libgcc2.h (__NW, __NDW): Define using a __gnu_ prefix if LIBGCC2_GNU_PREFIX is defined.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h"
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "filenames.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-inline.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-flow.h"
52 #include "params.h"
53 #include "pointer-set.h"
54 #include "tree-pass.h"
55 #include "langhooks-def.h"
56 #include "diagnostic.h"
57 #include "tree-diagnostic.h"
58 #include "tree-pretty-print.h"
59 #include "cgraph.h"
60 #include "timevar.h"
61 #include "except.h"
62 #include "debug.h"
63 #include "intl.h"
64
65 /* Tree code classes. */
66
67 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
68 #define END_OF_BASE_TREE_CODES tcc_exceptional,
69
70 const enum tree_code_class tree_code_type[] = {
71 #include "all-tree.def"
72 };
73
74 #undef DEFTREECODE
75 #undef END_OF_BASE_TREE_CODES
76
77 /* Table indexed by tree code giving number of expression
78 operands beyond the fixed part of the node structure.
79 Not used for types or decls. */
80
81 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
82 #define END_OF_BASE_TREE_CODES 0,
83
84 const unsigned char tree_code_length[] = {
85 #include "all-tree.def"
86 };
87
88 #undef DEFTREECODE
89 #undef END_OF_BASE_TREE_CODES
90
91 /* Names of tree components.
92 Used for printing out the tree and error messages. */
93 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
94 #define END_OF_BASE_TREE_CODES "@dummy",
95
96 const char *const tree_code_name[] = {
97 #include "all-tree.def"
98 };
99
100 #undef DEFTREECODE
101 #undef END_OF_BASE_TREE_CODES
102
103 /* Each tree code class has an associated string representation.
104 These must correspond to the tree_code_class entries. */
105
106 const char *const tree_code_class_strings[] =
107 {
108 "exceptional",
109 "constant",
110 "type",
111 "declaration",
112 "reference",
113 "comparison",
114 "unary",
115 "binary",
116 "statement",
117 "vl_exp",
118 "expression"
119 };
120
121 /* obstack.[ch] explicitly declined to prototype this. */
122 extern int _obstack_allocated_p (struct obstack *h, void *obj);
123
124 #ifdef GATHER_STATISTICS
125 /* Statistics-gathering stuff. */
126
127 static int tree_code_counts[MAX_TREE_CODES];
128 int tree_node_counts[(int) all_kinds];
129 int tree_node_sizes[(int) all_kinds];
130
131 /* Keep in sync with tree.h:enum tree_node_kind. */
132 static const char * const tree_node_kind_names[] = {
133 "decls",
134 "types",
135 "blocks",
136 "stmts",
137 "refs",
138 "exprs",
139 "constants",
140 "identifiers",
141 "vecs",
142 "binfos",
143 "ssa names",
144 "constructors",
145 "random kinds",
146 "lang_decl kinds",
147 "lang_type kinds",
148 "omp clauses",
149 };
150 #endif /* GATHER_STATISTICS */
151
152 /* Unique id for next decl created. */
153 static GTY(()) int next_decl_uid;
154 /* Unique id for next type created. */
155 static GTY(()) int next_type_uid = 1;
156 /* Unique id for next debug decl created. Use negative numbers,
157 to catch erroneous uses. */
158 static GTY(()) int next_debug_decl_uid;
159
160 /* Since we cannot rehash a type after it is in the table, we have to
161 keep the hash code. */
162
163 struct GTY(()) type_hash {
164 unsigned long hash;
165 tree type;
166 };
167
168 /* Initial size of the hash table (rounded to next prime). */
169 #define TYPE_HASH_INITIAL_SIZE 1000
170
171 /* Now here is the hash table. When recording a type, it is added to
172 the slot whose index is the hash code. Note that the hash table is
173 used for several kinds of types (function types, array types and
174 array index range types, for now). While all these live in the
175 same table, they are completely independent, and the hash code is
176 computed differently for each of these. */
177
178 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
179 htab_t type_hash_table;
180
181 /* Hash table and temporary node for larger integer const values. */
182 static GTY (()) tree int_cst_node;
183 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
184 htab_t int_cst_hash_table;
185
186 /* Hash table for optimization flags and target option flags. Use the same
187 hash table for both sets of options. Nodes for building the current
188 optimization and target option nodes. The assumption is most of the time
189 the options created will already be in the hash table, so we avoid
190 allocating and freeing up a node repeatably. */
191 static GTY (()) tree cl_optimization_node;
192 static GTY (()) tree cl_target_option_node;
193 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
194 htab_t cl_option_hash_table;
195
196 /* General tree->tree mapping structure for use in hash tables. */
197
198
199 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
200 htab_t debug_expr_for_decl;
201
202 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
203 htab_t value_expr_for_decl;
204
205 static GTY ((if_marked ("tree_priority_map_marked_p"),
206 param_is (struct tree_priority_map)))
207 htab_t init_priority_for_decl;
208
209 static void set_type_quals (tree, int);
210 static int type_hash_eq (const void *, const void *);
211 static hashval_t type_hash_hash (const void *);
212 static hashval_t int_cst_hash_hash (const void *);
213 static int int_cst_hash_eq (const void *, const void *);
214 static hashval_t cl_option_hash_hash (const void *);
215 static int cl_option_hash_eq (const void *, const void *);
216 static void print_type_hash_statistics (void);
217 static void print_debug_expr_statistics (void);
218 static void print_value_expr_statistics (void);
219 static int type_hash_marked_p (const void *);
220 static unsigned int type_hash_list (const_tree, hashval_t);
221 static unsigned int attribute_hash_list (const_tree, hashval_t);
222
223 tree global_trees[TI_MAX];
224 tree integer_types[itk_none];
225
226 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
227
228 /* Number of operands for each OpenMP clause. */
229 unsigned const char omp_clause_num_ops[] =
230 {
231 0, /* OMP_CLAUSE_ERROR */
232 1, /* OMP_CLAUSE_PRIVATE */
233 1, /* OMP_CLAUSE_SHARED */
234 1, /* OMP_CLAUSE_FIRSTPRIVATE */
235 2, /* OMP_CLAUSE_LASTPRIVATE */
236 4, /* OMP_CLAUSE_REDUCTION */
237 1, /* OMP_CLAUSE_COPYIN */
238 1, /* OMP_CLAUSE_COPYPRIVATE */
239 1, /* OMP_CLAUSE_IF */
240 1, /* OMP_CLAUSE_NUM_THREADS */
241 1, /* OMP_CLAUSE_SCHEDULE */
242 0, /* OMP_CLAUSE_NOWAIT */
243 0, /* OMP_CLAUSE_ORDERED */
244 0, /* OMP_CLAUSE_DEFAULT */
245 3, /* OMP_CLAUSE_COLLAPSE */
246 0 /* OMP_CLAUSE_UNTIED */
247 };
248
249 const char * const omp_clause_code_name[] =
250 {
251 "error_clause",
252 "private",
253 "shared",
254 "firstprivate",
255 "lastprivate",
256 "reduction",
257 "copyin",
258 "copyprivate",
259 "if",
260 "num_threads",
261 "schedule",
262 "nowait",
263 "ordered",
264 "default",
265 "collapse",
266 "untied"
267 };
268
269
270 /* Return the tree node structure used by tree code CODE. */
271
272 static inline enum tree_node_structure_enum
273 tree_node_structure_for_code (enum tree_code code)
274 {
275 switch (TREE_CODE_CLASS (code))
276 {
277 case tcc_declaration:
278 {
279 switch (code)
280 {
281 case FIELD_DECL:
282 return TS_FIELD_DECL;
283 case PARM_DECL:
284 return TS_PARM_DECL;
285 case VAR_DECL:
286 return TS_VAR_DECL;
287 case LABEL_DECL:
288 return TS_LABEL_DECL;
289 case RESULT_DECL:
290 return TS_RESULT_DECL;
291 case DEBUG_EXPR_DECL:
292 return TS_DECL_WRTL;
293 case CONST_DECL:
294 return TS_CONST_DECL;
295 case TYPE_DECL:
296 return TS_TYPE_DECL;
297 case FUNCTION_DECL:
298 return TS_FUNCTION_DECL;
299 case TRANSLATION_UNIT_DECL:
300 return TS_TRANSLATION_UNIT_DECL;
301 default:
302 return TS_DECL_NON_COMMON;
303 }
304 }
305 case tcc_type:
306 return TS_TYPE_NON_COMMON;
307 case tcc_reference:
308 case tcc_comparison:
309 case tcc_unary:
310 case tcc_binary:
311 case tcc_expression:
312 case tcc_statement:
313 case tcc_vl_exp:
314 return TS_EXP;
315 default: /* tcc_constant and tcc_exceptional */
316 break;
317 }
318 switch (code)
319 {
320 /* tcc_constant cases. */
321 case INTEGER_CST: return TS_INT_CST;
322 case REAL_CST: return TS_REAL_CST;
323 case FIXED_CST: return TS_FIXED_CST;
324 case COMPLEX_CST: return TS_COMPLEX;
325 case VECTOR_CST: return TS_VECTOR;
326 case STRING_CST: return TS_STRING;
327 /* tcc_exceptional cases. */
328 case ERROR_MARK: return TS_COMMON;
329 case IDENTIFIER_NODE: return TS_IDENTIFIER;
330 case TREE_LIST: return TS_LIST;
331 case TREE_VEC: return TS_VEC;
332 case SSA_NAME: return TS_SSA_NAME;
333 case PLACEHOLDER_EXPR: return TS_COMMON;
334 case STATEMENT_LIST: return TS_STATEMENT_LIST;
335 case BLOCK: return TS_BLOCK;
336 case CONSTRUCTOR: return TS_CONSTRUCTOR;
337 case TREE_BINFO: return TS_BINFO;
338 case OMP_CLAUSE: return TS_OMP_CLAUSE;
339 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
340 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
341
342 default:
343 gcc_unreachable ();
344 }
345 }
346
347
348 /* Initialize tree_contains_struct to describe the hierarchy of tree
349 nodes. */
350
351 static void
352 initialize_tree_contains_struct (void)
353 {
354 unsigned i;
355
356 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
357 {
358 enum tree_code code;
359 enum tree_node_structure_enum ts_code;
360
361 code = (enum tree_code) i;
362 ts_code = tree_node_structure_for_code (code);
363
364 /* Mark the TS structure itself. */
365 tree_contains_struct[code][ts_code] = 1;
366
367 /* Mark all the structures that TS is derived from. */
368 switch (ts_code)
369 {
370 case TS_TYPED:
371 MARK_TS_BASE (code);
372 break;
373
374 case TS_COMMON:
375 case TS_INT_CST:
376 case TS_REAL_CST:
377 case TS_FIXED_CST:
378 case TS_VECTOR:
379 case TS_STRING:
380 case TS_COMPLEX:
381 case TS_SSA_NAME:
382 case TS_CONSTRUCTOR:
383 MARK_TS_TYPED (code);
384 break;
385
386 case TS_IDENTIFIER:
387 case TS_DECL_MINIMAL:
388 case TS_TYPE_COMMON:
389 case TS_LIST:
390 case TS_VEC:
391 case TS_EXP:
392 case TS_BLOCK:
393 case TS_BINFO:
394 case TS_STATEMENT_LIST:
395 case TS_OMP_CLAUSE:
396 case TS_OPTIMIZATION:
397 case TS_TARGET_OPTION:
398 MARK_TS_COMMON (code);
399 break;
400
401 case TS_TYPE_WITH_LANG_SPECIFIC:
402 MARK_TS_TYPE_COMMON (code);
403 break;
404
405 case TS_TYPE_NON_COMMON:
406 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
407 break;
408
409 case TS_DECL_COMMON:
410 MARK_TS_DECL_MINIMAL (code);
411 break;
412
413 case TS_DECL_WRTL:
414 case TS_CONST_DECL:
415 MARK_TS_DECL_COMMON (code);
416 break;
417
418 case TS_DECL_NON_COMMON:
419 MARK_TS_DECL_WITH_VIS (code);
420 break;
421
422 case TS_DECL_WITH_VIS:
423 case TS_PARM_DECL:
424 case TS_LABEL_DECL:
425 case TS_RESULT_DECL:
426 MARK_TS_DECL_WRTL (code);
427 break;
428
429 case TS_FIELD_DECL:
430 MARK_TS_DECL_COMMON (code);
431 break;
432
433 case TS_VAR_DECL:
434 MARK_TS_DECL_WITH_VIS (code);
435 break;
436
437 case TS_TYPE_DECL:
438 case TS_FUNCTION_DECL:
439 MARK_TS_DECL_NON_COMMON (code);
440 break;
441
442 case TS_TRANSLATION_UNIT_DECL:
443 MARK_TS_DECL_COMMON (code);
444 break;
445
446 default:
447 gcc_unreachable ();
448 }
449 }
450
451 /* Basic consistency checks for attributes used in fold. */
452 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
453 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
454 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
455 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
456 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
457 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
458 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
459 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
460 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
461 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
462 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
463 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
464 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
465 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
466 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
467 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
468 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
469 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
470 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
471 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
472 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
473 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
474 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
475 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
476 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
477 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
478 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
479 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
480 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
481 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
482 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
483 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
484 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
485 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
486 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
487 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
488 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
489 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
490 }
491
492
493 /* Init tree.c. */
494
495 void
496 init_ttree (void)
497 {
498 /* Initialize the hash table of types. */
499 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
500 type_hash_eq, 0);
501
502 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
503 tree_decl_map_eq, 0);
504
505 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
506 tree_decl_map_eq, 0);
507 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
508 tree_priority_map_eq, 0);
509
510 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
511 int_cst_hash_eq, NULL);
512
513 int_cst_node = make_node (INTEGER_CST);
514
515 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
516 cl_option_hash_eq, NULL);
517
518 cl_optimization_node = make_node (OPTIMIZATION_NODE);
519 cl_target_option_node = make_node (TARGET_OPTION_NODE);
520
521 /* Initialize the tree_contains_struct array. */
522 initialize_tree_contains_struct ();
523 lang_hooks.init_ts ();
524 }
525
526 \f
527 /* The name of the object as the assembler will see it (but before any
528 translations made by ASM_OUTPUT_LABELREF). Often this is the same
529 as DECL_NAME. It is an IDENTIFIER_NODE. */
530 tree
531 decl_assembler_name (tree decl)
532 {
533 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
534 lang_hooks.set_decl_assembler_name (decl);
535 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
536 }
537
538 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
539
540 bool
541 decl_assembler_name_equal (tree decl, const_tree asmname)
542 {
543 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
544 const char *decl_str;
545 const char *asmname_str;
546 bool test = false;
547
548 if (decl_asmname == asmname)
549 return true;
550
551 decl_str = IDENTIFIER_POINTER (decl_asmname);
552 asmname_str = IDENTIFIER_POINTER (asmname);
553
554
555 /* If the target assembler name was set by the user, things are trickier.
556 We have a leading '*' to begin with. After that, it's arguable what
557 is the correct thing to do with -fleading-underscore. Arguably, we've
558 historically been doing the wrong thing in assemble_alias by always
559 printing the leading underscore. Since we're not changing that, make
560 sure user_label_prefix follows the '*' before matching. */
561 if (decl_str[0] == '*')
562 {
563 size_t ulp_len = strlen (user_label_prefix);
564
565 decl_str ++;
566
567 if (ulp_len == 0)
568 test = true;
569 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
570 decl_str += ulp_len, test=true;
571 else
572 decl_str --;
573 }
574 if (asmname_str[0] == '*')
575 {
576 size_t ulp_len = strlen (user_label_prefix);
577
578 asmname_str ++;
579
580 if (ulp_len == 0)
581 test = true;
582 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
583 asmname_str += ulp_len, test=true;
584 else
585 asmname_str --;
586 }
587
588 if (!test)
589 return false;
590 return strcmp (decl_str, asmname_str) == 0;
591 }
592
593 /* Hash asmnames ignoring the user specified marks. */
594
595 hashval_t
596 decl_assembler_name_hash (const_tree asmname)
597 {
598 if (IDENTIFIER_POINTER (asmname)[0] == '*')
599 {
600 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
601 size_t ulp_len = strlen (user_label_prefix);
602
603 if (ulp_len == 0)
604 ;
605 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
606 decl_str += ulp_len;
607
608 return htab_hash_string (decl_str);
609 }
610
611 return htab_hash_string (IDENTIFIER_POINTER (asmname));
612 }
613
614 /* Compute the number of bytes occupied by a tree with code CODE.
615 This function cannot be used for nodes that have variable sizes,
616 including TREE_VEC, STRING_CST, and CALL_EXPR. */
617 size_t
618 tree_code_size (enum tree_code code)
619 {
620 switch (TREE_CODE_CLASS (code))
621 {
622 case tcc_declaration: /* A decl node */
623 {
624 switch (code)
625 {
626 case FIELD_DECL:
627 return sizeof (struct tree_field_decl);
628 case PARM_DECL:
629 return sizeof (struct tree_parm_decl);
630 case VAR_DECL:
631 return sizeof (struct tree_var_decl);
632 case LABEL_DECL:
633 return sizeof (struct tree_label_decl);
634 case RESULT_DECL:
635 return sizeof (struct tree_result_decl);
636 case CONST_DECL:
637 return sizeof (struct tree_const_decl);
638 case TYPE_DECL:
639 return sizeof (struct tree_type_decl);
640 case FUNCTION_DECL:
641 return sizeof (struct tree_function_decl);
642 case DEBUG_EXPR_DECL:
643 return sizeof (struct tree_decl_with_rtl);
644 default:
645 return sizeof (struct tree_decl_non_common);
646 }
647 }
648
649 case tcc_type: /* a type node */
650 return sizeof (struct tree_type_non_common);
651
652 case tcc_reference: /* a reference */
653 case tcc_expression: /* an expression */
654 case tcc_statement: /* an expression with side effects */
655 case tcc_comparison: /* a comparison expression */
656 case tcc_unary: /* a unary arithmetic expression */
657 case tcc_binary: /* a binary arithmetic expression */
658 return (sizeof (struct tree_exp)
659 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
660
661 case tcc_constant: /* a constant */
662 switch (code)
663 {
664 case INTEGER_CST: return sizeof (struct tree_int_cst);
665 case REAL_CST: return sizeof (struct tree_real_cst);
666 case FIXED_CST: return sizeof (struct tree_fixed_cst);
667 case COMPLEX_CST: return sizeof (struct tree_complex);
668 case VECTOR_CST: return sizeof (struct tree_vector);
669 case STRING_CST: gcc_unreachable ();
670 default:
671 return lang_hooks.tree_size (code);
672 }
673
674 case tcc_exceptional: /* something random, like an identifier. */
675 switch (code)
676 {
677 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
678 case TREE_LIST: return sizeof (struct tree_list);
679
680 case ERROR_MARK:
681 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
682
683 case TREE_VEC:
684 case OMP_CLAUSE: gcc_unreachable ();
685
686 case SSA_NAME: return sizeof (struct tree_ssa_name);
687
688 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
689 case BLOCK: return sizeof (struct tree_block);
690 case CONSTRUCTOR: return sizeof (struct tree_constructor);
691 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
692 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
693
694 default:
695 return lang_hooks.tree_size (code);
696 }
697
698 default:
699 gcc_unreachable ();
700 }
701 }
702
703 /* Compute the number of bytes occupied by NODE. This routine only
704 looks at TREE_CODE, except for those nodes that have variable sizes. */
705 size_t
706 tree_size (const_tree node)
707 {
708 const enum tree_code code = TREE_CODE (node);
709 switch (code)
710 {
711 case TREE_BINFO:
712 return (offsetof (struct tree_binfo, base_binfos)
713 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
714
715 case TREE_VEC:
716 return (sizeof (struct tree_vec)
717 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
718
719 case STRING_CST:
720 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
721
722 case OMP_CLAUSE:
723 return (sizeof (struct tree_omp_clause)
724 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
725 * sizeof (tree));
726
727 default:
728 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
729 return (sizeof (struct tree_exp)
730 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
731 else
732 return tree_code_size (code);
733 }
734 }
735
736 /* Record interesting allocation statistics for a tree node with CODE
737 and LENGTH. */
738
739 static void
740 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
741 size_t length ATTRIBUTE_UNUSED)
742 {
743 #ifdef GATHER_STATISTICS
744 enum tree_code_class type = TREE_CODE_CLASS (code);
745 tree_node_kind kind;
746
747 switch (type)
748 {
749 case tcc_declaration: /* A decl node */
750 kind = d_kind;
751 break;
752
753 case tcc_type: /* a type node */
754 kind = t_kind;
755 break;
756
757 case tcc_statement: /* an expression with side effects */
758 kind = s_kind;
759 break;
760
761 case tcc_reference: /* a reference */
762 kind = r_kind;
763 break;
764
765 case tcc_expression: /* an expression */
766 case tcc_comparison: /* a comparison expression */
767 case tcc_unary: /* a unary arithmetic expression */
768 case tcc_binary: /* a binary arithmetic expression */
769 kind = e_kind;
770 break;
771
772 case tcc_constant: /* a constant */
773 kind = c_kind;
774 break;
775
776 case tcc_exceptional: /* something random, like an identifier. */
777 switch (code)
778 {
779 case IDENTIFIER_NODE:
780 kind = id_kind;
781 break;
782
783 case TREE_VEC:
784 kind = vec_kind;
785 break;
786
787 case TREE_BINFO:
788 kind = binfo_kind;
789 break;
790
791 case SSA_NAME:
792 kind = ssa_name_kind;
793 break;
794
795 case BLOCK:
796 kind = b_kind;
797 break;
798
799 case CONSTRUCTOR:
800 kind = constr_kind;
801 break;
802
803 case OMP_CLAUSE:
804 kind = omp_clause_kind;
805 break;
806
807 default:
808 kind = x_kind;
809 break;
810 }
811 break;
812
813 case tcc_vl_exp:
814 kind = e_kind;
815 break;
816
817 default:
818 gcc_unreachable ();
819 }
820
821 tree_code_counts[(int) code]++;
822 tree_node_counts[(int) kind]++;
823 tree_node_sizes[(int) kind] += length;
824 #endif
825 }
826
827 /* Allocate and return a new UID from the DECL_UID namespace. */
828
829 int
830 allocate_decl_uid (void)
831 {
832 return next_decl_uid++;
833 }
834
835 /* Return a newly allocated node of code CODE. For decl and type
836 nodes, some other fields are initialized. The rest of the node is
837 initialized to zero. This function cannot be used for TREE_VEC or
838 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
839
840 Achoo! I got a code in the node. */
841
842 tree
843 make_node_stat (enum tree_code code MEM_STAT_DECL)
844 {
845 tree t;
846 enum tree_code_class type = TREE_CODE_CLASS (code);
847 size_t length = tree_code_size (code);
848
849 record_node_allocation_statistics (code, length);
850
851 t = ggc_alloc_zone_cleared_tree_node_stat (
852 (code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone,
853 length PASS_MEM_STAT);
854 TREE_SET_CODE (t, code);
855
856 switch (type)
857 {
858 case tcc_statement:
859 TREE_SIDE_EFFECTS (t) = 1;
860 break;
861
862 case tcc_declaration:
863 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
864 {
865 if (code == FUNCTION_DECL)
866 {
867 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
868 DECL_MODE (t) = FUNCTION_MODE;
869 }
870 else
871 DECL_ALIGN (t) = 1;
872 }
873 DECL_SOURCE_LOCATION (t) = input_location;
874 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
875 DECL_UID (t) = --next_debug_decl_uid;
876 else
877 {
878 DECL_UID (t) = allocate_decl_uid ();
879 SET_DECL_PT_UID (t, -1);
880 }
881 if (TREE_CODE (t) == LABEL_DECL)
882 LABEL_DECL_UID (t) = -1;
883
884 break;
885
886 case tcc_type:
887 TYPE_UID (t) = next_type_uid++;
888 TYPE_ALIGN (t) = BITS_PER_UNIT;
889 TYPE_USER_ALIGN (t) = 0;
890 TYPE_MAIN_VARIANT (t) = t;
891 TYPE_CANONICAL (t) = t;
892
893 /* Default to no attributes for type, but let target change that. */
894 TYPE_ATTRIBUTES (t) = NULL_TREE;
895 targetm.set_default_type_attributes (t);
896
897 /* We have not yet computed the alias set for this type. */
898 TYPE_ALIAS_SET (t) = -1;
899 break;
900
901 case tcc_constant:
902 TREE_CONSTANT (t) = 1;
903 break;
904
905 case tcc_expression:
906 switch (code)
907 {
908 case INIT_EXPR:
909 case MODIFY_EXPR:
910 case VA_ARG_EXPR:
911 case PREDECREMENT_EXPR:
912 case PREINCREMENT_EXPR:
913 case POSTDECREMENT_EXPR:
914 case POSTINCREMENT_EXPR:
915 /* All of these have side-effects, no matter what their
916 operands are. */
917 TREE_SIDE_EFFECTS (t) = 1;
918 break;
919
920 default:
921 break;
922 }
923 break;
924
925 default:
926 /* Other classes need no special treatment. */
927 break;
928 }
929
930 return t;
931 }
932 \f
933 /* Return a new node with the same contents as NODE except that its
934 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
935
936 tree
937 copy_node_stat (tree node MEM_STAT_DECL)
938 {
939 tree t;
940 enum tree_code code = TREE_CODE (node);
941 size_t length;
942
943 gcc_assert (code != STATEMENT_LIST);
944
945 length = tree_size (node);
946 record_node_allocation_statistics (code, length);
947 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
948 memcpy (t, node, length);
949
950 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
951 TREE_CHAIN (t) = 0;
952 TREE_ASM_WRITTEN (t) = 0;
953 TREE_VISITED (t) = 0;
954 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
955 *DECL_VAR_ANN_PTR (t) = 0;
956
957 if (TREE_CODE_CLASS (code) == tcc_declaration)
958 {
959 if (code == DEBUG_EXPR_DECL)
960 DECL_UID (t) = --next_debug_decl_uid;
961 else
962 {
963 DECL_UID (t) = allocate_decl_uid ();
964 if (DECL_PT_UID_SET_P (node))
965 SET_DECL_PT_UID (t, DECL_PT_UID (node));
966 }
967 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
968 && DECL_HAS_VALUE_EXPR_P (node))
969 {
970 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
971 DECL_HAS_VALUE_EXPR_P (t) = 1;
972 }
973 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
974 {
975 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
976 DECL_HAS_INIT_PRIORITY_P (t) = 1;
977 }
978 }
979 else if (TREE_CODE_CLASS (code) == tcc_type)
980 {
981 TYPE_UID (t) = next_type_uid++;
982 /* The following is so that the debug code for
983 the copy is different from the original type.
984 The two statements usually duplicate each other
985 (because they clear fields of the same union),
986 but the optimizer should catch that. */
987 TYPE_SYMTAB_POINTER (t) = 0;
988 TYPE_SYMTAB_ADDRESS (t) = 0;
989
990 /* Do not copy the values cache. */
991 if (TYPE_CACHED_VALUES_P(t))
992 {
993 TYPE_CACHED_VALUES_P (t) = 0;
994 TYPE_CACHED_VALUES (t) = NULL_TREE;
995 }
996 }
997
998 return t;
999 }
1000
1001 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1002 For example, this can copy a list made of TREE_LIST nodes. */
1003
1004 tree
1005 copy_list (tree list)
1006 {
1007 tree head;
1008 tree prev, next;
1009
1010 if (list == 0)
1011 return 0;
1012
1013 head = prev = copy_node (list);
1014 next = TREE_CHAIN (list);
1015 while (next)
1016 {
1017 TREE_CHAIN (prev) = copy_node (next);
1018 prev = TREE_CHAIN (prev);
1019 next = TREE_CHAIN (next);
1020 }
1021 return head;
1022 }
1023
1024 \f
1025 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1026
1027 tree
1028 build_int_cst (tree type, HOST_WIDE_INT low)
1029 {
1030 /* Support legacy code. */
1031 if (!type)
1032 type = integer_type_node;
1033
1034 return double_int_to_tree (type, shwi_to_double_int (low));
1035 }
1036
1037 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1038
1039 tree
1040 build_int_cst_type (tree type, HOST_WIDE_INT low)
1041 {
1042 gcc_assert (type);
1043
1044 return double_int_to_tree (type, shwi_to_double_int (low));
1045 }
1046
1047 /* Constructs tree in type TYPE from with value given by CST. Signedness
1048 of CST is assumed to be the same as the signedness of TYPE. */
1049
1050 tree
1051 double_int_to_tree (tree type, double_int cst)
1052 {
1053 /* Size types *are* sign extended. */
1054 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1055 || (TREE_CODE (type) == INTEGER_TYPE
1056 && TYPE_IS_SIZETYPE (type)));
1057
1058 cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1059
1060 return build_int_cst_wide (type, cst.low, cst.high);
1061 }
1062
1063 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1064 to be the same as the signedness of TYPE. */
1065
1066 bool
1067 double_int_fits_to_tree_p (const_tree type, double_int cst)
1068 {
1069 /* Size types *are* sign extended. */
1070 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1071 || (TREE_CODE (type) == INTEGER_TYPE
1072 && TYPE_IS_SIZETYPE (type)));
1073
1074 double_int ext
1075 = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1076
1077 return double_int_equal_p (cst, ext);
1078 }
1079
1080 /* We force the double_int CST to the range of the type TYPE by sign or
1081 zero extending it. OVERFLOWABLE indicates if we are interested in
1082 overflow of the value, when >0 we are only interested in signed
1083 overflow, for <0 we are interested in any overflow. OVERFLOWED
1084 indicates whether overflow has already occurred. CONST_OVERFLOWED
1085 indicates whether constant overflow has already occurred. We force
1086 T's value to be within range of T's type (by setting to 0 or 1 all
1087 the bits outside the type's range). We set TREE_OVERFLOWED if,
1088 OVERFLOWED is nonzero,
1089 or OVERFLOWABLE is >0 and signed overflow occurs
1090 or OVERFLOWABLE is <0 and any overflow occurs
1091 We return a new tree node for the extended double_int. The node
1092 is shared if no overflow flags are set. */
1093
1094
1095 tree
1096 force_fit_type_double (tree type, double_int cst, int overflowable,
1097 bool overflowed)
1098 {
1099 bool sign_extended_type;
1100
1101 /* Size types *are* sign extended. */
1102 sign_extended_type = (!TYPE_UNSIGNED (type)
1103 || (TREE_CODE (type) == INTEGER_TYPE
1104 && TYPE_IS_SIZETYPE (type)));
1105
1106 /* If we need to set overflow flags, return a new unshared node. */
1107 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1108 {
1109 if (overflowed
1110 || overflowable < 0
1111 || (overflowable > 0 && sign_extended_type))
1112 {
1113 tree t = make_node (INTEGER_CST);
1114 TREE_INT_CST (t) = double_int_ext (cst, TYPE_PRECISION (type),
1115 !sign_extended_type);
1116 TREE_TYPE (t) = type;
1117 TREE_OVERFLOW (t) = 1;
1118 return t;
1119 }
1120 }
1121
1122 /* Else build a shared node. */
1123 return double_int_to_tree (type, cst);
1124 }
1125
1126 /* These are the hash table functions for the hash table of INTEGER_CST
1127 nodes of a sizetype. */
1128
1129 /* Return the hash code code X, an INTEGER_CST. */
1130
1131 static hashval_t
1132 int_cst_hash_hash (const void *x)
1133 {
1134 const_tree const t = (const_tree) x;
1135
1136 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1137 ^ htab_hash_pointer (TREE_TYPE (t)));
1138 }
1139
1140 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1141 is the same as that given by *Y, which is the same. */
1142
1143 static int
1144 int_cst_hash_eq (const void *x, const void *y)
1145 {
1146 const_tree const xt = (const_tree) x;
1147 const_tree const yt = (const_tree) y;
1148
1149 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1150 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1151 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1152 }
1153
1154 /* Create an INT_CST node of TYPE and value HI:LOW.
1155 The returned node is always shared. For small integers we use a
1156 per-type vector cache, for larger ones we use a single hash table. */
1157
1158 tree
1159 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1160 {
1161 tree t;
1162 int ix = -1;
1163 int limit = 0;
1164
1165 gcc_assert (type);
1166
1167 switch (TREE_CODE (type))
1168 {
1169 case NULLPTR_TYPE:
1170 gcc_assert (hi == 0 && low == 0);
1171 /* Fallthru. */
1172
1173 case POINTER_TYPE:
1174 case REFERENCE_TYPE:
1175 /* Cache NULL pointer. */
1176 if (!hi && !low)
1177 {
1178 limit = 1;
1179 ix = 0;
1180 }
1181 break;
1182
1183 case BOOLEAN_TYPE:
1184 /* Cache false or true. */
1185 limit = 2;
1186 if (!hi && low < 2)
1187 ix = low;
1188 break;
1189
1190 case INTEGER_TYPE:
1191 case OFFSET_TYPE:
1192 if (TYPE_UNSIGNED (type))
1193 {
1194 /* Cache 0..N */
1195 limit = INTEGER_SHARE_LIMIT;
1196 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1197 ix = low;
1198 }
1199 else
1200 {
1201 /* Cache -1..N */
1202 limit = INTEGER_SHARE_LIMIT + 1;
1203 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1204 ix = low + 1;
1205 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1206 ix = 0;
1207 }
1208 break;
1209
1210 case ENUMERAL_TYPE:
1211 break;
1212
1213 default:
1214 gcc_unreachable ();
1215 }
1216
1217 if (ix >= 0)
1218 {
1219 /* Look for it in the type's vector of small shared ints. */
1220 if (!TYPE_CACHED_VALUES_P (type))
1221 {
1222 TYPE_CACHED_VALUES_P (type) = 1;
1223 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1224 }
1225
1226 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1227 if (t)
1228 {
1229 /* Make sure no one is clobbering the shared constant. */
1230 gcc_assert (TREE_TYPE (t) == type);
1231 gcc_assert (TREE_INT_CST_LOW (t) == low);
1232 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1233 }
1234 else
1235 {
1236 /* Create a new shared int. */
1237 t = make_node (INTEGER_CST);
1238
1239 TREE_INT_CST_LOW (t) = low;
1240 TREE_INT_CST_HIGH (t) = hi;
1241 TREE_TYPE (t) = type;
1242
1243 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1244 }
1245 }
1246 else
1247 {
1248 /* Use the cache of larger shared ints. */
1249 void **slot;
1250
1251 TREE_INT_CST_LOW (int_cst_node) = low;
1252 TREE_INT_CST_HIGH (int_cst_node) = hi;
1253 TREE_TYPE (int_cst_node) = type;
1254
1255 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1256 t = (tree) *slot;
1257 if (!t)
1258 {
1259 /* Insert this one into the hash table. */
1260 t = int_cst_node;
1261 *slot = t;
1262 /* Make a new node for next time round. */
1263 int_cst_node = make_node (INTEGER_CST);
1264 }
1265 }
1266
1267 return t;
1268 }
1269
1270 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1271 and the rest are zeros. */
1272
1273 tree
1274 build_low_bits_mask (tree type, unsigned bits)
1275 {
1276 double_int mask;
1277
1278 gcc_assert (bits <= TYPE_PRECISION (type));
1279
1280 if (bits == TYPE_PRECISION (type)
1281 && !TYPE_UNSIGNED (type))
1282 /* Sign extended all-ones mask. */
1283 mask = double_int_minus_one;
1284 else
1285 mask = double_int_mask (bits);
1286
1287 return build_int_cst_wide (type, mask.low, mask.high);
1288 }
1289
1290 /* Checks that X is integer constant that can be expressed in (unsigned)
1291 HOST_WIDE_INT without loss of precision. */
1292
1293 bool
1294 cst_and_fits_in_hwi (const_tree x)
1295 {
1296 if (TREE_CODE (x) != INTEGER_CST)
1297 return false;
1298
1299 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1300 return false;
1301
1302 return (TREE_INT_CST_HIGH (x) == 0
1303 || TREE_INT_CST_HIGH (x) == -1);
1304 }
1305
1306 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1307 are in a list pointed to by VALS. */
1308
1309 tree
1310 build_vector (tree type, tree vals)
1311 {
1312 tree v = make_node (VECTOR_CST);
1313 int over = 0;
1314 tree link;
1315 unsigned cnt = 0;
1316
1317 TREE_VECTOR_CST_ELTS (v) = vals;
1318 TREE_TYPE (v) = type;
1319
1320 /* Iterate through elements and check for overflow. */
1321 for (link = vals; link; link = TREE_CHAIN (link))
1322 {
1323 tree value = TREE_VALUE (link);
1324 cnt++;
1325
1326 /* Don't crash if we get an address constant. */
1327 if (!CONSTANT_CLASS_P (value))
1328 continue;
1329
1330 over |= TREE_OVERFLOW (value);
1331 }
1332
1333 gcc_assert (cnt == TYPE_VECTOR_SUBPARTS (type));
1334
1335 TREE_OVERFLOW (v) = over;
1336 return v;
1337 }
1338
1339 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1340 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1341
1342 tree
1343 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1344 {
1345 tree list = NULL_TREE;
1346 unsigned HOST_WIDE_INT idx;
1347 tree value;
1348
1349 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1350 list = tree_cons (NULL_TREE, value, list);
1351 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1352 list = tree_cons (NULL_TREE,
1353 build_zero_cst (TREE_TYPE (type)), list);
1354 return build_vector (type, nreverse (list));
1355 }
1356
1357 /* Build a vector of type VECTYPE where all the elements are SCs. */
1358 tree
1359 build_vector_from_val (tree vectype, tree sc)
1360 {
1361 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1362 VEC(constructor_elt, gc) *v = NULL;
1363
1364 if (sc == error_mark_node)
1365 return sc;
1366
1367 /* Verify that the vector type is suitable for SC. Note that there
1368 is some inconsistency in the type-system with respect to restrict
1369 qualifications of pointers. Vector types always have a main-variant
1370 element type and the qualification is applied to the vector-type.
1371 So TREE_TYPE (vector-type) does not return a properly qualified
1372 vector element-type. */
1373 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1374 TREE_TYPE (vectype)));
1375
1376 v = VEC_alloc (constructor_elt, gc, nunits);
1377 for (i = 0; i < nunits; ++i)
1378 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1379
1380 if (CONSTANT_CLASS_P (sc))
1381 return build_vector_from_ctor (vectype, v);
1382 else
1383 return build_constructor (vectype, v);
1384 }
1385
1386 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1387 are in the VEC pointed to by VALS. */
1388 tree
1389 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1390 {
1391 tree c = make_node (CONSTRUCTOR);
1392 unsigned int i;
1393 constructor_elt *elt;
1394 bool constant_p = true;
1395
1396 TREE_TYPE (c) = type;
1397 CONSTRUCTOR_ELTS (c) = vals;
1398
1399 FOR_EACH_VEC_ELT (constructor_elt, vals, i, elt)
1400 if (!TREE_CONSTANT (elt->value))
1401 {
1402 constant_p = false;
1403 break;
1404 }
1405
1406 TREE_CONSTANT (c) = constant_p;
1407
1408 return c;
1409 }
1410
1411 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1412 INDEX and VALUE. */
1413 tree
1414 build_constructor_single (tree type, tree index, tree value)
1415 {
1416 VEC(constructor_elt,gc) *v;
1417 constructor_elt *elt;
1418
1419 v = VEC_alloc (constructor_elt, gc, 1);
1420 elt = VEC_quick_push (constructor_elt, v, NULL);
1421 elt->index = index;
1422 elt->value = value;
1423
1424 return build_constructor (type, v);
1425 }
1426
1427
1428 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1429 are in a list pointed to by VALS. */
1430 tree
1431 build_constructor_from_list (tree type, tree vals)
1432 {
1433 tree t;
1434 VEC(constructor_elt,gc) *v = NULL;
1435
1436 if (vals)
1437 {
1438 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1439 for (t = vals; t; t = TREE_CHAIN (t))
1440 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1441 }
1442
1443 return build_constructor (type, v);
1444 }
1445
1446 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1447
1448 tree
1449 build_fixed (tree type, FIXED_VALUE_TYPE f)
1450 {
1451 tree v;
1452 FIXED_VALUE_TYPE *fp;
1453
1454 v = make_node (FIXED_CST);
1455 fp = ggc_alloc_fixed_value ();
1456 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1457
1458 TREE_TYPE (v) = type;
1459 TREE_FIXED_CST_PTR (v) = fp;
1460 return v;
1461 }
1462
1463 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1464
1465 tree
1466 build_real (tree type, REAL_VALUE_TYPE d)
1467 {
1468 tree v;
1469 REAL_VALUE_TYPE *dp;
1470 int overflow = 0;
1471
1472 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1473 Consider doing it via real_convert now. */
1474
1475 v = make_node (REAL_CST);
1476 dp = ggc_alloc_real_value ();
1477 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1478
1479 TREE_TYPE (v) = type;
1480 TREE_REAL_CST_PTR (v) = dp;
1481 TREE_OVERFLOW (v) = overflow;
1482 return v;
1483 }
1484
1485 /* Return a new REAL_CST node whose type is TYPE
1486 and whose value is the integer value of the INTEGER_CST node I. */
1487
1488 REAL_VALUE_TYPE
1489 real_value_from_int_cst (const_tree type, const_tree i)
1490 {
1491 REAL_VALUE_TYPE d;
1492
1493 /* Clear all bits of the real value type so that we can later do
1494 bitwise comparisons to see if two values are the same. */
1495 memset (&d, 0, sizeof d);
1496
1497 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1498 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1499 TYPE_UNSIGNED (TREE_TYPE (i)));
1500 return d;
1501 }
1502
1503 /* Given a tree representing an integer constant I, return a tree
1504 representing the same value as a floating-point constant of type TYPE. */
1505
1506 tree
1507 build_real_from_int_cst (tree type, const_tree i)
1508 {
1509 tree v;
1510 int overflow = TREE_OVERFLOW (i);
1511
1512 v = build_real (type, real_value_from_int_cst (type, i));
1513
1514 TREE_OVERFLOW (v) |= overflow;
1515 return v;
1516 }
1517
1518 /* Return a newly constructed STRING_CST node whose value is
1519 the LEN characters at STR.
1520 The TREE_TYPE is not initialized. */
1521
1522 tree
1523 build_string (int len, const char *str)
1524 {
1525 tree s;
1526 size_t length;
1527
1528 /* Do not waste bytes provided by padding of struct tree_string. */
1529 length = len + offsetof (struct tree_string, str) + 1;
1530
1531 record_node_allocation_statistics (STRING_CST, length);
1532
1533 s = ggc_alloc_tree_node (length);
1534
1535 memset (s, 0, sizeof (struct tree_typed));
1536 TREE_SET_CODE (s, STRING_CST);
1537 TREE_CONSTANT (s) = 1;
1538 TREE_STRING_LENGTH (s) = len;
1539 memcpy (s->string.str, str, len);
1540 s->string.str[len] = '\0';
1541
1542 return s;
1543 }
1544
1545 /* Return a newly constructed COMPLEX_CST node whose value is
1546 specified by the real and imaginary parts REAL and IMAG.
1547 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1548 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1549
1550 tree
1551 build_complex (tree type, tree real, tree imag)
1552 {
1553 tree t = make_node (COMPLEX_CST);
1554
1555 TREE_REALPART (t) = real;
1556 TREE_IMAGPART (t) = imag;
1557 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1558 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1559 return t;
1560 }
1561
1562 /* Return a constant of arithmetic type TYPE which is the
1563 multiplicative identity of the set TYPE. */
1564
1565 tree
1566 build_one_cst (tree type)
1567 {
1568 switch (TREE_CODE (type))
1569 {
1570 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1571 case POINTER_TYPE: case REFERENCE_TYPE:
1572 case OFFSET_TYPE:
1573 return build_int_cst (type, 1);
1574
1575 case REAL_TYPE:
1576 return build_real (type, dconst1);
1577
1578 case FIXED_POINT_TYPE:
1579 /* We can only generate 1 for accum types. */
1580 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1581 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1582
1583 case VECTOR_TYPE:
1584 {
1585 tree scalar = build_one_cst (TREE_TYPE (type));
1586
1587 return build_vector_from_val (type, scalar);
1588 }
1589
1590 case COMPLEX_TYPE:
1591 return build_complex (type,
1592 build_one_cst (TREE_TYPE (type)),
1593 build_zero_cst (TREE_TYPE (type)));
1594
1595 default:
1596 gcc_unreachable ();
1597 }
1598 }
1599
1600 /* Build 0 constant of type TYPE. This is used by constructor folding
1601 and thus the constant should be represented in memory by
1602 zero(es). */
1603
1604 tree
1605 build_zero_cst (tree type)
1606 {
1607 switch (TREE_CODE (type))
1608 {
1609 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1610 case POINTER_TYPE: case REFERENCE_TYPE:
1611 case OFFSET_TYPE:
1612 return build_int_cst (type, 0);
1613
1614 case REAL_TYPE:
1615 return build_real (type, dconst0);
1616
1617 case FIXED_POINT_TYPE:
1618 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1619
1620 case VECTOR_TYPE:
1621 {
1622 tree scalar = build_zero_cst (TREE_TYPE (type));
1623
1624 return build_vector_from_val (type, scalar);
1625 }
1626
1627 case COMPLEX_TYPE:
1628 {
1629 tree zero = build_zero_cst (TREE_TYPE (type));
1630
1631 return build_complex (type, zero, zero);
1632 }
1633
1634 default:
1635 if (!AGGREGATE_TYPE_P (type))
1636 return fold_convert (type, integer_zero_node);
1637 return build_constructor (type, NULL);
1638 }
1639 }
1640
1641
1642 /* Build a BINFO with LEN language slots. */
1643
1644 tree
1645 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1646 {
1647 tree t;
1648 size_t length = (offsetof (struct tree_binfo, base_binfos)
1649 + VEC_embedded_size (tree, base_binfos));
1650
1651 record_node_allocation_statistics (TREE_BINFO, length);
1652
1653 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1654
1655 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1656
1657 TREE_SET_CODE (t, TREE_BINFO);
1658
1659 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1660
1661 return t;
1662 }
1663
1664 /* Create a CASE_LABEL_EXPR tree node and return it. */
1665
1666 tree
1667 build_case_label (tree low_value, tree high_value, tree label_decl)
1668 {
1669 tree t = make_node (CASE_LABEL_EXPR);
1670
1671 TREE_TYPE (t) = void_type_node;
1672 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
1673
1674 CASE_LOW (t) = low_value;
1675 CASE_HIGH (t) = high_value;
1676 CASE_LABEL (t) = label_decl;
1677 CASE_CHAIN (t) = NULL_TREE;
1678
1679 return t;
1680 }
1681
1682 /* Build a newly constructed TREE_VEC node of length LEN. */
1683
1684 tree
1685 make_tree_vec_stat (int len MEM_STAT_DECL)
1686 {
1687 tree t;
1688 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1689
1690 record_node_allocation_statistics (TREE_VEC, length);
1691
1692 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1693
1694 TREE_SET_CODE (t, TREE_VEC);
1695 TREE_VEC_LENGTH (t) = len;
1696
1697 return t;
1698 }
1699 \f
1700 /* Return 1 if EXPR is the integer constant zero or a complex constant
1701 of zero. */
1702
1703 int
1704 integer_zerop (const_tree expr)
1705 {
1706 STRIP_NOPS (expr);
1707
1708 return ((TREE_CODE (expr) == INTEGER_CST
1709 && TREE_INT_CST_LOW (expr) == 0
1710 && TREE_INT_CST_HIGH (expr) == 0)
1711 || (TREE_CODE (expr) == COMPLEX_CST
1712 && integer_zerop (TREE_REALPART (expr))
1713 && integer_zerop (TREE_IMAGPART (expr))));
1714 }
1715
1716 /* Return 1 if EXPR is the integer constant one or the corresponding
1717 complex constant. */
1718
1719 int
1720 integer_onep (const_tree expr)
1721 {
1722 STRIP_NOPS (expr);
1723
1724 return ((TREE_CODE (expr) == INTEGER_CST
1725 && TREE_INT_CST_LOW (expr) == 1
1726 && TREE_INT_CST_HIGH (expr) == 0)
1727 || (TREE_CODE (expr) == COMPLEX_CST
1728 && integer_onep (TREE_REALPART (expr))
1729 && integer_zerop (TREE_IMAGPART (expr))));
1730 }
1731
1732 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1733 it contains. Likewise for the corresponding complex constant. */
1734
1735 int
1736 integer_all_onesp (const_tree expr)
1737 {
1738 int prec;
1739 int uns;
1740
1741 STRIP_NOPS (expr);
1742
1743 if (TREE_CODE (expr) == COMPLEX_CST
1744 && integer_all_onesp (TREE_REALPART (expr))
1745 && integer_zerop (TREE_IMAGPART (expr)))
1746 return 1;
1747
1748 else if (TREE_CODE (expr) != INTEGER_CST)
1749 return 0;
1750
1751 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1752 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1753 && TREE_INT_CST_HIGH (expr) == -1)
1754 return 1;
1755 if (!uns)
1756 return 0;
1757
1758 /* Note that using TYPE_PRECISION here is wrong. We care about the
1759 actual bits, not the (arbitrary) range of the type. */
1760 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1761 if (prec >= HOST_BITS_PER_WIDE_INT)
1762 {
1763 HOST_WIDE_INT high_value;
1764 int shift_amount;
1765
1766 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1767
1768 /* Can not handle precisions greater than twice the host int size. */
1769 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1770 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1771 /* Shifting by the host word size is undefined according to the ANSI
1772 standard, so we must handle this as a special case. */
1773 high_value = -1;
1774 else
1775 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1776
1777 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1778 && TREE_INT_CST_HIGH (expr) == high_value);
1779 }
1780 else
1781 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1782 }
1783
1784 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1785 one bit on). */
1786
1787 int
1788 integer_pow2p (const_tree expr)
1789 {
1790 int prec;
1791 HOST_WIDE_INT high, low;
1792
1793 STRIP_NOPS (expr);
1794
1795 if (TREE_CODE (expr) == COMPLEX_CST
1796 && integer_pow2p (TREE_REALPART (expr))
1797 && integer_zerop (TREE_IMAGPART (expr)))
1798 return 1;
1799
1800 if (TREE_CODE (expr) != INTEGER_CST)
1801 return 0;
1802
1803 prec = TYPE_PRECISION (TREE_TYPE (expr));
1804 high = TREE_INT_CST_HIGH (expr);
1805 low = TREE_INT_CST_LOW (expr);
1806
1807 /* First clear all bits that are beyond the type's precision in case
1808 we've been sign extended. */
1809
1810 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1811 ;
1812 else if (prec > HOST_BITS_PER_WIDE_INT)
1813 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1814 else
1815 {
1816 high = 0;
1817 if (prec < HOST_BITS_PER_WIDE_INT)
1818 low &= ~((HOST_WIDE_INT) (-1) << prec);
1819 }
1820
1821 if (high == 0 && low == 0)
1822 return 0;
1823
1824 return ((high == 0 && (low & (low - 1)) == 0)
1825 || (low == 0 && (high & (high - 1)) == 0));
1826 }
1827
1828 /* Return 1 if EXPR is an integer constant other than zero or a
1829 complex constant other than zero. */
1830
1831 int
1832 integer_nonzerop (const_tree expr)
1833 {
1834 STRIP_NOPS (expr);
1835
1836 return ((TREE_CODE (expr) == INTEGER_CST
1837 && (TREE_INT_CST_LOW (expr) != 0
1838 || TREE_INT_CST_HIGH (expr) != 0))
1839 || (TREE_CODE (expr) == COMPLEX_CST
1840 && (integer_nonzerop (TREE_REALPART (expr))
1841 || integer_nonzerop (TREE_IMAGPART (expr)))));
1842 }
1843
1844 /* Return 1 if EXPR is the fixed-point constant zero. */
1845
1846 int
1847 fixed_zerop (const_tree expr)
1848 {
1849 return (TREE_CODE (expr) == FIXED_CST
1850 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1851 }
1852
1853 /* Return the power of two represented by a tree node known to be a
1854 power of two. */
1855
1856 int
1857 tree_log2 (const_tree expr)
1858 {
1859 int prec;
1860 HOST_WIDE_INT high, low;
1861
1862 STRIP_NOPS (expr);
1863
1864 if (TREE_CODE (expr) == COMPLEX_CST)
1865 return tree_log2 (TREE_REALPART (expr));
1866
1867 prec = TYPE_PRECISION (TREE_TYPE (expr));
1868 high = TREE_INT_CST_HIGH (expr);
1869 low = TREE_INT_CST_LOW (expr);
1870
1871 /* First clear all bits that are beyond the type's precision in case
1872 we've been sign extended. */
1873
1874 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1875 ;
1876 else if (prec > HOST_BITS_PER_WIDE_INT)
1877 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1878 else
1879 {
1880 high = 0;
1881 if (prec < HOST_BITS_PER_WIDE_INT)
1882 low &= ~((HOST_WIDE_INT) (-1) << prec);
1883 }
1884
1885 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1886 : exact_log2 (low));
1887 }
1888
1889 /* Similar, but return the largest integer Y such that 2 ** Y is less
1890 than or equal to EXPR. */
1891
1892 int
1893 tree_floor_log2 (const_tree expr)
1894 {
1895 int prec;
1896 HOST_WIDE_INT high, low;
1897
1898 STRIP_NOPS (expr);
1899
1900 if (TREE_CODE (expr) == COMPLEX_CST)
1901 return tree_log2 (TREE_REALPART (expr));
1902
1903 prec = TYPE_PRECISION (TREE_TYPE (expr));
1904 high = TREE_INT_CST_HIGH (expr);
1905 low = TREE_INT_CST_LOW (expr);
1906
1907 /* First clear all bits that are beyond the type's precision in case
1908 we've been sign extended. Ignore if type's precision hasn't been set
1909 since what we are doing is setting it. */
1910
1911 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1912 ;
1913 else if (prec > HOST_BITS_PER_WIDE_INT)
1914 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1915 else
1916 {
1917 high = 0;
1918 if (prec < HOST_BITS_PER_WIDE_INT)
1919 low &= ~((HOST_WIDE_INT) (-1) << prec);
1920 }
1921
1922 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1923 : floor_log2 (low));
1924 }
1925
1926 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1927 decimal float constants, so don't return 1 for them. */
1928
1929 int
1930 real_zerop (const_tree expr)
1931 {
1932 STRIP_NOPS (expr);
1933
1934 return ((TREE_CODE (expr) == REAL_CST
1935 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1936 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1937 || (TREE_CODE (expr) == COMPLEX_CST
1938 && real_zerop (TREE_REALPART (expr))
1939 && real_zerop (TREE_IMAGPART (expr))));
1940 }
1941
1942 /* Return 1 if EXPR is the real constant one in real or complex form.
1943 Trailing zeroes matter for decimal float constants, so don't return
1944 1 for them. */
1945
1946 int
1947 real_onep (const_tree expr)
1948 {
1949 STRIP_NOPS (expr);
1950
1951 return ((TREE_CODE (expr) == REAL_CST
1952 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1953 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1954 || (TREE_CODE (expr) == COMPLEX_CST
1955 && real_onep (TREE_REALPART (expr))
1956 && real_zerop (TREE_IMAGPART (expr))));
1957 }
1958
1959 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1960 for decimal float constants, so don't return 1 for them. */
1961
1962 int
1963 real_twop (const_tree expr)
1964 {
1965 STRIP_NOPS (expr);
1966
1967 return ((TREE_CODE (expr) == REAL_CST
1968 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1969 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1970 || (TREE_CODE (expr) == COMPLEX_CST
1971 && real_twop (TREE_REALPART (expr))
1972 && real_zerop (TREE_IMAGPART (expr))));
1973 }
1974
1975 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1976 matter for decimal float constants, so don't return 1 for them. */
1977
1978 int
1979 real_minus_onep (const_tree expr)
1980 {
1981 STRIP_NOPS (expr);
1982
1983 return ((TREE_CODE (expr) == REAL_CST
1984 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1985 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1986 || (TREE_CODE (expr) == COMPLEX_CST
1987 && real_minus_onep (TREE_REALPART (expr))
1988 && real_zerop (TREE_IMAGPART (expr))));
1989 }
1990
1991 /* Nonzero if EXP is a constant or a cast of a constant. */
1992
1993 int
1994 really_constant_p (const_tree exp)
1995 {
1996 /* This is not quite the same as STRIP_NOPS. It does more. */
1997 while (CONVERT_EXPR_P (exp)
1998 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1999 exp = TREE_OPERAND (exp, 0);
2000 return TREE_CONSTANT (exp);
2001 }
2002 \f
2003 /* Return first list element whose TREE_VALUE is ELEM.
2004 Return 0 if ELEM is not in LIST. */
2005
2006 tree
2007 value_member (tree elem, tree list)
2008 {
2009 while (list)
2010 {
2011 if (elem == TREE_VALUE (list))
2012 return list;
2013 list = TREE_CHAIN (list);
2014 }
2015 return NULL_TREE;
2016 }
2017
2018 /* Return first list element whose TREE_PURPOSE is ELEM.
2019 Return 0 if ELEM is not in LIST. */
2020
2021 tree
2022 purpose_member (const_tree elem, tree list)
2023 {
2024 while (list)
2025 {
2026 if (elem == TREE_PURPOSE (list))
2027 return list;
2028 list = TREE_CHAIN (list);
2029 }
2030 return NULL_TREE;
2031 }
2032
2033 /* Return true if ELEM is in V. */
2034
2035 bool
2036 vec_member (const_tree elem, VEC(tree,gc) *v)
2037 {
2038 unsigned ix;
2039 tree t;
2040 FOR_EACH_VEC_ELT (tree, v, ix, t)
2041 if (elem == t)
2042 return true;
2043 return false;
2044 }
2045
2046 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2047 NULL_TREE. */
2048
2049 tree
2050 chain_index (int idx, tree chain)
2051 {
2052 for (; chain && idx > 0; --idx)
2053 chain = TREE_CHAIN (chain);
2054 return chain;
2055 }
2056
2057 /* Return nonzero if ELEM is part of the chain CHAIN. */
2058
2059 int
2060 chain_member (const_tree elem, const_tree chain)
2061 {
2062 while (chain)
2063 {
2064 if (elem == chain)
2065 return 1;
2066 chain = DECL_CHAIN (chain);
2067 }
2068
2069 return 0;
2070 }
2071
2072 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2073 We expect a null pointer to mark the end of the chain.
2074 This is the Lisp primitive `length'. */
2075
2076 int
2077 list_length (const_tree t)
2078 {
2079 const_tree p = t;
2080 #ifdef ENABLE_TREE_CHECKING
2081 const_tree q = t;
2082 #endif
2083 int len = 0;
2084
2085 while (p)
2086 {
2087 p = TREE_CHAIN (p);
2088 #ifdef ENABLE_TREE_CHECKING
2089 if (len % 2)
2090 q = TREE_CHAIN (q);
2091 gcc_assert (p != q);
2092 #endif
2093 len++;
2094 }
2095
2096 return len;
2097 }
2098
2099 /* Returns the number of FIELD_DECLs in TYPE. */
2100
2101 int
2102 fields_length (const_tree type)
2103 {
2104 tree t = TYPE_FIELDS (type);
2105 int count = 0;
2106
2107 for (; t; t = DECL_CHAIN (t))
2108 if (TREE_CODE (t) == FIELD_DECL)
2109 ++count;
2110
2111 return count;
2112 }
2113
2114 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2115 UNION_TYPE TYPE, or NULL_TREE if none. */
2116
2117 tree
2118 first_field (const_tree type)
2119 {
2120 tree t = TYPE_FIELDS (type);
2121 while (t && TREE_CODE (t) != FIELD_DECL)
2122 t = TREE_CHAIN (t);
2123 return t;
2124 }
2125
2126 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2127 by modifying the last node in chain 1 to point to chain 2.
2128 This is the Lisp primitive `nconc'. */
2129
2130 tree
2131 chainon (tree op1, tree op2)
2132 {
2133 tree t1;
2134
2135 if (!op1)
2136 return op2;
2137 if (!op2)
2138 return op1;
2139
2140 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2141 continue;
2142 TREE_CHAIN (t1) = op2;
2143
2144 #ifdef ENABLE_TREE_CHECKING
2145 {
2146 tree t2;
2147 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2148 gcc_assert (t2 != t1);
2149 }
2150 #endif
2151
2152 return op1;
2153 }
2154
2155 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2156
2157 tree
2158 tree_last (tree chain)
2159 {
2160 tree next;
2161 if (chain)
2162 while ((next = TREE_CHAIN (chain)))
2163 chain = next;
2164 return chain;
2165 }
2166
2167 /* Reverse the order of elements in the chain T,
2168 and return the new head of the chain (old last element). */
2169
2170 tree
2171 nreverse (tree t)
2172 {
2173 tree prev = 0, decl, next;
2174 for (decl = t; decl; decl = next)
2175 {
2176 /* We shouldn't be using this function to reverse BLOCK chains; we
2177 have blocks_nreverse for that. */
2178 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2179 next = TREE_CHAIN (decl);
2180 TREE_CHAIN (decl) = prev;
2181 prev = decl;
2182 }
2183 return prev;
2184 }
2185 \f
2186 /* Return a newly created TREE_LIST node whose
2187 purpose and value fields are PARM and VALUE. */
2188
2189 tree
2190 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2191 {
2192 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2193 TREE_PURPOSE (t) = parm;
2194 TREE_VALUE (t) = value;
2195 return t;
2196 }
2197
2198 /* Build a chain of TREE_LIST nodes from a vector. */
2199
2200 tree
2201 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2202 {
2203 tree ret = NULL_TREE;
2204 tree *pp = &ret;
2205 unsigned int i;
2206 tree t;
2207 FOR_EACH_VEC_ELT (tree, vec, i, t)
2208 {
2209 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2210 pp = &TREE_CHAIN (*pp);
2211 }
2212 return ret;
2213 }
2214
2215 /* Return a newly created TREE_LIST node whose
2216 purpose and value fields are PURPOSE and VALUE
2217 and whose TREE_CHAIN is CHAIN. */
2218
2219 tree
2220 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2221 {
2222 tree node;
2223
2224 node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list)
2225 PASS_MEM_STAT);
2226 memset (node, 0, sizeof (struct tree_common));
2227
2228 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2229
2230 TREE_SET_CODE (node, TREE_LIST);
2231 TREE_CHAIN (node) = chain;
2232 TREE_PURPOSE (node) = purpose;
2233 TREE_VALUE (node) = value;
2234 return node;
2235 }
2236
2237 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2238 trees. */
2239
2240 VEC(tree,gc) *
2241 ctor_to_vec (tree ctor)
2242 {
2243 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2244 unsigned int ix;
2245 tree val;
2246
2247 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2248 VEC_quick_push (tree, vec, val);
2249
2250 return vec;
2251 }
2252 \f
2253 /* Return the size nominally occupied by an object of type TYPE
2254 when it resides in memory. The value is measured in units of bytes,
2255 and its data type is that normally used for type sizes
2256 (which is the first type created by make_signed_type or
2257 make_unsigned_type). */
2258
2259 tree
2260 size_in_bytes (const_tree type)
2261 {
2262 tree t;
2263
2264 if (type == error_mark_node)
2265 return integer_zero_node;
2266
2267 type = TYPE_MAIN_VARIANT (type);
2268 t = TYPE_SIZE_UNIT (type);
2269
2270 if (t == 0)
2271 {
2272 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2273 return size_zero_node;
2274 }
2275
2276 return t;
2277 }
2278
2279 /* Return the size of TYPE (in bytes) as a wide integer
2280 or return -1 if the size can vary or is larger than an integer. */
2281
2282 HOST_WIDE_INT
2283 int_size_in_bytes (const_tree type)
2284 {
2285 tree t;
2286
2287 if (type == error_mark_node)
2288 return 0;
2289
2290 type = TYPE_MAIN_VARIANT (type);
2291 t = TYPE_SIZE_UNIT (type);
2292 if (t == 0
2293 || TREE_CODE (t) != INTEGER_CST
2294 || TREE_INT_CST_HIGH (t) != 0
2295 /* If the result would appear negative, it's too big to represent. */
2296 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2297 return -1;
2298
2299 return TREE_INT_CST_LOW (t);
2300 }
2301
2302 /* Return the maximum size of TYPE (in bytes) as a wide integer
2303 or return -1 if the size can vary or is larger than an integer. */
2304
2305 HOST_WIDE_INT
2306 max_int_size_in_bytes (const_tree type)
2307 {
2308 HOST_WIDE_INT size = -1;
2309 tree size_tree;
2310
2311 /* If this is an array type, check for a possible MAX_SIZE attached. */
2312
2313 if (TREE_CODE (type) == ARRAY_TYPE)
2314 {
2315 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2316
2317 if (size_tree && host_integerp (size_tree, 1))
2318 size = tree_low_cst (size_tree, 1);
2319 }
2320
2321 /* If we still haven't been able to get a size, see if the language
2322 can compute a maximum size. */
2323
2324 if (size == -1)
2325 {
2326 size_tree = lang_hooks.types.max_size (type);
2327
2328 if (size_tree && host_integerp (size_tree, 1))
2329 size = tree_low_cst (size_tree, 1);
2330 }
2331
2332 return size;
2333 }
2334
2335 /* Returns a tree for the size of EXP in bytes. */
2336
2337 tree
2338 tree_expr_size (const_tree exp)
2339 {
2340 if (DECL_P (exp)
2341 && DECL_SIZE_UNIT (exp) != 0)
2342 return DECL_SIZE_UNIT (exp);
2343 else
2344 return size_in_bytes (TREE_TYPE (exp));
2345 }
2346 \f
2347 /* Return the bit position of FIELD, in bits from the start of the record.
2348 This is a tree of type bitsizetype. */
2349
2350 tree
2351 bit_position (const_tree field)
2352 {
2353 return bit_from_pos (DECL_FIELD_OFFSET (field),
2354 DECL_FIELD_BIT_OFFSET (field));
2355 }
2356
2357 /* Likewise, but return as an integer. It must be representable in
2358 that way (since it could be a signed value, we don't have the
2359 option of returning -1 like int_size_in_byte can. */
2360
2361 HOST_WIDE_INT
2362 int_bit_position (const_tree field)
2363 {
2364 return tree_low_cst (bit_position (field), 0);
2365 }
2366 \f
2367 /* Return the byte position of FIELD, in bytes from the start of the record.
2368 This is a tree of type sizetype. */
2369
2370 tree
2371 byte_position (const_tree field)
2372 {
2373 return byte_from_pos (DECL_FIELD_OFFSET (field),
2374 DECL_FIELD_BIT_OFFSET (field));
2375 }
2376
2377 /* Likewise, but return as an integer. It must be representable in
2378 that way (since it could be a signed value, we don't have the
2379 option of returning -1 like int_size_in_byte can. */
2380
2381 HOST_WIDE_INT
2382 int_byte_position (const_tree field)
2383 {
2384 return tree_low_cst (byte_position (field), 0);
2385 }
2386 \f
2387 /* Return the strictest alignment, in bits, that T is known to have. */
2388
2389 unsigned int
2390 expr_align (const_tree t)
2391 {
2392 unsigned int align0, align1;
2393
2394 switch (TREE_CODE (t))
2395 {
2396 CASE_CONVERT: case NON_LVALUE_EXPR:
2397 /* If we have conversions, we know that the alignment of the
2398 object must meet each of the alignments of the types. */
2399 align0 = expr_align (TREE_OPERAND (t, 0));
2400 align1 = TYPE_ALIGN (TREE_TYPE (t));
2401 return MAX (align0, align1);
2402
2403 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2404 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2405 case CLEANUP_POINT_EXPR:
2406 /* These don't change the alignment of an object. */
2407 return expr_align (TREE_OPERAND (t, 0));
2408
2409 case COND_EXPR:
2410 /* The best we can do is say that the alignment is the least aligned
2411 of the two arms. */
2412 align0 = expr_align (TREE_OPERAND (t, 1));
2413 align1 = expr_align (TREE_OPERAND (t, 2));
2414 return MIN (align0, align1);
2415
2416 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2417 meaningfully, it's always 1. */
2418 case LABEL_DECL: case CONST_DECL:
2419 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2420 case FUNCTION_DECL:
2421 gcc_assert (DECL_ALIGN (t) != 0);
2422 return DECL_ALIGN (t);
2423
2424 default:
2425 break;
2426 }
2427
2428 /* Otherwise take the alignment from that of the type. */
2429 return TYPE_ALIGN (TREE_TYPE (t));
2430 }
2431 \f
2432 /* Return, as a tree node, the number of elements for TYPE (which is an
2433 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2434
2435 tree
2436 array_type_nelts (const_tree type)
2437 {
2438 tree index_type, min, max;
2439
2440 /* If they did it with unspecified bounds, then we should have already
2441 given an error about it before we got here. */
2442 if (! TYPE_DOMAIN (type))
2443 return error_mark_node;
2444
2445 index_type = TYPE_DOMAIN (type);
2446 min = TYPE_MIN_VALUE (index_type);
2447 max = TYPE_MAX_VALUE (index_type);
2448
2449 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
2450 if (!max)
2451 return error_mark_node;
2452
2453 return (integer_zerop (min)
2454 ? max
2455 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2456 }
2457 \f
2458 /* If arg is static -- a reference to an object in static storage -- then
2459 return the object. This is not the same as the C meaning of `static'.
2460 If arg isn't static, return NULL. */
2461
2462 tree
2463 staticp (tree arg)
2464 {
2465 switch (TREE_CODE (arg))
2466 {
2467 case FUNCTION_DECL:
2468 /* Nested functions are static, even though taking their address will
2469 involve a trampoline as we unnest the nested function and create
2470 the trampoline on the tree level. */
2471 return arg;
2472
2473 case VAR_DECL:
2474 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2475 && ! DECL_THREAD_LOCAL_P (arg)
2476 && ! DECL_DLLIMPORT_P (arg)
2477 ? arg : NULL);
2478
2479 case CONST_DECL:
2480 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2481 ? arg : NULL);
2482
2483 case CONSTRUCTOR:
2484 return TREE_STATIC (arg) ? arg : NULL;
2485
2486 case LABEL_DECL:
2487 case STRING_CST:
2488 return arg;
2489
2490 case COMPONENT_REF:
2491 /* If the thing being referenced is not a field, then it is
2492 something language specific. */
2493 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2494
2495 /* If we are referencing a bitfield, we can't evaluate an
2496 ADDR_EXPR at compile time and so it isn't a constant. */
2497 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2498 return NULL;
2499
2500 return staticp (TREE_OPERAND (arg, 0));
2501
2502 case BIT_FIELD_REF:
2503 return NULL;
2504
2505 case INDIRECT_REF:
2506 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2507
2508 case ARRAY_REF:
2509 case ARRAY_RANGE_REF:
2510 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2511 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2512 return staticp (TREE_OPERAND (arg, 0));
2513 else
2514 return NULL;
2515
2516 case COMPOUND_LITERAL_EXPR:
2517 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2518
2519 default:
2520 return NULL;
2521 }
2522 }
2523
2524 \f
2525
2526
2527 /* Return whether OP is a DECL whose address is function-invariant. */
2528
2529 bool
2530 decl_address_invariant_p (const_tree op)
2531 {
2532 /* The conditions below are slightly less strict than the one in
2533 staticp. */
2534
2535 switch (TREE_CODE (op))
2536 {
2537 case PARM_DECL:
2538 case RESULT_DECL:
2539 case LABEL_DECL:
2540 case FUNCTION_DECL:
2541 return true;
2542
2543 case VAR_DECL:
2544 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2545 || DECL_THREAD_LOCAL_P (op)
2546 || DECL_CONTEXT (op) == current_function_decl
2547 || decl_function_context (op) == current_function_decl)
2548 return true;
2549 break;
2550
2551 case CONST_DECL:
2552 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2553 || decl_function_context (op) == current_function_decl)
2554 return true;
2555 break;
2556
2557 default:
2558 break;
2559 }
2560
2561 return false;
2562 }
2563
2564 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2565
2566 bool
2567 decl_address_ip_invariant_p (const_tree op)
2568 {
2569 /* The conditions below are slightly less strict than the one in
2570 staticp. */
2571
2572 switch (TREE_CODE (op))
2573 {
2574 case LABEL_DECL:
2575 case FUNCTION_DECL:
2576 case STRING_CST:
2577 return true;
2578
2579 case VAR_DECL:
2580 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2581 && !DECL_DLLIMPORT_P (op))
2582 || DECL_THREAD_LOCAL_P (op))
2583 return true;
2584 break;
2585
2586 case CONST_DECL:
2587 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2588 return true;
2589 break;
2590
2591 default:
2592 break;
2593 }
2594
2595 return false;
2596 }
2597
2598
2599 /* Return true if T is function-invariant (internal function, does
2600 not handle arithmetic; that's handled in skip_simple_arithmetic and
2601 tree_invariant_p). */
2602
2603 static bool tree_invariant_p (tree t);
2604
2605 static bool
2606 tree_invariant_p_1 (tree t)
2607 {
2608 tree op;
2609
2610 if (TREE_CONSTANT (t)
2611 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2612 return true;
2613
2614 switch (TREE_CODE (t))
2615 {
2616 case SAVE_EXPR:
2617 return true;
2618
2619 case ADDR_EXPR:
2620 op = TREE_OPERAND (t, 0);
2621 while (handled_component_p (op))
2622 {
2623 switch (TREE_CODE (op))
2624 {
2625 case ARRAY_REF:
2626 case ARRAY_RANGE_REF:
2627 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2628 || TREE_OPERAND (op, 2) != NULL_TREE
2629 || TREE_OPERAND (op, 3) != NULL_TREE)
2630 return false;
2631 break;
2632
2633 case COMPONENT_REF:
2634 if (TREE_OPERAND (op, 2) != NULL_TREE)
2635 return false;
2636 break;
2637
2638 default:;
2639 }
2640 op = TREE_OPERAND (op, 0);
2641 }
2642
2643 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2644
2645 default:
2646 break;
2647 }
2648
2649 return false;
2650 }
2651
2652 /* Return true if T is function-invariant. */
2653
2654 static bool
2655 tree_invariant_p (tree t)
2656 {
2657 tree inner = skip_simple_arithmetic (t);
2658 return tree_invariant_p_1 (inner);
2659 }
2660
2661 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2662 Do this to any expression which may be used in more than one place,
2663 but must be evaluated only once.
2664
2665 Normally, expand_expr would reevaluate the expression each time.
2666 Calling save_expr produces something that is evaluated and recorded
2667 the first time expand_expr is called on it. Subsequent calls to
2668 expand_expr just reuse the recorded value.
2669
2670 The call to expand_expr that generates code that actually computes
2671 the value is the first call *at compile time*. Subsequent calls
2672 *at compile time* generate code to use the saved value.
2673 This produces correct result provided that *at run time* control
2674 always flows through the insns made by the first expand_expr
2675 before reaching the other places where the save_expr was evaluated.
2676 You, the caller of save_expr, must make sure this is so.
2677
2678 Constants, and certain read-only nodes, are returned with no
2679 SAVE_EXPR because that is safe. Expressions containing placeholders
2680 are not touched; see tree.def for an explanation of what these
2681 are used for. */
2682
2683 tree
2684 save_expr (tree expr)
2685 {
2686 tree t = fold (expr);
2687 tree inner;
2688
2689 /* If the tree evaluates to a constant, then we don't want to hide that
2690 fact (i.e. this allows further folding, and direct checks for constants).
2691 However, a read-only object that has side effects cannot be bypassed.
2692 Since it is no problem to reevaluate literals, we just return the
2693 literal node. */
2694 inner = skip_simple_arithmetic (t);
2695 if (TREE_CODE (inner) == ERROR_MARK)
2696 return inner;
2697
2698 if (tree_invariant_p_1 (inner))
2699 return t;
2700
2701 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2702 it means that the size or offset of some field of an object depends on
2703 the value within another field.
2704
2705 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2706 and some variable since it would then need to be both evaluated once and
2707 evaluated more than once. Front-ends must assure this case cannot
2708 happen by surrounding any such subexpressions in their own SAVE_EXPR
2709 and forcing evaluation at the proper time. */
2710 if (contains_placeholder_p (inner))
2711 return t;
2712
2713 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2714 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2715
2716 /* This expression might be placed ahead of a jump to ensure that the
2717 value was computed on both sides of the jump. So make sure it isn't
2718 eliminated as dead. */
2719 TREE_SIDE_EFFECTS (t) = 1;
2720 return t;
2721 }
2722
2723 /* Look inside EXPR and into any simple arithmetic operations. Return
2724 the innermost non-arithmetic node. */
2725
2726 tree
2727 skip_simple_arithmetic (tree expr)
2728 {
2729 tree inner;
2730
2731 /* We don't care about whether this can be used as an lvalue in this
2732 context. */
2733 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2734 expr = TREE_OPERAND (expr, 0);
2735
2736 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2737 a constant, it will be more efficient to not make another SAVE_EXPR since
2738 it will allow better simplification and GCSE will be able to merge the
2739 computations if they actually occur. */
2740 inner = expr;
2741 while (1)
2742 {
2743 if (UNARY_CLASS_P (inner))
2744 inner = TREE_OPERAND (inner, 0);
2745 else if (BINARY_CLASS_P (inner))
2746 {
2747 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2748 inner = TREE_OPERAND (inner, 0);
2749 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2750 inner = TREE_OPERAND (inner, 1);
2751 else
2752 break;
2753 }
2754 else
2755 break;
2756 }
2757
2758 return inner;
2759 }
2760
2761
2762 /* Return which tree structure is used by T. */
2763
2764 enum tree_node_structure_enum
2765 tree_node_structure (const_tree t)
2766 {
2767 const enum tree_code code = TREE_CODE (t);
2768 return tree_node_structure_for_code (code);
2769 }
2770
2771 /* Set various status flags when building a CALL_EXPR object T. */
2772
2773 static void
2774 process_call_operands (tree t)
2775 {
2776 bool side_effects = TREE_SIDE_EFFECTS (t);
2777 bool read_only = false;
2778 int i = call_expr_flags (t);
2779
2780 /* Calls have side-effects, except those to const or pure functions. */
2781 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2782 side_effects = true;
2783 /* Propagate TREE_READONLY of arguments for const functions. */
2784 if (i & ECF_CONST)
2785 read_only = true;
2786
2787 if (!side_effects || read_only)
2788 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2789 {
2790 tree op = TREE_OPERAND (t, i);
2791 if (op && TREE_SIDE_EFFECTS (op))
2792 side_effects = true;
2793 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2794 read_only = false;
2795 }
2796
2797 TREE_SIDE_EFFECTS (t) = side_effects;
2798 TREE_READONLY (t) = read_only;
2799 }
2800 \f
2801 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
2802 size or offset that depends on a field within a record. */
2803
2804 bool
2805 contains_placeholder_p (const_tree exp)
2806 {
2807 enum tree_code code;
2808
2809 if (!exp)
2810 return 0;
2811
2812 code = TREE_CODE (exp);
2813 if (code == PLACEHOLDER_EXPR)
2814 return 1;
2815
2816 switch (TREE_CODE_CLASS (code))
2817 {
2818 case tcc_reference:
2819 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2820 position computations since they will be converted into a
2821 WITH_RECORD_EXPR involving the reference, which will assume
2822 here will be valid. */
2823 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2824
2825 case tcc_exceptional:
2826 if (code == TREE_LIST)
2827 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2828 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2829 break;
2830
2831 case tcc_unary:
2832 case tcc_binary:
2833 case tcc_comparison:
2834 case tcc_expression:
2835 switch (code)
2836 {
2837 case COMPOUND_EXPR:
2838 /* Ignoring the first operand isn't quite right, but works best. */
2839 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2840
2841 case COND_EXPR:
2842 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2843 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2844 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2845
2846 case SAVE_EXPR:
2847 /* The save_expr function never wraps anything containing
2848 a PLACEHOLDER_EXPR. */
2849 return 0;
2850
2851 default:
2852 break;
2853 }
2854
2855 switch (TREE_CODE_LENGTH (code))
2856 {
2857 case 1:
2858 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2859 case 2:
2860 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2861 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2862 default:
2863 return 0;
2864 }
2865
2866 case tcc_vl_exp:
2867 switch (code)
2868 {
2869 case CALL_EXPR:
2870 {
2871 const_tree arg;
2872 const_call_expr_arg_iterator iter;
2873 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2874 if (CONTAINS_PLACEHOLDER_P (arg))
2875 return 1;
2876 return 0;
2877 }
2878 default:
2879 return 0;
2880 }
2881
2882 default:
2883 return 0;
2884 }
2885 return 0;
2886 }
2887
2888 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
2889 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
2890 field positions. */
2891
2892 static bool
2893 type_contains_placeholder_1 (const_tree type)
2894 {
2895 /* If the size contains a placeholder or the parent type (component type in
2896 the case of arrays) type involves a placeholder, this type does. */
2897 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2898 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2899 || (!POINTER_TYPE_P (type)
2900 && TREE_TYPE (type)
2901 && type_contains_placeholder_p (TREE_TYPE (type))))
2902 return true;
2903
2904 /* Now do type-specific checks. Note that the last part of the check above
2905 greatly limits what we have to do below. */
2906 switch (TREE_CODE (type))
2907 {
2908 case VOID_TYPE:
2909 case COMPLEX_TYPE:
2910 case ENUMERAL_TYPE:
2911 case BOOLEAN_TYPE:
2912 case POINTER_TYPE:
2913 case OFFSET_TYPE:
2914 case REFERENCE_TYPE:
2915 case METHOD_TYPE:
2916 case FUNCTION_TYPE:
2917 case VECTOR_TYPE:
2918 return false;
2919
2920 case INTEGER_TYPE:
2921 case REAL_TYPE:
2922 case FIXED_POINT_TYPE:
2923 /* Here we just check the bounds. */
2924 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2925 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2926
2927 case ARRAY_TYPE:
2928 /* We have already checked the component type above, so just check the
2929 domain type. */
2930 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2931
2932 case RECORD_TYPE:
2933 case UNION_TYPE:
2934 case QUAL_UNION_TYPE:
2935 {
2936 tree field;
2937
2938 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2939 if (TREE_CODE (field) == FIELD_DECL
2940 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2941 || (TREE_CODE (type) == QUAL_UNION_TYPE
2942 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2943 || type_contains_placeholder_p (TREE_TYPE (field))))
2944 return true;
2945
2946 return false;
2947 }
2948
2949 default:
2950 gcc_unreachable ();
2951 }
2952 }
2953
2954 /* Wrapper around above function used to cache its result. */
2955
2956 bool
2957 type_contains_placeholder_p (tree type)
2958 {
2959 bool result;
2960
2961 /* If the contains_placeholder_bits field has been initialized,
2962 then we know the answer. */
2963 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2964 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2965
2966 /* Indicate that we've seen this type node, and the answer is false.
2967 This is what we want to return if we run into recursion via fields. */
2968 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2969
2970 /* Compute the real value. */
2971 result = type_contains_placeholder_1 (type);
2972
2973 /* Store the real value. */
2974 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2975
2976 return result;
2977 }
2978 \f
2979 /* Push tree EXP onto vector QUEUE if it is not already present. */
2980
2981 static void
2982 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2983 {
2984 unsigned int i;
2985 tree iter;
2986
2987 FOR_EACH_VEC_ELT (tree, *queue, i, iter)
2988 if (simple_cst_equal (iter, exp) == 1)
2989 break;
2990
2991 if (!iter)
2992 VEC_safe_push (tree, heap, *queue, exp);
2993 }
2994
2995 /* Given a tree EXP, find all occurences of references to fields
2996 in a PLACEHOLDER_EXPR and place them in vector REFS without
2997 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
2998 we assume here that EXP contains only arithmetic expressions
2999 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3000 argument list. */
3001
3002 void
3003 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
3004 {
3005 enum tree_code code = TREE_CODE (exp);
3006 tree inner;
3007 int i;
3008
3009 /* We handle TREE_LIST and COMPONENT_REF separately. */
3010 if (code == TREE_LIST)
3011 {
3012 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3013 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3014 }
3015 else if (code == COMPONENT_REF)
3016 {
3017 for (inner = TREE_OPERAND (exp, 0);
3018 REFERENCE_CLASS_P (inner);
3019 inner = TREE_OPERAND (inner, 0))
3020 ;
3021
3022 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3023 push_without_duplicates (exp, refs);
3024 else
3025 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3026 }
3027 else
3028 switch (TREE_CODE_CLASS (code))
3029 {
3030 case tcc_constant:
3031 break;
3032
3033 case tcc_declaration:
3034 /* Variables allocated to static storage can stay. */
3035 if (!TREE_STATIC (exp))
3036 push_without_duplicates (exp, refs);
3037 break;
3038
3039 case tcc_expression:
3040 /* This is the pattern built in ada/make_aligning_type. */
3041 if (code == ADDR_EXPR
3042 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3043 {
3044 push_without_duplicates (exp, refs);
3045 break;
3046 }
3047
3048 /* Fall through... */
3049
3050 case tcc_exceptional:
3051 case tcc_unary:
3052 case tcc_binary:
3053 case tcc_comparison:
3054 case tcc_reference:
3055 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3056 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3057 break;
3058
3059 case tcc_vl_exp:
3060 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3061 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3062 break;
3063
3064 default:
3065 gcc_unreachable ();
3066 }
3067 }
3068
3069 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3070 return a tree with all occurrences of references to F in a
3071 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3072 CONST_DECLs. Note that we assume here that EXP contains only
3073 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3074 occurring only in their argument list. */
3075
3076 tree
3077 substitute_in_expr (tree exp, tree f, tree r)
3078 {
3079 enum tree_code code = TREE_CODE (exp);
3080 tree op0, op1, op2, op3;
3081 tree new_tree;
3082
3083 /* We handle TREE_LIST and COMPONENT_REF separately. */
3084 if (code == TREE_LIST)
3085 {
3086 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3087 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3088 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3089 return exp;
3090
3091 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3092 }
3093 else if (code == COMPONENT_REF)
3094 {
3095 tree inner;
3096
3097 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3098 and it is the right field, replace it with R. */
3099 for (inner = TREE_OPERAND (exp, 0);
3100 REFERENCE_CLASS_P (inner);
3101 inner = TREE_OPERAND (inner, 0))
3102 ;
3103
3104 /* The field. */
3105 op1 = TREE_OPERAND (exp, 1);
3106
3107 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3108 return r;
3109
3110 /* If this expression hasn't been completed let, leave it alone. */
3111 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3112 return exp;
3113
3114 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3115 if (op0 == TREE_OPERAND (exp, 0))
3116 return exp;
3117
3118 new_tree
3119 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3120 }
3121 else
3122 switch (TREE_CODE_CLASS (code))
3123 {
3124 case tcc_constant:
3125 return exp;
3126
3127 case tcc_declaration:
3128 if (exp == f)
3129 return r;
3130 else
3131 return exp;
3132
3133 case tcc_expression:
3134 if (exp == f)
3135 return r;
3136
3137 /* Fall through... */
3138
3139 case tcc_exceptional:
3140 case tcc_unary:
3141 case tcc_binary:
3142 case tcc_comparison:
3143 case tcc_reference:
3144 switch (TREE_CODE_LENGTH (code))
3145 {
3146 case 0:
3147 return exp;
3148
3149 case 1:
3150 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3151 if (op0 == TREE_OPERAND (exp, 0))
3152 return exp;
3153
3154 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3155 break;
3156
3157 case 2:
3158 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3159 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3160
3161 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3162 return exp;
3163
3164 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3165 break;
3166
3167 case 3:
3168 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3169 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3170 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3171
3172 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3173 && op2 == TREE_OPERAND (exp, 2))
3174 return exp;
3175
3176 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3177 break;
3178
3179 case 4:
3180 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3181 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3182 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3183 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3184
3185 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3186 && op2 == TREE_OPERAND (exp, 2)
3187 && op3 == TREE_OPERAND (exp, 3))
3188 return exp;
3189
3190 new_tree
3191 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3192 break;
3193
3194 default:
3195 gcc_unreachable ();
3196 }
3197 break;
3198
3199 case tcc_vl_exp:
3200 {
3201 int i;
3202
3203 new_tree = NULL_TREE;
3204
3205 /* If we are trying to replace F with a constant, inline back
3206 functions which do nothing else than computing a value from
3207 the arguments they are passed. This makes it possible to
3208 fold partially or entirely the replacement expression. */
3209 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3210 {
3211 tree t = maybe_inline_call_in_expr (exp);
3212 if (t)
3213 return SUBSTITUTE_IN_EXPR (t, f, r);
3214 }
3215
3216 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3217 {
3218 tree op = TREE_OPERAND (exp, i);
3219 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3220 if (new_op != op)
3221 {
3222 if (!new_tree)
3223 new_tree = copy_node (exp);
3224 TREE_OPERAND (new_tree, i) = new_op;
3225 }
3226 }
3227
3228 if (new_tree)
3229 {
3230 new_tree = fold (new_tree);
3231 if (TREE_CODE (new_tree) == CALL_EXPR)
3232 process_call_operands (new_tree);
3233 }
3234 else
3235 return exp;
3236 }
3237 break;
3238
3239 default:
3240 gcc_unreachable ();
3241 }
3242
3243 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3244
3245 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3246 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3247
3248 return new_tree;
3249 }
3250
3251 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3252 for it within OBJ, a tree that is an object or a chain of references. */
3253
3254 tree
3255 substitute_placeholder_in_expr (tree exp, tree obj)
3256 {
3257 enum tree_code code = TREE_CODE (exp);
3258 tree op0, op1, op2, op3;
3259 tree new_tree;
3260
3261 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3262 in the chain of OBJ. */
3263 if (code == PLACEHOLDER_EXPR)
3264 {
3265 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3266 tree elt;
3267
3268 for (elt = obj; elt != 0;
3269 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3270 || TREE_CODE (elt) == COND_EXPR)
3271 ? TREE_OPERAND (elt, 1)
3272 : (REFERENCE_CLASS_P (elt)
3273 || UNARY_CLASS_P (elt)
3274 || BINARY_CLASS_P (elt)
3275 || VL_EXP_CLASS_P (elt)
3276 || EXPRESSION_CLASS_P (elt))
3277 ? TREE_OPERAND (elt, 0) : 0))
3278 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3279 return elt;
3280
3281 for (elt = obj; elt != 0;
3282 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3283 || TREE_CODE (elt) == COND_EXPR)
3284 ? TREE_OPERAND (elt, 1)
3285 : (REFERENCE_CLASS_P (elt)
3286 || UNARY_CLASS_P (elt)
3287 || BINARY_CLASS_P (elt)
3288 || VL_EXP_CLASS_P (elt)
3289 || EXPRESSION_CLASS_P (elt))
3290 ? TREE_OPERAND (elt, 0) : 0))
3291 if (POINTER_TYPE_P (TREE_TYPE (elt))
3292 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3293 == need_type))
3294 return fold_build1 (INDIRECT_REF, need_type, elt);
3295
3296 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3297 survives until RTL generation, there will be an error. */
3298 return exp;
3299 }
3300
3301 /* TREE_LIST is special because we need to look at TREE_VALUE
3302 and TREE_CHAIN, not TREE_OPERANDS. */
3303 else if (code == TREE_LIST)
3304 {
3305 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3306 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3307 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3308 return exp;
3309
3310 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3311 }
3312 else
3313 switch (TREE_CODE_CLASS (code))
3314 {
3315 case tcc_constant:
3316 case tcc_declaration:
3317 return exp;
3318
3319 case tcc_exceptional:
3320 case tcc_unary:
3321 case tcc_binary:
3322 case tcc_comparison:
3323 case tcc_expression:
3324 case tcc_reference:
3325 case tcc_statement:
3326 switch (TREE_CODE_LENGTH (code))
3327 {
3328 case 0:
3329 return exp;
3330
3331 case 1:
3332 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3333 if (op0 == TREE_OPERAND (exp, 0))
3334 return exp;
3335
3336 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3337 break;
3338
3339 case 2:
3340 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3341 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3342
3343 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3344 return exp;
3345
3346 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3347 break;
3348
3349 case 3:
3350 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3351 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3352 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3353
3354 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3355 && op2 == TREE_OPERAND (exp, 2))
3356 return exp;
3357
3358 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3359 break;
3360
3361 case 4:
3362 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3363 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3364 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3365 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3366
3367 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3368 && op2 == TREE_OPERAND (exp, 2)
3369 && op3 == TREE_OPERAND (exp, 3))
3370 return exp;
3371
3372 new_tree
3373 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3374 break;
3375
3376 default:
3377 gcc_unreachable ();
3378 }
3379 break;
3380
3381 case tcc_vl_exp:
3382 {
3383 int i;
3384
3385 new_tree = NULL_TREE;
3386
3387 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3388 {
3389 tree op = TREE_OPERAND (exp, i);
3390 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3391 if (new_op != op)
3392 {
3393 if (!new_tree)
3394 new_tree = copy_node (exp);
3395 TREE_OPERAND (new_tree, i) = new_op;
3396 }
3397 }
3398
3399 if (new_tree)
3400 {
3401 new_tree = fold (new_tree);
3402 if (TREE_CODE (new_tree) == CALL_EXPR)
3403 process_call_operands (new_tree);
3404 }
3405 else
3406 return exp;
3407 }
3408 break;
3409
3410 default:
3411 gcc_unreachable ();
3412 }
3413
3414 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3415
3416 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3417 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3418
3419 return new_tree;
3420 }
3421 \f
3422 /* Stabilize a reference so that we can use it any number of times
3423 without causing its operands to be evaluated more than once.
3424 Returns the stabilized reference. This works by means of save_expr,
3425 so see the caveats in the comments about save_expr.
3426
3427 Also allows conversion expressions whose operands are references.
3428 Any other kind of expression is returned unchanged. */
3429
3430 tree
3431 stabilize_reference (tree ref)
3432 {
3433 tree result;
3434 enum tree_code code = TREE_CODE (ref);
3435
3436 switch (code)
3437 {
3438 case VAR_DECL:
3439 case PARM_DECL:
3440 case RESULT_DECL:
3441 /* No action is needed in this case. */
3442 return ref;
3443
3444 CASE_CONVERT:
3445 case FLOAT_EXPR:
3446 case FIX_TRUNC_EXPR:
3447 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3448 break;
3449
3450 case INDIRECT_REF:
3451 result = build_nt (INDIRECT_REF,
3452 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3453 break;
3454
3455 case COMPONENT_REF:
3456 result = build_nt (COMPONENT_REF,
3457 stabilize_reference (TREE_OPERAND (ref, 0)),
3458 TREE_OPERAND (ref, 1), NULL_TREE);
3459 break;
3460
3461 case BIT_FIELD_REF:
3462 result = build_nt (BIT_FIELD_REF,
3463 stabilize_reference (TREE_OPERAND (ref, 0)),
3464 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3465 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3466 break;
3467
3468 case ARRAY_REF:
3469 result = build_nt (ARRAY_REF,
3470 stabilize_reference (TREE_OPERAND (ref, 0)),
3471 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3472 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3473 break;
3474
3475 case ARRAY_RANGE_REF:
3476 result = build_nt (ARRAY_RANGE_REF,
3477 stabilize_reference (TREE_OPERAND (ref, 0)),
3478 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3479 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3480 break;
3481
3482 case COMPOUND_EXPR:
3483 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3484 it wouldn't be ignored. This matters when dealing with
3485 volatiles. */
3486 return stabilize_reference_1 (ref);
3487
3488 /* If arg isn't a kind of lvalue we recognize, make no change.
3489 Caller should recognize the error for an invalid lvalue. */
3490 default:
3491 return ref;
3492
3493 case ERROR_MARK:
3494 return error_mark_node;
3495 }
3496
3497 TREE_TYPE (result) = TREE_TYPE (ref);
3498 TREE_READONLY (result) = TREE_READONLY (ref);
3499 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3500 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3501
3502 return result;
3503 }
3504
3505 /* Subroutine of stabilize_reference; this is called for subtrees of
3506 references. Any expression with side-effects must be put in a SAVE_EXPR
3507 to ensure that it is only evaluated once.
3508
3509 We don't put SAVE_EXPR nodes around everything, because assigning very
3510 simple expressions to temporaries causes us to miss good opportunities
3511 for optimizations. Among other things, the opportunity to fold in the
3512 addition of a constant into an addressing mode often gets lost, e.g.
3513 "y[i+1] += x;". In general, we take the approach that we should not make
3514 an assignment unless we are forced into it - i.e., that any non-side effect
3515 operator should be allowed, and that cse should take care of coalescing
3516 multiple utterances of the same expression should that prove fruitful. */
3517
3518 tree
3519 stabilize_reference_1 (tree e)
3520 {
3521 tree result;
3522 enum tree_code code = TREE_CODE (e);
3523
3524 /* We cannot ignore const expressions because it might be a reference
3525 to a const array but whose index contains side-effects. But we can
3526 ignore things that are actual constant or that already have been
3527 handled by this function. */
3528
3529 if (tree_invariant_p (e))
3530 return e;
3531
3532 switch (TREE_CODE_CLASS (code))
3533 {
3534 case tcc_exceptional:
3535 case tcc_type:
3536 case tcc_declaration:
3537 case tcc_comparison:
3538 case tcc_statement:
3539 case tcc_expression:
3540 case tcc_reference:
3541 case tcc_vl_exp:
3542 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3543 so that it will only be evaluated once. */
3544 /* The reference (r) and comparison (<) classes could be handled as
3545 below, but it is generally faster to only evaluate them once. */
3546 if (TREE_SIDE_EFFECTS (e))
3547 return save_expr (e);
3548 return e;
3549
3550 case tcc_constant:
3551 /* Constants need no processing. In fact, we should never reach
3552 here. */
3553 return e;
3554
3555 case tcc_binary:
3556 /* Division is slow and tends to be compiled with jumps,
3557 especially the division by powers of 2 that is often
3558 found inside of an array reference. So do it just once. */
3559 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3560 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3561 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3562 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3563 return save_expr (e);
3564 /* Recursively stabilize each operand. */
3565 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3566 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3567 break;
3568
3569 case tcc_unary:
3570 /* Recursively stabilize each operand. */
3571 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3572 break;
3573
3574 default:
3575 gcc_unreachable ();
3576 }
3577
3578 TREE_TYPE (result) = TREE_TYPE (e);
3579 TREE_READONLY (result) = TREE_READONLY (e);
3580 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3581 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3582
3583 return result;
3584 }
3585 \f
3586 /* Low-level constructors for expressions. */
3587
3588 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3589 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3590
3591 void
3592 recompute_tree_invariant_for_addr_expr (tree t)
3593 {
3594 tree node;
3595 bool tc = true, se = false;
3596
3597 /* We started out assuming this address is both invariant and constant, but
3598 does not have side effects. Now go down any handled components and see if
3599 any of them involve offsets that are either non-constant or non-invariant.
3600 Also check for side-effects.
3601
3602 ??? Note that this code makes no attempt to deal with the case where
3603 taking the address of something causes a copy due to misalignment. */
3604
3605 #define UPDATE_FLAGS(NODE) \
3606 do { tree _node = (NODE); \
3607 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3608 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3609
3610 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3611 node = TREE_OPERAND (node, 0))
3612 {
3613 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3614 array reference (probably made temporarily by the G++ front end),
3615 so ignore all the operands. */
3616 if ((TREE_CODE (node) == ARRAY_REF
3617 || TREE_CODE (node) == ARRAY_RANGE_REF)
3618 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3619 {
3620 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3621 if (TREE_OPERAND (node, 2))
3622 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3623 if (TREE_OPERAND (node, 3))
3624 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3625 }
3626 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3627 FIELD_DECL, apparently. The G++ front end can put something else
3628 there, at least temporarily. */
3629 else if (TREE_CODE (node) == COMPONENT_REF
3630 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3631 {
3632 if (TREE_OPERAND (node, 2))
3633 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3634 }
3635 else if (TREE_CODE (node) == BIT_FIELD_REF)
3636 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3637 }
3638
3639 node = lang_hooks.expr_to_decl (node, &tc, &se);
3640
3641 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3642 the address, since &(*a)->b is a form of addition. If it's a constant, the
3643 address is constant too. If it's a decl, its address is constant if the
3644 decl is static. Everything else is not constant and, furthermore,
3645 taking the address of a volatile variable is not volatile. */
3646 if (TREE_CODE (node) == INDIRECT_REF
3647 || TREE_CODE (node) == MEM_REF)
3648 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3649 else if (CONSTANT_CLASS_P (node))
3650 ;
3651 else if (DECL_P (node))
3652 tc &= (staticp (node) != NULL_TREE);
3653 else
3654 {
3655 tc = false;
3656 se |= TREE_SIDE_EFFECTS (node);
3657 }
3658
3659
3660 TREE_CONSTANT (t) = tc;
3661 TREE_SIDE_EFFECTS (t) = se;
3662 #undef UPDATE_FLAGS
3663 }
3664
3665 /* Build an expression of code CODE, data type TYPE, and operands as
3666 specified. Expressions and reference nodes can be created this way.
3667 Constants, decls, types and misc nodes cannot be.
3668
3669 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3670 enough for all extant tree codes. */
3671
3672 tree
3673 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3674 {
3675 tree t;
3676
3677 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3678
3679 t = make_node_stat (code PASS_MEM_STAT);
3680 TREE_TYPE (t) = tt;
3681
3682 return t;
3683 }
3684
3685 tree
3686 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3687 {
3688 int length = sizeof (struct tree_exp);
3689 tree t;
3690
3691 record_node_allocation_statistics (code, length);
3692
3693 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3694
3695 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
3696
3697 memset (t, 0, sizeof (struct tree_common));
3698
3699 TREE_SET_CODE (t, code);
3700
3701 TREE_TYPE (t) = type;
3702 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3703 TREE_OPERAND (t, 0) = node;
3704 TREE_BLOCK (t) = NULL_TREE;
3705 if (node && !TYPE_P (node))
3706 {
3707 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3708 TREE_READONLY (t) = TREE_READONLY (node);
3709 }
3710
3711 if (TREE_CODE_CLASS (code) == tcc_statement)
3712 TREE_SIDE_EFFECTS (t) = 1;
3713 else switch (code)
3714 {
3715 case VA_ARG_EXPR:
3716 /* All of these have side-effects, no matter what their
3717 operands are. */
3718 TREE_SIDE_EFFECTS (t) = 1;
3719 TREE_READONLY (t) = 0;
3720 break;
3721
3722 case INDIRECT_REF:
3723 /* Whether a dereference is readonly has nothing to do with whether
3724 its operand is readonly. */
3725 TREE_READONLY (t) = 0;
3726 break;
3727
3728 case ADDR_EXPR:
3729 if (node)
3730 recompute_tree_invariant_for_addr_expr (t);
3731 break;
3732
3733 default:
3734 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3735 && node && !TYPE_P (node)
3736 && TREE_CONSTANT (node))
3737 TREE_CONSTANT (t) = 1;
3738 if (TREE_CODE_CLASS (code) == tcc_reference
3739 && node && TREE_THIS_VOLATILE (node))
3740 TREE_THIS_VOLATILE (t) = 1;
3741 break;
3742 }
3743
3744 return t;
3745 }
3746
3747 #define PROCESS_ARG(N) \
3748 do { \
3749 TREE_OPERAND (t, N) = arg##N; \
3750 if (arg##N &&!TYPE_P (arg##N)) \
3751 { \
3752 if (TREE_SIDE_EFFECTS (arg##N)) \
3753 side_effects = 1; \
3754 if (!TREE_READONLY (arg##N) \
3755 && !CONSTANT_CLASS_P (arg##N)) \
3756 (void) (read_only = 0); \
3757 if (!TREE_CONSTANT (arg##N)) \
3758 (void) (constant = 0); \
3759 } \
3760 } while (0)
3761
3762 tree
3763 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3764 {
3765 bool constant, read_only, side_effects;
3766 tree t;
3767
3768 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3769
3770 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3771 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3772 /* When sizetype precision doesn't match that of pointers
3773 we need to be able to build explicit extensions or truncations
3774 of the offset argument. */
3775 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3776 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3777 && TREE_CODE (arg1) == INTEGER_CST);
3778
3779 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3780 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3781 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3782 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3783
3784 t = make_node_stat (code PASS_MEM_STAT);
3785 TREE_TYPE (t) = tt;
3786
3787 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3788 result based on those same flags for the arguments. But if the
3789 arguments aren't really even `tree' expressions, we shouldn't be trying
3790 to do this. */
3791
3792 /* Expressions without side effects may be constant if their
3793 arguments are as well. */
3794 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3795 || TREE_CODE_CLASS (code) == tcc_binary);
3796 read_only = 1;
3797 side_effects = TREE_SIDE_EFFECTS (t);
3798
3799 PROCESS_ARG(0);
3800 PROCESS_ARG(1);
3801
3802 TREE_READONLY (t) = read_only;
3803 TREE_CONSTANT (t) = constant;
3804 TREE_SIDE_EFFECTS (t) = side_effects;
3805 TREE_THIS_VOLATILE (t)
3806 = (TREE_CODE_CLASS (code) == tcc_reference
3807 && arg0 && TREE_THIS_VOLATILE (arg0));
3808
3809 return t;
3810 }
3811
3812
3813 tree
3814 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3815 tree arg2 MEM_STAT_DECL)
3816 {
3817 bool constant, read_only, side_effects;
3818 tree t;
3819
3820 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3821 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3822
3823 t = make_node_stat (code PASS_MEM_STAT);
3824 TREE_TYPE (t) = tt;
3825
3826 read_only = 1;
3827
3828 /* As a special exception, if COND_EXPR has NULL branches, we
3829 assume that it is a gimple statement and always consider
3830 it to have side effects. */
3831 if (code == COND_EXPR
3832 && tt == void_type_node
3833 && arg1 == NULL_TREE
3834 && arg2 == NULL_TREE)
3835 side_effects = true;
3836 else
3837 side_effects = TREE_SIDE_EFFECTS (t);
3838
3839 PROCESS_ARG(0);
3840 PROCESS_ARG(1);
3841 PROCESS_ARG(2);
3842
3843 if (code == COND_EXPR)
3844 TREE_READONLY (t) = read_only;
3845
3846 TREE_SIDE_EFFECTS (t) = side_effects;
3847 TREE_THIS_VOLATILE (t)
3848 = (TREE_CODE_CLASS (code) == tcc_reference
3849 && arg0 && TREE_THIS_VOLATILE (arg0));
3850
3851 return t;
3852 }
3853
3854 tree
3855 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3856 tree arg2, tree arg3 MEM_STAT_DECL)
3857 {
3858 bool constant, read_only, side_effects;
3859 tree t;
3860
3861 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3862
3863 t = make_node_stat (code PASS_MEM_STAT);
3864 TREE_TYPE (t) = tt;
3865
3866 side_effects = TREE_SIDE_EFFECTS (t);
3867
3868 PROCESS_ARG(0);
3869 PROCESS_ARG(1);
3870 PROCESS_ARG(2);
3871 PROCESS_ARG(3);
3872
3873 TREE_SIDE_EFFECTS (t) = side_effects;
3874 TREE_THIS_VOLATILE (t)
3875 = (TREE_CODE_CLASS (code) == tcc_reference
3876 && arg0 && TREE_THIS_VOLATILE (arg0));
3877
3878 return t;
3879 }
3880
3881 tree
3882 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3883 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3884 {
3885 bool constant, read_only, side_effects;
3886 tree t;
3887
3888 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3889
3890 t = make_node_stat (code PASS_MEM_STAT);
3891 TREE_TYPE (t) = tt;
3892
3893 side_effects = TREE_SIDE_EFFECTS (t);
3894
3895 PROCESS_ARG(0);
3896 PROCESS_ARG(1);
3897 PROCESS_ARG(2);
3898 PROCESS_ARG(3);
3899 PROCESS_ARG(4);
3900
3901 TREE_SIDE_EFFECTS (t) = side_effects;
3902 TREE_THIS_VOLATILE (t)
3903 = (TREE_CODE_CLASS (code) == tcc_reference
3904 && arg0 && TREE_THIS_VOLATILE (arg0));
3905
3906 return t;
3907 }
3908
3909 tree
3910 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3911 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3912 {
3913 bool constant, read_only, side_effects;
3914 tree t;
3915
3916 gcc_assert (code == TARGET_MEM_REF);
3917
3918 t = make_node_stat (code PASS_MEM_STAT);
3919 TREE_TYPE (t) = tt;
3920
3921 side_effects = TREE_SIDE_EFFECTS (t);
3922
3923 PROCESS_ARG(0);
3924 PROCESS_ARG(1);
3925 PROCESS_ARG(2);
3926 PROCESS_ARG(3);
3927 PROCESS_ARG(4);
3928 if (code == TARGET_MEM_REF)
3929 side_effects = 0;
3930 PROCESS_ARG(5);
3931
3932 TREE_SIDE_EFFECTS (t) = side_effects;
3933 TREE_THIS_VOLATILE (t)
3934 = (code == TARGET_MEM_REF
3935 && arg5 && TREE_THIS_VOLATILE (arg5));
3936
3937 return t;
3938 }
3939
3940 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
3941 on the pointer PTR. */
3942
3943 tree
3944 build_simple_mem_ref_loc (location_t loc, tree ptr)
3945 {
3946 HOST_WIDE_INT offset = 0;
3947 tree ptype = TREE_TYPE (ptr);
3948 tree tem;
3949 /* For convenience allow addresses that collapse to a simple base
3950 and offset. */
3951 if (TREE_CODE (ptr) == ADDR_EXPR
3952 && (handled_component_p (TREE_OPERAND (ptr, 0))
3953 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
3954 {
3955 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
3956 gcc_assert (ptr);
3957 ptr = build_fold_addr_expr (ptr);
3958 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
3959 }
3960 tem = build2 (MEM_REF, TREE_TYPE (ptype),
3961 ptr, build_int_cst (ptype, offset));
3962 SET_EXPR_LOCATION (tem, loc);
3963 return tem;
3964 }
3965
3966 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
3967
3968 double_int
3969 mem_ref_offset (const_tree t)
3970 {
3971 tree toff = TREE_OPERAND (t, 1);
3972 return double_int_sext (tree_to_double_int (toff),
3973 TYPE_PRECISION (TREE_TYPE (toff)));
3974 }
3975
3976 /* Return the pointer-type relevant for TBAA purposes from the
3977 gimple memory reference tree T. This is the type to be used for
3978 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
3979
3980 tree
3981 reference_alias_ptr_type (const_tree t)
3982 {
3983 const_tree base = t;
3984 while (handled_component_p (base))
3985 base = TREE_OPERAND (base, 0);
3986 if (TREE_CODE (base) == MEM_REF)
3987 return TREE_TYPE (TREE_OPERAND (base, 1));
3988 else if (TREE_CODE (base) == TARGET_MEM_REF)
3989 return TREE_TYPE (TMR_OFFSET (base));
3990 else
3991 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
3992 }
3993
3994 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
3995 offsetted by OFFSET units. */
3996
3997 tree
3998 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
3999 {
4000 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4001 build_fold_addr_expr (base),
4002 build_int_cst (ptr_type_node, offset));
4003 tree addr = build1 (ADDR_EXPR, type, ref);
4004 recompute_tree_invariant_for_addr_expr (addr);
4005 return addr;
4006 }
4007
4008 /* Similar except don't specify the TREE_TYPE
4009 and leave the TREE_SIDE_EFFECTS as 0.
4010 It is permissible for arguments to be null,
4011 or even garbage if their values do not matter. */
4012
4013 tree
4014 build_nt (enum tree_code code, ...)
4015 {
4016 tree t;
4017 int length;
4018 int i;
4019 va_list p;
4020
4021 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4022
4023 va_start (p, code);
4024
4025 t = make_node (code);
4026 length = TREE_CODE_LENGTH (code);
4027
4028 for (i = 0; i < length; i++)
4029 TREE_OPERAND (t, i) = va_arg (p, tree);
4030
4031 va_end (p);
4032 return t;
4033 }
4034
4035 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4036 tree VEC. */
4037
4038 tree
4039 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
4040 {
4041 tree ret, t;
4042 unsigned int ix;
4043
4044 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
4045 CALL_EXPR_FN (ret) = fn;
4046 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4047 FOR_EACH_VEC_ELT (tree, args, ix, t)
4048 CALL_EXPR_ARG (ret, ix) = t;
4049 return ret;
4050 }
4051 \f
4052 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4053 We do NOT enter this node in any sort of symbol table.
4054
4055 LOC is the location of the decl.
4056
4057 layout_decl is used to set up the decl's storage layout.
4058 Other slots are initialized to 0 or null pointers. */
4059
4060 tree
4061 build_decl_stat (location_t loc, enum tree_code code, tree name,
4062 tree type MEM_STAT_DECL)
4063 {
4064 tree t;
4065
4066 t = make_node_stat (code PASS_MEM_STAT);
4067 DECL_SOURCE_LOCATION (t) = loc;
4068
4069 /* if (type == error_mark_node)
4070 type = integer_type_node; */
4071 /* That is not done, deliberately, so that having error_mark_node
4072 as the type can suppress useless errors in the use of this variable. */
4073
4074 DECL_NAME (t) = name;
4075 TREE_TYPE (t) = type;
4076
4077 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4078 layout_decl (t, 0);
4079
4080 return t;
4081 }
4082
4083 /* Builds and returns function declaration with NAME and TYPE. */
4084
4085 tree
4086 build_fn_decl (const char *name, tree type)
4087 {
4088 tree id = get_identifier (name);
4089 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4090
4091 DECL_EXTERNAL (decl) = 1;
4092 TREE_PUBLIC (decl) = 1;
4093 DECL_ARTIFICIAL (decl) = 1;
4094 TREE_NOTHROW (decl) = 1;
4095
4096 return decl;
4097 }
4098
4099 VEC(tree,gc) *all_translation_units;
4100
4101 /* Builds a new translation-unit decl with name NAME, queues it in the
4102 global list of translation-unit decls and returns it. */
4103
4104 tree
4105 build_translation_unit_decl (tree name)
4106 {
4107 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4108 name, NULL_TREE);
4109 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4110 VEC_safe_push (tree, gc, all_translation_units, tu);
4111 return tu;
4112 }
4113
4114 \f
4115 /* BLOCK nodes are used to represent the structure of binding contours
4116 and declarations, once those contours have been exited and their contents
4117 compiled. This information is used for outputting debugging info. */
4118
4119 tree
4120 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4121 {
4122 tree block = make_node (BLOCK);
4123
4124 BLOCK_VARS (block) = vars;
4125 BLOCK_SUBBLOCKS (block) = subblocks;
4126 BLOCK_SUPERCONTEXT (block) = supercontext;
4127 BLOCK_CHAIN (block) = chain;
4128 return block;
4129 }
4130
4131 \f
4132 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4133
4134 LOC is the location to use in tree T. */
4135
4136 void
4137 protected_set_expr_location (tree t, location_t loc)
4138 {
4139 if (t && CAN_HAVE_LOCATION_P (t))
4140 SET_EXPR_LOCATION (t, loc);
4141 }
4142 \f
4143 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4144 is ATTRIBUTE. */
4145
4146 tree
4147 build_decl_attribute_variant (tree ddecl, tree attribute)
4148 {
4149 DECL_ATTRIBUTES (ddecl) = attribute;
4150 return ddecl;
4151 }
4152
4153 /* Borrowed from hashtab.c iterative_hash implementation. */
4154 #define mix(a,b,c) \
4155 { \
4156 a -= b; a -= c; a ^= (c>>13); \
4157 b -= c; b -= a; b ^= (a<< 8); \
4158 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4159 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4160 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4161 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4162 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4163 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4164 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4165 }
4166
4167
4168 /* Produce good hash value combining VAL and VAL2. */
4169 hashval_t
4170 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4171 {
4172 /* the golden ratio; an arbitrary value. */
4173 hashval_t a = 0x9e3779b9;
4174
4175 mix (a, val, val2);
4176 return val2;
4177 }
4178
4179 /* Produce good hash value combining VAL and VAL2. */
4180 hashval_t
4181 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4182 {
4183 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4184 return iterative_hash_hashval_t (val, val2);
4185 else
4186 {
4187 hashval_t a = (hashval_t) val;
4188 /* Avoid warnings about shifting of more than the width of the type on
4189 hosts that won't execute this path. */
4190 int zero = 0;
4191 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4192 mix (a, b, val2);
4193 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4194 {
4195 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4196 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4197 mix (a, b, val2);
4198 }
4199 return val2;
4200 }
4201 }
4202
4203 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4204 is ATTRIBUTE and its qualifiers are QUALS.
4205
4206 Record such modified types already made so we don't make duplicates. */
4207
4208 tree
4209 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4210 {
4211 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4212 {
4213 hashval_t hashcode = 0;
4214 tree ntype;
4215 enum tree_code code = TREE_CODE (ttype);
4216
4217 /* Building a distinct copy of a tagged type is inappropriate; it
4218 causes breakage in code that expects there to be a one-to-one
4219 relationship between a struct and its fields.
4220 build_duplicate_type is another solution (as used in
4221 handle_transparent_union_attribute), but that doesn't play well
4222 with the stronger C++ type identity model. */
4223 if (TREE_CODE (ttype) == RECORD_TYPE
4224 || TREE_CODE (ttype) == UNION_TYPE
4225 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4226 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4227 {
4228 warning (OPT_Wattributes,
4229 "ignoring attributes applied to %qT after definition",
4230 TYPE_MAIN_VARIANT (ttype));
4231 return build_qualified_type (ttype, quals);
4232 }
4233
4234 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4235 ntype = build_distinct_type_copy (ttype);
4236
4237 TYPE_ATTRIBUTES (ntype) = attribute;
4238
4239 hashcode = iterative_hash_object (code, hashcode);
4240 if (TREE_TYPE (ntype))
4241 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4242 hashcode);
4243 hashcode = attribute_hash_list (attribute, hashcode);
4244
4245 switch (TREE_CODE (ntype))
4246 {
4247 case FUNCTION_TYPE:
4248 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4249 break;
4250 case ARRAY_TYPE:
4251 if (TYPE_DOMAIN (ntype))
4252 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4253 hashcode);
4254 break;
4255 case INTEGER_TYPE:
4256 hashcode = iterative_hash_object
4257 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4258 hashcode = iterative_hash_object
4259 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4260 break;
4261 case REAL_TYPE:
4262 case FIXED_POINT_TYPE:
4263 {
4264 unsigned int precision = TYPE_PRECISION (ntype);
4265 hashcode = iterative_hash_object (precision, hashcode);
4266 }
4267 break;
4268 default:
4269 break;
4270 }
4271
4272 ntype = type_hash_canon (hashcode, ntype);
4273
4274 /* If the target-dependent attributes make NTYPE different from
4275 its canonical type, we will need to use structural equality
4276 checks for this type. */
4277 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4278 || !comp_type_attributes (ntype, ttype))
4279 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4280 else if (TYPE_CANONICAL (ntype) == ntype)
4281 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4282
4283 ttype = build_qualified_type (ntype, quals);
4284 }
4285 else if (TYPE_QUALS (ttype) != quals)
4286 ttype = build_qualified_type (ttype, quals);
4287
4288 return ttype;
4289 }
4290
4291 /* Compare two attributes for their value identity. Return true if the
4292 attribute values are known to be equal; otherwise return false.
4293 */
4294
4295 static bool
4296 attribute_value_equal (const_tree attr1, const_tree attr2)
4297 {
4298 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4299 return true;
4300
4301 if (TREE_VALUE (attr1) != NULL_TREE
4302 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4303 && TREE_VALUE (attr2) != NULL
4304 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4305 return (simple_cst_list_equal (TREE_VALUE (attr1),
4306 TREE_VALUE (attr2)) == 1);
4307
4308 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
4309 }
4310
4311 /* Return 0 if the attributes for two types are incompatible, 1 if they
4312 are compatible, and 2 if they are nearly compatible (which causes a
4313 warning to be generated). */
4314 int
4315 comp_type_attributes (const_tree type1, const_tree type2)
4316 {
4317 const_tree a1 = TYPE_ATTRIBUTES (type1);
4318 const_tree a2 = TYPE_ATTRIBUTES (type2);
4319 const_tree a;
4320
4321 if (a1 == a2)
4322 return 1;
4323 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
4324 {
4325 const struct attribute_spec *as;
4326 const_tree attr;
4327
4328 as = lookup_attribute_spec (TREE_PURPOSE (a));
4329 if (!as || as->affects_type_identity == false)
4330 continue;
4331
4332 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
4333 if (!attr || !attribute_value_equal (a, attr))
4334 break;
4335 }
4336 if (!a)
4337 {
4338 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
4339 {
4340 const struct attribute_spec *as;
4341
4342 as = lookup_attribute_spec (TREE_PURPOSE (a));
4343 if (!as || as->affects_type_identity == false)
4344 continue;
4345
4346 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
4347 break;
4348 /* We don't need to compare trees again, as we did this
4349 already in first loop. */
4350 }
4351 /* All types - affecting identity - are equal, so
4352 there is no need to call target hook for comparison. */
4353 if (!a)
4354 return 1;
4355 }
4356 /* As some type combinations - like default calling-convention - might
4357 be compatible, we have to call the target hook to get the final result. */
4358 return targetm.comp_type_attributes (type1, type2);
4359 }
4360
4361 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4362 is ATTRIBUTE.
4363
4364 Record such modified types already made so we don't make duplicates. */
4365
4366 tree
4367 build_type_attribute_variant (tree ttype, tree attribute)
4368 {
4369 return build_type_attribute_qual_variant (ttype, attribute,
4370 TYPE_QUALS (ttype));
4371 }
4372
4373
4374 /* Reset the expression *EXPR_P, a size or position.
4375
4376 ??? We could reset all non-constant sizes or positions. But it's cheap
4377 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4378
4379 We need to reset self-referential sizes or positions because they cannot
4380 be gimplified and thus can contain a CALL_EXPR after the gimplification
4381 is finished, which will run afoul of LTO streaming. And they need to be
4382 reset to something essentially dummy but not constant, so as to preserve
4383 the properties of the object they are attached to. */
4384
4385 static inline void
4386 free_lang_data_in_one_sizepos (tree *expr_p)
4387 {
4388 tree expr = *expr_p;
4389 if (CONTAINS_PLACEHOLDER_P (expr))
4390 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4391 }
4392
4393
4394 /* Reset all the fields in a binfo node BINFO. We only keep
4395 BINFO_VIRTUALS, which is used by gimple_fold_obj_type_ref. */
4396
4397 static void
4398 free_lang_data_in_binfo (tree binfo)
4399 {
4400 unsigned i;
4401 tree t;
4402
4403 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4404
4405 BINFO_VTABLE (binfo) = NULL_TREE;
4406 BINFO_BASE_ACCESSES (binfo) = NULL;
4407 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4408 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4409
4410 FOR_EACH_VEC_ELT (tree, BINFO_BASE_BINFOS (binfo), i, t)
4411 free_lang_data_in_binfo (t);
4412 }
4413
4414
4415 /* Reset all language specific information still present in TYPE. */
4416
4417 static void
4418 free_lang_data_in_type (tree type)
4419 {
4420 gcc_assert (TYPE_P (type));
4421
4422 /* Give the FE a chance to remove its own data first. */
4423 lang_hooks.free_lang_data (type);
4424
4425 TREE_LANG_FLAG_0 (type) = 0;
4426 TREE_LANG_FLAG_1 (type) = 0;
4427 TREE_LANG_FLAG_2 (type) = 0;
4428 TREE_LANG_FLAG_3 (type) = 0;
4429 TREE_LANG_FLAG_4 (type) = 0;
4430 TREE_LANG_FLAG_5 (type) = 0;
4431 TREE_LANG_FLAG_6 (type) = 0;
4432
4433 if (TREE_CODE (type) == FUNCTION_TYPE)
4434 {
4435 /* Remove the const and volatile qualifiers from arguments. The
4436 C++ front end removes them, but the C front end does not,
4437 leading to false ODR violation errors when merging two
4438 instances of the same function signature compiled by
4439 different front ends. */
4440 tree p;
4441
4442 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4443 {
4444 tree arg_type = TREE_VALUE (p);
4445
4446 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4447 {
4448 int quals = TYPE_QUALS (arg_type)
4449 & ~TYPE_QUAL_CONST
4450 & ~TYPE_QUAL_VOLATILE;
4451 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4452 free_lang_data_in_type (TREE_VALUE (p));
4453 }
4454 }
4455 }
4456
4457 /* Remove members that are not actually FIELD_DECLs from the field
4458 list of an aggregate. These occur in C++. */
4459 if (RECORD_OR_UNION_TYPE_P (type))
4460 {
4461 tree prev, member;
4462
4463 /* Note that TYPE_FIELDS can be shared across distinct
4464 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4465 to be removed, we cannot set its TREE_CHAIN to NULL.
4466 Otherwise, we would not be able to find all the other fields
4467 in the other instances of this TREE_TYPE.
4468
4469 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4470 prev = NULL_TREE;
4471 member = TYPE_FIELDS (type);
4472 while (member)
4473 {
4474 if (TREE_CODE (member) == FIELD_DECL)
4475 {
4476 if (prev)
4477 TREE_CHAIN (prev) = member;
4478 else
4479 TYPE_FIELDS (type) = member;
4480 prev = member;
4481 }
4482
4483 member = TREE_CHAIN (member);
4484 }
4485
4486 if (prev)
4487 TREE_CHAIN (prev) = NULL_TREE;
4488 else
4489 TYPE_FIELDS (type) = NULL_TREE;
4490
4491 TYPE_METHODS (type) = NULL_TREE;
4492 if (TYPE_BINFO (type))
4493 free_lang_data_in_binfo (TYPE_BINFO (type));
4494 }
4495 else
4496 {
4497 /* For non-aggregate types, clear out the language slot (which
4498 overloads TYPE_BINFO). */
4499 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4500
4501 if (INTEGRAL_TYPE_P (type)
4502 || SCALAR_FLOAT_TYPE_P (type)
4503 || FIXED_POINT_TYPE_P (type))
4504 {
4505 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4506 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4507 }
4508 }
4509
4510 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4511 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4512
4513 if (debug_info_level < DINFO_LEVEL_TERSE
4514 || (TYPE_CONTEXT (type)
4515 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_DECL
4516 && TREE_CODE (TYPE_CONTEXT (type)) != NAMESPACE_DECL))
4517 TYPE_CONTEXT (type) = NULL_TREE;
4518
4519 if (debug_info_level < DINFO_LEVEL_TERSE)
4520 TYPE_STUB_DECL (type) = NULL_TREE;
4521 }
4522
4523
4524 /* Return true if DECL may need an assembler name to be set. */
4525
4526 static inline bool
4527 need_assembler_name_p (tree decl)
4528 {
4529 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4530 if (TREE_CODE (decl) != FUNCTION_DECL
4531 && TREE_CODE (decl) != VAR_DECL)
4532 return false;
4533
4534 /* If DECL already has its assembler name set, it does not need a
4535 new one. */
4536 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4537 || DECL_ASSEMBLER_NAME_SET_P (decl))
4538 return false;
4539
4540 /* Abstract decls do not need an assembler name. */
4541 if (DECL_ABSTRACT (decl))
4542 return false;
4543
4544 /* For VAR_DECLs, only static, public and external symbols need an
4545 assembler name. */
4546 if (TREE_CODE (decl) == VAR_DECL
4547 && !TREE_STATIC (decl)
4548 && !TREE_PUBLIC (decl)
4549 && !DECL_EXTERNAL (decl))
4550 return false;
4551
4552 if (TREE_CODE (decl) == FUNCTION_DECL)
4553 {
4554 /* Do not set assembler name on builtins. Allow RTL expansion to
4555 decide whether to expand inline or via a regular call. */
4556 if (DECL_BUILT_IN (decl)
4557 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4558 return false;
4559
4560 /* Functions represented in the callgraph need an assembler name. */
4561 if (cgraph_get_node (decl) != NULL)
4562 return true;
4563
4564 /* Unused and not public functions don't need an assembler name. */
4565 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4566 return false;
4567 }
4568
4569 return true;
4570 }
4571
4572
4573 /* Reset all language specific information still present in symbol
4574 DECL. */
4575
4576 static void
4577 free_lang_data_in_decl (tree decl)
4578 {
4579 gcc_assert (DECL_P (decl));
4580
4581 /* Give the FE a chance to remove its own data first. */
4582 lang_hooks.free_lang_data (decl);
4583
4584 TREE_LANG_FLAG_0 (decl) = 0;
4585 TREE_LANG_FLAG_1 (decl) = 0;
4586 TREE_LANG_FLAG_2 (decl) = 0;
4587 TREE_LANG_FLAG_3 (decl) = 0;
4588 TREE_LANG_FLAG_4 (decl) = 0;
4589 TREE_LANG_FLAG_5 (decl) = 0;
4590 TREE_LANG_FLAG_6 (decl) = 0;
4591
4592 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4593 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4594 if (TREE_CODE (decl) == FIELD_DECL)
4595 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4596
4597 /* DECL_FCONTEXT is only used for debug info generation. */
4598 if (TREE_CODE (decl) == FIELD_DECL
4599 && debug_info_level < DINFO_LEVEL_TERSE)
4600 DECL_FCONTEXT (decl) = NULL_TREE;
4601
4602 if (TREE_CODE (decl) == FUNCTION_DECL)
4603 {
4604 if (gimple_has_body_p (decl))
4605 {
4606 tree t;
4607
4608 /* If DECL has a gimple body, then the context for its
4609 arguments must be DECL. Otherwise, it doesn't really
4610 matter, as we will not be emitting any code for DECL. In
4611 general, there may be other instances of DECL created by
4612 the front end and since PARM_DECLs are generally shared,
4613 their DECL_CONTEXT changes as the replicas of DECL are
4614 created. The only time where DECL_CONTEXT is important
4615 is for the FUNCTION_DECLs that have a gimple body (since
4616 the PARM_DECL will be used in the function's body). */
4617 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4618 DECL_CONTEXT (t) = decl;
4619 }
4620
4621 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4622 At this point, it is not needed anymore. */
4623 DECL_SAVED_TREE (decl) = NULL_TREE;
4624
4625 /* Clear the abstract origin if it refers to a method. Otherwise
4626 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
4627 origin will not be output correctly. */
4628 if (DECL_ABSTRACT_ORIGIN (decl)
4629 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
4630 && RECORD_OR_UNION_TYPE_P
4631 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
4632 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
4633
4634 /* Sometimes the C++ frontend doesn't manage to transform a temporary
4635 DECL_VINDEX referring to itself into a vtable slot number as it
4636 should. Happens with functions that are copied and then forgotten
4637 about. Just clear it, it won't matter anymore. */
4638 if (DECL_VINDEX (decl) && !host_integerp (DECL_VINDEX (decl), 0))
4639 DECL_VINDEX (decl) = NULL_TREE;
4640 }
4641 else if (TREE_CODE (decl) == VAR_DECL)
4642 {
4643 if ((DECL_EXTERNAL (decl)
4644 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4645 || (decl_function_context (decl) && !TREE_STATIC (decl)))
4646 DECL_INITIAL (decl) = NULL_TREE;
4647 }
4648 else if (TREE_CODE (decl) == TYPE_DECL)
4649 DECL_INITIAL (decl) = NULL_TREE;
4650 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
4651 && DECL_INITIAL (decl)
4652 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
4653 {
4654 /* Strip builtins from the translation-unit BLOCK. We still have
4655 targets without builtin_decl support and also builtins are
4656 shared nodes and thus we can't use TREE_CHAIN in multiple
4657 lists. */
4658 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
4659 while (*nextp)
4660 {
4661 tree var = *nextp;
4662 if (TREE_CODE (var) == FUNCTION_DECL
4663 && DECL_BUILT_IN (var))
4664 *nextp = TREE_CHAIN (var);
4665 else
4666 nextp = &TREE_CHAIN (var);
4667 }
4668 }
4669 }
4670
4671
4672 /* Data used when collecting DECLs and TYPEs for language data removal. */
4673
4674 struct free_lang_data_d
4675 {
4676 /* Worklist to avoid excessive recursion. */
4677 VEC(tree,heap) *worklist;
4678
4679 /* Set of traversed objects. Used to avoid duplicate visits. */
4680 struct pointer_set_t *pset;
4681
4682 /* Array of symbols to process with free_lang_data_in_decl. */
4683 VEC(tree,heap) *decls;
4684
4685 /* Array of types to process with free_lang_data_in_type. */
4686 VEC(tree,heap) *types;
4687 };
4688
4689
4690 /* Save all language fields needed to generate proper debug information
4691 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4692
4693 static void
4694 save_debug_info_for_decl (tree t)
4695 {
4696 /*struct saved_debug_info_d *sdi;*/
4697
4698 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4699
4700 /* FIXME. Partial implementation for saving debug info removed. */
4701 }
4702
4703
4704 /* Save all language fields needed to generate proper debug information
4705 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4706
4707 static void
4708 save_debug_info_for_type (tree t)
4709 {
4710 /*struct saved_debug_info_d *sdi;*/
4711
4712 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4713
4714 /* FIXME. Partial implementation for saving debug info removed. */
4715 }
4716
4717
4718 /* Add type or decl T to one of the list of tree nodes that need their
4719 language data removed. The lists are held inside FLD. */
4720
4721 static void
4722 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4723 {
4724 if (DECL_P (t))
4725 {
4726 VEC_safe_push (tree, heap, fld->decls, t);
4727 if (debug_info_level > DINFO_LEVEL_TERSE)
4728 save_debug_info_for_decl (t);
4729 }
4730 else if (TYPE_P (t))
4731 {
4732 VEC_safe_push (tree, heap, fld->types, t);
4733 if (debug_info_level > DINFO_LEVEL_TERSE)
4734 save_debug_info_for_type (t);
4735 }
4736 else
4737 gcc_unreachable ();
4738 }
4739
4740 /* Push tree node T into FLD->WORKLIST. */
4741
4742 static inline void
4743 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4744 {
4745 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4746 VEC_safe_push (tree, heap, fld->worklist, (t));
4747 }
4748
4749
4750 /* Operand callback helper for free_lang_data_in_node. *TP is the
4751 subtree operand being considered. */
4752
4753 static tree
4754 find_decls_types_r (tree *tp, int *ws, void *data)
4755 {
4756 tree t = *tp;
4757 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4758
4759 if (TREE_CODE (t) == TREE_LIST)
4760 return NULL_TREE;
4761
4762 /* Language specific nodes will be removed, so there is no need
4763 to gather anything under them. */
4764 if (is_lang_specific (t))
4765 {
4766 *ws = 0;
4767 return NULL_TREE;
4768 }
4769
4770 if (DECL_P (t))
4771 {
4772 /* Note that walk_tree does not traverse every possible field in
4773 decls, so we have to do our own traversals here. */
4774 add_tree_to_fld_list (t, fld);
4775
4776 fld_worklist_push (DECL_NAME (t), fld);
4777 fld_worklist_push (DECL_CONTEXT (t), fld);
4778 fld_worklist_push (DECL_SIZE (t), fld);
4779 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4780
4781 /* We are going to remove everything under DECL_INITIAL for
4782 TYPE_DECLs. No point walking them. */
4783 if (TREE_CODE (t) != TYPE_DECL)
4784 fld_worklist_push (DECL_INITIAL (t), fld);
4785
4786 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4787 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4788
4789 if (TREE_CODE (t) == FUNCTION_DECL)
4790 {
4791 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4792 fld_worklist_push (DECL_RESULT (t), fld);
4793 }
4794 else if (TREE_CODE (t) == TYPE_DECL)
4795 {
4796 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4797 fld_worklist_push (DECL_VINDEX (t), fld);
4798 }
4799 else if (TREE_CODE (t) == FIELD_DECL)
4800 {
4801 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4802 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4803 fld_worklist_push (DECL_QUALIFIER (t), fld);
4804 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4805 fld_worklist_push (DECL_FCONTEXT (t), fld);
4806 }
4807 else if (TREE_CODE (t) == VAR_DECL)
4808 {
4809 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4810 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4811 }
4812
4813 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4814 && DECL_HAS_VALUE_EXPR_P (t))
4815 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4816
4817 if (TREE_CODE (t) != FIELD_DECL
4818 && TREE_CODE (t) != TYPE_DECL)
4819 fld_worklist_push (TREE_CHAIN (t), fld);
4820 *ws = 0;
4821 }
4822 else if (TYPE_P (t))
4823 {
4824 /* Note that walk_tree does not traverse every possible field in
4825 types, so we have to do our own traversals here. */
4826 add_tree_to_fld_list (t, fld);
4827
4828 if (!RECORD_OR_UNION_TYPE_P (t))
4829 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4830 fld_worklist_push (TYPE_SIZE (t), fld);
4831 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4832 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4833 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4834 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4835 fld_worklist_push (TYPE_NAME (t), fld);
4836 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
4837 them and thus do not and want not to reach unused pointer types
4838 this way. */
4839 if (!POINTER_TYPE_P (t))
4840 fld_worklist_push (TYPE_MINVAL (t), fld);
4841 if (!RECORD_OR_UNION_TYPE_P (t))
4842 fld_worklist_push (TYPE_MAXVAL (t), fld);
4843 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4844 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
4845 do not and want not to reach unused variants this way. */
4846 fld_worklist_push (TYPE_CONTEXT (t), fld);
4847 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
4848 and want not to reach unused types this way. */
4849
4850 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4851 {
4852 unsigned i;
4853 tree tem;
4854 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4855 i, tem); ++i)
4856 fld_worklist_push (TREE_TYPE (tem), fld);
4857 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4858 if (tem
4859 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4860 && TREE_CODE (tem) == TREE_LIST)
4861 do
4862 {
4863 fld_worklist_push (TREE_VALUE (tem), fld);
4864 tem = TREE_CHAIN (tem);
4865 }
4866 while (tem);
4867 }
4868 if (RECORD_OR_UNION_TYPE_P (t))
4869 {
4870 tree tem;
4871 /* Push all TYPE_FIELDS - there can be interleaving interesting
4872 and non-interesting things. */
4873 tem = TYPE_FIELDS (t);
4874 while (tem)
4875 {
4876 if (TREE_CODE (tem) == FIELD_DECL)
4877 fld_worklist_push (tem, fld);
4878 tem = TREE_CHAIN (tem);
4879 }
4880 }
4881
4882 fld_worklist_push (TREE_CHAIN (t), fld);
4883 *ws = 0;
4884 }
4885 else if (TREE_CODE (t) == BLOCK)
4886 {
4887 tree tem;
4888 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4889 fld_worklist_push (tem, fld);
4890 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4891 fld_worklist_push (tem, fld);
4892 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4893 }
4894
4895 if (TREE_CODE (t) != IDENTIFIER_NODE)
4896 fld_worklist_push (TREE_TYPE (t), fld);
4897
4898 return NULL_TREE;
4899 }
4900
4901
4902 /* Find decls and types in T. */
4903
4904 static void
4905 find_decls_types (tree t, struct free_lang_data_d *fld)
4906 {
4907 while (1)
4908 {
4909 if (!pointer_set_contains (fld->pset, t))
4910 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4911 if (VEC_empty (tree, fld->worklist))
4912 break;
4913 t = VEC_pop (tree, fld->worklist);
4914 }
4915 }
4916
4917 /* Translate all the types in LIST with the corresponding runtime
4918 types. */
4919
4920 static tree
4921 get_eh_types_for_runtime (tree list)
4922 {
4923 tree head, prev;
4924
4925 if (list == NULL_TREE)
4926 return NULL_TREE;
4927
4928 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4929 prev = head;
4930 list = TREE_CHAIN (list);
4931 while (list)
4932 {
4933 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4934 TREE_CHAIN (prev) = n;
4935 prev = TREE_CHAIN (prev);
4936 list = TREE_CHAIN (list);
4937 }
4938
4939 return head;
4940 }
4941
4942
4943 /* Find decls and types referenced in EH region R and store them in
4944 FLD->DECLS and FLD->TYPES. */
4945
4946 static void
4947 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4948 {
4949 switch (r->type)
4950 {
4951 case ERT_CLEANUP:
4952 break;
4953
4954 case ERT_TRY:
4955 {
4956 eh_catch c;
4957
4958 /* The types referenced in each catch must first be changed to the
4959 EH types used at runtime. This removes references to FE types
4960 in the region. */
4961 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4962 {
4963 c->type_list = get_eh_types_for_runtime (c->type_list);
4964 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4965 }
4966 }
4967 break;
4968
4969 case ERT_ALLOWED_EXCEPTIONS:
4970 r->u.allowed.type_list
4971 = get_eh_types_for_runtime (r->u.allowed.type_list);
4972 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4973 break;
4974
4975 case ERT_MUST_NOT_THROW:
4976 walk_tree (&r->u.must_not_throw.failure_decl,
4977 find_decls_types_r, fld, fld->pset);
4978 break;
4979 }
4980 }
4981
4982
4983 /* Find decls and types referenced in cgraph node N and store them in
4984 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4985 look for *every* kind of DECL and TYPE node reachable from N,
4986 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4987 NAMESPACE_DECLs, etc). */
4988
4989 static void
4990 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4991 {
4992 basic_block bb;
4993 struct function *fn;
4994 unsigned ix;
4995 tree t;
4996
4997 find_decls_types (n->decl, fld);
4998
4999 if (!gimple_has_body_p (n->decl))
5000 return;
5001
5002 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5003
5004 fn = DECL_STRUCT_FUNCTION (n->decl);
5005
5006 /* Traverse locals. */
5007 FOR_EACH_LOCAL_DECL (fn, ix, t)
5008 find_decls_types (t, fld);
5009
5010 /* Traverse EH regions in FN. */
5011 {
5012 eh_region r;
5013 FOR_ALL_EH_REGION_FN (r, fn)
5014 find_decls_types_in_eh_region (r, fld);
5015 }
5016
5017 /* Traverse every statement in FN. */
5018 FOR_EACH_BB_FN (bb, fn)
5019 {
5020 gimple_stmt_iterator si;
5021 unsigned i;
5022
5023 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5024 {
5025 gimple phi = gsi_stmt (si);
5026
5027 for (i = 0; i < gimple_phi_num_args (phi); i++)
5028 {
5029 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5030 find_decls_types (*arg_p, fld);
5031 }
5032 }
5033
5034 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5035 {
5036 gimple stmt = gsi_stmt (si);
5037
5038 for (i = 0; i < gimple_num_ops (stmt); i++)
5039 {
5040 tree arg = gimple_op (stmt, i);
5041 find_decls_types (arg, fld);
5042 }
5043 }
5044 }
5045 }
5046
5047
5048 /* Find decls and types referenced in varpool node N and store them in
5049 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5050 look for *every* kind of DECL and TYPE node reachable from N,
5051 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5052 NAMESPACE_DECLs, etc). */
5053
5054 static void
5055 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
5056 {
5057 find_decls_types (v->decl, fld);
5058 }
5059
5060 /* If T needs an assembler name, have one created for it. */
5061
5062 void
5063 assign_assembler_name_if_neeeded (tree t)
5064 {
5065 if (need_assembler_name_p (t))
5066 {
5067 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5068 diagnostics that use input_location to show locus
5069 information. The problem here is that, at this point,
5070 input_location is generally anchored to the end of the file
5071 (since the parser is long gone), so we don't have a good
5072 position to pin it to.
5073
5074 To alleviate this problem, this uses the location of T's
5075 declaration. Examples of this are
5076 testsuite/g++.dg/template/cond2.C and
5077 testsuite/g++.dg/template/pr35240.C. */
5078 location_t saved_location = input_location;
5079 input_location = DECL_SOURCE_LOCATION (t);
5080
5081 decl_assembler_name (t);
5082
5083 input_location = saved_location;
5084 }
5085 }
5086
5087
5088 /* Free language specific information for every operand and expression
5089 in every node of the call graph. This process operates in three stages:
5090
5091 1- Every callgraph node and varpool node is traversed looking for
5092 decls and types embedded in them. This is a more exhaustive
5093 search than that done by find_referenced_vars, because it will
5094 also collect individual fields, decls embedded in types, etc.
5095
5096 2- All the decls found are sent to free_lang_data_in_decl.
5097
5098 3- All the types found are sent to free_lang_data_in_type.
5099
5100 The ordering between decls and types is important because
5101 free_lang_data_in_decl sets assembler names, which includes
5102 mangling. So types cannot be freed up until assembler names have
5103 been set up. */
5104
5105 static void
5106 free_lang_data_in_cgraph (void)
5107 {
5108 struct cgraph_node *n;
5109 struct varpool_node *v;
5110 struct free_lang_data_d fld;
5111 tree t;
5112 unsigned i;
5113 alias_pair *p;
5114
5115 /* Initialize sets and arrays to store referenced decls and types. */
5116 fld.pset = pointer_set_create ();
5117 fld.worklist = NULL;
5118 fld.decls = VEC_alloc (tree, heap, 100);
5119 fld.types = VEC_alloc (tree, heap, 100);
5120
5121 /* Find decls and types in the body of every function in the callgraph. */
5122 for (n = cgraph_nodes; n; n = n->next)
5123 find_decls_types_in_node (n, &fld);
5124
5125 FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p)
5126 find_decls_types (p->decl, &fld);
5127
5128 /* Find decls and types in every varpool symbol. */
5129 for (v = varpool_nodes; v; v = v->next)
5130 find_decls_types_in_var (v, &fld);
5131
5132 /* Set the assembler name on every decl found. We need to do this
5133 now because free_lang_data_in_decl will invalidate data needed
5134 for mangling. This breaks mangling on interdependent decls. */
5135 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5136 assign_assembler_name_if_neeeded (t);
5137
5138 /* Traverse every decl found freeing its language data. */
5139 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5140 free_lang_data_in_decl (t);
5141
5142 /* Traverse every type found freeing its language data. */
5143 FOR_EACH_VEC_ELT (tree, fld.types, i, t)
5144 free_lang_data_in_type (t);
5145
5146 pointer_set_destroy (fld.pset);
5147 VEC_free (tree, heap, fld.worklist);
5148 VEC_free (tree, heap, fld.decls);
5149 VEC_free (tree, heap, fld.types);
5150 }
5151
5152
5153 /* Free resources that are used by FE but are not needed once they are done. */
5154
5155 static unsigned
5156 free_lang_data (void)
5157 {
5158 unsigned i;
5159
5160 /* If we are the LTO frontend we have freed lang-specific data already. */
5161 if (in_lto_p
5162 || !flag_generate_lto)
5163 return 0;
5164
5165 /* Allocate and assign alias sets to the standard integer types
5166 while the slots are still in the way the frontends generated them. */
5167 for (i = 0; i < itk_none; ++i)
5168 if (integer_types[i])
5169 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5170
5171 /* Traverse the IL resetting language specific information for
5172 operands, expressions, etc. */
5173 free_lang_data_in_cgraph ();
5174
5175 /* Create gimple variants for common types. */
5176 ptrdiff_type_node = integer_type_node;
5177 fileptr_type_node = ptr_type_node;
5178 if (TREE_CODE (boolean_type_node) != BOOLEAN_TYPE
5179 || (TYPE_MODE (boolean_type_node)
5180 != mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0))
5181 || TYPE_PRECISION (boolean_type_node) != 1
5182 || !TYPE_UNSIGNED (boolean_type_node))
5183 {
5184 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5185 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5186 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5187 TYPE_PRECISION (boolean_type_node) = 1;
5188 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5189 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5190 }
5191
5192 /* Unify char_type_node with its properly signed variant. */
5193 if (TYPE_UNSIGNED (char_type_node))
5194 unsigned_char_type_node = char_type_node;
5195 else
5196 signed_char_type_node = char_type_node;
5197
5198 /* Reset some langhooks. Do not reset types_compatible_p, it may
5199 still be used indirectly via the get_alias_set langhook. */
5200 lang_hooks.callgraph.analyze_expr = NULL;
5201 lang_hooks.dwarf_name = lhd_dwarf_name;
5202 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5203 /* We do not want the default decl_assembler_name implementation,
5204 rather if we have fixed everything we want a wrapper around it
5205 asserting that all non-local symbols already got their assembler
5206 name and only produce assembler names for local symbols. Or rather
5207 make sure we never call decl_assembler_name on local symbols and
5208 devise a separate, middle-end private scheme for it. */
5209
5210 /* Reset diagnostic machinery. */
5211 diagnostic_starter (global_dc) = default_tree_diagnostic_starter;
5212 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
5213 diagnostic_format_decoder (global_dc) = default_tree_printer;
5214
5215 return 0;
5216 }
5217
5218
5219 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5220 {
5221 {
5222 SIMPLE_IPA_PASS,
5223 "*free_lang_data", /* name */
5224 NULL, /* gate */
5225 free_lang_data, /* execute */
5226 NULL, /* sub */
5227 NULL, /* next */
5228 0, /* static_pass_number */
5229 TV_IPA_FREE_LANG_DATA, /* tv_id */
5230 0, /* properties_required */
5231 0, /* properties_provided */
5232 0, /* properties_destroyed */
5233 0, /* todo_flags_start */
5234 TODO_ggc_collect /* todo_flags_finish */
5235 }
5236 };
5237
5238 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5239 or zero if not.
5240
5241 We try both `text' and `__text__', ATTR may be either one. */
5242 /* ??? It might be a reasonable simplification to require ATTR to be only
5243 `text'. One might then also require attribute lists to be stored in
5244 their canonicalized form. */
5245
5246 static int
5247 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
5248 {
5249 int ident_len;
5250 const char *p;
5251
5252 if (TREE_CODE (ident) != IDENTIFIER_NODE)
5253 return 0;
5254
5255 p = IDENTIFIER_POINTER (ident);
5256 ident_len = IDENTIFIER_LENGTH (ident);
5257
5258 if (ident_len == attr_len
5259 && strcmp (attr, p) == 0)
5260 return 1;
5261
5262 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
5263 if (attr[0] == '_')
5264 {
5265 gcc_assert (attr[1] == '_');
5266 gcc_assert (attr[attr_len - 2] == '_');
5267 gcc_assert (attr[attr_len - 1] == '_');
5268 if (ident_len == attr_len - 4
5269 && strncmp (attr + 2, p, attr_len - 4) == 0)
5270 return 1;
5271 }
5272 else
5273 {
5274 if (ident_len == attr_len + 4
5275 && p[0] == '_' && p[1] == '_'
5276 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5277 && strncmp (attr, p + 2, attr_len) == 0)
5278 return 1;
5279 }
5280
5281 return 0;
5282 }
5283
5284 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5285 or zero if not.
5286
5287 We try both `text' and `__text__', ATTR may be either one. */
5288
5289 int
5290 is_attribute_p (const char *attr, const_tree ident)
5291 {
5292 return is_attribute_with_length_p (attr, strlen (attr), ident);
5293 }
5294
5295 /* Given an attribute name and a list of attributes, return a pointer to the
5296 attribute's list element if the attribute is part of the list, or NULL_TREE
5297 if not found. If the attribute appears more than once, this only
5298 returns the first occurrence; the TREE_CHAIN of the return value should
5299 be passed back in if further occurrences are wanted. */
5300
5301 tree
5302 lookup_attribute (const char *attr_name, tree list)
5303 {
5304 tree l;
5305 size_t attr_len = strlen (attr_name);
5306
5307 for (l = list; l; l = TREE_CHAIN (l))
5308 {
5309 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5310 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5311 return l;
5312 }
5313 return NULL_TREE;
5314 }
5315
5316 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5317 modified list. */
5318
5319 tree
5320 remove_attribute (const char *attr_name, tree list)
5321 {
5322 tree *p;
5323 size_t attr_len = strlen (attr_name);
5324
5325 for (p = &list; *p; )
5326 {
5327 tree l = *p;
5328 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5329 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5330 *p = TREE_CHAIN (l);
5331 else
5332 p = &TREE_CHAIN (l);
5333 }
5334
5335 return list;
5336 }
5337
5338 /* Return an attribute list that is the union of a1 and a2. */
5339
5340 tree
5341 merge_attributes (tree a1, tree a2)
5342 {
5343 tree attributes;
5344
5345 /* Either one unset? Take the set one. */
5346
5347 if ((attributes = a1) == 0)
5348 attributes = a2;
5349
5350 /* One that completely contains the other? Take it. */
5351
5352 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5353 {
5354 if (attribute_list_contained (a2, a1))
5355 attributes = a2;
5356 else
5357 {
5358 /* Pick the longest list, and hang on the other list. */
5359
5360 if (list_length (a1) < list_length (a2))
5361 attributes = a2, a2 = a1;
5362
5363 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5364 {
5365 tree a;
5366 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5367 attributes);
5368 a != NULL_TREE && !attribute_value_equal (a, a2);
5369 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5370 TREE_CHAIN (a)))
5371 ;
5372 if (a == NULL_TREE)
5373 {
5374 a1 = copy_node (a2);
5375 TREE_CHAIN (a1) = attributes;
5376 attributes = a1;
5377 }
5378 }
5379 }
5380 }
5381 return attributes;
5382 }
5383
5384 /* Given types T1 and T2, merge their attributes and return
5385 the result. */
5386
5387 tree
5388 merge_type_attributes (tree t1, tree t2)
5389 {
5390 return merge_attributes (TYPE_ATTRIBUTES (t1),
5391 TYPE_ATTRIBUTES (t2));
5392 }
5393
5394 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5395 the result. */
5396
5397 tree
5398 merge_decl_attributes (tree olddecl, tree newdecl)
5399 {
5400 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5401 DECL_ATTRIBUTES (newdecl));
5402 }
5403
5404 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5405
5406 /* Specialization of merge_decl_attributes for various Windows targets.
5407
5408 This handles the following situation:
5409
5410 __declspec (dllimport) int foo;
5411 int foo;
5412
5413 The second instance of `foo' nullifies the dllimport. */
5414
5415 tree
5416 merge_dllimport_decl_attributes (tree old, tree new_tree)
5417 {
5418 tree a;
5419 int delete_dllimport_p = 1;
5420
5421 /* What we need to do here is remove from `old' dllimport if it doesn't
5422 appear in `new'. dllimport behaves like extern: if a declaration is
5423 marked dllimport and a definition appears later, then the object
5424 is not dllimport'd. We also remove a `new' dllimport if the old list
5425 contains dllexport: dllexport always overrides dllimport, regardless
5426 of the order of declaration. */
5427 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5428 delete_dllimport_p = 0;
5429 else if (DECL_DLLIMPORT_P (new_tree)
5430 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5431 {
5432 DECL_DLLIMPORT_P (new_tree) = 0;
5433 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5434 "dllimport ignored", new_tree);
5435 }
5436 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5437 {
5438 /* Warn about overriding a symbol that has already been used, e.g.:
5439 extern int __attribute__ ((dllimport)) foo;
5440 int* bar () {return &foo;}
5441 int foo;
5442 */
5443 if (TREE_USED (old))
5444 {
5445 warning (0, "%q+D redeclared without dllimport attribute "
5446 "after being referenced with dll linkage", new_tree);
5447 /* If we have used a variable's address with dllimport linkage,
5448 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5449 decl may already have had TREE_CONSTANT computed.
5450 We still remove the attribute so that assembler code refers
5451 to '&foo rather than '_imp__foo'. */
5452 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5453 DECL_DLLIMPORT_P (new_tree) = 1;
5454 }
5455
5456 /* Let an inline definition silently override the external reference,
5457 but otherwise warn about attribute inconsistency. */
5458 else if (TREE_CODE (new_tree) == VAR_DECL
5459 || !DECL_DECLARED_INLINE_P (new_tree))
5460 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5461 "previous dllimport ignored", new_tree);
5462 }
5463 else
5464 delete_dllimport_p = 0;
5465
5466 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5467
5468 if (delete_dllimport_p)
5469 {
5470 tree prev, t;
5471 const size_t attr_len = strlen ("dllimport");
5472
5473 /* Scan the list for dllimport and delete it. */
5474 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
5475 {
5476 if (is_attribute_with_length_p ("dllimport", attr_len,
5477 TREE_PURPOSE (t)))
5478 {
5479 if (prev == NULL_TREE)
5480 a = TREE_CHAIN (a);
5481 else
5482 TREE_CHAIN (prev) = TREE_CHAIN (t);
5483 break;
5484 }
5485 }
5486 }
5487
5488 return a;
5489 }
5490
5491 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5492 struct attribute_spec.handler. */
5493
5494 tree
5495 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5496 bool *no_add_attrs)
5497 {
5498 tree node = *pnode;
5499 bool is_dllimport;
5500
5501 /* These attributes may apply to structure and union types being created,
5502 but otherwise should pass to the declaration involved. */
5503 if (!DECL_P (node))
5504 {
5505 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5506 | (int) ATTR_FLAG_ARRAY_NEXT))
5507 {
5508 *no_add_attrs = true;
5509 return tree_cons (name, args, NULL_TREE);
5510 }
5511 if (TREE_CODE (node) == RECORD_TYPE
5512 || TREE_CODE (node) == UNION_TYPE)
5513 {
5514 node = TYPE_NAME (node);
5515 if (!node)
5516 return NULL_TREE;
5517 }
5518 else
5519 {
5520 warning (OPT_Wattributes, "%qE attribute ignored",
5521 name);
5522 *no_add_attrs = true;
5523 return NULL_TREE;
5524 }
5525 }
5526
5527 if (TREE_CODE (node) != FUNCTION_DECL
5528 && TREE_CODE (node) != VAR_DECL
5529 && TREE_CODE (node) != TYPE_DECL)
5530 {
5531 *no_add_attrs = true;
5532 warning (OPT_Wattributes, "%qE attribute ignored",
5533 name);
5534 return NULL_TREE;
5535 }
5536
5537 if (TREE_CODE (node) == TYPE_DECL
5538 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5539 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5540 {
5541 *no_add_attrs = true;
5542 warning (OPT_Wattributes, "%qE attribute ignored",
5543 name);
5544 return NULL_TREE;
5545 }
5546
5547 is_dllimport = is_attribute_p ("dllimport", name);
5548
5549 /* Report error on dllimport ambiguities seen now before they cause
5550 any damage. */
5551 if (is_dllimport)
5552 {
5553 /* Honor any target-specific overrides. */
5554 if (!targetm.valid_dllimport_attribute_p (node))
5555 *no_add_attrs = true;
5556
5557 else if (TREE_CODE (node) == FUNCTION_DECL
5558 && DECL_DECLARED_INLINE_P (node))
5559 {
5560 warning (OPT_Wattributes, "inline function %q+D declared as "
5561 " dllimport: attribute ignored", node);
5562 *no_add_attrs = true;
5563 }
5564 /* Like MS, treat definition of dllimported variables and
5565 non-inlined functions on declaration as syntax errors. */
5566 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5567 {
5568 error ("function %q+D definition is marked dllimport", node);
5569 *no_add_attrs = true;
5570 }
5571
5572 else if (TREE_CODE (node) == VAR_DECL)
5573 {
5574 if (DECL_INITIAL (node))
5575 {
5576 error ("variable %q+D definition is marked dllimport",
5577 node);
5578 *no_add_attrs = true;
5579 }
5580
5581 /* `extern' needn't be specified with dllimport.
5582 Specify `extern' now and hope for the best. Sigh. */
5583 DECL_EXTERNAL (node) = 1;
5584 /* Also, implicitly give dllimport'd variables declared within
5585 a function global scope, unless declared static. */
5586 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5587 TREE_PUBLIC (node) = 1;
5588 }
5589
5590 if (*no_add_attrs == false)
5591 DECL_DLLIMPORT_P (node) = 1;
5592 }
5593 else if (TREE_CODE (node) == FUNCTION_DECL
5594 && DECL_DECLARED_INLINE_P (node)
5595 && flag_keep_inline_dllexport)
5596 /* An exported function, even if inline, must be emitted. */
5597 DECL_EXTERNAL (node) = 0;
5598
5599 /* Report error if symbol is not accessible at global scope. */
5600 if (!TREE_PUBLIC (node)
5601 && (TREE_CODE (node) == VAR_DECL
5602 || TREE_CODE (node) == FUNCTION_DECL))
5603 {
5604 error ("external linkage required for symbol %q+D because of "
5605 "%qE attribute", node, name);
5606 *no_add_attrs = true;
5607 }
5608
5609 /* A dllexport'd entity must have default visibility so that other
5610 program units (shared libraries or the main executable) can see
5611 it. A dllimport'd entity must have default visibility so that
5612 the linker knows that undefined references within this program
5613 unit can be resolved by the dynamic linker. */
5614 if (!*no_add_attrs)
5615 {
5616 if (DECL_VISIBILITY_SPECIFIED (node)
5617 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5618 error ("%qE implies default visibility, but %qD has already "
5619 "been declared with a different visibility",
5620 name, node);
5621 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5622 DECL_VISIBILITY_SPECIFIED (node) = 1;
5623 }
5624
5625 return NULL_TREE;
5626 }
5627
5628 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5629 \f
5630 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5631 of the various TYPE_QUAL values. */
5632
5633 static void
5634 set_type_quals (tree type, int type_quals)
5635 {
5636 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5637 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5638 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5639 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5640 }
5641
5642 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5643
5644 bool
5645 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5646 {
5647 return (TYPE_QUALS (cand) == type_quals
5648 && TYPE_NAME (cand) == TYPE_NAME (base)
5649 /* Apparently this is needed for Objective-C. */
5650 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5651 /* Check alignment. */
5652 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5653 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5654 TYPE_ATTRIBUTES (base)));
5655 }
5656
5657 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5658
5659 static bool
5660 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5661 {
5662 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5663 && TYPE_NAME (cand) == TYPE_NAME (base)
5664 /* Apparently this is needed for Objective-C. */
5665 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5666 /* Check alignment. */
5667 && TYPE_ALIGN (cand) == align
5668 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5669 TYPE_ATTRIBUTES (base)));
5670 }
5671
5672 /* Return a version of the TYPE, qualified as indicated by the
5673 TYPE_QUALS, if one exists. If no qualified version exists yet,
5674 return NULL_TREE. */
5675
5676 tree
5677 get_qualified_type (tree type, int type_quals)
5678 {
5679 tree t;
5680
5681 if (TYPE_QUALS (type) == type_quals)
5682 return type;
5683
5684 /* Search the chain of variants to see if there is already one there just
5685 like the one we need to have. If so, use that existing one. We must
5686 preserve the TYPE_NAME, since there is code that depends on this. */
5687 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5688 if (check_qualified_type (t, type, type_quals))
5689 return t;
5690
5691 return NULL_TREE;
5692 }
5693
5694 /* Like get_qualified_type, but creates the type if it does not
5695 exist. This function never returns NULL_TREE. */
5696
5697 tree
5698 build_qualified_type (tree type, int type_quals)
5699 {
5700 tree t;
5701
5702 /* See if we already have the appropriate qualified variant. */
5703 t = get_qualified_type (type, type_quals);
5704
5705 /* If not, build it. */
5706 if (!t)
5707 {
5708 t = build_variant_type_copy (type);
5709 set_type_quals (t, type_quals);
5710
5711 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5712 /* Propagate structural equality. */
5713 SET_TYPE_STRUCTURAL_EQUALITY (t);
5714 else if (TYPE_CANONICAL (type) != type)
5715 /* Build the underlying canonical type, since it is different
5716 from TYPE. */
5717 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5718 type_quals);
5719 else
5720 /* T is its own canonical type. */
5721 TYPE_CANONICAL (t) = t;
5722
5723 }
5724
5725 return t;
5726 }
5727
5728 /* Create a variant of type T with alignment ALIGN. */
5729
5730 tree
5731 build_aligned_type (tree type, unsigned int align)
5732 {
5733 tree t;
5734
5735 if (TYPE_PACKED (type)
5736 || TYPE_ALIGN (type) == align)
5737 return type;
5738
5739 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5740 if (check_aligned_type (t, type, align))
5741 return t;
5742
5743 t = build_variant_type_copy (type);
5744 TYPE_ALIGN (t) = align;
5745
5746 return t;
5747 }
5748
5749 /* Create a new distinct copy of TYPE. The new type is made its own
5750 MAIN_VARIANT. If TYPE requires structural equality checks, the
5751 resulting type requires structural equality checks; otherwise, its
5752 TYPE_CANONICAL points to itself. */
5753
5754 tree
5755 build_distinct_type_copy (tree type)
5756 {
5757 tree t = copy_node (type);
5758
5759 TYPE_POINTER_TO (t) = 0;
5760 TYPE_REFERENCE_TO (t) = 0;
5761
5762 /* Set the canonical type either to a new equivalence class, or
5763 propagate the need for structural equality checks. */
5764 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5765 SET_TYPE_STRUCTURAL_EQUALITY (t);
5766 else
5767 TYPE_CANONICAL (t) = t;
5768
5769 /* Make it its own variant. */
5770 TYPE_MAIN_VARIANT (t) = t;
5771 TYPE_NEXT_VARIANT (t) = 0;
5772
5773 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5774 whose TREE_TYPE is not t. This can also happen in the Ada
5775 frontend when using subtypes. */
5776
5777 return t;
5778 }
5779
5780 /* Create a new variant of TYPE, equivalent but distinct. This is so
5781 the caller can modify it. TYPE_CANONICAL for the return type will
5782 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5783 are considered equal by the language itself (or that both types
5784 require structural equality checks). */
5785
5786 tree
5787 build_variant_type_copy (tree type)
5788 {
5789 tree t, m = TYPE_MAIN_VARIANT (type);
5790
5791 t = build_distinct_type_copy (type);
5792
5793 /* Since we're building a variant, assume that it is a non-semantic
5794 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5795 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5796
5797 /* Add the new type to the chain of variants of TYPE. */
5798 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5799 TYPE_NEXT_VARIANT (m) = t;
5800 TYPE_MAIN_VARIANT (t) = m;
5801
5802 return t;
5803 }
5804 \f
5805 /* Return true if the from tree in both tree maps are equal. */
5806
5807 int
5808 tree_map_base_eq (const void *va, const void *vb)
5809 {
5810 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5811 *const b = (const struct tree_map_base *) vb;
5812 return (a->from == b->from);
5813 }
5814
5815 /* Hash a from tree in a tree_base_map. */
5816
5817 unsigned int
5818 tree_map_base_hash (const void *item)
5819 {
5820 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5821 }
5822
5823 /* Return true if this tree map structure is marked for garbage collection
5824 purposes. We simply return true if the from tree is marked, so that this
5825 structure goes away when the from tree goes away. */
5826
5827 int
5828 tree_map_base_marked_p (const void *p)
5829 {
5830 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5831 }
5832
5833 /* Hash a from tree in a tree_map. */
5834
5835 unsigned int
5836 tree_map_hash (const void *item)
5837 {
5838 return (((const struct tree_map *) item)->hash);
5839 }
5840
5841 /* Hash a from tree in a tree_decl_map. */
5842
5843 unsigned int
5844 tree_decl_map_hash (const void *item)
5845 {
5846 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5847 }
5848
5849 /* Return the initialization priority for DECL. */
5850
5851 priority_type
5852 decl_init_priority_lookup (tree decl)
5853 {
5854 struct tree_priority_map *h;
5855 struct tree_map_base in;
5856
5857 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5858 in.from = decl;
5859 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5860 return h ? h->init : DEFAULT_INIT_PRIORITY;
5861 }
5862
5863 /* Return the finalization priority for DECL. */
5864
5865 priority_type
5866 decl_fini_priority_lookup (tree decl)
5867 {
5868 struct tree_priority_map *h;
5869 struct tree_map_base in;
5870
5871 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5872 in.from = decl;
5873 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5874 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5875 }
5876
5877 /* Return the initialization and finalization priority information for
5878 DECL. If there is no previous priority information, a freshly
5879 allocated structure is returned. */
5880
5881 static struct tree_priority_map *
5882 decl_priority_info (tree decl)
5883 {
5884 struct tree_priority_map in;
5885 struct tree_priority_map *h;
5886 void **loc;
5887
5888 in.base.from = decl;
5889 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5890 h = (struct tree_priority_map *) *loc;
5891 if (!h)
5892 {
5893 h = ggc_alloc_cleared_tree_priority_map ();
5894 *loc = h;
5895 h->base.from = decl;
5896 h->init = DEFAULT_INIT_PRIORITY;
5897 h->fini = DEFAULT_INIT_PRIORITY;
5898 }
5899
5900 return h;
5901 }
5902
5903 /* Set the initialization priority for DECL to PRIORITY. */
5904
5905 void
5906 decl_init_priority_insert (tree decl, priority_type priority)
5907 {
5908 struct tree_priority_map *h;
5909
5910 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5911 if (priority == DEFAULT_INIT_PRIORITY)
5912 return;
5913 h = decl_priority_info (decl);
5914 h->init = priority;
5915 }
5916
5917 /* Set the finalization priority for DECL to PRIORITY. */
5918
5919 void
5920 decl_fini_priority_insert (tree decl, priority_type priority)
5921 {
5922 struct tree_priority_map *h;
5923
5924 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5925 if (priority == DEFAULT_INIT_PRIORITY)
5926 return;
5927 h = decl_priority_info (decl);
5928 h->fini = priority;
5929 }
5930
5931 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5932
5933 static void
5934 print_debug_expr_statistics (void)
5935 {
5936 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5937 (long) htab_size (debug_expr_for_decl),
5938 (long) htab_elements (debug_expr_for_decl),
5939 htab_collisions (debug_expr_for_decl));
5940 }
5941
5942 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5943
5944 static void
5945 print_value_expr_statistics (void)
5946 {
5947 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5948 (long) htab_size (value_expr_for_decl),
5949 (long) htab_elements (value_expr_for_decl),
5950 htab_collisions (value_expr_for_decl));
5951 }
5952
5953 /* Lookup a debug expression for FROM, and return it if we find one. */
5954
5955 tree
5956 decl_debug_expr_lookup (tree from)
5957 {
5958 struct tree_decl_map *h, in;
5959 in.base.from = from;
5960
5961 h = (struct tree_decl_map *)
5962 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
5963 if (h)
5964 return h->to;
5965 return NULL_TREE;
5966 }
5967
5968 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5969
5970 void
5971 decl_debug_expr_insert (tree from, tree to)
5972 {
5973 struct tree_decl_map *h;
5974 void **loc;
5975
5976 h = ggc_alloc_tree_decl_map ();
5977 h->base.from = from;
5978 h->to = to;
5979 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
5980 INSERT);
5981 *(struct tree_decl_map **) loc = h;
5982 }
5983
5984 /* Lookup a value expression for FROM, and return it if we find one. */
5985
5986 tree
5987 decl_value_expr_lookup (tree from)
5988 {
5989 struct tree_decl_map *h, in;
5990 in.base.from = from;
5991
5992 h = (struct tree_decl_map *)
5993 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
5994 if (h)
5995 return h->to;
5996 return NULL_TREE;
5997 }
5998
5999 /* Insert a mapping FROM->TO in the value expression hashtable. */
6000
6001 void
6002 decl_value_expr_insert (tree from, tree to)
6003 {
6004 struct tree_decl_map *h;
6005 void **loc;
6006
6007 h = ggc_alloc_tree_decl_map ();
6008 h->base.from = from;
6009 h->to = to;
6010 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
6011 INSERT);
6012 *(struct tree_decl_map **) loc = h;
6013 }
6014
6015 /* Hashing of types so that we don't make duplicates.
6016 The entry point is `type_hash_canon'. */
6017
6018 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6019 with types in the TREE_VALUE slots), by adding the hash codes
6020 of the individual types. */
6021
6022 static unsigned int
6023 type_hash_list (const_tree list, hashval_t hashcode)
6024 {
6025 const_tree tail;
6026
6027 for (tail = list; tail; tail = TREE_CHAIN (tail))
6028 if (TREE_VALUE (tail) != error_mark_node)
6029 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
6030 hashcode);
6031
6032 return hashcode;
6033 }
6034
6035 /* These are the Hashtable callback functions. */
6036
6037 /* Returns true iff the types are equivalent. */
6038
6039 static int
6040 type_hash_eq (const void *va, const void *vb)
6041 {
6042 const struct type_hash *const a = (const struct type_hash *) va,
6043 *const b = (const struct type_hash *) vb;
6044
6045 /* First test the things that are the same for all types. */
6046 if (a->hash != b->hash
6047 || TREE_CODE (a->type) != TREE_CODE (b->type)
6048 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6049 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6050 TYPE_ATTRIBUTES (b->type))
6051 || (TREE_CODE (a->type) != COMPLEX_TYPE
6052 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6053 return 0;
6054
6055 /* Be careful about comparing arrays before and after the element type
6056 has been completed; don't compare TYPE_ALIGN unless both types are
6057 complete. */
6058 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6059 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6060 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6061 return 0;
6062
6063 switch (TREE_CODE (a->type))
6064 {
6065 case VOID_TYPE:
6066 case COMPLEX_TYPE:
6067 case POINTER_TYPE:
6068 case REFERENCE_TYPE:
6069 return 1;
6070
6071 case VECTOR_TYPE:
6072 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6073
6074 case ENUMERAL_TYPE:
6075 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6076 && !(TYPE_VALUES (a->type)
6077 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6078 && TYPE_VALUES (b->type)
6079 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6080 && type_list_equal (TYPE_VALUES (a->type),
6081 TYPE_VALUES (b->type))))
6082 return 0;
6083
6084 /* ... fall through ... */
6085
6086 case INTEGER_TYPE:
6087 case REAL_TYPE:
6088 case BOOLEAN_TYPE:
6089 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6090 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6091 TYPE_MAX_VALUE (b->type)))
6092 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6093 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6094 TYPE_MIN_VALUE (b->type))));
6095
6096 case FIXED_POINT_TYPE:
6097 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6098
6099 case OFFSET_TYPE:
6100 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6101
6102 case METHOD_TYPE:
6103 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6104 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6105 || (TYPE_ARG_TYPES (a->type)
6106 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6107 && TYPE_ARG_TYPES (b->type)
6108 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6109 && type_list_equal (TYPE_ARG_TYPES (a->type),
6110 TYPE_ARG_TYPES (b->type)))))
6111 break;
6112 return 0;
6113 case ARRAY_TYPE:
6114 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6115
6116 case RECORD_TYPE:
6117 case UNION_TYPE:
6118 case QUAL_UNION_TYPE:
6119 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6120 || (TYPE_FIELDS (a->type)
6121 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6122 && TYPE_FIELDS (b->type)
6123 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6124 && type_list_equal (TYPE_FIELDS (a->type),
6125 TYPE_FIELDS (b->type))));
6126
6127 case FUNCTION_TYPE:
6128 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6129 || (TYPE_ARG_TYPES (a->type)
6130 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6131 && TYPE_ARG_TYPES (b->type)
6132 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6133 && type_list_equal (TYPE_ARG_TYPES (a->type),
6134 TYPE_ARG_TYPES (b->type))))
6135 break;
6136 return 0;
6137
6138 default:
6139 return 0;
6140 }
6141
6142 if (lang_hooks.types.type_hash_eq != NULL)
6143 return lang_hooks.types.type_hash_eq (a->type, b->type);
6144
6145 return 1;
6146 }
6147
6148 /* Return the cached hash value. */
6149
6150 static hashval_t
6151 type_hash_hash (const void *item)
6152 {
6153 return ((const struct type_hash *) item)->hash;
6154 }
6155
6156 /* Look in the type hash table for a type isomorphic to TYPE.
6157 If one is found, return it. Otherwise return 0. */
6158
6159 tree
6160 type_hash_lookup (hashval_t hashcode, tree type)
6161 {
6162 struct type_hash *h, in;
6163
6164 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6165 must call that routine before comparing TYPE_ALIGNs. */
6166 layout_type (type);
6167
6168 in.hash = hashcode;
6169 in.type = type;
6170
6171 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6172 hashcode);
6173 if (h)
6174 return h->type;
6175 return NULL_TREE;
6176 }
6177
6178 /* Add an entry to the type-hash-table
6179 for a type TYPE whose hash code is HASHCODE. */
6180
6181 void
6182 type_hash_add (hashval_t hashcode, tree type)
6183 {
6184 struct type_hash *h;
6185 void **loc;
6186
6187 h = ggc_alloc_type_hash ();
6188 h->hash = hashcode;
6189 h->type = type;
6190 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6191 *loc = (void *)h;
6192 }
6193
6194 /* Given TYPE, and HASHCODE its hash code, return the canonical
6195 object for an identical type if one already exists.
6196 Otherwise, return TYPE, and record it as the canonical object.
6197
6198 To use this function, first create a type of the sort you want.
6199 Then compute its hash code from the fields of the type that
6200 make it different from other similar types.
6201 Then call this function and use the value. */
6202
6203 tree
6204 type_hash_canon (unsigned int hashcode, tree type)
6205 {
6206 tree t1;
6207
6208 /* The hash table only contains main variants, so ensure that's what we're
6209 being passed. */
6210 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6211
6212 /* See if the type is in the hash table already. If so, return it.
6213 Otherwise, add the type. */
6214 t1 = type_hash_lookup (hashcode, type);
6215 if (t1 != 0)
6216 {
6217 #ifdef GATHER_STATISTICS
6218 tree_code_counts[(int) TREE_CODE (type)]--;
6219 tree_node_counts[(int) t_kind]--;
6220 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
6221 #endif
6222 return t1;
6223 }
6224 else
6225 {
6226 type_hash_add (hashcode, type);
6227 return type;
6228 }
6229 }
6230
6231 /* See if the data pointed to by the type hash table is marked. We consider
6232 it marked if the type is marked or if a debug type number or symbol
6233 table entry has been made for the type. */
6234
6235 static int
6236 type_hash_marked_p (const void *p)
6237 {
6238 const_tree const type = ((const struct type_hash *) p)->type;
6239
6240 return ggc_marked_p (type);
6241 }
6242
6243 static void
6244 print_type_hash_statistics (void)
6245 {
6246 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6247 (long) htab_size (type_hash_table),
6248 (long) htab_elements (type_hash_table),
6249 htab_collisions (type_hash_table));
6250 }
6251
6252 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6253 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6254 by adding the hash codes of the individual attributes. */
6255
6256 static unsigned int
6257 attribute_hash_list (const_tree list, hashval_t hashcode)
6258 {
6259 const_tree tail;
6260
6261 for (tail = list; tail; tail = TREE_CHAIN (tail))
6262 /* ??? Do we want to add in TREE_VALUE too? */
6263 hashcode = iterative_hash_object
6264 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
6265 return hashcode;
6266 }
6267
6268 /* Given two lists of attributes, return true if list l2 is
6269 equivalent to l1. */
6270
6271 int
6272 attribute_list_equal (const_tree l1, const_tree l2)
6273 {
6274 return attribute_list_contained (l1, l2)
6275 && attribute_list_contained (l2, l1);
6276 }
6277
6278 /* Given two lists of attributes, return true if list L2 is
6279 completely contained within L1. */
6280 /* ??? This would be faster if attribute names were stored in a canonicalized
6281 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6282 must be used to show these elements are equivalent (which they are). */
6283 /* ??? It's not clear that attributes with arguments will always be handled
6284 correctly. */
6285
6286 int
6287 attribute_list_contained (const_tree l1, const_tree l2)
6288 {
6289 const_tree t1, t2;
6290
6291 /* First check the obvious, maybe the lists are identical. */
6292 if (l1 == l2)
6293 return 1;
6294
6295 /* Maybe the lists are similar. */
6296 for (t1 = l1, t2 = l2;
6297 t1 != 0 && t2 != 0
6298 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6299 && TREE_VALUE (t1) == TREE_VALUE (t2);
6300 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
6301
6302 /* Maybe the lists are equal. */
6303 if (t1 == 0 && t2 == 0)
6304 return 1;
6305
6306 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6307 {
6308 const_tree attr;
6309 /* This CONST_CAST is okay because lookup_attribute does not
6310 modify its argument and the return value is assigned to a
6311 const_tree. */
6312 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6313 CONST_CAST_TREE(l1));
6314 attr != NULL_TREE && !attribute_value_equal (t2, attr);
6315 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6316 TREE_CHAIN (attr)))
6317 ;
6318
6319 if (attr == NULL_TREE)
6320 return 0;
6321 }
6322
6323 return 1;
6324 }
6325
6326 /* Given two lists of types
6327 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6328 return 1 if the lists contain the same types in the same order.
6329 Also, the TREE_PURPOSEs must match. */
6330
6331 int
6332 type_list_equal (const_tree l1, const_tree l2)
6333 {
6334 const_tree t1, t2;
6335
6336 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6337 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6338 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6339 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6340 && (TREE_TYPE (TREE_PURPOSE (t1))
6341 == TREE_TYPE (TREE_PURPOSE (t2))))))
6342 return 0;
6343
6344 return t1 == t2;
6345 }
6346
6347 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6348 given by TYPE. If the argument list accepts variable arguments,
6349 then this function counts only the ordinary arguments. */
6350
6351 int
6352 type_num_arguments (const_tree type)
6353 {
6354 int i = 0;
6355 tree t;
6356
6357 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6358 /* If the function does not take a variable number of arguments,
6359 the last element in the list will have type `void'. */
6360 if (VOID_TYPE_P (TREE_VALUE (t)))
6361 break;
6362 else
6363 ++i;
6364
6365 return i;
6366 }
6367
6368 /* Nonzero if integer constants T1 and T2
6369 represent the same constant value. */
6370
6371 int
6372 tree_int_cst_equal (const_tree t1, const_tree t2)
6373 {
6374 if (t1 == t2)
6375 return 1;
6376
6377 if (t1 == 0 || t2 == 0)
6378 return 0;
6379
6380 if (TREE_CODE (t1) == INTEGER_CST
6381 && TREE_CODE (t2) == INTEGER_CST
6382 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6383 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6384 return 1;
6385
6386 return 0;
6387 }
6388
6389 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6390 The precise way of comparison depends on their data type. */
6391
6392 int
6393 tree_int_cst_lt (const_tree t1, const_tree t2)
6394 {
6395 if (t1 == t2)
6396 return 0;
6397
6398 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6399 {
6400 int t1_sgn = tree_int_cst_sgn (t1);
6401 int t2_sgn = tree_int_cst_sgn (t2);
6402
6403 if (t1_sgn < t2_sgn)
6404 return 1;
6405 else if (t1_sgn > t2_sgn)
6406 return 0;
6407 /* Otherwise, both are non-negative, so we compare them as
6408 unsigned just in case one of them would overflow a signed
6409 type. */
6410 }
6411 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6412 return INT_CST_LT (t1, t2);
6413
6414 return INT_CST_LT_UNSIGNED (t1, t2);
6415 }
6416
6417 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6418
6419 int
6420 tree_int_cst_compare (const_tree t1, const_tree t2)
6421 {
6422 if (tree_int_cst_lt (t1, t2))
6423 return -1;
6424 else if (tree_int_cst_lt (t2, t1))
6425 return 1;
6426 else
6427 return 0;
6428 }
6429
6430 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6431 the host. If POS is zero, the value can be represented in a single
6432 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6433 be represented in a single unsigned HOST_WIDE_INT. */
6434
6435 int
6436 host_integerp (const_tree t, int pos)
6437 {
6438 if (t == NULL_TREE)
6439 return 0;
6440
6441 return (TREE_CODE (t) == INTEGER_CST
6442 && ((TREE_INT_CST_HIGH (t) == 0
6443 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6444 || (! pos && TREE_INT_CST_HIGH (t) == -1
6445 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6446 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6447 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6448 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6449 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6450 }
6451
6452 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6453 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6454 be non-negative. We must be able to satisfy the above conditions. */
6455
6456 HOST_WIDE_INT
6457 tree_low_cst (const_tree t, int pos)
6458 {
6459 gcc_assert (host_integerp (t, pos));
6460 return TREE_INT_CST_LOW (t);
6461 }
6462
6463 /* Return the most significant bit of the integer constant T. */
6464
6465 int
6466 tree_int_cst_msb (const_tree t)
6467 {
6468 int prec;
6469 HOST_WIDE_INT h;
6470 unsigned HOST_WIDE_INT l;
6471
6472 /* Note that using TYPE_PRECISION here is wrong. We care about the
6473 actual bits, not the (arbitrary) range of the type. */
6474 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
6475 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
6476 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
6477 return (l & 1) == 1;
6478 }
6479
6480 /* Return an indication of the sign of the integer constant T.
6481 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6482 Note that -1 will never be returned if T's type is unsigned. */
6483
6484 int
6485 tree_int_cst_sgn (const_tree t)
6486 {
6487 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6488 return 0;
6489 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6490 return 1;
6491 else if (TREE_INT_CST_HIGH (t) < 0)
6492 return -1;
6493 else
6494 return 1;
6495 }
6496
6497 /* Return the minimum number of bits needed to represent VALUE in a
6498 signed or unsigned type, UNSIGNEDP says which. */
6499
6500 unsigned int
6501 tree_int_cst_min_precision (tree value, bool unsignedp)
6502 {
6503 int log;
6504
6505 /* If the value is negative, compute its negative minus 1. The latter
6506 adjustment is because the absolute value of the largest negative value
6507 is one larger than the largest positive value. This is equivalent to
6508 a bit-wise negation, so use that operation instead. */
6509
6510 if (tree_int_cst_sgn (value) < 0)
6511 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6512
6513 /* Return the number of bits needed, taking into account the fact
6514 that we need one more bit for a signed than unsigned type. */
6515
6516 if (integer_zerop (value))
6517 log = 0;
6518 else
6519 log = tree_floor_log2 (value);
6520
6521 return log + 1 + !unsignedp;
6522 }
6523
6524 /* Compare two constructor-element-type constants. Return 1 if the lists
6525 are known to be equal; otherwise return 0. */
6526
6527 int
6528 simple_cst_list_equal (const_tree l1, const_tree l2)
6529 {
6530 while (l1 != NULL_TREE && l2 != NULL_TREE)
6531 {
6532 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6533 return 0;
6534
6535 l1 = TREE_CHAIN (l1);
6536 l2 = TREE_CHAIN (l2);
6537 }
6538
6539 return l1 == l2;
6540 }
6541
6542 /* Return truthvalue of whether T1 is the same tree structure as T2.
6543 Return 1 if they are the same.
6544 Return 0 if they are understandably different.
6545 Return -1 if either contains tree structure not understood by
6546 this function. */
6547
6548 int
6549 simple_cst_equal (const_tree t1, const_tree t2)
6550 {
6551 enum tree_code code1, code2;
6552 int cmp;
6553 int i;
6554
6555 if (t1 == t2)
6556 return 1;
6557 if (t1 == 0 || t2 == 0)
6558 return 0;
6559
6560 code1 = TREE_CODE (t1);
6561 code2 = TREE_CODE (t2);
6562
6563 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6564 {
6565 if (CONVERT_EXPR_CODE_P (code2)
6566 || code2 == NON_LVALUE_EXPR)
6567 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6568 else
6569 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6570 }
6571
6572 else if (CONVERT_EXPR_CODE_P (code2)
6573 || code2 == NON_LVALUE_EXPR)
6574 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6575
6576 if (code1 != code2)
6577 return 0;
6578
6579 switch (code1)
6580 {
6581 case INTEGER_CST:
6582 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6583 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6584
6585 case REAL_CST:
6586 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6587
6588 case FIXED_CST:
6589 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6590
6591 case STRING_CST:
6592 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6593 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6594 TREE_STRING_LENGTH (t1)));
6595
6596 case CONSTRUCTOR:
6597 {
6598 unsigned HOST_WIDE_INT idx;
6599 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6600 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6601
6602 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6603 return false;
6604
6605 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6606 /* ??? Should we handle also fields here? */
6607 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6608 VEC_index (constructor_elt, v2, idx)->value))
6609 return false;
6610 return true;
6611 }
6612
6613 case SAVE_EXPR:
6614 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6615
6616 case CALL_EXPR:
6617 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6618 if (cmp <= 0)
6619 return cmp;
6620 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6621 return 0;
6622 {
6623 const_tree arg1, arg2;
6624 const_call_expr_arg_iterator iter1, iter2;
6625 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6626 arg2 = first_const_call_expr_arg (t2, &iter2);
6627 arg1 && arg2;
6628 arg1 = next_const_call_expr_arg (&iter1),
6629 arg2 = next_const_call_expr_arg (&iter2))
6630 {
6631 cmp = simple_cst_equal (arg1, arg2);
6632 if (cmp <= 0)
6633 return cmp;
6634 }
6635 return arg1 == arg2;
6636 }
6637
6638 case TARGET_EXPR:
6639 /* Special case: if either target is an unallocated VAR_DECL,
6640 it means that it's going to be unified with whatever the
6641 TARGET_EXPR is really supposed to initialize, so treat it
6642 as being equivalent to anything. */
6643 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6644 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6645 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6646 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6647 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6648 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6649 cmp = 1;
6650 else
6651 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6652
6653 if (cmp <= 0)
6654 return cmp;
6655
6656 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6657
6658 case WITH_CLEANUP_EXPR:
6659 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6660 if (cmp <= 0)
6661 return cmp;
6662
6663 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6664
6665 case COMPONENT_REF:
6666 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6667 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6668
6669 return 0;
6670
6671 case VAR_DECL:
6672 case PARM_DECL:
6673 case CONST_DECL:
6674 case FUNCTION_DECL:
6675 return 0;
6676
6677 default:
6678 break;
6679 }
6680
6681 /* This general rule works for most tree codes. All exceptions should be
6682 handled above. If this is a language-specific tree code, we can't
6683 trust what might be in the operand, so say we don't know
6684 the situation. */
6685 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6686 return -1;
6687
6688 switch (TREE_CODE_CLASS (code1))
6689 {
6690 case tcc_unary:
6691 case tcc_binary:
6692 case tcc_comparison:
6693 case tcc_expression:
6694 case tcc_reference:
6695 case tcc_statement:
6696 cmp = 1;
6697 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6698 {
6699 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6700 if (cmp <= 0)
6701 return cmp;
6702 }
6703
6704 return cmp;
6705
6706 default:
6707 return -1;
6708 }
6709 }
6710
6711 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6712 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6713 than U, respectively. */
6714
6715 int
6716 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6717 {
6718 if (tree_int_cst_sgn (t) < 0)
6719 return -1;
6720 else if (TREE_INT_CST_HIGH (t) != 0)
6721 return 1;
6722 else if (TREE_INT_CST_LOW (t) == u)
6723 return 0;
6724 else if (TREE_INT_CST_LOW (t) < u)
6725 return -1;
6726 else
6727 return 1;
6728 }
6729
6730 /* Return true if CODE represents an associative tree code. Otherwise
6731 return false. */
6732 bool
6733 associative_tree_code (enum tree_code code)
6734 {
6735 switch (code)
6736 {
6737 case BIT_IOR_EXPR:
6738 case BIT_AND_EXPR:
6739 case BIT_XOR_EXPR:
6740 case PLUS_EXPR:
6741 case MULT_EXPR:
6742 case MIN_EXPR:
6743 case MAX_EXPR:
6744 return true;
6745
6746 default:
6747 break;
6748 }
6749 return false;
6750 }
6751
6752 /* Return true if CODE represents a commutative tree code. Otherwise
6753 return false. */
6754 bool
6755 commutative_tree_code (enum tree_code code)
6756 {
6757 switch (code)
6758 {
6759 case PLUS_EXPR:
6760 case MULT_EXPR:
6761 case MIN_EXPR:
6762 case MAX_EXPR:
6763 case BIT_IOR_EXPR:
6764 case BIT_XOR_EXPR:
6765 case BIT_AND_EXPR:
6766 case NE_EXPR:
6767 case EQ_EXPR:
6768 case UNORDERED_EXPR:
6769 case ORDERED_EXPR:
6770 case UNEQ_EXPR:
6771 case LTGT_EXPR:
6772 case TRUTH_AND_EXPR:
6773 case TRUTH_XOR_EXPR:
6774 case TRUTH_OR_EXPR:
6775 return true;
6776
6777 default:
6778 break;
6779 }
6780 return false;
6781 }
6782
6783 /* Return true if CODE represents a ternary tree code for which the
6784 first two operands are commutative. Otherwise return false. */
6785 bool
6786 commutative_ternary_tree_code (enum tree_code code)
6787 {
6788 switch (code)
6789 {
6790 case WIDEN_MULT_PLUS_EXPR:
6791 case WIDEN_MULT_MINUS_EXPR:
6792 return true;
6793
6794 default:
6795 break;
6796 }
6797 return false;
6798 }
6799
6800 /* Generate a hash value for an expression. This can be used iteratively
6801 by passing a previous result as the VAL argument.
6802
6803 This function is intended to produce the same hash for expressions which
6804 would compare equal using operand_equal_p. */
6805
6806 hashval_t
6807 iterative_hash_expr (const_tree t, hashval_t val)
6808 {
6809 int i;
6810 enum tree_code code;
6811 char tclass;
6812
6813 if (t == NULL_TREE)
6814 return iterative_hash_hashval_t (0, val);
6815
6816 code = TREE_CODE (t);
6817
6818 switch (code)
6819 {
6820 /* Alas, constants aren't shared, so we can't rely on pointer
6821 identity. */
6822 case INTEGER_CST:
6823 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6824 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6825 case REAL_CST:
6826 {
6827 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6828
6829 return iterative_hash_hashval_t (val2, val);
6830 }
6831 case FIXED_CST:
6832 {
6833 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6834
6835 return iterative_hash_hashval_t (val2, val);
6836 }
6837 case STRING_CST:
6838 return iterative_hash (TREE_STRING_POINTER (t),
6839 TREE_STRING_LENGTH (t), val);
6840 case COMPLEX_CST:
6841 val = iterative_hash_expr (TREE_REALPART (t), val);
6842 return iterative_hash_expr (TREE_IMAGPART (t), val);
6843 case VECTOR_CST:
6844 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6845 case SSA_NAME:
6846 /* We can just compare by pointer. */
6847 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6848 case PLACEHOLDER_EXPR:
6849 /* The node itself doesn't matter. */
6850 return val;
6851 case TREE_LIST:
6852 /* A list of expressions, for a CALL_EXPR or as the elements of a
6853 VECTOR_CST. */
6854 for (; t; t = TREE_CHAIN (t))
6855 val = iterative_hash_expr (TREE_VALUE (t), val);
6856 return val;
6857 case CONSTRUCTOR:
6858 {
6859 unsigned HOST_WIDE_INT idx;
6860 tree field, value;
6861 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6862 {
6863 val = iterative_hash_expr (field, val);
6864 val = iterative_hash_expr (value, val);
6865 }
6866 return val;
6867 }
6868 case MEM_REF:
6869 {
6870 /* The type of the second operand is relevant, except for
6871 its top-level qualifiers. */
6872 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
6873
6874 val = iterative_hash_object (TYPE_HASH (type), val);
6875
6876 /* We could use the standard hash computation from this point
6877 on. */
6878 val = iterative_hash_object (code, val);
6879 val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
6880 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6881 return val;
6882 }
6883 case FUNCTION_DECL:
6884 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6885 Otherwise nodes that compare equal according to operand_equal_p might
6886 get different hash codes. However, don't do this for machine specific
6887 or front end builtins, since the function code is overloaded in those
6888 cases. */
6889 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6890 && built_in_decls[DECL_FUNCTION_CODE (t)])
6891 {
6892 t = built_in_decls[DECL_FUNCTION_CODE (t)];
6893 code = TREE_CODE (t);
6894 }
6895 /* FALL THROUGH */
6896 default:
6897 tclass = TREE_CODE_CLASS (code);
6898
6899 if (tclass == tcc_declaration)
6900 {
6901 /* DECL's have a unique ID */
6902 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6903 }
6904 else
6905 {
6906 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6907
6908 val = iterative_hash_object (code, val);
6909
6910 /* Don't hash the type, that can lead to having nodes which
6911 compare equal according to operand_equal_p, but which
6912 have different hash codes. */
6913 if (CONVERT_EXPR_CODE_P (code)
6914 || code == NON_LVALUE_EXPR)
6915 {
6916 /* Make sure to include signness in the hash computation. */
6917 val += TYPE_UNSIGNED (TREE_TYPE (t));
6918 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6919 }
6920
6921 else if (commutative_tree_code (code))
6922 {
6923 /* It's a commutative expression. We want to hash it the same
6924 however it appears. We do this by first hashing both operands
6925 and then rehashing based on the order of their independent
6926 hashes. */
6927 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6928 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6929 hashval_t t;
6930
6931 if (one > two)
6932 t = one, one = two, two = t;
6933
6934 val = iterative_hash_hashval_t (one, val);
6935 val = iterative_hash_hashval_t (two, val);
6936 }
6937 else
6938 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6939 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6940 }
6941 return val;
6942 break;
6943 }
6944 }
6945
6946 /* Generate a hash value for a pair of expressions. This can be used
6947 iteratively by passing a previous result as the VAL argument.
6948
6949 The same hash value is always returned for a given pair of expressions,
6950 regardless of the order in which they are presented. This is useful in
6951 hashing the operands of commutative functions. */
6952
6953 hashval_t
6954 iterative_hash_exprs_commutative (const_tree t1,
6955 const_tree t2, hashval_t val)
6956 {
6957 hashval_t one = iterative_hash_expr (t1, 0);
6958 hashval_t two = iterative_hash_expr (t2, 0);
6959 hashval_t t;
6960
6961 if (one > two)
6962 t = one, one = two, two = t;
6963 val = iterative_hash_hashval_t (one, val);
6964 val = iterative_hash_hashval_t (two, val);
6965
6966 return val;
6967 }
6968 \f
6969 /* Constructors for pointer, array and function types.
6970 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
6971 constructed by language-dependent code, not here.) */
6972
6973 /* Construct, lay out and return the type of pointers to TO_TYPE with
6974 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
6975 reference all of memory. If such a type has already been
6976 constructed, reuse it. */
6977
6978 tree
6979 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
6980 bool can_alias_all)
6981 {
6982 tree t;
6983
6984 if (to_type == error_mark_node)
6985 return error_mark_node;
6986
6987 /* If the pointed-to type has the may_alias attribute set, force
6988 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6989 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6990 can_alias_all = true;
6991
6992 /* In some cases, languages will have things that aren't a POINTER_TYPE
6993 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
6994 In that case, return that type without regard to the rest of our
6995 operands.
6996
6997 ??? This is a kludge, but consistent with the way this function has
6998 always operated and there doesn't seem to be a good way to avoid this
6999 at the moment. */
7000 if (TYPE_POINTER_TO (to_type) != 0
7001 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7002 return TYPE_POINTER_TO (to_type);
7003
7004 /* First, if we already have a type for pointers to TO_TYPE and it's
7005 the proper mode, use it. */
7006 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7007 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7008 return t;
7009
7010 t = make_node (POINTER_TYPE);
7011
7012 TREE_TYPE (t) = to_type;
7013 SET_TYPE_MODE (t, mode);
7014 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7015 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7016 TYPE_POINTER_TO (to_type) = t;
7017
7018 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7019 SET_TYPE_STRUCTURAL_EQUALITY (t);
7020 else if (TYPE_CANONICAL (to_type) != to_type)
7021 TYPE_CANONICAL (t)
7022 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7023 mode, can_alias_all);
7024
7025 /* Lay out the type. This function has many callers that are concerned
7026 with expression-construction, and this simplifies them all. */
7027 layout_type (t);
7028
7029 return t;
7030 }
7031
7032 /* By default build pointers in ptr_mode. */
7033
7034 tree
7035 build_pointer_type (tree to_type)
7036 {
7037 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7038 : TYPE_ADDR_SPACE (to_type);
7039 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7040 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7041 }
7042
7043 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7044
7045 tree
7046 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
7047 bool can_alias_all)
7048 {
7049 tree t;
7050
7051 if (to_type == error_mark_node)
7052 return error_mark_node;
7053
7054 /* If the pointed-to type has the may_alias attribute set, force
7055 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7056 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7057 can_alias_all = true;
7058
7059 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7060 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7061 In that case, return that type without regard to the rest of our
7062 operands.
7063
7064 ??? This is a kludge, but consistent with the way this function has
7065 always operated and there doesn't seem to be a good way to avoid this
7066 at the moment. */
7067 if (TYPE_REFERENCE_TO (to_type) != 0
7068 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7069 return TYPE_REFERENCE_TO (to_type);
7070
7071 /* First, if we already have a type for pointers to TO_TYPE and it's
7072 the proper mode, use it. */
7073 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7074 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7075 return t;
7076
7077 t = make_node (REFERENCE_TYPE);
7078
7079 TREE_TYPE (t) = to_type;
7080 SET_TYPE_MODE (t, mode);
7081 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7082 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7083 TYPE_REFERENCE_TO (to_type) = t;
7084
7085 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7086 SET_TYPE_STRUCTURAL_EQUALITY (t);
7087 else if (TYPE_CANONICAL (to_type) != to_type)
7088 TYPE_CANONICAL (t)
7089 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7090 mode, can_alias_all);
7091
7092 layout_type (t);
7093
7094 return t;
7095 }
7096
7097
7098 /* Build the node for the type of references-to-TO_TYPE by default
7099 in ptr_mode. */
7100
7101 tree
7102 build_reference_type (tree to_type)
7103 {
7104 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7105 : TYPE_ADDR_SPACE (to_type);
7106 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7107 return build_reference_type_for_mode (to_type, pointer_mode, false);
7108 }
7109
7110 /* Build a type that is compatible with t but has no cv quals anywhere
7111 in its type, thus
7112
7113 const char *const *const * -> char ***. */
7114
7115 tree
7116 build_type_no_quals (tree t)
7117 {
7118 switch (TREE_CODE (t))
7119 {
7120 case POINTER_TYPE:
7121 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7122 TYPE_MODE (t),
7123 TYPE_REF_CAN_ALIAS_ALL (t));
7124 case REFERENCE_TYPE:
7125 return
7126 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7127 TYPE_MODE (t),
7128 TYPE_REF_CAN_ALIAS_ALL (t));
7129 default:
7130 return TYPE_MAIN_VARIANT (t);
7131 }
7132 }
7133
7134 #define MAX_INT_CACHED_PREC \
7135 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7136 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7137
7138 /* Builds a signed or unsigned integer type of precision PRECISION.
7139 Used for C bitfields whose precision does not match that of
7140 built-in target types. */
7141 tree
7142 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7143 int unsignedp)
7144 {
7145 tree itype, ret;
7146
7147 if (unsignedp)
7148 unsignedp = MAX_INT_CACHED_PREC + 1;
7149
7150 if (precision <= MAX_INT_CACHED_PREC)
7151 {
7152 itype = nonstandard_integer_type_cache[precision + unsignedp];
7153 if (itype)
7154 return itype;
7155 }
7156
7157 itype = make_node (INTEGER_TYPE);
7158 TYPE_PRECISION (itype) = precision;
7159
7160 if (unsignedp)
7161 fixup_unsigned_type (itype);
7162 else
7163 fixup_signed_type (itype);
7164
7165 ret = itype;
7166 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7167 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7168 if (precision <= MAX_INT_CACHED_PREC)
7169 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7170
7171 return ret;
7172 }
7173
7174 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7175 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7176 is true, reuse such a type that has already been constructed. */
7177
7178 static tree
7179 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7180 {
7181 tree itype = make_node (INTEGER_TYPE);
7182 hashval_t hashcode = 0;
7183
7184 TREE_TYPE (itype) = type;
7185
7186 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7187 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7188
7189 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7190 SET_TYPE_MODE (itype, TYPE_MODE (type));
7191 TYPE_SIZE (itype) = TYPE_SIZE (type);
7192 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7193 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7194 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7195
7196 if (!shared)
7197 return itype;
7198
7199 if ((TYPE_MIN_VALUE (itype)
7200 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7201 || (TYPE_MAX_VALUE (itype)
7202 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7203 {
7204 /* Since we cannot reliably merge this type, we need to compare it using
7205 structural equality checks. */
7206 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7207 return itype;
7208 }
7209
7210 hashcode = iterative_hash_expr (TYPE_MIN_VALUE (itype), hashcode);
7211 hashcode = iterative_hash_expr (TYPE_MAX_VALUE (itype), hashcode);
7212 hashcode = iterative_hash_hashval_t (TYPE_HASH (type), hashcode);
7213 itype = type_hash_canon (hashcode, itype);
7214
7215 return itype;
7216 }
7217
7218 /* Wrapper around build_range_type_1 with SHARED set to true. */
7219
7220 tree
7221 build_range_type (tree type, tree lowval, tree highval)
7222 {
7223 return build_range_type_1 (type, lowval, highval, true);
7224 }
7225
7226 /* Wrapper around build_range_type_1 with SHARED set to false. */
7227
7228 tree
7229 build_nonshared_range_type (tree type, tree lowval, tree highval)
7230 {
7231 return build_range_type_1 (type, lowval, highval, false);
7232 }
7233
7234 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7235 MAXVAL should be the maximum value in the domain
7236 (one less than the length of the array).
7237
7238 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7239 We don't enforce this limit, that is up to caller (e.g. language front end).
7240 The limit exists because the result is a signed type and we don't handle
7241 sizes that use more than one HOST_WIDE_INT. */
7242
7243 tree
7244 build_index_type (tree maxval)
7245 {
7246 return build_range_type (sizetype, size_zero_node, maxval);
7247 }
7248
7249 /* Return true if the debug information for TYPE, a subtype, should be emitted
7250 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7251 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7252 debug info and doesn't reflect the source code. */
7253
7254 bool
7255 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7256 {
7257 tree base_type = TREE_TYPE (type), low, high;
7258
7259 /* Subrange types have a base type which is an integral type. */
7260 if (!INTEGRAL_TYPE_P (base_type))
7261 return false;
7262
7263 /* Get the real bounds of the subtype. */
7264 if (lang_hooks.types.get_subrange_bounds)
7265 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7266 else
7267 {
7268 low = TYPE_MIN_VALUE (type);
7269 high = TYPE_MAX_VALUE (type);
7270 }
7271
7272 /* If the type and its base type have the same representation and the same
7273 name, then the type is not a subrange but a copy of the base type. */
7274 if ((TREE_CODE (base_type) == INTEGER_TYPE
7275 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7276 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7277 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7278 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7279 {
7280 tree type_name = TYPE_NAME (type);
7281 tree base_type_name = TYPE_NAME (base_type);
7282
7283 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7284 type_name = DECL_NAME (type_name);
7285
7286 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7287 base_type_name = DECL_NAME (base_type_name);
7288
7289 if (type_name == base_type_name)
7290 return false;
7291 }
7292
7293 if (lowval)
7294 *lowval = low;
7295 if (highval)
7296 *highval = high;
7297 return true;
7298 }
7299
7300 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7301 and number of elements specified by the range of values of INDEX_TYPE.
7302 If SHARED is true, reuse such a type that has already been constructed. */
7303
7304 static tree
7305 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7306 {
7307 tree t;
7308
7309 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7310 {
7311 error ("arrays of functions are not meaningful");
7312 elt_type = integer_type_node;
7313 }
7314
7315 t = make_node (ARRAY_TYPE);
7316 TREE_TYPE (t) = elt_type;
7317 TYPE_DOMAIN (t) = index_type;
7318 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7319 layout_type (t);
7320
7321 /* If the element type is incomplete at this point we get marked for
7322 structural equality. Do not record these types in the canonical
7323 type hashtable. */
7324 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7325 return t;
7326
7327 if (shared)
7328 {
7329 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7330 if (index_type)
7331 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7332 t = type_hash_canon (hashcode, t);
7333 }
7334
7335 if (TYPE_CANONICAL (t) == t)
7336 {
7337 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7338 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7339 SET_TYPE_STRUCTURAL_EQUALITY (t);
7340 else if (TYPE_CANONICAL (elt_type) != elt_type
7341 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7342 TYPE_CANONICAL (t)
7343 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7344 index_type
7345 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7346 shared);
7347 }
7348
7349 return t;
7350 }
7351
7352 /* Wrapper around build_array_type_1 with SHARED set to true. */
7353
7354 tree
7355 build_array_type (tree elt_type, tree index_type)
7356 {
7357 return build_array_type_1 (elt_type, index_type, true);
7358 }
7359
7360 /* Wrapper around build_array_type_1 with SHARED set to false. */
7361
7362 tree
7363 build_nonshared_array_type (tree elt_type, tree index_type)
7364 {
7365 return build_array_type_1 (elt_type, index_type, false);
7366 }
7367
7368 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7369 sizetype. */
7370
7371 tree
7372 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7373 {
7374 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7375 }
7376
7377 /* Recursively examines the array elements of TYPE, until a non-array
7378 element type is found. */
7379
7380 tree
7381 strip_array_types (tree type)
7382 {
7383 while (TREE_CODE (type) == ARRAY_TYPE)
7384 type = TREE_TYPE (type);
7385
7386 return type;
7387 }
7388
7389 /* Computes the canonical argument types from the argument type list
7390 ARGTYPES.
7391
7392 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7393 on entry to this function, or if any of the ARGTYPES are
7394 structural.
7395
7396 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7397 true on entry to this function, or if any of the ARGTYPES are
7398 non-canonical.
7399
7400 Returns a canonical argument list, which may be ARGTYPES when the
7401 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7402 true) or would not differ from ARGTYPES. */
7403
7404 static tree
7405 maybe_canonicalize_argtypes(tree argtypes,
7406 bool *any_structural_p,
7407 bool *any_noncanonical_p)
7408 {
7409 tree arg;
7410 bool any_noncanonical_argtypes_p = false;
7411
7412 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7413 {
7414 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7415 /* Fail gracefully by stating that the type is structural. */
7416 *any_structural_p = true;
7417 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7418 *any_structural_p = true;
7419 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7420 || TREE_PURPOSE (arg))
7421 /* If the argument has a default argument, we consider it
7422 non-canonical even though the type itself is canonical.
7423 That way, different variants of function and method types
7424 with default arguments will all point to the variant with
7425 no defaults as their canonical type. */
7426 any_noncanonical_argtypes_p = true;
7427 }
7428
7429 if (*any_structural_p)
7430 return argtypes;
7431
7432 if (any_noncanonical_argtypes_p)
7433 {
7434 /* Build the canonical list of argument types. */
7435 tree canon_argtypes = NULL_TREE;
7436 bool is_void = false;
7437
7438 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7439 {
7440 if (arg == void_list_node)
7441 is_void = true;
7442 else
7443 canon_argtypes = tree_cons (NULL_TREE,
7444 TYPE_CANONICAL (TREE_VALUE (arg)),
7445 canon_argtypes);
7446 }
7447
7448 canon_argtypes = nreverse (canon_argtypes);
7449 if (is_void)
7450 canon_argtypes = chainon (canon_argtypes, void_list_node);
7451
7452 /* There is a non-canonical type. */
7453 *any_noncanonical_p = true;
7454 return canon_argtypes;
7455 }
7456
7457 /* The canonical argument types are the same as ARGTYPES. */
7458 return argtypes;
7459 }
7460
7461 /* Construct, lay out and return
7462 the type of functions returning type VALUE_TYPE
7463 given arguments of types ARG_TYPES.
7464 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7465 are data type nodes for the arguments of the function.
7466 If such a type has already been constructed, reuse it. */
7467
7468 tree
7469 build_function_type (tree value_type, tree arg_types)
7470 {
7471 tree t;
7472 hashval_t hashcode = 0;
7473 bool any_structural_p, any_noncanonical_p;
7474 tree canon_argtypes;
7475
7476 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7477 {
7478 error ("function return type cannot be function");
7479 value_type = integer_type_node;
7480 }
7481
7482 /* Make a node of the sort we want. */
7483 t = make_node (FUNCTION_TYPE);
7484 TREE_TYPE (t) = value_type;
7485 TYPE_ARG_TYPES (t) = arg_types;
7486
7487 /* If we already have such a type, use the old one. */
7488 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7489 hashcode = type_hash_list (arg_types, hashcode);
7490 t = type_hash_canon (hashcode, t);
7491
7492 /* Set up the canonical type. */
7493 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7494 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7495 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7496 &any_structural_p,
7497 &any_noncanonical_p);
7498 if (any_structural_p)
7499 SET_TYPE_STRUCTURAL_EQUALITY (t);
7500 else if (any_noncanonical_p)
7501 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7502 canon_argtypes);
7503
7504 if (!COMPLETE_TYPE_P (t))
7505 layout_type (t);
7506 return t;
7507 }
7508
7509 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7510
7511 tree
7512 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7513 {
7514 tree new_type = NULL;
7515 tree args, new_args = NULL, t;
7516 tree new_reversed;
7517 int i = 0;
7518
7519 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7520 args = TREE_CHAIN (args), i++)
7521 if (!bitmap_bit_p (args_to_skip, i))
7522 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7523
7524 new_reversed = nreverse (new_args);
7525 if (args)
7526 {
7527 if (new_reversed)
7528 TREE_CHAIN (new_args) = void_list_node;
7529 else
7530 new_reversed = void_list_node;
7531 }
7532
7533 /* Use copy_node to preserve as much as possible from original type
7534 (debug info, attribute lists etc.)
7535 Exception is METHOD_TYPEs must have THIS argument.
7536 When we are asked to remove it, we need to build new FUNCTION_TYPE
7537 instead. */
7538 if (TREE_CODE (orig_type) != METHOD_TYPE
7539 || !bitmap_bit_p (args_to_skip, 0))
7540 {
7541 new_type = build_distinct_type_copy (orig_type);
7542 TYPE_ARG_TYPES (new_type) = new_reversed;
7543 }
7544 else
7545 {
7546 new_type
7547 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7548 new_reversed));
7549 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7550 }
7551
7552 /* This is a new type, not a copy of an old type. Need to reassociate
7553 variants. We can handle everything except the main variant lazily. */
7554 t = TYPE_MAIN_VARIANT (orig_type);
7555 if (orig_type != t)
7556 {
7557 TYPE_MAIN_VARIANT (new_type) = t;
7558 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7559 TYPE_NEXT_VARIANT (t) = new_type;
7560 }
7561 else
7562 {
7563 TYPE_MAIN_VARIANT (new_type) = new_type;
7564 TYPE_NEXT_VARIANT (new_type) = NULL;
7565 }
7566 return new_type;
7567 }
7568
7569 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7570
7571 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7572 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7573 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7574
7575 tree
7576 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7577 {
7578 tree new_decl = copy_node (orig_decl);
7579 tree new_type;
7580
7581 new_type = TREE_TYPE (orig_decl);
7582 if (prototype_p (new_type))
7583 new_type = build_function_type_skip_args (new_type, args_to_skip);
7584 TREE_TYPE (new_decl) = new_type;
7585
7586 /* For declarations setting DECL_VINDEX (i.e. methods)
7587 we expect first argument to be THIS pointer. */
7588 if (bitmap_bit_p (args_to_skip, 0))
7589 DECL_VINDEX (new_decl) = NULL_TREE;
7590
7591 /* When signature changes, we need to clear builtin info. */
7592 if (DECL_BUILT_IN (new_decl) && !bitmap_empty_p (args_to_skip))
7593 {
7594 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
7595 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
7596 }
7597 return new_decl;
7598 }
7599
7600 /* Build a function type. The RETURN_TYPE is the type returned by the
7601 function. If VAARGS is set, no void_type_node is appended to the
7602 the list. ARGP must be always be terminated be a NULL_TREE. */
7603
7604 static tree
7605 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7606 {
7607 tree t, args, last;
7608
7609 t = va_arg (argp, tree);
7610 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7611 args = tree_cons (NULL_TREE, t, args);
7612
7613 if (vaargs)
7614 {
7615 last = args;
7616 if (args != NULL_TREE)
7617 args = nreverse (args);
7618 gcc_assert (last != void_list_node);
7619 }
7620 else if (args == NULL_TREE)
7621 args = void_list_node;
7622 else
7623 {
7624 last = args;
7625 args = nreverse (args);
7626 TREE_CHAIN (last) = void_list_node;
7627 }
7628 args = build_function_type (return_type, args);
7629
7630 return args;
7631 }
7632
7633 /* Build a function type. The RETURN_TYPE is the type returned by the
7634 function. If additional arguments are provided, they are
7635 additional argument types. The list of argument types must always
7636 be terminated by NULL_TREE. */
7637
7638 tree
7639 build_function_type_list (tree return_type, ...)
7640 {
7641 tree args;
7642 va_list p;
7643
7644 va_start (p, return_type);
7645 args = build_function_type_list_1 (false, return_type, p);
7646 va_end (p);
7647 return args;
7648 }
7649
7650 /* Build a variable argument function type. The RETURN_TYPE is the
7651 type returned by the function. If additional arguments are provided,
7652 they are additional argument types. The list of argument types must
7653 always be terminated by NULL_TREE. */
7654
7655 tree
7656 build_varargs_function_type_list (tree return_type, ...)
7657 {
7658 tree args;
7659 va_list p;
7660
7661 va_start (p, return_type);
7662 args = build_function_type_list_1 (true, return_type, p);
7663 va_end (p);
7664
7665 return args;
7666 }
7667
7668 /* Build a function type. RETURN_TYPE is the type returned by the
7669 function; VAARGS indicates whether the function takes varargs. The
7670 function takes N named arguments, the types of which are provided in
7671 ARG_TYPES. */
7672
7673 static tree
7674 build_function_type_array_1 (bool vaargs, tree return_type, int n,
7675 tree *arg_types)
7676 {
7677 int i;
7678 tree t = vaargs ? NULL_TREE : void_list_node;
7679
7680 for (i = n - 1; i >= 0; i--)
7681 t = tree_cons (NULL_TREE, arg_types[i], t);
7682
7683 return build_function_type (return_type, t);
7684 }
7685
7686 /* Build a function type. RETURN_TYPE is the type returned by the
7687 function. The function takes N named arguments, the types of which
7688 are provided in ARG_TYPES. */
7689
7690 tree
7691 build_function_type_array (tree return_type, int n, tree *arg_types)
7692 {
7693 return build_function_type_array_1 (false, return_type, n, arg_types);
7694 }
7695
7696 /* Build a variable argument function type. RETURN_TYPE is the type
7697 returned by the function. The function takes N named arguments, the
7698 types of which are provided in ARG_TYPES. */
7699
7700 tree
7701 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
7702 {
7703 return build_function_type_array_1 (true, return_type, n, arg_types);
7704 }
7705
7706 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7707 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7708 for the method. An implicit additional parameter (of type
7709 pointer-to-BASETYPE) is added to the ARGTYPES. */
7710
7711 tree
7712 build_method_type_directly (tree basetype,
7713 tree rettype,
7714 tree argtypes)
7715 {
7716 tree t;
7717 tree ptype;
7718 int hashcode = 0;
7719 bool any_structural_p, any_noncanonical_p;
7720 tree canon_argtypes;
7721
7722 /* Make a node of the sort we want. */
7723 t = make_node (METHOD_TYPE);
7724
7725 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7726 TREE_TYPE (t) = rettype;
7727 ptype = build_pointer_type (basetype);
7728
7729 /* The actual arglist for this function includes a "hidden" argument
7730 which is "this". Put it into the list of argument types. */
7731 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7732 TYPE_ARG_TYPES (t) = argtypes;
7733
7734 /* If we already have such a type, use the old one. */
7735 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7736 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7737 hashcode = type_hash_list (argtypes, hashcode);
7738 t = type_hash_canon (hashcode, t);
7739
7740 /* Set up the canonical type. */
7741 any_structural_p
7742 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7743 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7744 any_noncanonical_p
7745 = (TYPE_CANONICAL (basetype) != basetype
7746 || TYPE_CANONICAL (rettype) != rettype);
7747 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7748 &any_structural_p,
7749 &any_noncanonical_p);
7750 if (any_structural_p)
7751 SET_TYPE_STRUCTURAL_EQUALITY (t);
7752 else if (any_noncanonical_p)
7753 TYPE_CANONICAL (t)
7754 = build_method_type_directly (TYPE_CANONICAL (basetype),
7755 TYPE_CANONICAL (rettype),
7756 canon_argtypes);
7757 if (!COMPLETE_TYPE_P (t))
7758 layout_type (t);
7759
7760 return t;
7761 }
7762
7763 /* Construct, lay out and return the type of methods belonging to class
7764 BASETYPE and whose arguments and values are described by TYPE.
7765 If that type exists already, reuse it.
7766 TYPE must be a FUNCTION_TYPE node. */
7767
7768 tree
7769 build_method_type (tree basetype, tree type)
7770 {
7771 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7772
7773 return build_method_type_directly (basetype,
7774 TREE_TYPE (type),
7775 TYPE_ARG_TYPES (type));
7776 }
7777
7778 /* Construct, lay out and return the type of offsets to a value
7779 of type TYPE, within an object of type BASETYPE.
7780 If a suitable offset type exists already, reuse it. */
7781
7782 tree
7783 build_offset_type (tree basetype, tree type)
7784 {
7785 tree t;
7786 hashval_t hashcode = 0;
7787
7788 /* Make a node of the sort we want. */
7789 t = make_node (OFFSET_TYPE);
7790
7791 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7792 TREE_TYPE (t) = type;
7793
7794 /* If we already have such a type, use the old one. */
7795 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7796 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7797 t = type_hash_canon (hashcode, t);
7798
7799 if (!COMPLETE_TYPE_P (t))
7800 layout_type (t);
7801
7802 if (TYPE_CANONICAL (t) == t)
7803 {
7804 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7805 || TYPE_STRUCTURAL_EQUALITY_P (type))
7806 SET_TYPE_STRUCTURAL_EQUALITY (t);
7807 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7808 || TYPE_CANONICAL (type) != type)
7809 TYPE_CANONICAL (t)
7810 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7811 TYPE_CANONICAL (type));
7812 }
7813
7814 return t;
7815 }
7816
7817 /* Create a complex type whose components are COMPONENT_TYPE. */
7818
7819 tree
7820 build_complex_type (tree component_type)
7821 {
7822 tree t;
7823 hashval_t hashcode;
7824
7825 gcc_assert (INTEGRAL_TYPE_P (component_type)
7826 || SCALAR_FLOAT_TYPE_P (component_type)
7827 || FIXED_POINT_TYPE_P (component_type));
7828
7829 /* Make a node of the sort we want. */
7830 t = make_node (COMPLEX_TYPE);
7831
7832 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7833
7834 /* If we already have such a type, use the old one. */
7835 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7836 t = type_hash_canon (hashcode, t);
7837
7838 if (!COMPLETE_TYPE_P (t))
7839 layout_type (t);
7840
7841 if (TYPE_CANONICAL (t) == t)
7842 {
7843 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7844 SET_TYPE_STRUCTURAL_EQUALITY (t);
7845 else if (TYPE_CANONICAL (component_type) != component_type)
7846 TYPE_CANONICAL (t)
7847 = build_complex_type (TYPE_CANONICAL (component_type));
7848 }
7849
7850 /* We need to create a name, since complex is a fundamental type. */
7851 if (! TYPE_NAME (t))
7852 {
7853 const char *name;
7854 if (component_type == char_type_node)
7855 name = "complex char";
7856 else if (component_type == signed_char_type_node)
7857 name = "complex signed char";
7858 else if (component_type == unsigned_char_type_node)
7859 name = "complex unsigned char";
7860 else if (component_type == short_integer_type_node)
7861 name = "complex short int";
7862 else if (component_type == short_unsigned_type_node)
7863 name = "complex short unsigned int";
7864 else if (component_type == integer_type_node)
7865 name = "complex int";
7866 else if (component_type == unsigned_type_node)
7867 name = "complex unsigned int";
7868 else if (component_type == long_integer_type_node)
7869 name = "complex long int";
7870 else if (component_type == long_unsigned_type_node)
7871 name = "complex long unsigned int";
7872 else if (component_type == long_long_integer_type_node)
7873 name = "complex long long int";
7874 else if (component_type == long_long_unsigned_type_node)
7875 name = "complex long long unsigned int";
7876 else
7877 name = 0;
7878
7879 if (name != 0)
7880 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7881 get_identifier (name), t);
7882 }
7883
7884 return build_qualified_type (t, TYPE_QUALS (component_type));
7885 }
7886
7887 /* If TYPE is a real or complex floating-point type and the target
7888 does not directly support arithmetic on TYPE then return the wider
7889 type to be used for arithmetic on TYPE. Otherwise, return
7890 NULL_TREE. */
7891
7892 tree
7893 excess_precision_type (tree type)
7894 {
7895 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7896 {
7897 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7898 switch (TREE_CODE (type))
7899 {
7900 case REAL_TYPE:
7901 switch (flt_eval_method)
7902 {
7903 case 1:
7904 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7905 return double_type_node;
7906 break;
7907 case 2:
7908 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7909 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7910 return long_double_type_node;
7911 break;
7912 default:
7913 gcc_unreachable ();
7914 }
7915 break;
7916 case COMPLEX_TYPE:
7917 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7918 return NULL_TREE;
7919 switch (flt_eval_method)
7920 {
7921 case 1:
7922 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7923 return complex_double_type_node;
7924 break;
7925 case 2:
7926 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7927 || (TYPE_MODE (TREE_TYPE (type))
7928 == TYPE_MODE (double_type_node)))
7929 return complex_long_double_type_node;
7930 break;
7931 default:
7932 gcc_unreachable ();
7933 }
7934 break;
7935 default:
7936 break;
7937 }
7938 }
7939 return NULL_TREE;
7940 }
7941 \f
7942 /* Return OP, stripped of any conversions to wider types as much as is safe.
7943 Converting the value back to OP's type makes a value equivalent to OP.
7944
7945 If FOR_TYPE is nonzero, we return a value which, if converted to
7946 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7947
7948 OP must have integer, real or enumeral type. Pointers are not allowed!
7949
7950 There are some cases where the obvious value we could return
7951 would regenerate to OP if converted to OP's type,
7952 but would not extend like OP to wider types.
7953 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
7954 For example, if OP is (unsigned short)(signed char)-1,
7955 we avoid returning (signed char)-1 if FOR_TYPE is int,
7956 even though extending that to an unsigned short would regenerate OP,
7957 since the result of extending (signed char)-1 to (int)
7958 is different from (int) OP. */
7959
7960 tree
7961 get_unwidened (tree op, tree for_type)
7962 {
7963 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
7964 tree type = TREE_TYPE (op);
7965 unsigned final_prec
7966 = TYPE_PRECISION (for_type != 0 ? for_type : type);
7967 int uns
7968 = (for_type != 0 && for_type != type
7969 && final_prec > TYPE_PRECISION (type)
7970 && TYPE_UNSIGNED (type));
7971 tree win = op;
7972
7973 while (CONVERT_EXPR_P (op))
7974 {
7975 int bitschange;
7976
7977 /* TYPE_PRECISION on vector types has different meaning
7978 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
7979 so avoid them here. */
7980 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
7981 break;
7982
7983 bitschange = TYPE_PRECISION (TREE_TYPE (op))
7984 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
7985
7986 /* Truncations are many-one so cannot be removed.
7987 Unless we are later going to truncate down even farther. */
7988 if (bitschange < 0
7989 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
7990 break;
7991
7992 /* See what's inside this conversion. If we decide to strip it,
7993 we will set WIN. */
7994 op = TREE_OPERAND (op, 0);
7995
7996 /* If we have not stripped any zero-extensions (uns is 0),
7997 we can strip any kind of extension.
7998 If we have previously stripped a zero-extension,
7999 only zero-extensions can safely be stripped.
8000 Any extension can be stripped if the bits it would produce
8001 are all going to be discarded later by truncating to FOR_TYPE. */
8002
8003 if (bitschange > 0)
8004 {
8005 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8006 win = op;
8007 /* TYPE_UNSIGNED says whether this is a zero-extension.
8008 Let's avoid computing it if it does not affect WIN
8009 and if UNS will not be needed again. */
8010 if ((uns
8011 || CONVERT_EXPR_P (op))
8012 && TYPE_UNSIGNED (TREE_TYPE (op)))
8013 {
8014 uns = 1;
8015 win = op;
8016 }
8017 }
8018 }
8019
8020 /* If we finally reach a constant see if it fits in for_type and
8021 in that case convert it. */
8022 if (for_type
8023 && TREE_CODE (win) == INTEGER_CST
8024 && TREE_TYPE (win) != for_type
8025 && int_fits_type_p (win, for_type))
8026 win = fold_convert (for_type, win);
8027
8028 return win;
8029 }
8030 \f
8031 /* Return OP or a simpler expression for a narrower value
8032 which can be sign-extended or zero-extended to give back OP.
8033 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8034 or 0 if the value should be sign-extended. */
8035
8036 tree
8037 get_narrower (tree op, int *unsignedp_ptr)
8038 {
8039 int uns = 0;
8040 int first = 1;
8041 tree win = op;
8042 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8043
8044 while (TREE_CODE (op) == NOP_EXPR)
8045 {
8046 int bitschange
8047 = (TYPE_PRECISION (TREE_TYPE (op))
8048 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8049
8050 /* Truncations are many-one so cannot be removed. */
8051 if (bitschange < 0)
8052 break;
8053
8054 /* See what's inside this conversion. If we decide to strip it,
8055 we will set WIN. */
8056
8057 if (bitschange > 0)
8058 {
8059 op = TREE_OPERAND (op, 0);
8060 /* An extension: the outermost one can be stripped,
8061 but remember whether it is zero or sign extension. */
8062 if (first)
8063 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8064 /* Otherwise, if a sign extension has been stripped,
8065 only sign extensions can now be stripped;
8066 if a zero extension has been stripped, only zero-extensions. */
8067 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8068 break;
8069 first = 0;
8070 }
8071 else /* bitschange == 0 */
8072 {
8073 /* A change in nominal type can always be stripped, but we must
8074 preserve the unsignedness. */
8075 if (first)
8076 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8077 first = 0;
8078 op = TREE_OPERAND (op, 0);
8079 /* Keep trying to narrow, but don't assign op to win if it
8080 would turn an integral type into something else. */
8081 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8082 continue;
8083 }
8084
8085 win = op;
8086 }
8087
8088 if (TREE_CODE (op) == COMPONENT_REF
8089 /* Since type_for_size always gives an integer type. */
8090 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8091 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8092 /* Ensure field is laid out already. */
8093 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8094 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
8095 {
8096 unsigned HOST_WIDE_INT innerprec
8097 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
8098 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8099 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8100 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8101
8102 /* We can get this structure field in a narrower type that fits it,
8103 but the resulting extension to its nominal type (a fullword type)
8104 must satisfy the same conditions as for other extensions.
8105
8106 Do this only for fields that are aligned (not bit-fields),
8107 because when bit-field insns will be used there is no
8108 advantage in doing this. */
8109
8110 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8111 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8112 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8113 && type != 0)
8114 {
8115 if (first)
8116 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8117 win = fold_convert (type, op);
8118 }
8119 }
8120
8121 *unsignedp_ptr = uns;
8122 return win;
8123 }
8124 \f
8125 /* Returns true if integer constant C has a value that is permissible
8126 for type TYPE (an INTEGER_TYPE). */
8127
8128 bool
8129 int_fits_type_p (const_tree c, const_tree type)
8130 {
8131 tree type_low_bound, type_high_bound;
8132 bool ok_for_low_bound, ok_for_high_bound, unsc;
8133 double_int dc, dd;
8134
8135 dc = tree_to_double_int (c);
8136 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
8137
8138 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
8139 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
8140 && unsc)
8141 /* So c is an unsigned integer whose type is sizetype and type is not.
8142 sizetype'd integers are sign extended even though they are
8143 unsigned. If the integer value fits in the lower end word of c,
8144 and if the higher end word has all its bits set to 1, that
8145 means the higher end bits are set to 1 only for sign extension.
8146 So let's convert c into an equivalent zero extended unsigned
8147 integer. */
8148 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
8149
8150 retry:
8151 type_low_bound = TYPE_MIN_VALUE (type);
8152 type_high_bound = TYPE_MAX_VALUE (type);
8153
8154 /* If at least one bound of the type is a constant integer, we can check
8155 ourselves and maybe make a decision. If no such decision is possible, but
8156 this type is a subtype, try checking against that. Otherwise, use
8157 double_int_fits_to_tree_p, which checks against the precision.
8158
8159 Compute the status for each possibly constant bound, and return if we see
8160 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8161 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8162 for "constant known to fit". */
8163
8164 /* Check if c >= type_low_bound. */
8165 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8166 {
8167 dd = tree_to_double_int (type_low_bound);
8168 if (TREE_CODE (type) == INTEGER_TYPE
8169 && TYPE_IS_SIZETYPE (type)
8170 && TYPE_UNSIGNED (type))
8171 dd = double_int_zext (dd, TYPE_PRECISION (type));
8172 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
8173 {
8174 int c_neg = (!unsc && double_int_negative_p (dc));
8175 int t_neg = (unsc && double_int_negative_p (dd));
8176
8177 if (c_neg && !t_neg)
8178 return false;
8179 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
8180 return false;
8181 }
8182 else if (double_int_cmp (dc, dd, unsc) < 0)
8183 return false;
8184 ok_for_low_bound = true;
8185 }
8186 else
8187 ok_for_low_bound = false;
8188
8189 /* Check if c <= type_high_bound. */
8190 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8191 {
8192 dd = tree_to_double_int (type_high_bound);
8193 if (TREE_CODE (type) == INTEGER_TYPE
8194 && TYPE_IS_SIZETYPE (type)
8195 && TYPE_UNSIGNED (type))
8196 dd = double_int_zext (dd, TYPE_PRECISION (type));
8197 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8198 {
8199 int c_neg = (!unsc && double_int_negative_p (dc));
8200 int t_neg = (unsc && double_int_negative_p (dd));
8201
8202 if (t_neg && !c_neg)
8203 return false;
8204 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
8205 return false;
8206 }
8207 else if (double_int_cmp (dc, dd, unsc) > 0)
8208 return false;
8209 ok_for_high_bound = true;
8210 }
8211 else
8212 ok_for_high_bound = false;
8213
8214 /* If the constant fits both bounds, the result is known. */
8215 if (ok_for_low_bound && ok_for_high_bound)
8216 return true;
8217
8218 /* Perform some generic filtering which may allow making a decision
8219 even if the bounds are not constant. First, negative integers
8220 never fit in unsigned types, */
8221 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
8222 return false;
8223
8224 /* Second, narrower types always fit in wider ones. */
8225 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8226 return true;
8227
8228 /* Third, unsigned integers with top bit set never fit signed types. */
8229 if (! TYPE_UNSIGNED (type) && unsc)
8230 {
8231 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8232 if (prec < HOST_BITS_PER_WIDE_INT)
8233 {
8234 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8235 return false;
8236 }
8237 else if (((((unsigned HOST_WIDE_INT) 1)
8238 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8239 return false;
8240 }
8241
8242 /* If we haven't been able to decide at this point, there nothing more we
8243 can check ourselves here. Look at the base type if we have one and it
8244 has the same precision. */
8245 if (TREE_CODE (type) == INTEGER_TYPE
8246 && TREE_TYPE (type) != 0
8247 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8248 {
8249 type = TREE_TYPE (type);
8250 goto retry;
8251 }
8252
8253 /* Or to double_int_fits_to_tree_p, if nothing else. */
8254 return double_int_fits_to_tree_p (type, dc);
8255 }
8256
8257 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8258 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8259 represented (assuming two's-complement arithmetic) within the bit
8260 precision of the type are returned instead. */
8261
8262 void
8263 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8264 {
8265 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8266 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8267 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8268 TYPE_UNSIGNED (type));
8269 else
8270 {
8271 if (TYPE_UNSIGNED (type))
8272 mpz_set_ui (min, 0);
8273 else
8274 {
8275 double_int mn;
8276 mn = double_int_mask (TYPE_PRECISION (type) - 1);
8277 mn = double_int_sext (double_int_add (mn, double_int_one),
8278 TYPE_PRECISION (type));
8279 mpz_set_double_int (min, mn, false);
8280 }
8281 }
8282
8283 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8284 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8285 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8286 TYPE_UNSIGNED (type));
8287 else
8288 {
8289 if (TYPE_UNSIGNED (type))
8290 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
8291 true);
8292 else
8293 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
8294 true);
8295 }
8296 }
8297
8298 /* Return true if VAR is an automatic variable defined in function FN. */
8299
8300 bool
8301 auto_var_in_fn_p (const_tree var, const_tree fn)
8302 {
8303 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8304 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8305 || TREE_CODE (var) == PARM_DECL)
8306 && ! TREE_STATIC (var))
8307 || TREE_CODE (var) == LABEL_DECL
8308 || TREE_CODE (var) == RESULT_DECL));
8309 }
8310
8311 /* Subprogram of following function. Called by walk_tree.
8312
8313 Return *TP if it is an automatic variable or parameter of the
8314 function passed in as DATA. */
8315
8316 static tree
8317 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8318 {
8319 tree fn = (tree) data;
8320
8321 if (TYPE_P (*tp))
8322 *walk_subtrees = 0;
8323
8324 else if (DECL_P (*tp)
8325 && auto_var_in_fn_p (*tp, fn))
8326 return *tp;
8327
8328 return NULL_TREE;
8329 }
8330
8331 /* Returns true if T is, contains, or refers to a type with variable
8332 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8333 arguments, but not the return type. If FN is nonzero, only return
8334 true if a modifier of the type or position of FN is a variable or
8335 parameter inside FN.
8336
8337 This concept is more general than that of C99 'variably modified types':
8338 in C99, a struct type is never variably modified because a VLA may not
8339 appear as a structure member. However, in GNU C code like:
8340
8341 struct S { int i[f()]; };
8342
8343 is valid, and other languages may define similar constructs. */
8344
8345 bool
8346 variably_modified_type_p (tree type, tree fn)
8347 {
8348 tree t;
8349
8350 /* Test if T is either variable (if FN is zero) or an expression containing
8351 a variable in FN. */
8352 #define RETURN_TRUE_IF_VAR(T) \
8353 do { tree _t = (T); \
8354 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
8355 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8356 return true; } while (0)
8357
8358 if (type == error_mark_node)
8359 return false;
8360
8361 /* If TYPE itself has variable size, it is variably modified. */
8362 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8363 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8364
8365 switch (TREE_CODE (type))
8366 {
8367 case POINTER_TYPE:
8368 case REFERENCE_TYPE:
8369 case VECTOR_TYPE:
8370 if (variably_modified_type_p (TREE_TYPE (type), fn))
8371 return true;
8372 break;
8373
8374 case FUNCTION_TYPE:
8375 case METHOD_TYPE:
8376 /* If TYPE is a function type, it is variably modified if the
8377 return type is variably modified. */
8378 if (variably_modified_type_p (TREE_TYPE (type), fn))
8379 return true;
8380 break;
8381
8382 case INTEGER_TYPE:
8383 case REAL_TYPE:
8384 case FIXED_POINT_TYPE:
8385 case ENUMERAL_TYPE:
8386 case BOOLEAN_TYPE:
8387 /* Scalar types are variably modified if their end points
8388 aren't constant. */
8389 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8390 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8391 break;
8392
8393 case RECORD_TYPE:
8394 case UNION_TYPE:
8395 case QUAL_UNION_TYPE:
8396 /* We can't see if any of the fields are variably-modified by the
8397 definition we normally use, since that would produce infinite
8398 recursion via pointers. */
8399 /* This is variably modified if some field's type is. */
8400 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8401 if (TREE_CODE (t) == FIELD_DECL)
8402 {
8403 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8404 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8405 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8406
8407 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8408 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8409 }
8410 break;
8411
8412 case ARRAY_TYPE:
8413 /* Do not call ourselves to avoid infinite recursion. This is
8414 variably modified if the element type is. */
8415 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8416 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8417 break;
8418
8419 default:
8420 break;
8421 }
8422
8423 /* The current language may have other cases to check, but in general,
8424 all other types are not variably modified. */
8425 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8426
8427 #undef RETURN_TRUE_IF_VAR
8428 }
8429
8430 /* Given a DECL or TYPE, return the scope in which it was declared, or
8431 NULL_TREE if there is no containing scope. */
8432
8433 tree
8434 get_containing_scope (const_tree t)
8435 {
8436 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8437 }
8438
8439 /* Return the innermost context enclosing DECL that is
8440 a FUNCTION_DECL, or zero if none. */
8441
8442 tree
8443 decl_function_context (const_tree decl)
8444 {
8445 tree context;
8446
8447 if (TREE_CODE (decl) == ERROR_MARK)
8448 return 0;
8449
8450 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8451 where we look up the function at runtime. Such functions always take
8452 a first argument of type 'pointer to real context'.
8453
8454 C++ should really be fixed to use DECL_CONTEXT for the real context,
8455 and use something else for the "virtual context". */
8456 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8457 context
8458 = TYPE_MAIN_VARIANT
8459 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8460 else
8461 context = DECL_CONTEXT (decl);
8462
8463 while (context && TREE_CODE (context) != FUNCTION_DECL)
8464 {
8465 if (TREE_CODE (context) == BLOCK)
8466 context = BLOCK_SUPERCONTEXT (context);
8467 else
8468 context = get_containing_scope (context);
8469 }
8470
8471 return context;
8472 }
8473
8474 /* Return the innermost context enclosing DECL that is
8475 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8476 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8477
8478 tree
8479 decl_type_context (const_tree decl)
8480 {
8481 tree context = DECL_CONTEXT (decl);
8482
8483 while (context)
8484 switch (TREE_CODE (context))
8485 {
8486 case NAMESPACE_DECL:
8487 case TRANSLATION_UNIT_DECL:
8488 return NULL_TREE;
8489
8490 case RECORD_TYPE:
8491 case UNION_TYPE:
8492 case QUAL_UNION_TYPE:
8493 return context;
8494
8495 case TYPE_DECL:
8496 case FUNCTION_DECL:
8497 context = DECL_CONTEXT (context);
8498 break;
8499
8500 case BLOCK:
8501 context = BLOCK_SUPERCONTEXT (context);
8502 break;
8503
8504 default:
8505 gcc_unreachable ();
8506 }
8507
8508 return NULL_TREE;
8509 }
8510
8511 /* CALL is a CALL_EXPR. Return the declaration for the function
8512 called, or NULL_TREE if the called function cannot be
8513 determined. */
8514
8515 tree
8516 get_callee_fndecl (const_tree call)
8517 {
8518 tree addr;
8519
8520 if (call == error_mark_node)
8521 return error_mark_node;
8522
8523 /* It's invalid to call this function with anything but a
8524 CALL_EXPR. */
8525 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8526
8527 /* The first operand to the CALL is the address of the function
8528 called. */
8529 addr = CALL_EXPR_FN (call);
8530
8531 STRIP_NOPS (addr);
8532
8533 /* If this is a readonly function pointer, extract its initial value. */
8534 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8535 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8536 && DECL_INITIAL (addr))
8537 addr = DECL_INITIAL (addr);
8538
8539 /* If the address is just `&f' for some function `f', then we know
8540 that `f' is being called. */
8541 if (TREE_CODE (addr) == ADDR_EXPR
8542 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8543 return TREE_OPERAND (addr, 0);
8544
8545 /* We couldn't figure out what was being called. */
8546 return NULL_TREE;
8547 }
8548
8549 /* Print debugging information about tree nodes generated during the compile,
8550 and any language-specific information. */
8551
8552 void
8553 dump_tree_statistics (void)
8554 {
8555 #ifdef GATHER_STATISTICS
8556 int i;
8557 int total_nodes, total_bytes;
8558 #endif
8559
8560 fprintf (stderr, "\n??? tree nodes created\n\n");
8561 #ifdef GATHER_STATISTICS
8562 fprintf (stderr, "Kind Nodes Bytes\n");
8563 fprintf (stderr, "---------------------------------------\n");
8564 total_nodes = total_bytes = 0;
8565 for (i = 0; i < (int) all_kinds; i++)
8566 {
8567 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8568 tree_node_counts[i], tree_node_sizes[i]);
8569 total_nodes += tree_node_counts[i];
8570 total_bytes += tree_node_sizes[i];
8571 }
8572 fprintf (stderr, "---------------------------------------\n");
8573 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8574 fprintf (stderr, "---------------------------------------\n");
8575 fprintf (stderr, "Code Nodes\n");
8576 fprintf (stderr, "----------------------------\n");
8577 for (i = 0; i < (int) MAX_TREE_CODES; i++)
8578 fprintf (stderr, "%-20s %7d\n", tree_code_name[i], tree_code_counts[i]);
8579 fprintf (stderr, "----------------------------\n");
8580 ssanames_print_statistics ();
8581 phinodes_print_statistics ();
8582 #else
8583 fprintf (stderr, "(No per-node statistics)\n");
8584 #endif
8585 print_type_hash_statistics ();
8586 print_debug_expr_statistics ();
8587 print_value_expr_statistics ();
8588 lang_hooks.print_statistics ();
8589 }
8590 \f
8591 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8592
8593 /* Generate a crc32 of a byte. */
8594
8595 unsigned
8596 crc32_byte (unsigned chksum, char byte)
8597 {
8598 unsigned value = (unsigned) byte << 24;
8599 unsigned ix;
8600
8601 for (ix = 8; ix--; value <<= 1)
8602 {
8603 unsigned feedback;
8604
8605 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8606 chksum <<= 1;
8607 chksum ^= feedback;
8608 }
8609 return chksum;
8610 }
8611
8612
8613 /* Generate a crc32 of a string. */
8614
8615 unsigned
8616 crc32_string (unsigned chksum, const char *string)
8617 {
8618 do
8619 {
8620 chksum = crc32_byte (chksum, *string);
8621 }
8622 while (*string++);
8623 return chksum;
8624 }
8625
8626 /* P is a string that will be used in a symbol. Mask out any characters
8627 that are not valid in that context. */
8628
8629 void
8630 clean_symbol_name (char *p)
8631 {
8632 for (; *p; p++)
8633 if (! (ISALNUM (*p)
8634 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8635 || *p == '$'
8636 #endif
8637 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8638 || *p == '.'
8639 #endif
8640 ))
8641 *p = '_';
8642 }
8643
8644 /* Generate a name for a special-purpose function.
8645 The generated name may need to be unique across the whole link.
8646 Changes to this function may also require corresponding changes to
8647 xstrdup_mask_random.
8648 TYPE is some string to identify the purpose of this function to the
8649 linker or collect2; it must start with an uppercase letter,
8650 one of:
8651 I - for constructors
8652 D - for destructors
8653 N - for C++ anonymous namespaces
8654 F - for DWARF unwind frame information. */
8655
8656 tree
8657 get_file_function_name (const char *type)
8658 {
8659 char *buf;
8660 const char *p;
8661 char *q;
8662
8663 /* If we already have a name we know to be unique, just use that. */
8664 if (first_global_object_name)
8665 p = q = ASTRDUP (first_global_object_name);
8666 /* If the target is handling the constructors/destructors, they
8667 will be local to this file and the name is only necessary for
8668 debugging purposes.
8669 We also assign sub_I and sub_D sufixes to constructors called from
8670 the global static constructors. These are always local. */
8671 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8672 || (strncmp (type, "sub_", 4) == 0
8673 && (type[4] == 'I' || type[4] == 'D')))
8674 {
8675 const char *file = main_input_filename;
8676 if (! file)
8677 file = input_filename;
8678 /* Just use the file's basename, because the full pathname
8679 might be quite long. */
8680 p = q = ASTRDUP (lbasename (file));
8681 }
8682 else
8683 {
8684 /* Otherwise, the name must be unique across the entire link.
8685 We don't have anything that we know to be unique to this translation
8686 unit, so use what we do have and throw in some randomness. */
8687 unsigned len;
8688 const char *name = weak_global_object_name;
8689 const char *file = main_input_filename;
8690
8691 if (! name)
8692 name = "";
8693 if (! file)
8694 file = input_filename;
8695
8696 len = strlen (file);
8697 q = (char *) alloca (9 * 2 + len + 1);
8698 memcpy (q, file, len + 1);
8699
8700 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
8701 crc32_string (0, get_random_seed (false)));
8702
8703 p = q;
8704 }
8705
8706 clean_symbol_name (q);
8707 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8708 + strlen (type));
8709
8710 /* Set up the name of the file-level functions we may need.
8711 Use a global object (which is already required to be unique over
8712 the program) rather than the file name (which imposes extra
8713 constraints). */
8714 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8715
8716 return get_identifier (buf);
8717 }
8718 \f
8719 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8720
8721 /* Complain that the tree code of NODE does not match the expected 0
8722 terminated list of trailing codes. The trailing code list can be
8723 empty, for a more vague error message. FILE, LINE, and FUNCTION
8724 are of the caller. */
8725
8726 void
8727 tree_check_failed (const_tree node, const char *file,
8728 int line, const char *function, ...)
8729 {
8730 va_list args;
8731 const char *buffer;
8732 unsigned length = 0;
8733 int code;
8734
8735 va_start (args, function);
8736 while ((code = va_arg (args, int)))
8737 length += 4 + strlen (tree_code_name[code]);
8738 va_end (args);
8739 if (length)
8740 {
8741 char *tmp;
8742 va_start (args, function);
8743 length += strlen ("expected ");
8744 buffer = tmp = (char *) alloca (length);
8745 length = 0;
8746 while ((code = va_arg (args, int)))
8747 {
8748 const char *prefix = length ? " or " : "expected ";
8749
8750 strcpy (tmp + length, prefix);
8751 length += strlen (prefix);
8752 strcpy (tmp + length, tree_code_name[code]);
8753 length += strlen (tree_code_name[code]);
8754 }
8755 va_end (args);
8756 }
8757 else
8758 buffer = "unexpected node";
8759
8760 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8761 buffer, tree_code_name[TREE_CODE (node)],
8762 function, trim_filename (file), line);
8763 }
8764
8765 /* Complain that the tree code of NODE does match the expected 0
8766 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8767 the caller. */
8768
8769 void
8770 tree_not_check_failed (const_tree node, const char *file,
8771 int line, const char *function, ...)
8772 {
8773 va_list args;
8774 char *buffer;
8775 unsigned length = 0;
8776 int code;
8777
8778 va_start (args, function);
8779 while ((code = va_arg (args, int)))
8780 length += 4 + strlen (tree_code_name[code]);
8781 va_end (args);
8782 va_start (args, function);
8783 buffer = (char *) alloca (length);
8784 length = 0;
8785 while ((code = va_arg (args, int)))
8786 {
8787 if (length)
8788 {
8789 strcpy (buffer + length, " or ");
8790 length += 4;
8791 }
8792 strcpy (buffer + length, tree_code_name[code]);
8793 length += strlen (tree_code_name[code]);
8794 }
8795 va_end (args);
8796
8797 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8798 buffer, tree_code_name[TREE_CODE (node)],
8799 function, trim_filename (file), line);
8800 }
8801
8802 /* Similar to tree_check_failed, except that we check for a class of tree
8803 code, given in CL. */
8804
8805 void
8806 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8807 const char *file, int line, const char *function)
8808 {
8809 internal_error
8810 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8811 TREE_CODE_CLASS_STRING (cl),
8812 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8813 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8814 }
8815
8816 /* Similar to tree_check_failed, except that instead of specifying a
8817 dozen codes, use the knowledge that they're all sequential. */
8818
8819 void
8820 tree_range_check_failed (const_tree node, const char *file, int line,
8821 const char *function, enum tree_code c1,
8822 enum tree_code c2)
8823 {
8824 char *buffer;
8825 unsigned length = 0;
8826 unsigned int c;
8827
8828 for (c = c1; c <= c2; ++c)
8829 length += 4 + strlen (tree_code_name[c]);
8830
8831 length += strlen ("expected ");
8832 buffer = (char *) alloca (length);
8833 length = 0;
8834
8835 for (c = c1; c <= c2; ++c)
8836 {
8837 const char *prefix = length ? " or " : "expected ";
8838
8839 strcpy (buffer + length, prefix);
8840 length += strlen (prefix);
8841 strcpy (buffer + length, tree_code_name[c]);
8842 length += strlen (tree_code_name[c]);
8843 }
8844
8845 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8846 buffer, tree_code_name[TREE_CODE (node)],
8847 function, trim_filename (file), line);
8848 }
8849
8850
8851 /* Similar to tree_check_failed, except that we check that a tree does
8852 not have the specified code, given in CL. */
8853
8854 void
8855 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8856 const char *file, int line, const char *function)
8857 {
8858 internal_error
8859 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8860 TREE_CODE_CLASS_STRING (cl),
8861 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8862 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8863 }
8864
8865
8866 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8867
8868 void
8869 omp_clause_check_failed (const_tree node, const char *file, int line,
8870 const char *function, enum omp_clause_code code)
8871 {
8872 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8873 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8874 function, trim_filename (file), line);
8875 }
8876
8877
8878 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8879
8880 void
8881 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8882 const char *function, enum omp_clause_code c1,
8883 enum omp_clause_code c2)
8884 {
8885 char *buffer;
8886 unsigned length = 0;
8887 unsigned int c;
8888
8889 for (c = c1; c <= c2; ++c)
8890 length += 4 + strlen (omp_clause_code_name[c]);
8891
8892 length += strlen ("expected ");
8893 buffer = (char *) alloca (length);
8894 length = 0;
8895
8896 for (c = c1; c <= c2; ++c)
8897 {
8898 const char *prefix = length ? " or " : "expected ";
8899
8900 strcpy (buffer + length, prefix);
8901 length += strlen (prefix);
8902 strcpy (buffer + length, omp_clause_code_name[c]);
8903 length += strlen (omp_clause_code_name[c]);
8904 }
8905
8906 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8907 buffer, omp_clause_code_name[TREE_CODE (node)],
8908 function, trim_filename (file), line);
8909 }
8910
8911
8912 #undef DEFTREESTRUCT
8913 #define DEFTREESTRUCT(VAL, NAME) NAME,
8914
8915 static const char *ts_enum_names[] = {
8916 #include "treestruct.def"
8917 };
8918 #undef DEFTREESTRUCT
8919
8920 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8921
8922 /* Similar to tree_class_check_failed, except that we check for
8923 whether CODE contains the tree structure identified by EN. */
8924
8925 void
8926 tree_contains_struct_check_failed (const_tree node,
8927 const enum tree_node_structure_enum en,
8928 const char *file, int line,
8929 const char *function)
8930 {
8931 internal_error
8932 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8933 TS_ENUM_NAME(en),
8934 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8935 }
8936
8937
8938 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8939 (dynamically sized) vector. */
8940
8941 void
8942 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8943 const char *function)
8944 {
8945 internal_error
8946 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
8947 idx + 1, len, function, trim_filename (file), line);
8948 }
8949
8950 /* Similar to above, except that the check is for the bounds of the operand
8951 vector of an expression node EXP. */
8952
8953 void
8954 tree_operand_check_failed (int idx, const_tree exp, const char *file,
8955 int line, const char *function)
8956 {
8957 int code = TREE_CODE (exp);
8958 internal_error
8959 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
8960 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
8961 function, trim_filename (file), line);
8962 }
8963
8964 /* Similar to above, except that the check is for the number of
8965 operands of an OMP_CLAUSE node. */
8966
8967 void
8968 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
8969 int line, const char *function)
8970 {
8971 internal_error
8972 ("tree check: accessed operand %d of omp_clause %s with %d operands "
8973 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
8974 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
8975 trim_filename (file), line);
8976 }
8977 #endif /* ENABLE_TREE_CHECKING */
8978 \f
8979 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
8980 and mapped to the machine mode MODE. Initialize its fields and build
8981 the information necessary for debugging output. */
8982
8983 static tree
8984 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
8985 {
8986 tree t;
8987 hashval_t hashcode = 0;
8988
8989 t = make_node (VECTOR_TYPE);
8990 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
8991 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
8992 SET_TYPE_MODE (t, mode);
8993
8994 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
8995 SET_TYPE_STRUCTURAL_EQUALITY (t);
8996 else if (TYPE_CANONICAL (innertype) != innertype
8997 || mode != VOIDmode)
8998 TYPE_CANONICAL (t)
8999 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
9000
9001 layout_type (t);
9002
9003 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
9004 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
9005 hashcode = iterative_hash_host_wide_int (mode, hashcode);
9006 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
9007 t = type_hash_canon (hashcode, t);
9008
9009 /* We have built a main variant, based on the main variant of the
9010 inner type. Use it to build the variant we return. */
9011 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9012 && TREE_TYPE (t) != innertype)
9013 return build_type_attribute_qual_variant (t,
9014 TYPE_ATTRIBUTES (innertype),
9015 TYPE_QUALS (innertype));
9016
9017 return t;
9018 }
9019
9020 static tree
9021 make_or_reuse_type (unsigned size, int unsignedp)
9022 {
9023 if (size == INT_TYPE_SIZE)
9024 return unsignedp ? unsigned_type_node : integer_type_node;
9025 if (size == CHAR_TYPE_SIZE)
9026 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9027 if (size == SHORT_TYPE_SIZE)
9028 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9029 if (size == LONG_TYPE_SIZE)
9030 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9031 if (size == LONG_LONG_TYPE_SIZE)
9032 return (unsignedp ? long_long_unsigned_type_node
9033 : long_long_integer_type_node);
9034 if (size == 128 && int128_integer_type_node)
9035 return (unsignedp ? int128_unsigned_type_node
9036 : int128_integer_type_node);
9037
9038 if (unsignedp)
9039 return make_unsigned_type (size);
9040 else
9041 return make_signed_type (size);
9042 }
9043
9044 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9045
9046 static tree
9047 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9048 {
9049 if (satp)
9050 {
9051 if (size == SHORT_FRACT_TYPE_SIZE)
9052 return unsignedp ? sat_unsigned_short_fract_type_node
9053 : sat_short_fract_type_node;
9054 if (size == FRACT_TYPE_SIZE)
9055 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9056 if (size == LONG_FRACT_TYPE_SIZE)
9057 return unsignedp ? sat_unsigned_long_fract_type_node
9058 : sat_long_fract_type_node;
9059 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9060 return unsignedp ? sat_unsigned_long_long_fract_type_node
9061 : sat_long_long_fract_type_node;
9062 }
9063 else
9064 {
9065 if (size == SHORT_FRACT_TYPE_SIZE)
9066 return unsignedp ? unsigned_short_fract_type_node
9067 : short_fract_type_node;
9068 if (size == FRACT_TYPE_SIZE)
9069 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9070 if (size == LONG_FRACT_TYPE_SIZE)
9071 return unsignedp ? unsigned_long_fract_type_node
9072 : long_fract_type_node;
9073 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9074 return unsignedp ? unsigned_long_long_fract_type_node
9075 : long_long_fract_type_node;
9076 }
9077
9078 return make_fract_type (size, unsignedp, satp);
9079 }
9080
9081 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9082
9083 static tree
9084 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9085 {
9086 if (satp)
9087 {
9088 if (size == SHORT_ACCUM_TYPE_SIZE)
9089 return unsignedp ? sat_unsigned_short_accum_type_node
9090 : sat_short_accum_type_node;
9091 if (size == ACCUM_TYPE_SIZE)
9092 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9093 if (size == LONG_ACCUM_TYPE_SIZE)
9094 return unsignedp ? sat_unsigned_long_accum_type_node
9095 : sat_long_accum_type_node;
9096 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9097 return unsignedp ? sat_unsigned_long_long_accum_type_node
9098 : sat_long_long_accum_type_node;
9099 }
9100 else
9101 {
9102 if (size == SHORT_ACCUM_TYPE_SIZE)
9103 return unsignedp ? unsigned_short_accum_type_node
9104 : short_accum_type_node;
9105 if (size == ACCUM_TYPE_SIZE)
9106 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9107 if (size == LONG_ACCUM_TYPE_SIZE)
9108 return unsignedp ? unsigned_long_accum_type_node
9109 : long_accum_type_node;
9110 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9111 return unsignedp ? unsigned_long_long_accum_type_node
9112 : long_long_accum_type_node;
9113 }
9114
9115 return make_accum_type (size, unsignedp, satp);
9116 }
9117
9118 /* Create nodes for all integer types (and error_mark_node) using the sizes
9119 of C datatypes. The caller should call set_sizetype soon after calling
9120 this function to select one of the types as sizetype. */
9121
9122 void
9123 build_common_tree_nodes (bool signed_char)
9124 {
9125 error_mark_node = make_node (ERROR_MARK);
9126 TREE_TYPE (error_mark_node) = error_mark_node;
9127
9128 initialize_sizetypes ();
9129
9130 /* Define both `signed char' and `unsigned char'. */
9131 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9132 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9133 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9134 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9135
9136 /* Define `char', which is like either `signed char' or `unsigned char'
9137 but not the same as either. */
9138 char_type_node
9139 = (signed_char
9140 ? make_signed_type (CHAR_TYPE_SIZE)
9141 : make_unsigned_type (CHAR_TYPE_SIZE));
9142 TYPE_STRING_FLAG (char_type_node) = 1;
9143
9144 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9145 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9146 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9147 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9148 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9149 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9150 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9151 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9152 #if HOST_BITS_PER_WIDE_INT >= 64
9153 /* TODO: This isn't correct, but as logic depends at the moment on
9154 host's instead of target's wide-integer.
9155 If there is a target not supporting TImode, but has an 128-bit
9156 integer-scalar register, this target check needs to be adjusted. */
9157 if (targetm.scalar_mode_supported_p (TImode))
9158 {
9159 int128_integer_type_node = make_signed_type (128);
9160 int128_unsigned_type_node = make_unsigned_type (128);
9161 }
9162 #endif
9163 /* Define a boolean type. This type only represents boolean values but
9164 may be larger than char depending on the value of BOOL_TYPE_SIZE.
9165 Front ends which want to override this size (i.e. Java) can redefine
9166 boolean_type_node before calling build_common_tree_nodes_2. */
9167 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9168 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9169 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9170 TYPE_PRECISION (boolean_type_node) = 1;
9171
9172 /* Fill in the rest of the sized types. Reuse existing type nodes
9173 when possible. */
9174 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9175 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9176 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9177 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9178 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9179
9180 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9181 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9182 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9183 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9184 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9185
9186 access_public_node = get_identifier ("public");
9187 access_protected_node = get_identifier ("protected");
9188 access_private_node = get_identifier ("private");
9189 }
9190
9191 /* Call this function after calling build_common_tree_nodes and set_sizetype.
9192 It will create several other common tree nodes. */
9193
9194 void
9195 build_common_tree_nodes_2 (int short_double)
9196 {
9197 /* Define these next since types below may used them. */
9198 integer_zero_node = build_int_cst (integer_type_node, 0);
9199 integer_one_node = build_int_cst (integer_type_node, 1);
9200 integer_three_node = build_int_cst (integer_type_node, 3);
9201 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9202
9203 size_zero_node = size_int (0);
9204 size_one_node = size_int (1);
9205 bitsize_zero_node = bitsize_int (0);
9206 bitsize_one_node = bitsize_int (1);
9207 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9208
9209 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9210 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9211
9212 void_type_node = make_node (VOID_TYPE);
9213 layout_type (void_type_node);
9214
9215 /* We are not going to have real types in C with less than byte alignment,
9216 so we might as well not have any types that claim to have it. */
9217 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9218 TYPE_USER_ALIGN (void_type_node) = 0;
9219
9220 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9221 layout_type (TREE_TYPE (null_pointer_node));
9222
9223 ptr_type_node = build_pointer_type (void_type_node);
9224 const_ptr_type_node
9225 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9226 fileptr_type_node = ptr_type_node;
9227
9228 float_type_node = make_node (REAL_TYPE);
9229 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9230 layout_type (float_type_node);
9231
9232 double_type_node = make_node (REAL_TYPE);
9233 if (short_double)
9234 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9235 else
9236 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9237 layout_type (double_type_node);
9238
9239 long_double_type_node = make_node (REAL_TYPE);
9240 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9241 layout_type (long_double_type_node);
9242
9243 float_ptr_type_node = build_pointer_type (float_type_node);
9244 double_ptr_type_node = build_pointer_type (double_type_node);
9245 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9246 integer_ptr_type_node = build_pointer_type (integer_type_node);
9247
9248 /* Fixed size integer types. */
9249 uint32_type_node = build_nonstandard_integer_type (32, true);
9250 uint64_type_node = build_nonstandard_integer_type (64, true);
9251
9252 /* Decimal float types. */
9253 dfloat32_type_node = make_node (REAL_TYPE);
9254 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9255 layout_type (dfloat32_type_node);
9256 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9257 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9258
9259 dfloat64_type_node = make_node (REAL_TYPE);
9260 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9261 layout_type (dfloat64_type_node);
9262 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9263 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9264
9265 dfloat128_type_node = make_node (REAL_TYPE);
9266 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9267 layout_type (dfloat128_type_node);
9268 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9269 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9270
9271 complex_integer_type_node = build_complex_type (integer_type_node);
9272 complex_float_type_node = build_complex_type (float_type_node);
9273 complex_double_type_node = build_complex_type (double_type_node);
9274 complex_long_double_type_node = build_complex_type (long_double_type_node);
9275
9276 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9277 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9278 sat_ ## KIND ## _type_node = \
9279 make_sat_signed_ ## KIND ## _type (SIZE); \
9280 sat_unsigned_ ## KIND ## _type_node = \
9281 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9282 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9283 unsigned_ ## KIND ## _type_node = \
9284 make_unsigned_ ## KIND ## _type (SIZE);
9285
9286 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9287 sat_ ## WIDTH ## KIND ## _type_node = \
9288 make_sat_signed_ ## KIND ## _type (SIZE); \
9289 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9290 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9291 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9292 unsigned_ ## WIDTH ## KIND ## _type_node = \
9293 make_unsigned_ ## KIND ## _type (SIZE);
9294
9295 /* Make fixed-point type nodes based on four different widths. */
9296 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9297 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9298 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9299 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9300 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9301
9302 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9303 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9304 NAME ## _type_node = \
9305 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9306 u ## NAME ## _type_node = \
9307 make_or_reuse_unsigned_ ## KIND ## _type \
9308 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9309 sat_ ## NAME ## _type_node = \
9310 make_or_reuse_sat_signed_ ## KIND ## _type \
9311 (GET_MODE_BITSIZE (MODE ## mode)); \
9312 sat_u ## NAME ## _type_node = \
9313 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9314 (GET_MODE_BITSIZE (U ## MODE ## mode));
9315
9316 /* Fixed-point type and mode nodes. */
9317 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9318 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9319 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9320 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9321 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9322 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9323 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9324 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9325 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9326 MAKE_FIXED_MODE_NODE (accum, da, DA)
9327 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9328
9329 {
9330 tree t = targetm.build_builtin_va_list ();
9331
9332 /* Many back-ends define record types without setting TYPE_NAME.
9333 If we copied the record type here, we'd keep the original
9334 record type without a name. This breaks name mangling. So,
9335 don't copy record types and let c_common_nodes_and_builtins()
9336 declare the type to be __builtin_va_list. */
9337 if (TREE_CODE (t) != RECORD_TYPE)
9338 t = build_variant_type_copy (t);
9339
9340 va_list_type_node = t;
9341 }
9342 }
9343
9344 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9345
9346 static void
9347 local_define_builtin (const char *name, tree type, enum built_in_function code,
9348 const char *library_name, int ecf_flags)
9349 {
9350 tree decl;
9351
9352 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9353 library_name, NULL_TREE);
9354 if (ecf_flags & ECF_CONST)
9355 TREE_READONLY (decl) = 1;
9356 if (ecf_flags & ECF_PURE)
9357 DECL_PURE_P (decl) = 1;
9358 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9359 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9360 if (ecf_flags & ECF_NORETURN)
9361 TREE_THIS_VOLATILE (decl) = 1;
9362 if (ecf_flags & ECF_NOTHROW)
9363 TREE_NOTHROW (decl) = 1;
9364 if (ecf_flags & ECF_MALLOC)
9365 DECL_IS_MALLOC (decl) = 1;
9366 if (ecf_flags & ECF_LEAF)
9367 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9368 NULL, DECL_ATTRIBUTES (decl));
9369
9370 built_in_decls[code] = decl;
9371 implicit_built_in_decls[code] = decl;
9372 }
9373
9374 /* Call this function after instantiating all builtins that the language
9375 front end cares about. This will build the rest of the builtins that
9376 are relied upon by the tree optimizers and the middle-end. */
9377
9378 void
9379 build_common_builtin_nodes (void)
9380 {
9381 tree tmp, ftype;
9382
9383 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
9384 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9385 {
9386 ftype = build_function_type_list (ptr_type_node,
9387 ptr_type_node, const_ptr_type_node,
9388 size_type_node, NULL_TREE);
9389
9390 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
9391 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9392 "memcpy", ECF_NOTHROW | ECF_LEAF);
9393 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9394 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9395 "memmove", ECF_NOTHROW | ECF_LEAF);
9396 }
9397
9398 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
9399 {
9400 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9401 const_ptr_type_node, size_type_node,
9402 NULL_TREE);
9403 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9404 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9405 }
9406
9407 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
9408 {
9409 ftype = build_function_type_list (ptr_type_node,
9410 ptr_type_node, integer_type_node,
9411 size_type_node, NULL_TREE);
9412 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9413 "memset", ECF_NOTHROW | ECF_LEAF);
9414 }
9415
9416 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
9417 {
9418 ftype = build_function_type_list (ptr_type_node,
9419 size_type_node, NULL_TREE);
9420 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9421 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9422 }
9423
9424 /* If we're checking the stack, `alloca' can throw. */
9425 if (flag_stack_check)
9426 TREE_NOTHROW (built_in_decls[BUILT_IN_ALLOCA]) = 0;
9427
9428 ftype = build_function_type_list (void_type_node,
9429 ptr_type_node, ptr_type_node,
9430 ptr_type_node, NULL_TREE);
9431 local_define_builtin ("__builtin_init_trampoline", ftype,
9432 BUILT_IN_INIT_TRAMPOLINE,
9433 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9434
9435 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9436 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9437 BUILT_IN_ADJUST_TRAMPOLINE,
9438 "__builtin_adjust_trampoline",
9439 ECF_CONST | ECF_NOTHROW);
9440
9441 ftype = build_function_type_list (void_type_node,
9442 ptr_type_node, ptr_type_node, NULL_TREE);
9443 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9444 BUILT_IN_NONLOCAL_GOTO,
9445 "__builtin_nonlocal_goto",
9446 ECF_NORETURN | ECF_NOTHROW);
9447
9448 ftype = build_function_type_list (void_type_node,
9449 ptr_type_node, ptr_type_node, NULL_TREE);
9450 local_define_builtin ("__builtin_setjmp_setup", ftype,
9451 BUILT_IN_SETJMP_SETUP,
9452 "__builtin_setjmp_setup", ECF_NOTHROW);
9453
9454 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9455 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9456 BUILT_IN_SETJMP_DISPATCHER,
9457 "__builtin_setjmp_dispatcher",
9458 ECF_PURE | ECF_NOTHROW);
9459
9460 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9461 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9462 BUILT_IN_SETJMP_RECEIVER,
9463 "__builtin_setjmp_receiver", ECF_NOTHROW);
9464
9465 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9466 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9467 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9468
9469 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9470 local_define_builtin ("__builtin_stack_restore", ftype,
9471 BUILT_IN_STACK_RESTORE,
9472 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9473
9474 /* If there's a possibility that we might use the ARM EABI, build the
9475 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9476 if (targetm.arm_eabi_unwinder)
9477 {
9478 ftype = build_function_type_list (void_type_node, NULL_TREE);
9479 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9480 BUILT_IN_CXA_END_CLEANUP,
9481 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9482 }
9483
9484 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9485 local_define_builtin ("__builtin_unwind_resume", ftype,
9486 BUILT_IN_UNWIND_RESUME,
9487 ((targetm.except_unwind_info (&global_options)
9488 == UI_SJLJ)
9489 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9490 ECF_NORETURN);
9491
9492 /* The exception object and filter values from the runtime. The argument
9493 must be zero before exception lowering, i.e. from the front end. After
9494 exception lowering, it will be the region number for the exception
9495 landing pad. These functions are PURE instead of CONST to prevent
9496 them from being hoisted past the exception edge that will initialize
9497 its value in the landing pad. */
9498 ftype = build_function_type_list (ptr_type_node,
9499 integer_type_node, NULL_TREE);
9500 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9501 "__builtin_eh_pointer", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9502
9503 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9504 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
9505 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9506 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9507
9508 ftype = build_function_type_list (void_type_node,
9509 integer_type_node, integer_type_node,
9510 NULL_TREE);
9511 local_define_builtin ("__builtin_eh_copy_values", ftype,
9512 BUILT_IN_EH_COPY_VALUES,
9513 "__builtin_eh_copy_values", ECF_NOTHROW);
9514
9515 /* Complex multiplication and division. These are handled as builtins
9516 rather than optabs because emit_library_call_value doesn't support
9517 complex. Further, we can do slightly better with folding these
9518 beasties if the real and complex parts of the arguments are separate. */
9519 {
9520 int mode;
9521
9522 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9523 {
9524 char mode_name_buf[4], *q;
9525 const char *p;
9526 enum built_in_function mcode, dcode;
9527 tree type, inner_type;
9528 const char *prefix = "__";
9529
9530 if (targetm.libfunc_gnu_prefix)
9531 prefix = "__gnu_";
9532
9533 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9534 if (type == NULL)
9535 continue;
9536 inner_type = TREE_TYPE (type);
9537
9538 ftype = build_function_type_list (type, inner_type, inner_type,
9539 inner_type, inner_type, NULL_TREE);
9540
9541 mcode = ((enum built_in_function)
9542 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9543 dcode = ((enum built_in_function)
9544 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9545
9546 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9547 *q = TOLOWER (*p);
9548 *q = '\0';
9549
9550 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
9551 NULL);
9552 local_define_builtin (built_in_names[mcode], ftype, mcode,
9553 built_in_names[mcode],
9554 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9555
9556 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
9557 NULL);
9558 local_define_builtin (built_in_names[dcode], ftype, dcode,
9559 built_in_names[dcode],
9560 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9561 }
9562 }
9563 }
9564
9565 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9566 better way.
9567
9568 If we requested a pointer to a vector, build up the pointers that
9569 we stripped off while looking for the inner type. Similarly for
9570 return values from functions.
9571
9572 The argument TYPE is the top of the chain, and BOTTOM is the
9573 new type which we will point to. */
9574
9575 tree
9576 reconstruct_complex_type (tree type, tree bottom)
9577 {
9578 tree inner, outer;
9579
9580 if (TREE_CODE (type) == POINTER_TYPE)
9581 {
9582 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9583 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9584 TYPE_REF_CAN_ALIAS_ALL (type));
9585 }
9586 else if (TREE_CODE (type) == REFERENCE_TYPE)
9587 {
9588 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9589 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9590 TYPE_REF_CAN_ALIAS_ALL (type));
9591 }
9592 else if (TREE_CODE (type) == ARRAY_TYPE)
9593 {
9594 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9595 outer = build_array_type (inner, TYPE_DOMAIN (type));
9596 }
9597 else if (TREE_CODE (type) == FUNCTION_TYPE)
9598 {
9599 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9600 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9601 }
9602 else if (TREE_CODE (type) == METHOD_TYPE)
9603 {
9604 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9605 /* The build_method_type_directly() routine prepends 'this' to argument list,
9606 so we must compensate by getting rid of it. */
9607 outer
9608 = build_method_type_directly
9609 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9610 inner,
9611 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9612 }
9613 else if (TREE_CODE (type) == OFFSET_TYPE)
9614 {
9615 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9616 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9617 }
9618 else
9619 return bottom;
9620
9621 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9622 TYPE_QUALS (type));
9623 }
9624
9625 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9626 the inner type. */
9627 tree
9628 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9629 {
9630 int nunits;
9631
9632 switch (GET_MODE_CLASS (mode))
9633 {
9634 case MODE_VECTOR_INT:
9635 case MODE_VECTOR_FLOAT:
9636 case MODE_VECTOR_FRACT:
9637 case MODE_VECTOR_UFRACT:
9638 case MODE_VECTOR_ACCUM:
9639 case MODE_VECTOR_UACCUM:
9640 nunits = GET_MODE_NUNITS (mode);
9641 break;
9642
9643 case MODE_INT:
9644 /* Check that there are no leftover bits. */
9645 gcc_assert (GET_MODE_BITSIZE (mode)
9646 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9647
9648 nunits = GET_MODE_BITSIZE (mode)
9649 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9650 break;
9651
9652 default:
9653 gcc_unreachable ();
9654 }
9655
9656 return make_vector_type (innertype, nunits, mode);
9657 }
9658
9659 /* Similarly, but takes the inner type and number of units, which must be
9660 a power of two. */
9661
9662 tree
9663 build_vector_type (tree innertype, int nunits)
9664 {
9665 return make_vector_type (innertype, nunits, VOIDmode);
9666 }
9667
9668 /* Similarly, but takes the inner type and number of units, which must be
9669 a power of two. */
9670
9671 tree
9672 build_opaque_vector_type (tree innertype, int nunits)
9673 {
9674 tree t;
9675 innertype = build_distinct_type_copy (innertype);
9676 t = make_vector_type (innertype, nunits, VOIDmode);
9677 TYPE_VECTOR_OPAQUE (t) = true;
9678 return t;
9679 }
9680
9681
9682 /* Given an initializer INIT, return TRUE if INIT is zero or some
9683 aggregate of zeros. Otherwise return FALSE. */
9684 bool
9685 initializer_zerop (const_tree init)
9686 {
9687 tree elt;
9688
9689 STRIP_NOPS (init);
9690
9691 switch (TREE_CODE (init))
9692 {
9693 case INTEGER_CST:
9694 return integer_zerop (init);
9695
9696 case REAL_CST:
9697 /* ??? Note that this is not correct for C4X float formats. There,
9698 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9699 negative exponent. */
9700 return real_zerop (init)
9701 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9702
9703 case FIXED_CST:
9704 return fixed_zerop (init);
9705
9706 case COMPLEX_CST:
9707 return integer_zerop (init)
9708 || (real_zerop (init)
9709 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9710 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9711
9712 case VECTOR_CST:
9713 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9714 if (!initializer_zerop (TREE_VALUE (elt)))
9715 return false;
9716 return true;
9717
9718 case CONSTRUCTOR:
9719 {
9720 unsigned HOST_WIDE_INT idx;
9721
9722 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9723 if (!initializer_zerop (elt))
9724 return false;
9725 return true;
9726 }
9727
9728 case STRING_CST:
9729 {
9730 int i;
9731
9732 /* We need to loop through all elements to handle cases like
9733 "\0" and "\0foobar". */
9734 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
9735 if (TREE_STRING_POINTER (init)[i] != '\0')
9736 return false;
9737
9738 return true;
9739 }
9740
9741 default:
9742 return false;
9743 }
9744 }
9745
9746 /* Build an empty statement at location LOC. */
9747
9748 tree
9749 build_empty_stmt (location_t loc)
9750 {
9751 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9752 SET_EXPR_LOCATION (t, loc);
9753 return t;
9754 }
9755
9756
9757 /* Build an OpenMP clause with code CODE. LOC is the location of the
9758 clause. */
9759
9760 tree
9761 build_omp_clause (location_t loc, enum omp_clause_code code)
9762 {
9763 tree t;
9764 int size, length;
9765
9766 length = omp_clause_num_ops[code];
9767 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9768
9769 record_node_allocation_statistics (OMP_CLAUSE, size);
9770
9771 t = ggc_alloc_tree_node (size);
9772 memset (t, 0, size);
9773 TREE_SET_CODE (t, OMP_CLAUSE);
9774 OMP_CLAUSE_SET_CODE (t, code);
9775 OMP_CLAUSE_LOCATION (t) = loc;
9776
9777 return t;
9778 }
9779
9780 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9781 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9782 Except for the CODE and operand count field, other storage for the
9783 object is initialized to zeros. */
9784
9785 tree
9786 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9787 {
9788 tree t;
9789 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9790
9791 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9792 gcc_assert (len >= 1);
9793
9794 record_node_allocation_statistics (code, length);
9795
9796 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
9797
9798 TREE_SET_CODE (t, code);
9799
9800 /* Can't use TREE_OPERAND to store the length because if checking is
9801 enabled, it will try to check the length before we store it. :-P */
9802 t->exp.operands[0] = build_int_cst (sizetype, len);
9803
9804 return t;
9805 }
9806
9807 /* Helper function for build_call_* functions; build a CALL_EXPR with
9808 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
9809 the argument slots. */
9810
9811 static tree
9812 build_call_1 (tree return_type, tree fn, int nargs)
9813 {
9814 tree t;
9815
9816 t = build_vl_exp (CALL_EXPR, nargs + 3);
9817 TREE_TYPE (t) = return_type;
9818 CALL_EXPR_FN (t) = fn;
9819 CALL_EXPR_STATIC_CHAIN (t) = NULL;
9820
9821 return t;
9822 }
9823
9824 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9825 FN and a null static chain slot. NARGS is the number of call arguments
9826 which are specified as "..." arguments. */
9827
9828 tree
9829 build_call_nary (tree return_type, tree fn, int nargs, ...)
9830 {
9831 tree ret;
9832 va_list args;
9833 va_start (args, nargs);
9834 ret = build_call_valist (return_type, fn, nargs, args);
9835 va_end (args);
9836 return ret;
9837 }
9838
9839 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9840 FN and a null static chain slot. NARGS is the number of call arguments
9841 which are specified as a va_list ARGS. */
9842
9843 tree
9844 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9845 {
9846 tree t;
9847 int i;
9848
9849 t = build_call_1 (return_type, fn, nargs);
9850 for (i = 0; i < nargs; i++)
9851 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9852 process_call_operands (t);
9853 return t;
9854 }
9855
9856 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9857 FN and a null static chain slot. NARGS is the number of call arguments
9858 which are specified as a tree array ARGS. */
9859
9860 tree
9861 build_call_array_loc (location_t loc, tree return_type, tree fn,
9862 int nargs, const tree *args)
9863 {
9864 tree t;
9865 int i;
9866
9867 t = build_call_1 (return_type, fn, nargs);
9868 for (i = 0; i < nargs; i++)
9869 CALL_EXPR_ARG (t, i) = args[i];
9870 process_call_operands (t);
9871 SET_EXPR_LOCATION (t, loc);
9872 return t;
9873 }
9874
9875 /* Like build_call_array, but takes a VEC. */
9876
9877 tree
9878 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9879 {
9880 tree ret, t;
9881 unsigned int ix;
9882
9883 ret = build_call_1 (return_type, fn, VEC_length (tree, args));
9884 FOR_EACH_VEC_ELT (tree, args, ix, t)
9885 CALL_EXPR_ARG (ret, ix) = t;
9886 process_call_operands (ret);
9887 return ret;
9888 }
9889
9890
9891 /* Returns true if it is possible to prove that the index of
9892 an array access REF (an ARRAY_REF expression) falls into the
9893 array bounds. */
9894
9895 bool
9896 in_array_bounds_p (tree ref)
9897 {
9898 tree idx = TREE_OPERAND (ref, 1);
9899 tree min, max;
9900
9901 if (TREE_CODE (idx) != INTEGER_CST)
9902 return false;
9903
9904 min = array_ref_low_bound (ref);
9905 max = array_ref_up_bound (ref);
9906 if (!min
9907 || !max
9908 || TREE_CODE (min) != INTEGER_CST
9909 || TREE_CODE (max) != INTEGER_CST)
9910 return false;
9911
9912 if (tree_int_cst_lt (idx, min)
9913 || tree_int_cst_lt (max, idx))
9914 return false;
9915
9916 return true;
9917 }
9918
9919 /* Returns true if it is possible to prove that the range of
9920 an array access REF (an ARRAY_RANGE_REF expression) falls
9921 into the array bounds. */
9922
9923 bool
9924 range_in_array_bounds_p (tree ref)
9925 {
9926 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
9927 tree range_min, range_max, min, max;
9928
9929 range_min = TYPE_MIN_VALUE (domain_type);
9930 range_max = TYPE_MAX_VALUE (domain_type);
9931 if (!range_min
9932 || !range_max
9933 || TREE_CODE (range_min) != INTEGER_CST
9934 || TREE_CODE (range_max) != INTEGER_CST)
9935 return false;
9936
9937 min = array_ref_low_bound (ref);
9938 max = array_ref_up_bound (ref);
9939 if (!min
9940 || !max
9941 || TREE_CODE (min) != INTEGER_CST
9942 || TREE_CODE (max) != INTEGER_CST)
9943 return false;
9944
9945 if (tree_int_cst_lt (range_min, min)
9946 || tree_int_cst_lt (max, range_max))
9947 return false;
9948
9949 return true;
9950 }
9951
9952 /* Return true if T (assumed to be a DECL) must be assigned a memory
9953 location. */
9954
9955 bool
9956 needs_to_live_in_memory (const_tree t)
9957 {
9958 if (TREE_CODE (t) == SSA_NAME)
9959 t = SSA_NAME_VAR (t);
9960
9961 return (TREE_ADDRESSABLE (t)
9962 || is_global_var (t)
9963 || (TREE_CODE (t) == RESULT_DECL
9964 && !DECL_BY_REFERENCE (t)
9965 && aggregate_value_p (t, current_function_decl)));
9966 }
9967
9968 /* Return value of a constant X and sign-extend it. */
9969
9970 HOST_WIDE_INT
9971 int_cst_value (const_tree x)
9972 {
9973 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9974 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
9975
9976 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9977 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9978 || TREE_INT_CST_HIGH (x) == -1);
9979
9980 if (bits < HOST_BITS_PER_WIDE_INT)
9981 {
9982 bool negative = ((val >> (bits - 1)) & 1) != 0;
9983 if (negative)
9984 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
9985 else
9986 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
9987 }
9988
9989 return val;
9990 }
9991
9992 /* Return value of a constant X and sign-extend it. */
9993
9994 HOST_WIDEST_INT
9995 widest_int_cst_value (const_tree x)
9996 {
9997 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9998 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
9999
10000 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
10001 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
10002 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
10003 << HOST_BITS_PER_WIDE_INT);
10004 #else
10005 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10006 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10007 || TREE_INT_CST_HIGH (x) == -1);
10008 #endif
10009
10010 if (bits < HOST_BITS_PER_WIDEST_INT)
10011 {
10012 bool negative = ((val >> (bits - 1)) & 1) != 0;
10013 if (negative)
10014 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
10015 else
10016 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
10017 }
10018
10019 return val;
10020 }
10021
10022 /* If TYPE is an integral type, return an equivalent type which is
10023 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
10024 return TYPE itself. */
10025
10026 tree
10027 signed_or_unsigned_type_for (int unsignedp, tree type)
10028 {
10029 tree t = type;
10030 if (POINTER_TYPE_P (type))
10031 {
10032 /* If the pointer points to the normal address space, use the
10033 size_type_node. Otherwise use an appropriate size for the pointer
10034 based on the named address space it points to. */
10035 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
10036 t = size_type_node;
10037 else
10038 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
10039 }
10040
10041 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
10042 return t;
10043
10044 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
10045 }
10046
10047 /* Returns unsigned variant of TYPE. */
10048
10049 tree
10050 unsigned_type_for (tree type)
10051 {
10052 return signed_or_unsigned_type_for (1, type);
10053 }
10054
10055 /* Returns signed variant of TYPE. */
10056
10057 tree
10058 signed_type_for (tree type)
10059 {
10060 return signed_or_unsigned_type_for (0, type);
10061 }
10062
10063 /* Returns the largest value obtainable by casting something in INNER type to
10064 OUTER type. */
10065
10066 tree
10067 upper_bound_in_type (tree outer, tree inner)
10068 {
10069 double_int high;
10070 unsigned int det = 0;
10071 unsigned oprec = TYPE_PRECISION (outer);
10072 unsigned iprec = TYPE_PRECISION (inner);
10073 unsigned prec;
10074
10075 /* Compute a unique number for every combination. */
10076 det |= (oprec > iprec) ? 4 : 0;
10077 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10078 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10079
10080 /* Determine the exponent to use. */
10081 switch (det)
10082 {
10083 case 0:
10084 case 1:
10085 /* oprec <= iprec, outer: signed, inner: don't care. */
10086 prec = oprec - 1;
10087 break;
10088 case 2:
10089 case 3:
10090 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10091 prec = oprec;
10092 break;
10093 case 4:
10094 /* oprec > iprec, outer: signed, inner: signed. */
10095 prec = iprec - 1;
10096 break;
10097 case 5:
10098 /* oprec > iprec, outer: signed, inner: unsigned. */
10099 prec = iprec;
10100 break;
10101 case 6:
10102 /* oprec > iprec, outer: unsigned, inner: signed. */
10103 prec = oprec;
10104 break;
10105 case 7:
10106 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10107 prec = iprec;
10108 break;
10109 default:
10110 gcc_unreachable ();
10111 }
10112
10113 /* Compute 2^^prec - 1. */
10114 if (prec <= HOST_BITS_PER_WIDE_INT)
10115 {
10116 high.high = 0;
10117 high.low = ((~(unsigned HOST_WIDE_INT) 0)
10118 >> (HOST_BITS_PER_WIDE_INT - prec));
10119 }
10120 else
10121 {
10122 high.high = ((~(unsigned HOST_WIDE_INT) 0)
10123 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
10124 high.low = ~(unsigned HOST_WIDE_INT) 0;
10125 }
10126
10127 return double_int_to_tree (outer, high);
10128 }
10129
10130 /* Returns the smallest value obtainable by casting something in INNER type to
10131 OUTER type. */
10132
10133 tree
10134 lower_bound_in_type (tree outer, tree inner)
10135 {
10136 double_int low;
10137 unsigned oprec = TYPE_PRECISION (outer);
10138 unsigned iprec = TYPE_PRECISION (inner);
10139
10140 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10141 and obtain 0. */
10142 if (TYPE_UNSIGNED (outer)
10143 /* If we are widening something of an unsigned type, OUTER type
10144 contains all values of INNER type. In particular, both INNER
10145 and OUTER types have zero in common. */
10146 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10147 low.low = low.high = 0;
10148 else
10149 {
10150 /* If we are widening a signed type to another signed type, we
10151 want to obtain -2^^(iprec-1). If we are keeping the
10152 precision or narrowing to a signed type, we want to obtain
10153 -2^(oprec-1). */
10154 unsigned prec = oprec > iprec ? iprec : oprec;
10155
10156 if (prec <= HOST_BITS_PER_WIDE_INT)
10157 {
10158 low.high = ~(unsigned HOST_WIDE_INT) 0;
10159 low.low = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
10160 }
10161 else
10162 {
10163 low.high = ((~(unsigned HOST_WIDE_INT) 0)
10164 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10165 low.low = 0;
10166 }
10167 }
10168
10169 return double_int_to_tree (outer, low);
10170 }
10171
10172 /* Return nonzero if two operands that are suitable for PHI nodes are
10173 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10174 SSA_NAME or invariant. Note that this is strictly an optimization.
10175 That is, callers of this function can directly call operand_equal_p
10176 and get the same result, only slower. */
10177
10178 int
10179 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10180 {
10181 if (arg0 == arg1)
10182 return 1;
10183 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10184 return 0;
10185 return operand_equal_p (arg0, arg1, 0);
10186 }
10187
10188 /* Returns number of zeros at the end of binary representation of X.
10189
10190 ??? Use ffs if available? */
10191
10192 tree
10193 num_ending_zeros (const_tree x)
10194 {
10195 unsigned HOST_WIDE_INT fr, nfr;
10196 unsigned num, abits;
10197 tree type = TREE_TYPE (x);
10198
10199 if (TREE_INT_CST_LOW (x) == 0)
10200 {
10201 num = HOST_BITS_PER_WIDE_INT;
10202 fr = TREE_INT_CST_HIGH (x);
10203 }
10204 else
10205 {
10206 num = 0;
10207 fr = TREE_INT_CST_LOW (x);
10208 }
10209
10210 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10211 {
10212 nfr = fr >> abits;
10213 if (nfr << abits == fr)
10214 {
10215 num += abits;
10216 fr = nfr;
10217 }
10218 }
10219
10220 if (num > TYPE_PRECISION (type))
10221 num = TYPE_PRECISION (type);
10222
10223 return build_int_cst_type (type, num);
10224 }
10225
10226
10227 #define WALK_SUBTREE(NODE) \
10228 do \
10229 { \
10230 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10231 if (result) \
10232 return result; \
10233 } \
10234 while (0)
10235
10236 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10237 be walked whenever a type is seen in the tree. Rest of operands and return
10238 value are as for walk_tree. */
10239
10240 static tree
10241 walk_type_fields (tree type, walk_tree_fn func, void *data,
10242 struct pointer_set_t *pset, walk_tree_lh lh)
10243 {
10244 tree result = NULL_TREE;
10245
10246 switch (TREE_CODE (type))
10247 {
10248 case POINTER_TYPE:
10249 case REFERENCE_TYPE:
10250 /* We have to worry about mutually recursive pointers. These can't
10251 be written in C. They can in Ada. It's pathological, but
10252 there's an ACATS test (c38102a) that checks it. Deal with this
10253 by checking if we're pointing to another pointer, that one
10254 points to another pointer, that one does too, and we have no htab.
10255 If so, get a hash table. We check three levels deep to avoid
10256 the cost of the hash table if we don't need one. */
10257 if (POINTER_TYPE_P (TREE_TYPE (type))
10258 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10259 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10260 && !pset)
10261 {
10262 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10263 func, data);
10264 if (result)
10265 return result;
10266
10267 break;
10268 }
10269
10270 /* ... fall through ... */
10271
10272 case COMPLEX_TYPE:
10273 WALK_SUBTREE (TREE_TYPE (type));
10274 break;
10275
10276 case METHOD_TYPE:
10277 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10278
10279 /* Fall through. */
10280
10281 case FUNCTION_TYPE:
10282 WALK_SUBTREE (TREE_TYPE (type));
10283 {
10284 tree arg;
10285
10286 /* We never want to walk into default arguments. */
10287 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10288 WALK_SUBTREE (TREE_VALUE (arg));
10289 }
10290 break;
10291
10292 case ARRAY_TYPE:
10293 /* Don't follow this nodes's type if a pointer for fear that
10294 we'll have infinite recursion. If we have a PSET, then we
10295 need not fear. */
10296 if (pset
10297 || (!POINTER_TYPE_P (TREE_TYPE (type))
10298 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10299 WALK_SUBTREE (TREE_TYPE (type));
10300 WALK_SUBTREE (TYPE_DOMAIN (type));
10301 break;
10302
10303 case OFFSET_TYPE:
10304 WALK_SUBTREE (TREE_TYPE (type));
10305 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10306 break;
10307
10308 default:
10309 break;
10310 }
10311
10312 return NULL_TREE;
10313 }
10314
10315 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10316 called with the DATA and the address of each sub-tree. If FUNC returns a
10317 non-NULL value, the traversal is stopped, and the value returned by FUNC
10318 is returned. If PSET is non-NULL it is used to record the nodes visited,
10319 and to avoid visiting a node more than once. */
10320
10321 tree
10322 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10323 struct pointer_set_t *pset, walk_tree_lh lh)
10324 {
10325 enum tree_code code;
10326 int walk_subtrees;
10327 tree result;
10328
10329 #define WALK_SUBTREE_TAIL(NODE) \
10330 do \
10331 { \
10332 tp = & (NODE); \
10333 goto tail_recurse; \
10334 } \
10335 while (0)
10336
10337 tail_recurse:
10338 /* Skip empty subtrees. */
10339 if (!*tp)
10340 return NULL_TREE;
10341
10342 /* Don't walk the same tree twice, if the user has requested
10343 that we avoid doing so. */
10344 if (pset && pointer_set_insert (pset, *tp))
10345 return NULL_TREE;
10346
10347 /* Call the function. */
10348 walk_subtrees = 1;
10349 result = (*func) (tp, &walk_subtrees, data);
10350
10351 /* If we found something, return it. */
10352 if (result)
10353 return result;
10354
10355 code = TREE_CODE (*tp);
10356
10357 /* Even if we didn't, FUNC may have decided that there was nothing
10358 interesting below this point in the tree. */
10359 if (!walk_subtrees)
10360 {
10361 /* But we still need to check our siblings. */
10362 if (code == TREE_LIST)
10363 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10364 else if (code == OMP_CLAUSE)
10365 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10366 else
10367 return NULL_TREE;
10368 }
10369
10370 if (lh)
10371 {
10372 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10373 if (result || !walk_subtrees)
10374 return result;
10375 }
10376
10377 switch (code)
10378 {
10379 case ERROR_MARK:
10380 case IDENTIFIER_NODE:
10381 case INTEGER_CST:
10382 case REAL_CST:
10383 case FIXED_CST:
10384 case VECTOR_CST:
10385 case STRING_CST:
10386 case BLOCK:
10387 case PLACEHOLDER_EXPR:
10388 case SSA_NAME:
10389 case FIELD_DECL:
10390 case RESULT_DECL:
10391 /* None of these have subtrees other than those already walked
10392 above. */
10393 break;
10394
10395 case TREE_LIST:
10396 WALK_SUBTREE (TREE_VALUE (*tp));
10397 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10398 break;
10399
10400 case TREE_VEC:
10401 {
10402 int len = TREE_VEC_LENGTH (*tp);
10403
10404 if (len == 0)
10405 break;
10406
10407 /* Walk all elements but the first. */
10408 while (--len)
10409 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10410
10411 /* Now walk the first one as a tail call. */
10412 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10413 }
10414
10415 case COMPLEX_CST:
10416 WALK_SUBTREE (TREE_REALPART (*tp));
10417 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10418
10419 case CONSTRUCTOR:
10420 {
10421 unsigned HOST_WIDE_INT idx;
10422 constructor_elt *ce;
10423
10424 for (idx = 0;
10425 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10426 idx++)
10427 WALK_SUBTREE (ce->value);
10428 }
10429 break;
10430
10431 case SAVE_EXPR:
10432 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10433
10434 case BIND_EXPR:
10435 {
10436 tree decl;
10437 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
10438 {
10439 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10440 into declarations that are just mentioned, rather than
10441 declared; they don't really belong to this part of the tree.
10442 And, we can see cycles: the initializer for a declaration
10443 can refer to the declaration itself. */
10444 WALK_SUBTREE (DECL_INITIAL (decl));
10445 WALK_SUBTREE (DECL_SIZE (decl));
10446 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10447 }
10448 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10449 }
10450
10451 case STATEMENT_LIST:
10452 {
10453 tree_stmt_iterator i;
10454 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10455 WALK_SUBTREE (*tsi_stmt_ptr (i));
10456 }
10457 break;
10458
10459 case OMP_CLAUSE:
10460 switch (OMP_CLAUSE_CODE (*tp))
10461 {
10462 case OMP_CLAUSE_PRIVATE:
10463 case OMP_CLAUSE_SHARED:
10464 case OMP_CLAUSE_FIRSTPRIVATE:
10465 case OMP_CLAUSE_COPYIN:
10466 case OMP_CLAUSE_COPYPRIVATE:
10467 case OMP_CLAUSE_IF:
10468 case OMP_CLAUSE_NUM_THREADS:
10469 case OMP_CLAUSE_SCHEDULE:
10470 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10471 /* FALLTHRU */
10472
10473 case OMP_CLAUSE_NOWAIT:
10474 case OMP_CLAUSE_ORDERED:
10475 case OMP_CLAUSE_DEFAULT:
10476 case OMP_CLAUSE_UNTIED:
10477 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10478
10479 case OMP_CLAUSE_LASTPRIVATE:
10480 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10481 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10482 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10483
10484 case OMP_CLAUSE_COLLAPSE:
10485 {
10486 int i;
10487 for (i = 0; i < 3; i++)
10488 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10489 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10490 }
10491
10492 case OMP_CLAUSE_REDUCTION:
10493 {
10494 int i;
10495 for (i = 0; i < 4; i++)
10496 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10497 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10498 }
10499
10500 default:
10501 gcc_unreachable ();
10502 }
10503 break;
10504
10505 case TARGET_EXPR:
10506 {
10507 int i, len;
10508
10509 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10510 But, we only want to walk once. */
10511 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10512 for (i = 0; i < len; ++i)
10513 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10514 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10515 }
10516
10517 case DECL_EXPR:
10518 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10519 defining. We only want to walk into these fields of a type in this
10520 case and not in the general case of a mere reference to the type.
10521
10522 The criterion is as follows: if the field can be an expression, it
10523 must be walked only here. This should be in keeping with the fields
10524 that are directly gimplified in gimplify_type_sizes in order for the
10525 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10526 variable-sized types.
10527
10528 Note that DECLs get walked as part of processing the BIND_EXPR. */
10529 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10530 {
10531 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10532 if (TREE_CODE (*type_p) == ERROR_MARK)
10533 return NULL_TREE;
10534
10535 /* Call the function for the type. See if it returns anything or
10536 doesn't want us to continue. If we are to continue, walk both
10537 the normal fields and those for the declaration case. */
10538 result = (*func) (type_p, &walk_subtrees, data);
10539 if (result || !walk_subtrees)
10540 return result;
10541
10542 result = walk_type_fields (*type_p, func, data, pset, lh);
10543 if (result)
10544 return result;
10545
10546 /* If this is a record type, also walk the fields. */
10547 if (RECORD_OR_UNION_TYPE_P (*type_p))
10548 {
10549 tree field;
10550
10551 for (field = TYPE_FIELDS (*type_p); field;
10552 field = DECL_CHAIN (field))
10553 {
10554 /* We'd like to look at the type of the field, but we can
10555 easily get infinite recursion. So assume it's pointed
10556 to elsewhere in the tree. Also, ignore things that
10557 aren't fields. */
10558 if (TREE_CODE (field) != FIELD_DECL)
10559 continue;
10560
10561 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10562 WALK_SUBTREE (DECL_SIZE (field));
10563 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10564 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10565 WALK_SUBTREE (DECL_QUALIFIER (field));
10566 }
10567 }
10568
10569 /* Same for scalar types. */
10570 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10571 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10572 || TREE_CODE (*type_p) == INTEGER_TYPE
10573 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10574 || TREE_CODE (*type_p) == REAL_TYPE)
10575 {
10576 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10577 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10578 }
10579
10580 WALK_SUBTREE (TYPE_SIZE (*type_p));
10581 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10582 }
10583 /* FALLTHRU */
10584
10585 default:
10586 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10587 {
10588 int i, len;
10589
10590 /* Walk over all the sub-trees of this operand. */
10591 len = TREE_OPERAND_LENGTH (*tp);
10592
10593 /* Go through the subtrees. We need to do this in forward order so
10594 that the scope of a FOR_EXPR is handled properly. */
10595 if (len)
10596 {
10597 for (i = 0; i < len - 1; ++i)
10598 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10599 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10600 }
10601 }
10602 /* If this is a type, walk the needed fields in the type. */
10603 else if (TYPE_P (*tp))
10604 return walk_type_fields (*tp, func, data, pset, lh);
10605 break;
10606 }
10607
10608 /* We didn't find what we were looking for. */
10609 return NULL_TREE;
10610
10611 #undef WALK_SUBTREE_TAIL
10612 }
10613 #undef WALK_SUBTREE
10614
10615 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10616
10617 tree
10618 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10619 walk_tree_lh lh)
10620 {
10621 tree result;
10622 struct pointer_set_t *pset;
10623
10624 pset = pointer_set_create ();
10625 result = walk_tree_1 (tp, func, data, pset, lh);
10626 pointer_set_destroy (pset);
10627 return result;
10628 }
10629
10630
10631 tree *
10632 tree_block (tree t)
10633 {
10634 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10635
10636 if (IS_EXPR_CODE_CLASS (c))
10637 return &t->exp.block;
10638 gcc_unreachable ();
10639 return NULL;
10640 }
10641
10642 /* Create a nameless artificial label and put it in the current
10643 function context. The label has a location of LOC. Returns the
10644 newly created label. */
10645
10646 tree
10647 create_artificial_label (location_t loc)
10648 {
10649 tree lab = build_decl (loc,
10650 LABEL_DECL, NULL_TREE, void_type_node);
10651
10652 DECL_ARTIFICIAL (lab) = 1;
10653 DECL_IGNORED_P (lab) = 1;
10654 DECL_CONTEXT (lab) = current_function_decl;
10655 return lab;
10656 }
10657
10658 /* Given a tree, try to return a useful variable name that we can use
10659 to prefix a temporary that is being assigned the value of the tree.
10660 I.E. given <temp> = &A, return A. */
10661
10662 const char *
10663 get_name (tree t)
10664 {
10665 tree stripped_decl;
10666
10667 stripped_decl = t;
10668 STRIP_NOPS (stripped_decl);
10669 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10670 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10671 else
10672 {
10673 switch (TREE_CODE (stripped_decl))
10674 {
10675 case ADDR_EXPR:
10676 return get_name (TREE_OPERAND (stripped_decl, 0));
10677 default:
10678 return NULL;
10679 }
10680 }
10681 }
10682
10683 /* Return true if TYPE has a variable argument list. */
10684
10685 bool
10686 stdarg_p (const_tree fntype)
10687 {
10688 function_args_iterator args_iter;
10689 tree n = NULL_TREE, t;
10690
10691 if (!fntype)
10692 return false;
10693
10694 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10695 {
10696 n = t;
10697 }
10698
10699 return n != NULL_TREE && n != void_type_node;
10700 }
10701
10702 /* Return true if TYPE has a prototype. */
10703
10704 bool
10705 prototype_p (tree fntype)
10706 {
10707 tree t;
10708
10709 gcc_assert (fntype != NULL_TREE);
10710
10711 t = TYPE_ARG_TYPES (fntype);
10712 return (t != NULL_TREE);
10713 }
10714
10715 /* If BLOCK is inlined from an __attribute__((__artificial__))
10716 routine, return pointer to location from where it has been
10717 called. */
10718 location_t *
10719 block_nonartificial_location (tree block)
10720 {
10721 location_t *ret = NULL;
10722
10723 while (block && TREE_CODE (block) == BLOCK
10724 && BLOCK_ABSTRACT_ORIGIN (block))
10725 {
10726 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10727
10728 while (TREE_CODE (ao) == BLOCK
10729 && BLOCK_ABSTRACT_ORIGIN (ao)
10730 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10731 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10732
10733 if (TREE_CODE (ao) == FUNCTION_DECL)
10734 {
10735 /* If AO is an artificial inline, point RET to the
10736 call site locus at which it has been inlined and continue
10737 the loop, in case AO's caller is also an artificial
10738 inline. */
10739 if (DECL_DECLARED_INLINE_P (ao)
10740 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10741 ret = &BLOCK_SOURCE_LOCATION (block);
10742 else
10743 break;
10744 }
10745 else if (TREE_CODE (ao) != BLOCK)
10746 break;
10747
10748 block = BLOCK_SUPERCONTEXT (block);
10749 }
10750 return ret;
10751 }
10752
10753
10754 /* If EXP is inlined from an __attribute__((__artificial__))
10755 function, return the location of the original call expression. */
10756
10757 location_t
10758 tree_nonartificial_location (tree exp)
10759 {
10760 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10761
10762 if (loc)
10763 return *loc;
10764 else
10765 return EXPR_LOCATION (exp);
10766 }
10767
10768
10769 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10770 nodes. */
10771
10772 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10773
10774 static hashval_t
10775 cl_option_hash_hash (const void *x)
10776 {
10777 const_tree const t = (const_tree) x;
10778 const char *p;
10779 size_t i;
10780 size_t len = 0;
10781 hashval_t hash = 0;
10782
10783 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10784 {
10785 p = (const char *)TREE_OPTIMIZATION (t);
10786 len = sizeof (struct cl_optimization);
10787 }
10788
10789 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10790 {
10791 p = (const char *)TREE_TARGET_OPTION (t);
10792 len = sizeof (struct cl_target_option);
10793 }
10794
10795 else
10796 gcc_unreachable ();
10797
10798 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10799 something else. */
10800 for (i = 0; i < len; i++)
10801 if (p[i])
10802 hash = (hash << 4) ^ ((i << 2) | p[i]);
10803
10804 return hash;
10805 }
10806
10807 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10808 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10809 same. */
10810
10811 static int
10812 cl_option_hash_eq (const void *x, const void *y)
10813 {
10814 const_tree const xt = (const_tree) x;
10815 const_tree const yt = (const_tree) y;
10816 const char *xp;
10817 const char *yp;
10818 size_t len;
10819
10820 if (TREE_CODE (xt) != TREE_CODE (yt))
10821 return 0;
10822
10823 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10824 {
10825 xp = (const char *)TREE_OPTIMIZATION (xt);
10826 yp = (const char *)TREE_OPTIMIZATION (yt);
10827 len = sizeof (struct cl_optimization);
10828 }
10829
10830 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10831 {
10832 xp = (const char *)TREE_TARGET_OPTION (xt);
10833 yp = (const char *)TREE_TARGET_OPTION (yt);
10834 len = sizeof (struct cl_target_option);
10835 }
10836
10837 else
10838 gcc_unreachable ();
10839
10840 return (memcmp (xp, yp, len) == 0);
10841 }
10842
10843 /* Build an OPTIMIZATION_NODE based on the current options. */
10844
10845 tree
10846 build_optimization_node (void)
10847 {
10848 tree t;
10849 void **slot;
10850
10851 /* Use the cache of optimization nodes. */
10852
10853 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
10854 &global_options);
10855
10856 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10857 t = (tree) *slot;
10858 if (!t)
10859 {
10860 /* Insert this one into the hash table. */
10861 t = cl_optimization_node;
10862 *slot = t;
10863
10864 /* Make a new node for next time round. */
10865 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10866 }
10867
10868 return t;
10869 }
10870
10871 /* Build a TARGET_OPTION_NODE based on the current options. */
10872
10873 tree
10874 build_target_option_node (void)
10875 {
10876 tree t;
10877 void **slot;
10878
10879 /* Use the cache of optimization nodes. */
10880
10881 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
10882 &global_options);
10883
10884 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
10885 t = (tree) *slot;
10886 if (!t)
10887 {
10888 /* Insert this one into the hash table. */
10889 t = cl_target_option_node;
10890 *slot = t;
10891
10892 /* Make a new node for next time round. */
10893 cl_target_option_node = make_node (TARGET_OPTION_NODE);
10894 }
10895
10896 return t;
10897 }
10898
10899 /* Determine the "ultimate origin" of a block. The block may be an inlined
10900 instance of an inlined instance of a block which is local to an inline
10901 function, so we have to trace all of the way back through the origin chain
10902 to find out what sort of node actually served as the original seed for the
10903 given block. */
10904
10905 tree
10906 block_ultimate_origin (const_tree block)
10907 {
10908 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
10909
10910 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
10911 nodes in the function to point to themselves; ignore that if
10912 we're trying to output the abstract instance of this function. */
10913 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
10914 return NULL_TREE;
10915
10916 if (immediate_origin == NULL_TREE)
10917 return NULL_TREE;
10918 else
10919 {
10920 tree ret_val;
10921 tree lookahead = immediate_origin;
10922
10923 do
10924 {
10925 ret_val = lookahead;
10926 lookahead = (TREE_CODE (ret_val) == BLOCK
10927 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
10928 }
10929 while (lookahead != NULL && lookahead != ret_val);
10930
10931 /* The block's abstract origin chain may not be the *ultimate* origin of
10932 the block. It could lead to a DECL that has an abstract origin set.
10933 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
10934 will give us if it has one). Note that DECL's abstract origins are
10935 supposed to be the most distant ancestor (or so decl_ultimate_origin
10936 claims), so we don't need to loop following the DECL origins. */
10937 if (DECL_P (ret_val))
10938 return DECL_ORIGIN (ret_val);
10939
10940 return ret_val;
10941 }
10942 }
10943
10944 /* Return true if T1 and T2 are equivalent lists. */
10945
10946 bool
10947 list_equal_p (const_tree t1, const_tree t2)
10948 {
10949 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
10950 if (TREE_VALUE (t1) != TREE_VALUE (t2))
10951 return false;
10952 return !t1 && !t2;
10953 }
10954
10955 /* Return true iff conversion in EXP generates no instruction. Mark
10956 it inline so that we fully inline into the stripping functions even
10957 though we have two uses of this function. */
10958
10959 static inline bool
10960 tree_nop_conversion (const_tree exp)
10961 {
10962 tree outer_type, inner_type;
10963
10964 if (!CONVERT_EXPR_P (exp)
10965 && TREE_CODE (exp) != NON_LVALUE_EXPR)
10966 return false;
10967 if (TREE_OPERAND (exp, 0) == error_mark_node)
10968 return false;
10969
10970 outer_type = TREE_TYPE (exp);
10971 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10972
10973 if (!inner_type)
10974 return false;
10975
10976 /* Use precision rather then machine mode when we can, which gives
10977 the correct answer even for submode (bit-field) types. */
10978 if ((INTEGRAL_TYPE_P (outer_type)
10979 || POINTER_TYPE_P (outer_type)
10980 || TREE_CODE (outer_type) == OFFSET_TYPE)
10981 && (INTEGRAL_TYPE_P (inner_type)
10982 || POINTER_TYPE_P (inner_type)
10983 || TREE_CODE (inner_type) == OFFSET_TYPE))
10984 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
10985
10986 /* Otherwise fall back on comparing machine modes (e.g. for
10987 aggregate types, floats). */
10988 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
10989 }
10990
10991 /* Return true iff conversion in EXP generates no instruction. Don't
10992 consider conversions changing the signedness. */
10993
10994 static bool
10995 tree_sign_nop_conversion (const_tree exp)
10996 {
10997 tree outer_type, inner_type;
10998
10999 if (!tree_nop_conversion (exp))
11000 return false;
11001
11002 outer_type = TREE_TYPE (exp);
11003 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11004
11005 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11006 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11007 }
11008
11009 /* Strip conversions from EXP according to tree_nop_conversion and
11010 return the resulting expression. */
11011
11012 tree
11013 tree_strip_nop_conversions (tree exp)
11014 {
11015 while (tree_nop_conversion (exp))
11016 exp = TREE_OPERAND (exp, 0);
11017 return exp;
11018 }
11019
11020 /* Strip conversions from EXP according to tree_sign_nop_conversion
11021 and return the resulting expression. */
11022
11023 tree
11024 tree_strip_sign_nop_conversions (tree exp)
11025 {
11026 while (tree_sign_nop_conversion (exp))
11027 exp = TREE_OPERAND (exp, 0);
11028 return exp;
11029 }
11030
11031 static GTY(()) tree gcc_eh_personality_decl;
11032
11033 /* Return the GCC personality function decl. */
11034
11035 tree
11036 lhd_gcc_personality (void)
11037 {
11038 if (!gcc_eh_personality_decl)
11039 gcc_eh_personality_decl = build_personality_function ("gcc");
11040 return gcc_eh_personality_decl;
11041 }
11042
11043 /* Try to find a base info of BINFO that would have its field decl at offset
11044 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
11045 found, return, otherwise return NULL_TREE. */
11046
11047 tree
11048 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
11049 {
11050 tree type = BINFO_TYPE (binfo);
11051
11052 while (true)
11053 {
11054 HOST_WIDE_INT pos, size;
11055 tree fld;
11056 int i;
11057
11058 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (expected_type))
11059 return binfo;
11060 if (offset < 0)
11061 return NULL_TREE;
11062
11063 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
11064 {
11065 if (TREE_CODE (fld) != FIELD_DECL)
11066 continue;
11067
11068 pos = int_bit_position (fld);
11069 size = tree_low_cst (DECL_SIZE (fld), 1);
11070 if (pos <= offset && (pos + size) > offset)
11071 break;
11072 }
11073 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
11074 return NULL_TREE;
11075
11076 if (!DECL_ARTIFICIAL (fld))
11077 {
11078 binfo = TYPE_BINFO (TREE_TYPE (fld));
11079 if (!binfo)
11080 return NULL_TREE;
11081 }
11082 /* Offset 0 indicates the primary base, whose vtable contents are
11083 represented in the binfo for the derived class. */
11084 else if (offset != 0)
11085 {
11086 tree base_binfo, found_binfo = NULL_TREE;
11087 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
11088 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
11089 {
11090 found_binfo = base_binfo;
11091 break;
11092 }
11093 if (!found_binfo)
11094 return NULL_TREE;
11095 binfo = found_binfo;
11096 }
11097
11098 type = TREE_TYPE (fld);
11099 offset -= pos;
11100 }
11101 }
11102
11103 /* Returns true if X is a typedef decl. */
11104
11105 bool
11106 is_typedef_decl (tree x)
11107 {
11108 return (x && TREE_CODE (x) == TYPE_DECL
11109 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
11110 }
11111
11112 /* Returns true iff TYPE is a type variant created for a typedef. */
11113
11114 bool
11115 typedef_variant_p (tree type)
11116 {
11117 return is_typedef_decl (TYPE_NAME (type));
11118 }
11119
11120 /* Warn about a use of an identifier which was marked deprecated. */
11121 void
11122 warn_deprecated_use (tree node, tree attr)
11123 {
11124 const char *msg;
11125
11126 if (node == 0 || !warn_deprecated_decl)
11127 return;
11128
11129 if (!attr)
11130 {
11131 if (DECL_P (node))
11132 attr = DECL_ATTRIBUTES (node);
11133 else if (TYPE_P (node))
11134 {
11135 tree decl = TYPE_STUB_DECL (node);
11136 if (decl)
11137 attr = lookup_attribute ("deprecated",
11138 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
11139 }
11140 }
11141
11142 if (attr)
11143 attr = lookup_attribute ("deprecated", attr);
11144
11145 if (attr)
11146 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
11147 else
11148 msg = NULL;
11149
11150 if (DECL_P (node))
11151 {
11152 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
11153 if (msg)
11154 warning (OPT_Wdeprecated_declarations,
11155 "%qD is deprecated (declared at %s:%d): %s",
11156 node, xloc.file, xloc.line, msg);
11157 else
11158 warning (OPT_Wdeprecated_declarations,
11159 "%qD is deprecated (declared at %s:%d)",
11160 node, xloc.file, xloc.line);
11161 }
11162 else if (TYPE_P (node))
11163 {
11164 tree what = NULL_TREE;
11165 tree decl = TYPE_STUB_DECL (node);
11166
11167 if (TYPE_NAME (node))
11168 {
11169 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
11170 what = TYPE_NAME (node);
11171 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
11172 && DECL_NAME (TYPE_NAME (node)))
11173 what = DECL_NAME (TYPE_NAME (node));
11174 }
11175
11176 if (decl)
11177 {
11178 expanded_location xloc
11179 = expand_location (DECL_SOURCE_LOCATION (decl));
11180 if (what)
11181 {
11182 if (msg)
11183 warning (OPT_Wdeprecated_declarations,
11184 "%qE is deprecated (declared at %s:%d): %s",
11185 what, xloc.file, xloc.line, msg);
11186 else
11187 warning (OPT_Wdeprecated_declarations,
11188 "%qE is deprecated (declared at %s:%d)", what,
11189 xloc.file, xloc.line);
11190 }
11191 else
11192 {
11193 if (msg)
11194 warning (OPT_Wdeprecated_declarations,
11195 "type is deprecated (declared at %s:%d): %s",
11196 xloc.file, xloc.line, msg);
11197 else
11198 warning (OPT_Wdeprecated_declarations,
11199 "type is deprecated (declared at %s:%d)",
11200 xloc.file, xloc.line);
11201 }
11202 }
11203 else
11204 {
11205 if (what)
11206 {
11207 if (msg)
11208 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
11209 what, msg);
11210 else
11211 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
11212 }
11213 else
11214 {
11215 if (msg)
11216 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
11217 msg);
11218 else
11219 warning (OPT_Wdeprecated_declarations, "type is deprecated");
11220 }
11221 }
11222 }
11223 }
11224
11225 #include "gt-tree.h"