764a0f422dfcd108e03c22318bc5ba5c916d9d18
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h"
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "filenames.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-inline.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-flow.h"
52 #include "params.h"
53 #include "pointer-set.h"
54 #include "tree-pass.h"
55 #include "langhooks-def.h"
56 #include "diagnostic.h"
57 #include "tree-diagnostic.h"
58 #include "tree-pretty-print.h"
59 #include "cgraph.h"
60 #include "timevar.h"
61 #include "except.h"
62 #include "debug.h"
63 #include "intl.h"
64
65 /* Tree code classes. */
66
67 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
68 #define END_OF_BASE_TREE_CODES tcc_exceptional,
69
70 const enum tree_code_class tree_code_type[] = {
71 #include "all-tree.def"
72 };
73
74 #undef DEFTREECODE
75 #undef END_OF_BASE_TREE_CODES
76
77 /* Table indexed by tree code giving number of expression
78 operands beyond the fixed part of the node structure.
79 Not used for types or decls. */
80
81 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
82 #define END_OF_BASE_TREE_CODES 0,
83
84 const unsigned char tree_code_length[] = {
85 #include "all-tree.def"
86 };
87
88 #undef DEFTREECODE
89 #undef END_OF_BASE_TREE_CODES
90
91 /* Names of tree components.
92 Used for printing out the tree and error messages. */
93 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
94 #define END_OF_BASE_TREE_CODES "@dummy",
95
96 const char *const tree_code_name[] = {
97 #include "all-tree.def"
98 };
99
100 #undef DEFTREECODE
101 #undef END_OF_BASE_TREE_CODES
102
103 /* Each tree code class has an associated string representation.
104 These must correspond to the tree_code_class entries. */
105
106 const char *const tree_code_class_strings[] =
107 {
108 "exceptional",
109 "constant",
110 "type",
111 "declaration",
112 "reference",
113 "comparison",
114 "unary",
115 "binary",
116 "statement",
117 "vl_exp",
118 "expression"
119 };
120
121 /* obstack.[ch] explicitly declined to prototype this. */
122 extern int _obstack_allocated_p (struct obstack *h, void *obj);
123
124 #ifdef GATHER_STATISTICS
125 /* Statistics-gathering stuff. */
126
127 static int tree_code_counts[MAX_TREE_CODES];
128 int tree_node_counts[(int) all_kinds];
129 int tree_node_sizes[(int) all_kinds];
130
131 /* Keep in sync with tree.h:enum tree_node_kind. */
132 static const char * const tree_node_kind_names[] = {
133 "decls",
134 "types",
135 "blocks",
136 "stmts",
137 "refs",
138 "exprs",
139 "constants",
140 "identifiers",
141 "vecs",
142 "binfos",
143 "ssa names",
144 "constructors",
145 "random kinds",
146 "lang_decl kinds",
147 "lang_type kinds",
148 "omp clauses",
149 };
150 #endif /* GATHER_STATISTICS */
151
152 /* Unique id for next decl created. */
153 static GTY(()) int next_decl_uid;
154 /* Unique id for next type created. */
155 static GTY(()) int next_type_uid = 1;
156 /* Unique id for next debug decl created. Use negative numbers,
157 to catch erroneous uses. */
158 static GTY(()) int next_debug_decl_uid;
159
160 /* Since we cannot rehash a type after it is in the table, we have to
161 keep the hash code. */
162
163 struct GTY(()) type_hash {
164 unsigned long hash;
165 tree type;
166 };
167
168 /* Initial size of the hash table (rounded to next prime). */
169 #define TYPE_HASH_INITIAL_SIZE 1000
170
171 /* Now here is the hash table. When recording a type, it is added to
172 the slot whose index is the hash code. Note that the hash table is
173 used for several kinds of types (function types, array types and
174 array index range types, for now). While all these live in the
175 same table, they are completely independent, and the hash code is
176 computed differently for each of these. */
177
178 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
179 htab_t type_hash_table;
180
181 /* Hash table and temporary node for larger integer const values. */
182 static GTY (()) tree int_cst_node;
183 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
184 htab_t int_cst_hash_table;
185
186 /* Hash table for optimization flags and target option flags. Use the same
187 hash table for both sets of options. Nodes for building the current
188 optimization and target option nodes. The assumption is most of the time
189 the options created will already be in the hash table, so we avoid
190 allocating and freeing up a node repeatably. */
191 static GTY (()) tree cl_optimization_node;
192 static GTY (()) tree cl_target_option_node;
193 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
194 htab_t cl_option_hash_table;
195
196 /* General tree->tree mapping structure for use in hash tables. */
197
198
199 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
200 htab_t debug_expr_for_decl;
201
202 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
203 htab_t value_expr_for_decl;
204
205 static GTY ((if_marked ("tree_priority_map_marked_p"),
206 param_is (struct tree_priority_map)))
207 htab_t init_priority_for_decl;
208
209 static void set_type_quals (tree, int);
210 static int type_hash_eq (const void *, const void *);
211 static hashval_t type_hash_hash (const void *);
212 static hashval_t int_cst_hash_hash (const void *);
213 static int int_cst_hash_eq (const void *, const void *);
214 static hashval_t cl_option_hash_hash (const void *);
215 static int cl_option_hash_eq (const void *, const void *);
216 static void print_type_hash_statistics (void);
217 static void print_debug_expr_statistics (void);
218 static void print_value_expr_statistics (void);
219 static int type_hash_marked_p (const void *);
220 static unsigned int type_hash_list (const_tree, hashval_t);
221 static unsigned int attribute_hash_list (const_tree, hashval_t);
222
223 tree global_trees[TI_MAX];
224 tree integer_types[itk_none];
225
226 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
227
228 /* Number of operands for each OpenMP clause. */
229 unsigned const char omp_clause_num_ops[] =
230 {
231 0, /* OMP_CLAUSE_ERROR */
232 1, /* OMP_CLAUSE_PRIVATE */
233 1, /* OMP_CLAUSE_SHARED */
234 1, /* OMP_CLAUSE_FIRSTPRIVATE */
235 2, /* OMP_CLAUSE_LASTPRIVATE */
236 4, /* OMP_CLAUSE_REDUCTION */
237 1, /* OMP_CLAUSE_COPYIN */
238 1, /* OMP_CLAUSE_COPYPRIVATE */
239 1, /* OMP_CLAUSE_IF */
240 1, /* OMP_CLAUSE_NUM_THREADS */
241 1, /* OMP_CLAUSE_SCHEDULE */
242 0, /* OMP_CLAUSE_NOWAIT */
243 0, /* OMP_CLAUSE_ORDERED */
244 0, /* OMP_CLAUSE_DEFAULT */
245 3, /* OMP_CLAUSE_COLLAPSE */
246 0 /* OMP_CLAUSE_UNTIED */
247 };
248
249 const char * const omp_clause_code_name[] =
250 {
251 "error_clause",
252 "private",
253 "shared",
254 "firstprivate",
255 "lastprivate",
256 "reduction",
257 "copyin",
258 "copyprivate",
259 "if",
260 "num_threads",
261 "schedule",
262 "nowait",
263 "ordered",
264 "default",
265 "collapse",
266 "untied"
267 };
268
269
270 /* Return the tree node structure used by tree code CODE. */
271
272 static inline enum tree_node_structure_enum
273 tree_node_structure_for_code (enum tree_code code)
274 {
275 switch (TREE_CODE_CLASS (code))
276 {
277 case tcc_declaration:
278 {
279 switch (code)
280 {
281 case FIELD_DECL:
282 return TS_FIELD_DECL;
283 case PARM_DECL:
284 return TS_PARM_DECL;
285 case VAR_DECL:
286 return TS_VAR_DECL;
287 case LABEL_DECL:
288 return TS_LABEL_DECL;
289 case RESULT_DECL:
290 return TS_RESULT_DECL;
291 case DEBUG_EXPR_DECL:
292 return TS_DECL_WRTL;
293 case CONST_DECL:
294 return TS_CONST_DECL;
295 case TYPE_DECL:
296 return TS_TYPE_DECL;
297 case FUNCTION_DECL:
298 return TS_FUNCTION_DECL;
299 case TRANSLATION_UNIT_DECL:
300 return TS_TRANSLATION_UNIT_DECL;
301 default:
302 return TS_DECL_NON_COMMON;
303 }
304 }
305 case tcc_type:
306 return TS_TYPE_NON_COMMON;
307 case tcc_reference:
308 case tcc_comparison:
309 case tcc_unary:
310 case tcc_binary:
311 case tcc_expression:
312 case tcc_statement:
313 case tcc_vl_exp:
314 return TS_EXP;
315 default: /* tcc_constant and tcc_exceptional */
316 break;
317 }
318 switch (code)
319 {
320 /* tcc_constant cases. */
321 case INTEGER_CST: return TS_INT_CST;
322 case REAL_CST: return TS_REAL_CST;
323 case FIXED_CST: return TS_FIXED_CST;
324 case COMPLEX_CST: return TS_COMPLEX;
325 case VECTOR_CST: return TS_VECTOR;
326 case STRING_CST: return TS_STRING;
327 /* tcc_exceptional cases. */
328 case ERROR_MARK: return TS_COMMON;
329 case IDENTIFIER_NODE: return TS_IDENTIFIER;
330 case TREE_LIST: return TS_LIST;
331 case TREE_VEC: return TS_VEC;
332 case SSA_NAME: return TS_SSA_NAME;
333 case PLACEHOLDER_EXPR: return TS_COMMON;
334 case STATEMENT_LIST: return TS_STATEMENT_LIST;
335 case BLOCK: return TS_BLOCK;
336 case CONSTRUCTOR: return TS_CONSTRUCTOR;
337 case TREE_BINFO: return TS_BINFO;
338 case OMP_CLAUSE: return TS_OMP_CLAUSE;
339 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
340 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
341
342 default:
343 gcc_unreachable ();
344 }
345 }
346
347
348 /* Initialize tree_contains_struct to describe the hierarchy of tree
349 nodes. */
350
351 static void
352 initialize_tree_contains_struct (void)
353 {
354 unsigned i;
355
356 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
357 {
358 enum tree_code code;
359 enum tree_node_structure_enum ts_code;
360
361 code = (enum tree_code) i;
362 ts_code = tree_node_structure_for_code (code);
363
364 /* Mark the TS structure itself. */
365 tree_contains_struct[code][ts_code] = 1;
366
367 /* Mark all the structures that TS is derived from. */
368 switch (ts_code)
369 {
370 case TS_TYPED:
371 case TS_BLOCK:
372 MARK_TS_BASE (code);
373 break;
374
375 case TS_COMMON:
376 case TS_INT_CST:
377 case TS_REAL_CST:
378 case TS_FIXED_CST:
379 case TS_VECTOR:
380 case TS_STRING:
381 case TS_COMPLEX:
382 case TS_SSA_NAME:
383 case TS_CONSTRUCTOR:
384 case TS_EXP:
385 case TS_STATEMENT_LIST:
386 MARK_TS_TYPED (code);
387 break;
388
389 case TS_IDENTIFIER:
390 case TS_DECL_MINIMAL:
391 case TS_TYPE_COMMON:
392 case TS_LIST:
393 case TS_VEC:
394 case TS_BINFO:
395 case TS_OMP_CLAUSE:
396 case TS_OPTIMIZATION:
397 case TS_TARGET_OPTION:
398 MARK_TS_COMMON (code);
399 break;
400
401 case TS_TYPE_WITH_LANG_SPECIFIC:
402 MARK_TS_TYPE_COMMON (code);
403 break;
404
405 case TS_TYPE_NON_COMMON:
406 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
407 break;
408
409 case TS_DECL_COMMON:
410 MARK_TS_DECL_MINIMAL (code);
411 break;
412
413 case TS_DECL_WRTL:
414 case TS_CONST_DECL:
415 MARK_TS_DECL_COMMON (code);
416 break;
417
418 case TS_DECL_NON_COMMON:
419 MARK_TS_DECL_WITH_VIS (code);
420 break;
421
422 case TS_DECL_WITH_VIS:
423 case TS_PARM_DECL:
424 case TS_LABEL_DECL:
425 case TS_RESULT_DECL:
426 MARK_TS_DECL_WRTL (code);
427 break;
428
429 case TS_FIELD_DECL:
430 MARK_TS_DECL_COMMON (code);
431 break;
432
433 case TS_VAR_DECL:
434 MARK_TS_DECL_WITH_VIS (code);
435 break;
436
437 case TS_TYPE_DECL:
438 case TS_FUNCTION_DECL:
439 MARK_TS_DECL_NON_COMMON (code);
440 break;
441
442 case TS_TRANSLATION_UNIT_DECL:
443 MARK_TS_DECL_COMMON (code);
444 break;
445
446 default:
447 gcc_unreachable ();
448 }
449 }
450
451 /* Basic consistency checks for attributes used in fold. */
452 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
453 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
454 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
455 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
456 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
457 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
458 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
459 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
460 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
461 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
462 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
463 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
464 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
465 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
466 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
467 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
468 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
469 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
470 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
471 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
472 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
473 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
474 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
475 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
476 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
477 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
478 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
479 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
480 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
481 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
482 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
483 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
484 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
485 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
486 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
487 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
488 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
489 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
490 }
491
492
493 /* Init tree.c. */
494
495 void
496 init_ttree (void)
497 {
498 /* Initialize the hash table of types. */
499 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
500 type_hash_eq, 0);
501
502 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
503 tree_decl_map_eq, 0);
504
505 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
506 tree_decl_map_eq, 0);
507 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
508 tree_priority_map_eq, 0);
509
510 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
511 int_cst_hash_eq, NULL);
512
513 int_cst_node = make_node (INTEGER_CST);
514
515 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
516 cl_option_hash_eq, NULL);
517
518 cl_optimization_node = make_node (OPTIMIZATION_NODE);
519 cl_target_option_node = make_node (TARGET_OPTION_NODE);
520
521 /* Initialize the tree_contains_struct array. */
522 initialize_tree_contains_struct ();
523 lang_hooks.init_ts ();
524 }
525
526 \f
527 /* The name of the object as the assembler will see it (but before any
528 translations made by ASM_OUTPUT_LABELREF). Often this is the same
529 as DECL_NAME. It is an IDENTIFIER_NODE. */
530 tree
531 decl_assembler_name (tree decl)
532 {
533 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
534 lang_hooks.set_decl_assembler_name (decl);
535 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
536 }
537
538 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
539
540 bool
541 decl_assembler_name_equal (tree decl, const_tree asmname)
542 {
543 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
544 const char *decl_str;
545 const char *asmname_str;
546 bool test = false;
547
548 if (decl_asmname == asmname)
549 return true;
550
551 decl_str = IDENTIFIER_POINTER (decl_asmname);
552 asmname_str = IDENTIFIER_POINTER (asmname);
553
554
555 /* If the target assembler name was set by the user, things are trickier.
556 We have a leading '*' to begin with. After that, it's arguable what
557 is the correct thing to do with -fleading-underscore. Arguably, we've
558 historically been doing the wrong thing in assemble_alias by always
559 printing the leading underscore. Since we're not changing that, make
560 sure user_label_prefix follows the '*' before matching. */
561 if (decl_str[0] == '*')
562 {
563 size_t ulp_len = strlen (user_label_prefix);
564
565 decl_str ++;
566
567 if (ulp_len == 0)
568 test = true;
569 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
570 decl_str += ulp_len, test=true;
571 else
572 decl_str --;
573 }
574 if (asmname_str[0] == '*')
575 {
576 size_t ulp_len = strlen (user_label_prefix);
577
578 asmname_str ++;
579
580 if (ulp_len == 0)
581 test = true;
582 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
583 asmname_str += ulp_len, test=true;
584 else
585 asmname_str --;
586 }
587
588 if (!test)
589 return false;
590 return strcmp (decl_str, asmname_str) == 0;
591 }
592
593 /* Hash asmnames ignoring the user specified marks. */
594
595 hashval_t
596 decl_assembler_name_hash (const_tree asmname)
597 {
598 if (IDENTIFIER_POINTER (asmname)[0] == '*')
599 {
600 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
601 size_t ulp_len = strlen (user_label_prefix);
602
603 if (ulp_len == 0)
604 ;
605 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
606 decl_str += ulp_len;
607
608 return htab_hash_string (decl_str);
609 }
610
611 return htab_hash_string (IDENTIFIER_POINTER (asmname));
612 }
613
614 /* Compute the number of bytes occupied by a tree with code CODE.
615 This function cannot be used for nodes that have variable sizes,
616 including TREE_VEC, STRING_CST, and CALL_EXPR. */
617 size_t
618 tree_code_size (enum tree_code code)
619 {
620 switch (TREE_CODE_CLASS (code))
621 {
622 case tcc_declaration: /* A decl node */
623 {
624 switch (code)
625 {
626 case FIELD_DECL:
627 return sizeof (struct tree_field_decl);
628 case PARM_DECL:
629 return sizeof (struct tree_parm_decl);
630 case VAR_DECL:
631 return sizeof (struct tree_var_decl);
632 case LABEL_DECL:
633 return sizeof (struct tree_label_decl);
634 case RESULT_DECL:
635 return sizeof (struct tree_result_decl);
636 case CONST_DECL:
637 return sizeof (struct tree_const_decl);
638 case TYPE_DECL:
639 return sizeof (struct tree_type_decl);
640 case FUNCTION_DECL:
641 return sizeof (struct tree_function_decl);
642 case DEBUG_EXPR_DECL:
643 return sizeof (struct tree_decl_with_rtl);
644 default:
645 return sizeof (struct tree_decl_non_common);
646 }
647 }
648
649 case tcc_type: /* a type node */
650 return sizeof (struct tree_type_non_common);
651
652 case tcc_reference: /* a reference */
653 case tcc_expression: /* an expression */
654 case tcc_statement: /* an expression with side effects */
655 case tcc_comparison: /* a comparison expression */
656 case tcc_unary: /* a unary arithmetic expression */
657 case tcc_binary: /* a binary arithmetic expression */
658 return (sizeof (struct tree_exp)
659 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
660
661 case tcc_constant: /* a constant */
662 switch (code)
663 {
664 case INTEGER_CST: return sizeof (struct tree_int_cst);
665 case REAL_CST: return sizeof (struct tree_real_cst);
666 case FIXED_CST: return sizeof (struct tree_fixed_cst);
667 case COMPLEX_CST: return sizeof (struct tree_complex);
668 case VECTOR_CST: return sizeof (struct tree_vector);
669 case STRING_CST: gcc_unreachable ();
670 default:
671 return lang_hooks.tree_size (code);
672 }
673
674 case tcc_exceptional: /* something random, like an identifier. */
675 switch (code)
676 {
677 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
678 case TREE_LIST: return sizeof (struct tree_list);
679
680 case ERROR_MARK:
681 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
682
683 case TREE_VEC:
684 case OMP_CLAUSE: gcc_unreachable ();
685
686 case SSA_NAME: return sizeof (struct tree_ssa_name);
687
688 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
689 case BLOCK: return sizeof (struct tree_block);
690 case CONSTRUCTOR: return sizeof (struct tree_constructor);
691 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
692 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
693
694 default:
695 return lang_hooks.tree_size (code);
696 }
697
698 default:
699 gcc_unreachable ();
700 }
701 }
702
703 /* Compute the number of bytes occupied by NODE. This routine only
704 looks at TREE_CODE, except for those nodes that have variable sizes. */
705 size_t
706 tree_size (const_tree node)
707 {
708 const enum tree_code code = TREE_CODE (node);
709 switch (code)
710 {
711 case TREE_BINFO:
712 return (offsetof (struct tree_binfo, base_binfos)
713 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
714
715 case TREE_VEC:
716 return (sizeof (struct tree_vec)
717 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
718
719 case STRING_CST:
720 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
721
722 case OMP_CLAUSE:
723 return (sizeof (struct tree_omp_clause)
724 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
725 * sizeof (tree));
726
727 default:
728 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
729 return (sizeof (struct tree_exp)
730 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
731 else
732 return tree_code_size (code);
733 }
734 }
735
736 /* Record interesting allocation statistics for a tree node with CODE
737 and LENGTH. */
738
739 static void
740 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
741 size_t length ATTRIBUTE_UNUSED)
742 {
743 #ifdef GATHER_STATISTICS
744 enum tree_code_class type = TREE_CODE_CLASS (code);
745 tree_node_kind kind;
746
747 switch (type)
748 {
749 case tcc_declaration: /* A decl node */
750 kind = d_kind;
751 break;
752
753 case tcc_type: /* a type node */
754 kind = t_kind;
755 break;
756
757 case tcc_statement: /* an expression with side effects */
758 kind = s_kind;
759 break;
760
761 case tcc_reference: /* a reference */
762 kind = r_kind;
763 break;
764
765 case tcc_expression: /* an expression */
766 case tcc_comparison: /* a comparison expression */
767 case tcc_unary: /* a unary arithmetic expression */
768 case tcc_binary: /* a binary arithmetic expression */
769 kind = e_kind;
770 break;
771
772 case tcc_constant: /* a constant */
773 kind = c_kind;
774 break;
775
776 case tcc_exceptional: /* something random, like an identifier. */
777 switch (code)
778 {
779 case IDENTIFIER_NODE:
780 kind = id_kind;
781 break;
782
783 case TREE_VEC:
784 kind = vec_kind;
785 break;
786
787 case TREE_BINFO:
788 kind = binfo_kind;
789 break;
790
791 case SSA_NAME:
792 kind = ssa_name_kind;
793 break;
794
795 case BLOCK:
796 kind = b_kind;
797 break;
798
799 case CONSTRUCTOR:
800 kind = constr_kind;
801 break;
802
803 case OMP_CLAUSE:
804 kind = omp_clause_kind;
805 break;
806
807 default:
808 kind = x_kind;
809 break;
810 }
811 break;
812
813 case tcc_vl_exp:
814 kind = e_kind;
815 break;
816
817 default:
818 gcc_unreachable ();
819 }
820
821 tree_code_counts[(int) code]++;
822 tree_node_counts[(int) kind]++;
823 tree_node_sizes[(int) kind] += length;
824 #endif
825 }
826
827 /* Allocate and return a new UID from the DECL_UID namespace. */
828
829 int
830 allocate_decl_uid (void)
831 {
832 return next_decl_uid++;
833 }
834
835 /* Return a newly allocated node of code CODE. For decl and type
836 nodes, some other fields are initialized. The rest of the node is
837 initialized to zero. This function cannot be used for TREE_VEC or
838 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
839
840 Achoo! I got a code in the node. */
841
842 tree
843 make_node_stat (enum tree_code code MEM_STAT_DECL)
844 {
845 tree t;
846 enum tree_code_class type = TREE_CODE_CLASS (code);
847 size_t length = tree_code_size (code);
848
849 record_node_allocation_statistics (code, length);
850
851 t = ggc_alloc_zone_cleared_tree_node_stat (
852 (code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone,
853 length PASS_MEM_STAT);
854 TREE_SET_CODE (t, code);
855
856 switch (type)
857 {
858 case tcc_statement:
859 TREE_SIDE_EFFECTS (t) = 1;
860 break;
861
862 case tcc_declaration:
863 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
864 {
865 if (code == FUNCTION_DECL)
866 {
867 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
868 DECL_MODE (t) = FUNCTION_MODE;
869 }
870 else
871 DECL_ALIGN (t) = 1;
872 }
873 DECL_SOURCE_LOCATION (t) = input_location;
874 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
875 DECL_UID (t) = --next_debug_decl_uid;
876 else
877 {
878 DECL_UID (t) = allocate_decl_uid ();
879 SET_DECL_PT_UID (t, -1);
880 }
881 if (TREE_CODE (t) == LABEL_DECL)
882 LABEL_DECL_UID (t) = -1;
883
884 break;
885
886 case tcc_type:
887 TYPE_UID (t) = next_type_uid++;
888 TYPE_ALIGN (t) = BITS_PER_UNIT;
889 TYPE_USER_ALIGN (t) = 0;
890 TYPE_MAIN_VARIANT (t) = t;
891 TYPE_CANONICAL (t) = t;
892
893 /* Default to no attributes for type, but let target change that. */
894 TYPE_ATTRIBUTES (t) = NULL_TREE;
895 targetm.set_default_type_attributes (t);
896
897 /* We have not yet computed the alias set for this type. */
898 TYPE_ALIAS_SET (t) = -1;
899 break;
900
901 case tcc_constant:
902 TREE_CONSTANT (t) = 1;
903 break;
904
905 case tcc_expression:
906 switch (code)
907 {
908 case INIT_EXPR:
909 case MODIFY_EXPR:
910 case VA_ARG_EXPR:
911 case PREDECREMENT_EXPR:
912 case PREINCREMENT_EXPR:
913 case POSTDECREMENT_EXPR:
914 case POSTINCREMENT_EXPR:
915 /* All of these have side-effects, no matter what their
916 operands are. */
917 TREE_SIDE_EFFECTS (t) = 1;
918 break;
919
920 default:
921 break;
922 }
923 break;
924
925 default:
926 /* Other classes need no special treatment. */
927 break;
928 }
929
930 return t;
931 }
932 \f
933 /* Return a new node with the same contents as NODE except that its
934 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
935
936 tree
937 copy_node_stat (tree node MEM_STAT_DECL)
938 {
939 tree t;
940 enum tree_code code = TREE_CODE (node);
941 size_t length;
942
943 gcc_assert (code != STATEMENT_LIST);
944
945 length = tree_size (node);
946 record_node_allocation_statistics (code, length);
947 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
948 memcpy (t, node, length);
949
950 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
951 TREE_CHAIN (t) = 0;
952 TREE_ASM_WRITTEN (t) = 0;
953 TREE_VISITED (t) = 0;
954 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
955 *DECL_VAR_ANN_PTR (t) = 0;
956
957 if (TREE_CODE_CLASS (code) == tcc_declaration)
958 {
959 if (code == DEBUG_EXPR_DECL)
960 DECL_UID (t) = --next_debug_decl_uid;
961 else
962 {
963 DECL_UID (t) = allocate_decl_uid ();
964 if (DECL_PT_UID_SET_P (node))
965 SET_DECL_PT_UID (t, DECL_PT_UID (node));
966 }
967 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
968 && DECL_HAS_VALUE_EXPR_P (node))
969 {
970 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
971 DECL_HAS_VALUE_EXPR_P (t) = 1;
972 }
973 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
974 {
975 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
976 DECL_HAS_INIT_PRIORITY_P (t) = 1;
977 }
978 }
979 else if (TREE_CODE_CLASS (code) == tcc_type)
980 {
981 TYPE_UID (t) = next_type_uid++;
982 /* The following is so that the debug code for
983 the copy is different from the original type.
984 The two statements usually duplicate each other
985 (because they clear fields of the same union),
986 but the optimizer should catch that. */
987 TYPE_SYMTAB_POINTER (t) = 0;
988 TYPE_SYMTAB_ADDRESS (t) = 0;
989
990 /* Do not copy the values cache. */
991 if (TYPE_CACHED_VALUES_P(t))
992 {
993 TYPE_CACHED_VALUES_P (t) = 0;
994 TYPE_CACHED_VALUES (t) = NULL_TREE;
995 }
996 }
997
998 return t;
999 }
1000
1001 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1002 For example, this can copy a list made of TREE_LIST nodes. */
1003
1004 tree
1005 copy_list (tree list)
1006 {
1007 tree head;
1008 tree prev, next;
1009
1010 if (list == 0)
1011 return 0;
1012
1013 head = prev = copy_node (list);
1014 next = TREE_CHAIN (list);
1015 while (next)
1016 {
1017 TREE_CHAIN (prev) = copy_node (next);
1018 prev = TREE_CHAIN (prev);
1019 next = TREE_CHAIN (next);
1020 }
1021 return head;
1022 }
1023
1024 \f
1025 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1026
1027 tree
1028 build_int_cst (tree type, HOST_WIDE_INT low)
1029 {
1030 /* Support legacy code. */
1031 if (!type)
1032 type = integer_type_node;
1033
1034 return double_int_to_tree (type, shwi_to_double_int (low));
1035 }
1036
1037 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1038
1039 tree
1040 build_int_cst_type (tree type, HOST_WIDE_INT low)
1041 {
1042 gcc_assert (type);
1043
1044 return double_int_to_tree (type, shwi_to_double_int (low));
1045 }
1046
1047 /* Constructs tree in type TYPE from with value given by CST. Signedness
1048 of CST is assumed to be the same as the signedness of TYPE. */
1049
1050 tree
1051 double_int_to_tree (tree type, double_int cst)
1052 {
1053 /* Size types *are* sign extended. */
1054 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1055 || (TREE_CODE (type) == INTEGER_TYPE
1056 && TYPE_IS_SIZETYPE (type)));
1057
1058 cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1059
1060 return build_int_cst_wide (type, cst.low, cst.high);
1061 }
1062
1063 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1064 to be the same as the signedness of TYPE. */
1065
1066 bool
1067 double_int_fits_to_tree_p (const_tree type, double_int cst)
1068 {
1069 /* Size types *are* sign extended. */
1070 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1071 || (TREE_CODE (type) == INTEGER_TYPE
1072 && TYPE_IS_SIZETYPE (type)));
1073
1074 double_int ext
1075 = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1076
1077 return double_int_equal_p (cst, ext);
1078 }
1079
1080 /* We force the double_int CST to the range of the type TYPE by sign or
1081 zero extending it. OVERFLOWABLE indicates if we are interested in
1082 overflow of the value, when >0 we are only interested in signed
1083 overflow, for <0 we are interested in any overflow. OVERFLOWED
1084 indicates whether overflow has already occurred. CONST_OVERFLOWED
1085 indicates whether constant overflow has already occurred. We force
1086 T's value to be within range of T's type (by setting to 0 or 1 all
1087 the bits outside the type's range). We set TREE_OVERFLOWED if,
1088 OVERFLOWED is nonzero,
1089 or OVERFLOWABLE is >0 and signed overflow occurs
1090 or OVERFLOWABLE is <0 and any overflow occurs
1091 We return a new tree node for the extended double_int. The node
1092 is shared if no overflow flags are set. */
1093
1094
1095 tree
1096 force_fit_type_double (tree type, double_int cst, int overflowable,
1097 bool overflowed)
1098 {
1099 bool sign_extended_type;
1100
1101 /* Size types *are* sign extended. */
1102 sign_extended_type = (!TYPE_UNSIGNED (type)
1103 || (TREE_CODE (type) == INTEGER_TYPE
1104 && TYPE_IS_SIZETYPE (type)));
1105
1106 /* If we need to set overflow flags, return a new unshared node. */
1107 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1108 {
1109 if (overflowed
1110 || overflowable < 0
1111 || (overflowable > 0 && sign_extended_type))
1112 {
1113 tree t = make_node (INTEGER_CST);
1114 TREE_INT_CST (t) = double_int_ext (cst, TYPE_PRECISION (type),
1115 !sign_extended_type);
1116 TREE_TYPE (t) = type;
1117 TREE_OVERFLOW (t) = 1;
1118 return t;
1119 }
1120 }
1121
1122 /* Else build a shared node. */
1123 return double_int_to_tree (type, cst);
1124 }
1125
1126 /* These are the hash table functions for the hash table of INTEGER_CST
1127 nodes of a sizetype. */
1128
1129 /* Return the hash code code X, an INTEGER_CST. */
1130
1131 static hashval_t
1132 int_cst_hash_hash (const void *x)
1133 {
1134 const_tree const t = (const_tree) x;
1135
1136 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1137 ^ htab_hash_pointer (TREE_TYPE (t)));
1138 }
1139
1140 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1141 is the same as that given by *Y, which is the same. */
1142
1143 static int
1144 int_cst_hash_eq (const void *x, const void *y)
1145 {
1146 const_tree const xt = (const_tree) x;
1147 const_tree const yt = (const_tree) y;
1148
1149 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1150 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1151 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1152 }
1153
1154 /* Create an INT_CST node of TYPE and value HI:LOW.
1155 The returned node is always shared. For small integers we use a
1156 per-type vector cache, for larger ones we use a single hash table. */
1157
1158 tree
1159 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1160 {
1161 tree t;
1162 int ix = -1;
1163 int limit = 0;
1164
1165 gcc_assert (type);
1166
1167 switch (TREE_CODE (type))
1168 {
1169 case NULLPTR_TYPE:
1170 gcc_assert (hi == 0 && low == 0);
1171 /* Fallthru. */
1172
1173 case POINTER_TYPE:
1174 case REFERENCE_TYPE:
1175 /* Cache NULL pointer. */
1176 if (!hi && !low)
1177 {
1178 limit = 1;
1179 ix = 0;
1180 }
1181 break;
1182
1183 case BOOLEAN_TYPE:
1184 /* Cache false or true. */
1185 limit = 2;
1186 if (!hi && low < 2)
1187 ix = low;
1188 break;
1189
1190 case INTEGER_TYPE:
1191 case OFFSET_TYPE:
1192 if (TYPE_UNSIGNED (type))
1193 {
1194 /* Cache 0..N */
1195 limit = INTEGER_SHARE_LIMIT;
1196 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1197 ix = low;
1198 }
1199 else
1200 {
1201 /* Cache -1..N */
1202 limit = INTEGER_SHARE_LIMIT + 1;
1203 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1204 ix = low + 1;
1205 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1206 ix = 0;
1207 }
1208 break;
1209
1210 case ENUMERAL_TYPE:
1211 break;
1212
1213 default:
1214 gcc_unreachable ();
1215 }
1216
1217 if (ix >= 0)
1218 {
1219 /* Look for it in the type's vector of small shared ints. */
1220 if (!TYPE_CACHED_VALUES_P (type))
1221 {
1222 TYPE_CACHED_VALUES_P (type) = 1;
1223 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1224 }
1225
1226 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1227 if (t)
1228 {
1229 /* Make sure no one is clobbering the shared constant. */
1230 gcc_assert (TREE_TYPE (t) == type);
1231 gcc_assert (TREE_INT_CST_LOW (t) == low);
1232 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1233 }
1234 else
1235 {
1236 /* Create a new shared int. */
1237 t = make_node (INTEGER_CST);
1238
1239 TREE_INT_CST_LOW (t) = low;
1240 TREE_INT_CST_HIGH (t) = hi;
1241 TREE_TYPE (t) = type;
1242
1243 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1244 }
1245 }
1246 else
1247 {
1248 /* Use the cache of larger shared ints. */
1249 void **slot;
1250
1251 TREE_INT_CST_LOW (int_cst_node) = low;
1252 TREE_INT_CST_HIGH (int_cst_node) = hi;
1253 TREE_TYPE (int_cst_node) = type;
1254
1255 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1256 t = (tree) *slot;
1257 if (!t)
1258 {
1259 /* Insert this one into the hash table. */
1260 t = int_cst_node;
1261 *slot = t;
1262 /* Make a new node for next time round. */
1263 int_cst_node = make_node (INTEGER_CST);
1264 }
1265 }
1266
1267 return t;
1268 }
1269
1270 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1271 and the rest are zeros. */
1272
1273 tree
1274 build_low_bits_mask (tree type, unsigned bits)
1275 {
1276 double_int mask;
1277
1278 gcc_assert (bits <= TYPE_PRECISION (type));
1279
1280 if (bits == TYPE_PRECISION (type)
1281 && !TYPE_UNSIGNED (type))
1282 /* Sign extended all-ones mask. */
1283 mask = double_int_minus_one;
1284 else
1285 mask = double_int_mask (bits);
1286
1287 return build_int_cst_wide (type, mask.low, mask.high);
1288 }
1289
1290 /* Checks that X is integer constant that can be expressed in (unsigned)
1291 HOST_WIDE_INT without loss of precision. */
1292
1293 bool
1294 cst_and_fits_in_hwi (const_tree x)
1295 {
1296 if (TREE_CODE (x) != INTEGER_CST)
1297 return false;
1298
1299 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1300 return false;
1301
1302 return (TREE_INT_CST_HIGH (x) == 0
1303 || TREE_INT_CST_HIGH (x) == -1);
1304 }
1305
1306 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1307 are in a list pointed to by VALS. */
1308
1309 tree
1310 build_vector (tree type, tree vals)
1311 {
1312 tree v = make_node (VECTOR_CST);
1313 int over = 0;
1314 tree link;
1315 unsigned cnt = 0;
1316
1317 TREE_VECTOR_CST_ELTS (v) = vals;
1318 TREE_TYPE (v) = type;
1319
1320 /* Iterate through elements and check for overflow. */
1321 for (link = vals; link; link = TREE_CHAIN (link))
1322 {
1323 tree value = TREE_VALUE (link);
1324 cnt++;
1325
1326 /* Don't crash if we get an address constant. */
1327 if (!CONSTANT_CLASS_P (value))
1328 continue;
1329
1330 over |= TREE_OVERFLOW (value);
1331 }
1332
1333 gcc_assert (cnt == TYPE_VECTOR_SUBPARTS (type));
1334
1335 TREE_OVERFLOW (v) = over;
1336 return v;
1337 }
1338
1339 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1340 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1341
1342 tree
1343 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1344 {
1345 tree list = NULL_TREE;
1346 unsigned HOST_WIDE_INT idx;
1347 tree value;
1348
1349 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1350 list = tree_cons (NULL_TREE, value, list);
1351 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1352 list = tree_cons (NULL_TREE,
1353 build_zero_cst (TREE_TYPE (type)), list);
1354 return build_vector (type, nreverse (list));
1355 }
1356
1357 /* Build a vector of type VECTYPE where all the elements are SCs. */
1358 tree
1359 build_vector_from_val (tree vectype, tree sc)
1360 {
1361 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1362 VEC(constructor_elt, gc) *v = NULL;
1363
1364 if (sc == error_mark_node)
1365 return sc;
1366
1367 /* Verify that the vector type is suitable for SC. Note that there
1368 is some inconsistency in the type-system with respect to restrict
1369 qualifications of pointers. Vector types always have a main-variant
1370 element type and the qualification is applied to the vector-type.
1371 So TREE_TYPE (vector-type) does not return a properly qualified
1372 vector element-type. */
1373 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1374 TREE_TYPE (vectype)));
1375
1376 v = VEC_alloc (constructor_elt, gc, nunits);
1377 for (i = 0; i < nunits; ++i)
1378 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1379
1380 if (CONSTANT_CLASS_P (sc))
1381 return build_vector_from_ctor (vectype, v);
1382 else
1383 return build_constructor (vectype, v);
1384 }
1385
1386 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1387 are in the VEC pointed to by VALS. */
1388 tree
1389 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1390 {
1391 tree c = make_node (CONSTRUCTOR);
1392 unsigned int i;
1393 constructor_elt *elt;
1394 bool constant_p = true;
1395
1396 TREE_TYPE (c) = type;
1397 CONSTRUCTOR_ELTS (c) = vals;
1398
1399 FOR_EACH_VEC_ELT (constructor_elt, vals, i, elt)
1400 if (!TREE_CONSTANT (elt->value))
1401 {
1402 constant_p = false;
1403 break;
1404 }
1405
1406 TREE_CONSTANT (c) = constant_p;
1407
1408 return c;
1409 }
1410
1411 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1412 INDEX and VALUE. */
1413 tree
1414 build_constructor_single (tree type, tree index, tree value)
1415 {
1416 VEC(constructor_elt,gc) *v;
1417 constructor_elt *elt;
1418
1419 v = VEC_alloc (constructor_elt, gc, 1);
1420 elt = VEC_quick_push (constructor_elt, v, NULL);
1421 elt->index = index;
1422 elt->value = value;
1423
1424 return build_constructor (type, v);
1425 }
1426
1427
1428 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1429 are in a list pointed to by VALS. */
1430 tree
1431 build_constructor_from_list (tree type, tree vals)
1432 {
1433 tree t;
1434 VEC(constructor_elt,gc) *v = NULL;
1435
1436 if (vals)
1437 {
1438 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1439 for (t = vals; t; t = TREE_CHAIN (t))
1440 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1441 }
1442
1443 return build_constructor (type, v);
1444 }
1445
1446 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1447
1448 tree
1449 build_fixed (tree type, FIXED_VALUE_TYPE f)
1450 {
1451 tree v;
1452 FIXED_VALUE_TYPE *fp;
1453
1454 v = make_node (FIXED_CST);
1455 fp = ggc_alloc_fixed_value ();
1456 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1457
1458 TREE_TYPE (v) = type;
1459 TREE_FIXED_CST_PTR (v) = fp;
1460 return v;
1461 }
1462
1463 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1464
1465 tree
1466 build_real (tree type, REAL_VALUE_TYPE d)
1467 {
1468 tree v;
1469 REAL_VALUE_TYPE *dp;
1470 int overflow = 0;
1471
1472 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1473 Consider doing it via real_convert now. */
1474
1475 v = make_node (REAL_CST);
1476 dp = ggc_alloc_real_value ();
1477 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1478
1479 TREE_TYPE (v) = type;
1480 TREE_REAL_CST_PTR (v) = dp;
1481 TREE_OVERFLOW (v) = overflow;
1482 return v;
1483 }
1484
1485 /* Return a new REAL_CST node whose type is TYPE
1486 and whose value is the integer value of the INTEGER_CST node I. */
1487
1488 REAL_VALUE_TYPE
1489 real_value_from_int_cst (const_tree type, const_tree i)
1490 {
1491 REAL_VALUE_TYPE d;
1492
1493 /* Clear all bits of the real value type so that we can later do
1494 bitwise comparisons to see if two values are the same. */
1495 memset (&d, 0, sizeof d);
1496
1497 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1498 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1499 TYPE_UNSIGNED (TREE_TYPE (i)));
1500 return d;
1501 }
1502
1503 /* Given a tree representing an integer constant I, return a tree
1504 representing the same value as a floating-point constant of type TYPE. */
1505
1506 tree
1507 build_real_from_int_cst (tree type, const_tree i)
1508 {
1509 tree v;
1510 int overflow = TREE_OVERFLOW (i);
1511
1512 v = build_real (type, real_value_from_int_cst (type, i));
1513
1514 TREE_OVERFLOW (v) |= overflow;
1515 return v;
1516 }
1517
1518 /* Return a newly constructed STRING_CST node whose value is
1519 the LEN characters at STR.
1520 The TREE_TYPE is not initialized. */
1521
1522 tree
1523 build_string (int len, const char *str)
1524 {
1525 tree s;
1526 size_t length;
1527
1528 /* Do not waste bytes provided by padding of struct tree_string. */
1529 length = len + offsetof (struct tree_string, str) + 1;
1530
1531 record_node_allocation_statistics (STRING_CST, length);
1532
1533 s = ggc_alloc_tree_node (length);
1534
1535 memset (s, 0, sizeof (struct tree_typed));
1536 TREE_SET_CODE (s, STRING_CST);
1537 TREE_CONSTANT (s) = 1;
1538 TREE_STRING_LENGTH (s) = len;
1539 memcpy (s->string.str, str, len);
1540 s->string.str[len] = '\0';
1541
1542 return s;
1543 }
1544
1545 /* Return a newly constructed COMPLEX_CST node whose value is
1546 specified by the real and imaginary parts REAL and IMAG.
1547 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1548 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1549
1550 tree
1551 build_complex (tree type, tree real, tree imag)
1552 {
1553 tree t = make_node (COMPLEX_CST);
1554
1555 TREE_REALPART (t) = real;
1556 TREE_IMAGPART (t) = imag;
1557 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1558 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1559 return t;
1560 }
1561
1562 /* Return a constant of arithmetic type TYPE which is the
1563 multiplicative identity of the set TYPE. */
1564
1565 tree
1566 build_one_cst (tree type)
1567 {
1568 switch (TREE_CODE (type))
1569 {
1570 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1571 case POINTER_TYPE: case REFERENCE_TYPE:
1572 case OFFSET_TYPE:
1573 return build_int_cst (type, 1);
1574
1575 case REAL_TYPE:
1576 return build_real (type, dconst1);
1577
1578 case FIXED_POINT_TYPE:
1579 /* We can only generate 1 for accum types. */
1580 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1581 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1582
1583 case VECTOR_TYPE:
1584 {
1585 tree scalar = build_one_cst (TREE_TYPE (type));
1586
1587 return build_vector_from_val (type, scalar);
1588 }
1589
1590 case COMPLEX_TYPE:
1591 return build_complex (type,
1592 build_one_cst (TREE_TYPE (type)),
1593 build_zero_cst (TREE_TYPE (type)));
1594
1595 default:
1596 gcc_unreachable ();
1597 }
1598 }
1599
1600 /* Build 0 constant of type TYPE. This is used by constructor folding
1601 and thus the constant should be represented in memory by
1602 zero(es). */
1603
1604 tree
1605 build_zero_cst (tree type)
1606 {
1607 switch (TREE_CODE (type))
1608 {
1609 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1610 case POINTER_TYPE: case REFERENCE_TYPE:
1611 case OFFSET_TYPE:
1612 return build_int_cst (type, 0);
1613
1614 case REAL_TYPE:
1615 return build_real (type, dconst0);
1616
1617 case FIXED_POINT_TYPE:
1618 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1619
1620 case VECTOR_TYPE:
1621 {
1622 tree scalar = build_zero_cst (TREE_TYPE (type));
1623
1624 return build_vector_from_val (type, scalar);
1625 }
1626
1627 case COMPLEX_TYPE:
1628 {
1629 tree zero = build_zero_cst (TREE_TYPE (type));
1630
1631 return build_complex (type, zero, zero);
1632 }
1633
1634 default:
1635 if (!AGGREGATE_TYPE_P (type))
1636 return fold_convert (type, integer_zero_node);
1637 return build_constructor (type, NULL);
1638 }
1639 }
1640
1641
1642 /* Build a BINFO with LEN language slots. */
1643
1644 tree
1645 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1646 {
1647 tree t;
1648 size_t length = (offsetof (struct tree_binfo, base_binfos)
1649 + VEC_embedded_size (tree, base_binfos));
1650
1651 record_node_allocation_statistics (TREE_BINFO, length);
1652
1653 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1654
1655 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1656
1657 TREE_SET_CODE (t, TREE_BINFO);
1658
1659 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1660
1661 return t;
1662 }
1663
1664 /* Create a CASE_LABEL_EXPR tree node and return it. */
1665
1666 tree
1667 build_case_label (tree low_value, tree high_value, tree label_decl)
1668 {
1669 tree t = make_node (CASE_LABEL_EXPR);
1670
1671 TREE_TYPE (t) = void_type_node;
1672 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
1673
1674 CASE_LOW (t) = low_value;
1675 CASE_HIGH (t) = high_value;
1676 CASE_LABEL (t) = label_decl;
1677 CASE_CHAIN (t) = NULL_TREE;
1678
1679 return t;
1680 }
1681
1682 /* Build a newly constructed TREE_VEC node of length LEN. */
1683
1684 tree
1685 make_tree_vec_stat (int len MEM_STAT_DECL)
1686 {
1687 tree t;
1688 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1689
1690 record_node_allocation_statistics (TREE_VEC, length);
1691
1692 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1693
1694 TREE_SET_CODE (t, TREE_VEC);
1695 TREE_VEC_LENGTH (t) = len;
1696
1697 return t;
1698 }
1699 \f
1700 /* Return 1 if EXPR is the integer constant zero or a complex constant
1701 of zero. */
1702
1703 int
1704 integer_zerop (const_tree expr)
1705 {
1706 STRIP_NOPS (expr);
1707
1708 return ((TREE_CODE (expr) == INTEGER_CST
1709 && TREE_INT_CST_LOW (expr) == 0
1710 && TREE_INT_CST_HIGH (expr) == 0)
1711 || (TREE_CODE (expr) == COMPLEX_CST
1712 && integer_zerop (TREE_REALPART (expr))
1713 && integer_zerop (TREE_IMAGPART (expr))));
1714 }
1715
1716 /* Return 1 if EXPR is the integer constant one or the corresponding
1717 complex constant. */
1718
1719 int
1720 integer_onep (const_tree expr)
1721 {
1722 STRIP_NOPS (expr);
1723
1724 return ((TREE_CODE (expr) == INTEGER_CST
1725 && TREE_INT_CST_LOW (expr) == 1
1726 && TREE_INT_CST_HIGH (expr) == 0)
1727 || (TREE_CODE (expr) == COMPLEX_CST
1728 && integer_onep (TREE_REALPART (expr))
1729 && integer_zerop (TREE_IMAGPART (expr))));
1730 }
1731
1732 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1733 it contains. Likewise for the corresponding complex constant. */
1734
1735 int
1736 integer_all_onesp (const_tree expr)
1737 {
1738 int prec;
1739 int uns;
1740
1741 STRIP_NOPS (expr);
1742
1743 if (TREE_CODE (expr) == COMPLEX_CST
1744 && integer_all_onesp (TREE_REALPART (expr))
1745 && integer_zerop (TREE_IMAGPART (expr)))
1746 return 1;
1747
1748 else if (TREE_CODE (expr) != INTEGER_CST)
1749 return 0;
1750
1751 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1752 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1753 && TREE_INT_CST_HIGH (expr) == -1)
1754 return 1;
1755 if (!uns)
1756 return 0;
1757
1758 /* Note that using TYPE_PRECISION here is wrong. We care about the
1759 actual bits, not the (arbitrary) range of the type. */
1760 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1761 if (prec >= HOST_BITS_PER_WIDE_INT)
1762 {
1763 HOST_WIDE_INT high_value;
1764 int shift_amount;
1765
1766 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1767
1768 /* Can not handle precisions greater than twice the host int size. */
1769 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1770 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1771 /* Shifting by the host word size is undefined according to the ANSI
1772 standard, so we must handle this as a special case. */
1773 high_value = -1;
1774 else
1775 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1776
1777 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1778 && TREE_INT_CST_HIGH (expr) == high_value);
1779 }
1780 else
1781 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1782 }
1783
1784 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1785 one bit on). */
1786
1787 int
1788 integer_pow2p (const_tree expr)
1789 {
1790 int prec;
1791 HOST_WIDE_INT high, low;
1792
1793 STRIP_NOPS (expr);
1794
1795 if (TREE_CODE (expr) == COMPLEX_CST
1796 && integer_pow2p (TREE_REALPART (expr))
1797 && integer_zerop (TREE_IMAGPART (expr)))
1798 return 1;
1799
1800 if (TREE_CODE (expr) != INTEGER_CST)
1801 return 0;
1802
1803 prec = TYPE_PRECISION (TREE_TYPE (expr));
1804 high = TREE_INT_CST_HIGH (expr);
1805 low = TREE_INT_CST_LOW (expr);
1806
1807 /* First clear all bits that are beyond the type's precision in case
1808 we've been sign extended. */
1809
1810 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1811 ;
1812 else if (prec > HOST_BITS_PER_WIDE_INT)
1813 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1814 else
1815 {
1816 high = 0;
1817 if (prec < HOST_BITS_PER_WIDE_INT)
1818 low &= ~((HOST_WIDE_INT) (-1) << prec);
1819 }
1820
1821 if (high == 0 && low == 0)
1822 return 0;
1823
1824 return ((high == 0 && (low & (low - 1)) == 0)
1825 || (low == 0 && (high & (high - 1)) == 0));
1826 }
1827
1828 /* Return 1 if EXPR is an integer constant other than zero or a
1829 complex constant other than zero. */
1830
1831 int
1832 integer_nonzerop (const_tree expr)
1833 {
1834 STRIP_NOPS (expr);
1835
1836 return ((TREE_CODE (expr) == INTEGER_CST
1837 && (TREE_INT_CST_LOW (expr) != 0
1838 || TREE_INT_CST_HIGH (expr) != 0))
1839 || (TREE_CODE (expr) == COMPLEX_CST
1840 && (integer_nonzerop (TREE_REALPART (expr))
1841 || integer_nonzerop (TREE_IMAGPART (expr)))));
1842 }
1843
1844 /* Return 1 if EXPR is the fixed-point constant zero. */
1845
1846 int
1847 fixed_zerop (const_tree expr)
1848 {
1849 return (TREE_CODE (expr) == FIXED_CST
1850 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1851 }
1852
1853 /* Return the power of two represented by a tree node known to be a
1854 power of two. */
1855
1856 int
1857 tree_log2 (const_tree expr)
1858 {
1859 int prec;
1860 HOST_WIDE_INT high, low;
1861
1862 STRIP_NOPS (expr);
1863
1864 if (TREE_CODE (expr) == COMPLEX_CST)
1865 return tree_log2 (TREE_REALPART (expr));
1866
1867 prec = TYPE_PRECISION (TREE_TYPE (expr));
1868 high = TREE_INT_CST_HIGH (expr);
1869 low = TREE_INT_CST_LOW (expr);
1870
1871 /* First clear all bits that are beyond the type's precision in case
1872 we've been sign extended. */
1873
1874 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1875 ;
1876 else if (prec > HOST_BITS_PER_WIDE_INT)
1877 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1878 else
1879 {
1880 high = 0;
1881 if (prec < HOST_BITS_PER_WIDE_INT)
1882 low &= ~((HOST_WIDE_INT) (-1) << prec);
1883 }
1884
1885 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1886 : exact_log2 (low));
1887 }
1888
1889 /* Similar, but return the largest integer Y such that 2 ** Y is less
1890 than or equal to EXPR. */
1891
1892 int
1893 tree_floor_log2 (const_tree expr)
1894 {
1895 int prec;
1896 HOST_WIDE_INT high, low;
1897
1898 STRIP_NOPS (expr);
1899
1900 if (TREE_CODE (expr) == COMPLEX_CST)
1901 return tree_log2 (TREE_REALPART (expr));
1902
1903 prec = TYPE_PRECISION (TREE_TYPE (expr));
1904 high = TREE_INT_CST_HIGH (expr);
1905 low = TREE_INT_CST_LOW (expr);
1906
1907 /* First clear all bits that are beyond the type's precision in case
1908 we've been sign extended. Ignore if type's precision hasn't been set
1909 since what we are doing is setting it. */
1910
1911 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1912 ;
1913 else if (prec > HOST_BITS_PER_WIDE_INT)
1914 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1915 else
1916 {
1917 high = 0;
1918 if (prec < HOST_BITS_PER_WIDE_INT)
1919 low &= ~((HOST_WIDE_INT) (-1) << prec);
1920 }
1921
1922 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1923 : floor_log2 (low));
1924 }
1925
1926 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1927 decimal float constants, so don't return 1 for them. */
1928
1929 int
1930 real_zerop (const_tree expr)
1931 {
1932 STRIP_NOPS (expr);
1933
1934 return ((TREE_CODE (expr) == REAL_CST
1935 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1936 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1937 || (TREE_CODE (expr) == COMPLEX_CST
1938 && real_zerop (TREE_REALPART (expr))
1939 && real_zerop (TREE_IMAGPART (expr))));
1940 }
1941
1942 /* Return 1 if EXPR is the real constant one in real or complex form.
1943 Trailing zeroes matter for decimal float constants, so don't return
1944 1 for them. */
1945
1946 int
1947 real_onep (const_tree expr)
1948 {
1949 STRIP_NOPS (expr);
1950
1951 return ((TREE_CODE (expr) == REAL_CST
1952 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1953 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1954 || (TREE_CODE (expr) == COMPLEX_CST
1955 && real_onep (TREE_REALPART (expr))
1956 && real_zerop (TREE_IMAGPART (expr))));
1957 }
1958
1959 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1960 for decimal float constants, so don't return 1 for them. */
1961
1962 int
1963 real_twop (const_tree expr)
1964 {
1965 STRIP_NOPS (expr);
1966
1967 return ((TREE_CODE (expr) == REAL_CST
1968 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1969 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1970 || (TREE_CODE (expr) == COMPLEX_CST
1971 && real_twop (TREE_REALPART (expr))
1972 && real_zerop (TREE_IMAGPART (expr))));
1973 }
1974
1975 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1976 matter for decimal float constants, so don't return 1 for them. */
1977
1978 int
1979 real_minus_onep (const_tree expr)
1980 {
1981 STRIP_NOPS (expr);
1982
1983 return ((TREE_CODE (expr) == REAL_CST
1984 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1985 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1986 || (TREE_CODE (expr) == COMPLEX_CST
1987 && real_minus_onep (TREE_REALPART (expr))
1988 && real_zerop (TREE_IMAGPART (expr))));
1989 }
1990
1991 /* Nonzero if EXP is a constant or a cast of a constant. */
1992
1993 int
1994 really_constant_p (const_tree exp)
1995 {
1996 /* This is not quite the same as STRIP_NOPS. It does more. */
1997 while (CONVERT_EXPR_P (exp)
1998 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1999 exp = TREE_OPERAND (exp, 0);
2000 return TREE_CONSTANT (exp);
2001 }
2002 \f
2003 /* Return first list element whose TREE_VALUE is ELEM.
2004 Return 0 if ELEM is not in LIST. */
2005
2006 tree
2007 value_member (tree elem, tree list)
2008 {
2009 while (list)
2010 {
2011 if (elem == TREE_VALUE (list))
2012 return list;
2013 list = TREE_CHAIN (list);
2014 }
2015 return NULL_TREE;
2016 }
2017
2018 /* Return first list element whose TREE_PURPOSE is ELEM.
2019 Return 0 if ELEM is not in LIST. */
2020
2021 tree
2022 purpose_member (const_tree elem, tree list)
2023 {
2024 while (list)
2025 {
2026 if (elem == TREE_PURPOSE (list))
2027 return list;
2028 list = TREE_CHAIN (list);
2029 }
2030 return NULL_TREE;
2031 }
2032
2033 /* Return true if ELEM is in V. */
2034
2035 bool
2036 vec_member (const_tree elem, VEC(tree,gc) *v)
2037 {
2038 unsigned ix;
2039 tree t;
2040 FOR_EACH_VEC_ELT (tree, v, ix, t)
2041 if (elem == t)
2042 return true;
2043 return false;
2044 }
2045
2046 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2047 NULL_TREE. */
2048
2049 tree
2050 chain_index (int idx, tree chain)
2051 {
2052 for (; chain && idx > 0; --idx)
2053 chain = TREE_CHAIN (chain);
2054 return chain;
2055 }
2056
2057 /* Return nonzero if ELEM is part of the chain CHAIN. */
2058
2059 int
2060 chain_member (const_tree elem, const_tree chain)
2061 {
2062 while (chain)
2063 {
2064 if (elem == chain)
2065 return 1;
2066 chain = DECL_CHAIN (chain);
2067 }
2068
2069 return 0;
2070 }
2071
2072 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2073 We expect a null pointer to mark the end of the chain.
2074 This is the Lisp primitive `length'. */
2075
2076 int
2077 list_length (const_tree t)
2078 {
2079 const_tree p = t;
2080 #ifdef ENABLE_TREE_CHECKING
2081 const_tree q = t;
2082 #endif
2083 int len = 0;
2084
2085 while (p)
2086 {
2087 p = TREE_CHAIN (p);
2088 #ifdef ENABLE_TREE_CHECKING
2089 if (len % 2)
2090 q = TREE_CHAIN (q);
2091 gcc_assert (p != q);
2092 #endif
2093 len++;
2094 }
2095
2096 return len;
2097 }
2098
2099 /* Returns the number of FIELD_DECLs in TYPE. */
2100
2101 int
2102 fields_length (const_tree type)
2103 {
2104 tree t = TYPE_FIELDS (type);
2105 int count = 0;
2106
2107 for (; t; t = DECL_CHAIN (t))
2108 if (TREE_CODE (t) == FIELD_DECL)
2109 ++count;
2110
2111 return count;
2112 }
2113
2114 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2115 UNION_TYPE TYPE, or NULL_TREE if none. */
2116
2117 tree
2118 first_field (const_tree type)
2119 {
2120 tree t = TYPE_FIELDS (type);
2121 while (t && TREE_CODE (t) != FIELD_DECL)
2122 t = TREE_CHAIN (t);
2123 return t;
2124 }
2125
2126 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2127 by modifying the last node in chain 1 to point to chain 2.
2128 This is the Lisp primitive `nconc'. */
2129
2130 tree
2131 chainon (tree op1, tree op2)
2132 {
2133 tree t1;
2134
2135 if (!op1)
2136 return op2;
2137 if (!op2)
2138 return op1;
2139
2140 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2141 continue;
2142 TREE_CHAIN (t1) = op2;
2143
2144 #ifdef ENABLE_TREE_CHECKING
2145 {
2146 tree t2;
2147 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2148 gcc_assert (t2 != t1);
2149 }
2150 #endif
2151
2152 return op1;
2153 }
2154
2155 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2156
2157 tree
2158 tree_last (tree chain)
2159 {
2160 tree next;
2161 if (chain)
2162 while ((next = TREE_CHAIN (chain)))
2163 chain = next;
2164 return chain;
2165 }
2166
2167 /* Reverse the order of elements in the chain T,
2168 and return the new head of the chain (old last element). */
2169
2170 tree
2171 nreverse (tree t)
2172 {
2173 tree prev = 0, decl, next;
2174 for (decl = t; decl; decl = next)
2175 {
2176 /* We shouldn't be using this function to reverse BLOCK chains; we
2177 have blocks_nreverse for that. */
2178 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2179 next = TREE_CHAIN (decl);
2180 TREE_CHAIN (decl) = prev;
2181 prev = decl;
2182 }
2183 return prev;
2184 }
2185 \f
2186 /* Return a newly created TREE_LIST node whose
2187 purpose and value fields are PARM and VALUE. */
2188
2189 tree
2190 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2191 {
2192 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2193 TREE_PURPOSE (t) = parm;
2194 TREE_VALUE (t) = value;
2195 return t;
2196 }
2197
2198 /* Build a chain of TREE_LIST nodes from a vector. */
2199
2200 tree
2201 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2202 {
2203 tree ret = NULL_TREE;
2204 tree *pp = &ret;
2205 unsigned int i;
2206 tree t;
2207 FOR_EACH_VEC_ELT (tree, vec, i, t)
2208 {
2209 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2210 pp = &TREE_CHAIN (*pp);
2211 }
2212 return ret;
2213 }
2214
2215 /* Return a newly created TREE_LIST node whose
2216 purpose and value fields are PURPOSE and VALUE
2217 and whose TREE_CHAIN is CHAIN. */
2218
2219 tree
2220 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2221 {
2222 tree node;
2223
2224 node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list)
2225 PASS_MEM_STAT);
2226 memset (node, 0, sizeof (struct tree_common));
2227
2228 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2229
2230 TREE_SET_CODE (node, TREE_LIST);
2231 TREE_CHAIN (node) = chain;
2232 TREE_PURPOSE (node) = purpose;
2233 TREE_VALUE (node) = value;
2234 return node;
2235 }
2236
2237 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2238 trees. */
2239
2240 VEC(tree,gc) *
2241 ctor_to_vec (tree ctor)
2242 {
2243 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2244 unsigned int ix;
2245 tree val;
2246
2247 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2248 VEC_quick_push (tree, vec, val);
2249
2250 return vec;
2251 }
2252 \f
2253 /* Return the size nominally occupied by an object of type TYPE
2254 when it resides in memory. The value is measured in units of bytes,
2255 and its data type is that normally used for type sizes
2256 (which is the first type created by make_signed_type or
2257 make_unsigned_type). */
2258
2259 tree
2260 size_in_bytes (const_tree type)
2261 {
2262 tree t;
2263
2264 if (type == error_mark_node)
2265 return integer_zero_node;
2266
2267 type = TYPE_MAIN_VARIANT (type);
2268 t = TYPE_SIZE_UNIT (type);
2269
2270 if (t == 0)
2271 {
2272 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2273 return size_zero_node;
2274 }
2275
2276 return t;
2277 }
2278
2279 /* Return the size of TYPE (in bytes) as a wide integer
2280 or return -1 if the size can vary or is larger than an integer. */
2281
2282 HOST_WIDE_INT
2283 int_size_in_bytes (const_tree type)
2284 {
2285 tree t;
2286
2287 if (type == error_mark_node)
2288 return 0;
2289
2290 type = TYPE_MAIN_VARIANT (type);
2291 t = TYPE_SIZE_UNIT (type);
2292 if (t == 0
2293 || TREE_CODE (t) != INTEGER_CST
2294 || TREE_INT_CST_HIGH (t) != 0
2295 /* If the result would appear negative, it's too big to represent. */
2296 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2297 return -1;
2298
2299 return TREE_INT_CST_LOW (t);
2300 }
2301
2302 /* Return the maximum size of TYPE (in bytes) as a wide integer
2303 or return -1 if the size can vary or is larger than an integer. */
2304
2305 HOST_WIDE_INT
2306 max_int_size_in_bytes (const_tree type)
2307 {
2308 HOST_WIDE_INT size = -1;
2309 tree size_tree;
2310
2311 /* If this is an array type, check for a possible MAX_SIZE attached. */
2312
2313 if (TREE_CODE (type) == ARRAY_TYPE)
2314 {
2315 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2316
2317 if (size_tree && host_integerp (size_tree, 1))
2318 size = tree_low_cst (size_tree, 1);
2319 }
2320
2321 /* If we still haven't been able to get a size, see if the language
2322 can compute a maximum size. */
2323
2324 if (size == -1)
2325 {
2326 size_tree = lang_hooks.types.max_size (type);
2327
2328 if (size_tree && host_integerp (size_tree, 1))
2329 size = tree_low_cst (size_tree, 1);
2330 }
2331
2332 return size;
2333 }
2334
2335 /* Returns a tree for the size of EXP in bytes. */
2336
2337 tree
2338 tree_expr_size (const_tree exp)
2339 {
2340 if (DECL_P (exp)
2341 && DECL_SIZE_UNIT (exp) != 0)
2342 return DECL_SIZE_UNIT (exp);
2343 else
2344 return size_in_bytes (TREE_TYPE (exp));
2345 }
2346 \f
2347 /* Return the bit position of FIELD, in bits from the start of the record.
2348 This is a tree of type bitsizetype. */
2349
2350 tree
2351 bit_position (const_tree field)
2352 {
2353 return bit_from_pos (DECL_FIELD_OFFSET (field),
2354 DECL_FIELD_BIT_OFFSET (field));
2355 }
2356
2357 /* Likewise, but return as an integer. It must be representable in
2358 that way (since it could be a signed value, we don't have the
2359 option of returning -1 like int_size_in_byte can. */
2360
2361 HOST_WIDE_INT
2362 int_bit_position (const_tree field)
2363 {
2364 return tree_low_cst (bit_position (field), 0);
2365 }
2366 \f
2367 /* Return the byte position of FIELD, in bytes from the start of the record.
2368 This is a tree of type sizetype. */
2369
2370 tree
2371 byte_position (const_tree field)
2372 {
2373 return byte_from_pos (DECL_FIELD_OFFSET (field),
2374 DECL_FIELD_BIT_OFFSET (field));
2375 }
2376
2377 /* Likewise, but return as an integer. It must be representable in
2378 that way (since it could be a signed value, we don't have the
2379 option of returning -1 like int_size_in_byte can. */
2380
2381 HOST_WIDE_INT
2382 int_byte_position (const_tree field)
2383 {
2384 return tree_low_cst (byte_position (field), 0);
2385 }
2386 \f
2387 /* Return the strictest alignment, in bits, that T is known to have. */
2388
2389 unsigned int
2390 expr_align (const_tree t)
2391 {
2392 unsigned int align0, align1;
2393
2394 switch (TREE_CODE (t))
2395 {
2396 CASE_CONVERT: case NON_LVALUE_EXPR:
2397 /* If we have conversions, we know that the alignment of the
2398 object must meet each of the alignments of the types. */
2399 align0 = expr_align (TREE_OPERAND (t, 0));
2400 align1 = TYPE_ALIGN (TREE_TYPE (t));
2401 return MAX (align0, align1);
2402
2403 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2404 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2405 case CLEANUP_POINT_EXPR:
2406 /* These don't change the alignment of an object. */
2407 return expr_align (TREE_OPERAND (t, 0));
2408
2409 case COND_EXPR:
2410 /* The best we can do is say that the alignment is the least aligned
2411 of the two arms. */
2412 align0 = expr_align (TREE_OPERAND (t, 1));
2413 align1 = expr_align (TREE_OPERAND (t, 2));
2414 return MIN (align0, align1);
2415
2416 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2417 meaningfully, it's always 1. */
2418 case LABEL_DECL: case CONST_DECL:
2419 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2420 case FUNCTION_DECL:
2421 gcc_assert (DECL_ALIGN (t) != 0);
2422 return DECL_ALIGN (t);
2423
2424 default:
2425 break;
2426 }
2427
2428 /* Otherwise take the alignment from that of the type. */
2429 return TYPE_ALIGN (TREE_TYPE (t));
2430 }
2431 \f
2432 /* Return, as a tree node, the number of elements for TYPE (which is an
2433 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2434
2435 tree
2436 array_type_nelts (const_tree type)
2437 {
2438 tree index_type, min, max;
2439
2440 /* If they did it with unspecified bounds, then we should have already
2441 given an error about it before we got here. */
2442 if (! TYPE_DOMAIN (type))
2443 return error_mark_node;
2444
2445 index_type = TYPE_DOMAIN (type);
2446 min = TYPE_MIN_VALUE (index_type);
2447 max = TYPE_MAX_VALUE (index_type);
2448
2449 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
2450 if (!max)
2451 return error_mark_node;
2452
2453 return (integer_zerop (min)
2454 ? max
2455 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2456 }
2457 \f
2458 /* If arg is static -- a reference to an object in static storage -- then
2459 return the object. This is not the same as the C meaning of `static'.
2460 If arg isn't static, return NULL. */
2461
2462 tree
2463 staticp (tree arg)
2464 {
2465 switch (TREE_CODE (arg))
2466 {
2467 case FUNCTION_DECL:
2468 /* Nested functions are static, even though taking their address will
2469 involve a trampoline as we unnest the nested function and create
2470 the trampoline on the tree level. */
2471 return arg;
2472
2473 case VAR_DECL:
2474 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2475 && ! DECL_THREAD_LOCAL_P (arg)
2476 && ! DECL_DLLIMPORT_P (arg)
2477 ? arg : NULL);
2478
2479 case CONST_DECL:
2480 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2481 ? arg : NULL);
2482
2483 case CONSTRUCTOR:
2484 return TREE_STATIC (arg) ? arg : NULL;
2485
2486 case LABEL_DECL:
2487 case STRING_CST:
2488 return arg;
2489
2490 case COMPONENT_REF:
2491 /* If the thing being referenced is not a field, then it is
2492 something language specific. */
2493 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2494
2495 /* If we are referencing a bitfield, we can't evaluate an
2496 ADDR_EXPR at compile time and so it isn't a constant. */
2497 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2498 return NULL;
2499
2500 return staticp (TREE_OPERAND (arg, 0));
2501
2502 case BIT_FIELD_REF:
2503 return NULL;
2504
2505 case INDIRECT_REF:
2506 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2507
2508 case ARRAY_REF:
2509 case ARRAY_RANGE_REF:
2510 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2511 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2512 return staticp (TREE_OPERAND (arg, 0));
2513 else
2514 return NULL;
2515
2516 case COMPOUND_LITERAL_EXPR:
2517 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2518
2519 default:
2520 return NULL;
2521 }
2522 }
2523
2524 \f
2525
2526
2527 /* Return whether OP is a DECL whose address is function-invariant. */
2528
2529 bool
2530 decl_address_invariant_p (const_tree op)
2531 {
2532 /* The conditions below are slightly less strict than the one in
2533 staticp. */
2534
2535 switch (TREE_CODE (op))
2536 {
2537 case PARM_DECL:
2538 case RESULT_DECL:
2539 case LABEL_DECL:
2540 case FUNCTION_DECL:
2541 return true;
2542
2543 case VAR_DECL:
2544 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2545 || DECL_THREAD_LOCAL_P (op)
2546 || DECL_CONTEXT (op) == current_function_decl
2547 || decl_function_context (op) == current_function_decl)
2548 return true;
2549 break;
2550
2551 case CONST_DECL:
2552 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2553 || decl_function_context (op) == current_function_decl)
2554 return true;
2555 break;
2556
2557 default:
2558 break;
2559 }
2560
2561 return false;
2562 }
2563
2564 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2565
2566 bool
2567 decl_address_ip_invariant_p (const_tree op)
2568 {
2569 /* The conditions below are slightly less strict than the one in
2570 staticp. */
2571
2572 switch (TREE_CODE (op))
2573 {
2574 case LABEL_DECL:
2575 case FUNCTION_DECL:
2576 case STRING_CST:
2577 return true;
2578
2579 case VAR_DECL:
2580 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2581 && !DECL_DLLIMPORT_P (op))
2582 || DECL_THREAD_LOCAL_P (op))
2583 return true;
2584 break;
2585
2586 case CONST_DECL:
2587 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2588 return true;
2589 break;
2590
2591 default:
2592 break;
2593 }
2594
2595 return false;
2596 }
2597
2598
2599 /* Return true if T is function-invariant (internal function, does
2600 not handle arithmetic; that's handled in skip_simple_arithmetic and
2601 tree_invariant_p). */
2602
2603 static bool tree_invariant_p (tree t);
2604
2605 static bool
2606 tree_invariant_p_1 (tree t)
2607 {
2608 tree op;
2609
2610 if (TREE_CONSTANT (t)
2611 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2612 return true;
2613
2614 switch (TREE_CODE (t))
2615 {
2616 case SAVE_EXPR:
2617 return true;
2618
2619 case ADDR_EXPR:
2620 op = TREE_OPERAND (t, 0);
2621 while (handled_component_p (op))
2622 {
2623 switch (TREE_CODE (op))
2624 {
2625 case ARRAY_REF:
2626 case ARRAY_RANGE_REF:
2627 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2628 || TREE_OPERAND (op, 2) != NULL_TREE
2629 || TREE_OPERAND (op, 3) != NULL_TREE)
2630 return false;
2631 break;
2632
2633 case COMPONENT_REF:
2634 if (TREE_OPERAND (op, 2) != NULL_TREE)
2635 return false;
2636 break;
2637
2638 default:;
2639 }
2640 op = TREE_OPERAND (op, 0);
2641 }
2642
2643 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2644
2645 default:
2646 break;
2647 }
2648
2649 return false;
2650 }
2651
2652 /* Return true if T is function-invariant. */
2653
2654 static bool
2655 tree_invariant_p (tree t)
2656 {
2657 tree inner = skip_simple_arithmetic (t);
2658 return tree_invariant_p_1 (inner);
2659 }
2660
2661 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2662 Do this to any expression which may be used in more than one place,
2663 but must be evaluated only once.
2664
2665 Normally, expand_expr would reevaluate the expression each time.
2666 Calling save_expr produces something that is evaluated and recorded
2667 the first time expand_expr is called on it. Subsequent calls to
2668 expand_expr just reuse the recorded value.
2669
2670 The call to expand_expr that generates code that actually computes
2671 the value is the first call *at compile time*. Subsequent calls
2672 *at compile time* generate code to use the saved value.
2673 This produces correct result provided that *at run time* control
2674 always flows through the insns made by the first expand_expr
2675 before reaching the other places where the save_expr was evaluated.
2676 You, the caller of save_expr, must make sure this is so.
2677
2678 Constants, and certain read-only nodes, are returned with no
2679 SAVE_EXPR because that is safe. Expressions containing placeholders
2680 are not touched; see tree.def for an explanation of what these
2681 are used for. */
2682
2683 tree
2684 save_expr (tree expr)
2685 {
2686 tree t = fold (expr);
2687 tree inner;
2688
2689 /* If the tree evaluates to a constant, then we don't want to hide that
2690 fact (i.e. this allows further folding, and direct checks for constants).
2691 However, a read-only object that has side effects cannot be bypassed.
2692 Since it is no problem to reevaluate literals, we just return the
2693 literal node. */
2694 inner = skip_simple_arithmetic (t);
2695 if (TREE_CODE (inner) == ERROR_MARK)
2696 return inner;
2697
2698 if (tree_invariant_p_1 (inner))
2699 return t;
2700
2701 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2702 it means that the size or offset of some field of an object depends on
2703 the value within another field.
2704
2705 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2706 and some variable since it would then need to be both evaluated once and
2707 evaluated more than once. Front-ends must assure this case cannot
2708 happen by surrounding any such subexpressions in their own SAVE_EXPR
2709 and forcing evaluation at the proper time. */
2710 if (contains_placeholder_p (inner))
2711 return t;
2712
2713 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2714 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2715
2716 /* This expression might be placed ahead of a jump to ensure that the
2717 value was computed on both sides of the jump. So make sure it isn't
2718 eliminated as dead. */
2719 TREE_SIDE_EFFECTS (t) = 1;
2720 return t;
2721 }
2722
2723 /* Look inside EXPR and into any simple arithmetic operations. Return
2724 the innermost non-arithmetic node. */
2725
2726 tree
2727 skip_simple_arithmetic (tree expr)
2728 {
2729 tree inner;
2730
2731 /* We don't care about whether this can be used as an lvalue in this
2732 context. */
2733 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2734 expr = TREE_OPERAND (expr, 0);
2735
2736 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2737 a constant, it will be more efficient to not make another SAVE_EXPR since
2738 it will allow better simplification and GCSE will be able to merge the
2739 computations if they actually occur. */
2740 inner = expr;
2741 while (1)
2742 {
2743 if (UNARY_CLASS_P (inner))
2744 inner = TREE_OPERAND (inner, 0);
2745 else if (BINARY_CLASS_P (inner))
2746 {
2747 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2748 inner = TREE_OPERAND (inner, 0);
2749 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2750 inner = TREE_OPERAND (inner, 1);
2751 else
2752 break;
2753 }
2754 else
2755 break;
2756 }
2757
2758 return inner;
2759 }
2760
2761
2762 /* Return which tree structure is used by T. */
2763
2764 enum tree_node_structure_enum
2765 tree_node_structure (const_tree t)
2766 {
2767 const enum tree_code code = TREE_CODE (t);
2768 return tree_node_structure_for_code (code);
2769 }
2770
2771 /* Set various status flags when building a CALL_EXPR object T. */
2772
2773 static void
2774 process_call_operands (tree t)
2775 {
2776 bool side_effects = TREE_SIDE_EFFECTS (t);
2777 bool read_only = false;
2778 int i = call_expr_flags (t);
2779
2780 /* Calls have side-effects, except those to const or pure functions. */
2781 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2782 side_effects = true;
2783 /* Propagate TREE_READONLY of arguments for const functions. */
2784 if (i & ECF_CONST)
2785 read_only = true;
2786
2787 if (!side_effects || read_only)
2788 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2789 {
2790 tree op = TREE_OPERAND (t, i);
2791 if (op && TREE_SIDE_EFFECTS (op))
2792 side_effects = true;
2793 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2794 read_only = false;
2795 }
2796
2797 TREE_SIDE_EFFECTS (t) = side_effects;
2798 TREE_READONLY (t) = read_only;
2799 }
2800 \f
2801 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
2802 size or offset that depends on a field within a record. */
2803
2804 bool
2805 contains_placeholder_p (const_tree exp)
2806 {
2807 enum tree_code code;
2808
2809 if (!exp)
2810 return 0;
2811
2812 code = TREE_CODE (exp);
2813 if (code == PLACEHOLDER_EXPR)
2814 return 1;
2815
2816 switch (TREE_CODE_CLASS (code))
2817 {
2818 case tcc_reference:
2819 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2820 position computations since they will be converted into a
2821 WITH_RECORD_EXPR involving the reference, which will assume
2822 here will be valid. */
2823 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2824
2825 case tcc_exceptional:
2826 if (code == TREE_LIST)
2827 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2828 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2829 break;
2830
2831 case tcc_unary:
2832 case tcc_binary:
2833 case tcc_comparison:
2834 case tcc_expression:
2835 switch (code)
2836 {
2837 case COMPOUND_EXPR:
2838 /* Ignoring the first operand isn't quite right, but works best. */
2839 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2840
2841 case COND_EXPR:
2842 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2843 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2844 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2845
2846 case SAVE_EXPR:
2847 /* The save_expr function never wraps anything containing
2848 a PLACEHOLDER_EXPR. */
2849 return 0;
2850
2851 default:
2852 break;
2853 }
2854
2855 switch (TREE_CODE_LENGTH (code))
2856 {
2857 case 1:
2858 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2859 case 2:
2860 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2861 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2862 default:
2863 return 0;
2864 }
2865
2866 case tcc_vl_exp:
2867 switch (code)
2868 {
2869 case CALL_EXPR:
2870 {
2871 const_tree arg;
2872 const_call_expr_arg_iterator iter;
2873 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2874 if (CONTAINS_PLACEHOLDER_P (arg))
2875 return 1;
2876 return 0;
2877 }
2878 default:
2879 return 0;
2880 }
2881
2882 default:
2883 return 0;
2884 }
2885 return 0;
2886 }
2887
2888 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
2889 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
2890 field positions. */
2891
2892 static bool
2893 type_contains_placeholder_1 (const_tree type)
2894 {
2895 /* If the size contains a placeholder or the parent type (component type in
2896 the case of arrays) type involves a placeholder, this type does. */
2897 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2898 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2899 || (!POINTER_TYPE_P (type)
2900 && TREE_TYPE (type)
2901 && type_contains_placeholder_p (TREE_TYPE (type))))
2902 return true;
2903
2904 /* Now do type-specific checks. Note that the last part of the check above
2905 greatly limits what we have to do below. */
2906 switch (TREE_CODE (type))
2907 {
2908 case VOID_TYPE:
2909 case COMPLEX_TYPE:
2910 case ENUMERAL_TYPE:
2911 case BOOLEAN_TYPE:
2912 case POINTER_TYPE:
2913 case OFFSET_TYPE:
2914 case REFERENCE_TYPE:
2915 case METHOD_TYPE:
2916 case FUNCTION_TYPE:
2917 case VECTOR_TYPE:
2918 return false;
2919
2920 case INTEGER_TYPE:
2921 case REAL_TYPE:
2922 case FIXED_POINT_TYPE:
2923 /* Here we just check the bounds. */
2924 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2925 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2926
2927 case ARRAY_TYPE:
2928 /* We have already checked the component type above, so just check the
2929 domain type. */
2930 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2931
2932 case RECORD_TYPE:
2933 case UNION_TYPE:
2934 case QUAL_UNION_TYPE:
2935 {
2936 tree field;
2937
2938 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2939 if (TREE_CODE (field) == FIELD_DECL
2940 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2941 || (TREE_CODE (type) == QUAL_UNION_TYPE
2942 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2943 || type_contains_placeholder_p (TREE_TYPE (field))))
2944 return true;
2945
2946 return false;
2947 }
2948
2949 default:
2950 gcc_unreachable ();
2951 }
2952 }
2953
2954 /* Wrapper around above function used to cache its result. */
2955
2956 bool
2957 type_contains_placeholder_p (tree type)
2958 {
2959 bool result;
2960
2961 /* If the contains_placeholder_bits field has been initialized,
2962 then we know the answer. */
2963 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2964 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2965
2966 /* Indicate that we've seen this type node, and the answer is false.
2967 This is what we want to return if we run into recursion via fields. */
2968 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2969
2970 /* Compute the real value. */
2971 result = type_contains_placeholder_1 (type);
2972
2973 /* Store the real value. */
2974 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2975
2976 return result;
2977 }
2978 \f
2979 /* Push tree EXP onto vector QUEUE if it is not already present. */
2980
2981 static void
2982 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2983 {
2984 unsigned int i;
2985 tree iter;
2986
2987 FOR_EACH_VEC_ELT (tree, *queue, i, iter)
2988 if (simple_cst_equal (iter, exp) == 1)
2989 break;
2990
2991 if (!iter)
2992 VEC_safe_push (tree, heap, *queue, exp);
2993 }
2994
2995 /* Given a tree EXP, find all occurences of references to fields
2996 in a PLACEHOLDER_EXPR and place them in vector REFS without
2997 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
2998 we assume here that EXP contains only arithmetic expressions
2999 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3000 argument list. */
3001
3002 void
3003 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
3004 {
3005 enum tree_code code = TREE_CODE (exp);
3006 tree inner;
3007 int i;
3008
3009 /* We handle TREE_LIST and COMPONENT_REF separately. */
3010 if (code == TREE_LIST)
3011 {
3012 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3013 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3014 }
3015 else if (code == COMPONENT_REF)
3016 {
3017 for (inner = TREE_OPERAND (exp, 0);
3018 REFERENCE_CLASS_P (inner);
3019 inner = TREE_OPERAND (inner, 0))
3020 ;
3021
3022 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3023 push_without_duplicates (exp, refs);
3024 else
3025 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3026 }
3027 else
3028 switch (TREE_CODE_CLASS (code))
3029 {
3030 case tcc_constant:
3031 break;
3032
3033 case tcc_declaration:
3034 /* Variables allocated to static storage can stay. */
3035 if (!TREE_STATIC (exp))
3036 push_without_duplicates (exp, refs);
3037 break;
3038
3039 case tcc_expression:
3040 /* This is the pattern built in ada/make_aligning_type. */
3041 if (code == ADDR_EXPR
3042 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3043 {
3044 push_without_duplicates (exp, refs);
3045 break;
3046 }
3047
3048 /* Fall through... */
3049
3050 case tcc_exceptional:
3051 case tcc_unary:
3052 case tcc_binary:
3053 case tcc_comparison:
3054 case tcc_reference:
3055 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3056 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3057 break;
3058
3059 case tcc_vl_exp:
3060 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3061 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3062 break;
3063
3064 default:
3065 gcc_unreachable ();
3066 }
3067 }
3068
3069 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3070 return a tree with all occurrences of references to F in a
3071 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3072 CONST_DECLs. Note that we assume here that EXP contains only
3073 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3074 occurring only in their argument list. */
3075
3076 tree
3077 substitute_in_expr (tree exp, tree f, tree r)
3078 {
3079 enum tree_code code = TREE_CODE (exp);
3080 tree op0, op1, op2, op3;
3081 tree new_tree;
3082
3083 /* We handle TREE_LIST and COMPONENT_REF separately. */
3084 if (code == TREE_LIST)
3085 {
3086 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3087 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3088 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3089 return exp;
3090
3091 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3092 }
3093 else if (code == COMPONENT_REF)
3094 {
3095 tree inner;
3096
3097 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3098 and it is the right field, replace it with R. */
3099 for (inner = TREE_OPERAND (exp, 0);
3100 REFERENCE_CLASS_P (inner);
3101 inner = TREE_OPERAND (inner, 0))
3102 ;
3103
3104 /* The field. */
3105 op1 = TREE_OPERAND (exp, 1);
3106
3107 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3108 return r;
3109
3110 /* If this expression hasn't been completed let, leave it alone. */
3111 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3112 return exp;
3113
3114 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3115 if (op0 == TREE_OPERAND (exp, 0))
3116 return exp;
3117
3118 new_tree
3119 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3120 }
3121 else
3122 switch (TREE_CODE_CLASS (code))
3123 {
3124 case tcc_constant:
3125 return exp;
3126
3127 case tcc_declaration:
3128 if (exp == f)
3129 return r;
3130 else
3131 return exp;
3132
3133 case tcc_expression:
3134 if (exp == f)
3135 return r;
3136
3137 /* Fall through... */
3138
3139 case tcc_exceptional:
3140 case tcc_unary:
3141 case tcc_binary:
3142 case tcc_comparison:
3143 case tcc_reference:
3144 switch (TREE_CODE_LENGTH (code))
3145 {
3146 case 0:
3147 return exp;
3148
3149 case 1:
3150 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3151 if (op0 == TREE_OPERAND (exp, 0))
3152 return exp;
3153
3154 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3155 break;
3156
3157 case 2:
3158 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3159 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3160
3161 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3162 return exp;
3163
3164 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3165 break;
3166
3167 case 3:
3168 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3169 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3170 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3171
3172 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3173 && op2 == TREE_OPERAND (exp, 2))
3174 return exp;
3175
3176 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3177 break;
3178
3179 case 4:
3180 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3181 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3182 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3183 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3184
3185 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3186 && op2 == TREE_OPERAND (exp, 2)
3187 && op3 == TREE_OPERAND (exp, 3))
3188 return exp;
3189
3190 new_tree
3191 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3192 break;
3193
3194 default:
3195 gcc_unreachable ();
3196 }
3197 break;
3198
3199 case tcc_vl_exp:
3200 {
3201 int i;
3202
3203 new_tree = NULL_TREE;
3204
3205 /* If we are trying to replace F with a constant, inline back
3206 functions which do nothing else than computing a value from
3207 the arguments they are passed. This makes it possible to
3208 fold partially or entirely the replacement expression. */
3209 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3210 {
3211 tree t = maybe_inline_call_in_expr (exp);
3212 if (t)
3213 return SUBSTITUTE_IN_EXPR (t, f, r);
3214 }
3215
3216 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3217 {
3218 tree op = TREE_OPERAND (exp, i);
3219 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3220 if (new_op != op)
3221 {
3222 if (!new_tree)
3223 new_tree = copy_node (exp);
3224 TREE_OPERAND (new_tree, i) = new_op;
3225 }
3226 }
3227
3228 if (new_tree)
3229 {
3230 new_tree = fold (new_tree);
3231 if (TREE_CODE (new_tree) == CALL_EXPR)
3232 process_call_operands (new_tree);
3233 }
3234 else
3235 return exp;
3236 }
3237 break;
3238
3239 default:
3240 gcc_unreachable ();
3241 }
3242
3243 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3244
3245 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3246 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3247
3248 return new_tree;
3249 }
3250
3251 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3252 for it within OBJ, a tree that is an object or a chain of references. */
3253
3254 tree
3255 substitute_placeholder_in_expr (tree exp, tree obj)
3256 {
3257 enum tree_code code = TREE_CODE (exp);
3258 tree op0, op1, op2, op3;
3259 tree new_tree;
3260
3261 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3262 in the chain of OBJ. */
3263 if (code == PLACEHOLDER_EXPR)
3264 {
3265 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3266 tree elt;
3267
3268 for (elt = obj; elt != 0;
3269 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3270 || TREE_CODE (elt) == COND_EXPR)
3271 ? TREE_OPERAND (elt, 1)
3272 : (REFERENCE_CLASS_P (elt)
3273 || UNARY_CLASS_P (elt)
3274 || BINARY_CLASS_P (elt)
3275 || VL_EXP_CLASS_P (elt)
3276 || EXPRESSION_CLASS_P (elt))
3277 ? TREE_OPERAND (elt, 0) : 0))
3278 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3279 return elt;
3280
3281 for (elt = obj; elt != 0;
3282 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3283 || TREE_CODE (elt) == COND_EXPR)
3284 ? TREE_OPERAND (elt, 1)
3285 : (REFERENCE_CLASS_P (elt)
3286 || UNARY_CLASS_P (elt)
3287 || BINARY_CLASS_P (elt)
3288 || VL_EXP_CLASS_P (elt)
3289 || EXPRESSION_CLASS_P (elt))
3290 ? TREE_OPERAND (elt, 0) : 0))
3291 if (POINTER_TYPE_P (TREE_TYPE (elt))
3292 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3293 == need_type))
3294 return fold_build1 (INDIRECT_REF, need_type, elt);
3295
3296 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3297 survives until RTL generation, there will be an error. */
3298 return exp;
3299 }
3300
3301 /* TREE_LIST is special because we need to look at TREE_VALUE
3302 and TREE_CHAIN, not TREE_OPERANDS. */
3303 else if (code == TREE_LIST)
3304 {
3305 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3306 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3307 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3308 return exp;
3309
3310 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3311 }
3312 else
3313 switch (TREE_CODE_CLASS (code))
3314 {
3315 case tcc_constant:
3316 case tcc_declaration:
3317 return exp;
3318
3319 case tcc_exceptional:
3320 case tcc_unary:
3321 case tcc_binary:
3322 case tcc_comparison:
3323 case tcc_expression:
3324 case tcc_reference:
3325 case tcc_statement:
3326 switch (TREE_CODE_LENGTH (code))
3327 {
3328 case 0:
3329 return exp;
3330
3331 case 1:
3332 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3333 if (op0 == TREE_OPERAND (exp, 0))
3334 return exp;
3335
3336 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3337 break;
3338
3339 case 2:
3340 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3341 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3342
3343 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3344 return exp;
3345
3346 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3347 break;
3348
3349 case 3:
3350 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3351 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3352 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3353
3354 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3355 && op2 == TREE_OPERAND (exp, 2))
3356 return exp;
3357
3358 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3359 break;
3360
3361 case 4:
3362 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3363 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3364 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3365 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3366
3367 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3368 && op2 == TREE_OPERAND (exp, 2)
3369 && op3 == TREE_OPERAND (exp, 3))
3370 return exp;
3371
3372 new_tree
3373 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3374 break;
3375
3376 default:
3377 gcc_unreachable ();
3378 }
3379 break;
3380
3381 case tcc_vl_exp:
3382 {
3383 int i;
3384
3385 new_tree = NULL_TREE;
3386
3387 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3388 {
3389 tree op = TREE_OPERAND (exp, i);
3390 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3391 if (new_op != op)
3392 {
3393 if (!new_tree)
3394 new_tree = copy_node (exp);
3395 TREE_OPERAND (new_tree, i) = new_op;
3396 }
3397 }
3398
3399 if (new_tree)
3400 {
3401 new_tree = fold (new_tree);
3402 if (TREE_CODE (new_tree) == CALL_EXPR)
3403 process_call_operands (new_tree);
3404 }
3405 else
3406 return exp;
3407 }
3408 break;
3409
3410 default:
3411 gcc_unreachable ();
3412 }
3413
3414 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3415
3416 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3417 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3418
3419 return new_tree;
3420 }
3421 \f
3422 /* Stabilize a reference so that we can use it any number of times
3423 without causing its operands to be evaluated more than once.
3424 Returns the stabilized reference. This works by means of save_expr,
3425 so see the caveats in the comments about save_expr.
3426
3427 Also allows conversion expressions whose operands are references.
3428 Any other kind of expression is returned unchanged. */
3429
3430 tree
3431 stabilize_reference (tree ref)
3432 {
3433 tree result;
3434 enum tree_code code = TREE_CODE (ref);
3435
3436 switch (code)
3437 {
3438 case VAR_DECL:
3439 case PARM_DECL:
3440 case RESULT_DECL:
3441 /* No action is needed in this case. */
3442 return ref;
3443
3444 CASE_CONVERT:
3445 case FLOAT_EXPR:
3446 case FIX_TRUNC_EXPR:
3447 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3448 break;
3449
3450 case INDIRECT_REF:
3451 result = build_nt (INDIRECT_REF,
3452 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3453 break;
3454
3455 case COMPONENT_REF:
3456 result = build_nt (COMPONENT_REF,
3457 stabilize_reference (TREE_OPERAND (ref, 0)),
3458 TREE_OPERAND (ref, 1), NULL_TREE);
3459 break;
3460
3461 case BIT_FIELD_REF:
3462 result = build_nt (BIT_FIELD_REF,
3463 stabilize_reference (TREE_OPERAND (ref, 0)),
3464 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3465 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3466 break;
3467
3468 case ARRAY_REF:
3469 result = build_nt (ARRAY_REF,
3470 stabilize_reference (TREE_OPERAND (ref, 0)),
3471 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3472 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3473 break;
3474
3475 case ARRAY_RANGE_REF:
3476 result = build_nt (ARRAY_RANGE_REF,
3477 stabilize_reference (TREE_OPERAND (ref, 0)),
3478 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3479 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3480 break;
3481
3482 case COMPOUND_EXPR:
3483 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3484 it wouldn't be ignored. This matters when dealing with
3485 volatiles. */
3486 return stabilize_reference_1 (ref);
3487
3488 /* If arg isn't a kind of lvalue we recognize, make no change.
3489 Caller should recognize the error for an invalid lvalue. */
3490 default:
3491 return ref;
3492
3493 case ERROR_MARK:
3494 return error_mark_node;
3495 }
3496
3497 TREE_TYPE (result) = TREE_TYPE (ref);
3498 TREE_READONLY (result) = TREE_READONLY (ref);
3499 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3500 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3501
3502 return result;
3503 }
3504
3505 /* Subroutine of stabilize_reference; this is called for subtrees of
3506 references. Any expression with side-effects must be put in a SAVE_EXPR
3507 to ensure that it is only evaluated once.
3508
3509 We don't put SAVE_EXPR nodes around everything, because assigning very
3510 simple expressions to temporaries causes us to miss good opportunities
3511 for optimizations. Among other things, the opportunity to fold in the
3512 addition of a constant into an addressing mode often gets lost, e.g.
3513 "y[i+1] += x;". In general, we take the approach that we should not make
3514 an assignment unless we are forced into it - i.e., that any non-side effect
3515 operator should be allowed, and that cse should take care of coalescing
3516 multiple utterances of the same expression should that prove fruitful. */
3517
3518 tree
3519 stabilize_reference_1 (tree e)
3520 {
3521 tree result;
3522 enum tree_code code = TREE_CODE (e);
3523
3524 /* We cannot ignore const expressions because it might be a reference
3525 to a const array but whose index contains side-effects. But we can
3526 ignore things that are actual constant or that already have been
3527 handled by this function. */
3528
3529 if (tree_invariant_p (e))
3530 return e;
3531
3532 switch (TREE_CODE_CLASS (code))
3533 {
3534 case tcc_exceptional:
3535 case tcc_type:
3536 case tcc_declaration:
3537 case tcc_comparison:
3538 case tcc_statement:
3539 case tcc_expression:
3540 case tcc_reference:
3541 case tcc_vl_exp:
3542 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3543 so that it will only be evaluated once. */
3544 /* The reference (r) and comparison (<) classes could be handled as
3545 below, but it is generally faster to only evaluate them once. */
3546 if (TREE_SIDE_EFFECTS (e))
3547 return save_expr (e);
3548 return e;
3549
3550 case tcc_constant:
3551 /* Constants need no processing. In fact, we should never reach
3552 here. */
3553 return e;
3554
3555 case tcc_binary:
3556 /* Division is slow and tends to be compiled with jumps,
3557 especially the division by powers of 2 that is often
3558 found inside of an array reference. So do it just once. */
3559 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3560 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3561 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3562 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3563 return save_expr (e);
3564 /* Recursively stabilize each operand. */
3565 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3566 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3567 break;
3568
3569 case tcc_unary:
3570 /* Recursively stabilize each operand. */
3571 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3572 break;
3573
3574 default:
3575 gcc_unreachable ();
3576 }
3577
3578 TREE_TYPE (result) = TREE_TYPE (e);
3579 TREE_READONLY (result) = TREE_READONLY (e);
3580 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3581 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3582
3583 return result;
3584 }
3585 \f
3586 /* Low-level constructors for expressions. */
3587
3588 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3589 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3590
3591 void
3592 recompute_tree_invariant_for_addr_expr (tree t)
3593 {
3594 tree node;
3595 bool tc = true, se = false;
3596
3597 /* We started out assuming this address is both invariant and constant, but
3598 does not have side effects. Now go down any handled components and see if
3599 any of them involve offsets that are either non-constant or non-invariant.
3600 Also check for side-effects.
3601
3602 ??? Note that this code makes no attempt to deal with the case where
3603 taking the address of something causes a copy due to misalignment. */
3604
3605 #define UPDATE_FLAGS(NODE) \
3606 do { tree _node = (NODE); \
3607 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3608 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3609
3610 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3611 node = TREE_OPERAND (node, 0))
3612 {
3613 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3614 array reference (probably made temporarily by the G++ front end),
3615 so ignore all the operands. */
3616 if ((TREE_CODE (node) == ARRAY_REF
3617 || TREE_CODE (node) == ARRAY_RANGE_REF)
3618 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3619 {
3620 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3621 if (TREE_OPERAND (node, 2))
3622 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3623 if (TREE_OPERAND (node, 3))
3624 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3625 }
3626 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3627 FIELD_DECL, apparently. The G++ front end can put something else
3628 there, at least temporarily. */
3629 else if (TREE_CODE (node) == COMPONENT_REF
3630 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3631 {
3632 if (TREE_OPERAND (node, 2))
3633 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3634 }
3635 else if (TREE_CODE (node) == BIT_FIELD_REF)
3636 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3637 }
3638
3639 node = lang_hooks.expr_to_decl (node, &tc, &se);
3640
3641 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3642 the address, since &(*a)->b is a form of addition. If it's a constant, the
3643 address is constant too. If it's a decl, its address is constant if the
3644 decl is static. Everything else is not constant and, furthermore,
3645 taking the address of a volatile variable is not volatile. */
3646 if (TREE_CODE (node) == INDIRECT_REF
3647 || TREE_CODE (node) == MEM_REF)
3648 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3649 else if (CONSTANT_CLASS_P (node))
3650 ;
3651 else if (DECL_P (node))
3652 tc &= (staticp (node) != NULL_TREE);
3653 else
3654 {
3655 tc = false;
3656 se |= TREE_SIDE_EFFECTS (node);
3657 }
3658
3659
3660 TREE_CONSTANT (t) = tc;
3661 TREE_SIDE_EFFECTS (t) = se;
3662 #undef UPDATE_FLAGS
3663 }
3664
3665 /* Build an expression of code CODE, data type TYPE, and operands as
3666 specified. Expressions and reference nodes can be created this way.
3667 Constants, decls, types and misc nodes cannot be.
3668
3669 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3670 enough for all extant tree codes. */
3671
3672 tree
3673 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3674 {
3675 tree t;
3676
3677 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3678
3679 t = make_node_stat (code PASS_MEM_STAT);
3680 TREE_TYPE (t) = tt;
3681
3682 return t;
3683 }
3684
3685 tree
3686 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3687 {
3688 int length = sizeof (struct tree_exp);
3689 tree t;
3690
3691 record_node_allocation_statistics (code, length);
3692
3693 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3694
3695 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
3696
3697 memset (t, 0, sizeof (struct tree_common));
3698
3699 TREE_SET_CODE (t, code);
3700
3701 TREE_TYPE (t) = type;
3702 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3703 TREE_OPERAND (t, 0) = node;
3704 TREE_BLOCK (t) = NULL_TREE;
3705 if (node && !TYPE_P (node))
3706 {
3707 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3708 TREE_READONLY (t) = TREE_READONLY (node);
3709 }
3710
3711 if (TREE_CODE_CLASS (code) == tcc_statement)
3712 TREE_SIDE_EFFECTS (t) = 1;
3713 else switch (code)
3714 {
3715 case VA_ARG_EXPR:
3716 /* All of these have side-effects, no matter what their
3717 operands are. */
3718 TREE_SIDE_EFFECTS (t) = 1;
3719 TREE_READONLY (t) = 0;
3720 break;
3721
3722 case INDIRECT_REF:
3723 /* Whether a dereference is readonly has nothing to do with whether
3724 its operand is readonly. */
3725 TREE_READONLY (t) = 0;
3726 break;
3727
3728 case ADDR_EXPR:
3729 if (node)
3730 recompute_tree_invariant_for_addr_expr (t);
3731 break;
3732
3733 default:
3734 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3735 && node && !TYPE_P (node)
3736 && TREE_CONSTANT (node))
3737 TREE_CONSTANT (t) = 1;
3738 if (TREE_CODE_CLASS (code) == tcc_reference
3739 && node && TREE_THIS_VOLATILE (node))
3740 TREE_THIS_VOLATILE (t) = 1;
3741 break;
3742 }
3743
3744 return t;
3745 }
3746
3747 #define PROCESS_ARG(N) \
3748 do { \
3749 TREE_OPERAND (t, N) = arg##N; \
3750 if (arg##N &&!TYPE_P (arg##N)) \
3751 { \
3752 if (TREE_SIDE_EFFECTS (arg##N)) \
3753 side_effects = 1; \
3754 if (!TREE_READONLY (arg##N) \
3755 && !CONSTANT_CLASS_P (arg##N)) \
3756 (void) (read_only = 0); \
3757 if (!TREE_CONSTANT (arg##N)) \
3758 (void) (constant = 0); \
3759 } \
3760 } while (0)
3761
3762 tree
3763 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3764 {
3765 bool constant, read_only, side_effects;
3766 tree t;
3767
3768 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3769
3770 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3771 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3772 /* When sizetype precision doesn't match that of pointers
3773 we need to be able to build explicit extensions or truncations
3774 of the offset argument. */
3775 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3776 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3777 && TREE_CODE (arg1) == INTEGER_CST);
3778
3779 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3780 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3781 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3782 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3783
3784 t = make_node_stat (code PASS_MEM_STAT);
3785 TREE_TYPE (t) = tt;
3786
3787 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3788 result based on those same flags for the arguments. But if the
3789 arguments aren't really even `tree' expressions, we shouldn't be trying
3790 to do this. */
3791
3792 /* Expressions without side effects may be constant if their
3793 arguments are as well. */
3794 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3795 || TREE_CODE_CLASS (code) == tcc_binary);
3796 read_only = 1;
3797 side_effects = TREE_SIDE_EFFECTS (t);
3798
3799 PROCESS_ARG(0);
3800 PROCESS_ARG(1);
3801
3802 TREE_READONLY (t) = read_only;
3803 TREE_CONSTANT (t) = constant;
3804 TREE_SIDE_EFFECTS (t) = side_effects;
3805 TREE_THIS_VOLATILE (t)
3806 = (TREE_CODE_CLASS (code) == tcc_reference
3807 && arg0 && TREE_THIS_VOLATILE (arg0));
3808
3809 return t;
3810 }
3811
3812
3813 tree
3814 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3815 tree arg2 MEM_STAT_DECL)
3816 {
3817 bool constant, read_only, side_effects;
3818 tree t;
3819
3820 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3821 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3822
3823 t = make_node_stat (code PASS_MEM_STAT);
3824 TREE_TYPE (t) = tt;
3825
3826 read_only = 1;
3827
3828 /* As a special exception, if COND_EXPR has NULL branches, we
3829 assume that it is a gimple statement and always consider
3830 it to have side effects. */
3831 if (code == COND_EXPR
3832 && tt == void_type_node
3833 && arg1 == NULL_TREE
3834 && arg2 == NULL_TREE)
3835 side_effects = true;
3836 else
3837 side_effects = TREE_SIDE_EFFECTS (t);
3838
3839 PROCESS_ARG(0);
3840 PROCESS_ARG(1);
3841 PROCESS_ARG(2);
3842
3843 if (code == COND_EXPR)
3844 TREE_READONLY (t) = read_only;
3845
3846 TREE_SIDE_EFFECTS (t) = side_effects;
3847 TREE_THIS_VOLATILE (t)
3848 = (TREE_CODE_CLASS (code) == tcc_reference
3849 && arg0 && TREE_THIS_VOLATILE (arg0));
3850
3851 return t;
3852 }
3853
3854 tree
3855 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3856 tree arg2, tree arg3 MEM_STAT_DECL)
3857 {
3858 bool constant, read_only, side_effects;
3859 tree t;
3860
3861 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3862
3863 t = make_node_stat (code PASS_MEM_STAT);
3864 TREE_TYPE (t) = tt;
3865
3866 side_effects = TREE_SIDE_EFFECTS (t);
3867
3868 PROCESS_ARG(0);
3869 PROCESS_ARG(1);
3870 PROCESS_ARG(2);
3871 PROCESS_ARG(3);
3872
3873 TREE_SIDE_EFFECTS (t) = side_effects;
3874 TREE_THIS_VOLATILE (t)
3875 = (TREE_CODE_CLASS (code) == tcc_reference
3876 && arg0 && TREE_THIS_VOLATILE (arg0));
3877
3878 return t;
3879 }
3880
3881 tree
3882 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3883 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3884 {
3885 bool constant, read_only, side_effects;
3886 tree t;
3887
3888 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3889
3890 t = make_node_stat (code PASS_MEM_STAT);
3891 TREE_TYPE (t) = tt;
3892
3893 side_effects = TREE_SIDE_EFFECTS (t);
3894
3895 PROCESS_ARG(0);
3896 PROCESS_ARG(1);
3897 PROCESS_ARG(2);
3898 PROCESS_ARG(3);
3899 PROCESS_ARG(4);
3900
3901 TREE_SIDE_EFFECTS (t) = side_effects;
3902 TREE_THIS_VOLATILE (t)
3903 = (TREE_CODE_CLASS (code) == tcc_reference
3904 && arg0 && TREE_THIS_VOLATILE (arg0));
3905
3906 return t;
3907 }
3908
3909 tree
3910 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3911 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3912 {
3913 bool constant, read_only, side_effects;
3914 tree t;
3915
3916 gcc_assert (code == TARGET_MEM_REF);
3917
3918 t = make_node_stat (code PASS_MEM_STAT);
3919 TREE_TYPE (t) = tt;
3920
3921 side_effects = TREE_SIDE_EFFECTS (t);
3922
3923 PROCESS_ARG(0);
3924 PROCESS_ARG(1);
3925 PROCESS_ARG(2);
3926 PROCESS_ARG(3);
3927 PROCESS_ARG(4);
3928 if (code == TARGET_MEM_REF)
3929 side_effects = 0;
3930 PROCESS_ARG(5);
3931
3932 TREE_SIDE_EFFECTS (t) = side_effects;
3933 TREE_THIS_VOLATILE (t)
3934 = (code == TARGET_MEM_REF
3935 && arg5 && TREE_THIS_VOLATILE (arg5));
3936
3937 return t;
3938 }
3939
3940 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
3941 on the pointer PTR. */
3942
3943 tree
3944 build_simple_mem_ref_loc (location_t loc, tree ptr)
3945 {
3946 HOST_WIDE_INT offset = 0;
3947 tree ptype = TREE_TYPE (ptr);
3948 tree tem;
3949 /* For convenience allow addresses that collapse to a simple base
3950 and offset. */
3951 if (TREE_CODE (ptr) == ADDR_EXPR
3952 && (handled_component_p (TREE_OPERAND (ptr, 0))
3953 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
3954 {
3955 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
3956 gcc_assert (ptr);
3957 ptr = build_fold_addr_expr (ptr);
3958 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
3959 }
3960 tem = build2 (MEM_REF, TREE_TYPE (ptype),
3961 ptr, build_int_cst (ptype, offset));
3962 SET_EXPR_LOCATION (tem, loc);
3963 return tem;
3964 }
3965
3966 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
3967
3968 double_int
3969 mem_ref_offset (const_tree t)
3970 {
3971 tree toff = TREE_OPERAND (t, 1);
3972 return double_int_sext (tree_to_double_int (toff),
3973 TYPE_PRECISION (TREE_TYPE (toff)));
3974 }
3975
3976 /* Return the pointer-type relevant for TBAA purposes from the
3977 gimple memory reference tree T. This is the type to be used for
3978 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
3979
3980 tree
3981 reference_alias_ptr_type (const_tree t)
3982 {
3983 const_tree base = t;
3984 while (handled_component_p (base))
3985 base = TREE_OPERAND (base, 0);
3986 if (TREE_CODE (base) == MEM_REF)
3987 return TREE_TYPE (TREE_OPERAND (base, 1));
3988 else if (TREE_CODE (base) == TARGET_MEM_REF)
3989 return TREE_TYPE (TMR_OFFSET (base));
3990 else
3991 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
3992 }
3993
3994 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
3995 offsetted by OFFSET units. */
3996
3997 tree
3998 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
3999 {
4000 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4001 build_fold_addr_expr (base),
4002 build_int_cst (ptr_type_node, offset));
4003 tree addr = build1 (ADDR_EXPR, type, ref);
4004 recompute_tree_invariant_for_addr_expr (addr);
4005 return addr;
4006 }
4007
4008 /* Similar except don't specify the TREE_TYPE
4009 and leave the TREE_SIDE_EFFECTS as 0.
4010 It is permissible for arguments to be null,
4011 or even garbage if their values do not matter. */
4012
4013 tree
4014 build_nt (enum tree_code code, ...)
4015 {
4016 tree t;
4017 int length;
4018 int i;
4019 va_list p;
4020
4021 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4022
4023 va_start (p, code);
4024
4025 t = make_node (code);
4026 length = TREE_CODE_LENGTH (code);
4027
4028 for (i = 0; i < length; i++)
4029 TREE_OPERAND (t, i) = va_arg (p, tree);
4030
4031 va_end (p);
4032 return t;
4033 }
4034
4035 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4036 tree VEC. */
4037
4038 tree
4039 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
4040 {
4041 tree ret, t;
4042 unsigned int ix;
4043
4044 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
4045 CALL_EXPR_FN (ret) = fn;
4046 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4047 FOR_EACH_VEC_ELT (tree, args, ix, t)
4048 CALL_EXPR_ARG (ret, ix) = t;
4049 return ret;
4050 }
4051 \f
4052 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4053 We do NOT enter this node in any sort of symbol table.
4054
4055 LOC is the location of the decl.
4056
4057 layout_decl is used to set up the decl's storage layout.
4058 Other slots are initialized to 0 or null pointers. */
4059
4060 tree
4061 build_decl_stat (location_t loc, enum tree_code code, tree name,
4062 tree type MEM_STAT_DECL)
4063 {
4064 tree t;
4065
4066 t = make_node_stat (code PASS_MEM_STAT);
4067 DECL_SOURCE_LOCATION (t) = loc;
4068
4069 /* if (type == error_mark_node)
4070 type = integer_type_node; */
4071 /* That is not done, deliberately, so that having error_mark_node
4072 as the type can suppress useless errors in the use of this variable. */
4073
4074 DECL_NAME (t) = name;
4075 TREE_TYPE (t) = type;
4076
4077 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4078 layout_decl (t, 0);
4079
4080 return t;
4081 }
4082
4083 /* Builds and returns function declaration with NAME and TYPE. */
4084
4085 tree
4086 build_fn_decl (const char *name, tree type)
4087 {
4088 tree id = get_identifier (name);
4089 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4090
4091 DECL_EXTERNAL (decl) = 1;
4092 TREE_PUBLIC (decl) = 1;
4093 DECL_ARTIFICIAL (decl) = 1;
4094 TREE_NOTHROW (decl) = 1;
4095
4096 return decl;
4097 }
4098
4099 VEC(tree,gc) *all_translation_units;
4100
4101 /* Builds a new translation-unit decl with name NAME, queues it in the
4102 global list of translation-unit decls and returns it. */
4103
4104 tree
4105 build_translation_unit_decl (tree name)
4106 {
4107 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4108 name, NULL_TREE);
4109 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4110 VEC_safe_push (tree, gc, all_translation_units, tu);
4111 return tu;
4112 }
4113
4114 \f
4115 /* BLOCK nodes are used to represent the structure of binding contours
4116 and declarations, once those contours have been exited and their contents
4117 compiled. This information is used for outputting debugging info. */
4118
4119 tree
4120 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4121 {
4122 tree block = make_node (BLOCK);
4123
4124 BLOCK_VARS (block) = vars;
4125 BLOCK_SUBBLOCKS (block) = subblocks;
4126 BLOCK_SUPERCONTEXT (block) = supercontext;
4127 BLOCK_CHAIN (block) = chain;
4128 return block;
4129 }
4130
4131 \f
4132 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4133
4134 LOC is the location to use in tree T. */
4135
4136 void
4137 protected_set_expr_location (tree t, location_t loc)
4138 {
4139 if (t && CAN_HAVE_LOCATION_P (t))
4140 SET_EXPR_LOCATION (t, loc);
4141 }
4142 \f
4143 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4144 is ATTRIBUTE. */
4145
4146 tree
4147 build_decl_attribute_variant (tree ddecl, tree attribute)
4148 {
4149 DECL_ATTRIBUTES (ddecl) = attribute;
4150 return ddecl;
4151 }
4152
4153 /* Borrowed from hashtab.c iterative_hash implementation. */
4154 #define mix(a,b,c) \
4155 { \
4156 a -= b; a -= c; a ^= (c>>13); \
4157 b -= c; b -= a; b ^= (a<< 8); \
4158 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4159 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4160 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4161 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4162 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4163 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4164 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4165 }
4166
4167
4168 /* Produce good hash value combining VAL and VAL2. */
4169 hashval_t
4170 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4171 {
4172 /* the golden ratio; an arbitrary value. */
4173 hashval_t a = 0x9e3779b9;
4174
4175 mix (a, val, val2);
4176 return val2;
4177 }
4178
4179 /* Produce good hash value combining VAL and VAL2. */
4180 hashval_t
4181 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4182 {
4183 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4184 return iterative_hash_hashval_t (val, val2);
4185 else
4186 {
4187 hashval_t a = (hashval_t) val;
4188 /* Avoid warnings about shifting of more than the width of the type on
4189 hosts that won't execute this path. */
4190 int zero = 0;
4191 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4192 mix (a, b, val2);
4193 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4194 {
4195 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4196 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4197 mix (a, b, val2);
4198 }
4199 return val2;
4200 }
4201 }
4202
4203 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4204 is ATTRIBUTE and its qualifiers are QUALS.
4205
4206 Record such modified types already made so we don't make duplicates. */
4207
4208 tree
4209 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4210 {
4211 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4212 {
4213 hashval_t hashcode = 0;
4214 tree ntype;
4215 enum tree_code code = TREE_CODE (ttype);
4216
4217 /* Building a distinct copy of a tagged type is inappropriate; it
4218 causes breakage in code that expects there to be a one-to-one
4219 relationship between a struct and its fields.
4220 build_duplicate_type is another solution (as used in
4221 handle_transparent_union_attribute), but that doesn't play well
4222 with the stronger C++ type identity model. */
4223 if (TREE_CODE (ttype) == RECORD_TYPE
4224 || TREE_CODE (ttype) == UNION_TYPE
4225 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4226 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4227 {
4228 warning (OPT_Wattributes,
4229 "ignoring attributes applied to %qT after definition",
4230 TYPE_MAIN_VARIANT (ttype));
4231 return build_qualified_type (ttype, quals);
4232 }
4233
4234 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4235 ntype = build_distinct_type_copy (ttype);
4236
4237 TYPE_ATTRIBUTES (ntype) = attribute;
4238
4239 hashcode = iterative_hash_object (code, hashcode);
4240 if (TREE_TYPE (ntype))
4241 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4242 hashcode);
4243 hashcode = attribute_hash_list (attribute, hashcode);
4244
4245 switch (TREE_CODE (ntype))
4246 {
4247 case FUNCTION_TYPE:
4248 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4249 break;
4250 case ARRAY_TYPE:
4251 if (TYPE_DOMAIN (ntype))
4252 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4253 hashcode);
4254 break;
4255 case INTEGER_TYPE:
4256 hashcode = iterative_hash_object
4257 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4258 hashcode = iterative_hash_object
4259 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4260 break;
4261 case REAL_TYPE:
4262 case FIXED_POINT_TYPE:
4263 {
4264 unsigned int precision = TYPE_PRECISION (ntype);
4265 hashcode = iterative_hash_object (precision, hashcode);
4266 }
4267 break;
4268 default:
4269 break;
4270 }
4271
4272 ntype = type_hash_canon (hashcode, ntype);
4273
4274 /* If the target-dependent attributes make NTYPE different from
4275 its canonical type, we will need to use structural equality
4276 checks for this type. */
4277 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4278 || !comp_type_attributes (ntype, ttype))
4279 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4280 else if (TYPE_CANONICAL (ntype) == ntype)
4281 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4282
4283 ttype = build_qualified_type (ntype, quals);
4284 }
4285 else if (TYPE_QUALS (ttype) != quals)
4286 ttype = build_qualified_type (ttype, quals);
4287
4288 return ttype;
4289 }
4290
4291 /* Compare two attributes for their value identity. Return true if the
4292 attribute values are known to be equal; otherwise return false.
4293 */
4294
4295 static bool
4296 attribute_value_equal (const_tree attr1, const_tree attr2)
4297 {
4298 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4299 return true;
4300
4301 if (TREE_VALUE (attr1) != NULL_TREE
4302 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4303 && TREE_VALUE (attr2) != NULL
4304 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4305 return (simple_cst_list_equal (TREE_VALUE (attr1),
4306 TREE_VALUE (attr2)) == 1);
4307
4308 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
4309 }
4310
4311 /* Return 0 if the attributes for two types are incompatible, 1 if they
4312 are compatible, and 2 if they are nearly compatible (which causes a
4313 warning to be generated). */
4314 int
4315 comp_type_attributes (const_tree type1, const_tree type2)
4316 {
4317 const_tree a1 = TYPE_ATTRIBUTES (type1);
4318 const_tree a2 = TYPE_ATTRIBUTES (type2);
4319 const_tree a;
4320
4321 if (a1 == a2)
4322 return 1;
4323 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
4324 {
4325 const struct attribute_spec *as;
4326 const_tree attr;
4327
4328 as = lookup_attribute_spec (TREE_PURPOSE (a));
4329 if (!as || as->affects_type_identity == false)
4330 continue;
4331
4332 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
4333 if (!attr || !attribute_value_equal (a, attr))
4334 break;
4335 }
4336 if (!a)
4337 {
4338 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
4339 {
4340 const struct attribute_spec *as;
4341
4342 as = lookup_attribute_spec (TREE_PURPOSE (a));
4343 if (!as || as->affects_type_identity == false)
4344 continue;
4345
4346 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
4347 break;
4348 /* We don't need to compare trees again, as we did this
4349 already in first loop. */
4350 }
4351 /* All types - affecting identity - are equal, so
4352 there is no need to call target hook for comparison. */
4353 if (!a)
4354 return 1;
4355 }
4356 /* As some type combinations - like default calling-convention - might
4357 be compatible, we have to call the target hook to get the final result. */
4358 return targetm.comp_type_attributes (type1, type2);
4359 }
4360
4361 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4362 is ATTRIBUTE.
4363
4364 Record such modified types already made so we don't make duplicates. */
4365
4366 tree
4367 build_type_attribute_variant (tree ttype, tree attribute)
4368 {
4369 return build_type_attribute_qual_variant (ttype, attribute,
4370 TYPE_QUALS (ttype));
4371 }
4372
4373
4374 /* Reset the expression *EXPR_P, a size or position.
4375
4376 ??? We could reset all non-constant sizes or positions. But it's cheap
4377 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4378
4379 We need to reset self-referential sizes or positions because they cannot
4380 be gimplified and thus can contain a CALL_EXPR after the gimplification
4381 is finished, which will run afoul of LTO streaming. And they need to be
4382 reset to something essentially dummy but not constant, so as to preserve
4383 the properties of the object they are attached to. */
4384
4385 static inline void
4386 free_lang_data_in_one_sizepos (tree *expr_p)
4387 {
4388 tree expr = *expr_p;
4389 if (CONTAINS_PLACEHOLDER_P (expr))
4390 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4391 }
4392
4393
4394 /* Reset all the fields in a binfo node BINFO. We only keep
4395 BINFO_VIRTUALS, which is used by gimple_fold_obj_type_ref. */
4396
4397 static void
4398 free_lang_data_in_binfo (tree binfo)
4399 {
4400 unsigned i;
4401 tree t;
4402
4403 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4404
4405 BINFO_VTABLE (binfo) = NULL_TREE;
4406 BINFO_BASE_ACCESSES (binfo) = NULL;
4407 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4408 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4409
4410 FOR_EACH_VEC_ELT (tree, BINFO_BASE_BINFOS (binfo), i, t)
4411 free_lang_data_in_binfo (t);
4412 }
4413
4414
4415 /* Reset all language specific information still present in TYPE. */
4416
4417 static void
4418 free_lang_data_in_type (tree type)
4419 {
4420 gcc_assert (TYPE_P (type));
4421
4422 /* Give the FE a chance to remove its own data first. */
4423 lang_hooks.free_lang_data (type);
4424
4425 TREE_LANG_FLAG_0 (type) = 0;
4426 TREE_LANG_FLAG_1 (type) = 0;
4427 TREE_LANG_FLAG_2 (type) = 0;
4428 TREE_LANG_FLAG_3 (type) = 0;
4429 TREE_LANG_FLAG_4 (type) = 0;
4430 TREE_LANG_FLAG_5 (type) = 0;
4431 TREE_LANG_FLAG_6 (type) = 0;
4432
4433 if (TREE_CODE (type) == FUNCTION_TYPE)
4434 {
4435 /* Remove the const and volatile qualifiers from arguments. The
4436 C++ front end removes them, but the C front end does not,
4437 leading to false ODR violation errors when merging two
4438 instances of the same function signature compiled by
4439 different front ends. */
4440 tree p;
4441
4442 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4443 {
4444 tree arg_type = TREE_VALUE (p);
4445
4446 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4447 {
4448 int quals = TYPE_QUALS (arg_type)
4449 & ~TYPE_QUAL_CONST
4450 & ~TYPE_QUAL_VOLATILE;
4451 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4452 free_lang_data_in_type (TREE_VALUE (p));
4453 }
4454 }
4455 }
4456
4457 /* Remove members that are not actually FIELD_DECLs from the field
4458 list of an aggregate. These occur in C++. */
4459 if (RECORD_OR_UNION_TYPE_P (type))
4460 {
4461 tree prev, member;
4462
4463 /* Note that TYPE_FIELDS can be shared across distinct
4464 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4465 to be removed, we cannot set its TREE_CHAIN to NULL.
4466 Otherwise, we would not be able to find all the other fields
4467 in the other instances of this TREE_TYPE.
4468
4469 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4470 prev = NULL_TREE;
4471 member = TYPE_FIELDS (type);
4472 while (member)
4473 {
4474 if (TREE_CODE (member) == FIELD_DECL)
4475 {
4476 if (prev)
4477 TREE_CHAIN (prev) = member;
4478 else
4479 TYPE_FIELDS (type) = member;
4480 prev = member;
4481 }
4482
4483 member = TREE_CHAIN (member);
4484 }
4485
4486 if (prev)
4487 TREE_CHAIN (prev) = NULL_TREE;
4488 else
4489 TYPE_FIELDS (type) = NULL_TREE;
4490
4491 TYPE_METHODS (type) = NULL_TREE;
4492 if (TYPE_BINFO (type))
4493 free_lang_data_in_binfo (TYPE_BINFO (type));
4494 }
4495 else
4496 {
4497 /* For non-aggregate types, clear out the language slot (which
4498 overloads TYPE_BINFO). */
4499 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4500
4501 if (INTEGRAL_TYPE_P (type)
4502 || SCALAR_FLOAT_TYPE_P (type)
4503 || FIXED_POINT_TYPE_P (type))
4504 {
4505 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4506 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4507 }
4508 }
4509
4510 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4511 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4512
4513 if (debug_info_level < DINFO_LEVEL_TERSE
4514 || (TYPE_CONTEXT (type)
4515 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_DECL
4516 && TREE_CODE (TYPE_CONTEXT (type)) != NAMESPACE_DECL))
4517 TYPE_CONTEXT (type) = NULL_TREE;
4518
4519 if (debug_info_level < DINFO_LEVEL_TERSE)
4520 TYPE_STUB_DECL (type) = NULL_TREE;
4521 }
4522
4523
4524 /* Return true if DECL may need an assembler name to be set. */
4525
4526 static inline bool
4527 need_assembler_name_p (tree decl)
4528 {
4529 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4530 if (TREE_CODE (decl) != FUNCTION_DECL
4531 && TREE_CODE (decl) != VAR_DECL)
4532 return false;
4533
4534 /* If DECL already has its assembler name set, it does not need a
4535 new one. */
4536 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4537 || DECL_ASSEMBLER_NAME_SET_P (decl))
4538 return false;
4539
4540 /* Abstract decls do not need an assembler name. */
4541 if (DECL_ABSTRACT (decl))
4542 return false;
4543
4544 /* For VAR_DECLs, only static, public and external symbols need an
4545 assembler name. */
4546 if (TREE_CODE (decl) == VAR_DECL
4547 && !TREE_STATIC (decl)
4548 && !TREE_PUBLIC (decl)
4549 && !DECL_EXTERNAL (decl))
4550 return false;
4551
4552 if (TREE_CODE (decl) == FUNCTION_DECL)
4553 {
4554 /* Do not set assembler name on builtins. Allow RTL expansion to
4555 decide whether to expand inline or via a regular call. */
4556 if (DECL_BUILT_IN (decl)
4557 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4558 return false;
4559
4560 /* Functions represented in the callgraph need an assembler name. */
4561 if (cgraph_get_node (decl) != NULL)
4562 return true;
4563
4564 /* Unused and not public functions don't need an assembler name. */
4565 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4566 return false;
4567 }
4568
4569 return true;
4570 }
4571
4572
4573 /* Reset all language specific information still present in symbol
4574 DECL. */
4575
4576 static void
4577 free_lang_data_in_decl (tree decl)
4578 {
4579 gcc_assert (DECL_P (decl));
4580
4581 /* Give the FE a chance to remove its own data first. */
4582 lang_hooks.free_lang_data (decl);
4583
4584 TREE_LANG_FLAG_0 (decl) = 0;
4585 TREE_LANG_FLAG_1 (decl) = 0;
4586 TREE_LANG_FLAG_2 (decl) = 0;
4587 TREE_LANG_FLAG_3 (decl) = 0;
4588 TREE_LANG_FLAG_4 (decl) = 0;
4589 TREE_LANG_FLAG_5 (decl) = 0;
4590 TREE_LANG_FLAG_6 (decl) = 0;
4591
4592 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4593 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4594 if (TREE_CODE (decl) == FIELD_DECL)
4595 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4596
4597 /* DECL_FCONTEXT is only used for debug info generation. */
4598 if (TREE_CODE (decl) == FIELD_DECL
4599 && debug_info_level < DINFO_LEVEL_TERSE)
4600 DECL_FCONTEXT (decl) = NULL_TREE;
4601
4602 if (TREE_CODE (decl) == FUNCTION_DECL)
4603 {
4604 if (gimple_has_body_p (decl))
4605 {
4606 tree t;
4607
4608 /* If DECL has a gimple body, then the context for its
4609 arguments must be DECL. Otherwise, it doesn't really
4610 matter, as we will not be emitting any code for DECL. In
4611 general, there may be other instances of DECL created by
4612 the front end and since PARM_DECLs are generally shared,
4613 their DECL_CONTEXT changes as the replicas of DECL are
4614 created. The only time where DECL_CONTEXT is important
4615 is for the FUNCTION_DECLs that have a gimple body (since
4616 the PARM_DECL will be used in the function's body). */
4617 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4618 DECL_CONTEXT (t) = decl;
4619 }
4620
4621 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4622 At this point, it is not needed anymore. */
4623 DECL_SAVED_TREE (decl) = NULL_TREE;
4624
4625 /* Clear the abstract origin if it refers to a method. Otherwise
4626 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
4627 origin will not be output correctly. */
4628 if (DECL_ABSTRACT_ORIGIN (decl)
4629 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
4630 && RECORD_OR_UNION_TYPE_P
4631 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
4632 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
4633
4634 /* Sometimes the C++ frontend doesn't manage to transform a temporary
4635 DECL_VINDEX referring to itself into a vtable slot number as it
4636 should. Happens with functions that are copied and then forgotten
4637 about. Just clear it, it won't matter anymore. */
4638 if (DECL_VINDEX (decl) && !host_integerp (DECL_VINDEX (decl), 0))
4639 DECL_VINDEX (decl) = NULL_TREE;
4640 }
4641 else if (TREE_CODE (decl) == VAR_DECL)
4642 {
4643 if ((DECL_EXTERNAL (decl)
4644 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4645 || (decl_function_context (decl) && !TREE_STATIC (decl)))
4646 DECL_INITIAL (decl) = NULL_TREE;
4647 }
4648 else if (TREE_CODE (decl) == TYPE_DECL)
4649 DECL_INITIAL (decl) = NULL_TREE;
4650 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
4651 && DECL_INITIAL (decl)
4652 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
4653 {
4654 /* Strip builtins from the translation-unit BLOCK. We still have
4655 targets without builtin_decl support and also builtins are
4656 shared nodes and thus we can't use TREE_CHAIN in multiple
4657 lists. */
4658 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
4659 while (*nextp)
4660 {
4661 tree var = *nextp;
4662 if (TREE_CODE (var) == FUNCTION_DECL
4663 && DECL_BUILT_IN (var))
4664 *nextp = TREE_CHAIN (var);
4665 else
4666 nextp = &TREE_CHAIN (var);
4667 }
4668 }
4669 }
4670
4671
4672 /* Data used when collecting DECLs and TYPEs for language data removal. */
4673
4674 struct free_lang_data_d
4675 {
4676 /* Worklist to avoid excessive recursion. */
4677 VEC(tree,heap) *worklist;
4678
4679 /* Set of traversed objects. Used to avoid duplicate visits. */
4680 struct pointer_set_t *pset;
4681
4682 /* Array of symbols to process with free_lang_data_in_decl. */
4683 VEC(tree,heap) *decls;
4684
4685 /* Array of types to process with free_lang_data_in_type. */
4686 VEC(tree,heap) *types;
4687 };
4688
4689
4690 /* Save all language fields needed to generate proper debug information
4691 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4692
4693 static void
4694 save_debug_info_for_decl (tree t)
4695 {
4696 /*struct saved_debug_info_d *sdi;*/
4697
4698 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4699
4700 /* FIXME. Partial implementation for saving debug info removed. */
4701 }
4702
4703
4704 /* Save all language fields needed to generate proper debug information
4705 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4706
4707 static void
4708 save_debug_info_for_type (tree t)
4709 {
4710 /*struct saved_debug_info_d *sdi;*/
4711
4712 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4713
4714 /* FIXME. Partial implementation for saving debug info removed. */
4715 }
4716
4717
4718 /* Add type or decl T to one of the list of tree nodes that need their
4719 language data removed. The lists are held inside FLD. */
4720
4721 static void
4722 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4723 {
4724 if (DECL_P (t))
4725 {
4726 VEC_safe_push (tree, heap, fld->decls, t);
4727 if (debug_info_level > DINFO_LEVEL_TERSE)
4728 save_debug_info_for_decl (t);
4729 }
4730 else if (TYPE_P (t))
4731 {
4732 VEC_safe_push (tree, heap, fld->types, t);
4733 if (debug_info_level > DINFO_LEVEL_TERSE)
4734 save_debug_info_for_type (t);
4735 }
4736 else
4737 gcc_unreachable ();
4738 }
4739
4740 /* Push tree node T into FLD->WORKLIST. */
4741
4742 static inline void
4743 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4744 {
4745 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4746 VEC_safe_push (tree, heap, fld->worklist, (t));
4747 }
4748
4749
4750 /* Operand callback helper for free_lang_data_in_node. *TP is the
4751 subtree operand being considered. */
4752
4753 static tree
4754 find_decls_types_r (tree *tp, int *ws, void *data)
4755 {
4756 tree t = *tp;
4757 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4758
4759 if (TREE_CODE (t) == TREE_LIST)
4760 return NULL_TREE;
4761
4762 /* Language specific nodes will be removed, so there is no need
4763 to gather anything under them. */
4764 if (is_lang_specific (t))
4765 {
4766 *ws = 0;
4767 return NULL_TREE;
4768 }
4769
4770 if (DECL_P (t))
4771 {
4772 /* Note that walk_tree does not traverse every possible field in
4773 decls, so we have to do our own traversals here. */
4774 add_tree_to_fld_list (t, fld);
4775
4776 fld_worklist_push (DECL_NAME (t), fld);
4777 fld_worklist_push (DECL_CONTEXT (t), fld);
4778 fld_worklist_push (DECL_SIZE (t), fld);
4779 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4780
4781 /* We are going to remove everything under DECL_INITIAL for
4782 TYPE_DECLs. No point walking them. */
4783 if (TREE_CODE (t) != TYPE_DECL)
4784 fld_worklist_push (DECL_INITIAL (t), fld);
4785
4786 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4787 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4788
4789 if (TREE_CODE (t) == FUNCTION_DECL)
4790 {
4791 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4792 fld_worklist_push (DECL_RESULT (t), fld);
4793 }
4794 else if (TREE_CODE (t) == TYPE_DECL)
4795 {
4796 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4797 fld_worklist_push (DECL_VINDEX (t), fld);
4798 }
4799 else if (TREE_CODE (t) == FIELD_DECL)
4800 {
4801 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4802 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4803 fld_worklist_push (DECL_QUALIFIER (t), fld);
4804 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4805 fld_worklist_push (DECL_FCONTEXT (t), fld);
4806 }
4807 else if (TREE_CODE (t) == VAR_DECL)
4808 {
4809 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4810 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4811 }
4812
4813 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4814 && DECL_HAS_VALUE_EXPR_P (t))
4815 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4816
4817 if (TREE_CODE (t) != FIELD_DECL
4818 && TREE_CODE (t) != TYPE_DECL)
4819 fld_worklist_push (TREE_CHAIN (t), fld);
4820 *ws = 0;
4821 }
4822 else if (TYPE_P (t))
4823 {
4824 /* Note that walk_tree does not traverse every possible field in
4825 types, so we have to do our own traversals here. */
4826 add_tree_to_fld_list (t, fld);
4827
4828 if (!RECORD_OR_UNION_TYPE_P (t))
4829 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4830 fld_worklist_push (TYPE_SIZE (t), fld);
4831 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4832 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4833 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4834 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4835 fld_worklist_push (TYPE_NAME (t), fld);
4836 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
4837 them and thus do not and want not to reach unused pointer types
4838 this way. */
4839 if (!POINTER_TYPE_P (t))
4840 fld_worklist_push (TYPE_MINVAL (t), fld);
4841 if (!RECORD_OR_UNION_TYPE_P (t))
4842 fld_worklist_push (TYPE_MAXVAL (t), fld);
4843 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4844 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
4845 do not and want not to reach unused variants this way. */
4846 fld_worklist_push (TYPE_CONTEXT (t), fld);
4847 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
4848 and want not to reach unused types this way. */
4849
4850 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4851 {
4852 unsigned i;
4853 tree tem;
4854 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4855 i, tem); ++i)
4856 fld_worklist_push (TREE_TYPE (tem), fld);
4857 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4858 if (tem
4859 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4860 && TREE_CODE (tem) == TREE_LIST)
4861 do
4862 {
4863 fld_worklist_push (TREE_VALUE (tem), fld);
4864 tem = TREE_CHAIN (tem);
4865 }
4866 while (tem);
4867 }
4868 if (RECORD_OR_UNION_TYPE_P (t))
4869 {
4870 tree tem;
4871 /* Push all TYPE_FIELDS - there can be interleaving interesting
4872 and non-interesting things. */
4873 tem = TYPE_FIELDS (t);
4874 while (tem)
4875 {
4876 if (TREE_CODE (tem) == FIELD_DECL)
4877 fld_worklist_push (tem, fld);
4878 tem = TREE_CHAIN (tem);
4879 }
4880 }
4881
4882 fld_worklist_push (TREE_CHAIN (t), fld);
4883 *ws = 0;
4884 }
4885 else if (TREE_CODE (t) == BLOCK)
4886 {
4887 tree tem;
4888 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4889 fld_worklist_push (tem, fld);
4890 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4891 fld_worklist_push (tem, fld);
4892 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4893 }
4894
4895 if (TREE_CODE (t) != IDENTIFIER_NODE
4896 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
4897 fld_worklist_push (TREE_TYPE (t), fld);
4898
4899 return NULL_TREE;
4900 }
4901
4902
4903 /* Find decls and types in T. */
4904
4905 static void
4906 find_decls_types (tree t, struct free_lang_data_d *fld)
4907 {
4908 while (1)
4909 {
4910 if (!pointer_set_contains (fld->pset, t))
4911 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4912 if (VEC_empty (tree, fld->worklist))
4913 break;
4914 t = VEC_pop (tree, fld->worklist);
4915 }
4916 }
4917
4918 /* Translate all the types in LIST with the corresponding runtime
4919 types. */
4920
4921 static tree
4922 get_eh_types_for_runtime (tree list)
4923 {
4924 tree head, prev;
4925
4926 if (list == NULL_TREE)
4927 return NULL_TREE;
4928
4929 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4930 prev = head;
4931 list = TREE_CHAIN (list);
4932 while (list)
4933 {
4934 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4935 TREE_CHAIN (prev) = n;
4936 prev = TREE_CHAIN (prev);
4937 list = TREE_CHAIN (list);
4938 }
4939
4940 return head;
4941 }
4942
4943
4944 /* Find decls and types referenced in EH region R and store them in
4945 FLD->DECLS and FLD->TYPES. */
4946
4947 static void
4948 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4949 {
4950 switch (r->type)
4951 {
4952 case ERT_CLEANUP:
4953 break;
4954
4955 case ERT_TRY:
4956 {
4957 eh_catch c;
4958
4959 /* The types referenced in each catch must first be changed to the
4960 EH types used at runtime. This removes references to FE types
4961 in the region. */
4962 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4963 {
4964 c->type_list = get_eh_types_for_runtime (c->type_list);
4965 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4966 }
4967 }
4968 break;
4969
4970 case ERT_ALLOWED_EXCEPTIONS:
4971 r->u.allowed.type_list
4972 = get_eh_types_for_runtime (r->u.allowed.type_list);
4973 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4974 break;
4975
4976 case ERT_MUST_NOT_THROW:
4977 walk_tree (&r->u.must_not_throw.failure_decl,
4978 find_decls_types_r, fld, fld->pset);
4979 break;
4980 }
4981 }
4982
4983
4984 /* Find decls and types referenced in cgraph node N and store them in
4985 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4986 look for *every* kind of DECL and TYPE node reachable from N,
4987 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4988 NAMESPACE_DECLs, etc). */
4989
4990 static void
4991 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4992 {
4993 basic_block bb;
4994 struct function *fn;
4995 unsigned ix;
4996 tree t;
4997
4998 find_decls_types (n->decl, fld);
4999
5000 if (!gimple_has_body_p (n->decl))
5001 return;
5002
5003 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5004
5005 fn = DECL_STRUCT_FUNCTION (n->decl);
5006
5007 /* Traverse locals. */
5008 FOR_EACH_LOCAL_DECL (fn, ix, t)
5009 find_decls_types (t, fld);
5010
5011 /* Traverse EH regions in FN. */
5012 {
5013 eh_region r;
5014 FOR_ALL_EH_REGION_FN (r, fn)
5015 find_decls_types_in_eh_region (r, fld);
5016 }
5017
5018 /* Traverse every statement in FN. */
5019 FOR_EACH_BB_FN (bb, fn)
5020 {
5021 gimple_stmt_iterator si;
5022 unsigned i;
5023
5024 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5025 {
5026 gimple phi = gsi_stmt (si);
5027
5028 for (i = 0; i < gimple_phi_num_args (phi); i++)
5029 {
5030 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5031 find_decls_types (*arg_p, fld);
5032 }
5033 }
5034
5035 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5036 {
5037 gimple stmt = gsi_stmt (si);
5038
5039 for (i = 0; i < gimple_num_ops (stmt); i++)
5040 {
5041 tree arg = gimple_op (stmt, i);
5042 find_decls_types (arg, fld);
5043 }
5044 }
5045 }
5046 }
5047
5048
5049 /* Find decls and types referenced in varpool node N and store them in
5050 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5051 look for *every* kind of DECL and TYPE node reachable from N,
5052 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5053 NAMESPACE_DECLs, etc). */
5054
5055 static void
5056 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
5057 {
5058 find_decls_types (v->decl, fld);
5059 }
5060
5061 /* If T needs an assembler name, have one created for it. */
5062
5063 void
5064 assign_assembler_name_if_neeeded (tree t)
5065 {
5066 if (need_assembler_name_p (t))
5067 {
5068 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5069 diagnostics that use input_location to show locus
5070 information. The problem here is that, at this point,
5071 input_location is generally anchored to the end of the file
5072 (since the parser is long gone), so we don't have a good
5073 position to pin it to.
5074
5075 To alleviate this problem, this uses the location of T's
5076 declaration. Examples of this are
5077 testsuite/g++.dg/template/cond2.C and
5078 testsuite/g++.dg/template/pr35240.C. */
5079 location_t saved_location = input_location;
5080 input_location = DECL_SOURCE_LOCATION (t);
5081
5082 decl_assembler_name (t);
5083
5084 input_location = saved_location;
5085 }
5086 }
5087
5088
5089 /* Free language specific information for every operand and expression
5090 in every node of the call graph. This process operates in three stages:
5091
5092 1- Every callgraph node and varpool node is traversed looking for
5093 decls and types embedded in them. This is a more exhaustive
5094 search than that done by find_referenced_vars, because it will
5095 also collect individual fields, decls embedded in types, etc.
5096
5097 2- All the decls found are sent to free_lang_data_in_decl.
5098
5099 3- All the types found are sent to free_lang_data_in_type.
5100
5101 The ordering between decls and types is important because
5102 free_lang_data_in_decl sets assembler names, which includes
5103 mangling. So types cannot be freed up until assembler names have
5104 been set up. */
5105
5106 static void
5107 free_lang_data_in_cgraph (void)
5108 {
5109 struct cgraph_node *n;
5110 struct varpool_node *v;
5111 struct free_lang_data_d fld;
5112 tree t;
5113 unsigned i;
5114 alias_pair *p;
5115
5116 /* Initialize sets and arrays to store referenced decls and types. */
5117 fld.pset = pointer_set_create ();
5118 fld.worklist = NULL;
5119 fld.decls = VEC_alloc (tree, heap, 100);
5120 fld.types = VEC_alloc (tree, heap, 100);
5121
5122 /* Find decls and types in the body of every function in the callgraph. */
5123 for (n = cgraph_nodes; n; n = n->next)
5124 find_decls_types_in_node (n, &fld);
5125
5126 FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p)
5127 find_decls_types (p->decl, &fld);
5128
5129 /* Find decls and types in every varpool symbol. */
5130 for (v = varpool_nodes; v; v = v->next)
5131 find_decls_types_in_var (v, &fld);
5132
5133 /* Set the assembler name on every decl found. We need to do this
5134 now because free_lang_data_in_decl will invalidate data needed
5135 for mangling. This breaks mangling on interdependent decls. */
5136 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5137 assign_assembler_name_if_neeeded (t);
5138
5139 /* Traverse every decl found freeing its language data. */
5140 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5141 free_lang_data_in_decl (t);
5142
5143 /* Traverse every type found freeing its language data. */
5144 FOR_EACH_VEC_ELT (tree, fld.types, i, t)
5145 free_lang_data_in_type (t);
5146
5147 pointer_set_destroy (fld.pset);
5148 VEC_free (tree, heap, fld.worklist);
5149 VEC_free (tree, heap, fld.decls);
5150 VEC_free (tree, heap, fld.types);
5151 }
5152
5153
5154 /* Free resources that are used by FE but are not needed once they are done. */
5155
5156 static unsigned
5157 free_lang_data (void)
5158 {
5159 unsigned i;
5160
5161 /* If we are the LTO frontend we have freed lang-specific data already. */
5162 if (in_lto_p
5163 || !flag_generate_lto)
5164 return 0;
5165
5166 /* Allocate and assign alias sets to the standard integer types
5167 while the slots are still in the way the frontends generated them. */
5168 for (i = 0; i < itk_none; ++i)
5169 if (integer_types[i])
5170 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5171
5172 /* Traverse the IL resetting language specific information for
5173 operands, expressions, etc. */
5174 free_lang_data_in_cgraph ();
5175
5176 /* Create gimple variants for common types. */
5177 ptrdiff_type_node = integer_type_node;
5178 fileptr_type_node = ptr_type_node;
5179
5180 /* Reset some langhooks. Do not reset types_compatible_p, it may
5181 still be used indirectly via the get_alias_set langhook. */
5182 lang_hooks.callgraph.analyze_expr = NULL;
5183 lang_hooks.dwarf_name = lhd_dwarf_name;
5184 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5185 /* We do not want the default decl_assembler_name implementation,
5186 rather if we have fixed everything we want a wrapper around it
5187 asserting that all non-local symbols already got their assembler
5188 name and only produce assembler names for local symbols. Or rather
5189 make sure we never call decl_assembler_name on local symbols and
5190 devise a separate, middle-end private scheme for it. */
5191
5192 /* Reset diagnostic machinery. */
5193 diagnostic_starter (global_dc) = default_tree_diagnostic_starter;
5194 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
5195 diagnostic_format_decoder (global_dc) = default_tree_printer;
5196
5197 return 0;
5198 }
5199
5200
5201 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5202 {
5203 {
5204 SIMPLE_IPA_PASS,
5205 "*free_lang_data", /* name */
5206 NULL, /* gate */
5207 free_lang_data, /* execute */
5208 NULL, /* sub */
5209 NULL, /* next */
5210 0, /* static_pass_number */
5211 TV_IPA_FREE_LANG_DATA, /* tv_id */
5212 0, /* properties_required */
5213 0, /* properties_provided */
5214 0, /* properties_destroyed */
5215 0, /* todo_flags_start */
5216 TODO_ggc_collect /* todo_flags_finish */
5217 }
5218 };
5219
5220 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5221 or zero if not.
5222
5223 We try both `text' and `__text__', ATTR may be either one. */
5224 /* ??? It might be a reasonable simplification to require ATTR to be only
5225 `text'. One might then also require attribute lists to be stored in
5226 their canonicalized form. */
5227
5228 static int
5229 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
5230 {
5231 int ident_len;
5232 const char *p;
5233
5234 if (TREE_CODE (ident) != IDENTIFIER_NODE)
5235 return 0;
5236
5237 p = IDENTIFIER_POINTER (ident);
5238 ident_len = IDENTIFIER_LENGTH (ident);
5239
5240 if (ident_len == attr_len
5241 && strcmp (attr, p) == 0)
5242 return 1;
5243
5244 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
5245 if (attr[0] == '_')
5246 {
5247 gcc_assert (attr[1] == '_');
5248 gcc_assert (attr[attr_len - 2] == '_');
5249 gcc_assert (attr[attr_len - 1] == '_');
5250 if (ident_len == attr_len - 4
5251 && strncmp (attr + 2, p, attr_len - 4) == 0)
5252 return 1;
5253 }
5254 else
5255 {
5256 if (ident_len == attr_len + 4
5257 && p[0] == '_' && p[1] == '_'
5258 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5259 && strncmp (attr, p + 2, attr_len) == 0)
5260 return 1;
5261 }
5262
5263 return 0;
5264 }
5265
5266 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5267 or zero if not.
5268
5269 We try both `text' and `__text__', ATTR may be either one. */
5270
5271 int
5272 is_attribute_p (const char *attr, const_tree ident)
5273 {
5274 return is_attribute_with_length_p (attr, strlen (attr), ident);
5275 }
5276
5277 /* Given an attribute name and a list of attributes, return a pointer to the
5278 attribute's list element if the attribute is part of the list, or NULL_TREE
5279 if not found. If the attribute appears more than once, this only
5280 returns the first occurrence; the TREE_CHAIN of the return value should
5281 be passed back in if further occurrences are wanted. */
5282
5283 tree
5284 lookup_attribute (const char *attr_name, tree list)
5285 {
5286 tree l;
5287 size_t attr_len = strlen (attr_name);
5288
5289 for (l = list; l; l = TREE_CHAIN (l))
5290 {
5291 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5292 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5293 return l;
5294 }
5295 return NULL_TREE;
5296 }
5297
5298 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5299 modified list. */
5300
5301 tree
5302 remove_attribute (const char *attr_name, tree list)
5303 {
5304 tree *p;
5305 size_t attr_len = strlen (attr_name);
5306
5307 for (p = &list; *p; )
5308 {
5309 tree l = *p;
5310 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5311 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5312 *p = TREE_CHAIN (l);
5313 else
5314 p = &TREE_CHAIN (l);
5315 }
5316
5317 return list;
5318 }
5319
5320 /* Return an attribute list that is the union of a1 and a2. */
5321
5322 tree
5323 merge_attributes (tree a1, tree a2)
5324 {
5325 tree attributes;
5326
5327 /* Either one unset? Take the set one. */
5328
5329 if ((attributes = a1) == 0)
5330 attributes = a2;
5331
5332 /* One that completely contains the other? Take it. */
5333
5334 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5335 {
5336 if (attribute_list_contained (a2, a1))
5337 attributes = a2;
5338 else
5339 {
5340 /* Pick the longest list, and hang on the other list. */
5341
5342 if (list_length (a1) < list_length (a2))
5343 attributes = a2, a2 = a1;
5344
5345 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5346 {
5347 tree a;
5348 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5349 attributes);
5350 a != NULL_TREE && !attribute_value_equal (a, a2);
5351 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5352 TREE_CHAIN (a)))
5353 ;
5354 if (a == NULL_TREE)
5355 {
5356 a1 = copy_node (a2);
5357 TREE_CHAIN (a1) = attributes;
5358 attributes = a1;
5359 }
5360 }
5361 }
5362 }
5363 return attributes;
5364 }
5365
5366 /* Given types T1 and T2, merge their attributes and return
5367 the result. */
5368
5369 tree
5370 merge_type_attributes (tree t1, tree t2)
5371 {
5372 return merge_attributes (TYPE_ATTRIBUTES (t1),
5373 TYPE_ATTRIBUTES (t2));
5374 }
5375
5376 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5377 the result. */
5378
5379 tree
5380 merge_decl_attributes (tree olddecl, tree newdecl)
5381 {
5382 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5383 DECL_ATTRIBUTES (newdecl));
5384 }
5385
5386 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5387
5388 /* Specialization of merge_decl_attributes for various Windows targets.
5389
5390 This handles the following situation:
5391
5392 __declspec (dllimport) int foo;
5393 int foo;
5394
5395 The second instance of `foo' nullifies the dllimport. */
5396
5397 tree
5398 merge_dllimport_decl_attributes (tree old, tree new_tree)
5399 {
5400 tree a;
5401 int delete_dllimport_p = 1;
5402
5403 /* What we need to do here is remove from `old' dllimport if it doesn't
5404 appear in `new'. dllimport behaves like extern: if a declaration is
5405 marked dllimport and a definition appears later, then the object
5406 is not dllimport'd. We also remove a `new' dllimport if the old list
5407 contains dllexport: dllexport always overrides dllimport, regardless
5408 of the order of declaration. */
5409 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5410 delete_dllimport_p = 0;
5411 else if (DECL_DLLIMPORT_P (new_tree)
5412 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5413 {
5414 DECL_DLLIMPORT_P (new_tree) = 0;
5415 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5416 "dllimport ignored", new_tree);
5417 }
5418 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5419 {
5420 /* Warn about overriding a symbol that has already been used, e.g.:
5421 extern int __attribute__ ((dllimport)) foo;
5422 int* bar () {return &foo;}
5423 int foo;
5424 */
5425 if (TREE_USED (old))
5426 {
5427 warning (0, "%q+D redeclared without dllimport attribute "
5428 "after being referenced with dll linkage", new_tree);
5429 /* If we have used a variable's address with dllimport linkage,
5430 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5431 decl may already have had TREE_CONSTANT computed.
5432 We still remove the attribute so that assembler code refers
5433 to '&foo rather than '_imp__foo'. */
5434 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5435 DECL_DLLIMPORT_P (new_tree) = 1;
5436 }
5437
5438 /* Let an inline definition silently override the external reference,
5439 but otherwise warn about attribute inconsistency. */
5440 else if (TREE_CODE (new_tree) == VAR_DECL
5441 || !DECL_DECLARED_INLINE_P (new_tree))
5442 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5443 "previous dllimport ignored", new_tree);
5444 }
5445 else
5446 delete_dllimport_p = 0;
5447
5448 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5449
5450 if (delete_dllimport_p)
5451 {
5452 tree prev, t;
5453 const size_t attr_len = strlen ("dllimport");
5454
5455 /* Scan the list for dllimport and delete it. */
5456 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
5457 {
5458 if (is_attribute_with_length_p ("dllimport", attr_len,
5459 TREE_PURPOSE (t)))
5460 {
5461 if (prev == NULL_TREE)
5462 a = TREE_CHAIN (a);
5463 else
5464 TREE_CHAIN (prev) = TREE_CHAIN (t);
5465 break;
5466 }
5467 }
5468 }
5469
5470 return a;
5471 }
5472
5473 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5474 struct attribute_spec.handler. */
5475
5476 tree
5477 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5478 bool *no_add_attrs)
5479 {
5480 tree node = *pnode;
5481 bool is_dllimport;
5482
5483 /* These attributes may apply to structure and union types being created,
5484 but otherwise should pass to the declaration involved. */
5485 if (!DECL_P (node))
5486 {
5487 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5488 | (int) ATTR_FLAG_ARRAY_NEXT))
5489 {
5490 *no_add_attrs = true;
5491 return tree_cons (name, args, NULL_TREE);
5492 }
5493 if (TREE_CODE (node) == RECORD_TYPE
5494 || TREE_CODE (node) == UNION_TYPE)
5495 {
5496 node = TYPE_NAME (node);
5497 if (!node)
5498 return NULL_TREE;
5499 }
5500 else
5501 {
5502 warning (OPT_Wattributes, "%qE attribute ignored",
5503 name);
5504 *no_add_attrs = true;
5505 return NULL_TREE;
5506 }
5507 }
5508
5509 if (TREE_CODE (node) != FUNCTION_DECL
5510 && TREE_CODE (node) != VAR_DECL
5511 && TREE_CODE (node) != TYPE_DECL)
5512 {
5513 *no_add_attrs = true;
5514 warning (OPT_Wattributes, "%qE attribute ignored",
5515 name);
5516 return NULL_TREE;
5517 }
5518
5519 if (TREE_CODE (node) == TYPE_DECL
5520 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5521 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5522 {
5523 *no_add_attrs = true;
5524 warning (OPT_Wattributes, "%qE attribute ignored",
5525 name);
5526 return NULL_TREE;
5527 }
5528
5529 is_dllimport = is_attribute_p ("dllimport", name);
5530
5531 /* Report error on dllimport ambiguities seen now before they cause
5532 any damage. */
5533 if (is_dllimport)
5534 {
5535 /* Honor any target-specific overrides. */
5536 if (!targetm.valid_dllimport_attribute_p (node))
5537 *no_add_attrs = true;
5538
5539 else if (TREE_CODE (node) == FUNCTION_DECL
5540 && DECL_DECLARED_INLINE_P (node))
5541 {
5542 warning (OPT_Wattributes, "inline function %q+D declared as "
5543 " dllimport: attribute ignored", node);
5544 *no_add_attrs = true;
5545 }
5546 /* Like MS, treat definition of dllimported variables and
5547 non-inlined functions on declaration as syntax errors. */
5548 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5549 {
5550 error ("function %q+D definition is marked dllimport", node);
5551 *no_add_attrs = true;
5552 }
5553
5554 else if (TREE_CODE (node) == VAR_DECL)
5555 {
5556 if (DECL_INITIAL (node))
5557 {
5558 error ("variable %q+D definition is marked dllimport",
5559 node);
5560 *no_add_attrs = true;
5561 }
5562
5563 /* `extern' needn't be specified with dllimport.
5564 Specify `extern' now and hope for the best. Sigh. */
5565 DECL_EXTERNAL (node) = 1;
5566 /* Also, implicitly give dllimport'd variables declared within
5567 a function global scope, unless declared static. */
5568 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5569 TREE_PUBLIC (node) = 1;
5570 }
5571
5572 if (*no_add_attrs == false)
5573 DECL_DLLIMPORT_P (node) = 1;
5574 }
5575 else if (TREE_CODE (node) == FUNCTION_DECL
5576 && DECL_DECLARED_INLINE_P (node)
5577 && flag_keep_inline_dllexport)
5578 /* An exported function, even if inline, must be emitted. */
5579 DECL_EXTERNAL (node) = 0;
5580
5581 /* Report error if symbol is not accessible at global scope. */
5582 if (!TREE_PUBLIC (node)
5583 && (TREE_CODE (node) == VAR_DECL
5584 || TREE_CODE (node) == FUNCTION_DECL))
5585 {
5586 error ("external linkage required for symbol %q+D because of "
5587 "%qE attribute", node, name);
5588 *no_add_attrs = true;
5589 }
5590
5591 /* A dllexport'd entity must have default visibility so that other
5592 program units (shared libraries or the main executable) can see
5593 it. A dllimport'd entity must have default visibility so that
5594 the linker knows that undefined references within this program
5595 unit can be resolved by the dynamic linker. */
5596 if (!*no_add_attrs)
5597 {
5598 if (DECL_VISIBILITY_SPECIFIED (node)
5599 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5600 error ("%qE implies default visibility, but %qD has already "
5601 "been declared with a different visibility",
5602 name, node);
5603 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5604 DECL_VISIBILITY_SPECIFIED (node) = 1;
5605 }
5606
5607 return NULL_TREE;
5608 }
5609
5610 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5611 \f
5612 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5613 of the various TYPE_QUAL values. */
5614
5615 static void
5616 set_type_quals (tree type, int type_quals)
5617 {
5618 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5619 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5620 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5621 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5622 }
5623
5624 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5625
5626 bool
5627 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5628 {
5629 return (TYPE_QUALS (cand) == type_quals
5630 && TYPE_NAME (cand) == TYPE_NAME (base)
5631 /* Apparently this is needed for Objective-C. */
5632 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5633 /* Check alignment. */
5634 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5635 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5636 TYPE_ATTRIBUTES (base)));
5637 }
5638
5639 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5640
5641 static bool
5642 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5643 {
5644 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5645 && TYPE_NAME (cand) == TYPE_NAME (base)
5646 /* Apparently this is needed for Objective-C. */
5647 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5648 /* Check alignment. */
5649 && TYPE_ALIGN (cand) == align
5650 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5651 TYPE_ATTRIBUTES (base)));
5652 }
5653
5654 /* Return a version of the TYPE, qualified as indicated by the
5655 TYPE_QUALS, if one exists. If no qualified version exists yet,
5656 return NULL_TREE. */
5657
5658 tree
5659 get_qualified_type (tree type, int type_quals)
5660 {
5661 tree t;
5662
5663 if (TYPE_QUALS (type) == type_quals)
5664 return type;
5665
5666 /* Search the chain of variants to see if there is already one there just
5667 like the one we need to have. If so, use that existing one. We must
5668 preserve the TYPE_NAME, since there is code that depends on this. */
5669 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5670 if (check_qualified_type (t, type, type_quals))
5671 return t;
5672
5673 return NULL_TREE;
5674 }
5675
5676 /* Like get_qualified_type, but creates the type if it does not
5677 exist. This function never returns NULL_TREE. */
5678
5679 tree
5680 build_qualified_type (tree type, int type_quals)
5681 {
5682 tree t;
5683
5684 /* See if we already have the appropriate qualified variant. */
5685 t = get_qualified_type (type, type_quals);
5686
5687 /* If not, build it. */
5688 if (!t)
5689 {
5690 t = build_variant_type_copy (type);
5691 set_type_quals (t, type_quals);
5692
5693 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5694 /* Propagate structural equality. */
5695 SET_TYPE_STRUCTURAL_EQUALITY (t);
5696 else if (TYPE_CANONICAL (type) != type)
5697 /* Build the underlying canonical type, since it is different
5698 from TYPE. */
5699 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5700 type_quals);
5701 else
5702 /* T is its own canonical type. */
5703 TYPE_CANONICAL (t) = t;
5704
5705 }
5706
5707 return t;
5708 }
5709
5710 /* Create a variant of type T with alignment ALIGN. */
5711
5712 tree
5713 build_aligned_type (tree type, unsigned int align)
5714 {
5715 tree t;
5716
5717 if (TYPE_PACKED (type)
5718 || TYPE_ALIGN (type) == align)
5719 return type;
5720
5721 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5722 if (check_aligned_type (t, type, align))
5723 return t;
5724
5725 t = build_variant_type_copy (type);
5726 TYPE_ALIGN (t) = align;
5727
5728 return t;
5729 }
5730
5731 /* Create a new distinct copy of TYPE. The new type is made its own
5732 MAIN_VARIANT. If TYPE requires structural equality checks, the
5733 resulting type requires structural equality checks; otherwise, its
5734 TYPE_CANONICAL points to itself. */
5735
5736 tree
5737 build_distinct_type_copy (tree type)
5738 {
5739 tree t = copy_node (type);
5740
5741 TYPE_POINTER_TO (t) = 0;
5742 TYPE_REFERENCE_TO (t) = 0;
5743
5744 /* Set the canonical type either to a new equivalence class, or
5745 propagate the need for structural equality checks. */
5746 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5747 SET_TYPE_STRUCTURAL_EQUALITY (t);
5748 else
5749 TYPE_CANONICAL (t) = t;
5750
5751 /* Make it its own variant. */
5752 TYPE_MAIN_VARIANT (t) = t;
5753 TYPE_NEXT_VARIANT (t) = 0;
5754
5755 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5756 whose TREE_TYPE is not t. This can also happen in the Ada
5757 frontend when using subtypes. */
5758
5759 return t;
5760 }
5761
5762 /* Create a new variant of TYPE, equivalent but distinct. This is so
5763 the caller can modify it. TYPE_CANONICAL for the return type will
5764 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5765 are considered equal by the language itself (or that both types
5766 require structural equality checks). */
5767
5768 tree
5769 build_variant_type_copy (tree type)
5770 {
5771 tree t, m = TYPE_MAIN_VARIANT (type);
5772
5773 t = build_distinct_type_copy (type);
5774
5775 /* Since we're building a variant, assume that it is a non-semantic
5776 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5777 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5778
5779 /* Add the new type to the chain of variants of TYPE. */
5780 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5781 TYPE_NEXT_VARIANT (m) = t;
5782 TYPE_MAIN_VARIANT (t) = m;
5783
5784 return t;
5785 }
5786 \f
5787 /* Return true if the from tree in both tree maps are equal. */
5788
5789 int
5790 tree_map_base_eq (const void *va, const void *vb)
5791 {
5792 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5793 *const b = (const struct tree_map_base *) vb;
5794 return (a->from == b->from);
5795 }
5796
5797 /* Hash a from tree in a tree_base_map. */
5798
5799 unsigned int
5800 tree_map_base_hash (const void *item)
5801 {
5802 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5803 }
5804
5805 /* Return true if this tree map structure is marked for garbage collection
5806 purposes. We simply return true if the from tree is marked, so that this
5807 structure goes away when the from tree goes away. */
5808
5809 int
5810 tree_map_base_marked_p (const void *p)
5811 {
5812 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5813 }
5814
5815 /* Hash a from tree in a tree_map. */
5816
5817 unsigned int
5818 tree_map_hash (const void *item)
5819 {
5820 return (((const struct tree_map *) item)->hash);
5821 }
5822
5823 /* Hash a from tree in a tree_decl_map. */
5824
5825 unsigned int
5826 tree_decl_map_hash (const void *item)
5827 {
5828 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5829 }
5830
5831 /* Return the initialization priority for DECL. */
5832
5833 priority_type
5834 decl_init_priority_lookup (tree decl)
5835 {
5836 struct tree_priority_map *h;
5837 struct tree_map_base in;
5838
5839 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5840 in.from = decl;
5841 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5842 return h ? h->init : DEFAULT_INIT_PRIORITY;
5843 }
5844
5845 /* Return the finalization priority for DECL. */
5846
5847 priority_type
5848 decl_fini_priority_lookup (tree decl)
5849 {
5850 struct tree_priority_map *h;
5851 struct tree_map_base in;
5852
5853 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5854 in.from = decl;
5855 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5856 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5857 }
5858
5859 /* Return the initialization and finalization priority information for
5860 DECL. If there is no previous priority information, a freshly
5861 allocated structure is returned. */
5862
5863 static struct tree_priority_map *
5864 decl_priority_info (tree decl)
5865 {
5866 struct tree_priority_map in;
5867 struct tree_priority_map *h;
5868 void **loc;
5869
5870 in.base.from = decl;
5871 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5872 h = (struct tree_priority_map *) *loc;
5873 if (!h)
5874 {
5875 h = ggc_alloc_cleared_tree_priority_map ();
5876 *loc = h;
5877 h->base.from = decl;
5878 h->init = DEFAULT_INIT_PRIORITY;
5879 h->fini = DEFAULT_INIT_PRIORITY;
5880 }
5881
5882 return h;
5883 }
5884
5885 /* Set the initialization priority for DECL to PRIORITY. */
5886
5887 void
5888 decl_init_priority_insert (tree decl, priority_type priority)
5889 {
5890 struct tree_priority_map *h;
5891
5892 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5893 if (priority == DEFAULT_INIT_PRIORITY)
5894 return;
5895 h = decl_priority_info (decl);
5896 h->init = priority;
5897 }
5898
5899 /* Set the finalization priority for DECL to PRIORITY. */
5900
5901 void
5902 decl_fini_priority_insert (tree decl, priority_type priority)
5903 {
5904 struct tree_priority_map *h;
5905
5906 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5907 if (priority == DEFAULT_INIT_PRIORITY)
5908 return;
5909 h = decl_priority_info (decl);
5910 h->fini = priority;
5911 }
5912
5913 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5914
5915 static void
5916 print_debug_expr_statistics (void)
5917 {
5918 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5919 (long) htab_size (debug_expr_for_decl),
5920 (long) htab_elements (debug_expr_for_decl),
5921 htab_collisions (debug_expr_for_decl));
5922 }
5923
5924 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5925
5926 static void
5927 print_value_expr_statistics (void)
5928 {
5929 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5930 (long) htab_size (value_expr_for_decl),
5931 (long) htab_elements (value_expr_for_decl),
5932 htab_collisions (value_expr_for_decl));
5933 }
5934
5935 /* Lookup a debug expression for FROM, and return it if we find one. */
5936
5937 tree
5938 decl_debug_expr_lookup (tree from)
5939 {
5940 struct tree_decl_map *h, in;
5941 in.base.from = from;
5942
5943 h = (struct tree_decl_map *)
5944 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
5945 if (h)
5946 return h->to;
5947 return NULL_TREE;
5948 }
5949
5950 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5951
5952 void
5953 decl_debug_expr_insert (tree from, tree to)
5954 {
5955 struct tree_decl_map *h;
5956 void **loc;
5957
5958 h = ggc_alloc_tree_decl_map ();
5959 h->base.from = from;
5960 h->to = to;
5961 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
5962 INSERT);
5963 *(struct tree_decl_map **) loc = h;
5964 }
5965
5966 /* Lookup a value expression for FROM, and return it if we find one. */
5967
5968 tree
5969 decl_value_expr_lookup (tree from)
5970 {
5971 struct tree_decl_map *h, in;
5972 in.base.from = from;
5973
5974 h = (struct tree_decl_map *)
5975 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
5976 if (h)
5977 return h->to;
5978 return NULL_TREE;
5979 }
5980
5981 /* Insert a mapping FROM->TO in the value expression hashtable. */
5982
5983 void
5984 decl_value_expr_insert (tree from, tree to)
5985 {
5986 struct tree_decl_map *h;
5987 void **loc;
5988
5989 h = ggc_alloc_tree_decl_map ();
5990 h->base.from = from;
5991 h->to = to;
5992 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
5993 INSERT);
5994 *(struct tree_decl_map **) loc = h;
5995 }
5996
5997 /* Hashing of types so that we don't make duplicates.
5998 The entry point is `type_hash_canon'. */
5999
6000 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6001 with types in the TREE_VALUE slots), by adding the hash codes
6002 of the individual types. */
6003
6004 static unsigned int
6005 type_hash_list (const_tree list, hashval_t hashcode)
6006 {
6007 const_tree tail;
6008
6009 for (tail = list; tail; tail = TREE_CHAIN (tail))
6010 if (TREE_VALUE (tail) != error_mark_node)
6011 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
6012 hashcode);
6013
6014 return hashcode;
6015 }
6016
6017 /* These are the Hashtable callback functions. */
6018
6019 /* Returns true iff the types are equivalent. */
6020
6021 static int
6022 type_hash_eq (const void *va, const void *vb)
6023 {
6024 const struct type_hash *const a = (const struct type_hash *) va,
6025 *const b = (const struct type_hash *) vb;
6026
6027 /* First test the things that are the same for all types. */
6028 if (a->hash != b->hash
6029 || TREE_CODE (a->type) != TREE_CODE (b->type)
6030 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6031 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6032 TYPE_ATTRIBUTES (b->type))
6033 || (TREE_CODE (a->type) != COMPLEX_TYPE
6034 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6035 return 0;
6036
6037 /* Be careful about comparing arrays before and after the element type
6038 has been completed; don't compare TYPE_ALIGN unless both types are
6039 complete. */
6040 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6041 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6042 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6043 return 0;
6044
6045 switch (TREE_CODE (a->type))
6046 {
6047 case VOID_TYPE:
6048 case COMPLEX_TYPE:
6049 case POINTER_TYPE:
6050 case REFERENCE_TYPE:
6051 return 1;
6052
6053 case VECTOR_TYPE:
6054 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6055
6056 case ENUMERAL_TYPE:
6057 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6058 && !(TYPE_VALUES (a->type)
6059 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6060 && TYPE_VALUES (b->type)
6061 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6062 && type_list_equal (TYPE_VALUES (a->type),
6063 TYPE_VALUES (b->type))))
6064 return 0;
6065
6066 /* ... fall through ... */
6067
6068 case INTEGER_TYPE:
6069 case REAL_TYPE:
6070 case BOOLEAN_TYPE:
6071 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6072 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6073 TYPE_MAX_VALUE (b->type)))
6074 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6075 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6076 TYPE_MIN_VALUE (b->type))));
6077
6078 case FIXED_POINT_TYPE:
6079 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6080
6081 case OFFSET_TYPE:
6082 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6083
6084 case METHOD_TYPE:
6085 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6086 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6087 || (TYPE_ARG_TYPES (a->type)
6088 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6089 && TYPE_ARG_TYPES (b->type)
6090 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6091 && type_list_equal (TYPE_ARG_TYPES (a->type),
6092 TYPE_ARG_TYPES (b->type)))))
6093 break;
6094 return 0;
6095 case ARRAY_TYPE:
6096 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6097
6098 case RECORD_TYPE:
6099 case UNION_TYPE:
6100 case QUAL_UNION_TYPE:
6101 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6102 || (TYPE_FIELDS (a->type)
6103 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6104 && TYPE_FIELDS (b->type)
6105 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6106 && type_list_equal (TYPE_FIELDS (a->type),
6107 TYPE_FIELDS (b->type))));
6108
6109 case FUNCTION_TYPE:
6110 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6111 || (TYPE_ARG_TYPES (a->type)
6112 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6113 && TYPE_ARG_TYPES (b->type)
6114 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6115 && type_list_equal (TYPE_ARG_TYPES (a->type),
6116 TYPE_ARG_TYPES (b->type))))
6117 break;
6118 return 0;
6119
6120 default:
6121 return 0;
6122 }
6123
6124 if (lang_hooks.types.type_hash_eq != NULL)
6125 return lang_hooks.types.type_hash_eq (a->type, b->type);
6126
6127 return 1;
6128 }
6129
6130 /* Return the cached hash value. */
6131
6132 static hashval_t
6133 type_hash_hash (const void *item)
6134 {
6135 return ((const struct type_hash *) item)->hash;
6136 }
6137
6138 /* Look in the type hash table for a type isomorphic to TYPE.
6139 If one is found, return it. Otherwise return 0. */
6140
6141 tree
6142 type_hash_lookup (hashval_t hashcode, tree type)
6143 {
6144 struct type_hash *h, in;
6145
6146 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6147 must call that routine before comparing TYPE_ALIGNs. */
6148 layout_type (type);
6149
6150 in.hash = hashcode;
6151 in.type = type;
6152
6153 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6154 hashcode);
6155 if (h)
6156 return h->type;
6157 return NULL_TREE;
6158 }
6159
6160 /* Add an entry to the type-hash-table
6161 for a type TYPE whose hash code is HASHCODE. */
6162
6163 void
6164 type_hash_add (hashval_t hashcode, tree type)
6165 {
6166 struct type_hash *h;
6167 void **loc;
6168
6169 h = ggc_alloc_type_hash ();
6170 h->hash = hashcode;
6171 h->type = type;
6172 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6173 *loc = (void *)h;
6174 }
6175
6176 /* Given TYPE, and HASHCODE its hash code, return the canonical
6177 object for an identical type if one already exists.
6178 Otherwise, return TYPE, and record it as the canonical object.
6179
6180 To use this function, first create a type of the sort you want.
6181 Then compute its hash code from the fields of the type that
6182 make it different from other similar types.
6183 Then call this function and use the value. */
6184
6185 tree
6186 type_hash_canon (unsigned int hashcode, tree type)
6187 {
6188 tree t1;
6189
6190 /* The hash table only contains main variants, so ensure that's what we're
6191 being passed. */
6192 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6193
6194 /* See if the type is in the hash table already. If so, return it.
6195 Otherwise, add the type. */
6196 t1 = type_hash_lookup (hashcode, type);
6197 if (t1 != 0)
6198 {
6199 #ifdef GATHER_STATISTICS
6200 tree_code_counts[(int) TREE_CODE (type)]--;
6201 tree_node_counts[(int) t_kind]--;
6202 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
6203 #endif
6204 return t1;
6205 }
6206 else
6207 {
6208 type_hash_add (hashcode, type);
6209 return type;
6210 }
6211 }
6212
6213 /* See if the data pointed to by the type hash table is marked. We consider
6214 it marked if the type is marked or if a debug type number or symbol
6215 table entry has been made for the type. */
6216
6217 static int
6218 type_hash_marked_p (const void *p)
6219 {
6220 const_tree const type = ((const struct type_hash *) p)->type;
6221
6222 return ggc_marked_p (type);
6223 }
6224
6225 static void
6226 print_type_hash_statistics (void)
6227 {
6228 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6229 (long) htab_size (type_hash_table),
6230 (long) htab_elements (type_hash_table),
6231 htab_collisions (type_hash_table));
6232 }
6233
6234 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6235 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6236 by adding the hash codes of the individual attributes. */
6237
6238 static unsigned int
6239 attribute_hash_list (const_tree list, hashval_t hashcode)
6240 {
6241 const_tree tail;
6242
6243 for (tail = list; tail; tail = TREE_CHAIN (tail))
6244 /* ??? Do we want to add in TREE_VALUE too? */
6245 hashcode = iterative_hash_object
6246 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
6247 return hashcode;
6248 }
6249
6250 /* Given two lists of attributes, return true if list l2 is
6251 equivalent to l1. */
6252
6253 int
6254 attribute_list_equal (const_tree l1, const_tree l2)
6255 {
6256 return attribute_list_contained (l1, l2)
6257 && attribute_list_contained (l2, l1);
6258 }
6259
6260 /* Given two lists of attributes, return true if list L2 is
6261 completely contained within L1. */
6262 /* ??? This would be faster if attribute names were stored in a canonicalized
6263 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6264 must be used to show these elements are equivalent (which they are). */
6265 /* ??? It's not clear that attributes with arguments will always be handled
6266 correctly. */
6267
6268 int
6269 attribute_list_contained (const_tree l1, const_tree l2)
6270 {
6271 const_tree t1, t2;
6272
6273 /* First check the obvious, maybe the lists are identical. */
6274 if (l1 == l2)
6275 return 1;
6276
6277 /* Maybe the lists are similar. */
6278 for (t1 = l1, t2 = l2;
6279 t1 != 0 && t2 != 0
6280 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6281 && TREE_VALUE (t1) == TREE_VALUE (t2);
6282 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
6283
6284 /* Maybe the lists are equal. */
6285 if (t1 == 0 && t2 == 0)
6286 return 1;
6287
6288 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6289 {
6290 const_tree attr;
6291 /* This CONST_CAST is okay because lookup_attribute does not
6292 modify its argument and the return value is assigned to a
6293 const_tree. */
6294 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6295 CONST_CAST_TREE(l1));
6296 attr != NULL_TREE && !attribute_value_equal (t2, attr);
6297 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6298 TREE_CHAIN (attr)))
6299 ;
6300
6301 if (attr == NULL_TREE)
6302 return 0;
6303 }
6304
6305 return 1;
6306 }
6307
6308 /* Given two lists of types
6309 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6310 return 1 if the lists contain the same types in the same order.
6311 Also, the TREE_PURPOSEs must match. */
6312
6313 int
6314 type_list_equal (const_tree l1, const_tree l2)
6315 {
6316 const_tree t1, t2;
6317
6318 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6319 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6320 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6321 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6322 && (TREE_TYPE (TREE_PURPOSE (t1))
6323 == TREE_TYPE (TREE_PURPOSE (t2))))))
6324 return 0;
6325
6326 return t1 == t2;
6327 }
6328
6329 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6330 given by TYPE. If the argument list accepts variable arguments,
6331 then this function counts only the ordinary arguments. */
6332
6333 int
6334 type_num_arguments (const_tree type)
6335 {
6336 int i = 0;
6337 tree t;
6338
6339 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6340 /* If the function does not take a variable number of arguments,
6341 the last element in the list will have type `void'. */
6342 if (VOID_TYPE_P (TREE_VALUE (t)))
6343 break;
6344 else
6345 ++i;
6346
6347 return i;
6348 }
6349
6350 /* Nonzero if integer constants T1 and T2
6351 represent the same constant value. */
6352
6353 int
6354 tree_int_cst_equal (const_tree t1, const_tree t2)
6355 {
6356 if (t1 == t2)
6357 return 1;
6358
6359 if (t1 == 0 || t2 == 0)
6360 return 0;
6361
6362 if (TREE_CODE (t1) == INTEGER_CST
6363 && TREE_CODE (t2) == INTEGER_CST
6364 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6365 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6366 return 1;
6367
6368 return 0;
6369 }
6370
6371 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6372 The precise way of comparison depends on their data type. */
6373
6374 int
6375 tree_int_cst_lt (const_tree t1, const_tree t2)
6376 {
6377 if (t1 == t2)
6378 return 0;
6379
6380 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6381 {
6382 int t1_sgn = tree_int_cst_sgn (t1);
6383 int t2_sgn = tree_int_cst_sgn (t2);
6384
6385 if (t1_sgn < t2_sgn)
6386 return 1;
6387 else if (t1_sgn > t2_sgn)
6388 return 0;
6389 /* Otherwise, both are non-negative, so we compare them as
6390 unsigned just in case one of them would overflow a signed
6391 type. */
6392 }
6393 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6394 return INT_CST_LT (t1, t2);
6395
6396 return INT_CST_LT_UNSIGNED (t1, t2);
6397 }
6398
6399 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6400
6401 int
6402 tree_int_cst_compare (const_tree t1, const_tree t2)
6403 {
6404 if (tree_int_cst_lt (t1, t2))
6405 return -1;
6406 else if (tree_int_cst_lt (t2, t1))
6407 return 1;
6408 else
6409 return 0;
6410 }
6411
6412 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6413 the host. If POS is zero, the value can be represented in a single
6414 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6415 be represented in a single unsigned HOST_WIDE_INT. */
6416
6417 int
6418 host_integerp (const_tree t, int pos)
6419 {
6420 if (t == NULL_TREE)
6421 return 0;
6422
6423 return (TREE_CODE (t) == INTEGER_CST
6424 && ((TREE_INT_CST_HIGH (t) == 0
6425 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6426 || (! pos && TREE_INT_CST_HIGH (t) == -1
6427 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6428 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6429 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6430 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6431 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6432 }
6433
6434 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6435 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6436 be non-negative. We must be able to satisfy the above conditions. */
6437
6438 HOST_WIDE_INT
6439 tree_low_cst (const_tree t, int pos)
6440 {
6441 gcc_assert (host_integerp (t, pos));
6442 return TREE_INT_CST_LOW (t);
6443 }
6444
6445 /* Return the most significant bit of the integer constant T. */
6446
6447 int
6448 tree_int_cst_msb (const_tree t)
6449 {
6450 int prec;
6451 HOST_WIDE_INT h;
6452 unsigned HOST_WIDE_INT l;
6453
6454 /* Note that using TYPE_PRECISION here is wrong. We care about the
6455 actual bits, not the (arbitrary) range of the type. */
6456 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
6457 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
6458 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
6459 return (l & 1) == 1;
6460 }
6461
6462 /* Return an indication of the sign of the integer constant T.
6463 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6464 Note that -1 will never be returned if T's type is unsigned. */
6465
6466 int
6467 tree_int_cst_sgn (const_tree t)
6468 {
6469 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6470 return 0;
6471 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6472 return 1;
6473 else if (TREE_INT_CST_HIGH (t) < 0)
6474 return -1;
6475 else
6476 return 1;
6477 }
6478
6479 /* Return the minimum number of bits needed to represent VALUE in a
6480 signed or unsigned type, UNSIGNEDP says which. */
6481
6482 unsigned int
6483 tree_int_cst_min_precision (tree value, bool unsignedp)
6484 {
6485 int log;
6486
6487 /* If the value is negative, compute its negative minus 1. The latter
6488 adjustment is because the absolute value of the largest negative value
6489 is one larger than the largest positive value. This is equivalent to
6490 a bit-wise negation, so use that operation instead. */
6491
6492 if (tree_int_cst_sgn (value) < 0)
6493 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6494
6495 /* Return the number of bits needed, taking into account the fact
6496 that we need one more bit for a signed than unsigned type. */
6497
6498 if (integer_zerop (value))
6499 log = 0;
6500 else
6501 log = tree_floor_log2 (value);
6502
6503 return log + 1 + !unsignedp;
6504 }
6505
6506 /* Compare two constructor-element-type constants. Return 1 if the lists
6507 are known to be equal; otherwise return 0. */
6508
6509 int
6510 simple_cst_list_equal (const_tree l1, const_tree l2)
6511 {
6512 while (l1 != NULL_TREE && l2 != NULL_TREE)
6513 {
6514 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6515 return 0;
6516
6517 l1 = TREE_CHAIN (l1);
6518 l2 = TREE_CHAIN (l2);
6519 }
6520
6521 return l1 == l2;
6522 }
6523
6524 /* Return truthvalue of whether T1 is the same tree structure as T2.
6525 Return 1 if they are the same.
6526 Return 0 if they are understandably different.
6527 Return -1 if either contains tree structure not understood by
6528 this function. */
6529
6530 int
6531 simple_cst_equal (const_tree t1, const_tree t2)
6532 {
6533 enum tree_code code1, code2;
6534 int cmp;
6535 int i;
6536
6537 if (t1 == t2)
6538 return 1;
6539 if (t1 == 0 || t2 == 0)
6540 return 0;
6541
6542 code1 = TREE_CODE (t1);
6543 code2 = TREE_CODE (t2);
6544
6545 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6546 {
6547 if (CONVERT_EXPR_CODE_P (code2)
6548 || code2 == NON_LVALUE_EXPR)
6549 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6550 else
6551 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6552 }
6553
6554 else if (CONVERT_EXPR_CODE_P (code2)
6555 || code2 == NON_LVALUE_EXPR)
6556 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6557
6558 if (code1 != code2)
6559 return 0;
6560
6561 switch (code1)
6562 {
6563 case INTEGER_CST:
6564 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6565 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6566
6567 case REAL_CST:
6568 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6569
6570 case FIXED_CST:
6571 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6572
6573 case STRING_CST:
6574 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6575 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6576 TREE_STRING_LENGTH (t1)));
6577
6578 case CONSTRUCTOR:
6579 {
6580 unsigned HOST_WIDE_INT idx;
6581 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6582 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6583
6584 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6585 return false;
6586
6587 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6588 /* ??? Should we handle also fields here? */
6589 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6590 VEC_index (constructor_elt, v2, idx)->value))
6591 return false;
6592 return true;
6593 }
6594
6595 case SAVE_EXPR:
6596 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6597
6598 case CALL_EXPR:
6599 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6600 if (cmp <= 0)
6601 return cmp;
6602 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6603 return 0;
6604 {
6605 const_tree arg1, arg2;
6606 const_call_expr_arg_iterator iter1, iter2;
6607 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6608 arg2 = first_const_call_expr_arg (t2, &iter2);
6609 arg1 && arg2;
6610 arg1 = next_const_call_expr_arg (&iter1),
6611 arg2 = next_const_call_expr_arg (&iter2))
6612 {
6613 cmp = simple_cst_equal (arg1, arg2);
6614 if (cmp <= 0)
6615 return cmp;
6616 }
6617 return arg1 == arg2;
6618 }
6619
6620 case TARGET_EXPR:
6621 /* Special case: if either target is an unallocated VAR_DECL,
6622 it means that it's going to be unified with whatever the
6623 TARGET_EXPR is really supposed to initialize, so treat it
6624 as being equivalent to anything. */
6625 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6626 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6627 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6628 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6629 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6630 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6631 cmp = 1;
6632 else
6633 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6634
6635 if (cmp <= 0)
6636 return cmp;
6637
6638 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6639
6640 case WITH_CLEANUP_EXPR:
6641 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6642 if (cmp <= 0)
6643 return cmp;
6644
6645 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6646
6647 case COMPONENT_REF:
6648 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6649 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6650
6651 return 0;
6652
6653 case VAR_DECL:
6654 case PARM_DECL:
6655 case CONST_DECL:
6656 case FUNCTION_DECL:
6657 return 0;
6658
6659 default:
6660 break;
6661 }
6662
6663 /* This general rule works for most tree codes. All exceptions should be
6664 handled above. If this is a language-specific tree code, we can't
6665 trust what might be in the operand, so say we don't know
6666 the situation. */
6667 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6668 return -1;
6669
6670 switch (TREE_CODE_CLASS (code1))
6671 {
6672 case tcc_unary:
6673 case tcc_binary:
6674 case tcc_comparison:
6675 case tcc_expression:
6676 case tcc_reference:
6677 case tcc_statement:
6678 cmp = 1;
6679 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6680 {
6681 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6682 if (cmp <= 0)
6683 return cmp;
6684 }
6685
6686 return cmp;
6687
6688 default:
6689 return -1;
6690 }
6691 }
6692
6693 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6694 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6695 than U, respectively. */
6696
6697 int
6698 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6699 {
6700 if (tree_int_cst_sgn (t) < 0)
6701 return -1;
6702 else if (TREE_INT_CST_HIGH (t) != 0)
6703 return 1;
6704 else if (TREE_INT_CST_LOW (t) == u)
6705 return 0;
6706 else if (TREE_INT_CST_LOW (t) < u)
6707 return -1;
6708 else
6709 return 1;
6710 }
6711
6712 /* Return true if CODE represents an associative tree code. Otherwise
6713 return false. */
6714 bool
6715 associative_tree_code (enum tree_code code)
6716 {
6717 switch (code)
6718 {
6719 case BIT_IOR_EXPR:
6720 case BIT_AND_EXPR:
6721 case BIT_XOR_EXPR:
6722 case PLUS_EXPR:
6723 case MULT_EXPR:
6724 case MIN_EXPR:
6725 case MAX_EXPR:
6726 return true;
6727
6728 default:
6729 break;
6730 }
6731 return false;
6732 }
6733
6734 /* Return true if CODE represents a commutative tree code. Otherwise
6735 return false. */
6736 bool
6737 commutative_tree_code (enum tree_code code)
6738 {
6739 switch (code)
6740 {
6741 case PLUS_EXPR:
6742 case MULT_EXPR:
6743 case MIN_EXPR:
6744 case MAX_EXPR:
6745 case BIT_IOR_EXPR:
6746 case BIT_XOR_EXPR:
6747 case BIT_AND_EXPR:
6748 case NE_EXPR:
6749 case EQ_EXPR:
6750 case UNORDERED_EXPR:
6751 case ORDERED_EXPR:
6752 case UNEQ_EXPR:
6753 case LTGT_EXPR:
6754 case TRUTH_AND_EXPR:
6755 case TRUTH_XOR_EXPR:
6756 case TRUTH_OR_EXPR:
6757 return true;
6758
6759 default:
6760 break;
6761 }
6762 return false;
6763 }
6764
6765 /* Return true if CODE represents a ternary tree code for which the
6766 first two operands are commutative. Otherwise return false. */
6767 bool
6768 commutative_ternary_tree_code (enum tree_code code)
6769 {
6770 switch (code)
6771 {
6772 case WIDEN_MULT_PLUS_EXPR:
6773 case WIDEN_MULT_MINUS_EXPR:
6774 return true;
6775
6776 default:
6777 break;
6778 }
6779 return false;
6780 }
6781
6782 /* Generate a hash value for an expression. This can be used iteratively
6783 by passing a previous result as the VAL argument.
6784
6785 This function is intended to produce the same hash for expressions which
6786 would compare equal using operand_equal_p. */
6787
6788 hashval_t
6789 iterative_hash_expr (const_tree t, hashval_t val)
6790 {
6791 int i;
6792 enum tree_code code;
6793 char tclass;
6794
6795 if (t == NULL_TREE)
6796 return iterative_hash_hashval_t (0, val);
6797
6798 code = TREE_CODE (t);
6799
6800 switch (code)
6801 {
6802 /* Alas, constants aren't shared, so we can't rely on pointer
6803 identity. */
6804 case INTEGER_CST:
6805 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6806 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6807 case REAL_CST:
6808 {
6809 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6810
6811 return iterative_hash_hashval_t (val2, val);
6812 }
6813 case FIXED_CST:
6814 {
6815 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6816
6817 return iterative_hash_hashval_t (val2, val);
6818 }
6819 case STRING_CST:
6820 return iterative_hash (TREE_STRING_POINTER (t),
6821 TREE_STRING_LENGTH (t), val);
6822 case COMPLEX_CST:
6823 val = iterative_hash_expr (TREE_REALPART (t), val);
6824 return iterative_hash_expr (TREE_IMAGPART (t), val);
6825 case VECTOR_CST:
6826 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6827 case SSA_NAME:
6828 /* We can just compare by pointer. */
6829 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6830 case PLACEHOLDER_EXPR:
6831 /* The node itself doesn't matter. */
6832 return val;
6833 case TREE_LIST:
6834 /* A list of expressions, for a CALL_EXPR or as the elements of a
6835 VECTOR_CST. */
6836 for (; t; t = TREE_CHAIN (t))
6837 val = iterative_hash_expr (TREE_VALUE (t), val);
6838 return val;
6839 case CONSTRUCTOR:
6840 {
6841 unsigned HOST_WIDE_INT idx;
6842 tree field, value;
6843 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6844 {
6845 val = iterative_hash_expr (field, val);
6846 val = iterative_hash_expr (value, val);
6847 }
6848 return val;
6849 }
6850 case MEM_REF:
6851 {
6852 /* The type of the second operand is relevant, except for
6853 its top-level qualifiers. */
6854 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
6855
6856 val = iterative_hash_object (TYPE_HASH (type), val);
6857
6858 /* We could use the standard hash computation from this point
6859 on. */
6860 val = iterative_hash_object (code, val);
6861 val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
6862 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6863 return val;
6864 }
6865 case FUNCTION_DECL:
6866 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6867 Otherwise nodes that compare equal according to operand_equal_p might
6868 get different hash codes. However, don't do this for machine specific
6869 or front end builtins, since the function code is overloaded in those
6870 cases. */
6871 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6872 && built_in_decls[DECL_FUNCTION_CODE (t)])
6873 {
6874 t = built_in_decls[DECL_FUNCTION_CODE (t)];
6875 code = TREE_CODE (t);
6876 }
6877 /* FALL THROUGH */
6878 default:
6879 tclass = TREE_CODE_CLASS (code);
6880
6881 if (tclass == tcc_declaration)
6882 {
6883 /* DECL's have a unique ID */
6884 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6885 }
6886 else
6887 {
6888 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6889
6890 val = iterative_hash_object (code, val);
6891
6892 /* Don't hash the type, that can lead to having nodes which
6893 compare equal according to operand_equal_p, but which
6894 have different hash codes. */
6895 if (CONVERT_EXPR_CODE_P (code)
6896 || code == NON_LVALUE_EXPR)
6897 {
6898 /* Make sure to include signness in the hash computation. */
6899 val += TYPE_UNSIGNED (TREE_TYPE (t));
6900 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6901 }
6902
6903 else if (commutative_tree_code (code))
6904 {
6905 /* It's a commutative expression. We want to hash it the same
6906 however it appears. We do this by first hashing both operands
6907 and then rehashing based on the order of their independent
6908 hashes. */
6909 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6910 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6911 hashval_t t;
6912
6913 if (one > two)
6914 t = one, one = two, two = t;
6915
6916 val = iterative_hash_hashval_t (one, val);
6917 val = iterative_hash_hashval_t (two, val);
6918 }
6919 else
6920 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6921 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6922 }
6923 return val;
6924 break;
6925 }
6926 }
6927
6928 /* Generate a hash value for a pair of expressions. This can be used
6929 iteratively by passing a previous result as the VAL argument.
6930
6931 The same hash value is always returned for a given pair of expressions,
6932 regardless of the order in which they are presented. This is useful in
6933 hashing the operands of commutative functions. */
6934
6935 hashval_t
6936 iterative_hash_exprs_commutative (const_tree t1,
6937 const_tree t2, hashval_t val)
6938 {
6939 hashval_t one = iterative_hash_expr (t1, 0);
6940 hashval_t two = iterative_hash_expr (t2, 0);
6941 hashval_t t;
6942
6943 if (one > two)
6944 t = one, one = two, two = t;
6945 val = iterative_hash_hashval_t (one, val);
6946 val = iterative_hash_hashval_t (two, val);
6947
6948 return val;
6949 }
6950 \f
6951 /* Constructors for pointer, array and function types.
6952 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
6953 constructed by language-dependent code, not here.) */
6954
6955 /* Construct, lay out and return the type of pointers to TO_TYPE with
6956 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
6957 reference all of memory. If such a type has already been
6958 constructed, reuse it. */
6959
6960 tree
6961 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
6962 bool can_alias_all)
6963 {
6964 tree t;
6965
6966 if (to_type == error_mark_node)
6967 return error_mark_node;
6968
6969 /* If the pointed-to type has the may_alias attribute set, force
6970 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6971 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6972 can_alias_all = true;
6973
6974 /* In some cases, languages will have things that aren't a POINTER_TYPE
6975 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
6976 In that case, return that type without regard to the rest of our
6977 operands.
6978
6979 ??? This is a kludge, but consistent with the way this function has
6980 always operated and there doesn't seem to be a good way to avoid this
6981 at the moment. */
6982 if (TYPE_POINTER_TO (to_type) != 0
6983 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
6984 return TYPE_POINTER_TO (to_type);
6985
6986 /* First, if we already have a type for pointers to TO_TYPE and it's
6987 the proper mode, use it. */
6988 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
6989 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6990 return t;
6991
6992 t = make_node (POINTER_TYPE);
6993
6994 TREE_TYPE (t) = to_type;
6995 SET_TYPE_MODE (t, mode);
6996 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6997 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
6998 TYPE_POINTER_TO (to_type) = t;
6999
7000 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7001 SET_TYPE_STRUCTURAL_EQUALITY (t);
7002 else if (TYPE_CANONICAL (to_type) != to_type)
7003 TYPE_CANONICAL (t)
7004 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7005 mode, can_alias_all);
7006
7007 /* Lay out the type. This function has many callers that are concerned
7008 with expression-construction, and this simplifies them all. */
7009 layout_type (t);
7010
7011 return t;
7012 }
7013
7014 /* By default build pointers in ptr_mode. */
7015
7016 tree
7017 build_pointer_type (tree to_type)
7018 {
7019 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7020 : TYPE_ADDR_SPACE (to_type);
7021 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7022 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7023 }
7024
7025 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7026
7027 tree
7028 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
7029 bool can_alias_all)
7030 {
7031 tree t;
7032
7033 if (to_type == error_mark_node)
7034 return error_mark_node;
7035
7036 /* If the pointed-to type has the may_alias attribute set, force
7037 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7038 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7039 can_alias_all = true;
7040
7041 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7042 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7043 In that case, return that type without regard to the rest of our
7044 operands.
7045
7046 ??? This is a kludge, but consistent with the way this function has
7047 always operated and there doesn't seem to be a good way to avoid this
7048 at the moment. */
7049 if (TYPE_REFERENCE_TO (to_type) != 0
7050 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7051 return TYPE_REFERENCE_TO (to_type);
7052
7053 /* First, if we already have a type for pointers to TO_TYPE and it's
7054 the proper mode, use it. */
7055 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7056 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7057 return t;
7058
7059 t = make_node (REFERENCE_TYPE);
7060
7061 TREE_TYPE (t) = to_type;
7062 SET_TYPE_MODE (t, mode);
7063 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7064 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7065 TYPE_REFERENCE_TO (to_type) = t;
7066
7067 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7068 SET_TYPE_STRUCTURAL_EQUALITY (t);
7069 else if (TYPE_CANONICAL (to_type) != to_type)
7070 TYPE_CANONICAL (t)
7071 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7072 mode, can_alias_all);
7073
7074 layout_type (t);
7075
7076 return t;
7077 }
7078
7079
7080 /* Build the node for the type of references-to-TO_TYPE by default
7081 in ptr_mode. */
7082
7083 tree
7084 build_reference_type (tree to_type)
7085 {
7086 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7087 : TYPE_ADDR_SPACE (to_type);
7088 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7089 return build_reference_type_for_mode (to_type, pointer_mode, false);
7090 }
7091
7092 /* Build a type that is compatible with t but has no cv quals anywhere
7093 in its type, thus
7094
7095 const char *const *const * -> char ***. */
7096
7097 tree
7098 build_type_no_quals (tree t)
7099 {
7100 switch (TREE_CODE (t))
7101 {
7102 case POINTER_TYPE:
7103 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7104 TYPE_MODE (t),
7105 TYPE_REF_CAN_ALIAS_ALL (t));
7106 case REFERENCE_TYPE:
7107 return
7108 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7109 TYPE_MODE (t),
7110 TYPE_REF_CAN_ALIAS_ALL (t));
7111 default:
7112 return TYPE_MAIN_VARIANT (t);
7113 }
7114 }
7115
7116 #define MAX_INT_CACHED_PREC \
7117 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7118 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7119
7120 /* Builds a signed or unsigned integer type of precision PRECISION.
7121 Used for C bitfields whose precision does not match that of
7122 built-in target types. */
7123 tree
7124 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7125 int unsignedp)
7126 {
7127 tree itype, ret;
7128
7129 if (unsignedp)
7130 unsignedp = MAX_INT_CACHED_PREC + 1;
7131
7132 if (precision <= MAX_INT_CACHED_PREC)
7133 {
7134 itype = nonstandard_integer_type_cache[precision + unsignedp];
7135 if (itype)
7136 return itype;
7137 }
7138
7139 itype = make_node (INTEGER_TYPE);
7140 TYPE_PRECISION (itype) = precision;
7141
7142 if (unsignedp)
7143 fixup_unsigned_type (itype);
7144 else
7145 fixup_signed_type (itype);
7146
7147 ret = itype;
7148 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7149 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7150 if (precision <= MAX_INT_CACHED_PREC)
7151 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7152
7153 return ret;
7154 }
7155
7156 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7157 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7158 is true, reuse such a type that has already been constructed. */
7159
7160 static tree
7161 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7162 {
7163 tree itype = make_node (INTEGER_TYPE);
7164 hashval_t hashcode = 0;
7165
7166 TREE_TYPE (itype) = type;
7167
7168 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7169 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7170
7171 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7172 SET_TYPE_MODE (itype, TYPE_MODE (type));
7173 TYPE_SIZE (itype) = TYPE_SIZE (type);
7174 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7175 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7176 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7177
7178 if (!shared)
7179 return itype;
7180
7181 if ((TYPE_MIN_VALUE (itype)
7182 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7183 || (TYPE_MAX_VALUE (itype)
7184 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7185 {
7186 /* Since we cannot reliably merge this type, we need to compare it using
7187 structural equality checks. */
7188 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7189 return itype;
7190 }
7191
7192 hashcode = iterative_hash_expr (TYPE_MIN_VALUE (itype), hashcode);
7193 hashcode = iterative_hash_expr (TYPE_MAX_VALUE (itype), hashcode);
7194 hashcode = iterative_hash_hashval_t (TYPE_HASH (type), hashcode);
7195 itype = type_hash_canon (hashcode, itype);
7196
7197 return itype;
7198 }
7199
7200 /* Wrapper around build_range_type_1 with SHARED set to true. */
7201
7202 tree
7203 build_range_type (tree type, tree lowval, tree highval)
7204 {
7205 return build_range_type_1 (type, lowval, highval, true);
7206 }
7207
7208 /* Wrapper around build_range_type_1 with SHARED set to false. */
7209
7210 tree
7211 build_nonshared_range_type (tree type, tree lowval, tree highval)
7212 {
7213 return build_range_type_1 (type, lowval, highval, false);
7214 }
7215
7216 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7217 MAXVAL should be the maximum value in the domain
7218 (one less than the length of the array).
7219
7220 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7221 We don't enforce this limit, that is up to caller (e.g. language front end).
7222 The limit exists because the result is a signed type and we don't handle
7223 sizes that use more than one HOST_WIDE_INT. */
7224
7225 tree
7226 build_index_type (tree maxval)
7227 {
7228 return build_range_type (sizetype, size_zero_node, maxval);
7229 }
7230
7231 /* Return true if the debug information for TYPE, a subtype, should be emitted
7232 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7233 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7234 debug info and doesn't reflect the source code. */
7235
7236 bool
7237 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7238 {
7239 tree base_type = TREE_TYPE (type), low, high;
7240
7241 /* Subrange types have a base type which is an integral type. */
7242 if (!INTEGRAL_TYPE_P (base_type))
7243 return false;
7244
7245 /* Get the real bounds of the subtype. */
7246 if (lang_hooks.types.get_subrange_bounds)
7247 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7248 else
7249 {
7250 low = TYPE_MIN_VALUE (type);
7251 high = TYPE_MAX_VALUE (type);
7252 }
7253
7254 /* If the type and its base type have the same representation and the same
7255 name, then the type is not a subrange but a copy of the base type. */
7256 if ((TREE_CODE (base_type) == INTEGER_TYPE
7257 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7258 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7259 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7260 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7261 {
7262 tree type_name = TYPE_NAME (type);
7263 tree base_type_name = TYPE_NAME (base_type);
7264
7265 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7266 type_name = DECL_NAME (type_name);
7267
7268 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7269 base_type_name = DECL_NAME (base_type_name);
7270
7271 if (type_name == base_type_name)
7272 return false;
7273 }
7274
7275 if (lowval)
7276 *lowval = low;
7277 if (highval)
7278 *highval = high;
7279 return true;
7280 }
7281
7282 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7283 and number of elements specified by the range of values of INDEX_TYPE.
7284 If SHARED is true, reuse such a type that has already been constructed. */
7285
7286 static tree
7287 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7288 {
7289 tree t;
7290
7291 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7292 {
7293 error ("arrays of functions are not meaningful");
7294 elt_type = integer_type_node;
7295 }
7296
7297 t = make_node (ARRAY_TYPE);
7298 TREE_TYPE (t) = elt_type;
7299 TYPE_DOMAIN (t) = index_type;
7300 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7301 layout_type (t);
7302
7303 /* If the element type is incomplete at this point we get marked for
7304 structural equality. Do not record these types in the canonical
7305 type hashtable. */
7306 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7307 return t;
7308
7309 if (shared)
7310 {
7311 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7312 if (index_type)
7313 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7314 t = type_hash_canon (hashcode, t);
7315 }
7316
7317 if (TYPE_CANONICAL (t) == t)
7318 {
7319 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7320 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7321 SET_TYPE_STRUCTURAL_EQUALITY (t);
7322 else if (TYPE_CANONICAL (elt_type) != elt_type
7323 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7324 TYPE_CANONICAL (t)
7325 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7326 index_type
7327 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7328 shared);
7329 }
7330
7331 return t;
7332 }
7333
7334 /* Wrapper around build_array_type_1 with SHARED set to true. */
7335
7336 tree
7337 build_array_type (tree elt_type, tree index_type)
7338 {
7339 return build_array_type_1 (elt_type, index_type, true);
7340 }
7341
7342 /* Wrapper around build_array_type_1 with SHARED set to false. */
7343
7344 tree
7345 build_nonshared_array_type (tree elt_type, tree index_type)
7346 {
7347 return build_array_type_1 (elt_type, index_type, false);
7348 }
7349
7350 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7351 sizetype. */
7352
7353 tree
7354 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7355 {
7356 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7357 }
7358
7359 /* Recursively examines the array elements of TYPE, until a non-array
7360 element type is found. */
7361
7362 tree
7363 strip_array_types (tree type)
7364 {
7365 while (TREE_CODE (type) == ARRAY_TYPE)
7366 type = TREE_TYPE (type);
7367
7368 return type;
7369 }
7370
7371 /* Computes the canonical argument types from the argument type list
7372 ARGTYPES.
7373
7374 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7375 on entry to this function, or if any of the ARGTYPES are
7376 structural.
7377
7378 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7379 true on entry to this function, or if any of the ARGTYPES are
7380 non-canonical.
7381
7382 Returns a canonical argument list, which may be ARGTYPES when the
7383 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7384 true) or would not differ from ARGTYPES. */
7385
7386 static tree
7387 maybe_canonicalize_argtypes(tree argtypes,
7388 bool *any_structural_p,
7389 bool *any_noncanonical_p)
7390 {
7391 tree arg;
7392 bool any_noncanonical_argtypes_p = false;
7393
7394 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7395 {
7396 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7397 /* Fail gracefully by stating that the type is structural. */
7398 *any_structural_p = true;
7399 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7400 *any_structural_p = true;
7401 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7402 || TREE_PURPOSE (arg))
7403 /* If the argument has a default argument, we consider it
7404 non-canonical even though the type itself is canonical.
7405 That way, different variants of function and method types
7406 with default arguments will all point to the variant with
7407 no defaults as their canonical type. */
7408 any_noncanonical_argtypes_p = true;
7409 }
7410
7411 if (*any_structural_p)
7412 return argtypes;
7413
7414 if (any_noncanonical_argtypes_p)
7415 {
7416 /* Build the canonical list of argument types. */
7417 tree canon_argtypes = NULL_TREE;
7418 bool is_void = false;
7419
7420 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7421 {
7422 if (arg == void_list_node)
7423 is_void = true;
7424 else
7425 canon_argtypes = tree_cons (NULL_TREE,
7426 TYPE_CANONICAL (TREE_VALUE (arg)),
7427 canon_argtypes);
7428 }
7429
7430 canon_argtypes = nreverse (canon_argtypes);
7431 if (is_void)
7432 canon_argtypes = chainon (canon_argtypes, void_list_node);
7433
7434 /* There is a non-canonical type. */
7435 *any_noncanonical_p = true;
7436 return canon_argtypes;
7437 }
7438
7439 /* The canonical argument types are the same as ARGTYPES. */
7440 return argtypes;
7441 }
7442
7443 /* Construct, lay out and return
7444 the type of functions returning type VALUE_TYPE
7445 given arguments of types ARG_TYPES.
7446 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7447 are data type nodes for the arguments of the function.
7448 If such a type has already been constructed, reuse it. */
7449
7450 tree
7451 build_function_type (tree value_type, tree arg_types)
7452 {
7453 tree t;
7454 hashval_t hashcode = 0;
7455 bool any_structural_p, any_noncanonical_p;
7456 tree canon_argtypes;
7457
7458 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7459 {
7460 error ("function return type cannot be function");
7461 value_type = integer_type_node;
7462 }
7463
7464 /* Make a node of the sort we want. */
7465 t = make_node (FUNCTION_TYPE);
7466 TREE_TYPE (t) = value_type;
7467 TYPE_ARG_TYPES (t) = arg_types;
7468
7469 /* If we already have such a type, use the old one. */
7470 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7471 hashcode = type_hash_list (arg_types, hashcode);
7472 t = type_hash_canon (hashcode, t);
7473
7474 /* Set up the canonical type. */
7475 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7476 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7477 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7478 &any_structural_p,
7479 &any_noncanonical_p);
7480 if (any_structural_p)
7481 SET_TYPE_STRUCTURAL_EQUALITY (t);
7482 else if (any_noncanonical_p)
7483 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7484 canon_argtypes);
7485
7486 if (!COMPLETE_TYPE_P (t))
7487 layout_type (t);
7488 return t;
7489 }
7490
7491 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7492
7493 tree
7494 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7495 {
7496 tree new_type = NULL;
7497 tree args, new_args = NULL, t;
7498 tree new_reversed;
7499 int i = 0;
7500
7501 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7502 args = TREE_CHAIN (args), i++)
7503 if (!bitmap_bit_p (args_to_skip, i))
7504 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7505
7506 new_reversed = nreverse (new_args);
7507 if (args)
7508 {
7509 if (new_reversed)
7510 TREE_CHAIN (new_args) = void_list_node;
7511 else
7512 new_reversed = void_list_node;
7513 }
7514
7515 /* Use copy_node to preserve as much as possible from original type
7516 (debug info, attribute lists etc.)
7517 Exception is METHOD_TYPEs must have THIS argument.
7518 When we are asked to remove it, we need to build new FUNCTION_TYPE
7519 instead. */
7520 if (TREE_CODE (orig_type) != METHOD_TYPE
7521 || !bitmap_bit_p (args_to_skip, 0))
7522 {
7523 new_type = build_distinct_type_copy (orig_type);
7524 TYPE_ARG_TYPES (new_type) = new_reversed;
7525 }
7526 else
7527 {
7528 new_type
7529 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7530 new_reversed));
7531 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7532 }
7533
7534 /* This is a new type, not a copy of an old type. Need to reassociate
7535 variants. We can handle everything except the main variant lazily. */
7536 t = TYPE_MAIN_VARIANT (orig_type);
7537 if (orig_type != t)
7538 {
7539 TYPE_MAIN_VARIANT (new_type) = t;
7540 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7541 TYPE_NEXT_VARIANT (t) = new_type;
7542 }
7543 else
7544 {
7545 TYPE_MAIN_VARIANT (new_type) = new_type;
7546 TYPE_NEXT_VARIANT (new_type) = NULL;
7547 }
7548 return new_type;
7549 }
7550
7551 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7552
7553 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7554 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7555 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7556
7557 tree
7558 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7559 {
7560 tree new_decl = copy_node (orig_decl);
7561 tree new_type;
7562
7563 new_type = TREE_TYPE (orig_decl);
7564 if (prototype_p (new_type))
7565 new_type = build_function_type_skip_args (new_type, args_to_skip);
7566 TREE_TYPE (new_decl) = new_type;
7567
7568 /* For declarations setting DECL_VINDEX (i.e. methods)
7569 we expect first argument to be THIS pointer. */
7570 if (bitmap_bit_p (args_to_skip, 0))
7571 DECL_VINDEX (new_decl) = NULL_TREE;
7572
7573 /* When signature changes, we need to clear builtin info. */
7574 if (DECL_BUILT_IN (new_decl) && !bitmap_empty_p (args_to_skip))
7575 {
7576 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
7577 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
7578 }
7579 return new_decl;
7580 }
7581
7582 /* Build a function type. The RETURN_TYPE is the type returned by the
7583 function. If VAARGS is set, no void_type_node is appended to the
7584 the list. ARGP must be always be terminated be a NULL_TREE. */
7585
7586 static tree
7587 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7588 {
7589 tree t, args, last;
7590
7591 t = va_arg (argp, tree);
7592 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7593 args = tree_cons (NULL_TREE, t, args);
7594
7595 if (vaargs)
7596 {
7597 last = args;
7598 if (args != NULL_TREE)
7599 args = nreverse (args);
7600 gcc_assert (last != void_list_node);
7601 }
7602 else if (args == NULL_TREE)
7603 args = void_list_node;
7604 else
7605 {
7606 last = args;
7607 args = nreverse (args);
7608 TREE_CHAIN (last) = void_list_node;
7609 }
7610 args = build_function_type (return_type, args);
7611
7612 return args;
7613 }
7614
7615 /* Build a function type. The RETURN_TYPE is the type returned by the
7616 function. If additional arguments are provided, they are
7617 additional argument types. The list of argument types must always
7618 be terminated by NULL_TREE. */
7619
7620 tree
7621 build_function_type_list (tree return_type, ...)
7622 {
7623 tree args;
7624 va_list p;
7625
7626 va_start (p, return_type);
7627 args = build_function_type_list_1 (false, return_type, p);
7628 va_end (p);
7629 return args;
7630 }
7631
7632 /* Build a variable argument function type. The RETURN_TYPE is the
7633 type returned by the function. If additional arguments are provided,
7634 they are additional argument types. The list of argument types must
7635 always be terminated by NULL_TREE. */
7636
7637 tree
7638 build_varargs_function_type_list (tree return_type, ...)
7639 {
7640 tree args;
7641 va_list p;
7642
7643 va_start (p, return_type);
7644 args = build_function_type_list_1 (true, return_type, p);
7645 va_end (p);
7646
7647 return args;
7648 }
7649
7650 /* Build a function type. RETURN_TYPE is the type returned by the
7651 function; VAARGS indicates whether the function takes varargs. The
7652 function takes N named arguments, the types of which are provided in
7653 ARG_TYPES. */
7654
7655 static tree
7656 build_function_type_array_1 (bool vaargs, tree return_type, int n,
7657 tree *arg_types)
7658 {
7659 int i;
7660 tree t = vaargs ? NULL_TREE : void_list_node;
7661
7662 for (i = n - 1; i >= 0; i--)
7663 t = tree_cons (NULL_TREE, arg_types[i], t);
7664
7665 return build_function_type (return_type, t);
7666 }
7667
7668 /* Build a function type. RETURN_TYPE is the type returned by the
7669 function. The function takes N named arguments, the types of which
7670 are provided in ARG_TYPES. */
7671
7672 tree
7673 build_function_type_array (tree return_type, int n, tree *arg_types)
7674 {
7675 return build_function_type_array_1 (false, return_type, n, arg_types);
7676 }
7677
7678 /* Build a variable argument function type. RETURN_TYPE is the type
7679 returned by the function. The function takes N named arguments, the
7680 types of which are provided in ARG_TYPES. */
7681
7682 tree
7683 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
7684 {
7685 return build_function_type_array_1 (true, return_type, n, arg_types);
7686 }
7687
7688 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7689 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7690 for the method. An implicit additional parameter (of type
7691 pointer-to-BASETYPE) is added to the ARGTYPES. */
7692
7693 tree
7694 build_method_type_directly (tree basetype,
7695 tree rettype,
7696 tree argtypes)
7697 {
7698 tree t;
7699 tree ptype;
7700 int hashcode = 0;
7701 bool any_structural_p, any_noncanonical_p;
7702 tree canon_argtypes;
7703
7704 /* Make a node of the sort we want. */
7705 t = make_node (METHOD_TYPE);
7706
7707 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7708 TREE_TYPE (t) = rettype;
7709 ptype = build_pointer_type (basetype);
7710
7711 /* The actual arglist for this function includes a "hidden" argument
7712 which is "this". Put it into the list of argument types. */
7713 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7714 TYPE_ARG_TYPES (t) = argtypes;
7715
7716 /* If we already have such a type, use the old one. */
7717 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7718 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7719 hashcode = type_hash_list (argtypes, hashcode);
7720 t = type_hash_canon (hashcode, t);
7721
7722 /* Set up the canonical type. */
7723 any_structural_p
7724 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7725 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7726 any_noncanonical_p
7727 = (TYPE_CANONICAL (basetype) != basetype
7728 || TYPE_CANONICAL (rettype) != rettype);
7729 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7730 &any_structural_p,
7731 &any_noncanonical_p);
7732 if (any_structural_p)
7733 SET_TYPE_STRUCTURAL_EQUALITY (t);
7734 else if (any_noncanonical_p)
7735 TYPE_CANONICAL (t)
7736 = build_method_type_directly (TYPE_CANONICAL (basetype),
7737 TYPE_CANONICAL (rettype),
7738 canon_argtypes);
7739 if (!COMPLETE_TYPE_P (t))
7740 layout_type (t);
7741
7742 return t;
7743 }
7744
7745 /* Construct, lay out and return the type of methods belonging to class
7746 BASETYPE and whose arguments and values are described by TYPE.
7747 If that type exists already, reuse it.
7748 TYPE must be a FUNCTION_TYPE node. */
7749
7750 tree
7751 build_method_type (tree basetype, tree type)
7752 {
7753 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7754
7755 return build_method_type_directly (basetype,
7756 TREE_TYPE (type),
7757 TYPE_ARG_TYPES (type));
7758 }
7759
7760 /* Construct, lay out and return the type of offsets to a value
7761 of type TYPE, within an object of type BASETYPE.
7762 If a suitable offset type exists already, reuse it. */
7763
7764 tree
7765 build_offset_type (tree basetype, tree type)
7766 {
7767 tree t;
7768 hashval_t hashcode = 0;
7769
7770 /* Make a node of the sort we want. */
7771 t = make_node (OFFSET_TYPE);
7772
7773 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7774 TREE_TYPE (t) = type;
7775
7776 /* If we already have such a type, use the old one. */
7777 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7778 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7779 t = type_hash_canon (hashcode, t);
7780
7781 if (!COMPLETE_TYPE_P (t))
7782 layout_type (t);
7783
7784 if (TYPE_CANONICAL (t) == t)
7785 {
7786 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7787 || TYPE_STRUCTURAL_EQUALITY_P (type))
7788 SET_TYPE_STRUCTURAL_EQUALITY (t);
7789 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7790 || TYPE_CANONICAL (type) != type)
7791 TYPE_CANONICAL (t)
7792 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7793 TYPE_CANONICAL (type));
7794 }
7795
7796 return t;
7797 }
7798
7799 /* Create a complex type whose components are COMPONENT_TYPE. */
7800
7801 tree
7802 build_complex_type (tree component_type)
7803 {
7804 tree t;
7805 hashval_t hashcode;
7806
7807 gcc_assert (INTEGRAL_TYPE_P (component_type)
7808 || SCALAR_FLOAT_TYPE_P (component_type)
7809 || FIXED_POINT_TYPE_P (component_type));
7810
7811 /* Make a node of the sort we want. */
7812 t = make_node (COMPLEX_TYPE);
7813
7814 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7815
7816 /* If we already have such a type, use the old one. */
7817 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7818 t = type_hash_canon (hashcode, t);
7819
7820 if (!COMPLETE_TYPE_P (t))
7821 layout_type (t);
7822
7823 if (TYPE_CANONICAL (t) == t)
7824 {
7825 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7826 SET_TYPE_STRUCTURAL_EQUALITY (t);
7827 else if (TYPE_CANONICAL (component_type) != component_type)
7828 TYPE_CANONICAL (t)
7829 = build_complex_type (TYPE_CANONICAL (component_type));
7830 }
7831
7832 /* We need to create a name, since complex is a fundamental type. */
7833 if (! TYPE_NAME (t))
7834 {
7835 const char *name;
7836 if (component_type == char_type_node)
7837 name = "complex char";
7838 else if (component_type == signed_char_type_node)
7839 name = "complex signed char";
7840 else if (component_type == unsigned_char_type_node)
7841 name = "complex unsigned char";
7842 else if (component_type == short_integer_type_node)
7843 name = "complex short int";
7844 else if (component_type == short_unsigned_type_node)
7845 name = "complex short unsigned int";
7846 else if (component_type == integer_type_node)
7847 name = "complex int";
7848 else if (component_type == unsigned_type_node)
7849 name = "complex unsigned int";
7850 else if (component_type == long_integer_type_node)
7851 name = "complex long int";
7852 else if (component_type == long_unsigned_type_node)
7853 name = "complex long unsigned int";
7854 else if (component_type == long_long_integer_type_node)
7855 name = "complex long long int";
7856 else if (component_type == long_long_unsigned_type_node)
7857 name = "complex long long unsigned int";
7858 else
7859 name = 0;
7860
7861 if (name != 0)
7862 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7863 get_identifier (name), t);
7864 }
7865
7866 return build_qualified_type (t, TYPE_QUALS (component_type));
7867 }
7868
7869 /* If TYPE is a real or complex floating-point type and the target
7870 does not directly support arithmetic on TYPE then return the wider
7871 type to be used for arithmetic on TYPE. Otherwise, return
7872 NULL_TREE. */
7873
7874 tree
7875 excess_precision_type (tree type)
7876 {
7877 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7878 {
7879 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7880 switch (TREE_CODE (type))
7881 {
7882 case REAL_TYPE:
7883 switch (flt_eval_method)
7884 {
7885 case 1:
7886 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7887 return double_type_node;
7888 break;
7889 case 2:
7890 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7891 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7892 return long_double_type_node;
7893 break;
7894 default:
7895 gcc_unreachable ();
7896 }
7897 break;
7898 case COMPLEX_TYPE:
7899 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7900 return NULL_TREE;
7901 switch (flt_eval_method)
7902 {
7903 case 1:
7904 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7905 return complex_double_type_node;
7906 break;
7907 case 2:
7908 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7909 || (TYPE_MODE (TREE_TYPE (type))
7910 == TYPE_MODE (double_type_node)))
7911 return complex_long_double_type_node;
7912 break;
7913 default:
7914 gcc_unreachable ();
7915 }
7916 break;
7917 default:
7918 break;
7919 }
7920 }
7921 return NULL_TREE;
7922 }
7923 \f
7924 /* Return OP, stripped of any conversions to wider types as much as is safe.
7925 Converting the value back to OP's type makes a value equivalent to OP.
7926
7927 If FOR_TYPE is nonzero, we return a value which, if converted to
7928 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7929
7930 OP must have integer, real or enumeral type. Pointers are not allowed!
7931
7932 There are some cases where the obvious value we could return
7933 would regenerate to OP if converted to OP's type,
7934 but would not extend like OP to wider types.
7935 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
7936 For example, if OP is (unsigned short)(signed char)-1,
7937 we avoid returning (signed char)-1 if FOR_TYPE is int,
7938 even though extending that to an unsigned short would regenerate OP,
7939 since the result of extending (signed char)-1 to (int)
7940 is different from (int) OP. */
7941
7942 tree
7943 get_unwidened (tree op, tree for_type)
7944 {
7945 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
7946 tree type = TREE_TYPE (op);
7947 unsigned final_prec
7948 = TYPE_PRECISION (for_type != 0 ? for_type : type);
7949 int uns
7950 = (for_type != 0 && for_type != type
7951 && final_prec > TYPE_PRECISION (type)
7952 && TYPE_UNSIGNED (type));
7953 tree win = op;
7954
7955 while (CONVERT_EXPR_P (op))
7956 {
7957 int bitschange;
7958
7959 /* TYPE_PRECISION on vector types has different meaning
7960 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
7961 so avoid them here. */
7962 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
7963 break;
7964
7965 bitschange = TYPE_PRECISION (TREE_TYPE (op))
7966 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
7967
7968 /* Truncations are many-one so cannot be removed.
7969 Unless we are later going to truncate down even farther. */
7970 if (bitschange < 0
7971 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
7972 break;
7973
7974 /* See what's inside this conversion. If we decide to strip it,
7975 we will set WIN. */
7976 op = TREE_OPERAND (op, 0);
7977
7978 /* If we have not stripped any zero-extensions (uns is 0),
7979 we can strip any kind of extension.
7980 If we have previously stripped a zero-extension,
7981 only zero-extensions can safely be stripped.
7982 Any extension can be stripped if the bits it would produce
7983 are all going to be discarded later by truncating to FOR_TYPE. */
7984
7985 if (bitschange > 0)
7986 {
7987 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
7988 win = op;
7989 /* TYPE_UNSIGNED says whether this is a zero-extension.
7990 Let's avoid computing it if it does not affect WIN
7991 and if UNS will not be needed again. */
7992 if ((uns
7993 || CONVERT_EXPR_P (op))
7994 && TYPE_UNSIGNED (TREE_TYPE (op)))
7995 {
7996 uns = 1;
7997 win = op;
7998 }
7999 }
8000 }
8001
8002 /* If we finally reach a constant see if it fits in for_type and
8003 in that case convert it. */
8004 if (for_type
8005 && TREE_CODE (win) == INTEGER_CST
8006 && TREE_TYPE (win) != for_type
8007 && int_fits_type_p (win, for_type))
8008 win = fold_convert (for_type, win);
8009
8010 return win;
8011 }
8012 \f
8013 /* Return OP or a simpler expression for a narrower value
8014 which can be sign-extended or zero-extended to give back OP.
8015 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8016 or 0 if the value should be sign-extended. */
8017
8018 tree
8019 get_narrower (tree op, int *unsignedp_ptr)
8020 {
8021 int uns = 0;
8022 int first = 1;
8023 tree win = op;
8024 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8025
8026 while (TREE_CODE (op) == NOP_EXPR)
8027 {
8028 int bitschange
8029 = (TYPE_PRECISION (TREE_TYPE (op))
8030 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8031
8032 /* Truncations are many-one so cannot be removed. */
8033 if (bitschange < 0)
8034 break;
8035
8036 /* See what's inside this conversion. If we decide to strip it,
8037 we will set WIN. */
8038
8039 if (bitschange > 0)
8040 {
8041 op = TREE_OPERAND (op, 0);
8042 /* An extension: the outermost one can be stripped,
8043 but remember whether it is zero or sign extension. */
8044 if (first)
8045 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8046 /* Otherwise, if a sign extension has been stripped,
8047 only sign extensions can now be stripped;
8048 if a zero extension has been stripped, only zero-extensions. */
8049 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8050 break;
8051 first = 0;
8052 }
8053 else /* bitschange == 0 */
8054 {
8055 /* A change in nominal type can always be stripped, but we must
8056 preserve the unsignedness. */
8057 if (first)
8058 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8059 first = 0;
8060 op = TREE_OPERAND (op, 0);
8061 /* Keep trying to narrow, but don't assign op to win if it
8062 would turn an integral type into something else. */
8063 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8064 continue;
8065 }
8066
8067 win = op;
8068 }
8069
8070 if (TREE_CODE (op) == COMPONENT_REF
8071 /* Since type_for_size always gives an integer type. */
8072 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8073 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8074 /* Ensure field is laid out already. */
8075 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8076 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
8077 {
8078 unsigned HOST_WIDE_INT innerprec
8079 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
8080 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8081 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8082 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8083
8084 /* We can get this structure field in a narrower type that fits it,
8085 but the resulting extension to its nominal type (a fullword type)
8086 must satisfy the same conditions as for other extensions.
8087
8088 Do this only for fields that are aligned (not bit-fields),
8089 because when bit-field insns will be used there is no
8090 advantage in doing this. */
8091
8092 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8093 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8094 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8095 && type != 0)
8096 {
8097 if (first)
8098 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8099 win = fold_convert (type, op);
8100 }
8101 }
8102
8103 *unsignedp_ptr = uns;
8104 return win;
8105 }
8106 \f
8107 /* Returns true if integer constant C has a value that is permissible
8108 for type TYPE (an INTEGER_TYPE). */
8109
8110 bool
8111 int_fits_type_p (const_tree c, const_tree type)
8112 {
8113 tree type_low_bound, type_high_bound;
8114 bool ok_for_low_bound, ok_for_high_bound, unsc;
8115 double_int dc, dd;
8116
8117 dc = tree_to_double_int (c);
8118 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
8119
8120 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
8121 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
8122 && unsc)
8123 /* So c is an unsigned integer whose type is sizetype and type is not.
8124 sizetype'd integers are sign extended even though they are
8125 unsigned. If the integer value fits in the lower end word of c,
8126 and if the higher end word has all its bits set to 1, that
8127 means the higher end bits are set to 1 only for sign extension.
8128 So let's convert c into an equivalent zero extended unsigned
8129 integer. */
8130 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
8131
8132 retry:
8133 type_low_bound = TYPE_MIN_VALUE (type);
8134 type_high_bound = TYPE_MAX_VALUE (type);
8135
8136 /* If at least one bound of the type is a constant integer, we can check
8137 ourselves and maybe make a decision. If no such decision is possible, but
8138 this type is a subtype, try checking against that. Otherwise, use
8139 double_int_fits_to_tree_p, which checks against the precision.
8140
8141 Compute the status for each possibly constant bound, and return if we see
8142 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8143 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8144 for "constant known to fit". */
8145
8146 /* Check if c >= type_low_bound. */
8147 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8148 {
8149 dd = tree_to_double_int (type_low_bound);
8150 if (TREE_CODE (type) == INTEGER_TYPE
8151 && TYPE_IS_SIZETYPE (type)
8152 && TYPE_UNSIGNED (type))
8153 dd = double_int_zext (dd, TYPE_PRECISION (type));
8154 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
8155 {
8156 int c_neg = (!unsc && double_int_negative_p (dc));
8157 int t_neg = (unsc && double_int_negative_p (dd));
8158
8159 if (c_neg && !t_neg)
8160 return false;
8161 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
8162 return false;
8163 }
8164 else if (double_int_cmp (dc, dd, unsc) < 0)
8165 return false;
8166 ok_for_low_bound = true;
8167 }
8168 else
8169 ok_for_low_bound = false;
8170
8171 /* Check if c <= type_high_bound. */
8172 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8173 {
8174 dd = tree_to_double_int (type_high_bound);
8175 if (TREE_CODE (type) == INTEGER_TYPE
8176 && TYPE_IS_SIZETYPE (type)
8177 && TYPE_UNSIGNED (type))
8178 dd = double_int_zext (dd, TYPE_PRECISION (type));
8179 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8180 {
8181 int c_neg = (!unsc && double_int_negative_p (dc));
8182 int t_neg = (unsc && double_int_negative_p (dd));
8183
8184 if (t_neg && !c_neg)
8185 return false;
8186 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
8187 return false;
8188 }
8189 else if (double_int_cmp (dc, dd, unsc) > 0)
8190 return false;
8191 ok_for_high_bound = true;
8192 }
8193 else
8194 ok_for_high_bound = false;
8195
8196 /* If the constant fits both bounds, the result is known. */
8197 if (ok_for_low_bound && ok_for_high_bound)
8198 return true;
8199
8200 /* Perform some generic filtering which may allow making a decision
8201 even if the bounds are not constant. First, negative integers
8202 never fit in unsigned types, */
8203 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
8204 return false;
8205
8206 /* Second, narrower types always fit in wider ones. */
8207 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8208 return true;
8209
8210 /* Third, unsigned integers with top bit set never fit signed types. */
8211 if (! TYPE_UNSIGNED (type) && unsc)
8212 {
8213 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8214 if (prec < HOST_BITS_PER_WIDE_INT)
8215 {
8216 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8217 return false;
8218 }
8219 else if (((((unsigned HOST_WIDE_INT) 1)
8220 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8221 return false;
8222 }
8223
8224 /* If we haven't been able to decide at this point, there nothing more we
8225 can check ourselves here. Look at the base type if we have one and it
8226 has the same precision. */
8227 if (TREE_CODE (type) == INTEGER_TYPE
8228 && TREE_TYPE (type) != 0
8229 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8230 {
8231 type = TREE_TYPE (type);
8232 goto retry;
8233 }
8234
8235 /* Or to double_int_fits_to_tree_p, if nothing else. */
8236 return double_int_fits_to_tree_p (type, dc);
8237 }
8238
8239 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8240 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8241 represented (assuming two's-complement arithmetic) within the bit
8242 precision of the type are returned instead. */
8243
8244 void
8245 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8246 {
8247 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8248 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8249 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8250 TYPE_UNSIGNED (type));
8251 else
8252 {
8253 if (TYPE_UNSIGNED (type))
8254 mpz_set_ui (min, 0);
8255 else
8256 {
8257 double_int mn;
8258 mn = double_int_mask (TYPE_PRECISION (type) - 1);
8259 mn = double_int_sext (double_int_add (mn, double_int_one),
8260 TYPE_PRECISION (type));
8261 mpz_set_double_int (min, mn, false);
8262 }
8263 }
8264
8265 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8266 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8267 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8268 TYPE_UNSIGNED (type));
8269 else
8270 {
8271 if (TYPE_UNSIGNED (type))
8272 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
8273 true);
8274 else
8275 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
8276 true);
8277 }
8278 }
8279
8280 /* Return true if VAR is an automatic variable defined in function FN. */
8281
8282 bool
8283 auto_var_in_fn_p (const_tree var, const_tree fn)
8284 {
8285 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8286 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8287 || TREE_CODE (var) == PARM_DECL)
8288 && ! TREE_STATIC (var))
8289 || TREE_CODE (var) == LABEL_DECL
8290 || TREE_CODE (var) == RESULT_DECL));
8291 }
8292
8293 /* Subprogram of following function. Called by walk_tree.
8294
8295 Return *TP if it is an automatic variable or parameter of the
8296 function passed in as DATA. */
8297
8298 static tree
8299 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8300 {
8301 tree fn = (tree) data;
8302
8303 if (TYPE_P (*tp))
8304 *walk_subtrees = 0;
8305
8306 else if (DECL_P (*tp)
8307 && auto_var_in_fn_p (*tp, fn))
8308 return *tp;
8309
8310 return NULL_TREE;
8311 }
8312
8313 /* Returns true if T is, contains, or refers to a type with variable
8314 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8315 arguments, but not the return type. If FN is nonzero, only return
8316 true if a modifier of the type or position of FN is a variable or
8317 parameter inside FN.
8318
8319 This concept is more general than that of C99 'variably modified types':
8320 in C99, a struct type is never variably modified because a VLA may not
8321 appear as a structure member. However, in GNU C code like:
8322
8323 struct S { int i[f()]; };
8324
8325 is valid, and other languages may define similar constructs. */
8326
8327 bool
8328 variably_modified_type_p (tree type, tree fn)
8329 {
8330 tree t;
8331
8332 /* Test if T is either variable (if FN is zero) or an expression containing
8333 a variable in FN. */
8334 #define RETURN_TRUE_IF_VAR(T) \
8335 do { tree _t = (T); \
8336 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
8337 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8338 return true; } while (0)
8339
8340 if (type == error_mark_node)
8341 return false;
8342
8343 /* If TYPE itself has variable size, it is variably modified. */
8344 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8345 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8346
8347 switch (TREE_CODE (type))
8348 {
8349 case POINTER_TYPE:
8350 case REFERENCE_TYPE:
8351 case VECTOR_TYPE:
8352 if (variably_modified_type_p (TREE_TYPE (type), fn))
8353 return true;
8354 break;
8355
8356 case FUNCTION_TYPE:
8357 case METHOD_TYPE:
8358 /* If TYPE is a function type, it is variably modified if the
8359 return type is variably modified. */
8360 if (variably_modified_type_p (TREE_TYPE (type), fn))
8361 return true;
8362 break;
8363
8364 case INTEGER_TYPE:
8365 case REAL_TYPE:
8366 case FIXED_POINT_TYPE:
8367 case ENUMERAL_TYPE:
8368 case BOOLEAN_TYPE:
8369 /* Scalar types are variably modified if their end points
8370 aren't constant. */
8371 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8372 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8373 break;
8374
8375 case RECORD_TYPE:
8376 case UNION_TYPE:
8377 case QUAL_UNION_TYPE:
8378 /* We can't see if any of the fields are variably-modified by the
8379 definition we normally use, since that would produce infinite
8380 recursion via pointers. */
8381 /* This is variably modified if some field's type is. */
8382 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8383 if (TREE_CODE (t) == FIELD_DECL)
8384 {
8385 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8386 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8387 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8388
8389 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8390 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8391 }
8392 break;
8393
8394 case ARRAY_TYPE:
8395 /* Do not call ourselves to avoid infinite recursion. This is
8396 variably modified if the element type is. */
8397 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8398 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8399 break;
8400
8401 default:
8402 break;
8403 }
8404
8405 /* The current language may have other cases to check, but in general,
8406 all other types are not variably modified. */
8407 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8408
8409 #undef RETURN_TRUE_IF_VAR
8410 }
8411
8412 /* Given a DECL or TYPE, return the scope in which it was declared, or
8413 NULL_TREE if there is no containing scope. */
8414
8415 tree
8416 get_containing_scope (const_tree t)
8417 {
8418 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8419 }
8420
8421 /* Return the innermost context enclosing DECL that is
8422 a FUNCTION_DECL, or zero if none. */
8423
8424 tree
8425 decl_function_context (const_tree decl)
8426 {
8427 tree context;
8428
8429 if (TREE_CODE (decl) == ERROR_MARK)
8430 return 0;
8431
8432 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8433 where we look up the function at runtime. Such functions always take
8434 a first argument of type 'pointer to real context'.
8435
8436 C++ should really be fixed to use DECL_CONTEXT for the real context,
8437 and use something else for the "virtual context". */
8438 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8439 context
8440 = TYPE_MAIN_VARIANT
8441 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8442 else
8443 context = DECL_CONTEXT (decl);
8444
8445 while (context && TREE_CODE (context) != FUNCTION_DECL)
8446 {
8447 if (TREE_CODE (context) == BLOCK)
8448 context = BLOCK_SUPERCONTEXT (context);
8449 else
8450 context = get_containing_scope (context);
8451 }
8452
8453 return context;
8454 }
8455
8456 /* Return the innermost context enclosing DECL that is
8457 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8458 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8459
8460 tree
8461 decl_type_context (const_tree decl)
8462 {
8463 tree context = DECL_CONTEXT (decl);
8464
8465 while (context)
8466 switch (TREE_CODE (context))
8467 {
8468 case NAMESPACE_DECL:
8469 case TRANSLATION_UNIT_DECL:
8470 return NULL_TREE;
8471
8472 case RECORD_TYPE:
8473 case UNION_TYPE:
8474 case QUAL_UNION_TYPE:
8475 return context;
8476
8477 case TYPE_DECL:
8478 case FUNCTION_DECL:
8479 context = DECL_CONTEXT (context);
8480 break;
8481
8482 case BLOCK:
8483 context = BLOCK_SUPERCONTEXT (context);
8484 break;
8485
8486 default:
8487 gcc_unreachable ();
8488 }
8489
8490 return NULL_TREE;
8491 }
8492
8493 /* CALL is a CALL_EXPR. Return the declaration for the function
8494 called, or NULL_TREE if the called function cannot be
8495 determined. */
8496
8497 tree
8498 get_callee_fndecl (const_tree call)
8499 {
8500 tree addr;
8501
8502 if (call == error_mark_node)
8503 return error_mark_node;
8504
8505 /* It's invalid to call this function with anything but a
8506 CALL_EXPR. */
8507 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8508
8509 /* The first operand to the CALL is the address of the function
8510 called. */
8511 addr = CALL_EXPR_FN (call);
8512
8513 STRIP_NOPS (addr);
8514
8515 /* If this is a readonly function pointer, extract its initial value. */
8516 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8517 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8518 && DECL_INITIAL (addr))
8519 addr = DECL_INITIAL (addr);
8520
8521 /* If the address is just `&f' for some function `f', then we know
8522 that `f' is being called. */
8523 if (TREE_CODE (addr) == ADDR_EXPR
8524 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8525 return TREE_OPERAND (addr, 0);
8526
8527 /* We couldn't figure out what was being called. */
8528 return NULL_TREE;
8529 }
8530
8531 /* Print debugging information about tree nodes generated during the compile,
8532 and any language-specific information. */
8533
8534 void
8535 dump_tree_statistics (void)
8536 {
8537 #ifdef GATHER_STATISTICS
8538 int i;
8539 int total_nodes, total_bytes;
8540 #endif
8541
8542 fprintf (stderr, "\n??? tree nodes created\n\n");
8543 #ifdef GATHER_STATISTICS
8544 fprintf (stderr, "Kind Nodes Bytes\n");
8545 fprintf (stderr, "---------------------------------------\n");
8546 total_nodes = total_bytes = 0;
8547 for (i = 0; i < (int) all_kinds; i++)
8548 {
8549 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8550 tree_node_counts[i], tree_node_sizes[i]);
8551 total_nodes += tree_node_counts[i];
8552 total_bytes += tree_node_sizes[i];
8553 }
8554 fprintf (stderr, "---------------------------------------\n");
8555 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8556 fprintf (stderr, "---------------------------------------\n");
8557 fprintf (stderr, "Code Nodes\n");
8558 fprintf (stderr, "----------------------------\n");
8559 for (i = 0; i < (int) MAX_TREE_CODES; i++)
8560 fprintf (stderr, "%-20s %7d\n", tree_code_name[i], tree_code_counts[i]);
8561 fprintf (stderr, "----------------------------\n");
8562 ssanames_print_statistics ();
8563 phinodes_print_statistics ();
8564 #else
8565 fprintf (stderr, "(No per-node statistics)\n");
8566 #endif
8567 print_type_hash_statistics ();
8568 print_debug_expr_statistics ();
8569 print_value_expr_statistics ();
8570 lang_hooks.print_statistics ();
8571 }
8572 \f
8573 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8574
8575 /* Generate a crc32 of a byte. */
8576
8577 unsigned
8578 crc32_byte (unsigned chksum, char byte)
8579 {
8580 unsigned value = (unsigned) byte << 24;
8581 unsigned ix;
8582
8583 for (ix = 8; ix--; value <<= 1)
8584 {
8585 unsigned feedback;
8586
8587 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8588 chksum <<= 1;
8589 chksum ^= feedback;
8590 }
8591 return chksum;
8592 }
8593
8594
8595 /* Generate a crc32 of a string. */
8596
8597 unsigned
8598 crc32_string (unsigned chksum, const char *string)
8599 {
8600 do
8601 {
8602 chksum = crc32_byte (chksum, *string);
8603 }
8604 while (*string++);
8605 return chksum;
8606 }
8607
8608 /* P is a string that will be used in a symbol. Mask out any characters
8609 that are not valid in that context. */
8610
8611 void
8612 clean_symbol_name (char *p)
8613 {
8614 for (; *p; p++)
8615 if (! (ISALNUM (*p)
8616 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8617 || *p == '$'
8618 #endif
8619 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8620 || *p == '.'
8621 #endif
8622 ))
8623 *p = '_';
8624 }
8625
8626 /* Generate a name for a special-purpose function.
8627 The generated name may need to be unique across the whole link.
8628 Changes to this function may also require corresponding changes to
8629 xstrdup_mask_random.
8630 TYPE is some string to identify the purpose of this function to the
8631 linker or collect2; it must start with an uppercase letter,
8632 one of:
8633 I - for constructors
8634 D - for destructors
8635 N - for C++ anonymous namespaces
8636 F - for DWARF unwind frame information. */
8637
8638 tree
8639 get_file_function_name (const char *type)
8640 {
8641 char *buf;
8642 const char *p;
8643 char *q;
8644
8645 /* If we already have a name we know to be unique, just use that. */
8646 if (first_global_object_name)
8647 p = q = ASTRDUP (first_global_object_name);
8648 /* If the target is handling the constructors/destructors, they
8649 will be local to this file and the name is only necessary for
8650 debugging purposes.
8651 We also assign sub_I and sub_D sufixes to constructors called from
8652 the global static constructors. These are always local. */
8653 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8654 || (strncmp (type, "sub_", 4) == 0
8655 && (type[4] == 'I' || type[4] == 'D')))
8656 {
8657 const char *file = main_input_filename;
8658 if (! file)
8659 file = input_filename;
8660 /* Just use the file's basename, because the full pathname
8661 might be quite long. */
8662 p = q = ASTRDUP (lbasename (file));
8663 }
8664 else
8665 {
8666 /* Otherwise, the name must be unique across the entire link.
8667 We don't have anything that we know to be unique to this translation
8668 unit, so use what we do have and throw in some randomness. */
8669 unsigned len;
8670 const char *name = weak_global_object_name;
8671 const char *file = main_input_filename;
8672
8673 if (! name)
8674 name = "";
8675 if (! file)
8676 file = input_filename;
8677
8678 len = strlen (file);
8679 q = (char *) alloca (9 * 2 + len + 1);
8680 memcpy (q, file, len + 1);
8681
8682 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
8683 crc32_string (0, get_random_seed (false)));
8684
8685 p = q;
8686 }
8687
8688 clean_symbol_name (q);
8689 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8690 + strlen (type));
8691
8692 /* Set up the name of the file-level functions we may need.
8693 Use a global object (which is already required to be unique over
8694 the program) rather than the file name (which imposes extra
8695 constraints). */
8696 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8697
8698 return get_identifier (buf);
8699 }
8700 \f
8701 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8702
8703 /* Complain that the tree code of NODE does not match the expected 0
8704 terminated list of trailing codes. The trailing code list can be
8705 empty, for a more vague error message. FILE, LINE, and FUNCTION
8706 are of the caller. */
8707
8708 void
8709 tree_check_failed (const_tree node, const char *file,
8710 int line, const char *function, ...)
8711 {
8712 va_list args;
8713 const char *buffer;
8714 unsigned length = 0;
8715 int code;
8716
8717 va_start (args, function);
8718 while ((code = va_arg (args, int)))
8719 length += 4 + strlen (tree_code_name[code]);
8720 va_end (args);
8721 if (length)
8722 {
8723 char *tmp;
8724 va_start (args, function);
8725 length += strlen ("expected ");
8726 buffer = tmp = (char *) alloca (length);
8727 length = 0;
8728 while ((code = va_arg (args, int)))
8729 {
8730 const char *prefix = length ? " or " : "expected ";
8731
8732 strcpy (tmp + length, prefix);
8733 length += strlen (prefix);
8734 strcpy (tmp + length, tree_code_name[code]);
8735 length += strlen (tree_code_name[code]);
8736 }
8737 va_end (args);
8738 }
8739 else
8740 buffer = "unexpected node";
8741
8742 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8743 buffer, tree_code_name[TREE_CODE (node)],
8744 function, trim_filename (file), line);
8745 }
8746
8747 /* Complain that the tree code of NODE does match the expected 0
8748 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8749 the caller. */
8750
8751 void
8752 tree_not_check_failed (const_tree node, const char *file,
8753 int line, const char *function, ...)
8754 {
8755 va_list args;
8756 char *buffer;
8757 unsigned length = 0;
8758 int code;
8759
8760 va_start (args, function);
8761 while ((code = va_arg (args, int)))
8762 length += 4 + strlen (tree_code_name[code]);
8763 va_end (args);
8764 va_start (args, function);
8765 buffer = (char *) alloca (length);
8766 length = 0;
8767 while ((code = va_arg (args, int)))
8768 {
8769 if (length)
8770 {
8771 strcpy (buffer + length, " or ");
8772 length += 4;
8773 }
8774 strcpy (buffer + length, tree_code_name[code]);
8775 length += strlen (tree_code_name[code]);
8776 }
8777 va_end (args);
8778
8779 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8780 buffer, tree_code_name[TREE_CODE (node)],
8781 function, trim_filename (file), line);
8782 }
8783
8784 /* Similar to tree_check_failed, except that we check for a class of tree
8785 code, given in CL. */
8786
8787 void
8788 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8789 const char *file, int line, const char *function)
8790 {
8791 internal_error
8792 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8793 TREE_CODE_CLASS_STRING (cl),
8794 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8795 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8796 }
8797
8798 /* Similar to tree_check_failed, except that instead of specifying a
8799 dozen codes, use the knowledge that they're all sequential. */
8800
8801 void
8802 tree_range_check_failed (const_tree node, const char *file, int line,
8803 const char *function, enum tree_code c1,
8804 enum tree_code c2)
8805 {
8806 char *buffer;
8807 unsigned length = 0;
8808 unsigned int c;
8809
8810 for (c = c1; c <= c2; ++c)
8811 length += 4 + strlen (tree_code_name[c]);
8812
8813 length += strlen ("expected ");
8814 buffer = (char *) alloca (length);
8815 length = 0;
8816
8817 for (c = c1; c <= c2; ++c)
8818 {
8819 const char *prefix = length ? " or " : "expected ";
8820
8821 strcpy (buffer + length, prefix);
8822 length += strlen (prefix);
8823 strcpy (buffer + length, tree_code_name[c]);
8824 length += strlen (tree_code_name[c]);
8825 }
8826
8827 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8828 buffer, tree_code_name[TREE_CODE (node)],
8829 function, trim_filename (file), line);
8830 }
8831
8832
8833 /* Similar to tree_check_failed, except that we check that a tree does
8834 not have the specified code, given in CL. */
8835
8836 void
8837 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8838 const char *file, int line, const char *function)
8839 {
8840 internal_error
8841 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8842 TREE_CODE_CLASS_STRING (cl),
8843 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8844 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8845 }
8846
8847
8848 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8849
8850 void
8851 omp_clause_check_failed (const_tree node, const char *file, int line,
8852 const char *function, enum omp_clause_code code)
8853 {
8854 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8855 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8856 function, trim_filename (file), line);
8857 }
8858
8859
8860 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8861
8862 void
8863 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8864 const char *function, enum omp_clause_code c1,
8865 enum omp_clause_code c2)
8866 {
8867 char *buffer;
8868 unsigned length = 0;
8869 unsigned int c;
8870
8871 for (c = c1; c <= c2; ++c)
8872 length += 4 + strlen (omp_clause_code_name[c]);
8873
8874 length += strlen ("expected ");
8875 buffer = (char *) alloca (length);
8876 length = 0;
8877
8878 for (c = c1; c <= c2; ++c)
8879 {
8880 const char *prefix = length ? " or " : "expected ";
8881
8882 strcpy (buffer + length, prefix);
8883 length += strlen (prefix);
8884 strcpy (buffer + length, omp_clause_code_name[c]);
8885 length += strlen (omp_clause_code_name[c]);
8886 }
8887
8888 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8889 buffer, omp_clause_code_name[TREE_CODE (node)],
8890 function, trim_filename (file), line);
8891 }
8892
8893
8894 #undef DEFTREESTRUCT
8895 #define DEFTREESTRUCT(VAL, NAME) NAME,
8896
8897 static const char *ts_enum_names[] = {
8898 #include "treestruct.def"
8899 };
8900 #undef DEFTREESTRUCT
8901
8902 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8903
8904 /* Similar to tree_class_check_failed, except that we check for
8905 whether CODE contains the tree structure identified by EN. */
8906
8907 void
8908 tree_contains_struct_check_failed (const_tree node,
8909 const enum tree_node_structure_enum en,
8910 const char *file, int line,
8911 const char *function)
8912 {
8913 internal_error
8914 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8915 TS_ENUM_NAME(en),
8916 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8917 }
8918
8919
8920 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8921 (dynamically sized) vector. */
8922
8923 void
8924 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8925 const char *function)
8926 {
8927 internal_error
8928 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
8929 idx + 1, len, function, trim_filename (file), line);
8930 }
8931
8932 /* Similar to above, except that the check is for the bounds of the operand
8933 vector of an expression node EXP. */
8934
8935 void
8936 tree_operand_check_failed (int idx, const_tree exp, const char *file,
8937 int line, const char *function)
8938 {
8939 int code = TREE_CODE (exp);
8940 internal_error
8941 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
8942 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
8943 function, trim_filename (file), line);
8944 }
8945
8946 /* Similar to above, except that the check is for the number of
8947 operands of an OMP_CLAUSE node. */
8948
8949 void
8950 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
8951 int line, const char *function)
8952 {
8953 internal_error
8954 ("tree check: accessed operand %d of omp_clause %s with %d operands "
8955 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
8956 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
8957 trim_filename (file), line);
8958 }
8959 #endif /* ENABLE_TREE_CHECKING */
8960 \f
8961 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
8962 and mapped to the machine mode MODE. Initialize its fields and build
8963 the information necessary for debugging output. */
8964
8965 static tree
8966 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
8967 {
8968 tree t;
8969 hashval_t hashcode = 0;
8970
8971 t = make_node (VECTOR_TYPE);
8972 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
8973 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
8974 SET_TYPE_MODE (t, mode);
8975
8976 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
8977 SET_TYPE_STRUCTURAL_EQUALITY (t);
8978 else if (TYPE_CANONICAL (innertype) != innertype
8979 || mode != VOIDmode)
8980 TYPE_CANONICAL (t)
8981 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
8982
8983 layout_type (t);
8984
8985 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
8986 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
8987 hashcode = iterative_hash_host_wide_int (mode, hashcode);
8988 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
8989 t = type_hash_canon (hashcode, t);
8990
8991 /* We have built a main variant, based on the main variant of the
8992 inner type. Use it to build the variant we return. */
8993 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
8994 && TREE_TYPE (t) != innertype)
8995 return build_type_attribute_qual_variant (t,
8996 TYPE_ATTRIBUTES (innertype),
8997 TYPE_QUALS (innertype));
8998
8999 return t;
9000 }
9001
9002 static tree
9003 make_or_reuse_type (unsigned size, int unsignedp)
9004 {
9005 if (size == INT_TYPE_SIZE)
9006 return unsignedp ? unsigned_type_node : integer_type_node;
9007 if (size == CHAR_TYPE_SIZE)
9008 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9009 if (size == SHORT_TYPE_SIZE)
9010 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9011 if (size == LONG_TYPE_SIZE)
9012 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9013 if (size == LONG_LONG_TYPE_SIZE)
9014 return (unsignedp ? long_long_unsigned_type_node
9015 : long_long_integer_type_node);
9016 if (size == 128 && int128_integer_type_node)
9017 return (unsignedp ? int128_unsigned_type_node
9018 : int128_integer_type_node);
9019
9020 if (unsignedp)
9021 return make_unsigned_type (size);
9022 else
9023 return make_signed_type (size);
9024 }
9025
9026 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9027
9028 static tree
9029 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9030 {
9031 if (satp)
9032 {
9033 if (size == SHORT_FRACT_TYPE_SIZE)
9034 return unsignedp ? sat_unsigned_short_fract_type_node
9035 : sat_short_fract_type_node;
9036 if (size == FRACT_TYPE_SIZE)
9037 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9038 if (size == LONG_FRACT_TYPE_SIZE)
9039 return unsignedp ? sat_unsigned_long_fract_type_node
9040 : sat_long_fract_type_node;
9041 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9042 return unsignedp ? sat_unsigned_long_long_fract_type_node
9043 : sat_long_long_fract_type_node;
9044 }
9045 else
9046 {
9047 if (size == SHORT_FRACT_TYPE_SIZE)
9048 return unsignedp ? unsigned_short_fract_type_node
9049 : short_fract_type_node;
9050 if (size == FRACT_TYPE_SIZE)
9051 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9052 if (size == LONG_FRACT_TYPE_SIZE)
9053 return unsignedp ? unsigned_long_fract_type_node
9054 : long_fract_type_node;
9055 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9056 return unsignedp ? unsigned_long_long_fract_type_node
9057 : long_long_fract_type_node;
9058 }
9059
9060 return make_fract_type (size, unsignedp, satp);
9061 }
9062
9063 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9064
9065 static tree
9066 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9067 {
9068 if (satp)
9069 {
9070 if (size == SHORT_ACCUM_TYPE_SIZE)
9071 return unsignedp ? sat_unsigned_short_accum_type_node
9072 : sat_short_accum_type_node;
9073 if (size == ACCUM_TYPE_SIZE)
9074 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9075 if (size == LONG_ACCUM_TYPE_SIZE)
9076 return unsignedp ? sat_unsigned_long_accum_type_node
9077 : sat_long_accum_type_node;
9078 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9079 return unsignedp ? sat_unsigned_long_long_accum_type_node
9080 : sat_long_long_accum_type_node;
9081 }
9082 else
9083 {
9084 if (size == SHORT_ACCUM_TYPE_SIZE)
9085 return unsignedp ? unsigned_short_accum_type_node
9086 : short_accum_type_node;
9087 if (size == ACCUM_TYPE_SIZE)
9088 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9089 if (size == LONG_ACCUM_TYPE_SIZE)
9090 return unsignedp ? unsigned_long_accum_type_node
9091 : long_accum_type_node;
9092 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9093 return unsignedp ? unsigned_long_long_accum_type_node
9094 : long_long_accum_type_node;
9095 }
9096
9097 return make_accum_type (size, unsignedp, satp);
9098 }
9099
9100 /* Create nodes for all integer types (and error_mark_node) using the sizes
9101 of C datatypes. The caller should call set_sizetype soon after calling
9102 this function to select one of the types as sizetype. */
9103
9104 void
9105 build_common_tree_nodes (bool signed_char)
9106 {
9107 error_mark_node = make_node (ERROR_MARK);
9108 TREE_TYPE (error_mark_node) = error_mark_node;
9109
9110 initialize_sizetypes ();
9111
9112 /* Define both `signed char' and `unsigned char'. */
9113 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9114 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9115 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9116 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9117
9118 /* Define `char', which is like either `signed char' or `unsigned char'
9119 but not the same as either. */
9120 char_type_node
9121 = (signed_char
9122 ? make_signed_type (CHAR_TYPE_SIZE)
9123 : make_unsigned_type (CHAR_TYPE_SIZE));
9124 TYPE_STRING_FLAG (char_type_node) = 1;
9125
9126 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9127 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9128 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9129 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9130 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9131 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9132 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9133 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9134 #if HOST_BITS_PER_WIDE_INT >= 64
9135 /* TODO: This isn't correct, but as logic depends at the moment on
9136 host's instead of target's wide-integer.
9137 If there is a target not supporting TImode, but has an 128-bit
9138 integer-scalar register, this target check needs to be adjusted. */
9139 if (targetm.scalar_mode_supported_p (TImode))
9140 {
9141 int128_integer_type_node = make_signed_type (128);
9142 int128_unsigned_type_node = make_unsigned_type (128);
9143 }
9144 #endif
9145 /* Define a boolean type. This type only represents boolean values but
9146 may be larger than char depending on the value of BOOL_TYPE_SIZE.
9147 Front ends which want to override this size (i.e. Java) can redefine
9148 boolean_type_node before calling build_common_tree_nodes_2. */
9149 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9150 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9151 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9152 TYPE_PRECISION (boolean_type_node) = 1;
9153
9154 /* Fill in the rest of the sized types. Reuse existing type nodes
9155 when possible. */
9156 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9157 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9158 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9159 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9160 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9161
9162 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9163 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9164 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9165 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9166 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9167
9168 access_public_node = get_identifier ("public");
9169 access_protected_node = get_identifier ("protected");
9170 access_private_node = get_identifier ("private");
9171 }
9172
9173 /* Call this function after calling build_common_tree_nodes and set_sizetype.
9174 It will create several other common tree nodes. */
9175
9176 void
9177 build_common_tree_nodes_2 (int short_double)
9178 {
9179 /* Define these next since types below may used them. */
9180 integer_zero_node = build_int_cst (integer_type_node, 0);
9181 integer_one_node = build_int_cst (integer_type_node, 1);
9182 integer_three_node = build_int_cst (integer_type_node, 3);
9183 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9184
9185 size_zero_node = size_int (0);
9186 size_one_node = size_int (1);
9187 bitsize_zero_node = bitsize_int (0);
9188 bitsize_one_node = bitsize_int (1);
9189 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9190
9191 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9192 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9193
9194 void_type_node = make_node (VOID_TYPE);
9195 layout_type (void_type_node);
9196
9197 /* We are not going to have real types in C with less than byte alignment,
9198 so we might as well not have any types that claim to have it. */
9199 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9200 TYPE_USER_ALIGN (void_type_node) = 0;
9201
9202 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9203 layout_type (TREE_TYPE (null_pointer_node));
9204
9205 ptr_type_node = build_pointer_type (void_type_node);
9206 const_ptr_type_node
9207 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9208 fileptr_type_node = ptr_type_node;
9209
9210 float_type_node = make_node (REAL_TYPE);
9211 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9212 layout_type (float_type_node);
9213
9214 double_type_node = make_node (REAL_TYPE);
9215 if (short_double)
9216 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9217 else
9218 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9219 layout_type (double_type_node);
9220
9221 long_double_type_node = make_node (REAL_TYPE);
9222 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9223 layout_type (long_double_type_node);
9224
9225 float_ptr_type_node = build_pointer_type (float_type_node);
9226 double_ptr_type_node = build_pointer_type (double_type_node);
9227 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9228 integer_ptr_type_node = build_pointer_type (integer_type_node);
9229
9230 /* Fixed size integer types. */
9231 uint32_type_node = build_nonstandard_integer_type (32, true);
9232 uint64_type_node = build_nonstandard_integer_type (64, true);
9233
9234 /* Decimal float types. */
9235 dfloat32_type_node = make_node (REAL_TYPE);
9236 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9237 layout_type (dfloat32_type_node);
9238 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9239 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9240
9241 dfloat64_type_node = make_node (REAL_TYPE);
9242 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9243 layout_type (dfloat64_type_node);
9244 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9245 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9246
9247 dfloat128_type_node = make_node (REAL_TYPE);
9248 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9249 layout_type (dfloat128_type_node);
9250 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9251 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9252
9253 complex_integer_type_node = build_complex_type (integer_type_node);
9254 complex_float_type_node = build_complex_type (float_type_node);
9255 complex_double_type_node = build_complex_type (double_type_node);
9256 complex_long_double_type_node = build_complex_type (long_double_type_node);
9257
9258 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9259 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9260 sat_ ## KIND ## _type_node = \
9261 make_sat_signed_ ## KIND ## _type (SIZE); \
9262 sat_unsigned_ ## KIND ## _type_node = \
9263 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9264 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9265 unsigned_ ## KIND ## _type_node = \
9266 make_unsigned_ ## KIND ## _type (SIZE);
9267
9268 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9269 sat_ ## WIDTH ## KIND ## _type_node = \
9270 make_sat_signed_ ## KIND ## _type (SIZE); \
9271 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9272 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9273 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9274 unsigned_ ## WIDTH ## KIND ## _type_node = \
9275 make_unsigned_ ## KIND ## _type (SIZE);
9276
9277 /* Make fixed-point type nodes based on four different widths. */
9278 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9279 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9280 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9281 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9282 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9283
9284 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9285 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9286 NAME ## _type_node = \
9287 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9288 u ## NAME ## _type_node = \
9289 make_or_reuse_unsigned_ ## KIND ## _type \
9290 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9291 sat_ ## NAME ## _type_node = \
9292 make_or_reuse_sat_signed_ ## KIND ## _type \
9293 (GET_MODE_BITSIZE (MODE ## mode)); \
9294 sat_u ## NAME ## _type_node = \
9295 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9296 (GET_MODE_BITSIZE (U ## MODE ## mode));
9297
9298 /* Fixed-point type and mode nodes. */
9299 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9300 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9301 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9302 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9303 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9304 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9305 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9306 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9307 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9308 MAKE_FIXED_MODE_NODE (accum, da, DA)
9309 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9310
9311 {
9312 tree t = targetm.build_builtin_va_list ();
9313
9314 /* Many back-ends define record types without setting TYPE_NAME.
9315 If we copied the record type here, we'd keep the original
9316 record type without a name. This breaks name mangling. So,
9317 don't copy record types and let c_common_nodes_and_builtins()
9318 declare the type to be __builtin_va_list. */
9319 if (TREE_CODE (t) != RECORD_TYPE)
9320 t = build_variant_type_copy (t);
9321
9322 va_list_type_node = t;
9323 }
9324 }
9325
9326 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9327
9328 static void
9329 local_define_builtin (const char *name, tree type, enum built_in_function code,
9330 const char *library_name, int ecf_flags)
9331 {
9332 tree decl;
9333
9334 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9335 library_name, NULL_TREE);
9336 if (ecf_flags & ECF_CONST)
9337 TREE_READONLY (decl) = 1;
9338 if (ecf_flags & ECF_PURE)
9339 DECL_PURE_P (decl) = 1;
9340 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9341 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9342 if (ecf_flags & ECF_NORETURN)
9343 TREE_THIS_VOLATILE (decl) = 1;
9344 if (ecf_flags & ECF_NOTHROW)
9345 TREE_NOTHROW (decl) = 1;
9346 if (ecf_flags & ECF_MALLOC)
9347 DECL_IS_MALLOC (decl) = 1;
9348 if (ecf_flags & ECF_LEAF)
9349 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9350 NULL, DECL_ATTRIBUTES (decl));
9351
9352 built_in_decls[code] = decl;
9353 implicit_built_in_decls[code] = decl;
9354 }
9355
9356 /* Call this function after instantiating all builtins that the language
9357 front end cares about. This will build the rest of the builtins that
9358 are relied upon by the tree optimizers and the middle-end. */
9359
9360 void
9361 build_common_builtin_nodes (void)
9362 {
9363 tree tmp, ftype;
9364
9365 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
9366 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9367 {
9368 ftype = build_function_type_list (ptr_type_node,
9369 ptr_type_node, const_ptr_type_node,
9370 size_type_node, NULL_TREE);
9371
9372 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
9373 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9374 "memcpy", ECF_NOTHROW | ECF_LEAF);
9375 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9376 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9377 "memmove", ECF_NOTHROW | ECF_LEAF);
9378 }
9379
9380 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
9381 {
9382 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9383 const_ptr_type_node, size_type_node,
9384 NULL_TREE);
9385 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9386 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9387 }
9388
9389 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
9390 {
9391 ftype = build_function_type_list (ptr_type_node,
9392 ptr_type_node, integer_type_node,
9393 size_type_node, NULL_TREE);
9394 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9395 "memset", ECF_NOTHROW | ECF_LEAF);
9396 }
9397
9398 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
9399 {
9400 ftype = build_function_type_list (ptr_type_node,
9401 size_type_node, NULL_TREE);
9402 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9403 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9404 }
9405
9406 /* If we're checking the stack, `alloca' can throw. */
9407 if (flag_stack_check)
9408 TREE_NOTHROW (built_in_decls[BUILT_IN_ALLOCA]) = 0;
9409
9410 ftype = build_function_type_list (void_type_node,
9411 ptr_type_node, ptr_type_node,
9412 ptr_type_node, NULL_TREE);
9413 local_define_builtin ("__builtin_init_trampoline", ftype,
9414 BUILT_IN_INIT_TRAMPOLINE,
9415 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9416
9417 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9418 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9419 BUILT_IN_ADJUST_TRAMPOLINE,
9420 "__builtin_adjust_trampoline",
9421 ECF_CONST | ECF_NOTHROW);
9422
9423 ftype = build_function_type_list (void_type_node,
9424 ptr_type_node, ptr_type_node, NULL_TREE);
9425 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9426 BUILT_IN_NONLOCAL_GOTO,
9427 "__builtin_nonlocal_goto",
9428 ECF_NORETURN | ECF_NOTHROW);
9429
9430 ftype = build_function_type_list (void_type_node,
9431 ptr_type_node, ptr_type_node, NULL_TREE);
9432 local_define_builtin ("__builtin_setjmp_setup", ftype,
9433 BUILT_IN_SETJMP_SETUP,
9434 "__builtin_setjmp_setup", ECF_NOTHROW);
9435
9436 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9437 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9438 BUILT_IN_SETJMP_DISPATCHER,
9439 "__builtin_setjmp_dispatcher",
9440 ECF_PURE | ECF_NOTHROW);
9441
9442 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9443 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9444 BUILT_IN_SETJMP_RECEIVER,
9445 "__builtin_setjmp_receiver", ECF_NOTHROW);
9446
9447 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9448 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9449 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9450
9451 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9452 local_define_builtin ("__builtin_stack_restore", ftype,
9453 BUILT_IN_STACK_RESTORE,
9454 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9455
9456 /* If there's a possibility that we might use the ARM EABI, build the
9457 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9458 if (targetm.arm_eabi_unwinder)
9459 {
9460 ftype = build_function_type_list (void_type_node, NULL_TREE);
9461 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9462 BUILT_IN_CXA_END_CLEANUP,
9463 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9464 }
9465
9466 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9467 local_define_builtin ("__builtin_unwind_resume", ftype,
9468 BUILT_IN_UNWIND_RESUME,
9469 ((targetm.except_unwind_info (&global_options)
9470 == UI_SJLJ)
9471 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9472 ECF_NORETURN);
9473
9474 /* The exception object and filter values from the runtime. The argument
9475 must be zero before exception lowering, i.e. from the front end. After
9476 exception lowering, it will be the region number for the exception
9477 landing pad. These functions are PURE instead of CONST to prevent
9478 them from being hoisted past the exception edge that will initialize
9479 its value in the landing pad. */
9480 ftype = build_function_type_list (ptr_type_node,
9481 integer_type_node, NULL_TREE);
9482 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9483 "__builtin_eh_pointer", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9484
9485 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9486 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
9487 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9488 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9489
9490 ftype = build_function_type_list (void_type_node,
9491 integer_type_node, integer_type_node,
9492 NULL_TREE);
9493 local_define_builtin ("__builtin_eh_copy_values", ftype,
9494 BUILT_IN_EH_COPY_VALUES,
9495 "__builtin_eh_copy_values", ECF_NOTHROW);
9496
9497 /* Complex multiplication and division. These are handled as builtins
9498 rather than optabs because emit_library_call_value doesn't support
9499 complex. Further, we can do slightly better with folding these
9500 beasties if the real and complex parts of the arguments are separate. */
9501 {
9502 int mode;
9503
9504 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9505 {
9506 char mode_name_buf[4], *q;
9507 const char *p;
9508 enum built_in_function mcode, dcode;
9509 tree type, inner_type;
9510 const char *prefix = "__";
9511
9512 if (targetm.libfunc_gnu_prefix)
9513 prefix = "__gnu_";
9514
9515 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9516 if (type == NULL)
9517 continue;
9518 inner_type = TREE_TYPE (type);
9519
9520 ftype = build_function_type_list (type, inner_type, inner_type,
9521 inner_type, inner_type, NULL_TREE);
9522
9523 mcode = ((enum built_in_function)
9524 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9525 dcode = ((enum built_in_function)
9526 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9527
9528 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9529 *q = TOLOWER (*p);
9530 *q = '\0';
9531
9532 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
9533 NULL);
9534 local_define_builtin (built_in_names[mcode], ftype, mcode,
9535 built_in_names[mcode],
9536 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9537
9538 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
9539 NULL);
9540 local_define_builtin (built_in_names[dcode], ftype, dcode,
9541 built_in_names[dcode],
9542 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9543 }
9544 }
9545 }
9546
9547 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9548 better way.
9549
9550 If we requested a pointer to a vector, build up the pointers that
9551 we stripped off while looking for the inner type. Similarly for
9552 return values from functions.
9553
9554 The argument TYPE is the top of the chain, and BOTTOM is the
9555 new type which we will point to. */
9556
9557 tree
9558 reconstruct_complex_type (tree type, tree bottom)
9559 {
9560 tree inner, outer;
9561
9562 if (TREE_CODE (type) == POINTER_TYPE)
9563 {
9564 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9565 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9566 TYPE_REF_CAN_ALIAS_ALL (type));
9567 }
9568 else if (TREE_CODE (type) == REFERENCE_TYPE)
9569 {
9570 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9571 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9572 TYPE_REF_CAN_ALIAS_ALL (type));
9573 }
9574 else if (TREE_CODE (type) == ARRAY_TYPE)
9575 {
9576 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9577 outer = build_array_type (inner, TYPE_DOMAIN (type));
9578 }
9579 else if (TREE_CODE (type) == FUNCTION_TYPE)
9580 {
9581 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9582 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9583 }
9584 else if (TREE_CODE (type) == METHOD_TYPE)
9585 {
9586 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9587 /* The build_method_type_directly() routine prepends 'this' to argument list,
9588 so we must compensate by getting rid of it. */
9589 outer
9590 = build_method_type_directly
9591 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9592 inner,
9593 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9594 }
9595 else if (TREE_CODE (type) == OFFSET_TYPE)
9596 {
9597 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9598 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9599 }
9600 else
9601 return bottom;
9602
9603 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9604 TYPE_QUALS (type));
9605 }
9606
9607 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9608 the inner type. */
9609 tree
9610 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9611 {
9612 int nunits;
9613
9614 switch (GET_MODE_CLASS (mode))
9615 {
9616 case MODE_VECTOR_INT:
9617 case MODE_VECTOR_FLOAT:
9618 case MODE_VECTOR_FRACT:
9619 case MODE_VECTOR_UFRACT:
9620 case MODE_VECTOR_ACCUM:
9621 case MODE_VECTOR_UACCUM:
9622 nunits = GET_MODE_NUNITS (mode);
9623 break;
9624
9625 case MODE_INT:
9626 /* Check that there are no leftover bits. */
9627 gcc_assert (GET_MODE_BITSIZE (mode)
9628 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9629
9630 nunits = GET_MODE_BITSIZE (mode)
9631 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9632 break;
9633
9634 default:
9635 gcc_unreachable ();
9636 }
9637
9638 return make_vector_type (innertype, nunits, mode);
9639 }
9640
9641 /* Similarly, but takes the inner type and number of units, which must be
9642 a power of two. */
9643
9644 tree
9645 build_vector_type (tree innertype, int nunits)
9646 {
9647 return make_vector_type (innertype, nunits, VOIDmode);
9648 }
9649
9650 /* Similarly, but takes the inner type and number of units, which must be
9651 a power of two. */
9652
9653 tree
9654 build_opaque_vector_type (tree innertype, int nunits)
9655 {
9656 tree t;
9657 innertype = build_distinct_type_copy (innertype);
9658 t = make_vector_type (innertype, nunits, VOIDmode);
9659 TYPE_VECTOR_OPAQUE (t) = true;
9660 return t;
9661 }
9662
9663
9664 /* Given an initializer INIT, return TRUE if INIT is zero or some
9665 aggregate of zeros. Otherwise return FALSE. */
9666 bool
9667 initializer_zerop (const_tree init)
9668 {
9669 tree elt;
9670
9671 STRIP_NOPS (init);
9672
9673 switch (TREE_CODE (init))
9674 {
9675 case INTEGER_CST:
9676 return integer_zerop (init);
9677
9678 case REAL_CST:
9679 /* ??? Note that this is not correct for C4X float formats. There,
9680 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9681 negative exponent. */
9682 return real_zerop (init)
9683 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9684
9685 case FIXED_CST:
9686 return fixed_zerop (init);
9687
9688 case COMPLEX_CST:
9689 return integer_zerop (init)
9690 || (real_zerop (init)
9691 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9692 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9693
9694 case VECTOR_CST:
9695 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9696 if (!initializer_zerop (TREE_VALUE (elt)))
9697 return false;
9698 return true;
9699
9700 case CONSTRUCTOR:
9701 {
9702 unsigned HOST_WIDE_INT idx;
9703
9704 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9705 if (!initializer_zerop (elt))
9706 return false;
9707 return true;
9708 }
9709
9710 case STRING_CST:
9711 {
9712 int i;
9713
9714 /* We need to loop through all elements to handle cases like
9715 "\0" and "\0foobar". */
9716 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
9717 if (TREE_STRING_POINTER (init)[i] != '\0')
9718 return false;
9719
9720 return true;
9721 }
9722
9723 default:
9724 return false;
9725 }
9726 }
9727
9728 /* Build an empty statement at location LOC. */
9729
9730 tree
9731 build_empty_stmt (location_t loc)
9732 {
9733 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9734 SET_EXPR_LOCATION (t, loc);
9735 return t;
9736 }
9737
9738
9739 /* Build an OpenMP clause with code CODE. LOC is the location of the
9740 clause. */
9741
9742 tree
9743 build_omp_clause (location_t loc, enum omp_clause_code code)
9744 {
9745 tree t;
9746 int size, length;
9747
9748 length = omp_clause_num_ops[code];
9749 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9750
9751 record_node_allocation_statistics (OMP_CLAUSE, size);
9752
9753 t = ggc_alloc_tree_node (size);
9754 memset (t, 0, size);
9755 TREE_SET_CODE (t, OMP_CLAUSE);
9756 OMP_CLAUSE_SET_CODE (t, code);
9757 OMP_CLAUSE_LOCATION (t) = loc;
9758
9759 return t;
9760 }
9761
9762 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9763 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9764 Except for the CODE and operand count field, other storage for the
9765 object is initialized to zeros. */
9766
9767 tree
9768 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9769 {
9770 tree t;
9771 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9772
9773 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9774 gcc_assert (len >= 1);
9775
9776 record_node_allocation_statistics (code, length);
9777
9778 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
9779
9780 TREE_SET_CODE (t, code);
9781
9782 /* Can't use TREE_OPERAND to store the length because if checking is
9783 enabled, it will try to check the length before we store it. :-P */
9784 t->exp.operands[0] = build_int_cst (sizetype, len);
9785
9786 return t;
9787 }
9788
9789 /* Helper function for build_call_* functions; build a CALL_EXPR with
9790 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
9791 the argument slots. */
9792
9793 static tree
9794 build_call_1 (tree return_type, tree fn, int nargs)
9795 {
9796 tree t;
9797
9798 t = build_vl_exp (CALL_EXPR, nargs + 3);
9799 TREE_TYPE (t) = return_type;
9800 CALL_EXPR_FN (t) = fn;
9801 CALL_EXPR_STATIC_CHAIN (t) = NULL;
9802
9803 return t;
9804 }
9805
9806 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9807 FN and a null static chain slot. NARGS is the number of call arguments
9808 which are specified as "..." arguments. */
9809
9810 tree
9811 build_call_nary (tree return_type, tree fn, int nargs, ...)
9812 {
9813 tree ret;
9814 va_list args;
9815 va_start (args, nargs);
9816 ret = build_call_valist (return_type, fn, nargs, args);
9817 va_end (args);
9818 return ret;
9819 }
9820
9821 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9822 FN and a null static chain slot. NARGS is the number of call arguments
9823 which are specified as a va_list ARGS. */
9824
9825 tree
9826 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9827 {
9828 tree t;
9829 int i;
9830
9831 t = build_call_1 (return_type, fn, nargs);
9832 for (i = 0; i < nargs; i++)
9833 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9834 process_call_operands (t);
9835 return t;
9836 }
9837
9838 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9839 FN and a null static chain slot. NARGS is the number of call arguments
9840 which are specified as a tree array ARGS. */
9841
9842 tree
9843 build_call_array_loc (location_t loc, tree return_type, tree fn,
9844 int nargs, const tree *args)
9845 {
9846 tree t;
9847 int i;
9848
9849 t = build_call_1 (return_type, fn, nargs);
9850 for (i = 0; i < nargs; i++)
9851 CALL_EXPR_ARG (t, i) = args[i];
9852 process_call_operands (t);
9853 SET_EXPR_LOCATION (t, loc);
9854 return t;
9855 }
9856
9857 /* Like build_call_array, but takes a VEC. */
9858
9859 tree
9860 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9861 {
9862 tree ret, t;
9863 unsigned int ix;
9864
9865 ret = build_call_1 (return_type, fn, VEC_length (tree, args));
9866 FOR_EACH_VEC_ELT (tree, args, ix, t)
9867 CALL_EXPR_ARG (ret, ix) = t;
9868 process_call_operands (ret);
9869 return ret;
9870 }
9871
9872
9873 /* Returns true if it is possible to prove that the index of
9874 an array access REF (an ARRAY_REF expression) falls into the
9875 array bounds. */
9876
9877 bool
9878 in_array_bounds_p (tree ref)
9879 {
9880 tree idx = TREE_OPERAND (ref, 1);
9881 tree min, max;
9882
9883 if (TREE_CODE (idx) != INTEGER_CST)
9884 return false;
9885
9886 min = array_ref_low_bound (ref);
9887 max = array_ref_up_bound (ref);
9888 if (!min
9889 || !max
9890 || TREE_CODE (min) != INTEGER_CST
9891 || TREE_CODE (max) != INTEGER_CST)
9892 return false;
9893
9894 if (tree_int_cst_lt (idx, min)
9895 || tree_int_cst_lt (max, idx))
9896 return false;
9897
9898 return true;
9899 }
9900
9901 /* Returns true if it is possible to prove that the range of
9902 an array access REF (an ARRAY_RANGE_REF expression) falls
9903 into the array bounds. */
9904
9905 bool
9906 range_in_array_bounds_p (tree ref)
9907 {
9908 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
9909 tree range_min, range_max, min, max;
9910
9911 range_min = TYPE_MIN_VALUE (domain_type);
9912 range_max = TYPE_MAX_VALUE (domain_type);
9913 if (!range_min
9914 || !range_max
9915 || TREE_CODE (range_min) != INTEGER_CST
9916 || TREE_CODE (range_max) != INTEGER_CST)
9917 return false;
9918
9919 min = array_ref_low_bound (ref);
9920 max = array_ref_up_bound (ref);
9921 if (!min
9922 || !max
9923 || TREE_CODE (min) != INTEGER_CST
9924 || TREE_CODE (max) != INTEGER_CST)
9925 return false;
9926
9927 if (tree_int_cst_lt (range_min, min)
9928 || tree_int_cst_lt (max, range_max))
9929 return false;
9930
9931 return true;
9932 }
9933
9934 /* Return true if T (assumed to be a DECL) must be assigned a memory
9935 location. */
9936
9937 bool
9938 needs_to_live_in_memory (const_tree t)
9939 {
9940 if (TREE_CODE (t) == SSA_NAME)
9941 t = SSA_NAME_VAR (t);
9942
9943 return (TREE_ADDRESSABLE (t)
9944 || is_global_var (t)
9945 || (TREE_CODE (t) == RESULT_DECL
9946 && !DECL_BY_REFERENCE (t)
9947 && aggregate_value_p (t, current_function_decl)));
9948 }
9949
9950 /* Return value of a constant X and sign-extend it. */
9951
9952 HOST_WIDE_INT
9953 int_cst_value (const_tree x)
9954 {
9955 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9956 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
9957
9958 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9959 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9960 || TREE_INT_CST_HIGH (x) == -1);
9961
9962 if (bits < HOST_BITS_PER_WIDE_INT)
9963 {
9964 bool negative = ((val >> (bits - 1)) & 1) != 0;
9965 if (negative)
9966 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
9967 else
9968 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
9969 }
9970
9971 return val;
9972 }
9973
9974 /* Return value of a constant X and sign-extend it. */
9975
9976 HOST_WIDEST_INT
9977 widest_int_cst_value (const_tree x)
9978 {
9979 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9980 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
9981
9982 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
9983 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
9984 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
9985 << HOST_BITS_PER_WIDE_INT);
9986 #else
9987 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9988 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9989 || TREE_INT_CST_HIGH (x) == -1);
9990 #endif
9991
9992 if (bits < HOST_BITS_PER_WIDEST_INT)
9993 {
9994 bool negative = ((val >> (bits - 1)) & 1) != 0;
9995 if (negative)
9996 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
9997 else
9998 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
9999 }
10000
10001 return val;
10002 }
10003
10004 /* If TYPE is an integral type, return an equivalent type which is
10005 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
10006 return TYPE itself. */
10007
10008 tree
10009 signed_or_unsigned_type_for (int unsignedp, tree type)
10010 {
10011 tree t = type;
10012 if (POINTER_TYPE_P (type))
10013 {
10014 /* If the pointer points to the normal address space, use the
10015 size_type_node. Otherwise use an appropriate size for the pointer
10016 based on the named address space it points to. */
10017 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
10018 t = size_type_node;
10019 else
10020 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
10021 }
10022
10023 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
10024 return t;
10025
10026 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
10027 }
10028
10029 /* Returns unsigned variant of TYPE. */
10030
10031 tree
10032 unsigned_type_for (tree type)
10033 {
10034 return signed_or_unsigned_type_for (1, type);
10035 }
10036
10037 /* Returns signed variant of TYPE. */
10038
10039 tree
10040 signed_type_for (tree type)
10041 {
10042 return signed_or_unsigned_type_for (0, type);
10043 }
10044
10045 /* Returns the largest value obtainable by casting something in INNER type to
10046 OUTER type. */
10047
10048 tree
10049 upper_bound_in_type (tree outer, tree inner)
10050 {
10051 double_int high;
10052 unsigned int det = 0;
10053 unsigned oprec = TYPE_PRECISION (outer);
10054 unsigned iprec = TYPE_PRECISION (inner);
10055 unsigned prec;
10056
10057 /* Compute a unique number for every combination. */
10058 det |= (oprec > iprec) ? 4 : 0;
10059 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10060 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10061
10062 /* Determine the exponent to use. */
10063 switch (det)
10064 {
10065 case 0:
10066 case 1:
10067 /* oprec <= iprec, outer: signed, inner: don't care. */
10068 prec = oprec - 1;
10069 break;
10070 case 2:
10071 case 3:
10072 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10073 prec = oprec;
10074 break;
10075 case 4:
10076 /* oprec > iprec, outer: signed, inner: signed. */
10077 prec = iprec - 1;
10078 break;
10079 case 5:
10080 /* oprec > iprec, outer: signed, inner: unsigned. */
10081 prec = iprec;
10082 break;
10083 case 6:
10084 /* oprec > iprec, outer: unsigned, inner: signed. */
10085 prec = oprec;
10086 break;
10087 case 7:
10088 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10089 prec = iprec;
10090 break;
10091 default:
10092 gcc_unreachable ();
10093 }
10094
10095 /* Compute 2^^prec - 1. */
10096 if (prec <= HOST_BITS_PER_WIDE_INT)
10097 {
10098 high.high = 0;
10099 high.low = ((~(unsigned HOST_WIDE_INT) 0)
10100 >> (HOST_BITS_PER_WIDE_INT - prec));
10101 }
10102 else
10103 {
10104 high.high = ((~(unsigned HOST_WIDE_INT) 0)
10105 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
10106 high.low = ~(unsigned HOST_WIDE_INT) 0;
10107 }
10108
10109 return double_int_to_tree (outer, high);
10110 }
10111
10112 /* Returns the smallest value obtainable by casting something in INNER type to
10113 OUTER type. */
10114
10115 tree
10116 lower_bound_in_type (tree outer, tree inner)
10117 {
10118 double_int low;
10119 unsigned oprec = TYPE_PRECISION (outer);
10120 unsigned iprec = TYPE_PRECISION (inner);
10121
10122 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10123 and obtain 0. */
10124 if (TYPE_UNSIGNED (outer)
10125 /* If we are widening something of an unsigned type, OUTER type
10126 contains all values of INNER type. In particular, both INNER
10127 and OUTER types have zero in common. */
10128 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10129 low.low = low.high = 0;
10130 else
10131 {
10132 /* If we are widening a signed type to another signed type, we
10133 want to obtain -2^^(iprec-1). If we are keeping the
10134 precision or narrowing to a signed type, we want to obtain
10135 -2^(oprec-1). */
10136 unsigned prec = oprec > iprec ? iprec : oprec;
10137
10138 if (prec <= HOST_BITS_PER_WIDE_INT)
10139 {
10140 low.high = ~(unsigned HOST_WIDE_INT) 0;
10141 low.low = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
10142 }
10143 else
10144 {
10145 low.high = ((~(unsigned HOST_WIDE_INT) 0)
10146 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10147 low.low = 0;
10148 }
10149 }
10150
10151 return double_int_to_tree (outer, low);
10152 }
10153
10154 /* Return nonzero if two operands that are suitable for PHI nodes are
10155 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10156 SSA_NAME or invariant. Note that this is strictly an optimization.
10157 That is, callers of this function can directly call operand_equal_p
10158 and get the same result, only slower. */
10159
10160 int
10161 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10162 {
10163 if (arg0 == arg1)
10164 return 1;
10165 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10166 return 0;
10167 return operand_equal_p (arg0, arg1, 0);
10168 }
10169
10170 /* Returns number of zeros at the end of binary representation of X.
10171
10172 ??? Use ffs if available? */
10173
10174 tree
10175 num_ending_zeros (const_tree x)
10176 {
10177 unsigned HOST_WIDE_INT fr, nfr;
10178 unsigned num, abits;
10179 tree type = TREE_TYPE (x);
10180
10181 if (TREE_INT_CST_LOW (x) == 0)
10182 {
10183 num = HOST_BITS_PER_WIDE_INT;
10184 fr = TREE_INT_CST_HIGH (x);
10185 }
10186 else
10187 {
10188 num = 0;
10189 fr = TREE_INT_CST_LOW (x);
10190 }
10191
10192 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10193 {
10194 nfr = fr >> abits;
10195 if (nfr << abits == fr)
10196 {
10197 num += abits;
10198 fr = nfr;
10199 }
10200 }
10201
10202 if (num > TYPE_PRECISION (type))
10203 num = TYPE_PRECISION (type);
10204
10205 return build_int_cst_type (type, num);
10206 }
10207
10208
10209 #define WALK_SUBTREE(NODE) \
10210 do \
10211 { \
10212 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10213 if (result) \
10214 return result; \
10215 } \
10216 while (0)
10217
10218 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10219 be walked whenever a type is seen in the tree. Rest of operands and return
10220 value are as for walk_tree. */
10221
10222 static tree
10223 walk_type_fields (tree type, walk_tree_fn func, void *data,
10224 struct pointer_set_t *pset, walk_tree_lh lh)
10225 {
10226 tree result = NULL_TREE;
10227
10228 switch (TREE_CODE (type))
10229 {
10230 case POINTER_TYPE:
10231 case REFERENCE_TYPE:
10232 /* We have to worry about mutually recursive pointers. These can't
10233 be written in C. They can in Ada. It's pathological, but
10234 there's an ACATS test (c38102a) that checks it. Deal with this
10235 by checking if we're pointing to another pointer, that one
10236 points to another pointer, that one does too, and we have no htab.
10237 If so, get a hash table. We check three levels deep to avoid
10238 the cost of the hash table if we don't need one. */
10239 if (POINTER_TYPE_P (TREE_TYPE (type))
10240 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10241 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10242 && !pset)
10243 {
10244 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10245 func, data);
10246 if (result)
10247 return result;
10248
10249 break;
10250 }
10251
10252 /* ... fall through ... */
10253
10254 case COMPLEX_TYPE:
10255 WALK_SUBTREE (TREE_TYPE (type));
10256 break;
10257
10258 case METHOD_TYPE:
10259 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10260
10261 /* Fall through. */
10262
10263 case FUNCTION_TYPE:
10264 WALK_SUBTREE (TREE_TYPE (type));
10265 {
10266 tree arg;
10267
10268 /* We never want to walk into default arguments. */
10269 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10270 WALK_SUBTREE (TREE_VALUE (arg));
10271 }
10272 break;
10273
10274 case ARRAY_TYPE:
10275 /* Don't follow this nodes's type if a pointer for fear that
10276 we'll have infinite recursion. If we have a PSET, then we
10277 need not fear. */
10278 if (pset
10279 || (!POINTER_TYPE_P (TREE_TYPE (type))
10280 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10281 WALK_SUBTREE (TREE_TYPE (type));
10282 WALK_SUBTREE (TYPE_DOMAIN (type));
10283 break;
10284
10285 case OFFSET_TYPE:
10286 WALK_SUBTREE (TREE_TYPE (type));
10287 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10288 break;
10289
10290 default:
10291 break;
10292 }
10293
10294 return NULL_TREE;
10295 }
10296
10297 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10298 called with the DATA and the address of each sub-tree. If FUNC returns a
10299 non-NULL value, the traversal is stopped, and the value returned by FUNC
10300 is returned. If PSET is non-NULL it is used to record the nodes visited,
10301 and to avoid visiting a node more than once. */
10302
10303 tree
10304 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10305 struct pointer_set_t *pset, walk_tree_lh lh)
10306 {
10307 enum tree_code code;
10308 int walk_subtrees;
10309 tree result;
10310
10311 #define WALK_SUBTREE_TAIL(NODE) \
10312 do \
10313 { \
10314 tp = & (NODE); \
10315 goto tail_recurse; \
10316 } \
10317 while (0)
10318
10319 tail_recurse:
10320 /* Skip empty subtrees. */
10321 if (!*tp)
10322 return NULL_TREE;
10323
10324 /* Don't walk the same tree twice, if the user has requested
10325 that we avoid doing so. */
10326 if (pset && pointer_set_insert (pset, *tp))
10327 return NULL_TREE;
10328
10329 /* Call the function. */
10330 walk_subtrees = 1;
10331 result = (*func) (tp, &walk_subtrees, data);
10332
10333 /* If we found something, return it. */
10334 if (result)
10335 return result;
10336
10337 code = TREE_CODE (*tp);
10338
10339 /* Even if we didn't, FUNC may have decided that there was nothing
10340 interesting below this point in the tree. */
10341 if (!walk_subtrees)
10342 {
10343 /* But we still need to check our siblings. */
10344 if (code == TREE_LIST)
10345 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10346 else if (code == OMP_CLAUSE)
10347 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10348 else
10349 return NULL_TREE;
10350 }
10351
10352 if (lh)
10353 {
10354 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10355 if (result || !walk_subtrees)
10356 return result;
10357 }
10358
10359 switch (code)
10360 {
10361 case ERROR_MARK:
10362 case IDENTIFIER_NODE:
10363 case INTEGER_CST:
10364 case REAL_CST:
10365 case FIXED_CST:
10366 case VECTOR_CST:
10367 case STRING_CST:
10368 case BLOCK:
10369 case PLACEHOLDER_EXPR:
10370 case SSA_NAME:
10371 case FIELD_DECL:
10372 case RESULT_DECL:
10373 /* None of these have subtrees other than those already walked
10374 above. */
10375 break;
10376
10377 case TREE_LIST:
10378 WALK_SUBTREE (TREE_VALUE (*tp));
10379 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10380 break;
10381
10382 case TREE_VEC:
10383 {
10384 int len = TREE_VEC_LENGTH (*tp);
10385
10386 if (len == 0)
10387 break;
10388
10389 /* Walk all elements but the first. */
10390 while (--len)
10391 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10392
10393 /* Now walk the first one as a tail call. */
10394 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10395 }
10396
10397 case COMPLEX_CST:
10398 WALK_SUBTREE (TREE_REALPART (*tp));
10399 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10400
10401 case CONSTRUCTOR:
10402 {
10403 unsigned HOST_WIDE_INT idx;
10404 constructor_elt *ce;
10405
10406 for (idx = 0;
10407 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10408 idx++)
10409 WALK_SUBTREE (ce->value);
10410 }
10411 break;
10412
10413 case SAVE_EXPR:
10414 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10415
10416 case BIND_EXPR:
10417 {
10418 tree decl;
10419 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
10420 {
10421 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10422 into declarations that are just mentioned, rather than
10423 declared; they don't really belong to this part of the tree.
10424 And, we can see cycles: the initializer for a declaration
10425 can refer to the declaration itself. */
10426 WALK_SUBTREE (DECL_INITIAL (decl));
10427 WALK_SUBTREE (DECL_SIZE (decl));
10428 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10429 }
10430 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10431 }
10432
10433 case STATEMENT_LIST:
10434 {
10435 tree_stmt_iterator i;
10436 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10437 WALK_SUBTREE (*tsi_stmt_ptr (i));
10438 }
10439 break;
10440
10441 case OMP_CLAUSE:
10442 switch (OMP_CLAUSE_CODE (*tp))
10443 {
10444 case OMP_CLAUSE_PRIVATE:
10445 case OMP_CLAUSE_SHARED:
10446 case OMP_CLAUSE_FIRSTPRIVATE:
10447 case OMP_CLAUSE_COPYIN:
10448 case OMP_CLAUSE_COPYPRIVATE:
10449 case OMP_CLAUSE_IF:
10450 case OMP_CLAUSE_NUM_THREADS:
10451 case OMP_CLAUSE_SCHEDULE:
10452 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10453 /* FALLTHRU */
10454
10455 case OMP_CLAUSE_NOWAIT:
10456 case OMP_CLAUSE_ORDERED:
10457 case OMP_CLAUSE_DEFAULT:
10458 case OMP_CLAUSE_UNTIED:
10459 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10460
10461 case OMP_CLAUSE_LASTPRIVATE:
10462 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10463 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10464 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10465
10466 case OMP_CLAUSE_COLLAPSE:
10467 {
10468 int i;
10469 for (i = 0; i < 3; i++)
10470 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10471 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10472 }
10473
10474 case OMP_CLAUSE_REDUCTION:
10475 {
10476 int i;
10477 for (i = 0; i < 4; i++)
10478 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10479 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10480 }
10481
10482 default:
10483 gcc_unreachable ();
10484 }
10485 break;
10486
10487 case TARGET_EXPR:
10488 {
10489 int i, len;
10490
10491 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10492 But, we only want to walk once. */
10493 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10494 for (i = 0; i < len; ++i)
10495 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10496 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10497 }
10498
10499 case DECL_EXPR:
10500 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10501 defining. We only want to walk into these fields of a type in this
10502 case and not in the general case of a mere reference to the type.
10503
10504 The criterion is as follows: if the field can be an expression, it
10505 must be walked only here. This should be in keeping with the fields
10506 that are directly gimplified in gimplify_type_sizes in order for the
10507 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10508 variable-sized types.
10509
10510 Note that DECLs get walked as part of processing the BIND_EXPR. */
10511 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10512 {
10513 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10514 if (TREE_CODE (*type_p) == ERROR_MARK)
10515 return NULL_TREE;
10516
10517 /* Call the function for the type. See if it returns anything or
10518 doesn't want us to continue. If we are to continue, walk both
10519 the normal fields and those for the declaration case. */
10520 result = (*func) (type_p, &walk_subtrees, data);
10521 if (result || !walk_subtrees)
10522 return result;
10523
10524 result = walk_type_fields (*type_p, func, data, pset, lh);
10525 if (result)
10526 return result;
10527
10528 /* If this is a record type, also walk the fields. */
10529 if (RECORD_OR_UNION_TYPE_P (*type_p))
10530 {
10531 tree field;
10532
10533 for (field = TYPE_FIELDS (*type_p); field;
10534 field = DECL_CHAIN (field))
10535 {
10536 /* We'd like to look at the type of the field, but we can
10537 easily get infinite recursion. So assume it's pointed
10538 to elsewhere in the tree. Also, ignore things that
10539 aren't fields. */
10540 if (TREE_CODE (field) != FIELD_DECL)
10541 continue;
10542
10543 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10544 WALK_SUBTREE (DECL_SIZE (field));
10545 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10546 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10547 WALK_SUBTREE (DECL_QUALIFIER (field));
10548 }
10549 }
10550
10551 /* Same for scalar types. */
10552 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10553 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10554 || TREE_CODE (*type_p) == INTEGER_TYPE
10555 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10556 || TREE_CODE (*type_p) == REAL_TYPE)
10557 {
10558 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10559 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10560 }
10561
10562 WALK_SUBTREE (TYPE_SIZE (*type_p));
10563 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10564 }
10565 /* FALLTHRU */
10566
10567 default:
10568 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10569 {
10570 int i, len;
10571
10572 /* Walk over all the sub-trees of this operand. */
10573 len = TREE_OPERAND_LENGTH (*tp);
10574
10575 /* Go through the subtrees. We need to do this in forward order so
10576 that the scope of a FOR_EXPR is handled properly. */
10577 if (len)
10578 {
10579 for (i = 0; i < len - 1; ++i)
10580 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10581 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10582 }
10583 }
10584 /* If this is a type, walk the needed fields in the type. */
10585 else if (TYPE_P (*tp))
10586 return walk_type_fields (*tp, func, data, pset, lh);
10587 break;
10588 }
10589
10590 /* We didn't find what we were looking for. */
10591 return NULL_TREE;
10592
10593 #undef WALK_SUBTREE_TAIL
10594 }
10595 #undef WALK_SUBTREE
10596
10597 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10598
10599 tree
10600 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10601 walk_tree_lh lh)
10602 {
10603 tree result;
10604 struct pointer_set_t *pset;
10605
10606 pset = pointer_set_create ();
10607 result = walk_tree_1 (tp, func, data, pset, lh);
10608 pointer_set_destroy (pset);
10609 return result;
10610 }
10611
10612
10613 tree *
10614 tree_block (tree t)
10615 {
10616 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10617
10618 if (IS_EXPR_CODE_CLASS (c))
10619 return &t->exp.block;
10620 gcc_unreachable ();
10621 return NULL;
10622 }
10623
10624 /* Create a nameless artificial label and put it in the current
10625 function context. The label has a location of LOC. Returns the
10626 newly created label. */
10627
10628 tree
10629 create_artificial_label (location_t loc)
10630 {
10631 tree lab = build_decl (loc,
10632 LABEL_DECL, NULL_TREE, void_type_node);
10633
10634 DECL_ARTIFICIAL (lab) = 1;
10635 DECL_IGNORED_P (lab) = 1;
10636 DECL_CONTEXT (lab) = current_function_decl;
10637 return lab;
10638 }
10639
10640 /* Given a tree, try to return a useful variable name that we can use
10641 to prefix a temporary that is being assigned the value of the tree.
10642 I.E. given <temp> = &A, return A. */
10643
10644 const char *
10645 get_name (tree t)
10646 {
10647 tree stripped_decl;
10648
10649 stripped_decl = t;
10650 STRIP_NOPS (stripped_decl);
10651 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10652 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10653 else
10654 {
10655 switch (TREE_CODE (stripped_decl))
10656 {
10657 case ADDR_EXPR:
10658 return get_name (TREE_OPERAND (stripped_decl, 0));
10659 default:
10660 return NULL;
10661 }
10662 }
10663 }
10664
10665 /* Return true if TYPE has a variable argument list. */
10666
10667 bool
10668 stdarg_p (const_tree fntype)
10669 {
10670 function_args_iterator args_iter;
10671 tree n = NULL_TREE, t;
10672
10673 if (!fntype)
10674 return false;
10675
10676 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10677 {
10678 n = t;
10679 }
10680
10681 return n != NULL_TREE && n != void_type_node;
10682 }
10683
10684 /* Return true if TYPE has a prototype. */
10685
10686 bool
10687 prototype_p (tree fntype)
10688 {
10689 tree t;
10690
10691 gcc_assert (fntype != NULL_TREE);
10692
10693 t = TYPE_ARG_TYPES (fntype);
10694 return (t != NULL_TREE);
10695 }
10696
10697 /* If BLOCK is inlined from an __attribute__((__artificial__))
10698 routine, return pointer to location from where it has been
10699 called. */
10700 location_t *
10701 block_nonartificial_location (tree block)
10702 {
10703 location_t *ret = NULL;
10704
10705 while (block && TREE_CODE (block) == BLOCK
10706 && BLOCK_ABSTRACT_ORIGIN (block))
10707 {
10708 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10709
10710 while (TREE_CODE (ao) == BLOCK
10711 && BLOCK_ABSTRACT_ORIGIN (ao)
10712 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10713 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10714
10715 if (TREE_CODE (ao) == FUNCTION_DECL)
10716 {
10717 /* If AO is an artificial inline, point RET to the
10718 call site locus at which it has been inlined and continue
10719 the loop, in case AO's caller is also an artificial
10720 inline. */
10721 if (DECL_DECLARED_INLINE_P (ao)
10722 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10723 ret = &BLOCK_SOURCE_LOCATION (block);
10724 else
10725 break;
10726 }
10727 else if (TREE_CODE (ao) != BLOCK)
10728 break;
10729
10730 block = BLOCK_SUPERCONTEXT (block);
10731 }
10732 return ret;
10733 }
10734
10735
10736 /* If EXP is inlined from an __attribute__((__artificial__))
10737 function, return the location of the original call expression. */
10738
10739 location_t
10740 tree_nonartificial_location (tree exp)
10741 {
10742 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10743
10744 if (loc)
10745 return *loc;
10746 else
10747 return EXPR_LOCATION (exp);
10748 }
10749
10750
10751 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10752 nodes. */
10753
10754 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10755
10756 static hashval_t
10757 cl_option_hash_hash (const void *x)
10758 {
10759 const_tree const t = (const_tree) x;
10760 const char *p;
10761 size_t i;
10762 size_t len = 0;
10763 hashval_t hash = 0;
10764
10765 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10766 {
10767 p = (const char *)TREE_OPTIMIZATION (t);
10768 len = sizeof (struct cl_optimization);
10769 }
10770
10771 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10772 {
10773 p = (const char *)TREE_TARGET_OPTION (t);
10774 len = sizeof (struct cl_target_option);
10775 }
10776
10777 else
10778 gcc_unreachable ();
10779
10780 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10781 something else. */
10782 for (i = 0; i < len; i++)
10783 if (p[i])
10784 hash = (hash << 4) ^ ((i << 2) | p[i]);
10785
10786 return hash;
10787 }
10788
10789 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10790 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10791 same. */
10792
10793 static int
10794 cl_option_hash_eq (const void *x, const void *y)
10795 {
10796 const_tree const xt = (const_tree) x;
10797 const_tree const yt = (const_tree) y;
10798 const char *xp;
10799 const char *yp;
10800 size_t len;
10801
10802 if (TREE_CODE (xt) != TREE_CODE (yt))
10803 return 0;
10804
10805 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10806 {
10807 xp = (const char *)TREE_OPTIMIZATION (xt);
10808 yp = (const char *)TREE_OPTIMIZATION (yt);
10809 len = sizeof (struct cl_optimization);
10810 }
10811
10812 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10813 {
10814 xp = (const char *)TREE_TARGET_OPTION (xt);
10815 yp = (const char *)TREE_TARGET_OPTION (yt);
10816 len = sizeof (struct cl_target_option);
10817 }
10818
10819 else
10820 gcc_unreachable ();
10821
10822 return (memcmp (xp, yp, len) == 0);
10823 }
10824
10825 /* Build an OPTIMIZATION_NODE based on the current options. */
10826
10827 tree
10828 build_optimization_node (void)
10829 {
10830 tree t;
10831 void **slot;
10832
10833 /* Use the cache of optimization nodes. */
10834
10835 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
10836 &global_options);
10837
10838 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10839 t = (tree) *slot;
10840 if (!t)
10841 {
10842 /* Insert this one into the hash table. */
10843 t = cl_optimization_node;
10844 *slot = t;
10845
10846 /* Make a new node for next time round. */
10847 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10848 }
10849
10850 return t;
10851 }
10852
10853 /* Build a TARGET_OPTION_NODE based on the current options. */
10854
10855 tree
10856 build_target_option_node (void)
10857 {
10858 tree t;
10859 void **slot;
10860
10861 /* Use the cache of optimization nodes. */
10862
10863 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
10864 &global_options);
10865
10866 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
10867 t = (tree) *slot;
10868 if (!t)
10869 {
10870 /* Insert this one into the hash table. */
10871 t = cl_target_option_node;
10872 *slot = t;
10873
10874 /* Make a new node for next time round. */
10875 cl_target_option_node = make_node (TARGET_OPTION_NODE);
10876 }
10877
10878 return t;
10879 }
10880
10881 /* Determine the "ultimate origin" of a block. The block may be an inlined
10882 instance of an inlined instance of a block which is local to an inline
10883 function, so we have to trace all of the way back through the origin chain
10884 to find out what sort of node actually served as the original seed for the
10885 given block. */
10886
10887 tree
10888 block_ultimate_origin (const_tree block)
10889 {
10890 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
10891
10892 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
10893 nodes in the function to point to themselves; ignore that if
10894 we're trying to output the abstract instance of this function. */
10895 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
10896 return NULL_TREE;
10897
10898 if (immediate_origin == NULL_TREE)
10899 return NULL_TREE;
10900 else
10901 {
10902 tree ret_val;
10903 tree lookahead = immediate_origin;
10904
10905 do
10906 {
10907 ret_val = lookahead;
10908 lookahead = (TREE_CODE (ret_val) == BLOCK
10909 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
10910 }
10911 while (lookahead != NULL && lookahead != ret_val);
10912
10913 /* The block's abstract origin chain may not be the *ultimate* origin of
10914 the block. It could lead to a DECL that has an abstract origin set.
10915 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
10916 will give us if it has one). Note that DECL's abstract origins are
10917 supposed to be the most distant ancestor (or so decl_ultimate_origin
10918 claims), so we don't need to loop following the DECL origins. */
10919 if (DECL_P (ret_val))
10920 return DECL_ORIGIN (ret_val);
10921
10922 return ret_val;
10923 }
10924 }
10925
10926 /* Return true if T1 and T2 are equivalent lists. */
10927
10928 bool
10929 list_equal_p (const_tree t1, const_tree t2)
10930 {
10931 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
10932 if (TREE_VALUE (t1) != TREE_VALUE (t2))
10933 return false;
10934 return !t1 && !t2;
10935 }
10936
10937 /* Return true iff conversion in EXP generates no instruction. Mark
10938 it inline so that we fully inline into the stripping functions even
10939 though we have two uses of this function. */
10940
10941 static inline bool
10942 tree_nop_conversion (const_tree exp)
10943 {
10944 tree outer_type, inner_type;
10945
10946 if (!CONVERT_EXPR_P (exp)
10947 && TREE_CODE (exp) != NON_LVALUE_EXPR)
10948 return false;
10949 if (TREE_OPERAND (exp, 0) == error_mark_node)
10950 return false;
10951
10952 outer_type = TREE_TYPE (exp);
10953 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10954
10955 if (!inner_type)
10956 return false;
10957
10958 /* Use precision rather then machine mode when we can, which gives
10959 the correct answer even for submode (bit-field) types. */
10960 if ((INTEGRAL_TYPE_P (outer_type)
10961 || POINTER_TYPE_P (outer_type)
10962 || TREE_CODE (outer_type) == OFFSET_TYPE)
10963 && (INTEGRAL_TYPE_P (inner_type)
10964 || POINTER_TYPE_P (inner_type)
10965 || TREE_CODE (inner_type) == OFFSET_TYPE))
10966 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
10967
10968 /* Otherwise fall back on comparing machine modes (e.g. for
10969 aggregate types, floats). */
10970 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
10971 }
10972
10973 /* Return true iff conversion in EXP generates no instruction. Don't
10974 consider conversions changing the signedness. */
10975
10976 static bool
10977 tree_sign_nop_conversion (const_tree exp)
10978 {
10979 tree outer_type, inner_type;
10980
10981 if (!tree_nop_conversion (exp))
10982 return false;
10983
10984 outer_type = TREE_TYPE (exp);
10985 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10986
10987 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
10988 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
10989 }
10990
10991 /* Strip conversions from EXP according to tree_nop_conversion and
10992 return the resulting expression. */
10993
10994 tree
10995 tree_strip_nop_conversions (tree exp)
10996 {
10997 while (tree_nop_conversion (exp))
10998 exp = TREE_OPERAND (exp, 0);
10999 return exp;
11000 }
11001
11002 /* Strip conversions from EXP according to tree_sign_nop_conversion
11003 and return the resulting expression. */
11004
11005 tree
11006 tree_strip_sign_nop_conversions (tree exp)
11007 {
11008 while (tree_sign_nop_conversion (exp))
11009 exp = TREE_OPERAND (exp, 0);
11010 return exp;
11011 }
11012
11013 static GTY(()) tree gcc_eh_personality_decl;
11014
11015 /* Return the GCC personality function decl. */
11016
11017 tree
11018 lhd_gcc_personality (void)
11019 {
11020 if (!gcc_eh_personality_decl)
11021 gcc_eh_personality_decl = build_personality_function ("gcc");
11022 return gcc_eh_personality_decl;
11023 }
11024
11025 /* Try to find a base info of BINFO that would have its field decl at offset
11026 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
11027 found, return, otherwise return NULL_TREE. */
11028
11029 tree
11030 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
11031 {
11032 tree type = BINFO_TYPE (binfo);
11033
11034 while (true)
11035 {
11036 HOST_WIDE_INT pos, size;
11037 tree fld;
11038 int i;
11039
11040 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (expected_type))
11041 return binfo;
11042 if (offset < 0)
11043 return NULL_TREE;
11044
11045 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
11046 {
11047 if (TREE_CODE (fld) != FIELD_DECL)
11048 continue;
11049
11050 pos = int_bit_position (fld);
11051 size = tree_low_cst (DECL_SIZE (fld), 1);
11052 if (pos <= offset && (pos + size) > offset)
11053 break;
11054 }
11055 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
11056 return NULL_TREE;
11057
11058 if (!DECL_ARTIFICIAL (fld))
11059 {
11060 binfo = TYPE_BINFO (TREE_TYPE (fld));
11061 if (!binfo)
11062 return NULL_TREE;
11063 }
11064 /* Offset 0 indicates the primary base, whose vtable contents are
11065 represented in the binfo for the derived class. */
11066 else if (offset != 0)
11067 {
11068 tree base_binfo, found_binfo = NULL_TREE;
11069 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
11070 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
11071 {
11072 found_binfo = base_binfo;
11073 break;
11074 }
11075 if (!found_binfo)
11076 return NULL_TREE;
11077 binfo = found_binfo;
11078 }
11079
11080 type = TREE_TYPE (fld);
11081 offset -= pos;
11082 }
11083 }
11084
11085 /* Returns true if X is a typedef decl. */
11086
11087 bool
11088 is_typedef_decl (tree x)
11089 {
11090 return (x && TREE_CODE (x) == TYPE_DECL
11091 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
11092 }
11093
11094 /* Returns true iff TYPE is a type variant created for a typedef. */
11095
11096 bool
11097 typedef_variant_p (tree type)
11098 {
11099 return is_typedef_decl (TYPE_NAME (type));
11100 }
11101
11102 /* Warn about a use of an identifier which was marked deprecated. */
11103 void
11104 warn_deprecated_use (tree node, tree attr)
11105 {
11106 const char *msg;
11107
11108 if (node == 0 || !warn_deprecated_decl)
11109 return;
11110
11111 if (!attr)
11112 {
11113 if (DECL_P (node))
11114 attr = DECL_ATTRIBUTES (node);
11115 else if (TYPE_P (node))
11116 {
11117 tree decl = TYPE_STUB_DECL (node);
11118 if (decl)
11119 attr = lookup_attribute ("deprecated",
11120 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
11121 }
11122 }
11123
11124 if (attr)
11125 attr = lookup_attribute ("deprecated", attr);
11126
11127 if (attr)
11128 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
11129 else
11130 msg = NULL;
11131
11132 if (DECL_P (node))
11133 {
11134 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
11135 if (msg)
11136 warning (OPT_Wdeprecated_declarations,
11137 "%qD is deprecated (declared at %s:%d): %s",
11138 node, xloc.file, xloc.line, msg);
11139 else
11140 warning (OPT_Wdeprecated_declarations,
11141 "%qD is deprecated (declared at %s:%d)",
11142 node, xloc.file, xloc.line);
11143 }
11144 else if (TYPE_P (node))
11145 {
11146 tree what = NULL_TREE;
11147 tree decl = TYPE_STUB_DECL (node);
11148
11149 if (TYPE_NAME (node))
11150 {
11151 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
11152 what = TYPE_NAME (node);
11153 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
11154 && DECL_NAME (TYPE_NAME (node)))
11155 what = DECL_NAME (TYPE_NAME (node));
11156 }
11157
11158 if (decl)
11159 {
11160 expanded_location xloc
11161 = expand_location (DECL_SOURCE_LOCATION (decl));
11162 if (what)
11163 {
11164 if (msg)
11165 warning (OPT_Wdeprecated_declarations,
11166 "%qE is deprecated (declared at %s:%d): %s",
11167 what, xloc.file, xloc.line, msg);
11168 else
11169 warning (OPT_Wdeprecated_declarations,
11170 "%qE is deprecated (declared at %s:%d)", what,
11171 xloc.file, xloc.line);
11172 }
11173 else
11174 {
11175 if (msg)
11176 warning (OPT_Wdeprecated_declarations,
11177 "type is deprecated (declared at %s:%d): %s",
11178 xloc.file, xloc.line, msg);
11179 else
11180 warning (OPT_Wdeprecated_declarations,
11181 "type is deprecated (declared at %s:%d)",
11182 xloc.file, xloc.line);
11183 }
11184 }
11185 else
11186 {
11187 if (what)
11188 {
11189 if (msg)
11190 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
11191 what, msg);
11192 else
11193 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
11194 }
11195 else
11196 {
11197 if (msg)
11198 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
11199 msg);
11200 else
11201 warning (OPT_Wdeprecated_declarations, "type is deprecated");
11202 }
11203 }
11204 }
11205 }
11206
11207 #include "gt-tree.h"