re PR c++/51264 (O0 Bootstrap failure: control reaches end of non-void function)
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h"
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "filenames.h"
45 #include "output.h"
46 #include "target.h"
47 #include "common/common-target.h"
48 #include "langhooks.h"
49 #include "tree-inline.h"
50 #include "tree-iterator.h"
51 #include "basic-block.h"
52 #include "tree-flow.h"
53 #include "params.h"
54 #include "pointer-set.h"
55 #include "tree-pass.h"
56 #include "langhooks-def.h"
57 #include "diagnostic.h"
58 #include "tree-diagnostic.h"
59 #include "tree-pretty-print.h"
60 #include "cgraph.h"
61 #include "timevar.h"
62 #include "except.h"
63 #include "debug.h"
64 #include "intl.h"
65
66 /* Tree code classes. */
67
68 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
69 #define END_OF_BASE_TREE_CODES tcc_exceptional,
70
71 const enum tree_code_class tree_code_type[] = {
72 #include "all-tree.def"
73 };
74
75 #undef DEFTREECODE
76 #undef END_OF_BASE_TREE_CODES
77
78 /* Table indexed by tree code giving number of expression
79 operands beyond the fixed part of the node structure.
80 Not used for types or decls. */
81
82 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
83 #define END_OF_BASE_TREE_CODES 0,
84
85 const unsigned char tree_code_length[] = {
86 #include "all-tree.def"
87 };
88
89 #undef DEFTREECODE
90 #undef END_OF_BASE_TREE_CODES
91
92 /* Names of tree components.
93 Used for printing out the tree and error messages. */
94 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
95 #define END_OF_BASE_TREE_CODES "@dummy",
96
97 const char *const tree_code_name[] = {
98 #include "all-tree.def"
99 };
100
101 #undef DEFTREECODE
102 #undef END_OF_BASE_TREE_CODES
103
104 /* Each tree code class has an associated string representation.
105 These must correspond to the tree_code_class entries. */
106
107 const char *const tree_code_class_strings[] =
108 {
109 "exceptional",
110 "constant",
111 "type",
112 "declaration",
113 "reference",
114 "comparison",
115 "unary",
116 "binary",
117 "statement",
118 "vl_exp",
119 "expression"
120 };
121
122 /* obstack.[ch] explicitly declined to prototype this. */
123 extern int _obstack_allocated_p (struct obstack *h, void *obj);
124
125 #ifdef GATHER_STATISTICS
126 /* Statistics-gathering stuff. */
127
128 static int tree_code_counts[MAX_TREE_CODES];
129 int tree_node_counts[(int) all_kinds];
130 int tree_node_sizes[(int) all_kinds];
131
132 /* Keep in sync with tree.h:enum tree_node_kind. */
133 static const char * const tree_node_kind_names[] = {
134 "decls",
135 "types",
136 "blocks",
137 "stmts",
138 "refs",
139 "exprs",
140 "constants",
141 "identifiers",
142 "vecs",
143 "binfos",
144 "ssa names",
145 "constructors",
146 "random kinds",
147 "lang_decl kinds",
148 "lang_type kinds",
149 "omp clauses",
150 };
151 #endif /* GATHER_STATISTICS */
152
153 /* Unique id for next decl created. */
154 static GTY(()) int next_decl_uid;
155 /* Unique id for next type created. */
156 static GTY(()) int next_type_uid = 1;
157 /* Unique id for next debug decl created. Use negative numbers,
158 to catch erroneous uses. */
159 static GTY(()) int next_debug_decl_uid;
160
161 /* Since we cannot rehash a type after it is in the table, we have to
162 keep the hash code. */
163
164 struct GTY(()) type_hash {
165 unsigned long hash;
166 tree type;
167 };
168
169 /* Initial size of the hash table (rounded to next prime). */
170 #define TYPE_HASH_INITIAL_SIZE 1000
171
172 /* Now here is the hash table. When recording a type, it is added to
173 the slot whose index is the hash code. Note that the hash table is
174 used for several kinds of types (function types, array types and
175 array index range types, for now). While all these live in the
176 same table, they are completely independent, and the hash code is
177 computed differently for each of these. */
178
179 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
180 htab_t type_hash_table;
181
182 /* Hash table and temporary node for larger integer const values. */
183 static GTY (()) tree int_cst_node;
184 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
185 htab_t int_cst_hash_table;
186
187 /* Hash table for optimization flags and target option flags. Use the same
188 hash table for both sets of options. Nodes for building the current
189 optimization and target option nodes. The assumption is most of the time
190 the options created will already be in the hash table, so we avoid
191 allocating and freeing up a node repeatably. */
192 static GTY (()) tree cl_optimization_node;
193 static GTY (()) tree cl_target_option_node;
194 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
195 htab_t cl_option_hash_table;
196
197 /* General tree->tree mapping structure for use in hash tables. */
198
199
200 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
201 htab_t debug_expr_for_decl;
202
203 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
204 htab_t value_expr_for_decl;
205
206 static GTY ((if_marked ("tree_vec_map_marked_p"), param_is (struct tree_vec_map)))
207 htab_t debug_args_for_decl;
208
209 static GTY ((if_marked ("tree_priority_map_marked_p"),
210 param_is (struct tree_priority_map)))
211 htab_t init_priority_for_decl;
212
213 static void set_type_quals (tree, int);
214 static int type_hash_eq (const void *, const void *);
215 static hashval_t type_hash_hash (const void *);
216 static hashval_t int_cst_hash_hash (const void *);
217 static int int_cst_hash_eq (const void *, const void *);
218 static hashval_t cl_option_hash_hash (const void *);
219 static int cl_option_hash_eq (const void *, const void *);
220 static void print_type_hash_statistics (void);
221 static void print_debug_expr_statistics (void);
222 static void print_value_expr_statistics (void);
223 static int type_hash_marked_p (const void *);
224 static unsigned int type_hash_list (const_tree, hashval_t);
225 static unsigned int attribute_hash_list (const_tree, hashval_t);
226
227 tree global_trees[TI_MAX];
228 tree integer_types[itk_none];
229
230 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
231
232 /* Number of operands for each OpenMP clause. */
233 unsigned const char omp_clause_num_ops[] =
234 {
235 0, /* OMP_CLAUSE_ERROR */
236 1, /* OMP_CLAUSE_PRIVATE */
237 1, /* OMP_CLAUSE_SHARED */
238 1, /* OMP_CLAUSE_FIRSTPRIVATE */
239 2, /* OMP_CLAUSE_LASTPRIVATE */
240 4, /* OMP_CLAUSE_REDUCTION */
241 1, /* OMP_CLAUSE_COPYIN */
242 1, /* OMP_CLAUSE_COPYPRIVATE */
243 1, /* OMP_CLAUSE_IF */
244 1, /* OMP_CLAUSE_NUM_THREADS */
245 1, /* OMP_CLAUSE_SCHEDULE */
246 0, /* OMP_CLAUSE_NOWAIT */
247 0, /* OMP_CLAUSE_ORDERED */
248 0, /* OMP_CLAUSE_DEFAULT */
249 3, /* OMP_CLAUSE_COLLAPSE */
250 0, /* OMP_CLAUSE_UNTIED */
251 1, /* OMP_CLAUSE_FINAL */
252 0 /* OMP_CLAUSE_MERGEABLE */
253 };
254
255 const char * const omp_clause_code_name[] =
256 {
257 "error_clause",
258 "private",
259 "shared",
260 "firstprivate",
261 "lastprivate",
262 "reduction",
263 "copyin",
264 "copyprivate",
265 "if",
266 "num_threads",
267 "schedule",
268 "nowait",
269 "ordered",
270 "default",
271 "collapse",
272 "untied",
273 "final",
274 "mergeable"
275 };
276
277
278 /* Return the tree node structure used by tree code CODE. */
279
280 static inline enum tree_node_structure_enum
281 tree_node_structure_for_code (enum tree_code code)
282 {
283 switch (TREE_CODE_CLASS (code))
284 {
285 case tcc_declaration:
286 {
287 switch (code)
288 {
289 case FIELD_DECL:
290 return TS_FIELD_DECL;
291 case PARM_DECL:
292 return TS_PARM_DECL;
293 case VAR_DECL:
294 return TS_VAR_DECL;
295 case LABEL_DECL:
296 return TS_LABEL_DECL;
297 case RESULT_DECL:
298 return TS_RESULT_DECL;
299 case DEBUG_EXPR_DECL:
300 return TS_DECL_WRTL;
301 case CONST_DECL:
302 return TS_CONST_DECL;
303 case TYPE_DECL:
304 return TS_TYPE_DECL;
305 case FUNCTION_DECL:
306 return TS_FUNCTION_DECL;
307 case TRANSLATION_UNIT_DECL:
308 return TS_TRANSLATION_UNIT_DECL;
309 default:
310 return TS_DECL_NON_COMMON;
311 }
312 }
313 case tcc_type:
314 return TS_TYPE_NON_COMMON;
315 case tcc_reference:
316 case tcc_comparison:
317 case tcc_unary:
318 case tcc_binary:
319 case tcc_expression:
320 case tcc_statement:
321 case tcc_vl_exp:
322 return TS_EXP;
323 default: /* tcc_constant and tcc_exceptional */
324 break;
325 }
326 switch (code)
327 {
328 /* tcc_constant cases. */
329 case INTEGER_CST: return TS_INT_CST;
330 case REAL_CST: return TS_REAL_CST;
331 case FIXED_CST: return TS_FIXED_CST;
332 case COMPLEX_CST: return TS_COMPLEX;
333 case VECTOR_CST: return TS_VECTOR;
334 case STRING_CST: return TS_STRING;
335 /* tcc_exceptional cases. */
336 case ERROR_MARK: return TS_COMMON;
337 case IDENTIFIER_NODE: return TS_IDENTIFIER;
338 case TREE_LIST: return TS_LIST;
339 case TREE_VEC: return TS_VEC;
340 case SSA_NAME: return TS_SSA_NAME;
341 case PLACEHOLDER_EXPR: return TS_COMMON;
342 case STATEMENT_LIST: return TS_STATEMENT_LIST;
343 case BLOCK: return TS_BLOCK;
344 case CONSTRUCTOR: return TS_CONSTRUCTOR;
345 case TREE_BINFO: return TS_BINFO;
346 case OMP_CLAUSE: return TS_OMP_CLAUSE;
347 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
348 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
349
350 default:
351 gcc_unreachable ();
352 }
353 }
354
355
356 /* Initialize tree_contains_struct to describe the hierarchy of tree
357 nodes. */
358
359 static void
360 initialize_tree_contains_struct (void)
361 {
362 unsigned i;
363
364 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
365 {
366 enum tree_code code;
367 enum tree_node_structure_enum ts_code;
368
369 code = (enum tree_code) i;
370 ts_code = tree_node_structure_for_code (code);
371
372 /* Mark the TS structure itself. */
373 tree_contains_struct[code][ts_code] = 1;
374
375 /* Mark all the structures that TS is derived from. */
376 switch (ts_code)
377 {
378 case TS_TYPED:
379 case TS_BLOCK:
380 MARK_TS_BASE (code);
381 break;
382
383 case TS_COMMON:
384 case TS_INT_CST:
385 case TS_REAL_CST:
386 case TS_FIXED_CST:
387 case TS_VECTOR:
388 case TS_STRING:
389 case TS_COMPLEX:
390 case TS_SSA_NAME:
391 case TS_CONSTRUCTOR:
392 case TS_EXP:
393 case TS_STATEMENT_LIST:
394 MARK_TS_TYPED (code);
395 break;
396
397 case TS_IDENTIFIER:
398 case TS_DECL_MINIMAL:
399 case TS_TYPE_COMMON:
400 case TS_LIST:
401 case TS_VEC:
402 case TS_BINFO:
403 case TS_OMP_CLAUSE:
404 case TS_OPTIMIZATION:
405 case TS_TARGET_OPTION:
406 MARK_TS_COMMON (code);
407 break;
408
409 case TS_TYPE_WITH_LANG_SPECIFIC:
410 MARK_TS_TYPE_COMMON (code);
411 break;
412
413 case TS_TYPE_NON_COMMON:
414 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
415 break;
416
417 case TS_DECL_COMMON:
418 MARK_TS_DECL_MINIMAL (code);
419 break;
420
421 case TS_DECL_WRTL:
422 case TS_CONST_DECL:
423 MARK_TS_DECL_COMMON (code);
424 break;
425
426 case TS_DECL_NON_COMMON:
427 MARK_TS_DECL_WITH_VIS (code);
428 break;
429
430 case TS_DECL_WITH_VIS:
431 case TS_PARM_DECL:
432 case TS_LABEL_DECL:
433 case TS_RESULT_DECL:
434 MARK_TS_DECL_WRTL (code);
435 break;
436
437 case TS_FIELD_DECL:
438 MARK_TS_DECL_COMMON (code);
439 break;
440
441 case TS_VAR_DECL:
442 MARK_TS_DECL_WITH_VIS (code);
443 break;
444
445 case TS_TYPE_DECL:
446 case TS_FUNCTION_DECL:
447 MARK_TS_DECL_NON_COMMON (code);
448 break;
449
450 case TS_TRANSLATION_UNIT_DECL:
451 MARK_TS_DECL_COMMON (code);
452 break;
453
454 default:
455 gcc_unreachable ();
456 }
457 }
458
459 /* Basic consistency checks for attributes used in fold. */
460 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
461 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
462 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
463 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
464 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
465 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
466 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
467 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
468 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
469 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
470 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
471 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
472 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
473 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
474 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
475 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
476 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
477 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
478 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
479 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
480 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
481 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
482 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
483 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
484 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
485 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
486 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
487 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
488 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
489 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
490 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
491 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
492 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
493 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
494 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
495 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
496 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
497 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
498 }
499
500
501 /* Init tree.c. */
502
503 void
504 init_ttree (void)
505 {
506 /* Initialize the hash table of types. */
507 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
508 type_hash_eq, 0);
509
510 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
511 tree_decl_map_eq, 0);
512
513 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
514 tree_decl_map_eq, 0);
515 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
516 tree_priority_map_eq, 0);
517
518 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
519 int_cst_hash_eq, NULL);
520
521 int_cst_node = make_node (INTEGER_CST);
522
523 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
524 cl_option_hash_eq, NULL);
525
526 cl_optimization_node = make_node (OPTIMIZATION_NODE);
527 cl_target_option_node = make_node (TARGET_OPTION_NODE);
528
529 /* Initialize the tree_contains_struct array. */
530 initialize_tree_contains_struct ();
531 lang_hooks.init_ts ();
532 }
533
534 \f
535 /* The name of the object as the assembler will see it (but before any
536 translations made by ASM_OUTPUT_LABELREF). Often this is the same
537 as DECL_NAME. It is an IDENTIFIER_NODE. */
538 tree
539 decl_assembler_name (tree decl)
540 {
541 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
542 lang_hooks.set_decl_assembler_name (decl);
543 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
544 }
545
546 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
547
548 bool
549 decl_assembler_name_equal (tree decl, const_tree asmname)
550 {
551 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
552 const char *decl_str;
553 const char *asmname_str;
554 bool test = false;
555
556 if (decl_asmname == asmname)
557 return true;
558
559 decl_str = IDENTIFIER_POINTER (decl_asmname);
560 asmname_str = IDENTIFIER_POINTER (asmname);
561
562
563 /* If the target assembler name was set by the user, things are trickier.
564 We have a leading '*' to begin with. After that, it's arguable what
565 is the correct thing to do with -fleading-underscore. Arguably, we've
566 historically been doing the wrong thing in assemble_alias by always
567 printing the leading underscore. Since we're not changing that, make
568 sure user_label_prefix follows the '*' before matching. */
569 if (decl_str[0] == '*')
570 {
571 size_t ulp_len = strlen (user_label_prefix);
572
573 decl_str ++;
574
575 if (ulp_len == 0)
576 test = true;
577 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
578 decl_str += ulp_len, test=true;
579 else
580 decl_str --;
581 }
582 if (asmname_str[0] == '*')
583 {
584 size_t ulp_len = strlen (user_label_prefix);
585
586 asmname_str ++;
587
588 if (ulp_len == 0)
589 test = true;
590 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
591 asmname_str += ulp_len, test=true;
592 else
593 asmname_str --;
594 }
595
596 if (!test)
597 return false;
598 return strcmp (decl_str, asmname_str) == 0;
599 }
600
601 /* Hash asmnames ignoring the user specified marks. */
602
603 hashval_t
604 decl_assembler_name_hash (const_tree asmname)
605 {
606 if (IDENTIFIER_POINTER (asmname)[0] == '*')
607 {
608 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
609 size_t ulp_len = strlen (user_label_prefix);
610
611 if (ulp_len == 0)
612 ;
613 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
614 decl_str += ulp_len;
615
616 return htab_hash_string (decl_str);
617 }
618
619 return htab_hash_string (IDENTIFIER_POINTER (asmname));
620 }
621
622 /* Compute the number of bytes occupied by a tree with code CODE.
623 This function cannot be used for nodes that have variable sizes,
624 including TREE_VEC, STRING_CST, and CALL_EXPR. */
625 size_t
626 tree_code_size (enum tree_code code)
627 {
628 switch (TREE_CODE_CLASS (code))
629 {
630 case tcc_declaration: /* A decl node */
631 {
632 switch (code)
633 {
634 case FIELD_DECL:
635 return sizeof (struct tree_field_decl);
636 case PARM_DECL:
637 return sizeof (struct tree_parm_decl);
638 case VAR_DECL:
639 return sizeof (struct tree_var_decl);
640 case LABEL_DECL:
641 return sizeof (struct tree_label_decl);
642 case RESULT_DECL:
643 return sizeof (struct tree_result_decl);
644 case CONST_DECL:
645 return sizeof (struct tree_const_decl);
646 case TYPE_DECL:
647 return sizeof (struct tree_type_decl);
648 case FUNCTION_DECL:
649 return sizeof (struct tree_function_decl);
650 case DEBUG_EXPR_DECL:
651 return sizeof (struct tree_decl_with_rtl);
652 default:
653 return sizeof (struct tree_decl_non_common);
654 }
655 }
656
657 case tcc_type: /* a type node */
658 return sizeof (struct tree_type_non_common);
659
660 case tcc_reference: /* a reference */
661 case tcc_expression: /* an expression */
662 case tcc_statement: /* an expression with side effects */
663 case tcc_comparison: /* a comparison expression */
664 case tcc_unary: /* a unary arithmetic expression */
665 case tcc_binary: /* a binary arithmetic expression */
666 return (sizeof (struct tree_exp)
667 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
668
669 case tcc_constant: /* a constant */
670 switch (code)
671 {
672 case INTEGER_CST: return sizeof (struct tree_int_cst);
673 case REAL_CST: return sizeof (struct tree_real_cst);
674 case FIXED_CST: return sizeof (struct tree_fixed_cst);
675 case COMPLEX_CST: return sizeof (struct tree_complex);
676 case VECTOR_CST: return sizeof (struct tree_vector);
677 case STRING_CST: gcc_unreachable ();
678 default:
679 return lang_hooks.tree_size (code);
680 }
681
682 case tcc_exceptional: /* something random, like an identifier. */
683 switch (code)
684 {
685 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
686 case TREE_LIST: return sizeof (struct tree_list);
687
688 case ERROR_MARK:
689 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
690
691 case TREE_VEC:
692 case OMP_CLAUSE: gcc_unreachable ();
693
694 case SSA_NAME: return sizeof (struct tree_ssa_name);
695
696 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
697 case BLOCK: return sizeof (struct tree_block);
698 case CONSTRUCTOR: return sizeof (struct tree_constructor);
699 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
700 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
701
702 default:
703 return lang_hooks.tree_size (code);
704 }
705
706 default:
707 gcc_unreachable ();
708 }
709 }
710
711 /* Compute the number of bytes occupied by NODE. This routine only
712 looks at TREE_CODE, except for those nodes that have variable sizes. */
713 size_t
714 tree_size (const_tree node)
715 {
716 const enum tree_code code = TREE_CODE (node);
717 switch (code)
718 {
719 case TREE_BINFO:
720 return (offsetof (struct tree_binfo, base_binfos)
721 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
722
723 case TREE_VEC:
724 return (sizeof (struct tree_vec)
725 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
726
727 case STRING_CST:
728 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
729
730 case OMP_CLAUSE:
731 return (sizeof (struct tree_omp_clause)
732 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
733 * sizeof (tree));
734
735 default:
736 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
737 return (sizeof (struct tree_exp)
738 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
739 else
740 return tree_code_size (code);
741 }
742 }
743
744 /* Record interesting allocation statistics for a tree node with CODE
745 and LENGTH. */
746
747 static void
748 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
749 size_t length ATTRIBUTE_UNUSED)
750 {
751 #ifdef GATHER_STATISTICS
752 enum tree_code_class type = TREE_CODE_CLASS (code);
753 tree_node_kind kind;
754
755 switch (type)
756 {
757 case tcc_declaration: /* A decl node */
758 kind = d_kind;
759 break;
760
761 case tcc_type: /* a type node */
762 kind = t_kind;
763 break;
764
765 case tcc_statement: /* an expression with side effects */
766 kind = s_kind;
767 break;
768
769 case tcc_reference: /* a reference */
770 kind = r_kind;
771 break;
772
773 case tcc_expression: /* an expression */
774 case tcc_comparison: /* a comparison expression */
775 case tcc_unary: /* a unary arithmetic expression */
776 case tcc_binary: /* a binary arithmetic expression */
777 kind = e_kind;
778 break;
779
780 case tcc_constant: /* a constant */
781 kind = c_kind;
782 break;
783
784 case tcc_exceptional: /* something random, like an identifier. */
785 switch (code)
786 {
787 case IDENTIFIER_NODE:
788 kind = id_kind;
789 break;
790
791 case TREE_VEC:
792 kind = vec_kind;
793 break;
794
795 case TREE_BINFO:
796 kind = binfo_kind;
797 break;
798
799 case SSA_NAME:
800 kind = ssa_name_kind;
801 break;
802
803 case BLOCK:
804 kind = b_kind;
805 break;
806
807 case CONSTRUCTOR:
808 kind = constr_kind;
809 break;
810
811 case OMP_CLAUSE:
812 kind = omp_clause_kind;
813 break;
814
815 default:
816 kind = x_kind;
817 break;
818 }
819 break;
820
821 case tcc_vl_exp:
822 kind = e_kind;
823 break;
824
825 default:
826 gcc_unreachable ();
827 }
828
829 tree_code_counts[(int) code]++;
830 tree_node_counts[(int) kind]++;
831 tree_node_sizes[(int) kind] += length;
832 #endif
833 }
834
835 /* Allocate and return a new UID from the DECL_UID namespace. */
836
837 int
838 allocate_decl_uid (void)
839 {
840 return next_decl_uid++;
841 }
842
843 /* Return a newly allocated node of code CODE. For decl and type
844 nodes, some other fields are initialized. The rest of the node is
845 initialized to zero. This function cannot be used for TREE_VEC or
846 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
847
848 Achoo! I got a code in the node. */
849
850 tree
851 make_node_stat (enum tree_code code MEM_STAT_DECL)
852 {
853 tree t;
854 enum tree_code_class type = TREE_CODE_CLASS (code);
855 size_t length = tree_code_size (code);
856
857 record_node_allocation_statistics (code, length);
858
859 t = ggc_alloc_zone_cleared_tree_node_stat (
860 (code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone,
861 length PASS_MEM_STAT);
862 TREE_SET_CODE (t, code);
863
864 switch (type)
865 {
866 case tcc_statement:
867 TREE_SIDE_EFFECTS (t) = 1;
868 break;
869
870 case tcc_declaration:
871 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
872 {
873 if (code == FUNCTION_DECL)
874 {
875 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
876 DECL_MODE (t) = FUNCTION_MODE;
877 }
878 else
879 DECL_ALIGN (t) = 1;
880 }
881 DECL_SOURCE_LOCATION (t) = input_location;
882 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
883 DECL_UID (t) = --next_debug_decl_uid;
884 else
885 {
886 DECL_UID (t) = allocate_decl_uid ();
887 SET_DECL_PT_UID (t, -1);
888 }
889 if (TREE_CODE (t) == LABEL_DECL)
890 LABEL_DECL_UID (t) = -1;
891
892 break;
893
894 case tcc_type:
895 TYPE_UID (t) = next_type_uid++;
896 TYPE_ALIGN (t) = BITS_PER_UNIT;
897 TYPE_USER_ALIGN (t) = 0;
898 TYPE_MAIN_VARIANT (t) = t;
899 TYPE_CANONICAL (t) = t;
900
901 /* Default to no attributes for type, but let target change that. */
902 TYPE_ATTRIBUTES (t) = NULL_TREE;
903 targetm.set_default_type_attributes (t);
904
905 /* We have not yet computed the alias set for this type. */
906 TYPE_ALIAS_SET (t) = -1;
907 break;
908
909 case tcc_constant:
910 TREE_CONSTANT (t) = 1;
911 break;
912
913 case tcc_expression:
914 switch (code)
915 {
916 case INIT_EXPR:
917 case MODIFY_EXPR:
918 case VA_ARG_EXPR:
919 case PREDECREMENT_EXPR:
920 case PREINCREMENT_EXPR:
921 case POSTDECREMENT_EXPR:
922 case POSTINCREMENT_EXPR:
923 /* All of these have side-effects, no matter what their
924 operands are. */
925 TREE_SIDE_EFFECTS (t) = 1;
926 break;
927
928 default:
929 break;
930 }
931 break;
932
933 default:
934 /* Other classes need no special treatment. */
935 break;
936 }
937
938 return t;
939 }
940 \f
941 /* Return a new node with the same contents as NODE except that its
942 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
943
944 tree
945 copy_node_stat (tree node MEM_STAT_DECL)
946 {
947 tree t;
948 enum tree_code code = TREE_CODE (node);
949 size_t length;
950
951 gcc_assert (code != STATEMENT_LIST);
952
953 length = tree_size (node);
954 record_node_allocation_statistics (code, length);
955 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
956 memcpy (t, node, length);
957
958 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
959 TREE_CHAIN (t) = 0;
960 TREE_ASM_WRITTEN (t) = 0;
961 TREE_VISITED (t) = 0;
962 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
963 *DECL_VAR_ANN_PTR (t) = 0;
964
965 if (TREE_CODE_CLASS (code) == tcc_declaration)
966 {
967 if (code == DEBUG_EXPR_DECL)
968 DECL_UID (t) = --next_debug_decl_uid;
969 else
970 {
971 DECL_UID (t) = allocate_decl_uid ();
972 if (DECL_PT_UID_SET_P (node))
973 SET_DECL_PT_UID (t, DECL_PT_UID (node));
974 }
975 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
976 && DECL_HAS_VALUE_EXPR_P (node))
977 {
978 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
979 DECL_HAS_VALUE_EXPR_P (t) = 1;
980 }
981 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
982 {
983 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
984 DECL_HAS_INIT_PRIORITY_P (t) = 1;
985 }
986 }
987 else if (TREE_CODE_CLASS (code) == tcc_type)
988 {
989 TYPE_UID (t) = next_type_uid++;
990 /* The following is so that the debug code for
991 the copy is different from the original type.
992 The two statements usually duplicate each other
993 (because they clear fields of the same union),
994 but the optimizer should catch that. */
995 TYPE_SYMTAB_POINTER (t) = 0;
996 TYPE_SYMTAB_ADDRESS (t) = 0;
997
998 /* Do not copy the values cache. */
999 if (TYPE_CACHED_VALUES_P(t))
1000 {
1001 TYPE_CACHED_VALUES_P (t) = 0;
1002 TYPE_CACHED_VALUES (t) = NULL_TREE;
1003 }
1004 }
1005
1006 return t;
1007 }
1008
1009 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1010 For example, this can copy a list made of TREE_LIST nodes. */
1011
1012 tree
1013 copy_list (tree list)
1014 {
1015 tree head;
1016 tree prev, next;
1017
1018 if (list == 0)
1019 return 0;
1020
1021 head = prev = copy_node (list);
1022 next = TREE_CHAIN (list);
1023 while (next)
1024 {
1025 TREE_CHAIN (prev) = copy_node (next);
1026 prev = TREE_CHAIN (prev);
1027 next = TREE_CHAIN (next);
1028 }
1029 return head;
1030 }
1031
1032 \f
1033 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1034
1035 tree
1036 build_int_cst (tree type, HOST_WIDE_INT low)
1037 {
1038 /* Support legacy code. */
1039 if (!type)
1040 type = integer_type_node;
1041
1042 return double_int_to_tree (type, shwi_to_double_int (low));
1043 }
1044
1045 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1046
1047 tree
1048 build_int_cst_type (tree type, HOST_WIDE_INT low)
1049 {
1050 gcc_assert (type);
1051
1052 return double_int_to_tree (type, shwi_to_double_int (low));
1053 }
1054
1055 /* Constructs tree in type TYPE from with value given by CST. Signedness
1056 of CST is assumed to be the same as the signedness of TYPE. */
1057
1058 tree
1059 double_int_to_tree (tree type, double_int cst)
1060 {
1061 /* Size types *are* sign extended. */
1062 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1063 || (TREE_CODE (type) == INTEGER_TYPE
1064 && TYPE_IS_SIZETYPE (type)));
1065
1066 cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1067
1068 return build_int_cst_wide (type, cst.low, cst.high);
1069 }
1070
1071 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1072 to be the same as the signedness of TYPE. */
1073
1074 bool
1075 double_int_fits_to_tree_p (const_tree type, double_int cst)
1076 {
1077 /* Size types *are* sign extended. */
1078 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1079 || (TREE_CODE (type) == INTEGER_TYPE
1080 && TYPE_IS_SIZETYPE (type)));
1081
1082 double_int ext
1083 = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1084
1085 return double_int_equal_p (cst, ext);
1086 }
1087
1088 /* We force the double_int CST to the range of the type TYPE by sign or
1089 zero extending it. OVERFLOWABLE indicates if we are interested in
1090 overflow of the value, when >0 we are only interested in signed
1091 overflow, for <0 we are interested in any overflow. OVERFLOWED
1092 indicates whether overflow has already occurred. CONST_OVERFLOWED
1093 indicates whether constant overflow has already occurred. We force
1094 T's value to be within range of T's type (by setting to 0 or 1 all
1095 the bits outside the type's range). We set TREE_OVERFLOWED if,
1096 OVERFLOWED is nonzero,
1097 or OVERFLOWABLE is >0 and signed overflow occurs
1098 or OVERFLOWABLE is <0 and any overflow occurs
1099 We return a new tree node for the extended double_int. The node
1100 is shared if no overflow flags are set. */
1101
1102
1103 tree
1104 force_fit_type_double (tree type, double_int cst, int overflowable,
1105 bool overflowed)
1106 {
1107 bool sign_extended_type;
1108
1109 /* Size types *are* sign extended. */
1110 sign_extended_type = (!TYPE_UNSIGNED (type)
1111 || (TREE_CODE (type) == INTEGER_TYPE
1112 && TYPE_IS_SIZETYPE (type)));
1113
1114 /* If we need to set overflow flags, return a new unshared node. */
1115 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1116 {
1117 if (overflowed
1118 || overflowable < 0
1119 || (overflowable > 0 && sign_extended_type))
1120 {
1121 tree t = make_node (INTEGER_CST);
1122 TREE_INT_CST (t) = double_int_ext (cst, TYPE_PRECISION (type),
1123 !sign_extended_type);
1124 TREE_TYPE (t) = type;
1125 TREE_OVERFLOW (t) = 1;
1126 return t;
1127 }
1128 }
1129
1130 /* Else build a shared node. */
1131 return double_int_to_tree (type, cst);
1132 }
1133
1134 /* These are the hash table functions for the hash table of INTEGER_CST
1135 nodes of a sizetype. */
1136
1137 /* Return the hash code code X, an INTEGER_CST. */
1138
1139 static hashval_t
1140 int_cst_hash_hash (const void *x)
1141 {
1142 const_tree const t = (const_tree) x;
1143
1144 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1145 ^ htab_hash_pointer (TREE_TYPE (t)));
1146 }
1147
1148 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1149 is the same as that given by *Y, which is the same. */
1150
1151 static int
1152 int_cst_hash_eq (const void *x, const void *y)
1153 {
1154 const_tree const xt = (const_tree) x;
1155 const_tree const yt = (const_tree) y;
1156
1157 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1158 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1159 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1160 }
1161
1162 /* Create an INT_CST node of TYPE and value HI:LOW.
1163 The returned node is always shared. For small integers we use a
1164 per-type vector cache, for larger ones we use a single hash table. */
1165
1166 tree
1167 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1168 {
1169 tree t;
1170 int ix = -1;
1171 int limit = 0;
1172
1173 gcc_assert (type);
1174
1175 switch (TREE_CODE (type))
1176 {
1177 case NULLPTR_TYPE:
1178 gcc_assert (hi == 0 && low == 0);
1179 /* Fallthru. */
1180
1181 case POINTER_TYPE:
1182 case REFERENCE_TYPE:
1183 /* Cache NULL pointer. */
1184 if (!hi && !low)
1185 {
1186 limit = 1;
1187 ix = 0;
1188 }
1189 break;
1190
1191 case BOOLEAN_TYPE:
1192 /* Cache false or true. */
1193 limit = 2;
1194 if (!hi && low < 2)
1195 ix = low;
1196 break;
1197
1198 case INTEGER_TYPE:
1199 case OFFSET_TYPE:
1200 if (TYPE_UNSIGNED (type))
1201 {
1202 /* Cache 0..N */
1203 limit = INTEGER_SHARE_LIMIT;
1204 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1205 ix = low;
1206 }
1207 else
1208 {
1209 /* Cache -1..N */
1210 limit = INTEGER_SHARE_LIMIT + 1;
1211 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1212 ix = low + 1;
1213 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1214 ix = 0;
1215 }
1216 break;
1217
1218 case ENUMERAL_TYPE:
1219 break;
1220
1221 default:
1222 gcc_unreachable ();
1223 }
1224
1225 if (ix >= 0)
1226 {
1227 /* Look for it in the type's vector of small shared ints. */
1228 if (!TYPE_CACHED_VALUES_P (type))
1229 {
1230 TYPE_CACHED_VALUES_P (type) = 1;
1231 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1232 }
1233
1234 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1235 if (t)
1236 {
1237 /* Make sure no one is clobbering the shared constant. */
1238 gcc_assert (TREE_TYPE (t) == type);
1239 gcc_assert (TREE_INT_CST_LOW (t) == low);
1240 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1241 }
1242 else
1243 {
1244 /* Create a new shared int. */
1245 t = make_node (INTEGER_CST);
1246
1247 TREE_INT_CST_LOW (t) = low;
1248 TREE_INT_CST_HIGH (t) = hi;
1249 TREE_TYPE (t) = type;
1250
1251 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1252 }
1253 }
1254 else
1255 {
1256 /* Use the cache of larger shared ints. */
1257 void **slot;
1258
1259 TREE_INT_CST_LOW (int_cst_node) = low;
1260 TREE_INT_CST_HIGH (int_cst_node) = hi;
1261 TREE_TYPE (int_cst_node) = type;
1262
1263 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1264 t = (tree) *slot;
1265 if (!t)
1266 {
1267 /* Insert this one into the hash table. */
1268 t = int_cst_node;
1269 *slot = t;
1270 /* Make a new node for next time round. */
1271 int_cst_node = make_node (INTEGER_CST);
1272 }
1273 }
1274
1275 return t;
1276 }
1277
1278 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1279 and the rest are zeros. */
1280
1281 tree
1282 build_low_bits_mask (tree type, unsigned bits)
1283 {
1284 double_int mask;
1285
1286 gcc_assert (bits <= TYPE_PRECISION (type));
1287
1288 if (bits == TYPE_PRECISION (type)
1289 && !TYPE_UNSIGNED (type))
1290 /* Sign extended all-ones mask. */
1291 mask = double_int_minus_one;
1292 else
1293 mask = double_int_mask (bits);
1294
1295 return build_int_cst_wide (type, mask.low, mask.high);
1296 }
1297
1298 /* Checks that X is integer constant that can be expressed in (unsigned)
1299 HOST_WIDE_INT without loss of precision. */
1300
1301 bool
1302 cst_and_fits_in_hwi (const_tree x)
1303 {
1304 if (TREE_CODE (x) != INTEGER_CST)
1305 return false;
1306
1307 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1308 return false;
1309
1310 return (TREE_INT_CST_HIGH (x) == 0
1311 || TREE_INT_CST_HIGH (x) == -1);
1312 }
1313
1314 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1315 are in a list pointed to by VALS. */
1316
1317 tree
1318 build_vector (tree type, tree vals)
1319 {
1320 tree v = make_node (VECTOR_CST);
1321 int over = 0;
1322 tree link;
1323 unsigned cnt = 0;
1324
1325 TREE_VECTOR_CST_ELTS (v) = vals;
1326 TREE_TYPE (v) = type;
1327
1328 /* Iterate through elements and check for overflow. */
1329 for (link = vals; link; link = TREE_CHAIN (link))
1330 {
1331 tree value = TREE_VALUE (link);
1332 cnt++;
1333
1334 /* Don't crash if we get an address constant. */
1335 if (!CONSTANT_CLASS_P (value))
1336 continue;
1337
1338 over |= TREE_OVERFLOW (value);
1339 }
1340
1341 gcc_assert (cnt == TYPE_VECTOR_SUBPARTS (type));
1342
1343 TREE_OVERFLOW (v) = over;
1344 return v;
1345 }
1346
1347 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1348 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1349
1350 tree
1351 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1352 {
1353 tree list = NULL_TREE;
1354 unsigned HOST_WIDE_INT idx;
1355 tree value;
1356
1357 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1358 list = tree_cons (NULL_TREE, value, list);
1359 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1360 list = tree_cons (NULL_TREE,
1361 build_zero_cst (TREE_TYPE (type)), list);
1362 return build_vector (type, nreverse (list));
1363 }
1364
1365 /* Build a vector of type VECTYPE where all the elements are SCs. */
1366 tree
1367 build_vector_from_val (tree vectype, tree sc)
1368 {
1369 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1370 VEC(constructor_elt, gc) *v = NULL;
1371
1372 if (sc == error_mark_node)
1373 return sc;
1374
1375 /* Verify that the vector type is suitable for SC. Note that there
1376 is some inconsistency in the type-system with respect to restrict
1377 qualifications of pointers. Vector types always have a main-variant
1378 element type and the qualification is applied to the vector-type.
1379 So TREE_TYPE (vector-type) does not return a properly qualified
1380 vector element-type. */
1381 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1382 TREE_TYPE (vectype)));
1383
1384 v = VEC_alloc (constructor_elt, gc, nunits);
1385 for (i = 0; i < nunits; ++i)
1386 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1387
1388 if (CONSTANT_CLASS_P (sc))
1389 return build_vector_from_ctor (vectype, v);
1390 else
1391 return build_constructor (vectype, v);
1392 }
1393
1394 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1395 are in the VEC pointed to by VALS. */
1396 tree
1397 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1398 {
1399 tree c = make_node (CONSTRUCTOR);
1400 unsigned int i;
1401 constructor_elt *elt;
1402 bool constant_p = true;
1403
1404 TREE_TYPE (c) = type;
1405 CONSTRUCTOR_ELTS (c) = vals;
1406
1407 FOR_EACH_VEC_ELT (constructor_elt, vals, i, elt)
1408 if (!TREE_CONSTANT (elt->value))
1409 {
1410 constant_p = false;
1411 break;
1412 }
1413
1414 TREE_CONSTANT (c) = constant_p;
1415
1416 return c;
1417 }
1418
1419 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1420 INDEX and VALUE. */
1421 tree
1422 build_constructor_single (tree type, tree index, tree value)
1423 {
1424 VEC(constructor_elt,gc) *v;
1425 constructor_elt *elt;
1426
1427 v = VEC_alloc (constructor_elt, gc, 1);
1428 elt = VEC_quick_push (constructor_elt, v, NULL);
1429 elt->index = index;
1430 elt->value = value;
1431
1432 return build_constructor (type, v);
1433 }
1434
1435
1436 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1437 are in a list pointed to by VALS. */
1438 tree
1439 build_constructor_from_list (tree type, tree vals)
1440 {
1441 tree t;
1442 VEC(constructor_elt,gc) *v = NULL;
1443
1444 if (vals)
1445 {
1446 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1447 for (t = vals; t; t = TREE_CHAIN (t))
1448 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1449 }
1450
1451 return build_constructor (type, v);
1452 }
1453
1454 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1455
1456 tree
1457 build_fixed (tree type, FIXED_VALUE_TYPE f)
1458 {
1459 tree v;
1460 FIXED_VALUE_TYPE *fp;
1461
1462 v = make_node (FIXED_CST);
1463 fp = ggc_alloc_fixed_value ();
1464 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1465
1466 TREE_TYPE (v) = type;
1467 TREE_FIXED_CST_PTR (v) = fp;
1468 return v;
1469 }
1470
1471 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1472
1473 tree
1474 build_real (tree type, REAL_VALUE_TYPE d)
1475 {
1476 tree v;
1477 REAL_VALUE_TYPE *dp;
1478 int overflow = 0;
1479
1480 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1481 Consider doing it via real_convert now. */
1482
1483 v = make_node (REAL_CST);
1484 dp = ggc_alloc_real_value ();
1485 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1486
1487 TREE_TYPE (v) = type;
1488 TREE_REAL_CST_PTR (v) = dp;
1489 TREE_OVERFLOW (v) = overflow;
1490 return v;
1491 }
1492
1493 /* Return a new REAL_CST node whose type is TYPE
1494 and whose value is the integer value of the INTEGER_CST node I. */
1495
1496 REAL_VALUE_TYPE
1497 real_value_from_int_cst (const_tree type, const_tree i)
1498 {
1499 REAL_VALUE_TYPE d;
1500
1501 /* Clear all bits of the real value type so that we can later do
1502 bitwise comparisons to see if two values are the same. */
1503 memset (&d, 0, sizeof d);
1504
1505 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1506 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1507 TYPE_UNSIGNED (TREE_TYPE (i)));
1508 return d;
1509 }
1510
1511 /* Given a tree representing an integer constant I, return a tree
1512 representing the same value as a floating-point constant of type TYPE. */
1513
1514 tree
1515 build_real_from_int_cst (tree type, const_tree i)
1516 {
1517 tree v;
1518 int overflow = TREE_OVERFLOW (i);
1519
1520 v = build_real (type, real_value_from_int_cst (type, i));
1521
1522 TREE_OVERFLOW (v) |= overflow;
1523 return v;
1524 }
1525
1526 /* Return a newly constructed STRING_CST node whose value is
1527 the LEN characters at STR.
1528 Note that for a C string literal, LEN should include the trailing NUL.
1529 The TREE_TYPE is not initialized. */
1530
1531 tree
1532 build_string (int len, const char *str)
1533 {
1534 tree s;
1535 size_t length;
1536
1537 /* Do not waste bytes provided by padding of struct tree_string. */
1538 length = len + offsetof (struct tree_string, str) + 1;
1539
1540 record_node_allocation_statistics (STRING_CST, length);
1541
1542 s = ggc_alloc_tree_node (length);
1543
1544 memset (s, 0, sizeof (struct tree_typed));
1545 TREE_SET_CODE (s, STRING_CST);
1546 TREE_CONSTANT (s) = 1;
1547 TREE_STRING_LENGTH (s) = len;
1548 memcpy (s->string.str, str, len);
1549 s->string.str[len] = '\0';
1550
1551 return s;
1552 }
1553
1554 /* Return a newly constructed COMPLEX_CST node whose value is
1555 specified by the real and imaginary parts REAL and IMAG.
1556 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1557 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1558
1559 tree
1560 build_complex (tree type, tree real, tree imag)
1561 {
1562 tree t = make_node (COMPLEX_CST);
1563
1564 TREE_REALPART (t) = real;
1565 TREE_IMAGPART (t) = imag;
1566 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1567 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1568 return t;
1569 }
1570
1571 /* Return a constant of arithmetic type TYPE which is the
1572 multiplicative identity of the set TYPE. */
1573
1574 tree
1575 build_one_cst (tree type)
1576 {
1577 switch (TREE_CODE (type))
1578 {
1579 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1580 case POINTER_TYPE: case REFERENCE_TYPE:
1581 case OFFSET_TYPE:
1582 return build_int_cst (type, 1);
1583
1584 case REAL_TYPE:
1585 return build_real (type, dconst1);
1586
1587 case FIXED_POINT_TYPE:
1588 /* We can only generate 1 for accum types. */
1589 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1590 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1591
1592 case VECTOR_TYPE:
1593 {
1594 tree scalar = build_one_cst (TREE_TYPE (type));
1595
1596 return build_vector_from_val (type, scalar);
1597 }
1598
1599 case COMPLEX_TYPE:
1600 return build_complex (type,
1601 build_one_cst (TREE_TYPE (type)),
1602 build_zero_cst (TREE_TYPE (type)));
1603
1604 default:
1605 gcc_unreachable ();
1606 }
1607 }
1608
1609 /* Build 0 constant of type TYPE. This is used by constructor folding
1610 and thus the constant should be represented in memory by
1611 zero(es). */
1612
1613 tree
1614 build_zero_cst (tree type)
1615 {
1616 switch (TREE_CODE (type))
1617 {
1618 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1619 case POINTER_TYPE: case REFERENCE_TYPE:
1620 case OFFSET_TYPE:
1621 return build_int_cst (type, 0);
1622
1623 case REAL_TYPE:
1624 return build_real (type, dconst0);
1625
1626 case FIXED_POINT_TYPE:
1627 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1628
1629 case VECTOR_TYPE:
1630 {
1631 tree scalar = build_zero_cst (TREE_TYPE (type));
1632
1633 return build_vector_from_val (type, scalar);
1634 }
1635
1636 case COMPLEX_TYPE:
1637 {
1638 tree zero = build_zero_cst (TREE_TYPE (type));
1639
1640 return build_complex (type, zero, zero);
1641 }
1642
1643 default:
1644 if (!AGGREGATE_TYPE_P (type))
1645 return fold_convert (type, integer_zero_node);
1646 return build_constructor (type, NULL);
1647 }
1648 }
1649
1650
1651 /* Build a BINFO with LEN language slots. */
1652
1653 tree
1654 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1655 {
1656 tree t;
1657 size_t length = (offsetof (struct tree_binfo, base_binfos)
1658 + VEC_embedded_size (tree, base_binfos));
1659
1660 record_node_allocation_statistics (TREE_BINFO, length);
1661
1662 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1663
1664 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1665
1666 TREE_SET_CODE (t, TREE_BINFO);
1667
1668 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1669
1670 return t;
1671 }
1672
1673 /* Create a CASE_LABEL_EXPR tree node and return it. */
1674
1675 tree
1676 build_case_label (tree low_value, tree high_value, tree label_decl)
1677 {
1678 tree t = make_node (CASE_LABEL_EXPR);
1679
1680 TREE_TYPE (t) = void_type_node;
1681 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
1682
1683 CASE_LOW (t) = low_value;
1684 CASE_HIGH (t) = high_value;
1685 CASE_LABEL (t) = label_decl;
1686 CASE_CHAIN (t) = NULL_TREE;
1687
1688 return t;
1689 }
1690
1691 /* Build a newly constructed TREE_VEC node of length LEN. */
1692
1693 tree
1694 make_tree_vec_stat (int len MEM_STAT_DECL)
1695 {
1696 tree t;
1697 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1698
1699 record_node_allocation_statistics (TREE_VEC, length);
1700
1701 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1702
1703 TREE_SET_CODE (t, TREE_VEC);
1704 TREE_VEC_LENGTH (t) = len;
1705
1706 return t;
1707 }
1708 \f
1709 /* Return 1 if EXPR is the integer constant zero or a complex constant
1710 of zero. */
1711
1712 int
1713 integer_zerop (const_tree expr)
1714 {
1715 STRIP_NOPS (expr);
1716
1717 return ((TREE_CODE (expr) == INTEGER_CST
1718 && TREE_INT_CST_LOW (expr) == 0
1719 && TREE_INT_CST_HIGH (expr) == 0)
1720 || (TREE_CODE (expr) == COMPLEX_CST
1721 && integer_zerop (TREE_REALPART (expr))
1722 && integer_zerop (TREE_IMAGPART (expr))));
1723 }
1724
1725 /* Return 1 if EXPR is the integer constant one or the corresponding
1726 complex constant. */
1727
1728 int
1729 integer_onep (const_tree expr)
1730 {
1731 STRIP_NOPS (expr);
1732
1733 return ((TREE_CODE (expr) == INTEGER_CST
1734 && TREE_INT_CST_LOW (expr) == 1
1735 && TREE_INT_CST_HIGH (expr) == 0)
1736 || (TREE_CODE (expr) == COMPLEX_CST
1737 && integer_onep (TREE_REALPART (expr))
1738 && integer_zerop (TREE_IMAGPART (expr))));
1739 }
1740
1741 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1742 it contains. Likewise for the corresponding complex constant. */
1743
1744 int
1745 integer_all_onesp (const_tree expr)
1746 {
1747 int prec;
1748 int uns;
1749
1750 STRIP_NOPS (expr);
1751
1752 if (TREE_CODE (expr) == COMPLEX_CST
1753 && integer_all_onesp (TREE_REALPART (expr))
1754 && integer_zerop (TREE_IMAGPART (expr)))
1755 return 1;
1756
1757 else if (TREE_CODE (expr) != INTEGER_CST)
1758 return 0;
1759
1760 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1761 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1762 && TREE_INT_CST_HIGH (expr) == -1)
1763 return 1;
1764 if (!uns)
1765 return 0;
1766
1767 prec = TYPE_PRECISION (TREE_TYPE (expr));
1768 if (prec >= HOST_BITS_PER_WIDE_INT)
1769 {
1770 HOST_WIDE_INT high_value;
1771 int shift_amount;
1772
1773 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1774
1775 /* Can not handle precisions greater than twice the host int size. */
1776 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1777 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1778 /* Shifting by the host word size is undefined according to the ANSI
1779 standard, so we must handle this as a special case. */
1780 high_value = -1;
1781 else
1782 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1783
1784 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1785 && TREE_INT_CST_HIGH (expr) == high_value);
1786 }
1787 else
1788 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1789 }
1790
1791 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1792 one bit on). */
1793
1794 int
1795 integer_pow2p (const_tree expr)
1796 {
1797 int prec;
1798 HOST_WIDE_INT high, low;
1799
1800 STRIP_NOPS (expr);
1801
1802 if (TREE_CODE (expr) == COMPLEX_CST
1803 && integer_pow2p (TREE_REALPART (expr))
1804 && integer_zerop (TREE_IMAGPART (expr)))
1805 return 1;
1806
1807 if (TREE_CODE (expr) != INTEGER_CST)
1808 return 0;
1809
1810 prec = TYPE_PRECISION (TREE_TYPE (expr));
1811 high = TREE_INT_CST_HIGH (expr);
1812 low = TREE_INT_CST_LOW (expr);
1813
1814 /* First clear all bits that are beyond the type's precision in case
1815 we've been sign extended. */
1816
1817 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1818 ;
1819 else if (prec > HOST_BITS_PER_WIDE_INT)
1820 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1821 else
1822 {
1823 high = 0;
1824 if (prec < HOST_BITS_PER_WIDE_INT)
1825 low &= ~((HOST_WIDE_INT) (-1) << prec);
1826 }
1827
1828 if (high == 0 && low == 0)
1829 return 0;
1830
1831 return ((high == 0 && (low & (low - 1)) == 0)
1832 || (low == 0 && (high & (high - 1)) == 0));
1833 }
1834
1835 /* Return 1 if EXPR is an integer constant other than zero or a
1836 complex constant other than zero. */
1837
1838 int
1839 integer_nonzerop (const_tree expr)
1840 {
1841 STRIP_NOPS (expr);
1842
1843 return ((TREE_CODE (expr) == INTEGER_CST
1844 && (TREE_INT_CST_LOW (expr) != 0
1845 || TREE_INT_CST_HIGH (expr) != 0))
1846 || (TREE_CODE (expr) == COMPLEX_CST
1847 && (integer_nonzerop (TREE_REALPART (expr))
1848 || integer_nonzerop (TREE_IMAGPART (expr)))));
1849 }
1850
1851 /* Return 1 if EXPR is the fixed-point constant zero. */
1852
1853 int
1854 fixed_zerop (const_tree expr)
1855 {
1856 return (TREE_CODE (expr) == FIXED_CST
1857 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1858 }
1859
1860 /* Return the power of two represented by a tree node known to be a
1861 power of two. */
1862
1863 int
1864 tree_log2 (const_tree expr)
1865 {
1866 int prec;
1867 HOST_WIDE_INT high, low;
1868
1869 STRIP_NOPS (expr);
1870
1871 if (TREE_CODE (expr) == COMPLEX_CST)
1872 return tree_log2 (TREE_REALPART (expr));
1873
1874 prec = TYPE_PRECISION (TREE_TYPE (expr));
1875 high = TREE_INT_CST_HIGH (expr);
1876 low = TREE_INT_CST_LOW (expr);
1877
1878 /* First clear all bits that are beyond the type's precision in case
1879 we've been sign extended. */
1880
1881 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1882 ;
1883 else if (prec > HOST_BITS_PER_WIDE_INT)
1884 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1885 else
1886 {
1887 high = 0;
1888 if (prec < HOST_BITS_PER_WIDE_INT)
1889 low &= ~((HOST_WIDE_INT) (-1) << prec);
1890 }
1891
1892 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1893 : exact_log2 (low));
1894 }
1895
1896 /* Similar, but return the largest integer Y such that 2 ** Y is less
1897 than or equal to EXPR. */
1898
1899 int
1900 tree_floor_log2 (const_tree expr)
1901 {
1902 int prec;
1903 HOST_WIDE_INT high, low;
1904
1905 STRIP_NOPS (expr);
1906
1907 if (TREE_CODE (expr) == COMPLEX_CST)
1908 return tree_log2 (TREE_REALPART (expr));
1909
1910 prec = TYPE_PRECISION (TREE_TYPE (expr));
1911 high = TREE_INT_CST_HIGH (expr);
1912 low = TREE_INT_CST_LOW (expr);
1913
1914 /* First clear all bits that are beyond the type's precision in case
1915 we've been sign extended. Ignore if type's precision hasn't been set
1916 since what we are doing is setting it. */
1917
1918 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1919 ;
1920 else if (prec > HOST_BITS_PER_WIDE_INT)
1921 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1922 else
1923 {
1924 high = 0;
1925 if (prec < HOST_BITS_PER_WIDE_INT)
1926 low &= ~((HOST_WIDE_INT) (-1) << prec);
1927 }
1928
1929 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1930 : floor_log2 (low));
1931 }
1932
1933 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1934 decimal float constants, so don't return 1 for them. */
1935
1936 int
1937 real_zerop (const_tree expr)
1938 {
1939 STRIP_NOPS (expr);
1940
1941 return ((TREE_CODE (expr) == REAL_CST
1942 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1943 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1944 || (TREE_CODE (expr) == COMPLEX_CST
1945 && real_zerop (TREE_REALPART (expr))
1946 && real_zerop (TREE_IMAGPART (expr))));
1947 }
1948
1949 /* Return 1 if EXPR is the real constant one in real or complex form.
1950 Trailing zeroes matter for decimal float constants, so don't return
1951 1 for them. */
1952
1953 int
1954 real_onep (const_tree expr)
1955 {
1956 STRIP_NOPS (expr);
1957
1958 return ((TREE_CODE (expr) == REAL_CST
1959 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1960 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1961 || (TREE_CODE (expr) == COMPLEX_CST
1962 && real_onep (TREE_REALPART (expr))
1963 && real_zerop (TREE_IMAGPART (expr))));
1964 }
1965
1966 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1967 for decimal float constants, so don't return 1 for them. */
1968
1969 int
1970 real_twop (const_tree expr)
1971 {
1972 STRIP_NOPS (expr);
1973
1974 return ((TREE_CODE (expr) == REAL_CST
1975 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1976 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1977 || (TREE_CODE (expr) == COMPLEX_CST
1978 && real_twop (TREE_REALPART (expr))
1979 && real_zerop (TREE_IMAGPART (expr))));
1980 }
1981
1982 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1983 matter for decimal float constants, so don't return 1 for them. */
1984
1985 int
1986 real_minus_onep (const_tree expr)
1987 {
1988 STRIP_NOPS (expr);
1989
1990 return ((TREE_CODE (expr) == REAL_CST
1991 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1992 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1993 || (TREE_CODE (expr) == COMPLEX_CST
1994 && real_minus_onep (TREE_REALPART (expr))
1995 && real_zerop (TREE_IMAGPART (expr))));
1996 }
1997
1998 /* Nonzero if EXP is a constant or a cast of a constant. */
1999
2000 int
2001 really_constant_p (const_tree exp)
2002 {
2003 /* This is not quite the same as STRIP_NOPS. It does more. */
2004 while (CONVERT_EXPR_P (exp)
2005 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2006 exp = TREE_OPERAND (exp, 0);
2007 return TREE_CONSTANT (exp);
2008 }
2009 \f
2010 /* Return first list element whose TREE_VALUE is ELEM.
2011 Return 0 if ELEM is not in LIST. */
2012
2013 tree
2014 value_member (tree elem, tree list)
2015 {
2016 while (list)
2017 {
2018 if (elem == TREE_VALUE (list))
2019 return list;
2020 list = TREE_CHAIN (list);
2021 }
2022 return NULL_TREE;
2023 }
2024
2025 /* Return first list element whose TREE_PURPOSE is ELEM.
2026 Return 0 if ELEM is not in LIST. */
2027
2028 tree
2029 purpose_member (const_tree elem, tree list)
2030 {
2031 while (list)
2032 {
2033 if (elem == TREE_PURPOSE (list))
2034 return list;
2035 list = TREE_CHAIN (list);
2036 }
2037 return NULL_TREE;
2038 }
2039
2040 /* Return true if ELEM is in V. */
2041
2042 bool
2043 vec_member (const_tree elem, VEC(tree,gc) *v)
2044 {
2045 unsigned ix;
2046 tree t;
2047 FOR_EACH_VEC_ELT (tree, v, ix, t)
2048 if (elem == t)
2049 return true;
2050 return false;
2051 }
2052
2053 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2054 NULL_TREE. */
2055
2056 tree
2057 chain_index (int idx, tree chain)
2058 {
2059 for (; chain && idx > 0; --idx)
2060 chain = TREE_CHAIN (chain);
2061 return chain;
2062 }
2063
2064 /* Return nonzero if ELEM is part of the chain CHAIN. */
2065
2066 int
2067 chain_member (const_tree elem, const_tree chain)
2068 {
2069 while (chain)
2070 {
2071 if (elem == chain)
2072 return 1;
2073 chain = DECL_CHAIN (chain);
2074 }
2075
2076 return 0;
2077 }
2078
2079 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2080 We expect a null pointer to mark the end of the chain.
2081 This is the Lisp primitive `length'. */
2082
2083 int
2084 list_length (const_tree t)
2085 {
2086 const_tree p = t;
2087 #ifdef ENABLE_TREE_CHECKING
2088 const_tree q = t;
2089 #endif
2090 int len = 0;
2091
2092 while (p)
2093 {
2094 p = TREE_CHAIN (p);
2095 #ifdef ENABLE_TREE_CHECKING
2096 if (len % 2)
2097 q = TREE_CHAIN (q);
2098 gcc_assert (p != q);
2099 #endif
2100 len++;
2101 }
2102
2103 return len;
2104 }
2105
2106 /* Returns the number of FIELD_DECLs in TYPE. */
2107
2108 int
2109 fields_length (const_tree type)
2110 {
2111 tree t = TYPE_FIELDS (type);
2112 int count = 0;
2113
2114 for (; t; t = DECL_CHAIN (t))
2115 if (TREE_CODE (t) == FIELD_DECL)
2116 ++count;
2117
2118 return count;
2119 }
2120
2121 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2122 UNION_TYPE TYPE, or NULL_TREE if none. */
2123
2124 tree
2125 first_field (const_tree type)
2126 {
2127 tree t = TYPE_FIELDS (type);
2128 while (t && TREE_CODE (t) != FIELD_DECL)
2129 t = TREE_CHAIN (t);
2130 return t;
2131 }
2132
2133 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2134 by modifying the last node in chain 1 to point to chain 2.
2135 This is the Lisp primitive `nconc'. */
2136
2137 tree
2138 chainon (tree op1, tree op2)
2139 {
2140 tree t1;
2141
2142 if (!op1)
2143 return op2;
2144 if (!op2)
2145 return op1;
2146
2147 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2148 continue;
2149 TREE_CHAIN (t1) = op2;
2150
2151 #ifdef ENABLE_TREE_CHECKING
2152 {
2153 tree t2;
2154 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2155 gcc_assert (t2 != t1);
2156 }
2157 #endif
2158
2159 return op1;
2160 }
2161
2162 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2163
2164 tree
2165 tree_last (tree chain)
2166 {
2167 tree next;
2168 if (chain)
2169 while ((next = TREE_CHAIN (chain)))
2170 chain = next;
2171 return chain;
2172 }
2173
2174 /* Reverse the order of elements in the chain T,
2175 and return the new head of the chain (old last element). */
2176
2177 tree
2178 nreverse (tree t)
2179 {
2180 tree prev = 0, decl, next;
2181 for (decl = t; decl; decl = next)
2182 {
2183 /* We shouldn't be using this function to reverse BLOCK chains; we
2184 have blocks_nreverse for that. */
2185 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2186 next = TREE_CHAIN (decl);
2187 TREE_CHAIN (decl) = prev;
2188 prev = decl;
2189 }
2190 return prev;
2191 }
2192 \f
2193 /* Return a newly created TREE_LIST node whose
2194 purpose and value fields are PARM and VALUE. */
2195
2196 tree
2197 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2198 {
2199 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2200 TREE_PURPOSE (t) = parm;
2201 TREE_VALUE (t) = value;
2202 return t;
2203 }
2204
2205 /* Build a chain of TREE_LIST nodes from a vector. */
2206
2207 tree
2208 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2209 {
2210 tree ret = NULL_TREE;
2211 tree *pp = &ret;
2212 unsigned int i;
2213 tree t;
2214 FOR_EACH_VEC_ELT (tree, vec, i, t)
2215 {
2216 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2217 pp = &TREE_CHAIN (*pp);
2218 }
2219 return ret;
2220 }
2221
2222 /* Return a newly created TREE_LIST node whose
2223 purpose and value fields are PURPOSE and VALUE
2224 and whose TREE_CHAIN is CHAIN. */
2225
2226 tree
2227 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2228 {
2229 tree node;
2230
2231 node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list)
2232 PASS_MEM_STAT);
2233 memset (node, 0, sizeof (struct tree_common));
2234
2235 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2236
2237 TREE_SET_CODE (node, TREE_LIST);
2238 TREE_CHAIN (node) = chain;
2239 TREE_PURPOSE (node) = purpose;
2240 TREE_VALUE (node) = value;
2241 return node;
2242 }
2243
2244 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2245 trees. */
2246
2247 VEC(tree,gc) *
2248 ctor_to_vec (tree ctor)
2249 {
2250 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2251 unsigned int ix;
2252 tree val;
2253
2254 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2255 VEC_quick_push (tree, vec, val);
2256
2257 return vec;
2258 }
2259 \f
2260 /* Return the size nominally occupied by an object of type TYPE
2261 when it resides in memory. The value is measured in units of bytes,
2262 and its data type is that normally used for type sizes
2263 (which is the first type created by make_signed_type or
2264 make_unsigned_type). */
2265
2266 tree
2267 size_in_bytes (const_tree type)
2268 {
2269 tree t;
2270
2271 if (type == error_mark_node)
2272 return integer_zero_node;
2273
2274 type = TYPE_MAIN_VARIANT (type);
2275 t = TYPE_SIZE_UNIT (type);
2276
2277 if (t == 0)
2278 {
2279 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2280 return size_zero_node;
2281 }
2282
2283 return t;
2284 }
2285
2286 /* Return the size of TYPE (in bytes) as a wide integer
2287 or return -1 if the size can vary or is larger than an integer. */
2288
2289 HOST_WIDE_INT
2290 int_size_in_bytes (const_tree type)
2291 {
2292 tree t;
2293
2294 if (type == error_mark_node)
2295 return 0;
2296
2297 type = TYPE_MAIN_VARIANT (type);
2298 t = TYPE_SIZE_UNIT (type);
2299 if (t == 0
2300 || TREE_CODE (t) != INTEGER_CST
2301 || TREE_INT_CST_HIGH (t) != 0
2302 /* If the result would appear negative, it's too big to represent. */
2303 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2304 return -1;
2305
2306 return TREE_INT_CST_LOW (t);
2307 }
2308
2309 /* Return the maximum size of TYPE (in bytes) as a wide integer
2310 or return -1 if the size can vary or is larger than an integer. */
2311
2312 HOST_WIDE_INT
2313 max_int_size_in_bytes (const_tree type)
2314 {
2315 HOST_WIDE_INT size = -1;
2316 tree size_tree;
2317
2318 /* If this is an array type, check for a possible MAX_SIZE attached. */
2319
2320 if (TREE_CODE (type) == ARRAY_TYPE)
2321 {
2322 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2323
2324 if (size_tree && host_integerp (size_tree, 1))
2325 size = tree_low_cst (size_tree, 1);
2326 }
2327
2328 /* If we still haven't been able to get a size, see if the language
2329 can compute a maximum size. */
2330
2331 if (size == -1)
2332 {
2333 size_tree = lang_hooks.types.max_size (type);
2334
2335 if (size_tree && host_integerp (size_tree, 1))
2336 size = tree_low_cst (size_tree, 1);
2337 }
2338
2339 return size;
2340 }
2341
2342 /* Returns a tree for the size of EXP in bytes. */
2343
2344 tree
2345 tree_expr_size (const_tree exp)
2346 {
2347 if (DECL_P (exp)
2348 && DECL_SIZE_UNIT (exp) != 0)
2349 return DECL_SIZE_UNIT (exp);
2350 else
2351 return size_in_bytes (TREE_TYPE (exp));
2352 }
2353 \f
2354 /* Return the bit position of FIELD, in bits from the start of the record.
2355 This is a tree of type bitsizetype. */
2356
2357 tree
2358 bit_position (const_tree field)
2359 {
2360 return bit_from_pos (DECL_FIELD_OFFSET (field),
2361 DECL_FIELD_BIT_OFFSET (field));
2362 }
2363
2364 /* Likewise, but return as an integer. It must be representable in
2365 that way (since it could be a signed value, we don't have the
2366 option of returning -1 like int_size_in_byte can. */
2367
2368 HOST_WIDE_INT
2369 int_bit_position (const_tree field)
2370 {
2371 return tree_low_cst (bit_position (field), 0);
2372 }
2373 \f
2374 /* Return the byte position of FIELD, in bytes from the start of the record.
2375 This is a tree of type sizetype. */
2376
2377 tree
2378 byte_position (const_tree field)
2379 {
2380 return byte_from_pos (DECL_FIELD_OFFSET (field),
2381 DECL_FIELD_BIT_OFFSET (field));
2382 }
2383
2384 /* Likewise, but return as an integer. It must be representable in
2385 that way (since it could be a signed value, we don't have the
2386 option of returning -1 like int_size_in_byte can. */
2387
2388 HOST_WIDE_INT
2389 int_byte_position (const_tree field)
2390 {
2391 return tree_low_cst (byte_position (field), 0);
2392 }
2393 \f
2394 /* Return the strictest alignment, in bits, that T is known to have. */
2395
2396 unsigned int
2397 expr_align (const_tree t)
2398 {
2399 unsigned int align0, align1;
2400
2401 switch (TREE_CODE (t))
2402 {
2403 CASE_CONVERT: case NON_LVALUE_EXPR:
2404 /* If we have conversions, we know that the alignment of the
2405 object must meet each of the alignments of the types. */
2406 align0 = expr_align (TREE_OPERAND (t, 0));
2407 align1 = TYPE_ALIGN (TREE_TYPE (t));
2408 return MAX (align0, align1);
2409
2410 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2411 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2412 case CLEANUP_POINT_EXPR:
2413 /* These don't change the alignment of an object. */
2414 return expr_align (TREE_OPERAND (t, 0));
2415
2416 case COND_EXPR:
2417 /* The best we can do is say that the alignment is the least aligned
2418 of the two arms. */
2419 align0 = expr_align (TREE_OPERAND (t, 1));
2420 align1 = expr_align (TREE_OPERAND (t, 2));
2421 return MIN (align0, align1);
2422
2423 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2424 meaningfully, it's always 1. */
2425 case LABEL_DECL: case CONST_DECL:
2426 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2427 case FUNCTION_DECL:
2428 gcc_assert (DECL_ALIGN (t) != 0);
2429 return DECL_ALIGN (t);
2430
2431 default:
2432 break;
2433 }
2434
2435 /* Otherwise take the alignment from that of the type. */
2436 return TYPE_ALIGN (TREE_TYPE (t));
2437 }
2438 \f
2439 /* Return, as a tree node, the number of elements for TYPE (which is an
2440 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2441
2442 tree
2443 array_type_nelts (const_tree type)
2444 {
2445 tree index_type, min, max;
2446
2447 /* If they did it with unspecified bounds, then we should have already
2448 given an error about it before we got here. */
2449 if (! TYPE_DOMAIN (type))
2450 return error_mark_node;
2451
2452 index_type = TYPE_DOMAIN (type);
2453 min = TYPE_MIN_VALUE (index_type);
2454 max = TYPE_MAX_VALUE (index_type);
2455
2456 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
2457 if (!max)
2458 return error_mark_node;
2459
2460 return (integer_zerop (min)
2461 ? max
2462 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2463 }
2464 \f
2465 /* If arg is static -- a reference to an object in static storage -- then
2466 return the object. This is not the same as the C meaning of `static'.
2467 If arg isn't static, return NULL. */
2468
2469 tree
2470 staticp (tree arg)
2471 {
2472 switch (TREE_CODE (arg))
2473 {
2474 case FUNCTION_DECL:
2475 /* Nested functions are static, even though taking their address will
2476 involve a trampoline as we unnest the nested function and create
2477 the trampoline on the tree level. */
2478 return arg;
2479
2480 case VAR_DECL:
2481 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2482 && ! DECL_THREAD_LOCAL_P (arg)
2483 && ! DECL_DLLIMPORT_P (arg)
2484 ? arg : NULL);
2485
2486 case CONST_DECL:
2487 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2488 ? arg : NULL);
2489
2490 case CONSTRUCTOR:
2491 return TREE_STATIC (arg) ? arg : NULL;
2492
2493 case LABEL_DECL:
2494 case STRING_CST:
2495 return arg;
2496
2497 case COMPONENT_REF:
2498 /* If the thing being referenced is not a field, then it is
2499 something language specific. */
2500 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2501
2502 /* If we are referencing a bitfield, we can't evaluate an
2503 ADDR_EXPR at compile time and so it isn't a constant. */
2504 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2505 return NULL;
2506
2507 return staticp (TREE_OPERAND (arg, 0));
2508
2509 case BIT_FIELD_REF:
2510 return NULL;
2511
2512 case INDIRECT_REF:
2513 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2514
2515 case ARRAY_REF:
2516 case ARRAY_RANGE_REF:
2517 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2518 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2519 return staticp (TREE_OPERAND (arg, 0));
2520 else
2521 return NULL;
2522
2523 case COMPOUND_LITERAL_EXPR:
2524 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2525
2526 default:
2527 return NULL;
2528 }
2529 }
2530
2531 \f
2532
2533
2534 /* Return whether OP is a DECL whose address is function-invariant. */
2535
2536 bool
2537 decl_address_invariant_p (const_tree op)
2538 {
2539 /* The conditions below are slightly less strict than the one in
2540 staticp. */
2541
2542 switch (TREE_CODE (op))
2543 {
2544 case PARM_DECL:
2545 case RESULT_DECL:
2546 case LABEL_DECL:
2547 case FUNCTION_DECL:
2548 return true;
2549
2550 case VAR_DECL:
2551 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2552 || DECL_THREAD_LOCAL_P (op)
2553 || DECL_CONTEXT (op) == current_function_decl
2554 || decl_function_context (op) == current_function_decl)
2555 return true;
2556 break;
2557
2558 case CONST_DECL:
2559 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2560 || decl_function_context (op) == current_function_decl)
2561 return true;
2562 break;
2563
2564 default:
2565 break;
2566 }
2567
2568 return false;
2569 }
2570
2571 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2572
2573 bool
2574 decl_address_ip_invariant_p (const_tree op)
2575 {
2576 /* The conditions below are slightly less strict than the one in
2577 staticp. */
2578
2579 switch (TREE_CODE (op))
2580 {
2581 case LABEL_DECL:
2582 case FUNCTION_DECL:
2583 case STRING_CST:
2584 return true;
2585
2586 case VAR_DECL:
2587 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2588 && !DECL_DLLIMPORT_P (op))
2589 || DECL_THREAD_LOCAL_P (op))
2590 return true;
2591 break;
2592
2593 case CONST_DECL:
2594 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2595 return true;
2596 break;
2597
2598 default:
2599 break;
2600 }
2601
2602 return false;
2603 }
2604
2605
2606 /* Return true if T is function-invariant (internal function, does
2607 not handle arithmetic; that's handled in skip_simple_arithmetic and
2608 tree_invariant_p). */
2609
2610 static bool tree_invariant_p (tree t);
2611
2612 static bool
2613 tree_invariant_p_1 (tree t)
2614 {
2615 tree op;
2616
2617 if (TREE_CONSTANT (t)
2618 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2619 return true;
2620
2621 switch (TREE_CODE (t))
2622 {
2623 case SAVE_EXPR:
2624 return true;
2625
2626 case ADDR_EXPR:
2627 op = TREE_OPERAND (t, 0);
2628 while (handled_component_p (op))
2629 {
2630 switch (TREE_CODE (op))
2631 {
2632 case ARRAY_REF:
2633 case ARRAY_RANGE_REF:
2634 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2635 || TREE_OPERAND (op, 2) != NULL_TREE
2636 || TREE_OPERAND (op, 3) != NULL_TREE)
2637 return false;
2638 break;
2639
2640 case COMPONENT_REF:
2641 if (TREE_OPERAND (op, 2) != NULL_TREE)
2642 return false;
2643 break;
2644
2645 default:;
2646 }
2647 op = TREE_OPERAND (op, 0);
2648 }
2649
2650 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2651
2652 default:
2653 break;
2654 }
2655
2656 return false;
2657 }
2658
2659 /* Return true if T is function-invariant. */
2660
2661 static bool
2662 tree_invariant_p (tree t)
2663 {
2664 tree inner = skip_simple_arithmetic (t);
2665 return tree_invariant_p_1 (inner);
2666 }
2667
2668 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2669 Do this to any expression which may be used in more than one place,
2670 but must be evaluated only once.
2671
2672 Normally, expand_expr would reevaluate the expression each time.
2673 Calling save_expr produces something that is evaluated and recorded
2674 the first time expand_expr is called on it. Subsequent calls to
2675 expand_expr just reuse the recorded value.
2676
2677 The call to expand_expr that generates code that actually computes
2678 the value is the first call *at compile time*. Subsequent calls
2679 *at compile time* generate code to use the saved value.
2680 This produces correct result provided that *at run time* control
2681 always flows through the insns made by the first expand_expr
2682 before reaching the other places where the save_expr was evaluated.
2683 You, the caller of save_expr, must make sure this is so.
2684
2685 Constants, and certain read-only nodes, are returned with no
2686 SAVE_EXPR because that is safe. Expressions containing placeholders
2687 are not touched; see tree.def for an explanation of what these
2688 are used for. */
2689
2690 tree
2691 save_expr (tree expr)
2692 {
2693 tree t = fold (expr);
2694 tree inner;
2695
2696 /* If the tree evaluates to a constant, then we don't want to hide that
2697 fact (i.e. this allows further folding, and direct checks for constants).
2698 However, a read-only object that has side effects cannot be bypassed.
2699 Since it is no problem to reevaluate literals, we just return the
2700 literal node. */
2701 inner = skip_simple_arithmetic (t);
2702 if (TREE_CODE (inner) == ERROR_MARK)
2703 return inner;
2704
2705 if (tree_invariant_p_1 (inner))
2706 return t;
2707
2708 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2709 it means that the size or offset of some field of an object depends on
2710 the value within another field.
2711
2712 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2713 and some variable since it would then need to be both evaluated once and
2714 evaluated more than once. Front-ends must assure this case cannot
2715 happen by surrounding any such subexpressions in their own SAVE_EXPR
2716 and forcing evaluation at the proper time. */
2717 if (contains_placeholder_p (inner))
2718 return t;
2719
2720 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2721 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2722
2723 /* This expression might be placed ahead of a jump to ensure that the
2724 value was computed on both sides of the jump. So make sure it isn't
2725 eliminated as dead. */
2726 TREE_SIDE_EFFECTS (t) = 1;
2727 return t;
2728 }
2729
2730 /* Look inside EXPR and into any simple arithmetic operations. Return
2731 the innermost non-arithmetic node. */
2732
2733 tree
2734 skip_simple_arithmetic (tree expr)
2735 {
2736 tree inner;
2737
2738 /* We don't care about whether this can be used as an lvalue in this
2739 context. */
2740 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2741 expr = TREE_OPERAND (expr, 0);
2742
2743 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2744 a constant, it will be more efficient to not make another SAVE_EXPR since
2745 it will allow better simplification and GCSE will be able to merge the
2746 computations if they actually occur. */
2747 inner = expr;
2748 while (1)
2749 {
2750 if (UNARY_CLASS_P (inner))
2751 inner = TREE_OPERAND (inner, 0);
2752 else if (BINARY_CLASS_P (inner))
2753 {
2754 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2755 inner = TREE_OPERAND (inner, 0);
2756 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2757 inner = TREE_OPERAND (inner, 1);
2758 else
2759 break;
2760 }
2761 else
2762 break;
2763 }
2764
2765 return inner;
2766 }
2767
2768
2769 /* Return which tree structure is used by T. */
2770
2771 enum tree_node_structure_enum
2772 tree_node_structure (const_tree t)
2773 {
2774 const enum tree_code code = TREE_CODE (t);
2775 return tree_node_structure_for_code (code);
2776 }
2777
2778 /* Set various status flags when building a CALL_EXPR object T. */
2779
2780 static void
2781 process_call_operands (tree t)
2782 {
2783 bool side_effects = TREE_SIDE_EFFECTS (t);
2784 bool read_only = false;
2785 int i = call_expr_flags (t);
2786
2787 /* Calls have side-effects, except those to const or pure functions. */
2788 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2789 side_effects = true;
2790 /* Propagate TREE_READONLY of arguments for const functions. */
2791 if (i & ECF_CONST)
2792 read_only = true;
2793
2794 if (!side_effects || read_only)
2795 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2796 {
2797 tree op = TREE_OPERAND (t, i);
2798 if (op && TREE_SIDE_EFFECTS (op))
2799 side_effects = true;
2800 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2801 read_only = false;
2802 }
2803
2804 TREE_SIDE_EFFECTS (t) = side_effects;
2805 TREE_READONLY (t) = read_only;
2806 }
2807 \f
2808 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
2809 size or offset that depends on a field within a record. */
2810
2811 bool
2812 contains_placeholder_p (const_tree exp)
2813 {
2814 enum tree_code code;
2815
2816 if (!exp)
2817 return 0;
2818
2819 code = TREE_CODE (exp);
2820 if (code == PLACEHOLDER_EXPR)
2821 return 1;
2822
2823 switch (TREE_CODE_CLASS (code))
2824 {
2825 case tcc_reference:
2826 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2827 position computations since they will be converted into a
2828 WITH_RECORD_EXPR involving the reference, which will assume
2829 here will be valid. */
2830 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2831
2832 case tcc_exceptional:
2833 if (code == TREE_LIST)
2834 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2835 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2836 break;
2837
2838 case tcc_unary:
2839 case tcc_binary:
2840 case tcc_comparison:
2841 case tcc_expression:
2842 switch (code)
2843 {
2844 case COMPOUND_EXPR:
2845 /* Ignoring the first operand isn't quite right, but works best. */
2846 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2847
2848 case COND_EXPR:
2849 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2850 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2851 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2852
2853 case SAVE_EXPR:
2854 /* The save_expr function never wraps anything containing
2855 a PLACEHOLDER_EXPR. */
2856 return 0;
2857
2858 default:
2859 break;
2860 }
2861
2862 switch (TREE_CODE_LENGTH (code))
2863 {
2864 case 1:
2865 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2866 case 2:
2867 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2868 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2869 default:
2870 return 0;
2871 }
2872
2873 case tcc_vl_exp:
2874 switch (code)
2875 {
2876 case CALL_EXPR:
2877 {
2878 const_tree arg;
2879 const_call_expr_arg_iterator iter;
2880 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2881 if (CONTAINS_PLACEHOLDER_P (arg))
2882 return 1;
2883 return 0;
2884 }
2885 default:
2886 return 0;
2887 }
2888
2889 default:
2890 return 0;
2891 }
2892 return 0;
2893 }
2894
2895 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
2896 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
2897 field positions. */
2898
2899 static bool
2900 type_contains_placeholder_1 (const_tree type)
2901 {
2902 /* If the size contains a placeholder or the parent type (component type in
2903 the case of arrays) type involves a placeholder, this type does. */
2904 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2905 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2906 || (!POINTER_TYPE_P (type)
2907 && TREE_TYPE (type)
2908 && type_contains_placeholder_p (TREE_TYPE (type))))
2909 return true;
2910
2911 /* Now do type-specific checks. Note that the last part of the check above
2912 greatly limits what we have to do below. */
2913 switch (TREE_CODE (type))
2914 {
2915 case VOID_TYPE:
2916 case COMPLEX_TYPE:
2917 case ENUMERAL_TYPE:
2918 case BOOLEAN_TYPE:
2919 case POINTER_TYPE:
2920 case OFFSET_TYPE:
2921 case REFERENCE_TYPE:
2922 case METHOD_TYPE:
2923 case FUNCTION_TYPE:
2924 case VECTOR_TYPE:
2925 return false;
2926
2927 case INTEGER_TYPE:
2928 case REAL_TYPE:
2929 case FIXED_POINT_TYPE:
2930 /* Here we just check the bounds. */
2931 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2932 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2933
2934 case ARRAY_TYPE:
2935 /* We have already checked the component type above, so just check the
2936 domain type. */
2937 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2938
2939 case RECORD_TYPE:
2940 case UNION_TYPE:
2941 case QUAL_UNION_TYPE:
2942 {
2943 tree field;
2944
2945 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2946 if (TREE_CODE (field) == FIELD_DECL
2947 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2948 || (TREE_CODE (type) == QUAL_UNION_TYPE
2949 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2950 || type_contains_placeholder_p (TREE_TYPE (field))))
2951 return true;
2952
2953 return false;
2954 }
2955
2956 default:
2957 gcc_unreachable ();
2958 }
2959 }
2960
2961 /* Wrapper around above function used to cache its result. */
2962
2963 bool
2964 type_contains_placeholder_p (tree type)
2965 {
2966 bool result;
2967
2968 /* If the contains_placeholder_bits field has been initialized,
2969 then we know the answer. */
2970 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2971 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2972
2973 /* Indicate that we've seen this type node, and the answer is false.
2974 This is what we want to return if we run into recursion via fields. */
2975 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2976
2977 /* Compute the real value. */
2978 result = type_contains_placeholder_1 (type);
2979
2980 /* Store the real value. */
2981 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2982
2983 return result;
2984 }
2985 \f
2986 /* Push tree EXP onto vector QUEUE if it is not already present. */
2987
2988 static void
2989 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2990 {
2991 unsigned int i;
2992 tree iter;
2993
2994 FOR_EACH_VEC_ELT (tree, *queue, i, iter)
2995 if (simple_cst_equal (iter, exp) == 1)
2996 break;
2997
2998 if (!iter)
2999 VEC_safe_push (tree, heap, *queue, exp);
3000 }
3001
3002 /* Given a tree EXP, find all occurences of references to fields
3003 in a PLACEHOLDER_EXPR and place them in vector REFS without
3004 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3005 we assume here that EXP contains only arithmetic expressions
3006 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3007 argument list. */
3008
3009 void
3010 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
3011 {
3012 enum tree_code code = TREE_CODE (exp);
3013 tree inner;
3014 int i;
3015
3016 /* We handle TREE_LIST and COMPONENT_REF separately. */
3017 if (code == TREE_LIST)
3018 {
3019 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3020 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3021 }
3022 else if (code == COMPONENT_REF)
3023 {
3024 for (inner = TREE_OPERAND (exp, 0);
3025 REFERENCE_CLASS_P (inner);
3026 inner = TREE_OPERAND (inner, 0))
3027 ;
3028
3029 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3030 push_without_duplicates (exp, refs);
3031 else
3032 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3033 }
3034 else
3035 switch (TREE_CODE_CLASS (code))
3036 {
3037 case tcc_constant:
3038 break;
3039
3040 case tcc_declaration:
3041 /* Variables allocated to static storage can stay. */
3042 if (!TREE_STATIC (exp))
3043 push_without_duplicates (exp, refs);
3044 break;
3045
3046 case tcc_expression:
3047 /* This is the pattern built in ada/make_aligning_type. */
3048 if (code == ADDR_EXPR
3049 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3050 {
3051 push_without_duplicates (exp, refs);
3052 break;
3053 }
3054
3055 /* Fall through... */
3056
3057 case tcc_exceptional:
3058 case tcc_unary:
3059 case tcc_binary:
3060 case tcc_comparison:
3061 case tcc_reference:
3062 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3063 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3064 break;
3065
3066 case tcc_vl_exp:
3067 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3068 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3069 break;
3070
3071 default:
3072 gcc_unreachable ();
3073 }
3074 }
3075
3076 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3077 return a tree with all occurrences of references to F in a
3078 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3079 CONST_DECLs. Note that we assume here that EXP contains only
3080 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3081 occurring only in their argument list. */
3082
3083 tree
3084 substitute_in_expr (tree exp, tree f, tree r)
3085 {
3086 enum tree_code code = TREE_CODE (exp);
3087 tree op0, op1, op2, op3;
3088 tree new_tree;
3089
3090 /* We handle TREE_LIST and COMPONENT_REF separately. */
3091 if (code == TREE_LIST)
3092 {
3093 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3094 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3095 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3096 return exp;
3097
3098 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3099 }
3100 else if (code == COMPONENT_REF)
3101 {
3102 tree inner;
3103
3104 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3105 and it is the right field, replace it with R. */
3106 for (inner = TREE_OPERAND (exp, 0);
3107 REFERENCE_CLASS_P (inner);
3108 inner = TREE_OPERAND (inner, 0))
3109 ;
3110
3111 /* The field. */
3112 op1 = TREE_OPERAND (exp, 1);
3113
3114 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3115 return r;
3116
3117 /* If this expression hasn't been completed let, leave it alone. */
3118 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3119 return exp;
3120
3121 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3122 if (op0 == TREE_OPERAND (exp, 0))
3123 return exp;
3124
3125 new_tree
3126 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3127 }
3128 else
3129 switch (TREE_CODE_CLASS (code))
3130 {
3131 case tcc_constant:
3132 return exp;
3133
3134 case tcc_declaration:
3135 if (exp == f)
3136 return r;
3137 else
3138 return exp;
3139
3140 case tcc_expression:
3141 if (exp == f)
3142 return r;
3143
3144 /* Fall through... */
3145
3146 case tcc_exceptional:
3147 case tcc_unary:
3148 case tcc_binary:
3149 case tcc_comparison:
3150 case tcc_reference:
3151 switch (TREE_CODE_LENGTH (code))
3152 {
3153 case 0:
3154 return exp;
3155
3156 case 1:
3157 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3158 if (op0 == TREE_OPERAND (exp, 0))
3159 return exp;
3160
3161 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3162 break;
3163
3164 case 2:
3165 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3166 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3167
3168 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3169 return exp;
3170
3171 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3172 break;
3173
3174 case 3:
3175 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3176 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3177 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3178
3179 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3180 && op2 == TREE_OPERAND (exp, 2))
3181 return exp;
3182
3183 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3184 break;
3185
3186 case 4:
3187 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3188 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3189 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3190 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3191
3192 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3193 && op2 == TREE_OPERAND (exp, 2)
3194 && op3 == TREE_OPERAND (exp, 3))
3195 return exp;
3196
3197 new_tree
3198 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3199 break;
3200
3201 default:
3202 gcc_unreachable ();
3203 }
3204 break;
3205
3206 case tcc_vl_exp:
3207 {
3208 int i;
3209
3210 new_tree = NULL_TREE;
3211
3212 /* If we are trying to replace F with a constant, inline back
3213 functions which do nothing else than computing a value from
3214 the arguments they are passed. This makes it possible to
3215 fold partially or entirely the replacement expression. */
3216 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3217 {
3218 tree t = maybe_inline_call_in_expr (exp);
3219 if (t)
3220 return SUBSTITUTE_IN_EXPR (t, f, r);
3221 }
3222
3223 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3224 {
3225 tree op = TREE_OPERAND (exp, i);
3226 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3227 if (new_op != op)
3228 {
3229 if (!new_tree)
3230 new_tree = copy_node (exp);
3231 TREE_OPERAND (new_tree, i) = new_op;
3232 }
3233 }
3234
3235 if (new_tree)
3236 {
3237 new_tree = fold (new_tree);
3238 if (TREE_CODE (new_tree) == CALL_EXPR)
3239 process_call_operands (new_tree);
3240 }
3241 else
3242 return exp;
3243 }
3244 break;
3245
3246 default:
3247 gcc_unreachable ();
3248 }
3249
3250 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3251
3252 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3253 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3254
3255 return new_tree;
3256 }
3257
3258 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3259 for it within OBJ, a tree that is an object or a chain of references. */
3260
3261 tree
3262 substitute_placeholder_in_expr (tree exp, tree obj)
3263 {
3264 enum tree_code code = TREE_CODE (exp);
3265 tree op0, op1, op2, op3;
3266 tree new_tree;
3267
3268 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3269 in the chain of OBJ. */
3270 if (code == PLACEHOLDER_EXPR)
3271 {
3272 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3273 tree elt;
3274
3275 for (elt = obj; elt != 0;
3276 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3277 || TREE_CODE (elt) == COND_EXPR)
3278 ? TREE_OPERAND (elt, 1)
3279 : (REFERENCE_CLASS_P (elt)
3280 || UNARY_CLASS_P (elt)
3281 || BINARY_CLASS_P (elt)
3282 || VL_EXP_CLASS_P (elt)
3283 || EXPRESSION_CLASS_P (elt))
3284 ? TREE_OPERAND (elt, 0) : 0))
3285 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3286 return elt;
3287
3288 for (elt = obj; elt != 0;
3289 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3290 || TREE_CODE (elt) == COND_EXPR)
3291 ? TREE_OPERAND (elt, 1)
3292 : (REFERENCE_CLASS_P (elt)
3293 || UNARY_CLASS_P (elt)
3294 || BINARY_CLASS_P (elt)
3295 || VL_EXP_CLASS_P (elt)
3296 || EXPRESSION_CLASS_P (elt))
3297 ? TREE_OPERAND (elt, 0) : 0))
3298 if (POINTER_TYPE_P (TREE_TYPE (elt))
3299 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3300 == need_type))
3301 return fold_build1 (INDIRECT_REF, need_type, elt);
3302
3303 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3304 survives until RTL generation, there will be an error. */
3305 return exp;
3306 }
3307
3308 /* TREE_LIST is special because we need to look at TREE_VALUE
3309 and TREE_CHAIN, not TREE_OPERANDS. */
3310 else if (code == TREE_LIST)
3311 {
3312 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3313 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3314 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3315 return exp;
3316
3317 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3318 }
3319 else
3320 switch (TREE_CODE_CLASS (code))
3321 {
3322 case tcc_constant:
3323 case tcc_declaration:
3324 return exp;
3325
3326 case tcc_exceptional:
3327 case tcc_unary:
3328 case tcc_binary:
3329 case tcc_comparison:
3330 case tcc_expression:
3331 case tcc_reference:
3332 case tcc_statement:
3333 switch (TREE_CODE_LENGTH (code))
3334 {
3335 case 0:
3336 return exp;
3337
3338 case 1:
3339 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3340 if (op0 == TREE_OPERAND (exp, 0))
3341 return exp;
3342
3343 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3344 break;
3345
3346 case 2:
3347 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3348 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3349
3350 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3351 return exp;
3352
3353 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3354 break;
3355
3356 case 3:
3357 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3358 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3359 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3360
3361 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3362 && op2 == TREE_OPERAND (exp, 2))
3363 return exp;
3364
3365 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3366 break;
3367
3368 case 4:
3369 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3370 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3371 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3372 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3373
3374 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3375 && op2 == TREE_OPERAND (exp, 2)
3376 && op3 == TREE_OPERAND (exp, 3))
3377 return exp;
3378
3379 new_tree
3380 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3381 break;
3382
3383 default:
3384 gcc_unreachable ();
3385 }
3386 break;
3387
3388 case tcc_vl_exp:
3389 {
3390 int i;
3391
3392 new_tree = NULL_TREE;
3393
3394 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3395 {
3396 tree op = TREE_OPERAND (exp, i);
3397 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3398 if (new_op != op)
3399 {
3400 if (!new_tree)
3401 new_tree = copy_node (exp);
3402 TREE_OPERAND (new_tree, i) = new_op;
3403 }
3404 }
3405
3406 if (new_tree)
3407 {
3408 new_tree = fold (new_tree);
3409 if (TREE_CODE (new_tree) == CALL_EXPR)
3410 process_call_operands (new_tree);
3411 }
3412 else
3413 return exp;
3414 }
3415 break;
3416
3417 default:
3418 gcc_unreachable ();
3419 }
3420
3421 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3422
3423 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3424 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3425
3426 return new_tree;
3427 }
3428 \f
3429 /* Stabilize a reference so that we can use it any number of times
3430 without causing its operands to be evaluated more than once.
3431 Returns the stabilized reference. This works by means of save_expr,
3432 so see the caveats in the comments about save_expr.
3433
3434 Also allows conversion expressions whose operands are references.
3435 Any other kind of expression is returned unchanged. */
3436
3437 tree
3438 stabilize_reference (tree ref)
3439 {
3440 tree result;
3441 enum tree_code code = TREE_CODE (ref);
3442
3443 switch (code)
3444 {
3445 case VAR_DECL:
3446 case PARM_DECL:
3447 case RESULT_DECL:
3448 /* No action is needed in this case. */
3449 return ref;
3450
3451 CASE_CONVERT:
3452 case FLOAT_EXPR:
3453 case FIX_TRUNC_EXPR:
3454 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3455 break;
3456
3457 case INDIRECT_REF:
3458 result = build_nt (INDIRECT_REF,
3459 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3460 break;
3461
3462 case COMPONENT_REF:
3463 result = build_nt (COMPONENT_REF,
3464 stabilize_reference (TREE_OPERAND (ref, 0)),
3465 TREE_OPERAND (ref, 1), NULL_TREE);
3466 break;
3467
3468 case BIT_FIELD_REF:
3469 result = build_nt (BIT_FIELD_REF,
3470 stabilize_reference (TREE_OPERAND (ref, 0)),
3471 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3472 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3473 break;
3474
3475 case ARRAY_REF:
3476 result = build_nt (ARRAY_REF,
3477 stabilize_reference (TREE_OPERAND (ref, 0)),
3478 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3479 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3480 break;
3481
3482 case ARRAY_RANGE_REF:
3483 result = build_nt (ARRAY_RANGE_REF,
3484 stabilize_reference (TREE_OPERAND (ref, 0)),
3485 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3486 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3487 break;
3488
3489 case COMPOUND_EXPR:
3490 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3491 it wouldn't be ignored. This matters when dealing with
3492 volatiles. */
3493 return stabilize_reference_1 (ref);
3494
3495 /* If arg isn't a kind of lvalue we recognize, make no change.
3496 Caller should recognize the error for an invalid lvalue. */
3497 default:
3498 return ref;
3499
3500 case ERROR_MARK:
3501 return error_mark_node;
3502 }
3503
3504 TREE_TYPE (result) = TREE_TYPE (ref);
3505 TREE_READONLY (result) = TREE_READONLY (ref);
3506 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3507 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3508
3509 return result;
3510 }
3511
3512 /* Subroutine of stabilize_reference; this is called for subtrees of
3513 references. Any expression with side-effects must be put in a SAVE_EXPR
3514 to ensure that it is only evaluated once.
3515
3516 We don't put SAVE_EXPR nodes around everything, because assigning very
3517 simple expressions to temporaries causes us to miss good opportunities
3518 for optimizations. Among other things, the opportunity to fold in the
3519 addition of a constant into an addressing mode often gets lost, e.g.
3520 "y[i+1] += x;". In general, we take the approach that we should not make
3521 an assignment unless we are forced into it - i.e., that any non-side effect
3522 operator should be allowed, and that cse should take care of coalescing
3523 multiple utterances of the same expression should that prove fruitful. */
3524
3525 tree
3526 stabilize_reference_1 (tree e)
3527 {
3528 tree result;
3529 enum tree_code code = TREE_CODE (e);
3530
3531 /* We cannot ignore const expressions because it might be a reference
3532 to a const array but whose index contains side-effects. But we can
3533 ignore things that are actual constant or that already have been
3534 handled by this function. */
3535
3536 if (tree_invariant_p (e))
3537 return e;
3538
3539 switch (TREE_CODE_CLASS (code))
3540 {
3541 case tcc_exceptional:
3542 case tcc_type:
3543 case tcc_declaration:
3544 case tcc_comparison:
3545 case tcc_statement:
3546 case tcc_expression:
3547 case tcc_reference:
3548 case tcc_vl_exp:
3549 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3550 so that it will only be evaluated once. */
3551 /* The reference (r) and comparison (<) classes could be handled as
3552 below, but it is generally faster to only evaluate them once. */
3553 if (TREE_SIDE_EFFECTS (e))
3554 return save_expr (e);
3555 return e;
3556
3557 case tcc_constant:
3558 /* Constants need no processing. In fact, we should never reach
3559 here. */
3560 return e;
3561
3562 case tcc_binary:
3563 /* Division is slow and tends to be compiled with jumps,
3564 especially the division by powers of 2 that is often
3565 found inside of an array reference. So do it just once. */
3566 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3567 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3568 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3569 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3570 return save_expr (e);
3571 /* Recursively stabilize each operand. */
3572 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3573 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3574 break;
3575
3576 case tcc_unary:
3577 /* Recursively stabilize each operand. */
3578 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3579 break;
3580
3581 default:
3582 gcc_unreachable ();
3583 }
3584
3585 TREE_TYPE (result) = TREE_TYPE (e);
3586 TREE_READONLY (result) = TREE_READONLY (e);
3587 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3588 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3589
3590 return result;
3591 }
3592 \f
3593 /* Low-level constructors for expressions. */
3594
3595 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3596 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3597
3598 void
3599 recompute_tree_invariant_for_addr_expr (tree t)
3600 {
3601 tree node;
3602 bool tc = true, se = false;
3603
3604 /* We started out assuming this address is both invariant and constant, but
3605 does not have side effects. Now go down any handled components and see if
3606 any of them involve offsets that are either non-constant or non-invariant.
3607 Also check for side-effects.
3608
3609 ??? Note that this code makes no attempt to deal with the case where
3610 taking the address of something causes a copy due to misalignment. */
3611
3612 #define UPDATE_FLAGS(NODE) \
3613 do { tree _node = (NODE); \
3614 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3615 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3616
3617 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3618 node = TREE_OPERAND (node, 0))
3619 {
3620 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3621 array reference (probably made temporarily by the G++ front end),
3622 so ignore all the operands. */
3623 if ((TREE_CODE (node) == ARRAY_REF
3624 || TREE_CODE (node) == ARRAY_RANGE_REF)
3625 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3626 {
3627 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3628 if (TREE_OPERAND (node, 2))
3629 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3630 if (TREE_OPERAND (node, 3))
3631 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3632 }
3633 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3634 FIELD_DECL, apparently. The G++ front end can put something else
3635 there, at least temporarily. */
3636 else if (TREE_CODE (node) == COMPONENT_REF
3637 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3638 {
3639 if (TREE_OPERAND (node, 2))
3640 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3641 }
3642 else if (TREE_CODE (node) == BIT_FIELD_REF)
3643 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3644 }
3645
3646 node = lang_hooks.expr_to_decl (node, &tc, &se);
3647
3648 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3649 the address, since &(*a)->b is a form of addition. If it's a constant, the
3650 address is constant too. If it's a decl, its address is constant if the
3651 decl is static. Everything else is not constant and, furthermore,
3652 taking the address of a volatile variable is not volatile. */
3653 if (TREE_CODE (node) == INDIRECT_REF
3654 || TREE_CODE (node) == MEM_REF)
3655 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3656 else if (CONSTANT_CLASS_P (node))
3657 ;
3658 else if (DECL_P (node))
3659 tc &= (staticp (node) != NULL_TREE);
3660 else
3661 {
3662 tc = false;
3663 se |= TREE_SIDE_EFFECTS (node);
3664 }
3665
3666
3667 TREE_CONSTANT (t) = tc;
3668 TREE_SIDE_EFFECTS (t) = se;
3669 #undef UPDATE_FLAGS
3670 }
3671
3672 /* Build an expression of code CODE, data type TYPE, and operands as
3673 specified. Expressions and reference nodes can be created this way.
3674 Constants, decls, types and misc nodes cannot be.
3675
3676 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3677 enough for all extant tree codes. */
3678
3679 tree
3680 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3681 {
3682 tree t;
3683
3684 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3685
3686 t = make_node_stat (code PASS_MEM_STAT);
3687 TREE_TYPE (t) = tt;
3688
3689 return t;
3690 }
3691
3692 tree
3693 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3694 {
3695 int length = sizeof (struct tree_exp);
3696 tree t;
3697
3698 record_node_allocation_statistics (code, length);
3699
3700 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3701
3702 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
3703
3704 memset (t, 0, sizeof (struct tree_common));
3705
3706 TREE_SET_CODE (t, code);
3707
3708 TREE_TYPE (t) = type;
3709 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3710 TREE_OPERAND (t, 0) = node;
3711 TREE_BLOCK (t) = NULL_TREE;
3712 if (node && !TYPE_P (node))
3713 {
3714 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3715 TREE_READONLY (t) = TREE_READONLY (node);
3716 }
3717
3718 if (TREE_CODE_CLASS (code) == tcc_statement)
3719 TREE_SIDE_EFFECTS (t) = 1;
3720 else switch (code)
3721 {
3722 case VA_ARG_EXPR:
3723 /* All of these have side-effects, no matter what their
3724 operands are. */
3725 TREE_SIDE_EFFECTS (t) = 1;
3726 TREE_READONLY (t) = 0;
3727 break;
3728
3729 case INDIRECT_REF:
3730 /* Whether a dereference is readonly has nothing to do with whether
3731 its operand is readonly. */
3732 TREE_READONLY (t) = 0;
3733 break;
3734
3735 case ADDR_EXPR:
3736 if (node)
3737 recompute_tree_invariant_for_addr_expr (t);
3738 break;
3739
3740 default:
3741 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3742 && node && !TYPE_P (node)
3743 && TREE_CONSTANT (node))
3744 TREE_CONSTANT (t) = 1;
3745 if (TREE_CODE_CLASS (code) == tcc_reference
3746 && node && TREE_THIS_VOLATILE (node))
3747 TREE_THIS_VOLATILE (t) = 1;
3748 break;
3749 }
3750
3751 return t;
3752 }
3753
3754 #define PROCESS_ARG(N) \
3755 do { \
3756 TREE_OPERAND (t, N) = arg##N; \
3757 if (arg##N &&!TYPE_P (arg##N)) \
3758 { \
3759 if (TREE_SIDE_EFFECTS (arg##N)) \
3760 side_effects = 1; \
3761 if (!TREE_READONLY (arg##N) \
3762 && !CONSTANT_CLASS_P (arg##N)) \
3763 (void) (read_only = 0); \
3764 if (!TREE_CONSTANT (arg##N)) \
3765 (void) (constant = 0); \
3766 } \
3767 } while (0)
3768
3769 tree
3770 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3771 {
3772 bool constant, read_only, side_effects;
3773 tree t;
3774
3775 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3776
3777 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3778 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3779 /* When sizetype precision doesn't match that of pointers
3780 we need to be able to build explicit extensions or truncations
3781 of the offset argument. */
3782 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3783 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3784 && TREE_CODE (arg1) == INTEGER_CST);
3785
3786 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3787 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3788 && ptrofftype_p (TREE_TYPE (arg1)));
3789
3790 t = make_node_stat (code PASS_MEM_STAT);
3791 TREE_TYPE (t) = tt;
3792
3793 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3794 result based on those same flags for the arguments. But if the
3795 arguments aren't really even `tree' expressions, we shouldn't be trying
3796 to do this. */
3797
3798 /* Expressions without side effects may be constant if their
3799 arguments are as well. */
3800 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3801 || TREE_CODE_CLASS (code) == tcc_binary);
3802 read_only = 1;
3803 side_effects = TREE_SIDE_EFFECTS (t);
3804
3805 PROCESS_ARG(0);
3806 PROCESS_ARG(1);
3807
3808 TREE_READONLY (t) = read_only;
3809 TREE_CONSTANT (t) = constant;
3810 TREE_SIDE_EFFECTS (t) = side_effects;
3811 TREE_THIS_VOLATILE (t)
3812 = (TREE_CODE_CLASS (code) == tcc_reference
3813 && arg0 && TREE_THIS_VOLATILE (arg0));
3814
3815 return t;
3816 }
3817
3818
3819 tree
3820 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3821 tree arg2 MEM_STAT_DECL)
3822 {
3823 bool constant, read_only, side_effects;
3824 tree t;
3825
3826 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3827 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3828
3829 t = make_node_stat (code PASS_MEM_STAT);
3830 TREE_TYPE (t) = tt;
3831
3832 read_only = 1;
3833
3834 /* As a special exception, if COND_EXPR has NULL branches, we
3835 assume that it is a gimple statement and always consider
3836 it to have side effects. */
3837 if (code == COND_EXPR
3838 && tt == void_type_node
3839 && arg1 == NULL_TREE
3840 && arg2 == NULL_TREE)
3841 side_effects = true;
3842 else
3843 side_effects = TREE_SIDE_EFFECTS (t);
3844
3845 PROCESS_ARG(0);
3846 PROCESS_ARG(1);
3847 PROCESS_ARG(2);
3848
3849 if (code == COND_EXPR)
3850 TREE_READONLY (t) = read_only;
3851
3852 TREE_SIDE_EFFECTS (t) = side_effects;
3853 TREE_THIS_VOLATILE (t)
3854 = (TREE_CODE_CLASS (code) == tcc_reference
3855 && arg0 && TREE_THIS_VOLATILE (arg0));
3856
3857 return t;
3858 }
3859
3860 tree
3861 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3862 tree arg2, tree arg3 MEM_STAT_DECL)
3863 {
3864 bool constant, read_only, side_effects;
3865 tree t;
3866
3867 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3868
3869 t = make_node_stat (code PASS_MEM_STAT);
3870 TREE_TYPE (t) = tt;
3871
3872 side_effects = TREE_SIDE_EFFECTS (t);
3873
3874 PROCESS_ARG(0);
3875 PROCESS_ARG(1);
3876 PROCESS_ARG(2);
3877 PROCESS_ARG(3);
3878
3879 TREE_SIDE_EFFECTS (t) = side_effects;
3880 TREE_THIS_VOLATILE (t)
3881 = (TREE_CODE_CLASS (code) == tcc_reference
3882 && arg0 && TREE_THIS_VOLATILE (arg0));
3883
3884 return t;
3885 }
3886
3887 tree
3888 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3889 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3890 {
3891 bool constant, read_only, side_effects;
3892 tree t;
3893
3894 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3895
3896 t = make_node_stat (code PASS_MEM_STAT);
3897 TREE_TYPE (t) = tt;
3898
3899 side_effects = TREE_SIDE_EFFECTS (t);
3900
3901 PROCESS_ARG(0);
3902 PROCESS_ARG(1);
3903 PROCESS_ARG(2);
3904 PROCESS_ARG(3);
3905 PROCESS_ARG(4);
3906
3907 TREE_SIDE_EFFECTS (t) = side_effects;
3908 TREE_THIS_VOLATILE (t)
3909 = (TREE_CODE_CLASS (code) == tcc_reference
3910 && arg0 && TREE_THIS_VOLATILE (arg0));
3911
3912 return t;
3913 }
3914
3915 tree
3916 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3917 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3918 {
3919 bool constant, read_only, side_effects;
3920 tree t;
3921
3922 gcc_assert (code == TARGET_MEM_REF);
3923
3924 t = make_node_stat (code PASS_MEM_STAT);
3925 TREE_TYPE (t) = tt;
3926
3927 side_effects = TREE_SIDE_EFFECTS (t);
3928
3929 PROCESS_ARG(0);
3930 PROCESS_ARG(1);
3931 PROCESS_ARG(2);
3932 PROCESS_ARG(3);
3933 PROCESS_ARG(4);
3934 if (code == TARGET_MEM_REF)
3935 side_effects = 0;
3936 PROCESS_ARG(5);
3937
3938 TREE_SIDE_EFFECTS (t) = side_effects;
3939 TREE_THIS_VOLATILE (t)
3940 = (code == TARGET_MEM_REF
3941 && arg5 && TREE_THIS_VOLATILE (arg5));
3942
3943 return t;
3944 }
3945
3946 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
3947 on the pointer PTR. */
3948
3949 tree
3950 build_simple_mem_ref_loc (location_t loc, tree ptr)
3951 {
3952 HOST_WIDE_INT offset = 0;
3953 tree ptype = TREE_TYPE (ptr);
3954 tree tem;
3955 /* For convenience allow addresses that collapse to a simple base
3956 and offset. */
3957 if (TREE_CODE (ptr) == ADDR_EXPR
3958 && (handled_component_p (TREE_OPERAND (ptr, 0))
3959 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
3960 {
3961 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
3962 gcc_assert (ptr);
3963 ptr = build_fold_addr_expr (ptr);
3964 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
3965 }
3966 tem = build2 (MEM_REF, TREE_TYPE (ptype),
3967 ptr, build_int_cst (ptype, offset));
3968 SET_EXPR_LOCATION (tem, loc);
3969 return tem;
3970 }
3971
3972 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
3973
3974 double_int
3975 mem_ref_offset (const_tree t)
3976 {
3977 tree toff = TREE_OPERAND (t, 1);
3978 return double_int_sext (tree_to_double_int (toff),
3979 TYPE_PRECISION (TREE_TYPE (toff)));
3980 }
3981
3982 /* Return the pointer-type relevant for TBAA purposes from the
3983 gimple memory reference tree T. This is the type to be used for
3984 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
3985
3986 tree
3987 reference_alias_ptr_type (const_tree t)
3988 {
3989 const_tree base = t;
3990 while (handled_component_p (base))
3991 base = TREE_OPERAND (base, 0);
3992 if (TREE_CODE (base) == MEM_REF)
3993 return TREE_TYPE (TREE_OPERAND (base, 1));
3994 else if (TREE_CODE (base) == TARGET_MEM_REF)
3995 return TREE_TYPE (TMR_OFFSET (base));
3996 else
3997 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
3998 }
3999
4000 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4001 offsetted by OFFSET units. */
4002
4003 tree
4004 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4005 {
4006 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4007 build_fold_addr_expr (base),
4008 build_int_cst (ptr_type_node, offset));
4009 tree addr = build1 (ADDR_EXPR, type, ref);
4010 recompute_tree_invariant_for_addr_expr (addr);
4011 return addr;
4012 }
4013
4014 /* Similar except don't specify the TREE_TYPE
4015 and leave the TREE_SIDE_EFFECTS as 0.
4016 It is permissible for arguments to be null,
4017 or even garbage if their values do not matter. */
4018
4019 tree
4020 build_nt (enum tree_code code, ...)
4021 {
4022 tree t;
4023 int length;
4024 int i;
4025 va_list p;
4026
4027 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4028
4029 va_start (p, code);
4030
4031 t = make_node (code);
4032 length = TREE_CODE_LENGTH (code);
4033
4034 for (i = 0; i < length; i++)
4035 TREE_OPERAND (t, i) = va_arg (p, tree);
4036
4037 va_end (p);
4038 return t;
4039 }
4040
4041 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4042 tree VEC. */
4043
4044 tree
4045 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
4046 {
4047 tree ret, t;
4048 unsigned int ix;
4049
4050 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
4051 CALL_EXPR_FN (ret) = fn;
4052 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4053 FOR_EACH_VEC_ELT (tree, args, ix, t)
4054 CALL_EXPR_ARG (ret, ix) = t;
4055 return ret;
4056 }
4057 \f
4058 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4059 We do NOT enter this node in any sort of symbol table.
4060
4061 LOC is the location of the decl.
4062
4063 layout_decl is used to set up the decl's storage layout.
4064 Other slots are initialized to 0 or null pointers. */
4065
4066 tree
4067 build_decl_stat (location_t loc, enum tree_code code, tree name,
4068 tree type MEM_STAT_DECL)
4069 {
4070 tree t;
4071
4072 t = make_node_stat (code PASS_MEM_STAT);
4073 DECL_SOURCE_LOCATION (t) = loc;
4074
4075 /* if (type == error_mark_node)
4076 type = integer_type_node; */
4077 /* That is not done, deliberately, so that having error_mark_node
4078 as the type can suppress useless errors in the use of this variable. */
4079
4080 DECL_NAME (t) = name;
4081 TREE_TYPE (t) = type;
4082
4083 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4084 layout_decl (t, 0);
4085
4086 return t;
4087 }
4088
4089 /* Builds and returns function declaration with NAME and TYPE. */
4090
4091 tree
4092 build_fn_decl (const char *name, tree type)
4093 {
4094 tree id = get_identifier (name);
4095 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4096
4097 DECL_EXTERNAL (decl) = 1;
4098 TREE_PUBLIC (decl) = 1;
4099 DECL_ARTIFICIAL (decl) = 1;
4100 TREE_NOTHROW (decl) = 1;
4101
4102 return decl;
4103 }
4104
4105 VEC(tree,gc) *all_translation_units;
4106
4107 /* Builds a new translation-unit decl with name NAME, queues it in the
4108 global list of translation-unit decls and returns it. */
4109
4110 tree
4111 build_translation_unit_decl (tree name)
4112 {
4113 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4114 name, NULL_TREE);
4115 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4116 VEC_safe_push (tree, gc, all_translation_units, tu);
4117 return tu;
4118 }
4119
4120 \f
4121 /* BLOCK nodes are used to represent the structure of binding contours
4122 and declarations, once those contours have been exited and their contents
4123 compiled. This information is used for outputting debugging info. */
4124
4125 tree
4126 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4127 {
4128 tree block = make_node (BLOCK);
4129
4130 BLOCK_VARS (block) = vars;
4131 BLOCK_SUBBLOCKS (block) = subblocks;
4132 BLOCK_SUPERCONTEXT (block) = supercontext;
4133 BLOCK_CHAIN (block) = chain;
4134 return block;
4135 }
4136
4137 \f
4138 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4139
4140 LOC is the location to use in tree T. */
4141
4142 void
4143 protected_set_expr_location (tree t, location_t loc)
4144 {
4145 if (t && CAN_HAVE_LOCATION_P (t))
4146 SET_EXPR_LOCATION (t, loc);
4147 }
4148 \f
4149 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4150 is ATTRIBUTE. */
4151
4152 tree
4153 build_decl_attribute_variant (tree ddecl, tree attribute)
4154 {
4155 DECL_ATTRIBUTES (ddecl) = attribute;
4156 return ddecl;
4157 }
4158
4159 /* Borrowed from hashtab.c iterative_hash implementation. */
4160 #define mix(a,b,c) \
4161 { \
4162 a -= b; a -= c; a ^= (c>>13); \
4163 b -= c; b -= a; b ^= (a<< 8); \
4164 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4165 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4166 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4167 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4168 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4169 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4170 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4171 }
4172
4173
4174 /* Produce good hash value combining VAL and VAL2. */
4175 hashval_t
4176 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4177 {
4178 /* the golden ratio; an arbitrary value. */
4179 hashval_t a = 0x9e3779b9;
4180
4181 mix (a, val, val2);
4182 return val2;
4183 }
4184
4185 /* Produce good hash value combining VAL and VAL2. */
4186 hashval_t
4187 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4188 {
4189 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4190 return iterative_hash_hashval_t (val, val2);
4191 else
4192 {
4193 hashval_t a = (hashval_t) val;
4194 /* Avoid warnings about shifting of more than the width of the type on
4195 hosts that won't execute this path. */
4196 int zero = 0;
4197 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4198 mix (a, b, val2);
4199 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4200 {
4201 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4202 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4203 mix (a, b, val2);
4204 }
4205 return val2;
4206 }
4207 }
4208
4209 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4210 is ATTRIBUTE and its qualifiers are QUALS.
4211
4212 Record such modified types already made so we don't make duplicates. */
4213
4214 tree
4215 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4216 {
4217 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4218 {
4219 hashval_t hashcode = 0;
4220 tree ntype;
4221 enum tree_code code = TREE_CODE (ttype);
4222
4223 /* Building a distinct copy of a tagged type is inappropriate; it
4224 causes breakage in code that expects there to be a one-to-one
4225 relationship between a struct and its fields.
4226 build_duplicate_type is another solution (as used in
4227 handle_transparent_union_attribute), but that doesn't play well
4228 with the stronger C++ type identity model. */
4229 if (TREE_CODE (ttype) == RECORD_TYPE
4230 || TREE_CODE (ttype) == UNION_TYPE
4231 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4232 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4233 {
4234 warning (OPT_Wattributes,
4235 "ignoring attributes applied to %qT after definition",
4236 TYPE_MAIN_VARIANT (ttype));
4237 return build_qualified_type (ttype, quals);
4238 }
4239
4240 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4241 ntype = build_distinct_type_copy (ttype);
4242
4243 TYPE_ATTRIBUTES (ntype) = attribute;
4244
4245 hashcode = iterative_hash_object (code, hashcode);
4246 if (TREE_TYPE (ntype))
4247 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4248 hashcode);
4249 hashcode = attribute_hash_list (attribute, hashcode);
4250
4251 switch (TREE_CODE (ntype))
4252 {
4253 case FUNCTION_TYPE:
4254 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4255 break;
4256 case ARRAY_TYPE:
4257 if (TYPE_DOMAIN (ntype))
4258 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4259 hashcode);
4260 break;
4261 case INTEGER_TYPE:
4262 hashcode = iterative_hash_object
4263 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4264 hashcode = iterative_hash_object
4265 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4266 break;
4267 case REAL_TYPE:
4268 case FIXED_POINT_TYPE:
4269 {
4270 unsigned int precision = TYPE_PRECISION (ntype);
4271 hashcode = iterative_hash_object (precision, hashcode);
4272 }
4273 break;
4274 default:
4275 break;
4276 }
4277
4278 ntype = type_hash_canon (hashcode, ntype);
4279
4280 /* If the target-dependent attributes make NTYPE different from
4281 its canonical type, we will need to use structural equality
4282 checks for this type. */
4283 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4284 || !comp_type_attributes (ntype, ttype))
4285 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4286 else if (TYPE_CANONICAL (ntype) == ntype)
4287 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4288
4289 ttype = build_qualified_type (ntype, quals);
4290 }
4291 else if (TYPE_QUALS (ttype) != quals)
4292 ttype = build_qualified_type (ttype, quals);
4293
4294 return ttype;
4295 }
4296
4297 /* Compare two attributes for their value identity. Return true if the
4298 attribute values are known to be equal; otherwise return false.
4299 */
4300
4301 static bool
4302 attribute_value_equal (const_tree attr1, const_tree attr2)
4303 {
4304 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4305 return true;
4306
4307 if (TREE_VALUE (attr1) != NULL_TREE
4308 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4309 && TREE_VALUE (attr2) != NULL
4310 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4311 return (simple_cst_list_equal (TREE_VALUE (attr1),
4312 TREE_VALUE (attr2)) == 1);
4313
4314 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
4315 }
4316
4317 /* Return 0 if the attributes for two types are incompatible, 1 if they
4318 are compatible, and 2 if they are nearly compatible (which causes a
4319 warning to be generated). */
4320 int
4321 comp_type_attributes (const_tree type1, const_tree type2)
4322 {
4323 const_tree a1 = TYPE_ATTRIBUTES (type1);
4324 const_tree a2 = TYPE_ATTRIBUTES (type2);
4325 const_tree a;
4326
4327 if (a1 == a2)
4328 return 1;
4329 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
4330 {
4331 const struct attribute_spec *as;
4332 const_tree attr;
4333
4334 as = lookup_attribute_spec (TREE_PURPOSE (a));
4335 if (!as || as->affects_type_identity == false)
4336 continue;
4337
4338 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
4339 if (!attr || !attribute_value_equal (a, attr))
4340 break;
4341 }
4342 if (!a)
4343 {
4344 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
4345 {
4346 const struct attribute_spec *as;
4347
4348 as = lookup_attribute_spec (TREE_PURPOSE (a));
4349 if (!as || as->affects_type_identity == false)
4350 continue;
4351
4352 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
4353 break;
4354 /* We don't need to compare trees again, as we did this
4355 already in first loop. */
4356 }
4357 /* All types - affecting identity - are equal, so
4358 there is no need to call target hook for comparison. */
4359 if (!a)
4360 return 1;
4361 }
4362 /* As some type combinations - like default calling-convention - might
4363 be compatible, we have to call the target hook to get the final result. */
4364 return targetm.comp_type_attributes (type1, type2);
4365 }
4366
4367 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4368 is ATTRIBUTE.
4369
4370 Record such modified types already made so we don't make duplicates. */
4371
4372 tree
4373 build_type_attribute_variant (tree ttype, tree attribute)
4374 {
4375 return build_type_attribute_qual_variant (ttype, attribute,
4376 TYPE_QUALS (ttype));
4377 }
4378
4379
4380 /* Reset the expression *EXPR_P, a size or position.
4381
4382 ??? We could reset all non-constant sizes or positions. But it's cheap
4383 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4384
4385 We need to reset self-referential sizes or positions because they cannot
4386 be gimplified and thus can contain a CALL_EXPR after the gimplification
4387 is finished, which will run afoul of LTO streaming. And they need to be
4388 reset to something essentially dummy but not constant, so as to preserve
4389 the properties of the object they are attached to. */
4390
4391 static inline void
4392 free_lang_data_in_one_sizepos (tree *expr_p)
4393 {
4394 tree expr = *expr_p;
4395 if (CONTAINS_PLACEHOLDER_P (expr))
4396 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4397 }
4398
4399
4400 /* Reset all the fields in a binfo node BINFO. We only keep
4401 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
4402
4403 static void
4404 free_lang_data_in_binfo (tree binfo)
4405 {
4406 unsigned i;
4407 tree t;
4408
4409 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4410
4411 BINFO_VIRTUALS (binfo) = NULL_TREE;
4412 BINFO_BASE_ACCESSES (binfo) = NULL;
4413 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4414 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4415
4416 FOR_EACH_VEC_ELT (tree, BINFO_BASE_BINFOS (binfo), i, t)
4417 free_lang_data_in_binfo (t);
4418 }
4419
4420
4421 /* Reset all language specific information still present in TYPE. */
4422
4423 static void
4424 free_lang_data_in_type (tree type)
4425 {
4426 gcc_assert (TYPE_P (type));
4427
4428 /* Give the FE a chance to remove its own data first. */
4429 lang_hooks.free_lang_data (type);
4430
4431 TREE_LANG_FLAG_0 (type) = 0;
4432 TREE_LANG_FLAG_1 (type) = 0;
4433 TREE_LANG_FLAG_2 (type) = 0;
4434 TREE_LANG_FLAG_3 (type) = 0;
4435 TREE_LANG_FLAG_4 (type) = 0;
4436 TREE_LANG_FLAG_5 (type) = 0;
4437 TREE_LANG_FLAG_6 (type) = 0;
4438
4439 if (TREE_CODE (type) == FUNCTION_TYPE)
4440 {
4441 /* Remove the const and volatile qualifiers from arguments. The
4442 C++ front end removes them, but the C front end does not,
4443 leading to false ODR violation errors when merging two
4444 instances of the same function signature compiled by
4445 different front ends. */
4446 tree p;
4447
4448 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4449 {
4450 tree arg_type = TREE_VALUE (p);
4451
4452 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4453 {
4454 int quals = TYPE_QUALS (arg_type)
4455 & ~TYPE_QUAL_CONST
4456 & ~TYPE_QUAL_VOLATILE;
4457 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4458 free_lang_data_in_type (TREE_VALUE (p));
4459 }
4460 }
4461 }
4462
4463 /* Remove members that are not actually FIELD_DECLs from the field
4464 list of an aggregate. These occur in C++. */
4465 if (RECORD_OR_UNION_TYPE_P (type))
4466 {
4467 tree prev, member;
4468
4469 /* Note that TYPE_FIELDS can be shared across distinct
4470 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4471 to be removed, we cannot set its TREE_CHAIN to NULL.
4472 Otherwise, we would not be able to find all the other fields
4473 in the other instances of this TREE_TYPE.
4474
4475 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4476 prev = NULL_TREE;
4477 member = TYPE_FIELDS (type);
4478 while (member)
4479 {
4480 if (TREE_CODE (member) == FIELD_DECL)
4481 {
4482 if (prev)
4483 TREE_CHAIN (prev) = member;
4484 else
4485 TYPE_FIELDS (type) = member;
4486 prev = member;
4487 }
4488
4489 member = TREE_CHAIN (member);
4490 }
4491
4492 if (prev)
4493 TREE_CHAIN (prev) = NULL_TREE;
4494 else
4495 TYPE_FIELDS (type) = NULL_TREE;
4496
4497 TYPE_METHODS (type) = NULL_TREE;
4498 if (TYPE_BINFO (type))
4499 free_lang_data_in_binfo (TYPE_BINFO (type));
4500 }
4501 else
4502 {
4503 /* For non-aggregate types, clear out the language slot (which
4504 overloads TYPE_BINFO). */
4505 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4506
4507 if (INTEGRAL_TYPE_P (type)
4508 || SCALAR_FLOAT_TYPE_P (type)
4509 || FIXED_POINT_TYPE_P (type))
4510 {
4511 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4512 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4513 }
4514 }
4515
4516 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4517 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4518
4519 if (debug_info_level < DINFO_LEVEL_TERSE
4520 || (TYPE_CONTEXT (type)
4521 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_DECL
4522 && TREE_CODE (TYPE_CONTEXT (type)) != NAMESPACE_DECL))
4523 TYPE_CONTEXT (type) = NULL_TREE;
4524
4525 if (debug_info_level < DINFO_LEVEL_TERSE)
4526 TYPE_STUB_DECL (type) = NULL_TREE;
4527 }
4528
4529
4530 /* Return true if DECL may need an assembler name to be set. */
4531
4532 static inline bool
4533 need_assembler_name_p (tree decl)
4534 {
4535 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4536 if (TREE_CODE (decl) != FUNCTION_DECL
4537 && TREE_CODE (decl) != VAR_DECL)
4538 return false;
4539
4540 /* If DECL already has its assembler name set, it does not need a
4541 new one. */
4542 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4543 || DECL_ASSEMBLER_NAME_SET_P (decl))
4544 return false;
4545
4546 /* Abstract decls do not need an assembler name. */
4547 if (DECL_ABSTRACT (decl))
4548 return false;
4549
4550 /* For VAR_DECLs, only static, public and external symbols need an
4551 assembler name. */
4552 if (TREE_CODE (decl) == VAR_DECL
4553 && !TREE_STATIC (decl)
4554 && !TREE_PUBLIC (decl)
4555 && !DECL_EXTERNAL (decl))
4556 return false;
4557
4558 if (TREE_CODE (decl) == FUNCTION_DECL)
4559 {
4560 /* Do not set assembler name on builtins. Allow RTL expansion to
4561 decide whether to expand inline or via a regular call. */
4562 if (DECL_BUILT_IN (decl)
4563 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4564 return false;
4565
4566 /* Functions represented in the callgraph need an assembler name. */
4567 if (cgraph_get_node (decl) != NULL)
4568 return true;
4569
4570 /* Unused and not public functions don't need an assembler name. */
4571 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4572 return false;
4573 }
4574
4575 return true;
4576 }
4577
4578
4579 /* Reset all language specific information still present in symbol
4580 DECL. */
4581
4582 static void
4583 free_lang_data_in_decl (tree decl)
4584 {
4585 gcc_assert (DECL_P (decl));
4586
4587 /* Give the FE a chance to remove its own data first. */
4588 lang_hooks.free_lang_data (decl);
4589
4590 TREE_LANG_FLAG_0 (decl) = 0;
4591 TREE_LANG_FLAG_1 (decl) = 0;
4592 TREE_LANG_FLAG_2 (decl) = 0;
4593 TREE_LANG_FLAG_3 (decl) = 0;
4594 TREE_LANG_FLAG_4 (decl) = 0;
4595 TREE_LANG_FLAG_5 (decl) = 0;
4596 TREE_LANG_FLAG_6 (decl) = 0;
4597
4598 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4599 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4600 if (TREE_CODE (decl) == FIELD_DECL)
4601 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4602
4603 /* DECL_FCONTEXT is only used for debug info generation. */
4604 if (TREE_CODE (decl) == FIELD_DECL
4605 && debug_info_level < DINFO_LEVEL_TERSE)
4606 DECL_FCONTEXT (decl) = NULL_TREE;
4607
4608 if (TREE_CODE (decl) == FUNCTION_DECL)
4609 {
4610 if (gimple_has_body_p (decl))
4611 {
4612 tree t;
4613
4614 /* If DECL has a gimple body, then the context for its
4615 arguments must be DECL. Otherwise, it doesn't really
4616 matter, as we will not be emitting any code for DECL. In
4617 general, there may be other instances of DECL created by
4618 the front end and since PARM_DECLs are generally shared,
4619 their DECL_CONTEXT changes as the replicas of DECL are
4620 created. The only time where DECL_CONTEXT is important
4621 is for the FUNCTION_DECLs that have a gimple body (since
4622 the PARM_DECL will be used in the function's body). */
4623 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4624 DECL_CONTEXT (t) = decl;
4625 }
4626
4627 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4628 At this point, it is not needed anymore. */
4629 DECL_SAVED_TREE (decl) = NULL_TREE;
4630
4631 /* Clear the abstract origin if it refers to a method. Otherwise
4632 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
4633 origin will not be output correctly. */
4634 if (DECL_ABSTRACT_ORIGIN (decl)
4635 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
4636 && RECORD_OR_UNION_TYPE_P
4637 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
4638 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
4639
4640 /* Sometimes the C++ frontend doesn't manage to transform a temporary
4641 DECL_VINDEX referring to itself into a vtable slot number as it
4642 should. Happens with functions that are copied and then forgotten
4643 about. Just clear it, it won't matter anymore. */
4644 if (DECL_VINDEX (decl) && !host_integerp (DECL_VINDEX (decl), 0))
4645 DECL_VINDEX (decl) = NULL_TREE;
4646 }
4647 else if (TREE_CODE (decl) == VAR_DECL)
4648 {
4649 if ((DECL_EXTERNAL (decl)
4650 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4651 || (decl_function_context (decl) && !TREE_STATIC (decl)))
4652 DECL_INITIAL (decl) = NULL_TREE;
4653 }
4654 else if (TREE_CODE (decl) == TYPE_DECL)
4655 DECL_INITIAL (decl) = NULL_TREE;
4656 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
4657 && DECL_INITIAL (decl)
4658 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
4659 {
4660 /* Strip builtins from the translation-unit BLOCK. We still have targets
4661 without builtin_decl_explicit support and also builtins are shared
4662 nodes and thus we can't use TREE_CHAIN in multiple lists. */
4663 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
4664 while (*nextp)
4665 {
4666 tree var = *nextp;
4667 if (TREE_CODE (var) == FUNCTION_DECL
4668 && DECL_BUILT_IN (var))
4669 *nextp = TREE_CHAIN (var);
4670 else
4671 nextp = &TREE_CHAIN (var);
4672 }
4673 }
4674 }
4675
4676
4677 /* Data used when collecting DECLs and TYPEs for language data removal. */
4678
4679 struct free_lang_data_d
4680 {
4681 /* Worklist to avoid excessive recursion. */
4682 VEC(tree,heap) *worklist;
4683
4684 /* Set of traversed objects. Used to avoid duplicate visits. */
4685 struct pointer_set_t *pset;
4686
4687 /* Array of symbols to process with free_lang_data_in_decl. */
4688 VEC(tree,heap) *decls;
4689
4690 /* Array of types to process with free_lang_data_in_type. */
4691 VEC(tree,heap) *types;
4692 };
4693
4694
4695 /* Save all language fields needed to generate proper debug information
4696 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4697
4698 static void
4699 save_debug_info_for_decl (tree t)
4700 {
4701 /*struct saved_debug_info_d *sdi;*/
4702
4703 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4704
4705 /* FIXME. Partial implementation for saving debug info removed. */
4706 }
4707
4708
4709 /* Save all language fields needed to generate proper debug information
4710 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4711
4712 static void
4713 save_debug_info_for_type (tree t)
4714 {
4715 /*struct saved_debug_info_d *sdi;*/
4716
4717 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4718
4719 /* FIXME. Partial implementation for saving debug info removed. */
4720 }
4721
4722
4723 /* Add type or decl T to one of the list of tree nodes that need their
4724 language data removed. The lists are held inside FLD. */
4725
4726 static void
4727 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4728 {
4729 if (DECL_P (t))
4730 {
4731 VEC_safe_push (tree, heap, fld->decls, t);
4732 if (debug_info_level > DINFO_LEVEL_TERSE)
4733 save_debug_info_for_decl (t);
4734 }
4735 else if (TYPE_P (t))
4736 {
4737 VEC_safe_push (tree, heap, fld->types, t);
4738 if (debug_info_level > DINFO_LEVEL_TERSE)
4739 save_debug_info_for_type (t);
4740 }
4741 else
4742 gcc_unreachable ();
4743 }
4744
4745 /* Push tree node T into FLD->WORKLIST. */
4746
4747 static inline void
4748 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4749 {
4750 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4751 VEC_safe_push (tree, heap, fld->worklist, (t));
4752 }
4753
4754
4755 /* Operand callback helper for free_lang_data_in_node. *TP is the
4756 subtree operand being considered. */
4757
4758 static tree
4759 find_decls_types_r (tree *tp, int *ws, void *data)
4760 {
4761 tree t = *tp;
4762 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4763
4764 if (TREE_CODE (t) == TREE_LIST)
4765 return NULL_TREE;
4766
4767 /* Language specific nodes will be removed, so there is no need
4768 to gather anything under them. */
4769 if (is_lang_specific (t))
4770 {
4771 *ws = 0;
4772 return NULL_TREE;
4773 }
4774
4775 if (DECL_P (t))
4776 {
4777 /* Note that walk_tree does not traverse every possible field in
4778 decls, so we have to do our own traversals here. */
4779 add_tree_to_fld_list (t, fld);
4780
4781 fld_worklist_push (DECL_NAME (t), fld);
4782 fld_worklist_push (DECL_CONTEXT (t), fld);
4783 fld_worklist_push (DECL_SIZE (t), fld);
4784 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4785
4786 /* We are going to remove everything under DECL_INITIAL for
4787 TYPE_DECLs. No point walking them. */
4788 if (TREE_CODE (t) != TYPE_DECL)
4789 fld_worklist_push (DECL_INITIAL (t), fld);
4790
4791 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4792 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4793
4794 if (TREE_CODE (t) == FUNCTION_DECL)
4795 {
4796 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4797 fld_worklist_push (DECL_RESULT (t), fld);
4798 }
4799 else if (TREE_CODE (t) == TYPE_DECL)
4800 {
4801 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4802 fld_worklist_push (DECL_VINDEX (t), fld);
4803 }
4804 else if (TREE_CODE (t) == FIELD_DECL)
4805 {
4806 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4807 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4808 fld_worklist_push (DECL_QUALIFIER (t), fld);
4809 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4810 fld_worklist_push (DECL_FCONTEXT (t), fld);
4811 }
4812 else if (TREE_CODE (t) == VAR_DECL)
4813 {
4814 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4815 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4816 }
4817
4818 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4819 && DECL_HAS_VALUE_EXPR_P (t))
4820 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4821
4822 if (TREE_CODE (t) != FIELD_DECL
4823 && TREE_CODE (t) != TYPE_DECL)
4824 fld_worklist_push (TREE_CHAIN (t), fld);
4825 *ws = 0;
4826 }
4827 else if (TYPE_P (t))
4828 {
4829 /* Note that walk_tree does not traverse every possible field in
4830 types, so we have to do our own traversals here. */
4831 add_tree_to_fld_list (t, fld);
4832
4833 if (!RECORD_OR_UNION_TYPE_P (t))
4834 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4835 fld_worklist_push (TYPE_SIZE (t), fld);
4836 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4837 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4838 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4839 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4840 fld_worklist_push (TYPE_NAME (t), fld);
4841 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
4842 them and thus do not and want not to reach unused pointer types
4843 this way. */
4844 if (!POINTER_TYPE_P (t))
4845 fld_worklist_push (TYPE_MINVAL (t), fld);
4846 if (!RECORD_OR_UNION_TYPE_P (t))
4847 fld_worklist_push (TYPE_MAXVAL (t), fld);
4848 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4849 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
4850 do not and want not to reach unused variants this way. */
4851 fld_worklist_push (TYPE_CONTEXT (t), fld);
4852 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
4853 and want not to reach unused types this way. */
4854
4855 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4856 {
4857 unsigned i;
4858 tree tem;
4859 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4860 i, tem); ++i)
4861 fld_worklist_push (TREE_TYPE (tem), fld);
4862 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4863 if (tem
4864 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4865 && TREE_CODE (tem) == TREE_LIST)
4866 do
4867 {
4868 fld_worklist_push (TREE_VALUE (tem), fld);
4869 tem = TREE_CHAIN (tem);
4870 }
4871 while (tem);
4872 }
4873 if (RECORD_OR_UNION_TYPE_P (t))
4874 {
4875 tree tem;
4876 /* Push all TYPE_FIELDS - there can be interleaving interesting
4877 and non-interesting things. */
4878 tem = TYPE_FIELDS (t);
4879 while (tem)
4880 {
4881 if (TREE_CODE (tem) == FIELD_DECL)
4882 fld_worklist_push (tem, fld);
4883 tem = TREE_CHAIN (tem);
4884 }
4885 }
4886
4887 fld_worklist_push (TREE_CHAIN (t), fld);
4888 *ws = 0;
4889 }
4890 else if (TREE_CODE (t) == BLOCK)
4891 {
4892 tree tem;
4893 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4894 fld_worklist_push (tem, fld);
4895 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4896 fld_worklist_push (tem, fld);
4897 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4898 }
4899
4900 if (TREE_CODE (t) != IDENTIFIER_NODE
4901 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
4902 fld_worklist_push (TREE_TYPE (t), fld);
4903
4904 return NULL_TREE;
4905 }
4906
4907
4908 /* Find decls and types in T. */
4909
4910 static void
4911 find_decls_types (tree t, struct free_lang_data_d *fld)
4912 {
4913 while (1)
4914 {
4915 if (!pointer_set_contains (fld->pset, t))
4916 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4917 if (VEC_empty (tree, fld->worklist))
4918 break;
4919 t = VEC_pop (tree, fld->worklist);
4920 }
4921 }
4922
4923 /* Translate all the types in LIST with the corresponding runtime
4924 types. */
4925
4926 static tree
4927 get_eh_types_for_runtime (tree list)
4928 {
4929 tree head, prev;
4930
4931 if (list == NULL_TREE)
4932 return NULL_TREE;
4933
4934 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4935 prev = head;
4936 list = TREE_CHAIN (list);
4937 while (list)
4938 {
4939 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4940 TREE_CHAIN (prev) = n;
4941 prev = TREE_CHAIN (prev);
4942 list = TREE_CHAIN (list);
4943 }
4944
4945 return head;
4946 }
4947
4948
4949 /* Find decls and types referenced in EH region R and store them in
4950 FLD->DECLS and FLD->TYPES. */
4951
4952 static void
4953 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4954 {
4955 switch (r->type)
4956 {
4957 case ERT_CLEANUP:
4958 break;
4959
4960 case ERT_TRY:
4961 {
4962 eh_catch c;
4963
4964 /* The types referenced in each catch must first be changed to the
4965 EH types used at runtime. This removes references to FE types
4966 in the region. */
4967 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4968 {
4969 c->type_list = get_eh_types_for_runtime (c->type_list);
4970 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4971 }
4972 }
4973 break;
4974
4975 case ERT_ALLOWED_EXCEPTIONS:
4976 r->u.allowed.type_list
4977 = get_eh_types_for_runtime (r->u.allowed.type_list);
4978 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4979 break;
4980
4981 case ERT_MUST_NOT_THROW:
4982 walk_tree (&r->u.must_not_throw.failure_decl,
4983 find_decls_types_r, fld, fld->pset);
4984 break;
4985 }
4986 }
4987
4988
4989 /* Find decls and types referenced in cgraph node N and store them in
4990 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4991 look for *every* kind of DECL and TYPE node reachable from N,
4992 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4993 NAMESPACE_DECLs, etc). */
4994
4995 static void
4996 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4997 {
4998 basic_block bb;
4999 struct function *fn;
5000 unsigned ix;
5001 tree t;
5002
5003 find_decls_types (n->decl, fld);
5004
5005 if (!gimple_has_body_p (n->decl))
5006 return;
5007
5008 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5009
5010 fn = DECL_STRUCT_FUNCTION (n->decl);
5011
5012 /* Traverse locals. */
5013 FOR_EACH_LOCAL_DECL (fn, ix, t)
5014 find_decls_types (t, fld);
5015
5016 /* Traverse EH regions in FN. */
5017 {
5018 eh_region r;
5019 FOR_ALL_EH_REGION_FN (r, fn)
5020 find_decls_types_in_eh_region (r, fld);
5021 }
5022
5023 /* Traverse every statement in FN. */
5024 FOR_EACH_BB_FN (bb, fn)
5025 {
5026 gimple_stmt_iterator si;
5027 unsigned i;
5028
5029 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5030 {
5031 gimple phi = gsi_stmt (si);
5032
5033 for (i = 0; i < gimple_phi_num_args (phi); i++)
5034 {
5035 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5036 find_decls_types (*arg_p, fld);
5037 }
5038 }
5039
5040 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5041 {
5042 gimple stmt = gsi_stmt (si);
5043
5044 for (i = 0; i < gimple_num_ops (stmt); i++)
5045 {
5046 tree arg = gimple_op (stmt, i);
5047 find_decls_types (arg, fld);
5048 }
5049 }
5050 }
5051 }
5052
5053
5054 /* Find decls and types referenced in varpool node N and store them in
5055 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5056 look for *every* kind of DECL and TYPE node reachable from N,
5057 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5058 NAMESPACE_DECLs, etc). */
5059
5060 static void
5061 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
5062 {
5063 find_decls_types (v->decl, fld);
5064 }
5065
5066 /* If T needs an assembler name, have one created for it. */
5067
5068 void
5069 assign_assembler_name_if_neeeded (tree t)
5070 {
5071 if (need_assembler_name_p (t))
5072 {
5073 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5074 diagnostics that use input_location to show locus
5075 information. The problem here is that, at this point,
5076 input_location is generally anchored to the end of the file
5077 (since the parser is long gone), so we don't have a good
5078 position to pin it to.
5079
5080 To alleviate this problem, this uses the location of T's
5081 declaration. Examples of this are
5082 testsuite/g++.dg/template/cond2.C and
5083 testsuite/g++.dg/template/pr35240.C. */
5084 location_t saved_location = input_location;
5085 input_location = DECL_SOURCE_LOCATION (t);
5086
5087 decl_assembler_name (t);
5088
5089 input_location = saved_location;
5090 }
5091 }
5092
5093
5094 /* Free language specific information for every operand and expression
5095 in every node of the call graph. This process operates in three stages:
5096
5097 1- Every callgraph node and varpool node is traversed looking for
5098 decls and types embedded in them. This is a more exhaustive
5099 search than that done by find_referenced_vars, because it will
5100 also collect individual fields, decls embedded in types, etc.
5101
5102 2- All the decls found are sent to free_lang_data_in_decl.
5103
5104 3- All the types found are sent to free_lang_data_in_type.
5105
5106 The ordering between decls and types is important because
5107 free_lang_data_in_decl sets assembler names, which includes
5108 mangling. So types cannot be freed up until assembler names have
5109 been set up. */
5110
5111 static void
5112 free_lang_data_in_cgraph (void)
5113 {
5114 struct cgraph_node *n;
5115 struct varpool_node *v;
5116 struct free_lang_data_d fld;
5117 tree t;
5118 unsigned i;
5119 alias_pair *p;
5120
5121 /* Initialize sets and arrays to store referenced decls and types. */
5122 fld.pset = pointer_set_create ();
5123 fld.worklist = NULL;
5124 fld.decls = VEC_alloc (tree, heap, 100);
5125 fld.types = VEC_alloc (tree, heap, 100);
5126
5127 /* Find decls and types in the body of every function in the callgraph. */
5128 for (n = cgraph_nodes; n; n = n->next)
5129 find_decls_types_in_node (n, &fld);
5130
5131 FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p)
5132 find_decls_types (p->decl, &fld);
5133
5134 /* Find decls and types in every varpool symbol. */
5135 for (v = varpool_nodes; v; v = v->next)
5136 find_decls_types_in_var (v, &fld);
5137
5138 /* Set the assembler name on every decl found. We need to do this
5139 now because free_lang_data_in_decl will invalidate data needed
5140 for mangling. This breaks mangling on interdependent decls. */
5141 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5142 assign_assembler_name_if_neeeded (t);
5143
5144 /* Traverse every decl found freeing its language data. */
5145 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5146 free_lang_data_in_decl (t);
5147
5148 /* Traverse every type found freeing its language data. */
5149 FOR_EACH_VEC_ELT (tree, fld.types, i, t)
5150 free_lang_data_in_type (t);
5151
5152 pointer_set_destroy (fld.pset);
5153 VEC_free (tree, heap, fld.worklist);
5154 VEC_free (tree, heap, fld.decls);
5155 VEC_free (tree, heap, fld.types);
5156 }
5157
5158
5159 /* Free resources that are used by FE but are not needed once they are done. */
5160
5161 static unsigned
5162 free_lang_data (void)
5163 {
5164 unsigned i;
5165
5166 /* If we are the LTO frontend we have freed lang-specific data already. */
5167 if (in_lto_p
5168 || !flag_generate_lto)
5169 return 0;
5170
5171 /* Allocate and assign alias sets to the standard integer types
5172 while the slots are still in the way the frontends generated them. */
5173 for (i = 0; i < itk_none; ++i)
5174 if (integer_types[i])
5175 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5176
5177 /* Traverse the IL resetting language specific information for
5178 operands, expressions, etc. */
5179 free_lang_data_in_cgraph ();
5180
5181 /* Create gimple variants for common types. */
5182 ptrdiff_type_node = integer_type_node;
5183 fileptr_type_node = ptr_type_node;
5184
5185 /* Reset some langhooks. Do not reset types_compatible_p, it may
5186 still be used indirectly via the get_alias_set langhook. */
5187 lang_hooks.callgraph.analyze_expr = NULL;
5188 lang_hooks.dwarf_name = lhd_dwarf_name;
5189 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5190 /* We do not want the default decl_assembler_name implementation,
5191 rather if we have fixed everything we want a wrapper around it
5192 asserting that all non-local symbols already got their assembler
5193 name and only produce assembler names for local symbols. Or rather
5194 make sure we never call decl_assembler_name on local symbols and
5195 devise a separate, middle-end private scheme for it. */
5196
5197 /* Reset diagnostic machinery. */
5198 diagnostic_starter (global_dc) = default_tree_diagnostic_starter;
5199 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
5200 diagnostic_format_decoder (global_dc) = default_tree_printer;
5201
5202 return 0;
5203 }
5204
5205
5206 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5207 {
5208 {
5209 SIMPLE_IPA_PASS,
5210 "*free_lang_data", /* name */
5211 NULL, /* gate */
5212 free_lang_data, /* execute */
5213 NULL, /* sub */
5214 NULL, /* next */
5215 0, /* static_pass_number */
5216 TV_IPA_FREE_LANG_DATA, /* tv_id */
5217 0, /* properties_required */
5218 0, /* properties_provided */
5219 0, /* properties_destroyed */
5220 0, /* todo_flags_start */
5221 TODO_ggc_collect /* todo_flags_finish */
5222 }
5223 };
5224
5225 /* The backbone of is_attribute_p(). ATTR_LEN is the string length of
5226 ATTR_NAME. Also used internally by remove_attribute(). */
5227 bool
5228 private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident)
5229 {
5230 size_t ident_len = IDENTIFIER_LENGTH (ident);
5231
5232 if (ident_len == attr_len)
5233 {
5234 if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0)
5235 return true;
5236 }
5237 else if (ident_len == attr_len + 4)
5238 {
5239 /* There is the possibility that ATTR is 'text' and IDENT is
5240 '__text__'. */
5241 const char *p = IDENTIFIER_POINTER (ident);
5242 if (p[0] == '_' && p[1] == '_'
5243 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5244 && strncmp (attr_name, p + 2, attr_len) == 0)
5245 return true;
5246 }
5247
5248 return false;
5249 }
5250
5251 /* The backbone of lookup_attribute(). ATTR_LEN is the string length
5252 of ATTR_NAME, and LIST is not NULL_TREE. */
5253 tree
5254 private_lookup_attribute (const char *attr_name, size_t attr_len, tree list)
5255 {
5256 while (list)
5257 {
5258 size_t ident_len = IDENTIFIER_LENGTH (TREE_PURPOSE (list));
5259
5260 if (ident_len == attr_len)
5261 {
5262 if (strcmp (attr_name, IDENTIFIER_POINTER (TREE_PURPOSE (list))) == 0)
5263 break;
5264 }
5265 /* TODO: If we made sure that attributes were stored in the
5266 canonical form without '__...__' (ie, as in 'text' as opposed
5267 to '__text__') then we could avoid the following case. */
5268 else if (ident_len == attr_len + 4)
5269 {
5270 const char *p = IDENTIFIER_POINTER (TREE_PURPOSE (list));
5271 if (p[0] == '_' && p[1] == '_'
5272 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5273 && strncmp (attr_name, p + 2, attr_len) == 0)
5274 break;
5275 }
5276 list = TREE_CHAIN (list);
5277 }
5278
5279 return list;
5280 }
5281
5282 /* A variant of lookup_attribute() that can be used with an identifier
5283 as the first argument, and where the identifier can be either
5284 'text' or '__text__'.
5285
5286 Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST,
5287 return a pointer to the attribute's list element if the attribute
5288 is part of the list, or NULL_TREE if not found. If the attribute
5289 appears more than once, this only returns the first occurrence; the
5290 TREE_CHAIN of the return value should be passed back in if further
5291 occurrences are wanted. ATTR_IDENTIFIER must be an identifier but
5292 can be in the form 'text' or '__text__'. */
5293 static tree
5294 lookup_ident_attribute (tree attr_identifier, tree list)
5295 {
5296 gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE);
5297
5298 while (list)
5299 {
5300 gcc_checking_assert (TREE_CODE (TREE_PURPOSE (list)) == IDENTIFIER_NODE);
5301
5302 /* Identifiers can be compared directly for equality. */
5303 if (attr_identifier == TREE_PURPOSE (list))
5304 break;
5305
5306 /* If they are not equal, they may still be one in the form
5307 'text' while the other one is in the form '__text__'. TODO:
5308 If we were storing attributes in normalized 'text' form, then
5309 this could all go away and we could take full advantage of
5310 the fact that we're comparing identifiers. :-) */
5311 {
5312 size_t attr_len = IDENTIFIER_LENGTH (attr_identifier);
5313 size_t ident_len = IDENTIFIER_LENGTH (TREE_PURPOSE (list));
5314
5315 if (ident_len == attr_len + 4)
5316 {
5317 const char *p = IDENTIFIER_POINTER (TREE_PURPOSE (list));
5318 const char *q = IDENTIFIER_POINTER (attr_identifier);
5319 if (p[0] == '_' && p[1] == '_'
5320 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5321 && strncmp (q, p + 2, attr_len) == 0)
5322 break;
5323 }
5324 else if (ident_len + 4 == attr_len)
5325 {
5326 const char *p = IDENTIFIER_POINTER (TREE_PURPOSE (list));
5327 const char *q = IDENTIFIER_POINTER (attr_identifier);
5328 if (q[0] == '_' && q[1] == '_'
5329 && q[attr_len - 2] == '_' && q[attr_len - 1] == '_'
5330 && strncmp (q + 2, p, ident_len) == 0)
5331 break;
5332 }
5333 }
5334 list = TREE_CHAIN (list);
5335 }
5336
5337 return list;
5338 }
5339
5340 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5341 modified list. */
5342
5343 tree
5344 remove_attribute (const char *attr_name, tree list)
5345 {
5346 tree *p;
5347 size_t attr_len = strlen (attr_name);
5348
5349 gcc_checking_assert (attr_name[0] != '_');
5350
5351 for (p = &list; *p; )
5352 {
5353 tree l = *p;
5354 /* TODO: If we were storing attributes in normalized form, here
5355 we could use a simple strcmp(). */
5356 if (private_is_attribute_p (attr_name, attr_len, TREE_PURPOSE (l)))
5357 *p = TREE_CHAIN (l);
5358 else
5359 p = &TREE_CHAIN (l);
5360 }
5361
5362 return list;
5363 }
5364
5365 /* Return an attribute list that is the union of a1 and a2. */
5366
5367 tree
5368 merge_attributes (tree a1, tree a2)
5369 {
5370 tree attributes;
5371
5372 /* Either one unset? Take the set one. */
5373
5374 if ((attributes = a1) == 0)
5375 attributes = a2;
5376
5377 /* One that completely contains the other? Take it. */
5378
5379 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5380 {
5381 if (attribute_list_contained (a2, a1))
5382 attributes = a2;
5383 else
5384 {
5385 /* Pick the longest list, and hang on the other list. */
5386
5387 if (list_length (a1) < list_length (a2))
5388 attributes = a2, a2 = a1;
5389
5390 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5391 {
5392 tree a;
5393 for (a = lookup_ident_attribute (TREE_PURPOSE (a2), attributes);
5394 a != NULL_TREE && !attribute_value_equal (a, a2);
5395 a = lookup_ident_attribute (TREE_PURPOSE (a2), TREE_CHAIN (a)))
5396 ;
5397 if (a == NULL_TREE)
5398 {
5399 a1 = copy_node (a2);
5400 TREE_CHAIN (a1) = attributes;
5401 attributes = a1;
5402 }
5403 }
5404 }
5405 }
5406 return attributes;
5407 }
5408
5409 /* Given types T1 and T2, merge their attributes and return
5410 the result. */
5411
5412 tree
5413 merge_type_attributes (tree t1, tree t2)
5414 {
5415 return merge_attributes (TYPE_ATTRIBUTES (t1),
5416 TYPE_ATTRIBUTES (t2));
5417 }
5418
5419 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5420 the result. */
5421
5422 tree
5423 merge_decl_attributes (tree olddecl, tree newdecl)
5424 {
5425 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5426 DECL_ATTRIBUTES (newdecl));
5427 }
5428
5429 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5430
5431 /* Specialization of merge_decl_attributes for various Windows targets.
5432
5433 This handles the following situation:
5434
5435 __declspec (dllimport) int foo;
5436 int foo;
5437
5438 The second instance of `foo' nullifies the dllimport. */
5439
5440 tree
5441 merge_dllimport_decl_attributes (tree old, tree new_tree)
5442 {
5443 tree a;
5444 int delete_dllimport_p = 1;
5445
5446 /* What we need to do here is remove from `old' dllimport if it doesn't
5447 appear in `new'. dllimport behaves like extern: if a declaration is
5448 marked dllimport and a definition appears later, then the object
5449 is not dllimport'd. We also remove a `new' dllimport if the old list
5450 contains dllexport: dllexport always overrides dllimport, regardless
5451 of the order of declaration. */
5452 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5453 delete_dllimport_p = 0;
5454 else if (DECL_DLLIMPORT_P (new_tree)
5455 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5456 {
5457 DECL_DLLIMPORT_P (new_tree) = 0;
5458 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5459 "dllimport ignored", new_tree);
5460 }
5461 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5462 {
5463 /* Warn about overriding a symbol that has already been used, e.g.:
5464 extern int __attribute__ ((dllimport)) foo;
5465 int* bar () {return &foo;}
5466 int foo;
5467 */
5468 if (TREE_USED (old))
5469 {
5470 warning (0, "%q+D redeclared without dllimport attribute "
5471 "after being referenced with dll linkage", new_tree);
5472 /* If we have used a variable's address with dllimport linkage,
5473 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5474 decl may already have had TREE_CONSTANT computed.
5475 We still remove the attribute so that assembler code refers
5476 to '&foo rather than '_imp__foo'. */
5477 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5478 DECL_DLLIMPORT_P (new_tree) = 1;
5479 }
5480
5481 /* Let an inline definition silently override the external reference,
5482 but otherwise warn about attribute inconsistency. */
5483 else if (TREE_CODE (new_tree) == VAR_DECL
5484 || !DECL_DECLARED_INLINE_P (new_tree))
5485 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5486 "previous dllimport ignored", new_tree);
5487 }
5488 else
5489 delete_dllimport_p = 0;
5490
5491 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5492
5493 if (delete_dllimport_p)
5494 a = remove_attribute ("dllimport", a);
5495
5496 return a;
5497 }
5498
5499 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5500 struct attribute_spec.handler. */
5501
5502 tree
5503 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5504 bool *no_add_attrs)
5505 {
5506 tree node = *pnode;
5507 bool is_dllimport;
5508
5509 /* These attributes may apply to structure and union types being created,
5510 but otherwise should pass to the declaration involved. */
5511 if (!DECL_P (node))
5512 {
5513 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5514 | (int) ATTR_FLAG_ARRAY_NEXT))
5515 {
5516 *no_add_attrs = true;
5517 return tree_cons (name, args, NULL_TREE);
5518 }
5519 if (TREE_CODE (node) == RECORD_TYPE
5520 || TREE_CODE (node) == UNION_TYPE)
5521 {
5522 node = TYPE_NAME (node);
5523 if (!node)
5524 return NULL_TREE;
5525 }
5526 else
5527 {
5528 warning (OPT_Wattributes, "%qE attribute ignored",
5529 name);
5530 *no_add_attrs = true;
5531 return NULL_TREE;
5532 }
5533 }
5534
5535 if (TREE_CODE (node) != FUNCTION_DECL
5536 && TREE_CODE (node) != VAR_DECL
5537 && TREE_CODE (node) != TYPE_DECL)
5538 {
5539 *no_add_attrs = true;
5540 warning (OPT_Wattributes, "%qE attribute ignored",
5541 name);
5542 return NULL_TREE;
5543 }
5544
5545 if (TREE_CODE (node) == TYPE_DECL
5546 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5547 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5548 {
5549 *no_add_attrs = true;
5550 warning (OPT_Wattributes, "%qE attribute ignored",
5551 name);
5552 return NULL_TREE;
5553 }
5554
5555 is_dllimport = is_attribute_p ("dllimport", name);
5556
5557 /* Report error on dllimport ambiguities seen now before they cause
5558 any damage. */
5559 if (is_dllimport)
5560 {
5561 /* Honor any target-specific overrides. */
5562 if (!targetm.valid_dllimport_attribute_p (node))
5563 *no_add_attrs = true;
5564
5565 else if (TREE_CODE (node) == FUNCTION_DECL
5566 && DECL_DECLARED_INLINE_P (node))
5567 {
5568 warning (OPT_Wattributes, "inline function %q+D declared as "
5569 " dllimport: attribute ignored", node);
5570 *no_add_attrs = true;
5571 }
5572 /* Like MS, treat definition of dllimported variables and
5573 non-inlined functions on declaration as syntax errors. */
5574 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5575 {
5576 error ("function %q+D definition is marked dllimport", node);
5577 *no_add_attrs = true;
5578 }
5579
5580 else if (TREE_CODE (node) == VAR_DECL)
5581 {
5582 if (DECL_INITIAL (node))
5583 {
5584 error ("variable %q+D definition is marked dllimport",
5585 node);
5586 *no_add_attrs = true;
5587 }
5588
5589 /* `extern' needn't be specified with dllimport.
5590 Specify `extern' now and hope for the best. Sigh. */
5591 DECL_EXTERNAL (node) = 1;
5592 /* Also, implicitly give dllimport'd variables declared within
5593 a function global scope, unless declared static. */
5594 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5595 TREE_PUBLIC (node) = 1;
5596 }
5597
5598 if (*no_add_attrs == false)
5599 DECL_DLLIMPORT_P (node) = 1;
5600 }
5601 else if (TREE_CODE (node) == FUNCTION_DECL
5602 && DECL_DECLARED_INLINE_P (node)
5603 && flag_keep_inline_dllexport)
5604 /* An exported function, even if inline, must be emitted. */
5605 DECL_EXTERNAL (node) = 0;
5606
5607 /* Report error if symbol is not accessible at global scope. */
5608 if (!TREE_PUBLIC (node)
5609 && (TREE_CODE (node) == VAR_DECL
5610 || TREE_CODE (node) == FUNCTION_DECL))
5611 {
5612 error ("external linkage required for symbol %q+D because of "
5613 "%qE attribute", node, name);
5614 *no_add_attrs = true;
5615 }
5616
5617 /* A dllexport'd entity must have default visibility so that other
5618 program units (shared libraries or the main executable) can see
5619 it. A dllimport'd entity must have default visibility so that
5620 the linker knows that undefined references within this program
5621 unit can be resolved by the dynamic linker. */
5622 if (!*no_add_attrs)
5623 {
5624 if (DECL_VISIBILITY_SPECIFIED (node)
5625 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5626 error ("%qE implies default visibility, but %qD has already "
5627 "been declared with a different visibility",
5628 name, node);
5629 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5630 DECL_VISIBILITY_SPECIFIED (node) = 1;
5631 }
5632
5633 return NULL_TREE;
5634 }
5635
5636 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5637 \f
5638 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5639 of the various TYPE_QUAL values. */
5640
5641 static void
5642 set_type_quals (tree type, int type_quals)
5643 {
5644 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5645 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5646 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5647 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5648 }
5649
5650 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5651
5652 bool
5653 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5654 {
5655 return (TYPE_QUALS (cand) == type_quals
5656 && TYPE_NAME (cand) == TYPE_NAME (base)
5657 /* Apparently this is needed for Objective-C. */
5658 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5659 /* Check alignment. */
5660 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5661 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5662 TYPE_ATTRIBUTES (base)));
5663 }
5664
5665 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5666
5667 static bool
5668 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5669 {
5670 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5671 && TYPE_NAME (cand) == TYPE_NAME (base)
5672 /* Apparently this is needed for Objective-C. */
5673 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5674 /* Check alignment. */
5675 && TYPE_ALIGN (cand) == align
5676 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5677 TYPE_ATTRIBUTES (base)));
5678 }
5679
5680 /* Return a version of the TYPE, qualified as indicated by the
5681 TYPE_QUALS, if one exists. If no qualified version exists yet,
5682 return NULL_TREE. */
5683
5684 tree
5685 get_qualified_type (tree type, int type_quals)
5686 {
5687 tree t;
5688
5689 if (TYPE_QUALS (type) == type_quals)
5690 return type;
5691
5692 /* Search the chain of variants to see if there is already one there just
5693 like the one we need to have. If so, use that existing one. We must
5694 preserve the TYPE_NAME, since there is code that depends on this. */
5695 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5696 if (check_qualified_type (t, type, type_quals))
5697 return t;
5698
5699 return NULL_TREE;
5700 }
5701
5702 /* Like get_qualified_type, but creates the type if it does not
5703 exist. This function never returns NULL_TREE. */
5704
5705 tree
5706 build_qualified_type (tree type, int type_quals)
5707 {
5708 tree t;
5709
5710 /* See if we already have the appropriate qualified variant. */
5711 t = get_qualified_type (type, type_quals);
5712
5713 /* If not, build it. */
5714 if (!t)
5715 {
5716 t = build_variant_type_copy (type);
5717 set_type_quals (t, type_quals);
5718
5719 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5720 /* Propagate structural equality. */
5721 SET_TYPE_STRUCTURAL_EQUALITY (t);
5722 else if (TYPE_CANONICAL (type) != type)
5723 /* Build the underlying canonical type, since it is different
5724 from TYPE. */
5725 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5726 type_quals);
5727 else
5728 /* T is its own canonical type. */
5729 TYPE_CANONICAL (t) = t;
5730
5731 }
5732
5733 return t;
5734 }
5735
5736 /* Create a variant of type T with alignment ALIGN. */
5737
5738 tree
5739 build_aligned_type (tree type, unsigned int align)
5740 {
5741 tree t;
5742
5743 if (TYPE_PACKED (type)
5744 || TYPE_ALIGN (type) == align)
5745 return type;
5746
5747 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5748 if (check_aligned_type (t, type, align))
5749 return t;
5750
5751 t = build_variant_type_copy (type);
5752 TYPE_ALIGN (t) = align;
5753
5754 return t;
5755 }
5756
5757 /* Create a new distinct copy of TYPE. The new type is made its own
5758 MAIN_VARIANT. If TYPE requires structural equality checks, the
5759 resulting type requires structural equality checks; otherwise, its
5760 TYPE_CANONICAL points to itself. */
5761
5762 tree
5763 build_distinct_type_copy (tree type)
5764 {
5765 tree t = copy_node (type);
5766
5767 TYPE_POINTER_TO (t) = 0;
5768 TYPE_REFERENCE_TO (t) = 0;
5769
5770 /* Set the canonical type either to a new equivalence class, or
5771 propagate the need for structural equality checks. */
5772 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5773 SET_TYPE_STRUCTURAL_EQUALITY (t);
5774 else
5775 TYPE_CANONICAL (t) = t;
5776
5777 /* Make it its own variant. */
5778 TYPE_MAIN_VARIANT (t) = t;
5779 TYPE_NEXT_VARIANT (t) = 0;
5780
5781 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5782 whose TREE_TYPE is not t. This can also happen in the Ada
5783 frontend when using subtypes. */
5784
5785 return t;
5786 }
5787
5788 /* Create a new variant of TYPE, equivalent but distinct. This is so
5789 the caller can modify it. TYPE_CANONICAL for the return type will
5790 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5791 are considered equal by the language itself (or that both types
5792 require structural equality checks). */
5793
5794 tree
5795 build_variant_type_copy (tree type)
5796 {
5797 tree t, m = TYPE_MAIN_VARIANT (type);
5798
5799 t = build_distinct_type_copy (type);
5800
5801 /* Since we're building a variant, assume that it is a non-semantic
5802 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5803 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5804
5805 /* Add the new type to the chain of variants of TYPE. */
5806 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5807 TYPE_NEXT_VARIANT (m) = t;
5808 TYPE_MAIN_VARIANT (t) = m;
5809
5810 return t;
5811 }
5812 \f
5813 /* Return true if the from tree in both tree maps are equal. */
5814
5815 int
5816 tree_map_base_eq (const void *va, const void *vb)
5817 {
5818 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5819 *const b = (const struct tree_map_base *) vb;
5820 return (a->from == b->from);
5821 }
5822
5823 /* Hash a from tree in a tree_base_map. */
5824
5825 unsigned int
5826 tree_map_base_hash (const void *item)
5827 {
5828 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5829 }
5830
5831 /* Return true if this tree map structure is marked for garbage collection
5832 purposes. We simply return true if the from tree is marked, so that this
5833 structure goes away when the from tree goes away. */
5834
5835 int
5836 tree_map_base_marked_p (const void *p)
5837 {
5838 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5839 }
5840
5841 /* Hash a from tree in a tree_map. */
5842
5843 unsigned int
5844 tree_map_hash (const void *item)
5845 {
5846 return (((const struct tree_map *) item)->hash);
5847 }
5848
5849 /* Hash a from tree in a tree_decl_map. */
5850
5851 unsigned int
5852 tree_decl_map_hash (const void *item)
5853 {
5854 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5855 }
5856
5857 /* Return the initialization priority for DECL. */
5858
5859 priority_type
5860 decl_init_priority_lookup (tree decl)
5861 {
5862 struct tree_priority_map *h;
5863 struct tree_map_base in;
5864
5865 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5866 in.from = decl;
5867 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5868 return h ? h->init : DEFAULT_INIT_PRIORITY;
5869 }
5870
5871 /* Return the finalization priority for DECL. */
5872
5873 priority_type
5874 decl_fini_priority_lookup (tree decl)
5875 {
5876 struct tree_priority_map *h;
5877 struct tree_map_base in;
5878
5879 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5880 in.from = decl;
5881 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5882 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5883 }
5884
5885 /* Return the initialization and finalization priority information for
5886 DECL. If there is no previous priority information, a freshly
5887 allocated structure is returned. */
5888
5889 static struct tree_priority_map *
5890 decl_priority_info (tree decl)
5891 {
5892 struct tree_priority_map in;
5893 struct tree_priority_map *h;
5894 void **loc;
5895
5896 in.base.from = decl;
5897 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5898 h = (struct tree_priority_map *) *loc;
5899 if (!h)
5900 {
5901 h = ggc_alloc_cleared_tree_priority_map ();
5902 *loc = h;
5903 h->base.from = decl;
5904 h->init = DEFAULT_INIT_PRIORITY;
5905 h->fini = DEFAULT_INIT_PRIORITY;
5906 }
5907
5908 return h;
5909 }
5910
5911 /* Set the initialization priority for DECL to PRIORITY. */
5912
5913 void
5914 decl_init_priority_insert (tree decl, priority_type priority)
5915 {
5916 struct tree_priority_map *h;
5917
5918 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5919 if (priority == DEFAULT_INIT_PRIORITY)
5920 return;
5921 h = decl_priority_info (decl);
5922 h->init = priority;
5923 }
5924
5925 /* Set the finalization priority for DECL to PRIORITY. */
5926
5927 void
5928 decl_fini_priority_insert (tree decl, priority_type priority)
5929 {
5930 struct tree_priority_map *h;
5931
5932 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5933 if (priority == DEFAULT_INIT_PRIORITY)
5934 return;
5935 h = decl_priority_info (decl);
5936 h->fini = priority;
5937 }
5938
5939 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5940
5941 static void
5942 print_debug_expr_statistics (void)
5943 {
5944 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5945 (long) htab_size (debug_expr_for_decl),
5946 (long) htab_elements (debug_expr_for_decl),
5947 htab_collisions (debug_expr_for_decl));
5948 }
5949
5950 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5951
5952 static void
5953 print_value_expr_statistics (void)
5954 {
5955 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5956 (long) htab_size (value_expr_for_decl),
5957 (long) htab_elements (value_expr_for_decl),
5958 htab_collisions (value_expr_for_decl));
5959 }
5960
5961 /* Lookup a debug expression for FROM, and return it if we find one. */
5962
5963 tree
5964 decl_debug_expr_lookup (tree from)
5965 {
5966 struct tree_decl_map *h, in;
5967 in.base.from = from;
5968
5969 h = (struct tree_decl_map *)
5970 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
5971 if (h)
5972 return h->to;
5973 return NULL_TREE;
5974 }
5975
5976 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5977
5978 void
5979 decl_debug_expr_insert (tree from, tree to)
5980 {
5981 struct tree_decl_map *h;
5982 void **loc;
5983
5984 h = ggc_alloc_tree_decl_map ();
5985 h->base.from = from;
5986 h->to = to;
5987 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
5988 INSERT);
5989 *(struct tree_decl_map **) loc = h;
5990 }
5991
5992 /* Lookup a value expression for FROM, and return it if we find one. */
5993
5994 tree
5995 decl_value_expr_lookup (tree from)
5996 {
5997 struct tree_decl_map *h, in;
5998 in.base.from = from;
5999
6000 h = (struct tree_decl_map *)
6001 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
6002 if (h)
6003 return h->to;
6004 return NULL_TREE;
6005 }
6006
6007 /* Insert a mapping FROM->TO in the value expression hashtable. */
6008
6009 void
6010 decl_value_expr_insert (tree from, tree to)
6011 {
6012 struct tree_decl_map *h;
6013 void **loc;
6014
6015 h = ggc_alloc_tree_decl_map ();
6016 h->base.from = from;
6017 h->to = to;
6018 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
6019 INSERT);
6020 *(struct tree_decl_map **) loc = h;
6021 }
6022
6023 /* Lookup a vector of debug arguments for FROM, and return it if we
6024 find one. */
6025
6026 VEC(tree, gc) **
6027 decl_debug_args_lookup (tree from)
6028 {
6029 struct tree_vec_map *h, in;
6030
6031 if (!DECL_HAS_DEBUG_ARGS_P (from))
6032 return NULL;
6033 gcc_checking_assert (debug_args_for_decl != NULL);
6034 in.base.from = from;
6035 h = (struct tree_vec_map *)
6036 htab_find_with_hash (debug_args_for_decl, &in, DECL_UID (from));
6037 if (h)
6038 return &h->to;
6039 return NULL;
6040 }
6041
6042 /* Insert a mapping FROM->empty vector of debug arguments in the value
6043 expression hashtable. */
6044
6045 VEC(tree, gc) **
6046 decl_debug_args_insert (tree from)
6047 {
6048 struct tree_vec_map *h;
6049 void **loc;
6050
6051 if (DECL_HAS_DEBUG_ARGS_P (from))
6052 return decl_debug_args_lookup (from);
6053 if (debug_args_for_decl == NULL)
6054 debug_args_for_decl = htab_create_ggc (64, tree_vec_map_hash,
6055 tree_vec_map_eq, 0);
6056 h = ggc_alloc_tree_vec_map ();
6057 h->base.from = from;
6058 h->to = NULL;
6059 loc = htab_find_slot_with_hash (debug_args_for_decl, h, DECL_UID (from),
6060 INSERT);
6061 *(struct tree_vec_map **) loc = h;
6062 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6063 return &h->to;
6064 }
6065
6066 /* Hashing of types so that we don't make duplicates.
6067 The entry point is `type_hash_canon'. */
6068
6069 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6070 with types in the TREE_VALUE slots), by adding the hash codes
6071 of the individual types. */
6072
6073 static unsigned int
6074 type_hash_list (const_tree list, hashval_t hashcode)
6075 {
6076 const_tree tail;
6077
6078 for (tail = list; tail; tail = TREE_CHAIN (tail))
6079 if (TREE_VALUE (tail) != error_mark_node)
6080 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
6081 hashcode);
6082
6083 return hashcode;
6084 }
6085
6086 /* These are the Hashtable callback functions. */
6087
6088 /* Returns true iff the types are equivalent. */
6089
6090 static int
6091 type_hash_eq (const void *va, const void *vb)
6092 {
6093 const struct type_hash *const a = (const struct type_hash *) va,
6094 *const b = (const struct type_hash *) vb;
6095
6096 /* First test the things that are the same for all types. */
6097 if (a->hash != b->hash
6098 || TREE_CODE (a->type) != TREE_CODE (b->type)
6099 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6100 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6101 TYPE_ATTRIBUTES (b->type))
6102 || (TREE_CODE (a->type) != COMPLEX_TYPE
6103 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6104 return 0;
6105
6106 /* Be careful about comparing arrays before and after the element type
6107 has been completed; don't compare TYPE_ALIGN unless both types are
6108 complete. */
6109 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6110 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6111 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6112 return 0;
6113
6114 switch (TREE_CODE (a->type))
6115 {
6116 case VOID_TYPE:
6117 case COMPLEX_TYPE:
6118 case POINTER_TYPE:
6119 case REFERENCE_TYPE:
6120 return 1;
6121
6122 case VECTOR_TYPE:
6123 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6124
6125 case ENUMERAL_TYPE:
6126 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6127 && !(TYPE_VALUES (a->type)
6128 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6129 && TYPE_VALUES (b->type)
6130 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6131 && type_list_equal (TYPE_VALUES (a->type),
6132 TYPE_VALUES (b->type))))
6133 return 0;
6134
6135 /* ... fall through ... */
6136
6137 case INTEGER_TYPE:
6138 case REAL_TYPE:
6139 case BOOLEAN_TYPE:
6140 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6141 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6142 TYPE_MAX_VALUE (b->type)))
6143 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6144 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6145 TYPE_MIN_VALUE (b->type))));
6146
6147 case FIXED_POINT_TYPE:
6148 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6149
6150 case OFFSET_TYPE:
6151 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6152
6153 case METHOD_TYPE:
6154 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6155 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6156 || (TYPE_ARG_TYPES (a->type)
6157 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6158 && TYPE_ARG_TYPES (b->type)
6159 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6160 && type_list_equal (TYPE_ARG_TYPES (a->type),
6161 TYPE_ARG_TYPES (b->type)))))
6162 break;
6163 return 0;
6164 case ARRAY_TYPE:
6165 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6166
6167 case RECORD_TYPE:
6168 case UNION_TYPE:
6169 case QUAL_UNION_TYPE:
6170 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6171 || (TYPE_FIELDS (a->type)
6172 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6173 && TYPE_FIELDS (b->type)
6174 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6175 && type_list_equal (TYPE_FIELDS (a->type),
6176 TYPE_FIELDS (b->type))));
6177
6178 case FUNCTION_TYPE:
6179 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6180 || (TYPE_ARG_TYPES (a->type)
6181 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6182 && TYPE_ARG_TYPES (b->type)
6183 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6184 && type_list_equal (TYPE_ARG_TYPES (a->type),
6185 TYPE_ARG_TYPES (b->type))))
6186 break;
6187 return 0;
6188
6189 default:
6190 return 0;
6191 }
6192
6193 if (lang_hooks.types.type_hash_eq != NULL)
6194 return lang_hooks.types.type_hash_eq (a->type, b->type);
6195
6196 return 1;
6197 }
6198
6199 /* Return the cached hash value. */
6200
6201 static hashval_t
6202 type_hash_hash (const void *item)
6203 {
6204 return ((const struct type_hash *) item)->hash;
6205 }
6206
6207 /* Look in the type hash table for a type isomorphic to TYPE.
6208 If one is found, return it. Otherwise return 0. */
6209
6210 tree
6211 type_hash_lookup (hashval_t hashcode, tree type)
6212 {
6213 struct type_hash *h, in;
6214
6215 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6216 must call that routine before comparing TYPE_ALIGNs. */
6217 layout_type (type);
6218
6219 in.hash = hashcode;
6220 in.type = type;
6221
6222 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6223 hashcode);
6224 if (h)
6225 return h->type;
6226 return NULL_TREE;
6227 }
6228
6229 /* Add an entry to the type-hash-table
6230 for a type TYPE whose hash code is HASHCODE. */
6231
6232 void
6233 type_hash_add (hashval_t hashcode, tree type)
6234 {
6235 struct type_hash *h;
6236 void **loc;
6237
6238 h = ggc_alloc_type_hash ();
6239 h->hash = hashcode;
6240 h->type = type;
6241 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6242 *loc = (void *)h;
6243 }
6244
6245 /* Given TYPE, and HASHCODE its hash code, return the canonical
6246 object for an identical type if one already exists.
6247 Otherwise, return TYPE, and record it as the canonical object.
6248
6249 To use this function, first create a type of the sort you want.
6250 Then compute its hash code from the fields of the type that
6251 make it different from other similar types.
6252 Then call this function and use the value. */
6253
6254 tree
6255 type_hash_canon (unsigned int hashcode, tree type)
6256 {
6257 tree t1;
6258
6259 /* The hash table only contains main variants, so ensure that's what we're
6260 being passed. */
6261 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6262
6263 /* See if the type is in the hash table already. If so, return it.
6264 Otherwise, add the type. */
6265 t1 = type_hash_lookup (hashcode, type);
6266 if (t1 != 0)
6267 {
6268 #ifdef GATHER_STATISTICS
6269 tree_code_counts[(int) TREE_CODE (type)]--;
6270 tree_node_counts[(int) t_kind]--;
6271 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
6272 #endif
6273 return t1;
6274 }
6275 else
6276 {
6277 type_hash_add (hashcode, type);
6278 return type;
6279 }
6280 }
6281
6282 /* See if the data pointed to by the type hash table is marked. We consider
6283 it marked if the type is marked or if a debug type number or symbol
6284 table entry has been made for the type. */
6285
6286 static int
6287 type_hash_marked_p (const void *p)
6288 {
6289 const_tree const type = ((const struct type_hash *) p)->type;
6290
6291 return ggc_marked_p (type);
6292 }
6293
6294 static void
6295 print_type_hash_statistics (void)
6296 {
6297 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6298 (long) htab_size (type_hash_table),
6299 (long) htab_elements (type_hash_table),
6300 htab_collisions (type_hash_table));
6301 }
6302
6303 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6304 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6305 by adding the hash codes of the individual attributes. */
6306
6307 static unsigned int
6308 attribute_hash_list (const_tree list, hashval_t hashcode)
6309 {
6310 const_tree tail;
6311
6312 for (tail = list; tail; tail = TREE_CHAIN (tail))
6313 /* ??? Do we want to add in TREE_VALUE too? */
6314 hashcode = iterative_hash_object
6315 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
6316 return hashcode;
6317 }
6318
6319 /* Given two lists of attributes, return true if list l2 is
6320 equivalent to l1. */
6321
6322 int
6323 attribute_list_equal (const_tree l1, const_tree l2)
6324 {
6325 if (l1 == l2)
6326 return 1;
6327
6328 return attribute_list_contained (l1, l2)
6329 && attribute_list_contained (l2, l1);
6330 }
6331
6332 /* Given two lists of attributes, return true if list L2 is
6333 completely contained within L1. */
6334 /* ??? This would be faster if attribute names were stored in a canonicalized
6335 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6336 must be used to show these elements are equivalent (which they are). */
6337 /* ??? It's not clear that attributes with arguments will always be handled
6338 correctly. */
6339
6340 int
6341 attribute_list_contained (const_tree l1, const_tree l2)
6342 {
6343 const_tree t1, t2;
6344
6345 /* First check the obvious, maybe the lists are identical. */
6346 if (l1 == l2)
6347 return 1;
6348
6349 /* Maybe the lists are similar. */
6350 for (t1 = l1, t2 = l2;
6351 t1 != 0 && t2 != 0
6352 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6353 && TREE_VALUE (t1) == TREE_VALUE (t2);
6354 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6355 ;
6356
6357 /* Maybe the lists are equal. */
6358 if (t1 == 0 && t2 == 0)
6359 return 1;
6360
6361 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6362 {
6363 const_tree attr;
6364 /* This CONST_CAST is okay because lookup_attribute does not
6365 modify its argument and the return value is assigned to a
6366 const_tree. */
6367 for (attr = lookup_ident_attribute (TREE_PURPOSE (t2), CONST_CAST_TREE(l1));
6368 attr != NULL_TREE && !attribute_value_equal (t2, attr);
6369 attr = lookup_ident_attribute (TREE_PURPOSE (t2), TREE_CHAIN (attr)))
6370 ;
6371
6372 if (attr == NULL_TREE)
6373 return 0;
6374 }
6375
6376 return 1;
6377 }
6378
6379 /* Given two lists of types
6380 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6381 return 1 if the lists contain the same types in the same order.
6382 Also, the TREE_PURPOSEs must match. */
6383
6384 int
6385 type_list_equal (const_tree l1, const_tree l2)
6386 {
6387 const_tree t1, t2;
6388
6389 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6390 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6391 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6392 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6393 && (TREE_TYPE (TREE_PURPOSE (t1))
6394 == TREE_TYPE (TREE_PURPOSE (t2))))))
6395 return 0;
6396
6397 return t1 == t2;
6398 }
6399
6400 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6401 given by TYPE. If the argument list accepts variable arguments,
6402 then this function counts only the ordinary arguments. */
6403
6404 int
6405 type_num_arguments (const_tree type)
6406 {
6407 int i = 0;
6408 tree t;
6409
6410 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6411 /* If the function does not take a variable number of arguments,
6412 the last element in the list will have type `void'. */
6413 if (VOID_TYPE_P (TREE_VALUE (t)))
6414 break;
6415 else
6416 ++i;
6417
6418 return i;
6419 }
6420
6421 /* Nonzero if integer constants T1 and T2
6422 represent the same constant value. */
6423
6424 int
6425 tree_int_cst_equal (const_tree t1, const_tree t2)
6426 {
6427 if (t1 == t2)
6428 return 1;
6429
6430 if (t1 == 0 || t2 == 0)
6431 return 0;
6432
6433 if (TREE_CODE (t1) == INTEGER_CST
6434 && TREE_CODE (t2) == INTEGER_CST
6435 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6436 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6437 return 1;
6438
6439 return 0;
6440 }
6441
6442 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6443 The precise way of comparison depends on their data type. */
6444
6445 int
6446 tree_int_cst_lt (const_tree t1, const_tree t2)
6447 {
6448 if (t1 == t2)
6449 return 0;
6450
6451 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6452 {
6453 int t1_sgn = tree_int_cst_sgn (t1);
6454 int t2_sgn = tree_int_cst_sgn (t2);
6455
6456 if (t1_sgn < t2_sgn)
6457 return 1;
6458 else if (t1_sgn > t2_sgn)
6459 return 0;
6460 /* Otherwise, both are non-negative, so we compare them as
6461 unsigned just in case one of them would overflow a signed
6462 type. */
6463 }
6464 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6465 return INT_CST_LT (t1, t2);
6466
6467 return INT_CST_LT_UNSIGNED (t1, t2);
6468 }
6469
6470 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6471
6472 int
6473 tree_int_cst_compare (const_tree t1, const_tree t2)
6474 {
6475 if (tree_int_cst_lt (t1, t2))
6476 return -1;
6477 else if (tree_int_cst_lt (t2, t1))
6478 return 1;
6479 else
6480 return 0;
6481 }
6482
6483 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6484 the host. If POS is zero, the value can be represented in a single
6485 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6486 be represented in a single unsigned HOST_WIDE_INT. */
6487
6488 int
6489 host_integerp (const_tree t, int pos)
6490 {
6491 if (t == NULL_TREE)
6492 return 0;
6493
6494 return (TREE_CODE (t) == INTEGER_CST
6495 && ((TREE_INT_CST_HIGH (t) == 0
6496 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6497 || (! pos && TREE_INT_CST_HIGH (t) == -1
6498 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6499 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6500 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6501 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6502 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6503 }
6504
6505 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6506 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6507 be non-negative. We must be able to satisfy the above conditions. */
6508
6509 HOST_WIDE_INT
6510 tree_low_cst (const_tree t, int pos)
6511 {
6512 gcc_assert (host_integerp (t, pos));
6513 return TREE_INT_CST_LOW (t);
6514 }
6515
6516 /* Return the most significant (sign) bit of T. */
6517
6518 int
6519 tree_int_cst_sign_bit (const_tree t)
6520 {
6521 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
6522 unsigned HOST_WIDE_INT w;
6523
6524 if (bitno < HOST_BITS_PER_WIDE_INT)
6525 w = TREE_INT_CST_LOW (t);
6526 else
6527 {
6528 w = TREE_INT_CST_HIGH (t);
6529 bitno -= HOST_BITS_PER_WIDE_INT;
6530 }
6531
6532 return (w >> bitno) & 1;
6533 }
6534
6535 /* Return an indication of the sign of the integer constant T.
6536 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6537 Note that -1 will never be returned if T's type is unsigned. */
6538
6539 int
6540 tree_int_cst_sgn (const_tree t)
6541 {
6542 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6543 return 0;
6544 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6545 return 1;
6546 else if (TREE_INT_CST_HIGH (t) < 0)
6547 return -1;
6548 else
6549 return 1;
6550 }
6551
6552 /* Return the minimum number of bits needed to represent VALUE in a
6553 signed or unsigned type, UNSIGNEDP says which. */
6554
6555 unsigned int
6556 tree_int_cst_min_precision (tree value, bool unsignedp)
6557 {
6558 int log;
6559
6560 /* If the value is negative, compute its negative minus 1. The latter
6561 adjustment is because the absolute value of the largest negative value
6562 is one larger than the largest positive value. This is equivalent to
6563 a bit-wise negation, so use that operation instead. */
6564
6565 if (tree_int_cst_sgn (value) < 0)
6566 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6567
6568 /* Return the number of bits needed, taking into account the fact
6569 that we need one more bit for a signed than unsigned type. */
6570
6571 if (integer_zerop (value))
6572 log = 0;
6573 else
6574 log = tree_floor_log2 (value);
6575
6576 return log + 1 + !unsignedp;
6577 }
6578
6579 /* Compare two constructor-element-type constants. Return 1 if the lists
6580 are known to be equal; otherwise return 0. */
6581
6582 int
6583 simple_cst_list_equal (const_tree l1, const_tree l2)
6584 {
6585 while (l1 != NULL_TREE && l2 != NULL_TREE)
6586 {
6587 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6588 return 0;
6589
6590 l1 = TREE_CHAIN (l1);
6591 l2 = TREE_CHAIN (l2);
6592 }
6593
6594 return l1 == l2;
6595 }
6596
6597 /* Return truthvalue of whether T1 is the same tree structure as T2.
6598 Return 1 if they are the same.
6599 Return 0 if they are understandably different.
6600 Return -1 if either contains tree structure not understood by
6601 this function. */
6602
6603 int
6604 simple_cst_equal (const_tree t1, const_tree t2)
6605 {
6606 enum tree_code code1, code2;
6607 int cmp;
6608 int i;
6609
6610 if (t1 == t2)
6611 return 1;
6612 if (t1 == 0 || t2 == 0)
6613 return 0;
6614
6615 code1 = TREE_CODE (t1);
6616 code2 = TREE_CODE (t2);
6617
6618 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6619 {
6620 if (CONVERT_EXPR_CODE_P (code2)
6621 || code2 == NON_LVALUE_EXPR)
6622 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6623 else
6624 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6625 }
6626
6627 else if (CONVERT_EXPR_CODE_P (code2)
6628 || code2 == NON_LVALUE_EXPR)
6629 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6630
6631 if (code1 != code2)
6632 return 0;
6633
6634 switch (code1)
6635 {
6636 case INTEGER_CST:
6637 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6638 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6639
6640 case REAL_CST:
6641 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6642
6643 case FIXED_CST:
6644 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6645
6646 case STRING_CST:
6647 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6648 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6649 TREE_STRING_LENGTH (t1)));
6650
6651 case CONSTRUCTOR:
6652 {
6653 unsigned HOST_WIDE_INT idx;
6654 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6655 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6656
6657 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6658 return false;
6659
6660 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6661 /* ??? Should we handle also fields here? */
6662 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6663 VEC_index (constructor_elt, v2, idx)->value))
6664 return false;
6665 return true;
6666 }
6667
6668 case SAVE_EXPR:
6669 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6670
6671 case CALL_EXPR:
6672 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6673 if (cmp <= 0)
6674 return cmp;
6675 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6676 return 0;
6677 {
6678 const_tree arg1, arg2;
6679 const_call_expr_arg_iterator iter1, iter2;
6680 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6681 arg2 = first_const_call_expr_arg (t2, &iter2);
6682 arg1 && arg2;
6683 arg1 = next_const_call_expr_arg (&iter1),
6684 arg2 = next_const_call_expr_arg (&iter2))
6685 {
6686 cmp = simple_cst_equal (arg1, arg2);
6687 if (cmp <= 0)
6688 return cmp;
6689 }
6690 return arg1 == arg2;
6691 }
6692
6693 case TARGET_EXPR:
6694 /* Special case: if either target is an unallocated VAR_DECL,
6695 it means that it's going to be unified with whatever the
6696 TARGET_EXPR is really supposed to initialize, so treat it
6697 as being equivalent to anything. */
6698 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6699 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6700 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6701 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6702 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6703 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6704 cmp = 1;
6705 else
6706 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6707
6708 if (cmp <= 0)
6709 return cmp;
6710
6711 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6712
6713 case WITH_CLEANUP_EXPR:
6714 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6715 if (cmp <= 0)
6716 return cmp;
6717
6718 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6719
6720 case COMPONENT_REF:
6721 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6722 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6723
6724 return 0;
6725
6726 case VAR_DECL:
6727 case PARM_DECL:
6728 case CONST_DECL:
6729 case FUNCTION_DECL:
6730 return 0;
6731
6732 default:
6733 break;
6734 }
6735
6736 /* This general rule works for most tree codes. All exceptions should be
6737 handled above. If this is a language-specific tree code, we can't
6738 trust what might be in the operand, so say we don't know
6739 the situation. */
6740 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6741 return -1;
6742
6743 switch (TREE_CODE_CLASS (code1))
6744 {
6745 case tcc_unary:
6746 case tcc_binary:
6747 case tcc_comparison:
6748 case tcc_expression:
6749 case tcc_reference:
6750 case tcc_statement:
6751 cmp = 1;
6752 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6753 {
6754 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6755 if (cmp <= 0)
6756 return cmp;
6757 }
6758
6759 return cmp;
6760
6761 default:
6762 return -1;
6763 }
6764 }
6765
6766 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6767 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6768 than U, respectively. */
6769
6770 int
6771 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6772 {
6773 if (tree_int_cst_sgn (t) < 0)
6774 return -1;
6775 else if (TREE_INT_CST_HIGH (t) != 0)
6776 return 1;
6777 else if (TREE_INT_CST_LOW (t) == u)
6778 return 0;
6779 else if (TREE_INT_CST_LOW (t) < u)
6780 return -1;
6781 else
6782 return 1;
6783 }
6784
6785 /* Return true if CODE represents an associative tree code. Otherwise
6786 return false. */
6787 bool
6788 associative_tree_code (enum tree_code code)
6789 {
6790 switch (code)
6791 {
6792 case BIT_IOR_EXPR:
6793 case BIT_AND_EXPR:
6794 case BIT_XOR_EXPR:
6795 case PLUS_EXPR:
6796 case MULT_EXPR:
6797 case MIN_EXPR:
6798 case MAX_EXPR:
6799 return true;
6800
6801 default:
6802 break;
6803 }
6804 return false;
6805 }
6806
6807 /* Return true if CODE represents a commutative tree code. Otherwise
6808 return false. */
6809 bool
6810 commutative_tree_code (enum tree_code code)
6811 {
6812 switch (code)
6813 {
6814 case PLUS_EXPR:
6815 case MULT_EXPR:
6816 case MIN_EXPR:
6817 case MAX_EXPR:
6818 case BIT_IOR_EXPR:
6819 case BIT_XOR_EXPR:
6820 case BIT_AND_EXPR:
6821 case NE_EXPR:
6822 case EQ_EXPR:
6823 case UNORDERED_EXPR:
6824 case ORDERED_EXPR:
6825 case UNEQ_EXPR:
6826 case LTGT_EXPR:
6827 case TRUTH_AND_EXPR:
6828 case TRUTH_XOR_EXPR:
6829 case TRUTH_OR_EXPR:
6830 return true;
6831
6832 default:
6833 break;
6834 }
6835 return false;
6836 }
6837
6838 /* Return true if CODE represents a ternary tree code for which the
6839 first two operands are commutative. Otherwise return false. */
6840 bool
6841 commutative_ternary_tree_code (enum tree_code code)
6842 {
6843 switch (code)
6844 {
6845 case WIDEN_MULT_PLUS_EXPR:
6846 case WIDEN_MULT_MINUS_EXPR:
6847 return true;
6848
6849 default:
6850 break;
6851 }
6852 return false;
6853 }
6854
6855 /* Generate a hash value for an expression. This can be used iteratively
6856 by passing a previous result as the VAL argument.
6857
6858 This function is intended to produce the same hash for expressions which
6859 would compare equal using operand_equal_p. */
6860
6861 hashval_t
6862 iterative_hash_expr (const_tree t, hashval_t val)
6863 {
6864 int i;
6865 enum tree_code code;
6866 char tclass;
6867
6868 if (t == NULL_TREE)
6869 return iterative_hash_hashval_t (0, val);
6870
6871 code = TREE_CODE (t);
6872
6873 switch (code)
6874 {
6875 /* Alas, constants aren't shared, so we can't rely on pointer
6876 identity. */
6877 case INTEGER_CST:
6878 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6879 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6880 case REAL_CST:
6881 {
6882 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6883
6884 return iterative_hash_hashval_t (val2, val);
6885 }
6886 case FIXED_CST:
6887 {
6888 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6889
6890 return iterative_hash_hashval_t (val2, val);
6891 }
6892 case STRING_CST:
6893 return iterative_hash (TREE_STRING_POINTER (t),
6894 TREE_STRING_LENGTH (t), val);
6895 case COMPLEX_CST:
6896 val = iterative_hash_expr (TREE_REALPART (t), val);
6897 return iterative_hash_expr (TREE_IMAGPART (t), val);
6898 case VECTOR_CST:
6899 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6900 case SSA_NAME:
6901 /* We can just compare by pointer. */
6902 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6903 case PLACEHOLDER_EXPR:
6904 /* The node itself doesn't matter. */
6905 return val;
6906 case TREE_LIST:
6907 /* A list of expressions, for a CALL_EXPR or as the elements of a
6908 VECTOR_CST. */
6909 for (; t; t = TREE_CHAIN (t))
6910 val = iterative_hash_expr (TREE_VALUE (t), val);
6911 return val;
6912 case CONSTRUCTOR:
6913 {
6914 unsigned HOST_WIDE_INT idx;
6915 tree field, value;
6916 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6917 {
6918 val = iterative_hash_expr (field, val);
6919 val = iterative_hash_expr (value, val);
6920 }
6921 return val;
6922 }
6923 case MEM_REF:
6924 {
6925 /* The type of the second operand is relevant, except for
6926 its top-level qualifiers. */
6927 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
6928
6929 val = iterative_hash_object (TYPE_HASH (type), val);
6930
6931 /* We could use the standard hash computation from this point
6932 on. */
6933 val = iterative_hash_object (code, val);
6934 val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
6935 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6936 return val;
6937 }
6938 case FUNCTION_DECL:
6939 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6940 Otherwise nodes that compare equal according to operand_equal_p might
6941 get different hash codes. However, don't do this for machine specific
6942 or front end builtins, since the function code is overloaded in those
6943 cases. */
6944 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6945 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
6946 {
6947 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
6948 code = TREE_CODE (t);
6949 }
6950 /* FALL THROUGH */
6951 default:
6952 tclass = TREE_CODE_CLASS (code);
6953
6954 if (tclass == tcc_declaration)
6955 {
6956 /* DECL's have a unique ID */
6957 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6958 }
6959 else
6960 {
6961 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6962
6963 val = iterative_hash_object (code, val);
6964
6965 /* Don't hash the type, that can lead to having nodes which
6966 compare equal according to operand_equal_p, but which
6967 have different hash codes. */
6968 if (CONVERT_EXPR_CODE_P (code)
6969 || code == NON_LVALUE_EXPR)
6970 {
6971 /* Make sure to include signness in the hash computation. */
6972 val += TYPE_UNSIGNED (TREE_TYPE (t));
6973 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6974 }
6975
6976 else if (commutative_tree_code (code))
6977 {
6978 /* It's a commutative expression. We want to hash it the same
6979 however it appears. We do this by first hashing both operands
6980 and then rehashing based on the order of their independent
6981 hashes. */
6982 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6983 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6984 hashval_t t;
6985
6986 if (one > two)
6987 t = one, one = two, two = t;
6988
6989 val = iterative_hash_hashval_t (one, val);
6990 val = iterative_hash_hashval_t (two, val);
6991 }
6992 else
6993 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6994 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6995 }
6996 return val;
6997 }
6998 }
6999
7000 /* Generate a hash value for a pair of expressions. This can be used
7001 iteratively by passing a previous result as the VAL argument.
7002
7003 The same hash value is always returned for a given pair of expressions,
7004 regardless of the order in which they are presented. This is useful in
7005 hashing the operands of commutative functions. */
7006
7007 hashval_t
7008 iterative_hash_exprs_commutative (const_tree t1,
7009 const_tree t2, hashval_t val)
7010 {
7011 hashval_t one = iterative_hash_expr (t1, 0);
7012 hashval_t two = iterative_hash_expr (t2, 0);
7013 hashval_t t;
7014
7015 if (one > two)
7016 t = one, one = two, two = t;
7017 val = iterative_hash_hashval_t (one, val);
7018 val = iterative_hash_hashval_t (two, val);
7019
7020 return val;
7021 }
7022 \f
7023 /* Constructors for pointer, array and function types.
7024 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7025 constructed by language-dependent code, not here.) */
7026
7027 /* Construct, lay out and return the type of pointers to TO_TYPE with
7028 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7029 reference all of memory. If such a type has already been
7030 constructed, reuse it. */
7031
7032 tree
7033 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
7034 bool can_alias_all)
7035 {
7036 tree t;
7037
7038 if (to_type == error_mark_node)
7039 return error_mark_node;
7040
7041 /* If the pointed-to type has the may_alias attribute set, force
7042 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7043 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7044 can_alias_all = true;
7045
7046 /* In some cases, languages will have things that aren't a POINTER_TYPE
7047 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7048 In that case, return that type without regard to the rest of our
7049 operands.
7050
7051 ??? This is a kludge, but consistent with the way this function has
7052 always operated and there doesn't seem to be a good way to avoid this
7053 at the moment. */
7054 if (TYPE_POINTER_TO (to_type) != 0
7055 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7056 return TYPE_POINTER_TO (to_type);
7057
7058 /* First, if we already have a type for pointers to TO_TYPE and it's
7059 the proper mode, use it. */
7060 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7061 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7062 return t;
7063
7064 t = make_node (POINTER_TYPE);
7065
7066 TREE_TYPE (t) = to_type;
7067 SET_TYPE_MODE (t, mode);
7068 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7069 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7070 TYPE_POINTER_TO (to_type) = t;
7071
7072 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7073 SET_TYPE_STRUCTURAL_EQUALITY (t);
7074 else if (TYPE_CANONICAL (to_type) != to_type)
7075 TYPE_CANONICAL (t)
7076 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7077 mode, can_alias_all);
7078
7079 /* Lay out the type. This function has many callers that are concerned
7080 with expression-construction, and this simplifies them all. */
7081 layout_type (t);
7082
7083 return t;
7084 }
7085
7086 /* By default build pointers in ptr_mode. */
7087
7088 tree
7089 build_pointer_type (tree to_type)
7090 {
7091 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7092 : TYPE_ADDR_SPACE (to_type);
7093 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7094 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7095 }
7096
7097 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7098
7099 tree
7100 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
7101 bool can_alias_all)
7102 {
7103 tree t;
7104
7105 if (to_type == error_mark_node)
7106 return error_mark_node;
7107
7108 /* If the pointed-to type has the may_alias attribute set, force
7109 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7110 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7111 can_alias_all = true;
7112
7113 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7114 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7115 In that case, return that type without regard to the rest of our
7116 operands.
7117
7118 ??? This is a kludge, but consistent with the way this function has
7119 always operated and there doesn't seem to be a good way to avoid this
7120 at the moment. */
7121 if (TYPE_REFERENCE_TO (to_type) != 0
7122 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7123 return TYPE_REFERENCE_TO (to_type);
7124
7125 /* First, if we already have a type for pointers to TO_TYPE and it's
7126 the proper mode, use it. */
7127 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7128 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7129 return t;
7130
7131 t = make_node (REFERENCE_TYPE);
7132
7133 TREE_TYPE (t) = to_type;
7134 SET_TYPE_MODE (t, mode);
7135 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7136 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7137 TYPE_REFERENCE_TO (to_type) = t;
7138
7139 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7140 SET_TYPE_STRUCTURAL_EQUALITY (t);
7141 else if (TYPE_CANONICAL (to_type) != to_type)
7142 TYPE_CANONICAL (t)
7143 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7144 mode, can_alias_all);
7145
7146 layout_type (t);
7147
7148 return t;
7149 }
7150
7151
7152 /* Build the node for the type of references-to-TO_TYPE by default
7153 in ptr_mode. */
7154
7155 tree
7156 build_reference_type (tree to_type)
7157 {
7158 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7159 : TYPE_ADDR_SPACE (to_type);
7160 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7161 return build_reference_type_for_mode (to_type, pointer_mode, false);
7162 }
7163
7164 /* Build a type that is compatible with t but has no cv quals anywhere
7165 in its type, thus
7166
7167 const char *const *const * -> char ***. */
7168
7169 tree
7170 build_type_no_quals (tree t)
7171 {
7172 switch (TREE_CODE (t))
7173 {
7174 case POINTER_TYPE:
7175 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7176 TYPE_MODE (t),
7177 TYPE_REF_CAN_ALIAS_ALL (t));
7178 case REFERENCE_TYPE:
7179 return
7180 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7181 TYPE_MODE (t),
7182 TYPE_REF_CAN_ALIAS_ALL (t));
7183 default:
7184 return TYPE_MAIN_VARIANT (t);
7185 }
7186 }
7187
7188 #define MAX_INT_CACHED_PREC \
7189 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7190 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7191
7192 /* Builds a signed or unsigned integer type of precision PRECISION.
7193 Used for C bitfields whose precision does not match that of
7194 built-in target types. */
7195 tree
7196 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7197 int unsignedp)
7198 {
7199 tree itype, ret;
7200
7201 if (unsignedp)
7202 unsignedp = MAX_INT_CACHED_PREC + 1;
7203
7204 if (precision <= MAX_INT_CACHED_PREC)
7205 {
7206 itype = nonstandard_integer_type_cache[precision + unsignedp];
7207 if (itype)
7208 return itype;
7209 }
7210
7211 itype = make_node (INTEGER_TYPE);
7212 TYPE_PRECISION (itype) = precision;
7213
7214 if (unsignedp)
7215 fixup_unsigned_type (itype);
7216 else
7217 fixup_signed_type (itype);
7218
7219 ret = itype;
7220 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7221 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7222 if (precision <= MAX_INT_CACHED_PREC)
7223 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7224
7225 return ret;
7226 }
7227
7228 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7229 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7230 is true, reuse such a type that has already been constructed. */
7231
7232 static tree
7233 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7234 {
7235 tree itype = make_node (INTEGER_TYPE);
7236 hashval_t hashcode = 0;
7237
7238 TREE_TYPE (itype) = type;
7239
7240 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7241 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7242
7243 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7244 SET_TYPE_MODE (itype, TYPE_MODE (type));
7245 TYPE_SIZE (itype) = TYPE_SIZE (type);
7246 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7247 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7248 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7249
7250 if (!shared)
7251 return itype;
7252
7253 if ((TYPE_MIN_VALUE (itype)
7254 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7255 || (TYPE_MAX_VALUE (itype)
7256 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7257 {
7258 /* Since we cannot reliably merge this type, we need to compare it using
7259 structural equality checks. */
7260 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7261 return itype;
7262 }
7263
7264 hashcode = iterative_hash_expr (TYPE_MIN_VALUE (itype), hashcode);
7265 hashcode = iterative_hash_expr (TYPE_MAX_VALUE (itype), hashcode);
7266 hashcode = iterative_hash_hashval_t (TYPE_HASH (type), hashcode);
7267 itype = type_hash_canon (hashcode, itype);
7268
7269 return itype;
7270 }
7271
7272 /* Wrapper around build_range_type_1 with SHARED set to true. */
7273
7274 tree
7275 build_range_type (tree type, tree lowval, tree highval)
7276 {
7277 return build_range_type_1 (type, lowval, highval, true);
7278 }
7279
7280 /* Wrapper around build_range_type_1 with SHARED set to false. */
7281
7282 tree
7283 build_nonshared_range_type (tree type, tree lowval, tree highval)
7284 {
7285 return build_range_type_1 (type, lowval, highval, false);
7286 }
7287
7288 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7289 MAXVAL should be the maximum value in the domain
7290 (one less than the length of the array).
7291
7292 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7293 We don't enforce this limit, that is up to caller (e.g. language front end).
7294 The limit exists because the result is a signed type and we don't handle
7295 sizes that use more than one HOST_WIDE_INT. */
7296
7297 tree
7298 build_index_type (tree maxval)
7299 {
7300 return build_range_type (sizetype, size_zero_node, maxval);
7301 }
7302
7303 /* Return true if the debug information for TYPE, a subtype, should be emitted
7304 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7305 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7306 debug info and doesn't reflect the source code. */
7307
7308 bool
7309 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7310 {
7311 tree base_type = TREE_TYPE (type), low, high;
7312
7313 /* Subrange types have a base type which is an integral type. */
7314 if (!INTEGRAL_TYPE_P (base_type))
7315 return false;
7316
7317 /* Get the real bounds of the subtype. */
7318 if (lang_hooks.types.get_subrange_bounds)
7319 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7320 else
7321 {
7322 low = TYPE_MIN_VALUE (type);
7323 high = TYPE_MAX_VALUE (type);
7324 }
7325
7326 /* If the type and its base type have the same representation and the same
7327 name, then the type is not a subrange but a copy of the base type. */
7328 if ((TREE_CODE (base_type) == INTEGER_TYPE
7329 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7330 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7331 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7332 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7333 {
7334 tree type_name = TYPE_NAME (type);
7335 tree base_type_name = TYPE_NAME (base_type);
7336
7337 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7338 type_name = DECL_NAME (type_name);
7339
7340 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7341 base_type_name = DECL_NAME (base_type_name);
7342
7343 if (type_name == base_type_name)
7344 return false;
7345 }
7346
7347 if (lowval)
7348 *lowval = low;
7349 if (highval)
7350 *highval = high;
7351 return true;
7352 }
7353
7354 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7355 and number of elements specified by the range of values of INDEX_TYPE.
7356 If SHARED is true, reuse such a type that has already been constructed. */
7357
7358 static tree
7359 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7360 {
7361 tree t;
7362
7363 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7364 {
7365 error ("arrays of functions are not meaningful");
7366 elt_type = integer_type_node;
7367 }
7368
7369 t = make_node (ARRAY_TYPE);
7370 TREE_TYPE (t) = elt_type;
7371 TYPE_DOMAIN (t) = index_type;
7372 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7373 layout_type (t);
7374
7375 /* If the element type is incomplete at this point we get marked for
7376 structural equality. Do not record these types in the canonical
7377 type hashtable. */
7378 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7379 return t;
7380
7381 if (shared)
7382 {
7383 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7384 if (index_type)
7385 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7386 t = type_hash_canon (hashcode, t);
7387 }
7388
7389 if (TYPE_CANONICAL (t) == t)
7390 {
7391 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7392 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7393 SET_TYPE_STRUCTURAL_EQUALITY (t);
7394 else if (TYPE_CANONICAL (elt_type) != elt_type
7395 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7396 TYPE_CANONICAL (t)
7397 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7398 index_type
7399 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7400 shared);
7401 }
7402
7403 return t;
7404 }
7405
7406 /* Wrapper around build_array_type_1 with SHARED set to true. */
7407
7408 tree
7409 build_array_type (tree elt_type, tree index_type)
7410 {
7411 return build_array_type_1 (elt_type, index_type, true);
7412 }
7413
7414 /* Wrapper around build_array_type_1 with SHARED set to false. */
7415
7416 tree
7417 build_nonshared_array_type (tree elt_type, tree index_type)
7418 {
7419 return build_array_type_1 (elt_type, index_type, false);
7420 }
7421
7422 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7423 sizetype. */
7424
7425 tree
7426 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7427 {
7428 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7429 }
7430
7431 /* Recursively examines the array elements of TYPE, until a non-array
7432 element type is found. */
7433
7434 tree
7435 strip_array_types (tree type)
7436 {
7437 while (TREE_CODE (type) == ARRAY_TYPE)
7438 type = TREE_TYPE (type);
7439
7440 return type;
7441 }
7442
7443 /* Computes the canonical argument types from the argument type list
7444 ARGTYPES.
7445
7446 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7447 on entry to this function, or if any of the ARGTYPES are
7448 structural.
7449
7450 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7451 true on entry to this function, or if any of the ARGTYPES are
7452 non-canonical.
7453
7454 Returns a canonical argument list, which may be ARGTYPES when the
7455 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7456 true) or would not differ from ARGTYPES. */
7457
7458 static tree
7459 maybe_canonicalize_argtypes(tree argtypes,
7460 bool *any_structural_p,
7461 bool *any_noncanonical_p)
7462 {
7463 tree arg;
7464 bool any_noncanonical_argtypes_p = false;
7465
7466 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7467 {
7468 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7469 /* Fail gracefully by stating that the type is structural. */
7470 *any_structural_p = true;
7471 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7472 *any_structural_p = true;
7473 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7474 || TREE_PURPOSE (arg))
7475 /* If the argument has a default argument, we consider it
7476 non-canonical even though the type itself is canonical.
7477 That way, different variants of function and method types
7478 with default arguments will all point to the variant with
7479 no defaults as their canonical type. */
7480 any_noncanonical_argtypes_p = true;
7481 }
7482
7483 if (*any_structural_p)
7484 return argtypes;
7485
7486 if (any_noncanonical_argtypes_p)
7487 {
7488 /* Build the canonical list of argument types. */
7489 tree canon_argtypes = NULL_TREE;
7490 bool is_void = false;
7491
7492 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7493 {
7494 if (arg == void_list_node)
7495 is_void = true;
7496 else
7497 canon_argtypes = tree_cons (NULL_TREE,
7498 TYPE_CANONICAL (TREE_VALUE (arg)),
7499 canon_argtypes);
7500 }
7501
7502 canon_argtypes = nreverse (canon_argtypes);
7503 if (is_void)
7504 canon_argtypes = chainon (canon_argtypes, void_list_node);
7505
7506 /* There is a non-canonical type. */
7507 *any_noncanonical_p = true;
7508 return canon_argtypes;
7509 }
7510
7511 /* The canonical argument types are the same as ARGTYPES. */
7512 return argtypes;
7513 }
7514
7515 /* Construct, lay out and return
7516 the type of functions returning type VALUE_TYPE
7517 given arguments of types ARG_TYPES.
7518 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7519 are data type nodes for the arguments of the function.
7520 If such a type has already been constructed, reuse it. */
7521
7522 tree
7523 build_function_type (tree value_type, tree arg_types)
7524 {
7525 tree t;
7526 hashval_t hashcode = 0;
7527 bool any_structural_p, any_noncanonical_p;
7528 tree canon_argtypes;
7529
7530 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7531 {
7532 error ("function return type cannot be function");
7533 value_type = integer_type_node;
7534 }
7535
7536 /* Make a node of the sort we want. */
7537 t = make_node (FUNCTION_TYPE);
7538 TREE_TYPE (t) = value_type;
7539 TYPE_ARG_TYPES (t) = arg_types;
7540
7541 /* If we already have such a type, use the old one. */
7542 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7543 hashcode = type_hash_list (arg_types, hashcode);
7544 t = type_hash_canon (hashcode, t);
7545
7546 /* Set up the canonical type. */
7547 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7548 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7549 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7550 &any_structural_p,
7551 &any_noncanonical_p);
7552 if (any_structural_p)
7553 SET_TYPE_STRUCTURAL_EQUALITY (t);
7554 else if (any_noncanonical_p)
7555 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7556 canon_argtypes);
7557
7558 if (!COMPLETE_TYPE_P (t))
7559 layout_type (t);
7560 return t;
7561 }
7562
7563 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7564
7565 tree
7566 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7567 {
7568 tree new_type = NULL;
7569 tree args, new_args = NULL, t;
7570 tree new_reversed;
7571 int i = 0;
7572
7573 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7574 args = TREE_CHAIN (args), i++)
7575 if (!bitmap_bit_p (args_to_skip, i))
7576 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7577
7578 new_reversed = nreverse (new_args);
7579 if (args)
7580 {
7581 if (new_reversed)
7582 TREE_CHAIN (new_args) = void_list_node;
7583 else
7584 new_reversed = void_list_node;
7585 }
7586
7587 /* Use copy_node to preserve as much as possible from original type
7588 (debug info, attribute lists etc.)
7589 Exception is METHOD_TYPEs must have THIS argument.
7590 When we are asked to remove it, we need to build new FUNCTION_TYPE
7591 instead. */
7592 if (TREE_CODE (orig_type) != METHOD_TYPE
7593 || !bitmap_bit_p (args_to_skip, 0))
7594 {
7595 new_type = build_distinct_type_copy (orig_type);
7596 TYPE_ARG_TYPES (new_type) = new_reversed;
7597 }
7598 else
7599 {
7600 new_type
7601 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7602 new_reversed));
7603 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7604 }
7605
7606 /* This is a new type, not a copy of an old type. Need to reassociate
7607 variants. We can handle everything except the main variant lazily. */
7608 t = TYPE_MAIN_VARIANT (orig_type);
7609 if (orig_type != t)
7610 {
7611 TYPE_MAIN_VARIANT (new_type) = t;
7612 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7613 TYPE_NEXT_VARIANT (t) = new_type;
7614 }
7615 else
7616 {
7617 TYPE_MAIN_VARIANT (new_type) = new_type;
7618 TYPE_NEXT_VARIANT (new_type) = NULL;
7619 }
7620 return new_type;
7621 }
7622
7623 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7624
7625 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7626 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7627 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7628
7629 tree
7630 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7631 {
7632 tree new_decl = copy_node (orig_decl);
7633 tree new_type;
7634
7635 new_type = TREE_TYPE (orig_decl);
7636 if (prototype_p (new_type))
7637 new_type = build_function_type_skip_args (new_type, args_to_skip);
7638 TREE_TYPE (new_decl) = new_type;
7639
7640 /* For declarations setting DECL_VINDEX (i.e. methods)
7641 we expect first argument to be THIS pointer. */
7642 if (bitmap_bit_p (args_to_skip, 0))
7643 DECL_VINDEX (new_decl) = NULL_TREE;
7644
7645 /* When signature changes, we need to clear builtin info. */
7646 if (DECL_BUILT_IN (new_decl) && !bitmap_empty_p (args_to_skip))
7647 {
7648 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
7649 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
7650 }
7651 return new_decl;
7652 }
7653
7654 /* Build a function type. The RETURN_TYPE is the type returned by the
7655 function. If VAARGS is set, no void_type_node is appended to the
7656 the list. ARGP must be always be terminated be a NULL_TREE. */
7657
7658 static tree
7659 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7660 {
7661 tree t, args, last;
7662
7663 t = va_arg (argp, tree);
7664 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7665 args = tree_cons (NULL_TREE, t, args);
7666
7667 if (vaargs)
7668 {
7669 last = args;
7670 if (args != NULL_TREE)
7671 args = nreverse (args);
7672 gcc_assert (last != void_list_node);
7673 }
7674 else if (args == NULL_TREE)
7675 args = void_list_node;
7676 else
7677 {
7678 last = args;
7679 args = nreverse (args);
7680 TREE_CHAIN (last) = void_list_node;
7681 }
7682 args = build_function_type (return_type, args);
7683
7684 return args;
7685 }
7686
7687 /* Build a function type. The RETURN_TYPE is the type returned by the
7688 function. If additional arguments are provided, they are
7689 additional argument types. The list of argument types must always
7690 be terminated by NULL_TREE. */
7691
7692 tree
7693 build_function_type_list (tree return_type, ...)
7694 {
7695 tree args;
7696 va_list p;
7697
7698 va_start (p, return_type);
7699 args = build_function_type_list_1 (false, return_type, p);
7700 va_end (p);
7701 return args;
7702 }
7703
7704 /* Build a variable argument function type. The RETURN_TYPE is the
7705 type returned by the function. If additional arguments are provided,
7706 they are additional argument types. The list of argument types must
7707 always be terminated by NULL_TREE. */
7708
7709 tree
7710 build_varargs_function_type_list (tree return_type, ...)
7711 {
7712 tree args;
7713 va_list p;
7714
7715 va_start (p, return_type);
7716 args = build_function_type_list_1 (true, return_type, p);
7717 va_end (p);
7718
7719 return args;
7720 }
7721
7722 /* Build a function type. RETURN_TYPE is the type returned by the
7723 function; VAARGS indicates whether the function takes varargs. The
7724 function takes N named arguments, the types of which are provided in
7725 ARG_TYPES. */
7726
7727 static tree
7728 build_function_type_array_1 (bool vaargs, tree return_type, int n,
7729 tree *arg_types)
7730 {
7731 int i;
7732 tree t = vaargs ? NULL_TREE : void_list_node;
7733
7734 for (i = n - 1; i >= 0; i--)
7735 t = tree_cons (NULL_TREE, arg_types[i], t);
7736
7737 return build_function_type (return_type, t);
7738 }
7739
7740 /* Build a function type. RETURN_TYPE is the type returned by the
7741 function. The function takes N named arguments, the types of which
7742 are provided in ARG_TYPES. */
7743
7744 tree
7745 build_function_type_array (tree return_type, int n, tree *arg_types)
7746 {
7747 return build_function_type_array_1 (false, return_type, n, arg_types);
7748 }
7749
7750 /* Build a variable argument function type. RETURN_TYPE is the type
7751 returned by the function. The function takes N named arguments, the
7752 types of which are provided in ARG_TYPES. */
7753
7754 tree
7755 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
7756 {
7757 return build_function_type_array_1 (true, return_type, n, arg_types);
7758 }
7759
7760 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7761 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7762 for the method. An implicit additional parameter (of type
7763 pointer-to-BASETYPE) is added to the ARGTYPES. */
7764
7765 tree
7766 build_method_type_directly (tree basetype,
7767 tree rettype,
7768 tree argtypes)
7769 {
7770 tree t;
7771 tree ptype;
7772 int hashcode = 0;
7773 bool any_structural_p, any_noncanonical_p;
7774 tree canon_argtypes;
7775
7776 /* Make a node of the sort we want. */
7777 t = make_node (METHOD_TYPE);
7778
7779 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7780 TREE_TYPE (t) = rettype;
7781 ptype = build_pointer_type (basetype);
7782
7783 /* The actual arglist for this function includes a "hidden" argument
7784 which is "this". Put it into the list of argument types. */
7785 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7786 TYPE_ARG_TYPES (t) = argtypes;
7787
7788 /* If we already have such a type, use the old one. */
7789 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7790 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7791 hashcode = type_hash_list (argtypes, hashcode);
7792 t = type_hash_canon (hashcode, t);
7793
7794 /* Set up the canonical type. */
7795 any_structural_p
7796 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7797 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7798 any_noncanonical_p
7799 = (TYPE_CANONICAL (basetype) != basetype
7800 || TYPE_CANONICAL (rettype) != rettype);
7801 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7802 &any_structural_p,
7803 &any_noncanonical_p);
7804 if (any_structural_p)
7805 SET_TYPE_STRUCTURAL_EQUALITY (t);
7806 else if (any_noncanonical_p)
7807 TYPE_CANONICAL (t)
7808 = build_method_type_directly (TYPE_CANONICAL (basetype),
7809 TYPE_CANONICAL (rettype),
7810 canon_argtypes);
7811 if (!COMPLETE_TYPE_P (t))
7812 layout_type (t);
7813
7814 return t;
7815 }
7816
7817 /* Construct, lay out and return the type of methods belonging to class
7818 BASETYPE and whose arguments and values are described by TYPE.
7819 If that type exists already, reuse it.
7820 TYPE must be a FUNCTION_TYPE node. */
7821
7822 tree
7823 build_method_type (tree basetype, tree type)
7824 {
7825 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7826
7827 return build_method_type_directly (basetype,
7828 TREE_TYPE (type),
7829 TYPE_ARG_TYPES (type));
7830 }
7831
7832 /* Construct, lay out and return the type of offsets to a value
7833 of type TYPE, within an object of type BASETYPE.
7834 If a suitable offset type exists already, reuse it. */
7835
7836 tree
7837 build_offset_type (tree basetype, tree type)
7838 {
7839 tree t;
7840 hashval_t hashcode = 0;
7841
7842 /* Make a node of the sort we want. */
7843 t = make_node (OFFSET_TYPE);
7844
7845 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7846 TREE_TYPE (t) = type;
7847
7848 /* If we already have such a type, use the old one. */
7849 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7850 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7851 t = type_hash_canon (hashcode, t);
7852
7853 if (!COMPLETE_TYPE_P (t))
7854 layout_type (t);
7855
7856 if (TYPE_CANONICAL (t) == t)
7857 {
7858 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7859 || TYPE_STRUCTURAL_EQUALITY_P (type))
7860 SET_TYPE_STRUCTURAL_EQUALITY (t);
7861 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7862 || TYPE_CANONICAL (type) != type)
7863 TYPE_CANONICAL (t)
7864 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7865 TYPE_CANONICAL (type));
7866 }
7867
7868 return t;
7869 }
7870
7871 /* Create a complex type whose components are COMPONENT_TYPE. */
7872
7873 tree
7874 build_complex_type (tree component_type)
7875 {
7876 tree t;
7877 hashval_t hashcode;
7878
7879 gcc_assert (INTEGRAL_TYPE_P (component_type)
7880 || SCALAR_FLOAT_TYPE_P (component_type)
7881 || FIXED_POINT_TYPE_P (component_type));
7882
7883 /* Make a node of the sort we want. */
7884 t = make_node (COMPLEX_TYPE);
7885
7886 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7887
7888 /* If we already have such a type, use the old one. */
7889 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7890 t = type_hash_canon (hashcode, t);
7891
7892 if (!COMPLETE_TYPE_P (t))
7893 layout_type (t);
7894
7895 if (TYPE_CANONICAL (t) == t)
7896 {
7897 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7898 SET_TYPE_STRUCTURAL_EQUALITY (t);
7899 else if (TYPE_CANONICAL (component_type) != component_type)
7900 TYPE_CANONICAL (t)
7901 = build_complex_type (TYPE_CANONICAL (component_type));
7902 }
7903
7904 /* We need to create a name, since complex is a fundamental type. */
7905 if (! TYPE_NAME (t))
7906 {
7907 const char *name;
7908 if (component_type == char_type_node)
7909 name = "complex char";
7910 else if (component_type == signed_char_type_node)
7911 name = "complex signed char";
7912 else if (component_type == unsigned_char_type_node)
7913 name = "complex unsigned char";
7914 else if (component_type == short_integer_type_node)
7915 name = "complex short int";
7916 else if (component_type == short_unsigned_type_node)
7917 name = "complex short unsigned int";
7918 else if (component_type == integer_type_node)
7919 name = "complex int";
7920 else if (component_type == unsigned_type_node)
7921 name = "complex unsigned int";
7922 else if (component_type == long_integer_type_node)
7923 name = "complex long int";
7924 else if (component_type == long_unsigned_type_node)
7925 name = "complex long unsigned int";
7926 else if (component_type == long_long_integer_type_node)
7927 name = "complex long long int";
7928 else if (component_type == long_long_unsigned_type_node)
7929 name = "complex long long unsigned int";
7930 else
7931 name = 0;
7932
7933 if (name != 0)
7934 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7935 get_identifier (name), t);
7936 }
7937
7938 return build_qualified_type (t, TYPE_QUALS (component_type));
7939 }
7940
7941 /* If TYPE is a real or complex floating-point type and the target
7942 does not directly support arithmetic on TYPE then return the wider
7943 type to be used for arithmetic on TYPE. Otherwise, return
7944 NULL_TREE. */
7945
7946 tree
7947 excess_precision_type (tree type)
7948 {
7949 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7950 {
7951 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7952 switch (TREE_CODE (type))
7953 {
7954 case REAL_TYPE:
7955 switch (flt_eval_method)
7956 {
7957 case 1:
7958 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7959 return double_type_node;
7960 break;
7961 case 2:
7962 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7963 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7964 return long_double_type_node;
7965 break;
7966 default:
7967 gcc_unreachable ();
7968 }
7969 break;
7970 case COMPLEX_TYPE:
7971 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7972 return NULL_TREE;
7973 switch (flt_eval_method)
7974 {
7975 case 1:
7976 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7977 return complex_double_type_node;
7978 break;
7979 case 2:
7980 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7981 || (TYPE_MODE (TREE_TYPE (type))
7982 == TYPE_MODE (double_type_node)))
7983 return complex_long_double_type_node;
7984 break;
7985 default:
7986 gcc_unreachable ();
7987 }
7988 break;
7989 default:
7990 break;
7991 }
7992 }
7993 return NULL_TREE;
7994 }
7995 \f
7996 /* Return OP, stripped of any conversions to wider types as much as is safe.
7997 Converting the value back to OP's type makes a value equivalent to OP.
7998
7999 If FOR_TYPE is nonzero, we return a value which, if converted to
8000 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8001
8002 OP must have integer, real or enumeral type. Pointers are not allowed!
8003
8004 There are some cases where the obvious value we could return
8005 would regenerate to OP if converted to OP's type,
8006 but would not extend like OP to wider types.
8007 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8008 For example, if OP is (unsigned short)(signed char)-1,
8009 we avoid returning (signed char)-1 if FOR_TYPE is int,
8010 even though extending that to an unsigned short would regenerate OP,
8011 since the result of extending (signed char)-1 to (int)
8012 is different from (int) OP. */
8013
8014 tree
8015 get_unwidened (tree op, tree for_type)
8016 {
8017 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8018 tree type = TREE_TYPE (op);
8019 unsigned final_prec
8020 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8021 int uns
8022 = (for_type != 0 && for_type != type
8023 && final_prec > TYPE_PRECISION (type)
8024 && TYPE_UNSIGNED (type));
8025 tree win = op;
8026
8027 while (CONVERT_EXPR_P (op))
8028 {
8029 int bitschange;
8030
8031 /* TYPE_PRECISION on vector types has different meaning
8032 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8033 so avoid them here. */
8034 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8035 break;
8036
8037 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8038 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8039
8040 /* Truncations are many-one so cannot be removed.
8041 Unless we are later going to truncate down even farther. */
8042 if (bitschange < 0
8043 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8044 break;
8045
8046 /* See what's inside this conversion. If we decide to strip it,
8047 we will set WIN. */
8048 op = TREE_OPERAND (op, 0);
8049
8050 /* If we have not stripped any zero-extensions (uns is 0),
8051 we can strip any kind of extension.
8052 If we have previously stripped a zero-extension,
8053 only zero-extensions can safely be stripped.
8054 Any extension can be stripped if the bits it would produce
8055 are all going to be discarded later by truncating to FOR_TYPE. */
8056
8057 if (bitschange > 0)
8058 {
8059 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8060 win = op;
8061 /* TYPE_UNSIGNED says whether this is a zero-extension.
8062 Let's avoid computing it if it does not affect WIN
8063 and if UNS will not be needed again. */
8064 if ((uns
8065 || CONVERT_EXPR_P (op))
8066 && TYPE_UNSIGNED (TREE_TYPE (op)))
8067 {
8068 uns = 1;
8069 win = op;
8070 }
8071 }
8072 }
8073
8074 /* If we finally reach a constant see if it fits in for_type and
8075 in that case convert it. */
8076 if (for_type
8077 && TREE_CODE (win) == INTEGER_CST
8078 && TREE_TYPE (win) != for_type
8079 && int_fits_type_p (win, for_type))
8080 win = fold_convert (for_type, win);
8081
8082 return win;
8083 }
8084 \f
8085 /* Return OP or a simpler expression for a narrower value
8086 which can be sign-extended or zero-extended to give back OP.
8087 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8088 or 0 if the value should be sign-extended. */
8089
8090 tree
8091 get_narrower (tree op, int *unsignedp_ptr)
8092 {
8093 int uns = 0;
8094 int first = 1;
8095 tree win = op;
8096 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8097
8098 while (TREE_CODE (op) == NOP_EXPR)
8099 {
8100 int bitschange
8101 = (TYPE_PRECISION (TREE_TYPE (op))
8102 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8103
8104 /* Truncations are many-one so cannot be removed. */
8105 if (bitschange < 0)
8106 break;
8107
8108 /* See what's inside this conversion. If we decide to strip it,
8109 we will set WIN. */
8110
8111 if (bitschange > 0)
8112 {
8113 op = TREE_OPERAND (op, 0);
8114 /* An extension: the outermost one can be stripped,
8115 but remember whether it is zero or sign extension. */
8116 if (first)
8117 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8118 /* Otherwise, if a sign extension has been stripped,
8119 only sign extensions can now be stripped;
8120 if a zero extension has been stripped, only zero-extensions. */
8121 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8122 break;
8123 first = 0;
8124 }
8125 else /* bitschange == 0 */
8126 {
8127 /* A change in nominal type can always be stripped, but we must
8128 preserve the unsignedness. */
8129 if (first)
8130 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8131 first = 0;
8132 op = TREE_OPERAND (op, 0);
8133 /* Keep trying to narrow, but don't assign op to win if it
8134 would turn an integral type into something else. */
8135 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8136 continue;
8137 }
8138
8139 win = op;
8140 }
8141
8142 if (TREE_CODE (op) == COMPONENT_REF
8143 /* Since type_for_size always gives an integer type. */
8144 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8145 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8146 /* Ensure field is laid out already. */
8147 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8148 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
8149 {
8150 unsigned HOST_WIDE_INT innerprec
8151 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
8152 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8153 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8154 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8155
8156 /* We can get this structure field in a narrower type that fits it,
8157 but the resulting extension to its nominal type (a fullword type)
8158 must satisfy the same conditions as for other extensions.
8159
8160 Do this only for fields that are aligned (not bit-fields),
8161 because when bit-field insns will be used there is no
8162 advantage in doing this. */
8163
8164 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8165 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8166 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8167 && type != 0)
8168 {
8169 if (first)
8170 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8171 win = fold_convert (type, op);
8172 }
8173 }
8174
8175 *unsignedp_ptr = uns;
8176 return win;
8177 }
8178 \f
8179 /* Returns true if integer constant C has a value that is permissible
8180 for type TYPE (an INTEGER_TYPE). */
8181
8182 bool
8183 int_fits_type_p (const_tree c, const_tree type)
8184 {
8185 tree type_low_bound, type_high_bound;
8186 bool ok_for_low_bound, ok_for_high_bound, unsc;
8187 double_int dc, dd;
8188
8189 dc = tree_to_double_int (c);
8190 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
8191
8192 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
8193 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
8194 && unsc)
8195 /* So c is an unsigned integer whose type is sizetype and type is not.
8196 sizetype'd integers are sign extended even though they are
8197 unsigned. If the integer value fits in the lower end word of c,
8198 and if the higher end word has all its bits set to 1, that
8199 means the higher end bits are set to 1 only for sign extension.
8200 So let's convert c into an equivalent zero extended unsigned
8201 integer. */
8202 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
8203
8204 retry:
8205 type_low_bound = TYPE_MIN_VALUE (type);
8206 type_high_bound = TYPE_MAX_VALUE (type);
8207
8208 /* If at least one bound of the type is a constant integer, we can check
8209 ourselves and maybe make a decision. If no such decision is possible, but
8210 this type is a subtype, try checking against that. Otherwise, use
8211 double_int_fits_to_tree_p, which checks against the precision.
8212
8213 Compute the status for each possibly constant bound, and return if we see
8214 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8215 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8216 for "constant known to fit". */
8217
8218 /* Check if c >= type_low_bound. */
8219 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8220 {
8221 dd = tree_to_double_int (type_low_bound);
8222 if (TREE_CODE (type) == INTEGER_TYPE
8223 && TYPE_IS_SIZETYPE (type)
8224 && TYPE_UNSIGNED (type))
8225 dd = double_int_zext (dd, TYPE_PRECISION (type));
8226 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
8227 {
8228 int c_neg = (!unsc && double_int_negative_p (dc));
8229 int t_neg = (unsc && double_int_negative_p (dd));
8230
8231 if (c_neg && !t_neg)
8232 return false;
8233 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
8234 return false;
8235 }
8236 else if (double_int_cmp (dc, dd, unsc) < 0)
8237 return false;
8238 ok_for_low_bound = true;
8239 }
8240 else
8241 ok_for_low_bound = false;
8242
8243 /* Check if c <= type_high_bound. */
8244 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8245 {
8246 dd = tree_to_double_int (type_high_bound);
8247 if (TREE_CODE (type) == INTEGER_TYPE
8248 && TYPE_IS_SIZETYPE (type)
8249 && TYPE_UNSIGNED (type))
8250 dd = double_int_zext (dd, TYPE_PRECISION (type));
8251 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8252 {
8253 int c_neg = (!unsc && double_int_negative_p (dc));
8254 int t_neg = (unsc && double_int_negative_p (dd));
8255
8256 if (t_neg && !c_neg)
8257 return false;
8258 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
8259 return false;
8260 }
8261 else if (double_int_cmp (dc, dd, unsc) > 0)
8262 return false;
8263 ok_for_high_bound = true;
8264 }
8265 else
8266 ok_for_high_bound = false;
8267
8268 /* If the constant fits both bounds, the result is known. */
8269 if (ok_for_low_bound && ok_for_high_bound)
8270 return true;
8271
8272 /* Perform some generic filtering which may allow making a decision
8273 even if the bounds are not constant. First, negative integers
8274 never fit in unsigned types, */
8275 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
8276 return false;
8277
8278 /* Second, narrower types always fit in wider ones. */
8279 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8280 return true;
8281
8282 /* Third, unsigned integers with top bit set never fit signed types. */
8283 if (! TYPE_UNSIGNED (type) && unsc)
8284 {
8285 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8286 if (prec < HOST_BITS_PER_WIDE_INT)
8287 {
8288 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8289 return false;
8290 }
8291 else if (((((unsigned HOST_WIDE_INT) 1)
8292 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8293 return false;
8294 }
8295
8296 /* If we haven't been able to decide at this point, there nothing more we
8297 can check ourselves here. Look at the base type if we have one and it
8298 has the same precision. */
8299 if (TREE_CODE (type) == INTEGER_TYPE
8300 && TREE_TYPE (type) != 0
8301 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8302 {
8303 type = TREE_TYPE (type);
8304 goto retry;
8305 }
8306
8307 /* Or to double_int_fits_to_tree_p, if nothing else. */
8308 return double_int_fits_to_tree_p (type, dc);
8309 }
8310
8311 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8312 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8313 represented (assuming two's-complement arithmetic) within the bit
8314 precision of the type are returned instead. */
8315
8316 void
8317 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8318 {
8319 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8320 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8321 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8322 TYPE_UNSIGNED (type));
8323 else
8324 {
8325 if (TYPE_UNSIGNED (type))
8326 mpz_set_ui (min, 0);
8327 else
8328 {
8329 double_int mn;
8330 mn = double_int_mask (TYPE_PRECISION (type) - 1);
8331 mn = double_int_sext (double_int_add (mn, double_int_one),
8332 TYPE_PRECISION (type));
8333 mpz_set_double_int (min, mn, false);
8334 }
8335 }
8336
8337 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8338 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8339 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8340 TYPE_UNSIGNED (type));
8341 else
8342 {
8343 if (TYPE_UNSIGNED (type))
8344 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
8345 true);
8346 else
8347 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
8348 true);
8349 }
8350 }
8351
8352 /* Return true if VAR is an automatic variable defined in function FN. */
8353
8354 bool
8355 auto_var_in_fn_p (const_tree var, const_tree fn)
8356 {
8357 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8358 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8359 || TREE_CODE (var) == PARM_DECL)
8360 && ! TREE_STATIC (var))
8361 || TREE_CODE (var) == LABEL_DECL
8362 || TREE_CODE (var) == RESULT_DECL));
8363 }
8364
8365 /* Subprogram of following function. Called by walk_tree.
8366
8367 Return *TP if it is an automatic variable or parameter of the
8368 function passed in as DATA. */
8369
8370 static tree
8371 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8372 {
8373 tree fn = (tree) data;
8374
8375 if (TYPE_P (*tp))
8376 *walk_subtrees = 0;
8377
8378 else if (DECL_P (*tp)
8379 && auto_var_in_fn_p (*tp, fn))
8380 return *tp;
8381
8382 return NULL_TREE;
8383 }
8384
8385 /* Returns true if T is, contains, or refers to a type with variable
8386 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8387 arguments, but not the return type. If FN is nonzero, only return
8388 true if a modifier of the type or position of FN is a variable or
8389 parameter inside FN.
8390
8391 This concept is more general than that of C99 'variably modified types':
8392 in C99, a struct type is never variably modified because a VLA may not
8393 appear as a structure member. However, in GNU C code like:
8394
8395 struct S { int i[f()]; };
8396
8397 is valid, and other languages may define similar constructs. */
8398
8399 bool
8400 variably_modified_type_p (tree type, tree fn)
8401 {
8402 tree t;
8403
8404 /* Test if T is either variable (if FN is zero) or an expression containing
8405 a variable in FN. */
8406 #define RETURN_TRUE_IF_VAR(T) \
8407 do { tree _t = (T); \
8408 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
8409 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8410 return true; } while (0)
8411
8412 if (type == error_mark_node)
8413 return false;
8414
8415 /* If TYPE itself has variable size, it is variably modified. */
8416 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8417 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8418
8419 switch (TREE_CODE (type))
8420 {
8421 case POINTER_TYPE:
8422 case REFERENCE_TYPE:
8423 case VECTOR_TYPE:
8424 if (variably_modified_type_p (TREE_TYPE (type), fn))
8425 return true;
8426 break;
8427
8428 case FUNCTION_TYPE:
8429 case METHOD_TYPE:
8430 /* If TYPE is a function type, it is variably modified if the
8431 return type is variably modified. */
8432 if (variably_modified_type_p (TREE_TYPE (type), fn))
8433 return true;
8434 break;
8435
8436 case INTEGER_TYPE:
8437 case REAL_TYPE:
8438 case FIXED_POINT_TYPE:
8439 case ENUMERAL_TYPE:
8440 case BOOLEAN_TYPE:
8441 /* Scalar types are variably modified if their end points
8442 aren't constant. */
8443 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8444 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8445 break;
8446
8447 case RECORD_TYPE:
8448 case UNION_TYPE:
8449 case QUAL_UNION_TYPE:
8450 /* We can't see if any of the fields are variably-modified by the
8451 definition we normally use, since that would produce infinite
8452 recursion via pointers. */
8453 /* This is variably modified if some field's type is. */
8454 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8455 if (TREE_CODE (t) == FIELD_DECL)
8456 {
8457 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8458 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8459 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8460
8461 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8462 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8463 }
8464 break;
8465
8466 case ARRAY_TYPE:
8467 /* Do not call ourselves to avoid infinite recursion. This is
8468 variably modified if the element type is. */
8469 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8470 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8471 break;
8472
8473 default:
8474 break;
8475 }
8476
8477 /* The current language may have other cases to check, but in general,
8478 all other types are not variably modified. */
8479 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8480
8481 #undef RETURN_TRUE_IF_VAR
8482 }
8483
8484 /* Given a DECL or TYPE, return the scope in which it was declared, or
8485 NULL_TREE if there is no containing scope. */
8486
8487 tree
8488 get_containing_scope (const_tree t)
8489 {
8490 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8491 }
8492
8493 /* Return the innermost context enclosing DECL that is
8494 a FUNCTION_DECL, or zero if none. */
8495
8496 tree
8497 decl_function_context (const_tree decl)
8498 {
8499 tree context;
8500
8501 if (TREE_CODE (decl) == ERROR_MARK)
8502 return 0;
8503
8504 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8505 where we look up the function at runtime. Such functions always take
8506 a first argument of type 'pointer to real context'.
8507
8508 C++ should really be fixed to use DECL_CONTEXT for the real context,
8509 and use something else for the "virtual context". */
8510 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8511 context
8512 = TYPE_MAIN_VARIANT
8513 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8514 else
8515 context = DECL_CONTEXT (decl);
8516
8517 while (context && TREE_CODE (context) != FUNCTION_DECL)
8518 {
8519 if (TREE_CODE (context) == BLOCK)
8520 context = BLOCK_SUPERCONTEXT (context);
8521 else
8522 context = get_containing_scope (context);
8523 }
8524
8525 return context;
8526 }
8527
8528 /* Return the innermost context enclosing DECL that is
8529 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8530 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8531
8532 tree
8533 decl_type_context (const_tree decl)
8534 {
8535 tree context = DECL_CONTEXT (decl);
8536
8537 while (context)
8538 switch (TREE_CODE (context))
8539 {
8540 case NAMESPACE_DECL:
8541 case TRANSLATION_UNIT_DECL:
8542 return NULL_TREE;
8543
8544 case RECORD_TYPE:
8545 case UNION_TYPE:
8546 case QUAL_UNION_TYPE:
8547 return context;
8548
8549 case TYPE_DECL:
8550 case FUNCTION_DECL:
8551 context = DECL_CONTEXT (context);
8552 break;
8553
8554 case BLOCK:
8555 context = BLOCK_SUPERCONTEXT (context);
8556 break;
8557
8558 default:
8559 gcc_unreachable ();
8560 }
8561
8562 return NULL_TREE;
8563 }
8564
8565 /* CALL is a CALL_EXPR. Return the declaration for the function
8566 called, or NULL_TREE if the called function cannot be
8567 determined. */
8568
8569 tree
8570 get_callee_fndecl (const_tree call)
8571 {
8572 tree addr;
8573
8574 if (call == error_mark_node)
8575 return error_mark_node;
8576
8577 /* It's invalid to call this function with anything but a
8578 CALL_EXPR. */
8579 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8580
8581 /* The first operand to the CALL is the address of the function
8582 called. */
8583 addr = CALL_EXPR_FN (call);
8584
8585 STRIP_NOPS (addr);
8586
8587 /* If this is a readonly function pointer, extract its initial value. */
8588 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8589 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8590 && DECL_INITIAL (addr))
8591 addr = DECL_INITIAL (addr);
8592
8593 /* If the address is just `&f' for some function `f', then we know
8594 that `f' is being called. */
8595 if (TREE_CODE (addr) == ADDR_EXPR
8596 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8597 return TREE_OPERAND (addr, 0);
8598
8599 /* We couldn't figure out what was being called. */
8600 return NULL_TREE;
8601 }
8602
8603 /* Print debugging information about tree nodes generated during the compile,
8604 and any language-specific information. */
8605
8606 void
8607 dump_tree_statistics (void)
8608 {
8609 #ifdef GATHER_STATISTICS
8610 int i;
8611 int total_nodes, total_bytes;
8612 #endif
8613
8614 fprintf (stderr, "\n??? tree nodes created\n\n");
8615 #ifdef GATHER_STATISTICS
8616 fprintf (stderr, "Kind Nodes Bytes\n");
8617 fprintf (stderr, "---------------------------------------\n");
8618 total_nodes = total_bytes = 0;
8619 for (i = 0; i < (int) all_kinds; i++)
8620 {
8621 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8622 tree_node_counts[i], tree_node_sizes[i]);
8623 total_nodes += tree_node_counts[i];
8624 total_bytes += tree_node_sizes[i];
8625 }
8626 fprintf (stderr, "---------------------------------------\n");
8627 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8628 fprintf (stderr, "---------------------------------------\n");
8629 fprintf (stderr, "Code Nodes\n");
8630 fprintf (stderr, "----------------------------\n");
8631 for (i = 0; i < (int) MAX_TREE_CODES; i++)
8632 fprintf (stderr, "%-20s %7d\n", tree_code_name[i], tree_code_counts[i]);
8633 fprintf (stderr, "----------------------------\n");
8634 ssanames_print_statistics ();
8635 phinodes_print_statistics ();
8636 #else
8637 fprintf (stderr, "(No per-node statistics)\n");
8638 #endif
8639 print_type_hash_statistics ();
8640 print_debug_expr_statistics ();
8641 print_value_expr_statistics ();
8642 lang_hooks.print_statistics ();
8643 }
8644 \f
8645 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8646
8647 /* Generate a crc32 of a byte. */
8648
8649 unsigned
8650 crc32_byte (unsigned chksum, char byte)
8651 {
8652 unsigned value = (unsigned) byte << 24;
8653 unsigned ix;
8654
8655 for (ix = 8; ix--; value <<= 1)
8656 {
8657 unsigned feedback;
8658
8659 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8660 chksum <<= 1;
8661 chksum ^= feedback;
8662 }
8663 return chksum;
8664 }
8665
8666
8667 /* Generate a crc32 of a string. */
8668
8669 unsigned
8670 crc32_string (unsigned chksum, const char *string)
8671 {
8672 do
8673 {
8674 chksum = crc32_byte (chksum, *string);
8675 }
8676 while (*string++);
8677 return chksum;
8678 }
8679
8680 /* P is a string that will be used in a symbol. Mask out any characters
8681 that are not valid in that context. */
8682
8683 void
8684 clean_symbol_name (char *p)
8685 {
8686 for (; *p; p++)
8687 if (! (ISALNUM (*p)
8688 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8689 || *p == '$'
8690 #endif
8691 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8692 || *p == '.'
8693 #endif
8694 ))
8695 *p = '_';
8696 }
8697
8698 /* Generate a name for a special-purpose function.
8699 The generated name may need to be unique across the whole link.
8700 Changes to this function may also require corresponding changes to
8701 xstrdup_mask_random.
8702 TYPE is some string to identify the purpose of this function to the
8703 linker or collect2; it must start with an uppercase letter,
8704 one of:
8705 I - for constructors
8706 D - for destructors
8707 N - for C++ anonymous namespaces
8708 F - for DWARF unwind frame information. */
8709
8710 tree
8711 get_file_function_name (const char *type)
8712 {
8713 char *buf;
8714 const char *p;
8715 char *q;
8716
8717 /* If we already have a name we know to be unique, just use that. */
8718 if (first_global_object_name)
8719 p = q = ASTRDUP (first_global_object_name);
8720 /* If the target is handling the constructors/destructors, they
8721 will be local to this file and the name is only necessary for
8722 debugging purposes.
8723 We also assign sub_I and sub_D sufixes to constructors called from
8724 the global static constructors. These are always local. */
8725 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8726 || (strncmp (type, "sub_", 4) == 0
8727 && (type[4] == 'I' || type[4] == 'D')))
8728 {
8729 const char *file = main_input_filename;
8730 if (! file)
8731 file = input_filename;
8732 /* Just use the file's basename, because the full pathname
8733 might be quite long. */
8734 p = q = ASTRDUP (lbasename (file));
8735 }
8736 else
8737 {
8738 /* Otherwise, the name must be unique across the entire link.
8739 We don't have anything that we know to be unique to this translation
8740 unit, so use what we do have and throw in some randomness. */
8741 unsigned len;
8742 const char *name = weak_global_object_name;
8743 const char *file = main_input_filename;
8744
8745 if (! name)
8746 name = "";
8747 if (! file)
8748 file = input_filename;
8749
8750 len = strlen (file);
8751 q = (char *) alloca (9 + 17 + len + 1);
8752 memcpy (q, file, len + 1);
8753
8754 snprintf (q + len, 9 + 17 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
8755 crc32_string (0, name), get_random_seed (false));
8756
8757 p = q;
8758 }
8759
8760 clean_symbol_name (q);
8761 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8762 + strlen (type));
8763
8764 /* Set up the name of the file-level functions we may need.
8765 Use a global object (which is already required to be unique over
8766 the program) rather than the file name (which imposes extra
8767 constraints). */
8768 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8769
8770 return get_identifier (buf);
8771 }
8772 \f
8773 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8774
8775 /* Complain that the tree code of NODE does not match the expected 0
8776 terminated list of trailing codes. The trailing code list can be
8777 empty, for a more vague error message. FILE, LINE, and FUNCTION
8778 are of the caller. */
8779
8780 void
8781 tree_check_failed (const_tree node, const char *file,
8782 int line, const char *function, ...)
8783 {
8784 va_list args;
8785 const char *buffer;
8786 unsigned length = 0;
8787 int code;
8788
8789 va_start (args, function);
8790 while ((code = va_arg (args, int)))
8791 length += 4 + strlen (tree_code_name[code]);
8792 va_end (args);
8793 if (length)
8794 {
8795 char *tmp;
8796 va_start (args, function);
8797 length += strlen ("expected ");
8798 buffer = tmp = (char *) alloca (length);
8799 length = 0;
8800 while ((code = va_arg (args, int)))
8801 {
8802 const char *prefix = length ? " or " : "expected ";
8803
8804 strcpy (tmp + length, prefix);
8805 length += strlen (prefix);
8806 strcpy (tmp + length, tree_code_name[code]);
8807 length += strlen (tree_code_name[code]);
8808 }
8809 va_end (args);
8810 }
8811 else
8812 buffer = "unexpected node";
8813
8814 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8815 buffer, tree_code_name[TREE_CODE (node)],
8816 function, trim_filename (file), line);
8817 }
8818
8819 /* Complain that the tree code of NODE does match the expected 0
8820 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8821 the caller. */
8822
8823 void
8824 tree_not_check_failed (const_tree node, const char *file,
8825 int line, const char *function, ...)
8826 {
8827 va_list args;
8828 char *buffer;
8829 unsigned length = 0;
8830 int code;
8831
8832 va_start (args, function);
8833 while ((code = va_arg (args, int)))
8834 length += 4 + strlen (tree_code_name[code]);
8835 va_end (args);
8836 va_start (args, function);
8837 buffer = (char *) alloca (length);
8838 length = 0;
8839 while ((code = va_arg (args, int)))
8840 {
8841 if (length)
8842 {
8843 strcpy (buffer + length, " or ");
8844 length += 4;
8845 }
8846 strcpy (buffer + length, tree_code_name[code]);
8847 length += strlen (tree_code_name[code]);
8848 }
8849 va_end (args);
8850
8851 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8852 buffer, tree_code_name[TREE_CODE (node)],
8853 function, trim_filename (file), line);
8854 }
8855
8856 /* Similar to tree_check_failed, except that we check for a class of tree
8857 code, given in CL. */
8858
8859 void
8860 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8861 const char *file, int line, const char *function)
8862 {
8863 internal_error
8864 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8865 TREE_CODE_CLASS_STRING (cl),
8866 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8867 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8868 }
8869
8870 /* Similar to tree_check_failed, except that instead of specifying a
8871 dozen codes, use the knowledge that they're all sequential. */
8872
8873 void
8874 tree_range_check_failed (const_tree node, const char *file, int line,
8875 const char *function, enum tree_code c1,
8876 enum tree_code c2)
8877 {
8878 char *buffer;
8879 unsigned length = 0;
8880 unsigned int c;
8881
8882 for (c = c1; c <= c2; ++c)
8883 length += 4 + strlen (tree_code_name[c]);
8884
8885 length += strlen ("expected ");
8886 buffer = (char *) alloca (length);
8887 length = 0;
8888
8889 for (c = c1; c <= c2; ++c)
8890 {
8891 const char *prefix = length ? " or " : "expected ";
8892
8893 strcpy (buffer + length, prefix);
8894 length += strlen (prefix);
8895 strcpy (buffer + length, tree_code_name[c]);
8896 length += strlen (tree_code_name[c]);
8897 }
8898
8899 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8900 buffer, tree_code_name[TREE_CODE (node)],
8901 function, trim_filename (file), line);
8902 }
8903
8904
8905 /* Similar to tree_check_failed, except that we check that a tree does
8906 not have the specified code, given in CL. */
8907
8908 void
8909 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8910 const char *file, int line, const char *function)
8911 {
8912 internal_error
8913 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8914 TREE_CODE_CLASS_STRING (cl),
8915 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8916 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8917 }
8918
8919
8920 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8921
8922 void
8923 omp_clause_check_failed (const_tree node, const char *file, int line,
8924 const char *function, enum omp_clause_code code)
8925 {
8926 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8927 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8928 function, trim_filename (file), line);
8929 }
8930
8931
8932 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8933
8934 void
8935 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8936 const char *function, enum omp_clause_code c1,
8937 enum omp_clause_code c2)
8938 {
8939 char *buffer;
8940 unsigned length = 0;
8941 unsigned int c;
8942
8943 for (c = c1; c <= c2; ++c)
8944 length += 4 + strlen (omp_clause_code_name[c]);
8945
8946 length += strlen ("expected ");
8947 buffer = (char *) alloca (length);
8948 length = 0;
8949
8950 for (c = c1; c <= c2; ++c)
8951 {
8952 const char *prefix = length ? " or " : "expected ";
8953
8954 strcpy (buffer + length, prefix);
8955 length += strlen (prefix);
8956 strcpy (buffer + length, omp_clause_code_name[c]);
8957 length += strlen (omp_clause_code_name[c]);
8958 }
8959
8960 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8961 buffer, omp_clause_code_name[TREE_CODE (node)],
8962 function, trim_filename (file), line);
8963 }
8964
8965
8966 #undef DEFTREESTRUCT
8967 #define DEFTREESTRUCT(VAL, NAME) NAME,
8968
8969 static const char *ts_enum_names[] = {
8970 #include "treestruct.def"
8971 };
8972 #undef DEFTREESTRUCT
8973
8974 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8975
8976 /* Similar to tree_class_check_failed, except that we check for
8977 whether CODE contains the tree structure identified by EN. */
8978
8979 void
8980 tree_contains_struct_check_failed (const_tree node,
8981 const enum tree_node_structure_enum en,
8982 const char *file, int line,
8983 const char *function)
8984 {
8985 internal_error
8986 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8987 TS_ENUM_NAME(en),
8988 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8989 }
8990
8991
8992 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8993 (dynamically sized) vector. */
8994
8995 void
8996 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8997 const char *function)
8998 {
8999 internal_error
9000 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9001 idx + 1, len, function, trim_filename (file), line);
9002 }
9003
9004 /* Similar to above, except that the check is for the bounds of the operand
9005 vector of an expression node EXP. */
9006
9007 void
9008 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9009 int line, const char *function)
9010 {
9011 int code = TREE_CODE (exp);
9012 internal_error
9013 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9014 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
9015 function, trim_filename (file), line);
9016 }
9017
9018 /* Similar to above, except that the check is for the number of
9019 operands of an OMP_CLAUSE node. */
9020
9021 void
9022 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9023 int line, const char *function)
9024 {
9025 internal_error
9026 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9027 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9028 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9029 trim_filename (file), line);
9030 }
9031 #endif /* ENABLE_TREE_CHECKING */
9032 \f
9033 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9034 and mapped to the machine mode MODE. Initialize its fields and build
9035 the information necessary for debugging output. */
9036
9037 static tree
9038 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
9039 {
9040 tree t;
9041 hashval_t hashcode = 0;
9042
9043 t = make_node (VECTOR_TYPE);
9044 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
9045 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9046 SET_TYPE_MODE (t, mode);
9047
9048 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
9049 SET_TYPE_STRUCTURAL_EQUALITY (t);
9050 else if (TYPE_CANONICAL (innertype) != innertype
9051 || mode != VOIDmode)
9052 TYPE_CANONICAL (t)
9053 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
9054
9055 layout_type (t);
9056
9057 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
9058 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
9059 hashcode = iterative_hash_host_wide_int (mode, hashcode);
9060 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
9061 t = type_hash_canon (hashcode, t);
9062
9063 /* We have built a main variant, based on the main variant of the
9064 inner type. Use it to build the variant we return. */
9065 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9066 && TREE_TYPE (t) != innertype)
9067 return build_type_attribute_qual_variant (t,
9068 TYPE_ATTRIBUTES (innertype),
9069 TYPE_QUALS (innertype));
9070
9071 return t;
9072 }
9073
9074 static tree
9075 make_or_reuse_type (unsigned size, int unsignedp)
9076 {
9077 if (size == INT_TYPE_SIZE)
9078 return unsignedp ? unsigned_type_node : integer_type_node;
9079 if (size == CHAR_TYPE_SIZE)
9080 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9081 if (size == SHORT_TYPE_SIZE)
9082 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9083 if (size == LONG_TYPE_SIZE)
9084 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9085 if (size == LONG_LONG_TYPE_SIZE)
9086 return (unsignedp ? long_long_unsigned_type_node
9087 : long_long_integer_type_node);
9088 if (size == 128 && int128_integer_type_node)
9089 return (unsignedp ? int128_unsigned_type_node
9090 : int128_integer_type_node);
9091
9092 if (unsignedp)
9093 return make_unsigned_type (size);
9094 else
9095 return make_signed_type (size);
9096 }
9097
9098 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9099
9100 static tree
9101 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9102 {
9103 if (satp)
9104 {
9105 if (size == SHORT_FRACT_TYPE_SIZE)
9106 return unsignedp ? sat_unsigned_short_fract_type_node
9107 : sat_short_fract_type_node;
9108 if (size == FRACT_TYPE_SIZE)
9109 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9110 if (size == LONG_FRACT_TYPE_SIZE)
9111 return unsignedp ? sat_unsigned_long_fract_type_node
9112 : sat_long_fract_type_node;
9113 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9114 return unsignedp ? sat_unsigned_long_long_fract_type_node
9115 : sat_long_long_fract_type_node;
9116 }
9117 else
9118 {
9119 if (size == SHORT_FRACT_TYPE_SIZE)
9120 return unsignedp ? unsigned_short_fract_type_node
9121 : short_fract_type_node;
9122 if (size == FRACT_TYPE_SIZE)
9123 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9124 if (size == LONG_FRACT_TYPE_SIZE)
9125 return unsignedp ? unsigned_long_fract_type_node
9126 : long_fract_type_node;
9127 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9128 return unsignedp ? unsigned_long_long_fract_type_node
9129 : long_long_fract_type_node;
9130 }
9131
9132 return make_fract_type (size, unsignedp, satp);
9133 }
9134
9135 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9136
9137 static tree
9138 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9139 {
9140 if (satp)
9141 {
9142 if (size == SHORT_ACCUM_TYPE_SIZE)
9143 return unsignedp ? sat_unsigned_short_accum_type_node
9144 : sat_short_accum_type_node;
9145 if (size == ACCUM_TYPE_SIZE)
9146 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9147 if (size == LONG_ACCUM_TYPE_SIZE)
9148 return unsignedp ? sat_unsigned_long_accum_type_node
9149 : sat_long_accum_type_node;
9150 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9151 return unsignedp ? sat_unsigned_long_long_accum_type_node
9152 : sat_long_long_accum_type_node;
9153 }
9154 else
9155 {
9156 if (size == SHORT_ACCUM_TYPE_SIZE)
9157 return unsignedp ? unsigned_short_accum_type_node
9158 : short_accum_type_node;
9159 if (size == ACCUM_TYPE_SIZE)
9160 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9161 if (size == LONG_ACCUM_TYPE_SIZE)
9162 return unsignedp ? unsigned_long_accum_type_node
9163 : long_accum_type_node;
9164 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9165 return unsignedp ? unsigned_long_long_accum_type_node
9166 : long_long_accum_type_node;
9167 }
9168
9169 return make_accum_type (size, unsignedp, satp);
9170 }
9171
9172 /* Create nodes for all integer types (and error_mark_node) using the sizes
9173 of C datatypes. SIGNED_CHAR specifies whether char is signed,
9174 SHORT_DOUBLE specifies whether double should be of the same precision
9175 as float. */
9176
9177 void
9178 build_common_tree_nodes (bool signed_char, bool short_double)
9179 {
9180 error_mark_node = make_node (ERROR_MARK);
9181 TREE_TYPE (error_mark_node) = error_mark_node;
9182
9183 initialize_sizetypes ();
9184
9185 /* Define both `signed char' and `unsigned char'. */
9186 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9187 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9188 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9189 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9190
9191 /* Define `char', which is like either `signed char' or `unsigned char'
9192 but not the same as either. */
9193 char_type_node
9194 = (signed_char
9195 ? make_signed_type (CHAR_TYPE_SIZE)
9196 : make_unsigned_type (CHAR_TYPE_SIZE));
9197 TYPE_STRING_FLAG (char_type_node) = 1;
9198
9199 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9200 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9201 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9202 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9203 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9204 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9205 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9206 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9207 #if HOST_BITS_PER_WIDE_INT >= 64
9208 /* TODO: This isn't correct, but as logic depends at the moment on
9209 host's instead of target's wide-integer.
9210 If there is a target not supporting TImode, but has an 128-bit
9211 integer-scalar register, this target check needs to be adjusted. */
9212 if (targetm.scalar_mode_supported_p (TImode))
9213 {
9214 int128_integer_type_node = make_signed_type (128);
9215 int128_unsigned_type_node = make_unsigned_type (128);
9216 }
9217 #endif
9218
9219 /* Define a boolean type. This type only represents boolean values but
9220 may be larger than char depending on the value of BOOL_TYPE_SIZE.
9221 Front ends which want to override this size (i.e. Java) can redefine
9222 boolean_type_node before calling build_common_tree_nodes_2. */
9223 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9224 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9225 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9226 TYPE_PRECISION (boolean_type_node) = 1;
9227
9228 /* Define what type to use for size_t. */
9229 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9230 size_type_node = unsigned_type_node;
9231 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9232 size_type_node = long_unsigned_type_node;
9233 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9234 size_type_node = long_long_unsigned_type_node;
9235 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9236 size_type_node = short_unsigned_type_node;
9237 else
9238 gcc_unreachable ();
9239
9240 /* Fill in the rest of the sized types. Reuse existing type nodes
9241 when possible. */
9242 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9243 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9244 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9245 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9246 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9247
9248 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9249 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9250 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9251 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9252 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9253
9254 access_public_node = get_identifier ("public");
9255 access_protected_node = get_identifier ("protected");
9256 access_private_node = get_identifier ("private");
9257
9258 /* Define these next since types below may used them. */
9259 integer_zero_node = build_int_cst (integer_type_node, 0);
9260 integer_one_node = build_int_cst (integer_type_node, 1);
9261 integer_three_node = build_int_cst (integer_type_node, 3);
9262 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9263
9264 size_zero_node = size_int (0);
9265 size_one_node = size_int (1);
9266 bitsize_zero_node = bitsize_int (0);
9267 bitsize_one_node = bitsize_int (1);
9268 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9269
9270 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9271 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9272
9273 void_type_node = make_node (VOID_TYPE);
9274 layout_type (void_type_node);
9275
9276 /* We are not going to have real types in C with less than byte alignment,
9277 so we might as well not have any types that claim to have it. */
9278 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9279 TYPE_USER_ALIGN (void_type_node) = 0;
9280
9281 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9282 layout_type (TREE_TYPE (null_pointer_node));
9283
9284 ptr_type_node = build_pointer_type (void_type_node);
9285 const_ptr_type_node
9286 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9287 fileptr_type_node = ptr_type_node;
9288
9289 float_type_node = make_node (REAL_TYPE);
9290 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9291 layout_type (float_type_node);
9292
9293 double_type_node = make_node (REAL_TYPE);
9294 if (short_double)
9295 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9296 else
9297 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9298 layout_type (double_type_node);
9299
9300 long_double_type_node = make_node (REAL_TYPE);
9301 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9302 layout_type (long_double_type_node);
9303
9304 float_ptr_type_node = build_pointer_type (float_type_node);
9305 double_ptr_type_node = build_pointer_type (double_type_node);
9306 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9307 integer_ptr_type_node = build_pointer_type (integer_type_node);
9308
9309 /* Fixed size integer types. */
9310 uint32_type_node = build_nonstandard_integer_type (32, true);
9311 uint64_type_node = build_nonstandard_integer_type (64, true);
9312
9313 /* Decimal float types. */
9314 dfloat32_type_node = make_node (REAL_TYPE);
9315 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9316 layout_type (dfloat32_type_node);
9317 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9318 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9319
9320 dfloat64_type_node = make_node (REAL_TYPE);
9321 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9322 layout_type (dfloat64_type_node);
9323 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9324 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9325
9326 dfloat128_type_node = make_node (REAL_TYPE);
9327 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9328 layout_type (dfloat128_type_node);
9329 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9330 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9331
9332 complex_integer_type_node = build_complex_type (integer_type_node);
9333 complex_float_type_node = build_complex_type (float_type_node);
9334 complex_double_type_node = build_complex_type (double_type_node);
9335 complex_long_double_type_node = build_complex_type (long_double_type_node);
9336
9337 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9338 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9339 sat_ ## KIND ## _type_node = \
9340 make_sat_signed_ ## KIND ## _type (SIZE); \
9341 sat_unsigned_ ## KIND ## _type_node = \
9342 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9343 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9344 unsigned_ ## KIND ## _type_node = \
9345 make_unsigned_ ## KIND ## _type (SIZE);
9346
9347 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9348 sat_ ## WIDTH ## KIND ## _type_node = \
9349 make_sat_signed_ ## KIND ## _type (SIZE); \
9350 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9351 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9352 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9353 unsigned_ ## WIDTH ## KIND ## _type_node = \
9354 make_unsigned_ ## KIND ## _type (SIZE);
9355
9356 /* Make fixed-point type nodes based on four different widths. */
9357 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9358 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9359 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9360 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9361 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9362
9363 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9364 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9365 NAME ## _type_node = \
9366 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9367 u ## NAME ## _type_node = \
9368 make_or_reuse_unsigned_ ## KIND ## _type \
9369 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9370 sat_ ## NAME ## _type_node = \
9371 make_or_reuse_sat_signed_ ## KIND ## _type \
9372 (GET_MODE_BITSIZE (MODE ## mode)); \
9373 sat_u ## NAME ## _type_node = \
9374 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9375 (GET_MODE_BITSIZE (U ## MODE ## mode));
9376
9377 /* Fixed-point type and mode nodes. */
9378 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9379 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9380 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9381 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9382 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9383 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9384 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9385 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9386 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9387 MAKE_FIXED_MODE_NODE (accum, da, DA)
9388 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9389
9390 {
9391 tree t = targetm.build_builtin_va_list ();
9392
9393 /* Many back-ends define record types without setting TYPE_NAME.
9394 If we copied the record type here, we'd keep the original
9395 record type without a name. This breaks name mangling. So,
9396 don't copy record types and let c_common_nodes_and_builtins()
9397 declare the type to be __builtin_va_list. */
9398 if (TREE_CODE (t) != RECORD_TYPE)
9399 t = build_variant_type_copy (t);
9400
9401 va_list_type_node = t;
9402 }
9403 }
9404
9405 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9406
9407 static void
9408 local_define_builtin (const char *name, tree type, enum built_in_function code,
9409 const char *library_name, int ecf_flags)
9410 {
9411 tree decl;
9412
9413 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9414 library_name, NULL_TREE);
9415 if (ecf_flags & ECF_CONST)
9416 TREE_READONLY (decl) = 1;
9417 if (ecf_flags & ECF_PURE)
9418 DECL_PURE_P (decl) = 1;
9419 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9420 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9421 if (ecf_flags & ECF_NORETURN)
9422 TREE_THIS_VOLATILE (decl) = 1;
9423 if (ecf_flags & ECF_NOTHROW)
9424 TREE_NOTHROW (decl) = 1;
9425 if (ecf_flags & ECF_MALLOC)
9426 DECL_IS_MALLOC (decl) = 1;
9427 if (ecf_flags & ECF_LEAF)
9428 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9429 NULL, DECL_ATTRIBUTES (decl));
9430 if ((ecf_flags & ECF_TM_PURE) && flag_tm)
9431 apply_tm_attr (decl, get_identifier ("transaction_pure"));
9432
9433 set_builtin_decl (code, decl, true);
9434 }
9435
9436 /* Call this function after instantiating all builtins that the language
9437 front end cares about. This will build the rest of the builtins that
9438 are relied upon by the tree optimizers and the middle-end. */
9439
9440 void
9441 build_common_builtin_nodes (void)
9442 {
9443 tree tmp, ftype;
9444
9445 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
9446 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9447 {
9448 ftype = build_function_type_list (ptr_type_node,
9449 ptr_type_node, const_ptr_type_node,
9450 size_type_node, NULL_TREE);
9451
9452 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
9453 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9454 "memcpy", ECF_NOTHROW | ECF_LEAF);
9455 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9456 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9457 "memmove", ECF_NOTHROW | ECF_LEAF);
9458 }
9459
9460 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
9461 {
9462 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9463 const_ptr_type_node, size_type_node,
9464 NULL_TREE);
9465 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9466 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9467 }
9468
9469 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
9470 {
9471 ftype = build_function_type_list (ptr_type_node,
9472 ptr_type_node, integer_type_node,
9473 size_type_node, NULL_TREE);
9474 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9475 "memset", ECF_NOTHROW | ECF_LEAF);
9476 }
9477
9478 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
9479 {
9480 ftype = build_function_type_list (ptr_type_node,
9481 size_type_node, NULL_TREE);
9482 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9483 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9484 }
9485
9486 ftype = build_function_type_list (ptr_type_node, size_type_node,
9487 size_type_node, NULL_TREE);
9488 local_define_builtin ("__builtin_alloca_with_align", ftype,
9489 BUILT_IN_ALLOCA_WITH_ALIGN, "alloca",
9490 ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9491
9492 /* If we're checking the stack, `alloca' can throw. */
9493 if (flag_stack_check)
9494 {
9495 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA)) = 0;
9496 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN)) = 0;
9497 }
9498
9499 ftype = build_function_type_list (void_type_node,
9500 ptr_type_node, ptr_type_node,
9501 ptr_type_node, NULL_TREE);
9502 local_define_builtin ("__builtin_init_trampoline", ftype,
9503 BUILT_IN_INIT_TRAMPOLINE,
9504 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9505
9506 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9507 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9508 BUILT_IN_ADJUST_TRAMPOLINE,
9509 "__builtin_adjust_trampoline",
9510 ECF_CONST | ECF_NOTHROW);
9511
9512 ftype = build_function_type_list (void_type_node,
9513 ptr_type_node, ptr_type_node, NULL_TREE);
9514 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9515 BUILT_IN_NONLOCAL_GOTO,
9516 "__builtin_nonlocal_goto",
9517 ECF_NORETURN | ECF_NOTHROW);
9518
9519 ftype = build_function_type_list (void_type_node,
9520 ptr_type_node, ptr_type_node, NULL_TREE);
9521 local_define_builtin ("__builtin_setjmp_setup", ftype,
9522 BUILT_IN_SETJMP_SETUP,
9523 "__builtin_setjmp_setup", ECF_NOTHROW);
9524
9525 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9526 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9527 BUILT_IN_SETJMP_DISPATCHER,
9528 "__builtin_setjmp_dispatcher",
9529 ECF_PURE | ECF_NOTHROW);
9530
9531 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9532 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9533 BUILT_IN_SETJMP_RECEIVER,
9534 "__builtin_setjmp_receiver", ECF_NOTHROW);
9535
9536 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9537 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9538 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9539
9540 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9541 local_define_builtin ("__builtin_stack_restore", ftype,
9542 BUILT_IN_STACK_RESTORE,
9543 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9544
9545 /* If there's a possibility that we might use the ARM EABI, build the
9546 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9547 if (targetm.arm_eabi_unwinder)
9548 {
9549 ftype = build_function_type_list (void_type_node, NULL_TREE);
9550 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9551 BUILT_IN_CXA_END_CLEANUP,
9552 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9553 }
9554
9555 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9556 local_define_builtin ("__builtin_unwind_resume", ftype,
9557 BUILT_IN_UNWIND_RESUME,
9558 ((targetm_common.except_unwind_info (&global_options)
9559 == UI_SJLJ)
9560 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9561 ECF_NORETURN);
9562
9563 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
9564 {
9565 ftype = build_function_type_list (ptr_type_node, integer_type_node,
9566 NULL_TREE);
9567 local_define_builtin ("__builtin_return_address", ftype,
9568 BUILT_IN_RETURN_ADDRESS,
9569 "__builtin_return_address",
9570 ECF_NOTHROW);
9571 }
9572
9573 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
9574 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
9575 {
9576 ftype = build_function_type_list (void_type_node, ptr_type_node,
9577 ptr_type_node, NULL_TREE);
9578 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
9579 local_define_builtin ("__cyg_profile_func_enter", ftype,
9580 BUILT_IN_PROFILE_FUNC_ENTER,
9581 "__cyg_profile_func_enter", 0);
9582 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
9583 local_define_builtin ("__cyg_profile_func_exit", ftype,
9584 BUILT_IN_PROFILE_FUNC_EXIT,
9585 "__cyg_profile_func_exit", 0);
9586 }
9587
9588 /* The exception object and filter values from the runtime. The argument
9589 must be zero before exception lowering, i.e. from the front end. After
9590 exception lowering, it will be the region number for the exception
9591 landing pad. These functions are PURE instead of CONST to prevent
9592 them from being hoisted past the exception edge that will initialize
9593 its value in the landing pad. */
9594 ftype = build_function_type_list (ptr_type_node,
9595 integer_type_node, NULL_TREE);
9596 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9597 "__builtin_eh_pointer",
9598 ECF_PURE | ECF_NOTHROW | ECF_LEAF | ECF_TM_PURE);
9599
9600 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9601 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
9602 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9603 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9604
9605 ftype = build_function_type_list (void_type_node,
9606 integer_type_node, integer_type_node,
9607 NULL_TREE);
9608 local_define_builtin ("__builtin_eh_copy_values", ftype,
9609 BUILT_IN_EH_COPY_VALUES,
9610 "__builtin_eh_copy_values", ECF_NOTHROW);
9611
9612 /* Complex multiplication and division. These are handled as builtins
9613 rather than optabs because emit_library_call_value doesn't support
9614 complex. Further, we can do slightly better with folding these
9615 beasties if the real and complex parts of the arguments are separate. */
9616 {
9617 int mode;
9618
9619 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9620 {
9621 char mode_name_buf[4], *q;
9622 const char *p;
9623 enum built_in_function mcode, dcode;
9624 tree type, inner_type;
9625 const char *prefix = "__";
9626
9627 if (targetm.libfunc_gnu_prefix)
9628 prefix = "__gnu_";
9629
9630 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9631 if (type == NULL)
9632 continue;
9633 inner_type = TREE_TYPE (type);
9634
9635 ftype = build_function_type_list (type, inner_type, inner_type,
9636 inner_type, inner_type, NULL_TREE);
9637
9638 mcode = ((enum built_in_function)
9639 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9640 dcode = ((enum built_in_function)
9641 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9642
9643 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9644 *q = TOLOWER (*p);
9645 *q = '\0';
9646
9647 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
9648 NULL);
9649 local_define_builtin (built_in_names[mcode], ftype, mcode,
9650 built_in_names[mcode],
9651 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9652
9653 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
9654 NULL);
9655 local_define_builtin (built_in_names[dcode], ftype, dcode,
9656 built_in_names[dcode],
9657 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9658 }
9659 }
9660 }
9661
9662 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9663 better way.
9664
9665 If we requested a pointer to a vector, build up the pointers that
9666 we stripped off while looking for the inner type. Similarly for
9667 return values from functions.
9668
9669 The argument TYPE is the top of the chain, and BOTTOM is the
9670 new type which we will point to. */
9671
9672 tree
9673 reconstruct_complex_type (tree type, tree bottom)
9674 {
9675 tree inner, outer;
9676
9677 if (TREE_CODE (type) == POINTER_TYPE)
9678 {
9679 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9680 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9681 TYPE_REF_CAN_ALIAS_ALL (type));
9682 }
9683 else if (TREE_CODE (type) == REFERENCE_TYPE)
9684 {
9685 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9686 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9687 TYPE_REF_CAN_ALIAS_ALL (type));
9688 }
9689 else if (TREE_CODE (type) == ARRAY_TYPE)
9690 {
9691 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9692 outer = build_array_type (inner, TYPE_DOMAIN (type));
9693 }
9694 else if (TREE_CODE (type) == FUNCTION_TYPE)
9695 {
9696 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9697 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9698 }
9699 else if (TREE_CODE (type) == METHOD_TYPE)
9700 {
9701 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9702 /* The build_method_type_directly() routine prepends 'this' to argument list,
9703 so we must compensate by getting rid of it. */
9704 outer
9705 = build_method_type_directly
9706 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9707 inner,
9708 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9709 }
9710 else if (TREE_CODE (type) == OFFSET_TYPE)
9711 {
9712 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9713 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9714 }
9715 else
9716 return bottom;
9717
9718 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9719 TYPE_QUALS (type));
9720 }
9721
9722 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9723 the inner type. */
9724 tree
9725 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9726 {
9727 int nunits;
9728
9729 switch (GET_MODE_CLASS (mode))
9730 {
9731 case MODE_VECTOR_INT:
9732 case MODE_VECTOR_FLOAT:
9733 case MODE_VECTOR_FRACT:
9734 case MODE_VECTOR_UFRACT:
9735 case MODE_VECTOR_ACCUM:
9736 case MODE_VECTOR_UACCUM:
9737 nunits = GET_MODE_NUNITS (mode);
9738 break;
9739
9740 case MODE_INT:
9741 /* Check that there are no leftover bits. */
9742 gcc_assert (GET_MODE_BITSIZE (mode)
9743 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9744
9745 nunits = GET_MODE_BITSIZE (mode)
9746 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9747 break;
9748
9749 default:
9750 gcc_unreachable ();
9751 }
9752
9753 return make_vector_type (innertype, nunits, mode);
9754 }
9755
9756 /* Similarly, but takes the inner type and number of units, which must be
9757 a power of two. */
9758
9759 tree
9760 build_vector_type (tree innertype, int nunits)
9761 {
9762 return make_vector_type (innertype, nunits, VOIDmode);
9763 }
9764
9765 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
9766
9767 tree
9768 build_opaque_vector_type (tree innertype, int nunits)
9769 {
9770 tree t = make_vector_type (innertype, nunits, VOIDmode);
9771 tree cand;
9772 /* We always build the non-opaque variant before the opaque one,
9773 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
9774 cand = TYPE_NEXT_VARIANT (t);
9775 if (cand
9776 && TYPE_VECTOR_OPAQUE (cand)
9777 && check_qualified_type (cand, t, TYPE_QUALS (t)))
9778 return cand;
9779 /* Othewise build a variant type and make sure to queue it after
9780 the non-opaque type. */
9781 cand = build_distinct_type_copy (t);
9782 TYPE_VECTOR_OPAQUE (cand) = true;
9783 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
9784 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
9785 TYPE_NEXT_VARIANT (t) = cand;
9786 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
9787 return cand;
9788 }
9789
9790
9791 /* Given an initializer INIT, return TRUE if INIT is zero or some
9792 aggregate of zeros. Otherwise return FALSE. */
9793 bool
9794 initializer_zerop (const_tree init)
9795 {
9796 tree elt;
9797
9798 STRIP_NOPS (init);
9799
9800 switch (TREE_CODE (init))
9801 {
9802 case INTEGER_CST:
9803 return integer_zerop (init);
9804
9805 case REAL_CST:
9806 /* ??? Note that this is not correct for C4X float formats. There,
9807 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9808 negative exponent. */
9809 return real_zerop (init)
9810 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9811
9812 case FIXED_CST:
9813 return fixed_zerop (init);
9814
9815 case COMPLEX_CST:
9816 return integer_zerop (init)
9817 || (real_zerop (init)
9818 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9819 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9820
9821 case VECTOR_CST:
9822 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9823 if (!initializer_zerop (TREE_VALUE (elt)))
9824 return false;
9825 return true;
9826
9827 case CONSTRUCTOR:
9828 {
9829 unsigned HOST_WIDE_INT idx;
9830
9831 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9832 if (!initializer_zerop (elt))
9833 return false;
9834 return true;
9835 }
9836
9837 case STRING_CST:
9838 {
9839 int i;
9840
9841 /* We need to loop through all elements to handle cases like
9842 "\0" and "\0foobar". */
9843 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
9844 if (TREE_STRING_POINTER (init)[i] != '\0')
9845 return false;
9846
9847 return true;
9848 }
9849
9850 default:
9851 return false;
9852 }
9853 }
9854
9855 /* Build an empty statement at location LOC. */
9856
9857 tree
9858 build_empty_stmt (location_t loc)
9859 {
9860 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9861 SET_EXPR_LOCATION (t, loc);
9862 return t;
9863 }
9864
9865
9866 /* Build an OpenMP clause with code CODE. LOC is the location of the
9867 clause. */
9868
9869 tree
9870 build_omp_clause (location_t loc, enum omp_clause_code code)
9871 {
9872 tree t;
9873 int size, length;
9874
9875 length = omp_clause_num_ops[code];
9876 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9877
9878 record_node_allocation_statistics (OMP_CLAUSE, size);
9879
9880 t = ggc_alloc_tree_node (size);
9881 memset (t, 0, size);
9882 TREE_SET_CODE (t, OMP_CLAUSE);
9883 OMP_CLAUSE_SET_CODE (t, code);
9884 OMP_CLAUSE_LOCATION (t) = loc;
9885
9886 return t;
9887 }
9888
9889 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9890 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9891 Except for the CODE and operand count field, other storage for the
9892 object is initialized to zeros. */
9893
9894 tree
9895 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9896 {
9897 tree t;
9898 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9899
9900 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9901 gcc_assert (len >= 1);
9902
9903 record_node_allocation_statistics (code, length);
9904
9905 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
9906
9907 TREE_SET_CODE (t, code);
9908
9909 /* Can't use TREE_OPERAND to store the length because if checking is
9910 enabled, it will try to check the length before we store it. :-P */
9911 t->exp.operands[0] = build_int_cst (sizetype, len);
9912
9913 return t;
9914 }
9915
9916 /* Helper function for build_call_* functions; build a CALL_EXPR with
9917 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
9918 the argument slots. */
9919
9920 static tree
9921 build_call_1 (tree return_type, tree fn, int nargs)
9922 {
9923 tree t;
9924
9925 t = build_vl_exp (CALL_EXPR, nargs + 3);
9926 TREE_TYPE (t) = return_type;
9927 CALL_EXPR_FN (t) = fn;
9928 CALL_EXPR_STATIC_CHAIN (t) = NULL;
9929
9930 return t;
9931 }
9932
9933 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9934 FN and a null static chain slot. NARGS is the number of call arguments
9935 which are specified as "..." arguments. */
9936
9937 tree
9938 build_call_nary (tree return_type, tree fn, int nargs, ...)
9939 {
9940 tree ret;
9941 va_list args;
9942 va_start (args, nargs);
9943 ret = build_call_valist (return_type, fn, nargs, args);
9944 va_end (args);
9945 return ret;
9946 }
9947
9948 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9949 FN and a null static chain slot. NARGS is the number of call arguments
9950 which are specified as a va_list ARGS. */
9951
9952 tree
9953 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9954 {
9955 tree t;
9956 int i;
9957
9958 t = build_call_1 (return_type, fn, nargs);
9959 for (i = 0; i < nargs; i++)
9960 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9961 process_call_operands (t);
9962 return t;
9963 }
9964
9965 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9966 FN and a null static chain slot. NARGS is the number of call arguments
9967 which are specified as a tree array ARGS. */
9968
9969 tree
9970 build_call_array_loc (location_t loc, tree return_type, tree fn,
9971 int nargs, const tree *args)
9972 {
9973 tree t;
9974 int i;
9975
9976 t = build_call_1 (return_type, fn, nargs);
9977 for (i = 0; i < nargs; i++)
9978 CALL_EXPR_ARG (t, i) = args[i];
9979 process_call_operands (t);
9980 SET_EXPR_LOCATION (t, loc);
9981 return t;
9982 }
9983
9984 /* Like build_call_array, but takes a VEC. */
9985
9986 tree
9987 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9988 {
9989 tree ret, t;
9990 unsigned int ix;
9991
9992 ret = build_call_1 (return_type, fn, VEC_length (tree, args));
9993 FOR_EACH_VEC_ELT (tree, args, ix, t)
9994 CALL_EXPR_ARG (ret, ix) = t;
9995 process_call_operands (ret);
9996 return ret;
9997 }
9998
9999
10000 /* Returns true if it is possible to prove that the index of
10001 an array access REF (an ARRAY_REF expression) falls into the
10002 array bounds. */
10003
10004 bool
10005 in_array_bounds_p (tree ref)
10006 {
10007 tree idx = TREE_OPERAND (ref, 1);
10008 tree min, max;
10009
10010 if (TREE_CODE (idx) != INTEGER_CST)
10011 return false;
10012
10013 min = array_ref_low_bound (ref);
10014 max = array_ref_up_bound (ref);
10015 if (!min
10016 || !max
10017 || TREE_CODE (min) != INTEGER_CST
10018 || TREE_CODE (max) != INTEGER_CST)
10019 return false;
10020
10021 if (tree_int_cst_lt (idx, min)
10022 || tree_int_cst_lt (max, idx))
10023 return false;
10024
10025 return true;
10026 }
10027
10028 /* Returns true if it is possible to prove that the range of
10029 an array access REF (an ARRAY_RANGE_REF expression) falls
10030 into the array bounds. */
10031
10032 bool
10033 range_in_array_bounds_p (tree ref)
10034 {
10035 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
10036 tree range_min, range_max, min, max;
10037
10038 range_min = TYPE_MIN_VALUE (domain_type);
10039 range_max = TYPE_MAX_VALUE (domain_type);
10040 if (!range_min
10041 || !range_max
10042 || TREE_CODE (range_min) != INTEGER_CST
10043 || TREE_CODE (range_max) != INTEGER_CST)
10044 return false;
10045
10046 min = array_ref_low_bound (ref);
10047 max = array_ref_up_bound (ref);
10048 if (!min
10049 || !max
10050 || TREE_CODE (min) != INTEGER_CST
10051 || TREE_CODE (max) != INTEGER_CST)
10052 return false;
10053
10054 if (tree_int_cst_lt (range_min, min)
10055 || tree_int_cst_lt (max, range_max))
10056 return false;
10057
10058 return true;
10059 }
10060
10061 /* Return true if T (assumed to be a DECL) must be assigned a memory
10062 location. */
10063
10064 bool
10065 needs_to_live_in_memory (const_tree t)
10066 {
10067 if (TREE_CODE (t) == SSA_NAME)
10068 t = SSA_NAME_VAR (t);
10069
10070 return (TREE_ADDRESSABLE (t)
10071 || is_global_var (t)
10072 || (TREE_CODE (t) == RESULT_DECL
10073 && !DECL_BY_REFERENCE (t)
10074 && aggregate_value_p (t, current_function_decl)));
10075 }
10076
10077 /* Return value of a constant X and sign-extend it. */
10078
10079 HOST_WIDE_INT
10080 int_cst_value (const_tree x)
10081 {
10082 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10083 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
10084
10085 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10086 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10087 || TREE_INT_CST_HIGH (x) == -1);
10088
10089 if (bits < HOST_BITS_PER_WIDE_INT)
10090 {
10091 bool negative = ((val >> (bits - 1)) & 1) != 0;
10092 if (negative)
10093 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
10094 else
10095 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
10096 }
10097
10098 return val;
10099 }
10100
10101 /* Return value of a constant X and sign-extend it. */
10102
10103 HOST_WIDEST_INT
10104 widest_int_cst_value (const_tree x)
10105 {
10106 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10107 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
10108
10109 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
10110 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
10111 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
10112 << HOST_BITS_PER_WIDE_INT);
10113 #else
10114 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10115 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10116 || TREE_INT_CST_HIGH (x) == -1);
10117 #endif
10118
10119 if (bits < HOST_BITS_PER_WIDEST_INT)
10120 {
10121 bool negative = ((val >> (bits - 1)) & 1) != 0;
10122 if (negative)
10123 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
10124 else
10125 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
10126 }
10127
10128 return val;
10129 }
10130
10131 /* If TYPE is an integral type, return an equivalent type which is
10132 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
10133 return TYPE itself. */
10134
10135 tree
10136 signed_or_unsigned_type_for (int unsignedp, tree type)
10137 {
10138 tree t = type;
10139 if (POINTER_TYPE_P (type))
10140 {
10141 /* If the pointer points to the normal address space, use the
10142 size_type_node. Otherwise use an appropriate size for the pointer
10143 based on the named address space it points to. */
10144 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
10145 t = size_type_node;
10146 else
10147 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
10148 }
10149
10150 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
10151 return t;
10152
10153 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
10154 }
10155
10156 /* Returns unsigned variant of TYPE. */
10157
10158 tree
10159 unsigned_type_for (tree type)
10160 {
10161 return signed_or_unsigned_type_for (1, type);
10162 }
10163
10164 /* Returns signed variant of TYPE. */
10165
10166 tree
10167 signed_type_for (tree type)
10168 {
10169 return signed_or_unsigned_type_for (0, type);
10170 }
10171
10172 /* Returns the largest value obtainable by casting something in INNER type to
10173 OUTER type. */
10174
10175 tree
10176 upper_bound_in_type (tree outer, tree inner)
10177 {
10178 double_int high;
10179 unsigned int det = 0;
10180 unsigned oprec = TYPE_PRECISION (outer);
10181 unsigned iprec = TYPE_PRECISION (inner);
10182 unsigned prec;
10183
10184 /* Compute a unique number for every combination. */
10185 det |= (oprec > iprec) ? 4 : 0;
10186 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10187 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10188
10189 /* Determine the exponent to use. */
10190 switch (det)
10191 {
10192 case 0:
10193 case 1:
10194 /* oprec <= iprec, outer: signed, inner: don't care. */
10195 prec = oprec - 1;
10196 break;
10197 case 2:
10198 case 3:
10199 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10200 prec = oprec;
10201 break;
10202 case 4:
10203 /* oprec > iprec, outer: signed, inner: signed. */
10204 prec = iprec - 1;
10205 break;
10206 case 5:
10207 /* oprec > iprec, outer: signed, inner: unsigned. */
10208 prec = iprec;
10209 break;
10210 case 6:
10211 /* oprec > iprec, outer: unsigned, inner: signed. */
10212 prec = oprec;
10213 break;
10214 case 7:
10215 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10216 prec = iprec;
10217 break;
10218 default:
10219 gcc_unreachable ();
10220 }
10221
10222 /* Compute 2^^prec - 1. */
10223 if (prec <= HOST_BITS_PER_WIDE_INT)
10224 {
10225 high.high = 0;
10226 high.low = ((~(unsigned HOST_WIDE_INT) 0)
10227 >> (HOST_BITS_PER_WIDE_INT - prec));
10228 }
10229 else
10230 {
10231 high.high = ((~(unsigned HOST_WIDE_INT) 0)
10232 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
10233 high.low = ~(unsigned HOST_WIDE_INT) 0;
10234 }
10235
10236 return double_int_to_tree (outer, high);
10237 }
10238
10239 /* Returns the smallest value obtainable by casting something in INNER type to
10240 OUTER type. */
10241
10242 tree
10243 lower_bound_in_type (tree outer, tree inner)
10244 {
10245 double_int low;
10246 unsigned oprec = TYPE_PRECISION (outer);
10247 unsigned iprec = TYPE_PRECISION (inner);
10248
10249 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10250 and obtain 0. */
10251 if (TYPE_UNSIGNED (outer)
10252 /* If we are widening something of an unsigned type, OUTER type
10253 contains all values of INNER type. In particular, both INNER
10254 and OUTER types have zero in common. */
10255 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10256 low.low = low.high = 0;
10257 else
10258 {
10259 /* If we are widening a signed type to another signed type, we
10260 want to obtain -2^^(iprec-1). If we are keeping the
10261 precision or narrowing to a signed type, we want to obtain
10262 -2^(oprec-1). */
10263 unsigned prec = oprec > iprec ? iprec : oprec;
10264
10265 if (prec <= HOST_BITS_PER_WIDE_INT)
10266 {
10267 low.high = ~(unsigned HOST_WIDE_INT) 0;
10268 low.low = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
10269 }
10270 else
10271 {
10272 low.high = ((~(unsigned HOST_WIDE_INT) 0)
10273 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10274 low.low = 0;
10275 }
10276 }
10277
10278 return double_int_to_tree (outer, low);
10279 }
10280
10281 /* Return nonzero if two operands that are suitable for PHI nodes are
10282 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10283 SSA_NAME or invariant. Note that this is strictly an optimization.
10284 That is, callers of this function can directly call operand_equal_p
10285 and get the same result, only slower. */
10286
10287 int
10288 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10289 {
10290 if (arg0 == arg1)
10291 return 1;
10292 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10293 return 0;
10294 return operand_equal_p (arg0, arg1, 0);
10295 }
10296
10297 /* Returns number of zeros at the end of binary representation of X.
10298
10299 ??? Use ffs if available? */
10300
10301 tree
10302 num_ending_zeros (const_tree x)
10303 {
10304 unsigned HOST_WIDE_INT fr, nfr;
10305 unsigned num, abits;
10306 tree type = TREE_TYPE (x);
10307
10308 if (TREE_INT_CST_LOW (x) == 0)
10309 {
10310 num = HOST_BITS_PER_WIDE_INT;
10311 fr = TREE_INT_CST_HIGH (x);
10312 }
10313 else
10314 {
10315 num = 0;
10316 fr = TREE_INT_CST_LOW (x);
10317 }
10318
10319 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10320 {
10321 nfr = fr >> abits;
10322 if (nfr << abits == fr)
10323 {
10324 num += abits;
10325 fr = nfr;
10326 }
10327 }
10328
10329 if (num > TYPE_PRECISION (type))
10330 num = TYPE_PRECISION (type);
10331
10332 return build_int_cst_type (type, num);
10333 }
10334
10335
10336 #define WALK_SUBTREE(NODE) \
10337 do \
10338 { \
10339 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10340 if (result) \
10341 return result; \
10342 } \
10343 while (0)
10344
10345 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10346 be walked whenever a type is seen in the tree. Rest of operands and return
10347 value are as for walk_tree. */
10348
10349 static tree
10350 walk_type_fields (tree type, walk_tree_fn func, void *data,
10351 struct pointer_set_t *pset, walk_tree_lh lh)
10352 {
10353 tree result = NULL_TREE;
10354
10355 switch (TREE_CODE (type))
10356 {
10357 case POINTER_TYPE:
10358 case REFERENCE_TYPE:
10359 /* We have to worry about mutually recursive pointers. These can't
10360 be written in C. They can in Ada. It's pathological, but
10361 there's an ACATS test (c38102a) that checks it. Deal with this
10362 by checking if we're pointing to another pointer, that one
10363 points to another pointer, that one does too, and we have no htab.
10364 If so, get a hash table. We check three levels deep to avoid
10365 the cost of the hash table if we don't need one. */
10366 if (POINTER_TYPE_P (TREE_TYPE (type))
10367 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10368 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10369 && !pset)
10370 {
10371 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10372 func, data);
10373 if (result)
10374 return result;
10375
10376 break;
10377 }
10378
10379 /* ... fall through ... */
10380
10381 case COMPLEX_TYPE:
10382 WALK_SUBTREE (TREE_TYPE (type));
10383 break;
10384
10385 case METHOD_TYPE:
10386 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10387
10388 /* Fall through. */
10389
10390 case FUNCTION_TYPE:
10391 WALK_SUBTREE (TREE_TYPE (type));
10392 {
10393 tree arg;
10394
10395 /* We never want to walk into default arguments. */
10396 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10397 WALK_SUBTREE (TREE_VALUE (arg));
10398 }
10399 break;
10400
10401 case ARRAY_TYPE:
10402 /* Don't follow this nodes's type if a pointer for fear that
10403 we'll have infinite recursion. If we have a PSET, then we
10404 need not fear. */
10405 if (pset
10406 || (!POINTER_TYPE_P (TREE_TYPE (type))
10407 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10408 WALK_SUBTREE (TREE_TYPE (type));
10409 WALK_SUBTREE (TYPE_DOMAIN (type));
10410 break;
10411
10412 case OFFSET_TYPE:
10413 WALK_SUBTREE (TREE_TYPE (type));
10414 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10415 break;
10416
10417 default:
10418 break;
10419 }
10420
10421 return NULL_TREE;
10422 }
10423
10424 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10425 called with the DATA and the address of each sub-tree. If FUNC returns a
10426 non-NULL value, the traversal is stopped, and the value returned by FUNC
10427 is returned. If PSET is non-NULL it is used to record the nodes visited,
10428 and to avoid visiting a node more than once. */
10429
10430 tree
10431 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10432 struct pointer_set_t *pset, walk_tree_lh lh)
10433 {
10434 enum tree_code code;
10435 int walk_subtrees;
10436 tree result;
10437
10438 #define WALK_SUBTREE_TAIL(NODE) \
10439 do \
10440 { \
10441 tp = & (NODE); \
10442 goto tail_recurse; \
10443 } \
10444 while (0)
10445
10446 tail_recurse:
10447 /* Skip empty subtrees. */
10448 if (!*tp)
10449 return NULL_TREE;
10450
10451 /* Don't walk the same tree twice, if the user has requested
10452 that we avoid doing so. */
10453 if (pset && pointer_set_insert (pset, *tp))
10454 return NULL_TREE;
10455
10456 /* Call the function. */
10457 walk_subtrees = 1;
10458 result = (*func) (tp, &walk_subtrees, data);
10459
10460 /* If we found something, return it. */
10461 if (result)
10462 return result;
10463
10464 code = TREE_CODE (*tp);
10465
10466 /* Even if we didn't, FUNC may have decided that there was nothing
10467 interesting below this point in the tree. */
10468 if (!walk_subtrees)
10469 {
10470 /* But we still need to check our siblings. */
10471 if (code == TREE_LIST)
10472 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10473 else if (code == OMP_CLAUSE)
10474 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10475 else
10476 return NULL_TREE;
10477 }
10478
10479 if (lh)
10480 {
10481 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10482 if (result || !walk_subtrees)
10483 return result;
10484 }
10485
10486 switch (code)
10487 {
10488 case ERROR_MARK:
10489 case IDENTIFIER_NODE:
10490 case INTEGER_CST:
10491 case REAL_CST:
10492 case FIXED_CST:
10493 case VECTOR_CST:
10494 case STRING_CST:
10495 case BLOCK:
10496 case PLACEHOLDER_EXPR:
10497 case SSA_NAME:
10498 case FIELD_DECL:
10499 case RESULT_DECL:
10500 /* None of these have subtrees other than those already walked
10501 above. */
10502 break;
10503
10504 case TREE_LIST:
10505 WALK_SUBTREE (TREE_VALUE (*tp));
10506 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10507 break;
10508
10509 case TREE_VEC:
10510 {
10511 int len = TREE_VEC_LENGTH (*tp);
10512
10513 if (len == 0)
10514 break;
10515
10516 /* Walk all elements but the first. */
10517 while (--len)
10518 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10519
10520 /* Now walk the first one as a tail call. */
10521 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10522 }
10523
10524 case COMPLEX_CST:
10525 WALK_SUBTREE (TREE_REALPART (*tp));
10526 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10527
10528 case CONSTRUCTOR:
10529 {
10530 unsigned HOST_WIDE_INT idx;
10531 constructor_elt *ce;
10532
10533 for (idx = 0;
10534 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10535 idx++)
10536 WALK_SUBTREE (ce->value);
10537 }
10538 break;
10539
10540 case SAVE_EXPR:
10541 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10542
10543 case BIND_EXPR:
10544 {
10545 tree decl;
10546 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
10547 {
10548 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10549 into declarations that are just mentioned, rather than
10550 declared; they don't really belong to this part of the tree.
10551 And, we can see cycles: the initializer for a declaration
10552 can refer to the declaration itself. */
10553 WALK_SUBTREE (DECL_INITIAL (decl));
10554 WALK_SUBTREE (DECL_SIZE (decl));
10555 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10556 }
10557 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10558 }
10559
10560 case STATEMENT_LIST:
10561 {
10562 tree_stmt_iterator i;
10563 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10564 WALK_SUBTREE (*tsi_stmt_ptr (i));
10565 }
10566 break;
10567
10568 case OMP_CLAUSE:
10569 switch (OMP_CLAUSE_CODE (*tp))
10570 {
10571 case OMP_CLAUSE_PRIVATE:
10572 case OMP_CLAUSE_SHARED:
10573 case OMP_CLAUSE_FIRSTPRIVATE:
10574 case OMP_CLAUSE_COPYIN:
10575 case OMP_CLAUSE_COPYPRIVATE:
10576 case OMP_CLAUSE_FINAL:
10577 case OMP_CLAUSE_IF:
10578 case OMP_CLAUSE_NUM_THREADS:
10579 case OMP_CLAUSE_SCHEDULE:
10580 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10581 /* FALLTHRU */
10582
10583 case OMP_CLAUSE_NOWAIT:
10584 case OMP_CLAUSE_ORDERED:
10585 case OMP_CLAUSE_DEFAULT:
10586 case OMP_CLAUSE_UNTIED:
10587 case OMP_CLAUSE_MERGEABLE:
10588 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10589
10590 case OMP_CLAUSE_LASTPRIVATE:
10591 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10592 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10593 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10594
10595 case OMP_CLAUSE_COLLAPSE:
10596 {
10597 int i;
10598 for (i = 0; i < 3; i++)
10599 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10600 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10601 }
10602
10603 case OMP_CLAUSE_REDUCTION:
10604 {
10605 int i;
10606 for (i = 0; i < 4; i++)
10607 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10608 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10609 }
10610
10611 default:
10612 gcc_unreachable ();
10613 }
10614 break;
10615
10616 case TARGET_EXPR:
10617 {
10618 int i, len;
10619
10620 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10621 But, we only want to walk once. */
10622 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10623 for (i = 0; i < len; ++i)
10624 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10625 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10626 }
10627
10628 case DECL_EXPR:
10629 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10630 defining. We only want to walk into these fields of a type in this
10631 case and not in the general case of a mere reference to the type.
10632
10633 The criterion is as follows: if the field can be an expression, it
10634 must be walked only here. This should be in keeping with the fields
10635 that are directly gimplified in gimplify_type_sizes in order for the
10636 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10637 variable-sized types.
10638
10639 Note that DECLs get walked as part of processing the BIND_EXPR. */
10640 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10641 {
10642 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10643 if (TREE_CODE (*type_p) == ERROR_MARK)
10644 return NULL_TREE;
10645
10646 /* Call the function for the type. See if it returns anything or
10647 doesn't want us to continue. If we are to continue, walk both
10648 the normal fields and those for the declaration case. */
10649 result = (*func) (type_p, &walk_subtrees, data);
10650 if (result || !walk_subtrees)
10651 return result;
10652
10653 /* But do not walk a pointed-to type since it may itself need to
10654 be walked in the declaration case if it isn't anonymous. */
10655 if (!POINTER_TYPE_P (*type_p))
10656 {
10657 result = walk_type_fields (*type_p, func, data, pset, lh);
10658 if (result)
10659 return result;
10660 }
10661
10662 /* If this is a record type, also walk the fields. */
10663 if (RECORD_OR_UNION_TYPE_P (*type_p))
10664 {
10665 tree field;
10666
10667 for (field = TYPE_FIELDS (*type_p); field;
10668 field = DECL_CHAIN (field))
10669 {
10670 /* We'd like to look at the type of the field, but we can
10671 easily get infinite recursion. So assume it's pointed
10672 to elsewhere in the tree. Also, ignore things that
10673 aren't fields. */
10674 if (TREE_CODE (field) != FIELD_DECL)
10675 continue;
10676
10677 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10678 WALK_SUBTREE (DECL_SIZE (field));
10679 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10680 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10681 WALK_SUBTREE (DECL_QUALIFIER (field));
10682 }
10683 }
10684
10685 /* Same for scalar types. */
10686 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10687 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10688 || TREE_CODE (*type_p) == INTEGER_TYPE
10689 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10690 || TREE_CODE (*type_p) == REAL_TYPE)
10691 {
10692 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10693 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10694 }
10695
10696 WALK_SUBTREE (TYPE_SIZE (*type_p));
10697 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10698 }
10699 /* FALLTHRU */
10700
10701 default:
10702 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10703 {
10704 int i, len;
10705
10706 /* Walk over all the sub-trees of this operand. */
10707 len = TREE_OPERAND_LENGTH (*tp);
10708
10709 /* Go through the subtrees. We need to do this in forward order so
10710 that the scope of a FOR_EXPR is handled properly. */
10711 if (len)
10712 {
10713 for (i = 0; i < len - 1; ++i)
10714 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10715 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10716 }
10717 }
10718 /* If this is a type, walk the needed fields in the type. */
10719 else if (TYPE_P (*tp))
10720 return walk_type_fields (*tp, func, data, pset, lh);
10721 break;
10722 }
10723
10724 /* We didn't find what we were looking for. */
10725 return NULL_TREE;
10726
10727 #undef WALK_SUBTREE_TAIL
10728 }
10729 #undef WALK_SUBTREE
10730
10731 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10732
10733 tree
10734 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10735 walk_tree_lh lh)
10736 {
10737 tree result;
10738 struct pointer_set_t *pset;
10739
10740 pset = pointer_set_create ();
10741 result = walk_tree_1 (tp, func, data, pset, lh);
10742 pointer_set_destroy (pset);
10743 return result;
10744 }
10745
10746
10747 tree *
10748 tree_block (tree t)
10749 {
10750 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10751
10752 if (IS_EXPR_CODE_CLASS (c))
10753 return &t->exp.block;
10754 gcc_unreachable ();
10755 return NULL;
10756 }
10757
10758 /* Create a nameless artificial label and put it in the current
10759 function context. The label has a location of LOC. Returns the
10760 newly created label. */
10761
10762 tree
10763 create_artificial_label (location_t loc)
10764 {
10765 tree lab = build_decl (loc,
10766 LABEL_DECL, NULL_TREE, void_type_node);
10767
10768 DECL_ARTIFICIAL (lab) = 1;
10769 DECL_IGNORED_P (lab) = 1;
10770 DECL_CONTEXT (lab) = current_function_decl;
10771 return lab;
10772 }
10773
10774 /* Given a tree, try to return a useful variable name that we can use
10775 to prefix a temporary that is being assigned the value of the tree.
10776 I.E. given <temp> = &A, return A. */
10777
10778 const char *
10779 get_name (tree t)
10780 {
10781 tree stripped_decl;
10782
10783 stripped_decl = t;
10784 STRIP_NOPS (stripped_decl);
10785 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10786 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10787 else
10788 {
10789 switch (TREE_CODE (stripped_decl))
10790 {
10791 case ADDR_EXPR:
10792 return get_name (TREE_OPERAND (stripped_decl, 0));
10793 default:
10794 return NULL;
10795 }
10796 }
10797 }
10798
10799 /* Return true if TYPE has a variable argument list. */
10800
10801 bool
10802 stdarg_p (const_tree fntype)
10803 {
10804 function_args_iterator args_iter;
10805 tree n = NULL_TREE, t;
10806
10807 if (!fntype)
10808 return false;
10809
10810 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10811 {
10812 n = t;
10813 }
10814
10815 return n != NULL_TREE && n != void_type_node;
10816 }
10817
10818 /* Return true if TYPE has a prototype. */
10819
10820 bool
10821 prototype_p (tree fntype)
10822 {
10823 tree t;
10824
10825 gcc_assert (fntype != NULL_TREE);
10826
10827 t = TYPE_ARG_TYPES (fntype);
10828 return (t != NULL_TREE);
10829 }
10830
10831 /* If BLOCK is inlined from an __attribute__((__artificial__))
10832 routine, return pointer to location from where it has been
10833 called. */
10834 location_t *
10835 block_nonartificial_location (tree block)
10836 {
10837 location_t *ret = NULL;
10838
10839 while (block && TREE_CODE (block) == BLOCK
10840 && BLOCK_ABSTRACT_ORIGIN (block))
10841 {
10842 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10843
10844 while (TREE_CODE (ao) == BLOCK
10845 && BLOCK_ABSTRACT_ORIGIN (ao)
10846 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10847 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10848
10849 if (TREE_CODE (ao) == FUNCTION_DECL)
10850 {
10851 /* If AO is an artificial inline, point RET to the
10852 call site locus at which it has been inlined and continue
10853 the loop, in case AO's caller is also an artificial
10854 inline. */
10855 if (DECL_DECLARED_INLINE_P (ao)
10856 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10857 ret = &BLOCK_SOURCE_LOCATION (block);
10858 else
10859 break;
10860 }
10861 else if (TREE_CODE (ao) != BLOCK)
10862 break;
10863
10864 block = BLOCK_SUPERCONTEXT (block);
10865 }
10866 return ret;
10867 }
10868
10869
10870 /* If EXP is inlined from an __attribute__((__artificial__))
10871 function, return the location of the original call expression. */
10872
10873 location_t
10874 tree_nonartificial_location (tree exp)
10875 {
10876 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10877
10878 if (loc)
10879 return *loc;
10880 else
10881 return EXPR_LOCATION (exp);
10882 }
10883
10884
10885 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10886 nodes. */
10887
10888 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10889
10890 static hashval_t
10891 cl_option_hash_hash (const void *x)
10892 {
10893 const_tree const t = (const_tree) x;
10894 const char *p;
10895 size_t i;
10896 size_t len = 0;
10897 hashval_t hash = 0;
10898
10899 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10900 {
10901 p = (const char *)TREE_OPTIMIZATION (t);
10902 len = sizeof (struct cl_optimization);
10903 }
10904
10905 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10906 {
10907 p = (const char *)TREE_TARGET_OPTION (t);
10908 len = sizeof (struct cl_target_option);
10909 }
10910
10911 else
10912 gcc_unreachable ();
10913
10914 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10915 something else. */
10916 for (i = 0; i < len; i++)
10917 if (p[i])
10918 hash = (hash << 4) ^ ((i << 2) | p[i]);
10919
10920 return hash;
10921 }
10922
10923 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10924 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10925 same. */
10926
10927 static int
10928 cl_option_hash_eq (const void *x, const void *y)
10929 {
10930 const_tree const xt = (const_tree) x;
10931 const_tree const yt = (const_tree) y;
10932 const char *xp;
10933 const char *yp;
10934 size_t len;
10935
10936 if (TREE_CODE (xt) != TREE_CODE (yt))
10937 return 0;
10938
10939 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10940 {
10941 xp = (const char *)TREE_OPTIMIZATION (xt);
10942 yp = (const char *)TREE_OPTIMIZATION (yt);
10943 len = sizeof (struct cl_optimization);
10944 }
10945
10946 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10947 {
10948 xp = (const char *)TREE_TARGET_OPTION (xt);
10949 yp = (const char *)TREE_TARGET_OPTION (yt);
10950 len = sizeof (struct cl_target_option);
10951 }
10952
10953 else
10954 gcc_unreachable ();
10955
10956 return (memcmp (xp, yp, len) == 0);
10957 }
10958
10959 /* Build an OPTIMIZATION_NODE based on the current options. */
10960
10961 tree
10962 build_optimization_node (void)
10963 {
10964 tree t;
10965 void **slot;
10966
10967 /* Use the cache of optimization nodes. */
10968
10969 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
10970 &global_options);
10971
10972 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10973 t = (tree) *slot;
10974 if (!t)
10975 {
10976 /* Insert this one into the hash table. */
10977 t = cl_optimization_node;
10978 *slot = t;
10979
10980 /* Make a new node for next time round. */
10981 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10982 }
10983
10984 return t;
10985 }
10986
10987 /* Build a TARGET_OPTION_NODE based on the current options. */
10988
10989 tree
10990 build_target_option_node (void)
10991 {
10992 tree t;
10993 void **slot;
10994
10995 /* Use the cache of optimization nodes. */
10996
10997 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
10998 &global_options);
10999
11000 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
11001 t = (tree) *slot;
11002 if (!t)
11003 {
11004 /* Insert this one into the hash table. */
11005 t = cl_target_option_node;
11006 *slot = t;
11007
11008 /* Make a new node for next time round. */
11009 cl_target_option_node = make_node (TARGET_OPTION_NODE);
11010 }
11011
11012 return t;
11013 }
11014
11015 /* Determine the "ultimate origin" of a block. The block may be an inlined
11016 instance of an inlined instance of a block which is local to an inline
11017 function, so we have to trace all of the way back through the origin chain
11018 to find out what sort of node actually served as the original seed for the
11019 given block. */
11020
11021 tree
11022 block_ultimate_origin (const_tree block)
11023 {
11024 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
11025
11026 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
11027 nodes in the function to point to themselves; ignore that if
11028 we're trying to output the abstract instance of this function. */
11029 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
11030 return NULL_TREE;
11031
11032 if (immediate_origin == NULL_TREE)
11033 return NULL_TREE;
11034 else
11035 {
11036 tree ret_val;
11037 tree lookahead = immediate_origin;
11038
11039 do
11040 {
11041 ret_val = lookahead;
11042 lookahead = (TREE_CODE (ret_val) == BLOCK
11043 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
11044 }
11045 while (lookahead != NULL && lookahead != ret_val);
11046
11047 /* The block's abstract origin chain may not be the *ultimate* origin of
11048 the block. It could lead to a DECL that has an abstract origin set.
11049 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
11050 will give us if it has one). Note that DECL's abstract origins are
11051 supposed to be the most distant ancestor (or so decl_ultimate_origin
11052 claims), so we don't need to loop following the DECL origins. */
11053 if (DECL_P (ret_val))
11054 return DECL_ORIGIN (ret_val);
11055
11056 return ret_val;
11057 }
11058 }
11059
11060 /* Return true if T1 and T2 are equivalent lists. */
11061
11062 bool
11063 list_equal_p (const_tree t1, const_tree t2)
11064 {
11065 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
11066 if (TREE_VALUE (t1) != TREE_VALUE (t2))
11067 return false;
11068 return !t1 && !t2;
11069 }
11070
11071 /* Return true iff conversion in EXP generates no instruction. Mark
11072 it inline so that we fully inline into the stripping functions even
11073 though we have two uses of this function. */
11074
11075 static inline bool
11076 tree_nop_conversion (const_tree exp)
11077 {
11078 tree outer_type, inner_type;
11079
11080 if (!CONVERT_EXPR_P (exp)
11081 && TREE_CODE (exp) != NON_LVALUE_EXPR)
11082 return false;
11083 if (TREE_OPERAND (exp, 0) == error_mark_node)
11084 return false;
11085
11086 outer_type = TREE_TYPE (exp);
11087 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11088
11089 if (!inner_type)
11090 return false;
11091
11092 /* Use precision rather then machine mode when we can, which gives
11093 the correct answer even for submode (bit-field) types. */
11094 if ((INTEGRAL_TYPE_P (outer_type)
11095 || POINTER_TYPE_P (outer_type)
11096 || TREE_CODE (outer_type) == OFFSET_TYPE)
11097 && (INTEGRAL_TYPE_P (inner_type)
11098 || POINTER_TYPE_P (inner_type)
11099 || TREE_CODE (inner_type) == OFFSET_TYPE))
11100 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
11101
11102 /* Otherwise fall back on comparing machine modes (e.g. for
11103 aggregate types, floats). */
11104 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
11105 }
11106
11107 /* Return true iff conversion in EXP generates no instruction. Don't
11108 consider conversions changing the signedness. */
11109
11110 static bool
11111 tree_sign_nop_conversion (const_tree exp)
11112 {
11113 tree outer_type, inner_type;
11114
11115 if (!tree_nop_conversion (exp))
11116 return false;
11117
11118 outer_type = TREE_TYPE (exp);
11119 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11120
11121 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11122 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11123 }
11124
11125 /* Strip conversions from EXP according to tree_nop_conversion and
11126 return the resulting expression. */
11127
11128 tree
11129 tree_strip_nop_conversions (tree exp)
11130 {
11131 while (tree_nop_conversion (exp))
11132 exp = TREE_OPERAND (exp, 0);
11133 return exp;
11134 }
11135
11136 /* Strip conversions from EXP according to tree_sign_nop_conversion
11137 and return the resulting expression. */
11138
11139 tree
11140 tree_strip_sign_nop_conversions (tree exp)
11141 {
11142 while (tree_sign_nop_conversion (exp))
11143 exp = TREE_OPERAND (exp, 0);
11144 return exp;
11145 }
11146
11147 /* Strip out all handled components that produce invariant
11148 offsets. */
11149
11150 const_tree
11151 strip_invariant_refs (const_tree op)
11152 {
11153 while (handled_component_p (op))
11154 {
11155 switch (TREE_CODE (op))
11156 {
11157 case ARRAY_REF:
11158 case ARRAY_RANGE_REF:
11159 if (!is_gimple_constant (TREE_OPERAND (op, 1))
11160 || TREE_OPERAND (op, 2) != NULL_TREE
11161 || TREE_OPERAND (op, 3) != NULL_TREE)
11162 return NULL;
11163 break;
11164
11165 case COMPONENT_REF:
11166 if (TREE_OPERAND (op, 2) != NULL_TREE)
11167 return NULL;
11168 break;
11169
11170 default:;
11171 }
11172 op = TREE_OPERAND (op, 0);
11173 }
11174
11175 return op;
11176 }
11177
11178 static GTY(()) tree gcc_eh_personality_decl;
11179
11180 /* Return the GCC personality function decl. */
11181
11182 tree
11183 lhd_gcc_personality (void)
11184 {
11185 if (!gcc_eh_personality_decl)
11186 gcc_eh_personality_decl = build_personality_function ("gcc");
11187 return gcc_eh_personality_decl;
11188 }
11189
11190 /* Try to find a base info of BINFO that would have its field decl at offset
11191 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
11192 found, return, otherwise return NULL_TREE. */
11193
11194 tree
11195 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
11196 {
11197 tree type = BINFO_TYPE (binfo);
11198
11199 while (true)
11200 {
11201 HOST_WIDE_INT pos, size;
11202 tree fld;
11203 int i;
11204
11205 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (expected_type))
11206 return binfo;
11207 if (offset < 0)
11208 return NULL_TREE;
11209
11210 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
11211 {
11212 if (TREE_CODE (fld) != FIELD_DECL)
11213 continue;
11214
11215 pos = int_bit_position (fld);
11216 size = tree_low_cst (DECL_SIZE (fld), 1);
11217 if (pos <= offset && (pos + size) > offset)
11218 break;
11219 }
11220 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
11221 return NULL_TREE;
11222
11223 if (!DECL_ARTIFICIAL (fld))
11224 {
11225 binfo = TYPE_BINFO (TREE_TYPE (fld));
11226 if (!binfo)
11227 return NULL_TREE;
11228 }
11229 /* Offset 0 indicates the primary base, whose vtable contents are
11230 represented in the binfo for the derived class. */
11231 else if (offset != 0)
11232 {
11233 tree base_binfo, found_binfo = NULL_TREE;
11234 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
11235 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
11236 {
11237 found_binfo = base_binfo;
11238 break;
11239 }
11240 if (!found_binfo)
11241 return NULL_TREE;
11242 binfo = found_binfo;
11243 }
11244
11245 type = TREE_TYPE (fld);
11246 offset -= pos;
11247 }
11248 }
11249
11250 /* Returns true if X is a typedef decl. */
11251
11252 bool
11253 is_typedef_decl (tree x)
11254 {
11255 return (x && TREE_CODE (x) == TYPE_DECL
11256 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
11257 }
11258
11259 /* Returns true iff TYPE is a type variant created for a typedef. */
11260
11261 bool
11262 typedef_variant_p (tree type)
11263 {
11264 return is_typedef_decl (TYPE_NAME (type));
11265 }
11266
11267 /* Warn about a use of an identifier which was marked deprecated. */
11268 void
11269 warn_deprecated_use (tree node, tree attr)
11270 {
11271 const char *msg;
11272
11273 if (node == 0 || !warn_deprecated_decl)
11274 return;
11275
11276 if (!attr)
11277 {
11278 if (DECL_P (node))
11279 attr = DECL_ATTRIBUTES (node);
11280 else if (TYPE_P (node))
11281 {
11282 tree decl = TYPE_STUB_DECL (node);
11283 if (decl)
11284 attr = lookup_attribute ("deprecated",
11285 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
11286 }
11287 }
11288
11289 if (attr)
11290 attr = lookup_attribute ("deprecated", attr);
11291
11292 if (attr)
11293 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
11294 else
11295 msg = NULL;
11296
11297 if (DECL_P (node))
11298 {
11299 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
11300 if (msg)
11301 warning (OPT_Wdeprecated_declarations,
11302 "%qD is deprecated (declared at %s:%d): %s",
11303 node, xloc.file, xloc.line, msg);
11304 else
11305 warning (OPT_Wdeprecated_declarations,
11306 "%qD is deprecated (declared at %s:%d)",
11307 node, xloc.file, xloc.line);
11308 }
11309 else if (TYPE_P (node))
11310 {
11311 tree what = NULL_TREE;
11312 tree decl = TYPE_STUB_DECL (node);
11313
11314 if (TYPE_NAME (node))
11315 {
11316 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
11317 what = TYPE_NAME (node);
11318 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
11319 && DECL_NAME (TYPE_NAME (node)))
11320 what = DECL_NAME (TYPE_NAME (node));
11321 }
11322
11323 if (decl)
11324 {
11325 expanded_location xloc
11326 = expand_location (DECL_SOURCE_LOCATION (decl));
11327 if (what)
11328 {
11329 if (msg)
11330 warning (OPT_Wdeprecated_declarations,
11331 "%qE is deprecated (declared at %s:%d): %s",
11332 what, xloc.file, xloc.line, msg);
11333 else
11334 warning (OPT_Wdeprecated_declarations,
11335 "%qE is deprecated (declared at %s:%d)", what,
11336 xloc.file, xloc.line);
11337 }
11338 else
11339 {
11340 if (msg)
11341 warning (OPT_Wdeprecated_declarations,
11342 "type is deprecated (declared at %s:%d): %s",
11343 xloc.file, xloc.line, msg);
11344 else
11345 warning (OPT_Wdeprecated_declarations,
11346 "type is deprecated (declared at %s:%d)",
11347 xloc.file, xloc.line);
11348 }
11349 }
11350 else
11351 {
11352 if (what)
11353 {
11354 if (msg)
11355 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
11356 what, msg);
11357 else
11358 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
11359 }
11360 else
11361 {
11362 if (msg)
11363 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
11364 msg);
11365 else
11366 warning (OPT_Wdeprecated_declarations, "type is deprecated");
11367 }
11368 }
11369 }
11370 }
11371
11372 #include "gt-tree.h"