Improve scheduler dumps of ready list
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent, but occasionally
28 calls language-dependent routines defined (for C) in typecheck.c. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "flags.h"
35 #include "tree.h"
36 #include "stor-layout.h"
37 #include "calls.h"
38 #include "attribs.h"
39 #include "varasm.h"
40 #include "tm_p.h"
41 #include "hashtab.h"
42 #include "hash-set.h"
43 #include "vec.h"
44 #include "machmode.h"
45 #include "hard-reg-set.h"
46 #include "input.h"
47 #include "function.h"
48 #include "obstack.h"
49 #include "toplev.h" /* get_random_seed */
50 #include "inchash.h"
51 #include "filenames.h"
52 #include "output.h"
53 #include "target.h"
54 #include "common/common-target.h"
55 #include "langhooks.h"
56 #include "tree-inline.h"
57 #include "tree-iterator.h"
58 #include "basic-block.h"
59 #include "bitmap.h"
60 #include "tree-ssa-alias.h"
61 #include "internal-fn.h"
62 #include "gimple-expr.h"
63 #include "is-a.h"
64 #include "gimple.h"
65 #include "gimple-iterator.h"
66 #include "gimplify.h"
67 #include "gimple-ssa.h"
68 #include "cgraph.h"
69 #include "tree-phinodes.h"
70 #include "stringpool.h"
71 #include "tree-ssanames.h"
72 #include "expr.h"
73 #include "tree-dfa.h"
74 #include "params.h"
75 #include "tree-pass.h"
76 #include "langhooks-def.h"
77 #include "diagnostic.h"
78 #include "tree-diagnostic.h"
79 #include "tree-pretty-print.h"
80 #include "except.h"
81 #include "debug.h"
82 #include "intl.h"
83 #include "wide-int.h"
84 #include "builtins.h"
85
86 /* Tree code classes. */
87
88 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
89 #define END_OF_BASE_TREE_CODES tcc_exceptional,
90
91 const enum tree_code_class tree_code_type[] = {
92 #include "all-tree.def"
93 };
94
95 #undef DEFTREECODE
96 #undef END_OF_BASE_TREE_CODES
97
98 /* Table indexed by tree code giving number of expression
99 operands beyond the fixed part of the node structure.
100 Not used for types or decls. */
101
102 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
103 #define END_OF_BASE_TREE_CODES 0,
104
105 const unsigned char tree_code_length[] = {
106 #include "all-tree.def"
107 };
108
109 #undef DEFTREECODE
110 #undef END_OF_BASE_TREE_CODES
111
112 /* Names of tree components.
113 Used for printing out the tree and error messages. */
114 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
115 #define END_OF_BASE_TREE_CODES "@dummy",
116
117 static const char *const tree_code_name[] = {
118 #include "all-tree.def"
119 };
120
121 #undef DEFTREECODE
122 #undef END_OF_BASE_TREE_CODES
123
124 /* Each tree code class has an associated string representation.
125 These must correspond to the tree_code_class entries. */
126
127 const char *const tree_code_class_strings[] =
128 {
129 "exceptional",
130 "constant",
131 "type",
132 "declaration",
133 "reference",
134 "comparison",
135 "unary",
136 "binary",
137 "statement",
138 "vl_exp",
139 "expression"
140 };
141
142 /* obstack.[ch] explicitly declined to prototype this. */
143 extern int _obstack_allocated_p (struct obstack *h, void *obj);
144
145 /* Statistics-gathering stuff. */
146
147 static int tree_code_counts[MAX_TREE_CODES];
148 int tree_node_counts[(int) all_kinds];
149 int tree_node_sizes[(int) all_kinds];
150
151 /* Keep in sync with tree.h:enum tree_node_kind. */
152 static const char * const tree_node_kind_names[] = {
153 "decls",
154 "types",
155 "blocks",
156 "stmts",
157 "refs",
158 "exprs",
159 "constants",
160 "identifiers",
161 "vecs",
162 "binfos",
163 "ssa names",
164 "constructors",
165 "random kinds",
166 "lang_decl kinds",
167 "lang_type kinds",
168 "omp clauses",
169 };
170
171 /* Unique id for next decl created. */
172 static GTY(()) int next_decl_uid;
173 /* Unique id for next type created. */
174 static GTY(()) int next_type_uid = 1;
175 /* Unique id for next debug decl created. Use negative numbers,
176 to catch erroneous uses. */
177 static GTY(()) int next_debug_decl_uid;
178
179 /* Since we cannot rehash a type after it is in the table, we have to
180 keep the hash code. */
181
182 struct GTY(()) type_hash {
183 unsigned long hash;
184 tree type;
185 };
186
187 /* Initial size of the hash table (rounded to next prime). */
188 #define TYPE_HASH_INITIAL_SIZE 1000
189
190 /* Now here is the hash table. When recording a type, it is added to
191 the slot whose index is the hash code. Note that the hash table is
192 used for several kinds of types (function types, array types and
193 array index range types, for now). While all these live in the
194 same table, they are completely independent, and the hash code is
195 computed differently for each of these. */
196
197 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
198 htab_t type_hash_table;
199
200 /* Hash table and temporary node for larger integer const values. */
201 static GTY (()) tree int_cst_node;
202 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
203 htab_t int_cst_hash_table;
204
205 /* Hash table for optimization flags and target option flags. Use the same
206 hash table for both sets of options. Nodes for building the current
207 optimization and target option nodes. The assumption is most of the time
208 the options created will already be in the hash table, so we avoid
209 allocating and freeing up a node repeatably. */
210 static GTY (()) tree cl_optimization_node;
211 static GTY (()) tree cl_target_option_node;
212 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
213 htab_t cl_option_hash_table;
214
215 /* General tree->tree mapping structure for use in hash tables. */
216
217
218 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
219 htab_t debug_expr_for_decl;
220
221 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
222 htab_t value_expr_for_decl;
223
224 static GTY ((if_marked ("tree_vec_map_marked_p"), param_is (struct tree_vec_map)))
225 htab_t debug_args_for_decl;
226
227 static void set_type_quals (tree, int);
228 static int type_hash_eq (const void *, const void *);
229 static hashval_t type_hash_hash (const void *);
230 static hashval_t int_cst_hash_hash (const void *);
231 static int int_cst_hash_eq (const void *, const void *);
232 static hashval_t cl_option_hash_hash (const void *);
233 static int cl_option_hash_eq (const void *, const void *);
234 static void print_type_hash_statistics (void);
235 static void print_debug_expr_statistics (void);
236 static void print_value_expr_statistics (void);
237 static int type_hash_marked_p (const void *);
238 static void type_hash_list (const_tree, inchash::hash &);
239 static void attribute_hash_list (const_tree, inchash::hash &);
240
241 tree global_trees[TI_MAX];
242 tree integer_types[itk_none];
243
244 bool int_n_enabled_p[NUM_INT_N_ENTS];
245 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
246
247 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
248
249 /* Number of operands for each OpenMP clause. */
250 unsigned const char omp_clause_num_ops[] =
251 {
252 0, /* OMP_CLAUSE_ERROR */
253 1, /* OMP_CLAUSE_PRIVATE */
254 1, /* OMP_CLAUSE_SHARED */
255 1, /* OMP_CLAUSE_FIRSTPRIVATE */
256 2, /* OMP_CLAUSE_LASTPRIVATE */
257 4, /* OMP_CLAUSE_REDUCTION */
258 1, /* OMP_CLAUSE_COPYIN */
259 1, /* OMP_CLAUSE_COPYPRIVATE */
260 3, /* OMP_CLAUSE_LINEAR */
261 2, /* OMP_CLAUSE_ALIGNED */
262 1, /* OMP_CLAUSE_DEPEND */
263 1, /* OMP_CLAUSE_UNIFORM */
264 2, /* OMP_CLAUSE_FROM */
265 2, /* OMP_CLAUSE_TO */
266 2, /* OMP_CLAUSE_MAP */
267 1, /* OMP_CLAUSE__LOOPTEMP_ */
268 1, /* OMP_CLAUSE_IF */
269 1, /* OMP_CLAUSE_NUM_THREADS */
270 1, /* OMP_CLAUSE_SCHEDULE */
271 0, /* OMP_CLAUSE_NOWAIT */
272 0, /* OMP_CLAUSE_ORDERED */
273 0, /* OMP_CLAUSE_DEFAULT */
274 3, /* OMP_CLAUSE_COLLAPSE */
275 0, /* OMP_CLAUSE_UNTIED */
276 1, /* OMP_CLAUSE_FINAL */
277 0, /* OMP_CLAUSE_MERGEABLE */
278 1, /* OMP_CLAUSE_DEVICE */
279 1, /* OMP_CLAUSE_DIST_SCHEDULE */
280 0, /* OMP_CLAUSE_INBRANCH */
281 0, /* OMP_CLAUSE_NOTINBRANCH */
282 1, /* OMP_CLAUSE_NUM_TEAMS */
283 1, /* OMP_CLAUSE_THREAD_LIMIT */
284 0, /* OMP_CLAUSE_PROC_BIND */
285 1, /* OMP_CLAUSE_SAFELEN */
286 1, /* OMP_CLAUSE_SIMDLEN */
287 0, /* OMP_CLAUSE_FOR */
288 0, /* OMP_CLAUSE_PARALLEL */
289 0, /* OMP_CLAUSE_SECTIONS */
290 0, /* OMP_CLAUSE_TASKGROUP */
291 1, /* OMP_CLAUSE__SIMDUID_ */
292 1, /* OMP_CLAUSE__CILK_FOR_COUNT_ */
293 };
294
295 const char * const omp_clause_code_name[] =
296 {
297 "error_clause",
298 "private",
299 "shared",
300 "firstprivate",
301 "lastprivate",
302 "reduction",
303 "copyin",
304 "copyprivate",
305 "linear",
306 "aligned",
307 "depend",
308 "uniform",
309 "from",
310 "to",
311 "map",
312 "_looptemp_",
313 "if",
314 "num_threads",
315 "schedule",
316 "nowait",
317 "ordered",
318 "default",
319 "collapse",
320 "untied",
321 "final",
322 "mergeable",
323 "device",
324 "dist_schedule",
325 "inbranch",
326 "notinbranch",
327 "num_teams",
328 "thread_limit",
329 "proc_bind",
330 "safelen",
331 "simdlen",
332 "for",
333 "parallel",
334 "sections",
335 "taskgroup",
336 "_simduid_",
337 "_Cilk_for_count_"
338 };
339
340
341 /* Return the tree node structure used by tree code CODE. */
342
343 static inline enum tree_node_structure_enum
344 tree_node_structure_for_code (enum tree_code code)
345 {
346 switch (TREE_CODE_CLASS (code))
347 {
348 case tcc_declaration:
349 {
350 switch (code)
351 {
352 case FIELD_DECL:
353 return TS_FIELD_DECL;
354 case PARM_DECL:
355 return TS_PARM_DECL;
356 case VAR_DECL:
357 return TS_VAR_DECL;
358 case LABEL_DECL:
359 return TS_LABEL_DECL;
360 case RESULT_DECL:
361 return TS_RESULT_DECL;
362 case DEBUG_EXPR_DECL:
363 return TS_DECL_WRTL;
364 case CONST_DECL:
365 return TS_CONST_DECL;
366 case TYPE_DECL:
367 return TS_TYPE_DECL;
368 case FUNCTION_DECL:
369 return TS_FUNCTION_DECL;
370 case TRANSLATION_UNIT_DECL:
371 return TS_TRANSLATION_UNIT_DECL;
372 default:
373 return TS_DECL_NON_COMMON;
374 }
375 }
376 case tcc_type:
377 return TS_TYPE_NON_COMMON;
378 case tcc_reference:
379 case tcc_comparison:
380 case tcc_unary:
381 case tcc_binary:
382 case tcc_expression:
383 case tcc_statement:
384 case tcc_vl_exp:
385 return TS_EXP;
386 default: /* tcc_constant and tcc_exceptional */
387 break;
388 }
389 switch (code)
390 {
391 /* tcc_constant cases. */
392 case VOID_CST: return TS_TYPED;
393 case INTEGER_CST: return TS_INT_CST;
394 case REAL_CST: return TS_REAL_CST;
395 case FIXED_CST: return TS_FIXED_CST;
396 case COMPLEX_CST: return TS_COMPLEX;
397 case VECTOR_CST: return TS_VECTOR;
398 case STRING_CST: return TS_STRING;
399 /* tcc_exceptional cases. */
400 case ERROR_MARK: return TS_COMMON;
401 case IDENTIFIER_NODE: return TS_IDENTIFIER;
402 case TREE_LIST: return TS_LIST;
403 case TREE_VEC: return TS_VEC;
404 case SSA_NAME: return TS_SSA_NAME;
405 case PLACEHOLDER_EXPR: return TS_COMMON;
406 case STATEMENT_LIST: return TS_STATEMENT_LIST;
407 case BLOCK: return TS_BLOCK;
408 case CONSTRUCTOR: return TS_CONSTRUCTOR;
409 case TREE_BINFO: return TS_BINFO;
410 case OMP_CLAUSE: return TS_OMP_CLAUSE;
411 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
412 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
413
414 default:
415 gcc_unreachable ();
416 }
417 }
418
419
420 /* Initialize tree_contains_struct to describe the hierarchy of tree
421 nodes. */
422
423 static void
424 initialize_tree_contains_struct (void)
425 {
426 unsigned i;
427
428 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
429 {
430 enum tree_code code;
431 enum tree_node_structure_enum ts_code;
432
433 code = (enum tree_code) i;
434 ts_code = tree_node_structure_for_code (code);
435
436 /* Mark the TS structure itself. */
437 tree_contains_struct[code][ts_code] = 1;
438
439 /* Mark all the structures that TS is derived from. */
440 switch (ts_code)
441 {
442 case TS_TYPED:
443 case TS_BLOCK:
444 MARK_TS_BASE (code);
445 break;
446
447 case TS_COMMON:
448 case TS_INT_CST:
449 case TS_REAL_CST:
450 case TS_FIXED_CST:
451 case TS_VECTOR:
452 case TS_STRING:
453 case TS_COMPLEX:
454 case TS_SSA_NAME:
455 case TS_CONSTRUCTOR:
456 case TS_EXP:
457 case TS_STATEMENT_LIST:
458 MARK_TS_TYPED (code);
459 break;
460
461 case TS_IDENTIFIER:
462 case TS_DECL_MINIMAL:
463 case TS_TYPE_COMMON:
464 case TS_LIST:
465 case TS_VEC:
466 case TS_BINFO:
467 case TS_OMP_CLAUSE:
468 case TS_OPTIMIZATION:
469 case TS_TARGET_OPTION:
470 MARK_TS_COMMON (code);
471 break;
472
473 case TS_TYPE_WITH_LANG_SPECIFIC:
474 MARK_TS_TYPE_COMMON (code);
475 break;
476
477 case TS_TYPE_NON_COMMON:
478 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
479 break;
480
481 case TS_DECL_COMMON:
482 MARK_TS_DECL_MINIMAL (code);
483 break;
484
485 case TS_DECL_WRTL:
486 case TS_CONST_DECL:
487 MARK_TS_DECL_COMMON (code);
488 break;
489
490 case TS_DECL_NON_COMMON:
491 MARK_TS_DECL_WITH_VIS (code);
492 break;
493
494 case TS_DECL_WITH_VIS:
495 case TS_PARM_DECL:
496 case TS_LABEL_DECL:
497 case TS_RESULT_DECL:
498 MARK_TS_DECL_WRTL (code);
499 break;
500
501 case TS_FIELD_DECL:
502 MARK_TS_DECL_COMMON (code);
503 break;
504
505 case TS_VAR_DECL:
506 MARK_TS_DECL_WITH_VIS (code);
507 break;
508
509 case TS_TYPE_DECL:
510 case TS_FUNCTION_DECL:
511 MARK_TS_DECL_NON_COMMON (code);
512 break;
513
514 case TS_TRANSLATION_UNIT_DECL:
515 MARK_TS_DECL_COMMON (code);
516 break;
517
518 default:
519 gcc_unreachable ();
520 }
521 }
522
523 /* Basic consistency checks for attributes used in fold. */
524 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
525 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
526 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
527 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
528 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
529 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
530 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
531 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
532 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
533 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
534 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
535 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
536 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
537 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
538 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
539 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
540 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
541 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
542 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
543 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
544 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
545 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
546 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
547 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
548 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
549 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
550 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
551 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
552 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
553 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
554 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
555 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
556 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
557 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
558 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
559 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
560 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
561 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
562 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
563 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
564 }
565
566
567 /* Init tree.c. */
568
569 void
570 init_ttree (void)
571 {
572 /* Initialize the hash table of types. */
573 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
574 type_hash_eq, 0);
575
576 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
577 tree_decl_map_eq, 0);
578
579 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
580 tree_decl_map_eq, 0);
581
582 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
583 int_cst_hash_eq, NULL);
584
585 int_cst_node = make_int_cst (1, 1);
586
587 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
588 cl_option_hash_eq, NULL);
589
590 cl_optimization_node = make_node (OPTIMIZATION_NODE);
591 cl_target_option_node = make_node (TARGET_OPTION_NODE);
592
593 /* Initialize the tree_contains_struct array. */
594 initialize_tree_contains_struct ();
595 lang_hooks.init_ts ();
596 }
597
598 \f
599 /* The name of the object as the assembler will see it (but before any
600 translations made by ASM_OUTPUT_LABELREF). Often this is the same
601 as DECL_NAME. It is an IDENTIFIER_NODE. */
602 tree
603 decl_assembler_name (tree decl)
604 {
605 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
606 lang_hooks.set_decl_assembler_name (decl);
607 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
608 }
609
610 /* When the target supports COMDAT groups, this indicates which group the
611 DECL is associated with. This can be either an IDENTIFIER_NODE or a
612 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
613 tree
614 decl_comdat_group (const_tree node)
615 {
616 struct symtab_node *snode = symtab_node::get (node);
617 if (!snode)
618 return NULL;
619 return snode->get_comdat_group ();
620 }
621
622 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
623 tree
624 decl_comdat_group_id (const_tree node)
625 {
626 struct symtab_node *snode = symtab_node::get (node);
627 if (!snode)
628 return NULL;
629 return snode->get_comdat_group_id ();
630 }
631
632 /* When the target supports named section, return its name as IDENTIFIER_NODE
633 or NULL if it is in no section. */
634 const char *
635 decl_section_name (const_tree node)
636 {
637 struct symtab_node *snode = symtab_node::get (node);
638 if (!snode)
639 return NULL;
640 return snode->get_section ();
641 }
642
643 /* Set section section name of NODE to VALUE (that is expected to
644 be identifier node) */
645 void
646 set_decl_section_name (tree node, const char *value)
647 {
648 struct symtab_node *snode;
649
650 if (value == NULL)
651 {
652 snode = symtab_node::get (node);
653 if (!snode)
654 return;
655 }
656 else if (TREE_CODE (node) == VAR_DECL)
657 snode = varpool_node::get_create (node);
658 else
659 snode = cgraph_node::get_create (node);
660 snode->set_section (value);
661 }
662
663 /* Return TLS model of a variable NODE. */
664 enum tls_model
665 decl_tls_model (const_tree node)
666 {
667 struct varpool_node *snode = varpool_node::get (node);
668 if (!snode)
669 return TLS_MODEL_NONE;
670 return snode->tls_model;
671 }
672
673 /* Set TLS model of variable NODE to MODEL. */
674 void
675 set_decl_tls_model (tree node, enum tls_model model)
676 {
677 struct varpool_node *vnode;
678
679 if (model == TLS_MODEL_NONE)
680 {
681 vnode = varpool_node::get (node);
682 if (!vnode)
683 return;
684 }
685 else
686 vnode = varpool_node::get_create (node);
687 vnode->tls_model = model;
688 }
689
690 /* Compute the number of bytes occupied by a tree with code CODE.
691 This function cannot be used for nodes that have variable sizes,
692 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
693 size_t
694 tree_code_size (enum tree_code code)
695 {
696 switch (TREE_CODE_CLASS (code))
697 {
698 case tcc_declaration: /* A decl node */
699 {
700 switch (code)
701 {
702 case FIELD_DECL:
703 return sizeof (struct tree_field_decl);
704 case PARM_DECL:
705 return sizeof (struct tree_parm_decl);
706 case VAR_DECL:
707 return sizeof (struct tree_var_decl);
708 case LABEL_DECL:
709 return sizeof (struct tree_label_decl);
710 case RESULT_DECL:
711 return sizeof (struct tree_result_decl);
712 case CONST_DECL:
713 return sizeof (struct tree_const_decl);
714 case TYPE_DECL:
715 return sizeof (struct tree_type_decl);
716 case FUNCTION_DECL:
717 return sizeof (struct tree_function_decl);
718 case DEBUG_EXPR_DECL:
719 return sizeof (struct tree_decl_with_rtl);
720 case TRANSLATION_UNIT_DECL:
721 return sizeof (struct tree_translation_unit_decl);
722 case NAMESPACE_DECL:
723 case IMPORTED_DECL:
724 case NAMELIST_DECL:
725 return sizeof (struct tree_decl_non_common);
726 default:
727 return lang_hooks.tree_size (code);
728 }
729 }
730
731 case tcc_type: /* a type node */
732 return sizeof (struct tree_type_non_common);
733
734 case tcc_reference: /* a reference */
735 case tcc_expression: /* an expression */
736 case tcc_statement: /* an expression with side effects */
737 case tcc_comparison: /* a comparison expression */
738 case tcc_unary: /* a unary arithmetic expression */
739 case tcc_binary: /* a binary arithmetic expression */
740 return (sizeof (struct tree_exp)
741 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
742
743 case tcc_constant: /* a constant */
744 switch (code)
745 {
746 case VOID_CST: return sizeof (struct tree_typed);
747 case INTEGER_CST: gcc_unreachable ();
748 case REAL_CST: return sizeof (struct tree_real_cst);
749 case FIXED_CST: return sizeof (struct tree_fixed_cst);
750 case COMPLEX_CST: return sizeof (struct tree_complex);
751 case VECTOR_CST: return sizeof (struct tree_vector);
752 case STRING_CST: gcc_unreachable ();
753 default:
754 return lang_hooks.tree_size (code);
755 }
756
757 case tcc_exceptional: /* something random, like an identifier. */
758 switch (code)
759 {
760 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
761 case TREE_LIST: return sizeof (struct tree_list);
762
763 case ERROR_MARK:
764 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
765
766 case TREE_VEC:
767 case OMP_CLAUSE: gcc_unreachable ();
768
769 case SSA_NAME: return sizeof (struct tree_ssa_name);
770
771 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
772 case BLOCK: return sizeof (struct tree_block);
773 case CONSTRUCTOR: return sizeof (struct tree_constructor);
774 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
775 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
776
777 default:
778 return lang_hooks.tree_size (code);
779 }
780
781 default:
782 gcc_unreachable ();
783 }
784 }
785
786 /* Compute the number of bytes occupied by NODE. This routine only
787 looks at TREE_CODE, except for those nodes that have variable sizes. */
788 size_t
789 tree_size (const_tree node)
790 {
791 const enum tree_code code = TREE_CODE (node);
792 switch (code)
793 {
794 case INTEGER_CST:
795 return (sizeof (struct tree_int_cst)
796 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
797
798 case TREE_BINFO:
799 return (offsetof (struct tree_binfo, base_binfos)
800 + vec<tree, va_gc>
801 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
802
803 case TREE_VEC:
804 return (sizeof (struct tree_vec)
805 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
806
807 case VECTOR_CST:
808 return (sizeof (struct tree_vector)
809 + (TYPE_VECTOR_SUBPARTS (TREE_TYPE (node)) - 1) * sizeof (tree));
810
811 case STRING_CST:
812 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
813
814 case OMP_CLAUSE:
815 return (sizeof (struct tree_omp_clause)
816 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
817 * sizeof (tree));
818
819 default:
820 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
821 return (sizeof (struct tree_exp)
822 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
823 else
824 return tree_code_size (code);
825 }
826 }
827
828 /* Record interesting allocation statistics for a tree node with CODE
829 and LENGTH. */
830
831 static void
832 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
833 size_t length ATTRIBUTE_UNUSED)
834 {
835 enum tree_code_class type = TREE_CODE_CLASS (code);
836 tree_node_kind kind;
837
838 if (!GATHER_STATISTICS)
839 return;
840
841 switch (type)
842 {
843 case tcc_declaration: /* A decl node */
844 kind = d_kind;
845 break;
846
847 case tcc_type: /* a type node */
848 kind = t_kind;
849 break;
850
851 case tcc_statement: /* an expression with side effects */
852 kind = s_kind;
853 break;
854
855 case tcc_reference: /* a reference */
856 kind = r_kind;
857 break;
858
859 case tcc_expression: /* an expression */
860 case tcc_comparison: /* a comparison expression */
861 case tcc_unary: /* a unary arithmetic expression */
862 case tcc_binary: /* a binary arithmetic expression */
863 kind = e_kind;
864 break;
865
866 case tcc_constant: /* a constant */
867 kind = c_kind;
868 break;
869
870 case tcc_exceptional: /* something random, like an identifier. */
871 switch (code)
872 {
873 case IDENTIFIER_NODE:
874 kind = id_kind;
875 break;
876
877 case TREE_VEC:
878 kind = vec_kind;
879 break;
880
881 case TREE_BINFO:
882 kind = binfo_kind;
883 break;
884
885 case SSA_NAME:
886 kind = ssa_name_kind;
887 break;
888
889 case BLOCK:
890 kind = b_kind;
891 break;
892
893 case CONSTRUCTOR:
894 kind = constr_kind;
895 break;
896
897 case OMP_CLAUSE:
898 kind = omp_clause_kind;
899 break;
900
901 default:
902 kind = x_kind;
903 break;
904 }
905 break;
906
907 case tcc_vl_exp:
908 kind = e_kind;
909 break;
910
911 default:
912 gcc_unreachable ();
913 }
914
915 tree_code_counts[(int) code]++;
916 tree_node_counts[(int) kind]++;
917 tree_node_sizes[(int) kind] += length;
918 }
919
920 /* Allocate and return a new UID from the DECL_UID namespace. */
921
922 int
923 allocate_decl_uid (void)
924 {
925 return next_decl_uid++;
926 }
927
928 /* Return a newly allocated node of code CODE. For decl and type
929 nodes, some other fields are initialized. The rest of the node is
930 initialized to zero. This function cannot be used for TREE_VEC,
931 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
932 tree_code_size.
933
934 Achoo! I got a code in the node. */
935
936 tree
937 make_node_stat (enum tree_code code MEM_STAT_DECL)
938 {
939 tree t;
940 enum tree_code_class type = TREE_CODE_CLASS (code);
941 size_t length = tree_code_size (code);
942
943 record_node_allocation_statistics (code, length);
944
945 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
946 TREE_SET_CODE (t, code);
947
948 switch (type)
949 {
950 case tcc_statement:
951 TREE_SIDE_EFFECTS (t) = 1;
952 break;
953
954 case tcc_declaration:
955 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
956 {
957 if (code == FUNCTION_DECL)
958 {
959 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
960 DECL_MODE (t) = FUNCTION_MODE;
961 }
962 else
963 DECL_ALIGN (t) = 1;
964 }
965 DECL_SOURCE_LOCATION (t) = input_location;
966 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
967 DECL_UID (t) = --next_debug_decl_uid;
968 else
969 {
970 DECL_UID (t) = allocate_decl_uid ();
971 SET_DECL_PT_UID (t, -1);
972 }
973 if (TREE_CODE (t) == LABEL_DECL)
974 LABEL_DECL_UID (t) = -1;
975
976 break;
977
978 case tcc_type:
979 TYPE_UID (t) = next_type_uid++;
980 TYPE_ALIGN (t) = BITS_PER_UNIT;
981 TYPE_USER_ALIGN (t) = 0;
982 TYPE_MAIN_VARIANT (t) = t;
983 TYPE_CANONICAL (t) = t;
984
985 /* Default to no attributes for type, but let target change that. */
986 TYPE_ATTRIBUTES (t) = NULL_TREE;
987 targetm.set_default_type_attributes (t);
988
989 /* We have not yet computed the alias set for this type. */
990 TYPE_ALIAS_SET (t) = -1;
991 break;
992
993 case tcc_constant:
994 TREE_CONSTANT (t) = 1;
995 break;
996
997 case tcc_expression:
998 switch (code)
999 {
1000 case INIT_EXPR:
1001 case MODIFY_EXPR:
1002 case VA_ARG_EXPR:
1003 case PREDECREMENT_EXPR:
1004 case PREINCREMENT_EXPR:
1005 case POSTDECREMENT_EXPR:
1006 case POSTINCREMENT_EXPR:
1007 /* All of these have side-effects, no matter what their
1008 operands are. */
1009 TREE_SIDE_EFFECTS (t) = 1;
1010 break;
1011
1012 default:
1013 break;
1014 }
1015 break;
1016
1017 default:
1018 /* Other classes need no special treatment. */
1019 break;
1020 }
1021
1022 return t;
1023 }
1024 \f
1025 /* Return a new node with the same contents as NODE except that its
1026 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1027
1028 tree
1029 copy_node_stat (tree node MEM_STAT_DECL)
1030 {
1031 tree t;
1032 enum tree_code code = TREE_CODE (node);
1033 size_t length;
1034
1035 gcc_assert (code != STATEMENT_LIST);
1036
1037 length = tree_size (node);
1038 record_node_allocation_statistics (code, length);
1039 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1040 memcpy (t, node, length);
1041
1042 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1043 TREE_CHAIN (t) = 0;
1044 TREE_ASM_WRITTEN (t) = 0;
1045 TREE_VISITED (t) = 0;
1046
1047 if (TREE_CODE_CLASS (code) == tcc_declaration)
1048 {
1049 if (code == DEBUG_EXPR_DECL)
1050 DECL_UID (t) = --next_debug_decl_uid;
1051 else
1052 {
1053 DECL_UID (t) = allocate_decl_uid ();
1054 if (DECL_PT_UID_SET_P (node))
1055 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1056 }
1057 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
1058 && DECL_HAS_VALUE_EXPR_P (node))
1059 {
1060 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1061 DECL_HAS_VALUE_EXPR_P (t) = 1;
1062 }
1063 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1064 if (TREE_CODE (node) == VAR_DECL)
1065 {
1066 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1067 t->decl_with_vis.symtab_node = NULL;
1068 }
1069 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
1070 {
1071 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1072 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1073 }
1074 if (TREE_CODE (node) == FUNCTION_DECL)
1075 {
1076 DECL_STRUCT_FUNCTION (t) = NULL;
1077 t->decl_with_vis.symtab_node = NULL;
1078 }
1079 }
1080 else if (TREE_CODE_CLASS (code) == tcc_type)
1081 {
1082 TYPE_UID (t) = next_type_uid++;
1083 /* The following is so that the debug code for
1084 the copy is different from the original type.
1085 The two statements usually duplicate each other
1086 (because they clear fields of the same union),
1087 but the optimizer should catch that. */
1088 TYPE_SYMTAB_POINTER (t) = 0;
1089 TYPE_SYMTAB_ADDRESS (t) = 0;
1090
1091 /* Do not copy the values cache. */
1092 if (TYPE_CACHED_VALUES_P (t))
1093 {
1094 TYPE_CACHED_VALUES_P (t) = 0;
1095 TYPE_CACHED_VALUES (t) = NULL_TREE;
1096 }
1097 }
1098
1099 return t;
1100 }
1101
1102 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1103 For example, this can copy a list made of TREE_LIST nodes. */
1104
1105 tree
1106 copy_list (tree list)
1107 {
1108 tree head;
1109 tree prev, next;
1110
1111 if (list == 0)
1112 return 0;
1113
1114 head = prev = copy_node (list);
1115 next = TREE_CHAIN (list);
1116 while (next)
1117 {
1118 TREE_CHAIN (prev) = copy_node (next);
1119 prev = TREE_CHAIN (prev);
1120 next = TREE_CHAIN (next);
1121 }
1122 return head;
1123 }
1124
1125 \f
1126 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1127 INTEGER_CST with value CST and type TYPE. */
1128
1129 static unsigned int
1130 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1131 {
1132 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1133 /* We need an extra zero HWI if CST is an unsigned integer with its
1134 upper bit set, and if CST occupies a whole number of HWIs. */
1135 if (TYPE_UNSIGNED (type)
1136 && wi::neg_p (cst)
1137 && (cst.get_precision () % HOST_BITS_PER_WIDE_INT) == 0)
1138 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1139 return cst.get_len ();
1140 }
1141
1142 /* Return a new INTEGER_CST with value CST and type TYPE. */
1143
1144 static tree
1145 build_new_int_cst (tree type, const wide_int &cst)
1146 {
1147 unsigned int len = cst.get_len ();
1148 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1149 tree nt = make_int_cst (len, ext_len);
1150
1151 if (len < ext_len)
1152 {
1153 --ext_len;
1154 TREE_INT_CST_ELT (nt, ext_len) = 0;
1155 for (unsigned int i = len; i < ext_len; ++i)
1156 TREE_INT_CST_ELT (nt, i) = -1;
1157 }
1158 else if (TYPE_UNSIGNED (type)
1159 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1160 {
1161 len--;
1162 TREE_INT_CST_ELT (nt, len)
1163 = zext_hwi (cst.elt (len),
1164 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1165 }
1166
1167 for (unsigned int i = 0; i < len; i++)
1168 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1169 TREE_TYPE (nt) = type;
1170 return nt;
1171 }
1172
1173 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1174
1175 tree
1176 build_int_cst (tree type, HOST_WIDE_INT low)
1177 {
1178 /* Support legacy code. */
1179 if (!type)
1180 type = integer_type_node;
1181
1182 return wide_int_to_tree (type, wi::shwi (low, TYPE_PRECISION (type)));
1183 }
1184
1185 tree
1186 build_int_cstu (tree type, unsigned HOST_WIDE_INT cst)
1187 {
1188 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1189 }
1190
1191 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1192
1193 tree
1194 build_int_cst_type (tree type, HOST_WIDE_INT low)
1195 {
1196 gcc_assert (type);
1197 return wide_int_to_tree (type, wi::shwi (low, TYPE_PRECISION (type)));
1198 }
1199
1200 /* Constructs tree in type TYPE from with value given by CST. Signedness
1201 of CST is assumed to be the same as the signedness of TYPE. */
1202
1203 tree
1204 double_int_to_tree (tree type, double_int cst)
1205 {
1206 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1207 }
1208
1209 /* We force the wide_int CST to the range of the type TYPE by sign or
1210 zero extending it. OVERFLOWABLE indicates if we are interested in
1211 overflow of the value, when >0 we are only interested in signed
1212 overflow, for <0 we are interested in any overflow. OVERFLOWED
1213 indicates whether overflow has already occurred. CONST_OVERFLOWED
1214 indicates whether constant overflow has already occurred. We force
1215 T's value to be within range of T's type (by setting to 0 or 1 all
1216 the bits outside the type's range). We set TREE_OVERFLOWED if,
1217 OVERFLOWED is nonzero,
1218 or OVERFLOWABLE is >0 and signed overflow occurs
1219 or OVERFLOWABLE is <0 and any overflow occurs
1220 We return a new tree node for the extended wide_int. The node
1221 is shared if no overflow flags are set. */
1222
1223
1224 tree
1225 force_fit_type (tree type, const wide_int_ref &cst,
1226 int overflowable, bool overflowed)
1227 {
1228 signop sign = TYPE_SIGN (type);
1229
1230 /* If we need to set overflow flags, return a new unshared node. */
1231 if (overflowed || !wi::fits_to_tree_p (cst, type))
1232 {
1233 if (overflowed
1234 || overflowable < 0
1235 || (overflowable > 0 && sign == SIGNED))
1236 {
1237 wide_int tmp = wide_int::from (cst, TYPE_PRECISION (type), sign);
1238 tree t = build_new_int_cst (type, tmp);
1239 TREE_OVERFLOW (t) = 1;
1240 return t;
1241 }
1242 }
1243
1244 /* Else build a shared node. */
1245 return wide_int_to_tree (type, cst);
1246 }
1247
1248 /* These are the hash table functions for the hash table of INTEGER_CST
1249 nodes of a sizetype. */
1250
1251 /* Return the hash code code X, an INTEGER_CST. */
1252
1253 static hashval_t
1254 int_cst_hash_hash (const void *x)
1255 {
1256 const_tree const t = (const_tree) x;
1257 hashval_t code = htab_hash_pointer (TREE_TYPE (t));
1258 int i;
1259
1260 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1261 code ^= TREE_INT_CST_ELT (t, i);
1262
1263 return code;
1264 }
1265
1266 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1267 is the same as that given by *Y, which is the same. */
1268
1269 static int
1270 int_cst_hash_eq (const void *x, const void *y)
1271 {
1272 const_tree const xt = (const_tree) x;
1273 const_tree const yt = (const_tree) y;
1274
1275 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1276 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1277 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1278 return false;
1279
1280 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1281 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1282 return false;
1283
1284 return true;
1285 }
1286
1287 /* Create an INT_CST node of TYPE and value CST.
1288 The returned node is always shared. For small integers we use a
1289 per-type vector cache, for larger ones we use a single hash table.
1290 The value is extended from its precision according to the sign of
1291 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1292 the upper bits and ensures that hashing and value equality based
1293 upon the underlying HOST_WIDE_INTs works without masking. */
1294
1295 tree
1296 wide_int_to_tree (tree type, const wide_int_ref &pcst)
1297 {
1298 tree t;
1299 int ix = -1;
1300 int limit = 0;
1301
1302 gcc_assert (type);
1303 unsigned int prec = TYPE_PRECISION (type);
1304 signop sgn = TYPE_SIGN (type);
1305
1306 /* Verify that everything is canonical. */
1307 int l = pcst.get_len ();
1308 if (l > 1)
1309 {
1310 if (pcst.elt (l - 1) == 0)
1311 gcc_checking_assert (pcst.elt (l - 2) < 0);
1312 if (pcst.elt (l - 1) == (HOST_WIDE_INT) -1)
1313 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1314 }
1315
1316 wide_int cst = wide_int::from (pcst, prec, sgn);
1317 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1318
1319 if (ext_len == 1)
1320 {
1321 /* We just need to store a single HOST_WIDE_INT. */
1322 HOST_WIDE_INT hwi;
1323 if (TYPE_UNSIGNED (type))
1324 hwi = cst.to_uhwi ();
1325 else
1326 hwi = cst.to_shwi ();
1327
1328 switch (TREE_CODE (type))
1329 {
1330 case NULLPTR_TYPE:
1331 gcc_assert (hwi == 0);
1332 /* Fallthru. */
1333
1334 case POINTER_TYPE:
1335 case REFERENCE_TYPE:
1336 /* Cache NULL pointer. */
1337 if (hwi == 0)
1338 {
1339 limit = 1;
1340 ix = 0;
1341 }
1342 break;
1343
1344 case BOOLEAN_TYPE:
1345 /* Cache false or true. */
1346 limit = 2;
1347 if (hwi < 2)
1348 ix = hwi;
1349 break;
1350
1351 case INTEGER_TYPE:
1352 case OFFSET_TYPE:
1353 if (TYPE_SIGN (type) == UNSIGNED)
1354 {
1355 /* Cache [0, N). */
1356 limit = INTEGER_SHARE_LIMIT;
1357 if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1358 ix = hwi;
1359 }
1360 else
1361 {
1362 /* Cache [-1, N). */
1363 limit = INTEGER_SHARE_LIMIT + 1;
1364 if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1365 ix = hwi + 1;
1366 }
1367 break;
1368
1369 case ENUMERAL_TYPE:
1370 break;
1371
1372 default:
1373 gcc_unreachable ();
1374 }
1375
1376 if (ix >= 0)
1377 {
1378 /* Look for it in the type's vector of small shared ints. */
1379 if (!TYPE_CACHED_VALUES_P (type))
1380 {
1381 TYPE_CACHED_VALUES_P (type) = 1;
1382 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1383 }
1384
1385 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1386 if (t)
1387 /* Make sure no one is clobbering the shared constant. */
1388 gcc_checking_assert (TREE_TYPE (t) == type
1389 && TREE_INT_CST_NUNITS (t) == 1
1390 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1391 && TREE_INT_CST_EXT_NUNITS (t) == 1
1392 && TREE_INT_CST_ELT (t, 0) == hwi);
1393 else
1394 {
1395 /* Create a new shared int. */
1396 t = build_new_int_cst (type, cst);
1397 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1398 }
1399 }
1400 else
1401 {
1402 /* Use the cache of larger shared ints, using int_cst_node as
1403 a temporary. */
1404 void **slot;
1405
1406 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1407 TREE_TYPE (int_cst_node) = type;
1408
1409 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1410 t = (tree) *slot;
1411 if (!t)
1412 {
1413 /* Insert this one into the hash table. */
1414 t = int_cst_node;
1415 *slot = t;
1416 /* Make a new node for next time round. */
1417 int_cst_node = make_int_cst (1, 1);
1418 }
1419 }
1420 }
1421 else
1422 {
1423 /* The value either hashes properly or we drop it on the floor
1424 for the gc to take care of. There will not be enough of them
1425 to worry about. */
1426 void **slot;
1427
1428 tree nt = build_new_int_cst (type, cst);
1429 slot = htab_find_slot (int_cst_hash_table, nt, INSERT);
1430 t = (tree) *slot;
1431 if (!t)
1432 {
1433 /* Insert this one into the hash table. */
1434 t = nt;
1435 *slot = t;
1436 }
1437 }
1438
1439 return t;
1440 }
1441
1442 void
1443 cache_integer_cst (tree t)
1444 {
1445 tree type = TREE_TYPE (t);
1446 int ix = -1;
1447 int limit = 0;
1448 int prec = TYPE_PRECISION (type);
1449
1450 gcc_assert (!TREE_OVERFLOW (t));
1451
1452 switch (TREE_CODE (type))
1453 {
1454 case NULLPTR_TYPE:
1455 gcc_assert (integer_zerop (t));
1456 /* Fallthru. */
1457
1458 case POINTER_TYPE:
1459 case REFERENCE_TYPE:
1460 /* Cache NULL pointer. */
1461 if (integer_zerop (t))
1462 {
1463 limit = 1;
1464 ix = 0;
1465 }
1466 break;
1467
1468 case BOOLEAN_TYPE:
1469 /* Cache false or true. */
1470 limit = 2;
1471 if (wi::ltu_p (t, 2))
1472 ix = TREE_INT_CST_ELT (t, 0);
1473 break;
1474
1475 case INTEGER_TYPE:
1476 case OFFSET_TYPE:
1477 if (TYPE_UNSIGNED (type))
1478 {
1479 /* Cache 0..N */
1480 limit = INTEGER_SHARE_LIMIT;
1481
1482 /* This is a little hokie, but if the prec is smaller than
1483 what is necessary to hold INTEGER_SHARE_LIMIT, then the
1484 obvious test will not get the correct answer. */
1485 if (prec < HOST_BITS_PER_WIDE_INT)
1486 {
1487 if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1488 ix = tree_to_uhwi (t);
1489 }
1490 else if (wi::ltu_p (t, INTEGER_SHARE_LIMIT))
1491 ix = tree_to_uhwi (t);
1492 }
1493 else
1494 {
1495 /* Cache -1..N */
1496 limit = INTEGER_SHARE_LIMIT + 1;
1497
1498 if (integer_minus_onep (t))
1499 ix = 0;
1500 else if (!wi::neg_p (t))
1501 {
1502 if (prec < HOST_BITS_PER_WIDE_INT)
1503 {
1504 if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1505 ix = tree_to_shwi (t) + 1;
1506 }
1507 else if (wi::ltu_p (t, INTEGER_SHARE_LIMIT))
1508 ix = tree_to_shwi (t) + 1;
1509 }
1510 }
1511 break;
1512
1513 case ENUMERAL_TYPE:
1514 break;
1515
1516 default:
1517 gcc_unreachable ();
1518 }
1519
1520 if (ix >= 0)
1521 {
1522 /* Look for it in the type's vector of small shared ints. */
1523 if (!TYPE_CACHED_VALUES_P (type))
1524 {
1525 TYPE_CACHED_VALUES_P (type) = 1;
1526 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1527 }
1528
1529 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1530 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1531 }
1532 else
1533 {
1534 /* Use the cache of larger shared ints. */
1535 void **slot;
1536
1537 slot = htab_find_slot (int_cst_hash_table, t, INSERT);
1538 /* If there is already an entry for the number verify it's the
1539 same. */
1540 if (*slot)
1541 gcc_assert (wi::eq_p (tree (*slot), t));
1542 else
1543 /* Otherwise insert this one into the hash table. */
1544 *slot = t;
1545 }
1546 }
1547
1548
1549 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1550 and the rest are zeros. */
1551
1552 tree
1553 build_low_bits_mask (tree type, unsigned bits)
1554 {
1555 gcc_assert (bits <= TYPE_PRECISION (type));
1556
1557 return wide_int_to_tree (type, wi::mask (bits, false,
1558 TYPE_PRECISION (type)));
1559 }
1560
1561 /* Checks that X is integer constant that can be expressed in (unsigned)
1562 HOST_WIDE_INT without loss of precision. */
1563
1564 bool
1565 cst_and_fits_in_hwi (const_tree x)
1566 {
1567 if (TREE_CODE (x) != INTEGER_CST)
1568 return false;
1569
1570 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1571 return false;
1572
1573 return TREE_INT_CST_NUNITS (x) == 1;
1574 }
1575
1576 /* Build a newly constructed TREE_VEC node of length LEN. */
1577
1578 tree
1579 make_vector_stat (unsigned len MEM_STAT_DECL)
1580 {
1581 tree t;
1582 unsigned length = (len - 1) * sizeof (tree) + sizeof (struct tree_vector);
1583
1584 record_node_allocation_statistics (VECTOR_CST, length);
1585
1586 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1587
1588 TREE_SET_CODE (t, VECTOR_CST);
1589 TREE_CONSTANT (t) = 1;
1590
1591 return t;
1592 }
1593
1594 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1595 are in a list pointed to by VALS. */
1596
1597 tree
1598 build_vector_stat (tree type, tree *vals MEM_STAT_DECL)
1599 {
1600 int over = 0;
1601 unsigned cnt = 0;
1602 tree v = make_vector (TYPE_VECTOR_SUBPARTS (type));
1603 TREE_TYPE (v) = type;
1604
1605 /* Iterate through elements and check for overflow. */
1606 for (cnt = 0; cnt < TYPE_VECTOR_SUBPARTS (type); ++cnt)
1607 {
1608 tree value = vals[cnt];
1609
1610 VECTOR_CST_ELT (v, cnt) = value;
1611
1612 /* Don't crash if we get an address constant. */
1613 if (!CONSTANT_CLASS_P (value))
1614 continue;
1615
1616 over |= TREE_OVERFLOW (value);
1617 }
1618
1619 TREE_OVERFLOW (v) = over;
1620 return v;
1621 }
1622
1623 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1624 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1625
1626 tree
1627 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1628 {
1629 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
1630 unsigned HOST_WIDE_INT idx;
1631 tree value;
1632
1633 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1634 vec[idx] = value;
1635 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1636 vec[idx] = build_zero_cst (TREE_TYPE (type));
1637
1638 return build_vector (type, vec);
1639 }
1640
1641 /* Build a vector of type VECTYPE where all the elements are SCs. */
1642 tree
1643 build_vector_from_val (tree vectype, tree sc)
1644 {
1645 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1646
1647 if (sc == error_mark_node)
1648 return sc;
1649
1650 /* Verify that the vector type is suitable for SC. Note that there
1651 is some inconsistency in the type-system with respect to restrict
1652 qualifications of pointers. Vector types always have a main-variant
1653 element type and the qualification is applied to the vector-type.
1654 So TREE_TYPE (vector-type) does not return a properly qualified
1655 vector element-type. */
1656 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1657 TREE_TYPE (vectype)));
1658
1659 if (CONSTANT_CLASS_P (sc))
1660 {
1661 tree *v = XALLOCAVEC (tree, nunits);
1662 for (i = 0; i < nunits; ++i)
1663 v[i] = sc;
1664 return build_vector (vectype, v);
1665 }
1666 else
1667 {
1668 vec<constructor_elt, va_gc> *v;
1669 vec_alloc (v, nunits);
1670 for (i = 0; i < nunits; ++i)
1671 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1672 return build_constructor (vectype, v);
1673 }
1674 }
1675
1676 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1677 are in the vec pointed to by VALS. */
1678 tree
1679 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1680 {
1681 tree c = make_node (CONSTRUCTOR);
1682 unsigned int i;
1683 constructor_elt *elt;
1684 bool constant_p = true;
1685 bool side_effects_p = false;
1686
1687 TREE_TYPE (c) = type;
1688 CONSTRUCTOR_ELTS (c) = vals;
1689
1690 FOR_EACH_VEC_SAFE_ELT (vals, i, elt)
1691 {
1692 /* Mostly ctors will have elts that don't have side-effects, so
1693 the usual case is to scan all the elements. Hence a single
1694 loop for both const and side effects, rather than one loop
1695 each (with early outs). */
1696 if (!TREE_CONSTANT (elt->value))
1697 constant_p = false;
1698 if (TREE_SIDE_EFFECTS (elt->value))
1699 side_effects_p = true;
1700 }
1701
1702 TREE_SIDE_EFFECTS (c) = side_effects_p;
1703 TREE_CONSTANT (c) = constant_p;
1704
1705 return c;
1706 }
1707
1708 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1709 INDEX and VALUE. */
1710 tree
1711 build_constructor_single (tree type, tree index, tree value)
1712 {
1713 vec<constructor_elt, va_gc> *v;
1714 constructor_elt elt = {index, value};
1715
1716 vec_alloc (v, 1);
1717 v->quick_push (elt);
1718
1719 return build_constructor (type, v);
1720 }
1721
1722
1723 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1724 are in a list pointed to by VALS. */
1725 tree
1726 build_constructor_from_list (tree type, tree vals)
1727 {
1728 tree t;
1729 vec<constructor_elt, va_gc> *v = NULL;
1730
1731 if (vals)
1732 {
1733 vec_alloc (v, list_length (vals));
1734 for (t = vals; t; t = TREE_CHAIN (t))
1735 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1736 }
1737
1738 return build_constructor (type, v);
1739 }
1740
1741 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
1742 of elements, provided as index/value pairs. */
1743
1744 tree
1745 build_constructor_va (tree type, int nelts, ...)
1746 {
1747 vec<constructor_elt, va_gc> *v = NULL;
1748 va_list p;
1749
1750 va_start (p, nelts);
1751 vec_alloc (v, nelts);
1752 while (nelts--)
1753 {
1754 tree index = va_arg (p, tree);
1755 tree value = va_arg (p, tree);
1756 CONSTRUCTOR_APPEND_ELT (v, index, value);
1757 }
1758 va_end (p);
1759 return build_constructor (type, v);
1760 }
1761
1762 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1763
1764 tree
1765 build_fixed (tree type, FIXED_VALUE_TYPE f)
1766 {
1767 tree v;
1768 FIXED_VALUE_TYPE *fp;
1769
1770 v = make_node (FIXED_CST);
1771 fp = ggc_alloc<fixed_value> ();
1772 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1773
1774 TREE_TYPE (v) = type;
1775 TREE_FIXED_CST_PTR (v) = fp;
1776 return v;
1777 }
1778
1779 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1780
1781 tree
1782 build_real (tree type, REAL_VALUE_TYPE d)
1783 {
1784 tree v;
1785 REAL_VALUE_TYPE *dp;
1786 int overflow = 0;
1787
1788 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1789 Consider doing it via real_convert now. */
1790
1791 v = make_node (REAL_CST);
1792 dp = ggc_alloc<real_value> ();
1793 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1794
1795 TREE_TYPE (v) = type;
1796 TREE_REAL_CST_PTR (v) = dp;
1797 TREE_OVERFLOW (v) = overflow;
1798 return v;
1799 }
1800
1801 /* Return a new REAL_CST node whose type is TYPE
1802 and whose value is the integer value of the INTEGER_CST node I. */
1803
1804 REAL_VALUE_TYPE
1805 real_value_from_int_cst (const_tree type, const_tree i)
1806 {
1807 REAL_VALUE_TYPE d;
1808
1809 /* Clear all bits of the real value type so that we can later do
1810 bitwise comparisons to see if two values are the same. */
1811 memset (&d, 0, sizeof d);
1812
1813 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, i,
1814 TYPE_SIGN (TREE_TYPE (i)));
1815 return d;
1816 }
1817
1818 /* Given a tree representing an integer constant I, return a tree
1819 representing the same value as a floating-point constant of type TYPE. */
1820
1821 tree
1822 build_real_from_int_cst (tree type, const_tree i)
1823 {
1824 tree v;
1825 int overflow = TREE_OVERFLOW (i);
1826
1827 v = build_real (type, real_value_from_int_cst (type, i));
1828
1829 TREE_OVERFLOW (v) |= overflow;
1830 return v;
1831 }
1832
1833 /* Return a newly constructed STRING_CST node whose value is
1834 the LEN characters at STR.
1835 Note that for a C string literal, LEN should include the trailing NUL.
1836 The TREE_TYPE is not initialized. */
1837
1838 tree
1839 build_string (int len, const char *str)
1840 {
1841 tree s;
1842 size_t length;
1843
1844 /* Do not waste bytes provided by padding of struct tree_string. */
1845 length = len + offsetof (struct tree_string, str) + 1;
1846
1847 record_node_allocation_statistics (STRING_CST, length);
1848
1849 s = (tree) ggc_internal_alloc (length);
1850
1851 memset (s, 0, sizeof (struct tree_typed));
1852 TREE_SET_CODE (s, STRING_CST);
1853 TREE_CONSTANT (s) = 1;
1854 TREE_STRING_LENGTH (s) = len;
1855 memcpy (s->string.str, str, len);
1856 s->string.str[len] = '\0';
1857
1858 return s;
1859 }
1860
1861 /* Return a newly constructed COMPLEX_CST node whose value is
1862 specified by the real and imaginary parts REAL and IMAG.
1863 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1864 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1865
1866 tree
1867 build_complex (tree type, tree real, tree imag)
1868 {
1869 tree t = make_node (COMPLEX_CST);
1870
1871 TREE_REALPART (t) = real;
1872 TREE_IMAGPART (t) = imag;
1873 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1874 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1875 return t;
1876 }
1877
1878 /* Return a constant of arithmetic type TYPE which is the
1879 multiplicative identity of the set TYPE. */
1880
1881 tree
1882 build_one_cst (tree type)
1883 {
1884 switch (TREE_CODE (type))
1885 {
1886 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1887 case POINTER_TYPE: case REFERENCE_TYPE:
1888 case OFFSET_TYPE:
1889 return build_int_cst (type, 1);
1890
1891 case REAL_TYPE:
1892 return build_real (type, dconst1);
1893
1894 case FIXED_POINT_TYPE:
1895 /* We can only generate 1 for accum types. */
1896 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1897 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
1898
1899 case VECTOR_TYPE:
1900 {
1901 tree scalar = build_one_cst (TREE_TYPE (type));
1902
1903 return build_vector_from_val (type, scalar);
1904 }
1905
1906 case COMPLEX_TYPE:
1907 return build_complex (type,
1908 build_one_cst (TREE_TYPE (type)),
1909 build_zero_cst (TREE_TYPE (type)));
1910
1911 default:
1912 gcc_unreachable ();
1913 }
1914 }
1915
1916 /* Return an integer of type TYPE containing all 1's in as much precision as
1917 it contains, or a complex or vector whose subparts are such integers. */
1918
1919 tree
1920 build_all_ones_cst (tree type)
1921 {
1922 if (TREE_CODE (type) == COMPLEX_TYPE)
1923 {
1924 tree scalar = build_all_ones_cst (TREE_TYPE (type));
1925 return build_complex (type, scalar, scalar);
1926 }
1927 else
1928 return build_minus_one_cst (type);
1929 }
1930
1931 /* Return a constant of arithmetic type TYPE which is the
1932 opposite of the multiplicative identity of the set TYPE. */
1933
1934 tree
1935 build_minus_one_cst (tree type)
1936 {
1937 switch (TREE_CODE (type))
1938 {
1939 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1940 case POINTER_TYPE: case REFERENCE_TYPE:
1941 case OFFSET_TYPE:
1942 return build_int_cst (type, -1);
1943
1944 case REAL_TYPE:
1945 return build_real (type, dconstm1);
1946
1947 case FIXED_POINT_TYPE:
1948 /* We can only generate 1 for accum types. */
1949 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1950 return build_fixed (type, fixed_from_double_int (double_int_minus_one,
1951 TYPE_MODE (type)));
1952
1953 case VECTOR_TYPE:
1954 {
1955 tree scalar = build_minus_one_cst (TREE_TYPE (type));
1956
1957 return build_vector_from_val (type, scalar);
1958 }
1959
1960 case COMPLEX_TYPE:
1961 return build_complex (type,
1962 build_minus_one_cst (TREE_TYPE (type)),
1963 build_zero_cst (TREE_TYPE (type)));
1964
1965 default:
1966 gcc_unreachable ();
1967 }
1968 }
1969
1970 /* Build 0 constant of type TYPE. This is used by constructor folding
1971 and thus the constant should be represented in memory by
1972 zero(es). */
1973
1974 tree
1975 build_zero_cst (tree type)
1976 {
1977 switch (TREE_CODE (type))
1978 {
1979 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1980 case POINTER_TYPE: case REFERENCE_TYPE:
1981 case OFFSET_TYPE: case NULLPTR_TYPE:
1982 return build_int_cst (type, 0);
1983
1984 case REAL_TYPE:
1985 return build_real (type, dconst0);
1986
1987 case FIXED_POINT_TYPE:
1988 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1989
1990 case VECTOR_TYPE:
1991 {
1992 tree scalar = build_zero_cst (TREE_TYPE (type));
1993
1994 return build_vector_from_val (type, scalar);
1995 }
1996
1997 case COMPLEX_TYPE:
1998 {
1999 tree zero = build_zero_cst (TREE_TYPE (type));
2000
2001 return build_complex (type, zero, zero);
2002 }
2003
2004 default:
2005 if (!AGGREGATE_TYPE_P (type))
2006 return fold_convert (type, integer_zero_node);
2007 return build_constructor (type, NULL);
2008 }
2009 }
2010
2011
2012 /* Build a BINFO with LEN language slots. */
2013
2014 tree
2015 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
2016 {
2017 tree t;
2018 size_t length = (offsetof (struct tree_binfo, base_binfos)
2019 + vec<tree, va_gc>::embedded_size (base_binfos));
2020
2021 record_node_allocation_statistics (TREE_BINFO, length);
2022
2023 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2024
2025 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2026
2027 TREE_SET_CODE (t, TREE_BINFO);
2028
2029 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2030
2031 return t;
2032 }
2033
2034 /* Create a CASE_LABEL_EXPR tree node and return it. */
2035
2036 tree
2037 build_case_label (tree low_value, tree high_value, tree label_decl)
2038 {
2039 tree t = make_node (CASE_LABEL_EXPR);
2040
2041 TREE_TYPE (t) = void_type_node;
2042 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2043
2044 CASE_LOW (t) = low_value;
2045 CASE_HIGH (t) = high_value;
2046 CASE_LABEL (t) = label_decl;
2047 CASE_CHAIN (t) = NULL_TREE;
2048
2049 return t;
2050 }
2051
2052 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2053 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2054 The latter determines the length of the HOST_WIDE_INT vector. */
2055
2056 tree
2057 make_int_cst_stat (int len, int ext_len MEM_STAT_DECL)
2058 {
2059 tree t;
2060 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2061 + sizeof (struct tree_int_cst));
2062
2063 gcc_assert (len);
2064 record_node_allocation_statistics (INTEGER_CST, length);
2065
2066 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2067
2068 TREE_SET_CODE (t, INTEGER_CST);
2069 TREE_INT_CST_NUNITS (t) = len;
2070 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2071 /* to_offset can only be applied to trees that are offset_int-sized
2072 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2073 must be exactly the precision of offset_int and so LEN is correct. */
2074 if (ext_len <= OFFSET_INT_ELTS)
2075 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2076 else
2077 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2078
2079 TREE_CONSTANT (t) = 1;
2080
2081 return t;
2082 }
2083
2084 /* Build a newly constructed TREE_VEC node of length LEN. */
2085
2086 tree
2087 make_tree_vec_stat (int len MEM_STAT_DECL)
2088 {
2089 tree t;
2090 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2091
2092 record_node_allocation_statistics (TREE_VEC, length);
2093
2094 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2095
2096 TREE_SET_CODE (t, TREE_VEC);
2097 TREE_VEC_LENGTH (t) = len;
2098
2099 return t;
2100 }
2101
2102 /* Grow a TREE_VEC node to new length LEN. */
2103
2104 tree
2105 grow_tree_vec_stat (tree v, int len MEM_STAT_DECL)
2106 {
2107 gcc_assert (TREE_CODE (v) == TREE_VEC);
2108
2109 int oldlen = TREE_VEC_LENGTH (v);
2110 gcc_assert (len > oldlen);
2111
2112 int oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2113 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2114
2115 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2116
2117 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2118
2119 TREE_VEC_LENGTH (v) = len;
2120
2121 return v;
2122 }
2123 \f
2124 /* Return 1 if EXPR is the integer constant zero or a complex constant
2125 of zero. */
2126
2127 int
2128 integer_zerop (const_tree expr)
2129 {
2130 STRIP_NOPS (expr);
2131
2132 switch (TREE_CODE (expr))
2133 {
2134 case INTEGER_CST:
2135 return wi::eq_p (expr, 0);
2136 case COMPLEX_CST:
2137 return (integer_zerop (TREE_REALPART (expr))
2138 && integer_zerop (TREE_IMAGPART (expr)));
2139 case VECTOR_CST:
2140 {
2141 unsigned i;
2142 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2143 if (!integer_zerop (VECTOR_CST_ELT (expr, i)))
2144 return false;
2145 return true;
2146 }
2147 default:
2148 return false;
2149 }
2150 }
2151
2152 /* Return 1 if EXPR is the integer constant one or the corresponding
2153 complex constant. */
2154
2155 int
2156 integer_onep (const_tree expr)
2157 {
2158 STRIP_NOPS (expr);
2159
2160 switch (TREE_CODE (expr))
2161 {
2162 case INTEGER_CST:
2163 return wi::eq_p (wi::to_widest (expr), 1);
2164 case COMPLEX_CST:
2165 return (integer_onep (TREE_REALPART (expr))
2166 && integer_zerop (TREE_IMAGPART (expr)));
2167 case VECTOR_CST:
2168 {
2169 unsigned i;
2170 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2171 if (!integer_onep (VECTOR_CST_ELT (expr, i)))
2172 return false;
2173 return true;
2174 }
2175 default:
2176 return false;
2177 }
2178 }
2179
2180 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2181 return 1 if every piece is the integer constant one. */
2182
2183 int
2184 integer_each_onep (const_tree expr)
2185 {
2186 STRIP_NOPS (expr);
2187
2188 if (TREE_CODE (expr) == COMPLEX_CST)
2189 return (integer_onep (TREE_REALPART (expr))
2190 && integer_onep (TREE_IMAGPART (expr)));
2191 else
2192 return integer_onep (expr);
2193 }
2194
2195 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2196 it contains, or a complex or vector whose subparts are such integers. */
2197
2198 int
2199 integer_all_onesp (const_tree expr)
2200 {
2201 STRIP_NOPS (expr);
2202
2203 if (TREE_CODE (expr) == COMPLEX_CST
2204 && integer_all_onesp (TREE_REALPART (expr))
2205 && integer_all_onesp (TREE_IMAGPART (expr)))
2206 return 1;
2207
2208 else if (TREE_CODE (expr) == VECTOR_CST)
2209 {
2210 unsigned i;
2211 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2212 if (!integer_all_onesp (VECTOR_CST_ELT (expr, i)))
2213 return 0;
2214 return 1;
2215 }
2216
2217 else if (TREE_CODE (expr) != INTEGER_CST)
2218 return 0;
2219
2220 return wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED) == expr;
2221 }
2222
2223 /* Return 1 if EXPR is the integer constant minus one. */
2224
2225 int
2226 integer_minus_onep (const_tree expr)
2227 {
2228 STRIP_NOPS (expr);
2229
2230 if (TREE_CODE (expr) == COMPLEX_CST)
2231 return (integer_all_onesp (TREE_REALPART (expr))
2232 && integer_zerop (TREE_IMAGPART (expr)));
2233 else
2234 return integer_all_onesp (expr);
2235 }
2236
2237 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2238 one bit on). */
2239
2240 int
2241 integer_pow2p (const_tree expr)
2242 {
2243 STRIP_NOPS (expr);
2244
2245 if (TREE_CODE (expr) == COMPLEX_CST
2246 && integer_pow2p (TREE_REALPART (expr))
2247 && integer_zerop (TREE_IMAGPART (expr)))
2248 return 1;
2249
2250 if (TREE_CODE (expr) != INTEGER_CST)
2251 return 0;
2252
2253 return wi::popcount (expr) == 1;
2254 }
2255
2256 /* Return 1 if EXPR is an integer constant other than zero or a
2257 complex constant other than zero. */
2258
2259 int
2260 integer_nonzerop (const_tree expr)
2261 {
2262 STRIP_NOPS (expr);
2263
2264 return ((TREE_CODE (expr) == INTEGER_CST
2265 && !wi::eq_p (expr, 0))
2266 || (TREE_CODE (expr) == COMPLEX_CST
2267 && (integer_nonzerop (TREE_REALPART (expr))
2268 || integer_nonzerop (TREE_IMAGPART (expr)))));
2269 }
2270
2271 /* Return 1 if EXPR is the fixed-point constant zero. */
2272
2273 int
2274 fixed_zerop (const_tree expr)
2275 {
2276 return (TREE_CODE (expr) == FIXED_CST
2277 && TREE_FIXED_CST (expr).data.is_zero ());
2278 }
2279
2280 /* Return the power of two represented by a tree node known to be a
2281 power of two. */
2282
2283 int
2284 tree_log2 (const_tree expr)
2285 {
2286 STRIP_NOPS (expr);
2287
2288 if (TREE_CODE (expr) == COMPLEX_CST)
2289 return tree_log2 (TREE_REALPART (expr));
2290
2291 return wi::exact_log2 (expr);
2292 }
2293
2294 /* Similar, but return the largest integer Y such that 2 ** Y is less
2295 than or equal to EXPR. */
2296
2297 int
2298 tree_floor_log2 (const_tree expr)
2299 {
2300 STRIP_NOPS (expr);
2301
2302 if (TREE_CODE (expr) == COMPLEX_CST)
2303 return tree_log2 (TREE_REALPART (expr));
2304
2305 return wi::floor_log2 (expr);
2306 }
2307
2308 /* Return number of known trailing zero bits in EXPR, or, if the value of
2309 EXPR is known to be zero, the precision of it's type. */
2310
2311 unsigned int
2312 tree_ctz (const_tree expr)
2313 {
2314 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2315 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2316 return 0;
2317
2318 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2319 switch (TREE_CODE (expr))
2320 {
2321 case INTEGER_CST:
2322 ret1 = wi::ctz (expr);
2323 return MIN (ret1, prec);
2324 case SSA_NAME:
2325 ret1 = wi::ctz (get_nonzero_bits (expr));
2326 return MIN (ret1, prec);
2327 case PLUS_EXPR:
2328 case MINUS_EXPR:
2329 case BIT_IOR_EXPR:
2330 case BIT_XOR_EXPR:
2331 case MIN_EXPR:
2332 case MAX_EXPR:
2333 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2334 if (ret1 == 0)
2335 return ret1;
2336 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2337 return MIN (ret1, ret2);
2338 case POINTER_PLUS_EXPR:
2339 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2340 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2341 /* Second operand is sizetype, which could be in theory
2342 wider than pointer's precision. Make sure we never
2343 return more than prec. */
2344 ret2 = MIN (ret2, prec);
2345 return MIN (ret1, ret2);
2346 case BIT_AND_EXPR:
2347 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2348 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2349 return MAX (ret1, ret2);
2350 case MULT_EXPR:
2351 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2352 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2353 return MIN (ret1 + ret2, prec);
2354 case LSHIFT_EXPR:
2355 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2356 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2357 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2358 {
2359 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2360 return MIN (ret1 + ret2, prec);
2361 }
2362 return ret1;
2363 case RSHIFT_EXPR:
2364 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2365 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2366 {
2367 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2368 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2369 if (ret1 > ret2)
2370 return ret1 - ret2;
2371 }
2372 return 0;
2373 case TRUNC_DIV_EXPR:
2374 case CEIL_DIV_EXPR:
2375 case FLOOR_DIV_EXPR:
2376 case ROUND_DIV_EXPR:
2377 case EXACT_DIV_EXPR:
2378 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2379 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2380 {
2381 int l = tree_log2 (TREE_OPERAND (expr, 1));
2382 if (l >= 0)
2383 {
2384 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2385 ret2 = l;
2386 if (ret1 > ret2)
2387 return ret1 - ret2;
2388 }
2389 }
2390 return 0;
2391 CASE_CONVERT:
2392 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2393 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2394 ret1 = prec;
2395 return MIN (ret1, prec);
2396 case SAVE_EXPR:
2397 return tree_ctz (TREE_OPERAND (expr, 0));
2398 case COND_EXPR:
2399 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2400 if (ret1 == 0)
2401 return 0;
2402 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2403 return MIN (ret1, ret2);
2404 case COMPOUND_EXPR:
2405 return tree_ctz (TREE_OPERAND (expr, 1));
2406 case ADDR_EXPR:
2407 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2408 if (ret1 > BITS_PER_UNIT)
2409 {
2410 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2411 return MIN (ret1, prec);
2412 }
2413 return 0;
2414 default:
2415 return 0;
2416 }
2417 }
2418
2419 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2420 decimal float constants, so don't return 1 for them. */
2421
2422 int
2423 real_zerop (const_tree expr)
2424 {
2425 STRIP_NOPS (expr);
2426
2427 switch (TREE_CODE (expr))
2428 {
2429 case REAL_CST:
2430 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
2431 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2432 case COMPLEX_CST:
2433 return real_zerop (TREE_REALPART (expr))
2434 && real_zerop (TREE_IMAGPART (expr));
2435 case VECTOR_CST:
2436 {
2437 unsigned i;
2438 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2439 if (!real_zerop (VECTOR_CST_ELT (expr, i)))
2440 return false;
2441 return true;
2442 }
2443 default:
2444 return false;
2445 }
2446 }
2447
2448 /* Return 1 if EXPR is the real constant one in real or complex form.
2449 Trailing zeroes matter for decimal float constants, so don't return
2450 1 for them. */
2451
2452 int
2453 real_onep (const_tree expr)
2454 {
2455 STRIP_NOPS (expr);
2456
2457 switch (TREE_CODE (expr))
2458 {
2459 case REAL_CST:
2460 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
2461 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2462 case COMPLEX_CST:
2463 return real_onep (TREE_REALPART (expr))
2464 && real_zerop (TREE_IMAGPART (expr));
2465 case VECTOR_CST:
2466 {
2467 unsigned i;
2468 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2469 if (!real_onep (VECTOR_CST_ELT (expr, i)))
2470 return false;
2471 return true;
2472 }
2473 default:
2474 return false;
2475 }
2476 }
2477
2478 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2479 matter for decimal float constants, so don't return 1 for them. */
2480
2481 int
2482 real_minus_onep (const_tree expr)
2483 {
2484 STRIP_NOPS (expr);
2485
2486 switch (TREE_CODE (expr))
2487 {
2488 case REAL_CST:
2489 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
2490 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2491 case COMPLEX_CST:
2492 return real_minus_onep (TREE_REALPART (expr))
2493 && real_zerop (TREE_IMAGPART (expr));
2494 case VECTOR_CST:
2495 {
2496 unsigned i;
2497 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2498 if (!real_minus_onep (VECTOR_CST_ELT (expr, i)))
2499 return false;
2500 return true;
2501 }
2502 default:
2503 return false;
2504 }
2505 }
2506
2507 /* Nonzero if EXP is a constant or a cast of a constant. */
2508
2509 int
2510 really_constant_p (const_tree exp)
2511 {
2512 /* This is not quite the same as STRIP_NOPS. It does more. */
2513 while (CONVERT_EXPR_P (exp)
2514 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2515 exp = TREE_OPERAND (exp, 0);
2516 return TREE_CONSTANT (exp);
2517 }
2518 \f
2519 /* Return first list element whose TREE_VALUE is ELEM.
2520 Return 0 if ELEM is not in LIST. */
2521
2522 tree
2523 value_member (tree elem, tree list)
2524 {
2525 while (list)
2526 {
2527 if (elem == TREE_VALUE (list))
2528 return list;
2529 list = TREE_CHAIN (list);
2530 }
2531 return NULL_TREE;
2532 }
2533
2534 /* Return first list element whose TREE_PURPOSE is ELEM.
2535 Return 0 if ELEM is not in LIST. */
2536
2537 tree
2538 purpose_member (const_tree elem, tree list)
2539 {
2540 while (list)
2541 {
2542 if (elem == TREE_PURPOSE (list))
2543 return list;
2544 list = TREE_CHAIN (list);
2545 }
2546 return NULL_TREE;
2547 }
2548
2549 /* Return true if ELEM is in V. */
2550
2551 bool
2552 vec_member (const_tree elem, vec<tree, va_gc> *v)
2553 {
2554 unsigned ix;
2555 tree t;
2556 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2557 if (elem == t)
2558 return true;
2559 return false;
2560 }
2561
2562 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2563 NULL_TREE. */
2564
2565 tree
2566 chain_index (int idx, tree chain)
2567 {
2568 for (; chain && idx > 0; --idx)
2569 chain = TREE_CHAIN (chain);
2570 return chain;
2571 }
2572
2573 /* Return nonzero if ELEM is part of the chain CHAIN. */
2574
2575 int
2576 chain_member (const_tree elem, const_tree chain)
2577 {
2578 while (chain)
2579 {
2580 if (elem == chain)
2581 return 1;
2582 chain = DECL_CHAIN (chain);
2583 }
2584
2585 return 0;
2586 }
2587
2588 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2589 We expect a null pointer to mark the end of the chain.
2590 This is the Lisp primitive `length'. */
2591
2592 int
2593 list_length (const_tree t)
2594 {
2595 const_tree p = t;
2596 #ifdef ENABLE_TREE_CHECKING
2597 const_tree q = t;
2598 #endif
2599 int len = 0;
2600
2601 while (p)
2602 {
2603 p = TREE_CHAIN (p);
2604 #ifdef ENABLE_TREE_CHECKING
2605 if (len % 2)
2606 q = TREE_CHAIN (q);
2607 gcc_assert (p != q);
2608 #endif
2609 len++;
2610 }
2611
2612 return len;
2613 }
2614
2615 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2616 UNION_TYPE TYPE, or NULL_TREE if none. */
2617
2618 tree
2619 first_field (const_tree type)
2620 {
2621 tree t = TYPE_FIELDS (type);
2622 while (t && TREE_CODE (t) != FIELD_DECL)
2623 t = TREE_CHAIN (t);
2624 return t;
2625 }
2626
2627 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2628 by modifying the last node in chain 1 to point to chain 2.
2629 This is the Lisp primitive `nconc'. */
2630
2631 tree
2632 chainon (tree op1, tree op2)
2633 {
2634 tree t1;
2635
2636 if (!op1)
2637 return op2;
2638 if (!op2)
2639 return op1;
2640
2641 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2642 continue;
2643 TREE_CHAIN (t1) = op2;
2644
2645 #ifdef ENABLE_TREE_CHECKING
2646 {
2647 tree t2;
2648 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2649 gcc_assert (t2 != t1);
2650 }
2651 #endif
2652
2653 return op1;
2654 }
2655
2656 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2657
2658 tree
2659 tree_last (tree chain)
2660 {
2661 tree next;
2662 if (chain)
2663 while ((next = TREE_CHAIN (chain)))
2664 chain = next;
2665 return chain;
2666 }
2667
2668 /* Reverse the order of elements in the chain T,
2669 and return the new head of the chain (old last element). */
2670
2671 tree
2672 nreverse (tree t)
2673 {
2674 tree prev = 0, decl, next;
2675 for (decl = t; decl; decl = next)
2676 {
2677 /* We shouldn't be using this function to reverse BLOCK chains; we
2678 have blocks_nreverse for that. */
2679 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2680 next = TREE_CHAIN (decl);
2681 TREE_CHAIN (decl) = prev;
2682 prev = decl;
2683 }
2684 return prev;
2685 }
2686 \f
2687 /* Return a newly created TREE_LIST node whose
2688 purpose and value fields are PARM and VALUE. */
2689
2690 tree
2691 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2692 {
2693 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2694 TREE_PURPOSE (t) = parm;
2695 TREE_VALUE (t) = value;
2696 return t;
2697 }
2698
2699 /* Build a chain of TREE_LIST nodes from a vector. */
2700
2701 tree
2702 build_tree_list_vec_stat (const vec<tree, va_gc> *vec MEM_STAT_DECL)
2703 {
2704 tree ret = NULL_TREE;
2705 tree *pp = &ret;
2706 unsigned int i;
2707 tree t;
2708 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
2709 {
2710 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2711 pp = &TREE_CHAIN (*pp);
2712 }
2713 return ret;
2714 }
2715
2716 /* Return a newly created TREE_LIST node whose
2717 purpose and value fields are PURPOSE and VALUE
2718 and whose TREE_CHAIN is CHAIN. */
2719
2720 tree
2721 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2722 {
2723 tree node;
2724
2725 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
2726 memset (node, 0, sizeof (struct tree_common));
2727
2728 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2729
2730 TREE_SET_CODE (node, TREE_LIST);
2731 TREE_CHAIN (node) = chain;
2732 TREE_PURPOSE (node) = purpose;
2733 TREE_VALUE (node) = value;
2734 return node;
2735 }
2736
2737 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2738 trees. */
2739
2740 vec<tree, va_gc> *
2741 ctor_to_vec (tree ctor)
2742 {
2743 vec<tree, va_gc> *vec;
2744 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
2745 unsigned int ix;
2746 tree val;
2747
2748 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2749 vec->quick_push (val);
2750
2751 return vec;
2752 }
2753 \f
2754 /* Return the size nominally occupied by an object of type TYPE
2755 when it resides in memory. The value is measured in units of bytes,
2756 and its data type is that normally used for type sizes
2757 (which is the first type created by make_signed_type or
2758 make_unsigned_type). */
2759
2760 tree
2761 size_in_bytes (const_tree type)
2762 {
2763 tree t;
2764
2765 if (type == error_mark_node)
2766 return integer_zero_node;
2767
2768 type = TYPE_MAIN_VARIANT (type);
2769 t = TYPE_SIZE_UNIT (type);
2770
2771 if (t == 0)
2772 {
2773 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2774 return size_zero_node;
2775 }
2776
2777 return t;
2778 }
2779
2780 /* Return the size of TYPE (in bytes) as a wide integer
2781 or return -1 if the size can vary or is larger than an integer. */
2782
2783 HOST_WIDE_INT
2784 int_size_in_bytes (const_tree type)
2785 {
2786 tree t;
2787
2788 if (type == error_mark_node)
2789 return 0;
2790
2791 type = TYPE_MAIN_VARIANT (type);
2792 t = TYPE_SIZE_UNIT (type);
2793
2794 if (t && tree_fits_uhwi_p (t))
2795 return TREE_INT_CST_LOW (t);
2796 else
2797 return -1;
2798 }
2799
2800 /* Return the maximum size of TYPE (in bytes) as a wide integer
2801 or return -1 if the size can vary or is larger than an integer. */
2802
2803 HOST_WIDE_INT
2804 max_int_size_in_bytes (const_tree type)
2805 {
2806 HOST_WIDE_INT size = -1;
2807 tree size_tree;
2808
2809 /* If this is an array type, check for a possible MAX_SIZE attached. */
2810
2811 if (TREE_CODE (type) == ARRAY_TYPE)
2812 {
2813 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2814
2815 if (size_tree && tree_fits_uhwi_p (size_tree))
2816 size = tree_to_uhwi (size_tree);
2817 }
2818
2819 /* If we still haven't been able to get a size, see if the language
2820 can compute a maximum size. */
2821
2822 if (size == -1)
2823 {
2824 size_tree = lang_hooks.types.max_size (type);
2825
2826 if (size_tree && tree_fits_uhwi_p (size_tree))
2827 size = tree_to_uhwi (size_tree);
2828 }
2829
2830 return size;
2831 }
2832 \f
2833 /* Return the bit position of FIELD, in bits from the start of the record.
2834 This is a tree of type bitsizetype. */
2835
2836 tree
2837 bit_position (const_tree field)
2838 {
2839 return bit_from_pos (DECL_FIELD_OFFSET (field),
2840 DECL_FIELD_BIT_OFFSET (field));
2841 }
2842 \f
2843 /* Return the byte position of FIELD, in bytes from the start of the record.
2844 This is a tree of type sizetype. */
2845
2846 tree
2847 byte_position (const_tree field)
2848 {
2849 return byte_from_pos (DECL_FIELD_OFFSET (field),
2850 DECL_FIELD_BIT_OFFSET (field));
2851 }
2852
2853 /* Likewise, but return as an integer. It must be representable in
2854 that way (since it could be a signed value, we don't have the
2855 option of returning -1 like int_size_in_byte can. */
2856
2857 HOST_WIDE_INT
2858 int_byte_position (const_tree field)
2859 {
2860 return tree_to_shwi (byte_position (field));
2861 }
2862 \f
2863 /* Return the strictest alignment, in bits, that T is known to have. */
2864
2865 unsigned int
2866 expr_align (const_tree t)
2867 {
2868 unsigned int align0, align1;
2869
2870 switch (TREE_CODE (t))
2871 {
2872 CASE_CONVERT: case NON_LVALUE_EXPR:
2873 /* If we have conversions, we know that the alignment of the
2874 object must meet each of the alignments of the types. */
2875 align0 = expr_align (TREE_OPERAND (t, 0));
2876 align1 = TYPE_ALIGN (TREE_TYPE (t));
2877 return MAX (align0, align1);
2878
2879 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2880 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2881 case CLEANUP_POINT_EXPR:
2882 /* These don't change the alignment of an object. */
2883 return expr_align (TREE_OPERAND (t, 0));
2884
2885 case COND_EXPR:
2886 /* The best we can do is say that the alignment is the least aligned
2887 of the two arms. */
2888 align0 = expr_align (TREE_OPERAND (t, 1));
2889 align1 = expr_align (TREE_OPERAND (t, 2));
2890 return MIN (align0, align1);
2891
2892 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2893 meaningfully, it's always 1. */
2894 case LABEL_DECL: case CONST_DECL:
2895 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2896 case FUNCTION_DECL:
2897 gcc_assert (DECL_ALIGN (t) != 0);
2898 return DECL_ALIGN (t);
2899
2900 default:
2901 break;
2902 }
2903
2904 /* Otherwise take the alignment from that of the type. */
2905 return TYPE_ALIGN (TREE_TYPE (t));
2906 }
2907 \f
2908 /* Return, as a tree node, the number of elements for TYPE (which is an
2909 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2910
2911 tree
2912 array_type_nelts (const_tree type)
2913 {
2914 tree index_type, min, max;
2915
2916 /* If they did it with unspecified bounds, then we should have already
2917 given an error about it before we got here. */
2918 if (! TYPE_DOMAIN (type))
2919 return error_mark_node;
2920
2921 index_type = TYPE_DOMAIN (type);
2922 min = TYPE_MIN_VALUE (index_type);
2923 max = TYPE_MAX_VALUE (index_type);
2924
2925 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
2926 if (!max)
2927 return error_mark_node;
2928
2929 return (integer_zerop (min)
2930 ? max
2931 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2932 }
2933 \f
2934 /* If arg is static -- a reference to an object in static storage -- then
2935 return the object. This is not the same as the C meaning of `static'.
2936 If arg isn't static, return NULL. */
2937
2938 tree
2939 staticp (tree arg)
2940 {
2941 switch (TREE_CODE (arg))
2942 {
2943 case FUNCTION_DECL:
2944 /* Nested functions are static, even though taking their address will
2945 involve a trampoline as we unnest the nested function and create
2946 the trampoline on the tree level. */
2947 return arg;
2948
2949 case VAR_DECL:
2950 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2951 && ! DECL_THREAD_LOCAL_P (arg)
2952 && ! DECL_DLLIMPORT_P (arg)
2953 ? arg : NULL);
2954
2955 case CONST_DECL:
2956 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2957 ? arg : NULL);
2958
2959 case CONSTRUCTOR:
2960 return TREE_STATIC (arg) ? arg : NULL;
2961
2962 case LABEL_DECL:
2963 case STRING_CST:
2964 return arg;
2965
2966 case COMPONENT_REF:
2967 /* If the thing being referenced is not a field, then it is
2968 something language specific. */
2969 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2970
2971 /* If we are referencing a bitfield, we can't evaluate an
2972 ADDR_EXPR at compile time and so it isn't a constant. */
2973 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2974 return NULL;
2975
2976 return staticp (TREE_OPERAND (arg, 0));
2977
2978 case BIT_FIELD_REF:
2979 return NULL;
2980
2981 case INDIRECT_REF:
2982 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2983
2984 case ARRAY_REF:
2985 case ARRAY_RANGE_REF:
2986 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2987 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2988 return staticp (TREE_OPERAND (arg, 0));
2989 else
2990 return NULL;
2991
2992 case COMPOUND_LITERAL_EXPR:
2993 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2994
2995 default:
2996 return NULL;
2997 }
2998 }
2999
3000 \f
3001
3002
3003 /* Return whether OP is a DECL whose address is function-invariant. */
3004
3005 bool
3006 decl_address_invariant_p (const_tree op)
3007 {
3008 /* The conditions below are slightly less strict than the one in
3009 staticp. */
3010
3011 switch (TREE_CODE (op))
3012 {
3013 case PARM_DECL:
3014 case RESULT_DECL:
3015 case LABEL_DECL:
3016 case FUNCTION_DECL:
3017 return true;
3018
3019 case VAR_DECL:
3020 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3021 || DECL_THREAD_LOCAL_P (op)
3022 || DECL_CONTEXT (op) == current_function_decl
3023 || decl_function_context (op) == current_function_decl)
3024 return true;
3025 break;
3026
3027 case CONST_DECL:
3028 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3029 || decl_function_context (op) == current_function_decl)
3030 return true;
3031 break;
3032
3033 default:
3034 break;
3035 }
3036
3037 return false;
3038 }
3039
3040 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3041
3042 bool
3043 decl_address_ip_invariant_p (const_tree op)
3044 {
3045 /* The conditions below are slightly less strict than the one in
3046 staticp. */
3047
3048 switch (TREE_CODE (op))
3049 {
3050 case LABEL_DECL:
3051 case FUNCTION_DECL:
3052 case STRING_CST:
3053 return true;
3054
3055 case VAR_DECL:
3056 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3057 && !DECL_DLLIMPORT_P (op))
3058 || DECL_THREAD_LOCAL_P (op))
3059 return true;
3060 break;
3061
3062 case CONST_DECL:
3063 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3064 return true;
3065 break;
3066
3067 default:
3068 break;
3069 }
3070
3071 return false;
3072 }
3073
3074
3075 /* Return true if T is function-invariant (internal function, does
3076 not handle arithmetic; that's handled in skip_simple_arithmetic and
3077 tree_invariant_p). */
3078
3079 static bool tree_invariant_p (tree t);
3080
3081 static bool
3082 tree_invariant_p_1 (tree t)
3083 {
3084 tree op;
3085
3086 if (TREE_CONSTANT (t)
3087 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3088 return true;
3089
3090 switch (TREE_CODE (t))
3091 {
3092 case SAVE_EXPR:
3093 return true;
3094
3095 case ADDR_EXPR:
3096 op = TREE_OPERAND (t, 0);
3097 while (handled_component_p (op))
3098 {
3099 switch (TREE_CODE (op))
3100 {
3101 case ARRAY_REF:
3102 case ARRAY_RANGE_REF:
3103 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3104 || TREE_OPERAND (op, 2) != NULL_TREE
3105 || TREE_OPERAND (op, 3) != NULL_TREE)
3106 return false;
3107 break;
3108
3109 case COMPONENT_REF:
3110 if (TREE_OPERAND (op, 2) != NULL_TREE)
3111 return false;
3112 break;
3113
3114 default:;
3115 }
3116 op = TREE_OPERAND (op, 0);
3117 }
3118
3119 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3120
3121 default:
3122 break;
3123 }
3124
3125 return false;
3126 }
3127
3128 /* Return true if T is function-invariant. */
3129
3130 static bool
3131 tree_invariant_p (tree t)
3132 {
3133 tree inner = skip_simple_arithmetic (t);
3134 return tree_invariant_p_1 (inner);
3135 }
3136
3137 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3138 Do this to any expression which may be used in more than one place,
3139 but must be evaluated only once.
3140
3141 Normally, expand_expr would reevaluate the expression each time.
3142 Calling save_expr produces something that is evaluated and recorded
3143 the first time expand_expr is called on it. Subsequent calls to
3144 expand_expr just reuse the recorded value.
3145
3146 The call to expand_expr that generates code that actually computes
3147 the value is the first call *at compile time*. Subsequent calls
3148 *at compile time* generate code to use the saved value.
3149 This produces correct result provided that *at run time* control
3150 always flows through the insns made by the first expand_expr
3151 before reaching the other places where the save_expr was evaluated.
3152 You, the caller of save_expr, must make sure this is so.
3153
3154 Constants, and certain read-only nodes, are returned with no
3155 SAVE_EXPR because that is safe. Expressions containing placeholders
3156 are not touched; see tree.def for an explanation of what these
3157 are used for. */
3158
3159 tree
3160 save_expr (tree expr)
3161 {
3162 tree t = fold (expr);
3163 tree inner;
3164
3165 /* If the tree evaluates to a constant, then we don't want to hide that
3166 fact (i.e. this allows further folding, and direct checks for constants).
3167 However, a read-only object that has side effects cannot be bypassed.
3168 Since it is no problem to reevaluate literals, we just return the
3169 literal node. */
3170 inner = skip_simple_arithmetic (t);
3171 if (TREE_CODE (inner) == ERROR_MARK)
3172 return inner;
3173
3174 if (tree_invariant_p_1 (inner))
3175 return t;
3176
3177 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3178 it means that the size or offset of some field of an object depends on
3179 the value within another field.
3180
3181 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
3182 and some variable since it would then need to be both evaluated once and
3183 evaluated more than once. Front-ends must assure this case cannot
3184 happen by surrounding any such subexpressions in their own SAVE_EXPR
3185 and forcing evaluation at the proper time. */
3186 if (contains_placeholder_p (inner))
3187 return t;
3188
3189 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
3190 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
3191
3192 /* This expression might be placed ahead of a jump to ensure that the
3193 value was computed on both sides of the jump. So make sure it isn't
3194 eliminated as dead. */
3195 TREE_SIDE_EFFECTS (t) = 1;
3196 return t;
3197 }
3198
3199 /* Look inside EXPR into any simple arithmetic operations. Return the
3200 outermost non-arithmetic or non-invariant node. */
3201
3202 tree
3203 skip_simple_arithmetic (tree expr)
3204 {
3205 /* We don't care about whether this can be used as an lvalue in this
3206 context. */
3207 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3208 expr = TREE_OPERAND (expr, 0);
3209
3210 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3211 a constant, it will be more efficient to not make another SAVE_EXPR since
3212 it will allow better simplification and GCSE will be able to merge the
3213 computations if they actually occur. */
3214 while (true)
3215 {
3216 if (UNARY_CLASS_P (expr))
3217 expr = TREE_OPERAND (expr, 0);
3218 else if (BINARY_CLASS_P (expr))
3219 {
3220 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3221 expr = TREE_OPERAND (expr, 0);
3222 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3223 expr = TREE_OPERAND (expr, 1);
3224 else
3225 break;
3226 }
3227 else
3228 break;
3229 }
3230
3231 return expr;
3232 }
3233
3234 /* Look inside EXPR into simple arithmetic operations involving constants.
3235 Return the outermost non-arithmetic or non-constant node. */
3236
3237 tree
3238 skip_simple_constant_arithmetic (tree expr)
3239 {
3240 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3241 expr = TREE_OPERAND (expr, 0);
3242
3243 while (true)
3244 {
3245 if (UNARY_CLASS_P (expr))
3246 expr = TREE_OPERAND (expr, 0);
3247 else if (BINARY_CLASS_P (expr))
3248 {
3249 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3250 expr = TREE_OPERAND (expr, 0);
3251 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3252 expr = TREE_OPERAND (expr, 1);
3253 else
3254 break;
3255 }
3256 else
3257 break;
3258 }
3259
3260 return expr;
3261 }
3262
3263 /* Return which tree structure is used by T. */
3264
3265 enum tree_node_structure_enum
3266 tree_node_structure (const_tree t)
3267 {
3268 const enum tree_code code = TREE_CODE (t);
3269 return tree_node_structure_for_code (code);
3270 }
3271
3272 /* Set various status flags when building a CALL_EXPR object T. */
3273
3274 static void
3275 process_call_operands (tree t)
3276 {
3277 bool side_effects = TREE_SIDE_EFFECTS (t);
3278 bool read_only = false;
3279 int i = call_expr_flags (t);
3280
3281 /* Calls have side-effects, except those to const or pure functions. */
3282 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3283 side_effects = true;
3284 /* Propagate TREE_READONLY of arguments for const functions. */
3285 if (i & ECF_CONST)
3286 read_only = true;
3287
3288 if (!side_effects || read_only)
3289 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3290 {
3291 tree op = TREE_OPERAND (t, i);
3292 if (op && TREE_SIDE_EFFECTS (op))
3293 side_effects = true;
3294 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3295 read_only = false;
3296 }
3297
3298 TREE_SIDE_EFFECTS (t) = side_effects;
3299 TREE_READONLY (t) = read_only;
3300 }
3301 \f
3302 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3303 size or offset that depends on a field within a record. */
3304
3305 bool
3306 contains_placeholder_p (const_tree exp)
3307 {
3308 enum tree_code code;
3309
3310 if (!exp)
3311 return 0;
3312
3313 code = TREE_CODE (exp);
3314 if (code == PLACEHOLDER_EXPR)
3315 return 1;
3316
3317 switch (TREE_CODE_CLASS (code))
3318 {
3319 case tcc_reference:
3320 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3321 position computations since they will be converted into a
3322 WITH_RECORD_EXPR involving the reference, which will assume
3323 here will be valid. */
3324 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3325
3326 case tcc_exceptional:
3327 if (code == TREE_LIST)
3328 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3329 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3330 break;
3331
3332 case tcc_unary:
3333 case tcc_binary:
3334 case tcc_comparison:
3335 case tcc_expression:
3336 switch (code)
3337 {
3338 case COMPOUND_EXPR:
3339 /* Ignoring the first operand isn't quite right, but works best. */
3340 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3341
3342 case COND_EXPR:
3343 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3344 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3345 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3346
3347 case SAVE_EXPR:
3348 /* The save_expr function never wraps anything containing
3349 a PLACEHOLDER_EXPR. */
3350 return 0;
3351
3352 default:
3353 break;
3354 }
3355
3356 switch (TREE_CODE_LENGTH (code))
3357 {
3358 case 1:
3359 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3360 case 2:
3361 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3362 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3363 default:
3364 return 0;
3365 }
3366
3367 case tcc_vl_exp:
3368 switch (code)
3369 {
3370 case CALL_EXPR:
3371 {
3372 const_tree arg;
3373 const_call_expr_arg_iterator iter;
3374 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3375 if (CONTAINS_PLACEHOLDER_P (arg))
3376 return 1;
3377 return 0;
3378 }
3379 default:
3380 return 0;
3381 }
3382
3383 default:
3384 return 0;
3385 }
3386 return 0;
3387 }
3388
3389 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3390 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3391 field positions. */
3392
3393 static bool
3394 type_contains_placeholder_1 (const_tree type)
3395 {
3396 /* If the size contains a placeholder or the parent type (component type in
3397 the case of arrays) type involves a placeholder, this type does. */
3398 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3399 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3400 || (!POINTER_TYPE_P (type)
3401 && TREE_TYPE (type)
3402 && type_contains_placeholder_p (TREE_TYPE (type))))
3403 return true;
3404
3405 /* Now do type-specific checks. Note that the last part of the check above
3406 greatly limits what we have to do below. */
3407 switch (TREE_CODE (type))
3408 {
3409 case VOID_TYPE:
3410 case COMPLEX_TYPE:
3411 case ENUMERAL_TYPE:
3412 case BOOLEAN_TYPE:
3413 case POINTER_TYPE:
3414 case OFFSET_TYPE:
3415 case REFERENCE_TYPE:
3416 case METHOD_TYPE:
3417 case FUNCTION_TYPE:
3418 case VECTOR_TYPE:
3419 case NULLPTR_TYPE:
3420 return false;
3421
3422 case INTEGER_TYPE:
3423 case REAL_TYPE:
3424 case FIXED_POINT_TYPE:
3425 /* Here we just check the bounds. */
3426 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3427 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3428
3429 case ARRAY_TYPE:
3430 /* We have already checked the component type above, so just check the
3431 domain type. */
3432 return type_contains_placeholder_p (TYPE_DOMAIN (type));
3433
3434 case RECORD_TYPE:
3435 case UNION_TYPE:
3436 case QUAL_UNION_TYPE:
3437 {
3438 tree field;
3439
3440 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3441 if (TREE_CODE (field) == FIELD_DECL
3442 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3443 || (TREE_CODE (type) == QUAL_UNION_TYPE
3444 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3445 || type_contains_placeholder_p (TREE_TYPE (field))))
3446 return true;
3447
3448 return false;
3449 }
3450
3451 default:
3452 gcc_unreachable ();
3453 }
3454 }
3455
3456 /* Wrapper around above function used to cache its result. */
3457
3458 bool
3459 type_contains_placeholder_p (tree type)
3460 {
3461 bool result;
3462
3463 /* If the contains_placeholder_bits field has been initialized,
3464 then we know the answer. */
3465 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3466 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3467
3468 /* Indicate that we've seen this type node, and the answer is false.
3469 This is what we want to return if we run into recursion via fields. */
3470 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3471
3472 /* Compute the real value. */
3473 result = type_contains_placeholder_1 (type);
3474
3475 /* Store the real value. */
3476 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3477
3478 return result;
3479 }
3480 \f
3481 /* Push tree EXP onto vector QUEUE if it is not already present. */
3482
3483 static void
3484 push_without_duplicates (tree exp, vec<tree> *queue)
3485 {
3486 unsigned int i;
3487 tree iter;
3488
3489 FOR_EACH_VEC_ELT (*queue, i, iter)
3490 if (simple_cst_equal (iter, exp) == 1)
3491 break;
3492
3493 if (!iter)
3494 queue->safe_push (exp);
3495 }
3496
3497 /* Given a tree EXP, find all occurrences of references to fields
3498 in a PLACEHOLDER_EXPR and place them in vector REFS without
3499 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3500 we assume here that EXP contains only arithmetic expressions
3501 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3502 argument list. */
3503
3504 void
3505 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3506 {
3507 enum tree_code code = TREE_CODE (exp);
3508 tree inner;
3509 int i;
3510
3511 /* We handle TREE_LIST and COMPONENT_REF separately. */
3512 if (code == TREE_LIST)
3513 {
3514 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3515 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3516 }
3517 else if (code == COMPONENT_REF)
3518 {
3519 for (inner = TREE_OPERAND (exp, 0);
3520 REFERENCE_CLASS_P (inner);
3521 inner = TREE_OPERAND (inner, 0))
3522 ;
3523
3524 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3525 push_without_duplicates (exp, refs);
3526 else
3527 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3528 }
3529 else
3530 switch (TREE_CODE_CLASS (code))
3531 {
3532 case tcc_constant:
3533 break;
3534
3535 case tcc_declaration:
3536 /* Variables allocated to static storage can stay. */
3537 if (!TREE_STATIC (exp))
3538 push_without_duplicates (exp, refs);
3539 break;
3540
3541 case tcc_expression:
3542 /* This is the pattern built in ada/make_aligning_type. */
3543 if (code == ADDR_EXPR
3544 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3545 {
3546 push_without_duplicates (exp, refs);
3547 break;
3548 }
3549
3550 /* Fall through... */
3551
3552 case tcc_exceptional:
3553 case tcc_unary:
3554 case tcc_binary:
3555 case tcc_comparison:
3556 case tcc_reference:
3557 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3558 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3559 break;
3560
3561 case tcc_vl_exp:
3562 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3563 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3564 break;
3565
3566 default:
3567 gcc_unreachable ();
3568 }
3569 }
3570
3571 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3572 return a tree with all occurrences of references to F in a
3573 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3574 CONST_DECLs. Note that we assume here that EXP contains only
3575 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3576 occurring only in their argument list. */
3577
3578 tree
3579 substitute_in_expr (tree exp, tree f, tree r)
3580 {
3581 enum tree_code code = TREE_CODE (exp);
3582 tree op0, op1, op2, op3;
3583 tree new_tree;
3584
3585 /* We handle TREE_LIST and COMPONENT_REF separately. */
3586 if (code == TREE_LIST)
3587 {
3588 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3589 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3590 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3591 return exp;
3592
3593 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3594 }
3595 else if (code == COMPONENT_REF)
3596 {
3597 tree inner;
3598
3599 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3600 and it is the right field, replace it with R. */
3601 for (inner = TREE_OPERAND (exp, 0);
3602 REFERENCE_CLASS_P (inner);
3603 inner = TREE_OPERAND (inner, 0))
3604 ;
3605
3606 /* The field. */
3607 op1 = TREE_OPERAND (exp, 1);
3608
3609 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3610 return r;
3611
3612 /* If this expression hasn't been completed let, leave it alone. */
3613 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3614 return exp;
3615
3616 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3617 if (op0 == TREE_OPERAND (exp, 0))
3618 return exp;
3619
3620 new_tree
3621 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3622 }
3623 else
3624 switch (TREE_CODE_CLASS (code))
3625 {
3626 case tcc_constant:
3627 return exp;
3628
3629 case tcc_declaration:
3630 if (exp == f)
3631 return r;
3632 else
3633 return exp;
3634
3635 case tcc_expression:
3636 if (exp == f)
3637 return r;
3638
3639 /* Fall through... */
3640
3641 case tcc_exceptional:
3642 case tcc_unary:
3643 case tcc_binary:
3644 case tcc_comparison:
3645 case tcc_reference:
3646 switch (TREE_CODE_LENGTH (code))
3647 {
3648 case 0:
3649 return exp;
3650
3651 case 1:
3652 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3653 if (op0 == TREE_OPERAND (exp, 0))
3654 return exp;
3655
3656 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3657 break;
3658
3659 case 2:
3660 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3661 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3662
3663 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3664 return exp;
3665
3666 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3667 break;
3668
3669 case 3:
3670 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3671 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3672 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3673
3674 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3675 && op2 == TREE_OPERAND (exp, 2))
3676 return exp;
3677
3678 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3679 break;
3680
3681 case 4:
3682 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3683 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3684 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3685 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3686
3687 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3688 && op2 == TREE_OPERAND (exp, 2)
3689 && op3 == TREE_OPERAND (exp, 3))
3690 return exp;
3691
3692 new_tree
3693 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3694 break;
3695
3696 default:
3697 gcc_unreachable ();
3698 }
3699 break;
3700
3701 case tcc_vl_exp:
3702 {
3703 int i;
3704
3705 new_tree = NULL_TREE;
3706
3707 /* If we are trying to replace F with a constant, inline back
3708 functions which do nothing else than computing a value from
3709 the arguments they are passed. This makes it possible to
3710 fold partially or entirely the replacement expression. */
3711 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3712 {
3713 tree t = maybe_inline_call_in_expr (exp);
3714 if (t)
3715 return SUBSTITUTE_IN_EXPR (t, f, r);
3716 }
3717
3718 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3719 {
3720 tree op = TREE_OPERAND (exp, i);
3721 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3722 if (new_op != op)
3723 {
3724 if (!new_tree)
3725 new_tree = copy_node (exp);
3726 TREE_OPERAND (new_tree, i) = new_op;
3727 }
3728 }
3729
3730 if (new_tree)
3731 {
3732 new_tree = fold (new_tree);
3733 if (TREE_CODE (new_tree) == CALL_EXPR)
3734 process_call_operands (new_tree);
3735 }
3736 else
3737 return exp;
3738 }
3739 break;
3740
3741 default:
3742 gcc_unreachable ();
3743 }
3744
3745 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3746
3747 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3748 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3749
3750 return new_tree;
3751 }
3752
3753 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3754 for it within OBJ, a tree that is an object or a chain of references. */
3755
3756 tree
3757 substitute_placeholder_in_expr (tree exp, tree obj)
3758 {
3759 enum tree_code code = TREE_CODE (exp);
3760 tree op0, op1, op2, op3;
3761 tree new_tree;
3762
3763 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3764 in the chain of OBJ. */
3765 if (code == PLACEHOLDER_EXPR)
3766 {
3767 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3768 tree elt;
3769
3770 for (elt = obj; elt != 0;
3771 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3772 || TREE_CODE (elt) == COND_EXPR)
3773 ? TREE_OPERAND (elt, 1)
3774 : (REFERENCE_CLASS_P (elt)
3775 || UNARY_CLASS_P (elt)
3776 || BINARY_CLASS_P (elt)
3777 || VL_EXP_CLASS_P (elt)
3778 || EXPRESSION_CLASS_P (elt))
3779 ? TREE_OPERAND (elt, 0) : 0))
3780 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3781 return elt;
3782
3783 for (elt = obj; elt != 0;
3784 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3785 || TREE_CODE (elt) == COND_EXPR)
3786 ? TREE_OPERAND (elt, 1)
3787 : (REFERENCE_CLASS_P (elt)
3788 || UNARY_CLASS_P (elt)
3789 || BINARY_CLASS_P (elt)
3790 || VL_EXP_CLASS_P (elt)
3791 || EXPRESSION_CLASS_P (elt))
3792 ? TREE_OPERAND (elt, 0) : 0))
3793 if (POINTER_TYPE_P (TREE_TYPE (elt))
3794 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3795 == need_type))
3796 return fold_build1 (INDIRECT_REF, need_type, elt);
3797
3798 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3799 survives until RTL generation, there will be an error. */
3800 return exp;
3801 }
3802
3803 /* TREE_LIST is special because we need to look at TREE_VALUE
3804 and TREE_CHAIN, not TREE_OPERANDS. */
3805 else if (code == TREE_LIST)
3806 {
3807 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3808 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3809 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3810 return exp;
3811
3812 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3813 }
3814 else
3815 switch (TREE_CODE_CLASS (code))
3816 {
3817 case tcc_constant:
3818 case tcc_declaration:
3819 return exp;
3820
3821 case tcc_exceptional:
3822 case tcc_unary:
3823 case tcc_binary:
3824 case tcc_comparison:
3825 case tcc_expression:
3826 case tcc_reference:
3827 case tcc_statement:
3828 switch (TREE_CODE_LENGTH (code))
3829 {
3830 case 0:
3831 return exp;
3832
3833 case 1:
3834 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3835 if (op0 == TREE_OPERAND (exp, 0))
3836 return exp;
3837
3838 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3839 break;
3840
3841 case 2:
3842 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3843 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3844
3845 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3846 return exp;
3847
3848 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3849 break;
3850
3851 case 3:
3852 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3853 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3854 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3855
3856 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3857 && op2 == TREE_OPERAND (exp, 2))
3858 return exp;
3859
3860 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3861 break;
3862
3863 case 4:
3864 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3865 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3866 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3867 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3868
3869 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3870 && op2 == TREE_OPERAND (exp, 2)
3871 && op3 == TREE_OPERAND (exp, 3))
3872 return exp;
3873
3874 new_tree
3875 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3876 break;
3877
3878 default:
3879 gcc_unreachable ();
3880 }
3881 break;
3882
3883 case tcc_vl_exp:
3884 {
3885 int i;
3886
3887 new_tree = NULL_TREE;
3888
3889 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3890 {
3891 tree op = TREE_OPERAND (exp, i);
3892 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3893 if (new_op != op)
3894 {
3895 if (!new_tree)
3896 new_tree = copy_node (exp);
3897 TREE_OPERAND (new_tree, i) = new_op;
3898 }
3899 }
3900
3901 if (new_tree)
3902 {
3903 new_tree = fold (new_tree);
3904 if (TREE_CODE (new_tree) == CALL_EXPR)
3905 process_call_operands (new_tree);
3906 }
3907 else
3908 return exp;
3909 }
3910 break;
3911
3912 default:
3913 gcc_unreachable ();
3914 }
3915
3916 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3917
3918 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3919 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3920
3921 return new_tree;
3922 }
3923 \f
3924
3925 /* Subroutine of stabilize_reference; this is called for subtrees of
3926 references. Any expression with side-effects must be put in a SAVE_EXPR
3927 to ensure that it is only evaluated once.
3928
3929 We don't put SAVE_EXPR nodes around everything, because assigning very
3930 simple expressions to temporaries causes us to miss good opportunities
3931 for optimizations. Among other things, the opportunity to fold in the
3932 addition of a constant into an addressing mode often gets lost, e.g.
3933 "y[i+1] += x;". In general, we take the approach that we should not make
3934 an assignment unless we are forced into it - i.e., that any non-side effect
3935 operator should be allowed, and that cse should take care of coalescing
3936 multiple utterances of the same expression should that prove fruitful. */
3937
3938 static tree
3939 stabilize_reference_1 (tree e)
3940 {
3941 tree result;
3942 enum tree_code code = TREE_CODE (e);
3943
3944 /* We cannot ignore const expressions because it might be a reference
3945 to a const array but whose index contains side-effects. But we can
3946 ignore things that are actual constant or that already have been
3947 handled by this function. */
3948
3949 if (tree_invariant_p (e))
3950 return e;
3951
3952 switch (TREE_CODE_CLASS (code))
3953 {
3954 case tcc_exceptional:
3955 case tcc_type:
3956 case tcc_declaration:
3957 case tcc_comparison:
3958 case tcc_statement:
3959 case tcc_expression:
3960 case tcc_reference:
3961 case tcc_vl_exp:
3962 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3963 so that it will only be evaluated once. */
3964 /* The reference (r) and comparison (<) classes could be handled as
3965 below, but it is generally faster to only evaluate them once. */
3966 if (TREE_SIDE_EFFECTS (e))
3967 return save_expr (e);
3968 return e;
3969
3970 case tcc_constant:
3971 /* Constants need no processing. In fact, we should never reach
3972 here. */
3973 return e;
3974
3975 case tcc_binary:
3976 /* Division is slow and tends to be compiled with jumps,
3977 especially the division by powers of 2 that is often
3978 found inside of an array reference. So do it just once. */
3979 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3980 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3981 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3982 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3983 return save_expr (e);
3984 /* Recursively stabilize each operand. */
3985 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3986 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3987 break;
3988
3989 case tcc_unary:
3990 /* Recursively stabilize each operand. */
3991 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3992 break;
3993
3994 default:
3995 gcc_unreachable ();
3996 }
3997
3998 TREE_TYPE (result) = TREE_TYPE (e);
3999 TREE_READONLY (result) = TREE_READONLY (e);
4000 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4001 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4002
4003 return result;
4004 }
4005
4006 /* Stabilize a reference so that we can use it any number of times
4007 without causing its operands to be evaluated more than once.
4008 Returns the stabilized reference. This works by means of save_expr,
4009 so see the caveats in the comments about save_expr.
4010
4011 Also allows conversion expressions whose operands are references.
4012 Any other kind of expression is returned unchanged. */
4013
4014 tree
4015 stabilize_reference (tree ref)
4016 {
4017 tree result;
4018 enum tree_code code = TREE_CODE (ref);
4019
4020 switch (code)
4021 {
4022 case VAR_DECL:
4023 case PARM_DECL:
4024 case RESULT_DECL:
4025 /* No action is needed in this case. */
4026 return ref;
4027
4028 CASE_CONVERT:
4029 case FLOAT_EXPR:
4030 case FIX_TRUNC_EXPR:
4031 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4032 break;
4033
4034 case INDIRECT_REF:
4035 result = build_nt (INDIRECT_REF,
4036 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4037 break;
4038
4039 case COMPONENT_REF:
4040 result = build_nt (COMPONENT_REF,
4041 stabilize_reference (TREE_OPERAND (ref, 0)),
4042 TREE_OPERAND (ref, 1), NULL_TREE);
4043 break;
4044
4045 case BIT_FIELD_REF:
4046 result = build_nt (BIT_FIELD_REF,
4047 stabilize_reference (TREE_OPERAND (ref, 0)),
4048 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4049 break;
4050
4051 case ARRAY_REF:
4052 result = build_nt (ARRAY_REF,
4053 stabilize_reference (TREE_OPERAND (ref, 0)),
4054 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4055 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4056 break;
4057
4058 case ARRAY_RANGE_REF:
4059 result = build_nt (ARRAY_RANGE_REF,
4060 stabilize_reference (TREE_OPERAND (ref, 0)),
4061 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4062 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4063 break;
4064
4065 case COMPOUND_EXPR:
4066 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4067 it wouldn't be ignored. This matters when dealing with
4068 volatiles. */
4069 return stabilize_reference_1 (ref);
4070
4071 /* If arg isn't a kind of lvalue we recognize, make no change.
4072 Caller should recognize the error for an invalid lvalue. */
4073 default:
4074 return ref;
4075
4076 case ERROR_MARK:
4077 return error_mark_node;
4078 }
4079
4080 TREE_TYPE (result) = TREE_TYPE (ref);
4081 TREE_READONLY (result) = TREE_READONLY (ref);
4082 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4083 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4084
4085 return result;
4086 }
4087 \f
4088 /* Low-level constructors for expressions. */
4089
4090 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4091 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4092
4093 void
4094 recompute_tree_invariant_for_addr_expr (tree t)
4095 {
4096 tree node;
4097 bool tc = true, se = false;
4098
4099 /* We started out assuming this address is both invariant and constant, but
4100 does not have side effects. Now go down any handled components and see if
4101 any of them involve offsets that are either non-constant or non-invariant.
4102 Also check for side-effects.
4103
4104 ??? Note that this code makes no attempt to deal with the case where
4105 taking the address of something causes a copy due to misalignment. */
4106
4107 #define UPDATE_FLAGS(NODE) \
4108 do { tree _node = (NODE); \
4109 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4110 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4111
4112 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4113 node = TREE_OPERAND (node, 0))
4114 {
4115 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4116 array reference (probably made temporarily by the G++ front end),
4117 so ignore all the operands. */
4118 if ((TREE_CODE (node) == ARRAY_REF
4119 || TREE_CODE (node) == ARRAY_RANGE_REF)
4120 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4121 {
4122 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4123 if (TREE_OPERAND (node, 2))
4124 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4125 if (TREE_OPERAND (node, 3))
4126 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4127 }
4128 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4129 FIELD_DECL, apparently. The G++ front end can put something else
4130 there, at least temporarily. */
4131 else if (TREE_CODE (node) == COMPONENT_REF
4132 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4133 {
4134 if (TREE_OPERAND (node, 2))
4135 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4136 }
4137 }
4138
4139 node = lang_hooks.expr_to_decl (node, &tc, &se);
4140
4141 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4142 the address, since &(*a)->b is a form of addition. If it's a constant, the
4143 address is constant too. If it's a decl, its address is constant if the
4144 decl is static. Everything else is not constant and, furthermore,
4145 taking the address of a volatile variable is not volatile. */
4146 if (TREE_CODE (node) == INDIRECT_REF
4147 || TREE_CODE (node) == MEM_REF)
4148 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4149 else if (CONSTANT_CLASS_P (node))
4150 ;
4151 else if (DECL_P (node))
4152 tc &= (staticp (node) != NULL_TREE);
4153 else
4154 {
4155 tc = false;
4156 se |= TREE_SIDE_EFFECTS (node);
4157 }
4158
4159
4160 TREE_CONSTANT (t) = tc;
4161 TREE_SIDE_EFFECTS (t) = se;
4162 #undef UPDATE_FLAGS
4163 }
4164
4165 /* Build an expression of code CODE, data type TYPE, and operands as
4166 specified. Expressions and reference nodes can be created this way.
4167 Constants, decls, types and misc nodes cannot be.
4168
4169 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4170 enough for all extant tree codes. */
4171
4172 tree
4173 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
4174 {
4175 tree t;
4176
4177 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4178
4179 t = make_node_stat (code PASS_MEM_STAT);
4180 TREE_TYPE (t) = tt;
4181
4182 return t;
4183 }
4184
4185 tree
4186 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4187 {
4188 int length = sizeof (struct tree_exp);
4189 tree t;
4190
4191 record_node_allocation_statistics (code, length);
4192
4193 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4194
4195 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4196
4197 memset (t, 0, sizeof (struct tree_common));
4198
4199 TREE_SET_CODE (t, code);
4200
4201 TREE_TYPE (t) = type;
4202 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4203 TREE_OPERAND (t, 0) = node;
4204 if (node && !TYPE_P (node))
4205 {
4206 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4207 TREE_READONLY (t) = TREE_READONLY (node);
4208 }
4209
4210 if (TREE_CODE_CLASS (code) == tcc_statement)
4211 TREE_SIDE_EFFECTS (t) = 1;
4212 else switch (code)
4213 {
4214 case VA_ARG_EXPR:
4215 /* All of these have side-effects, no matter what their
4216 operands are. */
4217 TREE_SIDE_EFFECTS (t) = 1;
4218 TREE_READONLY (t) = 0;
4219 break;
4220
4221 case INDIRECT_REF:
4222 /* Whether a dereference is readonly has nothing to do with whether
4223 its operand is readonly. */
4224 TREE_READONLY (t) = 0;
4225 break;
4226
4227 case ADDR_EXPR:
4228 if (node)
4229 recompute_tree_invariant_for_addr_expr (t);
4230 break;
4231
4232 default:
4233 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4234 && node && !TYPE_P (node)
4235 && TREE_CONSTANT (node))
4236 TREE_CONSTANT (t) = 1;
4237 if (TREE_CODE_CLASS (code) == tcc_reference
4238 && node && TREE_THIS_VOLATILE (node))
4239 TREE_THIS_VOLATILE (t) = 1;
4240 break;
4241 }
4242
4243 return t;
4244 }
4245
4246 #define PROCESS_ARG(N) \
4247 do { \
4248 TREE_OPERAND (t, N) = arg##N; \
4249 if (arg##N &&!TYPE_P (arg##N)) \
4250 { \
4251 if (TREE_SIDE_EFFECTS (arg##N)) \
4252 side_effects = 1; \
4253 if (!TREE_READONLY (arg##N) \
4254 && !CONSTANT_CLASS_P (arg##N)) \
4255 (void) (read_only = 0); \
4256 if (!TREE_CONSTANT (arg##N)) \
4257 (void) (constant = 0); \
4258 } \
4259 } while (0)
4260
4261 tree
4262 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4263 {
4264 bool constant, read_only, side_effects;
4265 tree t;
4266
4267 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4268
4269 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4270 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4271 /* When sizetype precision doesn't match that of pointers
4272 we need to be able to build explicit extensions or truncations
4273 of the offset argument. */
4274 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4275 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4276 && TREE_CODE (arg1) == INTEGER_CST);
4277
4278 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4279 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4280 && ptrofftype_p (TREE_TYPE (arg1)));
4281
4282 t = make_node_stat (code PASS_MEM_STAT);
4283 TREE_TYPE (t) = tt;
4284
4285 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4286 result based on those same flags for the arguments. But if the
4287 arguments aren't really even `tree' expressions, we shouldn't be trying
4288 to do this. */
4289
4290 /* Expressions without side effects may be constant if their
4291 arguments are as well. */
4292 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4293 || TREE_CODE_CLASS (code) == tcc_binary);
4294 read_only = 1;
4295 side_effects = TREE_SIDE_EFFECTS (t);
4296
4297 PROCESS_ARG (0);
4298 PROCESS_ARG (1);
4299
4300 TREE_READONLY (t) = read_only;
4301 TREE_CONSTANT (t) = constant;
4302 TREE_SIDE_EFFECTS (t) = side_effects;
4303 TREE_THIS_VOLATILE (t)
4304 = (TREE_CODE_CLASS (code) == tcc_reference
4305 && arg0 && TREE_THIS_VOLATILE (arg0));
4306
4307 return t;
4308 }
4309
4310
4311 tree
4312 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4313 tree arg2 MEM_STAT_DECL)
4314 {
4315 bool constant, read_only, side_effects;
4316 tree t;
4317
4318 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4319 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4320
4321 t = make_node_stat (code PASS_MEM_STAT);
4322 TREE_TYPE (t) = tt;
4323
4324 read_only = 1;
4325
4326 /* As a special exception, if COND_EXPR has NULL branches, we
4327 assume that it is a gimple statement and always consider
4328 it to have side effects. */
4329 if (code == COND_EXPR
4330 && tt == void_type_node
4331 && arg1 == NULL_TREE
4332 && arg2 == NULL_TREE)
4333 side_effects = true;
4334 else
4335 side_effects = TREE_SIDE_EFFECTS (t);
4336
4337 PROCESS_ARG (0);
4338 PROCESS_ARG (1);
4339 PROCESS_ARG (2);
4340
4341 if (code == COND_EXPR)
4342 TREE_READONLY (t) = read_only;
4343
4344 TREE_SIDE_EFFECTS (t) = side_effects;
4345 TREE_THIS_VOLATILE (t)
4346 = (TREE_CODE_CLASS (code) == tcc_reference
4347 && arg0 && TREE_THIS_VOLATILE (arg0));
4348
4349 return t;
4350 }
4351
4352 tree
4353 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4354 tree arg2, tree arg3 MEM_STAT_DECL)
4355 {
4356 bool constant, read_only, side_effects;
4357 tree t;
4358
4359 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4360
4361 t = make_node_stat (code PASS_MEM_STAT);
4362 TREE_TYPE (t) = tt;
4363
4364 side_effects = TREE_SIDE_EFFECTS (t);
4365
4366 PROCESS_ARG (0);
4367 PROCESS_ARG (1);
4368 PROCESS_ARG (2);
4369 PROCESS_ARG (3);
4370
4371 TREE_SIDE_EFFECTS (t) = side_effects;
4372 TREE_THIS_VOLATILE (t)
4373 = (TREE_CODE_CLASS (code) == tcc_reference
4374 && arg0 && TREE_THIS_VOLATILE (arg0));
4375
4376 return t;
4377 }
4378
4379 tree
4380 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4381 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4382 {
4383 bool constant, read_only, side_effects;
4384 tree t;
4385
4386 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4387
4388 t = make_node_stat (code PASS_MEM_STAT);
4389 TREE_TYPE (t) = tt;
4390
4391 side_effects = TREE_SIDE_EFFECTS (t);
4392
4393 PROCESS_ARG (0);
4394 PROCESS_ARG (1);
4395 PROCESS_ARG (2);
4396 PROCESS_ARG (3);
4397 PROCESS_ARG (4);
4398
4399 TREE_SIDE_EFFECTS (t) = side_effects;
4400 TREE_THIS_VOLATILE (t)
4401 = (TREE_CODE_CLASS (code) == tcc_reference
4402 && arg0 && TREE_THIS_VOLATILE (arg0));
4403
4404 return t;
4405 }
4406
4407 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4408 on the pointer PTR. */
4409
4410 tree
4411 build_simple_mem_ref_loc (location_t loc, tree ptr)
4412 {
4413 HOST_WIDE_INT offset = 0;
4414 tree ptype = TREE_TYPE (ptr);
4415 tree tem;
4416 /* For convenience allow addresses that collapse to a simple base
4417 and offset. */
4418 if (TREE_CODE (ptr) == ADDR_EXPR
4419 && (handled_component_p (TREE_OPERAND (ptr, 0))
4420 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4421 {
4422 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4423 gcc_assert (ptr);
4424 ptr = build_fold_addr_expr (ptr);
4425 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4426 }
4427 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4428 ptr, build_int_cst (ptype, offset));
4429 SET_EXPR_LOCATION (tem, loc);
4430 return tem;
4431 }
4432
4433 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4434
4435 offset_int
4436 mem_ref_offset (const_tree t)
4437 {
4438 return offset_int::from (TREE_OPERAND (t, 1), SIGNED);
4439 }
4440
4441 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4442 offsetted by OFFSET units. */
4443
4444 tree
4445 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4446 {
4447 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4448 build_fold_addr_expr (base),
4449 build_int_cst (ptr_type_node, offset));
4450 tree addr = build1 (ADDR_EXPR, type, ref);
4451 recompute_tree_invariant_for_addr_expr (addr);
4452 return addr;
4453 }
4454
4455 /* Similar except don't specify the TREE_TYPE
4456 and leave the TREE_SIDE_EFFECTS as 0.
4457 It is permissible for arguments to be null,
4458 or even garbage if their values do not matter. */
4459
4460 tree
4461 build_nt (enum tree_code code, ...)
4462 {
4463 tree t;
4464 int length;
4465 int i;
4466 va_list p;
4467
4468 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4469
4470 va_start (p, code);
4471
4472 t = make_node (code);
4473 length = TREE_CODE_LENGTH (code);
4474
4475 for (i = 0; i < length; i++)
4476 TREE_OPERAND (t, i) = va_arg (p, tree);
4477
4478 va_end (p);
4479 return t;
4480 }
4481
4482 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4483 tree vec. */
4484
4485 tree
4486 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4487 {
4488 tree ret, t;
4489 unsigned int ix;
4490
4491 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4492 CALL_EXPR_FN (ret) = fn;
4493 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4494 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4495 CALL_EXPR_ARG (ret, ix) = t;
4496 return ret;
4497 }
4498 \f
4499 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4500 We do NOT enter this node in any sort of symbol table.
4501
4502 LOC is the location of the decl.
4503
4504 layout_decl is used to set up the decl's storage layout.
4505 Other slots are initialized to 0 or null pointers. */
4506
4507 tree
4508 build_decl_stat (location_t loc, enum tree_code code, tree name,
4509 tree type MEM_STAT_DECL)
4510 {
4511 tree t;
4512
4513 t = make_node_stat (code PASS_MEM_STAT);
4514 DECL_SOURCE_LOCATION (t) = loc;
4515
4516 /* if (type == error_mark_node)
4517 type = integer_type_node; */
4518 /* That is not done, deliberately, so that having error_mark_node
4519 as the type can suppress useless errors in the use of this variable. */
4520
4521 DECL_NAME (t) = name;
4522 TREE_TYPE (t) = type;
4523
4524 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4525 layout_decl (t, 0);
4526
4527 return t;
4528 }
4529
4530 /* Builds and returns function declaration with NAME and TYPE. */
4531
4532 tree
4533 build_fn_decl (const char *name, tree type)
4534 {
4535 tree id = get_identifier (name);
4536 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4537
4538 DECL_EXTERNAL (decl) = 1;
4539 TREE_PUBLIC (decl) = 1;
4540 DECL_ARTIFICIAL (decl) = 1;
4541 TREE_NOTHROW (decl) = 1;
4542
4543 return decl;
4544 }
4545
4546 vec<tree, va_gc> *all_translation_units;
4547
4548 /* Builds a new translation-unit decl with name NAME, queues it in the
4549 global list of translation-unit decls and returns it. */
4550
4551 tree
4552 build_translation_unit_decl (tree name)
4553 {
4554 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4555 name, NULL_TREE);
4556 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4557 vec_safe_push (all_translation_units, tu);
4558 return tu;
4559 }
4560
4561 \f
4562 /* BLOCK nodes are used to represent the structure of binding contours
4563 and declarations, once those contours have been exited and their contents
4564 compiled. This information is used for outputting debugging info. */
4565
4566 tree
4567 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4568 {
4569 tree block = make_node (BLOCK);
4570
4571 BLOCK_VARS (block) = vars;
4572 BLOCK_SUBBLOCKS (block) = subblocks;
4573 BLOCK_SUPERCONTEXT (block) = supercontext;
4574 BLOCK_CHAIN (block) = chain;
4575 return block;
4576 }
4577
4578 \f
4579 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4580
4581 LOC is the location to use in tree T. */
4582
4583 void
4584 protected_set_expr_location (tree t, location_t loc)
4585 {
4586 if (CAN_HAVE_LOCATION_P (t))
4587 SET_EXPR_LOCATION (t, loc);
4588 }
4589 \f
4590 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4591 is ATTRIBUTE. */
4592
4593 tree
4594 build_decl_attribute_variant (tree ddecl, tree attribute)
4595 {
4596 DECL_ATTRIBUTES (ddecl) = attribute;
4597 return ddecl;
4598 }
4599
4600 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4601 is ATTRIBUTE and its qualifiers are QUALS.
4602
4603 Record such modified types already made so we don't make duplicates. */
4604
4605 tree
4606 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4607 {
4608 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4609 {
4610 inchash::hash hstate;
4611 tree ntype;
4612 int i;
4613 tree t;
4614 enum tree_code code = TREE_CODE (ttype);
4615
4616 /* Building a distinct copy of a tagged type is inappropriate; it
4617 causes breakage in code that expects there to be a one-to-one
4618 relationship between a struct and its fields.
4619 build_duplicate_type is another solution (as used in
4620 handle_transparent_union_attribute), but that doesn't play well
4621 with the stronger C++ type identity model. */
4622 if (TREE_CODE (ttype) == RECORD_TYPE
4623 || TREE_CODE (ttype) == UNION_TYPE
4624 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4625 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4626 {
4627 warning (OPT_Wattributes,
4628 "ignoring attributes applied to %qT after definition",
4629 TYPE_MAIN_VARIANT (ttype));
4630 return build_qualified_type (ttype, quals);
4631 }
4632
4633 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4634 ntype = build_distinct_type_copy (ttype);
4635
4636 TYPE_ATTRIBUTES (ntype) = attribute;
4637
4638 hstate.add_int (code);
4639 if (TREE_TYPE (ntype))
4640 hstate.add_object (TYPE_HASH (TREE_TYPE (ntype)));
4641 attribute_hash_list (attribute, hstate);
4642
4643 switch (TREE_CODE (ntype))
4644 {
4645 case FUNCTION_TYPE:
4646 type_hash_list (TYPE_ARG_TYPES (ntype), hstate);
4647 break;
4648 case ARRAY_TYPE:
4649 if (TYPE_DOMAIN (ntype))
4650 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (ntype)));
4651 break;
4652 case INTEGER_TYPE:
4653 t = TYPE_MAX_VALUE (ntype);
4654 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
4655 hstate.add_object (TREE_INT_CST_ELT (t, i));
4656 break;
4657 case REAL_TYPE:
4658 case FIXED_POINT_TYPE:
4659 {
4660 unsigned int precision = TYPE_PRECISION (ntype);
4661 hstate.add_object (precision);
4662 }
4663 break;
4664 default:
4665 break;
4666 }
4667
4668 ntype = type_hash_canon (hstate.end(), ntype);
4669
4670 /* If the target-dependent attributes make NTYPE different from
4671 its canonical type, we will need to use structural equality
4672 checks for this type. */
4673 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4674 || !comp_type_attributes (ntype, ttype))
4675 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4676 else if (TYPE_CANONICAL (ntype) == ntype)
4677 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4678
4679 ttype = build_qualified_type (ntype, quals);
4680 }
4681 else if (TYPE_QUALS (ttype) != quals)
4682 ttype = build_qualified_type (ttype, quals);
4683
4684 return ttype;
4685 }
4686
4687 /* Check if "omp declare simd" attribute arguments, CLAUSES1 and CLAUSES2, are
4688 the same. */
4689
4690 static bool
4691 omp_declare_simd_clauses_equal (tree clauses1, tree clauses2)
4692 {
4693 tree cl1, cl2;
4694 for (cl1 = clauses1, cl2 = clauses2;
4695 cl1 && cl2;
4696 cl1 = OMP_CLAUSE_CHAIN (cl1), cl2 = OMP_CLAUSE_CHAIN (cl2))
4697 {
4698 if (OMP_CLAUSE_CODE (cl1) != OMP_CLAUSE_CODE (cl2))
4699 return false;
4700 if (OMP_CLAUSE_CODE (cl1) != OMP_CLAUSE_SIMDLEN)
4701 {
4702 if (simple_cst_equal (OMP_CLAUSE_DECL (cl1),
4703 OMP_CLAUSE_DECL (cl2)) != 1)
4704 return false;
4705 }
4706 switch (OMP_CLAUSE_CODE (cl1))
4707 {
4708 case OMP_CLAUSE_ALIGNED:
4709 if (simple_cst_equal (OMP_CLAUSE_ALIGNED_ALIGNMENT (cl1),
4710 OMP_CLAUSE_ALIGNED_ALIGNMENT (cl2)) != 1)
4711 return false;
4712 break;
4713 case OMP_CLAUSE_LINEAR:
4714 if (simple_cst_equal (OMP_CLAUSE_LINEAR_STEP (cl1),
4715 OMP_CLAUSE_LINEAR_STEP (cl2)) != 1)
4716 return false;
4717 break;
4718 case OMP_CLAUSE_SIMDLEN:
4719 if (simple_cst_equal (OMP_CLAUSE_SIMDLEN_EXPR (cl1),
4720 OMP_CLAUSE_SIMDLEN_EXPR (cl2)) != 1)
4721 return false;
4722 default:
4723 break;
4724 }
4725 }
4726 return true;
4727 }
4728
4729 /* Compare two constructor-element-type constants. Return 1 if the lists
4730 are known to be equal; otherwise return 0. */
4731
4732 static bool
4733 simple_cst_list_equal (const_tree l1, const_tree l2)
4734 {
4735 while (l1 != NULL_TREE && l2 != NULL_TREE)
4736 {
4737 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4738 return false;
4739
4740 l1 = TREE_CHAIN (l1);
4741 l2 = TREE_CHAIN (l2);
4742 }
4743
4744 return l1 == l2;
4745 }
4746
4747 /* Compare two attributes for their value identity. Return true if the
4748 attribute values are known to be equal; otherwise return false.
4749 */
4750
4751 static bool
4752 attribute_value_equal (const_tree attr1, const_tree attr2)
4753 {
4754 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4755 return true;
4756
4757 if (TREE_VALUE (attr1) != NULL_TREE
4758 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4759 && TREE_VALUE (attr2) != NULL
4760 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4761 return (simple_cst_list_equal (TREE_VALUE (attr1),
4762 TREE_VALUE (attr2)) == 1);
4763
4764 if ((flag_openmp || flag_openmp_simd)
4765 && TREE_VALUE (attr1) && TREE_VALUE (attr2)
4766 && TREE_CODE (TREE_VALUE (attr1)) == OMP_CLAUSE
4767 && TREE_CODE (TREE_VALUE (attr2)) == OMP_CLAUSE)
4768 return omp_declare_simd_clauses_equal (TREE_VALUE (attr1),
4769 TREE_VALUE (attr2));
4770
4771 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
4772 }
4773
4774 /* Return 0 if the attributes for two types are incompatible, 1 if they
4775 are compatible, and 2 if they are nearly compatible (which causes a
4776 warning to be generated). */
4777 int
4778 comp_type_attributes (const_tree type1, const_tree type2)
4779 {
4780 const_tree a1 = TYPE_ATTRIBUTES (type1);
4781 const_tree a2 = TYPE_ATTRIBUTES (type2);
4782 const_tree a;
4783
4784 if (a1 == a2)
4785 return 1;
4786 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
4787 {
4788 const struct attribute_spec *as;
4789 const_tree attr;
4790
4791 as = lookup_attribute_spec (get_attribute_name (a));
4792 if (!as || as->affects_type_identity == false)
4793 continue;
4794
4795 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
4796 if (!attr || !attribute_value_equal (a, attr))
4797 break;
4798 }
4799 if (!a)
4800 {
4801 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
4802 {
4803 const struct attribute_spec *as;
4804
4805 as = lookup_attribute_spec (get_attribute_name (a));
4806 if (!as || as->affects_type_identity == false)
4807 continue;
4808
4809 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
4810 break;
4811 /* We don't need to compare trees again, as we did this
4812 already in first loop. */
4813 }
4814 /* All types - affecting identity - are equal, so
4815 there is no need to call target hook for comparison. */
4816 if (!a)
4817 return 1;
4818 }
4819 /* As some type combinations - like default calling-convention - might
4820 be compatible, we have to call the target hook to get the final result. */
4821 return targetm.comp_type_attributes (type1, type2);
4822 }
4823
4824 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4825 is ATTRIBUTE.
4826
4827 Record such modified types already made so we don't make duplicates. */
4828
4829 tree
4830 build_type_attribute_variant (tree ttype, tree attribute)
4831 {
4832 return build_type_attribute_qual_variant (ttype, attribute,
4833 TYPE_QUALS (ttype));
4834 }
4835
4836
4837 /* Reset the expression *EXPR_P, a size or position.
4838
4839 ??? We could reset all non-constant sizes or positions. But it's cheap
4840 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4841
4842 We need to reset self-referential sizes or positions because they cannot
4843 be gimplified and thus can contain a CALL_EXPR after the gimplification
4844 is finished, which will run afoul of LTO streaming. And they need to be
4845 reset to something essentially dummy but not constant, so as to preserve
4846 the properties of the object they are attached to. */
4847
4848 static inline void
4849 free_lang_data_in_one_sizepos (tree *expr_p)
4850 {
4851 tree expr = *expr_p;
4852 if (CONTAINS_PLACEHOLDER_P (expr))
4853 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4854 }
4855
4856
4857 /* Reset all the fields in a binfo node BINFO. We only keep
4858 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
4859
4860 static void
4861 free_lang_data_in_binfo (tree binfo)
4862 {
4863 unsigned i;
4864 tree t;
4865
4866 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4867
4868 BINFO_VIRTUALS (binfo) = NULL_TREE;
4869 BINFO_BASE_ACCESSES (binfo) = NULL;
4870 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4871 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4872
4873 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
4874 free_lang_data_in_binfo (t);
4875 }
4876
4877
4878 /* Reset all language specific information still present in TYPE. */
4879
4880 static void
4881 free_lang_data_in_type (tree type)
4882 {
4883 gcc_assert (TYPE_P (type));
4884
4885 /* Give the FE a chance to remove its own data first. */
4886 lang_hooks.free_lang_data (type);
4887
4888 TREE_LANG_FLAG_0 (type) = 0;
4889 TREE_LANG_FLAG_1 (type) = 0;
4890 TREE_LANG_FLAG_2 (type) = 0;
4891 TREE_LANG_FLAG_3 (type) = 0;
4892 TREE_LANG_FLAG_4 (type) = 0;
4893 TREE_LANG_FLAG_5 (type) = 0;
4894 TREE_LANG_FLAG_6 (type) = 0;
4895
4896 if (TREE_CODE (type) == FUNCTION_TYPE)
4897 {
4898 /* Remove the const and volatile qualifiers from arguments. The
4899 C++ front end removes them, but the C front end does not,
4900 leading to false ODR violation errors when merging two
4901 instances of the same function signature compiled by
4902 different front ends. */
4903 tree p;
4904
4905 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4906 {
4907 tree arg_type = TREE_VALUE (p);
4908
4909 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4910 {
4911 int quals = TYPE_QUALS (arg_type)
4912 & ~TYPE_QUAL_CONST
4913 & ~TYPE_QUAL_VOLATILE;
4914 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4915 free_lang_data_in_type (TREE_VALUE (p));
4916 }
4917 }
4918 }
4919
4920 /* Remove members that are not actually FIELD_DECLs from the field
4921 list of an aggregate. These occur in C++. */
4922 if (RECORD_OR_UNION_TYPE_P (type))
4923 {
4924 tree prev, member;
4925
4926 /* Note that TYPE_FIELDS can be shared across distinct
4927 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4928 to be removed, we cannot set its TREE_CHAIN to NULL.
4929 Otherwise, we would not be able to find all the other fields
4930 in the other instances of this TREE_TYPE.
4931
4932 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4933 prev = NULL_TREE;
4934 member = TYPE_FIELDS (type);
4935 while (member)
4936 {
4937 if (TREE_CODE (member) == FIELD_DECL
4938 || TREE_CODE (member) == TYPE_DECL)
4939 {
4940 if (prev)
4941 TREE_CHAIN (prev) = member;
4942 else
4943 TYPE_FIELDS (type) = member;
4944 prev = member;
4945 }
4946
4947 member = TREE_CHAIN (member);
4948 }
4949
4950 if (prev)
4951 TREE_CHAIN (prev) = NULL_TREE;
4952 else
4953 TYPE_FIELDS (type) = NULL_TREE;
4954
4955 TYPE_METHODS (type) = NULL_TREE;
4956 if (TYPE_BINFO (type))
4957 free_lang_data_in_binfo (TYPE_BINFO (type));
4958 }
4959 else
4960 {
4961 /* For non-aggregate types, clear out the language slot (which
4962 overloads TYPE_BINFO). */
4963 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4964
4965 if (INTEGRAL_TYPE_P (type)
4966 || SCALAR_FLOAT_TYPE_P (type)
4967 || FIXED_POINT_TYPE_P (type))
4968 {
4969 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4970 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4971 }
4972 }
4973
4974 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4975 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4976
4977 if (TYPE_CONTEXT (type)
4978 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
4979 {
4980 tree ctx = TYPE_CONTEXT (type);
4981 do
4982 {
4983 ctx = BLOCK_SUPERCONTEXT (ctx);
4984 }
4985 while (ctx && TREE_CODE (ctx) == BLOCK);
4986 TYPE_CONTEXT (type) = ctx;
4987 }
4988 }
4989
4990
4991 /* Return true if DECL may need an assembler name to be set. */
4992
4993 static inline bool
4994 need_assembler_name_p (tree decl)
4995 {
4996 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition Rule
4997 merging. */
4998 if (flag_lto_odr_type_mering
4999 && TREE_CODE (decl) == TYPE_DECL
5000 && DECL_NAME (decl)
5001 && decl == TYPE_NAME (TREE_TYPE (decl))
5002 && !is_lang_specific (TREE_TYPE (decl))
5003 && AGGREGATE_TYPE_P (TREE_TYPE (decl))
5004 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE)
5005 && !type_in_anonymous_namespace_p (TREE_TYPE (decl)))
5006 return !DECL_ASSEMBLER_NAME_SET_P (decl);
5007 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5008 if (TREE_CODE (decl) != FUNCTION_DECL
5009 && TREE_CODE (decl) != VAR_DECL)
5010 return false;
5011
5012 /* If DECL already has its assembler name set, it does not need a
5013 new one. */
5014 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5015 || DECL_ASSEMBLER_NAME_SET_P (decl))
5016 return false;
5017
5018 /* Abstract decls do not need an assembler name. */
5019 if (DECL_ABSTRACT_P (decl))
5020 return false;
5021
5022 /* For VAR_DECLs, only static, public and external symbols need an
5023 assembler name. */
5024 if (TREE_CODE (decl) == VAR_DECL
5025 && !TREE_STATIC (decl)
5026 && !TREE_PUBLIC (decl)
5027 && !DECL_EXTERNAL (decl))
5028 return false;
5029
5030 if (TREE_CODE (decl) == FUNCTION_DECL)
5031 {
5032 /* Do not set assembler name on builtins. Allow RTL expansion to
5033 decide whether to expand inline or via a regular call. */
5034 if (DECL_BUILT_IN (decl)
5035 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5036 return false;
5037
5038 /* Functions represented in the callgraph need an assembler name. */
5039 if (cgraph_node::get (decl) != NULL)
5040 return true;
5041
5042 /* Unused and not public functions don't need an assembler name. */
5043 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5044 return false;
5045 }
5046
5047 return true;
5048 }
5049
5050
5051 /* Reset all language specific information still present in symbol
5052 DECL. */
5053
5054 static void
5055 free_lang_data_in_decl (tree decl)
5056 {
5057 gcc_assert (DECL_P (decl));
5058
5059 /* Give the FE a chance to remove its own data first. */
5060 lang_hooks.free_lang_data (decl);
5061
5062 TREE_LANG_FLAG_0 (decl) = 0;
5063 TREE_LANG_FLAG_1 (decl) = 0;
5064 TREE_LANG_FLAG_2 (decl) = 0;
5065 TREE_LANG_FLAG_3 (decl) = 0;
5066 TREE_LANG_FLAG_4 (decl) = 0;
5067 TREE_LANG_FLAG_5 (decl) = 0;
5068 TREE_LANG_FLAG_6 (decl) = 0;
5069
5070 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5071 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5072 if (TREE_CODE (decl) == FIELD_DECL)
5073 {
5074 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5075 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5076 DECL_QUALIFIER (decl) = NULL_TREE;
5077 }
5078
5079 if (TREE_CODE (decl) == FUNCTION_DECL)
5080 {
5081 struct cgraph_node *node;
5082 if (!(node = cgraph_node::get (decl))
5083 || (!node->definition && !node->clones))
5084 {
5085 if (node)
5086 node->release_body ();
5087 else
5088 {
5089 release_function_body (decl);
5090 DECL_ARGUMENTS (decl) = NULL;
5091 DECL_RESULT (decl) = NULL;
5092 DECL_INITIAL (decl) = error_mark_node;
5093 }
5094 }
5095 if (gimple_has_body_p (decl))
5096 {
5097 tree t;
5098
5099 /* If DECL has a gimple body, then the context for its
5100 arguments must be DECL. Otherwise, it doesn't really
5101 matter, as we will not be emitting any code for DECL. In
5102 general, there may be other instances of DECL created by
5103 the front end and since PARM_DECLs are generally shared,
5104 their DECL_CONTEXT changes as the replicas of DECL are
5105 created. The only time where DECL_CONTEXT is important
5106 is for the FUNCTION_DECLs that have a gimple body (since
5107 the PARM_DECL will be used in the function's body). */
5108 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5109 DECL_CONTEXT (t) = decl;
5110 }
5111
5112 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5113 At this point, it is not needed anymore. */
5114 DECL_SAVED_TREE (decl) = NULL_TREE;
5115
5116 /* Clear the abstract origin if it refers to a method. Otherwise
5117 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
5118 origin will not be output correctly. */
5119 if (DECL_ABSTRACT_ORIGIN (decl)
5120 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5121 && RECORD_OR_UNION_TYPE_P
5122 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5123 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5124
5125 /* Sometimes the C++ frontend doesn't manage to transform a temporary
5126 DECL_VINDEX referring to itself into a vtable slot number as it
5127 should. Happens with functions that are copied and then forgotten
5128 about. Just clear it, it won't matter anymore. */
5129 if (DECL_VINDEX (decl) && !tree_fits_shwi_p (DECL_VINDEX (decl)))
5130 DECL_VINDEX (decl) = NULL_TREE;
5131 }
5132 else if (TREE_CODE (decl) == VAR_DECL)
5133 {
5134 if ((DECL_EXTERNAL (decl)
5135 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5136 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5137 DECL_INITIAL (decl) = NULL_TREE;
5138 }
5139 else if (TREE_CODE (decl) == TYPE_DECL
5140 || TREE_CODE (decl) == FIELD_DECL)
5141 DECL_INITIAL (decl) = NULL_TREE;
5142 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5143 && DECL_INITIAL (decl)
5144 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5145 {
5146 /* Strip builtins from the translation-unit BLOCK. We still have targets
5147 without builtin_decl_explicit support and also builtins are shared
5148 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5149 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5150 while (*nextp)
5151 {
5152 tree var = *nextp;
5153 if (TREE_CODE (var) == FUNCTION_DECL
5154 && DECL_BUILT_IN (var))
5155 *nextp = TREE_CHAIN (var);
5156 else
5157 nextp = &TREE_CHAIN (var);
5158 }
5159 }
5160 }
5161
5162
5163 /* Data used when collecting DECLs and TYPEs for language data removal. */
5164
5165 struct free_lang_data_d
5166 {
5167 /* Worklist to avoid excessive recursion. */
5168 vec<tree> worklist;
5169
5170 /* Set of traversed objects. Used to avoid duplicate visits. */
5171 hash_set<tree> *pset;
5172
5173 /* Array of symbols to process with free_lang_data_in_decl. */
5174 vec<tree> decls;
5175
5176 /* Array of types to process with free_lang_data_in_type. */
5177 vec<tree> types;
5178 };
5179
5180
5181 /* Save all language fields needed to generate proper debug information
5182 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
5183
5184 static void
5185 save_debug_info_for_decl (tree t)
5186 {
5187 /*struct saved_debug_info_d *sdi;*/
5188
5189 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
5190
5191 /* FIXME. Partial implementation for saving debug info removed. */
5192 }
5193
5194
5195 /* Save all language fields needed to generate proper debug information
5196 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
5197
5198 static void
5199 save_debug_info_for_type (tree t)
5200 {
5201 /*struct saved_debug_info_d *sdi;*/
5202
5203 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
5204
5205 /* FIXME. Partial implementation for saving debug info removed. */
5206 }
5207
5208
5209 /* Add type or decl T to one of the list of tree nodes that need their
5210 language data removed. The lists are held inside FLD. */
5211
5212 static void
5213 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5214 {
5215 if (DECL_P (t))
5216 {
5217 fld->decls.safe_push (t);
5218 if (debug_info_level > DINFO_LEVEL_TERSE)
5219 save_debug_info_for_decl (t);
5220 }
5221 else if (TYPE_P (t))
5222 {
5223 fld->types.safe_push (t);
5224 if (debug_info_level > DINFO_LEVEL_TERSE)
5225 save_debug_info_for_type (t);
5226 }
5227 else
5228 gcc_unreachable ();
5229 }
5230
5231 /* Push tree node T into FLD->WORKLIST. */
5232
5233 static inline void
5234 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5235 {
5236 if (t && !is_lang_specific (t) && !fld->pset->contains (t))
5237 fld->worklist.safe_push ((t));
5238 }
5239
5240
5241 /* Operand callback helper for free_lang_data_in_node. *TP is the
5242 subtree operand being considered. */
5243
5244 static tree
5245 find_decls_types_r (tree *tp, int *ws, void *data)
5246 {
5247 tree t = *tp;
5248 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5249
5250 if (TREE_CODE (t) == TREE_LIST)
5251 return NULL_TREE;
5252
5253 /* Language specific nodes will be removed, so there is no need
5254 to gather anything under them. */
5255 if (is_lang_specific (t))
5256 {
5257 *ws = 0;
5258 return NULL_TREE;
5259 }
5260
5261 if (DECL_P (t))
5262 {
5263 /* Note that walk_tree does not traverse every possible field in
5264 decls, so we have to do our own traversals here. */
5265 add_tree_to_fld_list (t, fld);
5266
5267 fld_worklist_push (DECL_NAME (t), fld);
5268 fld_worklist_push (DECL_CONTEXT (t), fld);
5269 fld_worklist_push (DECL_SIZE (t), fld);
5270 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5271
5272 /* We are going to remove everything under DECL_INITIAL for
5273 TYPE_DECLs. No point walking them. */
5274 if (TREE_CODE (t) != TYPE_DECL)
5275 fld_worklist_push (DECL_INITIAL (t), fld);
5276
5277 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5278 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5279
5280 if (TREE_CODE (t) == FUNCTION_DECL)
5281 {
5282 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5283 fld_worklist_push (DECL_RESULT (t), fld);
5284 }
5285 else if (TREE_CODE (t) == TYPE_DECL)
5286 {
5287 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
5288 }
5289 else if (TREE_CODE (t) == FIELD_DECL)
5290 {
5291 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5292 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5293 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5294 fld_worklist_push (DECL_FCONTEXT (t), fld);
5295 }
5296
5297 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
5298 && DECL_HAS_VALUE_EXPR_P (t))
5299 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5300
5301 if (TREE_CODE (t) != FIELD_DECL
5302 && TREE_CODE (t) != TYPE_DECL)
5303 fld_worklist_push (TREE_CHAIN (t), fld);
5304 *ws = 0;
5305 }
5306 else if (TYPE_P (t))
5307 {
5308 /* Note that walk_tree does not traverse every possible field in
5309 types, so we have to do our own traversals here. */
5310 add_tree_to_fld_list (t, fld);
5311
5312 if (!RECORD_OR_UNION_TYPE_P (t))
5313 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5314 fld_worklist_push (TYPE_SIZE (t), fld);
5315 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5316 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5317 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5318 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5319 fld_worklist_push (TYPE_NAME (t), fld);
5320 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
5321 them and thus do not and want not to reach unused pointer types
5322 this way. */
5323 if (!POINTER_TYPE_P (t))
5324 fld_worklist_push (TYPE_MINVAL (t), fld);
5325 if (!RECORD_OR_UNION_TYPE_P (t))
5326 fld_worklist_push (TYPE_MAXVAL (t), fld);
5327 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5328 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5329 do not and want not to reach unused variants this way. */
5330 if (TYPE_CONTEXT (t))
5331 {
5332 tree ctx = TYPE_CONTEXT (t);
5333 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5334 So push that instead. */
5335 while (ctx && TREE_CODE (ctx) == BLOCK)
5336 ctx = BLOCK_SUPERCONTEXT (ctx);
5337 fld_worklist_push (ctx, fld);
5338 }
5339 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5340 and want not to reach unused types this way. */
5341
5342 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5343 {
5344 unsigned i;
5345 tree tem;
5346 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5347 fld_worklist_push (TREE_TYPE (tem), fld);
5348 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
5349 if (tem
5350 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
5351 && TREE_CODE (tem) == TREE_LIST)
5352 do
5353 {
5354 fld_worklist_push (TREE_VALUE (tem), fld);
5355 tem = TREE_CHAIN (tem);
5356 }
5357 while (tem);
5358 }
5359 if (RECORD_OR_UNION_TYPE_P (t))
5360 {
5361 tree tem;
5362 /* Push all TYPE_FIELDS - there can be interleaving interesting
5363 and non-interesting things. */
5364 tem = TYPE_FIELDS (t);
5365 while (tem)
5366 {
5367 if (TREE_CODE (tem) == FIELD_DECL
5368 || TREE_CODE (tem) == TYPE_DECL)
5369 fld_worklist_push (tem, fld);
5370 tem = TREE_CHAIN (tem);
5371 }
5372 }
5373
5374 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5375 *ws = 0;
5376 }
5377 else if (TREE_CODE (t) == BLOCK)
5378 {
5379 tree tem;
5380 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
5381 fld_worklist_push (tem, fld);
5382 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5383 fld_worklist_push (tem, fld);
5384 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5385 }
5386
5387 if (TREE_CODE (t) != IDENTIFIER_NODE
5388 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5389 fld_worklist_push (TREE_TYPE (t), fld);
5390
5391 return NULL_TREE;
5392 }
5393
5394
5395 /* Find decls and types in T. */
5396
5397 static void
5398 find_decls_types (tree t, struct free_lang_data_d *fld)
5399 {
5400 while (1)
5401 {
5402 if (!fld->pset->contains (t))
5403 walk_tree (&t, find_decls_types_r, fld, fld->pset);
5404 if (fld->worklist.is_empty ())
5405 break;
5406 t = fld->worklist.pop ();
5407 }
5408 }
5409
5410 /* Translate all the types in LIST with the corresponding runtime
5411 types. */
5412
5413 static tree
5414 get_eh_types_for_runtime (tree list)
5415 {
5416 tree head, prev;
5417
5418 if (list == NULL_TREE)
5419 return NULL_TREE;
5420
5421 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5422 prev = head;
5423 list = TREE_CHAIN (list);
5424 while (list)
5425 {
5426 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5427 TREE_CHAIN (prev) = n;
5428 prev = TREE_CHAIN (prev);
5429 list = TREE_CHAIN (list);
5430 }
5431
5432 return head;
5433 }
5434
5435
5436 /* Find decls and types referenced in EH region R and store them in
5437 FLD->DECLS and FLD->TYPES. */
5438
5439 static void
5440 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5441 {
5442 switch (r->type)
5443 {
5444 case ERT_CLEANUP:
5445 break;
5446
5447 case ERT_TRY:
5448 {
5449 eh_catch c;
5450
5451 /* The types referenced in each catch must first be changed to the
5452 EH types used at runtime. This removes references to FE types
5453 in the region. */
5454 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5455 {
5456 c->type_list = get_eh_types_for_runtime (c->type_list);
5457 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
5458 }
5459 }
5460 break;
5461
5462 case ERT_ALLOWED_EXCEPTIONS:
5463 r->u.allowed.type_list
5464 = get_eh_types_for_runtime (r->u.allowed.type_list);
5465 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
5466 break;
5467
5468 case ERT_MUST_NOT_THROW:
5469 walk_tree (&r->u.must_not_throw.failure_decl,
5470 find_decls_types_r, fld, fld->pset);
5471 break;
5472 }
5473 }
5474
5475
5476 /* Find decls and types referenced in cgraph node N and store them in
5477 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5478 look for *every* kind of DECL and TYPE node reachable from N,
5479 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5480 NAMESPACE_DECLs, etc). */
5481
5482 static void
5483 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5484 {
5485 basic_block bb;
5486 struct function *fn;
5487 unsigned ix;
5488 tree t;
5489
5490 find_decls_types (n->decl, fld);
5491
5492 if (!gimple_has_body_p (n->decl))
5493 return;
5494
5495 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5496
5497 fn = DECL_STRUCT_FUNCTION (n->decl);
5498
5499 /* Traverse locals. */
5500 FOR_EACH_LOCAL_DECL (fn, ix, t)
5501 find_decls_types (t, fld);
5502
5503 /* Traverse EH regions in FN. */
5504 {
5505 eh_region r;
5506 FOR_ALL_EH_REGION_FN (r, fn)
5507 find_decls_types_in_eh_region (r, fld);
5508 }
5509
5510 /* Traverse every statement in FN. */
5511 FOR_EACH_BB_FN (bb, fn)
5512 {
5513 gimple_stmt_iterator si;
5514 unsigned i;
5515
5516 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5517 {
5518 gimple phi = gsi_stmt (si);
5519
5520 for (i = 0; i < gimple_phi_num_args (phi); i++)
5521 {
5522 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5523 find_decls_types (*arg_p, fld);
5524 }
5525 }
5526
5527 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5528 {
5529 gimple stmt = gsi_stmt (si);
5530
5531 if (is_gimple_call (stmt))
5532 find_decls_types (gimple_call_fntype (stmt), fld);
5533
5534 for (i = 0; i < gimple_num_ops (stmt); i++)
5535 {
5536 tree arg = gimple_op (stmt, i);
5537 find_decls_types (arg, fld);
5538 }
5539 }
5540 }
5541 }
5542
5543
5544 /* Find decls and types referenced in varpool node N and store them in
5545 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5546 look for *every* kind of DECL and TYPE node reachable from N,
5547 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5548 NAMESPACE_DECLs, etc). */
5549
5550 static void
5551 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
5552 {
5553 find_decls_types (v->decl, fld);
5554 }
5555
5556 /* If T needs an assembler name, have one created for it. */
5557
5558 void
5559 assign_assembler_name_if_neeeded (tree t)
5560 {
5561 if (need_assembler_name_p (t))
5562 {
5563 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5564 diagnostics that use input_location to show locus
5565 information. The problem here is that, at this point,
5566 input_location is generally anchored to the end of the file
5567 (since the parser is long gone), so we don't have a good
5568 position to pin it to.
5569
5570 To alleviate this problem, this uses the location of T's
5571 declaration. Examples of this are
5572 testsuite/g++.dg/template/cond2.C and
5573 testsuite/g++.dg/template/pr35240.C. */
5574 location_t saved_location = input_location;
5575 input_location = DECL_SOURCE_LOCATION (t);
5576
5577 decl_assembler_name (t);
5578
5579 input_location = saved_location;
5580 }
5581 }
5582
5583
5584 /* Free language specific information for every operand and expression
5585 in every node of the call graph. This process operates in three stages:
5586
5587 1- Every callgraph node and varpool node is traversed looking for
5588 decls and types embedded in them. This is a more exhaustive
5589 search than that done by find_referenced_vars, because it will
5590 also collect individual fields, decls embedded in types, etc.
5591
5592 2- All the decls found are sent to free_lang_data_in_decl.
5593
5594 3- All the types found are sent to free_lang_data_in_type.
5595
5596 The ordering between decls and types is important because
5597 free_lang_data_in_decl sets assembler names, which includes
5598 mangling. So types cannot be freed up until assembler names have
5599 been set up. */
5600
5601 static void
5602 free_lang_data_in_cgraph (void)
5603 {
5604 struct cgraph_node *n;
5605 varpool_node *v;
5606 struct free_lang_data_d fld;
5607 tree t;
5608 unsigned i;
5609 alias_pair *p;
5610
5611 /* Initialize sets and arrays to store referenced decls and types. */
5612 fld.pset = new hash_set<tree>;
5613 fld.worklist.create (0);
5614 fld.decls.create (100);
5615 fld.types.create (100);
5616
5617 /* Find decls and types in the body of every function in the callgraph. */
5618 FOR_EACH_FUNCTION (n)
5619 find_decls_types_in_node (n, &fld);
5620
5621 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5622 find_decls_types (p->decl, &fld);
5623
5624 /* Find decls and types in every varpool symbol. */
5625 FOR_EACH_VARIABLE (v)
5626 find_decls_types_in_var (v, &fld);
5627
5628 /* Set the assembler name on every decl found. We need to do this
5629 now because free_lang_data_in_decl will invalidate data needed
5630 for mangling. This breaks mangling on interdependent decls. */
5631 FOR_EACH_VEC_ELT (fld.decls, i, t)
5632 assign_assembler_name_if_neeeded (t);
5633
5634 /* Traverse every decl found freeing its language data. */
5635 FOR_EACH_VEC_ELT (fld.decls, i, t)
5636 free_lang_data_in_decl (t);
5637
5638 /* Traverse every type found freeing its language data. */
5639 FOR_EACH_VEC_ELT (fld.types, i, t)
5640 free_lang_data_in_type (t);
5641
5642 delete fld.pset;
5643 fld.worklist.release ();
5644 fld.decls.release ();
5645 fld.types.release ();
5646 }
5647
5648
5649 /* Free resources that are used by FE but are not needed once they are done. */
5650
5651 static unsigned
5652 free_lang_data (void)
5653 {
5654 unsigned i;
5655
5656 /* If we are the LTO frontend we have freed lang-specific data already. */
5657 if (in_lto_p
5658 || !flag_generate_lto)
5659 return 0;
5660
5661 /* Allocate and assign alias sets to the standard integer types
5662 while the slots are still in the way the frontends generated them. */
5663 for (i = 0; i < itk_none; ++i)
5664 if (integer_types[i])
5665 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5666
5667 /* Traverse the IL resetting language specific information for
5668 operands, expressions, etc. */
5669 free_lang_data_in_cgraph ();
5670
5671 /* Create gimple variants for common types. */
5672 ptrdiff_type_node = integer_type_node;
5673 fileptr_type_node = ptr_type_node;
5674
5675 /* Reset some langhooks. Do not reset types_compatible_p, it may
5676 still be used indirectly via the get_alias_set langhook. */
5677 lang_hooks.dwarf_name = lhd_dwarf_name;
5678 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5679 /* We do not want the default decl_assembler_name implementation,
5680 rather if we have fixed everything we want a wrapper around it
5681 asserting that all non-local symbols already got their assembler
5682 name and only produce assembler names for local symbols. Or rather
5683 make sure we never call decl_assembler_name on local symbols and
5684 devise a separate, middle-end private scheme for it. */
5685
5686 /* Reset diagnostic machinery. */
5687 tree_diagnostics_defaults (global_dc);
5688
5689 return 0;
5690 }
5691
5692
5693 namespace {
5694
5695 const pass_data pass_data_ipa_free_lang_data =
5696 {
5697 SIMPLE_IPA_PASS, /* type */
5698 "*free_lang_data", /* name */
5699 OPTGROUP_NONE, /* optinfo_flags */
5700 TV_IPA_FREE_LANG_DATA, /* tv_id */
5701 0, /* properties_required */
5702 0, /* properties_provided */
5703 0, /* properties_destroyed */
5704 0, /* todo_flags_start */
5705 0, /* todo_flags_finish */
5706 };
5707
5708 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
5709 {
5710 public:
5711 pass_ipa_free_lang_data (gcc::context *ctxt)
5712 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
5713 {}
5714
5715 /* opt_pass methods: */
5716 virtual unsigned int execute (function *) { return free_lang_data (); }
5717
5718 }; // class pass_ipa_free_lang_data
5719
5720 } // anon namespace
5721
5722 simple_ipa_opt_pass *
5723 make_pass_ipa_free_lang_data (gcc::context *ctxt)
5724 {
5725 return new pass_ipa_free_lang_data (ctxt);
5726 }
5727
5728 /* The backbone of is_attribute_p(). ATTR_LEN is the string length of
5729 ATTR_NAME. Also used internally by remove_attribute(). */
5730 bool
5731 private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident)
5732 {
5733 size_t ident_len = IDENTIFIER_LENGTH (ident);
5734
5735 if (ident_len == attr_len)
5736 {
5737 if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0)
5738 return true;
5739 }
5740 else if (ident_len == attr_len + 4)
5741 {
5742 /* There is the possibility that ATTR is 'text' and IDENT is
5743 '__text__'. */
5744 const char *p = IDENTIFIER_POINTER (ident);
5745 if (p[0] == '_' && p[1] == '_'
5746 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5747 && strncmp (attr_name, p + 2, attr_len) == 0)
5748 return true;
5749 }
5750
5751 return false;
5752 }
5753
5754 /* The backbone of lookup_attribute(). ATTR_LEN is the string length
5755 of ATTR_NAME, and LIST is not NULL_TREE. */
5756 tree
5757 private_lookup_attribute (const char *attr_name, size_t attr_len, tree list)
5758 {
5759 while (list)
5760 {
5761 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5762
5763 if (ident_len == attr_len)
5764 {
5765 if (!strcmp (attr_name,
5766 IDENTIFIER_POINTER (get_attribute_name (list))))
5767 break;
5768 }
5769 /* TODO: If we made sure that attributes were stored in the
5770 canonical form without '__...__' (ie, as in 'text' as opposed
5771 to '__text__') then we could avoid the following case. */
5772 else if (ident_len == attr_len + 4)
5773 {
5774 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5775 if (p[0] == '_' && p[1] == '_'
5776 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5777 && strncmp (attr_name, p + 2, attr_len) == 0)
5778 break;
5779 }
5780 list = TREE_CHAIN (list);
5781 }
5782
5783 return list;
5784 }
5785
5786 /* Given an attribute name ATTR_NAME and a list of attributes LIST,
5787 return a pointer to the attribute's list first element if the attribute
5788 starts with ATTR_NAME. ATTR_NAME must be in the form 'text' (not
5789 '__text__'). */
5790
5791 tree
5792 private_lookup_attribute_by_prefix (const char *attr_name, size_t attr_len,
5793 tree list)
5794 {
5795 while (list)
5796 {
5797 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5798
5799 if (attr_len > ident_len)
5800 {
5801 list = TREE_CHAIN (list);
5802 continue;
5803 }
5804
5805 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5806
5807 if (strncmp (attr_name, p, attr_len) == 0)
5808 break;
5809
5810 /* TODO: If we made sure that attributes were stored in the
5811 canonical form without '__...__' (ie, as in 'text' as opposed
5812 to '__text__') then we could avoid the following case. */
5813 if (p[0] == '_' && p[1] == '_' &&
5814 strncmp (attr_name, p + 2, attr_len) == 0)
5815 break;
5816
5817 list = TREE_CHAIN (list);
5818 }
5819
5820 return list;
5821 }
5822
5823
5824 /* A variant of lookup_attribute() that can be used with an identifier
5825 as the first argument, and where the identifier can be either
5826 'text' or '__text__'.
5827
5828 Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST,
5829 return a pointer to the attribute's list element if the attribute
5830 is part of the list, or NULL_TREE if not found. If the attribute
5831 appears more than once, this only returns the first occurrence; the
5832 TREE_CHAIN of the return value should be passed back in if further
5833 occurrences are wanted. ATTR_IDENTIFIER must be an identifier but
5834 can be in the form 'text' or '__text__'. */
5835 static tree
5836 lookup_ident_attribute (tree attr_identifier, tree list)
5837 {
5838 gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE);
5839
5840 while (list)
5841 {
5842 gcc_checking_assert (TREE_CODE (get_attribute_name (list))
5843 == IDENTIFIER_NODE);
5844
5845 /* Identifiers can be compared directly for equality. */
5846 if (attr_identifier == get_attribute_name (list))
5847 break;
5848
5849 /* If they are not equal, they may still be one in the form
5850 'text' while the other one is in the form '__text__'. TODO:
5851 If we were storing attributes in normalized 'text' form, then
5852 this could all go away and we could take full advantage of
5853 the fact that we're comparing identifiers. :-) */
5854 {
5855 size_t attr_len = IDENTIFIER_LENGTH (attr_identifier);
5856 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5857
5858 if (ident_len == attr_len + 4)
5859 {
5860 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5861 const char *q = IDENTIFIER_POINTER (attr_identifier);
5862 if (p[0] == '_' && p[1] == '_'
5863 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5864 && strncmp (q, p + 2, attr_len) == 0)
5865 break;
5866 }
5867 else if (ident_len + 4 == attr_len)
5868 {
5869 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5870 const char *q = IDENTIFIER_POINTER (attr_identifier);
5871 if (q[0] == '_' && q[1] == '_'
5872 && q[attr_len - 2] == '_' && q[attr_len - 1] == '_'
5873 && strncmp (q + 2, p, ident_len) == 0)
5874 break;
5875 }
5876 }
5877 list = TREE_CHAIN (list);
5878 }
5879
5880 return list;
5881 }
5882
5883 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5884 modified list. */
5885
5886 tree
5887 remove_attribute (const char *attr_name, tree list)
5888 {
5889 tree *p;
5890 size_t attr_len = strlen (attr_name);
5891
5892 gcc_checking_assert (attr_name[0] != '_');
5893
5894 for (p = &list; *p; )
5895 {
5896 tree l = *p;
5897 /* TODO: If we were storing attributes in normalized form, here
5898 we could use a simple strcmp(). */
5899 if (private_is_attribute_p (attr_name, attr_len, get_attribute_name (l)))
5900 *p = TREE_CHAIN (l);
5901 else
5902 p = &TREE_CHAIN (l);
5903 }
5904
5905 return list;
5906 }
5907
5908 /* Return an attribute list that is the union of a1 and a2. */
5909
5910 tree
5911 merge_attributes (tree a1, tree a2)
5912 {
5913 tree attributes;
5914
5915 /* Either one unset? Take the set one. */
5916
5917 if ((attributes = a1) == 0)
5918 attributes = a2;
5919
5920 /* One that completely contains the other? Take it. */
5921
5922 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5923 {
5924 if (attribute_list_contained (a2, a1))
5925 attributes = a2;
5926 else
5927 {
5928 /* Pick the longest list, and hang on the other list. */
5929
5930 if (list_length (a1) < list_length (a2))
5931 attributes = a2, a2 = a1;
5932
5933 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5934 {
5935 tree a;
5936 for (a = lookup_ident_attribute (get_attribute_name (a2),
5937 attributes);
5938 a != NULL_TREE && !attribute_value_equal (a, a2);
5939 a = lookup_ident_attribute (get_attribute_name (a2),
5940 TREE_CHAIN (a)))
5941 ;
5942 if (a == NULL_TREE)
5943 {
5944 a1 = copy_node (a2);
5945 TREE_CHAIN (a1) = attributes;
5946 attributes = a1;
5947 }
5948 }
5949 }
5950 }
5951 return attributes;
5952 }
5953
5954 /* Given types T1 and T2, merge their attributes and return
5955 the result. */
5956
5957 tree
5958 merge_type_attributes (tree t1, tree t2)
5959 {
5960 return merge_attributes (TYPE_ATTRIBUTES (t1),
5961 TYPE_ATTRIBUTES (t2));
5962 }
5963
5964 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5965 the result. */
5966
5967 tree
5968 merge_decl_attributes (tree olddecl, tree newdecl)
5969 {
5970 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5971 DECL_ATTRIBUTES (newdecl));
5972 }
5973
5974 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5975
5976 /* Specialization of merge_decl_attributes for various Windows targets.
5977
5978 This handles the following situation:
5979
5980 __declspec (dllimport) int foo;
5981 int foo;
5982
5983 The second instance of `foo' nullifies the dllimport. */
5984
5985 tree
5986 merge_dllimport_decl_attributes (tree old, tree new_tree)
5987 {
5988 tree a;
5989 int delete_dllimport_p = 1;
5990
5991 /* What we need to do here is remove from `old' dllimport if it doesn't
5992 appear in `new'. dllimport behaves like extern: if a declaration is
5993 marked dllimport and a definition appears later, then the object
5994 is not dllimport'd. We also remove a `new' dllimport if the old list
5995 contains dllexport: dllexport always overrides dllimport, regardless
5996 of the order of declaration. */
5997 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5998 delete_dllimport_p = 0;
5999 else if (DECL_DLLIMPORT_P (new_tree)
6000 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
6001 {
6002 DECL_DLLIMPORT_P (new_tree) = 0;
6003 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
6004 "dllimport ignored", new_tree);
6005 }
6006 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
6007 {
6008 /* Warn about overriding a symbol that has already been used, e.g.:
6009 extern int __attribute__ ((dllimport)) foo;
6010 int* bar () {return &foo;}
6011 int foo;
6012 */
6013 if (TREE_USED (old))
6014 {
6015 warning (0, "%q+D redeclared without dllimport attribute "
6016 "after being referenced with dll linkage", new_tree);
6017 /* If we have used a variable's address with dllimport linkage,
6018 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
6019 decl may already have had TREE_CONSTANT computed.
6020 We still remove the attribute so that assembler code refers
6021 to '&foo rather than '_imp__foo'. */
6022 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
6023 DECL_DLLIMPORT_P (new_tree) = 1;
6024 }
6025
6026 /* Let an inline definition silently override the external reference,
6027 but otherwise warn about attribute inconsistency. */
6028 else if (TREE_CODE (new_tree) == VAR_DECL
6029 || !DECL_DECLARED_INLINE_P (new_tree))
6030 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
6031 "previous dllimport ignored", new_tree);
6032 }
6033 else
6034 delete_dllimport_p = 0;
6035
6036 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
6037
6038 if (delete_dllimport_p)
6039 a = remove_attribute ("dllimport", a);
6040
6041 return a;
6042 }
6043
6044 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
6045 struct attribute_spec.handler. */
6046
6047 tree
6048 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
6049 bool *no_add_attrs)
6050 {
6051 tree node = *pnode;
6052 bool is_dllimport;
6053
6054 /* These attributes may apply to structure and union types being created,
6055 but otherwise should pass to the declaration involved. */
6056 if (!DECL_P (node))
6057 {
6058 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
6059 | (int) ATTR_FLAG_ARRAY_NEXT))
6060 {
6061 *no_add_attrs = true;
6062 return tree_cons (name, args, NULL_TREE);
6063 }
6064 if (TREE_CODE (node) == RECORD_TYPE
6065 || TREE_CODE (node) == UNION_TYPE)
6066 {
6067 node = TYPE_NAME (node);
6068 if (!node)
6069 return NULL_TREE;
6070 }
6071 else
6072 {
6073 warning (OPT_Wattributes, "%qE attribute ignored",
6074 name);
6075 *no_add_attrs = true;
6076 return NULL_TREE;
6077 }
6078 }
6079
6080 if (TREE_CODE (node) != FUNCTION_DECL
6081 && TREE_CODE (node) != VAR_DECL
6082 && TREE_CODE (node) != TYPE_DECL)
6083 {
6084 *no_add_attrs = true;
6085 warning (OPT_Wattributes, "%qE attribute ignored",
6086 name);
6087 return NULL_TREE;
6088 }
6089
6090 if (TREE_CODE (node) == TYPE_DECL
6091 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
6092 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
6093 {
6094 *no_add_attrs = true;
6095 warning (OPT_Wattributes, "%qE attribute ignored",
6096 name);
6097 return NULL_TREE;
6098 }
6099
6100 is_dllimport = is_attribute_p ("dllimport", name);
6101
6102 /* Report error on dllimport ambiguities seen now before they cause
6103 any damage. */
6104 if (is_dllimport)
6105 {
6106 /* Honor any target-specific overrides. */
6107 if (!targetm.valid_dllimport_attribute_p (node))
6108 *no_add_attrs = true;
6109
6110 else if (TREE_CODE (node) == FUNCTION_DECL
6111 && DECL_DECLARED_INLINE_P (node))
6112 {
6113 warning (OPT_Wattributes, "inline function %q+D declared as "
6114 " dllimport: attribute ignored", node);
6115 *no_add_attrs = true;
6116 }
6117 /* Like MS, treat definition of dllimported variables and
6118 non-inlined functions on declaration as syntax errors. */
6119 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
6120 {
6121 error ("function %q+D definition is marked dllimport", node);
6122 *no_add_attrs = true;
6123 }
6124
6125 else if (TREE_CODE (node) == VAR_DECL)
6126 {
6127 if (DECL_INITIAL (node))
6128 {
6129 error ("variable %q+D definition is marked dllimport",
6130 node);
6131 *no_add_attrs = true;
6132 }
6133
6134 /* `extern' needn't be specified with dllimport.
6135 Specify `extern' now and hope for the best. Sigh. */
6136 DECL_EXTERNAL (node) = 1;
6137 /* Also, implicitly give dllimport'd variables declared within
6138 a function global scope, unless declared static. */
6139 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
6140 TREE_PUBLIC (node) = 1;
6141 }
6142
6143 if (*no_add_attrs == false)
6144 DECL_DLLIMPORT_P (node) = 1;
6145 }
6146 else if (TREE_CODE (node) == FUNCTION_DECL
6147 && DECL_DECLARED_INLINE_P (node)
6148 && flag_keep_inline_dllexport)
6149 /* An exported function, even if inline, must be emitted. */
6150 DECL_EXTERNAL (node) = 0;
6151
6152 /* Report error if symbol is not accessible at global scope. */
6153 if (!TREE_PUBLIC (node)
6154 && (TREE_CODE (node) == VAR_DECL
6155 || TREE_CODE (node) == FUNCTION_DECL))
6156 {
6157 error ("external linkage required for symbol %q+D because of "
6158 "%qE attribute", node, name);
6159 *no_add_attrs = true;
6160 }
6161
6162 /* A dllexport'd entity must have default visibility so that other
6163 program units (shared libraries or the main executable) can see
6164 it. A dllimport'd entity must have default visibility so that
6165 the linker knows that undefined references within this program
6166 unit can be resolved by the dynamic linker. */
6167 if (!*no_add_attrs)
6168 {
6169 if (DECL_VISIBILITY_SPECIFIED (node)
6170 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
6171 error ("%qE implies default visibility, but %qD has already "
6172 "been declared with a different visibility",
6173 name, node);
6174 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
6175 DECL_VISIBILITY_SPECIFIED (node) = 1;
6176 }
6177
6178 return NULL_TREE;
6179 }
6180
6181 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
6182 \f
6183 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
6184 of the various TYPE_QUAL values. */
6185
6186 static void
6187 set_type_quals (tree type, int type_quals)
6188 {
6189 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
6190 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
6191 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
6192 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
6193 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
6194 }
6195
6196 /* Returns true iff unqualified CAND and BASE are equivalent. */
6197
6198 bool
6199 check_base_type (const_tree cand, const_tree base)
6200 {
6201 return (TYPE_NAME (cand) == TYPE_NAME (base)
6202 /* Apparently this is needed for Objective-C. */
6203 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6204 /* Check alignment. */
6205 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
6206 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6207 TYPE_ATTRIBUTES (base)));
6208 }
6209
6210 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
6211
6212 bool
6213 check_qualified_type (const_tree cand, const_tree base, int type_quals)
6214 {
6215 return (TYPE_QUALS (cand) == type_quals
6216 && check_base_type (cand, base));
6217 }
6218
6219 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
6220
6221 static bool
6222 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6223 {
6224 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6225 && TYPE_NAME (cand) == TYPE_NAME (base)
6226 /* Apparently this is needed for Objective-C. */
6227 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6228 /* Check alignment. */
6229 && TYPE_ALIGN (cand) == align
6230 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6231 TYPE_ATTRIBUTES (base)));
6232 }
6233
6234 /* This function checks to see if TYPE matches the size one of the built-in
6235 atomic types, and returns that core atomic type. */
6236
6237 static tree
6238 find_atomic_core_type (tree type)
6239 {
6240 tree base_atomic_type;
6241
6242 /* Only handle complete types. */
6243 if (TYPE_SIZE (type) == NULL_TREE)
6244 return NULL_TREE;
6245
6246 HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
6247 switch (type_size)
6248 {
6249 case 8:
6250 base_atomic_type = atomicQI_type_node;
6251 break;
6252
6253 case 16:
6254 base_atomic_type = atomicHI_type_node;
6255 break;
6256
6257 case 32:
6258 base_atomic_type = atomicSI_type_node;
6259 break;
6260
6261 case 64:
6262 base_atomic_type = atomicDI_type_node;
6263 break;
6264
6265 case 128:
6266 base_atomic_type = atomicTI_type_node;
6267 break;
6268
6269 default:
6270 base_atomic_type = NULL_TREE;
6271 }
6272
6273 return base_atomic_type;
6274 }
6275
6276 /* Return a version of the TYPE, qualified as indicated by the
6277 TYPE_QUALS, if one exists. If no qualified version exists yet,
6278 return NULL_TREE. */
6279
6280 tree
6281 get_qualified_type (tree type, int type_quals)
6282 {
6283 tree t;
6284
6285 if (TYPE_QUALS (type) == type_quals)
6286 return type;
6287
6288 /* Search the chain of variants to see if there is already one there just
6289 like the one we need to have. If so, use that existing one. We must
6290 preserve the TYPE_NAME, since there is code that depends on this. */
6291 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6292 if (check_qualified_type (t, type, type_quals))
6293 return t;
6294
6295 return NULL_TREE;
6296 }
6297
6298 /* Like get_qualified_type, but creates the type if it does not
6299 exist. This function never returns NULL_TREE. */
6300
6301 tree
6302 build_qualified_type (tree type, int type_quals)
6303 {
6304 tree t;
6305
6306 /* See if we already have the appropriate qualified variant. */
6307 t = get_qualified_type (type, type_quals);
6308
6309 /* If not, build it. */
6310 if (!t)
6311 {
6312 t = build_variant_type_copy (type);
6313 set_type_quals (t, type_quals);
6314
6315 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6316 {
6317 /* See if this object can map to a basic atomic type. */
6318 tree atomic_type = find_atomic_core_type (type);
6319 if (atomic_type)
6320 {
6321 /* Ensure the alignment of this type is compatible with
6322 the required alignment of the atomic type. */
6323 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6324 TYPE_ALIGN (t) = TYPE_ALIGN (atomic_type);
6325 }
6326 }
6327
6328 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6329 /* Propagate structural equality. */
6330 SET_TYPE_STRUCTURAL_EQUALITY (t);
6331 else if (TYPE_CANONICAL (type) != type)
6332 /* Build the underlying canonical type, since it is different
6333 from TYPE. */
6334 {
6335 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6336 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6337 }
6338 else
6339 /* T is its own canonical type. */
6340 TYPE_CANONICAL (t) = t;
6341
6342 }
6343
6344 return t;
6345 }
6346
6347 /* Create a variant of type T with alignment ALIGN. */
6348
6349 tree
6350 build_aligned_type (tree type, unsigned int align)
6351 {
6352 tree t;
6353
6354 if (TYPE_PACKED (type)
6355 || TYPE_ALIGN (type) == align)
6356 return type;
6357
6358 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6359 if (check_aligned_type (t, type, align))
6360 return t;
6361
6362 t = build_variant_type_copy (type);
6363 TYPE_ALIGN (t) = align;
6364
6365 return t;
6366 }
6367
6368 /* Create a new distinct copy of TYPE. The new type is made its own
6369 MAIN_VARIANT. If TYPE requires structural equality checks, the
6370 resulting type requires structural equality checks; otherwise, its
6371 TYPE_CANONICAL points to itself. */
6372
6373 tree
6374 build_distinct_type_copy (tree type)
6375 {
6376 tree t = copy_node (type);
6377
6378 TYPE_POINTER_TO (t) = 0;
6379 TYPE_REFERENCE_TO (t) = 0;
6380
6381 /* Set the canonical type either to a new equivalence class, or
6382 propagate the need for structural equality checks. */
6383 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6384 SET_TYPE_STRUCTURAL_EQUALITY (t);
6385 else
6386 TYPE_CANONICAL (t) = t;
6387
6388 /* Make it its own variant. */
6389 TYPE_MAIN_VARIANT (t) = t;
6390 TYPE_NEXT_VARIANT (t) = 0;
6391
6392 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6393 whose TREE_TYPE is not t. This can also happen in the Ada
6394 frontend when using subtypes. */
6395
6396 return t;
6397 }
6398
6399 /* Create a new variant of TYPE, equivalent but distinct. This is so
6400 the caller can modify it. TYPE_CANONICAL for the return type will
6401 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6402 are considered equal by the language itself (or that both types
6403 require structural equality checks). */
6404
6405 tree
6406 build_variant_type_copy (tree type)
6407 {
6408 tree t, m = TYPE_MAIN_VARIANT (type);
6409
6410 t = build_distinct_type_copy (type);
6411
6412 /* Since we're building a variant, assume that it is a non-semantic
6413 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6414 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6415
6416 /* Add the new type to the chain of variants of TYPE. */
6417 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6418 TYPE_NEXT_VARIANT (m) = t;
6419 TYPE_MAIN_VARIANT (t) = m;
6420
6421 return t;
6422 }
6423 \f
6424 /* Return true if the from tree in both tree maps are equal. */
6425
6426 int
6427 tree_map_base_eq (const void *va, const void *vb)
6428 {
6429 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6430 *const b = (const struct tree_map_base *) vb;
6431 return (a->from == b->from);
6432 }
6433
6434 /* Hash a from tree in a tree_base_map. */
6435
6436 unsigned int
6437 tree_map_base_hash (const void *item)
6438 {
6439 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6440 }
6441
6442 /* Return true if this tree map structure is marked for garbage collection
6443 purposes. We simply return true if the from tree is marked, so that this
6444 structure goes away when the from tree goes away. */
6445
6446 int
6447 tree_map_base_marked_p (const void *p)
6448 {
6449 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6450 }
6451
6452 /* Hash a from tree in a tree_map. */
6453
6454 unsigned int
6455 tree_map_hash (const void *item)
6456 {
6457 return (((const struct tree_map *) item)->hash);
6458 }
6459
6460 /* Hash a from tree in a tree_decl_map. */
6461
6462 unsigned int
6463 tree_decl_map_hash (const void *item)
6464 {
6465 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6466 }
6467
6468 /* Return the initialization priority for DECL. */
6469
6470 priority_type
6471 decl_init_priority_lookup (tree decl)
6472 {
6473 symtab_node *snode = symtab_node::get (decl);
6474
6475 if (!snode)
6476 return DEFAULT_INIT_PRIORITY;
6477 return
6478 snode->get_init_priority ();
6479 }
6480
6481 /* Return the finalization priority for DECL. */
6482
6483 priority_type
6484 decl_fini_priority_lookup (tree decl)
6485 {
6486 cgraph_node *node = cgraph_node::get (decl);
6487
6488 if (!node)
6489 return DEFAULT_INIT_PRIORITY;
6490 return
6491 node->get_fini_priority ();
6492 }
6493
6494 /* Set the initialization priority for DECL to PRIORITY. */
6495
6496 void
6497 decl_init_priority_insert (tree decl, priority_type priority)
6498 {
6499 struct symtab_node *snode;
6500
6501 if (priority == DEFAULT_INIT_PRIORITY)
6502 {
6503 snode = symtab_node::get (decl);
6504 if (!snode)
6505 return;
6506 }
6507 else if (TREE_CODE (decl) == VAR_DECL)
6508 snode = varpool_node::get_create (decl);
6509 else
6510 snode = cgraph_node::get_create (decl);
6511 snode->set_init_priority (priority);
6512 }
6513
6514 /* Set the finalization priority for DECL to PRIORITY. */
6515
6516 void
6517 decl_fini_priority_insert (tree decl, priority_type priority)
6518 {
6519 struct cgraph_node *node;
6520
6521 if (priority == DEFAULT_INIT_PRIORITY)
6522 {
6523 node = cgraph_node::get (decl);
6524 if (!node)
6525 return;
6526 }
6527 else
6528 node = cgraph_node::get_create (decl);
6529 node->set_fini_priority (priority);
6530 }
6531
6532 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6533
6534 static void
6535 print_debug_expr_statistics (void)
6536 {
6537 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6538 (long) htab_size (debug_expr_for_decl),
6539 (long) htab_elements (debug_expr_for_decl),
6540 htab_collisions (debug_expr_for_decl));
6541 }
6542
6543 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6544
6545 static void
6546 print_value_expr_statistics (void)
6547 {
6548 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6549 (long) htab_size (value_expr_for_decl),
6550 (long) htab_elements (value_expr_for_decl),
6551 htab_collisions (value_expr_for_decl));
6552 }
6553
6554 /* Lookup a debug expression for FROM, and return it if we find one. */
6555
6556 tree
6557 decl_debug_expr_lookup (tree from)
6558 {
6559 struct tree_decl_map *h, in;
6560 in.base.from = from;
6561
6562 h = (struct tree_decl_map *)
6563 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
6564 if (h)
6565 return h->to;
6566 return NULL_TREE;
6567 }
6568
6569 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6570
6571 void
6572 decl_debug_expr_insert (tree from, tree to)
6573 {
6574 struct tree_decl_map *h;
6575 void **loc;
6576
6577 h = ggc_alloc<tree_decl_map> ();
6578 h->base.from = from;
6579 h->to = to;
6580 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
6581 INSERT);
6582 *(struct tree_decl_map **) loc = h;
6583 }
6584
6585 /* Lookup a value expression for FROM, and return it if we find one. */
6586
6587 tree
6588 decl_value_expr_lookup (tree from)
6589 {
6590 struct tree_decl_map *h, in;
6591 in.base.from = from;
6592
6593 h = (struct tree_decl_map *)
6594 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
6595 if (h)
6596 return h->to;
6597 return NULL_TREE;
6598 }
6599
6600 /* Insert a mapping FROM->TO in the value expression hashtable. */
6601
6602 void
6603 decl_value_expr_insert (tree from, tree to)
6604 {
6605 struct tree_decl_map *h;
6606 void **loc;
6607
6608 h = ggc_alloc<tree_decl_map> ();
6609 h->base.from = from;
6610 h->to = to;
6611 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
6612 INSERT);
6613 *(struct tree_decl_map **) loc = h;
6614 }
6615
6616 /* Lookup a vector of debug arguments for FROM, and return it if we
6617 find one. */
6618
6619 vec<tree, va_gc> **
6620 decl_debug_args_lookup (tree from)
6621 {
6622 struct tree_vec_map *h, in;
6623
6624 if (!DECL_HAS_DEBUG_ARGS_P (from))
6625 return NULL;
6626 gcc_checking_assert (debug_args_for_decl != NULL);
6627 in.base.from = from;
6628 h = (struct tree_vec_map *)
6629 htab_find_with_hash (debug_args_for_decl, &in, DECL_UID (from));
6630 if (h)
6631 return &h->to;
6632 return NULL;
6633 }
6634
6635 /* Insert a mapping FROM->empty vector of debug arguments in the value
6636 expression hashtable. */
6637
6638 vec<tree, va_gc> **
6639 decl_debug_args_insert (tree from)
6640 {
6641 struct tree_vec_map *h;
6642 void **loc;
6643
6644 if (DECL_HAS_DEBUG_ARGS_P (from))
6645 return decl_debug_args_lookup (from);
6646 if (debug_args_for_decl == NULL)
6647 debug_args_for_decl = htab_create_ggc (64, tree_vec_map_hash,
6648 tree_vec_map_eq, 0);
6649 h = ggc_alloc<tree_vec_map> ();
6650 h->base.from = from;
6651 h->to = NULL;
6652 loc = htab_find_slot_with_hash (debug_args_for_decl, h, DECL_UID (from),
6653 INSERT);
6654 *(struct tree_vec_map **) loc = h;
6655 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6656 return &h->to;
6657 }
6658
6659 /* Hashing of types so that we don't make duplicates.
6660 The entry point is `type_hash_canon'. */
6661
6662 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6663 with types in the TREE_VALUE slots), by adding the hash codes
6664 of the individual types. */
6665
6666 static void
6667 type_hash_list (const_tree list, inchash::hash &hstate)
6668 {
6669 const_tree tail;
6670
6671 for (tail = list; tail; tail = TREE_CHAIN (tail))
6672 if (TREE_VALUE (tail) != error_mark_node)
6673 hstate.add_object (TYPE_HASH (TREE_VALUE (tail)));
6674 }
6675
6676 /* These are the Hashtable callback functions. */
6677
6678 /* Returns true iff the types are equivalent. */
6679
6680 static int
6681 type_hash_eq (const void *va, const void *vb)
6682 {
6683 const struct type_hash *const a = (const struct type_hash *) va,
6684 *const b = (const struct type_hash *) vb;
6685
6686 /* First test the things that are the same for all types. */
6687 if (a->hash != b->hash
6688 || TREE_CODE (a->type) != TREE_CODE (b->type)
6689 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6690 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6691 TYPE_ATTRIBUTES (b->type))
6692 || (TREE_CODE (a->type) != COMPLEX_TYPE
6693 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6694 return 0;
6695
6696 /* Be careful about comparing arrays before and after the element type
6697 has been completed; don't compare TYPE_ALIGN unless both types are
6698 complete. */
6699 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6700 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6701 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6702 return 0;
6703
6704 switch (TREE_CODE (a->type))
6705 {
6706 case VOID_TYPE:
6707 case COMPLEX_TYPE:
6708 case POINTER_TYPE:
6709 case REFERENCE_TYPE:
6710 case NULLPTR_TYPE:
6711 return 1;
6712
6713 case VECTOR_TYPE:
6714 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6715
6716 case ENUMERAL_TYPE:
6717 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6718 && !(TYPE_VALUES (a->type)
6719 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6720 && TYPE_VALUES (b->type)
6721 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6722 && type_list_equal (TYPE_VALUES (a->type),
6723 TYPE_VALUES (b->type))))
6724 return 0;
6725
6726 /* ... fall through ... */
6727
6728 case INTEGER_TYPE:
6729 case REAL_TYPE:
6730 case BOOLEAN_TYPE:
6731 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6732 return false;
6733 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6734 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6735 TYPE_MAX_VALUE (b->type)))
6736 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6737 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6738 TYPE_MIN_VALUE (b->type))));
6739
6740 case FIXED_POINT_TYPE:
6741 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6742
6743 case OFFSET_TYPE:
6744 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6745
6746 case METHOD_TYPE:
6747 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6748 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6749 || (TYPE_ARG_TYPES (a->type)
6750 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6751 && TYPE_ARG_TYPES (b->type)
6752 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6753 && type_list_equal (TYPE_ARG_TYPES (a->type),
6754 TYPE_ARG_TYPES (b->type)))))
6755 break;
6756 return 0;
6757 case ARRAY_TYPE:
6758 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6759
6760 case RECORD_TYPE:
6761 case UNION_TYPE:
6762 case QUAL_UNION_TYPE:
6763 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6764 || (TYPE_FIELDS (a->type)
6765 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6766 && TYPE_FIELDS (b->type)
6767 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6768 && type_list_equal (TYPE_FIELDS (a->type),
6769 TYPE_FIELDS (b->type))));
6770
6771 case FUNCTION_TYPE:
6772 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6773 || (TYPE_ARG_TYPES (a->type)
6774 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6775 && TYPE_ARG_TYPES (b->type)
6776 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6777 && type_list_equal (TYPE_ARG_TYPES (a->type),
6778 TYPE_ARG_TYPES (b->type))))
6779 break;
6780 return 0;
6781
6782 default:
6783 return 0;
6784 }
6785
6786 if (lang_hooks.types.type_hash_eq != NULL)
6787 return lang_hooks.types.type_hash_eq (a->type, b->type);
6788
6789 return 1;
6790 }
6791
6792 /* Return the cached hash value. */
6793
6794 static hashval_t
6795 type_hash_hash (const void *item)
6796 {
6797 return ((const struct type_hash *) item)->hash;
6798 }
6799
6800 /* Given TYPE, and HASHCODE its hash code, return the canonical
6801 object for an identical type if one already exists.
6802 Otherwise, return TYPE, and record it as the canonical object.
6803
6804 To use this function, first create a type of the sort you want.
6805 Then compute its hash code from the fields of the type that
6806 make it different from other similar types.
6807 Then call this function and use the value. */
6808
6809 tree
6810 type_hash_canon (unsigned int hashcode, tree type)
6811 {
6812 type_hash in;
6813 void **loc;
6814
6815 /* The hash table only contains main variants, so ensure that's what we're
6816 being passed. */
6817 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6818
6819 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6820 must call that routine before comparing TYPE_ALIGNs. */
6821 layout_type (type);
6822
6823 in.hash = hashcode;
6824 in.type = type;
6825
6826 loc = htab_find_slot_with_hash (type_hash_table, &in, hashcode, INSERT);
6827 if (*loc)
6828 {
6829 tree t1 = ((type_hash *) *loc)->type;
6830 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1);
6831 if (GATHER_STATISTICS)
6832 {
6833 tree_code_counts[(int) TREE_CODE (type)]--;
6834 tree_node_counts[(int) t_kind]--;
6835 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
6836 }
6837 return t1;
6838 }
6839 else
6840 {
6841 struct type_hash *h;
6842
6843 h = ggc_alloc<type_hash> ();
6844 h->hash = hashcode;
6845 h->type = type;
6846 *loc = (void *)h;
6847
6848 return type;
6849 }
6850 }
6851
6852 /* See if the data pointed to by the type hash table is marked. We consider
6853 it marked if the type is marked or if a debug type number or symbol
6854 table entry has been made for the type. */
6855
6856 static int
6857 type_hash_marked_p (const void *p)
6858 {
6859 const_tree const type = ((const struct type_hash *) p)->type;
6860
6861 return ggc_marked_p (type);
6862 }
6863
6864 static void
6865 print_type_hash_statistics (void)
6866 {
6867 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6868 (long) htab_size (type_hash_table),
6869 (long) htab_elements (type_hash_table),
6870 htab_collisions (type_hash_table));
6871 }
6872
6873 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6874 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6875 by adding the hash codes of the individual attributes. */
6876
6877 static void
6878 attribute_hash_list (const_tree list, inchash::hash &hstate)
6879 {
6880 const_tree tail;
6881
6882 for (tail = list; tail; tail = TREE_CHAIN (tail))
6883 /* ??? Do we want to add in TREE_VALUE too? */
6884 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (tail)));
6885 }
6886
6887 /* Given two lists of attributes, return true if list l2 is
6888 equivalent to l1. */
6889
6890 int
6891 attribute_list_equal (const_tree l1, const_tree l2)
6892 {
6893 if (l1 == l2)
6894 return 1;
6895
6896 return attribute_list_contained (l1, l2)
6897 && attribute_list_contained (l2, l1);
6898 }
6899
6900 /* Given two lists of attributes, return true if list L2 is
6901 completely contained within L1. */
6902 /* ??? This would be faster if attribute names were stored in a canonicalized
6903 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6904 must be used to show these elements are equivalent (which they are). */
6905 /* ??? It's not clear that attributes with arguments will always be handled
6906 correctly. */
6907
6908 int
6909 attribute_list_contained (const_tree l1, const_tree l2)
6910 {
6911 const_tree t1, t2;
6912
6913 /* First check the obvious, maybe the lists are identical. */
6914 if (l1 == l2)
6915 return 1;
6916
6917 /* Maybe the lists are similar. */
6918 for (t1 = l1, t2 = l2;
6919 t1 != 0 && t2 != 0
6920 && get_attribute_name (t1) == get_attribute_name (t2)
6921 && TREE_VALUE (t1) == TREE_VALUE (t2);
6922 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6923 ;
6924
6925 /* Maybe the lists are equal. */
6926 if (t1 == 0 && t2 == 0)
6927 return 1;
6928
6929 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6930 {
6931 const_tree attr;
6932 /* This CONST_CAST is okay because lookup_attribute does not
6933 modify its argument and the return value is assigned to a
6934 const_tree. */
6935 for (attr = lookup_ident_attribute (get_attribute_name (t2),
6936 CONST_CAST_TREE (l1));
6937 attr != NULL_TREE && !attribute_value_equal (t2, attr);
6938 attr = lookup_ident_attribute (get_attribute_name (t2),
6939 TREE_CHAIN (attr)))
6940 ;
6941
6942 if (attr == NULL_TREE)
6943 return 0;
6944 }
6945
6946 return 1;
6947 }
6948
6949 /* Given two lists of types
6950 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6951 return 1 if the lists contain the same types in the same order.
6952 Also, the TREE_PURPOSEs must match. */
6953
6954 int
6955 type_list_equal (const_tree l1, const_tree l2)
6956 {
6957 const_tree t1, t2;
6958
6959 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6960 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6961 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6962 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6963 && (TREE_TYPE (TREE_PURPOSE (t1))
6964 == TREE_TYPE (TREE_PURPOSE (t2))))))
6965 return 0;
6966
6967 return t1 == t2;
6968 }
6969
6970 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6971 given by TYPE. If the argument list accepts variable arguments,
6972 then this function counts only the ordinary arguments. */
6973
6974 int
6975 type_num_arguments (const_tree type)
6976 {
6977 int i = 0;
6978 tree t;
6979
6980 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6981 /* If the function does not take a variable number of arguments,
6982 the last element in the list will have type `void'. */
6983 if (VOID_TYPE_P (TREE_VALUE (t)))
6984 break;
6985 else
6986 ++i;
6987
6988 return i;
6989 }
6990
6991 /* Nonzero if integer constants T1 and T2
6992 represent the same constant value. */
6993
6994 int
6995 tree_int_cst_equal (const_tree t1, const_tree t2)
6996 {
6997 if (t1 == t2)
6998 return 1;
6999
7000 if (t1 == 0 || t2 == 0)
7001 return 0;
7002
7003 if (TREE_CODE (t1) == INTEGER_CST
7004 && TREE_CODE (t2) == INTEGER_CST
7005 && wi::to_widest (t1) == wi::to_widest (t2))
7006 return 1;
7007
7008 return 0;
7009 }
7010
7011 /* Return true if T is an INTEGER_CST whose numerical value (extended
7012 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
7013
7014 bool
7015 tree_fits_shwi_p (const_tree t)
7016 {
7017 return (t != NULL_TREE
7018 && TREE_CODE (t) == INTEGER_CST
7019 && wi::fits_shwi_p (wi::to_widest (t)));
7020 }
7021
7022 /* Return true if T is an INTEGER_CST whose numerical value (extended
7023 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
7024
7025 bool
7026 tree_fits_uhwi_p (const_tree t)
7027 {
7028 return (t != NULL_TREE
7029 && TREE_CODE (t) == INTEGER_CST
7030 && wi::fits_uhwi_p (wi::to_widest (t)));
7031 }
7032
7033 /* T is an INTEGER_CST whose numerical value (extended according to
7034 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
7035 HOST_WIDE_INT. */
7036
7037 HOST_WIDE_INT
7038 tree_to_shwi (const_tree t)
7039 {
7040 gcc_assert (tree_fits_shwi_p (t));
7041 return TREE_INT_CST_LOW (t);
7042 }
7043
7044 /* T is an INTEGER_CST whose numerical value (extended according to
7045 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
7046 HOST_WIDE_INT. */
7047
7048 unsigned HOST_WIDE_INT
7049 tree_to_uhwi (const_tree t)
7050 {
7051 gcc_assert (tree_fits_uhwi_p (t));
7052 return TREE_INT_CST_LOW (t);
7053 }
7054
7055 /* Return the most significant (sign) bit of T. */
7056
7057 int
7058 tree_int_cst_sign_bit (const_tree t)
7059 {
7060 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
7061
7062 return wi::extract_uhwi (t, bitno, 1);
7063 }
7064
7065 /* Return an indication of the sign of the integer constant T.
7066 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
7067 Note that -1 will never be returned if T's type is unsigned. */
7068
7069 int
7070 tree_int_cst_sgn (const_tree t)
7071 {
7072 if (wi::eq_p (t, 0))
7073 return 0;
7074 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
7075 return 1;
7076 else if (wi::neg_p (t))
7077 return -1;
7078 else
7079 return 1;
7080 }
7081
7082 /* Return the minimum number of bits needed to represent VALUE in a
7083 signed or unsigned type, UNSIGNEDP says which. */
7084
7085 unsigned int
7086 tree_int_cst_min_precision (tree value, signop sgn)
7087 {
7088 /* If the value is negative, compute its negative minus 1. The latter
7089 adjustment is because the absolute value of the largest negative value
7090 is one larger than the largest positive value. This is equivalent to
7091 a bit-wise negation, so use that operation instead. */
7092
7093 if (tree_int_cst_sgn (value) < 0)
7094 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
7095
7096 /* Return the number of bits needed, taking into account the fact
7097 that we need one more bit for a signed than unsigned type.
7098 If value is 0 or -1, the minimum precision is 1 no matter
7099 whether unsignedp is true or false. */
7100
7101 if (integer_zerop (value))
7102 return 1;
7103 else
7104 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
7105 }
7106
7107 /* Return truthvalue of whether T1 is the same tree structure as T2.
7108 Return 1 if they are the same.
7109 Return 0 if they are understandably different.
7110 Return -1 if either contains tree structure not understood by
7111 this function. */
7112
7113 int
7114 simple_cst_equal (const_tree t1, const_tree t2)
7115 {
7116 enum tree_code code1, code2;
7117 int cmp;
7118 int i;
7119
7120 if (t1 == t2)
7121 return 1;
7122 if (t1 == 0 || t2 == 0)
7123 return 0;
7124
7125 code1 = TREE_CODE (t1);
7126 code2 = TREE_CODE (t2);
7127
7128 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
7129 {
7130 if (CONVERT_EXPR_CODE_P (code2)
7131 || code2 == NON_LVALUE_EXPR)
7132 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7133 else
7134 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
7135 }
7136
7137 else if (CONVERT_EXPR_CODE_P (code2)
7138 || code2 == NON_LVALUE_EXPR)
7139 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
7140
7141 if (code1 != code2)
7142 return 0;
7143
7144 switch (code1)
7145 {
7146 case INTEGER_CST:
7147 return wi::to_widest (t1) == wi::to_widest (t2);
7148
7149 case REAL_CST:
7150 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
7151
7152 case FIXED_CST:
7153 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
7154
7155 case STRING_CST:
7156 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
7157 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
7158 TREE_STRING_LENGTH (t1)));
7159
7160 case CONSTRUCTOR:
7161 {
7162 unsigned HOST_WIDE_INT idx;
7163 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
7164 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
7165
7166 if (vec_safe_length (v1) != vec_safe_length (v2))
7167 return false;
7168
7169 for (idx = 0; idx < vec_safe_length (v1); ++idx)
7170 /* ??? Should we handle also fields here? */
7171 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7172 return false;
7173 return true;
7174 }
7175
7176 case SAVE_EXPR:
7177 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7178
7179 case CALL_EXPR:
7180 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7181 if (cmp <= 0)
7182 return cmp;
7183 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7184 return 0;
7185 {
7186 const_tree arg1, arg2;
7187 const_call_expr_arg_iterator iter1, iter2;
7188 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7189 arg2 = first_const_call_expr_arg (t2, &iter2);
7190 arg1 && arg2;
7191 arg1 = next_const_call_expr_arg (&iter1),
7192 arg2 = next_const_call_expr_arg (&iter2))
7193 {
7194 cmp = simple_cst_equal (arg1, arg2);
7195 if (cmp <= 0)
7196 return cmp;
7197 }
7198 return arg1 == arg2;
7199 }
7200
7201 case TARGET_EXPR:
7202 /* Special case: if either target is an unallocated VAR_DECL,
7203 it means that it's going to be unified with whatever the
7204 TARGET_EXPR is really supposed to initialize, so treat it
7205 as being equivalent to anything. */
7206 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7207 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7208 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7209 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7210 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7211 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7212 cmp = 1;
7213 else
7214 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7215
7216 if (cmp <= 0)
7217 return cmp;
7218
7219 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7220
7221 case WITH_CLEANUP_EXPR:
7222 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7223 if (cmp <= 0)
7224 return cmp;
7225
7226 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7227
7228 case COMPONENT_REF:
7229 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7230 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7231
7232 return 0;
7233
7234 case VAR_DECL:
7235 case PARM_DECL:
7236 case CONST_DECL:
7237 case FUNCTION_DECL:
7238 return 0;
7239
7240 default:
7241 break;
7242 }
7243
7244 /* This general rule works for most tree codes. All exceptions should be
7245 handled above. If this is a language-specific tree code, we can't
7246 trust what might be in the operand, so say we don't know
7247 the situation. */
7248 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7249 return -1;
7250
7251 switch (TREE_CODE_CLASS (code1))
7252 {
7253 case tcc_unary:
7254 case tcc_binary:
7255 case tcc_comparison:
7256 case tcc_expression:
7257 case tcc_reference:
7258 case tcc_statement:
7259 cmp = 1;
7260 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7261 {
7262 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7263 if (cmp <= 0)
7264 return cmp;
7265 }
7266
7267 return cmp;
7268
7269 default:
7270 return -1;
7271 }
7272 }
7273
7274 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7275 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7276 than U, respectively. */
7277
7278 int
7279 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7280 {
7281 if (tree_int_cst_sgn (t) < 0)
7282 return -1;
7283 else if (!tree_fits_uhwi_p (t))
7284 return 1;
7285 else if (TREE_INT_CST_LOW (t) == u)
7286 return 0;
7287 else if (TREE_INT_CST_LOW (t) < u)
7288 return -1;
7289 else
7290 return 1;
7291 }
7292
7293 /* Return true if SIZE represents a constant size that is in bounds of
7294 what the middle-end and the backend accepts (covering not more than
7295 half of the address-space). */
7296
7297 bool
7298 valid_constant_size_p (const_tree size)
7299 {
7300 if (! tree_fits_uhwi_p (size)
7301 || TREE_OVERFLOW (size)
7302 || tree_int_cst_sign_bit (size) != 0)
7303 return false;
7304 return true;
7305 }
7306
7307 /* Return the precision of the type, or for a complex or vector type the
7308 precision of the type of its elements. */
7309
7310 unsigned int
7311 element_precision (const_tree type)
7312 {
7313 enum tree_code code = TREE_CODE (type);
7314 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7315 type = TREE_TYPE (type);
7316
7317 return TYPE_PRECISION (type);
7318 }
7319
7320 /* Return true if CODE represents an associative tree code. Otherwise
7321 return false. */
7322 bool
7323 associative_tree_code (enum tree_code code)
7324 {
7325 switch (code)
7326 {
7327 case BIT_IOR_EXPR:
7328 case BIT_AND_EXPR:
7329 case BIT_XOR_EXPR:
7330 case PLUS_EXPR:
7331 case MULT_EXPR:
7332 case MIN_EXPR:
7333 case MAX_EXPR:
7334 return true;
7335
7336 default:
7337 break;
7338 }
7339 return false;
7340 }
7341
7342 /* Return true if CODE represents a commutative tree code. Otherwise
7343 return false. */
7344 bool
7345 commutative_tree_code (enum tree_code code)
7346 {
7347 switch (code)
7348 {
7349 case PLUS_EXPR:
7350 case MULT_EXPR:
7351 case MULT_HIGHPART_EXPR:
7352 case MIN_EXPR:
7353 case MAX_EXPR:
7354 case BIT_IOR_EXPR:
7355 case BIT_XOR_EXPR:
7356 case BIT_AND_EXPR:
7357 case NE_EXPR:
7358 case EQ_EXPR:
7359 case UNORDERED_EXPR:
7360 case ORDERED_EXPR:
7361 case UNEQ_EXPR:
7362 case LTGT_EXPR:
7363 case TRUTH_AND_EXPR:
7364 case TRUTH_XOR_EXPR:
7365 case TRUTH_OR_EXPR:
7366 case WIDEN_MULT_EXPR:
7367 case VEC_WIDEN_MULT_HI_EXPR:
7368 case VEC_WIDEN_MULT_LO_EXPR:
7369 case VEC_WIDEN_MULT_EVEN_EXPR:
7370 case VEC_WIDEN_MULT_ODD_EXPR:
7371 return true;
7372
7373 default:
7374 break;
7375 }
7376 return false;
7377 }
7378
7379 /* Return true if CODE represents a ternary tree code for which the
7380 first two operands are commutative. Otherwise return false. */
7381 bool
7382 commutative_ternary_tree_code (enum tree_code code)
7383 {
7384 switch (code)
7385 {
7386 case WIDEN_MULT_PLUS_EXPR:
7387 case WIDEN_MULT_MINUS_EXPR:
7388 case DOT_PROD_EXPR:
7389 case FMA_EXPR:
7390 return true;
7391
7392 default:
7393 break;
7394 }
7395 return false;
7396 }
7397
7398 namespace inchash
7399 {
7400
7401 /* Generate a hash value for an expression. This can be used iteratively
7402 by passing a previous result as the HSTATE argument.
7403
7404 This function is intended to produce the same hash for expressions which
7405 would compare equal using operand_equal_p. */
7406 void
7407 add_expr (const_tree t, inchash::hash &hstate)
7408 {
7409 int i;
7410 enum tree_code code;
7411 enum tree_code_class tclass;
7412
7413 if (t == NULL_TREE)
7414 {
7415 hstate.merge_hash (0);
7416 return;
7417 }
7418
7419 code = TREE_CODE (t);
7420
7421 switch (code)
7422 {
7423 /* Alas, constants aren't shared, so we can't rely on pointer
7424 identity. */
7425 case VOID_CST:
7426 hstate.merge_hash (0);
7427 return;
7428 case INTEGER_CST:
7429 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
7430 hstate.add_wide_int (TREE_INT_CST_ELT (t, i));
7431 return;
7432 case REAL_CST:
7433 {
7434 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
7435 hstate.merge_hash (val2);
7436 return;
7437 }
7438 case FIXED_CST:
7439 {
7440 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7441 hstate.merge_hash (val2);
7442 return;
7443 }
7444 case STRING_CST:
7445 hstate.add ((const void *) TREE_STRING_POINTER (t), TREE_STRING_LENGTH (t));
7446 return;
7447 case COMPLEX_CST:
7448 inchash::add_expr (TREE_REALPART (t), hstate);
7449 inchash::add_expr (TREE_IMAGPART (t), hstate);
7450 return;
7451 case VECTOR_CST:
7452 {
7453 unsigned i;
7454 for (i = 0; i < VECTOR_CST_NELTS (t); ++i)
7455 inchash::add_expr (VECTOR_CST_ELT (t, i), hstate);
7456 return;
7457 }
7458 case SSA_NAME:
7459 /* We can just compare by pointer. */
7460 hstate.add_wide_int (SSA_NAME_VERSION (t));
7461 return;
7462 case PLACEHOLDER_EXPR:
7463 /* The node itself doesn't matter. */
7464 return;
7465 case TREE_LIST:
7466 /* A list of expressions, for a CALL_EXPR or as the elements of a
7467 VECTOR_CST. */
7468 for (; t; t = TREE_CHAIN (t))
7469 inchash::add_expr (TREE_VALUE (t), hstate);
7470 return;
7471 case CONSTRUCTOR:
7472 {
7473 unsigned HOST_WIDE_INT idx;
7474 tree field, value;
7475 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7476 {
7477 inchash::add_expr (field, hstate);
7478 inchash::add_expr (value, hstate);
7479 }
7480 return;
7481 }
7482 case FUNCTION_DECL:
7483 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7484 Otherwise nodes that compare equal according to operand_equal_p might
7485 get different hash codes. However, don't do this for machine specific
7486 or front end builtins, since the function code is overloaded in those
7487 cases. */
7488 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7489 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7490 {
7491 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7492 code = TREE_CODE (t);
7493 }
7494 /* FALL THROUGH */
7495 default:
7496 tclass = TREE_CODE_CLASS (code);
7497
7498 if (tclass == tcc_declaration)
7499 {
7500 /* DECL's have a unique ID */
7501 hstate.add_wide_int (DECL_UID (t));
7502 }
7503 else
7504 {
7505 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
7506
7507 hstate.add_object (code);
7508
7509 /* Don't hash the type, that can lead to having nodes which
7510 compare equal according to operand_equal_p, but which
7511 have different hash codes. */
7512 if (CONVERT_EXPR_CODE_P (code)
7513 || code == NON_LVALUE_EXPR)
7514 {
7515 /* Make sure to include signness in the hash computation. */
7516 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7517 inchash::add_expr (TREE_OPERAND (t, 0), hstate);
7518 }
7519
7520 else if (commutative_tree_code (code))
7521 {
7522 /* It's a commutative expression. We want to hash it the same
7523 however it appears. We do this by first hashing both operands
7524 and then rehashing based on the order of their independent
7525 hashes. */
7526 inchash::hash one, two;
7527 inchash::add_expr (TREE_OPERAND (t, 0), one);
7528 inchash::add_expr (TREE_OPERAND (t, 1), two);
7529 hstate.add_commutative (one, two);
7530 }
7531 else
7532 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7533 inchash::add_expr (TREE_OPERAND (t, i), hstate);
7534 }
7535 return;
7536 }
7537 }
7538
7539 }
7540
7541 /* Constructors for pointer, array and function types.
7542 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7543 constructed by language-dependent code, not here.) */
7544
7545 /* Construct, lay out and return the type of pointers to TO_TYPE with
7546 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7547 reference all of memory. If such a type has already been
7548 constructed, reuse it. */
7549
7550 tree
7551 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
7552 bool can_alias_all)
7553 {
7554 tree t;
7555
7556 if (to_type == error_mark_node)
7557 return error_mark_node;
7558
7559 /* If the pointed-to type has the may_alias attribute set, force
7560 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7561 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7562 can_alias_all = true;
7563
7564 /* In some cases, languages will have things that aren't a POINTER_TYPE
7565 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7566 In that case, return that type without regard to the rest of our
7567 operands.
7568
7569 ??? This is a kludge, but consistent with the way this function has
7570 always operated and there doesn't seem to be a good way to avoid this
7571 at the moment. */
7572 if (TYPE_POINTER_TO (to_type) != 0
7573 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7574 return TYPE_POINTER_TO (to_type);
7575
7576 /* First, if we already have a type for pointers to TO_TYPE and it's
7577 the proper mode, use it. */
7578 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7579 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7580 return t;
7581
7582 t = make_node (POINTER_TYPE);
7583
7584 TREE_TYPE (t) = to_type;
7585 SET_TYPE_MODE (t, mode);
7586 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7587 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7588 TYPE_POINTER_TO (to_type) = t;
7589
7590 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7591 SET_TYPE_STRUCTURAL_EQUALITY (t);
7592 else if (TYPE_CANONICAL (to_type) != to_type)
7593 TYPE_CANONICAL (t)
7594 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7595 mode, can_alias_all);
7596
7597 /* Lay out the type. This function has many callers that are concerned
7598 with expression-construction, and this simplifies them all. */
7599 layout_type (t);
7600
7601 return t;
7602 }
7603
7604 /* By default build pointers in ptr_mode. */
7605
7606 tree
7607 build_pointer_type (tree to_type)
7608 {
7609 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7610 : TYPE_ADDR_SPACE (to_type);
7611 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7612 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7613 }
7614
7615 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7616
7617 tree
7618 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
7619 bool can_alias_all)
7620 {
7621 tree t;
7622
7623 if (to_type == error_mark_node)
7624 return error_mark_node;
7625
7626 /* If the pointed-to type has the may_alias attribute set, force
7627 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7628 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7629 can_alias_all = true;
7630
7631 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7632 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7633 In that case, return that type without regard to the rest of our
7634 operands.
7635
7636 ??? This is a kludge, but consistent with the way this function has
7637 always operated and there doesn't seem to be a good way to avoid this
7638 at the moment. */
7639 if (TYPE_REFERENCE_TO (to_type) != 0
7640 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7641 return TYPE_REFERENCE_TO (to_type);
7642
7643 /* First, if we already have a type for pointers to TO_TYPE and it's
7644 the proper mode, use it. */
7645 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7646 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7647 return t;
7648
7649 t = make_node (REFERENCE_TYPE);
7650
7651 TREE_TYPE (t) = to_type;
7652 SET_TYPE_MODE (t, mode);
7653 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7654 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7655 TYPE_REFERENCE_TO (to_type) = t;
7656
7657 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7658 SET_TYPE_STRUCTURAL_EQUALITY (t);
7659 else if (TYPE_CANONICAL (to_type) != to_type)
7660 TYPE_CANONICAL (t)
7661 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7662 mode, can_alias_all);
7663
7664 layout_type (t);
7665
7666 return t;
7667 }
7668
7669
7670 /* Build the node for the type of references-to-TO_TYPE by default
7671 in ptr_mode. */
7672
7673 tree
7674 build_reference_type (tree to_type)
7675 {
7676 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7677 : TYPE_ADDR_SPACE (to_type);
7678 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7679 return build_reference_type_for_mode (to_type, pointer_mode, false);
7680 }
7681
7682 #define MAX_INT_CACHED_PREC \
7683 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7684 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7685
7686 /* Builds a signed or unsigned integer type of precision PRECISION.
7687 Used for C bitfields whose precision does not match that of
7688 built-in target types. */
7689 tree
7690 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7691 int unsignedp)
7692 {
7693 tree itype, ret;
7694
7695 if (unsignedp)
7696 unsignedp = MAX_INT_CACHED_PREC + 1;
7697
7698 if (precision <= MAX_INT_CACHED_PREC)
7699 {
7700 itype = nonstandard_integer_type_cache[precision + unsignedp];
7701 if (itype)
7702 return itype;
7703 }
7704
7705 itype = make_node (INTEGER_TYPE);
7706 TYPE_PRECISION (itype) = precision;
7707
7708 if (unsignedp)
7709 fixup_unsigned_type (itype);
7710 else
7711 fixup_signed_type (itype);
7712
7713 ret = itype;
7714 if (tree_fits_uhwi_p (TYPE_MAX_VALUE (itype)))
7715 ret = type_hash_canon (tree_to_uhwi (TYPE_MAX_VALUE (itype)), itype);
7716 if (precision <= MAX_INT_CACHED_PREC)
7717 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7718
7719 return ret;
7720 }
7721
7722 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7723 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7724 is true, reuse such a type that has already been constructed. */
7725
7726 static tree
7727 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7728 {
7729 tree itype = make_node (INTEGER_TYPE);
7730 inchash::hash hstate;
7731
7732 TREE_TYPE (itype) = type;
7733
7734 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7735 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7736
7737 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7738 SET_TYPE_MODE (itype, TYPE_MODE (type));
7739 TYPE_SIZE (itype) = TYPE_SIZE (type);
7740 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7741 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7742 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7743
7744 if (!shared)
7745 return itype;
7746
7747 if ((TYPE_MIN_VALUE (itype)
7748 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7749 || (TYPE_MAX_VALUE (itype)
7750 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7751 {
7752 /* Since we cannot reliably merge this type, we need to compare it using
7753 structural equality checks. */
7754 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7755 return itype;
7756 }
7757
7758 inchash::add_expr (TYPE_MIN_VALUE (itype), hstate);
7759 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
7760 hstate.merge_hash (TYPE_HASH (type));
7761 itype = type_hash_canon (hstate.end (), itype);
7762
7763 return itype;
7764 }
7765
7766 /* Wrapper around build_range_type_1 with SHARED set to true. */
7767
7768 tree
7769 build_range_type (tree type, tree lowval, tree highval)
7770 {
7771 return build_range_type_1 (type, lowval, highval, true);
7772 }
7773
7774 /* Wrapper around build_range_type_1 with SHARED set to false. */
7775
7776 tree
7777 build_nonshared_range_type (tree type, tree lowval, tree highval)
7778 {
7779 return build_range_type_1 (type, lowval, highval, false);
7780 }
7781
7782 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7783 MAXVAL should be the maximum value in the domain
7784 (one less than the length of the array).
7785
7786 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7787 We don't enforce this limit, that is up to caller (e.g. language front end).
7788 The limit exists because the result is a signed type and we don't handle
7789 sizes that use more than one HOST_WIDE_INT. */
7790
7791 tree
7792 build_index_type (tree maxval)
7793 {
7794 return build_range_type (sizetype, size_zero_node, maxval);
7795 }
7796
7797 /* Return true if the debug information for TYPE, a subtype, should be emitted
7798 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7799 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7800 debug info and doesn't reflect the source code. */
7801
7802 bool
7803 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7804 {
7805 tree base_type = TREE_TYPE (type), low, high;
7806
7807 /* Subrange types have a base type which is an integral type. */
7808 if (!INTEGRAL_TYPE_P (base_type))
7809 return false;
7810
7811 /* Get the real bounds of the subtype. */
7812 if (lang_hooks.types.get_subrange_bounds)
7813 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7814 else
7815 {
7816 low = TYPE_MIN_VALUE (type);
7817 high = TYPE_MAX_VALUE (type);
7818 }
7819
7820 /* If the type and its base type have the same representation and the same
7821 name, then the type is not a subrange but a copy of the base type. */
7822 if ((TREE_CODE (base_type) == INTEGER_TYPE
7823 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7824 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7825 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7826 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
7827 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
7828 return false;
7829
7830 if (lowval)
7831 *lowval = low;
7832 if (highval)
7833 *highval = high;
7834 return true;
7835 }
7836
7837 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7838 and number of elements specified by the range of values of INDEX_TYPE.
7839 If SHARED is true, reuse such a type that has already been constructed. */
7840
7841 static tree
7842 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7843 {
7844 tree t;
7845
7846 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7847 {
7848 error ("arrays of functions are not meaningful");
7849 elt_type = integer_type_node;
7850 }
7851
7852 t = make_node (ARRAY_TYPE);
7853 TREE_TYPE (t) = elt_type;
7854 TYPE_DOMAIN (t) = index_type;
7855 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7856 layout_type (t);
7857
7858 /* If the element type is incomplete at this point we get marked for
7859 structural equality. Do not record these types in the canonical
7860 type hashtable. */
7861 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7862 return t;
7863
7864 if (shared)
7865 {
7866 inchash::hash hstate;
7867 hstate.add_object (TYPE_HASH (elt_type));
7868 if (index_type)
7869 hstate.add_object (TYPE_HASH (index_type));
7870 t = type_hash_canon (hstate.end (), t);
7871 }
7872
7873 if (TYPE_CANONICAL (t) == t)
7874 {
7875 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7876 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7877 SET_TYPE_STRUCTURAL_EQUALITY (t);
7878 else if (TYPE_CANONICAL (elt_type) != elt_type
7879 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7880 TYPE_CANONICAL (t)
7881 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7882 index_type
7883 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7884 shared);
7885 }
7886
7887 return t;
7888 }
7889
7890 /* Wrapper around build_array_type_1 with SHARED set to true. */
7891
7892 tree
7893 build_array_type (tree elt_type, tree index_type)
7894 {
7895 return build_array_type_1 (elt_type, index_type, true);
7896 }
7897
7898 /* Wrapper around build_array_type_1 with SHARED set to false. */
7899
7900 tree
7901 build_nonshared_array_type (tree elt_type, tree index_type)
7902 {
7903 return build_array_type_1 (elt_type, index_type, false);
7904 }
7905
7906 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7907 sizetype. */
7908
7909 tree
7910 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7911 {
7912 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7913 }
7914
7915 /* Recursively examines the array elements of TYPE, until a non-array
7916 element type is found. */
7917
7918 tree
7919 strip_array_types (tree type)
7920 {
7921 while (TREE_CODE (type) == ARRAY_TYPE)
7922 type = TREE_TYPE (type);
7923
7924 return type;
7925 }
7926
7927 /* Computes the canonical argument types from the argument type list
7928 ARGTYPES.
7929
7930 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7931 on entry to this function, or if any of the ARGTYPES are
7932 structural.
7933
7934 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7935 true on entry to this function, or if any of the ARGTYPES are
7936 non-canonical.
7937
7938 Returns a canonical argument list, which may be ARGTYPES when the
7939 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7940 true) or would not differ from ARGTYPES. */
7941
7942 static tree
7943 maybe_canonicalize_argtypes (tree argtypes,
7944 bool *any_structural_p,
7945 bool *any_noncanonical_p)
7946 {
7947 tree arg;
7948 bool any_noncanonical_argtypes_p = false;
7949
7950 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7951 {
7952 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7953 /* Fail gracefully by stating that the type is structural. */
7954 *any_structural_p = true;
7955 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7956 *any_structural_p = true;
7957 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7958 || TREE_PURPOSE (arg))
7959 /* If the argument has a default argument, we consider it
7960 non-canonical even though the type itself is canonical.
7961 That way, different variants of function and method types
7962 with default arguments will all point to the variant with
7963 no defaults as their canonical type. */
7964 any_noncanonical_argtypes_p = true;
7965 }
7966
7967 if (*any_structural_p)
7968 return argtypes;
7969
7970 if (any_noncanonical_argtypes_p)
7971 {
7972 /* Build the canonical list of argument types. */
7973 tree canon_argtypes = NULL_TREE;
7974 bool is_void = false;
7975
7976 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7977 {
7978 if (arg == void_list_node)
7979 is_void = true;
7980 else
7981 canon_argtypes = tree_cons (NULL_TREE,
7982 TYPE_CANONICAL (TREE_VALUE (arg)),
7983 canon_argtypes);
7984 }
7985
7986 canon_argtypes = nreverse (canon_argtypes);
7987 if (is_void)
7988 canon_argtypes = chainon (canon_argtypes, void_list_node);
7989
7990 /* There is a non-canonical type. */
7991 *any_noncanonical_p = true;
7992 return canon_argtypes;
7993 }
7994
7995 /* The canonical argument types are the same as ARGTYPES. */
7996 return argtypes;
7997 }
7998
7999 /* Construct, lay out and return
8000 the type of functions returning type VALUE_TYPE
8001 given arguments of types ARG_TYPES.
8002 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8003 are data type nodes for the arguments of the function.
8004 If such a type has already been constructed, reuse it. */
8005
8006 tree
8007 build_function_type (tree value_type, tree arg_types)
8008 {
8009 tree t;
8010 inchash::hash hstate;
8011 bool any_structural_p, any_noncanonical_p;
8012 tree canon_argtypes;
8013
8014 if (TREE_CODE (value_type) == FUNCTION_TYPE)
8015 {
8016 error ("function return type cannot be function");
8017 value_type = integer_type_node;
8018 }
8019
8020 /* Make a node of the sort we want. */
8021 t = make_node (FUNCTION_TYPE);
8022 TREE_TYPE (t) = value_type;
8023 TYPE_ARG_TYPES (t) = arg_types;
8024
8025 /* If we already have such a type, use the old one. */
8026 hstate.add_object (TYPE_HASH (value_type));
8027 type_hash_list (arg_types, hstate);
8028 t = type_hash_canon (hstate.end (), t);
8029
8030 /* Set up the canonical type. */
8031 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8032 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8033 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8034 &any_structural_p,
8035 &any_noncanonical_p);
8036 if (any_structural_p)
8037 SET_TYPE_STRUCTURAL_EQUALITY (t);
8038 else if (any_noncanonical_p)
8039 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8040 canon_argtypes);
8041
8042 if (!COMPLETE_TYPE_P (t))
8043 layout_type (t);
8044 return t;
8045 }
8046
8047 /* Build a function type. The RETURN_TYPE is the type returned by the
8048 function. If VAARGS is set, no void_type_node is appended to the
8049 the list. ARGP must be always be terminated be a NULL_TREE. */
8050
8051 static tree
8052 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8053 {
8054 tree t, args, last;
8055
8056 t = va_arg (argp, tree);
8057 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8058 args = tree_cons (NULL_TREE, t, args);
8059
8060 if (vaargs)
8061 {
8062 last = args;
8063 if (args != NULL_TREE)
8064 args = nreverse (args);
8065 gcc_assert (last != void_list_node);
8066 }
8067 else if (args == NULL_TREE)
8068 args = void_list_node;
8069 else
8070 {
8071 last = args;
8072 args = nreverse (args);
8073 TREE_CHAIN (last) = void_list_node;
8074 }
8075 args = build_function_type (return_type, args);
8076
8077 return args;
8078 }
8079
8080 /* Build a function type. The RETURN_TYPE is the type returned by the
8081 function. If additional arguments are provided, they are
8082 additional argument types. The list of argument types must always
8083 be terminated by NULL_TREE. */
8084
8085 tree
8086 build_function_type_list (tree return_type, ...)
8087 {
8088 tree args;
8089 va_list p;
8090
8091 va_start (p, return_type);
8092 args = build_function_type_list_1 (false, return_type, p);
8093 va_end (p);
8094 return args;
8095 }
8096
8097 /* Build a variable argument function type. The RETURN_TYPE is the
8098 type returned by the function. If additional arguments are provided,
8099 they are additional argument types. The list of argument types must
8100 always be terminated by NULL_TREE. */
8101
8102 tree
8103 build_varargs_function_type_list (tree return_type, ...)
8104 {
8105 tree args;
8106 va_list p;
8107
8108 va_start (p, return_type);
8109 args = build_function_type_list_1 (true, return_type, p);
8110 va_end (p);
8111
8112 return args;
8113 }
8114
8115 /* Build a function type. RETURN_TYPE is the type returned by the
8116 function; VAARGS indicates whether the function takes varargs. The
8117 function takes N named arguments, the types of which are provided in
8118 ARG_TYPES. */
8119
8120 static tree
8121 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8122 tree *arg_types)
8123 {
8124 int i;
8125 tree t = vaargs ? NULL_TREE : void_list_node;
8126
8127 for (i = n - 1; i >= 0; i--)
8128 t = tree_cons (NULL_TREE, arg_types[i], t);
8129
8130 return build_function_type (return_type, t);
8131 }
8132
8133 /* Build a function type. RETURN_TYPE is the type returned by the
8134 function. The function takes N named arguments, the types of which
8135 are provided in ARG_TYPES. */
8136
8137 tree
8138 build_function_type_array (tree return_type, int n, tree *arg_types)
8139 {
8140 return build_function_type_array_1 (false, return_type, n, arg_types);
8141 }
8142
8143 /* Build a variable argument function type. RETURN_TYPE is the type
8144 returned by the function. The function takes N named arguments, the
8145 types of which are provided in ARG_TYPES. */
8146
8147 tree
8148 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8149 {
8150 return build_function_type_array_1 (true, return_type, n, arg_types);
8151 }
8152
8153 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8154 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8155 for the method. An implicit additional parameter (of type
8156 pointer-to-BASETYPE) is added to the ARGTYPES. */
8157
8158 tree
8159 build_method_type_directly (tree basetype,
8160 tree rettype,
8161 tree argtypes)
8162 {
8163 tree t;
8164 tree ptype;
8165 inchash::hash hstate;
8166 bool any_structural_p, any_noncanonical_p;
8167 tree canon_argtypes;
8168
8169 /* Make a node of the sort we want. */
8170 t = make_node (METHOD_TYPE);
8171
8172 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8173 TREE_TYPE (t) = rettype;
8174 ptype = build_pointer_type (basetype);
8175
8176 /* The actual arglist for this function includes a "hidden" argument
8177 which is "this". Put it into the list of argument types. */
8178 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8179 TYPE_ARG_TYPES (t) = argtypes;
8180
8181 /* If we already have such a type, use the old one. */
8182 hstate.add_object (TYPE_HASH (basetype));
8183 hstate.add_object (TYPE_HASH (rettype));
8184 type_hash_list (argtypes, hstate);
8185 t = type_hash_canon (hstate.end (), t);
8186
8187 /* Set up the canonical type. */
8188 any_structural_p
8189 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8190 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8191 any_noncanonical_p
8192 = (TYPE_CANONICAL (basetype) != basetype
8193 || TYPE_CANONICAL (rettype) != rettype);
8194 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8195 &any_structural_p,
8196 &any_noncanonical_p);
8197 if (any_structural_p)
8198 SET_TYPE_STRUCTURAL_EQUALITY (t);
8199 else if (any_noncanonical_p)
8200 TYPE_CANONICAL (t)
8201 = build_method_type_directly (TYPE_CANONICAL (basetype),
8202 TYPE_CANONICAL (rettype),
8203 canon_argtypes);
8204 if (!COMPLETE_TYPE_P (t))
8205 layout_type (t);
8206
8207 return t;
8208 }
8209
8210 /* Construct, lay out and return the type of methods belonging to class
8211 BASETYPE and whose arguments and values are described by TYPE.
8212 If that type exists already, reuse it.
8213 TYPE must be a FUNCTION_TYPE node. */
8214
8215 tree
8216 build_method_type (tree basetype, tree type)
8217 {
8218 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8219
8220 return build_method_type_directly (basetype,
8221 TREE_TYPE (type),
8222 TYPE_ARG_TYPES (type));
8223 }
8224
8225 /* Construct, lay out and return the type of offsets to a value
8226 of type TYPE, within an object of type BASETYPE.
8227 If a suitable offset type exists already, reuse it. */
8228
8229 tree
8230 build_offset_type (tree basetype, tree type)
8231 {
8232 tree t;
8233 inchash::hash hstate;
8234
8235 /* Make a node of the sort we want. */
8236 t = make_node (OFFSET_TYPE);
8237
8238 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8239 TREE_TYPE (t) = type;
8240
8241 /* If we already have such a type, use the old one. */
8242 hstate.add_object (TYPE_HASH (basetype));
8243 hstate.add_object (TYPE_HASH (type));
8244 t = type_hash_canon (hstate.end (), t);
8245
8246 if (!COMPLETE_TYPE_P (t))
8247 layout_type (t);
8248
8249 if (TYPE_CANONICAL (t) == t)
8250 {
8251 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8252 || TYPE_STRUCTURAL_EQUALITY_P (type))
8253 SET_TYPE_STRUCTURAL_EQUALITY (t);
8254 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8255 || TYPE_CANONICAL (type) != type)
8256 TYPE_CANONICAL (t)
8257 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8258 TYPE_CANONICAL (type));
8259 }
8260
8261 return t;
8262 }
8263
8264 /* Create a complex type whose components are COMPONENT_TYPE. */
8265
8266 tree
8267 build_complex_type (tree component_type)
8268 {
8269 tree t;
8270 inchash::hash hstate;
8271
8272 gcc_assert (INTEGRAL_TYPE_P (component_type)
8273 || SCALAR_FLOAT_TYPE_P (component_type)
8274 || FIXED_POINT_TYPE_P (component_type));
8275
8276 /* Make a node of the sort we want. */
8277 t = make_node (COMPLEX_TYPE);
8278
8279 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
8280
8281 /* If we already have such a type, use the old one. */
8282 hstate.add_object (TYPE_HASH (component_type));
8283 t = type_hash_canon (hstate.end (), t);
8284
8285 if (!COMPLETE_TYPE_P (t))
8286 layout_type (t);
8287
8288 if (TYPE_CANONICAL (t) == t)
8289 {
8290 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
8291 SET_TYPE_STRUCTURAL_EQUALITY (t);
8292 else if (TYPE_CANONICAL (component_type) != component_type)
8293 TYPE_CANONICAL (t)
8294 = build_complex_type (TYPE_CANONICAL (component_type));
8295 }
8296
8297 /* We need to create a name, since complex is a fundamental type. */
8298 if (! TYPE_NAME (t))
8299 {
8300 const char *name;
8301 if (component_type == char_type_node)
8302 name = "complex char";
8303 else if (component_type == signed_char_type_node)
8304 name = "complex signed char";
8305 else if (component_type == unsigned_char_type_node)
8306 name = "complex unsigned char";
8307 else if (component_type == short_integer_type_node)
8308 name = "complex short int";
8309 else if (component_type == short_unsigned_type_node)
8310 name = "complex short unsigned int";
8311 else if (component_type == integer_type_node)
8312 name = "complex int";
8313 else if (component_type == unsigned_type_node)
8314 name = "complex unsigned int";
8315 else if (component_type == long_integer_type_node)
8316 name = "complex long int";
8317 else if (component_type == long_unsigned_type_node)
8318 name = "complex long unsigned int";
8319 else if (component_type == long_long_integer_type_node)
8320 name = "complex long long int";
8321 else if (component_type == long_long_unsigned_type_node)
8322 name = "complex long long unsigned int";
8323 else
8324 name = 0;
8325
8326 if (name != 0)
8327 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8328 get_identifier (name), t);
8329 }
8330
8331 return build_qualified_type (t, TYPE_QUALS (component_type));
8332 }
8333
8334 /* If TYPE is a real or complex floating-point type and the target
8335 does not directly support arithmetic on TYPE then return the wider
8336 type to be used for arithmetic on TYPE. Otherwise, return
8337 NULL_TREE. */
8338
8339 tree
8340 excess_precision_type (tree type)
8341 {
8342 if (flag_excess_precision != EXCESS_PRECISION_FAST)
8343 {
8344 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
8345 switch (TREE_CODE (type))
8346 {
8347 case REAL_TYPE:
8348 switch (flt_eval_method)
8349 {
8350 case 1:
8351 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
8352 return double_type_node;
8353 break;
8354 case 2:
8355 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
8356 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
8357 return long_double_type_node;
8358 break;
8359 default:
8360 gcc_unreachable ();
8361 }
8362 break;
8363 case COMPLEX_TYPE:
8364 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8365 return NULL_TREE;
8366 switch (flt_eval_method)
8367 {
8368 case 1:
8369 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
8370 return complex_double_type_node;
8371 break;
8372 case 2:
8373 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
8374 || (TYPE_MODE (TREE_TYPE (type))
8375 == TYPE_MODE (double_type_node)))
8376 return complex_long_double_type_node;
8377 break;
8378 default:
8379 gcc_unreachable ();
8380 }
8381 break;
8382 default:
8383 break;
8384 }
8385 }
8386 return NULL_TREE;
8387 }
8388 \f
8389 /* Return OP, stripped of any conversions to wider types as much as is safe.
8390 Converting the value back to OP's type makes a value equivalent to OP.
8391
8392 If FOR_TYPE is nonzero, we return a value which, if converted to
8393 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8394
8395 OP must have integer, real or enumeral type. Pointers are not allowed!
8396
8397 There are some cases where the obvious value we could return
8398 would regenerate to OP if converted to OP's type,
8399 but would not extend like OP to wider types.
8400 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8401 For example, if OP is (unsigned short)(signed char)-1,
8402 we avoid returning (signed char)-1 if FOR_TYPE is int,
8403 even though extending that to an unsigned short would regenerate OP,
8404 since the result of extending (signed char)-1 to (int)
8405 is different from (int) OP. */
8406
8407 tree
8408 get_unwidened (tree op, tree for_type)
8409 {
8410 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8411 tree type = TREE_TYPE (op);
8412 unsigned final_prec
8413 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8414 int uns
8415 = (for_type != 0 && for_type != type
8416 && final_prec > TYPE_PRECISION (type)
8417 && TYPE_UNSIGNED (type));
8418 tree win = op;
8419
8420 while (CONVERT_EXPR_P (op))
8421 {
8422 int bitschange;
8423
8424 /* TYPE_PRECISION on vector types has different meaning
8425 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8426 so avoid them here. */
8427 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8428 break;
8429
8430 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8431 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8432
8433 /* Truncations are many-one so cannot be removed.
8434 Unless we are later going to truncate down even farther. */
8435 if (bitschange < 0
8436 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8437 break;
8438
8439 /* See what's inside this conversion. If we decide to strip it,
8440 we will set WIN. */
8441 op = TREE_OPERAND (op, 0);
8442
8443 /* If we have not stripped any zero-extensions (uns is 0),
8444 we can strip any kind of extension.
8445 If we have previously stripped a zero-extension,
8446 only zero-extensions can safely be stripped.
8447 Any extension can be stripped if the bits it would produce
8448 are all going to be discarded later by truncating to FOR_TYPE. */
8449
8450 if (bitschange > 0)
8451 {
8452 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8453 win = op;
8454 /* TYPE_UNSIGNED says whether this is a zero-extension.
8455 Let's avoid computing it if it does not affect WIN
8456 and if UNS will not be needed again. */
8457 if ((uns
8458 || CONVERT_EXPR_P (op))
8459 && TYPE_UNSIGNED (TREE_TYPE (op)))
8460 {
8461 uns = 1;
8462 win = op;
8463 }
8464 }
8465 }
8466
8467 /* If we finally reach a constant see if it fits in for_type and
8468 in that case convert it. */
8469 if (for_type
8470 && TREE_CODE (win) == INTEGER_CST
8471 && TREE_TYPE (win) != for_type
8472 && int_fits_type_p (win, for_type))
8473 win = fold_convert (for_type, win);
8474
8475 return win;
8476 }
8477 \f
8478 /* Return OP or a simpler expression for a narrower value
8479 which can be sign-extended or zero-extended to give back OP.
8480 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8481 or 0 if the value should be sign-extended. */
8482
8483 tree
8484 get_narrower (tree op, int *unsignedp_ptr)
8485 {
8486 int uns = 0;
8487 int first = 1;
8488 tree win = op;
8489 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8490
8491 while (TREE_CODE (op) == NOP_EXPR)
8492 {
8493 int bitschange
8494 = (TYPE_PRECISION (TREE_TYPE (op))
8495 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8496
8497 /* Truncations are many-one so cannot be removed. */
8498 if (bitschange < 0)
8499 break;
8500
8501 /* See what's inside this conversion. If we decide to strip it,
8502 we will set WIN. */
8503
8504 if (bitschange > 0)
8505 {
8506 op = TREE_OPERAND (op, 0);
8507 /* An extension: the outermost one can be stripped,
8508 but remember whether it is zero or sign extension. */
8509 if (first)
8510 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8511 /* Otherwise, if a sign extension has been stripped,
8512 only sign extensions can now be stripped;
8513 if a zero extension has been stripped, only zero-extensions. */
8514 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8515 break;
8516 first = 0;
8517 }
8518 else /* bitschange == 0 */
8519 {
8520 /* A change in nominal type can always be stripped, but we must
8521 preserve the unsignedness. */
8522 if (first)
8523 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8524 first = 0;
8525 op = TREE_OPERAND (op, 0);
8526 /* Keep trying to narrow, but don't assign op to win if it
8527 would turn an integral type into something else. */
8528 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8529 continue;
8530 }
8531
8532 win = op;
8533 }
8534
8535 if (TREE_CODE (op) == COMPONENT_REF
8536 /* Since type_for_size always gives an integer type. */
8537 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8538 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8539 /* Ensure field is laid out already. */
8540 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8541 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8542 {
8543 unsigned HOST_WIDE_INT innerprec
8544 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8545 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8546 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8547 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8548
8549 /* We can get this structure field in a narrower type that fits it,
8550 but the resulting extension to its nominal type (a fullword type)
8551 must satisfy the same conditions as for other extensions.
8552
8553 Do this only for fields that are aligned (not bit-fields),
8554 because when bit-field insns will be used there is no
8555 advantage in doing this. */
8556
8557 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8558 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8559 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8560 && type != 0)
8561 {
8562 if (first)
8563 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8564 win = fold_convert (type, op);
8565 }
8566 }
8567
8568 *unsignedp_ptr = uns;
8569 return win;
8570 }
8571 \f
8572 /* Returns true if integer constant C has a value that is permissible
8573 for type TYPE (an INTEGER_TYPE). */
8574
8575 bool
8576 int_fits_type_p (const_tree c, const_tree type)
8577 {
8578 tree type_low_bound, type_high_bound;
8579 bool ok_for_low_bound, ok_for_high_bound;
8580 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8581
8582 retry:
8583 type_low_bound = TYPE_MIN_VALUE (type);
8584 type_high_bound = TYPE_MAX_VALUE (type);
8585
8586 /* If at least one bound of the type is a constant integer, we can check
8587 ourselves and maybe make a decision. If no such decision is possible, but
8588 this type is a subtype, try checking against that. Otherwise, use
8589 fits_to_tree_p, which checks against the precision.
8590
8591 Compute the status for each possibly constant bound, and return if we see
8592 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8593 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8594 for "constant known to fit". */
8595
8596 /* Check if c >= type_low_bound. */
8597 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8598 {
8599 if (tree_int_cst_lt (c, type_low_bound))
8600 return false;
8601 ok_for_low_bound = true;
8602 }
8603 else
8604 ok_for_low_bound = false;
8605
8606 /* Check if c <= type_high_bound. */
8607 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8608 {
8609 if (tree_int_cst_lt (type_high_bound, c))
8610 return false;
8611 ok_for_high_bound = true;
8612 }
8613 else
8614 ok_for_high_bound = false;
8615
8616 /* If the constant fits both bounds, the result is known. */
8617 if (ok_for_low_bound && ok_for_high_bound)
8618 return true;
8619
8620 /* Perform some generic filtering which may allow making a decision
8621 even if the bounds are not constant. First, negative integers
8622 never fit in unsigned types, */
8623 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (c))
8624 return false;
8625
8626 /* Second, narrower types always fit in wider ones. */
8627 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8628 return true;
8629
8630 /* Third, unsigned integers with top bit set never fit signed types. */
8631 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
8632 {
8633 int prec = GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (c))) - 1;
8634 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
8635 {
8636 /* When a tree_cst is converted to a wide-int, the precision
8637 is taken from the type. However, if the precision of the
8638 mode underneath the type is smaller than that, it is
8639 possible that the value will not fit. The test below
8640 fails if any bit is set between the sign bit of the
8641 underlying mode and the top bit of the type. */
8642 if (wi::ne_p (wi::zext (c, prec - 1), c))
8643 return false;
8644 }
8645 else if (wi::neg_p (c))
8646 return false;
8647 }
8648
8649 /* If we haven't been able to decide at this point, there nothing more we
8650 can check ourselves here. Look at the base type if we have one and it
8651 has the same precision. */
8652 if (TREE_CODE (type) == INTEGER_TYPE
8653 && TREE_TYPE (type) != 0
8654 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8655 {
8656 type = TREE_TYPE (type);
8657 goto retry;
8658 }
8659
8660 /* Or to fits_to_tree_p, if nothing else. */
8661 return wi::fits_to_tree_p (c, type);
8662 }
8663
8664 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8665 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8666 represented (assuming two's-complement arithmetic) within the bit
8667 precision of the type are returned instead. */
8668
8669 void
8670 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8671 {
8672 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8673 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8674 wi::to_mpz (TYPE_MIN_VALUE (type), min, TYPE_SIGN (type));
8675 else
8676 {
8677 if (TYPE_UNSIGNED (type))
8678 mpz_set_ui (min, 0);
8679 else
8680 {
8681 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
8682 wi::to_mpz (mn, min, SIGNED);
8683 }
8684 }
8685
8686 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8687 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8688 wi::to_mpz (TYPE_MAX_VALUE (type), max, TYPE_SIGN (type));
8689 else
8690 {
8691 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
8692 wi::to_mpz (mn, max, TYPE_SIGN (type));
8693 }
8694 }
8695
8696 /* Return true if VAR is an automatic variable defined in function FN. */
8697
8698 bool
8699 auto_var_in_fn_p (const_tree var, const_tree fn)
8700 {
8701 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8702 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8703 || TREE_CODE (var) == PARM_DECL)
8704 && ! TREE_STATIC (var))
8705 || TREE_CODE (var) == LABEL_DECL
8706 || TREE_CODE (var) == RESULT_DECL));
8707 }
8708
8709 /* Subprogram of following function. Called by walk_tree.
8710
8711 Return *TP if it is an automatic variable or parameter of the
8712 function passed in as DATA. */
8713
8714 static tree
8715 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8716 {
8717 tree fn = (tree) data;
8718
8719 if (TYPE_P (*tp))
8720 *walk_subtrees = 0;
8721
8722 else if (DECL_P (*tp)
8723 && auto_var_in_fn_p (*tp, fn))
8724 return *tp;
8725
8726 return NULL_TREE;
8727 }
8728
8729 /* Returns true if T is, contains, or refers to a type with variable
8730 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8731 arguments, but not the return type. If FN is nonzero, only return
8732 true if a modifier of the type or position of FN is a variable or
8733 parameter inside FN.
8734
8735 This concept is more general than that of C99 'variably modified types':
8736 in C99, a struct type is never variably modified because a VLA may not
8737 appear as a structure member. However, in GNU C code like:
8738
8739 struct S { int i[f()]; };
8740
8741 is valid, and other languages may define similar constructs. */
8742
8743 bool
8744 variably_modified_type_p (tree type, tree fn)
8745 {
8746 tree t;
8747
8748 /* Test if T is either variable (if FN is zero) or an expression containing
8749 a variable in FN. If TYPE isn't gimplified, return true also if
8750 gimplify_one_sizepos would gimplify the expression into a local
8751 variable. */
8752 #define RETURN_TRUE_IF_VAR(T) \
8753 do { tree _t = (T); \
8754 if (_t != NULL_TREE \
8755 && _t != error_mark_node \
8756 && TREE_CODE (_t) != INTEGER_CST \
8757 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8758 && (!fn \
8759 || (!TYPE_SIZES_GIMPLIFIED (type) \
8760 && !is_gimple_sizepos (_t)) \
8761 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8762 return true; } while (0)
8763
8764 if (type == error_mark_node)
8765 return false;
8766
8767 /* If TYPE itself has variable size, it is variably modified. */
8768 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8769 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8770
8771 switch (TREE_CODE (type))
8772 {
8773 case POINTER_TYPE:
8774 case REFERENCE_TYPE:
8775 case VECTOR_TYPE:
8776 if (variably_modified_type_p (TREE_TYPE (type), fn))
8777 return true;
8778 break;
8779
8780 case FUNCTION_TYPE:
8781 case METHOD_TYPE:
8782 /* If TYPE is a function type, it is variably modified if the
8783 return type is variably modified. */
8784 if (variably_modified_type_p (TREE_TYPE (type), fn))
8785 return true;
8786 break;
8787
8788 case INTEGER_TYPE:
8789 case REAL_TYPE:
8790 case FIXED_POINT_TYPE:
8791 case ENUMERAL_TYPE:
8792 case BOOLEAN_TYPE:
8793 /* Scalar types are variably modified if their end points
8794 aren't constant. */
8795 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8796 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8797 break;
8798
8799 case RECORD_TYPE:
8800 case UNION_TYPE:
8801 case QUAL_UNION_TYPE:
8802 /* We can't see if any of the fields are variably-modified by the
8803 definition we normally use, since that would produce infinite
8804 recursion via pointers. */
8805 /* This is variably modified if some field's type is. */
8806 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8807 if (TREE_CODE (t) == FIELD_DECL)
8808 {
8809 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8810 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8811 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8812
8813 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8814 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8815 }
8816 break;
8817
8818 case ARRAY_TYPE:
8819 /* Do not call ourselves to avoid infinite recursion. This is
8820 variably modified if the element type is. */
8821 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8822 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8823 break;
8824
8825 default:
8826 break;
8827 }
8828
8829 /* The current language may have other cases to check, but in general,
8830 all other types are not variably modified. */
8831 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8832
8833 #undef RETURN_TRUE_IF_VAR
8834 }
8835
8836 /* Given a DECL or TYPE, return the scope in which it was declared, or
8837 NULL_TREE if there is no containing scope. */
8838
8839 tree
8840 get_containing_scope (const_tree t)
8841 {
8842 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8843 }
8844
8845 /* Return the innermost context enclosing DECL that is
8846 a FUNCTION_DECL, or zero if none. */
8847
8848 tree
8849 decl_function_context (const_tree decl)
8850 {
8851 tree context;
8852
8853 if (TREE_CODE (decl) == ERROR_MARK)
8854 return 0;
8855
8856 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8857 where we look up the function at runtime. Such functions always take
8858 a first argument of type 'pointer to real context'.
8859
8860 C++ should really be fixed to use DECL_CONTEXT for the real context,
8861 and use something else for the "virtual context". */
8862 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8863 context
8864 = TYPE_MAIN_VARIANT
8865 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8866 else
8867 context = DECL_CONTEXT (decl);
8868
8869 while (context && TREE_CODE (context) != FUNCTION_DECL)
8870 {
8871 if (TREE_CODE (context) == BLOCK)
8872 context = BLOCK_SUPERCONTEXT (context);
8873 else
8874 context = get_containing_scope (context);
8875 }
8876
8877 return context;
8878 }
8879
8880 /* Return the innermost context enclosing DECL that is
8881 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8882 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8883
8884 tree
8885 decl_type_context (const_tree decl)
8886 {
8887 tree context = DECL_CONTEXT (decl);
8888
8889 while (context)
8890 switch (TREE_CODE (context))
8891 {
8892 case NAMESPACE_DECL:
8893 case TRANSLATION_UNIT_DECL:
8894 return NULL_TREE;
8895
8896 case RECORD_TYPE:
8897 case UNION_TYPE:
8898 case QUAL_UNION_TYPE:
8899 return context;
8900
8901 case TYPE_DECL:
8902 case FUNCTION_DECL:
8903 context = DECL_CONTEXT (context);
8904 break;
8905
8906 case BLOCK:
8907 context = BLOCK_SUPERCONTEXT (context);
8908 break;
8909
8910 default:
8911 gcc_unreachable ();
8912 }
8913
8914 return NULL_TREE;
8915 }
8916
8917 /* CALL is a CALL_EXPR. Return the declaration for the function
8918 called, or NULL_TREE if the called function cannot be
8919 determined. */
8920
8921 tree
8922 get_callee_fndecl (const_tree call)
8923 {
8924 tree addr;
8925
8926 if (call == error_mark_node)
8927 return error_mark_node;
8928
8929 /* It's invalid to call this function with anything but a
8930 CALL_EXPR. */
8931 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8932
8933 /* The first operand to the CALL is the address of the function
8934 called. */
8935 addr = CALL_EXPR_FN (call);
8936
8937 /* If there is no function, return early. */
8938 if (addr == NULL_TREE)
8939 return NULL_TREE;
8940
8941 STRIP_NOPS (addr);
8942
8943 /* If this is a readonly function pointer, extract its initial value. */
8944 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8945 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8946 && DECL_INITIAL (addr))
8947 addr = DECL_INITIAL (addr);
8948
8949 /* If the address is just `&f' for some function `f', then we know
8950 that `f' is being called. */
8951 if (TREE_CODE (addr) == ADDR_EXPR
8952 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8953 return TREE_OPERAND (addr, 0);
8954
8955 /* We couldn't figure out what was being called. */
8956 return NULL_TREE;
8957 }
8958
8959 /* Print debugging information about tree nodes generated during the compile,
8960 and any language-specific information. */
8961
8962 void
8963 dump_tree_statistics (void)
8964 {
8965 if (GATHER_STATISTICS)
8966 {
8967 int i;
8968 int total_nodes, total_bytes;
8969 fprintf (stderr, "Kind Nodes Bytes\n");
8970 fprintf (stderr, "---------------------------------------\n");
8971 total_nodes = total_bytes = 0;
8972 for (i = 0; i < (int) all_kinds; i++)
8973 {
8974 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8975 tree_node_counts[i], tree_node_sizes[i]);
8976 total_nodes += tree_node_counts[i];
8977 total_bytes += tree_node_sizes[i];
8978 }
8979 fprintf (stderr, "---------------------------------------\n");
8980 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8981 fprintf (stderr, "---------------------------------------\n");
8982 fprintf (stderr, "Code Nodes\n");
8983 fprintf (stderr, "----------------------------\n");
8984 for (i = 0; i < (int) MAX_TREE_CODES; i++)
8985 fprintf (stderr, "%-20s %7d\n", get_tree_code_name ((enum tree_code) i),
8986 tree_code_counts[i]);
8987 fprintf (stderr, "----------------------------\n");
8988 ssanames_print_statistics ();
8989 phinodes_print_statistics ();
8990 }
8991 else
8992 fprintf (stderr, "(No per-node statistics)\n");
8993
8994 print_type_hash_statistics ();
8995 print_debug_expr_statistics ();
8996 print_value_expr_statistics ();
8997 lang_hooks.print_statistics ();
8998 }
8999 \f
9000 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9001
9002 /* Generate a crc32 of a byte. */
9003
9004 static unsigned
9005 crc32_unsigned_bits (unsigned chksum, unsigned value, unsigned bits)
9006 {
9007 unsigned ix;
9008
9009 for (ix = bits; ix--; value <<= 1)
9010 {
9011 unsigned feedback;
9012
9013 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
9014 chksum <<= 1;
9015 chksum ^= feedback;
9016 }
9017 return chksum;
9018 }
9019
9020 /* Generate a crc32 of a 32-bit unsigned. */
9021
9022 unsigned
9023 crc32_unsigned (unsigned chksum, unsigned value)
9024 {
9025 return crc32_unsigned_bits (chksum, value, 32);
9026 }
9027
9028 /* Generate a crc32 of a byte. */
9029
9030 unsigned
9031 crc32_byte (unsigned chksum, char byte)
9032 {
9033 return crc32_unsigned_bits (chksum, (unsigned) byte << 24, 8);
9034 }
9035
9036 /* Generate a crc32 of a string. */
9037
9038 unsigned
9039 crc32_string (unsigned chksum, const char *string)
9040 {
9041 do
9042 {
9043 chksum = crc32_byte (chksum, *string);
9044 }
9045 while (*string++);
9046 return chksum;
9047 }
9048
9049 /* P is a string that will be used in a symbol. Mask out any characters
9050 that are not valid in that context. */
9051
9052 void
9053 clean_symbol_name (char *p)
9054 {
9055 for (; *p; p++)
9056 if (! (ISALNUM (*p)
9057 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9058 || *p == '$'
9059 #endif
9060 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9061 || *p == '.'
9062 #endif
9063 ))
9064 *p = '_';
9065 }
9066
9067 /* Generate a name for a special-purpose function.
9068 The generated name may need to be unique across the whole link.
9069 Changes to this function may also require corresponding changes to
9070 xstrdup_mask_random.
9071 TYPE is some string to identify the purpose of this function to the
9072 linker or collect2; it must start with an uppercase letter,
9073 one of:
9074 I - for constructors
9075 D - for destructors
9076 N - for C++ anonymous namespaces
9077 F - for DWARF unwind frame information. */
9078
9079 tree
9080 get_file_function_name (const char *type)
9081 {
9082 char *buf;
9083 const char *p;
9084 char *q;
9085
9086 /* If we already have a name we know to be unique, just use that. */
9087 if (first_global_object_name)
9088 p = q = ASTRDUP (first_global_object_name);
9089 /* If the target is handling the constructors/destructors, they
9090 will be local to this file and the name is only necessary for
9091 debugging purposes.
9092 We also assign sub_I and sub_D sufixes to constructors called from
9093 the global static constructors. These are always local. */
9094 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9095 || (strncmp (type, "sub_", 4) == 0
9096 && (type[4] == 'I' || type[4] == 'D')))
9097 {
9098 const char *file = main_input_filename;
9099 if (! file)
9100 file = LOCATION_FILE (input_location);
9101 /* Just use the file's basename, because the full pathname
9102 might be quite long. */
9103 p = q = ASTRDUP (lbasename (file));
9104 }
9105 else
9106 {
9107 /* Otherwise, the name must be unique across the entire link.
9108 We don't have anything that we know to be unique to this translation
9109 unit, so use what we do have and throw in some randomness. */
9110 unsigned len;
9111 const char *name = weak_global_object_name;
9112 const char *file = main_input_filename;
9113
9114 if (! name)
9115 name = "";
9116 if (! file)
9117 file = LOCATION_FILE (input_location);
9118
9119 len = strlen (file);
9120 q = (char *) alloca (9 + 17 + len + 1);
9121 memcpy (q, file, len + 1);
9122
9123 snprintf (q + len, 9 + 17 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9124 crc32_string (0, name), get_random_seed (false));
9125
9126 p = q;
9127 }
9128
9129 clean_symbol_name (q);
9130 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9131 + strlen (type));
9132
9133 /* Set up the name of the file-level functions we may need.
9134 Use a global object (which is already required to be unique over
9135 the program) rather than the file name (which imposes extra
9136 constraints). */
9137 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9138
9139 return get_identifier (buf);
9140 }
9141 \f
9142 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9143
9144 /* Complain that the tree code of NODE does not match the expected 0
9145 terminated list of trailing codes. The trailing code list can be
9146 empty, for a more vague error message. FILE, LINE, and FUNCTION
9147 are of the caller. */
9148
9149 void
9150 tree_check_failed (const_tree node, const char *file,
9151 int line, const char *function, ...)
9152 {
9153 va_list args;
9154 const char *buffer;
9155 unsigned length = 0;
9156 enum tree_code code;
9157
9158 va_start (args, function);
9159 while ((code = (enum tree_code) va_arg (args, int)))
9160 length += 4 + strlen (get_tree_code_name (code));
9161 va_end (args);
9162 if (length)
9163 {
9164 char *tmp;
9165 va_start (args, function);
9166 length += strlen ("expected ");
9167 buffer = tmp = (char *) alloca (length);
9168 length = 0;
9169 while ((code = (enum tree_code) va_arg (args, int)))
9170 {
9171 const char *prefix = length ? " or " : "expected ";
9172
9173 strcpy (tmp + length, prefix);
9174 length += strlen (prefix);
9175 strcpy (tmp + length, get_tree_code_name (code));
9176 length += strlen (get_tree_code_name (code));
9177 }
9178 va_end (args);
9179 }
9180 else
9181 buffer = "unexpected node";
9182
9183 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9184 buffer, get_tree_code_name (TREE_CODE (node)),
9185 function, trim_filename (file), line);
9186 }
9187
9188 /* Complain that the tree code of NODE does match the expected 0
9189 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9190 the caller. */
9191
9192 void
9193 tree_not_check_failed (const_tree node, const char *file,
9194 int line, const char *function, ...)
9195 {
9196 va_list args;
9197 char *buffer;
9198 unsigned length = 0;
9199 enum tree_code code;
9200
9201 va_start (args, function);
9202 while ((code = (enum tree_code) va_arg (args, int)))
9203 length += 4 + strlen (get_tree_code_name (code));
9204 va_end (args);
9205 va_start (args, function);
9206 buffer = (char *) alloca (length);
9207 length = 0;
9208 while ((code = (enum tree_code) va_arg (args, int)))
9209 {
9210 if (length)
9211 {
9212 strcpy (buffer + length, " or ");
9213 length += 4;
9214 }
9215 strcpy (buffer + length, get_tree_code_name (code));
9216 length += strlen (get_tree_code_name (code));
9217 }
9218 va_end (args);
9219
9220 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9221 buffer, get_tree_code_name (TREE_CODE (node)),
9222 function, trim_filename (file), line);
9223 }
9224
9225 /* Similar to tree_check_failed, except that we check for a class of tree
9226 code, given in CL. */
9227
9228 void
9229 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9230 const char *file, int line, const char *function)
9231 {
9232 internal_error
9233 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9234 TREE_CODE_CLASS_STRING (cl),
9235 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9236 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9237 }
9238
9239 /* Similar to tree_check_failed, except that instead of specifying a
9240 dozen codes, use the knowledge that they're all sequential. */
9241
9242 void
9243 tree_range_check_failed (const_tree node, const char *file, int line,
9244 const char *function, enum tree_code c1,
9245 enum tree_code c2)
9246 {
9247 char *buffer;
9248 unsigned length = 0;
9249 unsigned int c;
9250
9251 for (c = c1; c <= c2; ++c)
9252 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9253
9254 length += strlen ("expected ");
9255 buffer = (char *) alloca (length);
9256 length = 0;
9257
9258 for (c = c1; c <= c2; ++c)
9259 {
9260 const char *prefix = length ? " or " : "expected ";
9261
9262 strcpy (buffer + length, prefix);
9263 length += strlen (prefix);
9264 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9265 length += strlen (get_tree_code_name ((enum tree_code) c));
9266 }
9267
9268 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9269 buffer, get_tree_code_name (TREE_CODE (node)),
9270 function, trim_filename (file), line);
9271 }
9272
9273
9274 /* Similar to tree_check_failed, except that we check that a tree does
9275 not have the specified code, given in CL. */
9276
9277 void
9278 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9279 const char *file, int line, const char *function)
9280 {
9281 internal_error
9282 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9283 TREE_CODE_CLASS_STRING (cl),
9284 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9285 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9286 }
9287
9288
9289 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9290
9291 void
9292 omp_clause_check_failed (const_tree node, const char *file, int line,
9293 const char *function, enum omp_clause_code code)
9294 {
9295 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9296 omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9297 function, trim_filename (file), line);
9298 }
9299
9300
9301 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9302
9303 void
9304 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9305 const char *function, enum omp_clause_code c1,
9306 enum omp_clause_code c2)
9307 {
9308 char *buffer;
9309 unsigned length = 0;
9310 unsigned int c;
9311
9312 for (c = c1; c <= c2; ++c)
9313 length += 4 + strlen (omp_clause_code_name[c]);
9314
9315 length += strlen ("expected ");
9316 buffer = (char *) alloca (length);
9317 length = 0;
9318
9319 for (c = c1; c <= c2; ++c)
9320 {
9321 const char *prefix = length ? " or " : "expected ";
9322
9323 strcpy (buffer + length, prefix);
9324 length += strlen (prefix);
9325 strcpy (buffer + length, omp_clause_code_name[c]);
9326 length += strlen (omp_clause_code_name[c]);
9327 }
9328
9329 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9330 buffer, omp_clause_code_name[TREE_CODE (node)],
9331 function, trim_filename (file), line);
9332 }
9333
9334
9335 #undef DEFTREESTRUCT
9336 #define DEFTREESTRUCT(VAL, NAME) NAME,
9337
9338 static const char *ts_enum_names[] = {
9339 #include "treestruct.def"
9340 };
9341 #undef DEFTREESTRUCT
9342
9343 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9344
9345 /* Similar to tree_class_check_failed, except that we check for
9346 whether CODE contains the tree structure identified by EN. */
9347
9348 void
9349 tree_contains_struct_check_failed (const_tree node,
9350 const enum tree_node_structure_enum en,
9351 const char *file, int line,
9352 const char *function)
9353 {
9354 internal_error
9355 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9356 TS_ENUM_NAME (en),
9357 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9358 }
9359
9360
9361 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9362 (dynamically sized) vector. */
9363
9364 void
9365 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9366 const char *function)
9367 {
9368 internal_error
9369 ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
9370 idx + 1, len, function, trim_filename (file), line);
9371 }
9372
9373 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9374 (dynamically sized) vector. */
9375
9376 void
9377 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9378 const char *function)
9379 {
9380 internal_error
9381 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9382 idx + 1, len, function, trim_filename (file), line);
9383 }
9384
9385 /* Similar to above, except that the check is for the bounds of the operand
9386 vector of an expression node EXP. */
9387
9388 void
9389 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9390 int line, const char *function)
9391 {
9392 enum tree_code code = TREE_CODE (exp);
9393 internal_error
9394 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9395 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9396 function, trim_filename (file), line);
9397 }
9398
9399 /* Similar to above, except that the check is for the number of
9400 operands of an OMP_CLAUSE node. */
9401
9402 void
9403 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9404 int line, const char *function)
9405 {
9406 internal_error
9407 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9408 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9409 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9410 trim_filename (file), line);
9411 }
9412 #endif /* ENABLE_TREE_CHECKING */
9413 \f
9414 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9415 and mapped to the machine mode MODE. Initialize its fields and build
9416 the information necessary for debugging output. */
9417
9418 static tree
9419 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
9420 {
9421 tree t;
9422 inchash::hash hstate;
9423
9424 t = make_node (VECTOR_TYPE);
9425 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
9426 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9427 SET_TYPE_MODE (t, mode);
9428
9429 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
9430 SET_TYPE_STRUCTURAL_EQUALITY (t);
9431 else if (TYPE_CANONICAL (innertype) != innertype
9432 || mode != VOIDmode)
9433 TYPE_CANONICAL (t)
9434 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
9435
9436 layout_type (t);
9437
9438 hstate.add_wide_int (VECTOR_TYPE);
9439 hstate.add_wide_int (nunits);
9440 hstate.add_wide_int (mode);
9441 hstate.add_object (TYPE_HASH (TREE_TYPE (t)));
9442 t = type_hash_canon (hstate.end (), t);
9443
9444 /* We have built a main variant, based on the main variant of the
9445 inner type. Use it to build the variant we return. */
9446 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9447 && TREE_TYPE (t) != innertype)
9448 return build_type_attribute_qual_variant (t,
9449 TYPE_ATTRIBUTES (innertype),
9450 TYPE_QUALS (innertype));
9451
9452 return t;
9453 }
9454
9455 static tree
9456 make_or_reuse_type (unsigned size, int unsignedp)
9457 {
9458 int i;
9459
9460 if (size == INT_TYPE_SIZE)
9461 return unsignedp ? unsigned_type_node : integer_type_node;
9462 if (size == CHAR_TYPE_SIZE)
9463 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9464 if (size == SHORT_TYPE_SIZE)
9465 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9466 if (size == LONG_TYPE_SIZE)
9467 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9468 if (size == LONG_LONG_TYPE_SIZE)
9469 return (unsignedp ? long_long_unsigned_type_node
9470 : long_long_integer_type_node);
9471
9472 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9473 if (size == int_n_data[i].bitsize
9474 && int_n_enabled_p[i])
9475 return (unsignedp ? int_n_trees[i].unsigned_type
9476 : int_n_trees[i].signed_type);
9477
9478 if (unsignedp)
9479 return make_unsigned_type (size);
9480 else
9481 return make_signed_type (size);
9482 }
9483
9484 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9485
9486 static tree
9487 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9488 {
9489 if (satp)
9490 {
9491 if (size == SHORT_FRACT_TYPE_SIZE)
9492 return unsignedp ? sat_unsigned_short_fract_type_node
9493 : sat_short_fract_type_node;
9494 if (size == FRACT_TYPE_SIZE)
9495 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9496 if (size == LONG_FRACT_TYPE_SIZE)
9497 return unsignedp ? sat_unsigned_long_fract_type_node
9498 : sat_long_fract_type_node;
9499 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9500 return unsignedp ? sat_unsigned_long_long_fract_type_node
9501 : sat_long_long_fract_type_node;
9502 }
9503 else
9504 {
9505 if (size == SHORT_FRACT_TYPE_SIZE)
9506 return unsignedp ? unsigned_short_fract_type_node
9507 : short_fract_type_node;
9508 if (size == FRACT_TYPE_SIZE)
9509 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9510 if (size == LONG_FRACT_TYPE_SIZE)
9511 return unsignedp ? unsigned_long_fract_type_node
9512 : long_fract_type_node;
9513 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9514 return unsignedp ? unsigned_long_long_fract_type_node
9515 : long_long_fract_type_node;
9516 }
9517
9518 return make_fract_type (size, unsignedp, satp);
9519 }
9520
9521 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9522
9523 static tree
9524 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9525 {
9526 if (satp)
9527 {
9528 if (size == SHORT_ACCUM_TYPE_SIZE)
9529 return unsignedp ? sat_unsigned_short_accum_type_node
9530 : sat_short_accum_type_node;
9531 if (size == ACCUM_TYPE_SIZE)
9532 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9533 if (size == LONG_ACCUM_TYPE_SIZE)
9534 return unsignedp ? sat_unsigned_long_accum_type_node
9535 : sat_long_accum_type_node;
9536 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9537 return unsignedp ? sat_unsigned_long_long_accum_type_node
9538 : sat_long_long_accum_type_node;
9539 }
9540 else
9541 {
9542 if (size == SHORT_ACCUM_TYPE_SIZE)
9543 return unsignedp ? unsigned_short_accum_type_node
9544 : short_accum_type_node;
9545 if (size == ACCUM_TYPE_SIZE)
9546 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9547 if (size == LONG_ACCUM_TYPE_SIZE)
9548 return unsignedp ? unsigned_long_accum_type_node
9549 : long_accum_type_node;
9550 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9551 return unsignedp ? unsigned_long_long_accum_type_node
9552 : long_long_accum_type_node;
9553 }
9554
9555 return make_accum_type (size, unsignedp, satp);
9556 }
9557
9558
9559 /* Create an atomic variant node for TYPE. This routine is called
9560 during initialization of data types to create the 5 basic atomic
9561 types. The generic build_variant_type function requires these to
9562 already be set up in order to function properly, so cannot be
9563 called from there. If ALIGN is non-zero, then ensure alignment is
9564 overridden to this value. */
9565
9566 static tree
9567 build_atomic_base (tree type, unsigned int align)
9568 {
9569 tree t;
9570
9571 /* Make sure its not already registered. */
9572 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
9573 return t;
9574
9575 t = build_variant_type_copy (type);
9576 set_type_quals (t, TYPE_QUAL_ATOMIC);
9577
9578 if (align)
9579 TYPE_ALIGN (t) = align;
9580
9581 return t;
9582 }
9583
9584 /* Create nodes for all integer types (and error_mark_node) using the sizes
9585 of C datatypes. SIGNED_CHAR specifies whether char is signed,
9586 SHORT_DOUBLE specifies whether double should be of the same precision
9587 as float. */
9588
9589 void
9590 build_common_tree_nodes (bool signed_char, bool short_double)
9591 {
9592 int i;
9593
9594 error_mark_node = make_node (ERROR_MARK);
9595 TREE_TYPE (error_mark_node) = error_mark_node;
9596
9597 initialize_sizetypes ();
9598
9599 /* Define both `signed char' and `unsigned char'. */
9600 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9601 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9602 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9603 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9604
9605 /* Define `char', which is like either `signed char' or `unsigned char'
9606 but not the same as either. */
9607 char_type_node
9608 = (signed_char
9609 ? make_signed_type (CHAR_TYPE_SIZE)
9610 : make_unsigned_type (CHAR_TYPE_SIZE));
9611 TYPE_STRING_FLAG (char_type_node) = 1;
9612
9613 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9614 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9615 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9616 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9617 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9618 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9619 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9620 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9621
9622 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9623 {
9624 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
9625 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
9626 TYPE_SIZE (int_n_trees[i].signed_type) = bitsize_int (int_n_data[i].bitsize);
9627 TYPE_SIZE (int_n_trees[i].unsigned_type) = bitsize_int (int_n_data[i].bitsize);
9628
9629 if (int_n_data[i].bitsize > LONG_LONG_TYPE_SIZE)
9630 {
9631 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
9632 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
9633 }
9634 }
9635
9636 /* Define a boolean type. This type only represents boolean values but
9637 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
9638 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9639 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9640 TYPE_PRECISION (boolean_type_node) = 1;
9641 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9642
9643 /* Define what type to use for size_t. */
9644 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9645 size_type_node = unsigned_type_node;
9646 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9647 size_type_node = long_unsigned_type_node;
9648 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9649 size_type_node = long_long_unsigned_type_node;
9650 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9651 size_type_node = short_unsigned_type_node;
9652 else
9653 {
9654 int i;
9655
9656 size_type_node = NULL_TREE;
9657 for (i = 0; i < NUM_INT_N_ENTS; i++)
9658 if (int_n_enabled_p[i])
9659 {
9660 char name[50];
9661 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
9662
9663 if (strcmp (name, SIZE_TYPE) == 0)
9664 {
9665 size_type_node = int_n_trees[i].unsigned_type;
9666 }
9667 }
9668 if (size_type_node == NULL_TREE)
9669 gcc_unreachable ();
9670 }
9671
9672 /* Fill in the rest of the sized types. Reuse existing type nodes
9673 when possible. */
9674 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9675 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9676 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9677 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9678 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9679
9680 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9681 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9682 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9683 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9684 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9685
9686 /* Don't call build_qualified type for atomics. That routine does
9687 special processing for atomics, and until they are initialized
9688 it's better not to make that call.
9689
9690 Check to see if there is a target override for atomic types. */
9691
9692 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
9693 targetm.atomic_align_for_mode (QImode));
9694 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
9695 targetm.atomic_align_for_mode (HImode));
9696 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
9697 targetm.atomic_align_for_mode (SImode));
9698 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
9699 targetm.atomic_align_for_mode (DImode));
9700 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
9701 targetm.atomic_align_for_mode (TImode));
9702
9703 access_public_node = get_identifier ("public");
9704 access_protected_node = get_identifier ("protected");
9705 access_private_node = get_identifier ("private");
9706
9707 /* Define these next since types below may used them. */
9708 integer_zero_node = build_int_cst (integer_type_node, 0);
9709 integer_one_node = build_int_cst (integer_type_node, 1);
9710 integer_three_node = build_int_cst (integer_type_node, 3);
9711 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9712
9713 size_zero_node = size_int (0);
9714 size_one_node = size_int (1);
9715 bitsize_zero_node = bitsize_int (0);
9716 bitsize_one_node = bitsize_int (1);
9717 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9718
9719 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9720 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9721
9722 void_type_node = make_node (VOID_TYPE);
9723 layout_type (void_type_node);
9724
9725 /* We are not going to have real types in C with less than byte alignment,
9726 so we might as well not have any types that claim to have it. */
9727 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9728 TYPE_USER_ALIGN (void_type_node) = 0;
9729
9730 void_node = make_node (VOID_CST);
9731 TREE_TYPE (void_node) = void_type_node;
9732
9733 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9734 layout_type (TREE_TYPE (null_pointer_node));
9735
9736 ptr_type_node = build_pointer_type (void_type_node);
9737 const_ptr_type_node
9738 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9739 fileptr_type_node = ptr_type_node;
9740
9741 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
9742
9743 float_type_node = make_node (REAL_TYPE);
9744 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9745 layout_type (float_type_node);
9746
9747 double_type_node = make_node (REAL_TYPE);
9748 if (short_double)
9749 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9750 else
9751 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9752 layout_type (double_type_node);
9753
9754 long_double_type_node = make_node (REAL_TYPE);
9755 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9756 layout_type (long_double_type_node);
9757
9758 float_ptr_type_node = build_pointer_type (float_type_node);
9759 double_ptr_type_node = build_pointer_type (double_type_node);
9760 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9761 integer_ptr_type_node = build_pointer_type (integer_type_node);
9762
9763 /* Fixed size integer types. */
9764 uint16_type_node = make_or_reuse_type (16, 1);
9765 uint32_type_node = make_or_reuse_type (32, 1);
9766 uint64_type_node = make_or_reuse_type (64, 1);
9767
9768 /* Decimal float types. */
9769 dfloat32_type_node = make_node (REAL_TYPE);
9770 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9771 layout_type (dfloat32_type_node);
9772 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9773 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9774
9775 dfloat64_type_node = make_node (REAL_TYPE);
9776 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9777 layout_type (dfloat64_type_node);
9778 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9779 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9780
9781 dfloat128_type_node = make_node (REAL_TYPE);
9782 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9783 layout_type (dfloat128_type_node);
9784 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9785 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9786
9787 complex_integer_type_node = build_complex_type (integer_type_node);
9788 complex_float_type_node = build_complex_type (float_type_node);
9789 complex_double_type_node = build_complex_type (double_type_node);
9790 complex_long_double_type_node = build_complex_type (long_double_type_node);
9791
9792 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9793 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9794 sat_ ## KIND ## _type_node = \
9795 make_sat_signed_ ## KIND ## _type (SIZE); \
9796 sat_unsigned_ ## KIND ## _type_node = \
9797 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9798 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9799 unsigned_ ## KIND ## _type_node = \
9800 make_unsigned_ ## KIND ## _type (SIZE);
9801
9802 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9803 sat_ ## WIDTH ## KIND ## _type_node = \
9804 make_sat_signed_ ## KIND ## _type (SIZE); \
9805 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9806 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9807 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9808 unsigned_ ## WIDTH ## KIND ## _type_node = \
9809 make_unsigned_ ## KIND ## _type (SIZE);
9810
9811 /* Make fixed-point type nodes based on four different widths. */
9812 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9813 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9814 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9815 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9816 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9817
9818 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9819 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9820 NAME ## _type_node = \
9821 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9822 u ## NAME ## _type_node = \
9823 make_or_reuse_unsigned_ ## KIND ## _type \
9824 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9825 sat_ ## NAME ## _type_node = \
9826 make_or_reuse_sat_signed_ ## KIND ## _type \
9827 (GET_MODE_BITSIZE (MODE ## mode)); \
9828 sat_u ## NAME ## _type_node = \
9829 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9830 (GET_MODE_BITSIZE (U ## MODE ## mode));
9831
9832 /* Fixed-point type and mode nodes. */
9833 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9834 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9835 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9836 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9837 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9838 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9839 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9840 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9841 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9842 MAKE_FIXED_MODE_NODE (accum, da, DA)
9843 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9844
9845 {
9846 tree t = targetm.build_builtin_va_list ();
9847
9848 /* Many back-ends define record types without setting TYPE_NAME.
9849 If we copied the record type here, we'd keep the original
9850 record type without a name. This breaks name mangling. So,
9851 don't copy record types and let c_common_nodes_and_builtins()
9852 declare the type to be __builtin_va_list. */
9853 if (TREE_CODE (t) != RECORD_TYPE)
9854 t = build_variant_type_copy (t);
9855
9856 va_list_type_node = t;
9857 }
9858 }
9859
9860 /* Modify DECL for given flags.
9861 TM_PURE attribute is set only on types, so the function will modify
9862 DECL's type when ECF_TM_PURE is used. */
9863
9864 void
9865 set_call_expr_flags (tree decl, int flags)
9866 {
9867 if (flags & ECF_NOTHROW)
9868 TREE_NOTHROW (decl) = 1;
9869 if (flags & ECF_CONST)
9870 TREE_READONLY (decl) = 1;
9871 if (flags & ECF_PURE)
9872 DECL_PURE_P (decl) = 1;
9873 if (flags & ECF_LOOPING_CONST_OR_PURE)
9874 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9875 if (flags & ECF_NOVOPS)
9876 DECL_IS_NOVOPS (decl) = 1;
9877 if (flags & ECF_NORETURN)
9878 TREE_THIS_VOLATILE (decl) = 1;
9879 if (flags & ECF_MALLOC)
9880 DECL_IS_MALLOC (decl) = 1;
9881 if (flags & ECF_RETURNS_TWICE)
9882 DECL_IS_RETURNS_TWICE (decl) = 1;
9883 if (flags & ECF_LEAF)
9884 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9885 NULL, DECL_ATTRIBUTES (decl));
9886 if ((flags & ECF_TM_PURE) && flag_tm)
9887 apply_tm_attr (decl, get_identifier ("transaction_pure"));
9888 /* Looping const or pure is implied by noreturn.
9889 There is currently no way to declare looping const or looping pure alone. */
9890 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
9891 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
9892 }
9893
9894
9895 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9896
9897 static void
9898 local_define_builtin (const char *name, tree type, enum built_in_function code,
9899 const char *library_name, int ecf_flags)
9900 {
9901 tree decl;
9902
9903 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9904 library_name, NULL_TREE);
9905 set_call_expr_flags (decl, ecf_flags);
9906
9907 set_builtin_decl (code, decl, true);
9908 }
9909
9910 /* Call this function after instantiating all builtins that the language
9911 front end cares about. This will build the rest of the builtins
9912 and internal functions that are relied upon by the tree optimizers and
9913 the middle-end. */
9914
9915 void
9916 build_common_builtin_nodes (void)
9917 {
9918 tree tmp, ftype;
9919 int ecf_flags;
9920
9921 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
9922 {
9923 ftype = build_function_type (void_type_node, void_list_node);
9924 local_define_builtin ("__builtin_unreachable", ftype, BUILT_IN_UNREACHABLE,
9925 "__builtin_unreachable",
9926 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
9927 | ECF_CONST | ECF_LEAF);
9928 }
9929
9930 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
9931 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9932 {
9933 ftype = build_function_type_list (ptr_type_node,
9934 ptr_type_node, const_ptr_type_node,
9935 size_type_node, NULL_TREE);
9936
9937 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
9938 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9939 "memcpy", ECF_NOTHROW | ECF_LEAF);
9940 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9941 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9942 "memmove", ECF_NOTHROW | ECF_LEAF);
9943 }
9944
9945 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
9946 {
9947 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9948 const_ptr_type_node, size_type_node,
9949 NULL_TREE);
9950 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9951 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9952 }
9953
9954 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
9955 {
9956 ftype = build_function_type_list (ptr_type_node,
9957 ptr_type_node, integer_type_node,
9958 size_type_node, NULL_TREE);
9959 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9960 "memset", ECF_NOTHROW | ECF_LEAF);
9961 }
9962
9963 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
9964 {
9965 ftype = build_function_type_list (ptr_type_node,
9966 size_type_node, NULL_TREE);
9967 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9968 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9969 }
9970
9971 ftype = build_function_type_list (ptr_type_node, size_type_node,
9972 size_type_node, NULL_TREE);
9973 local_define_builtin ("__builtin_alloca_with_align", ftype,
9974 BUILT_IN_ALLOCA_WITH_ALIGN, "alloca",
9975 ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9976
9977 /* If we're checking the stack, `alloca' can throw. */
9978 if (flag_stack_check)
9979 {
9980 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA)) = 0;
9981 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN)) = 0;
9982 }
9983
9984 ftype = build_function_type_list (void_type_node,
9985 ptr_type_node, ptr_type_node,
9986 ptr_type_node, NULL_TREE);
9987 local_define_builtin ("__builtin_init_trampoline", ftype,
9988 BUILT_IN_INIT_TRAMPOLINE,
9989 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9990 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
9991 BUILT_IN_INIT_HEAP_TRAMPOLINE,
9992 "__builtin_init_heap_trampoline",
9993 ECF_NOTHROW | ECF_LEAF);
9994
9995 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9996 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9997 BUILT_IN_ADJUST_TRAMPOLINE,
9998 "__builtin_adjust_trampoline",
9999 ECF_CONST | ECF_NOTHROW);
10000
10001 ftype = build_function_type_list (void_type_node,
10002 ptr_type_node, ptr_type_node, NULL_TREE);
10003 local_define_builtin ("__builtin_nonlocal_goto", ftype,
10004 BUILT_IN_NONLOCAL_GOTO,
10005 "__builtin_nonlocal_goto",
10006 ECF_NORETURN | ECF_NOTHROW);
10007
10008 ftype = build_function_type_list (void_type_node,
10009 ptr_type_node, ptr_type_node, NULL_TREE);
10010 local_define_builtin ("__builtin_setjmp_setup", ftype,
10011 BUILT_IN_SETJMP_SETUP,
10012 "__builtin_setjmp_setup", ECF_NOTHROW);
10013
10014 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10015 local_define_builtin ("__builtin_setjmp_receiver", ftype,
10016 BUILT_IN_SETJMP_RECEIVER,
10017 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10018
10019 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10020 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10021 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10022
10023 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10024 local_define_builtin ("__builtin_stack_restore", ftype,
10025 BUILT_IN_STACK_RESTORE,
10026 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10027
10028 /* If there's a possibility that we might use the ARM EABI, build the
10029 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
10030 if (targetm.arm_eabi_unwinder)
10031 {
10032 ftype = build_function_type_list (void_type_node, NULL_TREE);
10033 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10034 BUILT_IN_CXA_END_CLEANUP,
10035 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10036 }
10037
10038 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10039 local_define_builtin ("__builtin_unwind_resume", ftype,
10040 BUILT_IN_UNWIND_RESUME,
10041 ((targetm_common.except_unwind_info (&global_options)
10042 == UI_SJLJ)
10043 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10044 ECF_NORETURN);
10045
10046 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10047 {
10048 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10049 NULL_TREE);
10050 local_define_builtin ("__builtin_return_address", ftype,
10051 BUILT_IN_RETURN_ADDRESS,
10052 "__builtin_return_address",
10053 ECF_NOTHROW);
10054 }
10055
10056 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10057 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10058 {
10059 ftype = build_function_type_list (void_type_node, ptr_type_node,
10060 ptr_type_node, NULL_TREE);
10061 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10062 local_define_builtin ("__cyg_profile_func_enter", ftype,
10063 BUILT_IN_PROFILE_FUNC_ENTER,
10064 "__cyg_profile_func_enter", 0);
10065 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10066 local_define_builtin ("__cyg_profile_func_exit", ftype,
10067 BUILT_IN_PROFILE_FUNC_EXIT,
10068 "__cyg_profile_func_exit", 0);
10069 }
10070
10071 /* The exception object and filter values from the runtime. The argument
10072 must be zero before exception lowering, i.e. from the front end. After
10073 exception lowering, it will be the region number for the exception
10074 landing pad. These functions are PURE instead of CONST to prevent
10075 them from being hoisted past the exception edge that will initialize
10076 its value in the landing pad. */
10077 ftype = build_function_type_list (ptr_type_node,
10078 integer_type_node, NULL_TREE);
10079 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10080 /* Only use TM_PURE if we we have TM language support. */
10081 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10082 ecf_flags |= ECF_TM_PURE;
10083 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10084 "__builtin_eh_pointer", ecf_flags);
10085
10086 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10087 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10088 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10089 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10090
10091 ftype = build_function_type_list (void_type_node,
10092 integer_type_node, integer_type_node,
10093 NULL_TREE);
10094 local_define_builtin ("__builtin_eh_copy_values", ftype,
10095 BUILT_IN_EH_COPY_VALUES,
10096 "__builtin_eh_copy_values", ECF_NOTHROW);
10097
10098 /* Complex multiplication and division. These are handled as builtins
10099 rather than optabs because emit_library_call_value doesn't support
10100 complex. Further, we can do slightly better with folding these
10101 beasties if the real and complex parts of the arguments are separate. */
10102 {
10103 int mode;
10104
10105 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10106 {
10107 char mode_name_buf[4], *q;
10108 const char *p;
10109 enum built_in_function mcode, dcode;
10110 tree type, inner_type;
10111 const char *prefix = "__";
10112
10113 if (targetm.libfunc_gnu_prefix)
10114 prefix = "__gnu_";
10115
10116 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
10117 if (type == NULL)
10118 continue;
10119 inner_type = TREE_TYPE (type);
10120
10121 ftype = build_function_type_list (type, inner_type, inner_type,
10122 inner_type, inner_type, NULL_TREE);
10123
10124 mcode = ((enum built_in_function)
10125 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10126 dcode = ((enum built_in_function)
10127 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10128
10129 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10130 *q = TOLOWER (*p);
10131 *q = '\0';
10132
10133 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10134 NULL);
10135 local_define_builtin (built_in_names[mcode], ftype, mcode,
10136 built_in_names[mcode],
10137 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10138
10139 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10140 NULL);
10141 local_define_builtin (built_in_names[dcode], ftype, dcode,
10142 built_in_names[dcode],
10143 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10144 }
10145 }
10146
10147 init_internal_fns ();
10148 }
10149
10150 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10151 better way.
10152
10153 If we requested a pointer to a vector, build up the pointers that
10154 we stripped off while looking for the inner type. Similarly for
10155 return values from functions.
10156
10157 The argument TYPE is the top of the chain, and BOTTOM is the
10158 new type which we will point to. */
10159
10160 tree
10161 reconstruct_complex_type (tree type, tree bottom)
10162 {
10163 tree inner, outer;
10164
10165 if (TREE_CODE (type) == POINTER_TYPE)
10166 {
10167 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10168 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10169 TYPE_REF_CAN_ALIAS_ALL (type));
10170 }
10171 else if (TREE_CODE (type) == REFERENCE_TYPE)
10172 {
10173 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10174 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10175 TYPE_REF_CAN_ALIAS_ALL (type));
10176 }
10177 else if (TREE_CODE (type) == ARRAY_TYPE)
10178 {
10179 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10180 outer = build_array_type (inner, TYPE_DOMAIN (type));
10181 }
10182 else if (TREE_CODE (type) == FUNCTION_TYPE)
10183 {
10184 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10185 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10186 }
10187 else if (TREE_CODE (type) == METHOD_TYPE)
10188 {
10189 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10190 /* The build_method_type_directly() routine prepends 'this' to argument list,
10191 so we must compensate by getting rid of it. */
10192 outer
10193 = build_method_type_directly
10194 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10195 inner,
10196 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10197 }
10198 else if (TREE_CODE (type) == OFFSET_TYPE)
10199 {
10200 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10201 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10202 }
10203 else
10204 return bottom;
10205
10206 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10207 TYPE_QUALS (type));
10208 }
10209
10210 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10211 the inner type. */
10212 tree
10213 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
10214 {
10215 int nunits;
10216
10217 switch (GET_MODE_CLASS (mode))
10218 {
10219 case MODE_VECTOR_INT:
10220 case MODE_VECTOR_FLOAT:
10221 case MODE_VECTOR_FRACT:
10222 case MODE_VECTOR_UFRACT:
10223 case MODE_VECTOR_ACCUM:
10224 case MODE_VECTOR_UACCUM:
10225 nunits = GET_MODE_NUNITS (mode);
10226 break;
10227
10228 case MODE_INT:
10229 /* Check that there are no leftover bits. */
10230 gcc_assert (GET_MODE_BITSIZE (mode)
10231 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10232
10233 nunits = GET_MODE_BITSIZE (mode)
10234 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10235 break;
10236
10237 default:
10238 gcc_unreachable ();
10239 }
10240
10241 return make_vector_type (innertype, nunits, mode);
10242 }
10243
10244 /* Similarly, but takes the inner type and number of units, which must be
10245 a power of two. */
10246
10247 tree
10248 build_vector_type (tree innertype, int nunits)
10249 {
10250 return make_vector_type (innertype, nunits, VOIDmode);
10251 }
10252
10253 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
10254
10255 tree
10256 build_opaque_vector_type (tree innertype, int nunits)
10257 {
10258 tree t = make_vector_type (innertype, nunits, VOIDmode);
10259 tree cand;
10260 /* We always build the non-opaque variant before the opaque one,
10261 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10262 cand = TYPE_NEXT_VARIANT (t);
10263 if (cand
10264 && TYPE_VECTOR_OPAQUE (cand)
10265 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10266 return cand;
10267 /* Othewise build a variant type and make sure to queue it after
10268 the non-opaque type. */
10269 cand = build_distinct_type_copy (t);
10270 TYPE_VECTOR_OPAQUE (cand) = true;
10271 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10272 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10273 TYPE_NEXT_VARIANT (t) = cand;
10274 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10275 return cand;
10276 }
10277
10278
10279 /* Given an initializer INIT, return TRUE if INIT is zero or some
10280 aggregate of zeros. Otherwise return FALSE. */
10281 bool
10282 initializer_zerop (const_tree init)
10283 {
10284 tree elt;
10285
10286 STRIP_NOPS (init);
10287
10288 switch (TREE_CODE (init))
10289 {
10290 case INTEGER_CST:
10291 return integer_zerop (init);
10292
10293 case REAL_CST:
10294 /* ??? Note that this is not correct for C4X float formats. There,
10295 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10296 negative exponent. */
10297 return real_zerop (init)
10298 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
10299
10300 case FIXED_CST:
10301 return fixed_zerop (init);
10302
10303 case COMPLEX_CST:
10304 return integer_zerop (init)
10305 || (real_zerop (init)
10306 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10307 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
10308
10309 case VECTOR_CST:
10310 {
10311 unsigned i;
10312 for (i = 0; i < VECTOR_CST_NELTS (init); ++i)
10313 if (!initializer_zerop (VECTOR_CST_ELT (init, i)))
10314 return false;
10315 return true;
10316 }
10317
10318 case CONSTRUCTOR:
10319 {
10320 unsigned HOST_WIDE_INT idx;
10321
10322 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10323 if (!initializer_zerop (elt))
10324 return false;
10325 return true;
10326 }
10327
10328 case STRING_CST:
10329 {
10330 int i;
10331
10332 /* We need to loop through all elements to handle cases like
10333 "\0" and "\0foobar". */
10334 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10335 if (TREE_STRING_POINTER (init)[i] != '\0')
10336 return false;
10337
10338 return true;
10339 }
10340
10341 default:
10342 return false;
10343 }
10344 }
10345
10346 /* Check if vector VEC consists of all the equal elements and
10347 that the number of elements corresponds to the type of VEC.
10348 The function returns first element of the vector
10349 or NULL_TREE if the vector is not uniform. */
10350 tree
10351 uniform_vector_p (const_tree vec)
10352 {
10353 tree first, t;
10354 unsigned i;
10355
10356 if (vec == NULL_TREE)
10357 return NULL_TREE;
10358
10359 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10360
10361 if (TREE_CODE (vec) == VECTOR_CST)
10362 {
10363 first = VECTOR_CST_ELT (vec, 0);
10364 for (i = 1; i < VECTOR_CST_NELTS (vec); ++i)
10365 if (!operand_equal_p (first, VECTOR_CST_ELT (vec, i), 0))
10366 return NULL_TREE;
10367
10368 return first;
10369 }
10370
10371 else if (TREE_CODE (vec) == CONSTRUCTOR)
10372 {
10373 first = error_mark_node;
10374
10375 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10376 {
10377 if (i == 0)
10378 {
10379 first = t;
10380 continue;
10381 }
10382 if (!operand_equal_p (first, t, 0))
10383 return NULL_TREE;
10384 }
10385 if (i != TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)))
10386 return NULL_TREE;
10387
10388 return first;
10389 }
10390
10391 return NULL_TREE;
10392 }
10393
10394 /* Build an empty statement at location LOC. */
10395
10396 tree
10397 build_empty_stmt (location_t loc)
10398 {
10399 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10400 SET_EXPR_LOCATION (t, loc);
10401 return t;
10402 }
10403
10404
10405 /* Build an OpenMP clause with code CODE. LOC is the location of the
10406 clause. */
10407
10408 tree
10409 build_omp_clause (location_t loc, enum omp_clause_code code)
10410 {
10411 tree t;
10412 int size, length;
10413
10414 length = omp_clause_num_ops[code];
10415 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10416
10417 record_node_allocation_statistics (OMP_CLAUSE, size);
10418
10419 t = (tree) ggc_internal_alloc (size);
10420 memset (t, 0, size);
10421 TREE_SET_CODE (t, OMP_CLAUSE);
10422 OMP_CLAUSE_SET_CODE (t, code);
10423 OMP_CLAUSE_LOCATION (t) = loc;
10424
10425 return t;
10426 }
10427
10428 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10429 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10430 Except for the CODE and operand count field, other storage for the
10431 object is initialized to zeros. */
10432
10433 tree
10434 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
10435 {
10436 tree t;
10437 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10438
10439 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10440 gcc_assert (len >= 1);
10441
10442 record_node_allocation_statistics (code, length);
10443
10444 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10445
10446 TREE_SET_CODE (t, code);
10447
10448 /* Can't use TREE_OPERAND to store the length because if checking is
10449 enabled, it will try to check the length before we store it. :-P */
10450 t->exp.operands[0] = build_int_cst (sizetype, len);
10451
10452 return t;
10453 }
10454
10455 /* Helper function for build_call_* functions; build a CALL_EXPR with
10456 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10457 the argument slots. */
10458
10459 static tree
10460 build_call_1 (tree return_type, tree fn, int nargs)
10461 {
10462 tree t;
10463
10464 t = build_vl_exp (CALL_EXPR, nargs + 3);
10465 TREE_TYPE (t) = return_type;
10466 CALL_EXPR_FN (t) = fn;
10467 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10468
10469 return t;
10470 }
10471
10472 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10473 FN and a null static chain slot. NARGS is the number of call arguments
10474 which are specified as "..." arguments. */
10475
10476 tree
10477 build_call_nary (tree return_type, tree fn, int nargs, ...)
10478 {
10479 tree ret;
10480 va_list args;
10481 va_start (args, nargs);
10482 ret = build_call_valist (return_type, fn, nargs, args);
10483 va_end (args);
10484 return ret;
10485 }
10486
10487 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10488 FN and a null static chain slot. NARGS is the number of call arguments
10489 which are specified as a va_list ARGS. */
10490
10491 tree
10492 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10493 {
10494 tree t;
10495 int i;
10496
10497 t = build_call_1 (return_type, fn, nargs);
10498 for (i = 0; i < nargs; i++)
10499 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10500 process_call_operands (t);
10501 return t;
10502 }
10503
10504 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10505 FN and a null static chain slot. NARGS is the number of call arguments
10506 which are specified as a tree array ARGS. */
10507
10508 tree
10509 build_call_array_loc (location_t loc, tree return_type, tree fn,
10510 int nargs, const tree *args)
10511 {
10512 tree t;
10513 int i;
10514
10515 t = build_call_1 (return_type, fn, nargs);
10516 for (i = 0; i < nargs; i++)
10517 CALL_EXPR_ARG (t, i) = args[i];
10518 process_call_operands (t);
10519 SET_EXPR_LOCATION (t, loc);
10520 return t;
10521 }
10522
10523 /* Like build_call_array, but takes a vec. */
10524
10525 tree
10526 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10527 {
10528 tree ret, t;
10529 unsigned int ix;
10530
10531 ret = build_call_1 (return_type, fn, vec_safe_length (args));
10532 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10533 CALL_EXPR_ARG (ret, ix) = t;
10534 process_call_operands (ret);
10535 return ret;
10536 }
10537
10538 /* Conveniently construct a function call expression. FNDECL names the
10539 function to be called and N arguments are passed in the array
10540 ARGARRAY. */
10541
10542 tree
10543 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
10544 {
10545 tree fntype = TREE_TYPE (fndecl);
10546 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
10547
10548 return fold_builtin_call_array (loc, TREE_TYPE (fntype), fn, n, argarray);
10549 }
10550
10551 /* Conveniently construct a function call expression. FNDECL names the
10552 function to be called and the arguments are passed in the vector
10553 VEC. */
10554
10555 tree
10556 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
10557 {
10558 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
10559 vec_safe_address (vec));
10560 }
10561
10562
10563 /* Conveniently construct a function call expression. FNDECL names the
10564 function to be called, N is the number of arguments, and the "..."
10565 parameters are the argument expressions. */
10566
10567 tree
10568 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
10569 {
10570 va_list ap;
10571 tree *argarray = XALLOCAVEC (tree, n);
10572 int i;
10573
10574 va_start (ap, n);
10575 for (i = 0; i < n; i++)
10576 argarray[i] = va_arg (ap, tree);
10577 va_end (ap);
10578 return build_call_expr_loc_array (loc, fndecl, n, argarray);
10579 }
10580
10581 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
10582 varargs macros aren't supported by all bootstrap compilers. */
10583
10584 tree
10585 build_call_expr (tree fndecl, int n, ...)
10586 {
10587 va_list ap;
10588 tree *argarray = XALLOCAVEC (tree, n);
10589 int i;
10590
10591 va_start (ap, n);
10592 for (i = 0; i < n; i++)
10593 argarray[i] = va_arg (ap, tree);
10594 va_end (ap);
10595 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
10596 }
10597
10598 /* Build internal call expression. This is just like CALL_EXPR, except
10599 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
10600 internal function. */
10601
10602 tree
10603 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
10604 tree type, int n, ...)
10605 {
10606 va_list ap;
10607 int i;
10608
10609 tree fn = build_call_1 (type, NULL_TREE, n);
10610 va_start (ap, n);
10611 for (i = 0; i < n; i++)
10612 CALL_EXPR_ARG (fn, i) = va_arg (ap, tree);
10613 va_end (ap);
10614 SET_EXPR_LOCATION (fn, loc);
10615 CALL_EXPR_IFN (fn) = ifn;
10616 return fn;
10617 }
10618
10619 /* Create a new constant string literal and return a char* pointer to it.
10620 The STRING_CST value is the LEN characters at STR. */
10621 tree
10622 build_string_literal (int len, const char *str)
10623 {
10624 tree t, elem, index, type;
10625
10626 t = build_string (len, str);
10627 elem = build_type_variant (char_type_node, 1, 0);
10628 index = build_index_type (size_int (len - 1));
10629 type = build_array_type (elem, index);
10630 TREE_TYPE (t) = type;
10631 TREE_CONSTANT (t) = 1;
10632 TREE_READONLY (t) = 1;
10633 TREE_STATIC (t) = 1;
10634
10635 type = build_pointer_type (elem);
10636 t = build1 (ADDR_EXPR, type,
10637 build4 (ARRAY_REF, elem,
10638 t, integer_zero_node, NULL_TREE, NULL_TREE));
10639 return t;
10640 }
10641
10642
10643
10644 /* Return true if T (assumed to be a DECL) must be assigned a memory
10645 location. */
10646
10647 bool
10648 needs_to_live_in_memory (const_tree t)
10649 {
10650 return (TREE_ADDRESSABLE (t)
10651 || is_global_var (t)
10652 || (TREE_CODE (t) == RESULT_DECL
10653 && !DECL_BY_REFERENCE (t)
10654 && aggregate_value_p (t, current_function_decl)));
10655 }
10656
10657 /* Return value of a constant X and sign-extend it. */
10658
10659 HOST_WIDE_INT
10660 int_cst_value (const_tree x)
10661 {
10662 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10663 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
10664
10665 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10666 gcc_assert (cst_and_fits_in_hwi (x));
10667
10668 if (bits < HOST_BITS_PER_WIDE_INT)
10669 {
10670 bool negative = ((val >> (bits - 1)) & 1) != 0;
10671 if (negative)
10672 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
10673 else
10674 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
10675 }
10676
10677 return val;
10678 }
10679
10680 /* If TYPE is an integral or pointer type, return an integer type with
10681 the same precision which is unsigned iff UNSIGNEDP is true, or itself
10682 if TYPE is already an integer type of signedness UNSIGNEDP. */
10683
10684 tree
10685 signed_or_unsigned_type_for (int unsignedp, tree type)
10686 {
10687 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
10688 return type;
10689
10690 if (TREE_CODE (type) == VECTOR_TYPE)
10691 {
10692 tree inner = TREE_TYPE (type);
10693 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
10694 if (!inner2)
10695 return NULL_TREE;
10696 if (inner == inner2)
10697 return type;
10698 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
10699 }
10700
10701 if (!INTEGRAL_TYPE_P (type)
10702 && !POINTER_TYPE_P (type)
10703 && TREE_CODE (type) != OFFSET_TYPE)
10704 return NULL_TREE;
10705
10706 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
10707 }
10708
10709 /* If TYPE is an integral or pointer type, return an integer type with
10710 the same precision which is unsigned, or itself if TYPE is already an
10711 unsigned integer type. */
10712
10713 tree
10714 unsigned_type_for (tree type)
10715 {
10716 return signed_or_unsigned_type_for (1, type);
10717 }
10718
10719 /* If TYPE is an integral or pointer type, return an integer type with
10720 the same precision which is signed, or itself if TYPE is already a
10721 signed integer type. */
10722
10723 tree
10724 signed_type_for (tree type)
10725 {
10726 return signed_or_unsigned_type_for (0, type);
10727 }
10728
10729 /* If TYPE is a vector type, return a signed integer vector type with the
10730 same width and number of subparts. Otherwise return boolean_type_node. */
10731
10732 tree
10733 truth_type_for (tree type)
10734 {
10735 if (TREE_CODE (type) == VECTOR_TYPE)
10736 {
10737 tree elem = lang_hooks.types.type_for_size
10738 (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))), 0);
10739 return build_opaque_vector_type (elem, TYPE_VECTOR_SUBPARTS (type));
10740 }
10741 else
10742 return boolean_type_node;
10743 }
10744
10745 /* Returns the largest value obtainable by casting something in INNER type to
10746 OUTER type. */
10747
10748 tree
10749 upper_bound_in_type (tree outer, tree inner)
10750 {
10751 unsigned int det = 0;
10752 unsigned oprec = TYPE_PRECISION (outer);
10753 unsigned iprec = TYPE_PRECISION (inner);
10754 unsigned prec;
10755
10756 /* Compute a unique number for every combination. */
10757 det |= (oprec > iprec) ? 4 : 0;
10758 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10759 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10760
10761 /* Determine the exponent to use. */
10762 switch (det)
10763 {
10764 case 0:
10765 case 1:
10766 /* oprec <= iprec, outer: signed, inner: don't care. */
10767 prec = oprec - 1;
10768 break;
10769 case 2:
10770 case 3:
10771 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10772 prec = oprec;
10773 break;
10774 case 4:
10775 /* oprec > iprec, outer: signed, inner: signed. */
10776 prec = iprec - 1;
10777 break;
10778 case 5:
10779 /* oprec > iprec, outer: signed, inner: unsigned. */
10780 prec = iprec;
10781 break;
10782 case 6:
10783 /* oprec > iprec, outer: unsigned, inner: signed. */
10784 prec = oprec;
10785 break;
10786 case 7:
10787 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10788 prec = iprec;
10789 break;
10790 default:
10791 gcc_unreachable ();
10792 }
10793
10794 return wide_int_to_tree (outer,
10795 wi::mask (prec, false, TYPE_PRECISION (outer)));
10796 }
10797
10798 /* Returns the smallest value obtainable by casting something in INNER type to
10799 OUTER type. */
10800
10801 tree
10802 lower_bound_in_type (tree outer, tree inner)
10803 {
10804 unsigned oprec = TYPE_PRECISION (outer);
10805 unsigned iprec = TYPE_PRECISION (inner);
10806
10807 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10808 and obtain 0. */
10809 if (TYPE_UNSIGNED (outer)
10810 /* If we are widening something of an unsigned type, OUTER type
10811 contains all values of INNER type. In particular, both INNER
10812 and OUTER types have zero in common. */
10813 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10814 return build_int_cst (outer, 0);
10815 else
10816 {
10817 /* If we are widening a signed type to another signed type, we
10818 want to obtain -2^^(iprec-1). If we are keeping the
10819 precision or narrowing to a signed type, we want to obtain
10820 -2^(oprec-1). */
10821 unsigned prec = oprec > iprec ? iprec : oprec;
10822 return wide_int_to_tree (outer,
10823 wi::mask (prec - 1, true,
10824 TYPE_PRECISION (outer)));
10825 }
10826 }
10827
10828 /* Return nonzero if two operands that are suitable for PHI nodes are
10829 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10830 SSA_NAME or invariant. Note that this is strictly an optimization.
10831 That is, callers of this function can directly call operand_equal_p
10832 and get the same result, only slower. */
10833
10834 int
10835 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10836 {
10837 if (arg0 == arg1)
10838 return 1;
10839 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10840 return 0;
10841 return operand_equal_p (arg0, arg1, 0);
10842 }
10843
10844 /* Returns number of zeros at the end of binary representation of X. */
10845
10846 tree
10847 num_ending_zeros (const_tree x)
10848 {
10849 return build_int_cst (TREE_TYPE (x), wi::ctz (x));
10850 }
10851
10852
10853 #define WALK_SUBTREE(NODE) \
10854 do \
10855 { \
10856 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10857 if (result) \
10858 return result; \
10859 } \
10860 while (0)
10861
10862 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10863 be walked whenever a type is seen in the tree. Rest of operands and return
10864 value are as for walk_tree. */
10865
10866 static tree
10867 walk_type_fields (tree type, walk_tree_fn func, void *data,
10868 hash_set<tree> *pset, walk_tree_lh lh)
10869 {
10870 tree result = NULL_TREE;
10871
10872 switch (TREE_CODE (type))
10873 {
10874 case POINTER_TYPE:
10875 case REFERENCE_TYPE:
10876 case VECTOR_TYPE:
10877 /* We have to worry about mutually recursive pointers. These can't
10878 be written in C. They can in Ada. It's pathological, but
10879 there's an ACATS test (c38102a) that checks it. Deal with this
10880 by checking if we're pointing to another pointer, that one
10881 points to another pointer, that one does too, and we have no htab.
10882 If so, get a hash table. We check three levels deep to avoid
10883 the cost of the hash table if we don't need one. */
10884 if (POINTER_TYPE_P (TREE_TYPE (type))
10885 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10886 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10887 && !pset)
10888 {
10889 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10890 func, data);
10891 if (result)
10892 return result;
10893
10894 break;
10895 }
10896
10897 /* ... fall through ... */
10898
10899 case COMPLEX_TYPE:
10900 WALK_SUBTREE (TREE_TYPE (type));
10901 break;
10902
10903 case METHOD_TYPE:
10904 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10905
10906 /* Fall through. */
10907
10908 case FUNCTION_TYPE:
10909 WALK_SUBTREE (TREE_TYPE (type));
10910 {
10911 tree arg;
10912
10913 /* We never want to walk into default arguments. */
10914 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10915 WALK_SUBTREE (TREE_VALUE (arg));
10916 }
10917 break;
10918
10919 case ARRAY_TYPE:
10920 /* Don't follow this nodes's type if a pointer for fear that
10921 we'll have infinite recursion. If we have a PSET, then we
10922 need not fear. */
10923 if (pset
10924 || (!POINTER_TYPE_P (TREE_TYPE (type))
10925 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10926 WALK_SUBTREE (TREE_TYPE (type));
10927 WALK_SUBTREE (TYPE_DOMAIN (type));
10928 break;
10929
10930 case OFFSET_TYPE:
10931 WALK_SUBTREE (TREE_TYPE (type));
10932 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10933 break;
10934
10935 default:
10936 break;
10937 }
10938
10939 return NULL_TREE;
10940 }
10941
10942 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10943 called with the DATA and the address of each sub-tree. If FUNC returns a
10944 non-NULL value, the traversal is stopped, and the value returned by FUNC
10945 is returned. If PSET is non-NULL it is used to record the nodes visited,
10946 and to avoid visiting a node more than once. */
10947
10948 tree
10949 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10950 hash_set<tree> *pset, walk_tree_lh lh)
10951 {
10952 enum tree_code code;
10953 int walk_subtrees;
10954 tree result;
10955
10956 #define WALK_SUBTREE_TAIL(NODE) \
10957 do \
10958 { \
10959 tp = & (NODE); \
10960 goto tail_recurse; \
10961 } \
10962 while (0)
10963
10964 tail_recurse:
10965 /* Skip empty subtrees. */
10966 if (!*tp)
10967 return NULL_TREE;
10968
10969 /* Don't walk the same tree twice, if the user has requested
10970 that we avoid doing so. */
10971 if (pset && pset->add (*tp))
10972 return NULL_TREE;
10973
10974 /* Call the function. */
10975 walk_subtrees = 1;
10976 result = (*func) (tp, &walk_subtrees, data);
10977
10978 /* If we found something, return it. */
10979 if (result)
10980 return result;
10981
10982 code = TREE_CODE (*tp);
10983
10984 /* Even if we didn't, FUNC may have decided that there was nothing
10985 interesting below this point in the tree. */
10986 if (!walk_subtrees)
10987 {
10988 /* But we still need to check our siblings. */
10989 if (code == TREE_LIST)
10990 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10991 else if (code == OMP_CLAUSE)
10992 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10993 else
10994 return NULL_TREE;
10995 }
10996
10997 if (lh)
10998 {
10999 result = (*lh) (tp, &walk_subtrees, func, data, pset);
11000 if (result || !walk_subtrees)
11001 return result;
11002 }
11003
11004 switch (code)
11005 {
11006 case ERROR_MARK:
11007 case IDENTIFIER_NODE:
11008 case INTEGER_CST:
11009 case REAL_CST:
11010 case FIXED_CST:
11011 case VECTOR_CST:
11012 case STRING_CST:
11013 case BLOCK:
11014 case PLACEHOLDER_EXPR:
11015 case SSA_NAME:
11016 case FIELD_DECL:
11017 case RESULT_DECL:
11018 /* None of these have subtrees other than those already walked
11019 above. */
11020 break;
11021
11022 case TREE_LIST:
11023 WALK_SUBTREE (TREE_VALUE (*tp));
11024 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11025 break;
11026
11027 case TREE_VEC:
11028 {
11029 int len = TREE_VEC_LENGTH (*tp);
11030
11031 if (len == 0)
11032 break;
11033
11034 /* Walk all elements but the first. */
11035 while (--len)
11036 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
11037
11038 /* Now walk the first one as a tail call. */
11039 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
11040 }
11041
11042 case COMPLEX_CST:
11043 WALK_SUBTREE (TREE_REALPART (*tp));
11044 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
11045
11046 case CONSTRUCTOR:
11047 {
11048 unsigned HOST_WIDE_INT idx;
11049 constructor_elt *ce;
11050
11051 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
11052 idx++)
11053 WALK_SUBTREE (ce->value);
11054 }
11055 break;
11056
11057 case SAVE_EXPR:
11058 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
11059
11060 case BIND_EXPR:
11061 {
11062 tree decl;
11063 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11064 {
11065 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11066 into declarations that are just mentioned, rather than
11067 declared; they don't really belong to this part of the tree.
11068 And, we can see cycles: the initializer for a declaration
11069 can refer to the declaration itself. */
11070 WALK_SUBTREE (DECL_INITIAL (decl));
11071 WALK_SUBTREE (DECL_SIZE (decl));
11072 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11073 }
11074 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11075 }
11076
11077 case STATEMENT_LIST:
11078 {
11079 tree_stmt_iterator i;
11080 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11081 WALK_SUBTREE (*tsi_stmt_ptr (i));
11082 }
11083 break;
11084
11085 case OMP_CLAUSE:
11086 switch (OMP_CLAUSE_CODE (*tp))
11087 {
11088 case OMP_CLAUSE_PRIVATE:
11089 case OMP_CLAUSE_SHARED:
11090 case OMP_CLAUSE_FIRSTPRIVATE:
11091 case OMP_CLAUSE_COPYIN:
11092 case OMP_CLAUSE_COPYPRIVATE:
11093 case OMP_CLAUSE_FINAL:
11094 case OMP_CLAUSE_IF:
11095 case OMP_CLAUSE_NUM_THREADS:
11096 case OMP_CLAUSE_SCHEDULE:
11097 case OMP_CLAUSE_UNIFORM:
11098 case OMP_CLAUSE_DEPEND:
11099 case OMP_CLAUSE_NUM_TEAMS:
11100 case OMP_CLAUSE_THREAD_LIMIT:
11101 case OMP_CLAUSE_DEVICE:
11102 case OMP_CLAUSE_DIST_SCHEDULE:
11103 case OMP_CLAUSE_SAFELEN:
11104 case OMP_CLAUSE_SIMDLEN:
11105 case OMP_CLAUSE__LOOPTEMP_:
11106 case OMP_CLAUSE__SIMDUID_:
11107 case OMP_CLAUSE__CILK_FOR_COUNT_:
11108 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11109 /* FALLTHRU */
11110
11111 case OMP_CLAUSE_NOWAIT:
11112 case OMP_CLAUSE_ORDERED:
11113 case OMP_CLAUSE_DEFAULT:
11114 case OMP_CLAUSE_UNTIED:
11115 case OMP_CLAUSE_MERGEABLE:
11116 case OMP_CLAUSE_PROC_BIND:
11117 case OMP_CLAUSE_INBRANCH:
11118 case OMP_CLAUSE_NOTINBRANCH:
11119 case OMP_CLAUSE_FOR:
11120 case OMP_CLAUSE_PARALLEL:
11121 case OMP_CLAUSE_SECTIONS:
11122 case OMP_CLAUSE_TASKGROUP:
11123 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11124
11125 case OMP_CLAUSE_LASTPRIVATE:
11126 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11127 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11128 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11129
11130 case OMP_CLAUSE_COLLAPSE:
11131 {
11132 int i;
11133 for (i = 0; i < 3; i++)
11134 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11135 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11136 }
11137
11138 case OMP_CLAUSE_LINEAR:
11139 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11140 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
11141 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
11142 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11143
11144 case OMP_CLAUSE_ALIGNED:
11145 case OMP_CLAUSE_FROM:
11146 case OMP_CLAUSE_TO:
11147 case OMP_CLAUSE_MAP:
11148 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11149 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11150 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11151
11152 case OMP_CLAUSE_REDUCTION:
11153 {
11154 int i;
11155 for (i = 0; i < 4; i++)
11156 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11157 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11158 }
11159
11160 default:
11161 gcc_unreachable ();
11162 }
11163 break;
11164
11165 case TARGET_EXPR:
11166 {
11167 int i, len;
11168
11169 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11170 But, we only want to walk once. */
11171 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11172 for (i = 0; i < len; ++i)
11173 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11174 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11175 }
11176
11177 case DECL_EXPR:
11178 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11179 defining. We only want to walk into these fields of a type in this
11180 case and not in the general case of a mere reference to the type.
11181
11182 The criterion is as follows: if the field can be an expression, it
11183 must be walked only here. This should be in keeping with the fields
11184 that are directly gimplified in gimplify_type_sizes in order for the
11185 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11186 variable-sized types.
11187
11188 Note that DECLs get walked as part of processing the BIND_EXPR. */
11189 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11190 {
11191 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11192 if (TREE_CODE (*type_p) == ERROR_MARK)
11193 return NULL_TREE;
11194
11195 /* Call the function for the type. See if it returns anything or
11196 doesn't want us to continue. If we are to continue, walk both
11197 the normal fields and those for the declaration case. */
11198 result = (*func) (type_p, &walk_subtrees, data);
11199 if (result || !walk_subtrees)
11200 return result;
11201
11202 /* But do not walk a pointed-to type since it may itself need to
11203 be walked in the declaration case if it isn't anonymous. */
11204 if (!POINTER_TYPE_P (*type_p))
11205 {
11206 result = walk_type_fields (*type_p, func, data, pset, lh);
11207 if (result)
11208 return result;
11209 }
11210
11211 /* If this is a record type, also walk the fields. */
11212 if (RECORD_OR_UNION_TYPE_P (*type_p))
11213 {
11214 tree field;
11215
11216 for (field = TYPE_FIELDS (*type_p); field;
11217 field = DECL_CHAIN (field))
11218 {
11219 /* We'd like to look at the type of the field, but we can
11220 easily get infinite recursion. So assume it's pointed
11221 to elsewhere in the tree. Also, ignore things that
11222 aren't fields. */
11223 if (TREE_CODE (field) != FIELD_DECL)
11224 continue;
11225
11226 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11227 WALK_SUBTREE (DECL_SIZE (field));
11228 WALK_SUBTREE (DECL_SIZE_UNIT (field));
11229 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
11230 WALK_SUBTREE (DECL_QUALIFIER (field));
11231 }
11232 }
11233
11234 /* Same for scalar types. */
11235 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
11236 || TREE_CODE (*type_p) == ENUMERAL_TYPE
11237 || TREE_CODE (*type_p) == INTEGER_TYPE
11238 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
11239 || TREE_CODE (*type_p) == REAL_TYPE)
11240 {
11241 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
11242 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
11243 }
11244
11245 WALK_SUBTREE (TYPE_SIZE (*type_p));
11246 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
11247 }
11248 /* FALLTHRU */
11249
11250 default:
11251 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11252 {
11253 int i, len;
11254
11255 /* Walk over all the sub-trees of this operand. */
11256 len = TREE_OPERAND_LENGTH (*tp);
11257
11258 /* Go through the subtrees. We need to do this in forward order so
11259 that the scope of a FOR_EXPR is handled properly. */
11260 if (len)
11261 {
11262 for (i = 0; i < len - 1; ++i)
11263 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11264 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
11265 }
11266 }
11267 /* If this is a type, walk the needed fields in the type. */
11268 else if (TYPE_P (*tp))
11269 return walk_type_fields (*tp, func, data, pset, lh);
11270 break;
11271 }
11272
11273 /* We didn't find what we were looking for. */
11274 return NULL_TREE;
11275
11276 #undef WALK_SUBTREE_TAIL
11277 }
11278 #undef WALK_SUBTREE
11279
11280 /* Like walk_tree, but does not walk duplicate nodes more than once. */
11281
11282 tree
11283 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11284 walk_tree_lh lh)
11285 {
11286 tree result;
11287
11288 hash_set<tree> pset;
11289 result = walk_tree_1 (tp, func, data, &pset, lh);
11290 return result;
11291 }
11292
11293
11294 tree
11295 tree_block (tree t)
11296 {
11297 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11298
11299 if (IS_EXPR_CODE_CLASS (c))
11300 return LOCATION_BLOCK (t->exp.locus);
11301 gcc_unreachable ();
11302 return NULL;
11303 }
11304
11305 void
11306 tree_set_block (tree t, tree b)
11307 {
11308 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11309
11310 if (IS_EXPR_CODE_CLASS (c))
11311 {
11312 if (b)
11313 t->exp.locus = COMBINE_LOCATION_DATA (line_table, t->exp.locus, b);
11314 else
11315 t->exp.locus = LOCATION_LOCUS (t->exp.locus);
11316 }
11317 else
11318 gcc_unreachable ();
11319 }
11320
11321 /* Create a nameless artificial label and put it in the current
11322 function context. The label has a location of LOC. Returns the
11323 newly created label. */
11324
11325 tree
11326 create_artificial_label (location_t loc)
11327 {
11328 tree lab = build_decl (loc,
11329 LABEL_DECL, NULL_TREE, void_type_node);
11330
11331 DECL_ARTIFICIAL (lab) = 1;
11332 DECL_IGNORED_P (lab) = 1;
11333 DECL_CONTEXT (lab) = current_function_decl;
11334 return lab;
11335 }
11336
11337 /* Given a tree, try to return a useful variable name that we can use
11338 to prefix a temporary that is being assigned the value of the tree.
11339 I.E. given <temp> = &A, return A. */
11340
11341 const char *
11342 get_name (tree t)
11343 {
11344 tree stripped_decl;
11345
11346 stripped_decl = t;
11347 STRIP_NOPS (stripped_decl);
11348 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11349 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11350 else if (TREE_CODE (stripped_decl) == SSA_NAME)
11351 {
11352 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11353 if (!name)
11354 return NULL;
11355 return IDENTIFIER_POINTER (name);
11356 }
11357 else
11358 {
11359 switch (TREE_CODE (stripped_decl))
11360 {
11361 case ADDR_EXPR:
11362 return get_name (TREE_OPERAND (stripped_decl, 0));
11363 default:
11364 return NULL;
11365 }
11366 }
11367 }
11368
11369 /* Return true if TYPE has a variable argument list. */
11370
11371 bool
11372 stdarg_p (const_tree fntype)
11373 {
11374 function_args_iterator args_iter;
11375 tree n = NULL_TREE, t;
11376
11377 if (!fntype)
11378 return false;
11379
11380 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
11381 {
11382 n = t;
11383 }
11384
11385 return n != NULL_TREE && n != void_type_node;
11386 }
11387
11388 /* Return true if TYPE has a prototype. */
11389
11390 bool
11391 prototype_p (tree fntype)
11392 {
11393 tree t;
11394
11395 gcc_assert (fntype != NULL_TREE);
11396
11397 t = TYPE_ARG_TYPES (fntype);
11398 return (t != NULL_TREE);
11399 }
11400
11401 /* If BLOCK is inlined from an __attribute__((__artificial__))
11402 routine, return pointer to location from where it has been
11403 called. */
11404 location_t *
11405 block_nonartificial_location (tree block)
11406 {
11407 location_t *ret = NULL;
11408
11409 while (block && TREE_CODE (block) == BLOCK
11410 && BLOCK_ABSTRACT_ORIGIN (block))
11411 {
11412 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11413
11414 while (TREE_CODE (ao) == BLOCK
11415 && BLOCK_ABSTRACT_ORIGIN (ao)
11416 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11417 ao = BLOCK_ABSTRACT_ORIGIN (ao);
11418
11419 if (TREE_CODE (ao) == FUNCTION_DECL)
11420 {
11421 /* If AO is an artificial inline, point RET to the
11422 call site locus at which it has been inlined and continue
11423 the loop, in case AO's caller is also an artificial
11424 inline. */
11425 if (DECL_DECLARED_INLINE_P (ao)
11426 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11427 ret = &BLOCK_SOURCE_LOCATION (block);
11428 else
11429 break;
11430 }
11431 else if (TREE_CODE (ao) != BLOCK)
11432 break;
11433
11434 block = BLOCK_SUPERCONTEXT (block);
11435 }
11436 return ret;
11437 }
11438
11439
11440 /* If EXP is inlined from an __attribute__((__artificial__))
11441 function, return the location of the original call expression. */
11442
11443 location_t
11444 tree_nonartificial_location (tree exp)
11445 {
11446 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11447
11448 if (loc)
11449 return *loc;
11450 else
11451 return EXPR_LOCATION (exp);
11452 }
11453
11454
11455 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11456 nodes. */
11457
11458 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
11459
11460 static hashval_t
11461 cl_option_hash_hash (const void *x)
11462 {
11463 const_tree const t = (const_tree) x;
11464 const char *p;
11465 size_t i;
11466 size_t len = 0;
11467 hashval_t hash = 0;
11468
11469 if (TREE_CODE (t) == OPTIMIZATION_NODE)
11470 {
11471 p = (const char *)TREE_OPTIMIZATION (t);
11472 len = sizeof (struct cl_optimization);
11473 }
11474
11475 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11476 {
11477 p = (const char *)TREE_TARGET_OPTION (t);
11478 len = sizeof (struct cl_target_option);
11479 }
11480
11481 else
11482 gcc_unreachable ();
11483
11484 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11485 something else. */
11486 for (i = 0; i < len; i++)
11487 if (p[i])
11488 hash = (hash << 4) ^ ((i << 2) | p[i]);
11489
11490 return hash;
11491 }
11492
11493 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11494 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11495 same. */
11496
11497 static int
11498 cl_option_hash_eq (const void *x, const void *y)
11499 {
11500 const_tree const xt = (const_tree) x;
11501 const_tree const yt = (const_tree) y;
11502 const char *xp;
11503 const char *yp;
11504 size_t len;
11505
11506 if (TREE_CODE (xt) != TREE_CODE (yt))
11507 return 0;
11508
11509 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11510 {
11511 xp = (const char *)TREE_OPTIMIZATION (xt);
11512 yp = (const char *)TREE_OPTIMIZATION (yt);
11513 len = sizeof (struct cl_optimization);
11514 }
11515
11516 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11517 {
11518 xp = (const char *)TREE_TARGET_OPTION (xt);
11519 yp = (const char *)TREE_TARGET_OPTION (yt);
11520 len = sizeof (struct cl_target_option);
11521 }
11522
11523 else
11524 gcc_unreachable ();
11525
11526 return (memcmp (xp, yp, len) == 0);
11527 }
11528
11529 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
11530
11531 tree
11532 build_optimization_node (struct gcc_options *opts)
11533 {
11534 tree t;
11535 void **slot;
11536
11537 /* Use the cache of optimization nodes. */
11538
11539 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11540 opts);
11541
11542 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
11543 t = (tree) *slot;
11544 if (!t)
11545 {
11546 /* Insert this one into the hash table. */
11547 t = cl_optimization_node;
11548 *slot = t;
11549
11550 /* Make a new node for next time round. */
11551 cl_optimization_node = make_node (OPTIMIZATION_NODE);
11552 }
11553
11554 return t;
11555 }
11556
11557 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
11558
11559 tree
11560 build_target_option_node (struct gcc_options *opts)
11561 {
11562 tree t;
11563 void **slot;
11564
11565 /* Use the cache of optimization nodes. */
11566
11567 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
11568 opts);
11569
11570 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
11571 t = (tree) *slot;
11572 if (!t)
11573 {
11574 /* Insert this one into the hash table. */
11575 t = cl_target_option_node;
11576 *slot = t;
11577
11578 /* Make a new node for next time round. */
11579 cl_target_option_node = make_node (TARGET_OPTION_NODE);
11580 }
11581
11582 return t;
11583 }
11584
11585 /* Reset TREE_TARGET_GLOBALS cache for TARGET_OPTION_NODE.
11586 Called through htab_traverse. */
11587
11588 static int
11589 prepare_target_option_node_for_pch (void **slot, void *)
11590 {
11591 tree node = (tree) *slot;
11592 if (TREE_CODE (node) == TARGET_OPTION_NODE)
11593 TREE_TARGET_GLOBALS (node) = NULL;
11594 return 1;
11595 }
11596
11597 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
11598 so that they aren't saved during PCH writing. */
11599
11600 void
11601 prepare_target_option_nodes_for_pch (void)
11602 {
11603 htab_traverse (cl_option_hash_table, prepare_target_option_node_for_pch,
11604 NULL);
11605 }
11606
11607 /* Determine the "ultimate origin" of a block. The block may be an inlined
11608 instance of an inlined instance of a block which is local to an inline
11609 function, so we have to trace all of the way back through the origin chain
11610 to find out what sort of node actually served as the original seed for the
11611 given block. */
11612
11613 tree
11614 block_ultimate_origin (const_tree block)
11615 {
11616 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
11617
11618 /* BLOCK_ABSTRACT_ORIGIN can point to itself; ignore that if
11619 we're trying to output the abstract instance of this function. */
11620 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
11621 return NULL_TREE;
11622
11623 if (immediate_origin == NULL_TREE)
11624 return NULL_TREE;
11625 else
11626 {
11627 tree ret_val;
11628 tree lookahead = immediate_origin;
11629
11630 do
11631 {
11632 ret_val = lookahead;
11633 lookahead = (TREE_CODE (ret_val) == BLOCK
11634 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
11635 }
11636 while (lookahead != NULL && lookahead != ret_val);
11637
11638 /* The block's abstract origin chain may not be the *ultimate* origin of
11639 the block. It could lead to a DECL that has an abstract origin set.
11640 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
11641 will give us if it has one). Note that DECL's abstract origins are
11642 supposed to be the most distant ancestor (or so decl_ultimate_origin
11643 claims), so we don't need to loop following the DECL origins. */
11644 if (DECL_P (ret_val))
11645 return DECL_ORIGIN (ret_val);
11646
11647 return ret_val;
11648 }
11649 }
11650
11651 /* Return true iff conversion in EXP generates no instruction. Mark
11652 it inline so that we fully inline into the stripping functions even
11653 though we have two uses of this function. */
11654
11655 static inline bool
11656 tree_nop_conversion (const_tree exp)
11657 {
11658 tree outer_type, inner_type;
11659
11660 if (!CONVERT_EXPR_P (exp)
11661 && TREE_CODE (exp) != NON_LVALUE_EXPR)
11662 return false;
11663 if (TREE_OPERAND (exp, 0) == error_mark_node)
11664 return false;
11665
11666 outer_type = TREE_TYPE (exp);
11667 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11668
11669 if (!inner_type)
11670 return false;
11671
11672 /* Use precision rather then machine mode when we can, which gives
11673 the correct answer even for submode (bit-field) types. */
11674 if ((INTEGRAL_TYPE_P (outer_type)
11675 || POINTER_TYPE_P (outer_type)
11676 || TREE_CODE (outer_type) == OFFSET_TYPE)
11677 && (INTEGRAL_TYPE_P (inner_type)
11678 || POINTER_TYPE_P (inner_type)
11679 || TREE_CODE (inner_type) == OFFSET_TYPE))
11680 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
11681
11682 /* Otherwise fall back on comparing machine modes (e.g. for
11683 aggregate types, floats). */
11684 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
11685 }
11686
11687 /* Return true iff conversion in EXP generates no instruction. Don't
11688 consider conversions changing the signedness. */
11689
11690 static bool
11691 tree_sign_nop_conversion (const_tree exp)
11692 {
11693 tree outer_type, inner_type;
11694
11695 if (!tree_nop_conversion (exp))
11696 return false;
11697
11698 outer_type = TREE_TYPE (exp);
11699 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11700
11701 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11702 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11703 }
11704
11705 /* Strip conversions from EXP according to tree_nop_conversion and
11706 return the resulting expression. */
11707
11708 tree
11709 tree_strip_nop_conversions (tree exp)
11710 {
11711 while (tree_nop_conversion (exp))
11712 exp = TREE_OPERAND (exp, 0);
11713 return exp;
11714 }
11715
11716 /* Strip conversions from EXP according to tree_sign_nop_conversion
11717 and return the resulting expression. */
11718
11719 tree
11720 tree_strip_sign_nop_conversions (tree exp)
11721 {
11722 while (tree_sign_nop_conversion (exp))
11723 exp = TREE_OPERAND (exp, 0);
11724 return exp;
11725 }
11726
11727 /* Avoid any floating point extensions from EXP. */
11728 tree
11729 strip_float_extensions (tree exp)
11730 {
11731 tree sub, expt, subt;
11732
11733 /* For floating point constant look up the narrowest type that can hold
11734 it properly and handle it like (type)(narrowest_type)constant.
11735 This way we can optimize for instance a=a*2.0 where "a" is float
11736 but 2.0 is double constant. */
11737 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
11738 {
11739 REAL_VALUE_TYPE orig;
11740 tree type = NULL;
11741
11742 orig = TREE_REAL_CST (exp);
11743 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
11744 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
11745 type = float_type_node;
11746 else if (TYPE_PRECISION (TREE_TYPE (exp))
11747 > TYPE_PRECISION (double_type_node)
11748 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
11749 type = double_type_node;
11750 if (type)
11751 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
11752 }
11753
11754 if (!CONVERT_EXPR_P (exp))
11755 return exp;
11756
11757 sub = TREE_OPERAND (exp, 0);
11758 subt = TREE_TYPE (sub);
11759 expt = TREE_TYPE (exp);
11760
11761 if (!FLOAT_TYPE_P (subt))
11762 return exp;
11763
11764 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
11765 return exp;
11766
11767 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
11768 return exp;
11769
11770 return strip_float_extensions (sub);
11771 }
11772
11773 /* Strip out all handled components that produce invariant
11774 offsets. */
11775
11776 const_tree
11777 strip_invariant_refs (const_tree op)
11778 {
11779 while (handled_component_p (op))
11780 {
11781 switch (TREE_CODE (op))
11782 {
11783 case ARRAY_REF:
11784 case ARRAY_RANGE_REF:
11785 if (!is_gimple_constant (TREE_OPERAND (op, 1))
11786 || TREE_OPERAND (op, 2) != NULL_TREE
11787 || TREE_OPERAND (op, 3) != NULL_TREE)
11788 return NULL;
11789 break;
11790
11791 case COMPONENT_REF:
11792 if (TREE_OPERAND (op, 2) != NULL_TREE)
11793 return NULL;
11794 break;
11795
11796 default:;
11797 }
11798 op = TREE_OPERAND (op, 0);
11799 }
11800
11801 return op;
11802 }
11803
11804 static GTY(()) tree gcc_eh_personality_decl;
11805
11806 /* Return the GCC personality function decl. */
11807
11808 tree
11809 lhd_gcc_personality (void)
11810 {
11811 if (!gcc_eh_personality_decl)
11812 gcc_eh_personality_decl = build_personality_function ("gcc");
11813 return gcc_eh_personality_decl;
11814 }
11815
11816 /* TARGET is a call target of GIMPLE call statement
11817 (obtained by gimple_call_fn). Return true if it is
11818 OBJ_TYPE_REF representing an virtual call of C++ method.
11819 (As opposed to OBJ_TYPE_REF representing objc calls
11820 through a cast where middle-end devirtualization machinery
11821 can't apply.) */
11822
11823 bool
11824 virtual_method_call_p (tree target)
11825 {
11826 if (TREE_CODE (target) != OBJ_TYPE_REF)
11827 return false;
11828 target = TREE_TYPE (target);
11829 gcc_checking_assert (TREE_CODE (target) == POINTER_TYPE);
11830 target = TREE_TYPE (target);
11831 if (TREE_CODE (target) == FUNCTION_TYPE)
11832 return false;
11833 gcc_checking_assert (TREE_CODE (target) == METHOD_TYPE);
11834 return true;
11835 }
11836
11837 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
11838
11839 tree
11840 obj_type_ref_class (tree ref)
11841 {
11842 gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
11843 ref = TREE_TYPE (ref);
11844 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11845 ref = TREE_TYPE (ref);
11846 /* We look for type THIS points to. ObjC also builds
11847 OBJ_TYPE_REF with non-method calls, Their first parameter
11848 ID however also corresponds to class type. */
11849 gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
11850 || TREE_CODE (ref) == FUNCTION_TYPE);
11851 ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
11852 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11853 return TREE_TYPE (ref);
11854 }
11855
11856 /* Return true if T is in anonymous namespace. */
11857
11858 bool
11859 type_in_anonymous_namespace_p (const_tree t)
11860 {
11861 /* TREE_PUBLIC of TYPE_STUB_DECL may not be properly set for
11862 bulitin types; those have CONTEXT NULL. */
11863 if (!TYPE_CONTEXT (t))
11864 return false;
11865 return (TYPE_STUB_DECL (t) && !TREE_PUBLIC (TYPE_STUB_DECL (t)));
11866 }
11867
11868 /* Try to find a base info of BINFO that would have its field decl at offset
11869 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
11870 found, return, otherwise return NULL_TREE. */
11871
11872 tree
11873 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
11874 {
11875 tree type = BINFO_TYPE (binfo);
11876
11877 while (true)
11878 {
11879 HOST_WIDE_INT pos, size;
11880 tree fld;
11881 int i;
11882
11883 if (types_same_for_odr (type, expected_type))
11884 return binfo;
11885 if (offset < 0)
11886 return NULL_TREE;
11887
11888 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
11889 {
11890 if (TREE_CODE (fld) != FIELD_DECL)
11891 continue;
11892
11893 pos = int_bit_position (fld);
11894 size = tree_to_uhwi (DECL_SIZE (fld));
11895 if (pos <= offset && (pos + size) > offset)
11896 break;
11897 }
11898 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
11899 return NULL_TREE;
11900
11901 if (!DECL_ARTIFICIAL (fld))
11902 {
11903 binfo = TYPE_BINFO (TREE_TYPE (fld));
11904 if (!binfo)
11905 return NULL_TREE;
11906 }
11907 /* Offset 0 indicates the primary base, whose vtable contents are
11908 represented in the binfo for the derived class. */
11909 else if (offset != 0)
11910 {
11911 tree base_binfo, binfo2 = binfo;
11912
11913 /* Find BINFO corresponding to FLD. This is bit harder
11914 by a fact that in virtual inheritance we may need to walk down
11915 the non-virtual inheritance chain. */
11916 while (true)
11917 {
11918 tree containing_binfo = NULL, found_binfo = NULL;
11919 for (i = 0; BINFO_BASE_ITERATE (binfo2, i, base_binfo); i++)
11920 if (types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
11921 {
11922 found_binfo = base_binfo;
11923 break;
11924 }
11925 else
11926 if ((tree_to_shwi (BINFO_OFFSET (base_binfo))
11927 - tree_to_shwi (BINFO_OFFSET (binfo)))
11928 * BITS_PER_UNIT < pos
11929 /* Rule out types with no virtual methods or we can get confused
11930 here by zero sized bases. */
11931 && BINFO_VTABLE (TYPE_BINFO (BINFO_TYPE (base_binfo)))
11932 && (!containing_binfo
11933 || (tree_to_shwi (BINFO_OFFSET (containing_binfo))
11934 < tree_to_shwi (BINFO_OFFSET (base_binfo)))))
11935 containing_binfo = base_binfo;
11936 if (found_binfo)
11937 {
11938 binfo = found_binfo;
11939 break;
11940 }
11941 if (!containing_binfo)
11942 return NULL_TREE;
11943 binfo2 = containing_binfo;
11944 }
11945 }
11946
11947 type = TREE_TYPE (fld);
11948 offset -= pos;
11949 }
11950 }
11951
11952 /* Returns true if X is a typedef decl. */
11953
11954 bool
11955 is_typedef_decl (tree x)
11956 {
11957 return (x && TREE_CODE (x) == TYPE_DECL
11958 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
11959 }
11960
11961 /* Returns true iff TYPE is a type variant created for a typedef. */
11962
11963 bool
11964 typedef_variant_p (tree type)
11965 {
11966 return is_typedef_decl (TYPE_NAME (type));
11967 }
11968
11969 /* Warn about a use of an identifier which was marked deprecated. */
11970 void
11971 warn_deprecated_use (tree node, tree attr)
11972 {
11973 const char *msg;
11974
11975 if (node == 0 || !warn_deprecated_decl)
11976 return;
11977
11978 if (!attr)
11979 {
11980 if (DECL_P (node))
11981 attr = DECL_ATTRIBUTES (node);
11982 else if (TYPE_P (node))
11983 {
11984 tree decl = TYPE_STUB_DECL (node);
11985 if (decl)
11986 attr = lookup_attribute ("deprecated",
11987 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
11988 }
11989 }
11990
11991 if (attr)
11992 attr = lookup_attribute ("deprecated", attr);
11993
11994 if (attr)
11995 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
11996 else
11997 msg = NULL;
11998
11999 if (DECL_P (node))
12000 {
12001 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
12002 if (msg)
12003 warning (OPT_Wdeprecated_declarations,
12004 "%qD is deprecated (declared at %r%s:%d%R): %s",
12005 node, "locus", xloc.file, xloc.line, msg);
12006 else
12007 warning (OPT_Wdeprecated_declarations,
12008 "%qD is deprecated (declared at %r%s:%d%R)",
12009 node, "locus", xloc.file, xloc.line);
12010 }
12011 else if (TYPE_P (node))
12012 {
12013 tree what = NULL_TREE;
12014 tree decl = TYPE_STUB_DECL (node);
12015
12016 if (TYPE_NAME (node))
12017 {
12018 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
12019 what = TYPE_NAME (node);
12020 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
12021 && DECL_NAME (TYPE_NAME (node)))
12022 what = DECL_NAME (TYPE_NAME (node));
12023 }
12024
12025 if (decl)
12026 {
12027 expanded_location xloc
12028 = expand_location (DECL_SOURCE_LOCATION (decl));
12029 if (what)
12030 {
12031 if (msg)
12032 warning (OPT_Wdeprecated_declarations,
12033 "%qE is deprecated (declared at %r%s:%d%R): %s",
12034 what, "locus", xloc.file, xloc.line, msg);
12035 else
12036 warning (OPT_Wdeprecated_declarations,
12037 "%qE is deprecated (declared at %r%s:%d%R)",
12038 what, "locus", xloc.file, xloc.line);
12039 }
12040 else
12041 {
12042 if (msg)
12043 warning (OPT_Wdeprecated_declarations,
12044 "type is deprecated (declared at %r%s:%d%R): %s",
12045 "locus", xloc.file, xloc.line, msg);
12046 else
12047 warning (OPT_Wdeprecated_declarations,
12048 "type is deprecated (declared at %r%s:%d%R)",
12049 "locus", xloc.file, xloc.line);
12050 }
12051 }
12052 else
12053 {
12054 if (what)
12055 {
12056 if (msg)
12057 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
12058 what, msg);
12059 else
12060 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
12061 }
12062 else
12063 {
12064 if (msg)
12065 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
12066 msg);
12067 else
12068 warning (OPT_Wdeprecated_declarations, "type is deprecated");
12069 }
12070 }
12071 }
12072 }
12073
12074 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12075 somewhere in it. */
12076
12077 bool
12078 contains_bitfld_component_ref_p (const_tree ref)
12079 {
12080 while (handled_component_p (ref))
12081 {
12082 if (TREE_CODE (ref) == COMPONENT_REF
12083 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12084 return true;
12085 ref = TREE_OPERAND (ref, 0);
12086 }
12087
12088 return false;
12089 }
12090
12091 /* Try to determine whether a TRY_CATCH expression can fall through.
12092 This is a subroutine of block_may_fallthru. */
12093
12094 static bool
12095 try_catch_may_fallthru (const_tree stmt)
12096 {
12097 tree_stmt_iterator i;
12098
12099 /* If the TRY block can fall through, the whole TRY_CATCH can
12100 fall through. */
12101 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
12102 return true;
12103
12104 i = tsi_start (TREE_OPERAND (stmt, 1));
12105 switch (TREE_CODE (tsi_stmt (i)))
12106 {
12107 case CATCH_EXPR:
12108 /* We expect to see a sequence of CATCH_EXPR trees, each with a
12109 catch expression and a body. The whole TRY_CATCH may fall
12110 through iff any of the catch bodies falls through. */
12111 for (; !tsi_end_p (i); tsi_next (&i))
12112 {
12113 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
12114 return true;
12115 }
12116 return false;
12117
12118 case EH_FILTER_EXPR:
12119 /* The exception filter expression only matters if there is an
12120 exception. If the exception does not match EH_FILTER_TYPES,
12121 we will execute EH_FILTER_FAILURE, and we will fall through
12122 if that falls through. If the exception does match
12123 EH_FILTER_TYPES, the stack unwinder will continue up the
12124 stack, so we will not fall through. We don't know whether we
12125 will throw an exception which matches EH_FILTER_TYPES or not,
12126 so we just ignore EH_FILTER_TYPES and assume that we might
12127 throw an exception which doesn't match. */
12128 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
12129
12130 default:
12131 /* This case represents statements to be executed when an
12132 exception occurs. Those statements are implicitly followed
12133 by a RESX statement to resume execution after the exception.
12134 So in this case the TRY_CATCH never falls through. */
12135 return false;
12136 }
12137 }
12138
12139 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
12140 need not be 100% accurate; simply be conservative and return true if we
12141 don't know. This is used only to avoid stupidly generating extra code.
12142 If we're wrong, we'll just delete the extra code later. */
12143
12144 bool
12145 block_may_fallthru (const_tree block)
12146 {
12147 /* This CONST_CAST is okay because expr_last returns its argument
12148 unmodified and we assign it to a const_tree. */
12149 const_tree stmt = expr_last (CONST_CAST_TREE (block));
12150
12151 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
12152 {
12153 case GOTO_EXPR:
12154 case RETURN_EXPR:
12155 /* Easy cases. If the last statement of the block implies
12156 control transfer, then we can't fall through. */
12157 return false;
12158
12159 case SWITCH_EXPR:
12160 /* If SWITCH_LABELS is set, this is lowered, and represents a
12161 branch to a selected label and hence can not fall through.
12162 Otherwise SWITCH_BODY is set, and the switch can fall
12163 through. */
12164 return SWITCH_LABELS (stmt) == NULL_TREE;
12165
12166 case COND_EXPR:
12167 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
12168 return true;
12169 return block_may_fallthru (COND_EXPR_ELSE (stmt));
12170
12171 case BIND_EXPR:
12172 return block_may_fallthru (BIND_EXPR_BODY (stmt));
12173
12174 case TRY_CATCH_EXPR:
12175 return try_catch_may_fallthru (stmt);
12176
12177 case TRY_FINALLY_EXPR:
12178 /* The finally clause is always executed after the try clause,
12179 so if it does not fall through, then the try-finally will not
12180 fall through. Otherwise, if the try clause does not fall
12181 through, then when the finally clause falls through it will
12182 resume execution wherever the try clause was going. So the
12183 whole try-finally will only fall through if both the try
12184 clause and the finally clause fall through. */
12185 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
12186 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
12187
12188 case MODIFY_EXPR:
12189 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
12190 stmt = TREE_OPERAND (stmt, 1);
12191 else
12192 return true;
12193 /* FALLTHRU */
12194
12195 case CALL_EXPR:
12196 /* Functions that do not return do not fall through. */
12197 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
12198
12199 case CLEANUP_POINT_EXPR:
12200 return block_may_fallthru (TREE_OPERAND (stmt, 0));
12201
12202 case TARGET_EXPR:
12203 return block_may_fallthru (TREE_OPERAND (stmt, 1));
12204
12205 case ERROR_MARK:
12206 return true;
12207
12208 default:
12209 return lang_hooks.block_may_fallthru (stmt);
12210 }
12211 }
12212
12213 /* True if we are using EH to handle cleanups. */
12214 static bool using_eh_for_cleanups_flag = false;
12215
12216 /* This routine is called from front ends to indicate eh should be used for
12217 cleanups. */
12218 void
12219 using_eh_for_cleanups (void)
12220 {
12221 using_eh_for_cleanups_flag = true;
12222 }
12223
12224 /* Query whether EH is used for cleanups. */
12225 bool
12226 using_eh_for_cleanups_p (void)
12227 {
12228 return using_eh_for_cleanups_flag;
12229 }
12230
12231 /* Wrapper for tree_code_name to ensure that tree code is valid */
12232 const char *
12233 get_tree_code_name (enum tree_code code)
12234 {
12235 const char *invalid = "<invalid tree code>";
12236
12237 if (code >= MAX_TREE_CODES)
12238 return invalid;
12239
12240 return tree_code_name[code];
12241 }
12242
12243 /* Drops the TREE_OVERFLOW flag from T. */
12244
12245 tree
12246 drop_tree_overflow (tree t)
12247 {
12248 gcc_checking_assert (TREE_OVERFLOW (t));
12249
12250 /* For tree codes with a sharing machinery re-build the result. */
12251 if (TREE_CODE (t) == INTEGER_CST)
12252 return wide_int_to_tree (TREE_TYPE (t), t);
12253
12254 /* Otherwise, as all tcc_constants are possibly shared, copy the node
12255 and drop the flag. */
12256 t = copy_node (t);
12257 TREE_OVERFLOW (t) = 0;
12258 return t;
12259 }
12260
12261 /* Given a memory reference expression T, return its base address.
12262 The base address of a memory reference expression is the main
12263 object being referenced. For instance, the base address for
12264 'array[i].fld[j]' is 'array'. You can think of this as stripping
12265 away the offset part from a memory address.
12266
12267 This function calls handled_component_p to strip away all the inner
12268 parts of the memory reference until it reaches the base object. */
12269
12270 tree
12271 get_base_address (tree t)
12272 {
12273 while (handled_component_p (t))
12274 t = TREE_OPERAND (t, 0);
12275
12276 if ((TREE_CODE (t) == MEM_REF
12277 || TREE_CODE (t) == TARGET_MEM_REF)
12278 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
12279 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
12280
12281 /* ??? Either the alias oracle or all callers need to properly deal
12282 with WITH_SIZE_EXPRs before we can look through those. */
12283 if (TREE_CODE (t) == WITH_SIZE_EXPR)
12284 return NULL_TREE;
12285
12286 return t;
12287 }
12288
12289 #include "gt-tree.h"