* config/alpha/x-vms (version): Change "." to "_".
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
31
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "flags.h"
39 #include "tree.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
47 #include "target.h"
48 #include "langhooks.h"
49
50 #define obstack_chunk_alloc xmalloc
51 #define obstack_chunk_free free
52 /* obstack.[ch] explicitly declined to prototype this. */
53 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
54
55 static void unsave_expr_now_r PARAMS ((tree));
56
57 /* Objects allocated on this obstack last forever. */
58
59 struct obstack permanent_obstack;
60
61 /* Table indexed by tree code giving a string containing a character
62 classifying the tree code. Possibilities are
63 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
64
65 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
66
67 char tree_code_type[MAX_TREE_CODES] = {
68 #include "tree.def"
69 };
70 #undef DEFTREECODE
71
72 /* Table indexed by tree code giving number of expression
73 operands beyond the fixed part of the node structure.
74 Not used for types or decls. */
75
76 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
77
78 int tree_code_length[MAX_TREE_CODES] = {
79 #include "tree.def"
80 };
81 #undef DEFTREECODE
82
83 /* Names of tree components.
84 Used for printing out the tree and error messages. */
85 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
86
87 const char *tree_code_name[MAX_TREE_CODES] = {
88 #include "tree.def"
89 };
90 #undef DEFTREECODE
91
92 /* Statistics-gathering stuff. */
93 typedef enum
94 {
95 d_kind,
96 t_kind,
97 b_kind,
98 s_kind,
99 r_kind,
100 e_kind,
101 c_kind,
102 id_kind,
103 perm_list_kind,
104 temp_list_kind,
105 vec_kind,
106 x_kind,
107 lang_decl,
108 lang_type,
109 all_kinds
110 } tree_node_kind;
111
112 int tree_node_counts[(int) all_kinds];
113 int tree_node_sizes[(int) all_kinds];
114
115 static const char * const tree_node_kind_names[] = {
116 "decls",
117 "types",
118 "blocks",
119 "stmts",
120 "refs",
121 "exprs",
122 "constants",
123 "identifiers",
124 "perm_tree_lists",
125 "temp_tree_lists",
126 "vecs",
127 "random kinds",
128 "lang_decl kinds",
129 "lang_type kinds"
130 };
131
132 /* Unique id for next decl created. */
133 static int next_decl_uid;
134 /* Unique id for next type created. */
135 static int next_type_uid = 1;
136
137 /* Since we cannot rehash a type after it is in the table, we have to
138 keep the hash code. */
139
140 struct type_hash
141 {
142 unsigned long hash;
143 tree type;
144 };
145
146 /* Initial size of the hash table (rounded to next prime). */
147 #define TYPE_HASH_INITIAL_SIZE 1000
148
149 /* Now here is the hash table. When recording a type, it is added to
150 the slot whose index is the hash code. Note that the hash table is
151 used for several kinds of types (function types, array types and
152 array index range types, for now). While all these live in the
153 same table, they are completely independent, and the hash code is
154 computed differently for each of these. */
155
156 htab_t type_hash_table;
157
158 static void build_real_from_int_cst_1 PARAMS ((PTR));
159 static void set_type_quals PARAMS ((tree, int));
160 static void append_random_chars PARAMS ((char *));
161 static int type_hash_eq PARAMS ((const void*, const void*));
162 static unsigned int type_hash_hash PARAMS ((const void*));
163 static void print_type_hash_statistics PARAMS((void));
164 static void finish_vector_type PARAMS((tree));
165 static int type_hash_marked_p PARAMS ((const void *));
166 static void type_hash_mark PARAMS ((const void *));
167 static int mark_tree_hashtable_entry PARAMS((void **, void *));
168
169 /* If non-null, these are language-specific helper functions for
170 unsave_expr_now. If present, LANG_UNSAVE is called before its
171 argument (an UNSAVE_EXPR) is to be unsaved, and all other
172 processing in unsave_expr_now is aborted. LANG_UNSAVE_EXPR_NOW is
173 called from unsave_expr_1 for language-specific tree codes. */
174 void (*lang_unsave) PARAMS ((tree *));
175 void (*lang_unsave_expr_now) PARAMS ((tree));
176
177 /* If non-null, these are language-specific helper functions for
178 unsafe_for_reeval. Return negative to not handle some tree. */
179 int (*lang_unsafe_for_reeval) PARAMS ((tree));
180
181 /* Set the DECL_ASSEMBLER_NAME for a node. If it is the sort of thing
182 that the assembler should talk about, set DECL_ASSEMBLER_NAME to an
183 appropriate IDENTIFIER_NODE. Otherwise, set it to the
184 ERROR_MARK_NODE to ensure that the assembler does not talk about
185 it. */
186 void (*lang_set_decl_assembler_name) PARAMS ((tree));
187 \f
188 tree global_trees[TI_MAX];
189 tree integer_types[itk_none];
190 \f
191 /* Set the DECL_ASSEMBLER_NAME for DECL. */
192 void
193 set_decl_assembler_name (decl)
194 tree decl;
195 {
196 /* The language-independent code should never use the
197 DECL_ASSEMBLER_NAME for lots of DECLs. Only FUNCTION_DECLs and
198 VAR_DECLs for variables with static storage duration need a real
199 DECL_ASSEMBLER_NAME. */
200 if (TREE_CODE (decl) == FUNCTION_DECL
201 || (TREE_CODE (decl) == VAR_DECL
202 && (TREE_STATIC (decl)
203 || DECL_EXTERNAL (decl)
204 || TREE_PUBLIC (decl))))
205 /* By default, assume the name to use in assembly code is the
206 same as that used in the source language. (That's correct
207 for C, and GCC used to set DECL_ASSEMBLER_NAME to the same
208 value as DECL_NAME in build_decl, so this choice provides
209 backwards compatibility with existing front-ends. */
210 SET_DECL_ASSEMBLER_NAME (decl, DECL_NAME (decl));
211 else
212 /* Nobody should ever be asking for the DECL_ASSEMBLER_NAME of
213 these DECLs -- unless they're in language-dependent code, in
214 which case lang_set_decl_assembler_name should handle things. */
215 abort ();
216 }
217 \f
218 /* Init the principal obstacks. */
219
220 void
221 init_obstacks ()
222 {
223 gcc_obstack_init (&permanent_obstack);
224
225 /* Initialize the hash table of types. */
226 type_hash_table = htab_create (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
227 type_hash_eq, 0);
228 ggc_add_deletable_htab (type_hash_table, type_hash_marked_p,
229 type_hash_mark);
230 ggc_add_tree_root (global_trees, TI_MAX);
231 ggc_add_tree_root (integer_types, itk_none);
232
233 /* Set lang_set_decl_set_assembler_name to a default value. */
234 lang_set_decl_assembler_name = set_decl_assembler_name;
235 }
236
237 \f
238 /* Allocate SIZE bytes in the permanent obstack
239 and return a pointer to them. */
240
241 char *
242 permalloc (size)
243 int size;
244 {
245 return (char *) obstack_alloc (&permanent_obstack, size);
246 }
247
248 /* Allocate NELEM items of SIZE bytes in the permanent obstack
249 and return a pointer to them. The storage is cleared before
250 returning the value. */
251
252 char *
253 perm_calloc (nelem, size)
254 int nelem;
255 long size;
256 {
257 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
258 memset (rval, 0, nelem * size);
259 return rval;
260 }
261
262 /* Compute the number of bytes occupied by 'node'. This routine only
263 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
264 size_t
265 tree_size (node)
266 tree node;
267 {
268 enum tree_code code = TREE_CODE (node);
269
270 switch (TREE_CODE_CLASS (code))
271 {
272 case 'd': /* A decl node */
273 return sizeof (struct tree_decl);
274
275 case 't': /* a type node */
276 return sizeof (struct tree_type);
277
278 case 'b': /* a lexical block node */
279 return sizeof (struct tree_block);
280
281 case 'r': /* a reference */
282 case 'e': /* an expression */
283 case 's': /* an expression with side effects */
284 case '<': /* a comparison expression */
285 case '1': /* a unary arithmetic expression */
286 case '2': /* a binary arithmetic expression */
287 return (sizeof (struct tree_exp)
288 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
289
290 case 'c': /* a constant */
291 /* We can't use TREE_CODE_LENGTH for INTEGER_CST, since the number of
292 words is machine-dependent due to varying length of HOST_WIDE_INT,
293 which might be wider than a pointer (e.g., long long). Similarly
294 for REAL_CST, since the number of words is machine-dependent due
295 to varying size and alignment of `double'. */
296 if (code == INTEGER_CST)
297 return sizeof (struct tree_int_cst);
298 else if (code == REAL_CST)
299 return sizeof (struct tree_real_cst);
300 else
301 return (sizeof (struct tree_common)
302 + TREE_CODE_LENGTH (code) * sizeof (char *));
303
304 case 'x': /* something random, like an identifier. */
305 {
306 size_t length;
307 length = (sizeof (struct tree_common)
308 + TREE_CODE_LENGTH (code) * sizeof (char *));
309 if (code == TREE_VEC)
310 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
311 return length;
312 }
313
314 default:
315 abort ();
316 }
317 }
318
319 /* Return a newly allocated node of code CODE.
320 For decl and type nodes, some other fields are initialized.
321 The rest of the node is initialized to zero.
322
323 Achoo! I got a code in the node. */
324
325 tree
326 make_node (code)
327 enum tree_code code;
328 {
329 tree t;
330 int type = TREE_CODE_CLASS (code);
331 size_t length;
332 #ifdef GATHER_STATISTICS
333 tree_node_kind kind;
334 #endif
335 struct tree_common ttmp;
336
337 /* We can't allocate a TREE_VEC without knowing how many elements
338 it will have. */
339 if (code == TREE_VEC)
340 abort ();
341
342 TREE_SET_CODE ((tree)&ttmp, code);
343 length = tree_size ((tree)&ttmp);
344
345 #ifdef GATHER_STATISTICS
346 switch (type)
347 {
348 case 'd': /* A decl node */
349 kind = d_kind;
350 break;
351
352 case 't': /* a type node */
353 kind = t_kind;
354 break;
355
356 case 'b': /* a lexical block */
357 kind = b_kind;
358 break;
359
360 case 's': /* an expression with side effects */
361 kind = s_kind;
362 break;
363
364 case 'r': /* a reference */
365 kind = r_kind;
366 break;
367
368 case 'e': /* an expression */
369 case '<': /* a comparison expression */
370 case '1': /* a unary arithmetic expression */
371 case '2': /* a binary arithmetic expression */
372 kind = e_kind;
373 break;
374
375 case 'c': /* a constant */
376 kind = c_kind;
377 break;
378
379 case 'x': /* something random, like an identifier. */
380 if (code == IDENTIFIER_NODE)
381 kind = id_kind;
382 else if (code == TREE_VEC)
383 kind = vec_kind;
384 else
385 kind = x_kind;
386 break;
387
388 default:
389 abort ();
390 }
391
392 tree_node_counts[(int) kind]++;
393 tree_node_sizes[(int) kind] += length;
394 #endif
395
396 t = ggc_alloc_tree (length);
397
398 memset ((PTR) t, 0, length);
399
400 TREE_SET_CODE (t, code);
401
402 switch (type)
403 {
404 case 's':
405 TREE_SIDE_EFFECTS (t) = 1;
406 TREE_TYPE (t) = void_type_node;
407 break;
408
409 case 'd':
410 if (code != FUNCTION_DECL)
411 DECL_ALIGN (t) = 1;
412 DECL_USER_ALIGN (t) = 0;
413 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
414 DECL_SOURCE_LINE (t) = lineno;
415 DECL_SOURCE_FILE (t) =
416 (input_filename) ? input_filename : "<built-in>";
417 DECL_UID (t) = next_decl_uid++;
418
419 /* We have not yet computed the alias set for this declaration. */
420 DECL_POINTER_ALIAS_SET (t) = -1;
421 break;
422
423 case 't':
424 TYPE_UID (t) = next_type_uid++;
425 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
426 TYPE_USER_ALIGN (t) = 0;
427 TYPE_MAIN_VARIANT (t) = t;
428
429 /* Default to no attributes for type, but let target change that. */
430 TYPE_ATTRIBUTES (t) = NULL_TREE;
431 (*targetm.set_default_type_attributes) (t);
432
433 /* We have not yet computed the alias set for this type. */
434 TYPE_ALIAS_SET (t) = -1;
435 break;
436
437 case 'c':
438 TREE_CONSTANT (t) = 1;
439 break;
440
441 case 'e':
442 switch (code)
443 {
444 case INIT_EXPR:
445 case MODIFY_EXPR:
446 case VA_ARG_EXPR:
447 case RTL_EXPR:
448 case PREDECREMENT_EXPR:
449 case PREINCREMENT_EXPR:
450 case POSTDECREMENT_EXPR:
451 case POSTINCREMENT_EXPR:
452 /* All of these have side-effects, no matter what their
453 operands are. */
454 TREE_SIDE_EFFECTS (t) = 1;
455 break;
456
457 default:
458 break;
459 }
460 break;
461 }
462
463 return t;
464 }
465
466 /* A front-end can reset this to an appropriate function if types need
467 special handling. */
468
469 tree (*make_lang_type_fn) PARAMS ((enum tree_code)) = make_node;
470
471 /* Return a new type (with the indicated CODE), doing whatever
472 language-specific processing is required. */
473
474 tree
475 make_lang_type (code)
476 enum tree_code code;
477 {
478 return (*make_lang_type_fn) (code);
479 }
480 \f
481 /* Return a new node with the same contents as NODE except that its
482 TREE_CHAIN is zero and it has a fresh uid. */
483
484 tree
485 copy_node (node)
486 tree node;
487 {
488 tree t;
489 enum tree_code code = TREE_CODE (node);
490 size_t length;
491
492 length = tree_size (node);
493 t = ggc_alloc_tree (length);
494 memcpy (t, node, length);
495
496 TREE_CHAIN (t) = 0;
497 TREE_ASM_WRITTEN (t) = 0;
498
499 if (TREE_CODE_CLASS (code) == 'd')
500 DECL_UID (t) = next_decl_uid++;
501 else if (TREE_CODE_CLASS (code) == 't')
502 {
503 TYPE_UID (t) = next_type_uid++;
504 /* The following is so that the debug code for
505 the copy is different from the original type.
506 The two statements usually duplicate each other
507 (because they clear fields of the same union),
508 but the optimizer should catch that. */
509 TYPE_SYMTAB_POINTER (t) = 0;
510 TYPE_SYMTAB_ADDRESS (t) = 0;
511 }
512
513 return t;
514 }
515
516 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
517 For example, this can copy a list made of TREE_LIST nodes. */
518
519 tree
520 copy_list (list)
521 tree list;
522 {
523 tree head;
524 tree prev, next;
525
526 if (list == 0)
527 return 0;
528
529 head = prev = copy_node (list);
530 next = TREE_CHAIN (list);
531 while (next)
532 {
533 TREE_CHAIN (prev) = copy_node (next);
534 prev = TREE_CHAIN (prev);
535 next = TREE_CHAIN (next);
536 }
537 return head;
538 }
539
540 \f
541 /* Return a newly constructed INTEGER_CST node whose constant value
542 is specified by the two ints LOW and HI.
543 The TREE_TYPE is set to `int'.
544
545 This function should be used via the `build_int_2' macro. */
546
547 tree
548 build_int_2_wide (low, hi)
549 unsigned HOST_WIDE_INT low;
550 HOST_WIDE_INT hi;
551 {
552 tree t = make_node (INTEGER_CST);
553
554 TREE_INT_CST_LOW (t) = low;
555 TREE_INT_CST_HIGH (t) = hi;
556 TREE_TYPE (t) = integer_type_node;
557 return t;
558 }
559
560 /* Return a new REAL_CST node whose type is TYPE and value is D. */
561
562 tree
563 build_real (type, d)
564 tree type;
565 REAL_VALUE_TYPE d;
566 {
567 tree v;
568 int overflow = 0;
569
570 /* Check for valid float value for this type on this target machine;
571 if not, can print error message and store a valid value in D. */
572 #ifdef CHECK_FLOAT_VALUE
573 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
574 #endif
575
576 v = make_node (REAL_CST);
577 TREE_TYPE (v) = type;
578 TREE_REAL_CST (v) = d;
579 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
580 return v;
581 }
582
583 /* Return a new REAL_CST node whose type is TYPE
584 and whose value is the integer value of the INTEGER_CST node I. */
585
586 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
587
588 REAL_VALUE_TYPE
589 real_value_from_int_cst (type, i)
590 tree type ATTRIBUTE_UNUSED, i;
591 {
592 REAL_VALUE_TYPE d;
593
594 #ifdef REAL_ARITHMETIC
595 /* Clear all bits of the real value type so that we can later do
596 bitwise comparisons to see if two values are the same. */
597 memset ((char *) &d, 0, sizeof d);
598
599 if (! TREE_UNSIGNED (TREE_TYPE (i)))
600 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
601 TYPE_MODE (type));
602 else
603 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
604 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
605 #else /* not REAL_ARITHMETIC */
606 /* Some 386 compilers mishandle unsigned int to float conversions,
607 so introduce a temporary variable E to avoid those bugs. */
608 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
609 {
610 REAL_VALUE_TYPE e;
611
612 d = (double) (~TREE_INT_CST_HIGH (i));
613 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
614 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
615 d *= e;
616 e = (double) (~TREE_INT_CST_LOW (i));
617 d += e;
618 d = (- d - 1.0);
619 }
620 else
621 {
622 REAL_VALUE_TYPE e;
623
624 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
625 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
626 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
627 d *= e;
628 e = (double) TREE_INT_CST_LOW (i);
629 d += e;
630 }
631 #endif /* not REAL_ARITHMETIC */
632 return d;
633 }
634
635 /* Args to pass to and from build_real_from_int_cst_1. */
636
637 struct brfic_args
638 {
639 tree type; /* Input: type to conver to. */
640 tree i; /* Input: operand to convert. */
641 REAL_VALUE_TYPE d; /* Output: floating point value. */
642 };
643
644 /* Convert an integer to a floating point value while protected by a floating
645 point exception handler. */
646
647 static void
648 build_real_from_int_cst_1 (data)
649 PTR data;
650 {
651 struct brfic_args *args = (struct brfic_args *) data;
652
653 #ifdef REAL_ARITHMETIC
654 args->d = real_value_from_int_cst (args->type, args->i);
655 #else
656 args->d
657 = REAL_VALUE_TRUNCATE (TYPE_MODE (args->type),
658 real_value_from_int_cst (args->type, args->i));
659 #endif
660 }
661
662 /* Given a tree representing an integer constant I, return a tree
663 representing the same value as a floating-point constant of type TYPE.
664 We cannot perform this operation if there is no way of doing arithmetic
665 on floating-point values. */
666
667 tree
668 build_real_from_int_cst (type, i)
669 tree type;
670 tree i;
671 {
672 tree v;
673 int overflow = TREE_OVERFLOW (i);
674 REAL_VALUE_TYPE d;
675 struct brfic_args args;
676
677 v = make_node (REAL_CST);
678 TREE_TYPE (v) = type;
679
680 /* Setup input for build_real_from_int_cst_1() */
681 args.type = type;
682 args.i = i;
683
684 if (do_float_handler (build_real_from_int_cst_1, (PTR) &args))
685 /* Receive output from build_real_from_int_cst_1() */
686 d = args.d;
687 else
688 {
689 /* We got an exception from build_real_from_int_cst_1() */
690 d = dconst0;
691 overflow = 1;
692 }
693
694 /* Check for valid float value for this type on this target machine. */
695
696 #ifdef CHECK_FLOAT_VALUE
697 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
698 #endif
699
700 TREE_REAL_CST (v) = d;
701 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
702 return v;
703 }
704
705 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
706
707 /* Return a newly constructed STRING_CST node whose value is
708 the LEN characters at STR.
709 The TREE_TYPE is not initialized. */
710
711 tree
712 build_string (len, str)
713 int len;
714 const char *str;
715 {
716 tree s = make_node (STRING_CST);
717
718 TREE_STRING_LENGTH (s) = len;
719 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
720
721 return s;
722 }
723
724 /* Return a newly constructed COMPLEX_CST node whose value is
725 specified by the real and imaginary parts REAL and IMAG.
726 Both REAL and IMAG should be constant nodes. TYPE, if specified,
727 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
728
729 tree
730 build_complex (type, real, imag)
731 tree type;
732 tree real, imag;
733 {
734 tree t = make_node (COMPLEX_CST);
735
736 TREE_REALPART (t) = real;
737 TREE_IMAGPART (t) = imag;
738 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
739 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
740 TREE_CONSTANT_OVERFLOW (t)
741 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
742 return t;
743 }
744
745 /* Build a newly constructed TREE_VEC node of length LEN. */
746
747 tree
748 make_tree_vec (len)
749 int len;
750 {
751 tree t;
752 int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
753
754 #ifdef GATHER_STATISTICS
755 tree_node_counts[(int)vec_kind]++;
756 tree_node_sizes[(int)vec_kind] += length;
757 #endif
758
759 t = ggc_alloc_tree (length);
760
761 memset ((PTR) t, 0, length);
762 TREE_SET_CODE (t, TREE_VEC);
763 TREE_VEC_LENGTH (t) = len;
764
765 return t;
766 }
767 \f
768 /* Return 1 if EXPR is the integer constant zero or a complex constant
769 of zero. */
770
771 int
772 integer_zerop (expr)
773 tree expr;
774 {
775 STRIP_NOPS (expr);
776
777 return ((TREE_CODE (expr) == INTEGER_CST
778 && ! TREE_CONSTANT_OVERFLOW (expr)
779 && TREE_INT_CST_LOW (expr) == 0
780 && TREE_INT_CST_HIGH (expr) == 0)
781 || (TREE_CODE (expr) == COMPLEX_CST
782 && integer_zerop (TREE_REALPART (expr))
783 && integer_zerop (TREE_IMAGPART (expr))));
784 }
785
786 /* Return 1 if EXPR is the integer constant one or the corresponding
787 complex constant. */
788
789 int
790 integer_onep (expr)
791 tree expr;
792 {
793 STRIP_NOPS (expr);
794
795 return ((TREE_CODE (expr) == INTEGER_CST
796 && ! TREE_CONSTANT_OVERFLOW (expr)
797 && TREE_INT_CST_LOW (expr) == 1
798 && TREE_INT_CST_HIGH (expr) == 0)
799 || (TREE_CODE (expr) == COMPLEX_CST
800 && integer_onep (TREE_REALPART (expr))
801 && integer_zerop (TREE_IMAGPART (expr))));
802 }
803
804 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
805 it contains. Likewise for the corresponding complex constant. */
806
807 int
808 integer_all_onesp (expr)
809 tree expr;
810 {
811 int prec;
812 int uns;
813
814 STRIP_NOPS (expr);
815
816 if (TREE_CODE (expr) == COMPLEX_CST
817 && integer_all_onesp (TREE_REALPART (expr))
818 && integer_zerop (TREE_IMAGPART (expr)))
819 return 1;
820
821 else if (TREE_CODE (expr) != INTEGER_CST
822 || TREE_CONSTANT_OVERFLOW (expr))
823 return 0;
824
825 uns = TREE_UNSIGNED (TREE_TYPE (expr));
826 if (!uns)
827 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
828 && TREE_INT_CST_HIGH (expr) == -1);
829
830 /* Note that using TYPE_PRECISION here is wrong. We care about the
831 actual bits, not the (arbitrary) range of the type. */
832 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
833 if (prec >= HOST_BITS_PER_WIDE_INT)
834 {
835 HOST_WIDE_INT high_value;
836 int shift_amount;
837
838 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
839
840 if (shift_amount > HOST_BITS_PER_WIDE_INT)
841 /* Can not handle precisions greater than twice the host int size. */
842 abort ();
843 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
844 /* Shifting by the host word size is undefined according to the ANSI
845 standard, so we must handle this as a special case. */
846 high_value = -1;
847 else
848 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
849
850 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
851 && TREE_INT_CST_HIGH (expr) == high_value);
852 }
853 else
854 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
855 }
856
857 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
858 one bit on). */
859
860 int
861 integer_pow2p (expr)
862 tree expr;
863 {
864 int prec;
865 HOST_WIDE_INT high, low;
866
867 STRIP_NOPS (expr);
868
869 if (TREE_CODE (expr) == COMPLEX_CST
870 && integer_pow2p (TREE_REALPART (expr))
871 && integer_zerop (TREE_IMAGPART (expr)))
872 return 1;
873
874 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
875 return 0;
876
877 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
878 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
879 high = TREE_INT_CST_HIGH (expr);
880 low = TREE_INT_CST_LOW (expr);
881
882 /* First clear all bits that are beyond the type's precision in case
883 we've been sign extended. */
884
885 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
886 ;
887 else if (prec > HOST_BITS_PER_WIDE_INT)
888 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
889 else
890 {
891 high = 0;
892 if (prec < HOST_BITS_PER_WIDE_INT)
893 low &= ~((HOST_WIDE_INT) (-1) << prec);
894 }
895
896 if (high == 0 && low == 0)
897 return 0;
898
899 return ((high == 0 && (low & (low - 1)) == 0)
900 || (low == 0 && (high & (high - 1)) == 0));
901 }
902
903 /* Return the power of two represented by a tree node known to be a
904 power of two. */
905
906 int
907 tree_log2 (expr)
908 tree expr;
909 {
910 int prec;
911 HOST_WIDE_INT high, low;
912
913 STRIP_NOPS (expr);
914
915 if (TREE_CODE (expr) == COMPLEX_CST)
916 return tree_log2 (TREE_REALPART (expr));
917
918 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
919 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
920
921 high = TREE_INT_CST_HIGH (expr);
922 low = TREE_INT_CST_LOW (expr);
923
924 /* First clear all bits that are beyond the type's precision in case
925 we've been sign extended. */
926
927 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
928 ;
929 else if (prec > HOST_BITS_PER_WIDE_INT)
930 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
931 else
932 {
933 high = 0;
934 if (prec < HOST_BITS_PER_WIDE_INT)
935 low &= ~((HOST_WIDE_INT) (-1) << prec);
936 }
937
938 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
939 : exact_log2 (low));
940 }
941
942 /* Similar, but return the largest integer Y such that 2 ** Y is less
943 than or equal to EXPR. */
944
945 int
946 tree_floor_log2 (expr)
947 tree expr;
948 {
949 int prec;
950 HOST_WIDE_INT high, low;
951
952 STRIP_NOPS (expr);
953
954 if (TREE_CODE (expr) == COMPLEX_CST)
955 return tree_log2 (TREE_REALPART (expr));
956
957 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
958 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
959
960 high = TREE_INT_CST_HIGH (expr);
961 low = TREE_INT_CST_LOW (expr);
962
963 /* First clear all bits that are beyond the type's precision in case
964 we've been sign extended. Ignore if type's precision hasn't been set
965 since what we are doing is setting it. */
966
967 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
968 ;
969 else if (prec > HOST_BITS_PER_WIDE_INT)
970 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
971 else
972 {
973 high = 0;
974 if (prec < HOST_BITS_PER_WIDE_INT)
975 low &= ~((HOST_WIDE_INT) (-1) << prec);
976 }
977
978 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
979 : floor_log2 (low));
980 }
981
982 /* Return 1 if EXPR is the real constant zero. */
983
984 int
985 real_zerop (expr)
986 tree expr;
987 {
988 STRIP_NOPS (expr);
989
990 return ((TREE_CODE (expr) == REAL_CST
991 && ! TREE_CONSTANT_OVERFLOW (expr)
992 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
993 || (TREE_CODE (expr) == COMPLEX_CST
994 && real_zerop (TREE_REALPART (expr))
995 && real_zerop (TREE_IMAGPART (expr))));
996 }
997
998 /* Return 1 if EXPR is the real constant one in real or complex form. */
999
1000 int
1001 real_onep (expr)
1002 tree expr;
1003 {
1004 STRIP_NOPS (expr);
1005
1006 return ((TREE_CODE (expr) == REAL_CST
1007 && ! TREE_CONSTANT_OVERFLOW (expr)
1008 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1009 || (TREE_CODE (expr) == COMPLEX_CST
1010 && real_onep (TREE_REALPART (expr))
1011 && real_zerop (TREE_IMAGPART (expr))));
1012 }
1013
1014 /* Return 1 if EXPR is the real constant two. */
1015
1016 int
1017 real_twop (expr)
1018 tree expr;
1019 {
1020 STRIP_NOPS (expr);
1021
1022 return ((TREE_CODE (expr) == REAL_CST
1023 && ! TREE_CONSTANT_OVERFLOW (expr)
1024 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1025 || (TREE_CODE (expr) == COMPLEX_CST
1026 && real_twop (TREE_REALPART (expr))
1027 && real_zerop (TREE_IMAGPART (expr))));
1028 }
1029
1030 /* Nonzero if EXP is a constant or a cast of a constant. */
1031
1032 int
1033 really_constant_p (exp)
1034 tree exp;
1035 {
1036 /* This is not quite the same as STRIP_NOPS. It does more. */
1037 while (TREE_CODE (exp) == NOP_EXPR
1038 || TREE_CODE (exp) == CONVERT_EXPR
1039 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1040 exp = TREE_OPERAND (exp, 0);
1041 return TREE_CONSTANT (exp);
1042 }
1043 \f
1044 /* Return first list element whose TREE_VALUE is ELEM.
1045 Return 0 if ELEM is not in LIST. */
1046
1047 tree
1048 value_member (elem, list)
1049 tree elem, list;
1050 {
1051 while (list)
1052 {
1053 if (elem == TREE_VALUE (list))
1054 return list;
1055 list = TREE_CHAIN (list);
1056 }
1057 return NULL_TREE;
1058 }
1059
1060 /* Return first list element whose TREE_PURPOSE is ELEM.
1061 Return 0 if ELEM is not in LIST. */
1062
1063 tree
1064 purpose_member (elem, list)
1065 tree elem, list;
1066 {
1067 while (list)
1068 {
1069 if (elem == TREE_PURPOSE (list))
1070 return list;
1071 list = TREE_CHAIN (list);
1072 }
1073 return NULL_TREE;
1074 }
1075
1076 /* Return first list element whose BINFO_TYPE is ELEM.
1077 Return 0 if ELEM is not in LIST. */
1078
1079 tree
1080 binfo_member (elem, list)
1081 tree elem, list;
1082 {
1083 while (list)
1084 {
1085 if (elem == BINFO_TYPE (list))
1086 return list;
1087 list = TREE_CHAIN (list);
1088 }
1089 return NULL_TREE;
1090 }
1091
1092 /* Return nonzero if ELEM is part of the chain CHAIN. */
1093
1094 int
1095 chain_member (elem, chain)
1096 tree elem, chain;
1097 {
1098 while (chain)
1099 {
1100 if (elem == chain)
1101 return 1;
1102 chain = TREE_CHAIN (chain);
1103 }
1104
1105 return 0;
1106 }
1107
1108 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1109 chain CHAIN. This and the next function are currently unused, but
1110 are retained for completeness. */
1111
1112 int
1113 chain_member_value (elem, chain)
1114 tree elem, chain;
1115 {
1116 while (chain)
1117 {
1118 if (elem == TREE_VALUE (chain))
1119 return 1;
1120 chain = TREE_CHAIN (chain);
1121 }
1122
1123 return 0;
1124 }
1125
1126 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1127 for any piece of chain CHAIN. */
1128
1129 int
1130 chain_member_purpose (elem, chain)
1131 tree elem, chain;
1132 {
1133 while (chain)
1134 {
1135 if (elem == TREE_PURPOSE (chain))
1136 return 1;
1137 chain = TREE_CHAIN (chain);
1138 }
1139
1140 return 0;
1141 }
1142
1143 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1144 We expect a null pointer to mark the end of the chain.
1145 This is the Lisp primitive `length'. */
1146
1147 int
1148 list_length (t)
1149 tree t;
1150 {
1151 tree tail;
1152 int len = 0;
1153
1154 for (tail = t; tail; tail = TREE_CHAIN (tail))
1155 len++;
1156
1157 return len;
1158 }
1159
1160 /* Returns the number of FIELD_DECLs in TYPE. */
1161
1162 int
1163 fields_length (type)
1164 tree type;
1165 {
1166 tree t = TYPE_FIELDS (type);
1167 int count = 0;
1168
1169 for (; t; t = TREE_CHAIN (t))
1170 if (TREE_CODE (t) == FIELD_DECL)
1171 ++count;
1172
1173 return count;
1174 }
1175
1176 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1177 by modifying the last node in chain 1 to point to chain 2.
1178 This is the Lisp primitive `nconc'. */
1179
1180 tree
1181 chainon (op1, op2)
1182 tree op1, op2;
1183 {
1184
1185 if (op1)
1186 {
1187 tree t1;
1188 #ifdef ENABLE_TREE_CHECKING
1189 tree t2;
1190 #endif
1191
1192 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1193 ;
1194 TREE_CHAIN (t1) = op2;
1195 #ifdef ENABLE_TREE_CHECKING
1196 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1197 if (t2 == t1)
1198 abort (); /* Circularity created. */
1199 #endif
1200 return op1;
1201 }
1202 else
1203 return op2;
1204 }
1205
1206 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1207
1208 tree
1209 tree_last (chain)
1210 tree chain;
1211 {
1212 tree next;
1213 if (chain)
1214 while ((next = TREE_CHAIN (chain)))
1215 chain = next;
1216 return chain;
1217 }
1218
1219 /* Reverse the order of elements in the chain T,
1220 and return the new head of the chain (old last element). */
1221
1222 tree
1223 nreverse (t)
1224 tree t;
1225 {
1226 tree prev = 0, decl, next;
1227 for (decl = t; decl; decl = next)
1228 {
1229 next = TREE_CHAIN (decl);
1230 TREE_CHAIN (decl) = prev;
1231 prev = decl;
1232 }
1233 return prev;
1234 }
1235
1236 /* Given a chain CHAIN of tree nodes,
1237 construct and return a list of those nodes. */
1238
1239 tree
1240 listify (chain)
1241 tree chain;
1242 {
1243 tree result = NULL_TREE;
1244 tree in_tail = chain;
1245 tree out_tail = NULL_TREE;
1246
1247 while (in_tail)
1248 {
1249 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1250 if (out_tail)
1251 TREE_CHAIN (out_tail) = next;
1252 else
1253 result = next;
1254 out_tail = next;
1255 in_tail = TREE_CHAIN (in_tail);
1256 }
1257
1258 return result;
1259 }
1260 \f
1261 /* Return a newly created TREE_LIST node whose
1262 purpose and value fields are PARM and VALUE. */
1263
1264 tree
1265 build_tree_list (parm, value)
1266 tree parm, value;
1267 {
1268 tree t = make_node (TREE_LIST);
1269 TREE_PURPOSE (t) = parm;
1270 TREE_VALUE (t) = value;
1271 return t;
1272 }
1273
1274 /* Return a newly created TREE_LIST node whose
1275 purpose and value fields are PARM and VALUE
1276 and whose TREE_CHAIN is CHAIN. */
1277
1278 tree
1279 tree_cons (purpose, value, chain)
1280 tree purpose, value, chain;
1281 {
1282 tree node;
1283
1284 node = ggc_alloc_tree (sizeof (struct tree_list));
1285
1286 memset (node, 0, sizeof (struct tree_common));
1287
1288 #ifdef GATHER_STATISTICS
1289 tree_node_counts[(int) x_kind]++;
1290 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1291 #endif
1292
1293 TREE_SET_CODE (node, TREE_LIST);
1294 TREE_CHAIN (node) = chain;
1295 TREE_PURPOSE (node) = purpose;
1296 TREE_VALUE (node) = value;
1297 return node;
1298 }
1299
1300 \f
1301 /* Return the size nominally occupied by an object of type TYPE
1302 when it resides in memory. The value is measured in units of bytes,
1303 and its data type is that normally used for type sizes
1304 (which is the first type created by make_signed_type or
1305 make_unsigned_type). */
1306
1307 tree
1308 size_in_bytes (type)
1309 tree type;
1310 {
1311 tree t;
1312
1313 if (type == error_mark_node)
1314 return integer_zero_node;
1315
1316 type = TYPE_MAIN_VARIANT (type);
1317 t = TYPE_SIZE_UNIT (type);
1318
1319 if (t == 0)
1320 {
1321 incomplete_type_error (NULL_TREE, type);
1322 return size_zero_node;
1323 }
1324
1325 if (TREE_CODE (t) == INTEGER_CST)
1326 force_fit_type (t, 0);
1327
1328 return t;
1329 }
1330
1331 /* Return the size of TYPE (in bytes) as a wide integer
1332 or return -1 if the size can vary or is larger than an integer. */
1333
1334 HOST_WIDE_INT
1335 int_size_in_bytes (type)
1336 tree type;
1337 {
1338 tree t;
1339
1340 if (type == error_mark_node)
1341 return 0;
1342
1343 type = TYPE_MAIN_VARIANT (type);
1344 t = TYPE_SIZE_UNIT (type);
1345 if (t == 0
1346 || TREE_CODE (t) != INTEGER_CST
1347 || TREE_OVERFLOW (t)
1348 || TREE_INT_CST_HIGH (t) != 0
1349 /* If the result would appear negative, it's too big to represent. */
1350 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1351 return -1;
1352
1353 return TREE_INT_CST_LOW (t);
1354 }
1355 \f
1356 /* Return the bit position of FIELD, in bits from the start of the record.
1357 This is a tree of type bitsizetype. */
1358
1359 tree
1360 bit_position (field)
1361 tree field;
1362 {
1363
1364 return bit_from_pos (DECL_FIELD_OFFSET (field),
1365 DECL_FIELD_BIT_OFFSET (field));
1366 }
1367
1368 /* Likewise, but return as an integer. Abort if it cannot be represented
1369 in that way (since it could be a signed value, we don't have the option
1370 of returning -1 like int_size_in_byte can. */
1371
1372 HOST_WIDE_INT
1373 int_bit_position (field)
1374 tree field;
1375 {
1376 return tree_low_cst (bit_position (field), 0);
1377 }
1378 \f
1379 /* Return the byte position of FIELD, in bytes from the start of the record.
1380 This is a tree of type sizetype. */
1381
1382 tree
1383 byte_position (field)
1384 tree field;
1385 {
1386 return byte_from_pos (DECL_FIELD_OFFSET (field),
1387 DECL_FIELD_BIT_OFFSET (field));
1388 }
1389
1390 /* Likewise, but return as an integer. Abort if it cannot be represented
1391 in that way (since it could be a signed value, we don't have the option
1392 of returning -1 like int_size_in_byte can. */
1393
1394 HOST_WIDE_INT
1395 int_byte_position (field)
1396 tree field;
1397 {
1398 return tree_low_cst (byte_position (field), 0);
1399 }
1400 \f
1401 /* Return the strictest alignment, in bits, that T is known to have. */
1402
1403 unsigned int
1404 expr_align (t)
1405 tree t;
1406 {
1407 unsigned int align0, align1;
1408
1409 switch (TREE_CODE (t))
1410 {
1411 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1412 /* If we have conversions, we know that the alignment of the
1413 object must meet each of the alignments of the types. */
1414 align0 = expr_align (TREE_OPERAND (t, 0));
1415 align1 = TYPE_ALIGN (TREE_TYPE (t));
1416 return MAX (align0, align1);
1417
1418 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1419 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1420 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1421 /* These don't change the alignment of an object. */
1422 return expr_align (TREE_OPERAND (t, 0));
1423
1424 case COND_EXPR:
1425 /* The best we can do is say that the alignment is the least aligned
1426 of the two arms. */
1427 align0 = expr_align (TREE_OPERAND (t, 1));
1428 align1 = expr_align (TREE_OPERAND (t, 2));
1429 return MIN (align0, align1);
1430
1431 case LABEL_DECL: case CONST_DECL:
1432 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1433 if (DECL_ALIGN (t) != 0)
1434 return DECL_ALIGN (t);
1435 break;
1436
1437 case FUNCTION_DECL:
1438 return FUNCTION_BOUNDARY;
1439
1440 default:
1441 break;
1442 }
1443
1444 /* Otherwise take the alignment from that of the type. */
1445 return TYPE_ALIGN (TREE_TYPE (t));
1446 }
1447 \f
1448 /* Return, as a tree node, the number of elements for TYPE (which is an
1449 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1450
1451 tree
1452 array_type_nelts (type)
1453 tree type;
1454 {
1455 tree index_type, min, max;
1456
1457 /* If they did it with unspecified bounds, then we should have already
1458 given an error about it before we got here. */
1459 if (! TYPE_DOMAIN (type))
1460 return error_mark_node;
1461
1462 index_type = TYPE_DOMAIN (type);
1463 min = TYPE_MIN_VALUE (index_type);
1464 max = TYPE_MAX_VALUE (index_type);
1465
1466 return (integer_zerop (min)
1467 ? max
1468 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1469 }
1470 \f
1471 /* Return nonzero if arg is static -- a reference to an object in
1472 static storage. This is not the same as the C meaning of `static'. */
1473
1474 int
1475 staticp (arg)
1476 tree arg;
1477 {
1478 switch (TREE_CODE (arg))
1479 {
1480 case FUNCTION_DECL:
1481 /* Nested functions aren't static, since taking their address
1482 involves a trampoline. */
1483 return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1484 && ! DECL_NON_ADDR_CONST_P (arg);
1485
1486 case VAR_DECL:
1487 return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1488 && ! DECL_NON_ADDR_CONST_P (arg);
1489
1490 case CONSTRUCTOR:
1491 return TREE_STATIC (arg);
1492
1493 case LABEL_DECL:
1494 case STRING_CST:
1495 return 1;
1496
1497 /* If we are referencing a bitfield, we can't evaluate an
1498 ADDR_EXPR at compile time and so it isn't a constant. */
1499 case COMPONENT_REF:
1500 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1501 && staticp (TREE_OPERAND (arg, 0)));
1502
1503 case BIT_FIELD_REF:
1504 return 0;
1505
1506 #if 0
1507 /* This case is technically correct, but results in setting
1508 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1509 compile time. */
1510 case INDIRECT_REF:
1511 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1512 #endif
1513
1514 case ARRAY_REF:
1515 case ARRAY_RANGE_REF:
1516 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1517 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1518 return staticp (TREE_OPERAND (arg, 0));
1519
1520 default:
1521 if ((unsigned int) TREE_CODE (arg)
1522 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1523 return (*lang_hooks.staticp) (arg);
1524 else
1525 return 0;
1526 }
1527 }
1528 \f
1529 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1530 Do this to any expression which may be used in more than one place,
1531 but must be evaluated only once.
1532
1533 Normally, expand_expr would reevaluate the expression each time.
1534 Calling save_expr produces something that is evaluated and recorded
1535 the first time expand_expr is called on it. Subsequent calls to
1536 expand_expr just reuse the recorded value.
1537
1538 The call to expand_expr that generates code that actually computes
1539 the value is the first call *at compile time*. Subsequent calls
1540 *at compile time* generate code to use the saved value.
1541 This produces correct result provided that *at run time* control
1542 always flows through the insns made by the first expand_expr
1543 before reaching the other places where the save_expr was evaluated.
1544 You, the caller of save_expr, must make sure this is so.
1545
1546 Constants, and certain read-only nodes, are returned with no
1547 SAVE_EXPR because that is safe. Expressions containing placeholders
1548 are not touched; see tree.def for an explanation of what these
1549 are used for. */
1550
1551 tree
1552 save_expr (expr)
1553 tree expr;
1554 {
1555 tree t = fold (expr);
1556 tree inner;
1557
1558 /* We don't care about whether this can be used as an lvalue in this
1559 context. */
1560 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1561 t = TREE_OPERAND (t, 0);
1562
1563 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1564 a constant, it will be more efficient to not make another SAVE_EXPR since
1565 it will allow better simplification and GCSE will be able to merge the
1566 computations if they actualy occur. */
1567 for (inner = t;
1568 (TREE_CODE_CLASS (TREE_CODE (inner)) == '1'
1569 || (TREE_CODE_CLASS (TREE_CODE (inner)) == '2'
1570 && TREE_CONSTANT (TREE_OPERAND (inner, 1))));
1571 inner = TREE_OPERAND (inner, 0))
1572 ;
1573
1574 /* If the tree evaluates to a constant, then we don't want to hide that
1575 fact (i.e. this allows further folding, and direct checks for constants).
1576 However, a read-only object that has side effects cannot be bypassed.
1577 Since it is no problem to reevaluate literals, we just return the
1578 literal node. */
1579 if (TREE_CONSTANT (inner)
1580 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1581 || TREE_CODE (inner) == SAVE_EXPR || TREE_CODE (inner) == ERROR_MARK)
1582 return t;
1583
1584 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1585 it means that the size or offset of some field of an object depends on
1586 the value within another field.
1587
1588 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1589 and some variable since it would then need to be both evaluated once and
1590 evaluated more than once. Front-ends must assure this case cannot
1591 happen by surrounding any such subexpressions in their own SAVE_EXPR
1592 and forcing evaluation at the proper time. */
1593 if (contains_placeholder_p (t))
1594 return t;
1595
1596 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1597
1598 /* This expression might be placed ahead of a jump to ensure that the
1599 value was computed on both sides of the jump. So make sure it isn't
1600 eliminated as dead. */
1601 TREE_SIDE_EFFECTS (t) = 1;
1602 TREE_READONLY (t) = 1;
1603 return t;
1604 }
1605
1606 /* Arrange for an expression to be expanded multiple independent
1607 times. This is useful for cleanup actions, as the backend can
1608 expand them multiple times in different places. */
1609
1610 tree
1611 unsave_expr (expr)
1612 tree expr;
1613 {
1614 tree t;
1615
1616 /* If this is already protected, no sense in protecting it again. */
1617 if (TREE_CODE (expr) == UNSAVE_EXPR)
1618 return expr;
1619
1620 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1621 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1622 return t;
1623 }
1624
1625 /* Returns the index of the first non-tree operand for CODE, or the number
1626 of operands if all are trees. */
1627
1628 int
1629 first_rtl_op (code)
1630 enum tree_code code;
1631 {
1632 switch (code)
1633 {
1634 case SAVE_EXPR:
1635 return 2;
1636 case GOTO_SUBROUTINE_EXPR:
1637 case RTL_EXPR:
1638 return 0;
1639 case WITH_CLEANUP_EXPR:
1640 return 2;
1641 case METHOD_CALL_EXPR:
1642 return 3;
1643 default:
1644 return TREE_CODE_LENGTH (code);
1645 }
1646 }
1647
1648 /* Perform any modifications to EXPR required when it is unsaved. Does
1649 not recurse into EXPR's subtrees. */
1650
1651 void
1652 unsave_expr_1 (expr)
1653 tree expr;
1654 {
1655 switch (TREE_CODE (expr))
1656 {
1657 case SAVE_EXPR:
1658 if (! SAVE_EXPR_PERSISTENT_P (expr))
1659 SAVE_EXPR_RTL (expr) = 0;
1660 break;
1661
1662 case TARGET_EXPR:
1663 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1664 It's OK for this to happen if it was part of a subtree that
1665 isn't immediately expanded, such as operand 2 of another
1666 TARGET_EXPR. */
1667 if (TREE_OPERAND (expr, 1))
1668 break;
1669
1670 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1671 TREE_OPERAND (expr, 3) = NULL_TREE;
1672 break;
1673
1674 case RTL_EXPR:
1675 /* I don't yet know how to emit a sequence multiple times. */
1676 if (RTL_EXPR_SEQUENCE (expr) != 0)
1677 abort ();
1678 break;
1679
1680 default:
1681 if (lang_unsave_expr_now != 0)
1682 (*lang_unsave_expr_now) (expr);
1683 break;
1684 }
1685 }
1686
1687 /* Helper function for unsave_expr_now. */
1688
1689 static void
1690 unsave_expr_now_r (expr)
1691 tree expr;
1692 {
1693 enum tree_code code;
1694
1695 /* There's nothing to do for NULL_TREE. */
1696 if (expr == 0)
1697 return;
1698
1699 unsave_expr_1 (expr);
1700
1701 code = TREE_CODE (expr);
1702 switch (TREE_CODE_CLASS (code))
1703 {
1704 case 'c': /* a constant */
1705 case 't': /* a type node */
1706 case 'd': /* A decl node */
1707 case 'b': /* A block node */
1708 break;
1709
1710 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1711 if (code == TREE_LIST)
1712 {
1713 unsave_expr_now_r (TREE_VALUE (expr));
1714 unsave_expr_now_r (TREE_CHAIN (expr));
1715 }
1716 break;
1717
1718 case 'e': /* an expression */
1719 case 'r': /* a reference */
1720 case 's': /* an expression with side effects */
1721 case '<': /* a comparison expression */
1722 case '2': /* a binary arithmetic expression */
1723 case '1': /* a unary arithmetic expression */
1724 {
1725 int i;
1726
1727 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1728 unsave_expr_now_r (TREE_OPERAND (expr, i));
1729 }
1730 break;
1731
1732 default:
1733 abort ();
1734 }
1735 }
1736
1737 /* Modify a tree in place so that all the evaluate only once things
1738 are cleared out. Return the EXPR given. */
1739
1740 tree
1741 unsave_expr_now (expr)
1742 tree expr;
1743 {
1744 if (lang_unsave!= 0)
1745 (*lang_unsave) (&expr);
1746 else
1747 unsave_expr_now_r (expr);
1748
1749 return expr;
1750 }
1751
1752 /* Return 0 if it is safe to evaluate EXPR multiple times,
1753 return 1 if it is safe if EXPR is unsaved afterward, or
1754 return 2 if it is completely unsafe.
1755
1756 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1757 an expression tree, so that it safe to unsave them and the surrounding
1758 context will be correct.
1759
1760 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1761 occasionally across the whole of a function. It is therefore only
1762 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1763 below the UNSAVE_EXPR.
1764
1765 RTL_EXPRs consume their rtl during evaluation. It is therefore
1766 never possible to unsave them. */
1767
1768 int
1769 unsafe_for_reeval (expr)
1770 tree expr;
1771 {
1772 int unsafeness = 0;
1773 enum tree_code code;
1774 int i, tmp;
1775 tree exp;
1776 int first_rtl;
1777
1778 if (expr == NULL_TREE)
1779 return 1;
1780
1781 code = TREE_CODE (expr);
1782 first_rtl = first_rtl_op (code);
1783
1784 switch (code)
1785 {
1786 case SAVE_EXPR:
1787 case RTL_EXPR:
1788 return 2;
1789
1790 case TREE_LIST:
1791 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1792 {
1793 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1794 unsafeness = MAX (tmp, unsafeness);
1795 }
1796
1797 return unsafeness;
1798
1799 case CALL_EXPR:
1800 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1801 return MAX (tmp, 1);
1802
1803 case TARGET_EXPR:
1804 unsafeness = 1;
1805 break;
1806
1807 default:
1808 if (lang_unsafe_for_reeval != 0)
1809 {
1810 tmp = (*lang_unsafe_for_reeval) (expr);
1811 if (tmp >= 0)
1812 return tmp;
1813 }
1814 break;
1815 }
1816
1817 switch (TREE_CODE_CLASS (code))
1818 {
1819 case 'c': /* a constant */
1820 case 't': /* a type node */
1821 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1822 case 'd': /* A decl node */
1823 case 'b': /* A block node */
1824 return 0;
1825
1826 case 'e': /* an expression */
1827 case 'r': /* a reference */
1828 case 's': /* an expression with side effects */
1829 case '<': /* a comparison expression */
1830 case '2': /* a binary arithmetic expression */
1831 case '1': /* a unary arithmetic expression */
1832 for (i = first_rtl - 1; i >= 0; i--)
1833 {
1834 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1835 unsafeness = MAX (tmp, unsafeness);
1836 }
1837
1838 return unsafeness;
1839
1840 default:
1841 return 2;
1842 }
1843 }
1844 \f
1845 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1846 or offset that depends on a field within a record. */
1847
1848 int
1849 contains_placeholder_p (exp)
1850 tree exp;
1851 {
1852 enum tree_code code;
1853 int result;
1854
1855 if (!exp)
1856 return 0;
1857
1858 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1859 in it since it is supplying a value for it. */
1860 code = TREE_CODE (exp);
1861 if (code == WITH_RECORD_EXPR)
1862 return 0;
1863 else if (code == PLACEHOLDER_EXPR)
1864 return 1;
1865
1866 switch (TREE_CODE_CLASS (code))
1867 {
1868 case 'r':
1869 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1870 position computations since they will be converted into a
1871 WITH_RECORD_EXPR involving the reference, which will assume
1872 here will be valid. */
1873 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1874
1875 case 'x':
1876 if (code == TREE_LIST)
1877 return (contains_placeholder_p (TREE_VALUE (exp))
1878 || (TREE_CHAIN (exp) != 0
1879 && contains_placeholder_p (TREE_CHAIN (exp))));
1880 break;
1881
1882 case '1':
1883 case '2': case '<':
1884 case 'e':
1885 switch (code)
1886 {
1887 case COMPOUND_EXPR:
1888 /* Ignoring the first operand isn't quite right, but works best. */
1889 return contains_placeholder_p (TREE_OPERAND (exp, 1));
1890
1891 case RTL_EXPR:
1892 case CONSTRUCTOR:
1893 return 0;
1894
1895 case COND_EXPR:
1896 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1897 || contains_placeholder_p (TREE_OPERAND (exp, 1))
1898 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
1899
1900 case SAVE_EXPR:
1901 /* If we already know this doesn't have a placeholder, don't
1902 check again. */
1903 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1904 return 0;
1905
1906 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1907 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
1908 if (result)
1909 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1910
1911 return result;
1912
1913 case CALL_EXPR:
1914 return (TREE_OPERAND (exp, 1) != 0
1915 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
1916
1917 default:
1918 break;
1919 }
1920
1921 switch (TREE_CODE_LENGTH (code))
1922 {
1923 case 1:
1924 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1925 case 2:
1926 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1927 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
1928 default:
1929 return 0;
1930 }
1931
1932 default:
1933 return 0;
1934 }
1935 return 0;
1936 }
1937
1938 /* Return 1 if EXP contains any expressions that produce cleanups for an
1939 outer scope to deal with. Used by fold. */
1940
1941 int
1942 has_cleanups (exp)
1943 tree exp;
1944 {
1945 int i, nops, cmp;
1946
1947 if (! TREE_SIDE_EFFECTS (exp))
1948 return 0;
1949
1950 switch (TREE_CODE (exp))
1951 {
1952 case TARGET_EXPR:
1953 case GOTO_SUBROUTINE_EXPR:
1954 case WITH_CLEANUP_EXPR:
1955 return 1;
1956
1957 case CLEANUP_POINT_EXPR:
1958 return 0;
1959
1960 case CALL_EXPR:
1961 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1962 {
1963 cmp = has_cleanups (TREE_VALUE (exp));
1964 if (cmp)
1965 return cmp;
1966 }
1967 return 0;
1968
1969 default:
1970 break;
1971 }
1972
1973 /* This general rule works for most tree codes. All exceptions should be
1974 handled above. If this is a language-specific tree code, we can't
1975 trust what might be in the operand, so say we don't know
1976 the situation. */
1977 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1978 return -1;
1979
1980 nops = first_rtl_op (TREE_CODE (exp));
1981 for (i = 0; i < nops; i++)
1982 if (TREE_OPERAND (exp, i) != 0)
1983 {
1984 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1985 if (type == 'e' || type == '<' || type == '1' || type == '2'
1986 || type == 'r' || type == 's')
1987 {
1988 cmp = has_cleanups (TREE_OPERAND (exp, i));
1989 if (cmp)
1990 return cmp;
1991 }
1992 }
1993
1994 return 0;
1995 }
1996 \f
1997 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1998 return a tree with all occurrences of references to F in a
1999 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2000 contains only arithmetic expressions or a CALL_EXPR with a
2001 PLACEHOLDER_EXPR occurring only in its arglist. */
2002
2003 tree
2004 substitute_in_expr (exp, f, r)
2005 tree exp;
2006 tree f;
2007 tree r;
2008 {
2009 enum tree_code code = TREE_CODE (exp);
2010 tree op0, op1, op2;
2011 tree new;
2012 tree inner;
2013
2014 switch (TREE_CODE_CLASS (code))
2015 {
2016 case 'c':
2017 case 'd':
2018 return exp;
2019
2020 case 'x':
2021 if (code == PLACEHOLDER_EXPR)
2022 return exp;
2023 else if (code == TREE_LIST)
2024 {
2025 op0 = (TREE_CHAIN (exp) == 0
2026 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
2027 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
2028 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2029 return exp;
2030
2031 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2032 }
2033
2034 abort ();
2035
2036 case '1':
2037 case '2':
2038 case '<':
2039 case 'e':
2040 switch (TREE_CODE_LENGTH (code))
2041 {
2042 case 1:
2043 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2044 if (op0 == TREE_OPERAND (exp, 0))
2045 return exp;
2046
2047 if (code == NON_LVALUE_EXPR)
2048 return op0;
2049
2050 new = fold (build1 (code, TREE_TYPE (exp), op0));
2051 break;
2052
2053 case 2:
2054 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2055 could, but we don't support it. */
2056 if (code == RTL_EXPR)
2057 return exp;
2058 else if (code == CONSTRUCTOR)
2059 abort ();
2060
2061 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2062 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2063 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2064 return exp;
2065
2066 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2067 break;
2068
2069 case 3:
2070 /* It cannot be that anything inside a SAVE_EXPR contains a
2071 PLACEHOLDER_EXPR. */
2072 if (code == SAVE_EXPR)
2073 return exp;
2074
2075 else if (code == CALL_EXPR)
2076 {
2077 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2078 if (op1 == TREE_OPERAND (exp, 1))
2079 return exp;
2080
2081 return build (code, TREE_TYPE (exp),
2082 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2083 }
2084
2085 else if (code != COND_EXPR)
2086 abort ();
2087
2088 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2089 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2090 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2091 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2092 && op2 == TREE_OPERAND (exp, 2))
2093 return exp;
2094
2095 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2096 break;
2097
2098 default:
2099 abort ();
2100 }
2101
2102 break;
2103
2104 case 'r':
2105 switch (code)
2106 {
2107 case COMPONENT_REF:
2108 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2109 and it is the right field, replace it with R. */
2110 for (inner = TREE_OPERAND (exp, 0);
2111 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2112 inner = TREE_OPERAND (inner, 0))
2113 ;
2114 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2115 && TREE_OPERAND (exp, 1) == f)
2116 return r;
2117
2118 /* If this expression hasn't been completed let, leave it
2119 alone. */
2120 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2121 && TREE_TYPE (inner) == 0)
2122 return exp;
2123
2124 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2125 if (op0 == TREE_OPERAND (exp, 0))
2126 return exp;
2127
2128 new = fold (build (code, TREE_TYPE (exp), op0,
2129 TREE_OPERAND (exp, 1)));
2130 break;
2131
2132 case BIT_FIELD_REF:
2133 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2134 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2135 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2136 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2137 && op2 == TREE_OPERAND (exp, 2))
2138 return exp;
2139
2140 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2141 break;
2142
2143 case INDIRECT_REF:
2144 case BUFFER_REF:
2145 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2146 if (op0 == TREE_OPERAND (exp, 0))
2147 return exp;
2148
2149 new = fold (build1 (code, TREE_TYPE (exp), op0));
2150 break;
2151
2152 default:
2153 abort ();
2154 }
2155 break;
2156
2157 default:
2158 abort ();
2159 }
2160
2161 TREE_READONLY (new) = TREE_READONLY (exp);
2162 return new;
2163 }
2164 \f
2165 /* Stabilize a reference so that we can use it any number of times
2166 without causing its operands to be evaluated more than once.
2167 Returns the stabilized reference. This works by means of save_expr,
2168 so see the caveats in the comments about save_expr.
2169
2170 Also allows conversion expressions whose operands are references.
2171 Any other kind of expression is returned unchanged. */
2172
2173 tree
2174 stabilize_reference (ref)
2175 tree ref;
2176 {
2177 tree result;
2178 enum tree_code code = TREE_CODE (ref);
2179
2180 switch (code)
2181 {
2182 case VAR_DECL:
2183 case PARM_DECL:
2184 case RESULT_DECL:
2185 /* No action is needed in this case. */
2186 return ref;
2187
2188 case NOP_EXPR:
2189 case CONVERT_EXPR:
2190 case FLOAT_EXPR:
2191 case FIX_TRUNC_EXPR:
2192 case FIX_FLOOR_EXPR:
2193 case FIX_ROUND_EXPR:
2194 case FIX_CEIL_EXPR:
2195 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2196 break;
2197
2198 case INDIRECT_REF:
2199 result = build_nt (INDIRECT_REF,
2200 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2201 break;
2202
2203 case COMPONENT_REF:
2204 result = build_nt (COMPONENT_REF,
2205 stabilize_reference (TREE_OPERAND (ref, 0)),
2206 TREE_OPERAND (ref, 1));
2207 break;
2208
2209 case BIT_FIELD_REF:
2210 result = build_nt (BIT_FIELD_REF,
2211 stabilize_reference (TREE_OPERAND (ref, 0)),
2212 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2213 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2214 break;
2215
2216 case ARRAY_REF:
2217 result = build_nt (ARRAY_REF,
2218 stabilize_reference (TREE_OPERAND (ref, 0)),
2219 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2220 break;
2221
2222 case ARRAY_RANGE_REF:
2223 result = build_nt (ARRAY_RANGE_REF,
2224 stabilize_reference (TREE_OPERAND (ref, 0)),
2225 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2226 break;
2227
2228 case COMPOUND_EXPR:
2229 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2230 it wouldn't be ignored. This matters when dealing with
2231 volatiles. */
2232 return stabilize_reference_1 (ref);
2233
2234 case RTL_EXPR:
2235 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2236 save_expr (build1 (ADDR_EXPR,
2237 build_pointer_type (TREE_TYPE (ref)),
2238 ref)));
2239 break;
2240
2241 /* If arg isn't a kind of lvalue we recognize, make no change.
2242 Caller should recognize the error for an invalid lvalue. */
2243 default:
2244 return ref;
2245
2246 case ERROR_MARK:
2247 return error_mark_node;
2248 }
2249
2250 TREE_TYPE (result) = TREE_TYPE (ref);
2251 TREE_READONLY (result) = TREE_READONLY (ref);
2252 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2253 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2254
2255 return result;
2256 }
2257
2258 /* Subroutine of stabilize_reference; this is called for subtrees of
2259 references. Any expression with side-effects must be put in a SAVE_EXPR
2260 to ensure that it is only evaluated once.
2261
2262 We don't put SAVE_EXPR nodes around everything, because assigning very
2263 simple expressions to temporaries causes us to miss good opportunities
2264 for optimizations. Among other things, the opportunity to fold in the
2265 addition of a constant into an addressing mode often gets lost, e.g.
2266 "y[i+1] += x;". In general, we take the approach that we should not make
2267 an assignment unless we are forced into it - i.e., that any non-side effect
2268 operator should be allowed, and that cse should take care of coalescing
2269 multiple utterances of the same expression should that prove fruitful. */
2270
2271 tree
2272 stabilize_reference_1 (e)
2273 tree e;
2274 {
2275 tree result;
2276 enum tree_code code = TREE_CODE (e);
2277
2278 /* We cannot ignore const expressions because it might be a reference
2279 to a const array but whose index contains side-effects. But we can
2280 ignore things that are actual constant or that already have been
2281 handled by this function. */
2282
2283 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2284 return e;
2285
2286 switch (TREE_CODE_CLASS (code))
2287 {
2288 case 'x':
2289 case 't':
2290 case 'd':
2291 case 'b':
2292 case '<':
2293 case 's':
2294 case 'e':
2295 case 'r':
2296 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2297 so that it will only be evaluated once. */
2298 /* The reference (r) and comparison (<) classes could be handled as
2299 below, but it is generally faster to only evaluate them once. */
2300 if (TREE_SIDE_EFFECTS (e))
2301 return save_expr (e);
2302 return e;
2303
2304 case 'c':
2305 /* Constants need no processing. In fact, we should never reach
2306 here. */
2307 return e;
2308
2309 case '2':
2310 /* Division is slow and tends to be compiled with jumps,
2311 especially the division by powers of 2 that is often
2312 found inside of an array reference. So do it just once. */
2313 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2314 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2315 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2316 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2317 return save_expr (e);
2318 /* Recursively stabilize each operand. */
2319 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2320 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2321 break;
2322
2323 case '1':
2324 /* Recursively stabilize each operand. */
2325 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2326 break;
2327
2328 default:
2329 abort ();
2330 }
2331
2332 TREE_TYPE (result) = TREE_TYPE (e);
2333 TREE_READONLY (result) = TREE_READONLY (e);
2334 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2335 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2336
2337 return result;
2338 }
2339 \f
2340 /* Low-level constructors for expressions. */
2341
2342 /* Build an expression of code CODE, data type TYPE,
2343 and operands as specified by the arguments ARG1 and following arguments.
2344 Expressions and reference nodes can be created this way.
2345 Constants, decls, types and misc nodes cannot be. */
2346
2347 tree
2348 build VPARAMS ((enum tree_code code, tree tt, ...))
2349 {
2350 tree t;
2351 int length;
2352 int i;
2353 int fro;
2354 int constant;
2355
2356 VA_OPEN (p, tt);
2357 VA_FIXEDARG (p, enum tree_code, code);
2358 VA_FIXEDARG (p, tree, tt);
2359
2360 t = make_node (code);
2361 length = TREE_CODE_LENGTH (code);
2362 TREE_TYPE (t) = tt;
2363
2364 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2365 result based on those same flags for the arguments. But if the
2366 arguments aren't really even `tree' expressions, we shouldn't be trying
2367 to do this. */
2368 fro = first_rtl_op (code);
2369
2370 /* Expressions without side effects may be constant if their
2371 arguments are as well. */
2372 constant = (TREE_CODE_CLASS (code) == '<'
2373 || TREE_CODE_CLASS (code) == '1'
2374 || TREE_CODE_CLASS (code) == '2'
2375 || TREE_CODE_CLASS (code) == 'c');
2376
2377 if (length == 2)
2378 {
2379 /* This is equivalent to the loop below, but faster. */
2380 tree arg0 = va_arg (p, tree);
2381 tree arg1 = va_arg (p, tree);
2382
2383 TREE_OPERAND (t, 0) = arg0;
2384 TREE_OPERAND (t, 1) = arg1;
2385 TREE_READONLY (t) = 1;
2386 if (arg0 && fro > 0)
2387 {
2388 if (TREE_SIDE_EFFECTS (arg0))
2389 TREE_SIDE_EFFECTS (t) = 1;
2390 if (!TREE_READONLY (arg0))
2391 TREE_READONLY (t) = 0;
2392 if (!TREE_CONSTANT (arg0))
2393 constant = 0;
2394 }
2395
2396 if (arg1 && fro > 1)
2397 {
2398 if (TREE_SIDE_EFFECTS (arg1))
2399 TREE_SIDE_EFFECTS (t) = 1;
2400 if (!TREE_READONLY (arg1))
2401 TREE_READONLY (t) = 0;
2402 if (!TREE_CONSTANT (arg1))
2403 constant = 0;
2404 }
2405 }
2406 else if (length == 1)
2407 {
2408 tree arg0 = va_arg (p, tree);
2409
2410 /* The only one-operand cases we handle here are those with side-effects.
2411 Others are handled with build1. So don't bother checked if the
2412 arg has side-effects since we'll already have set it.
2413
2414 ??? This really should use build1 too. */
2415 if (TREE_CODE_CLASS (code) != 's')
2416 abort ();
2417 TREE_OPERAND (t, 0) = arg0;
2418 }
2419 else
2420 {
2421 for (i = 0; i < length; i++)
2422 {
2423 tree operand = va_arg (p, tree);
2424
2425 TREE_OPERAND (t, i) = operand;
2426 if (operand && fro > i)
2427 {
2428 if (TREE_SIDE_EFFECTS (operand))
2429 TREE_SIDE_EFFECTS (t) = 1;
2430 if (!TREE_CONSTANT (operand))
2431 constant = 0;
2432 }
2433 }
2434 }
2435 VA_CLOSE (p);
2436
2437 TREE_CONSTANT (t) = constant;
2438 return t;
2439 }
2440
2441 /* Same as above, but only builds for unary operators.
2442 Saves lions share of calls to `build'; cuts down use
2443 of varargs, which is expensive for RISC machines. */
2444
2445 tree
2446 build1 (code, type, node)
2447 enum tree_code code;
2448 tree type;
2449 tree node;
2450 {
2451 int length;
2452 #ifdef GATHER_STATISTICS
2453 tree_node_kind kind;
2454 #endif
2455 tree t;
2456
2457 #ifdef GATHER_STATISTICS
2458 if (TREE_CODE_CLASS (code) == 'r')
2459 kind = r_kind;
2460 else
2461 kind = e_kind;
2462 #endif
2463
2464 #ifdef ENABLE_CHECKING
2465 if (TREE_CODE_CLASS (code) == '2'
2466 || TREE_CODE_CLASS (code) == '<'
2467 || TREE_CODE_LENGTH (code) != 1)
2468 abort ();
2469 #endif /* ENABLE_CHECKING */
2470
2471 length = sizeof (struct tree_exp);
2472
2473 t = ggc_alloc_tree (length);
2474
2475 memset ((PTR) t, 0, sizeof (struct tree_common));
2476
2477 #ifdef GATHER_STATISTICS
2478 tree_node_counts[(int) kind]++;
2479 tree_node_sizes[(int) kind] += length;
2480 #endif
2481
2482 TREE_SET_CODE (t, code);
2483
2484 TREE_TYPE (t) = type;
2485 TREE_COMPLEXITY (t) = 0;
2486 TREE_OPERAND (t, 0) = node;
2487 if (node && first_rtl_op (code) != 0)
2488 {
2489 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2490 TREE_READONLY (t) = TREE_READONLY (node);
2491 }
2492
2493 switch (code)
2494 {
2495 case INIT_EXPR:
2496 case MODIFY_EXPR:
2497 case VA_ARG_EXPR:
2498 case RTL_EXPR:
2499 case PREDECREMENT_EXPR:
2500 case PREINCREMENT_EXPR:
2501 case POSTDECREMENT_EXPR:
2502 case POSTINCREMENT_EXPR:
2503 /* All of these have side-effects, no matter what their
2504 operands are. */
2505 TREE_SIDE_EFFECTS (t) = 1;
2506 TREE_READONLY (t) = 0;
2507 break;
2508
2509 default:
2510 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2511 TREE_CONSTANT (t) = 1;
2512 break;
2513 }
2514
2515 return t;
2516 }
2517
2518 /* Similar except don't specify the TREE_TYPE
2519 and leave the TREE_SIDE_EFFECTS as 0.
2520 It is permissible for arguments to be null,
2521 or even garbage if their values do not matter. */
2522
2523 tree
2524 build_nt VPARAMS ((enum tree_code code, ...))
2525 {
2526 tree t;
2527 int length;
2528 int i;
2529
2530 VA_OPEN (p, code);
2531 VA_FIXEDARG (p, enum tree_code, code);
2532
2533 t = make_node (code);
2534 length = TREE_CODE_LENGTH (code);
2535
2536 for (i = 0; i < length; i++)
2537 TREE_OPERAND (t, i) = va_arg (p, tree);
2538
2539 VA_CLOSE (p);
2540 return t;
2541 }
2542 \f
2543 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2544 We do NOT enter this node in any sort of symbol table.
2545
2546 layout_decl is used to set up the decl's storage layout.
2547 Other slots are initialized to 0 or null pointers. */
2548
2549 tree
2550 build_decl (code, name, type)
2551 enum tree_code code;
2552 tree name, type;
2553 {
2554 tree t;
2555
2556 t = make_node (code);
2557
2558 /* if (type == error_mark_node)
2559 type = integer_type_node; */
2560 /* That is not done, deliberately, so that having error_mark_node
2561 as the type can suppress useless errors in the use of this variable. */
2562
2563 DECL_NAME (t) = name;
2564 TREE_TYPE (t) = type;
2565
2566 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2567 layout_decl (t, 0);
2568 else if (code == FUNCTION_DECL)
2569 DECL_MODE (t) = FUNCTION_MODE;
2570
2571 return t;
2572 }
2573 \f
2574 /* BLOCK nodes are used to represent the structure of binding contours
2575 and declarations, once those contours have been exited and their contents
2576 compiled. This information is used for outputting debugging info. */
2577
2578 tree
2579 build_block (vars, tags, subblocks, supercontext, chain)
2580 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
2581 {
2582 tree block = make_node (BLOCK);
2583
2584 BLOCK_VARS (block) = vars;
2585 BLOCK_SUBBLOCKS (block) = subblocks;
2586 BLOCK_SUPERCONTEXT (block) = supercontext;
2587 BLOCK_CHAIN (block) = chain;
2588 return block;
2589 }
2590
2591 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2592 location where an expression or an identifier were encountered. It
2593 is necessary for languages where the frontend parser will handle
2594 recursively more than one file (Java is one of them). */
2595
2596 tree
2597 build_expr_wfl (node, file, line, col)
2598 tree node;
2599 const char *file;
2600 int line, col;
2601 {
2602 static const char *last_file = 0;
2603 static tree last_filenode = NULL_TREE;
2604 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2605
2606 EXPR_WFL_NODE (wfl) = node;
2607 EXPR_WFL_SET_LINECOL (wfl, line, col);
2608 if (file != last_file)
2609 {
2610 last_file = file;
2611 last_filenode = file ? get_identifier (file) : NULL_TREE;
2612 }
2613
2614 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2615 if (node)
2616 {
2617 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2618 TREE_TYPE (wfl) = TREE_TYPE (node);
2619 }
2620
2621 return wfl;
2622 }
2623 \f
2624 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2625 is ATTRIBUTE. */
2626
2627 tree
2628 build_decl_attribute_variant (ddecl, attribute)
2629 tree ddecl, attribute;
2630 {
2631 DECL_ATTRIBUTES (ddecl) = attribute;
2632 return ddecl;
2633 }
2634
2635 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2636 is ATTRIBUTE.
2637
2638 Record such modified types already made so we don't make duplicates. */
2639
2640 tree
2641 build_type_attribute_variant (ttype, attribute)
2642 tree ttype, attribute;
2643 {
2644 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2645 {
2646 unsigned int hashcode;
2647 tree ntype;
2648
2649 ntype = copy_node (ttype);
2650
2651 TYPE_POINTER_TO (ntype) = 0;
2652 TYPE_REFERENCE_TO (ntype) = 0;
2653 TYPE_ATTRIBUTES (ntype) = attribute;
2654
2655 /* Create a new main variant of TYPE. */
2656 TYPE_MAIN_VARIANT (ntype) = ntype;
2657 TYPE_NEXT_VARIANT (ntype) = 0;
2658 set_type_quals (ntype, TYPE_UNQUALIFIED);
2659
2660 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2661 + TYPE_HASH (TREE_TYPE (ntype))
2662 + attribute_hash_list (attribute));
2663
2664 switch (TREE_CODE (ntype))
2665 {
2666 case FUNCTION_TYPE:
2667 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2668 break;
2669 case ARRAY_TYPE:
2670 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2671 break;
2672 case INTEGER_TYPE:
2673 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2674 break;
2675 case REAL_TYPE:
2676 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2677 break;
2678 default:
2679 break;
2680 }
2681
2682 ntype = type_hash_canon (hashcode, ntype);
2683 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2684 }
2685
2686 return ttype;
2687 }
2688
2689 /* Default value of targetm.comp_type_attributes that always returns 1. */
2690
2691 int
2692 default_comp_type_attributes (type1, type2)
2693 tree type1 ATTRIBUTE_UNUSED;
2694 tree type2 ATTRIBUTE_UNUSED;
2695 {
2696 return 1;
2697 }
2698
2699 /* Default version of targetm.set_default_type_attributes that always does
2700 nothing. */
2701
2702 void
2703 default_set_default_type_attributes (type)
2704 tree type ATTRIBUTE_UNUSED;
2705 {
2706 }
2707
2708 /* Default version of targetm.insert_attributes that always does nothing. */
2709 void
2710 default_insert_attributes (decl, attr_ptr)
2711 tree decl ATTRIBUTE_UNUSED;
2712 tree *attr_ptr ATTRIBUTE_UNUSED;
2713 {
2714 }
2715
2716 /* Default value of targetm.attribute_table that is empty. */
2717 const struct attribute_spec default_target_attribute_table[] =
2718 {
2719 { NULL, 0, 0, false, false, false, NULL }
2720 };
2721
2722 /* Default value of targetm.function_attribute_inlinable_p that always
2723 returns false. */
2724 bool
2725 default_function_attribute_inlinable_p (fndecl)
2726 tree fndecl ATTRIBUTE_UNUSED;
2727 {
2728 /* By default, functions with machine attributes cannot be inlined. */
2729 return false;
2730 }
2731
2732 /* Return non-zero if IDENT is a valid name for attribute ATTR,
2733 or zero if not.
2734
2735 We try both `text' and `__text__', ATTR may be either one. */
2736 /* ??? It might be a reasonable simplification to require ATTR to be only
2737 `text'. One might then also require attribute lists to be stored in
2738 their canonicalized form. */
2739
2740 int
2741 is_attribute_p (attr, ident)
2742 const char *attr;
2743 tree ident;
2744 {
2745 int ident_len, attr_len;
2746 const char *p;
2747
2748 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2749 return 0;
2750
2751 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2752 return 1;
2753
2754 p = IDENTIFIER_POINTER (ident);
2755 ident_len = strlen (p);
2756 attr_len = strlen (attr);
2757
2758 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2759 if (attr[0] == '_')
2760 {
2761 if (attr[1] != '_'
2762 || attr[attr_len - 2] != '_'
2763 || attr[attr_len - 1] != '_')
2764 abort ();
2765 if (ident_len == attr_len - 4
2766 && strncmp (attr + 2, p, attr_len - 4) == 0)
2767 return 1;
2768 }
2769 else
2770 {
2771 if (ident_len == attr_len + 4
2772 && p[0] == '_' && p[1] == '_'
2773 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2774 && strncmp (attr, p + 2, attr_len) == 0)
2775 return 1;
2776 }
2777
2778 return 0;
2779 }
2780
2781 /* Given an attribute name and a list of attributes, return a pointer to the
2782 attribute's list element if the attribute is part of the list, or NULL_TREE
2783 if not found. If the attribute appears more than once, this only
2784 returns the first occurrence; the TREE_CHAIN of the return value should
2785 be passed back in if further occurrences are wanted. */
2786
2787 tree
2788 lookup_attribute (attr_name, list)
2789 const char *attr_name;
2790 tree list;
2791 {
2792 tree l;
2793
2794 for (l = list; l; l = TREE_CHAIN (l))
2795 {
2796 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2797 abort ();
2798 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2799 return l;
2800 }
2801
2802 return NULL_TREE;
2803 }
2804
2805 /* Return an attribute list that is the union of a1 and a2. */
2806
2807 tree
2808 merge_attributes (a1, a2)
2809 tree a1, a2;
2810 {
2811 tree attributes;
2812
2813 /* Either one unset? Take the set one. */
2814
2815 if ((attributes = a1) == 0)
2816 attributes = a2;
2817
2818 /* One that completely contains the other? Take it. */
2819
2820 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2821 {
2822 if (attribute_list_contained (a2, a1))
2823 attributes = a2;
2824 else
2825 {
2826 /* Pick the longest list, and hang on the other list. */
2827
2828 if (list_length (a1) < list_length (a2))
2829 attributes = a2, a2 = a1;
2830
2831 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2832 {
2833 tree a;
2834 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2835 attributes);
2836 a != NULL_TREE;
2837 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2838 TREE_CHAIN (a)))
2839 {
2840 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2841 break;
2842 }
2843 if (a == NULL_TREE)
2844 {
2845 a1 = copy_node (a2);
2846 TREE_CHAIN (a1) = attributes;
2847 attributes = a1;
2848 }
2849 }
2850 }
2851 }
2852 return attributes;
2853 }
2854
2855 /* Given types T1 and T2, merge their attributes and return
2856 the result. */
2857
2858 tree
2859 merge_type_attributes (t1, t2)
2860 tree t1, t2;
2861 {
2862 return merge_attributes (TYPE_ATTRIBUTES (t1),
2863 TYPE_ATTRIBUTES (t2));
2864 }
2865
2866 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2867 the result. */
2868
2869 tree
2870 merge_decl_attributes (olddecl, newdecl)
2871 tree olddecl, newdecl;
2872 {
2873 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2874 DECL_ATTRIBUTES (newdecl));
2875 }
2876
2877 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2878
2879 /* Specialization of merge_decl_attributes for various Windows targets.
2880
2881 This handles the following situation:
2882
2883 __declspec (dllimport) int foo;
2884 int foo;
2885
2886 The second instance of `foo' nullifies the dllimport. */
2887
2888 tree
2889 merge_dllimport_decl_attributes (old, new)
2890 tree old;
2891 tree new;
2892 {
2893 tree a;
2894 int delete_dllimport_p;
2895
2896 old = DECL_ATTRIBUTES (old);
2897 new = DECL_ATTRIBUTES (new);
2898
2899 /* What we need to do here is remove from `old' dllimport if it doesn't
2900 appear in `new'. dllimport behaves like extern: if a declaration is
2901 marked dllimport and a definition appears later, then the object
2902 is not dllimport'd. */
2903 if (lookup_attribute ("dllimport", old) != NULL_TREE
2904 && lookup_attribute ("dllimport", new) == NULL_TREE)
2905 delete_dllimport_p = 1;
2906 else
2907 delete_dllimport_p = 0;
2908
2909 a = merge_attributes (old, new);
2910
2911 if (delete_dllimport_p)
2912 {
2913 tree prev,t;
2914
2915 /* Scan the list for dllimport and delete it. */
2916 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2917 {
2918 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2919 {
2920 if (prev == NULL_TREE)
2921 a = TREE_CHAIN (a);
2922 else
2923 TREE_CHAIN (prev) = TREE_CHAIN (t);
2924 break;
2925 }
2926 }
2927 }
2928
2929 return a;
2930 }
2931
2932 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2933 \f
2934 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2935 of the various TYPE_QUAL values. */
2936
2937 static void
2938 set_type_quals (type, type_quals)
2939 tree type;
2940 int type_quals;
2941 {
2942 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2943 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2944 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2945 }
2946
2947 /* Return a version of the TYPE, qualified as indicated by the
2948 TYPE_QUALS, if one exists. If no qualified version exists yet,
2949 return NULL_TREE. */
2950
2951 tree
2952 get_qualified_type (type, type_quals)
2953 tree type;
2954 int type_quals;
2955 {
2956 tree t;
2957
2958 /* Search the chain of variants to see if there is already one there just
2959 like the one we need to have. If so, use that existing one. We must
2960 preserve the TYPE_NAME, since there is code that depends on this. */
2961 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2962 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
2963 return t;
2964
2965 return NULL_TREE;
2966 }
2967
2968 /* Like get_qualified_type, but creates the type if it does not
2969 exist. This function never returns NULL_TREE. */
2970
2971 tree
2972 build_qualified_type (type, type_quals)
2973 tree type;
2974 int type_quals;
2975 {
2976 tree t;
2977
2978 /* See if we already have the appropriate qualified variant. */
2979 t = get_qualified_type (type, type_quals);
2980
2981 /* If not, build it. */
2982 if (!t)
2983 {
2984 t = build_type_copy (type);
2985 set_type_quals (t, type_quals);
2986 }
2987
2988 return t;
2989 }
2990
2991 /* Create a new variant of TYPE, equivalent but distinct.
2992 This is so the caller can modify it. */
2993
2994 tree
2995 build_type_copy (type)
2996 tree type;
2997 {
2998 tree t, m = TYPE_MAIN_VARIANT (type);
2999
3000 t = copy_node (type);
3001
3002 TYPE_POINTER_TO (t) = 0;
3003 TYPE_REFERENCE_TO (t) = 0;
3004
3005 /* Add this type to the chain of variants of TYPE. */
3006 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3007 TYPE_NEXT_VARIANT (m) = t;
3008
3009 return t;
3010 }
3011 \f
3012 /* Hashing of types so that we don't make duplicates.
3013 The entry point is `type_hash_canon'. */
3014
3015 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3016 with types in the TREE_VALUE slots), by adding the hash codes
3017 of the individual types. */
3018
3019 unsigned int
3020 type_hash_list (list)
3021 tree list;
3022 {
3023 unsigned int hashcode;
3024 tree tail;
3025
3026 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3027 hashcode += TYPE_HASH (TREE_VALUE (tail));
3028
3029 return hashcode;
3030 }
3031
3032 /* These are the Hashtable callback functions. */
3033
3034 /* Returns true if the types are equal. */
3035
3036 static int
3037 type_hash_eq (va, vb)
3038 const void *va;
3039 const void *vb;
3040 {
3041 const struct type_hash *a = va, *b = vb;
3042 if (a->hash == b->hash
3043 && TREE_CODE (a->type) == TREE_CODE (b->type)
3044 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
3045 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3046 TYPE_ATTRIBUTES (b->type))
3047 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
3048 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3049 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3050 TYPE_MAX_VALUE (b->type)))
3051 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3052 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3053 TYPE_MIN_VALUE (b->type)))
3054 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3055 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
3056 || (TYPE_DOMAIN (a->type)
3057 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
3058 && TYPE_DOMAIN (b->type)
3059 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
3060 && type_list_equal (TYPE_DOMAIN (a->type),
3061 TYPE_DOMAIN (b->type)))))
3062 return 1;
3063 return 0;
3064 }
3065
3066 /* Return the cached hash value. */
3067
3068 static unsigned int
3069 type_hash_hash (item)
3070 const void *item;
3071 {
3072 return ((const struct type_hash *) item)->hash;
3073 }
3074
3075 /* Look in the type hash table for a type isomorphic to TYPE.
3076 If one is found, return it. Otherwise return 0. */
3077
3078 tree
3079 type_hash_lookup (hashcode, type)
3080 unsigned int hashcode;
3081 tree type;
3082 {
3083 struct type_hash *h, in;
3084
3085 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3086 must call that routine before comparing TYPE_ALIGNs. */
3087 layout_type (type);
3088
3089 in.hash = hashcode;
3090 in.type = type;
3091
3092 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3093 if (h)
3094 return h->type;
3095 return NULL_TREE;
3096 }
3097
3098 /* Add an entry to the type-hash-table
3099 for a type TYPE whose hash code is HASHCODE. */
3100
3101 void
3102 type_hash_add (hashcode, type)
3103 unsigned int hashcode;
3104 tree type;
3105 {
3106 struct type_hash *h;
3107 void **loc;
3108
3109 h = (struct type_hash *) ggc_alloc (sizeof (struct type_hash));
3110 h->hash = hashcode;
3111 h->type = type;
3112 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3113 *(struct type_hash **) loc = h;
3114 }
3115
3116 /* Given TYPE, and HASHCODE its hash code, return the canonical
3117 object for an identical type if one already exists.
3118 Otherwise, return TYPE, and record it as the canonical object
3119 if it is a permanent object.
3120
3121 To use this function, first create a type of the sort you want.
3122 Then compute its hash code from the fields of the type that
3123 make it different from other similar types.
3124 Then call this function and use the value.
3125 This function frees the type you pass in if it is a duplicate. */
3126
3127 /* Set to 1 to debug without canonicalization. Never set by program. */
3128 int debug_no_type_hash = 0;
3129
3130 tree
3131 type_hash_canon (hashcode, type)
3132 unsigned int hashcode;
3133 tree type;
3134 {
3135 tree t1;
3136
3137 if (debug_no_type_hash)
3138 return type;
3139
3140 /* See if the type is in the hash table already. If so, return it.
3141 Otherwise, add the type. */
3142 t1 = type_hash_lookup (hashcode, type);
3143 if (t1 != 0)
3144 {
3145 #ifdef GATHER_STATISTICS
3146 tree_node_counts[(int) t_kind]--;
3147 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3148 #endif
3149 return t1;
3150 }
3151 else
3152 {
3153 type_hash_add (hashcode, type);
3154 return type;
3155 }
3156 }
3157
3158 /* See if the data pointed to by the type hash table is marked. We consider
3159 it marked if the type is marked or if a debug type number or symbol
3160 table entry has been made for the type. This reduces the amount of
3161 debugging output and eliminates that dependency of the debug output on
3162 the number of garbage collections. */
3163
3164 static int
3165 type_hash_marked_p (p)
3166 const void *p;
3167 {
3168 tree type = ((struct type_hash *) p)->type;
3169
3170 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3171 }
3172
3173 /* Mark the entry in the type hash table the type it points to is marked.
3174 Also mark the type in case we are considering this entry "marked" by
3175 virtue of TYPE_SYMTAB_POINTER being set. */
3176
3177 static void
3178 type_hash_mark (p)
3179 const void *p;
3180 {
3181 ggc_mark (p);
3182 ggc_mark_tree (((struct type_hash *) p)->type);
3183 }
3184
3185 /* Mark the hashtable slot pointed to by ENTRY (which is really a
3186 `tree**') for GC. */
3187
3188 static int
3189 mark_tree_hashtable_entry (entry, data)
3190 void **entry;
3191 void *data ATTRIBUTE_UNUSED;
3192 {
3193 ggc_mark_tree ((tree) *entry);
3194 return 1;
3195 }
3196
3197 /* Mark ARG (which is really a htab_t whose slots are trees) for
3198 GC. */
3199
3200 void
3201 mark_tree_hashtable (arg)
3202 void *arg;
3203 {
3204 htab_t t = *(htab_t *) arg;
3205 htab_traverse (t, mark_tree_hashtable_entry, 0);
3206 }
3207
3208 static void
3209 print_type_hash_statistics ()
3210 {
3211 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3212 (long) htab_size (type_hash_table),
3213 (long) htab_elements (type_hash_table),
3214 htab_collisions (type_hash_table));
3215 }
3216
3217 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3218 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3219 by adding the hash codes of the individual attributes. */
3220
3221 unsigned int
3222 attribute_hash_list (list)
3223 tree list;
3224 {
3225 unsigned int hashcode;
3226 tree tail;
3227
3228 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3229 /* ??? Do we want to add in TREE_VALUE too? */
3230 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3231 return hashcode;
3232 }
3233
3234 /* Given two lists of attributes, return true if list l2 is
3235 equivalent to l1. */
3236
3237 int
3238 attribute_list_equal (l1, l2)
3239 tree l1, l2;
3240 {
3241 return attribute_list_contained (l1, l2)
3242 && attribute_list_contained (l2, l1);
3243 }
3244
3245 /* Given two lists of attributes, return true if list L2 is
3246 completely contained within L1. */
3247 /* ??? This would be faster if attribute names were stored in a canonicalized
3248 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3249 must be used to show these elements are equivalent (which they are). */
3250 /* ??? It's not clear that attributes with arguments will always be handled
3251 correctly. */
3252
3253 int
3254 attribute_list_contained (l1, l2)
3255 tree l1, l2;
3256 {
3257 tree t1, t2;
3258
3259 /* First check the obvious, maybe the lists are identical. */
3260 if (l1 == l2)
3261 return 1;
3262
3263 /* Maybe the lists are similar. */
3264 for (t1 = l1, t2 = l2;
3265 t1 != 0 && t2 != 0
3266 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3267 && TREE_VALUE (t1) == TREE_VALUE (t2);
3268 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3269
3270 /* Maybe the lists are equal. */
3271 if (t1 == 0 && t2 == 0)
3272 return 1;
3273
3274 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3275 {
3276 tree attr;
3277 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3278 attr != NULL_TREE;
3279 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3280 TREE_CHAIN (attr)))
3281 {
3282 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3283 break;
3284 }
3285
3286 if (attr == 0)
3287 return 0;
3288
3289 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3290 return 0;
3291 }
3292
3293 return 1;
3294 }
3295
3296 /* Given two lists of types
3297 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3298 return 1 if the lists contain the same types in the same order.
3299 Also, the TREE_PURPOSEs must match. */
3300
3301 int
3302 type_list_equal (l1, l2)
3303 tree l1, l2;
3304 {
3305 tree t1, t2;
3306
3307 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3308 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3309 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3310 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3311 && (TREE_TYPE (TREE_PURPOSE (t1))
3312 == TREE_TYPE (TREE_PURPOSE (t2))))))
3313 return 0;
3314
3315 return t1 == t2;
3316 }
3317
3318 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3319 given by TYPE. If the argument list accepts variable arguments,
3320 then this function counts only the ordinary arguments. */
3321
3322 int
3323 type_num_arguments (type)
3324 tree type;
3325 {
3326 int i = 0;
3327 tree t;
3328
3329 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3330 /* If the function does not take a variable number of arguments,
3331 the last element in the list will have type `void'. */
3332 if (VOID_TYPE_P (TREE_VALUE (t)))
3333 break;
3334 else
3335 ++i;
3336
3337 return i;
3338 }
3339
3340 /* Nonzero if integer constants T1 and T2
3341 represent the same constant value. */
3342
3343 int
3344 tree_int_cst_equal (t1, t2)
3345 tree t1, t2;
3346 {
3347 if (t1 == t2)
3348 return 1;
3349
3350 if (t1 == 0 || t2 == 0)
3351 return 0;
3352
3353 if (TREE_CODE (t1) == INTEGER_CST
3354 && TREE_CODE (t2) == INTEGER_CST
3355 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3356 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3357 return 1;
3358
3359 return 0;
3360 }
3361
3362 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3363 The precise way of comparison depends on their data type. */
3364
3365 int
3366 tree_int_cst_lt (t1, t2)
3367 tree t1, t2;
3368 {
3369 if (t1 == t2)
3370 return 0;
3371
3372 if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3373 return INT_CST_LT (t1, t2);
3374
3375 return INT_CST_LT_UNSIGNED (t1, t2);
3376 }
3377
3378 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3379
3380 int
3381 tree_int_cst_compare (t1, t2)
3382 tree t1;
3383 tree t2;
3384 {
3385 if (tree_int_cst_lt (t1, t2))
3386 return -1;
3387 else if (tree_int_cst_lt (t2, t1))
3388 return 1;
3389 else
3390 return 0;
3391 }
3392
3393 /* Return 1 if T is an INTEGER_CST that can be represented in a single
3394 HOST_WIDE_INT value. If POS is nonzero, the result must be positive. */
3395
3396 int
3397 host_integerp (t, pos)
3398 tree t;
3399 int pos;
3400 {
3401 return (TREE_CODE (t) == INTEGER_CST
3402 && ! TREE_OVERFLOW (t)
3403 && ((TREE_INT_CST_HIGH (t) == 0
3404 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3405 || (! pos && TREE_INT_CST_HIGH (t) == -1
3406 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
3407 || (! pos && TREE_INT_CST_HIGH (t) == 0
3408 && TREE_UNSIGNED (TREE_TYPE (t)))));
3409 }
3410
3411 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3412 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3413 be positive. Abort if we cannot satisfy the above conditions. */
3414
3415 HOST_WIDE_INT
3416 tree_low_cst (t, pos)
3417 tree t;
3418 int pos;
3419 {
3420 if (host_integerp (t, pos))
3421 return TREE_INT_CST_LOW (t);
3422 else
3423 abort ();
3424 }
3425
3426 /* Return the most significant bit of the integer constant T. */
3427
3428 int
3429 tree_int_cst_msb (t)
3430 tree t;
3431 {
3432 int prec;
3433 HOST_WIDE_INT h;
3434 unsigned HOST_WIDE_INT l;
3435
3436 /* Note that using TYPE_PRECISION here is wrong. We care about the
3437 actual bits, not the (arbitrary) range of the type. */
3438 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3439 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3440 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3441 return (l & 1) == 1;
3442 }
3443
3444 /* Return an indication of the sign of the integer constant T.
3445 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3446 Note that -1 will never be returned it T's type is unsigned. */
3447
3448 int
3449 tree_int_cst_sgn (t)
3450 tree t;
3451 {
3452 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3453 return 0;
3454 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3455 return 1;
3456 else if (TREE_INT_CST_HIGH (t) < 0)
3457 return -1;
3458 else
3459 return 1;
3460 }
3461
3462 /* Compare two constructor-element-type constants. Return 1 if the lists
3463 are known to be equal; otherwise return 0. */
3464
3465 int
3466 simple_cst_list_equal (l1, l2)
3467 tree l1, l2;
3468 {
3469 while (l1 != NULL_TREE && l2 != NULL_TREE)
3470 {
3471 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3472 return 0;
3473
3474 l1 = TREE_CHAIN (l1);
3475 l2 = TREE_CHAIN (l2);
3476 }
3477
3478 return l1 == l2;
3479 }
3480
3481 /* Return truthvalue of whether T1 is the same tree structure as T2.
3482 Return 1 if they are the same.
3483 Return 0 if they are understandably different.
3484 Return -1 if either contains tree structure not understood by
3485 this function. */
3486
3487 int
3488 simple_cst_equal (t1, t2)
3489 tree t1, t2;
3490 {
3491 enum tree_code code1, code2;
3492 int cmp;
3493 int i;
3494
3495 if (t1 == t2)
3496 return 1;
3497 if (t1 == 0 || t2 == 0)
3498 return 0;
3499
3500 code1 = TREE_CODE (t1);
3501 code2 = TREE_CODE (t2);
3502
3503 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3504 {
3505 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3506 || code2 == NON_LVALUE_EXPR)
3507 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3508 else
3509 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3510 }
3511
3512 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3513 || code2 == NON_LVALUE_EXPR)
3514 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3515
3516 if (code1 != code2)
3517 return 0;
3518
3519 switch (code1)
3520 {
3521 case INTEGER_CST:
3522 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3523 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3524
3525 case REAL_CST:
3526 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3527
3528 case STRING_CST:
3529 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3530 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3531 TREE_STRING_LENGTH (t1)));
3532
3533 case CONSTRUCTOR:
3534 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3535 return 1;
3536 else
3537 abort ();
3538
3539 case SAVE_EXPR:
3540 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3541
3542 case CALL_EXPR:
3543 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3544 if (cmp <= 0)
3545 return cmp;
3546 return
3547 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3548
3549 case TARGET_EXPR:
3550 /* Special case: if either target is an unallocated VAR_DECL,
3551 it means that it's going to be unified with whatever the
3552 TARGET_EXPR is really supposed to initialize, so treat it
3553 as being equivalent to anything. */
3554 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3555 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3556 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3557 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3558 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3559 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3560 cmp = 1;
3561 else
3562 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3563
3564 if (cmp <= 0)
3565 return cmp;
3566
3567 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3568
3569 case WITH_CLEANUP_EXPR:
3570 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3571 if (cmp <= 0)
3572 return cmp;
3573
3574 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3575
3576 case COMPONENT_REF:
3577 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3578 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3579
3580 return 0;
3581
3582 case VAR_DECL:
3583 case PARM_DECL:
3584 case CONST_DECL:
3585 case FUNCTION_DECL:
3586 return 0;
3587
3588 default:
3589 break;
3590 }
3591
3592 /* This general rule works for most tree codes. All exceptions should be
3593 handled above. If this is a language-specific tree code, we can't
3594 trust what might be in the operand, so say we don't know
3595 the situation. */
3596 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3597 return -1;
3598
3599 switch (TREE_CODE_CLASS (code1))
3600 {
3601 case '1':
3602 case '2':
3603 case '<':
3604 case 'e':
3605 case 'r':
3606 case 's':
3607 cmp = 1;
3608 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3609 {
3610 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3611 if (cmp <= 0)
3612 return cmp;
3613 }
3614
3615 return cmp;
3616
3617 default:
3618 return -1;
3619 }
3620 }
3621
3622 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3623 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3624 than U, respectively. */
3625
3626 int
3627 compare_tree_int (t, u)
3628 tree t;
3629 unsigned int u;
3630 {
3631 if (tree_int_cst_sgn (t) < 0)
3632 return -1;
3633 else if (TREE_INT_CST_HIGH (t) != 0)
3634 return 1;
3635 else if (TREE_INT_CST_LOW (t) == u)
3636 return 0;
3637 else if (TREE_INT_CST_LOW (t) < u)
3638 return -1;
3639 else
3640 return 1;
3641 }
3642 \f
3643 /* Constructors for pointer, array and function types.
3644 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3645 constructed by language-dependent code, not here.) */
3646
3647 /* Construct, lay out and return the type of pointers to TO_TYPE.
3648 If such a type has already been constructed, reuse it. */
3649
3650 tree
3651 build_pointer_type (to_type)
3652 tree to_type;
3653 {
3654 tree t = TYPE_POINTER_TO (to_type);
3655
3656 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3657
3658 if (t != 0)
3659 return t;
3660
3661 /* We need a new one. */
3662 t = make_node (POINTER_TYPE);
3663
3664 TREE_TYPE (t) = to_type;
3665
3666 /* Record this type as the pointer to TO_TYPE. */
3667 TYPE_POINTER_TO (to_type) = t;
3668
3669 /* Lay out the type. This function has many callers that are concerned
3670 with expression-construction, and this simplifies them all.
3671 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3672 layout_type (t);
3673
3674 return t;
3675 }
3676
3677 /* Build the node for the type of references-to-TO_TYPE. */
3678
3679 tree
3680 build_reference_type (to_type)
3681 tree to_type;
3682 {
3683 tree t = TYPE_REFERENCE_TO (to_type);
3684
3685 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3686
3687 if (t)
3688 return t;
3689
3690 /* We need a new one. */
3691 t = make_node (REFERENCE_TYPE);
3692
3693 TREE_TYPE (t) = to_type;
3694
3695 /* Record this type as the pointer to TO_TYPE. */
3696 TYPE_REFERENCE_TO (to_type) = t;
3697
3698 layout_type (t);
3699
3700 return t;
3701 }
3702
3703 /* Build a type that is compatible with t but has no cv quals anywhere
3704 in its type, thus
3705
3706 const char *const *const * -> char ***. */
3707
3708 tree
3709 build_type_no_quals (t)
3710 tree t;
3711 {
3712 switch (TREE_CODE (t))
3713 {
3714 case POINTER_TYPE:
3715 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3716 case REFERENCE_TYPE:
3717 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3718 default:
3719 return TYPE_MAIN_VARIANT (t);
3720 }
3721 }
3722
3723 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3724 MAXVAL should be the maximum value in the domain
3725 (one less than the length of the array).
3726
3727 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3728 We don't enforce this limit, that is up to caller (e.g. language front end).
3729 The limit exists because the result is a signed type and we don't handle
3730 sizes that use more than one HOST_WIDE_INT. */
3731
3732 tree
3733 build_index_type (maxval)
3734 tree maxval;
3735 {
3736 tree itype = make_node (INTEGER_TYPE);
3737
3738 TREE_TYPE (itype) = sizetype;
3739 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3740 TYPE_MIN_VALUE (itype) = size_zero_node;
3741 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3742 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3743 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3744 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3745 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3746 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3747
3748 if (host_integerp (maxval, 1))
3749 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3750 else
3751 return itype;
3752 }
3753
3754 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3755 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3756 low bound LOWVAL and high bound HIGHVAL.
3757 if TYPE==NULL_TREE, sizetype is used. */
3758
3759 tree
3760 build_range_type (type, lowval, highval)
3761 tree type, lowval, highval;
3762 {
3763 tree itype = make_node (INTEGER_TYPE);
3764
3765 TREE_TYPE (itype) = type;
3766 if (type == NULL_TREE)
3767 type = sizetype;
3768
3769 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3770 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3771
3772 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3773 TYPE_MODE (itype) = TYPE_MODE (type);
3774 TYPE_SIZE (itype) = TYPE_SIZE (type);
3775 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3776 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3777 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3778
3779 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3780 return type_hash_canon (tree_low_cst (highval, 0)
3781 - tree_low_cst (lowval, 0),
3782 itype);
3783 else
3784 return itype;
3785 }
3786
3787 /* Just like build_index_type, but takes lowval and highval instead
3788 of just highval (maxval). */
3789
3790 tree
3791 build_index_2_type (lowval,highval)
3792 tree lowval, highval;
3793 {
3794 return build_range_type (sizetype, lowval, highval);
3795 }
3796
3797 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
3798 Needed because when index types are not hashed, equal index types
3799 built at different times appear distinct, even though structurally,
3800 they are not. */
3801
3802 int
3803 index_type_equal (itype1, itype2)
3804 tree itype1, itype2;
3805 {
3806 if (TREE_CODE (itype1) != TREE_CODE (itype2))
3807 return 0;
3808
3809 if (TREE_CODE (itype1) == INTEGER_TYPE)
3810 {
3811 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
3812 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
3813 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
3814 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
3815 return 0;
3816
3817 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
3818 TYPE_MIN_VALUE (itype2))
3819 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
3820 TYPE_MAX_VALUE (itype2)))
3821 return 1;
3822 }
3823
3824 return 0;
3825 }
3826
3827 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3828 and number of elements specified by the range of values of INDEX_TYPE.
3829 If such a type has already been constructed, reuse it. */
3830
3831 tree
3832 build_array_type (elt_type, index_type)
3833 tree elt_type, index_type;
3834 {
3835 tree t;
3836 unsigned int hashcode;
3837
3838 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3839 {
3840 error ("arrays of functions are not meaningful");
3841 elt_type = integer_type_node;
3842 }
3843
3844 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3845 build_pointer_type (elt_type);
3846
3847 /* Allocate the array after the pointer type,
3848 in case we free it in type_hash_canon. */
3849 t = make_node (ARRAY_TYPE);
3850 TREE_TYPE (t) = elt_type;
3851 TYPE_DOMAIN (t) = index_type;
3852
3853 if (index_type == 0)
3854 {
3855 return t;
3856 }
3857
3858 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3859 t = type_hash_canon (hashcode, t);
3860
3861 if (!COMPLETE_TYPE_P (t))
3862 layout_type (t);
3863 return t;
3864 }
3865
3866 /* Return the TYPE of the elements comprising
3867 the innermost dimension of ARRAY. */
3868
3869 tree
3870 get_inner_array_type (array)
3871 tree array;
3872 {
3873 tree type = TREE_TYPE (array);
3874
3875 while (TREE_CODE (type) == ARRAY_TYPE)
3876 type = TREE_TYPE (type);
3877
3878 return type;
3879 }
3880
3881 /* Construct, lay out and return
3882 the type of functions returning type VALUE_TYPE
3883 given arguments of types ARG_TYPES.
3884 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3885 are data type nodes for the arguments of the function.
3886 If such a type has already been constructed, reuse it. */
3887
3888 tree
3889 build_function_type (value_type, arg_types)
3890 tree value_type, arg_types;
3891 {
3892 tree t;
3893 unsigned int hashcode;
3894
3895 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3896 {
3897 error ("function return type cannot be function");
3898 value_type = integer_type_node;
3899 }
3900
3901 /* Make a node of the sort we want. */
3902 t = make_node (FUNCTION_TYPE);
3903 TREE_TYPE (t) = value_type;
3904 TYPE_ARG_TYPES (t) = arg_types;
3905
3906 /* If we already have such a type, use the old one and free this one. */
3907 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3908 t = type_hash_canon (hashcode, t);
3909
3910 if (!COMPLETE_TYPE_P (t))
3911 layout_type (t);
3912 return t;
3913 }
3914
3915 /* Construct, lay out and return the type of methods belonging to class
3916 BASETYPE and whose arguments and values are described by TYPE.
3917 If that type exists already, reuse it.
3918 TYPE must be a FUNCTION_TYPE node. */
3919
3920 tree
3921 build_method_type (basetype, type)
3922 tree basetype, type;
3923 {
3924 tree t;
3925 unsigned int hashcode;
3926
3927 /* Make a node of the sort we want. */
3928 t = make_node (METHOD_TYPE);
3929
3930 if (TREE_CODE (type) != FUNCTION_TYPE)
3931 abort ();
3932
3933 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3934 TREE_TYPE (t) = TREE_TYPE (type);
3935
3936 /* The actual arglist for this function includes a "hidden" argument
3937 which is "this". Put it into the list of argument types. */
3938
3939 TYPE_ARG_TYPES (t)
3940 = tree_cons (NULL_TREE,
3941 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3942
3943 /* If we already have such a type, use the old one and free this one. */
3944 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3945 t = type_hash_canon (hashcode, t);
3946
3947 if (!COMPLETE_TYPE_P (t))
3948 layout_type (t);
3949
3950 return t;
3951 }
3952
3953 /* Construct, lay out and return the type of offsets to a value
3954 of type TYPE, within an object of type BASETYPE.
3955 If a suitable offset type exists already, reuse it. */
3956
3957 tree
3958 build_offset_type (basetype, type)
3959 tree basetype, type;
3960 {
3961 tree t;
3962 unsigned int hashcode;
3963
3964 /* Make a node of the sort we want. */
3965 t = make_node (OFFSET_TYPE);
3966
3967 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3968 TREE_TYPE (t) = type;
3969
3970 /* If we already have such a type, use the old one and free this one. */
3971 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3972 t = type_hash_canon (hashcode, t);
3973
3974 if (!COMPLETE_TYPE_P (t))
3975 layout_type (t);
3976
3977 return t;
3978 }
3979
3980 /* Create a complex type whose components are COMPONENT_TYPE. */
3981
3982 tree
3983 build_complex_type (component_type)
3984 tree component_type;
3985 {
3986 tree t;
3987 unsigned int hashcode;
3988
3989 /* Make a node of the sort we want. */
3990 t = make_node (COMPLEX_TYPE);
3991
3992 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3993 set_type_quals (t, TYPE_QUALS (component_type));
3994
3995 /* If we already have such a type, use the old one and free this one. */
3996 hashcode = TYPE_HASH (component_type);
3997 t = type_hash_canon (hashcode, t);
3998
3999 if (!COMPLETE_TYPE_P (t))
4000 layout_type (t);
4001
4002 /* If we are writing Dwarf2 output we need to create a name,
4003 since complex is a fundamental type. */
4004 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
4005 && ! TYPE_NAME (t))
4006 {
4007 const char *name;
4008 if (component_type == char_type_node)
4009 name = "complex char";
4010 else if (component_type == signed_char_type_node)
4011 name = "complex signed char";
4012 else if (component_type == unsigned_char_type_node)
4013 name = "complex unsigned char";
4014 else if (component_type == short_integer_type_node)
4015 name = "complex short int";
4016 else if (component_type == short_unsigned_type_node)
4017 name = "complex short unsigned int";
4018 else if (component_type == integer_type_node)
4019 name = "complex int";
4020 else if (component_type == unsigned_type_node)
4021 name = "complex unsigned int";
4022 else if (component_type == long_integer_type_node)
4023 name = "complex long int";
4024 else if (component_type == long_unsigned_type_node)
4025 name = "complex long unsigned int";
4026 else if (component_type == long_long_integer_type_node)
4027 name = "complex long long int";
4028 else if (component_type == long_long_unsigned_type_node)
4029 name = "complex long long unsigned int";
4030 else
4031 name = 0;
4032
4033 if (name != 0)
4034 TYPE_NAME (t) = get_identifier (name);
4035 }
4036
4037 return t;
4038 }
4039 \f
4040 /* Return OP, stripped of any conversions to wider types as much as is safe.
4041 Converting the value back to OP's type makes a value equivalent to OP.
4042
4043 If FOR_TYPE is nonzero, we return a value which, if converted to
4044 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4045
4046 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4047 narrowest type that can hold the value, even if they don't exactly fit.
4048 Otherwise, bit-field references are changed to a narrower type
4049 only if they can be fetched directly from memory in that type.
4050
4051 OP must have integer, real or enumeral type. Pointers are not allowed!
4052
4053 There are some cases where the obvious value we could return
4054 would regenerate to OP if converted to OP's type,
4055 but would not extend like OP to wider types.
4056 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4057 For example, if OP is (unsigned short)(signed char)-1,
4058 we avoid returning (signed char)-1 if FOR_TYPE is int,
4059 even though extending that to an unsigned short would regenerate OP,
4060 since the result of extending (signed char)-1 to (int)
4061 is different from (int) OP. */
4062
4063 tree
4064 get_unwidened (op, for_type)
4065 tree op;
4066 tree for_type;
4067 {
4068 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4069 tree type = TREE_TYPE (op);
4070 unsigned final_prec
4071 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4072 int uns
4073 = (for_type != 0 && for_type != type
4074 && final_prec > TYPE_PRECISION (type)
4075 && TREE_UNSIGNED (type));
4076 tree win = op;
4077
4078 while (TREE_CODE (op) == NOP_EXPR)
4079 {
4080 int bitschange
4081 = TYPE_PRECISION (TREE_TYPE (op))
4082 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4083
4084 /* Truncations are many-one so cannot be removed.
4085 Unless we are later going to truncate down even farther. */
4086 if (bitschange < 0
4087 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4088 break;
4089
4090 /* See what's inside this conversion. If we decide to strip it,
4091 we will set WIN. */
4092 op = TREE_OPERAND (op, 0);
4093
4094 /* If we have not stripped any zero-extensions (uns is 0),
4095 we can strip any kind of extension.
4096 If we have previously stripped a zero-extension,
4097 only zero-extensions can safely be stripped.
4098 Any extension can be stripped if the bits it would produce
4099 are all going to be discarded later by truncating to FOR_TYPE. */
4100
4101 if (bitschange > 0)
4102 {
4103 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4104 win = op;
4105 /* TREE_UNSIGNED says whether this is a zero-extension.
4106 Let's avoid computing it if it does not affect WIN
4107 and if UNS will not be needed again. */
4108 if ((uns || TREE_CODE (op) == NOP_EXPR)
4109 && TREE_UNSIGNED (TREE_TYPE (op)))
4110 {
4111 uns = 1;
4112 win = op;
4113 }
4114 }
4115 }
4116
4117 if (TREE_CODE (op) == COMPONENT_REF
4118 /* Since type_for_size always gives an integer type. */
4119 && TREE_CODE (type) != REAL_TYPE
4120 /* Don't crash if field not laid out yet. */
4121 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4122 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4123 {
4124 unsigned int innerprec
4125 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4126
4127 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4128
4129 /* We can get this structure field in the narrowest type it fits in.
4130 If FOR_TYPE is 0, do this only for a field that matches the
4131 narrower type exactly and is aligned for it
4132 The resulting extension to its nominal type (a fullword type)
4133 must fit the same conditions as for other extensions. */
4134
4135 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4136 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4137 && (! uns || final_prec <= innerprec
4138 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4139 && type != 0)
4140 {
4141 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4142 TREE_OPERAND (op, 1));
4143 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4144 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4145 }
4146 }
4147
4148 return win;
4149 }
4150 \f
4151 /* Return OP or a simpler expression for a narrower value
4152 which can be sign-extended or zero-extended to give back OP.
4153 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4154 or 0 if the value should be sign-extended. */
4155
4156 tree
4157 get_narrower (op, unsignedp_ptr)
4158 tree op;
4159 int *unsignedp_ptr;
4160 {
4161 int uns = 0;
4162 int first = 1;
4163 tree win = op;
4164
4165 while (TREE_CODE (op) == NOP_EXPR)
4166 {
4167 int bitschange
4168 = (TYPE_PRECISION (TREE_TYPE (op))
4169 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4170
4171 /* Truncations are many-one so cannot be removed. */
4172 if (bitschange < 0)
4173 break;
4174
4175 /* See what's inside this conversion. If we decide to strip it,
4176 we will set WIN. */
4177 op = TREE_OPERAND (op, 0);
4178
4179 if (bitschange > 0)
4180 {
4181 /* An extension: the outermost one can be stripped,
4182 but remember whether it is zero or sign extension. */
4183 if (first)
4184 uns = TREE_UNSIGNED (TREE_TYPE (op));
4185 /* Otherwise, if a sign extension has been stripped,
4186 only sign extensions can now be stripped;
4187 if a zero extension has been stripped, only zero-extensions. */
4188 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4189 break;
4190 first = 0;
4191 }
4192 else /* bitschange == 0 */
4193 {
4194 /* A change in nominal type can always be stripped, but we must
4195 preserve the unsignedness. */
4196 if (first)
4197 uns = TREE_UNSIGNED (TREE_TYPE (op));
4198 first = 0;
4199 }
4200
4201 win = op;
4202 }
4203
4204 if (TREE_CODE (op) == COMPONENT_REF
4205 /* Since type_for_size always gives an integer type. */
4206 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4207 /* Ensure field is laid out already. */
4208 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4209 {
4210 unsigned HOST_WIDE_INT innerprec
4211 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4212 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4213
4214 /* We can get this structure field in a narrower type that fits it,
4215 but the resulting extension to its nominal type (a fullword type)
4216 must satisfy the same conditions as for other extensions.
4217
4218 Do this only for fields that are aligned (not bit-fields),
4219 because when bit-field insns will be used there is no
4220 advantage in doing this. */
4221
4222 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4223 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4224 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4225 && type != 0)
4226 {
4227 if (first)
4228 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4229 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4230 TREE_OPERAND (op, 1));
4231 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4232 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4233 }
4234 }
4235 *unsignedp_ptr = uns;
4236 return win;
4237 }
4238 \f
4239 /* Nonzero if integer constant C has a value that is permissible
4240 for type TYPE (an INTEGER_TYPE). */
4241
4242 int
4243 int_fits_type_p (c, type)
4244 tree c, type;
4245 {
4246 /* If the bounds of the type are integers, we can check ourselves.
4247 Otherwise,. use force_fit_type, which checks against the precision. */
4248 if (TYPE_MAX_VALUE (type) != NULL_TREE
4249 && TYPE_MIN_VALUE (type) != NULL_TREE
4250 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4251 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
4252 {
4253 if (TREE_UNSIGNED (type))
4254 return (! INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
4255 && ! INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
4256 /* Negative ints never fit unsigned types. */
4257 && ! (TREE_INT_CST_HIGH (c) < 0
4258 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4259 else
4260 return (! INT_CST_LT (TYPE_MAX_VALUE (type), c)
4261 && ! INT_CST_LT (c, TYPE_MIN_VALUE (type))
4262 /* Unsigned ints with top bit set never fit signed types. */
4263 && ! (TREE_INT_CST_HIGH (c) < 0
4264 && TREE_UNSIGNED (TREE_TYPE (c))));
4265 }
4266 else
4267 {
4268 c = copy_node (c);
4269 TREE_TYPE (c) = type;
4270 return !force_fit_type (c, 0);
4271 }
4272 }
4273
4274 /* Given a DECL or TYPE, return the scope in which it was declared, or
4275 NULL_TREE if there is no containing scope. */
4276
4277 tree
4278 get_containing_scope (t)
4279 tree t;
4280 {
4281 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4282 }
4283
4284 /* Return the innermost context enclosing DECL that is
4285 a FUNCTION_DECL, or zero if none. */
4286
4287 tree
4288 decl_function_context (decl)
4289 tree decl;
4290 {
4291 tree context;
4292
4293 if (TREE_CODE (decl) == ERROR_MARK)
4294 return 0;
4295
4296 if (TREE_CODE (decl) == SAVE_EXPR)
4297 context = SAVE_EXPR_CONTEXT (decl);
4298
4299 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4300 where we look up the function at runtime. Such functions always take
4301 a first argument of type 'pointer to real context'.
4302
4303 C++ should really be fixed to use DECL_CONTEXT for the real context,
4304 and use something else for the "virtual context". */
4305 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4306 context
4307 = TYPE_MAIN_VARIANT
4308 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4309 else
4310 context = DECL_CONTEXT (decl);
4311
4312 while (context && TREE_CODE (context) != FUNCTION_DECL)
4313 {
4314 if (TREE_CODE (context) == BLOCK)
4315 context = BLOCK_SUPERCONTEXT (context);
4316 else
4317 context = get_containing_scope (context);
4318 }
4319
4320 return context;
4321 }
4322
4323 /* Return the innermost context enclosing DECL that is
4324 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4325 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4326
4327 tree
4328 decl_type_context (decl)
4329 tree decl;
4330 {
4331 tree context = DECL_CONTEXT (decl);
4332
4333 while (context)
4334 {
4335 if (TREE_CODE (context) == RECORD_TYPE
4336 || TREE_CODE (context) == UNION_TYPE
4337 || TREE_CODE (context) == QUAL_UNION_TYPE)
4338 return context;
4339
4340 if (TREE_CODE (context) == TYPE_DECL
4341 || TREE_CODE (context) == FUNCTION_DECL)
4342 context = DECL_CONTEXT (context);
4343
4344 else if (TREE_CODE (context) == BLOCK)
4345 context = BLOCK_SUPERCONTEXT (context);
4346
4347 else
4348 /* Unhandled CONTEXT!? */
4349 abort ();
4350 }
4351 return NULL_TREE;
4352 }
4353
4354 /* CALL is a CALL_EXPR. Return the declaration for the function
4355 called, or NULL_TREE if the called function cannot be
4356 determined. */
4357
4358 tree
4359 get_callee_fndecl (call)
4360 tree call;
4361 {
4362 tree addr;
4363
4364 /* It's invalid to call this function with anything but a
4365 CALL_EXPR. */
4366 if (TREE_CODE (call) != CALL_EXPR)
4367 abort ();
4368
4369 /* The first operand to the CALL is the address of the function
4370 called. */
4371 addr = TREE_OPERAND (call, 0);
4372
4373 STRIP_NOPS (addr);
4374
4375 /* If this is a readonly function pointer, extract its initial value. */
4376 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4377 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4378 && DECL_INITIAL (addr))
4379 addr = DECL_INITIAL (addr);
4380
4381 /* If the address is just `&f' for some function `f', then we know
4382 that `f' is being called. */
4383 if (TREE_CODE (addr) == ADDR_EXPR
4384 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4385 return TREE_OPERAND (addr, 0);
4386
4387 /* We couldn't figure out what was being called. */
4388 return NULL_TREE;
4389 }
4390
4391 /* Print debugging information about the obstack O, named STR. */
4392
4393 void
4394 print_obstack_statistics (str, o)
4395 const char *str;
4396 struct obstack *o;
4397 {
4398 struct _obstack_chunk *chunk = o->chunk;
4399 int n_chunks = 1;
4400 int n_alloc = 0;
4401
4402 n_alloc += o->next_free - chunk->contents;
4403 chunk = chunk->prev;
4404 while (chunk)
4405 {
4406 n_chunks += 1;
4407 n_alloc += chunk->limit - &chunk->contents[0];
4408 chunk = chunk->prev;
4409 }
4410 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4411 str, n_alloc, n_chunks);
4412 }
4413
4414 /* Print debugging information about tree nodes generated during the compile,
4415 and any language-specific information. */
4416
4417 void
4418 dump_tree_statistics ()
4419 {
4420 #ifdef GATHER_STATISTICS
4421 int i;
4422 int total_nodes, total_bytes;
4423 #endif
4424
4425 fprintf (stderr, "\n??? tree nodes created\n\n");
4426 #ifdef GATHER_STATISTICS
4427 fprintf (stderr, "Kind Nodes Bytes\n");
4428 fprintf (stderr, "-------------------------------------\n");
4429 total_nodes = total_bytes = 0;
4430 for (i = 0; i < (int) all_kinds; i++)
4431 {
4432 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4433 tree_node_counts[i], tree_node_sizes[i]);
4434 total_nodes += tree_node_counts[i];
4435 total_bytes += tree_node_sizes[i];
4436 }
4437 fprintf (stderr, "-------------------------------------\n");
4438 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4439 fprintf (stderr, "-------------------------------------\n");
4440 #else
4441 fprintf (stderr, "(No per-node statistics)\n");
4442 #endif
4443 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4444 print_type_hash_statistics ();
4445 (*lang_hooks.print_statistics) ();
4446 }
4447 \f
4448 #define FILE_FUNCTION_PREFIX_LEN 9
4449
4450 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4451
4452 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4453 clashes in cases where we can't reliably choose a unique name.
4454
4455 Derived from mkstemp.c in libiberty. */
4456
4457 static void
4458 append_random_chars (template)
4459 char *template;
4460 {
4461 static const char letters[]
4462 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4463 static unsigned HOST_WIDE_INT value;
4464 unsigned HOST_WIDE_INT v;
4465
4466 if (! value)
4467 {
4468 struct stat st;
4469
4470 /* VALUE should be unique for each file and must not change between
4471 compiles since this can cause bootstrap comparison errors. */
4472
4473 if (stat (main_input_filename, &st) < 0)
4474 abort ();
4475
4476 /* In VMS, ino is an array, so we have to use both values. We
4477 conditionalize that. */
4478 #ifdef VMS
4479 #define INO_TO_INT(INO) ((int) (INO)[1] << 16 ^ (int) (INO)[2])
4480 #else
4481 #define INO_TO_INT(INO) INO
4482 #endif
4483 value = st.st_dev ^ INO_TO_INT (st.st_ino) ^ st.st_mtime;
4484 }
4485
4486 template += strlen (template);
4487
4488 v = value;
4489
4490 /* Fill in the random bits. */
4491 template[0] = letters[v % 62];
4492 v /= 62;
4493 template[1] = letters[v % 62];
4494 v /= 62;
4495 template[2] = letters[v % 62];
4496 v /= 62;
4497 template[3] = letters[v % 62];
4498 v /= 62;
4499 template[4] = letters[v % 62];
4500 v /= 62;
4501 template[5] = letters[v % 62];
4502
4503 template[6] = '\0';
4504 }
4505
4506 /* P is a string that will be used in a symbol. Mask out any characters
4507 that are not valid in that context. */
4508
4509 void
4510 clean_symbol_name (p)
4511 char *p;
4512 {
4513 for (; *p; p++)
4514 if (! (ISALNUM (*p)
4515 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4516 || *p == '$'
4517 #endif
4518 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4519 || *p == '.'
4520 #endif
4521 ))
4522 *p = '_';
4523 }
4524
4525 /* Generate a name for a function unique to this translation unit.
4526 TYPE is some string to identify the purpose of this function to the
4527 linker or collect2. */
4528
4529 tree
4530 get_file_function_name_long (type)
4531 const char *type;
4532 {
4533 char *buf;
4534 const char *p;
4535 char *q;
4536
4537 if (first_global_object_name)
4538 p = first_global_object_name;
4539 else
4540 {
4541 /* We don't have anything that we know to be unique to this translation
4542 unit, so use what we do have and throw in some randomness. */
4543
4544 const char *name = weak_global_object_name;
4545 const char *file = main_input_filename;
4546
4547 if (! name)
4548 name = "";
4549 if (! file)
4550 file = input_filename;
4551
4552 q = (char *) alloca (7 + strlen (name) + strlen (file));
4553
4554 sprintf (q, "%s%s", name, file);
4555 append_random_chars (q);
4556 p = q;
4557 }
4558
4559 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4560 + strlen (type));
4561
4562 /* Set up the name of the file-level functions we may need.
4563 Use a global object (which is already required to be unique over
4564 the program) rather than the file name (which imposes extra
4565 constraints). */
4566 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4567
4568 /* Don't need to pull weird characters out of global names. */
4569 if (p != first_global_object_name)
4570 clean_symbol_name (buf + 11);
4571
4572 return get_identifier (buf);
4573 }
4574
4575 /* If KIND=='I', return a suitable global initializer (constructor) name.
4576 If KIND=='D', return a suitable global clean-up (destructor) name. */
4577
4578 tree
4579 get_file_function_name (kind)
4580 int kind;
4581 {
4582 char p[2];
4583
4584 p[0] = kind;
4585 p[1] = 0;
4586
4587 return get_file_function_name_long (p);
4588 }
4589 \f
4590 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4591 The result is placed in BUFFER (which has length BIT_SIZE),
4592 with one bit in each char ('\000' or '\001').
4593
4594 If the constructor is constant, NULL_TREE is returned.
4595 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4596
4597 tree
4598 get_set_constructor_bits (init, buffer, bit_size)
4599 tree init;
4600 char *buffer;
4601 int bit_size;
4602 {
4603 int i;
4604 tree vals;
4605 HOST_WIDE_INT domain_min
4606 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4607 tree non_const_bits = NULL_TREE;
4608
4609 for (i = 0; i < bit_size; i++)
4610 buffer[i] = 0;
4611
4612 for (vals = TREE_OPERAND (init, 1);
4613 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4614 {
4615 if (!host_integerp (TREE_VALUE (vals), 0)
4616 || (TREE_PURPOSE (vals) != NULL_TREE
4617 && !host_integerp (TREE_PURPOSE (vals), 0)))
4618 non_const_bits
4619 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4620 else if (TREE_PURPOSE (vals) != NULL_TREE)
4621 {
4622 /* Set a range of bits to ones. */
4623 HOST_WIDE_INT lo_index
4624 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4625 HOST_WIDE_INT hi_index
4626 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4627
4628 if (lo_index < 0 || lo_index >= bit_size
4629 || hi_index < 0 || hi_index >= bit_size)
4630 abort ();
4631 for (; lo_index <= hi_index; lo_index++)
4632 buffer[lo_index] = 1;
4633 }
4634 else
4635 {
4636 /* Set a single bit to one. */
4637 HOST_WIDE_INT index
4638 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4639 if (index < 0 || index >= bit_size)
4640 {
4641 error ("invalid initializer for bit string");
4642 return NULL_TREE;
4643 }
4644 buffer[index] = 1;
4645 }
4646 }
4647 return non_const_bits;
4648 }
4649
4650 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4651 The result is placed in BUFFER (which is an array of bytes).
4652 If the constructor is constant, NULL_TREE is returned.
4653 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4654
4655 tree
4656 get_set_constructor_bytes (init, buffer, wd_size)
4657 tree init;
4658 unsigned char *buffer;
4659 int wd_size;
4660 {
4661 int i;
4662 int set_word_size = BITS_PER_UNIT;
4663 int bit_size = wd_size * set_word_size;
4664 int bit_pos = 0;
4665 unsigned char *bytep = buffer;
4666 char *bit_buffer = (char *) alloca (bit_size);
4667 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4668
4669 for (i = 0; i < wd_size; i++)
4670 buffer[i] = 0;
4671
4672 for (i = 0; i < bit_size; i++)
4673 {
4674 if (bit_buffer[i])
4675 {
4676 if (BYTES_BIG_ENDIAN)
4677 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4678 else
4679 *bytep |= 1 << bit_pos;
4680 }
4681 bit_pos++;
4682 if (bit_pos >= set_word_size)
4683 bit_pos = 0, bytep++;
4684 }
4685 return non_const_bits;
4686 }
4687 \f
4688 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4689 /* Complain that the tree code of NODE does not match the expected CODE.
4690 FILE, LINE, and FUNCTION are of the caller. */
4691
4692 void
4693 tree_check_failed (node, code, file, line, function)
4694 const tree node;
4695 enum tree_code code;
4696 const char *file;
4697 int line;
4698 const char *function;
4699 {
4700 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4701 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4702 function, trim_filename (file), line);
4703 }
4704
4705 /* Similar to above, except that we check for a class of tree
4706 code, given in CL. */
4707
4708 void
4709 tree_class_check_failed (node, cl, file, line, function)
4710 const tree node;
4711 int cl;
4712 const char *file;
4713 int line;
4714 const char *function;
4715 {
4716 internal_error
4717 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4718 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4719 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4720 }
4721
4722 #endif /* ENABLE_TREE_CHECKING */
4723 \f
4724 /* For a new vector type node T, build the information necessary for
4725 debuggint output. */
4726
4727 static void
4728 finish_vector_type (t)
4729 tree t;
4730 {
4731 layout_type (t);
4732
4733 {
4734 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4735 tree array = build_array_type (TREE_TYPE (t),
4736 build_index_type (index));
4737 tree rt = make_node (RECORD_TYPE);
4738
4739 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4740 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4741 layout_type (rt);
4742 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4743 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4744 the representation type, and we want to find that die when looking up
4745 the vector type. This is most easily achieved by making the TYPE_UID
4746 numbers equal. */
4747 TYPE_UID (rt) = TYPE_UID (t);
4748 }
4749 }
4750
4751 /* Create nodes for all integer types (and error_mark_node) using the sizes
4752 of C datatypes. The caller should call set_sizetype soon after calling
4753 this function to select one of the types as sizetype. */
4754
4755 void
4756 build_common_tree_nodes (signed_char)
4757 int signed_char;
4758 {
4759 error_mark_node = make_node (ERROR_MARK);
4760 TREE_TYPE (error_mark_node) = error_mark_node;
4761
4762 initialize_sizetypes ();
4763
4764 /* Define both `signed char' and `unsigned char'. */
4765 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4766 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4767
4768 /* Define `char', which is like either `signed char' or `unsigned char'
4769 but not the same as either. */
4770 char_type_node
4771 = (signed_char
4772 ? make_signed_type (CHAR_TYPE_SIZE)
4773 : make_unsigned_type (CHAR_TYPE_SIZE));
4774
4775 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4776 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4777 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4778 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4779 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4780 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4781 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4782 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4783
4784 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4785 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4786 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4787 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4788 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4789
4790 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4791 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4792 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4793 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4794 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4795 }
4796
4797 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4798 It will create several other common tree nodes. */
4799
4800 void
4801 build_common_tree_nodes_2 (short_double)
4802 int short_double;
4803 {
4804 /* Define these next since types below may used them. */
4805 integer_zero_node = build_int_2 (0, 0);
4806 integer_one_node = build_int_2 (1, 0);
4807 integer_minus_one_node = build_int_2 (-1, -1);
4808
4809 size_zero_node = size_int (0);
4810 size_one_node = size_int (1);
4811 bitsize_zero_node = bitsize_int (0);
4812 bitsize_one_node = bitsize_int (1);
4813 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4814
4815 void_type_node = make_node (VOID_TYPE);
4816 layout_type (void_type_node);
4817
4818 /* We are not going to have real types in C with less than byte alignment,
4819 so we might as well not have any types that claim to have it. */
4820 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4821 TYPE_USER_ALIGN (void_type_node) = 0;
4822
4823 null_pointer_node = build_int_2 (0, 0);
4824 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4825 layout_type (TREE_TYPE (null_pointer_node));
4826
4827 ptr_type_node = build_pointer_type (void_type_node);
4828 const_ptr_type_node
4829 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4830
4831 float_type_node = make_node (REAL_TYPE);
4832 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4833 layout_type (float_type_node);
4834
4835 double_type_node = make_node (REAL_TYPE);
4836 if (short_double)
4837 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4838 else
4839 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4840 layout_type (double_type_node);
4841
4842 long_double_type_node = make_node (REAL_TYPE);
4843 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4844 layout_type (long_double_type_node);
4845
4846 complex_integer_type_node = make_node (COMPLEX_TYPE);
4847 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4848 layout_type (complex_integer_type_node);
4849
4850 complex_float_type_node = make_node (COMPLEX_TYPE);
4851 TREE_TYPE (complex_float_type_node) = float_type_node;
4852 layout_type (complex_float_type_node);
4853
4854 complex_double_type_node = make_node (COMPLEX_TYPE);
4855 TREE_TYPE (complex_double_type_node) = double_type_node;
4856 layout_type (complex_double_type_node);
4857
4858 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4859 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4860 layout_type (complex_long_double_type_node);
4861
4862 {
4863 tree t;
4864 BUILD_VA_LIST_TYPE (t);
4865
4866 /* Many back-ends define record types without seting TYPE_NAME.
4867 If we copied the record type here, we'd keep the original
4868 record type without a name. This breaks name mangling. So,
4869 don't copy record types and let c_common_nodes_and_builtins()
4870 declare the type to be __builtin_va_list. */
4871 if (TREE_CODE (t) != RECORD_TYPE)
4872 t = build_type_copy (t);
4873
4874 va_list_type_node = t;
4875 }
4876
4877 V4SF_type_node = make_node (VECTOR_TYPE);
4878 TREE_TYPE (V4SF_type_node) = float_type_node;
4879 TYPE_MODE (V4SF_type_node) = V4SFmode;
4880 finish_vector_type (V4SF_type_node);
4881
4882 V4SI_type_node = make_node (VECTOR_TYPE);
4883 TREE_TYPE (V4SI_type_node) = intSI_type_node;
4884 TYPE_MODE (V4SI_type_node) = V4SImode;
4885 finish_vector_type (V4SI_type_node);
4886
4887 V2SI_type_node = make_node (VECTOR_TYPE);
4888 TREE_TYPE (V2SI_type_node) = intSI_type_node;
4889 TYPE_MODE (V2SI_type_node) = V2SImode;
4890 finish_vector_type (V2SI_type_node);
4891
4892 V4HI_type_node = make_node (VECTOR_TYPE);
4893 TREE_TYPE (V4HI_type_node) = intHI_type_node;
4894 TYPE_MODE (V4HI_type_node) = V4HImode;
4895 finish_vector_type (V4HI_type_node);
4896
4897 V8QI_type_node = make_node (VECTOR_TYPE);
4898 TREE_TYPE (V8QI_type_node) = intQI_type_node;
4899 TYPE_MODE (V8QI_type_node) = V8QImode;
4900 finish_vector_type (V8QI_type_node);
4901
4902 V8HI_type_node = make_node (VECTOR_TYPE);
4903 TREE_TYPE (V8HI_type_node) = intHI_type_node;
4904 TYPE_MODE (V8HI_type_node) = V8HImode;
4905 finish_vector_type (V8HI_type_node);
4906
4907 V2SF_type_node = make_node (VECTOR_TYPE);
4908 TREE_TYPE (V2SF_type_node) = float_type_node;
4909 TYPE_MODE (V2SF_type_node) = V2SFmode;
4910 finish_vector_type (V2SF_type_node);
4911
4912 V16QI_type_node = make_node (VECTOR_TYPE);
4913 TREE_TYPE (V16QI_type_node) = intQI_type_node;
4914 TYPE_MODE (V16QI_type_node) = V16QImode;
4915 finish_vector_type (V16QI_type_node);
4916 }