bind_c_array_params_2.f90: Add "-mno-explicit-relocs" for alpha*-*-* targets.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h" /* get_random_seed */
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "filenames.h"
45 #include "output.h"
46 #include "target.h"
47 #include "common/common-target.h"
48 #include "langhooks.h"
49 #include "tree-inline.h"
50 #include "tree-iterator.h"
51 #include "basic-block.h"
52 #include "tree-flow.h"
53 #include "params.h"
54 #include "pointer-set.h"
55 #include "tree-pass.h"
56 #include "langhooks-def.h"
57 #include "diagnostic.h"
58 #include "tree-diagnostic.h"
59 #include "tree-pretty-print.h"
60 #include "cgraph.h"
61 #include "except.h"
62 #include "debug.h"
63 #include "intl.h"
64
65 /* Tree code classes. */
66
67 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
68 #define END_OF_BASE_TREE_CODES tcc_exceptional,
69
70 const enum tree_code_class tree_code_type[] = {
71 #include "all-tree.def"
72 };
73
74 #undef DEFTREECODE
75 #undef END_OF_BASE_TREE_CODES
76
77 /* Table indexed by tree code giving number of expression
78 operands beyond the fixed part of the node structure.
79 Not used for types or decls. */
80
81 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
82 #define END_OF_BASE_TREE_CODES 0,
83
84 const unsigned char tree_code_length[] = {
85 #include "all-tree.def"
86 };
87
88 #undef DEFTREECODE
89 #undef END_OF_BASE_TREE_CODES
90
91 /* Names of tree components.
92 Used for printing out the tree and error messages. */
93 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
94 #define END_OF_BASE_TREE_CODES "@dummy",
95
96 const char *const tree_code_name[] = {
97 #include "all-tree.def"
98 };
99
100 #undef DEFTREECODE
101 #undef END_OF_BASE_TREE_CODES
102
103 /* Each tree code class has an associated string representation.
104 These must correspond to the tree_code_class entries. */
105
106 const char *const tree_code_class_strings[] =
107 {
108 "exceptional",
109 "constant",
110 "type",
111 "declaration",
112 "reference",
113 "comparison",
114 "unary",
115 "binary",
116 "statement",
117 "vl_exp",
118 "expression"
119 };
120
121 /* obstack.[ch] explicitly declined to prototype this. */
122 extern int _obstack_allocated_p (struct obstack *h, void *obj);
123
124 /* Statistics-gathering stuff. */
125
126 static int tree_code_counts[MAX_TREE_CODES];
127 int tree_node_counts[(int) all_kinds];
128 int tree_node_sizes[(int) all_kinds];
129
130 /* Keep in sync with tree.h:enum tree_node_kind. */
131 static const char * const tree_node_kind_names[] = {
132 "decls",
133 "types",
134 "blocks",
135 "stmts",
136 "refs",
137 "exprs",
138 "constants",
139 "identifiers",
140 "vecs",
141 "binfos",
142 "ssa names",
143 "constructors",
144 "random kinds",
145 "lang_decl kinds",
146 "lang_type kinds",
147 "omp clauses",
148 };
149
150 /* Unique id for next decl created. */
151 static GTY(()) int next_decl_uid;
152 /* Unique id for next type created. */
153 static GTY(()) int next_type_uid = 1;
154 /* Unique id for next debug decl created. Use negative numbers,
155 to catch erroneous uses. */
156 static GTY(()) int next_debug_decl_uid;
157
158 /* Since we cannot rehash a type after it is in the table, we have to
159 keep the hash code. */
160
161 struct GTY(()) type_hash {
162 unsigned long hash;
163 tree type;
164 };
165
166 /* Initial size of the hash table (rounded to next prime). */
167 #define TYPE_HASH_INITIAL_SIZE 1000
168
169 /* Now here is the hash table. When recording a type, it is added to
170 the slot whose index is the hash code. Note that the hash table is
171 used for several kinds of types (function types, array types and
172 array index range types, for now). While all these live in the
173 same table, they are completely independent, and the hash code is
174 computed differently for each of these. */
175
176 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
177 htab_t type_hash_table;
178
179 /* Hash table and temporary node for larger integer const values. */
180 static GTY (()) tree int_cst_node;
181 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
182 htab_t int_cst_hash_table;
183
184 /* Hash table for optimization flags and target option flags. Use the same
185 hash table for both sets of options. Nodes for building the current
186 optimization and target option nodes. The assumption is most of the time
187 the options created will already be in the hash table, so we avoid
188 allocating and freeing up a node repeatably. */
189 static GTY (()) tree cl_optimization_node;
190 static GTY (()) tree cl_target_option_node;
191 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
192 htab_t cl_option_hash_table;
193
194 /* General tree->tree mapping structure for use in hash tables. */
195
196
197 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
198 htab_t debug_expr_for_decl;
199
200 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
201 htab_t value_expr_for_decl;
202
203 static GTY ((if_marked ("tree_vec_map_marked_p"), param_is (struct tree_vec_map)))
204 htab_t debug_args_for_decl;
205
206 static GTY ((if_marked ("tree_priority_map_marked_p"),
207 param_is (struct tree_priority_map)))
208 htab_t init_priority_for_decl;
209
210 static void set_type_quals (tree, int);
211 static int type_hash_eq (const void *, const void *);
212 static hashval_t type_hash_hash (const void *);
213 static hashval_t int_cst_hash_hash (const void *);
214 static int int_cst_hash_eq (const void *, const void *);
215 static hashval_t cl_option_hash_hash (const void *);
216 static int cl_option_hash_eq (const void *, const void *);
217 static void print_type_hash_statistics (void);
218 static void print_debug_expr_statistics (void);
219 static void print_value_expr_statistics (void);
220 static int type_hash_marked_p (const void *);
221 static unsigned int type_hash_list (const_tree, hashval_t);
222 static unsigned int attribute_hash_list (const_tree, hashval_t);
223
224 tree global_trees[TI_MAX];
225 tree integer_types[itk_none];
226
227 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
228
229 /* Number of operands for each OpenMP clause. */
230 unsigned const char omp_clause_num_ops[] =
231 {
232 0, /* OMP_CLAUSE_ERROR */
233 1, /* OMP_CLAUSE_PRIVATE */
234 1, /* OMP_CLAUSE_SHARED */
235 1, /* OMP_CLAUSE_FIRSTPRIVATE */
236 2, /* OMP_CLAUSE_LASTPRIVATE */
237 4, /* OMP_CLAUSE_REDUCTION */
238 1, /* OMP_CLAUSE_COPYIN */
239 1, /* OMP_CLAUSE_COPYPRIVATE */
240 1, /* OMP_CLAUSE_IF */
241 1, /* OMP_CLAUSE_NUM_THREADS */
242 1, /* OMP_CLAUSE_SCHEDULE */
243 0, /* OMP_CLAUSE_NOWAIT */
244 0, /* OMP_CLAUSE_ORDERED */
245 0, /* OMP_CLAUSE_DEFAULT */
246 3, /* OMP_CLAUSE_COLLAPSE */
247 0, /* OMP_CLAUSE_UNTIED */
248 1, /* OMP_CLAUSE_FINAL */
249 0 /* OMP_CLAUSE_MERGEABLE */
250 };
251
252 const char * const omp_clause_code_name[] =
253 {
254 "error_clause",
255 "private",
256 "shared",
257 "firstprivate",
258 "lastprivate",
259 "reduction",
260 "copyin",
261 "copyprivate",
262 "if",
263 "num_threads",
264 "schedule",
265 "nowait",
266 "ordered",
267 "default",
268 "collapse",
269 "untied",
270 "final",
271 "mergeable"
272 };
273
274
275 /* Return the tree node structure used by tree code CODE. */
276
277 static inline enum tree_node_structure_enum
278 tree_node_structure_for_code (enum tree_code code)
279 {
280 switch (TREE_CODE_CLASS (code))
281 {
282 case tcc_declaration:
283 {
284 switch (code)
285 {
286 case FIELD_DECL:
287 return TS_FIELD_DECL;
288 case PARM_DECL:
289 return TS_PARM_DECL;
290 case VAR_DECL:
291 return TS_VAR_DECL;
292 case LABEL_DECL:
293 return TS_LABEL_DECL;
294 case RESULT_DECL:
295 return TS_RESULT_DECL;
296 case DEBUG_EXPR_DECL:
297 return TS_DECL_WRTL;
298 case CONST_DECL:
299 return TS_CONST_DECL;
300 case TYPE_DECL:
301 return TS_TYPE_DECL;
302 case FUNCTION_DECL:
303 return TS_FUNCTION_DECL;
304 case TRANSLATION_UNIT_DECL:
305 return TS_TRANSLATION_UNIT_DECL;
306 default:
307 return TS_DECL_NON_COMMON;
308 }
309 }
310 case tcc_type:
311 return TS_TYPE_NON_COMMON;
312 case tcc_reference:
313 case tcc_comparison:
314 case tcc_unary:
315 case tcc_binary:
316 case tcc_expression:
317 case tcc_statement:
318 case tcc_vl_exp:
319 return TS_EXP;
320 default: /* tcc_constant and tcc_exceptional */
321 break;
322 }
323 switch (code)
324 {
325 /* tcc_constant cases. */
326 case INTEGER_CST: return TS_INT_CST;
327 case REAL_CST: return TS_REAL_CST;
328 case FIXED_CST: return TS_FIXED_CST;
329 case COMPLEX_CST: return TS_COMPLEX;
330 case VECTOR_CST: return TS_VECTOR;
331 case STRING_CST: return TS_STRING;
332 /* tcc_exceptional cases. */
333 case ERROR_MARK: return TS_COMMON;
334 case IDENTIFIER_NODE: return TS_IDENTIFIER;
335 case TREE_LIST: return TS_LIST;
336 case TREE_VEC: return TS_VEC;
337 case SSA_NAME: return TS_SSA_NAME;
338 case PLACEHOLDER_EXPR: return TS_COMMON;
339 case STATEMENT_LIST: return TS_STATEMENT_LIST;
340 case BLOCK: return TS_BLOCK;
341 case CONSTRUCTOR: return TS_CONSTRUCTOR;
342 case TREE_BINFO: return TS_BINFO;
343 case OMP_CLAUSE: return TS_OMP_CLAUSE;
344 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
345 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
346
347 default:
348 gcc_unreachable ();
349 }
350 }
351
352
353 /* Initialize tree_contains_struct to describe the hierarchy of tree
354 nodes. */
355
356 static void
357 initialize_tree_contains_struct (void)
358 {
359 unsigned i;
360
361 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
362 {
363 enum tree_code code;
364 enum tree_node_structure_enum ts_code;
365
366 code = (enum tree_code) i;
367 ts_code = tree_node_structure_for_code (code);
368
369 /* Mark the TS structure itself. */
370 tree_contains_struct[code][ts_code] = 1;
371
372 /* Mark all the structures that TS is derived from. */
373 switch (ts_code)
374 {
375 case TS_TYPED:
376 case TS_BLOCK:
377 MARK_TS_BASE (code);
378 break;
379
380 case TS_COMMON:
381 case TS_INT_CST:
382 case TS_REAL_CST:
383 case TS_FIXED_CST:
384 case TS_VECTOR:
385 case TS_STRING:
386 case TS_COMPLEX:
387 case TS_SSA_NAME:
388 case TS_CONSTRUCTOR:
389 case TS_EXP:
390 case TS_STATEMENT_LIST:
391 MARK_TS_TYPED (code);
392 break;
393
394 case TS_IDENTIFIER:
395 case TS_DECL_MINIMAL:
396 case TS_TYPE_COMMON:
397 case TS_LIST:
398 case TS_VEC:
399 case TS_BINFO:
400 case TS_OMP_CLAUSE:
401 case TS_OPTIMIZATION:
402 case TS_TARGET_OPTION:
403 MARK_TS_COMMON (code);
404 break;
405
406 case TS_TYPE_WITH_LANG_SPECIFIC:
407 MARK_TS_TYPE_COMMON (code);
408 break;
409
410 case TS_TYPE_NON_COMMON:
411 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
412 break;
413
414 case TS_DECL_COMMON:
415 MARK_TS_DECL_MINIMAL (code);
416 break;
417
418 case TS_DECL_WRTL:
419 case TS_CONST_DECL:
420 MARK_TS_DECL_COMMON (code);
421 break;
422
423 case TS_DECL_NON_COMMON:
424 MARK_TS_DECL_WITH_VIS (code);
425 break;
426
427 case TS_DECL_WITH_VIS:
428 case TS_PARM_DECL:
429 case TS_LABEL_DECL:
430 case TS_RESULT_DECL:
431 MARK_TS_DECL_WRTL (code);
432 break;
433
434 case TS_FIELD_DECL:
435 MARK_TS_DECL_COMMON (code);
436 break;
437
438 case TS_VAR_DECL:
439 MARK_TS_DECL_WITH_VIS (code);
440 break;
441
442 case TS_TYPE_DECL:
443 case TS_FUNCTION_DECL:
444 MARK_TS_DECL_NON_COMMON (code);
445 break;
446
447 case TS_TRANSLATION_UNIT_DECL:
448 MARK_TS_DECL_COMMON (code);
449 break;
450
451 default:
452 gcc_unreachable ();
453 }
454 }
455
456 /* Basic consistency checks for attributes used in fold. */
457 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
458 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
459 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
460 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
461 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
462 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
463 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
464 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
465 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
466 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
467 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
468 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
469 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
470 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
471 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
472 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
473 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
474 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
475 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
476 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
477 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
478 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
479 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
480 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
481 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
482 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
483 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
484 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
485 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
486 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
487 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
488 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
489 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
490 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
491 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
492 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
493 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
494 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
495 }
496
497
498 /* Init tree.c. */
499
500 void
501 init_ttree (void)
502 {
503 /* Initialize the hash table of types. */
504 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
505 type_hash_eq, 0);
506
507 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
508 tree_decl_map_eq, 0);
509
510 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
511 tree_decl_map_eq, 0);
512 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
513 tree_priority_map_eq, 0);
514
515 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
516 int_cst_hash_eq, NULL);
517
518 int_cst_node = make_node (INTEGER_CST);
519
520 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
521 cl_option_hash_eq, NULL);
522
523 cl_optimization_node = make_node (OPTIMIZATION_NODE);
524 cl_target_option_node = make_node (TARGET_OPTION_NODE);
525
526 /* Initialize the tree_contains_struct array. */
527 initialize_tree_contains_struct ();
528 lang_hooks.init_ts ();
529 }
530
531 \f
532 /* The name of the object as the assembler will see it (but before any
533 translations made by ASM_OUTPUT_LABELREF). Often this is the same
534 as DECL_NAME. It is an IDENTIFIER_NODE. */
535 tree
536 decl_assembler_name (tree decl)
537 {
538 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
539 lang_hooks.set_decl_assembler_name (decl);
540 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
541 }
542
543 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
544
545 bool
546 decl_assembler_name_equal (tree decl, const_tree asmname)
547 {
548 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
549 const char *decl_str;
550 const char *asmname_str;
551 bool test = false;
552
553 if (decl_asmname == asmname)
554 return true;
555
556 decl_str = IDENTIFIER_POINTER (decl_asmname);
557 asmname_str = IDENTIFIER_POINTER (asmname);
558
559
560 /* If the target assembler name was set by the user, things are trickier.
561 We have a leading '*' to begin with. After that, it's arguable what
562 is the correct thing to do with -fleading-underscore. Arguably, we've
563 historically been doing the wrong thing in assemble_alias by always
564 printing the leading underscore. Since we're not changing that, make
565 sure user_label_prefix follows the '*' before matching. */
566 if (decl_str[0] == '*')
567 {
568 size_t ulp_len = strlen (user_label_prefix);
569
570 decl_str ++;
571
572 if (ulp_len == 0)
573 test = true;
574 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
575 decl_str += ulp_len, test=true;
576 else
577 decl_str --;
578 }
579 if (asmname_str[0] == '*')
580 {
581 size_t ulp_len = strlen (user_label_prefix);
582
583 asmname_str ++;
584
585 if (ulp_len == 0)
586 test = true;
587 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
588 asmname_str += ulp_len, test=true;
589 else
590 asmname_str --;
591 }
592
593 if (!test)
594 return false;
595 return strcmp (decl_str, asmname_str) == 0;
596 }
597
598 /* Hash asmnames ignoring the user specified marks. */
599
600 hashval_t
601 decl_assembler_name_hash (const_tree asmname)
602 {
603 if (IDENTIFIER_POINTER (asmname)[0] == '*')
604 {
605 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
606 size_t ulp_len = strlen (user_label_prefix);
607
608 if (ulp_len == 0)
609 ;
610 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
611 decl_str += ulp_len;
612
613 return htab_hash_string (decl_str);
614 }
615
616 return htab_hash_string (IDENTIFIER_POINTER (asmname));
617 }
618
619 /* Compute the number of bytes occupied by a tree with code CODE.
620 This function cannot be used for nodes that have variable sizes,
621 including TREE_VEC, STRING_CST, and CALL_EXPR. */
622 size_t
623 tree_code_size (enum tree_code code)
624 {
625 switch (TREE_CODE_CLASS (code))
626 {
627 case tcc_declaration: /* A decl node */
628 {
629 switch (code)
630 {
631 case FIELD_DECL:
632 return sizeof (struct tree_field_decl);
633 case PARM_DECL:
634 return sizeof (struct tree_parm_decl);
635 case VAR_DECL:
636 return sizeof (struct tree_var_decl);
637 case LABEL_DECL:
638 return sizeof (struct tree_label_decl);
639 case RESULT_DECL:
640 return sizeof (struct tree_result_decl);
641 case CONST_DECL:
642 return sizeof (struct tree_const_decl);
643 case TYPE_DECL:
644 return sizeof (struct tree_type_decl);
645 case FUNCTION_DECL:
646 return sizeof (struct tree_function_decl);
647 case DEBUG_EXPR_DECL:
648 return sizeof (struct tree_decl_with_rtl);
649 default:
650 return sizeof (struct tree_decl_non_common);
651 }
652 }
653
654 case tcc_type: /* a type node */
655 return sizeof (struct tree_type_non_common);
656
657 case tcc_reference: /* a reference */
658 case tcc_expression: /* an expression */
659 case tcc_statement: /* an expression with side effects */
660 case tcc_comparison: /* a comparison expression */
661 case tcc_unary: /* a unary arithmetic expression */
662 case tcc_binary: /* a binary arithmetic expression */
663 return (sizeof (struct tree_exp)
664 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
665
666 case tcc_constant: /* a constant */
667 switch (code)
668 {
669 case INTEGER_CST: return sizeof (struct tree_int_cst);
670 case REAL_CST: return sizeof (struct tree_real_cst);
671 case FIXED_CST: return sizeof (struct tree_fixed_cst);
672 case COMPLEX_CST: return sizeof (struct tree_complex);
673 case VECTOR_CST: return sizeof (struct tree_vector);
674 case STRING_CST: gcc_unreachable ();
675 default:
676 return lang_hooks.tree_size (code);
677 }
678
679 case tcc_exceptional: /* something random, like an identifier. */
680 switch (code)
681 {
682 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
683 case TREE_LIST: return sizeof (struct tree_list);
684
685 case ERROR_MARK:
686 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
687
688 case TREE_VEC:
689 case OMP_CLAUSE: gcc_unreachable ();
690
691 case SSA_NAME: return sizeof (struct tree_ssa_name);
692
693 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
694 case BLOCK: return sizeof (struct tree_block);
695 case CONSTRUCTOR: return sizeof (struct tree_constructor);
696 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
697 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
698
699 default:
700 return lang_hooks.tree_size (code);
701 }
702
703 default:
704 gcc_unreachable ();
705 }
706 }
707
708 /* Compute the number of bytes occupied by NODE. This routine only
709 looks at TREE_CODE, except for those nodes that have variable sizes. */
710 size_t
711 tree_size (const_tree node)
712 {
713 const enum tree_code code = TREE_CODE (node);
714 switch (code)
715 {
716 case TREE_BINFO:
717 return (offsetof (struct tree_binfo, base_binfos)
718 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
719
720 case TREE_VEC:
721 return (sizeof (struct tree_vec)
722 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
723
724 case VECTOR_CST:
725 return (sizeof (struct tree_vector)
726 + (TYPE_VECTOR_SUBPARTS (TREE_TYPE (node)) - 1) * sizeof (tree));
727
728 case STRING_CST:
729 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
730
731 case OMP_CLAUSE:
732 return (sizeof (struct tree_omp_clause)
733 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
734 * sizeof (tree));
735
736 default:
737 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
738 return (sizeof (struct tree_exp)
739 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
740 else
741 return tree_code_size (code);
742 }
743 }
744
745 /* Record interesting allocation statistics for a tree node with CODE
746 and LENGTH. */
747
748 static void
749 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
750 size_t length ATTRIBUTE_UNUSED)
751 {
752 enum tree_code_class type = TREE_CODE_CLASS (code);
753 tree_node_kind kind;
754
755 if (!GATHER_STATISTICS)
756 return;
757
758 switch (type)
759 {
760 case tcc_declaration: /* A decl node */
761 kind = d_kind;
762 break;
763
764 case tcc_type: /* a type node */
765 kind = t_kind;
766 break;
767
768 case tcc_statement: /* an expression with side effects */
769 kind = s_kind;
770 break;
771
772 case tcc_reference: /* a reference */
773 kind = r_kind;
774 break;
775
776 case tcc_expression: /* an expression */
777 case tcc_comparison: /* a comparison expression */
778 case tcc_unary: /* a unary arithmetic expression */
779 case tcc_binary: /* a binary arithmetic expression */
780 kind = e_kind;
781 break;
782
783 case tcc_constant: /* a constant */
784 kind = c_kind;
785 break;
786
787 case tcc_exceptional: /* something random, like an identifier. */
788 switch (code)
789 {
790 case IDENTIFIER_NODE:
791 kind = id_kind;
792 break;
793
794 case TREE_VEC:
795 kind = vec_kind;
796 break;
797
798 case TREE_BINFO:
799 kind = binfo_kind;
800 break;
801
802 case SSA_NAME:
803 kind = ssa_name_kind;
804 break;
805
806 case BLOCK:
807 kind = b_kind;
808 break;
809
810 case CONSTRUCTOR:
811 kind = constr_kind;
812 break;
813
814 case OMP_CLAUSE:
815 kind = omp_clause_kind;
816 break;
817
818 default:
819 kind = x_kind;
820 break;
821 }
822 break;
823
824 case tcc_vl_exp:
825 kind = e_kind;
826 break;
827
828 default:
829 gcc_unreachable ();
830 }
831
832 tree_code_counts[(int) code]++;
833 tree_node_counts[(int) kind]++;
834 tree_node_sizes[(int) kind] += length;
835 }
836
837 /* Allocate and return a new UID from the DECL_UID namespace. */
838
839 int
840 allocate_decl_uid (void)
841 {
842 return next_decl_uid++;
843 }
844
845 /* Return a newly allocated node of code CODE. For decl and type
846 nodes, some other fields are initialized. The rest of the node is
847 initialized to zero. This function cannot be used for TREE_VEC or
848 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
849
850 Achoo! I got a code in the node. */
851
852 tree
853 make_node_stat (enum tree_code code MEM_STAT_DECL)
854 {
855 tree t;
856 enum tree_code_class type = TREE_CODE_CLASS (code);
857 size_t length = tree_code_size (code);
858
859 record_node_allocation_statistics (code, length);
860
861 t = ggc_alloc_zone_cleared_tree_node_stat (
862 (code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone,
863 length PASS_MEM_STAT);
864 TREE_SET_CODE (t, code);
865
866 switch (type)
867 {
868 case tcc_statement:
869 TREE_SIDE_EFFECTS (t) = 1;
870 break;
871
872 case tcc_declaration:
873 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
874 {
875 if (code == FUNCTION_DECL)
876 {
877 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
878 DECL_MODE (t) = FUNCTION_MODE;
879 }
880 else
881 DECL_ALIGN (t) = 1;
882 }
883 DECL_SOURCE_LOCATION (t) = input_location;
884 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
885 DECL_UID (t) = --next_debug_decl_uid;
886 else
887 {
888 DECL_UID (t) = allocate_decl_uid ();
889 SET_DECL_PT_UID (t, -1);
890 }
891 if (TREE_CODE (t) == LABEL_DECL)
892 LABEL_DECL_UID (t) = -1;
893
894 break;
895
896 case tcc_type:
897 TYPE_UID (t) = next_type_uid++;
898 TYPE_ALIGN (t) = BITS_PER_UNIT;
899 TYPE_USER_ALIGN (t) = 0;
900 TYPE_MAIN_VARIANT (t) = t;
901 TYPE_CANONICAL (t) = t;
902
903 /* Default to no attributes for type, but let target change that. */
904 TYPE_ATTRIBUTES (t) = NULL_TREE;
905 targetm.set_default_type_attributes (t);
906
907 /* We have not yet computed the alias set for this type. */
908 TYPE_ALIAS_SET (t) = -1;
909 break;
910
911 case tcc_constant:
912 TREE_CONSTANT (t) = 1;
913 break;
914
915 case tcc_expression:
916 switch (code)
917 {
918 case INIT_EXPR:
919 case MODIFY_EXPR:
920 case VA_ARG_EXPR:
921 case PREDECREMENT_EXPR:
922 case PREINCREMENT_EXPR:
923 case POSTDECREMENT_EXPR:
924 case POSTINCREMENT_EXPR:
925 /* All of these have side-effects, no matter what their
926 operands are. */
927 TREE_SIDE_EFFECTS (t) = 1;
928 break;
929
930 default:
931 break;
932 }
933 break;
934
935 default:
936 /* Other classes need no special treatment. */
937 break;
938 }
939
940 return t;
941 }
942 \f
943 /* Return a new node with the same contents as NODE except that its
944 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
945
946 tree
947 copy_node_stat (tree node MEM_STAT_DECL)
948 {
949 tree t;
950 enum tree_code code = TREE_CODE (node);
951 size_t length;
952
953 gcc_assert (code != STATEMENT_LIST);
954
955 length = tree_size (node);
956 record_node_allocation_statistics (code, length);
957 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
958 memcpy (t, node, length);
959
960 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
961 TREE_CHAIN (t) = 0;
962 TREE_ASM_WRITTEN (t) = 0;
963 TREE_VISITED (t) = 0;
964 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
965 *DECL_VAR_ANN_PTR (t) = 0;
966
967 if (TREE_CODE_CLASS (code) == tcc_declaration)
968 {
969 if (code == DEBUG_EXPR_DECL)
970 DECL_UID (t) = --next_debug_decl_uid;
971 else
972 {
973 DECL_UID (t) = allocate_decl_uid ();
974 if (DECL_PT_UID_SET_P (node))
975 SET_DECL_PT_UID (t, DECL_PT_UID (node));
976 }
977 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
978 && DECL_HAS_VALUE_EXPR_P (node))
979 {
980 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
981 DECL_HAS_VALUE_EXPR_P (t) = 1;
982 }
983 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
984 {
985 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
986 DECL_HAS_INIT_PRIORITY_P (t) = 1;
987 }
988 }
989 else if (TREE_CODE_CLASS (code) == tcc_type)
990 {
991 TYPE_UID (t) = next_type_uid++;
992 /* The following is so that the debug code for
993 the copy is different from the original type.
994 The two statements usually duplicate each other
995 (because they clear fields of the same union),
996 but the optimizer should catch that. */
997 TYPE_SYMTAB_POINTER (t) = 0;
998 TYPE_SYMTAB_ADDRESS (t) = 0;
999
1000 /* Do not copy the values cache. */
1001 if (TYPE_CACHED_VALUES_P(t))
1002 {
1003 TYPE_CACHED_VALUES_P (t) = 0;
1004 TYPE_CACHED_VALUES (t) = NULL_TREE;
1005 }
1006 }
1007
1008 return t;
1009 }
1010
1011 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1012 For example, this can copy a list made of TREE_LIST nodes. */
1013
1014 tree
1015 copy_list (tree list)
1016 {
1017 tree head;
1018 tree prev, next;
1019
1020 if (list == 0)
1021 return 0;
1022
1023 head = prev = copy_node (list);
1024 next = TREE_CHAIN (list);
1025 while (next)
1026 {
1027 TREE_CHAIN (prev) = copy_node (next);
1028 prev = TREE_CHAIN (prev);
1029 next = TREE_CHAIN (next);
1030 }
1031 return head;
1032 }
1033
1034 \f
1035 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1036
1037 tree
1038 build_int_cst (tree type, HOST_WIDE_INT low)
1039 {
1040 /* Support legacy code. */
1041 if (!type)
1042 type = integer_type_node;
1043
1044 return double_int_to_tree (type, shwi_to_double_int (low));
1045 }
1046
1047 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1048
1049 tree
1050 build_int_cst_type (tree type, HOST_WIDE_INT low)
1051 {
1052 gcc_assert (type);
1053
1054 return double_int_to_tree (type, shwi_to_double_int (low));
1055 }
1056
1057 /* Constructs tree in type TYPE from with value given by CST. Signedness
1058 of CST is assumed to be the same as the signedness of TYPE. */
1059
1060 tree
1061 double_int_to_tree (tree type, double_int cst)
1062 {
1063 bool sign_extended_type = !TYPE_UNSIGNED (type);
1064
1065 cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1066
1067 return build_int_cst_wide (type, cst.low, cst.high);
1068 }
1069
1070 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1071 to be the same as the signedness of TYPE. */
1072
1073 bool
1074 double_int_fits_to_tree_p (const_tree type, double_int cst)
1075 {
1076 /* Size types *are* sign extended. */
1077 bool sign_extended_type = !TYPE_UNSIGNED (type);
1078
1079 double_int ext
1080 = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1081
1082 return double_int_equal_p (cst, ext);
1083 }
1084
1085 /* We force the double_int CST to the range of the type TYPE by sign or
1086 zero extending it. OVERFLOWABLE indicates if we are interested in
1087 overflow of the value, when >0 we are only interested in signed
1088 overflow, for <0 we are interested in any overflow. OVERFLOWED
1089 indicates whether overflow has already occurred. CONST_OVERFLOWED
1090 indicates whether constant overflow has already occurred. We force
1091 T's value to be within range of T's type (by setting to 0 or 1 all
1092 the bits outside the type's range). We set TREE_OVERFLOWED if,
1093 OVERFLOWED is nonzero,
1094 or OVERFLOWABLE is >0 and signed overflow occurs
1095 or OVERFLOWABLE is <0 and any overflow occurs
1096 We return a new tree node for the extended double_int. The node
1097 is shared if no overflow flags are set. */
1098
1099
1100 tree
1101 force_fit_type_double (tree type, double_int cst, int overflowable,
1102 bool overflowed)
1103 {
1104 bool sign_extended_type;
1105
1106 /* Size types *are* sign extended. */
1107 sign_extended_type = !TYPE_UNSIGNED (type);
1108
1109 /* If we need to set overflow flags, return a new unshared node. */
1110 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1111 {
1112 if (overflowed
1113 || overflowable < 0
1114 || (overflowable > 0 && sign_extended_type))
1115 {
1116 tree t = make_node (INTEGER_CST);
1117 TREE_INT_CST (t) = double_int_ext (cst, TYPE_PRECISION (type),
1118 !sign_extended_type);
1119 TREE_TYPE (t) = type;
1120 TREE_OVERFLOW (t) = 1;
1121 return t;
1122 }
1123 }
1124
1125 /* Else build a shared node. */
1126 return double_int_to_tree (type, cst);
1127 }
1128
1129 /* These are the hash table functions for the hash table of INTEGER_CST
1130 nodes of a sizetype. */
1131
1132 /* Return the hash code code X, an INTEGER_CST. */
1133
1134 static hashval_t
1135 int_cst_hash_hash (const void *x)
1136 {
1137 const_tree const t = (const_tree) x;
1138
1139 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1140 ^ htab_hash_pointer (TREE_TYPE (t)));
1141 }
1142
1143 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1144 is the same as that given by *Y, which is the same. */
1145
1146 static int
1147 int_cst_hash_eq (const void *x, const void *y)
1148 {
1149 const_tree const xt = (const_tree) x;
1150 const_tree const yt = (const_tree) y;
1151
1152 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1153 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1154 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1155 }
1156
1157 /* Create an INT_CST node of TYPE and value HI:LOW.
1158 The returned node is always shared. For small integers we use a
1159 per-type vector cache, for larger ones we use a single hash table. */
1160
1161 tree
1162 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1163 {
1164 tree t;
1165 int ix = -1;
1166 int limit = 0;
1167
1168 gcc_assert (type);
1169
1170 switch (TREE_CODE (type))
1171 {
1172 case NULLPTR_TYPE:
1173 gcc_assert (hi == 0 && low == 0);
1174 /* Fallthru. */
1175
1176 case POINTER_TYPE:
1177 case REFERENCE_TYPE:
1178 /* Cache NULL pointer. */
1179 if (!hi && !low)
1180 {
1181 limit = 1;
1182 ix = 0;
1183 }
1184 break;
1185
1186 case BOOLEAN_TYPE:
1187 /* Cache false or true. */
1188 limit = 2;
1189 if (!hi && low < 2)
1190 ix = low;
1191 break;
1192
1193 case INTEGER_TYPE:
1194 case OFFSET_TYPE:
1195 if (TYPE_UNSIGNED (type))
1196 {
1197 /* Cache 0..N */
1198 limit = INTEGER_SHARE_LIMIT;
1199 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1200 ix = low;
1201 }
1202 else
1203 {
1204 /* Cache -1..N */
1205 limit = INTEGER_SHARE_LIMIT + 1;
1206 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1207 ix = low + 1;
1208 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1209 ix = 0;
1210 }
1211 break;
1212
1213 case ENUMERAL_TYPE:
1214 break;
1215
1216 default:
1217 gcc_unreachable ();
1218 }
1219
1220 if (ix >= 0)
1221 {
1222 /* Look for it in the type's vector of small shared ints. */
1223 if (!TYPE_CACHED_VALUES_P (type))
1224 {
1225 TYPE_CACHED_VALUES_P (type) = 1;
1226 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1227 }
1228
1229 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1230 if (t)
1231 {
1232 /* Make sure no one is clobbering the shared constant. */
1233 gcc_assert (TREE_TYPE (t) == type);
1234 gcc_assert (TREE_INT_CST_LOW (t) == low);
1235 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1236 }
1237 else
1238 {
1239 /* Create a new shared int. */
1240 t = make_node (INTEGER_CST);
1241
1242 TREE_INT_CST_LOW (t) = low;
1243 TREE_INT_CST_HIGH (t) = hi;
1244 TREE_TYPE (t) = type;
1245
1246 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1247 }
1248 }
1249 else
1250 {
1251 /* Use the cache of larger shared ints. */
1252 void **slot;
1253
1254 TREE_INT_CST_LOW (int_cst_node) = low;
1255 TREE_INT_CST_HIGH (int_cst_node) = hi;
1256 TREE_TYPE (int_cst_node) = type;
1257
1258 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1259 t = (tree) *slot;
1260 if (!t)
1261 {
1262 /* Insert this one into the hash table. */
1263 t = int_cst_node;
1264 *slot = t;
1265 /* Make a new node for next time round. */
1266 int_cst_node = make_node (INTEGER_CST);
1267 }
1268 }
1269
1270 return t;
1271 }
1272
1273 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1274 and the rest are zeros. */
1275
1276 tree
1277 build_low_bits_mask (tree type, unsigned bits)
1278 {
1279 double_int mask;
1280
1281 gcc_assert (bits <= TYPE_PRECISION (type));
1282
1283 if (bits == TYPE_PRECISION (type)
1284 && !TYPE_UNSIGNED (type))
1285 /* Sign extended all-ones mask. */
1286 mask = double_int_minus_one;
1287 else
1288 mask = double_int_mask (bits);
1289
1290 return build_int_cst_wide (type, mask.low, mask.high);
1291 }
1292
1293 /* Checks that X is integer constant that can be expressed in (unsigned)
1294 HOST_WIDE_INT without loss of precision. */
1295
1296 bool
1297 cst_and_fits_in_hwi (const_tree x)
1298 {
1299 if (TREE_CODE (x) != INTEGER_CST)
1300 return false;
1301
1302 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1303 return false;
1304
1305 return (TREE_INT_CST_HIGH (x) == 0
1306 || TREE_INT_CST_HIGH (x) == -1);
1307 }
1308
1309 /* Build a newly constructed TREE_VEC node of length LEN. */
1310
1311 tree
1312 make_vector_stat (unsigned len MEM_STAT_DECL)
1313 {
1314 tree t;
1315 unsigned length = (len - 1) * sizeof (tree) + sizeof (struct tree_vector);
1316
1317 record_node_allocation_statistics (VECTOR_CST, length);
1318
1319 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1320
1321 TREE_SET_CODE (t, VECTOR_CST);
1322 TREE_CONSTANT (t) = 1;
1323
1324 return t;
1325 }
1326
1327 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1328 are in a list pointed to by VALS. */
1329
1330 tree
1331 build_vector_stat (tree type, tree *vals MEM_STAT_DECL)
1332 {
1333 int over = 0;
1334 unsigned cnt = 0;
1335 tree v = make_vector (TYPE_VECTOR_SUBPARTS (type));
1336 TREE_TYPE (v) = type;
1337
1338 /* Iterate through elements and check for overflow. */
1339 for (cnt = 0; cnt < TYPE_VECTOR_SUBPARTS (type); ++cnt)
1340 {
1341 tree value = vals[cnt];
1342
1343 VECTOR_CST_ELT (v, cnt) = value;
1344
1345 /* Don't crash if we get an address constant. */
1346 if (!CONSTANT_CLASS_P (value))
1347 continue;
1348
1349 over |= TREE_OVERFLOW (value);
1350 }
1351
1352 TREE_OVERFLOW (v) = over;
1353 return v;
1354 }
1355
1356 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1357 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1358
1359 tree
1360 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1361 {
1362 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
1363 unsigned HOST_WIDE_INT idx;
1364 tree value;
1365
1366 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1367 vec[idx] = value;
1368 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1369 vec[idx] = build_zero_cst (TREE_TYPE (type));
1370
1371 return build_vector (type, vec);
1372 }
1373
1374 /* Build a vector of type VECTYPE where all the elements are SCs. */
1375 tree
1376 build_vector_from_val (tree vectype, tree sc)
1377 {
1378 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1379
1380 if (sc == error_mark_node)
1381 return sc;
1382
1383 /* Verify that the vector type is suitable for SC. Note that there
1384 is some inconsistency in the type-system with respect to restrict
1385 qualifications of pointers. Vector types always have a main-variant
1386 element type and the qualification is applied to the vector-type.
1387 So TREE_TYPE (vector-type) does not return a properly qualified
1388 vector element-type. */
1389 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1390 TREE_TYPE (vectype)));
1391
1392 if (CONSTANT_CLASS_P (sc))
1393 {
1394 tree *v = XALLOCAVEC (tree, nunits);
1395 for (i = 0; i < nunits; ++i)
1396 v[i] = sc;
1397 return build_vector (vectype, v);
1398 }
1399 else
1400 {
1401 VEC(constructor_elt, gc) *v = VEC_alloc (constructor_elt, gc, nunits);
1402 for (i = 0; i < nunits; ++i)
1403 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1404 return build_constructor (vectype, v);
1405 }
1406 }
1407
1408 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1409 are in the VEC pointed to by VALS. */
1410 tree
1411 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1412 {
1413 tree c = make_node (CONSTRUCTOR);
1414 unsigned int i;
1415 constructor_elt *elt;
1416 bool constant_p = true;
1417 bool side_effects_p = false;
1418
1419 TREE_TYPE (c) = type;
1420 CONSTRUCTOR_ELTS (c) = vals;
1421
1422 FOR_EACH_VEC_ELT (constructor_elt, vals, i, elt)
1423 {
1424 /* Mostly ctors will have elts that don't have side-effects, so
1425 the usual case is to scan all the elements. Hence a single
1426 loop for both const and side effects, rather than one loop
1427 each (with early outs). */
1428 if (!TREE_CONSTANT (elt->value))
1429 constant_p = false;
1430 if (TREE_SIDE_EFFECTS (elt->value))
1431 side_effects_p = true;
1432 }
1433
1434 TREE_SIDE_EFFECTS (c) = side_effects_p;
1435 TREE_CONSTANT (c) = constant_p;
1436
1437 return c;
1438 }
1439
1440 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1441 INDEX and VALUE. */
1442 tree
1443 build_constructor_single (tree type, tree index, tree value)
1444 {
1445 VEC(constructor_elt,gc) *v;
1446 constructor_elt *elt;
1447
1448 v = VEC_alloc (constructor_elt, gc, 1);
1449 elt = VEC_quick_push (constructor_elt, v, NULL);
1450 elt->index = index;
1451 elt->value = value;
1452
1453 return build_constructor (type, v);
1454 }
1455
1456
1457 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1458 are in a list pointed to by VALS. */
1459 tree
1460 build_constructor_from_list (tree type, tree vals)
1461 {
1462 tree t;
1463 VEC(constructor_elt,gc) *v = NULL;
1464
1465 if (vals)
1466 {
1467 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1468 for (t = vals; t; t = TREE_CHAIN (t))
1469 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1470 }
1471
1472 return build_constructor (type, v);
1473 }
1474
1475 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1476
1477 tree
1478 build_fixed (tree type, FIXED_VALUE_TYPE f)
1479 {
1480 tree v;
1481 FIXED_VALUE_TYPE *fp;
1482
1483 v = make_node (FIXED_CST);
1484 fp = ggc_alloc_fixed_value ();
1485 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1486
1487 TREE_TYPE (v) = type;
1488 TREE_FIXED_CST_PTR (v) = fp;
1489 return v;
1490 }
1491
1492 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1493
1494 tree
1495 build_real (tree type, REAL_VALUE_TYPE d)
1496 {
1497 tree v;
1498 REAL_VALUE_TYPE *dp;
1499 int overflow = 0;
1500
1501 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1502 Consider doing it via real_convert now. */
1503
1504 v = make_node (REAL_CST);
1505 dp = ggc_alloc_real_value ();
1506 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1507
1508 TREE_TYPE (v) = type;
1509 TREE_REAL_CST_PTR (v) = dp;
1510 TREE_OVERFLOW (v) = overflow;
1511 return v;
1512 }
1513
1514 /* Return a new REAL_CST node whose type is TYPE
1515 and whose value is the integer value of the INTEGER_CST node I. */
1516
1517 REAL_VALUE_TYPE
1518 real_value_from_int_cst (const_tree type, const_tree i)
1519 {
1520 REAL_VALUE_TYPE d;
1521
1522 /* Clear all bits of the real value type so that we can later do
1523 bitwise comparisons to see if two values are the same. */
1524 memset (&d, 0, sizeof d);
1525
1526 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1527 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1528 TYPE_UNSIGNED (TREE_TYPE (i)));
1529 return d;
1530 }
1531
1532 /* Given a tree representing an integer constant I, return a tree
1533 representing the same value as a floating-point constant of type TYPE. */
1534
1535 tree
1536 build_real_from_int_cst (tree type, const_tree i)
1537 {
1538 tree v;
1539 int overflow = TREE_OVERFLOW (i);
1540
1541 v = build_real (type, real_value_from_int_cst (type, i));
1542
1543 TREE_OVERFLOW (v) |= overflow;
1544 return v;
1545 }
1546
1547 /* Return a newly constructed STRING_CST node whose value is
1548 the LEN characters at STR.
1549 Note that for a C string literal, LEN should include the trailing NUL.
1550 The TREE_TYPE is not initialized. */
1551
1552 tree
1553 build_string (int len, const char *str)
1554 {
1555 tree s;
1556 size_t length;
1557
1558 /* Do not waste bytes provided by padding of struct tree_string. */
1559 length = len + offsetof (struct tree_string, str) + 1;
1560
1561 record_node_allocation_statistics (STRING_CST, length);
1562
1563 s = ggc_alloc_tree_node (length);
1564
1565 memset (s, 0, sizeof (struct tree_typed));
1566 TREE_SET_CODE (s, STRING_CST);
1567 TREE_CONSTANT (s) = 1;
1568 TREE_STRING_LENGTH (s) = len;
1569 memcpy (s->string.str, str, len);
1570 s->string.str[len] = '\0';
1571
1572 return s;
1573 }
1574
1575 /* Return a newly constructed COMPLEX_CST node whose value is
1576 specified by the real and imaginary parts REAL and IMAG.
1577 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1578 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1579
1580 tree
1581 build_complex (tree type, tree real, tree imag)
1582 {
1583 tree t = make_node (COMPLEX_CST);
1584
1585 TREE_REALPART (t) = real;
1586 TREE_IMAGPART (t) = imag;
1587 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1588 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1589 return t;
1590 }
1591
1592 /* Return a constant of arithmetic type TYPE which is the
1593 multiplicative identity of the set TYPE. */
1594
1595 tree
1596 build_one_cst (tree type)
1597 {
1598 switch (TREE_CODE (type))
1599 {
1600 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1601 case POINTER_TYPE: case REFERENCE_TYPE:
1602 case OFFSET_TYPE:
1603 return build_int_cst (type, 1);
1604
1605 case REAL_TYPE:
1606 return build_real (type, dconst1);
1607
1608 case FIXED_POINT_TYPE:
1609 /* We can only generate 1 for accum types. */
1610 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1611 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1612
1613 case VECTOR_TYPE:
1614 {
1615 tree scalar = build_one_cst (TREE_TYPE (type));
1616
1617 return build_vector_from_val (type, scalar);
1618 }
1619
1620 case COMPLEX_TYPE:
1621 return build_complex (type,
1622 build_one_cst (TREE_TYPE (type)),
1623 build_zero_cst (TREE_TYPE (type)));
1624
1625 default:
1626 gcc_unreachable ();
1627 }
1628 }
1629
1630 /* Build 0 constant of type TYPE. This is used by constructor folding
1631 and thus the constant should be represented in memory by
1632 zero(es). */
1633
1634 tree
1635 build_zero_cst (tree type)
1636 {
1637 switch (TREE_CODE (type))
1638 {
1639 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1640 case POINTER_TYPE: case REFERENCE_TYPE:
1641 case OFFSET_TYPE: case NULLPTR_TYPE:
1642 return build_int_cst (type, 0);
1643
1644 case REAL_TYPE:
1645 return build_real (type, dconst0);
1646
1647 case FIXED_POINT_TYPE:
1648 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1649
1650 case VECTOR_TYPE:
1651 {
1652 tree scalar = build_zero_cst (TREE_TYPE (type));
1653
1654 return build_vector_from_val (type, scalar);
1655 }
1656
1657 case COMPLEX_TYPE:
1658 {
1659 tree zero = build_zero_cst (TREE_TYPE (type));
1660
1661 return build_complex (type, zero, zero);
1662 }
1663
1664 default:
1665 if (!AGGREGATE_TYPE_P (type))
1666 return fold_convert (type, integer_zero_node);
1667 return build_constructor (type, NULL);
1668 }
1669 }
1670
1671
1672 /* Build a BINFO with LEN language slots. */
1673
1674 tree
1675 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1676 {
1677 tree t;
1678 size_t length = (offsetof (struct tree_binfo, base_binfos)
1679 + VEC_embedded_size (tree, base_binfos));
1680
1681 record_node_allocation_statistics (TREE_BINFO, length);
1682
1683 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1684
1685 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1686
1687 TREE_SET_CODE (t, TREE_BINFO);
1688
1689 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1690
1691 return t;
1692 }
1693
1694 /* Create a CASE_LABEL_EXPR tree node and return it. */
1695
1696 tree
1697 build_case_label (tree low_value, tree high_value, tree label_decl)
1698 {
1699 tree t = make_node (CASE_LABEL_EXPR);
1700
1701 TREE_TYPE (t) = void_type_node;
1702 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
1703
1704 CASE_LOW (t) = low_value;
1705 CASE_HIGH (t) = high_value;
1706 CASE_LABEL (t) = label_decl;
1707 CASE_CHAIN (t) = NULL_TREE;
1708
1709 return t;
1710 }
1711
1712 /* Build a newly constructed TREE_VEC node of length LEN. */
1713
1714 tree
1715 make_tree_vec_stat (int len MEM_STAT_DECL)
1716 {
1717 tree t;
1718 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1719
1720 record_node_allocation_statistics (TREE_VEC, length);
1721
1722 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1723
1724 TREE_SET_CODE (t, TREE_VEC);
1725 TREE_VEC_LENGTH (t) = len;
1726
1727 return t;
1728 }
1729 \f
1730 /* Return 1 if EXPR is the integer constant zero or a complex constant
1731 of zero. */
1732
1733 int
1734 integer_zerop (const_tree expr)
1735 {
1736 STRIP_NOPS (expr);
1737
1738 switch (TREE_CODE (expr))
1739 {
1740 case INTEGER_CST:
1741 return (TREE_INT_CST_LOW (expr) == 0
1742 && TREE_INT_CST_HIGH (expr) == 0);
1743 case COMPLEX_CST:
1744 return (integer_zerop (TREE_REALPART (expr))
1745 && integer_zerop (TREE_IMAGPART (expr)));
1746 case VECTOR_CST:
1747 {
1748 unsigned i;
1749 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1750 if (!integer_zerop (VECTOR_CST_ELT (expr, i)))
1751 return false;
1752 return true;
1753 }
1754 default:
1755 return false;
1756 }
1757 }
1758
1759 /* Return 1 if EXPR is the integer constant one or the corresponding
1760 complex constant. */
1761
1762 int
1763 integer_onep (const_tree expr)
1764 {
1765 STRIP_NOPS (expr);
1766
1767 switch (TREE_CODE (expr))
1768 {
1769 case INTEGER_CST:
1770 return (TREE_INT_CST_LOW (expr) == 1
1771 && TREE_INT_CST_HIGH (expr) == 0);
1772 case COMPLEX_CST:
1773 return (integer_onep (TREE_REALPART (expr))
1774 && integer_zerop (TREE_IMAGPART (expr)));
1775 case VECTOR_CST:
1776 {
1777 unsigned i;
1778 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1779 if (!integer_onep (VECTOR_CST_ELT (expr, i)))
1780 return false;
1781 return true;
1782 }
1783 default:
1784 return false;
1785 }
1786 }
1787
1788 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1789 it contains. Likewise for the corresponding complex constant. */
1790
1791 int
1792 integer_all_onesp (const_tree expr)
1793 {
1794 int prec;
1795 int uns;
1796
1797 STRIP_NOPS (expr);
1798
1799 if (TREE_CODE (expr) == COMPLEX_CST
1800 && integer_all_onesp (TREE_REALPART (expr))
1801 && integer_zerop (TREE_IMAGPART (expr)))
1802 return 1;
1803
1804 else if (TREE_CODE (expr) == VECTOR_CST)
1805 {
1806 unsigned i;
1807 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1808 if (!integer_all_onesp (VECTOR_CST_ELT (expr, i)))
1809 return 0;
1810 return 1;
1811 }
1812
1813 else if (TREE_CODE (expr) != INTEGER_CST)
1814 return 0;
1815
1816 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1817 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1818 && TREE_INT_CST_HIGH (expr) == -1)
1819 return 1;
1820 if (!uns)
1821 return 0;
1822
1823 prec = TYPE_PRECISION (TREE_TYPE (expr));
1824 if (prec >= HOST_BITS_PER_WIDE_INT)
1825 {
1826 HOST_WIDE_INT high_value;
1827 int shift_amount;
1828
1829 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1830
1831 /* Can not handle precisions greater than twice the host int size. */
1832 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1833 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1834 /* Shifting by the host word size is undefined according to the ANSI
1835 standard, so we must handle this as a special case. */
1836 high_value = -1;
1837 else
1838 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1839
1840 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1841 && TREE_INT_CST_HIGH (expr) == high_value);
1842 }
1843 else
1844 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1845 }
1846
1847 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1848 one bit on). */
1849
1850 int
1851 integer_pow2p (const_tree expr)
1852 {
1853 int prec;
1854 HOST_WIDE_INT high, low;
1855
1856 STRIP_NOPS (expr);
1857
1858 if (TREE_CODE (expr) == COMPLEX_CST
1859 && integer_pow2p (TREE_REALPART (expr))
1860 && integer_zerop (TREE_IMAGPART (expr)))
1861 return 1;
1862
1863 if (TREE_CODE (expr) != INTEGER_CST)
1864 return 0;
1865
1866 prec = TYPE_PRECISION (TREE_TYPE (expr));
1867 high = TREE_INT_CST_HIGH (expr);
1868 low = TREE_INT_CST_LOW (expr);
1869
1870 /* First clear all bits that are beyond the type's precision in case
1871 we've been sign extended. */
1872
1873 if (prec == HOST_BITS_PER_DOUBLE_INT)
1874 ;
1875 else if (prec > HOST_BITS_PER_WIDE_INT)
1876 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1877 else
1878 {
1879 high = 0;
1880 if (prec < HOST_BITS_PER_WIDE_INT)
1881 low &= ~((HOST_WIDE_INT) (-1) << prec);
1882 }
1883
1884 if (high == 0 && low == 0)
1885 return 0;
1886
1887 return ((high == 0 && (low & (low - 1)) == 0)
1888 || (low == 0 && (high & (high - 1)) == 0));
1889 }
1890
1891 /* Return 1 if EXPR is an integer constant other than zero or a
1892 complex constant other than zero. */
1893
1894 int
1895 integer_nonzerop (const_tree expr)
1896 {
1897 STRIP_NOPS (expr);
1898
1899 return ((TREE_CODE (expr) == INTEGER_CST
1900 && (TREE_INT_CST_LOW (expr) != 0
1901 || TREE_INT_CST_HIGH (expr) != 0))
1902 || (TREE_CODE (expr) == COMPLEX_CST
1903 && (integer_nonzerop (TREE_REALPART (expr))
1904 || integer_nonzerop (TREE_IMAGPART (expr)))));
1905 }
1906
1907 /* Return 1 if EXPR is the fixed-point constant zero. */
1908
1909 int
1910 fixed_zerop (const_tree expr)
1911 {
1912 return (TREE_CODE (expr) == FIXED_CST
1913 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1914 }
1915
1916 /* Return the power of two represented by a tree node known to be a
1917 power of two. */
1918
1919 int
1920 tree_log2 (const_tree expr)
1921 {
1922 int prec;
1923 HOST_WIDE_INT high, low;
1924
1925 STRIP_NOPS (expr);
1926
1927 if (TREE_CODE (expr) == COMPLEX_CST)
1928 return tree_log2 (TREE_REALPART (expr));
1929
1930 prec = TYPE_PRECISION (TREE_TYPE (expr));
1931 high = TREE_INT_CST_HIGH (expr);
1932 low = TREE_INT_CST_LOW (expr);
1933
1934 /* First clear all bits that are beyond the type's precision in case
1935 we've been sign extended. */
1936
1937 if (prec == HOST_BITS_PER_DOUBLE_INT)
1938 ;
1939 else if (prec > HOST_BITS_PER_WIDE_INT)
1940 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1941 else
1942 {
1943 high = 0;
1944 if (prec < HOST_BITS_PER_WIDE_INT)
1945 low &= ~((HOST_WIDE_INT) (-1) << prec);
1946 }
1947
1948 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1949 : exact_log2 (low));
1950 }
1951
1952 /* Similar, but return the largest integer Y such that 2 ** Y is less
1953 than or equal to EXPR. */
1954
1955 int
1956 tree_floor_log2 (const_tree expr)
1957 {
1958 int prec;
1959 HOST_WIDE_INT high, low;
1960
1961 STRIP_NOPS (expr);
1962
1963 if (TREE_CODE (expr) == COMPLEX_CST)
1964 return tree_log2 (TREE_REALPART (expr));
1965
1966 prec = TYPE_PRECISION (TREE_TYPE (expr));
1967 high = TREE_INT_CST_HIGH (expr);
1968 low = TREE_INT_CST_LOW (expr);
1969
1970 /* First clear all bits that are beyond the type's precision in case
1971 we've been sign extended. Ignore if type's precision hasn't been set
1972 since what we are doing is setting it. */
1973
1974 if (prec == HOST_BITS_PER_DOUBLE_INT || prec == 0)
1975 ;
1976 else if (prec > HOST_BITS_PER_WIDE_INT)
1977 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1978 else
1979 {
1980 high = 0;
1981 if (prec < HOST_BITS_PER_WIDE_INT)
1982 low &= ~((HOST_WIDE_INT) (-1) << prec);
1983 }
1984
1985 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1986 : floor_log2 (low));
1987 }
1988
1989 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1990 decimal float constants, so don't return 1 for them. */
1991
1992 int
1993 real_zerop (const_tree expr)
1994 {
1995 STRIP_NOPS (expr);
1996
1997 return ((TREE_CODE (expr) == REAL_CST
1998 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1999 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
2000 || (TREE_CODE (expr) == COMPLEX_CST
2001 && real_zerop (TREE_REALPART (expr))
2002 && real_zerop (TREE_IMAGPART (expr))));
2003 }
2004
2005 /* Return 1 if EXPR is the real constant one in real or complex form.
2006 Trailing zeroes matter for decimal float constants, so don't return
2007 1 for them. */
2008
2009 int
2010 real_onep (const_tree expr)
2011 {
2012 STRIP_NOPS (expr);
2013
2014 return ((TREE_CODE (expr) == REAL_CST
2015 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
2016 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
2017 || (TREE_CODE (expr) == COMPLEX_CST
2018 && real_onep (TREE_REALPART (expr))
2019 && real_zerop (TREE_IMAGPART (expr))));
2020 }
2021
2022 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
2023 for decimal float constants, so don't return 1 for them. */
2024
2025 int
2026 real_twop (const_tree expr)
2027 {
2028 STRIP_NOPS (expr);
2029
2030 return ((TREE_CODE (expr) == REAL_CST
2031 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
2032 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
2033 || (TREE_CODE (expr) == COMPLEX_CST
2034 && real_twop (TREE_REALPART (expr))
2035 && real_zerop (TREE_IMAGPART (expr))));
2036 }
2037
2038 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2039 matter for decimal float constants, so don't return 1 for them. */
2040
2041 int
2042 real_minus_onep (const_tree expr)
2043 {
2044 STRIP_NOPS (expr);
2045
2046 return ((TREE_CODE (expr) == REAL_CST
2047 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
2048 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
2049 || (TREE_CODE (expr) == COMPLEX_CST
2050 && real_minus_onep (TREE_REALPART (expr))
2051 && real_zerop (TREE_IMAGPART (expr))));
2052 }
2053
2054 /* Nonzero if EXP is a constant or a cast of a constant. */
2055
2056 int
2057 really_constant_p (const_tree exp)
2058 {
2059 /* This is not quite the same as STRIP_NOPS. It does more. */
2060 while (CONVERT_EXPR_P (exp)
2061 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2062 exp = TREE_OPERAND (exp, 0);
2063 return TREE_CONSTANT (exp);
2064 }
2065 \f
2066 /* Return first list element whose TREE_VALUE is ELEM.
2067 Return 0 if ELEM is not in LIST. */
2068
2069 tree
2070 value_member (tree elem, tree list)
2071 {
2072 while (list)
2073 {
2074 if (elem == TREE_VALUE (list))
2075 return list;
2076 list = TREE_CHAIN (list);
2077 }
2078 return NULL_TREE;
2079 }
2080
2081 /* Return first list element whose TREE_PURPOSE is ELEM.
2082 Return 0 if ELEM is not in LIST. */
2083
2084 tree
2085 purpose_member (const_tree elem, tree list)
2086 {
2087 while (list)
2088 {
2089 if (elem == TREE_PURPOSE (list))
2090 return list;
2091 list = TREE_CHAIN (list);
2092 }
2093 return NULL_TREE;
2094 }
2095
2096 /* Return true if ELEM is in V. */
2097
2098 bool
2099 vec_member (const_tree elem, VEC(tree,gc) *v)
2100 {
2101 unsigned ix;
2102 tree t;
2103 FOR_EACH_VEC_ELT (tree, v, ix, t)
2104 if (elem == t)
2105 return true;
2106 return false;
2107 }
2108
2109 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2110 NULL_TREE. */
2111
2112 tree
2113 chain_index (int idx, tree chain)
2114 {
2115 for (; chain && idx > 0; --idx)
2116 chain = TREE_CHAIN (chain);
2117 return chain;
2118 }
2119
2120 /* Return nonzero if ELEM is part of the chain CHAIN. */
2121
2122 int
2123 chain_member (const_tree elem, const_tree chain)
2124 {
2125 while (chain)
2126 {
2127 if (elem == chain)
2128 return 1;
2129 chain = DECL_CHAIN (chain);
2130 }
2131
2132 return 0;
2133 }
2134
2135 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2136 We expect a null pointer to mark the end of the chain.
2137 This is the Lisp primitive `length'. */
2138
2139 int
2140 list_length (const_tree t)
2141 {
2142 const_tree p = t;
2143 #ifdef ENABLE_TREE_CHECKING
2144 const_tree q = t;
2145 #endif
2146 int len = 0;
2147
2148 while (p)
2149 {
2150 p = TREE_CHAIN (p);
2151 #ifdef ENABLE_TREE_CHECKING
2152 if (len % 2)
2153 q = TREE_CHAIN (q);
2154 gcc_assert (p != q);
2155 #endif
2156 len++;
2157 }
2158
2159 return len;
2160 }
2161
2162 /* Returns the number of FIELD_DECLs in TYPE. */
2163
2164 int
2165 fields_length (const_tree type)
2166 {
2167 tree t = TYPE_FIELDS (type);
2168 int count = 0;
2169
2170 for (; t; t = DECL_CHAIN (t))
2171 if (TREE_CODE (t) == FIELD_DECL)
2172 ++count;
2173
2174 return count;
2175 }
2176
2177 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2178 UNION_TYPE TYPE, or NULL_TREE if none. */
2179
2180 tree
2181 first_field (const_tree type)
2182 {
2183 tree t = TYPE_FIELDS (type);
2184 while (t && TREE_CODE (t) != FIELD_DECL)
2185 t = TREE_CHAIN (t);
2186 return t;
2187 }
2188
2189 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2190 by modifying the last node in chain 1 to point to chain 2.
2191 This is the Lisp primitive `nconc'. */
2192
2193 tree
2194 chainon (tree op1, tree op2)
2195 {
2196 tree t1;
2197
2198 if (!op1)
2199 return op2;
2200 if (!op2)
2201 return op1;
2202
2203 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2204 continue;
2205 TREE_CHAIN (t1) = op2;
2206
2207 #ifdef ENABLE_TREE_CHECKING
2208 {
2209 tree t2;
2210 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2211 gcc_assert (t2 != t1);
2212 }
2213 #endif
2214
2215 return op1;
2216 }
2217
2218 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2219
2220 tree
2221 tree_last (tree chain)
2222 {
2223 tree next;
2224 if (chain)
2225 while ((next = TREE_CHAIN (chain)))
2226 chain = next;
2227 return chain;
2228 }
2229
2230 /* Reverse the order of elements in the chain T,
2231 and return the new head of the chain (old last element). */
2232
2233 tree
2234 nreverse (tree t)
2235 {
2236 tree prev = 0, decl, next;
2237 for (decl = t; decl; decl = next)
2238 {
2239 /* We shouldn't be using this function to reverse BLOCK chains; we
2240 have blocks_nreverse for that. */
2241 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2242 next = TREE_CHAIN (decl);
2243 TREE_CHAIN (decl) = prev;
2244 prev = decl;
2245 }
2246 return prev;
2247 }
2248 \f
2249 /* Return a newly created TREE_LIST node whose
2250 purpose and value fields are PARM and VALUE. */
2251
2252 tree
2253 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2254 {
2255 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2256 TREE_PURPOSE (t) = parm;
2257 TREE_VALUE (t) = value;
2258 return t;
2259 }
2260
2261 /* Build a chain of TREE_LIST nodes from a vector. */
2262
2263 tree
2264 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2265 {
2266 tree ret = NULL_TREE;
2267 tree *pp = &ret;
2268 unsigned int i;
2269 tree t;
2270 FOR_EACH_VEC_ELT (tree, vec, i, t)
2271 {
2272 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2273 pp = &TREE_CHAIN (*pp);
2274 }
2275 return ret;
2276 }
2277
2278 /* Return a newly created TREE_LIST node whose
2279 purpose and value fields are PURPOSE and VALUE
2280 and whose TREE_CHAIN is CHAIN. */
2281
2282 tree
2283 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2284 {
2285 tree node;
2286
2287 node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list)
2288 PASS_MEM_STAT);
2289 memset (node, 0, sizeof (struct tree_common));
2290
2291 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2292
2293 TREE_SET_CODE (node, TREE_LIST);
2294 TREE_CHAIN (node) = chain;
2295 TREE_PURPOSE (node) = purpose;
2296 TREE_VALUE (node) = value;
2297 return node;
2298 }
2299
2300 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2301 trees. */
2302
2303 VEC(tree,gc) *
2304 ctor_to_vec (tree ctor)
2305 {
2306 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2307 unsigned int ix;
2308 tree val;
2309
2310 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2311 VEC_quick_push (tree, vec, val);
2312
2313 return vec;
2314 }
2315 \f
2316 /* Return the size nominally occupied by an object of type TYPE
2317 when it resides in memory. The value is measured in units of bytes,
2318 and its data type is that normally used for type sizes
2319 (which is the first type created by make_signed_type or
2320 make_unsigned_type). */
2321
2322 tree
2323 size_in_bytes (const_tree type)
2324 {
2325 tree t;
2326
2327 if (type == error_mark_node)
2328 return integer_zero_node;
2329
2330 type = TYPE_MAIN_VARIANT (type);
2331 t = TYPE_SIZE_UNIT (type);
2332
2333 if (t == 0)
2334 {
2335 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2336 return size_zero_node;
2337 }
2338
2339 return t;
2340 }
2341
2342 /* Return the size of TYPE (in bytes) as a wide integer
2343 or return -1 if the size can vary or is larger than an integer. */
2344
2345 HOST_WIDE_INT
2346 int_size_in_bytes (const_tree type)
2347 {
2348 tree t;
2349
2350 if (type == error_mark_node)
2351 return 0;
2352
2353 type = TYPE_MAIN_VARIANT (type);
2354 t = TYPE_SIZE_UNIT (type);
2355 if (t == 0
2356 || TREE_CODE (t) != INTEGER_CST
2357 || TREE_INT_CST_HIGH (t) != 0
2358 /* If the result would appear negative, it's too big to represent. */
2359 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2360 return -1;
2361
2362 return TREE_INT_CST_LOW (t);
2363 }
2364
2365 /* Return the maximum size of TYPE (in bytes) as a wide integer
2366 or return -1 if the size can vary or is larger than an integer. */
2367
2368 HOST_WIDE_INT
2369 max_int_size_in_bytes (const_tree type)
2370 {
2371 HOST_WIDE_INT size = -1;
2372 tree size_tree;
2373
2374 /* If this is an array type, check for a possible MAX_SIZE attached. */
2375
2376 if (TREE_CODE (type) == ARRAY_TYPE)
2377 {
2378 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2379
2380 if (size_tree && host_integerp (size_tree, 1))
2381 size = tree_low_cst (size_tree, 1);
2382 }
2383
2384 /* If we still haven't been able to get a size, see if the language
2385 can compute a maximum size. */
2386
2387 if (size == -1)
2388 {
2389 size_tree = lang_hooks.types.max_size (type);
2390
2391 if (size_tree && host_integerp (size_tree, 1))
2392 size = tree_low_cst (size_tree, 1);
2393 }
2394
2395 return size;
2396 }
2397
2398 /* Returns a tree for the size of EXP in bytes. */
2399
2400 tree
2401 tree_expr_size (const_tree exp)
2402 {
2403 if (DECL_P (exp)
2404 && DECL_SIZE_UNIT (exp) != 0)
2405 return DECL_SIZE_UNIT (exp);
2406 else
2407 return size_in_bytes (TREE_TYPE (exp));
2408 }
2409 \f
2410 /* Return the bit position of FIELD, in bits from the start of the record.
2411 This is a tree of type bitsizetype. */
2412
2413 tree
2414 bit_position (const_tree field)
2415 {
2416 return bit_from_pos (DECL_FIELD_OFFSET (field),
2417 DECL_FIELD_BIT_OFFSET (field));
2418 }
2419
2420 /* Likewise, but return as an integer. It must be representable in
2421 that way (since it could be a signed value, we don't have the
2422 option of returning -1 like int_size_in_byte can. */
2423
2424 HOST_WIDE_INT
2425 int_bit_position (const_tree field)
2426 {
2427 return tree_low_cst (bit_position (field), 0);
2428 }
2429 \f
2430 /* Return the byte position of FIELD, in bytes from the start of the record.
2431 This is a tree of type sizetype. */
2432
2433 tree
2434 byte_position (const_tree field)
2435 {
2436 return byte_from_pos (DECL_FIELD_OFFSET (field),
2437 DECL_FIELD_BIT_OFFSET (field));
2438 }
2439
2440 /* Likewise, but return as an integer. It must be representable in
2441 that way (since it could be a signed value, we don't have the
2442 option of returning -1 like int_size_in_byte can. */
2443
2444 HOST_WIDE_INT
2445 int_byte_position (const_tree field)
2446 {
2447 return tree_low_cst (byte_position (field), 0);
2448 }
2449 \f
2450 /* Return the strictest alignment, in bits, that T is known to have. */
2451
2452 unsigned int
2453 expr_align (const_tree t)
2454 {
2455 unsigned int align0, align1;
2456
2457 switch (TREE_CODE (t))
2458 {
2459 CASE_CONVERT: case NON_LVALUE_EXPR:
2460 /* If we have conversions, we know that the alignment of the
2461 object must meet each of the alignments of the types. */
2462 align0 = expr_align (TREE_OPERAND (t, 0));
2463 align1 = TYPE_ALIGN (TREE_TYPE (t));
2464 return MAX (align0, align1);
2465
2466 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2467 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2468 case CLEANUP_POINT_EXPR:
2469 /* These don't change the alignment of an object. */
2470 return expr_align (TREE_OPERAND (t, 0));
2471
2472 case COND_EXPR:
2473 /* The best we can do is say that the alignment is the least aligned
2474 of the two arms. */
2475 align0 = expr_align (TREE_OPERAND (t, 1));
2476 align1 = expr_align (TREE_OPERAND (t, 2));
2477 return MIN (align0, align1);
2478
2479 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2480 meaningfully, it's always 1. */
2481 case LABEL_DECL: case CONST_DECL:
2482 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2483 case FUNCTION_DECL:
2484 gcc_assert (DECL_ALIGN (t) != 0);
2485 return DECL_ALIGN (t);
2486
2487 default:
2488 break;
2489 }
2490
2491 /* Otherwise take the alignment from that of the type. */
2492 return TYPE_ALIGN (TREE_TYPE (t));
2493 }
2494 \f
2495 /* Return, as a tree node, the number of elements for TYPE (which is an
2496 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2497
2498 tree
2499 array_type_nelts (const_tree type)
2500 {
2501 tree index_type, min, max;
2502
2503 /* If they did it with unspecified bounds, then we should have already
2504 given an error about it before we got here. */
2505 if (! TYPE_DOMAIN (type))
2506 return error_mark_node;
2507
2508 index_type = TYPE_DOMAIN (type);
2509 min = TYPE_MIN_VALUE (index_type);
2510 max = TYPE_MAX_VALUE (index_type);
2511
2512 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
2513 if (!max)
2514 return error_mark_node;
2515
2516 return (integer_zerop (min)
2517 ? max
2518 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2519 }
2520 \f
2521 /* If arg is static -- a reference to an object in static storage -- then
2522 return the object. This is not the same as the C meaning of `static'.
2523 If arg isn't static, return NULL. */
2524
2525 tree
2526 staticp (tree arg)
2527 {
2528 switch (TREE_CODE (arg))
2529 {
2530 case FUNCTION_DECL:
2531 /* Nested functions are static, even though taking their address will
2532 involve a trampoline as we unnest the nested function and create
2533 the trampoline on the tree level. */
2534 return arg;
2535
2536 case VAR_DECL:
2537 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2538 && ! DECL_THREAD_LOCAL_P (arg)
2539 && ! DECL_DLLIMPORT_P (arg)
2540 ? arg : NULL);
2541
2542 case CONST_DECL:
2543 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2544 ? arg : NULL);
2545
2546 case CONSTRUCTOR:
2547 return TREE_STATIC (arg) ? arg : NULL;
2548
2549 case LABEL_DECL:
2550 case STRING_CST:
2551 return arg;
2552
2553 case COMPONENT_REF:
2554 /* If the thing being referenced is not a field, then it is
2555 something language specific. */
2556 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2557
2558 /* If we are referencing a bitfield, we can't evaluate an
2559 ADDR_EXPR at compile time and so it isn't a constant. */
2560 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2561 return NULL;
2562
2563 return staticp (TREE_OPERAND (arg, 0));
2564
2565 case BIT_FIELD_REF:
2566 return NULL;
2567
2568 case INDIRECT_REF:
2569 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2570
2571 case ARRAY_REF:
2572 case ARRAY_RANGE_REF:
2573 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2574 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2575 return staticp (TREE_OPERAND (arg, 0));
2576 else
2577 return NULL;
2578
2579 case COMPOUND_LITERAL_EXPR:
2580 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2581
2582 default:
2583 return NULL;
2584 }
2585 }
2586
2587 \f
2588
2589
2590 /* Return whether OP is a DECL whose address is function-invariant. */
2591
2592 bool
2593 decl_address_invariant_p (const_tree op)
2594 {
2595 /* The conditions below are slightly less strict than the one in
2596 staticp. */
2597
2598 switch (TREE_CODE (op))
2599 {
2600 case PARM_DECL:
2601 case RESULT_DECL:
2602 case LABEL_DECL:
2603 case FUNCTION_DECL:
2604 return true;
2605
2606 case VAR_DECL:
2607 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2608 || DECL_THREAD_LOCAL_P (op)
2609 || DECL_CONTEXT (op) == current_function_decl
2610 || decl_function_context (op) == current_function_decl)
2611 return true;
2612 break;
2613
2614 case CONST_DECL:
2615 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2616 || decl_function_context (op) == current_function_decl)
2617 return true;
2618 break;
2619
2620 default:
2621 break;
2622 }
2623
2624 return false;
2625 }
2626
2627 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2628
2629 bool
2630 decl_address_ip_invariant_p (const_tree op)
2631 {
2632 /* The conditions below are slightly less strict than the one in
2633 staticp. */
2634
2635 switch (TREE_CODE (op))
2636 {
2637 case LABEL_DECL:
2638 case FUNCTION_DECL:
2639 case STRING_CST:
2640 return true;
2641
2642 case VAR_DECL:
2643 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2644 && !DECL_DLLIMPORT_P (op))
2645 || DECL_THREAD_LOCAL_P (op))
2646 return true;
2647 break;
2648
2649 case CONST_DECL:
2650 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2651 return true;
2652 break;
2653
2654 default:
2655 break;
2656 }
2657
2658 return false;
2659 }
2660
2661
2662 /* Return true if T is function-invariant (internal function, does
2663 not handle arithmetic; that's handled in skip_simple_arithmetic and
2664 tree_invariant_p). */
2665
2666 static bool tree_invariant_p (tree t);
2667
2668 static bool
2669 tree_invariant_p_1 (tree t)
2670 {
2671 tree op;
2672
2673 if (TREE_CONSTANT (t)
2674 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2675 return true;
2676
2677 switch (TREE_CODE (t))
2678 {
2679 case SAVE_EXPR:
2680 return true;
2681
2682 case ADDR_EXPR:
2683 op = TREE_OPERAND (t, 0);
2684 while (handled_component_p (op))
2685 {
2686 switch (TREE_CODE (op))
2687 {
2688 case ARRAY_REF:
2689 case ARRAY_RANGE_REF:
2690 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2691 || TREE_OPERAND (op, 2) != NULL_TREE
2692 || TREE_OPERAND (op, 3) != NULL_TREE)
2693 return false;
2694 break;
2695
2696 case COMPONENT_REF:
2697 if (TREE_OPERAND (op, 2) != NULL_TREE)
2698 return false;
2699 break;
2700
2701 default:;
2702 }
2703 op = TREE_OPERAND (op, 0);
2704 }
2705
2706 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2707
2708 default:
2709 break;
2710 }
2711
2712 return false;
2713 }
2714
2715 /* Return true if T is function-invariant. */
2716
2717 static bool
2718 tree_invariant_p (tree t)
2719 {
2720 tree inner = skip_simple_arithmetic (t);
2721 return tree_invariant_p_1 (inner);
2722 }
2723
2724 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2725 Do this to any expression which may be used in more than one place,
2726 but must be evaluated only once.
2727
2728 Normally, expand_expr would reevaluate the expression each time.
2729 Calling save_expr produces something that is evaluated and recorded
2730 the first time expand_expr is called on it. Subsequent calls to
2731 expand_expr just reuse the recorded value.
2732
2733 The call to expand_expr that generates code that actually computes
2734 the value is the first call *at compile time*. Subsequent calls
2735 *at compile time* generate code to use the saved value.
2736 This produces correct result provided that *at run time* control
2737 always flows through the insns made by the first expand_expr
2738 before reaching the other places where the save_expr was evaluated.
2739 You, the caller of save_expr, must make sure this is so.
2740
2741 Constants, and certain read-only nodes, are returned with no
2742 SAVE_EXPR because that is safe. Expressions containing placeholders
2743 are not touched; see tree.def for an explanation of what these
2744 are used for. */
2745
2746 tree
2747 save_expr (tree expr)
2748 {
2749 tree t = fold (expr);
2750 tree inner;
2751
2752 /* If the tree evaluates to a constant, then we don't want to hide that
2753 fact (i.e. this allows further folding, and direct checks for constants).
2754 However, a read-only object that has side effects cannot be bypassed.
2755 Since it is no problem to reevaluate literals, we just return the
2756 literal node. */
2757 inner = skip_simple_arithmetic (t);
2758 if (TREE_CODE (inner) == ERROR_MARK)
2759 return inner;
2760
2761 if (tree_invariant_p_1 (inner))
2762 return t;
2763
2764 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2765 it means that the size or offset of some field of an object depends on
2766 the value within another field.
2767
2768 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2769 and some variable since it would then need to be both evaluated once and
2770 evaluated more than once. Front-ends must assure this case cannot
2771 happen by surrounding any such subexpressions in their own SAVE_EXPR
2772 and forcing evaluation at the proper time. */
2773 if (contains_placeholder_p (inner))
2774 return t;
2775
2776 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2777 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2778
2779 /* This expression might be placed ahead of a jump to ensure that the
2780 value was computed on both sides of the jump. So make sure it isn't
2781 eliminated as dead. */
2782 TREE_SIDE_EFFECTS (t) = 1;
2783 return t;
2784 }
2785
2786 /* Look inside EXPR and into any simple arithmetic operations. Return
2787 the innermost non-arithmetic node. */
2788
2789 tree
2790 skip_simple_arithmetic (tree expr)
2791 {
2792 tree inner;
2793
2794 /* We don't care about whether this can be used as an lvalue in this
2795 context. */
2796 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2797 expr = TREE_OPERAND (expr, 0);
2798
2799 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2800 a constant, it will be more efficient to not make another SAVE_EXPR since
2801 it will allow better simplification and GCSE will be able to merge the
2802 computations if they actually occur. */
2803 inner = expr;
2804 while (1)
2805 {
2806 if (UNARY_CLASS_P (inner))
2807 inner = TREE_OPERAND (inner, 0);
2808 else if (BINARY_CLASS_P (inner))
2809 {
2810 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2811 inner = TREE_OPERAND (inner, 0);
2812 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2813 inner = TREE_OPERAND (inner, 1);
2814 else
2815 break;
2816 }
2817 else
2818 break;
2819 }
2820
2821 return inner;
2822 }
2823
2824
2825 /* Return which tree structure is used by T. */
2826
2827 enum tree_node_structure_enum
2828 tree_node_structure (const_tree t)
2829 {
2830 const enum tree_code code = TREE_CODE (t);
2831 return tree_node_structure_for_code (code);
2832 }
2833
2834 /* Set various status flags when building a CALL_EXPR object T. */
2835
2836 static void
2837 process_call_operands (tree t)
2838 {
2839 bool side_effects = TREE_SIDE_EFFECTS (t);
2840 bool read_only = false;
2841 int i = call_expr_flags (t);
2842
2843 /* Calls have side-effects, except those to const or pure functions. */
2844 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2845 side_effects = true;
2846 /* Propagate TREE_READONLY of arguments for const functions. */
2847 if (i & ECF_CONST)
2848 read_only = true;
2849
2850 if (!side_effects || read_only)
2851 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2852 {
2853 tree op = TREE_OPERAND (t, i);
2854 if (op && TREE_SIDE_EFFECTS (op))
2855 side_effects = true;
2856 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2857 read_only = false;
2858 }
2859
2860 TREE_SIDE_EFFECTS (t) = side_effects;
2861 TREE_READONLY (t) = read_only;
2862 }
2863 \f
2864 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
2865 size or offset that depends on a field within a record. */
2866
2867 bool
2868 contains_placeholder_p (const_tree exp)
2869 {
2870 enum tree_code code;
2871
2872 if (!exp)
2873 return 0;
2874
2875 code = TREE_CODE (exp);
2876 if (code == PLACEHOLDER_EXPR)
2877 return 1;
2878
2879 switch (TREE_CODE_CLASS (code))
2880 {
2881 case tcc_reference:
2882 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2883 position computations since they will be converted into a
2884 WITH_RECORD_EXPR involving the reference, which will assume
2885 here will be valid. */
2886 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2887
2888 case tcc_exceptional:
2889 if (code == TREE_LIST)
2890 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2891 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2892 break;
2893
2894 case tcc_unary:
2895 case tcc_binary:
2896 case tcc_comparison:
2897 case tcc_expression:
2898 switch (code)
2899 {
2900 case COMPOUND_EXPR:
2901 /* Ignoring the first operand isn't quite right, but works best. */
2902 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2903
2904 case COND_EXPR:
2905 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2906 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2907 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2908
2909 case SAVE_EXPR:
2910 /* The save_expr function never wraps anything containing
2911 a PLACEHOLDER_EXPR. */
2912 return 0;
2913
2914 default:
2915 break;
2916 }
2917
2918 switch (TREE_CODE_LENGTH (code))
2919 {
2920 case 1:
2921 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2922 case 2:
2923 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2924 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2925 default:
2926 return 0;
2927 }
2928
2929 case tcc_vl_exp:
2930 switch (code)
2931 {
2932 case CALL_EXPR:
2933 {
2934 const_tree arg;
2935 const_call_expr_arg_iterator iter;
2936 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2937 if (CONTAINS_PLACEHOLDER_P (arg))
2938 return 1;
2939 return 0;
2940 }
2941 default:
2942 return 0;
2943 }
2944
2945 default:
2946 return 0;
2947 }
2948 return 0;
2949 }
2950
2951 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
2952 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
2953 field positions. */
2954
2955 static bool
2956 type_contains_placeholder_1 (const_tree type)
2957 {
2958 /* If the size contains a placeholder or the parent type (component type in
2959 the case of arrays) type involves a placeholder, this type does. */
2960 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2961 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2962 || (!POINTER_TYPE_P (type)
2963 && TREE_TYPE (type)
2964 && type_contains_placeholder_p (TREE_TYPE (type))))
2965 return true;
2966
2967 /* Now do type-specific checks. Note that the last part of the check above
2968 greatly limits what we have to do below. */
2969 switch (TREE_CODE (type))
2970 {
2971 case VOID_TYPE:
2972 case COMPLEX_TYPE:
2973 case ENUMERAL_TYPE:
2974 case BOOLEAN_TYPE:
2975 case POINTER_TYPE:
2976 case OFFSET_TYPE:
2977 case REFERENCE_TYPE:
2978 case METHOD_TYPE:
2979 case FUNCTION_TYPE:
2980 case VECTOR_TYPE:
2981 case NULLPTR_TYPE:
2982 return false;
2983
2984 case INTEGER_TYPE:
2985 case REAL_TYPE:
2986 case FIXED_POINT_TYPE:
2987 /* Here we just check the bounds. */
2988 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2989 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2990
2991 case ARRAY_TYPE:
2992 /* We have already checked the component type above, so just check the
2993 domain type. */
2994 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2995
2996 case RECORD_TYPE:
2997 case UNION_TYPE:
2998 case QUAL_UNION_TYPE:
2999 {
3000 tree field;
3001
3002 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3003 if (TREE_CODE (field) == FIELD_DECL
3004 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3005 || (TREE_CODE (type) == QUAL_UNION_TYPE
3006 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3007 || type_contains_placeholder_p (TREE_TYPE (field))))
3008 return true;
3009
3010 return false;
3011 }
3012
3013 default:
3014 gcc_unreachable ();
3015 }
3016 }
3017
3018 /* Wrapper around above function used to cache its result. */
3019
3020 bool
3021 type_contains_placeholder_p (tree type)
3022 {
3023 bool result;
3024
3025 /* If the contains_placeholder_bits field has been initialized,
3026 then we know the answer. */
3027 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3028 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3029
3030 /* Indicate that we've seen this type node, and the answer is false.
3031 This is what we want to return if we run into recursion via fields. */
3032 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3033
3034 /* Compute the real value. */
3035 result = type_contains_placeholder_1 (type);
3036
3037 /* Store the real value. */
3038 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3039
3040 return result;
3041 }
3042 \f
3043 /* Push tree EXP onto vector QUEUE if it is not already present. */
3044
3045 static void
3046 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
3047 {
3048 unsigned int i;
3049 tree iter;
3050
3051 FOR_EACH_VEC_ELT (tree, *queue, i, iter)
3052 if (simple_cst_equal (iter, exp) == 1)
3053 break;
3054
3055 if (!iter)
3056 VEC_safe_push (tree, heap, *queue, exp);
3057 }
3058
3059 /* Given a tree EXP, find all occurrences of references to fields
3060 in a PLACEHOLDER_EXPR and place them in vector REFS without
3061 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3062 we assume here that EXP contains only arithmetic expressions
3063 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3064 argument list. */
3065
3066 void
3067 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
3068 {
3069 enum tree_code code = TREE_CODE (exp);
3070 tree inner;
3071 int i;
3072
3073 /* We handle TREE_LIST and COMPONENT_REF separately. */
3074 if (code == TREE_LIST)
3075 {
3076 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3077 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3078 }
3079 else if (code == COMPONENT_REF)
3080 {
3081 for (inner = TREE_OPERAND (exp, 0);
3082 REFERENCE_CLASS_P (inner);
3083 inner = TREE_OPERAND (inner, 0))
3084 ;
3085
3086 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3087 push_without_duplicates (exp, refs);
3088 else
3089 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3090 }
3091 else
3092 switch (TREE_CODE_CLASS (code))
3093 {
3094 case tcc_constant:
3095 break;
3096
3097 case tcc_declaration:
3098 /* Variables allocated to static storage can stay. */
3099 if (!TREE_STATIC (exp))
3100 push_without_duplicates (exp, refs);
3101 break;
3102
3103 case tcc_expression:
3104 /* This is the pattern built in ada/make_aligning_type. */
3105 if (code == ADDR_EXPR
3106 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3107 {
3108 push_without_duplicates (exp, refs);
3109 break;
3110 }
3111
3112 /* Fall through... */
3113
3114 case tcc_exceptional:
3115 case tcc_unary:
3116 case tcc_binary:
3117 case tcc_comparison:
3118 case tcc_reference:
3119 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3120 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3121 break;
3122
3123 case tcc_vl_exp:
3124 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3125 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3126 break;
3127
3128 default:
3129 gcc_unreachable ();
3130 }
3131 }
3132
3133 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3134 return a tree with all occurrences of references to F in a
3135 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3136 CONST_DECLs. Note that we assume here that EXP contains only
3137 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3138 occurring only in their argument list. */
3139
3140 tree
3141 substitute_in_expr (tree exp, tree f, tree r)
3142 {
3143 enum tree_code code = TREE_CODE (exp);
3144 tree op0, op1, op2, op3;
3145 tree new_tree;
3146
3147 /* We handle TREE_LIST and COMPONENT_REF separately. */
3148 if (code == TREE_LIST)
3149 {
3150 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3151 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3152 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3153 return exp;
3154
3155 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3156 }
3157 else if (code == COMPONENT_REF)
3158 {
3159 tree inner;
3160
3161 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3162 and it is the right field, replace it with R. */
3163 for (inner = TREE_OPERAND (exp, 0);
3164 REFERENCE_CLASS_P (inner);
3165 inner = TREE_OPERAND (inner, 0))
3166 ;
3167
3168 /* The field. */
3169 op1 = TREE_OPERAND (exp, 1);
3170
3171 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3172 return r;
3173
3174 /* If this expression hasn't been completed let, leave it alone. */
3175 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3176 return exp;
3177
3178 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3179 if (op0 == TREE_OPERAND (exp, 0))
3180 return exp;
3181
3182 new_tree
3183 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3184 }
3185 else
3186 switch (TREE_CODE_CLASS (code))
3187 {
3188 case tcc_constant:
3189 return exp;
3190
3191 case tcc_declaration:
3192 if (exp == f)
3193 return r;
3194 else
3195 return exp;
3196
3197 case tcc_expression:
3198 if (exp == f)
3199 return r;
3200
3201 /* Fall through... */
3202
3203 case tcc_exceptional:
3204 case tcc_unary:
3205 case tcc_binary:
3206 case tcc_comparison:
3207 case tcc_reference:
3208 switch (TREE_CODE_LENGTH (code))
3209 {
3210 case 0:
3211 return exp;
3212
3213 case 1:
3214 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3215 if (op0 == TREE_OPERAND (exp, 0))
3216 return exp;
3217
3218 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3219 break;
3220
3221 case 2:
3222 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3223 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3224
3225 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3226 return exp;
3227
3228 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3229 break;
3230
3231 case 3:
3232 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3233 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3234 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3235
3236 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3237 && op2 == TREE_OPERAND (exp, 2))
3238 return exp;
3239
3240 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3241 break;
3242
3243 case 4:
3244 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3245 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3246 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3247 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3248
3249 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3250 && op2 == TREE_OPERAND (exp, 2)
3251 && op3 == TREE_OPERAND (exp, 3))
3252 return exp;
3253
3254 new_tree
3255 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3256 break;
3257
3258 default:
3259 gcc_unreachable ();
3260 }
3261 break;
3262
3263 case tcc_vl_exp:
3264 {
3265 int i;
3266
3267 new_tree = NULL_TREE;
3268
3269 /* If we are trying to replace F with a constant, inline back
3270 functions which do nothing else than computing a value from
3271 the arguments they are passed. This makes it possible to
3272 fold partially or entirely the replacement expression. */
3273 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3274 {
3275 tree t = maybe_inline_call_in_expr (exp);
3276 if (t)
3277 return SUBSTITUTE_IN_EXPR (t, f, r);
3278 }
3279
3280 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3281 {
3282 tree op = TREE_OPERAND (exp, i);
3283 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3284 if (new_op != op)
3285 {
3286 if (!new_tree)
3287 new_tree = copy_node (exp);
3288 TREE_OPERAND (new_tree, i) = new_op;
3289 }
3290 }
3291
3292 if (new_tree)
3293 {
3294 new_tree = fold (new_tree);
3295 if (TREE_CODE (new_tree) == CALL_EXPR)
3296 process_call_operands (new_tree);
3297 }
3298 else
3299 return exp;
3300 }
3301 break;
3302
3303 default:
3304 gcc_unreachable ();
3305 }
3306
3307 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3308
3309 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3310 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3311
3312 return new_tree;
3313 }
3314
3315 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3316 for it within OBJ, a tree that is an object or a chain of references. */
3317
3318 tree
3319 substitute_placeholder_in_expr (tree exp, tree obj)
3320 {
3321 enum tree_code code = TREE_CODE (exp);
3322 tree op0, op1, op2, op3;
3323 tree new_tree;
3324
3325 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3326 in the chain of OBJ. */
3327 if (code == PLACEHOLDER_EXPR)
3328 {
3329 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3330 tree elt;
3331
3332 for (elt = obj; elt != 0;
3333 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3334 || TREE_CODE (elt) == COND_EXPR)
3335 ? TREE_OPERAND (elt, 1)
3336 : (REFERENCE_CLASS_P (elt)
3337 || UNARY_CLASS_P (elt)
3338 || BINARY_CLASS_P (elt)
3339 || VL_EXP_CLASS_P (elt)
3340 || EXPRESSION_CLASS_P (elt))
3341 ? TREE_OPERAND (elt, 0) : 0))
3342 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3343 return elt;
3344
3345 for (elt = obj; elt != 0;
3346 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3347 || TREE_CODE (elt) == COND_EXPR)
3348 ? TREE_OPERAND (elt, 1)
3349 : (REFERENCE_CLASS_P (elt)
3350 || UNARY_CLASS_P (elt)
3351 || BINARY_CLASS_P (elt)
3352 || VL_EXP_CLASS_P (elt)
3353 || EXPRESSION_CLASS_P (elt))
3354 ? TREE_OPERAND (elt, 0) : 0))
3355 if (POINTER_TYPE_P (TREE_TYPE (elt))
3356 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3357 == need_type))
3358 return fold_build1 (INDIRECT_REF, need_type, elt);
3359
3360 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3361 survives until RTL generation, there will be an error. */
3362 return exp;
3363 }
3364
3365 /* TREE_LIST is special because we need to look at TREE_VALUE
3366 and TREE_CHAIN, not TREE_OPERANDS. */
3367 else if (code == TREE_LIST)
3368 {
3369 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3370 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3371 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3372 return exp;
3373
3374 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3375 }
3376 else
3377 switch (TREE_CODE_CLASS (code))
3378 {
3379 case tcc_constant:
3380 case tcc_declaration:
3381 return exp;
3382
3383 case tcc_exceptional:
3384 case tcc_unary:
3385 case tcc_binary:
3386 case tcc_comparison:
3387 case tcc_expression:
3388 case tcc_reference:
3389 case tcc_statement:
3390 switch (TREE_CODE_LENGTH (code))
3391 {
3392 case 0:
3393 return exp;
3394
3395 case 1:
3396 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3397 if (op0 == TREE_OPERAND (exp, 0))
3398 return exp;
3399
3400 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3401 break;
3402
3403 case 2:
3404 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3405 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3406
3407 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3408 return exp;
3409
3410 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3411 break;
3412
3413 case 3:
3414 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3415 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3416 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3417
3418 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3419 && op2 == TREE_OPERAND (exp, 2))
3420 return exp;
3421
3422 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3423 break;
3424
3425 case 4:
3426 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3427 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3428 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3429 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3430
3431 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3432 && op2 == TREE_OPERAND (exp, 2)
3433 && op3 == TREE_OPERAND (exp, 3))
3434 return exp;
3435
3436 new_tree
3437 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3438 break;
3439
3440 default:
3441 gcc_unreachable ();
3442 }
3443 break;
3444
3445 case tcc_vl_exp:
3446 {
3447 int i;
3448
3449 new_tree = NULL_TREE;
3450
3451 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3452 {
3453 tree op = TREE_OPERAND (exp, i);
3454 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3455 if (new_op != op)
3456 {
3457 if (!new_tree)
3458 new_tree = copy_node (exp);
3459 TREE_OPERAND (new_tree, i) = new_op;
3460 }
3461 }
3462
3463 if (new_tree)
3464 {
3465 new_tree = fold (new_tree);
3466 if (TREE_CODE (new_tree) == CALL_EXPR)
3467 process_call_operands (new_tree);
3468 }
3469 else
3470 return exp;
3471 }
3472 break;
3473
3474 default:
3475 gcc_unreachable ();
3476 }
3477
3478 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3479
3480 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3481 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3482
3483 return new_tree;
3484 }
3485 \f
3486 /* Stabilize a reference so that we can use it any number of times
3487 without causing its operands to be evaluated more than once.
3488 Returns the stabilized reference. This works by means of save_expr,
3489 so see the caveats in the comments about save_expr.
3490
3491 Also allows conversion expressions whose operands are references.
3492 Any other kind of expression is returned unchanged. */
3493
3494 tree
3495 stabilize_reference (tree ref)
3496 {
3497 tree result;
3498 enum tree_code code = TREE_CODE (ref);
3499
3500 switch (code)
3501 {
3502 case VAR_DECL:
3503 case PARM_DECL:
3504 case RESULT_DECL:
3505 /* No action is needed in this case. */
3506 return ref;
3507
3508 CASE_CONVERT:
3509 case FLOAT_EXPR:
3510 case FIX_TRUNC_EXPR:
3511 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3512 break;
3513
3514 case INDIRECT_REF:
3515 result = build_nt (INDIRECT_REF,
3516 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3517 break;
3518
3519 case COMPONENT_REF:
3520 result = build_nt (COMPONENT_REF,
3521 stabilize_reference (TREE_OPERAND (ref, 0)),
3522 TREE_OPERAND (ref, 1), NULL_TREE);
3523 break;
3524
3525 case BIT_FIELD_REF:
3526 result = build_nt (BIT_FIELD_REF,
3527 stabilize_reference (TREE_OPERAND (ref, 0)),
3528 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
3529 break;
3530
3531 case ARRAY_REF:
3532 result = build_nt (ARRAY_REF,
3533 stabilize_reference (TREE_OPERAND (ref, 0)),
3534 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3535 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3536 break;
3537
3538 case ARRAY_RANGE_REF:
3539 result = build_nt (ARRAY_RANGE_REF,
3540 stabilize_reference (TREE_OPERAND (ref, 0)),
3541 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3542 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3543 break;
3544
3545 case COMPOUND_EXPR:
3546 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3547 it wouldn't be ignored. This matters when dealing with
3548 volatiles. */
3549 return stabilize_reference_1 (ref);
3550
3551 /* If arg isn't a kind of lvalue we recognize, make no change.
3552 Caller should recognize the error for an invalid lvalue. */
3553 default:
3554 return ref;
3555
3556 case ERROR_MARK:
3557 return error_mark_node;
3558 }
3559
3560 TREE_TYPE (result) = TREE_TYPE (ref);
3561 TREE_READONLY (result) = TREE_READONLY (ref);
3562 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3563 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3564
3565 return result;
3566 }
3567
3568 /* Subroutine of stabilize_reference; this is called for subtrees of
3569 references. Any expression with side-effects must be put in a SAVE_EXPR
3570 to ensure that it is only evaluated once.
3571
3572 We don't put SAVE_EXPR nodes around everything, because assigning very
3573 simple expressions to temporaries causes us to miss good opportunities
3574 for optimizations. Among other things, the opportunity to fold in the
3575 addition of a constant into an addressing mode often gets lost, e.g.
3576 "y[i+1] += x;". In general, we take the approach that we should not make
3577 an assignment unless we are forced into it - i.e., that any non-side effect
3578 operator should be allowed, and that cse should take care of coalescing
3579 multiple utterances of the same expression should that prove fruitful. */
3580
3581 tree
3582 stabilize_reference_1 (tree e)
3583 {
3584 tree result;
3585 enum tree_code code = TREE_CODE (e);
3586
3587 /* We cannot ignore const expressions because it might be a reference
3588 to a const array but whose index contains side-effects. But we can
3589 ignore things that are actual constant or that already have been
3590 handled by this function. */
3591
3592 if (tree_invariant_p (e))
3593 return e;
3594
3595 switch (TREE_CODE_CLASS (code))
3596 {
3597 case tcc_exceptional:
3598 case tcc_type:
3599 case tcc_declaration:
3600 case tcc_comparison:
3601 case tcc_statement:
3602 case tcc_expression:
3603 case tcc_reference:
3604 case tcc_vl_exp:
3605 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3606 so that it will only be evaluated once. */
3607 /* The reference (r) and comparison (<) classes could be handled as
3608 below, but it is generally faster to only evaluate them once. */
3609 if (TREE_SIDE_EFFECTS (e))
3610 return save_expr (e);
3611 return e;
3612
3613 case tcc_constant:
3614 /* Constants need no processing. In fact, we should never reach
3615 here. */
3616 return e;
3617
3618 case tcc_binary:
3619 /* Division is slow and tends to be compiled with jumps,
3620 especially the division by powers of 2 that is often
3621 found inside of an array reference. So do it just once. */
3622 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3623 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3624 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3625 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3626 return save_expr (e);
3627 /* Recursively stabilize each operand. */
3628 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3629 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3630 break;
3631
3632 case tcc_unary:
3633 /* Recursively stabilize each operand. */
3634 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3635 break;
3636
3637 default:
3638 gcc_unreachable ();
3639 }
3640
3641 TREE_TYPE (result) = TREE_TYPE (e);
3642 TREE_READONLY (result) = TREE_READONLY (e);
3643 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3644 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3645
3646 return result;
3647 }
3648 \f
3649 /* Low-level constructors for expressions. */
3650
3651 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3652 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3653
3654 void
3655 recompute_tree_invariant_for_addr_expr (tree t)
3656 {
3657 tree node;
3658 bool tc = true, se = false;
3659
3660 /* We started out assuming this address is both invariant and constant, but
3661 does not have side effects. Now go down any handled components and see if
3662 any of them involve offsets that are either non-constant or non-invariant.
3663 Also check for side-effects.
3664
3665 ??? Note that this code makes no attempt to deal with the case where
3666 taking the address of something causes a copy due to misalignment. */
3667
3668 #define UPDATE_FLAGS(NODE) \
3669 do { tree _node = (NODE); \
3670 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3671 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3672
3673 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3674 node = TREE_OPERAND (node, 0))
3675 {
3676 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3677 array reference (probably made temporarily by the G++ front end),
3678 so ignore all the operands. */
3679 if ((TREE_CODE (node) == ARRAY_REF
3680 || TREE_CODE (node) == ARRAY_RANGE_REF)
3681 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3682 {
3683 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3684 if (TREE_OPERAND (node, 2))
3685 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3686 if (TREE_OPERAND (node, 3))
3687 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3688 }
3689 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3690 FIELD_DECL, apparently. The G++ front end can put something else
3691 there, at least temporarily. */
3692 else if (TREE_CODE (node) == COMPONENT_REF
3693 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3694 {
3695 if (TREE_OPERAND (node, 2))
3696 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3697 }
3698 }
3699
3700 node = lang_hooks.expr_to_decl (node, &tc, &se);
3701
3702 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3703 the address, since &(*a)->b is a form of addition. If it's a constant, the
3704 address is constant too. If it's a decl, its address is constant if the
3705 decl is static. Everything else is not constant and, furthermore,
3706 taking the address of a volatile variable is not volatile. */
3707 if (TREE_CODE (node) == INDIRECT_REF
3708 || TREE_CODE (node) == MEM_REF)
3709 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3710 else if (CONSTANT_CLASS_P (node))
3711 ;
3712 else if (DECL_P (node))
3713 tc &= (staticp (node) != NULL_TREE);
3714 else
3715 {
3716 tc = false;
3717 se |= TREE_SIDE_EFFECTS (node);
3718 }
3719
3720
3721 TREE_CONSTANT (t) = tc;
3722 TREE_SIDE_EFFECTS (t) = se;
3723 #undef UPDATE_FLAGS
3724 }
3725
3726 /* Build an expression of code CODE, data type TYPE, and operands as
3727 specified. Expressions and reference nodes can be created this way.
3728 Constants, decls, types and misc nodes cannot be.
3729
3730 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3731 enough for all extant tree codes. */
3732
3733 tree
3734 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3735 {
3736 tree t;
3737
3738 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3739
3740 t = make_node_stat (code PASS_MEM_STAT);
3741 TREE_TYPE (t) = tt;
3742
3743 return t;
3744 }
3745
3746 tree
3747 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3748 {
3749 int length = sizeof (struct tree_exp);
3750 tree t;
3751
3752 record_node_allocation_statistics (code, length);
3753
3754 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3755
3756 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
3757
3758 memset (t, 0, sizeof (struct tree_common));
3759
3760 TREE_SET_CODE (t, code);
3761
3762 TREE_TYPE (t) = type;
3763 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3764 TREE_OPERAND (t, 0) = node;
3765 TREE_BLOCK (t) = NULL_TREE;
3766 if (node && !TYPE_P (node))
3767 {
3768 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3769 TREE_READONLY (t) = TREE_READONLY (node);
3770 }
3771
3772 if (TREE_CODE_CLASS (code) == tcc_statement)
3773 TREE_SIDE_EFFECTS (t) = 1;
3774 else switch (code)
3775 {
3776 case VA_ARG_EXPR:
3777 /* All of these have side-effects, no matter what their
3778 operands are. */
3779 TREE_SIDE_EFFECTS (t) = 1;
3780 TREE_READONLY (t) = 0;
3781 break;
3782
3783 case INDIRECT_REF:
3784 /* Whether a dereference is readonly has nothing to do with whether
3785 its operand is readonly. */
3786 TREE_READONLY (t) = 0;
3787 break;
3788
3789 case ADDR_EXPR:
3790 if (node)
3791 recompute_tree_invariant_for_addr_expr (t);
3792 break;
3793
3794 default:
3795 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3796 && node && !TYPE_P (node)
3797 && TREE_CONSTANT (node))
3798 TREE_CONSTANT (t) = 1;
3799 if (TREE_CODE_CLASS (code) == tcc_reference
3800 && node && TREE_THIS_VOLATILE (node))
3801 TREE_THIS_VOLATILE (t) = 1;
3802 break;
3803 }
3804
3805 return t;
3806 }
3807
3808 #define PROCESS_ARG(N) \
3809 do { \
3810 TREE_OPERAND (t, N) = arg##N; \
3811 if (arg##N &&!TYPE_P (arg##N)) \
3812 { \
3813 if (TREE_SIDE_EFFECTS (arg##N)) \
3814 side_effects = 1; \
3815 if (!TREE_READONLY (arg##N) \
3816 && !CONSTANT_CLASS_P (arg##N)) \
3817 (void) (read_only = 0); \
3818 if (!TREE_CONSTANT (arg##N)) \
3819 (void) (constant = 0); \
3820 } \
3821 } while (0)
3822
3823 tree
3824 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3825 {
3826 bool constant, read_only, side_effects;
3827 tree t;
3828
3829 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3830
3831 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3832 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3833 /* When sizetype precision doesn't match that of pointers
3834 we need to be able to build explicit extensions or truncations
3835 of the offset argument. */
3836 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3837 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3838 && TREE_CODE (arg1) == INTEGER_CST);
3839
3840 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3841 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3842 && ptrofftype_p (TREE_TYPE (arg1)));
3843
3844 t = make_node_stat (code PASS_MEM_STAT);
3845 TREE_TYPE (t) = tt;
3846
3847 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3848 result based on those same flags for the arguments. But if the
3849 arguments aren't really even `tree' expressions, we shouldn't be trying
3850 to do this. */
3851
3852 /* Expressions without side effects may be constant if their
3853 arguments are as well. */
3854 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3855 || TREE_CODE_CLASS (code) == tcc_binary);
3856 read_only = 1;
3857 side_effects = TREE_SIDE_EFFECTS (t);
3858
3859 PROCESS_ARG(0);
3860 PROCESS_ARG(1);
3861
3862 TREE_READONLY (t) = read_only;
3863 TREE_CONSTANT (t) = constant;
3864 TREE_SIDE_EFFECTS (t) = side_effects;
3865 TREE_THIS_VOLATILE (t)
3866 = (TREE_CODE_CLASS (code) == tcc_reference
3867 && arg0 && TREE_THIS_VOLATILE (arg0));
3868
3869 return t;
3870 }
3871
3872
3873 tree
3874 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3875 tree arg2 MEM_STAT_DECL)
3876 {
3877 bool constant, read_only, side_effects;
3878 tree t;
3879
3880 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3881 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3882
3883 t = make_node_stat (code PASS_MEM_STAT);
3884 TREE_TYPE (t) = tt;
3885
3886 read_only = 1;
3887
3888 /* As a special exception, if COND_EXPR has NULL branches, we
3889 assume that it is a gimple statement and always consider
3890 it to have side effects. */
3891 if (code == COND_EXPR
3892 && tt == void_type_node
3893 && arg1 == NULL_TREE
3894 && arg2 == NULL_TREE)
3895 side_effects = true;
3896 else
3897 side_effects = TREE_SIDE_EFFECTS (t);
3898
3899 PROCESS_ARG(0);
3900 PROCESS_ARG(1);
3901 PROCESS_ARG(2);
3902
3903 if (code == COND_EXPR)
3904 TREE_READONLY (t) = read_only;
3905
3906 TREE_SIDE_EFFECTS (t) = side_effects;
3907 TREE_THIS_VOLATILE (t)
3908 = (TREE_CODE_CLASS (code) == tcc_reference
3909 && arg0 && TREE_THIS_VOLATILE (arg0));
3910
3911 return t;
3912 }
3913
3914 tree
3915 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3916 tree arg2, tree arg3 MEM_STAT_DECL)
3917 {
3918 bool constant, read_only, side_effects;
3919 tree t;
3920
3921 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3922
3923 t = make_node_stat (code PASS_MEM_STAT);
3924 TREE_TYPE (t) = tt;
3925
3926 side_effects = TREE_SIDE_EFFECTS (t);
3927
3928 PROCESS_ARG(0);
3929 PROCESS_ARG(1);
3930 PROCESS_ARG(2);
3931 PROCESS_ARG(3);
3932
3933 TREE_SIDE_EFFECTS (t) = side_effects;
3934 TREE_THIS_VOLATILE (t)
3935 = (TREE_CODE_CLASS (code) == tcc_reference
3936 && arg0 && TREE_THIS_VOLATILE (arg0));
3937
3938 return t;
3939 }
3940
3941 tree
3942 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3943 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3944 {
3945 bool constant, read_only, side_effects;
3946 tree t;
3947
3948 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3949
3950 t = make_node_stat (code PASS_MEM_STAT);
3951 TREE_TYPE (t) = tt;
3952
3953 side_effects = TREE_SIDE_EFFECTS (t);
3954
3955 PROCESS_ARG(0);
3956 PROCESS_ARG(1);
3957 PROCESS_ARG(2);
3958 PROCESS_ARG(3);
3959 PROCESS_ARG(4);
3960
3961 TREE_SIDE_EFFECTS (t) = side_effects;
3962 TREE_THIS_VOLATILE (t)
3963 = (TREE_CODE_CLASS (code) == tcc_reference
3964 && arg0 && TREE_THIS_VOLATILE (arg0));
3965
3966 return t;
3967 }
3968
3969 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
3970 on the pointer PTR. */
3971
3972 tree
3973 build_simple_mem_ref_loc (location_t loc, tree ptr)
3974 {
3975 HOST_WIDE_INT offset = 0;
3976 tree ptype = TREE_TYPE (ptr);
3977 tree tem;
3978 /* For convenience allow addresses that collapse to a simple base
3979 and offset. */
3980 if (TREE_CODE (ptr) == ADDR_EXPR
3981 && (handled_component_p (TREE_OPERAND (ptr, 0))
3982 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
3983 {
3984 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
3985 gcc_assert (ptr);
3986 ptr = build_fold_addr_expr (ptr);
3987 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
3988 }
3989 tem = build2 (MEM_REF, TREE_TYPE (ptype),
3990 ptr, build_int_cst (ptype, offset));
3991 SET_EXPR_LOCATION (tem, loc);
3992 return tem;
3993 }
3994
3995 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
3996
3997 double_int
3998 mem_ref_offset (const_tree t)
3999 {
4000 tree toff = TREE_OPERAND (t, 1);
4001 return double_int_sext (tree_to_double_int (toff),
4002 TYPE_PRECISION (TREE_TYPE (toff)));
4003 }
4004
4005 /* Return the pointer-type relevant for TBAA purposes from the
4006 gimple memory reference tree T. This is the type to be used for
4007 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
4008
4009 tree
4010 reference_alias_ptr_type (const_tree t)
4011 {
4012 const_tree base = t;
4013 while (handled_component_p (base))
4014 base = TREE_OPERAND (base, 0);
4015 if (TREE_CODE (base) == MEM_REF)
4016 return TREE_TYPE (TREE_OPERAND (base, 1));
4017 else if (TREE_CODE (base) == TARGET_MEM_REF)
4018 return TREE_TYPE (TMR_OFFSET (base));
4019 else
4020 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
4021 }
4022
4023 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4024 offsetted by OFFSET units. */
4025
4026 tree
4027 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4028 {
4029 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4030 build_fold_addr_expr (base),
4031 build_int_cst (ptr_type_node, offset));
4032 tree addr = build1 (ADDR_EXPR, type, ref);
4033 recompute_tree_invariant_for_addr_expr (addr);
4034 return addr;
4035 }
4036
4037 /* Similar except don't specify the TREE_TYPE
4038 and leave the TREE_SIDE_EFFECTS as 0.
4039 It is permissible for arguments to be null,
4040 or even garbage if their values do not matter. */
4041
4042 tree
4043 build_nt (enum tree_code code, ...)
4044 {
4045 tree t;
4046 int length;
4047 int i;
4048 va_list p;
4049
4050 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4051
4052 va_start (p, code);
4053
4054 t = make_node (code);
4055 length = TREE_CODE_LENGTH (code);
4056
4057 for (i = 0; i < length; i++)
4058 TREE_OPERAND (t, i) = va_arg (p, tree);
4059
4060 va_end (p);
4061 return t;
4062 }
4063
4064 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4065 tree VEC. */
4066
4067 tree
4068 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
4069 {
4070 tree ret, t;
4071 unsigned int ix;
4072
4073 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
4074 CALL_EXPR_FN (ret) = fn;
4075 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4076 FOR_EACH_VEC_ELT (tree, args, ix, t)
4077 CALL_EXPR_ARG (ret, ix) = t;
4078 return ret;
4079 }
4080 \f
4081 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4082 We do NOT enter this node in any sort of symbol table.
4083
4084 LOC is the location of the decl.
4085
4086 layout_decl is used to set up the decl's storage layout.
4087 Other slots are initialized to 0 or null pointers. */
4088
4089 tree
4090 build_decl_stat (location_t loc, enum tree_code code, tree name,
4091 tree type MEM_STAT_DECL)
4092 {
4093 tree t;
4094
4095 t = make_node_stat (code PASS_MEM_STAT);
4096 DECL_SOURCE_LOCATION (t) = loc;
4097
4098 /* if (type == error_mark_node)
4099 type = integer_type_node; */
4100 /* That is not done, deliberately, so that having error_mark_node
4101 as the type can suppress useless errors in the use of this variable. */
4102
4103 DECL_NAME (t) = name;
4104 TREE_TYPE (t) = type;
4105
4106 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4107 layout_decl (t, 0);
4108
4109 return t;
4110 }
4111
4112 /* Builds and returns function declaration with NAME and TYPE. */
4113
4114 tree
4115 build_fn_decl (const char *name, tree type)
4116 {
4117 tree id = get_identifier (name);
4118 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4119
4120 DECL_EXTERNAL (decl) = 1;
4121 TREE_PUBLIC (decl) = 1;
4122 DECL_ARTIFICIAL (decl) = 1;
4123 TREE_NOTHROW (decl) = 1;
4124
4125 return decl;
4126 }
4127
4128 VEC(tree,gc) *all_translation_units;
4129
4130 /* Builds a new translation-unit decl with name NAME, queues it in the
4131 global list of translation-unit decls and returns it. */
4132
4133 tree
4134 build_translation_unit_decl (tree name)
4135 {
4136 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4137 name, NULL_TREE);
4138 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4139 VEC_safe_push (tree, gc, all_translation_units, tu);
4140 return tu;
4141 }
4142
4143 \f
4144 /* BLOCK nodes are used to represent the structure of binding contours
4145 and declarations, once those contours have been exited and their contents
4146 compiled. This information is used for outputting debugging info. */
4147
4148 tree
4149 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4150 {
4151 tree block = make_node (BLOCK);
4152
4153 BLOCK_VARS (block) = vars;
4154 BLOCK_SUBBLOCKS (block) = subblocks;
4155 BLOCK_SUPERCONTEXT (block) = supercontext;
4156 BLOCK_CHAIN (block) = chain;
4157 return block;
4158 }
4159
4160 \f
4161 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4162
4163 LOC is the location to use in tree T. */
4164
4165 void
4166 protected_set_expr_location (tree t, location_t loc)
4167 {
4168 if (t && CAN_HAVE_LOCATION_P (t))
4169 SET_EXPR_LOCATION (t, loc);
4170 }
4171 \f
4172 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4173 is ATTRIBUTE. */
4174
4175 tree
4176 build_decl_attribute_variant (tree ddecl, tree attribute)
4177 {
4178 DECL_ATTRIBUTES (ddecl) = attribute;
4179 return ddecl;
4180 }
4181
4182 /* Borrowed from hashtab.c iterative_hash implementation. */
4183 #define mix(a,b,c) \
4184 { \
4185 a -= b; a -= c; a ^= (c>>13); \
4186 b -= c; b -= a; b ^= (a<< 8); \
4187 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4188 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4189 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4190 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4191 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4192 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4193 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4194 }
4195
4196
4197 /* Produce good hash value combining VAL and VAL2. */
4198 hashval_t
4199 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4200 {
4201 /* the golden ratio; an arbitrary value. */
4202 hashval_t a = 0x9e3779b9;
4203
4204 mix (a, val, val2);
4205 return val2;
4206 }
4207
4208 /* Produce good hash value combining VAL and VAL2. */
4209 hashval_t
4210 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4211 {
4212 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4213 return iterative_hash_hashval_t (val, val2);
4214 else
4215 {
4216 hashval_t a = (hashval_t) val;
4217 /* Avoid warnings about shifting of more than the width of the type on
4218 hosts that won't execute this path. */
4219 int zero = 0;
4220 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4221 mix (a, b, val2);
4222 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4223 {
4224 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4225 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4226 mix (a, b, val2);
4227 }
4228 return val2;
4229 }
4230 }
4231
4232 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4233 is ATTRIBUTE and its qualifiers are QUALS.
4234
4235 Record such modified types already made so we don't make duplicates. */
4236
4237 tree
4238 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4239 {
4240 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4241 {
4242 hashval_t hashcode = 0;
4243 tree ntype;
4244 enum tree_code code = TREE_CODE (ttype);
4245
4246 /* Building a distinct copy of a tagged type is inappropriate; it
4247 causes breakage in code that expects there to be a one-to-one
4248 relationship between a struct and its fields.
4249 build_duplicate_type is another solution (as used in
4250 handle_transparent_union_attribute), but that doesn't play well
4251 with the stronger C++ type identity model. */
4252 if (TREE_CODE (ttype) == RECORD_TYPE
4253 || TREE_CODE (ttype) == UNION_TYPE
4254 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4255 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4256 {
4257 warning (OPT_Wattributes,
4258 "ignoring attributes applied to %qT after definition",
4259 TYPE_MAIN_VARIANT (ttype));
4260 return build_qualified_type (ttype, quals);
4261 }
4262
4263 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4264 ntype = build_distinct_type_copy (ttype);
4265
4266 TYPE_ATTRIBUTES (ntype) = attribute;
4267
4268 hashcode = iterative_hash_object (code, hashcode);
4269 if (TREE_TYPE (ntype))
4270 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4271 hashcode);
4272 hashcode = attribute_hash_list (attribute, hashcode);
4273
4274 switch (TREE_CODE (ntype))
4275 {
4276 case FUNCTION_TYPE:
4277 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4278 break;
4279 case ARRAY_TYPE:
4280 if (TYPE_DOMAIN (ntype))
4281 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4282 hashcode);
4283 break;
4284 case INTEGER_TYPE:
4285 hashcode = iterative_hash_object
4286 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4287 hashcode = iterative_hash_object
4288 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4289 break;
4290 case REAL_TYPE:
4291 case FIXED_POINT_TYPE:
4292 {
4293 unsigned int precision = TYPE_PRECISION (ntype);
4294 hashcode = iterative_hash_object (precision, hashcode);
4295 }
4296 break;
4297 default:
4298 break;
4299 }
4300
4301 ntype = type_hash_canon (hashcode, ntype);
4302
4303 /* If the target-dependent attributes make NTYPE different from
4304 its canonical type, we will need to use structural equality
4305 checks for this type. */
4306 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4307 || !comp_type_attributes (ntype, ttype))
4308 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4309 else if (TYPE_CANONICAL (ntype) == ntype)
4310 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4311
4312 ttype = build_qualified_type (ntype, quals);
4313 }
4314 else if (TYPE_QUALS (ttype) != quals)
4315 ttype = build_qualified_type (ttype, quals);
4316
4317 return ttype;
4318 }
4319
4320 /* Compare two attributes for their value identity. Return true if the
4321 attribute values are known to be equal; otherwise return false.
4322 */
4323
4324 static bool
4325 attribute_value_equal (const_tree attr1, const_tree attr2)
4326 {
4327 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4328 return true;
4329
4330 if (TREE_VALUE (attr1) != NULL_TREE
4331 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4332 && TREE_VALUE (attr2) != NULL
4333 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4334 return (simple_cst_list_equal (TREE_VALUE (attr1),
4335 TREE_VALUE (attr2)) == 1);
4336
4337 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
4338 }
4339
4340 /* Return 0 if the attributes for two types are incompatible, 1 if they
4341 are compatible, and 2 if they are nearly compatible (which causes a
4342 warning to be generated). */
4343 int
4344 comp_type_attributes (const_tree type1, const_tree type2)
4345 {
4346 const_tree a1 = TYPE_ATTRIBUTES (type1);
4347 const_tree a2 = TYPE_ATTRIBUTES (type2);
4348 const_tree a;
4349
4350 if (a1 == a2)
4351 return 1;
4352 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
4353 {
4354 const struct attribute_spec *as;
4355 const_tree attr;
4356
4357 as = lookup_attribute_spec (TREE_PURPOSE (a));
4358 if (!as || as->affects_type_identity == false)
4359 continue;
4360
4361 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
4362 if (!attr || !attribute_value_equal (a, attr))
4363 break;
4364 }
4365 if (!a)
4366 {
4367 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
4368 {
4369 const struct attribute_spec *as;
4370
4371 as = lookup_attribute_spec (TREE_PURPOSE (a));
4372 if (!as || as->affects_type_identity == false)
4373 continue;
4374
4375 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
4376 break;
4377 /* We don't need to compare trees again, as we did this
4378 already in first loop. */
4379 }
4380 /* All types - affecting identity - are equal, so
4381 there is no need to call target hook for comparison. */
4382 if (!a)
4383 return 1;
4384 }
4385 /* As some type combinations - like default calling-convention - might
4386 be compatible, we have to call the target hook to get the final result. */
4387 return targetm.comp_type_attributes (type1, type2);
4388 }
4389
4390 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4391 is ATTRIBUTE.
4392
4393 Record such modified types already made so we don't make duplicates. */
4394
4395 tree
4396 build_type_attribute_variant (tree ttype, tree attribute)
4397 {
4398 return build_type_attribute_qual_variant (ttype, attribute,
4399 TYPE_QUALS (ttype));
4400 }
4401
4402
4403 /* Reset the expression *EXPR_P, a size or position.
4404
4405 ??? We could reset all non-constant sizes or positions. But it's cheap
4406 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4407
4408 We need to reset self-referential sizes or positions because they cannot
4409 be gimplified and thus can contain a CALL_EXPR after the gimplification
4410 is finished, which will run afoul of LTO streaming. And they need to be
4411 reset to something essentially dummy but not constant, so as to preserve
4412 the properties of the object they are attached to. */
4413
4414 static inline void
4415 free_lang_data_in_one_sizepos (tree *expr_p)
4416 {
4417 tree expr = *expr_p;
4418 if (CONTAINS_PLACEHOLDER_P (expr))
4419 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4420 }
4421
4422
4423 /* Reset all the fields in a binfo node BINFO. We only keep
4424 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
4425
4426 static void
4427 free_lang_data_in_binfo (tree binfo)
4428 {
4429 unsigned i;
4430 tree t;
4431
4432 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4433
4434 BINFO_VIRTUALS (binfo) = NULL_TREE;
4435 BINFO_BASE_ACCESSES (binfo) = NULL;
4436 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4437 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4438
4439 FOR_EACH_VEC_ELT (tree, BINFO_BASE_BINFOS (binfo), i, t)
4440 free_lang_data_in_binfo (t);
4441 }
4442
4443
4444 /* Reset all language specific information still present in TYPE. */
4445
4446 static void
4447 free_lang_data_in_type (tree type)
4448 {
4449 gcc_assert (TYPE_P (type));
4450
4451 /* Give the FE a chance to remove its own data first. */
4452 lang_hooks.free_lang_data (type);
4453
4454 TREE_LANG_FLAG_0 (type) = 0;
4455 TREE_LANG_FLAG_1 (type) = 0;
4456 TREE_LANG_FLAG_2 (type) = 0;
4457 TREE_LANG_FLAG_3 (type) = 0;
4458 TREE_LANG_FLAG_4 (type) = 0;
4459 TREE_LANG_FLAG_5 (type) = 0;
4460 TREE_LANG_FLAG_6 (type) = 0;
4461
4462 if (TREE_CODE (type) == FUNCTION_TYPE)
4463 {
4464 /* Remove the const and volatile qualifiers from arguments. The
4465 C++ front end removes them, but the C front end does not,
4466 leading to false ODR violation errors when merging two
4467 instances of the same function signature compiled by
4468 different front ends. */
4469 tree p;
4470
4471 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4472 {
4473 tree arg_type = TREE_VALUE (p);
4474
4475 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4476 {
4477 int quals = TYPE_QUALS (arg_type)
4478 & ~TYPE_QUAL_CONST
4479 & ~TYPE_QUAL_VOLATILE;
4480 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4481 free_lang_data_in_type (TREE_VALUE (p));
4482 }
4483 }
4484 }
4485
4486 /* Remove members that are not actually FIELD_DECLs from the field
4487 list of an aggregate. These occur in C++. */
4488 if (RECORD_OR_UNION_TYPE_P (type))
4489 {
4490 tree prev, member;
4491
4492 /* Note that TYPE_FIELDS can be shared across distinct
4493 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4494 to be removed, we cannot set its TREE_CHAIN to NULL.
4495 Otherwise, we would not be able to find all the other fields
4496 in the other instances of this TREE_TYPE.
4497
4498 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4499 prev = NULL_TREE;
4500 member = TYPE_FIELDS (type);
4501 while (member)
4502 {
4503 if (TREE_CODE (member) == FIELD_DECL
4504 || TREE_CODE (member) == TYPE_DECL)
4505 {
4506 if (prev)
4507 TREE_CHAIN (prev) = member;
4508 else
4509 TYPE_FIELDS (type) = member;
4510 prev = member;
4511 }
4512
4513 member = TREE_CHAIN (member);
4514 }
4515
4516 if (prev)
4517 TREE_CHAIN (prev) = NULL_TREE;
4518 else
4519 TYPE_FIELDS (type) = NULL_TREE;
4520
4521 TYPE_METHODS (type) = NULL_TREE;
4522 if (TYPE_BINFO (type))
4523 free_lang_data_in_binfo (TYPE_BINFO (type));
4524 }
4525 else
4526 {
4527 /* For non-aggregate types, clear out the language slot (which
4528 overloads TYPE_BINFO). */
4529 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4530
4531 if (INTEGRAL_TYPE_P (type)
4532 || SCALAR_FLOAT_TYPE_P (type)
4533 || FIXED_POINT_TYPE_P (type))
4534 {
4535 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4536 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4537 }
4538 }
4539
4540 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4541 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4542
4543 if (TYPE_CONTEXT (type)
4544 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
4545 {
4546 tree ctx = TYPE_CONTEXT (type);
4547 do
4548 {
4549 ctx = BLOCK_SUPERCONTEXT (ctx);
4550 }
4551 while (ctx && TREE_CODE (ctx) == BLOCK);
4552 TYPE_CONTEXT (type) = ctx;
4553 }
4554 }
4555
4556
4557 /* Return true if DECL may need an assembler name to be set. */
4558
4559 static inline bool
4560 need_assembler_name_p (tree decl)
4561 {
4562 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4563 if (TREE_CODE (decl) != FUNCTION_DECL
4564 && TREE_CODE (decl) != VAR_DECL)
4565 return false;
4566
4567 /* If DECL already has its assembler name set, it does not need a
4568 new one. */
4569 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4570 || DECL_ASSEMBLER_NAME_SET_P (decl))
4571 return false;
4572
4573 /* Abstract decls do not need an assembler name. */
4574 if (DECL_ABSTRACT (decl))
4575 return false;
4576
4577 /* For VAR_DECLs, only static, public and external symbols need an
4578 assembler name. */
4579 if (TREE_CODE (decl) == VAR_DECL
4580 && !TREE_STATIC (decl)
4581 && !TREE_PUBLIC (decl)
4582 && !DECL_EXTERNAL (decl))
4583 return false;
4584
4585 if (TREE_CODE (decl) == FUNCTION_DECL)
4586 {
4587 /* Do not set assembler name on builtins. Allow RTL expansion to
4588 decide whether to expand inline or via a regular call. */
4589 if (DECL_BUILT_IN (decl)
4590 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4591 return false;
4592
4593 /* Functions represented in the callgraph need an assembler name. */
4594 if (cgraph_get_node (decl) != NULL)
4595 return true;
4596
4597 /* Unused and not public functions don't need an assembler name. */
4598 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4599 return false;
4600 }
4601
4602 return true;
4603 }
4604
4605
4606 /* Reset all language specific information still present in symbol
4607 DECL. */
4608
4609 static void
4610 free_lang_data_in_decl (tree decl)
4611 {
4612 gcc_assert (DECL_P (decl));
4613
4614 /* Give the FE a chance to remove its own data first. */
4615 lang_hooks.free_lang_data (decl);
4616
4617 TREE_LANG_FLAG_0 (decl) = 0;
4618 TREE_LANG_FLAG_1 (decl) = 0;
4619 TREE_LANG_FLAG_2 (decl) = 0;
4620 TREE_LANG_FLAG_3 (decl) = 0;
4621 TREE_LANG_FLAG_4 (decl) = 0;
4622 TREE_LANG_FLAG_5 (decl) = 0;
4623 TREE_LANG_FLAG_6 (decl) = 0;
4624
4625 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4626 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4627 if (TREE_CODE (decl) == FIELD_DECL)
4628 {
4629 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4630 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
4631 DECL_QUALIFIER (decl) = NULL_TREE;
4632 }
4633
4634 if (TREE_CODE (decl) == FUNCTION_DECL)
4635 {
4636 if (gimple_has_body_p (decl))
4637 {
4638 tree t;
4639
4640 /* If DECL has a gimple body, then the context for its
4641 arguments must be DECL. Otherwise, it doesn't really
4642 matter, as we will not be emitting any code for DECL. In
4643 general, there may be other instances of DECL created by
4644 the front end and since PARM_DECLs are generally shared,
4645 their DECL_CONTEXT changes as the replicas of DECL are
4646 created. The only time where DECL_CONTEXT is important
4647 is for the FUNCTION_DECLs that have a gimple body (since
4648 the PARM_DECL will be used in the function's body). */
4649 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4650 DECL_CONTEXT (t) = decl;
4651 }
4652
4653 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4654 At this point, it is not needed anymore. */
4655 DECL_SAVED_TREE (decl) = NULL_TREE;
4656
4657 /* Clear the abstract origin if it refers to a method. Otherwise
4658 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
4659 origin will not be output correctly. */
4660 if (DECL_ABSTRACT_ORIGIN (decl)
4661 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
4662 && RECORD_OR_UNION_TYPE_P
4663 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
4664 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
4665
4666 /* Sometimes the C++ frontend doesn't manage to transform a temporary
4667 DECL_VINDEX referring to itself into a vtable slot number as it
4668 should. Happens with functions that are copied and then forgotten
4669 about. Just clear it, it won't matter anymore. */
4670 if (DECL_VINDEX (decl) && !host_integerp (DECL_VINDEX (decl), 0))
4671 DECL_VINDEX (decl) = NULL_TREE;
4672 }
4673 else if (TREE_CODE (decl) == VAR_DECL)
4674 {
4675 if ((DECL_EXTERNAL (decl)
4676 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4677 || (decl_function_context (decl) && !TREE_STATIC (decl)))
4678 DECL_INITIAL (decl) = NULL_TREE;
4679 }
4680 else if (TREE_CODE (decl) == TYPE_DECL
4681 || TREE_CODE (decl) == FIELD_DECL)
4682 DECL_INITIAL (decl) = NULL_TREE;
4683 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
4684 && DECL_INITIAL (decl)
4685 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
4686 {
4687 /* Strip builtins from the translation-unit BLOCK. We still have targets
4688 without builtin_decl_explicit support and also builtins are shared
4689 nodes and thus we can't use TREE_CHAIN in multiple lists. */
4690 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
4691 while (*nextp)
4692 {
4693 tree var = *nextp;
4694 if (TREE_CODE (var) == FUNCTION_DECL
4695 && DECL_BUILT_IN (var))
4696 *nextp = TREE_CHAIN (var);
4697 else
4698 nextp = &TREE_CHAIN (var);
4699 }
4700 }
4701 }
4702
4703
4704 /* Data used when collecting DECLs and TYPEs for language data removal. */
4705
4706 struct free_lang_data_d
4707 {
4708 /* Worklist to avoid excessive recursion. */
4709 VEC(tree,heap) *worklist;
4710
4711 /* Set of traversed objects. Used to avoid duplicate visits. */
4712 struct pointer_set_t *pset;
4713
4714 /* Array of symbols to process with free_lang_data_in_decl. */
4715 VEC(tree,heap) *decls;
4716
4717 /* Array of types to process with free_lang_data_in_type. */
4718 VEC(tree,heap) *types;
4719 };
4720
4721
4722 /* Save all language fields needed to generate proper debug information
4723 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4724
4725 static void
4726 save_debug_info_for_decl (tree t)
4727 {
4728 /*struct saved_debug_info_d *sdi;*/
4729
4730 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4731
4732 /* FIXME. Partial implementation for saving debug info removed. */
4733 }
4734
4735
4736 /* Save all language fields needed to generate proper debug information
4737 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4738
4739 static void
4740 save_debug_info_for_type (tree t)
4741 {
4742 /*struct saved_debug_info_d *sdi;*/
4743
4744 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4745
4746 /* FIXME. Partial implementation for saving debug info removed. */
4747 }
4748
4749
4750 /* Add type or decl T to one of the list of tree nodes that need their
4751 language data removed. The lists are held inside FLD. */
4752
4753 static void
4754 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4755 {
4756 if (DECL_P (t))
4757 {
4758 VEC_safe_push (tree, heap, fld->decls, t);
4759 if (debug_info_level > DINFO_LEVEL_TERSE)
4760 save_debug_info_for_decl (t);
4761 }
4762 else if (TYPE_P (t))
4763 {
4764 VEC_safe_push (tree, heap, fld->types, t);
4765 if (debug_info_level > DINFO_LEVEL_TERSE)
4766 save_debug_info_for_type (t);
4767 }
4768 else
4769 gcc_unreachable ();
4770 }
4771
4772 /* Push tree node T into FLD->WORKLIST. */
4773
4774 static inline void
4775 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4776 {
4777 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4778 VEC_safe_push (tree, heap, fld->worklist, (t));
4779 }
4780
4781
4782 /* Operand callback helper for free_lang_data_in_node. *TP is the
4783 subtree operand being considered. */
4784
4785 static tree
4786 find_decls_types_r (tree *tp, int *ws, void *data)
4787 {
4788 tree t = *tp;
4789 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4790
4791 if (TREE_CODE (t) == TREE_LIST)
4792 return NULL_TREE;
4793
4794 /* Language specific nodes will be removed, so there is no need
4795 to gather anything under them. */
4796 if (is_lang_specific (t))
4797 {
4798 *ws = 0;
4799 return NULL_TREE;
4800 }
4801
4802 if (DECL_P (t))
4803 {
4804 /* Note that walk_tree does not traverse every possible field in
4805 decls, so we have to do our own traversals here. */
4806 add_tree_to_fld_list (t, fld);
4807
4808 fld_worklist_push (DECL_NAME (t), fld);
4809 fld_worklist_push (DECL_CONTEXT (t), fld);
4810 fld_worklist_push (DECL_SIZE (t), fld);
4811 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4812
4813 /* We are going to remove everything under DECL_INITIAL for
4814 TYPE_DECLs. No point walking them. */
4815 if (TREE_CODE (t) != TYPE_DECL)
4816 fld_worklist_push (DECL_INITIAL (t), fld);
4817
4818 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4819 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4820
4821 if (TREE_CODE (t) == FUNCTION_DECL)
4822 {
4823 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4824 fld_worklist_push (DECL_RESULT (t), fld);
4825 }
4826 else if (TREE_CODE (t) == TYPE_DECL)
4827 {
4828 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4829 fld_worklist_push (DECL_VINDEX (t), fld);
4830 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
4831 }
4832 else if (TREE_CODE (t) == FIELD_DECL)
4833 {
4834 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4835 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4836 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4837 fld_worklist_push (DECL_FCONTEXT (t), fld);
4838 }
4839 else if (TREE_CODE (t) == VAR_DECL)
4840 {
4841 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4842 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4843 }
4844
4845 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4846 && DECL_HAS_VALUE_EXPR_P (t))
4847 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4848
4849 if (TREE_CODE (t) != FIELD_DECL
4850 && TREE_CODE (t) != TYPE_DECL)
4851 fld_worklist_push (TREE_CHAIN (t), fld);
4852 *ws = 0;
4853 }
4854 else if (TYPE_P (t))
4855 {
4856 /* Note that walk_tree does not traverse every possible field in
4857 types, so we have to do our own traversals here. */
4858 add_tree_to_fld_list (t, fld);
4859
4860 if (!RECORD_OR_UNION_TYPE_P (t))
4861 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4862 fld_worklist_push (TYPE_SIZE (t), fld);
4863 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4864 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4865 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4866 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4867 fld_worklist_push (TYPE_NAME (t), fld);
4868 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
4869 them and thus do not and want not to reach unused pointer types
4870 this way. */
4871 if (!POINTER_TYPE_P (t))
4872 fld_worklist_push (TYPE_MINVAL (t), fld);
4873 if (!RECORD_OR_UNION_TYPE_P (t))
4874 fld_worklist_push (TYPE_MAXVAL (t), fld);
4875 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4876 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
4877 do not and want not to reach unused variants this way. */
4878 if (TYPE_CONTEXT (t))
4879 {
4880 tree ctx = TYPE_CONTEXT (t);
4881 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
4882 So push that instead. */
4883 while (ctx && TREE_CODE (ctx) == BLOCK)
4884 ctx = BLOCK_SUPERCONTEXT (ctx);
4885 fld_worklist_push (ctx, fld);
4886 }
4887 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
4888 and want not to reach unused types this way. */
4889
4890 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4891 {
4892 unsigned i;
4893 tree tem;
4894 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4895 i, tem); ++i)
4896 fld_worklist_push (TREE_TYPE (tem), fld);
4897 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4898 if (tem
4899 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4900 && TREE_CODE (tem) == TREE_LIST)
4901 do
4902 {
4903 fld_worklist_push (TREE_VALUE (tem), fld);
4904 tem = TREE_CHAIN (tem);
4905 }
4906 while (tem);
4907 }
4908 if (RECORD_OR_UNION_TYPE_P (t))
4909 {
4910 tree tem;
4911 /* Push all TYPE_FIELDS - there can be interleaving interesting
4912 and non-interesting things. */
4913 tem = TYPE_FIELDS (t);
4914 while (tem)
4915 {
4916 if (TREE_CODE (tem) == FIELD_DECL
4917 || TREE_CODE (tem) == TYPE_DECL)
4918 fld_worklist_push (tem, fld);
4919 tem = TREE_CHAIN (tem);
4920 }
4921 }
4922
4923 fld_worklist_push (TYPE_STUB_DECL (t), fld);
4924 *ws = 0;
4925 }
4926 else if (TREE_CODE (t) == BLOCK)
4927 {
4928 tree tem;
4929 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4930 fld_worklist_push (tem, fld);
4931 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4932 fld_worklist_push (tem, fld);
4933 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4934 }
4935
4936 if (TREE_CODE (t) != IDENTIFIER_NODE
4937 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
4938 fld_worklist_push (TREE_TYPE (t), fld);
4939
4940 return NULL_TREE;
4941 }
4942
4943
4944 /* Find decls and types in T. */
4945
4946 static void
4947 find_decls_types (tree t, struct free_lang_data_d *fld)
4948 {
4949 while (1)
4950 {
4951 if (!pointer_set_contains (fld->pset, t))
4952 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4953 if (VEC_empty (tree, fld->worklist))
4954 break;
4955 t = VEC_pop (tree, fld->worklist);
4956 }
4957 }
4958
4959 /* Translate all the types in LIST with the corresponding runtime
4960 types. */
4961
4962 static tree
4963 get_eh_types_for_runtime (tree list)
4964 {
4965 tree head, prev;
4966
4967 if (list == NULL_TREE)
4968 return NULL_TREE;
4969
4970 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4971 prev = head;
4972 list = TREE_CHAIN (list);
4973 while (list)
4974 {
4975 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4976 TREE_CHAIN (prev) = n;
4977 prev = TREE_CHAIN (prev);
4978 list = TREE_CHAIN (list);
4979 }
4980
4981 return head;
4982 }
4983
4984
4985 /* Find decls and types referenced in EH region R and store them in
4986 FLD->DECLS and FLD->TYPES. */
4987
4988 static void
4989 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4990 {
4991 switch (r->type)
4992 {
4993 case ERT_CLEANUP:
4994 break;
4995
4996 case ERT_TRY:
4997 {
4998 eh_catch c;
4999
5000 /* The types referenced in each catch must first be changed to the
5001 EH types used at runtime. This removes references to FE types
5002 in the region. */
5003 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5004 {
5005 c->type_list = get_eh_types_for_runtime (c->type_list);
5006 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
5007 }
5008 }
5009 break;
5010
5011 case ERT_ALLOWED_EXCEPTIONS:
5012 r->u.allowed.type_list
5013 = get_eh_types_for_runtime (r->u.allowed.type_list);
5014 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
5015 break;
5016
5017 case ERT_MUST_NOT_THROW:
5018 walk_tree (&r->u.must_not_throw.failure_decl,
5019 find_decls_types_r, fld, fld->pset);
5020 break;
5021 }
5022 }
5023
5024
5025 /* Find decls and types referenced in cgraph node N and store them in
5026 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5027 look for *every* kind of DECL and TYPE node reachable from N,
5028 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5029 NAMESPACE_DECLs, etc). */
5030
5031 static void
5032 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5033 {
5034 basic_block bb;
5035 struct function *fn;
5036 unsigned ix;
5037 tree t;
5038
5039 find_decls_types (n->symbol.decl, fld);
5040
5041 if (!gimple_has_body_p (n->symbol.decl))
5042 return;
5043
5044 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5045
5046 fn = DECL_STRUCT_FUNCTION (n->symbol.decl);
5047
5048 /* Traverse locals. */
5049 FOR_EACH_LOCAL_DECL (fn, ix, t)
5050 find_decls_types (t, fld);
5051
5052 /* Traverse EH regions in FN. */
5053 {
5054 eh_region r;
5055 FOR_ALL_EH_REGION_FN (r, fn)
5056 find_decls_types_in_eh_region (r, fld);
5057 }
5058
5059 /* Traverse every statement in FN. */
5060 FOR_EACH_BB_FN (bb, fn)
5061 {
5062 gimple_stmt_iterator si;
5063 unsigned i;
5064
5065 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5066 {
5067 gimple phi = gsi_stmt (si);
5068
5069 for (i = 0; i < gimple_phi_num_args (phi); i++)
5070 {
5071 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5072 find_decls_types (*arg_p, fld);
5073 }
5074 }
5075
5076 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5077 {
5078 gimple stmt = gsi_stmt (si);
5079
5080 if (is_gimple_call (stmt))
5081 find_decls_types (gimple_call_fntype (stmt), fld);
5082
5083 for (i = 0; i < gimple_num_ops (stmt); i++)
5084 {
5085 tree arg = gimple_op (stmt, i);
5086 find_decls_types (arg, fld);
5087 }
5088 }
5089 }
5090 }
5091
5092
5093 /* Find decls and types referenced in varpool node N and store them in
5094 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5095 look for *every* kind of DECL and TYPE node reachable from N,
5096 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5097 NAMESPACE_DECLs, etc). */
5098
5099 static void
5100 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
5101 {
5102 find_decls_types (v->symbol.decl, fld);
5103 }
5104
5105 /* If T needs an assembler name, have one created for it. */
5106
5107 void
5108 assign_assembler_name_if_neeeded (tree t)
5109 {
5110 if (need_assembler_name_p (t))
5111 {
5112 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5113 diagnostics that use input_location to show locus
5114 information. The problem here is that, at this point,
5115 input_location is generally anchored to the end of the file
5116 (since the parser is long gone), so we don't have a good
5117 position to pin it to.
5118
5119 To alleviate this problem, this uses the location of T's
5120 declaration. Examples of this are
5121 testsuite/g++.dg/template/cond2.C and
5122 testsuite/g++.dg/template/pr35240.C. */
5123 location_t saved_location = input_location;
5124 input_location = DECL_SOURCE_LOCATION (t);
5125
5126 decl_assembler_name (t);
5127
5128 input_location = saved_location;
5129 }
5130 }
5131
5132
5133 /* Free language specific information for every operand and expression
5134 in every node of the call graph. This process operates in three stages:
5135
5136 1- Every callgraph node and varpool node is traversed looking for
5137 decls and types embedded in them. This is a more exhaustive
5138 search than that done by find_referenced_vars, because it will
5139 also collect individual fields, decls embedded in types, etc.
5140
5141 2- All the decls found are sent to free_lang_data_in_decl.
5142
5143 3- All the types found are sent to free_lang_data_in_type.
5144
5145 The ordering between decls and types is important because
5146 free_lang_data_in_decl sets assembler names, which includes
5147 mangling. So types cannot be freed up until assembler names have
5148 been set up. */
5149
5150 static void
5151 free_lang_data_in_cgraph (void)
5152 {
5153 struct cgraph_node *n;
5154 struct varpool_node *v;
5155 struct free_lang_data_d fld;
5156 tree t;
5157 unsigned i;
5158 alias_pair *p;
5159
5160 /* Initialize sets and arrays to store referenced decls and types. */
5161 fld.pset = pointer_set_create ();
5162 fld.worklist = NULL;
5163 fld.decls = VEC_alloc (tree, heap, 100);
5164 fld.types = VEC_alloc (tree, heap, 100);
5165
5166 /* Find decls and types in the body of every function in the callgraph. */
5167 FOR_EACH_FUNCTION (n)
5168 find_decls_types_in_node (n, &fld);
5169
5170 FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p)
5171 find_decls_types (p->decl, &fld);
5172
5173 /* Find decls and types in every varpool symbol. */
5174 FOR_EACH_VARIABLE (v)
5175 find_decls_types_in_var (v, &fld);
5176
5177 /* Set the assembler name on every decl found. We need to do this
5178 now because free_lang_data_in_decl will invalidate data needed
5179 for mangling. This breaks mangling on interdependent decls. */
5180 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5181 assign_assembler_name_if_neeeded (t);
5182
5183 /* Traverse every decl found freeing its language data. */
5184 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5185 free_lang_data_in_decl (t);
5186
5187 /* Traverse every type found freeing its language data. */
5188 FOR_EACH_VEC_ELT (tree, fld.types, i, t)
5189 free_lang_data_in_type (t);
5190
5191 pointer_set_destroy (fld.pset);
5192 VEC_free (tree, heap, fld.worklist);
5193 VEC_free (tree, heap, fld.decls);
5194 VEC_free (tree, heap, fld.types);
5195 }
5196
5197
5198 /* Free resources that are used by FE but are not needed once they are done. */
5199
5200 static unsigned
5201 free_lang_data (void)
5202 {
5203 unsigned i;
5204
5205 /* If we are the LTO frontend we have freed lang-specific data already. */
5206 if (in_lto_p
5207 || !flag_generate_lto)
5208 return 0;
5209
5210 /* Allocate and assign alias sets to the standard integer types
5211 while the slots are still in the way the frontends generated them. */
5212 for (i = 0; i < itk_none; ++i)
5213 if (integer_types[i])
5214 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5215
5216 /* Traverse the IL resetting language specific information for
5217 operands, expressions, etc. */
5218 free_lang_data_in_cgraph ();
5219
5220 /* Create gimple variants for common types. */
5221 ptrdiff_type_node = integer_type_node;
5222 fileptr_type_node = ptr_type_node;
5223
5224 /* Reset some langhooks. Do not reset types_compatible_p, it may
5225 still be used indirectly via the get_alias_set langhook. */
5226 lang_hooks.dwarf_name = lhd_dwarf_name;
5227 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5228 /* We do not want the default decl_assembler_name implementation,
5229 rather if we have fixed everything we want a wrapper around it
5230 asserting that all non-local symbols already got their assembler
5231 name and only produce assembler names for local symbols. Or rather
5232 make sure we never call decl_assembler_name on local symbols and
5233 devise a separate, middle-end private scheme for it. */
5234
5235 /* Reset diagnostic machinery. */
5236 tree_diagnostics_defaults (global_dc);
5237
5238 return 0;
5239 }
5240
5241
5242 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5243 {
5244 {
5245 SIMPLE_IPA_PASS,
5246 "*free_lang_data", /* name */
5247 NULL, /* gate */
5248 free_lang_data, /* execute */
5249 NULL, /* sub */
5250 NULL, /* next */
5251 0, /* static_pass_number */
5252 TV_IPA_FREE_LANG_DATA, /* tv_id */
5253 0, /* properties_required */
5254 0, /* properties_provided */
5255 0, /* properties_destroyed */
5256 0, /* todo_flags_start */
5257 TODO_ggc_collect /* todo_flags_finish */
5258 }
5259 };
5260
5261 /* The backbone of is_attribute_p(). ATTR_LEN is the string length of
5262 ATTR_NAME. Also used internally by remove_attribute(). */
5263 bool
5264 private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident)
5265 {
5266 size_t ident_len = IDENTIFIER_LENGTH (ident);
5267
5268 if (ident_len == attr_len)
5269 {
5270 if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0)
5271 return true;
5272 }
5273 else if (ident_len == attr_len + 4)
5274 {
5275 /* There is the possibility that ATTR is 'text' and IDENT is
5276 '__text__'. */
5277 const char *p = IDENTIFIER_POINTER (ident);
5278 if (p[0] == '_' && p[1] == '_'
5279 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5280 && strncmp (attr_name, p + 2, attr_len) == 0)
5281 return true;
5282 }
5283
5284 return false;
5285 }
5286
5287 /* The backbone of lookup_attribute(). ATTR_LEN is the string length
5288 of ATTR_NAME, and LIST is not NULL_TREE. */
5289 tree
5290 private_lookup_attribute (const char *attr_name, size_t attr_len, tree list)
5291 {
5292 while (list)
5293 {
5294 size_t ident_len = IDENTIFIER_LENGTH (TREE_PURPOSE (list));
5295
5296 if (ident_len == attr_len)
5297 {
5298 if (strcmp (attr_name, IDENTIFIER_POINTER (TREE_PURPOSE (list))) == 0)
5299 break;
5300 }
5301 /* TODO: If we made sure that attributes were stored in the
5302 canonical form without '__...__' (ie, as in 'text' as opposed
5303 to '__text__') then we could avoid the following case. */
5304 else if (ident_len == attr_len + 4)
5305 {
5306 const char *p = IDENTIFIER_POINTER (TREE_PURPOSE (list));
5307 if (p[0] == '_' && p[1] == '_'
5308 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5309 && strncmp (attr_name, p + 2, attr_len) == 0)
5310 break;
5311 }
5312 list = TREE_CHAIN (list);
5313 }
5314
5315 return list;
5316 }
5317
5318 /* A variant of lookup_attribute() that can be used with an identifier
5319 as the first argument, and where the identifier can be either
5320 'text' or '__text__'.
5321
5322 Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST,
5323 return a pointer to the attribute's list element if the attribute
5324 is part of the list, or NULL_TREE if not found. If the attribute
5325 appears more than once, this only returns the first occurrence; the
5326 TREE_CHAIN of the return value should be passed back in if further
5327 occurrences are wanted. ATTR_IDENTIFIER must be an identifier but
5328 can be in the form 'text' or '__text__'. */
5329 static tree
5330 lookup_ident_attribute (tree attr_identifier, tree list)
5331 {
5332 gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE);
5333
5334 while (list)
5335 {
5336 gcc_checking_assert (TREE_CODE (TREE_PURPOSE (list)) == IDENTIFIER_NODE);
5337
5338 /* Identifiers can be compared directly for equality. */
5339 if (attr_identifier == TREE_PURPOSE (list))
5340 break;
5341
5342 /* If they are not equal, they may still be one in the form
5343 'text' while the other one is in the form '__text__'. TODO:
5344 If we were storing attributes in normalized 'text' form, then
5345 this could all go away and we could take full advantage of
5346 the fact that we're comparing identifiers. :-) */
5347 {
5348 size_t attr_len = IDENTIFIER_LENGTH (attr_identifier);
5349 size_t ident_len = IDENTIFIER_LENGTH (TREE_PURPOSE (list));
5350
5351 if (ident_len == attr_len + 4)
5352 {
5353 const char *p = IDENTIFIER_POINTER (TREE_PURPOSE (list));
5354 const char *q = IDENTIFIER_POINTER (attr_identifier);
5355 if (p[0] == '_' && p[1] == '_'
5356 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5357 && strncmp (q, p + 2, attr_len) == 0)
5358 break;
5359 }
5360 else if (ident_len + 4 == attr_len)
5361 {
5362 const char *p = IDENTIFIER_POINTER (TREE_PURPOSE (list));
5363 const char *q = IDENTIFIER_POINTER (attr_identifier);
5364 if (q[0] == '_' && q[1] == '_'
5365 && q[attr_len - 2] == '_' && q[attr_len - 1] == '_'
5366 && strncmp (q + 2, p, ident_len) == 0)
5367 break;
5368 }
5369 }
5370 list = TREE_CHAIN (list);
5371 }
5372
5373 return list;
5374 }
5375
5376 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5377 modified list. */
5378
5379 tree
5380 remove_attribute (const char *attr_name, tree list)
5381 {
5382 tree *p;
5383 size_t attr_len = strlen (attr_name);
5384
5385 gcc_checking_assert (attr_name[0] != '_');
5386
5387 for (p = &list; *p; )
5388 {
5389 tree l = *p;
5390 /* TODO: If we were storing attributes in normalized form, here
5391 we could use a simple strcmp(). */
5392 if (private_is_attribute_p (attr_name, attr_len, TREE_PURPOSE (l)))
5393 *p = TREE_CHAIN (l);
5394 else
5395 p = &TREE_CHAIN (l);
5396 }
5397
5398 return list;
5399 }
5400
5401 /* Return an attribute list that is the union of a1 and a2. */
5402
5403 tree
5404 merge_attributes (tree a1, tree a2)
5405 {
5406 tree attributes;
5407
5408 /* Either one unset? Take the set one. */
5409
5410 if ((attributes = a1) == 0)
5411 attributes = a2;
5412
5413 /* One that completely contains the other? Take it. */
5414
5415 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5416 {
5417 if (attribute_list_contained (a2, a1))
5418 attributes = a2;
5419 else
5420 {
5421 /* Pick the longest list, and hang on the other list. */
5422
5423 if (list_length (a1) < list_length (a2))
5424 attributes = a2, a2 = a1;
5425
5426 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5427 {
5428 tree a;
5429 for (a = lookup_ident_attribute (TREE_PURPOSE (a2), attributes);
5430 a != NULL_TREE && !attribute_value_equal (a, a2);
5431 a = lookup_ident_attribute (TREE_PURPOSE (a2), TREE_CHAIN (a)))
5432 ;
5433 if (a == NULL_TREE)
5434 {
5435 a1 = copy_node (a2);
5436 TREE_CHAIN (a1) = attributes;
5437 attributes = a1;
5438 }
5439 }
5440 }
5441 }
5442 return attributes;
5443 }
5444
5445 /* Given types T1 and T2, merge their attributes and return
5446 the result. */
5447
5448 tree
5449 merge_type_attributes (tree t1, tree t2)
5450 {
5451 return merge_attributes (TYPE_ATTRIBUTES (t1),
5452 TYPE_ATTRIBUTES (t2));
5453 }
5454
5455 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5456 the result. */
5457
5458 tree
5459 merge_decl_attributes (tree olddecl, tree newdecl)
5460 {
5461 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5462 DECL_ATTRIBUTES (newdecl));
5463 }
5464
5465 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5466
5467 /* Specialization of merge_decl_attributes for various Windows targets.
5468
5469 This handles the following situation:
5470
5471 __declspec (dllimport) int foo;
5472 int foo;
5473
5474 The second instance of `foo' nullifies the dllimport. */
5475
5476 tree
5477 merge_dllimport_decl_attributes (tree old, tree new_tree)
5478 {
5479 tree a;
5480 int delete_dllimport_p = 1;
5481
5482 /* What we need to do here is remove from `old' dllimport if it doesn't
5483 appear in `new'. dllimport behaves like extern: if a declaration is
5484 marked dllimport and a definition appears later, then the object
5485 is not dllimport'd. We also remove a `new' dllimport if the old list
5486 contains dllexport: dllexport always overrides dllimport, regardless
5487 of the order of declaration. */
5488 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5489 delete_dllimport_p = 0;
5490 else if (DECL_DLLIMPORT_P (new_tree)
5491 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5492 {
5493 DECL_DLLIMPORT_P (new_tree) = 0;
5494 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5495 "dllimport ignored", new_tree);
5496 }
5497 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5498 {
5499 /* Warn about overriding a symbol that has already been used, e.g.:
5500 extern int __attribute__ ((dllimport)) foo;
5501 int* bar () {return &foo;}
5502 int foo;
5503 */
5504 if (TREE_USED (old))
5505 {
5506 warning (0, "%q+D redeclared without dllimport attribute "
5507 "after being referenced with dll linkage", new_tree);
5508 /* If we have used a variable's address with dllimport linkage,
5509 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5510 decl may already have had TREE_CONSTANT computed.
5511 We still remove the attribute so that assembler code refers
5512 to '&foo rather than '_imp__foo'. */
5513 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5514 DECL_DLLIMPORT_P (new_tree) = 1;
5515 }
5516
5517 /* Let an inline definition silently override the external reference,
5518 but otherwise warn about attribute inconsistency. */
5519 else if (TREE_CODE (new_tree) == VAR_DECL
5520 || !DECL_DECLARED_INLINE_P (new_tree))
5521 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5522 "previous dllimport ignored", new_tree);
5523 }
5524 else
5525 delete_dllimport_p = 0;
5526
5527 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5528
5529 if (delete_dllimport_p)
5530 a = remove_attribute ("dllimport", a);
5531
5532 return a;
5533 }
5534
5535 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5536 struct attribute_spec.handler. */
5537
5538 tree
5539 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5540 bool *no_add_attrs)
5541 {
5542 tree node = *pnode;
5543 bool is_dllimport;
5544
5545 /* These attributes may apply to structure and union types being created,
5546 but otherwise should pass to the declaration involved. */
5547 if (!DECL_P (node))
5548 {
5549 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5550 | (int) ATTR_FLAG_ARRAY_NEXT))
5551 {
5552 *no_add_attrs = true;
5553 return tree_cons (name, args, NULL_TREE);
5554 }
5555 if (TREE_CODE (node) == RECORD_TYPE
5556 || TREE_CODE (node) == UNION_TYPE)
5557 {
5558 node = TYPE_NAME (node);
5559 if (!node)
5560 return NULL_TREE;
5561 }
5562 else
5563 {
5564 warning (OPT_Wattributes, "%qE attribute ignored",
5565 name);
5566 *no_add_attrs = true;
5567 return NULL_TREE;
5568 }
5569 }
5570
5571 if (TREE_CODE (node) != FUNCTION_DECL
5572 && TREE_CODE (node) != VAR_DECL
5573 && TREE_CODE (node) != TYPE_DECL)
5574 {
5575 *no_add_attrs = true;
5576 warning (OPT_Wattributes, "%qE attribute ignored",
5577 name);
5578 return NULL_TREE;
5579 }
5580
5581 if (TREE_CODE (node) == TYPE_DECL
5582 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5583 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5584 {
5585 *no_add_attrs = true;
5586 warning (OPT_Wattributes, "%qE attribute ignored",
5587 name);
5588 return NULL_TREE;
5589 }
5590
5591 is_dllimport = is_attribute_p ("dllimport", name);
5592
5593 /* Report error on dllimport ambiguities seen now before they cause
5594 any damage. */
5595 if (is_dllimport)
5596 {
5597 /* Honor any target-specific overrides. */
5598 if (!targetm.valid_dllimport_attribute_p (node))
5599 *no_add_attrs = true;
5600
5601 else if (TREE_CODE (node) == FUNCTION_DECL
5602 && DECL_DECLARED_INLINE_P (node))
5603 {
5604 warning (OPT_Wattributes, "inline function %q+D declared as "
5605 " dllimport: attribute ignored", node);
5606 *no_add_attrs = true;
5607 }
5608 /* Like MS, treat definition of dllimported variables and
5609 non-inlined functions on declaration as syntax errors. */
5610 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5611 {
5612 error ("function %q+D definition is marked dllimport", node);
5613 *no_add_attrs = true;
5614 }
5615
5616 else if (TREE_CODE (node) == VAR_DECL)
5617 {
5618 if (DECL_INITIAL (node))
5619 {
5620 error ("variable %q+D definition is marked dllimport",
5621 node);
5622 *no_add_attrs = true;
5623 }
5624
5625 /* `extern' needn't be specified with dllimport.
5626 Specify `extern' now and hope for the best. Sigh. */
5627 DECL_EXTERNAL (node) = 1;
5628 /* Also, implicitly give dllimport'd variables declared within
5629 a function global scope, unless declared static. */
5630 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5631 TREE_PUBLIC (node) = 1;
5632 }
5633
5634 if (*no_add_attrs == false)
5635 DECL_DLLIMPORT_P (node) = 1;
5636 }
5637 else if (TREE_CODE (node) == FUNCTION_DECL
5638 && DECL_DECLARED_INLINE_P (node)
5639 && flag_keep_inline_dllexport)
5640 /* An exported function, even if inline, must be emitted. */
5641 DECL_EXTERNAL (node) = 0;
5642
5643 /* Report error if symbol is not accessible at global scope. */
5644 if (!TREE_PUBLIC (node)
5645 && (TREE_CODE (node) == VAR_DECL
5646 || TREE_CODE (node) == FUNCTION_DECL))
5647 {
5648 error ("external linkage required for symbol %q+D because of "
5649 "%qE attribute", node, name);
5650 *no_add_attrs = true;
5651 }
5652
5653 /* A dllexport'd entity must have default visibility so that other
5654 program units (shared libraries or the main executable) can see
5655 it. A dllimport'd entity must have default visibility so that
5656 the linker knows that undefined references within this program
5657 unit can be resolved by the dynamic linker. */
5658 if (!*no_add_attrs)
5659 {
5660 if (DECL_VISIBILITY_SPECIFIED (node)
5661 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5662 error ("%qE implies default visibility, but %qD has already "
5663 "been declared with a different visibility",
5664 name, node);
5665 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5666 DECL_VISIBILITY_SPECIFIED (node) = 1;
5667 }
5668
5669 return NULL_TREE;
5670 }
5671
5672 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5673 \f
5674 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5675 of the various TYPE_QUAL values. */
5676
5677 static void
5678 set_type_quals (tree type, int type_quals)
5679 {
5680 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5681 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5682 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5683 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5684 }
5685
5686 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5687
5688 bool
5689 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5690 {
5691 return (TYPE_QUALS (cand) == type_quals
5692 && TYPE_NAME (cand) == TYPE_NAME (base)
5693 /* Apparently this is needed for Objective-C. */
5694 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5695 /* Check alignment. */
5696 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5697 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5698 TYPE_ATTRIBUTES (base)));
5699 }
5700
5701 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5702
5703 static bool
5704 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5705 {
5706 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5707 && TYPE_NAME (cand) == TYPE_NAME (base)
5708 /* Apparently this is needed for Objective-C. */
5709 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5710 /* Check alignment. */
5711 && TYPE_ALIGN (cand) == align
5712 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5713 TYPE_ATTRIBUTES (base)));
5714 }
5715
5716 /* Return a version of the TYPE, qualified as indicated by the
5717 TYPE_QUALS, if one exists. If no qualified version exists yet,
5718 return NULL_TREE. */
5719
5720 tree
5721 get_qualified_type (tree type, int type_quals)
5722 {
5723 tree t;
5724
5725 if (TYPE_QUALS (type) == type_quals)
5726 return type;
5727
5728 /* Search the chain of variants to see if there is already one there just
5729 like the one we need to have. If so, use that existing one. We must
5730 preserve the TYPE_NAME, since there is code that depends on this. */
5731 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5732 if (check_qualified_type (t, type, type_quals))
5733 return t;
5734
5735 return NULL_TREE;
5736 }
5737
5738 /* Like get_qualified_type, but creates the type if it does not
5739 exist. This function never returns NULL_TREE. */
5740
5741 tree
5742 build_qualified_type (tree type, int type_quals)
5743 {
5744 tree t;
5745
5746 /* See if we already have the appropriate qualified variant. */
5747 t = get_qualified_type (type, type_quals);
5748
5749 /* If not, build it. */
5750 if (!t)
5751 {
5752 t = build_variant_type_copy (type);
5753 set_type_quals (t, type_quals);
5754
5755 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5756 /* Propagate structural equality. */
5757 SET_TYPE_STRUCTURAL_EQUALITY (t);
5758 else if (TYPE_CANONICAL (type) != type)
5759 /* Build the underlying canonical type, since it is different
5760 from TYPE. */
5761 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5762 type_quals);
5763 else
5764 /* T is its own canonical type. */
5765 TYPE_CANONICAL (t) = t;
5766
5767 }
5768
5769 return t;
5770 }
5771
5772 /* Create a variant of type T with alignment ALIGN. */
5773
5774 tree
5775 build_aligned_type (tree type, unsigned int align)
5776 {
5777 tree t;
5778
5779 if (TYPE_PACKED (type)
5780 || TYPE_ALIGN (type) == align)
5781 return type;
5782
5783 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5784 if (check_aligned_type (t, type, align))
5785 return t;
5786
5787 t = build_variant_type_copy (type);
5788 TYPE_ALIGN (t) = align;
5789
5790 return t;
5791 }
5792
5793 /* Create a new distinct copy of TYPE. The new type is made its own
5794 MAIN_VARIANT. If TYPE requires structural equality checks, the
5795 resulting type requires structural equality checks; otherwise, its
5796 TYPE_CANONICAL points to itself. */
5797
5798 tree
5799 build_distinct_type_copy (tree type)
5800 {
5801 tree t = copy_node (type);
5802
5803 TYPE_POINTER_TO (t) = 0;
5804 TYPE_REFERENCE_TO (t) = 0;
5805
5806 /* Set the canonical type either to a new equivalence class, or
5807 propagate the need for structural equality checks. */
5808 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5809 SET_TYPE_STRUCTURAL_EQUALITY (t);
5810 else
5811 TYPE_CANONICAL (t) = t;
5812
5813 /* Make it its own variant. */
5814 TYPE_MAIN_VARIANT (t) = t;
5815 TYPE_NEXT_VARIANT (t) = 0;
5816
5817 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5818 whose TREE_TYPE is not t. This can also happen in the Ada
5819 frontend when using subtypes. */
5820
5821 return t;
5822 }
5823
5824 /* Create a new variant of TYPE, equivalent but distinct. This is so
5825 the caller can modify it. TYPE_CANONICAL for the return type will
5826 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5827 are considered equal by the language itself (or that both types
5828 require structural equality checks). */
5829
5830 tree
5831 build_variant_type_copy (tree type)
5832 {
5833 tree t, m = TYPE_MAIN_VARIANT (type);
5834
5835 t = build_distinct_type_copy (type);
5836
5837 /* Since we're building a variant, assume that it is a non-semantic
5838 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5839 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5840
5841 /* Add the new type to the chain of variants of TYPE. */
5842 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5843 TYPE_NEXT_VARIANT (m) = t;
5844 TYPE_MAIN_VARIANT (t) = m;
5845
5846 return t;
5847 }
5848 \f
5849 /* Return true if the from tree in both tree maps are equal. */
5850
5851 int
5852 tree_map_base_eq (const void *va, const void *vb)
5853 {
5854 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5855 *const b = (const struct tree_map_base *) vb;
5856 return (a->from == b->from);
5857 }
5858
5859 /* Hash a from tree in a tree_base_map. */
5860
5861 unsigned int
5862 tree_map_base_hash (const void *item)
5863 {
5864 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5865 }
5866
5867 /* Return true if this tree map structure is marked for garbage collection
5868 purposes. We simply return true if the from tree is marked, so that this
5869 structure goes away when the from tree goes away. */
5870
5871 int
5872 tree_map_base_marked_p (const void *p)
5873 {
5874 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5875 }
5876
5877 /* Hash a from tree in a tree_map. */
5878
5879 unsigned int
5880 tree_map_hash (const void *item)
5881 {
5882 return (((const struct tree_map *) item)->hash);
5883 }
5884
5885 /* Hash a from tree in a tree_decl_map. */
5886
5887 unsigned int
5888 tree_decl_map_hash (const void *item)
5889 {
5890 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5891 }
5892
5893 /* Return the initialization priority for DECL. */
5894
5895 priority_type
5896 decl_init_priority_lookup (tree decl)
5897 {
5898 struct tree_priority_map *h;
5899 struct tree_map_base in;
5900
5901 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5902 in.from = decl;
5903 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5904 return h ? h->init : DEFAULT_INIT_PRIORITY;
5905 }
5906
5907 /* Return the finalization priority for DECL. */
5908
5909 priority_type
5910 decl_fini_priority_lookup (tree decl)
5911 {
5912 struct tree_priority_map *h;
5913 struct tree_map_base in;
5914
5915 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5916 in.from = decl;
5917 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5918 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5919 }
5920
5921 /* Return the initialization and finalization priority information for
5922 DECL. If there is no previous priority information, a freshly
5923 allocated structure is returned. */
5924
5925 static struct tree_priority_map *
5926 decl_priority_info (tree decl)
5927 {
5928 struct tree_priority_map in;
5929 struct tree_priority_map *h;
5930 void **loc;
5931
5932 in.base.from = decl;
5933 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5934 h = (struct tree_priority_map *) *loc;
5935 if (!h)
5936 {
5937 h = ggc_alloc_cleared_tree_priority_map ();
5938 *loc = h;
5939 h->base.from = decl;
5940 h->init = DEFAULT_INIT_PRIORITY;
5941 h->fini = DEFAULT_INIT_PRIORITY;
5942 }
5943
5944 return h;
5945 }
5946
5947 /* Set the initialization priority for DECL to PRIORITY. */
5948
5949 void
5950 decl_init_priority_insert (tree decl, priority_type priority)
5951 {
5952 struct tree_priority_map *h;
5953
5954 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5955 if (priority == DEFAULT_INIT_PRIORITY)
5956 return;
5957 h = decl_priority_info (decl);
5958 h->init = priority;
5959 }
5960
5961 /* Set the finalization priority for DECL to PRIORITY. */
5962
5963 void
5964 decl_fini_priority_insert (tree decl, priority_type priority)
5965 {
5966 struct tree_priority_map *h;
5967
5968 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5969 if (priority == DEFAULT_INIT_PRIORITY)
5970 return;
5971 h = decl_priority_info (decl);
5972 h->fini = priority;
5973 }
5974
5975 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5976
5977 static void
5978 print_debug_expr_statistics (void)
5979 {
5980 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5981 (long) htab_size (debug_expr_for_decl),
5982 (long) htab_elements (debug_expr_for_decl),
5983 htab_collisions (debug_expr_for_decl));
5984 }
5985
5986 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5987
5988 static void
5989 print_value_expr_statistics (void)
5990 {
5991 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5992 (long) htab_size (value_expr_for_decl),
5993 (long) htab_elements (value_expr_for_decl),
5994 htab_collisions (value_expr_for_decl));
5995 }
5996
5997 /* Lookup a debug expression for FROM, and return it if we find one. */
5998
5999 tree
6000 decl_debug_expr_lookup (tree from)
6001 {
6002 struct tree_decl_map *h, in;
6003 in.base.from = from;
6004
6005 h = (struct tree_decl_map *)
6006 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
6007 if (h)
6008 return h->to;
6009 return NULL_TREE;
6010 }
6011
6012 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6013
6014 void
6015 decl_debug_expr_insert (tree from, tree to)
6016 {
6017 struct tree_decl_map *h;
6018 void **loc;
6019
6020 h = ggc_alloc_tree_decl_map ();
6021 h->base.from = from;
6022 h->to = to;
6023 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
6024 INSERT);
6025 *(struct tree_decl_map **) loc = h;
6026 }
6027
6028 /* Lookup a value expression for FROM, and return it if we find one. */
6029
6030 tree
6031 decl_value_expr_lookup (tree from)
6032 {
6033 struct tree_decl_map *h, in;
6034 in.base.from = from;
6035
6036 h = (struct tree_decl_map *)
6037 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
6038 if (h)
6039 return h->to;
6040 return NULL_TREE;
6041 }
6042
6043 /* Insert a mapping FROM->TO in the value expression hashtable. */
6044
6045 void
6046 decl_value_expr_insert (tree from, tree to)
6047 {
6048 struct tree_decl_map *h;
6049 void **loc;
6050
6051 h = ggc_alloc_tree_decl_map ();
6052 h->base.from = from;
6053 h->to = to;
6054 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
6055 INSERT);
6056 *(struct tree_decl_map **) loc = h;
6057 }
6058
6059 /* Lookup a vector of debug arguments for FROM, and return it if we
6060 find one. */
6061
6062 VEC(tree, gc) **
6063 decl_debug_args_lookup (tree from)
6064 {
6065 struct tree_vec_map *h, in;
6066
6067 if (!DECL_HAS_DEBUG_ARGS_P (from))
6068 return NULL;
6069 gcc_checking_assert (debug_args_for_decl != NULL);
6070 in.base.from = from;
6071 h = (struct tree_vec_map *)
6072 htab_find_with_hash (debug_args_for_decl, &in, DECL_UID (from));
6073 if (h)
6074 return &h->to;
6075 return NULL;
6076 }
6077
6078 /* Insert a mapping FROM->empty vector of debug arguments in the value
6079 expression hashtable. */
6080
6081 VEC(tree, gc) **
6082 decl_debug_args_insert (tree from)
6083 {
6084 struct tree_vec_map *h;
6085 void **loc;
6086
6087 if (DECL_HAS_DEBUG_ARGS_P (from))
6088 return decl_debug_args_lookup (from);
6089 if (debug_args_for_decl == NULL)
6090 debug_args_for_decl = htab_create_ggc (64, tree_vec_map_hash,
6091 tree_vec_map_eq, 0);
6092 h = ggc_alloc_tree_vec_map ();
6093 h->base.from = from;
6094 h->to = NULL;
6095 loc = htab_find_slot_with_hash (debug_args_for_decl, h, DECL_UID (from),
6096 INSERT);
6097 *(struct tree_vec_map **) loc = h;
6098 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6099 return &h->to;
6100 }
6101
6102 /* Hashing of types so that we don't make duplicates.
6103 The entry point is `type_hash_canon'. */
6104
6105 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6106 with types in the TREE_VALUE slots), by adding the hash codes
6107 of the individual types. */
6108
6109 static unsigned int
6110 type_hash_list (const_tree list, hashval_t hashcode)
6111 {
6112 const_tree tail;
6113
6114 for (tail = list; tail; tail = TREE_CHAIN (tail))
6115 if (TREE_VALUE (tail) != error_mark_node)
6116 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
6117 hashcode);
6118
6119 return hashcode;
6120 }
6121
6122 /* These are the Hashtable callback functions. */
6123
6124 /* Returns true iff the types are equivalent. */
6125
6126 static int
6127 type_hash_eq (const void *va, const void *vb)
6128 {
6129 const struct type_hash *const a = (const struct type_hash *) va,
6130 *const b = (const struct type_hash *) vb;
6131
6132 /* First test the things that are the same for all types. */
6133 if (a->hash != b->hash
6134 || TREE_CODE (a->type) != TREE_CODE (b->type)
6135 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6136 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6137 TYPE_ATTRIBUTES (b->type))
6138 || (TREE_CODE (a->type) != COMPLEX_TYPE
6139 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6140 return 0;
6141
6142 /* Be careful about comparing arrays before and after the element type
6143 has been completed; don't compare TYPE_ALIGN unless both types are
6144 complete. */
6145 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6146 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6147 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6148 return 0;
6149
6150 switch (TREE_CODE (a->type))
6151 {
6152 case VOID_TYPE:
6153 case COMPLEX_TYPE:
6154 case POINTER_TYPE:
6155 case REFERENCE_TYPE:
6156 case NULLPTR_TYPE:
6157 return 1;
6158
6159 case VECTOR_TYPE:
6160 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6161
6162 case ENUMERAL_TYPE:
6163 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6164 && !(TYPE_VALUES (a->type)
6165 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6166 && TYPE_VALUES (b->type)
6167 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6168 && type_list_equal (TYPE_VALUES (a->type),
6169 TYPE_VALUES (b->type))))
6170 return 0;
6171
6172 /* ... fall through ... */
6173
6174 case INTEGER_TYPE:
6175 case REAL_TYPE:
6176 case BOOLEAN_TYPE:
6177 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6178 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6179 TYPE_MAX_VALUE (b->type)))
6180 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6181 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6182 TYPE_MIN_VALUE (b->type))));
6183
6184 case FIXED_POINT_TYPE:
6185 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6186
6187 case OFFSET_TYPE:
6188 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6189
6190 case METHOD_TYPE:
6191 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6192 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6193 || (TYPE_ARG_TYPES (a->type)
6194 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6195 && TYPE_ARG_TYPES (b->type)
6196 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6197 && type_list_equal (TYPE_ARG_TYPES (a->type),
6198 TYPE_ARG_TYPES (b->type)))))
6199 break;
6200 return 0;
6201 case ARRAY_TYPE:
6202 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6203
6204 case RECORD_TYPE:
6205 case UNION_TYPE:
6206 case QUAL_UNION_TYPE:
6207 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6208 || (TYPE_FIELDS (a->type)
6209 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6210 && TYPE_FIELDS (b->type)
6211 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6212 && type_list_equal (TYPE_FIELDS (a->type),
6213 TYPE_FIELDS (b->type))));
6214
6215 case FUNCTION_TYPE:
6216 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6217 || (TYPE_ARG_TYPES (a->type)
6218 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6219 && TYPE_ARG_TYPES (b->type)
6220 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6221 && type_list_equal (TYPE_ARG_TYPES (a->type),
6222 TYPE_ARG_TYPES (b->type))))
6223 break;
6224 return 0;
6225
6226 default:
6227 return 0;
6228 }
6229
6230 if (lang_hooks.types.type_hash_eq != NULL)
6231 return lang_hooks.types.type_hash_eq (a->type, b->type);
6232
6233 return 1;
6234 }
6235
6236 /* Return the cached hash value. */
6237
6238 static hashval_t
6239 type_hash_hash (const void *item)
6240 {
6241 return ((const struct type_hash *) item)->hash;
6242 }
6243
6244 /* Look in the type hash table for a type isomorphic to TYPE.
6245 If one is found, return it. Otherwise return 0. */
6246
6247 tree
6248 type_hash_lookup (hashval_t hashcode, tree type)
6249 {
6250 struct type_hash *h, in;
6251
6252 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6253 must call that routine before comparing TYPE_ALIGNs. */
6254 layout_type (type);
6255
6256 in.hash = hashcode;
6257 in.type = type;
6258
6259 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6260 hashcode);
6261 if (h)
6262 return h->type;
6263 return NULL_TREE;
6264 }
6265
6266 /* Add an entry to the type-hash-table
6267 for a type TYPE whose hash code is HASHCODE. */
6268
6269 void
6270 type_hash_add (hashval_t hashcode, tree type)
6271 {
6272 struct type_hash *h;
6273 void **loc;
6274
6275 h = ggc_alloc_type_hash ();
6276 h->hash = hashcode;
6277 h->type = type;
6278 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6279 *loc = (void *)h;
6280 }
6281
6282 /* Given TYPE, and HASHCODE its hash code, return the canonical
6283 object for an identical type if one already exists.
6284 Otherwise, return TYPE, and record it as the canonical object.
6285
6286 To use this function, first create a type of the sort you want.
6287 Then compute its hash code from the fields of the type that
6288 make it different from other similar types.
6289 Then call this function and use the value. */
6290
6291 tree
6292 type_hash_canon (unsigned int hashcode, tree type)
6293 {
6294 tree t1;
6295
6296 /* The hash table only contains main variants, so ensure that's what we're
6297 being passed. */
6298 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6299
6300 /* See if the type is in the hash table already. If so, return it.
6301 Otherwise, add the type. */
6302 t1 = type_hash_lookup (hashcode, type);
6303 if (t1 != 0)
6304 {
6305 if (GATHER_STATISTICS)
6306 {
6307 tree_code_counts[(int) TREE_CODE (type)]--;
6308 tree_node_counts[(int) t_kind]--;
6309 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
6310 }
6311 return t1;
6312 }
6313 else
6314 {
6315 type_hash_add (hashcode, type);
6316 return type;
6317 }
6318 }
6319
6320 /* See if the data pointed to by the type hash table is marked. We consider
6321 it marked if the type is marked or if a debug type number or symbol
6322 table entry has been made for the type. */
6323
6324 static int
6325 type_hash_marked_p (const void *p)
6326 {
6327 const_tree const type = ((const struct type_hash *) p)->type;
6328
6329 return ggc_marked_p (type);
6330 }
6331
6332 static void
6333 print_type_hash_statistics (void)
6334 {
6335 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6336 (long) htab_size (type_hash_table),
6337 (long) htab_elements (type_hash_table),
6338 htab_collisions (type_hash_table));
6339 }
6340
6341 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6342 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6343 by adding the hash codes of the individual attributes. */
6344
6345 static unsigned int
6346 attribute_hash_list (const_tree list, hashval_t hashcode)
6347 {
6348 const_tree tail;
6349
6350 for (tail = list; tail; tail = TREE_CHAIN (tail))
6351 /* ??? Do we want to add in TREE_VALUE too? */
6352 hashcode = iterative_hash_object
6353 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
6354 return hashcode;
6355 }
6356
6357 /* Given two lists of attributes, return true if list l2 is
6358 equivalent to l1. */
6359
6360 int
6361 attribute_list_equal (const_tree l1, const_tree l2)
6362 {
6363 if (l1 == l2)
6364 return 1;
6365
6366 return attribute_list_contained (l1, l2)
6367 && attribute_list_contained (l2, l1);
6368 }
6369
6370 /* Given two lists of attributes, return true if list L2 is
6371 completely contained within L1. */
6372 /* ??? This would be faster if attribute names were stored in a canonicalized
6373 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6374 must be used to show these elements are equivalent (which they are). */
6375 /* ??? It's not clear that attributes with arguments will always be handled
6376 correctly. */
6377
6378 int
6379 attribute_list_contained (const_tree l1, const_tree l2)
6380 {
6381 const_tree t1, t2;
6382
6383 /* First check the obvious, maybe the lists are identical. */
6384 if (l1 == l2)
6385 return 1;
6386
6387 /* Maybe the lists are similar. */
6388 for (t1 = l1, t2 = l2;
6389 t1 != 0 && t2 != 0
6390 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6391 && TREE_VALUE (t1) == TREE_VALUE (t2);
6392 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6393 ;
6394
6395 /* Maybe the lists are equal. */
6396 if (t1 == 0 && t2 == 0)
6397 return 1;
6398
6399 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6400 {
6401 const_tree attr;
6402 /* This CONST_CAST is okay because lookup_attribute does not
6403 modify its argument and the return value is assigned to a
6404 const_tree. */
6405 for (attr = lookup_ident_attribute (TREE_PURPOSE (t2), CONST_CAST_TREE(l1));
6406 attr != NULL_TREE && !attribute_value_equal (t2, attr);
6407 attr = lookup_ident_attribute (TREE_PURPOSE (t2), TREE_CHAIN (attr)))
6408 ;
6409
6410 if (attr == NULL_TREE)
6411 return 0;
6412 }
6413
6414 return 1;
6415 }
6416
6417 /* Given two lists of types
6418 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6419 return 1 if the lists contain the same types in the same order.
6420 Also, the TREE_PURPOSEs must match. */
6421
6422 int
6423 type_list_equal (const_tree l1, const_tree l2)
6424 {
6425 const_tree t1, t2;
6426
6427 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6428 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6429 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6430 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6431 && (TREE_TYPE (TREE_PURPOSE (t1))
6432 == TREE_TYPE (TREE_PURPOSE (t2))))))
6433 return 0;
6434
6435 return t1 == t2;
6436 }
6437
6438 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6439 given by TYPE. If the argument list accepts variable arguments,
6440 then this function counts only the ordinary arguments. */
6441
6442 int
6443 type_num_arguments (const_tree type)
6444 {
6445 int i = 0;
6446 tree t;
6447
6448 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6449 /* If the function does not take a variable number of arguments,
6450 the last element in the list will have type `void'. */
6451 if (VOID_TYPE_P (TREE_VALUE (t)))
6452 break;
6453 else
6454 ++i;
6455
6456 return i;
6457 }
6458
6459 /* Nonzero if integer constants T1 and T2
6460 represent the same constant value. */
6461
6462 int
6463 tree_int_cst_equal (const_tree t1, const_tree t2)
6464 {
6465 if (t1 == t2)
6466 return 1;
6467
6468 if (t1 == 0 || t2 == 0)
6469 return 0;
6470
6471 if (TREE_CODE (t1) == INTEGER_CST
6472 && TREE_CODE (t2) == INTEGER_CST
6473 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6474 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6475 return 1;
6476
6477 return 0;
6478 }
6479
6480 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6481 The precise way of comparison depends on their data type. */
6482
6483 int
6484 tree_int_cst_lt (const_tree t1, const_tree t2)
6485 {
6486 if (t1 == t2)
6487 return 0;
6488
6489 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6490 {
6491 int t1_sgn = tree_int_cst_sgn (t1);
6492 int t2_sgn = tree_int_cst_sgn (t2);
6493
6494 if (t1_sgn < t2_sgn)
6495 return 1;
6496 else if (t1_sgn > t2_sgn)
6497 return 0;
6498 /* Otherwise, both are non-negative, so we compare them as
6499 unsigned just in case one of them would overflow a signed
6500 type. */
6501 }
6502 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6503 return INT_CST_LT (t1, t2);
6504
6505 return INT_CST_LT_UNSIGNED (t1, t2);
6506 }
6507
6508 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6509
6510 int
6511 tree_int_cst_compare (const_tree t1, const_tree t2)
6512 {
6513 if (tree_int_cst_lt (t1, t2))
6514 return -1;
6515 else if (tree_int_cst_lt (t2, t1))
6516 return 1;
6517 else
6518 return 0;
6519 }
6520
6521 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6522 the host. If POS is zero, the value can be represented in a single
6523 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6524 be represented in a single unsigned HOST_WIDE_INT. */
6525
6526 int
6527 host_integerp (const_tree t, int pos)
6528 {
6529 if (t == NULL_TREE)
6530 return 0;
6531
6532 return (TREE_CODE (t) == INTEGER_CST
6533 && ((TREE_INT_CST_HIGH (t) == 0
6534 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6535 || (! pos && TREE_INT_CST_HIGH (t) == -1
6536 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6537 && !TYPE_UNSIGNED (TREE_TYPE (t)))
6538 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6539 }
6540
6541 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6542 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6543 be non-negative. We must be able to satisfy the above conditions. */
6544
6545 HOST_WIDE_INT
6546 tree_low_cst (const_tree t, int pos)
6547 {
6548 gcc_assert (host_integerp (t, pos));
6549 return TREE_INT_CST_LOW (t);
6550 }
6551
6552 /* Return the HOST_WIDE_INT least significant bits of T, a sizetype
6553 kind INTEGER_CST. This makes sure to properly sign-extend the
6554 constant. */
6555
6556 HOST_WIDE_INT
6557 size_low_cst (const_tree t)
6558 {
6559 double_int d = tree_to_double_int (t);
6560 return double_int_sext (d, TYPE_PRECISION (TREE_TYPE (t))).low;
6561 }
6562
6563 /* Return the most significant (sign) bit of T. */
6564
6565 int
6566 tree_int_cst_sign_bit (const_tree t)
6567 {
6568 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
6569 unsigned HOST_WIDE_INT w;
6570
6571 if (bitno < HOST_BITS_PER_WIDE_INT)
6572 w = TREE_INT_CST_LOW (t);
6573 else
6574 {
6575 w = TREE_INT_CST_HIGH (t);
6576 bitno -= HOST_BITS_PER_WIDE_INT;
6577 }
6578
6579 return (w >> bitno) & 1;
6580 }
6581
6582 /* Return an indication of the sign of the integer constant T.
6583 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6584 Note that -1 will never be returned if T's type is unsigned. */
6585
6586 int
6587 tree_int_cst_sgn (const_tree t)
6588 {
6589 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6590 return 0;
6591 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6592 return 1;
6593 else if (TREE_INT_CST_HIGH (t) < 0)
6594 return -1;
6595 else
6596 return 1;
6597 }
6598
6599 /* Return the minimum number of bits needed to represent VALUE in a
6600 signed or unsigned type, UNSIGNEDP says which. */
6601
6602 unsigned int
6603 tree_int_cst_min_precision (tree value, bool unsignedp)
6604 {
6605 int log;
6606
6607 /* If the value is negative, compute its negative minus 1. The latter
6608 adjustment is because the absolute value of the largest negative value
6609 is one larger than the largest positive value. This is equivalent to
6610 a bit-wise negation, so use that operation instead. */
6611
6612 if (tree_int_cst_sgn (value) < 0)
6613 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6614
6615 /* Return the number of bits needed, taking into account the fact
6616 that we need one more bit for a signed than unsigned type. */
6617
6618 if (integer_zerop (value))
6619 log = 0;
6620 else
6621 log = tree_floor_log2 (value);
6622
6623 return log + 1 + !unsignedp;
6624 }
6625
6626 /* Compare two constructor-element-type constants. Return 1 if the lists
6627 are known to be equal; otherwise return 0. */
6628
6629 int
6630 simple_cst_list_equal (const_tree l1, const_tree l2)
6631 {
6632 while (l1 != NULL_TREE && l2 != NULL_TREE)
6633 {
6634 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6635 return 0;
6636
6637 l1 = TREE_CHAIN (l1);
6638 l2 = TREE_CHAIN (l2);
6639 }
6640
6641 return l1 == l2;
6642 }
6643
6644 /* Return truthvalue of whether T1 is the same tree structure as T2.
6645 Return 1 if they are the same.
6646 Return 0 if they are understandably different.
6647 Return -1 if either contains tree structure not understood by
6648 this function. */
6649
6650 int
6651 simple_cst_equal (const_tree t1, const_tree t2)
6652 {
6653 enum tree_code code1, code2;
6654 int cmp;
6655 int i;
6656
6657 if (t1 == t2)
6658 return 1;
6659 if (t1 == 0 || t2 == 0)
6660 return 0;
6661
6662 code1 = TREE_CODE (t1);
6663 code2 = TREE_CODE (t2);
6664
6665 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6666 {
6667 if (CONVERT_EXPR_CODE_P (code2)
6668 || code2 == NON_LVALUE_EXPR)
6669 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6670 else
6671 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6672 }
6673
6674 else if (CONVERT_EXPR_CODE_P (code2)
6675 || code2 == NON_LVALUE_EXPR)
6676 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6677
6678 if (code1 != code2)
6679 return 0;
6680
6681 switch (code1)
6682 {
6683 case INTEGER_CST:
6684 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6685 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6686
6687 case REAL_CST:
6688 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6689
6690 case FIXED_CST:
6691 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6692
6693 case STRING_CST:
6694 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6695 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6696 TREE_STRING_LENGTH (t1)));
6697
6698 case CONSTRUCTOR:
6699 {
6700 unsigned HOST_WIDE_INT idx;
6701 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6702 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6703
6704 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6705 return false;
6706
6707 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6708 /* ??? Should we handle also fields here? */
6709 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6710 VEC_index (constructor_elt, v2, idx)->value))
6711 return false;
6712 return true;
6713 }
6714
6715 case SAVE_EXPR:
6716 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6717
6718 case CALL_EXPR:
6719 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6720 if (cmp <= 0)
6721 return cmp;
6722 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6723 return 0;
6724 {
6725 const_tree arg1, arg2;
6726 const_call_expr_arg_iterator iter1, iter2;
6727 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6728 arg2 = first_const_call_expr_arg (t2, &iter2);
6729 arg1 && arg2;
6730 arg1 = next_const_call_expr_arg (&iter1),
6731 arg2 = next_const_call_expr_arg (&iter2))
6732 {
6733 cmp = simple_cst_equal (arg1, arg2);
6734 if (cmp <= 0)
6735 return cmp;
6736 }
6737 return arg1 == arg2;
6738 }
6739
6740 case TARGET_EXPR:
6741 /* Special case: if either target is an unallocated VAR_DECL,
6742 it means that it's going to be unified with whatever the
6743 TARGET_EXPR is really supposed to initialize, so treat it
6744 as being equivalent to anything. */
6745 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6746 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6747 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6748 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6749 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6750 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6751 cmp = 1;
6752 else
6753 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6754
6755 if (cmp <= 0)
6756 return cmp;
6757
6758 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6759
6760 case WITH_CLEANUP_EXPR:
6761 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6762 if (cmp <= 0)
6763 return cmp;
6764
6765 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6766
6767 case COMPONENT_REF:
6768 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6769 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6770
6771 return 0;
6772
6773 case VAR_DECL:
6774 case PARM_DECL:
6775 case CONST_DECL:
6776 case FUNCTION_DECL:
6777 return 0;
6778
6779 default:
6780 break;
6781 }
6782
6783 /* This general rule works for most tree codes. All exceptions should be
6784 handled above. If this is a language-specific tree code, we can't
6785 trust what might be in the operand, so say we don't know
6786 the situation. */
6787 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6788 return -1;
6789
6790 switch (TREE_CODE_CLASS (code1))
6791 {
6792 case tcc_unary:
6793 case tcc_binary:
6794 case tcc_comparison:
6795 case tcc_expression:
6796 case tcc_reference:
6797 case tcc_statement:
6798 cmp = 1;
6799 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6800 {
6801 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6802 if (cmp <= 0)
6803 return cmp;
6804 }
6805
6806 return cmp;
6807
6808 default:
6809 return -1;
6810 }
6811 }
6812
6813 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6814 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6815 than U, respectively. */
6816
6817 int
6818 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6819 {
6820 if (tree_int_cst_sgn (t) < 0)
6821 return -1;
6822 else if (TREE_INT_CST_HIGH (t) != 0)
6823 return 1;
6824 else if (TREE_INT_CST_LOW (t) == u)
6825 return 0;
6826 else if (TREE_INT_CST_LOW (t) < u)
6827 return -1;
6828 else
6829 return 1;
6830 }
6831
6832 /* Return true if SIZE represents a constant size that is in bounds of
6833 what the middle-end and the backend accepts (covering not more than
6834 half of the address-space). */
6835
6836 bool
6837 valid_constant_size_p (const_tree size)
6838 {
6839 if (! host_integerp (size, 1)
6840 || TREE_OVERFLOW (size)
6841 || tree_int_cst_sign_bit (size) != 0)
6842 return false;
6843 return true;
6844 }
6845
6846 /* Return true if CODE represents an associative tree code. Otherwise
6847 return false. */
6848 bool
6849 associative_tree_code (enum tree_code code)
6850 {
6851 switch (code)
6852 {
6853 case BIT_IOR_EXPR:
6854 case BIT_AND_EXPR:
6855 case BIT_XOR_EXPR:
6856 case PLUS_EXPR:
6857 case MULT_EXPR:
6858 case MIN_EXPR:
6859 case MAX_EXPR:
6860 return true;
6861
6862 default:
6863 break;
6864 }
6865 return false;
6866 }
6867
6868 /* Return true if CODE represents a commutative tree code. Otherwise
6869 return false. */
6870 bool
6871 commutative_tree_code (enum tree_code code)
6872 {
6873 switch (code)
6874 {
6875 case PLUS_EXPR:
6876 case MULT_EXPR:
6877 case MULT_HIGHPART_EXPR:
6878 case MIN_EXPR:
6879 case MAX_EXPR:
6880 case BIT_IOR_EXPR:
6881 case BIT_XOR_EXPR:
6882 case BIT_AND_EXPR:
6883 case NE_EXPR:
6884 case EQ_EXPR:
6885 case UNORDERED_EXPR:
6886 case ORDERED_EXPR:
6887 case UNEQ_EXPR:
6888 case LTGT_EXPR:
6889 case TRUTH_AND_EXPR:
6890 case TRUTH_XOR_EXPR:
6891 case TRUTH_OR_EXPR:
6892 case WIDEN_MULT_EXPR:
6893 case VEC_WIDEN_MULT_HI_EXPR:
6894 case VEC_WIDEN_MULT_LO_EXPR:
6895 case VEC_WIDEN_MULT_EVEN_EXPR:
6896 case VEC_WIDEN_MULT_ODD_EXPR:
6897 return true;
6898
6899 default:
6900 break;
6901 }
6902 return false;
6903 }
6904
6905 /* Return true if CODE represents a ternary tree code for which the
6906 first two operands are commutative. Otherwise return false. */
6907 bool
6908 commutative_ternary_tree_code (enum tree_code code)
6909 {
6910 switch (code)
6911 {
6912 case WIDEN_MULT_PLUS_EXPR:
6913 case WIDEN_MULT_MINUS_EXPR:
6914 return true;
6915
6916 default:
6917 break;
6918 }
6919 return false;
6920 }
6921
6922 /* Generate a hash value for an expression. This can be used iteratively
6923 by passing a previous result as the VAL argument.
6924
6925 This function is intended to produce the same hash for expressions which
6926 would compare equal using operand_equal_p. */
6927
6928 hashval_t
6929 iterative_hash_expr (const_tree t, hashval_t val)
6930 {
6931 int i;
6932 enum tree_code code;
6933 char tclass;
6934
6935 if (t == NULL_TREE)
6936 return iterative_hash_hashval_t (0, val);
6937
6938 code = TREE_CODE (t);
6939
6940 switch (code)
6941 {
6942 /* Alas, constants aren't shared, so we can't rely on pointer
6943 identity. */
6944 case INTEGER_CST:
6945 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6946 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6947 case REAL_CST:
6948 {
6949 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6950
6951 return iterative_hash_hashval_t (val2, val);
6952 }
6953 case FIXED_CST:
6954 {
6955 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6956
6957 return iterative_hash_hashval_t (val2, val);
6958 }
6959 case STRING_CST:
6960 return iterative_hash (TREE_STRING_POINTER (t),
6961 TREE_STRING_LENGTH (t), val);
6962 case COMPLEX_CST:
6963 val = iterative_hash_expr (TREE_REALPART (t), val);
6964 return iterative_hash_expr (TREE_IMAGPART (t), val);
6965 case VECTOR_CST:
6966 {
6967 unsigned i;
6968 for (i = 0; i < VECTOR_CST_NELTS (t); ++i)
6969 val = iterative_hash_expr (VECTOR_CST_ELT (t, i), val);
6970 return val;
6971 }
6972 case SSA_NAME:
6973 /* We can just compare by pointer. */
6974 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6975 case PLACEHOLDER_EXPR:
6976 /* The node itself doesn't matter. */
6977 return val;
6978 case TREE_LIST:
6979 /* A list of expressions, for a CALL_EXPR or as the elements of a
6980 VECTOR_CST. */
6981 for (; t; t = TREE_CHAIN (t))
6982 val = iterative_hash_expr (TREE_VALUE (t), val);
6983 return val;
6984 case CONSTRUCTOR:
6985 {
6986 unsigned HOST_WIDE_INT idx;
6987 tree field, value;
6988 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6989 {
6990 val = iterative_hash_expr (field, val);
6991 val = iterative_hash_expr (value, val);
6992 }
6993 return val;
6994 }
6995 case MEM_REF:
6996 {
6997 /* The type of the second operand is relevant, except for
6998 its top-level qualifiers. */
6999 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
7000
7001 val = iterative_hash_object (TYPE_HASH (type), val);
7002
7003 /* We could use the standard hash computation from this point
7004 on. */
7005 val = iterative_hash_object (code, val);
7006 val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
7007 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
7008 return val;
7009 }
7010 case FUNCTION_DECL:
7011 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7012 Otherwise nodes that compare equal according to operand_equal_p might
7013 get different hash codes. However, don't do this for machine specific
7014 or front end builtins, since the function code is overloaded in those
7015 cases. */
7016 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7017 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7018 {
7019 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7020 code = TREE_CODE (t);
7021 }
7022 /* FALL THROUGH */
7023 default:
7024 tclass = TREE_CODE_CLASS (code);
7025
7026 if (tclass == tcc_declaration)
7027 {
7028 /* DECL's have a unique ID */
7029 val = iterative_hash_host_wide_int (DECL_UID (t), val);
7030 }
7031 else
7032 {
7033 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
7034
7035 val = iterative_hash_object (code, val);
7036
7037 /* Don't hash the type, that can lead to having nodes which
7038 compare equal according to operand_equal_p, but which
7039 have different hash codes. */
7040 if (CONVERT_EXPR_CODE_P (code)
7041 || code == NON_LVALUE_EXPR)
7042 {
7043 /* Make sure to include signness in the hash computation. */
7044 val += TYPE_UNSIGNED (TREE_TYPE (t));
7045 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
7046 }
7047
7048 else if (commutative_tree_code (code))
7049 {
7050 /* It's a commutative expression. We want to hash it the same
7051 however it appears. We do this by first hashing both operands
7052 and then rehashing based on the order of their independent
7053 hashes. */
7054 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
7055 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
7056 hashval_t t;
7057
7058 if (one > two)
7059 t = one, one = two, two = t;
7060
7061 val = iterative_hash_hashval_t (one, val);
7062 val = iterative_hash_hashval_t (two, val);
7063 }
7064 else
7065 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7066 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
7067 }
7068 return val;
7069 }
7070 }
7071
7072 /* Generate a hash value for a pair of expressions. This can be used
7073 iteratively by passing a previous result as the VAL argument.
7074
7075 The same hash value is always returned for a given pair of expressions,
7076 regardless of the order in which they are presented. This is useful in
7077 hashing the operands of commutative functions. */
7078
7079 hashval_t
7080 iterative_hash_exprs_commutative (const_tree t1,
7081 const_tree t2, hashval_t val)
7082 {
7083 hashval_t one = iterative_hash_expr (t1, 0);
7084 hashval_t two = iterative_hash_expr (t2, 0);
7085 hashval_t t;
7086
7087 if (one > two)
7088 t = one, one = two, two = t;
7089 val = iterative_hash_hashval_t (one, val);
7090 val = iterative_hash_hashval_t (two, val);
7091
7092 return val;
7093 }
7094 \f
7095 /* Constructors for pointer, array and function types.
7096 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7097 constructed by language-dependent code, not here.) */
7098
7099 /* Construct, lay out and return the type of pointers to TO_TYPE with
7100 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7101 reference all of memory. If such a type has already been
7102 constructed, reuse it. */
7103
7104 tree
7105 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
7106 bool can_alias_all)
7107 {
7108 tree t;
7109
7110 if (to_type == error_mark_node)
7111 return error_mark_node;
7112
7113 /* If the pointed-to type has the may_alias attribute set, force
7114 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7115 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7116 can_alias_all = true;
7117
7118 /* In some cases, languages will have things that aren't a POINTER_TYPE
7119 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7120 In that case, return that type without regard to the rest of our
7121 operands.
7122
7123 ??? This is a kludge, but consistent with the way this function has
7124 always operated and there doesn't seem to be a good way to avoid this
7125 at the moment. */
7126 if (TYPE_POINTER_TO (to_type) != 0
7127 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7128 return TYPE_POINTER_TO (to_type);
7129
7130 /* First, if we already have a type for pointers to TO_TYPE and it's
7131 the proper mode, use it. */
7132 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7133 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7134 return t;
7135
7136 t = make_node (POINTER_TYPE);
7137
7138 TREE_TYPE (t) = to_type;
7139 SET_TYPE_MODE (t, mode);
7140 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7141 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7142 TYPE_POINTER_TO (to_type) = t;
7143
7144 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7145 SET_TYPE_STRUCTURAL_EQUALITY (t);
7146 else if (TYPE_CANONICAL (to_type) != to_type)
7147 TYPE_CANONICAL (t)
7148 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7149 mode, can_alias_all);
7150
7151 /* Lay out the type. This function has many callers that are concerned
7152 with expression-construction, and this simplifies them all. */
7153 layout_type (t);
7154
7155 return t;
7156 }
7157
7158 /* By default build pointers in ptr_mode. */
7159
7160 tree
7161 build_pointer_type (tree to_type)
7162 {
7163 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7164 : TYPE_ADDR_SPACE (to_type);
7165 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7166 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7167 }
7168
7169 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7170
7171 tree
7172 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
7173 bool can_alias_all)
7174 {
7175 tree t;
7176
7177 if (to_type == error_mark_node)
7178 return error_mark_node;
7179
7180 /* If the pointed-to type has the may_alias attribute set, force
7181 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7182 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7183 can_alias_all = true;
7184
7185 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7186 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7187 In that case, return that type without regard to the rest of our
7188 operands.
7189
7190 ??? This is a kludge, but consistent with the way this function has
7191 always operated and there doesn't seem to be a good way to avoid this
7192 at the moment. */
7193 if (TYPE_REFERENCE_TO (to_type) != 0
7194 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7195 return TYPE_REFERENCE_TO (to_type);
7196
7197 /* First, if we already have a type for pointers to TO_TYPE and it's
7198 the proper mode, use it. */
7199 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7200 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7201 return t;
7202
7203 t = make_node (REFERENCE_TYPE);
7204
7205 TREE_TYPE (t) = to_type;
7206 SET_TYPE_MODE (t, mode);
7207 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7208 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7209 TYPE_REFERENCE_TO (to_type) = t;
7210
7211 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7212 SET_TYPE_STRUCTURAL_EQUALITY (t);
7213 else if (TYPE_CANONICAL (to_type) != to_type)
7214 TYPE_CANONICAL (t)
7215 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7216 mode, can_alias_all);
7217
7218 layout_type (t);
7219
7220 return t;
7221 }
7222
7223
7224 /* Build the node for the type of references-to-TO_TYPE by default
7225 in ptr_mode. */
7226
7227 tree
7228 build_reference_type (tree to_type)
7229 {
7230 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7231 : TYPE_ADDR_SPACE (to_type);
7232 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7233 return build_reference_type_for_mode (to_type, pointer_mode, false);
7234 }
7235
7236 /* Build a type that is compatible with t but has no cv quals anywhere
7237 in its type, thus
7238
7239 const char *const *const * -> char ***. */
7240
7241 tree
7242 build_type_no_quals (tree t)
7243 {
7244 switch (TREE_CODE (t))
7245 {
7246 case POINTER_TYPE:
7247 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7248 TYPE_MODE (t),
7249 TYPE_REF_CAN_ALIAS_ALL (t));
7250 case REFERENCE_TYPE:
7251 return
7252 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7253 TYPE_MODE (t),
7254 TYPE_REF_CAN_ALIAS_ALL (t));
7255 default:
7256 return TYPE_MAIN_VARIANT (t);
7257 }
7258 }
7259
7260 #define MAX_INT_CACHED_PREC \
7261 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7262 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7263
7264 /* Builds a signed or unsigned integer type of precision PRECISION.
7265 Used for C bitfields whose precision does not match that of
7266 built-in target types. */
7267 tree
7268 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7269 int unsignedp)
7270 {
7271 tree itype, ret;
7272
7273 if (unsignedp)
7274 unsignedp = MAX_INT_CACHED_PREC + 1;
7275
7276 if (precision <= MAX_INT_CACHED_PREC)
7277 {
7278 itype = nonstandard_integer_type_cache[precision + unsignedp];
7279 if (itype)
7280 return itype;
7281 }
7282
7283 itype = make_node (INTEGER_TYPE);
7284 TYPE_PRECISION (itype) = precision;
7285
7286 if (unsignedp)
7287 fixup_unsigned_type (itype);
7288 else
7289 fixup_signed_type (itype);
7290
7291 ret = itype;
7292 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7293 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7294 if (precision <= MAX_INT_CACHED_PREC)
7295 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7296
7297 return ret;
7298 }
7299
7300 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7301 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7302 is true, reuse such a type that has already been constructed. */
7303
7304 static tree
7305 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7306 {
7307 tree itype = make_node (INTEGER_TYPE);
7308 hashval_t hashcode = 0;
7309
7310 TREE_TYPE (itype) = type;
7311
7312 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7313 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7314
7315 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7316 SET_TYPE_MODE (itype, TYPE_MODE (type));
7317 TYPE_SIZE (itype) = TYPE_SIZE (type);
7318 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7319 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7320 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7321
7322 if (!shared)
7323 return itype;
7324
7325 if ((TYPE_MIN_VALUE (itype)
7326 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7327 || (TYPE_MAX_VALUE (itype)
7328 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7329 {
7330 /* Since we cannot reliably merge this type, we need to compare it using
7331 structural equality checks. */
7332 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7333 return itype;
7334 }
7335
7336 hashcode = iterative_hash_expr (TYPE_MIN_VALUE (itype), hashcode);
7337 hashcode = iterative_hash_expr (TYPE_MAX_VALUE (itype), hashcode);
7338 hashcode = iterative_hash_hashval_t (TYPE_HASH (type), hashcode);
7339 itype = type_hash_canon (hashcode, itype);
7340
7341 return itype;
7342 }
7343
7344 /* Wrapper around build_range_type_1 with SHARED set to true. */
7345
7346 tree
7347 build_range_type (tree type, tree lowval, tree highval)
7348 {
7349 return build_range_type_1 (type, lowval, highval, true);
7350 }
7351
7352 /* Wrapper around build_range_type_1 with SHARED set to false. */
7353
7354 tree
7355 build_nonshared_range_type (tree type, tree lowval, tree highval)
7356 {
7357 return build_range_type_1 (type, lowval, highval, false);
7358 }
7359
7360 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7361 MAXVAL should be the maximum value in the domain
7362 (one less than the length of the array).
7363
7364 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7365 We don't enforce this limit, that is up to caller (e.g. language front end).
7366 The limit exists because the result is a signed type and we don't handle
7367 sizes that use more than one HOST_WIDE_INT. */
7368
7369 tree
7370 build_index_type (tree maxval)
7371 {
7372 return build_range_type (sizetype, size_zero_node, maxval);
7373 }
7374
7375 /* Return true if the debug information for TYPE, a subtype, should be emitted
7376 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7377 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7378 debug info and doesn't reflect the source code. */
7379
7380 bool
7381 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7382 {
7383 tree base_type = TREE_TYPE (type), low, high;
7384
7385 /* Subrange types have a base type which is an integral type. */
7386 if (!INTEGRAL_TYPE_P (base_type))
7387 return false;
7388
7389 /* Get the real bounds of the subtype. */
7390 if (lang_hooks.types.get_subrange_bounds)
7391 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7392 else
7393 {
7394 low = TYPE_MIN_VALUE (type);
7395 high = TYPE_MAX_VALUE (type);
7396 }
7397
7398 /* If the type and its base type have the same representation and the same
7399 name, then the type is not a subrange but a copy of the base type. */
7400 if ((TREE_CODE (base_type) == INTEGER_TYPE
7401 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7402 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7403 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7404 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7405 {
7406 tree type_name = TYPE_NAME (type);
7407 tree base_type_name = TYPE_NAME (base_type);
7408
7409 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7410 type_name = DECL_NAME (type_name);
7411
7412 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7413 base_type_name = DECL_NAME (base_type_name);
7414
7415 if (type_name == base_type_name)
7416 return false;
7417 }
7418
7419 if (lowval)
7420 *lowval = low;
7421 if (highval)
7422 *highval = high;
7423 return true;
7424 }
7425
7426 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7427 and number of elements specified by the range of values of INDEX_TYPE.
7428 If SHARED is true, reuse such a type that has already been constructed. */
7429
7430 static tree
7431 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7432 {
7433 tree t;
7434
7435 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7436 {
7437 error ("arrays of functions are not meaningful");
7438 elt_type = integer_type_node;
7439 }
7440
7441 t = make_node (ARRAY_TYPE);
7442 TREE_TYPE (t) = elt_type;
7443 TYPE_DOMAIN (t) = index_type;
7444 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7445 layout_type (t);
7446
7447 /* If the element type is incomplete at this point we get marked for
7448 structural equality. Do not record these types in the canonical
7449 type hashtable. */
7450 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7451 return t;
7452
7453 if (shared)
7454 {
7455 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7456 if (index_type)
7457 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7458 t = type_hash_canon (hashcode, t);
7459 }
7460
7461 if (TYPE_CANONICAL (t) == t)
7462 {
7463 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7464 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7465 SET_TYPE_STRUCTURAL_EQUALITY (t);
7466 else if (TYPE_CANONICAL (elt_type) != elt_type
7467 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7468 TYPE_CANONICAL (t)
7469 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7470 index_type
7471 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7472 shared);
7473 }
7474
7475 return t;
7476 }
7477
7478 /* Wrapper around build_array_type_1 with SHARED set to true. */
7479
7480 tree
7481 build_array_type (tree elt_type, tree index_type)
7482 {
7483 return build_array_type_1 (elt_type, index_type, true);
7484 }
7485
7486 /* Wrapper around build_array_type_1 with SHARED set to false. */
7487
7488 tree
7489 build_nonshared_array_type (tree elt_type, tree index_type)
7490 {
7491 return build_array_type_1 (elt_type, index_type, false);
7492 }
7493
7494 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7495 sizetype. */
7496
7497 tree
7498 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7499 {
7500 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7501 }
7502
7503 /* Recursively examines the array elements of TYPE, until a non-array
7504 element type is found. */
7505
7506 tree
7507 strip_array_types (tree type)
7508 {
7509 while (TREE_CODE (type) == ARRAY_TYPE)
7510 type = TREE_TYPE (type);
7511
7512 return type;
7513 }
7514
7515 /* Computes the canonical argument types from the argument type list
7516 ARGTYPES.
7517
7518 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7519 on entry to this function, or if any of the ARGTYPES are
7520 structural.
7521
7522 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7523 true on entry to this function, or if any of the ARGTYPES are
7524 non-canonical.
7525
7526 Returns a canonical argument list, which may be ARGTYPES when the
7527 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7528 true) or would not differ from ARGTYPES. */
7529
7530 static tree
7531 maybe_canonicalize_argtypes(tree argtypes,
7532 bool *any_structural_p,
7533 bool *any_noncanonical_p)
7534 {
7535 tree arg;
7536 bool any_noncanonical_argtypes_p = false;
7537
7538 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7539 {
7540 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7541 /* Fail gracefully by stating that the type is structural. */
7542 *any_structural_p = true;
7543 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7544 *any_structural_p = true;
7545 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7546 || TREE_PURPOSE (arg))
7547 /* If the argument has a default argument, we consider it
7548 non-canonical even though the type itself is canonical.
7549 That way, different variants of function and method types
7550 with default arguments will all point to the variant with
7551 no defaults as their canonical type. */
7552 any_noncanonical_argtypes_p = true;
7553 }
7554
7555 if (*any_structural_p)
7556 return argtypes;
7557
7558 if (any_noncanonical_argtypes_p)
7559 {
7560 /* Build the canonical list of argument types. */
7561 tree canon_argtypes = NULL_TREE;
7562 bool is_void = false;
7563
7564 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7565 {
7566 if (arg == void_list_node)
7567 is_void = true;
7568 else
7569 canon_argtypes = tree_cons (NULL_TREE,
7570 TYPE_CANONICAL (TREE_VALUE (arg)),
7571 canon_argtypes);
7572 }
7573
7574 canon_argtypes = nreverse (canon_argtypes);
7575 if (is_void)
7576 canon_argtypes = chainon (canon_argtypes, void_list_node);
7577
7578 /* There is a non-canonical type. */
7579 *any_noncanonical_p = true;
7580 return canon_argtypes;
7581 }
7582
7583 /* The canonical argument types are the same as ARGTYPES. */
7584 return argtypes;
7585 }
7586
7587 /* Construct, lay out and return
7588 the type of functions returning type VALUE_TYPE
7589 given arguments of types ARG_TYPES.
7590 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7591 are data type nodes for the arguments of the function.
7592 If such a type has already been constructed, reuse it. */
7593
7594 tree
7595 build_function_type (tree value_type, tree arg_types)
7596 {
7597 tree t;
7598 hashval_t hashcode = 0;
7599 bool any_structural_p, any_noncanonical_p;
7600 tree canon_argtypes;
7601
7602 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7603 {
7604 error ("function return type cannot be function");
7605 value_type = integer_type_node;
7606 }
7607
7608 /* Make a node of the sort we want. */
7609 t = make_node (FUNCTION_TYPE);
7610 TREE_TYPE (t) = value_type;
7611 TYPE_ARG_TYPES (t) = arg_types;
7612
7613 /* If we already have such a type, use the old one. */
7614 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7615 hashcode = type_hash_list (arg_types, hashcode);
7616 t = type_hash_canon (hashcode, t);
7617
7618 /* Set up the canonical type. */
7619 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7620 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7621 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7622 &any_structural_p,
7623 &any_noncanonical_p);
7624 if (any_structural_p)
7625 SET_TYPE_STRUCTURAL_EQUALITY (t);
7626 else if (any_noncanonical_p)
7627 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7628 canon_argtypes);
7629
7630 if (!COMPLETE_TYPE_P (t))
7631 layout_type (t);
7632 return t;
7633 }
7634
7635 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP and the
7636 return value if SKIP_RETURN is true. */
7637
7638 static tree
7639 build_function_type_skip_args (tree orig_type, bitmap args_to_skip,
7640 bool skip_return)
7641 {
7642 tree new_type = NULL;
7643 tree args, new_args = NULL, t;
7644 tree new_reversed;
7645 int i = 0;
7646
7647 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7648 args = TREE_CHAIN (args), i++)
7649 if (!args_to_skip || !bitmap_bit_p (args_to_skip, i))
7650 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7651
7652 new_reversed = nreverse (new_args);
7653 if (args)
7654 {
7655 if (new_reversed)
7656 TREE_CHAIN (new_args) = void_list_node;
7657 else
7658 new_reversed = void_list_node;
7659 }
7660
7661 /* Use copy_node to preserve as much as possible from original type
7662 (debug info, attribute lists etc.)
7663 Exception is METHOD_TYPEs must have THIS argument.
7664 When we are asked to remove it, we need to build new FUNCTION_TYPE
7665 instead. */
7666 if (TREE_CODE (orig_type) != METHOD_TYPE
7667 || !args_to_skip
7668 || !bitmap_bit_p (args_to_skip, 0))
7669 {
7670 new_type = build_distinct_type_copy (orig_type);
7671 TYPE_ARG_TYPES (new_type) = new_reversed;
7672 }
7673 else
7674 {
7675 new_type
7676 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7677 new_reversed));
7678 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7679 }
7680
7681 if (skip_return)
7682 TREE_TYPE (new_type) = void_type_node;
7683
7684 /* This is a new type, not a copy of an old type. Need to reassociate
7685 variants. We can handle everything except the main variant lazily. */
7686 t = TYPE_MAIN_VARIANT (orig_type);
7687 if (t != orig_type)
7688 {
7689 t = build_function_type_skip_args (t, args_to_skip, skip_return);
7690 TYPE_MAIN_VARIANT (new_type) = t;
7691 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7692 TYPE_NEXT_VARIANT (t) = new_type;
7693 }
7694 else
7695 {
7696 TYPE_MAIN_VARIANT (new_type) = new_type;
7697 TYPE_NEXT_VARIANT (new_type) = NULL;
7698 }
7699
7700 return new_type;
7701 }
7702
7703 /* Build variant of function decl ORIG_DECL skipping ARGS_TO_SKIP and the
7704 return value if SKIP_RETURN is true.
7705
7706 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7707 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7708 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7709
7710 tree
7711 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip,
7712 bool skip_return)
7713 {
7714 tree new_decl = copy_node (orig_decl);
7715 tree new_type;
7716
7717 new_type = TREE_TYPE (orig_decl);
7718 if (prototype_p (new_type)
7719 || (skip_return && !VOID_TYPE_P (TREE_TYPE (new_type))))
7720 new_type
7721 = build_function_type_skip_args (new_type, args_to_skip, skip_return);
7722 TREE_TYPE (new_decl) = new_type;
7723
7724 /* For declarations setting DECL_VINDEX (i.e. methods)
7725 we expect first argument to be THIS pointer. */
7726 if (args_to_skip && bitmap_bit_p (args_to_skip, 0))
7727 DECL_VINDEX (new_decl) = NULL_TREE;
7728
7729 /* When signature changes, we need to clear builtin info. */
7730 if (DECL_BUILT_IN (new_decl)
7731 && args_to_skip
7732 && !bitmap_empty_p (args_to_skip))
7733 {
7734 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
7735 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
7736 }
7737 return new_decl;
7738 }
7739
7740 /* Build a function type. The RETURN_TYPE is the type returned by the
7741 function. If VAARGS is set, no void_type_node is appended to the
7742 the list. ARGP must be always be terminated be a NULL_TREE. */
7743
7744 static tree
7745 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7746 {
7747 tree t, args, last;
7748
7749 t = va_arg (argp, tree);
7750 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7751 args = tree_cons (NULL_TREE, t, args);
7752
7753 if (vaargs)
7754 {
7755 last = args;
7756 if (args != NULL_TREE)
7757 args = nreverse (args);
7758 gcc_assert (last != void_list_node);
7759 }
7760 else if (args == NULL_TREE)
7761 args = void_list_node;
7762 else
7763 {
7764 last = args;
7765 args = nreverse (args);
7766 TREE_CHAIN (last) = void_list_node;
7767 }
7768 args = build_function_type (return_type, args);
7769
7770 return args;
7771 }
7772
7773 /* Build a function type. The RETURN_TYPE is the type returned by the
7774 function. If additional arguments are provided, they are
7775 additional argument types. The list of argument types must always
7776 be terminated by NULL_TREE. */
7777
7778 tree
7779 build_function_type_list (tree return_type, ...)
7780 {
7781 tree args;
7782 va_list p;
7783
7784 va_start (p, return_type);
7785 args = build_function_type_list_1 (false, return_type, p);
7786 va_end (p);
7787 return args;
7788 }
7789
7790 /* Build a variable argument function type. The RETURN_TYPE is the
7791 type returned by the function. If additional arguments are provided,
7792 they are additional argument types. The list of argument types must
7793 always be terminated by NULL_TREE. */
7794
7795 tree
7796 build_varargs_function_type_list (tree return_type, ...)
7797 {
7798 tree args;
7799 va_list p;
7800
7801 va_start (p, return_type);
7802 args = build_function_type_list_1 (true, return_type, p);
7803 va_end (p);
7804
7805 return args;
7806 }
7807
7808 /* Build a function type. RETURN_TYPE is the type returned by the
7809 function; VAARGS indicates whether the function takes varargs. The
7810 function takes N named arguments, the types of which are provided in
7811 ARG_TYPES. */
7812
7813 static tree
7814 build_function_type_array_1 (bool vaargs, tree return_type, int n,
7815 tree *arg_types)
7816 {
7817 int i;
7818 tree t = vaargs ? NULL_TREE : void_list_node;
7819
7820 for (i = n - 1; i >= 0; i--)
7821 t = tree_cons (NULL_TREE, arg_types[i], t);
7822
7823 return build_function_type (return_type, t);
7824 }
7825
7826 /* Build a function type. RETURN_TYPE is the type returned by the
7827 function. The function takes N named arguments, the types of which
7828 are provided in ARG_TYPES. */
7829
7830 tree
7831 build_function_type_array (tree return_type, int n, tree *arg_types)
7832 {
7833 return build_function_type_array_1 (false, return_type, n, arg_types);
7834 }
7835
7836 /* Build a variable argument function type. RETURN_TYPE is the type
7837 returned by the function. The function takes N named arguments, the
7838 types of which are provided in ARG_TYPES. */
7839
7840 tree
7841 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
7842 {
7843 return build_function_type_array_1 (true, return_type, n, arg_types);
7844 }
7845
7846 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7847 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7848 for the method. An implicit additional parameter (of type
7849 pointer-to-BASETYPE) is added to the ARGTYPES. */
7850
7851 tree
7852 build_method_type_directly (tree basetype,
7853 tree rettype,
7854 tree argtypes)
7855 {
7856 tree t;
7857 tree ptype;
7858 int hashcode = 0;
7859 bool any_structural_p, any_noncanonical_p;
7860 tree canon_argtypes;
7861
7862 /* Make a node of the sort we want. */
7863 t = make_node (METHOD_TYPE);
7864
7865 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7866 TREE_TYPE (t) = rettype;
7867 ptype = build_pointer_type (basetype);
7868
7869 /* The actual arglist for this function includes a "hidden" argument
7870 which is "this". Put it into the list of argument types. */
7871 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7872 TYPE_ARG_TYPES (t) = argtypes;
7873
7874 /* If we already have such a type, use the old one. */
7875 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7876 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7877 hashcode = type_hash_list (argtypes, hashcode);
7878 t = type_hash_canon (hashcode, t);
7879
7880 /* Set up the canonical type. */
7881 any_structural_p
7882 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7883 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7884 any_noncanonical_p
7885 = (TYPE_CANONICAL (basetype) != basetype
7886 || TYPE_CANONICAL (rettype) != rettype);
7887 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7888 &any_structural_p,
7889 &any_noncanonical_p);
7890 if (any_structural_p)
7891 SET_TYPE_STRUCTURAL_EQUALITY (t);
7892 else if (any_noncanonical_p)
7893 TYPE_CANONICAL (t)
7894 = build_method_type_directly (TYPE_CANONICAL (basetype),
7895 TYPE_CANONICAL (rettype),
7896 canon_argtypes);
7897 if (!COMPLETE_TYPE_P (t))
7898 layout_type (t);
7899
7900 return t;
7901 }
7902
7903 /* Construct, lay out and return the type of methods belonging to class
7904 BASETYPE and whose arguments and values are described by TYPE.
7905 If that type exists already, reuse it.
7906 TYPE must be a FUNCTION_TYPE node. */
7907
7908 tree
7909 build_method_type (tree basetype, tree type)
7910 {
7911 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7912
7913 return build_method_type_directly (basetype,
7914 TREE_TYPE (type),
7915 TYPE_ARG_TYPES (type));
7916 }
7917
7918 /* Construct, lay out and return the type of offsets to a value
7919 of type TYPE, within an object of type BASETYPE.
7920 If a suitable offset type exists already, reuse it. */
7921
7922 tree
7923 build_offset_type (tree basetype, tree type)
7924 {
7925 tree t;
7926 hashval_t hashcode = 0;
7927
7928 /* Make a node of the sort we want. */
7929 t = make_node (OFFSET_TYPE);
7930
7931 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7932 TREE_TYPE (t) = type;
7933
7934 /* If we already have such a type, use the old one. */
7935 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7936 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7937 t = type_hash_canon (hashcode, t);
7938
7939 if (!COMPLETE_TYPE_P (t))
7940 layout_type (t);
7941
7942 if (TYPE_CANONICAL (t) == t)
7943 {
7944 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7945 || TYPE_STRUCTURAL_EQUALITY_P (type))
7946 SET_TYPE_STRUCTURAL_EQUALITY (t);
7947 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7948 || TYPE_CANONICAL (type) != type)
7949 TYPE_CANONICAL (t)
7950 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7951 TYPE_CANONICAL (type));
7952 }
7953
7954 return t;
7955 }
7956
7957 /* Create a complex type whose components are COMPONENT_TYPE. */
7958
7959 tree
7960 build_complex_type (tree component_type)
7961 {
7962 tree t;
7963 hashval_t hashcode;
7964
7965 gcc_assert (INTEGRAL_TYPE_P (component_type)
7966 || SCALAR_FLOAT_TYPE_P (component_type)
7967 || FIXED_POINT_TYPE_P (component_type));
7968
7969 /* Make a node of the sort we want. */
7970 t = make_node (COMPLEX_TYPE);
7971
7972 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7973
7974 /* If we already have such a type, use the old one. */
7975 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7976 t = type_hash_canon (hashcode, t);
7977
7978 if (!COMPLETE_TYPE_P (t))
7979 layout_type (t);
7980
7981 if (TYPE_CANONICAL (t) == t)
7982 {
7983 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7984 SET_TYPE_STRUCTURAL_EQUALITY (t);
7985 else if (TYPE_CANONICAL (component_type) != component_type)
7986 TYPE_CANONICAL (t)
7987 = build_complex_type (TYPE_CANONICAL (component_type));
7988 }
7989
7990 /* We need to create a name, since complex is a fundamental type. */
7991 if (! TYPE_NAME (t))
7992 {
7993 const char *name;
7994 if (component_type == char_type_node)
7995 name = "complex char";
7996 else if (component_type == signed_char_type_node)
7997 name = "complex signed char";
7998 else if (component_type == unsigned_char_type_node)
7999 name = "complex unsigned char";
8000 else if (component_type == short_integer_type_node)
8001 name = "complex short int";
8002 else if (component_type == short_unsigned_type_node)
8003 name = "complex short unsigned int";
8004 else if (component_type == integer_type_node)
8005 name = "complex int";
8006 else if (component_type == unsigned_type_node)
8007 name = "complex unsigned int";
8008 else if (component_type == long_integer_type_node)
8009 name = "complex long int";
8010 else if (component_type == long_unsigned_type_node)
8011 name = "complex long unsigned int";
8012 else if (component_type == long_long_integer_type_node)
8013 name = "complex long long int";
8014 else if (component_type == long_long_unsigned_type_node)
8015 name = "complex long long unsigned int";
8016 else
8017 name = 0;
8018
8019 if (name != 0)
8020 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8021 get_identifier (name), t);
8022 }
8023
8024 return build_qualified_type (t, TYPE_QUALS (component_type));
8025 }
8026
8027 /* If TYPE is a real or complex floating-point type and the target
8028 does not directly support arithmetic on TYPE then return the wider
8029 type to be used for arithmetic on TYPE. Otherwise, return
8030 NULL_TREE. */
8031
8032 tree
8033 excess_precision_type (tree type)
8034 {
8035 if (flag_excess_precision != EXCESS_PRECISION_FAST)
8036 {
8037 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
8038 switch (TREE_CODE (type))
8039 {
8040 case REAL_TYPE:
8041 switch (flt_eval_method)
8042 {
8043 case 1:
8044 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
8045 return double_type_node;
8046 break;
8047 case 2:
8048 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
8049 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
8050 return long_double_type_node;
8051 break;
8052 default:
8053 gcc_unreachable ();
8054 }
8055 break;
8056 case COMPLEX_TYPE:
8057 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8058 return NULL_TREE;
8059 switch (flt_eval_method)
8060 {
8061 case 1:
8062 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
8063 return complex_double_type_node;
8064 break;
8065 case 2:
8066 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
8067 || (TYPE_MODE (TREE_TYPE (type))
8068 == TYPE_MODE (double_type_node)))
8069 return complex_long_double_type_node;
8070 break;
8071 default:
8072 gcc_unreachable ();
8073 }
8074 break;
8075 default:
8076 break;
8077 }
8078 }
8079 return NULL_TREE;
8080 }
8081 \f
8082 /* Return OP, stripped of any conversions to wider types as much as is safe.
8083 Converting the value back to OP's type makes a value equivalent to OP.
8084
8085 If FOR_TYPE is nonzero, we return a value which, if converted to
8086 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8087
8088 OP must have integer, real or enumeral type. Pointers are not allowed!
8089
8090 There are some cases where the obvious value we could return
8091 would regenerate to OP if converted to OP's type,
8092 but would not extend like OP to wider types.
8093 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8094 For example, if OP is (unsigned short)(signed char)-1,
8095 we avoid returning (signed char)-1 if FOR_TYPE is int,
8096 even though extending that to an unsigned short would regenerate OP,
8097 since the result of extending (signed char)-1 to (int)
8098 is different from (int) OP. */
8099
8100 tree
8101 get_unwidened (tree op, tree for_type)
8102 {
8103 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8104 tree type = TREE_TYPE (op);
8105 unsigned final_prec
8106 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8107 int uns
8108 = (for_type != 0 && for_type != type
8109 && final_prec > TYPE_PRECISION (type)
8110 && TYPE_UNSIGNED (type));
8111 tree win = op;
8112
8113 while (CONVERT_EXPR_P (op))
8114 {
8115 int bitschange;
8116
8117 /* TYPE_PRECISION on vector types has different meaning
8118 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8119 so avoid them here. */
8120 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8121 break;
8122
8123 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8124 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8125
8126 /* Truncations are many-one so cannot be removed.
8127 Unless we are later going to truncate down even farther. */
8128 if (bitschange < 0
8129 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8130 break;
8131
8132 /* See what's inside this conversion. If we decide to strip it,
8133 we will set WIN. */
8134 op = TREE_OPERAND (op, 0);
8135
8136 /* If we have not stripped any zero-extensions (uns is 0),
8137 we can strip any kind of extension.
8138 If we have previously stripped a zero-extension,
8139 only zero-extensions can safely be stripped.
8140 Any extension can be stripped if the bits it would produce
8141 are all going to be discarded later by truncating to FOR_TYPE. */
8142
8143 if (bitschange > 0)
8144 {
8145 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8146 win = op;
8147 /* TYPE_UNSIGNED says whether this is a zero-extension.
8148 Let's avoid computing it if it does not affect WIN
8149 and if UNS will not be needed again. */
8150 if ((uns
8151 || CONVERT_EXPR_P (op))
8152 && TYPE_UNSIGNED (TREE_TYPE (op)))
8153 {
8154 uns = 1;
8155 win = op;
8156 }
8157 }
8158 }
8159
8160 /* If we finally reach a constant see if it fits in for_type and
8161 in that case convert it. */
8162 if (for_type
8163 && TREE_CODE (win) == INTEGER_CST
8164 && TREE_TYPE (win) != for_type
8165 && int_fits_type_p (win, for_type))
8166 win = fold_convert (for_type, win);
8167
8168 return win;
8169 }
8170 \f
8171 /* Return OP or a simpler expression for a narrower value
8172 which can be sign-extended or zero-extended to give back OP.
8173 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8174 or 0 if the value should be sign-extended. */
8175
8176 tree
8177 get_narrower (tree op, int *unsignedp_ptr)
8178 {
8179 int uns = 0;
8180 int first = 1;
8181 tree win = op;
8182 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8183
8184 while (TREE_CODE (op) == NOP_EXPR)
8185 {
8186 int bitschange
8187 = (TYPE_PRECISION (TREE_TYPE (op))
8188 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8189
8190 /* Truncations are many-one so cannot be removed. */
8191 if (bitschange < 0)
8192 break;
8193
8194 /* See what's inside this conversion. If we decide to strip it,
8195 we will set WIN. */
8196
8197 if (bitschange > 0)
8198 {
8199 op = TREE_OPERAND (op, 0);
8200 /* An extension: the outermost one can be stripped,
8201 but remember whether it is zero or sign extension. */
8202 if (first)
8203 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8204 /* Otherwise, if a sign extension has been stripped,
8205 only sign extensions can now be stripped;
8206 if a zero extension has been stripped, only zero-extensions. */
8207 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8208 break;
8209 first = 0;
8210 }
8211 else /* bitschange == 0 */
8212 {
8213 /* A change in nominal type can always be stripped, but we must
8214 preserve the unsignedness. */
8215 if (first)
8216 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8217 first = 0;
8218 op = TREE_OPERAND (op, 0);
8219 /* Keep trying to narrow, but don't assign op to win if it
8220 would turn an integral type into something else. */
8221 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8222 continue;
8223 }
8224
8225 win = op;
8226 }
8227
8228 if (TREE_CODE (op) == COMPONENT_REF
8229 /* Since type_for_size always gives an integer type. */
8230 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8231 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8232 /* Ensure field is laid out already. */
8233 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8234 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
8235 {
8236 unsigned HOST_WIDE_INT innerprec
8237 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
8238 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8239 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8240 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8241
8242 /* We can get this structure field in a narrower type that fits it,
8243 but the resulting extension to its nominal type (a fullword type)
8244 must satisfy the same conditions as for other extensions.
8245
8246 Do this only for fields that are aligned (not bit-fields),
8247 because when bit-field insns will be used there is no
8248 advantage in doing this. */
8249
8250 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8251 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8252 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8253 && type != 0)
8254 {
8255 if (first)
8256 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8257 win = fold_convert (type, op);
8258 }
8259 }
8260
8261 *unsignedp_ptr = uns;
8262 return win;
8263 }
8264 \f
8265 /* Returns true if integer constant C has a value that is permissible
8266 for type TYPE (an INTEGER_TYPE). */
8267
8268 bool
8269 int_fits_type_p (const_tree c, const_tree type)
8270 {
8271 tree type_low_bound, type_high_bound;
8272 bool ok_for_low_bound, ok_for_high_bound, unsc;
8273 double_int dc, dd;
8274
8275 dc = tree_to_double_int (c);
8276 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
8277
8278 retry:
8279 type_low_bound = TYPE_MIN_VALUE (type);
8280 type_high_bound = TYPE_MAX_VALUE (type);
8281
8282 /* If at least one bound of the type is a constant integer, we can check
8283 ourselves and maybe make a decision. If no such decision is possible, but
8284 this type is a subtype, try checking against that. Otherwise, use
8285 double_int_fits_to_tree_p, which checks against the precision.
8286
8287 Compute the status for each possibly constant bound, and return if we see
8288 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8289 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8290 for "constant known to fit". */
8291
8292 /* Check if c >= type_low_bound. */
8293 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8294 {
8295 dd = tree_to_double_int (type_low_bound);
8296 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
8297 {
8298 int c_neg = (!unsc && double_int_negative_p (dc));
8299 int t_neg = (unsc && double_int_negative_p (dd));
8300
8301 if (c_neg && !t_neg)
8302 return false;
8303 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
8304 return false;
8305 }
8306 else if (double_int_cmp (dc, dd, unsc) < 0)
8307 return false;
8308 ok_for_low_bound = true;
8309 }
8310 else
8311 ok_for_low_bound = false;
8312
8313 /* Check if c <= type_high_bound. */
8314 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8315 {
8316 dd = tree_to_double_int (type_high_bound);
8317 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8318 {
8319 int c_neg = (!unsc && double_int_negative_p (dc));
8320 int t_neg = (unsc && double_int_negative_p (dd));
8321
8322 if (t_neg && !c_neg)
8323 return false;
8324 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
8325 return false;
8326 }
8327 else if (double_int_cmp (dc, dd, unsc) > 0)
8328 return false;
8329 ok_for_high_bound = true;
8330 }
8331 else
8332 ok_for_high_bound = false;
8333
8334 /* If the constant fits both bounds, the result is known. */
8335 if (ok_for_low_bound && ok_for_high_bound)
8336 return true;
8337
8338 /* Perform some generic filtering which may allow making a decision
8339 even if the bounds are not constant. First, negative integers
8340 never fit in unsigned types, */
8341 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
8342 return false;
8343
8344 /* Second, narrower types always fit in wider ones. */
8345 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8346 return true;
8347
8348 /* Third, unsigned integers with top bit set never fit signed types. */
8349 if (! TYPE_UNSIGNED (type) && unsc)
8350 {
8351 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8352 if (prec < HOST_BITS_PER_WIDE_INT)
8353 {
8354 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8355 return false;
8356 }
8357 else if (((((unsigned HOST_WIDE_INT) 1)
8358 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8359 return false;
8360 }
8361
8362 /* If we haven't been able to decide at this point, there nothing more we
8363 can check ourselves here. Look at the base type if we have one and it
8364 has the same precision. */
8365 if (TREE_CODE (type) == INTEGER_TYPE
8366 && TREE_TYPE (type) != 0
8367 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8368 {
8369 type = TREE_TYPE (type);
8370 goto retry;
8371 }
8372
8373 /* Or to double_int_fits_to_tree_p, if nothing else. */
8374 return double_int_fits_to_tree_p (type, dc);
8375 }
8376
8377 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8378 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8379 represented (assuming two's-complement arithmetic) within the bit
8380 precision of the type are returned instead. */
8381
8382 void
8383 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8384 {
8385 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8386 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8387 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8388 TYPE_UNSIGNED (type));
8389 else
8390 {
8391 if (TYPE_UNSIGNED (type))
8392 mpz_set_ui (min, 0);
8393 else
8394 {
8395 double_int mn;
8396 mn = double_int_mask (TYPE_PRECISION (type) - 1);
8397 mn = double_int_sext (double_int_add (mn, double_int_one),
8398 TYPE_PRECISION (type));
8399 mpz_set_double_int (min, mn, false);
8400 }
8401 }
8402
8403 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8404 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8405 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8406 TYPE_UNSIGNED (type));
8407 else
8408 {
8409 if (TYPE_UNSIGNED (type))
8410 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
8411 true);
8412 else
8413 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
8414 true);
8415 }
8416 }
8417
8418 /* Return true if VAR is an automatic variable defined in function FN. */
8419
8420 bool
8421 auto_var_in_fn_p (const_tree var, const_tree fn)
8422 {
8423 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8424 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8425 || TREE_CODE (var) == PARM_DECL)
8426 && ! TREE_STATIC (var))
8427 || TREE_CODE (var) == LABEL_DECL
8428 || TREE_CODE (var) == RESULT_DECL));
8429 }
8430
8431 /* Subprogram of following function. Called by walk_tree.
8432
8433 Return *TP if it is an automatic variable or parameter of the
8434 function passed in as DATA. */
8435
8436 static tree
8437 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8438 {
8439 tree fn = (tree) data;
8440
8441 if (TYPE_P (*tp))
8442 *walk_subtrees = 0;
8443
8444 else if (DECL_P (*tp)
8445 && auto_var_in_fn_p (*tp, fn))
8446 return *tp;
8447
8448 return NULL_TREE;
8449 }
8450
8451 /* Returns true if T is, contains, or refers to a type with variable
8452 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8453 arguments, but not the return type. If FN is nonzero, only return
8454 true if a modifier of the type or position of FN is a variable or
8455 parameter inside FN.
8456
8457 This concept is more general than that of C99 'variably modified types':
8458 in C99, a struct type is never variably modified because a VLA may not
8459 appear as a structure member. However, in GNU C code like:
8460
8461 struct S { int i[f()]; };
8462
8463 is valid, and other languages may define similar constructs. */
8464
8465 bool
8466 variably_modified_type_p (tree type, tree fn)
8467 {
8468 tree t;
8469
8470 /* Test if T is either variable (if FN is zero) or an expression containing
8471 a variable in FN. */
8472 #define RETURN_TRUE_IF_VAR(T) \
8473 do { tree _t = (T); \
8474 if (_t != NULL_TREE \
8475 && _t != error_mark_node \
8476 && TREE_CODE (_t) != INTEGER_CST \
8477 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8478 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8479 return true; } while (0)
8480
8481 if (type == error_mark_node)
8482 return false;
8483
8484 /* If TYPE itself has variable size, it is variably modified. */
8485 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8486 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8487
8488 switch (TREE_CODE (type))
8489 {
8490 case POINTER_TYPE:
8491 case REFERENCE_TYPE:
8492 case VECTOR_TYPE:
8493 if (variably_modified_type_p (TREE_TYPE (type), fn))
8494 return true;
8495 break;
8496
8497 case FUNCTION_TYPE:
8498 case METHOD_TYPE:
8499 /* If TYPE is a function type, it is variably modified if the
8500 return type is variably modified. */
8501 if (variably_modified_type_p (TREE_TYPE (type), fn))
8502 return true;
8503 break;
8504
8505 case INTEGER_TYPE:
8506 case REAL_TYPE:
8507 case FIXED_POINT_TYPE:
8508 case ENUMERAL_TYPE:
8509 case BOOLEAN_TYPE:
8510 /* Scalar types are variably modified if their end points
8511 aren't constant. */
8512 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8513 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8514 break;
8515
8516 case RECORD_TYPE:
8517 case UNION_TYPE:
8518 case QUAL_UNION_TYPE:
8519 /* We can't see if any of the fields are variably-modified by the
8520 definition we normally use, since that would produce infinite
8521 recursion via pointers. */
8522 /* This is variably modified if some field's type is. */
8523 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8524 if (TREE_CODE (t) == FIELD_DECL)
8525 {
8526 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8527 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8528 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8529
8530 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8531 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8532 }
8533 break;
8534
8535 case ARRAY_TYPE:
8536 /* Do not call ourselves to avoid infinite recursion. This is
8537 variably modified if the element type is. */
8538 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8539 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8540 break;
8541
8542 default:
8543 break;
8544 }
8545
8546 /* The current language may have other cases to check, but in general,
8547 all other types are not variably modified. */
8548 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8549
8550 #undef RETURN_TRUE_IF_VAR
8551 }
8552
8553 /* Given a DECL or TYPE, return the scope in which it was declared, or
8554 NULL_TREE if there is no containing scope. */
8555
8556 tree
8557 get_containing_scope (const_tree t)
8558 {
8559 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8560 }
8561
8562 /* Return the innermost context enclosing DECL that is
8563 a FUNCTION_DECL, or zero if none. */
8564
8565 tree
8566 decl_function_context (const_tree decl)
8567 {
8568 tree context;
8569
8570 if (TREE_CODE (decl) == ERROR_MARK)
8571 return 0;
8572
8573 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8574 where we look up the function at runtime. Such functions always take
8575 a first argument of type 'pointer to real context'.
8576
8577 C++ should really be fixed to use DECL_CONTEXT for the real context,
8578 and use something else for the "virtual context". */
8579 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8580 context
8581 = TYPE_MAIN_VARIANT
8582 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8583 else
8584 context = DECL_CONTEXT (decl);
8585
8586 while (context && TREE_CODE (context) != FUNCTION_DECL)
8587 {
8588 if (TREE_CODE (context) == BLOCK)
8589 context = BLOCK_SUPERCONTEXT (context);
8590 else
8591 context = get_containing_scope (context);
8592 }
8593
8594 return context;
8595 }
8596
8597 /* Return the innermost context enclosing DECL that is
8598 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8599 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8600
8601 tree
8602 decl_type_context (const_tree decl)
8603 {
8604 tree context = DECL_CONTEXT (decl);
8605
8606 while (context)
8607 switch (TREE_CODE (context))
8608 {
8609 case NAMESPACE_DECL:
8610 case TRANSLATION_UNIT_DECL:
8611 return NULL_TREE;
8612
8613 case RECORD_TYPE:
8614 case UNION_TYPE:
8615 case QUAL_UNION_TYPE:
8616 return context;
8617
8618 case TYPE_DECL:
8619 case FUNCTION_DECL:
8620 context = DECL_CONTEXT (context);
8621 break;
8622
8623 case BLOCK:
8624 context = BLOCK_SUPERCONTEXT (context);
8625 break;
8626
8627 default:
8628 gcc_unreachable ();
8629 }
8630
8631 return NULL_TREE;
8632 }
8633
8634 /* CALL is a CALL_EXPR. Return the declaration for the function
8635 called, or NULL_TREE if the called function cannot be
8636 determined. */
8637
8638 tree
8639 get_callee_fndecl (const_tree call)
8640 {
8641 tree addr;
8642
8643 if (call == error_mark_node)
8644 return error_mark_node;
8645
8646 /* It's invalid to call this function with anything but a
8647 CALL_EXPR. */
8648 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8649
8650 /* The first operand to the CALL is the address of the function
8651 called. */
8652 addr = CALL_EXPR_FN (call);
8653
8654 STRIP_NOPS (addr);
8655
8656 /* If this is a readonly function pointer, extract its initial value. */
8657 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8658 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8659 && DECL_INITIAL (addr))
8660 addr = DECL_INITIAL (addr);
8661
8662 /* If the address is just `&f' for some function `f', then we know
8663 that `f' is being called. */
8664 if (TREE_CODE (addr) == ADDR_EXPR
8665 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8666 return TREE_OPERAND (addr, 0);
8667
8668 /* We couldn't figure out what was being called. */
8669 return NULL_TREE;
8670 }
8671
8672 /* Print debugging information about tree nodes generated during the compile,
8673 and any language-specific information. */
8674
8675 void
8676 dump_tree_statistics (void)
8677 {
8678 if (GATHER_STATISTICS)
8679 {
8680 int i;
8681 int total_nodes, total_bytes;
8682 fprintf (stderr, "Kind Nodes Bytes\n");
8683 fprintf (stderr, "---------------------------------------\n");
8684 total_nodes = total_bytes = 0;
8685 for (i = 0; i < (int) all_kinds; i++)
8686 {
8687 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8688 tree_node_counts[i], tree_node_sizes[i]);
8689 total_nodes += tree_node_counts[i];
8690 total_bytes += tree_node_sizes[i];
8691 }
8692 fprintf (stderr, "---------------------------------------\n");
8693 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8694 fprintf (stderr, "---------------------------------------\n");
8695 fprintf (stderr, "Code Nodes\n");
8696 fprintf (stderr, "----------------------------\n");
8697 for (i = 0; i < (int) MAX_TREE_CODES; i++)
8698 fprintf (stderr, "%-20s %7d\n", tree_code_name[i], tree_code_counts[i]);
8699 fprintf (stderr, "----------------------------\n");
8700 ssanames_print_statistics ();
8701 phinodes_print_statistics ();
8702 }
8703 else
8704 fprintf (stderr, "(No per-node statistics)\n");
8705
8706 print_type_hash_statistics ();
8707 print_debug_expr_statistics ();
8708 print_value_expr_statistics ();
8709 lang_hooks.print_statistics ();
8710 }
8711 \f
8712 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8713
8714 /* Generate a crc32 of a byte. */
8715
8716 static unsigned
8717 crc32_unsigned_bits (unsigned chksum, unsigned value, unsigned bits)
8718 {
8719 unsigned ix;
8720
8721 for (ix = bits; ix--; value <<= 1)
8722 {
8723 unsigned feedback;
8724
8725 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8726 chksum <<= 1;
8727 chksum ^= feedback;
8728 }
8729 return chksum;
8730 }
8731
8732 /* Generate a crc32 of a 32-bit unsigned. */
8733
8734 unsigned
8735 crc32_unsigned (unsigned chksum, unsigned value)
8736 {
8737 return crc32_unsigned_bits (chksum, value, 32);
8738 }
8739
8740 /* Generate a crc32 of a byte. */
8741
8742 unsigned
8743 crc32_byte (unsigned chksum, char byte)
8744 {
8745 return crc32_unsigned_bits (chksum, (unsigned) byte << 24, 8);
8746 }
8747
8748 /* Generate a crc32 of a string. */
8749
8750 unsigned
8751 crc32_string (unsigned chksum, const char *string)
8752 {
8753 do
8754 {
8755 chksum = crc32_byte (chksum, *string);
8756 }
8757 while (*string++);
8758 return chksum;
8759 }
8760
8761 /* P is a string that will be used in a symbol. Mask out any characters
8762 that are not valid in that context. */
8763
8764 void
8765 clean_symbol_name (char *p)
8766 {
8767 for (; *p; p++)
8768 if (! (ISALNUM (*p)
8769 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8770 || *p == '$'
8771 #endif
8772 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8773 || *p == '.'
8774 #endif
8775 ))
8776 *p = '_';
8777 }
8778
8779 /* Generate a name for a special-purpose function.
8780 The generated name may need to be unique across the whole link.
8781 Changes to this function may also require corresponding changes to
8782 xstrdup_mask_random.
8783 TYPE is some string to identify the purpose of this function to the
8784 linker or collect2; it must start with an uppercase letter,
8785 one of:
8786 I - for constructors
8787 D - for destructors
8788 N - for C++ anonymous namespaces
8789 F - for DWARF unwind frame information. */
8790
8791 tree
8792 get_file_function_name (const char *type)
8793 {
8794 char *buf;
8795 const char *p;
8796 char *q;
8797
8798 /* If we already have a name we know to be unique, just use that. */
8799 if (first_global_object_name)
8800 p = q = ASTRDUP (first_global_object_name);
8801 /* If the target is handling the constructors/destructors, they
8802 will be local to this file and the name is only necessary for
8803 debugging purposes.
8804 We also assign sub_I and sub_D sufixes to constructors called from
8805 the global static constructors. These are always local. */
8806 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8807 || (strncmp (type, "sub_", 4) == 0
8808 && (type[4] == 'I' || type[4] == 'D')))
8809 {
8810 const char *file = main_input_filename;
8811 if (! file)
8812 file = input_filename;
8813 /* Just use the file's basename, because the full pathname
8814 might be quite long. */
8815 p = q = ASTRDUP (lbasename (file));
8816 }
8817 else
8818 {
8819 /* Otherwise, the name must be unique across the entire link.
8820 We don't have anything that we know to be unique to this translation
8821 unit, so use what we do have and throw in some randomness. */
8822 unsigned len;
8823 const char *name = weak_global_object_name;
8824 const char *file = main_input_filename;
8825
8826 if (! name)
8827 name = "";
8828 if (! file)
8829 file = input_filename;
8830
8831 len = strlen (file);
8832 q = (char *) alloca (9 + 17 + len + 1);
8833 memcpy (q, file, len + 1);
8834
8835 snprintf (q + len, 9 + 17 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
8836 crc32_string (0, name), get_random_seed (false));
8837
8838 p = q;
8839 }
8840
8841 clean_symbol_name (q);
8842 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8843 + strlen (type));
8844
8845 /* Set up the name of the file-level functions we may need.
8846 Use a global object (which is already required to be unique over
8847 the program) rather than the file name (which imposes extra
8848 constraints). */
8849 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8850
8851 return get_identifier (buf);
8852 }
8853 \f
8854 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8855
8856 /* Complain that the tree code of NODE does not match the expected 0
8857 terminated list of trailing codes. The trailing code list can be
8858 empty, for a more vague error message. FILE, LINE, and FUNCTION
8859 are of the caller. */
8860
8861 void
8862 tree_check_failed (const_tree node, const char *file,
8863 int line, const char *function, ...)
8864 {
8865 va_list args;
8866 const char *buffer;
8867 unsigned length = 0;
8868 int code;
8869
8870 va_start (args, function);
8871 while ((code = va_arg (args, int)))
8872 length += 4 + strlen (tree_code_name[code]);
8873 va_end (args);
8874 if (length)
8875 {
8876 char *tmp;
8877 va_start (args, function);
8878 length += strlen ("expected ");
8879 buffer = tmp = (char *) alloca (length);
8880 length = 0;
8881 while ((code = va_arg (args, int)))
8882 {
8883 const char *prefix = length ? " or " : "expected ";
8884
8885 strcpy (tmp + length, prefix);
8886 length += strlen (prefix);
8887 strcpy (tmp + length, tree_code_name[code]);
8888 length += strlen (tree_code_name[code]);
8889 }
8890 va_end (args);
8891 }
8892 else
8893 buffer = "unexpected node";
8894
8895 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8896 buffer, tree_code_name[TREE_CODE (node)],
8897 function, trim_filename (file), line);
8898 }
8899
8900 /* Complain that the tree code of NODE does match the expected 0
8901 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8902 the caller. */
8903
8904 void
8905 tree_not_check_failed (const_tree node, const char *file,
8906 int line, const char *function, ...)
8907 {
8908 va_list args;
8909 char *buffer;
8910 unsigned length = 0;
8911 int code;
8912
8913 va_start (args, function);
8914 while ((code = va_arg (args, int)))
8915 length += 4 + strlen (tree_code_name[code]);
8916 va_end (args);
8917 va_start (args, function);
8918 buffer = (char *) alloca (length);
8919 length = 0;
8920 while ((code = va_arg (args, int)))
8921 {
8922 if (length)
8923 {
8924 strcpy (buffer + length, " or ");
8925 length += 4;
8926 }
8927 strcpy (buffer + length, tree_code_name[code]);
8928 length += strlen (tree_code_name[code]);
8929 }
8930 va_end (args);
8931
8932 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8933 buffer, tree_code_name[TREE_CODE (node)],
8934 function, trim_filename (file), line);
8935 }
8936
8937 /* Similar to tree_check_failed, except that we check for a class of tree
8938 code, given in CL. */
8939
8940 void
8941 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8942 const char *file, int line, const char *function)
8943 {
8944 internal_error
8945 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8946 TREE_CODE_CLASS_STRING (cl),
8947 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8948 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8949 }
8950
8951 /* Similar to tree_check_failed, except that instead of specifying a
8952 dozen codes, use the knowledge that they're all sequential. */
8953
8954 void
8955 tree_range_check_failed (const_tree node, const char *file, int line,
8956 const char *function, enum tree_code c1,
8957 enum tree_code c2)
8958 {
8959 char *buffer;
8960 unsigned length = 0;
8961 unsigned int c;
8962
8963 for (c = c1; c <= c2; ++c)
8964 length += 4 + strlen (tree_code_name[c]);
8965
8966 length += strlen ("expected ");
8967 buffer = (char *) alloca (length);
8968 length = 0;
8969
8970 for (c = c1; c <= c2; ++c)
8971 {
8972 const char *prefix = length ? " or " : "expected ";
8973
8974 strcpy (buffer + length, prefix);
8975 length += strlen (prefix);
8976 strcpy (buffer + length, tree_code_name[c]);
8977 length += strlen (tree_code_name[c]);
8978 }
8979
8980 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8981 buffer, tree_code_name[TREE_CODE (node)],
8982 function, trim_filename (file), line);
8983 }
8984
8985
8986 /* Similar to tree_check_failed, except that we check that a tree does
8987 not have the specified code, given in CL. */
8988
8989 void
8990 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8991 const char *file, int line, const char *function)
8992 {
8993 internal_error
8994 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8995 TREE_CODE_CLASS_STRING (cl),
8996 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8997 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8998 }
8999
9000
9001 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9002
9003 void
9004 omp_clause_check_failed (const_tree node, const char *file, int line,
9005 const char *function, enum omp_clause_code code)
9006 {
9007 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9008 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
9009 function, trim_filename (file), line);
9010 }
9011
9012
9013 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9014
9015 void
9016 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9017 const char *function, enum omp_clause_code c1,
9018 enum omp_clause_code c2)
9019 {
9020 char *buffer;
9021 unsigned length = 0;
9022 unsigned int c;
9023
9024 for (c = c1; c <= c2; ++c)
9025 length += 4 + strlen (omp_clause_code_name[c]);
9026
9027 length += strlen ("expected ");
9028 buffer = (char *) alloca (length);
9029 length = 0;
9030
9031 for (c = c1; c <= c2; ++c)
9032 {
9033 const char *prefix = length ? " or " : "expected ";
9034
9035 strcpy (buffer + length, prefix);
9036 length += strlen (prefix);
9037 strcpy (buffer + length, omp_clause_code_name[c]);
9038 length += strlen (omp_clause_code_name[c]);
9039 }
9040
9041 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9042 buffer, omp_clause_code_name[TREE_CODE (node)],
9043 function, trim_filename (file), line);
9044 }
9045
9046
9047 #undef DEFTREESTRUCT
9048 #define DEFTREESTRUCT(VAL, NAME) NAME,
9049
9050 static const char *ts_enum_names[] = {
9051 #include "treestruct.def"
9052 };
9053 #undef DEFTREESTRUCT
9054
9055 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9056
9057 /* Similar to tree_class_check_failed, except that we check for
9058 whether CODE contains the tree structure identified by EN. */
9059
9060 void
9061 tree_contains_struct_check_failed (const_tree node,
9062 const enum tree_node_structure_enum en,
9063 const char *file, int line,
9064 const char *function)
9065 {
9066 internal_error
9067 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9068 TS_ENUM_NAME(en),
9069 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
9070 }
9071
9072
9073 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9074 (dynamically sized) vector. */
9075
9076 void
9077 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9078 const char *function)
9079 {
9080 internal_error
9081 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9082 idx + 1, len, function, trim_filename (file), line);
9083 }
9084
9085 /* Similar to above, except that the check is for the bounds of the operand
9086 vector of an expression node EXP. */
9087
9088 void
9089 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9090 int line, const char *function)
9091 {
9092 int code = TREE_CODE (exp);
9093 internal_error
9094 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9095 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
9096 function, trim_filename (file), line);
9097 }
9098
9099 /* Similar to above, except that the check is for the number of
9100 operands of an OMP_CLAUSE node. */
9101
9102 void
9103 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9104 int line, const char *function)
9105 {
9106 internal_error
9107 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9108 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9109 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9110 trim_filename (file), line);
9111 }
9112 #endif /* ENABLE_TREE_CHECKING */
9113 \f
9114 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9115 and mapped to the machine mode MODE. Initialize its fields and build
9116 the information necessary for debugging output. */
9117
9118 static tree
9119 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
9120 {
9121 tree t;
9122 hashval_t hashcode = 0;
9123
9124 t = make_node (VECTOR_TYPE);
9125 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
9126 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9127 SET_TYPE_MODE (t, mode);
9128
9129 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
9130 SET_TYPE_STRUCTURAL_EQUALITY (t);
9131 else if (TYPE_CANONICAL (innertype) != innertype
9132 || mode != VOIDmode)
9133 TYPE_CANONICAL (t)
9134 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
9135
9136 layout_type (t);
9137
9138 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
9139 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
9140 hashcode = iterative_hash_host_wide_int (mode, hashcode);
9141 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
9142 t = type_hash_canon (hashcode, t);
9143
9144 /* We have built a main variant, based on the main variant of the
9145 inner type. Use it to build the variant we return. */
9146 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9147 && TREE_TYPE (t) != innertype)
9148 return build_type_attribute_qual_variant (t,
9149 TYPE_ATTRIBUTES (innertype),
9150 TYPE_QUALS (innertype));
9151
9152 return t;
9153 }
9154
9155 static tree
9156 make_or_reuse_type (unsigned size, int unsignedp)
9157 {
9158 if (size == INT_TYPE_SIZE)
9159 return unsignedp ? unsigned_type_node : integer_type_node;
9160 if (size == CHAR_TYPE_SIZE)
9161 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9162 if (size == SHORT_TYPE_SIZE)
9163 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9164 if (size == LONG_TYPE_SIZE)
9165 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9166 if (size == LONG_LONG_TYPE_SIZE)
9167 return (unsignedp ? long_long_unsigned_type_node
9168 : long_long_integer_type_node);
9169 if (size == 128 && int128_integer_type_node)
9170 return (unsignedp ? int128_unsigned_type_node
9171 : int128_integer_type_node);
9172
9173 if (unsignedp)
9174 return make_unsigned_type (size);
9175 else
9176 return make_signed_type (size);
9177 }
9178
9179 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9180
9181 static tree
9182 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9183 {
9184 if (satp)
9185 {
9186 if (size == SHORT_FRACT_TYPE_SIZE)
9187 return unsignedp ? sat_unsigned_short_fract_type_node
9188 : sat_short_fract_type_node;
9189 if (size == FRACT_TYPE_SIZE)
9190 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9191 if (size == LONG_FRACT_TYPE_SIZE)
9192 return unsignedp ? sat_unsigned_long_fract_type_node
9193 : sat_long_fract_type_node;
9194 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9195 return unsignedp ? sat_unsigned_long_long_fract_type_node
9196 : sat_long_long_fract_type_node;
9197 }
9198 else
9199 {
9200 if (size == SHORT_FRACT_TYPE_SIZE)
9201 return unsignedp ? unsigned_short_fract_type_node
9202 : short_fract_type_node;
9203 if (size == FRACT_TYPE_SIZE)
9204 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9205 if (size == LONG_FRACT_TYPE_SIZE)
9206 return unsignedp ? unsigned_long_fract_type_node
9207 : long_fract_type_node;
9208 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9209 return unsignedp ? unsigned_long_long_fract_type_node
9210 : long_long_fract_type_node;
9211 }
9212
9213 return make_fract_type (size, unsignedp, satp);
9214 }
9215
9216 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9217
9218 static tree
9219 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9220 {
9221 if (satp)
9222 {
9223 if (size == SHORT_ACCUM_TYPE_SIZE)
9224 return unsignedp ? sat_unsigned_short_accum_type_node
9225 : sat_short_accum_type_node;
9226 if (size == ACCUM_TYPE_SIZE)
9227 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9228 if (size == LONG_ACCUM_TYPE_SIZE)
9229 return unsignedp ? sat_unsigned_long_accum_type_node
9230 : sat_long_accum_type_node;
9231 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9232 return unsignedp ? sat_unsigned_long_long_accum_type_node
9233 : sat_long_long_accum_type_node;
9234 }
9235 else
9236 {
9237 if (size == SHORT_ACCUM_TYPE_SIZE)
9238 return unsignedp ? unsigned_short_accum_type_node
9239 : short_accum_type_node;
9240 if (size == ACCUM_TYPE_SIZE)
9241 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9242 if (size == LONG_ACCUM_TYPE_SIZE)
9243 return unsignedp ? unsigned_long_accum_type_node
9244 : long_accum_type_node;
9245 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9246 return unsignedp ? unsigned_long_long_accum_type_node
9247 : long_long_accum_type_node;
9248 }
9249
9250 return make_accum_type (size, unsignedp, satp);
9251 }
9252
9253 /* Create nodes for all integer types (and error_mark_node) using the sizes
9254 of C datatypes. SIGNED_CHAR specifies whether char is signed,
9255 SHORT_DOUBLE specifies whether double should be of the same precision
9256 as float. */
9257
9258 void
9259 build_common_tree_nodes (bool signed_char, bool short_double)
9260 {
9261 error_mark_node = make_node (ERROR_MARK);
9262 TREE_TYPE (error_mark_node) = error_mark_node;
9263
9264 initialize_sizetypes ();
9265
9266 /* Define both `signed char' and `unsigned char'. */
9267 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9268 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9269 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9270 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9271
9272 /* Define `char', which is like either `signed char' or `unsigned char'
9273 but not the same as either. */
9274 char_type_node
9275 = (signed_char
9276 ? make_signed_type (CHAR_TYPE_SIZE)
9277 : make_unsigned_type (CHAR_TYPE_SIZE));
9278 TYPE_STRING_FLAG (char_type_node) = 1;
9279
9280 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9281 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9282 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9283 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9284 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9285 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9286 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9287 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9288 #if HOST_BITS_PER_WIDE_INT >= 64
9289 /* TODO: This isn't correct, but as logic depends at the moment on
9290 host's instead of target's wide-integer.
9291 If there is a target not supporting TImode, but has an 128-bit
9292 integer-scalar register, this target check needs to be adjusted. */
9293 if (targetm.scalar_mode_supported_p (TImode))
9294 {
9295 int128_integer_type_node = make_signed_type (128);
9296 int128_unsigned_type_node = make_unsigned_type (128);
9297 }
9298 #endif
9299
9300 /* Define a boolean type. This type only represents boolean values but
9301 may be larger than char depending on the value of BOOL_TYPE_SIZE.
9302 Front ends which want to override this size (i.e. Java) can redefine
9303 boolean_type_node before calling build_common_tree_nodes_2. */
9304 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9305 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9306 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9307 TYPE_PRECISION (boolean_type_node) = 1;
9308
9309 /* Define what type to use for size_t. */
9310 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9311 size_type_node = unsigned_type_node;
9312 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9313 size_type_node = long_unsigned_type_node;
9314 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9315 size_type_node = long_long_unsigned_type_node;
9316 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9317 size_type_node = short_unsigned_type_node;
9318 else
9319 gcc_unreachable ();
9320
9321 /* Fill in the rest of the sized types. Reuse existing type nodes
9322 when possible. */
9323 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9324 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9325 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9326 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9327 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9328
9329 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9330 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9331 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9332 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9333 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9334
9335 access_public_node = get_identifier ("public");
9336 access_protected_node = get_identifier ("protected");
9337 access_private_node = get_identifier ("private");
9338
9339 /* Define these next since types below may used them. */
9340 integer_zero_node = build_int_cst (integer_type_node, 0);
9341 integer_one_node = build_int_cst (integer_type_node, 1);
9342 integer_three_node = build_int_cst (integer_type_node, 3);
9343 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9344
9345 size_zero_node = size_int (0);
9346 size_one_node = size_int (1);
9347 bitsize_zero_node = bitsize_int (0);
9348 bitsize_one_node = bitsize_int (1);
9349 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9350
9351 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9352 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9353
9354 void_type_node = make_node (VOID_TYPE);
9355 layout_type (void_type_node);
9356
9357 /* We are not going to have real types in C with less than byte alignment,
9358 so we might as well not have any types that claim to have it. */
9359 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9360 TYPE_USER_ALIGN (void_type_node) = 0;
9361
9362 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9363 layout_type (TREE_TYPE (null_pointer_node));
9364
9365 ptr_type_node = build_pointer_type (void_type_node);
9366 const_ptr_type_node
9367 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9368 fileptr_type_node = ptr_type_node;
9369
9370 float_type_node = make_node (REAL_TYPE);
9371 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9372 layout_type (float_type_node);
9373
9374 double_type_node = make_node (REAL_TYPE);
9375 if (short_double)
9376 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9377 else
9378 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9379 layout_type (double_type_node);
9380
9381 long_double_type_node = make_node (REAL_TYPE);
9382 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9383 layout_type (long_double_type_node);
9384
9385 float_ptr_type_node = build_pointer_type (float_type_node);
9386 double_ptr_type_node = build_pointer_type (double_type_node);
9387 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9388 integer_ptr_type_node = build_pointer_type (integer_type_node);
9389
9390 /* Fixed size integer types. */
9391 uint16_type_node = build_nonstandard_integer_type (16, true);
9392 uint32_type_node = build_nonstandard_integer_type (32, true);
9393 uint64_type_node = build_nonstandard_integer_type (64, true);
9394
9395 /* Decimal float types. */
9396 dfloat32_type_node = make_node (REAL_TYPE);
9397 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9398 layout_type (dfloat32_type_node);
9399 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9400 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9401
9402 dfloat64_type_node = make_node (REAL_TYPE);
9403 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9404 layout_type (dfloat64_type_node);
9405 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9406 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9407
9408 dfloat128_type_node = make_node (REAL_TYPE);
9409 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9410 layout_type (dfloat128_type_node);
9411 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9412 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9413
9414 complex_integer_type_node = build_complex_type (integer_type_node);
9415 complex_float_type_node = build_complex_type (float_type_node);
9416 complex_double_type_node = build_complex_type (double_type_node);
9417 complex_long_double_type_node = build_complex_type (long_double_type_node);
9418
9419 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9420 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9421 sat_ ## KIND ## _type_node = \
9422 make_sat_signed_ ## KIND ## _type (SIZE); \
9423 sat_unsigned_ ## KIND ## _type_node = \
9424 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9425 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9426 unsigned_ ## KIND ## _type_node = \
9427 make_unsigned_ ## KIND ## _type (SIZE);
9428
9429 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9430 sat_ ## WIDTH ## KIND ## _type_node = \
9431 make_sat_signed_ ## KIND ## _type (SIZE); \
9432 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9433 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9434 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9435 unsigned_ ## WIDTH ## KIND ## _type_node = \
9436 make_unsigned_ ## KIND ## _type (SIZE);
9437
9438 /* Make fixed-point type nodes based on four different widths. */
9439 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9440 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9441 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9442 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9443 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9444
9445 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9446 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9447 NAME ## _type_node = \
9448 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9449 u ## NAME ## _type_node = \
9450 make_or_reuse_unsigned_ ## KIND ## _type \
9451 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9452 sat_ ## NAME ## _type_node = \
9453 make_or_reuse_sat_signed_ ## KIND ## _type \
9454 (GET_MODE_BITSIZE (MODE ## mode)); \
9455 sat_u ## NAME ## _type_node = \
9456 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9457 (GET_MODE_BITSIZE (U ## MODE ## mode));
9458
9459 /* Fixed-point type and mode nodes. */
9460 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9461 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9462 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9463 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9464 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9465 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9466 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9467 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9468 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9469 MAKE_FIXED_MODE_NODE (accum, da, DA)
9470 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9471
9472 {
9473 tree t = targetm.build_builtin_va_list ();
9474
9475 /* Many back-ends define record types without setting TYPE_NAME.
9476 If we copied the record type here, we'd keep the original
9477 record type without a name. This breaks name mangling. So,
9478 don't copy record types and let c_common_nodes_and_builtins()
9479 declare the type to be __builtin_va_list. */
9480 if (TREE_CODE (t) != RECORD_TYPE)
9481 t = build_variant_type_copy (t);
9482
9483 va_list_type_node = t;
9484 }
9485 }
9486
9487 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9488
9489 static void
9490 local_define_builtin (const char *name, tree type, enum built_in_function code,
9491 const char *library_name, int ecf_flags)
9492 {
9493 tree decl;
9494
9495 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9496 library_name, NULL_TREE);
9497 if (ecf_flags & ECF_CONST)
9498 TREE_READONLY (decl) = 1;
9499 if (ecf_flags & ECF_PURE)
9500 DECL_PURE_P (decl) = 1;
9501 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9502 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9503 if (ecf_flags & ECF_NORETURN)
9504 TREE_THIS_VOLATILE (decl) = 1;
9505 if (ecf_flags & ECF_NOTHROW)
9506 TREE_NOTHROW (decl) = 1;
9507 if (ecf_flags & ECF_MALLOC)
9508 DECL_IS_MALLOC (decl) = 1;
9509 if (ecf_flags & ECF_LEAF)
9510 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9511 NULL, DECL_ATTRIBUTES (decl));
9512 if ((ecf_flags & ECF_TM_PURE) && flag_tm)
9513 apply_tm_attr (decl, get_identifier ("transaction_pure"));
9514
9515 set_builtin_decl (code, decl, true);
9516 }
9517
9518 /* Call this function after instantiating all builtins that the language
9519 front end cares about. This will build the rest of the builtins that
9520 are relied upon by the tree optimizers and the middle-end. */
9521
9522 void
9523 build_common_builtin_nodes (void)
9524 {
9525 tree tmp, ftype;
9526 int ecf_flags;
9527
9528 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
9529 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9530 {
9531 ftype = build_function_type_list (ptr_type_node,
9532 ptr_type_node, const_ptr_type_node,
9533 size_type_node, NULL_TREE);
9534
9535 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
9536 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9537 "memcpy", ECF_NOTHROW | ECF_LEAF);
9538 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9539 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9540 "memmove", ECF_NOTHROW | ECF_LEAF);
9541 }
9542
9543 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
9544 {
9545 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9546 const_ptr_type_node, size_type_node,
9547 NULL_TREE);
9548 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9549 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9550 }
9551
9552 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
9553 {
9554 ftype = build_function_type_list (ptr_type_node,
9555 ptr_type_node, integer_type_node,
9556 size_type_node, NULL_TREE);
9557 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9558 "memset", ECF_NOTHROW | ECF_LEAF);
9559 }
9560
9561 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
9562 {
9563 ftype = build_function_type_list (ptr_type_node,
9564 size_type_node, NULL_TREE);
9565 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9566 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9567 }
9568
9569 ftype = build_function_type_list (ptr_type_node, size_type_node,
9570 size_type_node, NULL_TREE);
9571 local_define_builtin ("__builtin_alloca_with_align", ftype,
9572 BUILT_IN_ALLOCA_WITH_ALIGN, "alloca",
9573 ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9574
9575 /* If we're checking the stack, `alloca' can throw. */
9576 if (flag_stack_check)
9577 {
9578 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA)) = 0;
9579 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN)) = 0;
9580 }
9581
9582 ftype = build_function_type_list (void_type_node,
9583 ptr_type_node, ptr_type_node,
9584 ptr_type_node, NULL_TREE);
9585 local_define_builtin ("__builtin_init_trampoline", ftype,
9586 BUILT_IN_INIT_TRAMPOLINE,
9587 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9588 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
9589 BUILT_IN_INIT_HEAP_TRAMPOLINE,
9590 "__builtin_init_heap_trampoline",
9591 ECF_NOTHROW | ECF_LEAF);
9592
9593 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9594 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9595 BUILT_IN_ADJUST_TRAMPOLINE,
9596 "__builtin_adjust_trampoline",
9597 ECF_CONST | ECF_NOTHROW);
9598
9599 ftype = build_function_type_list (void_type_node,
9600 ptr_type_node, ptr_type_node, NULL_TREE);
9601 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9602 BUILT_IN_NONLOCAL_GOTO,
9603 "__builtin_nonlocal_goto",
9604 ECF_NORETURN | ECF_NOTHROW);
9605
9606 ftype = build_function_type_list (void_type_node,
9607 ptr_type_node, ptr_type_node, NULL_TREE);
9608 local_define_builtin ("__builtin_setjmp_setup", ftype,
9609 BUILT_IN_SETJMP_SETUP,
9610 "__builtin_setjmp_setup", ECF_NOTHROW);
9611
9612 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9613 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9614 BUILT_IN_SETJMP_DISPATCHER,
9615 "__builtin_setjmp_dispatcher",
9616 ECF_PURE | ECF_NOTHROW);
9617
9618 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9619 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9620 BUILT_IN_SETJMP_RECEIVER,
9621 "__builtin_setjmp_receiver", ECF_NOTHROW);
9622
9623 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9624 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9625 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9626
9627 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9628 local_define_builtin ("__builtin_stack_restore", ftype,
9629 BUILT_IN_STACK_RESTORE,
9630 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9631
9632 /* If there's a possibility that we might use the ARM EABI, build the
9633 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9634 if (targetm.arm_eabi_unwinder)
9635 {
9636 ftype = build_function_type_list (void_type_node, NULL_TREE);
9637 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9638 BUILT_IN_CXA_END_CLEANUP,
9639 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9640 }
9641
9642 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9643 local_define_builtin ("__builtin_unwind_resume", ftype,
9644 BUILT_IN_UNWIND_RESUME,
9645 ((targetm_common.except_unwind_info (&global_options)
9646 == UI_SJLJ)
9647 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9648 ECF_NORETURN);
9649
9650 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
9651 {
9652 ftype = build_function_type_list (ptr_type_node, integer_type_node,
9653 NULL_TREE);
9654 local_define_builtin ("__builtin_return_address", ftype,
9655 BUILT_IN_RETURN_ADDRESS,
9656 "__builtin_return_address",
9657 ECF_NOTHROW);
9658 }
9659
9660 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
9661 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
9662 {
9663 ftype = build_function_type_list (void_type_node, ptr_type_node,
9664 ptr_type_node, NULL_TREE);
9665 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
9666 local_define_builtin ("__cyg_profile_func_enter", ftype,
9667 BUILT_IN_PROFILE_FUNC_ENTER,
9668 "__cyg_profile_func_enter", 0);
9669 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
9670 local_define_builtin ("__cyg_profile_func_exit", ftype,
9671 BUILT_IN_PROFILE_FUNC_EXIT,
9672 "__cyg_profile_func_exit", 0);
9673 }
9674
9675 /* The exception object and filter values from the runtime. The argument
9676 must be zero before exception lowering, i.e. from the front end. After
9677 exception lowering, it will be the region number for the exception
9678 landing pad. These functions are PURE instead of CONST to prevent
9679 them from being hoisted past the exception edge that will initialize
9680 its value in the landing pad. */
9681 ftype = build_function_type_list (ptr_type_node,
9682 integer_type_node, NULL_TREE);
9683 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
9684 /* Only use TM_PURE if we we have TM language support. */
9685 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
9686 ecf_flags |= ECF_TM_PURE;
9687 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9688 "__builtin_eh_pointer", ecf_flags);
9689
9690 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9691 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
9692 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9693 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9694
9695 ftype = build_function_type_list (void_type_node,
9696 integer_type_node, integer_type_node,
9697 NULL_TREE);
9698 local_define_builtin ("__builtin_eh_copy_values", ftype,
9699 BUILT_IN_EH_COPY_VALUES,
9700 "__builtin_eh_copy_values", ECF_NOTHROW);
9701
9702 /* Complex multiplication and division. These are handled as builtins
9703 rather than optabs because emit_library_call_value doesn't support
9704 complex. Further, we can do slightly better with folding these
9705 beasties if the real and complex parts of the arguments are separate. */
9706 {
9707 int mode;
9708
9709 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9710 {
9711 char mode_name_buf[4], *q;
9712 const char *p;
9713 enum built_in_function mcode, dcode;
9714 tree type, inner_type;
9715 const char *prefix = "__";
9716
9717 if (targetm.libfunc_gnu_prefix)
9718 prefix = "__gnu_";
9719
9720 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9721 if (type == NULL)
9722 continue;
9723 inner_type = TREE_TYPE (type);
9724
9725 ftype = build_function_type_list (type, inner_type, inner_type,
9726 inner_type, inner_type, NULL_TREE);
9727
9728 mcode = ((enum built_in_function)
9729 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9730 dcode = ((enum built_in_function)
9731 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9732
9733 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9734 *q = TOLOWER (*p);
9735 *q = '\0';
9736
9737 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
9738 NULL);
9739 local_define_builtin (built_in_names[mcode], ftype, mcode,
9740 built_in_names[mcode],
9741 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9742
9743 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
9744 NULL);
9745 local_define_builtin (built_in_names[dcode], ftype, dcode,
9746 built_in_names[dcode],
9747 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9748 }
9749 }
9750 }
9751
9752 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9753 better way.
9754
9755 If we requested a pointer to a vector, build up the pointers that
9756 we stripped off while looking for the inner type. Similarly for
9757 return values from functions.
9758
9759 The argument TYPE is the top of the chain, and BOTTOM is the
9760 new type which we will point to. */
9761
9762 tree
9763 reconstruct_complex_type (tree type, tree bottom)
9764 {
9765 tree inner, outer;
9766
9767 if (TREE_CODE (type) == POINTER_TYPE)
9768 {
9769 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9770 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9771 TYPE_REF_CAN_ALIAS_ALL (type));
9772 }
9773 else if (TREE_CODE (type) == REFERENCE_TYPE)
9774 {
9775 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9776 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9777 TYPE_REF_CAN_ALIAS_ALL (type));
9778 }
9779 else if (TREE_CODE (type) == ARRAY_TYPE)
9780 {
9781 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9782 outer = build_array_type (inner, TYPE_DOMAIN (type));
9783 }
9784 else if (TREE_CODE (type) == FUNCTION_TYPE)
9785 {
9786 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9787 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9788 }
9789 else if (TREE_CODE (type) == METHOD_TYPE)
9790 {
9791 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9792 /* The build_method_type_directly() routine prepends 'this' to argument list,
9793 so we must compensate by getting rid of it. */
9794 outer
9795 = build_method_type_directly
9796 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9797 inner,
9798 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9799 }
9800 else if (TREE_CODE (type) == OFFSET_TYPE)
9801 {
9802 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9803 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9804 }
9805 else
9806 return bottom;
9807
9808 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9809 TYPE_QUALS (type));
9810 }
9811
9812 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9813 the inner type. */
9814 tree
9815 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9816 {
9817 int nunits;
9818
9819 switch (GET_MODE_CLASS (mode))
9820 {
9821 case MODE_VECTOR_INT:
9822 case MODE_VECTOR_FLOAT:
9823 case MODE_VECTOR_FRACT:
9824 case MODE_VECTOR_UFRACT:
9825 case MODE_VECTOR_ACCUM:
9826 case MODE_VECTOR_UACCUM:
9827 nunits = GET_MODE_NUNITS (mode);
9828 break;
9829
9830 case MODE_INT:
9831 /* Check that there are no leftover bits. */
9832 gcc_assert (GET_MODE_BITSIZE (mode)
9833 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9834
9835 nunits = GET_MODE_BITSIZE (mode)
9836 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9837 break;
9838
9839 default:
9840 gcc_unreachable ();
9841 }
9842
9843 return make_vector_type (innertype, nunits, mode);
9844 }
9845
9846 /* Similarly, but takes the inner type and number of units, which must be
9847 a power of two. */
9848
9849 tree
9850 build_vector_type (tree innertype, int nunits)
9851 {
9852 return make_vector_type (innertype, nunits, VOIDmode);
9853 }
9854
9855 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
9856
9857 tree
9858 build_opaque_vector_type (tree innertype, int nunits)
9859 {
9860 tree t = make_vector_type (innertype, nunits, VOIDmode);
9861 tree cand;
9862 /* We always build the non-opaque variant before the opaque one,
9863 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
9864 cand = TYPE_NEXT_VARIANT (t);
9865 if (cand
9866 && TYPE_VECTOR_OPAQUE (cand)
9867 && check_qualified_type (cand, t, TYPE_QUALS (t)))
9868 return cand;
9869 /* Othewise build a variant type and make sure to queue it after
9870 the non-opaque type. */
9871 cand = build_distinct_type_copy (t);
9872 TYPE_VECTOR_OPAQUE (cand) = true;
9873 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
9874 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
9875 TYPE_NEXT_VARIANT (t) = cand;
9876 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
9877 return cand;
9878 }
9879
9880
9881 /* Given an initializer INIT, return TRUE if INIT is zero or some
9882 aggregate of zeros. Otherwise return FALSE. */
9883 bool
9884 initializer_zerop (const_tree init)
9885 {
9886 tree elt;
9887
9888 STRIP_NOPS (init);
9889
9890 switch (TREE_CODE (init))
9891 {
9892 case INTEGER_CST:
9893 return integer_zerop (init);
9894
9895 case REAL_CST:
9896 /* ??? Note that this is not correct for C4X float formats. There,
9897 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9898 negative exponent. */
9899 return real_zerop (init)
9900 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9901
9902 case FIXED_CST:
9903 return fixed_zerop (init);
9904
9905 case COMPLEX_CST:
9906 return integer_zerop (init)
9907 || (real_zerop (init)
9908 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9909 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9910
9911 case VECTOR_CST:
9912 {
9913 unsigned i;
9914 for (i = 0; i < VECTOR_CST_NELTS (init); ++i)
9915 if (!initializer_zerop (VECTOR_CST_ELT (init, i)))
9916 return false;
9917 return true;
9918 }
9919
9920 case CONSTRUCTOR:
9921 {
9922 unsigned HOST_WIDE_INT idx;
9923
9924 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9925 if (!initializer_zerop (elt))
9926 return false;
9927 return true;
9928 }
9929
9930 case STRING_CST:
9931 {
9932 int i;
9933
9934 /* We need to loop through all elements to handle cases like
9935 "\0" and "\0foobar". */
9936 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
9937 if (TREE_STRING_POINTER (init)[i] != '\0')
9938 return false;
9939
9940 return true;
9941 }
9942
9943 default:
9944 return false;
9945 }
9946 }
9947
9948 /* Build an empty statement at location LOC. */
9949
9950 tree
9951 build_empty_stmt (location_t loc)
9952 {
9953 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9954 SET_EXPR_LOCATION (t, loc);
9955 return t;
9956 }
9957
9958
9959 /* Build an OpenMP clause with code CODE. LOC is the location of the
9960 clause. */
9961
9962 tree
9963 build_omp_clause (location_t loc, enum omp_clause_code code)
9964 {
9965 tree t;
9966 int size, length;
9967
9968 length = omp_clause_num_ops[code];
9969 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9970
9971 record_node_allocation_statistics (OMP_CLAUSE, size);
9972
9973 t = ggc_alloc_tree_node (size);
9974 memset (t, 0, size);
9975 TREE_SET_CODE (t, OMP_CLAUSE);
9976 OMP_CLAUSE_SET_CODE (t, code);
9977 OMP_CLAUSE_LOCATION (t) = loc;
9978
9979 return t;
9980 }
9981
9982 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9983 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9984 Except for the CODE and operand count field, other storage for the
9985 object is initialized to zeros. */
9986
9987 tree
9988 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9989 {
9990 tree t;
9991 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9992
9993 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9994 gcc_assert (len >= 1);
9995
9996 record_node_allocation_statistics (code, length);
9997
9998 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
9999
10000 TREE_SET_CODE (t, code);
10001
10002 /* Can't use TREE_OPERAND to store the length because if checking is
10003 enabled, it will try to check the length before we store it. :-P */
10004 t->exp.operands[0] = build_int_cst (sizetype, len);
10005
10006 return t;
10007 }
10008
10009 /* Helper function for build_call_* functions; build a CALL_EXPR with
10010 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10011 the argument slots. */
10012
10013 static tree
10014 build_call_1 (tree return_type, tree fn, int nargs)
10015 {
10016 tree t;
10017
10018 t = build_vl_exp (CALL_EXPR, nargs + 3);
10019 TREE_TYPE (t) = return_type;
10020 CALL_EXPR_FN (t) = fn;
10021 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10022
10023 return t;
10024 }
10025
10026 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10027 FN and a null static chain slot. NARGS is the number of call arguments
10028 which are specified as "..." arguments. */
10029
10030 tree
10031 build_call_nary (tree return_type, tree fn, int nargs, ...)
10032 {
10033 tree ret;
10034 va_list args;
10035 va_start (args, nargs);
10036 ret = build_call_valist (return_type, fn, nargs, args);
10037 va_end (args);
10038 return ret;
10039 }
10040
10041 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10042 FN and a null static chain slot. NARGS is the number of call arguments
10043 which are specified as a va_list ARGS. */
10044
10045 tree
10046 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10047 {
10048 tree t;
10049 int i;
10050
10051 t = build_call_1 (return_type, fn, nargs);
10052 for (i = 0; i < nargs; i++)
10053 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10054 process_call_operands (t);
10055 return t;
10056 }
10057
10058 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10059 FN and a null static chain slot. NARGS is the number of call arguments
10060 which are specified as a tree array ARGS. */
10061
10062 tree
10063 build_call_array_loc (location_t loc, tree return_type, tree fn,
10064 int nargs, const tree *args)
10065 {
10066 tree t;
10067 int i;
10068
10069 t = build_call_1 (return_type, fn, nargs);
10070 for (i = 0; i < nargs; i++)
10071 CALL_EXPR_ARG (t, i) = args[i];
10072 process_call_operands (t);
10073 SET_EXPR_LOCATION (t, loc);
10074 return t;
10075 }
10076
10077 /* Like build_call_array, but takes a VEC. */
10078
10079 tree
10080 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
10081 {
10082 tree ret, t;
10083 unsigned int ix;
10084
10085 ret = build_call_1 (return_type, fn, VEC_length (tree, args));
10086 FOR_EACH_VEC_ELT (tree, args, ix, t)
10087 CALL_EXPR_ARG (ret, ix) = t;
10088 process_call_operands (ret);
10089 return ret;
10090 }
10091
10092
10093 /* Returns true if it is possible to prove that the index of
10094 an array access REF (an ARRAY_REF expression) falls into the
10095 array bounds. */
10096
10097 bool
10098 in_array_bounds_p (tree ref)
10099 {
10100 tree idx = TREE_OPERAND (ref, 1);
10101 tree min, max;
10102
10103 if (TREE_CODE (idx) != INTEGER_CST)
10104 return false;
10105
10106 min = array_ref_low_bound (ref);
10107 max = array_ref_up_bound (ref);
10108 if (!min
10109 || !max
10110 || TREE_CODE (min) != INTEGER_CST
10111 || TREE_CODE (max) != INTEGER_CST)
10112 return false;
10113
10114 if (tree_int_cst_lt (idx, min)
10115 || tree_int_cst_lt (max, idx))
10116 return false;
10117
10118 return true;
10119 }
10120
10121 /* Returns true if it is possible to prove that the range of
10122 an array access REF (an ARRAY_RANGE_REF expression) falls
10123 into the array bounds. */
10124
10125 bool
10126 range_in_array_bounds_p (tree ref)
10127 {
10128 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
10129 tree range_min, range_max, min, max;
10130
10131 range_min = TYPE_MIN_VALUE (domain_type);
10132 range_max = TYPE_MAX_VALUE (domain_type);
10133 if (!range_min
10134 || !range_max
10135 || TREE_CODE (range_min) != INTEGER_CST
10136 || TREE_CODE (range_max) != INTEGER_CST)
10137 return false;
10138
10139 min = array_ref_low_bound (ref);
10140 max = array_ref_up_bound (ref);
10141 if (!min
10142 || !max
10143 || TREE_CODE (min) != INTEGER_CST
10144 || TREE_CODE (max) != INTEGER_CST)
10145 return false;
10146
10147 if (tree_int_cst_lt (range_min, min)
10148 || tree_int_cst_lt (max, range_max))
10149 return false;
10150
10151 return true;
10152 }
10153
10154 /* Return true if T (assumed to be a DECL) must be assigned a memory
10155 location. */
10156
10157 bool
10158 needs_to_live_in_memory (const_tree t)
10159 {
10160 if (TREE_CODE (t) == SSA_NAME)
10161 t = SSA_NAME_VAR (t);
10162
10163 return (TREE_ADDRESSABLE (t)
10164 || is_global_var (t)
10165 || (TREE_CODE (t) == RESULT_DECL
10166 && !DECL_BY_REFERENCE (t)
10167 && aggregate_value_p (t, current_function_decl)));
10168 }
10169
10170 /* Return value of a constant X and sign-extend it. */
10171
10172 HOST_WIDE_INT
10173 int_cst_value (const_tree x)
10174 {
10175 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10176 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
10177
10178 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10179 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10180 || TREE_INT_CST_HIGH (x) == -1);
10181
10182 if (bits < HOST_BITS_PER_WIDE_INT)
10183 {
10184 bool negative = ((val >> (bits - 1)) & 1) != 0;
10185 if (negative)
10186 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
10187 else
10188 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
10189 }
10190
10191 return val;
10192 }
10193
10194 /* Return value of a constant X and sign-extend it. */
10195
10196 HOST_WIDEST_INT
10197 widest_int_cst_value (const_tree x)
10198 {
10199 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10200 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
10201
10202 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
10203 gcc_assert (HOST_BITS_PER_WIDEST_INT >= HOST_BITS_PER_DOUBLE_INT);
10204 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
10205 << HOST_BITS_PER_WIDE_INT);
10206 #else
10207 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10208 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10209 || TREE_INT_CST_HIGH (x) == -1);
10210 #endif
10211
10212 if (bits < HOST_BITS_PER_WIDEST_INT)
10213 {
10214 bool negative = ((val >> (bits - 1)) & 1) != 0;
10215 if (negative)
10216 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
10217 else
10218 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
10219 }
10220
10221 return val;
10222 }
10223
10224 /* If TYPE is an integral or pointer type, return an integer type with
10225 the same precision which is unsigned iff UNSIGNEDP is true, or itself
10226 if TYPE is already an integer type of signedness UNSIGNEDP. */
10227
10228 tree
10229 signed_or_unsigned_type_for (int unsignedp, tree type)
10230 {
10231 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
10232 return type;
10233
10234 if (!INTEGRAL_TYPE_P (type)
10235 && !POINTER_TYPE_P (type))
10236 return NULL_TREE;
10237
10238 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
10239 }
10240
10241 /* If TYPE is an integral or pointer type, return an integer type with
10242 the same precision which is unsigned, or itself if TYPE is already an
10243 unsigned integer type. */
10244
10245 tree
10246 unsigned_type_for (tree type)
10247 {
10248 return signed_or_unsigned_type_for (1, type);
10249 }
10250
10251 /* If TYPE is an integral or pointer type, return an integer type with
10252 the same precision which is signed, or itself if TYPE is already a
10253 signed integer type. */
10254
10255 tree
10256 signed_type_for (tree type)
10257 {
10258 return signed_or_unsigned_type_for (0, type);
10259 }
10260
10261 /* Returns the largest value obtainable by casting something in INNER type to
10262 OUTER type. */
10263
10264 tree
10265 upper_bound_in_type (tree outer, tree inner)
10266 {
10267 double_int high;
10268 unsigned int det = 0;
10269 unsigned oprec = TYPE_PRECISION (outer);
10270 unsigned iprec = TYPE_PRECISION (inner);
10271 unsigned prec;
10272
10273 /* Compute a unique number for every combination. */
10274 det |= (oprec > iprec) ? 4 : 0;
10275 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10276 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10277
10278 /* Determine the exponent to use. */
10279 switch (det)
10280 {
10281 case 0:
10282 case 1:
10283 /* oprec <= iprec, outer: signed, inner: don't care. */
10284 prec = oprec - 1;
10285 break;
10286 case 2:
10287 case 3:
10288 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10289 prec = oprec;
10290 break;
10291 case 4:
10292 /* oprec > iprec, outer: signed, inner: signed. */
10293 prec = iprec - 1;
10294 break;
10295 case 5:
10296 /* oprec > iprec, outer: signed, inner: unsigned. */
10297 prec = iprec;
10298 break;
10299 case 6:
10300 /* oprec > iprec, outer: unsigned, inner: signed. */
10301 prec = oprec;
10302 break;
10303 case 7:
10304 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10305 prec = iprec;
10306 break;
10307 default:
10308 gcc_unreachable ();
10309 }
10310
10311 /* Compute 2^^prec - 1. */
10312 if (prec <= HOST_BITS_PER_WIDE_INT)
10313 {
10314 high.high = 0;
10315 high.low = ((~(unsigned HOST_WIDE_INT) 0)
10316 >> (HOST_BITS_PER_WIDE_INT - prec));
10317 }
10318 else
10319 {
10320 high.high = ((~(unsigned HOST_WIDE_INT) 0)
10321 >> (HOST_BITS_PER_DOUBLE_INT - prec));
10322 high.low = ~(unsigned HOST_WIDE_INT) 0;
10323 }
10324
10325 return double_int_to_tree (outer, high);
10326 }
10327
10328 /* Returns the smallest value obtainable by casting something in INNER type to
10329 OUTER type. */
10330
10331 tree
10332 lower_bound_in_type (tree outer, tree inner)
10333 {
10334 double_int low;
10335 unsigned oprec = TYPE_PRECISION (outer);
10336 unsigned iprec = TYPE_PRECISION (inner);
10337
10338 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10339 and obtain 0. */
10340 if (TYPE_UNSIGNED (outer)
10341 /* If we are widening something of an unsigned type, OUTER type
10342 contains all values of INNER type. In particular, both INNER
10343 and OUTER types have zero in common. */
10344 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10345 low.low = low.high = 0;
10346 else
10347 {
10348 /* If we are widening a signed type to another signed type, we
10349 want to obtain -2^^(iprec-1). If we are keeping the
10350 precision or narrowing to a signed type, we want to obtain
10351 -2^(oprec-1). */
10352 unsigned prec = oprec > iprec ? iprec : oprec;
10353
10354 if (prec <= HOST_BITS_PER_WIDE_INT)
10355 {
10356 low.high = ~(unsigned HOST_WIDE_INT) 0;
10357 low.low = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
10358 }
10359 else
10360 {
10361 low.high = ((~(unsigned HOST_WIDE_INT) 0)
10362 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10363 low.low = 0;
10364 }
10365 }
10366
10367 return double_int_to_tree (outer, low);
10368 }
10369
10370 /* Return nonzero if two operands that are suitable for PHI nodes are
10371 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10372 SSA_NAME or invariant. Note that this is strictly an optimization.
10373 That is, callers of this function can directly call operand_equal_p
10374 and get the same result, only slower. */
10375
10376 int
10377 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10378 {
10379 if (arg0 == arg1)
10380 return 1;
10381 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10382 return 0;
10383 return operand_equal_p (arg0, arg1, 0);
10384 }
10385
10386 /* Returns number of zeros at the end of binary representation of X.
10387
10388 ??? Use ffs if available? */
10389
10390 tree
10391 num_ending_zeros (const_tree x)
10392 {
10393 unsigned HOST_WIDE_INT fr, nfr;
10394 unsigned num, abits;
10395 tree type = TREE_TYPE (x);
10396
10397 if (TREE_INT_CST_LOW (x) == 0)
10398 {
10399 num = HOST_BITS_PER_WIDE_INT;
10400 fr = TREE_INT_CST_HIGH (x);
10401 }
10402 else
10403 {
10404 num = 0;
10405 fr = TREE_INT_CST_LOW (x);
10406 }
10407
10408 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10409 {
10410 nfr = fr >> abits;
10411 if (nfr << abits == fr)
10412 {
10413 num += abits;
10414 fr = nfr;
10415 }
10416 }
10417
10418 if (num > TYPE_PRECISION (type))
10419 num = TYPE_PRECISION (type);
10420
10421 return build_int_cst_type (type, num);
10422 }
10423
10424
10425 #define WALK_SUBTREE(NODE) \
10426 do \
10427 { \
10428 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10429 if (result) \
10430 return result; \
10431 } \
10432 while (0)
10433
10434 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10435 be walked whenever a type is seen in the tree. Rest of operands and return
10436 value are as for walk_tree. */
10437
10438 static tree
10439 walk_type_fields (tree type, walk_tree_fn func, void *data,
10440 struct pointer_set_t *pset, walk_tree_lh lh)
10441 {
10442 tree result = NULL_TREE;
10443
10444 switch (TREE_CODE (type))
10445 {
10446 case POINTER_TYPE:
10447 case REFERENCE_TYPE:
10448 /* We have to worry about mutually recursive pointers. These can't
10449 be written in C. They can in Ada. It's pathological, but
10450 there's an ACATS test (c38102a) that checks it. Deal with this
10451 by checking if we're pointing to another pointer, that one
10452 points to another pointer, that one does too, and we have no htab.
10453 If so, get a hash table. We check three levels deep to avoid
10454 the cost of the hash table if we don't need one. */
10455 if (POINTER_TYPE_P (TREE_TYPE (type))
10456 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10457 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10458 && !pset)
10459 {
10460 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10461 func, data);
10462 if (result)
10463 return result;
10464
10465 break;
10466 }
10467
10468 /* ... fall through ... */
10469
10470 case COMPLEX_TYPE:
10471 WALK_SUBTREE (TREE_TYPE (type));
10472 break;
10473
10474 case METHOD_TYPE:
10475 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10476
10477 /* Fall through. */
10478
10479 case FUNCTION_TYPE:
10480 WALK_SUBTREE (TREE_TYPE (type));
10481 {
10482 tree arg;
10483
10484 /* We never want to walk into default arguments. */
10485 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10486 WALK_SUBTREE (TREE_VALUE (arg));
10487 }
10488 break;
10489
10490 case ARRAY_TYPE:
10491 /* Don't follow this nodes's type if a pointer for fear that
10492 we'll have infinite recursion. If we have a PSET, then we
10493 need not fear. */
10494 if (pset
10495 || (!POINTER_TYPE_P (TREE_TYPE (type))
10496 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10497 WALK_SUBTREE (TREE_TYPE (type));
10498 WALK_SUBTREE (TYPE_DOMAIN (type));
10499 break;
10500
10501 case OFFSET_TYPE:
10502 WALK_SUBTREE (TREE_TYPE (type));
10503 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10504 break;
10505
10506 default:
10507 break;
10508 }
10509
10510 return NULL_TREE;
10511 }
10512
10513 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10514 called with the DATA and the address of each sub-tree. If FUNC returns a
10515 non-NULL value, the traversal is stopped, and the value returned by FUNC
10516 is returned. If PSET is non-NULL it is used to record the nodes visited,
10517 and to avoid visiting a node more than once. */
10518
10519 tree
10520 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10521 struct pointer_set_t *pset, walk_tree_lh lh)
10522 {
10523 enum tree_code code;
10524 int walk_subtrees;
10525 tree result;
10526
10527 #define WALK_SUBTREE_TAIL(NODE) \
10528 do \
10529 { \
10530 tp = & (NODE); \
10531 goto tail_recurse; \
10532 } \
10533 while (0)
10534
10535 tail_recurse:
10536 /* Skip empty subtrees. */
10537 if (!*tp)
10538 return NULL_TREE;
10539
10540 /* Don't walk the same tree twice, if the user has requested
10541 that we avoid doing so. */
10542 if (pset && pointer_set_insert (pset, *tp))
10543 return NULL_TREE;
10544
10545 /* Call the function. */
10546 walk_subtrees = 1;
10547 result = (*func) (tp, &walk_subtrees, data);
10548
10549 /* If we found something, return it. */
10550 if (result)
10551 return result;
10552
10553 code = TREE_CODE (*tp);
10554
10555 /* Even if we didn't, FUNC may have decided that there was nothing
10556 interesting below this point in the tree. */
10557 if (!walk_subtrees)
10558 {
10559 /* But we still need to check our siblings. */
10560 if (code == TREE_LIST)
10561 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10562 else if (code == OMP_CLAUSE)
10563 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10564 else
10565 return NULL_TREE;
10566 }
10567
10568 if (lh)
10569 {
10570 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10571 if (result || !walk_subtrees)
10572 return result;
10573 }
10574
10575 switch (code)
10576 {
10577 case ERROR_MARK:
10578 case IDENTIFIER_NODE:
10579 case INTEGER_CST:
10580 case REAL_CST:
10581 case FIXED_CST:
10582 case VECTOR_CST:
10583 case STRING_CST:
10584 case BLOCK:
10585 case PLACEHOLDER_EXPR:
10586 case SSA_NAME:
10587 case FIELD_DECL:
10588 case RESULT_DECL:
10589 /* None of these have subtrees other than those already walked
10590 above. */
10591 break;
10592
10593 case TREE_LIST:
10594 WALK_SUBTREE (TREE_VALUE (*tp));
10595 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10596 break;
10597
10598 case TREE_VEC:
10599 {
10600 int len = TREE_VEC_LENGTH (*tp);
10601
10602 if (len == 0)
10603 break;
10604
10605 /* Walk all elements but the first. */
10606 while (--len)
10607 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10608
10609 /* Now walk the first one as a tail call. */
10610 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10611 }
10612
10613 case COMPLEX_CST:
10614 WALK_SUBTREE (TREE_REALPART (*tp));
10615 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10616
10617 case CONSTRUCTOR:
10618 {
10619 unsigned HOST_WIDE_INT idx;
10620 constructor_elt *ce;
10621
10622 for (idx = 0;
10623 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10624 idx++)
10625 WALK_SUBTREE (ce->value);
10626 }
10627 break;
10628
10629 case SAVE_EXPR:
10630 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10631
10632 case BIND_EXPR:
10633 {
10634 tree decl;
10635 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
10636 {
10637 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10638 into declarations that are just mentioned, rather than
10639 declared; they don't really belong to this part of the tree.
10640 And, we can see cycles: the initializer for a declaration
10641 can refer to the declaration itself. */
10642 WALK_SUBTREE (DECL_INITIAL (decl));
10643 WALK_SUBTREE (DECL_SIZE (decl));
10644 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10645 }
10646 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10647 }
10648
10649 case STATEMENT_LIST:
10650 {
10651 tree_stmt_iterator i;
10652 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10653 WALK_SUBTREE (*tsi_stmt_ptr (i));
10654 }
10655 break;
10656
10657 case OMP_CLAUSE:
10658 switch (OMP_CLAUSE_CODE (*tp))
10659 {
10660 case OMP_CLAUSE_PRIVATE:
10661 case OMP_CLAUSE_SHARED:
10662 case OMP_CLAUSE_FIRSTPRIVATE:
10663 case OMP_CLAUSE_COPYIN:
10664 case OMP_CLAUSE_COPYPRIVATE:
10665 case OMP_CLAUSE_FINAL:
10666 case OMP_CLAUSE_IF:
10667 case OMP_CLAUSE_NUM_THREADS:
10668 case OMP_CLAUSE_SCHEDULE:
10669 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10670 /* FALLTHRU */
10671
10672 case OMP_CLAUSE_NOWAIT:
10673 case OMP_CLAUSE_ORDERED:
10674 case OMP_CLAUSE_DEFAULT:
10675 case OMP_CLAUSE_UNTIED:
10676 case OMP_CLAUSE_MERGEABLE:
10677 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10678
10679 case OMP_CLAUSE_LASTPRIVATE:
10680 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10681 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10682 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10683
10684 case OMP_CLAUSE_COLLAPSE:
10685 {
10686 int i;
10687 for (i = 0; i < 3; i++)
10688 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10689 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10690 }
10691
10692 case OMP_CLAUSE_REDUCTION:
10693 {
10694 int i;
10695 for (i = 0; i < 4; i++)
10696 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10697 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10698 }
10699
10700 default:
10701 gcc_unreachable ();
10702 }
10703 break;
10704
10705 case TARGET_EXPR:
10706 {
10707 int i, len;
10708
10709 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10710 But, we only want to walk once. */
10711 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10712 for (i = 0; i < len; ++i)
10713 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10714 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10715 }
10716
10717 case DECL_EXPR:
10718 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10719 defining. We only want to walk into these fields of a type in this
10720 case and not in the general case of a mere reference to the type.
10721
10722 The criterion is as follows: if the field can be an expression, it
10723 must be walked only here. This should be in keeping with the fields
10724 that are directly gimplified in gimplify_type_sizes in order for the
10725 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10726 variable-sized types.
10727
10728 Note that DECLs get walked as part of processing the BIND_EXPR. */
10729 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10730 {
10731 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10732 if (TREE_CODE (*type_p) == ERROR_MARK)
10733 return NULL_TREE;
10734
10735 /* Call the function for the type. See if it returns anything or
10736 doesn't want us to continue. If we are to continue, walk both
10737 the normal fields and those for the declaration case. */
10738 result = (*func) (type_p, &walk_subtrees, data);
10739 if (result || !walk_subtrees)
10740 return result;
10741
10742 /* But do not walk a pointed-to type since it may itself need to
10743 be walked in the declaration case if it isn't anonymous. */
10744 if (!POINTER_TYPE_P (*type_p))
10745 {
10746 result = walk_type_fields (*type_p, func, data, pset, lh);
10747 if (result)
10748 return result;
10749 }
10750
10751 /* If this is a record type, also walk the fields. */
10752 if (RECORD_OR_UNION_TYPE_P (*type_p))
10753 {
10754 tree field;
10755
10756 for (field = TYPE_FIELDS (*type_p); field;
10757 field = DECL_CHAIN (field))
10758 {
10759 /* We'd like to look at the type of the field, but we can
10760 easily get infinite recursion. So assume it's pointed
10761 to elsewhere in the tree. Also, ignore things that
10762 aren't fields. */
10763 if (TREE_CODE (field) != FIELD_DECL)
10764 continue;
10765
10766 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10767 WALK_SUBTREE (DECL_SIZE (field));
10768 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10769 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10770 WALK_SUBTREE (DECL_QUALIFIER (field));
10771 }
10772 }
10773
10774 /* Same for scalar types. */
10775 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10776 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10777 || TREE_CODE (*type_p) == INTEGER_TYPE
10778 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10779 || TREE_CODE (*type_p) == REAL_TYPE)
10780 {
10781 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10782 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10783 }
10784
10785 WALK_SUBTREE (TYPE_SIZE (*type_p));
10786 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10787 }
10788 /* FALLTHRU */
10789
10790 default:
10791 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10792 {
10793 int i, len;
10794
10795 /* Walk over all the sub-trees of this operand. */
10796 len = TREE_OPERAND_LENGTH (*tp);
10797
10798 /* Go through the subtrees. We need to do this in forward order so
10799 that the scope of a FOR_EXPR is handled properly. */
10800 if (len)
10801 {
10802 for (i = 0; i < len - 1; ++i)
10803 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10804 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10805 }
10806 }
10807 /* If this is a type, walk the needed fields in the type. */
10808 else if (TYPE_P (*tp))
10809 return walk_type_fields (*tp, func, data, pset, lh);
10810 break;
10811 }
10812
10813 /* We didn't find what we were looking for. */
10814 return NULL_TREE;
10815
10816 #undef WALK_SUBTREE_TAIL
10817 }
10818 #undef WALK_SUBTREE
10819
10820 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10821
10822 tree
10823 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10824 walk_tree_lh lh)
10825 {
10826 tree result;
10827 struct pointer_set_t *pset;
10828
10829 pset = pointer_set_create ();
10830 result = walk_tree_1 (tp, func, data, pset, lh);
10831 pointer_set_destroy (pset);
10832 return result;
10833 }
10834
10835
10836 tree *
10837 tree_block (tree t)
10838 {
10839 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10840
10841 if (IS_EXPR_CODE_CLASS (c))
10842 return &t->exp.block;
10843 gcc_unreachable ();
10844 return NULL;
10845 }
10846
10847 /* Create a nameless artificial label and put it in the current
10848 function context. The label has a location of LOC. Returns the
10849 newly created label. */
10850
10851 tree
10852 create_artificial_label (location_t loc)
10853 {
10854 tree lab = build_decl (loc,
10855 LABEL_DECL, NULL_TREE, void_type_node);
10856
10857 DECL_ARTIFICIAL (lab) = 1;
10858 DECL_IGNORED_P (lab) = 1;
10859 DECL_CONTEXT (lab) = current_function_decl;
10860 return lab;
10861 }
10862
10863 /* Given a tree, try to return a useful variable name that we can use
10864 to prefix a temporary that is being assigned the value of the tree.
10865 I.E. given <temp> = &A, return A. */
10866
10867 const char *
10868 get_name (tree t)
10869 {
10870 tree stripped_decl;
10871
10872 stripped_decl = t;
10873 STRIP_NOPS (stripped_decl);
10874 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10875 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10876 else
10877 {
10878 switch (TREE_CODE (stripped_decl))
10879 {
10880 case ADDR_EXPR:
10881 return get_name (TREE_OPERAND (stripped_decl, 0));
10882 default:
10883 return NULL;
10884 }
10885 }
10886 }
10887
10888 /* Return true if TYPE has a variable argument list. */
10889
10890 bool
10891 stdarg_p (const_tree fntype)
10892 {
10893 function_args_iterator args_iter;
10894 tree n = NULL_TREE, t;
10895
10896 if (!fntype)
10897 return false;
10898
10899 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10900 {
10901 n = t;
10902 }
10903
10904 return n != NULL_TREE && n != void_type_node;
10905 }
10906
10907 /* Return true if TYPE has a prototype. */
10908
10909 bool
10910 prototype_p (tree fntype)
10911 {
10912 tree t;
10913
10914 gcc_assert (fntype != NULL_TREE);
10915
10916 t = TYPE_ARG_TYPES (fntype);
10917 return (t != NULL_TREE);
10918 }
10919
10920 /* If BLOCK is inlined from an __attribute__((__artificial__))
10921 routine, return pointer to location from where it has been
10922 called. */
10923 location_t *
10924 block_nonartificial_location (tree block)
10925 {
10926 location_t *ret = NULL;
10927
10928 while (block && TREE_CODE (block) == BLOCK
10929 && BLOCK_ABSTRACT_ORIGIN (block))
10930 {
10931 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10932
10933 while (TREE_CODE (ao) == BLOCK
10934 && BLOCK_ABSTRACT_ORIGIN (ao)
10935 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10936 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10937
10938 if (TREE_CODE (ao) == FUNCTION_DECL)
10939 {
10940 /* If AO is an artificial inline, point RET to the
10941 call site locus at which it has been inlined and continue
10942 the loop, in case AO's caller is also an artificial
10943 inline. */
10944 if (DECL_DECLARED_INLINE_P (ao)
10945 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10946 ret = &BLOCK_SOURCE_LOCATION (block);
10947 else
10948 break;
10949 }
10950 else if (TREE_CODE (ao) != BLOCK)
10951 break;
10952
10953 block = BLOCK_SUPERCONTEXT (block);
10954 }
10955 return ret;
10956 }
10957
10958
10959 /* If EXP is inlined from an __attribute__((__artificial__))
10960 function, return the location of the original call expression. */
10961
10962 location_t
10963 tree_nonartificial_location (tree exp)
10964 {
10965 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10966
10967 if (loc)
10968 return *loc;
10969 else
10970 return EXPR_LOCATION (exp);
10971 }
10972
10973
10974 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10975 nodes. */
10976
10977 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10978
10979 static hashval_t
10980 cl_option_hash_hash (const void *x)
10981 {
10982 const_tree const t = (const_tree) x;
10983 const char *p;
10984 size_t i;
10985 size_t len = 0;
10986 hashval_t hash = 0;
10987
10988 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10989 {
10990 p = (const char *)TREE_OPTIMIZATION (t);
10991 len = sizeof (struct cl_optimization);
10992 }
10993
10994 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10995 {
10996 p = (const char *)TREE_TARGET_OPTION (t);
10997 len = sizeof (struct cl_target_option);
10998 }
10999
11000 else
11001 gcc_unreachable ();
11002
11003 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11004 something else. */
11005 for (i = 0; i < len; i++)
11006 if (p[i])
11007 hash = (hash << 4) ^ ((i << 2) | p[i]);
11008
11009 return hash;
11010 }
11011
11012 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11013 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11014 same. */
11015
11016 static int
11017 cl_option_hash_eq (const void *x, const void *y)
11018 {
11019 const_tree const xt = (const_tree) x;
11020 const_tree const yt = (const_tree) y;
11021 const char *xp;
11022 const char *yp;
11023 size_t len;
11024
11025 if (TREE_CODE (xt) != TREE_CODE (yt))
11026 return 0;
11027
11028 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11029 {
11030 xp = (const char *)TREE_OPTIMIZATION (xt);
11031 yp = (const char *)TREE_OPTIMIZATION (yt);
11032 len = sizeof (struct cl_optimization);
11033 }
11034
11035 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11036 {
11037 xp = (const char *)TREE_TARGET_OPTION (xt);
11038 yp = (const char *)TREE_TARGET_OPTION (yt);
11039 len = sizeof (struct cl_target_option);
11040 }
11041
11042 else
11043 gcc_unreachable ();
11044
11045 return (memcmp (xp, yp, len) == 0);
11046 }
11047
11048 /* Build an OPTIMIZATION_NODE based on the current options. */
11049
11050 tree
11051 build_optimization_node (void)
11052 {
11053 tree t;
11054 void **slot;
11055
11056 /* Use the cache of optimization nodes. */
11057
11058 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11059 &global_options);
11060
11061 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
11062 t = (tree) *slot;
11063 if (!t)
11064 {
11065 /* Insert this one into the hash table. */
11066 t = cl_optimization_node;
11067 *slot = t;
11068
11069 /* Make a new node for next time round. */
11070 cl_optimization_node = make_node (OPTIMIZATION_NODE);
11071 }
11072
11073 return t;
11074 }
11075
11076 /* Build a TARGET_OPTION_NODE based on the current options. */
11077
11078 tree
11079 build_target_option_node (void)
11080 {
11081 tree t;
11082 void **slot;
11083
11084 /* Use the cache of optimization nodes. */
11085
11086 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
11087 &global_options);
11088
11089 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
11090 t = (tree) *slot;
11091 if (!t)
11092 {
11093 /* Insert this one into the hash table. */
11094 t = cl_target_option_node;
11095 *slot = t;
11096
11097 /* Make a new node for next time round. */
11098 cl_target_option_node = make_node (TARGET_OPTION_NODE);
11099 }
11100
11101 return t;
11102 }
11103
11104 /* Determine the "ultimate origin" of a block. The block may be an inlined
11105 instance of an inlined instance of a block which is local to an inline
11106 function, so we have to trace all of the way back through the origin chain
11107 to find out what sort of node actually served as the original seed for the
11108 given block. */
11109
11110 tree
11111 block_ultimate_origin (const_tree block)
11112 {
11113 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
11114
11115 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
11116 nodes in the function to point to themselves; ignore that if
11117 we're trying to output the abstract instance of this function. */
11118 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
11119 return NULL_TREE;
11120
11121 if (immediate_origin == NULL_TREE)
11122 return NULL_TREE;
11123 else
11124 {
11125 tree ret_val;
11126 tree lookahead = immediate_origin;
11127
11128 do
11129 {
11130 ret_val = lookahead;
11131 lookahead = (TREE_CODE (ret_val) == BLOCK
11132 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
11133 }
11134 while (lookahead != NULL && lookahead != ret_val);
11135
11136 /* The block's abstract origin chain may not be the *ultimate* origin of
11137 the block. It could lead to a DECL that has an abstract origin set.
11138 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
11139 will give us if it has one). Note that DECL's abstract origins are
11140 supposed to be the most distant ancestor (or so decl_ultimate_origin
11141 claims), so we don't need to loop following the DECL origins. */
11142 if (DECL_P (ret_val))
11143 return DECL_ORIGIN (ret_val);
11144
11145 return ret_val;
11146 }
11147 }
11148
11149 /* Return true if T1 and T2 are equivalent lists. */
11150
11151 bool
11152 list_equal_p (const_tree t1, const_tree t2)
11153 {
11154 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
11155 if (TREE_VALUE (t1) != TREE_VALUE (t2))
11156 return false;
11157 return !t1 && !t2;
11158 }
11159
11160 /* Return true iff conversion in EXP generates no instruction. Mark
11161 it inline so that we fully inline into the stripping functions even
11162 though we have two uses of this function. */
11163
11164 static inline bool
11165 tree_nop_conversion (const_tree exp)
11166 {
11167 tree outer_type, inner_type;
11168
11169 if (!CONVERT_EXPR_P (exp)
11170 && TREE_CODE (exp) != NON_LVALUE_EXPR)
11171 return false;
11172 if (TREE_OPERAND (exp, 0) == error_mark_node)
11173 return false;
11174
11175 outer_type = TREE_TYPE (exp);
11176 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11177
11178 if (!inner_type)
11179 return false;
11180
11181 /* Use precision rather then machine mode when we can, which gives
11182 the correct answer even for submode (bit-field) types. */
11183 if ((INTEGRAL_TYPE_P (outer_type)
11184 || POINTER_TYPE_P (outer_type)
11185 || TREE_CODE (outer_type) == OFFSET_TYPE)
11186 && (INTEGRAL_TYPE_P (inner_type)
11187 || POINTER_TYPE_P (inner_type)
11188 || TREE_CODE (inner_type) == OFFSET_TYPE))
11189 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
11190
11191 /* Otherwise fall back on comparing machine modes (e.g. for
11192 aggregate types, floats). */
11193 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
11194 }
11195
11196 /* Return true iff conversion in EXP generates no instruction. Don't
11197 consider conversions changing the signedness. */
11198
11199 static bool
11200 tree_sign_nop_conversion (const_tree exp)
11201 {
11202 tree outer_type, inner_type;
11203
11204 if (!tree_nop_conversion (exp))
11205 return false;
11206
11207 outer_type = TREE_TYPE (exp);
11208 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11209
11210 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11211 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11212 }
11213
11214 /* Strip conversions from EXP according to tree_nop_conversion and
11215 return the resulting expression. */
11216
11217 tree
11218 tree_strip_nop_conversions (tree exp)
11219 {
11220 while (tree_nop_conversion (exp))
11221 exp = TREE_OPERAND (exp, 0);
11222 return exp;
11223 }
11224
11225 /* Strip conversions from EXP according to tree_sign_nop_conversion
11226 and return the resulting expression. */
11227
11228 tree
11229 tree_strip_sign_nop_conversions (tree exp)
11230 {
11231 while (tree_sign_nop_conversion (exp))
11232 exp = TREE_OPERAND (exp, 0);
11233 return exp;
11234 }
11235
11236 /* Avoid any floating point extensions from EXP. */
11237 tree
11238 strip_float_extensions (tree exp)
11239 {
11240 tree sub, expt, subt;
11241
11242 /* For floating point constant look up the narrowest type that can hold
11243 it properly and handle it like (type)(narrowest_type)constant.
11244 This way we can optimize for instance a=a*2.0 where "a" is float
11245 but 2.0 is double constant. */
11246 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
11247 {
11248 REAL_VALUE_TYPE orig;
11249 tree type = NULL;
11250
11251 orig = TREE_REAL_CST (exp);
11252 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
11253 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
11254 type = float_type_node;
11255 else if (TYPE_PRECISION (TREE_TYPE (exp))
11256 > TYPE_PRECISION (double_type_node)
11257 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
11258 type = double_type_node;
11259 if (type)
11260 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
11261 }
11262
11263 if (!CONVERT_EXPR_P (exp))
11264 return exp;
11265
11266 sub = TREE_OPERAND (exp, 0);
11267 subt = TREE_TYPE (sub);
11268 expt = TREE_TYPE (exp);
11269
11270 if (!FLOAT_TYPE_P (subt))
11271 return exp;
11272
11273 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
11274 return exp;
11275
11276 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
11277 return exp;
11278
11279 return strip_float_extensions (sub);
11280 }
11281
11282 /* Strip out all handled components that produce invariant
11283 offsets. */
11284
11285 const_tree
11286 strip_invariant_refs (const_tree op)
11287 {
11288 while (handled_component_p (op))
11289 {
11290 switch (TREE_CODE (op))
11291 {
11292 case ARRAY_REF:
11293 case ARRAY_RANGE_REF:
11294 if (!is_gimple_constant (TREE_OPERAND (op, 1))
11295 || TREE_OPERAND (op, 2) != NULL_TREE
11296 || TREE_OPERAND (op, 3) != NULL_TREE)
11297 return NULL;
11298 break;
11299
11300 case COMPONENT_REF:
11301 if (TREE_OPERAND (op, 2) != NULL_TREE)
11302 return NULL;
11303 break;
11304
11305 default:;
11306 }
11307 op = TREE_OPERAND (op, 0);
11308 }
11309
11310 return op;
11311 }
11312
11313 static GTY(()) tree gcc_eh_personality_decl;
11314
11315 /* Return the GCC personality function decl. */
11316
11317 tree
11318 lhd_gcc_personality (void)
11319 {
11320 if (!gcc_eh_personality_decl)
11321 gcc_eh_personality_decl = build_personality_function ("gcc");
11322 return gcc_eh_personality_decl;
11323 }
11324
11325 /* Try to find a base info of BINFO that would have its field decl at offset
11326 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
11327 found, return, otherwise return NULL_TREE. */
11328
11329 tree
11330 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
11331 {
11332 tree type = BINFO_TYPE (binfo);
11333
11334 while (true)
11335 {
11336 HOST_WIDE_INT pos, size;
11337 tree fld;
11338 int i;
11339
11340 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (expected_type))
11341 return binfo;
11342 if (offset < 0)
11343 return NULL_TREE;
11344
11345 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
11346 {
11347 if (TREE_CODE (fld) != FIELD_DECL)
11348 continue;
11349
11350 pos = int_bit_position (fld);
11351 size = tree_low_cst (DECL_SIZE (fld), 1);
11352 if (pos <= offset && (pos + size) > offset)
11353 break;
11354 }
11355 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
11356 return NULL_TREE;
11357
11358 if (!DECL_ARTIFICIAL (fld))
11359 {
11360 binfo = TYPE_BINFO (TREE_TYPE (fld));
11361 if (!binfo)
11362 return NULL_TREE;
11363 }
11364 /* Offset 0 indicates the primary base, whose vtable contents are
11365 represented in the binfo for the derived class. */
11366 else if (offset != 0)
11367 {
11368 tree base_binfo, found_binfo = NULL_TREE;
11369 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
11370 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
11371 {
11372 found_binfo = base_binfo;
11373 break;
11374 }
11375 if (!found_binfo)
11376 return NULL_TREE;
11377 binfo = found_binfo;
11378 }
11379
11380 type = TREE_TYPE (fld);
11381 offset -= pos;
11382 }
11383 }
11384
11385 /* Returns true if X is a typedef decl. */
11386
11387 bool
11388 is_typedef_decl (tree x)
11389 {
11390 return (x && TREE_CODE (x) == TYPE_DECL
11391 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
11392 }
11393
11394 /* Returns true iff TYPE is a type variant created for a typedef. */
11395
11396 bool
11397 typedef_variant_p (tree type)
11398 {
11399 return is_typedef_decl (TYPE_NAME (type));
11400 }
11401
11402 /* Warn about a use of an identifier which was marked deprecated. */
11403 void
11404 warn_deprecated_use (tree node, tree attr)
11405 {
11406 const char *msg;
11407
11408 if (node == 0 || !warn_deprecated_decl)
11409 return;
11410
11411 if (!attr)
11412 {
11413 if (DECL_P (node))
11414 attr = DECL_ATTRIBUTES (node);
11415 else if (TYPE_P (node))
11416 {
11417 tree decl = TYPE_STUB_DECL (node);
11418 if (decl)
11419 attr = lookup_attribute ("deprecated",
11420 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
11421 }
11422 }
11423
11424 if (attr)
11425 attr = lookup_attribute ("deprecated", attr);
11426
11427 if (attr)
11428 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
11429 else
11430 msg = NULL;
11431
11432 if (DECL_P (node))
11433 {
11434 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
11435 if (msg)
11436 warning (OPT_Wdeprecated_declarations,
11437 "%qD is deprecated (declared at %s:%d): %s",
11438 node, xloc.file, xloc.line, msg);
11439 else
11440 warning (OPT_Wdeprecated_declarations,
11441 "%qD is deprecated (declared at %s:%d)",
11442 node, xloc.file, xloc.line);
11443 }
11444 else if (TYPE_P (node))
11445 {
11446 tree what = NULL_TREE;
11447 tree decl = TYPE_STUB_DECL (node);
11448
11449 if (TYPE_NAME (node))
11450 {
11451 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
11452 what = TYPE_NAME (node);
11453 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
11454 && DECL_NAME (TYPE_NAME (node)))
11455 what = DECL_NAME (TYPE_NAME (node));
11456 }
11457
11458 if (decl)
11459 {
11460 expanded_location xloc
11461 = expand_location (DECL_SOURCE_LOCATION (decl));
11462 if (what)
11463 {
11464 if (msg)
11465 warning (OPT_Wdeprecated_declarations,
11466 "%qE is deprecated (declared at %s:%d): %s",
11467 what, xloc.file, xloc.line, msg);
11468 else
11469 warning (OPT_Wdeprecated_declarations,
11470 "%qE is deprecated (declared at %s:%d)", what,
11471 xloc.file, xloc.line);
11472 }
11473 else
11474 {
11475 if (msg)
11476 warning (OPT_Wdeprecated_declarations,
11477 "type is deprecated (declared at %s:%d): %s",
11478 xloc.file, xloc.line, msg);
11479 else
11480 warning (OPT_Wdeprecated_declarations,
11481 "type is deprecated (declared at %s:%d)",
11482 xloc.file, xloc.line);
11483 }
11484 }
11485 else
11486 {
11487 if (what)
11488 {
11489 if (msg)
11490 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
11491 what, msg);
11492 else
11493 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
11494 }
11495 else
11496 {
11497 if (msg)
11498 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
11499 msg);
11500 else
11501 warning (OPT_Wdeprecated_declarations, "type is deprecated");
11502 }
11503 }
11504 }
11505 }
11506
11507 #include "gt-tree.h"