags);
10386
10387 set_builtin_decl (code, decl, true);
10388 }
10389
10390 /* Call this function after instantiating all builtins that the language
10391 front end cares about. This will build the rest of the builtins
10392 and internal functions that are relied upon by the tree optimizers and
10393 the middle-end. */
10394
10395 void
10396 build_common_builtin_nodes (void)
10397 {
10398 tree tmp, ftype;
10399 int ecf_flags;
10400
10401 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
10402 || !builtin_decl_explicit_p (BUILT_IN_ABORT))
10403 {
10404 ftype = build_function_type (void_type_node, void_list_node);
10405 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
10406 local_define_builtin ("__builtin_unreachable", ftype,
10407 BUILT_IN_UNREACHABLE,
10408 "__builtin_unreachable",
10409 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
10410 | ECF_CONST | ECF_COLD);
10411 if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
10412 local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
10413 "abort",
10414 ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
10415 }
10416
10417 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
10418 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10419 {
10420 ftype = build_function_type_list (ptr_type_node,
10421 ptr_type_node, const_ptr_type_node,
10422 size_type_node, NULL_TREE);
10423
10424 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
10425 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
10426 "memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10427 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10428 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
10429 "memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10430 }
10431
10432 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
10433 {
10434 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10435 const_ptr_type_node, size_type_node,
10436 NULL_TREE);
10437 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
10438 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10439 }
10440
10441 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
10442 {
10443 ftype = build_function_type_list (ptr_type_node,
10444 ptr_type_node, integer_type_node,
10445 size_type_node, NULL_TREE);
10446 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
10447 "memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10448 }
10449
10450 /* If we're checking the stack, `alloca' can throw. */
10451 const int alloca_flags
10452 = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
10453
10454 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
10455 {
10456 ftype = build_function_type_list (ptr_type_node,
10457 size_type_node, NULL_TREE);
10458 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
10459 "alloca", alloca_flags);
10460 }
10461
10462 ftype = build_function_type_list (ptr_type_node, size_type_node,
10463 size_type_node, NULL_TREE);
10464 local_define_builtin ("__builtin_alloca_with_align", ftype,
10465 BUILT_IN_ALLOCA_WITH_ALIGN,
10466 "__builtin_alloca_with_align",
10467 alloca_flags);
10468
10469 ftype = build_function_type_list (ptr_type_node, size_type_node,
10470 size_type_node, size_type_node, NULL_TREE);
10471 local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
10472 BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
10473 "__builtin_alloca_with_align_and_max",
10474 alloca_flags);
10475
10476 ftype = build_function_type_list (void_type_node,
10477 ptr_type_node, ptr_type_node,
10478 ptr_type_node, NULL_TREE);
10479 local_define_builtin ("__builtin_init_trampoline", ftype,
10480 BUILT_IN_INIT_TRAMPOLINE,
10481 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
10482 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
10483 BUILT_IN_INIT_HEAP_TRAMPOLINE,
10484 "__builtin_init_heap_trampoline",
10485 ECF_NOTHROW | ECF_LEAF);
10486 local_define_builtin ("__builtin_init_descriptor", ftype,
10487 BUILT_IN_INIT_DESCRIPTOR,
10488 "__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
10489
10490 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10491 local_define_builtin ("__builtin_adjust_trampoline", ftype,
10492 BUILT_IN_ADJUST_TRAMPOLINE,
10493 "__builtin_adjust_trampoline",
10494 ECF_CONST | ECF_NOTHROW);
10495 local_define_builtin ("__builtin_adjust_descriptor", ftype,
10496 BUILT_IN_ADJUST_DESCRIPTOR,
10497 "__builtin_adjust_descriptor",
10498 ECF_CONST | ECF_NOTHROW);
10499
10500 ftype = build_function_type_list (void_type_node,
10501 ptr_type_node, ptr_type_node, NULL_TREE);
10502 local_define_builtin ("__builtin_nonlocal_goto", ftype,
10503 BUILT_IN_NONLOCAL_GOTO,
10504 "__builtin_nonlocal_goto",
10505 ECF_NORETURN | ECF_NOTHROW);
10506
10507 ftype = build_function_type_list (void_type_node,
10508 ptr_type_node, ptr_type_node, NULL_TREE);
10509 local_define_builtin ("__builtin_setjmp_setup", ftype,
10510 BUILT_IN_SETJMP_SETUP,
10511 "__builtin_setjmp_setup", ECF_NOTHROW);
10512
10513 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10514 local_define_builtin ("__builtin_setjmp_receiver", ftype,
10515 BUILT_IN_SETJMP_RECEIVER,
10516 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10517
10518 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10519 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10520 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10521
10522 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10523 local_define_builtin ("__builtin_stack_restore", ftype,
10524 BUILT_IN_STACK_RESTORE,
10525 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10526
10527 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10528 const_ptr_type_node, size_type_node,
10529 NULL_TREE);
10530 local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10531 "__builtin_memcmp_eq",
10532 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10533
10534 local_define_builtin ("__builtin_strncmp_eq", ftype, BUILT_IN_STRNCMP_EQ,
10535 "__builtin_strncmp_eq",
10536 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10537
10538 local_define_builtin ("__builtin_strcmp_eq", ftype, BUILT_IN_STRCMP_EQ,
10539 "__builtin_strcmp_eq",
10540 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10541
10542 /* If there's a possibility that we might use the ARM EABI, build the
10543 alternate __cxa_end_cleanup node used to resume from C++. */
10544 if (targetm.arm_eabi_unwinder)
10545 {
10546 ftype = build_function_type_list (void_type_node, NULL_TREE);
10547 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10548 BUILT_IN_CXA_END_CLEANUP,
10549 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10550 }
10551
10552 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10553 local_define_builtin ("__builtin_unwind_resume", ftype,
10554 BUILT_IN_UNWIND_RESUME,
10555 ((targetm_common.except_unwind_info (&global_options)
10556 == UI_SJLJ)
10557 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10558 ECF_NORETURN);
10559
10560 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10561 {
10562 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10563 NULL_TREE);
10564 local_define_builtin ("__builtin_return_address", ftype,
10565 BUILT_IN_RETURN_ADDRESS,
10566 "__builtin_return_address",
10567 ECF_NOTHROW);
10568 }
10569
10570 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10571 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10572 {
10573 ftype = build_function_type_list (void_type_node, ptr_type_node,
10574 ptr_type_node, NULL_TREE);
10575 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10576 local_define_builtin ("__cyg_profile_func_enter", ftype,
10577 BUILT_IN_PROFILE_FUNC_ENTER,
10578 "__cyg_profile_func_enter", 0);
10579 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10580 local_define_builtin ("__cyg_profile_func_exit", ftype,
10581 BUILT_IN_PROFILE_FUNC_EXIT,
10582 "__cyg_profile_func_exit", 0);
10583 }
10584
10585 /* The exception object and filter values from the runtime. The argument
10586 must be zero before exception lowering, i.e. from the front end. After
10587 exception lowering, it will be the region number for the exception
10588 landing pad. These functions are PURE instead of CONST to prevent
10589 them from being hoisted past the exception edge that will initialize
10590 its value in the landing pad. */
10591 ftype = build_function_type_list (ptr_type_node,
10592 integer_type_node, NULL_TREE);
10593 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10594 /* Only use TM_PURE if we have TM language support. */
10595 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10596 ecf_flags |= ECF_TM_PURE;
10597 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10598 "__builtin_eh_pointer", ecf_flags);
10599
10600 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10601 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10602 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10603 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10604
10605 ftype = build_function_type_list (void_type_node,
10606 integer_type_node, integer_type_node,
10607 NULL_TREE);
10608 local_define_builtin ("__builtin_eh_copy_values", ftype,
10609 BUILT_IN_EH_COPY_VALUES,
10610 "__builtin_eh_copy_values", ECF_NOTHROW);
10611
10612 /* Complex multiplication and division. These are handled as builtins
10613 rather than optabs because emit_library_call_value doesn't support
10614 complex. Further, we can do slightly better with folding these
10615 beasties if the real and complex parts of the arguments are separate. */
10616 {
10617 int mode;
10618
10619 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10620 {
10621 char mode_name_buf[4], *q;
10622 const char *p;
10623 enum built_in_function mcode, dcode;
10624 tree type, inner_type;
10625 const char *prefix = "__";
10626
10627 if (targetm.libfunc_gnu_prefix)
10628 prefix = "__gnu_";
10629
10630 type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10631 if (type == NULL)
10632 continue;
10633 inner_type = TREE_TYPE (type);
10634
10635 ftype = build_function_type_list (type, inner_type, inner_type,
10636 inner_type, inner_type, NULL_TREE);
10637
10638 mcode = ((enum built_in_function)
10639 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10640 dcode = ((enum built_in_function)
10641 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10642
10643 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10644 *q = TOLOWER (*p);
10645 *q = '\0';
10646
10647 /* For -ftrapping-math these should throw from a former
10648 -fnon-call-exception stmt. */
10649 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10650 NULL);
10651 local_define_builtin (built_in_names[mcode], ftype, mcode,
10652 built_in_names[mcode],
10653 ECF_CONST | ECF_LEAF);
10654
10655 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10656 NULL);
10657 local_define_builtin (built_in_names[dcode], ftype, dcode,
10658 built_in_names[dcode],
10659 ECF_CONST | ECF_LEAF);
10660 }
10661 }
10662
10663 init_internal_fns ();
10664 }
10665
10666 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10667 better way.
10668
10669 If we requested a pointer to a vector, build up the pointers that
10670 we stripped off while looking for the inner type. Similarly for
10671 return values from functions.
10672
10673 The argument TYPE is the top of the chain, and BOTTOM is the
10674 new type which we will point to. */
10675
10676 tree
10677 reconstruct_complex_type (tree type, tree bottom)
10678 {
10679 tree inner, outer;
10680
10681 if (TREE_CODE (type) == POINTER_TYPE)
10682 {
10683 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10684 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10685 TYPE_REF_CAN_ALIAS_ALL (type));
10686 }
10687 else if (TREE_CODE (type) == REFERENCE_TYPE)
10688 {
10689 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10690 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10691 TYPE_REF_CAN_ALIAS_ALL (type));
10692 }
10693 else if (TREE_CODE (type) == ARRAY_TYPE)
10694 {
10695 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10696 outer = build_array_type (inner, TYPE_DOMAIN (type));
10697 }
10698 else if (TREE_CODE (type) == FUNCTION_TYPE)
10699 {
10700 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10701 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10702 }
10703 else if (TREE_CODE (type) == METHOD_TYPE)
10704 {
10705 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10706 /* The build_method_type_directly() routine prepends 'this' to argument list,
10707 so we must compensate by getting rid of it. */
10708 outer
10709 = build_method_type_directly
10710 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10711 inner,
10712 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10713 }
10714 else if (TREE_CODE (type) == OFFSET_TYPE)
10715 {
10716 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10717 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10718 }
10719 else
10720 return bottom;
10721
10722 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10723 TYPE_QUALS (type));
10724 }
10725
10726 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10727 the inner type. */
10728 tree
10729 build_vector_type_for_mode (tree innertype, machine_mode mode)
10730 {
10731 poly_int64 nunits;
10732 unsigned int bitsize;
10733
10734 switch (GET_MODE_CLASS (mode))
10735 {
10736 case MODE_VECTOR_BOOL:
10737 case MODE_VECTOR_INT:
10738 case MODE_VECTOR_FLOAT:
10739 case MODE_VECTOR_FRACT:
10740 case MODE_VECTOR_UFRACT:
10741 case MODE_VECTOR_ACCUM:
10742 case MODE_VECTOR_UACCUM:
10743 nunits = GET_MODE_NUNITS (mode);
10744 break;
10745
10746 case MODE_INT:
10747 /* Check that there are no leftover bits. */
10748 bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
10749 gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10750 nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10751 break;
10752
10753 default:
10754 gcc_unreachable ();
10755 }
10756
10757 return make_vector_type (innertype, nunits, mode);
10758 }
10759
10760 /* Similarly, but takes the inner type and number of units, which must be
10761 a power of two. */
10762
10763 tree
10764 build_vector_type (tree innertype, poly_int64 nunits)
10765 {
10766 return make_vector_type (innertype, nunits, VOIDmode);
10767 }
10768
10769 /* Build truth vector with specified length and number of units. */
10770
10771 tree
10772 build_truth_vector_type (poly_uint64 nunits, poly_uint64 vector_size)
10773 {
10774 machine_mode mask_mode
10775 = targetm.vectorize.get_mask_mode (nunits, vector_size).else_blk ();
10776
10777 poly_uint64 vsize;
10778 if (mask_mode == BLKmode)
10779 vsize = vector_size * BITS_PER_UNIT;
10780 else
10781 vsize = GET_MODE_BITSIZE (mask_mode);
10782
10783 unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
10784
10785 tree bool_type = build_nonstandard_boolean_type (esize);
10786
10787 return make_vector_type (bool_type, nunits, mask_mode);
10788 }
10789
10790 /* Returns a vector type corresponding to a comparison of VECTYPE. */
10791
10792 tree
10793 build_same_sized_truth_vector_type (tree vectype)
10794 {
10795 if (VECTOR_BOOLEAN_TYPE_P (vectype))
10796 return vectype;
10797
10798 poly_uint64 size = GET_MODE_SIZE (TYPE_MODE (vectype));
10799
10800 if (known_eq (size, 0U))
10801 size = tree_to_uhwi (TYPE_SIZE_UNIT (vectype));
10802
10803 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype), size);
10804 }
10805
10806 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
10807
10808 tree
10809 build_opaque_vector_type (tree innertype, poly_int64 nunits)
10810 {
10811 tree t = make_vector_type (innertype, nunits, VOIDmode);
10812 tree cand;
10813 /* We always build the non-opaque variant before the opaque one,
10814 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10815 cand = TYPE_NEXT_VARIANT (t);
10816 if (cand
10817 && TYPE_VECTOR_OPAQUE (cand)
10818 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10819 return cand;
10820 /* Othewise build a variant type and make sure to queue it after
10821 the non-opaque type. */
10822 cand = build_distinct_type_copy (t);
10823 TYPE_VECTOR_OPAQUE (cand) = true;
10824 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10825 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10826 TYPE_NEXT_VARIANT (t) = cand;
10827 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10828 return cand;
10829 }
10830
10831 /* Return the value of element I of VECTOR_CST T as a wide_int. */
10832
10833 wide_int
10834 vector_cst_int_elt (const_tree t, unsigned int i)
10835 {
10836 /* First handle elements that are directly encoded. */
10837 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10838 if (i < encoded_nelts)
10839 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, i));
10840
10841 /* Identify the pattern that contains element I and work out the index of
10842 the last encoded element for that pattern. */
10843 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10844 unsigned int pattern = i % npatterns;
10845 unsigned int count = i / npatterns;
10846 unsigned int final_i = encoded_nelts - npatterns + pattern;
10847
10848 /* If there are no steps, the final encoded value is the right one. */
10849 if (!VECTOR_CST_STEPPED_P (t))
10850 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
10851
10852 /* Otherwise work out the value from the last two encoded elements. */
10853 tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
10854 tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
10855 wide_int diff = wi::to_wide (v2) - wi::to_wide (v1);
10856 return wi::to_wide (v2) + (count - 2) * diff;
10857 }
10858
10859 /* Return the value of element I of VECTOR_CST T. */
10860
10861 tree
10862 vector_cst_elt (const_tree t, unsigned int i)
10863 {
10864 /* First handle elements that are directly encoded. */
10865 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10866 if (i < encoded_nelts)
10867 return VECTOR_CST_ENCODED_ELT (t, i);
10868
10869 /* If there are no steps, the final encoded value is the right one. */
10870 if (!VECTOR_CST_STEPPED_P (t))
10871 {
10872 /* Identify the pattern that contains element I and work out the index of
10873 the last encoded element for that pattern. */
10874 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10875 unsigned int pattern = i % npatterns;
10876 unsigned int final_i = encoded_nelts - npatterns + pattern;
10877 return VECTOR_CST_ENCODED_ELT (t, final_i);
10878 }
10879
10880 /* Otherwise work out the value from the last two encoded elements. */
10881 return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
10882 vector_cst_int_elt (t, i));
10883 }
10884
10885 /* Given an initializer INIT, return TRUE if INIT is zero or some
10886 aggregate of zeros. Otherwise return FALSE. If NONZERO is not
10887 null, set *NONZERO if and only if INIT is known not to be all
10888 zeros. The combination of return value of false and *NONZERO
10889 false implies that INIT may but need not be all zeros. Other
10890 combinations indicate definitive answers. */
10891
10892 bool
10893 initializer_zerop (const_tree init, bool *nonzero /* = NULL */)
10894 {
10895 bool dummy;
10896 if (!nonzero)
10897 nonzero = &dummy;
10898
10899 /* Conservatively clear NONZERO and set it only if INIT is definitely
10900 not all zero. */
10901 *nonzero = false;
10902
10903 STRIP_NOPS (init);
10904
10905 unsigned HOST_WIDE_INT off = 0;
10906
10907 switch (TREE_CODE (init))
10908 {
10909 case INTEGER_CST:
10910 if (integer_zerop (init))
10911 return true;
10912
10913 *nonzero = true;
10914 return false;
10915
10916 case REAL_CST:
10917 /* ??? Note that this is not correct for C4X float formats. There,
10918 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10919 negative exponent. */
10920 if (real_zerop (init)
10921 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init)))
10922 return true;
10923
10924 *nonzero = true;
10925 return false;
10926
10927 case FIXED_CST:
10928 if (fixed_zerop (init))
10929 return true;
10930
10931 *nonzero = true;
10932 return false;
10933
10934 case COMPLEX_CST:
10935 if (integer_zerop (init)
10936 || (real_zerop (init)
10937 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10938 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init)))))
10939 return true;
10940
10941 *nonzero = true;
10942 return false;
10943
10944 case VECTOR_CST:
10945 if (VECTOR_CST_NPATTERNS (init) == 1
10946 && VECTOR_CST_DUPLICATE_P (init)
10947 && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)))
10948 return true;
10949
10950 *nonzero = true;
10951 return false;
10952
10953 case CONSTRUCTOR:
10954 {
10955 if (TREE_CLOBBER_P (init))
10956 return false;
10957
10958 unsigned HOST_WIDE_INT idx;
10959 tree elt;
10960
10961 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10962 if (!initializer_zerop (elt, nonzero))
10963 return false;
10964
10965 return true;
10966 }
10967
10968 case MEM_REF:
10969 {
10970 tree arg = TREE_OPERAND (init, 0);
10971 if (TREE_CODE (arg) != ADDR_EXPR)
10972 return false;
10973 tree offset = TREE_OPERAND (init, 1);
10974 if (TREE_CODE (offset) != INTEGER_CST
10975 || !tree_fits_uhwi_p (offset))
10976 return false;
10977 off = tree_to_uhwi (offset);
10978 if (INT_MAX < off)
10979 return false;
10980 arg = TREE_OPERAND (arg, 0);
10981 if (TREE_CODE (arg) != STRING_CST)
10982 return false;
10983 init = arg;
10984 }
10985 /* Fall through. */
10986
10987 case STRING_CST:
10988 {
10989 gcc_assert (off <= INT_MAX);
10990
10991 int i = off;
10992 int n = TREE_STRING_LENGTH (init);
10993 if (n <= i)
10994 return false;
10995
10996 /* We need to loop through all elements to handle cases like
10997 "\0" and "\0foobar". */
10998 for (i = 0; i < n; ++i)
10999 if (TREE_STRING_POINTER (init)[i] != '\0')
11000 {
11001 *nonzero = true;
11002 return false;
11003 }
11004
11005 return true;
11006 }
11007
11008 default:
11009 return false;
11010 }
11011 }
11012
11013 /* Check if vector VEC consists of all the equal elements and
11014 that the number of elements corresponds to the type of VEC.
11015 The function returns first element of the vector
11016 or NULL_TREE if the vector is not uniform. */
11017 tree
11018 uniform_vector_p (const_tree vec)
11019 {
11020 tree first, t;
11021 unsigned HOST_WIDE_INT i, nelts;
11022
11023 if (vec == NULL_TREE)
11024 return NULL_TREE;
11025
11026 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
11027
11028 if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
11029 return TREE_OPERAND (vec, 0);
11030
11031 else if (TREE_CODE (vec) == VECTOR_CST)
11032 {
11033 if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
11034 return VECTOR_CST_ENCODED_ELT (vec, 0);
11035 return NULL_TREE;
11036 }
11037
11038 else if (TREE_CODE (vec) == CONSTRUCTOR
11039 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
11040 {
11041 first = error_mark_node;
11042
11043 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
11044 {
11045 if (i == 0)
11046 {
11047 first = t;
11048 continue;
11049 }
11050 if (!operand_equal_p (first, t, 0))
11051 return NULL_TREE;
11052 }
11053 if (i != nelts)
11054 return NULL_TREE;
11055
11056 return first;
11057 }
11058
11059 return NULL_TREE;
11060 }
11061
11062 /* Build an empty statement at location LOC. */
11063
11064 tree
11065 build_empty_stmt (location_t loc)
11066 {
11067 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
11068 SET_EXPR_LOCATION (t, loc);
11069 return t;
11070 }
11071
11072
11073 /* Build an OpenMP clause with code CODE. LOC is the location of the
11074 clause. */
11075
11076 tree
11077 build_omp_clause (location_t loc, enum omp_clause_code code)
11078 {
11079 tree t;
11080 int size, length;
11081
11082 length = omp_clause_num_ops[code];
11083 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
11084
11085 record_node_allocation_statistics (OMP_CLAUSE, size);
11086
11087 t = (tree) ggc_internal_alloc (size);
11088 memset (t, 0, size);
11089 TREE_SET_CODE (t, OMP_CLAUSE);
11090 OMP_CLAUSE_SET_CODE (t, code);
11091 OMP_CLAUSE_LOCATION (t) = loc;
11092
11093 return t;
11094 }
11095
11096 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
11097 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
11098 Except for the CODE and operand count field, other storage for the
11099 object is initialized to zeros. */
11100
11101 tree
11102 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
11103 {
11104 tree t;
11105 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
11106
11107 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
11108 gcc_assert (len >= 1);
11109
11110 record_node_allocation_statistics (code, length);
11111
11112 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
11113
11114 TREE_SET_CODE (t, code);
11115
11116 /* Can't use TREE_OPERAND to store the length because if checking is
11117 enabled, it will try to check the length before we store it. :-P */
11118 t->exp.operands[0] = build_int_cst (sizetype, len);
11119
11120 return t;
11121 }
11122
11123 /* Helper function for build_call_* functions; build a CALL_EXPR with
11124 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
11125 the argument slots. */
11126
11127 static tree
11128 build_call_1 (tree return_type, tree fn, int nargs)
11129 {
11130 tree t;
11131
11132 t = build_vl_exp (CALL_EXPR, nargs + 3);
11133 TREE_TYPE (t) = return_type;
11134 CALL_EXPR_FN (t) = fn;
11135 CALL_EXPR_STATIC_CHAIN (t) = NULL;
11136
11137 return t;
11138 }
11139
11140 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11141 FN and a null static chain slot. NARGS is the number of call arguments
11142 which are specified as "..." arguments. */
11143
11144 tree
11145 build_call_nary (tree return_type, tree fn, int nargs, ...)
11146 {
11147 tree ret;
11148 va_list args;
11149 va_start (args, nargs);
11150 ret = build_call_valist (return_type, fn, nargs, args);
11151 va_end (args);
11152 return ret;
11153 }
11154
11155 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11156 FN and a null static chain slot. NARGS is the number of call arguments
11157 which are specified as a va_list ARGS. */
11158
11159 tree
11160 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
11161 {
11162 tree t;
11163 int i;
11164
11165 t = build_call_1 (return_type, fn, nargs);
11166 for (i = 0; i < nargs; i++)
11167 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
11168 process_call_operands (t);
11169 return t;
11170 }
11171
11172 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11173 FN and a null static chain slot. NARGS is the number of call arguments
11174 which are specified as a tree array ARGS. */
11175
11176 tree
11177 build_call_array_loc (location_t loc, tree return_type, tree fn,
11178 int nargs, const tree *args)
11179 {
11180 tree t;
11181 int i;
11182
11183 t = build_call_1 (return_type, fn, nargs);
11184 for (i = 0; i < nargs; i++)
11185 CALL_EXPR_ARG (t, i) = args[i];
11186 process_call_operands (t);
11187 SET_EXPR_LOCATION (t, loc);
11188 return t;
11189 }
11190
11191 /* Like build_call_array, but takes a vec. */
11192
11193 tree
11194 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
11195 {
11196 tree ret, t;
11197 unsigned int ix;
11198
11199 ret = build_call_1 (return_type, fn, vec_safe_length (args));
11200 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
11201 CALL_EXPR_ARG (ret, ix) = t;
11202 process_call_operands (ret);
11203 return ret;
11204 }
11205
11206 /* Conveniently construct a function call expression. FNDECL names the
11207 function to be called and N arguments are passed in the array
11208 ARGARRAY. */
11209
11210 tree
11211 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
11212 {
11213 tree fntype = TREE_TYPE (fndecl);
11214 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
11215
11216 return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
11217 }
11218
11219 /* Conveniently construct a function call expression. FNDECL names the
11220 function to be called and the arguments are passed in the vector
11221 VEC. */
11222
11223 tree
11224 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
11225 {
11226 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
11227 vec_safe_address (vec));
11228 }
11229
11230
11231 /* Conveniently construct a function call expression. FNDECL names the
11232 function to be called, N is the number of arguments, and the "..."
11233 parameters are the argument expressions. */
11234
11235 tree
11236 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
11237 {
11238 va_list ap;
11239 tree *argarray = XALLOCAVEC (tree, n);
11240 int i;
11241
11242 va_start (ap, n);
11243 for (i = 0; i < n; i++)
11244 argarray[i] = va_arg (ap, tree);
11245 va_end (ap);
11246 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11247 }
11248
11249 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
11250 varargs macros aren't supported by all bootstrap compilers. */
11251
11252 tree
11253 build_call_expr (tree fndecl, int n, ...)
11254 {
11255 va_list ap;
11256 tree *argarray = XALLOCAVEC (tree, n);
11257 int i;
11258
11259 va_start (ap, n);
11260 for (i = 0; i < n; i++)
11261 argarray[i] = va_arg (ap, tree);
11262 va_end (ap);
11263 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
11264 }
11265
11266 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
11267 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
11268 It will get gimplified later into an ordinary internal function. */
11269
11270 tree
11271 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
11272 tree type, int n, const tree *args)
11273 {
11274 tree t = build_call_1 (type, NULL_TREE, n);
11275 for (int i = 0; i < n; ++i)
11276 CALL_EXPR_ARG (t, i) = args[i];
11277 SET_EXPR_LOCATION (t, loc);
11278 CALL_EXPR_IFN (t) = ifn;
11279 return t;
11280 }
11281
11282 /* Build internal call expression. This is just like CALL_EXPR, except
11283 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
11284 internal function. */
11285
11286 tree
11287 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
11288 tree type, int n, ...)
11289 {
11290 va_list ap;
11291 tree *argarray = XALLOCAVEC (tree, n);
11292 int i;
11293
11294 va_start (ap, n);
11295 for (i = 0; i < n; i++)
11296 argarray[i] = va_arg (ap, tree);
11297 va_end (ap);
11298 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11299 }
11300
11301 /* Return a function call to FN, if the target is guaranteed to support it,
11302 or null otherwise.
11303
11304 N is the number of arguments, passed in the "...", and TYPE is the
11305 type of the return value. */
11306
11307 tree
11308 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
11309 int n, ...)
11310 {
11311 va_list ap;
11312 tree *argarray = XALLOCAVEC (tree, n);
11313 int i;
11314
11315 va_start (ap, n);
11316 for (i = 0; i < n; i++)
11317 argarray[i] = va_arg (ap, tree);
11318 va_end (ap);
11319 if (internal_fn_p (fn))
11320 {
11321 internal_fn ifn = as_internal_fn (fn);
11322 if (direct_internal_fn_p (ifn))
11323 {
11324 tree_pair types = direct_internal_fn_types (ifn, type, argarray);
11325 if (!direct_internal_fn_supported_p (ifn, types,
11326 OPTIMIZE_FOR_BOTH))
11327 return NULL_TREE;
11328 }
11329 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11330 }
11331 else
11332 {
11333 tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
11334 if (!fndecl)
11335 return NULL_TREE;
11336 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11337 }
11338 }
11339
11340 /* Return a function call to the appropriate builtin alloca variant.
11341
11342 SIZE is the size to be allocated. ALIGN, if non-zero, is the requested
11343 alignment of the allocated area. MAX_SIZE, if non-negative, is an upper
11344 bound for SIZE in case it is not a fixed value. */
11345
11346 tree
11347 build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
11348 {
11349 if (max_size >= 0)
11350 {
11351 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
11352 return
11353 build_call_expr (t, 3, size, size_int (align), size_int (max_size));
11354 }
11355 else if (align > 0)
11356 {
11357 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
11358 return build_call_expr (t, 2, size, size_int (align));
11359 }
11360 else
11361 {
11362 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
11363 return build_call_expr (t, 1, size);
11364 }
11365 }
11366
11367 /* Create a new constant string literal and return a char* pointer to it.
11368 The STRING_CST value is the LEN characters at STR. */
11369 tree
11370 build_string_literal (int len, const char *str)
11371 {
11372 tree t, elem, index, type;
11373
11374 t = build_string (len, str);
11375 elem = build_type_variant (char_type_node, 1, 0);
11376 index = build_index_type (size_int (len - 1));
11377 type = build_array_type (elem, index);
11378 TREE_TYPE (t) = type;
11379 TREE_CONSTANT (t) = 1;
11380 TREE_READONLY (t) = 1;
11381 TREE_STATIC (t) = 1;
11382
11383 type = build_pointer_type (elem);
11384 t = build1 (ADDR_EXPR, type,
11385 build4 (ARRAY_REF, elem,
11386 t, integer_zero_node, NULL_TREE, NULL_TREE));
11387 return t;
11388 }
11389
11390
11391
11392 /* Return true if T (assumed to be a DECL) must be assigned a memory
11393 location. */
11394
11395 bool
11396 needs_to_live_in_memory (const_tree t)
11397 {
11398 return (TREE_ADDRESSABLE (t)
11399 || is_global_var (t)
11400 || (TREE_CODE (t) == RESULT_DECL
11401 && !DECL_BY_REFERENCE (t)
11402 && aggregate_value_p (t, current_function_decl)));
11403 }
11404
11405 /* Return value of a constant X and sign-extend it. */
11406
11407 HOST_WIDE_INT
11408 int_cst_value (const_tree x)
11409 {
11410 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
11411 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
11412
11413 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
11414 gcc_assert (cst_and_fits_in_hwi (x));
11415
11416 if (bits < HOST_BITS_PER_WIDE_INT)
11417 {
11418 bool negative = ((val >> (bits - 1)) & 1) != 0;
11419 if (negative)
11420 val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
11421 else
11422 val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
11423 }
11424
11425 return val;
11426 }
11427
11428 /* If TYPE is an integral or pointer type, return an integer type with
11429 the same precision which is unsigned iff UNSIGNEDP is true, or itself
11430 if TYPE is already an integer type of signedness UNSIGNEDP. */
11431
11432 tree
11433 signed_or_unsigned_type_for (int unsignedp, tree type)
11434 {
11435 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type) == unsignedp)
11436 return type;
11437
11438 if (TREE_CODE (type) == VECTOR_TYPE)
11439 {
11440 tree inner = TREE_TYPE (type);
11441 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11442 if (!inner2)
11443 return NULL_TREE;
11444 if (inner == inner2)
11445 return type;
11446 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
11447 }
11448
11449 if (TREE_CODE (type) == COMPLEX_TYPE)
11450 {
11451 tree inner = TREE_TYPE (type);
11452 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11453 if (!inner2)
11454 return NULL_TREE;
11455 if (inner == inner2)
11456 return type;
11457 return build_complex_type (inner2);
11458 }
11459
11460 if (!INTEGRAL_TYPE_P (type)
11461 && !POINTER_TYPE_P (type)
11462 && TREE_CODE (type) != OFFSET_TYPE)
11463 return NULL_TREE;
11464
11465 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
11466 }
11467
11468 /* If TYPE is an integral or pointer type, return an integer type with
11469 the same precision which is unsigned, or itself if TYPE is already an
11470 unsigned integer type. */
11471
11472 tree
11473 unsigned_type_for (tree type)
11474 {
11475 return signed_or_unsigned_type_for (1, type);
11476 }
11477
11478 /* If TYPE is an integral or pointer type, return an integer type with
11479 the same precision which is signed, or itself if TYPE is already a
11480 signed integer type. */
11481
11482 tree
11483 signed_type_for (tree type)
11484 {
11485 return signed_or_unsigned_type_for (0, type);
11486 }
11487
11488 /* If TYPE is a vector type, return a signed integer vector type with the
11489 same width and number of subparts. Otherwise return boolean_type_node. */
11490
11491 tree
11492 truth_type_for (tree type)
11493 {
11494 if (TREE_CODE (type) == VECTOR_TYPE)
11495 {
11496 if (VECTOR_BOOLEAN_TYPE_P (type))
11497 return type;
11498 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (type),
11499 GET_MODE_SIZE (TYPE_MODE (type)));
11500 }
11501 else
11502 return boolean_type_node;
11503 }
11504
11505 /* Returns the largest value obtainable by casting something in INNER type to
11506 OUTER type. */
11507
11508 tree
11509 upper_bound_in_type (tree outer, tree inner)
11510 {
11511 unsigned int det = 0;
11512 unsigned oprec = TYPE_PRECISION (outer);
11513 unsigned iprec = TYPE_PRECISION (inner);
11514 unsigned prec;
11515
11516 /* Compute a unique number for every combination. */
11517 det |= (oprec > iprec) ? 4 : 0;
11518 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
11519 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
11520
11521 /* Determine the exponent to use. */
11522 switch (det)
11523 {
11524 case 0:
11525 case 1:
11526 /* oprec <= iprec, outer: signed, inner: don't care. */
11527 prec = oprec - 1;
11528 break;
11529 case 2:
11530 case 3:
11531 /* oprec <= iprec, outer: unsigned, inner: don't care. */
11532 prec = oprec;
11533 break;
11534 case 4:
11535 /* oprec > iprec, outer: signed, inner: signed. */
11536 prec = iprec - 1;
11537 break;
11538 case 5:
11539 /* oprec > iprec, outer: signed, inner: unsigned. */
11540 prec = iprec;
11541 break;
11542 case 6:
11543 /* oprec > iprec, outer: unsigned, inner: signed. */
11544 prec = oprec;
11545 break;
11546 case 7:
11547 /* oprec > iprec, outer: unsigned, inner: unsigned. */
11548 prec = iprec;
11549 break;
11550 default:
11551 gcc_unreachable ();
11552 }
11553
11554 return wide_int_to_tree (outer,
11555 wi::mask (prec, false, TYPE_PRECISION (outer)));
11556 }
11557
11558 /* Returns the smallest value obtainable by casting something in INNER type to
11559 OUTER type. */
11560
11561 tree
11562 lower_bound_in_type (tree outer, tree inner)
11563 {
11564 unsigned oprec = TYPE_PRECISION (outer);
11565 unsigned iprec = TYPE_PRECISION (inner);
11566
11567 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11568 and obtain 0. */
11569 if (TYPE_UNSIGNED (outer)
11570 /* If we are widening something of an unsigned type, OUTER type
11571 contains all values of INNER type. In particular, both INNER
11572 and OUTER types have zero in common. */
11573 || (oprec > iprec && TYPE_UNSIGNED (inner)))
11574 return build_int_cst (outer, 0);
11575 else
11576 {
11577 /* If we are widening a signed type to another signed type, we
11578 want to obtain -2^^(iprec-1). If we are keeping the
11579 precision or narrowing to a signed type, we want to obtain
11580 -2^(oprec-1). */
11581 unsigned prec = oprec > iprec ? iprec : oprec;
11582 return wide_int_to_tree (outer,
11583 wi::mask (prec - 1, true,
11584 TYPE_PRECISION (outer)));
11585 }
11586 }
11587
11588 /* Return nonzero if two operands that are suitable for PHI nodes are
11589 necessarily equal. Specifically, both ARG0 and ARG1 must be either
11590 SSA_NAME or invariant. Note that this is strictly an optimization.
11591 That is, callers of this function can directly call operand_equal_p
11592 and get the same result, only slower. */
11593
11594 int
11595 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
11596 {
11597 if (arg0 == arg1)
11598 return 1;
11599 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
11600 return 0;
11601 return operand_equal_p (arg0, arg1, 0);
11602 }
11603
11604 /* Returns number of zeros at the end of binary representation of X. */
11605
11606 tree
11607 num_ending_zeros (const_tree x)
11608 {
11609 return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
11610 }
11611
11612
11613 #define WALK_SUBTREE(NODE) \
11614 do \
11615 { \
11616 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
11617 if (result) \
11618 return result; \
11619 } \
11620 while (0)
11621
11622 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11623 be walked whenever a type is seen in the tree. Rest of operands and return
11624 value are as for walk_tree. */
11625
11626 static tree
11627 walk_type_fields (tree type, walk_tree_fn func, void *data,
11628 hash_set<tree> *pset, walk_tree_lh lh)
11629 {
11630 tree result = NULL_TREE;
11631
11632 switch (TREE_CODE (type))
11633 {
11634 case POINTER_TYPE:
11635 case REFERENCE_TYPE:
11636 case VECTOR_TYPE:
11637 /* We have to worry about mutually recursive pointers. These can't
11638 be written in C. They can in Ada. It's pathological, but
11639 there's an ACATS test (c38102a) that checks it. Deal with this
11640 by checking if we're pointing to another pointer, that one
11641 points to another pointer, that one does too, and we have no htab.
11642 If so, get a hash table. We check three levels deep to avoid
11643 the cost of the hash table if we don't need one. */
11644 if (POINTER_TYPE_P (TREE_TYPE (type))
11645 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
11646 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
11647 && !pset)
11648 {
11649 result = walk_tree_without_duplicates (&TREE_TYPE (type),
11650 func, data);
11651 if (result)
11652 return result;
11653
11654 break;
11655 }
11656
11657 /* fall through */
11658
11659 case COMPLEX_TYPE:
11660 WALK_SUBTREE (TREE_TYPE (type));
11661 break;
11662
11663 case METHOD_TYPE:
11664 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
11665
11666 /* Fall through. */
11667
11668 case FUNCTION_TYPE:
11669 WALK_SUBTREE (TREE_TYPE (type));
11670 {
11671 tree arg;
11672
11673 /* We never want to walk into default arguments. */
11674 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
11675 WALK_SUBTREE (TREE_VALUE (arg));
11676 }
11677 break;
11678
11679 case ARRAY_TYPE:
11680 /* Don't follow this nodes's type if a pointer for fear that
11681 we'll have infinite recursion. If we have a PSET, then we
11682 need not fear. */
11683 if (pset
11684 || (!POINTER_TYPE_P (TREE_TYPE (type))
11685 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
11686 WALK_SUBTREE (TREE_TYPE (type));
11687 WALK_SUBTREE (TYPE_DOMAIN (type));
11688 break;
11689
11690 case OFFSET_TYPE:
11691 WALK_SUBTREE (TREE_TYPE (type));
11692 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
11693 break;
11694
11695 default:
11696 break;
11697 }
11698
11699 return NULL_TREE;
11700 }
11701
11702 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
11703 called with the DATA and the address of each sub-tree. If FUNC returns a
11704 non-NULL value, the traversal is stopped, and the value returned by FUNC
11705 is returned. If PSET is non-NULL it is used to record the nodes visited,
11706 and to avoid visiting a node more than once. */
11707
11708 tree
11709 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
11710 hash_set<tree> *pset, walk_tree_lh lh)
11711 {
11712 enum tree_code code;
11713 int walk_subtrees;
11714 tree result;
11715
11716 #define WALK_SUBTREE_TAIL(NODE) \
11717 do \
11718 { \
11719 tp = & (NODE); \
11720 goto tail_recurse; \
11721 } \
11722 while (0)
11723
11724 tail_recurse:
11725 /* Skip empty subtrees. */
11726 if (!*tp)
11727 return NULL_TREE;
11728
11729 /* Don't walk the same tree twice, if the user has requested
11730 that we avoid doing so. */
11731 if (pset && pset->add (*tp))
11732 return NULL_TREE;
11733
11734 /* Call the function. */
11735 walk_subtrees = 1;
11736 result = (*func) (tp, &walk_subtrees, data);
11737
11738 /* If we found something, return it. */
11739 if (result)
11740 return result;
11741
11742 code = TREE_CODE (*tp);
11743
11744 /* Even if we didn't, FUNC may have decided that there was nothing
11745 interesting below this point in the tree. */
11746 if (!walk_subtrees)
11747 {
11748 /* But we still need to check our siblings. */
11749 if (code == TREE_LIST)
11750 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11751 else if (code == OMP_CLAUSE)
11752 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11753 else
11754 return NULL_TREE;
11755 }
11756
11757 if (lh)
11758 {
11759 result = (*lh) (tp, &walk_subtrees, func, data, pset);
11760 if (result || !walk_subtrees)
11761 return result;
11762 }
11763
11764 switch (code)
11765 {
11766 case ERROR_MARK:
11767 case IDENTIFIER_NODE:
11768 case INTEGER_CST:
11769 case REAL_CST:
11770 case FIXED_CST:
11771 case VECTOR_CST:
11772 case STRING_CST:
11773 case BLOCK:
11774 case PLACEHOLDER_EXPR:
11775 case SSA_NAME:
11776 case FIELD_DECL:
11777 case RESULT_DECL:
11778 /* None of these have subtrees other than those already walked
11779 above. */
11780 break;
11781
11782 case TREE_LIST:
11783 WALK_SUBTREE (TREE_VALUE (*tp));
11784 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11785 break;
11786
11787 case TREE_VEC:
11788 {
11789 int len = TREE_VEC_LENGTH (*tp);
11790
11791 if (len == 0)
11792 break;
11793
11794 /* Walk all elements but the first. */
11795 while (--len)
11796 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
11797
11798 /* Now walk the first one as a tail call. */
11799 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
11800 }
11801
11802 case COMPLEX_CST:
11803 WALK_SUBTREE (TREE_REALPART (*tp));
11804 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
11805
11806 case CONSTRUCTOR:
11807 {
11808 unsigned HOST_WIDE_INT idx;
11809 constructor_elt *ce;
11810
11811 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
11812 idx++)
11813 WALK_SUBTREE (ce->value);
11814 }
11815 break;
11816
11817 case SAVE_EXPR:
11818 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
11819
11820 case BIND_EXPR:
11821 {
11822 tree decl;
11823 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11824 {
11825 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11826 into declarations that are just mentioned, rather than
11827 declared; they don't really belong to this part of the tree.
11828 And, we can see cycles: the initializer for a declaration
11829 can refer to the declaration itself. */
11830 WALK_SUBTREE (DECL_INITIAL (decl));
11831 WALK_SUBTREE (DECL_SIZE (decl));
11832 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11833 }
11834 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11835 }
11836
11837 case STATEMENT_LIST:
11838 {
11839 tree_stmt_iterator i;
11840 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11841 WALK_SUBTREE (*tsi_stmt_ptr (i));
11842 }
11843 break;
11844
11845 case OMP_CLAUSE:
11846 switch (OMP_CLAUSE_CODE (*tp))
11847 {
11848 case OMP_CLAUSE_GANG:
11849 case OMP_CLAUSE__GRIDDIM_:
11850 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11851 /* FALLTHRU */
11852
11853 case OMP_CLAUSE_ASYNC:
11854 case OMP_CLAUSE_WAIT:
11855 case OMP_CLAUSE_WORKER:
11856 case OMP_CLAUSE_VECTOR:
11857 case OMP_CLAUSE_NUM_GANGS:
11858 case OMP_CLAUSE_NUM_WORKERS:
11859 case OMP_CLAUSE_VECTOR_LENGTH:
11860 case OMP_CLAUSE_PRIVATE:
11861 case OMP_CLAUSE_SHARED:
11862 case OMP_CLAUSE_FIRSTPRIVATE:
11863 case OMP_CLAUSE_COPYIN:
11864 case OMP_CLAUSE_COPYPRIVATE:
11865 case OMP_CLAUSE_FINAL:
11866 case OMP_CLAUSE_IF:
11867 case OMP_CLAUSE_NUM_THREADS:
11868 case OMP_CLAUSE_SCHEDULE:
11869 case OMP_CLAUSE_UNIFORM:
11870 case OMP_CLAUSE_DEPEND:
11871 case OMP_CLAUSE_NUM_TEAMS:
11872 case OMP_CLAUSE_THREAD_LIMIT:
11873 case OMP_CLAUSE_DEVICE:
11874 case OMP_CLAUSE_DIST_SCHEDULE:
11875 case OMP_CLAUSE_SAFELEN:
11876 case OMP_CLAUSE_SIMDLEN:
11877 case OMP_CLAUSE_ORDERED:
11878 case OMP_CLAUSE_PRIORITY:
11879 case OMP_CLAUSE_GRAINSIZE:
11880 case OMP_CLAUSE_NUM_TASKS:
11881 case OMP_CLAUSE_HINT:
11882 case OMP_CLAUSE_TO_DECLARE:
11883 case OMP_CLAUSE_LINK:
11884 case OMP_CLAUSE_USE_DEVICE_PTR:
11885 case OMP_CLAUSE_IS_DEVICE_PTR:
11886 case OMP_CLAUSE__LOOPTEMP_:
11887 case OMP_CLAUSE__SIMDUID_:
11888 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11889 /* FALLTHRU */
11890
11891 case OMP_CLAUSE_INDEPENDENT:
11892 case OMP_CLAUSE_NOWAIT:
11893 case OMP_CLAUSE_DEFAULT:
11894 case OMP_CLAUSE_UNTIED:
11895 case OMP_CLAUSE_MERGEABLE:
11896 case OMP_CLAUSE_PROC_BIND:
11897 case OMP_CLAUSE_INBRANCH:
11898 case OMP_CLAUSE_NOTINBRANCH:
11899 case OMP_CLAUSE_FOR:
11900 case OMP_CLAUSE_PARALLEL:
11901 case OMP_CLAUSE_SECTIONS:
11902 case OMP_CLAUSE_TASKGROUP:
11903 case OMP_CLAUSE_NOGROUP:
11904 case OMP_CLAUSE_THREADS:
11905 case OMP_CLAUSE_SIMD:
11906 case OMP_CLAUSE_DEFAULTMAP:
11907 case OMP_CLAUSE_AUTO:
11908 case OMP_CLAUSE_SEQ:
11909 case OMP_CLAUSE_TILE:
11910 case OMP_CLAUSE__SIMT_:
11911 case OMP_CLAUSE_IF_PRESENT:
11912 case OMP_CLAUSE_FINALIZE:
11913 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11914
11915 case OMP_CLAUSE_LASTPRIVATE:
11916 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11917 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11918 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11919
11920 case OMP_CLAUSE_COLLAPSE:
11921 {
11922 int i;
11923 for (i = 0; i < 3; i++)
11924 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11925 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11926 }
11927
11928 case OMP_CLAUSE_LINEAR:
11929 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11930 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
11931 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
11932 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11933
11934 case OMP_CLAUSE_ALIGNED:
11935 case OMP_CLAUSE_FROM:
11936 case OMP_CLAUSE_TO:
11937 case OMP_CLAUSE_MAP:
11938 case OMP_CLAUSE__CACHE_:
11939 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11940 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11941 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11942
11943 case OMP_CLAUSE_REDUCTION:
11944 {
11945 int i;
11946 for (i = 0; i < 5; i++)
11947 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11948 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11949 }
11950
11951 default:
11952 gcc_unreachable ();
11953 }
11954 break;
11955
11956 case TARGET_EXPR:
11957 {
11958 int i, len;
11959
11960 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11961 But, we only want to walk once. */
11962 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11963 for (i = 0; i < len; ++i)
11964 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11965 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11966 }
11967
11968 case DECL_EXPR:
11969 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11970 defining. We only want to walk into these fields of a type in this
11971 case and not in the general case of a mere reference to the type.
11972
11973 The criterion is as follows: if the field can be an expression, it
11974 must be walked only here. This should be in keeping with the fields
11975 that are directly gimplified in gimplify_type_sizes in order for the
11976 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11977 variable-sized types.
11978
11979 Note that DECLs get walked as part of processing the BIND_EXPR. */
11980 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11981 {
11982 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11983 if (TREE_CODE (*type_p) == ERROR_MARK)
11984 return NULL_TREE;
11985
11986 /* Call the function for the type. See if it returns anything or
11987 doesn't want us to continue. If we are to continue, walk both
11988 the normal fields and those for the declaration case. */
11989 result = (*func) (type_p, &walk_subtrees, data);
11990 if (result || !walk_subtrees)
11991 return result;
11992
11993 /* But do not walk a pointed-to type since it may itself need to
11994 be walked in the declaration case if it isn't anonymous. */
11995 if (!POINTER_TYPE_P (*type_p))
11996 {
11997 result = walk_type_fields (*type_p, func, data, pset, lh);
11998 if (result)
11999 return result;
12000 }
12001
12002 /* If this is a record type, also walk the fields. */
12003 if (RECORD_OR_UNION_TYPE_P (*type_p))
12004 {
12005 tree field;
12006
12007 for (field = TYPE_FIELDS (*type_p); field;
12008 field = DECL_CHAIN (field))
12009 {
12010 /* We'd like to look at the type of the field, but we can
12011 easily get infinite recursion. So assume it's pointed
12012 to elsewhere in the tree. Also, ignore things that
12013 aren't fields. */
12014 if (TREE_CODE (field) != FIELD_DECL)
12015 continue;
12016
12017 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
12018 WALK_SUBTREE (DECL_SIZE (field));
12019 WALK_SUBTREE (DECL_SIZE_UNIT (field));
12020 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
12021 WALK_SUBTREE (DECL_QUALIFIER (field));
12022 }
12023 }
12024
12025 /* Same for scalar types. */
12026 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
12027 || TREE_CODE (*type_p) == ENUMERAL_TYPE
12028 || TREE_CODE (*type_p) == INTEGER_TYPE
12029 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
12030 || TREE_CODE (*type_p) == REAL_TYPE)
12031 {
12032 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
12033 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
12034 }
12035
12036 WALK_SUBTREE (TYPE_SIZE (*type_p));
12037 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
12038 }
12039 /* FALLTHRU */
12040
12041 default:
12042 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
12043 {
12044 int i, len;
12045
12046 /* Walk over all the sub-trees of this operand. */
12047 len = TREE_OPERAND_LENGTH (*tp);
12048
12049 /* Go through the subtrees. We need to do this in forward order so
12050 that the scope of a FOR_EXPR is handled properly. */
12051 if (len)
12052 {
12053 for (i = 0; i < len - 1; ++i)
12054 WALK_SUBTREE (TREE_OPERAND (*tp, i));
12055 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
12056 }
12057 }
12058 /* If this is a type, walk the needed fields in the type. */
12059 else if (TYPE_P (*tp))
12060 return walk_type_fields (*tp, func, data, pset, lh);
12061 break;
12062 }
12063
12064 /* We didn't find what we were looking for. */
12065 return NULL_TREE;
12066
12067 #undef WALK_SUBTREE_TAIL
12068 }
12069 #undef WALK_SUBTREE
12070
12071 /* Like walk_tree, but does not walk duplicate nodes more than once. */
12072
12073 tree
12074 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
12075 walk_tree_lh lh)
12076 {
12077 tree result;
12078
12079 hash_set<tree> pset;
12080 result = walk_tree_1 (tp, func, data, &pset, lh);
12081 return result;
12082 }
12083
12084
12085 tree
12086 tree_block (tree t)
12087 {
12088 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12089
12090 if (IS_EXPR_CODE_CLASS (c))
12091 return LOCATION_BLOCK (t->exp.locus);
12092 gcc_unreachable ();
12093 return NULL;
12094 }
12095
12096 void
12097 tree_set_block (tree t, tree b)
12098 {
12099 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12100
12101 if (IS_EXPR_CODE_CLASS (c))
12102 {
12103 t->exp.locus = set_block (t->exp.locus, b);
12104 }
12105 else
12106 gcc_unreachable ();
12107 }
12108
12109 /* Create a nameless artificial label and put it in the current
12110 function context. The label has a location of LOC. Returns the
12111 newly created label. */
12112
12113 tree
12114 create_artificial_label (location_t loc)
12115 {
12116 tree lab = build_decl (loc,
12117 LABEL_DECL, NULL_TREE, void_type_node);
12118
12119 DECL_ARTIFICIAL (lab) = 1;
12120 DECL_IGNORED_P (lab) = 1;
12121 DECL_CONTEXT (lab) = current_function_decl;
12122 return lab;
12123 }
12124
12125 /* Given a tree, try to return a useful variable name that we can use
12126 to prefix a temporary that is being assigned the value of the tree.
12127 I.E. given <temp> = &A, return A. */
12128
12129 const char *
12130 get_name (tree t)
12131 {
12132 tree stripped_decl;
12133
12134 stripped_decl = t;
12135 STRIP_NOPS (stripped_decl);
12136 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
12137 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
12138 else if (TREE_CODE (stripped_decl) == SSA_NAME)
12139 {
12140 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
12141 if (!name)
12142 return NULL;
12143 return IDENTIFIER_POINTER (name);
12144 }
12145 else
12146 {
12147 switch (TREE_CODE (stripped_decl))
12148 {
12149 case ADDR_EXPR:
12150 return get_name (TREE_OPERAND (stripped_decl, 0));
12151 default:
12152 return NULL;
12153 }
12154 }
12155 }
12156
12157 /* Return true if TYPE has a variable argument list. */
12158
12159 bool
12160 stdarg_p (const_tree fntype)
12161 {
12162 function_args_iterator args_iter;
12163 tree n = NULL_TREE, t;
12164
12165 if (!fntype)
12166 return false;
12167
12168 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
12169 {
12170 n = t;
12171 }
12172
12173 return n != NULL_TREE && n != void_type_node;
12174 }
12175
12176 /* Return true if TYPE has a prototype. */
12177
12178 bool
12179 prototype_p (const_tree fntype)
12180 {
12181 tree t;
12182
12183 gcc_assert (fntype != NULL_TREE);
12184
12185 t = TYPE_ARG_TYPES (fntype);
12186 return (t != NULL_TREE);
12187 }
12188
12189 /* If BLOCK is inlined from an __attribute__((__artificial__))
12190 routine, return pointer to location from where it has been
12191 called. */
12192 location_t *
12193 block_nonartificial_location (tree block)
12194 {
12195 location_t *ret = NULL;
12196
12197 while (block && TREE_CODE (block) == BLOCK
12198 && BLOCK_ABSTRACT_ORIGIN (block))
12199 {
12200 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
12201 if (TREE_CODE (ao) == FUNCTION_DECL)
12202 {
12203 /* If AO is an artificial inline, point RET to the
12204 call site locus at which it has been inlined and continue
12205 the loop, in case AO's caller is also an artificial
12206 inline. */
12207 if (DECL_DECLARED_INLINE_P (ao)
12208 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
12209 ret = &BLOCK_SOURCE_LOCATION (block);
12210 else
12211 break;
12212 }
12213 else if (TREE_CODE (ao) != BLOCK)
12214 break;
12215
12216 block = BLOCK_SUPERCONTEXT (block);
12217 }
12218 return ret;
12219 }
12220
12221
12222 /* If EXP is inlined from an __attribute__((__artificial__))
12223 function, return the location of the original call expression. */
12224
12225 location_t
12226 tree_nonartificial_location (tree exp)
12227 {
12228 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
12229
12230 if (loc)
12231 return *loc;
12232 else
12233 return EXPR_LOCATION (exp);
12234 }
12235
12236
12237 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
12238 nodes. */
12239
12240 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
12241
12242 hashval_t
12243 cl_option_hasher::hash (tree x)
12244 {
12245 const_tree const t = x;
12246 const char *p;
12247 size_t i;
12248 size_t len = 0;
12249 hashval_t hash = 0;
12250
12251 if (TREE_CODE (t) == OPTIMIZATION_NODE)
12252 {
12253 p = (const char *)TREE_OPTIMIZATION (t);
12254 len = sizeof (struct cl_optimization);
12255 }
12256
12257 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
12258 return cl_target_option_hash (TREE_TARGET_OPTION (t));
12259
12260 else
12261 gcc_unreachable ();
12262
12263 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
12264 something else. */
12265 for (i = 0; i < len; i++)
12266 if (p[i])
12267 hash = (hash << 4) ^ ((i << 2) | p[i]);
12268
12269 return hash;
12270 }
12271
12272 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
12273 TARGET_OPTION tree node) is the same as that given by *Y, which is the
12274 same. */
12275
12276 bool
12277 cl_option_hasher::equal (tree x, tree y)
12278 {
12279 const_tree const xt = x;
12280 const_tree const yt = y;
12281
12282 if (TREE_CODE (xt) != TREE_CODE (yt))
12283 return 0;
12284
12285 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
12286 return cl_optimization_option_eq (TREE_OPTIMIZATION (xt),
12287 TREE_OPTIMIZATION (yt));
12288 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
12289 return cl_target_option_eq (TREE_TARGET_OPTION (xt),
12290 TREE_TARGET_OPTION (yt));
12291 else
12292 gcc_unreachable ();
12293 }
12294
12295 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
12296
12297 tree
12298 build_optimization_node (struct gcc_options *opts)
12299 {
12300 tree t;
12301
12302 /* Use the cache of optimization nodes. */
12303
12304 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
12305 opts);
12306
12307 tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
12308 t = *slot;
12309 if (!t)
12310 {
12311 /* Insert this one into the hash table. */
12312 t = cl_optimization_node;
12313 *slot = t;
12314
12315 /* Make a new node for next time round. */
12316 cl_optimization_node = make_node (OPTIMIZATION_NODE);
12317 }
12318
12319 return t;
12320 }
12321
12322 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
12323
12324 tree
12325 build_target_option_node (struct gcc_options *opts)
12326 {
12327 tree t;
12328
12329 /* Use the cache of optimization nodes. */
12330
12331 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
12332 opts);
12333
12334 tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
12335 t = *slot;
12336 if (!t)
12337 {
12338 /* Insert this one into the hash table. */
12339 t = cl_target_option_node;
12340 *slot = t;
12341
12342 /* Make a new node for next time round. */
12343 cl_target_option_node = make_node (TARGET_OPTION_NODE);
12344 }
12345
12346 return t;
12347 }
12348
12349 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12350 so that they aren't saved during PCH writing. */
12351
12352 void
12353 prepare_target_option_nodes_for_pch (void)
12354 {
12355 hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
12356 for (; iter != cl_option_hash_table->end (); ++iter)
12357 if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
12358 TREE_TARGET_GLOBALS (*iter) = NULL;
12359 }
12360
12361 /* Determine the "ultimate origin" of a block. */
12362
12363 tree
12364 block_ultimate_origin (const_tree block)
12365 {
12366 tree origin = BLOCK_ABSTRACT_ORIGIN (block);
12367
12368 if (origin == NULL_TREE)
12369 return NULL_TREE;
12370 else
12371 {
12372 gcc_checking_assert ((DECL_P (origin)
12373 && DECL_ORIGIN (origin) == origin)
12374 || BLOCK_ORIGIN (origin) == origin);
12375 return origin;
12376 }
12377 }
12378
12379 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12380 no instruction. */
12381
12382 bool
12383 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
12384 {
12385 /* Do not strip casts into or out of differing address spaces. */
12386 if (POINTER_TYPE_P (outer_type)
12387 && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
12388 {
12389 if (!POINTER_TYPE_P (inner_type)
12390 || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
12391 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
12392 return false;
12393 }
12394 else if (POINTER_TYPE_P (inner_type)
12395 && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
12396 {
12397 /* We already know that outer_type is not a pointer with
12398 a non-generic address space. */
12399 return false;
12400 }
12401
12402 /* Use precision rather then machine mode when we can, which gives
12403 the correct answer even for submode (bit-field) types. */
12404 if ((INTEGRAL_TYPE_P (outer_type)
12405 || POINTER_TYPE_P (outer_type)
12406 || TREE_CODE (outer_type) == OFFSET_TYPE)
12407 && (INTEGRAL_TYPE_P (inner_type)
12408 || POINTER_TYPE_P (inner_type)
12409 || TREE_CODE (inner_type) == OFFSET_TYPE))
12410 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
12411
12412 /* Otherwise fall back on comparing machine modes (e.g. for
12413 aggregate types, floats). */
12414 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
12415 }
12416
12417 /* Return true iff conversion in EXP generates no instruction. Mark
12418 it inline so that we fully inline into the stripping functions even
12419 though we have two uses of this function. */
12420
12421 static inline bool
12422 tree_nop_conversion (const_tree exp)
12423 {
12424 tree outer_type, inner_type;
12425
12426 if (location_wrapper_p (exp))
12427 return true;
12428 if (!CONVERT_EXPR_P (exp)
12429 && TREE_CODE (exp) != NON_LVALUE_EXPR)
12430 return false;
12431 if (TREE_OPERAND (exp, 0) == error_mark_node)
12432 return false;
12433
12434 outer_type = TREE_TYPE (exp);
12435 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12436
12437 if (!inner_type)
12438 return false;
12439
12440 return tree_nop_conversion_p (outer_type, inner_type);
12441 }
12442
12443 /* Return true iff conversion in EXP generates no instruction. Don't
12444 consider conversions changing the signedness. */
12445
12446 static bool
12447 tree_sign_nop_conversion (const_tree exp)
12448 {
12449 tree outer_type, inner_type;
12450
12451 if (!tree_nop_conversion (exp))
12452 return false;
12453
12454 outer_type = TREE_TYPE (exp);
12455 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12456
12457 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
12458 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
12459 }
12460
12461 /* Strip conversions from EXP according to tree_nop_conversion and
12462 return the resulting expression. */
12463
12464 tree
12465 tree_strip_nop_conversions (tree exp)
12466 {
12467 while (tree_nop_conversion (exp))
12468 exp = TREE_OPERAND (exp, 0);
12469 return exp;
12470 }
12471
12472 /* Strip conversions from EXP according to tree_sign_nop_conversion
12473 and return the resulting expression. */
12474
12475 tree
12476 tree_strip_sign_nop_conversions (tree exp)
12477 {
12478 while (tree_sign_nop_conversion (exp))
12479 exp = TREE_OPERAND (exp, 0);
12480 return exp;
12481 }
12482
12483 /* Avoid any floating point extensions from EXP. */
12484 tree
12485 strip_float_extensions (tree exp)
12486 {
12487 tree sub, expt, subt;
12488
12489 /* For floating point constant look up the narrowest type that can hold
12490 it properly and handle it like (type)(narrowest_type)constant.
12491 This way we can optimize for instance a=a*2.0 where "a" is float
12492 but 2.0 is double constant. */
12493 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
12494 {
12495 REAL_VALUE_TYPE orig;
12496 tree type = NULL;
12497
12498 orig = TREE_REAL_CST (exp);
12499 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
12500 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
12501 type = float_type_node;
12502 else if (TYPE_PRECISION (TREE_TYPE (exp))
12503 > TYPE_PRECISION (double_type_node)
12504 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
12505 type = double_type_node;
12506 if (type)
12507 return build_real_truncate (type, orig);
12508 }
12509
12510 if (!CONVERT_EXPR_P (exp))
12511 return exp;
12512
12513 sub = TREE_OPERAND (exp, 0);
12514 subt = TREE_TYPE (sub);
12515 expt = TREE_TYPE (exp);
12516
12517 if (!FLOAT_TYPE_P (subt))
12518 return exp;
12519
12520 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
12521 return exp;
12522
12523 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
12524 return exp;
12525
12526 return strip_float_extensions (sub);
12527 }
12528
12529 /* Strip out all handled components that produce invariant
12530 offsets. */
12531
12532 const_tree
12533 strip_invariant_refs (const_tree op)
12534 {
12535 while (handled_component_p (op))
12536 {
12537 switch (TREE_CODE (op))
12538 {
12539 case ARRAY_REF:
12540 case ARRAY_RANGE_REF:
12541 if (!is_gimple_constant (TREE_OPERAND (op, 1))
12542 || TREE_OPERAND (op, 2) != NULL_TREE
12543 || TREE_OPERAND (op, 3) != NULL_TREE)
12544 return NULL;
12545 break;
12546
12547 case COMPONENT_REF:
12548 if (TREE_OPERAND (op, 2) != NULL_TREE)
12549 return NULL;
12550 break;
12551
12552 default:;
12553 }
12554 op = TREE_OPERAND (op, 0);
12555 }
12556
12557 return op;
12558 }
12559
12560 static GTY(()) tree gcc_eh_personality_decl;
12561
12562 /* Return the GCC personality function decl. */
12563
12564 tree
12565 lhd_gcc_personality (void)
12566 {
12567 if (!gcc_eh_personality_decl)
12568 gcc_eh_personality_decl = build_personality_function ("gcc");
12569 return gcc_eh_personality_decl;
12570 }
12571
12572 /* TARGET is a call target of GIMPLE call statement
12573 (obtained by gimple_call_fn). Return true if it is
12574 OBJ_TYPE_REF representing an virtual call of C++ method.
12575 (As opposed to OBJ_TYPE_REF representing objc calls
12576 through a cast where middle-end devirtualization machinery
12577 can't apply.) */
12578
12579 bool
12580 virtual_method_call_p (const_tree target)
12581 {
12582 if (TREE_CODE (target) != OBJ_TYPE_REF)
12583 return false;
12584 tree t = TREE_TYPE (target);
12585 gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
12586 t = TREE_TYPE (t);
12587 if (TREE_CODE (t) == FUNCTION_TYPE)
12588 return false;
12589 gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
12590 /* If we do not have BINFO associated, it means that type was built
12591 without devirtualization enabled. Do not consider this a virtual
12592 call. */
12593 if (!TYPE_BINFO (obj_type_ref_class (target)))
12594 return false;
12595 return true;
12596 }
12597
12598 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
12599
12600 tree
12601 obj_type_ref_class (const_tree ref)
12602 {
12603 gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
12604 ref = TREE_TYPE (ref);
12605 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12606 ref = TREE_TYPE (ref);
12607 /* We look for type THIS points to. ObjC also builds
12608 OBJ_TYPE_REF with non-method calls, Their first parameter
12609 ID however also corresponds to class type. */
12610 gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
12611 || TREE_CODE (ref) == FUNCTION_TYPE);
12612 ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
12613 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12614 return TREE_TYPE (ref);
12615 }
12616
12617 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
12618
12619 static tree
12620 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
12621 {
12622 unsigned int i;
12623 tree base_binfo, b;
12624
12625 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12626 if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
12627 && types_same_for_odr (TREE_TYPE (base_binfo), type))
12628 return base_binfo;
12629 else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
12630 return b;
12631 return NULL;
12632 }
12633
12634 /* Try to find a base info of BINFO that would have its field decl at offset
12635 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
12636 found, return, otherwise return NULL_TREE. */
12637
12638 tree
12639 get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
12640 {
12641 tree type = BINFO_TYPE (binfo);
12642
12643 while (true)
12644 {
12645 HOST_WIDE_INT pos, size;
12646 tree fld;
12647 int i;
12648
12649 if (types_same_for_odr (type, expected_type))
12650 return binfo;
12651 if (maybe_lt (offset, 0))
12652 return NULL_TREE;
12653
12654 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
12655 {
12656 if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
12657 continue;
12658
12659 pos = int_bit_position (fld);
12660 size = tree_to_uhwi (DECL_SIZE (fld));
12661 if (known_in_range_p (offset, pos, size))
12662 break;
12663 }
12664 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
12665 return NULL_TREE;
12666
12667 /* Offset 0 indicates the primary base, whose vtable contents are
12668 represented in the binfo for the derived class. */
12669 else if (maybe_ne (offset, 0))
12670 {
12671 tree found_binfo = NULL, base_binfo;
12672 /* Offsets in BINFO are in bytes relative to the whole structure
12673 while POS is in bits relative to the containing field. */
12674 int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
12675 / BITS_PER_UNIT);
12676
12677 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12678 if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
12679 && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
12680 {
12681 found_binfo = base_binfo;
12682 break;
12683 }
12684 if (found_binfo)
12685 binfo = found_binfo;
12686 else
12687 binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
12688 binfo_offset);
12689 }
12690
12691 type = TREE_TYPE (fld);
12692 offset -= pos;
12693 }
12694 }
12695
12696 /* Returns true if X is a typedef decl. */
12697
12698 bool
12699 is_typedef_decl (const_tree x)
12700 {
12701 return (x && TREE_CODE (x) == TYPE_DECL
12702 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
12703 }
12704
12705 /* Returns true iff TYPE is a type variant created for a typedef. */
12706
12707 bool
12708 typedef_variant_p (const_tree type)
12709 {
12710 return is_typedef_decl (TYPE_NAME (type));
12711 }
12712
12713 /* A class to handle converting a string that might contain
12714 control characters, (eg newline, form-feed, etc), into one
12715 in which contains escape sequences instead. */
12716
12717 class escaped_string
12718 {
12719 public:
12720 escaped_string () { m_owned = false; m_str = NULL; };
12721 ~escaped_string () { if (m_owned) free (m_str); }
12722 operator const char *() const { return (const char *) m_str; }
12723 void escape (const char *);
12724 private:
12725 char *m_str;
12726 bool m_owned;
12727 };
12728
12729 /* PR 84195: Replace control characters in "unescaped" with their
12730 escaped equivalents. Allow newlines if -fmessage-length has
12731 been set to a non-zero value. This is done here, rather than
12732 where the attribute is recorded as the message length can
12733 change between these two locations. */
12734
12735 void
12736 escaped_string::escape (const char *unescaped)
12737 {
12738 char *escaped;
12739 size_t i, new_i, len;
12740
12741 if (m_owned)
12742 free (m_str);
12743
12744 m_str = const_cast<char *> (unescaped);
12745 m_owned = false;
12746
12747 if (unescaped == NULL || *unescaped == 0)
12748 return;
12749
12750 len = strlen (unescaped);
12751 escaped = NULL;
12752 new_i = 0;
12753
12754 for (i = 0; i < len; i++)
12755 {
12756 char c = unescaped[i];
12757
12758 if (!ISCNTRL (c))
12759 {
12760 if (escaped)
12761 escaped[new_i++] = c;
12762 continue;
12763 }
12764
12765 if (c != '\n' || !pp_is_wrapping_line (global_dc->printer))
12766 {
12767 if (escaped == NULL)
12768 {
12769 /* We only allocate space for a new string if we
12770 actually encounter a control character that
12771 needs replacing. */
12772 escaped = (char *) xmalloc (len * 2 + 1);
12773 strncpy (escaped, unescaped, i);
12774 new_i = i;
12775 }
12776
12777 escaped[new_i++] = '\\';
12778
12779 switch (c)
12780 {
12781 case '\a': escaped[new_i++] = 'a'; break;
12782 case '\b': escaped[new_i++] = 'b'; break;
12783 case '\f': escaped[new_i++] = 'f'; break;
12784 case '\n': escaped[new_i++] = 'n'; break;
12785 case '\r': escaped[new_i++] = 'r'; break;
12786 case '\t': escaped[new_i++] = 't'; break;
12787 case '\v': escaped[new_i++] = 'v'; break;
12788 default: escaped[new_i++] = '?'; break;
12789 }
12790 }
12791 else if (escaped)
12792 escaped[new_i++] = c;
12793 }
12794
12795 if (escaped)
12796 {
12797 escaped[new_i] = 0;
12798 m_str = escaped;
12799 m_owned = true;
12800 }
12801 }
12802
12803 /* Warn about a use of an identifier which was marked deprecated. Returns
12804 whether a warning was given. */
12805
12806 bool
12807 warn_deprecated_use (tree node, tree attr)
12808 {
12809 escaped_string msg;
12810
12811 if (node == 0 || !warn_deprecated_decl)
12812 return false;
12813
12814 if (!attr)
12815 {
12816 if (DECL_P (node))
12817 attr = DECL_ATTRIBUTES (node);
12818 else if (TYPE_P (node))
12819 {
12820 tree decl = TYPE_STUB_DECL (node);
12821 if (decl)
12822 attr = lookup_attribute ("deprecated",
12823 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
12824 }
12825 }
12826
12827 if (attr)
12828 attr = lookup_attribute ("deprecated", attr);
12829
12830 if (attr)
12831 msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
12832
12833 bool w = false;
12834 if (DECL_P (node))
12835 {
12836 auto_diagnostic_group d;
12837 if (msg)
12838 w = warning (OPT_Wdeprecated_declarations,
12839 "%qD is deprecated: %s", node, (const char *) msg);
12840 else
12841 w = warning (OPT_Wdeprecated_declarations,
12842 "%qD is deprecated", node);
12843 if (w)
12844 inform (DECL_SOURCE_LOCATION (node), "declared here");
12845 }
12846 else if (TYPE_P (node))
12847 {
12848 tree what = NULL_TREE;
12849 tree decl = TYPE_STUB_DECL (node);
12850
12851 if (TYPE_NAME (node))
12852 {
12853 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
12854 what = TYPE_NAME (node);
12855 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
12856 && DECL_NAME (TYPE_NAME (node)))
12857 what = DECL_NAME (TYPE_NAME (node));
12858 }
12859
12860 auto_diagnostic_group d;
12861 if (what)
12862 {
12863 if (msg)
12864 w = warning (OPT_Wdeprecated_declarations,
12865 "%qE is deprecated: %s", what, (const char *) msg);
12866 else
12867 w = warning (OPT_Wdeprecated_declarations,
12868 "%qE is deprecated", what);
12869 }
12870 else
12871 {
12872 if (msg)
12873 w = warning (OPT_Wdeprecated_declarations,
12874 "type is deprecated: %s", (const char *) msg);
12875 else
12876 w = warning (OPT_Wdeprecated_declarations,
12877 "type is deprecated");
12878 }
12879
12880 if (w && decl)
12881 inform (DECL_SOURCE_LOCATION (decl), "declared here");
12882 }
12883
12884 return w;
12885 }
12886
12887 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12888 somewhere in it. */
12889
12890 bool
12891 contains_bitfld_component_ref_p (const_tree ref)
12892 {
12893 while (handled_component_p (ref))
12894 {
12895 if (TREE_CODE (ref) == COMPONENT_REF
12896 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12897 return true;
12898 ref = TREE_OPERAND (ref, 0);
12899 }
12900
12901 return false;
12902 }
12903
12904 /* Try to determine whether a TRY_CATCH expression can fall through.
12905 This is a subroutine of block_may_fallthru. */
12906
12907 static bool
12908 try_catch_may_fallthru (const_tree stmt)
12909 {
12910 tree_stmt_iterator i;
12911
12912 /* If the TRY block can fall through, the whole TRY_CATCH can
12913 fall through. */
12914 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
12915 return true;
12916
12917 i = tsi_start (TREE_OPERAND (stmt, 1));
12918 switch (TREE_CODE (tsi_stmt (i)))
12919 {
12920 case CATCH_EXPR:
12921 /* We expect to see a sequence of CATCH_EXPR trees, each with a
12922 catch expression and a body. The whole TRY_CATCH may fall
12923 through iff any of the catch bodies falls through. */
12924 for (; !tsi_end_p (i); tsi_next (&i))
12925 {
12926 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
12927 return true;
12928 }
12929 return false;
12930
12931 case EH_FILTER_EXPR:
12932 /* The exception filter expression only matters if there is an
12933 exception. If the exception does not match EH_FILTER_TYPES,
12934 we will execute EH_FILTER_FAILURE, and we will fall through
12935 if that falls through. If the exception does match
12936 EH_FILTER_TYPES, the stack unwinder will continue up the
12937 stack, so we will not fall through. We don't know whether we
12938 will throw an exception which matches EH_FILTER_TYPES or not,
12939 so we just ignore EH_FILTER_TYPES and assume that we might
12940 throw an exception which doesn't match. */
12941 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
12942
12943 default:
12944 /* This case represents statements to be executed when an
12945 exception occurs. Those statements are implicitly followed
12946 by a RESX statement to resume execution after the exception.
12947 So in this case the TRY_CATCH never falls through. */
12948 return false;
12949 }
12950 }
12951
12952 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
12953 need not be 100% accurate; simply be conservative and return true if we
12954 don't know. This is used only to avoid stupidly generating extra code.
12955 If we're wrong, we'll just delete the extra code later. */
12956
12957 bool
12958 block_may_fallthru (const_tree block)
12959 {
12960 /* This CONST_CAST is okay because expr_last returns its argument
12961 unmodified and we assign it to a const_tree. */
12962 const_tree stmt = expr_last (CONST_CAST_TREE (block));
12963
12964 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
12965 {
12966 case GOTO_EXPR:
12967 case RETURN_EXPR:
12968 /* Easy cases. If the last statement of the block implies
12969 control transfer, then we can't fall through. */
12970 return false;
12971
12972 case SWITCH_EXPR:
12973 /* If there is a default: label or case labels cover all possible
12974 SWITCH_COND values, then the SWITCH_EXPR will transfer control
12975 to some case label in all cases and all we care is whether the
12976 SWITCH_BODY falls through. */
12977 if (SWITCH_ALL_CASES_P (stmt))
12978 return block_may_fallthru (SWITCH_BODY (stmt));
12979 return true;
12980
12981 case COND_EXPR:
12982 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
12983 return true;
12984 return block_may_fallthru (COND_EXPR_ELSE (stmt));
12985
12986 case BIND_EXPR:
12987 return block_may_fallthru (BIND_EXPR_BODY (stmt));
12988
12989 case TRY_CATCH_EXPR:
12990 return try_catch_may_fallthru (stmt);
12991
12992 case TRY_FINALLY_EXPR:
12993 /* The finally clause is always executed after the try clause,
12994 so if it does not fall through, then the try-finally will not
12995 fall through. Otherwise, if the try clause does not fall
12996 through, then when the finally clause falls through it will
12997 resume execution wherever the try clause was going. So the
12998 whole try-finally will only fall through if both the try
12999 clause and the finally clause fall through. */
13000 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
13001 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
13002
13003 case MODIFY_EXPR:
13004 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
13005 stmt = TREE_OPERAND (stmt, 1);
13006 else
13007 return true;
13008 /* FALLTHRU */
13009
13010 case CALL_EXPR:
13011 /* Functions that do not return do not fall through. */
13012 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
13013
13014 case CLEANUP_POINT_EXPR:
13015 return block_may_fallthru (TREE_OPERAND (stmt, 0));
13016
13017 case TARGET_EXPR:
13018 return block_may_fallthru (TREE_OPERAND (stmt, 1));
13019
13020 case ERROR_MARK:
13021 return true;
13022
13023 default:
13024 return lang_hooks.block_may_fallthru (stmt);
13025 }
13026 }
13027
13028 /* True if we are using EH to handle cleanups. */
13029 static bool using_eh_for_cleanups_flag = false;
13030
13031 /* This routine is called from front ends to indicate eh should be used for
13032 cleanups. */
13033 void
13034 using_eh_for_cleanups (void)
13035 {
13036 using_eh_for_cleanups_flag = true;
13037 }
13038
13039 /* Query whether EH is used for cleanups. */
13040 bool
13041 using_eh_for_cleanups_p (void)
13042 {
13043 return using_eh_for_cleanups_flag;
13044 }
13045
13046 /* Wrapper for tree_code_name to ensure that tree code is valid */
13047 const char *
13048 get_tree_code_name (enum tree_code code)
13049 {
13050 const char *invalid = "<invalid tree code>";
13051
13052 if (code >= MAX_TREE_CODES)
13053 return invalid;
13054
13055 return tree_code_name[code];
13056 }
13057
13058 /* Drops the TREE_OVERFLOW flag from T. */
13059
13060 tree
13061 drop_tree_overflow (tree t)
13062 {
13063 gcc_checking_assert (TREE_OVERFLOW (t));
13064
13065 /* For tree codes with a sharing machinery re-build the result. */
13066 if (poly_int_tree_p (t))
13067 return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
13068
13069 /* For VECTOR_CST, remove the overflow bits from the encoded elements
13070 and canonicalize the result. */
13071 if (TREE_CODE (t) == VECTOR_CST)
13072 {
13073 tree_vector_builder builder;
13074 builder.new_unary_operation (TREE_TYPE (t), t, true);
13075 unsigned int count = builder.encoded_nelts ();
13076 for (unsigned int i = 0; i < count; ++i)
13077 {
13078 tree elt = VECTOR_CST_ELT (t, i);
13079 if (TREE_OVERFLOW (elt))
13080 elt = drop_tree_overflow (elt);
13081 builder.quick_push (elt);
13082 }
13083 return builder.build ();
13084 }
13085
13086 /* Otherwise, as all tcc_constants are possibly shared, copy the node
13087 and drop the flag. */
13088 t = copy_node (t);
13089 TREE_OVERFLOW (t) = 0;
13090
13091 /* For constants that contain nested constants, drop the flag
13092 from those as well. */
13093 if (TREE_CODE (t) == COMPLEX_CST)
13094 {
13095 if (TREE_OVERFLOW (TREE_REALPART (t)))
13096 TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
13097 if (TREE_OVERFLOW (TREE_IMAGPART (t)))
13098 TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
13099 }
13100
13101 return t;
13102 }
13103
13104 /* Given a memory reference expression T, return its base address.
13105 The base address of a memory reference expression is the main
13106 object being referenced. For instance, the base address for
13107 'array[i].fld[j]' is 'array'. You can think of this as stripping
13108 away the offset part from a memory address.
13109
13110 This function calls handled_component_p to strip away all the inner
13111 parts of the memory reference until it reaches the base object. */
13112
13113 tree
13114 get_base_address (tree t)
13115 {
13116 while (handled_component_p (t))
13117 t = TREE_OPERAND (t, 0);
13118
13119 if ((TREE_CODE (t) == MEM_REF
13120 || TREE_CODE (t) == TARGET_MEM_REF)
13121 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
13122 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
13123
13124 /* ??? Either the alias oracle or all callers need to properly deal
13125 with WITH_SIZE_EXPRs before we can look through those. */
13126 if (TREE_CODE (t) == WITH_SIZE_EXPR)
13127 return NULL_TREE;
13128
13129 return t;
13130 }
13131
13132 /* Return a tree of sizetype representing the size, in bytes, of the element
13133 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13134
13135 tree
13136 array_ref_element_size (tree exp)
13137 {
13138 tree aligned_size = TREE_OPERAND (exp, 3);
13139 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
13140 location_t loc = EXPR_LOCATION (exp);
13141
13142 /* If a size was specified in the ARRAY_REF, it's the size measured
13143 in alignment units of the element type. So multiply by that value. */
13144 if (aligned_size)
13145 {
13146 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13147 sizetype from another type of the same width and signedness. */
13148 if (TREE_TYPE (aligned_size) != sizetype)
13149 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
13150 return size_binop_loc (loc, MULT_EXPR, aligned_size,
13151 size_int (TYPE_ALIGN_UNIT (elmt_type)));
13152 }
13153
13154 /* Otherwise, take the size from that of the element type. Substitute
13155 any PLACEHOLDER_EXPR that we have. */
13156 else
13157 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
13158 }
13159
13160 /* Return a tree representing the lower bound of the array mentioned in
13161 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13162
13163 tree
13164 array_ref_low_bound (tree exp)
13165 {
13166 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13167
13168 /* If a lower bound is specified in EXP, use it. */
13169 if (TREE_OPERAND (exp, 2))
13170 return TREE_OPERAND (exp, 2);
13171
13172 /* Otherwise, if there is a domain type and it has a lower bound, use it,
13173 substituting for a PLACEHOLDER_EXPR as needed. */
13174 if (domain_type && TYPE_MIN_VALUE (domain_type))
13175 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
13176
13177 /* Otherwise, return a zero of the appropriate type. */
13178 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
13179 }
13180
13181 /* Return a tree representing the upper bound of the array mentioned in
13182 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13183
13184 tree
13185 array_ref_up_bound (tree exp)
13186 {
13187 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13188
13189 /* If there is a domain type and it has an upper bound, use it, substituting
13190 for a PLACEHOLDER_EXPR as needed. */
13191 if (domain_type && TYPE_MAX_VALUE (domain_type))
13192 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
13193
13194 /* Otherwise fail. */
13195 return NULL_TREE;
13196 }
13197
13198 /* Returns true if REF is an array reference or a component reference
13199 to an array at the end of a structure.
13200 If this is the case, the array may be allocated larger
13201 than its upper bound implies. */
13202
13203 bool
13204 array_at_struct_end_p (tree ref)
13205 {
13206 tree atype;
13207
13208 if (TREE_CODE (ref) == ARRAY_REF
13209 || TREE_CODE (ref) == ARRAY_RANGE_REF)
13210 {
13211 atype = TREE_TYPE (TREE_OPERAND (ref, 0));
13212 ref = TREE_OPERAND (ref, 0);
13213 }
13214 else if (TREE_CODE (ref) == COMPONENT_REF
13215 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
13216 atype = TREE_TYPE (TREE_OPERAND (ref, 1));
13217 else
13218 return false;
13219
13220 if (TREE_CODE (ref) == STRING_CST)
13221 return false;
13222
13223 tree ref_to_array = ref;
13224 while (handled_component_p (ref))
13225 {
13226 /* If the reference chain contains a component reference to a
13227 non-union type and there follows another field the reference
13228 is not at the end of a structure. */
13229 if (TREE_CODE (ref) == COMPONENT_REF)
13230 {
13231 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
13232 {
13233 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
13234 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
13235 nextf = DECL_CHAIN (nextf);
13236 if (nextf)
13237 return false;
13238 }
13239 }
13240 /* If we have a multi-dimensional array we do not consider
13241 a non-innermost dimension as flex array if the whole
13242 multi-dimensional array is at struct end.
13243 Same for an array of aggregates with a trailing array
13244 member. */
13245 else if (TREE_CODE (ref) == ARRAY_REF)
13246 return false;
13247 else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
13248 ;
13249 /* If we view an underlying object as sth else then what we
13250 gathered up to now is what we have to rely on. */
13251 else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
13252 break;
13253 else
13254 gcc_unreachable ();
13255
13256 ref = TREE_OPERAND (ref, 0);
13257 }
13258
13259 /* The array now is at struct end. Treat flexible arrays as
13260 always subject to extend, even into just padding constrained by
13261 an underlying decl. */
13262 if (! TYPE_SIZE (atype)
13263 || ! TYPE_DOMAIN (atype)
13264 || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13265 return true;
13266
13267 if (TREE_CODE (ref) == MEM_REF
13268 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
13269 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
13270
13271 /* If the reference is based on a declared entity, the size of the array
13272 is constrained by its given domain. (Do not trust commons PR/69368). */
13273 if (DECL_P (ref)
13274 && !(flag_unconstrained_commons
13275 && VAR_P (ref) && DECL_COMMON (ref))
13276 && DECL_SIZE_UNIT (ref)
13277 && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
13278 {
13279 /* Check whether the array domain covers all of the available
13280 padding. */
13281 poly_int64 offset;
13282 if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
13283 || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
13284 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
13285 return true;
13286 if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
13287 return true;
13288
13289 /* If at least one extra element fits it is a flexarray. */
13290 if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13291 - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
13292 + 2)
13293 * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
13294 wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
13295 return true;
13296
13297 return false;
13298 }
13299
13300 return true;
13301 }
13302
13303 /* Return a tree representing the offset, in bytes, of the field referenced
13304 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
13305
13306 tree
13307 component_ref_field_offset (tree exp)
13308 {
13309 tree aligned_offset = TREE_OPERAND (exp, 2);
13310 tree field = TREE_OPERAND (exp, 1);
13311 location_t loc = EXPR_LOCATION (exp);
13312
13313 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
13314 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
13315 value. */
13316 if (aligned_offset)
13317 {
13318 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13319 sizetype from another type of the same width and signedness. */
13320 if (TREE_TYPE (aligned_offset) != sizetype)
13321 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
13322 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
13323 size_int (DECL_OFFSET_ALIGN (field)
13324 / BITS_PER_UNIT));
13325 }
13326
13327 /* Otherwise, take the offset from that of the field. Substitute
13328 any PLACEHOLDER_EXPR that we have. */
13329 else
13330 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
13331 }
13332
13333 /* Return the machine mode of T. For vectors, returns the mode of the
13334 inner type. The main use case is to feed the result to HONOR_NANS,
13335 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
13336
13337 machine_mode
13338 element_mode (const_tree t)
13339 {
13340 if (!TYPE_P (t))
13341 t = TREE_TYPE (t);
13342 if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
13343 t = TREE_TYPE (t);
13344 return TYPE_MODE (t);
13345 }
13346
13347 /* Vector types need to re-check the target flags each time we report
13348 the machine mode. We need to do this because attribute target can
13349 change the result of vector_mode_supported_p and have_regs_of_mode
13350 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
13351 change on a per-function basis. */
13352 /* ??? Possibly a better solution is to run through all the types
13353 referenced by a function and re-compute the TYPE_MODE once, rather
13354 than make the TYPE_MODE macro call a function. */
13355
13356 machine_mode
13357 vector_type_mode (const_tree t)
13358 {
13359 machine_mode mode;
13360
13361 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
13362
13363 mode = t->type_common.mode;
13364 if (VECTOR_MODE_P (mode)
13365 && (!targetm.vector_mode_supported_p (mode)
13366 || !have_regs_of_mode[mode]))
13367 {
13368 scalar_int_mode innermode;
13369
13370 /* For integers, try mapping it to a same-sized scalar mode. */
13371 if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
13372 {
13373 poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
13374 * GET_MODE_BITSIZE (innermode));
13375 scalar_int_mode mode;
13376 if (int_mode_for_size (size, 0).exists (&mode)
13377 && have_regs_of_mode[mode])
13378 return mode;
13379 }
13380
13381 return BLKmode;
13382 }
13383
13384 return mode;
13385 }
13386
13387 /* Verify that basic properties of T match TV and thus T can be a variant of
13388 TV. TV should be the more specified variant (i.e. the main variant). */
13389
13390 static bool
13391 verify_type_variant (const_tree t, tree tv)
13392 {
13393 /* Type variant can differ by:
13394
13395 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
13396 ENCODE_QUAL_ADDR_SPACE.
13397 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
13398 in this case some values may not be set in the variant types
13399 (see TYPE_COMPLETE_P checks).
13400 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
13401 - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
13402 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
13403 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
13404 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
13405 this is necessary to make it possible to merge types form different TUs
13406 - arrays, pointers and references may have TREE_TYPE that is a variant
13407 of TREE_TYPE of their main variants.
13408 - aggregates may have new TYPE_FIELDS list that list variants of
13409 the main variant TYPE_FIELDS.
13410 - vector types may differ by TYPE_VECTOR_OPAQUE
13411 */
13412
13413 /* Convenience macro for matching individual fields. */
13414 #define verify_variant_match(flag) \
13415 do { \
13416 if (flag (tv) != flag (t)) \
13417 { \
13418 error ("type variant differs by %s", #flag); \
13419 debug_tree (tv); \
13420 return false; \
13421 } \
13422 } while (false)
13423
13424 /* tree_base checks. */
13425
13426 verify_variant_match (TREE_CODE);
13427 /* FIXME: Ada builds non-artificial variants of artificial types. */
13428 if (TYPE_ARTIFICIAL (tv) && 0)
13429 verify_variant_match (TYPE_ARTIFICIAL);
13430 if (POINTER_TYPE_P (tv))
13431 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
13432 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
13433 verify_variant_match (TYPE_UNSIGNED);
13434 verify_variant_match (TYPE_PACKED);
13435 if (TREE_CODE (t) == REFERENCE_TYPE)
13436 verify_variant_match (TYPE_REF_IS_RVALUE);
13437 if (AGGREGATE_TYPE_P (t))
13438 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
13439 else
13440 verify_variant_match (TYPE_SATURATING);
13441 /* FIXME: This check trigger during libstdc++ build. */
13442 if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
13443 verify_variant_match (TYPE_FINAL_P);
13444
13445 /* tree_type_common checks. */
13446
13447 if (COMPLETE_TYPE_P (t))
13448 {
13449 verify_variant_match (TYPE_MODE);
13450 if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
13451 && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
13452 verify_variant_match (TYPE_SIZE);
13453 if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
13454 && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
13455 && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
13456 {
13457 gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
13458 TYPE_SIZE_UNIT (tv), 0));
13459 error ("type variant has different TYPE_SIZE_UNIT");
13460 debug_tree (tv);
13461 error ("type variant's TYPE_SIZE_UNIT");
13462 debug_tree (TYPE_SIZE_UNIT (tv));
13463 error ("type's TYPE_SIZE_UNIT");
13464 debug_tree (TYPE_SIZE_UNIT (t));
13465 return false;
13466 }
13467 }
13468 verify_variant_match (TYPE_PRECISION);
13469 verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
13470 if (RECORD_OR_UNION_TYPE_P (t))
13471 verify_variant_match (TYPE_TRANSPARENT_AGGR);
13472 else if (TREE_CODE (t) == ARRAY_TYPE)
13473 verify_variant_match (TYPE_NONALIASED_COMPONENT);
13474 /* During LTO we merge variant lists from diferent translation units
13475 that may differ BY TYPE_CONTEXT that in turn may point
13476 to TRANSLATION_UNIT_DECL.
13477 Ada also builds variants of types with different TYPE_CONTEXT. */
13478 if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
13479 verify_variant_match (TYPE_CONTEXT);
13480 verify_variant_match (TYPE_STRING_FLAG);
13481 if (TYPE_ALIAS_SET_KNOWN_P (t))
13482 {
13483 error ("type variant with TYPE_ALIAS_SET_KNOWN_P");
13484 debug_tree (tv);
13485 return false;
13486 }
13487
13488 /* tree_type_non_common checks. */
13489
13490 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13491 and dangle the pointer from time to time. */
13492 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
13493 && (in_lto_p || !TYPE_VFIELD (tv)
13494 || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
13495 {
13496 error ("type variant has different TYPE_VFIELD");
13497 debug_tree (tv);
13498 return false;
13499 }
13500 if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
13501 || TREE_CODE (t) == INTEGER_TYPE
13502 || TREE_CODE (t) == BOOLEAN_TYPE
13503 || TREE_CODE (t) == REAL_TYPE
13504 || TREE_CODE (t) == FIXED_POINT_TYPE)
13505 {
13506 verify_variant_match (TYPE_MAX_VALUE);
13507 verify_variant_match (TYPE_MIN_VALUE);
13508 }
13509 if (TREE_CODE (t) == METHOD_TYPE)
13510 verify_variant_match (TYPE_METHOD_BASETYPE);
13511 if (TREE_CODE (t) == OFFSET_TYPE)
13512 verify_variant_match (TYPE_OFFSET_BASETYPE);
13513 if (TREE_CODE (t) == ARRAY_TYPE)
13514 verify_variant_match (TYPE_ARRAY_MAX_SIZE);
13515 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
13516 or even type's main variant. This is needed to make bootstrap pass
13517 and the bug seems new in GCC 5.
13518 C++ FE should be updated to make this consistent and we should check
13519 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
13520 is a match with main variant.
13521
13522 Also disable the check for Java for now because of parser hack that builds
13523 first an dummy BINFO and then sometimes replace it by real BINFO in some
13524 of the copies. */
13525 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
13526 && TYPE_BINFO (t) != TYPE_BINFO (tv)
13527 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
13528 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
13529 at LTO time only. */
13530 && (in_lto_p && odr_type_p (t)))
13531 {
13532 error ("type variant has different TYPE_BINFO");
13533 debug_tree (tv);
13534 error ("type variant's TYPE_BINFO");
13535 debug_tree (TYPE_BINFO (tv));
13536 error ("type's TYPE_BINFO");
13537 debug_tree (TYPE_BINFO (t));
13538 return false;
13539 }
13540
13541 /* Check various uses of TYPE_VALUES_RAW. */
13542 if (TREE_CODE (t) == ENUMERAL_TYPE
13543 && TYPE_VALUES (t))
13544 verify_variant_match (TYPE_VALUES);
13545 else if (TREE_CODE (t) == ARRAY_TYPE)
13546 verify_variant_match (TYPE_DOMAIN);
13547 /* Permit incomplete variants of complete type. While FEs may complete
13548 all variants, this does not happen for C++ templates in all cases. */
13549 else if (RECORD_OR_UNION_TYPE_P (t)
13550 && COMPLETE_TYPE_P (t)
13551 && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
13552 {
13553 tree f1, f2;
13554
13555 /* Fortran builds qualified variants as new records with items of
13556 qualified type. Verify that they looks same. */
13557 for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
13558 f1 && f2;
13559 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13560 if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
13561 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
13562 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
13563 /* FIXME: gfc_nonrestricted_type builds all types as variants
13564 with exception of pointer types. It deeply copies the type
13565 which means that we may end up with a variant type
13566 referring non-variant pointer. We may change it to
13567 produce types as variants, too, like
13568 objc_get_protocol_qualified_type does. */
13569 && !POINTER_TYPE_P (TREE_TYPE (f1)))
13570 || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
13571 || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
13572 break;
13573 if (f1 || f2)
13574 {
13575 error ("type variant has different TYPE_FIELDS");
13576 debug_tree (tv);
13577 error ("first mismatch is field");
13578 debug_tree (f1);
13579 error ("and field");
13580 debug_tree (f2);
13581 return false;
13582 }
13583 }
13584 else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
13585 verify_variant_match (TYPE_ARG_TYPES);
13586 /* For C++ the qualified variant of array type is really an array type
13587 of qualified TREE_TYPE.
13588 objc builds variants of pointer where pointer to type is a variant, too
13589 in objc_get_protocol_qualified_type. */
13590 if (TREE_TYPE (t) != TREE_TYPE (tv)
13591 && ((TREE_CODE (t) != ARRAY_TYPE
13592 && !POINTER_TYPE_P (t))
13593 || TYPE_MAIN_VARIANT (TREE_TYPE (t))
13594 != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
13595 {
13596 error ("type variant has different TREE_TYPE");
13597 debug_tree (tv);
13598 error ("type variant's TREE_TYPE");
13599 debug_tree (TREE_TYPE (tv));
13600 error ("type's TREE_TYPE");
13601 debug_tree (TREE_TYPE (t));
13602 return false;
13603 }
13604 if (type_with_alias_set_p (t)
13605 && !gimple_canonical_types_compatible_p (t, tv, false))
13606 {
13607 error ("type is not compatible with its variant");
13608 debug_tree (tv);
13609 error ("type variant's TREE_TYPE");
13610 debug_tree (TREE_TYPE (tv));
13611 error ("type's TREE_TYPE");
13612 debug_tree (TREE_TYPE (t));
13613 return false;
13614 }
13615 return true;
13616 #undef verify_variant_match
13617 }
13618
13619
13620 /* The TYPE_CANONICAL merging machinery. It should closely resemble
13621 the middle-end types_compatible_p function. It needs to avoid
13622 claiming types are different for types that should be treated
13623 the same with respect to TBAA. Canonical types are also used
13624 for IL consistency checks via the useless_type_conversion_p
13625 predicate which does not handle all type kinds itself but falls
13626 back to pointer-comparison of TYPE_CANONICAL for aggregates
13627 for example. */
13628
13629 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
13630 type calculation because we need to allow inter-operability between signed
13631 and unsigned variants. */
13632
13633 bool
13634 type_with_interoperable_signedness (const_tree type)
13635 {
13636 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
13637 signed char and unsigned char. Similarly fortran FE builds
13638 C_SIZE_T as signed type, while C defines it unsigned. */
13639
13640 return tree_code_for_canonical_type_merging (TREE_CODE (type))
13641 == INTEGER_TYPE
13642 && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
13643 || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
13644 }
13645
13646 /* Return true iff T1 and T2 are structurally identical for what
13647 TBAA is concerned.
13648 This function is used both by lto.c canonical type merging and by the
13649 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
13650 that have TYPE_CANONICAL defined and assume them equivalent. This is useful
13651 only for LTO because only in these cases TYPE_CANONICAL equivalence
13652 correspond to one defined by gimple_canonical_types_compatible_p. */
13653
13654 bool
13655 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
13656 bool trust_type_canonical)
13657 {
13658 /* Type variants should be same as the main variant. When not doing sanity
13659 checking to verify this fact, go to main variants and save some work. */
13660 if (trust_type_canonical)
13661 {
13662 t1 = TYPE_MAIN_VARIANT (t1);
13663 t2 = TYPE_MAIN_VARIANT (t2);
13664 }
13665
13666 /* Check first for the obvious case of pointer identity. */
13667 if (t1 == t2)
13668 return true;
13669
13670 /* Check that we have two types to compare. */
13671 if (t1 == NULL_TREE || t2 == NULL_TREE)
13672 return false;
13673
13674 /* We consider complete types always compatible with incomplete type.
13675 This does not make sense for canonical type calculation and thus we
13676 need to ensure that we are never called on it.
13677
13678 FIXME: For more correctness the function probably should have three modes
13679 1) mode assuming that types are complete mathcing their structure
13680 2) mode allowing incomplete types but producing equivalence classes
13681 and thus ignoring all info from complete types
13682 3) mode allowing incomplete types to match complete but checking
13683 compatibility between complete types.
13684
13685 1 and 2 can be used for canonical type calculation. 3 is the real
13686 definition of type compatibility that can be used i.e. for warnings during
13687 declaration merging. */
13688
13689 gcc_assert (!trust_type_canonical
13690 || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
13691 /* If the types have been previously registered and found equal
13692 they still are. */
13693
13694 if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
13695 && trust_type_canonical)
13696 {
13697 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
13698 they are always NULL, but they are set to non-NULL for types
13699 constructed by build_pointer_type and variants. In this case the
13700 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
13701 all pointers are considered equal. Be sure to not return false
13702 negatives. */
13703 gcc_checking_assert (canonical_type_used_p (t1)
13704 && canonical_type_used_p (t2));
13705 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
13706 }
13707
13708 /* Can't be the same type if the types don't have the same code. */
13709 enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
13710 if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
13711 return false;
13712
13713 /* Qualifiers do not matter for canonical type comparison purposes. */
13714
13715 /* Void types and nullptr types are always the same. */
13716 if (TREE_CODE (t1) == VOID_TYPE
13717 || TREE_CODE (t1) == NULLPTR_TYPE)
13718 return true;
13719
13720 /* Can't be the same type if they have different mode. */
13721 if (TYPE_MODE (t1) != TYPE_MODE (t2))
13722 return false;
13723
13724 /* Non-aggregate types can be handled cheaply. */
13725 if (INTEGRAL_TYPE_P (t1)
13726 || SCALAR_FLOAT_TYPE_P (t1)
13727 || FIXED_POINT_TYPE_P (t1)
13728 || TREE_CODE (t1) == VECTOR_TYPE
13729 || TREE_CODE (t1) == COMPLEX_TYPE
13730 || TREE_CODE (t1) == OFFSET_TYPE
13731 || POINTER_TYPE_P (t1))
13732 {
13733 /* Can't be the same type if they have different recision. */
13734 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
13735 return false;
13736
13737 /* In some cases the signed and unsigned types are required to be
13738 inter-operable. */
13739 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
13740 && !type_with_interoperable_signedness (t1))
13741 return false;
13742
13743 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
13744 interoperable with "signed char". Unless all frontends are revisited
13745 to agree on these types, we must ignore the flag completely. */
13746
13747 /* Fortran standard define C_PTR type that is compatible with every
13748 C pointer. For this reason we need to glob all pointers into one.
13749 Still pointers in different address spaces are not compatible. */
13750 if (POINTER_TYPE_P (t1))
13751 {
13752 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
13753 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
13754 return false;
13755 }
13756
13757 /* Tail-recurse to components. */
13758 if (TREE_CODE (t1) == VECTOR_TYPE
13759 || TREE_CODE (t1) == COMPLEX_TYPE)
13760 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
13761 TREE_TYPE (t2),
13762 trust_type_canonical);
13763
13764 return true;
13765 }
13766
13767 /* Do type-specific comparisons. */
13768 switch (TREE_CODE (t1))
13769 {
13770 case ARRAY_TYPE:
13771 /* Array types are the same if the element types are the same and
13772 the number of elements are the same. */
13773 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13774 trust_type_canonical)
13775 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
13776 || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
13777 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
13778 return false;
13779 else
13780 {
13781 tree i1 = TYPE_DOMAIN (t1);
13782 tree i2 = TYPE_DOMAIN (t2);
13783
13784 /* For an incomplete external array, the type domain can be
13785 NULL_TREE. Check this condition also. */
13786 if (i1 == NULL_TREE && i2 == NULL_TREE)
13787 return true;
13788 else if (i1 == NULL_TREE || i2 == NULL_TREE)
13789 return false;
13790 else
13791 {
13792 tree min1 = TYPE_MIN_VALUE (i1);
13793 tree min2 = TYPE_MIN_VALUE (i2);
13794 tree max1 = TYPE_MAX_VALUE (i1);
13795 tree max2 = TYPE_MAX_VALUE (i2);
13796
13797 /* The minimum/maximum values have to be the same. */
13798 if ((min1 == min2
13799 || (min1 && min2
13800 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
13801 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
13802 || operand_equal_p (min1, min2, 0))))
13803 && (max1 == max2
13804 || (max1 && max2
13805 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
13806 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
13807 || operand_equal_p (max1, max2, 0)))))
13808 return true;
13809 else
13810 return false;
13811 }
13812 }
13813
13814 case METHOD_TYPE:
13815 case FUNCTION_TYPE:
13816 /* Function types are the same if the return type and arguments types
13817 are the same. */
13818 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13819 trust_type_canonical))
13820 return false;
13821
13822 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
13823 return true;
13824 else
13825 {
13826 tree parms1, parms2;
13827
13828 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
13829 parms1 && parms2;
13830 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
13831 {
13832 if (!gimple_canonical_types_compatible_p
13833 (TREE_VALUE (parms1), TREE_VALUE (parms2),
13834 trust_type_canonical))
13835 return false;
13836 }
13837
13838 if (parms1 || parms2)
13839 return false;
13840
13841 return true;
13842 }
13843
13844 case RECORD_TYPE:
13845 case UNION_TYPE:
13846 case QUAL_UNION_TYPE:
13847 {
13848 tree f1, f2;
13849
13850 /* Don't try to compare variants of an incomplete type, before
13851 TYPE_FIELDS has been copied around. */
13852 if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
13853 return true;
13854
13855
13856 if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
13857 return false;
13858
13859 /* For aggregate types, all the fields must be the same. */
13860 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
13861 f1 || f2;
13862 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13863 {
13864 /* Skip non-fields and zero-sized fields. */
13865 while (f1 && (TREE_CODE (f1) != FIELD_DECL
13866 || (DECL_SIZE (f1)
13867 && integer_zerop (DECL_SIZE (f1)))))
13868 f1 = TREE_CHAIN (f1);
13869 while (f2 && (TREE_CODE (f2) != FIELD_DECL
13870 || (DECL_SIZE (f2)
13871 && integer_zerop (DECL_SIZE (f2)))))
13872 f2 = TREE_CHAIN (f2);
13873 if (!f1 || !f2)
13874 break;
13875 /* The fields must have the same name, offset and type. */
13876 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
13877 || !gimple_compare_field_offset (f1, f2)
13878 || !gimple_canonical_types_compatible_p
13879 (TREE_TYPE (f1), TREE_TYPE (f2),
13880 trust_type_canonical))
13881 return false;
13882 }
13883
13884 /* If one aggregate has more fields than the other, they
13885 are not the same. */
13886 if (f1 || f2)
13887 return false;
13888
13889 return true;
13890 }
13891
13892 default:
13893 /* Consider all types with language specific trees in them mutually
13894 compatible. This is executed only from verify_type and false
13895 positives can be tolerated. */
13896 gcc_assert (!in_lto_p);
13897 return true;
13898 }
13899 }
13900
13901 /* Verify type T. */
13902
13903 void
13904 verify_type (const_tree t)
13905 {
13906 bool error_found = false;
13907 tree mv = TYPE_MAIN_VARIANT (t);
13908 if (!mv)
13909 {
13910 error ("Main variant is not defined");
13911 error_found = true;
13912 }
13913 else if (mv != TYPE_MAIN_VARIANT (mv))
13914 {
13915 error ("TYPE_MAIN_VARIANT has different TYPE_MAIN_VARIANT");
13916 debug_tree (mv);
13917 error_found = true;
13918 }
13919 else if (t != mv && !verify_type_variant (t, mv))
13920 error_found = true;
13921
13922 tree ct = TYPE_CANONICAL (t);
13923 if (!ct)
13924 ;
13925 else if (TYPE_CANONICAL (t) != ct)
13926 {
13927 error ("TYPE_CANONICAL has different TYPE_CANONICAL");
13928 debug_tree (ct);
13929 error_found = true;
13930 }
13931 /* Method and function types can not be used to address memory and thus
13932 TYPE_CANONICAL really matters only for determining useless conversions.
13933
13934 FIXME: C++ FE produce declarations of builtin functions that are not
13935 compatible with main variants. */
13936 else if (TREE_CODE (t) == FUNCTION_TYPE)
13937 ;
13938 else if (t != ct
13939 /* FIXME: gimple_canonical_types_compatible_p can not compare types
13940 with variably sized arrays because their sizes possibly
13941 gimplified to different variables. */
13942 && !variably_modified_type_p (ct, NULL)
13943 && !gimple_canonical_types_compatible_p (t, ct, false)
13944 && COMPLETE_TYPE_P (t))
13945 {
13946 error ("TYPE_CANONICAL is not compatible");
13947 debug_tree (ct);
13948 error_found = true;
13949 }
13950
13951 if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
13952 && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
13953 {
13954 error ("TYPE_MODE of TYPE_CANONICAL is not compatible");
13955 debug_tree (ct);
13956 error_found = true;
13957 }
13958 if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
13959 {
13960 error ("TYPE_CANONICAL of main variant is not main variant");
13961 debug_tree (ct);
13962 debug_tree (TYPE_MAIN_VARIANT (ct));
13963 error_found = true;
13964 }
13965
13966
13967 /* Check various uses of TYPE_MIN_VALUE_RAW. */
13968 if (RECORD_OR_UNION_TYPE_P (t))
13969 {
13970 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13971 and danagle the pointer from time to time. */
13972 if (TYPE_VFIELD (t)
13973 && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
13974 && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
13975 {
13976 error ("TYPE_VFIELD is not FIELD_DECL nor TREE_LIST");
13977 debug_tree (TYPE_VFIELD (t));
13978 error_found = true;
13979 }
13980 }
13981 else if (TREE_CODE (t) == POINTER_TYPE)
13982 {
13983 if (TYPE_NEXT_PTR_TO (t)
13984 && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
13985 {
13986 error ("TYPE_NEXT_PTR_TO is not POINTER_TYPE");
13987 debug_tree (TYPE_NEXT_PTR_TO (t));
13988 error_found = true;
13989 }
13990 }
13991 else if (TREE_CODE (t) == REFERENCE_TYPE)
13992 {
13993 if (TYPE_NEXT_REF_TO (t)
13994 && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
13995 {
13996 error ("TYPE_NEXT_REF_TO is not REFERENCE_TYPE");
13997 debug_tree (TYPE_NEXT_REF_TO (t));
13998 error_found = true;
13999 }
14000 }
14001 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14002 || TREE_CODE (t) == FIXED_POINT_TYPE)
14003 {
14004 /* FIXME: The following check should pass:
14005 useless_type_conversion_p (const_cast <tree> (t),
14006 TREE_TYPE (TYPE_MIN_VALUE (t))
14007 but does not for C sizetypes in LTO. */
14008 }
14009
14010 /* Check various uses of TYPE_MAXVAL_RAW. */
14011 if (RECORD_OR_UNION_TYPE_P (t))
14012 {
14013 if (!TYPE_BINFO (t))
14014 ;
14015 else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
14016 {
14017 error ("TYPE_BINFO is not TREE_BINFO");
14018 debug_tree (TYPE_BINFO (t));
14019 error_found = true;
14020 }
14021 else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
14022 {
14023 error ("TYPE_BINFO type is not TYPE_MAIN_VARIANT");
14024 debug_tree (TREE_TYPE (TYPE_BINFO (t)));
14025 error_found = true;
14026 }
14027 }
14028 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14029 {
14030 if (TYPE_METHOD_BASETYPE (t)
14031 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
14032 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
14033 {
14034 error ("TYPE_METHOD_BASETYPE is not record nor union");
14035 debug_tree (TYPE_METHOD_BASETYPE (t));
14036 error_found = true;
14037 }
14038 }
14039 else if (TREE_CODE (t) == OFFSET_TYPE)
14040 {
14041 if (TYPE_OFFSET_BASETYPE (t)
14042 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
14043 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
14044 {
14045 error ("TYPE_OFFSET_BASETYPE is not record nor union");
14046 debug_tree (TYPE_OFFSET_BASETYPE (t));
14047 error_found = true;
14048 }
14049 }
14050 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14051 || TREE_CODE (t) == FIXED_POINT_TYPE)
14052 {
14053 /* FIXME: The following check should pass:
14054 useless_type_conversion_p (const_cast <tree> (t),
14055 TREE_TYPE (TYPE_MAX_VALUE (t))
14056 but does not for C sizetypes in LTO. */
14057 }
14058 else if (TREE_CODE (t) == ARRAY_TYPE)
14059 {
14060 if (TYPE_ARRAY_MAX_SIZE (t)
14061 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
14062 {
14063 error ("TYPE_ARRAY_MAX_SIZE not INTEGER_CST");
14064 debug_tree (TYPE_ARRAY_MAX_SIZE (t));
14065 error_found = true;
14066 }
14067 }
14068 else if (TYPE_MAX_VALUE_RAW (t))
14069 {
14070 error ("TYPE_MAX_VALUE_RAW non-NULL");
14071 debug_tree (TYPE_MAX_VALUE_RAW (t));
14072 error_found = true;
14073 }
14074
14075 if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
14076 {
14077 error ("TYPE_LANG_SLOT_1 (binfo) field is non-NULL");
14078 debug_tree (TYPE_LANG_SLOT_1 (t));
14079 error_found = true;
14080 }
14081
14082 /* Check various uses of TYPE_VALUES_RAW. */
14083 if (TREE_CODE (t) == ENUMERAL_TYPE)
14084 for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
14085 {
14086 tree value = TREE_VALUE (l);
14087 tree name = TREE_PURPOSE (l);
14088
14089 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
14090 CONST_DECL of ENUMERAL TYPE. */
14091 if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
14092 {
14093 error ("Enum value is not CONST_DECL or INTEGER_CST");
14094 debug_tree (value);
14095 debug_tree (name);
14096 error_found = true;
14097 }
14098 if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
14099 && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
14100 {
14101 error ("Enum value type is not INTEGER_TYPE nor convertible to the enum");
14102 debug_tree (value);
14103 debug_tree (name);
14104 error_found = true;
14105 }
14106 if (TREE_CODE (name) != IDENTIFIER_NODE)
14107 {
14108 error ("Enum value name is not IDENTIFIER_NODE");
14109 debug_tree (value);
14110 debug_tree (name);
14111 error_found = true;
14112 }
14113 }
14114 else if (TREE_CODE (t) == ARRAY_TYPE)
14115 {
14116 if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
14117 {
14118 error ("Array TYPE_DOMAIN is not integer type");
14119 debug_tree (TYPE_DOMAIN (t));
14120 error_found = true;
14121 }
14122 }
14123 else if (RECORD_OR_UNION_TYPE_P (t))
14124 {
14125 if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
14126 {
14127 error ("TYPE_FIELDS defined in incomplete type");
14128 error_found = true;
14129 }
14130 for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
14131 {
14132 /* TODO: verify properties of decls. */
14133 if (TREE_CODE (fld) == FIELD_DECL)
14134 ;
14135 else if (TREE_CODE (fld) == TYPE_DECL)
14136 ;
14137 else if (TREE_CODE (fld) == CONST_DECL)
14138 ;
14139 else if (VAR_P (fld))
14140 ;
14141 else if (TREE_CODE (fld) == TEMPLATE_DECL)
14142 ;
14143 else if (TREE_CODE (fld) == USING_DECL)
14144 ;
14145 else if (TREE_CODE (fld) == FUNCTION_DECL)
14146 ;
14147 else
14148 {
14149 error ("Wrong tree in TYPE_FIELDS list");
14150 debug_tree (fld);
14151 error_found = true;
14152 }
14153 }
14154 }
14155 else if (TREE_CODE (t) == INTEGER_TYPE
14156 || TREE_CODE (t) == BOOLEAN_TYPE
14157 || TREE_CODE (t) == OFFSET_TYPE
14158 || TREE_CODE (t) == REFERENCE_TYPE
14159 || TREE_CODE (t) == NULLPTR_TYPE
14160 || TREE_CODE (t) == POINTER_TYPE)
14161 {
14162 if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
14163 {
14164 error ("TYPE_CACHED_VALUES_P is %i while TYPE_CACHED_VALUES is %p",
14165 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
14166 error_found = true;
14167 }
14168 else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
14169 {
14170 error ("TYPE_CACHED_VALUES is not TREE_VEC");
14171 debug_tree (TYPE_CACHED_VALUES (t));
14172 error_found = true;
14173 }
14174 /* Verify just enough of cache to ensure that no one copied it to new type.
14175 All copying should go by copy_node that should clear it. */
14176 else if (TYPE_CACHED_VALUES_P (t))
14177 {
14178 int i;
14179 for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
14180 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
14181 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
14182 {
14183 error ("wrong TYPE_CACHED_VALUES entry");
14184 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
14185 error_found = true;
14186 break;
14187 }
14188 }
14189 }
14190 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14191 for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
14192 {
14193 /* C++ FE uses TREE_PURPOSE to store initial values. */
14194 if (TREE_PURPOSE (l) && in_lto_p)
14195 {
14196 error ("TREE_PURPOSE is non-NULL in TYPE_ARG_TYPES list");
14197 debug_tree (l);
14198 error_found = true;
14199 }
14200 if (!TYPE_P (TREE_VALUE (l)))
14201 {
14202 error ("Wrong entry in TYPE_ARG_TYPES list");
14203 debug_tree (l);
14204 error_found = true;
14205 }
14206 }
14207 else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
14208 {
14209 error ("TYPE_VALUES_RAW field is non-NULL");
14210 debug_tree (TYPE_VALUES_RAW (t));
14211 error_found = true;
14212 }
14213 if (TREE_CODE (t) != INTEGER_TYPE
14214 && TREE_CODE (t) != BOOLEAN_TYPE
14215 && TREE_CODE (t) != OFFSET_TYPE
14216 && TREE_CODE (t) != REFERENCE_TYPE
14217 && TREE_CODE (t) != NULLPTR_TYPE
14218 && TREE_CODE (t) != POINTER_TYPE
14219 && TYPE_CACHED_VALUES_P (t))
14220 {
14221 error ("TYPE_CACHED_VALUES_P is set while it should not");
14222 error_found = true;
14223 }
14224 if (TYPE_STRING_FLAG (t)
14225 && TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != INTEGER_TYPE)
14226 {
14227 error ("TYPE_STRING_FLAG is set on wrong type code");
14228 error_found = true;
14229 }
14230
14231 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
14232 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
14233 of a type. */
14234 if (TREE_CODE (t) == METHOD_TYPE
14235 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
14236 {
14237 error ("TYPE_METHOD_BASETYPE is not main variant");
14238 error_found = true;
14239 }
14240
14241 if (error_found)
14242 {
14243 debug_tree (const_cast <tree> (t));
14244 internal_error ("verify_type failed");
14245 }
14246 }
14247
14248
14249 /* Return 1 if ARG interpreted as signed in its precision is known to be
14250 always positive or 2 if ARG is known to be always negative, or 3 if
14251 ARG may be positive or negative. */
14252
14253 int
14254 get_range_pos_neg (tree arg)
14255 {
14256 if (arg == error_mark_node)
14257 return 3;
14258
14259 int prec = TYPE_PRECISION (TREE_TYPE (arg));
14260 int cnt = 0;
14261 if (TREE_CODE (arg) == INTEGER_CST)
14262 {
14263 wide_int w = wi::sext (wi::to_wide (arg), prec);
14264 if (wi::neg_p (w))
14265 return 2;
14266 else
14267 return 1;
14268 }
14269 while (CONVERT_EXPR_P (arg)
14270 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
14271 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
14272 {
14273 arg = TREE_OPERAND (arg, 0);
14274 /* Narrower value zero extended into wider type
14275 will always result in positive values. */
14276 if (TYPE_UNSIGNED (TREE_TYPE (arg))
14277 && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
14278 return 1;
14279 prec = TYPE_PRECISION (TREE_TYPE (arg));
14280 if (++cnt > 30)
14281 return 3;
14282 }
14283
14284 if (TREE_CODE (arg) != SSA_NAME)
14285 return 3;
14286 wide_int arg_min, arg_max;
14287 while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
14288 {
14289 gimple *g = SSA_NAME_DEF_STMT (arg);
14290 if (is_gimple_assign (g)
14291 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
14292 {
14293 tree t = gimple_assign_rhs1 (g);
14294 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
14295 && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
14296 {
14297 if (TYPE_UNSIGNED (TREE_TYPE (t))
14298 && TYPE_PRECISION (TREE_TYPE (t)) < prec)
14299 return 1;
14300 prec = TYPE_PRECISION (TREE_TYPE (t));
14301 arg = t;
14302 if (++cnt > 30)
14303 return 3;
14304 continue;
14305 }
14306 }
14307 return 3;
14308 }
14309 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
14310 {
14311 /* For unsigned values, the "positive" range comes
14312 below the "negative" range. */
14313 if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14314 return 1;
14315 if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14316 return 2;
14317 }
14318 else
14319 {
14320 if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14321 return 1;
14322 if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14323 return 2;
14324 }
14325 return 3;
14326 }
14327
14328
14329
14330
14331 /* Return true if ARG is marked with the nonnull attribute in the
14332 current function signature. */
14333
14334 bool
14335 nonnull_arg_p (const_tree arg)
14336 {
14337 tree t, attrs, fntype;
14338 unsigned HOST_WIDE_INT arg_num;
14339
14340 gcc_assert (TREE_CODE (arg) == PARM_DECL
14341 && (POINTER_TYPE_P (TREE_TYPE (arg))
14342 || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
14343
14344 /* The static chain decl is always non null. */
14345 if (arg == cfun->static_chain_decl)
14346 return true;
14347
14348 /* THIS argument of method is always non-NULL. */
14349 if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
14350 && arg == DECL_ARGUMENTS (cfun->decl)
14351 && flag_delete_null_pointer_checks)
14352 return true;
14353
14354 /* Values passed by reference are always non-NULL. */
14355 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
14356 && flag_delete_null_pointer_checks)
14357 return true;
14358
14359 fntype = TREE_TYPE (cfun->decl);
14360 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
14361 {
14362 attrs = lookup_attribute ("nonnull", attrs);
14363
14364 /* If "nonnull" wasn't specified, we know nothing about the argument. */
14365 if (attrs == NULL_TREE)
14366 return false;
14367
14368 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
14369 if (TREE_VALUE (attrs) == NULL_TREE)
14370 return true;
14371
14372 /* Get the position number for ARG in the function signature. */
14373 for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
14374 t;
14375 t = DECL_CHAIN (t), arg_num++)
14376 {
14377 if (t == arg)
14378 break;
14379 }
14380
14381 gcc_assert (t == arg);
14382
14383 /* Now see if ARG_NUM is mentioned in the nonnull list. */
14384 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
14385 {
14386 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
14387 return true;
14388 }
14389 }
14390
14391 return false;
14392 }
14393
14394 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
14395 information. */
14396
14397 location_t
14398 set_block (location_t loc, tree block)
14399 {
14400 location_t pure_loc = get_pure_location (loc);
14401 source_range src_range = get_range_from_loc (line_table, loc);
14402 return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
14403 }
14404
14405 location_t
14406 set_source_range (tree expr, location_t start, location_t finish)
14407 {
14408 source_range src_range;
14409 src_range.m_start = start;
14410 src_range.m_finish = finish;
14411 return set_source_range (expr, src_range);
14412 }
14413
14414 location_t
14415 set_source_range (tree expr, source_range src_range)
14416 {
14417 if (!EXPR_P (expr))
14418 return UNKNOWN_LOCATION;
14419
14420 location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
14421 location_t adhoc = COMBINE_LOCATION_DATA (line_table,
14422 pure_loc,
14423 src_range,
14424 NULL);
14425 SET_EXPR_LOCATION (expr, adhoc);
14426 return adhoc;
14427 }
14428
14429 /* Return EXPR, potentially wrapped with a node expression LOC,
14430 if !CAN_HAVE_LOCATION_P (expr).
14431
14432 NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
14433 VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
14434
14435 Wrapper nodes can be identified using location_wrapper_p. */
14436
14437 tree
14438 maybe_wrap_with_location (tree expr, location_t loc)
14439 {
14440 if (expr == NULL)
14441 return NULL;
14442 if (loc == UNKNOWN_LOCATION)
14443 return expr;
14444 if (CAN_HAVE_LOCATION_P (expr))
14445 return expr;
14446 /* We should only be adding wrappers for constants and for decls,
14447 or for some exceptional tree nodes (e.g. BASELINK in the C++ FE). */
14448 gcc_assert (CONSTANT_CLASS_P (expr)
14449 || DECL_P (expr)
14450 || EXCEPTIONAL_CLASS_P (expr));
14451
14452 /* For now, don't add wrappers to exceptional tree nodes, to minimize
14453 any impact of the wrapper nodes. */
14454 if (EXCEPTIONAL_CLASS_P (expr))
14455 return expr;
14456
14457 tree_code code
14458 = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
14459 || (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
14460 ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
14461 tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
14462 /* Mark this node as being a wrapper. */
14463 EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
14464 return wrapper;
14465 }
14466
14467 /* Return the name of combined function FN, for debugging purposes. */
14468
14469 const char *
14470 combined_fn_name (combined_fn fn)
14471 {
14472 if (builtin_fn_p (fn))
14473 {
14474 tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
14475 return IDENTIFIER_POINTER (DECL_NAME (fndecl));
14476 }
14477 else
14478 return internal_fn_name (as_internal_fn (fn));
14479 }
14480
14481 /* Return a bitmap with a bit set corresponding to each argument in
14482 a function call type FNTYPE declared with attribute nonnull,
14483 or null if none of the function's argument are nonnull. The caller
14484 must free the bitmap. */
14485
14486 bitmap
14487 get_nonnull_args (const_tree fntype)
14488 {
14489 if (fntype == NULL_TREE)
14490 return NULL;
14491
14492 tree attrs = TYPE_ATTRIBUTES (fntype);
14493 if (!attrs)
14494 return NULL;
14495
14496 bitmap argmap = NULL;
14497
14498 /* A function declaration can specify multiple attribute nonnull,
14499 each with zero or more arguments. The loop below creates a bitmap
14500 representing a union of all the arguments. An empty (but non-null)
14501 bitmap means that all arguments have been declaraed nonnull. */
14502 for ( ; attrs; attrs = TREE_CHAIN (attrs))
14503 {
14504 attrs = lookup_attribute ("nonnull", attrs);
14505 if (!attrs)
14506 break;
14507
14508 if (!argmap)
14509 argmap = BITMAP_ALLOC (NULL);
14510
14511 if (!TREE_VALUE (attrs))
14512 {
14513 /* Clear the bitmap in case a previous attribute nonnull
14514 set it and this one overrides it for all arguments. */
14515 bitmap_clear (argmap);
14516 return argmap;
14517 }
14518
14519 /* Iterate over the indices of the format arguments declared nonnull
14520 and set a bit for each. */
14521 for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
14522 {
14523 unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
14524 bitmap_set_bit (argmap, val);
14525 }
14526 }
14527
14528 return argmap;
14529 }
14530
14531 /* Returns true if TYPE is a type where it and all of its subobjects
14532 (recursively) are of structure, union, or array type. */
14533
14534 static bool
14535 default_is_empty_type (tree type)
14536 {
14537 if (RECORD_OR_UNION_TYPE_P (type))
14538 {
14539 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
14540 if (TREE_CODE (field) == FIELD_DECL
14541 && !DECL_PADDING_P (field)
14542 && !default_is_empty_type (TREE_TYPE (field)))
14543 return false;
14544 return true;
14545 }
14546 else if (TREE_CODE (type) == ARRAY_TYPE)
14547 return (integer_minus_onep (array_type_nelts (type))
14548 || TYPE_DOMAIN (type) == NULL_TREE
14549 || default_is_empty_type (TREE_TYPE (type)));
14550 return false;
14551 }
14552
14553 /* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type
14554 that shouldn't be passed via stack. */
14555
14556 bool
14557 default_is_empty_record (const_tree type)
14558 {
14559 if (!abi_version_at_least (12))
14560 return false;
14561
14562 if (type == error_mark_node)
14563 return false;
14564
14565 if (TREE_ADDRESSABLE (type))
14566 return false;
14567
14568 return default_is_empty_type (TYPE_MAIN_VARIANT (type));
14569 }
14570
14571 /* Like int_size_in_bytes, but handle empty records specially. */
14572
14573 HOST_WIDE_INT
14574 arg_int_size_in_bytes (const_tree type)
14575 {
14576 return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
14577 }
14578
14579 /* Like size_in_bytes, but handle empty records specially. */
14580
14581 tree
14582 arg_size_in_bytes (const_tree type)
14583 {
14584 return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
14585 }
14586
14587 /* Return true if an expression with CODE has to have the same result type as
14588 its first operand. */
14589
14590 bool
14591 expr_type_first_operand_type_p (tree_code code)
14592 {
14593 switch (code)
14594 {
14595 case NEGATE_EXPR:
14596 case ABS_EXPR:
14597 case BIT_NOT_EXPR:
14598 case PAREN_EXPR:
14599 case CONJ_EXPR:
14600
14601 case PLUS_EXPR:
14602 case MINUS_EXPR:
14603 case MULT_EXPR:
14604 case TRUNC_DIV_EXPR:
14605 case CEIL_DIV_EXPR:
14606 case FLOOR_DIV_EXPR:
14607 case ROUND_DIV_EXPR:
14608 case TRUNC_MOD_EXPR:
14609 case CEIL_MOD_EXPR:
14610 case FLOOR_MOD_EXPR:
14611 case ROUND_MOD_EXPR:
14612 case RDIV_EXPR:
14613 case EXACT_DIV_EXPR:
14614 case MIN_EXPR:
14615 case MAX_EXPR:
14616 case BIT_IOR_EXPR:
14617 case BIT_XOR_EXPR:
14618 case BIT_AND_EXPR:
14619
14620 case LSHIFT_EXPR:
14621 case RSHIFT_EXPR:
14622 case LROTATE_EXPR:
14623 case RROTATE_EXPR:
14624 return true;
14625
14626 default:
14627 return false;
14628 }
14629 }
14630
14631 /* Return a typenode for the "standard" C type with a given name. */
14632 tree
14633 get_typenode_from_name (const char *name)
14634 {
14635 if (name == NULL || *name == '\0')
14636 return NULL_TREE;
14637
14638 if (strcmp (name, "char") == 0)
14639 return char_type_node;
14640 if (strcmp (name, "unsigned char") == 0)
14641 return unsigned_char_type_node;
14642 if (strcmp (name, "signed char") == 0)
14643 return signed_char_type_node;
14644
14645 if (strcmp (name, "short int") == 0)
14646 return short_integer_type_node;
14647 if (strcmp (name, "short unsigned int") == 0)
14648 return short_unsigned_type_node;
14649
14650 if (strcmp (name, "int") == 0)
14651 return integer_type_node;
14652 if (strcmp (name, "unsigned int") == 0)
14653 return unsigned_type_node;
14654
14655 if (strcmp (name, "long int") == 0)
14656 return long_integer_type_node;
14657 if (strcmp (name, "long unsigned int") == 0)
14658 return long_unsigned_type_node;
14659
14660 if (strcmp (name, "long long int") == 0)
14661 return long_long_integer_type_node;
14662 if (strcmp (name, "long long unsigned int") == 0)
14663 return long_long_unsigned_type_node;
14664
14665 gcc_unreachable ();
14666 }
14667
14668 /* List of pointer types used to declare builtins before we have seen their
14669 real declaration.
14670
14671 Keep the size up to date in tree.h ! */
14672 const builtin_structptr_type builtin_structptr_types[6] =
14673 {
14674 { fileptr_type_node, ptr_type_node, "FILE" },
14675 { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
14676 { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
14677 { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
14678 { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
14679 { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
14680 };
14681
14682 #if CHECKING_P
14683
14684 namespace selftest {
14685
14686 /* Selftests for tree. */
14687
14688 /* Verify that integer constants are sane. */
14689
14690 static void
14691 test_integer_constants ()
14692 {
14693 ASSERT_TRUE (integer_type_node != NULL);
14694 ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
14695
14696 tree type = integer_type_node;
14697
14698 tree zero = build_zero_cst (type);
14699 ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
14700 ASSERT_EQ (type, TREE_TYPE (zero));
14701
14702 tree one = build_int_cst (type, 1);
14703 ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
14704 ASSERT_EQ (type, TREE_TYPE (zero));
14705 }
14706
14707 /* Verify identifiers. */
14708
14709 static void
14710 test_identifiers ()
14711 {
14712 tree identifier = get_identifier ("foo");
14713 ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
14714 ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
14715 }
14716
14717 /* Verify LABEL_DECL. */
14718
14719 static void
14720 test_labels ()
14721 {
14722 tree identifier = get_identifier ("err");
14723 tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
14724 identifier, void_type_node);
14725 ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
14726 ASSERT_FALSE (FORCED_LABEL (label_decl));
14727 }
14728
14729 /* Return a new VECTOR_CST node whose type is TYPE and whose values
14730 are given by VALS. */
14731
14732 static tree
14733 build_vector (tree type, vec<tree> vals MEM_STAT_DECL)
14734 {
14735 gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
14736 tree_vector_builder builder (type, vals.length (), 1);
14737 builder.splice (vals);
14738 return builder.build ();
14739 }
14740
14741 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */
14742
14743 static void
14744 check_vector_cst (vec<tree> expected, tree actual)
14745 {
14746 ASSERT_KNOWN_EQ (expected.length (),
14747 TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
14748 for (unsigned int i = 0; i < expected.length (); ++i)
14749 ASSERT_EQ (wi::to_wide (expected[i]),
14750 wi::to_wide (vector_cst_elt (actual, i)));
14751 }
14752
14753 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
14754 and that its elements match EXPECTED. */
14755
14756 static void
14757 check_vector_cst_duplicate (vec<tree> expected, tree actual,
14758 unsigned int npatterns)
14759 {
14760 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14761 ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
14762 ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
14763 ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
14764 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
14765 check_vector_cst (expected, actual);
14766 }
14767
14768 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
14769 and NPATTERNS background elements, and that its elements match
14770 EXPECTED. */
14771
14772 static void
14773 check_vector_cst_fill (vec<tree> expected, tree actual,
14774 unsigned int npatterns)
14775 {
14776 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14777 ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
14778 ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
14779 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
14780 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
14781 check_vector_cst (expected, actual);
14782 }
14783
14784 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
14785 and that its elements match EXPECTED. */
14786
14787 static void
14788 check_vector_cst_stepped (vec<tree> expected, tree actual,
14789 unsigned int npatterns)
14790 {
14791 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14792 ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
14793 ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
14794 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
14795 ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
14796 check_vector_cst (expected, actual);
14797 }
14798
14799 /* Test the creation of VECTOR_CSTs. */
14800
14801 static void
14802 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
14803 {
14804 auto_vec<tree, 8> elements (8);
14805 elements.quick_grow (8);
14806 tree element_type = build_nonstandard_integer_type (16, true);
14807 tree vector_type = build_vector_type (element_type, 8);
14808
14809 /* Test a simple linear series with a base of 0 and a step of 1:
14810 { 0, 1, 2, 3, 4, 5, 6, 7 }. */
14811 for (unsigned int i = 0; i < 8; ++i)
14812 elements[i] = build_int_cst (element_type, i);
14813 tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
14814 check_vector_cst_stepped (elements, vector, 1);
14815
14816 /* Try the same with the first element replaced by 100:
14817 { 100, 1, 2, 3, 4, 5, 6, 7 }. */
14818 elements[0] = build_int_cst (element_type, 100);
14819 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14820 check_vector_cst_stepped (elements, vector, 1);
14821
14822 /* Try a series that wraps around.
14823 { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */
14824 for (unsigned int i = 1; i < 8; ++i)
14825 elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
14826 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14827 check_vector_cst_stepped (elements, vector, 1);
14828
14829 /* Try a downward series:
14830 { 100, 79, 78, 77, 76, 75, 75, 73 }. */
14831 for (unsigned int i = 1; i < 8; ++i)
14832 elements[i] = build_int_cst (element_type, 80 - i);
14833 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14834 check_vector_cst_stepped (elements, vector, 1);
14835
14836 /* Try two interleaved series with different bases and steps:
14837 { 100, 53, 66, 206, 62, 212, 58, 218 }. */
14838 elements[1] = build_int_cst (element_type, 53);
14839 for (unsigned int i = 2; i < 8; i += 2)
14840 {
14841 elements[i] = build_int_cst (element_type, 70 - i * 2);
14842 elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
14843 }
14844 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14845 check_vector_cst_stepped (elements, vector, 2);
14846
14847 /* Try a duplicated value:
14848 { 100, 100, 100, 100, 100, 100, 100, 100 }. */
14849 for (unsigned int i = 1; i < 8; ++i)
14850 elements[i] = elements[0];
14851 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14852 check_vector_cst_duplicate (elements, vector, 1);
14853
14854 /* Try an interleaved duplicated value:
14855 { 100, 55, 100, 55, 100, 55, 100, 55 }. */
14856 elements[1] = build_int_cst (element_type, 55);
14857 for (unsigned int i = 2; i < 8; ++i)
14858 elements[i] = elements[i - 2];
14859 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14860 check_vector_cst_duplicate (elements, vector, 2);
14861
14862 /* Try a duplicated value with 2 exceptions
14863 { 41, 97, 100, 55, 100, 55, 100, 55 }. */
14864 elements[0] = build_int_cst (element_type, 41);
14865 elements[1] = build_int_cst (element_type, 97);
14866 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14867 check_vector_cst_fill (elements, vector, 2);
14868
14869 /* Try with and without a step
14870 { 41, 97, 100, 21, 100, 35, 100, 49 }. */
14871 for (unsigned int i = 3; i < 8; i += 2)
14872 elements[i] = build_int_cst (element_type, i * 7);
14873 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14874 check_vector_cst_stepped (elements, vector, 2);
14875
14876 /* Try a fully-general constant:
14877 { 41, 97, 100, 21, 100, 9990, 100, 49 }. */
14878 elements[5] = build_int_cst (element_type, 9990);
14879 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14880 check_vector_cst_fill (elements, vector, 4);
14881 }
14882
14883 /* Verify that STRIP_NOPS (NODE) is EXPECTED.
14884 Helper function for test_location_wrappers, to deal with STRIP_NOPS
14885 modifying its argument in-place. */
14886
14887 static void
14888 check_strip_nops (tree node, tree expected)
14889 {
14890 STRIP_NOPS (node);
14891 ASSERT_EQ (expected, node);
14892 }
14893
14894 /* Verify location wrappers. */
14895
14896 static void
14897 test_location_wrappers ()
14898 {
14899 location_t loc = BUILTINS_LOCATION;
14900
14901 ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));
14902
14903 /* Wrapping a constant. */
14904 tree int_cst = build_int_cst (integer_type_node, 42);
14905 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
14906 ASSERT_FALSE (location_wrapper_p (int_cst));
14907
14908 tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
14909 ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
14910 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
14911 ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));
14912
14913 /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION. */
14914 ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));
14915
14916 /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P. */
14917 tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
14918 ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
14919 ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));
14920
14921 /* Wrapping a STRING_CST. */
14922 tree string_cst = build_string (4, "foo");
14923 ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
14924 ASSERT_FALSE (location_wrapper_p (string_cst));
14925
14926 tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
14927 ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
14928 ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
14929 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
14930 ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));
14931
14932
14933 /* Wrapping a variable. */
14934 tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
14935 get_identifier ("some_int_var"),
14936 integer_type_node);
14937 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
14938 ASSERT_FALSE (location_wrapper_p (int_var));
14939
14940 tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
14941 ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
14942 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
14943 ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));
14944
14945 /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
14946 wrapper. */
14947 tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
14948 ASSERT_FALSE (location_wrapper_p (r_cast));
14949 ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));
14950
14951 /* Verify that STRIP_NOPS removes wrappers. */
14952 check_strip_nops (wrapped_int_cst, int_cst);
14953 check_strip_nops (wrapped_string_cst, string_cst);
14954 check_strip_nops (wrapped_int_var, int_var);
14955 }
14956
14957 /* Check that string escaping works correctly. */
14958
14959 static void
14960 test_escaped_strings (void)
14961 {
14962 int saved_cutoff;
14963 escaped_string msg;
14964
14965 msg.escape (NULL);
14966 /* ASSERT_STREQ does not accept NULL as a valid test
14967 result, so we have to use ASSERT_EQ instead. */
14968 ASSERT_EQ (NULL, (const char *) msg);
14969
14970 msg.escape ("");
14971 ASSERT_STREQ ("", (const char *) msg);
14972
14973 msg.escape ("foobar");
14974 ASSERT_STREQ ("foobar", (const char *) msg);
14975
14976 /* Ensure that we have -fmessage-length set to 0. */
14977 saved_cutoff = pp_line_cutoff (global_dc->printer);
14978 pp_line_cutoff (global_dc->printer) = 0;
14979
14980 msg.escape ("foo\nbar");
14981 ASSERT_STREQ ("foo\\nbar", (const char *) msg);
14982
14983 msg.escape ("\a\b\f\n\r\t\v");
14984 ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg);
14985
14986 /* Now repeat the tests with -fmessage-length set to 5. */
14987 pp_line_cutoff (global_dc->printer) = 5;
14988
14989 /* Note that the newline is not translated into an escape. */
14990 msg.escape ("foo\nbar");
14991 ASSERT_STREQ ("foo\nbar", (const char *) msg);
14992
14993 msg.escape ("\a\b\f\n\r\t\v");
14994 ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg);
14995
14996 /* Restore the original message length setting. */
14997 pp_line_cutoff (global_dc->printer) = saved_cutoff;
14998 }
14999
15000 /* Run all of the selftests within this file. */
15001
15002 void
15003 tree_c_tests ()
15004 {
15005 test_integer_constants ();
15006 test_identifiers ();
15007 test_labels ();
15008 test_vector_cst_patterns ();
15009 test_location_wrappers ();
15010 test_escaped_strings ();
15011 }
15012
15013 } // namespace selftest
15014
15015 #endif /* CHECKING_P */
15016
15017 #include "gt-tree.h"