cond.md (stzx_16): Use register_operand for operand 0.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent, but occasionally
28 calls language-dependent routines defined (for C) in typecheck.c. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "flags.h"
35 #include "tree.h"
36 #include "stor-layout.h"
37 #include "calls.h"
38 #include "attribs.h"
39 #include "varasm.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h" /* get_random_seed */
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "filenames.h"
47 #include "output.h"
48 #include "target.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "basic-block.h"
54 #include "bitmap.h"
55 #include "gimple.h"
56 #include "gimple-iterator.h"
57 #include "gimplify.h"
58 #include "gimple-ssa.h"
59 #include "cgraph.h"
60 #include "tree-phinodes.h"
61 #include "stringpool.h"
62 #include "tree-ssanames.h"
63 #include "expr.h"
64 #include "tree-dfa.h"
65 #include "params.h"
66 #include "pointer-set.h"
67 #include "tree-pass.h"
68 #include "langhooks-def.h"
69 #include "diagnostic.h"
70 #include "tree-diagnostic.h"
71 #include "tree-pretty-print.h"
72 #include "except.h"
73 #include "debug.h"
74 #include "intl.h"
75
76 /* Tree code classes. */
77
78 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
79 #define END_OF_BASE_TREE_CODES tcc_exceptional,
80
81 const enum tree_code_class tree_code_type[] = {
82 #include "all-tree.def"
83 };
84
85 #undef DEFTREECODE
86 #undef END_OF_BASE_TREE_CODES
87
88 /* Table indexed by tree code giving number of expression
89 operands beyond the fixed part of the node structure.
90 Not used for types or decls. */
91
92 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
93 #define END_OF_BASE_TREE_CODES 0,
94
95 const unsigned char tree_code_length[] = {
96 #include "all-tree.def"
97 };
98
99 #undef DEFTREECODE
100 #undef END_OF_BASE_TREE_CODES
101
102 /* Names of tree components.
103 Used for printing out the tree and error messages. */
104 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
105 #define END_OF_BASE_TREE_CODES "@dummy",
106
107 static const char *const tree_code_name[] = {
108 #include "all-tree.def"
109 };
110
111 #undef DEFTREECODE
112 #undef END_OF_BASE_TREE_CODES
113
114 /* Each tree code class has an associated string representation.
115 These must correspond to the tree_code_class entries. */
116
117 const char *const tree_code_class_strings[] =
118 {
119 "exceptional",
120 "constant",
121 "type",
122 "declaration",
123 "reference",
124 "comparison",
125 "unary",
126 "binary",
127 "statement",
128 "vl_exp",
129 "expression"
130 };
131
132 /* obstack.[ch] explicitly declined to prototype this. */
133 extern int _obstack_allocated_p (struct obstack *h, void *obj);
134
135 /* Statistics-gathering stuff. */
136
137 static int tree_code_counts[MAX_TREE_CODES];
138 int tree_node_counts[(int) all_kinds];
139 int tree_node_sizes[(int) all_kinds];
140
141 /* Keep in sync with tree.h:enum tree_node_kind. */
142 static const char * const tree_node_kind_names[] = {
143 "decls",
144 "types",
145 "blocks",
146 "stmts",
147 "refs",
148 "exprs",
149 "constants",
150 "identifiers",
151 "vecs",
152 "binfos",
153 "ssa names",
154 "constructors",
155 "random kinds",
156 "lang_decl kinds",
157 "lang_type kinds",
158 "omp clauses",
159 };
160
161 /* Unique id for next decl created. */
162 static GTY(()) int next_decl_uid;
163 /* Unique id for next type created. */
164 static GTY(()) int next_type_uid = 1;
165 /* Unique id for next debug decl created. Use negative numbers,
166 to catch erroneous uses. */
167 static GTY(()) int next_debug_decl_uid;
168
169 /* Since we cannot rehash a type after it is in the table, we have to
170 keep the hash code. */
171
172 struct GTY(()) type_hash {
173 unsigned long hash;
174 tree type;
175 };
176
177 /* Initial size of the hash table (rounded to next prime). */
178 #define TYPE_HASH_INITIAL_SIZE 1000
179
180 /* Now here is the hash table. When recording a type, it is added to
181 the slot whose index is the hash code. Note that the hash table is
182 used for several kinds of types (function types, array types and
183 array index range types, for now). While all these live in the
184 same table, they are completely independent, and the hash code is
185 computed differently for each of these. */
186
187 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
188 htab_t type_hash_table;
189
190 /* Hash table and temporary node for larger integer const values. */
191 static GTY (()) tree int_cst_node;
192 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
193 htab_t int_cst_hash_table;
194
195 /* Hash table for optimization flags and target option flags. Use the same
196 hash table for both sets of options. Nodes for building the current
197 optimization and target option nodes. The assumption is most of the time
198 the options created will already be in the hash table, so we avoid
199 allocating and freeing up a node repeatably. */
200 static GTY (()) tree cl_optimization_node;
201 static GTY (()) tree cl_target_option_node;
202 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
203 htab_t cl_option_hash_table;
204
205 /* General tree->tree mapping structure for use in hash tables. */
206
207
208 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
209 htab_t debug_expr_for_decl;
210
211 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
212 htab_t value_expr_for_decl;
213
214 static GTY ((if_marked ("tree_vec_map_marked_p"), param_is (struct tree_vec_map)))
215 htab_t debug_args_for_decl;
216
217 static GTY ((if_marked ("tree_priority_map_marked_p"),
218 param_is (struct tree_priority_map)))
219 htab_t init_priority_for_decl;
220
221 static void set_type_quals (tree, int);
222 static int type_hash_eq (const void *, const void *);
223 static hashval_t type_hash_hash (const void *);
224 static hashval_t int_cst_hash_hash (const void *);
225 static int int_cst_hash_eq (const void *, const void *);
226 static hashval_t cl_option_hash_hash (const void *);
227 static int cl_option_hash_eq (const void *, const void *);
228 static void print_type_hash_statistics (void);
229 static void print_debug_expr_statistics (void);
230 static void print_value_expr_statistics (void);
231 static int type_hash_marked_p (const void *);
232 static unsigned int type_hash_list (const_tree, hashval_t);
233 static unsigned int attribute_hash_list (const_tree, hashval_t);
234 static bool decls_same_for_odr (tree decl1, tree decl2);
235
236 tree global_trees[TI_MAX];
237 tree integer_types[itk_none];
238
239 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
240
241 /* Number of operands for each OpenMP clause. */
242 unsigned const char omp_clause_num_ops[] =
243 {
244 0, /* OMP_CLAUSE_ERROR */
245 1, /* OMP_CLAUSE_PRIVATE */
246 1, /* OMP_CLAUSE_SHARED */
247 1, /* OMP_CLAUSE_FIRSTPRIVATE */
248 2, /* OMP_CLAUSE_LASTPRIVATE */
249 4, /* OMP_CLAUSE_REDUCTION */
250 1, /* OMP_CLAUSE_COPYIN */
251 1, /* OMP_CLAUSE_COPYPRIVATE */
252 2, /* OMP_CLAUSE_LINEAR */
253 2, /* OMP_CLAUSE_ALIGNED */
254 1, /* OMP_CLAUSE_DEPEND */
255 1, /* OMP_CLAUSE_UNIFORM */
256 2, /* OMP_CLAUSE_FROM */
257 2, /* OMP_CLAUSE_TO */
258 2, /* OMP_CLAUSE_MAP */
259 1, /* OMP_CLAUSE__LOOPTEMP_ */
260 1, /* OMP_CLAUSE_IF */
261 1, /* OMP_CLAUSE_NUM_THREADS */
262 1, /* OMP_CLAUSE_SCHEDULE */
263 0, /* OMP_CLAUSE_NOWAIT */
264 0, /* OMP_CLAUSE_ORDERED */
265 0, /* OMP_CLAUSE_DEFAULT */
266 3, /* OMP_CLAUSE_COLLAPSE */
267 0, /* OMP_CLAUSE_UNTIED */
268 1, /* OMP_CLAUSE_FINAL */
269 0, /* OMP_CLAUSE_MERGEABLE */
270 1, /* OMP_CLAUSE_DEVICE */
271 1, /* OMP_CLAUSE_DIST_SCHEDULE */
272 0, /* OMP_CLAUSE_INBRANCH */
273 0, /* OMP_CLAUSE_NOTINBRANCH */
274 1, /* OMP_CLAUSE_NUM_TEAMS */
275 1, /* OMP_CLAUSE_THREAD_LIMIT */
276 0, /* OMP_CLAUSE_PROC_BIND */
277 1, /* OMP_CLAUSE_SAFELEN */
278 1, /* OMP_CLAUSE_SIMDLEN */
279 0, /* OMP_CLAUSE_FOR */
280 0, /* OMP_CLAUSE_PARALLEL */
281 0, /* OMP_CLAUSE_SECTIONS */
282 0, /* OMP_CLAUSE_TASKGROUP */
283 1, /* OMP_CLAUSE__SIMDUID_ */
284 };
285
286 const char * const omp_clause_code_name[] =
287 {
288 "error_clause",
289 "private",
290 "shared",
291 "firstprivate",
292 "lastprivate",
293 "reduction",
294 "copyin",
295 "copyprivate",
296 "linear",
297 "aligned",
298 "depend",
299 "uniform",
300 "from",
301 "to",
302 "map",
303 "_looptemp_",
304 "if",
305 "num_threads",
306 "schedule",
307 "nowait",
308 "ordered",
309 "default",
310 "collapse",
311 "untied",
312 "final",
313 "mergeable",
314 "device",
315 "dist_schedule",
316 "inbranch",
317 "notinbranch",
318 "num_teams",
319 "thread_limit",
320 "proc_bind",
321 "safelen",
322 "simdlen",
323 "for",
324 "parallel",
325 "sections",
326 "taskgroup",
327 "_simduid_"
328 };
329
330
331 /* Return the tree node structure used by tree code CODE. */
332
333 static inline enum tree_node_structure_enum
334 tree_node_structure_for_code (enum tree_code code)
335 {
336 switch (TREE_CODE_CLASS (code))
337 {
338 case tcc_declaration:
339 {
340 switch (code)
341 {
342 case FIELD_DECL:
343 return TS_FIELD_DECL;
344 case PARM_DECL:
345 return TS_PARM_DECL;
346 case VAR_DECL:
347 return TS_VAR_DECL;
348 case LABEL_DECL:
349 return TS_LABEL_DECL;
350 case RESULT_DECL:
351 return TS_RESULT_DECL;
352 case DEBUG_EXPR_DECL:
353 return TS_DECL_WRTL;
354 case CONST_DECL:
355 return TS_CONST_DECL;
356 case TYPE_DECL:
357 return TS_TYPE_DECL;
358 case FUNCTION_DECL:
359 return TS_FUNCTION_DECL;
360 case TRANSLATION_UNIT_DECL:
361 return TS_TRANSLATION_UNIT_DECL;
362 default:
363 return TS_DECL_NON_COMMON;
364 }
365 }
366 case tcc_type:
367 return TS_TYPE_NON_COMMON;
368 case tcc_reference:
369 case tcc_comparison:
370 case tcc_unary:
371 case tcc_binary:
372 case tcc_expression:
373 case tcc_statement:
374 case tcc_vl_exp:
375 return TS_EXP;
376 default: /* tcc_constant and tcc_exceptional */
377 break;
378 }
379 switch (code)
380 {
381 /* tcc_constant cases. */
382 case INTEGER_CST: return TS_INT_CST;
383 case REAL_CST: return TS_REAL_CST;
384 case FIXED_CST: return TS_FIXED_CST;
385 case COMPLEX_CST: return TS_COMPLEX;
386 case VECTOR_CST: return TS_VECTOR;
387 case STRING_CST: return TS_STRING;
388 /* tcc_exceptional cases. */
389 case ERROR_MARK: return TS_COMMON;
390 case IDENTIFIER_NODE: return TS_IDENTIFIER;
391 case TREE_LIST: return TS_LIST;
392 case TREE_VEC: return TS_VEC;
393 case SSA_NAME: return TS_SSA_NAME;
394 case PLACEHOLDER_EXPR: return TS_COMMON;
395 case STATEMENT_LIST: return TS_STATEMENT_LIST;
396 case BLOCK: return TS_BLOCK;
397 case CONSTRUCTOR: return TS_CONSTRUCTOR;
398 case TREE_BINFO: return TS_BINFO;
399 case OMP_CLAUSE: return TS_OMP_CLAUSE;
400 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
401 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
402
403 default:
404 gcc_unreachable ();
405 }
406 }
407
408
409 /* Initialize tree_contains_struct to describe the hierarchy of tree
410 nodes. */
411
412 static void
413 initialize_tree_contains_struct (void)
414 {
415 unsigned i;
416
417 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
418 {
419 enum tree_code code;
420 enum tree_node_structure_enum ts_code;
421
422 code = (enum tree_code) i;
423 ts_code = tree_node_structure_for_code (code);
424
425 /* Mark the TS structure itself. */
426 tree_contains_struct[code][ts_code] = 1;
427
428 /* Mark all the structures that TS is derived from. */
429 switch (ts_code)
430 {
431 case TS_TYPED:
432 case TS_BLOCK:
433 MARK_TS_BASE (code);
434 break;
435
436 case TS_COMMON:
437 case TS_INT_CST:
438 case TS_REAL_CST:
439 case TS_FIXED_CST:
440 case TS_VECTOR:
441 case TS_STRING:
442 case TS_COMPLEX:
443 case TS_SSA_NAME:
444 case TS_CONSTRUCTOR:
445 case TS_EXP:
446 case TS_STATEMENT_LIST:
447 MARK_TS_TYPED (code);
448 break;
449
450 case TS_IDENTIFIER:
451 case TS_DECL_MINIMAL:
452 case TS_TYPE_COMMON:
453 case TS_LIST:
454 case TS_VEC:
455 case TS_BINFO:
456 case TS_OMP_CLAUSE:
457 case TS_OPTIMIZATION:
458 case TS_TARGET_OPTION:
459 MARK_TS_COMMON (code);
460 break;
461
462 case TS_TYPE_WITH_LANG_SPECIFIC:
463 MARK_TS_TYPE_COMMON (code);
464 break;
465
466 case TS_TYPE_NON_COMMON:
467 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
468 break;
469
470 case TS_DECL_COMMON:
471 MARK_TS_DECL_MINIMAL (code);
472 break;
473
474 case TS_DECL_WRTL:
475 case TS_CONST_DECL:
476 MARK_TS_DECL_COMMON (code);
477 break;
478
479 case TS_DECL_NON_COMMON:
480 MARK_TS_DECL_WITH_VIS (code);
481 break;
482
483 case TS_DECL_WITH_VIS:
484 case TS_PARM_DECL:
485 case TS_LABEL_DECL:
486 case TS_RESULT_DECL:
487 MARK_TS_DECL_WRTL (code);
488 break;
489
490 case TS_FIELD_DECL:
491 MARK_TS_DECL_COMMON (code);
492 break;
493
494 case TS_VAR_DECL:
495 MARK_TS_DECL_WITH_VIS (code);
496 break;
497
498 case TS_TYPE_DECL:
499 case TS_FUNCTION_DECL:
500 MARK_TS_DECL_NON_COMMON (code);
501 break;
502
503 case TS_TRANSLATION_UNIT_DECL:
504 MARK_TS_DECL_COMMON (code);
505 break;
506
507 default:
508 gcc_unreachable ();
509 }
510 }
511
512 /* Basic consistency checks for attributes used in fold. */
513 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
514 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
515 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
516 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
517 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
518 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
519 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
520 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
521 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
522 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
523 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
524 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
525 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
526 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
527 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
528 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
529 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
530 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
531 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
532 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
533 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
534 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
535 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
536 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
537 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
538 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
539 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
540 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
541 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
542 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
543 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
544 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
545 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
546 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
547 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
548 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
549 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
550 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
551 }
552
553
554 /* Init tree.c. */
555
556 void
557 init_ttree (void)
558 {
559 /* Initialize the hash table of types. */
560 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
561 type_hash_eq, 0);
562
563 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
564 tree_decl_map_eq, 0);
565
566 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
567 tree_decl_map_eq, 0);
568 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
569 tree_priority_map_eq, 0);
570
571 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
572 int_cst_hash_eq, NULL);
573
574 int_cst_node = make_node (INTEGER_CST);
575
576 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
577 cl_option_hash_eq, NULL);
578
579 cl_optimization_node = make_node (OPTIMIZATION_NODE);
580 cl_target_option_node = make_node (TARGET_OPTION_NODE);
581
582 /* Initialize the tree_contains_struct array. */
583 initialize_tree_contains_struct ();
584 lang_hooks.init_ts ();
585 }
586
587 \f
588 /* The name of the object as the assembler will see it (but before any
589 translations made by ASM_OUTPUT_LABELREF). Often this is the same
590 as DECL_NAME. It is an IDENTIFIER_NODE. */
591 tree
592 decl_assembler_name (tree decl)
593 {
594 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
595 lang_hooks.set_decl_assembler_name (decl);
596 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
597 }
598
599 /* Compute the number of bytes occupied by a tree with code CODE.
600 This function cannot be used for nodes that have variable sizes,
601 including TREE_VEC, STRING_CST, and CALL_EXPR. */
602 size_t
603 tree_code_size (enum tree_code code)
604 {
605 switch (TREE_CODE_CLASS (code))
606 {
607 case tcc_declaration: /* A decl node */
608 {
609 switch (code)
610 {
611 case FIELD_DECL:
612 return sizeof (struct tree_field_decl);
613 case PARM_DECL:
614 return sizeof (struct tree_parm_decl);
615 case VAR_DECL:
616 return sizeof (struct tree_var_decl);
617 case LABEL_DECL:
618 return sizeof (struct tree_label_decl);
619 case RESULT_DECL:
620 return sizeof (struct tree_result_decl);
621 case CONST_DECL:
622 return sizeof (struct tree_const_decl);
623 case TYPE_DECL:
624 return sizeof (struct tree_type_decl);
625 case FUNCTION_DECL:
626 return sizeof (struct tree_function_decl);
627 case DEBUG_EXPR_DECL:
628 return sizeof (struct tree_decl_with_rtl);
629 default:
630 return sizeof (struct tree_decl_non_common);
631 }
632 }
633
634 case tcc_type: /* a type node */
635 return sizeof (struct tree_type_non_common);
636
637 case tcc_reference: /* a reference */
638 case tcc_expression: /* an expression */
639 case tcc_statement: /* an expression with side effects */
640 case tcc_comparison: /* a comparison expression */
641 case tcc_unary: /* a unary arithmetic expression */
642 case tcc_binary: /* a binary arithmetic expression */
643 return (sizeof (struct tree_exp)
644 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
645
646 case tcc_constant: /* a constant */
647 switch (code)
648 {
649 case INTEGER_CST: return sizeof (struct tree_int_cst);
650 case REAL_CST: return sizeof (struct tree_real_cst);
651 case FIXED_CST: return sizeof (struct tree_fixed_cst);
652 case COMPLEX_CST: return sizeof (struct tree_complex);
653 case VECTOR_CST: return sizeof (struct tree_vector);
654 case STRING_CST: gcc_unreachable ();
655 default:
656 return lang_hooks.tree_size (code);
657 }
658
659 case tcc_exceptional: /* something random, like an identifier. */
660 switch (code)
661 {
662 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
663 case TREE_LIST: return sizeof (struct tree_list);
664
665 case ERROR_MARK:
666 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
667
668 case TREE_VEC:
669 case OMP_CLAUSE: gcc_unreachable ();
670
671 case SSA_NAME: return sizeof (struct tree_ssa_name);
672
673 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
674 case BLOCK: return sizeof (struct tree_block);
675 case CONSTRUCTOR: return sizeof (struct tree_constructor);
676 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
677 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
678
679 default:
680 return lang_hooks.tree_size (code);
681 }
682
683 default:
684 gcc_unreachable ();
685 }
686 }
687
688 /* Compute the number of bytes occupied by NODE. This routine only
689 looks at TREE_CODE, except for those nodes that have variable sizes. */
690 size_t
691 tree_size (const_tree node)
692 {
693 const enum tree_code code = TREE_CODE (node);
694 switch (code)
695 {
696 case TREE_BINFO:
697 return (offsetof (struct tree_binfo, base_binfos)
698 + vec<tree, va_gc>
699 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
700
701 case TREE_VEC:
702 return (sizeof (struct tree_vec)
703 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
704
705 case VECTOR_CST:
706 return (sizeof (struct tree_vector)
707 + (TYPE_VECTOR_SUBPARTS (TREE_TYPE (node)) - 1) * sizeof (tree));
708
709 case STRING_CST:
710 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
711
712 case OMP_CLAUSE:
713 return (sizeof (struct tree_omp_clause)
714 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
715 * sizeof (tree));
716
717 default:
718 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
719 return (sizeof (struct tree_exp)
720 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
721 else
722 return tree_code_size (code);
723 }
724 }
725
726 /* Record interesting allocation statistics for a tree node with CODE
727 and LENGTH. */
728
729 static void
730 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
731 size_t length ATTRIBUTE_UNUSED)
732 {
733 enum tree_code_class type = TREE_CODE_CLASS (code);
734 tree_node_kind kind;
735
736 if (!GATHER_STATISTICS)
737 return;
738
739 switch (type)
740 {
741 case tcc_declaration: /* A decl node */
742 kind = d_kind;
743 break;
744
745 case tcc_type: /* a type node */
746 kind = t_kind;
747 break;
748
749 case tcc_statement: /* an expression with side effects */
750 kind = s_kind;
751 break;
752
753 case tcc_reference: /* a reference */
754 kind = r_kind;
755 break;
756
757 case tcc_expression: /* an expression */
758 case tcc_comparison: /* a comparison expression */
759 case tcc_unary: /* a unary arithmetic expression */
760 case tcc_binary: /* a binary arithmetic expression */
761 kind = e_kind;
762 break;
763
764 case tcc_constant: /* a constant */
765 kind = c_kind;
766 break;
767
768 case tcc_exceptional: /* something random, like an identifier. */
769 switch (code)
770 {
771 case IDENTIFIER_NODE:
772 kind = id_kind;
773 break;
774
775 case TREE_VEC:
776 kind = vec_kind;
777 break;
778
779 case TREE_BINFO:
780 kind = binfo_kind;
781 break;
782
783 case SSA_NAME:
784 kind = ssa_name_kind;
785 break;
786
787 case BLOCK:
788 kind = b_kind;
789 break;
790
791 case CONSTRUCTOR:
792 kind = constr_kind;
793 break;
794
795 case OMP_CLAUSE:
796 kind = omp_clause_kind;
797 break;
798
799 default:
800 kind = x_kind;
801 break;
802 }
803 break;
804
805 case tcc_vl_exp:
806 kind = e_kind;
807 break;
808
809 default:
810 gcc_unreachable ();
811 }
812
813 tree_code_counts[(int) code]++;
814 tree_node_counts[(int) kind]++;
815 tree_node_sizes[(int) kind] += length;
816 }
817
818 /* Allocate and return a new UID from the DECL_UID namespace. */
819
820 int
821 allocate_decl_uid (void)
822 {
823 return next_decl_uid++;
824 }
825
826 /* Return a newly allocated node of code CODE. For decl and type
827 nodes, some other fields are initialized. The rest of the node is
828 initialized to zero. This function cannot be used for TREE_VEC or
829 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
830
831 Achoo! I got a code in the node. */
832
833 tree
834 make_node_stat (enum tree_code code MEM_STAT_DECL)
835 {
836 tree t;
837 enum tree_code_class type = TREE_CODE_CLASS (code);
838 size_t length = tree_code_size (code);
839
840 record_node_allocation_statistics (code, length);
841
842 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
843 TREE_SET_CODE (t, code);
844
845 switch (type)
846 {
847 case tcc_statement:
848 TREE_SIDE_EFFECTS (t) = 1;
849 break;
850
851 case tcc_declaration:
852 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
853 {
854 if (code == FUNCTION_DECL)
855 {
856 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
857 DECL_MODE (t) = FUNCTION_MODE;
858 }
859 else
860 DECL_ALIGN (t) = 1;
861 }
862 DECL_SOURCE_LOCATION (t) = input_location;
863 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
864 DECL_UID (t) = --next_debug_decl_uid;
865 else
866 {
867 DECL_UID (t) = allocate_decl_uid ();
868 SET_DECL_PT_UID (t, -1);
869 }
870 if (TREE_CODE (t) == LABEL_DECL)
871 LABEL_DECL_UID (t) = -1;
872
873 break;
874
875 case tcc_type:
876 TYPE_UID (t) = next_type_uid++;
877 TYPE_ALIGN (t) = BITS_PER_UNIT;
878 TYPE_USER_ALIGN (t) = 0;
879 TYPE_MAIN_VARIANT (t) = t;
880 TYPE_CANONICAL (t) = t;
881
882 /* Default to no attributes for type, but let target change that. */
883 TYPE_ATTRIBUTES (t) = NULL_TREE;
884 targetm.set_default_type_attributes (t);
885
886 /* We have not yet computed the alias set for this type. */
887 TYPE_ALIAS_SET (t) = -1;
888 break;
889
890 case tcc_constant:
891 TREE_CONSTANT (t) = 1;
892 break;
893
894 case tcc_expression:
895 switch (code)
896 {
897 case INIT_EXPR:
898 case MODIFY_EXPR:
899 case VA_ARG_EXPR:
900 case PREDECREMENT_EXPR:
901 case PREINCREMENT_EXPR:
902 case POSTDECREMENT_EXPR:
903 case POSTINCREMENT_EXPR:
904 /* All of these have side-effects, no matter what their
905 operands are. */
906 TREE_SIDE_EFFECTS (t) = 1;
907 break;
908
909 default:
910 break;
911 }
912 break;
913
914 default:
915 /* Other classes need no special treatment. */
916 break;
917 }
918
919 return t;
920 }
921 \f
922 /* Return a new node with the same contents as NODE except that its
923 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
924
925 tree
926 copy_node_stat (tree node MEM_STAT_DECL)
927 {
928 tree t;
929 enum tree_code code = TREE_CODE (node);
930 size_t length;
931
932 gcc_assert (code != STATEMENT_LIST);
933
934 length = tree_size (node);
935 record_node_allocation_statistics (code, length);
936 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
937 memcpy (t, node, length);
938
939 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
940 TREE_CHAIN (t) = 0;
941 TREE_ASM_WRITTEN (t) = 0;
942 TREE_VISITED (t) = 0;
943
944 if (TREE_CODE_CLASS (code) == tcc_declaration)
945 {
946 if (code == DEBUG_EXPR_DECL)
947 DECL_UID (t) = --next_debug_decl_uid;
948 else
949 {
950 DECL_UID (t) = allocate_decl_uid ();
951 if (DECL_PT_UID_SET_P (node))
952 SET_DECL_PT_UID (t, DECL_PT_UID (node));
953 }
954 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
955 && DECL_HAS_VALUE_EXPR_P (node))
956 {
957 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
958 DECL_HAS_VALUE_EXPR_P (t) = 1;
959 }
960 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
961 if (TREE_CODE (node) == VAR_DECL)
962 DECL_HAS_DEBUG_EXPR_P (t) = 0;
963 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
964 {
965 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
966 DECL_HAS_INIT_PRIORITY_P (t) = 1;
967 }
968 if (TREE_CODE (node) == FUNCTION_DECL)
969 DECL_STRUCT_FUNCTION (t) = NULL;
970 }
971 else if (TREE_CODE_CLASS (code) == tcc_type)
972 {
973 TYPE_UID (t) = next_type_uid++;
974 /* The following is so that the debug code for
975 the copy is different from the original type.
976 The two statements usually duplicate each other
977 (because they clear fields of the same union),
978 but the optimizer should catch that. */
979 TYPE_SYMTAB_POINTER (t) = 0;
980 TYPE_SYMTAB_ADDRESS (t) = 0;
981
982 /* Do not copy the values cache. */
983 if (TYPE_CACHED_VALUES_P (t))
984 {
985 TYPE_CACHED_VALUES_P (t) = 0;
986 TYPE_CACHED_VALUES (t) = NULL_TREE;
987 }
988 }
989
990 return t;
991 }
992
993 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
994 For example, this can copy a list made of TREE_LIST nodes. */
995
996 tree
997 copy_list (tree list)
998 {
999 tree head;
1000 tree prev, next;
1001
1002 if (list == 0)
1003 return 0;
1004
1005 head = prev = copy_node (list);
1006 next = TREE_CHAIN (list);
1007 while (next)
1008 {
1009 TREE_CHAIN (prev) = copy_node (next);
1010 prev = TREE_CHAIN (prev);
1011 next = TREE_CHAIN (next);
1012 }
1013 return head;
1014 }
1015
1016 \f
1017 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1018
1019 tree
1020 build_int_cst (tree type, HOST_WIDE_INT low)
1021 {
1022 /* Support legacy code. */
1023 if (!type)
1024 type = integer_type_node;
1025
1026 return double_int_to_tree (type, double_int::from_shwi (low));
1027 }
1028
1029 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1030
1031 tree
1032 build_int_cst_type (tree type, HOST_WIDE_INT low)
1033 {
1034 gcc_assert (type);
1035
1036 return double_int_to_tree (type, double_int::from_shwi (low));
1037 }
1038
1039 /* Constructs tree in type TYPE from with value given by CST. Signedness
1040 of CST is assumed to be the same as the signedness of TYPE. */
1041
1042 tree
1043 double_int_to_tree (tree type, double_int cst)
1044 {
1045 bool sign_extended_type = !TYPE_UNSIGNED (type);
1046
1047 cst = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1048
1049 return build_int_cst_wide (type, cst.low, cst.high);
1050 }
1051
1052 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1053 to be the same as the signedness of TYPE. */
1054
1055 bool
1056 double_int_fits_to_tree_p (const_tree type, double_int cst)
1057 {
1058 bool sign_extended_type = !TYPE_UNSIGNED (type);
1059
1060 double_int ext
1061 = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1062
1063 return cst == ext;
1064 }
1065
1066 /* We force the double_int CST to the range of the type TYPE by sign or
1067 zero extending it. OVERFLOWABLE indicates if we are interested in
1068 overflow of the value, when >0 we are only interested in signed
1069 overflow, for <0 we are interested in any overflow. OVERFLOWED
1070 indicates whether overflow has already occurred. CONST_OVERFLOWED
1071 indicates whether constant overflow has already occurred. We force
1072 T's value to be within range of T's type (by setting to 0 or 1 all
1073 the bits outside the type's range). We set TREE_OVERFLOWED if,
1074 OVERFLOWED is nonzero,
1075 or OVERFLOWABLE is >0 and signed overflow occurs
1076 or OVERFLOWABLE is <0 and any overflow occurs
1077 We return a new tree node for the extended double_int. The node
1078 is shared if no overflow flags are set. */
1079
1080
1081 tree
1082 force_fit_type_double (tree type, double_int cst, int overflowable,
1083 bool overflowed)
1084 {
1085 bool sign_extended_type = !TYPE_UNSIGNED (type);
1086
1087 /* If we need to set overflow flags, return a new unshared node. */
1088 if (overflowed || !double_int_fits_to_tree_p (type, cst))
1089 {
1090 if (overflowed
1091 || overflowable < 0
1092 || (overflowable > 0 && sign_extended_type))
1093 {
1094 tree t = make_node (INTEGER_CST);
1095 TREE_INT_CST (t)
1096 = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1097 TREE_TYPE (t) = type;
1098 TREE_OVERFLOW (t) = 1;
1099 return t;
1100 }
1101 }
1102
1103 /* Else build a shared node. */
1104 return double_int_to_tree (type, cst);
1105 }
1106
1107 /* These are the hash table functions for the hash table of INTEGER_CST
1108 nodes of a sizetype. */
1109
1110 /* Return the hash code code X, an INTEGER_CST. */
1111
1112 static hashval_t
1113 int_cst_hash_hash (const void *x)
1114 {
1115 const_tree const t = (const_tree) x;
1116
1117 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1118 ^ htab_hash_pointer (TREE_TYPE (t)));
1119 }
1120
1121 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1122 is the same as that given by *Y, which is the same. */
1123
1124 static int
1125 int_cst_hash_eq (const void *x, const void *y)
1126 {
1127 const_tree const xt = (const_tree) x;
1128 const_tree const yt = (const_tree) y;
1129
1130 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1131 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1132 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1133 }
1134
1135 /* Create an INT_CST node of TYPE and value HI:LOW.
1136 The returned node is always shared. For small integers we use a
1137 per-type vector cache, for larger ones we use a single hash table. */
1138
1139 tree
1140 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1141 {
1142 tree t;
1143 int ix = -1;
1144 int limit = 0;
1145
1146 gcc_assert (type);
1147
1148 switch (TREE_CODE (type))
1149 {
1150 case NULLPTR_TYPE:
1151 gcc_assert (hi == 0 && low == 0);
1152 /* Fallthru. */
1153
1154 case POINTER_TYPE:
1155 case REFERENCE_TYPE:
1156 case POINTER_BOUNDS_TYPE:
1157 /* Cache NULL pointer and zero bounds. */
1158 if (!hi && !low)
1159 {
1160 limit = 1;
1161 ix = 0;
1162 }
1163 break;
1164
1165 case BOOLEAN_TYPE:
1166 /* Cache false or true. */
1167 limit = 2;
1168 if (!hi && low < 2)
1169 ix = low;
1170 break;
1171
1172 case INTEGER_TYPE:
1173 case OFFSET_TYPE:
1174 if (TYPE_UNSIGNED (type))
1175 {
1176 /* Cache 0..N */
1177 limit = INTEGER_SHARE_LIMIT;
1178 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1179 ix = low;
1180 }
1181 else
1182 {
1183 /* Cache -1..N */
1184 limit = INTEGER_SHARE_LIMIT + 1;
1185 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1186 ix = low + 1;
1187 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1188 ix = 0;
1189 }
1190 break;
1191
1192 case ENUMERAL_TYPE:
1193 break;
1194
1195 default:
1196 gcc_unreachable ();
1197 }
1198
1199 if (ix >= 0)
1200 {
1201 /* Look for it in the type's vector of small shared ints. */
1202 if (!TYPE_CACHED_VALUES_P (type))
1203 {
1204 TYPE_CACHED_VALUES_P (type) = 1;
1205 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1206 }
1207
1208 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1209 if (t)
1210 {
1211 /* Make sure no one is clobbering the shared constant. */
1212 gcc_assert (TREE_TYPE (t) == type);
1213 gcc_assert (TREE_INT_CST_LOW (t) == low);
1214 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1215 }
1216 else
1217 {
1218 /* Create a new shared int. */
1219 t = make_node (INTEGER_CST);
1220
1221 TREE_INT_CST_LOW (t) = low;
1222 TREE_INT_CST_HIGH (t) = hi;
1223 TREE_TYPE (t) = type;
1224
1225 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1226 }
1227 }
1228 else
1229 {
1230 /* Use the cache of larger shared ints. */
1231 void **slot;
1232
1233 TREE_INT_CST_LOW (int_cst_node) = low;
1234 TREE_INT_CST_HIGH (int_cst_node) = hi;
1235 TREE_TYPE (int_cst_node) = type;
1236
1237 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1238 t = (tree) *slot;
1239 if (!t)
1240 {
1241 /* Insert this one into the hash table. */
1242 t = int_cst_node;
1243 *slot = t;
1244 /* Make a new node for next time round. */
1245 int_cst_node = make_node (INTEGER_CST);
1246 }
1247 }
1248
1249 return t;
1250 }
1251
1252 void
1253 cache_integer_cst (tree t)
1254 {
1255 tree type = TREE_TYPE (t);
1256 HOST_WIDE_INT hi = TREE_INT_CST_HIGH (t);
1257 unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (t);
1258 int ix = -1;
1259 int limit = 0;
1260
1261 gcc_assert (!TREE_OVERFLOW (t));
1262
1263 switch (TREE_CODE (type))
1264 {
1265 case NULLPTR_TYPE:
1266 gcc_assert (hi == 0 && low == 0);
1267 /* Fallthru. */
1268
1269 case POINTER_TYPE:
1270 case REFERENCE_TYPE:
1271 /* Cache NULL pointer. */
1272 if (!hi && !low)
1273 {
1274 limit = 1;
1275 ix = 0;
1276 }
1277 break;
1278
1279 case BOOLEAN_TYPE:
1280 /* Cache false or true. */
1281 limit = 2;
1282 if (!hi && low < 2)
1283 ix = low;
1284 break;
1285
1286 case INTEGER_TYPE:
1287 case OFFSET_TYPE:
1288 if (TYPE_UNSIGNED (type))
1289 {
1290 /* Cache 0..N */
1291 limit = INTEGER_SHARE_LIMIT;
1292 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1293 ix = low;
1294 }
1295 else
1296 {
1297 /* Cache -1..N */
1298 limit = INTEGER_SHARE_LIMIT + 1;
1299 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1300 ix = low + 1;
1301 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1302 ix = 0;
1303 }
1304 break;
1305
1306 case ENUMERAL_TYPE:
1307 break;
1308
1309 default:
1310 gcc_unreachable ();
1311 }
1312
1313 if (ix >= 0)
1314 {
1315 /* Look for it in the type's vector of small shared ints. */
1316 if (!TYPE_CACHED_VALUES_P (type))
1317 {
1318 TYPE_CACHED_VALUES_P (type) = 1;
1319 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1320 }
1321
1322 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1323 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1324 }
1325 else
1326 {
1327 /* Use the cache of larger shared ints. */
1328 void **slot;
1329
1330 slot = htab_find_slot (int_cst_hash_table, t, INSERT);
1331 /* If there is already an entry for the number verify it's the
1332 same. */
1333 if (*slot)
1334 {
1335 gcc_assert (TREE_INT_CST_LOW ((tree)*slot) == low
1336 && TREE_INT_CST_HIGH ((tree)*slot) == hi);
1337 return;
1338 }
1339 /* Otherwise insert this one into the hash table. */
1340 *slot = t;
1341 }
1342 }
1343
1344
1345 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1346 and the rest are zeros. */
1347
1348 tree
1349 build_low_bits_mask (tree type, unsigned bits)
1350 {
1351 double_int mask;
1352
1353 gcc_assert (bits <= TYPE_PRECISION (type));
1354
1355 if (bits == TYPE_PRECISION (type)
1356 && !TYPE_UNSIGNED (type))
1357 /* Sign extended all-ones mask. */
1358 mask = double_int_minus_one;
1359 else
1360 mask = double_int::mask (bits);
1361
1362 return build_int_cst_wide (type, mask.low, mask.high);
1363 }
1364
1365 /* Checks that X is integer constant that can be expressed in (unsigned)
1366 HOST_WIDE_INT without loss of precision. */
1367
1368 bool
1369 cst_and_fits_in_hwi (const_tree x)
1370 {
1371 if (TREE_CODE (x) != INTEGER_CST)
1372 return false;
1373
1374 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1375 return false;
1376
1377 return (TREE_INT_CST_HIGH (x) == 0
1378 || TREE_INT_CST_HIGH (x) == -1);
1379 }
1380
1381 /* Build a newly constructed TREE_VEC node of length LEN. */
1382
1383 tree
1384 make_vector_stat (unsigned len MEM_STAT_DECL)
1385 {
1386 tree t;
1387 unsigned length = (len - 1) * sizeof (tree) + sizeof (struct tree_vector);
1388
1389 record_node_allocation_statistics (VECTOR_CST, length);
1390
1391 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1392
1393 TREE_SET_CODE (t, VECTOR_CST);
1394 TREE_CONSTANT (t) = 1;
1395
1396 return t;
1397 }
1398
1399 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1400 are in a list pointed to by VALS. */
1401
1402 tree
1403 build_vector_stat (tree type, tree *vals MEM_STAT_DECL)
1404 {
1405 int over = 0;
1406 unsigned cnt = 0;
1407 tree v = make_vector (TYPE_VECTOR_SUBPARTS (type));
1408 TREE_TYPE (v) = type;
1409
1410 /* Iterate through elements and check for overflow. */
1411 for (cnt = 0; cnt < TYPE_VECTOR_SUBPARTS (type); ++cnt)
1412 {
1413 tree value = vals[cnt];
1414
1415 VECTOR_CST_ELT (v, cnt) = value;
1416
1417 /* Don't crash if we get an address constant. */
1418 if (!CONSTANT_CLASS_P (value))
1419 continue;
1420
1421 over |= TREE_OVERFLOW (value);
1422 }
1423
1424 TREE_OVERFLOW (v) = over;
1425 return v;
1426 }
1427
1428 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1429 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1430
1431 tree
1432 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1433 {
1434 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
1435 unsigned HOST_WIDE_INT idx;
1436 tree value;
1437
1438 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1439 vec[idx] = value;
1440 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1441 vec[idx] = build_zero_cst (TREE_TYPE (type));
1442
1443 return build_vector (type, vec);
1444 }
1445
1446 /* Build a vector of type VECTYPE where all the elements are SCs. */
1447 tree
1448 build_vector_from_val (tree vectype, tree sc)
1449 {
1450 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1451
1452 if (sc == error_mark_node)
1453 return sc;
1454
1455 /* Verify that the vector type is suitable for SC. Note that there
1456 is some inconsistency in the type-system with respect to restrict
1457 qualifications of pointers. Vector types always have a main-variant
1458 element type and the qualification is applied to the vector-type.
1459 So TREE_TYPE (vector-type) does not return a properly qualified
1460 vector element-type. */
1461 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1462 TREE_TYPE (vectype)));
1463
1464 if (CONSTANT_CLASS_P (sc))
1465 {
1466 tree *v = XALLOCAVEC (tree, nunits);
1467 for (i = 0; i < nunits; ++i)
1468 v[i] = sc;
1469 return build_vector (vectype, v);
1470 }
1471 else
1472 {
1473 vec<constructor_elt, va_gc> *v;
1474 vec_alloc (v, nunits);
1475 for (i = 0; i < nunits; ++i)
1476 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1477 return build_constructor (vectype, v);
1478 }
1479 }
1480
1481 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1482 are in the vec pointed to by VALS. */
1483 tree
1484 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1485 {
1486 tree c = make_node (CONSTRUCTOR);
1487 unsigned int i;
1488 constructor_elt *elt;
1489 bool constant_p = true;
1490 bool side_effects_p = false;
1491
1492 TREE_TYPE (c) = type;
1493 CONSTRUCTOR_ELTS (c) = vals;
1494
1495 FOR_EACH_VEC_SAFE_ELT (vals, i, elt)
1496 {
1497 /* Mostly ctors will have elts that don't have side-effects, so
1498 the usual case is to scan all the elements. Hence a single
1499 loop for both const and side effects, rather than one loop
1500 each (with early outs). */
1501 if (!TREE_CONSTANT (elt->value))
1502 constant_p = false;
1503 if (TREE_SIDE_EFFECTS (elt->value))
1504 side_effects_p = true;
1505 }
1506
1507 TREE_SIDE_EFFECTS (c) = side_effects_p;
1508 TREE_CONSTANT (c) = constant_p;
1509
1510 return c;
1511 }
1512
1513 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1514 INDEX and VALUE. */
1515 tree
1516 build_constructor_single (tree type, tree index, tree value)
1517 {
1518 vec<constructor_elt, va_gc> *v;
1519 constructor_elt elt = {index, value};
1520
1521 vec_alloc (v, 1);
1522 v->quick_push (elt);
1523
1524 return build_constructor (type, v);
1525 }
1526
1527
1528 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1529 are in a list pointed to by VALS. */
1530 tree
1531 build_constructor_from_list (tree type, tree vals)
1532 {
1533 tree t;
1534 vec<constructor_elt, va_gc> *v = NULL;
1535
1536 if (vals)
1537 {
1538 vec_alloc (v, list_length (vals));
1539 for (t = vals; t; t = TREE_CHAIN (t))
1540 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1541 }
1542
1543 return build_constructor (type, v);
1544 }
1545
1546 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
1547 of elements, provided as index/value pairs. */
1548
1549 tree
1550 build_constructor_va (tree type, int nelts, ...)
1551 {
1552 vec<constructor_elt, va_gc> *v = NULL;
1553 va_list p;
1554
1555 va_start (p, nelts);
1556 vec_alloc (v, nelts);
1557 while (nelts--)
1558 {
1559 tree index = va_arg (p, tree);
1560 tree value = va_arg (p, tree);
1561 CONSTRUCTOR_APPEND_ELT (v, index, value);
1562 }
1563 va_end (p);
1564 return build_constructor (type, v);
1565 }
1566
1567 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1568
1569 tree
1570 build_fixed (tree type, FIXED_VALUE_TYPE f)
1571 {
1572 tree v;
1573 FIXED_VALUE_TYPE *fp;
1574
1575 v = make_node (FIXED_CST);
1576 fp = ggc_alloc_fixed_value ();
1577 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1578
1579 TREE_TYPE (v) = type;
1580 TREE_FIXED_CST_PTR (v) = fp;
1581 return v;
1582 }
1583
1584 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1585
1586 tree
1587 build_real (tree type, REAL_VALUE_TYPE d)
1588 {
1589 tree v;
1590 REAL_VALUE_TYPE *dp;
1591 int overflow = 0;
1592
1593 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1594 Consider doing it via real_convert now. */
1595
1596 v = make_node (REAL_CST);
1597 dp = ggc_alloc_real_value ();
1598 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1599
1600 TREE_TYPE (v) = type;
1601 TREE_REAL_CST_PTR (v) = dp;
1602 TREE_OVERFLOW (v) = overflow;
1603 return v;
1604 }
1605
1606 /* Return a new REAL_CST node whose type is TYPE
1607 and whose value is the integer value of the INTEGER_CST node I. */
1608
1609 REAL_VALUE_TYPE
1610 real_value_from_int_cst (const_tree type, const_tree i)
1611 {
1612 REAL_VALUE_TYPE d;
1613
1614 /* Clear all bits of the real value type so that we can later do
1615 bitwise comparisons to see if two values are the same. */
1616 memset (&d, 0, sizeof d);
1617
1618 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1619 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1620 TYPE_UNSIGNED (TREE_TYPE (i)));
1621 return d;
1622 }
1623
1624 /* Given a tree representing an integer constant I, return a tree
1625 representing the same value as a floating-point constant of type TYPE. */
1626
1627 tree
1628 build_real_from_int_cst (tree type, const_tree i)
1629 {
1630 tree v;
1631 int overflow = TREE_OVERFLOW (i);
1632
1633 v = build_real (type, real_value_from_int_cst (type, i));
1634
1635 TREE_OVERFLOW (v) |= overflow;
1636 return v;
1637 }
1638
1639 /* Return a newly constructed STRING_CST node whose value is
1640 the LEN characters at STR.
1641 Note that for a C string literal, LEN should include the trailing NUL.
1642 The TREE_TYPE is not initialized. */
1643
1644 tree
1645 build_string (int len, const char *str)
1646 {
1647 tree s;
1648 size_t length;
1649
1650 /* Do not waste bytes provided by padding of struct tree_string. */
1651 length = len + offsetof (struct tree_string, str) + 1;
1652
1653 record_node_allocation_statistics (STRING_CST, length);
1654
1655 s = ggc_alloc_tree_node (length);
1656
1657 memset (s, 0, sizeof (struct tree_typed));
1658 TREE_SET_CODE (s, STRING_CST);
1659 TREE_CONSTANT (s) = 1;
1660 TREE_STRING_LENGTH (s) = len;
1661 memcpy (s->string.str, str, len);
1662 s->string.str[len] = '\0';
1663
1664 return s;
1665 }
1666
1667 /* Return a newly constructed COMPLEX_CST node whose value is
1668 specified by the real and imaginary parts REAL and IMAG.
1669 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1670 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1671
1672 tree
1673 build_complex (tree type, tree real, tree imag)
1674 {
1675 tree t = make_node (COMPLEX_CST);
1676
1677 TREE_REALPART (t) = real;
1678 TREE_IMAGPART (t) = imag;
1679 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1680 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1681 return t;
1682 }
1683
1684 /* Return a constant of arithmetic type TYPE which is the
1685 multiplicative identity of the set TYPE. */
1686
1687 tree
1688 build_one_cst (tree type)
1689 {
1690 switch (TREE_CODE (type))
1691 {
1692 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1693 case POINTER_TYPE: case REFERENCE_TYPE:
1694 case OFFSET_TYPE:
1695 return build_int_cst (type, 1);
1696
1697 case REAL_TYPE:
1698 return build_real (type, dconst1);
1699
1700 case FIXED_POINT_TYPE:
1701 /* We can only generate 1 for accum types. */
1702 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1703 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
1704
1705 case VECTOR_TYPE:
1706 {
1707 tree scalar = build_one_cst (TREE_TYPE (type));
1708
1709 return build_vector_from_val (type, scalar);
1710 }
1711
1712 case COMPLEX_TYPE:
1713 return build_complex (type,
1714 build_one_cst (TREE_TYPE (type)),
1715 build_zero_cst (TREE_TYPE (type)));
1716
1717 default:
1718 gcc_unreachable ();
1719 }
1720 }
1721
1722 /* Return an integer of type TYPE containing all 1's in as much precision as
1723 it contains, or a complex or vector whose subparts are such integers. */
1724
1725 tree
1726 build_all_ones_cst (tree type)
1727 {
1728 if (TREE_CODE (type) == COMPLEX_TYPE)
1729 {
1730 tree scalar = build_all_ones_cst (TREE_TYPE (type));
1731 return build_complex (type, scalar, scalar);
1732 }
1733 else
1734 return build_minus_one_cst (type);
1735 }
1736
1737 /* Return a constant of arithmetic type TYPE which is the
1738 opposite of the multiplicative identity of the set TYPE. */
1739
1740 tree
1741 build_minus_one_cst (tree type)
1742 {
1743 switch (TREE_CODE (type))
1744 {
1745 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1746 case POINTER_TYPE: case REFERENCE_TYPE:
1747 case OFFSET_TYPE:
1748 return build_int_cst (type, -1);
1749
1750 case REAL_TYPE:
1751 return build_real (type, dconstm1);
1752
1753 case FIXED_POINT_TYPE:
1754 /* We can only generate 1 for accum types. */
1755 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1756 return build_fixed (type, fixed_from_double_int (double_int_minus_one,
1757 TYPE_MODE (type)));
1758
1759 case VECTOR_TYPE:
1760 {
1761 tree scalar = build_minus_one_cst (TREE_TYPE (type));
1762
1763 return build_vector_from_val (type, scalar);
1764 }
1765
1766 case COMPLEX_TYPE:
1767 return build_complex (type,
1768 build_minus_one_cst (TREE_TYPE (type)),
1769 build_zero_cst (TREE_TYPE (type)));
1770
1771 default:
1772 gcc_unreachable ();
1773 }
1774 }
1775
1776 /* Build 0 constant of type TYPE. This is used by constructor folding
1777 and thus the constant should be represented in memory by
1778 zero(es). */
1779
1780 tree
1781 build_zero_cst (tree type)
1782 {
1783 switch (TREE_CODE (type))
1784 {
1785 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1786 case POINTER_TYPE: case REFERENCE_TYPE:
1787 case OFFSET_TYPE: case NULLPTR_TYPE:
1788 return build_int_cst (type, 0);
1789
1790 case REAL_TYPE:
1791 return build_real (type, dconst0);
1792
1793 case FIXED_POINT_TYPE:
1794 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1795
1796 case VECTOR_TYPE:
1797 {
1798 tree scalar = build_zero_cst (TREE_TYPE (type));
1799
1800 return build_vector_from_val (type, scalar);
1801 }
1802
1803 case COMPLEX_TYPE:
1804 {
1805 tree zero = build_zero_cst (TREE_TYPE (type));
1806
1807 return build_complex (type, zero, zero);
1808 }
1809
1810 default:
1811 if (!AGGREGATE_TYPE_P (type))
1812 return fold_convert (type, integer_zero_node);
1813 return build_constructor (type, NULL);
1814 }
1815 }
1816
1817
1818 /* Build a BINFO with LEN language slots. */
1819
1820 tree
1821 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1822 {
1823 tree t;
1824 size_t length = (offsetof (struct tree_binfo, base_binfos)
1825 + vec<tree, va_gc>::embedded_size (base_binfos));
1826
1827 record_node_allocation_statistics (TREE_BINFO, length);
1828
1829 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1830
1831 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1832
1833 TREE_SET_CODE (t, TREE_BINFO);
1834
1835 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
1836
1837 return t;
1838 }
1839
1840 /* Create a CASE_LABEL_EXPR tree node and return it. */
1841
1842 tree
1843 build_case_label (tree low_value, tree high_value, tree label_decl)
1844 {
1845 tree t = make_node (CASE_LABEL_EXPR);
1846
1847 TREE_TYPE (t) = void_type_node;
1848 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
1849
1850 CASE_LOW (t) = low_value;
1851 CASE_HIGH (t) = high_value;
1852 CASE_LABEL (t) = label_decl;
1853 CASE_CHAIN (t) = NULL_TREE;
1854
1855 return t;
1856 }
1857
1858 /* Build a newly constructed TREE_VEC node of length LEN. */
1859
1860 tree
1861 make_tree_vec_stat (int len MEM_STAT_DECL)
1862 {
1863 tree t;
1864 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1865
1866 record_node_allocation_statistics (TREE_VEC, length);
1867
1868 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1869
1870 TREE_SET_CODE (t, TREE_VEC);
1871 TREE_VEC_LENGTH (t) = len;
1872
1873 return t;
1874 }
1875
1876 /* Grow a TREE_VEC node to new length LEN. */
1877
1878 tree
1879 grow_tree_vec_stat (tree v, int len MEM_STAT_DECL)
1880 {
1881 gcc_assert (TREE_CODE (v) == TREE_VEC);
1882
1883 int oldlen = TREE_VEC_LENGTH (v);
1884 gcc_assert (len > oldlen);
1885
1886 int oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
1887 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1888
1889 record_node_allocation_statistics (TREE_VEC, length - oldlength);
1890
1891 v = (tree) ggc_realloc_stat (v, length PASS_MEM_STAT);
1892
1893 TREE_VEC_LENGTH (v) = len;
1894
1895 return v;
1896 }
1897 \f
1898 /* Return 1 if EXPR is the integer constant zero or a complex constant
1899 of zero. */
1900
1901 int
1902 integer_zerop (const_tree expr)
1903 {
1904 STRIP_NOPS (expr);
1905
1906 switch (TREE_CODE (expr))
1907 {
1908 case INTEGER_CST:
1909 return (TREE_INT_CST_LOW (expr) == 0
1910 && TREE_INT_CST_HIGH (expr) == 0);
1911 case COMPLEX_CST:
1912 return (integer_zerop (TREE_REALPART (expr))
1913 && integer_zerop (TREE_IMAGPART (expr)));
1914 case VECTOR_CST:
1915 {
1916 unsigned i;
1917 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1918 if (!integer_zerop (VECTOR_CST_ELT (expr, i)))
1919 return false;
1920 return true;
1921 }
1922 default:
1923 return false;
1924 }
1925 }
1926
1927 /* Return 1 if EXPR is the integer constant one or the corresponding
1928 complex constant. */
1929
1930 int
1931 integer_onep (const_tree expr)
1932 {
1933 STRIP_NOPS (expr);
1934
1935 switch (TREE_CODE (expr))
1936 {
1937 case INTEGER_CST:
1938 return (TREE_INT_CST_LOW (expr) == 1
1939 && TREE_INT_CST_HIGH (expr) == 0);
1940 case COMPLEX_CST:
1941 return (integer_onep (TREE_REALPART (expr))
1942 && integer_zerop (TREE_IMAGPART (expr)));
1943 case VECTOR_CST:
1944 {
1945 unsigned i;
1946 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1947 if (!integer_onep (VECTOR_CST_ELT (expr, i)))
1948 return false;
1949 return true;
1950 }
1951 default:
1952 return false;
1953 }
1954 }
1955
1956 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1957 it contains, or a complex or vector whose subparts are such integers. */
1958
1959 int
1960 integer_all_onesp (const_tree expr)
1961 {
1962 int prec;
1963 int uns;
1964
1965 STRIP_NOPS (expr);
1966
1967 if (TREE_CODE (expr) == COMPLEX_CST
1968 && integer_all_onesp (TREE_REALPART (expr))
1969 && integer_all_onesp (TREE_IMAGPART (expr)))
1970 return 1;
1971
1972 else if (TREE_CODE (expr) == VECTOR_CST)
1973 {
1974 unsigned i;
1975 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1976 if (!integer_all_onesp (VECTOR_CST_ELT (expr, i)))
1977 return 0;
1978 return 1;
1979 }
1980
1981 else if (TREE_CODE (expr) != INTEGER_CST)
1982 return 0;
1983
1984 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1985 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1986 && TREE_INT_CST_HIGH (expr) == -1)
1987 return 1;
1988 if (!uns)
1989 return 0;
1990
1991 prec = TYPE_PRECISION (TREE_TYPE (expr));
1992 if (prec >= HOST_BITS_PER_WIDE_INT)
1993 {
1994 HOST_WIDE_INT high_value;
1995 int shift_amount;
1996
1997 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1998
1999 /* Can not handle precisions greater than twice the host int size. */
2000 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
2001 if (shift_amount == HOST_BITS_PER_WIDE_INT)
2002 /* Shifting by the host word size is undefined according to the ANSI
2003 standard, so we must handle this as a special case. */
2004 high_value = -1;
2005 else
2006 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
2007
2008 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
2009 && TREE_INT_CST_HIGH (expr) == high_value);
2010 }
2011 else
2012 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
2013 }
2014
2015 /* Return 1 if EXPR is the integer constant minus one. */
2016
2017 int
2018 integer_minus_onep (const_tree expr)
2019 {
2020 STRIP_NOPS (expr);
2021
2022 if (TREE_CODE (expr) == COMPLEX_CST)
2023 return (integer_all_onesp (TREE_REALPART (expr))
2024 && integer_zerop (TREE_IMAGPART (expr)));
2025 else
2026 return integer_all_onesp (expr);
2027 }
2028
2029 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2030 one bit on). */
2031
2032 int
2033 integer_pow2p (const_tree expr)
2034 {
2035 int prec;
2036 unsigned HOST_WIDE_INT high, low;
2037
2038 STRIP_NOPS (expr);
2039
2040 if (TREE_CODE (expr) == COMPLEX_CST
2041 && integer_pow2p (TREE_REALPART (expr))
2042 && integer_zerop (TREE_IMAGPART (expr)))
2043 return 1;
2044
2045 if (TREE_CODE (expr) != INTEGER_CST)
2046 return 0;
2047
2048 prec = TYPE_PRECISION (TREE_TYPE (expr));
2049 high = TREE_INT_CST_HIGH (expr);
2050 low = TREE_INT_CST_LOW (expr);
2051
2052 /* First clear all bits that are beyond the type's precision in case
2053 we've been sign extended. */
2054
2055 if (prec == HOST_BITS_PER_DOUBLE_INT)
2056 ;
2057 else if (prec > HOST_BITS_PER_WIDE_INT)
2058 high &= ~(HOST_WIDE_INT_M1U << (prec - HOST_BITS_PER_WIDE_INT));
2059 else
2060 {
2061 high = 0;
2062 if (prec < HOST_BITS_PER_WIDE_INT)
2063 low &= ~(HOST_WIDE_INT_M1U << prec);
2064 }
2065
2066 if (high == 0 && low == 0)
2067 return 0;
2068
2069 return ((high == 0 && (low & (low - 1)) == 0)
2070 || (low == 0 && (high & (high - 1)) == 0));
2071 }
2072
2073 /* Return 1 if EXPR is an integer constant other than zero or a
2074 complex constant other than zero. */
2075
2076 int
2077 integer_nonzerop (const_tree expr)
2078 {
2079 STRIP_NOPS (expr);
2080
2081 return ((TREE_CODE (expr) == INTEGER_CST
2082 && (TREE_INT_CST_LOW (expr) != 0
2083 || TREE_INT_CST_HIGH (expr) != 0))
2084 || (TREE_CODE (expr) == COMPLEX_CST
2085 && (integer_nonzerop (TREE_REALPART (expr))
2086 || integer_nonzerop (TREE_IMAGPART (expr)))));
2087 }
2088
2089 /* Return 1 if EXPR is the fixed-point constant zero. */
2090
2091 int
2092 fixed_zerop (const_tree expr)
2093 {
2094 return (TREE_CODE (expr) == FIXED_CST
2095 && TREE_FIXED_CST (expr).data.is_zero ());
2096 }
2097
2098 /* Return the power of two represented by a tree node known to be a
2099 power of two. */
2100
2101 int
2102 tree_log2 (const_tree expr)
2103 {
2104 int prec;
2105 HOST_WIDE_INT high, low;
2106
2107 STRIP_NOPS (expr);
2108
2109 if (TREE_CODE (expr) == COMPLEX_CST)
2110 return tree_log2 (TREE_REALPART (expr));
2111
2112 prec = TYPE_PRECISION (TREE_TYPE (expr));
2113 high = TREE_INT_CST_HIGH (expr);
2114 low = TREE_INT_CST_LOW (expr);
2115
2116 /* First clear all bits that are beyond the type's precision in case
2117 we've been sign extended. */
2118
2119 if (prec == HOST_BITS_PER_DOUBLE_INT)
2120 ;
2121 else if (prec > HOST_BITS_PER_WIDE_INT)
2122 high &= ~(HOST_WIDE_INT_M1U << (prec - HOST_BITS_PER_WIDE_INT));
2123 else
2124 {
2125 high = 0;
2126 if (prec < HOST_BITS_PER_WIDE_INT)
2127 low &= ~(HOST_WIDE_INT_M1U << prec);
2128 }
2129
2130 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
2131 : exact_log2 (low));
2132 }
2133
2134 /* Similar, but return the largest integer Y such that 2 ** Y is less
2135 than or equal to EXPR. */
2136
2137 int
2138 tree_floor_log2 (const_tree expr)
2139 {
2140 int prec;
2141 HOST_WIDE_INT high, low;
2142
2143 STRIP_NOPS (expr);
2144
2145 if (TREE_CODE (expr) == COMPLEX_CST)
2146 return tree_log2 (TREE_REALPART (expr));
2147
2148 prec = TYPE_PRECISION (TREE_TYPE (expr));
2149 high = TREE_INT_CST_HIGH (expr);
2150 low = TREE_INT_CST_LOW (expr);
2151
2152 /* First clear all bits that are beyond the type's precision in case
2153 we've been sign extended. Ignore if type's precision hasn't been set
2154 since what we are doing is setting it. */
2155
2156 if (prec == HOST_BITS_PER_DOUBLE_INT || prec == 0)
2157 ;
2158 else if (prec > HOST_BITS_PER_WIDE_INT)
2159 high &= ~(HOST_WIDE_INT_M1U << (prec - HOST_BITS_PER_WIDE_INT));
2160 else
2161 {
2162 high = 0;
2163 if (prec < HOST_BITS_PER_WIDE_INT)
2164 low &= ~(HOST_WIDE_INT_M1U << prec);
2165 }
2166
2167 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
2168 : floor_log2 (low));
2169 }
2170
2171 /* Return number of known trailing zero bits in EXPR, or, if the value of
2172 EXPR is known to be zero, the precision of it's type. */
2173
2174 unsigned int
2175 tree_ctz (const_tree expr)
2176 {
2177 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2178 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2179 return 0;
2180
2181 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2182 switch (TREE_CODE (expr))
2183 {
2184 case INTEGER_CST:
2185 ret1 = tree_to_double_int (expr).trailing_zeros ();
2186 return MIN (ret1, prec);
2187 case SSA_NAME:
2188 ret1 = get_nonzero_bits (expr).trailing_zeros ();
2189 return MIN (ret1, prec);
2190 case PLUS_EXPR:
2191 case MINUS_EXPR:
2192 case BIT_IOR_EXPR:
2193 case BIT_XOR_EXPR:
2194 case MIN_EXPR:
2195 case MAX_EXPR:
2196 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2197 if (ret1 == 0)
2198 return ret1;
2199 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2200 return MIN (ret1, ret2);
2201 case POINTER_PLUS_EXPR:
2202 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2203 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2204 /* Second operand is sizetype, which could be in theory
2205 wider than pointer's precision. Make sure we never
2206 return more than prec. */
2207 ret2 = MIN (ret2, prec);
2208 return MIN (ret1, ret2);
2209 case BIT_AND_EXPR:
2210 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2211 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2212 return MAX (ret1, ret2);
2213 case MULT_EXPR:
2214 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2215 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2216 return MIN (ret1 + ret2, prec);
2217 case LSHIFT_EXPR:
2218 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2219 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2220 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2221 {
2222 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2223 return MIN (ret1 + ret2, prec);
2224 }
2225 return ret1;
2226 case RSHIFT_EXPR:
2227 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2228 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2229 {
2230 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2231 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2232 if (ret1 > ret2)
2233 return ret1 - ret2;
2234 }
2235 return 0;
2236 case TRUNC_DIV_EXPR:
2237 case CEIL_DIV_EXPR:
2238 case FLOOR_DIV_EXPR:
2239 case ROUND_DIV_EXPR:
2240 case EXACT_DIV_EXPR:
2241 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2242 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2243 {
2244 int l = tree_log2 (TREE_OPERAND (expr, 1));
2245 if (l >= 0)
2246 {
2247 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2248 ret2 = l;
2249 if (ret1 > ret2)
2250 return ret1 - ret2;
2251 }
2252 }
2253 return 0;
2254 CASE_CONVERT:
2255 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2256 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2257 ret1 = prec;
2258 return MIN (ret1, prec);
2259 case SAVE_EXPR:
2260 return tree_ctz (TREE_OPERAND (expr, 0));
2261 case COND_EXPR:
2262 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2263 if (ret1 == 0)
2264 return 0;
2265 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2266 return MIN (ret1, ret2);
2267 case COMPOUND_EXPR:
2268 return tree_ctz (TREE_OPERAND (expr, 1));
2269 case ADDR_EXPR:
2270 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2271 if (ret1 > BITS_PER_UNIT)
2272 {
2273 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2274 return MIN (ret1, prec);
2275 }
2276 return 0;
2277 default:
2278 return 0;
2279 }
2280 }
2281
2282 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2283 decimal float constants, so don't return 1 for them. */
2284
2285 int
2286 real_zerop (const_tree expr)
2287 {
2288 STRIP_NOPS (expr);
2289
2290 switch (TREE_CODE (expr))
2291 {
2292 case REAL_CST:
2293 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
2294 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2295 case COMPLEX_CST:
2296 return real_zerop (TREE_REALPART (expr))
2297 && real_zerop (TREE_IMAGPART (expr));
2298 case VECTOR_CST:
2299 {
2300 unsigned i;
2301 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2302 if (!real_zerop (VECTOR_CST_ELT (expr, i)))
2303 return false;
2304 return true;
2305 }
2306 default:
2307 return false;
2308 }
2309 }
2310
2311 /* Return 1 if EXPR is the real constant one in real or complex form.
2312 Trailing zeroes matter for decimal float constants, so don't return
2313 1 for them. */
2314
2315 int
2316 real_onep (const_tree expr)
2317 {
2318 STRIP_NOPS (expr);
2319
2320 switch (TREE_CODE (expr))
2321 {
2322 case REAL_CST:
2323 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
2324 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2325 case COMPLEX_CST:
2326 return real_onep (TREE_REALPART (expr))
2327 && real_zerop (TREE_IMAGPART (expr));
2328 case VECTOR_CST:
2329 {
2330 unsigned i;
2331 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2332 if (!real_onep (VECTOR_CST_ELT (expr, i)))
2333 return false;
2334 return true;
2335 }
2336 default:
2337 return false;
2338 }
2339 }
2340
2341 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2342 matter for decimal float constants, so don't return 1 for them. */
2343
2344 int
2345 real_minus_onep (const_tree expr)
2346 {
2347 STRIP_NOPS (expr);
2348
2349 switch (TREE_CODE (expr))
2350 {
2351 case REAL_CST:
2352 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
2353 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2354 case COMPLEX_CST:
2355 return real_minus_onep (TREE_REALPART (expr))
2356 && real_zerop (TREE_IMAGPART (expr));
2357 case VECTOR_CST:
2358 {
2359 unsigned i;
2360 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2361 if (!real_minus_onep (VECTOR_CST_ELT (expr, i)))
2362 return false;
2363 return true;
2364 }
2365 default:
2366 return false;
2367 }
2368 }
2369
2370 /* Nonzero if EXP is a constant or a cast of a constant. */
2371
2372 int
2373 really_constant_p (const_tree exp)
2374 {
2375 /* This is not quite the same as STRIP_NOPS. It does more. */
2376 while (CONVERT_EXPR_P (exp)
2377 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2378 exp = TREE_OPERAND (exp, 0);
2379 return TREE_CONSTANT (exp);
2380 }
2381 \f
2382 /* Return first list element whose TREE_VALUE is ELEM.
2383 Return 0 if ELEM is not in LIST. */
2384
2385 tree
2386 value_member (tree elem, tree list)
2387 {
2388 while (list)
2389 {
2390 if (elem == TREE_VALUE (list))
2391 return list;
2392 list = TREE_CHAIN (list);
2393 }
2394 return NULL_TREE;
2395 }
2396
2397 /* Return first list element whose TREE_PURPOSE is ELEM.
2398 Return 0 if ELEM is not in LIST. */
2399
2400 tree
2401 purpose_member (const_tree elem, tree list)
2402 {
2403 while (list)
2404 {
2405 if (elem == TREE_PURPOSE (list))
2406 return list;
2407 list = TREE_CHAIN (list);
2408 }
2409 return NULL_TREE;
2410 }
2411
2412 /* Return true if ELEM is in V. */
2413
2414 bool
2415 vec_member (const_tree elem, vec<tree, va_gc> *v)
2416 {
2417 unsigned ix;
2418 tree t;
2419 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2420 if (elem == t)
2421 return true;
2422 return false;
2423 }
2424
2425 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2426 NULL_TREE. */
2427
2428 tree
2429 chain_index (int idx, tree chain)
2430 {
2431 for (; chain && idx > 0; --idx)
2432 chain = TREE_CHAIN (chain);
2433 return chain;
2434 }
2435
2436 /* Return nonzero if ELEM is part of the chain CHAIN. */
2437
2438 int
2439 chain_member (const_tree elem, const_tree chain)
2440 {
2441 while (chain)
2442 {
2443 if (elem == chain)
2444 return 1;
2445 chain = DECL_CHAIN (chain);
2446 }
2447
2448 return 0;
2449 }
2450
2451 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2452 We expect a null pointer to mark the end of the chain.
2453 This is the Lisp primitive `length'. */
2454
2455 int
2456 list_length (const_tree t)
2457 {
2458 const_tree p = t;
2459 #ifdef ENABLE_TREE_CHECKING
2460 const_tree q = t;
2461 #endif
2462 int len = 0;
2463
2464 while (p)
2465 {
2466 p = TREE_CHAIN (p);
2467 #ifdef ENABLE_TREE_CHECKING
2468 if (len % 2)
2469 q = TREE_CHAIN (q);
2470 gcc_assert (p != q);
2471 #endif
2472 len++;
2473 }
2474
2475 return len;
2476 }
2477
2478 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2479 UNION_TYPE TYPE, or NULL_TREE if none. */
2480
2481 tree
2482 first_field (const_tree type)
2483 {
2484 tree t = TYPE_FIELDS (type);
2485 while (t && TREE_CODE (t) != FIELD_DECL)
2486 t = TREE_CHAIN (t);
2487 return t;
2488 }
2489
2490 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2491 by modifying the last node in chain 1 to point to chain 2.
2492 This is the Lisp primitive `nconc'. */
2493
2494 tree
2495 chainon (tree op1, tree op2)
2496 {
2497 tree t1;
2498
2499 if (!op1)
2500 return op2;
2501 if (!op2)
2502 return op1;
2503
2504 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2505 continue;
2506 TREE_CHAIN (t1) = op2;
2507
2508 #ifdef ENABLE_TREE_CHECKING
2509 {
2510 tree t2;
2511 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2512 gcc_assert (t2 != t1);
2513 }
2514 #endif
2515
2516 return op1;
2517 }
2518
2519 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2520
2521 tree
2522 tree_last (tree chain)
2523 {
2524 tree next;
2525 if (chain)
2526 while ((next = TREE_CHAIN (chain)))
2527 chain = next;
2528 return chain;
2529 }
2530
2531 /* Reverse the order of elements in the chain T,
2532 and return the new head of the chain (old last element). */
2533
2534 tree
2535 nreverse (tree t)
2536 {
2537 tree prev = 0, decl, next;
2538 for (decl = t; decl; decl = next)
2539 {
2540 /* We shouldn't be using this function to reverse BLOCK chains; we
2541 have blocks_nreverse for that. */
2542 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2543 next = TREE_CHAIN (decl);
2544 TREE_CHAIN (decl) = prev;
2545 prev = decl;
2546 }
2547 return prev;
2548 }
2549 \f
2550 /* Return a newly created TREE_LIST node whose
2551 purpose and value fields are PARM and VALUE. */
2552
2553 tree
2554 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2555 {
2556 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2557 TREE_PURPOSE (t) = parm;
2558 TREE_VALUE (t) = value;
2559 return t;
2560 }
2561
2562 /* Build a chain of TREE_LIST nodes from a vector. */
2563
2564 tree
2565 build_tree_list_vec_stat (const vec<tree, va_gc> *vec MEM_STAT_DECL)
2566 {
2567 tree ret = NULL_TREE;
2568 tree *pp = &ret;
2569 unsigned int i;
2570 tree t;
2571 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
2572 {
2573 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2574 pp = &TREE_CHAIN (*pp);
2575 }
2576 return ret;
2577 }
2578
2579 /* Return a newly created TREE_LIST node whose
2580 purpose and value fields are PURPOSE and VALUE
2581 and whose TREE_CHAIN is CHAIN. */
2582
2583 tree
2584 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2585 {
2586 tree node;
2587
2588 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
2589 memset (node, 0, sizeof (struct tree_common));
2590
2591 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2592
2593 TREE_SET_CODE (node, TREE_LIST);
2594 TREE_CHAIN (node) = chain;
2595 TREE_PURPOSE (node) = purpose;
2596 TREE_VALUE (node) = value;
2597 return node;
2598 }
2599
2600 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2601 trees. */
2602
2603 vec<tree, va_gc> *
2604 ctor_to_vec (tree ctor)
2605 {
2606 vec<tree, va_gc> *vec;
2607 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
2608 unsigned int ix;
2609 tree val;
2610
2611 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2612 vec->quick_push (val);
2613
2614 return vec;
2615 }
2616 \f
2617 /* Return the size nominally occupied by an object of type TYPE
2618 when it resides in memory. The value is measured in units of bytes,
2619 and its data type is that normally used for type sizes
2620 (which is the first type created by make_signed_type or
2621 make_unsigned_type). */
2622
2623 tree
2624 size_in_bytes (const_tree type)
2625 {
2626 tree t;
2627
2628 if (type == error_mark_node)
2629 return integer_zero_node;
2630
2631 type = TYPE_MAIN_VARIANT (type);
2632 t = TYPE_SIZE_UNIT (type);
2633
2634 if (t == 0)
2635 {
2636 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2637 return size_zero_node;
2638 }
2639
2640 return t;
2641 }
2642
2643 /* Return the size of TYPE (in bytes) as a wide integer
2644 or return -1 if the size can vary or is larger than an integer. */
2645
2646 HOST_WIDE_INT
2647 int_size_in_bytes (const_tree type)
2648 {
2649 tree t;
2650
2651 if (type == error_mark_node)
2652 return 0;
2653
2654 type = TYPE_MAIN_VARIANT (type);
2655 t = TYPE_SIZE_UNIT (type);
2656 if (t == 0
2657 || TREE_CODE (t) != INTEGER_CST
2658 || TREE_INT_CST_HIGH (t) != 0
2659 /* If the result would appear negative, it's too big to represent. */
2660 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2661 return -1;
2662
2663 return TREE_INT_CST_LOW (t);
2664 }
2665
2666 /* Return the maximum size of TYPE (in bytes) as a wide integer
2667 or return -1 if the size can vary or is larger than an integer. */
2668
2669 HOST_WIDE_INT
2670 max_int_size_in_bytes (const_tree type)
2671 {
2672 HOST_WIDE_INT size = -1;
2673 tree size_tree;
2674
2675 /* If this is an array type, check for a possible MAX_SIZE attached. */
2676
2677 if (TREE_CODE (type) == ARRAY_TYPE)
2678 {
2679 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2680
2681 if (size_tree && tree_fits_uhwi_p (size_tree))
2682 size = tree_to_uhwi (size_tree);
2683 }
2684
2685 /* If we still haven't been able to get a size, see if the language
2686 can compute a maximum size. */
2687
2688 if (size == -1)
2689 {
2690 size_tree = lang_hooks.types.max_size (type);
2691
2692 if (size_tree && tree_fits_uhwi_p (size_tree))
2693 size = tree_to_uhwi (size_tree);
2694 }
2695
2696 return size;
2697 }
2698 \f
2699 /* Return the bit position of FIELD, in bits from the start of the record.
2700 This is a tree of type bitsizetype. */
2701
2702 tree
2703 bit_position (const_tree field)
2704 {
2705 return bit_from_pos (DECL_FIELD_OFFSET (field),
2706 DECL_FIELD_BIT_OFFSET (field));
2707 }
2708
2709 /* Likewise, but return as an integer. It must be representable in
2710 that way (since it could be a signed value, we don't have the
2711 option of returning -1 like int_size_in_byte can. */
2712
2713 HOST_WIDE_INT
2714 int_bit_position (const_tree field)
2715 {
2716 return tree_to_shwi (bit_position (field));
2717 }
2718 \f
2719 /* Return the byte position of FIELD, in bytes from the start of the record.
2720 This is a tree of type sizetype. */
2721
2722 tree
2723 byte_position (const_tree field)
2724 {
2725 return byte_from_pos (DECL_FIELD_OFFSET (field),
2726 DECL_FIELD_BIT_OFFSET (field));
2727 }
2728
2729 /* Likewise, but return as an integer. It must be representable in
2730 that way (since it could be a signed value, we don't have the
2731 option of returning -1 like int_size_in_byte can. */
2732
2733 HOST_WIDE_INT
2734 int_byte_position (const_tree field)
2735 {
2736 return tree_to_shwi (byte_position (field));
2737 }
2738 \f
2739 /* Return the strictest alignment, in bits, that T is known to have. */
2740
2741 unsigned int
2742 expr_align (const_tree t)
2743 {
2744 unsigned int align0, align1;
2745
2746 switch (TREE_CODE (t))
2747 {
2748 CASE_CONVERT: case NON_LVALUE_EXPR:
2749 /* If we have conversions, we know that the alignment of the
2750 object must meet each of the alignments of the types. */
2751 align0 = expr_align (TREE_OPERAND (t, 0));
2752 align1 = TYPE_ALIGN (TREE_TYPE (t));
2753 return MAX (align0, align1);
2754
2755 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2756 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2757 case CLEANUP_POINT_EXPR:
2758 /* These don't change the alignment of an object. */
2759 return expr_align (TREE_OPERAND (t, 0));
2760
2761 case COND_EXPR:
2762 /* The best we can do is say that the alignment is the least aligned
2763 of the two arms. */
2764 align0 = expr_align (TREE_OPERAND (t, 1));
2765 align1 = expr_align (TREE_OPERAND (t, 2));
2766 return MIN (align0, align1);
2767
2768 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2769 meaningfully, it's always 1. */
2770 case LABEL_DECL: case CONST_DECL:
2771 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2772 case FUNCTION_DECL:
2773 gcc_assert (DECL_ALIGN (t) != 0);
2774 return DECL_ALIGN (t);
2775
2776 default:
2777 break;
2778 }
2779
2780 /* Otherwise take the alignment from that of the type. */
2781 return TYPE_ALIGN (TREE_TYPE (t));
2782 }
2783 \f
2784 /* Return, as a tree node, the number of elements for TYPE (which is an
2785 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2786
2787 tree
2788 array_type_nelts (const_tree type)
2789 {
2790 tree index_type, min, max;
2791
2792 /* If they did it with unspecified bounds, then we should have already
2793 given an error about it before we got here. */
2794 if (! TYPE_DOMAIN (type))
2795 return error_mark_node;
2796
2797 index_type = TYPE_DOMAIN (type);
2798 min = TYPE_MIN_VALUE (index_type);
2799 max = TYPE_MAX_VALUE (index_type);
2800
2801 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
2802 if (!max)
2803 return error_mark_node;
2804
2805 return (integer_zerop (min)
2806 ? max
2807 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2808 }
2809 \f
2810 /* If arg is static -- a reference to an object in static storage -- then
2811 return the object. This is not the same as the C meaning of `static'.
2812 If arg isn't static, return NULL. */
2813
2814 tree
2815 staticp (tree arg)
2816 {
2817 switch (TREE_CODE (arg))
2818 {
2819 case FUNCTION_DECL:
2820 /* Nested functions are static, even though taking their address will
2821 involve a trampoline as we unnest the nested function and create
2822 the trampoline on the tree level. */
2823 return arg;
2824
2825 case VAR_DECL:
2826 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2827 && ! DECL_THREAD_LOCAL_P (arg)
2828 && ! DECL_DLLIMPORT_P (arg)
2829 ? arg : NULL);
2830
2831 case CONST_DECL:
2832 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2833 ? arg : NULL);
2834
2835 case CONSTRUCTOR:
2836 return TREE_STATIC (arg) ? arg : NULL;
2837
2838 case LABEL_DECL:
2839 case STRING_CST:
2840 return arg;
2841
2842 case COMPONENT_REF:
2843 /* If the thing being referenced is not a field, then it is
2844 something language specific. */
2845 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2846
2847 /* If we are referencing a bitfield, we can't evaluate an
2848 ADDR_EXPR at compile time and so it isn't a constant. */
2849 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2850 return NULL;
2851
2852 return staticp (TREE_OPERAND (arg, 0));
2853
2854 case BIT_FIELD_REF:
2855 return NULL;
2856
2857 case INDIRECT_REF:
2858 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2859
2860 case ARRAY_REF:
2861 case ARRAY_RANGE_REF:
2862 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2863 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2864 return staticp (TREE_OPERAND (arg, 0));
2865 else
2866 return NULL;
2867
2868 case COMPOUND_LITERAL_EXPR:
2869 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2870
2871 default:
2872 return NULL;
2873 }
2874 }
2875
2876 \f
2877
2878
2879 /* Return whether OP is a DECL whose address is function-invariant. */
2880
2881 bool
2882 decl_address_invariant_p (const_tree op)
2883 {
2884 /* The conditions below are slightly less strict than the one in
2885 staticp. */
2886
2887 switch (TREE_CODE (op))
2888 {
2889 case PARM_DECL:
2890 case RESULT_DECL:
2891 case LABEL_DECL:
2892 case FUNCTION_DECL:
2893 return true;
2894
2895 case VAR_DECL:
2896 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2897 || DECL_THREAD_LOCAL_P (op)
2898 || DECL_CONTEXT (op) == current_function_decl
2899 || decl_function_context (op) == current_function_decl)
2900 return true;
2901 break;
2902
2903 case CONST_DECL:
2904 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2905 || decl_function_context (op) == current_function_decl)
2906 return true;
2907 break;
2908
2909 default:
2910 break;
2911 }
2912
2913 return false;
2914 }
2915
2916 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2917
2918 bool
2919 decl_address_ip_invariant_p (const_tree op)
2920 {
2921 /* The conditions below are slightly less strict than the one in
2922 staticp. */
2923
2924 switch (TREE_CODE (op))
2925 {
2926 case LABEL_DECL:
2927 case FUNCTION_DECL:
2928 case STRING_CST:
2929 return true;
2930
2931 case VAR_DECL:
2932 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2933 && !DECL_DLLIMPORT_P (op))
2934 || DECL_THREAD_LOCAL_P (op))
2935 return true;
2936 break;
2937
2938 case CONST_DECL:
2939 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2940 return true;
2941 break;
2942
2943 default:
2944 break;
2945 }
2946
2947 return false;
2948 }
2949
2950
2951 /* Return true if T is function-invariant (internal function, does
2952 not handle arithmetic; that's handled in skip_simple_arithmetic and
2953 tree_invariant_p). */
2954
2955 static bool tree_invariant_p (tree t);
2956
2957 static bool
2958 tree_invariant_p_1 (tree t)
2959 {
2960 tree op;
2961
2962 if (TREE_CONSTANT (t)
2963 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2964 return true;
2965
2966 switch (TREE_CODE (t))
2967 {
2968 case SAVE_EXPR:
2969 return true;
2970
2971 case ADDR_EXPR:
2972 op = TREE_OPERAND (t, 0);
2973 while (handled_component_p (op))
2974 {
2975 switch (TREE_CODE (op))
2976 {
2977 case ARRAY_REF:
2978 case ARRAY_RANGE_REF:
2979 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2980 || TREE_OPERAND (op, 2) != NULL_TREE
2981 || TREE_OPERAND (op, 3) != NULL_TREE)
2982 return false;
2983 break;
2984
2985 case COMPONENT_REF:
2986 if (TREE_OPERAND (op, 2) != NULL_TREE)
2987 return false;
2988 break;
2989
2990 default:;
2991 }
2992 op = TREE_OPERAND (op, 0);
2993 }
2994
2995 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2996
2997 default:
2998 break;
2999 }
3000
3001 return false;
3002 }
3003
3004 /* Return true if T is function-invariant. */
3005
3006 static bool
3007 tree_invariant_p (tree t)
3008 {
3009 tree inner = skip_simple_arithmetic (t);
3010 return tree_invariant_p_1 (inner);
3011 }
3012
3013 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3014 Do this to any expression which may be used in more than one place,
3015 but must be evaluated only once.
3016
3017 Normally, expand_expr would reevaluate the expression each time.
3018 Calling save_expr produces something that is evaluated and recorded
3019 the first time expand_expr is called on it. Subsequent calls to
3020 expand_expr just reuse the recorded value.
3021
3022 The call to expand_expr that generates code that actually computes
3023 the value is the first call *at compile time*. Subsequent calls
3024 *at compile time* generate code to use the saved value.
3025 This produces correct result provided that *at run time* control
3026 always flows through the insns made by the first expand_expr
3027 before reaching the other places where the save_expr was evaluated.
3028 You, the caller of save_expr, must make sure this is so.
3029
3030 Constants, and certain read-only nodes, are returned with no
3031 SAVE_EXPR because that is safe. Expressions containing placeholders
3032 are not touched; see tree.def for an explanation of what these
3033 are used for. */
3034
3035 tree
3036 save_expr (tree expr)
3037 {
3038 tree t = fold (expr);
3039 tree inner;
3040
3041 /* If the tree evaluates to a constant, then we don't want to hide that
3042 fact (i.e. this allows further folding, and direct checks for constants).
3043 However, a read-only object that has side effects cannot be bypassed.
3044 Since it is no problem to reevaluate literals, we just return the
3045 literal node. */
3046 inner = skip_simple_arithmetic (t);
3047 if (TREE_CODE (inner) == ERROR_MARK)
3048 return inner;
3049
3050 if (tree_invariant_p_1 (inner))
3051 return t;
3052
3053 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3054 it means that the size or offset of some field of an object depends on
3055 the value within another field.
3056
3057 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
3058 and some variable since it would then need to be both evaluated once and
3059 evaluated more than once. Front-ends must assure this case cannot
3060 happen by surrounding any such subexpressions in their own SAVE_EXPR
3061 and forcing evaluation at the proper time. */
3062 if (contains_placeholder_p (inner))
3063 return t;
3064
3065 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
3066 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
3067
3068 /* This expression might be placed ahead of a jump to ensure that the
3069 value was computed on both sides of the jump. So make sure it isn't
3070 eliminated as dead. */
3071 TREE_SIDE_EFFECTS (t) = 1;
3072 return t;
3073 }
3074
3075 /* Look inside EXPR into any simple arithmetic operations. Return the
3076 outermost non-arithmetic or non-invariant node. */
3077
3078 tree
3079 skip_simple_arithmetic (tree expr)
3080 {
3081 /* We don't care about whether this can be used as an lvalue in this
3082 context. */
3083 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3084 expr = TREE_OPERAND (expr, 0);
3085
3086 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3087 a constant, it will be more efficient to not make another SAVE_EXPR since
3088 it will allow better simplification and GCSE will be able to merge the
3089 computations if they actually occur. */
3090 while (true)
3091 {
3092 if (UNARY_CLASS_P (expr))
3093 expr = TREE_OPERAND (expr, 0);
3094 else if (BINARY_CLASS_P (expr))
3095 {
3096 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3097 expr = TREE_OPERAND (expr, 0);
3098 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3099 expr = TREE_OPERAND (expr, 1);
3100 else
3101 break;
3102 }
3103 else
3104 break;
3105 }
3106
3107 return expr;
3108 }
3109
3110 /* Look inside EXPR into simple arithmetic operations involving constants.
3111 Return the outermost non-arithmetic or non-constant node. */
3112
3113 tree
3114 skip_simple_constant_arithmetic (tree expr)
3115 {
3116 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3117 expr = TREE_OPERAND (expr, 0);
3118
3119 while (true)
3120 {
3121 if (UNARY_CLASS_P (expr))
3122 expr = TREE_OPERAND (expr, 0);
3123 else if (BINARY_CLASS_P (expr))
3124 {
3125 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3126 expr = TREE_OPERAND (expr, 0);
3127 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3128 expr = TREE_OPERAND (expr, 1);
3129 else
3130 break;
3131 }
3132 else
3133 break;
3134 }
3135
3136 return expr;
3137 }
3138
3139 /* Return which tree structure is used by T. */
3140
3141 enum tree_node_structure_enum
3142 tree_node_structure (const_tree t)
3143 {
3144 const enum tree_code code = TREE_CODE (t);
3145 return tree_node_structure_for_code (code);
3146 }
3147
3148 /* Set various status flags when building a CALL_EXPR object T. */
3149
3150 static void
3151 process_call_operands (tree t)
3152 {
3153 bool side_effects = TREE_SIDE_EFFECTS (t);
3154 bool read_only = false;
3155 int i = call_expr_flags (t);
3156
3157 /* Calls have side-effects, except those to const or pure functions. */
3158 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3159 side_effects = true;
3160 /* Propagate TREE_READONLY of arguments for const functions. */
3161 if (i & ECF_CONST)
3162 read_only = true;
3163
3164 if (!side_effects || read_only)
3165 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3166 {
3167 tree op = TREE_OPERAND (t, i);
3168 if (op && TREE_SIDE_EFFECTS (op))
3169 side_effects = true;
3170 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3171 read_only = false;
3172 }
3173
3174 TREE_SIDE_EFFECTS (t) = side_effects;
3175 TREE_READONLY (t) = read_only;
3176 }
3177 \f
3178 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3179 size or offset that depends on a field within a record. */
3180
3181 bool
3182 contains_placeholder_p (const_tree exp)
3183 {
3184 enum tree_code code;
3185
3186 if (!exp)
3187 return 0;
3188
3189 code = TREE_CODE (exp);
3190 if (code == PLACEHOLDER_EXPR)
3191 return 1;
3192
3193 switch (TREE_CODE_CLASS (code))
3194 {
3195 case tcc_reference:
3196 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3197 position computations since they will be converted into a
3198 WITH_RECORD_EXPR involving the reference, which will assume
3199 here will be valid. */
3200 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3201
3202 case tcc_exceptional:
3203 if (code == TREE_LIST)
3204 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3205 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3206 break;
3207
3208 case tcc_unary:
3209 case tcc_binary:
3210 case tcc_comparison:
3211 case tcc_expression:
3212 switch (code)
3213 {
3214 case COMPOUND_EXPR:
3215 /* Ignoring the first operand isn't quite right, but works best. */
3216 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3217
3218 case COND_EXPR:
3219 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3220 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3221 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3222
3223 case SAVE_EXPR:
3224 /* The save_expr function never wraps anything containing
3225 a PLACEHOLDER_EXPR. */
3226 return 0;
3227
3228 default:
3229 break;
3230 }
3231
3232 switch (TREE_CODE_LENGTH (code))
3233 {
3234 case 1:
3235 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3236 case 2:
3237 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3238 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3239 default:
3240 return 0;
3241 }
3242
3243 case tcc_vl_exp:
3244 switch (code)
3245 {
3246 case CALL_EXPR:
3247 {
3248 const_tree arg;
3249 const_call_expr_arg_iterator iter;
3250 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3251 if (CONTAINS_PLACEHOLDER_P (arg))
3252 return 1;
3253 return 0;
3254 }
3255 default:
3256 return 0;
3257 }
3258
3259 default:
3260 return 0;
3261 }
3262 return 0;
3263 }
3264
3265 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3266 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3267 field positions. */
3268
3269 static bool
3270 type_contains_placeholder_1 (const_tree type)
3271 {
3272 /* If the size contains a placeholder or the parent type (component type in
3273 the case of arrays) type involves a placeholder, this type does. */
3274 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3275 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3276 || (!POINTER_TYPE_P (type)
3277 && TREE_TYPE (type)
3278 && type_contains_placeholder_p (TREE_TYPE (type))))
3279 return true;
3280
3281 /* Now do type-specific checks. Note that the last part of the check above
3282 greatly limits what we have to do below. */
3283 switch (TREE_CODE (type))
3284 {
3285 case VOID_TYPE:
3286 case POINTER_BOUNDS_TYPE:
3287 case COMPLEX_TYPE:
3288 case ENUMERAL_TYPE:
3289 case BOOLEAN_TYPE:
3290 case POINTER_TYPE:
3291 case OFFSET_TYPE:
3292 case REFERENCE_TYPE:
3293 case METHOD_TYPE:
3294 case FUNCTION_TYPE:
3295 case VECTOR_TYPE:
3296 case NULLPTR_TYPE:
3297 return false;
3298
3299 case INTEGER_TYPE:
3300 case REAL_TYPE:
3301 case FIXED_POINT_TYPE:
3302 /* Here we just check the bounds. */
3303 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3304 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3305
3306 case ARRAY_TYPE:
3307 /* We have already checked the component type above, so just check the
3308 domain type. */
3309 return type_contains_placeholder_p (TYPE_DOMAIN (type));
3310
3311 case RECORD_TYPE:
3312 case UNION_TYPE:
3313 case QUAL_UNION_TYPE:
3314 {
3315 tree field;
3316
3317 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3318 if (TREE_CODE (field) == FIELD_DECL
3319 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3320 || (TREE_CODE (type) == QUAL_UNION_TYPE
3321 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3322 || type_contains_placeholder_p (TREE_TYPE (field))))
3323 return true;
3324
3325 return false;
3326 }
3327
3328 default:
3329 gcc_unreachable ();
3330 }
3331 }
3332
3333 /* Wrapper around above function used to cache its result. */
3334
3335 bool
3336 type_contains_placeholder_p (tree type)
3337 {
3338 bool result;
3339
3340 /* If the contains_placeholder_bits field has been initialized,
3341 then we know the answer. */
3342 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3343 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3344
3345 /* Indicate that we've seen this type node, and the answer is false.
3346 This is what we want to return if we run into recursion via fields. */
3347 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3348
3349 /* Compute the real value. */
3350 result = type_contains_placeholder_1 (type);
3351
3352 /* Store the real value. */
3353 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3354
3355 return result;
3356 }
3357 \f
3358 /* Push tree EXP onto vector QUEUE if it is not already present. */
3359
3360 static void
3361 push_without_duplicates (tree exp, vec<tree> *queue)
3362 {
3363 unsigned int i;
3364 tree iter;
3365
3366 FOR_EACH_VEC_ELT (*queue, i, iter)
3367 if (simple_cst_equal (iter, exp) == 1)
3368 break;
3369
3370 if (!iter)
3371 queue->safe_push (exp);
3372 }
3373
3374 /* Given a tree EXP, find all occurrences of references to fields
3375 in a PLACEHOLDER_EXPR and place them in vector REFS without
3376 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3377 we assume here that EXP contains only arithmetic expressions
3378 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3379 argument list. */
3380
3381 void
3382 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3383 {
3384 enum tree_code code = TREE_CODE (exp);
3385 tree inner;
3386 int i;
3387
3388 /* We handle TREE_LIST and COMPONENT_REF separately. */
3389 if (code == TREE_LIST)
3390 {
3391 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3392 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3393 }
3394 else if (code == COMPONENT_REF)
3395 {
3396 for (inner = TREE_OPERAND (exp, 0);
3397 REFERENCE_CLASS_P (inner);
3398 inner = TREE_OPERAND (inner, 0))
3399 ;
3400
3401 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3402 push_without_duplicates (exp, refs);
3403 else
3404 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3405 }
3406 else
3407 switch (TREE_CODE_CLASS (code))
3408 {
3409 case tcc_constant:
3410 break;
3411
3412 case tcc_declaration:
3413 /* Variables allocated to static storage can stay. */
3414 if (!TREE_STATIC (exp))
3415 push_without_duplicates (exp, refs);
3416 break;
3417
3418 case tcc_expression:
3419 /* This is the pattern built in ada/make_aligning_type. */
3420 if (code == ADDR_EXPR
3421 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3422 {
3423 push_without_duplicates (exp, refs);
3424 break;
3425 }
3426
3427 /* Fall through... */
3428
3429 case tcc_exceptional:
3430 case tcc_unary:
3431 case tcc_binary:
3432 case tcc_comparison:
3433 case tcc_reference:
3434 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3435 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3436 break;
3437
3438 case tcc_vl_exp:
3439 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3440 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3441 break;
3442
3443 default:
3444 gcc_unreachable ();
3445 }
3446 }
3447
3448 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3449 return a tree with all occurrences of references to F in a
3450 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3451 CONST_DECLs. Note that we assume here that EXP contains only
3452 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3453 occurring only in their argument list. */
3454
3455 tree
3456 substitute_in_expr (tree exp, tree f, tree r)
3457 {
3458 enum tree_code code = TREE_CODE (exp);
3459 tree op0, op1, op2, op3;
3460 tree new_tree;
3461
3462 /* We handle TREE_LIST and COMPONENT_REF separately. */
3463 if (code == TREE_LIST)
3464 {
3465 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3466 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3467 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3468 return exp;
3469
3470 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3471 }
3472 else if (code == COMPONENT_REF)
3473 {
3474 tree inner;
3475
3476 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3477 and it is the right field, replace it with R. */
3478 for (inner = TREE_OPERAND (exp, 0);
3479 REFERENCE_CLASS_P (inner);
3480 inner = TREE_OPERAND (inner, 0))
3481 ;
3482
3483 /* The field. */
3484 op1 = TREE_OPERAND (exp, 1);
3485
3486 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3487 return r;
3488
3489 /* If this expression hasn't been completed let, leave it alone. */
3490 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3491 return exp;
3492
3493 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3494 if (op0 == TREE_OPERAND (exp, 0))
3495 return exp;
3496
3497 new_tree
3498 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3499 }
3500 else
3501 switch (TREE_CODE_CLASS (code))
3502 {
3503 case tcc_constant:
3504 return exp;
3505
3506 case tcc_declaration:
3507 if (exp == f)
3508 return r;
3509 else
3510 return exp;
3511
3512 case tcc_expression:
3513 if (exp == f)
3514 return r;
3515
3516 /* Fall through... */
3517
3518 case tcc_exceptional:
3519 case tcc_unary:
3520 case tcc_binary:
3521 case tcc_comparison:
3522 case tcc_reference:
3523 switch (TREE_CODE_LENGTH (code))
3524 {
3525 case 0:
3526 return exp;
3527
3528 case 1:
3529 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3530 if (op0 == TREE_OPERAND (exp, 0))
3531 return exp;
3532
3533 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3534 break;
3535
3536 case 2:
3537 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3538 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3539
3540 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3541 return exp;
3542
3543 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3544 break;
3545
3546 case 3:
3547 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3548 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3549 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3550
3551 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3552 && op2 == TREE_OPERAND (exp, 2))
3553 return exp;
3554
3555 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3556 break;
3557
3558 case 4:
3559 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3560 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3561 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3562 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3563
3564 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3565 && op2 == TREE_OPERAND (exp, 2)
3566 && op3 == TREE_OPERAND (exp, 3))
3567 return exp;
3568
3569 new_tree
3570 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3571 break;
3572
3573 default:
3574 gcc_unreachable ();
3575 }
3576 break;
3577
3578 case tcc_vl_exp:
3579 {
3580 int i;
3581
3582 new_tree = NULL_TREE;
3583
3584 /* If we are trying to replace F with a constant, inline back
3585 functions which do nothing else than computing a value from
3586 the arguments they are passed. This makes it possible to
3587 fold partially or entirely the replacement expression. */
3588 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3589 {
3590 tree t = maybe_inline_call_in_expr (exp);
3591 if (t)
3592 return SUBSTITUTE_IN_EXPR (t, f, r);
3593 }
3594
3595 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3596 {
3597 tree op = TREE_OPERAND (exp, i);
3598 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3599 if (new_op != op)
3600 {
3601 if (!new_tree)
3602 new_tree = copy_node (exp);
3603 TREE_OPERAND (new_tree, i) = new_op;
3604 }
3605 }
3606
3607 if (new_tree)
3608 {
3609 new_tree = fold (new_tree);
3610 if (TREE_CODE (new_tree) == CALL_EXPR)
3611 process_call_operands (new_tree);
3612 }
3613 else
3614 return exp;
3615 }
3616 break;
3617
3618 default:
3619 gcc_unreachable ();
3620 }
3621
3622 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3623
3624 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3625 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3626
3627 return new_tree;
3628 }
3629
3630 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3631 for it within OBJ, a tree that is an object or a chain of references. */
3632
3633 tree
3634 substitute_placeholder_in_expr (tree exp, tree obj)
3635 {
3636 enum tree_code code = TREE_CODE (exp);
3637 tree op0, op1, op2, op3;
3638 tree new_tree;
3639
3640 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3641 in the chain of OBJ. */
3642 if (code == PLACEHOLDER_EXPR)
3643 {
3644 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3645 tree elt;
3646
3647 for (elt = obj; elt != 0;
3648 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3649 || TREE_CODE (elt) == COND_EXPR)
3650 ? TREE_OPERAND (elt, 1)
3651 : (REFERENCE_CLASS_P (elt)
3652 || UNARY_CLASS_P (elt)
3653 || BINARY_CLASS_P (elt)
3654 || VL_EXP_CLASS_P (elt)
3655 || EXPRESSION_CLASS_P (elt))
3656 ? TREE_OPERAND (elt, 0) : 0))
3657 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3658 return elt;
3659
3660 for (elt = obj; elt != 0;
3661 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3662 || TREE_CODE (elt) == COND_EXPR)
3663 ? TREE_OPERAND (elt, 1)
3664 : (REFERENCE_CLASS_P (elt)
3665 || UNARY_CLASS_P (elt)
3666 || BINARY_CLASS_P (elt)
3667 || VL_EXP_CLASS_P (elt)
3668 || EXPRESSION_CLASS_P (elt))
3669 ? TREE_OPERAND (elt, 0) : 0))
3670 if (POINTER_TYPE_P (TREE_TYPE (elt))
3671 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3672 == need_type))
3673 return fold_build1 (INDIRECT_REF, need_type, elt);
3674
3675 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3676 survives until RTL generation, there will be an error. */
3677 return exp;
3678 }
3679
3680 /* TREE_LIST is special because we need to look at TREE_VALUE
3681 and TREE_CHAIN, not TREE_OPERANDS. */
3682 else if (code == TREE_LIST)
3683 {
3684 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3685 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3686 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3687 return exp;
3688
3689 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3690 }
3691 else
3692 switch (TREE_CODE_CLASS (code))
3693 {
3694 case tcc_constant:
3695 case tcc_declaration:
3696 return exp;
3697
3698 case tcc_exceptional:
3699 case tcc_unary:
3700 case tcc_binary:
3701 case tcc_comparison:
3702 case tcc_expression:
3703 case tcc_reference:
3704 case tcc_statement:
3705 switch (TREE_CODE_LENGTH (code))
3706 {
3707 case 0:
3708 return exp;
3709
3710 case 1:
3711 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3712 if (op0 == TREE_OPERAND (exp, 0))
3713 return exp;
3714
3715 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3716 break;
3717
3718 case 2:
3719 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3720 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3721
3722 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3723 return exp;
3724
3725 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3726 break;
3727
3728 case 3:
3729 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3730 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3731 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3732
3733 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3734 && op2 == TREE_OPERAND (exp, 2))
3735 return exp;
3736
3737 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3738 break;
3739
3740 case 4:
3741 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3742 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3743 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3744 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3745
3746 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3747 && op2 == TREE_OPERAND (exp, 2)
3748 && op3 == TREE_OPERAND (exp, 3))
3749 return exp;
3750
3751 new_tree
3752 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3753 break;
3754
3755 default:
3756 gcc_unreachable ();
3757 }
3758 break;
3759
3760 case tcc_vl_exp:
3761 {
3762 int i;
3763
3764 new_tree = NULL_TREE;
3765
3766 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3767 {
3768 tree op = TREE_OPERAND (exp, i);
3769 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3770 if (new_op != op)
3771 {
3772 if (!new_tree)
3773 new_tree = copy_node (exp);
3774 TREE_OPERAND (new_tree, i) = new_op;
3775 }
3776 }
3777
3778 if (new_tree)
3779 {
3780 new_tree = fold (new_tree);
3781 if (TREE_CODE (new_tree) == CALL_EXPR)
3782 process_call_operands (new_tree);
3783 }
3784 else
3785 return exp;
3786 }
3787 break;
3788
3789 default:
3790 gcc_unreachable ();
3791 }
3792
3793 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3794
3795 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3796 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3797
3798 return new_tree;
3799 }
3800 \f
3801
3802 /* Subroutine of stabilize_reference; this is called for subtrees of
3803 references. Any expression with side-effects must be put in a SAVE_EXPR
3804 to ensure that it is only evaluated once.
3805
3806 We don't put SAVE_EXPR nodes around everything, because assigning very
3807 simple expressions to temporaries causes us to miss good opportunities
3808 for optimizations. Among other things, the opportunity to fold in the
3809 addition of a constant into an addressing mode often gets lost, e.g.
3810 "y[i+1] += x;". In general, we take the approach that we should not make
3811 an assignment unless we are forced into it - i.e., that any non-side effect
3812 operator should be allowed, and that cse should take care of coalescing
3813 multiple utterances of the same expression should that prove fruitful. */
3814
3815 static tree
3816 stabilize_reference_1 (tree e)
3817 {
3818 tree result;
3819 enum tree_code code = TREE_CODE (e);
3820
3821 /* We cannot ignore const expressions because it might be a reference
3822 to a const array but whose index contains side-effects. But we can
3823 ignore things that are actual constant or that already have been
3824 handled by this function. */
3825
3826 if (tree_invariant_p (e))
3827 return e;
3828
3829 switch (TREE_CODE_CLASS (code))
3830 {
3831 case tcc_exceptional:
3832 case tcc_type:
3833 case tcc_declaration:
3834 case tcc_comparison:
3835 case tcc_statement:
3836 case tcc_expression:
3837 case tcc_reference:
3838 case tcc_vl_exp:
3839 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3840 so that it will only be evaluated once. */
3841 /* The reference (r) and comparison (<) classes could be handled as
3842 below, but it is generally faster to only evaluate them once. */
3843 if (TREE_SIDE_EFFECTS (e))
3844 return save_expr (e);
3845 return e;
3846
3847 case tcc_constant:
3848 /* Constants need no processing. In fact, we should never reach
3849 here. */
3850 return e;
3851
3852 case tcc_binary:
3853 /* Division is slow and tends to be compiled with jumps,
3854 especially the division by powers of 2 that is often
3855 found inside of an array reference. So do it just once. */
3856 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3857 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3858 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3859 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3860 return save_expr (e);
3861 /* Recursively stabilize each operand. */
3862 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3863 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3864 break;
3865
3866 case tcc_unary:
3867 /* Recursively stabilize each operand. */
3868 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3869 break;
3870
3871 default:
3872 gcc_unreachable ();
3873 }
3874
3875 TREE_TYPE (result) = TREE_TYPE (e);
3876 TREE_READONLY (result) = TREE_READONLY (e);
3877 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3878 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3879
3880 return result;
3881 }
3882
3883 /* Stabilize a reference so that we can use it any number of times
3884 without causing its operands to be evaluated more than once.
3885 Returns the stabilized reference. This works by means of save_expr,
3886 so see the caveats in the comments about save_expr.
3887
3888 Also allows conversion expressions whose operands are references.
3889 Any other kind of expression is returned unchanged. */
3890
3891 tree
3892 stabilize_reference (tree ref)
3893 {
3894 tree result;
3895 enum tree_code code = TREE_CODE (ref);
3896
3897 switch (code)
3898 {
3899 case VAR_DECL:
3900 case PARM_DECL:
3901 case RESULT_DECL:
3902 /* No action is needed in this case. */
3903 return ref;
3904
3905 CASE_CONVERT:
3906 case FLOAT_EXPR:
3907 case FIX_TRUNC_EXPR:
3908 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3909 break;
3910
3911 case INDIRECT_REF:
3912 result = build_nt (INDIRECT_REF,
3913 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3914 break;
3915
3916 case COMPONENT_REF:
3917 result = build_nt (COMPONENT_REF,
3918 stabilize_reference (TREE_OPERAND (ref, 0)),
3919 TREE_OPERAND (ref, 1), NULL_TREE);
3920 break;
3921
3922 case BIT_FIELD_REF:
3923 result = build_nt (BIT_FIELD_REF,
3924 stabilize_reference (TREE_OPERAND (ref, 0)),
3925 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
3926 break;
3927
3928 case ARRAY_REF:
3929 result = build_nt (ARRAY_REF,
3930 stabilize_reference (TREE_OPERAND (ref, 0)),
3931 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3932 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3933 break;
3934
3935 case ARRAY_RANGE_REF:
3936 result = build_nt (ARRAY_RANGE_REF,
3937 stabilize_reference (TREE_OPERAND (ref, 0)),
3938 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3939 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3940 break;
3941
3942 case COMPOUND_EXPR:
3943 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3944 it wouldn't be ignored. This matters when dealing with
3945 volatiles. */
3946 return stabilize_reference_1 (ref);
3947
3948 /* If arg isn't a kind of lvalue we recognize, make no change.
3949 Caller should recognize the error for an invalid lvalue. */
3950 default:
3951 return ref;
3952
3953 case ERROR_MARK:
3954 return error_mark_node;
3955 }
3956
3957 TREE_TYPE (result) = TREE_TYPE (ref);
3958 TREE_READONLY (result) = TREE_READONLY (ref);
3959 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3960 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3961
3962 return result;
3963 }
3964 \f
3965 /* Low-level constructors for expressions. */
3966
3967 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3968 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3969
3970 void
3971 recompute_tree_invariant_for_addr_expr (tree t)
3972 {
3973 tree node;
3974 bool tc = true, se = false;
3975
3976 /* We started out assuming this address is both invariant and constant, but
3977 does not have side effects. Now go down any handled components and see if
3978 any of them involve offsets that are either non-constant or non-invariant.
3979 Also check for side-effects.
3980
3981 ??? Note that this code makes no attempt to deal with the case where
3982 taking the address of something causes a copy due to misalignment. */
3983
3984 #define UPDATE_FLAGS(NODE) \
3985 do { tree _node = (NODE); \
3986 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3987 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3988
3989 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3990 node = TREE_OPERAND (node, 0))
3991 {
3992 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3993 array reference (probably made temporarily by the G++ front end),
3994 so ignore all the operands. */
3995 if ((TREE_CODE (node) == ARRAY_REF
3996 || TREE_CODE (node) == ARRAY_RANGE_REF)
3997 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3998 {
3999 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4000 if (TREE_OPERAND (node, 2))
4001 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4002 if (TREE_OPERAND (node, 3))
4003 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4004 }
4005 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4006 FIELD_DECL, apparently. The G++ front end can put something else
4007 there, at least temporarily. */
4008 else if (TREE_CODE (node) == COMPONENT_REF
4009 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4010 {
4011 if (TREE_OPERAND (node, 2))
4012 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4013 }
4014 }
4015
4016 node = lang_hooks.expr_to_decl (node, &tc, &se);
4017
4018 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4019 the address, since &(*a)->b is a form of addition. If it's a constant, the
4020 address is constant too. If it's a decl, its address is constant if the
4021 decl is static. Everything else is not constant and, furthermore,
4022 taking the address of a volatile variable is not volatile. */
4023 if (TREE_CODE (node) == INDIRECT_REF
4024 || TREE_CODE (node) == MEM_REF)
4025 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4026 else if (CONSTANT_CLASS_P (node))
4027 ;
4028 else if (DECL_P (node))
4029 tc &= (staticp (node) != NULL_TREE);
4030 else
4031 {
4032 tc = false;
4033 se |= TREE_SIDE_EFFECTS (node);
4034 }
4035
4036
4037 TREE_CONSTANT (t) = tc;
4038 TREE_SIDE_EFFECTS (t) = se;
4039 #undef UPDATE_FLAGS
4040 }
4041
4042 /* Build an expression of code CODE, data type TYPE, and operands as
4043 specified. Expressions and reference nodes can be created this way.
4044 Constants, decls, types and misc nodes cannot be.
4045
4046 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4047 enough for all extant tree codes. */
4048
4049 tree
4050 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
4051 {
4052 tree t;
4053
4054 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4055
4056 t = make_node_stat (code PASS_MEM_STAT);
4057 TREE_TYPE (t) = tt;
4058
4059 return t;
4060 }
4061
4062 tree
4063 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4064 {
4065 int length = sizeof (struct tree_exp);
4066 tree t;
4067
4068 record_node_allocation_statistics (code, length);
4069
4070 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4071
4072 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4073
4074 memset (t, 0, sizeof (struct tree_common));
4075
4076 TREE_SET_CODE (t, code);
4077
4078 TREE_TYPE (t) = type;
4079 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4080 TREE_OPERAND (t, 0) = node;
4081 if (node && !TYPE_P (node))
4082 {
4083 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4084 TREE_READONLY (t) = TREE_READONLY (node);
4085 }
4086
4087 if (TREE_CODE_CLASS (code) == tcc_statement)
4088 TREE_SIDE_EFFECTS (t) = 1;
4089 else switch (code)
4090 {
4091 case VA_ARG_EXPR:
4092 /* All of these have side-effects, no matter what their
4093 operands are. */
4094 TREE_SIDE_EFFECTS (t) = 1;
4095 TREE_READONLY (t) = 0;
4096 break;
4097
4098 case INDIRECT_REF:
4099 /* Whether a dereference is readonly has nothing to do with whether
4100 its operand is readonly. */
4101 TREE_READONLY (t) = 0;
4102 break;
4103
4104 case ADDR_EXPR:
4105 if (node)
4106 recompute_tree_invariant_for_addr_expr (t);
4107 break;
4108
4109 default:
4110 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4111 && node && !TYPE_P (node)
4112 && TREE_CONSTANT (node))
4113 TREE_CONSTANT (t) = 1;
4114 if (TREE_CODE_CLASS (code) == tcc_reference
4115 && node && TREE_THIS_VOLATILE (node))
4116 TREE_THIS_VOLATILE (t) = 1;
4117 break;
4118 }
4119
4120 return t;
4121 }
4122
4123 #define PROCESS_ARG(N) \
4124 do { \
4125 TREE_OPERAND (t, N) = arg##N; \
4126 if (arg##N &&!TYPE_P (arg##N)) \
4127 { \
4128 if (TREE_SIDE_EFFECTS (arg##N)) \
4129 side_effects = 1; \
4130 if (!TREE_READONLY (arg##N) \
4131 && !CONSTANT_CLASS_P (arg##N)) \
4132 (void) (read_only = 0); \
4133 if (!TREE_CONSTANT (arg##N)) \
4134 (void) (constant = 0); \
4135 } \
4136 } while (0)
4137
4138 tree
4139 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4140 {
4141 bool constant, read_only, side_effects;
4142 tree t;
4143
4144 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4145
4146 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4147 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4148 /* When sizetype precision doesn't match that of pointers
4149 we need to be able to build explicit extensions or truncations
4150 of the offset argument. */
4151 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4152 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4153 && TREE_CODE (arg1) == INTEGER_CST);
4154
4155 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4156 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4157 && ptrofftype_p (TREE_TYPE (arg1)));
4158
4159 t = make_node_stat (code PASS_MEM_STAT);
4160 TREE_TYPE (t) = tt;
4161
4162 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4163 result based on those same flags for the arguments. But if the
4164 arguments aren't really even `tree' expressions, we shouldn't be trying
4165 to do this. */
4166
4167 /* Expressions without side effects may be constant if their
4168 arguments are as well. */
4169 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4170 || TREE_CODE_CLASS (code) == tcc_binary);
4171 read_only = 1;
4172 side_effects = TREE_SIDE_EFFECTS (t);
4173
4174 PROCESS_ARG (0);
4175 PROCESS_ARG (1);
4176
4177 TREE_READONLY (t) = read_only;
4178 TREE_CONSTANT (t) = constant;
4179 TREE_SIDE_EFFECTS (t) = side_effects;
4180 TREE_THIS_VOLATILE (t)
4181 = (TREE_CODE_CLASS (code) == tcc_reference
4182 && arg0 && TREE_THIS_VOLATILE (arg0));
4183
4184 return t;
4185 }
4186
4187
4188 tree
4189 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4190 tree arg2 MEM_STAT_DECL)
4191 {
4192 bool constant, read_only, side_effects;
4193 tree t;
4194
4195 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4196 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4197
4198 t = make_node_stat (code PASS_MEM_STAT);
4199 TREE_TYPE (t) = tt;
4200
4201 read_only = 1;
4202
4203 /* As a special exception, if COND_EXPR has NULL branches, we
4204 assume that it is a gimple statement and always consider
4205 it to have side effects. */
4206 if (code == COND_EXPR
4207 && tt == void_type_node
4208 && arg1 == NULL_TREE
4209 && arg2 == NULL_TREE)
4210 side_effects = true;
4211 else
4212 side_effects = TREE_SIDE_EFFECTS (t);
4213
4214 PROCESS_ARG (0);
4215 PROCESS_ARG (1);
4216 PROCESS_ARG (2);
4217
4218 if (code == COND_EXPR)
4219 TREE_READONLY (t) = read_only;
4220
4221 TREE_SIDE_EFFECTS (t) = side_effects;
4222 TREE_THIS_VOLATILE (t)
4223 = (TREE_CODE_CLASS (code) == tcc_reference
4224 && arg0 && TREE_THIS_VOLATILE (arg0));
4225
4226 return t;
4227 }
4228
4229 tree
4230 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4231 tree arg2, tree arg3 MEM_STAT_DECL)
4232 {
4233 bool constant, read_only, side_effects;
4234 tree t;
4235
4236 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4237
4238 t = make_node_stat (code PASS_MEM_STAT);
4239 TREE_TYPE (t) = tt;
4240
4241 side_effects = TREE_SIDE_EFFECTS (t);
4242
4243 PROCESS_ARG (0);
4244 PROCESS_ARG (1);
4245 PROCESS_ARG (2);
4246 PROCESS_ARG (3);
4247
4248 TREE_SIDE_EFFECTS (t) = side_effects;
4249 TREE_THIS_VOLATILE (t)
4250 = (TREE_CODE_CLASS (code) == tcc_reference
4251 && arg0 && TREE_THIS_VOLATILE (arg0));
4252
4253 return t;
4254 }
4255
4256 tree
4257 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4258 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4259 {
4260 bool constant, read_only, side_effects;
4261 tree t;
4262
4263 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4264
4265 t = make_node_stat (code PASS_MEM_STAT);
4266 TREE_TYPE (t) = tt;
4267
4268 side_effects = TREE_SIDE_EFFECTS (t);
4269
4270 PROCESS_ARG (0);
4271 PROCESS_ARG (1);
4272 PROCESS_ARG (2);
4273 PROCESS_ARG (3);
4274 PROCESS_ARG (4);
4275
4276 TREE_SIDE_EFFECTS (t) = side_effects;
4277 TREE_THIS_VOLATILE (t)
4278 = (TREE_CODE_CLASS (code) == tcc_reference
4279 && arg0 && TREE_THIS_VOLATILE (arg0));
4280
4281 return t;
4282 }
4283
4284 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4285 on the pointer PTR. */
4286
4287 tree
4288 build_simple_mem_ref_loc (location_t loc, tree ptr)
4289 {
4290 HOST_WIDE_INT offset = 0;
4291 tree ptype = TREE_TYPE (ptr);
4292 tree tem;
4293 /* For convenience allow addresses that collapse to a simple base
4294 and offset. */
4295 if (TREE_CODE (ptr) == ADDR_EXPR
4296 && (handled_component_p (TREE_OPERAND (ptr, 0))
4297 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4298 {
4299 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4300 gcc_assert (ptr);
4301 ptr = build_fold_addr_expr (ptr);
4302 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4303 }
4304 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4305 ptr, build_int_cst (ptype, offset));
4306 SET_EXPR_LOCATION (tem, loc);
4307 return tem;
4308 }
4309
4310 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4311
4312 double_int
4313 mem_ref_offset (const_tree t)
4314 {
4315 tree toff = TREE_OPERAND (t, 1);
4316 return tree_to_double_int (toff).sext (TYPE_PRECISION (TREE_TYPE (toff)));
4317 }
4318
4319 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4320 offsetted by OFFSET units. */
4321
4322 tree
4323 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4324 {
4325 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4326 build_fold_addr_expr (base),
4327 build_int_cst (ptr_type_node, offset));
4328 tree addr = build1 (ADDR_EXPR, type, ref);
4329 recompute_tree_invariant_for_addr_expr (addr);
4330 return addr;
4331 }
4332
4333 /* Similar except don't specify the TREE_TYPE
4334 and leave the TREE_SIDE_EFFECTS as 0.
4335 It is permissible for arguments to be null,
4336 or even garbage if their values do not matter. */
4337
4338 tree
4339 build_nt (enum tree_code code, ...)
4340 {
4341 tree t;
4342 int length;
4343 int i;
4344 va_list p;
4345
4346 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4347
4348 va_start (p, code);
4349
4350 t = make_node (code);
4351 length = TREE_CODE_LENGTH (code);
4352
4353 for (i = 0; i < length; i++)
4354 TREE_OPERAND (t, i) = va_arg (p, tree);
4355
4356 va_end (p);
4357 return t;
4358 }
4359
4360 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4361 tree vec. */
4362
4363 tree
4364 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4365 {
4366 tree ret, t;
4367 unsigned int ix;
4368
4369 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4370 CALL_EXPR_FN (ret) = fn;
4371 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4372 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4373 CALL_EXPR_ARG (ret, ix) = t;
4374 return ret;
4375 }
4376 \f
4377 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4378 We do NOT enter this node in any sort of symbol table.
4379
4380 LOC is the location of the decl.
4381
4382 layout_decl is used to set up the decl's storage layout.
4383 Other slots are initialized to 0 or null pointers. */
4384
4385 tree
4386 build_decl_stat (location_t loc, enum tree_code code, tree name,
4387 tree type MEM_STAT_DECL)
4388 {
4389 tree t;
4390
4391 t = make_node_stat (code PASS_MEM_STAT);
4392 DECL_SOURCE_LOCATION (t) = loc;
4393
4394 /* if (type == error_mark_node)
4395 type = integer_type_node; */
4396 /* That is not done, deliberately, so that having error_mark_node
4397 as the type can suppress useless errors in the use of this variable. */
4398
4399 DECL_NAME (t) = name;
4400 TREE_TYPE (t) = type;
4401
4402 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4403 layout_decl (t, 0);
4404
4405 return t;
4406 }
4407
4408 /* Builds and returns function declaration with NAME and TYPE. */
4409
4410 tree
4411 build_fn_decl (const char *name, tree type)
4412 {
4413 tree id = get_identifier (name);
4414 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4415
4416 DECL_EXTERNAL (decl) = 1;
4417 TREE_PUBLIC (decl) = 1;
4418 DECL_ARTIFICIAL (decl) = 1;
4419 TREE_NOTHROW (decl) = 1;
4420
4421 return decl;
4422 }
4423
4424 vec<tree, va_gc> *all_translation_units;
4425
4426 /* Builds a new translation-unit decl with name NAME, queues it in the
4427 global list of translation-unit decls and returns it. */
4428
4429 tree
4430 build_translation_unit_decl (tree name)
4431 {
4432 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4433 name, NULL_TREE);
4434 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4435 vec_safe_push (all_translation_units, tu);
4436 return tu;
4437 }
4438
4439 \f
4440 /* BLOCK nodes are used to represent the structure of binding contours
4441 and declarations, once those contours have been exited and their contents
4442 compiled. This information is used for outputting debugging info. */
4443
4444 tree
4445 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4446 {
4447 tree block = make_node (BLOCK);
4448
4449 BLOCK_VARS (block) = vars;
4450 BLOCK_SUBBLOCKS (block) = subblocks;
4451 BLOCK_SUPERCONTEXT (block) = supercontext;
4452 BLOCK_CHAIN (block) = chain;
4453 return block;
4454 }
4455
4456 \f
4457 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4458
4459 LOC is the location to use in tree T. */
4460
4461 void
4462 protected_set_expr_location (tree t, location_t loc)
4463 {
4464 if (t && CAN_HAVE_LOCATION_P (t))
4465 SET_EXPR_LOCATION (t, loc);
4466 }
4467 \f
4468 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4469 is ATTRIBUTE. */
4470
4471 tree
4472 build_decl_attribute_variant (tree ddecl, tree attribute)
4473 {
4474 DECL_ATTRIBUTES (ddecl) = attribute;
4475 return ddecl;
4476 }
4477
4478 /* Borrowed from hashtab.c iterative_hash implementation. */
4479 #define mix(a,b,c) \
4480 { \
4481 a -= b; a -= c; a ^= (c>>13); \
4482 b -= c; b -= a; b ^= (a<< 8); \
4483 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4484 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4485 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4486 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4487 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4488 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4489 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4490 }
4491
4492
4493 /* Produce good hash value combining VAL and VAL2. */
4494 hashval_t
4495 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4496 {
4497 /* the golden ratio; an arbitrary value. */
4498 hashval_t a = 0x9e3779b9;
4499
4500 mix (a, val, val2);
4501 return val2;
4502 }
4503
4504 /* Produce good hash value combining VAL and VAL2. */
4505 hashval_t
4506 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4507 {
4508 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4509 return iterative_hash_hashval_t (val, val2);
4510 else
4511 {
4512 hashval_t a = (hashval_t) val;
4513 /* Avoid warnings about shifting of more than the width of the type on
4514 hosts that won't execute this path. */
4515 int zero = 0;
4516 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4517 mix (a, b, val2);
4518 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4519 {
4520 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4521 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4522 mix (a, b, val2);
4523 }
4524 return val2;
4525 }
4526 }
4527
4528 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4529 is ATTRIBUTE and its qualifiers are QUALS.
4530
4531 Record such modified types already made so we don't make duplicates. */
4532
4533 tree
4534 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4535 {
4536 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4537 {
4538 hashval_t hashcode = 0;
4539 tree ntype;
4540 enum tree_code code = TREE_CODE (ttype);
4541
4542 /* Building a distinct copy of a tagged type is inappropriate; it
4543 causes breakage in code that expects there to be a one-to-one
4544 relationship between a struct and its fields.
4545 build_duplicate_type is another solution (as used in
4546 handle_transparent_union_attribute), but that doesn't play well
4547 with the stronger C++ type identity model. */
4548 if (TREE_CODE (ttype) == RECORD_TYPE
4549 || TREE_CODE (ttype) == UNION_TYPE
4550 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4551 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4552 {
4553 warning (OPT_Wattributes,
4554 "ignoring attributes applied to %qT after definition",
4555 TYPE_MAIN_VARIANT (ttype));
4556 return build_qualified_type (ttype, quals);
4557 }
4558
4559 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4560 ntype = build_distinct_type_copy (ttype);
4561
4562 TYPE_ATTRIBUTES (ntype) = attribute;
4563
4564 hashcode = iterative_hash_object (code, hashcode);
4565 if (TREE_TYPE (ntype))
4566 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4567 hashcode);
4568 hashcode = attribute_hash_list (attribute, hashcode);
4569
4570 switch (TREE_CODE (ntype))
4571 {
4572 case FUNCTION_TYPE:
4573 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4574 break;
4575 case ARRAY_TYPE:
4576 if (TYPE_DOMAIN (ntype))
4577 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4578 hashcode);
4579 break;
4580 case INTEGER_TYPE:
4581 hashcode = iterative_hash_object
4582 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4583 hashcode = iterative_hash_object
4584 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4585 break;
4586 case REAL_TYPE:
4587 case FIXED_POINT_TYPE:
4588 {
4589 unsigned int precision = TYPE_PRECISION (ntype);
4590 hashcode = iterative_hash_object (precision, hashcode);
4591 }
4592 break;
4593 default:
4594 break;
4595 }
4596
4597 ntype = type_hash_canon (hashcode, ntype);
4598
4599 /* If the target-dependent attributes make NTYPE different from
4600 its canonical type, we will need to use structural equality
4601 checks for this type. */
4602 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4603 || !comp_type_attributes (ntype, ttype))
4604 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4605 else if (TYPE_CANONICAL (ntype) == ntype)
4606 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4607
4608 ttype = build_qualified_type (ntype, quals);
4609 }
4610 else if (TYPE_QUALS (ttype) != quals)
4611 ttype = build_qualified_type (ttype, quals);
4612
4613 return ttype;
4614 }
4615
4616 /* Check if "omp declare simd" attribute arguments, CLAUSES1 and CLAUSES2, are
4617 the same. */
4618
4619 static bool
4620 omp_declare_simd_clauses_equal (tree clauses1, tree clauses2)
4621 {
4622 tree cl1, cl2;
4623 for (cl1 = clauses1, cl2 = clauses2;
4624 cl1 && cl2;
4625 cl1 = OMP_CLAUSE_CHAIN (cl1), cl2 = OMP_CLAUSE_CHAIN (cl2))
4626 {
4627 if (OMP_CLAUSE_CODE (cl1) != OMP_CLAUSE_CODE (cl2))
4628 return false;
4629 if (OMP_CLAUSE_CODE (cl1) != OMP_CLAUSE_SIMDLEN)
4630 {
4631 if (simple_cst_equal (OMP_CLAUSE_DECL (cl1),
4632 OMP_CLAUSE_DECL (cl2)) != 1)
4633 return false;
4634 }
4635 switch (OMP_CLAUSE_CODE (cl1))
4636 {
4637 case OMP_CLAUSE_ALIGNED:
4638 if (simple_cst_equal (OMP_CLAUSE_ALIGNED_ALIGNMENT (cl1),
4639 OMP_CLAUSE_ALIGNED_ALIGNMENT (cl2)) != 1)
4640 return false;
4641 break;
4642 case OMP_CLAUSE_LINEAR:
4643 if (simple_cst_equal (OMP_CLAUSE_LINEAR_STEP (cl1),
4644 OMP_CLAUSE_LINEAR_STEP (cl2)) != 1)
4645 return false;
4646 break;
4647 case OMP_CLAUSE_SIMDLEN:
4648 if (simple_cst_equal (OMP_CLAUSE_SIMDLEN_EXPR (cl1),
4649 OMP_CLAUSE_SIMDLEN_EXPR (cl2)) != 1)
4650 return false;
4651 default:
4652 break;
4653 }
4654 }
4655 return true;
4656 }
4657
4658 /* Compare two constructor-element-type constants. Return 1 if the lists
4659 are known to be equal; otherwise return 0. */
4660
4661 static bool
4662 simple_cst_list_equal (const_tree l1, const_tree l2)
4663 {
4664 while (l1 != NULL_TREE && l2 != NULL_TREE)
4665 {
4666 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4667 return false;
4668
4669 l1 = TREE_CHAIN (l1);
4670 l2 = TREE_CHAIN (l2);
4671 }
4672
4673 return l1 == l2;
4674 }
4675
4676 /* Compare two attributes for their value identity. Return true if the
4677 attribute values are known to be equal; otherwise return false.
4678 */
4679
4680 static bool
4681 attribute_value_equal (const_tree attr1, const_tree attr2)
4682 {
4683 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4684 return true;
4685
4686 if (TREE_VALUE (attr1) != NULL_TREE
4687 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4688 && TREE_VALUE (attr2) != NULL
4689 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4690 return (simple_cst_list_equal (TREE_VALUE (attr1),
4691 TREE_VALUE (attr2)) == 1);
4692
4693 if ((flag_openmp || flag_openmp_simd)
4694 && TREE_VALUE (attr1) && TREE_VALUE (attr2)
4695 && TREE_CODE (TREE_VALUE (attr1)) == OMP_CLAUSE
4696 && TREE_CODE (TREE_VALUE (attr2)) == OMP_CLAUSE)
4697 return omp_declare_simd_clauses_equal (TREE_VALUE (attr1),
4698 TREE_VALUE (attr2));
4699
4700 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
4701 }
4702
4703 /* Return 0 if the attributes for two types are incompatible, 1 if they
4704 are compatible, and 2 if they are nearly compatible (which causes a
4705 warning to be generated). */
4706 int
4707 comp_type_attributes (const_tree type1, const_tree type2)
4708 {
4709 const_tree a1 = TYPE_ATTRIBUTES (type1);
4710 const_tree a2 = TYPE_ATTRIBUTES (type2);
4711 const_tree a;
4712
4713 if (a1 == a2)
4714 return 1;
4715 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
4716 {
4717 const struct attribute_spec *as;
4718 const_tree attr;
4719
4720 as = lookup_attribute_spec (get_attribute_name (a));
4721 if (!as || as->affects_type_identity == false)
4722 continue;
4723
4724 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
4725 if (!attr || !attribute_value_equal (a, attr))
4726 break;
4727 }
4728 if (!a)
4729 {
4730 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
4731 {
4732 const struct attribute_spec *as;
4733
4734 as = lookup_attribute_spec (get_attribute_name (a));
4735 if (!as || as->affects_type_identity == false)
4736 continue;
4737
4738 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
4739 break;
4740 /* We don't need to compare trees again, as we did this
4741 already in first loop. */
4742 }
4743 /* All types - affecting identity - are equal, so
4744 there is no need to call target hook for comparison. */
4745 if (!a)
4746 return 1;
4747 }
4748 /* As some type combinations - like default calling-convention - might
4749 be compatible, we have to call the target hook to get the final result. */
4750 return targetm.comp_type_attributes (type1, type2);
4751 }
4752
4753 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4754 is ATTRIBUTE.
4755
4756 Record such modified types already made so we don't make duplicates. */
4757
4758 tree
4759 build_type_attribute_variant (tree ttype, tree attribute)
4760 {
4761 return build_type_attribute_qual_variant (ttype, attribute,
4762 TYPE_QUALS (ttype));
4763 }
4764
4765
4766 /* Reset the expression *EXPR_P, a size or position.
4767
4768 ??? We could reset all non-constant sizes or positions. But it's cheap
4769 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4770
4771 We need to reset self-referential sizes or positions because they cannot
4772 be gimplified and thus can contain a CALL_EXPR after the gimplification
4773 is finished, which will run afoul of LTO streaming. And they need to be
4774 reset to something essentially dummy but not constant, so as to preserve
4775 the properties of the object they are attached to. */
4776
4777 static inline void
4778 free_lang_data_in_one_sizepos (tree *expr_p)
4779 {
4780 tree expr = *expr_p;
4781 if (CONTAINS_PLACEHOLDER_P (expr))
4782 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4783 }
4784
4785
4786 /* Reset all the fields in a binfo node BINFO. We only keep
4787 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
4788
4789 static void
4790 free_lang_data_in_binfo (tree binfo)
4791 {
4792 unsigned i;
4793 tree t;
4794
4795 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4796
4797 BINFO_VIRTUALS (binfo) = NULL_TREE;
4798 BINFO_BASE_ACCESSES (binfo) = NULL;
4799 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4800 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4801
4802 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
4803 free_lang_data_in_binfo (t);
4804 }
4805
4806
4807 /* Reset all language specific information still present in TYPE. */
4808
4809 static void
4810 free_lang_data_in_type (tree type)
4811 {
4812 gcc_assert (TYPE_P (type));
4813
4814 /* Give the FE a chance to remove its own data first. */
4815 lang_hooks.free_lang_data (type);
4816
4817 TREE_LANG_FLAG_0 (type) = 0;
4818 TREE_LANG_FLAG_1 (type) = 0;
4819 TREE_LANG_FLAG_2 (type) = 0;
4820 TREE_LANG_FLAG_3 (type) = 0;
4821 TREE_LANG_FLAG_4 (type) = 0;
4822 TREE_LANG_FLAG_5 (type) = 0;
4823 TREE_LANG_FLAG_6 (type) = 0;
4824
4825 if (TREE_CODE (type) == FUNCTION_TYPE)
4826 {
4827 /* Remove the const and volatile qualifiers from arguments. The
4828 C++ front end removes them, but the C front end does not,
4829 leading to false ODR violation errors when merging two
4830 instances of the same function signature compiled by
4831 different front ends. */
4832 tree p;
4833
4834 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4835 {
4836 tree arg_type = TREE_VALUE (p);
4837
4838 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4839 {
4840 int quals = TYPE_QUALS (arg_type)
4841 & ~TYPE_QUAL_CONST
4842 & ~TYPE_QUAL_VOLATILE;
4843 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4844 free_lang_data_in_type (TREE_VALUE (p));
4845 }
4846 }
4847 }
4848
4849 /* Remove members that are not actually FIELD_DECLs from the field
4850 list of an aggregate. These occur in C++. */
4851 if (RECORD_OR_UNION_TYPE_P (type))
4852 {
4853 tree prev, member;
4854
4855 /* Note that TYPE_FIELDS can be shared across distinct
4856 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4857 to be removed, we cannot set its TREE_CHAIN to NULL.
4858 Otherwise, we would not be able to find all the other fields
4859 in the other instances of this TREE_TYPE.
4860
4861 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4862 prev = NULL_TREE;
4863 member = TYPE_FIELDS (type);
4864 while (member)
4865 {
4866 if (TREE_CODE (member) == FIELD_DECL
4867 || TREE_CODE (member) == TYPE_DECL)
4868 {
4869 if (prev)
4870 TREE_CHAIN (prev) = member;
4871 else
4872 TYPE_FIELDS (type) = member;
4873 prev = member;
4874 }
4875
4876 member = TREE_CHAIN (member);
4877 }
4878
4879 if (prev)
4880 TREE_CHAIN (prev) = NULL_TREE;
4881 else
4882 TYPE_FIELDS (type) = NULL_TREE;
4883
4884 TYPE_METHODS (type) = NULL_TREE;
4885 if (TYPE_BINFO (type))
4886 free_lang_data_in_binfo (TYPE_BINFO (type));
4887 }
4888 else
4889 {
4890 /* For non-aggregate types, clear out the language slot (which
4891 overloads TYPE_BINFO). */
4892 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4893
4894 if (INTEGRAL_TYPE_P (type)
4895 || SCALAR_FLOAT_TYPE_P (type)
4896 || FIXED_POINT_TYPE_P (type))
4897 {
4898 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4899 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4900 }
4901 }
4902
4903 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4904 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4905
4906 if (TYPE_CONTEXT (type)
4907 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
4908 {
4909 tree ctx = TYPE_CONTEXT (type);
4910 do
4911 {
4912 ctx = BLOCK_SUPERCONTEXT (ctx);
4913 }
4914 while (ctx && TREE_CODE (ctx) == BLOCK);
4915 TYPE_CONTEXT (type) = ctx;
4916 }
4917 }
4918
4919
4920 /* Return true if DECL may need an assembler name to be set. */
4921
4922 static inline bool
4923 need_assembler_name_p (tree decl)
4924 {
4925 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4926 if (TREE_CODE (decl) != FUNCTION_DECL
4927 && TREE_CODE (decl) != VAR_DECL)
4928 return false;
4929
4930 /* If DECL already has its assembler name set, it does not need a
4931 new one. */
4932 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4933 || DECL_ASSEMBLER_NAME_SET_P (decl))
4934 return false;
4935
4936 /* Abstract decls do not need an assembler name. */
4937 if (DECL_ABSTRACT (decl))
4938 return false;
4939
4940 /* For VAR_DECLs, only static, public and external symbols need an
4941 assembler name. */
4942 if (TREE_CODE (decl) == VAR_DECL
4943 && !TREE_STATIC (decl)
4944 && !TREE_PUBLIC (decl)
4945 && !DECL_EXTERNAL (decl))
4946 return false;
4947
4948 if (TREE_CODE (decl) == FUNCTION_DECL)
4949 {
4950 /* Do not set assembler name on builtins. Allow RTL expansion to
4951 decide whether to expand inline or via a regular call. */
4952 if (DECL_BUILT_IN (decl)
4953 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4954 return false;
4955
4956 /* Functions represented in the callgraph need an assembler name. */
4957 if (cgraph_get_node (decl) != NULL)
4958 return true;
4959
4960 /* Unused and not public functions don't need an assembler name. */
4961 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4962 return false;
4963 }
4964
4965 return true;
4966 }
4967
4968
4969 /* Reset all language specific information still present in symbol
4970 DECL. */
4971
4972 static void
4973 free_lang_data_in_decl (tree decl)
4974 {
4975 gcc_assert (DECL_P (decl));
4976
4977 /* Give the FE a chance to remove its own data first. */
4978 lang_hooks.free_lang_data (decl);
4979
4980 TREE_LANG_FLAG_0 (decl) = 0;
4981 TREE_LANG_FLAG_1 (decl) = 0;
4982 TREE_LANG_FLAG_2 (decl) = 0;
4983 TREE_LANG_FLAG_3 (decl) = 0;
4984 TREE_LANG_FLAG_4 (decl) = 0;
4985 TREE_LANG_FLAG_5 (decl) = 0;
4986 TREE_LANG_FLAG_6 (decl) = 0;
4987
4988 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4989 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4990 if (TREE_CODE (decl) == FIELD_DECL)
4991 {
4992 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4993 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
4994 DECL_QUALIFIER (decl) = NULL_TREE;
4995 }
4996
4997 if (TREE_CODE (decl) == FUNCTION_DECL)
4998 {
4999 struct cgraph_node *node;
5000 if (!(node = cgraph_get_node (decl))
5001 || (!node->definition && !node->clones))
5002 {
5003 if (node)
5004 cgraph_release_function_body (node);
5005 else
5006 {
5007 release_function_body (decl);
5008 DECL_ARGUMENTS (decl) = NULL;
5009 DECL_RESULT (decl) = NULL;
5010 DECL_INITIAL (decl) = error_mark_node;
5011 }
5012 }
5013 if (gimple_has_body_p (decl))
5014 {
5015 tree t;
5016
5017 /* If DECL has a gimple body, then the context for its
5018 arguments must be DECL. Otherwise, it doesn't really
5019 matter, as we will not be emitting any code for DECL. In
5020 general, there may be other instances of DECL created by
5021 the front end and since PARM_DECLs are generally shared,
5022 their DECL_CONTEXT changes as the replicas of DECL are
5023 created. The only time where DECL_CONTEXT is important
5024 is for the FUNCTION_DECLs that have a gimple body (since
5025 the PARM_DECL will be used in the function's body). */
5026 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5027 DECL_CONTEXT (t) = decl;
5028 }
5029
5030 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5031 At this point, it is not needed anymore. */
5032 DECL_SAVED_TREE (decl) = NULL_TREE;
5033
5034 /* Clear the abstract origin if it refers to a method. Otherwise
5035 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
5036 origin will not be output correctly. */
5037 if (DECL_ABSTRACT_ORIGIN (decl)
5038 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5039 && RECORD_OR_UNION_TYPE_P
5040 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5041 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5042
5043 /* Sometimes the C++ frontend doesn't manage to transform a temporary
5044 DECL_VINDEX referring to itself into a vtable slot number as it
5045 should. Happens with functions that are copied and then forgotten
5046 about. Just clear it, it won't matter anymore. */
5047 if (DECL_VINDEX (decl) && !tree_fits_shwi_p (DECL_VINDEX (decl)))
5048 DECL_VINDEX (decl) = NULL_TREE;
5049 }
5050 else if (TREE_CODE (decl) == VAR_DECL)
5051 {
5052 if ((DECL_EXTERNAL (decl)
5053 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5054 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5055 DECL_INITIAL (decl) = NULL_TREE;
5056 }
5057 else if (TREE_CODE (decl) == TYPE_DECL
5058 || TREE_CODE (decl) == FIELD_DECL)
5059 DECL_INITIAL (decl) = NULL_TREE;
5060 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5061 && DECL_INITIAL (decl)
5062 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5063 {
5064 /* Strip builtins from the translation-unit BLOCK. We still have targets
5065 without builtin_decl_explicit support and also builtins are shared
5066 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5067 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5068 while (*nextp)
5069 {
5070 tree var = *nextp;
5071 if (TREE_CODE (var) == FUNCTION_DECL
5072 && DECL_BUILT_IN (var))
5073 *nextp = TREE_CHAIN (var);
5074 else
5075 nextp = &TREE_CHAIN (var);
5076 }
5077 }
5078 }
5079
5080
5081 /* Data used when collecting DECLs and TYPEs for language data removal. */
5082
5083 struct free_lang_data_d
5084 {
5085 /* Worklist to avoid excessive recursion. */
5086 vec<tree> worklist;
5087
5088 /* Set of traversed objects. Used to avoid duplicate visits. */
5089 struct pointer_set_t *pset;
5090
5091 /* Array of symbols to process with free_lang_data_in_decl. */
5092 vec<tree> decls;
5093
5094 /* Array of types to process with free_lang_data_in_type. */
5095 vec<tree> types;
5096 };
5097
5098
5099 /* Save all language fields needed to generate proper debug information
5100 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
5101
5102 static void
5103 save_debug_info_for_decl (tree t)
5104 {
5105 /*struct saved_debug_info_d *sdi;*/
5106
5107 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
5108
5109 /* FIXME. Partial implementation for saving debug info removed. */
5110 }
5111
5112
5113 /* Save all language fields needed to generate proper debug information
5114 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
5115
5116 static void
5117 save_debug_info_for_type (tree t)
5118 {
5119 /*struct saved_debug_info_d *sdi;*/
5120
5121 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
5122
5123 /* FIXME. Partial implementation for saving debug info removed. */
5124 }
5125
5126
5127 /* Add type or decl T to one of the list of tree nodes that need their
5128 language data removed. The lists are held inside FLD. */
5129
5130 static void
5131 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5132 {
5133 if (DECL_P (t))
5134 {
5135 fld->decls.safe_push (t);
5136 if (debug_info_level > DINFO_LEVEL_TERSE)
5137 save_debug_info_for_decl (t);
5138 }
5139 else if (TYPE_P (t))
5140 {
5141 fld->types.safe_push (t);
5142 if (debug_info_level > DINFO_LEVEL_TERSE)
5143 save_debug_info_for_type (t);
5144 }
5145 else
5146 gcc_unreachable ();
5147 }
5148
5149 /* Push tree node T into FLD->WORKLIST. */
5150
5151 static inline void
5152 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5153 {
5154 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
5155 fld->worklist.safe_push ((t));
5156 }
5157
5158
5159 /* Operand callback helper for free_lang_data_in_node. *TP is the
5160 subtree operand being considered. */
5161
5162 static tree
5163 find_decls_types_r (tree *tp, int *ws, void *data)
5164 {
5165 tree t = *tp;
5166 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5167
5168 if (TREE_CODE (t) == TREE_LIST)
5169 return NULL_TREE;
5170
5171 /* Language specific nodes will be removed, so there is no need
5172 to gather anything under them. */
5173 if (is_lang_specific (t))
5174 {
5175 *ws = 0;
5176 return NULL_TREE;
5177 }
5178
5179 if (DECL_P (t))
5180 {
5181 /* Note that walk_tree does not traverse every possible field in
5182 decls, so we have to do our own traversals here. */
5183 add_tree_to_fld_list (t, fld);
5184
5185 fld_worklist_push (DECL_NAME (t), fld);
5186 fld_worklist_push (DECL_CONTEXT (t), fld);
5187 fld_worklist_push (DECL_SIZE (t), fld);
5188 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5189
5190 /* We are going to remove everything under DECL_INITIAL for
5191 TYPE_DECLs. No point walking them. */
5192 if (TREE_CODE (t) != TYPE_DECL)
5193 fld_worklist_push (DECL_INITIAL (t), fld);
5194
5195 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5196 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5197
5198 if (TREE_CODE (t) == FUNCTION_DECL)
5199 {
5200 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5201 fld_worklist_push (DECL_RESULT (t), fld);
5202 }
5203 else if (TREE_CODE (t) == TYPE_DECL)
5204 {
5205 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
5206 fld_worklist_push (DECL_VINDEX (t), fld);
5207 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
5208 }
5209 else if (TREE_CODE (t) == FIELD_DECL)
5210 {
5211 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5212 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5213 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5214 fld_worklist_push (DECL_FCONTEXT (t), fld);
5215 }
5216 else if (TREE_CODE (t) == VAR_DECL)
5217 {
5218 fld_worklist_push (DECL_SECTION_NAME (t), fld);
5219 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
5220 }
5221
5222 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
5223 && DECL_HAS_VALUE_EXPR_P (t))
5224 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5225
5226 if (TREE_CODE (t) != FIELD_DECL
5227 && TREE_CODE (t) != TYPE_DECL)
5228 fld_worklist_push (TREE_CHAIN (t), fld);
5229 *ws = 0;
5230 }
5231 else if (TYPE_P (t))
5232 {
5233 /* Note that walk_tree does not traverse every possible field in
5234 types, so we have to do our own traversals here. */
5235 add_tree_to_fld_list (t, fld);
5236
5237 if (!RECORD_OR_UNION_TYPE_P (t))
5238 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5239 fld_worklist_push (TYPE_SIZE (t), fld);
5240 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5241 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5242 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5243 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5244 fld_worklist_push (TYPE_NAME (t), fld);
5245 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
5246 them and thus do not and want not to reach unused pointer types
5247 this way. */
5248 if (!POINTER_TYPE_P (t))
5249 fld_worklist_push (TYPE_MINVAL (t), fld);
5250 if (!RECORD_OR_UNION_TYPE_P (t))
5251 fld_worklist_push (TYPE_MAXVAL (t), fld);
5252 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5253 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5254 do not and want not to reach unused variants this way. */
5255 if (TYPE_CONTEXT (t))
5256 {
5257 tree ctx = TYPE_CONTEXT (t);
5258 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5259 So push that instead. */
5260 while (ctx && TREE_CODE (ctx) == BLOCK)
5261 ctx = BLOCK_SUPERCONTEXT (ctx);
5262 fld_worklist_push (ctx, fld);
5263 }
5264 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5265 and want not to reach unused types this way. */
5266
5267 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5268 {
5269 unsigned i;
5270 tree tem;
5271 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5272 fld_worklist_push (TREE_TYPE (tem), fld);
5273 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
5274 if (tem
5275 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
5276 && TREE_CODE (tem) == TREE_LIST)
5277 do
5278 {
5279 fld_worklist_push (TREE_VALUE (tem), fld);
5280 tem = TREE_CHAIN (tem);
5281 }
5282 while (tem);
5283 }
5284 if (RECORD_OR_UNION_TYPE_P (t))
5285 {
5286 tree tem;
5287 /* Push all TYPE_FIELDS - there can be interleaving interesting
5288 and non-interesting things. */
5289 tem = TYPE_FIELDS (t);
5290 while (tem)
5291 {
5292 if (TREE_CODE (tem) == FIELD_DECL
5293 || TREE_CODE (tem) == TYPE_DECL)
5294 fld_worklist_push (tem, fld);
5295 tem = TREE_CHAIN (tem);
5296 }
5297 }
5298
5299 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5300 *ws = 0;
5301 }
5302 else if (TREE_CODE (t) == BLOCK)
5303 {
5304 tree tem;
5305 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
5306 fld_worklist_push (tem, fld);
5307 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5308 fld_worklist_push (tem, fld);
5309 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5310 }
5311
5312 if (TREE_CODE (t) != IDENTIFIER_NODE
5313 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5314 fld_worklist_push (TREE_TYPE (t), fld);
5315
5316 return NULL_TREE;
5317 }
5318
5319
5320 /* Find decls and types in T. */
5321
5322 static void
5323 find_decls_types (tree t, struct free_lang_data_d *fld)
5324 {
5325 while (1)
5326 {
5327 if (!pointer_set_contains (fld->pset, t))
5328 walk_tree (&t, find_decls_types_r, fld, fld->pset);
5329 if (fld->worklist.is_empty ())
5330 break;
5331 t = fld->worklist.pop ();
5332 }
5333 }
5334
5335 /* Translate all the types in LIST with the corresponding runtime
5336 types. */
5337
5338 static tree
5339 get_eh_types_for_runtime (tree list)
5340 {
5341 tree head, prev;
5342
5343 if (list == NULL_TREE)
5344 return NULL_TREE;
5345
5346 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5347 prev = head;
5348 list = TREE_CHAIN (list);
5349 while (list)
5350 {
5351 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5352 TREE_CHAIN (prev) = n;
5353 prev = TREE_CHAIN (prev);
5354 list = TREE_CHAIN (list);
5355 }
5356
5357 return head;
5358 }
5359
5360
5361 /* Find decls and types referenced in EH region R and store them in
5362 FLD->DECLS and FLD->TYPES. */
5363
5364 static void
5365 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5366 {
5367 switch (r->type)
5368 {
5369 case ERT_CLEANUP:
5370 break;
5371
5372 case ERT_TRY:
5373 {
5374 eh_catch c;
5375
5376 /* The types referenced in each catch must first be changed to the
5377 EH types used at runtime. This removes references to FE types
5378 in the region. */
5379 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5380 {
5381 c->type_list = get_eh_types_for_runtime (c->type_list);
5382 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
5383 }
5384 }
5385 break;
5386
5387 case ERT_ALLOWED_EXCEPTIONS:
5388 r->u.allowed.type_list
5389 = get_eh_types_for_runtime (r->u.allowed.type_list);
5390 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
5391 break;
5392
5393 case ERT_MUST_NOT_THROW:
5394 walk_tree (&r->u.must_not_throw.failure_decl,
5395 find_decls_types_r, fld, fld->pset);
5396 break;
5397 }
5398 }
5399
5400
5401 /* Find decls and types referenced in cgraph node N and store them in
5402 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5403 look for *every* kind of DECL and TYPE node reachable from N,
5404 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5405 NAMESPACE_DECLs, etc). */
5406
5407 static void
5408 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5409 {
5410 basic_block bb;
5411 struct function *fn;
5412 unsigned ix;
5413 tree t;
5414
5415 find_decls_types (n->decl, fld);
5416
5417 if (!gimple_has_body_p (n->decl))
5418 return;
5419
5420 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5421
5422 fn = DECL_STRUCT_FUNCTION (n->decl);
5423
5424 /* Traverse locals. */
5425 FOR_EACH_LOCAL_DECL (fn, ix, t)
5426 find_decls_types (t, fld);
5427
5428 /* Traverse EH regions in FN. */
5429 {
5430 eh_region r;
5431 FOR_ALL_EH_REGION_FN (r, fn)
5432 find_decls_types_in_eh_region (r, fld);
5433 }
5434
5435 /* Traverse every statement in FN. */
5436 FOR_EACH_BB_FN (bb, fn)
5437 {
5438 gimple_stmt_iterator si;
5439 unsigned i;
5440
5441 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5442 {
5443 gimple phi = gsi_stmt (si);
5444
5445 for (i = 0; i < gimple_phi_num_args (phi); i++)
5446 {
5447 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5448 find_decls_types (*arg_p, fld);
5449 }
5450 }
5451
5452 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5453 {
5454 gimple stmt = gsi_stmt (si);
5455
5456 if (is_gimple_call (stmt))
5457 find_decls_types (gimple_call_fntype (stmt), fld);
5458
5459 for (i = 0; i < gimple_num_ops (stmt); i++)
5460 {
5461 tree arg = gimple_op (stmt, i);
5462 find_decls_types (arg, fld);
5463 }
5464 }
5465 }
5466 }
5467
5468
5469 /* Find decls and types referenced in varpool node N and store them in
5470 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5471 look for *every* kind of DECL and TYPE node reachable from N,
5472 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5473 NAMESPACE_DECLs, etc). */
5474
5475 static void
5476 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
5477 {
5478 find_decls_types (v->decl, fld);
5479 }
5480
5481 /* If T needs an assembler name, have one created for it. */
5482
5483 void
5484 assign_assembler_name_if_neeeded (tree t)
5485 {
5486 if (need_assembler_name_p (t))
5487 {
5488 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5489 diagnostics that use input_location to show locus
5490 information. The problem here is that, at this point,
5491 input_location is generally anchored to the end of the file
5492 (since the parser is long gone), so we don't have a good
5493 position to pin it to.
5494
5495 To alleviate this problem, this uses the location of T's
5496 declaration. Examples of this are
5497 testsuite/g++.dg/template/cond2.C and
5498 testsuite/g++.dg/template/pr35240.C. */
5499 location_t saved_location = input_location;
5500 input_location = DECL_SOURCE_LOCATION (t);
5501
5502 decl_assembler_name (t);
5503
5504 input_location = saved_location;
5505 }
5506 }
5507
5508
5509 /* Free language specific information for every operand and expression
5510 in every node of the call graph. This process operates in three stages:
5511
5512 1- Every callgraph node and varpool node is traversed looking for
5513 decls and types embedded in them. This is a more exhaustive
5514 search than that done by find_referenced_vars, because it will
5515 also collect individual fields, decls embedded in types, etc.
5516
5517 2- All the decls found are sent to free_lang_data_in_decl.
5518
5519 3- All the types found are sent to free_lang_data_in_type.
5520
5521 The ordering between decls and types is important because
5522 free_lang_data_in_decl sets assembler names, which includes
5523 mangling. So types cannot be freed up until assembler names have
5524 been set up. */
5525
5526 static void
5527 free_lang_data_in_cgraph (void)
5528 {
5529 struct cgraph_node *n;
5530 struct varpool_node *v;
5531 struct free_lang_data_d fld;
5532 tree t;
5533 unsigned i;
5534 alias_pair *p;
5535
5536 /* Initialize sets and arrays to store referenced decls and types. */
5537 fld.pset = pointer_set_create ();
5538 fld.worklist.create (0);
5539 fld.decls.create (100);
5540 fld.types.create (100);
5541
5542 /* Find decls and types in the body of every function in the callgraph. */
5543 FOR_EACH_FUNCTION (n)
5544 find_decls_types_in_node (n, &fld);
5545
5546 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5547 find_decls_types (p->decl, &fld);
5548
5549 /* Find decls and types in every varpool symbol. */
5550 FOR_EACH_VARIABLE (v)
5551 find_decls_types_in_var (v, &fld);
5552
5553 /* Set the assembler name on every decl found. We need to do this
5554 now because free_lang_data_in_decl will invalidate data needed
5555 for mangling. This breaks mangling on interdependent decls. */
5556 FOR_EACH_VEC_ELT (fld.decls, i, t)
5557 assign_assembler_name_if_neeeded (t);
5558
5559 /* Traverse every decl found freeing its language data. */
5560 FOR_EACH_VEC_ELT (fld.decls, i, t)
5561 free_lang_data_in_decl (t);
5562
5563 /* Traverse every type found freeing its language data. */
5564 FOR_EACH_VEC_ELT (fld.types, i, t)
5565 free_lang_data_in_type (t);
5566
5567 pointer_set_destroy (fld.pset);
5568 fld.worklist.release ();
5569 fld.decls.release ();
5570 fld.types.release ();
5571 }
5572
5573
5574 /* Free resources that are used by FE but are not needed once they are done. */
5575
5576 static unsigned
5577 free_lang_data (void)
5578 {
5579 unsigned i;
5580
5581 /* If we are the LTO frontend we have freed lang-specific data already. */
5582 if (in_lto_p
5583 || !flag_generate_lto)
5584 return 0;
5585
5586 /* Allocate and assign alias sets to the standard integer types
5587 while the slots are still in the way the frontends generated them. */
5588 for (i = 0; i < itk_none; ++i)
5589 if (integer_types[i])
5590 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5591
5592 /* Traverse the IL resetting language specific information for
5593 operands, expressions, etc. */
5594 free_lang_data_in_cgraph ();
5595
5596 /* Create gimple variants for common types. */
5597 ptrdiff_type_node = integer_type_node;
5598 fileptr_type_node = ptr_type_node;
5599
5600 /* Reset some langhooks. Do not reset types_compatible_p, it may
5601 still be used indirectly via the get_alias_set langhook. */
5602 lang_hooks.dwarf_name = lhd_dwarf_name;
5603 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5604 /* We do not want the default decl_assembler_name implementation,
5605 rather if we have fixed everything we want a wrapper around it
5606 asserting that all non-local symbols already got their assembler
5607 name and only produce assembler names for local symbols. Or rather
5608 make sure we never call decl_assembler_name on local symbols and
5609 devise a separate, middle-end private scheme for it. */
5610
5611 /* Reset diagnostic machinery. */
5612 tree_diagnostics_defaults (global_dc);
5613
5614 return 0;
5615 }
5616
5617
5618 namespace {
5619
5620 const pass_data pass_data_ipa_free_lang_data =
5621 {
5622 SIMPLE_IPA_PASS, /* type */
5623 "*free_lang_data", /* name */
5624 OPTGROUP_NONE, /* optinfo_flags */
5625 false, /* has_gate */
5626 true, /* has_execute */
5627 TV_IPA_FREE_LANG_DATA, /* tv_id */
5628 0, /* properties_required */
5629 0, /* properties_provided */
5630 0, /* properties_destroyed */
5631 0, /* todo_flags_start */
5632 0, /* todo_flags_finish */
5633 };
5634
5635 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
5636 {
5637 public:
5638 pass_ipa_free_lang_data (gcc::context *ctxt)
5639 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
5640 {}
5641
5642 /* opt_pass methods: */
5643 unsigned int execute () { return free_lang_data (); }
5644
5645 }; // class pass_ipa_free_lang_data
5646
5647 } // anon namespace
5648
5649 simple_ipa_opt_pass *
5650 make_pass_ipa_free_lang_data (gcc::context *ctxt)
5651 {
5652 return new pass_ipa_free_lang_data (ctxt);
5653 }
5654
5655 /* The backbone of is_attribute_p(). ATTR_LEN is the string length of
5656 ATTR_NAME. Also used internally by remove_attribute(). */
5657 bool
5658 private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident)
5659 {
5660 size_t ident_len = IDENTIFIER_LENGTH (ident);
5661
5662 if (ident_len == attr_len)
5663 {
5664 if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0)
5665 return true;
5666 }
5667 else if (ident_len == attr_len + 4)
5668 {
5669 /* There is the possibility that ATTR is 'text' and IDENT is
5670 '__text__'. */
5671 const char *p = IDENTIFIER_POINTER (ident);
5672 if (p[0] == '_' && p[1] == '_'
5673 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5674 && strncmp (attr_name, p + 2, attr_len) == 0)
5675 return true;
5676 }
5677
5678 return false;
5679 }
5680
5681 /* The backbone of lookup_attribute(). ATTR_LEN is the string length
5682 of ATTR_NAME, and LIST is not NULL_TREE. */
5683 tree
5684 private_lookup_attribute (const char *attr_name, size_t attr_len, tree list)
5685 {
5686 while (list)
5687 {
5688 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5689
5690 if (ident_len == attr_len)
5691 {
5692 if (!strcmp (attr_name,
5693 IDENTIFIER_POINTER (get_attribute_name (list))))
5694 break;
5695 }
5696 /* TODO: If we made sure that attributes were stored in the
5697 canonical form without '__...__' (ie, as in 'text' as opposed
5698 to '__text__') then we could avoid the following case. */
5699 else if (ident_len == attr_len + 4)
5700 {
5701 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5702 if (p[0] == '_' && p[1] == '_'
5703 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5704 && strncmp (attr_name, p + 2, attr_len) == 0)
5705 break;
5706 }
5707 list = TREE_CHAIN (list);
5708 }
5709
5710 return list;
5711 }
5712
5713 /* A variant of lookup_attribute() that can be used with an identifier
5714 as the first argument, and where the identifier can be either
5715 'text' or '__text__'.
5716
5717 Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST,
5718 return a pointer to the attribute's list element if the attribute
5719 is part of the list, or NULL_TREE if not found. If the attribute
5720 appears more than once, this only returns the first occurrence; the
5721 TREE_CHAIN of the return value should be passed back in if further
5722 occurrences are wanted. ATTR_IDENTIFIER must be an identifier but
5723 can be in the form 'text' or '__text__'. */
5724 static tree
5725 lookup_ident_attribute (tree attr_identifier, tree list)
5726 {
5727 gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE);
5728
5729 while (list)
5730 {
5731 gcc_checking_assert (TREE_CODE (get_attribute_name (list))
5732 == IDENTIFIER_NODE);
5733
5734 /* Identifiers can be compared directly for equality. */
5735 if (attr_identifier == get_attribute_name (list))
5736 break;
5737
5738 /* If they are not equal, they may still be one in the form
5739 'text' while the other one is in the form '__text__'. TODO:
5740 If we were storing attributes in normalized 'text' form, then
5741 this could all go away and we could take full advantage of
5742 the fact that we're comparing identifiers. :-) */
5743 {
5744 size_t attr_len = IDENTIFIER_LENGTH (attr_identifier);
5745 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5746
5747 if (ident_len == attr_len + 4)
5748 {
5749 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5750 const char *q = IDENTIFIER_POINTER (attr_identifier);
5751 if (p[0] == '_' && p[1] == '_'
5752 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5753 && strncmp (q, p + 2, attr_len) == 0)
5754 break;
5755 }
5756 else if (ident_len + 4 == attr_len)
5757 {
5758 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5759 const char *q = IDENTIFIER_POINTER (attr_identifier);
5760 if (q[0] == '_' && q[1] == '_'
5761 && q[attr_len - 2] == '_' && q[attr_len - 1] == '_'
5762 && strncmp (q + 2, p, ident_len) == 0)
5763 break;
5764 }
5765 }
5766 list = TREE_CHAIN (list);
5767 }
5768
5769 return list;
5770 }
5771
5772 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5773 modified list. */
5774
5775 tree
5776 remove_attribute (const char *attr_name, tree list)
5777 {
5778 tree *p;
5779 size_t attr_len = strlen (attr_name);
5780
5781 gcc_checking_assert (attr_name[0] != '_');
5782
5783 for (p = &list; *p; )
5784 {
5785 tree l = *p;
5786 /* TODO: If we were storing attributes in normalized form, here
5787 we could use a simple strcmp(). */
5788 if (private_is_attribute_p (attr_name, attr_len, get_attribute_name (l)))
5789 *p = TREE_CHAIN (l);
5790 else
5791 p = &TREE_CHAIN (l);
5792 }
5793
5794 return list;
5795 }
5796
5797 /* Return an attribute list that is the union of a1 and a2. */
5798
5799 tree
5800 merge_attributes (tree a1, tree a2)
5801 {
5802 tree attributes;
5803
5804 /* Either one unset? Take the set one. */
5805
5806 if ((attributes = a1) == 0)
5807 attributes = a2;
5808
5809 /* One that completely contains the other? Take it. */
5810
5811 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5812 {
5813 if (attribute_list_contained (a2, a1))
5814 attributes = a2;
5815 else
5816 {
5817 /* Pick the longest list, and hang on the other list. */
5818
5819 if (list_length (a1) < list_length (a2))
5820 attributes = a2, a2 = a1;
5821
5822 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5823 {
5824 tree a;
5825 for (a = lookup_ident_attribute (get_attribute_name (a2),
5826 attributes);
5827 a != NULL_TREE && !attribute_value_equal (a, a2);
5828 a = lookup_ident_attribute (get_attribute_name (a2),
5829 TREE_CHAIN (a)))
5830 ;
5831 if (a == NULL_TREE)
5832 {
5833 a1 = copy_node (a2);
5834 TREE_CHAIN (a1) = attributes;
5835 attributes = a1;
5836 }
5837 }
5838 }
5839 }
5840 return attributes;
5841 }
5842
5843 /* Given types T1 and T2, merge their attributes and return
5844 the result. */
5845
5846 tree
5847 merge_type_attributes (tree t1, tree t2)
5848 {
5849 return merge_attributes (TYPE_ATTRIBUTES (t1),
5850 TYPE_ATTRIBUTES (t2));
5851 }
5852
5853 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5854 the result. */
5855
5856 tree
5857 merge_decl_attributes (tree olddecl, tree newdecl)
5858 {
5859 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5860 DECL_ATTRIBUTES (newdecl));
5861 }
5862
5863 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5864
5865 /* Specialization of merge_decl_attributes for various Windows targets.
5866
5867 This handles the following situation:
5868
5869 __declspec (dllimport) int foo;
5870 int foo;
5871
5872 The second instance of `foo' nullifies the dllimport. */
5873
5874 tree
5875 merge_dllimport_decl_attributes (tree old, tree new_tree)
5876 {
5877 tree a;
5878 int delete_dllimport_p = 1;
5879
5880 /* What we need to do here is remove from `old' dllimport if it doesn't
5881 appear in `new'. dllimport behaves like extern: if a declaration is
5882 marked dllimport and a definition appears later, then the object
5883 is not dllimport'd. We also remove a `new' dllimport if the old list
5884 contains dllexport: dllexport always overrides dllimport, regardless
5885 of the order of declaration. */
5886 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5887 delete_dllimport_p = 0;
5888 else if (DECL_DLLIMPORT_P (new_tree)
5889 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5890 {
5891 DECL_DLLIMPORT_P (new_tree) = 0;
5892 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5893 "dllimport ignored", new_tree);
5894 }
5895 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5896 {
5897 /* Warn about overriding a symbol that has already been used, e.g.:
5898 extern int __attribute__ ((dllimport)) foo;
5899 int* bar () {return &foo;}
5900 int foo;
5901 */
5902 if (TREE_USED (old))
5903 {
5904 warning (0, "%q+D redeclared without dllimport attribute "
5905 "after being referenced with dll linkage", new_tree);
5906 /* If we have used a variable's address with dllimport linkage,
5907 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5908 decl may already have had TREE_CONSTANT computed.
5909 We still remove the attribute so that assembler code refers
5910 to '&foo rather than '_imp__foo'. */
5911 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5912 DECL_DLLIMPORT_P (new_tree) = 1;
5913 }
5914
5915 /* Let an inline definition silently override the external reference,
5916 but otherwise warn about attribute inconsistency. */
5917 else if (TREE_CODE (new_tree) == VAR_DECL
5918 || !DECL_DECLARED_INLINE_P (new_tree))
5919 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5920 "previous dllimport ignored", new_tree);
5921 }
5922 else
5923 delete_dllimport_p = 0;
5924
5925 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5926
5927 if (delete_dllimport_p)
5928 a = remove_attribute ("dllimport", a);
5929
5930 return a;
5931 }
5932
5933 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5934 struct attribute_spec.handler. */
5935
5936 tree
5937 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5938 bool *no_add_attrs)
5939 {
5940 tree node = *pnode;
5941 bool is_dllimport;
5942
5943 /* These attributes may apply to structure and union types being created,
5944 but otherwise should pass to the declaration involved. */
5945 if (!DECL_P (node))
5946 {
5947 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5948 | (int) ATTR_FLAG_ARRAY_NEXT))
5949 {
5950 *no_add_attrs = true;
5951 return tree_cons (name, args, NULL_TREE);
5952 }
5953 if (TREE_CODE (node) == RECORD_TYPE
5954 || TREE_CODE (node) == UNION_TYPE)
5955 {
5956 node = TYPE_NAME (node);
5957 if (!node)
5958 return NULL_TREE;
5959 }
5960 else
5961 {
5962 warning (OPT_Wattributes, "%qE attribute ignored",
5963 name);
5964 *no_add_attrs = true;
5965 return NULL_TREE;
5966 }
5967 }
5968
5969 if (TREE_CODE (node) != FUNCTION_DECL
5970 && TREE_CODE (node) != VAR_DECL
5971 && TREE_CODE (node) != TYPE_DECL)
5972 {
5973 *no_add_attrs = true;
5974 warning (OPT_Wattributes, "%qE attribute ignored",
5975 name);
5976 return NULL_TREE;
5977 }
5978
5979 if (TREE_CODE (node) == TYPE_DECL
5980 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5981 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5982 {
5983 *no_add_attrs = true;
5984 warning (OPT_Wattributes, "%qE attribute ignored",
5985 name);
5986 return NULL_TREE;
5987 }
5988
5989 is_dllimport = is_attribute_p ("dllimport", name);
5990
5991 /* Report error on dllimport ambiguities seen now before they cause
5992 any damage. */
5993 if (is_dllimport)
5994 {
5995 /* Honor any target-specific overrides. */
5996 if (!targetm.valid_dllimport_attribute_p (node))
5997 *no_add_attrs = true;
5998
5999 else if (TREE_CODE (node) == FUNCTION_DECL
6000 && DECL_DECLARED_INLINE_P (node))
6001 {
6002 warning (OPT_Wattributes, "inline function %q+D declared as "
6003 " dllimport: attribute ignored", node);
6004 *no_add_attrs = true;
6005 }
6006 /* Like MS, treat definition of dllimported variables and
6007 non-inlined functions on declaration as syntax errors. */
6008 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
6009 {
6010 error ("function %q+D definition is marked dllimport", node);
6011 *no_add_attrs = true;
6012 }
6013
6014 else if (TREE_CODE (node) == VAR_DECL)
6015 {
6016 if (DECL_INITIAL (node))
6017 {
6018 error ("variable %q+D definition is marked dllimport",
6019 node);
6020 *no_add_attrs = true;
6021 }
6022
6023 /* `extern' needn't be specified with dllimport.
6024 Specify `extern' now and hope for the best. Sigh. */
6025 DECL_EXTERNAL (node) = 1;
6026 /* Also, implicitly give dllimport'd variables declared within
6027 a function global scope, unless declared static. */
6028 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
6029 TREE_PUBLIC (node) = 1;
6030 }
6031
6032 if (*no_add_attrs == false)
6033 DECL_DLLIMPORT_P (node) = 1;
6034 }
6035 else if (TREE_CODE (node) == FUNCTION_DECL
6036 && DECL_DECLARED_INLINE_P (node)
6037 && flag_keep_inline_dllexport)
6038 /* An exported function, even if inline, must be emitted. */
6039 DECL_EXTERNAL (node) = 0;
6040
6041 /* Report error if symbol is not accessible at global scope. */
6042 if (!TREE_PUBLIC (node)
6043 && (TREE_CODE (node) == VAR_DECL
6044 || TREE_CODE (node) == FUNCTION_DECL))
6045 {
6046 error ("external linkage required for symbol %q+D because of "
6047 "%qE attribute", node, name);
6048 *no_add_attrs = true;
6049 }
6050
6051 /* A dllexport'd entity must have default visibility so that other
6052 program units (shared libraries or the main executable) can see
6053 it. A dllimport'd entity must have default visibility so that
6054 the linker knows that undefined references within this program
6055 unit can be resolved by the dynamic linker. */
6056 if (!*no_add_attrs)
6057 {
6058 if (DECL_VISIBILITY_SPECIFIED (node)
6059 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
6060 error ("%qE implies default visibility, but %qD has already "
6061 "been declared with a different visibility",
6062 name, node);
6063 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
6064 DECL_VISIBILITY_SPECIFIED (node) = 1;
6065 }
6066
6067 return NULL_TREE;
6068 }
6069
6070 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
6071 \f
6072 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
6073 of the various TYPE_QUAL values. */
6074
6075 static void
6076 set_type_quals (tree type, int type_quals)
6077 {
6078 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
6079 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
6080 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
6081 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
6082 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
6083 }
6084
6085 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
6086
6087 bool
6088 check_qualified_type (const_tree cand, const_tree base, int type_quals)
6089 {
6090 return (TYPE_QUALS (cand) == type_quals
6091 && TYPE_NAME (cand) == TYPE_NAME (base)
6092 /* Apparently this is needed for Objective-C. */
6093 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6094 /* Check alignment. */
6095 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
6096 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6097 TYPE_ATTRIBUTES (base)));
6098 }
6099
6100 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
6101
6102 static bool
6103 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6104 {
6105 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6106 && TYPE_NAME (cand) == TYPE_NAME (base)
6107 /* Apparently this is needed for Objective-C. */
6108 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6109 /* Check alignment. */
6110 && TYPE_ALIGN (cand) == align
6111 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6112 TYPE_ATTRIBUTES (base)));
6113 }
6114
6115 /* This function checks to see if TYPE matches the size one of the built-in
6116 atomic types, and returns that core atomic type. */
6117
6118 static tree
6119 find_atomic_core_type (tree type)
6120 {
6121 tree base_atomic_type;
6122
6123 /* Only handle complete types. */
6124 if (TYPE_SIZE (type) == NULL_TREE)
6125 return NULL_TREE;
6126
6127 HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
6128 switch (type_size)
6129 {
6130 case 8:
6131 base_atomic_type = atomicQI_type_node;
6132 break;
6133
6134 case 16:
6135 base_atomic_type = atomicHI_type_node;
6136 break;
6137
6138 case 32:
6139 base_atomic_type = atomicSI_type_node;
6140 break;
6141
6142 case 64:
6143 base_atomic_type = atomicDI_type_node;
6144 break;
6145
6146 case 128:
6147 base_atomic_type = atomicTI_type_node;
6148 break;
6149
6150 default:
6151 base_atomic_type = NULL_TREE;
6152 }
6153
6154 return base_atomic_type;
6155 }
6156
6157 /* Return a version of the TYPE, qualified as indicated by the
6158 TYPE_QUALS, if one exists. If no qualified version exists yet,
6159 return NULL_TREE. */
6160
6161 tree
6162 get_qualified_type (tree type, int type_quals)
6163 {
6164 tree t;
6165
6166 if (TYPE_QUALS (type) == type_quals)
6167 return type;
6168
6169 /* Search the chain of variants to see if there is already one there just
6170 like the one we need to have. If so, use that existing one. We must
6171 preserve the TYPE_NAME, since there is code that depends on this. */
6172 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6173 if (check_qualified_type (t, type, type_quals))
6174 return t;
6175
6176 return NULL_TREE;
6177 }
6178
6179 /* Like get_qualified_type, but creates the type if it does not
6180 exist. This function never returns NULL_TREE. */
6181
6182 tree
6183 build_qualified_type (tree type, int type_quals)
6184 {
6185 tree t;
6186
6187 /* See if we already have the appropriate qualified variant. */
6188 t = get_qualified_type (type, type_quals);
6189
6190 /* If not, build it. */
6191 if (!t)
6192 {
6193 t = build_variant_type_copy (type);
6194 set_type_quals (t, type_quals);
6195
6196 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6197 {
6198 /* See if this object can map to a basic atomic type. */
6199 tree atomic_type = find_atomic_core_type (type);
6200 if (atomic_type)
6201 {
6202 /* Ensure the alignment of this type is compatible with
6203 the required alignment of the atomic type. */
6204 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6205 TYPE_ALIGN (t) = TYPE_ALIGN (atomic_type);
6206 }
6207 }
6208
6209 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6210 /* Propagate structural equality. */
6211 SET_TYPE_STRUCTURAL_EQUALITY (t);
6212 else if (TYPE_CANONICAL (type) != type)
6213 /* Build the underlying canonical type, since it is different
6214 from TYPE. */
6215 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
6216 type_quals);
6217 else
6218 /* T is its own canonical type. */
6219 TYPE_CANONICAL (t) = t;
6220
6221 }
6222
6223 return t;
6224 }
6225
6226 /* Create a variant of type T with alignment ALIGN. */
6227
6228 tree
6229 build_aligned_type (tree type, unsigned int align)
6230 {
6231 tree t;
6232
6233 if (TYPE_PACKED (type)
6234 || TYPE_ALIGN (type) == align)
6235 return type;
6236
6237 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6238 if (check_aligned_type (t, type, align))
6239 return t;
6240
6241 t = build_variant_type_copy (type);
6242 TYPE_ALIGN (t) = align;
6243
6244 return t;
6245 }
6246
6247 /* Create a new distinct copy of TYPE. The new type is made its own
6248 MAIN_VARIANT. If TYPE requires structural equality checks, the
6249 resulting type requires structural equality checks; otherwise, its
6250 TYPE_CANONICAL points to itself. */
6251
6252 tree
6253 build_distinct_type_copy (tree type)
6254 {
6255 tree t = copy_node (type);
6256
6257 TYPE_POINTER_TO (t) = 0;
6258 TYPE_REFERENCE_TO (t) = 0;
6259
6260 /* Set the canonical type either to a new equivalence class, or
6261 propagate the need for structural equality checks. */
6262 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6263 SET_TYPE_STRUCTURAL_EQUALITY (t);
6264 else
6265 TYPE_CANONICAL (t) = t;
6266
6267 /* Make it its own variant. */
6268 TYPE_MAIN_VARIANT (t) = t;
6269 TYPE_NEXT_VARIANT (t) = 0;
6270
6271 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6272 whose TREE_TYPE is not t. This can also happen in the Ada
6273 frontend when using subtypes. */
6274
6275 return t;
6276 }
6277
6278 /* Create a new variant of TYPE, equivalent but distinct. This is so
6279 the caller can modify it. TYPE_CANONICAL for the return type will
6280 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6281 are considered equal by the language itself (or that both types
6282 require structural equality checks). */
6283
6284 tree
6285 build_variant_type_copy (tree type)
6286 {
6287 tree t, m = TYPE_MAIN_VARIANT (type);
6288
6289 t = build_distinct_type_copy (type);
6290
6291 /* Since we're building a variant, assume that it is a non-semantic
6292 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6293 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6294
6295 /* Add the new type to the chain of variants of TYPE. */
6296 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6297 TYPE_NEXT_VARIANT (m) = t;
6298 TYPE_MAIN_VARIANT (t) = m;
6299
6300 return t;
6301 }
6302 \f
6303 /* Return true if the from tree in both tree maps are equal. */
6304
6305 int
6306 tree_map_base_eq (const void *va, const void *vb)
6307 {
6308 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6309 *const b = (const struct tree_map_base *) vb;
6310 return (a->from == b->from);
6311 }
6312
6313 /* Hash a from tree in a tree_base_map. */
6314
6315 unsigned int
6316 tree_map_base_hash (const void *item)
6317 {
6318 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6319 }
6320
6321 /* Return true if this tree map structure is marked for garbage collection
6322 purposes. We simply return true if the from tree is marked, so that this
6323 structure goes away when the from tree goes away. */
6324
6325 int
6326 tree_map_base_marked_p (const void *p)
6327 {
6328 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6329 }
6330
6331 /* Hash a from tree in a tree_map. */
6332
6333 unsigned int
6334 tree_map_hash (const void *item)
6335 {
6336 return (((const struct tree_map *) item)->hash);
6337 }
6338
6339 /* Hash a from tree in a tree_decl_map. */
6340
6341 unsigned int
6342 tree_decl_map_hash (const void *item)
6343 {
6344 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6345 }
6346
6347 /* Return the initialization priority for DECL. */
6348
6349 priority_type
6350 decl_init_priority_lookup (tree decl)
6351 {
6352 struct tree_priority_map *h;
6353 struct tree_map_base in;
6354
6355 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
6356 in.from = decl;
6357 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
6358 return h ? h->init : DEFAULT_INIT_PRIORITY;
6359 }
6360
6361 /* Return the finalization priority for DECL. */
6362
6363 priority_type
6364 decl_fini_priority_lookup (tree decl)
6365 {
6366 struct tree_priority_map *h;
6367 struct tree_map_base in;
6368
6369 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
6370 in.from = decl;
6371 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
6372 return h ? h->fini : DEFAULT_INIT_PRIORITY;
6373 }
6374
6375 /* Return the initialization and finalization priority information for
6376 DECL. If there is no previous priority information, a freshly
6377 allocated structure is returned. */
6378
6379 static struct tree_priority_map *
6380 decl_priority_info (tree decl)
6381 {
6382 struct tree_priority_map in;
6383 struct tree_priority_map *h;
6384 void **loc;
6385
6386 in.base.from = decl;
6387 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
6388 h = (struct tree_priority_map *) *loc;
6389 if (!h)
6390 {
6391 h = ggc_alloc_cleared_tree_priority_map ();
6392 *loc = h;
6393 h->base.from = decl;
6394 h->init = DEFAULT_INIT_PRIORITY;
6395 h->fini = DEFAULT_INIT_PRIORITY;
6396 }
6397
6398 return h;
6399 }
6400
6401 /* Set the initialization priority for DECL to PRIORITY. */
6402
6403 void
6404 decl_init_priority_insert (tree decl, priority_type priority)
6405 {
6406 struct tree_priority_map *h;
6407
6408 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
6409 if (priority == DEFAULT_INIT_PRIORITY)
6410 return;
6411 h = decl_priority_info (decl);
6412 h->init = priority;
6413 }
6414
6415 /* Set the finalization priority for DECL to PRIORITY. */
6416
6417 void
6418 decl_fini_priority_insert (tree decl, priority_type priority)
6419 {
6420 struct tree_priority_map *h;
6421
6422 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
6423 if (priority == DEFAULT_INIT_PRIORITY)
6424 return;
6425 h = decl_priority_info (decl);
6426 h->fini = priority;
6427 }
6428
6429 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6430
6431 static void
6432 print_debug_expr_statistics (void)
6433 {
6434 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6435 (long) htab_size (debug_expr_for_decl),
6436 (long) htab_elements (debug_expr_for_decl),
6437 htab_collisions (debug_expr_for_decl));
6438 }
6439
6440 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6441
6442 static void
6443 print_value_expr_statistics (void)
6444 {
6445 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6446 (long) htab_size (value_expr_for_decl),
6447 (long) htab_elements (value_expr_for_decl),
6448 htab_collisions (value_expr_for_decl));
6449 }
6450
6451 /* Lookup a debug expression for FROM, and return it if we find one. */
6452
6453 tree
6454 decl_debug_expr_lookup (tree from)
6455 {
6456 struct tree_decl_map *h, in;
6457 in.base.from = from;
6458
6459 h = (struct tree_decl_map *)
6460 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
6461 if (h)
6462 return h->to;
6463 return NULL_TREE;
6464 }
6465
6466 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6467
6468 void
6469 decl_debug_expr_insert (tree from, tree to)
6470 {
6471 struct tree_decl_map *h;
6472 void **loc;
6473
6474 h = ggc_alloc_tree_decl_map ();
6475 h->base.from = from;
6476 h->to = to;
6477 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
6478 INSERT);
6479 *(struct tree_decl_map **) loc = h;
6480 }
6481
6482 /* Lookup a value expression for FROM, and return it if we find one. */
6483
6484 tree
6485 decl_value_expr_lookup (tree from)
6486 {
6487 struct tree_decl_map *h, in;
6488 in.base.from = from;
6489
6490 h = (struct tree_decl_map *)
6491 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
6492 if (h)
6493 return h->to;
6494 return NULL_TREE;
6495 }
6496
6497 /* Insert a mapping FROM->TO in the value expression hashtable. */
6498
6499 void
6500 decl_value_expr_insert (tree from, tree to)
6501 {
6502 struct tree_decl_map *h;
6503 void **loc;
6504
6505 h = ggc_alloc_tree_decl_map ();
6506 h->base.from = from;
6507 h->to = to;
6508 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
6509 INSERT);
6510 *(struct tree_decl_map **) loc = h;
6511 }
6512
6513 /* Lookup a vector of debug arguments for FROM, and return it if we
6514 find one. */
6515
6516 vec<tree, va_gc> **
6517 decl_debug_args_lookup (tree from)
6518 {
6519 struct tree_vec_map *h, in;
6520
6521 if (!DECL_HAS_DEBUG_ARGS_P (from))
6522 return NULL;
6523 gcc_checking_assert (debug_args_for_decl != NULL);
6524 in.base.from = from;
6525 h = (struct tree_vec_map *)
6526 htab_find_with_hash (debug_args_for_decl, &in, DECL_UID (from));
6527 if (h)
6528 return &h->to;
6529 return NULL;
6530 }
6531
6532 /* Insert a mapping FROM->empty vector of debug arguments in the value
6533 expression hashtable. */
6534
6535 vec<tree, va_gc> **
6536 decl_debug_args_insert (tree from)
6537 {
6538 struct tree_vec_map *h;
6539 void **loc;
6540
6541 if (DECL_HAS_DEBUG_ARGS_P (from))
6542 return decl_debug_args_lookup (from);
6543 if (debug_args_for_decl == NULL)
6544 debug_args_for_decl = htab_create_ggc (64, tree_vec_map_hash,
6545 tree_vec_map_eq, 0);
6546 h = ggc_alloc_tree_vec_map ();
6547 h->base.from = from;
6548 h->to = NULL;
6549 loc = htab_find_slot_with_hash (debug_args_for_decl, h, DECL_UID (from),
6550 INSERT);
6551 *(struct tree_vec_map **) loc = h;
6552 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6553 return &h->to;
6554 }
6555
6556 /* Hashing of types so that we don't make duplicates.
6557 The entry point is `type_hash_canon'. */
6558
6559 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6560 with types in the TREE_VALUE slots), by adding the hash codes
6561 of the individual types. */
6562
6563 static unsigned int
6564 type_hash_list (const_tree list, hashval_t hashcode)
6565 {
6566 const_tree tail;
6567
6568 for (tail = list; tail; tail = TREE_CHAIN (tail))
6569 if (TREE_VALUE (tail) != error_mark_node)
6570 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
6571 hashcode);
6572
6573 return hashcode;
6574 }
6575
6576 /* These are the Hashtable callback functions. */
6577
6578 /* Returns true iff the types are equivalent. */
6579
6580 static int
6581 type_hash_eq (const void *va, const void *vb)
6582 {
6583 const struct type_hash *const a = (const struct type_hash *) va,
6584 *const b = (const struct type_hash *) vb;
6585
6586 /* First test the things that are the same for all types. */
6587 if (a->hash != b->hash
6588 || TREE_CODE (a->type) != TREE_CODE (b->type)
6589 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6590 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6591 TYPE_ATTRIBUTES (b->type))
6592 || (TREE_CODE (a->type) != COMPLEX_TYPE
6593 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6594 return 0;
6595
6596 /* Be careful about comparing arrays before and after the element type
6597 has been completed; don't compare TYPE_ALIGN unless both types are
6598 complete. */
6599 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6600 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6601 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6602 return 0;
6603
6604 switch (TREE_CODE (a->type))
6605 {
6606 case VOID_TYPE:
6607 case COMPLEX_TYPE:
6608 case POINTER_TYPE:
6609 case REFERENCE_TYPE:
6610 case NULLPTR_TYPE:
6611 return 1;
6612
6613 case VECTOR_TYPE:
6614 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6615
6616 case ENUMERAL_TYPE:
6617 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6618 && !(TYPE_VALUES (a->type)
6619 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6620 && TYPE_VALUES (b->type)
6621 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6622 && type_list_equal (TYPE_VALUES (a->type),
6623 TYPE_VALUES (b->type))))
6624 return 0;
6625
6626 /* ... fall through ... */
6627
6628 case INTEGER_TYPE:
6629 case REAL_TYPE:
6630 case BOOLEAN_TYPE:
6631 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6632 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6633 TYPE_MAX_VALUE (b->type)))
6634 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6635 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6636 TYPE_MIN_VALUE (b->type))));
6637
6638 case FIXED_POINT_TYPE:
6639 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6640
6641 case OFFSET_TYPE:
6642 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6643
6644 case METHOD_TYPE:
6645 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6646 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6647 || (TYPE_ARG_TYPES (a->type)
6648 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6649 && TYPE_ARG_TYPES (b->type)
6650 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6651 && type_list_equal (TYPE_ARG_TYPES (a->type),
6652 TYPE_ARG_TYPES (b->type)))))
6653 break;
6654 return 0;
6655 case ARRAY_TYPE:
6656 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6657
6658 case RECORD_TYPE:
6659 case UNION_TYPE:
6660 case QUAL_UNION_TYPE:
6661 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6662 || (TYPE_FIELDS (a->type)
6663 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6664 && TYPE_FIELDS (b->type)
6665 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6666 && type_list_equal (TYPE_FIELDS (a->type),
6667 TYPE_FIELDS (b->type))));
6668
6669 case FUNCTION_TYPE:
6670 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6671 || (TYPE_ARG_TYPES (a->type)
6672 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6673 && TYPE_ARG_TYPES (b->type)
6674 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6675 && type_list_equal (TYPE_ARG_TYPES (a->type),
6676 TYPE_ARG_TYPES (b->type))))
6677 break;
6678 return 0;
6679
6680 default:
6681 return 0;
6682 }
6683
6684 if (lang_hooks.types.type_hash_eq != NULL)
6685 return lang_hooks.types.type_hash_eq (a->type, b->type);
6686
6687 return 1;
6688 }
6689
6690 /* Return the cached hash value. */
6691
6692 static hashval_t
6693 type_hash_hash (const void *item)
6694 {
6695 return ((const struct type_hash *) item)->hash;
6696 }
6697
6698 /* Look in the type hash table for a type isomorphic to TYPE.
6699 If one is found, return it. Otherwise return 0. */
6700
6701 static tree
6702 type_hash_lookup (hashval_t hashcode, tree type)
6703 {
6704 struct type_hash *h, in;
6705
6706 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6707 must call that routine before comparing TYPE_ALIGNs. */
6708 layout_type (type);
6709
6710 in.hash = hashcode;
6711 in.type = type;
6712
6713 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6714 hashcode);
6715 if (h)
6716 return h->type;
6717 return NULL_TREE;
6718 }
6719
6720 /* Add an entry to the type-hash-table
6721 for a type TYPE whose hash code is HASHCODE. */
6722
6723 static void
6724 type_hash_add (hashval_t hashcode, tree type)
6725 {
6726 struct type_hash *h;
6727 void **loc;
6728
6729 h = ggc_alloc_type_hash ();
6730 h->hash = hashcode;
6731 h->type = type;
6732 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6733 *loc = (void *)h;
6734 }
6735
6736 /* Given TYPE, and HASHCODE its hash code, return the canonical
6737 object for an identical type if one already exists.
6738 Otherwise, return TYPE, and record it as the canonical object.
6739
6740 To use this function, first create a type of the sort you want.
6741 Then compute its hash code from the fields of the type that
6742 make it different from other similar types.
6743 Then call this function and use the value. */
6744
6745 tree
6746 type_hash_canon (unsigned int hashcode, tree type)
6747 {
6748 tree t1;
6749
6750 /* The hash table only contains main variants, so ensure that's what we're
6751 being passed. */
6752 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6753
6754 /* See if the type is in the hash table already. If so, return it.
6755 Otherwise, add the type. */
6756 t1 = type_hash_lookup (hashcode, type);
6757 if (t1 != 0)
6758 {
6759 if (GATHER_STATISTICS)
6760 {
6761 tree_code_counts[(int) TREE_CODE (type)]--;
6762 tree_node_counts[(int) t_kind]--;
6763 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
6764 }
6765 return t1;
6766 }
6767 else
6768 {
6769 type_hash_add (hashcode, type);
6770 return type;
6771 }
6772 }
6773
6774 /* See if the data pointed to by the type hash table is marked. We consider
6775 it marked if the type is marked or if a debug type number or symbol
6776 table entry has been made for the type. */
6777
6778 static int
6779 type_hash_marked_p (const void *p)
6780 {
6781 const_tree const type = ((const struct type_hash *) p)->type;
6782
6783 return ggc_marked_p (type);
6784 }
6785
6786 static void
6787 print_type_hash_statistics (void)
6788 {
6789 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6790 (long) htab_size (type_hash_table),
6791 (long) htab_elements (type_hash_table),
6792 htab_collisions (type_hash_table));
6793 }
6794
6795 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6796 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6797 by adding the hash codes of the individual attributes. */
6798
6799 static unsigned int
6800 attribute_hash_list (const_tree list, hashval_t hashcode)
6801 {
6802 const_tree tail;
6803
6804 for (tail = list; tail; tail = TREE_CHAIN (tail))
6805 /* ??? Do we want to add in TREE_VALUE too? */
6806 hashcode = iterative_hash_object
6807 (IDENTIFIER_HASH_VALUE (get_attribute_name (tail)), hashcode);
6808 return hashcode;
6809 }
6810
6811 /* Given two lists of attributes, return true if list l2 is
6812 equivalent to l1. */
6813
6814 int
6815 attribute_list_equal (const_tree l1, const_tree l2)
6816 {
6817 if (l1 == l2)
6818 return 1;
6819
6820 return attribute_list_contained (l1, l2)
6821 && attribute_list_contained (l2, l1);
6822 }
6823
6824 /* Given two lists of attributes, return true if list L2 is
6825 completely contained within L1. */
6826 /* ??? This would be faster if attribute names were stored in a canonicalized
6827 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6828 must be used to show these elements are equivalent (which they are). */
6829 /* ??? It's not clear that attributes with arguments will always be handled
6830 correctly. */
6831
6832 int
6833 attribute_list_contained (const_tree l1, const_tree l2)
6834 {
6835 const_tree t1, t2;
6836
6837 /* First check the obvious, maybe the lists are identical. */
6838 if (l1 == l2)
6839 return 1;
6840
6841 /* Maybe the lists are similar. */
6842 for (t1 = l1, t2 = l2;
6843 t1 != 0 && t2 != 0
6844 && get_attribute_name (t1) == get_attribute_name (t2)
6845 && TREE_VALUE (t1) == TREE_VALUE (t2);
6846 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6847 ;
6848
6849 /* Maybe the lists are equal. */
6850 if (t1 == 0 && t2 == 0)
6851 return 1;
6852
6853 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6854 {
6855 const_tree attr;
6856 /* This CONST_CAST is okay because lookup_attribute does not
6857 modify its argument and the return value is assigned to a
6858 const_tree. */
6859 for (attr = lookup_ident_attribute (get_attribute_name (t2),
6860 CONST_CAST_TREE (l1));
6861 attr != NULL_TREE && !attribute_value_equal (t2, attr);
6862 attr = lookup_ident_attribute (get_attribute_name (t2),
6863 TREE_CHAIN (attr)))
6864 ;
6865
6866 if (attr == NULL_TREE)
6867 return 0;
6868 }
6869
6870 return 1;
6871 }
6872
6873 /* Given two lists of types
6874 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6875 return 1 if the lists contain the same types in the same order.
6876 Also, the TREE_PURPOSEs must match. */
6877
6878 int
6879 type_list_equal (const_tree l1, const_tree l2)
6880 {
6881 const_tree t1, t2;
6882
6883 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6884 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6885 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6886 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6887 && (TREE_TYPE (TREE_PURPOSE (t1))
6888 == TREE_TYPE (TREE_PURPOSE (t2))))))
6889 return 0;
6890
6891 return t1 == t2;
6892 }
6893
6894 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6895 given by TYPE. If the argument list accepts variable arguments,
6896 then this function counts only the ordinary arguments. */
6897
6898 int
6899 type_num_arguments (const_tree type)
6900 {
6901 int i = 0;
6902 tree t;
6903
6904 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6905 /* If the function does not take a variable number of arguments,
6906 the last element in the list will have type `void'. */
6907 if (VOID_TYPE_P (TREE_VALUE (t)))
6908 break;
6909 else
6910 ++i;
6911
6912 return i;
6913 }
6914
6915 /* Nonzero if integer constants T1 and T2
6916 represent the same constant value. */
6917
6918 int
6919 tree_int_cst_equal (const_tree t1, const_tree t2)
6920 {
6921 if (t1 == t2)
6922 return 1;
6923
6924 if (t1 == 0 || t2 == 0)
6925 return 0;
6926
6927 if (TREE_CODE (t1) == INTEGER_CST
6928 && TREE_CODE (t2) == INTEGER_CST
6929 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6930 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6931 return 1;
6932
6933 return 0;
6934 }
6935
6936 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6937 The precise way of comparison depends on their data type. */
6938
6939 int
6940 tree_int_cst_lt (const_tree t1, const_tree t2)
6941 {
6942 if (t1 == t2)
6943 return 0;
6944
6945 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6946 {
6947 int t1_sgn = tree_int_cst_sgn (t1);
6948 int t2_sgn = tree_int_cst_sgn (t2);
6949
6950 if (t1_sgn < t2_sgn)
6951 return 1;
6952 else if (t1_sgn > t2_sgn)
6953 return 0;
6954 /* Otherwise, both are non-negative, so we compare them as
6955 unsigned just in case one of them would overflow a signed
6956 type. */
6957 }
6958 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6959 return INT_CST_LT (t1, t2);
6960
6961 return INT_CST_LT_UNSIGNED (t1, t2);
6962 }
6963
6964 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6965
6966 int
6967 tree_int_cst_compare (const_tree t1, const_tree t2)
6968 {
6969 if (tree_int_cst_lt (t1, t2))
6970 return -1;
6971 else if (tree_int_cst_lt (t2, t1))
6972 return 1;
6973 else
6974 return 0;
6975 }
6976
6977 /* Return true if T is an INTEGER_CST whose numerical value (extended
6978 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
6979
6980 bool
6981 tree_fits_shwi_p (const_tree t)
6982 {
6983 return (t != NULL_TREE
6984 && TREE_CODE (t) == INTEGER_CST
6985 && ((TREE_INT_CST_HIGH (t) == 0
6986 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6987 || (TREE_INT_CST_HIGH (t) == -1
6988 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6989 && !TYPE_UNSIGNED (TREE_TYPE (t)))));
6990 }
6991
6992 /* Return true if T is an INTEGER_CST whose numerical value (extended
6993 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
6994
6995 bool
6996 tree_fits_uhwi_p (const_tree t)
6997 {
6998 return (t != NULL_TREE
6999 && TREE_CODE (t) == INTEGER_CST
7000 && TREE_INT_CST_HIGH (t) == 0);
7001 }
7002
7003 /* T is an INTEGER_CST whose numerical value (extended according to
7004 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
7005 HOST_WIDE_INT. */
7006
7007 HOST_WIDE_INT
7008 tree_to_shwi (const_tree t)
7009 {
7010 gcc_assert (tree_fits_shwi_p (t));
7011 return TREE_INT_CST_LOW (t);
7012 }
7013
7014 /* T is an INTEGER_CST whose numerical value (extended according to
7015 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
7016 HOST_WIDE_INT. */
7017
7018 unsigned HOST_WIDE_INT
7019 tree_to_uhwi (const_tree t)
7020 {
7021 gcc_assert (tree_fits_uhwi_p (t));
7022 return TREE_INT_CST_LOW (t);
7023 }
7024
7025 /* Return the most significant (sign) bit of T. */
7026
7027 int
7028 tree_int_cst_sign_bit (const_tree t)
7029 {
7030 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
7031 unsigned HOST_WIDE_INT w;
7032
7033 if (bitno < HOST_BITS_PER_WIDE_INT)
7034 w = TREE_INT_CST_LOW (t);
7035 else
7036 {
7037 w = TREE_INT_CST_HIGH (t);
7038 bitno -= HOST_BITS_PER_WIDE_INT;
7039 }
7040
7041 return (w >> bitno) & 1;
7042 }
7043
7044 /* Return an indication of the sign of the integer constant T.
7045 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
7046 Note that -1 will never be returned if T's type is unsigned. */
7047
7048 int
7049 tree_int_cst_sgn (const_tree t)
7050 {
7051 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
7052 return 0;
7053 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
7054 return 1;
7055 else if (TREE_INT_CST_HIGH (t) < 0)
7056 return -1;
7057 else
7058 return 1;
7059 }
7060
7061 /* Return the minimum number of bits needed to represent VALUE in a
7062 signed or unsigned type, UNSIGNEDP says which. */
7063
7064 unsigned int
7065 tree_int_cst_min_precision (tree value, bool unsignedp)
7066 {
7067 /* If the value is negative, compute its negative minus 1. The latter
7068 adjustment is because the absolute value of the largest negative value
7069 is one larger than the largest positive value. This is equivalent to
7070 a bit-wise negation, so use that operation instead. */
7071
7072 if (tree_int_cst_sgn (value) < 0)
7073 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
7074
7075 /* Return the number of bits needed, taking into account the fact
7076 that we need one more bit for a signed than unsigned type.
7077 If value is 0 or -1, the minimum precision is 1 no matter
7078 whether unsignedp is true or false. */
7079
7080 if (integer_zerop (value))
7081 return 1;
7082 else
7083 return tree_floor_log2 (value) + 1 + !unsignedp;
7084 }
7085
7086 /* Return truthvalue of whether T1 is the same tree structure as T2.
7087 Return 1 if they are the same.
7088 Return 0 if they are understandably different.
7089 Return -1 if either contains tree structure not understood by
7090 this function. */
7091
7092 int
7093 simple_cst_equal (const_tree t1, const_tree t2)
7094 {
7095 enum tree_code code1, code2;
7096 int cmp;
7097 int i;
7098
7099 if (t1 == t2)
7100 return 1;
7101 if (t1 == 0 || t2 == 0)
7102 return 0;
7103
7104 code1 = TREE_CODE (t1);
7105 code2 = TREE_CODE (t2);
7106
7107 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
7108 {
7109 if (CONVERT_EXPR_CODE_P (code2)
7110 || code2 == NON_LVALUE_EXPR)
7111 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7112 else
7113 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
7114 }
7115
7116 else if (CONVERT_EXPR_CODE_P (code2)
7117 || code2 == NON_LVALUE_EXPR)
7118 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
7119
7120 if (code1 != code2)
7121 return 0;
7122
7123 switch (code1)
7124 {
7125 case INTEGER_CST:
7126 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
7127 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
7128
7129 case REAL_CST:
7130 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
7131
7132 case FIXED_CST:
7133 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
7134
7135 case STRING_CST:
7136 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
7137 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
7138 TREE_STRING_LENGTH (t1)));
7139
7140 case CONSTRUCTOR:
7141 {
7142 unsigned HOST_WIDE_INT idx;
7143 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
7144 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
7145
7146 if (vec_safe_length (v1) != vec_safe_length (v2))
7147 return false;
7148
7149 for (idx = 0; idx < vec_safe_length (v1); ++idx)
7150 /* ??? Should we handle also fields here? */
7151 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7152 return false;
7153 return true;
7154 }
7155
7156 case SAVE_EXPR:
7157 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7158
7159 case CALL_EXPR:
7160 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7161 if (cmp <= 0)
7162 return cmp;
7163 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7164 return 0;
7165 {
7166 const_tree arg1, arg2;
7167 const_call_expr_arg_iterator iter1, iter2;
7168 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7169 arg2 = first_const_call_expr_arg (t2, &iter2);
7170 arg1 && arg2;
7171 arg1 = next_const_call_expr_arg (&iter1),
7172 arg2 = next_const_call_expr_arg (&iter2))
7173 {
7174 cmp = simple_cst_equal (arg1, arg2);
7175 if (cmp <= 0)
7176 return cmp;
7177 }
7178 return arg1 == arg2;
7179 }
7180
7181 case TARGET_EXPR:
7182 /* Special case: if either target is an unallocated VAR_DECL,
7183 it means that it's going to be unified with whatever the
7184 TARGET_EXPR is really supposed to initialize, so treat it
7185 as being equivalent to anything. */
7186 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7187 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7188 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7189 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7190 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7191 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7192 cmp = 1;
7193 else
7194 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7195
7196 if (cmp <= 0)
7197 return cmp;
7198
7199 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7200
7201 case WITH_CLEANUP_EXPR:
7202 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7203 if (cmp <= 0)
7204 return cmp;
7205
7206 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7207
7208 case COMPONENT_REF:
7209 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7210 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7211
7212 return 0;
7213
7214 case VAR_DECL:
7215 case PARM_DECL:
7216 case CONST_DECL:
7217 case FUNCTION_DECL:
7218 return 0;
7219
7220 default:
7221 break;
7222 }
7223
7224 /* This general rule works for most tree codes. All exceptions should be
7225 handled above. If this is a language-specific tree code, we can't
7226 trust what might be in the operand, so say we don't know
7227 the situation. */
7228 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7229 return -1;
7230
7231 switch (TREE_CODE_CLASS (code1))
7232 {
7233 case tcc_unary:
7234 case tcc_binary:
7235 case tcc_comparison:
7236 case tcc_expression:
7237 case tcc_reference:
7238 case tcc_statement:
7239 cmp = 1;
7240 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7241 {
7242 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7243 if (cmp <= 0)
7244 return cmp;
7245 }
7246
7247 return cmp;
7248
7249 default:
7250 return -1;
7251 }
7252 }
7253
7254 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7255 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7256 than U, respectively. */
7257
7258 int
7259 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7260 {
7261 if (tree_int_cst_sgn (t) < 0)
7262 return -1;
7263 else if (TREE_INT_CST_HIGH (t) != 0)
7264 return 1;
7265 else if (TREE_INT_CST_LOW (t) == u)
7266 return 0;
7267 else if (TREE_INT_CST_LOW (t) < u)
7268 return -1;
7269 else
7270 return 1;
7271 }
7272
7273 /* Return true if SIZE represents a constant size that is in bounds of
7274 what the middle-end and the backend accepts (covering not more than
7275 half of the address-space). */
7276
7277 bool
7278 valid_constant_size_p (const_tree size)
7279 {
7280 if (! tree_fits_uhwi_p (size)
7281 || TREE_OVERFLOW (size)
7282 || tree_int_cst_sign_bit (size) != 0)
7283 return false;
7284 return true;
7285 }
7286
7287 /* Return the precision of the type, or for a complex or vector type the
7288 precision of the type of its elements. */
7289
7290 unsigned int
7291 element_precision (const_tree type)
7292 {
7293 enum tree_code code = TREE_CODE (type);
7294 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7295 type = TREE_TYPE (type);
7296
7297 return TYPE_PRECISION (type);
7298 }
7299
7300 /* Return true if CODE represents an associative tree code. Otherwise
7301 return false. */
7302 bool
7303 associative_tree_code (enum tree_code code)
7304 {
7305 switch (code)
7306 {
7307 case BIT_IOR_EXPR:
7308 case BIT_AND_EXPR:
7309 case BIT_XOR_EXPR:
7310 case PLUS_EXPR:
7311 case MULT_EXPR:
7312 case MIN_EXPR:
7313 case MAX_EXPR:
7314 return true;
7315
7316 default:
7317 break;
7318 }
7319 return false;
7320 }
7321
7322 /* Return true if CODE represents a commutative tree code. Otherwise
7323 return false. */
7324 bool
7325 commutative_tree_code (enum tree_code code)
7326 {
7327 switch (code)
7328 {
7329 case PLUS_EXPR:
7330 case MULT_EXPR:
7331 case MULT_HIGHPART_EXPR:
7332 case MIN_EXPR:
7333 case MAX_EXPR:
7334 case BIT_IOR_EXPR:
7335 case BIT_XOR_EXPR:
7336 case BIT_AND_EXPR:
7337 case NE_EXPR:
7338 case EQ_EXPR:
7339 case UNORDERED_EXPR:
7340 case ORDERED_EXPR:
7341 case UNEQ_EXPR:
7342 case LTGT_EXPR:
7343 case TRUTH_AND_EXPR:
7344 case TRUTH_XOR_EXPR:
7345 case TRUTH_OR_EXPR:
7346 case WIDEN_MULT_EXPR:
7347 case VEC_WIDEN_MULT_HI_EXPR:
7348 case VEC_WIDEN_MULT_LO_EXPR:
7349 case VEC_WIDEN_MULT_EVEN_EXPR:
7350 case VEC_WIDEN_MULT_ODD_EXPR:
7351 return true;
7352
7353 default:
7354 break;
7355 }
7356 return false;
7357 }
7358
7359 /* Return true if CODE represents a ternary tree code for which the
7360 first two operands are commutative. Otherwise return false. */
7361 bool
7362 commutative_ternary_tree_code (enum tree_code code)
7363 {
7364 switch (code)
7365 {
7366 case WIDEN_MULT_PLUS_EXPR:
7367 case WIDEN_MULT_MINUS_EXPR:
7368 return true;
7369
7370 default:
7371 break;
7372 }
7373 return false;
7374 }
7375
7376 /* Generate a hash value for an expression. This can be used iteratively
7377 by passing a previous result as the VAL argument.
7378
7379 This function is intended to produce the same hash for expressions which
7380 would compare equal using operand_equal_p. */
7381
7382 hashval_t
7383 iterative_hash_expr (const_tree t, hashval_t val)
7384 {
7385 int i;
7386 enum tree_code code;
7387 char tclass;
7388
7389 if (t == NULL_TREE)
7390 return iterative_hash_hashval_t (0, val);
7391
7392 code = TREE_CODE (t);
7393
7394 switch (code)
7395 {
7396 /* Alas, constants aren't shared, so we can't rely on pointer
7397 identity. */
7398 case INTEGER_CST:
7399 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
7400 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
7401 case REAL_CST:
7402 {
7403 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
7404
7405 return iterative_hash_hashval_t (val2, val);
7406 }
7407 case FIXED_CST:
7408 {
7409 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7410
7411 return iterative_hash_hashval_t (val2, val);
7412 }
7413 case STRING_CST:
7414 return iterative_hash (TREE_STRING_POINTER (t),
7415 TREE_STRING_LENGTH (t), val);
7416 case COMPLEX_CST:
7417 val = iterative_hash_expr (TREE_REALPART (t), val);
7418 return iterative_hash_expr (TREE_IMAGPART (t), val);
7419 case VECTOR_CST:
7420 {
7421 unsigned i;
7422 for (i = 0; i < VECTOR_CST_NELTS (t); ++i)
7423 val = iterative_hash_expr (VECTOR_CST_ELT (t, i), val);
7424 return val;
7425 }
7426 case SSA_NAME:
7427 /* We can just compare by pointer. */
7428 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
7429 case PLACEHOLDER_EXPR:
7430 /* The node itself doesn't matter. */
7431 return val;
7432 case TREE_LIST:
7433 /* A list of expressions, for a CALL_EXPR or as the elements of a
7434 VECTOR_CST. */
7435 for (; t; t = TREE_CHAIN (t))
7436 val = iterative_hash_expr (TREE_VALUE (t), val);
7437 return val;
7438 case CONSTRUCTOR:
7439 {
7440 unsigned HOST_WIDE_INT idx;
7441 tree field, value;
7442 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7443 {
7444 val = iterative_hash_expr (field, val);
7445 val = iterative_hash_expr (value, val);
7446 }
7447 return val;
7448 }
7449 case FUNCTION_DECL:
7450 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7451 Otherwise nodes that compare equal according to operand_equal_p might
7452 get different hash codes. However, don't do this for machine specific
7453 or front end builtins, since the function code is overloaded in those
7454 cases. */
7455 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7456 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7457 {
7458 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7459 code = TREE_CODE (t);
7460 }
7461 /* FALL THROUGH */
7462 default:
7463 tclass = TREE_CODE_CLASS (code);
7464
7465 if (tclass == tcc_declaration)
7466 {
7467 /* DECL's have a unique ID */
7468 val = iterative_hash_host_wide_int (DECL_UID (t), val);
7469 }
7470 else
7471 {
7472 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
7473
7474 val = iterative_hash_object (code, val);
7475
7476 /* Don't hash the type, that can lead to having nodes which
7477 compare equal according to operand_equal_p, but which
7478 have different hash codes. */
7479 if (CONVERT_EXPR_CODE_P (code)
7480 || code == NON_LVALUE_EXPR)
7481 {
7482 /* Make sure to include signness in the hash computation. */
7483 val += TYPE_UNSIGNED (TREE_TYPE (t));
7484 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
7485 }
7486
7487 else if (commutative_tree_code (code))
7488 {
7489 /* It's a commutative expression. We want to hash it the same
7490 however it appears. We do this by first hashing both operands
7491 and then rehashing based on the order of their independent
7492 hashes. */
7493 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
7494 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
7495 hashval_t t;
7496
7497 if (one > two)
7498 t = one, one = two, two = t;
7499
7500 val = iterative_hash_hashval_t (one, val);
7501 val = iterative_hash_hashval_t (two, val);
7502 }
7503 else
7504 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7505 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
7506 }
7507 return val;
7508 }
7509 }
7510
7511 /* Constructors for pointer, array and function types.
7512 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7513 constructed by language-dependent code, not here.) */
7514
7515 /* Construct, lay out and return the type of pointers to TO_TYPE with
7516 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7517 reference all of memory. If such a type has already been
7518 constructed, reuse it. */
7519
7520 tree
7521 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
7522 bool can_alias_all)
7523 {
7524 tree t;
7525
7526 if (to_type == error_mark_node)
7527 return error_mark_node;
7528
7529 /* If the pointed-to type has the may_alias attribute set, force
7530 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7531 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7532 can_alias_all = true;
7533
7534 /* In some cases, languages will have things that aren't a POINTER_TYPE
7535 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7536 In that case, return that type without regard to the rest of our
7537 operands.
7538
7539 ??? This is a kludge, but consistent with the way this function has
7540 always operated and there doesn't seem to be a good way to avoid this
7541 at the moment. */
7542 if (TYPE_POINTER_TO (to_type) != 0
7543 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7544 return TYPE_POINTER_TO (to_type);
7545
7546 /* First, if we already have a type for pointers to TO_TYPE and it's
7547 the proper mode, use it. */
7548 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7549 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7550 return t;
7551
7552 t = make_node (POINTER_TYPE);
7553
7554 TREE_TYPE (t) = to_type;
7555 SET_TYPE_MODE (t, mode);
7556 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7557 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7558 TYPE_POINTER_TO (to_type) = t;
7559
7560 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7561 SET_TYPE_STRUCTURAL_EQUALITY (t);
7562 else if (TYPE_CANONICAL (to_type) != to_type)
7563 TYPE_CANONICAL (t)
7564 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7565 mode, can_alias_all);
7566
7567 /* Lay out the type. This function has many callers that are concerned
7568 with expression-construction, and this simplifies them all. */
7569 layout_type (t);
7570
7571 return t;
7572 }
7573
7574 /* By default build pointers in ptr_mode. */
7575
7576 tree
7577 build_pointer_type (tree to_type)
7578 {
7579 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7580 : TYPE_ADDR_SPACE (to_type);
7581 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7582 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7583 }
7584
7585 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7586
7587 tree
7588 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
7589 bool can_alias_all)
7590 {
7591 tree t;
7592
7593 if (to_type == error_mark_node)
7594 return error_mark_node;
7595
7596 /* If the pointed-to type has the may_alias attribute set, force
7597 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7598 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7599 can_alias_all = true;
7600
7601 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7602 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7603 In that case, return that type without regard to the rest of our
7604 operands.
7605
7606 ??? This is a kludge, but consistent with the way this function has
7607 always operated and there doesn't seem to be a good way to avoid this
7608 at the moment. */
7609 if (TYPE_REFERENCE_TO (to_type) != 0
7610 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7611 return TYPE_REFERENCE_TO (to_type);
7612
7613 /* First, if we already have a type for pointers to TO_TYPE and it's
7614 the proper mode, use it. */
7615 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7616 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7617 return t;
7618
7619 t = make_node (REFERENCE_TYPE);
7620
7621 TREE_TYPE (t) = to_type;
7622 SET_TYPE_MODE (t, mode);
7623 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7624 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7625 TYPE_REFERENCE_TO (to_type) = t;
7626
7627 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7628 SET_TYPE_STRUCTURAL_EQUALITY (t);
7629 else if (TYPE_CANONICAL (to_type) != to_type)
7630 TYPE_CANONICAL (t)
7631 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7632 mode, can_alias_all);
7633
7634 layout_type (t);
7635
7636 return t;
7637 }
7638
7639
7640 /* Build the node for the type of references-to-TO_TYPE by default
7641 in ptr_mode. */
7642
7643 tree
7644 build_reference_type (tree to_type)
7645 {
7646 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7647 : TYPE_ADDR_SPACE (to_type);
7648 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7649 return build_reference_type_for_mode (to_type, pointer_mode, false);
7650 }
7651
7652 #define MAX_INT_CACHED_PREC \
7653 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7654 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7655
7656 /* Builds a signed or unsigned integer type of precision PRECISION.
7657 Used for C bitfields whose precision does not match that of
7658 built-in target types. */
7659 tree
7660 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7661 int unsignedp)
7662 {
7663 tree itype, ret;
7664
7665 if (unsignedp)
7666 unsignedp = MAX_INT_CACHED_PREC + 1;
7667
7668 if (precision <= MAX_INT_CACHED_PREC)
7669 {
7670 itype = nonstandard_integer_type_cache[precision + unsignedp];
7671 if (itype)
7672 return itype;
7673 }
7674
7675 itype = make_node (INTEGER_TYPE);
7676 TYPE_PRECISION (itype) = precision;
7677
7678 if (unsignedp)
7679 fixup_unsigned_type (itype);
7680 else
7681 fixup_signed_type (itype);
7682
7683 ret = itype;
7684 if (tree_fits_uhwi_p (TYPE_MAX_VALUE (itype)))
7685 ret = type_hash_canon (tree_to_uhwi (TYPE_MAX_VALUE (itype)), itype);
7686 if (precision <= MAX_INT_CACHED_PREC)
7687 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7688
7689 return ret;
7690 }
7691
7692 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7693 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7694 is true, reuse such a type that has already been constructed. */
7695
7696 static tree
7697 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7698 {
7699 tree itype = make_node (INTEGER_TYPE);
7700 hashval_t hashcode = 0;
7701
7702 TREE_TYPE (itype) = type;
7703
7704 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7705 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7706
7707 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7708 SET_TYPE_MODE (itype, TYPE_MODE (type));
7709 TYPE_SIZE (itype) = TYPE_SIZE (type);
7710 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7711 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7712 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7713
7714 if (!shared)
7715 return itype;
7716
7717 if ((TYPE_MIN_VALUE (itype)
7718 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7719 || (TYPE_MAX_VALUE (itype)
7720 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7721 {
7722 /* Since we cannot reliably merge this type, we need to compare it using
7723 structural equality checks. */
7724 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7725 return itype;
7726 }
7727
7728 hashcode = iterative_hash_expr (TYPE_MIN_VALUE (itype), hashcode);
7729 hashcode = iterative_hash_expr (TYPE_MAX_VALUE (itype), hashcode);
7730 hashcode = iterative_hash_hashval_t (TYPE_HASH (type), hashcode);
7731 itype = type_hash_canon (hashcode, itype);
7732
7733 return itype;
7734 }
7735
7736 /* Wrapper around build_range_type_1 with SHARED set to true. */
7737
7738 tree
7739 build_range_type (tree type, tree lowval, tree highval)
7740 {
7741 return build_range_type_1 (type, lowval, highval, true);
7742 }
7743
7744 /* Wrapper around build_range_type_1 with SHARED set to false. */
7745
7746 tree
7747 build_nonshared_range_type (tree type, tree lowval, tree highval)
7748 {
7749 return build_range_type_1 (type, lowval, highval, false);
7750 }
7751
7752 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7753 MAXVAL should be the maximum value in the domain
7754 (one less than the length of the array).
7755
7756 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7757 We don't enforce this limit, that is up to caller (e.g. language front end).
7758 The limit exists because the result is a signed type and we don't handle
7759 sizes that use more than one HOST_WIDE_INT. */
7760
7761 tree
7762 build_index_type (tree maxval)
7763 {
7764 return build_range_type (sizetype, size_zero_node, maxval);
7765 }
7766
7767 /* Return true if the debug information for TYPE, a subtype, should be emitted
7768 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7769 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7770 debug info and doesn't reflect the source code. */
7771
7772 bool
7773 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7774 {
7775 tree base_type = TREE_TYPE (type), low, high;
7776
7777 /* Subrange types have a base type which is an integral type. */
7778 if (!INTEGRAL_TYPE_P (base_type))
7779 return false;
7780
7781 /* Get the real bounds of the subtype. */
7782 if (lang_hooks.types.get_subrange_bounds)
7783 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7784 else
7785 {
7786 low = TYPE_MIN_VALUE (type);
7787 high = TYPE_MAX_VALUE (type);
7788 }
7789
7790 /* If the type and its base type have the same representation and the same
7791 name, then the type is not a subrange but a copy of the base type. */
7792 if ((TREE_CODE (base_type) == INTEGER_TYPE
7793 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7794 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7795 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7796 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7797 {
7798 tree type_name = TYPE_NAME (type);
7799 tree base_type_name = TYPE_NAME (base_type);
7800
7801 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7802 type_name = DECL_NAME (type_name);
7803
7804 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7805 base_type_name = DECL_NAME (base_type_name);
7806
7807 if (type_name == base_type_name)
7808 return false;
7809 }
7810
7811 if (lowval)
7812 *lowval = low;
7813 if (highval)
7814 *highval = high;
7815 return true;
7816 }
7817
7818 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7819 and number of elements specified by the range of values of INDEX_TYPE.
7820 If SHARED is true, reuse such a type that has already been constructed. */
7821
7822 static tree
7823 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7824 {
7825 tree t;
7826
7827 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7828 {
7829 error ("arrays of functions are not meaningful");
7830 elt_type = integer_type_node;
7831 }
7832
7833 t = make_node (ARRAY_TYPE);
7834 TREE_TYPE (t) = elt_type;
7835 TYPE_DOMAIN (t) = index_type;
7836 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7837 layout_type (t);
7838
7839 /* If the element type is incomplete at this point we get marked for
7840 structural equality. Do not record these types in the canonical
7841 type hashtable. */
7842 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7843 return t;
7844
7845 if (shared)
7846 {
7847 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7848 if (index_type)
7849 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7850 t = type_hash_canon (hashcode, t);
7851 }
7852
7853 if (TYPE_CANONICAL (t) == t)
7854 {
7855 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7856 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7857 SET_TYPE_STRUCTURAL_EQUALITY (t);
7858 else if (TYPE_CANONICAL (elt_type) != elt_type
7859 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7860 TYPE_CANONICAL (t)
7861 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7862 index_type
7863 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7864 shared);
7865 }
7866
7867 return t;
7868 }
7869
7870 /* Wrapper around build_array_type_1 with SHARED set to true. */
7871
7872 tree
7873 build_array_type (tree elt_type, tree index_type)
7874 {
7875 return build_array_type_1 (elt_type, index_type, true);
7876 }
7877
7878 /* Wrapper around build_array_type_1 with SHARED set to false. */
7879
7880 tree
7881 build_nonshared_array_type (tree elt_type, tree index_type)
7882 {
7883 return build_array_type_1 (elt_type, index_type, false);
7884 }
7885
7886 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7887 sizetype. */
7888
7889 tree
7890 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7891 {
7892 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7893 }
7894
7895 /* Recursively examines the array elements of TYPE, until a non-array
7896 element type is found. */
7897
7898 tree
7899 strip_array_types (tree type)
7900 {
7901 while (TREE_CODE (type) == ARRAY_TYPE)
7902 type = TREE_TYPE (type);
7903
7904 return type;
7905 }
7906
7907 /* Computes the canonical argument types from the argument type list
7908 ARGTYPES.
7909
7910 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7911 on entry to this function, or if any of the ARGTYPES are
7912 structural.
7913
7914 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7915 true on entry to this function, or if any of the ARGTYPES are
7916 non-canonical.
7917
7918 Returns a canonical argument list, which may be ARGTYPES when the
7919 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7920 true) or would not differ from ARGTYPES. */
7921
7922 static tree
7923 maybe_canonicalize_argtypes (tree argtypes,
7924 bool *any_structural_p,
7925 bool *any_noncanonical_p)
7926 {
7927 tree arg;
7928 bool any_noncanonical_argtypes_p = false;
7929
7930 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7931 {
7932 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7933 /* Fail gracefully by stating that the type is structural. */
7934 *any_structural_p = true;
7935 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7936 *any_structural_p = true;
7937 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7938 || TREE_PURPOSE (arg))
7939 /* If the argument has a default argument, we consider it
7940 non-canonical even though the type itself is canonical.
7941 That way, different variants of function and method types
7942 with default arguments will all point to the variant with
7943 no defaults as their canonical type. */
7944 any_noncanonical_argtypes_p = true;
7945 }
7946
7947 if (*any_structural_p)
7948 return argtypes;
7949
7950 if (any_noncanonical_argtypes_p)
7951 {
7952 /* Build the canonical list of argument types. */
7953 tree canon_argtypes = NULL_TREE;
7954 bool is_void = false;
7955
7956 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7957 {
7958 if (arg == void_list_node)
7959 is_void = true;
7960 else
7961 canon_argtypes = tree_cons (NULL_TREE,
7962 TYPE_CANONICAL (TREE_VALUE (arg)),
7963 canon_argtypes);
7964 }
7965
7966 canon_argtypes = nreverse (canon_argtypes);
7967 if (is_void)
7968 canon_argtypes = chainon (canon_argtypes, void_list_node);
7969
7970 /* There is a non-canonical type. */
7971 *any_noncanonical_p = true;
7972 return canon_argtypes;
7973 }
7974
7975 /* The canonical argument types are the same as ARGTYPES. */
7976 return argtypes;
7977 }
7978
7979 /* Construct, lay out and return
7980 the type of functions returning type VALUE_TYPE
7981 given arguments of types ARG_TYPES.
7982 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7983 are data type nodes for the arguments of the function.
7984 If such a type has already been constructed, reuse it. */
7985
7986 tree
7987 build_function_type (tree value_type, tree arg_types)
7988 {
7989 tree t;
7990 hashval_t hashcode = 0;
7991 bool any_structural_p, any_noncanonical_p;
7992 tree canon_argtypes;
7993
7994 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7995 {
7996 error ("function return type cannot be function");
7997 value_type = integer_type_node;
7998 }
7999
8000 /* Make a node of the sort we want. */
8001 t = make_node (FUNCTION_TYPE);
8002 TREE_TYPE (t) = value_type;
8003 TYPE_ARG_TYPES (t) = arg_types;
8004
8005 /* If we already have such a type, use the old one. */
8006 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
8007 hashcode = type_hash_list (arg_types, hashcode);
8008 t = type_hash_canon (hashcode, t);
8009
8010 /* Set up the canonical type. */
8011 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8012 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8013 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8014 &any_structural_p,
8015 &any_noncanonical_p);
8016 if (any_structural_p)
8017 SET_TYPE_STRUCTURAL_EQUALITY (t);
8018 else if (any_noncanonical_p)
8019 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8020 canon_argtypes);
8021
8022 if (!COMPLETE_TYPE_P (t))
8023 layout_type (t);
8024 return t;
8025 }
8026
8027 /* Build a function type. The RETURN_TYPE is the type returned by the
8028 function. If VAARGS is set, no void_type_node is appended to the
8029 the list. ARGP must be always be terminated be a NULL_TREE. */
8030
8031 static tree
8032 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8033 {
8034 tree t, args, last;
8035
8036 t = va_arg (argp, tree);
8037 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8038 args = tree_cons (NULL_TREE, t, args);
8039
8040 if (vaargs)
8041 {
8042 last = args;
8043 if (args != NULL_TREE)
8044 args = nreverse (args);
8045 gcc_assert (last != void_list_node);
8046 }
8047 else if (args == NULL_TREE)
8048 args = void_list_node;
8049 else
8050 {
8051 last = args;
8052 args = nreverse (args);
8053 TREE_CHAIN (last) = void_list_node;
8054 }
8055 args = build_function_type (return_type, args);
8056
8057 return args;
8058 }
8059
8060 /* Build a function type. The RETURN_TYPE is the type returned by the
8061 function. If additional arguments are provided, they are
8062 additional argument types. The list of argument types must always
8063 be terminated by NULL_TREE. */
8064
8065 tree
8066 build_function_type_list (tree return_type, ...)
8067 {
8068 tree args;
8069 va_list p;
8070
8071 va_start (p, return_type);
8072 args = build_function_type_list_1 (false, return_type, p);
8073 va_end (p);
8074 return args;
8075 }
8076
8077 /* Build a variable argument function type. The RETURN_TYPE is the
8078 type returned by the function. If additional arguments are provided,
8079 they are additional argument types. The list of argument types must
8080 always be terminated by NULL_TREE. */
8081
8082 tree
8083 build_varargs_function_type_list (tree return_type, ...)
8084 {
8085 tree args;
8086 va_list p;
8087
8088 va_start (p, return_type);
8089 args = build_function_type_list_1 (true, return_type, p);
8090 va_end (p);
8091
8092 return args;
8093 }
8094
8095 /* Build a function type. RETURN_TYPE is the type returned by the
8096 function; VAARGS indicates whether the function takes varargs. The
8097 function takes N named arguments, the types of which are provided in
8098 ARG_TYPES. */
8099
8100 static tree
8101 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8102 tree *arg_types)
8103 {
8104 int i;
8105 tree t = vaargs ? NULL_TREE : void_list_node;
8106
8107 for (i = n - 1; i >= 0; i--)
8108 t = tree_cons (NULL_TREE, arg_types[i], t);
8109
8110 return build_function_type (return_type, t);
8111 }
8112
8113 /* Build a function type. RETURN_TYPE is the type returned by the
8114 function. The function takes N named arguments, the types of which
8115 are provided in ARG_TYPES. */
8116
8117 tree
8118 build_function_type_array (tree return_type, int n, tree *arg_types)
8119 {
8120 return build_function_type_array_1 (false, return_type, n, arg_types);
8121 }
8122
8123 /* Build a variable argument function type. RETURN_TYPE is the type
8124 returned by the function. The function takes N named arguments, the
8125 types of which are provided in ARG_TYPES. */
8126
8127 tree
8128 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8129 {
8130 return build_function_type_array_1 (true, return_type, n, arg_types);
8131 }
8132
8133 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8134 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8135 for the method. An implicit additional parameter (of type
8136 pointer-to-BASETYPE) is added to the ARGTYPES. */
8137
8138 tree
8139 build_method_type_directly (tree basetype,
8140 tree rettype,
8141 tree argtypes)
8142 {
8143 tree t;
8144 tree ptype;
8145 int hashcode = 0;
8146 bool any_structural_p, any_noncanonical_p;
8147 tree canon_argtypes;
8148
8149 /* Make a node of the sort we want. */
8150 t = make_node (METHOD_TYPE);
8151
8152 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8153 TREE_TYPE (t) = rettype;
8154 ptype = build_pointer_type (basetype);
8155
8156 /* The actual arglist for this function includes a "hidden" argument
8157 which is "this". Put it into the list of argument types. */
8158 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8159 TYPE_ARG_TYPES (t) = argtypes;
8160
8161 /* If we already have such a type, use the old one. */
8162 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
8163 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
8164 hashcode = type_hash_list (argtypes, hashcode);
8165 t = type_hash_canon (hashcode, t);
8166
8167 /* Set up the canonical type. */
8168 any_structural_p
8169 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8170 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8171 any_noncanonical_p
8172 = (TYPE_CANONICAL (basetype) != basetype
8173 || TYPE_CANONICAL (rettype) != rettype);
8174 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8175 &any_structural_p,
8176 &any_noncanonical_p);
8177 if (any_structural_p)
8178 SET_TYPE_STRUCTURAL_EQUALITY (t);
8179 else if (any_noncanonical_p)
8180 TYPE_CANONICAL (t)
8181 = build_method_type_directly (TYPE_CANONICAL (basetype),
8182 TYPE_CANONICAL (rettype),
8183 canon_argtypes);
8184 if (!COMPLETE_TYPE_P (t))
8185 layout_type (t);
8186
8187 return t;
8188 }
8189
8190 /* Construct, lay out and return the type of methods belonging to class
8191 BASETYPE and whose arguments and values are described by TYPE.
8192 If that type exists already, reuse it.
8193 TYPE must be a FUNCTION_TYPE node. */
8194
8195 tree
8196 build_method_type (tree basetype, tree type)
8197 {
8198 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8199
8200 return build_method_type_directly (basetype,
8201 TREE_TYPE (type),
8202 TYPE_ARG_TYPES (type));
8203 }
8204
8205 /* Construct, lay out and return the type of offsets to a value
8206 of type TYPE, within an object of type BASETYPE.
8207 If a suitable offset type exists already, reuse it. */
8208
8209 tree
8210 build_offset_type (tree basetype, tree type)
8211 {
8212 tree t;
8213 hashval_t hashcode = 0;
8214
8215 /* Make a node of the sort we want. */
8216 t = make_node (OFFSET_TYPE);
8217
8218 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8219 TREE_TYPE (t) = type;
8220
8221 /* If we already have such a type, use the old one. */
8222 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
8223 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
8224 t = type_hash_canon (hashcode, t);
8225
8226 if (!COMPLETE_TYPE_P (t))
8227 layout_type (t);
8228
8229 if (TYPE_CANONICAL (t) == t)
8230 {
8231 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8232 || TYPE_STRUCTURAL_EQUALITY_P (type))
8233 SET_TYPE_STRUCTURAL_EQUALITY (t);
8234 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8235 || TYPE_CANONICAL (type) != type)
8236 TYPE_CANONICAL (t)
8237 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8238 TYPE_CANONICAL (type));
8239 }
8240
8241 return t;
8242 }
8243
8244 /* Create a complex type whose components are COMPONENT_TYPE. */
8245
8246 tree
8247 build_complex_type (tree component_type)
8248 {
8249 tree t;
8250 hashval_t hashcode;
8251
8252 gcc_assert (INTEGRAL_TYPE_P (component_type)
8253 || SCALAR_FLOAT_TYPE_P (component_type)
8254 || FIXED_POINT_TYPE_P (component_type));
8255
8256 /* Make a node of the sort we want. */
8257 t = make_node (COMPLEX_TYPE);
8258
8259 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
8260
8261 /* If we already have such a type, use the old one. */
8262 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
8263 t = type_hash_canon (hashcode, t);
8264
8265 if (!COMPLETE_TYPE_P (t))
8266 layout_type (t);
8267
8268 if (TYPE_CANONICAL (t) == t)
8269 {
8270 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
8271 SET_TYPE_STRUCTURAL_EQUALITY (t);
8272 else if (TYPE_CANONICAL (component_type) != component_type)
8273 TYPE_CANONICAL (t)
8274 = build_complex_type (TYPE_CANONICAL (component_type));
8275 }
8276
8277 /* We need to create a name, since complex is a fundamental type. */
8278 if (! TYPE_NAME (t))
8279 {
8280 const char *name;
8281 if (component_type == char_type_node)
8282 name = "complex char";
8283 else if (component_type == signed_char_type_node)
8284 name = "complex signed char";
8285 else if (component_type == unsigned_char_type_node)
8286 name = "complex unsigned char";
8287 else if (component_type == short_integer_type_node)
8288 name = "complex short int";
8289 else if (component_type == short_unsigned_type_node)
8290 name = "complex short unsigned int";
8291 else if (component_type == integer_type_node)
8292 name = "complex int";
8293 else if (component_type == unsigned_type_node)
8294 name = "complex unsigned int";
8295 else if (component_type == long_integer_type_node)
8296 name = "complex long int";
8297 else if (component_type == long_unsigned_type_node)
8298 name = "complex long unsigned int";
8299 else if (component_type == long_long_integer_type_node)
8300 name = "complex long long int";
8301 else if (component_type == long_long_unsigned_type_node)
8302 name = "complex long long unsigned int";
8303 else
8304 name = 0;
8305
8306 if (name != 0)
8307 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8308 get_identifier (name), t);
8309 }
8310
8311 return build_qualified_type (t, TYPE_QUALS (component_type));
8312 }
8313
8314 /* If TYPE is a real or complex floating-point type and the target
8315 does not directly support arithmetic on TYPE then return the wider
8316 type to be used for arithmetic on TYPE. Otherwise, return
8317 NULL_TREE. */
8318
8319 tree
8320 excess_precision_type (tree type)
8321 {
8322 if (flag_excess_precision != EXCESS_PRECISION_FAST)
8323 {
8324 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
8325 switch (TREE_CODE (type))
8326 {
8327 case REAL_TYPE:
8328 switch (flt_eval_method)
8329 {
8330 case 1:
8331 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
8332 return double_type_node;
8333 break;
8334 case 2:
8335 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
8336 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
8337 return long_double_type_node;
8338 break;
8339 default:
8340 gcc_unreachable ();
8341 }
8342 break;
8343 case COMPLEX_TYPE:
8344 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8345 return NULL_TREE;
8346 switch (flt_eval_method)
8347 {
8348 case 1:
8349 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
8350 return complex_double_type_node;
8351 break;
8352 case 2:
8353 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
8354 || (TYPE_MODE (TREE_TYPE (type))
8355 == TYPE_MODE (double_type_node)))
8356 return complex_long_double_type_node;
8357 break;
8358 default:
8359 gcc_unreachable ();
8360 }
8361 break;
8362 default:
8363 break;
8364 }
8365 }
8366 return NULL_TREE;
8367 }
8368 \f
8369 /* Return OP, stripped of any conversions to wider types as much as is safe.
8370 Converting the value back to OP's type makes a value equivalent to OP.
8371
8372 If FOR_TYPE is nonzero, we return a value which, if converted to
8373 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8374
8375 OP must have integer, real or enumeral type. Pointers are not allowed!
8376
8377 There are some cases where the obvious value we could return
8378 would regenerate to OP if converted to OP's type,
8379 but would not extend like OP to wider types.
8380 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8381 For example, if OP is (unsigned short)(signed char)-1,
8382 we avoid returning (signed char)-1 if FOR_TYPE is int,
8383 even though extending that to an unsigned short would regenerate OP,
8384 since the result of extending (signed char)-1 to (int)
8385 is different from (int) OP. */
8386
8387 tree
8388 get_unwidened (tree op, tree for_type)
8389 {
8390 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8391 tree type = TREE_TYPE (op);
8392 unsigned final_prec
8393 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8394 int uns
8395 = (for_type != 0 && for_type != type
8396 && final_prec > TYPE_PRECISION (type)
8397 && TYPE_UNSIGNED (type));
8398 tree win = op;
8399
8400 while (CONVERT_EXPR_P (op))
8401 {
8402 int bitschange;
8403
8404 /* TYPE_PRECISION on vector types has different meaning
8405 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8406 so avoid them here. */
8407 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8408 break;
8409
8410 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8411 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8412
8413 /* Truncations are many-one so cannot be removed.
8414 Unless we are later going to truncate down even farther. */
8415 if (bitschange < 0
8416 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8417 break;
8418
8419 /* See what's inside this conversion. If we decide to strip it,
8420 we will set WIN. */
8421 op = TREE_OPERAND (op, 0);
8422
8423 /* If we have not stripped any zero-extensions (uns is 0),
8424 we can strip any kind of extension.
8425 If we have previously stripped a zero-extension,
8426 only zero-extensions can safely be stripped.
8427 Any extension can be stripped if the bits it would produce
8428 are all going to be discarded later by truncating to FOR_TYPE. */
8429
8430 if (bitschange > 0)
8431 {
8432 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8433 win = op;
8434 /* TYPE_UNSIGNED says whether this is a zero-extension.
8435 Let's avoid computing it if it does not affect WIN
8436 and if UNS will not be needed again. */
8437 if ((uns
8438 || CONVERT_EXPR_P (op))
8439 && TYPE_UNSIGNED (TREE_TYPE (op)))
8440 {
8441 uns = 1;
8442 win = op;
8443 }
8444 }
8445 }
8446
8447 /* If we finally reach a constant see if it fits in for_type and
8448 in that case convert it. */
8449 if (for_type
8450 && TREE_CODE (win) == INTEGER_CST
8451 && TREE_TYPE (win) != for_type
8452 && int_fits_type_p (win, for_type))
8453 win = fold_convert (for_type, win);
8454
8455 return win;
8456 }
8457 \f
8458 /* Return OP or a simpler expression for a narrower value
8459 which can be sign-extended or zero-extended to give back OP.
8460 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8461 or 0 if the value should be sign-extended. */
8462
8463 tree
8464 get_narrower (tree op, int *unsignedp_ptr)
8465 {
8466 int uns = 0;
8467 int first = 1;
8468 tree win = op;
8469 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8470
8471 while (TREE_CODE (op) == NOP_EXPR)
8472 {
8473 int bitschange
8474 = (TYPE_PRECISION (TREE_TYPE (op))
8475 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8476
8477 /* Truncations are many-one so cannot be removed. */
8478 if (bitschange < 0)
8479 break;
8480
8481 /* See what's inside this conversion. If we decide to strip it,
8482 we will set WIN. */
8483
8484 if (bitschange > 0)
8485 {
8486 op = TREE_OPERAND (op, 0);
8487 /* An extension: the outermost one can be stripped,
8488 but remember whether it is zero or sign extension. */
8489 if (first)
8490 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8491 /* Otherwise, if a sign extension has been stripped,
8492 only sign extensions can now be stripped;
8493 if a zero extension has been stripped, only zero-extensions. */
8494 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8495 break;
8496 first = 0;
8497 }
8498 else /* bitschange == 0 */
8499 {
8500 /* A change in nominal type can always be stripped, but we must
8501 preserve the unsignedness. */
8502 if (first)
8503 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8504 first = 0;
8505 op = TREE_OPERAND (op, 0);
8506 /* Keep trying to narrow, but don't assign op to win if it
8507 would turn an integral type into something else. */
8508 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8509 continue;
8510 }
8511
8512 win = op;
8513 }
8514
8515 if (TREE_CODE (op) == COMPONENT_REF
8516 /* Since type_for_size always gives an integer type. */
8517 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8518 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8519 /* Ensure field is laid out already. */
8520 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8521 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8522 {
8523 unsigned HOST_WIDE_INT innerprec
8524 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8525 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8526 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8527 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8528
8529 /* We can get this structure field in a narrower type that fits it,
8530 but the resulting extension to its nominal type (a fullword type)
8531 must satisfy the same conditions as for other extensions.
8532
8533 Do this only for fields that are aligned (not bit-fields),
8534 because when bit-field insns will be used there is no
8535 advantage in doing this. */
8536
8537 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8538 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8539 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8540 && type != 0)
8541 {
8542 if (first)
8543 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8544 win = fold_convert (type, op);
8545 }
8546 }
8547
8548 *unsignedp_ptr = uns;
8549 return win;
8550 }
8551 \f
8552 /* Returns true if integer constant C has a value that is permissible
8553 for type TYPE (an INTEGER_TYPE). */
8554
8555 bool
8556 int_fits_type_p (const_tree c, const_tree type)
8557 {
8558 tree type_low_bound, type_high_bound;
8559 bool ok_for_low_bound, ok_for_high_bound, unsc;
8560 double_int dc, dd;
8561
8562 dc = tree_to_double_int (c);
8563 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
8564
8565 retry:
8566 type_low_bound = TYPE_MIN_VALUE (type);
8567 type_high_bound = TYPE_MAX_VALUE (type);
8568
8569 /* If at least one bound of the type is a constant integer, we can check
8570 ourselves and maybe make a decision. If no such decision is possible, but
8571 this type is a subtype, try checking against that. Otherwise, use
8572 double_int_fits_to_tree_p, which checks against the precision.
8573
8574 Compute the status for each possibly constant bound, and return if we see
8575 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8576 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8577 for "constant known to fit". */
8578
8579 /* Check if c >= type_low_bound. */
8580 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8581 {
8582 dd = tree_to_double_int (type_low_bound);
8583 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
8584 {
8585 int c_neg = (!unsc && dc.is_negative ());
8586 int t_neg = (unsc && dd.is_negative ());
8587
8588 if (c_neg && !t_neg)
8589 return false;
8590 if ((c_neg || !t_neg) && dc.ult (dd))
8591 return false;
8592 }
8593 else if (dc.cmp (dd, unsc) < 0)
8594 return false;
8595 ok_for_low_bound = true;
8596 }
8597 else
8598 ok_for_low_bound = false;
8599
8600 /* Check if c <= type_high_bound. */
8601 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8602 {
8603 dd = tree_to_double_int (type_high_bound);
8604 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8605 {
8606 int c_neg = (!unsc && dc.is_negative ());
8607 int t_neg = (unsc && dd.is_negative ());
8608
8609 if (t_neg && !c_neg)
8610 return false;
8611 if ((t_neg || !c_neg) && dc.ugt (dd))
8612 return false;
8613 }
8614 else if (dc.cmp (dd, unsc) > 0)
8615 return false;
8616 ok_for_high_bound = true;
8617 }
8618 else
8619 ok_for_high_bound = false;
8620
8621 /* If the constant fits both bounds, the result is known. */
8622 if (ok_for_low_bound && ok_for_high_bound)
8623 return true;
8624
8625 /* Perform some generic filtering which may allow making a decision
8626 even if the bounds are not constant. First, negative integers
8627 never fit in unsigned types, */
8628 if (TYPE_UNSIGNED (type) && !unsc && dc.is_negative ())
8629 return false;
8630
8631 /* Second, narrower types always fit in wider ones. */
8632 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8633 return true;
8634
8635 /* Third, unsigned integers with top bit set never fit signed types. */
8636 if (! TYPE_UNSIGNED (type) && unsc)
8637 {
8638 int prec = GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (c))) - 1;
8639 if (prec < HOST_BITS_PER_WIDE_INT)
8640 {
8641 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8642 return false;
8643 }
8644 else if (((((unsigned HOST_WIDE_INT) 1)
8645 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8646 return false;
8647 }
8648
8649 /* If we haven't been able to decide at this point, there nothing more we
8650 can check ourselves here. Look at the base type if we have one and it
8651 has the same precision. */
8652 if (TREE_CODE (type) == INTEGER_TYPE
8653 && TREE_TYPE (type) != 0
8654 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8655 {
8656 type = TREE_TYPE (type);
8657 goto retry;
8658 }
8659
8660 /* Or to double_int_fits_to_tree_p, if nothing else. */
8661 return double_int_fits_to_tree_p (type, dc);
8662 }
8663
8664 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8665 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8666 represented (assuming two's-complement arithmetic) within the bit
8667 precision of the type are returned instead. */
8668
8669 void
8670 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8671 {
8672 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8673 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8674 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8675 TYPE_UNSIGNED (type));
8676 else
8677 {
8678 if (TYPE_UNSIGNED (type))
8679 mpz_set_ui (min, 0);
8680 else
8681 {
8682 double_int mn;
8683 mn = double_int::mask (TYPE_PRECISION (type) - 1);
8684 mn = (mn + double_int_one).sext (TYPE_PRECISION (type));
8685 mpz_set_double_int (min, mn, false);
8686 }
8687 }
8688
8689 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8690 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8691 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8692 TYPE_UNSIGNED (type));
8693 else
8694 {
8695 if (TYPE_UNSIGNED (type))
8696 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)),
8697 true);
8698 else
8699 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type) - 1),
8700 true);
8701 }
8702 }
8703
8704 /* Return true if VAR is an automatic variable defined in function FN. */
8705
8706 bool
8707 auto_var_in_fn_p (const_tree var, const_tree fn)
8708 {
8709 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8710 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8711 || TREE_CODE (var) == PARM_DECL)
8712 && ! TREE_STATIC (var))
8713 || TREE_CODE (var) == LABEL_DECL
8714 || TREE_CODE (var) == RESULT_DECL));
8715 }
8716
8717 /* Subprogram of following function. Called by walk_tree.
8718
8719 Return *TP if it is an automatic variable or parameter of the
8720 function passed in as DATA. */
8721
8722 static tree
8723 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8724 {
8725 tree fn = (tree) data;
8726
8727 if (TYPE_P (*tp))
8728 *walk_subtrees = 0;
8729
8730 else if (DECL_P (*tp)
8731 && auto_var_in_fn_p (*tp, fn))
8732 return *tp;
8733
8734 return NULL_TREE;
8735 }
8736
8737 /* Returns true if T is, contains, or refers to a type with variable
8738 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8739 arguments, but not the return type. If FN is nonzero, only return
8740 true if a modifier of the type or position of FN is a variable or
8741 parameter inside FN.
8742
8743 This concept is more general than that of C99 'variably modified types':
8744 in C99, a struct type is never variably modified because a VLA may not
8745 appear as a structure member. However, in GNU C code like:
8746
8747 struct S { int i[f()]; };
8748
8749 is valid, and other languages may define similar constructs. */
8750
8751 bool
8752 variably_modified_type_p (tree type, tree fn)
8753 {
8754 tree t;
8755
8756 /* Test if T is either variable (if FN is zero) or an expression containing
8757 a variable in FN. If TYPE isn't gimplified, return true also if
8758 gimplify_one_sizepos would gimplify the expression into a local
8759 variable. */
8760 #define RETURN_TRUE_IF_VAR(T) \
8761 do { tree _t = (T); \
8762 if (_t != NULL_TREE \
8763 && _t != error_mark_node \
8764 && TREE_CODE (_t) != INTEGER_CST \
8765 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8766 && (!fn \
8767 || (!TYPE_SIZES_GIMPLIFIED (type) \
8768 && !is_gimple_sizepos (_t)) \
8769 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8770 return true; } while (0)
8771
8772 if (type == error_mark_node)
8773 return false;
8774
8775 /* If TYPE itself has variable size, it is variably modified. */
8776 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8777 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8778
8779 switch (TREE_CODE (type))
8780 {
8781 case POINTER_TYPE:
8782 case REFERENCE_TYPE:
8783 case VECTOR_TYPE:
8784 if (variably_modified_type_p (TREE_TYPE (type), fn))
8785 return true;
8786 break;
8787
8788 case FUNCTION_TYPE:
8789 case METHOD_TYPE:
8790 /* If TYPE is a function type, it is variably modified if the
8791 return type is variably modified. */
8792 if (variably_modified_type_p (TREE_TYPE (type), fn))
8793 return true;
8794 break;
8795
8796 case INTEGER_TYPE:
8797 case REAL_TYPE:
8798 case FIXED_POINT_TYPE:
8799 case ENUMERAL_TYPE:
8800 case BOOLEAN_TYPE:
8801 /* Scalar types are variably modified if their end points
8802 aren't constant. */
8803 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8804 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8805 break;
8806
8807 case RECORD_TYPE:
8808 case UNION_TYPE:
8809 case QUAL_UNION_TYPE:
8810 /* We can't see if any of the fields are variably-modified by the
8811 definition we normally use, since that would produce infinite
8812 recursion via pointers. */
8813 /* This is variably modified if some field's type is. */
8814 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8815 if (TREE_CODE (t) == FIELD_DECL)
8816 {
8817 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8818 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8819 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8820
8821 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8822 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8823 }
8824 break;
8825
8826 case ARRAY_TYPE:
8827 /* Do not call ourselves to avoid infinite recursion. This is
8828 variably modified if the element type is. */
8829 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8830 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8831 break;
8832
8833 default:
8834 break;
8835 }
8836
8837 /* The current language may have other cases to check, but in general,
8838 all other types are not variably modified. */
8839 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8840
8841 #undef RETURN_TRUE_IF_VAR
8842 }
8843
8844 /* Given a DECL or TYPE, return the scope in which it was declared, or
8845 NULL_TREE if there is no containing scope. */
8846
8847 tree
8848 get_containing_scope (const_tree t)
8849 {
8850 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8851 }
8852
8853 /* Return the innermost context enclosing DECL that is
8854 a FUNCTION_DECL, or zero if none. */
8855
8856 tree
8857 decl_function_context (const_tree decl)
8858 {
8859 tree context;
8860
8861 if (TREE_CODE (decl) == ERROR_MARK)
8862 return 0;
8863
8864 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8865 where we look up the function at runtime. Such functions always take
8866 a first argument of type 'pointer to real context'.
8867
8868 C++ should really be fixed to use DECL_CONTEXT for the real context,
8869 and use something else for the "virtual context". */
8870 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8871 context
8872 = TYPE_MAIN_VARIANT
8873 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8874 else
8875 context = DECL_CONTEXT (decl);
8876
8877 while (context && TREE_CODE (context) != FUNCTION_DECL)
8878 {
8879 if (TREE_CODE (context) == BLOCK)
8880 context = BLOCK_SUPERCONTEXT (context);
8881 else
8882 context = get_containing_scope (context);
8883 }
8884
8885 return context;
8886 }
8887
8888 /* Return the innermost context enclosing DECL that is
8889 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8890 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8891
8892 tree
8893 decl_type_context (const_tree decl)
8894 {
8895 tree context = DECL_CONTEXT (decl);
8896
8897 while (context)
8898 switch (TREE_CODE (context))
8899 {
8900 case NAMESPACE_DECL:
8901 case TRANSLATION_UNIT_DECL:
8902 return NULL_TREE;
8903
8904 case RECORD_TYPE:
8905 case UNION_TYPE:
8906 case QUAL_UNION_TYPE:
8907 return context;
8908
8909 case TYPE_DECL:
8910 case FUNCTION_DECL:
8911 context = DECL_CONTEXT (context);
8912 break;
8913
8914 case BLOCK:
8915 context = BLOCK_SUPERCONTEXT (context);
8916 break;
8917
8918 default:
8919 gcc_unreachable ();
8920 }
8921
8922 return NULL_TREE;
8923 }
8924
8925 /* CALL is a CALL_EXPR. Return the declaration for the function
8926 called, or NULL_TREE if the called function cannot be
8927 determined. */
8928
8929 tree
8930 get_callee_fndecl (const_tree call)
8931 {
8932 tree addr;
8933
8934 if (call == error_mark_node)
8935 return error_mark_node;
8936
8937 /* It's invalid to call this function with anything but a
8938 CALL_EXPR. */
8939 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8940
8941 /* The first operand to the CALL is the address of the function
8942 called. */
8943 addr = CALL_EXPR_FN (call);
8944
8945 STRIP_NOPS (addr);
8946
8947 /* If this is a readonly function pointer, extract its initial value. */
8948 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8949 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8950 && DECL_INITIAL (addr))
8951 addr = DECL_INITIAL (addr);
8952
8953 /* If the address is just `&f' for some function `f', then we know
8954 that `f' is being called. */
8955 if (TREE_CODE (addr) == ADDR_EXPR
8956 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8957 return TREE_OPERAND (addr, 0);
8958
8959 /* We couldn't figure out what was being called. */
8960 return NULL_TREE;
8961 }
8962
8963 /* Print debugging information about tree nodes generated during the compile,
8964 and any language-specific information. */
8965
8966 void
8967 dump_tree_statistics (void)
8968 {
8969 if (GATHER_STATISTICS)
8970 {
8971 int i;
8972 int total_nodes, total_bytes;
8973 fprintf (stderr, "Kind Nodes Bytes\n");
8974 fprintf (stderr, "---------------------------------------\n");
8975 total_nodes = total_bytes = 0;
8976 for (i = 0; i < (int) all_kinds; i++)
8977 {
8978 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8979 tree_node_counts[i], tree_node_sizes[i]);
8980 total_nodes += tree_node_counts[i];
8981 total_bytes += tree_node_sizes[i];
8982 }
8983 fprintf (stderr, "---------------------------------------\n");
8984 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8985 fprintf (stderr, "---------------------------------------\n");
8986 fprintf (stderr, "Code Nodes\n");
8987 fprintf (stderr, "----------------------------\n");
8988 for (i = 0; i < (int) MAX_TREE_CODES; i++)
8989 fprintf (stderr, "%-20s %7d\n", get_tree_code_name ((enum tree_code) i),
8990 tree_code_counts[i]);
8991 fprintf (stderr, "----------------------------\n");
8992 ssanames_print_statistics ();
8993 phinodes_print_statistics ();
8994 }
8995 else
8996 fprintf (stderr, "(No per-node statistics)\n");
8997
8998 print_type_hash_statistics ();
8999 print_debug_expr_statistics ();
9000 print_value_expr_statistics ();
9001 lang_hooks.print_statistics ();
9002 }
9003 \f
9004 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9005
9006 /* Generate a crc32 of a byte. */
9007
9008 static unsigned
9009 crc32_unsigned_bits (unsigned chksum, unsigned value, unsigned bits)
9010 {
9011 unsigned ix;
9012
9013 for (ix = bits; ix--; value <<= 1)
9014 {
9015 unsigned feedback;
9016
9017 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
9018 chksum <<= 1;
9019 chksum ^= feedback;
9020 }
9021 return chksum;
9022 }
9023
9024 /* Generate a crc32 of a 32-bit unsigned. */
9025
9026 unsigned
9027 crc32_unsigned (unsigned chksum, unsigned value)
9028 {
9029 return crc32_unsigned_bits (chksum, value, 32);
9030 }
9031
9032 /* Generate a crc32 of a byte. */
9033
9034 unsigned
9035 crc32_byte (unsigned chksum, char byte)
9036 {
9037 return crc32_unsigned_bits (chksum, (unsigned) byte << 24, 8);
9038 }
9039
9040 /* Generate a crc32 of a string. */
9041
9042 unsigned
9043 crc32_string (unsigned chksum, const char *string)
9044 {
9045 do
9046 {
9047 chksum = crc32_byte (chksum, *string);
9048 }
9049 while (*string++);
9050 return chksum;
9051 }
9052
9053 /* P is a string that will be used in a symbol. Mask out any characters
9054 that are not valid in that context. */
9055
9056 void
9057 clean_symbol_name (char *p)
9058 {
9059 for (; *p; p++)
9060 if (! (ISALNUM (*p)
9061 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9062 || *p == '$'
9063 #endif
9064 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9065 || *p == '.'
9066 #endif
9067 ))
9068 *p = '_';
9069 }
9070
9071 /* Generate a name for a special-purpose function.
9072 The generated name may need to be unique across the whole link.
9073 Changes to this function may also require corresponding changes to
9074 xstrdup_mask_random.
9075 TYPE is some string to identify the purpose of this function to the
9076 linker or collect2; it must start with an uppercase letter,
9077 one of:
9078 I - for constructors
9079 D - for destructors
9080 N - for C++ anonymous namespaces
9081 F - for DWARF unwind frame information. */
9082
9083 tree
9084 get_file_function_name (const char *type)
9085 {
9086 char *buf;
9087 const char *p;
9088 char *q;
9089
9090 /* If we already have a name we know to be unique, just use that. */
9091 if (first_global_object_name)
9092 p = q = ASTRDUP (first_global_object_name);
9093 /* If the target is handling the constructors/destructors, they
9094 will be local to this file and the name is only necessary for
9095 debugging purposes.
9096 We also assign sub_I and sub_D sufixes to constructors called from
9097 the global static constructors. These are always local. */
9098 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9099 || (strncmp (type, "sub_", 4) == 0
9100 && (type[4] == 'I' || type[4] == 'D')))
9101 {
9102 const char *file = main_input_filename;
9103 if (! file)
9104 file = input_filename;
9105 /* Just use the file's basename, because the full pathname
9106 might be quite long. */
9107 p = q = ASTRDUP (lbasename (file));
9108 }
9109 else
9110 {
9111 /* Otherwise, the name must be unique across the entire link.
9112 We don't have anything that we know to be unique to this translation
9113 unit, so use what we do have and throw in some randomness. */
9114 unsigned len;
9115 const char *name = weak_global_object_name;
9116 const char *file = main_input_filename;
9117
9118 if (! name)
9119 name = "";
9120 if (! file)
9121 file = input_filename;
9122
9123 len = strlen (file);
9124 q = (char *) alloca (9 + 17 + len + 1);
9125 memcpy (q, file, len + 1);
9126
9127 snprintf (q + len, 9 + 17 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9128 crc32_string (0, name), get_random_seed (false));
9129
9130 p = q;
9131 }
9132
9133 clean_symbol_name (q);
9134 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9135 + strlen (type));
9136
9137 /* Set up the name of the file-level functions we may need.
9138 Use a global object (which is already required to be unique over
9139 the program) rather than the file name (which imposes extra
9140 constraints). */
9141 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9142
9143 return get_identifier (buf);
9144 }
9145 \f
9146 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9147
9148 /* Complain that the tree code of NODE does not match the expected 0
9149 terminated list of trailing codes. The trailing code list can be
9150 empty, for a more vague error message. FILE, LINE, and FUNCTION
9151 are of the caller. */
9152
9153 void
9154 tree_check_failed (const_tree node, const char *file,
9155 int line, const char *function, ...)
9156 {
9157 va_list args;
9158 const char *buffer;
9159 unsigned length = 0;
9160 enum tree_code code;
9161
9162 va_start (args, function);
9163 while ((code = (enum tree_code) va_arg (args, int)))
9164 length += 4 + strlen (get_tree_code_name (code));
9165 va_end (args);
9166 if (length)
9167 {
9168 char *tmp;
9169 va_start (args, function);
9170 length += strlen ("expected ");
9171 buffer = tmp = (char *) alloca (length);
9172 length = 0;
9173 while ((code = (enum tree_code) va_arg (args, int)))
9174 {
9175 const char *prefix = length ? " or " : "expected ";
9176
9177 strcpy (tmp + length, prefix);
9178 length += strlen (prefix);
9179 strcpy (tmp + length, get_tree_code_name (code));
9180 length += strlen (get_tree_code_name (code));
9181 }
9182 va_end (args);
9183 }
9184 else
9185 buffer = "unexpected node";
9186
9187 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9188 buffer, get_tree_code_name (TREE_CODE (node)),
9189 function, trim_filename (file), line);
9190 }
9191
9192 /* Complain that the tree code of NODE does match the expected 0
9193 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9194 the caller. */
9195
9196 void
9197 tree_not_check_failed (const_tree node, const char *file,
9198 int line, const char *function, ...)
9199 {
9200 va_list args;
9201 char *buffer;
9202 unsigned length = 0;
9203 enum tree_code code;
9204
9205 va_start (args, function);
9206 while ((code = (enum tree_code) va_arg (args, int)))
9207 length += 4 + strlen (get_tree_code_name (code));
9208 va_end (args);
9209 va_start (args, function);
9210 buffer = (char *) alloca (length);
9211 length = 0;
9212 while ((code = (enum tree_code) va_arg (args, int)))
9213 {
9214 if (length)
9215 {
9216 strcpy (buffer + length, " or ");
9217 length += 4;
9218 }
9219 strcpy (buffer + length, get_tree_code_name (code));
9220 length += strlen (get_tree_code_name (code));
9221 }
9222 va_end (args);
9223
9224 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9225 buffer, get_tree_code_name (TREE_CODE (node)),
9226 function, trim_filename (file), line);
9227 }
9228
9229 /* Similar to tree_check_failed, except that we check for a class of tree
9230 code, given in CL. */
9231
9232 void
9233 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9234 const char *file, int line, const char *function)
9235 {
9236 internal_error
9237 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9238 TREE_CODE_CLASS_STRING (cl),
9239 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9240 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9241 }
9242
9243 /* Similar to tree_check_failed, except that instead of specifying a
9244 dozen codes, use the knowledge that they're all sequential. */
9245
9246 void
9247 tree_range_check_failed (const_tree node, const char *file, int line,
9248 const char *function, enum tree_code c1,
9249 enum tree_code c2)
9250 {
9251 char *buffer;
9252 unsigned length = 0;
9253 unsigned int c;
9254
9255 for (c = c1; c <= c2; ++c)
9256 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9257
9258 length += strlen ("expected ");
9259 buffer = (char *) alloca (length);
9260 length = 0;
9261
9262 for (c = c1; c <= c2; ++c)
9263 {
9264 const char *prefix = length ? " or " : "expected ";
9265
9266 strcpy (buffer + length, prefix);
9267 length += strlen (prefix);
9268 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9269 length += strlen (get_tree_code_name ((enum tree_code) c));
9270 }
9271
9272 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9273 buffer, get_tree_code_name (TREE_CODE (node)),
9274 function, trim_filename (file), line);
9275 }
9276
9277
9278 /* Similar to tree_check_failed, except that we check that a tree does
9279 not have the specified code, given in CL. */
9280
9281 void
9282 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9283 const char *file, int line, const char *function)
9284 {
9285 internal_error
9286 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9287 TREE_CODE_CLASS_STRING (cl),
9288 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9289 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9290 }
9291
9292
9293 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9294
9295 void
9296 omp_clause_check_failed (const_tree node, const char *file, int line,
9297 const char *function, enum omp_clause_code code)
9298 {
9299 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9300 omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9301 function, trim_filename (file), line);
9302 }
9303
9304
9305 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9306
9307 void
9308 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9309 const char *function, enum omp_clause_code c1,
9310 enum omp_clause_code c2)
9311 {
9312 char *buffer;
9313 unsigned length = 0;
9314 unsigned int c;
9315
9316 for (c = c1; c <= c2; ++c)
9317 length += 4 + strlen (omp_clause_code_name[c]);
9318
9319 length += strlen ("expected ");
9320 buffer = (char *) alloca (length);
9321 length = 0;
9322
9323 for (c = c1; c <= c2; ++c)
9324 {
9325 const char *prefix = length ? " or " : "expected ";
9326
9327 strcpy (buffer + length, prefix);
9328 length += strlen (prefix);
9329 strcpy (buffer + length, omp_clause_code_name[c]);
9330 length += strlen (omp_clause_code_name[c]);
9331 }
9332
9333 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9334 buffer, omp_clause_code_name[TREE_CODE (node)],
9335 function, trim_filename (file), line);
9336 }
9337
9338
9339 #undef DEFTREESTRUCT
9340 #define DEFTREESTRUCT(VAL, NAME) NAME,
9341
9342 static const char *ts_enum_names[] = {
9343 #include "treestruct.def"
9344 };
9345 #undef DEFTREESTRUCT
9346
9347 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9348
9349 /* Similar to tree_class_check_failed, except that we check for
9350 whether CODE contains the tree structure identified by EN. */
9351
9352 void
9353 tree_contains_struct_check_failed (const_tree node,
9354 const enum tree_node_structure_enum en,
9355 const char *file, int line,
9356 const char *function)
9357 {
9358 internal_error
9359 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9360 TS_ENUM_NAME (en),
9361 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9362 }
9363
9364
9365 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9366 (dynamically sized) vector. */
9367
9368 void
9369 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9370 const char *function)
9371 {
9372 internal_error
9373 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9374 idx + 1, len, function, trim_filename (file), line);
9375 }
9376
9377 /* Similar to above, except that the check is for the bounds of the operand
9378 vector of an expression node EXP. */
9379
9380 void
9381 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9382 int line, const char *function)
9383 {
9384 enum tree_code code = TREE_CODE (exp);
9385 internal_error
9386 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9387 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9388 function, trim_filename (file), line);
9389 }
9390
9391 /* Similar to above, except that the check is for the number of
9392 operands of an OMP_CLAUSE node. */
9393
9394 void
9395 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9396 int line, const char *function)
9397 {
9398 internal_error
9399 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9400 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9401 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9402 trim_filename (file), line);
9403 }
9404 #endif /* ENABLE_TREE_CHECKING */
9405 \f
9406 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9407 and mapped to the machine mode MODE. Initialize its fields and build
9408 the information necessary for debugging output. */
9409
9410 static tree
9411 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
9412 {
9413 tree t;
9414 hashval_t hashcode = 0;
9415
9416 t = make_node (VECTOR_TYPE);
9417 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
9418 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9419 SET_TYPE_MODE (t, mode);
9420
9421 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
9422 SET_TYPE_STRUCTURAL_EQUALITY (t);
9423 else if (TYPE_CANONICAL (innertype) != innertype
9424 || mode != VOIDmode)
9425 TYPE_CANONICAL (t)
9426 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
9427
9428 layout_type (t);
9429
9430 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
9431 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
9432 hashcode = iterative_hash_host_wide_int (mode, hashcode);
9433 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
9434 t = type_hash_canon (hashcode, t);
9435
9436 /* We have built a main variant, based on the main variant of the
9437 inner type. Use it to build the variant we return. */
9438 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9439 && TREE_TYPE (t) != innertype)
9440 return build_type_attribute_qual_variant (t,
9441 TYPE_ATTRIBUTES (innertype),
9442 TYPE_QUALS (innertype));
9443
9444 return t;
9445 }
9446
9447 static tree
9448 make_or_reuse_type (unsigned size, int unsignedp)
9449 {
9450 if (size == INT_TYPE_SIZE)
9451 return unsignedp ? unsigned_type_node : integer_type_node;
9452 if (size == CHAR_TYPE_SIZE)
9453 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9454 if (size == SHORT_TYPE_SIZE)
9455 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9456 if (size == LONG_TYPE_SIZE)
9457 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9458 if (size == LONG_LONG_TYPE_SIZE)
9459 return (unsignedp ? long_long_unsigned_type_node
9460 : long_long_integer_type_node);
9461 if (size == 128 && int128_integer_type_node)
9462 return (unsignedp ? int128_unsigned_type_node
9463 : int128_integer_type_node);
9464
9465 if (unsignedp)
9466 return make_unsigned_type (size);
9467 else
9468 return make_signed_type (size);
9469 }
9470
9471 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9472
9473 static tree
9474 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9475 {
9476 if (satp)
9477 {
9478 if (size == SHORT_FRACT_TYPE_SIZE)
9479 return unsignedp ? sat_unsigned_short_fract_type_node
9480 : sat_short_fract_type_node;
9481 if (size == FRACT_TYPE_SIZE)
9482 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9483 if (size == LONG_FRACT_TYPE_SIZE)
9484 return unsignedp ? sat_unsigned_long_fract_type_node
9485 : sat_long_fract_type_node;
9486 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9487 return unsignedp ? sat_unsigned_long_long_fract_type_node
9488 : sat_long_long_fract_type_node;
9489 }
9490 else
9491 {
9492 if (size == SHORT_FRACT_TYPE_SIZE)
9493 return unsignedp ? unsigned_short_fract_type_node
9494 : short_fract_type_node;
9495 if (size == FRACT_TYPE_SIZE)
9496 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9497 if (size == LONG_FRACT_TYPE_SIZE)
9498 return unsignedp ? unsigned_long_fract_type_node
9499 : long_fract_type_node;
9500 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9501 return unsignedp ? unsigned_long_long_fract_type_node
9502 : long_long_fract_type_node;
9503 }
9504
9505 return make_fract_type (size, unsignedp, satp);
9506 }
9507
9508 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9509
9510 static tree
9511 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9512 {
9513 if (satp)
9514 {
9515 if (size == SHORT_ACCUM_TYPE_SIZE)
9516 return unsignedp ? sat_unsigned_short_accum_type_node
9517 : sat_short_accum_type_node;
9518 if (size == ACCUM_TYPE_SIZE)
9519 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9520 if (size == LONG_ACCUM_TYPE_SIZE)
9521 return unsignedp ? sat_unsigned_long_accum_type_node
9522 : sat_long_accum_type_node;
9523 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9524 return unsignedp ? sat_unsigned_long_long_accum_type_node
9525 : sat_long_long_accum_type_node;
9526 }
9527 else
9528 {
9529 if (size == SHORT_ACCUM_TYPE_SIZE)
9530 return unsignedp ? unsigned_short_accum_type_node
9531 : short_accum_type_node;
9532 if (size == ACCUM_TYPE_SIZE)
9533 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9534 if (size == LONG_ACCUM_TYPE_SIZE)
9535 return unsignedp ? unsigned_long_accum_type_node
9536 : long_accum_type_node;
9537 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9538 return unsignedp ? unsigned_long_long_accum_type_node
9539 : long_long_accum_type_node;
9540 }
9541
9542 return make_accum_type (size, unsignedp, satp);
9543 }
9544
9545
9546 /* Create an atomic variant node for TYPE. This routine is called
9547 during initialization of data types to create the 5 basic atomic
9548 types. The generic build_variant_type function requires these to
9549 already be set up in order to function properly, so cannot be
9550 called from there. */
9551
9552 static tree
9553 build_atomic_base (tree type)
9554 {
9555 tree t;
9556
9557 /* Make sure its not already registered. */
9558 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
9559 return t;
9560
9561 t = build_variant_type_copy (type);
9562 set_type_quals (t, TYPE_QUAL_ATOMIC);
9563
9564 return t;
9565 }
9566
9567 /* Create nodes for all integer types (and error_mark_node) using the sizes
9568 of C datatypes. SIGNED_CHAR specifies whether char is signed,
9569 SHORT_DOUBLE specifies whether double should be of the same precision
9570 as float. */
9571
9572 void
9573 build_common_tree_nodes (bool signed_char, bool short_double)
9574 {
9575 error_mark_node = make_node (ERROR_MARK);
9576 TREE_TYPE (error_mark_node) = error_mark_node;
9577
9578 initialize_sizetypes ();
9579
9580 /* Define both `signed char' and `unsigned char'. */
9581 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9582 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9583 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9584 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9585
9586 /* Define `char', which is like either `signed char' or `unsigned char'
9587 but not the same as either. */
9588 char_type_node
9589 = (signed_char
9590 ? make_signed_type (CHAR_TYPE_SIZE)
9591 : make_unsigned_type (CHAR_TYPE_SIZE));
9592 TYPE_STRING_FLAG (char_type_node) = 1;
9593
9594 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9595 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9596 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9597 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9598 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9599 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9600 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9601 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9602 #if HOST_BITS_PER_WIDE_INT >= 64
9603 /* TODO: This isn't correct, but as logic depends at the moment on
9604 host's instead of target's wide-integer.
9605 If there is a target not supporting TImode, but has an 128-bit
9606 integer-scalar register, this target check needs to be adjusted. */
9607 if (targetm.scalar_mode_supported_p (TImode))
9608 {
9609 int128_integer_type_node = make_signed_type (128);
9610 int128_unsigned_type_node = make_unsigned_type (128);
9611 }
9612 #endif
9613
9614 /* Define a boolean type. This type only represents boolean values but
9615 may be larger than char depending on the value of BOOL_TYPE_SIZE.
9616 Front ends which want to override this size (i.e. Java) can redefine
9617 boolean_type_node before calling build_common_tree_nodes_2. */
9618 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9619 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9620 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9621 TYPE_PRECISION (boolean_type_node) = 1;
9622
9623 /* Define what type to use for size_t. */
9624 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9625 size_type_node = unsigned_type_node;
9626 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9627 size_type_node = long_unsigned_type_node;
9628 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9629 size_type_node = long_long_unsigned_type_node;
9630 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9631 size_type_node = short_unsigned_type_node;
9632 else
9633 gcc_unreachable ();
9634
9635 /* Fill in the rest of the sized types. Reuse existing type nodes
9636 when possible. */
9637 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9638 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9639 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9640 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9641 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9642
9643 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9644 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9645 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9646 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9647 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9648
9649 /* Don't call build_qualified type for atomics. That routine does
9650 special processing for atomics, and until they are initialized
9651 it's better not to make that call. */
9652
9653 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node);
9654 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node);
9655 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node);
9656 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node);
9657 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node);
9658
9659 access_public_node = get_identifier ("public");
9660 access_protected_node = get_identifier ("protected");
9661 access_private_node = get_identifier ("private");
9662
9663 /* Define these next since types below may used them. */
9664 integer_zero_node = build_int_cst (integer_type_node, 0);
9665 integer_one_node = build_int_cst (integer_type_node, 1);
9666 integer_three_node = build_int_cst (integer_type_node, 3);
9667 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9668
9669 size_zero_node = size_int (0);
9670 size_one_node = size_int (1);
9671 bitsize_zero_node = bitsize_int (0);
9672 bitsize_one_node = bitsize_int (1);
9673 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9674
9675 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9676 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9677
9678 void_type_node = make_node (VOID_TYPE);
9679 layout_type (void_type_node);
9680
9681 pointer_bounds_type_node = targetm.chkp_bound_type ();
9682
9683 /* We are not going to have real types in C with less than byte alignment,
9684 so we might as well not have any types that claim to have it. */
9685 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9686 TYPE_USER_ALIGN (void_type_node) = 0;
9687
9688 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9689 layout_type (TREE_TYPE (null_pointer_node));
9690
9691 ptr_type_node = build_pointer_type (void_type_node);
9692 const_ptr_type_node
9693 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9694 fileptr_type_node = ptr_type_node;
9695
9696 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
9697
9698 float_type_node = make_node (REAL_TYPE);
9699 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9700 layout_type (float_type_node);
9701
9702 double_type_node = make_node (REAL_TYPE);
9703 if (short_double)
9704 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9705 else
9706 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9707 layout_type (double_type_node);
9708
9709 long_double_type_node = make_node (REAL_TYPE);
9710 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9711 layout_type (long_double_type_node);
9712
9713 float_ptr_type_node = build_pointer_type (float_type_node);
9714 double_ptr_type_node = build_pointer_type (double_type_node);
9715 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9716 integer_ptr_type_node = build_pointer_type (integer_type_node);
9717
9718 /* Fixed size integer types. */
9719 uint16_type_node = build_nonstandard_integer_type (16, true);
9720 uint32_type_node = build_nonstandard_integer_type (32, true);
9721 uint64_type_node = build_nonstandard_integer_type (64, true);
9722
9723 /* Decimal float types. */
9724 dfloat32_type_node = make_node (REAL_TYPE);
9725 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9726 layout_type (dfloat32_type_node);
9727 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9728 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9729
9730 dfloat64_type_node = make_node (REAL_TYPE);
9731 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9732 layout_type (dfloat64_type_node);
9733 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9734 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9735
9736 dfloat128_type_node = make_node (REAL_TYPE);
9737 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9738 layout_type (dfloat128_type_node);
9739 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9740 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9741
9742 complex_integer_type_node = build_complex_type (integer_type_node);
9743 complex_float_type_node = build_complex_type (float_type_node);
9744 complex_double_type_node = build_complex_type (double_type_node);
9745 complex_long_double_type_node = build_complex_type (long_double_type_node);
9746
9747 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9748 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9749 sat_ ## KIND ## _type_node = \
9750 make_sat_signed_ ## KIND ## _type (SIZE); \
9751 sat_unsigned_ ## KIND ## _type_node = \
9752 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9753 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9754 unsigned_ ## KIND ## _type_node = \
9755 make_unsigned_ ## KIND ## _type (SIZE);
9756
9757 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9758 sat_ ## WIDTH ## KIND ## _type_node = \
9759 make_sat_signed_ ## KIND ## _type (SIZE); \
9760 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9761 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9762 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9763 unsigned_ ## WIDTH ## KIND ## _type_node = \
9764 make_unsigned_ ## KIND ## _type (SIZE);
9765
9766 /* Make fixed-point type nodes based on four different widths. */
9767 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9768 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9769 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9770 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9771 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9772
9773 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9774 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9775 NAME ## _type_node = \
9776 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9777 u ## NAME ## _type_node = \
9778 make_or_reuse_unsigned_ ## KIND ## _type \
9779 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9780 sat_ ## NAME ## _type_node = \
9781 make_or_reuse_sat_signed_ ## KIND ## _type \
9782 (GET_MODE_BITSIZE (MODE ## mode)); \
9783 sat_u ## NAME ## _type_node = \
9784 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9785 (GET_MODE_BITSIZE (U ## MODE ## mode));
9786
9787 /* Fixed-point type and mode nodes. */
9788 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9789 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9790 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9791 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9792 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9793 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9794 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9795 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9796 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9797 MAKE_FIXED_MODE_NODE (accum, da, DA)
9798 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9799
9800 {
9801 tree t = targetm.build_builtin_va_list ();
9802
9803 /* Many back-ends define record types without setting TYPE_NAME.
9804 If we copied the record type here, we'd keep the original
9805 record type without a name. This breaks name mangling. So,
9806 don't copy record types and let c_common_nodes_and_builtins()
9807 declare the type to be __builtin_va_list. */
9808 if (TREE_CODE (t) != RECORD_TYPE)
9809 t = build_variant_type_copy (t);
9810
9811 va_list_type_node = t;
9812 }
9813 }
9814
9815 /* Modify DECL for given flags.
9816 TM_PURE attribute is set only on types, so the function will modify
9817 DECL's type when ECF_TM_PURE is used. */
9818
9819 void
9820 set_call_expr_flags (tree decl, int flags)
9821 {
9822 if (flags & ECF_NOTHROW)
9823 TREE_NOTHROW (decl) = 1;
9824 if (flags & ECF_CONST)
9825 TREE_READONLY (decl) = 1;
9826 if (flags & ECF_PURE)
9827 DECL_PURE_P (decl) = 1;
9828 if (flags & ECF_LOOPING_CONST_OR_PURE)
9829 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9830 if (flags & ECF_NOVOPS)
9831 DECL_IS_NOVOPS (decl) = 1;
9832 if (flags & ECF_NORETURN)
9833 TREE_THIS_VOLATILE (decl) = 1;
9834 if (flags & ECF_MALLOC)
9835 DECL_IS_MALLOC (decl) = 1;
9836 if (flags & ECF_RETURNS_TWICE)
9837 DECL_IS_RETURNS_TWICE (decl) = 1;
9838 if (flags & ECF_LEAF)
9839 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9840 NULL, DECL_ATTRIBUTES (decl));
9841 if ((flags & ECF_TM_PURE) && flag_tm)
9842 apply_tm_attr (decl, get_identifier ("transaction_pure"));
9843 /* Looping const or pure is implied by noreturn.
9844 There is currently no way to declare looping const or looping pure alone. */
9845 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
9846 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
9847 }
9848
9849
9850 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9851
9852 static void
9853 local_define_builtin (const char *name, tree type, enum built_in_function code,
9854 const char *library_name, int ecf_flags)
9855 {
9856 tree decl;
9857
9858 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9859 library_name, NULL_TREE);
9860 set_call_expr_flags (decl, ecf_flags);
9861
9862 set_builtin_decl (code, decl, true);
9863 }
9864
9865 /* Call this function after instantiating all builtins that the language
9866 front end cares about. This will build the rest of the builtins that
9867 are relied upon by the tree optimizers and the middle-end. */
9868
9869 void
9870 build_common_builtin_nodes (void)
9871 {
9872 tree tmp, ftype;
9873 int ecf_flags;
9874
9875 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
9876 {
9877 ftype = build_function_type (void_type_node, void_list_node);
9878 local_define_builtin ("__builtin_unreachable", ftype, BUILT_IN_UNREACHABLE,
9879 "__builtin_unreachable",
9880 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
9881 | ECF_CONST | ECF_LEAF);
9882 }
9883
9884 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
9885 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9886 {
9887 ftype = build_function_type_list (ptr_type_node,
9888 ptr_type_node, const_ptr_type_node,
9889 size_type_node, NULL_TREE);
9890
9891 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
9892 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9893 "memcpy", ECF_NOTHROW | ECF_LEAF);
9894 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9895 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9896 "memmove", ECF_NOTHROW | ECF_LEAF);
9897 }
9898
9899 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
9900 {
9901 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9902 const_ptr_type_node, size_type_node,
9903 NULL_TREE);
9904 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9905 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9906 }
9907
9908 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
9909 {
9910 ftype = build_function_type_list (ptr_type_node,
9911 ptr_type_node, integer_type_node,
9912 size_type_node, NULL_TREE);
9913 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9914 "memset", ECF_NOTHROW | ECF_LEAF);
9915 }
9916
9917 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
9918 {
9919 ftype = build_function_type_list (ptr_type_node,
9920 size_type_node, NULL_TREE);
9921 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9922 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9923 }
9924
9925 ftype = build_function_type_list (ptr_type_node, size_type_node,
9926 size_type_node, NULL_TREE);
9927 local_define_builtin ("__builtin_alloca_with_align", ftype,
9928 BUILT_IN_ALLOCA_WITH_ALIGN, "alloca",
9929 ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9930
9931 /* If we're checking the stack, `alloca' can throw. */
9932 if (flag_stack_check)
9933 {
9934 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA)) = 0;
9935 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN)) = 0;
9936 }
9937
9938 ftype = build_function_type_list (void_type_node,
9939 ptr_type_node, ptr_type_node,
9940 ptr_type_node, NULL_TREE);
9941 local_define_builtin ("__builtin_init_trampoline", ftype,
9942 BUILT_IN_INIT_TRAMPOLINE,
9943 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9944 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
9945 BUILT_IN_INIT_HEAP_TRAMPOLINE,
9946 "__builtin_init_heap_trampoline",
9947 ECF_NOTHROW | ECF_LEAF);
9948
9949 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9950 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9951 BUILT_IN_ADJUST_TRAMPOLINE,
9952 "__builtin_adjust_trampoline",
9953 ECF_CONST | ECF_NOTHROW);
9954
9955 ftype = build_function_type_list (void_type_node,
9956 ptr_type_node, ptr_type_node, NULL_TREE);
9957 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9958 BUILT_IN_NONLOCAL_GOTO,
9959 "__builtin_nonlocal_goto",
9960 ECF_NORETURN | ECF_NOTHROW);
9961
9962 ftype = build_function_type_list (void_type_node,
9963 ptr_type_node, ptr_type_node, NULL_TREE);
9964 local_define_builtin ("__builtin_setjmp_setup", ftype,
9965 BUILT_IN_SETJMP_SETUP,
9966 "__builtin_setjmp_setup", ECF_NOTHROW);
9967
9968 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9969 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9970 BUILT_IN_SETJMP_DISPATCHER,
9971 "__builtin_setjmp_dispatcher",
9972 ECF_PURE | ECF_NOTHROW);
9973
9974 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9975 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9976 BUILT_IN_SETJMP_RECEIVER,
9977 "__builtin_setjmp_receiver", ECF_NOTHROW);
9978
9979 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9980 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9981 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9982
9983 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9984 local_define_builtin ("__builtin_stack_restore", ftype,
9985 BUILT_IN_STACK_RESTORE,
9986 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9987
9988 /* If there's a possibility that we might use the ARM EABI, build the
9989 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9990 if (targetm.arm_eabi_unwinder)
9991 {
9992 ftype = build_function_type_list (void_type_node, NULL_TREE);
9993 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9994 BUILT_IN_CXA_END_CLEANUP,
9995 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9996 }
9997
9998 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9999 local_define_builtin ("__builtin_unwind_resume", ftype,
10000 BUILT_IN_UNWIND_RESUME,
10001 ((targetm_common.except_unwind_info (&global_options)
10002 == UI_SJLJ)
10003 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10004 ECF_NORETURN);
10005
10006 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10007 {
10008 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10009 NULL_TREE);
10010 local_define_builtin ("__builtin_return_address", ftype,
10011 BUILT_IN_RETURN_ADDRESS,
10012 "__builtin_return_address",
10013 ECF_NOTHROW);
10014 }
10015
10016 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10017 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10018 {
10019 ftype = build_function_type_list (void_type_node, ptr_type_node,
10020 ptr_type_node, NULL_TREE);
10021 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10022 local_define_builtin ("__cyg_profile_func_enter", ftype,
10023 BUILT_IN_PROFILE_FUNC_ENTER,
10024 "__cyg_profile_func_enter", 0);
10025 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10026 local_define_builtin ("__cyg_profile_func_exit", ftype,
10027 BUILT_IN_PROFILE_FUNC_EXIT,
10028 "__cyg_profile_func_exit", 0);
10029 }
10030
10031 /* The exception object and filter values from the runtime. The argument
10032 must be zero before exception lowering, i.e. from the front end. After
10033 exception lowering, it will be the region number for the exception
10034 landing pad. These functions are PURE instead of CONST to prevent
10035 them from being hoisted past the exception edge that will initialize
10036 its value in the landing pad. */
10037 ftype = build_function_type_list (ptr_type_node,
10038 integer_type_node, NULL_TREE);
10039 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10040 /* Only use TM_PURE if we we have TM language support. */
10041 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10042 ecf_flags |= ECF_TM_PURE;
10043 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10044 "__builtin_eh_pointer", ecf_flags);
10045
10046 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10047 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10048 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10049 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10050
10051 ftype = build_function_type_list (void_type_node,
10052 integer_type_node, integer_type_node,
10053 NULL_TREE);
10054 local_define_builtin ("__builtin_eh_copy_values", ftype,
10055 BUILT_IN_EH_COPY_VALUES,
10056 "__builtin_eh_copy_values", ECF_NOTHROW);
10057
10058 /* Complex multiplication and division. These are handled as builtins
10059 rather than optabs because emit_library_call_value doesn't support
10060 complex. Further, we can do slightly better with folding these
10061 beasties if the real and complex parts of the arguments are separate. */
10062 {
10063 int mode;
10064
10065 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10066 {
10067 char mode_name_buf[4], *q;
10068 const char *p;
10069 enum built_in_function mcode, dcode;
10070 tree type, inner_type;
10071 const char *prefix = "__";
10072
10073 if (targetm.libfunc_gnu_prefix)
10074 prefix = "__gnu_";
10075
10076 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
10077 if (type == NULL)
10078 continue;
10079 inner_type = TREE_TYPE (type);
10080
10081 ftype = build_function_type_list (type, inner_type, inner_type,
10082 inner_type, inner_type, NULL_TREE);
10083
10084 mcode = ((enum built_in_function)
10085 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10086 dcode = ((enum built_in_function)
10087 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10088
10089 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10090 *q = TOLOWER (*p);
10091 *q = '\0';
10092
10093 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10094 NULL);
10095 local_define_builtin (built_in_names[mcode], ftype, mcode,
10096 built_in_names[mcode],
10097 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10098
10099 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10100 NULL);
10101 local_define_builtin (built_in_names[dcode], ftype, dcode,
10102 built_in_names[dcode],
10103 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10104 }
10105 }
10106 }
10107
10108 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10109 better way.
10110
10111 If we requested a pointer to a vector, build up the pointers that
10112 we stripped off while looking for the inner type. Similarly for
10113 return values from functions.
10114
10115 The argument TYPE is the top of the chain, and BOTTOM is the
10116 new type which we will point to. */
10117
10118 tree
10119 reconstruct_complex_type (tree type, tree bottom)
10120 {
10121 tree inner, outer;
10122
10123 if (TREE_CODE (type) == POINTER_TYPE)
10124 {
10125 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10126 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10127 TYPE_REF_CAN_ALIAS_ALL (type));
10128 }
10129 else if (TREE_CODE (type) == REFERENCE_TYPE)
10130 {
10131 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10132 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10133 TYPE_REF_CAN_ALIAS_ALL (type));
10134 }
10135 else if (TREE_CODE (type) == ARRAY_TYPE)
10136 {
10137 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10138 outer = build_array_type (inner, TYPE_DOMAIN (type));
10139 }
10140 else if (TREE_CODE (type) == FUNCTION_TYPE)
10141 {
10142 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10143 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10144 }
10145 else if (TREE_CODE (type) == METHOD_TYPE)
10146 {
10147 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10148 /* The build_method_type_directly() routine prepends 'this' to argument list,
10149 so we must compensate by getting rid of it. */
10150 outer
10151 = build_method_type_directly
10152 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10153 inner,
10154 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10155 }
10156 else if (TREE_CODE (type) == OFFSET_TYPE)
10157 {
10158 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10159 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10160 }
10161 else
10162 return bottom;
10163
10164 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10165 TYPE_QUALS (type));
10166 }
10167
10168 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10169 the inner type. */
10170 tree
10171 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
10172 {
10173 int nunits;
10174
10175 switch (GET_MODE_CLASS (mode))
10176 {
10177 case MODE_VECTOR_INT:
10178 case MODE_VECTOR_FLOAT:
10179 case MODE_VECTOR_FRACT:
10180 case MODE_VECTOR_UFRACT:
10181 case MODE_VECTOR_ACCUM:
10182 case MODE_VECTOR_UACCUM:
10183 nunits = GET_MODE_NUNITS (mode);
10184 break;
10185
10186 case MODE_INT:
10187 /* Check that there are no leftover bits. */
10188 gcc_assert (GET_MODE_BITSIZE (mode)
10189 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10190
10191 nunits = GET_MODE_BITSIZE (mode)
10192 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10193 break;
10194
10195 default:
10196 gcc_unreachable ();
10197 }
10198
10199 return make_vector_type (innertype, nunits, mode);
10200 }
10201
10202 /* Similarly, but takes the inner type and number of units, which must be
10203 a power of two. */
10204
10205 tree
10206 build_vector_type (tree innertype, int nunits)
10207 {
10208 return make_vector_type (innertype, nunits, VOIDmode);
10209 }
10210
10211 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
10212
10213 tree
10214 build_opaque_vector_type (tree innertype, int nunits)
10215 {
10216 tree t = make_vector_type (innertype, nunits, VOIDmode);
10217 tree cand;
10218 /* We always build the non-opaque variant before the opaque one,
10219 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10220 cand = TYPE_NEXT_VARIANT (t);
10221 if (cand
10222 && TYPE_VECTOR_OPAQUE (cand)
10223 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10224 return cand;
10225 /* Othewise build a variant type and make sure to queue it after
10226 the non-opaque type. */
10227 cand = build_distinct_type_copy (t);
10228 TYPE_VECTOR_OPAQUE (cand) = true;
10229 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10230 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10231 TYPE_NEXT_VARIANT (t) = cand;
10232 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10233 return cand;
10234 }
10235
10236
10237 /* Given an initializer INIT, return TRUE if INIT is zero or some
10238 aggregate of zeros. Otherwise return FALSE. */
10239 bool
10240 initializer_zerop (const_tree init)
10241 {
10242 tree elt;
10243
10244 STRIP_NOPS (init);
10245
10246 switch (TREE_CODE (init))
10247 {
10248 case INTEGER_CST:
10249 return integer_zerop (init);
10250
10251 case REAL_CST:
10252 /* ??? Note that this is not correct for C4X float formats. There,
10253 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10254 negative exponent. */
10255 return real_zerop (init)
10256 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
10257
10258 case FIXED_CST:
10259 return fixed_zerop (init);
10260
10261 case COMPLEX_CST:
10262 return integer_zerop (init)
10263 || (real_zerop (init)
10264 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10265 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
10266
10267 case VECTOR_CST:
10268 {
10269 unsigned i;
10270 for (i = 0; i < VECTOR_CST_NELTS (init); ++i)
10271 if (!initializer_zerop (VECTOR_CST_ELT (init, i)))
10272 return false;
10273 return true;
10274 }
10275
10276 case CONSTRUCTOR:
10277 {
10278 unsigned HOST_WIDE_INT idx;
10279
10280 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10281 if (!initializer_zerop (elt))
10282 return false;
10283 return true;
10284 }
10285
10286 case STRING_CST:
10287 {
10288 int i;
10289
10290 /* We need to loop through all elements to handle cases like
10291 "\0" and "\0foobar". */
10292 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10293 if (TREE_STRING_POINTER (init)[i] != '\0')
10294 return false;
10295
10296 return true;
10297 }
10298
10299 default:
10300 return false;
10301 }
10302 }
10303
10304 /* Check if vector VEC consists of all the equal elements and
10305 that the number of elements corresponds to the type of VEC.
10306 The function returns first element of the vector
10307 or NULL_TREE if the vector is not uniform. */
10308 tree
10309 uniform_vector_p (const_tree vec)
10310 {
10311 tree first, t;
10312 unsigned i;
10313
10314 if (vec == NULL_TREE)
10315 return NULL_TREE;
10316
10317 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10318
10319 if (TREE_CODE (vec) == VECTOR_CST)
10320 {
10321 first = VECTOR_CST_ELT (vec, 0);
10322 for (i = 1; i < VECTOR_CST_NELTS (vec); ++i)
10323 if (!operand_equal_p (first, VECTOR_CST_ELT (vec, i), 0))
10324 return NULL_TREE;
10325
10326 return first;
10327 }
10328
10329 else if (TREE_CODE (vec) == CONSTRUCTOR)
10330 {
10331 first = error_mark_node;
10332
10333 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10334 {
10335 if (i == 0)
10336 {
10337 first = t;
10338 continue;
10339 }
10340 if (!operand_equal_p (first, t, 0))
10341 return NULL_TREE;
10342 }
10343 if (i != TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)))
10344 return NULL_TREE;
10345
10346 return first;
10347 }
10348
10349 return NULL_TREE;
10350 }
10351
10352 /* Build an empty statement at location LOC. */
10353
10354 tree
10355 build_empty_stmt (location_t loc)
10356 {
10357 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10358 SET_EXPR_LOCATION (t, loc);
10359 return t;
10360 }
10361
10362
10363 /* Build an OpenMP clause with code CODE. LOC is the location of the
10364 clause. */
10365
10366 tree
10367 build_omp_clause (location_t loc, enum omp_clause_code code)
10368 {
10369 tree t;
10370 int size, length;
10371
10372 length = omp_clause_num_ops[code];
10373 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10374
10375 record_node_allocation_statistics (OMP_CLAUSE, size);
10376
10377 t = ggc_alloc_tree_node (size);
10378 memset (t, 0, size);
10379 TREE_SET_CODE (t, OMP_CLAUSE);
10380 OMP_CLAUSE_SET_CODE (t, code);
10381 OMP_CLAUSE_LOCATION (t) = loc;
10382
10383 return t;
10384 }
10385
10386 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10387 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10388 Except for the CODE and operand count field, other storage for the
10389 object is initialized to zeros. */
10390
10391 tree
10392 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
10393 {
10394 tree t;
10395 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10396
10397 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10398 gcc_assert (len >= 1);
10399
10400 record_node_allocation_statistics (code, length);
10401
10402 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10403
10404 TREE_SET_CODE (t, code);
10405
10406 /* Can't use TREE_OPERAND to store the length because if checking is
10407 enabled, it will try to check the length before we store it. :-P */
10408 t->exp.operands[0] = build_int_cst (sizetype, len);
10409
10410 return t;
10411 }
10412
10413 /* Helper function for build_call_* functions; build a CALL_EXPR with
10414 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10415 the argument slots. */
10416
10417 static tree
10418 build_call_1 (tree return_type, tree fn, int nargs)
10419 {
10420 tree t;
10421
10422 t = build_vl_exp (CALL_EXPR, nargs + 3);
10423 TREE_TYPE (t) = return_type;
10424 CALL_EXPR_FN (t) = fn;
10425 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10426
10427 return t;
10428 }
10429
10430 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10431 FN and a null static chain slot. NARGS is the number of call arguments
10432 which are specified as "..." arguments. */
10433
10434 tree
10435 build_call_nary (tree return_type, tree fn, int nargs, ...)
10436 {
10437 tree ret;
10438 va_list args;
10439 va_start (args, nargs);
10440 ret = build_call_valist (return_type, fn, nargs, args);
10441 va_end (args);
10442 return ret;
10443 }
10444
10445 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10446 FN and a null static chain slot. NARGS is the number of call arguments
10447 which are specified as a va_list ARGS. */
10448
10449 tree
10450 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10451 {
10452 tree t;
10453 int i;
10454
10455 t = build_call_1 (return_type, fn, nargs);
10456 for (i = 0; i < nargs; i++)
10457 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10458 process_call_operands (t);
10459 return t;
10460 }
10461
10462 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10463 FN and a null static chain slot. NARGS is the number of call arguments
10464 which are specified as a tree array ARGS. */
10465
10466 tree
10467 build_call_array_loc (location_t loc, tree return_type, tree fn,
10468 int nargs, const tree *args)
10469 {
10470 tree t;
10471 int i;
10472
10473 t = build_call_1 (return_type, fn, nargs);
10474 for (i = 0; i < nargs; i++)
10475 CALL_EXPR_ARG (t, i) = args[i];
10476 process_call_operands (t);
10477 SET_EXPR_LOCATION (t, loc);
10478 return t;
10479 }
10480
10481 /* Like build_call_array, but takes a vec. */
10482
10483 tree
10484 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10485 {
10486 tree ret, t;
10487 unsigned int ix;
10488
10489 ret = build_call_1 (return_type, fn, vec_safe_length (args));
10490 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10491 CALL_EXPR_ARG (ret, ix) = t;
10492 process_call_operands (ret);
10493 return ret;
10494 }
10495
10496 /* Return true if T (assumed to be a DECL) must be assigned a memory
10497 location. */
10498
10499 bool
10500 needs_to_live_in_memory (const_tree t)
10501 {
10502 return (TREE_ADDRESSABLE (t)
10503 || is_global_var (t)
10504 || (TREE_CODE (t) == RESULT_DECL
10505 && !DECL_BY_REFERENCE (t)
10506 && aggregate_value_p (t, current_function_decl)));
10507 }
10508
10509 /* Return value of a constant X and sign-extend it. */
10510
10511 HOST_WIDE_INT
10512 int_cst_value (const_tree x)
10513 {
10514 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10515 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
10516
10517 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10518 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10519 || TREE_INT_CST_HIGH (x) == -1);
10520
10521 if (bits < HOST_BITS_PER_WIDE_INT)
10522 {
10523 bool negative = ((val >> (bits - 1)) & 1) != 0;
10524 if (negative)
10525 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
10526 else
10527 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
10528 }
10529
10530 return val;
10531 }
10532
10533 /* Return value of a constant X and sign-extend it. */
10534
10535 HOST_WIDEST_INT
10536 widest_int_cst_value (const_tree x)
10537 {
10538 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10539 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
10540
10541 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
10542 gcc_assert (HOST_BITS_PER_WIDEST_INT >= HOST_BITS_PER_DOUBLE_INT);
10543 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
10544 << HOST_BITS_PER_WIDE_INT);
10545 #else
10546 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10547 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10548 || TREE_INT_CST_HIGH (x) == -1);
10549 #endif
10550
10551 if (bits < HOST_BITS_PER_WIDEST_INT)
10552 {
10553 bool negative = ((val >> (bits - 1)) & 1) != 0;
10554 if (negative)
10555 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
10556 else
10557 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
10558 }
10559
10560 return val;
10561 }
10562
10563 /* If TYPE is an integral or pointer type, return an integer type with
10564 the same precision which is unsigned iff UNSIGNEDP is true, or itself
10565 if TYPE is already an integer type of signedness UNSIGNEDP. */
10566
10567 tree
10568 signed_or_unsigned_type_for (int unsignedp, tree type)
10569 {
10570 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
10571 return type;
10572
10573 if (TREE_CODE (type) == VECTOR_TYPE)
10574 {
10575 tree inner = TREE_TYPE (type);
10576 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
10577 if (!inner2)
10578 return NULL_TREE;
10579 if (inner == inner2)
10580 return type;
10581 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
10582 }
10583
10584 if (!INTEGRAL_TYPE_P (type)
10585 && !POINTER_TYPE_P (type))
10586 return NULL_TREE;
10587
10588 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
10589 }
10590
10591 /* If TYPE is an integral or pointer type, return an integer type with
10592 the same precision which is unsigned, or itself if TYPE is already an
10593 unsigned integer type. */
10594
10595 tree
10596 unsigned_type_for (tree type)
10597 {
10598 return signed_or_unsigned_type_for (1, type);
10599 }
10600
10601 /* If TYPE is an integral or pointer type, return an integer type with
10602 the same precision which is signed, or itself if TYPE is already a
10603 signed integer type. */
10604
10605 tree
10606 signed_type_for (tree type)
10607 {
10608 return signed_or_unsigned_type_for (0, type);
10609 }
10610
10611 /* If TYPE is a vector type, return a signed integer vector type with the
10612 same width and number of subparts. Otherwise return boolean_type_node. */
10613
10614 tree
10615 truth_type_for (tree type)
10616 {
10617 if (TREE_CODE (type) == VECTOR_TYPE)
10618 {
10619 tree elem = lang_hooks.types.type_for_size
10620 (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))), 0);
10621 return build_opaque_vector_type (elem, TYPE_VECTOR_SUBPARTS (type));
10622 }
10623 else
10624 return boolean_type_node;
10625 }
10626
10627 /* Returns the largest value obtainable by casting something in INNER type to
10628 OUTER type. */
10629
10630 tree
10631 upper_bound_in_type (tree outer, tree inner)
10632 {
10633 double_int high;
10634 unsigned int det = 0;
10635 unsigned oprec = TYPE_PRECISION (outer);
10636 unsigned iprec = TYPE_PRECISION (inner);
10637 unsigned prec;
10638
10639 /* Compute a unique number for every combination. */
10640 det |= (oprec > iprec) ? 4 : 0;
10641 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10642 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10643
10644 /* Determine the exponent to use. */
10645 switch (det)
10646 {
10647 case 0:
10648 case 1:
10649 /* oprec <= iprec, outer: signed, inner: don't care. */
10650 prec = oprec - 1;
10651 break;
10652 case 2:
10653 case 3:
10654 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10655 prec = oprec;
10656 break;
10657 case 4:
10658 /* oprec > iprec, outer: signed, inner: signed. */
10659 prec = iprec - 1;
10660 break;
10661 case 5:
10662 /* oprec > iprec, outer: signed, inner: unsigned. */
10663 prec = iprec;
10664 break;
10665 case 6:
10666 /* oprec > iprec, outer: unsigned, inner: signed. */
10667 prec = oprec;
10668 break;
10669 case 7:
10670 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10671 prec = iprec;
10672 break;
10673 default:
10674 gcc_unreachable ();
10675 }
10676
10677 /* Compute 2^^prec - 1. */
10678 if (prec <= HOST_BITS_PER_WIDE_INT)
10679 {
10680 high.high = 0;
10681 high.low = ((~(unsigned HOST_WIDE_INT) 0)
10682 >> (HOST_BITS_PER_WIDE_INT - prec));
10683 }
10684 else
10685 {
10686 high.high = ((~(unsigned HOST_WIDE_INT) 0)
10687 >> (HOST_BITS_PER_DOUBLE_INT - prec));
10688 high.low = ~(unsigned HOST_WIDE_INT) 0;
10689 }
10690
10691 return double_int_to_tree (outer, high);
10692 }
10693
10694 /* Returns the smallest value obtainable by casting something in INNER type to
10695 OUTER type. */
10696
10697 tree
10698 lower_bound_in_type (tree outer, tree inner)
10699 {
10700 double_int low;
10701 unsigned oprec = TYPE_PRECISION (outer);
10702 unsigned iprec = TYPE_PRECISION (inner);
10703
10704 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10705 and obtain 0. */
10706 if (TYPE_UNSIGNED (outer)
10707 /* If we are widening something of an unsigned type, OUTER type
10708 contains all values of INNER type. In particular, both INNER
10709 and OUTER types have zero in common. */
10710 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10711 low.low = low.high = 0;
10712 else
10713 {
10714 /* If we are widening a signed type to another signed type, we
10715 want to obtain -2^^(iprec-1). If we are keeping the
10716 precision or narrowing to a signed type, we want to obtain
10717 -2^(oprec-1). */
10718 unsigned prec = oprec > iprec ? iprec : oprec;
10719
10720 if (prec <= HOST_BITS_PER_WIDE_INT)
10721 {
10722 low.high = ~(unsigned HOST_WIDE_INT) 0;
10723 low.low = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
10724 }
10725 else
10726 {
10727 low.high = ((~(unsigned HOST_WIDE_INT) 0)
10728 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10729 low.low = 0;
10730 }
10731 }
10732
10733 return double_int_to_tree (outer, low);
10734 }
10735
10736 /* Return nonzero if two operands that are suitable for PHI nodes are
10737 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10738 SSA_NAME or invariant. Note that this is strictly an optimization.
10739 That is, callers of this function can directly call operand_equal_p
10740 and get the same result, only slower. */
10741
10742 int
10743 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10744 {
10745 if (arg0 == arg1)
10746 return 1;
10747 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10748 return 0;
10749 return operand_equal_p (arg0, arg1, 0);
10750 }
10751
10752 /* Returns number of zeros at the end of binary representation of X.
10753
10754 ??? Use ffs if available? */
10755
10756 tree
10757 num_ending_zeros (const_tree x)
10758 {
10759 unsigned HOST_WIDE_INT fr, nfr;
10760 unsigned num, abits;
10761 tree type = TREE_TYPE (x);
10762
10763 if (TREE_INT_CST_LOW (x) == 0)
10764 {
10765 num = HOST_BITS_PER_WIDE_INT;
10766 fr = TREE_INT_CST_HIGH (x);
10767 }
10768 else
10769 {
10770 num = 0;
10771 fr = TREE_INT_CST_LOW (x);
10772 }
10773
10774 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10775 {
10776 nfr = fr >> abits;
10777 if (nfr << abits == fr)
10778 {
10779 num += abits;
10780 fr = nfr;
10781 }
10782 }
10783
10784 if (num > TYPE_PRECISION (type))
10785 num = TYPE_PRECISION (type);
10786
10787 return build_int_cst_type (type, num);
10788 }
10789
10790
10791 #define WALK_SUBTREE(NODE) \
10792 do \
10793 { \
10794 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10795 if (result) \
10796 return result; \
10797 } \
10798 while (0)
10799
10800 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10801 be walked whenever a type is seen in the tree. Rest of operands and return
10802 value are as for walk_tree. */
10803
10804 static tree
10805 walk_type_fields (tree type, walk_tree_fn func, void *data,
10806 struct pointer_set_t *pset, walk_tree_lh lh)
10807 {
10808 tree result = NULL_TREE;
10809
10810 switch (TREE_CODE (type))
10811 {
10812 case POINTER_TYPE:
10813 case REFERENCE_TYPE:
10814 /* We have to worry about mutually recursive pointers. These can't
10815 be written in C. They can in Ada. It's pathological, but
10816 there's an ACATS test (c38102a) that checks it. Deal with this
10817 by checking if we're pointing to another pointer, that one
10818 points to another pointer, that one does too, and we have no htab.
10819 If so, get a hash table. We check three levels deep to avoid
10820 the cost of the hash table if we don't need one. */
10821 if (POINTER_TYPE_P (TREE_TYPE (type))
10822 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10823 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10824 && !pset)
10825 {
10826 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10827 func, data);
10828 if (result)
10829 return result;
10830
10831 break;
10832 }
10833
10834 /* ... fall through ... */
10835
10836 case COMPLEX_TYPE:
10837 WALK_SUBTREE (TREE_TYPE (type));
10838 break;
10839
10840 case METHOD_TYPE:
10841 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10842
10843 /* Fall through. */
10844
10845 case FUNCTION_TYPE:
10846 WALK_SUBTREE (TREE_TYPE (type));
10847 {
10848 tree arg;
10849
10850 /* We never want to walk into default arguments. */
10851 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10852 WALK_SUBTREE (TREE_VALUE (arg));
10853 }
10854 break;
10855
10856 case ARRAY_TYPE:
10857 /* Don't follow this nodes's type if a pointer for fear that
10858 we'll have infinite recursion. If we have a PSET, then we
10859 need not fear. */
10860 if (pset
10861 || (!POINTER_TYPE_P (TREE_TYPE (type))
10862 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10863 WALK_SUBTREE (TREE_TYPE (type));
10864 WALK_SUBTREE (TYPE_DOMAIN (type));
10865 break;
10866
10867 case OFFSET_TYPE:
10868 WALK_SUBTREE (TREE_TYPE (type));
10869 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10870 break;
10871
10872 default:
10873 break;
10874 }
10875
10876 return NULL_TREE;
10877 }
10878
10879 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10880 called with the DATA and the address of each sub-tree. If FUNC returns a
10881 non-NULL value, the traversal is stopped, and the value returned by FUNC
10882 is returned. If PSET is non-NULL it is used to record the nodes visited,
10883 and to avoid visiting a node more than once. */
10884
10885 tree
10886 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10887 struct pointer_set_t *pset, walk_tree_lh lh)
10888 {
10889 enum tree_code code;
10890 int walk_subtrees;
10891 tree result;
10892
10893 #define WALK_SUBTREE_TAIL(NODE) \
10894 do \
10895 { \
10896 tp = & (NODE); \
10897 goto tail_recurse; \
10898 } \
10899 while (0)
10900
10901 tail_recurse:
10902 /* Skip empty subtrees. */
10903 if (!*tp)
10904 return NULL_TREE;
10905
10906 /* Don't walk the same tree twice, if the user has requested
10907 that we avoid doing so. */
10908 if (pset && pointer_set_insert (pset, *tp))
10909 return NULL_TREE;
10910
10911 /* Call the function. */
10912 walk_subtrees = 1;
10913 result = (*func) (tp, &walk_subtrees, data);
10914
10915 /* If we found something, return it. */
10916 if (result)
10917 return result;
10918
10919 code = TREE_CODE (*tp);
10920
10921 /* Even if we didn't, FUNC may have decided that there was nothing
10922 interesting below this point in the tree. */
10923 if (!walk_subtrees)
10924 {
10925 /* But we still need to check our siblings. */
10926 if (code == TREE_LIST)
10927 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10928 else if (code == OMP_CLAUSE)
10929 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10930 else
10931 return NULL_TREE;
10932 }
10933
10934 if (lh)
10935 {
10936 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10937 if (result || !walk_subtrees)
10938 return result;
10939 }
10940
10941 switch (code)
10942 {
10943 case ERROR_MARK:
10944 case IDENTIFIER_NODE:
10945 case INTEGER_CST:
10946 case REAL_CST:
10947 case FIXED_CST:
10948 case VECTOR_CST:
10949 case STRING_CST:
10950 case BLOCK:
10951 case PLACEHOLDER_EXPR:
10952 case SSA_NAME:
10953 case FIELD_DECL:
10954 case RESULT_DECL:
10955 /* None of these have subtrees other than those already walked
10956 above. */
10957 break;
10958
10959 case TREE_LIST:
10960 WALK_SUBTREE (TREE_VALUE (*tp));
10961 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10962 break;
10963
10964 case TREE_VEC:
10965 {
10966 int len = TREE_VEC_LENGTH (*tp);
10967
10968 if (len == 0)
10969 break;
10970
10971 /* Walk all elements but the first. */
10972 while (--len)
10973 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10974
10975 /* Now walk the first one as a tail call. */
10976 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10977 }
10978
10979 case COMPLEX_CST:
10980 WALK_SUBTREE (TREE_REALPART (*tp));
10981 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10982
10983 case CONSTRUCTOR:
10984 {
10985 unsigned HOST_WIDE_INT idx;
10986 constructor_elt *ce;
10987
10988 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
10989 idx++)
10990 WALK_SUBTREE (ce->value);
10991 }
10992 break;
10993
10994 case SAVE_EXPR:
10995 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10996
10997 case BIND_EXPR:
10998 {
10999 tree decl;
11000 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11001 {
11002 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11003 into declarations that are just mentioned, rather than
11004 declared; they don't really belong to this part of the tree.
11005 And, we can see cycles: the initializer for a declaration
11006 can refer to the declaration itself. */
11007 WALK_SUBTREE (DECL_INITIAL (decl));
11008 WALK_SUBTREE (DECL_SIZE (decl));
11009 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11010 }
11011 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11012 }
11013
11014 case STATEMENT_LIST:
11015 {
11016 tree_stmt_iterator i;
11017 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11018 WALK_SUBTREE (*tsi_stmt_ptr (i));
11019 }
11020 break;
11021
11022 case OMP_CLAUSE:
11023 switch (OMP_CLAUSE_CODE (*tp))
11024 {
11025 case OMP_CLAUSE_PRIVATE:
11026 case OMP_CLAUSE_SHARED:
11027 case OMP_CLAUSE_FIRSTPRIVATE:
11028 case OMP_CLAUSE_COPYIN:
11029 case OMP_CLAUSE_COPYPRIVATE:
11030 case OMP_CLAUSE_FINAL:
11031 case OMP_CLAUSE_IF:
11032 case OMP_CLAUSE_NUM_THREADS:
11033 case OMP_CLAUSE_SCHEDULE:
11034 case OMP_CLAUSE_UNIFORM:
11035 case OMP_CLAUSE_DEPEND:
11036 case OMP_CLAUSE_NUM_TEAMS:
11037 case OMP_CLAUSE_THREAD_LIMIT:
11038 case OMP_CLAUSE_DEVICE:
11039 case OMP_CLAUSE_DIST_SCHEDULE:
11040 case OMP_CLAUSE_SAFELEN:
11041 case OMP_CLAUSE_SIMDLEN:
11042 case OMP_CLAUSE__LOOPTEMP_:
11043 case OMP_CLAUSE__SIMDUID_:
11044 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11045 /* FALLTHRU */
11046
11047 case OMP_CLAUSE_NOWAIT:
11048 case OMP_CLAUSE_ORDERED:
11049 case OMP_CLAUSE_DEFAULT:
11050 case OMP_CLAUSE_UNTIED:
11051 case OMP_CLAUSE_MERGEABLE:
11052 case OMP_CLAUSE_PROC_BIND:
11053 case OMP_CLAUSE_INBRANCH:
11054 case OMP_CLAUSE_NOTINBRANCH:
11055 case OMP_CLAUSE_FOR:
11056 case OMP_CLAUSE_PARALLEL:
11057 case OMP_CLAUSE_SECTIONS:
11058 case OMP_CLAUSE_TASKGROUP:
11059 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11060
11061 case OMP_CLAUSE_LASTPRIVATE:
11062 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11063 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11064 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11065
11066 case OMP_CLAUSE_COLLAPSE:
11067 {
11068 int i;
11069 for (i = 0; i < 3; i++)
11070 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11071 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11072 }
11073
11074 case OMP_CLAUSE_ALIGNED:
11075 case OMP_CLAUSE_LINEAR:
11076 case OMP_CLAUSE_FROM:
11077 case OMP_CLAUSE_TO:
11078 case OMP_CLAUSE_MAP:
11079 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11080 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11081 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11082
11083 case OMP_CLAUSE_REDUCTION:
11084 {
11085 int i;
11086 for (i = 0; i < 4; i++)
11087 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11088 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11089 }
11090
11091 default:
11092 gcc_unreachable ();
11093 }
11094 break;
11095
11096 case TARGET_EXPR:
11097 {
11098 int i, len;
11099
11100 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11101 But, we only want to walk once. */
11102 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11103 for (i = 0; i < len; ++i)
11104 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11105 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11106 }
11107
11108 case DECL_EXPR:
11109 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11110 defining. We only want to walk into these fields of a type in this
11111 case and not in the general case of a mere reference to the type.
11112
11113 The criterion is as follows: if the field can be an expression, it
11114 must be walked only here. This should be in keeping with the fields
11115 that are directly gimplified in gimplify_type_sizes in order for the
11116 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11117 variable-sized types.
11118
11119 Note that DECLs get walked as part of processing the BIND_EXPR. */
11120 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11121 {
11122 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11123 if (TREE_CODE (*type_p) == ERROR_MARK)
11124 return NULL_TREE;
11125
11126 /* Call the function for the type. See if it returns anything or
11127 doesn't want us to continue. If we are to continue, walk both
11128 the normal fields and those for the declaration case. */
11129 result = (*func) (type_p, &walk_subtrees, data);
11130 if (result || !walk_subtrees)
11131 return result;
11132
11133 /* But do not walk a pointed-to type since it may itself need to
11134 be walked in the declaration case if it isn't anonymous. */
11135 if (!POINTER_TYPE_P (*type_p))
11136 {
11137 result = walk_type_fields (*type_p, func, data, pset, lh);
11138 if (result)
11139 return result;
11140 }
11141
11142 /* If this is a record type, also walk the fields. */
11143 if (RECORD_OR_UNION_TYPE_P (*type_p))
11144 {
11145 tree field;
11146
11147 for (field = TYPE_FIELDS (*type_p); field;
11148 field = DECL_CHAIN (field))
11149 {
11150 /* We'd like to look at the type of the field, but we can
11151 easily get infinite recursion. So assume it's pointed
11152 to elsewhere in the tree. Also, ignore things that
11153 aren't fields. */
11154 if (TREE_CODE (field) != FIELD_DECL)
11155 continue;
11156
11157 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11158 WALK_SUBTREE (DECL_SIZE (field));
11159 WALK_SUBTREE (DECL_SIZE_UNIT (field));
11160 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
11161 WALK_SUBTREE (DECL_QUALIFIER (field));
11162 }
11163 }
11164
11165 /* Same for scalar types. */
11166 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
11167 || TREE_CODE (*type_p) == ENUMERAL_TYPE
11168 || TREE_CODE (*type_p) == INTEGER_TYPE
11169 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
11170 || TREE_CODE (*type_p) == REAL_TYPE)
11171 {
11172 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
11173 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
11174 }
11175
11176 WALK_SUBTREE (TYPE_SIZE (*type_p));
11177 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
11178 }
11179 /* FALLTHRU */
11180
11181 default:
11182 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11183 {
11184 int i, len;
11185
11186 /* Walk over all the sub-trees of this operand. */
11187 len = TREE_OPERAND_LENGTH (*tp);
11188
11189 /* Go through the subtrees. We need to do this in forward order so
11190 that the scope of a FOR_EXPR is handled properly. */
11191 if (len)
11192 {
11193 for (i = 0; i < len - 1; ++i)
11194 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11195 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
11196 }
11197 }
11198 /* If this is a type, walk the needed fields in the type. */
11199 else if (TYPE_P (*tp))
11200 return walk_type_fields (*tp, func, data, pset, lh);
11201 break;
11202 }
11203
11204 /* We didn't find what we were looking for. */
11205 return NULL_TREE;
11206
11207 #undef WALK_SUBTREE_TAIL
11208 }
11209 #undef WALK_SUBTREE
11210
11211 /* Like walk_tree, but does not walk duplicate nodes more than once. */
11212
11213 tree
11214 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11215 walk_tree_lh lh)
11216 {
11217 tree result;
11218 struct pointer_set_t *pset;
11219
11220 pset = pointer_set_create ();
11221 result = walk_tree_1 (tp, func, data, pset, lh);
11222 pointer_set_destroy (pset);
11223 return result;
11224 }
11225
11226
11227 tree
11228 tree_block (tree t)
11229 {
11230 char const c = TREE_CODE_CLASS (TREE_CODE (t));
11231
11232 if (IS_EXPR_CODE_CLASS (c))
11233 return LOCATION_BLOCK (t->exp.locus);
11234 gcc_unreachable ();
11235 return NULL;
11236 }
11237
11238 void
11239 tree_set_block (tree t, tree b)
11240 {
11241 char const c = TREE_CODE_CLASS (TREE_CODE (t));
11242
11243 if (IS_EXPR_CODE_CLASS (c))
11244 {
11245 if (b)
11246 t->exp.locus = COMBINE_LOCATION_DATA (line_table, t->exp.locus, b);
11247 else
11248 t->exp.locus = LOCATION_LOCUS (t->exp.locus);
11249 }
11250 else
11251 gcc_unreachable ();
11252 }
11253
11254 /* Create a nameless artificial label and put it in the current
11255 function context. The label has a location of LOC. Returns the
11256 newly created label. */
11257
11258 tree
11259 create_artificial_label (location_t loc)
11260 {
11261 tree lab = build_decl (loc,
11262 LABEL_DECL, NULL_TREE, void_type_node);
11263
11264 DECL_ARTIFICIAL (lab) = 1;
11265 DECL_IGNORED_P (lab) = 1;
11266 DECL_CONTEXT (lab) = current_function_decl;
11267 return lab;
11268 }
11269
11270 /* Given a tree, try to return a useful variable name that we can use
11271 to prefix a temporary that is being assigned the value of the tree.
11272 I.E. given <temp> = &A, return A. */
11273
11274 const char *
11275 get_name (tree t)
11276 {
11277 tree stripped_decl;
11278
11279 stripped_decl = t;
11280 STRIP_NOPS (stripped_decl);
11281 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11282 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11283 else if (TREE_CODE (stripped_decl) == SSA_NAME)
11284 {
11285 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11286 if (!name)
11287 return NULL;
11288 return IDENTIFIER_POINTER (name);
11289 }
11290 else
11291 {
11292 switch (TREE_CODE (stripped_decl))
11293 {
11294 case ADDR_EXPR:
11295 return get_name (TREE_OPERAND (stripped_decl, 0));
11296 default:
11297 return NULL;
11298 }
11299 }
11300 }
11301
11302 /* Return true if TYPE has a variable argument list. */
11303
11304 bool
11305 stdarg_p (const_tree fntype)
11306 {
11307 function_args_iterator args_iter;
11308 tree n = NULL_TREE, t;
11309
11310 if (!fntype)
11311 return false;
11312
11313 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
11314 {
11315 n = t;
11316 }
11317
11318 return n != NULL_TREE && n != void_type_node;
11319 }
11320
11321 /* Return true if TYPE has a prototype. */
11322
11323 bool
11324 prototype_p (tree fntype)
11325 {
11326 tree t;
11327
11328 gcc_assert (fntype != NULL_TREE);
11329
11330 t = TYPE_ARG_TYPES (fntype);
11331 return (t != NULL_TREE);
11332 }
11333
11334 /* If BLOCK is inlined from an __attribute__((__artificial__))
11335 routine, return pointer to location from where it has been
11336 called. */
11337 location_t *
11338 block_nonartificial_location (tree block)
11339 {
11340 location_t *ret = NULL;
11341
11342 while (block && TREE_CODE (block) == BLOCK
11343 && BLOCK_ABSTRACT_ORIGIN (block))
11344 {
11345 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11346
11347 while (TREE_CODE (ao) == BLOCK
11348 && BLOCK_ABSTRACT_ORIGIN (ao)
11349 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11350 ao = BLOCK_ABSTRACT_ORIGIN (ao);
11351
11352 if (TREE_CODE (ao) == FUNCTION_DECL)
11353 {
11354 /* If AO is an artificial inline, point RET to the
11355 call site locus at which it has been inlined and continue
11356 the loop, in case AO's caller is also an artificial
11357 inline. */
11358 if (DECL_DECLARED_INLINE_P (ao)
11359 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11360 ret = &BLOCK_SOURCE_LOCATION (block);
11361 else
11362 break;
11363 }
11364 else if (TREE_CODE (ao) != BLOCK)
11365 break;
11366
11367 block = BLOCK_SUPERCONTEXT (block);
11368 }
11369 return ret;
11370 }
11371
11372
11373 /* If EXP is inlined from an __attribute__((__artificial__))
11374 function, return the location of the original call expression. */
11375
11376 location_t
11377 tree_nonartificial_location (tree exp)
11378 {
11379 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11380
11381 if (loc)
11382 return *loc;
11383 else
11384 return EXPR_LOCATION (exp);
11385 }
11386
11387
11388 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11389 nodes. */
11390
11391 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
11392
11393 static hashval_t
11394 cl_option_hash_hash (const void *x)
11395 {
11396 const_tree const t = (const_tree) x;
11397 const char *p;
11398 size_t i;
11399 size_t len = 0;
11400 hashval_t hash = 0;
11401
11402 if (TREE_CODE (t) == OPTIMIZATION_NODE)
11403 {
11404 p = (const char *)TREE_OPTIMIZATION (t);
11405 len = sizeof (struct cl_optimization);
11406 }
11407
11408 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11409 {
11410 p = (const char *)TREE_TARGET_OPTION (t);
11411 len = sizeof (struct cl_target_option);
11412 }
11413
11414 else
11415 gcc_unreachable ();
11416
11417 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11418 something else. */
11419 for (i = 0; i < len; i++)
11420 if (p[i])
11421 hash = (hash << 4) ^ ((i << 2) | p[i]);
11422
11423 return hash;
11424 }
11425
11426 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11427 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11428 same. */
11429
11430 static int
11431 cl_option_hash_eq (const void *x, const void *y)
11432 {
11433 const_tree const xt = (const_tree) x;
11434 const_tree const yt = (const_tree) y;
11435 const char *xp;
11436 const char *yp;
11437 size_t len;
11438
11439 if (TREE_CODE (xt) != TREE_CODE (yt))
11440 return 0;
11441
11442 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11443 {
11444 xp = (const char *)TREE_OPTIMIZATION (xt);
11445 yp = (const char *)TREE_OPTIMIZATION (yt);
11446 len = sizeof (struct cl_optimization);
11447 }
11448
11449 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11450 {
11451 xp = (const char *)TREE_TARGET_OPTION (xt);
11452 yp = (const char *)TREE_TARGET_OPTION (yt);
11453 len = sizeof (struct cl_target_option);
11454 }
11455
11456 else
11457 gcc_unreachable ();
11458
11459 return (memcmp (xp, yp, len) == 0);
11460 }
11461
11462 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
11463
11464 tree
11465 build_optimization_node (struct gcc_options *opts)
11466 {
11467 tree t;
11468 void **slot;
11469
11470 /* Use the cache of optimization nodes. */
11471
11472 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11473 opts);
11474
11475 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
11476 t = (tree) *slot;
11477 if (!t)
11478 {
11479 /* Insert this one into the hash table. */
11480 t = cl_optimization_node;
11481 *slot = t;
11482
11483 /* Make a new node for next time round. */
11484 cl_optimization_node = make_node (OPTIMIZATION_NODE);
11485 }
11486
11487 return t;
11488 }
11489
11490 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
11491
11492 tree
11493 build_target_option_node (struct gcc_options *opts)
11494 {
11495 tree t;
11496 void **slot;
11497
11498 /* Use the cache of optimization nodes. */
11499
11500 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
11501 opts);
11502
11503 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
11504 t = (tree) *slot;
11505 if (!t)
11506 {
11507 /* Insert this one into the hash table. */
11508 t = cl_target_option_node;
11509 *slot = t;
11510
11511 /* Make a new node for next time round. */
11512 cl_target_option_node = make_node (TARGET_OPTION_NODE);
11513 }
11514
11515 return t;
11516 }
11517
11518 /* Determine the "ultimate origin" of a block. The block may be an inlined
11519 instance of an inlined instance of a block which is local to an inline
11520 function, so we have to trace all of the way back through the origin chain
11521 to find out what sort of node actually served as the original seed for the
11522 given block. */
11523
11524 tree
11525 block_ultimate_origin (const_tree block)
11526 {
11527 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
11528
11529 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
11530 nodes in the function to point to themselves; ignore that if
11531 we're trying to output the abstract instance of this function. */
11532 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
11533 return NULL_TREE;
11534
11535 if (immediate_origin == NULL_TREE)
11536 return NULL_TREE;
11537 else
11538 {
11539 tree ret_val;
11540 tree lookahead = immediate_origin;
11541
11542 do
11543 {
11544 ret_val = lookahead;
11545 lookahead = (TREE_CODE (ret_val) == BLOCK
11546 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
11547 }
11548 while (lookahead != NULL && lookahead != ret_val);
11549
11550 /* The block's abstract origin chain may not be the *ultimate* origin of
11551 the block. It could lead to a DECL that has an abstract origin set.
11552 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
11553 will give us if it has one). Note that DECL's abstract origins are
11554 supposed to be the most distant ancestor (or so decl_ultimate_origin
11555 claims), so we don't need to loop following the DECL origins. */
11556 if (DECL_P (ret_val))
11557 return DECL_ORIGIN (ret_val);
11558
11559 return ret_val;
11560 }
11561 }
11562
11563 /* Return true iff conversion in EXP generates no instruction. Mark
11564 it inline so that we fully inline into the stripping functions even
11565 though we have two uses of this function. */
11566
11567 static inline bool
11568 tree_nop_conversion (const_tree exp)
11569 {
11570 tree outer_type, inner_type;
11571
11572 if (!CONVERT_EXPR_P (exp)
11573 && TREE_CODE (exp) != NON_LVALUE_EXPR)
11574 return false;
11575 if (TREE_OPERAND (exp, 0) == error_mark_node)
11576 return false;
11577
11578 outer_type = TREE_TYPE (exp);
11579 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11580
11581 if (!inner_type)
11582 return false;
11583
11584 /* Use precision rather then machine mode when we can, which gives
11585 the correct answer even for submode (bit-field) types. */
11586 if ((INTEGRAL_TYPE_P (outer_type)
11587 || POINTER_TYPE_P (outer_type)
11588 || TREE_CODE (outer_type) == OFFSET_TYPE)
11589 && (INTEGRAL_TYPE_P (inner_type)
11590 || POINTER_TYPE_P (inner_type)
11591 || TREE_CODE (inner_type) == OFFSET_TYPE))
11592 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
11593
11594 /* Otherwise fall back on comparing machine modes (e.g. for
11595 aggregate types, floats). */
11596 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
11597 }
11598
11599 /* Return true iff conversion in EXP generates no instruction. Don't
11600 consider conversions changing the signedness. */
11601
11602 static bool
11603 tree_sign_nop_conversion (const_tree exp)
11604 {
11605 tree outer_type, inner_type;
11606
11607 if (!tree_nop_conversion (exp))
11608 return false;
11609
11610 outer_type = TREE_TYPE (exp);
11611 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11612
11613 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11614 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11615 }
11616
11617 /* Strip conversions from EXP according to tree_nop_conversion and
11618 return the resulting expression. */
11619
11620 tree
11621 tree_strip_nop_conversions (tree exp)
11622 {
11623 while (tree_nop_conversion (exp))
11624 exp = TREE_OPERAND (exp, 0);
11625 return exp;
11626 }
11627
11628 /* Strip conversions from EXP according to tree_sign_nop_conversion
11629 and return the resulting expression. */
11630
11631 tree
11632 tree_strip_sign_nop_conversions (tree exp)
11633 {
11634 while (tree_sign_nop_conversion (exp))
11635 exp = TREE_OPERAND (exp, 0);
11636 return exp;
11637 }
11638
11639 /* Avoid any floating point extensions from EXP. */
11640 tree
11641 strip_float_extensions (tree exp)
11642 {
11643 tree sub, expt, subt;
11644
11645 /* For floating point constant look up the narrowest type that can hold
11646 it properly and handle it like (type)(narrowest_type)constant.
11647 This way we can optimize for instance a=a*2.0 where "a" is float
11648 but 2.0 is double constant. */
11649 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
11650 {
11651 REAL_VALUE_TYPE orig;
11652 tree type = NULL;
11653
11654 orig = TREE_REAL_CST (exp);
11655 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
11656 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
11657 type = float_type_node;
11658 else if (TYPE_PRECISION (TREE_TYPE (exp))
11659 > TYPE_PRECISION (double_type_node)
11660 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
11661 type = double_type_node;
11662 if (type)
11663 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
11664 }
11665
11666 if (!CONVERT_EXPR_P (exp))
11667 return exp;
11668
11669 sub = TREE_OPERAND (exp, 0);
11670 subt = TREE_TYPE (sub);
11671 expt = TREE_TYPE (exp);
11672
11673 if (!FLOAT_TYPE_P (subt))
11674 return exp;
11675
11676 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
11677 return exp;
11678
11679 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
11680 return exp;
11681
11682 return strip_float_extensions (sub);
11683 }
11684
11685 /* Strip out all handled components that produce invariant
11686 offsets. */
11687
11688 const_tree
11689 strip_invariant_refs (const_tree op)
11690 {
11691 while (handled_component_p (op))
11692 {
11693 switch (TREE_CODE (op))
11694 {
11695 case ARRAY_REF:
11696 case ARRAY_RANGE_REF:
11697 if (!is_gimple_constant (TREE_OPERAND (op, 1))
11698 || TREE_OPERAND (op, 2) != NULL_TREE
11699 || TREE_OPERAND (op, 3) != NULL_TREE)
11700 return NULL;
11701 break;
11702
11703 case COMPONENT_REF:
11704 if (TREE_OPERAND (op, 2) != NULL_TREE)
11705 return NULL;
11706 break;
11707
11708 default:;
11709 }
11710 op = TREE_OPERAND (op, 0);
11711 }
11712
11713 return op;
11714 }
11715
11716 static GTY(()) tree gcc_eh_personality_decl;
11717
11718 /* Return the GCC personality function decl. */
11719
11720 tree
11721 lhd_gcc_personality (void)
11722 {
11723 if (!gcc_eh_personality_decl)
11724 gcc_eh_personality_decl = build_personality_function ("gcc");
11725 return gcc_eh_personality_decl;
11726 }
11727
11728 /* For languages with One Definition Rule, work out if
11729 trees are actually the same even if the tree representation
11730 differs. This handles only decls appearing in TYPE_NAME
11731 and TYPE_CONTEXT. That is NAMESPACE_DECL, TYPE_DECL,
11732 RECORD_TYPE and IDENTIFIER_NODE. */
11733
11734 static bool
11735 same_for_odr (tree t1, tree t2)
11736 {
11737 if (t1 == t2)
11738 return true;
11739 if (!t1 || !t2)
11740 return false;
11741 /* C and C++ FEs differ by using IDENTIFIER_NODE and TYPE_DECL. */
11742 if (TREE_CODE (t1) == IDENTIFIER_NODE
11743 && TREE_CODE (t2) == TYPE_DECL
11744 && DECL_FILE_SCOPE_P (t1))
11745 {
11746 t2 = DECL_NAME (t2);
11747 gcc_assert (TREE_CODE (t2) == IDENTIFIER_NODE);
11748 }
11749 if (TREE_CODE (t2) == IDENTIFIER_NODE
11750 && TREE_CODE (t1) == TYPE_DECL
11751 && DECL_FILE_SCOPE_P (t2))
11752 {
11753 t1 = DECL_NAME (t1);
11754 gcc_assert (TREE_CODE (t1) == IDENTIFIER_NODE);
11755 }
11756 if (TREE_CODE (t1) != TREE_CODE (t2))
11757 return false;
11758 if (TYPE_P (t1))
11759 return types_same_for_odr (t1, t2);
11760 if (DECL_P (t1))
11761 return decls_same_for_odr (t1, t2);
11762 return false;
11763 }
11764
11765 /* For languages with One Definition Rule, work out if
11766 decls are actually the same even if the tree representation
11767 differs. This handles only decls appearing in TYPE_NAME
11768 and TYPE_CONTEXT. That is NAMESPACE_DECL, TYPE_DECL,
11769 RECORD_TYPE and IDENTIFIER_NODE. */
11770
11771 static bool
11772 decls_same_for_odr (tree decl1, tree decl2)
11773 {
11774 if (decl1 && TREE_CODE (decl1) == TYPE_DECL
11775 && DECL_ORIGINAL_TYPE (decl1))
11776 decl1 = DECL_ORIGINAL_TYPE (decl1);
11777 if (decl2 && TREE_CODE (decl2) == TYPE_DECL
11778 && DECL_ORIGINAL_TYPE (decl2))
11779 decl2 = DECL_ORIGINAL_TYPE (decl2);
11780 if (decl1 == decl2)
11781 return true;
11782 if (!decl1 || !decl2)
11783 return false;
11784 gcc_checking_assert (DECL_P (decl1) && DECL_P (decl2));
11785 if (TREE_CODE (decl1) != TREE_CODE (decl2))
11786 return false;
11787 if (TREE_CODE (decl1) == TRANSLATION_UNIT_DECL)
11788 return true;
11789 if (TREE_CODE (decl1) != NAMESPACE_DECL
11790 && TREE_CODE (decl1) != TYPE_DECL)
11791 return false;
11792 if (!DECL_NAME (decl1))
11793 return false;
11794 gcc_checking_assert (TREE_CODE (DECL_NAME (decl1)) == IDENTIFIER_NODE);
11795 gcc_checking_assert (!DECL_NAME (decl2)
11796 || TREE_CODE (DECL_NAME (decl2)) == IDENTIFIER_NODE);
11797 if (DECL_NAME (decl1) != DECL_NAME (decl2))
11798 return false;
11799 return same_for_odr (DECL_CONTEXT (decl1),
11800 DECL_CONTEXT (decl2));
11801 }
11802
11803 /* For languages with One Definition Rule, work out if
11804 types are same even if the tree representation differs.
11805 This is non-trivial for LTO where minnor differences in
11806 the type representation may have prevented type merging
11807 to merge two copies of otherwise equivalent type. */
11808
11809 bool
11810 types_same_for_odr (tree type1, tree type2)
11811 {
11812 gcc_checking_assert (TYPE_P (type1) && TYPE_P (type2));
11813 type1 = TYPE_MAIN_VARIANT (type1);
11814 type2 = TYPE_MAIN_VARIANT (type2);
11815 if (type1 == type2)
11816 return true;
11817
11818 #ifndef ENABLE_CHECKING
11819 if (!in_lto_p)
11820 return false;
11821 #endif
11822
11823 /* Check for anonymous namespaces. Those have !TREE_PUBLIC
11824 on the corresponding TYPE_STUB_DECL. */
11825 if (type_in_anonymous_namespace_p (type1)
11826 || type_in_anonymous_namespace_p (type2))
11827 return false;
11828 /* When assembler name of virtual table is available, it is
11829 easy to compare types for equivalence. */
11830 if (TYPE_BINFO (type1) && TYPE_BINFO (type2)
11831 && BINFO_VTABLE (TYPE_BINFO (type1))
11832 && BINFO_VTABLE (TYPE_BINFO (type2)))
11833 {
11834 tree v1 = BINFO_VTABLE (TYPE_BINFO (type1));
11835 tree v2 = BINFO_VTABLE (TYPE_BINFO (type2));
11836
11837 if (TREE_CODE (v1) == POINTER_PLUS_EXPR)
11838 {
11839 if (TREE_CODE (v2) != POINTER_PLUS_EXPR
11840 || !operand_equal_p (TREE_OPERAND (v1, 1),
11841 TREE_OPERAND (v2, 1), 0))
11842 return false;
11843 v1 = TREE_OPERAND (TREE_OPERAND (v1, 0), 0);
11844 v2 = TREE_OPERAND (TREE_OPERAND (v2, 0), 0);
11845 }
11846 v1 = DECL_ASSEMBLER_NAME (v1);
11847 v2 = DECL_ASSEMBLER_NAME (v2);
11848 return (v1 == v2);
11849 }
11850
11851 /* FIXME: the code comparing type names consider all instantiations of the
11852 same template to have same name. This is because we have no access
11853 to template parameters. For types with no virtual method tables
11854 we thus can return false positives. At the moment we do not need
11855 to compare types in other scenarios than devirtualization. */
11856
11857 /* If types are not structuraly same, do not bother to contnue.
11858 Match in the remainder of code would mean ODR violation. */
11859 if (!types_compatible_p (type1, type2))
11860 return false;
11861 if (!TYPE_NAME (type1))
11862 return false;
11863 if (!decls_same_for_odr (TYPE_NAME (type1), TYPE_NAME (type2)))
11864 return false;
11865 if (!same_for_odr (TYPE_CONTEXT (type1), TYPE_CONTEXT (type2)))
11866 return false;
11867 /* When not in LTO the MAIN_VARIANT check should be the same. */
11868 gcc_assert (in_lto_p);
11869
11870 return true;
11871 }
11872
11873 /* TARGET is a call target of GIMPLE call statement
11874 (obtained by gimple_call_fn). Return true if it is
11875 OBJ_TYPE_REF representing an virtual call of C++ method.
11876 (As opposed to OBJ_TYPE_REF representing objc calls
11877 through a cast where middle-end devirtualization machinery
11878 can't apply.) */
11879
11880 bool
11881 virtual_method_call_p (tree target)
11882 {
11883 if (TREE_CODE (target) != OBJ_TYPE_REF)
11884 return false;
11885 target = TREE_TYPE (target);
11886 gcc_checking_assert (TREE_CODE (target) == POINTER_TYPE);
11887 target = TREE_TYPE (target);
11888 if (TREE_CODE (target) == FUNCTION_TYPE)
11889 return false;
11890 gcc_checking_assert (TREE_CODE (target) == METHOD_TYPE);
11891 return true;
11892 }
11893
11894 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
11895
11896 tree
11897 obj_type_ref_class (tree ref)
11898 {
11899 gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
11900 ref = TREE_TYPE (ref);
11901 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11902 ref = TREE_TYPE (ref);
11903 /* We look for type THIS points to. ObjC also builds
11904 OBJ_TYPE_REF with non-method calls, Their first parameter
11905 ID however also corresponds to class type. */
11906 gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
11907 || TREE_CODE (ref) == FUNCTION_TYPE);
11908 ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
11909 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11910 return TREE_TYPE (ref);
11911 }
11912
11913 /* Return true if T is in anonymous namespace. */
11914
11915 bool
11916 type_in_anonymous_namespace_p (tree t)
11917 {
11918 return (TYPE_STUB_DECL (t) && !TREE_PUBLIC (TYPE_STUB_DECL (t)));
11919 }
11920
11921 /* Try to find a base info of BINFO that would have its field decl at offset
11922 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
11923 found, return, otherwise return NULL_TREE. */
11924
11925 tree
11926 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
11927 {
11928 tree type = BINFO_TYPE (binfo);
11929
11930 while (true)
11931 {
11932 HOST_WIDE_INT pos, size;
11933 tree fld;
11934 int i;
11935
11936 if (types_same_for_odr (type, expected_type))
11937 return binfo;
11938 if (offset < 0)
11939 return NULL_TREE;
11940
11941 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
11942 {
11943 if (TREE_CODE (fld) != FIELD_DECL)
11944 continue;
11945
11946 pos = int_bit_position (fld);
11947 size = tree_to_uhwi (DECL_SIZE (fld));
11948 if (pos <= offset && (pos + size) > offset)
11949 break;
11950 }
11951 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
11952 return NULL_TREE;
11953
11954 if (!DECL_ARTIFICIAL (fld))
11955 {
11956 binfo = TYPE_BINFO (TREE_TYPE (fld));
11957 if (!binfo)
11958 return NULL_TREE;
11959 }
11960 /* Offset 0 indicates the primary base, whose vtable contents are
11961 represented in the binfo for the derived class. */
11962 else if (offset != 0)
11963 {
11964 tree base_binfo, found_binfo = NULL_TREE;
11965 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
11966 if (types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
11967 {
11968 found_binfo = base_binfo;
11969 break;
11970 }
11971 if (!found_binfo)
11972 return NULL_TREE;
11973 binfo = found_binfo;
11974 }
11975
11976 type = TREE_TYPE (fld);
11977 offset -= pos;
11978 }
11979 }
11980
11981 /* Returns true if X is a typedef decl. */
11982
11983 bool
11984 is_typedef_decl (tree x)
11985 {
11986 return (x && TREE_CODE (x) == TYPE_DECL
11987 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
11988 }
11989
11990 /* Returns true iff TYPE is a type variant created for a typedef. */
11991
11992 bool
11993 typedef_variant_p (tree type)
11994 {
11995 return is_typedef_decl (TYPE_NAME (type));
11996 }
11997
11998 /* Warn about a use of an identifier which was marked deprecated. */
11999 void
12000 warn_deprecated_use (tree node, tree attr)
12001 {
12002 const char *msg;
12003
12004 if (node == 0 || !warn_deprecated_decl)
12005 return;
12006
12007 if (!attr)
12008 {
12009 if (DECL_P (node))
12010 attr = DECL_ATTRIBUTES (node);
12011 else if (TYPE_P (node))
12012 {
12013 tree decl = TYPE_STUB_DECL (node);
12014 if (decl)
12015 attr = lookup_attribute ("deprecated",
12016 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
12017 }
12018 }
12019
12020 if (attr)
12021 attr = lookup_attribute ("deprecated", attr);
12022
12023 if (attr)
12024 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
12025 else
12026 msg = NULL;
12027
12028 if (DECL_P (node))
12029 {
12030 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
12031 if (msg)
12032 warning (OPT_Wdeprecated_declarations,
12033 "%qD is deprecated (declared at %r%s:%d%R): %s",
12034 node, "locus", xloc.file, xloc.line, msg);
12035 else
12036 warning (OPT_Wdeprecated_declarations,
12037 "%qD is deprecated (declared at %r%s:%d%R)",
12038 node, "locus", xloc.file, xloc.line);
12039 }
12040 else if (TYPE_P (node))
12041 {
12042 tree what = NULL_TREE;
12043 tree decl = TYPE_STUB_DECL (node);
12044
12045 if (TYPE_NAME (node))
12046 {
12047 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
12048 what = TYPE_NAME (node);
12049 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
12050 && DECL_NAME (TYPE_NAME (node)))
12051 what = DECL_NAME (TYPE_NAME (node));
12052 }
12053
12054 if (decl)
12055 {
12056 expanded_location xloc
12057 = expand_location (DECL_SOURCE_LOCATION (decl));
12058 if (what)
12059 {
12060 if (msg)
12061 warning (OPT_Wdeprecated_declarations,
12062 "%qE is deprecated (declared at %r%s:%d%R): %s",
12063 what, "locus", xloc.file, xloc.line, msg);
12064 else
12065 warning (OPT_Wdeprecated_declarations,
12066 "%qE is deprecated (declared at %r%s:%d%R)",
12067 what, "locus", xloc.file, xloc.line);
12068 }
12069 else
12070 {
12071 if (msg)
12072 warning (OPT_Wdeprecated_declarations,
12073 "type is deprecated (declared at %r%s:%d%R): %s",
12074 "locus", xloc.file, xloc.line, msg);
12075 else
12076 warning (OPT_Wdeprecated_declarations,
12077 "type is deprecated (declared at %r%s:%d%R)",
12078 "locus", xloc.file, xloc.line);
12079 }
12080 }
12081 else
12082 {
12083 if (what)
12084 {
12085 if (msg)
12086 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
12087 what, msg);
12088 else
12089 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
12090 }
12091 else
12092 {
12093 if (msg)
12094 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
12095 msg);
12096 else
12097 warning (OPT_Wdeprecated_declarations, "type is deprecated");
12098 }
12099 }
12100 }
12101 }
12102
12103 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12104 somewhere in it. */
12105
12106 bool
12107 contains_bitfld_component_ref_p (const_tree ref)
12108 {
12109 while (handled_component_p (ref))
12110 {
12111 if (TREE_CODE (ref) == COMPONENT_REF
12112 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12113 return true;
12114 ref = TREE_OPERAND (ref, 0);
12115 }
12116
12117 return false;
12118 }
12119
12120 /* Try to determine whether a TRY_CATCH expression can fall through.
12121 This is a subroutine of block_may_fallthru. */
12122
12123 static bool
12124 try_catch_may_fallthru (const_tree stmt)
12125 {
12126 tree_stmt_iterator i;
12127
12128 /* If the TRY block can fall through, the whole TRY_CATCH can
12129 fall through. */
12130 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
12131 return true;
12132
12133 i = tsi_start (TREE_OPERAND (stmt, 1));
12134 switch (TREE_CODE (tsi_stmt (i)))
12135 {
12136 case CATCH_EXPR:
12137 /* We expect to see a sequence of CATCH_EXPR trees, each with a
12138 catch expression and a body. The whole TRY_CATCH may fall
12139 through iff any of the catch bodies falls through. */
12140 for (; !tsi_end_p (i); tsi_next (&i))
12141 {
12142 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
12143 return true;
12144 }
12145 return false;
12146
12147 case EH_FILTER_EXPR:
12148 /* The exception filter expression only matters if there is an
12149 exception. If the exception does not match EH_FILTER_TYPES,
12150 we will execute EH_FILTER_FAILURE, and we will fall through
12151 if that falls through. If the exception does match
12152 EH_FILTER_TYPES, the stack unwinder will continue up the
12153 stack, so we will not fall through. We don't know whether we
12154 will throw an exception which matches EH_FILTER_TYPES or not,
12155 so we just ignore EH_FILTER_TYPES and assume that we might
12156 throw an exception which doesn't match. */
12157 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
12158
12159 default:
12160 /* This case represents statements to be executed when an
12161 exception occurs. Those statements are implicitly followed
12162 by a RESX statement to resume execution after the exception.
12163 So in this case the TRY_CATCH never falls through. */
12164 return false;
12165 }
12166 }
12167
12168 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
12169 need not be 100% accurate; simply be conservative and return true if we
12170 don't know. This is used only to avoid stupidly generating extra code.
12171 If we're wrong, we'll just delete the extra code later. */
12172
12173 bool
12174 block_may_fallthru (const_tree block)
12175 {
12176 /* This CONST_CAST is okay because expr_last returns its argument
12177 unmodified and we assign it to a const_tree. */
12178 const_tree stmt = expr_last (CONST_CAST_TREE (block));
12179
12180 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
12181 {
12182 case GOTO_EXPR:
12183 case RETURN_EXPR:
12184 /* Easy cases. If the last statement of the block implies
12185 control transfer, then we can't fall through. */
12186 return false;
12187
12188 case SWITCH_EXPR:
12189 /* If SWITCH_LABELS is set, this is lowered, and represents a
12190 branch to a selected label and hence can not fall through.
12191 Otherwise SWITCH_BODY is set, and the switch can fall
12192 through. */
12193 return SWITCH_LABELS (stmt) == NULL_TREE;
12194
12195 case COND_EXPR:
12196 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
12197 return true;
12198 return block_may_fallthru (COND_EXPR_ELSE (stmt));
12199
12200 case BIND_EXPR:
12201 return block_may_fallthru (BIND_EXPR_BODY (stmt));
12202
12203 case TRY_CATCH_EXPR:
12204 return try_catch_may_fallthru (stmt);
12205
12206 case TRY_FINALLY_EXPR:
12207 /* The finally clause is always executed after the try clause,
12208 so if it does not fall through, then the try-finally will not
12209 fall through. Otherwise, if the try clause does not fall
12210 through, then when the finally clause falls through it will
12211 resume execution wherever the try clause was going. So the
12212 whole try-finally will only fall through if both the try
12213 clause and the finally clause fall through. */
12214 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
12215 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
12216
12217 case MODIFY_EXPR:
12218 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
12219 stmt = TREE_OPERAND (stmt, 1);
12220 else
12221 return true;
12222 /* FALLTHRU */
12223
12224 case CALL_EXPR:
12225 /* Functions that do not return do not fall through. */
12226 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
12227
12228 case CLEANUP_POINT_EXPR:
12229 return block_may_fallthru (TREE_OPERAND (stmt, 0));
12230
12231 case TARGET_EXPR:
12232 return block_may_fallthru (TREE_OPERAND (stmt, 1));
12233
12234 case ERROR_MARK:
12235 return true;
12236
12237 default:
12238 return lang_hooks.block_may_fallthru (stmt);
12239 }
12240 }
12241
12242 /* True if we are using EH to handle cleanups. */
12243 static bool using_eh_for_cleanups_flag = false;
12244
12245 /* This routine is called from front ends to indicate eh should be used for
12246 cleanups. */
12247 void
12248 using_eh_for_cleanups (void)
12249 {
12250 using_eh_for_cleanups_flag = true;
12251 }
12252
12253 /* Query whether EH is used for cleanups. */
12254 bool
12255 using_eh_for_cleanups_p (void)
12256 {
12257 return using_eh_for_cleanups_flag;
12258 }
12259
12260 /* Wrapper for tree_code_name to ensure that tree code is valid */
12261 const char *
12262 get_tree_code_name (enum tree_code code)
12263 {
12264 const char *invalid = "<invalid tree code>";
12265
12266 if (code >= MAX_TREE_CODES)
12267 return invalid;
12268
12269 return tree_code_name[code];
12270 }
12271
12272 /* Drops the TREE_OVERFLOW flag from T. */
12273
12274 tree
12275 drop_tree_overflow (tree t)
12276 {
12277 gcc_checking_assert (TREE_OVERFLOW (t));
12278
12279 /* For tree codes with a sharing machinery re-build the result. */
12280 if (TREE_CODE (t) == INTEGER_CST)
12281 return build_int_cst_wide (TREE_TYPE (t),
12282 TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t));
12283
12284 /* Otherwise, as all tcc_constants are possibly shared, copy the node
12285 and drop the flag. */
12286 t = copy_node (t);
12287 TREE_OVERFLOW (t) = 0;
12288 return t;
12289 }
12290
12291 /* Given a memory reference expression T, return its base address.
12292 The base address of a memory reference expression is the main
12293 object being referenced. For instance, the base address for
12294 'array[i].fld[j]' is 'array'. You can think of this as stripping
12295 away the offset part from a memory address.
12296
12297 This function calls handled_component_p to strip away all the inner
12298 parts of the memory reference until it reaches the base object. */
12299
12300 tree
12301 get_base_address (tree t)
12302 {
12303 while (handled_component_p (t))
12304 t = TREE_OPERAND (t, 0);
12305
12306 if ((TREE_CODE (t) == MEM_REF
12307 || TREE_CODE (t) == TARGET_MEM_REF)
12308 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
12309 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
12310
12311 /* ??? Either the alias oracle or all callers need to properly deal
12312 with WITH_SIZE_EXPRs before we can look through those. */
12313 if (TREE_CODE (t) == WITH_SIZE_EXPR)
12314 return NULL_TREE;
12315
12316 return t;
12317 }
12318
12319 #include "gt-tree.h"