Index declspecs.locations by ds_typedef rather than ds_thread.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h" /* get_random_seed */
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "filenames.h"
45 #include "output.h"
46 #include "target.h"
47 #include "common/common-target.h"
48 #include "langhooks.h"
49 #include "tree-inline.h"
50 #include "tree-iterator.h"
51 #include "basic-block.h"
52 #include "tree-flow.h"
53 #include "params.h"
54 #include "pointer-set.h"
55 #include "tree-pass.h"
56 #include "langhooks-def.h"
57 #include "diagnostic.h"
58 #include "tree-diagnostic.h"
59 #include "tree-pretty-print.h"
60 #include "cgraph.h"
61 #include "except.h"
62 #include "debug.h"
63 #include "intl.h"
64
65 /* Tree code classes. */
66
67 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
68 #define END_OF_BASE_TREE_CODES tcc_exceptional,
69
70 const enum tree_code_class tree_code_type[] = {
71 #include "all-tree.def"
72 };
73
74 #undef DEFTREECODE
75 #undef END_OF_BASE_TREE_CODES
76
77 /* Table indexed by tree code giving number of expression
78 operands beyond the fixed part of the node structure.
79 Not used for types or decls. */
80
81 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
82 #define END_OF_BASE_TREE_CODES 0,
83
84 const unsigned char tree_code_length[] = {
85 #include "all-tree.def"
86 };
87
88 #undef DEFTREECODE
89 #undef END_OF_BASE_TREE_CODES
90
91 /* Names of tree components.
92 Used for printing out the tree and error messages. */
93 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
94 #define END_OF_BASE_TREE_CODES "@dummy",
95
96 const char *const tree_code_name[] = {
97 #include "all-tree.def"
98 };
99
100 #undef DEFTREECODE
101 #undef END_OF_BASE_TREE_CODES
102
103 /* Each tree code class has an associated string representation.
104 These must correspond to the tree_code_class entries. */
105
106 const char *const tree_code_class_strings[] =
107 {
108 "exceptional",
109 "constant",
110 "type",
111 "declaration",
112 "reference",
113 "comparison",
114 "unary",
115 "binary",
116 "statement",
117 "vl_exp",
118 "expression"
119 };
120
121 /* obstack.[ch] explicitly declined to prototype this. */
122 extern int _obstack_allocated_p (struct obstack *h, void *obj);
123
124 /* Statistics-gathering stuff. */
125
126 static int tree_code_counts[MAX_TREE_CODES];
127 int tree_node_counts[(int) all_kinds];
128 int tree_node_sizes[(int) all_kinds];
129
130 /* Keep in sync with tree.h:enum tree_node_kind. */
131 static const char * const tree_node_kind_names[] = {
132 "decls",
133 "types",
134 "blocks",
135 "stmts",
136 "refs",
137 "exprs",
138 "constants",
139 "identifiers",
140 "vecs",
141 "binfos",
142 "ssa names",
143 "constructors",
144 "random kinds",
145 "lang_decl kinds",
146 "lang_type kinds",
147 "omp clauses",
148 };
149
150 /* Unique id for next decl created. */
151 static GTY(()) int next_decl_uid;
152 /* Unique id for next type created. */
153 static GTY(()) int next_type_uid = 1;
154 /* Unique id for next debug decl created. Use negative numbers,
155 to catch erroneous uses. */
156 static GTY(()) int next_debug_decl_uid;
157
158 /* Since we cannot rehash a type after it is in the table, we have to
159 keep the hash code. */
160
161 struct GTY(()) type_hash {
162 unsigned long hash;
163 tree type;
164 };
165
166 /* Initial size of the hash table (rounded to next prime). */
167 #define TYPE_HASH_INITIAL_SIZE 1000
168
169 /* Now here is the hash table. When recording a type, it is added to
170 the slot whose index is the hash code. Note that the hash table is
171 used for several kinds of types (function types, array types and
172 array index range types, for now). While all these live in the
173 same table, they are completely independent, and the hash code is
174 computed differently for each of these. */
175
176 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
177 htab_t type_hash_table;
178
179 /* Hash table and temporary node for larger integer const values. */
180 static GTY (()) tree int_cst_node;
181 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
182 htab_t int_cst_hash_table;
183
184 /* Hash table for optimization flags and target option flags. Use the same
185 hash table for both sets of options. Nodes for building the current
186 optimization and target option nodes. The assumption is most of the time
187 the options created will already be in the hash table, so we avoid
188 allocating and freeing up a node repeatably. */
189 static GTY (()) tree cl_optimization_node;
190 static GTY (()) tree cl_target_option_node;
191 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
192 htab_t cl_option_hash_table;
193
194 /* General tree->tree mapping structure for use in hash tables. */
195
196
197 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
198 htab_t debug_expr_for_decl;
199
200 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
201 htab_t value_expr_for_decl;
202
203 static GTY ((if_marked ("tree_vec_map_marked_p"), param_is (struct tree_vec_map)))
204 htab_t debug_args_for_decl;
205
206 static GTY ((if_marked ("tree_priority_map_marked_p"),
207 param_is (struct tree_priority_map)))
208 htab_t init_priority_for_decl;
209
210 static void set_type_quals (tree, int);
211 static int type_hash_eq (const void *, const void *);
212 static hashval_t type_hash_hash (const void *);
213 static hashval_t int_cst_hash_hash (const void *);
214 static int int_cst_hash_eq (const void *, const void *);
215 static hashval_t cl_option_hash_hash (const void *);
216 static int cl_option_hash_eq (const void *, const void *);
217 static void print_type_hash_statistics (void);
218 static void print_debug_expr_statistics (void);
219 static void print_value_expr_statistics (void);
220 static int type_hash_marked_p (const void *);
221 static unsigned int type_hash_list (const_tree, hashval_t);
222 static unsigned int attribute_hash_list (const_tree, hashval_t);
223
224 tree global_trees[TI_MAX];
225 tree integer_types[itk_none];
226
227 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
228
229 /* Number of operands for each OpenMP clause. */
230 unsigned const char omp_clause_num_ops[] =
231 {
232 0, /* OMP_CLAUSE_ERROR */
233 1, /* OMP_CLAUSE_PRIVATE */
234 1, /* OMP_CLAUSE_SHARED */
235 1, /* OMP_CLAUSE_FIRSTPRIVATE */
236 2, /* OMP_CLAUSE_LASTPRIVATE */
237 4, /* OMP_CLAUSE_REDUCTION */
238 1, /* OMP_CLAUSE_COPYIN */
239 1, /* OMP_CLAUSE_COPYPRIVATE */
240 1, /* OMP_CLAUSE_IF */
241 1, /* OMP_CLAUSE_NUM_THREADS */
242 1, /* OMP_CLAUSE_SCHEDULE */
243 0, /* OMP_CLAUSE_NOWAIT */
244 0, /* OMP_CLAUSE_ORDERED */
245 0, /* OMP_CLAUSE_DEFAULT */
246 3, /* OMP_CLAUSE_COLLAPSE */
247 0, /* OMP_CLAUSE_UNTIED */
248 1, /* OMP_CLAUSE_FINAL */
249 0 /* OMP_CLAUSE_MERGEABLE */
250 };
251
252 const char * const omp_clause_code_name[] =
253 {
254 "error_clause",
255 "private",
256 "shared",
257 "firstprivate",
258 "lastprivate",
259 "reduction",
260 "copyin",
261 "copyprivate",
262 "if",
263 "num_threads",
264 "schedule",
265 "nowait",
266 "ordered",
267 "default",
268 "collapse",
269 "untied",
270 "final",
271 "mergeable"
272 };
273
274
275 /* Return the tree node structure used by tree code CODE. */
276
277 static inline enum tree_node_structure_enum
278 tree_node_structure_for_code (enum tree_code code)
279 {
280 switch (TREE_CODE_CLASS (code))
281 {
282 case tcc_declaration:
283 {
284 switch (code)
285 {
286 case FIELD_DECL:
287 return TS_FIELD_DECL;
288 case PARM_DECL:
289 return TS_PARM_DECL;
290 case VAR_DECL:
291 return TS_VAR_DECL;
292 case LABEL_DECL:
293 return TS_LABEL_DECL;
294 case RESULT_DECL:
295 return TS_RESULT_DECL;
296 case DEBUG_EXPR_DECL:
297 return TS_DECL_WRTL;
298 case CONST_DECL:
299 return TS_CONST_DECL;
300 case TYPE_DECL:
301 return TS_TYPE_DECL;
302 case FUNCTION_DECL:
303 return TS_FUNCTION_DECL;
304 case TRANSLATION_UNIT_DECL:
305 return TS_TRANSLATION_UNIT_DECL;
306 default:
307 return TS_DECL_NON_COMMON;
308 }
309 }
310 case tcc_type:
311 return TS_TYPE_NON_COMMON;
312 case tcc_reference:
313 case tcc_comparison:
314 case tcc_unary:
315 case tcc_binary:
316 case tcc_expression:
317 case tcc_statement:
318 case tcc_vl_exp:
319 return TS_EXP;
320 default: /* tcc_constant and tcc_exceptional */
321 break;
322 }
323 switch (code)
324 {
325 /* tcc_constant cases. */
326 case INTEGER_CST: return TS_INT_CST;
327 case REAL_CST: return TS_REAL_CST;
328 case FIXED_CST: return TS_FIXED_CST;
329 case COMPLEX_CST: return TS_COMPLEX;
330 case VECTOR_CST: return TS_VECTOR;
331 case STRING_CST: return TS_STRING;
332 /* tcc_exceptional cases. */
333 case ERROR_MARK: return TS_COMMON;
334 case IDENTIFIER_NODE: return TS_IDENTIFIER;
335 case TREE_LIST: return TS_LIST;
336 case TREE_VEC: return TS_VEC;
337 case SSA_NAME: return TS_SSA_NAME;
338 case PLACEHOLDER_EXPR: return TS_COMMON;
339 case STATEMENT_LIST: return TS_STATEMENT_LIST;
340 case BLOCK: return TS_BLOCK;
341 case CONSTRUCTOR: return TS_CONSTRUCTOR;
342 case TREE_BINFO: return TS_BINFO;
343 case OMP_CLAUSE: return TS_OMP_CLAUSE;
344 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
345 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
346
347 default:
348 gcc_unreachable ();
349 }
350 }
351
352
353 /* Initialize tree_contains_struct to describe the hierarchy of tree
354 nodes. */
355
356 static void
357 initialize_tree_contains_struct (void)
358 {
359 unsigned i;
360
361 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
362 {
363 enum tree_code code;
364 enum tree_node_structure_enum ts_code;
365
366 code = (enum tree_code) i;
367 ts_code = tree_node_structure_for_code (code);
368
369 /* Mark the TS structure itself. */
370 tree_contains_struct[code][ts_code] = 1;
371
372 /* Mark all the structures that TS is derived from. */
373 switch (ts_code)
374 {
375 case TS_TYPED:
376 case TS_BLOCK:
377 MARK_TS_BASE (code);
378 break;
379
380 case TS_COMMON:
381 case TS_INT_CST:
382 case TS_REAL_CST:
383 case TS_FIXED_CST:
384 case TS_VECTOR:
385 case TS_STRING:
386 case TS_COMPLEX:
387 case TS_SSA_NAME:
388 case TS_CONSTRUCTOR:
389 case TS_EXP:
390 case TS_STATEMENT_LIST:
391 MARK_TS_TYPED (code);
392 break;
393
394 case TS_IDENTIFIER:
395 case TS_DECL_MINIMAL:
396 case TS_TYPE_COMMON:
397 case TS_LIST:
398 case TS_VEC:
399 case TS_BINFO:
400 case TS_OMP_CLAUSE:
401 case TS_OPTIMIZATION:
402 case TS_TARGET_OPTION:
403 MARK_TS_COMMON (code);
404 break;
405
406 case TS_TYPE_WITH_LANG_SPECIFIC:
407 MARK_TS_TYPE_COMMON (code);
408 break;
409
410 case TS_TYPE_NON_COMMON:
411 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
412 break;
413
414 case TS_DECL_COMMON:
415 MARK_TS_DECL_MINIMAL (code);
416 break;
417
418 case TS_DECL_WRTL:
419 case TS_CONST_DECL:
420 MARK_TS_DECL_COMMON (code);
421 break;
422
423 case TS_DECL_NON_COMMON:
424 MARK_TS_DECL_WITH_VIS (code);
425 break;
426
427 case TS_DECL_WITH_VIS:
428 case TS_PARM_DECL:
429 case TS_LABEL_DECL:
430 case TS_RESULT_DECL:
431 MARK_TS_DECL_WRTL (code);
432 break;
433
434 case TS_FIELD_DECL:
435 MARK_TS_DECL_COMMON (code);
436 break;
437
438 case TS_VAR_DECL:
439 MARK_TS_DECL_WITH_VIS (code);
440 break;
441
442 case TS_TYPE_DECL:
443 case TS_FUNCTION_DECL:
444 MARK_TS_DECL_NON_COMMON (code);
445 break;
446
447 case TS_TRANSLATION_UNIT_DECL:
448 MARK_TS_DECL_COMMON (code);
449 break;
450
451 default:
452 gcc_unreachable ();
453 }
454 }
455
456 /* Basic consistency checks for attributes used in fold. */
457 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
458 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
459 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
460 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
461 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
462 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
463 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
464 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
465 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
466 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
467 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
468 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
469 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
470 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
471 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
472 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
473 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
474 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
475 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
476 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
477 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
478 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
479 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
480 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
481 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
482 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
483 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
484 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
485 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
486 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
487 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
488 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
489 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
490 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
491 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
492 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
493 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
494 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
495 }
496
497
498 /* Init tree.c. */
499
500 void
501 init_ttree (void)
502 {
503 /* Initialize the hash table of types. */
504 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
505 type_hash_eq, 0);
506
507 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
508 tree_decl_map_eq, 0);
509
510 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
511 tree_decl_map_eq, 0);
512 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
513 tree_priority_map_eq, 0);
514
515 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
516 int_cst_hash_eq, NULL);
517
518 int_cst_node = make_node (INTEGER_CST);
519
520 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
521 cl_option_hash_eq, NULL);
522
523 cl_optimization_node = make_node (OPTIMIZATION_NODE);
524 cl_target_option_node = make_node (TARGET_OPTION_NODE);
525
526 /* Initialize the tree_contains_struct array. */
527 initialize_tree_contains_struct ();
528 lang_hooks.init_ts ();
529 }
530
531 \f
532 /* The name of the object as the assembler will see it (but before any
533 translations made by ASM_OUTPUT_LABELREF). Often this is the same
534 as DECL_NAME. It is an IDENTIFIER_NODE. */
535 tree
536 decl_assembler_name (tree decl)
537 {
538 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
539 lang_hooks.set_decl_assembler_name (decl);
540 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
541 }
542
543 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
544
545 bool
546 decl_assembler_name_equal (tree decl, const_tree asmname)
547 {
548 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
549 const char *decl_str;
550 const char *asmname_str;
551 bool test = false;
552
553 if (decl_asmname == asmname)
554 return true;
555
556 decl_str = IDENTIFIER_POINTER (decl_asmname);
557 asmname_str = IDENTIFIER_POINTER (asmname);
558
559
560 /* If the target assembler name was set by the user, things are trickier.
561 We have a leading '*' to begin with. After that, it's arguable what
562 is the correct thing to do with -fleading-underscore. Arguably, we've
563 historically been doing the wrong thing in assemble_alias by always
564 printing the leading underscore. Since we're not changing that, make
565 sure user_label_prefix follows the '*' before matching. */
566 if (decl_str[0] == '*')
567 {
568 size_t ulp_len = strlen (user_label_prefix);
569
570 decl_str ++;
571
572 if (ulp_len == 0)
573 test = true;
574 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
575 decl_str += ulp_len, test=true;
576 else
577 decl_str --;
578 }
579 if (asmname_str[0] == '*')
580 {
581 size_t ulp_len = strlen (user_label_prefix);
582
583 asmname_str ++;
584
585 if (ulp_len == 0)
586 test = true;
587 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
588 asmname_str += ulp_len, test=true;
589 else
590 asmname_str --;
591 }
592
593 if (!test)
594 return false;
595 return strcmp (decl_str, asmname_str) == 0;
596 }
597
598 /* Hash asmnames ignoring the user specified marks. */
599
600 hashval_t
601 decl_assembler_name_hash (const_tree asmname)
602 {
603 if (IDENTIFIER_POINTER (asmname)[0] == '*')
604 {
605 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
606 size_t ulp_len = strlen (user_label_prefix);
607
608 if (ulp_len == 0)
609 ;
610 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
611 decl_str += ulp_len;
612
613 return htab_hash_string (decl_str);
614 }
615
616 return htab_hash_string (IDENTIFIER_POINTER (asmname));
617 }
618
619 /* Compute the number of bytes occupied by a tree with code CODE.
620 This function cannot be used for nodes that have variable sizes,
621 including TREE_VEC, STRING_CST, and CALL_EXPR. */
622 size_t
623 tree_code_size (enum tree_code code)
624 {
625 switch (TREE_CODE_CLASS (code))
626 {
627 case tcc_declaration: /* A decl node */
628 {
629 switch (code)
630 {
631 case FIELD_DECL:
632 return sizeof (struct tree_field_decl);
633 case PARM_DECL:
634 return sizeof (struct tree_parm_decl);
635 case VAR_DECL:
636 return sizeof (struct tree_var_decl);
637 case LABEL_DECL:
638 return sizeof (struct tree_label_decl);
639 case RESULT_DECL:
640 return sizeof (struct tree_result_decl);
641 case CONST_DECL:
642 return sizeof (struct tree_const_decl);
643 case TYPE_DECL:
644 return sizeof (struct tree_type_decl);
645 case FUNCTION_DECL:
646 return sizeof (struct tree_function_decl);
647 case DEBUG_EXPR_DECL:
648 return sizeof (struct tree_decl_with_rtl);
649 default:
650 return sizeof (struct tree_decl_non_common);
651 }
652 }
653
654 case tcc_type: /* a type node */
655 return sizeof (struct tree_type_non_common);
656
657 case tcc_reference: /* a reference */
658 case tcc_expression: /* an expression */
659 case tcc_statement: /* an expression with side effects */
660 case tcc_comparison: /* a comparison expression */
661 case tcc_unary: /* a unary arithmetic expression */
662 case tcc_binary: /* a binary arithmetic expression */
663 return (sizeof (struct tree_exp)
664 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
665
666 case tcc_constant: /* a constant */
667 switch (code)
668 {
669 case INTEGER_CST: return sizeof (struct tree_int_cst);
670 case REAL_CST: return sizeof (struct tree_real_cst);
671 case FIXED_CST: return sizeof (struct tree_fixed_cst);
672 case COMPLEX_CST: return sizeof (struct tree_complex);
673 case VECTOR_CST: return sizeof (struct tree_vector);
674 case STRING_CST: gcc_unreachable ();
675 default:
676 return lang_hooks.tree_size (code);
677 }
678
679 case tcc_exceptional: /* something random, like an identifier. */
680 switch (code)
681 {
682 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
683 case TREE_LIST: return sizeof (struct tree_list);
684
685 case ERROR_MARK:
686 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
687
688 case TREE_VEC:
689 case OMP_CLAUSE: gcc_unreachable ();
690
691 case SSA_NAME: return sizeof (struct tree_ssa_name);
692
693 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
694 case BLOCK: return sizeof (struct tree_block);
695 case CONSTRUCTOR: return sizeof (struct tree_constructor);
696 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
697 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
698
699 default:
700 return lang_hooks.tree_size (code);
701 }
702
703 default:
704 gcc_unreachable ();
705 }
706 }
707
708 /* Compute the number of bytes occupied by NODE. This routine only
709 looks at TREE_CODE, except for those nodes that have variable sizes. */
710 size_t
711 tree_size (const_tree node)
712 {
713 const enum tree_code code = TREE_CODE (node);
714 switch (code)
715 {
716 case TREE_BINFO:
717 return (offsetof (struct tree_binfo, base_binfos)
718 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
719
720 case TREE_VEC:
721 return (sizeof (struct tree_vec)
722 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
723
724 case VECTOR_CST:
725 return (sizeof (struct tree_vector)
726 + (TYPE_VECTOR_SUBPARTS (TREE_TYPE (node)) - 1) * sizeof (tree));
727
728 case STRING_CST:
729 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
730
731 case OMP_CLAUSE:
732 return (sizeof (struct tree_omp_clause)
733 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
734 * sizeof (tree));
735
736 default:
737 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
738 return (sizeof (struct tree_exp)
739 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
740 else
741 return tree_code_size (code);
742 }
743 }
744
745 /* Record interesting allocation statistics for a tree node with CODE
746 and LENGTH. */
747
748 static void
749 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
750 size_t length ATTRIBUTE_UNUSED)
751 {
752 enum tree_code_class type = TREE_CODE_CLASS (code);
753 tree_node_kind kind;
754
755 if (!GATHER_STATISTICS)
756 return;
757
758 switch (type)
759 {
760 case tcc_declaration: /* A decl node */
761 kind = d_kind;
762 break;
763
764 case tcc_type: /* a type node */
765 kind = t_kind;
766 break;
767
768 case tcc_statement: /* an expression with side effects */
769 kind = s_kind;
770 break;
771
772 case tcc_reference: /* a reference */
773 kind = r_kind;
774 break;
775
776 case tcc_expression: /* an expression */
777 case tcc_comparison: /* a comparison expression */
778 case tcc_unary: /* a unary arithmetic expression */
779 case tcc_binary: /* a binary arithmetic expression */
780 kind = e_kind;
781 break;
782
783 case tcc_constant: /* a constant */
784 kind = c_kind;
785 break;
786
787 case tcc_exceptional: /* something random, like an identifier. */
788 switch (code)
789 {
790 case IDENTIFIER_NODE:
791 kind = id_kind;
792 break;
793
794 case TREE_VEC:
795 kind = vec_kind;
796 break;
797
798 case TREE_BINFO:
799 kind = binfo_kind;
800 break;
801
802 case SSA_NAME:
803 kind = ssa_name_kind;
804 break;
805
806 case BLOCK:
807 kind = b_kind;
808 break;
809
810 case CONSTRUCTOR:
811 kind = constr_kind;
812 break;
813
814 case OMP_CLAUSE:
815 kind = omp_clause_kind;
816 break;
817
818 default:
819 kind = x_kind;
820 break;
821 }
822 break;
823
824 case tcc_vl_exp:
825 kind = e_kind;
826 break;
827
828 default:
829 gcc_unreachable ();
830 }
831
832 tree_code_counts[(int) code]++;
833 tree_node_counts[(int) kind]++;
834 tree_node_sizes[(int) kind] += length;
835 }
836
837 /* Allocate and return a new UID from the DECL_UID namespace. */
838
839 int
840 allocate_decl_uid (void)
841 {
842 return next_decl_uid++;
843 }
844
845 /* Return a newly allocated node of code CODE. For decl and type
846 nodes, some other fields are initialized. The rest of the node is
847 initialized to zero. This function cannot be used for TREE_VEC or
848 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
849
850 Achoo! I got a code in the node. */
851
852 tree
853 make_node_stat (enum tree_code code MEM_STAT_DECL)
854 {
855 tree t;
856 enum tree_code_class type = TREE_CODE_CLASS (code);
857 size_t length = tree_code_size (code);
858
859 record_node_allocation_statistics (code, length);
860
861 t = ggc_alloc_zone_cleared_tree_node_stat (
862 (code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone,
863 length PASS_MEM_STAT);
864 TREE_SET_CODE (t, code);
865
866 switch (type)
867 {
868 case tcc_statement:
869 TREE_SIDE_EFFECTS (t) = 1;
870 break;
871
872 case tcc_declaration:
873 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
874 {
875 if (code == FUNCTION_DECL)
876 {
877 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
878 DECL_MODE (t) = FUNCTION_MODE;
879 }
880 else
881 DECL_ALIGN (t) = 1;
882 }
883 DECL_SOURCE_LOCATION (t) = input_location;
884 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
885 DECL_UID (t) = --next_debug_decl_uid;
886 else
887 {
888 DECL_UID (t) = allocate_decl_uid ();
889 SET_DECL_PT_UID (t, -1);
890 }
891 if (TREE_CODE (t) == LABEL_DECL)
892 LABEL_DECL_UID (t) = -1;
893
894 break;
895
896 case tcc_type:
897 TYPE_UID (t) = next_type_uid++;
898 TYPE_ALIGN (t) = BITS_PER_UNIT;
899 TYPE_USER_ALIGN (t) = 0;
900 TYPE_MAIN_VARIANT (t) = t;
901 TYPE_CANONICAL (t) = t;
902
903 /* Default to no attributes for type, but let target change that. */
904 TYPE_ATTRIBUTES (t) = NULL_TREE;
905 targetm.set_default_type_attributes (t);
906
907 /* We have not yet computed the alias set for this type. */
908 TYPE_ALIAS_SET (t) = -1;
909 break;
910
911 case tcc_constant:
912 TREE_CONSTANT (t) = 1;
913 break;
914
915 case tcc_expression:
916 switch (code)
917 {
918 case INIT_EXPR:
919 case MODIFY_EXPR:
920 case VA_ARG_EXPR:
921 case PREDECREMENT_EXPR:
922 case PREINCREMENT_EXPR:
923 case POSTDECREMENT_EXPR:
924 case POSTINCREMENT_EXPR:
925 /* All of these have side-effects, no matter what their
926 operands are. */
927 TREE_SIDE_EFFECTS (t) = 1;
928 break;
929
930 default:
931 break;
932 }
933 break;
934
935 default:
936 /* Other classes need no special treatment. */
937 break;
938 }
939
940 return t;
941 }
942 \f
943 /* Return a new node with the same contents as NODE except that its
944 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
945
946 tree
947 copy_node_stat (tree node MEM_STAT_DECL)
948 {
949 tree t;
950 enum tree_code code = TREE_CODE (node);
951 size_t length;
952
953 gcc_assert (code != STATEMENT_LIST);
954
955 length = tree_size (node);
956 record_node_allocation_statistics (code, length);
957 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
958 memcpy (t, node, length);
959
960 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
961 TREE_CHAIN (t) = 0;
962 TREE_ASM_WRITTEN (t) = 0;
963 TREE_VISITED (t) = 0;
964
965 if (TREE_CODE_CLASS (code) == tcc_declaration)
966 {
967 if (code == DEBUG_EXPR_DECL)
968 DECL_UID (t) = --next_debug_decl_uid;
969 else
970 {
971 DECL_UID (t) = allocate_decl_uid ();
972 if (DECL_PT_UID_SET_P (node))
973 SET_DECL_PT_UID (t, DECL_PT_UID (node));
974 }
975 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
976 && DECL_HAS_VALUE_EXPR_P (node))
977 {
978 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
979 DECL_HAS_VALUE_EXPR_P (t) = 1;
980 }
981 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
982 {
983 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
984 DECL_HAS_INIT_PRIORITY_P (t) = 1;
985 }
986 if (TREE_CODE (node) == FUNCTION_DECL)
987 DECL_STRUCT_FUNCTION (t) = NULL;
988 }
989 else if (TREE_CODE_CLASS (code) == tcc_type)
990 {
991 TYPE_UID (t) = next_type_uid++;
992 /* The following is so that the debug code for
993 the copy is different from the original type.
994 The two statements usually duplicate each other
995 (because they clear fields of the same union),
996 but the optimizer should catch that. */
997 TYPE_SYMTAB_POINTER (t) = 0;
998 TYPE_SYMTAB_ADDRESS (t) = 0;
999
1000 /* Do not copy the values cache. */
1001 if (TYPE_CACHED_VALUES_P(t))
1002 {
1003 TYPE_CACHED_VALUES_P (t) = 0;
1004 TYPE_CACHED_VALUES (t) = NULL_TREE;
1005 }
1006 }
1007
1008 return t;
1009 }
1010
1011 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1012 For example, this can copy a list made of TREE_LIST nodes. */
1013
1014 tree
1015 copy_list (tree list)
1016 {
1017 tree head;
1018 tree prev, next;
1019
1020 if (list == 0)
1021 return 0;
1022
1023 head = prev = copy_node (list);
1024 next = TREE_CHAIN (list);
1025 while (next)
1026 {
1027 TREE_CHAIN (prev) = copy_node (next);
1028 prev = TREE_CHAIN (prev);
1029 next = TREE_CHAIN (next);
1030 }
1031 return head;
1032 }
1033
1034 \f
1035 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1036
1037 tree
1038 build_int_cst (tree type, HOST_WIDE_INT low)
1039 {
1040 /* Support legacy code. */
1041 if (!type)
1042 type = integer_type_node;
1043
1044 return double_int_to_tree (type, double_int::from_shwi (low));
1045 }
1046
1047 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1048
1049 tree
1050 build_int_cst_type (tree type, HOST_WIDE_INT low)
1051 {
1052 gcc_assert (type);
1053
1054 return double_int_to_tree (type, double_int::from_shwi (low));
1055 }
1056
1057 /* Constructs tree in type TYPE from with value given by CST. Signedness
1058 of CST is assumed to be the same as the signedness of TYPE. */
1059
1060 tree
1061 double_int_to_tree (tree type, double_int cst)
1062 {
1063 bool sign_extended_type = !TYPE_UNSIGNED (type);
1064
1065 cst = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1066
1067 return build_int_cst_wide (type, cst.low, cst.high);
1068 }
1069
1070 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1071 to be the same as the signedness of TYPE. */
1072
1073 bool
1074 double_int_fits_to_tree_p (const_tree type, double_int cst)
1075 {
1076 /* Size types *are* sign extended. */
1077 bool sign_extended_type = !TYPE_UNSIGNED (type);
1078
1079 double_int ext
1080 = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1081
1082 return cst == ext;
1083 }
1084
1085 /* We force the double_int CST to the range of the type TYPE by sign or
1086 zero extending it. OVERFLOWABLE indicates if we are interested in
1087 overflow of the value, when >0 we are only interested in signed
1088 overflow, for <0 we are interested in any overflow. OVERFLOWED
1089 indicates whether overflow has already occurred. CONST_OVERFLOWED
1090 indicates whether constant overflow has already occurred. We force
1091 T's value to be within range of T's type (by setting to 0 or 1 all
1092 the bits outside the type's range). We set TREE_OVERFLOWED if,
1093 OVERFLOWED is nonzero,
1094 or OVERFLOWABLE is >0 and signed overflow occurs
1095 or OVERFLOWABLE is <0 and any overflow occurs
1096 We return a new tree node for the extended double_int. The node
1097 is shared if no overflow flags are set. */
1098
1099
1100 tree
1101 force_fit_type_double (tree type, double_int cst, int overflowable,
1102 bool overflowed)
1103 {
1104 bool sign_extended_type;
1105
1106 /* Size types *are* sign extended. */
1107 sign_extended_type = !TYPE_UNSIGNED (type);
1108
1109 /* If we need to set overflow flags, return a new unshared node. */
1110 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1111 {
1112 if (overflowed
1113 || overflowable < 0
1114 || (overflowable > 0 && sign_extended_type))
1115 {
1116 tree t = make_node (INTEGER_CST);
1117 TREE_INT_CST (t) = cst.ext (TYPE_PRECISION (type),
1118 !sign_extended_type);
1119 TREE_TYPE (t) = type;
1120 TREE_OVERFLOW (t) = 1;
1121 return t;
1122 }
1123 }
1124
1125 /* Else build a shared node. */
1126 return double_int_to_tree (type, cst);
1127 }
1128
1129 /* These are the hash table functions for the hash table of INTEGER_CST
1130 nodes of a sizetype. */
1131
1132 /* Return the hash code code X, an INTEGER_CST. */
1133
1134 static hashval_t
1135 int_cst_hash_hash (const void *x)
1136 {
1137 const_tree const t = (const_tree) x;
1138
1139 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1140 ^ htab_hash_pointer (TREE_TYPE (t)));
1141 }
1142
1143 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1144 is the same as that given by *Y, which is the same. */
1145
1146 static int
1147 int_cst_hash_eq (const void *x, const void *y)
1148 {
1149 const_tree const xt = (const_tree) x;
1150 const_tree const yt = (const_tree) y;
1151
1152 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1153 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1154 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1155 }
1156
1157 /* Create an INT_CST node of TYPE and value HI:LOW.
1158 The returned node is always shared. For small integers we use a
1159 per-type vector cache, for larger ones we use a single hash table. */
1160
1161 tree
1162 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1163 {
1164 tree t;
1165 int ix = -1;
1166 int limit = 0;
1167
1168 gcc_assert (type);
1169
1170 switch (TREE_CODE (type))
1171 {
1172 case NULLPTR_TYPE:
1173 gcc_assert (hi == 0 && low == 0);
1174 /* Fallthru. */
1175
1176 case POINTER_TYPE:
1177 case REFERENCE_TYPE:
1178 /* Cache NULL pointer. */
1179 if (!hi && !low)
1180 {
1181 limit = 1;
1182 ix = 0;
1183 }
1184 break;
1185
1186 case BOOLEAN_TYPE:
1187 /* Cache false or true. */
1188 limit = 2;
1189 if (!hi && low < 2)
1190 ix = low;
1191 break;
1192
1193 case INTEGER_TYPE:
1194 case OFFSET_TYPE:
1195 if (TYPE_UNSIGNED (type))
1196 {
1197 /* Cache 0..N */
1198 limit = INTEGER_SHARE_LIMIT;
1199 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1200 ix = low;
1201 }
1202 else
1203 {
1204 /* Cache -1..N */
1205 limit = INTEGER_SHARE_LIMIT + 1;
1206 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1207 ix = low + 1;
1208 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1209 ix = 0;
1210 }
1211 break;
1212
1213 case ENUMERAL_TYPE:
1214 break;
1215
1216 default:
1217 gcc_unreachable ();
1218 }
1219
1220 if (ix >= 0)
1221 {
1222 /* Look for it in the type's vector of small shared ints. */
1223 if (!TYPE_CACHED_VALUES_P (type))
1224 {
1225 TYPE_CACHED_VALUES_P (type) = 1;
1226 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1227 }
1228
1229 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1230 if (t)
1231 {
1232 /* Make sure no one is clobbering the shared constant. */
1233 gcc_assert (TREE_TYPE (t) == type);
1234 gcc_assert (TREE_INT_CST_LOW (t) == low);
1235 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1236 }
1237 else
1238 {
1239 /* Create a new shared int. */
1240 t = make_node (INTEGER_CST);
1241
1242 TREE_INT_CST_LOW (t) = low;
1243 TREE_INT_CST_HIGH (t) = hi;
1244 TREE_TYPE (t) = type;
1245
1246 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1247 }
1248 }
1249 else
1250 {
1251 /* Use the cache of larger shared ints. */
1252 void **slot;
1253
1254 TREE_INT_CST_LOW (int_cst_node) = low;
1255 TREE_INT_CST_HIGH (int_cst_node) = hi;
1256 TREE_TYPE (int_cst_node) = type;
1257
1258 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1259 t = (tree) *slot;
1260 if (!t)
1261 {
1262 /* Insert this one into the hash table. */
1263 t = int_cst_node;
1264 *slot = t;
1265 /* Make a new node for next time round. */
1266 int_cst_node = make_node (INTEGER_CST);
1267 }
1268 }
1269
1270 return t;
1271 }
1272
1273 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1274 and the rest are zeros. */
1275
1276 tree
1277 build_low_bits_mask (tree type, unsigned bits)
1278 {
1279 double_int mask;
1280
1281 gcc_assert (bits <= TYPE_PRECISION (type));
1282
1283 if (bits == TYPE_PRECISION (type)
1284 && !TYPE_UNSIGNED (type))
1285 /* Sign extended all-ones mask. */
1286 mask = double_int_minus_one;
1287 else
1288 mask = double_int::mask (bits);
1289
1290 return build_int_cst_wide (type, mask.low, mask.high);
1291 }
1292
1293 /* Checks that X is integer constant that can be expressed in (unsigned)
1294 HOST_WIDE_INT without loss of precision. */
1295
1296 bool
1297 cst_and_fits_in_hwi (const_tree x)
1298 {
1299 if (TREE_CODE (x) != INTEGER_CST)
1300 return false;
1301
1302 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1303 return false;
1304
1305 return (TREE_INT_CST_HIGH (x) == 0
1306 || TREE_INT_CST_HIGH (x) == -1);
1307 }
1308
1309 /* Build a newly constructed TREE_VEC node of length LEN. */
1310
1311 tree
1312 make_vector_stat (unsigned len MEM_STAT_DECL)
1313 {
1314 tree t;
1315 unsigned length = (len - 1) * sizeof (tree) + sizeof (struct tree_vector);
1316
1317 record_node_allocation_statistics (VECTOR_CST, length);
1318
1319 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1320
1321 TREE_SET_CODE (t, VECTOR_CST);
1322 TREE_CONSTANT (t) = 1;
1323
1324 return t;
1325 }
1326
1327 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1328 are in a list pointed to by VALS. */
1329
1330 tree
1331 build_vector_stat (tree type, tree *vals MEM_STAT_DECL)
1332 {
1333 int over = 0;
1334 unsigned cnt = 0;
1335 tree v = make_vector (TYPE_VECTOR_SUBPARTS (type));
1336 TREE_TYPE (v) = type;
1337
1338 /* Iterate through elements and check for overflow. */
1339 for (cnt = 0; cnt < TYPE_VECTOR_SUBPARTS (type); ++cnt)
1340 {
1341 tree value = vals[cnt];
1342
1343 VECTOR_CST_ELT (v, cnt) = value;
1344
1345 /* Don't crash if we get an address constant. */
1346 if (!CONSTANT_CLASS_P (value))
1347 continue;
1348
1349 over |= TREE_OVERFLOW (value);
1350 }
1351
1352 TREE_OVERFLOW (v) = over;
1353 return v;
1354 }
1355
1356 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1357 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1358
1359 tree
1360 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1361 {
1362 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
1363 unsigned HOST_WIDE_INT idx;
1364 tree value;
1365
1366 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1367 vec[idx] = value;
1368 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1369 vec[idx] = build_zero_cst (TREE_TYPE (type));
1370
1371 return build_vector (type, vec);
1372 }
1373
1374 /* Build a vector of type VECTYPE where all the elements are SCs. */
1375 tree
1376 build_vector_from_val (tree vectype, tree sc)
1377 {
1378 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1379
1380 if (sc == error_mark_node)
1381 return sc;
1382
1383 /* Verify that the vector type is suitable for SC. Note that there
1384 is some inconsistency in the type-system with respect to restrict
1385 qualifications of pointers. Vector types always have a main-variant
1386 element type and the qualification is applied to the vector-type.
1387 So TREE_TYPE (vector-type) does not return a properly qualified
1388 vector element-type. */
1389 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1390 TREE_TYPE (vectype)));
1391
1392 if (CONSTANT_CLASS_P (sc))
1393 {
1394 tree *v = XALLOCAVEC (tree, nunits);
1395 for (i = 0; i < nunits; ++i)
1396 v[i] = sc;
1397 return build_vector (vectype, v);
1398 }
1399 else
1400 {
1401 VEC(constructor_elt, gc) *v = VEC_alloc (constructor_elt, gc, nunits);
1402 for (i = 0; i < nunits; ++i)
1403 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1404 return build_constructor (vectype, v);
1405 }
1406 }
1407
1408 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1409 are in the VEC pointed to by VALS. */
1410 tree
1411 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1412 {
1413 tree c = make_node (CONSTRUCTOR);
1414 unsigned int i;
1415 constructor_elt *elt;
1416 bool constant_p = true;
1417 bool side_effects_p = false;
1418
1419 TREE_TYPE (c) = type;
1420 CONSTRUCTOR_ELTS (c) = vals;
1421
1422 FOR_EACH_VEC_ELT (constructor_elt, vals, i, elt)
1423 {
1424 /* Mostly ctors will have elts that don't have side-effects, so
1425 the usual case is to scan all the elements. Hence a single
1426 loop for both const and side effects, rather than one loop
1427 each (with early outs). */
1428 if (!TREE_CONSTANT (elt->value))
1429 constant_p = false;
1430 if (TREE_SIDE_EFFECTS (elt->value))
1431 side_effects_p = true;
1432 }
1433
1434 TREE_SIDE_EFFECTS (c) = side_effects_p;
1435 TREE_CONSTANT (c) = constant_p;
1436
1437 return c;
1438 }
1439
1440 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1441 INDEX and VALUE. */
1442 tree
1443 build_constructor_single (tree type, tree index, tree value)
1444 {
1445 VEC(constructor_elt,gc) *v;
1446 constructor_elt elt = {index, value};
1447
1448 v = VEC_alloc (constructor_elt, gc, 1);
1449 VEC_quick_push (constructor_elt, v, elt);
1450
1451 return build_constructor (type, v);
1452 }
1453
1454
1455 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1456 are in a list pointed to by VALS. */
1457 tree
1458 build_constructor_from_list (tree type, tree vals)
1459 {
1460 tree t;
1461 VEC(constructor_elt,gc) *v = NULL;
1462
1463 if (vals)
1464 {
1465 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1466 for (t = vals; t; t = TREE_CHAIN (t))
1467 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1468 }
1469
1470 return build_constructor (type, v);
1471 }
1472
1473 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1474
1475 tree
1476 build_fixed (tree type, FIXED_VALUE_TYPE f)
1477 {
1478 tree v;
1479 FIXED_VALUE_TYPE *fp;
1480
1481 v = make_node (FIXED_CST);
1482 fp = ggc_alloc_fixed_value ();
1483 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1484
1485 TREE_TYPE (v) = type;
1486 TREE_FIXED_CST_PTR (v) = fp;
1487 return v;
1488 }
1489
1490 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1491
1492 tree
1493 build_real (tree type, REAL_VALUE_TYPE d)
1494 {
1495 tree v;
1496 REAL_VALUE_TYPE *dp;
1497 int overflow = 0;
1498
1499 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1500 Consider doing it via real_convert now. */
1501
1502 v = make_node (REAL_CST);
1503 dp = ggc_alloc_real_value ();
1504 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1505
1506 TREE_TYPE (v) = type;
1507 TREE_REAL_CST_PTR (v) = dp;
1508 TREE_OVERFLOW (v) = overflow;
1509 return v;
1510 }
1511
1512 /* Return a new REAL_CST node whose type is TYPE
1513 and whose value is the integer value of the INTEGER_CST node I. */
1514
1515 REAL_VALUE_TYPE
1516 real_value_from_int_cst (const_tree type, const_tree i)
1517 {
1518 REAL_VALUE_TYPE d;
1519
1520 /* Clear all bits of the real value type so that we can later do
1521 bitwise comparisons to see if two values are the same. */
1522 memset (&d, 0, sizeof d);
1523
1524 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1525 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1526 TYPE_UNSIGNED (TREE_TYPE (i)));
1527 return d;
1528 }
1529
1530 /* Given a tree representing an integer constant I, return a tree
1531 representing the same value as a floating-point constant of type TYPE. */
1532
1533 tree
1534 build_real_from_int_cst (tree type, const_tree i)
1535 {
1536 tree v;
1537 int overflow = TREE_OVERFLOW (i);
1538
1539 v = build_real (type, real_value_from_int_cst (type, i));
1540
1541 TREE_OVERFLOW (v) |= overflow;
1542 return v;
1543 }
1544
1545 /* Return a newly constructed STRING_CST node whose value is
1546 the LEN characters at STR.
1547 Note that for a C string literal, LEN should include the trailing NUL.
1548 The TREE_TYPE is not initialized. */
1549
1550 tree
1551 build_string (int len, const char *str)
1552 {
1553 tree s;
1554 size_t length;
1555
1556 /* Do not waste bytes provided by padding of struct tree_string. */
1557 length = len + offsetof (struct tree_string, str) + 1;
1558
1559 record_node_allocation_statistics (STRING_CST, length);
1560
1561 s = ggc_alloc_tree_node (length);
1562
1563 memset (s, 0, sizeof (struct tree_typed));
1564 TREE_SET_CODE (s, STRING_CST);
1565 TREE_CONSTANT (s) = 1;
1566 TREE_STRING_LENGTH (s) = len;
1567 memcpy (s->string.str, str, len);
1568 s->string.str[len] = '\0';
1569
1570 return s;
1571 }
1572
1573 /* Return a newly constructed COMPLEX_CST node whose value is
1574 specified by the real and imaginary parts REAL and IMAG.
1575 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1576 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1577
1578 tree
1579 build_complex (tree type, tree real, tree imag)
1580 {
1581 tree t = make_node (COMPLEX_CST);
1582
1583 TREE_REALPART (t) = real;
1584 TREE_IMAGPART (t) = imag;
1585 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1586 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1587 return t;
1588 }
1589
1590 /* Return a constant of arithmetic type TYPE which is the
1591 multiplicative identity of the set TYPE. */
1592
1593 tree
1594 build_one_cst (tree type)
1595 {
1596 switch (TREE_CODE (type))
1597 {
1598 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1599 case POINTER_TYPE: case REFERENCE_TYPE:
1600 case OFFSET_TYPE:
1601 return build_int_cst (type, 1);
1602
1603 case REAL_TYPE:
1604 return build_real (type, dconst1);
1605
1606 case FIXED_POINT_TYPE:
1607 /* We can only generate 1 for accum types. */
1608 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1609 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1610
1611 case VECTOR_TYPE:
1612 {
1613 tree scalar = build_one_cst (TREE_TYPE (type));
1614
1615 return build_vector_from_val (type, scalar);
1616 }
1617
1618 case COMPLEX_TYPE:
1619 return build_complex (type,
1620 build_one_cst (TREE_TYPE (type)),
1621 build_zero_cst (TREE_TYPE (type)));
1622
1623 default:
1624 gcc_unreachable ();
1625 }
1626 }
1627
1628 /* Build 0 constant of type TYPE. This is used by constructor folding
1629 and thus the constant should be represented in memory by
1630 zero(es). */
1631
1632 tree
1633 build_zero_cst (tree type)
1634 {
1635 switch (TREE_CODE (type))
1636 {
1637 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1638 case POINTER_TYPE: case REFERENCE_TYPE:
1639 case OFFSET_TYPE: case NULLPTR_TYPE:
1640 return build_int_cst (type, 0);
1641
1642 case REAL_TYPE:
1643 return build_real (type, dconst0);
1644
1645 case FIXED_POINT_TYPE:
1646 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1647
1648 case VECTOR_TYPE:
1649 {
1650 tree scalar = build_zero_cst (TREE_TYPE (type));
1651
1652 return build_vector_from_val (type, scalar);
1653 }
1654
1655 case COMPLEX_TYPE:
1656 {
1657 tree zero = build_zero_cst (TREE_TYPE (type));
1658
1659 return build_complex (type, zero, zero);
1660 }
1661
1662 default:
1663 if (!AGGREGATE_TYPE_P (type))
1664 return fold_convert (type, integer_zero_node);
1665 return build_constructor (type, NULL);
1666 }
1667 }
1668
1669
1670 /* Build a BINFO with LEN language slots. */
1671
1672 tree
1673 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1674 {
1675 tree t;
1676 size_t length = (offsetof (struct tree_binfo, base_binfos)
1677 + VEC_embedded_size (tree, base_binfos));
1678
1679 record_node_allocation_statistics (TREE_BINFO, length);
1680
1681 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1682
1683 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1684
1685 TREE_SET_CODE (t, TREE_BINFO);
1686
1687 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1688
1689 return t;
1690 }
1691
1692 /* Create a CASE_LABEL_EXPR tree node and return it. */
1693
1694 tree
1695 build_case_label (tree low_value, tree high_value, tree label_decl)
1696 {
1697 tree t = make_node (CASE_LABEL_EXPR);
1698
1699 TREE_TYPE (t) = void_type_node;
1700 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
1701
1702 CASE_LOW (t) = low_value;
1703 CASE_HIGH (t) = high_value;
1704 CASE_LABEL (t) = label_decl;
1705 CASE_CHAIN (t) = NULL_TREE;
1706
1707 return t;
1708 }
1709
1710 /* Build a newly constructed TREE_VEC node of length LEN. */
1711
1712 tree
1713 make_tree_vec_stat (int len MEM_STAT_DECL)
1714 {
1715 tree t;
1716 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1717
1718 record_node_allocation_statistics (TREE_VEC, length);
1719
1720 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1721
1722 TREE_SET_CODE (t, TREE_VEC);
1723 TREE_VEC_LENGTH (t) = len;
1724
1725 return t;
1726 }
1727 \f
1728 /* Return 1 if EXPR is the integer constant zero or a complex constant
1729 of zero. */
1730
1731 int
1732 integer_zerop (const_tree expr)
1733 {
1734 STRIP_NOPS (expr);
1735
1736 switch (TREE_CODE (expr))
1737 {
1738 case INTEGER_CST:
1739 return (TREE_INT_CST_LOW (expr) == 0
1740 && TREE_INT_CST_HIGH (expr) == 0);
1741 case COMPLEX_CST:
1742 return (integer_zerop (TREE_REALPART (expr))
1743 && integer_zerop (TREE_IMAGPART (expr)));
1744 case VECTOR_CST:
1745 {
1746 unsigned i;
1747 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1748 if (!integer_zerop (VECTOR_CST_ELT (expr, i)))
1749 return false;
1750 return true;
1751 }
1752 default:
1753 return false;
1754 }
1755 }
1756
1757 /* Return 1 if EXPR is the integer constant one or the corresponding
1758 complex constant. */
1759
1760 int
1761 integer_onep (const_tree expr)
1762 {
1763 STRIP_NOPS (expr);
1764
1765 switch (TREE_CODE (expr))
1766 {
1767 case INTEGER_CST:
1768 return (TREE_INT_CST_LOW (expr) == 1
1769 && TREE_INT_CST_HIGH (expr) == 0);
1770 case COMPLEX_CST:
1771 return (integer_onep (TREE_REALPART (expr))
1772 && integer_zerop (TREE_IMAGPART (expr)));
1773 case VECTOR_CST:
1774 {
1775 unsigned i;
1776 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1777 if (!integer_onep (VECTOR_CST_ELT (expr, i)))
1778 return false;
1779 return true;
1780 }
1781 default:
1782 return false;
1783 }
1784 }
1785
1786 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1787 it contains. Likewise for the corresponding complex constant. */
1788
1789 int
1790 integer_all_onesp (const_tree expr)
1791 {
1792 int prec;
1793 int uns;
1794
1795 STRIP_NOPS (expr);
1796
1797 if (TREE_CODE (expr) == COMPLEX_CST
1798 && integer_all_onesp (TREE_REALPART (expr))
1799 && integer_zerop (TREE_IMAGPART (expr)))
1800 return 1;
1801
1802 else if (TREE_CODE (expr) == VECTOR_CST)
1803 {
1804 unsigned i;
1805 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1806 if (!integer_all_onesp (VECTOR_CST_ELT (expr, i)))
1807 return 0;
1808 return 1;
1809 }
1810
1811 else if (TREE_CODE (expr) != INTEGER_CST)
1812 return 0;
1813
1814 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1815 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1816 && TREE_INT_CST_HIGH (expr) == -1)
1817 return 1;
1818 if (!uns)
1819 return 0;
1820
1821 prec = TYPE_PRECISION (TREE_TYPE (expr));
1822 if (prec >= HOST_BITS_PER_WIDE_INT)
1823 {
1824 HOST_WIDE_INT high_value;
1825 int shift_amount;
1826
1827 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1828
1829 /* Can not handle precisions greater than twice the host int size. */
1830 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1831 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1832 /* Shifting by the host word size is undefined according to the ANSI
1833 standard, so we must handle this as a special case. */
1834 high_value = -1;
1835 else
1836 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1837
1838 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1839 && TREE_INT_CST_HIGH (expr) == high_value);
1840 }
1841 else
1842 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1843 }
1844
1845 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1846 one bit on). */
1847
1848 int
1849 integer_pow2p (const_tree expr)
1850 {
1851 int prec;
1852 unsigned HOST_WIDE_INT high, low;
1853
1854 STRIP_NOPS (expr);
1855
1856 if (TREE_CODE (expr) == COMPLEX_CST
1857 && integer_pow2p (TREE_REALPART (expr))
1858 && integer_zerop (TREE_IMAGPART (expr)))
1859 return 1;
1860
1861 if (TREE_CODE (expr) != INTEGER_CST)
1862 return 0;
1863
1864 prec = TYPE_PRECISION (TREE_TYPE (expr));
1865 high = TREE_INT_CST_HIGH (expr);
1866 low = TREE_INT_CST_LOW (expr);
1867
1868 /* First clear all bits that are beyond the type's precision in case
1869 we've been sign extended. */
1870
1871 if (prec == HOST_BITS_PER_DOUBLE_INT)
1872 ;
1873 else if (prec > HOST_BITS_PER_WIDE_INT)
1874 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1875 else
1876 {
1877 high = 0;
1878 if (prec < HOST_BITS_PER_WIDE_INT)
1879 low &= ~((HOST_WIDE_INT) (-1) << prec);
1880 }
1881
1882 if (high == 0 && low == 0)
1883 return 0;
1884
1885 return ((high == 0 && (low & (low - 1)) == 0)
1886 || (low == 0 && (high & (high - 1)) == 0));
1887 }
1888
1889 /* Return 1 if EXPR is an integer constant other than zero or a
1890 complex constant other than zero. */
1891
1892 int
1893 integer_nonzerop (const_tree expr)
1894 {
1895 STRIP_NOPS (expr);
1896
1897 return ((TREE_CODE (expr) == INTEGER_CST
1898 && (TREE_INT_CST_LOW (expr) != 0
1899 || TREE_INT_CST_HIGH (expr) != 0))
1900 || (TREE_CODE (expr) == COMPLEX_CST
1901 && (integer_nonzerop (TREE_REALPART (expr))
1902 || integer_nonzerop (TREE_IMAGPART (expr)))));
1903 }
1904
1905 /* Return 1 if EXPR is the fixed-point constant zero. */
1906
1907 int
1908 fixed_zerop (const_tree expr)
1909 {
1910 return (TREE_CODE (expr) == FIXED_CST
1911 && TREE_FIXED_CST (expr).data.is_zero ());
1912 }
1913
1914 /* Return the power of two represented by a tree node known to be a
1915 power of two. */
1916
1917 int
1918 tree_log2 (const_tree expr)
1919 {
1920 int prec;
1921 HOST_WIDE_INT high, low;
1922
1923 STRIP_NOPS (expr);
1924
1925 if (TREE_CODE (expr) == COMPLEX_CST)
1926 return tree_log2 (TREE_REALPART (expr));
1927
1928 prec = TYPE_PRECISION (TREE_TYPE (expr));
1929 high = TREE_INT_CST_HIGH (expr);
1930 low = TREE_INT_CST_LOW (expr);
1931
1932 /* First clear all bits that are beyond the type's precision in case
1933 we've been sign extended. */
1934
1935 if (prec == HOST_BITS_PER_DOUBLE_INT)
1936 ;
1937 else if (prec > HOST_BITS_PER_WIDE_INT)
1938 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1939 else
1940 {
1941 high = 0;
1942 if (prec < HOST_BITS_PER_WIDE_INT)
1943 low &= ~((HOST_WIDE_INT) (-1) << prec);
1944 }
1945
1946 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1947 : exact_log2 (low));
1948 }
1949
1950 /* Similar, but return the largest integer Y such that 2 ** Y is less
1951 than or equal to EXPR. */
1952
1953 int
1954 tree_floor_log2 (const_tree expr)
1955 {
1956 int prec;
1957 HOST_WIDE_INT high, low;
1958
1959 STRIP_NOPS (expr);
1960
1961 if (TREE_CODE (expr) == COMPLEX_CST)
1962 return tree_log2 (TREE_REALPART (expr));
1963
1964 prec = TYPE_PRECISION (TREE_TYPE (expr));
1965 high = TREE_INT_CST_HIGH (expr);
1966 low = TREE_INT_CST_LOW (expr);
1967
1968 /* First clear all bits that are beyond the type's precision in case
1969 we've been sign extended. Ignore if type's precision hasn't been set
1970 since what we are doing is setting it. */
1971
1972 if (prec == HOST_BITS_PER_DOUBLE_INT || prec == 0)
1973 ;
1974 else if (prec > HOST_BITS_PER_WIDE_INT)
1975 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1976 else
1977 {
1978 high = 0;
1979 if (prec < HOST_BITS_PER_WIDE_INT)
1980 low &= ~((HOST_WIDE_INT) (-1) << prec);
1981 }
1982
1983 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1984 : floor_log2 (low));
1985 }
1986
1987 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1988 decimal float constants, so don't return 1 for them. */
1989
1990 int
1991 real_zerop (const_tree expr)
1992 {
1993 STRIP_NOPS (expr);
1994
1995 switch (TREE_CODE (expr))
1996 {
1997 case REAL_CST:
1998 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1999 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2000 case COMPLEX_CST:
2001 return real_zerop (TREE_REALPART (expr))
2002 && real_zerop (TREE_IMAGPART (expr));
2003 case VECTOR_CST:
2004 {
2005 unsigned i;
2006 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2007 if (!real_zerop (VECTOR_CST_ELT (expr, i)))
2008 return false;
2009 return true;
2010 }
2011 default:
2012 return false;
2013 }
2014 }
2015
2016 /* Return 1 if EXPR is the real constant one in real or complex form.
2017 Trailing zeroes matter for decimal float constants, so don't return
2018 1 for them. */
2019
2020 int
2021 real_onep (const_tree expr)
2022 {
2023 STRIP_NOPS (expr);
2024
2025 switch (TREE_CODE (expr))
2026 {
2027 case REAL_CST:
2028 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
2029 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2030 case COMPLEX_CST:
2031 return real_onep (TREE_REALPART (expr))
2032 && real_zerop (TREE_IMAGPART (expr));
2033 case VECTOR_CST:
2034 {
2035 unsigned i;
2036 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2037 if (!real_onep (VECTOR_CST_ELT (expr, i)))
2038 return false;
2039 return true;
2040 }
2041 default:
2042 return false;
2043 }
2044 }
2045
2046 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
2047 for decimal float constants, so don't return 1 for them. */
2048
2049 int
2050 real_twop (const_tree expr)
2051 {
2052 STRIP_NOPS (expr);
2053
2054 switch (TREE_CODE (expr))
2055 {
2056 case REAL_CST:
2057 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
2058 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2059 case COMPLEX_CST:
2060 return real_twop (TREE_REALPART (expr))
2061 && real_zerop (TREE_IMAGPART (expr));
2062 case VECTOR_CST:
2063 {
2064 unsigned i;
2065 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2066 if (!real_twop (VECTOR_CST_ELT (expr, i)))
2067 return false;
2068 return true;
2069 }
2070 default:
2071 return false;
2072 }
2073 }
2074
2075 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2076 matter for decimal float constants, so don't return 1 for them. */
2077
2078 int
2079 real_minus_onep (const_tree expr)
2080 {
2081 STRIP_NOPS (expr);
2082
2083 switch (TREE_CODE (expr))
2084 {
2085 case REAL_CST:
2086 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
2087 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2088 case COMPLEX_CST:
2089 return real_minus_onep (TREE_REALPART (expr))
2090 && real_zerop (TREE_IMAGPART (expr));
2091 case VECTOR_CST:
2092 {
2093 unsigned i;
2094 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2095 if (!real_minus_onep (VECTOR_CST_ELT (expr, i)))
2096 return false;
2097 return true;
2098 }
2099 default:
2100 return false;
2101 }
2102 }
2103
2104 /* Nonzero if EXP is a constant or a cast of a constant. */
2105
2106 int
2107 really_constant_p (const_tree exp)
2108 {
2109 /* This is not quite the same as STRIP_NOPS. It does more. */
2110 while (CONVERT_EXPR_P (exp)
2111 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2112 exp = TREE_OPERAND (exp, 0);
2113 return TREE_CONSTANT (exp);
2114 }
2115 \f
2116 /* Return first list element whose TREE_VALUE is ELEM.
2117 Return 0 if ELEM is not in LIST. */
2118
2119 tree
2120 value_member (tree elem, tree list)
2121 {
2122 while (list)
2123 {
2124 if (elem == TREE_VALUE (list))
2125 return list;
2126 list = TREE_CHAIN (list);
2127 }
2128 return NULL_TREE;
2129 }
2130
2131 /* Return first list element whose TREE_PURPOSE is ELEM.
2132 Return 0 if ELEM is not in LIST. */
2133
2134 tree
2135 purpose_member (const_tree elem, tree list)
2136 {
2137 while (list)
2138 {
2139 if (elem == TREE_PURPOSE (list))
2140 return list;
2141 list = TREE_CHAIN (list);
2142 }
2143 return NULL_TREE;
2144 }
2145
2146 /* Return true if ELEM is in V. */
2147
2148 bool
2149 vec_member (const_tree elem, VEC(tree,gc) *v)
2150 {
2151 unsigned ix;
2152 tree t;
2153 FOR_EACH_VEC_ELT (tree, v, ix, t)
2154 if (elem == t)
2155 return true;
2156 return false;
2157 }
2158
2159 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2160 NULL_TREE. */
2161
2162 tree
2163 chain_index (int idx, tree chain)
2164 {
2165 for (; chain && idx > 0; --idx)
2166 chain = TREE_CHAIN (chain);
2167 return chain;
2168 }
2169
2170 /* Return nonzero if ELEM is part of the chain CHAIN. */
2171
2172 int
2173 chain_member (const_tree elem, const_tree chain)
2174 {
2175 while (chain)
2176 {
2177 if (elem == chain)
2178 return 1;
2179 chain = DECL_CHAIN (chain);
2180 }
2181
2182 return 0;
2183 }
2184
2185 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2186 We expect a null pointer to mark the end of the chain.
2187 This is the Lisp primitive `length'. */
2188
2189 int
2190 list_length (const_tree t)
2191 {
2192 const_tree p = t;
2193 #ifdef ENABLE_TREE_CHECKING
2194 const_tree q = t;
2195 #endif
2196 int len = 0;
2197
2198 while (p)
2199 {
2200 p = TREE_CHAIN (p);
2201 #ifdef ENABLE_TREE_CHECKING
2202 if (len % 2)
2203 q = TREE_CHAIN (q);
2204 gcc_assert (p != q);
2205 #endif
2206 len++;
2207 }
2208
2209 return len;
2210 }
2211
2212 /* Returns the number of FIELD_DECLs in TYPE. */
2213
2214 int
2215 fields_length (const_tree type)
2216 {
2217 tree t = TYPE_FIELDS (type);
2218 int count = 0;
2219
2220 for (; t; t = DECL_CHAIN (t))
2221 if (TREE_CODE (t) == FIELD_DECL)
2222 ++count;
2223
2224 return count;
2225 }
2226
2227 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2228 UNION_TYPE TYPE, or NULL_TREE if none. */
2229
2230 tree
2231 first_field (const_tree type)
2232 {
2233 tree t = TYPE_FIELDS (type);
2234 while (t && TREE_CODE (t) != FIELD_DECL)
2235 t = TREE_CHAIN (t);
2236 return t;
2237 }
2238
2239 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2240 by modifying the last node in chain 1 to point to chain 2.
2241 This is the Lisp primitive `nconc'. */
2242
2243 tree
2244 chainon (tree op1, tree op2)
2245 {
2246 tree t1;
2247
2248 if (!op1)
2249 return op2;
2250 if (!op2)
2251 return op1;
2252
2253 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2254 continue;
2255 TREE_CHAIN (t1) = op2;
2256
2257 #ifdef ENABLE_TREE_CHECKING
2258 {
2259 tree t2;
2260 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2261 gcc_assert (t2 != t1);
2262 }
2263 #endif
2264
2265 return op1;
2266 }
2267
2268 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2269
2270 tree
2271 tree_last (tree chain)
2272 {
2273 tree next;
2274 if (chain)
2275 while ((next = TREE_CHAIN (chain)))
2276 chain = next;
2277 return chain;
2278 }
2279
2280 /* Reverse the order of elements in the chain T,
2281 and return the new head of the chain (old last element). */
2282
2283 tree
2284 nreverse (tree t)
2285 {
2286 tree prev = 0, decl, next;
2287 for (decl = t; decl; decl = next)
2288 {
2289 /* We shouldn't be using this function to reverse BLOCK chains; we
2290 have blocks_nreverse for that. */
2291 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2292 next = TREE_CHAIN (decl);
2293 TREE_CHAIN (decl) = prev;
2294 prev = decl;
2295 }
2296 return prev;
2297 }
2298 \f
2299 /* Return a newly created TREE_LIST node whose
2300 purpose and value fields are PARM and VALUE. */
2301
2302 tree
2303 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2304 {
2305 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2306 TREE_PURPOSE (t) = parm;
2307 TREE_VALUE (t) = value;
2308 return t;
2309 }
2310
2311 /* Build a chain of TREE_LIST nodes from a vector. */
2312
2313 tree
2314 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2315 {
2316 tree ret = NULL_TREE;
2317 tree *pp = &ret;
2318 unsigned int i;
2319 tree t;
2320 FOR_EACH_VEC_ELT (tree, vec, i, t)
2321 {
2322 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2323 pp = &TREE_CHAIN (*pp);
2324 }
2325 return ret;
2326 }
2327
2328 /* Return a newly created TREE_LIST node whose
2329 purpose and value fields are PURPOSE and VALUE
2330 and whose TREE_CHAIN is CHAIN. */
2331
2332 tree
2333 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2334 {
2335 tree node;
2336
2337 node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list)
2338 PASS_MEM_STAT);
2339 memset (node, 0, sizeof (struct tree_common));
2340
2341 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2342
2343 TREE_SET_CODE (node, TREE_LIST);
2344 TREE_CHAIN (node) = chain;
2345 TREE_PURPOSE (node) = purpose;
2346 TREE_VALUE (node) = value;
2347 return node;
2348 }
2349
2350 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2351 trees. */
2352
2353 VEC(tree,gc) *
2354 ctor_to_vec (tree ctor)
2355 {
2356 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2357 unsigned int ix;
2358 tree val;
2359
2360 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2361 VEC_quick_push (tree, vec, val);
2362
2363 return vec;
2364 }
2365 \f
2366 /* Return the size nominally occupied by an object of type TYPE
2367 when it resides in memory. The value is measured in units of bytes,
2368 and its data type is that normally used for type sizes
2369 (which is the first type created by make_signed_type or
2370 make_unsigned_type). */
2371
2372 tree
2373 size_in_bytes (const_tree type)
2374 {
2375 tree t;
2376
2377 if (type == error_mark_node)
2378 return integer_zero_node;
2379
2380 type = TYPE_MAIN_VARIANT (type);
2381 t = TYPE_SIZE_UNIT (type);
2382
2383 if (t == 0)
2384 {
2385 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2386 return size_zero_node;
2387 }
2388
2389 return t;
2390 }
2391
2392 /* Return the size of TYPE (in bytes) as a wide integer
2393 or return -1 if the size can vary or is larger than an integer. */
2394
2395 HOST_WIDE_INT
2396 int_size_in_bytes (const_tree type)
2397 {
2398 tree t;
2399
2400 if (type == error_mark_node)
2401 return 0;
2402
2403 type = TYPE_MAIN_VARIANT (type);
2404 t = TYPE_SIZE_UNIT (type);
2405 if (t == 0
2406 || TREE_CODE (t) != INTEGER_CST
2407 || TREE_INT_CST_HIGH (t) != 0
2408 /* If the result would appear negative, it's too big to represent. */
2409 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2410 return -1;
2411
2412 return TREE_INT_CST_LOW (t);
2413 }
2414
2415 /* Return the maximum size of TYPE (in bytes) as a wide integer
2416 or return -1 if the size can vary or is larger than an integer. */
2417
2418 HOST_WIDE_INT
2419 max_int_size_in_bytes (const_tree type)
2420 {
2421 HOST_WIDE_INT size = -1;
2422 tree size_tree;
2423
2424 /* If this is an array type, check for a possible MAX_SIZE attached. */
2425
2426 if (TREE_CODE (type) == ARRAY_TYPE)
2427 {
2428 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2429
2430 if (size_tree && host_integerp (size_tree, 1))
2431 size = tree_low_cst (size_tree, 1);
2432 }
2433
2434 /* If we still haven't been able to get a size, see if the language
2435 can compute a maximum size. */
2436
2437 if (size == -1)
2438 {
2439 size_tree = lang_hooks.types.max_size (type);
2440
2441 if (size_tree && host_integerp (size_tree, 1))
2442 size = tree_low_cst (size_tree, 1);
2443 }
2444
2445 return size;
2446 }
2447
2448 /* Returns a tree for the size of EXP in bytes. */
2449
2450 tree
2451 tree_expr_size (const_tree exp)
2452 {
2453 if (DECL_P (exp)
2454 && DECL_SIZE_UNIT (exp) != 0)
2455 return DECL_SIZE_UNIT (exp);
2456 else
2457 return size_in_bytes (TREE_TYPE (exp));
2458 }
2459 \f
2460 /* Return the bit position of FIELD, in bits from the start of the record.
2461 This is a tree of type bitsizetype. */
2462
2463 tree
2464 bit_position (const_tree field)
2465 {
2466 return bit_from_pos (DECL_FIELD_OFFSET (field),
2467 DECL_FIELD_BIT_OFFSET (field));
2468 }
2469
2470 /* Likewise, but return as an integer. It must be representable in
2471 that way (since it could be a signed value, we don't have the
2472 option of returning -1 like int_size_in_byte can. */
2473
2474 HOST_WIDE_INT
2475 int_bit_position (const_tree field)
2476 {
2477 return tree_low_cst (bit_position (field), 0);
2478 }
2479 \f
2480 /* Return the byte position of FIELD, in bytes from the start of the record.
2481 This is a tree of type sizetype. */
2482
2483 tree
2484 byte_position (const_tree field)
2485 {
2486 return byte_from_pos (DECL_FIELD_OFFSET (field),
2487 DECL_FIELD_BIT_OFFSET (field));
2488 }
2489
2490 /* Likewise, but return as an integer. It must be representable in
2491 that way (since it could be a signed value, we don't have the
2492 option of returning -1 like int_size_in_byte can. */
2493
2494 HOST_WIDE_INT
2495 int_byte_position (const_tree field)
2496 {
2497 return tree_low_cst (byte_position (field), 0);
2498 }
2499 \f
2500 /* Return the strictest alignment, in bits, that T is known to have. */
2501
2502 unsigned int
2503 expr_align (const_tree t)
2504 {
2505 unsigned int align0, align1;
2506
2507 switch (TREE_CODE (t))
2508 {
2509 CASE_CONVERT: case NON_LVALUE_EXPR:
2510 /* If we have conversions, we know that the alignment of the
2511 object must meet each of the alignments of the types. */
2512 align0 = expr_align (TREE_OPERAND (t, 0));
2513 align1 = TYPE_ALIGN (TREE_TYPE (t));
2514 return MAX (align0, align1);
2515
2516 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2517 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2518 case CLEANUP_POINT_EXPR:
2519 /* These don't change the alignment of an object. */
2520 return expr_align (TREE_OPERAND (t, 0));
2521
2522 case COND_EXPR:
2523 /* The best we can do is say that the alignment is the least aligned
2524 of the two arms. */
2525 align0 = expr_align (TREE_OPERAND (t, 1));
2526 align1 = expr_align (TREE_OPERAND (t, 2));
2527 return MIN (align0, align1);
2528
2529 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2530 meaningfully, it's always 1. */
2531 case LABEL_DECL: case CONST_DECL:
2532 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2533 case FUNCTION_DECL:
2534 gcc_assert (DECL_ALIGN (t) != 0);
2535 return DECL_ALIGN (t);
2536
2537 default:
2538 break;
2539 }
2540
2541 /* Otherwise take the alignment from that of the type. */
2542 return TYPE_ALIGN (TREE_TYPE (t));
2543 }
2544 \f
2545 /* Return, as a tree node, the number of elements for TYPE (which is an
2546 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2547
2548 tree
2549 array_type_nelts (const_tree type)
2550 {
2551 tree index_type, min, max;
2552
2553 /* If they did it with unspecified bounds, then we should have already
2554 given an error about it before we got here. */
2555 if (! TYPE_DOMAIN (type))
2556 return error_mark_node;
2557
2558 index_type = TYPE_DOMAIN (type);
2559 min = TYPE_MIN_VALUE (index_type);
2560 max = TYPE_MAX_VALUE (index_type);
2561
2562 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
2563 if (!max)
2564 return error_mark_node;
2565
2566 return (integer_zerop (min)
2567 ? max
2568 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2569 }
2570 \f
2571 /* If arg is static -- a reference to an object in static storage -- then
2572 return the object. This is not the same as the C meaning of `static'.
2573 If arg isn't static, return NULL. */
2574
2575 tree
2576 staticp (tree arg)
2577 {
2578 switch (TREE_CODE (arg))
2579 {
2580 case FUNCTION_DECL:
2581 /* Nested functions are static, even though taking their address will
2582 involve a trampoline as we unnest the nested function and create
2583 the trampoline on the tree level. */
2584 return arg;
2585
2586 case VAR_DECL:
2587 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2588 && ! DECL_THREAD_LOCAL_P (arg)
2589 && ! DECL_DLLIMPORT_P (arg)
2590 ? arg : NULL);
2591
2592 case CONST_DECL:
2593 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2594 ? arg : NULL);
2595
2596 case CONSTRUCTOR:
2597 return TREE_STATIC (arg) ? arg : NULL;
2598
2599 case LABEL_DECL:
2600 case STRING_CST:
2601 return arg;
2602
2603 case COMPONENT_REF:
2604 /* If the thing being referenced is not a field, then it is
2605 something language specific. */
2606 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2607
2608 /* If we are referencing a bitfield, we can't evaluate an
2609 ADDR_EXPR at compile time and so it isn't a constant. */
2610 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2611 return NULL;
2612
2613 return staticp (TREE_OPERAND (arg, 0));
2614
2615 case BIT_FIELD_REF:
2616 return NULL;
2617
2618 case INDIRECT_REF:
2619 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2620
2621 case ARRAY_REF:
2622 case ARRAY_RANGE_REF:
2623 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2624 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2625 return staticp (TREE_OPERAND (arg, 0));
2626 else
2627 return NULL;
2628
2629 case COMPOUND_LITERAL_EXPR:
2630 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2631
2632 default:
2633 return NULL;
2634 }
2635 }
2636
2637 \f
2638
2639
2640 /* Return whether OP is a DECL whose address is function-invariant. */
2641
2642 bool
2643 decl_address_invariant_p (const_tree op)
2644 {
2645 /* The conditions below are slightly less strict than the one in
2646 staticp. */
2647
2648 switch (TREE_CODE (op))
2649 {
2650 case PARM_DECL:
2651 case RESULT_DECL:
2652 case LABEL_DECL:
2653 case FUNCTION_DECL:
2654 return true;
2655
2656 case VAR_DECL:
2657 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2658 || DECL_THREAD_LOCAL_P (op)
2659 || DECL_CONTEXT (op) == current_function_decl
2660 || decl_function_context (op) == current_function_decl)
2661 return true;
2662 break;
2663
2664 case CONST_DECL:
2665 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2666 || decl_function_context (op) == current_function_decl)
2667 return true;
2668 break;
2669
2670 default:
2671 break;
2672 }
2673
2674 return false;
2675 }
2676
2677 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2678
2679 bool
2680 decl_address_ip_invariant_p (const_tree op)
2681 {
2682 /* The conditions below are slightly less strict than the one in
2683 staticp. */
2684
2685 switch (TREE_CODE (op))
2686 {
2687 case LABEL_DECL:
2688 case FUNCTION_DECL:
2689 case STRING_CST:
2690 return true;
2691
2692 case VAR_DECL:
2693 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2694 && !DECL_DLLIMPORT_P (op))
2695 || DECL_THREAD_LOCAL_P (op))
2696 return true;
2697 break;
2698
2699 case CONST_DECL:
2700 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2701 return true;
2702 break;
2703
2704 default:
2705 break;
2706 }
2707
2708 return false;
2709 }
2710
2711
2712 /* Return true if T is function-invariant (internal function, does
2713 not handle arithmetic; that's handled in skip_simple_arithmetic and
2714 tree_invariant_p). */
2715
2716 static bool tree_invariant_p (tree t);
2717
2718 static bool
2719 tree_invariant_p_1 (tree t)
2720 {
2721 tree op;
2722
2723 if (TREE_CONSTANT (t)
2724 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2725 return true;
2726
2727 switch (TREE_CODE (t))
2728 {
2729 case SAVE_EXPR:
2730 return true;
2731
2732 case ADDR_EXPR:
2733 op = TREE_OPERAND (t, 0);
2734 while (handled_component_p (op))
2735 {
2736 switch (TREE_CODE (op))
2737 {
2738 case ARRAY_REF:
2739 case ARRAY_RANGE_REF:
2740 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2741 || TREE_OPERAND (op, 2) != NULL_TREE
2742 || TREE_OPERAND (op, 3) != NULL_TREE)
2743 return false;
2744 break;
2745
2746 case COMPONENT_REF:
2747 if (TREE_OPERAND (op, 2) != NULL_TREE)
2748 return false;
2749 break;
2750
2751 default:;
2752 }
2753 op = TREE_OPERAND (op, 0);
2754 }
2755
2756 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2757
2758 default:
2759 break;
2760 }
2761
2762 return false;
2763 }
2764
2765 /* Return true if T is function-invariant. */
2766
2767 static bool
2768 tree_invariant_p (tree t)
2769 {
2770 tree inner = skip_simple_arithmetic (t);
2771 return tree_invariant_p_1 (inner);
2772 }
2773
2774 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2775 Do this to any expression which may be used in more than one place,
2776 but must be evaluated only once.
2777
2778 Normally, expand_expr would reevaluate the expression each time.
2779 Calling save_expr produces something that is evaluated and recorded
2780 the first time expand_expr is called on it. Subsequent calls to
2781 expand_expr just reuse the recorded value.
2782
2783 The call to expand_expr that generates code that actually computes
2784 the value is the first call *at compile time*. Subsequent calls
2785 *at compile time* generate code to use the saved value.
2786 This produces correct result provided that *at run time* control
2787 always flows through the insns made by the first expand_expr
2788 before reaching the other places where the save_expr was evaluated.
2789 You, the caller of save_expr, must make sure this is so.
2790
2791 Constants, and certain read-only nodes, are returned with no
2792 SAVE_EXPR because that is safe. Expressions containing placeholders
2793 are not touched; see tree.def for an explanation of what these
2794 are used for. */
2795
2796 tree
2797 save_expr (tree expr)
2798 {
2799 tree t = fold (expr);
2800 tree inner;
2801
2802 /* If the tree evaluates to a constant, then we don't want to hide that
2803 fact (i.e. this allows further folding, and direct checks for constants).
2804 However, a read-only object that has side effects cannot be bypassed.
2805 Since it is no problem to reevaluate literals, we just return the
2806 literal node. */
2807 inner = skip_simple_arithmetic (t);
2808 if (TREE_CODE (inner) == ERROR_MARK)
2809 return inner;
2810
2811 if (tree_invariant_p_1 (inner))
2812 return t;
2813
2814 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2815 it means that the size or offset of some field of an object depends on
2816 the value within another field.
2817
2818 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2819 and some variable since it would then need to be both evaluated once and
2820 evaluated more than once. Front-ends must assure this case cannot
2821 happen by surrounding any such subexpressions in their own SAVE_EXPR
2822 and forcing evaluation at the proper time. */
2823 if (contains_placeholder_p (inner))
2824 return t;
2825
2826 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2827 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2828
2829 /* This expression might be placed ahead of a jump to ensure that the
2830 value was computed on both sides of the jump. So make sure it isn't
2831 eliminated as dead. */
2832 TREE_SIDE_EFFECTS (t) = 1;
2833 return t;
2834 }
2835
2836 /* Look inside EXPR and into any simple arithmetic operations. Return
2837 the innermost non-arithmetic node. */
2838
2839 tree
2840 skip_simple_arithmetic (tree expr)
2841 {
2842 tree inner;
2843
2844 /* We don't care about whether this can be used as an lvalue in this
2845 context. */
2846 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2847 expr = TREE_OPERAND (expr, 0);
2848
2849 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2850 a constant, it will be more efficient to not make another SAVE_EXPR since
2851 it will allow better simplification and GCSE will be able to merge the
2852 computations if they actually occur. */
2853 inner = expr;
2854 while (1)
2855 {
2856 if (UNARY_CLASS_P (inner))
2857 inner = TREE_OPERAND (inner, 0);
2858 else if (BINARY_CLASS_P (inner))
2859 {
2860 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2861 inner = TREE_OPERAND (inner, 0);
2862 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2863 inner = TREE_OPERAND (inner, 1);
2864 else
2865 break;
2866 }
2867 else
2868 break;
2869 }
2870
2871 return inner;
2872 }
2873
2874
2875 /* Return which tree structure is used by T. */
2876
2877 enum tree_node_structure_enum
2878 tree_node_structure (const_tree t)
2879 {
2880 const enum tree_code code = TREE_CODE (t);
2881 return tree_node_structure_for_code (code);
2882 }
2883
2884 /* Set various status flags when building a CALL_EXPR object T. */
2885
2886 static void
2887 process_call_operands (tree t)
2888 {
2889 bool side_effects = TREE_SIDE_EFFECTS (t);
2890 bool read_only = false;
2891 int i = call_expr_flags (t);
2892
2893 /* Calls have side-effects, except those to const or pure functions. */
2894 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2895 side_effects = true;
2896 /* Propagate TREE_READONLY of arguments for const functions. */
2897 if (i & ECF_CONST)
2898 read_only = true;
2899
2900 if (!side_effects || read_only)
2901 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2902 {
2903 tree op = TREE_OPERAND (t, i);
2904 if (op && TREE_SIDE_EFFECTS (op))
2905 side_effects = true;
2906 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2907 read_only = false;
2908 }
2909
2910 TREE_SIDE_EFFECTS (t) = side_effects;
2911 TREE_READONLY (t) = read_only;
2912 }
2913 \f
2914 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
2915 size or offset that depends on a field within a record. */
2916
2917 bool
2918 contains_placeholder_p (const_tree exp)
2919 {
2920 enum tree_code code;
2921
2922 if (!exp)
2923 return 0;
2924
2925 code = TREE_CODE (exp);
2926 if (code == PLACEHOLDER_EXPR)
2927 return 1;
2928
2929 switch (TREE_CODE_CLASS (code))
2930 {
2931 case tcc_reference:
2932 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2933 position computations since they will be converted into a
2934 WITH_RECORD_EXPR involving the reference, which will assume
2935 here will be valid. */
2936 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2937
2938 case tcc_exceptional:
2939 if (code == TREE_LIST)
2940 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2941 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2942 break;
2943
2944 case tcc_unary:
2945 case tcc_binary:
2946 case tcc_comparison:
2947 case tcc_expression:
2948 switch (code)
2949 {
2950 case COMPOUND_EXPR:
2951 /* Ignoring the first operand isn't quite right, but works best. */
2952 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2953
2954 case COND_EXPR:
2955 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2956 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2957 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2958
2959 case SAVE_EXPR:
2960 /* The save_expr function never wraps anything containing
2961 a PLACEHOLDER_EXPR. */
2962 return 0;
2963
2964 default:
2965 break;
2966 }
2967
2968 switch (TREE_CODE_LENGTH (code))
2969 {
2970 case 1:
2971 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2972 case 2:
2973 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2974 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2975 default:
2976 return 0;
2977 }
2978
2979 case tcc_vl_exp:
2980 switch (code)
2981 {
2982 case CALL_EXPR:
2983 {
2984 const_tree arg;
2985 const_call_expr_arg_iterator iter;
2986 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2987 if (CONTAINS_PLACEHOLDER_P (arg))
2988 return 1;
2989 return 0;
2990 }
2991 default:
2992 return 0;
2993 }
2994
2995 default:
2996 return 0;
2997 }
2998 return 0;
2999 }
3000
3001 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3002 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3003 field positions. */
3004
3005 static bool
3006 type_contains_placeholder_1 (const_tree type)
3007 {
3008 /* If the size contains a placeholder or the parent type (component type in
3009 the case of arrays) type involves a placeholder, this type does. */
3010 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3011 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3012 || (!POINTER_TYPE_P (type)
3013 && TREE_TYPE (type)
3014 && type_contains_placeholder_p (TREE_TYPE (type))))
3015 return true;
3016
3017 /* Now do type-specific checks. Note that the last part of the check above
3018 greatly limits what we have to do below. */
3019 switch (TREE_CODE (type))
3020 {
3021 case VOID_TYPE:
3022 case COMPLEX_TYPE:
3023 case ENUMERAL_TYPE:
3024 case BOOLEAN_TYPE:
3025 case POINTER_TYPE:
3026 case OFFSET_TYPE:
3027 case REFERENCE_TYPE:
3028 case METHOD_TYPE:
3029 case FUNCTION_TYPE:
3030 case VECTOR_TYPE:
3031 case NULLPTR_TYPE:
3032 return false;
3033
3034 case INTEGER_TYPE:
3035 case REAL_TYPE:
3036 case FIXED_POINT_TYPE:
3037 /* Here we just check the bounds. */
3038 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3039 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3040
3041 case ARRAY_TYPE:
3042 /* We have already checked the component type above, so just check the
3043 domain type. */
3044 return type_contains_placeholder_p (TYPE_DOMAIN (type));
3045
3046 case RECORD_TYPE:
3047 case UNION_TYPE:
3048 case QUAL_UNION_TYPE:
3049 {
3050 tree field;
3051
3052 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3053 if (TREE_CODE (field) == FIELD_DECL
3054 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3055 || (TREE_CODE (type) == QUAL_UNION_TYPE
3056 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3057 || type_contains_placeholder_p (TREE_TYPE (field))))
3058 return true;
3059
3060 return false;
3061 }
3062
3063 default:
3064 gcc_unreachable ();
3065 }
3066 }
3067
3068 /* Wrapper around above function used to cache its result. */
3069
3070 bool
3071 type_contains_placeholder_p (tree type)
3072 {
3073 bool result;
3074
3075 /* If the contains_placeholder_bits field has been initialized,
3076 then we know the answer. */
3077 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3078 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3079
3080 /* Indicate that we've seen this type node, and the answer is false.
3081 This is what we want to return if we run into recursion via fields. */
3082 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3083
3084 /* Compute the real value. */
3085 result = type_contains_placeholder_1 (type);
3086
3087 /* Store the real value. */
3088 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3089
3090 return result;
3091 }
3092 \f
3093 /* Push tree EXP onto vector QUEUE if it is not already present. */
3094
3095 static void
3096 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
3097 {
3098 unsigned int i;
3099 tree iter;
3100
3101 FOR_EACH_VEC_ELT (tree, *queue, i, iter)
3102 if (simple_cst_equal (iter, exp) == 1)
3103 break;
3104
3105 if (!iter)
3106 VEC_safe_push (tree, heap, *queue, exp);
3107 }
3108
3109 /* Given a tree EXP, find all occurrences of references to fields
3110 in a PLACEHOLDER_EXPR and place them in vector REFS without
3111 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3112 we assume here that EXP contains only arithmetic expressions
3113 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3114 argument list. */
3115
3116 void
3117 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
3118 {
3119 enum tree_code code = TREE_CODE (exp);
3120 tree inner;
3121 int i;
3122
3123 /* We handle TREE_LIST and COMPONENT_REF separately. */
3124 if (code == TREE_LIST)
3125 {
3126 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3127 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3128 }
3129 else if (code == COMPONENT_REF)
3130 {
3131 for (inner = TREE_OPERAND (exp, 0);
3132 REFERENCE_CLASS_P (inner);
3133 inner = TREE_OPERAND (inner, 0))
3134 ;
3135
3136 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3137 push_without_duplicates (exp, refs);
3138 else
3139 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3140 }
3141 else
3142 switch (TREE_CODE_CLASS (code))
3143 {
3144 case tcc_constant:
3145 break;
3146
3147 case tcc_declaration:
3148 /* Variables allocated to static storage can stay. */
3149 if (!TREE_STATIC (exp))
3150 push_without_duplicates (exp, refs);
3151 break;
3152
3153 case tcc_expression:
3154 /* This is the pattern built in ada/make_aligning_type. */
3155 if (code == ADDR_EXPR
3156 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3157 {
3158 push_without_duplicates (exp, refs);
3159 break;
3160 }
3161
3162 /* Fall through... */
3163
3164 case tcc_exceptional:
3165 case tcc_unary:
3166 case tcc_binary:
3167 case tcc_comparison:
3168 case tcc_reference:
3169 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3170 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3171 break;
3172
3173 case tcc_vl_exp:
3174 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3175 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3176 break;
3177
3178 default:
3179 gcc_unreachable ();
3180 }
3181 }
3182
3183 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3184 return a tree with all occurrences of references to F in a
3185 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3186 CONST_DECLs. Note that we assume here that EXP contains only
3187 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3188 occurring only in their argument list. */
3189
3190 tree
3191 substitute_in_expr (tree exp, tree f, tree r)
3192 {
3193 enum tree_code code = TREE_CODE (exp);
3194 tree op0, op1, op2, op3;
3195 tree new_tree;
3196
3197 /* We handle TREE_LIST and COMPONENT_REF separately. */
3198 if (code == TREE_LIST)
3199 {
3200 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3201 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3202 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3203 return exp;
3204
3205 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3206 }
3207 else if (code == COMPONENT_REF)
3208 {
3209 tree inner;
3210
3211 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3212 and it is the right field, replace it with R. */
3213 for (inner = TREE_OPERAND (exp, 0);
3214 REFERENCE_CLASS_P (inner);
3215 inner = TREE_OPERAND (inner, 0))
3216 ;
3217
3218 /* The field. */
3219 op1 = TREE_OPERAND (exp, 1);
3220
3221 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3222 return r;
3223
3224 /* If this expression hasn't been completed let, leave it alone. */
3225 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3226 return exp;
3227
3228 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3229 if (op0 == TREE_OPERAND (exp, 0))
3230 return exp;
3231
3232 new_tree
3233 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3234 }
3235 else
3236 switch (TREE_CODE_CLASS (code))
3237 {
3238 case tcc_constant:
3239 return exp;
3240
3241 case tcc_declaration:
3242 if (exp == f)
3243 return r;
3244 else
3245 return exp;
3246
3247 case tcc_expression:
3248 if (exp == f)
3249 return r;
3250
3251 /* Fall through... */
3252
3253 case tcc_exceptional:
3254 case tcc_unary:
3255 case tcc_binary:
3256 case tcc_comparison:
3257 case tcc_reference:
3258 switch (TREE_CODE_LENGTH (code))
3259 {
3260 case 0:
3261 return exp;
3262
3263 case 1:
3264 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3265 if (op0 == TREE_OPERAND (exp, 0))
3266 return exp;
3267
3268 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3269 break;
3270
3271 case 2:
3272 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3273 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3274
3275 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3276 return exp;
3277
3278 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3279 break;
3280
3281 case 3:
3282 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3283 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3284 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3285
3286 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3287 && op2 == TREE_OPERAND (exp, 2))
3288 return exp;
3289
3290 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3291 break;
3292
3293 case 4:
3294 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3295 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3296 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3297 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3298
3299 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3300 && op2 == TREE_OPERAND (exp, 2)
3301 && op3 == TREE_OPERAND (exp, 3))
3302 return exp;
3303
3304 new_tree
3305 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3306 break;
3307
3308 default:
3309 gcc_unreachable ();
3310 }
3311 break;
3312
3313 case tcc_vl_exp:
3314 {
3315 int i;
3316
3317 new_tree = NULL_TREE;
3318
3319 /* If we are trying to replace F with a constant, inline back
3320 functions which do nothing else than computing a value from
3321 the arguments they are passed. This makes it possible to
3322 fold partially or entirely the replacement expression. */
3323 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3324 {
3325 tree t = maybe_inline_call_in_expr (exp);
3326 if (t)
3327 return SUBSTITUTE_IN_EXPR (t, f, r);
3328 }
3329
3330 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3331 {
3332 tree op = TREE_OPERAND (exp, i);
3333 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3334 if (new_op != op)
3335 {
3336 if (!new_tree)
3337 new_tree = copy_node (exp);
3338 TREE_OPERAND (new_tree, i) = new_op;
3339 }
3340 }
3341
3342 if (new_tree)
3343 {
3344 new_tree = fold (new_tree);
3345 if (TREE_CODE (new_tree) == CALL_EXPR)
3346 process_call_operands (new_tree);
3347 }
3348 else
3349 return exp;
3350 }
3351 break;
3352
3353 default:
3354 gcc_unreachable ();
3355 }
3356
3357 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3358
3359 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3360 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3361
3362 return new_tree;
3363 }
3364
3365 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3366 for it within OBJ, a tree that is an object or a chain of references. */
3367
3368 tree
3369 substitute_placeholder_in_expr (tree exp, tree obj)
3370 {
3371 enum tree_code code = TREE_CODE (exp);
3372 tree op0, op1, op2, op3;
3373 tree new_tree;
3374
3375 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3376 in the chain of OBJ. */
3377 if (code == PLACEHOLDER_EXPR)
3378 {
3379 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3380 tree elt;
3381
3382 for (elt = obj; elt != 0;
3383 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3384 || TREE_CODE (elt) == COND_EXPR)
3385 ? TREE_OPERAND (elt, 1)
3386 : (REFERENCE_CLASS_P (elt)
3387 || UNARY_CLASS_P (elt)
3388 || BINARY_CLASS_P (elt)
3389 || VL_EXP_CLASS_P (elt)
3390 || EXPRESSION_CLASS_P (elt))
3391 ? TREE_OPERAND (elt, 0) : 0))
3392 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3393 return elt;
3394
3395 for (elt = obj; elt != 0;
3396 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3397 || TREE_CODE (elt) == COND_EXPR)
3398 ? TREE_OPERAND (elt, 1)
3399 : (REFERENCE_CLASS_P (elt)
3400 || UNARY_CLASS_P (elt)
3401 || BINARY_CLASS_P (elt)
3402 || VL_EXP_CLASS_P (elt)
3403 || EXPRESSION_CLASS_P (elt))
3404 ? TREE_OPERAND (elt, 0) : 0))
3405 if (POINTER_TYPE_P (TREE_TYPE (elt))
3406 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3407 == need_type))
3408 return fold_build1 (INDIRECT_REF, need_type, elt);
3409
3410 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3411 survives until RTL generation, there will be an error. */
3412 return exp;
3413 }
3414
3415 /* TREE_LIST is special because we need to look at TREE_VALUE
3416 and TREE_CHAIN, not TREE_OPERANDS. */
3417 else if (code == TREE_LIST)
3418 {
3419 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3420 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3421 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3422 return exp;
3423
3424 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3425 }
3426 else
3427 switch (TREE_CODE_CLASS (code))
3428 {
3429 case tcc_constant:
3430 case tcc_declaration:
3431 return exp;
3432
3433 case tcc_exceptional:
3434 case tcc_unary:
3435 case tcc_binary:
3436 case tcc_comparison:
3437 case tcc_expression:
3438 case tcc_reference:
3439 case tcc_statement:
3440 switch (TREE_CODE_LENGTH (code))
3441 {
3442 case 0:
3443 return exp;
3444
3445 case 1:
3446 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3447 if (op0 == TREE_OPERAND (exp, 0))
3448 return exp;
3449
3450 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3451 break;
3452
3453 case 2:
3454 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3455 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3456
3457 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3458 return exp;
3459
3460 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3461 break;
3462
3463 case 3:
3464 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3465 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3466 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3467
3468 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3469 && op2 == TREE_OPERAND (exp, 2))
3470 return exp;
3471
3472 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3473 break;
3474
3475 case 4:
3476 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3477 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3478 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3479 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3480
3481 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3482 && op2 == TREE_OPERAND (exp, 2)
3483 && op3 == TREE_OPERAND (exp, 3))
3484 return exp;
3485
3486 new_tree
3487 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3488 break;
3489
3490 default:
3491 gcc_unreachable ();
3492 }
3493 break;
3494
3495 case tcc_vl_exp:
3496 {
3497 int i;
3498
3499 new_tree = NULL_TREE;
3500
3501 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3502 {
3503 tree op = TREE_OPERAND (exp, i);
3504 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3505 if (new_op != op)
3506 {
3507 if (!new_tree)
3508 new_tree = copy_node (exp);
3509 TREE_OPERAND (new_tree, i) = new_op;
3510 }
3511 }
3512
3513 if (new_tree)
3514 {
3515 new_tree = fold (new_tree);
3516 if (TREE_CODE (new_tree) == CALL_EXPR)
3517 process_call_operands (new_tree);
3518 }
3519 else
3520 return exp;
3521 }
3522 break;
3523
3524 default:
3525 gcc_unreachable ();
3526 }
3527
3528 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3529
3530 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3531 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3532
3533 return new_tree;
3534 }
3535 \f
3536 /* Stabilize a reference so that we can use it any number of times
3537 without causing its operands to be evaluated more than once.
3538 Returns the stabilized reference. This works by means of save_expr,
3539 so see the caveats in the comments about save_expr.
3540
3541 Also allows conversion expressions whose operands are references.
3542 Any other kind of expression is returned unchanged. */
3543
3544 tree
3545 stabilize_reference (tree ref)
3546 {
3547 tree result;
3548 enum tree_code code = TREE_CODE (ref);
3549
3550 switch (code)
3551 {
3552 case VAR_DECL:
3553 case PARM_DECL:
3554 case RESULT_DECL:
3555 /* No action is needed in this case. */
3556 return ref;
3557
3558 CASE_CONVERT:
3559 case FLOAT_EXPR:
3560 case FIX_TRUNC_EXPR:
3561 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3562 break;
3563
3564 case INDIRECT_REF:
3565 result = build_nt (INDIRECT_REF,
3566 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3567 break;
3568
3569 case COMPONENT_REF:
3570 result = build_nt (COMPONENT_REF,
3571 stabilize_reference (TREE_OPERAND (ref, 0)),
3572 TREE_OPERAND (ref, 1), NULL_TREE);
3573 break;
3574
3575 case BIT_FIELD_REF:
3576 result = build_nt (BIT_FIELD_REF,
3577 stabilize_reference (TREE_OPERAND (ref, 0)),
3578 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
3579 break;
3580
3581 case ARRAY_REF:
3582 result = build_nt (ARRAY_REF,
3583 stabilize_reference (TREE_OPERAND (ref, 0)),
3584 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3585 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3586 break;
3587
3588 case ARRAY_RANGE_REF:
3589 result = build_nt (ARRAY_RANGE_REF,
3590 stabilize_reference (TREE_OPERAND (ref, 0)),
3591 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3592 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3593 break;
3594
3595 case COMPOUND_EXPR:
3596 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3597 it wouldn't be ignored. This matters when dealing with
3598 volatiles. */
3599 return stabilize_reference_1 (ref);
3600
3601 /* If arg isn't a kind of lvalue we recognize, make no change.
3602 Caller should recognize the error for an invalid lvalue. */
3603 default:
3604 return ref;
3605
3606 case ERROR_MARK:
3607 return error_mark_node;
3608 }
3609
3610 TREE_TYPE (result) = TREE_TYPE (ref);
3611 TREE_READONLY (result) = TREE_READONLY (ref);
3612 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3613 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3614
3615 return result;
3616 }
3617
3618 /* Subroutine of stabilize_reference; this is called for subtrees of
3619 references. Any expression with side-effects must be put in a SAVE_EXPR
3620 to ensure that it is only evaluated once.
3621
3622 We don't put SAVE_EXPR nodes around everything, because assigning very
3623 simple expressions to temporaries causes us to miss good opportunities
3624 for optimizations. Among other things, the opportunity to fold in the
3625 addition of a constant into an addressing mode often gets lost, e.g.
3626 "y[i+1] += x;". In general, we take the approach that we should not make
3627 an assignment unless we are forced into it - i.e., that any non-side effect
3628 operator should be allowed, and that cse should take care of coalescing
3629 multiple utterances of the same expression should that prove fruitful. */
3630
3631 tree
3632 stabilize_reference_1 (tree e)
3633 {
3634 tree result;
3635 enum tree_code code = TREE_CODE (e);
3636
3637 /* We cannot ignore const expressions because it might be a reference
3638 to a const array but whose index contains side-effects. But we can
3639 ignore things that are actual constant or that already have been
3640 handled by this function. */
3641
3642 if (tree_invariant_p (e))
3643 return e;
3644
3645 switch (TREE_CODE_CLASS (code))
3646 {
3647 case tcc_exceptional:
3648 case tcc_type:
3649 case tcc_declaration:
3650 case tcc_comparison:
3651 case tcc_statement:
3652 case tcc_expression:
3653 case tcc_reference:
3654 case tcc_vl_exp:
3655 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3656 so that it will only be evaluated once. */
3657 /* The reference (r) and comparison (<) classes could be handled as
3658 below, but it is generally faster to only evaluate them once. */
3659 if (TREE_SIDE_EFFECTS (e))
3660 return save_expr (e);
3661 return e;
3662
3663 case tcc_constant:
3664 /* Constants need no processing. In fact, we should never reach
3665 here. */
3666 return e;
3667
3668 case tcc_binary:
3669 /* Division is slow and tends to be compiled with jumps,
3670 especially the division by powers of 2 that is often
3671 found inside of an array reference. So do it just once. */
3672 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3673 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3674 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3675 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3676 return save_expr (e);
3677 /* Recursively stabilize each operand. */
3678 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3679 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3680 break;
3681
3682 case tcc_unary:
3683 /* Recursively stabilize each operand. */
3684 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3685 break;
3686
3687 default:
3688 gcc_unreachable ();
3689 }
3690
3691 TREE_TYPE (result) = TREE_TYPE (e);
3692 TREE_READONLY (result) = TREE_READONLY (e);
3693 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3694 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3695
3696 return result;
3697 }
3698 \f
3699 /* Low-level constructors for expressions. */
3700
3701 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3702 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3703
3704 void
3705 recompute_tree_invariant_for_addr_expr (tree t)
3706 {
3707 tree node;
3708 bool tc = true, se = false;
3709
3710 /* We started out assuming this address is both invariant and constant, but
3711 does not have side effects. Now go down any handled components and see if
3712 any of them involve offsets that are either non-constant or non-invariant.
3713 Also check for side-effects.
3714
3715 ??? Note that this code makes no attempt to deal with the case where
3716 taking the address of something causes a copy due to misalignment. */
3717
3718 #define UPDATE_FLAGS(NODE) \
3719 do { tree _node = (NODE); \
3720 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3721 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3722
3723 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3724 node = TREE_OPERAND (node, 0))
3725 {
3726 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3727 array reference (probably made temporarily by the G++ front end),
3728 so ignore all the operands. */
3729 if ((TREE_CODE (node) == ARRAY_REF
3730 || TREE_CODE (node) == ARRAY_RANGE_REF)
3731 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3732 {
3733 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3734 if (TREE_OPERAND (node, 2))
3735 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3736 if (TREE_OPERAND (node, 3))
3737 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3738 }
3739 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3740 FIELD_DECL, apparently. The G++ front end can put something else
3741 there, at least temporarily. */
3742 else if (TREE_CODE (node) == COMPONENT_REF
3743 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3744 {
3745 if (TREE_OPERAND (node, 2))
3746 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3747 }
3748 }
3749
3750 node = lang_hooks.expr_to_decl (node, &tc, &se);
3751
3752 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3753 the address, since &(*a)->b is a form of addition. If it's a constant, the
3754 address is constant too. If it's a decl, its address is constant if the
3755 decl is static. Everything else is not constant and, furthermore,
3756 taking the address of a volatile variable is not volatile. */
3757 if (TREE_CODE (node) == INDIRECT_REF
3758 || TREE_CODE (node) == MEM_REF)
3759 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3760 else if (CONSTANT_CLASS_P (node))
3761 ;
3762 else if (DECL_P (node))
3763 tc &= (staticp (node) != NULL_TREE);
3764 else
3765 {
3766 tc = false;
3767 se |= TREE_SIDE_EFFECTS (node);
3768 }
3769
3770
3771 TREE_CONSTANT (t) = tc;
3772 TREE_SIDE_EFFECTS (t) = se;
3773 #undef UPDATE_FLAGS
3774 }
3775
3776 /* Build an expression of code CODE, data type TYPE, and operands as
3777 specified. Expressions and reference nodes can be created this way.
3778 Constants, decls, types and misc nodes cannot be.
3779
3780 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3781 enough for all extant tree codes. */
3782
3783 tree
3784 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3785 {
3786 tree t;
3787
3788 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3789
3790 t = make_node_stat (code PASS_MEM_STAT);
3791 TREE_TYPE (t) = tt;
3792
3793 return t;
3794 }
3795
3796 tree
3797 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3798 {
3799 int length = sizeof (struct tree_exp);
3800 tree t;
3801
3802 record_node_allocation_statistics (code, length);
3803
3804 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3805
3806 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
3807
3808 memset (t, 0, sizeof (struct tree_common));
3809
3810 TREE_SET_CODE (t, code);
3811
3812 TREE_TYPE (t) = type;
3813 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3814 TREE_OPERAND (t, 0) = node;
3815 if (node && !TYPE_P (node))
3816 {
3817 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3818 TREE_READONLY (t) = TREE_READONLY (node);
3819 }
3820
3821 if (TREE_CODE_CLASS (code) == tcc_statement)
3822 TREE_SIDE_EFFECTS (t) = 1;
3823 else switch (code)
3824 {
3825 case VA_ARG_EXPR:
3826 /* All of these have side-effects, no matter what their
3827 operands are. */
3828 TREE_SIDE_EFFECTS (t) = 1;
3829 TREE_READONLY (t) = 0;
3830 break;
3831
3832 case INDIRECT_REF:
3833 /* Whether a dereference is readonly has nothing to do with whether
3834 its operand is readonly. */
3835 TREE_READONLY (t) = 0;
3836 break;
3837
3838 case ADDR_EXPR:
3839 if (node)
3840 recompute_tree_invariant_for_addr_expr (t);
3841 break;
3842
3843 default:
3844 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3845 && node && !TYPE_P (node)
3846 && TREE_CONSTANT (node))
3847 TREE_CONSTANT (t) = 1;
3848 if (TREE_CODE_CLASS (code) == tcc_reference
3849 && node && TREE_THIS_VOLATILE (node))
3850 TREE_THIS_VOLATILE (t) = 1;
3851 break;
3852 }
3853
3854 return t;
3855 }
3856
3857 #define PROCESS_ARG(N) \
3858 do { \
3859 TREE_OPERAND (t, N) = arg##N; \
3860 if (arg##N &&!TYPE_P (arg##N)) \
3861 { \
3862 if (TREE_SIDE_EFFECTS (arg##N)) \
3863 side_effects = 1; \
3864 if (!TREE_READONLY (arg##N) \
3865 && !CONSTANT_CLASS_P (arg##N)) \
3866 (void) (read_only = 0); \
3867 if (!TREE_CONSTANT (arg##N)) \
3868 (void) (constant = 0); \
3869 } \
3870 } while (0)
3871
3872 tree
3873 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3874 {
3875 bool constant, read_only, side_effects;
3876 tree t;
3877
3878 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3879
3880 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3881 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3882 /* When sizetype precision doesn't match that of pointers
3883 we need to be able to build explicit extensions or truncations
3884 of the offset argument. */
3885 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3886 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3887 && TREE_CODE (arg1) == INTEGER_CST);
3888
3889 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3890 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3891 && ptrofftype_p (TREE_TYPE (arg1)));
3892
3893 t = make_node_stat (code PASS_MEM_STAT);
3894 TREE_TYPE (t) = tt;
3895
3896 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3897 result based on those same flags for the arguments. But if the
3898 arguments aren't really even `tree' expressions, we shouldn't be trying
3899 to do this. */
3900
3901 /* Expressions without side effects may be constant if their
3902 arguments are as well. */
3903 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3904 || TREE_CODE_CLASS (code) == tcc_binary);
3905 read_only = 1;
3906 side_effects = TREE_SIDE_EFFECTS (t);
3907
3908 PROCESS_ARG(0);
3909 PROCESS_ARG(1);
3910
3911 TREE_READONLY (t) = read_only;
3912 TREE_CONSTANT (t) = constant;
3913 TREE_SIDE_EFFECTS (t) = side_effects;
3914 TREE_THIS_VOLATILE (t)
3915 = (TREE_CODE_CLASS (code) == tcc_reference
3916 && arg0 && TREE_THIS_VOLATILE (arg0));
3917
3918 return t;
3919 }
3920
3921
3922 tree
3923 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3924 tree arg2 MEM_STAT_DECL)
3925 {
3926 bool constant, read_only, side_effects;
3927 tree t;
3928
3929 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3930 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3931
3932 t = make_node_stat (code PASS_MEM_STAT);
3933 TREE_TYPE (t) = tt;
3934
3935 read_only = 1;
3936
3937 /* As a special exception, if COND_EXPR has NULL branches, we
3938 assume that it is a gimple statement and always consider
3939 it to have side effects. */
3940 if (code == COND_EXPR
3941 && tt == void_type_node
3942 && arg1 == NULL_TREE
3943 && arg2 == NULL_TREE)
3944 side_effects = true;
3945 else
3946 side_effects = TREE_SIDE_EFFECTS (t);
3947
3948 PROCESS_ARG(0);
3949 PROCESS_ARG(1);
3950 PROCESS_ARG(2);
3951
3952 if (code == COND_EXPR)
3953 TREE_READONLY (t) = read_only;
3954
3955 TREE_SIDE_EFFECTS (t) = side_effects;
3956 TREE_THIS_VOLATILE (t)
3957 = (TREE_CODE_CLASS (code) == tcc_reference
3958 && arg0 && TREE_THIS_VOLATILE (arg0));
3959
3960 return t;
3961 }
3962
3963 tree
3964 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3965 tree arg2, tree arg3 MEM_STAT_DECL)
3966 {
3967 bool constant, read_only, side_effects;
3968 tree t;
3969
3970 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3971
3972 t = make_node_stat (code PASS_MEM_STAT);
3973 TREE_TYPE (t) = tt;
3974
3975 side_effects = TREE_SIDE_EFFECTS (t);
3976
3977 PROCESS_ARG(0);
3978 PROCESS_ARG(1);
3979 PROCESS_ARG(2);
3980 PROCESS_ARG(3);
3981
3982 TREE_SIDE_EFFECTS (t) = side_effects;
3983 TREE_THIS_VOLATILE (t)
3984 = (TREE_CODE_CLASS (code) == tcc_reference
3985 && arg0 && TREE_THIS_VOLATILE (arg0));
3986
3987 return t;
3988 }
3989
3990 tree
3991 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3992 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3993 {
3994 bool constant, read_only, side_effects;
3995 tree t;
3996
3997 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3998
3999 t = make_node_stat (code PASS_MEM_STAT);
4000 TREE_TYPE (t) = tt;
4001
4002 side_effects = TREE_SIDE_EFFECTS (t);
4003
4004 PROCESS_ARG(0);
4005 PROCESS_ARG(1);
4006 PROCESS_ARG(2);
4007 PROCESS_ARG(3);
4008 PROCESS_ARG(4);
4009
4010 TREE_SIDE_EFFECTS (t) = side_effects;
4011 TREE_THIS_VOLATILE (t)
4012 = (TREE_CODE_CLASS (code) == tcc_reference
4013 && arg0 && TREE_THIS_VOLATILE (arg0));
4014
4015 return t;
4016 }
4017
4018 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4019 on the pointer PTR. */
4020
4021 tree
4022 build_simple_mem_ref_loc (location_t loc, tree ptr)
4023 {
4024 HOST_WIDE_INT offset = 0;
4025 tree ptype = TREE_TYPE (ptr);
4026 tree tem;
4027 /* For convenience allow addresses that collapse to a simple base
4028 and offset. */
4029 if (TREE_CODE (ptr) == ADDR_EXPR
4030 && (handled_component_p (TREE_OPERAND (ptr, 0))
4031 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4032 {
4033 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4034 gcc_assert (ptr);
4035 ptr = build_fold_addr_expr (ptr);
4036 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4037 }
4038 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4039 ptr, build_int_cst (ptype, offset));
4040 SET_EXPR_LOCATION (tem, loc);
4041 return tem;
4042 }
4043
4044 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4045
4046 double_int
4047 mem_ref_offset (const_tree t)
4048 {
4049 tree toff = TREE_OPERAND (t, 1);
4050 return tree_to_double_int (toff).sext (TYPE_PRECISION (TREE_TYPE (toff)));
4051 }
4052
4053 /* Return the pointer-type relevant for TBAA purposes from the
4054 gimple memory reference tree T. This is the type to be used for
4055 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
4056
4057 tree
4058 reference_alias_ptr_type (const_tree t)
4059 {
4060 const_tree base = t;
4061 while (handled_component_p (base))
4062 base = TREE_OPERAND (base, 0);
4063 if (TREE_CODE (base) == MEM_REF)
4064 return TREE_TYPE (TREE_OPERAND (base, 1));
4065 else if (TREE_CODE (base) == TARGET_MEM_REF)
4066 return TREE_TYPE (TMR_OFFSET (base));
4067 else
4068 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
4069 }
4070
4071 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4072 offsetted by OFFSET units. */
4073
4074 tree
4075 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4076 {
4077 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4078 build_fold_addr_expr (base),
4079 build_int_cst (ptr_type_node, offset));
4080 tree addr = build1 (ADDR_EXPR, type, ref);
4081 recompute_tree_invariant_for_addr_expr (addr);
4082 return addr;
4083 }
4084
4085 /* Similar except don't specify the TREE_TYPE
4086 and leave the TREE_SIDE_EFFECTS as 0.
4087 It is permissible for arguments to be null,
4088 or even garbage if their values do not matter. */
4089
4090 tree
4091 build_nt (enum tree_code code, ...)
4092 {
4093 tree t;
4094 int length;
4095 int i;
4096 va_list p;
4097
4098 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4099
4100 va_start (p, code);
4101
4102 t = make_node (code);
4103 length = TREE_CODE_LENGTH (code);
4104
4105 for (i = 0; i < length; i++)
4106 TREE_OPERAND (t, i) = va_arg (p, tree);
4107
4108 va_end (p);
4109 return t;
4110 }
4111
4112 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4113 tree VEC. */
4114
4115 tree
4116 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
4117 {
4118 tree ret, t;
4119 unsigned int ix;
4120
4121 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
4122 CALL_EXPR_FN (ret) = fn;
4123 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4124 FOR_EACH_VEC_ELT (tree, args, ix, t)
4125 CALL_EXPR_ARG (ret, ix) = t;
4126 return ret;
4127 }
4128 \f
4129 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4130 We do NOT enter this node in any sort of symbol table.
4131
4132 LOC is the location of the decl.
4133
4134 layout_decl is used to set up the decl's storage layout.
4135 Other slots are initialized to 0 or null pointers. */
4136
4137 tree
4138 build_decl_stat (location_t loc, enum tree_code code, tree name,
4139 tree type MEM_STAT_DECL)
4140 {
4141 tree t;
4142
4143 t = make_node_stat (code PASS_MEM_STAT);
4144 DECL_SOURCE_LOCATION (t) = loc;
4145
4146 /* if (type == error_mark_node)
4147 type = integer_type_node; */
4148 /* That is not done, deliberately, so that having error_mark_node
4149 as the type can suppress useless errors in the use of this variable. */
4150
4151 DECL_NAME (t) = name;
4152 TREE_TYPE (t) = type;
4153
4154 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4155 layout_decl (t, 0);
4156
4157 return t;
4158 }
4159
4160 /* Builds and returns function declaration with NAME and TYPE. */
4161
4162 tree
4163 build_fn_decl (const char *name, tree type)
4164 {
4165 tree id = get_identifier (name);
4166 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4167
4168 DECL_EXTERNAL (decl) = 1;
4169 TREE_PUBLIC (decl) = 1;
4170 DECL_ARTIFICIAL (decl) = 1;
4171 TREE_NOTHROW (decl) = 1;
4172
4173 return decl;
4174 }
4175
4176 VEC(tree,gc) *all_translation_units;
4177
4178 /* Builds a new translation-unit decl with name NAME, queues it in the
4179 global list of translation-unit decls and returns it. */
4180
4181 tree
4182 build_translation_unit_decl (tree name)
4183 {
4184 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4185 name, NULL_TREE);
4186 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4187 VEC_safe_push (tree, gc, all_translation_units, tu);
4188 return tu;
4189 }
4190
4191 \f
4192 /* BLOCK nodes are used to represent the structure of binding contours
4193 and declarations, once those contours have been exited and their contents
4194 compiled. This information is used for outputting debugging info. */
4195
4196 tree
4197 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4198 {
4199 tree block = make_node (BLOCK);
4200
4201 BLOCK_VARS (block) = vars;
4202 BLOCK_SUBBLOCKS (block) = subblocks;
4203 BLOCK_SUPERCONTEXT (block) = supercontext;
4204 BLOCK_CHAIN (block) = chain;
4205 return block;
4206 }
4207
4208 \f
4209 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4210
4211 LOC is the location to use in tree T. */
4212
4213 void
4214 protected_set_expr_location (tree t, location_t loc)
4215 {
4216 if (t && CAN_HAVE_LOCATION_P (t))
4217 SET_EXPR_LOCATION (t, loc);
4218 }
4219 \f
4220 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4221 is ATTRIBUTE. */
4222
4223 tree
4224 build_decl_attribute_variant (tree ddecl, tree attribute)
4225 {
4226 DECL_ATTRIBUTES (ddecl) = attribute;
4227 return ddecl;
4228 }
4229
4230 /* Borrowed from hashtab.c iterative_hash implementation. */
4231 #define mix(a,b,c) \
4232 { \
4233 a -= b; a -= c; a ^= (c>>13); \
4234 b -= c; b -= a; b ^= (a<< 8); \
4235 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4236 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4237 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4238 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4239 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4240 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4241 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4242 }
4243
4244
4245 /* Produce good hash value combining VAL and VAL2. */
4246 hashval_t
4247 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4248 {
4249 /* the golden ratio; an arbitrary value. */
4250 hashval_t a = 0x9e3779b9;
4251
4252 mix (a, val, val2);
4253 return val2;
4254 }
4255
4256 /* Produce good hash value combining VAL and VAL2. */
4257 hashval_t
4258 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4259 {
4260 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4261 return iterative_hash_hashval_t (val, val2);
4262 else
4263 {
4264 hashval_t a = (hashval_t) val;
4265 /* Avoid warnings about shifting of more than the width of the type on
4266 hosts that won't execute this path. */
4267 int zero = 0;
4268 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4269 mix (a, b, val2);
4270 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4271 {
4272 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4273 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4274 mix (a, b, val2);
4275 }
4276 return val2;
4277 }
4278 }
4279
4280 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4281 is ATTRIBUTE and its qualifiers are QUALS.
4282
4283 Record such modified types already made so we don't make duplicates. */
4284
4285 tree
4286 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4287 {
4288 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4289 {
4290 hashval_t hashcode = 0;
4291 tree ntype;
4292 enum tree_code code = TREE_CODE (ttype);
4293
4294 /* Building a distinct copy of a tagged type is inappropriate; it
4295 causes breakage in code that expects there to be a one-to-one
4296 relationship between a struct and its fields.
4297 build_duplicate_type is another solution (as used in
4298 handle_transparent_union_attribute), but that doesn't play well
4299 with the stronger C++ type identity model. */
4300 if (TREE_CODE (ttype) == RECORD_TYPE
4301 || TREE_CODE (ttype) == UNION_TYPE
4302 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4303 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4304 {
4305 warning (OPT_Wattributes,
4306 "ignoring attributes applied to %qT after definition",
4307 TYPE_MAIN_VARIANT (ttype));
4308 return build_qualified_type (ttype, quals);
4309 }
4310
4311 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4312 ntype = build_distinct_type_copy (ttype);
4313
4314 TYPE_ATTRIBUTES (ntype) = attribute;
4315
4316 hashcode = iterative_hash_object (code, hashcode);
4317 if (TREE_TYPE (ntype))
4318 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4319 hashcode);
4320 hashcode = attribute_hash_list (attribute, hashcode);
4321
4322 switch (TREE_CODE (ntype))
4323 {
4324 case FUNCTION_TYPE:
4325 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4326 break;
4327 case ARRAY_TYPE:
4328 if (TYPE_DOMAIN (ntype))
4329 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4330 hashcode);
4331 break;
4332 case INTEGER_TYPE:
4333 hashcode = iterative_hash_object
4334 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4335 hashcode = iterative_hash_object
4336 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4337 break;
4338 case REAL_TYPE:
4339 case FIXED_POINT_TYPE:
4340 {
4341 unsigned int precision = TYPE_PRECISION (ntype);
4342 hashcode = iterative_hash_object (precision, hashcode);
4343 }
4344 break;
4345 default:
4346 break;
4347 }
4348
4349 ntype = type_hash_canon (hashcode, ntype);
4350
4351 /* If the target-dependent attributes make NTYPE different from
4352 its canonical type, we will need to use structural equality
4353 checks for this type. */
4354 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4355 || !comp_type_attributes (ntype, ttype))
4356 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4357 else if (TYPE_CANONICAL (ntype) == ntype)
4358 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4359
4360 ttype = build_qualified_type (ntype, quals);
4361 }
4362 else if (TYPE_QUALS (ttype) != quals)
4363 ttype = build_qualified_type (ttype, quals);
4364
4365 return ttype;
4366 }
4367
4368 /* Compare two attributes for their value identity. Return true if the
4369 attribute values are known to be equal; otherwise return false.
4370 */
4371
4372 static bool
4373 attribute_value_equal (const_tree attr1, const_tree attr2)
4374 {
4375 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4376 return true;
4377
4378 if (TREE_VALUE (attr1) != NULL_TREE
4379 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4380 && TREE_VALUE (attr2) != NULL
4381 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4382 return (simple_cst_list_equal (TREE_VALUE (attr1),
4383 TREE_VALUE (attr2)) == 1);
4384
4385 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
4386 }
4387
4388 /* Return 0 if the attributes for two types are incompatible, 1 if they
4389 are compatible, and 2 if they are nearly compatible (which causes a
4390 warning to be generated). */
4391 int
4392 comp_type_attributes (const_tree type1, const_tree type2)
4393 {
4394 const_tree a1 = TYPE_ATTRIBUTES (type1);
4395 const_tree a2 = TYPE_ATTRIBUTES (type2);
4396 const_tree a;
4397
4398 if (a1 == a2)
4399 return 1;
4400 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
4401 {
4402 const struct attribute_spec *as;
4403 const_tree attr;
4404
4405 as = lookup_attribute_spec (get_attribute_name (a));
4406 if (!as || as->affects_type_identity == false)
4407 continue;
4408
4409 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
4410 if (!attr || !attribute_value_equal (a, attr))
4411 break;
4412 }
4413 if (!a)
4414 {
4415 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
4416 {
4417 const struct attribute_spec *as;
4418
4419 as = lookup_attribute_spec (get_attribute_name (a));
4420 if (!as || as->affects_type_identity == false)
4421 continue;
4422
4423 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
4424 break;
4425 /* We don't need to compare trees again, as we did this
4426 already in first loop. */
4427 }
4428 /* All types - affecting identity - are equal, so
4429 there is no need to call target hook for comparison. */
4430 if (!a)
4431 return 1;
4432 }
4433 /* As some type combinations - like default calling-convention - might
4434 be compatible, we have to call the target hook to get the final result. */
4435 return targetm.comp_type_attributes (type1, type2);
4436 }
4437
4438 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4439 is ATTRIBUTE.
4440
4441 Record such modified types already made so we don't make duplicates. */
4442
4443 tree
4444 build_type_attribute_variant (tree ttype, tree attribute)
4445 {
4446 return build_type_attribute_qual_variant (ttype, attribute,
4447 TYPE_QUALS (ttype));
4448 }
4449
4450
4451 /* Reset the expression *EXPR_P, a size or position.
4452
4453 ??? We could reset all non-constant sizes or positions. But it's cheap
4454 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4455
4456 We need to reset self-referential sizes or positions because they cannot
4457 be gimplified and thus can contain a CALL_EXPR after the gimplification
4458 is finished, which will run afoul of LTO streaming. And they need to be
4459 reset to something essentially dummy but not constant, so as to preserve
4460 the properties of the object they are attached to. */
4461
4462 static inline void
4463 free_lang_data_in_one_sizepos (tree *expr_p)
4464 {
4465 tree expr = *expr_p;
4466 if (CONTAINS_PLACEHOLDER_P (expr))
4467 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4468 }
4469
4470
4471 /* Reset all the fields in a binfo node BINFO. We only keep
4472 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
4473
4474 static void
4475 free_lang_data_in_binfo (tree binfo)
4476 {
4477 unsigned i;
4478 tree t;
4479
4480 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4481
4482 BINFO_VIRTUALS (binfo) = NULL_TREE;
4483 BINFO_BASE_ACCESSES (binfo) = NULL;
4484 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4485 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4486
4487 FOR_EACH_VEC_ELT (tree, BINFO_BASE_BINFOS (binfo), i, t)
4488 free_lang_data_in_binfo (t);
4489 }
4490
4491
4492 /* Reset all language specific information still present in TYPE. */
4493
4494 static void
4495 free_lang_data_in_type (tree type)
4496 {
4497 gcc_assert (TYPE_P (type));
4498
4499 /* Give the FE a chance to remove its own data first. */
4500 lang_hooks.free_lang_data (type);
4501
4502 TREE_LANG_FLAG_0 (type) = 0;
4503 TREE_LANG_FLAG_1 (type) = 0;
4504 TREE_LANG_FLAG_2 (type) = 0;
4505 TREE_LANG_FLAG_3 (type) = 0;
4506 TREE_LANG_FLAG_4 (type) = 0;
4507 TREE_LANG_FLAG_5 (type) = 0;
4508 TREE_LANG_FLAG_6 (type) = 0;
4509
4510 if (TREE_CODE (type) == FUNCTION_TYPE)
4511 {
4512 /* Remove the const and volatile qualifiers from arguments. The
4513 C++ front end removes them, but the C front end does not,
4514 leading to false ODR violation errors when merging two
4515 instances of the same function signature compiled by
4516 different front ends. */
4517 tree p;
4518
4519 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4520 {
4521 tree arg_type = TREE_VALUE (p);
4522
4523 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4524 {
4525 int quals = TYPE_QUALS (arg_type)
4526 & ~TYPE_QUAL_CONST
4527 & ~TYPE_QUAL_VOLATILE;
4528 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4529 free_lang_data_in_type (TREE_VALUE (p));
4530 }
4531 }
4532 }
4533
4534 /* Remove members that are not actually FIELD_DECLs from the field
4535 list of an aggregate. These occur in C++. */
4536 if (RECORD_OR_UNION_TYPE_P (type))
4537 {
4538 tree prev, member;
4539
4540 /* Note that TYPE_FIELDS can be shared across distinct
4541 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4542 to be removed, we cannot set its TREE_CHAIN to NULL.
4543 Otherwise, we would not be able to find all the other fields
4544 in the other instances of this TREE_TYPE.
4545
4546 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4547 prev = NULL_TREE;
4548 member = TYPE_FIELDS (type);
4549 while (member)
4550 {
4551 if (TREE_CODE (member) == FIELD_DECL
4552 || TREE_CODE (member) == TYPE_DECL)
4553 {
4554 if (prev)
4555 TREE_CHAIN (prev) = member;
4556 else
4557 TYPE_FIELDS (type) = member;
4558 prev = member;
4559 }
4560
4561 member = TREE_CHAIN (member);
4562 }
4563
4564 if (prev)
4565 TREE_CHAIN (prev) = NULL_TREE;
4566 else
4567 TYPE_FIELDS (type) = NULL_TREE;
4568
4569 TYPE_METHODS (type) = NULL_TREE;
4570 if (TYPE_BINFO (type))
4571 free_lang_data_in_binfo (TYPE_BINFO (type));
4572 }
4573 else
4574 {
4575 /* For non-aggregate types, clear out the language slot (which
4576 overloads TYPE_BINFO). */
4577 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4578
4579 if (INTEGRAL_TYPE_P (type)
4580 || SCALAR_FLOAT_TYPE_P (type)
4581 || FIXED_POINT_TYPE_P (type))
4582 {
4583 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4584 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4585 }
4586 }
4587
4588 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4589 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4590
4591 if (TYPE_CONTEXT (type)
4592 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
4593 {
4594 tree ctx = TYPE_CONTEXT (type);
4595 do
4596 {
4597 ctx = BLOCK_SUPERCONTEXT (ctx);
4598 }
4599 while (ctx && TREE_CODE (ctx) == BLOCK);
4600 TYPE_CONTEXT (type) = ctx;
4601 }
4602 }
4603
4604
4605 /* Return true if DECL may need an assembler name to be set. */
4606
4607 static inline bool
4608 need_assembler_name_p (tree decl)
4609 {
4610 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4611 if (TREE_CODE (decl) != FUNCTION_DECL
4612 && TREE_CODE (decl) != VAR_DECL)
4613 return false;
4614
4615 /* If DECL already has its assembler name set, it does not need a
4616 new one. */
4617 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4618 || DECL_ASSEMBLER_NAME_SET_P (decl))
4619 return false;
4620
4621 /* Abstract decls do not need an assembler name. */
4622 if (DECL_ABSTRACT (decl))
4623 return false;
4624
4625 /* For VAR_DECLs, only static, public and external symbols need an
4626 assembler name. */
4627 if (TREE_CODE (decl) == VAR_DECL
4628 && !TREE_STATIC (decl)
4629 && !TREE_PUBLIC (decl)
4630 && !DECL_EXTERNAL (decl))
4631 return false;
4632
4633 if (TREE_CODE (decl) == FUNCTION_DECL)
4634 {
4635 /* Do not set assembler name on builtins. Allow RTL expansion to
4636 decide whether to expand inline or via a regular call. */
4637 if (DECL_BUILT_IN (decl)
4638 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4639 return false;
4640
4641 /* Functions represented in the callgraph need an assembler name. */
4642 if (cgraph_get_node (decl) != NULL)
4643 return true;
4644
4645 /* Unused and not public functions don't need an assembler name. */
4646 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4647 return false;
4648 }
4649
4650 return true;
4651 }
4652
4653
4654 /* Reset all language specific information still present in symbol
4655 DECL. */
4656
4657 static void
4658 free_lang_data_in_decl (tree decl)
4659 {
4660 gcc_assert (DECL_P (decl));
4661
4662 /* Give the FE a chance to remove its own data first. */
4663 lang_hooks.free_lang_data (decl);
4664
4665 TREE_LANG_FLAG_0 (decl) = 0;
4666 TREE_LANG_FLAG_1 (decl) = 0;
4667 TREE_LANG_FLAG_2 (decl) = 0;
4668 TREE_LANG_FLAG_3 (decl) = 0;
4669 TREE_LANG_FLAG_4 (decl) = 0;
4670 TREE_LANG_FLAG_5 (decl) = 0;
4671 TREE_LANG_FLAG_6 (decl) = 0;
4672
4673 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4674 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4675 if (TREE_CODE (decl) == FIELD_DECL)
4676 {
4677 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4678 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
4679 DECL_QUALIFIER (decl) = NULL_TREE;
4680 }
4681
4682 if (TREE_CODE (decl) == FUNCTION_DECL)
4683 {
4684 if (gimple_has_body_p (decl))
4685 {
4686 tree t;
4687
4688 /* If DECL has a gimple body, then the context for its
4689 arguments must be DECL. Otherwise, it doesn't really
4690 matter, as we will not be emitting any code for DECL. In
4691 general, there may be other instances of DECL created by
4692 the front end and since PARM_DECLs are generally shared,
4693 their DECL_CONTEXT changes as the replicas of DECL are
4694 created. The only time where DECL_CONTEXT is important
4695 is for the FUNCTION_DECLs that have a gimple body (since
4696 the PARM_DECL will be used in the function's body). */
4697 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4698 DECL_CONTEXT (t) = decl;
4699 }
4700
4701 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4702 At this point, it is not needed anymore. */
4703 DECL_SAVED_TREE (decl) = NULL_TREE;
4704
4705 /* Clear the abstract origin if it refers to a method. Otherwise
4706 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
4707 origin will not be output correctly. */
4708 if (DECL_ABSTRACT_ORIGIN (decl)
4709 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
4710 && RECORD_OR_UNION_TYPE_P
4711 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
4712 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
4713
4714 /* Sometimes the C++ frontend doesn't manage to transform a temporary
4715 DECL_VINDEX referring to itself into a vtable slot number as it
4716 should. Happens with functions that are copied and then forgotten
4717 about. Just clear it, it won't matter anymore. */
4718 if (DECL_VINDEX (decl) && !host_integerp (DECL_VINDEX (decl), 0))
4719 DECL_VINDEX (decl) = NULL_TREE;
4720 }
4721 else if (TREE_CODE (decl) == VAR_DECL)
4722 {
4723 if ((DECL_EXTERNAL (decl)
4724 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4725 || (decl_function_context (decl) && !TREE_STATIC (decl)))
4726 DECL_INITIAL (decl) = NULL_TREE;
4727 }
4728 else if (TREE_CODE (decl) == TYPE_DECL
4729 || TREE_CODE (decl) == FIELD_DECL)
4730 DECL_INITIAL (decl) = NULL_TREE;
4731 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
4732 && DECL_INITIAL (decl)
4733 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
4734 {
4735 /* Strip builtins from the translation-unit BLOCK. We still have targets
4736 without builtin_decl_explicit support and also builtins are shared
4737 nodes and thus we can't use TREE_CHAIN in multiple lists. */
4738 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
4739 while (*nextp)
4740 {
4741 tree var = *nextp;
4742 if (TREE_CODE (var) == FUNCTION_DECL
4743 && DECL_BUILT_IN (var))
4744 *nextp = TREE_CHAIN (var);
4745 else
4746 nextp = &TREE_CHAIN (var);
4747 }
4748 }
4749 }
4750
4751
4752 /* Data used when collecting DECLs and TYPEs for language data removal. */
4753
4754 struct free_lang_data_d
4755 {
4756 /* Worklist to avoid excessive recursion. */
4757 VEC(tree,heap) *worklist;
4758
4759 /* Set of traversed objects. Used to avoid duplicate visits. */
4760 struct pointer_set_t *pset;
4761
4762 /* Array of symbols to process with free_lang_data_in_decl. */
4763 VEC(tree,heap) *decls;
4764
4765 /* Array of types to process with free_lang_data_in_type. */
4766 VEC(tree,heap) *types;
4767 };
4768
4769
4770 /* Save all language fields needed to generate proper debug information
4771 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4772
4773 static void
4774 save_debug_info_for_decl (tree t)
4775 {
4776 /*struct saved_debug_info_d *sdi;*/
4777
4778 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4779
4780 /* FIXME. Partial implementation for saving debug info removed. */
4781 }
4782
4783
4784 /* Save all language fields needed to generate proper debug information
4785 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4786
4787 static void
4788 save_debug_info_for_type (tree t)
4789 {
4790 /*struct saved_debug_info_d *sdi;*/
4791
4792 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4793
4794 /* FIXME. Partial implementation for saving debug info removed. */
4795 }
4796
4797
4798 /* Add type or decl T to one of the list of tree nodes that need their
4799 language data removed. The lists are held inside FLD. */
4800
4801 static void
4802 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4803 {
4804 if (DECL_P (t))
4805 {
4806 VEC_safe_push (tree, heap, fld->decls, t);
4807 if (debug_info_level > DINFO_LEVEL_TERSE)
4808 save_debug_info_for_decl (t);
4809 }
4810 else if (TYPE_P (t))
4811 {
4812 VEC_safe_push (tree, heap, fld->types, t);
4813 if (debug_info_level > DINFO_LEVEL_TERSE)
4814 save_debug_info_for_type (t);
4815 }
4816 else
4817 gcc_unreachable ();
4818 }
4819
4820 /* Push tree node T into FLD->WORKLIST. */
4821
4822 static inline void
4823 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4824 {
4825 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4826 VEC_safe_push (tree, heap, fld->worklist, (t));
4827 }
4828
4829
4830 /* Operand callback helper for free_lang_data_in_node. *TP is the
4831 subtree operand being considered. */
4832
4833 static tree
4834 find_decls_types_r (tree *tp, int *ws, void *data)
4835 {
4836 tree t = *tp;
4837 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4838
4839 if (TREE_CODE (t) == TREE_LIST)
4840 return NULL_TREE;
4841
4842 /* Language specific nodes will be removed, so there is no need
4843 to gather anything under them. */
4844 if (is_lang_specific (t))
4845 {
4846 *ws = 0;
4847 return NULL_TREE;
4848 }
4849
4850 if (DECL_P (t))
4851 {
4852 /* Note that walk_tree does not traverse every possible field in
4853 decls, so we have to do our own traversals here. */
4854 add_tree_to_fld_list (t, fld);
4855
4856 fld_worklist_push (DECL_NAME (t), fld);
4857 fld_worklist_push (DECL_CONTEXT (t), fld);
4858 fld_worklist_push (DECL_SIZE (t), fld);
4859 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4860
4861 /* We are going to remove everything under DECL_INITIAL for
4862 TYPE_DECLs. No point walking them. */
4863 if (TREE_CODE (t) != TYPE_DECL)
4864 fld_worklist_push (DECL_INITIAL (t), fld);
4865
4866 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4867 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4868
4869 if (TREE_CODE (t) == FUNCTION_DECL)
4870 {
4871 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4872 fld_worklist_push (DECL_RESULT (t), fld);
4873 }
4874 else if (TREE_CODE (t) == TYPE_DECL)
4875 {
4876 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4877 fld_worklist_push (DECL_VINDEX (t), fld);
4878 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
4879 }
4880 else if (TREE_CODE (t) == FIELD_DECL)
4881 {
4882 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4883 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4884 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4885 fld_worklist_push (DECL_FCONTEXT (t), fld);
4886 }
4887 else if (TREE_CODE (t) == VAR_DECL)
4888 {
4889 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4890 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4891 }
4892
4893 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4894 && DECL_HAS_VALUE_EXPR_P (t))
4895 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4896
4897 if (TREE_CODE (t) != FIELD_DECL
4898 && TREE_CODE (t) != TYPE_DECL)
4899 fld_worklist_push (TREE_CHAIN (t), fld);
4900 *ws = 0;
4901 }
4902 else if (TYPE_P (t))
4903 {
4904 /* Note that walk_tree does not traverse every possible field in
4905 types, so we have to do our own traversals here. */
4906 add_tree_to_fld_list (t, fld);
4907
4908 if (!RECORD_OR_UNION_TYPE_P (t))
4909 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4910 fld_worklist_push (TYPE_SIZE (t), fld);
4911 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4912 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4913 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4914 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4915 fld_worklist_push (TYPE_NAME (t), fld);
4916 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
4917 them and thus do not and want not to reach unused pointer types
4918 this way. */
4919 if (!POINTER_TYPE_P (t))
4920 fld_worklist_push (TYPE_MINVAL (t), fld);
4921 if (!RECORD_OR_UNION_TYPE_P (t))
4922 fld_worklist_push (TYPE_MAXVAL (t), fld);
4923 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4924 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
4925 do not and want not to reach unused variants this way. */
4926 if (TYPE_CONTEXT (t))
4927 {
4928 tree ctx = TYPE_CONTEXT (t);
4929 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
4930 So push that instead. */
4931 while (ctx && TREE_CODE (ctx) == BLOCK)
4932 ctx = BLOCK_SUPERCONTEXT (ctx);
4933 fld_worklist_push (ctx, fld);
4934 }
4935 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
4936 and want not to reach unused types this way. */
4937
4938 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4939 {
4940 unsigned i;
4941 tree tem;
4942 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4943 i, tem); ++i)
4944 fld_worklist_push (TREE_TYPE (tem), fld);
4945 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4946 if (tem
4947 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4948 && TREE_CODE (tem) == TREE_LIST)
4949 do
4950 {
4951 fld_worklist_push (TREE_VALUE (tem), fld);
4952 tem = TREE_CHAIN (tem);
4953 }
4954 while (tem);
4955 }
4956 if (RECORD_OR_UNION_TYPE_P (t))
4957 {
4958 tree tem;
4959 /* Push all TYPE_FIELDS - there can be interleaving interesting
4960 and non-interesting things. */
4961 tem = TYPE_FIELDS (t);
4962 while (tem)
4963 {
4964 if (TREE_CODE (tem) == FIELD_DECL
4965 || TREE_CODE (tem) == TYPE_DECL)
4966 fld_worklist_push (tem, fld);
4967 tem = TREE_CHAIN (tem);
4968 }
4969 }
4970
4971 fld_worklist_push (TYPE_STUB_DECL (t), fld);
4972 *ws = 0;
4973 }
4974 else if (TREE_CODE (t) == BLOCK)
4975 {
4976 tree tem;
4977 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4978 fld_worklist_push (tem, fld);
4979 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4980 fld_worklist_push (tem, fld);
4981 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4982 }
4983
4984 if (TREE_CODE (t) != IDENTIFIER_NODE
4985 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
4986 fld_worklist_push (TREE_TYPE (t), fld);
4987
4988 return NULL_TREE;
4989 }
4990
4991
4992 /* Find decls and types in T. */
4993
4994 static void
4995 find_decls_types (tree t, struct free_lang_data_d *fld)
4996 {
4997 while (1)
4998 {
4999 if (!pointer_set_contains (fld->pset, t))
5000 walk_tree (&t, find_decls_types_r, fld, fld->pset);
5001 if (VEC_empty (tree, fld->worklist))
5002 break;
5003 t = VEC_pop (tree, fld->worklist);
5004 }
5005 }
5006
5007 /* Translate all the types in LIST with the corresponding runtime
5008 types. */
5009
5010 static tree
5011 get_eh_types_for_runtime (tree list)
5012 {
5013 tree head, prev;
5014
5015 if (list == NULL_TREE)
5016 return NULL_TREE;
5017
5018 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5019 prev = head;
5020 list = TREE_CHAIN (list);
5021 while (list)
5022 {
5023 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5024 TREE_CHAIN (prev) = n;
5025 prev = TREE_CHAIN (prev);
5026 list = TREE_CHAIN (list);
5027 }
5028
5029 return head;
5030 }
5031
5032
5033 /* Find decls and types referenced in EH region R and store them in
5034 FLD->DECLS and FLD->TYPES. */
5035
5036 static void
5037 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5038 {
5039 switch (r->type)
5040 {
5041 case ERT_CLEANUP:
5042 break;
5043
5044 case ERT_TRY:
5045 {
5046 eh_catch c;
5047
5048 /* The types referenced in each catch must first be changed to the
5049 EH types used at runtime. This removes references to FE types
5050 in the region. */
5051 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5052 {
5053 c->type_list = get_eh_types_for_runtime (c->type_list);
5054 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
5055 }
5056 }
5057 break;
5058
5059 case ERT_ALLOWED_EXCEPTIONS:
5060 r->u.allowed.type_list
5061 = get_eh_types_for_runtime (r->u.allowed.type_list);
5062 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
5063 break;
5064
5065 case ERT_MUST_NOT_THROW:
5066 walk_tree (&r->u.must_not_throw.failure_decl,
5067 find_decls_types_r, fld, fld->pset);
5068 break;
5069 }
5070 }
5071
5072
5073 /* Find decls and types referenced in cgraph node N and store them in
5074 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5075 look for *every* kind of DECL and TYPE node reachable from N,
5076 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5077 NAMESPACE_DECLs, etc). */
5078
5079 static void
5080 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5081 {
5082 basic_block bb;
5083 struct function *fn;
5084 unsigned ix;
5085 tree t;
5086
5087 find_decls_types (n->symbol.decl, fld);
5088
5089 if (!gimple_has_body_p (n->symbol.decl))
5090 return;
5091
5092 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5093
5094 fn = DECL_STRUCT_FUNCTION (n->symbol.decl);
5095
5096 /* Traverse locals. */
5097 FOR_EACH_LOCAL_DECL (fn, ix, t)
5098 find_decls_types (t, fld);
5099
5100 /* Traverse EH regions in FN. */
5101 {
5102 eh_region r;
5103 FOR_ALL_EH_REGION_FN (r, fn)
5104 find_decls_types_in_eh_region (r, fld);
5105 }
5106
5107 /* Traverse every statement in FN. */
5108 FOR_EACH_BB_FN (bb, fn)
5109 {
5110 gimple_stmt_iterator si;
5111 unsigned i;
5112
5113 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5114 {
5115 gimple phi = gsi_stmt (si);
5116
5117 for (i = 0; i < gimple_phi_num_args (phi); i++)
5118 {
5119 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5120 find_decls_types (*arg_p, fld);
5121 }
5122 }
5123
5124 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5125 {
5126 gimple stmt = gsi_stmt (si);
5127
5128 if (is_gimple_call (stmt))
5129 find_decls_types (gimple_call_fntype (stmt), fld);
5130
5131 for (i = 0; i < gimple_num_ops (stmt); i++)
5132 {
5133 tree arg = gimple_op (stmt, i);
5134 find_decls_types (arg, fld);
5135 }
5136 }
5137 }
5138 }
5139
5140
5141 /* Find decls and types referenced in varpool node N and store them in
5142 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5143 look for *every* kind of DECL and TYPE node reachable from N,
5144 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5145 NAMESPACE_DECLs, etc). */
5146
5147 static void
5148 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
5149 {
5150 find_decls_types (v->symbol.decl, fld);
5151 }
5152
5153 /* If T needs an assembler name, have one created for it. */
5154
5155 void
5156 assign_assembler_name_if_neeeded (tree t)
5157 {
5158 if (need_assembler_name_p (t))
5159 {
5160 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5161 diagnostics that use input_location to show locus
5162 information. The problem here is that, at this point,
5163 input_location is generally anchored to the end of the file
5164 (since the parser is long gone), so we don't have a good
5165 position to pin it to.
5166
5167 To alleviate this problem, this uses the location of T's
5168 declaration. Examples of this are
5169 testsuite/g++.dg/template/cond2.C and
5170 testsuite/g++.dg/template/pr35240.C. */
5171 location_t saved_location = input_location;
5172 input_location = DECL_SOURCE_LOCATION (t);
5173
5174 decl_assembler_name (t);
5175
5176 input_location = saved_location;
5177 }
5178 }
5179
5180
5181 /* Free language specific information for every operand and expression
5182 in every node of the call graph. This process operates in three stages:
5183
5184 1- Every callgraph node and varpool node is traversed looking for
5185 decls and types embedded in them. This is a more exhaustive
5186 search than that done by find_referenced_vars, because it will
5187 also collect individual fields, decls embedded in types, etc.
5188
5189 2- All the decls found are sent to free_lang_data_in_decl.
5190
5191 3- All the types found are sent to free_lang_data_in_type.
5192
5193 The ordering between decls and types is important because
5194 free_lang_data_in_decl sets assembler names, which includes
5195 mangling. So types cannot be freed up until assembler names have
5196 been set up. */
5197
5198 static void
5199 free_lang_data_in_cgraph (void)
5200 {
5201 struct cgraph_node *n;
5202 struct varpool_node *v;
5203 struct free_lang_data_d fld;
5204 tree t;
5205 unsigned i;
5206 alias_pair *p;
5207
5208 /* Initialize sets and arrays to store referenced decls and types. */
5209 fld.pset = pointer_set_create ();
5210 fld.worklist = NULL;
5211 fld.decls = VEC_alloc (tree, heap, 100);
5212 fld.types = VEC_alloc (tree, heap, 100);
5213
5214 /* Find decls and types in the body of every function in the callgraph. */
5215 FOR_EACH_FUNCTION (n)
5216 find_decls_types_in_node (n, &fld);
5217
5218 FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p)
5219 find_decls_types (p->decl, &fld);
5220
5221 /* Find decls and types in every varpool symbol. */
5222 FOR_EACH_VARIABLE (v)
5223 find_decls_types_in_var (v, &fld);
5224
5225 /* Set the assembler name on every decl found. We need to do this
5226 now because free_lang_data_in_decl will invalidate data needed
5227 for mangling. This breaks mangling on interdependent decls. */
5228 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5229 assign_assembler_name_if_neeeded (t);
5230
5231 /* Traverse every decl found freeing its language data. */
5232 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5233 free_lang_data_in_decl (t);
5234
5235 /* Traverse every type found freeing its language data. */
5236 FOR_EACH_VEC_ELT (tree, fld.types, i, t)
5237 free_lang_data_in_type (t);
5238
5239 pointer_set_destroy (fld.pset);
5240 VEC_free (tree, heap, fld.worklist);
5241 VEC_free (tree, heap, fld.decls);
5242 VEC_free (tree, heap, fld.types);
5243 }
5244
5245
5246 /* Free resources that are used by FE but are not needed once they are done. */
5247
5248 static unsigned
5249 free_lang_data (void)
5250 {
5251 unsigned i;
5252
5253 /* If we are the LTO frontend we have freed lang-specific data already. */
5254 if (in_lto_p
5255 || !flag_generate_lto)
5256 return 0;
5257
5258 /* Allocate and assign alias sets to the standard integer types
5259 while the slots are still in the way the frontends generated them. */
5260 for (i = 0; i < itk_none; ++i)
5261 if (integer_types[i])
5262 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5263
5264 /* Traverse the IL resetting language specific information for
5265 operands, expressions, etc. */
5266 free_lang_data_in_cgraph ();
5267
5268 /* Create gimple variants for common types. */
5269 ptrdiff_type_node = integer_type_node;
5270 fileptr_type_node = ptr_type_node;
5271
5272 /* Reset some langhooks. Do not reset types_compatible_p, it may
5273 still be used indirectly via the get_alias_set langhook. */
5274 lang_hooks.dwarf_name = lhd_dwarf_name;
5275 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5276 /* We do not want the default decl_assembler_name implementation,
5277 rather if we have fixed everything we want a wrapper around it
5278 asserting that all non-local symbols already got their assembler
5279 name and only produce assembler names for local symbols. Or rather
5280 make sure we never call decl_assembler_name on local symbols and
5281 devise a separate, middle-end private scheme for it. */
5282
5283 /* Reset diagnostic machinery. */
5284 tree_diagnostics_defaults (global_dc);
5285
5286 return 0;
5287 }
5288
5289
5290 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5291 {
5292 {
5293 SIMPLE_IPA_PASS,
5294 "*free_lang_data", /* name */
5295 OPTGROUP_NONE, /* optinfo_flags */
5296 NULL, /* gate */
5297 free_lang_data, /* execute */
5298 NULL, /* sub */
5299 NULL, /* next */
5300 0, /* static_pass_number */
5301 TV_IPA_FREE_LANG_DATA, /* tv_id */
5302 0, /* properties_required */
5303 0, /* properties_provided */
5304 0, /* properties_destroyed */
5305 0, /* todo_flags_start */
5306 TODO_ggc_collect /* todo_flags_finish */
5307 }
5308 };
5309
5310 /* The backbone of is_attribute_p(). ATTR_LEN is the string length of
5311 ATTR_NAME. Also used internally by remove_attribute(). */
5312 bool
5313 private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident)
5314 {
5315 size_t ident_len = IDENTIFIER_LENGTH (ident);
5316
5317 if (ident_len == attr_len)
5318 {
5319 if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0)
5320 return true;
5321 }
5322 else if (ident_len == attr_len + 4)
5323 {
5324 /* There is the possibility that ATTR is 'text' and IDENT is
5325 '__text__'. */
5326 const char *p = IDENTIFIER_POINTER (ident);
5327 if (p[0] == '_' && p[1] == '_'
5328 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5329 && strncmp (attr_name, p + 2, attr_len) == 0)
5330 return true;
5331 }
5332
5333 return false;
5334 }
5335
5336 /* The backbone of lookup_attribute(). ATTR_LEN is the string length
5337 of ATTR_NAME, and LIST is not NULL_TREE. */
5338 tree
5339 private_lookup_attribute (const char *attr_name, size_t attr_len, tree list)
5340 {
5341 while (list)
5342 {
5343 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5344
5345 if (ident_len == attr_len)
5346 {
5347 if (!strcmp (attr_name,
5348 IDENTIFIER_POINTER (get_attribute_name (list))))
5349 break;
5350 }
5351 /* TODO: If we made sure that attributes were stored in the
5352 canonical form without '__...__' (ie, as in 'text' as opposed
5353 to '__text__') then we could avoid the following case. */
5354 else if (ident_len == attr_len + 4)
5355 {
5356 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5357 if (p[0] == '_' && p[1] == '_'
5358 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5359 && strncmp (attr_name, p + 2, attr_len) == 0)
5360 break;
5361 }
5362 list = TREE_CHAIN (list);
5363 }
5364
5365 return list;
5366 }
5367
5368 /* A variant of lookup_attribute() that can be used with an identifier
5369 as the first argument, and where the identifier can be either
5370 'text' or '__text__'.
5371
5372 Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST,
5373 return a pointer to the attribute's list element if the attribute
5374 is part of the list, or NULL_TREE if not found. If the attribute
5375 appears more than once, this only returns the first occurrence; the
5376 TREE_CHAIN of the return value should be passed back in if further
5377 occurrences are wanted. ATTR_IDENTIFIER must be an identifier but
5378 can be in the form 'text' or '__text__'. */
5379 static tree
5380 lookup_ident_attribute (tree attr_identifier, tree list)
5381 {
5382 gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE);
5383
5384 while (list)
5385 {
5386 gcc_checking_assert (TREE_CODE (get_attribute_name (list))
5387 == IDENTIFIER_NODE);
5388
5389 /* Identifiers can be compared directly for equality. */
5390 if (attr_identifier == get_attribute_name (list))
5391 break;
5392
5393 /* If they are not equal, they may still be one in the form
5394 'text' while the other one is in the form '__text__'. TODO:
5395 If we were storing attributes in normalized 'text' form, then
5396 this could all go away and we could take full advantage of
5397 the fact that we're comparing identifiers. :-) */
5398 {
5399 size_t attr_len = IDENTIFIER_LENGTH (attr_identifier);
5400 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5401
5402 if (ident_len == attr_len + 4)
5403 {
5404 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5405 const char *q = IDENTIFIER_POINTER (attr_identifier);
5406 if (p[0] == '_' && p[1] == '_'
5407 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5408 && strncmp (q, p + 2, attr_len) == 0)
5409 break;
5410 }
5411 else if (ident_len + 4 == attr_len)
5412 {
5413 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5414 const char *q = IDENTIFIER_POINTER (attr_identifier);
5415 if (q[0] == '_' && q[1] == '_'
5416 && q[attr_len - 2] == '_' && q[attr_len - 1] == '_'
5417 && strncmp (q + 2, p, ident_len) == 0)
5418 break;
5419 }
5420 }
5421 list = TREE_CHAIN (list);
5422 }
5423
5424 return list;
5425 }
5426
5427 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5428 modified list. */
5429
5430 tree
5431 remove_attribute (const char *attr_name, tree list)
5432 {
5433 tree *p;
5434 size_t attr_len = strlen (attr_name);
5435
5436 gcc_checking_assert (attr_name[0] != '_');
5437
5438 for (p = &list; *p; )
5439 {
5440 tree l = *p;
5441 /* TODO: If we were storing attributes in normalized form, here
5442 we could use a simple strcmp(). */
5443 if (private_is_attribute_p (attr_name, attr_len, get_attribute_name (l)))
5444 *p = TREE_CHAIN (l);
5445 else
5446 p = &TREE_CHAIN (l);
5447 }
5448
5449 return list;
5450 }
5451
5452 /* Return an attribute list that is the union of a1 and a2. */
5453
5454 tree
5455 merge_attributes (tree a1, tree a2)
5456 {
5457 tree attributes;
5458
5459 /* Either one unset? Take the set one. */
5460
5461 if ((attributes = a1) == 0)
5462 attributes = a2;
5463
5464 /* One that completely contains the other? Take it. */
5465
5466 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5467 {
5468 if (attribute_list_contained (a2, a1))
5469 attributes = a2;
5470 else
5471 {
5472 /* Pick the longest list, and hang on the other list. */
5473
5474 if (list_length (a1) < list_length (a2))
5475 attributes = a2, a2 = a1;
5476
5477 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5478 {
5479 tree a;
5480 for (a = lookup_ident_attribute (get_attribute_name (a2),
5481 attributes);
5482 a != NULL_TREE && !attribute_value_equal (a, a2);
5483 a = lookup_ident_attribute (get_attribute_name (a2),
5484 TREE_CHAIN (a)))
5485 ;
5486 if (a == NULL_TREE)
5487 {
5488 a1 = copy_node (a2);
5489 TREE_CHAIN (a1) = attributes;
5490 attributes = a1;
5491 }
5492 }
5493 }
5494 }
5495 return attributes;
5496 }
5497
5498 /* Given types T1 and T2, merge their attributes and return
5499 the result. */
5500
5501 tree
5502 merge_type_attributes (tree t1, tree t2)
5503 {
5504 return merge_attributes (TYPE_ATTRIBUTES (t1),
5505 TYPE_ATTRIBUTES (t2));
5506 }
5507
5508 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5509 the result. */
5510
5511 tree
5512 merge_decl_attributes (tree olddecl, tree newdecl)
5513 {
5514 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5515 DECL_ATTRIBUTES (newdecl));
5516 }
5517
5518 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5519
5520 /* Specialization of merge_decl_attributes for various Windows targets.
5521
5522 This handles the following situation:
5523
5524 __declspec (dllimport) int foo;
5525 int foo;
5526
5527 The second instance of `foo' nullifies the dllimport. */
5528
5529 tree
5530 merge_dllimport_decl_attributes (tree old, tree new_tree)
5531 {
5532 tree a;
5533 int delete_dllimport_p = 1;
5534
5535 /* What we need to do here is remove from `old' dllimport if it doesn't
5536 appear in `new'. dllimport behaves like extern: if a declaration is
5537 marked dllimport and a definition appears later, then the object
5538 is not dllimport'd. We also remove a `new' dllimport if the old list
5539 contains dllexport: dllexport always overrides dllimport, regardless
5540 of the order of declaration. */
5541 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5542 delete_dllimport_p = 0;
5543 else if (DECL_DLLIMPORT_P (new_tree)
5544 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5545 {
5546 DECL_DLLIMPORT_P (new_tree) = 0;
5547 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5548 "dllimport ignored", new_tree);
5549 }
5550 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5551 {
5552 /* Warn about overriding a symbol that has already been used, e.g.:
5553 extern int __attribute__ ((dllimport)) foo;
5554 int* bar () {return &foo;}
5555 int foo;
5556 */
5557 if (TREE_USED (old))
5558 {
5559 warning (0, "%q+D redeclared without dllimport attribute "
5560 "after being referenced with dll linkage", new_tree);
5561 /* If we have used a variable's address with dllimport linkage,
5562 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5563 decl may already have had TREE_CONSTANT computed.
5564 We still remove the attribute so that assembler code refers
5565 to '&foo rather than '_imp__foo'. */
5566 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5567 DECL_DLLIMPORT_P (new_tree) = 1;
5568 }
5569
5570 /* Let an inline definition silently override the external reference,
5571 but otherwise warn about attribute inconsistency. */
5572 else if (TREE_CODE (new_tree) == VAR_DECL
5573 || !DECL_DECLARED_INLINE_P (new_tree))
5574 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5575 "previous dllimport ignored", new_tree);
5576 }
5577 else
5578 delete_dllimport_p = 0;
5579
5580 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5581
5582 if (delete_dllimport_p)
5583 a = remove_attribute ("dllimport", a);
5584
5585 return a;
5586 }
5587
5588 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5589 struct attribute_spec.handler. */
5590
5591 tree
5592 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5593 bool *no_add_attrs)
5594 {
5595 tree node = *pnode;
5596 bool is_dllimport;
5597
5598 /* These attributes may apply to structure and union types being created,
5599 but otherwise should pass to the declaration involved. */
5600 if (!DECL_P (node))
5601 {
5602 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5603 | (int) ATTR_FLAG_ARRAY_NEXT))
5604 {
5605 *no_add_attrs = true;
5606 return tree_cons (name, args, NULL_TREE);
5607 }
5608 if (TREE_CODE (node) == RECORD_TYPE
5609 || TREE_CODE (node) == UNION_TYPE)
5610 {
5611 node = TYPE_NAME (node);
5612 if (!node)
5613 return NULL_TREE;
5614 }
5615 else
5616 {
5617 warning (OPT_Wattributes, "%qE attribute ignored",
5618 name);
5619 *no_add_attrs = true;
5620 return NULL_TREE;
5621 }
5622 }
5623
5624 if (TREE_CODE (node) != FUNCTION_DECL
5625 && TREE_CODE (node) != VAR_DECL
5626 && TREE_CODE (node) != TYPE_DECL)
5627 {
5628 *no_add_attrs = true;
5629 warning (OPT_Wattributes, "%qE attribute ignored",
5630 name);
5631 return NULL_TREE;
5632 }
5633
5634 if (TREE_CODE (node) == TYPE_DECL
5635 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5636 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5637 {
5638 *no_add_attrs = true;
5639 warning (OPT_Wattributes, "%qE attribute ignored",
5640 name);
5641 return NULL_TREE;
5642 }
5643
5644 is_dllimport = is_attribute_p ("dllimport", name);
5645
5646 /* Report error on dllimport ambiguities seen now before they cause
5647 any damage. */
5648 if (is_dllimport)
5649 {
5650 /* Honor any target-specific overrides. */
5651 if (!targetm.valid_dllimport_attribute_p (node))
5652 *no_add_attrs = true;
5653
5654 else if (TREE_CODE (node) == FUNCTION_DECL
5655 && DECL_DECLARED_INLINE_P (node))
5656 {
5657 warning (OPT_Wattributes, "inline function %q+D declared as "
5658 " dllimport: attribute ignored", node);
5659 *no_add_attrs = true;
5660 }
5661 /* Like MS, treat definition of dllimported variables and
5662 non-inlined functions on declaration as syntax errors. */
5663 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5664 {
5665 error ("function %q+D definition is marked dllimport", node);
5666 *no_add_attrs = true;
5667 }
5668
5669 else if (TREE_CODE (node) == VAR_DECL)
5670 {
5671 if (DECL_INITIAL (node))
5672 {
5673 error ("variable %q+D definition is marked dllimport",
5674 node);
5675 *no_add_attrs = true;
5676 }
5677
5678 /* `extern' needn't be specified with dllimport.
5679 Specify `extern' now and hope for the best. Sigh. */
5680 DECL_EXTERNAL (node) = 1;
5681 /* Also, implicitly give dllimport'd variables declared within
5682 a function global scope, unless declared static. */
5683 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5684 TREE_PUBLIC (node) = 1;
5685 }
5686
5687 if (*no_add_attrs == false)
5688 DECL_DLLIMPORT_P (node) = 1;
5689 }
5690 else if (TREE_CODE (node) == FUNCTION_DECL
5691 && DECL_DECLARED_INLINE_P (node)
5692 && flag_keep_inline_dllexport)
5693 /* An exported function, even if inline, must be emitted. */
5694 DECL_EXTERNAL (node) = 0;
5695
5696 /* Report error if symbol is not accessible at global scope. */
5697 if (!TREE_PUBLIC (node)
5698 && (TREE_CODE (node) == VAR_DECL
5699 || TREE_CODE (node) == FUNCTION_DECL))
5700 {
5701 error ("external linkage required for symbol %q+D because of "
5702 "%qE attribute", node, name);
5703 *no_add_attrs = true;
5704 }
5705
5706 /* A dllexport'd entity must have default visibility so that other
5707 program units (shared libraries or the main executable) can see
5708 it. A dllimport'd entity must have default visibility so that
5709 the linker knows that undefined references within this program
5710 unit can be resolved by the dynamic linker. */
5711 if (!*no_add_attrs)
5712 {
5713 if (DECL_VISIBILITY_SPECIFIED (node)
5714 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5715 error ("%qE implies default visibility, but %qD has already "
5716 "been declared with a different visibility",
5717 name, node);
5718 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5719 DECL_VISIBILITY_SPECIFIED (node) = 1;
5720 }
5721
5722 return NULL_TREE;
5723 }
5724
5725 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5726 \f
5727 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5728 of the various TYPE_QUAL values. */
5729
5730 static void
5731 set_type_quals (tree type, int type_quals)
5732 {
5733 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5734 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5735 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5736 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5737 }
5738
5739 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5740
5741 bool
5742 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5743 {
5744 return (TYPE_QUALS (cand) == type_quals
5745 && TYPE_NAME (cand) == TYPE_NAME (base)
5746 /* Apparently this is needed for Objective-C. */
5747 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5748 /* Check alignment. */
5749 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5750 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5751 TYPE_ATTRIBUTES (base)));
5752 }
5753
5754 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5755
5756 static bool
5757 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5758 {
5759 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5760 && TYPE_NAME (cand) == TYPE_NAME (base)
5761 /* Apparently this is needed for Objective-C. */
5762 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5763 /* Check alignment. */
5764 && TYPE_ALIGN (cand) == align
5765 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5766 TYPE_ATTRIBUTES (base)));
5767 }
5768
5769 /* Return a version of the TYPE, qualified as indicated by the
5770 TYPE_QUALS, if one exists. If no qualified version exists yet,
5771 return NULL_TREE. */
5772
5773 tree
5774 get_qualified_type (tree type, int type_quals)
5775 {
5776 tree t;
5777
5778 if (TYPE_QUALS (type) == type_quals)
5779 return type;
5780
5781 /* Search the chain of variants to see if there is already one there just
5782 like the one we need to have. If so, use that existing one. We must
5783 preserve the TYPE_NAME, since there is code that depends on this. */
5784 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5785 if (check_qualified_type (t, type, type_quals))
5786 return t;
5787
5788 return NULL_TREE;
5789 }
5790
5791 /* Like get_qualified_type, but creates the type if it does not
5792 exist. This function never returns NULL_TREE. */
5793
5794 tree
5795 build_qualified_type (tree type, int type_quals)
5796 {
5797 tree t;
5798
5799 /* See if we already have the appropriate qualified variant. */
5800 t = get_qualified_type (type, type_quals);
5801
5802 /* If not, build it. */
5803 if (!t)
5804 {
5805 t = build_variant_type_copy (type);
5806 set_type_quals (t, type_quals);
5807
5808 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5809 /* Propagate structural equality. */
5810 SET_TYPE_STRUCTURAL_EQUALITY (t);
5811 else if (TYPE_CANONICAL (type) != type)
5812 /* Build the underlying canonical type, since it is different
5813 from TYPE. */
5814 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5815 type_quals);
5816 else
5817 /* T is its own canonical type. */
5818 TYPE_CANONICAL (t) = t;
5819
5820 }
5821
5822 return t;
5823 }
5824
5825 /* Create a variant of type T with alignment ALIGN. */
5826
5827 tree
5828 build_aligned_type (tree type, unsigned int align)
5829 {
5830 tree t;
5831
5832 if (TYPE_PACKED (type)
5833 || TYPE_ALIGN (type) == align)
5834 return type;
5835
5836 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5837 if (check_aligned_type (t, type, align))
5838 return t;
5839
5840 t = build_variant_type_copy (type);
5841 TYPE_ALIGN (t) = align;
5842
5843 return t;
5844 }
5845
5846 /* Create a new distinct copy of TYPE. The new type is made its own
5847 MAIN_VARIANT. If TYPE requires structural equality checks, the
5848 resulting type requires structural equality checks; otherwise, its
5849 TYPE_CANONICAL points to itself. */
5850
5851 tree
5852 build_distinct_type_copy (tree type)
5853 {
5854 tree t = copy_node (type);
5855
5856 TYPE_POINTER_TO (t) = 0;
5857 TYPE_REFERENCE_TO (t) = 0;
5858
5859 /* Set the canonical type either to a new equivalence class, or
5860 propagate the need for structural equality checks. */
5861 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5862 SET_TYPE_STRUCTURAL_EQUALITY (t);
5863 else
5864 TYPE_CANONICAL (t) = t;
5865
5866 /* Make it its own variant. */
5867 TYPE_MAIN_VARIANT (t) = t;
5868 TYPE_NEXT_VARIANT (t) = 0;
5869
5870 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5871 whose TREE_TYPE is not t. This can also happen in the Ada
5872 frontend when using subtypes. */
5873
5874 return t;
5875 }
5876
5877 /* Create a new variant of TYPE, equivalent but distinct. This is so
5878 the caller can modify it. TYPE_CANONICAL for the return type will
5879 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5880 are considered equal by the language itself (or that both types
5881 require structural equality checks). */
5882
5883 tree
5884 build_variant_type_copy (tree type)
5885 {
5886 tree t, m = TYPE_MAIN_VARIANT (type);
5887
5888 t = build_distinct_type_copy (type);
5889
5890 /* Since we're building a variant, assume that it is a non-semantic
5891 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5892 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5893
5894 /* Add the new type to the chain of variants of TYPE. */
5895 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5896 TYPE_NEXT_VARIANT (m) = t;
5897 TYPE_MAIN_VARIANT (t) = m;
5898
5899 return t;
5900 }
5901 \f
5902 /* Return true if the from tree in both tree maps are equal. */
5903
5904 int
5905 tree_map_base_eq (const void *va, const void *vb)
5906 {
5907 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5908 *const b = (const struct tree_map_base *) vb;
5909 return (a->from == b->from);
5910 }
5911
5912 /* Hash a from tree in a tree_base_map. */
5913
5914 unsigned int
5915 tree_map_base_hash (const void *item)
5916 {
5917 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5918 }
5919
5920 /* Return true if this tree map structure is marked for garbage collection
5921 purposes. We simply return true if the from tree is marked, so that this
5922 structure goes away when the from tree goes away. */
5923
5924 int
5925 tree_map_base_marked_p (const void *p)
5926 {
5927 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5928 }
5929
5930 /* Hash a from tree in a tree_map. */
5931
5932 unsigned int
5933 tree_map_hash (const void *item)
5934 {
5935 return (((const struct tree_map *) item)->hash);
5936 }
5937
5938 /* Hash a from tree in a tree_decl_map. */
5939
5940 unsigned int
5941 tree_decl_map_hash (const void *item)
5942 {
5943 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5944 }
5945
5946 /* Return the initialization priority for DECL. */
5947
5948 priority_type
5949 decl_init_priority_lookup (tree decl)
5950 {
5951 struct tree_priority_map *h;
5952 struct tree_map_base in;
5953
5954 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5955 in.from = decl;
5956 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5957 return h ? h->init : DEFAULT_INIT_PRIORITY;
5958 }
5959
5960 /* Return the finalization priority for DECL. */
5961
5962 priority_type
5963 decl_fini_priority_lookup (tree decl)
5964 {
5965 struct tree_priority_map *h;
5966 struct tree_map_base in;
5967
5968 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5969 in.from = decl;
5970 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5971 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5972 }
5973
5974 /* Return the initialization and finalization priority information for
5975 DECL. If there is no previous priority information, a freshly
5976 allocated structure is returned. */
5977
5978 static struct tree_priority_map *
5979 decl_priority_info (tree decl)
5980 {
5981 struct tree_priority_map in;
5982 struct tree_priority_map *h;
5983 void **loc;
5984
5985 in.base.from = decl;
5986 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5987 h = (struct tree_priority_map *) *loc;
5988 if (!h)
5989 {
5990 h = ggc_alloc_cleared_tree_priority_map ();
5991 *loc = h;
5992 h->base.from = decl;
5993 h->init = DEFAULT_INIT_PRIORITY;
5994 h->fini = DEFAULT_INIT_PRIORITY;
5995 }
5996
5997 return h;
5998 }
5999
6000 /* Set the initialization priority for DECL to PRIORITY. */
6001
6002 void
6003 decl_init_priority_insert (tree decl, priority_type priority)
6004 {
6005 struct tree_priority_map *h;
6006
6007 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
6008 if (priority == DEFAULT_INIT_PRIORITY)
6009 return;
6010 h = decl_priority_info (decl);
6011 h->init = priority;
6012 }
6013
6014 /* Set the finalization priority for DECL to PRIORITY. */
6015
6016 void
6017 decl_fini_priority_insert (tree decl, priority_type priority)
6018 {
6019 struct tree_priority_map *h;
6020
6021 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
6022 if (priority == DEFAULT_INIT_PRIORITY)
6023 return;
6024 h = decl_priority_info (decl);
6025 h->fini = priority;
6026 }
6027
6028 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6029
6030 static void
6031 print_debug_expr_statistics (void)
6032 {
6033 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6034 (long) htab_size (debug_expr_for_decl),
6035 (long) htab_elements (debug_expr_for_decl),
6036 htab_collisions (debug_expr_for_decl));
6037 }
6038
6039 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6040
6041 static void
6042 print_value_expr_statistics (void)
6043 {
6044 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6045 (long) htab_size (value_expr_for_decl),
6046 (long) htab_elements (value_expr_for_decl),
6047 htab_collisions (value_expr_for_decl));
6048 }
6049
6050 /* Lookup a debug expression for FROM, and return it if we find one. */
6051
6052 tree
6053 decl_debug_expr_lookup (tree from)
6054 {
6055 struct tree_decl_map *h, in;
6056 in.base.from = from;
6057
6058 h = (struct tree_decl_map *)
6059 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
6060 if (h)
6061 return h->to;
6062 return NULL_TREE;
6063 }
6064
6065 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6066
6067 void
6068 decl_debug_expr_insert (tree from, tree to)
6069 {
6070 struct tree_decl_map *h;
6071 void **loc;
6072
6073 h = ggc_alloc_tree_decl_map ();
6074 h->base.from = from;
6075 h->to = to;
6076 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
6077 INSERT);
6078 *(struct tree_decl_map **) loc = h;
6079 }
6080
6081 /* Lookup a value expression for FROM, and return it if we find one. */
6082
6083 tree
6084 decl_value_expr_lookup (tree from)
6085 {
6086 struct tree_decl_map *h, in;
6087 in.base.from = from;
6088
6089 h = (struct tree_decl_map *)
6090 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
6091 if (h)
6092 return h->to;
6093 return NULL_TREE;
6094 }
6095
6096 /* Insert a mapping FROM->TO in the value expression hashtable. */
6097
6098 void
6099 decl_value_expr_insert (tree from, tree to)
6100 {
6101 struct tree_decl_map *h;
6102 void **loc;
6103
6104 h = ggc_alloc_tree_decl_map ();
6105 h->base.from = from;
6106 h->to = to;
6107 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
6108 INSERT);
6109 *(struct tree_decl_map **) loc = h;
6110 }
6111
6112 /* Lookup a vector of debug arguments for FROM, and return it if we
6113 find one. */
6114
6115 VEC(tree, gc) **
6116 decl_debug_args_lookup (tree from)
6117 {
6118 struct tree_vec_map *h, in;
6119
6120 if (!DECL_HAS_DEBUG_ARGS_P (from))
6121 return NULL;
6122 gcc_checking_assert (debug_args_for_decl != NULL);
6123 in.base.from = from;
6124 h = (struct tree_vec_map *)
6125 htab_find_with_hash (debug_args_for_decl, &in, DECL_UID (from));
6126 if (h)
6127 return &h->to;
6128 return NULL;
6129 }
6130
6131 /* Insert a mapping FROM->empty vector of debug arguments in the value
6132 expression hashtable. */
6133
6134 VEC(tree, gc) **
6135 decl_debug_args_insert (tree from)
6136 {
6137 struct tree_vec_map *h;
6138 void **loc;
6139
6140 if (DECL_HAS_DEBUG_ARGS_P (from))
6141 return decl_debug_args_lookup (from);
6142 if (debug_args_for_decl == NULL)
6143 debug_args_for_decl = htab_create_ggc (64, tree_vec_map_hash,
6144 tree_vec_map_eq, 0);
6145 h = ggc_alloc_tree_vec_map ();
6146 h->base.from = from;
6147 h->to = NULL;
6148 loc = htab_find_slot_with_hash (debug_args_for_decl, h, DECL_UID (from),
6149 INSERT);
6150 *(struct tree_vec_map **) loc = h;
6151 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6152 return &h->to;
6153 }
6154
6155 /* Hashing of types so that we don't make duplicates.
6156 The entry point is `type_hash_canon'. */
6157
6158 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6159 with types in the TREE_VALUE slots), by adding the hash codes
6160 of the individual types. */
6161
6162 static unsigned int
6163 type_hash_list (const_tree list, hashval_t hashcode)
6164 {
6165 const_tree tail;
6166
6167 for (tail = list; tail; tail = TREE_CHAIN (tail))
6168 if (TREE_VALUE (tail) != error_mark_node)
6169 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
6170 hashcode);
6171
6172 return hashcode;
6173 }
6174
6175 /* These are the Hashtable callback functions. */
6176
6177 /* Returns true iff the types are equivalent. */
6178
6179 static int
6180 type_hash_eq (const void *va, const void *vb)
6181 {
6182 const struct type_hash *const a = (const struct type_hash *) va,
6183 *const b = (const struct type_hash *) vb;
6184
6185 /* First test the things that are the same for all types. */
6186 if (a->hash != b->hash
6187 || TREE_CODE (a->type) != TREE_CODE (b->type)
6188 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6189 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6190 TYPE_ATTRIBUTES (b->type))
6191 || (TREE_CODE (a->type) != COMPLEX_TYPE
6192 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6193 return 0;
6194
6195 /* Be careful about comparing arrays before and after the element type
6196 has been completed; don't compare TYPE_ALIGN unless both types are
6197 complete. */
6198 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6199 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6200 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6201 return 0;
6202
6203 switch (TREE_CODE (a->type))
6204 {
6205 case VOID_TYPE:
6206 case COMPLEX_TYPE:
6207 case POINTER_TYPE:
6208 case REFERENCE_TYPE:
6209 case NULLPTR_TYPE:
6210 return 1;
6211
6212 case VECTOR_TYPE:
6213 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6214
6215 case ENUMERAL_TYPE:
6216 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6217 && !(TYPE_VALUES (a->type)
6218 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6219 && TYPE_VALUES (b->type)
6220 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6221 && type_list_equal (TYPE_VALUES (a->type),
6222 TYPE_VALUES (b->type))))
6223 return 0;
6224
6225 /* ... fall through ... */
6226
6227 case INTEGER_TYPE:
6228 case REAL_TYPE:
6229 case BOOLEAN_TYPE:
6230 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6231 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6232 TYPE_MAX_VALUE (b->type)))
6233 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6234 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6235 TYPE_MIN_VALUE (b->type))));
6236
6237 case FIXED_POINT_TYPE:
6238 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6239
6240 case OFFSET_TYPE:
6241 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6242
6243 case METHOD_TYPE:
6244 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6245 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6246 || (TYPE_ARG_TYPES (a->type)
6247 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6248 && TYPE_ARG_TYPES (b->type)
6249 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6250 && type_list_equal (TYPE_ARG_TYPES (a->type),
6251 TYPE_ARG_TYPES (b->type)))))
6252 break;
6253 return 0;
6254 case ARRAY_TYPE:
6255 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6256
6257 case RECORD_TYPE:
6258 case UNION_TYPE:
6259 case QUAL_UNION_TYPE:
6260 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6261 || (TYPE_FIELDS (a->type)
6262 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6263 && TYPE_FIELDS (b->type)
6264 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6265 && type_list_equal (TYPE_FIELDS (a->type),
6266 TYPE_FIELDS (b->type))));
6267
6268 case FUNCTION_TYPE:
6269 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6270 || (TYPE_ARG_TYPES (a->type)
6271 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6272 && TYPE_ARG_TYPES (b->type)
6273 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6274 && type_list_equal (TYPE_ARG_TYPES (a->type),
6275 TYPE_ARG_TYPES (b->type))))
6276 break;
6277 return 0;
6278
6279 default:
6280 return 0;
6281 }
6282
6283 if (lang_hooks.types.type_hash_eq != NULL)
6284 return lang_hooks.types.type_hash_eq (a->type, b->type);
6285
6286 return 1;
6287 }
6288
6289 /* Return the cached hash value. */
6290
6291 static hashval_t
6292 type_hash_hash (const void *item)
6293 {
6294 return ((const struct type_hash *) item)->hash;
6295 }
6296
6297 /* Look in the type hash table for a type isomorphic to TYPE.
6298 If one is found, return it. Otherwise return 0. */
6299
6300 tree
6301 type_hash_lookup (hashval_t hashcode, tree type)
6302 {
6303 struct type_hash *h, in;
6304
6305 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6306 must call that routine before comparing TYPE_ALIGNs. */
6307 layout_type (type);
6308
6309 in.hash = hashcode;
6310 in.type = type;
6311
6312 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6313 hashcode);
6314 if (h)
6315 return h->type;
6316 return NULL_TREE;
6317 }
6318
6319 /* Add an entry to the type-hash-table
6320 for a type TYPE whose hash code is HASHCODE. */
6321
6322 void
6323 type_hash_add (hashval_t hashcode, tree type)
6324 {
6325 struct type_hash *h;
6326 void **loc;
6327
6328 h = ggc_alloc_type_hash ();
6329 h->hash = hashcode;
6330 h->type = type;
6331 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6332 *loc = (void *)h;
6333 }
6334
6335 /* Given TYPE, and HASHCODE its hash code, return the canonical
6336 object for an identical type if one already exists.
6337 Otherwise, return TYPE, and record it as the canonical object.
6338
6339 To use this function, first create a type of the sort you want.
6340 Then compute its hash code from the fields of the type that
6341 make it different from other similar types.
6342 Then call this function and use the value. */
6343
6344 tree
6345 type_hash_canon (unsigned int hashcode, tree type)
6346 {
6347 tree t1;
6348
6349 /* The hash table only contains main variants, so ensure that's what we're
6350 being passed. */
6351 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6352
6353 /* See if the type is in the hash table already. If so, return it.
6354 Otherwise, add the type. */
6355 t1 = type_hash_lookup (hashcode, type);
6356 if (t1 != 0)
6357 {
6358 if (GATHER_STATISTICS)
6359 {
6360 tree_code_counts[(int) TREE_CODE (type)]--;
6361 tree_node_counts[(int) t_kind]--;
6362 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
6363 }
6364 return t1;
6365 }
6366 else
6367 {
6368 type_hash_add (hashcode, type);
6369 return type;
6370 }
6371 }
6372
6373 /* See if the data pointed to by the type hash table is marked. We consider
6374 it marked if the type is marked or if a debug type number or symbol
6375 table entry has been made for the type. */
6376
6377 static int
6378 type_hash_marked_p (const void *p)
6379 {
6380 const_tree const type = ((const struct type_hash *) p)->type;
6381
6382 return ggc_marked_p (type);
6383 }
6384
6385 static void
6386 print_type_hash_statistics (void)
6387 {
6388 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6389 (long) htab_size (type_hash_table),
6390 (long) htab_elements (type_hash_table),
6391 htab_collisions (type_hash_table));
6392 }
6393
6394 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6395 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6396 by adding the hash codes of the individual attributes. */
6397
6398 static unsigned int
6399 attribute_hash_list (const_tree list, hashval_t hashcode)
6400 {
6401 const_tree tail;
6402
6403 for (tail = list; tail; tail = TREE_CHAIN (tail))
6404 /* ??? Do we want to add in TREE_VALUE too? */
6405 hashcode = iterative_hash_object
6406 (IDENTIFIER_HASH_VALUE (get_attribute_name (tail)), hashcode);
6407 return hashcode;
6408 }
6409
6410 /* Given two lists of attributes, return true if list l2 is
6411 equivalent to l1. */
6412
6413 int
6414 attribute_list_equal (const_tree l1, const_tree l2)
6415 {
6416 if (l1 == l2)
6417 return 1;
6418
6419 return attribute_list_contained (l1, l2)
6420 && attribute_list_contained (l2, l1);
6421 }
6422
6423 /* Given two lists of attributes, return true if list L2 is
6424 completely contained within L1. */
6425 /* ??? This would be faster if attribute names were stored in a canonicalized
6426 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6427 must be used to show these elements are equivalent (which they are). */
6428 /* ??? It's not clear that attributes with arguments will always be handled
6429 correctly. */
6430
6431 int
6432 attribute_list_contained (const_tree l1, const_tree l2)
6433 {
6434 const_tree t1, t2;
6435
6436 /* First check the obvious, maybe the lists are identical. */
6437 if (l1 == l2)
6438 return 1;
6439
6440 /* Maybe the lists are similar. */
6441 for (t1 = l1, t2 = l2;
6442 t1 != 0 && t2 != 0
6443 && get_attribute_name (t1) == get_attribute_name (t2)
6444 && TREE_VALUE (t1) == TREE_VALUE (t2);
6445 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6446 ;
6447
6448 /* Maybe the lists are equal. */
6449 if (t1 == 0 && t2 == 0)
6450 return 1;
6451
6452 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6453 {
6454 const_tree attr;
6455 /* This CONST_CAST is okay because lookup_attribute does not
6456 modify its argument and the return value is assigned to a
6457 const_tree. */
6458 for (attr = lookup_ident_attribute (get_attribute_name (t2), CONST_CAST_TREE(l1));
6459 attr != NULL_TREE && !attribute_value_equal (t2, attr);
6460 attr = lookup_ident_attribute (get_attribute_name (t2), TREE_CHAIN (attr)))
6461 ;
6462
6463 if (attr == NULL_TREE)
6464 return 0;
6465 }
6466
6467 return 1;
6468 }
6469
6470 /* Given two lists of types
6471 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6472 return 1 if the lists contain the same types in the same order.
6473 Also, the TREE_PURPOSEs must match. */
6474
6475 int
6476 type_list_equal (const_tree l1, const_tree l2)
6477 {
6478 const_tree t1, t2;
6479
6480 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6481 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6482 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6483 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6484 && (TREE_TYPE (TREE_PURPOSE (t1))
6485 == TREE_TYPE (TREE_PURPOSE (t2))))))
6486 return 0;
6487
6488 return t1 == t2;
6489 }
6490
6491 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6492 given by TYPE. If the argument list accepts variable arguments,
6493 then this function counts only the ordinary arguments. */
6494
6495 int
6496 type_num_arguments (const_tree type)
6497 {
6498 int i = 0;
6499 tree t;
6500
6501 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6502 /* If the function does not take a variable number of arguments,
6503 the last element in the list will have type `void'. */
6504 if (VOID_TYPE_P (TREE_VALUE (t)))
6505 break;
6506 else
6507 ++i;
6508
6509 return i;
6510 }
6511
6512 /* Nonzero if integer constants T1 and T2
6513 represent the same constant value. */
6514
6515 int
6516 tree_int_cst_equal (const_tree t1, const_tree t2)
6517 {
6518 if (t1 == t2)
6519 return 1;
6520
6521 if (t1 == 0 || t2 == 0)
6522 return 0;
6523
6524 if (TREE_CODE (t1) == INTEGER_CST
6525 && TREE_CODE (t2) == INTEGER_CST
6526 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6527 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6528 return 1;
6529
6530 return 0;
6531 }
6532
6533 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6534 The precise way of comparison depends on their data type. */
6535
6536 int
6537 tree_int_cst_lt (const_tree t1, const_tree t2)
6538 {
6539 if (t1 == t2)
6540 return 0;
6541
6542 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6543 {
6544 int t1_sgn = tree_int_cst_sgn (t1);
6545 int t2_sgn = tree_int_cst_sgn (t2);
6546
6547 if (t1_sgn < t2_sgn)
6548 return 1;
6549 else if (t1_sgn > t2_sgn)
6550 return 0;
6551 /* Otherwise, both are non-negative, so we compare them as
6552 unsigned just in case one of them would overflow a signed
6553 type. */
6554 }
6555 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6556 return INT_CST_LT (t1, t2);
6557
6558 return INT_CST_LT_UNSIGNED (t1, t2);
6559 }
6560
6561 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6562
6563 int
6564 tree_int_cst_compare (const_tree t1, const_tree t2)
6565 {
6566 if (tree_int_cst_lt (t1, t2))
6567 return -1;
6568 else if (tree_int_cst_lt (t2, t1))
6569 return 1;
6570 else
6571 return 0;
6572 }
6573
6574 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6575 the host. If POS is zero, the value can be represented in a single
6576 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6577 be represented in a single unsigned HOST_WIDE_INT. */
6578
6579 int
6580 host_integerp (const_tree t, int pos)
6581 {
6582 if (t == NULL_TREE)
6583 return 0;
6584
6585 return (TREE_CODE (t) == INTEGER_CST
6586 && ((TREE_INT_CST_HIGH (t) == 0
6587 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6588 || (! pos && TREE_INT_CST_HIGH (t) == -1
6589 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6590 && !TYPE_UNSIGNED (TREE_TYPE (t)))
6591 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6592 }
6593
6594 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6595 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6596 be non-negative. We must be able to satisfy the above conditions. */
6597
6598 HOST_WIDE_INT
6599 tree_low_cst (const_tree t, int pos)
6600 {
6601 gcc_assert (host_integerp (t, pos));
6602 return TREE_INT_CST_LOW (t);
6603 }
6604
6605 /* Return the HOST_WIDE_INT least significant bits of T, a sizetype
6606 kind INTEGER_CST. This makes sure to properly sign-extend the
6607 constant. */
6608
6609 HOST_WIDE_INT
6610 size_low_cst (const_tree t)
6611 {
6612 double_int d = tree_to_double_int (t);
6613 return d.sext (TYPE_PRECISION (TREE_TYPE (t))).low;
6614 }
6615
6616 /* Return the most significant (sign) bit of T. */
6617
6618 int
6619 tree_int_cst_sign_bit (const_tree t)
6620 {
6621 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
6622 unsigned HOST_WIDE_INT w;
6623
6624 if (bitno < HOST_BITS_PER_WIDE_INT)
6625 w = TREE_INT_CST_LOW (t);
6626 else
6627 {
6628 w = TREE_INT_CST_HIGH (t);
6629 bitno -= HOST_BITS_PER_WIDE_INT;
6630 }
6631
6632 return (w >> bitno) & 1;
6633 }
6634
6635 /* Return an indication of the sign of the integer constant T.
6636 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6637 Note that -1 will never be returned if T's type is unsigned. */
6638
6639 int
6640 tree_int_cst_sgn (const_tree t)
6641 {
6642 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6643 return 0;
6644 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6645 return 1;
6646 else if (TREE_INT_CST_HIGH (t) < 0)
6647 return -1;
6648 else
6649 return 1;
6650 }
6651
6652 /* Return the minimum number of bits needed to represent VALUE in a
6653 signed or unsigned type, UNSIGNEDP says which. */
6654
6655 unsigned int
6656 tree_int_cst_min_precision (tree value, bool unsignedp)
6657 {
6658 int log;
6659
6660 /* If the value is negative, compute its negative minus 1. The latter
6661 adjustment is because the absolute value of the largest negative value
6662 is one larger than the largest positive value. This is equivalent to
6663 a bit-wise negation, so use that operation instead. */
6664
6665 if (tree_int_cst_sgn (value) < 0)
6666 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6667
6668 /* Return the number of bits needed, taking into account the fact
6669 that we need one more bit for a signed than unsigned type. */
6670
6671 if (integer_zerop (value))
6672 log = 0;
6673 else
6674 log = tree_floor_log2 (value);
6675
6676 return log + 1 + !unsignedp;
6677 }
6678
6679 /* Compare two constructor-element-type constants. Return 1 if the lists
6680 are known to be equal; otherwise return 0. */
6681
6682 int
6683 simple_cst_list_equal (const_tree l1, const_tree l2)
6684 {
6685 while (l1 != NULL_TREE && l2 != NULL_TREE)
6686 {
6687 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6688 return 0;
6689
6690 l1 = TREE_CHAIN (l1);
6691 l2 = TREE_CHAIN (l2);
6692 }
6693
6694 return l1 == l2;
6695 }
6696
6697 /* Return truthvalue of whether T1 is the same tree structure as T2.
6698 Return 1 if they are the same.
6699 Return 0 if they are understandably different.
6700 Return -1 if either contains tree structure not understood by
6701 this function. */
6702
6703 int
6704 simple_cst_equal (const_tree t1, const_tree t2)
6705 {
6706 enum tree_code code1, code2;
6707 int cmp;
6708 int i;
6709
6710 if (t1 == t2)
6711 return 1;
6712 if (t1 == 0 || t2 == 0)
6713 return 0;
6714
6715 code1 = TREE_CODE (t1);
6716 code2 = TREE_CODE (t2);
6717
6718 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6719 {
6720 if (CONVERT_EXPR_CODE_P (code2)
6721 || code2 == NON_LVALUE_EXPR)
6722 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6723 else
6724 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6725 }
6726
6727 else if (CONVERT_EXPR_CODE_P (code2)
6728 || code2 == NON_LVALUE_EXPR)
6729 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6730
6731 if (code1 != code2)
6732 return 0;
6733
6734 switch (code1)
6735 {
6736 case INTEGER_CST:
6737 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6738 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6739
6740 case REAL_CST:
6741 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6742
6743 case FIXED_CST:
6744 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6745
6746 case STRING_CST:
6747 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6748 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6749 TREE_STRING_LENGTH (t1)));
6750
6751 case CONSTRUCTOR:
6752 {
6753 unsigned HOST_WIDE_INT idx;
6754 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6755 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6756
6757 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6758 return false;
6759
6760 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6761 /* ??? Should we handle also fields here? */
6762 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx).value,
6763 VEC_index (constructor_elt, v2, idx).value))
6764 return false;
6765 return true;
6766 }
6767
6768 case SAVE_EXPR:
6769 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6770
6771 case CALL_EXPR:
6772 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6773 if (cmp <= 0)
6774 return cmp;
6775 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6776 return 0;
6777 {
6778 const_tree arg1, arg2;
6779 const_call_expr_arg_iterator iter1, iter2;
6780 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6781 arg2 = first_const_call_expr_arg (t2, &iter2);
6782 arg1 && arg2;
6783 arg1 = next_const_call_expr_arg (&iter1),
6784 arg2 = next_const_call_expr_arg (&iter2))
6785 {
6786 cmp = simple_cst_equal (arg1, arg2);
6787 if (cmp <= 0)
6788 return cmp;
6789 }
6790 return arg1 == arg2;
6791 }
6792
6793 case TARGET_EXPR:
6794 /* Special case: if either target is an unallocated VAR_DECL,
6795 it means that it's going to be unified with whatever the
6796 TARGET_EXPR is really supposed to initialize, so treat it
6797 as being equivalent to anything. */
6798 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6799 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6800 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6801 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6802 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6803 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6804 cmp = 1;
6805 else
6806 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6807
6808 if (cmp <= 0)
6809 return cmp;
6810
6811 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6812
6813 case WITH_CLEANUP_EXPR:
6814 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6815 if (cmp <= 0)
6816 return cmp;
6817
6818 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6819
6820 case COMPONENT_REF:
6821 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6822 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6823
6824 return 0;
6825
6826 case VAR_DECL:
6827 case PARM_DECL:
6828 case CONST_DECL:
6829 case FUNCTION_DECL:
6830 return 0;
6831
6832 default:
6833 break;
6834 }
6835
6836 /* This general rule works for most tree codes. All exceptions should be
6837 handled above. If this is a language-specific tree code, we can't
6838 trust what might be in the operand, so say we don't know
6839 the situation. */
6840 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6841 return -1;
6842
6843 switch (TREE_CODE_CLASS (code1))
6844 {
6845 case tcc_unary:
6846 case tcc_binary:
6847 case tcc_comparison:
6848 case tcc_expression:
6849 case tcc_reference:
6850 case tcc_statement:
6851 cmp = 1;
6852 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6853 {
6854 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6855 if (cmp <= 0)
6856 return cmp;
6857 }
6858
6859 return cmp;
6860
6861 default:
6862 return -1;
6863 }
6864 }
6865
6866 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6867 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6868 than U, respectively. */
6869
6870 int
6871 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6872 {
6873 if (tree_int_cst_sgn (t) < 0)
6874 return -1;
6875 else if (TREE_INT_CST_HIGH (t) != 0)
6876 return 1;
6877 else if (TREE_INT_CST_LOW (t) == u)
6878 return 0;
6879 else if (TREE_INT_CST_LOW (t) < u)
6880 return -1;
6881 else
6882 return 1;
6883 }
6884
6885 /* Return true if SIZE represents a constant size that is in bounds of
6886 what the middle-end and the backend accepts (covering not more than
6887 half of the address-space). */
6888
6889 bool
6890 valid_constant_size_p (const_tree size)
6891 {
6892 if (! host_integerp (size, 1)
6893 || TREE_OVERFLOW (size)
6894 || tree_int_cst_sign_bit (size) != 0)
6895 return false;
6896 return true;
6897 }
6898
6899 /* Return true if CODE represents an associative tree code. Otherwise
6900 return false. */
6901 bool
6902 associative_tree_code (enum tree_code code)
6903 {
6904 switch (code)
6905 {
6906 case BIT_IOR_EXPR:
6907 case BIT_AND_EXPR:
6908 case BIT_XOR_EXPR:
6909 case PLUS_EXPR:
6910 case MULT_EXPR:
6911 case MIN_EXPR:
6912 case MAX_EXPR:
6913 return true;
6914
6915 default:
6916 break;
6917 }
6918 return false;
6919 }
6920
6921 /* Return true if CODE represents a commutative tree code. Otherwise
6922 return false. */
6923 bool
6924 commutative_tree_code (enum tree_code code)
6925 {
6926 switch (code)
6927 {
6928 case PLUS_EXPR:
6929 case MULT_EXPR:
6930 case MULT_HIGHPART_EXPR:
6931 case MIN_EXPR:
6932 case MAX_EXPR:
6933 case BIT_IOR_EXPR:
6934 case BIT_XOR_EXPR:
6935 case BIT_AND_EXPR:
6936 case NE_EXPR:
6937 case EQ_EXPR:
6938 case UNORDERED_EXPR:
6939 case ORDERED_EXPR:
6940 case UNEQ_EXPR:
6941 case LTGT_EXPR:
6942 case TRUTH_AND_EXPR:
6943 case TRUTH_XOR_EXPR:
6944 case TRUTH_OR_EXPR:
6945 case WIDEN_MULT_EXPR:
6946 case VEC_WIDEN_MULT_HI_EXPR:
6947 case VEC_WIDEN_MULT_LO_EXPR:
6948 case VEC_WIDEN_MULT_EVEN_EXPR:
6949 case VEC_WIDEN_MULT_ODD_EXPR:
6950 return true;
6951
6952 default:
6953 break;
6954 }
6955 return false;
6956 }
6957
6958 /* Return true if CODE represents a ternary tree code for which the
6959 first two operands are commutative. Otherwise return false. */
6960 bool
6961 commutative_ternary_tree_code (enum tree_code code)
6962 {
6963 switch (code)
6964 {
6965 case WIDEN_MULT_PLUS_EXPR:
6966 case WIDEN_MULT_MINUS_EXPR:
6967 return true;
6968
6969 default:
6970 break;
6971 }
6972 return false;
6973 }
6974
6975 /* Generate a hash value for an expression. This can be used iteratively
6976 by passing a previous result as the VAL argument.
6977
6978 This function is intended to produce the same hash for expressions which
6979 would compare equal using operand_equal_p. */
6980
6981 hashval_t
6982 iterative_hash_expr (const_tree t, hashval_t val)
6983 {
6984 int i;
6985 enum tree_code code;
6986 char tclass;
6987
6988 if (t == NULL_TREE)
6989 return iterative_hash_hashval_t (0, val);
6990
6991 code = TREE_CODE (t);
6992
6993 switch (code)
6994 {
6995 /* Alas, constants aren't shared, so we can't rely on pointer
6996 identity. */
6997 case INTEGER_CST:
6998 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6999 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
7000 case REAL_CST:
7001 {
7002 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
7003
7004 return iterative_hash_hashval_t (val2, val);
7005 }
7006 case FIXED_CST:
7007 {
7008 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7009
7010 return iterative_hash_hashval_t (val2, val);
7011 }
7012 case STRING_CST:
7013 return iterative_hash (TREE_STRING_POINTER (t),
7014 TREE_STRING_LENGTH (t), val);
7015 case COMPLEX_CST:
7016 val = iterative_hash_expr (TREE_REALPART (t), val);
7017 return iterative_hash_expr (TREE_IMAGPART (t), val);
7018 case VECTOR_CST:
7019 {
7020 unsigned i;
7021 for (i = 0; i < VECTOR_CST_NELTS (t); ++i)
7022 val = iterative_hash_expr (VECTOR_CST_ELT (t, i), val);
7023 return val;
7024 }
7025 case SSA_NAME:
7026 /* We can just compare by pointer. */
7027 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
7028 case PLACEHOLDER_EXPR:
7029 /* The node itself doesn't matter. */
7030 return val;
7031 case TREE_LIST:
7032 /* A list of expressions, for a CALL_EXPR or as the elements of a
7033 VECTOR_CST. */
7034 for (; t; t = TREE_CHAIN (t))
7035 val = iterative_hash_expr (TREE_VALUE (t), val);
7036 return val;
7037 case CONSTRUCTOR:
7038 {
7039 unsigned HOST_WIDE_INT idx;
7040 tree field, value;
7041 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7042 {
7043 val = iterative_hash_expr (field, val);
7044 val = iterative_hash_expr (value, val);
7045 }
7046 return val;
7047 }
7048 case MEM_REF:
7049 {
7050 /* The type of the second operand is relevant, except for
7051 its top-level qualifiers. */
7052 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
7053
7054 val = iterative_hash_object (TYPE_HASH (type), val);
7055
7056 /* We could use the standard hash computation from this point
7057 on. */
7058 val = iterative_hash_object (code, val);
7059 val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
7060 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
7061 return val;
7062 }
7063 case FUNCTION_DECL:
7064 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7065 Otherwise nodes that compare equal according to operand_equal_p might
7066 get different hash codes. However, don't do this for machine specific
7067 or front end builtins, since the function code is overloaded in those
7068 cases. */
7069 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7070 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7071 {
7072 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7073 code = TREE_CODE (t);
7074 }
7075 /* FALL THROUGH */
7076 default:
7077 tclass = TREE_CODE_CLASS (code);
7078
7079 if (tclass == tcc_declaration)
7080 {
7081 /* DECL's have a unique ID */
7082 val = iterative_hash_host_wide_int (DECL_UID (t), val);
7083 }
7084 else
7085 {
7086 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
7087
7088 val = iterative_hash_object (code, val);
7089
7090 /* Don't hash the type, that can lead to having nodes which
7091 compare equal according to operand_equal_p, but which
7092 have different hash codes. */
7093 if (CONVERT_EXPR_CODE_P (code)
7094 || code == NON_LVALUE_EXPR)
7095 {
7096 /* Make sure to include signness in the hash computation. */
7097 val += TYPE_UNSIGNED (TREE_TYPE (t));
7098 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
7099 }
7100
7101 else if (commutative_tree_code (code))
7102 {
7103 /* It's a commutative expression. We want to hash it the same
7104 however it appears. We do this by first hashing both operands
7105 and then rehashing based on the order of their independent
7106 hashes. */
7107 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
7108 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
7109 hashval_t t;
7110
7111 if (one > two)
7112 t = one, one = two, two = t;
7113
7114 val = iterative_hash_hashval_t (one, val);
7115 val = iterative_hash_hashval_t (two, val);
7116 }
7117 else
7118 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7119 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
7120 }
7121 return val;
7122 }
7123 }
7124
7125 /* Generate a hash value for a pair of expressions. This can be used
7126 iteratively by passing a previous result as the VAL argument.
7127
7128 The same hash value is always returned for a given pair of expressions,
7129 regardless of the order in which they are presented. This is useful in
7130 hashing the operands of commutative functions. */
7131
7132 hashval_t
7133 iterative_hash_exprs_commutative (const_tree t1,
7134 const_tree t2, hashval_t val)
7135 {
7136 hashval_t one = iterative_hash_expr (t1, 0);
7137 hashval_t two = iterative_hash_expr (t2, 0);
7138 hashval_t t;
7139
7140 if (one > two)
7141 t = one, one = two, two = t;
7142 val = iterative_hash_hashval_t (one, val);
7143 val = iterative_hash_hashval_t (two, val);
7144
7145 return val;
7146 }
7147 \f
7148 /* Constructors for pointer, array and function types.
7149 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7150 constructed by language-dependent code, not here.) */
7151
7152 /* Construct, lay out and return the type of pointers to TO_TYPE with
7153 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7154 reference all of memory. If such a type has already been
7155 constructed, reuse it. */
7156
7157 tree
7158 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
7159 bool can_alias_all)
7160 {
7161 tree t;
7162
7163 if (to_type == error_mark_node)
7164 return error_mark_node;
7165
7166 /* If the pointed-to type has the may_alias attribute set, force
7167 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7168 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7169 can_alias_all = true;
7170
7171 /* In some cases, languages will have things that aren't a POINTER_TYPE
7172 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7173 In that case, return that type without regard to the rest of our
7174 operands.
7175
7176 ??? This is a kludge, but consistent with the way this function has
7177 always operated and there doesn't seem to be a good way to avoid this
7178 at the moment. */
7179 if (TYPE_POINTER_TO (to_type) != 0
7180 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7181 return TYPE_POINTER_TO (to_type);
7182
7183 /* First, if we already have a type for pointers to TO_TYPE and it's
7184 the proper mode, use it. */
7185 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7186 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7187 return t;
7188
7189 t = make_node (POINTER_TYPE);
7190
7191 TREE_TYPE (t) = to_type;
7192 SET_TYPE_MODE (t, mode);
7193 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7194 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7195 TYPE_POINTER_TO (to_type) = t;
7196
7197 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7198 SET_TYPE_STRUCTURAL_EQUALITY (t);
7199 else if (TYPE_CANONICAL (to_type) != to_type)
7200 TYPE_CANONICAL (t)
7201 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7202 mode, can_alias_all);
7203
7204 /* Lay out the type. This function has many callers that are concerned
7205 with expression-construction, and this simplifies them all. */
7206 layout_type (t);
7207
7208 return t;
7209 }
7210
7211 /* By default build pointers in ptr_mode. */
7212
7213 tree
7214 build_pointer_type (tree to_type)
7215 {
7216 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7217 : TYPE_ADDR_SPACE (to_type);
7218 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7219 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7220 }
7221
7222 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7223
7224 tree
7225 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
7226 bool can_alias_all)
7227 {
7228 tree t;
7229
7230 if (to_type == error_mark_node)
7231 return error_mark_node;
7232
7233 /* If the pointed-to type has the may_alias attribute set, force
7234 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7235 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7236 can_alias_all = true;
7237
7238 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7239 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7240 In that case, return that type without regard to the rest of our
7241 operands.
7242
7243 ??? This is a kludge, but consistent with the way this function has
7244 always operated and there doesn't seem to be a good way to avoid this
7245 at the moment. */
7246 if (TYPE_REFERENCE_TO (to_type) != 0
7247 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7248 return TYPE_REFERENCE_TO (to_type);
7249
7250 /* First, if we already have a type for pointers to TO_TYPE and it's
7251 the proper mode, use it. */
7252 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7253 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7254 return t;
7255
7256 t = make_node (REFERENCE_TYPE);
7257
7258 TREE_TYPE (t) = to_type;
7259 SET_TYPE_MODE (t, mode);
7260 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7261 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7262 TYPE_REFERENCE_TO (to_type) = t;
7263
7264 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7265 SET_TYPE_STRUCTURAL_EQUALITY (t);
7266 else if (TYPE_CANONICAL (to_type) != to_type)
7267 TYPE_CANONICAL (t)
7268 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7269 mode, can_alias_all);
7270
7271 layout_type (t);
7272
7273 return t;
7274 }
7275
7276
7277 /* Build the node for the type of references-to-TO_TYPE by default
7278 in ptr_mode. */
7279
7280 tree
7281 build_reference_type (tree to_type)
7282 {
7283 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7284 : TYPE_ADDR_SPACE (to_type);
7285 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7286 return build_reference_type_for_mode (to_type, pointer_mode, false);
7287 }
7288
7289 /* Build a type that is compatible with t but has no cv quals anywhere
7290 in its type, thus
7291
7292 const char *const *const * -> char ***. */
7293
7294 tree
7295 build_type_no_quals (tree t)
7296 {
7297 switch (TREE_CODE (t))
7298 {
7299 case POINTER_TYPE:
7300 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7301 TYPE_MODE (t),
7302 TYPE_REF_CAN_ALIAS_ALL (t));
7303 case REFERENCE_TYPE:
7304 return
7305 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7306 TYPE_MODE (t),
7307 TYPE_REF_CAN_ALIAS_ALL (t));
7308 default:
7309 return TYPE_MAIN_VARIANT (t);
7310 }
7311 }
7312
7313 #define MAX_INT_CACHED_PREC \
7314 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7315 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7316
7317 /* Builds a signed or unsigned integer type of precision PRECISION.
7318 Used for C bitfields whose precision does not match that of
7319 built-in target types. */
7320 tree
7321 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7322 int unsignedp)
7323 {
7324 tree itype, ret;
7325
7326 if (unsignedp)
7327 unsignedp = MAX_INT_CACHED_PREC + 1;
7328
7329 if (precision <= MAX_INT_CACHED_PREC)
7330 {
7331 itype = nonstandard_integer_type_cache[precision + unsignedp];
7332 if (itype)
7333 return itype;
7334 }
7335
7336 itype = make_node (INTEGER_TYPE);
7337 TYPE_PRECISION (itype) = precision;
7338
7339 if (unsignedp)
7340 fixup_unsigned_type (itype);
7341 else
7342 fixup_signed_type (itype);
7343
7344 ret = itype;
7345 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7346 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7347 if (precision <= MAX_INT_CACHED_PREC)
7348 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7349
7350 return ret;
7351 }
7352
7353 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7354 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7355 is true, reuse such a type that has already been constructed. */
7356
7357 static tree
7358 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7359 {
7360 tree itype = make_node (INTEGER_TYPE);
7361 hashval_t hashcode = 0;
7362
7363 TREE_TYPE (itype) = type;
7364
7365 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7366 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7367
7368 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7369 SET_TYPE_MODE (itype, TYPE_MODE (type));
7370 TYPE_SIZE (itype) = TYPE_SIZE (type);
7371 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7372 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7373 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7374
7375 if (!shared)
7376 return itype;
7377
7378 if ((TYPE_MIN_VALUE (itype)
7379 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7380 || (TYPE_MAX_VALUE (itype)
7381 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7382 {
7383 /* Since we cannot reliably merge this type, we need to compare it using
7384 structural equality checks. */
7385 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7386 return itype;
7387 }
7388
7389 hashcode = iterative_hash_expr (TYPE_MIN_VALUE (itype), hashcode);
7390 hashcode = iterative_hash_expr (TYPE_MAX_VALUE (itype), hashcode);
7391 hashcode = iterative_hash_hashval_t (TYPE_HASH (type), hashcode);
7392 itype = type_hash_canon (hashcode, itype);
7393
7394 return itype;
7395 }
7396
7397 /* Wrapper around build_range_type_1 with SHARED set to true. */
7398
7399 tree
7400 build_range_type (tree type, tree lowval, tree highval)
7401 {
7402 return build_range_type_1 (type, lowval, highval, true);
7403 }
7404
7405 /* Wrapper around build_range_type_1 with SHARED set to false. */
7406
7407 tree
7408 build_nonshared_range_type (tree type, tree lowval, tree highval)
7409 {
7410 return build_range_type_1 (type, lowval, highval, false);
7411 }
7412
7413 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7414 MAXVAL should be the maximum value in the domain
7415 (one less than the length of the array).
7416
7417 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7418 We don't enforce this limit, that is up to caller (e.g. language front end).
7419 The limit exists because the result is a signed type and we don't handle
7420 sizes that use more than one HOST_WIDE_INT. */
7421
7422 tree
7423 build_index_type (tree maxval)
7424 {
7425 return build_range_type (sizetype, size_zero_node, maxval);
7426 }
7427
7428 /* Return true if the debug information for TYPE, a subtype, should be emitted
7429 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7430 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7431 debug info and doesn't reflect the source code. */
7432
7433 bool
7434 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7435 {
7436 tree base_type = TREE_TYPE (type), low, high;
7437
7438 /* Subrange types have a base type which is an integral type. */
7439 if (!INTEGRAL_TYPE_P (base_type))
7440 return false;
7441
7442 /* Get the real bounds of the subtype. */
7443 if (lang_hooks.types.get_subrange_bounds)
7444 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7445 else
7446 {
7447 low = TYPE_MIN_VALUE (type);
7448 high = TYPE_MAX_VALUE (type);
7449 }
7450
7451 /* If the type and its base type have the same representation and the same
7452 name, then the type is not a subrange but a copy of the base type. */
7453 if ((TREE_CODE (base_type) == INTEGER_TYPE
7454 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7455 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7456 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7457 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7458 {
7459 tree type_name = TYPE_NAME (type);
7460 tree base_type_name = TYPE_NAME (base_type);
7461
7462 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7463 type_name = DECL_NAME (type_name);
7464
7465 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7466 base_type_name = DECL_NAME (base_type_name);
7467
7468 if (type_name == base_type_name)
7469 return false;
7470 }
7471
7472 if (lowval)
7473 *lowval = low;
7474 if (highval)
7475 *highval = high;
7476 return true;
7477 }
7478
7479 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7480 and number of elements specified by the range of values of INDEX_TYPE.
7481 If SHARED is true, reuse such a type that has already been constructed. */
7482
7483 static tree
7484 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7485 {
7486 tree t;
7487
7488 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7489 {
7490 error ("arrays of functions are not meaningful");
7491 elt_type = integer_type_node;
7492 }
7493
7494 t = make_node (ARRAY_TYPE);
7495 TREE_TYPE (t) = elt_type;
7496 TYPE_DOMAIN (t) = index_type;
7497 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7498 layout_type (t);
7499
7500 /* If the element type is incomplete at this point we get marked for
7501 structural equality. Do not record these types in the canonical
7502 type hashtable. */
7503 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7504 return t;
7505
7506 if (shared)
7507 {
7508 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7509 if (index_type)
7510 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7511 t = type_hash_canon (hashcode, t);
7512 }
7513
7514 if (TYPE_CANONICAL (t) == t)
7515 {
7516 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7517 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7518 SET_TYPE_STRUCTURAL_EQUALITY (t);
7519 else if (TYPE_CANONICAL (elt_type) != elt_type
7520 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7521 TYPE_CANONICAL (t)
7522 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7523 index_type
7524 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7525 shared);
7526 }
7527
7528 return t;
7529 }
7530
7531 /* Wrapper around build_array_type_1 with SHARED set to true. */
7532
7533 tree
7534 build_array_type (tree elt_type, tree index_type)
7535 {
7536 return build_array_type_1 (elt_type, index_type, true);
7537 }
7538
7539 /* Wrapper around build_array_type_1 with SHARED set to false. */
7540
7541 tree
7542 build_nonshared_array_type (tree elt_type, tree index_type)
7543 {
7544 return build_array_type_1 (elt_type, index_type, false);
7545 }
7546
7547 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7548 sizetype. */
7549
7550 tree
7551 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7552 {
7553 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7554 }
7555
7556 /* Recursively examines the array elements of TYPE, until a non-array
7557 element type is found. */
7558
7559 tree
7560 strip_array_types (tree type)
7561 {
7562 while (TREE_CODE (type) == ARRAY_TYPE)
7563 type = TREE_TYPE (type);
7564
7565 return type;
7566 }
7567
7568 /* Computes the canonical argument types from the argument type list
7569 ARGTYPES.
7570
7571 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7572 on entry to this function, or if any of the ARGTYPES are
7573 structural.
7574
7575 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7576 true on entry to this function, or if any of the ARGTYPES are
7577 non-canonical.
7578
7579 Returns a canonical argument list, which may be ARGTYPES when the
7580 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7581 true) or would not differ from ARGTYPES. */
7582
7583 static tree
7584 maybe_canonicalize_argtypes(tree argtypes,
7585 bool *any_structural_p,
7586 bool *any_noncanonical_p)
7587 {
7588 tree arg;
7589 bool any_noncanonical_argtypes_p = false;
7590
7591 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7592 {
7593 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7594 /* Fail gracefully by stating that the type is structural. */
7595 *any_structural_p = true;
7596 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7597 *any_structural_p = true;
7598 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7599 || TREE_PURPOSE (arg))
7600 /* If the argument has a default argument, we consider it
7601 non-canonical even though the type itself is canonical.
7602 That way, different variants of function and method types
7603 with default arguments will all point to the variant with
7604 no defaults as their canonical type. */
7605 any_noncanonical_argtypes_p = true;
7606 }
7607
7608 if (*any_structural_p)
7609 return argtypes;
7610
7611 if (any_noncanonical_argtypes_p)
7612 {
7613 /* Build the canonical list of argument types. */
7614 tree canon_argtypes = NULL_TREE;
7615 bool is_void = false;
7616
7617 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7618 {
7619 if (arg == void_list_node)
7620 is_void = true;
7621 else
7622 canon_argtypes = tree_cons (NULL_TREE,
7623 TYPE_CANONICAL (TREE_VALUE (arg)),
7624 canon_argtypes);
7625 }
7626
7627 canon_argtypes = nreverse (canon_argtypes);
7628 if (is_void)
7629 canon_argtypes = chainon (canon_argtypes, void_list_node);
7630
7631 /* There is a non-canonical type. */
7632 *any_noncanonical_p = true;
7633 return canon_argtypes;
7634 }
7635
7636 /* The canonical argument types are the same as ARGTYPES. */
7637 return argtypes;
7638 }
7639
7640 /* Construct, lay out and return
7641 the type of functions returning type VALUE_TYPE
7642 given arguments of types ARG_TYPES.
7643 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7644 are data type nodes for the arguments of the function.
7645 If such a type has already been constructed, reuse it. */
7646
7647 tree
7648 build_function_type (tree value_type, tree arg_types)
7649 {
7650 tree t;
7651 hashval_t hashcode = 0;
7652 bool any_structural_p, any_noncanonical_p;
7653 tree canon_argtypes;
7654
7655 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7656 {
7657 error ("function return type cannot be function");
7658 value_type = integer_type_node;
7659 }
7660
7661 /* Make a node of the sort we want. */
7662 t = make_node (FUNCTION_TYPE);
7663 TREE_TYPE (t) = value_type;
7664 TYPE_ARG_TYPES (t) = arg_types;
7665
7666 /* If we already have such a type, use the old one. */
7667 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7668 hashcode = type_hash_list (arg_types, hashcode);
7669 t = type_hash_canon (hashcode, t);
7670
7671 /* Set up the canonical type. */
7672 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7673 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7674 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7675 &any_structural_p,
7676 &any_noncanonical_p);
7677 if (any_structural_p)
7678 SET_TYPE_STRUCTURAL_EQUALITY (t);
7679 else if (any_noncanonical_p)
7680 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7681 canon_argtypes);
7682
7683 if (!COMPLETE_TYPE_P (t))
7684 layout_type (t);
7685 return t;
7686 }
7687
7688 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP and the
7689 return value if SKIP_RETURN is true. */
7690
7691 static tree
7692 build_function_type_skip_args (tree orig_type, bitmap args_to_skip,
7693 bool skip_return)
7694 {
7695 tree new_type = NULL;
7696 tree args, new_args = NULL, t;
7697 tree new_reversed;
7698 int i = 0;
7699
7700 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7701 args = TREE_CHAIN (args), i++)
7702 if (!args_to_skip || !bitmap_bit_p (args_to_skip, i))
7703 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7704
7705 new_reversed = nreverse (new_args);
7706 if (args)
7707 {
7708 if (new_reversed)
7709 TREE_CHAIN (new_args) = void_list_node;
7710 else
7711 new_reversed = void_list_node;
7712 }
7713
7714 /* Use copy_node to preserve as much as possible from original type
7715 (debug info, attribute lists etc.)
7716 Exception is METHOD_TYPEs must have THIS argument.
7717 When we are asked to remove it, we need to build new FUNCTION_TYPE
7718 instead. */
7719 if (TREE_CODE (orig_type) != METHOD_TYPE
7720 || !args_to_skip
7721 || !bitmap_bit_p (args_to_skip, 0))
7722 {
7723 new_type = build_distinct_type_copy (orig_type);
7724 TYPE_ARG_TYPES (new_type) = new_reversed;
7725 }
7726 else
7727 {
7728 new_type
7729 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7730 new_reversed));
7731 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7732 }
7733
7734 if (skip_return)
7735 TREE_TYPE (new_type) = void_type_node;
7736
7737 /* This is a new type, not a copy of an old type. Need to reassociate
7738 variants. We can handle everything except the main variant lazily. */
7739 t = TYPE_MAIN_VARIANT (orig_type);
7740 if (t != orig_type)
7741 {
7742 t = build_function_type_skip_args (t, args_to_skip, skip_return);
7743 TYPE_MAIN_VARIANT (new_type) = t;
7744 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7745 TYPE_NEXT_VARIANT (t) = new_type;
7746 }
7747 else
7748 {
7749 TYPE_MAIN_VARIANT (new_type) = new_type;
7750 TYPE_NEXT_VARIANT (new_type) = NULL;
7751 }
7752
7753 return new_type;
7754 }
7755
7756 /* Build variant of function decl ORIG_DECL skipping ARGS_TO_SKIP and the
7757 return value if SKIP_RETURN is true.
7758
7759 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7760 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7761 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7762
7763 tree
7764 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip,
7765 bool skip_return)
7766 {
7767 tree new_decl = copy_node (orig_decl);
7768 tree new_type;
7769
7770 new_type = TREE_TYPE (orig_decl);
7771 if (prototype_p (new_type)
7772 || (skip_return && !VOID_TYPE_P (TREE_TYPE (new_type))))
7773 new_type
7774 = build_function_type_skip_args (new_type, args_to_skip, skip_return);
7775 TREE_TYPE (new_decl) = new_type;
7776
7777 /* For declarations setting DECL_VINDEX (i.e. methods)
7778 we expect first argument to be THIS pointer. */
7779 if (args_to_skip && bitmap_bit_p (args_to_skip, 0))
7780 DECL_VINDEX (new_decl) = NULL_TREE;
7781
7782 /* When signature changes, we need to clear builtin info. */
7783 if (DECL_BUILT_IN (new_decl)
7784 && args_to_skip
7785 && !bitmap_empty_p (args_to_skip))
7786 {
7787 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
7788 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
7789 }
7790 return new_decl;
7791 }
7792
7793 /* Build a function type. The RETURN_TYPE is the type returned by the
7794 function. If VAARGS is set, no void_type_node is appended to the
7795 the list. ARGP must be always be terminated be a NULL_TREE. */
7796
7797 static tree
7798 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7799 {
7800 tree t, args, last;
7801
7802 t = va_arg (argp, tree);
7803 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7804 args = tree_cons (NULL_TREE, t, args);
7805
7806 if (vaargs)
7807 {
7808 last = args;
7809 if (args != NULL_TREE)
7810 args = nreverse (args);
7811 gcc_assert (last != void_list_node);
7812 }
7813 else if (args == NULL_TREE)
7814 args = void_list_node;
7815 else
7816 {
7817 last = args;
7818 args = nreverse (args);
7819 TREE_CHAIN (last) = void_list_node;
7820 }
7821 args = build_function_type (return_type, args);
7822
7823 return args;
7824 }
7825
7826 /* Build a function type. The RETURN_TYPE is the type returned by the
7827 function. If additional arguments are provided, they are
7828 additional argument types. The list of argument types must always
7829 be terminated by NULL_TREE. */
7830
7831 tree
7832 build_function_type_list (tree return_type, ...)
7833 {
7834 tree args;
7835 va_list p;
7836
7837 va_start (p, return_type);
7838 args = build_function_type_list_1 (false, return_type, p);
7839 va_end (p);
7840 return args;
7841 }
7842
7843 /* Build a variable argument function type. The RETURN_TYPE is the
7844 type returned by the function. If additional arguments are provided,
7845 they are additional argument types. The list of argument types must
7846 always be terminated by NULL_TREE. */
7847
7848 tree
7849 build_varargs_function_type_list (tree return_type, ...)
7850 {
7851 tree args;
7852 va_list p;
7853
7854 va_start (p, return_type);
7855 args = build_function_type_list_1 (true, return_type, p);
7856 va_end (p);
7857
7858 return args;
7859 }
7860
7861 /* Build a function type. RETURN_TYPE is the type returned by the
7862 function; VAARGS indicates whether the function takes varargs. The
7863 function takes N named arguments, the types of which are provided in
7864 ARG_TYPES. */
7865
7866 static tree
7867 build_function_type_array_1 (bool vaargs, tree return_type, int n,
7868 tree *arg_types)
7869 {
7870 int i;
7871 tree t = vaargs ? NULL_TREE : void_list_node;
7872
7873 for (i = n - 1; i >= 0; i--)
7874 t = tree_cons (NULL_TREE, arg_types[i], t);
7875
7876 return build_function_type (return_type, t);
7877 }
7878
7879 /* Build a function type. RETURN_TYPE is the type returned by the
7880 function. The function takes N named arguments, the types of which
7881 are provided in ARG_TYPES. */
7882
7883 tree
7884 build_function_type_array (tree return_type, int n, tree *arg_types)
7885 {
7886 return build_function_type_array_1 (false, return_type, n, arg_types);
7887 }
7888
7889 /* Build a variable argument function type. RETURN_TYPE is the type
7890 returned by the function. The function takes N named arguments, the
7891 types of which are provided in ARG_TYPES. */
7892
7893 tree
7894 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
7895 {
7896 return build_function_type_array_1 (true, return_type, n, arg_types);
7897 }
7898
7899 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7900 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7901 for the method. An implicit additional parameter (of type
7902 pointer-to-BASETYPE) is added to the ARGTYPES. */
7903
7904 tree
7905 build_method_type_directly (tree basetype,
7906 tree rettype,
7907 tree argtypes)
7908 {
7909 tree t;
7910 tree ptype;
7911 int hashcode = 0;
7912 bool any_structural_p, any_noncanonical_p;
7913 tree canon_argtypes;
7914
7915 /* Make a node of the sort we want. */
7916 t = make_node (METHOD_TYPE);
7917
7918 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7919 TREE_TYPE (t) = rettype;
7920 ptype = build_pointer_type (basetype);
7921
7922 /* The actual arglist for this function includes a "hidden" argument
7923 which is "this". Put it into the list of argument types. */
7924 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7925 TYPE_ARG_TYPES (t) = argtypes;
7926
7927 /* If we already have such a type, use the old one. */
7928 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7929 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7930 hashcode = type_hash_list (argtypes, hashcode);
7931 t = type_hash_canon (hashcode, t);
7932
7933 /* Set up the canonical type. */
7934 any_structural_p
7935 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7936 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7937 any_noncanonical_p
7938 = (TYPE_CANONICAL (basetype) != basetype
7939 || TYPE_CANONICAL (rettype) != rettype);
7940 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7941 &any_structural_p,
7942 &any_noncanonical_p);
7943 if (any_structural_p)
7944 SET_TYPE_STRUCTURAL_EQUALITY (t);
7945 else if (any_noncanonical_p)
7946 TYPE_CANONICAL (t)
7947 = build_method_type_directly (TYPE_CANONICAL (basetype),
7948 TYPE_CANONICAL (rettype),
7949 canon_argtypes);
7950 if (!COMPLETE_TYPE_P (t))
7951 layout_type (t);
7952
7953 return t;
7954 }
7955
7956 /* Construct, lay out and return the type of methods belonging to class
7957 BASETYPE and whose arguments and values are described by TYPE.
7958 If that type exists already, reuse it.
7959 TYPE must be a FUNCTION_TYPE node. */
7960
7961 tree
7962 build_method_type (tree basetype, tree type)
7963 {
7964 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7965
7966 return build_method_type_directly (basetype,
7967 TREE_TYPE (type),
7968 TYPE_ARG_TYPES (type));
7969 }
7970
7971 /* Construct, lay out and return the type of offsets to a value
7972 of type TYPE, within an object of type BASETYPE.
7973 If a suitable offset type exists already, reuse it. */
7974
7975 tree
7976 build_offset_type (tree basetype, tree type)
7977 {
7978 tree t;
7979 hashval_t hashcode = 0;
7980
7981 /* Make a node of the sort we want. */
7982 t = make_node (OFFSET_TYPE);
7983
7984 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7985 TREE_TYPE (t) = type;
7986
7987 /* If we already have such a type, use the old one. */
7988 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7989 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7990 t = type_hash_canon (hashcode, t);
7991
7992 if (!COMPLETE_TYPE_P (t))
7993 layout_type (t);
7994
7995 if (TYPE_CANONICAL (t) == t)
7996 {
7997 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7998 || TYPE_STRUCTURAL_EQUALITY_P (type))
7999 SET_TYPE_STRUCTURAL_EQUALITY (t);
8000 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8001 || TYPE_CANONICAL (type) != type)
8002 TYPE_CANONICAL (t)
8003 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8004 TYPE_CANONICAL (type));
8005 }
8006
8007 return t;
8008 }
8009
8010 /* Create a complex type whose components are COMPONENT_TYPE. */
8011
8012 tree
8013 build_complex_type (tree component_type)
8014 {
8015 tree t;
8016 hashval_t hashcode;
8017
8018 gcc_assert (INTEGRAL_TYPE_P (component_type)
8019 || SCALAR_FLOAT_TYPE_P (component_type)
8020 || FIXED_POINT_TYPE_P (component_type));
8021
8022 /* Make a node of the sort we want. */
8023 t = make_node (COMPLEX_TYPE);
8024
8025 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
8026
8027 /* If we already have such a type, use the old one. */
8028 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
8029 t = type_hash_canon (hashcode, t);
8030
8031 if (!COMPLETE_TYPE_P (t))
8032 layout_type (t);
8033
8034 if (TYPE_CANONICAL (t) == t)
8035 {
8036 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
8037 SET_TYPE_STRUCTURAL_EQUALITY (t);
8038 else if (TYPE_CANONICAL (component_type) != component_type)
8039 TYPE_CANONICAL (t)
8040 = build_complex_type (TYPE_CANONICAL (component_type));
8041 }
8042
8043 /* We need to create a name, since complex is a fundamental type. */
8044 if (! TYPE_NAME (t))
8045 {
8046 const char *name;
8047 if (component_type == char_type_node)
8048 name = "complex char";
8049 else if (component_type == signed_char_type_node)
8050 name = "complex signed char";
8051 else if (component_type == unsigned_char_type_node)
8052 name = "complex unsigned char";
8053 else if (component_type == short_integer_type_node)
8054 name = "complex short int";
8055 else if (component_type == short_unsigned_type_node)
8056 name = "complex short unsigned int";
8057 else if (component_type == integer_type_node)
8058 name = "complex int";
8059 else if (component_type == unsigned_type_node)
8060 name = "complex unsigned int";
8061 else if (component_type == long_integer_type_node)
8062 name = "complex long int";
8063 else if (component_type == long_unsigned_type_node)
8064 name = "complex long unsigned int";
8065 else if (component_type == long_long_integer_type_node)
8066 name = "complex long long int";
8067 else if (component_type == long_long_unsigned_type_node)
8068 name = "complex long long unsigned int";
8069 else
8070 name = 0;
8071
8072 if (name != 0)
8073 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8074 get_identifier (name), t);
8075 }
8076
8077 return build_qualified_type (t, TYPE_QUALS (component_type));
8078 }
8079
8080 /* If TYPE is a real or complex floating-point type and the target
8081 does not directly support arithmetic on TYPE then return the wider
8082 type to be used for arithmetic on TYPE. Otherwise, return
8083 NULL_TREE. */
8084
8085 tree
8086 excess_precision_type (tree type)
8087 {
8088 if (flag_excess_precision != EXCESS_PRECISION_FAST)
8089 {
8090 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
8091 switch (TREE_CODE (type))
8092 {
8093 case REAL_TYPE:
8094 switch (flt_eval_method)
8095 {
8096 case 1:
8097 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
8098 return double_type_node;
8099 break;
8100 case 2:
8101 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
8102 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
8103 return long_double_type_node;
8104 break;
8105 default:
8106 gcc_unreachable ();
8107 }
8108 break;
8109 case COMPLEX_TYPE:
8110 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8111 return NULL_TREE;
8112 switch (flt_eval_method)
8113 {
8114 case 1:
8115 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
8116 return complex_double_type_node;
8117 break;
8118 case 2:
8119 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
8120 || (TYPE_MODE (TREE_TYPE (type))
8121 == TYPE_MODE (double_type_node)))
8122 return complex_long_double_type_node;
8123 break;
8124 default:
8125 gcc_unreachable ();
8126 }
8127 break;
8128 default:
8129 break;
8130 }
8131 }
8132 return NULL_TREE;
8133 }
8134 \f
8135 /* Return OP, stripped of any conversions to wider types as much as is safe.
8136 Converting the value back to OP's type makes a value equivalent to OP.
8137
8138 If FOR_TYPE is nonzero, we return a value which, if converted to
8139 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8140
8141 OP must have integer, real or enumeral type. Pointers are not allowed!
8142
8143 There are some cases where the obvious value we could return
8144 would regenerate to OP if converted to OP's type,
8145 but would not extend like OP to wider types.
8146 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8147 For example, if OP is (unsigned short)(signed char)-1,
8148 we avoid returning (signed char)-1 if FOR_TYPE is int,
8149 even though extending that to an unsigned short would regenerate OP,
8150 since the result of extending (signed char)-1 to (int)
8151 is different from (int) OP. */
8152
8153 tree
8154 get_unwidened (tree op, tree for_type)
8155 {
8156 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8157 tree type = TREE_TYPE (op);
8158 unsigned final_prec
8159 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8160 int uns
8161 = (for_type != 0 && for_type != type
8162 && final_prec > TYPE_PRECISION (type)
8163 && TYPE_UNSIGNED (type));
8164 tree win = op;
8165
8166 while (CONVERT_EXPR_P (op))
8167 {
8168 int bitschange;
8169
8170 /* TYPE_PRECISION on vector types has different meaning
8171 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8172 so avoid them here. */
8173 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8174 break;
8175
8176 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8177 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8178
8179 /* Truncations are many-one so cannot be removed.
8180 Unless we are later going to truncate down even farther. */
8181 if (bitschange < 0
8182 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8183 break;
8184
8185 /* See what's inside this conversion. If we decide to strip it,
8186 we will set WIN. */
8187 op = TREE_OPERAND (op, 0);
8188
8189 /* If we have not stripped any zero-extensions (uns is 0),
8190 we can strip any kind of extension.
8191 If we have previously stripped a zero-extension,
8192 only zero-extensions can safely be stripped.
8193 Any extension can be stripped if the bits it would produce
8194 are all going to be discarded later by truncating to FOR_TYPE. */
8195
8196 if (bitschange > 0)
8197 {
8198 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8199 win = op;
8200 /* TYPE_UNSIGNED says whether this is a zero-extension.
8201 Let's avoid computing it if it does not affect WIN
8202 and if UNS will not be needed again. */
8203 if ((uns
8204 || CONVERT_EXPR_P (op))
8205 && TYPE_UNSIGNED (TREE_TYPE (op)))
8206 {
8207 uns = 1;
8208 win = op;
8209 }
8210 }
8211 }
8212
8213 /* If we finally reach a constant see if it fits in for_type and
8214 in that case convert it. */
8215 if (for_type
8216 && TREE_CODE (win) == INTEGER_CST
8217 && TREE_TYPE (win) != for_type
8218 && int_fits_type_p (win, for_type))
8219 win = fold_convert (for_type, win);
8220
8221 return win;
8222 }
8223 \f
8224 /* Return OP or a simpler expression for a narrower value
8225 which can be sign-extended or zero-extended to give back OP.
8226 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8227 or 0 if the value should be sign-extended. */
8228
8229 tree
8230 get_narrower (tree op, int *unsignedp_ptr)
8231 {
8232 int uns = 0;
8233 int first = 1;
8234 tree win = op;
8235 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8236
8237 while (TREE_CODE (op) == NOP_EXPR)
8238 {
8239 int bitschange
8240 = (TYPE_PRECISION (TREE_TYPE (op))
8241 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8242
8243 /* Truncations are many-one so cannot be removed. */
8244 if (bitschange < 0)
8245 break;
8246
8247 /* See what's inside this conversion. If we decide to strip it,
8248 we will set WIN. */
8249
8250 if (bitschange > 0)
8251 {
8252 op = TREE_OPERAND (op, 0);
8253 /* An extension: the outermost one can be stripped,
8254 but remember whether it is zero or sign extension. */
8255 if (first)
8256 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8257 /* Otherwise, if a sign extension has been stripped,
8258 only sign extensions can now be stripped;
8259 if a zero extension has been stripped, only zero-extensions. */
8260 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8261 break;
8262 first = 0;
8263 }
8264 else /* bitschange == 0 */
8265 {
8266 /* A change in nominal type can always be stripped, but we must
8267 preserve the unsignedness. */
8268 if (first)
8269 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8270 first = 0;
8271 op = TREE_OPERAND (op, 0);
8272 /* Keep trying to narrow, but don't assign op to win if it
8273 would turn an integral type into something else. */
8274 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8275 continue;
8276 }
8277
8278 win = op;
8279 }
8280
8281 if (TREE_CODE (op) == COMPONENT_REF
8282 /* Since type_for_size always gives an integer type. */
8283 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8284 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8285 /* Ensure field is laid out already. */
8286 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8287 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
8288 {
8289 unsigned HOST_WIDE_INT innerprec
8290 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
8291 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8292 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8293 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8294
8295 /* We can get this structure field in a narrower type that fits it,
8296 but the resulting extension to its nominal type (a fullword type)
8297 must satisfy the same conditions as for other extensions.
8298
8299 Do this only for fields that are aligned (not bit-fields),
8300 because when bit-field insns will be used there is no
8301 advantage in doing this. */
8302
8303 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8304 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8305 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8306 && type != 0)
8307 {
8308 if (first)
8309 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8310 win = fold_convert (type, op);
8311 }
8312 }
8313
8314 *unsignedp_ptr = uns;
8315 return win;
8316 }
8317 \f
8318 /* Returns true if integer constant C has a value that is permissible
8319 for type TYPE (an INTEGER_TYPE). */
8320
8321 bool
8322 int_fits_type_p (const_tree c, const_tree type)
8323 {
8324 tree type_low_bound, type_high_bound;
8325 bool ok_for_low_bound, ok_for_high_bound, unsc;
8326 double_int dc, dd;
8327
8328 dc = tree_to_double_int (c);
8329 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
8330
8331 retry:
8332 type_low_bound = TYPE_MIN_VALUE (type);
8333 type_high_bound = TYPE_MAX_VALUE (type);
8334
8335 /* If at least one bound of the type is a constant integer, we can check
8336 ourselves and maybe make a decision. If no such decision is possible, but
8337 this type is a subtype, try checking against that. Otherwise, use
8338 double_int_fits_to_tree_p, which checks against the precision.
8339
8340 Compute the status for each possibly constant bound, and return if we see
8341 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8342 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8343 for "constant known to fit". */
8344
8345 /* Check if c >= type_low_bound. */
8346 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8347 {
8348 dd = tree_to_double_int (type_low_bound);
8349 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
8350 {
8351 int c_neg = (!unsc && dc.is_negative ());
8352 int t_neg = (unsc && dd.is_negative ());
8353
8354 if (c_neg && !t_neg)
8355 return false;
8356 if ((c_neg || !t_neg) && dc.ult (dd))
8357 return false;
8358 }
8359 else if (dc.cmp (dd, unsc) < 0)
8360 return false;
8361 ok_for_low_bound = true;
8362 }
8363 else
8364 ok_for_low_bound = false;
8365
8366 /* Check if c <= type_high_bound. */
8367 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8368 {
8369 dd = tree_to_double_int (type_high_bound);
8370 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8371 {
8372 int c_neg = (!unsc && dc.is_negative ());
8373 int t_neg = (unsc && dd.is_negative ());
8374
8375 if (t_neg && !c_neg)
8376 return false;
8377 if ((t_neg || !c_neg) && dc.ugt (dd))
8378 return false;
8379 }
8380 else if (dc.cmp (dd, unsc) > 0)
8381 return false;
8382 ok_for_high_bound = true;
8383 }
8384 else
8385 ok_for_high_bound = false;
8386
8387 /* If the constant fits both bounds, the result is known. */
8388 if (ok_for_low_bound && ok_for_high_bound)
8389 return true;
8390
8391 /* Perform some generic filtering which may allow making a decision
8392 even if the bounds are not constant. First, negative integers
8393 never fit in unsigned types, */
8394 if (TYPE_UNSIGNED (type) && !unsc && dc.is_negative ())
8395 return false;
8396
8397 /* Second, narrower types always fit in wider ones. */
8398 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8399 return true;
8400
8401 /* Third, unsigned integers with top bit set never fit signed types. */
8402 if (! TYPE_UNSIGNED (type) && unsc)
8403 {
8404 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8405 if (prec < HOST_BITS_PER_WIDE_INT)
8406 {
8407 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8408 return false;
8409 }
8410 else if (((((unsigned HOST_WIDE_INT) 1)
8411 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8412 return false;
8413 }
8414
8415 /* If we haven't been able to decide at this point, there nothing more we
8416 can check ourselves here. Look at the base type if we have one and it
8417 has the same precision. */
8418 if (TREE_CODE (type) == INTEGER_TYPE
8419 && TREE_TYPE (type) != 0
8420 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8421 {
8422 type = TREE_TYPE (type);
8423 goto retry;
8424 }
8425
8426 /* Or to double_int_fits_to_tree_p, if nothing else. */
8427 return double_int_fits_to_tree_p (type, dc);
8428 }
8429
8430 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8431 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8432 represented (assuming two's-complement arithmetic) within the bit
8433 precision of the type are returned instead. */
8434
8435 void
8436 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8437 {
8438 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8439 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8440 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8441 TYPE_UNSIGNED (type));
8442 else
8443 {
8444 if (TYPE_UNSIGNED (type))
8445 mpz_set_ui (min, 0);
8446 else
8447 {
8448 double_int mn;
8449 mn = double_int::mask (TYPE_PRECISION (type) - 1);
8450 mn = (mn + double_int_one).sext (TYPE_PRECISION (type));
8451 mpz_set_double_int (min, mn, false);
8452 }
8453 }
8454
8455 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8456 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8457 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8458 TYPE_UNSIGNED (type));
8459 else
8460 {
8461 if (TYPE_UNSIGNED (type))
8462 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)),
8463 true);
8464 else
8465 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type) - 1),
8466 true);
8467 }
8468 }
8469
8470 /* Return true if VAR is an automatic variable defined in function FN. */
8471
8472 bool
8473 auto_var_in_fn_p (const_tree var, const_tree fn)
8474 {
8475 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8476 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8477 || TREE_CODE (var) == PARM_DECL)
8478 && ! TREE_STATIC (var))
8479 || TREE_CODE (var) == LABEL_DECL
8480 || TREE_CODE (var) == RESULT_DECL));
8481 }
8482
8483 /* Subprogram of following function. Called by walk_tree.
8484
8485 Return *TP if it is an automatic variable or parameter of the
8486 function passed in as DATA. */
8487
8488 static tree
8489 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8490 {
8491 tree fn = (tree) data;
8492
8493 if (TYPE_P (*tp))
8494 *walk_subtrees = 0;
8495
8496 else if (DECL_P (*tp)
8497 && auto_var_in_fn_p (*tp, fn))
8498 return *tp;
8499
8500 return NULL_TREE;
8501 }
8502
8503 /* Returns true if T is, contains, or refers to a type with variable
8504 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8505 arguments, but not the return type. If FN is nonzero, only return
8506 true if a modifier of the type or position of FN is a variable or
8507 parameter inside FN.
8508
8509 This concept is more general than that of C99 'variably modified types':
8510 in C99, a struct type is never variably modified because a VLA may not
8511 appear as a structure member. However, in GNU C code like:
8512
8513 struct S { int i[f()]; };
8514
8515 is valid, and other languages may define similar constructs. */
8516
8517 bool
8518 variably_modified_type_p (tree type, tree fn)
8519 {
8520 tree t;
8521
8522 /* Test if T is either variable (if FN is zero) or an expression containing
8523 a variable in FN. If TYPE isn't gimplified, return true also if
8524 gimplify_one_sizepos would gimplify the expression into a local
8525 variable. */
8526 #define RETURN_TRUE_IF_VAR(T) \
8527 do { tree _t = (T); \
8528 if (_t != NULL_TREE \
8529 && _t != error_mark_node \
8530 && TREE_CODE (_t) != INTEGER_CST \
8531 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8532 && (!fn \
8533 || (!TYPE_SIZES_GIMPLIFIED (type) \
8534 && !is_gimple_sizepos (_t)) \
8535 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8536 return true; } while (0)
8537
8538 if (type == error_mark_node)
8539 return false;
8540
8541 /* If TYPE itself has variable size, it is variably modified. */
8542 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8543 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8544
8545 switch (TREE_CODE (type))
8546 {
8547 case POINTER_TYPE:
8548 case REFERENCE_TYPE:
8549 case VECTOR_TYPE:
8550 if (variably_modified_type_p (TREE_TYPE (type), fn))
8551 return true;
8552 break;
8553
8554 case FUNCTION_TYPE:
8555 case METHOD_TYPE:
8556 /* If TYPE is a function type, it is variably modified if the
8557 return type is variably modified. */
8558 if (variably_modified_type_p (TREE_TYPE (type), fn))
8559 return true;
8560 break;
8561
8562 case INTEGER_TYPE:
8563 case REAL_TYPE:
8564 case FIXED_POINT_TYPE:
8565 case ENUMERAL_TYPE:
8566 case BOOLEAN_TYPE:
8567 /* Scalar types are variably modified if their end points
8568 aren't constant. */
8569 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8570 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8571 break;
8572
8573 case RECORD_TYPE:
8574 case UNION_TYPE:
8575 case QUAL_UNION_TYPE:
8576 /* We can't see if any of the fields are variably-modified by the
8577 definition we normally use, since that would produce infinite
8578 recursion via pointers. */
8579 /* This is variably modified if some field's type is. */
8580 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8581 if (TREE_CODE (t) == FIELD_DECL)
8582 {
8583 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8584 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8585 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8586
8587 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8588 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8589 }
8590 break;
8591
8592 case ARRAY_TYPE:
8593 /* Do not call ourselves to avoid infinite recursion. This is
8594 variably modified if the element type is. */
8595 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8596 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8597 break;
8598
8599 default:
8600 break;
8601 }
8602
8603 /* The current language may have other cases to check, but in general,
8604 all other types are not variably modified. */
8605 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8606
8607 #undef RETURN_TRUE_IF_VAR
8608 }
8609
8610 /* Given a DECL or TYPE, return the scope in which it was declared, or
8611 NULL_TREE if there is no containing scope. */
8612
8613 tree
8614 get_containing_scope (const_tree t)
8615 {
8616 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8617 }
8618
8619 /* Return the innermost context enclosing DECL that is
8620 a FUNCTION_DECL, or zero if none. */
8621
8622 tree
8623 decl_function_context (const_tree decl)
8624 {
8625 tree context;
8626
8627 if (TREE_CODE (decl) == ERROR_MARK)
8628 return 0;
8629
8630 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8631 where we look up the function at runtime. Such functions always take
8632 a first argument of type 'pointer to real context'.
8633
8634 C++ should really be fixed to use DECL_CONTEXT for the real context,
8635 and use something else for the "virtual context". */
8636 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8637 context
8638 = TYPE_MAIN_VARIANT
8639 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8640 else
8641 context = DECL_CONTEXT (decl);
8642
8643 while (context && TREE_CODE (context) != FUNCTION_DECL)
8644 {
8645 if (TREE_CODE (context) == BLOCK)
8646 context = BLOCK_SUPERCONTEXT (context);
8647 else
8648 context = get_containing_scope (context);
8649 }
8650
8651 return context;
8652 }
8653
8654 /* Return the innermost context enclosing DECL that is
8655 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8656 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8657
8658 tree
8659 decl_type_context (const_tree decl)
8660 {
8661 tree context = DECL_CONTEXT (decl);
8662
8663 while (context)
8664 switch (TREE_CODE (context))
8665 {
8666 case NAMESPACE_DECL:
8667 case TRANSLATION_UNIT_DECL:
8668 return NULL_TREE;
8669
8670 case RECORD_TYPE:
8671 case UNION_TYPE:
8672 case QUAL_UNION_TYPE:
8673 return context;
8674
8675 case TYPE_DECL:
8676 case FUNCTION_DECL:
8677 context = DECL_CONTEXT (context);
8678 break;
8679
8680 case BLOCK:
8681 context = BLOCK_SUPERCONTEXT (context);
8682 break;
8683
8684 default:
8685 gcc_unreachable ();
8686 }
8687
8688 return NULL_TREE;
8689 }
8690
8691 /* CALL is a CALL_EXPR. Return the declaration for the function
8692 called, or NULL_TREE if the called function cannot be
8693 determined. */
8694
8695 tree
8696 get_callee_fndecl (const_tree call)
8697 {
8698 tree addr;
8699
8700 if (call == error_mark_node)
8701 return error_mark_node;
8702
8703 /* It's invalid to call this function with anything but a
8704 CALL_EXPR. */
8705 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8706
8707 /* The first operand to the CALL is the address of the function
8708 called. */
8709 addr = CALL_EXPR_FN (call);
8710
8711 STRIP_NOPS (addr);
8712
8713 /* If this is a readonly function pointer, extract its initial value. */
8714 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8715 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8716 && DECL_INITIAL (addr))
8717 addr = DECL_INITIAL (addr);
8718
8719 /* If the address is just `&f' for some function `f', then we know
8720 that `f' is being called. */
8721 if (TREE_CODE (addr) == ADDR_EXPR
8722 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8723 return TREE_OPERAND (addr, 0);
8724
8725 /* We couldn't figure out what was being called. */
8726 return NULL_TREE;
8727 }
8728
8729 /* Print debugging information about tree nodes generated during the compile,
8730 and any language-specific information. */
8731
8732 void
8733 dump_tree_statistics (void)
8734 {
8735 if (GATHER_STATISTICS)
8736 {
8737 int i;
8738 int total_nodes, total_bytes;
8739 fprintf (stderr, "Kind Nodes Bytes\n");
8740 fprintf (stderr, "---------------------------------------\n");
8741 total_nodes = total_bytes = 0;
8742 for (i = 0; i < (int) all_kinds; i++)
8743 {
8744 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8745 tree_node_counts[i], tree_node_sizes[i]);
8746 total_nodes += tree_node_counts[i];
8747 total_bytes += tree_node_sizes[i];
8748 }
8749 fprintf (stderr, "---------------------------------------\n");
8750 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8751 fprintf (stderr, "---------------------------------------\n");
8752 fprintf (stderr, "Code Nodes\n");
8753 fprintf (stderr, "----------------------------\n");
8754 for (i = 0; i < (int) MAX_TREE_CODES; i++)
8755 fprintf (stderr, "%-20s %7d\n", tree_code_name[i], tree_code_counts[i]);
8756 fprintf (stderr, "----------------------------\n");
8757 ssanames_print_statistics ();
8758 phinodes_print_statistics ();
8759 }
8760 else
8761 fprintf (stderr, "(No per-node statistics)\n");
8762
8763 print_type_hash_statistics ();
8764 print_debug_expr_statistics ();
8765 print_value_expr_statistics ();
8766 lang_hooks.print_statistics ();
8767 }
8768 \f
8769 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8770
8771 /* Generate a crc32 of a byte. */
8772
8773 static unsigned
8774 crc32_unsigned_bits (unsigned chksum, unsigned value, unsigned bits)
8775 {
8776 unsigned ix;
8777
8778 for (ix = bits; ix--; value <<= 1)
8779 {
8780 unsigned feedback;
8781
8782 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8783 chksum <<= 1;
8784 chksum ^= feedback;
8785 }
8786 return chksum;
8787 }
8788
8789 /* Generate a crc32 of a 32-bit unsigned. */
8790
8791 unsigned
8792 crc32_unsigned (unsigned chksum, unsigned value)
8793 {
8794 return crc32_unsigned_bits (chksum, value, 32);
8795 }
8796
8797 /* Generate a crc32 of a byte. */
8798
8799 unsigned
8800 crc32_byte (unsigned chksum, char byte)
8801 {
8802 return crc32_unsigned_bits (chksum, (unsigned) byte << 24, 8);
8803 }
8804
8805 /* Generate a crc32 of a string. */
8806
8807 unsigned
8808 crc32_string (unsigned chksum, const char *string)
8809 {
8810 do
8811 {
8812 chksum = crc32_byte (chksum, *string);
8813 }
8814 while (*string++);
8815 return chksum;
8816 }
8817
8818 /* P is a string that will be used in a symbol. Mask out any characters
8819 that are not valid in that context. */
8820
8821 void
8822 clean_symbol_name (char *p)
8823 {
8824 for (; *p; p++)
8825 if (! (ISALNUM (*p)
8826 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8827 || *p == '$'
8828 #endif
8829 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8830 || *p == '.'
8831 #endif
8832 ))
8833 *p = '_';
8834 }
8835
8836 /* Generate a name for a special-purpose function.
8837 The generated name may need to be unique across the whole link.
8838 Changes to this function may also require corresponding changes to
8839 xstrdup_mask_random.
8840 TYPE is some string to identify the purpose of this function to the
8841 linker or collect2; it must start with an uppercase letter,
8842 one of:
8843 I - for constructors
8844 D - for destructors
8845 N - for C++ anonymous namespaces
8846 F - for DWARF unwind frame information. */
8847
8848 tree
8849 get_file_function_name (const char *type)
8850 {
8851 char *buf;
8852 const char *p;
8853 char *q;
8854
8855 /* If we already have a name we know to be unique, just use that. */
8856 if (first_global_object_name)
8857 p = q = ASTRDUP (first_global_object_name);
8858 /* If the target is handling the constructors/destructors, they
8859 will be local to this file and the name is only necessary for
8860 debugging purposes.
8861 We also assign sub_I and sub_D sufixes to constructors called from
8862 the global static constructors. These are always local. */
8863 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8864 || (strncmp (type, "sub_", 4) == 0
8865 && (type[4] == 'I' || type[4] == 'D')))
8866 {
8867 const char *file = main_input_filename;
8868 if (! file)
8869 file = input_filename;
8870 /* Just use the file's basename, because the full pathname
8871 might be quite long. */
8872 p = q = ASTRDUP (lbasename (file));
8873 }
8874 else
8875 {
8876 /* Otherwise, the name must be unique across the entire link.
8877 We don't have anything that we know to be unique to this translation
8878 unit, so use what we do have and throw in some randomness. */
8879 unsigned len;
8880 const char *name = weak_global_object_name;
8881 const char *file = main_input_filename;
8882
8883 if (! name)
8884 name = "";
8885 if (! file)
8886 file = input_filename;
8887
8888 len = strlen (file);
8889 q = (char *) alloca (9 + 17 + len + 1);
8890 memcpy (q, file, len + 1);
8891
8892 snprintf (q + len, 9 + 17 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
8893 crc32_string (0, name), get_random_seed (false));
8894
8895 p = q;
8896 }
8897
8898 clean_symbol_name (q);
8899 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8900 + strlen (type));
8901
8902 /* Set up the name of the file-level functions we may need.
8903 Use a global object (which is already required to be unique over
8904 the program) rather than the file name (which imposes extra
8905 constraints). */
8906 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8907
8908 return get_identifier (buf);
8909 }
8910 \f
8911 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8912
8913 /* Complain that the tree code of NODE does not match the expected 0
8914 terminated list of trailing codes. The trailing code list can be
8915 empty, for a more vague error message. FILE, LINE, and FUNCTION
8916 are of the caller. */
8917
8918 void
8919 tree_check_failed (const_tree node, const char *file,
8920 int line, const char *function, ...)
8921 {
8922 va_list args;
8923 const char *buffer;
8924 unsigned length = 0;
8925 int code;
8926
8927 va_start (args, function);
8928 while ((code = va_arg (args, int)))
8929 length += 4 + strlen (tree_code_name[code]);
8930 va_end (args);
8931 if (length)
8932 {
8933 char *tmp;
8934 va_start (args, function);
8935 length += strlen ("expected ");
8936 buffer = tmp = (char *) alloca (length);
8937 length = 0;
8938 while ((code = va_arg (args, int)))
8939 {
8940 const char *prefix = length ? " or " : "expected ";
8941
8942 strcpy (tmp + length, prefix);
8943 length += strlen (prefix);
8944 strcpy (tmp + length, tree_code_name[code]);
8945 length += strlen (tree_code_name[code]);
8946 }
8947 va_end (args);
8948 }
8949 else
8950 buffer = "unexpected node";
8951
8952 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8953 buffer, tree_code_name[TREE_CODE (node)],
8954 function, trim_filename (file), line);
8955 }
8956
8957 /* Complain that the tree code of NODE does match the expected 0
8958 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8959 the caller. */
8960
8961 void
8962 tree_not_check_failed (const_tree node, const char *file,
8963 int line, const char *function, ...)
8964 {
8965 va_list args;
8966 char *buffer;
8967 unsigned length = 0;
8968 int code;
8969
8970 va_start (args, function);
8971 while ((code = va_arg (args, int)))
8972 length += 4 + strlen (tree_code_name[code]);
8973 va_end (args);
8974 va_start (args, function);
8975 buffer = (char *) alloca (length);
8976 length = 0;
8977 while ((code = va_arg (args, int)))
8978 {
8979 if (length)
8980 {
8981 strcpy (buffer + length, " or ");
8982 length += 4;
8983 }
8984 strcpy (buffer + length, tree_code_name[code]);
8985 length += strlen (tree_code_name[code]);
8986 }
8987 va_end (args);
8988
8989 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8990 buffer, tree_code_name[TREE_CODE (node)],
8991 function, trim_filename (file), line);
8992 }
8993
8994 /* Similar to tree_check_failed, except that we check for a class of tree
8995 code, given in CL. */
8996
8997 void
8998 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8999 const char *file, int line, const char *function)
9000 {
9001 internal_error
9002 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9003 TREE_CODE_CLASS_STRING (cl),
9004 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9005 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
9006 }
9007
9008 /* Similar to tree_check_failed, except that instead of specifying a
9009 dozen codes, use the knowledge that they're all sequential. */
9010
9011 void
9012 tree_range_check_failed (const_tree node, const char *file, int line,
9013 const char *function, enum tree_code c1,
9014 enum tree_code c2)
9015 {
9016 char *buffer;
9017 unsigned length = 0;
9018 unsigned int c;
9019
9020 for (c = c1; c <= c2; ++c)
9021 length += 4 + strlen (tree_code_name[c]);
9022
9023 length += strlen ("expected ");
9024 buffer = (char *) alloca (length);
9025 length = 0;
9026
9027 for (c = c1; c <= c2; ++c)
9028 {
9029 const char *prefix = length ? " or " : "expected ";
9030
9031 strcpy (buffer + length, prefix);
9032 length += strlen (prefix);
9033 strcpy (buffer + length, tree_code_name[c]);
9034 length += strlen (tree_code_name[c]);
9035 }
9036
9037 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9038 buffer, tree_code_name[TREE_CODE (node)],
9039 function, trim_filename (file), line);
9040 }
9041
9042
9043 /* Similar to tree_check_failed, except that we check that a tree does
9044 not have the specified code, given in CL. */
9045
9046 void
9047 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9048 const char *file, int line, const char *function)
9049 {
9050 internal_error
9051 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9052 TREE_CODE_CLASS_STRING (cl),
9053 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9054 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
9055 }
9056
9057
9058 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9059
9060 void
9061 omp_clause_check_failed (const_tree node, const char *file, int line,
9062 const char *function, enum omp_clause_code code)
9063 {
9064 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9065 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
9066 function, trim_filename (file), line);
9067 }
9068
9069
9070 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9071
9072 void
9073 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9074 const char *function, enum omp_clause_code c1,
9075 enum omp_clause_code c2)
9076 {
9077 char *buffer;
9078 unsigned length = 0;
9079 unsigned int c;
9080
9081 for (c = c1; c <= c2; ++c)
9082 length += 4 + strlen (omp_clause_code_name[c]);
9083
9084 length += strlen ("expected ");
9085 buffer = (char *) alloca (length);
9086 length = 0;
9087
9088 for (c = c1; c <= c2; ++c)
9089 {
9090 const char *prefix = length ? " or " : "expected ";
9091
9092 strcpy (buffer + length, prefix);
9093 length += strlen (prefix);
9094 strcpy (buffer + length, omp_clause_code_name[c]);
9095 length += strlen (omp_clause_code_name[c]);
9096 }
9097
9098 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9099 buffer, omp_clause_code_name[TREE_CODE (node)],
9100 function, trim_filename (file), line);
9101 }
9102
9103
9104 #undef DEFTREESTRUCT
9105 #define DEFTREESTRUCT(VAL, NAME) NAME,
9106
9107 static const char *ts_enum_names[] = {
9108 #include "treestruct.def"
9109 };
9110 #undef DEFTREESTRUCT
9111
9112 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9113
9114 /* Similar to tree_class_check_failed, except that we check for
9115 whether CODE contains the tree structure identified by EN. */
9116
9117 void
9118 tree_contains_struct_check_failed (const_tree node,
9119 const enum tree_node_structure_enum en,
9120 const char *file, int line,
9121 const char *function)
9122 {
9123 internal_error
9124 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9125 TS_ENUM_NAME(en),
9126 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
9127 }
9128
9129
9130 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9131 (dynamically sized) vector. */
9132
9133 void
9134 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9135 const char *function)
9136 {
9137 internal_error
9138 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9139 idx + 1, len, function, trim_filename (file), line);
9140 }
9141
9142 /* Similar to above, except that the check is for the bounds of the operand
9143 vector of an expression node EXP. */
9144
9145 void
9146 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9147 int line, const char *function)
9148 {
9149 int code = TREE_CODE (exp);
9150 internal_error
9151 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9152 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
9153 function, trim_filename (file), line);
9154 }
9155
9156 /* Similar to above, except that the check is for the number of
9157 operands of an OMP_CLAUSE node. */
9158
9159 void
9160 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9161 int line, const char *function)
9162 {
9163 internal_error
9164 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9165 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9166 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9167 trim_filename (file), line);
9168 }
9169 #endif /* ENABLE_TREE_CHECKING */
9170 \f
9171 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9172 and mapped to the machine mode MODE. Initialize its fields and build
9173 the information necessary for debugging output. */
9174
9175 static tree
9176 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
9177 {
9178 tree t;
9179 hashval_t hashcode = 0;
9180
9181 t = make_node (VECTOR_TYPE);
9182 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
9183 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9184 SET_TYPE_MODE (t, mode);
9185
9186 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
9187 SET_TYPE_STRUCTURAL_EQUALITY (t);
9188 else if (TYPE_CANONICAL (innertype) != innertype
9189 || mode != VOIDmode)
9190 TYPE_CANONICAL (t)
9191 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
9192
9193 layout_type (t);
9194
9195 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
9196 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
9197 hashcode = iterative_hash_host_wide_int (mode, hashcode);
9198 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
9199 t = type_hash_canon (hashcode, t);
9200
9201 /* We have built a main variant, based on the main variant of the
9202 inner type. Use it to build the variant we return. */
9203 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9204 && TREE_TYPE (t) != innertype)
9205 return build_type_attribute_qual_variant (t,
9206 TYPE_ATTRIBUTES (innertype),
9207 TYPE_QUALS (innertype));
9208
9209 return t;
9210 }
9211
9212 static tree
9213 make_or_reuse_type (unsigned size, int unsignedp)
9214 {
9215 if (size == INT_TYPE_SIZE)
9216 return unsignedp ? unsigned_type_node : integer_type_node;
9217 if (size == CHAR_TYPE_SIZE)
9218 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9219 if (size == SHORT_TYPE_SIZE)
9220 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9221 if (size == LONG_TYPE_SIZE)
9222 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9223 if (size == LONG_LONG_TYPE_SIZE)
9224 return (unsignedp ? long_long_unsigned_type_node
9225 : long_long_integer_type_node);
9226 if (size == 128 && int128_integer_type_node)
9227 return (unsignedp ? int128_unsigned_type_node
9228 : int128_integer_type_node);
9229
9230 if (unsignedp)
9231 return make_unsigned_type (size);
9232 else
9233 return make_signed_type (size);
9234 }
9235
9236 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9237
9238 static tree
9239 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9240 {
9241 if (satp)
9242 {
9243 if (size == SHORT_FRACT_TYPE_SIZE)
9244 return unsignedp ? sat_unsigned_short_fract_type_node
9245 : sat_short_fract_type_node;
9246 if (size == FRACT_TYPE_SIZE)
9247 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9248 if (size == LONG_FRACT_TYPE_SIZE)
9249 return unsignedp ? sat_unsigned_long_fract_type_node
9250 : sat_long_fract_type_node;
9251 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9252 return unsignedp ? sat_unsigned_long_long_fract_type_node
9253 : sat_long_long_fract_type_node;
9254 }
9255 else
9256 {
9257 if (size == SHORT_FRACT_TYPE_SIZE)
9258 return unsignedp ? unsigned_short_fract_type_node
9259 : short_fract_type_node;
9260 if (size == FRACT_TYPE_SIZE)
9261 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9262 if (size == LONG_FRACT_TYPE_SIZE)
9263 return unsignedp ? unsigned_long_fract_type_node
9264 : long_fract_type_node;
9265 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9266 return unsignedp ? unsigned_long_long_fract_type_node
9267 : long_long_fract_type_node;
9268 }
9269
9270 return make_fract_type (size, unsignedp, satp);
9271 }
9272
9273 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9274
9275 static tree
9276 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9277 {
9278 if (satp)
9279 {
9280 if (size == SHORT_ACCUM_TYPE_SIZE)
9281 return unsignedp ? sat_unsigned_short_accum_type_node
9282 : sat_short_accum_type_node;
9283 if (size == ACCUM_TYPE_SIZE)
9284 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9285 if (size == LONG_ACCUM_TYPE_SIZE)
9286 return unsignedp ? sat_unsigned_long_accum_type_node
9287 : sat_long_accum_type_node;
9288 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9289 return unsignedp ? sat_unsigned_long_long_accum_type_node
9290 : sat_long_long_accum_type_node;
9291 }
9292 else
9293 {
9294 if (size == SHORT_ACCUM_TYPE_SIZE)
9295 return unsignedp ? unsigned_short_accum_type_node
9296 : short_accum_type_node;
9297 if (size == ACCUM_TYPE_SIZE)
9298 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9299 if (size == LONG_ACCUM_TYPE_SIZE)
9300 return unsignedp ? unsigned_long_accum_type_node
9301 : long_accum_type_node;
9302 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9303 return unsignedp ? unsigned_long_long_accum_type_node
9304 : long_long_accum_type_node;
9305 }
9306
9307 return make_accum_type (size, unsignedp, satp);
9308 }
9309
9310 /* Create nodes for all integer types (and error_mark_node) using the sizes
9311 of C datatypes. SIGNED_CHAR specifies whether char is signed,
9312 SHORT_DOUBLE specifies whether double should be of the same precision
9313 as float. */
9314
9315 void
9316 build_common_tree_nodes (bool signed_char, bool short_double)
9317 {
9318 error_mark_node = make_node (ERROR_MARK);
9319 TREE_TYPE (error_mark_node) = error_mark_node;
9320
9321 initialize_sizetypes ();
9322
9323 /* Define both `signed char' and `unsigned char'. */
9324 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9325 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9326 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9327 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9328
9329 /* Define `char', which is like either `signed char' or `unsigned char'
9330 but not the same as either. */
9331 char_type_node
9332 = (signed_char
9333 ? make_signed_type (CHAR_TYPE_SIZE)
9334 : make_unsigned_type (CHAR_TYPE_SIZE));
9335 TYPE_STRING_FLAG (char_type_node) = 1;
9336
9337 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9338 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9339 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9340 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9341 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9342 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9343 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9344 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9345 #if HOST_BITS_PER_WIDE_INT >= 64
9346 /* TODO: This isn't correct, but as logic depends at the moment on
9347 host's instead of target's wide-integer.
9348 If there is a target not supporting TImode, but has an 128-bit
9349 integer-scalar register, this target check needs to be adjusted. */
9350 if (targetm.scalar_mode_supported_p (TImode))
9351 {
9352 int128_integer_type_node = make_signed_type (128);
9353 int128_unsigned_type_node = make_unsigned_type (128);
9354 }
9355 #endif
9356
9357 /* Define a boolean type. This type only represents boolean values but
9358 may be larger than char depending on the value of BOOL_TYPE_SIZE.
9359 Front ends which want to override this size (i.e. Java) can redefine
9360 boolean_type_node before calling build_common_tree_nodes_2. */
9361 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9362 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9363 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9364 TYPE_PRECISION (boolean_type_node) = 1;
9365
9366 /* Define what type to use for size_t. */
9367 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9368 size_type_node = unsigned_type_node;
9369 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9370 size_type_node = long_unsigned_type_node;
9371 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9372 size_type_node = long_long_unsigned_type_node;
9373 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9374 size_type_node = short_unsigned_type_node;
9375 else
9376 gcc_unreachable ();
9377
9378 /* Fill in the rest of the sized types. Reuse existing type nodes
9379 when possible. */
9380 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9381 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9382 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9383 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9384 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9385
9386 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9387 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9388 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9389 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9390 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9391
9392 access_public_node = get_identifier ("public");
9393 access_protected_node = get_identifier ("protected");
9394 access_private_node = get_identifier ("private");
9395
9396 /* Define these next since types below may used them. */
9397 integer_zero_node = build_int_cst (integer_type_node, 0);
9398 integer_one_node = build_int_cst (integer_type_node, 1);
9399 integer_three_node = build_int_cst (integer_type_node, 3);
9400 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9401
9402 size_zero_node = size_int (0);
9403 size_one_node = size_int (1);
9404 bitsize_zero_node = bitsize_int (0);
9405 bitsize_one_node = bitsize_int (1);
9406 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9407
9408 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9409 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9410
9411 void_type_node = make_node (VOID_TYPE);
9412 layout_type (void_type_node);
9413
9414 /* We are not going to have real types in C with less than byte alignment,
9415 so we might as well not have any types that claim to have it. */
9416 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9417 TYPE_USER_ALIGN (void_type_node) = 0;
9418
9419 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9420 layout_type (TREE_TYPE (null_pointer_node));
9421
9422 ptr_type_node = build_pointer_type (void_type_node);
9423 const_ptr_type_node
9424 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9425 fileptr_type_node = ptr_type_node;
9426
9427 float_type_node = make_node (REAL_TYPE);
9428 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9429 layout_type (float_type_node);
9430
9431 double_type_node = make_node (REAL_TYPE);
9432 if (short_double)
9433 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9434 else
9435 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9436 layout_type (double_type_node);
9437
9438 long_double_type_node = make_node (REAL_TYPE);
9439 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9440 layout_type (long_double_type_node);
9441
9442 float_ptr_type_node = build_pointer_type (float_type_node);
9443 double_ptr_type_node = build_pointer_type (double_type_node);
9444 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9445 integer_ptr_type_node = build_pointer_type (integer_type_node);
9446
9447 /* Fixed size integer types. */
9448 uint16_type_node = build_nonstandard_integer_type (16, true);
9449 uint32_type_node = build_nonstandard_integer_type (32, true);
9450 uint64_type_node = build_nonstandard_integer_type (64, true);
9451
9452 /* Decimal float types. */
9453 dfloat32_type_node = make_node (REAL_TYPE);
9454 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9455 layout_type (dfloat32_type_node);
9456 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9457 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9458
9459 dfloat64_type_node = make_node (REAL_TYPE);
9460 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9461 layout_type (dfloat64_type_node);
9462 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9463 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9464
9465 dfloat128_type_node = make_node (REAL_TYPE);
9466 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9467 layout_type (dfloat128_type_node);
9468 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9469 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9470
9471 complex_integer_type_node = build_complex_type (integer_type_node);
9472 complex_float_type_node = build_complex_type (float_type_node);
9473 complex_double_type_node = build_complex_type (double_type_node);
9474 complex_long_double_type_node = build_complex_type (long_double_type_node);
9475
9476 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9477 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9478 sat_ ## KIND ## _type_node = \
9479 make_sat_signed_ ## KIND ## _type (SIZE); \
9480 sat_unsigned_ ## KIND ## _type_node = \
9481 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9482 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9483 unsigned_ ## KIND ## _type_node = \
9484 make_unsigned_ ## KIND ## _type (SIZE);
9485
9486 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9487 sat_ ## WIDTH ## KIND ## _type_node = \
9488 make_sat_signed_ ## KIND ## _type (SIZE); \
9489 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9490 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9491 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9492 unsigned_ ## WIDTH ## KIND ## _type_node = \
9493 make_unsigned_ ## KIND ## _type (SIZE);
9494
9495 /* Make fixed-point type nodes based on four different widths. */
9496 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9497 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9498 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9499 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9500 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9501
9502 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9503 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9504 NAME ## _type_node = \
9505 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9506 u ## NAME ## _type_node = \
9507 make_or_reuse_unsigned_ ## KIND ## _type \
9508 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9509 sat_ ## NAME ## _type_node = \
9510 make_or_reuse_sat_signed_ ## KIND ## _type \
9511 (GET_MODE_BITSIZE (MODE ## mode)); \
9512 sat_u ## NAME ## _type_node = \
9513 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9514 (GET_MODE_BITSIZE (U ## MODE ## mode));
9515
9516 /* Fixed-point type and mode nodes. */
9517 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9518 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9519 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9520 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9521 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9522 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9523 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9524 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9525 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9526 MAKE_FIXED_MODE_NODE (accum, da, DA)
9527 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9528
9529 {
9530 tree t = targetm.build_builtin_va_list ();
9531
9532 /* Many back-ends define record types without setting TYPE_NAME.
9533 If we copied the record type here, we'd keep the original
9534 record type without a name. This breaks name mangling. So,
9535 don't copy record types and let c_common_nodes_and_builtins()
9536 declare the type to be __builtin_va_list. */
9537 if (TREE_CODE (t) != RECORD_TYPE)
9538 t = build_variant_type_copy (t);
9539
9540 va_list_type_node = t;
9541 }
9542 }
9543
9544 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9545
9546 static void
9547 local_define_builtin (const char *name, tree type, enum built_in_function code,
9548 const char *library_name, int ecf_flags)
9549 {
9550 tree decl;
9551
9552 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9553 library_name, NULL_TREE);
9554 if (ecf_flags & ECF_CONST)
9555 TREE_READONLY (decl) = 1;
9556 if (ecf_flags & ECF_PURE)
9557 DECL_PURE_P (decl) = 1;
9558 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9559 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9560 if (ecf_flags & ECF_NORETURN)
9561 TREE_THIS_VOLATILE (decl) = 1;
9562 if (ecf_flags & ECF_NOTHROW)
9563 TREE_NOTHROW (decl) = 1;
9564 if (ecf_flags & ECF_MALLOC)
9565 DECL_IS_MALLOC (decl) = 1;
9566 if (ecf_flags & ECF_LEAF)
9567 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9568 NULL, DECL_ATTRIBUTES (decl));
9569 if ((ecf_flags & ECF_TM_PURE) && flag_tm)
9570 apply_tm_attr (decl, get_identifier ("transaction_pure"));
9571
9572 set_builtin_decl (code, decl, true);
9573 }
9574
9575 /* Call this function after instantiating all builtins that the language
9576 front end cares about. This will build the rest of the builtins that
9577 are relied upon by the tree optimizers and the middle-end. */
9578
9579 void
9580 build_common_builtin_nodes (void)
9581 {
9582 tree tmp, ftype;
9583 int ecf_flags;
9584
9585 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
9586 {
9587 ftype = build_function_type (void_type_node, void_list_node);
9588 local_define_builtin ("__builtin_unreachable", ftype, BUILT_IN_UNREACHABLE,
9589 "__builtin_unreachable",
9590 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
9591 | ECF_CONST | ECF_LEAF);
9592 }
9593
9594 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
9595 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9596 {
9597 ftype = build_function_type_list (ptr_type_node,
9598 ptr_type_node, const_ptr_type_node,
9599 size_type_node, NULL_TREE);
9600
9601 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
9602 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9603 "memcpy", ECF_NOTHROW | ECF_LEAF);
9604 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9605 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9606 "memmove", ECF_NOTHROW | ECF_LEAF);
9607 }
9608
9609 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
9610 {
9611 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9612 const_ptr_type_node, size_type_node,
9613 NULL_TREE);
9614 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9615 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9616 }
9617
9618 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
9619 {
9620 ftype = build_function_type_list (ptr_type_node,
9621 ptr_type_node, integer_type_node,
9622 size_type_node, NULL_TREE);
9623 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9624 "memset", ECF_NOTHROW | ECF_LEAF);
9625 }
9626
9627 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
9628 {
9629 ftype = build_function_type_list (ptr_type_node,
9630 size_type_node, NULL_TREE);
9631 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9632 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9633 }
9634
9635 ftype = build_function_type_list (ptr_type_node, size_type_node,
9636 size_type_node, NULL_TREE);
9637 local_define_builtin ("__builtin_alloca_with_align", ftype,
9638 BUILT_IN_ALLOCA_WITH_ALIGN, "alloca",
9639 ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9640
9641 /* If we're checking the stack, `alloca' can throw. */
9642 if (flag_stack_check)
9643 {
9644 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA)) = 0;
9645 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN)) = 0;
9646 }
9647
9648 ftype = build_function_type_list (void_type_node,
9649 ptr_type_node, ptr_type_node,
9650 ptr_type_node, NULL_TREE);
9651 local_define_builtin ("__builtin_init_trampoline", ftype,
9652 BUILT_IN_INIT_TRAMPOLINE,
9653 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9654 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
9655 BUILT_IN_INIT_HEAP_TRAMPOLINE,
9656 "__builtin_init_heap_trampoline",
9657 ECF_NOTHROW | ECF_LEAF);
9658
9659 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9660 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9661 BUILT_IN_ADJUST_TRAMPOLINE,
9662 "__builtin_adjust_trampoline",
9663 ECF_CONST | ECF_NOTHROW);
9664
9665 ftype = build_function_type_list (void_type_node,
9666 ptr_type_node, ptr_type_node, NULL_TREE);
9667 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9668 BUILT_IN_NONLOCAL_GOTO,
9669 "__builtin_nonlocal_goto",
9670 ECF_NORETURN | ECF_NOTHROW);
9671
9672 ftype = build_function_type_list (void_type_node,
9673 ptr_type_node, ptr_type_node, NULL_TREE);
9674 local_define_builtin ("__builtin_setjmp_setup", ftype,
9675 BUILT_IN_SETJMP_SETUP,
9676 "__builtin_setjmp_setup", ECF_NOTHROW);
9677
9678 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9679 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9680 BUILT_IN_SETJMP_DISPATCHER,
9681 "__builtin_setjmp_dispatcher",
9682 ECF_PURE | ECF_NOTHROW);
9683
9684 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9685 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9686 BUILT_IN_SETJMP_RECEIVER,
9687 "__builtin_setjmp_receiver", ECF_NOTHROW);
9688
9689 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9690 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9691 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9692
9693 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9694 local_define_builtin ("__builtin_stack_restore", ftype,
9695 BUILT_IN_STACK_RESTORE,
9696 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9697
9698 /* If there's a possibility that we might use the ARM EABI, build the
9699 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9700 if (targetm.arm_eabi_unwinder)
9701 {
9702 ftype = build_function_type_list (void_type_node, NULL_TREE);
9703 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9704 BUILT_IN_CXA_END_CLEANUP,
9705 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9706 }
9707
9708 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9709 local_define_builtin ("__builtin_unwind_resume", ftype,
9710 BUILT_IN_UNWIND_RESUME,
9711 ((targetm_common.except_unwind_info (&global_options)
9712 == UI_SJLJ)
9713 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9714 ECF_NORETURN);
9715
9716 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
9717 {
9718 ftype = build_function_type_list (ptr_type_node, integer_type_node,
9719 NULL_TREE);
9720 local_define_builtin ("__builtin_return_address", ftype,
9721 BUILT_IN_RETURN_ADDRESS,
9722 "__builtin_return_address",
9723 ECF_NOTHROW);
9724 }
9725
9726 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
9727 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
9728 {
9729 ftype = build_function_type_list (void_type_node, ptr_type_node,
9730 ptr_type_node, NULL_TREE);
9731 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
9732 local_define_builtin ("__cyg_profile_func_enter", ftype,
9733 BUILT_IN_PROFILE_FUNC_ENTER,
9734 "__cyg_profile_func_enter", 0);
9735 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
9736 local_define_builtin ("__cyg_profile_func_exit", ftype,
9737 BUILT_IN_PROFILE_FUNC_EXIT,
9738 "__cyg_profile_func_exit", 0);
9739 }
9740
9741 /* The exception object and filter values from the runtime. The argument
9742 must be zero before exception lowering, i.e. from the front end. After
9743 exception lowering, it will be the region number for the exception
9744 landing pad. These functions are PURE instead of CONST to prevent
9745 them from being hoisted past the exception edge that will initialize
9746 its value in the landing pad. */
9747 ftype = build_function_type_list (ptr_type_node,
9748 integer_type_node, NULL_TREE);
9749 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
9750 /* Only use TM_PURE if we we have TM language support. */
9751 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
9752 ecf_flags |= ECF_TM_PURE;
9753 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9754 "__builtin_eh_pointer", ecf_flags);
9755
9756 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9757 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
9758 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9759 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9760
9761 ftype = build_function_type_list (void_type_node,
9762 integer_type_node, integer_type_node,
9763 NULL_TREE);
9764 local_define_builtin ("__builtin_eh_copy_values", ftype,
9765 BUILT_IN_EH_COPY_VALUES,
9766 "__builtin_eh_copy_values", ECF_NOTHROW);
9767
9768 /* Complex multiplication and division. These are handled as builtins
9769 rather than optabs because emit_library_call_value doesn't support
9770 complex. Further, we can do slightly better with folding these
9771 beasties if the real and complex parts of the arguments are separate. */
9772 {
9773 int mode;
9774
9775 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9776 {
9777 char mode_name_buf[4], *q;
9778 const char *p;
9779 enum built_in_function mcode, dcode;
9780 tree type, inner_type;
9781 const char *prefix = "__";
9782
9783 if (targetm.libfunc_gnu_prefix)
9784 prefix = "__gnu_";
9785
9786 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9787 if (type == NULL)
9788 continue;
9789 inner_type = TREE_TYPE (type);
9790
9791 ftype = build_function_type_list (type, inner_type, inner_type,
9792 inner_type, inner_type, NULL_TREE);
9793
9794 mcode = ((enum built_in_function)
9795 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9796 dcode = ((enum built_in_function)
9797 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9798
9799 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9800 *q = TOLOWER (*p);
9801 *q = '\0';
9802
9803 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
9804 NULL);
9805 local_define_builtin (built_in_names[mcode], ftype, mcode,
9806 built_in_names[mcode],
9807 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9808
9809 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
9810 NULL);
9811 local_define_builtin (built_in_names[dcode], ftype, dcode,
9812 built_in_names[dcode],
9813 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9814 }
9815 }
9816 }
9817
9818 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9819 better way.
9820
9821 If we requested a pointer to a vector, build up the pointers that
9822 we stripped off while looking for the inner type. Similarly for
9823 return values from functions.
9824
9825 The argument TYPE is the top of the chain, and BOTTOM is the
9826 new type which we will point to. */
9827
9828 tree
9829 reconstruct_complex_type (tree type, tree bottom)
9830 {
9831 tree inner, outer;
9832
9833 if (TREE_CODE (type) == POINTER_TYPE)
9834 {
9835 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9836 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9837 TYPE_REF_CAN_ALIAS_ALL (type));
9838 }
9839 else if (TREE_CODE (type) == REFERENCE_TYPE)
9840 {
9841 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9842 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9843 TYPE_REF_CAN_ALIAS_ALL (type));
9844 }
9845 else if (TREE_CODE (type) == ARRAY_TYPE)
9846 {
9847 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9848 outer = build_array_type (inner, TYPE_DOMAIN (type));
9849 }
9850 else if (TREE_CODE (type) == FUNCTION_TYPE)
9851 {
9852 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9853 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9854 }
9855 else if (TREE_CODE (type) == METHOD_TYPE)
9856 {
9857 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9858 /* The build_method_type_directly() routine prepends 'this' to argument list,
9859 so we must compensate by getting rid of it. */
9860 outer
9861 = build_method_type_directly
9862 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9863 inner,
9864 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9865 }
9866 else if (TREE_CODE (type) == OFFSET_TYPE)
9867 {
9868 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9869 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9870 }
9871 else
9872 return bottom;
9873
9874 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9875 TYPE_QUALS (type));
9876 }
9877
9878 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9879 the inner type. */
9880 tree
9881 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9882 {
9883 int nunits;
9884
9885 switch (GET_MODE_CLASS (mode))
9886 {
9887 case MODE_VECTOR_INT:
9888 case MODE_VECTOR_FLOAT:
9889 case MODE_VECTOR_FRACT:
9890 case MODE_VECTOR_UFRACT:
9891 case MODE_VECTOR_ACCUM:
9892 case MODE_VECTOR_UACCUM:
9893 nunits = GET_MODE_NUNITS (mode);
9894 break;
9895
9896 case MODE_INT:
9897 /* Check that there are no leftover bits. */
9898 gcc_assert (GET_MODE_BITSIZE (mode)
9899 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9900
9901 nunits = GET_MODE_BITSIZE (mode)
9902 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9903 break;
9904
9905 default:
9906 gcc_unreachable ();
9907 }
9908
9909 return make_vector_type (innertype, nunits, mode);
9910 }
9911
9912 /* Similarly, but takes the inner type and number of units, which must be
9913 a power of two. */
9914
9915 tree
9916 build_vector_type (tree innertype, int nunits)
9917 {
9918 return make_vector_type (innertype, nunits, VOIDmode);
9919 }
9920
9921 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
9922
9923 tree
9924 build_opaque_vector_type (tree innertype, int nunits)
9925 {
9926 tree t = make_vector_type (innertype, nunits, VOIDmode);
9927 tree cand;
9928 /* We always build the non-opaque variant before the opaque one,
9929 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
9930 cand = TYPE_NEXT_VARIANT (t);
9931 if (cand
9932 && TYPE_VECTOR_OPAQUE (cand)
9933 && check_qualified_type (cand, t, TYPE_QUALS (t)))
9934 return cand;
9935 /* Othewise build a variant type and make sure to queue it after
9936 the non-opaque type. */
9937 cand = build_distinct_type_copy (t);
9938 TYPE_VECTOR_OPAQUE (cand) = true;
9939 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
9940 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
9941 TYPE_NEXT_VARIANT (t) = cand;
9942 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
9943 return cand;
9944 }
9945
9946
9947 /* Given an initializer INIT, return TRUE if INIT is zero or some
9948 aggregate of zeros. Otherwise return FALSE. */
9949 bool
9950 initializer_zerop (const_tree init)
9951 {
9952 tree elt;
9953
9954 STRIP_NOPS (init);
9955
9956 switch (TREE_CODE (init))
9957 {
9958 case INTEGER_CST:
9959 return integer_zerop (init);
9960
9961 case REAL_CST:
9962 /* ??? Note that this is not correct for C4X float formats. There,
9963 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9964 negative exponent. */
9965 return real_zerop (init)
9966 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9967
9968 case FIXED_CST:
9969 return fixed_zerop (init);
9970
9971 case COMPLEX_CST:
9972 return integer_zerop (init)
9973 || (real_zerop (init)
9974 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9975 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9976
9977 case VECTOR_CST:
9978 {
9979 unsigned i;
9980 for (i = 0; i < VECTOR_CST_NELTS (init); ++i)
9981 if (!initializer_zerop (VECTOR_CST_ELT (init, i)))
9982 return false;
9983 return true;
9984 }
9985
9986 case CONSTRUCTOR:
9987 {
9988 unsigned HOST_WIDE_INT idx;
9989
9990 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9991 if (!initializer_zerop (elt))
9992 return false;
9993 return true;
9994 }
9995
9996 case STRING_CST:
9997 {
9998 int i;
9999
10000 /* We need to loop through all elements to handle cases like
10001 "\0" and "\0foobar". */
10002 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10003 if (TREE_STRING_POINTER (init)[i] != '\0')
10004 return false;
10005
10006 return true;
10007 }
10008
10009 default:
10010 return false;
10011 }
10012 }
10013
10014 /* Build an empty statement at location LOC. */
10015
10016 tree
10017 build_empty_stmt (location_t loc)
10018 {
10019 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10020 SET_EXPR_LOCATION (t, loc);
10021 return t;
10022 }
10023
10024
10025 /* Build an OpenMP clause with code CODE. LOC is the location of the
10026 clause. */
10027
10028 tree
10029 build_omp_clause (location_t loc, enum omp_clause_code code)
10030 {
10031 tree t;
10032 int size, length;
10033
10034 length = omp_clause_num_ops[code];
10035 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10036
10037 record_node_allocation_statistics (OMP_CLAUSE, size);
10038
10039 t = ggc_alloc_tree_node (size);
10040 memset (t, 0, size);
10041 TREE_SET_CODE (t, OMP_CLAUSE);
10042 OMP_CLAUSE_SET_CODE (t, code);
10043 OMP_CLAUSE_LOCATION (t) = loc;
10044
10045 return t;
10046 }
10047
10048 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10049 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10050 Except for the CODE and operand count field, other storage for the
10051 object is initialized to zeros. */
10052
10053 tree
10054 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
10055 {
10056 tree t;
10057 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10058
10059 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10060 gcc_assert (len >= 1);
10061
10062 record_node_allocation_statistics (code, length);
10063
10064 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
10065
10066 TREE_SET_CODE (t, code);
10067
10068 /* Can't use TREE_OPERAND to store the length because if checking is
10069 enabled, it will try to check the length before we store it. :-P */
10070 t->exp.operands[0] = build_int_cst (sizetype, len);
10071
10072 return t;
10073 }
10074
10075 /* Helper function for build_call_* functions; build a CALL_EXPR with
10076 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10077 the argument slots. */
10078
10079 static tree
10080 build_call_1 (tree return_type, tree fn, int nargs)
10081 {
10082 tree t;
10083
10084 t = build_vl_exp (CALL_EXPR, nargs + 3);
10085 TREE_TYPE (t) = return_type;
10086 CALL_EXPR_FN (t) = fn;
10087 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10088
10089 return t;
10090 }
10091
10092 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10093 FN and a null static chain slot. NARGS is the number of call arguments
10094 which are specified as "..." arguments. */
10095
10096 tree
10097 build_call_nary (tree return_type, tree fn, int nargs, ...)
10098 {
10099 tree ret;
10100 va_list args;
10101 va_start (args, nargs);
10102 ret = build_call_valist (return_type, fn, nargs, args);
10103 va_end (args);
10104 return ret;
10105 }
10106
10107 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10108 FN and a null static chain slot. NARGS is the number of call arguments
10109 which are specified as a va_list ARGS. */
10110
10111 tree
10112 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10113 {
10114 tree t;
10115 int i;
10116
10117 t = build_call_1 (return_type, fn, nargs);
10118 for (i = 0; i < nargs; i++)
10119 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10120 process_call_operands (t);
10121 return t;
10122 }
10123
10124 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10125 FN and a null static chain slot. NARGS is the number of call arguments
10126 which are specified as a tree array ARGS. */
10127
10128 tree
10129 build_call_array_loc (location_t loc, tree return_type, tree fn,
10130 int nargs, const tree *args)
10131 {
10132 tree t;
10133 int i;
10134
10135 t = build_call_1 (return_type, fn, nargs);
10136 for (i = 0; i < nargs; i++)
10137 CALL_EXPR_ARG (t, i) = args[i];
10138 process_call_operands (t);
10139 SET_EXPR_LOCATION (t, loc);
10140 return t;
10141 }
10142
10143 /* Like build_call_array, but takes a VEC. */
10144
10145 tree
10146 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
10147 {
10148 tree ret, t;
10149 unsigned int ix;
10150
10151 ret = build_call_1 (return_type, fn, VEC_length (tree, args));
10152 FOR_EACH_VEC_ELT (tree, args, ix, t)
10153 CALL_EXPR_ARG (ret, ix) = t;
10154 process_call_operands (ret);
10155 return ret;
10156 }
10157
10158
10159 /* Returns true if it is possible to prove that the index of
10160 an array access REF (an ARRAY_REF expression) falls into the
10161 array bounds. */
10162
10163 bool
10164 in_array_bounds_p (tree ref)
10165 {
10166 tree idx = TREE_OPERAND (ref, 1);
10167 tree min, max;
10168
10169 if (TREE_CODE (idx) != INTEGER_CST)
10170 return false;
10171
10172 min = array_ref_low_bound (ref);
10173 max = array_ref_up_bound (ref);
10174 if (!min
10175 || !max
10176 || TREE_CODE (min) != INTEGER_CST
10177 || TREE_CODE (max) != INTEGER_CST)
10178 return false;
10179
10180 if (tree_int_cst_lt (idx, min)
10181 || tree_int_cst_lt (max, idx))
10182 return false;
10183
10184 return true;
10185 }
10186
10187 /* Returns true if it is possible to prove that the range of
10188 an array access REF (an ARRAY_RANGE_REF expression) falls
10189 into the array bounds. */
10190
10191 bool
10192 range_in_array_bounds_p (tree ref)
10193 {
10194 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
10195 tree range_min, range_max, min, max;
10196
10197 range_min = TYPE_MIN_VALUE (domain_type);
10198 range_max = TYPE_MAX_VALUE (domain_type);
10199 if (!range_min
10200 || !range_max
10201 || TREE_CODE (range_min) != INTEGER_CST
10202 || TREE_CODE (range_max) != INTEGER_CST)
10203 return false;
10204
10205 min = array_ref_low_bound (ref);
10206 max = array_ref_up_bound (ref);
10207 if (!min
10208 || !max
10209 || TREE_CODE (min) != INTEGER_CST
10210 || TREE_CODE (max) != INTEGER_CST)
10211 return false;
10212
10213 if (tree_int_cst_lt (range_min, min)
10214 || tree_int_cst_lt (max, range_max))
10215 return false;
10216
10217 return true;
10218 }
10219
10220 /* Return true if T (assumed to be a DECL) must be assigned a memory
10221 location. */
10222
10223 bool
10224 needs_to_live_in_memory (const_tree t)
10225 {
10226 return (TREE_ADDRESSABLE (t)
10227 || is_global_var (t)
10228 || (TREE_CODE (t) == RESULT_DECL
10229 && !DECL_BY_REFERENCE (t)
10230 && aggregate_value_p (t, current_function_decl)));
10231 }
10232
10233 /* Return value of a constant X and sign-extend it. */
10234
10235 HOST_WIDE_INT
10236 int_cst_value (const_tree x)
10237 {
10238 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10239 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
10240
10241 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10242 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10243 || TREE_INT_CST_HIGH (x) == -1);
10244
10245 if (bits < HOST_BITS_PER_WIDE_INT)
10246 {
10247 bool negative = ((val >> (bits - 1)) & 1) != 0;
10248 if (negative)
10249 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
10250 else
10251 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
10252 }
10253
10254 return val;
10255 }
10256
10257 /* Return value of a constant X and sign-extend it. */
10258
10259 HOST_WIDEST_INT
10260 widest_int_cst_value (const_tree x)
10261 {
10262 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10263 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
10264
10265 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
10266 gcc_assert (HOST_BITS_PER_WIDEST_INT >= HOST_BITS_PER_DOUBLE_INT);
10267 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
10268 << HOST_BITS_PER_WIDE_INT);
10269 #else
10270 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10271 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10272 || TREE_INT_CST_HIGH (x) == -1);
10273 #endif
10274
10275 if (bits < HOST_BITS_PER_WIDEST_INT)
10276 {
10277 bool negative = ((val >> (bits - 1)) & 1) != 0;
10278 if (negative)
10279 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
10280 else
10281 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
10282 }
10283
10284 return val;
10285 }
10286
10287 /* If TYPE is an integral or pointer type, return an integer type with
10288 the same precision which is unsigned iff UNSIGNEDP is true, or itself
10289 if TYPE is already an integer type of signedness UNSIGNEDP. */
10290
10291 tree
10292 signed_or_unsigned_type_for (int unsignedp, tree type)
10293 {
10294 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
10295 return type;
10296
10297 if (TREE_CODE (type) == VECTOR_TYPE)
10298 {
10299 tree inner = TREE_TYPE (type);
10300 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
10301 if (!inner2)
10302 return NULL_TREE;
10303 if (inner == inner2)
10304 return type;
10305 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
10306 }
10307
10308 if (!INTEGRAL_TYPE_P (type)
10309 && !POINTER_TYPE_P (type))
10310 return NULL_TREE;
10311
10312 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
10313 }
10314
10315 /* If TYPE is an integral or pointer type, return an integer type with
10316 the same precision which is unsigned, or itself if TYPE is already an
10317 unsigned integer type. */
10318
10319 tree
10320 unsigned_type_for (tree type)
10321 {
10322 return signed_or_unsigned_type_for (1, type);
10323 }
10324
10325 /* If TYPE is an integral or pointer type, return an integer type with
10326 the same precision which is signed, or itself if TYPE is already a
10327 signed integer type. */
10328
10329 tree
10330 signed_type_for (tree type)
10331 {
10332 return signed_or_unsigned_type_for (0, type);
10333 }
10334
10335 /* If TYPE is a vector type, return a signed integer vector type with the
10336 same width and number of subparts. Otherwise return boolean_type_node. */
10337
10338 tree
10339 truth_type_for (tree type)
10340 {
10341 if (TREE_CODE (type) == VECTOR_TYPE)
10342 {
10343 tree elem = lang_hooks.types.type_for_size
10344 (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))), 0);
10345 return build_opaque_vector_type (elem, TYPE_VECTOR_SUBPARTS (type));
10346 }
10347 else
10348 return boolean_type_node;
10349 }
10350
10351 /* Returns the largest value obtainable by casting something in INNER type to
10352 OUTER type. */
10353
10354 tree
10355 upper_bound_in_type (tree outer, tree inner)
10356 {
10357 double_int high;
10358 unsigned int det = 0;
10359 unsigned oprec = TYPE_PRECISION (outer);
10360 unsigned iprec = TYPE_PRECISION (inner);
10361 unsigned prec;
10362
10363 /* Compute a unique number for every combination. */
10364 det |= (oprec > iprec) ? 4 : 0;
10365 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10366 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10367
10368 /* Determine the exponent to use. */
10369 switch (det)
10370 {
10371 case 0:
10372 case 1:
10373 /* oprec <= iprec, outer: signed, inner: don't care. */
10374 prec = oprec - 1;
10375 break;
10376 case 2:
10377 case 3:
10378 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10379 prec = oprec;
10380 break;
10381 case 4:
10382 /* oprec > iprec, outer: signed, inner: signed. */
10383 prec = iprec - 1;
10384 break;
10385 case 5:
10386 /* oprec > iprec, outer: signed, inner: unsigned. */
10387 prec = iprec;
10388 break;
10389 case 6:
10390 /* oprec > iprec, outer: unsigned, inner: signed. */
10391 prec = oprec;
10392 break;
10393 case 7:
10394 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10395 prec = iprec;
10396 break;
10397 default:
10398 gcc_unreachable ();
10399 }
10400
10401 /* Compute 2^^prec - 1. */
10402 if (prec <= HOST_BITS_PER_WIDE_INT)
10403 {
10404 high.high = 0;
10405 high.low = ((~(unsigned HOST_WIDE_INT) 0)
10406 >> (HOST_BITS_PER_WIDE_INT - prec));
10407 }
10408 else
10409 {
10410 high.high = ((~(unsigned HOST_WIDE_INT) 0)
10411 >> (HOST_BITS_PER_DOUBLE_INT - prec));
10412 high.low = ~(unsigned HOST_WIDE_INT) 0;
10413 }
10414
10415 return double_int_to_tree (outer, high);
10416 }
10417
10418 /* Returns the smallest value obtainable by casting something in INNER type to
10419 OUTER type. */
10420
10421 tree
10422 lower_bound_in_type (tree outer, tree inner)
10423 {
10424 double_int low;
10425 unsigned oprec = TYPE_PRECISION (outer);
10426 unsigned iprec = TYPE_PRECISION (inner);
10427
10428 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10429 and obtain 0. */
10430 if (TYPE_UNSIGNED (outer)
10431 /* If we are widening something of an unsigned type, OUTER type
10432 contains all values of INNER type. In particular, both INNER
10433 and OUTER types have zero in common. */
10434 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10435 low.low = low.high = 0;
10436 else
10437 {
10438 /* If we are widening a signed type to another signed type, we
10439 want to obtain -2^^(iprec-1). If we are keeping the
10440 precision or narrowing to a signed type, we want to obtain
10441 -2^(oprec-1). */
10442 unsigned prec = oprec > iprec ? iprec : oprec;
10443
10444 if (prec <= HOST_BITS_PER_WIDE_INT)
10445 {
10446 low.high = ~(unsigned HOST_WIDE_INT) 0;
10447 low.low = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
10448 }
10449 else
10450 {
10451 low.high = ((~(unsigned HOST_WIDE_INT) 0)
10452 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10453 low.low = 0;
10454 }
10455 }
10456
10457 return double_int_to_tree (outer, low);
10458 }
10459
10460 /* Return nonzero if two operands that are suitable for PHI nodes are
10461 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10462 SSA_NAME or invariant. Note that this is strictly an optimization.
10463 That is, callers of this function can directly call operand_equal_p
10464 and get the same result, only slower. */
10465
10466 int
10467 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10468 {
10469 if (arg0 == arg1)
10470 return 1;
10471 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10472 return 0;
10473 return operand_equal_p (arg0, arg1, 0);
10474 }
10475
10476 /* Returns number of zeros at the end of binary representation of X.
10477
10478 ??? Use ffs if available? */
10479
10480 tree
10481 num_ending_zeros (const_tree x)
10482 {
10483 unsigned HOST_WIDE_INT fr, nfr;
10484 unsigned num, abits;
10485 tree type = TREE_TYPE (x);
10486
10487 if (TREE_INT_CST_LOW (x) == 0)
10488 {
10489 num = HOST_BITS_PER_WIDE_INT;
10490 fr = TREE_INT_CST_HIGH (x);
10491 }
10492 else
10493 {
10494 num = 0;
10495 fr = TREE_INT_CST_LOW (x);
10496 }
10497
10498 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10499 {
10500 nfr = fr >> abits;
10501 if (nfr << abits == fr)
10502 {
10503 num += abits;
10504 fr = nfr;
10505 }
10506 }
10507
10508 if (num > TYPE_PRECISION (type))
10509 num = TYPE_PRECISION (type);
10510
10511 return build_int_cst_type (type, num);
10512 }
10513
10514
10515 #define WALK_SUBTREE(NODE) \
10516 do \
10517 { \
10518 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10519 if (result) \
10520 return result; \
10521 } \
10522 while (0)
10523
10524 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10525 be walked whenever a type is seen in the tree. Rest of operands and return
10526 value are as for walk_tree. */
10527
10528 static tree
10529 walk_type_fields (tree type, walk_tree_fn func, void *data,
10530 struct pointer_set_t *pset, walk_tree_lh lh)
10531 {
10532 tree result = NULL_TREE;
10533
10534 switch (TREE_CODE (type))
10535 {
10536 case POINTER_TYPE:
10537 case REFERENCE_TYPE:
10538 /* We have to worry about mutually recursive pointers. These can't
10539 be written in C. They can in Ada. It's pathological, but
10540 there's an ACATS test (c38102a) that checks it. Deal with this
10541 by checking if we're pointing to another pointer, that one
10542 points to another pointer, that one does too, and we have no htab.
10543 If so, get a hash table. We check three levels deep to avoid
10544 the cost of the hash table if we don't need one. */
10545 if (POINTER_TYPE_P (TREE_TYPE (type))
10546 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10547 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10548 && !pset)
10549 {
10550 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10551 func, data);
10552 if (result)
10553 return result;
10554
10555 break;
10556 }
10557
10558 /* ... fall through ... */
10559
10560 case COMPLEX_TYPE:
10561 WALK_SUBTREE (TREE_TYPE (type));
10562 break;
10563
10564 case METHOD_TYPE:
10565 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10566
10567 /* Fall through. */
10568
10569 case FUNCTION_TYPE:
10570 WALK_SUBTREE (TREE_TYPE (type));
10571 {
10572 tree arg;
10573
10574 /* We never want to walk into default arguments. */
10575 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10576 WALK_SUBTREE (TREE_VALUE (arg));
10577 }
10578 break;
10579
10580 case ARRAY_TYPE:
10581 /* Don't follow this nodes's type if a pointer for fear that
10582 we'll have infinite recursion. If we have a PSET, then we
10583 need not fear. */
10584 if (pset
10585 || (!POINTER_TYPE_P (TREE_TYPE (type))
10586 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10587 WALK_SUBTREE (TREE_TYPE (type));
10588 WALK_SUBTREE (TYPE_DOMAIN (type));
10589 break;
10590
10591 case OFFSET_TYPE:
10592 WALK_SUBTREE (TREE_TYPE (type));
10593 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10594 break;
10595
10596 default:
10597 break;
10598 }
10599
10600 return NULL_TREE;
10601 }
10602
10603 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10604 called with the DATA and the address of each sub-tree. If FUNC returns a
10605 non-NULL value, the traversal is stopped, and the value returned by FUNC
10606 is returned. If PSET is non-NULL it is used to record the nodes visited,
10607 and to avoid visiting a node more than once. */
10608
10609 tree
10610 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10611 struct pointer_set_t *pset, walk_tree_lh lh)
10612 {
10613 enum tree_code code;
10614 int walk_subtrees;
10615 tree result;
10616
10617 #define WALK_SUBTREE_TAIL(NODE) \
10618 do \
10619 { \
10620 tp = & (NODE); \
10621 goto tail_recurse; \
10622 } \
10623 while (0)
10624
10625 tail_recurse:
10626 /* Skip empty subtrees. */
10627 if (!*tp)
10628 return NULL_TREE;
10629
10630 /* Don't walk the same tree twice, if the user has requested
10631 that we avoid doing so. */
10632 if (pset && pointer_set_insert (pset, *tp))
10633 return NULL_TREE;
10634
10635 /* Call the function. */
10636 walk_subtrees = 1;
10637 result = (*func) (tp, &walk_subtrees, data);
10638
10639 /* If we found something, return it. */
10640 if (result)
10641 return result;
10642
10643 code = TREE_CODE (*tp);
10644
10645 /* Even if we didn't, FUNC may have decided that there was nothing
10646 interesting below this point in the tree. */
10647 if (!walk_subtrees)
10648 {
10649 /* But we still need to check our siblings. */
10650 if (code == TREE_LIST)
10651 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10652 else if (code == OMP_CLAUSE)
10653 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10654 else
10655 return NULL_TREE;
10656 }
10657
10658 if (lh)
10659 {
10660 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10661 if (result || !walk_subtrees)
10662 return result;
10663 }
10664
10665 switch (code)
10666 {
10667 case ERROR_MARK:
10668 case IDENTIFIER_NODE:
10669 case INTEGER_CST:
10670 case REAL_CST:
10671 case FIXED_CST:
10672 case VECTOR_CST:
10673 case STRING_CST:
10674 case BLOCK:
10675 case PLACEHOLDER_EXPR:
10676 case SSA_NAME:
10677 case FIELD_DECL:
10678 case RESULT_DECL:
10679 /* None of these have subtrees other than those already walked
10680 above. */
10681 break;
10682
10683 case TREE_LIST:
10684 WALK_SUBTREE (TREE_VALUE (*tp));
10685 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10686 break;
10687
10688 case TREE_VEC:
10689 {
10690 int len = TREE_VEC_LENGTH (*tp);
10691
10692 if (len == 0)
10693 break;
10694
10695 /* Walk all elements but the first. */
10696 while (--len)
10697 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10698
10699 /* Now walk the first one as a tail call. */
10700 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10701 }
10702
10703 case COMPLEX_CST:
10704 WALK_SUBTREE (TREE_REALPART (*tp));
10705 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10706
10707 case CONSTRUCTOR:
10708 {
10709 unsigned HOST_WIDE_INT idx;
10710 constructor_elt *ce;
10711
10712 for (idx = 0;
10713 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10714 idx++)
10715 WALK_SUBTREE (ce->value);
10716 }
10717 break;
10718
10719 case SAVE_EXPR:
10720 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10721
10722 case BIND_EXPR:
10723 {
10724 tree decl;
10725 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
10726 {
10727 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10728 into declarations that are just mentioned, rather than
10729 declared; they don't really belong to this part of the tree.
10730 And, we can see cycles: the initializer for a declaration
10731 can refer to the declaration itself. */
10732 WALK_SUBTREE (DECL_INITIAL (decl));
10733 WALK_SUBTREE (DECL_SIZE (decl));
10734 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10735 }
10736 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10737 }
10738
10739 case STATEMENT_LIST:
10740 {
10741 tree_stmt_iterator i;
10742 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10743 WALK_SUBTREE (*tsi_stmt_ptr (i));
10744 }
10745 break;
10746
10747 case OMP_CLAUSE:
10748 switch (OMP_CLAUSE_CODE (*tp))
10749 {
10750 case OMP_CLAUSE_PRIVATE:
10751 case OMP_CLAUSE_SHARED:
10752 case OMP_CLAUSE_FIRSTPRIVATE:
10753 case OMP_CLAUSE_COPYIN:
10754 case OMP_CLAUSE_COPYPRIVATE:
10755 case OMP_CLAUSE_FINAL:
10756 case OMP_CLAUSE_IF:
10757 case OMP_CLAUSE_NUM_THREADS:
10758 case OMP_CLAUSE_SCHEDULE:
10759 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10760 /* FALLTHRU */
10761
10762 case OMP_CLAUSE_NOWAIT:
10763 case OMP_CLAUSE_ORDERED:
10764 case OMP_CLAUSE_DEFAULT:
10765 case OMP_CLAUSE_UNTIED:
10766 case OMP_CLAUSE_MERGEABLE:
10767 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10768
10769 case OMP_CLAUSE_LASTPRIVATE:
10770 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10771 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10772 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10773
10774 case OMP_CLAUSE_COLLAPSE:
10775 {
10776 int i;
10777 for (i = 0; i < 3; i++)
10778 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10779 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10780 }
10781
10782 case OMP_CLAUSE_REDUCTION:
10783 {
10784 int i;
10785 for (i = 0; i < 4; i++)
10786 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10787 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10788 }
10789
10790 default:
10791 gcc_unreachable ();
10792 }
10793 break;
10794
10795 case TARGET_EXPR:
10796 {
10797 int i, len;
10798
10799 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10800 But, we only want to walk once. */
10801 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10802 for (i = 0; i < len; ++i)
10803 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10804 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10805 }
10806
10807 case DECL_EXPR:
10808 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10809 defining. We only want to walk into these fields of a type in this
10810 case and not in the general case of a mere reference to the type.
10811
10812 The criterion is as follows: if the field can be an expression, it
10813 must be walked only here. This should be in keeping with the fields
10814 that are directly gimplified in gimplify_type_sizes in order for the
10815 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10816 variable-sized types.
10817
10818 Note that DECLs get walked as part of processing the BIND_EXPR. */
10819 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10820 {
10821 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10822 if (TREE_CODE (*type_p) == ERROR_MARK)
10823 return NULL_TREE;
10824
10825 /* Call the function for the type. See if it returns anything or
10826 doesn't want us to continue. If we are to continue, walk both
10827 the normal fields and those for the declaration case. */
10828 result = (*func) (type_p, &walk_subtrees, data);
10829 if (result || !walk_subtrees)
10830 return result;
10831
10832 /* But do not walk a pointed-to type since it may itself need to
10833 be walked in the declaration case if it isn't anonymous. */
10834 if (!POINTER_TYPE_P (*type_p))
10835 {
10836 result = walk_type_fields (*type_p, func, data, pset, lh);
10837 if (result)
10838 return result;
10839 }
10840
10841 /* If this is a record type, also walk the fields. */
10842 if (RECORD_OR_UNION_TYPE_P (*type_p))
10843 {
10844 tree field;
10845
10846 for (field = TYPE_FIELDS (*type_p); field;
10847 field = DECL_CHAIN (field))
10848 {
10849 /* We'd like to look at the type of the field, but we can
10850 easily get infinite recursion. So assume it's pointed
10851 to elsewhere in the tree. Also, ignore things that
10852 aren't fields. */
10853 if (TREE_CODE (field) != FIELD_DECL)
10854 continue;
10855
10856 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10857 WALK_SUBTREE (DECL_SIZE (field));
10858 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10859 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10860 WALK_SUBTREE (DECL_QUALIFIER (field));
10861 }
10862 }
10863
10864 /* Same for scalar types. */
10865 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10866 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10867 || TREE_CODE (*type_p) == INTEGER_TYPE
10868 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10869 || TREE_CODE (*type_p) == REAL_TYPE)
10870 {
10871 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10872 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10873 }
10874
10875 WALK_SUBTREE (TYPE_SIZE (*type_p));
10876 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10877 }
10878 /* FALLTHRU */
10879
10880 default:
10881 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10882 {
10883 int i, len;
10884
10885 /* Walk over all the sub-trees of this operand. */
10886 len = TREE_OPERAND_LENGTH (*tp);
10887
10888 /* Go through the subtrees. We need to do this in forward order so
10889 that the scope of a FOR_EXPR is handled properly. */
10890 if (len)
10891 {
10892 for (i = 0; i < len - 1; ++i)
10893 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10894 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10895 }
10896 }
10897 /* If this is a type, walk the needed fields in the type. */
10898 else if (TYPE_P (*tp))
10899 return walk_type_fields (*tp, func, data, pset, lh);
10900 break;
10901 }
10902
10903 /* We didn't find what we were looking for. */
10904 return NULL_TREE;
10905
10906 #undef WALK_SUBTREE_TAIL
10907 }
10908 #undef WALK_SUBTREE
10909
10910 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10911
10912 tree
10913 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10914 walk_tree_lh lh)
10915 {
10916 tree result;
10917 struct pointer_set_t *pset;
10918
10919 pset = pointer_set_create ();
10920 result = walk_tree_1 (tp, func, data, pset, lh);
10921 pointer_set_destroy (pset);
10922 return result;
10923 }
10924
10925
10926 tree
10927 tree_block (tree t)
10928 {
10929 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10930
10931 if (IS_EXPR_CODE_CLASS (c))
10932 return LOCATION_BLOCK (t->exp.locus);
10933 gcc_unreachable ();
10934 return NULL;
10935 }
10936
10937 void
10938 tree_set_block (tree t, tree b)
10939 {
10940 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10941
10942 if (IS_EXPR_CODE_CLASS (c))
10943 {
10944 if (b)
10945 t->exp.locus = COMBINE_LOCATION_DATA (line_table, t->exp.locus, b);
10946 else
10947 t->exp.locus = LOCATION_LOCUS (t->exp.locus);
10948 }
10949 else
10950 gcc_unreachable ();
10951 }
10952
10953 /* Create a nameless artificial label and put it in the current
10954 function context. The label has a location of LOC. Returns the
10955 newly created label. */
10956
10957 tree
10958 create_artificial_label (location_t loc)
10959 {
10960 tree lab = build_decl (loc,
10961 LABEL_DECL, NULL_TREE, void_type_node);
10962
10963 DECL_ARTIFICIAL (lab) = 1;
10964 DECL_IGNORED_P (lab) = 1;
10965 DECL_CONTEXT (lab) = current_function_decl;
10966 return lab;
10967 }
10968
10969 /* Given a tree, try to return a useful variable name that we can use
10970 to prefix a temporary that is being assigned the value of the tree.
10971 I.E. given <temp> = &A, return A. */
10972
10973 const char *
10974 get_name (tree t)
10975 {
10976 tree stripped_decl;
10977
10978 stripped_decl = t;
10979 STRIP_NOPS (stripped_decl);
10980 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10981 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10982 else if (TREE_CODE (stripped_decl) == SSA_NAME)
10983 {
10984 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
10985 if (!name)
10986 return NULL;
10987 return IDENTIFIER_POINTER (name);
10988 }
10989 else
10990 {
10991 switch (TREE_CODE (stripped_decl))
10992 {
10993 case ADDR_EXPR:
10994 return get_name (TREE_OPERAND (stripped_decl, 0));
10995 default:
10996 return NULL;
10997 }
10998 }
10999 }
11000
11001 /* Return true if TYPE has a variable argument list. */
11002
11003 bool
11004 stdarg_p (const_tree fntype)
11005 {
11006 function_args_iterator args_iter;
11007 tree n = NULL_TREE, t;
11008
11009 if (!fntype)
11010 return false;
11011
11012 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
11013 {
11014 n = t;
11015 }
11016
11017 return n != NULL_TREE && n != void_type_node;
11018 }
11019
11020 /* Return true if TYPE has a prototype. */
11021
11022 bool
11023 prototype_p (tree fntype)
11024 {
11025 tree t;
11026
11027 gcc_assert (fntype != NULL_TREE);
11028
11029 t = TYPE_ARG_TYPES (fntype);
11030 return (t != NULL_TREE);
11031 }
11032
11033 /* If BLOCK is inlined from an __attribute__((__artificial__))
11034 routine, return pointer to location from where it has been
11035 called. */
11036 location_t *
11037 block_nonartificial_location (tree block)
11038 {
11039 location_t *ret = NULL;
11040
11041 while (block && TREE_CODE (block) == BLOCK
11042 && BLOCK_ABSTRACT_ORIGIN (block))
11043 {
11044 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11045
11046 while (TREE_CODE (ao) == BLOCK
11047 && BLOCK_ABSTRACT_ORIGIN (ao)
11048 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11049 ao = BLOCK_ABSTRACT_ORIGIN (ao);
11050
11051 if (TREE_CODE (ao) == FUNCTION_DECL)
11052 {
11053 /* If AO is an artificial inline, point RET to the
11054 call site locus at which it has been inlined and continue
11055 the loop, in case AO's caller is also an artificial
11056 inline. */
11057 if (DECL_DECLARED_INLINE_P (ao)
11058 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11059 ret = &BLOCK_SOURCE_LOCATION (block);
11060 else
11061 break;
11062 }
11063 else if (TREE_CODE (ao) != BLOCK)
11064 break;
11065
11066 block = BLOCK_SUPERCONTEXT (block);
11067 }
11068 return ret;
11069 }
11070
11071
11072 /* If EXP is inlined from an __attribute__((__artificial__))
11073 function, return the location of the original call expression. */
11074
11075 location_t
11076 tree_nonartificial_location (tree exp)
11077 {
11078 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11079
11080 if (loc)
11081 return *loc;
11082 else
11083 return EXPR_LOCATION (exp);
11084 }
11085
11086
11087 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11088 nodes. */
11089
11090 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
11091
11092 static hashval_t
11093 cl_option_hash_hash (const void *x)
11094 {
11095 const_tree const t = (const_tree) x;
11096 const char *p;
11097 size_t i;
11098 size_t len = 0;
11099 hashval_t hash = 0;
11100
11101 if (TREE_CODE (t) == OPTIMIZATION_NODE)
11102 {
11103 p = (const char *)TREE_OPTIMIZATION (t);
11104 len = sizeof (struct cl_optimization);
11105 }
11106
11107 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11108 {
11109 p = (const char *)TREE_TARGET_OPTION (t);
11110 len = sizeof (struct cl_target_option);
11111 }
11112
11113 else
11114 gcc_unreachable ();
11115
11116 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11117 something else. */
11118 for (i = 0; i < len; i++)
11119 if (p[i])
11120 hash = (hash << 4) ^ ((i << 2) | p[i]);
11121
11122 return hash;
11123 }
11124
11125 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11126 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11127 same. */
11128
11129 static int
11130 cl_option_hash_eq (const void *x, const void *y)
11131 {
11132 const_tree const xt = (const_tree) x;
11133 const_tree const yt = (const_tree) y;
11134 const char *xp;
11135 const char *yp;
11136 size_t len;
11137
11138 if (TREE_CODE (xt) != TREE_CODE (yt))
11139 return 0;
11140
11141 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11142 {
11143 xp = (const char *)TREE_OPTIMIZATION (xt);
11144 yp = (const char *)TREE_OPTIMIZATION (yt);
11145 len = sizeof (struct cl_optimization);
11146 }
11147
11148 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11149 {
11150 xp = (const char *)TREE_TARGET_OPTION (xt);
11151 yp = (const char *)TREE_TARGET_OPTION (yt);
11152 len = sizeof (struct cl_target_option);
11153 }
11154
11155 else
11156 gcc_unreachable ();
11157
11158 return (memcmp (xp, yp, len) == 0);
11159 }
11160
11161 /* Build an OPTIMIZATION_NODE based on the current options. */
11162
11163 tree
11164 build_optimization_node (void)
11165 {
11166 tree t;
11167 void **slot;
11168
11169 /* Use the cache of optimization nodes. */
11170
11171 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11172 &global_options);
11173
11174 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
11175 t = (tree) *slot;
11176 if (!t)
11177 {
11178 /* Insert this one into the hash table. */
11179 t = cl_optimization_node;
11180 *slot = t;
11181
11182 /* Make a new node for next time round. */
11183 cl_optimization_node = make_node (OPTIMIZATION_NODE);
11184 }
11185
11186 return t;
11187 }
11188
11189 /* Build a TARGET_OPTION_NODE based on the current options. */
11190
11191 tree
11192 build_target_option_node (void)
11193 {
11194 tree t;
11195 void **slot;
11196
11197 /* Use the cache of optimization nodes. */
11198
11199 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
11200 &global_options);
11201
11202 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
11203 t = (tree) *slot;
11204 if (!t)
11205 {
11206 /* Insert this one into the hash table. */
11207 t = cl_target_option_node;
11208 *slot = t;
11209
11210 /* Make a new node for next time round. */
11211 cl_target_option_node = make_node (TARGET_OPTION_NODE);
11212 }
11213
11214 return t;
11215 }
11216
11217 /* Determine the "ultimate origin" of a block. The block may be an inlined
11218 instance of an inlined instance of a block which is local to an inline
11219 function, so we have to trace all of the way back through the origin chain
11220 to find out what sort of node actually served as the original seed for the
11221 given block. */
11222
11223 tree
11224 block_ultimate_origin (const_tree block)
11225 {
11226 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
11227
11228 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
11229 nodes in the function to point to themselves; ignore that if
11230 we're trying to output the abstract instance of this function. */
11231 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
11232 return NULL_TREE;
11233
11234 if (immediate_origin == NULL_TREE)
11235 return NULL_TREE;
11236 else
11237 {
11238 tree ret_val;
11239 tree lookahead = immediate_origin;
11240
11241 do
11242 {
11243 ret_val = lookahead;
11244 lookahead = (TREE_CODE (ret_val) == BLOCK
11245 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
11246 }
11247 while (lookahead != NULL && lookahead != ret_val);
11248
11249 /* The block's abstract origin chain may not be the *ultimate* origin of
11250 the block. It could lead to a DECL that has an abstract origin set.
11251 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
11252 will give us if it has one). Note that DECL's abstract origins are
11253 supposed to be the most distant ancestor (or so decl_ultimate_origin
11254 claims), so we don't need to loop following the DECL origins. */
11255 if (DECL_P (ret_val))
11256 return DECL_ORIGIN (ret_val);
11257
11258 return ret_val;
11259 }
11260 }
11261
11262 /* Return true if T1 and T2 are equivalent lists. */
11263
11264 bool
11265 list_equal_p (const_tree t1, const_tree t2)
11266 {
11267 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
11268 if (TREE_VALUE (t1) != TREE_VALUE (t2))
11269 return false;
11270 return !t1 && !t2;
11271 }
11272
11273 /* Return true iff conversion in EXP generates no instruction. Mark
11274 it inline so that we fully inline into the stripping functions even
11275 though we have two uses of this function. */
11276
11277 static inline bool
11278 tree_nop_conversion (const_tree exp)
11279 {
11280 tree outer_type, inner_type;
11281
11282 if (!CONVERT_EXPR_P (exp)
11283 && TREE_CODE (exp) != NON_LVALUE_EXPR)
11284 return false;
11285 if (TREE_OPERAND (exp, 0) == error_mark_node)
11286 return false;
11287
11288 outer_type = TREE_TYPE (exp);
11289 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11290
11291 if (!inner_type)
11292 return false;
11293
11294 /* Use precision rather then machine mode when we can, which gives
11295 the correct answer even for submode (bit-field) types. */
11296 if ((INTEGRAL_TYPE_P (outer_type)
11297 || POINTER_TYPE_P (outer_type)
11298 || TREE_CODE (outer_type) == OFFSET_TYPE)
11299 && (INTEGRAL_TYPE_P (inner_type)
11300 || POINTER_TYPE_P (inner_type)
11301 || TREE_CODE (inner_type) == OFFSET_TYPE))
11302 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
11303
11304 /* Otherwise fall back on comparing machine modes (e.g. for
11305 aggregate types, floats). */
11306 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
11307 }
11308
11309 /* Return true iff conversion in EXP generates no instruction. Don't
11310 consider conversions changing the signedness. */
11311
11312 static bool
11313 tree_sign_nop_conversion (const_tree exp)
11314 {
11315 tree outer_type, inner_type;
11316
11317 if (!tree_nop_conversion (exp))
11318 return false;
11319
11320 outer_type = TREE_TYPE (exp);
11321 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11322
11323 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11324 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11325 }
11326
11327 /* Strip conversions from EXP according to tree_nop_conversion and
11328 return the resulting expression. */
11329
11330 tree
11331 tree_strip_nop_conversions (tree exp)
11332 {
11333 while (tree_nop_conversion (exp))
11334 exp = TREE_OPERAND (exp, 0);
11335 return exp;
11336 }
11337
11338 /* Strip conversions from EXP according to tree_sign_nop_conversion
11339 and return the resulting expression. */
11340
11341 tree
11342 tree_strip_sign_nop_conversions (tree exp)
11343 {
11344 while (tree_sign_nop_conversion (exp))
11345 exp = TREE_OPERAND (exp, 0);
11346 return exp;
11347 }
11348
11349 /* Avoid any floating point extensions from EXP. */
11350 tree
11351 strip_float_extensions (tree exp)
11352 {
11353 tree sub, expt, subt;
11354
11355 /* For floating point constant look up the narrowest type that can hold
11356 it properly and handle it like (type)(narrowest_type)constant.
11357 This way we can optimize for instance a=a*2.0 where "a" is float
11358 but 2.0 is double constant. */
11359 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
11360 {
11361 REAL_VALUE_TYPE orig;
11362 tree type = NULL;
11363
11364 orig = TREE_REAL_CST (exp);
11365 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
11366 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
11367 type = float_type_node;
11368 else if (TYPE_PRECISION (TREE_TYPE (exp))
11369 > TYPE_PRECISION (double_type_node)
11370 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
11371 type = double_type_node;
11372 if (type)
11373 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
11374 }
11375
11376 if (!CONVERT_EXPR_P (exp))
11377 return exp;
11378
11379 sub = TREE_OPERAND (exp, 0);
11380 subt = TREE_TYPE (sub);
11381 expt = TREE_TYPE (exp);
11382
11383 if (!FLOAT_TYPE_P (subt))
11384 return exp;
11385
11386 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
11387 return exp;
11388
11389 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
11390 return exp;
11391
11392 return strip_float_extensions (sub);
11393 }
11394
11395 /* Strip out all handled components that produce invariant
11396 offsets. */
11397
11398 const_tree
11399 strip_invariant_refs (const_tree op)
11400 {
11401 while (handled_component_p (op))
11402 {
11403 switch (TREE_CODE (op))
11404 {
11405 case ARRAY_REF:
11406 case ARRAY_RANGE_REF:
11407 if (!is_gimple_constant (TREE_OPERAND (op, 1))
11408 || TREE_OPERAND (op, 2) != NULL_TREE
11409 || TREE_OPERAND (op, 3) != NULL_TREE)
11410 return NULL;
11411 break;
11412
11413 case COMPONENT_REF:
11414 if (TREE_OPERAND (op, 2) != NULL_TREE)
11415 return NULL;
11416 break;
11417
11418 default:;
11419 }
11420 op = TREE_OPERAND (op, 0);
11421 }
11422
11423 return op;
11424 }
11425
11426 static GTY(()) tree gcc_eh_personality_decl;
11427
11428 /* Return the GCC personality function decl. */
11429
11430 tree
11431 lhd_gcc_personality (void)
11432 {
11433 if (!gcc_eh_personality_decl)
11434 gcc_eh_personality_decl = build_personality_function ("gcc");
11435 return gcc_eh_personality_decl;
11436 }
11437
11438 /* Try to find a base info of BINFO that would have its field decl at offset
11439 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
11440 found, return, otherwise return NULL_TREE. */
11441
11442 tree
11443 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
11444 {
11445 tree type = BINFO_TYPE (binfo);
11446
11447 while (true)
11448 {
11449 HOST_WIDE_INT pos, size;
11450 tree fld;
11451 int i;
11452
11453 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (expected_type))
11454 return binfo;
11455 if (offset < 0)
11456 return NULL_TREE;
11457
11458 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
11459 {
11460 if (TREE_CODE (fld) != FIELD_DECL)
11461 continue;
11462
11463 pos = int_bit_position (fld);
11464 size = tree_low_cst (DECL_SIZE (fld), 1);
11465 if (pos <= offset && (pos + size) > offset)
11466 break;
11467 }
11468 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
11469 return NULL_TREE;
11470
11471 if (!DECL_ARTIFICIAL (fld))
11472 {
11473 binfo = TYPE_BINFO (TREE_TYPE (fld));
11474 if (!binfo)
11475 return NULL_TREE;
11476 }
11477 /* Offset 0 indicates the primary base, whose vtable contents are
11478 represented in the binfo for the derived class. */
11479 else if (offset != 0)
11480 {
11481 tree base_binfo, found_binfo = NULL_TREE;
11482 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
11483 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
11484 {
11485 found_binfo = base_binfo;
11486 break;
11487 }
11488 if (!found_binfo)
11489 return NULL_TREE;
11490 binfo = found_binfo;
11491 }
11492
11493 type = TREE_TYPE (fld);
11494 offset -= pos;
11495 }
11496 }
11497
11498 /* Returns true if X is a typedef decl. */
11499
11500 bool
11501 is_typedef_decl (tree x)
11502 {
11503 return (x && TREE_CODE (x) == TYPE_DECL
11504 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
11505 }
11506
11507 /* Returns true iff TYPE is a type variant created for a typedef. */
11508
11509 bool
11510 typedef_variant_p (tree type)
11511 {
11512 return is_typedef_decl (TYPE_NAME (type));
11513 }
11514
11515 /* Warn about a use of an identifier which was marked deprecated. */
11516 void
11517 warn_deprecated_use (tree node, tree attr)
11518 {
11519 const char *msg;
11520
11521 if (node == 0 || !warn_deprecated_decl)
11522 return;
11523
11524 if (!attr)
11525 {
11526 if (DECL_P (node))
11527 attr = DECL_ATTRIBUTES (node);
11528 else if (TYPE_P (node))
11529 {
11530 tree decl = TYPE_STUB_DECL (node);
11531 if (decl)
11532 attr = lookup_attribute ("deprecated",
11533 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
11534 }
11535 }
11536
11537 if (attr)
11538 attr = lookup_attribute ("deprecated", attr);
11539
11540 if (attr)
11541 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
11542 else
11543 msg = NULL;
11544
11545 if (DECL_P (node))
11546 {
11547 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
11548 if (msg)
11549 warning (OPT_Wdeprecated_declarations,
11550 "%qD is deprecated (declared at %s:%d): %s",
11551 node, xloc.file, xloc.line, msg);
11552 else
11553 warning (OPT_Wdeprecated_declarations,
11554 "%qD is deprecated (declared at %s:%d)",
11555 node, xloc.file, xloc.line);
11556 }
11557 else if (TYPE_P (node))
11558 {
11559 tree what = NULL_TREE;
11560 tree decl = TYPE_STUB_DECL (node);
11561
11562 if (TYPE_NAME (node))
11563 {
11564 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
11565 what = TYPE_NAME (node);
11566 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
11567 && DECL_NAME (TYPE_NAME (node)))
11568 what = DECL_NAME (TYPE_NAME (node));
11569 }
11570
11571 if (decl)
11572 {
11573 expanded_location xloc
11574 = expand_location (DECL_SOURCE_LOCATION (decl));
11575 if (what)
11576 {
11577 if (msg)
11578 warning (OPT_Wdeprecated_declarations,
11579 "%qE is deprecated (declared at %s:%d): %s",
11580 what, xloc.file, xloc.line, msg);
11581 else
11582 warning (OPT_Wdeprecated_declarations,
11583 "%qE is deprecated (declared at %s:%d)", what,
11584 xloc.file, xloc.line);
11585 }
11586 else
11587 {
11588 if (msg)
11589 warning (OPT_Wdeprecated_declarations,
11590 "type is deprecated (declared at %s:%d): %s",
11591 xloc.file, xloc.line, msg);
11592 else
11593 warning (OPT_Wdeprecated_declarations,
11594 "type is deprecated (declared at %s:%d)",
11595 xloc.file, xloc.line);
11596 }
11597 }
11598 else
11599 {
11600 if (what)
11601 {
11602 if (msg)
11603 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
11604 what, msg);
11605 else
11606 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
11607 }
11608 else
11609 {
11610 if (msg)
11611 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
11612 msg);
11613 else
11614 warning (OPT_Wdeprecated_declarations, "type is deprecated");
11615 }
11616 }
11617 }
11618 }
11619
11620 #include "gt-tree.h"