inclhack.def (hpux_imaginary_i): Remove spaces.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-inline.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-flow.h"
52 #include "params.h"
53 #include "pointer-set.h"
54 #include "fixed-value.h"
55
56 /* Tree code classes. */
57
58 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
59 #define END_OF_BASE_TREE_CODES tcc_exceptional,
60
61 const enum tree_code_class tree_code_type[] = {
62 #include "all-tree.def"
63 };
64
65 #undef DEFTREECODE
66 #undef END_OF_BASE_TREE_CODES
67
68 /* Table indexed by tree code giving number of expression
69 operands beyond the fixed part of the node structure.
70 Not used for types or decls. */
71
72 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
73 #define END_OF_BASE_TREE_CODES 0,
74
75 const unsigned char tree_code_length[] = {
76 #include "all-tree.def"
77 };
78
79 #undef DEFTREECODE
80 #undef END_OF_BASE_TREE_CODES
81
82 /* Names of tree components.
83 Used for printing out the tree and error messages. */
84 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
85 #define END_OF_BASE_TREE_CODES "@dummy",
86
87 const char *const tree_code_name[] = {
88 #include "all-tree.def"
89 };
90
91 #undef DEFTREECODE
92 #undef END_OF_BASE_TREE_CODES
93
94 /* Each tree code class has an associated string representation.
95 These must correspond to the tree_code_class entries. */
96
97 const char *const tree_code_class_strings[] =
98 {
99 "exceptional",
100 "constant",
101 "type",
102 "declaration",
103 "reference",
104 "comparison",
105 "unary",
106 "binary",
107 "statement",
108 "vl_exp",
109 "expression"
110 };
111
112 /* obstack.[ch] explicitly declined to prototype this. */
113 extern int _obstack_allocated_p (struct obstack *h, void *obj);
114
115 #ifdef GATHER_STATISTICS
116 /* Statistics-gathering stuff. */
117
118 int tree_node_counts[(int) all_kinds];
119 int tree_node_sizes[(int) all_kinds];
120
121 /* Keep in sync with tree.h:enum tree_node_kind. */
122 static const char * const tree_node_kind_names[] = {
123 "decls",
124 "types",
125 "blocks",
126 "stmts",
127 "refs",
128 "exprs",
129 "constants",
130 "identifiers",
131 "perm_tree_lists",
132 "temp_tree_lists",
133 "vecs",
134 "binfos",
135 "ssa names",
136 "constructors",
137 "random kinds",
138 "lang_decl kinds",
139 "lang_type kinds",
140 "omp clauses",
141 };
142 #endif /* GATHER_STATISTICS */
143
144 /* Unique id for next decl created. */
145 static GTY(()) int next_decl_uid;
146 /* Unique id for next type created. */
147 static GTY(()) int next_type_uid = 1;
148
149 /* Since we cannot rehash a type after it is in the table, we have to
150 keep the hash code. */
151
152 struct GTY(()) type_hash {
153 unsigned long hash;
154 tree type;
155 };
156
157 /* Initial size of the hash table (rounded to next prime). */
158 #define TYPE_HASH_INITIAL_SIZE 1000
159
160 /* Now here is the hash table. When recording a type, it is added to
161 the slot whose index is the hash code. Note that the hash table is
162 used for several kinds of types (function types, array types and
163 array index range types, for now). While all these live in the
164 same table, they are completely independent, and the hash code is
165 computed differently for each of these. */
166
167 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
168 htab_t type_hash_table;
169
170 /* Hash table and temporary node for larger integer const values. */
171 static GTY (()) tree int_cst_node;
172 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
173 htab_t int_cst_hash_table;
174
175 /* Hash table for optimization flags and target option flags. Use the same
176 hash table for both sets of options. Nodes for building the current
177 optimization and target option nodes. The assumption is most of the time
178 the options created will already be in the hash table, so we avoid
179 allocating and freeing up a node repeatably. */
180 static GTY (()) tree cl_optimization_node;
181 static GTY (()) tree cl_target_option_node;
182 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
183 htab_t cl_option_hash_table;
184
185 /* General tree->tree mapping structure for use in hash tables. */
186
187
188 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
189 htab_t debug_expr_for_decl;
190
191 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
192 htab_t value_expr_for_decl;
193
194 static GTY ((if_marked ("tree_priority_map_marked_p"),
195 param_is (struct tree_priority_map)))
196 htab_t init_priority_for_decl;
197
198 static void set_type_quals (tree, int);
199 static int type_hash_eq (const void *, const void *);
200 static hashval_t type_hash_hash (const void *);
201 static hashval_t int_cst_hash_hash (const void *);
202 static int int_cst_hash_eq (const void *, const void *);
203 static hashval_t cl_option_hash_hash (const void *);
204 static int cl_option_hash_eq (const void *, const void *);
205 static void print_type_hash_statistics (void);
206 static void print_debug_expr_statistics (void);
207 static void print_value_expr_statistics (void);
208 static int type_hash_marked_p (const void *);
209 static unsigned int type_hash_list (const_tree, hashval_t);
210 static unsigned int attribute_hash_list (const_tree, hashval_t);
211
212 tree global_trees[TI_MAX];
213 tree integer_types[itk_none];
214
215 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
216
217 /* Number of operands for each OpenMP clause. */
218 unsigned const char omp_clause_num_ops[] =
219 {
220 0, /* OMP_CLAUSE_ERROR */
221 1, /* OMP_CLAUSE_PRIVATE */
222 1, /* OMP_CLAUSE_SHARED */
223 1, /* OMP_CLAUSE_FIRSTPRIVATE */
224 2, /* OMP_CLAUSE_LASTPRIVATE */
225 4, /* OMP_CLAUSE_REDUCTION */
226 1, /* OMP_CLAUSE_COPYIN */
227 1, /* OMP_CLAUSE_COPYPRIVATE */
228 1, /* OMP_CLAUSE_IF */
229 1, /* OMP_CLAUSE_NUM_THREADS */
230 1, /* OMP_CLAUSE_SCHEDULE */
231 0, /* OMP_CLAUSE_NOWAIT */
232 0, /* OMP_CLAUSE_ORDERED */
233 0, /* OMP_CLAUSE_DEFAULT */
234 3, /* OMP_CLAUSE_COLLAPSE */
235 0 /* OMP_CLAUSE_UNTIED */
236 };
237
238 const char * const omp_clause_code_name[] =
239 {
240 "error_clause",
241 "private",
242 "shared",
243 "firstprivate",
244 "lastprivate",
245 "reduction",
246 "copyin",
247 "copyprivate",
248 "if",
249 "num_threads",
250 "schedule",
251 "nowait",
252 "ordered",
253 "default",
254 "collapse",
255 "untied"
256 };
257
258
259 /* Return the tree node structure used by tree code CODE. */
260
261 static inline enum tree_node_structure_enum
262 tree_node_structure_for_code (enum tree_code code)
263 {
264 switch (TREE_CODE_CLASS (code))
265 {
266 case tcc_declaration:
267 {
268 switch (code)
269 {
270 case FIELD_DECL:
271 return TS_FIELD_DECL;
272 case PARM_DECL:
273 return TS_PARM_DECL;
274 case VAR_DECL:
275 return TS_VAR_DECL;
276 case LABEL_DECL:
277 return TS_LABEL_DECL;
278 case RESULT_DECL:
279 return TS_RESULT_DECL;
280 case CONST_DECL:
281 return TS_CONST_DECL;
282 case TYPE_DECL:
283 return TS_TYPE_DECL;
284 case FUNCTION_DECL:
285 return TS_FUNCTION_DECL;
286 default:
287 return TS_DECL_NON_COMMON;
288 }
289 }
290 case tcc_type:
291 return TS_TYPE;
292 case tcc_reference:
293 case tcc_comparison:
294 case tcc_unary:
295 case tcc_binary:
296 case tcc_expression:
297 case tcc_statement:
298 case tcc_vl_exp:
299 return TS_EXP;
300 default: /* tcc_constant and tcc_exceptional */
301 break;
302 }
303 switch (code)
304 {
305 /* tcc_constant cases. */
306 case INTEGER_CST: return TS_INT_CST;
307 case REAL_CST: return TS_REAL_CST;
308 case FIXED_CST: return TS_FIXED_CST;
309 case COMPLEX_CST: return TS_COMPLEX;
310 case VECTOR_CST: return TS_VECTOR;
311 case STRING_CST: return TS_STRING;
312 /* tcc_exceptional cases. */
313 case ERROR_MARK: return TS_COMMON;
314 case IDENTIFIER_NODE: return TS_IDENTIFIER;
315 case TREE_LIST: return TS_LIST;
316 case TREE_VEC: return TS_VEC;
317 case SSA_NAME: return TS_SSA_NAME;
318 case PLACEHOLDER_EXPR: return TS_COMMON;
319 case STATEMENT_LIST: return TS_STATEMENT_LIST;
320 case BLOCK: return TS_BLOCK;
321 case CONSTRUCTOR: return TS_CONSTRUCTOR;
322 case TREE_BINFO: return TS_BINFO;
323 case OMP_CLAUSE: return TS_OMP_CLAUSE;
324 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
325 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
326
327 default:
328 gcc_unreachable ();
329 }
330 }
331
332
333 /* Initialize tree_contains_struct to describe the hierarchy of tree
334 nodes. */
335
336 static void
337 initialize_tree_contains_struct (void)
338 {
339 unsigned i;
340
341 #define MARK_TS_BASE(C) \
342 do { \
343 tree_contains_struct[C][TS_BASE] = 1; \
344 } while (0)
345
346 #define MARK_TS_COMMON(C) \
347 do { \
348 MARK_TS_BASE (C); \
349 tree_contains_struct[C][TS_COMMON] = 1; \
350 } while (0)
351
352 #define MARK_TS_DECL_MINIMAL(C) \
353 do { \
354 MARK_TS_COMMON (C); \
355 tree_contains_struct[C][TS_DECL_MINIMAL] = 1; \
356 } while (0)
357
358 #define MARK_TS_DECL_COMMON(C) \
359 do { \
360 MARK_TS_DECL_MINIMAL (C); \
361 tree_contains_struct[C][TS_DECL_COMMON] = 1; \
362 } while (0)
363
364 #define MARK_TS_DECL_WRTL(C) \
365 do { \
366 MARK_TS_DECL_COMMON (C); \
367 tree_contains_struct[C][TS_DECL_WRTL] = 1; \
368 } while (0)
369
370 #define MARK_TS_DECL_WITH_VIS(C) \
371 do { \
372 MARK_TS_DECL_WRTL (C); \
373 tree_contains_struct[C][TS_DECL_WITH_VIS] = 1; \
374 } while (0)
375
376 #define MARK_TS_DECL_NON_COMMON(C) \
377 do { \
378 MARK_TS_DECL_WITH_VIS (C); \
379 tree_contains_struct[C][TS_DECL_NON_COMMON] = 1; \
380 } while (0)
381
382 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
383 {
384 enum tree_code code;
385 enum tree_node_structure_enum ts_code;
386
387 code = (enum tree_code) i;
388 ts_code = tree_node_structure_for_code (code);
389
390 /* Mark the TS structure itself. */
391 tree_contains_struct[code][ts_code] = 1;
392
393 /* Mark all the structures that TS is derived from. */
394 switch (ts_code)
395 {
396 case TS_COMMON:
397 MARK_TS_BASE (code);
398 break;
399
400 case TS_INT_CST:
401 case TS_REAL_CST:
402 case TS_FIXED_CST:
403 case TS_VECTOR:
404 case TS_STRING:
405 case TS_COMPLEX:
406 case TS_IDENTIFIER:
407 case TS_DECL_MINIMAL:
408 case TS_TYPE:
409 case TS_LIST:
410 case TS_VEC:
411 case TS_EXP:
412 case TS_SSA_NAME:
413 case TS_BLOCK:
414 case TS_BINFO:
415 case TS_STATEMENT_LIST:
416 case TS_CONSTRUCTOR:
417 case TS_OMP_CLAUSE:
418 case TS_OPTIMIZATION:
419 case TS_TARGET_OPTION:
420 MARK_TS_COMMON (code);
421 break;
422
423 case TS_DECL_COMMON:
424 MARK_TS_DECL_MINIMAL (code);
425 break;
426
427 case TS_DECL_WRTL:
428 MARK_TS_DECL_COMMON (code);
429 break;
430
431 case TS_DECL_NON_COMMON:
432 MARK_TS_DECL_WITH_VIS (code);
433 break;
434
435 case TS_DECL_WITH_VIS:
436 case TS_PARM_DECL:
437 case TS_LABEL_DECL:
438 case TS_RESULT_DECL:
439 case TS_CONST_DECL:
440 MARK_TS_DECL_WRTL (code);
441 break;
442
443 case TS_FIELD_DECL:
444 MARK_TS_DECL_COMMON (code);
445 break;
446
447 case TS_VAR_DECL:
448 MARK_TS_DECL_WITH_VIS (code);
449 break;
450
451 case TS_TYPE_DECL:
452 case TS_FUNCTION_DECL:
453 MARK_TS_DECL_NON_COMMON (code);
454 break;
455
456 default:
457 gcc_unreachable ();
458 }
459 }
460
461 /* Basic consistency checks for attributes used in fold. */
462 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
463 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON]);
464 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
465 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
466 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
467 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
468 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
469 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
470 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
471 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
472 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
473 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
474 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_WRTL]);
475 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
476 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
477 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
478 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
479 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
480 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
481 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
482 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
483 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
484 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
485 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
486 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
487 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
488 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
489 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
490 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
491 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
492 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS]);
493 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
494 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
495 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
496 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
497 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
498 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
499 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
500 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
501 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
502 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
503
504 #undef MARK_TS_BASE
505 #undef MARK_TS_COMMON
506 #undef MARK_TS_DECL_MINIMAL
507 #undef MARK_TS_DECL_COMMON
508 #undef MARK_TS_DECL_WRTL
509 #undef MARK_TS_DECL_WITH_VIS
510 #undef MARK_TS_DECL_NON_COMMON
511 }
512
513
514 /* Init tree.c. */
515
516 void
517 init_ttree (void)
518 {
519 /* Initialize the hash table of types. */
520 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
521 type_hash_eq, 0);
522
523 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
524 tree_map_eq, 0);
525
526 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
527 tree_map_eq, 0);
528 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
529 tree_priority_map_eq, 0);
530
531 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
532 int_cst_hash_eq, NULL);
533
534 int_cst_node = make_node (INTEGER_CST);
535
536 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
537 cl_option_hash_eq, NULL);
538
539 cl_optimization_node = make_node (OPTIMIZATION_NODE);
540 cl_target_option_node = make_node (TARGET_OPTION_NODE);
541
542 /* Initialize the tree_contains_struct array. */
543 initialize_tree_contains_struct ();
544 lang_hooks.init_ts ();
545 }
546
547 \f
548 /* The name of the object as the assembler will see it (but before any
549 translations made by ASM_OUTPUT_LABELREF). Often this is the same
550 as DECL_NAME. It is an IDENTIFIER_NODE. */
551 tree
552 decl_assembler_name (tree decl)
553 {
554 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
555 lang_hooks.set_decl_assembler_name (decl);
556 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
557 }
558
559 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
560
561 bool
562 decl_assembler_name_equal (tree decl, const_tree asmname)
563 {
564 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
565 const char *decl_str;
566 const char *asmname_str;
567 bool test = false;
568
569 if (decl_asmname == asmname)
570 return true;
571
572 decl_str = IDENTIFIER_POINTER (decl_asmname);
573 asmname_str = IDENTIFIER_POINTER (asmname);
574
575
576 /* If the target assembler name was set by the user, things are trickier.
577 We have a leading '*' to begin with. After that, it's arguable what
578 is the correct thing to do with -fleading-underscore. Arguably, we've
579 historically been doing the wrong thing in assemble_alias by always
580 printing the leading underscore. Since we're not changing that, make
581 sure user_label_prefix follows the '*' before matching. */
582 if (decl_str[0] == '*')
583 {
584 size_t ulp_len = strlen (user_label_prefix);
585
586 decl_str ++;
587
588 if (ulp_len == 0)
589 test = true;
590 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
591 decl_str += ulp_len, test=true;
592 else
593 decl_str --;
594 }
595 if (asmname_str[0] == '*')
596 {
597 size_t ulp_len = strlen (user_label_prefix);
598
599 asmname_str ++;
600
601 if (ulp_len == 0)
602 test = true;
603 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
604 asmname_str += ulp_len, test=true;
605 else
606 asmname_str --;
607 }
608
609 if (!test)
610 return false;
611 return strcmp (decl_str, asmname_str) == 0;
612 }
613
614 /* Hash asmnames ignoring the user specified marks. */
615
616 hashval_t
617 decl_assembler_name_hash (const_tree asmname)
618 {
619 if (IDENTIFIER_POINTER (asmname)[0] == '*')
620 {
621 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
622 size_t ulp_len = strlen (user_label_prefix);
623
624 if (ulp_len == 0)
625 ;
626 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
627 decl_str += ulp_len;
628
629 return htab_hash_string (decl_str);
630 }
631
632 return htab_hash_string (IDENTIFIER_POINTER (asmname));
633 }
634
635 /* Compute the number of bytes occupied by a tree with code CODE.
636 This function cannot be used for nodes that have variable sizes,
637 including TREE_VEC, STRING_CST, and CALL_EXPR. */
638 size_t
639 tree_code_size (enum tree_code code)
640 {
641 switch (TREE_CODE_CLASS (code))
642 {
643 case tcc_declaration: /* A decl node */
644 {
645 switch (code)
646 {
647 case FIELD_DECL:
648 return sizeof (struct tree_field_decl);
649 case PARM_DECL:
650 return sizeof (struct tree_parm_decl);
651 case VAR_DECL:
652 return sizeof (struct tree_var_decl);
653 case LABEL_DECL:
654 return sizeof (struct tree_label_decl);
655 case RESULT_DECL:
656 return sizeof (struct tree_result_decl);
657 case CONST_DECL:
658 return sizeof (struct tree_const_decl);
659 case TYPE_DECL:
660 return sizeof (struct tree_type_decl);
661 case FUNCTION_DECL:
662 return sizeof (struct tree_function_decl);
663 default:
664 return sizeof (struct tree_decl_non_common);
665 }
666 }
667
668 case tcc_type: /* a type node */
669 return sizeof (struct tree_type);
670
671 case tcc_reference: /* a reference */
672 case tcc_expression: /* an expression */
673 case tcc_statement: /* an expression with side effects */
674 case tcc_comparison: /* a comparison expression */
675 case tcc_unary: /* a unary arithmetic expression */
676 case tcc_binary: /* a binary arithmetic expression */
677 return (sizeof (struct tree_exp)
678 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
679
680 case tcc_constant: /* a constant */
681 switch (code)
682 {
683 case INTEGER_CST: return sizeof (struct tree_int_cst);
684 case REAL_CST: return sizeof (struct tree_real_cst);
685 case FIXED_CST: return sizeof (struct tree_fixed_cst);
686 case COMPLEX_CST: return sizeof (struct tree_complex);
687 case VECTOR_CST: return sizeof (struct tree_vector);
688 case STRING_CST: gcc_unreachable ();
689 default:
690 return lang_hooks.tree_size (code);
691 }
692
693 case tcc_exceptional: /* something random, like an identifier. */
694 switch (code)
695 {
696 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
697 case TREE_LIST: return sizeof (struct tree_list);
698
699 case ERROR_MARK:
700 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
701
702 case TREE_VEC:
703 case OMP_CLAUSE: gcc_unreachable ();
704
705 case SSA_NAME: return sizeof (struct tree_ssa_name);
706
707 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
708 case BLOCK: return sizeof (struct tree_block);
709 case CONSTRUCTOR: return sizeof (struct tree_constructor);
710 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
711 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
712
713 default:
714 return lang_hooks.tree_size (code);
715 }
716
717 default:
718 gcc_unreachable ();
719 }
720 }
721
722 /* Compute the number of bytes occupied by NODE. This routine only
723 looks at TREE_CODE, except for those nodes that have variable sizes. */
724 size_t
725 tree_size (const_tree node)
726 {
727 const enum tree_code code = TREE_CODE (node);
728 switch (code)
729 {
730 case TREE_BINFO:
731 return (offsetof (struct tree_binfo, base_binfos)
732 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
733
734 case TREE_VEC:
735 return (sizeof (struct tree_vec)
736 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
737
738 case STRING_CST:
739 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
740
741 case OMP_CLAUSE:
742 return (sizeof (struct tree_omp_clause)
743 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
744 * sizeof (tree));
745
746 default:
747 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
748 return (sizeof (struct tree_exp)
749 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
750 else
751 return tree_code_size (code);
752 }
753 }
754
755 /* Return a newly allocated node of code CODE. For decl and type
756 nodes, some other fields are initialized. The rest of the node is
757 initialized to zero. This function cannot be used for TREE_VEC or
758 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
759
760 Achoo! I got a code in the node. */
761
762 tree
763 make_node_stat (enum tree_code code MEM_STAT_DECL)
764 {
765 tree t;
766 enum tree_code_class type = TREE_CODE_CLASS (code);
767 size_t length = tree_code_size (code);
768 #ifdef GATHER_STATISTICS
769 tree_node_kind kind;
770
771 switch (type)
772 {
773 case tcc_declaration: /* A decl node */
774 kind = d_kind;
775 break;
776
777 case tcc_type: /* a type node */
778 kind = t_kind;
779 break;
780
781 case tcc_statement: /* an expression with side effects */
782 kind = s_kind;
783 break;
784
785 case tcc_reference: /* a reference */
786 kind = r_kind;
787 break;
788
789 case tcc_expression: /* an expression */
790 case tcc_comparison: /* a comparison expression */
791 case tcc_unary: /* a unary arithmetic expression */
792 case tcc_binary: /* a binary arithmetic expression */
793 kind = e_kind;
794 break;
795
796 case tcc_constant: /* a constant */
797 kind = c_kind;
798 break;
799
800 case tcc_exceptional: /* something random, like an identifier. */
801 switch (code)
802 {
803 case IDENTIFIER_NODE:
804 kind = id_kind;
805 break;
806
807 case TREE_VEC:
808 kind = vec_kind;
809 break;
810
811 case TREE_BINFO:
812 kind = binfo_kind;
813 break;
814
815 case SSA_NAME:
816 kind = ssa_name_kind;
817 break;
818
819 case BLOCK:
820 kind = b_kind;
821 break;
822
823 case CONSTRUCTOR:
824 kind = constr_kind;
825 break;
826
827 default:
828 kind = x_kind;
829 break;
830 }
831 break;
832
833 default:
834 gcc_unreachable ();
835 }
836
837 tree_node_counts[(int) kind]++;
838 tree_node_sizes[(int) kind] += length;
839 #endif
840
841 if (code == IDENTIFIER_NODE)
842 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_id_zone);
843 else
844 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
845
846 memset (t, 0, length);
847
848 TREE_SET_CODE (t, code);
849
850 switch (type)
851 {
852 case tcc_statement:
853 TREE_SIDE_EFFECTS (t) = 1;
854 break;
855
856 case tcc_declaration:
857 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
858 {
859 if (code == FUNCTION_DECL)
860 {
861 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
862 DECL_MODE (t) = FUNCTION_MODE;
863 }
864 else
865 DECL_ALIGN (t) = 1;
866 }
867 DECL_SOURCE_LOCATION (t) = input_location;
868 DECL_UID (t) = next_decl_uid++;
869 if (TREE_CODE (t) == LABEL_DECL)
870 LABEL_DECL_UID (t) = -1;
871
872 break;
873
874 case tcc_type:
875 TYPE_UID (t) = next_type_uid++;
876 TYPE_ALIGN (t) = BITS_PER_UNIT;
877 TYPE_USER_ALIGN (t) = 0;
878 TYPE_MAIN_VARIANT (t) = t;
879 TYPE_CANONICAL (t) = t;
880
881 /* Default to no attributes for type, but let target change that. */
882 TYPE_ATTRIBUTES (t) = NULL_TREE;
883 targetm.set_default_type_attributes (t);
884
885 /* We have not yet computed the alias set for this type. */
886 TYPE_ALIAS_SET (t) = -1;
887 break;
888
889 case tcc_constant:
890 TREE_CONSTANT (t) = 1;
891 break;
892
893 case tcc_expression:
894 switch (code)
895 {
896 case INIT_EXPR:
897 case MODIFY_EXPR:
898 case VA_ARG_EXPR:
899 case PREDECREMENT_EXPR:
900 case PREINCREMENT_EXPR:
901 case POSTDECREMENT_EXPR:
902 case POSTINCREMENT_EXPR:
903 /* All of these have side-effects, no matter what their
904 operands are. */
905 TREE_SIDE_EFFECTS (t) = 1;
906 break;
907
908 default:
909 break;
910 }
911 break;
912
913 default:
914 /* Other classes need no special treatment. */
915 break;
916 }
917
918 return t;
919 }
920 \f
921 /* Return a new node with the same contents as NODE except that its
922 TREE_CHAIN is zero and it has a fresh uid. */
923
924 tree
925 copy_node_stat (tree node MEM_STAT_DECL)
926 {
927 tree t;
928 enum tree_code code = TREE_CODE (node);
929 size_t length;
930
931 gcc_assert (code != STATEMENT_LIST);
932
933 length = tree_size (node);
934 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
935 memcpy (t, node, length);
936
937 TREE_CHAIN (t) = 0;
938 TREE_ASM_WRITTEN (t) = 0;
939 TREE_VISITED (t) = 0;
940 t->base.ann = 0;
941
942 if (TREE_CODE_CLASS (code) == tcc_declaration)
943 {
944 DECL_UID (t) = next_decl_uid++;
945 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
946 && DECL_HAS_VALUE_EXPR_P (node))
947 {
948 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
949 DECL_HAS_VALUE_EXPR_P (t) = 1;
950 }
951 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
952 {
953 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
954 DECL_HAS_INIT_PRIORITY_P (t) = 1;
955 }
956 }
957 else if (TREE_CODE_CLASS (code) == tcc_type)
958 {
959 TYPE_UID (t) = next_type_uid++;
960 /* The following is so that the debug code for
961 the copy is different from the original type.
962 The two statements usually duplicate each other
963 (because they clear fields of the same union),
964 but the optimizer should catch that. */
965 TYPE_SYMTAB_POINTER (t) = 0;
966 TYPE_SYMTAB_ADDRESS (t) = 0;
967
968 /* Do not copy the values cache. */
969 if (TYPE_CACHED_VALUES_P(t))
970 {
971 TYPE_CACHED_VALUES_P (t) = 0;
972 TYPE_CACHED_VALUES (t) = NULL_TREE;
973 }
974 }
975
976 return t;
977 }
978
979 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
980 For example, this can copy a list made of TREE_LIST nodes. */
981
982 tree
983 copy_list (tree list)
984 {
985 tree head;
986 tree prev, next;
987
988 if (list == 0)
989 return 0;
990
991 head = prev = copy_node (list);
992 next = TREE_CHAIN (list);
993 while (next)
994 {
995 TREE_CHAIN (prev) = copy_node (next);
996 prev = TREE_CHAIN (prev);
997 next = TREE_CHAIN (next);
998 }
999 return head;
1000 }
1001
1002 \f
1003 /* Create an INT_CST node with a LOW value sign extended. */
1004
1005 tree
1006 build_int_cst (tree type, HOST_WIDE_INT low)
1007 {
1008 /* Support legacy code. */
1009 if (!type)
1010 type = integer_type_node;
1011
1012 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
1013 }
1014
1015 /* Create an INT_CST node with a LOW value zero extended. */
1016
1017 tree
1018 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
1019 {
1020 return build_int_cst_wide (type, low, 0);
1021 }
1022
1023 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
1024 if it is negative. This function is similar to build_int_cst, but
1025 the extra bits outside of the type precision are cleared. Constants
1026 with these extra bits may confuse the fold so that it detects overflows
1027 even in cases when they do not occur, and in general should be avoided.
1028 We cannot however make this a default behavior of build_int_cst without
1029 more intrusive changes, since there are parts of gcc that rely on the extra
1030 precision of the integer constants. */
1031
1032 tree
1033 build_int_cst_type (tree type, HOST_WIDE_INT low)
1034 {
1035 unsigned HOST_WIDE_INT low1;
1036 HOST_WIDE_INT hi;
1037
1038 gcc_assert (type);
1039
1040 fit_double_type (low, low < 0 ? -1 : 0, &low1, &hi, type);
1041
1042 return build_int_cst_wide (type, low1, hi);
1043 }
1044
1045 /* Create an INT_CST node of TYPE and value HI:LOW. The value is truncated
1046 and sign extended according to the value range of TYPE. */
1047
1048 tree
1049 build_int_cst_wide_type (tree type,
1050 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high)
1051 {
1052 fit_double_type (low, high, &low, &high, type);
1053 return build_int_cst_wide (type, low, high);
1054 }
1055
1056 /* These are the hash table functions for the hash table of INTEGER_CST
1057 nodes of a sizetype. */
1058
1059 /* Return the hash code code X, an INTEGER_CST. */
1060
1061 static hashval_t
1062 int_cst_hash_hash (const void *x)
1063 {
1064 const_tree const t = (const_tree) x;
1065
1066 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1067 ^ htab_hash_pointer (TREE_TYPE (t)));
1068 }
1069
1070 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1071 is the same as that given by *Y, which is the same. */
1072
1073 static int
1074 int_cst_hash_eq (const void *x, const void *y)
1075 {
1076 const_tree const xt = (const_tree) x;
1077 const_tree const yt = (const_tree) y;
1078
1079 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1080 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1081 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1082 }
1083
1084 /* Create an INT_CST node of TYPE and value HI:LOW.
1085 The returned node is always shared. For small integers we use a
1086 per-type vector cache, for larger ones we use a single hash table. */
1087
1088 tree
1089 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1090 {
1091 tree t;
1092 int ix = -1;
1093 int limit = 0;
1094
1095 gcc_assert (type);
1096
1097 switch (TREE_CODE (type))
1098 {
1099 case POINTER_TYPE:
1100 case REFERENCE_TYPE:
1101 /* Cache NULL pointer. */
1102 if (!hi && !low)
1103 {
1104 limit = 1;
1105 ix = 0;
1106 }
1107 break;
1108
1109 case BOOLEAN_TYPE:
1110 /* Cache false or true. */
1111 limit = 2;
1112 if (!hi && low < 2)
1113 ix = low;
1114 break;
1115
1116 case INTEGER_TYPE:
1117 case OFFSET_TYPE:
1118 if (TYPE_UNSIGNED (type))
1119 {
1120 /* Cache 0..N */
1121 limit = INTEGER_SHARE_LIMIT;
1122 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1123 ix = low;
1124 }
1125 else
1126 {
1127 /* Cache -1..N */
1128 limit = INTEGER_SHARE_LIMIT + 1;
1129 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1130 ix = low + 1;
1131 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1132 ix = 0;
1133 }
1134 break;
1135
1136 case ENUMERAL_TYPE:
1137 break;
1138
1139 default:
1140 gcc_unreachable ();
1141 }
1142
1143 if (ix >= 0)
1144 {
1145 /* Look for it in the type's vector of small shared ints. */
1146 if (!TYPE_CACHED_VALUES_P (type))
1147 {
1148 TYPE_CACHED_VALUES_P (type) = 1;
1149 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1150 }
1151
1152 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1153 if (t)
1154 {
1155 /* Make sure no one is clobbering the shared constant. */
1156 gcc_assert (TREE_TYPE (t) == type);
1157 gcc_assert (TREE_INT_CST_LOW (t) == low);
1158 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1159 }
1160 else
1161 {
1162 /* Create a new shared int. */
1163 t = make_node (INTEGER_CST);
1164
1165 TREE_INT_CST_LOW (t) = low;
1166 TREE_INT_CST_HIGH (t) = hi;
1167 TREE_TYPE (t) = type;
1168
1169 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1170 }
1171 }
1172 else
1173 {
1174 /* Use the cache of larger shared ints. */
1175 void **slot;
1176
1177 TREE_INT_CST_LOW (int_cst_node) = low;
1178 TREE_INT_CST_HIGH (int_cst_node) = hi;
1179 TREE_TYPE (int_cst_node) = type;
1180
1181 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1182 t = (tree) *slot;
1183 if (!t)
1184 {
1185 /* Insert this one into the hash table. */
1186 t = int_cst_node;
1187 *slot = t;
1188 /* Make a new node for next time round. */
1189 int_cst_node = make_node (INTEGER_CST);
1190 }
1191 }
1192
1193 return t;
1194 }
1195
1196 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1197 and the rest are zeros. */
1198
1199 tree
1200 build_low_bits_mask (tree type, unsigned bits)
1201 {
1202 unsigned HOST_WIDE_INT low;
1203 HOST_WIDE_INT high;
1204 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
1205
1206 gcc_assert (bits <= TYPE_PRECISION (type));
1207
1208 if (bits == TYPE_PRECISION (type)
1209 && !TYPE_UNSIGNED (type))
1210 {
1211 /* Sign extended all-ones mask. */
1212 low = all_ones;
1213 high = -1;
1214 }
1215 else if (bits <= HOST_BITS_PER_WIDE_INT)
1216 {
1217 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
1218 high = 0;
1219 }
1220 else
1221 {
1222 bits -= HOST_BITS_PER_WIDE_INT;
1223 low = all_ones;
1224 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
1225 }
1226
1227 return build_int_cst_wide (type, low, high);
1228 }
1229
1230 /* Checks that X is integer constant that can be expressed in (unsigned)
1231 HOST_WIDE_INT without loss of precision. */
1232
1233 bool
1234 cst_and_fits_in_hwi (const_tree x)
1235 {
1236 if (TREE_CODE (x) != INTEGER_CST)
1237 return false;
1238
1239 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1240 return false;
1241
1242 return (TREE_INT_CST_HIGH (x) == 0
1243 || TREE_INT_CST_HIGH (x) == -1);
1244 }
1245
1246 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1247 are in a list pointed to by VALS. */
1248
1249 tree
1250 build_vector (tree type, tree vals)
1251 {
1252 tree v = make_node (VECTOR_CST);
1253 int over = 0;
1254 tree link;
1255
1256 TREE_VECTOR_CST_ELTS (v) = vals;
1257 TREE_TYPE (v) = type;
1258
1259 /* Iterate through elements and check for overflow. */
1260 for (link = vals; link; link = TREE_CHAIN (link))
1261 {
1262 tree value = TREE_VALUE (link);
1263
1264 /* Don't crash if we get an address constant. */
1265 if (!CONSTANT_CLASS_P (value))
1266 continue;
1267
1268 over |= TREE_OVERFLOW (value);
1269 }
1270
1271 TREE_OVERFLOW (v) = over;
1272 return v;
1273 }
1274
1275 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1276 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1277
1278 tree
1279 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1280 {
1281 tree list = NULL_TREE;
1282 unsigned HOST_WIDE_INT idx;
1283 tree value;
1284
1285 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1286 list = tree_cons (NULL_TREE, value, list);
1287 return build_vector (type, nreverse (list));
1288 }
1289
1290 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1291 are in the VEC pointed to by VALS. */
1292 tree
1293 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1294 {
1295 tree c = make_node (CONSTRUCTOR);
1296 TREE_TYPE (c) = type;
1297 CONSTRUCTOR_ELTS (c) = vals;
1298 return c;
1299 }
1300
1301 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1302 INDEX and VALUE. */
1303 tree
1304 build_constructor_single (tree type, tree index, tree value)
1305 {
1306 VEC(constructor_elt,gc) *v;
1307 constructor_elt *elt;
1308 tree t;
1309
1310 v = VEC_alloc (constructor_elt, gc, 1);
1311 elt = VEC_quick_push (constructor_elt, v, NULL);
1312 elt->index = index;
1313 elt->value = value;
1314
1315 t = build_constructor (type, v);
1316 TREE_CONSTANT (t) = TREE_CONSTANT (value);
1317 return t;
1318 }
1319
1320
1321 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1322 are in a list pointed to by VALS. */
1323 tree
1324 build_constructor_from_list (tree type, tree vals)
1325 {
1326 tree t, val;
1327 VEC(constructor_elt,gc) *v = NULL;
1328 bool constant_p = true;
1329
1330 if (vals)
1331 {
1332 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1333 for (t = vals; t; t = TREE_CHAIN (t))
1334 {
1335 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1336 val = TREE_VALUE (t);
1337 elt->index = TREE_PURPOSE (t);
1338 elt->value = val;
1339 if (!TREE_CONSTANT (val))
1340 constant_p = false;
1341 }
1342 }
1343
1344 t = build_constructor (type, v);
1345 TREE_CONSTANT (t) = constant_p;
1346 return t;
1347 }
1348
1349 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1350
1351 tree
1352 build_fixed (tree type, FIXED_VALUE_TYPE f)
1353 {
1354 tree v;
1355 FIXED_VALUE_TYPE *fp;
1356
1357 v = make_node (FIXED_CST);
1358 fp = GGC_NEW (FIXED_VALUE_TYPE);
1359 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1360
1361 TREE_TYPE (v) = type;
1362 TREE_FIXED_CST_PTR (v) = fp;
1363 return v;
1364 }
1365
1366 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1367
1368 tree
1369 build_real (tree type, REAL_VALUE_TYPE d)
1370 {
1371 tree v;
1372 REAL_VALUE_TYPE *dp;
1373 int overflow = 0;
1374
1375 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1376 Consider doing it via real_convert now. */
1377
1378 v = make_node (REAL_CST);
1379 dp = GGC_NEW (REAL_VALUE_TYPE);
1380 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1381
1382 TREE_TYPE (v) = type;
1383 TREE_REAL_CST_PTR (v) = dp;
1384 TREE_OVERFLOW (v) = overflow;
1385 return v;
1386 }
1387
1388 /* Return a new REAL_CST node whose type is TYPE
1389 and whose value is the integer value of the INTEGER_CST node I. */
1390
1391 REAL_VALUE_TYPE
1392 real_value_from_int_cst (const_tree type, const_tree i)
1393 {
1394 REAL_VALUE_TYPE d;
1395
1396 /* Clear all bits of the real value type so that we can later do
1397 bitwise comparisons to see if two values are the same. */
1398 memset (&d, 0, sizeof d);
1399
1400 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1401 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1402 TYPE_UNSIGNED (TREE_TYPE (i)));
1403 return d;
1404 }
1405
1406 /* Given a tree representing an integer constant I, return a tree
1407 representing the same value as a floating-point constant of type TYPE. */
1408
1409 tree
1410 build_real_from_int_cst (tree type, const_tree i)
1411 {
1412 tree v;
1413 int overflow = TREE_OVERFLOW (i);
1414
1415 v = build_real (type, real_value_from_int_cst (type, i));
1416
1417 TREE_OVERFLOW (v) |= overflow;
1418 return v;
1419 }
1420
1421 /* Return a newly constructed STRING_CST node whose value is
1422 the LEN characters at STR.
1423 The TREE_TYPE is not initialized. */
1424
1425 tree
1426 build_string (int len, const char *str)
1427 {
1428 tree s;
1429 size_t length;
1430
1431 /* Do not waste bytes provided by padding of struct tree_string. */
1432 length = len + offsetof (struct tree_string, str) + 1;
1433
1434 #ifdef GATHER_STATISTICS
1435 tree_node_counts[(int) c_kind]++;
1436 tree_node_sizes[(int) c_kind] += length;
1437 #endif
1438
1439 s = ggc_alloc_tree (length);
1440
1441 memset (s, 0, sizeof (struct tree_common));
1442 TREE_SET_CODE (s, STRING_CST);
1443 TREE_CONSTANT (s) = 1;
1444 TREE_STRING_LENGTH (s) = len;
1445 memcpy (s->string.str, str, len);
1446 s->string.str[len] = '\0';
1447
1448 return s;
1449 }
1450
1451 /* Return a newly constructed COMPLEX_CST node whose value is
1452 specified by the real and imaginary parts REAL and IMAG.
1453 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1454 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1455
1456 tree
1457 build_complex (tree type, tree real, tree imag)
1458 {
1459 tree t = make_node (COMPLEX_CST);
1460
1461 TREE_REALPART (t) = real;
1462 TREE_IMAGPART (t) = imag;
1463 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1464 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1465 return t;
1466 }
1467
1468 /* Return a constant of arithmetic type TYPE which is the
1469 multiplicative identity of the set TYPE. */
1470
1471 tree
1472 build_one_cst (tree type)
1473 {
1474 switch (TREE_CODE (type))
1475 {
1476 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1477 case POINTER_TYPE: case REFERENCE_TYPE:
1478 case OFFSET_TYPE:
1479 return build_int_cst (type, 1);
1480
1481 case REAL_TYPE:
1482 return build_real (type, dconst1);
1483
1484 case FIXED_POINT_TYPE:
1485 /* We can only generate 1 for accum types. */
1486 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1487 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1488
1489 case VECTOR_TYPE:
1490 {
1491 tree scalar, cst;
1492 int i;
1493
1494 scalar = build_one_cst (TREE_TYPE (type));
1495
1496 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1497 cst = NULL_TREE;
1498 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1499 cst = tree_cons (NULL_TREE, scalar, cst);
1500
1501 return build_vector (type, cst);
1502 }
1503
1504 case COMPLEX_TYPE:
1505 return build_complex (type,
1506 build_one_cst (TREE_TYPE (type)),
1507 fold_convert (TREE_TYPE (type), integer_zero_node));
1508
1509 default:
1510 gcc_unreachable ();
1511 }
1512 }
1513
1514 /* Build a BINFO with LEN language slots. */
1515
1516 tree
1517 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1518 {
1519 tree t;
1520 size_t length = (offsetof (struct tree_binfo, base_binfos)
1521 + VEC_embedded_size (tree, base_binfos));
1522
1523 #ifdef GATHER_STATISTICS
1524 tree_node_counts[(int) binfo_kind]++;
1525 tree_node_sizes[(int) binfo_kind] += length;
1526 #endif
1527
1528 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
1529
1530 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1531
1532 TREE_SET_CODE (t, TREE_BINFO);
1533
1534 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1535
1536 return t;
1537 }
1538
1539
1540 /* Build a newly constructed TREE_VEC node of length LEN. */
1541
1542 tree
1543 make_tree_vec_stat (int len MEM_STAT_DECL)
1544 {
1545 tree t;
1546 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1547
1548 #ifdef GATHER_STATISTICS
1549 tree_node_counts[(int) vec_kind]++;
1550 tree_node_sizes[(int) vec_kind] += length;
1551 #endif
1552
1553 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
1554
1555 memset (t, 0, length);
1556
1557 TREE_SET_CODE (t, TREE_VEC);
1558 TREE_VEC_LENGTH (t) = len;
1559
1560 return t;
1561 }
1562 \f
1563 /* Return 1 if EXPR is the integer constant zero or a complex constant
1564 of zero. */
1565
1566 int
1567 integer_zerop (const_tree expr)
1568 {
1569 STRIP_NOPS (expr);
1570
1571 return ((TREE_CODE (expr) == INTEGER_CST
1572 && TREE_INT_CST_LOW (expr) == 0
1573 && TREE_INT_CST_HIGH (expr) == 0)
1574 || (TREE_CODE (expr) == COMPLEX_CST
1575 && integer_zerop (TREE_REALPART (expr))
1576 && integer_zerop (TREE_IMAGPART (expr))));
1577 }
1578
1579 /* Return 1 if EXPR is the integer constant one or the corresponding
1580 complex constant. */
1581
1582 int
1583 integer_onep (const_tree expr)
1584 {
1585 STRIP_NOPS (expr);
1586
1587 return ((TREE_CODE (expr) == INTEGER_CST
1588 && TREE_INT_CST_LOW (expr) == 1
1589 && TREE_INT_CST_HIGH (expr) == 0)
1590 || (TREE_CODE (expr) == COMPLEX_CST
1591 && integer_onep (TREE_REALPART (expr))
1592 && integer_zerop (TREE_IMAGPART (expr))));
1593 }
1594
1595 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1596 it contains. Likewise for the corresponding complex constant. */
1597
1598 int
1599 integer_all_onesp (const_tree expr)
1600 {
1601 int prec;
1602 int uns;
1603
1604 STRIP_NOPS (expr);
1605
1606 if (TREE_CODE (expr) == COMPLEX_CST
1607 && integer_all_onesp (TREE_REALPART (expr))
1608 && integer_zerop (TREE_IMAGPART (expr)))
1609 return 1;
1610
1611 else if (TREE_CODE (expr) != INTEGER_CST)
1612 return 0;
1613
1614 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1615 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1616 && TREE_INT_CST_HIGH (expr) == -1)
1617 return 1;
1618 if (!uns)
1619 return 0;
1620
1621 /* Note that using TYPE_PRECISION here is wrong. We care about the
1622 actual bits, not the (arbitrary) range of the type. */
1623 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1624 if (prec >= HOST_BITS_PER_WIDE_INT)
1625 {
1626 HOST_WIDE_INT high_value;
1627 int shift_amount;
1628
1629 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1630
1631 /* Can not handle precisions greater than twice the host int size. */
1632 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1633 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1634 /* Shifting by the host word size is undefined according to the ANSI
1635 standard, so we must handle this as a special case. */
1636 high_value = -1;
1637 else
1638 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1639
1640 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1641 && TREE_INT_CST_HIGH (expr) == high_value);
1642 }
1643 else
1644 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1645 }
1646
1647 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1648 one bit on). */
1649
1650 int
1651 integer_pow2p (const_tree expr)
1652 {
1653 int prec;
1654 HOST_WIDE_INT high, low;
1655
1656 STRIP_NOPS (expr);
1657
1658 if (TREE_CODE (expr) == COMPLEX_CST
1659 && integer_pow2p (TREE_REALPART (expr))
1660 && integer_zerop (TREE_IMAGPART (expr)))
1661 return 1;
1662
1663 if (TREE_CODE (expr) != INTEGER_CST)
1664 return 0;
1665
1666 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1667 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1668 high = TREE_INT_CST_HIGH (expr);
1669 low = TREE_INT_CST_LOW (expr);
1670
1671 /* First clear all bits that are beyond the type's precision in case
1672 we've been sign extended. */
1673
1674 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1675 ;
1676 else if (prec > HOST_BITS_PER_WIDE_INT)
1677 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1678 else
1679 {
1680 high = 0;
1681 if (prec < HOST_BITS_PER_WIDE_INT)
1682 low &= ~((HOST_WIDE_INT) (-1) << prec);
1683 }
1684
1685 if (high == 0 && low == 0)
1686 return 0;
1687
1688 return ((high == 0 && (low & (low - 1)) == 0)
1689 || (low == 0 && (high & (high - 1)) == 0));
1690 }
1691
1692 /* Return 1 if EXPR is an integer constant other than zero or a
1693 complex constant other than zero. */
1694
1695 int
1696 integer_nonzerop (const_tree expr)
1697 {
1698 STRIP_NOPS (expr);
1699
1700 return ((TREE_CODE (expr) == INTEGER_CST
1701 && (TREE_INT_CST_LOW (expr) != 0
1702 || TREE_INT_CST_HIGH (expr) != 0))
1703 || (TREE_CODE (expr) == COMPLEX_CST
1704 && (integer_nonzerop (TREE_REALPART (expr))
1705 || integer_nonzerop (TREE_IMAGPART (expr)))));
1706 }
1707
1708 /* Return 1 if EXPR is the fixed-point constant zero. */
1709
1710 int
1711 fixed_zerop (const_tree expr)
1712 {
1713 return (TREE_CODE (expr) == FIXED_CST
1714 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1715 }
1716
1717 /* Return the power of two represented by a tree node known to be a
1718 power of two. */
1719
1720 int
1721 tree_log2 (const_tree expr)
1722 {
1723 int prec;
1724 HOST_WIDE_INT high, low;
1725
1726 STRIP_NOPS (expr);
1727
1728 if (TREE_CODE (expr) == COMPLEX_CST)
1729 return tree_log2 (TREE_REALPART (expr));
1730
1731 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1732 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1733
1734 high = TREE_INT_CST_HIGH (expr);
1735 low = TREE_INT_CST_LOW (expr);
1736
1737 /* First clear all bits that are beyond the type's precision in case
1738 we've been sign extended. */
1739
1740 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1741 ;
1742 else if (prec > HOST_BITS_PER_WIDE_INT)
1743 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1744 else
1745 {
1746 high = 0;
1747 if (prec < HOST_BITS_PER_WIDE_INT)
1748 low &= ~((HOST_WIDE_INT) (-1) << prec);
1749 }
1750
1751 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1752 : exact_log2 (low));
1753 }
1754
1755 /* Similar, but return the largest integer Y such that 2 ** Y is less
1756 than or equal to EXPR. */
1757
1758 int
1759 tree_floor_log2 (const_tree expr)
1760 {
1761 int prec;
1762 HOST_WIDE_INT high, low;
1763
1764 STRIP_NOPS (expr);
1765
1766 if (TREE_CODE (expr) == COMPLEX_CST)
1767 return tree_log2 (TREE_REALPART (expr));
1768
1769 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1770 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1771
1772 high = TREE_INT_CST_HIGH (expr);
1773 low = TREE_INT_CST_LOW (expr);
1774
1775 /* First clear all bits that are beyond the type's precision in case
1776 we've been sign extended. Ignore if type's precision hasn't been set
1777 since what we are doing is setting it. */
1778
1779 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1780 ;
1781 else if (prec > HOST_BITS_PER_WIDE_INT)
1782 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1783 else
1784 {
1785 high = 0;
1786 if (prec < HOST_BITS_PER_WIDE_INT)
1787 low &= ~((HOST_WIDE_INT) (-1) << prec);
1788 }
1789
1790 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1791 : floor_log2 (low));
1792 }
1793
1794 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1795 decimal float constants, so don't return 1 for them. */
1796
1797 int
1798 real_zerop (const_tree expr)
1799 {
1800 STRIP_NOPS (expr);
1801
1802 return ((TREE_CODE (expr) == REAL_CST
1803 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1804 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1805 || (TREE_CODE (expr) == COMPLEX_CST
1806 && real_zerop (TREE_REALPART (expr))
1807 && real_zerop (TREE_IMAGPART (expr))));
1808 }
1809
1810 /* Return 1 if EXPR is the real constant one in real or complex form.
1811 Trailing zeroes matter for decimal float constants, so don't return
1812 1 for them. */
1813
1814 int
1815 real_onep (const_tree expr)
1816 {
1817 STRIP_NOPS (expr);
1818
1819 return ((TREE_CODE (expr) == REAL_CST
1820 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1821 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1822 || (TREE_CODE (expr) == COMPLEX_CST
1823 && real_onep (TREE_REALPART (expr))
1824 && real_zerop (TREE_IMAGPART (expr))));
1825 }
1826
1827 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1828 for decimal float constants, so don't return 1 for them. */
1829
1830 int
1831 real_twop (const_tree expr)
1832 {
1833 STRIP_NOPS (expr);
1834
1835 return ((TREE_CODE (expr) == REAL_CST
1836 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1837 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1838 || (TREE_CODE (expr) == COMPLEX_CST
1839 && real_twop (TREE_REALPART (expr))
1840 && real_zerop (TREE_IMAGPART (expr))));
1841 }
1842
1843 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1844 matter for decimal float constants, so don't return 1 for them. */
1845
1846 int
1847 real_minus_onep (const_tree expr)
1848 {
1849 STRIP_NOPS (expr);
1850
1851 return ((TREE_CODE (expr) == REAL_CST
1852 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1853 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1854 || (TREE_CODE (expr) == COMPLEX_CST
1855 && real_minus_onep (TREE_REALPART (expr))
1856 && real_zerop (TREE_IMAGPART (expr))));
1857 }
1858
1859 /* Nonzero if EXP is a constant or a cast of a constant. */
1860
1861 int
1862 really_constant_p (const_tree exp)
1863 {
1864 /* This is not quite the same as STRIP_NOPS. It does more. */
1865 while (CONVERT_EXPR_P (exp)
1866 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1867 exp = TREE_OPERAND (exp, 0);
1868 return TREE_CONSTANT (exp);
1869 }
1870 \f
1871 /* Return first list element whose TREE_VALUE is ELEM.
1872 Return 0 if ELEM is not in LIST. */
1873
1874 tree
1875 value_member (tree elem, tree list)
1876 {
1877 while (list)
1878 {
1879 if (elem == TREE_VALUE (list))
1880 return list;
1881 list = TREE_CHAIN (list);
1882 }
1883 return NULL_TREE;
1884 }
1885
1886 /* Return first list element whose TREE_PURPOSE is ELEM.
1887 Return 0 if ELEM is not in LIST. */
1888
1889 tree
1890 purpose_member (const_tree elem, tree list)
1891 {
1892 while (list)
1893 {
1894 if (elem == TREE_PURPOSE (list))
1895 return list;
1896 list = TREE_CHAIN (list);
1897 }
1898 return NULL_TREE;
1899 }
1900
1901 /* Return nonzero if ELEM is part of the chain CHAIN. */
1902
1903 int
1904 chain_member (const_tree elem, const_tree chain)
1905 {
1906 while (chain)
1907 {
1908 if (elem == chain)
1909 return 1;
1910 chain = TREE_CHAIN (chain);
1911 }
1912
1913 return 0;
1914 }
1915
1916 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1917 We expect a null pointer to mark the end of the chain.
1918 This is the Lisp primitive `length'. */
1919
1920 int
1921 list_length (const_tree t)
1922 {
1923 const_tree p = t;
1924 #ifdef ENABLE_TREE_CHECKING
1925 const_tree q = t;
1926 #endif
1927 int len = 0;
1928
1929 while (p)
1930 {
1931 p = TREE_CHAIN (p);
1932 #ifdef ENABLE_TREE_CHECKING
1933 if (len % 2)
1934 q = TREE_CHAIN (q);
1935 gcc_assert (p != q);
1936 #endif
1937 len++;
1938 }
1939
1940 return len;
1941 }
1942
1943 /* Returns the number of FIELD_DECLs in TYPE. */
1944
1945 int
1946 fields_length (const_tree type)
1947 {
1948 tree t = TYPE_FIELDS (type);
1949 int count = 0;
1950
1951 for (; t; t = TREE_CHAIN (t))
1952 if (TREE_CODE (t) == FIELD_DECL)
1953 ++count;
1954
1955 return count;
1956 }
1957
1958 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1959 by modifying the last node in chain 1 to point to chain 2.
1960 This is the Lisp primitive `nconc'. */
1961
1962 tree
1963 chainon (tree op1, tree op2)
1964 {
1965 tree t1;
1966
1967 if (!op1)
1968 return op2;
1969 if (!op2)
1970 return op1;
1971
1972 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1973 continue;
1974 TREE_CHAIN (t1) = op2;
1975
1976 #ifdef ENABLE_TREE_CHECKING
1977 {
1978 tree t2;
1979 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1980 gcc_assert (t2 != t1);
1981 }
1982 #endif
1983
1984 return op1;
1985 }
1986
1987 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1988
1989 tree
1990 tree_last (tree chain)
1991 {
1992 tree next;
1993 if (chain)
1994 while ((next = TREE_CHAIN (chain)))
1995 chain = next;
1996 return chain;
1997 }
1998
1999 /* Return the node in a chain of nodes whose value is x, NULL if not found. */
2000
2001 tree
2002 tree_find_value (tree chain, tree x)
2003 {
2004 tree list;
2005 for (list = chain; list; list = TREE_CHAIN (list))
2006 if (TREE_VALUE (list) == x)
2007 return list;
2008 return NULL;
2009 }
2010
2011 /* Reverse the order of elements in the chain T,
2012 and return the new head of the chain (old last element). */
2013
2014 tree
2015 nreverse (tree t)
2016 {
2017 tree prev = 0, decl, next;
2018 for (decl = t; decl; decl = next)
2019 {
2020 next = TREE_CHAIN (decl);
2021 TREE_CHAIN (decl) = prev;
2022 prev = decl;
2023 }
2024 return prev;
2025 }
2026 \f
2027 /* Return a newly created TREE_LIST node whose
2028 purpose and value fields are PARM and VALUE. */
2029
2030 tree
2031 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2032 {
2033 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2034 TREE_PURPOSE (t) = parm;
2035 TREE_VALUE (t) = value;
2036 return t;
2037 }
2038
2039 /* Build a chain of TREE_LIST nodes from a vector. */
2040
2041 tree
2042 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2043 {
2044 tree ret = NULL_TREE;
2045 tree *pp = &ret;
2046 unsigned int i;
2047 tree t;
2048 for (i = 0; VEC_iterate (tree, vec, i, t); ++i)
2049 {
2050 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2051 pp = &TREE_CHAIN (*pp);
2052 }
2053 return ret;
2054 }
2055
2056 /* Return a newly created TREE_LIST node whose
2057 purpose and value fields are PURPOSE and VALUE
2058 and whose TREE_CHAIN is CHAIN. */
2059
2060 tree
2061 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2062 {
2063 tree node;
2064
2065 node = (tree) ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
2066
2067 memset (node, 0, sizeof (struct tree_common));
2068
2069 #ifdef GATHER_STATISTICS
2070 tree_node_counts[(int) x_kind]++;
2071 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
2072 #endif
2073
2074 TREE_SET_CODE (node, TREE_LIST);
2075 TREE_CHAIN (node) = chain;
2076 TREE_PURPOSE (node) = purpose;
2077 TREE_VALUE (node) = value;
2078 return node;
2079 }
2080
2081 /* Return the elements of a CONSTRUCTOR as a TREE_LIST. */
2082
2083 tree
2084 ctor_to_list (tree ctor)
2085 {
2086 tree list = NULL_TREE;
2087 tree *p = &list;
2088 unsigned ix;
2089 tree purpose, val;
2090
2091 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), ix, purpose, val)
2092 {
2093 *p = build_tree_list (purpose, val);
2094 p = &TREE_CHAIN (*p);
2095 }
2096
2097 return list;
2098 }
2099
2100 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2101 trees. */
2102
2103 VEC(tree,gc) *
2104 ctor_to_vec (tree ctor)
2105 {
2106 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2107 unsigned int ix;
2108 tree val;
2109
2110 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2111 VEC_quick_push (tree, vec, val);
2112
2113 return vec;
2114 }
2115 \f
2116 /* Return the size nominally occupied by an object of type TYPE
2117 when it resides in memory. The value is measured in units of bytes,
2118 and its data type is that normally used for type sizes
2119 (which is the first type created by make_signed_type or
2120 make_unsigned_type). */
2121
2122 tree
2123 size_in_bytes (const_tree type)
2124 {
2125 tree t;
2126
2127 if (type == error_mark_node)
2128 return integer_zero_node;
2129
2130 type = TYPE_MAIN_VARIANT (type);
2131 t = TYPE_SIZE_UNIT (type);
2132
2133 if (t == 0)
2134 {
2135 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2136 return size_zero_node;
2137 }
2138
2139 return t;
2140 }
2141
2142 /* Return the size of TYPE (in bytes) as a wide integer
2143 or return -1 if the size can vary or is larger than an integer. */
2144
2145 HOST_WIDE_INT
2146 int_size_in_bytes (const_tree type)
2147 {
2148 tree t;
2149
2150 if (type == error_mark_node)
2151 return 0;
2152
2153 type = TYPE_MAIN_VARIANT (type);
2154 t = TYPE_SIZE_UNIT (type);
2155 if (t == 0
2156 || TREE_CODE (t) != INTEGER_CST
2157 || TREE_INT_CST_HIGH (t) != 0
2158 /* If the result would appear negative, it's too big to represent. */
2159 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2160 return -1;
2161
2162 return TREE_INT_CST_LOW (t);
2163 }
2164
2165 /* Return the maximum size of TYPE (in bytes) as a wide integer
2166 or return -1 if the size can vary or is larger than an integer. */
2167
2168 HOST_WIDE_INT
2169 max_int_size_in_bytes (const_tree type)
2170 {
2171 HOST_WIDE_INT size = -1;
2172 tree size_tree;
2173
2174 /* If this is an array type, check for a possible MAX_SIZE attached. */
2175
2176 if (TREE_CODE (type) == ARRAY_TYPE)
2177 {
2178 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2179
2180 if (size_tree && host_integerp (size_tree, 1))
2181 size = tree_low_cst (size_tree, 1);
2182 }
2183
2184 /* If we still haven't been able to get a size, see if the language
2185 can compute a maximum size. */
2186
2187 if (size == -1)
2188 {
2189 size_tree = lang_hooks.types.max_size (type);
2190
2191 if (size_tree && host_integerp (size_tree, 1))
2192 size = tree_low_cst (size_tree, 1);
2193 }
2194
2195 return size;
2196 }
2197 \f
2198 /* Return the bit position of FIELD, in bits from the start of the record.
2199 This is a tree of type bitsizetype. */
2200
2201 tree
2202 bit_position (const_tree field)
2203 {
2204 return bit_from_pos (DECL_FIELD_OFFSET (field),
2205 DECL_FIELD_BIT_OFFSET (field));
2206 }
2207
2208 /* Likewise, but return as an integer. It must be representable in
2209 that way (since it could be a signed value, we don't have the
2210 option of returning -1 like int_size_in_byte can. */
2211
2212 HOST_WIDE_INT
2213 int_bit_position (const_tree field)
2214 {
2215 return tree_low_cst (bit_position (field), 0);
2216 }
2217 \f
2218 /* Return the byte position of FIELD, in bytes from the start of the record.
2219 This is a tree of type sizetype. */
2220
2221 tree
2222 byte_position (const_tree field)
2223 {
2224 return byte_from_pos (DECL_FIELD_OFFSET (field),
2225 DECL_FIELD_BIT_OFFSET (field));
2226 }
2227
2228 /* Likewise, but return as an integer. It must be representable in
2229 that way (since it could be a signed value, we don't have the
2230 option of returning -1 like int_size_in_byte can. */
2231
2232 HOST_WIDE_INT
2233 int_byte_position (const_tree field)
2234 {
2235 return tree_low_cst (byte_position (field), 0);
2236 }
2237 \f
2238 /* Return the strictest alignment, in bits, that T is known to have. */
2239
2240 unsigned int
2241 expr_align (const_tree t)
2242 {
2243 unsigned int align0, align1;
2244
2245 switch (TREE_CODE (t))
2246 {
2247 CASE_CONVERT: case NON_LVALUE_EXPR:
2248 /* If we have conversions, we know that the alignment of the
2249 object must meet each of the alignments of the types. */
2250 align0 = expr_align (TREE_OPERAND (t, 0));
2251 align1 = TYPE_ALIGN (TREE_TYPE (t));
2252 return MAX (align0, align1);
2253
2254 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2255 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2256 case CLEANUP_POINT_EXPR:
2257 /* These don't change the alignment of an object. */
2258 return expr_align (TREE_OPERAND (t, 0));
2259
2260 case COND_EXPR:
2261 /* The best we can do is say that the alignment is the least aligned
2262 of the two arms. */
2263 align0 = expr_align (TREE_OPERAND (t, 1));
2264 align1 = expr_align (TREE_OPERAND (t, 2));
2265 return MIN (align0, align1);
2266
2267 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2268 meaningfully, it's always 1. */
2269 case LABEL_DECL: case CONST_DECL:
2270 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2271 case FUNCTION_DECL:
2272 gcc_assert (DECL_ALIGN (t) != 0);
2273 return DECL_ALIGN (t);
2274
2275 default:
2276 break;
2277 }
2278
2279 /* Otherwise take the alignment from that of the type. */
2280 return TYPE_ALIGN (TREE_TYPE (t));
2281 }
2282 \f
2283 /* Return, as a tree node, the number of elements for TYPE (which is an
2284 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2285
2286 tree
2287 array_type_nelts (const_tree type)
2288 {
2289 tree index_type, min, max;
2290
2291 /* If they did it with unspecified bounds, then we should have already
2292 given an error about it before we got here. */
2293 if (! TYPE_DOMAIN (type))
2294 return error_mark_node;
2295
2296 index_type = TYPE_DOMAIN (type);
2297 min = TYPE_MIN_VALUE (index_type);
2298 max = TYPE_MAX_VALUE (index_type);
2299
2300 return (integer_zerop (min)
2301 ? max
2302 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2303 }
2304 \f
2305 /* If arg is static -- a reference to an object in static storage -- then
2306 return the object. This is not the same as the C meaning of `static'.
2307 If arg isn't static, return NULL. */
2308
2309 tree
2310 staticp (tree arg)
2311 {
2312 switch (TREE_CODE (arg))
2313 {
2314 case FUNCTION_DECL:
2315 /* Nested functions are static, even though taking their address will
2316 involve a trampoline as we unnest the nested function and create
2317 the trampoline on the tree level. */
2318 return arg;
2319
2320 case VAR_DECL:
2321 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2322 && ! DECL_THREAD_LOCAL_P (arg)
2323 && ! DECL_DLLIMPORT_P (arg)
2324 ? arg : NULL);
2325
2326 case CONST_DECL:
2327 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2328 ? arg : NULL);
2329
2330 case CONSTRUCTOR:
2331 return TREE_STATIC (arg) ? arg : NULL;
2332
2333 case LABEL_DECL:
2334 case STRING_CST:
2335 return arg;
2336
2337 case COMPONENT_REF:
2338 /* If the thing being referenced is not a field, then it is
2339 something language specific. */
2340 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2341
2342 /* If we are referencing a bitfield, we can't evaluate an
2343 ADDR_EXPR at compile time and so it isn't a constant. */
2344 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2345 return NULL;
2346
2347 return staticp (TREE_OPERAND (arg, 0));
2348
2349 case BIT_FIELD_REF:
2350 return NULL;
2351
2352 case MISALIGNED_INDIRECT_REF:
2353 case ALIGN_INDIRECT_REF:
2354 case INDIRECT_REF:
2355 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2356
2357 case ARRAY_REF:
2358 case ARRAY_RANGE_REF:
2359 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2360 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2361 return staticp (TREE_OPERAND (arg, 0));
2362 else
2363 return NULL;
2364
2365 case COMPOUND_LITERAL_EXPR:
2366 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2367
2368 default:
2369 return NULL;
2370 }
2371 }
2372
2373 \f
2374
2375
2376 /* Return whether OP is a DECL whose address is function-invariant. */
2377
2378 bool
2379 decl_address_invariant_p (const_tree op)
2380 {
2381 /* The conditions below are slightly less strict than the one in
2382 staticp. */
2383
2384 switch (TREE_CODE (op))
2385 {
2386 case PARM_DECL:
2387 case RESULT_DECL:
2388 case LABEL_DECL:
2389 case FUNCTION_DECL:
2390 return true;
2391
2392 case VAR_DECL:
2393 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2394 && !DECL_DLLIMPORT_P (op))
2395 || DECL_THREAD_LOCAL_P (op)
2396 || DECL_CONTEXT (op) == current_function_decl
2397 || decl_function_context (op) == current_function_decl)
2398 return true;
2399 break;
2400
2401 case CONST_DECL:
2402 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2403 || decl_function_context (op) == current_function_decl)
2404 return true;
2405 break;
2406
2407 default:
2408 break;
2409 }
2410
2411 return false;
2412 }
2413
2414 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2415
2416 bool
2417 decl_address_ip_invariant_p (const_tree op)
2418 {
2419 /* The conditions below are slightly less strict than the one in
2420 staticp. */
2421
2422 switch (TREE_CODE (op))
2423 {
2424 case LABEL_DECL:
2425 case FUNCTION_DECL:
2426 case STRING_CST:
2427 return true;
2428
2429 case VAR_DECL:
2430 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2431 && !DECL_DLLIMPORT_P (op))
2432 || DECL_THREAD_LOCAL_P (op))
2433 return true;
2434 break;
2435
2436 case CONST_DECL:
2437 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2438 return true;
2439 break;
2440
2441 default:
2442 break;
2443 }
2444
2445 return false;
2446 }
2447
2448
2449 /* Return true if T is function-invariant (internal function, does
2450 not handle arithmetic; that's handled in skip_simple_arithmetic and
2451 tree_invariant_p). */
2452
2453 static bool tree_invariant_p (tree t);
2454
2455 static bool
2456 tree_invariant_p_1 (tree t)
2457 {
2458 tree op;
2459
2460 if (TREE_CONSTANT (t)
2461 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2462 return true;
2463
2464 switch (TREE_CODE (t))
2465 {
2466 case SAVE_EXPR:
2467 return true;
2468
2469 case ADDR_EXPR:
2470 op = TREE_OPERAND (t, 0);
2471 while (handled_component_p (op))
2472 {
2473 switch (TREE_CODE (op))
2474 {
2475 case ARRAY_REF:
2476 case ARRAY_RANGE_REF:
2477 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2478 || TREE_OPERAND (op, 2) != NULL_TREE
2479 || TREE_OPERAND (op, 3) != NULL_TREE)
2480 return false;
2481 break;
2482
2483 case COMPONENT_REF:
2484 if (TREE_OPERAND (op, 2) != NULL_TREE)
2485 return false;
2486 break;
2487
2488 default:;
2489 }
2490 op = TREE_OPERAND (op, 0);
2491 }
2492
2493 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2494
2495 default:
2496 break;
2497 }
2498
2499 return false;
2500 }
2501
2502 /* Return true if T is function-invariant. */
2503
2504 static bool
2505 tree_invariant_p (tree t)
2506 {
2507 tree inner = skip_simple_arithmetic (t);
2508 return tree_invariant_p_1 (inner);
2509 }
2510
2511 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2512 Do this to any expression which may be used in more than one place,
2513 but must be evaluated only once.
2514
2515 Normally, expand_expr would reevaluate the expression each time.
2516 Calling save_expr produces something that is evaluated and recorded
2517 the first time expand_expr is called on it. Subsequent calls to
2518 expand_expr just reuse the recorded value.
2519
2520 The call to expand_expr that generates code that actually computes
2521 the value is the first call *at compile time*. Subsequent calls
2522 *at compile time* generate code to use the saved value.
2523 This produces correct result provided that *at run time* control
2524 always flows through the insns made by the first expand_expr
2525 before reaching the other places where the save_expr was evaluated.
2526 You, the caller of save_expr, must make sure this is so.
2527
2528 Constants, and certain read-only nodes, are returned with no
2529 SAVE_EXPR because that is safe. Expressions containing placeholders
2530 are not touched; see tree.def for an explanation of what these
2531 are used for. */
2532
2533 tree
2534 save_expr (tree expr)
2535 {
2536 tree t = fold (expr);
2537 tree inner;
2538
2539 /* If the tree evaluates to a constant, then we don't want to hide that
2540 fact (i.e. this allows further folding, and direct checks for constants).
2541 However, a read-only object that has side effects cannot be bypassed.
2542 Since it is no problem to reevaluate literals, we just return the
2543 literal node. */
2544 inner = skip_simple_arithmetic (t);
2545 if (TREE_CODE (inner) == ERROR_MARK)
2546 return inner;
2547
2548 if (tree_invariant_p_1 (inner))
2549 return t;
2550
2551 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2552 it means that the size or offset of some field of an object depends on
2553 the value within another field.
2554
2555 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2556 and some variable since it would then need to be both evaluated once and
2557 evaluated more than once. Front-ends must assure this case cannot
2558 happen by surrounding any such subexpressions in their own SAVE_EXPR
2559 and forcing evaluation at the proper time. */
2560 if (contains_placeholder_p (inner))
2561 return t;
2562
2563 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2564 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2565
2566 /* This expression might be placed ahead of a jump to ensure that the
2567 value was computed on both sides of the jump. So make sure it isn't
2568 eliminated as dead. */
2569 TREE_SIDE_EFFECTS (t) = 1;
2570 return t;
2571 }
2572
2573 /* Look inside EXPR and into any simple arithmetic operations. Return
2574 the innermost non-arithmetic node. */
2575
2576 tree
2577 skip_simple_arithmetic (tree expr)
2578 {
2579 tree inner;
2580
2581 /* We don't care about whether this can be used as an lvalue in this
2582 context. */
2583 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2584 expr = TREE_OPERAND (expr, 0);
2585
2586 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2587 a constant, it will be more efficient to not make another SAVE_EXPR since
2588 it will allow better simplification and GCSE will be able to merge the
2589 computations if they actually occur. */
2590 inner = expr;
2591 while (1)
2592 {
2593 if (UNARY_CLASS_P (inner))
2594 inner = TREE_OPERAND (inner, 0);
2595 else if (BINARY_CLASS_P (inner))
2596 {
2597 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2598 inner = TREE_OPERAND (inner, 0);
2599 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2600 inner = TREE_OPERAND (inner, 1);
2601 else
2602 break;
2603 }
2604 else
2605 break;
2606 }
2607
2608 return inner;
2609 }
2610
2611
2612 /* Return which tree structure is used by T. */
2613
2614 enum tree_node_structure_enum
2615 tree_node_structure (const_tree t)
2616 {
2617 const enum tree_code code = TREE_CODE (t);
2618 return tree_node_structure_for_code (code);
2619 }
2620
2621 /* Set various status flags when building a CALL_EXPR object T. */
2622
2623 static void
2624 process_call_operands (tree t)
2625 {
2626 bool side_effects = TREE_SIDE_EFFECTS (t);
2627 bool read_only = false;
2628 int i = call_expr_flags (t);
2629
2630 /* Calls have side-effects, except those to const or pure functions. */
2631 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2632 side_effects = true;
2633 /* Propagate TREE_READONLY of arguments for const functions. */
2634 if (i & ECF_CONST)
2635 read_only = true;
2636
2637 if (!side_effects || read_only)
2638 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2639 {
2640 tree op = TREE_OPERAND (t, i);
2641 if (op && TREE_SIDE_EFFECTS (op))
2642 side_effects = true;
2643 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2644 read_only = false;
2645 }
2646
2647 TREE_SIDE_EFFECTS (t) = side_effects;
2648 TREE_READONLY (t) = read_only;
2649 }
2650 \f
2651 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2652 or offset that depends on a field within a record. */
2653
2654 bool
2655 contains_placeholder_p (const_tree exp)
2656 {
2657 enum tree_code code;
2658
2659 if (!exp)
2660 return 0;
2661
2662 code = TREE_CODE (exp);
2663 if (code == PLACEHOLDER_EXPR)
2664 return 1;
2665
2666 switch (TREE_CODE_CLASS (code))
2667 {
2668 case tcc_reference:
2669 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2670 position computations since they will be converted into a
2671 WITH_RECORD_EXPR involving the reference, which will assume
2672 here will be valid. */
2673 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2674
2675 case tcc_exceptional:
2676 if (code == TREE_LIST)
2677 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2678 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2679 break;
2680
2681 case tcc_unary:
2682 case tcc_binary:
2683 case tcc_comparison:
2684 case tcc_expression:
2685 switch (code)
2686 {
2687 case COMPOUND_EXPR:
2688 /* Ignoring the first operand isn't quite right, but works best. */
2689 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2690
2691 case COND_EXPR:
2692 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2693 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2694 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2695
2696 case SAVE_EXPR:
2697 /* The save_expr function never wraps anything containing
2698 a PLACEHOLDER_EXPR. */
2699 return 0;
2700
2701 default:
2702 break;
2703 }
2704
2705 switch (TREE_CODE_LENGTH (code))
2706 {
2707 case 1:
2708 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2709 case 2:
2710 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2711 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2712 default:
2713 return 0;
2714 }
2715
2716 case tcc_vl_exp:
2717 switch (code)
2718 {
2719 case CALL_EXPR:
2720 {
2721 const_tree arg;
2722 const_call_expr_arg_iterator iter;
2723 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2724 if (CONTAINS_PLACEHOLDER_P (arg))
2725 return 1;
2726 return 0;
2727 }
2728 default:
2729 return 0;
2730 }
2731
2732 default:
2733 return 0;
2734 }
2735 return 0;
2736 }
2737
2738 /* Return true if any part of the computation of TYPE involves a
2739 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2740 (for QUAL_UNION_TYPE) and field positions. */
2741
2742 static bool
2743 type_contains_placeholder_1 (const_tree type)
2744 {
2745 /* If the size contains a placeholder or the parent type (component type in
2746 the case of arrays) type involves a placeholder, this type does. */
2747 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2748 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2749 || (TREE_TYPE (type) != 0
2750 && type_contains_placeholder_p (TREE_TYPE (type))))
2751 return true;
2752
2753 /* Now do type-specific checks. Note that the last part of the check above
2754 greatly limits what we have to do below. */
2755 switch (TREE_CODE (type))
2756 {
2757 case VOID_TYPE:
2758 case COMPLEX_TYPE:
2759 case ENUMERAL_TYPE:
2760 case BOOLEAN_TYPE:
2761 case POINTER_TYPE:
2762 case OFFSET_TYPE:
2763 case REFERENCE_TYPE:
2764 case METHOD_TYPE:
2765 case FUNCTION_TYPE:
2766 case VECTOR_TYPE:
2767 return false;
2768
2769 case INTEGER_TYPE:
2770 case REAL_TYPE:
2771 case FIXED_POINT_TYPE:
2772 /* Here we just check the bounds. */
2773 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2774 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2775
2776 case ARRAY_TYPE:
2777 /* We're already checked the component type (TREE_TYPE), so just check
2778 the index type. */
2779 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2780
2781 case RECORD_TYPE:
2782 case UNION_TYPE:
2783 case QUAL_UNION_TYPE:
2784 {
2785 tree field;
2786
2787 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2788 if (TREE_CODE (field) == FIELD_DECL
2789 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2790 || (TREE_CODE (type) == QUAL_UNION_TYPE
2791 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2792 || type_contains_placeholder_p (TREE_TYPE (field))))
2793 return true;
2794
2795 return false;
2796 }
2797
2798 default:
2799 gcc_unreachable ();
2800 }
2801 }
2802
2803 bool
2804 type_contains_placeholder_p (tree type)
2805 {
2806 bool result;
2807
2808 /* If the contains_placeholder_bits field has been initialized,
2809 then we know the answer. */
2810 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2811 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2812
2813 /* Indicate that we've seen this type node, and the answer is false.
2814 This is what we want to return if we run into recursion via fields. */
2815 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2816
2817 /* Compute the real value. */
2818 result = type_contains_placeholder_1 (type);
2819
2820 /* Store the real value. */
2821 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2822
2823 return result;
2824 }
2825 \f
2826 /* Push tree EXP onto vector QUEUE if it is not already present. */
2827
2828 static void
2829 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2830 {
2831 unsigned int i;
2832 tree iter;
2833
2834 for (i = 0; VEC_iterate (tree, *queue, i, iter); i++)
2835 if (simple_cst_equal (iter, exp) == 1)
2836 break;
2837
2838 if (!iter)
2839 VEC_safe_push (tree, heap, *queue, exp);
2840 }
2841
2842 /* Given a tree EXP, find all occurences of references to fields
2843 in a PLACEHOLDER_EXPR and place them in vector REFS without
2844 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
2845 we assume here that EXP contains only arithmetic expressions
2846 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
2847 argument list. */
2848
2849 void
2850 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
2851 {
2852 enum tree_code code = TREE_CODE (exp);
2853 tree inner;
2854 int i;
2855
2856 /* We handle TREE_LIST and COMPONENT_REF separately. */
2857 if (code == TREE_LIST)
2858 {
2859 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
2860 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
2861 }
2862 else if (code == COMPONENT_REF)
2863 {
2864 for (inner = TREE_OPERAND (exp, 0);
2865 REFERENCE_CLASS_P (inner);
2866 inner = TREE_OPERAND (inner, 0))
2867 ;
2868
2869 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
2870 push_without_duplicates (exp, refs);
2871 else
2872 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
2873 }
2874 else
2875 switch (TREE_CODE_CLASS (code))
2876 {
2877 case tcc_constant:
2878 break;
2879
2880 case tcc_declaration:
2881 /* Variables allocated to static storage can stay. */
2882 if (!TREE_STATIC (exp))
2883 push_without_duplicates (exp, refs);
2884 break;
2885
2886 case tcc_expression:
2887 /* This is the pattern built in ada/make_aligning_type. */
2888 if (code == ADDR_EXPR
2889 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
2890 {
2891 push_without_duplicates (exp, refs);
2892 break;
2893 }
2894
2895 /* Fall through... */
2896
2897 case tcc_exceptional:
2898 case tcc_unary:
2899 case tcc_binary:
2900 case tcc_comparison:
2901 case tcc_reference:
2902 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
2903 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2904 break;
2905
2906 case tcc_vl_exp:
2907 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
2908 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2909 break;
2910
2911 default:
2912 gcc_unreachable ();
2913 }
2914 }
2915
2916 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2917 return a tree with all occurrences of references to F in a
2918 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
2919 CONST_DECLs. Note that we assume here that EXP contains only
2920 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
2921 occurring only in their argument list. */
2922
2923 tree
2924 substitute_in_expr (tree exp, tree f, tree r)
2925 {
2926 enum tree_code code = TREE_CODE (exp);
2927 tree op0, op1, op2, op3;
2928 tree new_tree;
2929
2930 /* We handle TREE_LIST and COMPONENT_REF separately. */
2931 if (code == TREE_LIST)
2932 {
2933 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2934 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2935 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2936 return exp;
2937
2938 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2939 }
2940 else if (code == COMPONENT_REF)
2941 {
2942 tree inner;
2943
2944 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2945 and it is the right field, replace it with R. */
2946 for (inner = TREE_OPERAND (exp, 0);
2947 REFERENCE_CLASS_P (inner);
2948 inner = TREE_OPERAND (inner, 0))
2949 ;
2950
2951 /* The field. */
2952 op1 = TREE_OPERAND (exp, 1);
2953
2954 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
2955 return r;
2956
2957 /* If this expression hasn't been completed let, leave it alone. */
2958 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
2959 return exp;
2960
2961 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2962 if (op0 == TREE_OPERAND (exp, 0))
2963 return exp;
2964
2965 new_tree
2966 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
2967 }
2968 else
2969 switch (TREE_CODE_CLASS (code))
2970 {
2971 case tcc_constant:
2972 return exp;
2973
2974 case tcc_declaration:
2975 if (exp == f)
2976 return r;
2977 else
2978 return exp;
2979
2980 case tcc_expression:
2981 if (exp == f)
2982 return r;
2983
2984 /* Fall through... */
2985
2986 case tcc_exceptional:
2987 case tcc_unary:
2988 case tcc_binary:
2989 case tcc_comparison:
2990 case tcc_reference:
2991 switch (TREE_CODE_LENGTH (code))
2992 {
2993 case 0:
2994 return exp;
2995
2996 case 1:
2997 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2998 if (op0 == TREE_OPERAND (exp, 0))
2999 return exp;
3000
3001 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3002 break;
3003
3004 case 2:
3005 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3006 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3007
3008 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3009 return exp;
3010
3011 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3012 break;
3013
3014 case 3:
3015 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3016 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3017 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3018
3019 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3020 && op2 == TREE_OPERAND (exp, 2))
3021 return exp;
3022
3023 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3024 break;
3025
3026 case 4:
3027 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3028 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3029 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3030 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3031
3032 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3033 && op2 == TREE_OPERAND (exp, 2)
3034 && op3 == TREE_OPERAND (exp, 3))
3035 return exp;
3036
3037 new_tree
3038 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3039 break;
3040
3041 default:
3042 gcc_unreachable ();
3043 }
3044 break;
3045
3046 case tcc_vl_exp:
3047 {
3048 int i;
3049
3050 new_tree = NULL_TREE;
3051
3052 /* If we are trying to replace F with a constant, inline back
3053 functions which do nothing else than computing a value from
3054 the arguments they are passed. This makes it possible to
3055 fold partially or entirely the replacement expression. */
3056 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3057 {
3058 tree t = maybe_inline_call_in_expr (exp);
3059 if (t)
3060 return SUBSTITUTE_IN_EXPR (t, f, r);
3061 }
3062
3063 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3064 {
3065 tree op = TREE_OPERAND (exp, i);
3066 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3067 if (new_op != op)
3068 {
3069 if (!new_tree)
3070 new_tree = copy_node (exp);
3071 TREE_OPERAND (new_tree, i) = new_op;
3072 }
3073 }
3074
3075 if (new_tree)
3076 {
3077 new_tree = fold (new_tree);
3078 if (TREE_CODE (new_tree) == CALL_EXPR)
3079 process_call_operands (new_tree);
3080 }
3081 else
3082 return exp;
3083 }
3084 break;
3085
3086 default:
3087 gcc_unreachable ();
3088 }
3089
3090 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3091 return new_tree;
3092 }
3093
3094 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3095 for it within OBJ, a tree that is an object or a chain of references. */
3096
3097 tree
3098 substitute_placeholder_in_expr (tree exp, tree obj)
3099 {
3100 enum tree_code code = TREE_CODE (exp);
3101 tree op0, op1, op2, op3;
3102 tree new_tree;
3103
3104 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3105 in the chain of OBJ. */
3106 if (code == PLACEHOLDER_EXPR)
3107 {
3108 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3109 tree elt;
3110
3111 for (elt = obj; elt != 0;
3112 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3113 || TREE_CODE (elt) == COND_EXPR)
3114 ? TREE_OPERAND (elt, 1)
3115 : (REFERENCE_CLASS_P (elt)
3116 || UNARY_CLASS_P (elt)
3117 || BINARY_CLASS_P (elt)
3118 || VL_EXP_CLASS_P (elt)
3119 || EXPRESSION_CLASS_P (elt))
3120 ? TREE_OPERAND (elt, 0) : 0))
3121 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3122 return elt;
3123
3124 for (elt = obj; elt != 0;
3125 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3126 || TREE_CODE (elt) == COND_EXPR)
3127 ? TREE_OPERAND (elt, 1)
3128 : (REFERENCE_CLASS_P (elt)
3129 || UNARY_CLASS_P (elt)
3130 || BINARY_CLASS_P (elt)
3131 || VL_EXP_CLASS_P (elt)
3132 || EXPRESSION_CLASS_P (elt))
3133 ? TREE_OPERAND (elt, 0) : 0))
3134 if (POINTER_TYPE_P (TREE_TYPE (elt))
3135 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3136 == need_type))
3137 return fold_build1 (INDIRECT_REF, need_type, elt);
3138
3139 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3140 survives until RTL generation, there will be an error. */
3141 return exp;
3142 }
3143
3144 /* TREE_LIST is special because we need to look at TREE_VALUE
3145 and TREE_CHAIN, not TREE_OPERANDS. */
3146 else if (code == TREE_LIST)
3147 {
3148 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3149 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3150 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3151 return exp;
3152
3153 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3154 }
3155 else
3156 switch (TREE_CODE_CLASS (code))
3157 {
3158 case tcc_constant:
3159 case tcc_declaration:
3160 return exp;
3161
3162 case tcc_exceptional:
3163 case tcc_unary:
3164 case tcc_binary:
3165 case tcc_comparison:
3166 case tcc_expression:
3167 case tcc_reference:
3168 case tcc_statement:
3169 switch (TREE_CODE_LENGTH (code))
3170 {
3171 case 0:
3172 return exp;
3173
3174 case 1:
3175 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3176 if (op0 == TREE_OPERAND (exp, 0))
3177 return exp;
3178
3179 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3180 break;
3181
3182 case 2:
3183 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3184 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3185
3186 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3187 return exp;
3188
3189 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3190 break;
3191
3192 case 3:
3193 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3194 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3195 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3196
3197 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3198 && op2 == TREE_OPERAND (exp, 2))
3199 return exp;
3200
3201 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3202 break;
3203
3204 case 4:
3205 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3206 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3207 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3208 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3209
3210 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3211 && op2 == TREE_OPERAND (exp, 2)
3212 && op3 == TREE_OPERAND (exp, 3))
3213 return exp;
3214
3215 new_tree
3216 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3217 break;
3218
3219 default:
3220 gcc_unreachable ();
3221 }
3222 break;
3223
3224 case tcc_vl_exp:
3225 {
3226 int i;
3227
3228 new_tree = NULL_TREE;
3229
3230 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3231 {
3232 tree op = TREE_OPERAND (exp, i);
3233 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3234 if (new_op != op)
3235 {
3236 if (!new_tree)
3237 new_tree = copy_node (exp);
3238 TREE_OPERAND (new_tree, i) = new_op;
3239 }
3240 }
3241
3242 if (new_tree)
3243 {
3244 new_tree = fold (new_tree);
3245 if (TREE_CODE (new_tree) == CALL_EXPR)
3246 process_call_operands (new_tree);
3247 }
3248 else
3249 return exp;
3250 }
3251 break;
3252
3253 default:
3254 gcc_unreachable ();
3255 }
3256
3257 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3258 return new_tree;
3259 }
3260 \f
3261 /* Stabilize a reference so that we can use it any number of times
3262 without causing its operands to be evaluated more than once.
3263 Returns the stabilized reference. This works by means of save_expr,
3264 so see the caveats in the comments about save_expr.
3265
3266 Also allows conversion expressions whose operands are references.
3267 Any other kind of expression is returned unchanged. */
3268
3269 tree
3270 stabilize_reference (tree ref)
3271 {
3272 tree result;
3273 enum tree_code code = TREE_CODE (ref);
3274
3275 switch (code)
3276 {
3277 case VAR_DECL:
3278 case PARM_DECL:
3279 case RESULT_DECL:
3280 /* No action is needed in this case. */
3281 return ref;
3282
3283 CASE_CONVERT:
3284 case FLOAT_EXPR:
3285 case FIX_TRUNC_EXPR:
3286 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3287 break;
3288
3289 case INDIRECT_REF:
3290 result = build_nt (INDIRECT_REF,
3291 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3292 break;
3293
3294 case COMPONENT_REF:
3295 result = build_nt (COMPONENT_REF,
3296 stabilize_reference (TREE_OPERAND (ref, 0)),
3297 TREE_OPERAND (ref, 1), NULL_TREE);
3298 break;
3299
3300 case BIT_FIELD_REF:
3301 result = build_nt (BIT_FIELD_REF,
3302 stabilize_reference (TREE_OPERAND (ref, 0)),
3303 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3304 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3305 break;
3306
3307 case ARRAY_REF:
3308 result = build_nt (ARRAY_REF,
3309 stabilize_reference (TREE_OPERAND (ref, 0)),
3310 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3311 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3312 break;
3313
3314 case ARRAY_RANGE_REF:
3315 result = build_nt (ARRAY_RANGE_REF,
3316 stabilize_reference (TREE_OPERAND (ref, 0)),
3317 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3318 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3319 break;
3320
3321 case COMPOUND_EXPR:
3322 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3323 it wouldn't be ignored. This matters when dealing with
3324 volatiles. */
3325 return stabilize_reference_1 (ref);
3326
3327 /* If arg isn't a kind of lvalue we recognize, make no change.
3328 Caller should recognize the error for an invalid lvalue. */
3329 default:
3330 return ref;
3331
3332 case ERROR_MARK:
3333 return error_mark_node;
3334 }
3335
3336 TREE_TYPE (result) = TREE_TYPE (ref);
3337 TREE_READONLY (result) = TREE_READONLY (ref);
3338 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3339 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3340
3341 return result;
3342 }
3343
3344 /* Subroutine of stabilize_reference; this is called for subtrees of
3345 references. Any expression with side-effects must be put in a SAVE_EXPR
3346 to ensure that it is only evaluated once.
3347
3348 We don't put SAVE_EXPR nodes around everything, because assigning very
3349 simple expressions to temporaries causes us to miss good opportunities
3350 for optimizations. Among other things, the opportunity to fold in the
3351 addition of a constant into an addressing mode often gets lost, e.g.
3352 "y[i+1] += x;". In general, we take the approach that we should not make
3353 an assignment unless we are forced into it - i.e., that any non-side effect
3354 operator should be allowed, and that cse should take care of coalescing
3355 multiple utterances of the same expression should that prove fruitful. */
3356
3357 tree
3358 stabilize_reference_1 (tree e)
3359 {
3360 tree result;
3361 enum tree_code code = TREE_CODE (e);
3362
3363 /* We cannot ignore const expressions because it might be a reference
3364 to a const array but whose index contains side-effects. But we can
3365 ignore things that are actual constant or that already have been
3366 handled by this function. */
3367
3368 if (tree_invariant_p (e))
3369 return e;
3370
3371 switch (TREE_CODE_CLASS (code))
3372 {
3373 case tcc_exceptional:
3374 case tcc_type:
3375 case tcc_declaration:
3376 case tcc_comparison:
3377 case tcc_statement:
3378 case tcc_expression:
3379 case tcc_reference:
3380 case tcc_vl_exp:
3381 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3382 so that it will only be evaluated once. */
3383 /* The reference (r) and comparison (<) classes could be handled as
3384 below, but it is generally faster to only evaluate them once. */
3385 if (TREE_SIDE_EFFECTS (e))
3386 return save_expr (e);
3387 return e;
3388
3389 case tcc_constant:
3390 /* Constants need no processing. In fact, we should never reach
3391 here. */
3392 return e;
3393
3394 case tcc_binary:
3395 /* Division is slow and tends to be compiled with jumps,
3396 especially the division by powers of 2 that is often
3397 found inside of an array reference. So do it just once. */
3398 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3399 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3400 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3401 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3402 return save_expr (e);
3403 /* Recursively stabilize each operand. */
3404 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3405 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3406 break;
3407
3408 case tcc_unary:
3409 /* Recursively stabilize each operand. */
3410 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3411 break;
3412
3413 default:
3414 gcc_unreachable ();
3415 }
3416
3417 TREE_TYPE (result) = TREE_TYPE (e);
3418 TREE_READONLY (result) = TREE_READONLY (e);
3419 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3420 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3421
3422 return result;
3423 }
3424 \f
3425 /* Low-level constructors for expressions. */
3426
3427 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3428 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3429
3430 void
3431 recompute_tree_invariant_for_addr_expr (tree t)
3432 {
3433 tree node;
3434 bool tc = true, se = false;
3435
3436 /* We started out assuming this address is both invariant and constant, but
3437 does not have side effects. Now go down any handled components and see if
3438 any of them involve offsets that are either non-constant or non-invariant.
3439 Also check for side-effects.
3440
3441 ??? Note that this code makes no attempt to deal with the case where
3442 taking the address of something causes a copy due to misalignment. */
3443
3444 #define UPDATE_FLAGS(NODE) \
3445 do { tree _node = (NODE); \
3446 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3447 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3448
3449 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3450 node = TREE_OPERAND (node, 0))
3451 {
3452 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3453 array reference (probably made temporarily by the G++ front end),
3454 so ignore all the operands. */
3455 if ((TREE_CODE (node) == ARRAY_REF
3456 || TREE_CODE (node) == ARRAY_RANGE_REF)
3457 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3458 {
3459 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3460 if (TREE_OPERAND (node, 2))
3461 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3462 if (TREE_OPERAND (node, 3))
3463 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3464 }
3465 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3466 FIELD_DECL, apparently. The G++ front end can put something else
3467 there, at least temporarily. */
3468 else if (TREE_CODE (node) == COMPONENT_REF
3469 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3470 {
3471 if (TREE_OPERAND (node, 2))
3472 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3473 }
3474 else if (TREE_CODE (node) == BIT_FIELD_REF)
3475 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3476 }
3477
3478 node = lang_hooks.expr_to_decl (node, &tc, &se);
3479
3480 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3481 the address, since &(*a)->b is a form of addition. If it's a constant, the
3482 address is constant too. If it's a decl, its address is constant if the
3483 decl is static. Everything else is not constant and, furthermore,
3484 taking the address of a volatile variable is not volatile. */
3485 if (TREE_CODE (node) == INDIRECT_REF)
3486 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3487 else if (CONSTANT_CLASS_P (node))
3488 ;
3489 else if (DECL_P (node))
3490 tc &= (staticp (node) != NULL_TREE);
3491 else
3492 {
3493 tc = false;
3494 se |= TREE_SIDE_EFFECTS (node);
3495 }
3496
3497
3498 TREE_CONSTANT (t) = tc;
3499 TREE_SIDE_EFFECTS (t) = se;
3500 #undef UPDATE_FLAGS
3501 }
3502
3503 /* Build an expression of code CODE, data type TYPE, and operands as
3504 specified. Expressions and reference nodes can be created this way.
3505 Constants, decls, types and misc nodes cannot be.
3506
3507 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3508 enough for all extant tree codes. */
3509
3510 tree
3511 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3512 {
3513 tree t;
3514
3515 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3516
3517 t = make_node_stat (code PASS_MEM_STAT);
3518 TREE_TYPE (t) = tt;
3519
3520 return t;
3521 }
3522
3523 tree
3524 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3525 {
3526 int length = sizeof (struct tree_exp);
3527 #ifdef GATHER_STATISTICS
3528 tree_node_kind kind;
3529 #endif
3530 tree t;
3531
3532 #ifdef GATHER_STATISTICS
3533 switch (TREE_CODE_CLASS (code))
3534 {
3535 case tcc_statement: /* an expression with side effects */
3536 kind = s_kind;
3537 break;
3538 case tcc_reference: /* a reference */
3539 kind = r_kind;
3540 break;
3541 default:
3542 kind = e_kind;
3543 break;
3544 }
3545
3546 tree_node_counts[(int) kind]++;
3547 tree_node_sizes[(int) kind] += length;
3548 #endif
3549
3550 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3551
3552 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
3553
3554 memset (t, 0, sizeof (struct tree_common));
3555
3556 TREE_SET_CODE (t, code);
3557
3558 TREE_TYPE (t) = type;
3559 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3560 TREE_OPERAND (t, 0) = node;
3561 TREE_BLOCK (t) = NULL_TREE;
3562 if (node && !TYPE_P (node))
3563 {
3564 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3565 TREE_READONLY (t) = TREE_READONLY (node);
3566 }
3567
3568 if (TREE_CODE_CLASS (code) == tcc_statement)
3569 TREE_SIDE_EFFECTS (t) = 1;
3570 else switch (code)
3571 {
3572 case VA_ARG_EXPR:
3573 /* All of these have side-effects, no matter what their
3574 operands are. */
3575 TREE_SIDE_EFFECTS (t) = 1;
3576 TREE_READONLY (t) = 0;
3577 break;
3578
3579 case MISALIGNED_INDIRECT_REF:
3580 case ALIGN_INDIRECT_REF:
3581 case INDIRECT_REF:
3582 /* Whether a dereference is readonly has nothing to do with whether
3583 its operand is readonly. */
3584 TREE_READONLY (t) = 0;
3585 break;
3586
3587 case ADDR_EXPR:
3588 if (node)
3589 recompute_tree_invariant_for_addr_expr (t);
3590 break;
3591
3592 default:
3593 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3594 && node && !TYPE_P (node)
3595 && TREE_CONSTANT (node))
3596 TREE_CONSTANT (t) = 1;
3597 if (TREE_CODE_CLASS (code) == tcc_reference
3598 && node && TREE_THIS_VOLATILE (node))
3599 TREE_THIS_VOLATILE (t) = 1;
3600 break;
3601 }
3602
3603 return t;
3604 }
3605
3606 #define PROCESS_ARG(N) \
3607 do { \
3608 TREE_OPERAND (t, N) = arg##N; \
3609 if (arg##N &&!TYPE_P (arg##N)) \
3610 { \
3611 if (TREE_SIDE_EFFECTS (arg##N)) \
3612 side_effects = 1; \
3613 if (!TREE_READONLY (arg##N) \
3614 && !CONSTANT_CLASS_P (arg##N)) \
3615 read_only = 0; \
3616 if (!TREE_CONSTANT (arg##N)) \
3617 constant = 0; \
3618 } \
3619 } while (0)
3620
3621 tree
3622 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3623 {
3624 bool constant, read_only, side_effects;
3625 tree t;
3626
3627 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3628
3629 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3630 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3631 /* When sizetype precision doesn't match that of pointers
3632 we need to be able to build explicit extensions or truncations
3633 of the offset argument. */
3634 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3635 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3636 && TREE_CODE (arg1) == INTEGER_CST);
3637
3638 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3639 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3640 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3641 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3642
3643 t = make_node_stat (code PASS_MEM_STAT);
3644 TREE_TYPE (t) = tt;
3645
3646 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3647 result based on those same flags for the arguments. But if the
3648 arguments aren't really even `tree' expressions, we shouldn't be trying
3649 to do this. */
3650
3651 /* Expressions without side effects may be constant if their
3652 arguments are as well. */
3653 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3654 || TREE_CODE_CLASS (code) == tcc_binary);
3655 read_only = 1;
3656 side_effects = TREE_SIDE_EFFECTS (t);
3657
3658 PROCESS_ARG(0);
3659 PROCESS_ARG(1);
3660
3661 TREE_READONLY (t) = read_only;
3662 TREE_CONSTANT (t) = constant;
3663 TREE_SIDE_EFFECTS (t) = side_effects;
3664 TREE_THIS_VOLATILE (t)
3665 = (TREE_CODE_CLASS (code) == tcc_reference
3666 && arg0 && TREE_THIS_VOLATILE (arg0));
3667
3668 return t;
3669 }
3670
3671
3672 tree
3673 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3674 tree arg2 MEM_STAT_DECL)
3675 {
3676 bool constant, read_only, side_effects;
3677 tree t;
3678
3679 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3680 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3681
3682 t = make_node_stat (code PASS_MEM_STAT);
3683 TREE_TYPE (t) = tt;
3684
3685 read_only = 1;
3686
3687 /* As a special exception, if COND_EXPR has NULL branches, we
3688 assume that it is a gimple statement and always consider
3689 it to have side effects. */
3690 if (code == COND_EXPR
3691 && tt == void_type_node
3692 && arg1 == NULL_TREE
3693 && arg2 == NULL_TREE)
3694 side_effects = true;
3695 else
3696 side_effects = TREE_SIDE_EFFECTS (t);
3697
3698 PROCESS_ARG(0);
3699 PROCESS_ARG(1);
3700 PROCESS_ARG(2);
3701
3702 if (code == COND_EXPR)
3703 TREE_READONLY (t) = read_only;
3704
3705 TREE_SIDE_EFFECTS (t) = side_effects;
3706 TREE_THIS_VOLATILE (t)
3707 = (TREE_CODE_CLASS (code) == tcc_reference
3708 && arg0 && TREE_THIS_VOLATILE (arg0));
3709
3710 return t;
3711 }
3712
3713 tree
3714 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3715 tree arg2, tree arg3 MEM_STAT_DECL)
3716 {
3717 bool constant, read_only, side_effects;
3718 tree t;
3719
3720 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3721
3722 t = make_node_stat (code PASS_MEM_STAT);
3723 TREE_TYPE (t) = tt;
3724
3725 side_effects = TREE_SIDE_EFFECTS (t);
3726
3727 PROCESS_ARG(0);
3728 PROCESS_ARG(1);
3729 PROCESS_ARG(2);
3730 PROCESS_ARG(3);
3731
3732 TREE_SIDE_EFFECTS (t) = side_effects;
3733 TREE_THIS_VOLATILE (t)
3734 = (TREE_CODE_CLASS (code) == tcc_reference
3735 && arg0 && TREE_THIS_VOLATILE (arg0));
3736
3737 return t;
3738 }
3739
3740 tree
3741 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3742 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3743 {
3744 bool constant, read_only, side_effects;
3745 tree t;
3746
3747 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3748
3749 t = make_node_stat (code PASS_MEM_STAT);
3750 TREE_TYPE (t) = tt;
3751
3752 side_effects = TREE_SIDE_EFFECTS (t);
3753
3754 PROCESS_ARG(0);
3755 PROCESS_ARG(1);
3756 PROCESS_ARG(2);
3757 PROCESS_ARG(3);
3758 PROCESS_ARG(4);
3759
3760 TREE_SIDE_EFFECTS (t) = side_effects;
3761 TREE_THIS_VOLATILE (t)
3762 = (TREE_CODE_CLASS (code) == tcc_reference
3763 && arg0 && TREE_THIS_VOLATILE (arg0));
3764
3765 return t;
3766 }
3767
3768 tree
3769 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3770 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3771 {
3772 bool constant, read_only, side_effects;
3773 tree t;
3774
3775 gcc_assert (code == TARGET_MEM_REF);
3776
3777 t = make_node_stat (code PASS_MEM_STAT);
3778 TREE_TYPE (t) = tt;
3779
3780 side_effects = TREE_SIDE_EFFECTS (t);
3781
3782 PROCESS_ARG(0);
3783 PROCESS_ARG(1);
3784 PROCESS_ARG(2);
3785 PROCESS_ARG(3);
3786 PROCESS_ARG(4);
3787 PROCESS_ARG(5);
3788
3789 TREE_SIDE_EFFECTS (t) = side_effects;
3790 TREE_THIS_VOLATILE (t) = 0;
3791
3792 return t;
3793 }
3794
3795 /* Similar except don't specify the TREE_TYPE
3796 and leave the TREE_SIDE_EFFECTS as 0.
3797 It is permissible for arguments to be null,
3798 or even garbage if their values do not matter. */
3799
3800 tree
3801 build_nt (enum tree_code code, ...)
3802 {
3803 tree t;
3804 int length;
3805 int i;
3806 va_list p;
3807
3808 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3809
3810 va_start (p, code);
3811
3812 t = make_node (code);
3813 length = TREE_CODE_LENGTH (code);
3814
3815 for (i = 0; i < length; i++)
3816 TREE_OPERAND (t, i) = va_arg (p, tree);
3817
3818 va_end (p);
3819 return t;
3820 }
3821
3822 /* Similar to build_nt, but for creating a CALL_EXPR object with
3823 ARGLIST passed as a list. */
3824
3825 tree
3826 build_nt_call_list (tree fn, tree arglist)
3827 {
3828 tree t;
3829 int i;
3830
3831 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
3832 CALL_EXPR_FN (t) = fn;
3833 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
3834 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
3835 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
3836 return t;
3837 }
3838
3839 /* Similar to build_nt, but for creating a CALL_EXPR object with a
3840 tree VEC. */
3841
3842 tree
3843 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
3844 {
3845 tree ret, t;
3846 unsigned int ix;
3847
3848 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
3849 CALL_EXPR_FN (ret) = fn;
3850 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
3851 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
3852 CALL_EXPR_ARG (ret, ix) = t;
3853 return ret;
3854 }
3855 \f
3856 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3857 We do NOT enter this node in any sort of symbol table.
3858
3859 LOC is the location of the decl.
3860
3861 layout_decl is used to set up the decl's storage layout.
3862 Other slots are initialized to 0 or null pointers. */
3863
3864 tree
3865 build_decl_stat (location_t loc, enum tree_code code, tree name,
3866 tree type MEM_STAT_DECL)
3867 {
3868 tree t;
3869
3870 t = make_node_stat (code PASS_MEM_STAT);
3871 DECL_SOURCE_LOCATION (t) = loc;
3872
3873 /* if (type == error_mark_node)
3874 type = integer_type_node; */
3875 /* That is not done, deliberately, so that having error_mark_node
3876 as the type can suppress useless errors in the use of this variable. */
3877
3878 DECL_NAME (t) = name;
3879 TREE_TYPE (t) = type;
3880
3881 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3882 layout_decl (t, 0);
3883
3884 return t;
3885 }
3886
3887 /* Builds and returns function declaration with NAME and TYPE. */
3888
3889 tree
3890 build_fn_decl (const char *name, tree type)
3891 {
3892 tree id = get_identifier (name);
3893 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
3894
3895 DECL_EXTERNAL (decl) = 1;
3896 TREE_PUBLIC (decl) = 1;
3897 DECL_ARTIFICIAL (decl) = 1;
3898 TREE_NOTHROW (decl) = 1;
3899
3900 return decl;
3901 }
3902
3903 \f
3904 /* BLOCK nodes are used to represent the structure of binding contours
3905 and declarations, once those contours have been exited and their contents
3906 compiled. This information is used for outputting debugging info. */
3907
3908 tree
3909 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3910 {
3911 tree block = make_node (BLOCK);
3912
3913 BLOCK_VARS (block) = vars;
3914 BLOCK_SUBBLOCKS (block) = subblocks;
3915 BLOCK_SUPERCONTEXT (block) = supercontext;
3916 BLOCK_CHAIN (block) = chain;
3917 return block;
3918 }
3919
3920 expanded_location
3921 expand_location (source_location loc)
3922 {
3923 expanded_location xloc;
3924 if (loc == 0)
3925 {
3926 xloc.file = NULL;
3927 xloc.line = 0;
3928 xloc.column = 0;
3929 xloc.sysp = 0;
3930 }
3931 else
3932 {
3933 const struct line_map *map = linemap_lookup (line_table, loc);
3934 xloc.file = map->to_file;
3935 xloc.line = SOURCE_LINE (map, loc);
3936 xloc.column = SOURCE_COLUMN (map, loc);
3937 xloc.sysp = map->sysp != 0;
3938 };
3939 return xloc;
3940 }
3941
3942 \f
3943 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
3944
3945 LOC is the location to use in tree T. */
3946
3947 void
3948 protected_set_expr_location (tree t, location_t loc)
3949 {
3950 if (t && CAN_HAVE_LOCATION_P (t))
3951 SET_EXPR_LOCATION (t, loc);
3952 }
3953 \f
3954 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3955 is ATTRIBUTE. */
3956
3957 tree
3958 build_decl_attribute_variant (tree ddecl, tree attribute)
3959 {
3960 DECL_ATTRIBUTES (ddecl) = attribute;
3961 return ddecl;
3962 }
3963
3964 /* Borrowed from hashtab.c iterative_hash implementation. */
3965 #define mix(a,b,c) \
3966 { \
3967 a -= b; a -= c; a ^= (c>>13); \
3968 b -= c; b -= a; b ^= (a<< 8); \
3969 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3970 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3971 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3972 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3973 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3974 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3975 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3976 }
3977
3978
3979 /* Produce good hash value combining VAL and VAL2. */
3980 hashval_t
3981 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3982 {
3983 /* the golden ratio; an arbitrary value. */
3984 hashval_t a = 0x9e3779b9;
3985
3986 mix (a, val, val2);
3987 return val2;
3988 }
3989
3990 /* Produce good hash value combining VAL and VAL2. */
3991 hashval_t
3992 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3993 {
3994 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3995 return iterative_hash_hashval_t (val, val2);
3996 else
3997 {
3998 hashval_t a = (hashval_t) val;
3999 /* Avoid warnings about shifting of more than the width of the type on
4000 hosts that won't execute this path. */
4001 int zero = 0;
4002 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4003 mix (a, b, val2);
4004 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4005 {
4006 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4007 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4008 mix (a, b, val2);
4009 }
4010 return val2;
4011 }
4012 }
4013
4014 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4015 is ATTRIBUTE and its qualifiers are QUALS.
4016
4017 Record such modified types already made so we don't make duplicates. */
4018
4019 static tree
4020 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4021 {
4022 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4023 {
4024 hashval_t hashcode = 0;
4025 tree ntype;
4026 enum tree_code code = TREE_CODE (ttype);
4027
4028 /* Building a distinct copy of a tagged type is inappropriate; it
4029 causes breakage in code that expects there to be a one-to-one
4030 relationship between a struct and its fields.
4031 build_duplicate_type is another solution (as used in
4032 handle_transparent_union_attribute), but that doesn't play well
4033 with the stronger C++ type identity model. */
4034 if (TREE_CODE (ttype) == RECORD_TYPE
4035 || TREE_CODE (ttype) == UNION_TYPE
4036 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4037 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4038 {
4039 warning (OPT_Wattributes,
4040 "ignoring attributes applied to %qT after definition",
4041 TYPE_MAIN_VARIANT (ttype));
4042 return build_qualified_type (ttype, quals);
4043 }
4044
4045 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4046 ntype = build_distinct_type_copy (ttype);
4047
4048 TYPE_ATTRIBUTES (ntype) = attribute;
4049
4050 hashcode = iterative_hash_object (code, hashcode);
4051 if (TREE_TYPE (ntype))
4052 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4053 hashcode);
4054 hashcode = attribute_hash_list (attribute, hashcode);
4055
4056 switch (TREE_CODE (ntype))
4057 {
4058 case FUNCTION_TYPE:
4059 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4060 break;
4061 case ARRAY_TYPE:
4062 if (TYPE_DOMAIN (ntype))
4063 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4064 hashcode);
4065 break;
4066 case INTEGER_TYPE:
4067 hashcode = iterative_hash_object
4068 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4069 hashcode = iterative_hash_object
4070 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4071 break;
4072 case REAL_TYPE:
4073 case FIXED_POINT_TYPE:
4074 {
4075 unsigned int precision = TYPE_PRECISION (ntype);
4076 hashcode = iterative_hash_object (precision, hashcode);
4077 }
4078 break;
4079 default:
4080 break;
4081 }
4082
4083 ntype = type_hash_canon (hashcode, ntype);
4084
4085 /* If the target-dependent attributes make NTYPE different from
4086 its canonical type, we will need to use structural equality
4087 checks for this type. */
4088 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4089 || !targetm.comp_type_attributes (ntype, ttype))
4090 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4091 else if (TYPE_CANONICAL (ntype) == ntype)
4092 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4093
4094 ttype = build_qualified_type (ntype, quals);
4095 }
4096 else if (TYPE_QUALS (ttype) != quals)
4097 ttype = build_qualified_type (ttype, quals);
4098
4099 return ttype;
4100 }
4101
4102
4103 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4104 is ATTRIBUTE.
4105
4106 Record such modified types already made so we don't make duplicates. */
4107
4108 tree
4109 build_type_attribute_variant (tree ttype, tree attribute)
4110 {
4111 return build_type_attribute_qual_variant (ttype, attribute,
4112 TYPE_QUALS (ttype));
4113 }
4114
4115 /* Return nonzero if IDENT is a valid name for attribute ATTR,
4116 or zero if not.
4117
4118 We try both `text' and `__text__', ATTR may be either one. */
4119 /* ??? It might be a reasonable simplification to require ATTR to be only
4120 `text'. One might then also require attribute lists to be stored in
4121 their canonicalized form. */
4122
4123 static int
4124 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
4125 {
4126 int ident_len;
4127 const char *p;
4128
4129 if (TREE_CODE (ident) != IDENTIFIER_NODE)
4130 return 0;
4131
4132 p = IDENTIFIER_POINTER (ident);
4133 ident_len = IDENTIFIER_LENGTH (ident);
4134
4135 if (ident_len == attr_len
4136 && strcmp (attr, p) == 0)
4137 return 1;
4138
4139 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
4140 if (attr[0] == '_')
4141 {
4142 gcc_assert (attr[1] == '_');
4143 gcc_assert (attr[attr_len - 2] == '_');
4144 gcc_assert (attr[attr_len - 1] == '_');
4145 if (ident_len == attr_len - 4
4146 && strncmp (attr + 2, p, attr_len - 4) == 0)
4147 return 1;
4148 }
4149 else
4150 {
4151 if (ident_len == attr_len + 4
4152 && p[0] == '_' && p[1] == '_'
4153 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
4154 && strncmp (attr, p + 2, attr_len) == 0)
4155 return 1;
4156 }
4157
4158 return 0;
4159 }
4160
4161 /* Return nonzero if IDENT is a valid name for attribute ATTR,
4162 or zero if not.
4163
4164 We try both `text' and `__text__', ATTR may be either one. */
4165
4166 int
4167 is_attribute_p (const char *attr, const_tree ident)
4168 {
4169 return is_attribute_with_length_p (attr, strlen (attr), ident);
4170 }
4171
4172 /* Given an attribute name and a list of attributes, return a pointer to the
4173 attribute's list element if the attribute is part of the list, or NULL_TREE
4174 if not found. If the attribute appears more than once, this only
4175 returns the first occurrence; the TREE_CHAIN of the return value should
4176 be passed back in if further occurrences are wanted. */
4177
4178 tree
4179 lookup_attribute (const char *attr_name, tree list)
4180 {
4181 tree l;
4182 size_t attr_len = strlen (attr_name);
4183
4184 for (l = list; l; l = TREE_CHAIN (l))
4185 {
4186 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
4187 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
4188 return l;
4189 }
4190 return NULL_TREE;
4191 }
4192
4193 /* Remove any instances of attribute ATTR_NAME in LIST and return the
4194 modified list. */
4195
4196 tree
4197 remove_attribute (const char *attr_name, tree list)
4198 {
4199 tree *p;
4200 size_t attr_len = strlen (attr_name);
4201
4202 for (p = &list; *p; )
4203 {
4204 tree l = *p;
4205 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
4206 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
4207 *p = TREE_CHAIN (l);
4208 else
4209 p = &TREE_CHAIN (l);
4210 }
4211
4212 return list;
4213 }
4214
4215 /* Return an attribute list that is the union of a1 and a2. */
4216
4217 tree
4218 merge_attributes (tree a1, tree a2)
4219 {
4220 tree attributes;
4221
4222 /* Either one unset? Take the set one. */
4223
4224 if ((attributes = a1) == 0)
4225 attributes = a2;
4226
4227 /* One that completely contains the other? Take it. */
4228
4229 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
4230 {
4231 if (attribute_list_contained (a2, a1))
4232 attributes = a2;
4233 else
4234 {
4235 /* Pick the longest list, and hang on the other list. */
4236
4237 if (list_length (a1) < list_length (a2))
4238 attributes = a2, a2 = a1;
4239
4240 for (; a2 != 0; a2 = TREE_CHAIN (a2))
4241 {
4242 tree a;
4243 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
4244 attributes);
4245 a != NULL_TREE;
4246 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
4247 TREE_CHAIN (a)))
4248 {
4249 if (TREE_VALUE (a) != NULL
4250 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
4251 && TREE_VALUE (a2) != NULL
4252 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
4253 {
4254 if (simple_cst_list_equal (TREE_VALUE (a),
4255 TREE_VALUE (a2)) == 1)
4256 break;
4257 }
4258 else if (simple_cst_equal (TREE_VALUE (a),
4259 TREE_VALUE (a2)) == 1)
4260 break;
4261 }
4262 if (a == NULL_TREE)
4263 {
4264 a1 = copy_node (a2);
4265 TREE_CHAIN (a1) = attributes;
4266 attributes = a1;
4267 }
4268 }
4269 }
4270 }
4271 return attributes;
4272 }
4273
4274 /* Given types T1 and T2, merge their attributes and return
4275 the result. */
4276
4277 tree
4278 merge_type_attributes (tree t1, tree t2)
4279 {
4280 return merge_attributes (TYPE_ATTRIBUTES (t1),
4281 TYPE_ATTRIBUTES (t2));
4282 }
4283
4284 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
4285 the result. */
4286
4287 tree
4288 merge_decl_attributes (tree olddecl, tree newdecl)
4289 {
4290 return merge_attributes (DECL_ATTRIBUTES (olddecl),
4291 DECL_ATTRIBUTES (newdecl));
4292 }
4293
4294 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
4295
4296 /* Specialization of merge_decl_attributes for various Windows targets.
4297
4298 This handles the following situation:
4299
4300 __declspec (dllimport) int foo;
4301 int foo;
4302
4303 The second instance of `foo' nullifies the dllimport. */
4304
4305 tree
4306 merge_dllimport_decl_attributes (tree old, tree new_tree)
4307 {
4308 tree a;
4309 int delete_dllimport_p = 1;
4310
4311 /* What we need to do here is remove from `old' dllimport if it doesn't
4312 appear in `new'. dllimport behaves like extern: if a declaration is
4313 marked dllimport and a definition appears later, then the object
4314 is not dllimport'd. We also remove a `new' dllimport if the old list
4315 contains dllexport: dllexport always overrides dllimport, regardless
4316 of the order of declaration. */
4317 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
4318 delete_dllimport_p = 0;
4319 else if (DECL_DLLIMPORT_P (new_tree)
4320 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
4321 {
4322 DECL_DLLIMPORT_P (new_tree) = 0;
4323 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
4324 "dllimport ignored", new_tree);
4325 }
4326 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
4327 {
4328 /* Warn about overriding a symbol that has already been used, e.g.:
4329 extern int __attribute__ ((dllimport)) foo;
4330 int* bar () {return &foo;}
4331 int foo;
4332 */
4333 if (TREE_USED (old))
4334 {
4335 warning (0, "%q+D redeclared without dllimport attribute "
4336 "after being referenced with dll linkage", new_tree);
4337 /* If we have used a variable's address with dllimport linkage,
4338 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
4339 decl may already have had TREE_CONSTANT computed.
4340 We still remove the attribute so that assembler code refers
4341 to '&foo rather than '_imp__foo'. */
4342 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
4343 DECL_DLLIMPORT_P (new_tree) = 1;
4344 }
4345
4346 /* Let an inline definition silently override the external reference,
4347 but otherwise warn about attribute inconsistency. */
4348 else if (TREE_CODE (new_tree) == VAR_DECL
4349 || !DECL_DECLARED_INLINE_P (new_tree))
4350 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
4351 "previous dllimport ignored", new_tree);
4352 }
4353 else
4354 delete_dllimport_p = 0;
4355
4356 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
4357
4358 if (delete_dllimport_p)
4359 {
4360 tree prev, t;
4361 const size_t attr_len = strlen ("dllimport");
4362
4363 /* Scan the list for dllimport and delete it. */
4364 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
4365 {
4366 if (is_attribute_with_length_p ("dllimport", attr_len,
4367 TREE_PURPOSE (t)))
4368 {
4369 if (prev == NULL_TREE)
4370 a = TREE_CHAIN (a);
4371 else
4372 TREE_CHAIN (prev) = TREE_CHAIN (t);
4373 break;
4374 }
4375 }
4376 }
4377
4378 return a;
4379 }
4380
4381 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
4382 struct attribute_spec.handler. */
4383
4384 tree
4385 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
4386 bool *no_add_attrs)
4387 {
4388 tree node = *pnode;
4389 bool is_dllimport;
4390
4391 /* These attributes may apply to structure and union types being created,
4392 but otherwise should pass to the declaration involved. */
4393 if (!DECL_P (node))
4394 {
4395 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
4396 | (int) ATTR_FLAG_ARRAY_NEXT))
4397 {
4398 *no_add_attrs = true;
4399 return tree_cons (name, args, NULL_TREE);
4400 }
4401 if (TREE_CODE (node) == RECORD_TYPE
4402 || TREE_CODE (node) == UNION_TYPE)
4403 {
4404 node = TYPE_NAME (node);
4405 if (!node)
4406 return NULL_TREE;
4407 }
4408 else
4409 {
4410 warning (OPT_Wattributes, "%qE attribute ignored",
4411 name);
4412 *no_add_attrs = true;
4413 return NULL_TREE;
4414 }
4415 }
4416
4417 if (TREE_CODE (node) != FUNCTION_DECL
4418 && TREE_CODE (node) != VAR_DECL
4419 && TREE_CODE (node) != TYPE_DECL)
4420 {
4421 *no_add_attrs = true;
4422 warning (OPT_Wattributes, "%qE attribute ignored",
4423 name);
4424 return NULL_TREE;
4425 }
4426
4427 if (TREE_CODE (node) == TYPE_DECL
4428 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
4429 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
4430 {
4431 *no_add_attrs = true;
4432 warning (OPT_Wattributes, "%qE attribute ignored",
4433 name);
4434 return NULL_TREE;
4435 }
4436
4437 is_dllimport = is_attribute_p ("dllimport", name);
4438
4439 /* Report error on dllimport ambiguities seen now before they cause
4440 any damage. */
4441 if (is_dllimport)
4442 {
4443 /* Honor any target-specific overrides. */
4444 if (!targetm.valid_dllimport_attribute_p (node))
4445 *no_add_attrs = true;
4446
4447 else if (TREE_CODE (node) == FUNCTION_DECL
4448 && DECL_DECLARED_INLINE_P (node))
4449 {
4450 warning (OPT_Wattributes, "inline function %q+D declared as "
4451 " dllimport: attribute ignored", node);
4452 *no_add_attrs = true;
4453 }
4454 /* Like MS, treat definition of dllimported variables and
4455 non-inlined functions on declaration as syntax errors. */
4456 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
4457 {
4458 error ("function %q+D definition is marked dllimport", node);
4459 *no_add_attrs = true;
4460 }
4461
4462 else if (TREE_CODE (node) == VAR_DECL)
4463 {
4464 if (DECL_INITIAL (node))
4465 {
4466 error ("variable %q+D definition is marked dllimport",
4467 node);
4468 *no_add_attrs = true;
4469 }
4470
4471 /* `extern' needn't be specified with dllimport.
4472 Specify `extern' now and hope for the best. Sigh. */
4473 DECL_EXTERNAL (node) = 1;
4474 /* Also, implicitly give dllimport'd variables declared within
4475 a function global scope, unless declared static. */
4476 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
4477 TREE_PUBLIC (node) = 1;
4478 }
4479
4480 if (*no_add_attrs == false)
4481 DECL_DLLIMPORT_P (node) = 1;
4482 }
4483 else if (TREE_CODE (node) == FUNCTION_DECL
4484 && DECL_DECLARED_INLINE_P (node))
4485 /* An exported function, even if inline, must be emitted. */
4486 DECL_EXTERNAL (node) = 0;
4487
4488 /* Report error if symbol is not accessible at global scope. */
4489 if (!TREE_PUBLIC (node)
4490 && (TREE_CODE (node) == VAR_DECL
4491 || TREE_CODE (node) == FUNCTION_DECL))
4492 {
4493 error ("external linkage required for symbol %q+D because of "
4494 "%qE attribute", node, name);
4495 *no_add_attrs = true;
4496 }
4497
4498 /* A dllexport'd entity must have default visibility so that other
4499 program units (shared libraries or the main executable) can see
4500 it. A dllimport'd entity must have default visibility so that
4501 the linker knows that undefined references within this program
4502 unit can be resolved by the dynamic linker. */
4503 if (!*no_add_attrs)
4504 {
4505 if (DECL_VISIBILITY_SPECIFIED (node)
4506 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
4507 error ("%qE implies default visibility, but %qD has already "
4508 "been declared with a different visibility",
4509 name, node);
4510 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
4511 DECL_VISIBILITY_SPECIFIED (node) = 1;
4512 }
4513
4514 return NULL_TREE;
4515 }
4516
4517 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
4518 \f
4519 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
4520 of the various TYPE_QUAL values. */
4521
4522 static void
4523 set_type_quals (tree type, int type_quals)
4524 {
4525 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
4526 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
4527 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
4528 }
4529
4530 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
4531
4532 bool
4533 check_qualified_type (const_tree cand, const_tree base, int type_quals)
4534 {
4535 return (TYPE_QUALS (cand) == type_quals
4536 && TYPE_NAME (cand) == TYPE_NAME (base)
4537 /* Apparently this is needed for Objective-C. */
4538 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
4539 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
4540 TYPE_ATTRIBUTES (base)));
4541 }
4542
4543 /* Return a version of the TYPE, qualified as indicated by the
4544 TYPE_QUALS, if one exists. If no qualified version exists yet,
4545 return NULL_TREE. */
4546
4547 tree
4548 get_qualified_type (tree type, int type_quals)
4549 {
4550 tree t;
4551
4552 if (TYPE_QUALS (type) == type_quals)
4553 return type;
4554
4555 /* Search the chain of variants to see if there is already one there just
4556 like the one we need to have. If so, use that existing one. We must
4557 preserve the TYPE_NAME, since there is code that depends on this. */
4558 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
4559 if (check_qualified_type (t, type, type_quals))
4560 return t;
4561
4562 return NULL_TREE;
4563 }
4564
4565 /* Like get_qualified_type, but creates the type if it does not
4566 exist. This function never returns NULL_TREE. */
4567
4568 tree
4569 build_qualified_type (tree type, int type_quals)
4570 {
4571 tree t;
4572
4573 /* See if we already have the appropriate qualified variant. */
4574 t = get_qualified_type (type, type_quals);
4575
4576 /* If not, build it. */
4577 if (!t)
4578 {
4579 t = build_variant_type_copy (type);
4580 set_type_quals (t, type_quals);
4581
4582 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4583 /* Propagate structural equality. */
4584 SET_TYPE_STRUCTURAL_EQUALITY (t);
4585 else if (TYPE_CANONICAL (type) != type)
4586 /* Build the underlying canonical type, since it is different
4587 from TYPE. */
4588 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
4589 type_quals);
4590 else
4591 /* T is its own canonical type. */
4592 TYPE_CANONICAL (t) = t;
4593
4594 }
4595
4596 return t;
4597 }
4598
4599 /* Create a new distinct copy of TYPE. The new type is made its own
4600 MAIN_VARIANT. If TYPE requires structural equality checks, the
4601 resulting type requires structural equality checks; otherwise, its
4602 TYPE_CANONICAL points to itself. */
4603
4604 tree
4605 build_distinct_type_copy (tree type)
4606 {
4607 tree t = copy_node (type);
4608
4609 TYPE_POINTER_TO (t) = 0;
4610 TYPE_REFERENCE_TO (t) = 0;
4611
4612 /* Set the canonical type either to a new equivalence class, or
4613 propagate the need for structural equality checks. */
4614 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4615 SET_TYPE_STRUCTURAL_EQUALITY (t);
4616 else
4617 TYPE_CANONICAL (t) = t;
4618
4619 /* Make it its own variant. */
4620 TYPE_MAIN_VARIANT (t) = t;
4621 TYPE_NEXT_VARIANT (t) = 0;
4622
4623 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
4624 whose TREE_TYPE is not t. This can also happen in the Ada
4625 frontend when using subtypes. */
4626
4627 return t;
4628 }
4629
4630 /* Create a new variant of TYPE, equivalent but distinct. This is so
4631 the caller can modify it. TYPE_CANONICAL for the return type will
4632 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
4633 are considered equal by the language itself (or that both types
4634 require structural equality checks). */
4635
4636 tree
4637 build_variant_type_copy (tree type)
4638 {
4639 tree t, m = TYPE_MAIN_VARIANT (type);
4640
4641 t = build_distinct_type_copy (type);
4642
4643 /* Since we're building a variant, assume that it is a non-semantic
4644 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
4645 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
4646
4647 /* Add the new type to the chain of variants of TYPE. */
4648 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
4649 TYPE_NEXT_VARIANT (m) = t;
4650 TYPE_MAIN_VARIANT (t) = m;
4651
4652 return t;
4653 }
4654 \f
4655 /* Return true if the from tree in both tree maps are equal. */
4656
4657 int
4658 tree_map_base_eq (const void *va, const void *vb)
4659 {
4660 const struct tree_map_base *const a = (const struct tree_map_base *) va,
4661 *const b = (const struct tree_map_base *) vb;
4662 return (a->from == b->from);
4663 }
4664
4665 /* Hash a from tree in a tree_map. */
4666
4667 unsigned int
4668 tree_map_base_hash (const void *item)
4669 {
4670 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
4671 }
4672
4673 /* Return true if this tree map structure is marked for garbage collection
4674 purposes. We simply return true if the from tree is marked, so that this
4675 structure goes away when the from tree goes away. */
4676
4677 int
4678 tree_map_base_marked_p (const void *p)
4679 {
4680 return ggc_marked_p (((const struct tree_map_base *) p)->from);
4681 }
4682
4683 unsigned int
4684 tree_map_hash (const void *item)
4685 {
4686 return (((const struct tree_map *) item)->hash);
4687 }
4688
4689 /* Return the initialization priority for DECL. */
4690
4691 priority_type
4692 decl_init_priority_lookup (tree decl)
4693 {
4694 struct tree_priority_map *h;
4695 struct tree_map_base in;
4696
4697 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
4698 in.from = decl;
4699 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
4700 return h ? h->init : DEFAULT_INIT_PRIORITY;
4701 }
4702
4703 /* Return the finalization priority for DECL. */
4704
4705 priority_type
4706 decl_fini_priority_lookup (tree decl)
4707 {
4708 struct tree_priority_map *h;
4709 struct tree_map_base in;
4710
4711 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
4712 in.from = decl;
4713 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
4714 return h ? h->fini : DEFAULT_INIT_PRIORITY;
4715 }
4716
4717 /* Return the initialization and finalization priority information for
4718 DECL. If there is no previous priority information, a freshly
4719 allocated structure is returned. */
4720
4721 static struct tree_priority_map *
4722 decl_priority_info (tree decl)
4723 {
4724 struct tree_priority_map in;
4725 struct tree_priority_map *h;
4726 void **loc;
4727
4728 in.base.from = decl;
4729 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
4730 h = (struct tree_priority_map *) *loc;
4731 if (!h)
4732 {
4733 h = GGC_CNEW (struct tree_priority_map);
4734 *loc = h;
4735 h->base.from = decl;
4736 h->init = DEFAULT_INIT_PRIORITY;
4737 h->fini = DEFAULT_INIT_PRIORITY;
4738 }
4739
4740 return h;
4741 }
4742
4743 /* Set the initialization priority for DECL to PRIORITY. */
4744
4745 void
4746 decl_init_priority_insert (tree decl, priority_type priority)
4747 {
4748 struct tree_priority_map *h;
4749
4750 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
4751 h = decl_priority_info (decl);
4752 h->init = priority;
4753 }
4754
4755 /* Set the finalization priority for DECL to PRIORITY. */
4756
4757 void
4758 decl_fini_priority_insert (tree decl, priority_type priority)
4759 {
4760 struct tree_priority_map *h;
4761
4762 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
4763 h = decl_priority_info (decl);
4764 h->fini = priority;
4765 }
4766
4767 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
4768
4769 static void
4770 print_debug_expr_statistics (void)
4771 {
4772 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
4773 (long) htab_size (debug_expr_for_decl),
4774 (long) htab_elements (debug_expr_for_decl),
4775 htab_collisions (debug_expr_for_decl));
4776 }
4777
4778 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
4779
4780 static void
4781 print_value_expr_statistics (void)
4782 {
4783 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
4784 (long) htab_size (value_expr_for_decl),
4785 (long) htab_elements (value_expr_for_decl),
4786 htab_collisions (value_expr_for_decl));
4787 }
4788
4789 /* Lookup a debug expression for FROM, and return it if we find one. */
4790
4791 tree
4792 decl_debug_expr_lookup (tree from)
4793 {
4794 struct tree_map *h, in;
4795 in.base.from = from;
4796
4797 h = (struct tree_map *) htab_find_with_hash (debug_expr_for_decl, &in,
4798 htab_hash_pointer (from));
4799 if (h)
4800 return h->to;
4801 return NULL_TREE;
4802 }
4803
4804 /* Insert a mapping FROM->TO in the debug expression hashtable. */
4805
4806 void
4807 decl_debug_expr_insert (tree from, tree to)
4808 {
4809 struct tree_map *h;
4810 void **loc;
4811
4812 h = GGC_NEW (struct tree_map);
4813 h->hash = htab_hash_pointer (from);
4814 h->base.from = from;
4815 h->to = to;
4816 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
4817 *(struct tree_map **) loc = h;
4818 }
4819
4820 /* Lookup a value expression for FROM, and return it if we find one. */
4821
4822 tree
4823 decl_value_expr_lookup (tree from)
4824 {
4825 struct tree_map *h, in;
4826 in.base.from = from;
4827
4828 h = (struct tree_map *) htab_find_with_hash (value_expr_for_decl, &in,
4829 htab_hash_pointer (from));
4830 if (h)
4831 return h->to;
4832 return NULL_TREE;
4833 }
4834
4835 /* Insert a mapping FROM->TO in the value expression hashtable. */
4836
4837 void
4838 decl_value_expr_insert (tree from, tree to)
4839 {
4840 struct tree_map *h;
4841 void **loc;
4842
4843 h = GGC_NEW (struct tree_map);
4844 h->hash = htab_hash_pointer (from);
4845 h->base.from = from;
4846 h->to = to;
4847 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
4848 *(struct tree_map **) loc = h;
4849 }
4850
4851 /* Hashing of types so that we don't make duplicates.
4852 The entry point is `type_hash_canon'. */
4853
4854 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
4855 with types in the TREE_VALUE slots), by adding the hash codes
4856 of the individual types. */
4857
4858 static unsigned int
4859 type_hash_list (const_tree list, hashval_t hashcode)
4860 {
4861 const_tree tail;
4862
4863 for (tail = list; tail; tail = TREE_CHAIN (tail))
4864 if (TREE_VALUE (tail) != error_mark_node)
4865 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
4866 hashcode);
4867
4868 return hashcode;
4869 }
4870
4871 /* These are the Hashtable callback functions. */
4872
4873 /* Returns true iff the types are equivalent. */
4874
4875 static int
4876 type_hash_eq (const void *va, const void *vb)
4877 {
4878 const struct type_hash *const a = (const struct type_hash *) va,
4879 *const b = (const struct type_hash *) vb;
4880
4881 /* First test the things that are the same for all types. */
4882 if (a->hash != b->hash
4883 || TREE_CODE (a->type) != TREE_CODE (b->type)
4884 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
4885 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
4886 TYPE_ATTRIBUTES (b->type))
4887 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
4888 || TYPE_MODE (a->type) != TYPE_MODE (b->type)
4889 || (TREE_CODE (a->type) != COMPLEX_TYPE
4890 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
4891 return 0;
4892
4893 switch (TREE_CODE (a->type))
4894 {
4895 case VOID_TYPE:
4896 case COMPLEX_TYPE:
4897 case POINTER_TYPE:
4898 case REFERENCE_TYPE:
4899 return 1;
4900
4901 case VECTOR_TYPE:
4902 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
4903
4904 case ENUMERAL_TYPE:
4905 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
4906 && !(TYPE_VALUES (a->type)
4907 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
4908 && TYPE_VALUES (b->type)
4909 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
4910 && type_list_equal (TYPE_VALUES (a->type),
4911 TYPE_VALUES (b->type))))
4912 return 0;
4913
4914 /* ... fall through ... */
4915
4916 case INTEGER_TYPE:
4917 case REAL_TYPE:
4918 case BOOLEAN_TYPE:
4919 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4920 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4921 TYPE_MAX_VALUE (b->type)))
4922 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4923 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4924 TYPE_MIN_VALUE (b->type))));
4925
4926 case FIXED_POINT_TYPE:
4927 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
4928
4929 case OFFSET_TYPE:
4930 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4931
4932 case METHOD_TYPE:
4933 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4934 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4935 || (TYPE_ARG_TYPES (a->type)
4936 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4937 && TYPE_ARG_TYPES (b->type)
4938 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4939 && type_list_equal (TYPE_ARG_TYPES (a->type),
4940 TYPE_ARG_TYPES (b->type)))));
4941
4942 case ARRAY_TYPE:
4943 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4944
4945 case RECORD_TYPE:
4946 case UNION_TYPE:
4947 case QUAL_UNION_TYPE:
4948 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4949 || (TYPE_FIELDS (a->type)
4950 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4951 && TYPE_FIELDS (b->type)
4952 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4953 && type_list_equal (TYPE_FIELDS (a->type),
4954 TYPE_FIELDS (b->type))));
4955
4956 case FUNCTION_TYPE:
4957 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4958 || (TYPE_ARG_TYPES (a->type)
4959 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4960 && TYPE_ARG_TYPES (b->type)
4961 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4962 && type_list_equal (TYPE_ARG_TYPES (a->type),
4963 TYPE_ARG_TYPES (b->type))))
4964 break;
4965 return 0;
4966
4967 default:
4968 return 0;
4969 }
4970
4971 if (lang_hooks.types.type_hash_eq != NULL)
4972 return lang_hooks.types.type_hash_eq (a->type, b->type);
4973
4974 return 1;
4975 }
4976
4977 /* Return the cached hash value. */
4978
4979 static hashval_t
4980 type_hash_hash (const void *item)
4981 {
4982 return ((const struct type_hash *) item)->hash;
4983 }
4984
4985 /* Look in the type hash table for a type isomorphic to TYPE.
4986 If one is found, return it. Otherwise return 0. */
4987
4988 tree
4989 type_hash_lookup (hashval_t hashcode, tree type)
4990 {
4991 struct type_hash *h, in;
4992
4993 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4994 must call that routine before comparing TYPE_ALIGNs. */
4995 layout_type (type);
4996
4997 in.hash = hashcode;
4998 in.type = type;
4999
5000 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
5001 hashcode);
5002 if (h)
5003 return h->type;
5004 return NULL_TREE;
5005 }
5006
5007 /* Add an entry to the type-hash-table
5008 for a type TYPE whose hash code is HASHCODE. */
5009
5010 void
5011 type_hash_add (hashval_t hashcode, tree type)
5012 {
5013 struct type_hash *h;
5014 void **loc;
5015
5016 h = GGC_NEW (struct type_hash);
5017 h->hash = hashcode;
5018 h->type = type;
5019 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
5020 *loc = (void *)h;
5021 }
5022
5023 /* Given TYPE, and HASHCODE its hash code, return the canonical
5024 object for an identical type if one already exists.
5025 Otherwise, return TYPE, and record it as the canonical object.
5026
5027 To use this function, first create a type of the sort you want.
5028 Then compute its hash code from the fields of the type that
5029 make it different from other similar types.
5030 Then call this function and use the value. */
5031
5032 tree
5033 type_hash_canon (unsigned int hashcode, tree type)
5034 {
5035 tree t1;
5036
5037 /* The hash table only contains main variants, so ensure that's what we're
5038 being passed. */
5039 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
5040
5041 if (!lang_hooks.types.hash_types)
5042 return type;
5043
5044 /* See if the type is in the hash table already. If so, return it.
5045 Otherwise, add the type. */
5046 t1 = type_hash_lookup (hashcode, type);
5047 if (t1 != 0)
5048 {
5049 #ifdef GATHER_STATISTICS
5050 tree_node_counts[(int) t_kind]--;
5051 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
5052 #endif
5053 return t1;
5054 }
5055 else
5056 {
5057 type_hash_add (hashcode, type);
5058 return type;
5059 }
5060 }
5061
5062 /* See if the data pointed to by the type hash table is marked. We consider
5063 it marked if the type is marked or if a debug type number or symbol
5064 table entry has been made for the type. This reduces the amount of
5065 debugging output and eliminates that dependency of the debug output on
5066 the number of garbage collections. */
5067
5068 static int
5069 type_hash_marked_p (const void *p)
5070 {
5071 const_tree const type = ((const struct type_hash *) p)->type;
5072
5073 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
5074 }
5075
5076 static void
5077 print_type_hash_statistics (void)
5078 {
5079 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
5080 (long) htab_size (type_hash_table),
5081 (long) htab_elements (type_hash_table),
5082 htab_collisions (type_hash_table));
5083 }
5084
5085 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
5086 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
5087 by adding the hash codes of the individual attributes. */
5088
5089 static unsigned int
5090 attribute_hash_list (const_tree list, hashval_t hashcode)
5091 {
5092 const_tree tail;
5093
5094 for (tail = list; tail; tail = TREE_CHAIN (tail))
5095 /* ??? Do we want to add in TREE_VALUE too? */
5096 hashcode = iterative_hash_object
5097 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
5098 return hashcode;
5099 }
5100
5101 /* Given two lists of attributes, return true if list l2 is
5102 equivalent to l1. */
5103
5104 int
5105 attribute_list_equal (const_tree l1, const_tree l2)
5106 {
5107 return attribute_list_contained (l1, l2)
5108 && attribute_list_contained (l2, l1);
5109 }
5110
5111 /* Given two lists of attributes, return true if list L2 is
5112 completely contained within L1. */
5113 /* ??? This would be faster if attribute names were stored in a canonicalized
5114 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
5115 must be used to show these elements are equivalent (which they are). */
5116 /* ??? It's not clear that attributes with arguments will always be handled
5117 correctly. */
5118
5119 int
5120 attribute_list_contained (const_tree l1, const_tree l2)
5121 {
5122 const_tree t1, t2;
5123
5124 /* First check the obvious, maybe the lists are identical. */
5125 if (l1 == l2)
5126 return 1;
5127
5128 /* Maybe the lists are similar. */
5129 for (t1 = l1, t2 = l2;
5130 t1 != 0 && t2 != 0
5131 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
5132 && TREE_VALUE (t1) == TREE_VALUE (t2);
5133 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
5134
5135 /* Maybe the lists are equal. */
5136 if (t1 == 0 && t2 == 0)
5137 return 1;
5138
5139 for (; t2 != 0; t2 = TREE_CHAIN (t2))
5140 {
5141 const_tree attr;
5142 /* This CONST_CAST is okay because lookup_attribute does not
5143 modify its argument and the return value is assigned to a
5144 const_tree. */
5145 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
5146 CONST_CAST_TREE(l1));
5147 attr != NULL_TREE;
5148 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
5149 TREE_CHAIN (attr)))
5150 {
5151 if (TREE_VALUE (t2) != NULL
5152 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
5153 && TREE_VALUE (attr) != NULL
5154 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
5155 {
5156 if (simple_cst_list_equal (TREE_VALUE (t2),
5157 TREE_VALUE (attr)) == 1)
5158 break;
5159 }
5160 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
5161 break;
5162 }
5163
5164 if (attr == 0)
5165 return 0;
5166 }
5167
5168 return 1;
5169 }
5170
5171 /* Given two lists of types
5172 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
5173 return 1 if the lists contain the same types in the same order.
5174 Also, the TREE_PURPOSEs must match. */
5175
5176 int
5177 type_list_equal (const_tree l1, const_tree l2)
5178 {
5179 const_tree t1, t2;
5180
5181 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
5182 if (TREE_VALUE (t1) != TREE_VALUE (t2)
5183 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
5184 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
5185 && (TREE_TYPE (TREE_PURPOSE (t1))
5186 == TREE_TYPE (TREE_PURPOSE (t2))))))
5187 return 0;
5188
5189 return t1 == t2;
5190 }
5191
5192 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
5193 given by TYPE. If the argument list accepts variable arguments,
5194 then this function counts only the ordinary arguments. */
5195
5196 int
5197 type_num_arguments (const_tree type)
5198 {
5199 int i = 0;
5200 tree t;
5201
5202 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
5203 /* If the function does not take a variable number of arguments,
5204 the last element in the list will have type `void'. */
5205 if (VOID_TYPE_P (TREE_VALUE (t)))
5206 break;
5207 else
5208 ++i;
5209
5210 return i;
5211 }
5212
5213 /* Nonzero if integer constants T1 and T2
5214 represent the same constant value. */
5215
5216 int
5217 tree_int_cst_equal (const_tree t1, const_tree t2)
5218 {
5219 if (t1 == t2)
5220 return 1;
5221
5222 if (t1 == 0 || t2 == 0)
5223 return 0;
5224
5225 if (TREE_CODE (t1) == INTEGER_CST
5226 && TREE_CODE (t2) == INTEGER_CST
5227 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
5228 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
5229 return 1;
5230
5231 return 0;
5232 }
5233
5234 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
5235 The precise way of comparison depends on their data type. */
5236
5237 int
5238 tree_int_cst_lt (const_tree t1, const_tree t2)
5239 {
5240 if (t1 == t2)
5241 return 0;
5242
5243 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
5244 {
5245 int t1_sgn = tree_int_cst_sgn (t1);
5246 int t2_sgn = tree_int_cst_sgn (t2);
5247
5248 if (t1_sgn < t2_sgn)
5249 return 1;
5250 else if (t1_sgn > t2_sgn)
5251 return 0;
5252 /* Otherwise, both are non-negative, so we compare them as
5253 unsigned just in case one of them would overflow a signed
5254 type. */
5255 }
5256 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
5257 return INT_CST_LT (t1, t2);
5258
5259 return INT_CST_LT_UNSIGNED (t1, t2);
5260 }
5261
5262 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
5263
5264 int
5265 tree_int_cst_compare (const_tree t1, const_tree t2)
5266 {
5267 if (tree_int_cst_lt (t1, t2))
5268 return -1;
5269 else if (tree_int_cst_lt (t2, t1))
5270 return 1;
5271 else
5272 return 0;
5273 }
5274
5275 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
5276 the host. If POS is zero, the value can be represented in a single
5277 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
5278 be represented in a single unsigned HOST_WIDE_INT. */
5279
5280 int
5281 host_integerp (const_tree t, int pos)
5282 {
5283 return (TREE_CODE (t) == INTEGER_CST
5284 && ((TREE_INT_CST_HIGH (t) == 0
5285 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
5286 || (! pos && TREE_INT_CST_HIGH (t) == -1
5287 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
5288 && (!TYPE_UNSIGNED (TREE_TYPE (t))
5289 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
5290 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
5291 || (pos && TREE_INT_CST_HIGH (t) == 0)));
5292 }
5293
5294 /* Return the HOST_WIDE_INT least significant bits of T if it is an
5295 INTEGER_CST and there is no overflow. POS is nonzero if the result must
5296 be non-negative. We must be able to satisfy the above conditions. */
5297
5298 HOST_WIDE_INT
5299 tree_low_cst (const_tree t, int pos)
5300 {
5301 gcc_assert (host_integerp (t, pos));
5302 return TREE_INT_CST_LOW (t);
5303 }
5304
5305 /* Return the most significant bit of the integer constant T. */
5306
5307 int
5308 tree_int_cst_msb (const_tree t)
5309 {
5310 int prec;
5311 HOST_WIDE_INT h;
5312 unsigned HOST_WIDE_INT l;
5313
5314 /* Note that using TYPE_PRECISION here is wrong. We care about the
5315 actual bits, not the (arbitrary) range of the type. */
5316 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
5317 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
5318 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
5319 return (l & 1) == 1;
5320 }
5321
5322 /* Return an indication of the sign of the integer constant T.
5323 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
5324 Note that -1 will never be returned if T's type is unsigned. */
5325
5326 int
5327 tree_int_cst_sgn (const_tree t)
5328 {
5329 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
5330 return 0;
5331 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
5332 return 1;
5333 else if (TREE_INT_CST_HIGH (t) < 0)
5334 return -1;
5335 else
5336 return 1;
5337 }
5338
5339 /* Return the minimum number of bits needed to represent VALUE in a
5340 signed or unsigned type, UNSIGNEDP says which. */
5341
5342 unsigned int
5343 tree_int_cst_min_precision (tree value, bool unsignedp)
5344 {
5345 int log;
5346
5347 /* If the value is negative, compute its negative minus 1. The latter
5348 adjustment is because the absolute value of the largest negative value
5349 is one larger than the largest positive value. This is equivalent to
5350 a bit-wise negation, so use that operation instead. */
5351
5352 if (tree_int_cst_sgn (value) < 0)
5353 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
5354
5355 /* Return the number of bits needed, taking into account the fact
5356 that we need one more bit for a signed than unsigned type. */
5357
5358 if (integer_zerop (value))
5359 log = 0;
5360 else
5361 log = tree_floor_log2 (value);
5362
5363 return log + 1 + !unsignedp;
5364 }
5365
5366 /* Compare two constructor-element-type constants. Return 1 if the lists
5367 are known to be equal; otherwise return 0. */
5368
5369 int
5370 simple_cst_list_equal (const_tree l1, const_tree l2)
5371 {
5372 while (l1 != NULL_TREE && l2 != NULL_TREE)
5373 {
5374 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
5375 return 0;
5376
5377 l1 = TREE_CHAIN (l1);
5378 l2 = TREE_CHAIN (l2);
5379 }
5380
5381 return l1 == l2;
5382 }
5383
5384 /* Return truthvalue of whether T1 is the same tree structure as T2.
5385 Return 1 if they are the same.
5386 Return 0 if they are understandably different.
5387 Return -1 if either contains tree structure not understood by
5388 this function. */
5389
5390 int
5391 simple_cst_equal (const_tree t1, const_tree t2)
5392 {
5393 enum tree_code code1, code2;
5394 int cmp;
5395 int i;
5396
5397 if (t1 == t2)
5398 return 1;
5399 if (t1 == 0 || t2 == 0)
5400 return 0;
5401
5402 code1 = TREE_CODE (t1);
5403 code2 = TREE_CODE (t2);
5404
5405 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
5406 {
5407 if (CONVERT_EXPR_CODE_P (code2)
5408 || code2 == NON_LVALUE_EXPR)
5409 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5410 else
5411 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
5412 }
5413
5414 else if (CONVERT_EXPR_CODE_P (code2)
5415 || code2 == NON_LVALUE_EXPR)
5416 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
5417
5418 if (code1 != code2)
5419 return 0;
5420
5421 switch (code1)
5422 {
5423 case INTEGER_CST:
5424 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
5425 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
5426
5427 case REAL_CST:
5428 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
5429
5430 case FIXED_CST:
5431 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
5432
5433 case STRING_CST:
5434 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
5435 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
5436 TREE_STRING_LENGTH (t1)));
5437
5438 case CONSTRUCTOR:
5439 {
5440 unsigned HOST_WIDE_INT idx;
5441 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
5442 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
5443
5444 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
5445 return false;
5446
5447 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
5448 /* ??? Should we handle also fields here? */
5449 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
5450 VEC_index (constructor_elt, v2, idx)->value))
5451 return false;
5452 return true;
5453 }
5454
5455 case SAVE_EXPR:
5456 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5457
5458 case CALL_EXPR:
5459 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
5460 if (cmp <= 0)
5461 return cmp;
5462 if (call_expr_nargs (t1) != call_expr_nargs (t2))
5463 return 0;
5464 {
5465 const_tree arg1, arg2;
5466 const_call_expr_arg_iterator iter1, iter2;
5467 for (arg1 = first_const_call_expr_arg (t1, &iter1),
5468 arg2 = first_const_call_expr_arg (t2, &iter2);
5469 arg1 && arg2;
5470 arg1 = next_const_call_expr_arg (&iter1),
5471 arg2 = next_const_call_expr_arg (&iter2))
5472 {
5473 cmp = simple_cst_equal (arg1, arg2);
5474 if (cmp <= 0)
5475 return cmp;
5476 }
5477 return arg1 == arg2;
5478 }
5479
5480 case TARGET_EXPR:
5481 /* Special case: if either target is an unallocated VAR_DECL,
5482 it means that it's going to be unified with whatever the
5483 TARGET_EXPR is really supposed to initialize, so treat it
5484 as being equivalent to anything. */
5485 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
5486 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
5487 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
5488 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
5489 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
5490 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
5491 cmp = 1;
5492 else
5493 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5494
5495 if (cmp <= 0)
5496 return cmp;
5497
5498 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
5499
5500 case WITH_CLEANUP_EXPR:
5501 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5502 if (cmp <= 0)
5503 return cmp;
5504
5505 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
5506
5507 case COMPONENT_REF:
5508 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
5509 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5510
5511 return 0;
5512
5513 case VAR_DECL:
5514 case PARM_DECL:
5515 case CONST_DECL:
5516 case FUNCTION_DECL:
5517 return 0;
5518
5519 default:
5520 break;
5521 }
5522
5523 /* This general rule works for most tree codes. All exceptions should be
5524 handled above. If this is a language-specific tree code, we can't
5525 trust what might be in the operand, so say we don't know
5526 the situation. */
5527 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
5528 return -1;
5529
5530 switch (TREE_CODE_CLASS (code1))
5531 {
5532 case tcc_unary:
5533 case tcc_binary:
5534 case tcc_comparison:
5535 case tcc_expression:
5536 case tcc_reference:
5537 case tcc_statement:
5538 cmp = 1;
5539 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
5540 {
5541 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
5542 if (cmp <= 0)
5543 return cmp;
5544 }
5545
5546 return cmp;
5547
5548 default:
5549 return -1;
5550 }
5551 }
5552
5553 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
5554 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
5555 than U, respectively. */
5556
5557 int
5558 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
5559 {
5560 if (tree_int_cst_sgn (t) < 0)
5561 return -1;
5562 else if (TREE_INT_CST_HIGH (t) != 0)
5563 return 1;
5564 else if (TREE_INT_CST_LOW (t) == u)
5565 return 0;
5566 else if (TREE_INT_CST_LOW (t) < u)
5567 return -1;
5568 else
5569 return 1;
5570 }
5571
5572 /* Return true if CODE represents an associative tree code. Otherwise
5573 return false. */
5574 bool
5575 associative_tree_code (enum tree_code code)
5576 {
5577 switch (code)
5578 {
5579 case BIT_IOR_EXPR:
5580 case BIT_AND_EXPR:
5581 case BIT_XOR_EXPR:
5582 case PLUS_EXPR:
5583 case MULT_EXPR:
5584 case MIN_EXPR:
5585 case MAX_EXPR:
5586 return true;
5587
5588 default:
5589 break;
5590 }
5591 return false;
5592 }
5593
5594 /* Return true if CODE represents a commutative tree code. Otherwise
5595 return false. */
5596 bool
5597 commutative_tree_code (enum tree_code code)
5598 {
5599 switch (code)
5600 {
5601 case PLUS_EXPR:
5602 case MULT_EXPR:
5603 case MIN_EXPR:
5604 case MAX_EXPR:
5605 case BIT_IOR_EXPR:
5606 case BIT_XOR_EXPR:
5607 case BIT_AND_EXPR:
5608 case NE_EXPR:
5609 case EQ_EXPR:
5610 case UNORDERED_EXPR:
5611 case ORDERED_EXPR:
5612 case UNEQ_EXPR:
5613 case LTGT_EXPR:
5614 case TRUTH_AND_EXPR:
5615 case TRUTH_XOR_EXPR:
5616 case TRUTH_OR_EXPR:
5617 return true;
5618
5619 default:
5620 break;
5621 }
5622 return false;
5623 }
5624
5625 /* Generate a hash value for an expression. This can be used iteratively
5626 by passing a previous result as the VAL argument.
5627
5628 This function is intended to produce the same hash for expressions which
5629 would compare equal using operand_equal_p. */
5630
5631 hashval_t
5632 iterative_hash_expr (const_tree t, hashval_t val)
5633 {
5634 int i;
5635 enum tree_code code;
5636 char tclass;
5637
5638 if (t == NULL_TREE)
5639 return iterative_hash_hashval_t (0, val);
5640
5641 code = TREE_CODE (t);
5642
5643 switch (code)
5644 {
5645 /* Alas, constants aren't shared, so we can't rely on pointer
5646 identity. */
5647 case INTEGER_CST:
5648 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
5649 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
5650 case REAL_CST:
5651 {
5652 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
5653
5654 return iterative_hash_hashval_t (val2, val);
5655 }
5656 case FIXED_CST:
5657 {
5658 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
5659
5660 return iterative_hash_hashval_t (val2, val);
5661 }
5662 case STRING_CST:
5663 return iterative_hash (TREE_STRING_POINTER (t),
5664 TREE_STRING_LENGTH (t), val);
5665 case COMPLEX_CST:
5666 val = iterative_hash_expr (TREE_REALPART (t), val);
5667 return iterative_hash_expr (TREE_IMAGPART (t), val);
5668 case VECTOR_CST:
5669 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
5670
5671 case SSA_NAME:
5672 /* we can just compare by pointer. */
5673 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
5674
5675 case TREE_LIST:
5676 /* A list of expressions, for a CALL_EXPR or as the elements of a
5677 VECTOR_CST. */
5678 for (; t; t = TREE_CHAIN (t))
5679 val = iterative_hash_expr (TREE_VALUE (t), val);
5680 return val;
5681 case CONSTRUCTOR:
5682 {
5683 unsigned HOST_WIDE_INT idx;
5684 tree field, value;
5685 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
5686 {
5687 val = iterative_hash_expr (field, val);
5688 val = iterative_hash_expr (value, val);
5689 }
5690 return val;
5691 }
5692 case FUNCTION_DECL:
5693 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
5694 Otherwise nodes that compare equal according to operand_equal_p might
5695 get different hash codes. However, don't do this for machine specific
5696 or front end builtins, since the function code is overloaded in those
5697 cases. */
5698 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
5699 && built_in_decls[DECL_FUNCTION_CODE (t)])
5700 {
5701 t = built_in_decls[DECL_FUNCTION_CODE (t)];
5702 code = TREE_CODE (t);
5703 }
5704 /* FALL THROUGH */
5705 default:
5706 tclass = TREE_CODE_CLASS (code);
5707
5708 if (tclass == tcc_declaration)
5709 {
5710 /* DECL's have a unique ID */
5711 val = iterative_hash_host_wide_int (DECL_UID (t), val);
5712 }
5713 else
5714 {
5715 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
5716
5717 val = iterative_hash_object (code, val);
5718
5719 /* Don't hash the type, that can lead to having nodes which
5720 compare equal according to operand_equal_p, but which
5721 have different hash codes. */
5722 if (CONVERT_EXPR_CODE_P (code)
5723 || code == NON_LVALUE_EXPR)
5724 {
5725 /* Make sure to include signness in the hash computation. */
5726 val += TYPE_UNSIGNED (TREE_TYPE (t));
5727 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
5728 }
5729
5730 else if (commutative_tree_code (code))
5731 {
5732 /* It's a commutative expression. We want to hash it the same
5733 however it appears. We do this by first hashing both operands
5734 and then rehashing based on the order of their independent
5735 hashes. */
5736 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
5737 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
5738 hashval_t t;
5739
5740 if (one > two)
5741 t = one, one = two, two = t;
5742
5743 val = iterative_hash_hashval_t (one, val);
5744 val = iterative_hash_hashval_t (two, val);
5745 }
5746 else
5747 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
5748 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
5749 }
5750 return val;
5751 break;
5752 }
5753 }
5754
5755 /* Generate a hash value for a pair of expressions. This can be used
5756 iteratively by passing a previous result as the VAL argument.
5757
5758 The same hash value is always returned for a given pair of expressions,
5759 regardless of the order in which they are presented. This is useful in
5760 hashing the operands of commutative functions. */
5761
5762 hashval_t
5763 iterative_hash_exprs_commutative (const_tree t1,
5764 const_tree t2, hashval_t val)
5765 {
5766 hashval_t one = iterative_hash_expr (t1, 0);
5767 hashval_t two = iterative_hash_expr (t2, 0);
5768 hashval_t t;
5769
5770 if (one > two)
5771 t = one, one = two, two = t;
5772 val = iterative_hash_hashval_t (one, val);
5773 val = iterative_hash_hashval_t (two, val);
5774
5775 return val;
5776 }
5777 \f
5778 /* Constructors for pointer, array and function types.
5779 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
5780 constructed by language-dependent code, not here.) */
5781
5782 /* Construct, lay out and return the type of pointers to TO_TYPE with
5783 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
5784 reference all of memory. If such a type has already been
5785 constructed, reuse it. */
5786
5787 tree
5788 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
5789 bool can_alias_all)
5790 {
5791 tree t;
5792
5793 if (to_type == error_mark_node)
5794 return error_mark_node;
5795
5796 /* If the pointed-to type has the may_alias attribute set, force
5797 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
5798 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
5799 can_alias_all = true;
5800
5801 /* In some cases, languages will have things that aren't a POINTER_TYPE
5802 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
5803 In that case, return that type without regard to the rest of our
5804 operands.
5805
5806 ??? This is a kludge, but consistent with the way this function has
5807 always operated and there doesn't seem to be a good way to avoid this
5808 at the moment. */
5809 if (TYPE_POINTER_TO (to_type) != 0
5810 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
5811 return TYPE_POINTER_TO (to_type);
5812
5813 /* First, if we already have a type for pointers to TO_TYPE and it's
5814 the proper mode, use it. */
5815 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
5816 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5817 return t;
5818
5819 t = make_node (POINTER_TYPE);
5820
5821 TREE_TYPE (t) = to_type;
5822 SET_TYPE_MODE (t, mode);
5823 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5824 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
5825 TYPE_POINTER_TO (to_type) = t;
5826
5827 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5828 SET_TYPE_STRUCTURAL_EQUALITY (t);
5829 else if (TYPE_CANONICAL (to_type) != to_type)
5830 TYPE_CANONICAL (t)
5831 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
5832 mode, can_alias_all);
5833
5834 /* Lay out the type. This function has many callers that are concerned
5835 with expression-construction, and this simplifies them all. */
5836 layout_type (t);
5837
5838 return t;
5839 }
5840
5841 /* By default build pointers in ptr_mode. */
5842
5843 tree
5844 build_pointer_type (tree to_type)
5845 {
5846 return build_pointer_type_for_mode (to_type, ptr_mode, false);
5847 }
5848
5849 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
5850
5851 tree
5852 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
5853 bool can_alias_all)
5854 {
5855 tree t;
5856
5857 if (to_type == error_mark_node)
5858 return error_mark_node;
5859
5860 /* If the pointed-to type has the may_alias attribute set, force
5861 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
5862 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
5863 can_alias_all = true;
5864
5865 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
5866 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
5867 In that case, return that type without regard to the rest of our
5868 operands.
5869
5870 ??? This is a kludge, but consistent with the way this function has
5871 always operated and there doesn't seem to be a good way to avoid this
5872 at the moment. */
5873 if (TYPE_REFERENCE_TO (to_type) != 0
5874 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
5875 return TYPE_REFERENCE_TO (to_type);
5876
5877 /* First, if we already have a type for pointers to TO_TYPE and it's
5878 the proper mode, use it. */
5879 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
5880 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5881 return t;
5882
5883 t = make_node (REFERENCE_TYPE);
5884
5885 TREE_TYPE (t) = to_type;
5886 SET_TYPE_MODE (t, mode);
5887 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5888 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
5889 TYPE_REFERENCE_TO (to_type) = t;
5890
5891 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5892 SET_TYPE_STRUCTURAL_EQUALITY (t);
5893 else if (TYPE_CANONICAL (to_type) != to_type)
5894 TYPE_CANONICAL (t)
5895 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
5896 mode, can_alias_all);
5897
5898 layout_type (t);
5899
5900 return t;
5901 }
5902
5903
5904 /* Build the node for the type of references-to-TO_TYPE by default
5905 in ptr_mode. */
5906
5907 tree
5908 build_reference_type (tree to_type)
5909 {
5910 return build_reference_type_for_mode (to_type, ptr_mode, false);
5911 }
5912
5913 /* Build a type that is compatible with t but has no cv quals anywhere
5914 in its type, thus
5915
5916 const char *const *const * -> char ***. */
5917
5918 tree
5919 build_type_no_quals (tree t)
5920 {
5921 switch (TREE_CODE (t))
5922 {
5923 case POINTER_TYPE:
5924 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5925 TYPE_MODE (t),
5926 TYPE_REF_CAN_ALIAS_ALL (t));
5927 case REFERENCE_TYPE:
5928 return
5929 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5930 TYPE_MODE (t),
5931 TYPE_REF_CAN_ALIAS_ALL (t));
5932 default:
5933 return TYPE_MAIN_VARIANT (t);
5934 }
5935 }
5936
5937 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
5938 MAXVAL should be the maximum value in the domain
5939 (one less than the length of the array).
5940
5941 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
5942 We don't enforce this limit, that is up to caller (e.g. language front end).
5943 The limit exists because the result is a signed type and we don't handle
5944 sizes that use more than one HOST_WIDE_INT. */
5945
5946 tree
5947 build_index_type (tree maxval)
5948 {
5949 tree itype = make_node (INTEGER_TYPE);
5950
5951 TREE_TYPE (itype) = sizetype;
5952 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
5953 TYPE_MIN_VALUE (itype) = size_zero_node;
5954 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
5955 SET_TYPE_MODE (itype, TYPE_MODE (sizetype));
5956 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
5957 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
5958 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
5959 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
5960
5961 if (host_integerp (maxval, 1))
5962 return type_hash_canon (tree_low_cst (maxval, 1), itype);
5963 else
5964 {
5965 /* Since we cannot hash this type, we need to compare it using
5966 structural equality checks. */
5967 SET_TYPE_STRUCTURAL_EQUALITY (itype);
5968 return itype;
5969 }
5970 }
5971
5972 /* Builds a signed or unsigned integer type of precision PRECISION.
5973 Used for C bitfields whose precision does not match that of
5974 built-in target types. */
5975 tree
5976 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
5977 int unsignedp)
5978 {
5979 tree itype = make_node (INTEGER_TYPE);
5980
5981 TYPE_PRECISION (itype) = precision;
5982
5983 if (unsignedp)
5984 fixup_unsigned_type (itype);
5985 else
5986 fixup_signed_type (itype);
5987
5988 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
5989 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
5990
5991 return itype;
5992 }
5993
5994 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
5995 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
5996 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
5997
5998 tree
5999 build_range_type (tree type, tree lowval, tree highval)
6000 {
6001 tree itype = make_node (INTEGER_TYPE);
6002
6003 TREE_TYPE (itype) = type;
6004 if (type == NULL_TREE)
6005 type = sizetype;
6006
6007 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
6008 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
6009
6010 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
6011 SET_TYPE_MODE (itype, TYPE_MODE (type));
6012 TYPE_SIZE (itype) = TYPE_SIZE (type);
6013 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
6014 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
6015 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
6016
6017 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
6018 return type_hash_canon (tree_low_cst (highval, 0)
6019 - tree_low_cst (lowval, 0),
6020 itype);
6021 else
6022 return itype;
6023 }
6024
6025 /* Return true if the debug information for TYPE, a subtype, should be emitted
6026 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
6027 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
6028 debug info and doesn't reflect the source code. */
6029
6030 bool
6031 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
6032 {
6033 tree base_type = TREE_TYPE (type), low, high;
6034
6035 /* Subrange types have a base type which is an integral type. */
6036 if (!INTEGRAL_TYPE_P (base_type))
6037 return false;
6038
6039 /* Get the real bounds of the subtype. */
6040 if (lang_hooks.types.get_subrange_bounds)
6041 lang_hooks.types.get_subrange_bounds (type, &low, &high);
6042 else
6043 {
6044 low = TYPE_MIN_VALUE (type);
6045 high = TYPE_MAX_VALUE (type);
6046 }
6047
6048 /* If the type and its base type have the same representation and the same
6049 name, then the type is not a subrange but a copy of the base type. */
6050 if ((TREE_CODE (base_type) == INTEGER_TYPE
6051 || TREE_CODE (base_type) == BOOLEAN_TYPE)
6052 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
6053 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
6054 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
6055 {
6056 tree type_name = TYPE_NAME (type);
6057 tree base_type_name = TYPE_NAME (base_type);
6058
6059 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
6060 type_name = DECL_NAME (type_name);
6061
6062 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
6063 base_type_name = DECL_NAME (base_type_name);
6064
6065 if (type_name == base_type_name)
6066 return false;
6067 }
6068
6069 if (lowval)
6070 *lowval = low;
6071 if (highval)
6072 *highval = high;
6073 return true;
6074 }
6075
6076 /* Just like build_index_type, but takes lowval and highval instead
6077 of just highval (maxval). */
6078
6079 tree
6080 build_index_2_type (tree lowval, tree highval)
6081 {
6082 return build_range_type (sizetype, lowval, highval);
6083 }
6084
6085 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
6086 and number of elements specified by the range of values of INDEX_TYPE.
6087 If such a type has already been constructed, reuse it. */
6088
6089 tree
6090 build_array_type (tree elt_type, tree index_type)
6091 {
6092 tree t;
6093 hashval_t hashcode = 0;
6094
6095 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
6096 {
6097 error ("arrays of functions are not meaningful");
6098 elt_type = integer_type_node;
6099 }
6100
6101 t = make_node (ARRAY_TYPE);
6102 TREE_TYPE (t) = elt_type;
6103 TYPE_DOMAIN (t) = index_type;
6104
6105 if (index_type == 0)
6106 {
6107 tree save = t;
6108 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
6109 t = type_hash_canon (hashcode, t);
6110 if (save == t)
6111 layout_type (t);
6112
6113 if (TYPE_CANONICAL (t) == t)
6114 {
6115 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type))
6116 SET_TYPE_STRUCTURAL_EQUALITY (t);
6117 else if (TYPE_CANONICAL (elt_type) != elt_type)
6118 TYPE_CANONICAL (t)
6119 = build_array_type (TYPE_CANONICAL (elt_type), index_type);
6120 }
6121
6122 return t;
6123 }
6124
6125 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
6126 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
6127 t = type_hash_canon (hashcode, t);
6128
6129 if (!COMPLETE_TYPE_P (t))
6130 layout_type (t);
6131
6132 if (TYPE_CANONICAL (t) == t)
6133 {
6134 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
6135 || TYPE_STRUCTURAL_EQUALITY_P (index_type))
6136 SET_TYPE_STRUCTURAL_EQUALITY (t);
6137 else if (TYPE_CANONICAL (elt_type) != elt_type
6138 || TYPE_CANONICAL (index_type) != index_type)
6139 TYPE_CANONICAL (t)
6140 = build_array_type (TYPE_CANONICAL (elt_type),
6141 TYPE_CANONICAL (index_type));
6142 }
6143
6144 return t;
6145 }
6146
6147 /* Recursively examines the array elements of TYPE, until a non-array
6148 element type is found. */
6149
6150 tree
6151 strip_array_types (tree type)
6152 {
6153 while (TREE_CODE (type) == ARRAY_TYPE)
6154 type = TREE_TYPE (type);
6155
6156 return type;
6157 }
6158
6159 /* Computes the canonical argument types from the argument type list
6160 ARGTYPES.
6161
6162 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
6163 on entry to this function, or if any of the ARGTYPES are
6164 structural.
6165
6166 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
6167 true on entry to this function, or if any of the ARGTYPES are
6168 non-canonical.
6169
6170 Returns a canonical argument list, which may be ARGTYPES when the
6171 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
6172 true) or would not differ from ARGTYPES. */
6173
6174 static tree
6175 maybe_canonicalize_argtypes(tree argtypes,
6176 bool *any_structural_p,
6177 bool *any_noncanonical_p)
6178 {
6179 tree arg;
6180 bool any_noncanonical_argtypes_p = false;
6181
6182 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
6183 {
6184 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
6185 /* Fail gracefully by stating that the type is structural. */
6186 *any_structural_p = true;
6187 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
6188 *any_structural_p = true;
6189 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
6190 || TREE_PURPOSE (arg))
6191 /* If the argument has a default argument, we consider it
6192 non-canonical even though the type itself is canonical.
6193 That way, different variants of function and method types
6194 with default arguments will all point to the variant with
6195 no defaults as their canonical type. */
6196 any_noncanonical_argtypes_p = true;
6197 }
6198
6199 if (*any_structural_p)
6200 return argtypes;
6201
6202 if (any_noncanonical_argtypes_p)
6203 {
6204 /* Build the canonical list of argument types. */
6205 tree canon_argtypes = NULL_TREE;
6206 bool is_void = false;
6207
6208 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
6209 {
6210 if (arg == void_list_node)
6211 is_void = true;
6212 else
6213 canon_argtypes = tree_cons (NULL_TREE,
6214 TYPE_CANONICAL (TREE_VALUE (arg)),
6215 canon_argtypes);
6216 }
6217
6218 canon_argtypes = nreverse (canon_argtypes);
6219 if (is_void)
6220 canon_argtypes = chainon (canon_argtypes, void_list_node);
6221
6222 /* There is a non-canonical type. */
6223 *any_noncanonical_p = true;
6224 return canon_argtypes;
6225 }
6226
6227 /* The canonical argument types are the same as ARGTYPES. */
6228 return argtypes;
6229 }
6230
6231 /* Construct, lay out and return
6232 the type of functions returning type VALUE_TYPE
6233 given arguments of types ARG_TYPES.
6234 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
6235 are data type nodes for the arguments of the function.
6236 If such a type has already been constructed, reuse it. */
6237
6238 tree
6239 build_function_type (tree value_type, tree arg_types)
6240 {
6241 tree t;
6242 hashval_t hashcode = 0;
6243 bool any_structural_p, any_noncanonical_p;
6244 tree canon_argtypes;
6245
6246 if (TREE_CODE (value_type) == FUNCTION_TYPE)
6247 {
6248 error ("function return type cannot be function");
6249 value_type = integer_type_node;
6250 }
6251
6252 /* Make a node of the sort we want. */
6253 t = make_node (FUNCTION_TYPE);
6254 TREE_TYPE (t) = value_type;
6255 TYPE_ARG_TYPES (t) = arg_types;
6256
6257 /* If we already have such a type, use the old one. */
6258 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
6259 hashcode = type_hash_list (arg_types, hashcode);
6260 t = type_hash_canon (hashcode, t);
6261
6262 /* Set up the canonical type. */
6263 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
6264 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
6265 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
6266 &any_structural_p,
6267 &any_noncanonical_p);
6268 if (any_structural_p)
6269 SET_TYPE_STRUCTURAL_EQUALITY (t);
6270 else if (any_noncanonical_p)
6271 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
6272 canon_argtypes);
6273
6274 if (!COMPLETE_TYPE_P (t))
6275 layout_type (t);
6276 return t;
6277 }
6278
6279 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
6280
6281 tree
6282 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
6283 {
6284 tree new_type = NULL;
6285 tree args, new_args = NULL, t;
6286 tree new_reversed;
6287 int i = 0;
6288
6289 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
6290 args = TREE_CHAIN (args), i++)
6291 if (!bitmap_bit_p (args_to_skip, i))
6292 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
6293
6294 new_reversed = nreverse (new_args);
6295 if (args)
6296 {
6297 if (new_reversed)
6298 TREE_CHAIN (new_args) = void_list_node;
6299 else
6300 new_reversed = void_list_node;
6301 }
6302
6303 /* Use copy_node to preserve as much as possible from original type
6304 (debug info, attribute lists etc.)
6305 Exception is METHOD_TYPEs must have THIS argument.
6306 When we are asked to remove it, we need to build new FUNCTION_TYPE
6307 instead. */
6308 if (TREE_CODE (orig_type) != METHOD_TYPE
6309 || !bitmap_bit_p (args_to_skip, 0))
6310 {
6311 new_type = copy_node (orig_type);
6312 TYPE_ARG_TYPES (new_type) = new_reversed;
6313 }
6314 else
6315 {
6316 new_type
6317 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
6318 new_reversed));
6319 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
6320 }
6321
6322 /* This is a new type, not a copy of an old type. Need to reassociate
6323 variants. We can handle everything except the main variant lazily. */
6324 t = TYPE_MAIN_VARIANT (orig_type);
6325 if (orig_type != t)
6326 {
6327 TYPE_MAIN_VARIANT (new_type) = t;
6328 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
6329 TYPE_NEXT_VARIANT (t) = new_type;
6330 }
6331 else
6332 {
6333 TYPE_MAIN_VARIANT (new_type) = new_type;
6334 TYPE_NEXT_VARIANT (new_type) = NULL;
6335 }
6336 return new_type;
6337 }
6338
6339 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
6340
6341 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
6342 linked by TREE_CHAIN directly. It is caller responsibility to eliminate
6343 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
6344
6345 tree
6346 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
6347 {
6348 tree new_decl = copy_node (orig_decl);
6349 tree new_type;
6350
6351 new_type = TREE_TYPE (orig_decl);
6352 if (prototype_p (new_type))
6353 new_type = build_function_type_skip_args (new_type, args_to_skip);
6354 TREE_TYPE (new_decl) = new_type;
6355
6356 /* For declarations setting DECL_VINDEX (i.e. methods)
6357 we expect first argument to be THIS pointer. */
6358 if (bitmap_bit_p (args_to_skip, 0))
6359 DECL_VINDEX (new_decl) = NULL_TREE;
6360 return new_decl;
6361 }
6362
6363 /* Build a function type. The RETURN_TYPE is the type returned by the
6364 function. If VAARGS is set, no void_type_node is appended to the
6365 the list. ARGP muse be alway be terminated be a NULL_TREE. */
6366
6367 static tree
6368 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
6369 {
6370 tree t, args, last;
6371
6372 t = va_arg (argp, tree);
6373 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
6374 args = tree_cons (NULL_TREE, t, args);
6375
6376 if (vaargs)
6377 {
6378 last = args;
6379 if (args != NULL_TREE)
6380 args = nreverse (args);
6381 gcc_assert (args != NULL_TREE && last != void_list_node);
6382 }
6383 else if (args == NULL_TREE)
6384 args = void_list_node;
6385 else
6386 {
6387 last = args;
6388 args = nreverse (args);
6389 TREE_CHAIN (last) = void_list_node;
6390 }
6391 args = build_function_type (return_type, args);
6392
6393 return args;
6394 }
6395
6396 /* Build a function type. The RETURN_TYPE is the type returned by the
6397 function. If additional arguments are provided, they are
6398 additional argument types. The list of argument types must always
6399 be terminated by NULL_TREE. */
6400
6401 tree
6402 build_function_type_list (tree return_type, ...)
6403 {
6404 tree args;
6405 va_list p;
6406
6407 va_start (p, return_type);
6408 args = build_function_type_list_1 (false, return_type, p);
6409 va_end (p);
6410 return args;
6411 }
6412
6413 /* Build a variable argument function type. The RETURN_TYPE is the
6414 type returned by the function. If additional arguments are provided,
6415 they are additional argument types. The list of argument types must
6416 always be terminated by NULL_TREE. */
6417
6418 tree
6419 build_varargs_function_type_list (tree return_type, ...)
6420 {
6421 tree args;
6422 va_list p;
6423
6424 va_start (p, return_type);
6425 args = build_function_type_list_1 (true, return_type, p);
6426 va_end (p);
6427
6428 return args;
6429 }
6430
6431 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
6432 and ARGTYPES (a TREE_LIST) are the return type and arguments types
6433 for the method. An implicit additional parameter (of type
6434 pointer-to-BASETYPE) is added to the ARGTYPES. */
6435
6436 tree
6437 build_method_type_directly (tree basetype,
6438 tree rettype,
6439 tree argtypes)
6440 {
6441 tree t;
6442 tree ptype;
6443 int hashcode = 0;
6444 bool any_structural_p, any_noncanonical_p;
6445 tree canon_argtypes;
6446
6447 /* Make a node of the sort we want. */
6448 t = make_node (METHOD_TYPE);
6449
6450 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
6451 TREE_TYPE (t) = rettype;
6452 ptype = build_pointer_type (basetype);
6453
6454 /* The actual arglist for this function includes a "hidden" argument
6455 which is "this". Put it into the list of argument types. */
6456 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
6457 TYPE_ARG_TYPES (t) = argtypes;
6458
6459 /* If we already have such a type, use the old one. */
6460 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
6461 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
6462 hashcode = type_hash_list (argtypes, hashcode);
6463 t = type_hash_canon (hashcode, t);
6464
6465 /* Set up the canonical type. */
6466 any_structural_p
6467 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
6468 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
6469 any_noncanonical_p
6470 = (TYPE_CANONICAL (basetype) != basetype
6471 || TYPE_CANONICAL (rettype) != rettype);
6472 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
6473 &any_structural_p,
6474 &any_noncanonical_p);
6475 if (any_structural_p)
6476 SET_TYPE_STRUCTURAL_EQUALITY (t);
6477 else if (any_noncanonical_p)
6478 TYPE_CANONICAL (t)
6479 = build_method_type_directly (TYPE_CANONICAL (basetype),
6480 TYPE_CANONICAL (rettype),
6481 canon_argtypes);
6482 if (!COMPLETE_TYPE_P (t))
6483 layout_type (t);
6484
6485 return t;
6486 }
6487
6488 /* Construct, lay out and return the type of methods belonging to class
6489 BASETYPE and whose arguments and values are described by TYPE.
6490 If that type exists already, reuse it.
6491 TYPE must be a FUNCTION_TYPE node. */
6492
6493 tree
6494 build_method_type (tree basetype, tree type)
6495 {
6496 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
6497
6498 return build_method_type_directly (basetype,
6499 TREE_TYPE (type),
6500 TYPE_ARG_TYPES (type));
6501 }
6502
6503 /* Construct, lay out and return the type of offsets to a value
6504 of type TYPE, within an object of type BASETYPE.
6505 If a suitable offset type exists already, reuse it. */
6506
6507 tree
6508 build_offset_type (tree basetype, tree type)
6509 {
6510 tree t;
6511 hashval_t hashcode = 0;
6512
6513 /* Make a node of the sort we want. */
6514 t = make_node (OFFSET_TYPE);
6515
6516 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
6517 TREE_TYPE (t) = type;
6518
6519 /* If we already have such a type, use the old one. */
6520 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
6521 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
6522 t = type_hash_canon (hashcode, t);
6523
6524 if (!COMPLETE_TYPE_P (t))
6525 layout_type (t);
6526
6527 if (TYPE_CANONICAL (t) == t)
6528 {
6529 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
6530 || TYPE_STRUCTURAL_EQUALITY_P (type))
6531 SET_TYPE_STRUCTURAL_EQUALITY (t);
6532 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
6533 || TYPE_CANONICAL (type) != type)
6534 TYPE_CANONICAL (t)
6535 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
6536 TYPE_CANONICAL (type));
6537 }
6538
6539 return t;
6540 }
6541
6542 /* Create a complex type whose components are COMPONENT_TYPE. */
6543
6544 tree
6545 build_complex_type (tree component_type)
6546 {
6547 tree t;
6548 hashval_t hashcode;
6549
6550 gcc_assert (INTEGRAL_TYPE_P (component_type)
6551 || SCALAR_FLOAT_TYPE_P (component_type)
6552 || FIXED_POINT_TYPE_P (component_type));
6553
6554 /* Make a node of the sort we want. */
6555 t = make_node (COMPLEX_TYPE);
6556
6557 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
6558
6559 /* If we already have such a type, use the old one. */
6560 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
6561 t = type_hash_canon (hashcode, t);
6562
6563 if (!COMPLETE_TYPE_P (t))
6564 layout_type (t);
6565
6566 if (TYPE_CANONICAL (t) == t)
6567 {
6568 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
6569 SET_TYPE_STRUCTURAL_EQUALITY (t);
6570 else if (TYPE_CANONICAL (component_type) != component_type)
6571 TYPE_CANONICAL (t)
6572 = build_complex_type (TYPE_CANONICAL (component_type));
6573 }
6574
6575 /* We need to create a name, since complex is a fundamental type. */
6576 if (! TYPE_NAME (t))
6577 {
6578 const char *name;
6579 if (component_type == char_type_node)
6580 name = "complex char";
6581 else if (component_type == signed_char_type_node)
6582 name = "complex signed char";
6583 else if (component_type == unsigned_char_type_node)
6584 name = "complex unsigned char";
6585 else if (component_type == short_integer_type_node)
6586 name = "complex short int";
6587 else if (component_type == short_unsigned_type_node)
6588 name = "complex short unsigned int";
6589 else if (component_type == integer_type_node)
6590 name = "complex int";
6591 else if (component_type == unsigned_type_node)
6592 name = "complex unsigned int";
6593 else if (component_type == long_integer_type_node)
6594 name = "complex long int";
6595 else if (component_type == long_unsigned_type_node)
6596 name = "complex long unsigned int";
6597 else if (component_type == long_long_integer_type_node)
6598 name = "complex long long int";
6599 else if (component_type == long_long_unsigned_type_node)
6600 name = "complex long long unsigned int";
6601 else
6602 name = 0;
6603
6604 if (name != 0)
6605 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
6606 get_identifier (name), t);
6607 }
6608
6609 return build_qualified_type (t, TYPE_QUALS (component_type));
6610 }
6611
6612 /* If TYPE is a real or complex floating-point type and the target
6613 does not directly support arithmetic on TYPE then return the wider
6614 type to be used for arithmetic on TYPE. Otherwise, return
6615 NULL_TREE. */
6616
6617 tree
6618 excess_precision_type (tree type)
6619 {
6620 if (flag_excess_precision != EXCESS_PRECISION_FAST)
6621 {
6622 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
6623 switch (TREE_CODE (type))
6624 {
6625 case REAL_TYPE:
6626 switch (flt_eval_method)
6627 {
6628 case 1:
6629 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
6630 return double_type_node;
6631 break;
6632 case 2:
6633 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
6634 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
6635 return long_double_type_node;
6636 break;
6637 default:
6638 gcc_unreachable ();
6639 }
6640 break;
6641 case COMPLEX_TYPE:
6642 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
6643 return NULL_TREE;
6644 switch (flt_eval_method)
6645 {
6646 case 1:
6647 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
6648 return complex_double_type_node;
6649 break;
6650 case 2:
6651 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
6652 || (TYPE_MODE (TREE_TYPE (type))
6653 == TYPE_MODE (double_type_node)))
6654 return complex_long_double_type_node;
6655 break;
6656 default:
6657 gcc_unreachable ();
6658 }
6659 break;
6660 default:
6661 break;
6662 }
6663 }
6664 return NULL_TREE;
6665 }
6666 \f
6667 /* Return OP, stripped of any conversions to wider types as much as is safe.
6668 Converting the value back to OP's type makes a value equivalent to OP.
6669
6670 If FOR_TYPE is nonzero, we return a value which, if converted to
6671 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
6672
6673 OP must have integer, real or enumeral type. Pointers are not allowed!
6674
6675 There are some cases where the obvious value we could return
6676 would regenerate to OP if converted to OP's type,
6677 but would not extend like OP to wider types.
6678 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
6679 For example, if OP is (unsigned short)(signed char)-1,
6680 we avoid returning (signed char)-1 if FOR_TYPE is int,
6681 even though extending that to an unsigned short would regenerate OP,
6682 since the result of extending (signed char)-1 to (int)
6683 is different from (int) OP. */
6684
6685 tree
6686 get_unwidened (tree op, tree for_type)
6687 {
6688 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
6689 tree type = TREE_TYPE (op);
6690 unsigned final_prec
6691 = TYPE_PRECISION (for_type != 0 ? for_type : type);
6692 int uns
6693 = (for_type != 0 && for_type != type
6694 && final_prec > TYPE_PRECISION (type)
6695 && TYPE_UNSIGNED (type));
6696 tree win = op;
6697
6698 while (CONVERT_EXPR_P (op))
6699 {
6700 int bitschange;
6701
6702 /* TYPE_PRECISION on vector types has different meaning
6703 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
6704 so avoid them here. */
6705 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
6706 break;
6707
6708 bitschange = TYPE_PRECISION (TREE_TYPE (op))
6709 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
6710
6711 /* Truncations are many-one so cannot be removed.
6712 Unless we are later going to truncate down even farther. */
6713 if (bitschange < 0
6714 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
6715 break;
6716
6717 /* See what's inside this conversion. If we decide to strip it,
6718 we will set WIN. */
6719 op = TREE_OPERAND (op, 0);
6720
6721 /* If we have not stripped any zero-extensions (uns is 0),
6722 we can strip any kind of extension.
6723 If we have previously stripped a zero-extension,
6724 only zero-extensions can safely be stripped.
6725 Any extension can be stripped if the bits it would produce
6726 are all going to be discarded later by truncating to FOR_TYPE. */
6727
6728 if (bitschange > 0)
6729 {
6730 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
6731 win = op;
6732 /* TYPE_UNSIGNED says whether this is a zero-extension.
6733 Let's avoid computing it if it does not affect WIN
6734 and if UNS will not be needed again. */
6735 if ((uns
6736 || CONVERT_EXPR_P (op))
6737 && TYPE_UNSIGNED (TREE_TYPE (op)))
6738 {
6739 uns = 1;
6740 win = op;
6741 }
6742 }
6743 }
6744
6745 return win;
6746 }
6747 \f
6748 /* Return OP or a simpler expression for a narrower value
6749 which can be sign-extended or zero-extended to give back OP.
6750 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
6751 or 0 if the value should be sign-extended. */
6752
6753 tree
6754 get_narrower (tree op, int *unsignedp_ptr)
6755 {
6756 int uns = 0;
6757 int first = 1;
6758 tree win = op;
6759 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
6760
6761 while (TREE_CODE (op) == NOP_EXPR)
6762 {
6763 int bitschange
6764 = (TYPE_PRECISION (TREE_TYPE (op))
6765 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
6766
6767 /* Truncations are many-one so cannot be removed. */
6768 if (bitschange < 0)
6769 break;
6770
6771 /* See what's inside this conversion. If we decide to strip it,
6772 we will set WIN. */
6773
6774 if (bitschange > 0)
6775 {
6776 op = TREE_OPERAND (op, 0);
6777 /* An extension: the outermost one can be stripped,
6778 but remember whether it is zero or sign extension. */
6779 if (first)
6780 uns = TYPE_UNSIGNED (TREE_TYPE (op));
6781 /* Otherwise, if a sign extension has been stripped,
6782 only sign extensions can now be stripped;
6783 if a zero extension has been stripped, only zero-extensions. */
6784 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
6785 break;
6786 first = 0;
6787 }
6788 else /* bitschange == 0 */
6789 {
6790 /* A change in nominal type can always be stripped, but we must
6791 preserve the unsignedness. */
6792 if (first)
6793 uns = TYPE_UNSIGNED (TREE_TYPE (op));
6794 first = 0;
6795 op = TREE_OPERAND (op, 0);
6796 /* Keep trying to narrow, but don't assign op to win if it
6797 would turn an integral type into something else. */
6798 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
6799 continue;
6800 }
6801
6802 win = op;
6803 }
6804
6805 if (TREE_CODE (op) == COMPONENT_REF
6806 /* Since type_for_size always gives an integer type. */
6807 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
6808 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
6809 /* Ensure field is laid out already. */
6810 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
6811 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
6812 {
6813 unsigned HOST_WIDE_INT innerprec
6814 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
6815 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
6816 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
6817 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
6818
6819 /* We can get this structure field in a narrower type that fits it,
6820 but the resulting extension to its nominal type (a fullword type)
6821 must satisfy the same conditions as for other extensions.
6822
6823 Do this only for fields that are aligned (not bit-fields),
6824 because when bit-field insns will be used there is no
6825 advantage in doing this. */
6826
6827 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
6828 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
6829 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
6830 && type != 0)
6831 {
6832 if (first)
6833 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
6834 win = fold_convert (type, op);
6835 }
6836 }
6837
6838 *unsignedp_ptr = uns;
6839 return win;
6840 }
6841 \f
6842 /* Nonzero if integer constant C has a value that is permissible
6843 for type TYPE (an INTEGER_TYPE). */
6844
6845 int
6846 int_fits_type_p (const_tree c, const_tree type)
6847 {
6848 tree type_low_bound, type_high_bound;
6849 bool ok_for_low_bound, ok_for_high_bound, unsc;
6850 double_int dc, dd;
6851
6852 dc = tree_to_double_int (c);
6853 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
6854
6855 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
6856 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
6857 && unsc)
6858 /* So c is an unsigned integer whose type is sizetype and type is not.
6859 sizetype'd integers are sign extended even though they are
6860 unsigned. If the integer value fits in the lower end word of c,
6861 and if the higher end word has all its bits set to 1, that
6862 means the higher end bits are set to 1 only for sign extension.
6863 So let's convert c into an equivalent zero extended unsigned
6864 integer. */
6865 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
6866
6867 retry:
6868 type_low_bound = TYPE_MIN_VALUE (type);
6869 type_high_bound = TYPE_MAX_VALUE (type);
6870
6871 /* If at least one bound of the type is a constant integer, we can check
6872 ourselves and maybe make a decision. If no such decision is possible, but
6873 this type is a subtype, try checking against that. Otherwise, use
6874 fit_double_type, which checks against the precision.
6875
6876 Compute the status for each possibly constant bound, and return if we see
6877 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
6878 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
6879 for "constant known to fit". */
6880
6881 /* Check if c >= type_low_bound. */
6882 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
6883 {
6884 dd = tree_to_double_int (type_low_bound);
6885 if (TREE_CODE (type) == INTEGER_TYPE
6886 && TYPE_IS_SIZETYPE (type)
6887 && TYPE_UNSIGNED (type))
6888 dd = double_int_zext (dd, TYPE_PRECISION (type));
6889 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
6890 {
6891 int c_neg = (!unsc && double_int_negative_p (dc));
6892 int t_neg = (unsc && double_int_negative_p (dd));
6893
6894 if (c_neg && !t_neg)
6895 return 0;
6896 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
6897 return 0;
6898 }
6899 else if (double_int_cmp (dc, dd, unsc) < 0)
6900 return 0;
6901 ok_for_low_bound = true;
6902 }
6903 else
6904 ok_for_low_bound = false;
6905
6906 /* Check if c <= type_high_bound. */
6907 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
6908 {
6909 dd = tree_to_double_int (type_high_bound);
6910 if (TREE_CODE (type) == INTEGER_TYPE
6911 && TYPE_IS_SIZETYPE (type)
6912 && TYPE_UNSIGNED (type))
6913 dd = double_int_zext (dd, TYPE_PRECISION (type));
6914 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
6915 {
6916 int c_neg = (!unsc && double_int_negative_p (dc));
6917 int t_neg = (unsc && double_int_negative_p (dd));
6918
6919 if (t_neg && !c_neg)
6920 return 0;
6921 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
6922 return 0;
6923 }
6924 else if (double_int_cmp (dc, dd, unsc) > 0)
6925 return 0;
6926 ok_for_high_bound = true;
6927 }
6928 else
6929 ok_for_high_bound = false;
6930
6931 /* If the constant fits both bounds, the result is known. */
6932 if (ok_for_low_bound && ok_for_high_bound)
6933 return 1;
6934
6935 /* Perform some generic filtering which may allow making a decision
6936 even if the bounds are not constant. First, negative integers
6937 never fit in unsigned types, */
6938 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
6939 return 0;
6940
6941 /* Second, narrower types always fit in wider ones. */
6942 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
6943 return 1;
6944
6945 /* Third, unsigned integers with top bit set never fit signed types. */
6946 if (! TYPE_UNSIGNED (type) && unsc)
6947 {
6948 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
6949 if (prec < HOST_BITS_PER_WIDE_INT)
6950 {
6951 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
6952 return 0;
6953 }
6954 else if (((((unsigned HOST_WIDE_INT) 1)
6955 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
6956 return 0;
6957 }
6958
6959 /* If we haven't been able to decide at this point, there nothing more we
6960 can check ourselves here. Look at the base type if we have one and it
6961 has the same precision. */
6962 if (TREE_CODE (type) == INTEGER_TYPE
6963 && TREE_TYPE (type) != 0
6964 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
6965 {
6966 type = TREE_TYPE (type);
6967 goto retry;
6968 }
6969
6970 /* Or to fit_double_type, if nothing else. */
6971 return !fit_double_type (dc.low, dc.high, &dc.low, &dc.high, type);
6972 }
6973
6974 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
6975 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
6976 represented (assuming two's-complement arithmetic) within the bit
6977 precision of the type are returned instead. */
6978
6979 void
6980 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
6981 {
6982 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
6983 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
6984 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
6985 TYPE_UNSIGNED (type));
6986 else
6987 {
6988 if (TYPE_UNSIGNED (type))
6989 mpz_set_ui (min, 0);
6990 else
6991 {
6992 double_int mn;
6993 mn = double_int_mask (TYPE_PRECISION (type) - 1);
6994 mn = double_int_sext (double_int_add (mn, double_int_one),
6995 TYPE_PRECISION (type));
6996 mpz_set_double_int (min, mn, false);
6997 }
6998 }
6999
7000 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
7001 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
7002 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
7003 TYPE_UNSIGNED (type));
7004 else
7005 {
7006 if (TYPE_UNSIGNED (type))
7007 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
7008 true);
7009 else
7010 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
7011 true);
7012 }
7013 }
7014
7015 /* Return true if VAR is an automatic variable defined in function FN. */
7016
7017 bool
7018 auto_var_in_fn_p (const_tree var, const_tree fn)
7019 {
7020 return (DECL_P (var) && DECL_CONTEXT (var) == fn
7021 && (((TREE_CODE (var) == VAR_DECL || TREE_CODE (var) == PARM_DECL)
7022 && ! TREE_STATIC (var))
7023 || TREE_CODE (var) == LABEL_DECL
7024 || TREE_CODE (var) == RESULT_DECL));
7025 }
7026
7027 /* Subprogram of following function. Called by walk_tree.
7028
7029 Return *TP if it is an automatic variable or parameter of the
7030 function passed in as DATA. */
7031
7032 static tree
7033 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
7034 {
7035 tree fn = (tree) data;
7036
7037 if (TYPE_P (*tp))
7038 *walk_subtrees = 0;
7039
7040 else if (DECL_P (*tp)
7041 && auto_var_in_fn_p (*tp, fn))
7042 return *tp;
7043
7044 return NULL_TREE;
7045 }
7046
7047 /* Returns true if T is, contains, or refers to a type with variable
7048 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
7049 arguments, but not the return type. If FN is nonzero, only return
7050 true if a modifier of the type or position of FN is a variable or
7051 parameter inside FN.
7052
7053 This concept is more general than that of C99 'variably modified types':
7054 in C99, a struct type is never variably modified because a VLA may not
7055 appear as a structure member. However, in GNU C code like:
7056
7057 struct S { int i[f()]; };
7058
7059 is valid, and other languages may define similar constructs. */
7060
7061 bool
7062 variably_modified_type_p (tree type, tree fn)
7063 {
7064 tree t;
7065
7066 /* Test if T is either variable (if FN is zero) or an expression containing
7067 a variable in FN. */
7068 #define RETURN_TRUE_IF_VAR(T) \
7069 do { tree _t = (T); \
7070 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
7071 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
7072 return true; } while (0)
7073
7074 if (type == error_mark_node)
7075 return false;
7076
7077 /* If TYPE itself has variable size, it is variably modified. */
7078 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
7079 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
7080
7081 switch (TREE_CODE (type))
7082 {
7083 case POINTER_TYPE:
7084 case REFERENCE_TYPE:
7085 case VECTOR_TYPE:
7086 if (variably_modified_type_p (TREE_TYPE (type), fn))
7087 return true;
7088 break;
7089
7090 case FUNCTION_TYPE:
7091 case METHOD_TYPE:
7092 /* If TYPE is a function type, it is variably modified if the
7093 return type is variably modified. */
7094 if (variably_modified_type_p (TREE_TYPE (type), fn))
7095 return true;
7096 break;
7097
7098 case INTEGER_TYPE:
7099 case REAL_TYPE:
7100 case FIXED_POINT_TYPE:
7101 case ENUMERAL_TYPE:
7102 case BOOLEAN_TYPE:
7103 /* Scalar types are variably modified if their end points
7104 aren't constant. */
7105 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
7106 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
7107 break;
7108
7109 case RECORD_TYPE:
7110 case UNION_TYPE:
7111 case QUAL_UNION_TYPE:
7112 /* We can't see if any of the fields are variably-modified by the
7113 definition we normally use, since that would produce infinite
7114 recursion via pointers. */
7115 /* This is variably modified if some field's type is. */
7116 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
7117 if (TREE_CODE (t) == FIELD_DECL)
7118 {
7119 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
7120 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
7121 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
7122
7123 if (TREE_CODE (type) == QUAL_UNION_TYPE)
7124 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
7125 }
7126 break;
7127
7128 case ARRAY_TYPE:
7129 /* Do not call ourselves to avoid infinite recursion. This is
7130 variably modified if the element type is. */
7131 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
7132 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
7133 break;
7134
7135 default:
7136 break;
7137 }
7138
7139 /* The current language may have other cases to check, but in general,
7140 all other types are not variably modified. */
7141 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
7142
7143 #undef RETURN_TRUE_IF_VAR
7144 }
7145
7146 /* Given a DECL or TYPE, return the scope in which it was declared, or
7147 NULL_TREE if there is no containing scope. */
7148
7149 tree
7150 get_containing_scope (const_tree t)
7151 {
7152 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
7153 }
7154
7155 /* Return the innermost context enclosing DECL that is
7156 a FUNCTION_DECL, or zero if none. */
7157
7158 tree
7159 decl_function_context (const_tree decl)
7160 {
7161 tree context;
7162
7163 if (TREE_CODE (decl) == ERROR_MARK)
7164 return 0;
7165
7166 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
7167 where we look up the function at runtime. Such functions always take
7168 a first argument of type 'pointer to real context'.
7169
7170 C++ should really be fixed to use DECL_CONTEXT for the real context,
7171 and use something else for the "virtual context". */
7172 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
7173 context
7174 = TYPE_MAIN_VARIANT
7175 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
7176 else
7177 context = DECL_CONTEXT (decl);
7178
7179 while (context && TREE_CODE (context) != FUNCTION_DECL)
7180 {
7181 if (TREE_CODE (context) == BLOCK)
7182 context = BLOCK_SUPERCONTEXT (context);
7183 else
7184 context = get_containing_scope (context);
7185 }
7186
7187 return context;
7188 }
7189
7190 /* Return the innermost context enclosing DECL that is
7191 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
7192 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
7193
7194 tree
7195 decl_type_context (const_tree decl)
7196 {
7197 tree context = DECL_CONTEXT (decl);
7198
7199 while (context)
7200 switch (TREE_CODE (context))
7201 {
7202 case NAMESPACE_DECL:
7203 case TRANSLATION_UNIT_DECL:
7204 return NULL_TREE;
7205
7206 case RECORD_TYPE:
7207 case UNION_TYPE:
7208 case QUAL_UNION_TYPE:
7209 return context;
7210
7211 case TYPE_DECL:
7212 case FUNCTION_DECL:
7213 context = DECL_CONTEXT (context);
7214 break;
7215
7216 case BLOCK:
7217 context = BLOCK_SUPERCONTEXT (context);
7218 break;
7219
7220 default:
7221 gcc_unreachable ();
7222 }
7223
7224 return NULL_TREE;
7225 }
7226
7227 /* CALL is a CALL_EXPR. Return the declaration for the function
7228 called, or NULL_TREE if the called function cannot be
7229 determined. */
7230
7231 tree
7232 get_callee_fndecl (const_tree call)
7233 {
7234 tree addr;
7235
7236 if (call == error_mark_node)
7237 return error_mark_node;
7238
7239 /* It's invalid to call this function with anything but a
7240 CALL_EXPR. */
7241 gcc_assert (TREE_CODE (call) == CALL_EXPR);
7242
7243 /* The first operand to the CALL is the address of the function
7244 called. */
7245 addr = CALL_EXPR_FN (call);
7246
7247 STRIP_NOPS (addr);
7248
7249 /* If this is a readonly function pointer, extract its initial value. */
7250 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
7251 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
7252 && DECL_INITIAL (addr))
7253 addr = DECL_INITIAL (addr);
7254
7255 /* If the address is just `&f' for some function `f', then we know
7256 that `f' is being called. */
7257 if (TREE_CODE (addr) == ADDR_EXPR
7258 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
7259 return TREE_OPERAND (addr, 0);
7260
7261 /* We couldn't figure out what was being called. */
7262 return NULL_TREE;
7263 }
7264
7265 /* Print debugging information about tree nodes generated during the compile,
7266 and any language-specific information. */
7267
7268 void
7269 dump_tree_statistics (void)
7270 {
7271 #ifdef GATHER_STATISTICS
7272 int i;
7273 int total_nodes, total_bytes;
7274 #endif
7275
7276 fprintf (stderr, "\n??? tree nodes created\n\n");
7277 #ifdef GATHER_STATISTICS
7278 fprintf (stderr, "Kind Nodes Bytes\n");
7279 fprintf (stderr, "---------------------------------------\n");
7280 total_nodes = total_bytes = 0;
7281 for (i = 0; i < (int) all_kinds; i++)
7282 {
7283 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
7284 tree_node_counts[i], tree_node_sizes[i]);
7285 total_nodes += tree_node_counts[i];
7286 total_bytes += tree_node_sizes[i];
7287 }
7288 fprintf (stderr, "---------------------------------------\n");
7289 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
7290 fprintf (stderr, "---------------------------------------\n");
7291 ssanames_print_statistics ();
7292 phinodes_print_statistics ();
7293 #else
7294 fprintf (stderr, "(No per-node statistics)\n");
7295 #endif
7296 print_type_hash_statistics ();
7297 print_debug_expr_statistics ();
7298 print_value_expr_statistics ();
7299 lang_hooks.print_statistics ();
7300 }
7301 \f
7302 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
7303
7304 /* Generate a crc32 of a string. */
7305
7306 unsigned
7307 crc32_string (unsigned chksum, const char *string)
7308 {
7309 do
7310 {
7311 unsigned value = *string << 24;
7312 unsigned ix;
7313
7314 for (ix = 8; ix--; value <<= 1)
7315 {
7316 unsigned feedback;
7317
7318 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
7319 chksum <<= 1;
7320 chksum ^= feedback;
7321 }
7322 }
7323 while (*string++);
7324 return chksum;
7325 }
7326
7327 /* P is a string that will be used in a symbol. Mask out any characters
7328 that are not valid in that context. */
7329
7330 void
7331 clean_symbol_name (char *p)
7332 {
7333 for (; *p; p++)
7334 if (! (ISALNUM (*p)
7335 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
7336 || *p == '$'
7337 #endif
7338 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
7339 || *p == '.'
7340 #endif
7341 ))
7342 *p = '_';
7343 }
7344
7345 /* Generate a name for a special-purpose function function.
7346 The generated name may need to be unique across the whole link.
7347 TYPE is some string to identify the purpose of this function to the
7348 linker or collect2; it must start with an uppercase letter,
7349 one of:
7350 I - for constructors
7351 D - for destructors
7352 N - for C++ anonymous namespaces
7353 F - for DWARF unwind frame information. */
7354
7355 tree
7356 get_file_function_name (const char *type)
7357 {
7358 char *buf;
7359 const char *p;
7360 char *q;
7361
7362 /* If we already have a name we know to be unique, just use that. */
7363 if (first_global_object_name)
7364 p = q = ASTRDUP (first_global_object_name);
7365 /* If the target is handling the constructors/destructors, they
7366 will be local to this file and the name is only necessary for
7367 debugging purposes. */
7368 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
7369 {
7370 const char *file = main_input_filename;
7371 if (! file)
7372 file = input_filename;
7373 /* Just use the file's basename, because the full pathname
7374 might be quite long. */
7375 p = strrchr (file, '/');
7376 if (p)
7377 p++;
7378 else
7379 p = file;
7380 p = q = ASTRDUP (p);
7381 }
7382 else
7383 {
7384 /* Otherwise, the name must be unique across the entire link.
7385 We don't have anything that we know to be unique to this translation
7386 unit, so use what we do have and throw in some randomness. */
7387 unsigned len;
7388 const char *name = weak_global_object_name;
7389 const char *file = main_input_filename;
7390
7391 if (! name)
7392 name = "";
7393 if (! file)
7394 file = input_filename;
7395
7396 len = strlen (file);
7397 q = (char *) alloca (9 * 2 + len + 1);
7398 memcpy (q, file, len + 1);
7399
7400 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
7401 crc32_string (0, get_random_seed (false)));
7402
7403 p = q;
7404 }
7405
7406 clean_symbol_name (q);
7407 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
7408 + strlen (type));
7409
7410 /* Set up the name of the file-level functions we may need.
7411 Use a global object (which is already required to be unique over
7412 the program) rather than the file name (which imposes extra
7413 constraints). */
7414 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
7415
7416 return get_identifier (buf);
7417 }
7418 \f
7419 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
7420
7421 /* Complain that the tree code of NODE does not match the expected 0
7422 terminated list of trailing codes. The trailing code list can be
7423 empty, for a more vague error message. FILE, LINE, and FUNCTION
7424 are of the caller. */
7425
7426 void
7427 tree_check_failed (const_tree node, const char *file,
7428 int line, const char *function, ...)
7429 {
7430 va_list args;
7431 const char *buffer;
7432 unsigned length = 0;
7433 int code;
7434
7435 va_start (args, function);
7436 while ((code = va_arg (args, int)))
7437 length += 4 + strlen (tree_code_name[code]);
7438 va_end (args);
7439 if (length)
7440 {
7441 char *tmp;
7442 va_start (args, function);
7443 length += strlen ("expected ");
7444 buffer = tmp = (char *) alloca (length);
7445 length = 0;
7446 while ((code = va_arg (args, int)))
7447 {
7448 const char *prefix = length ? " or " : "expected ";
7449
7450 strcpy (tmp + length, prefix);
7451 length += strlen (prefix);
7452 strcpy (tmp + length, tree_code_name[code]);
7453 length += strlen (tree_code_name[code]);
7454 }
7455 va_end (args);
7456 }
7457 else
7458 buffer = "unexpected node";
7459
7460 internal_error ("tree check: %s, have %s in %s, at %s:%d",
7461 buffer, tree_code_name[TREE_CODE (node)],
7462 function, trim_filename (file), line);
7463 }
7464
7465 /* Complain that the tree code of NODE does match the expected 0
7466 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
7467 the caller. */
7468
7469 void
7470 tree_not_check_failed (const_tree node, const char *file,
7471 int line, const char *function, ...)
7472 {
7473 va_list args;
7474 char *buffer;
7475 unsigned length = 0;
7476 int code;
7477
7478 va_start (args, function);
7479 while ((code = va_arg (args, int)))
7480 length += 4 + strlen (tree_code_name[code]);
7481 va_end (args);
7482 va_start (args, function);
7483 buffer = (char *) alloca (length);
7484 length = 0;
7485 while ((code = va_arg (args, int)))
7486 {
7487 if (length)
7488 {
7489 strcpy (buffer + length, " or ");
7490 length += 4;
7491 }
7492 strcpy (buffer + length, tree_code_name[code]);
7493 length += strlen (tree_code_name[code]);
7494 }
7495 va_end (args);
7496
7497 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
7498 buffer, tree_code_name[TREE_CODE (node)],
7499 function, trim_filename (file), line);
7500 }
7501
7502 /* Similar to tree_check_failed, except that we check for a class of tree
7503 code, given in CL. */
7504
7505 void
7506 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
7507 const char *file, int line, const char *function)
7508 {
7509 internal_error
7510 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
7511 TREE_CODE_CLASS_STRING (cl),
7512 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
7513 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
7514 }
7515
7516 /* Similar to tree_check_failed, except that instead of specifying a
7517 dozen codes, use the knowledge that they're all sequential. */
7518
7519 void
7520 tree_range_check_failed (const_tree node, const char *file, int line,
7521 const char *function, enum tree_code c1,
7522 enum tree_code c2)
7523 {
7524 char *buffer;
7525 unsigned length = 0;
7526 unsigned int c;
7527
7528 for (c = c1; c <= c2; ++c)
7529 length += 4 + strlen (tree_code_name[c]);
7530
7531 length += strlen ("expected ");
7532 buffer = (char *) alloca (length);
7533 length = 0;
7534
7535 for (c = c1; c <= c2; ++c)
7536 {
7537 const char *prefix = length ? " or " : "expected ";
7538
7539 strcpy (buffer + length, prefix);
7540 length += strlen (prefix);
7541 strcpy (buffer + length, tree_code_name[c]);
7542 length += strlen (tree_code_name[c]);
7543 }
7544
7545 internal_error ("tree check: %s, have %s in %s, at %s:%d",
7546 buffer, tree_code_name[TREE_CODE (node)],
7547 function, trim_filename (file), line);
7548 }
7549
7550
7551 /* Similar to tree_check_failed, except that we check that a tree does
7552 not have the specified code, given in CL. */
7553
7554 void
7555 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
7556 const char *file, int line, const char *function)
7557 {
7558 internal_error
7559 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
7560 TREE_CODE_CLASS_STRING (cl),
7561 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
7562 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
7563 }
7564
7565
7566 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
7567
7568 void
7569 omp_clause_check_failed (const_tree node, const char *file, int line,
7570 const char *function, enum omp_clause_code code)
7571 {
7572 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
7573 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
7574 function, trim_filename (file), line);
7575 }
7576
7577
7578 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
7579
7580 void
7581 omp_clause_range_check_failed (const_tree node, const char *file, int line,
7582 const char *function, enum omp_clause_code c1,
7583 enum omp_clause_code c2)
7584 {
7585 char *buffer;
7586 unsigned length = 0;
7587 unsigned int c;
7588
7589 for (c = c1; c <= c2; ++c)
7590 length += 4 + strlen (omp_clause_code_name[c]);
7591
7592 length += strlen ("expected ");
7593 buffer = (char *) alloca (length);
7594 length = 0;
7595
7596 for (c = c1; c <= c2; ++c)
7597 {
7598 const char *prefix = length ? " or " : "expected ";
7599
7600 strcpy (buffer + length, prefix);
7601 length += strlen (prefix);
7602 strcpy (buffer + length, omp_clause_code_name[c]);
7603 length += strlen (omp_clause_code_name[c]);
7604 }
7605
7606 internal_error ("tree check: %s, have %s in %s, at %s:%d",
7607 buffer, omp_clause_code_name[TREE_CODE (node)],
7608 function, trim_filename (file), line);
7609 }
7610
7611
7612 #undef DEFTREESTRUCT
7613 #define DEFTREESTRUCT(VAL, NAME) NAME,
7614
7615 static const char *ts_enum_names[] = {
7616 #include "treestruct.def"
7617 };
7618 #undef DEFTREESTRUCT
7619
7620 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
7621
7622 /* Similar to tree_class_check_failed, except that we check for
7623 whether CODE contains the tree structure identified by EN. */
7624
7625 void
7626 tree_contains_struct_check_failed (const_tree node,
7627 const enum tree_node_structure_enum en,
7628 const char *file, int line,
7629 const char *function)
7630 {
7631 internal_error
7632 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
7633 TS_ENUM_NAME(en),
7634 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
7635 }
7636
7637
7638 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
7639 (dynamically sized) vector. */
7640
7641 void
7642 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
7643 const char *function)
7644 {
7645 internal_error
7646 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
7647 idx + 1, len, function, trim_filename (file), line);
7648 }
7649
7650 /* Similar to above, except that the check is for the bounds of the operand
7651 vector of an expression node EXP. */
7652
7653 void
7654 tree_operand_check_failed (int idx, const_tree exp, const char *file,
7655 int line, const char *function)
7656 {
7657 int code = TREE_CODE (exp);
7658 internal_error
7659 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
7660 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
7661 function, trim_filename (file), line);
7662 }
7663
7664 /* Similar to above, except that the check is for the number of
7665 operands of an OMP_CLAUSE node. */
7666
7667 void
7668 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
7669 int line, const char *function)
7670 {
7671 internal_error
7672 ("tree check: accessed operand %d of omp_clause %s with %d operands "
7673 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
7674 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
7675 trim_filename (file), line);
7676 }
7677 #endif /* ENABLE_TREE_CHECKING */
7678 \f
7679 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
7680 and mapped to the machine mode MODE. Initialize its fields and build
7681 the information necessary for debugging output. */
7682
7683 static tree
7684 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
7685 {
7686 tree t;
7687 hashval_t hashcode = 0;
7688
7689 t = make_node (VECTOR_TYPE);
7690 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
7691 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
7692 SET_TYPE_MODE (t, mode);
7693
7694 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
7695 SET_TYPE_STRUCTURAL_EQUALITY (t);
7696 else if (TYPE_CANONICAL (innertype) != innertype
7697 || mode != VOIDmode)
7698 TYPE_CANONICAL (t)
7699 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
7700
7701 layout_type (t);
7702
7703 {
7704 tree index = build_int_cst (NULL_TREE, nunits - 1);
7705 tree array = build_array_type (TYPE_MAIN_VARIANT (innertype),
7706 build_index_type (index));
7707 tree rt = make_node (RECORD_TYPE);
7708
7709 TYPE_FIELDS (rt) = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
7710 get_identifier ("f"), array);
7711 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
7712 layout_type (rt);
7713 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
7714 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
7715 the representation type, and we want to find that die when looking up
7716 the vector type. This is most easily achieved by making the TYPE_UID
7717 numbers equal. */
7718 TYPE_UID (rt) = TYPE_UID (t);
7719 }
7720
7721 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
7722 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
7723 hashcode = iterative_hash_host_wide_int (mode, hashcode);
7724 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
7725 t = type_hash_canon (hashcode, t);
7726
7727 /* We have built a main variant, based on the main variant of the
7728 inner type. Use it to build the variant we return. */
7729 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
7730 && TREE_TYPE (t) != innertype)
7731 return build_type_attribute_qual_variant (t,
7732 TYPE_ATTRIBUTES (innertype),
7733 TYPE_QUALS (innertype));
7734
7735 return t;
7736 }
7737
7738 static tree
7739 make_or_reuse_type (unsigned size, int unsignedp)
7740 {
7741 if (size == INT_TYPE_SIZE)
7742 return unsignedp ? unsigned_type_node : integer_type_node;
7743 if (size == CHAR_TYPE_SIZE)
7744 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
7745 if (size == SHORT_TYPE_SIZE)
7746 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
7747 if (size == LONG_TYPE_SIZE)
7748 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
7749 if (size == LONG_LONG_TYPE_SIZE)
7750 return (unsignedp ? long_long_unsigned_type_node
7751 : long_long_integer_type_node);
7752
7753 if (unsignedp)
7754 return make_unsigned_type (size);
7755 else
7756 return make_signed_type (size);
7757 }
7758
7759 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
7760
7761 static tree
7762 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
7763 {
7764 if (satp)
7765 {
7766 if (size == SHORT_FRACT_TYPE_SIZE)
7767 return unsignedp ? sat_unsigned_short_fract_type_node
7768 : sat_short_fract_type_node;
7769 if (size == FRACT_TYPE_SIZE)
7770 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
7771 if (size == LONG_FRACT_TYPE_SIZE)
7772 return unsignedp ? sat_unsigned_long_fract_type_node
7773 : sat_long_fract_type_node;
7774 if (size == LONG_LONG_FRACT_TYPE_SIZE)
7775 return unsignedp ? sat_unsigned_long_long_fract_type_node
7776 : sat_long_long_fract_type_node;
7777 }
7778 else
7779 {
7780 if (size == SHORT_FRACT_TYPE_SIZE)
7781 return unsignedp ? unsigned_short_fract_type_node
7782 : short_fract_type_node;
7783 if (size == FRACT_TYPE_SIZE)
7784 return unsignedp ? unsigned_fract_type_node : fract_type_node;
7785 if (size == LONG_FRACT_TYPE_SIZE)
7786 return unsignedp ? unsigned_long_fract_type_node
7787 : long_fract_type_node;
7788 if (size == LONG_LONG_FRACT_TYPE_SIZE)
7789 return unsignedp ? unsigned_long_long_fract_type_node
7790 : long_long_fract_type_node;
7791 }
7792
7793 return make_fract_type (size, unsignedp, satp);
7794 }
7795
7796 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
7797
7798 static tree
7799 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
7800 {
7801 if (satp)
7802 {
7803 if (size == SHORT_ACCUM_TYPE_SIZE)
7804 return unsignedp ? sat_unsigned_short_accum_type_node
7805 : sat_short_accum_type_node;
7806 if (size == ACCUM_TYPE_SIZE)
7807 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
7808 if (size == LONG_ACCUM_TYPE_SIZE)
7809 return unsignedp ? sat_unsigned_long_accum_type_node
7810 : sat_long_accum_type_node;
7811 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
7812 return unsignedp ? sat_unsigned_long_long_accum_type_node
7813 : sat_long_long_accum_type_node;
7814 }
7815 else
7816 {
7817 if (size == SHORT_ACCUM_TYPE_SIZE)
7818 return unsignedp ? unsigned_short_accum_type_node
7819 : short_accum_type_node;
7820 if (size == ACCUM_TYPE_SIZE)
7821 return unsignedp ? unsigned_accum_type_node : accum_type_node;
7822 if (size == LONG_ACCUM_TYPE_SIZE)
7823 return unsignedp ? unsigned_long_accum_type_node
7824 : long_accum_type_node;
7825 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
7826 return unsignedp ? unsigned_long_long_accum_type_node
7827 : long_long_accum_type_node;
7828 }
7829
7830 return make_accum_type (size, unsignedp, satp);
7831 }
7832
7833 /* Create nodes for all integer types (and error_mark_node) using the sizes
7834 of C datatypes. The caller should call set_sizetype soon after calling
7835 this function to select one of the types as sizetype. */
7836
7837 void
7838 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
7839 {
7840 error_mark_node = make_node (ERROR_MARK);
7841 TREE_TYPE (error_mark_node) = error_mark_node;
7842
7843 initialize_sizetypes (signed_sizetype);
7844
7845 /* Define both `signed char' and `unsigned char'. */
7846 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
7847 TYPE_STRING_FLAG (signed_char_type_node) = 1;
7848 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
7849 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
7850
7851 /* Define `char', which is like either `signed char' or `unsigned char'
7852 but not the same as either. */
7853 char_type_node
7854 = (signed_char
7855 ? make_signed_type (CHAR_TYPE_SIZE)
7856 : make_unsigned_type (CHAR_TYPE_SIZE));
7857 TYPE_STRING_FLAG (char_type_node) = 1;
7858
7859 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
7860 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
7861 integer_type_node = make_signed_type (INT_TYPE_SIZE);
7862 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
7863 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
7864 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
7865 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
7866 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
7867
7868 /* Define a boolean type. This type only represents boolean values but
7869 may be larger than char depending on the value of BOOL_TYPE_SIZE.
7870 Front ends which want to override this size (i.e. Java) can redefine
7871 boolean_type_node before calling build_common_tree_nodes_2. */
7872 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
7873 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
7874 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
7875 TYPE_PRECISION (boolean_type_node) = 1;
7876
7877 /* Fill in the rest of the sized types. Reuse existing type nodes
7878 when possible. */
7879 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
7880 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
7881 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
7882 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
7883 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
7884
7885 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
7886 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
7887 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
7888 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
7889 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
7890
7891 access_public_node = get_identifier ("public");
7892 access_protected_node = get_identifier ("protected");
7893 access_private_node = get_identifier ("private");
7894 }
7895
7896 /* Call this function after calling build_common_tree_nodes and set_sizetype.
7897 It will create several other common tree nodes. */
7898
7899 void
7900 build_common_tree_nodes_2 (int short_double)
7901 {
7902 /* Define these next since types below may used them. */
7903 integer_zero_node = build_int_cst (NULL_TREE, 0);
7904 integer_one_node = build_int_cst (NULL_TREE, 1);
7905 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
7906
7907 size_zero_node = size_int (0);
7908 size_one_node = size_int (1);
7909 bitsize_zero_node = bitsize_int (0);
7910 bitsize_one_node = bitsize_int (1);
7911 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
7912
7913 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
7914 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
7915
7916 void_type_node = make_node (VOID_TYPE);
7917 layout_type (void_type_node);
7918
7919 /* We are not going to have real types in C with less than byte alignment,
7920 so we might as well not have any types that claim to have it. */
7921 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
7922 TYPE_USER_ALIGN (void_type_node) = 0;
7923
7924 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
7925 layout_type (TREE_TYPE (null_pointer_node));
7926
7927 ptr_type_node = build_pointer_type (void_type_node);
7928 const_ptr_type_node
7929 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
7930 fileptr_type_node = ptr_type_node;
7931
7932 float_type_node = make_node (REAL_TYPE);
7933 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
7934 layout_type (float_type_node);
7935
7936 double_type_node = make_node (REAL_TYPE);
7937 if (short_double)
7938 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
7939 else
7940 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
7941 layout_type (double_type_node);
7942
7943 long_double_type_node = make_node (REAL_TYPE);
7944 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
7945 layout_type (long_double_type_node);
7946
7947 float_ptr_type_node = build_pointer_type (float_type_node);
7948 double_ptr_type_node = build_pointer_type (double_type_node);
7949 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
7950 integer_ptr_type_node = build_pointer_type (integer_type_node);
7951
7952 /* Fixed size integer types. */
7953 uint32_type_node = build_nonstandard_integer_type (32, true);
7954 uint64_type_node = build_nonstandard_integer_type (64, true);
7955
7956 /* Decimal float types. */
7957 dfloat32_type_node = make_node (REAL_TYPE);
7958 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
7959 layout_type (dfloat32_type_node);
7960 SET_TYPE_MODE (dfloat32_type_node, SDmode);
7961 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
7962
7963 dfloat64_type_node = make_node (REAL_TYPE);
7964 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
7965 layout_type (dfloat64_type_node);
7966 SET_TYPE_MODE (dfloat64_type_node, DDmode);
7967 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
7968
7969 dfloat128_type_node = make_node (REAL_TYPE);
7970 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
7971 layout_type (dfloat128_type_node);
7972 SET_TYPE_MODE (dfloat128_type_node, TDmode);
7973 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
7974
7975 complex_integer_type_node = build_complex_type (integer_type_node);
7976 complex_float_type_node = build_complex_type (float_type_node);
7977 complex_double_type_node = build_complex_type (double_type_node);
7978 complex_long_double_type_node = build_complex_type (long_double_type_node);
7979
7980 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
7981 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
7982 sat_ ## KIND ## _type_node = \
7983 make_sat_signed_ ## KIND ## _type (SIZE); \
7984 sat_unsigned_ ## KIND ## _type_node = \
7985 make_sat_unsigned_ ## KIND ## _type (SIZE); \
7986 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
7987 unsigned_ ## KIND ## _type_node = \
7988 make_unsigned_ ## KIND ## _type (SIZE);
7989
7990 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
7991 sat_ ## WIDTH ## KIND ## _type_node = \
7992 make_sat_signed_ ## KIND ## _type (SIZE); \
7993 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
7994 make_sat_unsigned_ ## KIND ## _type (SIZE); \
7995 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
7996 unsigned_ ## WIDTH ## KIND ## _type_node = \
7997 make_unsigned_ ## KIND ## _type (SIZE);
7998
7999 /* Make fixed-point type nodes based on four different widths. */
8000 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
8001 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
8002 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
8003 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
8004 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
8005
8006 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
8007 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
8008 NAME ## _type_node = \
8009 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
8010 u ## NAME ## _type_node = \
8011 make_or_reuse_unsigned_ ## KIND ## _type \
8012 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
8013 sat_ ## NAME ## _type_node = \
8014 make_or_reuse_sat_signed_ ## KIND ## _type \
8015 (GET_MODE_BITSIZE (MODE ## mode)); \
8016 sat_u ## NAME ## _type_node = \
8017 make_or_reuse_sat_unsigned_ ## KIND ## _type \
8018 (GET_MODE_BITSIZE (U ## MODE ## mode));
8019
8020 /* Fixed-point type and mode nodes. */
8021 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
8022 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
8023 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
8024 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
8025 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
8026 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
8027 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
8028 MAKE_FIXED_MODE_NODE (accum, ha, HA)
8029 MAKE_FIXED_MODE_NODE (accum, sa, SA)
8030 MAKE_FIXED_MODE_NODE (accum, da, DA)
8031 MAKE_FIXED_MODE_NODE (accum, ta, TA)
8032
8033 {
8034 tree t = targetm.build_builtin_va_list ();
8035
8036 /* Many back-ends define record types without setting TYPE_NAME.
8037 If we copied the record type here, we'd keep the original
8038 record type without a name. This breaks name mangling. So,
8039 don't copy record types and let c_common_nodes_and_builtins()
8040 declare the type to be __builtin_va_list. */
8041 if (TREE_CODE (t) != RECORD_TYPE)
8042 t = build_variant_type_copy (t);
8043
8044 va_list_type_node = t;
8045 }
8046 }
8047
8048 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
8049
8050 static void
8051 local_define_builtin (const char *name, tree type, enum built_in_function code,
8052 const char *library_name, int ecf_flags)
8053 {
8054 tree decl;
8055
8056 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
8057 library_name, NULL_TREE);
8058 if (ecf_flags & ECF_CONST)
8059 TREE_READONLY (decl) = 1;
8060 if (ecf_flags & ECF_PURE)
8061 DECL_PURE_P (decl) = 1;
8062 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
8063 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
8064 if (ecf_flags & ECF_NORETURN)
8065 TREE_THIS_VOLATILE (decl) = 1;
8066 if (ecf_flags & ECF_NOTHROW)
8067 TREE_NOTHROW (decl) = 1;
8068 if (ecf_flags & ECF_MALLOC)
8069 DECL_IS_MALLOC (decl) = 1;
8070
8071 built_in_decls[code] = decl;
8072 implicit_built_in_decls[code] = decl;
8073 }
8074
8075 /* Call this function after instantiating all builtins that the language
8076 front end cares about. This will build the rest of the builtins that
8077 are relied upon by the tree optimizers and the middle-end. */
8078
8079 void
8080 build_common_builtin_nodes (void)
8081 {
8082 tree tmp, ftype;
8083
8084 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
8085 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
8086 {
8087 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
8088 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
8089 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8090 ftype = build_function_type (ptr_type_node, tmp);
8091
8092 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
8093 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
8094 "memcpy", ECF_NOTHROW);
8095 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
8096 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
8097 "memmove", ECF_NOTHROW);
8098 }
8099
8100 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
8101 {
8102 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
8103 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
8104 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
8105 ftype = build_function_type (integer_type_node, tmp);
8106 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
8107 "memcmp", ECF_PURE | ECF_NOTHROW);
8108 }
8109
8110 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
8111 {
8112 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
8113 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
8114 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8115 ftype = build_function_type (ptr_type_node, tmp);
8116 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
8117 "memset", ECF_NOTHROW);
8118 }
8119
8120 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
8121 {
8122 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
8123 ftype = build_function_type (ptr_type_node, tmp);
8124 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
8125 "alloca", ECF_NOTHROW | ECF_MALLOC);
8126 }
8127
8128 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8129 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8130 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8131 ftype = build_function_type (void_type_node, tmp);
8132 local_define_builtin ("__builtin_init_trampoline", ftype,
8133 BUILT_IN_INIT_TRAMPOLINE,
8134 "__builtin_init_trampoline", ECF_NOTHROW);
8135
8136 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8137 ftype = build_function_type (ptr_type_node, tmp);
8138 local_define_builtin ("__builtin_adjust_trampoline", ftype,
8139 BUILT_IN_ADJUST_TRAMPOLINE,
8140 "__builtin_adjust_trampoline",
8141 ECF_CONST | ECF_NOTHROW);
8142
8143 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8144 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8145 ftype = build_function_type (void_type_node, tmp);
8146 local_define_builtin ("__builtin_nonlocal_goto", ftype,
8147 BUILT_IN_NONLOCAL_GOTO,
8148 "__builtin_nonlocal_goto",
8149 ECF_NORETURN | ECF_NOTHROW);
8150
8151 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8152 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8153 ftype = build_function_type (void_type_node, tmp);
8154 local_define_builtin ("__builtin_setjmp_setup", ftype,
8155 BUILT_IN_SETJMP_SETUP,
8156 "__builtin_setjmp_setup", ECF_NOTHROW);
8157
8158 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8159 ftype = build_function_type (ptr_type_node, tmp);
8160 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
8161 BUILT_IN_SETJMP_DISPATCHER,
8162 "__builtin_setjmp_dispatcher",
8163 ECF_PURE | ECF_NOTHROW);
8164
8165 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8166 ftype = build_function_type (void_type_node, tmp);
8167 local_define_builtin ("__builtin_setjmp_receiver", ftype,
8168 BUILT_IN_SETJMP_RECEIVER,
8169 "__builtin_setjmp_receiver", ECF_NOTHROW);
8170
8171 ftype = build_function_type (ptr_type_node, void_list_node);
8172 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
8173 "__builtin_stack_save", ECF_NOTHROW);
8174
8175 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8176 ftype = build_function_type (void_type_node, tmp);
8177 local_define_builtin ("__builtin_stack_restore", ftype,
8178 BUILT_IN_STACK_RESTORE,
8179 "__builtin_stack_restore", ECF_NOTHROW);
8180
8181 ftype = build_function_type (void_type_node, void_list_node);
8182 local_define_builtin ("__builtin_profile_func_enter", ftype,
8183 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
8184 local_define_builtin ("__builtin_profile_func_exit", ftype,
8185 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
8186
8187 /* Complex multiplication and division. These are handled as builtins
8188 rather than optabs because emit_library_call_value doesn't support
8189 complex. Further, we can do slightly better with folding these
8190 beasties if the real and complex parts of the arguments are separate. */
8191 {
8192 int mode;
8193
8194 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
8195 {
8196 char mode_name_buf[4], *q;
8197 const char *p;
8198 enum built_in_function mcode, dcode;
8199 tree type, inner_type;
8200
8201 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
8202 if (type == NULL)
8203 continue;
8204 inner_type = TREE_TYPE (type);
8205
8206 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
8207 tmp = tree_cons (NULL_TREE, inner_type, tmp);
8208 tmp = tree_cons (NULL_TREE, inner_type, tmp);
8209 tmp = tree_cons (NULL_TREE, inner_type, tmp);
8210 ftype = build_function_type (type, tmp);
8211
8212 mcode = ((enum built_in_function)
8213 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
8214 dcode = ((enum built_in_function)
8215 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
8216
8217 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
8218 *q = TOLOWER (*p);
8219 *q = '\0';
8220
8221 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
8222 local_define_builtin (built_in_names[mcode], ftype, mcode,
8223 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
8224
8225 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
8226 local_define_builtin (built_in_names[dcode], ftype, dcode,
8227 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
8228 }
8229 }
8230 }
8231
8232 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
8233 better way.
8234
8235 If we requested a pointer to a vector, build up the pointers that
8236 we stripped off while looking for the inner type. Similarly for
8237 return values from functions.
8238
8239 The argument TYPE is the top of the chain, and BOTTOM is the
8240 new type which we will point to. */
8241
8242 tree
8243 reconstruct_complex_type (tree type, tree bottom)
8244 {
8245 tree inner, outer;
8246
8247 if (TREE_CODE (type) == POINTER_TYPE)
8248 {
8249 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
8250 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
8251 TYPE_REF_CAN_ALIAS_ALL (type));
8252 }
8253 else if (TREE_CODE (type) == REFERENCE_TYPE)
8254 {
8255 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
8256 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
8257 TYPE_REF_CAN_ALIAS_ALL (type));
8258 }
8259 else if (TREE_CODE (type) == ARRAY_TYPE)
8260 {
8261 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
8262 outer = build_array_type (inner, TYPE_DOMAIN (type));
8263 }
8264 else if (TREE_CODE (type) == FUNCTION_TYPE)
8265 {
8266 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
8267 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
8268 }
8269 else if (TREE_CODE (type) == METHOD_TYPE)
8270 {
8271 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
8272 /* The build_method_type_directly() routine prepends 'this' to argument list,
8273 so we must compensate by getting rid of it. */
8274 outer
8275 = build_method_type_directly
8276 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
8277 inner,
8278 TREE_CHAIN (TYPE_ARG_TYPES (type)));
8279 }
8280 else if (TREE_CODE (type) == OFFSET_TYPE)
8281 {
8282 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
8283 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
8284 }
8285 else
8286 return bottom;
8287
8288 return build_qualified_type (outer, TYPE_QUALS (type));
8289 }
8290
8291 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
8292 the inner type. */
8293 tree
8294 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
8295 {
8296 int nunits;
8297
8298 switch (GET_MODE_CLASS (mode))
8299 {
8300 case MODE_VECTOR_INT:
8301 case MODE_VECTOR_FLOAT:
8302 case MODE_VECTOR_FRACT:
8303 case MODE_VECTOR_UFRACT:
8304 case MODE_VECTOR_ACCUM:
8305 case MODE_VECTOR_UACCUM:
8306 nunits = GET_MODE_NUNITS (mode);
8307 break;
8308
8309 case MODE_INT:
8310 /* Check that there are no leftover bits. */
8311 gcc_assert (GET_MODE_BITSIZE (mode)
8312 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
8313
8314 nunits = GET_MODE_BITSIZE (mode)
8315 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
8316 break;
8317
8318 default:
8319 gcc_unreachable ();
8320 }
8321
8322 return make_vector_type (innertype, nunits, mode);
8323 }
8324
8325 /* Similarly, but takes the inner type and number of units, which must be
8326 a power of two. */
8327
8328 tree
8329 build_vector_type (tree innertype, int nunits)
8330 {
8331 return make_vector_type (innertype, nunits, VOIDmode);
8332 }
8333
8334 /* Similarly, but takes the inner type and number of units, which must be
8335 a power of two. */
8336
8337 tree
8338 build_opaque_vector_type (tree innertype, int nunits)
8339 {
8340 tree t;
8341 innertype = build_distinct_type_copy (innertype);
8342 t = make_vector_type (innertype, nunits, VOIDmode);
8343 TYPE_VECTOR_OPAQUE (t) = true;
8344 return t;
8345 }
8346
8347
8348 /* Build RESX_EXPR with given REGION_NUMBER. */
8349 tree
8350 build_resx (int region_number)
8351 {
8352 tree t;
8353 t = build1 (RESX_EXPR, void_type_node,
8354 build_int_cst (NULL_TREE, region_number));
8355 return t;
8356 }
8357
8358 /* Given an initializer INIT, return TRUE if INIT is zero or some
8359 aggregate of zeros. Otherwise return FALSE. */
8360 bool
8361 initializer_zerop (const_tree init)
8362 {
8363 tree elt;
8364
8365 STRIP_NOPS (init);
8366
8367 switch (TREE_CODE (init))
8368 {
8369 case INTEGER_CST:
8370 return integer_zerop (init);
8371
8372 case REAL_CST:
8373 /* ??? Note that this is not correct for C4X float formats. There,
8374 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
8375 negative exponent. */
8376 return real_zerop (init)
8377 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
8378
8379 case FIXED_CST:
8380 return fixed_zerop (init);
8381
8382 case COMPLEX_CST:
8383 return integer_zerop (init)
8384 || (real_zerop (init)
8385 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
8386 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
8387
8388 case VECTOR_CST:
8389 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
8390 if (!initializer_zerop (TREE_VALUE (elt)))
8391 return false;
8392 return true;
8393
8394 case CONSTRUCTOR:
8395 {
8396 unsigned HOST_WIDE_INT idx;
8397
8398 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
8399 if (!initializer_zerop (elt))
8400 return false;
8401 return true;
8402 }
8403
8404 default:
8405 return false;
8406 }
8407 }
8408
8409 /* Build an empty statement at location LOC. */
8410
8411 tree
8412 build_empty_stmt (location_t loc)
8413 {
8414 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
8415 SET_EXPR_LOCATION (t, loc);
8416 return t;
8417 }
8418
8419
8420 /* Build an OpenMP clause with code CODE. LOC is the location of the
8421 clause. */
8422
8423 tree
8424 build_omp_clause (location_t loc, enum omp_clause_code code)
8425 {
8426 tree t;
8427 int size, length;
8428
8429 length = omp_clause_num_ops[code];
8430 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
8431
8432 t = GGC_NEWVAR (union tree_node, size);
8433 memset (t, 0, size);
8434 TREE_SET_CODE (t, OMP_CLAUSE);
8435 OMP_CLAUSE_SET_CODE (t, code);
8436 OMP_CLAUSE_LOCATION (t) = loc;
8437
8438 #ifdef GATHER_STATISTICS
8439 tree_node_counts[(int) omp_clause_kind]++;
8440 tree_node_sizes[(int) omp_clause_kind] += size;
8441 #endif
8442
8443 return t;
8444 }
8445
8446 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
8447 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
8448 Except for the CODE and operand count field, other storage for the
8449 object is initialized to zeros. */
8450
8451 tree
8452 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
8453 {
8454 tree t;
8455 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
8456
8457 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
8458 gcc_assert (len >= 1);
8459
8460 #ifdef GATHER_STATISTICS
8461 tree_node_counts[(int) e_kind]++;
8462 tree_node_sizes[(int) e_kind] += length;
8463 #endif
8464
8465 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
8466
8467 memset (t, 0, length);
8468
8469 TREE_SET_CODE (t, code);
8470
8471 /* Can't use TREE_OPERAND to store the length because if checking is
8472 enabled, it will try to check the length before we store it. :-P */
8473 t->exp.operands[0] = build_int_cst (sizetype, len);
8474
8475 return t;
8476 }
8477
8478
8479 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE
8480 and FN and a null static chain slot. ARGLIST is a TREE_LIST of the
8481 arguments. */
8482
8483 tree
8484 build_call_list (tree return_type, tree fn, tree arglist)
8485 {
8486 tree t;
8487 int i;
8488
8489 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
8490 TREE_TYPE (t) = return_type;
8491 CALL_EXPR_FN (t) = fn;
8492 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
8493 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
8494 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
8495 process_call_operands (t);
8496 return t;
8497 }
8498
8499 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
8500 FN and a null static chain slot. NARGS is the number of call arguments
8501 which are specified as "..." arguments. */
8502
8503 tree
8504 build_call_nary (tree return_type, tree fn, int nargs, ...)
8505 {
8506 tree ret;
8507 va_list args;
8508 va_start (args, nargs);
8509 ret = build_call_valist (return_type, fn, nargs, args);
8510 va_end (args);
8511 return ret;
8512 }
8513
8514 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
8515 FN and a null static chain slot. NARGS is the number of call arguments
8516 which are specified as a va_list ARGS. */
8517
8518 tree
8519 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
8520 {
8521 tree t;
8522 int i;
8523
8524 t = build_vl_exp (CALL_EXPR, nargs + 3);
8525 TREE_TYPE (t) = return_type;
8526 CALL_EXPR_FN (t) = fn;
8527 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
8528 for (i = 0; i < nargs; i++)
8529 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
8530 process_call_operands (t);
8531 return t;
8532 }
8533
8534 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
8535 FN and a null static chain slot. NARGS is the number of call arguments
8536 which are specified as a tree array ARGS. */
8537
8538 tree
8539 build_call_array_loc (location_t loc, tree return_type, tree fn,
8540 int nargs, const tree *args)
8541 {
8542 tree t;
8543 int i;
8544
8545 t = build_vl_exp (CALL_EXPR, nargs + 3);
8546 TREE_TYPE (t) = return_type;
8547 CALL_EXPR_FN (t) = fn;
8548 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
8549 for (i = 0; i < nargs; i++)
8550 CALL_EXPR_ARG (t, i) = args[i];
8551 process_call_operands (t);
8552 SET_EXPR_LOCATION (t, loc);
8553 return t;
8554 }
8555
8556 /* Like build_call_array, but takes a VEC. */
8557
8558 tree
8559 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
8560 {
8561 tree ret, t;
8562 unsigned int ix;
8563
8564 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
8565 TREE_TYPE (ret) = return_type;
8566 CALL_EXPR_FN (ret) = fn;
8567 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
8568 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
8569 CALL_EXPR_ARG (ret, ix) = t;
8570 process_call_operands (ret);
8571 return ret;
8572 }
8573
8574
8575 /* Returns true if it is possible to prove that the index of
8576 an array access REF (an ARRAY_REF expression) falls into the
8577 array bounds. */
8578
8579 bool
8580 in_array_bounds_p (tree ref)
8581 {
8582 tree idx = TREE_OPERAND (ref, 1);
8583 tree min, max;
8584
8585 if (TREE_CODE (idx) != INTEGER_CST)
8586 return false;
8587
8588 min = array_ref_low_bound (ref);
8589 max = array_ref_up_bound (ref);
8590 if (!min
8591 || !max
8592 || TREE_CODE (min) != INTEGER_CST
8593 || TREE_CODE (max) != INTEGER_CST)
8594 return false;
8595
8596 if (tree_int_cst_lt (idx, min)
8597 || tree_int_cst_lt (max, idx))
8598 return false;
8599
8600 return true;
8601 }
8602
8603 /* Returns true if it is possible to prove that the range of
8604 an array access REF (an ARRAY_RANGE_REF expression) falls
8605 into the array bounds. */
8606
8607 bool
8608 range_in_array_bounds_p (tree ref)
8609 {
8610 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
8611 tree range_min, range_max, min, max;
8612
8613 range_min = TYPE_MIN_VALUE (domain_type);
8614 range_max = TYPE_MAX_VALUE (domain_type);
8615 if (!range_min
8616 || !range_max
8617 || TREE_CODE (range_min) != INTEGER_CST
8618 || TREE_CODE (range_max) != INTEGER_CST)
8619 return false;
8620
8621 min = array_ref_low_bound (ref);
8622 max = array_ref_up_bound (ref);
8623 if (!min
8624 || !max
8625 || TREE_CODE (min) != INTEGER_CST
8626 || TREE_CODE (max) != INTEGER_CST)
8627 return false;
8628
8629 if (tree_int_cst_lt (range_min, min)
8630 || tree_int_cst_lt (max, range_max))
8631 return false;
8632
8633 return true;
8634 }
8635
8636 /* Return true if T (assumed to be a DECL) must be assigned a memory
8637 location. */
8638
8639 bool
8640 needs_to_live_in_memory (const_tree t)
8641 {
8642 if (TREE_CODE (t) == SSA_NAME)
8643 t = SSA_NAME_VAR (t);
8644
8645 return (TREE_ADDRESSABLE (t)
8646 || is_global_var (t)
8647 || (TREE_CODE (t) == RESULT_DECL
8648 && aggregate_value_p (t, current_function_decl)));
8649 }
8650
8651 /* There are situations in which a language considers record types
8652 compatible which have different field lists. Decide if two fields
8653 are compatible. It is assumed that the parent records are compatible. */
8654
8655 bool
8656 fields_compatible_p (const_tree f1, const_tree f2)
8657 {
8658 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
8659 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
8660 return false;
8661
8662 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
8663 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
8664 return false;
8665
8666 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
8667 return false;
8668
8669 return true;
8670 }
8671
8672 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
8673
8674 tree
8675 find_compatible_field (tree record, tree orig_field)
8676 {
8677 tree f;
8678
8679 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
8680 if (TREE_CODE (f) == FIELD_DECL
8681 && fields_compatible_p (f, orig_field))
8682 return f;
8683
8684 /* ??? Why isn't this on the main fields list? */
8685 f = TYPE_VFIELD (record);
8686 if (f && TREE_CODE (f) == FIELD_DECL
8687 && fields_compatible_p (f, orig_field))
8688 return f;
8689
8690 /* ??? We should abort here, but Java appears to do Bad Things
8691 with inherited fields. */
8692 return orig_field;
8693 }
8694
8695 /* Return value of a constant X and sign-extend it. */
8696
8697 HOST_WIDE_INT
8698 int_cst_value (const_tree x)
8699 {
8700 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
8701 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
8702
8703 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
8704 gcc_assert (TREE_INT_CST_HIGH (x) == 0
8705 || TREE_INT_CST_HIGH (x) == -1);
8706
8707 if (bits < HOST_BITS_PER_WIDE_INT)
8708 {
8709 bool negative = ((val >> (bits - 1)) & 1) != 0;
8710 if (negative)
8711 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
8712 else
8713 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
8714 }
8715
8716 return val;
8717 }
8718
8719 /* Return value of a constant X and sign-extend it. */
8720
8721 HOST_WIDEST_INT
8722 widest_int_cst_value (const_tree x)
8723 {
8724 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
8725 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
8726
8727 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
8728 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
8729 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
8730 << HOST_BITS_PER_WIDE_INT);
8731 #else
8732 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
8733 gcc_assert (TREE_INT_CST_HIGH (x) == 0
8734 || TREE_INT_CST_HIGH (x) == -1);
8735 #endif
8736
8737 if (bits < HOST_BITS_PER_WIDEST_INT)
8738 {
8739 bool negative = ((val >> (bits - 1)) & 1) != 0;
8740 if (negative)
8741 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
8742 else
8743 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
8744 }
8745
8746 return val;
8747 }
8748
8749 /* If TYPE is an integral type, return an equivalent type which is
8750 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
8751 return TYPE itself. */
8752
8753 tree
8754 signed_or_unsigned_type_for (int unsignedp, tree type)
8755 {
8756 tree t = type;
8757 if (POINTER_TYPE_P (type))
8758 t = size_type_node;
8759
8760 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
8761 return t;
8762
8763 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
8764 }
8765
8766 /* Returns unsigned variant of TYPE. */
8767
8768 tree
8769 unsigned_type_for (tree type)
8770 {
8771 return signed_or_unsigned_type_for (1, type);
8772 }
8773
8774 /* Returns signed variant of TYPE. */
8775
8776 tree
8777 signed_type_for (tree type)
8778 {
8779 return signed_or_unsigned_type_for (0, type);
8780 }
8781
8782 /* Returns the largest value obtainable by casting something in INNER type to
8783 OUTER type. */
8784
8785 tree
8786 upper_bound_in_type (tree outer, tree inner)
8787 {
8788 unsigned HOST_WIDE_INT lo, hi;
8789 unsigned int det = 0;
8790 unsigned oprec = TYPE_PRECISION (outer);
8791 unsigned iprec = TYPE_PRECISION (inner);
8792 unsigned prec;
8793
8794 /* Compute a unique number for every combination. */
8795 det |= (oprec > iprec) ? 4 : 0;
8796 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
8797 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
8798
8799 /* Determine the exponent to use. */
8800 switch (det)
8801 {
8802 case 0:
8803 case 1:
8804 /* oprec <= iprec, outer: signed, inner: don't care. */
8805 prec = oprec - 1;
8806 break;
8807 case 2:
8808 case 3:
8809 /* oprec <= iprec, outer: unsigned, inner: don't care. */
8810 prec = oprec;
8811 break;
8812 case 4:
8813 /* oprec > iprec, outer: signed, inner: signed. */
8814 prec = iprec - 1;
8815 break;
8816 case 5:
8817 /* oprec > iprec, outer: signed, inner: unsigned. */
8818 prec = iprec;
8819 break;
8820 case 6:
8821 /* oprec > iprec, outer: unsigned, inner: signed. */
8822 prec = oprec;
8823 break;
8824 case 7:
8825 /* oprec > iprec, outer: unsigned, inner: unsigned. */
8826 prec = iprec;
8827 break;
8828 default:
8829 gcc_unreachable ();
8830 }
8831
8832 /* Compute 2^^prec - 1. */
8833 if (prec <= HOST_BITS_PER_WIDE_INT)
8834 {
8835 hi = 0;
8836 lo = ((~(unsigned HOST_WIDE_INT) 0)
8837 >> (HOST_BITS_PER_WIDE_INT - prec));
8838 }
8839 else
8840 {
8841 hi = ((~(unsigned HOST_WIDE_INT) 0)
8842 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
8843 lo = ~(unsigned HOST_WIDE_INT) 0;
8844 }
8845
8846 return build_int_cst_wide (outer, lo, hi);
8847 }
8848
8849 /* Returns the smallest value obtainable by casting something in INNER type to
8850 OUTER type. */
8851
8852 tree
8853 lower_bound_in_type (tree outer, tree inner)
8854 {
8855 unsigned HOST_WIDE_INT lo, hi;
8856 unsigned oprec = TYPE_PRECISION (outer);
8857 unsigned iprec = TYPE_PRECISION (inner);
8858
8859 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
8860 and obtain 0. */
8861 if (TYPE_UNSIGNED (outer)
8862 /* If we are widening something of an unsigned type, OUTER type
8863 contains all values of INNER type. In particular, both INNER
8864 and OUTER types have zero in common. */
8865 || (oprec > iprec && TYPE_UNSIGNED (inner)))
8866 lo = hi = 0;
8867 else
8868 {
8869 /* If we are widening a signed type to another signed type, we
8870 want to obtain -2^^(iprec-1). If we are keeping the
8871 precision or narrowing to a signed type, we want to obtain
8872 -2^(oprec-1). */
8873 unsigned prec = oprec > iprec ? iprec : oprec;
8874
8875 if (prec <= HOST_BITS_PER_WIDE_INT)
8876 {
8877 hi = ~(unsigned HOST_WIDE_INT) 0;
8878 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
8879 }
8880 else
8881 {
8882 hi = ((~(unsigned HOST_WIDE_INT) 0)
8883 << (prec - HOST_BITS_PER_WIDE_INT - 1));
8884 lo = 0;
8885 }
8886 }
8887
8888 return build_int_cst_wide (outer, lo, hi);
8889 }
8890
8891 /* Return nonzero if two operands that are suitable for PHI nodes are
8892 necessarily equal. Specifically, both ARG0 and ARG1 must be either
8893 SSA_NAME or invariant. Note that this is strictly an optimization.
8894 That is, callers of this function can directly call operand_equal_p
8895 and get the same result, only slower. */
8896
8897 int
8898 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
8899 {
8900 if (arg0 == arg1)
8901 return 1;
8902 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
8903 return 0;
8904 return operand_equal_p (arg0, arg1, 0);
8905 }
8906
8907 /* Returns number of zeros at the end of binary representation of X.
8908
8909 ??? Use ffs if available? */
8910
8911 tree
8912 num_ending_zeros (const_tree x)
8913 {
8914 unsigned HOST_WIDE_INT fr, nfr;
8915 unsigned num, abits;
8916 tree type = TREE_TYPE (x);
8917
8918 if (TREE_INT_CST_LOW (x) == 0)
8919 {
8920 num = HOST_BITS_PER_WIDE_INT;
8921 fr = TREE_INT_CST_HIGH (x);
8922 }
8923 else
8924 {
8925 num = 0;
8926 fr = TREE_INT_CST_LOW (x);
8927 }
8928
8929 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
8930 {
8931 nfr = fr >> abits;
8932 if (nfr << abits == fr)
8933 {
8934 num += abits;
8935 fr = nfr;
8936 }
8937 }
8938
8939 if (num > TYPE_PRECISION (type))
8940 num = TYPE_PRECISION (type);
8941
8942 return build_int_cst_type (type, num);
8943 }
8944
8945
8946 #define WALK_SUBTREE(NODE) \
8947 do \
8948 { \
8949 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
8950 if (result) \
8951 return result; \
8952 } \
8953 while (0)
8954
8955 /* This is a subroutine of walk_tree that walks field of TYPE that are to
8956 be walked whenever a type is seen in the tree. Rest of operands and return
8957 value are as for walk_tree. */
8958
8959 static tree
8960 walk_type_fields (tree type, walk_tree_fn func, void *data,
8961 struct pointer_set_t *pset, walk_tree_lh lh)
8962 {
8963 tree result = NULL_TREE;
8964
8965 switch (TREE_CODE (type))
8966 {
8967 case POINTER_TYPE:
8968 case REFERENCE_TYPE:
8969 /* We have to worry about mutually recursive pointers. These can't
8970 be written in C. They can in Ada. It's pathological, but
8971 there's an ACATS test (c38102a) that checks it. Deal with this
8972 by checking if we're pointing to another pointer, that one
8973 points to another pointer, that one does too, and we have no htab.
8974 If so, get a hash table. We check three levels deep to avoid
8975 the cost of the hash table if we don't need one. */
8976 if (POINTER_TYPE_P (TREE_TYPE (type))
8977 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
8978 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
8979 && !pset)
8980 {
8981 result = walk_tree_without_duplicates (&TREE_TYPE (type),
8982 func, data);
8983 if (result)
8984 return result;
8985
8986 break;
8987 }
8988
8989 /* ... fall through ... */
8990
8991 case COMPLEX_TYPE:
8992 WALK_SUBTREE (TREE_TYPE (type));
8993 break;
8994
8995 case METHOD_TYPE:
8996 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
8997
8998 /* Fall through. */
8999
9000 case FUNCTION_TYPE:
9001 WALK_SUBTREE (TREE_TYPE (type));
9002 {
9003 tree arg;
9004
9005 /* We never want to walk into default arguments. */
9006 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
9007 WALK_SUBTREE (TREE_VALUE (arg));
9008 }
9009 break;
9010
9011 case ARRAY_TYPE:
9012 /* Don't follow this nodes's type if a pointer for fear that
9013 we'll have infinite recursion. If we have a PSET, then we
9014 need not fear. */
9015 if (pset
9016 || (!POINTER_TYPE_P (TREE_TYPE (type))
9017 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
9018 WALK_SUBTREE (TREE_TYPE (type));
9019 WALK_SUBTREE (TYPE_DOMAIN (type));
9020 break;
9021
9022 case OFFSET_TYPE:
9023 WALK_SUBTREE (TREE_TYPE (type));
9024 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
9025 break;
9026
9027 default:
9028 break;
9029 }
9030
9031 return NULL_TREE;
9032 }
9033
9034 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
9035 called with the DATA and the address of each sub-tree. If FUNC returns a
9036 non-NULL value, the traversal is stopped, and the value returned by FUNC
9037 is returned. If PSET is non-NULL it is used to record the nodes visited,
9038 and to avoid visiting a node more than once. */
9039
9040 tree
9041 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
9042 struct pointer_set_t *pset, walk_tree_lh lh)
9043 {
9044 enum tree_code code;
9045 int walk_subtrees;
9046 tree result;
9047
9048 #define WALK_SUBTREE_TAIL(NODE) \
9049 do \
9050 { \
9051 tp = & (NODE); \
9052 goto tail_recurse; \
9053 } \
9054 while (0)
9055
9056 tail_recurse:
9057 /* Skip empty subtrees. */
9058 if (!*tp)
9059 return NULL_TREE;
9060
9061 /* Don't walk the same tree twice, if the user has requested
9062 that we avoid doing so. */
9063 if (pset && pointer_set_insert (pset, *tp))
9064 return NULL_TREE;
9065
9066 /* Call the function. */
9067 walk_subtrees = 1;
9068 result = (*func) (tp, &walk_subtrees, data);
9069
9070 /* If we found something, return it. */
9071 if (result)
9072 return result;
9073
9074 code = TREE_CODE (*tp);
9075
9076 /* Even if we didn't, FUNC may have decided that there was nothing
9077 interesting below this point in the tree. */
9078 if (!walk_subtrees)
9079 {
9080 /* But we still need to check our siblings. */
9081 if (code == TREE_LIST)
9082 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
9083 else if (code == OMP_CLAUSE)
9084 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
9085 else
9086 return NULL_TREE;
9087 }
9088
9089 if (lh)
9090 {
9091 result = (*lh) (tp, &walk_subtrees, func, data, pset);
9092 if (result || !walk_subtrees)
9093 return result;
9094 }
9095
9096 switch (code)
9097 {
9098 case ERROR_MARK:
9099 case IDENTIFIER_NODE:
9100 case INTEGER_CST:
9101 case REAL_CST:
9102 case FIXED_CST:
9103 case VECTOR_CST:
9104 case STRING_CST:
9105 case BLOCK:
9106 case PLACEHOLDER_EXPR:
9107 case SSA_NAME:
9108 case FIELD_DECL:
9109 case RESULT_DECL:
9110 /* None of these have subtrees other than those already walked
9111 above. */
9112 break;
9113
9114 case TREE_LIST:
9115 WALK_SUBTREE (TREE_VALUE (*tp));
9116 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
9117 break;
9118
9119 case TREE_VEC:
9120 {
9121 int len = TREE_VEC_LENGTH (*tp);
9122
9123 if (len == 0)
9124 break;
9125
9126 /* Walk all elements but the first. */
9127 while (--len)
9128 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
9129
9130 /* Now walk the first one as a tail call. */
9131 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
9132 }
9133
9134 case COMPLEX_CST:
9135 WALK_SUBTREE (TREE_REALPART (*tp));
9136 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
9137
9138 case CONSTRUCTOR:
9139 {
9140 unsigned HOST_WIDE_INT idx;
9141 constructor_elt *ce;
9142
9143 for (idx = 0;
9144 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
9145 idx++)
9146 WALK_SUBTREE (ce->value);
9147 }
9148 break;
9149
9150 case SAVE_EXPR:
9151 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
9152
9153 case BIND_EXPR:
9154 {
9155 tree decl;
9156 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
9157 {
9158 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
9159 into declarations that are just mentioned, rather than
9160 declared; they don't really belong to this part of the tree.
9161 And, we can see cycles: the initializer for a declaration
9162 can refer to the declaration itself. */
9163 WALK_SUBTREE (DECL_INITIAL (decl));
9164 WALK_SUBTREE (DECL_SIZE (decl));
9165 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
9166 }
9167 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
9168 }
9169
9170 case STATEMENT_LIST:
9171 {
9172 tree_stmt_iterator i;
9173 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
9174 WALK_SUBTREE (*tsi_stmt_ptr (i));
9175 }
9176 break;
9177
9178 case OMP_CLAUSE:
9179 switch (OMP_CLAUSE_CODE (*tp))
9180 {
9181 case OMP_CLAUSE_PRIVATE:
9182 case OMP_CLAUSE_SHARED:
9183 case OMP_CLAUSE_FIRSTPRIVATE:
9184 case OMP_CLAUSE_COPYIN:
9185 case OMP_CLAUSE_COPYPRIVATE:
9186 case OMP_CLAUSE_IF:
9187 case OMP_CLAUSE_NUM_THREADS:
9188 case OMP_CLAUSE_SCHEDULE:
9189 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
9190 /* FALLTHRU */
9191
9192 case OMP_CLAUSE_NOWAIT:
9193 case OMP_CLAUSE_ORDERED:
9194 case OMP_CLAUSE_DEFAULT:
9195 case OMP_CLAUSE_UNTIED:
9196 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
9197
9198 case OMP_CLAUSE_LASTPRIVATE:
9199 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
9200 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
9201 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
9202
9203 case OMP_CLAUSE_COLLAPSE:
9204 {
9205 int i;
9206 for (i = 0; i < 3; i++)
9207 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
9208 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
9209 }
9210
9211 case OMP_CLAUSE_REDUCTION:
9212 {
9213 int i;
9214 for (i = 0; i < 4; i++)
9215 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
9216 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
9217 }
9218
9219 default:
9220 gcc_unreachable ();
9221 }
9222 break;
9223
9224 case TARGET_EXPR:
9225 {
9226 int i, len;
9227
9228 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
9229 But, we only want to walk once. */
9230 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
9231 for (i = 0; i < len; ++i)
9232 WALK_SUBTREE (TREE_OPERAND (*tp, i));
9233 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
9234 }
9235
9236 case DECL_EXPR:
9237 /* If this is a TYPE_DECL, walk into the fields of the type that it's
9238 defining. We only want to walk into these fields of a type in this
9239 case and not in the general case of a mere reference to the type.
9240
9241 The criterion is as follows: if the field can be an expression, it
9242 must be walked only here. This should be in keeping with the fields
9243 that are directly gimplified in gimplify_type_sizes in order for the
9244 mark/copy-if-shared/unmark machinery of the gimplifier to work with
9245 variable-sized types.
9246
9247 Note that DECLs get walked as part of processing the BIND_EXPR. */
9248 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
9249 {
9250 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
9251 if (TREE_CODE (*type_p) == ERROR_MARK)
9252 return NULL_TREE;
9253
9254 /* Call the function for the type. See if it returns anything or
9255 doesn't want us to continue. If we are to continue, walk both
9256 the normal fields and those for the declaration case. */
9257 result = (*func) (type_p, &walk_subtrees, data);
9258 if (result || !walk_subtrees)
9259 return result;
9260
9261 result = walk_type_fields (*type_p, func, data, pset, lh);
9262 if (result)
9263 return result;
9264
9265 /* If this is a record type, also walk the fields. */
9266 if (TREE_CODE (*type_p) == RECORD_TYPE
9267 || TREE_CODE (*type_p) == UNION_TYPE
9268 || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
9269 {
9270 tree field;
9271
9272 for (field = TYPE_FIELDS (*type_p); field;
9273 field = TREE_CHAIN (field))
9274 {
9275 /* We'd like to look at the type of the field, but we can
9276 easily get infinite recursion. So assume it's pointed
9277 to elsewhere in the tree. Also, ignore things that
9278 aren't fields. */
9279 if (TREE_CODE (field) != FIELD_DECL)
9280 continue;
9281
9282 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
9283 WALK_SUBTREE (DECL_SIZE (field));
9284 WALK_SUBTREE (DECL_SIZE_UNIT (field));
9285 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
9286 WALK_SUBTREE (DECL_QUALIFIER (field));
9287 }
9288 }
9289
9290 /* Same for scalar types. */
9291 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
9292 || TREE_CODE (*type_p) == ENUMERAL_TYPE
9293 || TREE_CODE (*type_p) == INTEGER_TYPE
9294 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
9295 || TREE_CODE (*type_p) == REAL_TYPE)
9296 {
9297 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
9298 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
9299 }
9300
9301 WALK_SUBTREE (TYPE_SIZE (*type_p));
9302 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
9303 }
9304 /* FALLTHRU */
9305
9306 default:
9307 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
9308 {
9309 int i, len;
9310
9311 /* Walk over all the sub-trees of this operand. */
9312 len = TREE_OPERAND_LENGTH (*tp);
9313
9314 /* Go through the subtrees. We need to do this in forward order so
9315 that the scope of a FOR_EXPR is handled properly. */
9316 if (len)
9317 {
9318 for (i = 0; i < len - 1; ++i)
9319 WALK_SUBTREE (TREE_OPERAND (*tp, i));
9320 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
9321 }
9322 }
9323 /* If this is a type, walk the needed fields in the type. */
9324 else if (TYPE_P (*tp))
9325 return walk_type_fields (*tp, func, data, pset, lh);
9326 break;
9327 }
9328
9329 /* We didn't find what we were looking for. */
9330 return NULL_TREE;
9331
9332 #undef WALK_SUBTREE_TAIL
9333 }
9334 #undef WALK_SUBTREE
9335
9336 /* Like walk_tree, but does not walk duplicate nodes more than once. */
9337
9338 tree
9339 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
9340 walk_tree_lh lh)
9341 {
9342 tree result;
9343 struct pointer_set_t *pset;
9344
9345 pset = pointer_set_create ();
9346 result = walk_tree_1 (tp, func, data, pset, lh);
9347 pointer_set_destroy (pset);
9348 return result;
9349 }
9350
9351
9352 tree *
9353 tree_block (tree t)
9354 {
9355 char const c = TREE_CODE_CLASS (TREE_CODE (t));
9356
9357 if (IS_EXPR_CODE_CLASS (c))
9358 return &t->exp.block;
9359 gcc_unreachable ();
9360 return NULL;
9361 }
9362
9363 /* Build and return a TREE_LIST of arguments in the CALL_EXPR exp.
9364 FIXME: don't use this function. It exists for compatibility with
9365 the old representation of CALL_EXPRs where a list was used to hold the
9366 arguments. Places that currently extract the arglist from a CALL_EXPR
9367 ought to be rewritten to use the CALL_EXPR itself. */
9368 tree
9369 call_expr_arglist (tree exp)
9370 {
9371 tree arglist = NULL_TREE;
9372 int i;
9373 for (i = call_expr_nargs (exp) - 1; i >= 0; i--)
9374 arglist = tree_cons (NULL_TREE, CALL_EXPR_ARG (exp, i), arglist);
9375 return arglist;
9376 }
9377
9378
9379 /* Create a nameless artificial label and put it in the current
9380 function context. The label has a location of LOC. Returns the
9381 newly created label. */
9382
9383 tree
9384 create_artificial_label (location_t loc)
9385 {
9386 tree lab = build_decl (loc,
9387 LABEL_DECL, NULL_TREE, void_type_node);
9388
9389 DECL_ARTIFICIAL (lab) = 1;
9390 DECL_IGNORED_P (lab) = 1;
9391 DECL_CONTEXT (lab) = current_function_decl;
9392 return lab;
9393 }
9394
9395 /* Given a tree, try to return a useful variable name that we can use
9396 to prefix a temporary that is being assigned the value of the tree.
9397 I.E. given <temp> = &A, return A. */
9398
9399 const char *
9400 get_name (tree t)
9401 {
9402 tree stripped_decl;
9403
9404 stripped_decl = t;
9405 STRIP_NOPS (stripped_decl);
9406 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
9407 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
9408 else
9409 {
9410 switch (TREE_CODE (stripped_decl))
9411 {
9412 case ADDR_EXPR:
9413 return get_name (TREE_OPERAND (stripped_decl, 0));
9414 default:
9415 return NULL;
9416 }
9417 }
9418 }
9419
9420 /* Return true if TYPE has a variable argument list. */
9421
9422 bool
9423 stdarg_p (tree fntype)
9424 {
9425 function_args_iterator args_iter;
9426 tree n = NULL_TREE, t;
9427
9428 if (!fntype)
9429 return false;
9430
9431 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
9432 {
9433 n = t;
9434 }
9435
9436 return n != NULL_TREE && n != void_type_node;
9437 }
9438
9439 /* Return true if TYPE has a prototype. */
9440
9441 bool
9442 prototype_p (tree fntype)
9443 {
9444 tree t;
9445
9446 gcc_assert (fntype != NULL_TREE);
9447
9448 t = TYPE_ARG_TYPES (fntype);
9449 return (t != NULL_TREE);
9450 }
9451
9452 /* If BLOCK is inlined from an __attribute__((__artificial__))
9453 routine, return pointer to location from where it has been
9454 called. */
9455 location_t *
9456 block_nonartificial_location (tree block)
9457 {
9458 location_t *ret = NULL;
9459
9460 while (block && TREE_CODE (block) == BLOCK
9461 && BLOCK_ABSTRACT_ORIGIN (block))
9462 {
9463 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
9464
9465 while (TREE_CODE (ao) == BLOCK
9466 && BLOCK_ABSTRACT_ORIGIN (ao)
9467 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
9468 ao = BLOCK_ABSTRACT_ORIGIN (ao);
9469
9470 if (TREE_CODE (ao) == FUNCTION_DECL)
9471 {
9472 /* If AO is an artificial inline, point RET to the
9473 call site locus at which it has been inlined and continue
9474 the loop, in case AO's caller is also an artificial
9475 inline. */
9476 if (DECL_DECLARED_INLINE_P (ao)
9477 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
9478 ret = &BLOCK_SOURCE_LOCATION (block);
9479 else
9480 break;
9481 }
9482 else if (TREE_CODE (ao) != BLOCK)
9483 break;
9484
9485 block = BLOCK_SUPERCONTEXT (block);
9486 }
9487 return ret;
9488 }
9489
9490
9491 /* If EXP is inlined from an __attribute__((__artificial__))
9492 function, return the location of the original call expression. */
9493
9494 location_t
9495 tree_nonartificial_location (tree exp)
9496 {
9497 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
9498
9499 if (loc)
9500 return *loc;
9501 else
9502 return EXPR_LOCATION (exp);
9503 }
9504
9505
9506 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
9507 nodes. */
9508
9509 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
9510
9511 static hashval_t
9512 cl_option_hash_hash (const void *x)
9513 {
9514 const_tree const t = (const_tree) x;
9515 const char *p;
9516 size_t i;
9517 size_t len = 0;
9518 hashval_t hash = 0;
9519
9520 if (TREE_CODE (t) == OPTIMIZATION_NODE)
9521 {
9522 p = (const char *)TREE_OPTIMIZATION (t);
9523 len = sizeof (struct cl_optimization);
9524 }
9525
9526 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
9527 {
9528 p = (const char *)TREE_TARGET_OPTION (t);
9529 len = sizeof (struct cl_target_option);
9530 }
9531
9532 else
9533 gcc_unreachable ();
9534
9535 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
9536 something else. */
9537 for (i = 0; i < len; i++)
9538 if (p[i])
9539 hash = (hash << 4) ^ ((i << 2) | p[i]);
9540
9541 return hash;
9542 }
9543
9544 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
9545 TARGET_OPTION tree node) is the same as that given by *Y, which is the
9546 same. */
9547
9548 static int
9549 cl_option_hash_eq (const void *x, const void *y)
9550 {
9551 const_tree const xt = (const_tree) x;
9552 const_tree const yt = (const_tree) y;
9553 const char *xp;
9554 const char *yp;
9555 size_t len;
9556
9557 if (TREE_CODE (xt) != TREE_CODE (yt))
9558 return 0;
9559
9560 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
9561 {
9562 xp = (const char *)TREE_OPTIMIZATION (xt);
9563 yp = (const char *)TREE_OPTIMIZATION (yt);
9564 len = sizeof (struct cl_optimization);
9565 }
9566
9567 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
9568 {
9569 xp = (const char *)TREE_TARGET_OPTION (xt);
9570 yp = (const char *)TREE_TARGET_OPTION (yt);
9571 len = sizeof (struct cl_target_option);
9572 }
9573
9574 else
9575 gcc_unreachable ();
9576
9577 return (memcmp (xp, yp, len) == 0);
9578 }
9579
9580 /* Build an OPTIMIZATION_NODE based on the current options. */
9581
9582 tree
9583 build_optimization_node (void)
9584 {
9585 tree t;
9586 void **slot;
9587
9588 /* Use the cache of optimization nodes. */
9589
9590 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node));
9591
9592 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
9593 t = (tree) *slot;
9594 if (!t)
9595 {
9596 /* Insert this one into the hash table. */
9597 t = cl_optimization_node;
9598 *slot = t;
9599
9600 /* Make a new node for next time round. */
9601 cl_optimization_node = make_node (OPTIMIZATION_NODE);
9602 }
9603
9604 return t;
9605 }
9606
9607 /* Build a TARGET_OPTION_NODE based on the current options. */
9608
9609 tree
9610 build_target_option_node (void)
9611 {
9612 tree t;
9613 void **slot;
9614
9615 /* Use the cache of optimization nodes. */
9616
9617 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node));
9618
9619 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
9620 t = (tree) *slot;
9621 if (!t)
9622 {
9623 /* Insert this one into the hash table. */
9624 t = cl_target_option_node;
9625 *slot = t;
9626
9627 /* Make a new node for next time round. */
9628 cl_target_option_node = make_node (TARGET_OPTION_NODE);
9629 }
9630
9631 return t;
9632 }
9633
9634 /* Determine the "ultimate origin" of a block. The block may be an inlined
9635 instance of an inlined instance of a block which is local to an inline
9636 function, so we have to trace all of the way back through the origin chain
9637 to find out what sort of node actually served as the original seed for the
9638 given block. */
9639
9640 tree
9641 block_ultimate_origin (const_tree block)
9642 {
9643 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
9644
9645 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
9646 nodes in the function to point to themselves; ignore that if
9647 we're trying to output the abstract instance of this function. */
9648 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
9649 return NULL_TREE;
9650
9651 if (immediate_origin == NULL_TREE)
9652 return NULL_TREE;
9653 else
9654 {
9655 tree ret_val;
9656 tree lookahead = immediate_origin;
9657
9658 do
9659 {
9660 ret_val = lookahead;
9661 lookahead = (TREE_CODE (ret_val) == BLOCK
9662 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
9663 }
9664 while (lookahead != NULL && lookahead != ret_val);
9665
9666 /* The block's abstract origin chain may not be the *ultimate* origin of
9667 the block. It could lead to a DECL that has an abstract origin set.
9668 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
9669 will give us if it has one). Note that DECL's abstract origins are
9670 supposed to be the most distant ancestor (or so decl_ultimate_origin
9671 claims), so we don't need to loop following the DECL origins. */
9672 if (DECL_P (ret_val))
9673 return DECL_ORIGIN (ret_val);
9674
9675 return ret_val;
9676 }
9677 }
9678
9679 /* Return true if T1 and T2 are equivalent lists. */
9680
9681 bool
9682 list_equal_p (const_tree t1, const_tree t2)
9683 {
9684 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
9685 if (TREE_VALUE (t1) != TREE_VALUE (t2))
9686 return false;
9687 return !t1 && !t2;
9688 }
9689
9690 /* Return true iff conversion in EXP generates no instruction. Mark
9691 it inline so that we fully inline into the stripping functions even
9692 though we have two uses of this function. */
9693
9694 static inline bool
9695 tree_nop_conversion (const_tree exp)
9696 {
9697 tree outer_type, inner_type;
9698
9699 if (!CONVERT_EXPR_P (exp)
9700 && TREE_CODE (exp) != NON_LVALUE_EXPR)
9701 return false;
9702 if (TREE_OPERAND (exp, 0) == error_mark_node)
9703 return false;
9704
9705 outer_type = TREE_TYPE (exp);
9706 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
9707
9708 /* Use precision rather then machine mode when we can, which gives
9709 the correct answer even for submode (bit-field) types. */
9710 if ((INTEGRAL_TYPE_P (outer_type)
9711 || POINTER_TYPE_P (outer_type)
9712 || TREE_CODE (outer_type) == OFFSET_TYPE)
9713 && (INTEGRAL_TYPE_P (inner_type)
9714 || POINTER_TYPE_P (inner_type)
9715 || TREE_CODE (inner_type) == OFFSET_TYPE))
9716 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
9717
9718 /* Otherwise fall back on comparing machine modes (e.g. for
9719 aggregate types, floats). */
9720 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
9721 }
9722
9723 /* Return true iff conversion in EXP generates no instruction. Don't
9724 consider conversions changing the signedness. */
9725
9726 static bool
9727 tree_sign_nop_conversion (const_tree exp)
9728 {
9729 tree outer_type, inner_type;
9730
9731 if (!tree_nop_conversion (exp))
9732 return false;
9733
9734 outer_type = TREE_TYPE (exp);
9735 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
9736
9737 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
9738 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
9739 }
9740
9741 /* Strip conversions from EXP according to tree_nop_conversion and
9742 return the resulting expression. */
9743
9744 tree
9745 tree_strip_nop_conversions (tree exp)
9746 {
9747 while (tree_nop_conversion (exp))
9748 exp = TREE_OPERAND (exp, 0);
9749 return exp;
9750 }
9751
9752 /* Strip conversions from EXP according to tree_sign_nop_conversion
9753 and return the resulting expression. */
9754
9755 tree
9756 tree_strip_sign_nop_conversions (tree exp)
9757 {
9758 while (tree_sign_nop_conversion (exp))
9759 exp = TREE_OPERAND (exp, 0);
9760 return exp;
9761 }
9762
9763
9764 #include "gt-tree.h"