tree.c (operand_equal_for_phi_arg_p): New.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52
53 /* Each tree code class has an associated string representation.
54 These must correspond to the tree_code_class entries. */
55
56 const char *const tree_code_class_strings[] =
57 {
58 "exceptional",
59 "constant",
60 "type",
61 "declaration",
62 "reference",
63 "comparison",
64 "unary",
65 "binary",
66 "statement",
67 "expression",
68 };
69
70 /* obstack.[ch] explicitly declined to prototype this. */
71 extern int _obstack_allocated_p (struct obstack *h, void *obj);
72
73 #ifdef GATHER_STATISTICS
74 /* Statistics-gathering stuff. */
75
76 int tree_node_counts[(int) all_kinds];
77 int tree_node_sizes[(int) all_kinds];
78
79 /* Keep in sync with tree.h:enum tree_node_kind. */
80 static const char * const tree_node_kind_names[] = {
81 "decls",
82 "types",
83 "blocks",
84 "stmts",
85 "refs",
86 "exprs",
87 "constants",
88 "identifiers",
89 "perm_tree_lists",
90 "temp_tree_lists",
91 "vecs",
92 "binfos",
93 "phi_nodes",
94 "ssa names",
95 "random kinds",
96 "lang_decl kinds",
97 "lang_type kinds"
98 };
99 #endif /* GATHER_STATISTICS */
100
101 /* Unique id for next decl created. */
102 static GTY(()) int next_decl_uid;
103 /* Unique id for next type created. */
104 static GTY(()) int next_type_uid = 1;
105
106 /* Since we cannot rehash a type after it is in the table, we have to
107 keep the hash code. */
108
109 struct type_hash GTY(())
110 {
111 unsigned long hash;
112 tree type;
113 };
114
115 /* Initial size of the hash table (rounded to next prime). */
116 #define TYPE_HASH_INITIAL_SIZE 1000
117
118 /* Now here is the hash table. When recording a type, it is added to
119 the slot whose index is the hash code. Note that the hash table is
120 used for several kinds of types (function types, array types and
121 array index range types, for now). While all these live in the
122 same table, they are completely independent, and the hash code is
123 computed differently for each of these. */
124
125 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
126 htab_t type_hash_table;
127
128 /* Hash table and temporary node for larger integer const values. */
129 static GTY (()) tree int_cst_node;
130 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
131 htab_t int_cst_hash_table;
132
133 static void set_type_quals (tree, int);
134 static int type_hash_eq (const void *, const void *);
135 static hashval_t type_hash_hash (const void *);
136 static hashval_t int_cst_hash_hash (const void *);
137 static int int_cst_hash_eq (const void *, const void *);
138 static void print_type_hash_statistics (void);
139 static tree make_vector_type (tree, int, enum machine_mode);
140 static int type_hash_marked_p (const void *);
141 static unsigned int type_hash_list (tree, hashval_t);
142 static unsigned int attribute_hash_list (tree, hashval_t);
143
144 tree global_trees[TI_MAX];
145 tree integer_types[itk_none];
146 \f
147 /* Init tree.c. */
148
149 void
150 init_ttree (void)
151 {
152 /* Initialize the hash table of types. */
153 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
154 type_hash_eq, 0);
155 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
156 int_cst_hash_eq, NULL);
157 int_cst_node = make_node (INTEGER_CST);
158 }
159
160 \f
161 /* The name of the object as the assembler will see it (but before any
162 translations made by ASM_OUTPUT_LABELREF). Often this is the same
163 as DECL_NAME. It is an IDENTIFIER_NODE. */
164 tree
165 decl_assembler_name (tree decl)
166 {
167 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
168 lang_hooks.set_decl_assembler_name (decl);
169 return DECL_CHECK (decl)->decl.assembler_name;
170 }
171
172 /* Compute the number of bytes occupied by a tree with code CODE.
173 This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
174 codes, which are of variable length. */
175 size_t
176 tree_code_size (enum tree_code code)
177 {
178 switch (TREE_CODE_CLASS (code))
179 {
180 case tcc_declaration: /* A decl node */
181 return sizeof (struct tree_decl);
182
183 case tcc_type: /* a type node */
184 return sizeof (struct tree_type);
185
186 case tcc_reference: /* a reference */
187 case tcc_expression: /* an expression */
188 case tcc_statement: /* an expression with side effects */
189 case tcc_comparison: /* a comparison expression */
190 case tcc_unary: /* a unary arithmetic expression */
191 case tcc_binary: /* a binary arithmetic expression */
192 return (sizeof (struct tree_exp)
193 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
194
195 case tcc_constant: /* a constant */
196 switch (code)
197 {
198 case INTEGER_CST: return sizeof (struct tree_int_cst);
199 case REAL_CST: return sizeof (struct tree_real_cst);
200 case COMPLEX_CST: return sizeof (struct tree_complex);
201 case VECTOR_CST: return sizeof (struct tree_vector);
202 case STRING_CST: gcc_unreachable ();
203 default:
204 return lang_hooks.tree_size (code);
205 }
206
207 case tcc_exceptional: /* something random, like an identifier. */
208 switch (code)
209 {
210 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
211 case TREE_LIST: return sizeof (struct tree_list);
212
213 case ERROR_MARK:
214 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
215
216 case TREE_VEC:
217 case PHI_NODE: gcc_unreachable ();
218
219 case SSA_NAME: return sizeof (struct tree_ssa_name);
220
221 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
222 case BLOCK: return sizeof (struct tree_block);
223 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
224
225 default:
226 return lang_hooks.tree_size (code);
227 }
228
229 default:
230 gcc_unreachable ();
231 }
232 }
233
234 /* Compute the number of bytes occupied by NODE. This routine only
235 looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes. */
236 size_t
237 tree_size (tree node)
238 {
239 enum tree_code code = TREE_CODE (node);
240 switch (code)
241 {
242 case PHI_NODE:
243 return (sizeof (struct tree_phi_node)
244 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
245
246 case TREE_VEC:
247 return (sizeof (struct tree_vec)
248 + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
249
250 case STRING_CST:
251 return sizeof (struct tree_string) + TREE_STRING_LENGTH (node) - 1;
252
253 default:
254 return tree_code_size (code);
255 }
256 }
257
258 /* Return a newly allocated node of code CODE. For decl and type
259 nodes, some other fields are initialized. The rest of the node is
260 initialized to zero. This function cannot be used for PHI_NODE or
261 TREE_VEC nodes, which is enforced by asserts in tree_code_size.
262
263 Achoo! I got a code in the node. */
264
265 tree
266 make_node_stat (enum tree_code code MEM_STAT_DECL)
267 {
268 tree t;
269 enum tree_code_class type = TREE_CODE_CLASS (code);
270 size_t length = tree_code_size (code);
271 #ifdef GATHER_STATISTICS
272 tree_node_kind kind;
273
274 switch (type)
275 {
276 case tcc_declaration: /* A decl node */
277 kind = d_kind;
278 break;
279
280 case tcc_type: /* a type node */
281 kind = t_kind;
282 break;
283
284 case tcc_statement: /* an expression with side effects */
285 kind = s_kind;
286 break;
287
288 case tcc_reference: /* a reference */
289 kind = r_kind;
290 break;
291
292 case tcc_expression: /* an expression */
293 case tcc_comparison: /* a comparison expression */
294 case tcc_unary: /* a unary arithmetic expression */
295 case tcc_binary: /* a binary arithmetic expression */
296 kind = e_kind;
297 break;
298
299 case tcc_constant: /* a constant */
300 kind = c_kind;
301 break;
302
303 case tcc_exceptional: /* something random, like an identifier. */
304 switch (code)
305 {
306 case IDENTIFIER_NODE:
307 kind = id_kind;
308 break;
309
310 case TREE_VEC:;
311 kind = vec_kind;
312 break;
313
314 case TREE_BINFO:
315 kind = binfo_kind;
316 break;
317
318 case PHI_NODE:
319 kind = phi_kind;
320 break;
321
322 case SSA_NAME:
323 kind = ssa_name_kind;
324 break;
325
326 case BLOCK:
327 kind = b_kind;
328 break;
329
330 default:
331 kind = x_kind;
332 break;
333 }
334 break;
335
336 default:
337 gcc_unreachable ();
338 }
339
340 tree_node_counts[(int) kind]++;
341 tree_node_sizes[(int) kind] += length;
342 #endif
343
344 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
345
346 memset (t, 0, length);
347
348 TREE_SET_CODE (t, code);
349
350 switch (type)
351 {
352 case tcc_statement:
353 TREE_SIDE_EFFECTS (t) = 1;
354 break;
355
356 case tcc_declaration:
357 if (code != FUNCTION_DECL)
358 DECL_ALIGN (t) = 1;
359 DECL_USER_ALIGN (t) = 0;
360 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
361 DECL_SOURCE_LOCATION (t) = input_location;
362 DECL_UID (t) = next_decl_uid++;
363
364 /* We have not yet computed the alias set for this declaration. */
365 DECL_POINTER_ALIAS_SET (t) = -1;
366 break;
367
368 case tcc_type:
369 TYPE_UID (t) = next_type_uid++;
370 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
371 TYPE_USER_ALIGN (t) = 0;
372 TYPE_MAIN_VARIANT (t) = t;
373
374 /* Default to no attributes for type, but let target change that. */
375 TYPE_ATTRIBUTES (t) = NULL_TREE;
376 targetm.set_default_type_attributes (t);
377
378 /* We have not yet computed the alias set for this type. */
379 TYPE_ALIAS_SET (t) = -1;
380 break;
381
382 case tcc_constant:
383 TREE_CONSTANT (t) = 1;
384 TREE_INVARIANT (t) = 1;
385 break;
386
387 case tcc_expression:
388 switch (code)
389 {
390 case INIT_EXPR:
391 case MODIFY_EXPR:
392 case VA_ARG_EXPR:
393 case PREDECREMENT_EXPR:
394 case PREINCREMENT_EXPR:
395 case POSTDECREMENT_EXPR:
396 case POSTINCREMENT_EXPR:
397 /* All of these have side-effects, no matter what their
398 operands are. */
399 TREE_SIDE_EFFECTS (t) = 1;
400 break;
401
402 default:
403 break;
404 }
405 break;
406
407 default:
408 /* Other classes need no special treatment. */
409 break;
410 }
411
412 return t;
413 }
414 \f
415 /* Return a new node with the same contents as NODE except that its
416 TREE_CHAIN is zero and it has a fresh uid. */
417
418 tree
419 copy_node_stat (tree node MEM_STAT_DECL)
420 {
421 tree t;
422 enum tree_code code = TREE_CODE (node);
423 size_t length;
424
425 gcc_assert (code != STATEMENT_LIST);
426
427 length = tree_size (node);
428 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
429 memcpy (t, node, length);
430
431 TREE_CHAIN (t) = 0;
432 TREE_ASM_WRITTEN (t) = 0;
433 TREE_VISITED (t) = 0;
434 t->common.ann = 0;
435
436 if (TREE_CODE_CLASS (code) == tcc_declaration)
437 DECL_UID (t) = next_decl_uid++;
438 else if (TREE_CODE_CLASS (code) == tcc_type)
439 {
440 TYPE_UID (t) = next_type_uid++;
441 /* The following is so that the debug code for
442 the copy is different from the original type.
443 The two statements usually duplicate each other
444 (because they clear fields of the same union),
445 but the optimizer should catch that. */
446 TYPE_SYMTAB_POINTER (t) = 0;
447 TYPE_SYMTAB_ADDRESS (t) = 0;
448
449 /* Do not copy the values cache. */
450 if (TYPE_CACHED_VALUES_P(t))
451 {
452 TYPE_CACHED_VALUES_P (t) = 0;
453 TYPE_CACHED_VALUES (t) = NULL_TREE;
454 }
455 }
456
457 return t;
458 }
459
460 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
461 For example, this can copy a list made of TREE_LIST nodes. */
462
463 tree
464 copy_list (tree list)
465 {
466 tree head;
467 tree prev, next;
468
469 if (list == 0)
470 return 0;
471
472 head = prev = copy_node (list);
473 next = TREE_CHAIN (list);
474 while (next)
475 {
476 TREE_CHAIN (prev) = copy_node (next);
477 prev = TREE_CHAIN (prev);
478 next = TREE_CHAIN (next);
479 }
480 return head;
481 }
482
483 \f
484 /* Create an INT_CST node with a LOW value sign extended. */
485
486 tree
487 build_int_cst (tree type, HOST_WIDE_INT low)
488 {
489 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
490 }
491
492 /* Create an INT_CST node with a LOW value zero extended. */
493
494 tree
495 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
496 {
497 return build_int_cst_wide (type, low, 0);
498 }
499
500 /* Create an INT_CST node with a LOW value zero or sign extended depending
501 on the type. */
502
503 tree
504 build_int_cst_type (tree type, HOST_WIDE_INT low)
505 {
506 unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
507 unsigned bits;
508 bool signed_p;
509 bool negative;
510 tree ret;
511
512 if (!type)
513 type = integer_type_node;
514
515 bits = TYPE_PRECISION (type);
516 signed_p = !TYPE_UNSIGNED (type);
517 negative = ((val >> (bits - 1)) & 1) != 0;
518
519 if (signed_p && negative)
520 {
521 if (bits < HOST_BITS_PER_WIDE_INT)
522 val = val | ((~(unsigned HOST_WIDE_INT) 0) << bits);
523 ret = build_int_cst_wide (type, val, ~(unsigned HOST_WIDE_INT) 0);
524 }
525 else
526 {
527 if (bits < HOST_BITS_PER_WIDE_INT)
528 val = val & ~((~(unsigned HOST_WIDE_INT) 0) << bits);
529 ret = build_int_cst_wide (type, val, 0);
530 }
531
532 return ret;
533 }
534
535 /* These are the hash table functions for the hash table of INTEGER_CST
536 nodes of a sizetype. */
537
538 /* Return the hash code code X, an INTEGER_CST. */
539
540 static hashval_t
541 int_cst_hash_hash (const void *x)
542 {
543 tree t = (tree) x;
544
545 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
546 ^ htab_hash_pointer (TREE_TYPE (t)));
547 }
548
549 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
550 is the same as that given by *Y, which is the same. */
551
552 static int
553 int_cst_hash_eq (const void *x, const void *y)
554 {
555 tree xt = (tree) x;
556 tree yt = (tree) y;
557
558 return (TREE_TYPE (xt) == TREE_TYPE (yt)
559 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
560 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
561 }
562
563 /* Create an INT_CST node of TYPE and value HI:LOW. If TYPE is NULL,
564 integer_type_node is used. The returned node is always shared.
565 For small integers we use a per-type vector cache, for larger ones
566 we use a single hash table. */
567
568 tree
569 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
570 {
571 tree t;
572 int ix = -1;
573 int limit = 0;
574
575 if (!type)
576 type = integer_type_node;
577
578 switch (TREE_CODE (type))
579 {
580 case POINTER_TYPE:
581 case REFERENCE_TYPE:
582 /* Cache NULL pointer. */
583 if (!hi && !low)
584 {
585 limit = 1;
586 ix = 0;
587 }
588 break;
589
590 case BOOLEAN_TYPE:
591 /* Cache false or true. */
592 limit = 2;
593 if (!hi && low < 2)
594 ix = low;
595 break;
596
597 case INTEGER_TYPE:
598 case CHAR_TYPE:
599 case OFFSET_TYPE:
600 if (TYPE_UNSIGNED (type))
601 {
602 /* Cache 0..N */
603 limit = INTEGER_SHARE_LIMIT;
604 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
605 ix = low;
606 }
607 else
608 {
609 /* Cache -1..N */
610 limit = INTEGER_SHARE_LIMIT + 1;
611 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
612 ix = low + 1;
613 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
614 ix = 0;
615 }
616 break;
617 default:
618 break;
619 }
620
621 if (ix >= 0)
622 {
623 /* Look for it in the type's vector of small shared ints. */
624 if (!TYPE_CACHED_VALUES_P (type))
625 {
626 TYPE_CACHED_VALUES_P (type) = 1;
627 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
628 }
629
630 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
631 if (t)
632 {
633 /* Make sure no one is clobbering the shared constant. */
634 gcc_assert (TREE_TYPE (t) == type);
635 gcc_assert (TREE_INT_CST_LOW (t) == low);
636 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
637 }
638 else
639 {
640 /* Create a new shared int. */
641 t = make_node (INTEGER_CST);
642
643 TREE_INT_CST_LOW (t) = low;
644 TREE_INT_CST_HIGH (t) = hi;
645 TREE_TYPE (t) = type;
646
647 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
648 }
649 }
650 else
651 {
652 /* Use the cache of larger shared ints. */
653 void **slot;
654
655 TREE_INT_CST_LOW (int_cst_node) = low;
656 TREE_INT_CST_HIGH (int_cst_node) = hi;
657 TREE_TYPE (int_cst_node) = type;
658
659 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
660 t = *slot;
661 if (!t)
662 {
663 /* Insert this one into the hash table. */
664 t = int_cst_node;
665 *slot = t;
666 /* Make a new node for next time round. */
667 int_cst_node = make_node (INTEGER_CST);
668 }
669 }
670
671 return t;
672 }
673
674 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
675 and the rest are zeros. */
676
677 tree
678 build_low_bits_mask (tree type, unsigned bits)
679 {
680 unsigned HOST_WIDE_INT low;
681 HOST_WIDE_INT high;
682 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
683
684 gcc_assert (bits <= TYPE_PRECISION (type));
685
686 if (bits == TYPE_PRECISION (type)
687 && !TYPE_UNSIGNED (type))
688 {
689 /* Sign extended all-ones mask. */
690 low = all_ones;
691 high = -1;
692 }
693 else if (bits <= HOST_BITS_PER_WIDE_INT)
694 {
695 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
696 high = 0;
697 }
698 else
699 {
700 bits -= HOST_BITS_PER_WIDE_INT;
701 low = all_ones;
702 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
703 }
704
705 return build_int_cst_wide (type, low, high);
706 }
707
708 /* Checks that X is integer constant that can be expressed in (unsigned)
709 HOST_WIDE_INT without loss of precision. */
710
711 bool
712 cst_and_fits_in_hwi (tree x)
713 {
714 if (TREE_CODE (x) != INTEGER_CST)
715 return false;
716
717 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
718 return false;
719
720 return (TREE_INT_CST_HIGH (x) == 0
721 || TREE_INT_CST_HIGH (x) == -1);
722 }
723
724 /* Return a new VECTOR_CST node whose type is TYPE and whose values
725 are in a list pointed by VALS. */
726
727 tree
728 build_vector (tree type, tree vals)
729 {
730 tree v = make_node (VECTOR_CST);
731 int over1 = 0, over2 = 0;
732 tree link;
733
734 TREE_VECTOR_CST_ELTS (v) = vals;
735 TREE_TYPE (v) = type;
736
737 /* Iterate through elements and check for overflow. */
738 for (link = vals; link; link = TREE_CHAIN (link))
739 {
740 tree value = TREE_VALUE (link);
741
742 over1 |= TREE_OVERFLOW (value);
743 over2 |= TREE_CONSTANT_OVERFLOW (value);
744 }
745
746 TREE_OVERFLOW (v) = over1;
747 TREE_CONSTANT_OVERFLOW (v) = over2;
748
749 return v;
750 }
751
752 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
753 are in a list pointed to by VALS. */
754 tree
755 build_constructor (tree type, tree vals)
756 {
757 tree c = make_node (CONSTRUCTOR);
758 TREE_TYPE (c) = type;
759 CONSTRUCTOR_ELTS (c) = vals;
760
761 /* ??? May not be necessary. Mirrors what build does. */
762 if (vals)
763 {
764 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
765 TREE_READONLY (c) = TREE_READONLY (vals);
766 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
767 TREE_INVARIANT (c) = TREE_INVARIANT (vals);
768 }
769
770 return c;
771 }
772
773 /* Return a new REAL_CST node whose type is TYPE and value is D. */
774
775 tree
776 build_real (tree type, REAL_VALUE_TYPE d)
777 {
778 tree v;
779 REAL_VALUE_TYPE *dp;
780 int overflow = 0;
781
782 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
783 Consider doing it via real_convert now. */
784
785 v = make_node (REAL_CST);
786 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
787 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
788
789 TREE_TYPE (v) = type;
790 TREE_REAL_CST_PTR (v) = dp;
791 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
792 return v;
793 }
794
795 /* Return a new REAL_CST node whose type is TYPE
796 and whose value is the integer value of the INTEGER_CST node I. */
797
798 REAL_VALUE_TYPE
799 real_value_from_int_cst (tree type, tree i)
800 {
801 REAL_VALUE_TYPE d;
802
803 /* Clear all bits of the real value type so that we can later do
804 bitwise comparisons to see if two values are the same. */
805 memset (&d, 0, sizeof d);
806
807 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
808 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
809 TYPE_UNSIGNED (TREE_TYPE (i)));
810 return d;
811 }
812
813 /* Given a tree representing an integer constant I, return a tree
814 representing the same value as a floating-point constant of type TYPE. */
815
816 tree
817 build_real_from_int_cst (tree type, tree i)
818 {
819 tree v;
820 int overflow = TREE_OVERFLOW (i);
821
822 v = build_real (type, real_value_from_int_cst (type, i));
823
824 TREE_OVERFLOW (v) |= overflow;
825 TREE_CONSTANT_OVERFLOW (v) |= overflow;
826 return v;
827 }
828
829 /* Return a newly constructed STRING_CST node whose value is
830 the LEN characters at STR.
831 The TREE_TYPE is not initialized. */
832
833 tree
834 build_string (int len, const char *str)
835 {
836 tree s;
837 size_t length;
838
839 length = len + sizeof (struct tree_string);
840
841 #ifdef GATHER_STATISTICS
842 tree_node_counts[(int) c_kind]++;
843 tree_node_sizes[(int) c_kind] += length;
844 #endif
845
846 s = ggc_alloc_tree (length);
847
848 memset (s, 0, sizeof (struct tree_common));
849 TREE_SET_CODE (s, STRING_CST);
850 TREE_STRING_LENGTH (s) = len;
851 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
852 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
853
854 return s;
855 }
856
857 /* Return a newly constructed COMPLEX_CST node whose value is
858 specified by the real and imaginary parts REAL and IMAG.
859 Both REAL and IMAG should be constant nodes. TYPE, if specified,
860 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
861
862 tree
863 build_complex (tree type, tree real, tree imag)
864 {
865 tree t = make_node (COMPLEX_CST);
866
867 TREE_REALPART (t) = real;
868 TREE_IMAGPART (t) = imag;
869 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
870 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
871 TREE_CONSTANT_OVERFLOW (t)
872 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
873 return t;
874 }
875
876 /* Build a BINFO with LEN language slots. */
877
878 tree
879 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
880 {
881 tree t;
882 size_t length = (offsetof (struct tree_binfo, base_binfos)
883 + VEC_embedded_size (tree, base_binfos));
884
885 #ifdef GATHER_STATISTICS
886 tree_node_counts[(int) binfo_kind]++;
887 tree_node_sizes[(int) binfo_kind] += length;
888 #endif
889
890 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
891
892 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
893
894 TREE_SET_CODE (t, TREE_BINFO);
895
896 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
897
898 return t;
899 }
900
901
902 /* Build a newly constructed TREE_VEC node of length LEN. */
903
904 tree
905 make_tree_vec_stat (int len MEM_STAT_DECL)
906 {
907 tree t;
908 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
909
910 #ifdef GATHER_STATISTICS
911 tree_node_counts[(int) vec_kind]++;
912 tree_node_sizes[(int) vec_kind] += length;
913 #endif
914
915 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
916
917 memset (t, 0, length);
918
919 TREE_SET_CODE (t, TREE_VEC);
920 TREE_VEC_LENGTH (t) = len;
921
922 return t;
923 }
924 \f
925 /* Return 1 if EXPR is the integer constant zero or a complex constant
926 of zero. */
927
928 int
929 integer_zerop (tree expr)
930 {
931 STRIP_NOPS (expr);
932
933 return ((TREE_CODE (expr) == INTEGER_CST
934 && ! TREE_CONSTANT_OVERFLOW (expr)
935 && TREE_INT_CST_LOW (expr) == 0
936 && TREE_INT_CST_HIGH (expr) == 0)
937 || (TREE_CODE (expr) == COMPLEX_CST
938 && integer_zerop (TREE_REALPART (expr))
939 && integer_zerop (TREE_IMAGPART (expr))));
940 }
941
942 /* Return 1 if EXPR is the integer constant one or the corresponding
943 complex constant. */
944
945 int
946 integer_onep (tree expr)
947 {
948 STRIP_NOPS (expr);
949
950 return ((TREE_CODE (expr) == INTEGER_CST
951 && ! TREE_CONSTANT_OVERFLOW (expr)
952 && TREE_INT_CST_LOW (expr) == 1
953 && TREE_INT_CST_HIGH (expr) == 0)
954 || (TREE_CODE (expr) == COMPLEX_CST
955 && integer_onep (TREE_REALPART (expr))
956 && integer_zerop (TREE_IMAGPART (expr))));
957 }
958
959 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
960 it contains. Likewise for the corresponding complex constant. */
961
962 int
963 integer_all_onesp (tree expr)
964 {
965 int prec;
966 int uns;
967
968 STRIP_NOPS (expr);
969
970 if (TREE_CODE (expr) == COMPLEX_CST
971 && integer_all_onesp (TREE_REALPART (expr))
972 && integer_zerop (TREE_IMAGPART (expr)))
973 return 1;
974
975 else if (TREE_CODE (expr) != INTEGER_CST
976 || TREE_CONSTANT_OVERFLOW (expr))
977 return 0;
978
979 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
980 if (!uns)
981 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
982 && TREE_INT_CST_HIGH (expr) == -1);
983
984 /* Note that using TYPE_PRECISION here is wrong. We care about the
985 actual bits, not the (arbitrary) range of the type. */
986 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
987 if (prec >= HOST_BITS_PER_WIDE_INT)
988 {
989 HOST_WIDE_INT high_value;
990 int shift_amount;
991
992 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
993
994 /* Can not handle precisions greater than twice the host int size. */
995 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
996 if (shift_amount == HOST_BITS_PER_WIDE_INT)
997 /* Shifting by the host word size is undefined according to the ANSI
998 standard, so we must handle this as a special case. */
999 high_value = -1;
1000 else
1001 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1002
1003 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1004 && TREE_INT_CST_HIGH (expr) == high_value);
1005 }
1006 else
1007 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1008 }
1009
1010 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1011 one bit on). */
1012
1013 int
1014 integer_pow2p (tree expr)
1015 {
1016 int prec;
1017 HOST_WIDE_INT high, low;
1018
1019 STRIP_NOPS (expr);
1020
1021 if (TREE_CODE (expr) == COMPLEX_CST
1022 && integer_pow2p (TREE_REALPART (expr))
1023 && integer_zerop (TREE_IMAGPART (expr)))
1024 return 1;
1025
1026 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1027 return 0;
1028
1029 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1030 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1031 high = TREE_INT_CST_HIGH (expr);
1032 low = TREE_INT_CST_LOW (expr);
1033
1034 /* First clear all bits that are beyond the type's precision in case
1035 we've been sign extended. */
1036
1037 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1038 ;
1039 else if (prec > HOST_BITS_PER_WIDE_INT)
1040 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1041 else
1042 {
1043 high = 0;
1044 if (prec < HOST_BITS_PER_WIDE_INT)
1045 low &= ~((HOST_WIDE_INT) (-1) << prec);
1046 }
1047
1048 if (high == 0 && low == 0)
1049 return 0;
1050
1051 return ((high == 0 && (low & (low - 1)) == 0)
1052 || (low == 0 && (high & (high - 1)) == 0));
1053 }
1054
1055 /* Return 1 if EXPR is an integer constant other than zero or a
1056 complex constant other than zero. */
1057
1058 int
1059 integer_nonzerop (tree expr)
1060 {
1061 STRIP_NOPS (expr);
1062
1063 return ((TREE_CODE (expr) == INTEGER_CST
1064 && ! TREE_CONSTANT_OVERFLOW (expr)
1065 && (TREE_INT_CST_LOW (expr) != 0
1066 || TREE_INT_CST_HIGH (expr) != 0))
1067 || (TREE_CODE (expr) == COMPLEX_CST
1068 && (integer_nonzerop (TREE_REALPART (expr))
1069 || integer_nonzerop (TREE_IMAGPART (expr)))));
1070 }
1071
1072 /* Return the power of two represented by a tree node known to be a
1073 power of two. */
1074
1075 int
1076 tree_log2 (tree expr)
1077 {
1078 int prec;
1079 HOST_WIDE_INT high, low;
1080
1081 STRIP_NOPS (expr);
1082
1083 if (TREE_CODE (expr) == COMPLEX_CST)
1084 return tree_log2 (TREE_REALPART (expr));
1085
1086 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1087 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1088
1089 high = TREE_INT_CST_HIGH (expr);
1090 low = TREE_INT_CST_LOW (expr);
1091
1092 /* First clear all bits that are beyond the type's precision in case
1093 we've been sign extended. */
1094
1095 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1096 ;
1097 else if (prec > HOST_BITS_PER_WIDE_INT)
1098 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1099 else
1100 {
1101 high = 0;
1102 if (prec < HOST_BITS_PER_WIDE_INT)
1103 low &= ~((HOST_WIDE_INT) (-1) << prec);
1104 }
1105
1106 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1107 : exact_log2 (low));
1108 }
1109
1110 /* Similar, but return the largest integer Y such that 2 ** Y is less
1111 than or equal to EXPR. */
1112
1113 int
1114 tree_floor_log2 (tree expr)
1115 {
1116 int prec;
1117 HOST_WIDE_INT high, low;
1118
1119 STRIP_NOPS (expr);
1120
1121 if (TREE_CODE (expr) == COMPLEX_CST)
1122 return tree_log2 (TREE_REALPART (expr));
1123
1124 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1125 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1126
1127 high = TREE_INT_CST_HIGH (expr);
1128 low = TREE_INT_CST_LOW (expr);
1129
1130 /* First clear all bits that are beyond the type's precision in case
1131 we've been sign extended. Ignore if type's precision hasn't been set
1132 since what we are doing is setting it. */
1133
1134 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1135 ;
1136 else if (prec > HOST_BITS_PER_WIDE_INT)
1137 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1138 else
1139 {
1140 high = 0;
1141 if (prec < HOST_BITS_PER_WIDE_INT)
1142 low &= ~((HOST_WIDE_INT) (-1) << prec);
1143 }
1144
1145 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1146 : floor_log2 (low));
1147 }
1148
1149 /* Return 1 if EXPR is the real constant zero. */
1150
1151 int
1152 real_zerop (tree expr)
1153 {
1154 STRIP_NOPS (expr);
1155
1156 return ((TREE_CODE (expr) == REAL_CST
1157 && ! TREE_CONSTANT_OVERFLOW (expr)
1158 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1159 || (TREE_CODE (expr) == COMPLEX_CST
1160 && real_zerop (TREE_REALPART (expr))
1161 && real_zerop (TREE_IMAGPART (expr))));
1162 }
1163
1164 /* Return 1 if EXPR is the real constant one in real or complex form. */
1165
1166 int
1167 real_onep (tree expr)
1168 {
1169 STRIP_NOPS (expr);
1170
1171 return ((TREE_CODE (expr) == REAL_CST
1172 && ! TREE_CONSTANT_OVERFLOW (expr)
1173 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1174 || (TREE_CODE (expr) == COMPLEX_CST
1175 && real_onep (TREE_REALPART (expr))
1176 && real_zerop (TREE_IMAGPART (expr))));
1177 }
1178
1179 /* Return 1 if EXPR is the real constant two. */
1180
1181 int
1182 real_twop (tree expr)
1183 {
1184 STRIP_NOPS (expr);
1185
1186 return ((TREE_CODE (expr) == REAL_CST
1187 && ! TREE_CONSTANT_OVERFLOW (expr)
1188 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1189 || (TREE_CODE (expr) == COMPLEX_CST
1190 && real_twop (TREE_REALPART (expr))
1191 && real_zerop (TREE_IMAGPART (expr))));
1192 }
1193
1194 /* Return 1 if EXPR is the real constant minus one. */
1195
1196 int
1197 real_minus_onep (tree expr)
1198 {
1199 STRIP_NOPS (expr);
1200
1201 return ((TREE_CODE (expr) == REAL_CST
1202 && ! TREE_CONSTANT_OVERFLOW (expr)
1203 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1204 || (TREE_CODE (expr) == COMPLEX_CST
1205 && real_minus_onep (TREE_REALPART (expr))
1206 && real_zerop (TREE_IMAGPART (expr))));
1207 }
1208
1209 /* Nonzero if EXP is a constant or a cast of a constant. */
1210
1211 int
1212 really_constant_p (tree exp)
1213 {
1214 /* This is not quite the same as STRIP_NOPS. It does more. */
1215 while (TREE_CODE (exp) == NOP_EXPR
1216 || TREE_CODE (exp) == CONVERT_EXPR
1217 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1218 exp = TREE_OPERAND (exp, 0);
1219 return TREE_CONSTANT (exp);
1220 }
1221 \f
1222 /* Return first list element whose TREE_VALUE is ELEM.
1223 Return 0 if ELEM is not in LIST. */
1224
1225 tree
1226 value_member (tree elem, tree list)
1227 {
1228 while (list)
1229 {
1230 if (elem == TREE_VALUE (list))
1231 return list;
1232 list = TREE_CHAIN (list);
1233 }
1234 return NULL_TREE;
1235 }
1236
1237 /* Return first list element whose TREE_PURPOSE is ELEM.
1238 Return 0 if ELEM is not in LIST. */
1239
1240 tree
1241 purpose_member (tree elem, tree list)
1242 {
1243 while (list)
1244 {
1245 if (elem == TREE_PURPOSE (list))
1246 return list;
1247 list = TREE_CHAIN (list);
1248 }
1249 return NULL_TREE;
1250 }
1251
1252 /* Return nonzero if ELEM is part of the chain CHAIN. */
1253
1254 int
1255 chain_member (tree elem, tree chain)
1256 {
1257 while (chain)
1258 {
1259 if (elem == chain)
1260 return 1;
1261 chain = TREE_CHAIN (chain);
1262 }
1263
1264 return 0;
1265 }
1266
1267 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1268 We expect a null pointer to mark the end of the chain.
1269 This is the Lisp primitive `length'. */
1270
1271 int
1272 list_length (tree t)
1273 {
1274 tree p = t;
1275 #ifdef ENABLE_TREE_CHECKING
1276 tree q = t;
1277 #endif
1278 int len = 0;
1279
1280 while (p)
1281 {
1282 p = TREE_CHAIN (p);
1283 #ifdef ENABLE_TREE_CHECKING
1284 if (len % 2)
1285 q = TREE_CHAIN (q);
1286 gcc_assert (p != q);
1287 #endif
1288 len++;
1289 }
1290
1291 return len;
1292 }
1293
1294 /* Returns the number of FIELD_DECLs in TYPE. */
1295
1296 int
1297 fields_length (tree type)
1298 {
1299 tree t = TYPE_FIELDS (type);
1300 int count = 0;
1301
1302 for (; t; t = TREE_CHAIN (t))
1303 if (TREE_CODE (t) == FIELD_DECL)
1304 ++count;
1305
1306 return count;
1307 }
1308
1309 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1310 by modifying the last node in chain 1 to point to chain 2.
1311 This is the Lisp primitive `nconc'. */
1312
1313 tree
1314 chainon (tree op1, tree op2)
1315 {
1316 tree t1;
1317
1318 if (!op1)
1319 return op2;
1320 if (!op2)
1321 return op1;
1322
1323 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1324 continue;
1325 TREE_CHAIN (t1) = op2;
1326
1327 #ifdef ENABLE_TREE_CHECKING
1328 {
1329 tree t2;
1330 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1331 gcc_assert (t2 != t1);
1332 }
1333 #endif
1334
1335 return op1;
1336 }
1337
1338 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1339
1340 tree
1341 tree_last (tree chain)
1342 {
1343 tree next;
1344 if (chain)
1345 while ((next = TREE_CHAIN (chain)))
1346 chain = next;
1347 return chain;
1348 }
1349
1350 /* Reverse the order of elements in the chain T,
1351 and return the new head of the chain (old last element). */
1352
1353 tree
1354 nreverse (tree t)
1355 {
1356 tree prev = 0, decl, next;
1357 for (decl = t; decl; decl = next)
1358 {
1359 next = TREE_CHAIN (decl);
1360 TREE_CHAIN (decl) = prev;
1361 prev = decl;
1362 }
1363 return prev;
1364 }
1365 \f
1366 /* Return a newly created TREE_LIST node whose
1367 purpose and value fields are PARM and VALUE. */
1368
1369 tree
1370 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1371 {
1372 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1373 TREE_PURPOSE (t) = parm;
1374 TREE_VALUE (t) = value;
1375 return t;
1376 }
1377
1378 /* Return a newly created TREE_LIST node whose
1379 purpose and value fields are PURPOSE and VALUE
1380 and whose TREE_CHAIN is CHAIN. */
1381
1382 tree
1383 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1384 {
1385 tree node;
1386
1387 node = ggc_alloc_zone_stat (sizeof (struct tree_list),
1388 tree_zone PASS_MEM_STAT);
1389
1390 memset (node, 0, sizeof (struct tree_common));
1391
1392 #ifdef GATHER_STATISTICS
1393 tree_node_counts[(int) x_kind]++;
1394 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1395 #endif
1396
1397 TREE_SET_CODE (node, TREE_LIST);
1398 TREE_CHAIN (node) = chain;
1399 TREE_PURPOSE (node) = purpose;
1400 TREE_VALUE (node) = value;
1401 return node;
1402 }
1403
1404 \f
1405 /* Return the size nominally occupied by an object of type TYPE
1406 when it resides in memory. The value is measured in units of bytes,
1407 and its data type is that normally used for type sizes
1408 (which is the first type created by make_signed_type or
1409 make_unsigned_type). */
1410
1411 tree
1412 size_in_bytes (tree type)
1413 {
1414 tree t;
1415
1416 if (type == error_mark_node)
1417 return integer_zero_node;
1418
1419 type = TYPE_MAIN_VARIANT (type);
1420 t = TYPE_SIZE_UNIT (type);
1421
1422 if (t == 0)
1423 {
1424 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1425 return size_zero_node;
1426 }
1427
1428 if (TREE_CODE (t) == INTEGER_CST)
1429 t = force_fit_type (t, 0, false, false);
1430
1431 return t;
1432 }
1433
1434 /* Return the size of TYPE (in bytes) as a wide integer
1435 or return -1 if the size can vary or is larger than an integer. */
1436
1437 HOST_WIDE_INT
1438 int_size_in_bytes (tree type)
1439 {
1440 tree t;
1441
1442 if (type == error_mark_node)
1443 return 0;
1444
1445 type = TYPE_MAIN_VARIANT (type);
1446 t = TYPE_SIZE_UNIT (type);
1447 if (t == 0
1448 || TREE_CODE (t) != INTEGER_CST
1449 || TREE_OVERFLOW (t)
1450 || TREE_INT_CST_HIGH (t) != 0
1451 /* If the result would appear negative, it's too big to represent. */
1452 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1453 return -1;
1454
1455 return TREE_INT_CST_LOW (t);
1456 }
1457 \f
1458 /* Return the bit position of FIELD, in bits from the start of the record.
1459 This is a tree of type bitsizetype. */
1460
1461 tree
1462 bit_position (tree field)
1463 {
1464 return bit_from_pos (DECL_FIELD_OFFSET (field),
1465 DECL_FIELD_BIT_OFFSET (field));
1466 }
1467
1468 /* Likewise, but return as an integer. Abort if it cannot be represented
1469 in that way (since it could be a signed value, we don't have the option
1470 of returning -1 like int_size_in_byte can. */
1471
1472 HOST_WIDE_INT
1473 int_bit_position (tree field)
1474 {
1475 return tree_low_cst (bit_position (field), 0);
1476 }
1477 \f
1478 /* Return the byte position of FIELD, in bytes from the start of the record.
1479 This is a tree of type sizetype. */
1480
1481 tree
1482 byte_position (tree field)
1483 {
1484 return byte_from_pos (DECL_FIELD_OFFSET (field),
1485 DECL_FIELD_BIT_OFFSET (field));
1486 }
1487
1488 /* Likewise, but return as an integer. Abort if it cannot be represented
1489 in that way (since it could be a signed value, we don't have the option
1490 of returning -1 like int_size_in_byte can. */
1491
1492 HOST_WIDE_INT
1493 int_byte_position (tree field)
1494 {
1495 return tree_low_cst (byte_position (field), 0);
1496 }
1497 \f
1498 /* Return the strictest alignment, in bits, that T is known to have. */
1499
1500 unsigned int
1501 expr_align (tree t)
1502 {
1503 unsigned int align0, align1;
1504
1505 switch (TREE_CODE (t))
1506 {
1507 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1508 /* If we have conversions, we know that the alignment of the
1509 object must meet each of the alignments of the types. */
1510 align0 = expr_align (TREE_OPERAND (t, 0));
1511 align1 = TYPE_ALIGN (TREE_TYPE (t));
1512 return MAX (align0, align1);
1513
1514 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1515 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1516 case CLEANUP_POINT_EXPR:
1517 /* These don't change the alignment of an object. */
1518 return expr_align (TREE_OPERAND (t, 0));
1519
1520 case COND_EXPR:
1521 /* The best we can do is say that the alignment is the least aligned
1522 of the two arms. */
1523 align0 = expr_align (TREE_OPERAND (t, 1));
1524 align1 = expr_align (TREE_OPERAND (t, 2));
1525 return MIN (align0, align1);
1526
1527 case LABEL_DECL: case CONST_DECL:
1528 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1529 if (DECL_ALIGN (t) != 0)
1530 return DECL_ALIGN (t);
1531 break;
1532
1533 case FUNCTION_DECL:
1534 return FUNCTION_BOUNDARY;
1535
1536 default:
1537 break;
1538 }
1539
1540 /* Otherwise take the alignment from that of the type. */
1541 return TYPE_ALIGN (TREE_TYPE (t));
1542 }
1543 \f
1544 /* Return, as a tree node, the number of elements for TYPE (which is an
1545 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1546
1547 tree
1548 array_type_nelts (tree type)
1549 {
1550 tree index_type, min, max;
1551
1552 /* If they did it with unspecified bounds, then we should have already
1553 given an error about it before we got here. */
1554 if (! TYPE_DOMAIN (type))
1555 return error_mark_node;
1556
1557 index_type = TYPE_DOMAIN (type);
1558 min = TYPE_MIN_VALUE (index_type);
1559 max = TYPE_MAX_VALUE (index_type);
1560
1561 return (integer_zerop (min)
1562 ? max
1563 : fold (build2 (MINUS_EXPR, TREE_TYPE (max), max, min)));
1564 }
1565 \f
1566 /* If arg is static -- a reference to an object in static storage -- then
1567 return the object. This is not the same as the C meaning of `static'.
1568 If arg isn't static, return NULL. */
1569
1570 tree
1571 staticp (tree arg)
1572 {
1573 switch (TREE_CODE (arg))
1574 {
1575 case FUNCTION_DECL:
1576 /* Nested functions are static, even though taking their address will
1577 involve a trampoline as we unnest the nested function and create
1578 the trampoline on the tree level. */
1579 return arg;
1580
1581 case VAR_DECL:
1582 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1583 && ! DECL_THREAD_LOCAL (arg)
1584 && ! DECL_NON_ADDR_CONST_P (arg)
1585 ? arg : NULL);
1586
1587 case CONST_DECL:
1588 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1589 ? arg : NULL);
1590
1591 case CONSTRUCTOR:
1592 return TREE_STATIC (arg) ? arg : NULL;
1593
1594 case LABEL_DECL:
1595 case STRING_CST:
1596 return arg;
1597
1598 case COMPONENT_REF:
1599 /* If the thing being referenced is not a field, then it is
1600 something language specific. */
1601 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1602 return (*lang_hooks.staticp) (arg);
1603
1604 /* If we are referencing a bitfield, we can't evaluate an
1605 ADDR_EXPR at compile time and so it isn't a constant. */
1606 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1607 return NULL;
1608
1609 return staticp (TREE_OPERAND (arg, 0));
1610
1611 case BIT_FIELD_REF:
1612 return NULL;
1613
1614 case MISALIGNED_INDIRECT_REF:
1615 case ALIGN_INDIRECT_REF:
1616 case INDIRECT_REF:
1617 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
1618
1619 case ARRAY_REF:
1620 case ARRAY_RANGE_REF:
1621 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1622 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1623 return staticp (TREE_OPERAND (arg, 0));
1624 else
1625 return false;
1626
1627 default:
1628 if ((unsigned int) TREE_CODE (arg)
1629 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1630 return lang_hooks.staticp (arg);
1631 else
1632 return NULL;
1633 }
1634 }
1635 \f
1636 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1637 Do this to any expression which may be used in more than one place,
1638 but must be evaluated only once.
1639
1640 Normally, expand_expr would reevaluate the expression each time.
1641 Calling save_expr produces something that is evaluated and recorded
1642 the first time expand_expr is called on it. Subsequent calls to
1643 expand_expr just reuse the recorded value.
1644
1645 The call to expand_expr that generates code that actually computes
1646 the value is the first call *at compile time*. Subsequent calls
1647 *at compile time* generate code to use the saved value.
1648 This produces correct result provided that *at run time* control
1649 always flows through the insns made by the first expand_expr
1650 before reaching the other places where the save_expr was evaluated.
1651 You, the caller of save_expr, must make sure this is so.
1652
1653 Constants, and certain read-only nodes, are returned with no
1654 SAVE_EXPR because that is safe. Expressions containing placeholders
1655 are not touched; see tree.def for an explanation of what these
1656 are used for. */
1657
1658 tree
1659 save_expr (tree expr)
1660 {
1661 tree t = fold (expr);
1662 tree inner;
1663
1664 /* If the tree evaluates to a constant, then we don't want to hide that
1665 fact (i.e. this allows further folding, and direct checks for constants).
1666 However, a read-only object that has side effects cannot be bypassed.
1667 Since it is no problem to reevaluate literals, we just return the
1668 literal node. */
1669 inner = skip_simple_arithmetic (t);
1670
1671 if (TREE_INVARIANT (inner)
1672 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1673 || TREE_CODE (inner) == SAVE_EXPR
1674 || TREE_CODE (inner) == ERROR_MARK)
1675 return t;
1676
1677 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1678 it means that the size or offset of some field of an object depends on
1679 the value within another field.
1680
1681 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1682 and some variable since it would then need to be both evaluated once and
1683 evaluated more than once. Front-ends must assure this case cannot
1684 happen by surrounding any such subexpressions in their own SAVE_EXPR
1685 and forcing evaluation at the proper time. */
1686 if (contains_placeholder_p (inner))
1687 return t;
1688
1689 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
1690
1691 /* This expression might be placed ahead of a jump to ensure that the
1692 value was computed on both sides of the jump. So make sure it isn't
1693 eliminated as dead. */
1694 TREE_SIDE_EFFECTS (t) = 1;
1695 TREE_INVARIANT (t) = 1;
1696 return t;
1697 }
1698
1699 /* Look inside EXPR and into any simple arithmetic operations. Return
1700 the innermost non-arithmetic node. */
1701
1702 tree
1703 skip_simple_arithmetic (tree expr)
1704 {
1705 tree inner;
1706
1707 /* We don't care about whether this can be used as an lvalue in this
1708 context. */
1709 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1710 expr = TREE_OPERAND (expr, 0);
1711
1712 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1713 a constant, it will be more efficient to not make another SAVE_EXPR since
1714 it will allow better simplification and GCSE will be able to merge the
1715 computations if they actually occur. */
1716 inner = expr;
1717 while (1)
1718 {
1719 if (UNARY_CLASS_P (inner))
1720 inner = TREE_OPERAND (inner, 0);
1721 else if (BINARY_CLASS_P (inner))
1722 {
1723 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
1724 inner = TREE_OPERAND (inner, 0);
1725 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
1726 inner = TREE_OPERAND (inner, 1);
1727 else
1728 break;
1729 }
1730 else
1731 break;
1732 }
1733
1734 return inner;
1735 }
1736
1737 /* Returns the index of the first non-tree operand for CODE, or the number
1738 of operands if all are trees. */
1739
1740 int
1741 first_rtl_op (enum tree_code code)
1742 {
1743 switch (code)
1744 {
1745 default:
1746 return TREE_CODE_LENGTH (code);
1747 }
1748 }
1749
1750 /* Return which tree structure is used by T. */
1751
1752 enum tree_node_structure_enum
1753 tree_node_structure (tree t)
1754 {
1755 enum tree_code code = TREE_CODE (t);
1756
1757 switch (TREE_CODE_CLASS (code))
1758 {
1759 case tcc_declaration:
1760 return TS_DECL;
1761 case tcc_type:
1762 return TS_TYPE;
1763 case tcc_reference:
1764 case tcc_comparison:
1765 case tcc_unary:
1766 case tcc_binary:
1767 case tcc_expression:
1768 case tcc_statement:
1769 return TS_EXP;
1770 default: /* tcc_constant and tcc_exceptional */
1771 break;
1772 }
1773 switch (code)
1774 {
1775 /* tcc_constant cases. */
1776 case INTEGER_CST: return TS_INT_CST;
1777 case REAL_CST: return TS_REAL_CST;
1778 case COMPLEX_CST: return TS_COMPLEX;
1779 case VECTOR_CST: return TS_VECTOR;
1780 case STRING_CST: return TS_STRING;
1781 /* tcc_exceptional cases. */
1782 case ERROR_MARK: return TS_COMMON;
1783 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1784 case TREE_LIST: return TS_LIST;
1785 case TREE_VEC: return TS_VEC;
1786 case PHI_NODE: return TS_PHI_NODE;
1787 case SSA_NAME: return TS_SSA_NAME;
1788 case PLACEHOLDER_EXPR: return TS_COMMON;
1789 case STATEMENT_LIST: return TS_STATEMENT_LIST;
1790 case BLOCK: return TS_BLOCK;
1791 case TREE_BINFO: return TS_BINFO;
1792 case VALUE_HANDLE: return TS_VALUE_HANDLE;
1793
1794 default:
1795 gcc_unreachable ();
1796 }
1797 }
1798 \f
1799 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1800 or offset that depends on a field within a record. */
1801
1802 bool
1803 contains_placeholder_p (tree exp)
1804 {
1805 enum tree_code code;
1806
1807 if (!exp)
1808 return 0;
1809
1810 code = TREE_CODE (exp);
1811 if (code == PLACEHOLDER_EXPR)
1812 return 1;
1813
1814 switch (TREE_CODE_CLASS (code))
1815 {
1816 case tcc_reference:
1817 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1818 position computations since they will be converted into a
1819 WITH_RECORD_EXPR involving the reference, which will assume
1820 here will be valid. */
1821 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1822
1823 case tcc_exceptional:
1824 if (code == TREE_LIST)
1825 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1826 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1827 break;
1828
1829 case tcc_unary:
1830 case tcc_binary:
1831 case tcc_comparison:
1832 case tcc_expression:
1833 switch (code)
1834 {
1835 case COMPOUND_EXPR:
1836 /* Ignoring the first operand isn't quite right, but works best. */
1837 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1838
1839 case COND_EXPR:
1840 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1841 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1842 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1843
1844 default:
1845 break;
1846 }
1847
1848 switch (first_rtl_op (code))
1849 {
1850 case 1:
1851 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1852 case 2:
1853 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1854 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1855 default:
1856 return 0;
1857 }
1858
1859 default:
1860 return 0;
1861 }
1862 return 0;
1863 }
1864
1865 /* Return true if any part of the computation of TYPE involves a
1866 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
1867 (for QUAL_UNION_TYPE) and field positions. */
1868
1869 static bool
1870 type_contains_placeholder_1 (tree type)
1871 {
1872 /* If the size contains a placeholder or the parent type (component type in
1873 the case of arrays) type involves a placeholder, this type does. */
1874 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1875 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1876 || (TREE_TYPE (type) != 0
1877 && type_contains_placeholder_p (TREE_TYPE (type))))
1878 return true;
1879
1880 /* Now do type-specific checks. Note that the last part of the check above
1881 greatly limits what we have to do below. */
1882 switch (TREE_CODE (type))
1883 {
1884 case VOID_TYPE:
1885 case COMPLEX_TYPE:
1886 case ENUMERAL_TYPE:
1887 case BOOLEAN_TYPE:
1888 case CHAR_TYPE:
1889 case POINTER_TYPE:
1890 case OFFSET_TYPE:
1891 case REFERENCE_TYPE:
1892 case METHOD_TYPE:
1893 case FILE_TYPE:
1894 case FUNCTION_TYPE:
1895 return false;
1896
1897 case INTEGER_TYPE:
1898 case REAL_TYPE:
1899 /* Here we just check the bounds. */
1900 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1901 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1902
1903 case ARRAY_TYPE:
1904 case SET_TYPE:
1905 case VECTOR_TYPE:
1906 /* We're already checked the component type (TREE_TYPE), so just check
1907 the index type. */
1908 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1909
1910 case RECORD_TYPE:
1911 case UNION_TYPE:
1912 case QUAL_UNION_TYPE:
1913 {
1914 tree field;
1915
1916 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1917 if (TREE_CODE (field) == FIELD_DECL
1918 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1919 || (TREE_CODE (type) == QUAL_UNION_TYPE
1920 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1921 || type_contains_placeholder_p (TREE_TYPE (field))))
1922 return true;
1923
1924 return false;
1925 }
1926
1927 default:
1928 gcc_unreachable ();
1929 }
1930 }
1931
1932 bool
1933 type_contains_placeholder_p (tree type)
1934 {
1935 bool result;
1936
1937 /* If the contains_placeholder_bits field has been initialized,
1938 then we know the answer. */
1939 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
1940 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
1941
1942 /* Indicate that we've seen this type node, and the answer is false.
1943 This is what we want to return if we run into recursion via fields. */
1944 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
1945
1946 /* Compute the real value. */
1947 result = type_contains_placeholder_1 (type);
1948
1949 /* Store the real value. */
1950 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
1951
1952 return result;
1953 }
1954 \f
1955 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1956 return a tree with all occurrences of references to F in a
1957 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1958 contains only arithmetic expressions or a CALL_EXPR with a
1959 PLACEHOLDER_EXPR occurring only in its arglist. */
1960
1961 tree
1962 substitute_in_expr (tree exp, tree f, tree r)
1963 {
1964 enum tree_code code = TREE_CODE (exp);
1965 tree op0, op1, op2;
1966 tree new;
1967 tree inner;
1968
1969 /* We handle TREE_LIST and COMPONENT_REF separately. */
1970 if (code == TREE_LIST)
1971 {
1972 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
1973 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
1974 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1975 return exp;
1976
1977 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1978 }
1979 else if (code == COMPONENT_REF)
1980 {
1981 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1982 and it is the right field, replace it with R. */
1983 for (inner = TREE_OPERAND (exp, 0);
1984 REFERENCE_CLASS_P (inner);
1985 inner = TREE_OPERAND (inner, 0))
1986 ;
1987 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1988 && TREE_OPERAND (exp, 1) == f)
1989 return r;
1990
1991 /* If this expression hasn't been completed let, leave it alone. */
1992 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
1993 return exp;
1994
1995 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1996 if (op0 == TREE_OPERAND (exp, 0))
1997 return exp;
1998
1999 new = fold (build3 (COMPONENT_REF, TREE_TYPE (exp),
2000 op0, TREE_OPERAND (exp, 1), NULL_TREE));
2001 }
2002 else
2003 switch (TREE_CODE_CLASS (code))
2004 {
2005 case tcc_constant:
2006 case tcc_declaration:
2007 return exp;
2008
2009 case tcc_exceptional:
2010 case tcc_unary:
2011 case tcc_binary:
2012 case tcc_comparison:
2013 case tcc_expression:
2014 case tcc_reference:
2015 switch (first_rtl_op (code))
2016 {
2017 case 0:
2018 return exp;
2019
2020 case 1:
2021 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2022 if (op0 == TREE_OPERAND (exp, 0))
2023 return exp;
2024
2025 new = fold (build1 (code, TREE_TYPE (exp), op0));
2026 break;
2027
2028 case 2:
2029 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2030 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2031
2032 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2033 return exp;
2034
2035 new = fold (build2 (code, TREE_TYPE (exp), op0, op1));
2036 break;
2037
2038 case 3:
2039 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2040 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2041 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2042
2043 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2044 && op2 == TREE_OPERAND (exp, 2))
2045 return exp;
2046
2047 new = fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2048 break;
2049
2050 default:
2051 gcc_unreachable ();
2052 }
2053 break;
2054
2055 default:
2056 gcc_unreachable ();
2057 }
2058
2059 TREE_READONLY (new) = TREE_READONLY (exp);
2060 return new;
2061 }
2062
2063 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2064 for it within OBJ, a tree that is an object or a chain of references. */
2065
2066 tree
2067 substitute_placeholder_in_expr (tree exp, tree obj)
2068 {
2069 enum tree_code code = TREE_CODE (exp);
2070 tree op0, op1, op2, op3;
2071
2072 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2073 in the chain of OBJ. */
2074 if (code == PLACEHOLDER_EXPR)
2075 {
2076 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2077 tree elt;
2078
2079 for (elt = obj; elt != 0;
2080 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2081 || TREE_CODE (elt) == COND_EXPR)
2082 ? TREE_OPERAND (elt, 1)
2083 : (REFERENCE_CLASS_P (elt)
2084 || UNARY_CLASS_P (elt)
2085 || BINARY_CLASS_P (elt)
2086 || EXPRESSION_CLASS_P (elt))
2087 ? TREE_OPERAND (elt, 0) : 0))
2088 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2089 return elt;
2090
2091 for (elt = obj; elt != 0;
2092 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2093 || TREE_CODE (elt) == COND_EXPR)
2094 ? TREE_OPERAND (elt, 1)
2095 : (REFERENCE_CLASS_P (elt)
2096 || UNARY_CLASS_P (elt)
2097 || BINARY_CLASS_P (elt)
2098 || EXPRESSION_CLASS_P (elt))
2099 ? TREE_OPERAND (elt, 0) : 0))
2100 if (POINTER_TYPE_P (TREE_TYPE (elt))
2101 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2102 == need_type))
2103 return fold (build1 (INDIRECT_REF, need_type, elt));
2104
2105 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2106 survives until RTL generation, there will be an error. */
2107 return exp;
2108 }
2109
2110 /* TREE_LIST is special because we need to look at TREE_VALUE
2111 and TREE_CHAIN, not TREE_OPERANDS. */
2112 else if (code == TREE_LIST)
2113 {
2114 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2115 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2116 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2117 return exp;
2118
2119 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2120 }
2121 else
2122 switch (TREE_CODE_CLASS (code))
2123 {
2124 case tcc_constant:
2125 case tcc_declaration:
2126 return exp;
2127
2128 case tcc_exceptional:
2129 case tcc_unary:
2130 case tcc_binary:
2131 case tcc_comparison:
2132 case tcc_expression:
2133 case tcc_reference:
2134 case tcc_statement:
2135 switch (first_rtl_op (code))
2136 {
2137 case 0:
2138 return exp;
2139
2140 case 1:
2141 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2142 if (op0 == TREE_OPERAND (exp, 0))
2143 return exp;
2144 else
2145 return fold (build1 (code, TREE_TYPE (exp), op0));
2146
2147 case 2:
2148 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2149 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2150
2151 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2152 return exp;
2153 else
2154 return fold (build2 (code, TREE_TYPE (exp), op0, op1));
2155
2156 case 3:
2157 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2158 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2159 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2160
2161 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2162 && op2 == TREE_OPERAND (exp, 2))
2163 return exp;
2164 else
2165 return fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2166
2167 case 4:
2168 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2169 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2170 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2171 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2172
2173 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2174 && op2 == TREE_OPERAND (exp, 2)
2175 && op3 == TREE_OPERAND (exp, 3))
2176 return exp;
2177 else
2178 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2179
2180 default:
2181 gcc_unreachable ();
2182 }
2183 break;
2184
2185 default:
2186 gcc_unreachable ();
2187 }
2188 }
2189 \f
2190 /* Stabilize a reference so that we can use it any number of times
2191 without causing its operands to be evaluated more than once.
2192 Returns the stabilized reference. This works by means of save_expr,
2193 so see the caveats in the comments about save_expr.
2194
2195 Also allows conversion expressions whose operands are references.
2196 Any other kind of expression is returned unchanged. */
2197
2198 tree
2199 stabilize_reference (tree ref)
2200 {
2201 tree result;
2202 enum tree_code code = TREE_CODE (ref);
2203
2204 switch (code)
2205 {
2206 case VAR_DECL:
2207 case PARM_DECL:
2208 case RESULT_DECL:
2209 /* No action is needed in this case. */
2210 return ref;
2211
2212 case NOP_EXPR:
2213 case CONVERT_EXPR:
2214 case FLOAT_EXPR:
2215 case FIX_TRUNC_EXPR:
2216 case FIX_FLOOR_EXPR:
2217 case FIX_ROUND_EXPR:
2218 case FIX_CEIL_EXPR:
2219 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2220 break;
2221
2222 case INDIRECT_REF:
2223 result = build_nt (INDIRECT_REF,
2224 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2225 break;
2226
2227 case COMPONENT_REF:
2228 result = build_nt (COMPONENT_REF,
2229 stabilize_reference (TREE_OPERAND (ref, 0)),
2230 TREE_OPERAND (ref, 1), NULL_TREE);
2231 break;
2232
2233 case BIT_FIELD_REF:
2234 result = build_nt (BIT_FIELD_REF,
2235 stabilize_reference (TREE_OPERAND (ref, 0)),
2236 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2237 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2238 break;
2239
2240 case ARRAY_REF:
2241 result = build_nt (ARRAY_REF,
2242 stabilize_reference (TREE_OPERAND (ref, 0)),
2243 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2244 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2245 break;
2246
2247 case ARRAY_RANGE_REF:
2248 result = build_nt (ARRAY_RANGE_REF,
2249 stabilize_reference (TREE_OPERAND (ref, 0)),
2250 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2251 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2252 break;
2253
2254 case COMPOUND_EXPR:
2255 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2256 it wouldn't be ignored. This matters when dealing with
2257 volatiles. */
2258 return stabilize_reference_1 (ref);
2259
2260 /* If arg isn't a kind of lvalue we recognize, make no change.
2261 Caller should recognize the error for an invalid lvalue. */
2262 default:
2263 return ref;
2264
2265 case ERROR_MARK:
2266 return error_mark_node;
2267 }
2268
2269 TREE_TYPE (result) = TREE_TYPE (ref);
2270 TREE_READONLY (result) = TREE_READONLY (ref);
2271 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2272 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2273
2274 return result;
2275 }
2276
2277 /* Subroutine of stabilize_reference; this is called for subtrees of
2278 references. Any expression with side-effects must be put in a SAVE_EXPR
2279 to ensure that it is only evaluated once.
2280
2281 We don't put SAVE_EXPR nodes around everything, because assigning very
2282 simple expressions to temporaries causes us to miss good opportunities
2283 for optimizations. Among other things, the opportunity to fold in the
2284 addition of a constant into an addressing mode often gets lost, e.g.
2285 "y[i+1] += x;". In general, we take the approach that we should not make
2286 an assignment unless we are forced into it - i.e., that any non-side effect
2287 operator should be allowed, and that cse should take care of coalescing
2288 multiple utterances of the same expression should that prove fruitful. */
2289
2290 tree
2291 stabilize_reference_1 (tree e)
2292 {
2293 tree result;
2294 enum tree_code code = TREE_CODE (e);
2295
2296 /* We cannot ignore const expressions because it might be a reference
2297 to a const array but whose index contains side-effects. But we can
2298 ignore things that are actual constant or that already have been
2299 handled by this function. */
2300
2301 if (TREE_INVARIANT (e))
2302 return e;
2303
2304 switch (TREE_CODE_CLASS (code))
2305 {
2306 case tcc_exceptional:
2307 case tcc_type:
2308 case tcc_declaration:
2309 case tcc_comparison:
2310 case tcc_statement:
2311 case tcc_expression:
2312 case tcc_reference:
2313 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2314 so that it will only be evaluated once. */
2315 /* The reference (r) and comparison (<) classes could be handled as
2316 below, but it is generally faster to only evaluate them once. */
2317 if (TREE_SIDE_EFFECTS (e))
2318 return save_expr (e);
2319 return e;
2320
2321 case tcc_constant:
2322 /* Constants need no processing. In fact, we should never reach
2323 here. */
2324 return e;
2325
2326 case tcc_binary:
2327 /* Division is slow and tends to be compiled with jumps,
2328 especially the division by powers of 2 that is often
2329 found inside of an array reference. So do it just once. */
2330 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2331 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2332 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2333 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2334 return save_expr (e);
2335 /* Recursively stabilize each operand. */
2336 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2337 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2338 break;
2339
2340 case tcc_unary:
2341 /* Recursively stabilize each operand. */
2342 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2343 break;
2344
2345 default:
2346 gcc_unreachable ();
2347 }
2348
2349 TREE_TYPE (result) = TREE_TYPE (e);
2350 TREE_READONLY (result) = TREE_READONLY (e);
2351 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2352 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2353 TREE_INVARIANT (result) = 1;
2354
2355 return result;
2356 }
2357 \f
2358 /* Low-level constructors for expressions. */
2359
2360 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2361 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2362
2363 void
2364 recompute_tree_invarant_for_addr_expr (tree t)
2365 {
2366 tree node;
2367 bool tc = true, ti = true, se = false;
2368
2369 /* We started out assuming this address is both invariant and constant, but
2370 does not have side effects. Now go down any handled components and see if
2371 any of them involve offsets that are either non-constant or non-invariant.
2372 Also check for side-effects.
2373
2374 ??? Note that this code makes no attempt to deal with the case where
2375 taking the address of something causes a copy due to misalignment. */
2376
2377 #define UPDATE_TITCSE(NODE) \
2378 do { tree _node = (NODE); \
2379 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2380 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2381 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2382
2383 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2384 node = TREE_OPERAND (node, 0))
2385 {
2386 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2387 array reference (probably made temporarily by the G++ front end),
2388 so ignore all the operands. */
2389 if ((TREE_CODE (node) == ARRAY_REF
2390 || TREE_CODE (node) == ARRAY_RANGE_REF)
2391 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2392 {
2393 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2394 if (TREE_OPERAND (node, 2))
2395 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2396 if (TREE_OPERAND (node, 3))
2397 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2398 }
2399 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2400 FIELD_DECL, apparently. The G++ front end can put something else
2401 there, at least temporarily. */
2402 else if (TREE_CODE (node) == COMPONENT_REF
2403 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2404 {
2405 if (TREE_OPERAND (node, 2))
2406 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2407 }
2408 else if (TREE_CODE (node) == BIT_FIELD_REF)
2409 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2410 }
2411
2412 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2413 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2414 invariant and constant if the decl is static. It's also invariant if it's
2415 a decl in the current function. Taking the address of a volatile variable
2416 is not volatile. If it's a constant, the address is both invariant and
2417 constant. Otherwise it's neither. */
2418 if (TREE_CODE (node) == INDIRECT_REF)
2419 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2420 else if (DECL_P (node))
2421 {
2422 if (staticp (node))
2423 ;
2424 else if (decl_function_context (node) == current_function_decl
2425 /* Addresses of thread-local variables are invariant. */
2426 || (TREE_CODE (node) == VAR_DECL && DECL_THREAD_LOCAL (node)))
2427 tc = false;
2428 else
2429 ti = tc = false;
2430 }
2431 else if (CONSTANT_CLASS_P (node))
2432 ;
2433 else
2434 {
2435 ti = tc = false;
2436 se |= TREE_SIDE_EFFECTS (node);
2437 }
2438
2439 TREE_CONSTANT (t) = tc;
2440 TREE_INVARIANT (t) = ti;
2441 TREE_SIDE_EFFECTS (t) = se;
2442 #undef UPDATE_TITCSE
2443 }
2444
2445 /* Build an expression of code CODE, data type TYPE, and operands as
2446 specified. Expressions and reference nodes can be created this way.
2447 Constants, decls, types and misc nodes cannot be.
2448
2449 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2450 enough for all extant tree codes. These functions can be called
2451 directly (preferably!), but can also be obtained via GCC preprocessor
2452 magic within the build macro. */
2453
2454 tree
2455 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2456 {
2457 tree t;
2458
2459 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2460
2461 t = make_node_stat (code PASS_MEM_STAT);
2462 TREE_TYPE (t) = tt;
2463
2464 return t;
2465 }
2466
2467 tree
2468 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2469 {
2470 int length = sizeof (struct tree_exp);
2471 #ifdef GATHER_STATISTICS
2472 tree_node_kind kind;
2473 #endif
2474 tree t;
2475
2476 #ifdef GATHER_STATISTICS
2477 switch (TREE_CODE_CLASS (code))
2478 {
2479 case tcc_statement: /* an expression with side effects */
2480 kind = s_kind;
2481 break;
2482 case tcc_reference: /* a reference */
2483 kind = r_kind;
2484 break;
2485 default:
2486 kind = e_kind;
2487 break;
2488 }
2489
2490 tree_node_counts[(int) kind]++;
2491 tree_node_sizes[(int) kind] += length;
2492 #endif
2493
2494 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2495
2496 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
2497
2498 memset (t, 0, sizeof (struct tree_common));
2499
2500 TREE_SET_CODE (t, code);
2501
2502 TREE_TYPE (t) = type;
2503 #ifdef USE_MAPPED_LOCATION
2504 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2505 #else
2506 SET_EXPR_LOCUS (t, NULL);
2507 #endif
2508 TREE_COMPLEXITY (t) = 0;
2509 TREE_OPERAND (t, 0) = node;
2510 TREE_BLOCK (t) = NULL_TREE;
2511 if (node && !TYPE_P (node) && first_rtl_op (code) != 0)
2512 {
2513 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2514 TREE_READONLY (t) = TREE_READONLY (node);
2515 }
2516
2517 if (TREE_CODE_CLASS (code) == tcc_statement)
2518 TREE_SIDE_EFFECTS (t) = 1;
2519 else switch (code)
2520 {
2521 case INIT_EXPR:
2522 case MODIFY_EXPR:
2523 case VA_ARG_EXPR:
2524 case PREDECREMENT_EXPR:
2525 case PREINCREMENT_EXPR:
2526 case POSTDECREMENT_EXPR:
2527 case POSTINCREMENT_EXPR:
2528 /* All of these have side-effects, no matter what their
2529 operands are. */
2530 TREE_SIDE_EFFECTS (t) = 1;
2531 TREE_READONLY (t) = 0;
2532 break;
2533
2534 case MISALIGNED_INDIRECT_REF:
2535 case ALIGN_INDIRECT_REF:
2536 case INDIRECT_REF:
2537 /* Whether a dereference is readonly has nothing to do with whether
2538 its operand is readonly. */
2539 TREE_READONLY (t) = 0;
2540 break;
2541
2542 case ADDR_EXPR:
2543 if (node)
2544 recompute_tree_invarant_for_addr_expr (t);
2545 break;
2546
2547 default:
2548 if (TREE_CODE_CLASS (code) == tcc_unary
2549 && node && !TYPE_P (node)
2550 && TREE_CONSTANT (node))
2551 TREE_CONSTANT (t) = 1;
2552 if (TREE_CODE_CLASS (code) == tcc_unary
2553 && node && TREE_INVARIANT (node))
2554 TREE_INVARIANT (t) = 1;
2555 if (TREE_CODE_CLASS (code) == tcc_reference
2556 && node && TREE_THIS_VOLATILE (node))
2557 TREE_THIS_VOLATILE (t) = 1;
2558 break;
2559 }
2560
2561 return t;
2562 }
2563
2564 #define PROCESS_ARG(N) \
2565 do { \
2566 TREE_OPERAND (t, N) = arg##N; \
2567 if (arg##N &&!TYPE_P (arg##N) && fro > N) \
2568 { \
2569 if (TREE_SIDE_EFFECTS (arg##N)) \
2570 side_effects = 1; \
2571 if (!TREE_READONLY (arg##N)) \
2572 read_only = 0; \
2573 if (!TREE_CONSTANT (arg##N)) \
2574 constant = 0; \
2575 if (!TREE_INVARIANT (arg##N)) \
2576 invariant = 0; \
2577 } \
2578 } while (0)
2579
2580 tree
2581 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2582 {
2583 bool constant, read_only, side_effects, invariant;
2584 tree t;
2585 int fro;
2586
2587 gcc_assert (TREE_CODE_LENGTH (code) == 2);
2588
2589 t = make_node_stat (code PASS_MEM_STAT);
2590 TREE_TYPE (t) = tt;
2591
2592 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2593 result based on those same flags for the arguments. But if the
2594 arguments aren't really even `tree' expressions, we shouldn't be trying
2595 to do this. */
2596 fro = first_rtl_op (code);
2597
2598 /* Expressions without side effects may be constant if their
2599 arguments are as well. */
2600 constant = (TREE_CODE_CLASS (code) == tcc_comparison
2601 || TREE_CODE_CLASS (code) == tcc_binary);
2602 read_only = 1;
2603 side_effects = TREE_SIDE_EFFECTS (t);
2604 invariant = constant;
2605
2606 PROCESS_ARG(0);
2607 PROCESS_ARG(1);
2608
2609 TREE_READONLY (t) = read_only;
2610 TREE_CONSTANT (t) = constant;
2611 TREE_INVARIANT (t) = invariant;
2612 TREE_SIDE_EFFECTS (t) = side_effects;
2613 TREE_THIS_VOLATILE (t)
2614 = (TREE_CODE_CLASS (code) == tcc_reference
2615 && arg0 && TREE_THIS_VOLATILE (arg0));
2616
2617 return t;
2618 }
2619
2620 tree
2621 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2622 tree arg2 MEM_STAT_DECL)
2623 {
2624 bool constant, read_only, side_effects, invariant;
2625 tree t;
2626 int fro;
2627
2628 gcc_assert (TREE_CODE_LENGTH (code) == 3);
2629
2630 t = make_node_stat (code PASS_MEM_STAT);
2631 TREE_TYPE (t) = tt;
2632
2633 fro = first_rtl_op (code);
2634
2635 side_effects = TREE_SIDE_EFFECTS (t);
2636
2637 PROCESS_ARG(0);
2638 PROCESS_ARG(1);
2639 PROCESS_ARG(2);
2640
2641 if (code == CALL_EXPR && !side_effects)
2642 {
2643 tree node;
2644 int i;
2645
2646 /* Calls have side-effects, except those to const or
2647 pure functions. */
2648 i = call_expr_flags (t);
2649 if (!(i & (ECF_CONST | ECF_PURE)))
2650 side_effects = 1;
2651
2652 /* And even those have side-effects if their arguments do. */
2653 else for (node = arg1; node; node = TREE_CHAIN (node))
2654 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2655 {
2656 side_effects = 1;
2657 break;
2658 }
2659 }
2660
2661 TREE_SIDE_EFFECTS (t) = side_effects;
2662 TREE_THIS_VOLATILE (t)
2663 = (TREE_CODE_CLASS (code) == tcc_reference
2664 && arg0 && TREE_THIS_VOLATILE (arg0));
2665
2666 return t;
2667 }
2668
2669 tree
2670 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2671 tree arg2, tree arg3 MEM_STAT_DECL)
2672 {
2673 bool constant, read_only, side_effects, invariant;
2674 tree t;
2675 int fro;
2676
2677 gcc_assert (TREE_CODE_LENGTH (code) == 4);
2678
2679 t = make_node_stat (code PASS_MEM_STAT);
2680 TREE_TYPE (t) = tt;
2681
2682 fro = first_rtl_op (code);
2683
2684 side_effects = TREE_SIDE_EFFECTS (t);
2685
2686 PROCESS_ARG(0);
2687 PROCESS_ARG(1);
2688 PROCESS_ARG(2);
2689 PROCESS_ARG(3);
2690
2691 TREE_SIDE_EFFECTS (t) = side_effects;
2692 TREE_THIS_VOLATILE (t)
2693 = (TREE_CODE_CLASS (code) == tcc_reference
2694 && arg0 && TREE_THIS_VOLATILE (arg0));
2695
2696 return t;
2697 }
2698
2699 /* Backup definition for non-gcc build compilers. */
2700
2701 tree
2702 (build) (enum tree_code code, tree tt, ...)
2703 {
2704 tree t, arg0, arg1, arg2, arg3;
2705 int length = TREE_CODE_LENGTH (code);
2706 va_list p;
2707
2708 va_start (p, tt);
2709 switch (length)
2710 {
2711 case 0:
2712 t = build0 (code, tt);
2713 break;
2714 case 1:
2715 arg0 = va_arg (p, tree);
2716 t = build1 (code, tt, arg0);
2717 break;
2718 case 2:
2719 arg0 = va_arg (p, tree);
2720 arg1 = va_arg (p, tree);
2721 t = build2 (code, tt, arg0, arg1);
2722 break;
2723 case 3:
2724 arg0 = va_arg (p, tree);
2725 arg1 = va_arg (p, tree);
2726 arg2 = va_arg (p, tree);
2727 t = build3 (code, tt, arg0, arg1, arg2);
2728 break;
2729 case 4:
2730 arg0 = va_arg (p, tree);
2731 arg1 = va_arg (p, tree);
2732 arg2 = va_arg (p, tree);
2733 arg3 = va_arg (p, tree);
2734 t = build4 (code, tt, arg0, arg1, arg2, arg3);
2735 break;
2736 default:
2737 gcc_unreachable ();
2738 }
2739 va_end (p);
2740
2741 return t;
2742 }
2743
2744 /* Similar except don't specify the TREE_TYPE
2745 and leave the TREE_SIDE_EFFECTS as 0.
2746 It is permissible for arguments to be null,
2747 or even garbage if their values do not matter. */
2748
2749 tree
2750 build_nt (enum tree_code code, ...)
2751 {
2752 tree t;
2753 int length;
2754 int i;
2755 va_list p;
2756
2757 va_start (p, code);
2758
2759 t = make_node (code);
2760 length = TREE_CODE_LENGTH (code);
2761
2762 for (i = 0; i < length; i++)
2763 TREE_OPERAND (t, i) = va_arg (p, tree);
2764
2765 va_end (p);
2766 return t;
2767 }
2768 \f
2769 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2770 We do NOT enter this node in any sort of symbol table.
2771
2772 layout_decl is used to set up the decl's storage layout.
2773 Other slots are initialized to 0 or null pointers. */
2774
2775 tree
2776 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
2777 {
2778 tree t;
2779
2780 t = make_node_stat (code PASS_MEM_STAT);
2781
2782 /* if (type == error_mark_node)
2783 type = integer_type_node; */
2784 /* That is not done, deliberately, so that having error_mark_node
2785 as the type can suppress useless errors in the use of this variable. */
2786
2787 DECL_NAME (t) = name;
2788 TREE_TYPE (t) = type;
2789
2790 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2791 layout_decl (t, 0);
2792 else if (code == FUNCTION_DECL)
2793 DECL_MODE (t) = FUNCTION_MODE;
2794
2795 /* Set default visibility to whatever the user supplied with
2796 visibility_specified depending on #pragma GCC visibility. */
2797 DECL_VISIBILITY (t) = default_visibility;
2798 DECL_VISIBILITY_SPECIFIED (t) = visibility_options.inpragma;
2799
2800 return t;
2801 }
2802 \f
2803 /* BLOCK nodes are used to represent the structure of binding contours
2804 and declarations, once those contours have been exited and their contents
2805 compiled. This information is used for outputting debugging info. */
2806
2807 tree
2808 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2809 tree supercontext, tree chain)
2810 {
2811 tree block = make_node (BLOCK);
2812
2813 BLOCK_VARS (block) = vars;
2814 BLOCK_SUBBLOCKS (block) = subblocks;
2815 BLOCK_SUPERCONTEXT (block) = supercontext;
2816 BLOCK_CHAIN (block) = chain;
2817 return block;
2818 }
2819
2820 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
2821 /* ??? gengtype doesn't handle conditionals */
2822 static GTY(()) tree last_annotated_node;
2823 #endif
2824
2825 #ifdef USE_MAPPED_LOCATION
2826
2827 expanded_location
2828 expand_location (source_location loc)
2829 {
2830 expanded_location xloc;
2831 if (loc == 0) { xloc.file = NULL; xloc.line = 0; xloc.column = 0; }
2832 else
2833 {
2834 const struct line_map *map = linemap_lookup (&line_table, loc);
2835 xloc.file = map->to_file;
2836 xloc.line = SOURCE_LINE (map, loc);
2837 xloc.column = SOURCE_COLUMN (map, loc);
2838 };
2839 return xloc;
2840 }
2841
2842 #else
2843
2844 /* Record the exact location where an expression or an identifier were
2845 encountered. */
2846
2847 void
2848 annotate_with_file_line (tree node, const char *file, int line)
2849 {
2850 /* Roughly one percent of the calls to this function are to annotate
2851 a node with the same information already attached to that node!
2852 Just return instead of wasting memory. */
2853 if (EXPR_LOCUS (node)
2854 && (EXPR_FILENAME (node) == file
2855 || ! strcmp (EXPR_FILENAME (node), file))
2856 && EXPR_LINENO (node) == line)
2857 {
2858 last_annotated_node = node;
2859 return;
2860 }
2861
2862 /* In heavily macroized code (such as GCC itself) this single
2863 entry cache can reduce the number of allocations by more
2864 than half. */
2865 if (last_annotated_node
2866 && EXPR_LOCUS (last_annotated_node)
2867 && (EXPR_FILENAME (last_annotated_node) == file
2868 || ! strcmp (EXPR_FILENAME (last_annotated_node), file))
2869 && EXPR_LINENO (last_annotated_node) == line)
2870 {
2871 SET_EXPR_LOCUS (node, EXPR_LOCUS (last_annotated_node));
2872 return;
2873 }
2874
2875 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
2876 EXPR_LINENO (node) = line;
2877 EXPR_FILENAME (node) = file;
2878 last_annotated_node = node;
2879 }
2880
2881 void
2882 annotate_with_locus (tree node, location_t locus)
2883 {
2884 annotate_with_file_line (node, locus.file, locus.line);
2885 }
2886 #endif
2887 \f
2888 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2889 is ATTRIBUTE. */
2890
2891 tree
2892 build_decl_attribute_variant (tree ddecl, tree attribute)
2893 {
2894 DECL_ATTRIBUTES (ddecl) = attribute;
2895 return ddecl;
2896 }
2897
2898 /* Borrowed from hashtab.c iterative_hash implementation. */
2899 #define mix(a,b,c) \
2900 { \
2901 a -= b; a -= c; a ^= (c>>13); \
2902 b -= c; b -= a; b ^= (a<< 8); \
2903 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
2904 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
2905 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
2906 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
2907 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
2908 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
2909 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
2910 }
2911
2912
2913 /* Produce good hash value combining VAL and VAL2. */
2914 static inline hashval_t
2915 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
2916 {
2917 /* the golden ratio; an arbitrary value. */
2918 hashval_t a = 0x9e3779b9;
2919
2920 mix (a, val, val2);
2921 return val2;
2922 }
2923
2924 /* Produce good hash value combining PTR and VAL2. */
2925 static inline hashval_t
2926 iterative_hash_pointer (void *ptr, hashval_t val2)
2927 {
2928 if (sizeof (ptr) == sizeof (hashval_t))
2929 return iterative_hash_hashval_t ((size_t) ptr, val2);
2930 else
2931 {
2932 hashval_t a = (hashval_t) (size_t) ptr;
2933 /* Avoid warnings about shifting of more than the width of the type on
2934 hosts that won't execute this path. */
2935 int zero = 0;
2936 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
2937 mix (a, b, val2);
2938 return val2;
2939 }
2940 }
2941
2942 /* Produce good hash value combining VAL and VAL2. */
2943 static inline hashval_t
2944 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
2945 {
2946 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
2947 return iterative_hash_hashval_t (val, val2);
2948 else
2949 {
2950 hashval_t a = (hashval_t) val;
2951 /* Avoid warnings about shifting of more than the width of the type on
2952 hosts that won't execute this path. */
2953 int zero = 0;
2954 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
2955 mix (a, b, val2);
2956 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
2957 {
2958 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
2959 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
2960 mix (a, b, val2);
2961 }
2962 return val2;
2963 }
2964 }
2965
2966 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2967 is ATTRIBUTE.
2968
2969 Record such modified types already made so we don't make duplicates. */
2970
2971 tree
2972 build_type_attribute_variant (tree ttype, tree attribute)
2973 {
2974 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2975 {
2976 hashval_t hashcode = 0;
2977 tree ntype;
2978 enum tree_code code = TREE_CODE (ttype);
2979
2980 ntype = copy_node (ttype);
2981
2982 TYPE_POINTER_TO (ntype) = 0;
2983 TYPE_REFERENCE_TO (ntype) = 0;
2984 TYPE_ATTRIBUTES (ntype) = attribute;
2985
2986 /* Create a new main variant of TYPE. */
2987 TYPE_MAIN_VARIANT (ntype) = ntype;
2988 TYPE_NEXT_VARIANT (ntype) = 0;
2989 set_type_quals (ntype, TYPE_UNQUALIFIED);
2990
2991 hashcode = iterative_hash_object (code, hashcode);
2992 if (TREE_TYPE (ntype))
2993 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
2994 hashcode);
2995 hashcode = attribute_hash_list (attribute, hashcode);
2996
2997 switch (TREE_CODE (ntype))
2998 {
2999 case FUNCTION_TYPE:
3000 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3001 break;
3002 case ARRAY_TYPE:
3003 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3004 hashcode);
3005 break;
3006 case INTEGER_TYPE:
3007 hashcode = iterative_hash_object
3008 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3009 hashcode = iterative_hash_object
3010 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3011 break;
3012 case REAL_TYPE:
3013 {
3014 unsigned int precision = TYPE_PRECISION (ntype);
3015 hashcode = iterative_hash_object (precision, hashcode);
3016 }
3017 break;
3018 default:
3019 break;
3020 }
3021
3022 ntype = type_hash_canon (hashcode, ntype);
3023 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
3024 }
3025
3026 return ttype;
3027 }
3028
3029 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3030 or zero if not.
3031
3032 We try both `text' and `__text__', ATTR may be either one. */
3033 /* ??? It might be a reasonable simplification to require ATTR to be only
3034 `text'. One might then also require attribute lists to be stored in
3035 their canonicalized form. */
3036
3037 int
3038 is_attribute_p (const char *attr, tree ident)
3039 {
3040 int ident_len, attr_len;
3041 const char *p;
3042
3043 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3044 return 0;
3045
3046 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
3047 return 1;
3048
3049 p = IDENTIFIER_POINTER (ident);
3050 ident_len = strlen (p);
3051 attr_len = strlen (attr);
3052
3053 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3054 if (attr[0] == '_')
3055 {
3056 gcc_assert (attr[1] == '_');
3057 gcc_assert (attr[attr_len - 2] == '_');
3058 gcc_assert (attr[attr_len - 1] == '_');
3059 gcc_assert (attr[1] == '_');
3060 if (ident_len == attr_len - 4
3061 && strncmp (attr + 2, p, attr_len - 4) == 0)
3062 return 1;
3063 }
3064 else
3065 {
3066 if (ident_len == attr_len + 4
3067 && p[0] == '_' && p[1] == '_'
3068 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3069 && strncmp (attr, p + 2, attr_len) == 0)
3070 return 1;
3071 }
3072
3073 return 0;
3074 }
3075
3076 /* Given an attribute name and a list of attributes, return a pointer to the
3077 attribute's list element if the attribute is part of the list, or NULL_TREE
3078 if not found. If the attribute appears more than once, this only
3079 returns the first occurrence; the TREE_CHAIN of the return value should
3080 be passed back in if further occurrences are wanted. */
3081
3082 tree
3083 lookup_attribute (const char *attr_name, tree list)
3084 {
3085 tree l;
3086
3087 for (l = list; l; l = TREE_CHAIN (l))
3088 {
3089 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3090 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
3091 return l;
3092 }
3093
3094 return NULL_TREE;
3095 }
3096
3097 /* Return an attribute list that is the union of a1 and a2. */
3098
3099 tree
3100 merge_attributes (tree a1, tree a2)
3101 {
3102 tree attributes;
3103
3104 /* Either one unset? Take the set one. */
3105
3106 if ((attributes = a1) == 0)
3107 attributes = a2;
3108
3109 /* One that completely contains the other? Take it. */
3110
3111 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3112 {
3113 if (attribute_list_contained (a2, a1))
3114 attributes = a2;
3115 else
3116 {
3117 /* Pick the longest list, and hang on the other list. */
3118
3119 if (list_length (a1) < list_length (a2))
3120 attributes = a2, a2 = a1;
3121
3122 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3123 {
3124 tree a;
3125 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3126 attributes);
3127 a != NULL_TREE;
3128 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3129 TREE_CHAIN (a)))
3130 {
3131 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
3132 break;
3133 }
3134 if (a == NULL_TREE)
3135 {
3136 a1 = copy_node (a2);
3137 TREE_CHAIN (a1) = attributes;
3138 attributes = a1;
3139 }
3140 }
3141 }
3142 }
3143 return attributes;
3144 }
3145
3146 /* Given types T1 and T2, merge their attributes and return
3147 the result. */
3148
3149 tree
3150 merge_type_attributes (tree t1, tree t2)
3151 {
3152 return merge_attributes (TYPE_ATTRIBUTES (t1),
3153 TYPE_ATTRIBUTES (t2));
3154 }
3155
3156 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3157 the result. */
3158
3159 tree
3160 merge_decl_attributes (tree olddecl, tree newdecl)
3161 {
3162 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3163 DECL_ATTRIBUTES (newdecl));
3164 }
3165
3166 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3167
3168 /* Specialization of merge_decl_attributes for various Windows targets.
3169
3170 This handles the following situation:
3171
3172 __declspec (dllimport) int foo;
3173 int foo;
3174
3175 The second instance of `foo' nullifies the dllimport. */
3176
3177 tree
3178 merge_dllimport_decl_attributes (tree old, tree new)
3179 {
3180 tree a;
3181 int delete_dllimport_p;
3182
3183 old = DECL_ATTRIBUTES (old);
3184 new = DECL_ATTRIBUTES (new);
3185
3186 /* What we need to do here is remove from `old' dllimport if it doesn't
3187 appear in `new'. dllimport behaves like extern: if a declaration is
3188 marked dllimport and a definition appears later, then the object
3189 is not dllimport'd. */
3190 if (lookup_attribute ("dllimport", old) != NULL_TREE
3191 && lookup_attribute ("dllimport", new) == NULL_TREE)
3192 delete_dllimport_p = 1;
3193 else
3194 delete_dllimport_p = 0;
3195
3196 a = merge_attributes (old, new);
3197
3198 if (delete_dllimport_p)
3199 {
3200 tree prev, t;
3201
3202 /* Scan the list for dllimport and delete it. */
3203 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3204 {
3205 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
3206 {
3207 if (prev == NULL_TREE)
3208 a = TREE_CHAIN (a);
3209 else
3210 TREE_CHAIN (prev) = TREE_CHAIN (t);
3211 break;
3212 }
3213 }
3214 }
3215
3216 return a;
3217 }
3218
3219 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3220 struct attribute_spec.handler. */
3221
3222 tree
3223 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3224 bool *no_add_attrs)
3225 {
3226 tree node = *pnode;
3227
3228 /* These attributes may apply to structure and union types being created,
3229 but otherwise should pass to the declaration involved. */
3230 if (!DECL_P (node))
3231 {
3232 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3233 | (int) ATTR_FLAG_ARRAY_NEXT))
3234 {
3235 *no_add_attrs = true;
3236 return tree_cons (name, args, NULL_TREE);
3237 }
3238 if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3239 {
3240 warning ("%qs attribute ignored", IDENTIFIER_POINTER (name));
3241 *no_add_attrs = true;
3242 }
3243
3244 return NULL_TREE;
3245 }
3246
3247 /* Report error on dllimport ambiguities seen now before they cause
3248 any damage. */
3249 if (is_attribute_p ("dllimport", name))
3250 {
3251 /* Like MS, treat definition of dllimported variables and
3252 non-inlined functions on declaration as syntax errors. We
3253 allow the attribute for function definitions if declared
3254 inline. */
3255 if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node)
3256 && !DECL_DECLARED_INLINE_P (node))
3257 {
3258 error ("%Jfunction %qD definition is marked dllimport.", node, node);
3259 *no_add_attrs = true;
3260 }
3261
3262 else if (TREE_CODE (node) == VAR_DECL)
3263 {
3264 if (DECL_INITIAL (node))
3265 {
3266 error ("%Jvariable %qD definition is marked dllimport.",
3267 node, node);
3268 *no_add_attrs = true;
3269 }
3270
3271 /* `extern' needn't be specified with dllimport.
3272 Specify `extern' now and hope for the best. Sigh. */
3273 DECL_EXTERNAL (node) = 1;
3274 /* Also, implicitly give dllimport'd variables declared within
3275 a function global scope, unless declared static. */
3276 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
3277 TREE_PUBLIC (node) = 1;
3278 }
3279 }
3280
3281 /* Report error if symbol is not accessible at global scope. */
3282 if (!TREE_PUBLIC (node)
3283 && (TREE_CODE (node) == VAR_DECL
3284 || TREE_CODE (node) == FUNCTION_DECL))
3285 {
3286 error ("%Jexternal linkage required for symbol %qD because of "
3287 "%qs attribute.", node, node, IDENTIFIER_POINTER (name));
3288 *no_add_attrs = true;
3289 }
3290
3291 return NULL_TREE;
3292 }
3293
3294 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
3295 \f
3296 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3297 of the various TYPE_QUAL values. */
3298
3299 static void
3300 set_type_quals (tree type, int type_quals)
3301 {
3302 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3303 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3304 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3305 }
3306
3307 /* Returns true iff cand is equivalent to base with type_quals. */
3308
3309 bool
3310 check_qualified_type (tree cand, tree base, int type_quals)
3311 {
3312 return (TYPE_QUALS (cand) == type_quals
3313 && TYPE_NAME (cand) == TYPE_NAME (base)
3314 /* Apparently this is needed for Objective-C. */
3315 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3316 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3317 TYPE_ATTRIBUTES (base)));
3318 }
3319
3320 /* Return a version of the TYPE, qualified as indicated by the
3321 TYPE_QUALS, if one exists. If no qualified version exists yet,
3322 return NULL_TREE. */
3323
3324 tree
3325 get_qualified_type (tree type, int type_quals)
3326 {
3327 tree t;
3328
3329 if (TYPE_QUALS (type) == type_quals)
3330 return type;
3331
3332 /* Search the chain of variants to see if there is already one there just
3333 like the one we need to have. If so, use that existing one. We must
3334 preserve the TYPE_NAME, since there is code that depends on this. */
3335 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3336 if (check_qualified_type (t, type, type_quals))
3337 return t;
3338
3339 return NULL_TREE;
3340 }
3341
3342 /* Like get_qualified_type, but creates the type if it does not
3343 exist. This function never returns NULL_TREE. */
3344
3345 tree
3346 build_qualified_type (tree type, int type_quals)
3347 {
3348 tree t;
3349
3350 /* See if we already have the appropriate qualified variant. */
3351 t = get_qualified_type (type, type_quals);
3352
3353 /* If not, build it. */
3354 if (!t)
3355 {
3356 t = build_variant_type_copy (type);
3357 set_type_quals (t, type_quals);
3358 }
3359
3360 return t;
3361 }
3362
3363 /* Create a new distinct copy of TYPE. The new type is made its own
3364 MAIN_VARIANT. */
3365
3366 tree
3367 build_distinct_type_copy (tree type)
3368 {
3369 tree t = copy_node (type);
3370
3371 TYPE_POINTER_TO (t) = 0;
3372 TYPE_REFERENCE_TO (t) = 0;
3373
3374 /* Make it its own variant. */
3375 TYPE_MAIN_VARIANT (t) = t;
3376 TYPE_NEXT_VARIANT (t) = 0;
3377
3378 return t;
3379 }
3380
3381 /* Create a new variant of TYPE, equivalent but distinct.
3382 This is so the caller can modify it. */
3383
3384 tree
3385 build_variant_type_copy (tree type)
3386 {
3387 tree t, m = TYPE_MAIN_VARIANT (type);
3388
3389 t = build_distinct_type_copy (type);
3390
3391 /* Add the new type to the chain of variants of TYPE. */
3392 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3393 TYPE_NEXT_VARIANT (m) = t;
3394 TYPE_MAIN_VARIANT (t) = m;
3395
3396 return t;
3397 }
3398 \f
3399 /* Hashing of types so that we don't make duplicates.
3400 The entry point is `type_hash_canon'. */
3401
3402 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3403 with types in the TREE_VALUE slots), by adding the hash codes
3404 of the individual types. */
3405
3406 unsigned int
3407 type_hash_list (tree list, hashval_t hashcode)
3408 {
3409 tree tail;
3410
3411 for (tail = list; tail; tail = TREE_CHAIN (tail))
3412 if (TREE_VALUE (tail) != error_mark_node)
3413 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
3414 hashcode);
3415
3416 return hashcode;
3417 }
3418
3419 /* These are the Hashtable callback functions. */
3420
3421 /* Returns true iff the types are equivalent. */
3422
3423 static int
3424 type_hash_eq (const void *va, const void *vb)
3425 {
3426 const struct type_hash *a = va, *b = vb;
3427
3428 /* First test the things that are the same for all types. */
3429 if (a->hash != b->hash
3430 || TREE_CODE (a->type) != TREE_CODE (b->type)
3431 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
3432 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3433 TYPE_ATTRIBUTES (b->type))
3434 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
3435 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
3436 return 0;
3437
3438 switch (TREE_CODE (a->type))
3439 {
3440 case VOID_TYPE:
3441 case COMPLEX_TYPE:
3442 case POINTER_TYPE:
3443 case REFERENCE_TYPE:
3444 return 1;
3445
3446 case VECTOR_TYPE:
3447 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
3448
3449 case ENUMERAL_TYPE:
3450 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
3451 && !(TYPE_VALUES (a->type)
3452 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
3453 && TYPE_VALUES (b->type)
3454 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
3455 && type_list_equal (TYPE_VALUES (a->type),
3456 TYPE_VALUES (b->type))))
3457 return 0;
3458
3459 /* ... fall through ... */
3460
3461 case INTEGER_TYPE:
3462 case REAL_TYPE:
3463 case BOOLEAN_TYPE:
3464 case CHAR_TYPE:
3465 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3466 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3467 TYPE_MAX_VALUE (b->type)))
3468 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3469 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3470 TYPE_MIN_VALUE (b->type))));
3471
3472 case OFFSET_TYPE:
3473 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
3474
3475 case METHOD_TYPE:
3476 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
3477 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3478 || (TYPE_ARG_TYPES (a->type)
3479 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3480 && TYPE_ARG_TYPES (b->type)
3481 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3482 && type_list_equal (TYPE_ARG_TYPES (a->type),
3483 TYPE_ARG_TYPES (b->type)))));
3484
3485 case ARRAY_TYPE:
3486 case SET_TYPE:
3487 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
3488
3489 case RECORD_TYPE:
3490 case UNION_TYPE:
3491 case QUAL_UNION_TYPE:
3492 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
3493 || (TYPE_FIELDS (a->type)
3494 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
3495 && TYPE_FIELDS (b->type)
3496 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
3497 && type_list_equal (TYPE_FIELDS (a->type),
3498 TYPE_FIELDS (b->type))));
3499
3500 case FUNCTION_TYPE:
3501 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3502 || (TYPE_ARG_TYPES (a->type)
3503 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3504 && TYPE_ARG_TYPES (b->type)
3505 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3506 && type_list_equal (TYPE_ARG_TYPES (a->type),
3507 TYPE_ARG_TYPES (b->type))));
3508
3509 default:
3510 return 0;
3511 }
3512 }
3513
3514 /* Return the cached hash value. */
3515
3516 static hashval_t
3517 type_hash_hash (const void *item)
3518 {
3519 return ((const struct type_hash *) item)->hash;
3520 }
3521
3522 /* Look in the type hash table for a type isomorphic to TYPE.
3523 If one is found, return it. Otherwise return 0. */
3524
3525 tree
3526 type_hash_lookup (hashval_t hashcode, tree type)
3527 {
3528 struct type_hash *h, in;
3529
3530 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3531 must call that routine before comparing TYPE_ALIGNs. */
3532 layout_type (type);
3533
3534 in.hash = hashcode;
3535 in.type = type;
3536
3537 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3538 if (h)
3539 return h->type;
3540 return NULL_TREE;
3541 }
3542
3543 /* Add an entry to the type-hash-table
3544 for a type TYPE whose hash code is HASHCODE. */
3545
3546 void
3547 type_hash_add (hashval_t hashcode, tree type)
3548 {
3549 struct type_hash *h;
3550 void **loc;
3551
3552 h = ggc_alloc (sizeof (struct type_hash));
3553 h->hash = hashcode;
3554 h->type = type;
3555 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3556 *(struct type_hash **) loc = h;
3557 }
3558
3559 /* Given TYPE, and HASHCODE its hash code, return the canonical
3560 object for an identical type if one already exists.
3561 Otherwise, return TYPE, and record it as the canonical object.
3562
3563 To use this function, first create a type of the sort you want.
3564 Then compute its hash code from the fields of the type that
3565 make it different from other similar types.
3566 Then call this function and use the value. */
3567
3568 tree
3569 type_hash_canon (unsigned int hashcode, tree type)
3570 {
3571 tree t1;
3572
3573 /* The hash table only contains main variants, so ensure that's what we're
3574 being passed. */
3575 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
3576
3577 if (!lang_hooks.types.hash_types)
3578 return type;
3579
3580 /* See if the type is in the hash table already. If so, return it.
3581 Otherwise, add the type. */
3582 t1 = type_hash_lookup (hashcode, type);
3583 if (t1 != 0)
3584 {
3585 #ifdef GATHER_STATISTICS
3586 tree_node_counts[(int) t_kind]--;
3587 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3588 #endif
3589 return t1;
3590 }
3591 else
3592 {
3593 type_hash_add (hashcode, type);
3594 return type;
3595 }
3596 }
3597
3598 /* See if the data pointed to by the type hash table is marked. We consider
3599 it marked if the type is marked or if a debug type number or symbol
3600 table entry has been made for the type. This reduces the amount of
3601 debugging output and eliminates that dependency of the debug output on
3602 the number of garbage collections. */
3603
3604 static int
3605 type_hash_marked_p (const void *p)
3606 {
3607 tree type = ((struct type_hash *) p)->type;
3608
3609 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3610 }
3611
3612 static void
3613 print_type_hash_statistics (void)
3614 {
3615 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3616 (long) htab_size (type_hash_table),
3617 (long) htab_elements (type_hash_table),
3618 htab_collisions (type_hash_table));
3619 }
3620
3621 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3622 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3623 by adding the hash codes of the individual attributes. */
3624
3625 unsigned int
3626 attribute_hash_list (tree list, hashval_t hashcode)
3627 {
3628 tree tail;
3629
3630 for (tail = list; tail; tail = TREE_CHAIN (tail))
3631 /* ??? Do we want to add in TREE_VALUE too? */
3632 hashcode = iterative_hash_object
3633 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
3634 return hashcode;
3635 }
3636
3637 /* Given two lists of attributes, return true if list l2 is
3638 equivalent to l1. */
3639
3640 int
3641 attribute_list_equal (tree l1, tree l2)
3642 {
3643 return attribute_list_contained (l1, l2)
3644 && attribute_list_contained (l2, l1);
3645 }
3646
3647 /* Given two lists of attributes, return true if list L2 is
3648 completely contained within L1. */
3649 /* ??? This would be faster if attribute names were stored in a canonicalized
3650 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3651 must be used to show these elements are equivalent (which they are). */
3652 /* ??? It's not clear that attributes with arguments will always be handled
3653 correctly. */
3654
3655 int
3656 attribute_list_contained (tree l1, tree l2)
3657 {
3658 tree t1, t2;
3659
3660 /* First check the obvious, maybe the lists are identical. */
3661 if (l1 == l2)
3662 return 1;
3663
3664 /* Maybe the lists are similar. */
3665 for (t1 = l1, t2 = l2;
3666 t1 != 0 && t2 != 0
3667 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3668 && TREE_VALUE (t1) == TREE_VALUE (t2);
3669 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3670
3671 /* Maybe the lists are equal. */
3672 if (t1 == 0 && t2 == 0)
3673 return 1;
3674
3675 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3676 {
3677 tree attr;
3678 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3679 attr != NULL_TREE;
3680 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3681 TREE_CHAIN (attr)))
3682 {
3683 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3684 break;
3685 }
3686
3687 if (attr == 0)
3688 return 0;
3689
3690 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3691 return 0;
3692 }
3693
3694 return 1;
3695 }
3696
3697 /* Given two lists of types
3698 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3699 return 1 if the lists contain the same types in the same order.
3700 Also, the TREE_PURPOSEs must match. */
3701
3702 int
3703 type_list_equal (tree l1, tree l2)
3704 {
3705 tree t1, t2;
3706
3707 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3708 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3709 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3710 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3711 && (TREE_TYPE (TREE_PURPOSE (t1))
3712 == TREE_TYPE (TREE_PURPOSE (t2))))))
3713 return 0;
3714
3715 return t1 == t2;
3716 }
3717
3718 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3719 given by TYPE. If the argument list accepts variable arguments,
3720 then this function counts only the ordinary arguments. */
3721
3722 int
3723 type_num_arguments (tree type)
3724 {
3725 int i = 0;
3726 tree t;
3727
3728 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3729 /* If the function does not take a variable number of arguments,
3730 the last element in the list will have type `void'. */
3731 if (VOID_TYPE_P (TREE_VALUE (t)))
3732 break;
3733 else
3734 ++i;
3735
3736 return i;
3737 }
3738
3739 /* Nonzero if integer constants T1 and T2
3740 represent the same constant value. */
3741
3742 int
3743 tree_int_cst_equal (tree t1, tree t2)
3744 {
3745 if (t1 == t2)
3746 return 1;
3747
3748 if (t1 == 0 || t2 == 0)
3749 return 0;
3750
3751 if (TREE_CODE (t1) == INTEGER_CST
3752 && TREE_CODE (t2) == INTEGER_CST
3753 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3754 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3755 return 1;
3756
3757 return 0;
3758 }
3759
3760 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3761 The precise way of comparison depends on their data type. */
3762
3763 int
3764 tree_int_cst_lt (tree t1, tree t2)
3765 {
3766 if (t1 == t2)
3767 return 0;
3768
3769 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
3770 {
3771 int t1_sgn = tree_int_cst_sgn (t1);
3772 int t2_sgn = tree_int_cst_sgn (t2);
3773
3774 if (t1_sgn < t2_sgn)
3775 return 1;
3776 else if (t1_sgn > t2_sgn)
3777 return 0;
3778 /* Otherwise, both are non-negative, so we compare them as
3779 unsigned just in case one of them would overflow a signed
3780 type. */
3781 }
3782 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
3783 return INT_CST_LT (t1, t2);
3784
3785 return INT_CST_LT_UNSIGNED (t1, t2);
3786 }
3787
3788 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3789
3790 int
3791 tree_int_cst_compare (tree t1, tree t2)
3792 {
3793 if (tree_int_cst_lt (t1, t2))
3794 return -1;
3795 else if (tree_int_cst_lt (t2, t1))
3796 return 1;
3797 else
3798 return 0;
3799 }
3800
3801 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3802 the host. If POS is zero, the value can be represented in a single
3803 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3804 be represented in a single unsigned HOST_WIDE_INT. */
3805
3806 int
3807 host_integerp (tree t, int pos)
3808 {
3809 return (TREE_CODE (t) == INTEGER_CST
3810 && ! TREE_OVERFLOW (t)
3811 && ((TREE_INT_CST_HIGH (t) == 0
3812 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3813 || (! pos && TREE_INT_CST_HIGH (t) == -1
3814 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3815 && !TYPE_UNSIGNED (TREE_TYPE (t)))
3816 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3817 }
3818
3819 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3820 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3821 be positive. Abort if we cannot satisfy the above conditions. */
3822
3823 HOST_WIDE_INT
3824 tree_low_cst (tree t, int pos)
3825 {
3826 gcc_assert (host_integerp (t, pos));
3827 return TREE_INT_CST_LOW (t);
3828 }
3829
3830 /* Return the most significant bit of the integer constant T. */
3831
3832 int
3833 tree_int_cst_msb (tree t)
3834 {
3835 int prec;
3836 HOST_WIDE_INT h;
3837 unsigned HOST_WIDE_INT l;
3838
3839 /* Note that using TYPE_PRECISION here is wrong. We care about the
3840 actual bits, not the (arbitrary) range of the type. */
3841 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3842 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3843 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3844 return (l & 1) == 1;
3845 }
3846
3847 /* Return an indication of the sign of the integer constant T.
3848 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3849 Note that -1 will never be returned it T's type is unsigned. */
3850
3851 int
3852 tree_int_cst_sgn (tree t)
3853 {
3854 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3855 return 0;
3856 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
3857 return 1;
3858 else if (TREE_INT_CST_HIGH (t) < 0)
3859 return -1;
3860 else
3861 return 1;
3862 }
3863
3864 /* Compare two constructor-element-type constants. Return 1 if the lists
3865 are known to be equal; otherwise return 0. */
3866
3867 int
3868 simple_cst_list_equal (tree l1, tree l2)
3869 {
3870 while (l1 != NULL_TREE && l2 != NULL_TREE)
3871 {
3872 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3873 return 0;
3874
3875 l1 = TREE_CHAIN (l1);
3876 l2 = TREE_CHAIN (l2);
3877 }
3878
3879 return l1 == l2;
3880 }
3881
3882 /* Return truthvalue of whether T1 is the same tree structure as T2.
3883 Return 1 if they are the same.
3884 Return 0 if they are understandably different.
3885 Return -1 if either contains tree structure not understood by
3886 this function. */
3887
3888 int
3889 simple_cst_equal (tree t1, tree t2)
3890 {
3891 enum tree_code code1, code2;
3892 int cmp;
3893 int i;
3894
3895 if (t1 == t2)
3896 return 1;
3897 if (t1 == 0 || t2 == 0)
3898 return 0;
3899
3900 code1 = TREE_CODE (t1);
3901 code2 = TREE_CODE (t2);
3902
3903 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3904 {
3905 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3906 || code2 == NON_LVALUE_EXPR)
3907 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3908 else
3909 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3910 }
3911
3912 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3913 || code2 == NON_LVALUE_EXPR)
3914 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3915
3916 if (code1 != code2)
3917 return 0;
3918
3919 switch (code1)
3920 {
3921 case INTEGER_CST:
3922 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3923 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3924
3925 case REAL_CST:
3926 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3927
3928 case STRING_CST:
3929 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3930 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3931 TREE_STRING_LENGTH (t1)));
3932
3933 case CONSTRUCTOR:
3934 return simple_cst_list_equal (CONSTRUCTOR_ELTS (t1),
3935 CONSTRUCTOR_ELTS (t2));
3936
3937 case SAVE_EXPR:
3938 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3939
3940 case CALL_EXPR:
3941 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3942 if (cmp <= 0)
3943 return cmp;
3944 return
3945 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3946
3947 case TARGET_EXPR:
3948 /* Special case: if either target is an unallocated VAR_DECL,
3949 it means that it's going to be unified with whatever the
3950 TARGET_EXPR is really supposed to initialize, so treat it
3951 as being equivalent to anything. */
3952 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3953 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3954 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3955 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3956 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3957 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3958 cmp = 1;
3959 else
3960 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3961
3962 if (cmp <= 0)
3963 return cmp;
3964
3965 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3966
3967 case WITH_CLEANUP_EXPR:
3968 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3969 if (cmp <= 0)
3970 return cmp;
3971
3972 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3973
3974 case COMPONENT_REF:
3975 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3976 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3977
3978 return 0;
3979
3980 case VAR_DECL:
3981 case PARM_DECL:
3982 case CONST_DECL:
3983 case FUNCTION_DECL:
3984 return 0;
3985
3986 default:
3987 break;
3988 }
3989
3990 /* This general rule works for most tree codes. All exceptions should be
3991 handled above. If this is a language-specific tree code, we can't
3992 trust what might be in the operand, so say we don't know
3993 the situation. */
3994 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3995 return -1;
3996
3997 switch (TREE_CODE_CLASS (code1))
3998 {
3999 case tcc_unary:
4000 case tcc_binary:
4001 case tcc_comparison:
4002 case tcc_expression:
4003 case tcc_reference:
4004 case tcc_statement:
4005 cmp = 1;
4006 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
4007 {
4008 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4009 if (cmp <= 0)
4010 return cmp;
4011 }
4012
4013 return cmp;
4014
4015 default:
4016 return -1;
4017 }
4018 }
4019
4020 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
4021 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
4022 than U, respectively. */
4023
4024 int
4025 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
4026 {
4027 if (tree_int_cst_sgn (t) < 0)
4028 return -1;
4029 else if (TREE_INT_CST_HIGH (t) != 0)
4030 return 1;
4031 else if (TREE_INT_CST_LOW (t) == u)
4032 return 0;
4033 else if (TREE_INT_CST_LOW (t) < u)
4034 return -1;
4035 else
4036 return 1;
4037 }
4038
4039 /* Return true if CODE represents an associative tree code. Otherwise
4040 return false. */
4041 bool
4042 associative_tree_code (enum tree_code code)
4043 {
4044 switch (code)
4045 {
4046 case BIT_IOR_EXPR:
4047 case BIT_AND_EXPR:
4048 case BIT_XOR_EXPR:
4049 case PLUS_EXPR:
4050 case MULT_EXPR:
4051 case MIN_EXPR:
4052 case MAX_EXPR:
4053 return true;
4054
4055 default:
4056 break;
4057 }
4058 return false;
4059 }
4060
4061 /* Return true if CODE represents a commutative tree code. Otherwise
4062 return false. */
4063 bool
4064 commutative_tree_code (enum tree_code code)
4065 {
4066 switch (code)
4067 {
4068 case PLUS_EXPR:
4069 case MULT_EXPR:
4070 case MIN_EXPR:
4071 case MAX_EXPR:
4072 case BIT_IOR_EXPR:
4073 case BIT_XOR_EXPR:
4074 case BIT_AND_EXPR:
4075 case NE_EXPR:
4076 case EQ_EXPR:
4077 case UNORDERED_EXPR:
4078 case ORDERED_EXPR:
4079 case UNEQ_EXPR:
4080 case LTGT_EXPR:
4081 case TRUTH_AND_EXPR:
4082 case TRUTH_XOR_EXPR:
4083 case TRUTH_OR_EXPR:
4084 return true;
4085
4086 default:
4087 break;
4088 }
4089 return false;
4090 }
4091
4092 /* Generate a hash value for an expression. This can be used iteratively
4093 by passing a previous result as the "val" argument.
4094
4095 This function is intended to produce the same hash for expressions which
4096 would compare equal using operand_equal_p. */
4097
4098 hashval_t
4099 iterative_hash_expr (tree t, hashval_t val)
4100 {
4101 int i;
4102 enum tree_code code;
4103 char class;
4104
4105 if (t == NULL_TREE)
4106 return iterative_hash_pointer (t, val);
4107
4108 code = TREE_CODE (t);
4109
4110 switch (code)
4111 {
4112 /* Alas, constants aren't shared, so we can't rely on pointer
4113 identity. */
4114 case INTEGER_CST:
4115 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
4116 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
4117 case REAL_CST:
4118 {
4119 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
4120
4121 return iterative_hash_hashval_t (val2, val);
4122 }
4123 case STRING_CST:
4124 return iterative_hash (TREE_STRING_POINTER (t),
4125 TREE_STRING_LENGTH (t), val);
4126 case COMPLEX_CST:
4127 val = iterative_hash_expr (TREE_REALPART (t), val);
4128 return iterative_hash_expr (TREE_IMAGPART (t), val);
4129 case VECTOR_CST:
4130 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
4131
4132 case SSA_NAME:
4133 case VALUE_HANDLE:
4134 /* we can just compare by pointer. */
4135 return iterative_hash_pointer (t, val);
4136
4137 case TREE_LIST:
4138 /* A list of expressions, for a CALL_EXPR or as the elements of a
4139 VECTOR_CST. */
4140 for (; t; t = TREE_CHAIN (t))
4141 val = iterative_hash_expr (TREE_VALUE (t), val);
4142 return val;
4143 default:
4144 class = TREE_CODE_CLASS (code);
4145
4146 if (class == tcc_declaration)
4147 {
4148 /* Decls we can just compare by pointer. */
4149 val = iterative_hash_pointer (t, val);
4150 }
4151 else
4152 {
4153 gcc_assert (IS_EXPR_CODE_CLASS (class));
4154
4155 val = iterative_hash_object (code, val);
4156
4157 /* Don't hash the type, that can lead to having nodes which
4158 compare equal according to operand_equal_p, but which
4159 have different hash codes. */
4160 if (code == NOP_EXPR
4161 || code == CONVERT_EXPR
4162 || code == NON_LVALUE_EXPR)
4163 {
4164 /* Make sure to include signness in the hash computation. */
4165 val += TYPE_UNSIGNED (TREE_TYPE (t));
4166 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
4167 }
4168
4169 else if (commutative_tree_code (code))
4170 {
4171 /* It's a commutative expression. We want to hash it the same
4172 however it appears. We do this by first hashing both operands
4173 and then rehashing based on the order of their independent
4174 hashes. */
4175 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
4176 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
4177 hashval_t t;
4178
4179 if (one > two)
4180 t = one, one = two, two = t;
4181
4182 val = iterative_hash_hashval_t (one, val);
4183 val = iterative_hash_hashval_t (two, val);
4184 }
4185 else
4186 for (i = first_rtl_op (code) - 1; i >= 0; --i)
4187 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
4188 }
4189 return val;
4190 break;
4191 }
4192 }
4193 \f
4194 /* Constructors for pointer, array and function types.
4195 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4196 constructed by language-dependent code, not here.) */
4197
4198 /* Construct, lay out and return the type of pointers to TO_TYPE with
4199 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
4200 reference all of memory. If such a type has already been
4201 constructed, reuse it. */
4202
4203 tree
4204 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
4205 bool can_alias_all)
4206 {
4207 tree t;
4208
4209 /* In some cases, languages will have things that aren't a POINTER_TYPE
4210 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
4211 In that case, return that type without regard to the rest of our
4212 operands.
4213
4214 ??? This is a kludge, but consistent with the way this function has
4215 always operated and there doesn't seem to be a good way to avoid this
4216 at the moment. */
4217 if (TYPE_POINTER_TO (to_type) != 0
4218 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
4219 return TYPE_POINTER_TO (to_type);
4220
4221 /* First, if we already have a type for pointers to TO_TYPE and it's
4222 the proper mode, use it. */
4223 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
4224 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4225 return t;
4226
4227 t = make_node (POINTER_TYPE);
4228
4229 TREE_TYPE (t) = to_type;
4230 TYPE_MODE (t) = mode;
4231 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4232 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
4233 TYPE_POINTER_TO (to_type) = t;
4234
4235 /* Lay out the type. This function has many callers that are concerned
4236 with expression-construction, and this simplifies them all. */
4237 layout_type (t);
4238
4239 return t;
4240 }
4241
4242 /* By default build pointers in ptr_mode. */
4243
4244 tree
4245 build_pointer_type (tree to_type)
4246 {
4247 return build_pointer_type_for_mode (to_type, ptr_mode, false);
4248 }
4249
4250 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
4251
4252 tree
4253 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
4254 bool can_alias_all)
4255 {
4256 tree t;
4257
4258 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
4259 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
4260 In that case, return that type without regard to the rest of our
4261 operands.
4262
4263 ??? This is a kludge, but consistent with the way this function has
4264 always operated and there doesn't seem to be a good way to avoid this
4265 at the moment. */
4266 if (TYPE_REFERENCE_TO (to_type) != 0
4267 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
4268 return TYPE_REFERENCE_TO (to_type);
4269
4270 /* First, if we already have a type for pointers to TO_TYPE and it's
4271 the proper mode, use it. */
4272 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
4273 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4274 return t;
4275
4276 t = make_node (REFERENCE_TYPE);
4277
4278 TREE_TYPE (t) = to_type;
4279 TYPE_MODE (t) = mode;
4280 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4281 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
4282 TYPE_REFERENCE_TO (to_type) = t;
4283
4284 layout_type (t);
4285
4286 return t;
4287 }
4288
4289
4290 /* Build the node for the type of references-to-TO_TYPE by default
4291 in ptr_mode. */
4292
4293 tree
4294 build_reference_type (tree to_type)
4295 {
4296 return build_reference_type_for_mode (to_type, ptr_mode, false);
4297 }
4298
4299 /* Build a type that is compatible with t but has no cv quals anywhere
4300 in its type, thus
4301
4302 const char *const *const * -> char ***. */
4303
4304 tree
4305 build_type_no_quals (tree t)
4306 {
4307 switch (TREE_CODE (t))
4308 {
4309 case POINTER_TYPE:
4310 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4311 TYPE_MODE (t),
4312 TYPE_REF_CAN_ALIAS_ALL (t));
4313 case REFERENCE_TYPE:
4314 return
4315 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4316 TYPE_MODE (t),
4317 TYPE_REF_CAN_ALIAS_ALL (t));
4318 default:
4319 return TYPE_MAIN_VARIANT (t);
4320 }
4321 }
4322
4323 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4324 MAXVAL should be the maximum value in the domain
4325 (one less than the length of the array).
4326
4327 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4328 We don't enforce this limit, that is up to caller (e.g. language front end).
4329 The limit exists because the result is a signed type and we don't handle
4330 sizes that use more than one HOST_WIDE_INT. */
4331
4332 tree
4333 build_index_type (tree maxval)
4334 {
4335 tree itype = make_node (INTEGER_TYPE);
4336
4337 TREE_TYPE (itype) = sizetype;
4338 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4339 TYPE_MIN_VALUE (itype) = size_zero_node;
4340 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
4341 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4342 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4343 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4344 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4345 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
4346
4347 if (host_integerp (maxval, 1))
4348 return type_hash_canon (tree_low_cst (maxval, 1), itype);
4349 else
4350 return itype;
4351 }
4352
4353 /* Builds a signed or unsigned integer type of precision PRECISION.
4354 Used for C bitfields whose precision does not match that of
4355 built-in target types. */
4356 tree
4357 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
4358 int unsignedp)
4359 {
4360 tree itype = make_node (INTEGER_TYPE);
4361
4362 TYPE_PRECISION (itype) = precision;
4363
4364 if (unsignedp)
4365 fixup_unsigned_type (itype);
4366 else
4367 fixup_signed_type (itype);
4368
4369 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
4370 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
4371
4372 return itype;
4373 }
4374
4375 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4376 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4377 low bound LOWVAL and high bound HIGHVAL.
4378 if TYPE==NULL_TREE, sizetype is used. */
4379
4380 tree
4381 build_range_type (tree type, tree lowval, tree highval)
4382 {
4383 tree itype = make_node (INTEGER_TYPE);
4384
4385 TREE_TYPE (itype) = type;
4386 if (type == NULL_TREE)
4387 type = sizetype;
4388
4389 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4390 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4391
4392 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4393 TYPE_MODE (itype) = TYPE_MODE (type);
4394 TYPE_SIZE (itype) = TYPE_SIZE (type);
4395 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4396 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4397 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
4398
4399 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
4400 return type_hash_canon (tree_low_cst (highval, 0)
4401 - tree_low_cst (lowval, 0),
4402 itype);
4403 else
4404 return itype;
4405 }
4406
4407 /* Just like build_index_type, but takes lowval and highval instead
4408 of just highval (maxval). */
4409
4410 tree
4411 build_index_2_type (tree lowval, tree highval)
4412 {
4413 return build_range_type (sizetype, lowval, highval);
4414 }
4415
4416 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4417 and number of elements specified by the range of values of INDEX_TYPE.
4418 If such a type has already been constructed, reuse it. */
4419
4420 tree
4421 build_array_type (tree elt_type, tree index_type)
4422 {
4423 tree t;
4424 hashval_t hashcode = 0;
4425
4426 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4427 {
4428 error ("arrays of functions are not meaningful");
4429 elt_type = integer_type_node;
4430 }
4431
4432 t = make_node (ARRAY_TYPE);
4433 TREE_TYPE (t) = elt_type;
4434 TYPE_DOMAIN (t) = index_type;
4435
4436 if (index_type == 0)
4437 {
4438 layout_type (t);
4439 return t;
4440 }
4441
4442 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
4443 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
4444 t = type_hash_canon (hashcode, t);
4445
4446 if (!COMPLETE_TYPE_P (t))
4447 layout_type (t);
4448 return t;
4449 }
4450
4451 /* Return the TYPE of the elements comprising
4452 the innermost dimension of ARRAY. */
4453
4454 tree
4455 get_inner_array_type (tree array)
4456 {
4457 tree type = TREE_TYPE (array);
4458
4459 while (TREE_CODE (type) == ARRAY_TYPE)
4460 type = TREE_TYPE (type);
4461
4462 return type;
4463 }
4464
4465 /* Construct, lay out and return
4466 the type of functions returning type VALUE_TYPE
4467 given arguments of types ARG_TYPES.
4468 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4469 are data type nodes for the arguments of the function.
4470 If such a type has already been constructed, reuse it. */
4471
4472 tree
4473 build_function_type (tree value_type, tree arg_types)
4474 {
4475 tree t;
4476 hashval_t hashcode = 0;
4477
4478 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4479 {
4480 error ("function return type cannot be function");
4481 value_type = integer_type_node;
4482 }
4483
4484 /* Make a node of the sort we want. */
4485 t = make_node (FUNCTION_TYPE);
4486 TREE_TYPE (t) = value_type;
4487 TYPE_ARG_TYPES (t) = arg_types;
4488
4489 /* If we already have such a type, use the old one. */
4490 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
4491 hashcode = type_hash_list (arg_types, hashcode);
4492 t = type_hash_canon (hashcode, t);
4493
4494 if (!COMPLETE_TYPE_P (t))
4495 layout_type (t);
4496 return t;
4497 }
4498
4499 /* Build a function type. The RETURN_TYPE is the type returned by the
4500 function. If additional arguments are provided, they are
4501 additional argument types. The list of argument types must always
4502 be terminated by NULL_TREE. */
4503
4504 tree
4505 build_function_type_list (tree return_type, ...)
4506 {
4507 tree t, args, last;
4508 va_list p;
4509
4510 va_start (p, return_type);
4511
4512 t = va_arg (p, tree);
4513 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
4514 args = tree_cons (NULL_TREE, t, args);
4515
4516 last = args;
4517 args = nreverse (args);
4518 TREE_CHAIN (last) = void_list_node;
4519 args = build_function_type (return_type, args);
4520
4521 va_end (p);
4522 return args;
4523 }
4524
4525 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
4526 and ARGTYPES (a TREE_LIST) are the return type and arguments types
4527 for the method. An implicit additional parameter (of type
4528 pointer-to-BASETYPE) is added to the ARGTYPES. */
4529
4530 tree
4531 build_method_type_directly (tree basetype,
4532 tree rettype,
4533 tree argtypes)
4534 {
4535 tree t;
4536 tree ptype;
4537 int hashcode = 0;
4538
4539 /* Make a node of the sort we want. */
4540 t = make_node (METHOD_TYPE);
4541
4542 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4543 TREE_TYPE (t) = rettype;
4544 ptype = build_pointer_type (basetype);
4545
4546 /* The actual arglist for this function includes a "hidden" argument
4547 which is "this". Put it into the list of argument types. */
4548 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
4549 TYPE_ARG_TYPES (t) = argtypes;
4550
4551 /* If we already have such a type, use the old one. */
4552 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4553 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
4554 hashcode = type_hash_list (argtypes, hashcode);
4555 t = type_hash_canon (hashcode, t);
4556
4557 if (!COMPLETE_TYPE_P (t))
4558 layout_type (t);
4559
4560 return t;
4561 }
4562
4563 /* Construct, lay out and return the type of methods belonging to class
4564 BASETYPE and whose arguments and values are described by TYPE.
4565 If that type exists already, reuse it.
4566 TYPE must be a FUNCTION_TYPE node. */
4567
4568 tree
4569 build_method_type (tree basetype, tree type)
4570 {
4571 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
4572
4573 return build_method_type_directly (basetype,
4574 TREE_TYPE (type),
4575 TYPE_ARG_TYPES (type));
4576 }
4577
4578 /* Construct, lay out and return the type of offsets to a value
4579 of type TYPE, within an object of type BASETYPE.
4580 If a suitable offset type exists already, reuse it. */
4581
4582 tree
4583 build_offset_type (tree basetype, tree type)
4584 {
4585 tree t;
4586 hashval_t hashcode = 0;
4587
4588 /* Make a node of the sort we want. */
4589 t = make_node (OFFSET_TYPE);
4590
4591 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4592 TREE_TYPE (t) = type;
4593
4594 /* If we already have such a type, use the old one. */
4595 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4596 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
4597 t = type_hash_canon (hashcode, t);
4598
4599 if (!COMPLETE_TYPE_P (t))
4600 layout_type (t);
4601
4602 return t;
4603 }
4604
4605 /* Create a complex type whose components are COMPONENT_TYPE. */
4606
4607 tree
4608 build_complex_type (tree component_type)
4609 {
4610 tree t;
4611 hashval_t hashcode;
4612
4613 /* Make a node of the sort we want. */
4614 t = make_node (COMPLEX_TYPE);
4615
4616 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4617
4618 /* If we already have such a type, use the old one. */
4619 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
4620 t = type_hash_canon (hashcode, t);
4621
4622 if (!COMPLETE_TYPE_P (t))
4623 layout_type (t);
4624
4625 /* If we are writing Dwarf2 output we need to create a name,
4626 since complex is a fundamental type. */
4627 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
4628 && ! TYPE_NAME (t))
4629 {
4630 const char *name;
4631 if (component_type == char_type_node)
4632 name = "complex char";
4633 else if (component_type == signed_char_type_node)
4634 name = "complex signed char";
4635 else if (component_type == unsigned_char_type_node)
4636 name = "complex unsigned char";
4637 else if (component_type == short_integer_type_node)
4638 name = "complex short int";
4639 else if (component_type == short_unsigned_type_node)
4640 name = "complex short unsigned int";
4641 else if (component_type == integer_type_node)
4642 name = "complex int";
4643 else if (component_type == unsigned_type_node)
4644 name = "complex unsigned int";
4645 else if (component_type == long_integer_type_node)
4646 name = "complex long int";
4647 else if (component_type == long_unsigned_type_node)
4648 name = "complex long unsigned int";
4649 else if (component_type == long_long_integer_type_node)
4650 name = "complex long long int";
4651 else if (component_type == long_long_unsigned_type_node)
4652 name = "complex long long unsigned int";
4653 else
4654 name = 0;
4655
4656 if (name != 0)
4657 TYPE_NAME (t) = get_identifier (name);
4658 }
4659
4660 return build_qualified_type (t, TYPE_QUALS (component_type));
4661 }
4662 \f
4663 /* Return OP, stripped of any conversions to wider types as much as is safe.
4664 Converting the value back to OP's type makes a value equivalent to OP.
4665
4666 If FOR_TYPE is nonzero, we return a value which, if converted to
4667 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4668
4669 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4670 narrowest type that can hold the value, even if they don't exactly fit.
4671 Otherwise, bit-field references are changed to a narrower type
4672 only if they can be fetched directly from memory in that type.
4673
4674 OP must have integer, real or enumeral type. Pointers are not allowed!
4675
4676 There are some cases where the obvious value we could return
4677 would regenerate to OP if converted to OP's type,
4678 but would not extend like OP to wider types.
4679 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4680 For example, if OP is (unsigned short)(signed char)-1,
4681 we avoid returning (signed char)-1 if FOR_TYPE is int,
4682 even though extending that to an unsigned short would regenerate OP,
4683 since the result of extending (signed char)-1 to (int)
4684 is different from (int) OP. */
4685
4686 tree
4687 get_unwidened (tree op, tree for_type)
4688 {
4689 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4690 tree type = TREE_TYPE (op);
4691 unsigned final_prec
4692 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4693 int uns
4694 = (for_type != 0 && for_type != type
4695 && final_prec > TYPE_PRECISION (type)
4696 && TYPE_UNSIGNED (type));
4697 tree win = op;
4698
4699 while (TREE_CODE (op) == NOP_EXPR)
4700 {
4701 int bitschange
4702 = TYPE_PRECISION (TREE_TYPE (op))
4703 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4704
4705 /* Truncations are many-one so cannot be removed.
4706 Unless we are later going to truncate down even farther. */
4707 if (bitschange < 0
4708 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4709 break;
4710
4711 /* See what's inside this conversion. If we decide to strip it,
4712 we will set WIN. */
4713 op = TREE_OPERAND (op, 0);
4714
4715 /* If we have not stripped any zero-extensions (uns is 0),
4716 we can strip any kind of extension.
4717 If we have previously stripped a zero-extension,
4718 only zero-extensions can safely be stripped.
4719 Any extension can be stripped if the bits it would produce
4720 are all going to be discarded later by truncating to FOR_TYPE. */
4721
4722 if (bitschange > 0)
4723 {
4724 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4725 win = op;
4726 /* TYPE_UNSIGNED says whether this is a zero-extension.
4727 Let's avoid computing it if it does not affect WIN
4728 and if UNS will not be needed again. */
4729 if ((uns || TREE_CODE (op) == NOP_EXPR)
4730 && TYPE_UNSIGNED (TREE_TYPE (op)))
4731 {
4732 uns = 1;
4733 win = op;
4734 }
4735 }
4736 }
4737
4738 if (TREE_CODE (op) == COMPONENT_REF
4739 /* Since type_for_size always gives an integer type. */
4740 && TREE_CODE (type) != REAL_TYPE
4741 /* Don't crash if field not laid out yet. */
4742 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4743 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4744 {
4745 unsigned int innerprec
4746 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4747 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4748 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4749 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4750
4751 /* We can get this structure field in the narrowest type it fits in.
4752 If FOR_TYPE is 0, do this only for a field that matches the
4753 narrower type exactly and is aligned for it
4754 The resulting extension to its nominal type (a fullword type)
4755 must fit the same conditions as for other extensions. */
4756
4757 if (type != 0
4758 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
4759 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4760 && (! uns || final_prec <= innerprec || unsignedp))
4761 {
4762 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4763 TREE_OPERAND (op, 1), NULL_TREE);
4764 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4765 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4766 }
4767 }
4768
4769 return win;
4770 }
4771 \f
4772 /* Return OP or a simpler expression for a narrower value
4773 which can be sign-extended or zero-extended to give back OP.
4774 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4775 or 0 if the value should be sign-extended. */
4776
4777 tree
4778 get_narrower (tree op, int *unsignedp_ptr)
4779 {
4780 int uns = 0;
4781 int first = 1;
4782 tree win = op;
4783 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
4784
4785 while (TREE_CODE (op) == NOP_EXPR)
4786 {
4787 int bitschange
4788 = (TYPE_PRECISION (TREE_TYPE (op))
4789 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4790
4791 /* Truncations are many-one so cannot be removed. */
4792 if (bitschange < 0)
4793 break;
4794
4795 /* See what's inside this conversion. If we decide to strip it,
4796 we will set WIN. */
4797
4798 if (bitschange > 0)
4799 {
4800 op = TREE_OPERAND (op, 0);
4801 /* An extension: the outermost one can be stripped,
4802 but remember whether it is zero or sign extension. */
4803 if (first)
4804 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4805 /* Otherwise, if a sign extension has been stripped,
4806 only sign extensions can now be stripped;
4807 if a zero extension has been stripped, only zero-extensions. */
4808 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
4809 break;
4810 first = 0;
4811 }
4812 else /* bitschange == 0 */
4813 {
4814 /* A change in nominal type can always be stripped, but we must
4815 preserve the unsignedness. */
4816 if (first)
4817 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4818 first = 0;
4819 op = TREE_OPERAND (op, 0);
4820 /* Keep trying to narrow, but don't assign op to win if it
4821 would turn an integral type into something else. */
4822 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
4823 continue;
4824 }
4825
4826 win = op;
4827 }
4828
4829 if (TREE_CODE (op) == COMPONENT_REF
4830 /* Since type_for_size always gives an integer type. */
4831 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4832 /* Ensure field is laid out already. */
4833 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4834 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4835 {
4836 unsigned HOST_WIDE_INT innerprec
4837 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4838 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4839 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4840 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4841
4842 /* We can get this structure field in a narrower type that fits it,
4843 but the resulting extension to its nominal type (a fullword type)
4844 must satisfy the same conditions as for other extensions.
4845
4846 Do this only for fields that are aligned (not bit-fields),
4847 because when bit-field insns will be used there is no
4848 advantage in doing this. */
4849
4850 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4851 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4852 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
4853 && type != 0)
4854 {
4855 if (first)
4856 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
4857 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4858 TREE_OPERAND (op, 1), NULL_TREE);
4859 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4860 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4861 }
4862 }
4863 *unsignedp_ptr = uns;
4864 return win;
4865 }
4866 \f
4867 /* Nonzero if integer constant C has a value that is permissible
4868 for type TYPE (an INTEGER_TYPE). */
4869
4870 int
4871 int_fits_type_p (tree c, tree type)
4872 {
4873 tree type_low_bound = TYPE_MIN_VALUE (type);
4874 tree type_high_bound = TYPE_MAX_VALUE (type);
4875 int ok_for_low_bound, ok_for_high_bound;
4876
4877 /* Perform some generic filtering first, which may allow making a decision
4878 even if the bounds are not constant. First, negative integers never fit
4879 in unsigned types, */
4880 if ((TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4881 /* Also, unsigned integers with top bit set never fit signed types. */
4882 || (! TYPE_UNSIGNED (type)
4883 && TYPE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4884 return 0;
4885
4886 /* If at least one bound of the type is a constant integer, we can check
4887 ourselves and maybe make a decision. If no such decision is possible, but
4888 this type is a subtype, try checking against that. Otherwise, use
4889 force_fit_type, which checks against the precision.
4890
4891 Compute the status for each possibly constant bound, and return if we see
4892 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4893 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4894 for "constant known to fit". */
4895
4896 ok_for_low_bound = -1;
4897 ok_for_high_bound = -1;
4898
4899 /* Check if C >= type_low_bound. */
4900 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4901 {
4902 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4903 if (! ok_for_low_bound)
4904 return 0;
4905 }
4906
4907 /* Check if c <= type_high_bound. */
4908 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4909 {
4910 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4911 if (! ok_for_high_bound)
4912 return 0;
4913 }
4914
4915 /* If the constant fits both bounds, the result is known. */
4916 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4917 return 1;
4918
4919 /* If we haven't been able to decide at this point, there nothing more we
4920 can check ourselves here. Look at the base type if we have one. */
4921 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4922 return int_fits_type_p (c, TREE_TYPE (type));
4923
4924 /* Or to force_fit_type, if nothing else. */
4925 else
4926 {
4927 c = copy_node (c);
4928 TREE_TYPE (c) = type;
4929 c = force_fit_type (c, -1, false, false);
4930 return !TREE_OVERFLOW (c);
4931 }
4932 }
4933
4934 /* Subprogram of following function. Called by walk_tree.
4935
4936 Return *TP if it is an automatic variable or parameter of the
4937 function passed in as DATA. */
4938
4939 static tree
4940 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
4941 {
4942 tree fn = (tree) data;
4943
4944 if (TYPE_P (*tp))
4945 *walk_subtrees = 0;
4946
4947 else if (DECL_P (*tp)
4948 && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
4949 return *tp;
4950
4951 return NULL_TREE;
4952 }
4953
4954 /* Returns true if T is, contains, or refers to a type with variable
4955 size. If FN is nonzero, only return true if a modifier of the type
4956 or position of FN is a variable or parameter inside FN.
4957
4958 This concept is more general than that of C99 'variably modified types':
4959 in C99, a struct type is never variably modified because a VLA may not
4960 appear as a structure member. However, in GNU C code like:
4961
4962 struct S { int i[f()]; };
4963
4964 is valid, and other languages may define similar constructs. */
4965
4966 bool
4967 variably_modified_type_p (tree type, tree fn)
4968 {
4969 tree t;
4970
4971 /* Test if T is either variable (if FN is zero) or an expression containing
4972 a variable in FN. */
4973 #define RETURN_TRUE_IF_VAR(T) \
4974 do { tree _t = (T); \
4975 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
4976 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
4977 return true; } while (0)
4978
4979 if (type == error_mark_node)
4980 return false;
4981
4982 /* If TYPE itself has variable size, it is variably modified.
4983
4984 We do not yet have a representation of the C99 '[*]' syntax.
4985 When a representation is chosen, this function should be modified
4986 to test for that case as well. */
4987 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
4988 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT(type));
4989
4990 switch (TREE_CODE (type))
4991 {
4992 case POINTER_TYPE:
4993 case REFERENCE_TYPE:
4994 case ARRAY_TYPE:
4995 case SET_TYPE:
4996 case VECTOR_TYPE:
4997 if (variably_modified_type_p (TREE_TYPE (type), fn))
4998 return true;
4999 break;
5000
5001 case FUNCTION_TYPE:
5002 case METHOD_TYPE:
5003 /* If TYPE is a function type, it is variably modified if any of the
5004 parameters or the return type are variably modified. */
5005 if (variably_modified_type_p (TREE_TYPE (type), fn))
5006 return true;
5007
5008 for (t = TYPE_ARG_TYPES (type);
5009 t && t != void_list_node;
5010 t = TREE_CHAIN (t))
5011 if (variably_modified_type_p (TREE_VALUE (t), fn))
5012 return true;
5013 break;
5014
5015 case INTEGER_TYPE:
5016 case REAL_TYPE:
5017 case ENUMERAL_TYPE:
5018 case BOOLEAN_TYPE:
5019 case CHAR_TYPE:
5020 /* Scalar types are variably modified if their end points
5021 aren't constant. */
5022 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
5023 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
5024 break;
5025
5026 case RECORD_TYPE:
5027 case UNION_TYPE:
5028 case QUAL_UNION_TYPE:
5029 /* We can't see if any of the field are variably-modified by the
5030 definition we normally use, since that would produce infinite
5031 recursion via pointers. */
5032 /* This is variably modified if some field's type is. */
5033 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
5034 if (TREE_CODE (t) == FIELD_DECL)
5035 {
5036 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
5037 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
5038 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
5039
5040 if (TREE_CODE (type) == QUAL_UNION_TYPE)
5041 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
5042 }
5043 break;
5044
5045 default:
5046 break;
5047 }
5048
5049 /* The current language may have other cases to check, but in general,
5050 all other types are not variably modified. */
5051 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
5052
5053 #undef RETURN_TRUE_IF_VAR
5054 }
5055
5056 /* Given a DECL or TYPE, return the scope in which it was declared, or
5057 NULL_TREE if there is no containing scope. */
5058
5059 tree
5060 get_containing_scope (tree t)
5061 {
5062 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
5063 }
5064
5065 /* Return the innermost context enclosing DECL that is
5066 a FUNCTION_DECL, or zero if none. */
5067
5068 tree
5069 decl_function_context (tree decl)
5070 {
5071 tree context;
5072
5073 if (TREE_CODE (decl) == ERROR_MARK)
5074 return 0;
5075
5076 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
5077 where we look up the function at runtime. Such functions always take
5078 a first argument of type 'pointer to real context'.
5079
5080 C++ should really be fixed to use DECL_CONTEXT for the real context,
5081 and use something else for the "virtual context". */
5082 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
5083 context
5084 = TYPE_MAIN_VARIANT
5085 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
5086 else
5087 context = DECL_CONTEXT (decl);
5088
5089 while (context && TREE_CODE (context) != FUNCTION_DECL)
5090 {
5091 if (TREE_CODE (context) == BLOCK)
5092 context = BLOCK_SUPERCONTEXT (context);
5093 else
5094 context = get_containing_scope (context);
5095 }
5096
5097 return context;
5098 }
5099
5100 /* Return the innermost context enclosing DECL that is
5101 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
5102 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
5103
5104 tree
5105 decl_type_context (tree decl)
5106 {
5107 tree context = DECL_CONTEXT (decl);
5108
5109 while (context)
5110 switch (TREE_CODE (context))
5111 {
5112 case NAMESPACE_DECL:
5113 case TRANSLATION_UNIT_DECL:
5114 return NULL_TREE;
5115
5116 case RECORD_TYPE:
5117 case UNION_TYPE:
5118 case QUAL_UNION_TYPE:
5119 return context;
5120
5121 case TYPE_DECL:
5122 case FUNCTION_DECL:
5123 context = DECL_CONTEXT (context);
5124 break;
5125
5126 case BLOCK:
5127 context = BLOCK_SUPERCONTEXT (context);
5128 break;
5129
5130 default:
5131 gcc_unreachable ();
5132 }
5133
5134 return NULL_TREE;
5135 }
5136
5137 /* CALL is a CALL_EXPR. Return the declaration for the function
5138 called, or NULL_TREE if the called function cannot be
5139 determined. */
5140
5141 tree
5142 get_callee_fndecl (tree call)
5143 {
5144 tree addr;
5145
5146 /* It's invalid to call this function with anything but a
5147 CALL_EXPR. */
5148 gcc_assert (TREE_CODE (call) == CALL_EXPR);
5149
5150 /* The first operand to the CALL is the address of the function
5151 called. */
5152 addr = TREE_OPERAND (call, 0);
5153
5154 STRIP_NOPS (addr);
5155
5156 /* If this is a readonly function pointer, extract its initial value. */
5157 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
5158 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
5159 && DECL_INITIAL (addr))
5160 addr = DECL_INITIAL (addr);
5161
5162 /* If the address is just `&f' for some function `f', then we know
5163 that `f' is being called. */
5164 if (TREE_CODE (addr) == ADDR_EXPR
5165 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
5166 return TREE_OPERAND (addr, 0);
5167
5168 /* We couldn't figure out what was being called. Maybe the front
5169 end has some idea. */
5170 return lang_hooks.lang_get_callee_fndecl (call);
5171 }
5172
5173 /* Print debugging information about tree nodes generated during the compile,
5174 and any language-specific information. */
5175
5176 void
5177 dump_tree_statistics (void)
5178 {
5179 #ifdef GATHER_STATISTICS
5180 int i;
5181 int total_nodes, total_bytes;
5182 #endif
5183
5184 fprintf (stderr, "\n??? tree nodes created\n\n");
5185 #ifdef GATHER_STATISTICS
5186 fprintf (stderr, "Kind Nodes Bytes\n");
5187 fprintf (stderr, "---------------------------------------\n");
5188 total_nodes = total_bytes = 0;
5189 for (i = 0; i < (int) all_kinds; i++)
5190 {
5191 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
5192 tree_node_counts[i], tree_node_sizes[i]);
5193 total_nodes += tree_node_counts[i];
5194 total_bytes += tree_node_sizes[i];
5195 }
5196 fprintf (stderr, "---------------------------------------\n");
5197 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
5198 fprintf (stderr, "---------------------------------------\n");
5199 ssanames_print_statistics ();
5200 phinodes_print_statistics ();
5201 #else
5202 fprintf (stderr, "(No per-node statistics)\n");
5203 #endif
5204 print_type_hash_statistics ();
5205 lang_hooks.print_statistics ();
5206 }
5207 \f
5208 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
5209
5210 /* Generate a crc32 of a string. */
5211
5212 unsigned
5213 crc32_string (unsigned chksum, const char *string)
5214 {
5215 do
5216 {
5217 unsigned value = *string << 24;
5218 unsigned ix;
5219
5220 for (ix = 8; ix--; value <<= 1)
5221 {
5222 unsigned feedback;
5223
5224 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
5225 chksum <<= 1;
5226 chksum ^= feedback;
5227 }
5228 }
5229 while (*string++);
5230 return chksum;
5231 }
5232
5233 /* P is a string that will be used in a symbol. Mask out any characters
5234 that are not valid in that context. */
5235
5236 void
5237 clean_symbol_name (char *p)
5238 {
5239 for (; *p; p++)
5240 if (! (ISALNUM (*p)
5241 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
5242 || *p == '$'
5243 #endif
5244 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
5245 || *p == '.'
5246 #endif
5247 ))
5248 *p = '_';
5249 }
5250
5251 /* Generate a name for a function unique to this translation unit.
5252 TYPE is some string to identify the purpose of this function to the
5253 linker or collect2. */
5254
5255 tree
5256 get_file_function_name_long (const char *type)
5257 {
5258 char *buf;
5259 const char *p;
5260 char *q;
5261
5262 if (first_global_object_name)
5263 p = first_global_object_name;
5264 else
5265 {
5266 /* We don't have anything that we know to be unique to this translation
5267 unit, so use what we do have and throw in some randomness. */
5268 unsigned len;
5269 const char *name = weak_global_object_name;
5270 const char *file = main_input_filename;
5271
5272 if (! name)
5273 name = "";
5274 if (! file)
5275 file = input_filename;
5276
5277 len = strlen (file);
5278 q = alloca (9 * 2 + len + 1);
5279 memcpy (q, file, len + 1);
5280 clean_symbol_name (q);
5281
5282 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
5283 crc32_string (0, flag_random_seed));
5284
5285 p = q;
5286 }
5287
5288 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
5289
5290 /* Set up the name of the file-level functions we may need.
5291 Use a global object (which is already required to be unique over
5292 the program) rather than the file name (which imposes extra
5293 constraints). */
5294 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
5295
5296 return get_identifier (buf);
5297 }
5298
5299 /* If KIND=='I', return a suitable global initializer (constructor) name.
5300 If KIND=='D', return a suitable global clean-up (destructor) name. */
5301
5302 tree
5303 get_file_function_name (int kind)
5304 {
5305 char p[2];
5306
5307 p[0] = kind;
5308 p[1] = 0;
5309
5310 return get_file_function_name_long (p);
5311 }
5312 \f
5313 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5314 The result is placed in BUFFER (which has length BIT_SIZE),
5315 with one bit in each char ('\000' or '\001').
5316
5317 If the constructor is constant, NULL_TREE is returned.
5318 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5319
5320 tree
5321 get_set_constructor_bits (tree init, char *buffer, int bit_size)
5322 {
5323 int i;
5324 tree vals;
5325 HOST_WIDE_INT domain_min
5326 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
5327 tree non_const_bits = NULL_TREE;
5328
5329 for (i = 0; i < bit_size; i++)
5330 buffer[i] = 0;
5331
5332 for (vals = TREE_OPERAND (init, 1);
5333 vals != NULL_TREE; vals = TREE_CHAIN (vals))
5334 {
5335 if (!host_integerp (TREE_VALUE (vals), 0)
5336 || (TREE_PURPOSE (vals) != NULL_TREE
5337 && !host_integerp (TREE_PURPOSE (vals), 0)))
5338 non_const_bits
5339 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
5340 else if (TREE_PURPOSE (vals) != NULL_TREE)
5341 {
5342 /* Set a range of bits to ones. */
5343 HOST_WIDE_INT lo_index
5344 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
5345 HOST_WIDE_INT hi_index
5346 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5347
5348 gcc_assert (lo_index >= 0);
5349 gcc_assert (lo_index < bit_size);
5350 gcc_assert (hi_index >= 0);
5351 gcc_assert (hi_index < bit_size);
5352 for (; lo_index <= hi_index; lo_index++)
5353 buffer[lo_index] = 1;
5354 }
5355 else
5356 {
5357 /* Set a single bit to one. */
5358 HOST_WIDE_INT index
5359 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5360 if (index < 0 || index >= bit_size)
5361 {
5362 error ("invalid initializer for bit string");
5363 return NULL_TREE;
5364 }
5365 buffer[index] = 1;
5366 }
5367 }
5368 return non_const_bits;
5369 }
5370
5371 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5372 The result is placed in BUFFER (which is an array of bytes).
5373 If the constructor is constant, NULL_TREE is returned.
5374 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5375
5376 tree
5377 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
5378 {
5379 int i;
5380 int set_word_size = BITS_PER_UNIT;
5381 int bit_size = wd_size * set_word_size;
5382 int bit_pos = 0;
5383 unsigned char *bytep = buffer;
5384 char *bit_buffer = alloca (bit_size);
5385 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
5386
5387 for (i = 0; i < wd_size; i++)
5388 buffer[i] = 0;
5389
5390 for (i = 0; i < bit_size; i++)
5391 {
5392 if (bit_buffer[i])
5393 {
5394 if (BYTES_BIG_ENDIAN)
5395 *bytep |= (1 << (set_word_size - 1 - bit_pos));
5396 else
5397 *bytep |= 1 << bit_pos;
5398 }
5399 bit_pos++;
5400 if (bit_pos >= set_word_size)
5401 bit_pos = 0, bytep++;
5402 }
5403 return non_const_bits;
5404 }
5405 \f
5406 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
5407
5408 /* Complain that the tree code of NODE does not match the expected 0
5409 terminated list of trailing codes. The trailing code list can be
5410 empty, for a more vague error message. FILE, LINE, and FUNCTION
5411 are of the caller. */
5412
5413 void
5414 tree_check_failed (const tree node, const char *file,
5415 int line, const char *function, ...)
5416 {
5417 va_list args;
5418 char *buffer;
5419 unsigned length = 0;
5420 int code;
5421
5422 va_start (args, function);
5423 while ((code = va_arg (args, int)))
5424 length += 4 + strlen (tree_code_name[code]);
5425 va_end (args);
5426 if (length)
5427 {
5428 va_start (args, function);
5429 length += strlen ("expected ");
5430 buffer = alloca (length);
5431 length = 0;
5432 while ((code = va_arg (args, int)))
5433 {
5434 const char *prefix = length ? " or " : "expected ";
5435
5436 strcpy (buffer + length, prefix);
5437 length += strlen (prefix);
5438 strcpy (buffer + length, tree_code_name[code]);
5439 length += strlen (tree_code_name[code]);
5440 }
5441 va_end (args);
5442 }
5443 else
5444 buffer = (char *)"unexpected node";
5445
5446 internal_error ("tree check: %s, have %s in %s, at %s:%d",
5447 buffer, tree_code_name[TREE_CODE (node)],
5448 function, trim_filename (file), line);
5449 }
5450
5451 /* Complain that the tree code of NODE does match the expected 0
5452 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
5453 the caller. */
5454
5455 void
5456 tree_not_check_failed (const tree node, const char *file,
5457 int line, const char *function, ...)
5458 {
5459 va_list args;
5460 char *buffer;
5461 unsigned length = 0;
5462 int code;
5463
5464 va_start (args, function);
5465 while ((code = va_arg (args, int)))
5466 length += 4 + strlen (tree_code_name[code]);
5467 va_end (args);
5468 va_start (args, function);
5469 buffer = alloca (length);
5470 length = 0;
5471 while ((code = va_arg (args, int)))
5472 {
5473 if (length)
5474 {
5475 strcpy (buffer + length, " or ");
5476 length += 4;
5477 }
5478 strcpy (buffer + length, tree_code_name[code]);
5479 length += strlen (tree_code_name[code]);
5480 }
5481 va_end (args);
5482
5483 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
5484 buffer, tree_code_name[TREE_CODE (node)],
5485 function, trim_filename (file), line);
5486 }
5487
5488 /* Similar to tree_check_failed, except that we check for a class of tree
5489 code, given in CL. */
5490
5491 void
5492 tree_class_check_failed (const tree node, const enum tree_code_class cl,
5493 const char *file, int line, const char *function)
5494 {
5495 internal_error
5496 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
5497 TREE_CODE_CLASS_STRING (cl),
5498 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
5499 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
5500 }
5501
5502 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
5503 (dynamically sized) vector. */
5504
5505 void
5506 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
5507 const char *function)
5508 {
5509 internal_error
5510 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
5511 idx + 1, len, function, trim_filename (file), line);
5512 }
5513
5514 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
5515 (dynamically sized) vector. */
5516
5517 void
5518 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
5519 const char *function)
5520 {
5521 internal_error
5522 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
5523 idx + 1, len, function, trim_filename (file), line);
5524 }
5525
5526 /* Similar to above, except that the check is for the bounds of the operand
5527 vector of an expression node. */
5528
5529 void
5530 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
5531 int line, const char *function)
5532 {
5533 internal_error
5534 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
5535 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
5536 function, trim_filename (file), line);
5537 }
5538 #endif /* ENABLE_TREE_CHECKING */
5539 \f
5540 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
5541 and mapped to the machine mode MODE. Initialize its fields and build
5542 the information necessary for debugging output. */
5543
5544 static tree
5545 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
5546 {
5547 tree t = make_node (VECTOR_TYPE);
5548
5549 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
5550 TYPE_VECTOR_SUBPARTS (t) = nunits;
5551 TYPE_MODE (t) = mode;
5552 TYPE_READONLY (t) = TYPE_READONLY (innertype);
5553 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
5554
5555 layout_type (t);
5556
5557 {
5558 tree index = build_int_cst (NULL_TREE, nunits - 1);
5559 tree array = build_array_type (innertype, build_index_type (index));
5560 tree rt = make_node (RECORD_TYPE);
5561
5562 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
5563 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
5564 layout_type (rt);
5565 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
5566 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
5567 the representation type, and we want to find that die when looking up
5568 the vector type. This is most easily achieved by making the TYPE_UID
5569 numbers equal. */
5570 TYPE_UID (rt) = TYPE_UID (t);
5571 }
5572
5573 /* Build our main variant, based on the main variant of the inner type. */
5574 if (TYPE_MAIN_VARIANT (innertype) != innertype)
5575 {
5576 tree innertype_main_variant = TYPE_MAIN_VARIANT (innertype);
5577 unsigned int hash = TYPE_HASH (innertype_main_variant);
5578 TYPE_MAIN_VARIANT (t)
5579 = type_hash_canon (hash, make_vector_type (innertype_main_variant,
5580 nunits, mode));
5581 }
5582
5583 return t;
5584 }
5585
5586 static tree
5587 make_or_reuse_type (unsigned size, int unsignedp)
5588 {
5589 if (size == INT_TYPE_SIZE)
5590 return unsignedp ? unsigned_type_node : integer_type_node;
5591 if (size == CHAR_TYPE_SIZE)
5592 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
5593 if (size == SHORT_TYPE_SIZE)
5594 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
5595 if (size == LONG_TYPE_SIZE)
5596 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
5597 if (size == LONG_LONG_TYPE_SIZE)
5598 return (unsignedp ? long_long_unsigned_type_node
5599 : long_long_integer_type_node);
5600
5601 if (unsignedp)
5602 return make_unsigned_type (size);
5603 else
5604 return make_signed_type (size);
5605 }
5606
5607 /* Create nodes for all integer types (and error_mark_node) using the sizes
5608 of C datatypes. The caller should call set_sizetype soon after calling
5609 this function to select one of the types as sizetype. */
5610
5611 void
5612 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
5613 {
5614 error_mark_node = make_node (ERROR_MARK);
5615 TREE_TYPE (error_mark_node) = error_mark_node;
5616
5617 initialize_sizetypes (signed_sizetype);
5618
5619 /* Define both `signed char' and `unsigned char'. */
5620 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
5621 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
5622
5623 /* Define `char', which is like either `signed char' or `unsigned char'
5624 but not the same as either. */
5625 char_type_node
5626 = (signed_char
5627 ? make_signed_type (CHAR_TYPE_SIZE)
5628 : make_unsigned_type (CHAR_TYPE_SIZE));
5629
5630 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
5631 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
5632 integer_type_node = make_signed_type (INT_TYPE_SIZE);
5633 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
5634 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
5635 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
5636 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
5637 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
5638
5639 /* Define a boolean type. This type only represents boolean values but
5640 may be larger than char depending on the value of BOOL_TYPE_SIZE.
5641 Front ends which want to override this size (i.e. Java) can redefine
5642 boolean_type_node before calling build_common_tree_nodes_2. */
5643 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5644 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5645 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5646 TYPE_PRECISION (boolean_type_node) = 1;
5647
5648 /* Fill in the rest of the sized types. Reuse existing type nodes
5649 when possible. */
5650 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
5651 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
5652 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
5653 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
5654 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
5655
5656 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
5657 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
5658 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
5659 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
5660 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
5661
5662 access_public_node = get_identifier ("public");
5663 access_protected_node = get_identifier ("protected");
5664 access_private_node = get_identifier ("private");
5665 }
5666
5667 /* Call this function after calling build_common_tree_nodes and set_sizetype.
5668 It will create several other common tree nodes. */
5669
5670 void
5671 build_common_tree_nodes_2 (int short_double)
5672 {
5673 /* Define these next since types below may used them. */
5674 integer_zero_node = build_int_cst (NULL_TREE, 0);
5675 integer_one_node = build_int_cst (NULL_TREE, 1);
5676 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
5677
5678 size_zero_node = size_int (0);
5679 size_one_node = size_int (1);
5680 bitsize_zero_node = bitsize_int (0);
5681 bitsize_one_node = bitsize_int (1);
5682 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
5683
5684 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5685 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5686
5687 void_type_node = make_node (VOID_TYPE);
5688 layout_type (void_type_node);
5689
5690 /* We are not going to have real types in C with less than byte alignment,
5691 so we might as well not have any types that claim to have it. */
5692 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
5693 TYPE_USER_ALIGN (void_type_node) = 0;
5694
5695 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
5696 layout_type (TREE_TYPE (null_pointer_node));
5697
5698 ptr_type_node = build_pointer_type (void_type_node);
5699 const_ptr_type_node
5700 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
5701 fileptr_type_node = ptr_type_node;
5702
5703 float_type_node = make_node (REAL_TYPE);
5704 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
5705 layout_type (float_type_node);
5706
5707 double_type_node = make_node (REAL_TYPE);
5708 if (short_double)
5709 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
5710 else
5711 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
5712 layout_type (double_type_node);
5713
5714 long_double_type_node = make_node (REAL_TYPE);
5715 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
5716 layout_type (long_double_type_node);
5717
5718 float_ptr_type_node = build_pointer_type (float_type_node);
5719 double_ptr_type_node = build_pointer_type (double_type_node);
5720 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
5721 integer_ptr_type_node = build_pointer_type (integer_type_node);
5722
5723 complex_integer_type_node = make_node (COMPLEX_TYPE);
5724 TREE_TYPE (complex_integer_type_node) = integer_type_node;
5725 layout_type (complex_integer_type_node);
5726
5727 complex_float_type_node = make_node (COMPLEX_TYPE);
5728 TREE_TYPE (complex_float_type_node) = float_type_node;
5729 layout_type (complex_float_type_node);
5730
5731 complex_double_type_node = make_node (COMPLEX_TYPE);
5732 TREE_TYPE (complex_double_type_node) = double_type_node;
5733 layout_type (complex_double_type_node);
5734
5735 complex_long_double_type_node = make_node (COMPLEX_TYPE);
5736 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
5737 layout_type (complex_long_double_type_node);
5738
5739 {
5740 tree t = targetm.build_builtin_va_list ();
5741
5742 /* Many back-ends define record types without setting TYPE_NAME.
5743 If we copied the record type here, we'd keep the original
5744 record type without a name. This breaks name mangling. So,
5745 don't copy record types and let c_common_nodes_and_builtins()
5746 declare the type to be __builtin_va_list. */
5747 if (TREE_CODE (t) != RECORD_TYPE)
5748 t = build_variant_type_copy (t);
5749
5750 va_list_type_node = t;
5751 }
5752 }
5753
5754 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
5755 better way.
5756
5757 If we requested a pointer to a vector, build up the pointers that
5758 we stripped off while looking for the inner type. Similarly for
5759 return values from functions.
5760
5761 The argument TYPE is the top of the chain, and BOTTOM is the
5762 new type which we will point to. */
5763
5764 tree
5765 reconstruct_complex_type (tree type, tree bottom)
5766 {
5767 tree inner, outer;
5768
5769 if (POINTER_TYPE_P (type))
5770 {
5771 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5772 outer = build_pointer_type (inner);
5773 }
5774 else if (TREE_CODE (type) == ARRAY_TYPE)
5775 {
5776 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5777 outer = build_array_type (inner, TYPE_DOMAIN (type));
5778 }
5779 else if (TREE_CODE (type) == FUNCTION_TYPE)
5780 {
5781 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5782 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
5783 }
5784 else if (TREE_CODE (type) == METHOD_TYPE)
5785 {
5786 tree argtypes;
5787 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5788 /* The build_method_type_directly() routine prepends 'this' to argument list,
5789 so we must compensate by getting rid of it. */
5790 argtypes = TYPE_ARG_TYPES (type);
5791 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
5792 inner,
5793 TYPE_ARG_TYPES (type));
5794 TYPE_ARG_TYPES (outer) = argtypes;
5795 }
5796 else
5797 return bottom;
5798
5799 TYPE_READONLY (outer) = TYPE_READONLY (type);
5800 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
5801
5802 return outer;
5803 }
5804
5805 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
5806 the inner type. */
5807 tree
5808 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
5809 {
5810 int nunits;
5811
5812 switch (GET_MODE_CLASS (mode))
5813 {
5814 case MODE_VECTOR_INT:
5815 case MODE_VECTOR_FLOAT:
5816 nunits = GET_MODE_NUNITS (mode);
5817 break;
5818
5819 case MODE_INT:
5820 /* Check that there are no leftover bits. */
5821 gcc_assert (GET_MODE_BITSIZE (mode)
5822 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
5823
5824 nunits = GET_MODE_BITSIZE (mode)
5825 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
5826 break;
5827
5828 default:
5829 gcc_unreachable ();
5830 }
5831
5832 return make_vector_type (innertype, nunits, mode);
5833 }
5834
5835 /* Similarly, but takes the inner type and number of units, which must be
5836 a power of two. */
5837
5838 tree
5839 build_vector_type (tree innertype, int nunits)
5840 {
5841 return make_vector_type (innertype, nunits, VOIDmode);
5842 }
5843
5844 /* Given an initializer INIT, return TRUE if INIT is zero or some
5845 aggregate of zeros. Otherwise return FALSE. */
5846 bool
5847 initializer_zerop (tree init)
5848 {
5849 tree elt;
5850
5851 STRIP_NOPS (init);
5852
5853 switch (TREE_CODE (init))
5854 {
5855 case INTEGER_CST:
5856 return integer_zerop (init);
5857
5858 case REAL_CST:
5859 /* ??? Note that this is not correct for C4X float formats. There,
5860 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
5861 negative exponent. */
5862 return real_zerop (init)
5863 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
5864
5865 case COMPLEX_CST:
5866 return integer_zerop (init)
5867 || (real_zerop (init)
5868 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
5869 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
5870
5871 case VECTOR_CST:
5872 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
5873 if (!initializer_zerop (TREE_VALUE (elt)))
5874 return false;
5875 return true;
5876
5877 case CONSTRUCTOR:
5878 elt = CONSTRUCTOR_ELTS (init);
5879 if (elt == NULL_TREE)
5880 return true;
5881
5882 /* A set is empty only if it has no elements. */
5883 if (TREE_CODE (TREE_TYPE (init)) == SET_TYPE)
5884 return false;
5885
5886 for (; elt ; elt = TREE_CHAIN (elt))
5887 if (! initializer_zerop (TREE_VALUE (elt)))
5888 return false;
5889 return true;
5890
5891 default:
5892 return false;
5893 }
5894 }
5895
5896 void
5897 add_var_to_bind_expr (tree bind_expr, tree var)
5898 {
5899 BIND_EXPR_VARS (bind_expr)
5900 = chainon (BIND_EXPR_VARS (bind_expr), var);
5901 if (BIND_EXPR_BLOCK (bind_expr))
5902 BLOCK_VARS (BIND_EXPR_BLOCK (bind_expr))
5903 = BIND_EXPR_VARS (bind_expr);
5904 }
5905
5906 /* Build an empty statement. */
5907
5908 tree
5909 build_empty_stmt (void)
5910 {
5911 return build1 (NOP_EXPR, void_type_node, size_zero_node);
5912 }
5913
5914
5915 /* Returns true if it is possible to prove that the index of
5916 an array access REF (an ARRAY_REF expression) falls into the
5917 array bounds. */
5918
5919 bool
5920 in_array_bounds_p (tree ref)
5921 {
5922 tree idx = TREE_OPERAND (ref, 1);
5923 tree min, max;
5924
5925 if (TREE_CODE (idx) != INTEGER_CST)
5926 return false;
5927
5928 min = array_ref_low_bound (ref);
5929 max = array_ref_up_bound (ref);
5930 if (!min
5931 || !max
5932 || TREE_CODE (min) != INTEGER_CST
5933 || TREE_CODE (max) != INTEGER_CST)
5934 return false;
5935
5936 if (tree_int_cst_lt (idx, min)
5937 || tree_int_cst_lt (max, idx))
5938 return false;
5939
5940 return true;
5941 }
5942
5943 /* Return true if T (assumed to be a DECL) is a global variable. */
5944
5945 bool
5946 is_global_var (tree t)
5947 {
5948 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
5949 }
5950
5951 /* Return true if T (assumed to be a DECL) must be assigned a memory
5952 location. */
5953
5954 bool
5955 needs_to_live_in_memory (tree t)
5956 {
5957 return (TREE_ADDRESSABLE (t)
5958 || is_global_var (t)
5959 || (TREE_CODE (t) == RESULT_DECL
5960 && aggregate_value_p (t, current_function_decl)));
5961 }
5962
5963 /* There are situations in which a language considers record types
5964 compatible which have different field lists. Decide if two fields
5965 are compatible. It is assumed that the parent records are compatible. */
5966
5967 bool
5968 fields_compatible_p (tree f1, tree f2)
5969 {
5970 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
5971 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
5972 return false;
5973
5974 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
5975 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
5976 return false;
5977
5978 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
5979 return false;
5980
5981 return true;
5982 }
5983
5984 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
5985
5986 tree
5987 find_compatible_field (tree record, tree orig_field)
5988 {
5989 tree f;
5990
5991 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
5992 if (TREE_CODE (f) == FIELD_DECL
5993 && fields_compatible_p (f, orig_field))
5994 return f;
5995
5996 /* ??? Why isn't this on the main fields list? */
5997 f = TYPE_VFIELD (record);
5998 if (f && TREE_CODE (f) == FIELD_DECL
5999 && fields_compatible_p (f, orig_field))
6000 return f;
6001
6002 /* ??? We should abort here, but Java appears to do Bad Things
6003 with inherited fields. */
6004 return orig_field;
6005 }
6006
6007 /* Return value of a constant X. */
6008
6009 HOST_WIDE_INT
6010 int_cst_value (tree x)
6011 {
6012 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
6013 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
6014 bool negative = ((val >> (bits - 1)) & 1) != 0;
6015
6016 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
6017
6018 if (negative)
6019 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
6020 else
6021 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
6022
6023 return val;
6024 }
6025
6026 /* Returns the greatest common divisor of A and B, which must be
6027 INTEGER_CSTs. */
6028
6029 tree
6030 tree_fold_gcd (tree a, tree b)
6031 {
6032 tree a_mod_b;
6033 tree type = TREE_TYPE (a);
6034
6035 gcc_assert (TREE_CODE (a) == INTEGER_CST);
6036 gcc_assert (TREE_CODE (b) == INTEGER_CST);
6037
6038 if (integer_zerop (a))
6039 return b;
6040
6041 if (integer_zerop (b))
6042 return a;
6043
6044 if (tree_int_cst_sgn (a) == -1)
6045 a = fold (build2 (MULT_EXPR, type, a,
6046 convert (type, integer_minus_one_node)));
6047
6048 if (tree_int_cst_sgn (b) == -1)
6049 b = fold (build2 (MULT_EXPR, type, b,
6050 convert (type, integer_minus_one_node)));
6051
6052 while (1)
6053 {
6054 a_mod_b = fold (build2 (FLOOR_MOD_EXPR, type, a, b));
6055
6056 if (!TREE_INT_CST_LOW (a_mod_b)
6057 && !TREE_INT_CST_HIGH (a_mod_b))
6058 return b;
6059
6060 a = b;
6061 b = a_mod_b;
6062 }
6063 }
6064
6065 /* Returns unsigned variant of TYPE. */
6066
6067 tree
6068 unsigned_type_for (tree type)
6069 {
6070 return lang_hooks.types.unsigned_type (type);
6071 }
6072
6073 /* Returns signed variant of TYPE. */
6074
6075 tree
6076 signed_type_for (tree type)
6077 {
6078 return lang_hooks.types.signed_type (type);
6079 }
6080
6081 /* Returns the largest value obtainable by casting something in INNER type to
6082 OUTER type. */
6083
6084 tree
6085 upper_bound_in_type (tree outer, tree inner)
6086 {
6087 unsigned HOST_WIDE_INT lo, hi;
6088 unsigned bits = TYPE_PRECISION (inner);
6089
6090 if (TYPE_UNSIGNED (outer) || TYPE_UNSIGNED (inner))
6091 {
6092 /* Zero extending in these cases. */
6093 if (bits <= HOST_BITS_PER_WIDE_INT)
6094 {
6095 hi = 0;
6096 lo = (~(unsigned HOST_WIDE_INT) 0)
6097 >> (HOST_BITS_PER_WIDE_INT - bits);
6098 }
6099 else
6100 {
6101 hi = (~(unsigned HOST_WIDE_INT) 0)
6102 >> (2 * HOST_BITS_PER_WIDE_INT - bits);
6103 lo = ~(unsigned HOST_WIDE_INT) 0;
6104 }
6105 }
6106 else
6107 {
6108 /* Sign extending in these cases. */
6109 if (bits <= HOST_BITS_PER_WIDE_INT)
6110 {
6111 hi = 0;
6112 lo = (~(unsigned HOST_WIDE_INT) 0)
6113 >> (HOST_BITS_PER_WIDE_INT - bits) >> 1;
6114 }
6115 else
6116 {
6117 hi = (~(unsigned HOST_WIDE_INT) 0)
6118 >> (2 * HOST_BITS_PER_WIDE_INT - bits) >> 1;
6119 lo = ~(unsigned HOST_WIDE_INT) 0;
6120 }
6121 }
6122
6123 return fold_convert (outer,
6124 build_int_cst_wide (inner, lo, hi));
6125 }
6126
6127 /* Returns the smallest value obtainable by casting something in INNER type to
6128 OUTER type. */
6129
6130 tree
6131 lower_bound_in_type (tree outer, tree inner)
6132 {
6133 unsigned HOST_WIDE_INT lo, hi;
6134 unsigned bits = TYPE_PRECISION (inner);
6135
6136 if (TYPE_UNSIGNED (outer) || TYPE_UNSIGNED (inner))
6137 lo = hi = 0;
6138 else if (bits <= HOST_BITS_PER_WIDE_INT)
6139 {
6140 hi = ~(unsigned HOST_WIDE_INT) 0;
6141 lo = (~(unsigned HOST_WIDE_INT) 0) << (bits - 1);
6142 }
6143 else
6144 {
6145 hi = (~(unsigned HOST_WIDE_INT) 0) << (bits - HOST_BITS_PER_WIDE_INT - 1);
6146 lo = 0;
6147 }
6148
6149 return fold_convert (outer,
6150 build_int_cst_wide (inner, lo, hi));
6151 }
6152
6153 /* Return nonzero if two operands that are suitable for PHI nodes are
6154 necessarily equal. Specifically, both ARG0 and ARG1 must be either
6155 SSA_NAME or invariant. Note that this is strictly an optimization.
6156 That is, callers of this function can directly call operand_equal_p
6157 and get the same result, only slower. */
6158
6159 int
6160 operand_equal_for_phi_arg_p (tree arg0, tree arg1)
6161 {
6162 if (arg0 == arg1)
6163 return 1;
6164 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
6165 return 0;
6166 return operand_equal_p (arg0, arg1, 0);
6167 }
6168
6169 #include "gt-tree.h"