usage.adb: Change "pragma inline" to "pragma Inline" in information and error messages
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52
53 /* Each tree code class has an associated string representation.
54 These must correspond to the tree_code_class entries. */
55
56 const char *const tree_code_class_strings[] =
57 {
58 "exceptional",
59 "constant",
60 "type",
61 "declaration",
62 "reference",
63 "comparison",
64 "unary",
65 "binary",
66 "statement",
67 "expression",
68 };
69
70 /* obstack.[ch] explicitly declined to prototype this. */
71 extern int _obstack_allocated_p (struct obstack *h, void *obj);
72
73 #ifdef GATHER_STATISTICS
74 /* Statistics-gathering stuff. */
75
76 int tree_node_counts[(int) all_kinds];
77 int tree_node_sizes[(int) all_kinds];
78
79 /* Keep in sync with tree.h:enum tree_node_kind. */
80 static const char * const tree_node_kind_names[] = {
81 "decls",
82 "types",
83 "blocks",
84 "stmts",
85 "refs",
86 "exprs",
87 "constants",
88 "identifiers",
89 "perm_tree_lists",
90 "temp_tree_lists",
91 "vecs",
92 "binfos",
93 "phi_nodes",
94 "ssa names",
95 "random kinds",
96 "lang_decl kinds",
97 "lang_type kinds"
98 };
99 #endif /* GATHER_STATISTICS */
100
101 /* Unique id for next decl created. */
102 static GTY(()) int next_decl_uid;
103 /* Unique id for next type created. */
104 static GTY(()) int next_type_uid = 1;
105
106 /* Since we cannot rehash a type after it is in the table, we have to
107 keep the hash code. */
108
109 struct type_hash GTY(())
110 {
111 unsigned long hash;
112 tree type;
113 };
114
115 /* Initial size of the hash table (rounded to next prime). */
116 #define TYPE_HASH_INITIAL_SIZE 1000
117
118 /* Now here is the hash table. When recording a type, it is added to
119 the slot whose index is the hash code. Note that the hash table is
120 used for several kinds of types (function types, array types and
121 array index range types, for now). While all these live in the
122 same table, they are completely independent, and the hash code is
123 computed differently for each of these. */
124
125 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
126 htab_t type_hash_table;
127
128 static void set_type_quals (tree, int);
129 static int type_hash_eq (const void *, const void *);
130 static hashval_t type_hash_hash (const void *);
131 static void print_type_hash_statistics (void);
132 static tree make_vector_type (tree, int, enum machine_mode);
133 static int type_hash_marked_p (const void *);
134 static unsigned int type_hash_list (tree, hashval_t);
135 static unsigned int attribute_hash_list (tree, hashval_t);
136
137 tree global_trees[TI_MAX];
138 tree integer_types[itk_none];
139 \f
140 /* Init tree.c. */
141
142 void
143 init_ttree (void)
144 {
145 /* Initialize the hash table of types. */
146 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
147 type_hash_eq, 0);
148 }
149
150 \f
151 /* The name of the object as the assembler will see it (but before any
152 translations made by ASM_OUTPUT_LABELREF). Often this is the same
153 as DECL_NAME. It is an IDENTIFIER_NODE. */
154 tree
155 decl_assembler_name (tree decl)
156 {
157 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
158 lang_hooks.set_decl_assembler_name (decl);
159 return DECL_CHECK (decl)->decl.assembler_name;
160 }
161
162 /* Compute the number of bytes occupied by a tree with code CODE.
163 This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
164 codes, which are of variable length. */
165 size_t
166 tree_code_size (enum tree_code code)
167 {
168 switch (TREE_CODE_CLASS (code))
169 {
170 case tcc_declaration: /* A decl node */
171 return sizeof (struct tree_decl);
172
173 case tcc_type: /* a type node */
174 return sizeof (struct tree_type);
175
176 case tcc_reference: /* a reference */
177 case tcc_expression: /* an expression */
178 case tcc_statement: /* an expression with side effects */
179 case tcc_comparison: /* a comparison expression */
180 case tcc_unary: /* a unary arithmetic expression */
181 case tcc_binary: /* a binary arithmetic expression */
182 return (sizeof (struct tree_exp)
183 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
184
185 case tcc_constant: /* a constant */
186 switch (code)
187 {
188 case INTEGER_CST: return sizeof (struct tree_int_cst);
189 case REAL_CST: return sizeof (struct tree_real_cst);
190 case COMPLEX_CST: return sizeof (struct tree_complex);
191 case VECTOR_CST: return sizeof (struct tree_vector);
192 case STRING_CST: gcc_unreachable ();
193 default:
194 return lang_hooks.tree_size (code);
195 }
196
197 case tcc_exceptional: /* something random, like an identifier. */
198 switch (code)
199 {
200 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
201 case TREE_LIST: return sizeof (struct tree_list);
202
203 case ERROR_MARK:
204 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
205
206 case TREE_VEC:
207 case PHI_NODE: gcc_unreachable ();
208
209 case SSA_NAME: return sizeof (struct tree_ssa_name);
210
211 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
212 case BLOCK: return sizeof (struct tree_block);
213 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
214
215 default:
216 return lang_hooks.tree_size (code);
217 }
218
219 default:
220 gcc_unreachable ();
221 }
222 }
223
224 /* Compute the number of bytes occupied by NODE. This routine only
225 looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes. */
226 size_t
227 tree_size (tree node)
228 {
229 enum tree_code code = TREE_CODE (node);
230 switch (code)
231 {
232 case PHI_NODE:
233 return (sizeof (struct tree_phi_node)
234 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
235
236 case TREE_VEC:
237 return (sizeof (struct tree_vec)
238 + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
239
240 case STRING_CST:
241 return sizeof (struct tree_string) + TREE_STRING_LENGTH (node) - 1;
242
243 default:
244 return tree_code_size (code);
245 }
246 }
247
248 /* Return a newly allocated node of code CODE. For decl and type
249 nodes, some other fields are initialized. The rest of the node is
250 initialized to zero. This function cannot be used for PHI_NODE or
251 TREE_VEC nodes, which is enforced by asserts in tree_code_size.
252
253 Achoo! I got a code in the node. */
254
255 tree
256 make_node_stat (enum tree_code code MEM_STAT_DECL)
257 {
258 tree t;
259 enum tree_code_class type = TREE_CODE_CLASS (code);
260 size_t length = tree_code_size (code);
261 #ifdef GATHER_STATISTICS
262 tree_node_kind kind;
263
264 switch (type)
265 {
266 case tcc_declaration: /* A decl node */
267 kind = d_kind;
268 break;
269
270 case tcc_type: /* a type node */
271 kind = t_kind;
272 break;
273
274 case tcc_statement: /* an expression with side effects */
275 kind = s_kind;
276 break;
277
278 case tcc_reference: /* a reference */
279 kind = r_kind;
280 break;
281
282 case tcc_expression: /* an expression */
283 case tcc_comparison: /* a comparison expression */
284 case tcc_unary: /* a unary arithmetic expression */
285 case tcc_binary: /* a binary arithmetic expression */
286 kind = e_kind;
287 break;
288
289 case tcc_constant: /* a constant */
290 kind = c_kind;
291 break;
292
293 case tcc_exceptional: /* something random, like an identifier. */
294 switch (code)
295 {
296 case IDENTIFIER_NODE:
297 kind = id_kind;
298 break;
299
300 case TREE_VEC:;
301 kind = vec_kind;
302 break;
303
304 case TREE_BINFO:
305 kind = binfo_kind;
306 break;
307
308 case PHI_NODE:
309 kind = phi_kind;
310 break;
311
312 case SSA_NAME:
313 kind = ssa_name_kind;
314 break;
315
316 case BLOCK:
317 kind = b_kind;
318 break;
319
320 default:
321 kind = x_kind;
322 break;
323 }
324 break;
325
326 default:
327 gcc_unreachable ();
328 }
329
330 tree_node_counts[(int) kind]++;
331 tree_node_sizes[(int) kind] += length;
332 #endif
333
334 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
335
336 memset (t, 0, length);
337
338 TREE_SET_CODE (t, code);
339
340 switch (type)
341 {
342 case tcc_statement:
343 TREE_SIDE_EFFECTS (t) = 1;
344 break;
345
346 case tcc_declaration:
347 if (code != FUNCTION_DECL)
348 DECL_ALIGN (t) = 1;
349 DECL_USER_ALIGN (t) = 0;
350 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
351 DECL_SOURCE_LOCATION (t) = input_location;
352 DECL_UID (t) = next_decl_uid++;
353
354 /* We have not yet computed the alias set for this declaration. */
355 DECL_POINTER_ALIAS_SET (t) = -1;
356 break;
357
358 case tcc_type:
359 TYPE_UID (t) = next_type_uid++;
360 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
361 TYPE_USER_ALIGN (t) = 0;
362 TYPE_MAIN_VARIANT (t) = t;
363
364 /* Default to no attributes for type, but let target change that. */
365 TYPE_ATTRIBUTES (t) = NULL_TREE;
366 targetm.set_default_type_attributes (t);
367
368 /* We have not yet computed the alias set for this type. */
369 TYPE_ALIAS_SET (t) = -1;
370 break;
371
372 case tcc_constant:
373 TREE_CONSTANT (t) = 1;
374 TREE_INVARIANT (t) = 1;
375 break;
376
377 case tcc_expression:
378 switch (code)
379 {
380 case INIT_EXPR:
381 case MODIFY_EXPR:
382 case VA_ARG_EXPR:
383 case PREDECREMENT_EXPR:
384 case PREINCREMENT_EXPR:
385 case POSTDECREMENT_EXPR:
386 case POSTINCREMENT_EXPR:
387 /* All of these have side-effects, no matter what their
388 operands are. */
389 TREE_SIDE_EFFECTS (t) = 1;
390 break;
391
392 default:
393 break;
394 }
395 break;
396
397 default:
398 /* Other classes need no special treatment. */
399 break;
400 }
401
402 return t;
403 }
404 \f
405 /* Return a new node with the same contents as NODE except that its
406 TREE_CHAIN is zero and it has a fresh uid. */
407
408 tree
409 copy_node_stat (tree node MEM_STAT_DECL)
410 {
411 tree t;
412 enum tree_code code = TREE_CODE (node);
413 size_t length;
414
415 gcc_assert (code != STATEMENT_LIST);
416
417 length = tree_size (node);
418 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
419 memcpy (t, node, length);
420
421 TREE_CHAIN (t) = 0;
422 TREE_ASM_WRITTEN (t) = 0;
423 TREE_VISITED (t) = 0;
424 t->common.ann = 0;
425
426 if (TREE_CODE_CLASS (code) == tcc_declaration)
427 DECL_UID (t) = next_decl_uid++;
428 else if (TREE_CODE_CLASS (code) == tcc_type)
429 {
430 TYPE_UID (t) = next_type_uid++;
431 /* The following is so that the debug code for
432 the copy is different from the original type.
433 The two statements usually duplicate each other
434 (because they clear fields of the same union),
435 but the optimizer should catch that. */
436 TYPE_SYMTAB_POINTER (t) = 0;
437 TYPE_SYMTAB_ADDRESS (t) = 0;
438
439 /* Do not copy the values cache. */
440 if (TYPE_CACHED_VALUES_P(t))
441 {
442 TYPE_CACHED_VALUES_P (t) = 0;
443 TYPE_CACHED_VALUES (t) = NULL_TREE;
444 }
445 }
446
447 return t;
448 }
449
450 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
451 For example, this can copy a list made of TREE_LIST nodes. */
452
453 tree
454 copy_list (tree list)
455 {
456 tree head;
457 tree prev, next;
458
459 if (list == 0)
460 return 0;
461
462 head = prev = copy_node (list);
463 next = TREE_CHAIN (list);
464 while (next)
465 {
466 TREE_CHAIN (prev) = copy_node (next);
467 prev = TREE_CHAIN (prev);
468 next = TREE_CHAIN (next);
469 }
470 return head;
471 }
472
473 \f
474 /* Create an INT_CST node with a LOW value sign extended. */
475
476 tree
477 build_int_cst (tree type, HOST_WIDE_INT low)
478 {
479 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
480 }
481
482 /* Create an INT_CST node with a LOW value zero extended. */
483
484 tree
485 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
486 {
487 return build_int_cst_wide (type, low, 0);
488 }
489
490 /* Create an INT_CST node with a LOW value zero or sign extended depending
491 on the type. */
492
493 tree
494 build_int_cst_type (tree type, HOST_WIDE_INT low)
495 {
496 unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
497 unsigned bits;
498 bool signed_p;
499 bool negative;
500 tree ret;
501
502 if (!type)
503 type = integer_type_node;
504
505 bits = TYPE_PRECISION (type);
506 signed_p = !TYPE_UNSIGNED (type);
507 negative = ((val >> (bits - 1)) & 1) != 0;
508
509 if (signed_p && negative)
510 {
511 if (bits < HOST_BITS_PER_WIDE_INT)
512 val = val | ((~(unsigned HOST_WIDE_INT) 0) << bits);
513 ret = build_int_cst_wide (type, val, ~(unsigned HOST_WIDE_INT) 0);
514 }
515 else
516 {
517 if (bits < HOST_BITS_PER_WIDE_INT)
518 val = val & ~((~(unsigned HOST_WIDE_INT) 0) << bits);
519 ret = build_int_cst_wide (type, val, 0);
520 }
521
522 return ret;
523 }
524
525 /* Create an INT_CST node of TYPE and value HI:LOW. If TYPE is NULL,
526 integer_type_node is used. */
527
528 tree
529 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
530 {
531 tree t;
532 int ix = -1;
533 int limit = 0;
534
535 if (!type)
536 type = integer_type_node;
537
538 switch (TREE_CODE (type))
539 {
540 case POINTER_TYPE:
541 case REFERENCE_TYPE:
542 /* Cache NULL pointer. */
543 if (!hi && !low)
544 {
545 limit = 1;
546 ix = 0;
547 }
548 break;
549
550 case BOOLEAN_TYPE:
551 /* Cache false or true. */
552 limit = 2;
553 if (!hi && low < 2)
554 ix = low;
555 break;
556
557 case INTEGER_TYPE:
558 case CHAR_TYPE:
559 case OFFSET_TYPE:
560 if (TYPE_UNSIGNED (type))
561 {
562 /* Cache 0..N */
563 limit = INTEGER_SHARE_LIMIT;
564 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
565 ix = low;
566 }
567 else
568 {
569 /* Cache -1..N */
570 limit = INTEGER_SHARE_LIMIT + 1;
571 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
572 ix = low + 1;
573 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
574 ix = 0;
575 }
576 break;
577 default:
578 break;
579 }
580
581 if (ix >= 0)
582 {
583 if (!TYPE_CACHED_VALUES_P (type))
584 {
585 TYPE_CACHED_VALUES_P (type) = 1;
586 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
587 }
588
589 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
590 if (t)
591 {
592 /* Make sure no one is clobbering the shared constant. */
593 gcc_assert (TREE_TYPE (t) == type);
594 gcc_assert (TREE_INT_CST_LOW (t) == low);
595 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
596 return t;
597 }
598 }
599
600 t = make_node (INTEGER_CST);
601
602 TREE_INT_CST_LOW (t) = low;
603 TREE_INT_CST_HIGH (t) = hi;
604 TREE_TYPE (t) = type;
605
606 if (ix >= 0)
607 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
608
609 return t;
610 }
611
612 /* Checks that X is integer constant that can be expressed in (unsigned)
613 HOST_WIDE_INT without loss of precision. */
614
615 bool
616 cst_and_fits_in_hwi (tree x)
617 {
618 if (TREE_CODE (x) != INTEGER_CST)
619 return false;
620
621 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
622 return false;
623
624 return (TREE_INT_CST_HIGH (x) == 0
625 || TREE_INT_CST_HIGH (x) == -1);
626 }
627
628 /* Return a new VECTOR_CST node whose type is TYPE and whose values
629 are in a list pointed by VALS. */
630
631 tree
632 build_vector (tree type, tree vals)
633 {
634 tree v = make_node (VECTOR_CST);
635 int over1 = 0, over2 = 0;
636 tree link;
637
638 TREE_VECTOR_CST_ELTS (v) = vals;
639 TREE_TYPE (v) = type;
640
641 /* Iterate through elements and check for overflow. */
642 for (link = vals; link; link = TREE_CHAIN (link))
643 {
644 tree value = TREE_VALUE (link);
645
646 over1 |= TREE_OVERFLOW (value);
647 over2 |= TREE_CONSTANT_OVERFLOW (value);
648 }
649
650 TREE_OVERFLOW (v) = over1;
651 TREE_CONSTANT_OVERFLOW (v) = over2;
652
653 return v;
654 }
655
656 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
657 are in a list pointed to by VALS. */
658 tree
659 build_constructor (tree type, tree vals)
660 {
661 tree c = make_node (CONSTRUCTOR);
662 TREE_TYPE (c) = type;
663 CONSTRUCTOR_ELTS (c) = vals;
664
665 /* ??? May not be necessary. Mirrors what build does. */
666 if (vals)
667 {
668 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
669 TREE_READONLY (c) = TREE_READONLY (vals);
670 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
671 TREE_INVARIANT (c) = TREE_INVARIANT (vals);
672 }
673
674 return c;
675 }
676
677 /* Return a new REAL_CST node whose type is TYPE and value is D. */
678
679 tree
680 build_real (tree type, REAL_VALUE_TYPE d)
681 {
682 tree v;
683 REAL_VALUE_TYPE *dp;
684 int overflow = 0;
685
686 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
687 Consider doing it via real_convert now. */
688
689 v = make_node (REAL_CST);
690 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
691 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
692
693 TREE_TYPE (v) = type;
694 TREE_REAL_CST_PTR (v) = dp;
695 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
696 return v;
697 }
698
699 /* Return a new REAL_CST node whose type is TYPE
700 and whose value is the integer value of the INTEGER_CST node I. */
701
702 REAL_VALUE_TYPE
703 real_value_from_int_cst (tree type, tree i)
704 {
705 REAL_VALUE_TYPE d;
706
707 /* Clear all bits of the real value type so that we can later do
708 bitwise comparisons to see if two values are the same. */
709 memset (&d, 0, sizeof d);
710
711 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
712 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
713 TYPE_UNSIGNED (TREE_TYPE (i)));
714 return d;
715 }
716
717 /* Given a tree representing an integer constant I, return a tree
718 representing the same value as a floating-point constant of type TYPE. */
719
720 tree
721 build_real_from_int_cst (tree type, tree i)
722 {
723 tree v;
724 int overflow = TREE_OVERFLOW (i);
725
726 v = build_real (type, real_value_from_int_cst (type, i));
727
728 TREE_OVERFLOW (v) |= overflow;
729 TREE_CONSTANT_OVERFLOW (v) |= overflow;
730 return v;
731 }
732
733 /* Return a newly constructed STRING_CST node whose value is
734 the LEN characters at STR.
735 The TREE_TYPE is not initialized. */
736
737 tree
738 build_string (int len, const char *str)
739 {
740 tree s;
741 size_t length;
742
743 length = len + sizeof (struct tree_string);
744
745 #ifdef GATHER_STATISTICS
746 tree_node_counts[(int) c_kind]++;
747 tree_node_sizes[(int) c_kind] += length;
748 #endif
749
750 s = ggc_alloc_tree (length);
751
752 memset (s, 0, sizeof (struct tree_common));
753 TREE_SET_CODE (s, STRING_CST);
754 TREE_STRING_LENGTH (s) = len;
755 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
756 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
757
758 return s;
759 }
760
761 /* Return a newly constructed COMPLEX_CST node whose value is
762 specified by the real and imaginary parts REAL and IMAG.
763 Both REAL and IMAG should be constant nodes. TYPE, if specified,
764 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
765
766 tree
767 build_complex (tree type, tree real, tree imag)
768 {
769 tree t = make_node (COMPLEX_CST);
770
771 TREE_REALPART (t) = real;
772 TREE_IMAGPART (t) = imag;
773 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
774 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
775 TREE_CONSTANT_OVERFLOW (t)
776 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
777 return t;
778 }
779
780 /* Build a BINFO with LEN language slots. */
781
782 tree
783 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
784 {
785 tree t;
786 size_t length = (offsetof (struct tree_binfo, base_binfos)
787 + VEC_embedded_size (tree, base_binfos));
788
789 #ifdef GATHER_STATISTICS
790 tree_node_counts[(int) binfo_kind]++;
791 tree_node_sizes[(int) binfo_kind] += length;
792 #endif
793
794 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
795
796 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
797
798 TREE_SET_CODE (t, TREE_BINFO);
799
800 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
801
802 return t;
803 }
804
805
806 /* Build a newly constructed TREE_VEC node of length LEN. */
807
808 tree
809 make_tree_vec_stat (int len MEM_STAT_DECL)
810 {
811 tree t;
812 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
813
814 #ifdef GATHER_STATISTICS
815 tree_node_counts[(int) vec_kind]++;
816 tree_node_sizes[(int) vec_kind] += length;
817 #endif
818
819 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
820
821 memset (t, 0, length);
822
823 TREE_SET_CODE (t, TREE_VEC);
824 TREE_VEC_LENGTH (t) = len;
825
826 return t;
827 }
828 \f
829 /* Return 1 if EXPR is the integer constant zero or a complex constant
830 of zero. */
831
832 int
833 integer_zerop (tree expr)
834 {
835 STRIP_NOPS (expr);
836
837 return ((TREE_CODE (expr) == INTEGER_CST
838 && ! TREE_CONSTANT_OVERFLOW (expr)
839 && TREE_INT_CST_LOW (expr) == 0
840 && TREE_INT_CST_HIGH (expr) == 0)
841 || (TREE_CODE (expr) == COMPLEX_CST
842 && integer_zerop (TREE_REALPART (expr))
843 && integer_zerop (TREE_IMAGPART (expr))));
844 }
845
846 /* Return 1 if EXPR is the integer constant one or the corresponding
847 complex constant. */
848
849 int
850 integer_onep (tree expr)
851 {
852 STRIP_NOPS (expr);
853
854 return ((TREE_CODE (expr) == INTEGER_CST
855 && ! TREE_CONSTANT_OVERFLOW (expr)
856 && TREE_INT_CST_LOW (expr) == 1
857 && TREE_INT_CST_HIGH (expr) == 0)
858 || (TREE_CODE (expr) == COMPLEX_CST
859 && integer_onep (TREE_REALPART (expr))
860 && integer_zerop (TREE_IMAGPART (expr))));
861 }
862
863 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
864 it contains. Likewise for the corresponding complex constant. */
865
866 int
867 integer_all_onesp (tree expr)
868 {
869 int prec;
870 int uns;
871
872 STRIP_NOPS (expr);
873
874 if (TREE_CODE (expr) == COMPLEX_CST
875 && integer_all_onesp (TREE_REALPART (expr))
876 && integer_zerop (TREE_IMAGPART (expr)))
877 return 1;
878
879 else if (TREE_CODE (expr) != INTEGER_CST
880 || TREE_CONSTANT_OVERFLOW (expr))
881 return 0;
882
883 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
884 if (!uns)
885 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
886 && TREE_INT_CST_HIGH (expr) == -1);
887
888 /* Note that using TYPE_PRECISION here is wrong. We care about the
889 actual bits, not the (arbitrary) range of the type. */
890 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
891 if (prec >= HOST_BITS_PER_WIDE_INT)
892 {
893 HOST_WIDE_INT high_value;
894 int shift_amount;
895
896 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
897
898 /* Can not handle precisions greater than twice the host int size. */
899 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
900 if (shift_amount == HOST_BITS_PER_WIDE_INT)
901 /* Shifting by the host word size is undefined according to the ANSI
902 standard, so we must handle this as a special case. */
903 high_value = -1;
904 else
905 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
906
907 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
908 && TREE_INT_CST_HIGH (expr) == high_value);
909 }
910 else
911 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
912 }
913
914 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
915 one bit on). */
916
917 int
918 integer_pow2p (tree expr)
919 {
920 int prec;
921 HOST_WIDE_INT high, low;
922
923 STRIP_NOPS (expr);
924
925 if (TREE_CODE (expr) == COMPLEX_CST
926 && integer_pow2p (TREE_REALPART (expr))
927 && integer_zerop (TREE_IMAGPART (expr)))
928 return 1;
929
930 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
931 return 0;
932
933 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
934 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
935 high = TREE_INT_CST_HIGH (expr);
936 low = TREE_INT_CST_LOW (expr);
937
938 /* First clear all bits that are beyond the type's precision in case
939 we've been sign extended. */
940
941 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
942 ;
943 else if (prec > HOST_BITS_PER_WIDE_INT)
944 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
945 else
946 {
947 high = 0;
948 if (prec < HOST_BITS_PER_WIDE_INT)
949 low &= ~((HOST_WIDE_INT) (-1) << prec);
950 }
951
952 if (high == 0 && low == 0)
953 return 0;
954
955 return ((high == 0 && (low & (low - 1)) == 0)
956 || (low == 0 && (high & (high - 1)) == 0));
957 }
958
959 /* Return 1 if EXPR is an integer constant other than zero or a
960 complex constant other than zero. */
961
962 int
963 integer_nonzerop (tree expr)
964 {
965 STRIP_NOPS (expr);
966
967 return ((TREE_CODE (expr) == INTEGER_CST
968 && ! TREE_CONSTANT_OVERFLOW (expr)
969 && (TREE_INT_CST_LOW (expr) != 0
970 || TREE_INT_CST_HIGH (expr) != 0))
971 || (TREE_CODE (expr) == COMPLEX_CST
972 && (integer_nonzerop (TREE_REALPART (expr))
973 || integer_nonzerop (TREE_IMAGPART (expr)))));
974 }
975
976 /* Return the power of two represented by a tree node known to be a
977 power of two. */
978
979 int
980 tree_log2 (tree expr)
981 {
982 int prec;
983 HOST_WIDE_INT high, low;
984
985 STRIP_NOPS (expr);
986
987 if (TREE_CODE (expr) == COMPLEX_CST)
988 return tree_log2 (TREE_REALPART (expr));
989
990 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
991 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
992
993 high = TREE_INT_CST_HIGH (expr);
994 low = TREE_INT_CST_LOW (expr);
995
996 /* First clear all bits that are beyond the type's precision in case
997 we've been sign extended. */
998
999 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1000 ;
1001 else if (prec > HOST_BITS_PER_WIDE_INT)
1002 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1003 else
1004 {
1005 high = 0;
1006 if (prec < HOST_BITS_PER_WIDE_INT)
1007 low &= ~((HOST_WIDE_INT) (-1) << prec);
1008 }
1009
1010 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1011 : exact_log2 (low));
1012 }
1013
1014 /* Similar, but return the largest integer Y such that 2 ** Y is less
1015 than or equal to EXPR. */
1016
1017 int
1018 tree_floor_log2 (tree expr)
1019 {
1020 int prec;
1021 HOST_WIDE_INT high, low;
1022
1023 STRIP_NOPS (expr);
1024
1025 if (TREE_CODE (expr) == COMPLEX_CST)
1026 return tree_log2 (TREE_REALPART (expr));
1027
1028 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1029 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1030
1031 high = TREE_INT_CST_HIGH (expr);
1032 low = TREE_INT_CST_LOW (expr);
1033
1034 /* First clear all bits that are beyond the type's precision in case
1035 we've been sign extended. Ignore if type's precision hasn't been set
1036 since what we are doing is setting it. */
1037
1038 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1039 ;
1040 else if (prec > HOST_BITS_PER_WIDE_INT)
1041 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1042 else
1043 {
1044 high = 0;
1045 if (prec < HOST_BITS_PER_WIDE_INT)
1046 low &= ~((HOST_WIDE_INT) (-1) << prec);
1047 }
1048
1049 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1050 : floor_log2 (low));
1051 }
1052
1053 /* Return 1 if EXPR is the real constant zero. */
1054
1055 int
1056 real_zerop (tree expr)
1057 {
1058 STRIP_NOPS (expr);
1059
1060 return ((TREE_CODE (expr) == REAL_CST
1061 && ! TREE_CONSTANT_OVERFLOW (expr)
1062 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1063 || (TREE_CODE (expr) == COMPLEX_CST
1064 && real_zerop (TREE_REALPART (expr))
1065 && real_zerop (TREE_IMAGPART (expr))));
1066 }
1067
1068 /* Return 1 if EXPR is the real constant one in real or complex form. */
1069
1070 int
1071 real_onep (tree expr)
1072 {
1073 STRIP_NOPS (expr);
1074
1075 return ((TREE_CODE (expr) == REAL_CST
1076 && ! TREE_CONSTANT_OVERFLOW (expr)
1077 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1078 || (TREE_CODE (expr) == COMPLEX_CST
1079 && real_onep (TREE_REALPART (expr))
1080 && real_zerop (TREE_IMAGPART (expr))));
1081 }
1082
1083 /* Return 1 if EXPR is the real constant two. */
1084
1085 int
1086 real_twop (tree expr)
1087 {
1088 STRIP_NOPS (expr);
1089
1090 return ((TREE_CODE (expr) == REAL_CST
1091 && ! TREE_CONSTANT_OVERFLOW (expr)
1092 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1093 || (TREE_CODE (expr) == COMPLEX_CST
1094 && real_twop (TREE_REALPART (expr))
1095 && real_zerop (TREE_IMAGPART (expr))));
1096 }
1097
1098 /* Return 1 if EXPR is the real constant minus one. */
1099
1100 int
1101 real_minus_onep (tree expr)
1102 {
1103 STRIP_NOPS (expr);
1104
1105 return ((TREE_CODE (expr) == REAL_CST
1106 && ! TREE_CONSTANT_OVERFLOW (expr)
1107 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1108 || (TREE_CODE (expr) == COMPLEX_CST
1109 && real_minus_onep (TREE_REALPART (expr))
1110 && real_zerop (TREE_IMAGPART (expr))));
1111 }
1112
1113 /* Nonzero if EXP is a constant or a cast of a constant. */
1114
1115 int
1116 really_constant_p (tree exp)
1117 {
1118 /* This is not quite the same as STRIP_NOPS. It does more. */
1119 while (TREE_CODE (exp) == NOP_EXPR
1120 || TREE_CODE (exp) == CONVERT_EXPR
1121 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1122 exp = TREE_OPERAND (exp, 0);
1123 return TREE_CONSTANT (exp);
1124 }
1125 \f
1126 /* Return first list element whose TREE_VALUE is ELEM.
1127 Return 0 if ELEM is not in LIST. */
1128
1129 tree
1130 value_member (tree elem, tree list)
1131 {
1132 while (list)
1133 {
1134 if (elem == TREE_VALUE (list))
1135 return list;
1136 list = TREE_CHAIN (list);
1137 }
1138 return NULL_TREE;
1139 }
1140
1141 /* Return first list element whose TREE_PURPOSE is ELEM.
1142 Return 0 if ELEM is not in LIST. */
1143
1144 tree
1145 purpose_member (tree elem, tree list)
1146 {
1147 while (list)
1148 {
1149 if (elem == TREE_PURPOSE (list))
1150 return list;
1151 list = TREE_CHAIN (list);
1152 }
1153 return NULL_TREE;
1154 }
1155
1156 /* Return nonzero if ELEM is part of the chain CHAIN. */
1157
1158 int
1159 chain_member (tree elem, tree chain)
1160 {
1161 while (chain)
1162 {
1163 if (elem == chain)
1164 return 1;
1165 chain = TREE_CHAIN (chain);
1166 }
1167
1168 return 0;
1169 }
1170
1171 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1172 We expect a null pointer to mark the end of the chain.
1173 This is the Lisp primitive `length'. */
1174
1175 int
1176 list_length (tree t)
1177 {
1178 tree p = t;
1179 #ifdef ENABLE_TREE_CHECKING
1180 tree q = t;
1181 #endif
1182 int len = 0;
1183
1184 while (p)
1185 {
1186 p = TREE_CHAIN (p);
1187 #ifdef ENABLE_TREE_CHECKING
1188 if (len % 2)
1189 q = TREE_CHAIN (q);
1190 gcc_assert (p != q);
1191 #endif
1192 len++;
1193 }
1194
1195 return len;
1196 }
1197
1198 /* Returns the number of FIELD_DECLs in TYPE. */
1199
1200 int
1201 fields_length (tree type)
1202 {
1203 tree t = TYPE_FIELDS (type);
1204 int count = 0;
1205
1206 for (; t; t = TREE_CHAIN (t))
1207 if (TREE_CODE (t) == FIELD_DECL)
1208 ++count;
1209
1210 return count;
1211 }
1212
1213 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1214 by modifying the last node in chain 1 to point to chain 2.
1215 This is the Lisp primitive `nconc'. */
1216
1217 tree
1218 chainon (tree op1, tree op2)
1219 {
1220 tree t1;
1221
1222 if (!op1)
1223 return op2;
1224 if (!op2)
1225 return op1;
1226
1227 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1228 continue;
1229 TREE_CHAIN (t1) = op2;
1230
1231 #ifdef ENABLE_TREE_CHECKING
1232 {
1233 tree t2;
1234 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1235 gcc_assert (t2 != t1);
1236 }
1237 #endif
1238
1239 return op1;
1240 }
1241
1242 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1243
1244 tree
1245 tree_last (tree chain)
1246 {
1247 tree next;
1248 if (chain)
1249 while ((next = TREE_CHAIN (chain)))
1250 chain = next;
1251 return chain;
1252 }
1253
1254 /* Reverse the order of elements in the chain T,
1255 and return the new head of the chain (old last element). */
1256
1257 tree
1258 nreverse (tree t)
1259 {
1260 tree prev = 0, decl, next;
1261 for (decl = t; decl; decl = next)
1262 {
1263 next = TREE_CHAIN (decl);
1264 TREE_CHAIN (decl) = prev;
1265 prev = decl;
1266 }
1267 return prev;
1268 }
1269 \f
1270 /* Return a newly created TREE_LIST node whose
1271 purpose and value fields are PARM and VALUE. */
1272
1273 tree
1274 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1275 {
1276 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1277 TREE_PURPOSE (t) = parm;
1278 TREE_VALUE (t) = value;
1279 return t;
1280 }
1281
1282 /* Return a newly created TREE_LIST node whose
1283 purpose and value fields are PURPOSE and VALUE
1284 and whose TREE_CHAIN is CHAIN. */
1285
1286 tree
1287 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1288 {
1289 tree node;
1290
1291 node = ggc_alloc_zone_stat (sizeof (struct tree_list),
1292 tree_zone PASS_MEM_STAT);
1293
1294 memset (node, 0, sizeof (struct tree_common));
1295
1296 #ifdef GATHER_STATISTICS
1297 tree_node_counts[(int) x_kind]++;
1298 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1299 #endif
1300
1301 TREE_SET_CODE (node, TREE_LIST);
1302 TREE_CHAIN (node) = chain;
1303 TREE_PURPOSE (node) = purpose;
1304 TREE_VALUE (node) = value;
1305 return node;
1306 }
1307
1308 \f
1309 /* Return the size nominally occupied by an object of type TYPE
1310 when it resides in memory. The value is measured in units of bytes,
1311 and its data type is that normally used for type sizes
1312 (which is the first type created by make_signed_type or
1313 make_unsigned_type). */
1314
1315 tree
1316 size_in_bytes (tree type)
1317 {
1318 tree t;
1319
1320 if (type == error_mark_node)
1321 return integer_zero_node;
1322
1323 type = TYPE_MAIN_VARIANT (type);
1324 t = TYPE_SIZE_UNIT (type);
1325
1326 if (t == 0)
1327 {
1328 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1329 return size_zero_node;
1330 }
1331
1332 if (TREE_CODE (t) == INTEGER_CST)
1333 t = force_fit_type (t, 0, false, false);
1334
1335 return t;
1336 }
1337
1338 /* Return the size of TYPE (in bytes) as a wide integer
1339 or return -1 if the size can vary or is larger than an integer. */
1340
1341 HOST_WIDE_INT
1342 int_size_in_bytes (tree type)
1343 {
1344 tree t;
1345
1346 if (type == error_mark_node)
1347 return 0;
1348
1349 type = TYPE_MAIN_VARIANT (type);
1350 t = TYPE_SIZE_UNIT (type);
1351 if (t == 0
1352 || TREE_CODE (t) != INTEGER_CST
1353 || TREE_OVERFLOW (t)
1354 || TREE_INT_CST_HIGH (t) != 0
1355 /* If the result would appear negative, it's too big to represent. */
1356 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1357 return -1;
1358
1359 return TREE_INT_CST_LOW (t);
1360 }
1361 \f
1362 /* Return the bit position of FIELD, in bits from the start of the record.
1363 This is a tree of type bitsizetype. */
1364
1365 tree
1366 bit_position (tree field)
1367 {
1368 return bit_from_pos (DECL_FIELD_OFFSET (field),
1369 DECL_FIELD_BIT_OFFSET (field));
1370 }
1371
1372 /* Likewise, but return as an integer. Abort if it cannot be represented
1373 in that way (since it could be a signed value, we don't have the option
1374 of returning -1 like int_size_in_byte can. */
1375
1376 HOST_WIDE_INT
1377 int_bit_position (tree field)
1378 {
1379 return tree_low_cst (bit_position (field), 0);
1380 }
1381 \f
1382 /* Return the byte position of FIELD, in bytes from the start of the record.
1383 This is a tree of type sizetype. */
1384
1385 tree
1386 byte_position (tree field)
1387 {
1388 return byte_from_pos (DECL_FIELD_OFFSET (field),
1389 DECL_FIELD_BIT_OFFSET (field));
1390 }
1391
1392 /* Likewise, but return as an integer. Abort if it cannot be represented
1393 in that way (since it could be a signed value, we don't have the option
1394 of returning -1 like int_size_in_byte can. */
1395
1396 HOST_WIDE_INT
1397 int_byte_position (tree field)
1398 {
1399 return tree_low_cst (byte_position (field), 0);
1400 }
1401 \f
1402 /* Return the strictest alignment, in bits, that T is known to have. */
1403
1404 unsigned int
1405 expr_align (tree t)
1406 {
1407 unsigned int align0, align1;
1408
1409 switch (TREE_CODE (t))
1410 {
1411 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1412 /* If we have conversions, we know that the alignment of the
1413 object must meet each of the alignments of the types. */
1414 align0 = expr_align (TREE_OPERAND (t, 0));
1415 align1 = TYPE_ALIGN (TREE_TYPE (t));
1416 return MAX (align0, align1);
1417
1418 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1419 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1420 case CLEANUP_POINT_EXPR:
1421 /* These don't change the alignment of an object. */
1422 return expr_align (TREE_OPERAND (t, 0));
1423
1424 case COND_EXPR:
1425 /* The best we can do is say that the alignment is the least aligned
1426 of the two arms. */
1427 align0 = expr_align (TREE_OPERAND (t, 1));
1428 align1 = expr_align (TREE_OPERAND (t, 2));
1429 return MIN (align0, align1);
1430
1431 case LABEL_DECL: case CONST_DECL:
1432 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1433 if (DECL_ALIGN (t) != 0)
1434 return DECL_ALIGN (t);
1435 break;
1436
1437 case FUNCTION_DECL:
1438 return FUNCTION_BOUNDARY;
1439
1440 default:
1441 break;
1442 }
1443
1444 /* Otherwise take the alignment from that of the type. */
1445 return TYPE_ALIGN (TREE_TYPE (t));
1446 }
1447 \f
1448 /* Return, as a tree node, the number of elements for TYPE (which is an
1449 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1450
1451 tree
1452 array_type_nelts (tree type)
1453 {
1454 tree index_type, min, max;
1455
1456 /* If they did it with unspecified bounds, then we should have already
1457 given an error about it before we got here. */
1458 if (! TYPE_DOMAIN (type))
1459 return error_mark_node;
1460
1461 index_type = TYPE_DOMAIN (type);
1462 min = TYPE_MIN_VALUE (index_type);
1463 max = TYPE_MAX_VALUE (index_type);
1464
1465 return (integer_zerop (min)
1466 ? max
1467 : fold (build2 (MINUS_EXPR, TREE_TYPE (max), max, min)));
1468 }
1469 \f
1470 /* If arg is static -- a reference to an object in static storage -- then
1471 return the object. This is not the same as the C meaning of `static'.
1472 If arg isn't static, return NULL. */
1473
1474 tree
1475 staticp (tree arg)
1476 {
1477 switch (TREE_CODE (arg))
1478 {
1479 case FUNCTION_DECL:
1480 /* Nested functions aren't static, since taking their address
1481 involves a trampoline. */
1482 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1483 && ! DECL_NON_ADDR_CONST_P (arg)
1484 ? arg : NULL);
1485
1486 case VAR_DECL:
1487 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1488 && ! DECL_THREAD_LOCAL (arg)
1489 && ! DECL_NON_ADDR_CONST_P (arg)
1490 ? arg : NULL);
1491
1492 case CONSTRUCTOR:
1493 return TREE_STATIC (arg) ? arg : NULL;
1494
1495 case LABEL_DECL:
1496 case STRING_CST:
1497 return arg;
1498
1499 case COMPONENT_REF:
1500 /* If the thing being referenced is not a field, then it is
1501 something language specific. */
1502 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1503 return (*lang_hooks.staticp) (arg);
1504
1505 /* If we are referencing a bitfield, we can't evaluate an
1506 ADDR_EXPR at compile time and so it isn't a constant. */
1507 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1508 return NULL;
1509
1510 return staticp (TREE_OPERAND (arg, 0));
1511
1512 case BIT_FIELD_REF:
1513 return NULL;
1514
1515 case MISALIGNED_INDIRECT_REF:
1516 case ALIGN_INDIRECT_REF:
1517 case INDIRECT_REF:
1518 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
1519
1520 case ARRAY_REF:
1521 case ARRAY_RANGE_REF:
1522 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1523 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1524 return staticp (TREE_OPERAND (arg, 0));
1525 else
1526 return false;
1527
1528 default:
1529 if ((unsigned int) TREE_CODE (arg)
1530 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1531 return lang_hooks.staticp (arg);
1532 else
1533 return NULL;
1534 }
1535 }
1536 \f
1537 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1538 Do this to any expression which may be used in more than one place,
1539 but must be evaluated only once.
1540
1541 Normally, expand_expr would reevaluate the expression each time.
1542 Calling save_expr produces something that is evaluated and recorded
1543 the first time expand_expr is called on it. Subsequent calls to
1544 expand_expr just reuse the recorded value.
1545
1546 The call to expand_expr that generates code that actually computes
1547 the value is the first call *at compile time*. Subsequent calls
1548 *at compile time* generate code to use the saved value.
1549 This produces correct result provided that *at run time* control
1550 always flows through the insns made by the first expand_expr
1551 before reaching the other places where the save_expr was evaluated.
1552 You, the caller of save_expr, must make sure this is so.
1553
1554 Constants, and certain read-only nodes, are returned with no
1555 SAVE_EXPR because that is safe. Expressions containing placeholders
1556 are not touched; see tree.def for an explanation of what these
1557 are used for. */
1558
1559 tree
1560 save_expr (tree expr)
1561 {
1562 tree t = fold (expr);
1563 tree inner;
1564
1565 /* If the tree evaluates to a constant, then we don't want to hide that
1566 fact (i.e. this allows further folding, and direct checks for constants).
1567 However, a read-only object that has side effects cannot be bypassed.
1568 Since it is no problem to reevaluate literals, we just return the
1569 literal node. */
1570 inner = skip_simple_arithmetic (t);
1571
1572 if (TREE_INVARIANT (inner)
1573 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1574 || TREE_CODE (inner) == SAVE_EXPR
1575 || TREE_CODE (inner) == ERROR_MARK)
1576 return t;
1577
1578 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1579 it means that the size or offset of some field of an object depends on
1580 the value within another field.
1581
1582 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1583 and some variable since it would then need to be both evaluated once and
1584 evaluated more than once. Front-ends must assure this case cannot
1585 happen by surrounding any such subexpressions in their own SAVE_EXPR
1586 and forcing evaluation at the proper time. */
1587 if (contains_placeholder_p (inner))
1588 return t;
1589
1590 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
1591
1592 /* This expression might be placed ahead of a jump to ensure that the
1593 value was computed on both sides of the jump. So make sure it isn't
1594 eliminated as dead. */
1595 TREE_SIDE_EFFECTS (t) = 1;
1596 TREE_INVARIANT (t) = 1;
1597 return t;
1598 }
1599
1600 /* Look inside EXPR and into any simple arithmetic operations. Return
1601 the innermost non-arithmetic node. */
1602
1603 tree
1604 skip_simple_arithmetic (tree expr)
1605 {
1606 tree inner;
1607
1608 /* We don't care about whether this can be used as an lvalue in this
1609 context. */
1610 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1611 expr = TREE_OPERAND (expr, 0);
1612
1613 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1614 a constant, it will be more efficient to not make another SAVE_EXPR since
1615 it will allow better simplification and GCSE will be able to merge the
1616 computations if they actually occur. */
1617 inner = expr;
1618 while (1)
1619 {
1620 if (UNARY_CLASS_P (inner))
1621 inner = TREE_OPERAND (inner, 0);
1622 else if (BINARY_CLASS_P (inner))
1623 {
1624 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
1625 inner = TREE_OPERAND (inner, 0);
1626 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
1627 inner = TREE_OPERAND (inner, 1);
1628 else
1629 break;
1630 }
1631 else
1632 break;
1633 }
1634
1635 return inner;
1636 }
1637
1638 /* Returns the index of the first non-tree operand for CODE, or the number
1639 of operands if all are trees. */
1640
1641 int
1642 first_rtl_op (enum tree_code code)
1643 {
1644 switch (code)
1645 {
1646 default:
1647 return TREE_CODE_LENGTH (code);
1648 }
1649 }
1650
1651 /* Return which tree structure is used by T. */
1652
1653 enum tree_node_structure_enum
1654 tree_node_structure (tree t)
1655 {
1656 enum tree_code code = TREE_CODE (t);
1657
1658 switch (TREE_CODE_CLASS (code))
1659 {
1660 case tcc_declaration:
1661 return TS_DECL;
1662 case tcc_type:
1663 return TS_TYPE;
1664 case tcc_reference:
1665 case tcc_comparison:
1666 case tcc_unary:
1667 case tcc_binary:
1668 case tcc_expression:
1669 case tcc_statement:
1670 return TS_EXP;
1671 default: /* tcc_constant and tcc_exceptional */
1672 break;
1673 }
1674 switch (code)
1675 {
1676 /* tcc_constant cases. */
1677 case INTEGER_CST: return TS_INT_CST;
1678 case REAL_CST: return TS_REAL_CST;
1679 case COMPLEX_CST: return TS_COMPLEX;
1680 case VECTOR_CST: return TS_VECTOR;
1681 case STRING_CST: return TS_STRING;
1682 /* tcc_exceptional cases. */
1683 case ERROR_MARK: return TS_COMMON;
1684 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1685 case TREE_LIST: return TS_LIST;
1686 case TREE_VEC: return TS_VEC;
1687 case PHI_NODE: return TS_PHI_NODE;
1688 case SSA_NAME: return TS_SSA_NAME;
1689 case PLACEHOLDER_EXPR: return TS_COMMON;
1690 case STATEMENT_LIST: return TS_STATEMENT_LIST;
1691 case BLOCK: return TS_BLOCK;
1692 case TREE_BINFO: return TS_BINFO;
1693 case VALUE_HANDLE: return TS_VALUE_HANDLE;
1694
1695 default:
1696 gcc_unreachable ();
1697 }
1698 }
1699 \f
1700 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1701 or offset that depends on a field within a record. */
1702
1703 bool
1704 contains_placeholder_p (tree exp)
1705 {
1706 enum tree_code code;
1707
1708 if (!exp)
1709 return 0;
1710
1711 code = TREE_CODE (exp);
1712 if (code == PLACEHOLDER_EXPR)
1713 return 1;
1714
1715 switch (TREE_CODE_CLASS (code))
1716 {
1717 case tcc_reference:
1718 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1719 position computations since they will be converted into a
1720 WITH_RECORD_EXPR involving the reference, which will assume
1721 here will be valid. */
1722 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1723
1724 case tcc_exceptional:
1725 if (code == TREE_LIST)
1726 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1727 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1728 break;
1729
1730 case tcc_unary:
1731 case tcc_binary:
1732 case tcc_comparison:
1733 case tcc_expression:
1734 switch (code)
1735 {
1736 case COMPOUND_EXPR:
1737 /* Ignoring the first operand isn't quite right, but works best. */
1738 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1739
1740 case COND_EXPR:
1741 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1742 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1743 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1744
1745 default:
1746 break;
1747 }
1748
1749 switch (first_rtl_op (code))
1750 {
1751 case 1:
1752 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1753 case 2:
1754 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1755 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1756 default:
1757 return 0;
1758 }
1759
1760 default:
1761 return 0;
1762 }
1763 return 0;
1764 }
1765
1766 /* Return true if any part of the computation of TYPE involves a
1767 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
1768 (for QUAL_UNION_TYPE) and field positions. */
1769
1770 static bool
1771 type_contains_placeholder_1 (tree type)
1772 {
1773 /* If the size contains a placeholder or the parent type (component type in
1774 the case of arrays) type involves a placeholder, this type does. */
1775 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1776 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1777 || (TREE_TYPE (type) != 0
1778 && type_contains_placeholder_p (TREE_TYPE (type))))
1779 return true;
1780
1781 /* Now do type-specific checks. Note that the last part of the check above
1782 greatly limits what we have to do below. */
1783 switch (TREE_CODE (type))
1784 {
1785 case VOID_TYPE:
1786 case COMPLEX_TYPE:
1787 case ENUMERAL_TYPE:
1788 case BOOLEAN_TYPE:
1789 case CHAR_TYPE:
1790 case POINTER_TYPE:
1791 case OFFSET_TYPE:
1792 case REFERENCE_TYPE:
1793 case METHOD_TYPE:
1794 case FILE_TYPE:
1795 case FUNCTION_TYPE:
1796 return false;
1797
1798 case INTEGER_TYPE:
1799 case REAL_TYPE:
1800 /* Here we just check the bounds. */
1801 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1802 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1803
1804 case ARRAY_TYPE:
1805 case SET_TYPE:
1806 case VECTOR_TYPE:
1807 /* We're already checked the component type (TREE_TYPE), so just check
1808 the index type. */
1809 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1810
1811 case RECORD_TYPE:
1812 case UNION_TYPE:
1813 case QUAL_UNION_TYPE:
1814 {
1815 tree field;
1816
1817 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1818 if (TREE_CODE (field) == FIELD_DECL
1819 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1820 || (TREE_CODE (type) == QUAL_UNION_TYPE
1821 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1822 || type_contains_placeholder_p (TREE_TYPE (field))))
1823 return true;
1824
1825 return false;
1826 }
1827
1828 default:
1829 gcc_unreachable ();
1830 }
1831 }
1832
1833 bool
1834 type_contains_placeholder_p (tree type)
1835 {
1836 bool result;
1837
1838 /* If the contains_placeholder_bits field has been initialized,
1839 then we know the answer. */
1840 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
1841 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
1842
1843 /* Indicate that we've seen this type node, and the answer is false.
1844 This is what we want to return if we run into recursion via fields. */
1845 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
1846
1847 /* Compute the real value. */
1848 result = type_contains_placeholder_1 (type);
1849
1850 /* Store the real value. */
1851 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
1852
1853 return result;
1854 }
1855 \f
1856 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1857 return a tree with all occurrences of references to F in a
1858 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1859 contains only arithmetic expressions or a CALL_EXPR with a
1860 PLACEHOLDER_EXPR occurring only in its arglist. */
1861
1862 tree
1863 substitute_in_expr (tree exp, tree f, tree r)
1864 {
1865 enum tree_code code = TREE_CODE (exp);
1866 tree op0, op1, op2;
1867 tree new;
1868 tree inner;
1869
1870 /* We handle TREE_LIST and COMPONENT_REF separately. */
1871 if (code == TREE_LIST)
1872 {
1873 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
1874 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
1875 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1876 return exp;
1877
1878 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1879 }
1880 else if (code == COMPONENT_REF)
1881 {
1882 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1883 and it is the right field, replace it with R. */
1884 for (inner = TREE_OPERAND (exp, 0);
1885 REFERENCE_CLASS_P (inner);
1886 inner = TREE_OPERAND (inner, 0))
1887 ;
1888 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1889 && TREE_OPERAND (exp, 1) == f)
1890 return r;
1891
1892 /* If this expression hasn't been completed let, leave it alone. */
1893 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
1894 return exp;
1895
1896 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1897 if (op0 == TREE_OPERAND (exp, 0))
1898 return exp;
1899
1900 new = fold (build3 (COMPONENT_REF, TREE_TYPE (exp),
1901 op0, TREE_OPERAND (exp, 1), NULL_TREE));
1902 }
1903 else
1904 switch (TREE_CODE_CLASS (code))
1905 {
1906 case tcc_constant:
1907 case tcc_declaration:
1908 return exp;
1909
1910 case tcc_exceptional:
1911 case tcc_unary:
1912 case tcc_binary:
1913 case tcc_comparison:
1914 case tcc_expression:
1915 case tcc_reference:
1916 switch (first_rtl_op (code))
1917 {
1918 case 0:
1919 return exp;
1920
1921 case 1:
1922 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1923 if (op0 == TREE_OPERAND (exp, 0))
1924 return exp;
1925
1926 new = fold (build1 (code, TREE_TYPE (exp), op0));
1927 break;
1928
1929 case 2:
1930 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1931 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
1932
1933 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
1934 return exp;
1935
1936 new = fold (build2 (code, TREE_TYPE (exp), op0, op1));
1937 break;
1938
1939 case 3:
1940 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1941 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
1942 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
1943
1944 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1945 && op2 == TREE_OPERAND (exp, 2))
1946 return exp;
1947
1948 new = fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
1949 break;
1950
1951 default:
1952 gcc_unreachable ();
1953 }
1954 break;
1955
1956 default:
1957 gcc_unreachable ();
1958 }
1959
1960 TREE_READONLY (new) = TREE_READONLY (exp);
1961 return new;
1962 }
1963
1964 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
1965 for it within OBJ, a tree that is an object or a chain of references. */
1966
1967 tree
1968 substitute_placeholder_in_expr (tree exp, tree obj)
1969 {
1970 enum tree_code code = TREE_CODE (exp);
1971 tree op0, op1, op2, op3;
1972
1973 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
1974 in the chain of OBJ. */
1975 if (code == PLACEHOLDER_EXPR)
1976 {
1977 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
1978 tree elt;
1979
1980 for (elt = obj; elt != 0;
1981 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
1982 || TREE_CODE (elt) == COND_EXPR)
1983 ? TREE_OPERAND (elt, 1)
1984 : (REFERENCE_CLASS_P (elt)
1985 || UNARY_CLASS_P (elt)
1986 || BINARY_CLASS_P (elt)
1987 || EXPRESSION_CLASS_P (elt))
1988 ? TREE_OPERAND (elt, 0) : 0))
1989 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
1990 return elt;
1991
1992 for (elt = obj; elt != 0;
1993 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
1994 || TREE_CODE (elt) == COND_EXPR)
1995 ? TREE_OPERAND (elt, 1)
1996 : (REFERENCE_CLASS_P (elt)
1997 || UNARY_CLASS_P (elt)
1998 || BINARY_CLASS_P (elt)
1999 || EXPRESSION_CLASS_P (elt))
2000 ? TREE_OPERAND (elt, 0) : 0))
2001 if (POINTER_TYPE_P (TREE_TYPE (elt))
2002 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2003 == need_type))
2004 return fold (build1 (INDIRECT_REF, need_type, elt));
2005
2006 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2007 survives until RTL generation, there will be an error. */
2008 return exp;
2009 }
2010
2011 /* TREE_LIST is special because we need to look at TREE_VALUE
2012 and TREE_CHAIN, not TREE_OPERANDS. */
2013 else if (code == TREE_LIST)
2014 {
2015 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2016 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2017 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2018 return exp;
2019
2020 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2021 }
2022 else
2023 switch (TREE_CODE_CLASS (code))
2024 {
2025 case tcc_constant:
2026 case tcc_declaration:
2027 return exp;
2028
2029 case tcc_exceptional:
2030 case tcc_unary:
2031 case tcc_binary:
2032 case tcc_comparison:
2033 case tcc_expression:
2034 case tcc_reference:
2035 case tcc_statement:
2036 switch (first_rtl_op (code))
2037 {
2038 case 0:
2039 return exp;
2040
2041 case 1:
2042 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2043 if (op0 == TREE_OPERAND (exp, 0))
2044 return exp;
2045 else
2046 return fold (build1 (code, TREE_TYPE (exp), op0));
2047
2048 case 2:
2049 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2050 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2051
2052 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2053 return exp;
2054 else
2055 return fold (build2 (code, TREE_TYPE (exp), op0, op1));
2056
2057 case 3:
2058 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2059 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2060 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2061
2062 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2063 && op2 == TREE_OPERAND (exp, 2))
2064 return exp;
2065 else
2066 return fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2067
2068 case 4:
2069 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2070 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2071 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2072 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2073
2074 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2075 && op2 == TREE_OPERAND (exp, 2)
2076 && op3 == TREE_OPERAND (exp, 3))
2077 return exp;
2078 else
2079 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2080
2081 default:
2082 gcc_unreachable ();
2083 }
2084 break;
2085
2086 default:
2087 gcc_unreachable ();
2088 }
2089 }
2090 \f
2091 /* Stabilize a reference so that we can use it any number of times
2092 without causing its operands to be evaluated more than once.
2093 Returns the stabilized reference. This works by means of save_expr,
2094 so see the caveats in the comments about save_expr.
2095
2096 Also allows conversion expressions whose operands are references.
2097 Any other kind of expression is returned unchanged. */
2098
2099 tree
2100 stabilize_reference (tree ref)
2101 {
2102 tree result;
2103 enum tree_code code = TREE_CODE (ref);
2104
2105 switch (code)
2106 {
2107 case VAR_DECL:
2108 case PARM_DECL:
2109 case RESULT_DECL:
2110 /* No action is needed in this case. */
2111 return ref;
2112
2113 case NOP_EXPR:
2114 case CONVERT_EXPR:
2115 case FLOAT_EXPR:
2116 case FIX_TRUNC_EXPR:
2117 case FIX_FLOOR_EXPR:
2118 case FIX_ROUND_EXPR:
2119 case FIX_CEIL_EXPR:
2120 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2121 break;
2122
2123 case INDIRECT_REF:
2124 result = build_nt (INDIRECT_REF,
2125 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2126 break;
2127
2128 case COMPONENT_REF:
2129 result = build_nt (COMPONENT_REF,
2130 stabilize_reference (TREE_OPERAND (ref, 0)),
2131 TREE_OPERAND (ref, 1), NULL_TREE);
2132 break;
2133
2134 case BIT_FIELD_REF:
2135 result = build_nt (BIT_FIELD_REF,
2136 stabilize_reference (TREE_OPERAND (ref, 0)),
2137 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2138 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2139 break;
2140
2141 case ARRAY_REF:
2142 result = build_nt (ARRAY_REF,
2143 stabilize_reference (TREE_OPERAND (ref, 0)),
2144 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2145 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2146 break;
2147
2148 case ARRAY_RANGE_REF:
2149 result = build_nt (ARRAY_RANGE_REF,
2150 stabilize_reference (TREE_OPERAND (ref, 0)),
2151 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2152 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2153 break;
2154
2155 case COMPOUND_EXPR:
2156 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2157 it wouldn't be ignored. This matters when dealing with
2158 volatiles. */
2159 return stabilize_reference_1 (ref);
2160
2161 /* If arg isn't a kind of lvalue we recognize, make no change.
2162 Caller should recognize the error for an invalid lvalue. */
2163 default:
2164 return ref;
2165
2166 case ERROR_MARK:
2167 return error_mark_node;
2168 }
2169
2170 TREE_TYPE (result) = TREE_TYPE (ref);
2171 TREE_READONLY (result) = TREE_READONLY (ref);
2172 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2173 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2174
2175 return result;
2176 }
2177
2178 /* Subroutine of stabilize_reference; this is called for subtrees of
2179 references. Any expression with side-effects must be put in a SAVE_EXPR
2180 to ensure that it is only evaluated once.
2181
2182 We don't put SAVE_EXPR nodes around everything, because assigning very
2183 simple expressions to temporaries causes us to miss good opportunities
2184 for optimizations. Among other things, the opportunity to fold in the
2185 addition of a constant into an addressing mode often gets lost, e.g.
2186 "y[i+1] += x;". In general, we take the approach that we should not make
2187 an assignment unless we are forced into it - i.e., that any non-side effect
2188 operator should be allowed, and that cse should take care of coalescing
2189 multiple utterances of the same expression should that prove fruitful. */
2190
2191 tree
2192 stabilize_reference_1 (tree e)
2193 {
2194 tree result;
2195 enum tree_code code = TREE_CODE (e);
2196
2197 /* We cannot ignore const expressions because it might be a reference
2198 to a const array but whose index contains side-effects. But we can
2199 ignore things that are actual constant or that already have been
2200 handled by this function. */
2201
2202 if (TREE_INVARIANT (e))
2203 return e;
2204
2205 switch (TREE_CODE_CLASS (code))
2206 {
2207 case tcc_exceptional:
2208 case tcc_type:
2209 case tcc_declaration:
2210 case tcc_comparison:
2211 case tcc_statement:
2212 case tcc_expression:
2213 case tcc_reference:
2214 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2215 so that it will only be evaluated once. */
2216 /* The reference (r) and comparison (<) classes could be handled as
2217 below, but it is generally faster to only evaluate them once. */
2218 if (TREE_SIDE_EFFECTS (e))
2219 return save_expr (e);
2220 return e;
2221
2222 case tcc_constant:
2223 /* Constants need no processing. In fact, we should never reach
2224 here. */
2225 return e;
2226
2227 case tcc_binary:
2228 /* Division is slow and tends to be compiled with jumps,
2229 especially the division by powers of 2 that is often
2230 found inside of an array reference. So do it just once. */
2231 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2232 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2233 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2234 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2235 return save_expr (e);
2236 /* Recursively stabilize each operand. */
2237 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2238 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2239 break;
2240
2241 case tcc_unary:
2242 /* Recursively stabilize each operand. */
2243 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2244 break;
2245
2246 default:
2247 gcc_unreachable ();
2248 }
2249
2250 TREE_TYPE (result) = TREE_TYPE (e);
2251 TREE_READONLY (result) = TREE_READONLY (e);
2252 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2253 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2254 TREE_INVARIANT (result) = 1;
2255
2256 return result;
2257 }
2258 \f
2259 /* Low-level constructors for expressions. */
2260
2261 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2262 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2263
2264 void
2265 recompute_tree_invarant_for_addr_expr (tree t)
2266 {
2267 tree node;
2268 bool tc = true, ti = true, se = false;
2269
2270 /* We started out assuming this address is both invariant and constant, but
2271 does not have side effects. Now go down any handled components and see if
2272 any of them involve offsets that are either non-constant or non-invariant.
2273 Also check for side-effects.
2274
2275 ??? Note that this code makes no attempt to deal with the case where
2276 taking the address of something causes a copy due to misalignment. */
2277
2278 #define UPDATE_TITCSE(NODE) \
2279 do { tree _node = (NODE); \
2280 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2281 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2282 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2283
2284 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2285 node = TREE_OPERAND (node, 0))
2286 {
2287 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2288 array reference (probably made temporarily by the G++ front end),
2289 so ignore all the operands. */
2290 if ((TREE_CODE (node) == ARRAY_REF
2291 || TREE_CODE (node) == ARRAY_RANGE_REF)
2292 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2293 {
2294 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2295 if (TREE_OPERAND (node, 2))
2296 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2297 if (TREE_OPERAND (node, 3))
2298 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2299 }
2300 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2301 FIELD_DECL, apparently. The G++ front end can put something else
2302 there, at least temporarily. */
2303 else if (TREE_CODE (node) == COMPONENT_REF
2304 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2305 {
2306 if (TREE_OPERAND (node, 2))
2307 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2308 }
2309 else if (TREE_CODE (node) == BIT_FIELD_REF)
2310 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2311 }
2312
2313 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2314 it. If it's a decl, it's invariant and constant if the decl is static.
2315 It's also invariant if it's a decl in the current function. (Taking the
2316 address of a volatile variable is not volatile.) If it's a constant,
2317 the address is both invariant and constant. Otherwise it's neither. */
2318 if (TREE_CODE (node) == INDIRECT_REF)
2319 {
2320 /* If this is &((T*)0)->field, then this is a form of addition. */
2321 if (TREE_CODE (TREE_OPERAND (node, 0)) != INTEGER_CST)
2322 UPDATE_TITCSE (node);
2323 }
2324 else if (DECL_P (node))
2325 {
2326 if (staticp (node))
2327 ;
2328 else if (decl_function_context (node) == current_function_decl)
2329 tc = false;
2330 else
2331 ti = tc = false;
2332 }
2333 else if (CONSTANT_CLASS_P (node))
2334 ;
2335 else
2336 {
2337 ti = tc = false;
2338 se |= TREE_SIDE_EFFECTS (node);
2339 }
2340
2341 TREE_CONSTANT (t) = tc;
2342 TREE_INVARIANT (t) = ti;
2343 TREE_SIDE_EFFECTS (t) = se;
2344 #undef UPDATE_TITCSE
2345 }
2346
2347 /* Build an expression of code CODE, data type TYPE, and operands as
2348 specified. Expressions and reference nodes can be created this way.
2349 Constants, decls, types and misc nodes cannot be.
2350
2351 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2352 enough for all extant tree codes. These functions can be called
2353 directly (preferably!), but can also be obtained via GCC preprocessor
2354 magic within the build macro. */
2355
2356 tree
2357 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2358 {
2359 tree t;
2360
2361 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2362
2363 t = make_node_stat (code PASS_MEM_STAT);
2364 TREE_TYPE (t) = tt;
2365
2366 return t;
2367 }
2368
2369 tree
2370 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2371 {
2372 int length = sizeof (struct tree_exp);
2373 #ifdef GATHER_STATISTICS
2374 tree_node_kind kind;
2375 #endif
2376 tree t;
2377
2378 #ifdef GATHER_STATISTICS
2379 switch (TREE_CODE_CLASS (code))
2380 {
2381 case tcc_statement: /* an expression with side effects */
2382 kind = s_kind;
2383 break;
2384 case tcc_reference: /* a reference */
2385 kind = r_kind;
2386 break;
2387 default:
2388 kind = e_kind;
2389 break;
2390 }
2391
2392 tree_node_counts[(int) kind]++;
2393 tree_node_sizes[(int) kind] += length;
2394 #endif
2395
2396 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2397
2398 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
2399
2400 memset (t, 0, sizeof (struct tree_common));
2401
2402 TREE_SET_CODE (t, code);
2403
2404 TREE_TYPE (t) = type;
2405 #ifdef USE_MAPPED_LOCATION
2406 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2407 #else
2408 SET_EXPR_LOCUS (t, NULL);
2409 #endif
2410 TREE_COMPLEXITY (t) = 0;
2411 TREE_OPERAND (t, 0) = node;
2412 TREE_BLOCK (t) = NULL_TREE;
2413 if (node && !TYPE_P (node) && first_rtl_op (code) != 0)
2414 {
2415 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2416 TREE_READONLY (t) = TREE_READONLY (node);
2417 }
2418
2419 if (TREE_CODE_CLASS (code) == tcc_statement)
2420 TREE_SIDE_EFFECTS (t) = 1;
2421 else switch (code)
2422 {
2423 case INIT_EXPR:
2424 case MODIFY_EXPR:
2425 case VA_ARG_EXPR:
2426 case PREDECREMENT_EXPR:
2427 case PREINCREMENT_EXPR:
2428 case POSTDECREMENT_EXPR:
2429 case POSTINCREMENT_EXPR:
2430 /* All of these have side-effects, no matter what their
2431 operands are. */
2432 TREE_SIDE_EFFECTS (t) = 1;
2433 TREE_READONLY (t) = 0;
2434 break;
2435
2436 case MISALIGNED_INDIRECT_REF:
2437 case ALIGN_INDIRECT_REF:
2438 case INDIRECT_REF:
2439 /* Whether a dereference is readonly has nothing to do with whether
2440 its operand is readonly. */
2441 TREE_READONLY (t) = 0;
2442 break;
2443
2444 case ADDR_EXPR:
2445 if (node)
2446 recompute_tree_invarant_for_addr_expr (t);
2447 break;
2448
2449 default:
2450 if (TREE_CODE_CLASS (code) == tcc_unary
2451 && node && !TYPE_P (node)
2452 && TREE_CONSTANT (node))
2453 TREE_CONSTANT (t) = 1;
2454 if (TREE_CODE_CLASS (code) == tcc_unary
2455 && node && TREE_INVARIANT (node))
2456 TREE_INVARIANT (t) = 1;
2457 if (TREE_CODE_CLASS (code) == tcc_reference
2458 && node && TREE_THIS_VOLATILE (node))
2459 TREE_THIS_VOLATILE (t) = 1;
2460 break;
2461 }
2462
2463 return t;
2464 }
2465
2466 #define PROCESS_ARG(N) \
2467 do { \
2468 TREE_OPERAND (t, N) = arg##N; \
2469 if (arg##N &&!TYPE_P (arg##N) && fro > N) \
2470 { \
2471 if (TREE_SIDE_EFFECTS (arg##N)) \
2472 side_effects = 1; \
2473 if (!TREE_READONLY (arg##N)) \
2474 read_only = 0; \
2475 if (!TREE_CONSTANT (arg##N)) \
2476 constant = 0; \
2477 if (!TREE_INVARIANT (arg##N)) \
2478 invariant = 0; \
2479 } \
2480 } while (0)
2481
2482 tree
2483 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2484 {
2485 bool constant, read_only, side_effects, invariant;
2486 tree t;
2487 int fro;
2488
2489 gcc_assert (TREE_CODE_LENGTH (code) == 2);
2490
2491 t = make_node_stat (code PASS_MEM_STAT);
2492 TREE_TYPE (t) = tt;
2493
2494 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2495 result based on those same flags for the arguments. But if the
2496 arguments aren't really even `tree' expressions, we shouldn't be trying
2497 to do this. */
2498 fro = first_rtl_op (code);
2499
2500 /* Expressions without side effects may be constant if their
2501 arguments are as well. */
2502 constant = (TREE_CODE_CLASS (code) == tcc_comparison
2503 || TREE_CODE_CLASS (code) == tcc_binary);
2504 read_only = 1;
2505 side_effects = TREE_SIDE_EFFECTS (t);
2506 invariant = constant;
2507
2508 PROCESS_ARG(0);
2509 PROCESS_ARG(1);
2510
2511 TREE_READONLY (t) = read_only;
2512 TREE_CONSTANT (t) = constant;
2513 TREE_INVARIANT (t) = invariant;
2514 TREE_SIDE_EFFECTS (t) = side_effects;
2515 TREE_THIS_VOLATILE (t)
2516 = (TREE_CODE_CLASS (code) == tcc_reference
2517 && arg0 && TREE_THIS_VOLATILE (arg0));
2518
2519 return t;
2520 }
2521
2522 tree
2523 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2524 tree arg2 MEM_STAT_DECL)
2525 {
2526 bool constant, read_only, side_effects, invariant;
2527 tree t;
2528 int fro;
2529
2530 gcc_assert (TREE_CODE_LENGTH (code) == 3);
2531
2532 t = make_node_stat (code PASS_MEM_STAT);
2533 TREE_TYPE (t) = tt;
2534
2535 fro = first_rtl_op (code);
2536
2537 side_effects = TREE_SIDE_EFFECTS (t);
2538
2539 PROCESS_ARG(0);
2540 PROCESS_ARG(1);
2541 PROCESS_ARG(2);
2542
2543 if (code == CALL_EXPR && !side_effects)
2544 {
2545 tree node;
2546 int i;
2547
2548 /* Calls have side-effects, except those to const or
2549 pure functions. */
2550 i = call_expr_flags (t);
2551 if (!(i & (ECF_CONST | ECF_PURE)))
2552 side_effects = 1;
2553
2554 /* And even those have side-effects if their arguments do. */
2555 else for (node = arg1; node; node = TREE_CHAIN (node))
2556 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2557 {
2558 side_effects = 1;
2559 break;
2560 }
2561 }
2562
2563 TREE_SIDE_EFFECTS (t) = side_effects;
2564 TREE_THIS_VOLATILE (t)
2565 = (TREE_CODE_CLASS (code) == tcc_reference
2566 && arg0 && TREE_THIS_VOLATILE (arg0));
2567
2568 return t;
2569 }
2570
2571 tree
2572 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2573 tree arg2, tree arg3 MEM_STAT_DECL)
2574 {
2575 bool constant, read_only, side_effects, invariant;
2576 tree t;
2577 int fro;
2578
2579 gcc_assert (TREE_CODE_LENGTH (code) == 4);
2580
2581 t = make_node_stat (code PASS_MEM_STAT);
2582 TREE_TYPE (t) = tt;
2583
2584 fro = first_rtl_op (code);
2585
2586 side_effects = TREE_SIDE_EFFECTS (t);
2587
2588 PROCESS_ARG(0);
2589 PROCESS_ARG(1);
2590 PROCESS_ARG(2);
2591 PROCESS_ARG(3);
2592
2593 TREE_SIDE_EFFECTS (t) = side_effects;
2594 TREE_THIS_VOLATILE (t)
2595 = (TREE_CODE_CLASS (code) == tcc_reference
2596 && arg0 && TREE_THIS_VOLATILE (arg0));
2597
2598 return t;
2599 }
2600
2601 /* Backup definition for non-gcc build compilers. */
2602
2603 tree
2604 (build) (enum tree_code code, tree tt, ...)
2605 {
2606 tree t, arg0, arg1, arg2, arg3;
2607 int length = TREE_CODE_LENGTH (code);
2608 va_list p;
2609
2610 va_start (p, tt);
2611 switch (length)
2612 {
2613 case 0:
2614 t = build0 (code, tt);
2615 break;
2616 case 1:
2617 arg0 = va_arg (p, tree);
2618 t = build1 (code, tt, arg0);
2619 break;
2620 case 2:
2621 arg0 = va_arg (p, tree);
2622 arg1 = va_arg (p, tree);
2623 t = build2 (code, tt, arg0, arg1);
2624 break;
2625 case 3:
2626 arg0 = va_arg (p, tree);
2627 arg1 = va_arg (p, tree);
2628 arg2 = va_arg (p, tree);
2629 t = build3 (code, tt, arg0, arg1, arg2);
2630 break;
2631 case 4:
2632 arg0 = va_arg (p, tree);
2633 arg1 = va_arg (p, tree);
2634 arg2 = va_arg (p, tree);
2635 arg3 = va_arg (p, tree);
2636 t = build4 (code, tt, arg0, arg1, arg2, arg3);
2637 break;
2638 default:
2639 gcc_unreachable ();
2640 }
2641 va_end (p);
2642
2643 return t;
2644 }
2645
2646 /* Similar except don't specify the TREE_TYPE
2647 and leave the TREE_SIDE_EFFECTS as 0.
2648 It is permissible for arguments to be null,
2649 or even garbage if their values do not matter. */
2650
2651 tree
2652 build_nt (enum tree_code code, ...)
2653 {
2654 tree t;
2655 int length;
2656 int i;
2657 va_list p;
2658
2659 va_start (p, code);
2660
2661 t = make_node (code);
2662 length = TREE_CODE_LENGTH (code);
2663
2664 for (i = 0; i < length; i++)
2665 TREE_OPERAND (t, i) = va_arg (p, tree);
2666
2667 va_end (p);
2668 return t;
2669 }
2670 \f
2671 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2672 We do NOT enter this node in any sort of symbol table.
2673
2674 layout_decl is used to set up the decl's storage layout.
2675 Other slots are initialized to 0 or null pointers. */
2676
2677 tree
2678 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
2679 {
2680 tree t;
2681
2682 t = make_node_stat (code PASS_MEM_STAT);
2683
2684 /* if (type == error_mark_node)
2685 type = integer_type_node; */
2686 /* That is not done, deliberately, so that having error_mark_node
2687 as the type can suppress useless errors in the use of this variable. */
2688
2689 DECL_NAME (t) = name;
2690 TREE_TYPE (t) = type;
2691
2692 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2693 layout_decl (t, 0);
2694 else if (code == FUNCTION_DECL)
2695 DECL_MODE (t) = FUNCTION_MODE;
2696
2697 /* Set default visibility to whatever the user supplied with
2698 visibility_specified depending on #pragma GCC visibility. */
2699 DECL_VISIBILITY (t) = default_visibility;
2700 DECL_VISIBILITY_SPECIFIED (t) = visibility_options.inpragma;
2701
2702 return t;
2703 }
2704 \f
2705 /* BLOCK nodes are used to represent the structure of binding contours
2706 and declarations, once those contours have been exited and their contents
2707 compiled. This information is used for outputting debugging info. */
2708
2709 tree
2710 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2711 tree supercontext, tree chain)
2712 {
2713 tree block = make_node (BLOCK);
2714
2715 BLOCK_VARS (block) = vars;
2716 BLOCK_SUBBLOCKS (block) = subblocks;
2717 BLOCK_SUPERCONTEXT (block) = supercontext;
2718 BLOCK_CHAIN (block) = chain;
2719 return block;
2720 }
2721
2722 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
2723 /* ??? gengtype doesn't handle conditionals */
2724 static GTY(()) tree last_annotated_node;
2725 #endif
2726
2727 #ifdef USE_MAPPED_LOCATION
2728
2729 expanded_location
2730 expand_location (source_location loc)
2731 {
2732 expanded_location xloc;
2733 if (loc == 0) { xloc.file = NULL; xloc.line = 0; xloc.column = 0; }
2734 else
2735 {
2736 const struct line_map *map = linemap_lookup (&line_table, loc);
2737 xloc.file = map->to_file;
2738 xloc.line = SOURCE_LINE (map, loc);
2739 xloc.column = SOURCE_COLUMN (map, loc);
2740 };
2741 return xloc;
2742 }
2743
2744 #else
2745
2746 /* Record the exact location where an expression or an identifier were
2747 encountered. */
2748
2749 void
2750 annotate_with_file_line (tree node, const char *file, int line)
2751 {
2752 /* Roughly one percent of the calls to this function are to annotate
2753 a node with the same information already attached to that node!
2754 Just return instead of wasting memory. */
2755 if (EXPR_LOCUS (node)
2756 && (EXPR_FILENAME (node) == file
2757 || ! strcmp (EXPR_FILENAME (node), file))
2758 && EXPR_LINENO (node) == line)
2759 {
2760 last_annotated_node = node;
2761 return;
2762 }
2763
2764 /* In heavily macroized code (such as GCC itself) this single
2765 entry cache can reduce the number of allocations by more
2766 than half. */
2767 if (last_annotated_node
2768 && EXPR_LOCUS (last_annotated_node)
2769 && (EXPR_FILENAME (last_annotated_node) == file
2770 || ! strcmp (EXPR_FILENAME (last_annotated_node), file))
2771 && EXPR_LINENO (last_annotated_node) == line)
2772 {
2773 SET_EXPR_LOCUS (node, EXPR_LOCUS (last_annotated_node));
2774 return;
2775 }
2776
2777 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
2778 EXPR_LINENO (node) = line;
2779 EXPR_FILENAME (node) = file;
2780 last_annotated_node = node;
2781 }
2782
2783 void
2784 annotate_with_locus (tree node, location_t locus)
2785 {
2786 annotate_with_file_line (node, locus.file, locus.line);
2787 }
2788 #endif
2789 \f
2790 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2791 is ATTRIBUTE. */
2792
2793 tree
2794 build_decl_attribute_variant (tree ddecl, tree attribute)
2795 {
2796 DECL_ATTRIBUTES (ddecl) = attribute;
2797 return ddecl;
2798 }
2799
2800 /* Borrowed from hashtab.c iterative_hash implementation. */
2801 #define mix(a,b,c) \
2802 { \
2803 a -= b; a -= c; a ^= (c>>13); \
2804 b -= c; b -= a; b ^= (a<< 8); \
2805 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
2806 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
2807 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
2808 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
2809 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
2810 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
2811 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
2812 }
2813
2814
2815 /* Produce good hash value combining VAL and VAL2. */
2816 static inline hashval_t
2817 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
2818 {
2819 /* the golden ratio; an arbitrary value. */
2820 hashval_t a = 0x9e3779b9;
2821
2822 mix (a, val, val2);
2823 return val2;
2824 }
2825
2826 /* Produce good hash value combining PTR and VAL2. */
2827 static inline hashval_t
2828 iterative_hash_pointer (void *ptr, hashval_t val2)
2829 {
2830 if (sizeof (ptr) == sizeof (hashval_t))
2831 return iterative_hash_hashval_t ((size_t) ptr, val2);
2832 else
2833 {
2834 hashval_t a = (hashval_t) (size_t) ptr;
2835 /* Avoid warnings about shifting of more than the width of the type on
2836 hosts that won't execute this path. */
2837 int zero = 0;
2838 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
2839 mix (a, b, val2);
2840 return val2;
2841 }
2842 }
2843
2844 /* Produce good hash value combining VAL and VAL2. */
2845 static inline hashval_t
2846 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
2847 {
2848 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
2849 return iterative_hash_hashval_t (val, val2);
2850 else
2851 {
2852 hashval_t a = (hashval_t) val;
2853 /* Avoid warnings about shifting of more than the width of the type on
2854 hosts that won't execute this path. */
2855 int zero = 0;
2856 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
2857 mix (a, b, val2);
2858 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
2859 {
2860 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
2861 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
2862 mix (a, b, val2);
2863 }
2864 return val2;
2865 }
2866 }
2867
2868 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2869 is ATTRIBUTE.
2870
2871 Record such modified types already made so we don't make duplicates. */
2872
2873 tree
2874 build_type_attribute_variant (tree ttype, tree attribute)
2875 {
2876 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2877 {
2878 hashval_t hashcode = 0;
2879 tree ntype;
2880 enum tree_code code = TREE_CODE (ttype);
2881
2882 ntype = copy_node (ttype);
2883
2884 TYPE_POINTER_TO (ntype) = 0;
2885 TYPE_REFERENCE_TO (ntype) = 0;
2886 TYPE_ATTRIBUTES (ntype) = attribute;
2887
2888 /* Create a new main variant of TYPE. */
2889 TYPE_MAIN_VARIANT (ntype) = ntype;
2890 TYPE_NEXT_VARIANT (ntype) = 0;
2891 set_type_quals (ntype, TYPE_UNQUALIFIED);
2892
2893 hashcode = iterative_hash_object (code, hashcode);
2894 if (TREE_TYPE (ntype))
2895 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
2896 hashcode);
2897 hashcode = attribute_hash_list (attribute, hashcode);
2898
2899 switch (TREE_CODE (ntype))
2900 {
2901 case FUNCTION_TYPE:
2902 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
2903 break;
2904 case ARRAY_TYPE:
2905 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
2906 hashcode);
2907 break;
2908 case INTEGER_TYPE:
2909 hashcode = iterative_hash_object
2910 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
2911 hashcode = iterative_hash_object
2912 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
2913 break;
2914 case REAL_TYPE:
2915 {
2916 unsigned int precision = TYPE_PRECISION (ntype);
2917 hashcode = iterative_hash_object (precision, hashcode);
2918 }
2919 break;
2920 default:
2921 break;
2922 }
2923
2924 ntype = type_hash_canon (hashcode, ntype);
2925 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2926 }
2927
2928 return ttype;
2929 }
2930
2931 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2932 or zero if not.
2933
2934 We try both `text' and `__text__', ATTR may be either one. */
2935 /* ??? It might be a reasonable simplification to require ATTR to be only
2936 `text'. One might then also require attribute lists to be stored in
2937 their canonicalized form. */
2938
2939 int
2940 is_attribute_p (const char *attr, tree ident)
2941 {
2942 int ident_len, attr_len;
2943 const char *p;
2944
2945 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2946 return 0;
2947
2948 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2949 return 1;
2950
2951 p = IDENTIFIER_POINTER (ident);
2952 ident_len = strlen (p);
2953 attr_len = strlen (attr);
2954
2955 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2956 if (attr[0] == '_')
2957 {
2958 gcc_assert (attr[1] == '_');
2959 gcc_assert (attr[attr_len - 2] == '_');
2960 gcc_assert (attr[attr_len - 1] == '_');
2961 gcc_assert (attr[1] == '_');
2962 if (ident_len == attr_len - 4
2963 && strncmp (attr + 2, p, attr_len - 4) == 0)
2964 return 1;
2965 }
2966 else
2967 {
2968 if (ident_len == attr_len + 4
2969 && p[0] == '_' && p[1] == '_'
2970 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2971 && strncmp (attr, p + 2, attr_len) == 0)
2972 return 1;
2973 }
2974
2975 return 0;
2976 }
2977
2978 /* Given an attribute name and a list of attributes, return a pointer to the
2979 attribute's list element if the attribute is part of the list, or NULL_TREE
2980 if not found. If the attribute appears more than once, this only
2981 returns the first occurrence; the TREE_CHAIN of the return value should
2982 be passed back in if further occurrences are wanted. */
2983
2984 tree
2985 lookup_attribute (const char *attr_name, tree list)
2986 {
2987 tree l;
2988
2989 for (l = list; l; l = TREE_CHAIN (l))
2990 {
2991 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
2992 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2993 return l;
2994 }
2995
2996 return NULL_TREE;
2997 }
2998
2999 /* Return an attribute list that is the union of a1 and a2. */
3000
3001 tree
3002 merge_attributes (tree a1, tree a2)
3003 {
3004 tree attributes;
3005
3006 /* Either one unset? Take the set one. */
3007
3008 if ((attributes = a1) == 0)
3009 attributes = a2;
3010
3011 /* One that completely contains the other? Take it. */
3012
3013 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3014 {
3015 if (attribute_list_contained (a2, a1))
3016 attributes = a2;
3017 else
3018 {
3019 /* Pick the longest list, and hang on the other list. */
3020
3021 if (list_length (a1) < list_length (a2))
3022 attributes = a2, a2 = a1;
3023
3024 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3025 {
3026 tree a;
3027 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3028 attributes);
3029 a != NULL_TREE;
3030 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3031 TREE_CHAIN (a)))
3032 {
3033 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
3034 break;
3035 }
3036 if (a == NULL_TREE)
3037 {
3038 a1 = copy_node (a2);
3039 TREE_CHAIN (a1) = attributes;
3040 attributes = a1;
3041 }
3042 }
3043 }
3044 }
3045 return attributes;
3046 }
3047
3048 /* Given types T1 and T2, merge their attributes and return
3049 the result. */
3050
3051 tree
3052 merge_type_attributes (tree t1, tree t2)
3053 {
3054 return merge_attributes (TYPE_ATTRIBUTES (t1),
3055 TYPE_ATTRIBUTES (t2));
3056 }
3057
3058 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3059 the result. */
3060
3061 tree
3062 merge_decl_attributes (tree olddecl, tree newdecl)
3063 {
3064 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3065 DECL_ATTRIBUTES (newdecl));
3066 }
3067
3068 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3069
3070 /* Specialization of merge_decl_attributes for various Windows targets.
3071
3072 This handles the following situation:
3073
3074 __declspec (dllimport) int foo;
3075 int foo;
3076
3077 The second instance of `foo' nullifies the dllimport. */
3078
3079 tree
3080 merge_dllimport_decl_attributes (tree old, tree new)
3081 {
3082 tree a;
3083 int delete_dllimport_p;
3084
3085 old = DECL_ATTRIBUTES (old);
3086 new = DECL_ATTRIBUTES (new);
3087
3088 /* What we need to do here is remove from `old' dllimport if it doesn't
3089 appear in `new'. dllimport behaves like extern: if a declaration is
3090 marked dllimport and a definition appears later, then the object
3091 is not dllimport'd. */
3092 if (lookup_attribute ("dllimport", old) != NULL_TREE
3093 && lookup_attribute ("dllimport", new) == NULL_TREE)
3094 delete_dllimport_p = 1;
3095 else
3096 delete_dllimport_p = 0;
3097
3098 a = merge_attributes (old, new);
3099
3100 if (delete_dllimport_p)
3101 {
3102 tree prev, t;
3103
3104 /* Scan the list for dllimport and delete it. */
3105 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3106 {
3107 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
3108 {
3109 if (prev == NULL_TREE)
3110 a = TREE_CHAIN (a);
3111 else
3112 TREE_CHAIN (prev) = TREE_CHAIN (t);
3113 break;
3114 }
3115 }
3116 }
3117
3118 return a;
3119 }
3120
3121 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3122 struct attribute_spec.handler. */
3123
3124 tree
3125 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3126 bool *no_add_attrs)
3127 {
3128 tree node = *pnode;
3129
3130 /* These attributes may apply to structure and union types being created,
3131 but otherwise should pass to the declaration involved. */
3132 if (!DECL_P (node))
3133 {
3134 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3135 | (int) ATTR_FLAG_ARRAY_NEXT))
3136 {
3137 *no_add_attrs = true;
3138 return tree_cons (name, args, NULL_TREE);
3139 }
3140 if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3141 {
3142 warning ("%qs attribute ignored", IDENTIFIER_POINTER (name));
3143 *no_add_attrs = true;
3144 }
3145
3146 return NULL_TREE;
3147 }
3148
3149 /* Report error on dllimport ambiguities seen now before they cause
3150 any damage. */
3151 if (is_attribute_p ("dllimport", name))
3152 {
3153 /* Like MS, treat definition of dllimported variables and
3154 non-inlined functions on declaration as syntax errors. We
3155 allow the attribute for function definitions if declared
3156 inline. */
3157 if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node)
3158 && !DECL_DECLARED_INLINE_P (node))
3159 {
3160 error ("%Jfunction %qD definition is marked dllimport.", node, node);
3161 *no_add_attrs = true;
3162 }
3163
3164 else if (TREE_CODE (node) == VAR_DECL)
3165 {
3166 if (DECL_INITIAL (node))
3167 {
3168 error ("%Jvariable %qD definition is marked dllimport.",
3169 node, node);
3170 *no_add_attrs = true;
3171 }
3172
3173 /* `extern' needn't be specified with dllimport.
3174 Specify `extern' now and hope for the best. Sigh. */
3175 DECL_EXTERNAL (node) = 1;
3176 /* Also, implicitly give dllimport'd variables declared within
3177 a function global scope, unless declared static. */
3178 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
3179 TREE_PUBLIC (node) = 1;
3180 }
3181 }
3182
3183 /* Report error if symbol is not accessible at global scope. */
3184 if (!TREE_PUBLIC (node)
3185 && (TREE_CODE (node) == VAR_DECL
3186 || TREE_CODE (node) == FUNCTION_DECL))
3187 {
3188 error ("%Jexternal linkage required for symbol %qD because of "
3189 "%qs attribute.", node, node, IDENTIFIER_POINTER (name));
3190 *no_add_attrs = true;
3191 }
3192
3193 return NULL_TREE;
3194 }
3195
3196 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
3197 \f
3198 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3199 of the various TYPE_QUAL values. */
3200
3201 static void
3202 set_type_quals (tree type, int type_quals)
3203 {
3204 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3205 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3206 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3207 }
3208
3209 /* Returns true iff cand is equivalent to base with type_quals. */
3210
3211 bool
3212 check_qualified_type (tree cand, tree base, int type_quals)
3213 {
3214 return (TYPE_QUALS (cand) == type_quals
3215 && TYPE_NAME (cand) == TYPE_NAME (base)
3216 /* Apparently this is needed for Objective-C. */
3217 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3218 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3219 TYPE_ATTRIBUTES (base)));
3220 }
3221
3222 /* Return a version of the TYPE, qualified as indicated by the
3223 TYPE_QUALS, if one exists. If no qualified version exists yet,
3224 return NULL_TREE. */
3225
3226 tree
3227 get_qualified_type (tree type, int type_quals)
3228 {
3229 tree t;
3230
3231 if (TYPE_QUALS (type) == type_quals)
3232 return type;
3233
3234 /* Search the chain of variants to see if there is already one there just
3235 like the one we need to have. If so, use that existing one. We must
3236 preserve the TYPE_NAME, since there is code that depends on this. */
3237 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3238 if (check_qualified_type (t, type, type_quals))
3239 return t;
3240
3241 return NULL_TREE;
3242 }
3243
3244 /* Like get_qualified_type, but creates the type if it does not
3245 exist. This function never returns NULL_TREE. */
3246
3247 tree
3248 build_qualified_type (tree type, int type_quals)
3249 {
3250 tree t;
3251
3252 /* See if we already have the appropriate qualified variant. */
3253 t = get_qualified_type (type, type_quals);
3254
3255 /* If not, build it. */
3256 if (!t)
3257 {
3258 t = build_variant_type_copy (type);
3259 set_type_quals (t, type_quals);
3260 }
3261
3262 return t;
3263 }
3264
3265 /* Create a new distinct copy of TYPE. The new type is made its own
3266 MAIN_VARIANT. */
3267
3268 tree
3269 build_distinct_type_copy (tree type)
3270 {
3271 tree t = copy_node (type);
3272
3273 TYPE_POINTER_TO (t) = 0;
3274 TYPE_REFERENCE_TO (t) = 0;
3275
3276 /* Make it its own variant. */
3277 TYPE_MAIN_VARIANT (t) = t;
3278 TYPE_NEXT_VARIANT (t) = 0;
3279
3280 return t;
3281 }
3282
3283 /* Create a new variant of TYPE, equivalent but distinct.
3284 This is so the caller can modify it. */
3285
3286 tree
3287 build_variant_type_copy (tree type)
3288 {
3289 tree t, m = TYPE_MAIN_VARIANT (type);
3290
3291 t = build_distinct_type_copy (type);
3292
3293 /* Add the new type to the chain of variants of TYPE. */
3294 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3295 TYPE_NEXT_VARIANT (m) = t;
3296 TYPE_MAIN_VARIANT (t) = m;
3297
3298 return t;
3299 }
3300 \f
3301 /* Hashing of types so that we don't make duplicates.
3302 The entry point is `type_hash_canon'. */
3303
3304 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3305 with types in the TREE_VALUE slots), by adding the hash codes
3306 of the individual types. */
3307
3308 unsigned int
3309 type_hash_list (tree list, hashval_t hashcode)
3310 {
3311 tree tail;
3312
3313 for (tail = list; tail; tail = TREE_CHAIN (tail))
3314 if (TREE_VALUE (tail) != error_mark_node)
3315 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
3316 hashcode);
3317
3318 return hashcode;
3319 }
3320
3321 /* These are the Hashtable callback functions. */
3322
3323 /* Returns true iff the types are equivalent. */
3324
3325 static int
3326 type_hash_eq (const void *va, const void *vb)
3327 {
3328 const struct type_hash *a = va, *b = vb;
3329
3330 /* First test the things that are the same for all types. */
3331 if (a->hash != b->hash
3332 || TREE_CODE (a->type) != TREE_CODE (b->type)
3333 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
3334 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3335 TYPE_ATTRIBUTES (b->type))
3336 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
3337 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
3338 return 0;
3339
3340 switch (TREE_CODE (a->type))
3341 {
3342 case VOID_TYPE:
3343 case COMPLEX_TYPE:
3344 case VECTOR_TYPE:
3345 case POINTER_TYPE:
3346 case REFERENCE_TYPE:
3347 return 1;
3348
3349 case ENUMERAL_TYPE:
3350 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
3351 && !(TYPE_VALUES (a->type)
3352 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
3353 && TYPE_VALUES (b->type)
3354 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
3355 && type_list_equal (TYPE_VALUES (a->type),
3356 TYPE_VALUES (b->type))))
3357 return 0;
3358
3359 /* ... fall through ... */
3360
3361 case INTEGER_TYPE:
3362 case REAL_TYPE:
3363 case BOOLEAN_TYPE:
3364 case CHAR_TYPE:
3365 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3366 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3367 TYPE_MAX_VALUE (b->type)))
3368 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3369 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3370 TYPE_MIN_VALUE (b->type))));
3371
3372 case OFFSET_TYPE:
3373 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
3374
3375 case METHOD_TYPE:
3376 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
3377 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3378 || (TYPE_ARG_TYPES (a->type)
3379 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3380 && TYPE_ARG_TYPES (b->type)
3381 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3382 && type_list_equal (TYPE_ARG_TYPES (a->type),
3383 TYPE_ARG_TYPES (b->type)))));
3384
3385 case ARRAY_TYPE:
3386 case SET_TYPE:
3387 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
3388
3389 case RECORD_TYPE:
3390 case UNION_TYPE:
3391 case QUAL_UNION_TYPE:
3392 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
3393 || (TYPE_FIELDS (a->type)
3394 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
3395 && TYPE_FIELDS (b->type)
3396 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
3397 && type_list_equal (TYPE_FIELDS (a->type),
3398 TYPE_FIELDS (b->type))));
3399
3400 case FUNCTION_TYPE:
3401 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3402 || (TYPE_ARG_TYPES (a->type)
3403 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3404 && TYPE_ARG_TYPES (b->type)
3405 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3406 && type_list_equal (TYPE_ARG_TYPES (a->type),
3407 TYPE_ARG_TYPES (b->type))));
3408
3409 default:
3410 return 0;
3411 }
3412 }
3413
3414 /* Return the cached hash value. */
3415
3416 static hashval_t
3417 type_hash_hash (const void *item)
3418 {
3419 return ((const struct type_hash *) item)->hash;
3420 }
3421
3422 /* Look in the type hash table for a type isomorphic to TYPE.
3423 If one is found, return it. Otherwise return 0. */
3424
3425 tree
3426 type_hash_lookup (hashval_t hashcode, tree type)
3427 {
3428 struct type_hash *h, in;
3429
3430 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3431 must call that routine before comparing TYPE_ALIGNs. */
3432 layout_type (type);
3433
3434 in.hash = hashcode;
3435 in.type = type;
3436
3437 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3438 if (h)
3439 return h->type;
3440 return NULL_TREE;
3441 }
3442
3443 /* Add an entry to the type-hash-table
3444 for a type TYPE whose hash code is HASHCODE. */
3445
3446 void
3447 type_hash_add (hashval_t hashcode, tree type)
3448 {
3449 struct type_hash *h;
3450 void **loc;
3451
3452 h = ggc_alloc (sizeof (struct type_hash));
3453 h->hash = hashcode;
3454 h->type = type;
3455 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3456 *(struct type_hash **) loc = h;
3457 }
3458
3459 /* Given TYPE, and HASHCODE its hash code, return the canonical
3460 object for an identical type if one already exists.
3461 Otherwise, return TYPE, and record it as the canonical object.
3462
3463 To use this function, first create a type of the sort you want.
3464 Then compute its hash code from the fields of the type that
3465 make it different from other similar types.
3466 Then call this function and use the value. */
3467
3468 tree
3469 type_hash_canon (unsigned int hashcode, tree type)
3470 {
3471 tree t1;
3472
3473 /* The hash table only contains main variants, so ensure that's what we're
3474 being passed. */
3475 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
3476
3477 if (!lang_hooks.types.hash_types)
3478 return type;
3479
3480 /* See if the type is in the hash table already. If so, return it.
3481 Otherwise, add the type. */
3482 t1 = type_hash_lookup (hashcode, type);
3483 if (t1 != 0)
3484 {
3485 #ifdef GATHER_STATISTICS
3486 tree_node_counts[(int) t_kind]--;
3487 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3488 #endif
3489 return t1;
3490 }
3491 else
3492 {
3493 type_hash_add (hashcode, type);
3494 return type;
3495 }
3496 }
3497
3498 /* See if the data pointed to by the type hash table is marked. We consider
3499 it marked if the type is marked or if a debug type number or symbol
3500 table entry has been made for the type. This reduces the amount of
3501 debugging output and eliminates that dependency of the debug output on
3502 the number of garbage collections. */
3503
3504 static int
3505 type_hash_marked_p (const void *p)
3506 {
3507 tree type = ((struct type_hash *) p)->type;
3508
3509 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3510 }
3511
3512 static void
3513 print_type_hash_statistics (void)
3514 {
3515 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3516 (long) htab_size (type_hash_table),
3517 (long) htab_elements (type_hash_table),
3518 htab_collisions (type_hash_table));
3519 }
3520
3521 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3522 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3523 by adding the hash codes of the individual attributes. */
3524
3525 unsigned int
3526 attribute_hash_list (tree list, hashval_t hashcode)
3527 {
3528 tree tail;
3529
3530 for (tail = list; tail; tail = TREE_CHAIN (tail))
3531 /* ??? Do we want to add in TREE_VALUE too? */
3532 hashcode = iterative_hash_object
3533 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
3534 return hashcode;
3535 }
3536
3537 /* Given two lists of attributes, return true if list l2 is
3538 equivalent to l1. */
3539
3540 int
3541 attribute_list_equal (tree l1, tree l2)
3542 {
3543 return attribute_list_contained (l1, l2)
3544 && attribute_list_contained (l2, l1);
3545 }
3546
3547 /* Given two lists of attributes, return true if list L2 is
3548 completely contained within L1. */
3549 /* ??? This would be faster if attribute names were stored in a canonicalized
3550 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3551 must be used to show these elements are equivalent (which they are). */
3552 /* ??? It's not clear that attributes with arguments will always be handled
3553 correctly. */
3554
3555 int
3556 attribute_list_contained (tree l1, tree l2)
3557 {
3558 tree t1, t2;
3559
3560 /* First check the obvious, maybe the lists are identical. */
3561 if (l1 == l2)
3562 return 1;
3563
3564 /* Maybe the lists are similar. */
3565 for (t1 = l1, t2 = l2;
3566 t1 != 0 && t2 != 0
3567 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3568 && TREE_VALUE (t1) == TREE_VALUE (t2);
3569 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3570
3571 /* Maybe the lists are equal. */
3572 if (t1 == 0 && t2 == 0)
3573 return 1;
3574
3575 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3576 {
3577 tree attr;
3578 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3579 attr != NULL_TREE;
3580 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3581 TREE_CHAIN (attr)))
3582 {
3583 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3584 break;
3585 }
3586
3587 if (attr == 0)
3588 return 0;
3589
3590 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3591 return 0;
3592 }
3593
3594 return 1;
3595 }
3596
3597 /* Given two lists of types
3598 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3599 return 1 if the lists contain the same types in the same order.
3600 Also, the TREE_PURPOSEs must match. */
3601
3602 int
3603 type_list_equal (tree l1, tree l2)
3604 {
3605 tree t1, t2;
3606
3607 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3608 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3609 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3610 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3611 && (TREE_TYPE (TREE_PURPOSE (t1))
3612 == TREE_TYPE (TREE_PURPOSE (t2))))))
3613 return 0;
3614
3615 return t1 == t2;
3616 }
3617
3618 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3619 given by TYPE. If the argument list accepts variable arguments,
3620 then this function counts only the ordinary arguments. */
3621
3622 int
3623 type_num_arguments (tree type)
3624 {
3625 int i = 0;
3626 tree t;
3627
3628 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3629 /* If the function does not take a variable number of arguments,
3630 the last element in the list will have type `void'. */
3631 if (VOID_TYPE_P (TREE_VALUE (t)))
3632 break;
3633 else
3634 ++i;
3635
3636 return i;
3637 }
3638
3639 /* Nonzero if integer constants T1 and T2
3640 represent the same constant value. */
3641
3642 int
3643 tree_int_cst_equal (tree t1, tree t2)
3644 {
3645 if (t1 == t2)
3646 return 1;
3647
3648 if (t1 == 0 || t2 == 0)
3649 return 0;
3650
3651 if (TREE_CODE (t1) == INTEGER_CST
3652 && TREE_CODE (t2) == INTEGER_CST
3653 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3654 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3655 return 1;
3656
3657 return 0;
3658 }
3659
3660 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3661 The precise way of comparison depends on their data type. */
3662
3663 int
3664 tree_int_cst_lt (tree t1, tree t2)
3665 {
3666 if (t1 == t2)
3667 return 0;
3668
3669 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
3670 {
3671 int t1_sgn = tree_int_cst_sgn (t1);
3672 int t2_sgn = tree_int_cst_sgn (t2);
3673
3674 if (t1_sgn < t2_sgn)
3675 return 1;
3676 else if (t1_sgn > t2_sgn)
3677 return 0;
3678 /* Otherwise, both are non-negative, so we compare them as
3679 unsigned just in case one of them would overflow a signed
3680 type. */
3681 }
3682 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
3683 return INT_CST_LT (t1, t2);
3684
3685 return INT_CST_LT_UNSIGNED (t1, t2);
3686 }
3687
3688 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3689
3690 int
3691 tree_int_cst_compare (tree t1, tree t2)
3692 {
3693 if (tree_int_cst_lt (t1, t2))
3694 return -1;
3695 else if (tree_int_cst_lt (t2, t1))
3696 return 1;
3697 else
3698 return 0;
3699 }
3700
3701 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3702 the host. If POS is zero, the value can be represented in a single
3703 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3704 be represented in a single unsigned HOST_WIDE_INT. */
3705
3706 int
3707 host_integerp (tree t, int pos)
3708 {
3709 return (TREE_CODE (t) == INTEGER_CST
3710 && ! TREE_OVERFLOW (t)
3711 && ((TREE_INT_CST_HIGH (t) == 0
3712 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3713 || (! pos && TREE_INT_CST_HIGH (t) == -1
3714 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3715 && !TYPE_UNSIGNED (TREE_TYPE (t)))
3716 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3717 }
3718
3719 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3720 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3721 be positive. Abort if we cannot satisfy the above conditions. */
3722
3723 HOST_WIDE_INT
3724 tree_low_cst (tree t, int pos)
3725 {
3726 gcc_assert (host_integerp (t, pos));
3727 return TREE_INT_CST_LOW (t);
3728 }
3729
3730 /* Return the most significant bit of the integer constant T. */
3731
3732 int
3733 tree_int_cst_msb (tree t)
3734 {
3735 int prec;
3736 HOST_WIDE_INT h;
3737 unsigned HOST_WIDE_INT l;
3738
3739 /* Note that using TYPE_PRECISION here is wrong. We care about the
3740 actual bits, not the (arbitrary) range of the type. */
3741 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3742 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3743 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3744 return (l & 1) == 1;
3745 }
3746
3747 /* Return an indication of the sign of the integer constant T.
3748 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3749 Note that -1 will never be returned it T's type is unsigned. */
3750
3751 int
3752 tree_int_cst_sgn (tree t)
3753 {
3754 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3755 return 0;
3756 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
3757 return 1;
3758 else if (TREE_INT_CST_HIGH (t) < 0)
3759 return -1;
3760 else
3761 return 1;
3762 }
3763
3764 /* Compare two constructor-element-type constants. Return 1 if the lists
3765 are known to be equal; otherwise return 0. */
3766
3767 int
3768 simple_cst_list_equal (tree l1, tree l2)
3769 {
3770 while (l1 != NULL_TREE && l2 != NULL_TREE)
3771 {
3772 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3773 return 0;
3774
3775 l1 = TREE_CHAIN (l1);
3776 l2 = TREE_CHAIN (l2);
3777 }
3778
3779 return l1 == l2;
3780 }
3781
3782 /* Return truthvalue of whether T1 is the same tree structure as T2.
3783 Return 1 if they are the same.
3784 Return 0 if they are understandably different.
3785 Return -1 if either contains tree structure not understood by
3786 this function. */
3787
3788 int
3789 simple_cst_equal (tree t1, tree t2)
3790 {
3791 enum tree_code code1, code2;
3792 int cmp;
3793 int i;
3794
3795 if (t1 == t2)
3796 return 1;
3797 if (t1 == 0 || t2 == 0)
3798 return 0;
3799
3800 code1 = TREE_CODE (t1);
3801 code2 = TREE_CODE (t2);
3802
3803 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3804 {
3805 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3806 || code2 == NON_LVALUE_EXPR)
3807 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3808 else
3809 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3810 }
3811
3812 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3813 || code2 == NON_LVALUE_EXPR)
3814 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3815
3816 if (code1 != code2)
3817 return 0;
3818
3819 switch (code1)
3820 {
3821 case INTEGER_CST:
3822 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3823 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3824
3825 case REAL_CST:
3826 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3827
3828 case STRING_CST:
3829 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3830 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3831 TREE_STRING_LENGTH (t1)));
3832
3833 case CONSTRUCTOR:
3834 return simple_cst_list_equal (CONSTRUCTOR_ELTS (t1),
3835 CONSTRUCTOR_ELTS (t2));
3836
3837 case SAVE_EXPR:
3838 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3839
3840 case CALL_EXPR:
3841 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3842 if (cmp <= 0)
3843 return cmp;
3844 return
3845 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3846
3847 case TARGET_EXPR:
3848 /* Special case: if either target is an unallocated VAR_DECL,
3849 it means that it's going to be unified with whatever the
3850 TARGET_EXPR is really supposed to initialize, so treat it
3851 as being equivalent to anything. */
3852 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3853 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3854 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3855 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3856 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3857 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3858 cmp = 1;
3859 else
3860 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3861
3862 if (cmp <= 0)
3863 return cmp;
3864
3865 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3866
3867 case WITH_CLEANUP_EXPR:
3868 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3869 if (cmp <= 0)
3870 return cmp;
3871
3872 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3873
3874 case COMPONENT_REF:
3875 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3876 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3877
3878 return 0;
3879
3880 case VAR_DECL:
3881 case PARM_DECL:
3882 case CONST_DECL:
3883 case FUNCTION_DECL:
3884 return 0;
3885
3886 default:
3887 break;
3888 }
3889
3890 /* This general rule works for most tree codes. All exceptions should be
3891 handled above. If this is a language-specific tree code, we can't
3892 trust what might be in the operand, so say we don't know
3893 the situation. */
3894 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3895 return -1;
3896
3897 switch (TREE_CODE_CLASS (code1))
3898 {
3899 case tcc_unary:
3900 case tcc_binary:
3901 case tcc_comparison:
3902 case tcc_expression:
3903 case tcc_reference:
3904 case tcc_statement:
3905 cmp = 1;
3906 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3907 {
3908 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3909 if (cmp <= 0)
3910 return cmp;
3911 }
3912
3913 return cmp;
3914
3915 default:
3916 return -1;
3917 }
3918 }
3919
3920 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3921 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3922 than U, respectively. */
3923
3924 int
3925 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
3926 {
3927 if (tree_int_cst_sgn (t) < 0)
3928 return -1;
3929 else if (TREE_INT_CST_HIGH (t) != 0)
3930 return 1;
3931 else if (TREE_INT_CST_LOW (t) == u)
3932 return 0;
3933 else if (TREE_INT_CST_LOW (t) < u)
3934 return -1;
3935 else
3936 return 1;
3937 }
3938
3939 /* Return true if CODE represents an associative tree code. Otherwise
3940 return false. */
3941 bool
3942 associative_tree_code (enum tree_code code)
3943 {
3944 switch (code)
3945 {
3946 case BIT_IOR_EXPR:
3947 case BIT_AND_EXPR:
3948 case BIT_XOR_EXPR:
3949 case PLUS_EXPR:
3950 case MULT_EXPR:
3951 case MIN_EXPR:
3952 case MAX_EXPR:
3953 return true;
3954
3955 default:
3956 break;
3957 }
3958 return false;
3959 }
3960
3961 /* Return true if CODE represents an commutative tree code. Otherwise
3962 return false. */
3963 bool
3964 commutative_tree_code (enum tree_code code)
3965 {
3966 switch (code)
3967 {
3968 case PLUS_EXPR:
3969 case MULT_EXPR:
3970 case MIN_EXPR:
3971 case MAX_EXPR:
3972 case BIT_IOR_EXPR:
3973 case BIT_XOR_EXPR:
3974 case BIT_AND_EXPR:
3975 case NE_EXPR:
3976 case EQ_EXPR:
3977 case UNORDERED_EXPR:
3978 case ORDERED_EXPR:
3979 case UNEQ_EXPR:
3980 case LTGT_EXPR:
3981 case TRUTH_AND_EXPR:
3982 case TRUTH_XOR_EXPR:
3983 case TRUTH_OR_EXPR:
3984 return true;
3985
3986 default:
3987 break;
3988 }
3989 return false;
3990 }
3991
3992 /* Generate a hash value for an expression. This can be used iteratively
3993 by passing a previous result as the "val" argument.
3994
3995 This function is intended to produce the same hash for expressions which
3996 would compare equal using operand_equal_p. */
3997
3998 hashval_t
3999 iterative_hash_expr (tree t, hashval_t val)
4000 {
4001 int i;
4002 enum tree_code code;
4003 char class;
4004
4005 if (t == NULL_TREE)
4006 return iterative_hash_pointer (t, val);
4007
4008 code = TREE_CODE (t);
4009
4010 switch (code)
4011 {
4012 /* Alas, constants aren't shared, so we can't rely on pointer
4013 identity. */
4014 case INTEGER_CST:
4015 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
4016 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
4017 case REAL_CST:
4018 {
4019 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
4020
4021 return iterative_hash_hashval_t (val2, val);
4022 }
4023 case STRING_CST:
4024 return iterative_hash (TREE_STRING_POINTER (t),
4025 TREE_STRING_LENGTH (t), val);
4026 case COMPLEX_CST:
4027 val = iterative_hash_expr (TREE_REALPART (t), val);
4028 return iterative_hash_expr (TREE_IMAGPART (t), val);
4029 case VECTOR_CST:
4030 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
4031
4032 case SSA_NAME:
4033 case VALUE_HANDLE:
4034 /* we can just compare by pointer. */
4035 return iterative_hash_pointer (t, val);
4036
4037 case TREE_LIST:
4038 /* A list of expressions, for a CALL_EXPR or as the elements of a
4039 VECTOR_CST. */
4040 for (; t; t = TREE_CHAIN (t))
4041 val = iterative_hash_expr (TREE_VALUE (t), val);
4042 return val;
4043 default:
4044 class = TREE_CODE_CLASS (code);
4045
4046 if (class == tcc_declaration)
4047 {
4048 /* Decls we can just compare by pointer. */
4049 val = iterative_hash_pointer (t, val);
4050 }
4051 else
4052 {
4053 gcc_assert (IS_EXPR_CODE_CLASS (class));
4054
4055 val = iterative_hash_object (code, val);
4056
4057 /* Don't hash the type, that can lead to having nodes which
4058 compare equal according to operand_equal_p, but which
4059 have different hash codes. */
4060 if (code == NOP_EXPR
4061 || code == CONVERT_EXPR
4062 || code == NON_LVALUE_EXPR)
4063 {
4064 /* Make sure to include signness in the hash computation. */
4065 val += TYPE_UNSIGNED (TREE_TYPE (t));
4066 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
4067 }
4068
4069 else if (commutative_tree_code (code))
4070 {
4071 /* It's a commutative expression. We want to hash it the same
4072 however it appears. We do this by first hashing both operands
4073 and then rehashing based on the order of their independent
4074 hashes. */
4075 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
4076 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
4077 hashval_t t;
4078
4079 if (one > two)
4080 t = one, one = two, two = t;
4081
4082 val = iterative_hash_hashval_t (one, val);
4083 val = iterative_hash_hashval_t (two, val);
4084 }
4085 else
4086 for (i = first_rtl_op (code) - 1; i >= 0; --i)
4087 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
4088 }
4089 return val;
4090 break;
4091 }
4092 }
4093 \f
4094 /* Constructors for pointer, array and function types.
4095 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4096 constructed by language-dependent code, not here.) */
4097
4098 /* Construct, lay out and return the type of pointers to TO_TYPE with
4099 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
4100 reference all of memory. If such a type has already been
4101 constructed, reuse it. */
4102
4103 tree
4104 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
4105 bool can_alias_all)
4106 {
4107 tree t;
4108
4109 /* In some cases, languages will have things that aren't a POINTER_TYPE
4110 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
4111 In that case, return that type without regard to the rest of our
4112 operands.
4113
4114 ??? This is a kludge, but consistent with the way this function has
4115 always operated and there doesn't seem to be a good way to avoid this
4116 at the moment. */
4117 if (TYPE_POINTER_TO (to_type) != 0
4118 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
4119 return TYPE_POINTER_TO (to_type);
4120
4121 /* First, if we already have a type for pointers to TO_TYPE and it's
4122 the proper mode, use it. */
4123 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
4124 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4125 return t;
4126
4127 t = make_node (POINTER_TYPE);
4128
4129 TREE_TYPE (t) = to_type;
4130 TYPE_MODE (t) = mode;
4131 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4132 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
4133 TYPE_POINTER_TO (to_type) = t;
4134
4135 /* Lay out the type. This function has many callers that are concerned
4136 with expression-construction, and this simplifies them all. */
4137 layout_type (t);
4138
4139 return t;
4140 }
4141
4142 /* By default build pointers in ptr_mode. */
4143
4144 tree
4145 build_pointer_type (tree to_type)
4146 {
4147 return build_pointer_type_for_mode (to_type, ptr_mode, false);
4148 }
4149
4150 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
4151
4152 tree
4153 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
4154 bool can_alias_all)
4155 {
4156 tree t;
4157
4158 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
4159 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
4160 In that case, return that type without regard to the rest of our
4161 operands.
4162
4163 ??? This is a kludge, but consistent with the way this function has
4164 always operated and there doesn't seem to be a good way to avoid this
4165 at the moment. */
4166 if (TYPE_REFERENCE_TO (to_type) != 0
4167 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
4168 return TYPE_REFERENCE_TO (to_type);
4169
4170 /* First, if we already have a type for pointers to TO_TYPE and it's
4171 the proper mode, use it. */
4172 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
4173 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4174 return t;
4175
4176 t = make_node (REFERENCE_TYPE);
4177
4178 TREE_TYPE (t) = to_type;
4179 TYPE_MODE (t) = mode;
4180 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4181 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
4182 TYPE_REFERENCE_TO (to_type) = t;
4183
4184 layout_type (t);
4185
4186 return t;
4187 }
4188
4189
4190 /* Build the node for the type of references-to-TO_TYPE by default
4191 in ptr_mode. */
4192
4193 tree
4194 build_reference_type (tree to_type)
4195 {
4196 return build_reference_type_for_mode (to_type, ptr_mode, false);
4197 }
4198
4199 /* Build a type that is compatible with t but has no cv quals anywhere
4200 in its type, thus
4201
4202 const char *const *const * -> char ***. */
4203
4204 tree
4205 build_type_no_quals (tree t)
4206 {
4207 switch (TREE_CODE (t))
4208 {
4209 case POINTER_TYPE:
4210 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4211 TYPE_MODE (t),
4212 TYPE_REF_CAN_ALIAS_ALL (t));
4213 case REFERENCE_TYPE:
4214 return
4215 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4216 TYPE_MODE (t),
4217 TYPE_REF_CAN_ALIAS_ALL (t));
4218 default:
4219 return TYPE_MAIN_VARIANT (t);
4220 }
4221 }
4222
4223 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4224 MAXVAL should be the maximum value in the domain
4225 (one less than the length of the array).
4226
4227 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4228 We don't enforce this limit, that is up to caller (e.g. language front end).
4229 The limit exists because the result is a signed type and we don't handle
4230 sizes that use more than one HOST_WIDE_INT. */
4231
4232 tree
4233 build_index_type (tree maxval)
4234 {
4235 tree itype = make_node (INTEGER_TYPE);
4236
4237 TREE_TYPE (itype) = sizetype;
4238 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4239 TYPE_MIN_VALUE (itype) = size_zero_node;
4240 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
4241 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4242 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4243 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4244 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4245 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
4246
4247 if (host_integerp (maxval, 1))
4248 return type_hash_canon (tree_low_cst (maxval, 1), itype);
4249 else
4250 return itype;
4251 }
4252
4253 /* Builds a signed or unsigned integer type of precision PRECISION.
4254 Used for C bitfields whose precision does not match that of
4255 built-in target types. */
4256 tree
4257 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
4258 int unsignedp)
4259 {
4260 tree itype = make_node (INTEGER_TYPE);
4261
4262 TYPE_PRECISION (itype) = precision;
4263
4264 if (unsignedp)
4265 fixup_unsigned_type (itype);
4266 else
4267 fixup_signed_type (itype);
4268
4269 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
4270 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
4271
4272 return itype;
4273 }
4274
4275 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4276 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4277 low bound LOWVAL and high bound HIGHVAL.
4278 if TYPE==NULL_TREE, sizetype is used. */
4279
4280 tree
4281 build_range_type (tree type, tree lowval, tree highval)
4282 {
4283 tree itype = make_node (INTEGER_TYPE);
4284
4285 TREE_TYPE (itype) = type;
4286 if (type == NULL_TREE)
4287 type = sizetype;
4288
4289 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4290 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4291
4292 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4293 TYPE_MODE (itype) = TYPE_MODE (type);
4294 TYPE_SIZE (itype) = TYPE_SIZE (type);
4295 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4296 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4297 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
4298
4299 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
4300 return type_hash_canon (tree_low_cst (highval, 0)
4301 - tree_low_cst (lowval, 0),
4302 itype);
4303 else
4304 return itype;
4305 }
4306
4307 /* Just like build_index_type, but takes lowval and highval instead
4308 of just highval (maxval). */
4309
4310 tree
4311 build_index_2_type (tree lowval, tree highval)
4312 {
4313 return build_range_type (sizetype, lowval, highval);
4314 }
4315
4316 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4317 and number of elements specified by the range of values of INDEX_TYPE.
4318 If such a type has already been constructed, reuse it. */
4319
4320 tree
4321 build_array_type (tree elt_type, tree index_type)
4322 {
4323 tree t;
4324 hashval_t hashcode = 0;
4325
4326 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4327 {
4328 error ("arrays of functions are not meaningful");
4329 elt_type = integer_type_node;
4330 }
4331
4332 t = make_node (ARRAY_TYPE);
4333 TREE_TYPE (t) = elt_type;
4334 TYPE_DOMAIN (t) = index_type;
4335
4336 if (index_type == 0)
4337 return t;
4338
4339 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
4340 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
4341 t = type_hash_canon (hashcode, t);
4342
4343 if (!COMPLETE_TYPE_P (t))
4344 layout_type (t);
4345 return t;
4346 }
4347
4348 /* Return the TYPE of the elements comprising
4349 the innermost dimension of ARRAY. */
4350
4351 tree
4352 get_inner_array_type (tree array)
4353 {
4354 tree type = TREE_TYPE (array);
4355
4356 while (TREE_CODE (type) == ARRAY_TYPE)
4357 type = TREE_TYPE (type);
4358
4359 return type;
4360 }
4361
4362 /* Construct, lay out and return
4363 the type of functions returning type VALUE_TYPE
4364 given arguments of types ARG_TYPES.
4365 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4366 are data type nodes for the arguments of the function.
4367 If such a type has already been constructed, reuse it. */
4368
4369 tree
4370 build_function_type (tree value_type, tree arg_types)
4371 {
4372 tree t;
4373 hashval_t hashcode = 0;
4374
4375 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4376 {
4377 error ("function return type cannot be function");
4378 value_type = integer_type_node;
4379 }
4380
4381 /* Make a node of the sort we want. */
4382 t = make_node (FUNCTION_TYPE);
4383 TREE_TYPE (t) = value_type;
4384 TYPE_ARG_TYPES (t) = arg_types;
4385
4386 /* If we already have such a type, use the old one. */
4387 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
4388 hashcode = type_hash_list (arg_types, hashcode);
4389 t = type_hash_canon (hashcode, t);
4390
4391 if (!COMPLETE_TYPE_P (t))
4392 layout_type (t);
4393 return t;
4394 }
4395
4396 /* Build a function type. The RETURN_TYPE is the type returned by the
4397 function. If additional arguments are provided, they are
4398 additional argument types. The list of argument types must always
4399 be terminated by NULL_TREE. */
4400
4401 tree
4402 build_function_type_list (tree return_type, ...)
4403 {
4404 tree t, args, last;
4405 va_list p;
4406
4407 va_start (p, return_type);
4408
4409 t = va_arg (p, tree);
4410 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
4411 args = tree_cons (NULL_TREE, t, args);
4412
4413 last = args;
4414 args = nreverse (args);
4415 TREE_CHAIN (last) = void_list_node;
4416 args = build_function_type (return_type, args);
4417
4418 va_end (p);
4419 return args;
4420 }
4421
4422 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
4423 and ARGTYPES (a TREE_LIST) are the return type and arguments types
4424 for the method. An implicit additional parameter (of type
4425 pointer-to-BASETYPE) is added to the ARGTYPES. */
4426
4427 tree
4428 build_method_type_directly (tree basetype,
4429 tree rettype,
4430 tree argtypes)
4431 {
4432 tree t;
4433 tree ptype;
4434 int hashcode = 0;
4435
4436 /* Make a node of the sort we want. */
4437 t = make_node (METHOD_TYPE);
4438
4439 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4440 TREE_TYPE (t) = rettype;
4441 ptype = build_pointer_type (basetype);
4442
4443 /* The actual arglist for this function includes a "hidden" argument
4444 which is "this". Put it into the list of argument types. */
4445 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
4446 TYPE_ARG_TYPES (t) = argtypes;
4447
4448 /* If we already have such a type, use the old one. */
4449 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4450 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
4451 hashcode = type_hash_list (argtypes, hashcode);
4452 t = type_hash_canon (hashcode, t);
4453
4454 if (!COMPLETE_TYPE_P (t))
4455 layout_type (t);
4456
4457 return t;
4458 }
4459
4460 /* Construct, lay out and return the type of methods belonging to class
4461 BASETYPE and whose arguments and values are described by TYPE.
4462 If that type exists already, reuse it.
4463 TYPE must be a FUNCTION_TYPE node. */
4464
4465 tree
4466 build_method_type (tree basetype, tree type)
4467 {
4468 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
4469
4470 return build_method_type_directly (basetype,
4471 TREE_TYPE (type),
4472 TYPE_ARG_TYPES (type));
4473 }
4474
4475 /* Construct, lay out and return the type of offsets to a value
4476 of type TYPE, within an object of type BASETYPE.
4477 If a suitable offset type exists already, reuse it. */
4478
4479 tree
4480 build_offset_type (tree basetype, tree type)
4481 {
4482 tree t;
4483 hashval_t hashcode = 0;
4484
4485 /* Make a node of the sort we want. */
4486 t = make_node (OFFSET_TYPE);
4487
4488 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4489 TREE_TYPE (t) = type;
4490
4491 /* If we already have such a type, use the old one. */
4492 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4493 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
4494 t = type_hash_canon (hashcode, t);
4495
4496 if (!COMPLETE_TYPE_P (t))
4497 layout_type (t);
4498
4499 return t;
4500 }
4501
4502 /* Create a complex type whose components are COMPONENT_TYPE. */
4503
4504 tree
4505 build_complex_type (tree component_type)
4506 {
4507 tree t;
4508 hashval_t hashcode;
4509
4510 /* Make a node of the sort we want. */
4511 t = make_node (COMPLEX_TYPE);
4512
4513 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4514
4515 /* If we already have such a type, use the old one. */
4516 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
4517 t = type_hash_canon (hashcode, t);
4518
4519 if (!COMPLETE_TYPE_P (t))
4520 layout_type (t);
4521
4522 /* If we are writing Dwarf2 output we need to create a name,
4523 since complex is a fundamental type. */
4524 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
4525 && ! TYPE_NAME (t))
4526 {
4527 const char *name;
4528 if (component_type == char_type_node)
4529 name = "complex char";
4530 else if (component_type == signed_char_type_node)
4531 name = "complex signed char";
4532 else if (component_type == unsigned_char_type_node)
4533 name = "complex unsigned char";
4534 else if (component_type == short_integer_type_node)
4535 name = "complex short int";
4536 else if (component_type == short_unsigned_type_node)
4537 name = "complex short unsigned int";
4538 else if (component_type == integer_type_node)
4539 name = "complex int";
4540 else if (component_type == unsigned_type_node)
4541 name = "complex unsigned int";
4542 else if (component_type == long_integer_type_node)
4543 name = "complex long int";
4544 else if (component_type == long_unsigned_type_node)
4545 name = "complex long unsigned int";
4546 else if (component_type == long_long_integer_type_node)
4547 name = "complex long long int";
4548 else if (component_type == long_long_unsigned_type_node)
4549 name = "complex long long unsigned int";
4550 else
4551 name = 0;
4552
4553 if (name != 0)
4554 TYPE_NAME (t) = get_identifier (name);
4555 }
4556
4557 return build_qualified_type (t, TYPE_QUALS (component_type));
4558 }
4559 \f
4560 /* Return OP, stripped of any conversions to wider types as much as is safe.
4561 Converting the value back to OP's type makes a value equivalent to OP.
4562
4563 If FOR_TYPE is nonzero, we return a value which, if converted to
4564 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4565
4566 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4567 narrowest type that can hold the value, even if they don't exactly fit.
4568 Otherwise, bit-field references are changed to a narrower type
4569 only if they can be fetched directly from memory in that type.
4570
4571 OP must have integer, real or enumeral type. Pointers are not allowed!
4572
4573 There are some cases where the obvious value we could return
4574 would regenerate to OP if converted to OP's type,
4575 but would not extend like OP to wider types.
4576 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4577 For example, if OP is (unsigned short)(signed char)-1,
4578 we avoid returning (signed char)-1 if FOR_TYPE is int,
4579 even though extending that to an unsigned short would regenerate OP,
4580 since the result of extending (signed char)-1 to (int)
4581 is different from (int) OP. */
4582
4583 tree
4584 get_unwidened (tree op, tree for_type)
4585 {
4586 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4587 tree type = TREE_TYPE (op);
4588 unsigned final_prec
4589 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4590 int uns
4591 = (for_type != 0 && for_type != type
4592 && final_prec > TYPE_PRECISION (type)
4593 && TYPE_UNSIGNED (type));
4594 tree win = op;
4595
4596 while (TREE_CODE (op) == NOP_EXPR)
4597 {
4598 int bitschange
4599 = TYPE_PRECISION (TREE_TYPE (op))
4600 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4601
4602 /* Truncations are many-one so cannot be removed.
4603 Unless we are later going to truncate down even farther. */
4604 if (bitschange < 0
4605 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4606 break;
4607
4608 /* See what's inside this conversion. If we decide to strip it,
4609 we will set WIN. */
4610 op = TREE_OPERAND (op, 0);
4611
4612 /* If we have not stripped any zero-extensions (uns is 0),
4613 we can strip any kind of extension.
4614 If we have previously stripped a zero-extension,
4615 only zero-extensions can safely be stripped.
4616 Any extension can be stripped if the bits it would produce
4617 are all going to be discarded later by truncating to FOR_TYPE. */
4618
4619 if (bitschange > 0)
4620 {
4621 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4622 win = op;
4623 /* TYPE_UNSIGNED says whether this is a zero-extension.
4624 Let's avoid computing it if it does not affect WIN
4625 and if UNS will not be needed again. */
4626 if ((uns || TREE_CODE (op) == NOP_EXPR)
4627 && TYPE_UNSIGNED (TREE_TYPE (op)))
4628 {
4629 uns = 1;
4630 win = op;
4631 }
4632 }
4633 }
4634
4635 if (TREE_CODE (op) == COMPONENT_REF
4636 /* Since type_for_size always gives an integer type. */
4637 && TREE_CODE (type) != REAL_TYPE
4638 /* Don't crash if field not laid out yet. */
4639 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4640 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4641 {
4642 unsigned int innerprec
4643 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4644 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4645 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4646 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4647
4648 /* We can get this structure field in the narrowest type it fits in.
4649 If FOR_TYPE is 0, do this only for a field that matches the
4650 narrower type exactly and is aligned for it
4651 The resulting extension to its nominal type (a fullword type)
4652 must fit the same conditions as for other extensions. */
4653
4654 if (type != 0
4655 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
4656 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4657 && (! uns || final_prec <= innerprec || unsignedp))
4658 {
4659 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4660 TREE_OPERAND (op, 1), NULL_TREE);
4661 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4662 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4663 }
4664 }
4665
4666 return win;
4667 }
4668 \f
4669 /* Return OP or a simpler expression for a narrower value
4670 which can be sign-extended or zero-extended to give back OP.
4671 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4672 or 0 if the value should be sign-extended. */
4673
4674 tree
4675 get_narrower (tree op, int *unsignedp_ptr)
4676 {
4677 int uns = 0;
4678 int first = 1;
4679 tree win = op;
4680 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
4681
4682 while (TREE_CODE (op) == NOP_EXPR)
4683 {
4684 int bitschange
4685 = (TYPE_PRECISION (TREE_TYPE (op))
4686 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4687
4688 /* Truncations are many-one so cannot be removed. */
4689 if (bitschange < 0)
4690 break;
4691
4692 /* See what's inside this conversion. If we decide to strip it,
4693 we will set WIN. */
4694
4695 if (bitschange > 0)
4696 {
4697 op = TREE_OPERAND (op, 0);
4698 /* An extension: the outermost one can be stripped,
4699 but remember whether it is zero or sign extension. */
4700 if (first)
4701 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4702 /* Otherwise, if a sign extension has been stripped,
4703 only sign extensions can now be stripped;
4704 if a zero extension has been stripped, only zero-extensions. */
4705 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
4706 break;
4707 first = 0;
4708 }
4709 else /* bitschange == 0 */
4710 {
4711 /* A change in nominal type can always be stripped, but we must
4712 preserve the unsignedness. */
4713 if (first)
4714 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4715 first = 0;
4716 op = TREE_OPERAND (op, 0);
4717 /* Keep trying to narrow, but don't assign op to win if it
4718 would turn an integral type into something else. */
4719 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
4720 continue;
4721 }
4722
4723 win = op;
4724 }
4725
4726 if (TREE_CODE (op) == COMPONENT_REF
4727 /* Since type_for_size always gives an integer type. */
4728 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4729 /* Ensure field is laid out already. */
4730 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4731 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4732 {
4733 unsigned HOST_WIDE_INT innerprec
4734 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4735 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4736 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4737 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4738
4739 /* We can get this structure field in a narrower type that fits it,
4740 but the resulting extension to its nominal type (a fullword type)
4741 must satisfy the same conditions as for other extensions.
4742
4743 Do this only for fields that are aligned (not bit-fields),
4744 because when bit-field insns will be used there is no
4745 advantage in doing this. */
4746
4747 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4748 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4749 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
4750 && type != 0)
4751 {
4752 if (first)
4753 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
4754 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4755 TREE_OPERAND (op, 1), NULL_TREE);
4756 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4757 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4758 }
4759 }
4760 *unsignedp_ptr = uns;
4761 return win;
4762 }
4763 \f
4764 /* Nonzero if integer constant C has a value that is permissible
4765 for type TYPE (an INTEGER_TYPE). */
4766
4767 int
4768 int_fits_type_p (tree c, tree type)
4769 {
4770 tree type_low_bound = TYPE_MIN_VALUE (type);
4771 tree type_high_bound = TYPE_MAX_VALUE (type);
4772 int ok_for_low_bound, ok_for_high_bound;
4773
4774 /* Perform some generic filtering first, which may allow making a decision
4775 even if the bounds are not constant. First, negative integers never fit
4776 in unsigned types, */
4777 if ((TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4778 /* Also, unsigned integers with top bit set never fit signed types. */
4779 || (! TYPE_UNSIGNED (type)
4780 && TYPE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4781 return 0;
4782
4783 /* If at least one bound of the type is a constant integer, we can check
4784 ourselves and maybe make a decision. If no such decision is possible, but
4785 this type is a subtype, try checking against that. Otherwise, use
4786 force_fit_type, which checks against the precision.
4787
4788 Compute the status for each possibly constant bound, and return if we see
4789 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4790 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4791 for "constant known to fit". */
4792
4793 ok_for_low_bound = -1;
4794 ok_for_high_bound = -1;
4795
4796 /* Check if C >= type_low_bound. */
4797 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4798 {
4799 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4800 if (! ok_for_low_bound)
4801 return 0;
4802 }
4803
4804 /* Check if c <= type_high_bound. */
4805 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4806 {
4807 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4808 if (! ok_for_high_bound)
4809 return 0;
4810 }
4811
4812 /* If the constant fits both bounds, the result is known. */
4813 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4814 return 1;
4815
4816 /* If we haven't been able to decide at this point, there nothing more we
4817 can check ourselves here. Look at the base type if we have one. */
4818 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4819 return int_fits_type_p (c, TREE_TYPE (type));
4820
4821 /* Or to force_fit_type, if nothing else. */
4822 else
4823 {
4824 c = copy_node (c);
4825 TREE_TYPE (c) = type;
4826 c = force_fit_type (c, -1, false, false);
4827 return !TREE_OVERFLOW (c);
4828 }
4829 }
4830
4831 /* Subprogram of following function. Called by walk_tree.
4832
4833 Return *TP if it is an automatic variable or parameter of the
4834 function passed in as DATA. */
4835
4836 static tree
4837 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
4838 {
4839 tree fn = (tree) data;
4840
4841 if (TYPE_P (*tp))
4842 *walk_subtrees = 0;
4843
4844 else if (DECL_P (*tp)
4845 && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
4846 return *tp;
4847
4848 return NULL_TREE;
4849 }
4850
4851 /* Returns true if T is, contains, or refers to a type with variable
4852 size. If FN is nonzero, only return true if a modifier of the type
4853 or position of FN is a variable or parameter inside FN.
4854
4855 This concept is more general than that of C99 'variably modified types':
4856 in C99, a struct type is never variably modified because a VLA may not
4857 appear as a structure member. However, in GNU C code like:
4858
4859 struct S { int i[f()]; };
4860
4861 is valid, and other languages may define similar constructs. */
4862
4863 bool
4864 variably_modified_type_p (tree type, tree fn)
4865 {
4866 tree t;
4867
4868 /* Test if T is either variable (if FN is zero) or an expression containing
4869 a variable in FN. */
4870 #define RETURN_TRUE_IF_VAR(T) \
4871 do { tree _t = (T); \
4872 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
4873 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
4874 return true; } while (0)
4875
4876 if (type == error_mark_node)
4877 return false;
4878
4879 /* If TYPE itself has variable size, it is variably modified.
4880
4881 We do not yet have a representation of the C99 '[*]' syntax.
4882 When a representation is chosen, this function should be modified
4883 to test for that case as well. */
4884 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
4885 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT(type));
4886
4887 switch (TREE_CODE (type))
4888 {
4889 case POINTER_TYPE:
4890 case REFERENCE_TYPE:
4891 case ARRAY_TYPE:
4892 case SET_TYPE:
4893 case VECTOR_TYPE:
4894 if (variably_modified_type_p (TREE_TYPE (type), fn))
4895 return true;
4896 break;
4897
4898 case FUNCTION_TYPE:
4899 case METHOD_TYPE:
4900 /* If TYPE is a function type, it is variably modified if any of the
4901 parameters or the return type are variably modified. */
4902 if (variably_modified_type_p (TREE_TYPE (type), fn))
4903 return true;
4904
4905 for (t = TYPE_ARG_TYPES (type);
4906 t && t != void_list_node;
4907 t = TREE_CHAIN (t))
4908 if (variably_modified_type_p (TREE_VALUE (t), fn))
4909 return true;
4910 break;
4911
4912 case INTEGER_TYPE:
4913 case REAL_TYPE:
4914 case ENUMERAL_TYPE:
4915 case BOOLEAN_TYPE:
4916 case CHAR_TYPE:
4917 /* Scalar types are variably modified if their end points
4918 aren't constant. */
4919 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
4920 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
4921 break;
4922
4923 case RECORD_TYPE:
4924 case UNION_TYPE:
4925 case QUAL_UNION_TYPE:
4926 /* We can't see if any of the field are variably-modified by the
4927 definition we normally use, since that would produce infinite
4928 recursion via pointers. */
4929 /* This is variably modified if some field's type is. */
4930 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
4931 if (TREE_CODE (t) == FIELD_DECL)
4932 {
4933 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
4934 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
4935 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
4936
4937 if (TREE_CODE (type) == QUAL_UNION_TYPE)
4938 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
4939 }
4940 break;
4941
4942 default:
4943 break;
4944 }
4945
4946 /* The current language may have other cases to check, but in general,
4947 all other types are not variably modified. */
4948 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
4949
4950 #undef RETURN_TRUE_IF_VAR
4951 }
4952
4953 /* Given a DECL or TYPE, return the scope in which it was declared, or
4954 NULL_TREE if there is no containing scope. */
4955
4956 tree
4957 get_containing_scope (tree t)
4958 {
4959 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4960 }
4961
4962 /* Return the innermost context enclosing DECL that is
4963 a FUNCTION_DECL, or zero if none. */
4964
4965 tree
4966 decl_function_context (tree decl)
4967 {
4968 tree context;
4969
4970 if (TREE_CODE (decl) == ERROR_MARK)
4971 return 0;
4972
4973 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4974 where we look up the function at runtime. Such functions always take
4975 a first argument of type 'pointer to real context'.
4976
4977 C++ should really be fixed to use DECL_CONTEXT for the real context,
4978 and use something else for the "virtual context". */
4979 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4980 context
4981 = TYPE_MAIN_VARIANT
4982 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4983 else
4984 context = DECL_CONTEXT (decl);
4985
4986 while (context && TREE_CODE (context) != FUNCTION_DECL)
4987 {
4988 if (TREE_CODE (context) == BLOCK)
4989 context = BLOCK_SUPERCONTEXT (context);
4990 else
4991 context = get_containing_scope (context);
4992 }
4993
4994 return context;
4995 }
4996
4997 /* Return the innermost context enclosing DECL that is
4998 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4999 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
5000
5001 tree
5002 decl_type_context (tree decl)
5003 {
5004 tree context = DECL_CONTEXT (decl);
5005
5006 while (context)
5007 switch (TREE_CODE (context))
5008 {
5009 case NAMESPACE_DECL:
5010 case TRANSLATION_UNIT_DECL:
5011 return NULL_TREE;
5012
5013 case RECORD_TYPE:
5014 case UNION_TYPE:
5015 case QUAL_UNION_TYPE:
5016 return context;
5017
5018 case TYPE_DECL:
5019 case FUNCTION_DECL:
5020 context = DECL_CONTEXT (context);
5021 break;
5022
5023 case BLOCK:
5024 context = BLOCK_SUPERCONTEXT (context);
5025 break;
5026
5027 default:
5028 gcc_unreachable ();
5029 }
5030
5031 return NULL_TREE;
5032 }
5033
5034 /* CALL is a CALL_EXPR. Return the declaration for the function
5035 called, or NULL_TREE if the called function cannot be
5036 determined. */
5037
5038 tree
5039 get_callee_fndecl (tree call)
5040 {
5041 tree addr;
5042
5043 /* It's invalid to call this function with anything but a
5044 CALL_EXPR. */
5045 gcc_assert (TREE_CODE (call) == CALL_EXPR);
5046
5047 /* The first operand to the CALL is the address of the function
5048 called. */
5049 addr = TREE_OPERAND (call, 0);
5050
5051 STRIP_NOPS (addr);
5052
5053 /* If this is a readonly function pointer, extract its initial value. */
5054 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
5055 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
5056 && DECL_INITIAL (addr))
5057 addr = DECL_INITIAL (addr);
5058
5059 /* If the address is just `&f' for some function `f', then we know
5060 that `f' is being called. */
5061 if (TREE_CODE (addr) == ADDR_EXPR
5062 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
5063 return TREE_OPERAND (addr, 0);
5064
5065 /* We couldn't figure out what was being called. Maybe the front
5066 end has some idea. */
5067 return lang_hooks.lang_get_callee_fndecl (call);
5068 }
5069
5070 /* Print debugging information about tree nodes generated during the compile,
5071 and any language-specific information. */
5072
5073 void
5074 dump_tree_statistics (void)
5075 {
5076 #ifdef GATHER_STATISTICS
5077 int i;
5078 int total_nodes, total_bytes;
5079 #endif
5080
5081 fprintf (stderr, "\n??? tree nodes created\n\n");
5082 #ifdef GATHER_STATISTICS
5083 fprintf (stderr, "Kind Nodes Bytes\n");
5084 fprintf (stderr, "---------------------------------------\n");
5085 total_nodes = total_bytes = 0;
5086 for (i = 0; i < (int) all_kinds; i++)
5087 {
5088 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
5089 tree_node_counts[i], tree_node_sizes[i]);
5090 total_nodes += tree_node_counts[i];
5091 total_bytes += tree_node_sizes[i];
5092 }
5093 fprintf (stderr, "---------------------------------------\n");
5094 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
5095 fprintf (stderr, "---------------------------------------\n");
5096 ssanames_print_statistics ();
5097 phinodes_print_statistics ();
5098 #else
5099 fprintf (stderr, "(No per-node statistics)\n");
5100 #endif
5101 print_type_hash_statistics ();
5102 lang_hooks.print_statistics ();
5103 }
5104 \f
5105 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
5106
5107 /* Generate a crc32 of a string. */
5108
5109 unsigned
5110 crc32_string (unsigned chksum, const char *string)
5111 {
5112 do
5113 {
5114 unsigned value = *string << 24;
5115 unsigned ix;
5116
5117 for (ix = 8; ix--; value <<= 1)
5118 {
5119 unsigned feedback;
5120
5121 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
5122 chksum <<= 1;
5123 chksum ^= feedback;
5124 }
5125 }
5126 while (*string++);
5127 return chksum;
5128 }
5129
5130 /* P is a string that will be used in a symbol. Mask out any characters
5131 that are not valid in that context. */
5132
5133 void
5134 clean_symbol_name (char *p)
5135 {
5136 for (; *p; p++)
5137 if (! (ISALNUM (*p)
5138 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
5139 || *p == '$'
5140 #endif
5141 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
5142 || *p == '.'
5143 #endif
5144 ))
5145 *p = '_';
5146 }
5147
5148 /* Generate a name for a function unique to this translation unit.
5149 TYPE is some string to identify the purpose of this function to the
5150 linker or collect2. */
5151
5152 tree
5153 get_file_function_name_long (const char *type)
5154 {
5155 char *buf;
5156 const char *p;
5157 char *q;
5158
5159 if (first_global_object_name)
5160 p = first_global_object_name;
5161 else
5162 {
5163 /* We don't have anything that we know to be unique to this translation
5164 unit, so use what we do have and throw in some randomness. */
5165 unsigned len;
5166 const char *name = weak_global_object_name;
5167 const char *file = main_input_filename;
5168
5169 if (! name)
5170 name = "";
5171 if (! file)
5172 file = input_filename;
5173
5174 len = strlen (file);
5175 q = alloca (9 * 2 + len + 1);
5176 memcpy (q, file, len + 1);
5177 clean_symbol_name (q);
5178
5179 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
5180 crc32_string (0, flag_random_seed));
5181
5182 p = q;
5183 }
5184
5185 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
5186
5187 /* Set up the name of the file-level functions we may need.
5188 Use a global object (which is already required to be unique over
5189 the program) rather than the file name (which imposes extra
5190 constraints). */
5191 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
5192
5193 return get_identifier (buf);
5194 }
5195
5196 /* If KIND=='I', return a suitable global initializer (constructor) name.
5197 If KIND=='D', return a suitable global clean-up (destructor) name. */
5198
5199 tree
5200 get_file_function_name (int kind)
5201 {
5202 char p[2];
5203
5204 p[0] = kind;
5205 p[1] = 0;
5206
5207 return get_file_function_name_long (p);
5208 }
5209 \f
5210 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5211 The result is placed in BUFFER (which has length BIT_SIZE),
5212 with one bit in each char ('\000' or '\001').
5213
5214 If the constructor is constant, NULL_TREE is returned.
5215 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5216
5217 tree
5218 get_set_constructor_bits (tree init, char *buffer, int bit_size)
5219 {
5220 int i;
5221 tree vals;
5222 HOST_WIDE_INT domain_min
5223 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
5224 tree non_const_bits = NULL_TREE;
5225
5226 for (i = 0; i < bit_size; i++)
5227 buffer[i] = 0;
5228
5229 for (vals = TREE_OPERAND (init, 1);
5230 vals != NULL_TREE; vals = TREE_CHAIN (vals))
5231 {
5232 if (!host_integerp (TREE_VALUE (vals), 0)
5233 || (TREE_PURPOSE (vals) != NULL_TREE
5234 && !host_integerp (TREE_PURPOSE (vals), 0)))
5235 non_const_bits
5236 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
5237 else if (TREE_PURPOSE (vals) != NULL_TREE)
5238 {
5239 /* Set a range of bits to ones. */
5240 HOST_WIDE_INT lo_index
5241 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
5242 HOST_WIDE_INT hi_index
5243 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5244
5245 gcc_assert (lo_index >= 0);
5246 gcc_assert (lo_index < bit_size);
5247 gcc_assert (hi_index >= 0);
5248 gcc_assert (hi_index < bit_size);
5249 for (; lo_index <= hi_index; lo_index++)
5250 buffer[lo_index] = 1;
5251 }
5252 else
5253 {
5254 /* Set a single bit to one. */
5255 HOST_WIDE_INT index
5256 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5257 if (index < 0 || index >= bit_size)
5258 {
5259 error ("invalid initializer for bit string");
5260 return NULL_TREE;
5261 }
5262 buffer[index] = 1;
5263 }
5264 }
5265 return non_const_bits;
5266 }
5267
5268 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5269 The result is placed in BUFFER (which is an array of bytes).
5270 If the constructor is constant, NULL_TREE is returned.
5271 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5272
5273 tree
5274 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
5275 {
5276 int i;
5277 int set_word_size = BITS_PER_UNIT;
5278 int bit_size = wd_size * set_word_size;
5279 int bit_pos = 0;
5280 unsigned char *bytep = buffer;
5281 char *bit_buffer = alloca (bit_size);
5282 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
5283
5284 for (i = 0; i < wd_size; i++)
5285 buffer[i] = 0;
5286
5287 for (i = 0; i < bit_size; i++)
5288 {
5289 if (bit_buffer[i])
5290 {
5291 if (BYTES_BIG_ENDIAN)
5292 *bytep |= (1 << (set_word_size - 1 - bit_pos));
5293 else
5294 *bytep |= 1 << bit_pos;
5295 }
5296 bit_pos++;
5297 if (bit_pos >= set_word_size)
5298 bit_pos = 0, bytep++;
5299 }
5300 return non_const_bits;
5301 }
5302 \f
5303 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
5304
5305 /* Complain that the tree code of NODE does not match the expected 0
5306 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
5307 the caller. */
5308
5309 void
5310 tree_check_failed (const tree node, const char *file,
5311 int line, const char *function, ...)
5312 {
5313 va_list args;
5314 char *buffer;
5315 unsigned length = 0;
5316 int code;
5317
5318 va_start (args, function);
5319 while ((code = va_arg (args, int)))
5320 length += 4 + strlen (tree_code_name[code]);
5321 va_end (args);
5322 va_start (args, function);
5323 buffer = alloca (length);
5324 length = 0;
5325 while ((code = va_arg (args, int)))
5326 {
5327 if (length)
5328 {
5329 strcpy (buffer + length, " or ");
5330 length += 4;
5331 }
5332 strcpy (buffer + length, tree_code_name[code]);
5333 length += strlen (tree_code_name[code]);
5334 }
5335 va_end (args);
5336
5337 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
5338 buffer, tree_code_name[TREE_CODE (node)],
5339 function, trim_filename (file), line);
5340 }
5341
5342 /* Complain that the tree code of NODE does match the expected 0
5343 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
5344 the caller. */
5345
5346 void
5347 tree_not_check_failed (const tree node, const char *file,
5348 int line, const char *function, ...)
5349 {
5350 va_list args;
5351 char *buffer;
5352 unsigned length = 0;
5353 int code;
5354
5355 va_start (args, function);
5356 while ((code = va_arg (args, int)))
5357 length += 4 + strlen (tree_code_name[code]);
5358 va_end (args);
5359 va_start (args, function);
5360 buffer = alloca (length);
5361 length = 0;
5362 while ((code = va_arg (args, int)))
5363 {
5364 if (length)
5365 {
5366 strcpy (buffer + length, " or ");
5367 length += 4;
5368 }
5369 strcpy (buffer + length, tree_code_name[code]);
5370 length += strlen (tree_code_name[code]);
5371 }
5372 va_end (args);
5373
5374 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
5375 buffer, tree_code_name[TREE_CODE (node)],
5376 function, trim_filename (file), line);
5377 }
5378
5379 /* Similar to tree_check_failed, except that we check for a class of tree
5380 code, given in CL. */
5381
5382 void
5383 tree_class_check_failed (const tree node, const enum tree_code_class cl,
5384 const char *file, int line, const char *function)
5385 {
5386 internal_error
5387 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
5388 TREE_CODE_CLASS_STRING (cl),
5389 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
5390 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
5391 }
5392
5393 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
5394 (dynamically sized) vector. */
5395
5396 void
5397 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
5398 const char *function)
5399 {
5400 internal_error
5401 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
5402 idx + 1, len, function, trim_filename (file), line);
5403 }
5404
5405 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
5406 (dynamically sized) vector. */
5407
5408 void
5409 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
5410 const char *function)
5411 {
5412 internal_error
5413 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
5414 idx + 1, len, function, trim_filename (file), line);
5415 }
5416
5417 /* Similar to above, except that the check is for the bounds of the operand
5418 vector of an expression node. */
5419
5420 void
5421 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
5422 int line, const char *function)
5423 {
5424 internal_error
5425 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
5426 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
5427 function, trim_filename (file), line);
5428 }
5429 #endif /* ENABLE_TREE_CHECKING */
5430 \f
5431 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
5432 and mapped to the machine mode MODE. Initialize its fields and build
5433 the information necessary for debugging output. */
5434
5435 static tree
5436 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
5437 {
5438 tree t = make_node (VECTOR_TYPE);
5439
5440 TREE_TYPE (t) = innertype;
5441 TYPE_VECTOR_SUBPARTS (t) = nunits;
5442 TYPE_MODE (t) = mode;
5443 layout_type (t);
5444
5445 {
5446 tree index = build_int_cst (NULL_TREE, nunits - 1);
5447 tree array = build_array_type (innertype, build_index_type (index));
5448 tree rt = make_node (RECORD_TYPE);
5449
5450 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
5451 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
5452 layout_type (rt);
5453 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
5454 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
5455 the representation type, and we want to find that die when looking up
5456 the vector type. This is most easily achieved by making the TYPE_UID
5457 numbers equal. */
5458 TYPE_UID (rt) = TYPE_UID (t);
5459 }
5460
5461 return t;
5462 }
5463
5464 static tree
5465 make_or_reuse_type (unsigned size, int unsignedp)
5466 {
5467 if (size == INT_TYPE_SIZE)
5468 return unsignedp ? unsigned_type_node : integer_type_node;
5469 if (size == CHAR_TYPE_SIZE)
5470 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
5471 if (size == SHORT_TYPE_SIZE)
5472 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
5473 if (size == LONG_TYPE_SIZE)
5474 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
5475 if (size == LONG_LONG_TYPE_SIZE)
5476 return (unsignedp ? long_long_unsigned_type_node
5477 : long_long_integer_type_node);
5478
5479 if (unsignedp)
5480 return make_unsigned_type (size);
5481 else
5482 return make_signed_type (size);
5483 }
5484
5485 /* Create nodes for all integer types (and error_mark_node) using the sizes
5486 of C datatypes. The caller should call set_sizetype soon after calling
5487 this function to select one of the types as sizetype. */
5488
5489 void
5490 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
5491 {
5492 error_mark_node = make_node (ERROR_MARK);
5493 TREE_TYPE (error_mark_node) = error_mark_node;
5494
5495 initialize_sizetypes (signed_sizetype);
5496
5497 /* Define both `signed char' and `unsigned char'. */
5498 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
5499 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
5500
5501 /* Define `char', which is like either `signed char' or `unsigned char'
5502 but not the same as either. */
5503 char_type_node
5504 = (signed_char
5505 ? make_signed_type (CHAR_TYPE_SIZE)
5506 : make_unsigned_type (CHAR_TYPE_SIZE));
5507
5508 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
5509 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
5510 integer_type_node = make_signed_type (INT_TYPE_SIZE);
5511 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
5512 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
5513 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
5514 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
5515 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
5516
5517 /* Define a boolean type. This type only represents boolean values but
5518 may be larger than char depending on the value of BOOL_TYPE_SIZE.
5519 Front ends which want to override this size (i.e. Java) can redefine
5520 boolean_type_node before calling build_common_tree_nodes_2. */
5521 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5522 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5523 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5524 TYPE_PRECISION (boolean_type_node) = 1;
5525
5526 /* Fill in the rest of the sized types. Reuse existing type nodes
5527 when possible. */
5528 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
5529 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
5530 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
5531 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
5532 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
5533
5534 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
5535 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
5536 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
5537 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
5538 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
5539
5540 access_public_node = get_identifier ("public");
5541 access_protected_node = get_identifier ("protected");
5542 access_private_node = get_identifier ("private");
5543 }
5544
5545 /* Call this function after calling build_common_tree_nodes and set_sizetype.
5546 It will create several other common tree nodes. */
5547
5548 void
5549 build_common_tree_nodes_2 (int short_double)
5550 {
5551 /* Define these next since types below may used them. */
5552 integer_zero_node = build_int_cst (NULL_TREE, 0);
5553 integer_one_node = build_int_cst (NULL_TREE, 1);
5554 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
5555
5556 size_zero_node = size_int (0);
5557 size_one_node = size_int (1);
5558 bitsize_zero_node = bitsize_int (0);
5559 bitsize_one_node = bitsize_int (1);
5560 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
5561
5562 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5563 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5564
5565 void_type_node = make_node (VOID_TYPE);
5566 layout_type (void_type_node);
5567
5568 /* We are not going to have real types in C with less than byte alignment,
5569 so we might as well not have any types that claim to have it. */
5570 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
5571 TYPE_USER_ALIGN (void_type_node) = 0;
5572
5573 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
5574 layout_type (TREE_TYPE (null_pointer_node));
5575
5576 ptr_type_node = build_pointer_type (void_type_node);
5577 const_ptr_type_node
5578 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
5579 fileptr_type_node = ptr_type_node;
5580
5581 float_type_node = make_node (REAL_TYPE);
5582 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
5583 layout_type (float_type_node);
5584
5585 double_type_node = make_node (REAL_TYPE);
5586 if (short_double)
5587 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
5588 else
5589 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
5590 layout_type (double_type_node);
5591
5592 long_double_type_node = make_node (REAL_TYPE);
5593 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
5594 layout_type (long_double_type_node);
5595
5596 float_ptr_type_node = build_pointer_type (float_type_node);
5597 double_ptr_type_node = build_pointer_type (double_type_node);
5598 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
5599 integer_ptr_type_node = build_pointer_type (integer_type_node);
5600
5601 complex_integer_type_node = make_node (COMPLEX_TYPE);
5602 TREE_TYPE (complex_integer_type_node) = integer_type_node;
5603 layout_type (complex_integer_type_node);
5604
5605 complex_float_type_node = make_node (COMPLEX_TYPE);
5606 TREE_TYPE (complex_float_type_node) = float_type_node;
5607 layout_type (complex_float_type_node);
5608
5609 complex_double_type_node = make_node (COMPLEX_TYPE);
5610 TREE_TYPE (complex_double_type_node) = double_type_node;
5611 layout_type (complex_double_type_node);
5612
5613 complex_long_double_type_node = make_node (COMPLEX_TYPE);
5614 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
5615 layout_type (complex_long_double_type_node);
5616
5617 {
5618 tree t = targetm.build_builtin_va_list ();
5619
5620 /* Many back-ends define record types without setting TYPE_NAME.
5621 If we copied the record type here, we'd keep the original
5622 record type without a name. This breaks name mangling. So,
5623 don't copy record types and let c_common_nodes_and_builtins()
5624 declare the type to be __builtin_va_list. */
5625 if (TREE_CODE (t) != RECORD_TYPE)
5626 t = build_variant_type_copy (t);
5627
5628 va_list_type_node = t;
5629 }
5630 }
5631
5632 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
5633 better way.
5634
5635 If we requested a pointer to a vector, build up the pointers that
5636 we stripped off while looking for the inner type. Similarly for
5637 return values from functions.
5638
5639 The argument TYPE is the top of the chain, and BOTTOM is the
5640 new type which we will point to. */
5641
5642 tree
5643 reconstruct_complex_type (tree type, tree bottom)
5644 {
5645 tree inner, outer;
5646
5647 if (POINTER_TYPE_P (type))
5648 {
5649 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5650 outer = build_pointer_type (inner);
5651 }
5652 else if (TREE_CODE (type) == ARRAY_TYPE)
5653 {
5654 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5655 outer = build_array_type (inner, TYPE_DOMAIN (type));
5656 }
5657 else if (TREE_CODE (type) == FUNCTION_TYPE)
5658 {
5659 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5660 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
5661 }
5662 else if (TREE_CODE (type) == METHOD_TYPE)
5663 {
5664 tree argtypes;
5665 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5666 /* The build_method_type_directly() routine prepends 'this' to argument list,
5667 so we must compensate by getting rid of it. */
5668 argtypes = TYPE_ARG_TYPES (type);
5669 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
5670 inner,
5671 TYPE_ARG_TYPES (type));
5672 TYPE_ARG_TYPES (outer) = argtypes;
5673 }
5674 else
5675 return bottom;
5676
5677 TYPE_READONLY (outer) = TYPE_READONLY (type);
5678 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
5679
5680 return outer;
5681 }
5682
5683 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
5684 the inner type. */
5685 tree
5686 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
5687 {
5688 int nunits;
5689
5690 switch (GET_MODE_CLASS (mode))
5691 {
5692 case MODE_VECTOR_INT:
5693 case MODE_VECTOR_FLOAT:
5694 nunits = GET_MODE_NUNITS (mode);
5695 break;
5696
5697 case MODE_INT:
5698 /* Check that there are no leftover bits. */
5699 gcc_assert (GET_MODE_BITSIZE (mode)
5700 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
5701
5702 nunits = GET_MODE_BITSIZE (mode)
5703 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
5704 break;
5705
5706 default:
5707 gcc_unreachable ();
5708 }
5709
5710 return make_vector_type (innertype, nunits, mode);
5711 }
5712
5713 /* Similarly, but takes the inner type and number of units, which must be
5714 a power of two. */
5715
5716 tree
5717 build_vector_type (tree innertype, int nunits)
5718 {
5719 return make_vector_type (innertype, nunits, VOIDmode);
5720 }
5721
5722 /* Given an initializer INIT, return TRUE if INIT is zero or some
5723 aggregate of zeros. Otherwise return FALSE. */
5724 bool
5725 initializer_zerop (tree init)
5726 {
5727 tree elt;
5728
5729 STRIP_NOPS (init);
5730
5731 switch (TREE_CODE (init))
5732 {
5733 case INTEGER_CST:
5734 return integer_zerop (init);
5735
5736 case REAL_CST:
5737 /* ??? Note that this is not correct for C4X float formats. There,
5738 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
5739 negative exponent. */
5740 return real_zerop (init)
5741 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
5742
5743 case COMPLEX_CST:
5744 return integer_zerop (init)
5745 || (real_zerop (init)
5746 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
5747 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
5748
5749 case VECTOR_CST:
5750 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
5751 if (!initializer_zerop (TREE_VALUE (elt)))
5752 return false;
5753 return true;
5754
5755 case CONSTRUCTOR:
5756 elt = CONSTRUCTOR_ELTS (init);
5757 if (elt == NULL_TREE)
5758 return true;
5759
5760 /* A set is empty only if it has no elements. */
5761 if (TREE_CODE (TREE_TYPE (init)) == SET_TYPE)
5762 return false;
5763
5764 for (; elt ; elt = TREE_CHAIN (elt))
5765 if (! initializer_zerop (TREE_VALUE (elt)))
5766 return false;
5767 return true;
5768
5769 default:
5770 return false;
5771 }
5772 }
5773
5774 void
5775 add_var_to_bind_expr (tree bind_expr, tree var)
5776 {
5777 BIND_EXPR_VARS (bind_expr)
5778 = chainon (BIND_EXPR_VARS (bind_expr), var);
5779 if (BIND_EXPR_BLOCK (bind_expr))
5780 BLOCK_VARS (BIND_EXPR_BLOCK (bind_expr))
5781 = BIND_EXPR_VARS (bind_expr);
5782 }
5783
5784 /* Build an empty statement. */
5785
5786 tree
5787 build_empty_stmt (void)
5788 {
5789 return build1 (NOP_EXPR, void_type_node, size_zero_node);
5790 }
5791
5792
5793 /* Returns true if it is possible to prove that the index of
5794 an array access REF (an ARRAY_REF expression) falls into the
5795 array bounds. */
5796
5797 bool
5798 in_array_bounds_p (tree ref)
5799 {
5800 tree idx = TREE_OPERAND (ref, 1);
5801 tree min, max;
5802
5803 if (TREE_CODE (idx) != INTEGER_CST)
5804 return false;
5805
5806 min = array_ref_low_bound (ref);
5807 max = array_ref_up_bound (ref);
5808 if (!min
5809 || !max
5810 || TREE_CODE (min) != INTEGER_CST
5811 || TREE_CODE (max) != INTEGER_CST)
5812 return false;
5813
5814 if (tree_int_cst_lt (idx, min)
5815 || tree_int_cst_lt (max, idx))
5816 return false;
5817
5818 return true;
5819 }
5820
5821 /* Return true if T (assumed to be a DECL) is a global variable. */
5822
5823 bool
5824 is_global_var (tree t)
5825 {
5826 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
5827 }
5828
5829 /* Return true if T (assumed to be a DECL) must be assigned a memory
5830 location. */
5831
5832 bool
5833 needs_to_live_in_memory (tree t)
5834 {
5835 return (TREE_ADDRESSABLE (t)
5836 || is_global_var (t)
5837 || (TREE_CODE (t) == RESULT_DECL
5838 && aggregate_value_p (t, current_function_decl)));
5839 }
5840
5841 /* There are situations in which a language considers record types
5842 compatible which have different field lists. Decide if two fields
5843 are compatible. It is assumed that the parent records are compatible. */
5844
5845 bool
5846 fields_compatible_p (tree f1, tree f2)
5847 {
5848 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
5849 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
5850 return false;
5851
5852 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
5853 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
5854 return false;
5855
5856 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
5857 return false;
5858
5859 return true;
5860 }
5861
5862 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
5863
5864 tree
5865 find_compatible_field (tree record, tree orig_field)
5866 {
5867 tree f;
5868
5869 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
5870 if (TREE_CODE (f) == FIELD_DECL
5871 && fields_compatible_p (f, orig_field))
5872 return f;
5873
5874 /* ??? Why isn't this on the main fields list? */
5875 f = TYPE_VFIELD (record);
5876 if (f && TREE_CODE (f) == FIELD_DECL
5877 && fields_compatible_p (f, orig_field))
5878 return f;
5879
5880 /* ??? We should abort here, but Java appears to do Bad Things
5881 with inherited fields. */
5882 return orig_field;
5883 }
5884
5885 /* Return value of a constant X. */
5886
5887 HOST_WIDE_INT
5888 int_cst_value (tree x)
5889 {
5890 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
5891 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
5892 bool negative = ((val >> (bits - 1)) & 1) != 0;
5893
5894 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
5895
5896 if (negative)
5897 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
5898 else
5899 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
5900
5901 return val;
5902 }
5903
5904 /* Returns the greatest common divisor of A and B, which must be
5905 INTEGER_CSTs. */
5906
5907 tree
5908 tree_fold_gcd (tree a, tree b)
5909 {
5910 tree a_mod_b;
5911 tree type = TREE_TYPE (a);
5912
5913 gcc_assert (TREE_CODE (a) == INTEGER_CST);
5914 gcc_assert (TREE_CODE (b) == INTEGER_CST);
5915
5916 if (integer_zerop (a))
5917 return b;
5918
5919 if (integer_zerop (b))
5920 return a;
5921
5922 if (tree_int_cst_sgn (a) == -1)
5923 a = fold (build2 (MULT_EXPR, type, a,
5924 convert (type, integer_minus_one_node)));
5925
5926 if (tree_int_cst_sgn (b) == -1)
5927 b = fold (build2 (MULT_EXPR, type, b,
5928 convert (type, integer_minus_one_node)));
5929
5930 while (1)
5931 {
5932 a_mod_b = fold (build2 (CEIL_MOD_EXPR, type, a, b));
5933
5934 if (!TREE_INT_CST_LOW (a_mod_b)
5935 && !TREE_INT_CST_HIGH (a_mod_b))
5936 return b;
5937
5938 a = b;
5939 b = a_mod_b;
5940 }
5941 }
5942
5943 /* Returns unsigned variant of TYPE. */
5944
5945 tree
5946 unsigned_type_for (tree type)
5947 {
5948 return lang_hooks.types.unsigned_type (type);
5949 }
5950
5951 /* Returns signed variant of TYPE. */
5952
5953 tree
5954 signed_type_for (tree type)
5955 {
5956 return lang_hooks.types.signed_type (type);
5957 }
5958
5959 #include "gt-tree.h"