typo
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent, but occasionally
28 calls language-dependent routines defined (for C) in typecheck.c. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "flags.h"
35 #include "tree.h"
36 #include "tm_p.h"
37 #include "function.h"
38 #include "obstack.h"
39 #include "toplev.h" /* get_random_seed */
40 #include "ggc.h"
41 #include "hashtab.h"
42 #include "filenames.h"
43 #include "output.h"
44 #include "target.h"
45 #include "common/common-target.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "bitmap.h"
51 #include "gimple.h"
52 #include "gimple-ssa.h"
53 #include "cgraph.h"
54 #include "tree-phinodes.h"
55 #include "tree-ssanames.h"
56 #include "tree-dfa.h"
57 #include "params.h"
58 #include "pointer-set.h"
59 #include "tree-pass.h"
60 #include "langhooks-def.h"
61 #include "diagnostic.h"
62 #include "tree-diagnostic.h"
63 #include "tree-pretty-print.h"
64 #include "except.h"
65 #include "debug.h"
66 #include "intl.h"
67
68 /* Tree code classes. */
69
70 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
71 #define END_OF_BASE_TREE_CODES tcc_exceptional,
72
73 const enum tree_code_class tree_code_type[] = {
74 #include "all-tree.def"
75 };
76
77 #undef DEFTREECODE
78 #undef END_OF_BASE_TREE_CODES
79
80 /* Table indexed by tree code giving number of expression
81 operands beyond the fixed part of the node structure.
82 Not used for types or decls. */
83
84 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
85 #define END_OF_BASE_TREE_CODES 0,
86
87 const unsigned char tree_code_length[] = {
88 #include "all-tree.def"
89 };
90
91 #undef DEFTREECODE
92 #undef END_OF_BASE_TREE_CODES
93
94 /* Names of tree components.
95 Used for printing out the tree and error messages. */
96 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
97 #define END_OF_BASE_TREE_CODES "@dummy",
98
99 static const char *const tree_code_name[] = {
100 #include "all-tree.def"
101 };
102
103 #undef DEFTREECODE
104 #undef END_OF_BASE_TREE_CODES
105
106 /* Each tree code class has an associated string representation.
107 These must correspond to the tree_code_class entries. */
108
109 const char *const tree_code_class_strings[] =
110 {
111 "exceptional",
112 "constant",
113 "type",
114 "declaration",
115 "reference",
116 "comparison",
117 "unary",
118 "binary",
119 "statement",
120 "vl_exp",
121 "expression"
122 };
123
124 /* obstack.[ch] explicitly declined to prototype this. */
125 extern int _obstack_allocated_p (struct obstack *h, void *obj);
126
127 /* Statistics-gathering stuff. */
128
129 static int tree_code_counts[MAX_TREE_CODES];
130 int tree_node_counts[(int) all_kinds];
131 int tree_node_sizes[(int) all_kinds];
132
133 /* Keep in sync with tree.h:enum tree_node_kind. */
134 static const char * const tree_node_kind_names[] = {
135 "decls",
136 "types",
137 "blocks",
138 "stmts",
139 "refs",
140 "exprs",
141 "constants",
142 "identifiers",
143 "vecs",
144 "binfos",
145 "ssa names",
146 "constructors",
147 "random kinds",
148 "lang_decl kinds",
149 "lang_type kinds",
150 "omp clauses",
151 };
152
153 /* Unique id for next decl created. */
154 static GTY(()) int next_decl_uid;
155 /* Unique id for next type created. */
156 static GTY(()) int next_type_uid = 1;
157 /* Unique id for next debug decl created. Use negative numbers,
158 to catch erroneous uses. */
159 static GTY(()) int next_debug_decl_uid;
160
161 /* Since we cannot rehash a type after it is in the table, we have to
162 keep the hash code. */
163
164 struct GTY(()) type_hash {
165 unsigned long hash;
166 tree type;
167 };
168
169 /* Initial size of the hash table (rounded to next prime). */
170 #define TYPE_HASH_INITIAL_SIZE 1000
171
172 /* Now here is the hash table. When recording a type, it is added to
173 the slot whose index is the hash code. Note that the hash table is
174 used for several kinds of types (function types, array types and
175 array index range types, for now). While all these live in the
176 same table, they are completely independent, and the hash code is
177 computed differently for each of these. */
178
179 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
180 htab_t type_hash_table;
181
182 /* Hash table and temporary node for larger integer const values. */
183 static GTY (()) tree int_cst_node;
184 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
185 htab_t int_cst_hash_table;
186
187 /* Hash table for optimization flags and target option flags. Use the same
188 hash table for both sets of options. Nodes for building the current
189 optimization and target option nodes. The assumption is most of the time
190 the options created will already be in the hash table, so we avoid
191 allocating and freeing up a node repeatably. */
192 static GTY (()) tree cl_optimization_node;
193 static GTY (()) tree cl_target_option_node;
194 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
195 htab_t cl_option_hash_table;
196
197 /* General tree->tree mapping structure for use in hash tables. */
198
199
200 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
201 htab_t debug_expr_for_decl;
202
203 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
204 htab_t value_expr_for_decl;
205
206 static GTY ((if_marked ("tree_vec_map_marked_p"), param_is (struct tree_vec_map)))
207 htab_t debug_args_for_decl;
208
209 static GTY ((if_marked ("tree_priority_map_marked_p"),
210 param_is (struct tree_priority_map)))
211 htab_t init_priority_for_decl;
212
213 static void set_type_quals (tree, int);
214 static int type_hash_eq (const void *, const void *);
215 static hashval_t type_hash_hash (const void *);
216 static hashval_t int_cst_hash_hash (const void *);
217 static int int_cst_hash_eq (const void *, const void *);
218 static hashval_t cl_option_hash_hash (const void *);
219 static int cl_option_hash_eq (const void *, const void *);
220 static void print_type_hash_statistics (void);
221 static void print_debug_expr_statistics (void);
222 static void print_value_expr_statistics (void);
223 static int type_hash_marked_p (const void *);
224 static unsigned int type_hash_list (const_tree, hashval_t);
225 static unsigned int attribute_hash_list (const_tree, hashval_t);
226 static bool decls_same_for_odr (tree decl1, tree decl2);
227
228 tree global_trees[TI_MAX];
229 tree integer_types[itk_none];
230
231 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
232
233 /* Number of operands for each OpenMP clause. */
234 unsigned const char omp_clause_num_ops[] =
235 {
236 0, /* OMP_CLAUSE_ERROR */
237 1, /* OMP_CLAUSE_PRIVATE */
238 1, /* OMP_CLAUSE_SHARED */
239 1, /* OMP_CLAUSE_FIRSTPRIVATE */
240 2, /* OMP_CLAUSE_LASTPRIVATE */
241 4, /* OMP_CLAUSE_REDUCTION */
242 1, /* OMP_CLAUSE_COPYIN */
243 1, /* OMP_CLAUSE_COPYPRIVATE */
244 2, /* OMP_CLAUSE_LINEAR */
245 2, /* OMP_CLAUSE_ALIGNED */
246 1, /* OMP_CLAUSE_DEPEND */
247 1, /* OMP_CLAUSE_UNIFORM */
248 2, /* OMP_CLAUSE_FROM */
249 2, /* OMP_CLAUSE_TO */
250 2, /* OMP_CLAUSE_MAP */
251 1, /* OMP_CLAUSE__LOOPTEMP_ */
252 1, /* OMP_CLAUSE_IF */
253 1, /* OMP_CLAUSE_NUM_THREADS */
254 1, /* OMP_CLAUSE_SCHEDULE */
255 0, /* OMP_CLAUSE_NOWAIT */
256 0, /* OMP_CLAUSE_ORDERED */
257 0, /* OMP_CLAUSE_DEFAULT */
258 3, /* OMP_CLAUSE_COLLAPSE */
259 0, /* OMP_CLAUSE_UNTIED */
260 1, /* OMP_CLAUSE_FINAL */
261 0, /* OMP_CLAUSE_MERGEABLE */
262 1, /* OMP_CLAUSE_DEVICE */
263 1, /* OMP_CLAUSE_DIST_SCHEDULE */
264 0, /* OMP_CLAUSE_INBRANCH */
265 0, /* OMP_CLAUSE_NOTINBRANCH */
266 1, /* OMP_CLAUSE_NUM_TEAMS */
267 1, /* OMP_CLAUSE_THREAD_LIMIT */
268 0, /* OMP_CLAUSE_PROC_BIND */
269 1, /* OMP_CLAUSE_SAFELEN */
270 1, /* OMP_CLAUSE_SIMDLEN */
271 0, /* OMP_CLAUSE_FOR */
272 0, /* OMP_CLAUSE_PARALLEL */
273 0, /* OMP_CLAUSE_SECTIONS */
274 0, /* OMP_CLAUSE_TASKGROUP */
275 1, /* OMP_CLAUSE__SIMDUID_ */
276 };
277
278 const char * const omp_clause_code_name[] =
279 {
280 "error_clause",
281 "private",
282 "shared",
283 "firstprivate",
284 "lastprivate",
285 "reduction",
286 "copyin",
287 "copyprivate",
288 "linear",
289 "aligned",
290 "depend",
291 "uniform",
292 "from",
293 "to",
294 "map",
295 "_looptemp_",
296 "if",
297 "num_threads",
298 "schedule",
299 "nowait",
300 "ordered",
301 "default",
302 "collapse",
303 "untied",
304 "final",
305 "mergeable",
306 "device",
307 "dist_schedule",
308 "inbranch",
309 "notinbranch",
310 "num_teams",
311 "thread_limit",
312 "proc_bind",
313 "safelen",
314 "simdlen",
315 "for",
316 "parallel",
317 "sections",
318 "taskgroup",
319 "_simduid_"
320 };
321
322
323 /* Return the tree node structure used by tree code CODE. */
324
325 static inline enum tree_node_structure_enum
326 tree_node_structure_for_code (enum tree_code code)
327 {
328 switch (TREE_CODE_CLASS (code))
329 {
330 case tcc_declaration:
331 {
332 switch (code)
333 {
334 case FIELD_DECL:
335 return TS_FIELD_DECL;
336 case PARM_DECL:
337 return TS_PARM_DECL;
338 case VAR_DECL:
339 return TS_VAR_DECL;
340 case LABEL_DECL:
341 return TS_LABEL_DECL;
342 case RESULT_DECL:
343 return TS_RESULT_DECL;
344 case DEBUG_EXPR_DECL:
345 return TS_DECL_WRTL;
346 case CONST_DECL:
347 return TS_CONST_DECL;
348 case TYPE_DECL:
349 return TS_TYPE_DECL;
350 case FUNCTION_DECL:
351 return TS_FUNCTION_DECL;
352 case TRANSLATION_UNIT_DECL:
353 return TS_TRANSLATION_UNIT_DECL;
354 default:
355 return TS_DECL_NON_COMMON;
356 }
357 }
358 case tcc_type:
359 return TS_TYPE_NON_COMMON;
360 case tcc_reference:
361 case tcc_comparison:
362 case tcc_unary:
363 case tcc_binary:
364 case tcc_expression:
365 case tcc_statement:
366 case tcc_vl_exp:
367 return TS_EXP;
368 default: /* tcc_constant and tcc_exceptional */
369 break;
370 }
371 switch (code)
372 {
373 /* tcc_constant cases. */
374 case INTEGER_CST: return TS_INT_CST;
375 case REAL_CST: return TS_REAL_CST;
376 case FIXED_CST: return TS_FIXED_CST;
377 case COMPLEX_CST: return TS_COMPLEX;
378 case VECTOR_CST: return TS_VECTOR;
379 case STRING_CST: return TS_STRING;
380 /* tcc_exceptional cases. */
381 case ERROR_MARK: return TS_COMMON;
382 case IDENTIFIER_NODE: return TS_IDENTIFIER;
383 case TREE_LIST: return TS_LIST;
384 case TREE_VEC: return TS_VEC;
385 case SSA_NAME: return TS_SSA_NAME;
386 case PLACEHOLDER_EXPR: return TS_COMMON;
387 case STATEMENT_LIST: return TS_STATEMENT_LIST;
388 case BLOCK: return TS_BLOCK;
389 case CONSTRUCTOR: return TS_CONSTRUCTOR;
390 case TREE_BINFO: return TS_BINFO;
391 case OMP_CLAUSE: return TS_OMP_CLAUSE;
392 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
393 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
394
395 default:
396 gcc_unreachable ();
397 }
398 }
399
400
401 /* Initialize tree_contains_struct to describe the hierarchy of tree
402 nodes. */
403
404 static void
405 initialize_tree_contains_struct (void)
406 {
407 unsigned i;
408
409 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
410 {
411 enum tree_code code;
412 enum tree_node_structure_enum ts_code;
413
414 code = (enum tree_code) i;
415 ts_code = tree_node_structure_for_code (code);
416
417 /* Mark the TS structure itself. */
418 tree_contains_struct[code][ts_code] = 1;
419
420 /* Mark all the structures that TS is derived from. */
421 switch (ts_code)
422 {
423 case TS_TYPED:
424 case TS_BLOCK:
425 MARK_TS_BASE (code);
426 break;
427
428 case TS_COMMON:
429 case TS_INT_CST:
430 case TS_REAL_CST:
431 case TS_FIXED_CST:
432 case TS_VECTOR:
433 case TS_STRING:
434 case TS_COMPLEX:
435 case TS_SSA_NAME:
436 case TS_CONSTRUCTOR:
437 case TS_EXP:
438 case TS_STATEMENT_LIST:
439 MARK_TS_TYPED (code);
440 break;
441
442 case TS_IDENTIFIER:
443 case TS_DECL_MINIMAL:
444 case TS_TYPE_COMMON:
445 case TS_LIST:
446 case TS_VEC:
447 case TS_BINFO:
448 case TS_OMP_CLAUSE:
449 case TS_OPTIMIZATION:
450 case TS_TARGET_OPTION:
451 MARK_TS_COMMON (code);
452 break;
453
454 case TS_TYPE_WITH_LANG_SPECIFIC:
455 MARK_TS_TYPE_COMMON (code);
456 break;
457
458 case TS_TYPE_NON_COMMON:
459 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
460 break;
461
462 case TS_DECL_COMMON:
463 MARK_TS_DECL_MINIMAL (code);
464 break;
465
466 case TS_DECL_WRTL:
467 case TS_CONST_DECL:
468 MARK_TS_DECL_COMMON (code);
469 break;
470
471 case TS_DECL_NON_COMMON:
472 MARK_TS_DECL_WITH_VIS (code);
473 break;
474
475 case TS_DECL_WITH_VIS:
476 case TS_PARM_DECL:
477 case TS_LABEL_DECL:
478 case TS_RESULT_DECL:
479 MARK_TS_DECL_WRTL (code);
480 break;
481
482 case TS_FIELD_DECL:
483 MARK_TS_DECL_COMMON (code);
484 break;
485
486 case TS_VAR_DECL:
487 MARK_TS_DECL_WITH_VIS (code);
488 break;
489
490 case TS_TYPE_DECL:
491 case TS_FUNCTION_DECL:
492 MARK_TS_DECL_NON_COMMON (code);
493 break;
494
495 case TS_TRANSLATION_UNIT_DECL:
496 MARK_TS_DECL_COMMON (code);
497 break;
498
499 default:
500 gcc_unreachable ();
501 }
502 }
503
504 /* Basic consistency checks for attributes used in fold. */
505 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
506 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
507 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
508 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
509 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
510 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
511 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
512 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
513 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
514 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
515 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
516 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
517 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
518 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
519 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
520 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
521 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
522 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
523 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
524 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
525 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
526 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
527 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
528 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
529 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
530 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
531 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
532 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
533 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
534 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
535 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
536 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
537 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
538 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
539 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
540 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
541 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
542 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
543 }
544
545
546 /* Init tree.c. */
547
548 void
549 init_ttree (void)
550 {
551 /* Initialize the hash table of types. */
552 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
553 type_hash_eq, 0);
554
555 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
556 tree_decl_map_eq, 0);
557
558 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
559 tree_decl_map_eq, 0);
560 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
561 tree_priority_map_eq, 0);
562
563 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
564 int_cst_hash_eq, NULL);
565
566 int_cst_node = make_node (INTEGER_CST);
567
568 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
569 cl_option_hash_eq, NULL);
570
571 cl_optimization_node = make_node (OPTIMIZATION_NODE);
572 cl_target_option_node = make_node (TARGET_OPTION_NODE);
573
574 /* Initialize the tree_contains_struct array. */
575 initialize_tree_contains_struct ();
576 lang_hooks.init_ts ();
577 }
578
579 \f
580 /* The name of the object as the assembler will see it (but before any
581 translations made by ASM_OUTPUT_LABELREF). Often this is the same
582 as DECL_NAME. It is an IDENTIFIER_NODE. */
583 tree
584 decl_assembler_name (tree decl)
585 {
586 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
587 lang_hooks.set_decl_assembler_name (decl);
588 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
589 }
590
591 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
592
593 bool
594 decl_assembler_name_equal (tree decl, const_tree asmname)
595 {
596 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
597 const char *decl_str;
598 const char *asmname_str;
599 bool test = false;
600
601 if (decl_asmname == asmname)
602 return true;
603
604 decl_str = IDENTIFIER_POINTER (decl_asmname);
605 asmname_str = IDENTIFIER_POINTER (asmname);
606
607
608 /* If the target assembler name was set by the user, things are trickier.
609 We have a leading '*' to begin with. After that, it's arguable what
610 is the correct thing to do with -fleading-underscore. Arguably, we've
611 historically been doing the wrong thing in assemble_alias by always
612 printing the leading underscore. Since we're not changing that, make
613 sure user_label_prefix follows the '*' before matching. */
614 if (decl_str[0] == '*')
615 {
616 size_t ulp_len = strlen (user_label_prefix);
617
618 decl_str ++;
619
620 if (ulp_len == 0)
621 test = true;
622 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
623 decl_str += ulp_len, test=true;
624 else
625 decl_str --;
626 }
627 if (asmname_str[0] == '*')
628 {
629 size_t ulp_len = strlen (user_label_prefix);
630
631 asmname_str ++;
632
633 if (ulp_len == 0)
634 test = true;
635 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
636 asmname_str += ulp_len, test=true;
637 else
638 asmname_str --;
639 }
640
641 if (!test)
642 return false;
643 return strcmp (decl_str, asmname_str) == 0;
644 }
645
646 /* Hash asmnames ignoring the user specified marks. */
647
648 hashval_t
649 decl_assembler_name_hash (const_tree asmname)
650 {
651 if (IDENTIFIER_POINTER (asmname)[0] == '*')
652 {
653 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
654 size_t ulp_len = strlen (user_label_prefix);
655
656 if (ulp_len == 0)
657 ;
658 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
659 decl_str += ulp_len;
660
661 return htab_hash_string (decl_str);
662 }
663
664 return htab_hash_string (IDENTIFIER_POINTER (asmname));
665 }
666
667 /* Compute the number of bytes occupied by a tree with code CODE.
668 This function cannot be used for nodes that have variable sizes,
669 including TREE_VEC, STRING_CST, and CALL_EXPR. */
670 size_t
671 tree_code_size (enum tree_code code)
672 {
673 switch (TREE_CODE_CLASS (code))
674 {
675 case tcc_declaration: /* A decl node */
676 {
677 switch (code)
678 {
679 case FIELD_DECL:
680 return sizeof (struct tree_field_decl);
681 case PARM_DECL:
682 return sizeof (struct tree_parm_decl);
683 case VAR_DECL:
684 return sizeof (struct tree_var_decl);
685 case LABEL_DECL:
686 return sizeof (struct tree_label_decl);
687 case RESULT_DECL:
688 return sizeof (struct tree_result_decl);
689 case CONST_DECL:
690 return sizeof (struct tree_const_decl);
691 case TYPE_DECL:
692 return sizeof (struct tree_type_decl);
693 case FUNCTION_DECL:
694 return sizeof (struct tree_function_decl);
695 case DEBUG_EXPR_DECL:
696 return sizeof (struct tree_decl_with_rtl);
697 default:
698 return sizeof (struct tree_decl_non_common);
699 }
700 }
701
702 case tcc_type: /* a type node */
703 return sizeof (struct tree_type_non_common);
704
705 case tcc_reference: /* a reference */
706 case tcc_expression: /* an expression */
707 case tcc_statement: /* an expression with side effects */
708 case tcc_comparison: /* a comparison expression */
709 case tcc_unary: /* a unary arithmetic expression */
710 case tcc_binary: /* a binary arithmetic expression */
711 return (sizeof (struct tree_exp)
712 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
713
714 case tcc_constant: /* a constant */
715 switch (code)
716 {
717 case INTEGER_CST: return sizeof (struct tree_int_cst);
718 case REAL_CST: return sizeof (struct tree_real_cst);
719 case FIXED_CST: return sizeof (struct tree_fixed_cst);
720 case COMPLEX_CST: return sizeof (struct tree_complex);
721 case VECTOR_CST: return sizeof (struct tree_vector);
722 case STRING_CST: gcc_unreachable ();
723 default:
724 return lang_hooks.tree_size (code);
725 }
726
727 case tcc_exceptional: /* something random, like an identifier. */
728 switch (code)
729 {
730 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
731 case TREE_LIST: return sizeof (struct tree_list);
732
733 case ERROR_MARK:
734 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
735
736 case TREE_VEC:
737 case OMP_CLAUSE: gcc_unreachable ();
738
739 case SSA_NAME: return sizeof (struct tree_ssa_name);
740
741 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
742 case BLOCK: return sizeof (struct tree_block);
743 case CONSTRUCTOR: return sizeof (struct tree_constructor);
744 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
745 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
746
747 default:
748 return lang_hooks.tree_size (code);
749 }
750
751 default:
752 gcc_unreachable ();
753 }
754 }
755
756 /* Compute the number of bytes occupied by NODE. This routine only
757 looks at TREE_CODE, except for those nodes that have variable sizes. */
758 size_t
759 tree_size (const_tree node)
760 {
761 const enum tree_code code = TREE_CODE (node);
762 switch (code)
763 {
764 case TREE_BINFO:
765 return (offsetof (struct tree_binfo, base_binfos)
766 + vec<tree, va_gc>
767 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
768
769 case TREE_VEC:
770 return (sizeof (struct tree_vec)
771 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
772
773 case VECTOR_CST:
774 return (sizeof (struct tree_vector)
775 + (TYPE_VECTOR_SUBPARTS (TREE_TYPE (node)) - 1) * sizeof (tree));
776
777 case STRING_CST:
778 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
779
780 case OMP_CLAUSE:
781 return (sizeof (struct tree_omp_clause)
782 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
783 * sizeof (tree));
784
785 default:
786 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
787 return (sizeof (struct tree_exp)
788 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
789 else
790 return tree_code_size (code);
791 }
792 }
793
794 /* Record interesting allocation statistics for a tree node with CODE
795 and LENGTH. */
796
797 static void
798 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
799 size_t length ATTRIBUTE_UNUSED)
800 {
801 enum tree_code_class type = TREE_CODE_CLASS (code);
802 tree_node_kind kind;
803
804 if (!GATHER_STATISTICS)
805 return;
806
807 switch (type)
808 {
809 case tcc_declaration: /* A decl node */
810 kind = d_kind;
811 break;
812
813 case tcc_type: /* a type node */
814 kind = t_kind;
815 break;
816
817 case tcc_statement: /* an expression with side effects */
818 kind = s_kind;
819 break;
820
821 case tcc_reference: /* a reference */
822 kind = r_kind;
823 break;
824
825 case tcc_expression: /* an expression */
826 case tcc_comparison: /* a comparison expression */
827 case tcc_unary: /* a unary arithmetic expression */
828 case tcc_binary: /* a binary arithmetic expression */
829 kind = e_kind;
830 break;
831
832 case tcc_constant: /* a constant */
833 kind = c_kind;
834 break;
835
836 case tcc_exceptional: /* something random, like an identifier. */
837 switch (code)
838 {
839 case IDENTIFIER_NODE:
840 kind = id_kind;
841 break;
842
843 case TREE_VEC:
844 kind = vec_kind;
845 break;
846
847 case TREE_BINFO:
848 kind = binfo_kind;
849 break;
850
851 case SSA_NAME:
852 kind = ssa_name_kind;
853 break;
854
855 case BLOCK:
856 kind = b_kind;
857 break;
858
859 case CONSTRUCTOR:
860 kind = constr_kind;
861 break;
862
863 case OMP_CLAUSE:
864 kind = omp_clause_kind;
865 break;
866
867 default:
868 kind = x_kind;
869 break;
870 }
871 break;
872
873 case tcc_vl_exp:
874 kind = e_kind;
875 break;
876
877 default:
878 gcc_unreachable ();
879 }
880
881 tree_code_counts[(int) code]++;
882 tree_node_counts[(int) kind]++;
883 tree_node_sizes[(int) kind] += length;
884 }
885
886 /* Allocate and return a new UID from the DECL_UID namespace. */
887
888 int
889 allocate_decl_uid (void)
890 {
891 return next_decl_uid++;
892 }
893
894 /* Return a newly allocated node of code CODE. For decl and type
895 nodes, some other fields are initialized. The rest of the node is
896 initialized to zero. This function cannot be used for TREE_VEC or
897 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
898
899 Achoo! I got a code in the node. */
900
901 tree
902 make_node_stat (enum tree_code code MEM_STAT_DECL)
903 {
904 tree t;
905 enum tree_code_class type = TREE_CODE_CLASS (code);
906 size_t length = tree_code_size (code);
907
908 record_node_allocation_statistics (code, length);
909
910 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
911 TREE_SET_CODE (t, code);
912
913 switch (type)
914 {
915 case tcc_statement:
916 TREE_SIDE_EFFECTS (t) = 1;
917 break;
918
919 case tcc_declaration:
920 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
921 {
922 if (code == FUNCTION_DECL)
923 {
924 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
925 DECL_MODE (t) = FUNCTION_MODE;
926 }
927 else
928 DECL_ALIGN (t) = 1;
929 }
930 DECL_SOURCE_LOCATION (t) = input_location;
931 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
932 DECL_UID (t) = --next_debug_decl_uid;
933 else
934 {
935 DECL_UID (t) = allocate_decl_uid ();
936 SET_DECL_PT_UID (t, -1);
937 }
938 if (TREE_CODE (t) == LABEL_DECL)
939 LABEL_DECL_UID (t) = -1;
940
941 break;
942
943 case tcc_type:
944 TYPE_UID (t) = next_type_uid++;
945 TYPE_ALIGN (t) = BITS_PER_UNIT;
946 TYPE_USER_ALIGN (t) = 0;
947 TYPE_MAIN_VARIANT (t) = t;
948 TYPE_CANONICAL (t) = t;
949
950 /* Default to no attributes for type, but let target change that. */
951 TYPE_ATTRIBUTES (t) = NULL_TREE;
952 targetm.set_default_type_attributes (t);
953
954 /* We have not yet computed the alias set for this type. */
955 TYPE_ALIAS_SET (t) = -1;
956 break;
957
958 case tcc_constant:
959 TREE_CONSTANT (t) = 1;
960 break;
961
962 case tcc_expression:
963 switch (code)
964 {
965 case INIT_EXPR:
966 case MODIFY_EXPR:
967 case VA_ARG_EXPR:
968 case PREDECREMENT_EXPR:
969 case PREINCREMENT_EXPR:
970 case POSTDECREMENT_EXPR:
971 case POSTINCREMENT_EXPR:
972 /* All of these have side-effects, no matter what their
973 operands are. */
974 TREE_SIDE_EFFECTS (t) = 1;
975 break;
976
977 default:
978 break;
979 }
980 break;
981
982 default:
983 /* Other classes need no special treatment. */
984 break;
985 }
986
987 return t;
988 }
989 \f
990 /* Return a new node with the same contents as NODE except that its
991 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
992
993 tree
994 copy_node_stat (tree node MEM_STAT_DECL)
995 {
996 tree t;
997 enum tree_code code = TREE_CODE (node);
998 size_t length;
999
1000 gcc_assert (code != STATEMENT_LIST);
1001
1002 length = tree_size (node);
1003 record_node_allocation_statistics (code, length);
1004 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1005 memcpy (t, node, length);
1006
1007 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1008 TREE_CHAIN (t) = 0;
1009 TREE_ASM_WRITTEN (t) = 0;
1010 TREE_VISITED (t) = 0;
1011
1012 if (TREE_CODE_CLASS (code) == tcc_declaration)
1013 {
1014 if (code == DEBUG_EXPR_DECL)
1015 DECL_UID (t) = --next_debug_decl_uid;
1016 else
1017 {
1018 DECL_UID (t) = allocate_decl_uid ();
1019 if (DECL_PT_UID_SET_P (node))
1020 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1021 }
1022 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
1023 && DECL_HAS_VALUE_EXPR_P (node))
1024 {
1025 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1026 DECL_HAS_VALUE_EXPR_P (t) = 1;
1027 }
1028 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1029 if (TREE_CODE (node) == VAR_DECL)
1030 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1031 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
1032 {
1033 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1034 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1035 }
1036 if (TREE_CODE (node) == FUNCTION_DECL)
1037 DECL_STRUCT_FUNCTION (t) = NULL;
1038 }
1039 else if (TREE_CODE_CLASS (code) == tcc_type)
1040 {
1041 TYPE_UID (t) = next_type_uid++;
1042 /* The following is so that the debug code for
1043 the copy is different from the original type.
1044 The two statements usually duplicate each other
1045 (because they clear fields of the same union),
1046 but the optimizer should catch that. */
1047 TYPE_SYMTAB_POINTER (t) = 0;
1048 TYPE_SYMTAB_ADDRESS (t) = 0;
1049
1050 /* Do not copy the values cache. */
1051 if (TYPE_CACHED_VALUES_P (t))
1052 {
1053 TYPE_CACHED_VALUES_P (t) = 0;
1054 TYPE_CACHED_VALUES (t) = NULL_TREE;
1055 }
1056 }
1057
1058 return t;
1059 }
1060
1061 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1062 For example, this can copy a list made of TREE_LIST nodes. */
1063
1064 tree
1065 copy_list (tree list)
1066 {
1067 tree head;
1068 tree prev, next;
1069
1070 if (list == 0)
1071 return 0;
1072
1073 head = prev = copy_node (list);
1074 next = TREE_CHAIN (list);
1075 while (next)
1076 {
1077 TREE_CHAIN (prev) = copy_node (next);
1078 prev = TREE_CHAIN (prev);
1079 next = TREE_CHAIN (next);
1080 }
1081 return head;
1082 }
1083
1084 \f
1085 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1086
1087 tree
1088 build_int_cst (tree type, HOST_WIDE_INT low)
1089 {
1090 /* Support legacy code. */
1091 if (!type)
1092 type = integer_type_node;
1093
1094 return double_int_to_tree (type, double_int::from_shwi (low));
1095 }
1096
1097 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1098
1099 tree
1100 build_int_cst_type (tree type, HOST_WIDE_INT low)
1101 {
1102 gcc_assert (type);
1103
1104 return double_int_to_tree (type, double_int::from_shwi (low));
1105 }
1106
1107 /* Constructs tree in type TYPE from with value given by CST. Signedness
1108 of CST is assumed to be the same as the signedness of TYPE. */
1109
1110 tree
1111 double_int_to_tree (tree type, double_int cst)
1112 {
1113 bool sign_extended_type = !TYPE_UNSIGNED (type);
1114
1115 cst = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1116
1117 return build_int_cst_wide (type, cst.low, cst.high);
1118 }
1119
1120 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1121 to be the same as the signedness of TYPE. */
1122
1123 bool
1124 double_int_fits_to_tree_p (const_tree type, double_int cst)
1125 {
1126 bool sign_extended_type = !TYPE_UNSIGNED (type);
1127
1128 double_int ext
1129 = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1130
1131 return cst == ext;
1132 }
1133
1134 /* We force the double_int CST to the range of the type TYPE by sign or
1135 zero extending it. OVERFLOWABLE indicates if we are interested in
1136 overflow of the value, when >0 we are only interested in signed
1137 overflow, for <0 we are interested in any overflow. OVERFLOWED
1138 indicates whether overflow has already occurred. CONST_OVERFLOWED
1139 indicates whether constant overflow has already occurred. We force
1140 T's value to be within range of T's type (by setting to 0 or 1 all
1141 the bits outside the type's range). We set TREE_OVERFLOWED if,
1142 OVERFLOWED is nonzero,
1143 or OVERFLOWABLE is >0 and signed overflow occurs
1144 or OVERFLOWABLE is <0 and any overflow occurs
1145 We return a new tree node for the extended double_int. The node
1146 is shared if no overflow flags are set. */
1147
1148
1149 tree
1150 force_fit_type_double (tree type, double_int cst, int overflowable,
1151 bool overflowed)
1152 {
1153 bool sign_extended_type = !TYPE_UNSIGNED (type);
1154
1155 /* If we need to set overflow flags, return a new unshared node. */
1156 if (overflowed || !double_int_fits_to_tree_p (type, cst))
1157 {
1158 if (overflowed
1159 || overflowable < 0
1160 || (overflowable > 0 && sign_extended_type))
1161 {
1162 tree t = make_node (INTEGER_CST);
1163 TREE_INT_CST (t)
1164 = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1165 TREE_TYPE (t) = type;
1166 TREE_OVERFLOW (t) = 1;
1167 return t;
1168 }
1169 }
1170
1171 /* Else build a shared node. */
1172 return double_int_to_tree (type, cst);
1173 }
1174
1175 /* These are the hash table functions for the hash table of INTEGER_CST
1176 nodes of a sizetype. */
1177
1178 /* Return the hash code code X, an INTEGER_CST. */
1179
1180 static hashval_t
1181 int_cst_hash_hash (const void *x)
1182 {
1183 const_tree const t = (const_tree) x;
1184
1185 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1186 ^ htab_hash_pointer (TREE_TYPE (t)));
1187 }
1188
1189 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1190 is the same as that given by *Y, which is the same. */
1191
1192 static int
1193 int_cst_hash_eq (const void *x, const void *y)
1194 {
1195 const_tree const xt = (const_tree) x;
1196 const_tree const yt = (const_tree) y;
1197
1198 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1199 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1200 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1201 }
1202
1203 /* Create an INT_CST node of TYPE and value HI:LOW.
1204 The returned node is always shared. For small integers we use a
1205 per-type vector cache, for larger ones we use a single hash table. */
1206
1207 tree
1208 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1209 {
1210 tree t;
1211 int ix = -1;
1212 int limit = 0;
1213
1214 gcc_assert (type);
1215
1216 switch (TREE_CODE (type))
1217 {
1218 case NULLPTR_TYPE:
1219 gcc_assert (hi == 0 && low == 0);
1220 /* Fallthru. */
1221
1222 case POINTER_TYPE:
1223 case REFERENCE_TYPE:
1224 case POINTER_BOUNDS_TYPE:
1225 /* Cache NULL pointer and zero bounds. */
1226 if (!hi && !low)
1227 {
1228 limit = 1;
1229 ix = 0;
1230 }
1231 break;
1232
1233 case BOOLEAN_TYPE:
1234 /* Cache false or true. */
1235 limit = 2;
1236 if (!hi && low < 2)
1237 ix = low;
1238 break;
1239
1240 case INTEGER_TYPE:
1241 case OFFSET_TYPE:
1242 if (TYPE_UNSIGNED (type))
1243 {
1244 /* Cache 0..N */
1245 limit = INTEGER_SHARE_LIMIT;
1246 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1247 ix = low;
1248 }
1249 else
1250 {
1251 /* Cache -1..N */
1252 limit = INTEGER_SHARE_LIMIT + 1;
1253 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1254 ix = low + 1;
1255 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1256 ix = 0;
1257 }
1258 break;
1259
1260 case ENUMERAL_TYPE:
1261 break;
1262
1263 default:
1264 gcc_unreachable ();
1265 }
1266
1267 if (ix >= 0)
1268 {
1269 /* Look for it in the type's vector of small shared ints. */
1270 if (!TYPE_CACHED_VALUES_P (type))
1271 {
1272 TYPE_CACHED_VALUES_P (type) = 1;
1273 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1274 }
1275
1276 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1277 if (t)
1278 {
1279 /* Make sure no one is clobbering the shared constant. */
1280 gcc_assert (TREE_TYPE (t) == type);
1281 gcc_assert (TREE_INT_CST_LOW (t) == low);
1282 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1283 }
1284 else
1285 {
1286 /* Create a new shared int. */
1287 t = make_node (INTEGER_CST);
1288
1289 TREE_INT_CST_LOW (t) = low;
1290 TREE_INT_CST_HIGH (t) = hi;
1291 TREE_TYPE (t) = type;
1292
1293 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1294 }
1295 }
1296 else
1297 {
1298 /* Use the cache of larger shared ints. */
1299 void **slot;
1300
1301 TREE_INT_CST_LOW (int_cst_node) = low;
1302 TREE_INT_CST_HIGH (int_cst_node) = hi;
1303 TREE_TYPE (int_cst_node) = type;
1304
1305 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1306 t = (tree) *slot;
1307 if (!t)
1308 {
1309 /* Insert this one into the hash table. */
1310 t = int_cst_node;
1311 *slot = t;
1312 /* Make a new node for next time round. */
1313 int_cst_node = make_node (INTEGER_CST);
1314 }
1315 }
1316
1317 return t;
1318 }
1319
1320 void
1321 cache_integer_cst (tree t)
1322 {
1323 tree type = TREE_TYPE (t);
1324 HOST_WIDE_INT hi = TREE_INT_CST_HIGH (t);
1325 unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (t);
1326 int ix = -1;
1327 int limit = 0;
1328
1329 gcc_assert (!TREE_OVERFLOW (t));
1330
1331 switch (TREE_CODE (type))
1332 {
1333 case NULLPTR_TYPE:
1334 gcc_assert (hi == 0 && low == 0);
1335 /* Fallthru. */
1336
1337 case POINTER_TYPE:
1338 case REFERENCE_TYPE:
1339 /* Cache NULL pointer. */
1340 if (!hi && !low)
1341 {
1342 limit = 1;
1343 ix = 0;
1344 }
1345 break;
1346
1347 case BOOLEAN_TYPE:
1348 /* Cache false or true. */
1349 limit = 2;
1350 if (!hi && low < 2)
1351 ix = low;
1352 break;
1353
1354 case INTEGER_TYPE:
1355 case OFFSET_TYPE:
1356 if (TYPE_UNSIGNED (type))
1357 {
1358 /* Cache 0..N */
1359 limit = INTEGER_SHARE_LIMIT;
1360 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1361 ix = low;
1362 }
1363 else
1364 {
1365 /* Cache -1..N */
1366 limit = INTEGER_SHARE_LIMIT + 1;
1367 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1368 ix = low + 1;
1369 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1370 ix = 0;
1371 }
1372 break;
1373
1374 case ENUMERAL_TYPE:
1375 break;
1376
1377 default:
1378 gcc_unreachable ();
1379 }
1380
1381 if (ix >= 0)
1382 {
1383 /* Look for it in the type's vector of small shared ints. */
1384 if (!TYPE_CACHED_VALUES_P (type))
1385 {
1386 TYPE_CACHED_VALUES_P (type) = 1;
1387 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1388 }
1389
1390 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1391 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1392 }
1393 else
1394 {
1395 /* Use the cache of larger shared ints. */
1396 void **slot;
1397
1398 slot = htab_find_slot (int_cst_hash_table, t, INSERT);
1399 /* If there is already an entry for the number verify it's the
1400 same. */
1401 if (*slot)
1402 {
1403 gcc_assert (TREE_INT_CST_LOW ((tree)*slot) == low
1404 && TREE_INT_CST_HIGH ((tree)*slot) == hi);
1405 return;
1406 }
1407 /* Otherwise insert this one into the hash table. */
1408 *slot = t;
1409 }
1410 }
1411
1412
1413 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1414 and the rest are zeros. */
1415
1416 tree
1417 build_low_bits_mask (tree type, unsigned bits)
1418 {
1419 double_int mask;
1420
1421 gcc_assert (bits <= TYPE_PRECISION (type));
1422
1423 if (bits == TYPE_PRECISION (type)
1424 && !TYPE_UNSIGNED (type))
1425 /* Sign extended all-ones mask. */
1426 mask = double_int_minus_one;
1427 else
1428 mask = double_int::mask (bits);
1429
1430 return build_int_cst_wide (type, mask.low, mask.high);
1431 }
1432
1433 /* Checks that X is integer constant that can be expressed in (unsigned)
1434 HOST_WIDE_INT without loss of precision. */
1435
1436 bool
1437 cst_and_fits_in_hwi (const_tree x)
1438 {
1439 if (TREE_CODE (x) != INTEGER_CST)
1440 return false;
1441
1442 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1443 return false;
1444
1445 return (TREE_INT_CST_HIGH (x) == 0
1446 || TREE_INT_CST_HIGH (x) == -1);
1447 }
1448
1449 /* Build a newly constructed TREE_VEC node of length LEN. */
1450
1451 tree
1452 make_vector_stat (unsigned len MEM_STAT_DECL)
1453 {
1454 tree t;
1455 unsigned length = (len - 1) * sizeof (tree) + sizeof (struct tree_vector);
1456
1457 record_node_allocation_statistics (VECTOR_CST, length);
1458
1459 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1460
1461 TREE_SET_CODE (t, VECTOR_CST);
1462 TREE_CONSTANT (t) = 1;
1463
1464 return t;
1465 }
1466
1467 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1468 are in a list pointed to by VALS. */
1469
1470 tree
1471 build_vector_stat (tree type, tree *vals MEM_STAT_DECL)
1472 {
1473 int over = 0;
1474 unsigned cnt = 0;
1475 tree v = make_vector (TYPE_VECTOR_SUBPARTS (type));
1476 TREE_TYPE (v) = type;
1477
1478 /* Iterate through elements and check for overflow. */
1479 for (cnt = 0; cnt < TYPE_VECTOR_SUBPARTS (type); ++cnt)
1480 {
1481 tree value = vals[cnt];
1482
1483 VECTOR_CST_ELT (v, cnt) = value;
1484
1485 /* Don't crash if we get an address constant. */
1486 if (!CONSTANT_CLASS_P (value))
1487 continue;
1488
1489 over |= TREE_OVERFLOW (value);
1490 }
1491
1492 TREE_OVERFLOW (v) = over;
1493 return v;
1494 }
1495
1496 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1497 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1498
1499 tree
1500 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1501 {
1502 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
1503 unsigned HOST_WIDE_INT idx;
1504 tree value;
1505
1506 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1507 vec[idx] = value;
1508 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1509 vec[idx] = build_zero_cst (TREE_TYPE (type));
1510
1511 return build_vector (type, vec);
1512 }
1513
1514 /* Build a vector of type VECTYPE where all the elements are SCs. */
1515 tree
1516 build_vector_from_val (tree vectype, tree sc)
1517 {
1518 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1519
1520 if (sc == error_mark_node)
1521 return sc;
1522
1523 /* Verify that the vector type is suitable for SC. Note that there
1524 is some inconsistency in the type-system with respect to restrict
1525 qualifications of pointers. Vector types always have a main-variant
1526 element type and the qualification is applied to the vector-type.
1527 So TREE_TYPE (vector-type) does not return a properly qualified
1528 vector element-type. */
1529 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1530 TREE_TYPE (vectype)));
1531
1532 if (CONSTANT_CLASS_P (sc))
1533 {
1534 tree *v = XALLOCAVEC (tree, nunits);
1535 for (i = 0; i < nunits; ++i)
1536 v[i] = sc;
1537 return build_vector (vectype, v);
1538 }
1539 else
1540 {
1541 vec<constructor_elt, va_gc> *v;
1542 vec_alloc (v, nunits);
1543 for (i = 0; i < nunits; ++i)
1544 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1545 return build_constructor (vectype, v);
1546 }
1547 }
1548
1549 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1550 are in the vec pointed to by VALS. */
1551 tree
1552 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1553 {
1554 tree c = make_node (CONSTRUCTOR);
1555 unsigned int i;
1556 constructor_elt *elt;
1557 bool constant_p = true;
1558 bool side_effects_p = false;
1559
1560 TREE_TYPE (c) = type;
1561 CONSTRUCTOR_ELTS (c) = vals;
1562
1563 FOR_EACH_VEC_SAFE_ELT (vals, i, elt)
1564 {
1565 /* Mostly ctors will have elts that don't have side-effects, so
1566 the usual case is to scan all the elements. Hence a single
1567 loop for both const and side effects, rather than one loop
1568 each (with early outs). */
1569 if (!TREE_CONSTANT (elt->value))
1570 constant_p = false;
1571 if (TREE_SIDE_EFFECTS (elt->value))
1572 side_effects_p = true;
1573 }
1574
1575 TREE_SIDE_EFFECTS (c) = side_effects_p;
1576 TREE_CONSTANT (c) = constant_p;
1577
1578 return c;
1579 }
1580
1581 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1582 INDEX and VALUE. */
1583 tree
1584 build_constructor_single (tree type, tree index, tree value)
1585 {
1586 vec<constructor_elt, va_gc> *v;
1587 constructor_elt elt = {index, value};
1588
1589 vec_alloc (v, 1);
1590 v->quick_push (elt);
1591
1592 return build_constructor (type, v);
1593 }
1594
1595
1596 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1597 are in a list pointed to by VALS. */
1598 tree
1599 build_constructor_from_list (tree type, tree vals)
1600 {
1601 tree t;
1602 vec<constructor_elt, va_gc> *v = NULL;
1603
1604 if (vals)
1605 {
1606 vec_alloc (v, list_length (vals));
1607 for (t = vals; t; t = TREE_CHAIN (t))
1608 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1609 }
1610
1611 return build_constructor (type, v);
1612 }
1613
1614 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
1615 of elements, provided as index/value pairs. */
1616
1617 tree
1618 build_constructor_va (tree type, int nelts, ...)
1619 {
1620 vec<constructor_elt, va_gc> *v = NULL;
1621 va_list p;
1622
1623 va_start (p, nelts);
1624 vec_alloc (v, nelts);
1625 while (nelts--)
1626 {
1627 tree index = va_arg (p, tree);
1628 tree value = va_arg (p, tree);
1629 CONSTRUCTOR_APPEND_ELT (v, index, value);
1630 }
1631 va_end (p);
1632 return build_constructor (type, v);
1633 }
1634
1635 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1636
1637 tree
1638 build_fixed (tree type, FIXED_VALUE_TYPE f)
1639 {
1640 tree v;
1641 FIXED_VALUE_TYPE *fp;
1642
1643 v = make_node (FIXED_CST);
1644 fp = ggc_alloc_fixed_value ();
1645 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1646
1647 TREE_TYPE (v) = type;
1648 TREE_FIXED_CST_PTR (v) = fp;
1649 return v;
1650 }
1651
1652 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1653
1654 tree
1655 build_real (tree type, REAL_VALUE_TYPE d)
1656 {
1657 tree v;
1658 REAL_VALUE_TYPE *dp;
1659 int overflow = 0;
1660
1661 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1662 Consider doing it via real_convert now. */
1663
1664 v = make_node (REAL_CST);
1665 dp = ggc_alloc_real_value ();
1666 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1667
1668 TREE_TYPE (v) = type;
1669 TREE_REAL_CST_PTR (v) = dp;
1670 TREE_OVERFLOW (v) = overflow;
1671 return v;
1672 }
1673
1674 /* Return a new REAL_CST node whose type is TYPE
1675 and whose value is the integer value of the INTEGER_CST node I. */
1676
1677 REAL_VALUE_TYPE
1678 real_value_from_int_cst (const_tree type, const_tree i)
1679 {
1680 REAL_VALUE_TYPE d;
1681
1682 /* Clear all bits of the real value type so that we can later do
1683 bitwise comparisons to see if two values are the same. */
1684 memset (&d, 0, sizeof d);
1685
1686 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1687 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1688 TYPE_UNSIGNED (TREE_TYPE (i)));
1689 return d;
1690 }
1691
1692 /* Given a tree representing an integer constant I, return a tree
1693 representing the same value as a floating-point constant of type TYPE. */
1694
1695 tree
1696 build_real_from_int_cst (tree type, const_tree i)
1697 {
1698 tree v;
1699 int overflow = TREE_OVERFLOW (i);
1700
1701 v = build_real (type, real_value_from_int_cst (type, i));
1702
1703 TREE_OVERFLOW (v) |= overflow;
1704 return v;
1705 }
1706
1707 /* Return a newly constructed STRING_CST node whose value is
1708 the LEN characters at STR.
1709 Note that for a C string literal, LEN should include the trailing NUL.
1710 The TREE_TYPE is not initialized. */
1711
1712 tree
1713 build_string (int len, const char *str)
1714 {
1715 tree s;
1716 size_t length;
1717
1718 /* Do not waste bytes provided by padding of struct tree_string. */
1719 length = len + offsetof (struct tree_string, str) + 1;
1720
1721 record_node_allocation_statistics (STRING_CST, length);
1722
1723 s = ggc_alloc_tree_node (length);
1724
1725 memset (s, 0, sizeof (struct tree_typed));
1726 TREE_SET_CODE (s, STRING_CST);
1727 TREE_CONSTANT (s) = 1;
1728 TREE_STRING_LENGTH (s) = len;
1729 memcpy (s->string.str, str, len);
1730 s->string.str[len] = '\0';
1731
1732 return s;
1733 }
1734
1735 /* Return a newly constructed COMPLEX_CST node whose value is
1736 specified by the real and imaginary parts REAL and IMAG.
1737 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1738 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1739
1740 tree
1741 build_complex (tree type, tree real, tree imag)
1742 {
1743 tree t = make_node (COMPLEX_CST);
1744
1745 TREE_REALPART (t) = real;
1746 TREE_IMAGPART (t) = imag;
1747 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1748 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1749 return t;
1750 }
1751
1752 /* Return a constant of arithmetic type TYPE which is the
1753 multiplicative identity of the set TYPE. */
1754
1755 tree
1756 build_one_cst (tree type)
1757 {
1758 switch (TREE_CODE (type))
1759 {
1760 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1761 case POINTER_TYPE: case REFERENCE_TYPE:
1762 case OFFSET_TYPE:
1763 return build_int_cst (type, 1);
1764
1765 case REAL_TYPE:
1766 return build_real (type, dconst1);
1767
1768 case FIXED_POINT_TYPE:
1769 /* We can only generate 1 for accum types. */
1770 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1771 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
1772
1773 case VECTOR_TYPE:
1774 {
1775 tree scalar = build_one_cst (TREE_TYPE (type));
1776
1777 return build_vector_from_val (type, scalar);
1778 }
1779
1780 case COMPLEX_TYPE:
1781 return build_complex (type,
1782 build_one_cst (TREE_TYPE (type)),
1783 build_zero_cst (TREE_TYPE (type)));
1784
1785 default:
1786 gcc_unreachable ();
1787 }
1788 }
1789
1790 /* Return an integer of type TYPE containing all 1's in as much precision as
1791 it contains, or a complex or vector whose subparts are such integers. */
1792
1793 tree
1794 build_all_ones_cst (tree type)
1795 {
1796 if (TREE_CODE (type) == COMPLEX_TYPE)
1797 {
1798 tree scalar = build_all_ones_cst (TREE_TYPE (type));
1799 return build_complex (type, scalar, scalar);
1800 }
1801 else
1802 return build_minus_one_cst (type);
1803 }
1804
1805 /* Return a constant of arithmetic type TYPE which is the
1806 opposite of the multiplicative identity of the set TYPE. */
1807
1808 tree
1809 build_minus_one_cst (tree type)
1810 {
1811 switch (TREE_CODE (type))
1812 {
1813 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1814 case POINTER_TYPE: case REFERENCE_TYPE:
1815 case OFFSET_TYPE:
1816 return build_int_cst (type, -1);
1817
1818 case REAL_TYPE:
1819 return build_real (type, dconstm1);
1820
1821 case FIXED_POINT_TYPE:
1822 /* We can only generate 1 for accum types. */
1823 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1824 return build_fixed (type, fixed_from_double_int (double_int_minus_one,
1825 TYPE_MODE (type)));
1826
1827 case VECTOR_TYPE:
1828 {
1829 tree scalar = build_minus_one_cst (TREE_TYPE (type));
1830
1831 return build_vector_from_val (type, scalar);
1832 }
1833
1834 case COMPLEX_TYPE:
1835 return build_complex (type,
1836 build_minus_one_cst (TREE_TYPE (type)),
1837 build_zero_cst (TREE_TYPE (type)));
1838
1839 default:
1840 gcc_unreachable ();
1841 }
1842 }
1843
1844 /* Build 0 constant of type TYPE. This is used by constructor folding
1845 and thus the constant should be represented in memory by
1846 zero(es). */
1847
1848 tree
1849 build_zero_cst (tree type)
1850 {
1851 switch (TREE_CODE (type))
1852 {
1853 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1854 case POINTER_TYPE: case REFERENCE_TYPE:
1855 case OFFSET_TYPE: case NULLPTR_TYPE:
1856 return build_int_cst (type, 0);
1857
1858 case REAL_TYPE:
1859 return build_real (type, dconst0);
1860
1861 case FIXED_POINT_TYPE:
1862 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1863
1864 case VECTOR_TYPE:
1865 {
1866 tree scalar = build_zero_cst (TREE_TYPE (type));
1867
1868 return build_vector_from_val (type, scalar);
1869 }
1870
1871 case COMPLEX_TYPE:
1872 {
1873 tree zero = build_zero_cst (TREE_TYPE (type));
1874
1875 return build_complex (type, zero, zero);
1876 }
1877
1878 default:
1879 if (!AGGREGATE_TYPE_P (type))
1880 return fold_convert (type, integer_zero_node);
1881 return build_constructor (type, NULL);
1882 }
1883 }
1884
1885
1886 /* Build a BINFO with LEN language slots. */
1887
1888 tree
1889 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1890 {
1891 tree t;
1892 size_t length = (offsetof (struct tree_binfo, base_binfos)
1893 + vec<tree, va_gc>::embedded_size (base_binfos));
1894
1895 record_node_allocation_statistics (TREE_BINFO, length);
1896
1897 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1898
1899 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1900
1901 TREE_SET_CODE (t, TREE_BINFO);
1902
1903 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
1904
1905 return t;
1906 }
1907
1908 /* Create a CASE_LABEL_EXPR tree node and return it. */
1909
1910 tree
1911 build_case_label (tree low_value, tree high_value, tree label_decl)
1912 {
1913 tree t = make_node (CASE_LABEL_EXPR);
1914
1915 TREE_TYPE (t) = void_type_node;
1916 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
1917
1918 CASE_LOW (t) = low_value;
1919 CASE_HIGH (t) = high_value;
1920 CASE_LABEL (t) = label_decl;
1921 CASE_CHAIN (t) = NULL_TREE;
1922
1923 return t;
1924 }
1925
1926 /* Build a newly constructed TREE_VEC node of length LEN. */
1927
1928 tree
1929 make_tree_vec_stat (int len MEM_STAT_DECL)
1930 {
1931 tree t;
1932 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1933
1934 record_node_allocation_statistics (TREE_VEC, length);
1935
1936 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1937
1938 TREE_SET_CODE (t, TREE_VEC);
1939 TREE_VEC_LENGTH (t) = len;
1940
1941 return t;
1942 }
1943 \f
1944 /* Return 1 if EXPR is the integer constant zero or a complex constant
1945 of zero. */
1946
1947 int
1948 integer_zerop (const_tree expr)
1949 {
1950 STRIP_NOPS (expr);
1951
1952 switch (TREE_CODE (expr))
1953 {
1954 case INTEGER_CST:
1955 return (TREE_INT_CST_LOW (expr) == 0
1956 && TREE_INT_CST_HIGH (expr) == 0);
1957 case COMPLEX_CST:
1958 return (integer_zerop (TREE_REALPART (expr))
1959 && integer_zerop (TREE_IMAGPART (expr)));
1960 case VECTOR_CST:
1961 {
1962 unsigned i;
1963 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1964 if (!integer_zerop (VECTOR_CST_ELT (expr, i)))
1965 return false;
1966 return true;
1967 }
1968 default:
1969 return false;
1970 }
1971 }
1972
1973 /* Return 1 if EXPR is the integer constant one or the corresponding
1974 complex constant. */
1975
1976 int
1977 integer_onep (const_tree expr)
1978 {
1979 STRIP_NOPS (expr);
1980
1981 switch (TREE_CODE (expr))
1982 {
1983 case INTEGER_CST:
1984 return (TREE_INT_CST_LOW (expr) == 1
1985 && TREE_INT_CST_HIGH (expr) == 0);
1986 case COMPLEX_CST:
1987 return (integer_onep (TREE_REALPART (expr))
1988 && integer_zerop (TREE_IMAGPART (expr)));
1989 case VECTOR_CST:
1990 {
1991 unsigned i;
1992 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1993 if (!integer_onep (VECTOR_CST_ELT (expr, i)))
1994 return false;
1995 return true;
1996 }
1997 default:
1998 return false;
1999 }
2000 }
2001
2002 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2003 it contains, or a complex or vector whose subparts are such integers. */
2004
2005 int
2006 integer_all_onesp (const_tree expr)
2007 {
2008 int prec;
2009 int uns;
2010
2011 STRIP_NOPS (expr);
2012
2013 if (TREE_CODE (expr) == COMPLEX_CST
2014 && integer_all_onesp (TREE_REALPART (expr))
2015 && integer_all_onesp (TREE_IMAGPART (expr)))
2016 return 1;
2017
2018 else if (TREE_CODE (expr) == VECTOR_CST)
2019 {
2020 unsigned i;
2021 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2022 if (!integer_all_onesp (VECTOR_CST_ELT (expr, i)))
2023 return 0;
2024 return 1;
2025 }
2026
2027 else if (TREE_CODE (expr) != INTEGER_CST)
2028 return 0;
2029
2030 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
2031 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
2032 && TREE_INT_CST_HIGH (expr) == -1)
2033 return 1;
2034 if (!uns)
2035 return 0;
2036
2037 prec = TYPE_PRECISION (TREE_TYPE (expr));
2038 if (prec >= HOST_BITS_PER_WIDE_INT)
2039 {
2040 HOST_WIDE_INT high_value;
2041 int shift_amount;
2042
2043 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
2044
2045 /* Can not handle precisions greater than twice the host int size. */
2046 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
2047 if (shift_amount == HOST_BITS_PER_WIDE_INT)
2048 /* Shifting by the host word size is undefined according to the ANSI
2049 standard, so we must handle this as a special case. */
2050 high_value = -1;
2051 else
2052 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
2053
2054 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
2055 && TREE_INT_CST_HIGH (expr) == high_value);
2056 }
2057 else
2058 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
2059 }
2060
2061 /* Return 1 if EXPR is the integer constant minus one. */
2062
2063 int
2064 integer_minus_onep (const_tree expr)
2065 {
2066 STRIP_NOPS (expr);
2067
2068 if (TREE_CODE (expr) == COMPLEX_CST)
2069 return (integer_all_onesp (TREE_REALPART (expr))
2070 && integer_zerop (TREE_IMAGPART (expr)));
2071 else
2072 return integer_all_onesp (expr);
2073 }
2074
2075 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2076 one bit on). */
2077
2078 int
2079 integer_pow2p (const_tree expr)
2080 {
2081 int prec;
2082 unsigned HOST_WIDE_INT high, low;
2083
2084 STRIP_NOPS (expr);
2085
2086 if (TREE_CODE (expr) == COMPLEX_CST
2087 && integer_pow2p (TREE_REALPART (expr))
2088 && integer_zerop (TREE_IMAGPART (expr)))
2089 return 1;
2090
2091 if (TREE_CODE (expr) != INTEGER_CST)
2092 return 0;
2093
2094 prec = TYPE_PRECISION (TREE_TYPE (expr));
2095 high = TREE_INT_CST_HIGH (expr);
2096 low = TREE_INT_CST_LOW (expr);
2097
2098 /* First clear all bits that are beyond the type's precision in case
2099 we've been sign extended. */
2100
2101 if (prec == HOST_BITS_PER_DOUBLE_INT)
2102 ;
2103 else if (prec > HOST_BITS_PER_WIDE_INT)
2104 high &= ~(HOST_WIDE_INT_M1U << (prec - HOST_BITS_PER_WIDE_INT));
2105 else
2106 {
2107 high = 0;
2108 if (prec < HOST_BITS_PER_WIDE_INT)
2109 low &= ~(HOST_WIDE_INT_M1U << prec);
2110 }
2111
2112 if (high == 0 && low == 0)
2113 return 0;
2114
2115 return ((high == 0 && (low & (low - 1)) == 0)
2116 || (low == 0 && (high & (high - 1)) == 0));
2117 }
2118
2119 /* Return 1 if EXPR is an integer constant other than zero or a
2120 complex constant other than zero. */
2121
2122 int
2123 integer_nonzerop (const_tree expr)
2124 {
2125 STRIP_NOPS (expr);
2126
2127 return ((TREE_CODE (expr) == INTEGER_CST
2128 && (TREE_INT_CST_LOW (expr) != 0
2129 || TREE_INT_CST_HIGH (expr) != 0))
2130 || (TREE_CODE (expr) == COMPLEX_CST
2131 && (integer_nonzerop (TREE_REALPART (expr))
2132 || integer_nonzerop (TREE_IMAGPART (expr)))));
2133 }
2134
2135 /* Return 1 if EXPR is the fixed-point constant zero. */
2136
2137 int
2138 fixed_zerop (const_tree expr)
2139 {
2140 return (TREE_CODE (expr) == FIXED_CST
2141 && TREE_FIXED_CST (expr).data.is_zero ());
2142 }
2143
2144 /* Return the power of two represented by a tree node known to be a
2145 power of two. */
2146
2147 int
2148 tree_log2 (const_tree expr)
2149 {
2150 int prec;
2151 HOST_WIDE_INT high, low;
2152
2153 STRIP_NOPS (expr);
2154
2155 if (TREE_CODE (expr) == COMPLEX_CST)
2156 return tree_log2 (TREE_REALPART (expr));
2157
2158 prec = TYPE_PRECISION (TREE_TYPE (expr));
2159 high = TREE_INT_CST_HIGH (expr);
2160 low = TREE_INT_CST_LOW (expr);
2161
2162 /* First clear all bits that are beyond the type's precision in case
2163 we've been sign extended. */
2164
2165 if (prec == HOST_BITS_PER_DOUBLE_INT)
2166 ;
2167 else if (prec > HOST_BITS_PER_WIDE_INT)
2168 high &= ~(HOST_WIDE_INT_M1U << (prec - HOST_BITS_PER_WIDE_INT));
2169 else
2170 {
2171 high = 0;
2172 if (prec < HOST_BITS_PER_WIDE_INT)
2173 low &= ~(HOST_WIDE_INT_M1U << prec);
2174 }
2175
2176 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
2177 : exact_log2 (low));
2178 }
2179
2180 /* Similar, but return the largest integer Y such that 2 ** Y is less
2181 than or equal to EXPR. */
2182
2183 int
2184 tree_floor_log2 (const_tree expr)
2185 {
2186 int prec;
2187 HOST_WIDE_INT high, low;
2188
2189 STRIP_NOPS (expr);
2190
2191 if (TREE_CODE (expr) == COMPLEX_CST)
2192 return tree_log2 (TREE_REALPART (expr));
2193
2194 prec = TYPE_PRECISION (TREE_TYPE (expr));
2195 high = TREE_INT_CST_HIGH (expr);
2196 low = TREE_INT_CST_LOW (expr);
2197
2198 /* First clear all bits that are beyond the type's precision in case
2199 we've been sign extended. Ignore if type's precision hasn't been set
2200 since what we are doing is setting it. */
2201
2202 if (prec == HOST_BITS_PER_DOUBLE_INT || prec == 0)
2203 ;
2204 else if (prec > HOST_BITS_PER_WIDE_INT)
2205 high &= ~(HOST_WIDE_INT_M1U << (prec - HOST_BITS_PER_WIDE_INT));
2206 else
2207 {
2208 high = 0;
2209 if (prec < HOST_BITS_PER_WIDE_INT)
2210 low &= ~(HOST_WIDE_INT_M1U << prec);
2211 }
2212
2213 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
2214 : floor_log2 (low));
2215 }
2216
2217 /* Return number of known trailing zero bits in EXPR, or, if the value of
2218 EXPR is known to be zero, the precision of it's type. */
2219
2220 unsigned int
2221 tree_ctz (const_tree expr)
2222 {
2223 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2224 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2225 return 0;
2226
2227 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2228 switch (TREE_CODE (expr))
2229 {
2230 case INTEGER_CST:
2231 ret1 = tree_to_double_int (expr).trailing_zeros ();
2232 return MIN (ret1, prec);
2233 case SSA_NAME:
2234 ret1 = get_nonzero_bits (expr).trailing_zeros ();
2235 return MIN (ret1, prec);
2236 case PLUS_EXPR:
2237 case MINUS_EXPR:
2238 case BIT_IOR_EXPR:
2239 case BIT_XOR_EXPR:
2240 case MIN_EXPR:
2241 case MAX_EXPR:
2242 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2243 if (ret1 == 0)
2244 return ret1;
2245 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2246 return MIN (ret1, ret2);
2247 case POINTER_PLUS_EXPR:
2248 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2249 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2250 /* Second operand is sizetype, which could be in theory
2251 wider than pointer's precision. Make sure we never
2252 return more than prec. */
2253 ret2 = MIN (ret2, prec);
2254 return MIN (ret1, ret2);
2255 case BIT_AND_EXPR:
2256 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2257 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2258 return MAX (ret1, ret2);
2259 case MULT_EXPR:
2260 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2261 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2262 return MIN (ret1 + ret2, prec);
2263 case LSHIFT_EXPR:
2264 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2265 if (host_integerp (TREE_OPERAND (expr, 1), 1)
2266 && ((unsigned HOST_WIDE_INT) tree_low_cst (TREE_OPERAND (expr, 1), 1)
2267 < (unsigned HOST_WIDE_INT) prec))
2268 {
2269 ret2 = tree_low_cst (TREE_OPERAND (expr, 1), 1);
2270 return MIN (ret1 + ret2, prec);
2271 }
2272 return ret1;
2273 case RSHIFT_EXPR:
2274 if (host_integerp (TREE_OPERAND (expr, 1), 1)
2275 && ((unsigned HOST_WIDE_INT) tree_low_cst (TREE_OPERAND (expr, 1), 1)
2276 < (unsigned HOST_WIDE_INT) prec))
2277 {
2278 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2279 ret2 = tree_low_cst (TREE_OPERAND (expr, 1), 1);
2280 if (ret1 > ret2)
2281 return ret1 - ret2;
2282 }
2283 return 0;
2284 case TRUNC_DIV_EXPR:
2285 case CEIL_DIV_EXPR:
2286 case FLOOR_DIV_EXPR:
2287 case ROUND_DIV_EXPR:
2288 case EXACT_DIV_EXPR:
2289 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2290 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2291 {
2292 int l = tree_log2 (TREE_OPERAND (expr, 1));
2293 if (l >= 0)
2294 {
2295 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2296 ret2 = l;
2297 if (ret1 > ret2)
2298 return ret1 - ret2;
2299 }
2300 }
2301 return 0;
2302 CASE_CONVERT:
2303 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2304 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2305 ret1 = prec;
2306 return MIN (ret1, prec);
2307 case SAVE_EXPR:
2308 return tree_ctz (TREE_OPERAND (expr, 0));
2309 case COND_EXPR:
2310 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2311 if (ret1 == 0)
2312 return 0;
2313 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2314 return MIN (ret1, ret2);
2315 case COMPOUND_EXPR:
2316 return tree_ctz (TREE_OPERAND (expr, 1));
2317 case ADDR_EXPR:
2318 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2319 if (ret1 > BITS_PER_UNIT)
2320 {
2321 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2322 return MIN (ret1, prec);
2323 }
2324 return 0;
2325 default:
2326 return 0;
2327 }
2328 }
2329
2330 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2331 decimal float constants, so don't return 1 for them. */
2332
2333 int
2334 real_zerop (const_tree expr)
2335 {
2336 STRIP_NOPS (expr);
2337
2338 switch (TREE_CODE (expr))
2339 {
2340 case REAL_CST:
2341 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
2342 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2343 case COMPLEX_CST:
2344 return real_zerop (TREE_REALPART (expr))
2345 && real_zerop (TREE_IMAGPART (expr));
2346 case VECTOR_CST:
2347 {
2348 unsigned i;
2349 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2350 if (!real_zerop (VECTOR_CST_ELT (expr, i)))
2351 return false;
2352 return true;
2353 }
2354 default:
2355 return false;
2356 }
2357 }
2358
2359 /* Return 1 if EXPR is the real constant one in real or complex form.
2360 Trailing zeroes matter for decimal float constants, so don't return
2361 1 for them. */
2362
2363 int
2364 real_onep (const_tree expr)
2365 {
2366 STRIP_NOPS (expr);
2367
2368 switch (TREE_CODE (expr))
2369 {
2370 case REAL_CST:
2371 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
2372 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2373 case COMPLEX_CST:
2374 return real_onep (TREE_REALPART (expr))
2375 && real_zerop (TREE_IMAGPART (expr));
2376 case VECTOR_CST:
2377 {
2378 unsigned i;
2379 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2380 if (!real_onep (VECTOR_CST_ELT (expr, i)))
2381 return false;
2382 return true;
2383 }
2384 default:
2385 return false;
2386 }
2387 }
2388
2389 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
2390 for decimal float constants, so don't return 1 for them. */
2391
2392 int
2393 real_twop (const_tree expr)
2394 {
2395 STRIP_NOPS (expr);
2396
2397 switch (TREE_CODE (expr))
2398 {
2399 case REAL_CST:
2400 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
2401 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2402 case COMPLEX_CST:
2403 return real_twop (TREE_REALPART (expr))
2404 && real_zerop (TREE_IMAGPART (expr));
2405 case VECTOR_CST:
2406 {
2407 unsigned i;
2408 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2409 if (!real_twop (VECTOR_CST_ELT (expr, i)))
2410 return false;
2411 return true;
2412 }
2413 default:
2414 return false;
2415 }
2416 }
2417
2418 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2419 matter for decimal float constants, so don't return 1 for them. */
2420
2421 int
2422 real_minus_onep (const_tree expr)
2423 {
2424 STRIP_NOPS (expr);
2425
2426 switch (TREE_CODE (expr))
2427 {
2428 case REAL_CST:
2429 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
2430 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2431 case COMPLEX_CST:
2432 return real_minus_onep (TREE_REALPART (expr))
2433 && real_zerop (TREE_IMAGPART (expr));
2434 case VECTOR_CST:
2435 {
2436 unsigned i;
2437 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2438 if (!real_minus_onep (VECTOR_CST_ELT (expr, i)))
2439 return false;
2440 return true;
2441 }
2442 default:
2443 return false;
2444 }
2445 }
2446
2447 /* Nonzero if EXP is a constant or a cast of a constant. */
2448
2449 int
2450 really_constant_p (const_tree exp)
2451 {
2452 /* This is not quite the same as STRIP_NOPS. It does more. */
2453 while (CONVERT_EXPR_P (exp)
2454 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2455 exp = TREE_OPERAND (exp, 0);
2456 return TREE_CONSTANT (exp);
2457 }
2458 \f
2459 /* Return first list element whose TREE_VALUE is ELEM.
2460 Return 0 if ELEM is not in LIST. */
2461
2462 tree
2463 value_member (tree elem, tree list)
2464 {
2465 while (list)
2466 {
2467 if (elem == TREE_VALUE (list))
2468 return list;
2469 list = TREE_CHAIN (list);
2470 }
2471 return NULL_TREE;
2472 }
2473
2474 /* Return first list element whose TREE_PURPOSE is ELEM.
2475 Return 0 if ELEM is not in LIST. */
2476
2477 tree
2478 purpose_member (const_tree elem, tree list)
2479 {
2480 while (list)
2481 {
2482 if (elem == TREE_PURPOSE (list))
2483 return list;
2484 list = TREE_CHAIN (list);
2485 }
2486 return NULL_TREE;
2487 }
2488
2489 /* Return true if ELEM is in V. */
2490
2491 bool
2492 vec_member (const_tree elem, vec<tree, va_gc> *v)
2493 {
2494 unsigned ix;
2495 tree t;
2496 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2497 if (elem == t)
2498 return true;
2499 return false;
2500 }
2501
2502 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2503 NULL_TREE. */
2504
2505 tree
2506 chain_index (int idx, tree chain)
2507 {
2508 for (; chain && idx > 0; --idx)
2509 chain = TREE_CHAIN (chain);
2510 return chain;
2511 }
2512
2513 /* Return nonzero if ELEM is part of the chain CHAIN. */
2514
2515 int
2516 chain_member (const_tree elem, const_tree chain)
2517 {
2518 while (chain)
2519 {
2520 if (elem == chain)
2521 return 1;
2522 chain = DECL_CHAIN (chain);
2523 }
2524
2525 return 0;
2526 }
2527
2528 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2529 We expect a null pointer to mark the end of the chain.
2530 This is the Lisp primitive `length'. */
2531
2532 int
2533 list_length (const_tree t)
2534 {
2535 const_tree p = t;
2536 #ifdef ENABLE_TREE_CHECKING
2537 const_tree q = t;
2538 #endif
2539 int len = 0;
2540
2541 while (p)
2542 {
2543 p = TREE_CHAIN (p);
2544 #ifdef ENABLE_TREE_CHECKING
2545 if (len % 2)
2546 q = TREE_CHAIN (q);
2547 gcc_assert (p != q);
2548 #endif
2549 len++;
2550 }
2551
2552 return len;
2553 }
2554
2555 /* Returns the number of FIELD_DECLs in TYPE. */
2556
2557 int
2558 fields_length (const_tree type)
2559 {
2560 tree t = TYPE_FIELDS (type);
2561 int count = 0;
2562
2563 for (; t; t = DECL_CHAIN (t))
2564 if (TREE_CODE (t) == FIELD_DECL)
2565 ++count;
2566
2567 return count;
2568 }
2569
2570 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2571 UNION_TYPE TYPE, or NULL_TREE if none. */
2572
2573 tree
2574 first_field (const_tree type)
2575 {
2576 tree t = TYPE_FIELDS (type);
2577 while (t && TREE_CODE (t) != FIELD_DECL)
2578 t = TREE_CHAIN (t);
2579 return t;
2580 }
2581
2582 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2583 by modifying the last node in chain 1 to point to chain 2.
2584 This is the Lisp primitive `nconc'. */
2585
2586 tree
2587 chainon (tree op1, tree op2)
2588 {
2589 tree t1;
2590
2591 if (!op1)
2592 return op2;
2593 if (!op2)
2594 return op1;
2595
2596 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2597 continue;
2598 TREE_CHAIN (t1) = op2;
2599
2600 #ifdef ENABLE_TREE_CHECKING
2601 {
2602 tree t2;
2603 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2604 gcc_assert (t2 != t1);
2605 }
2606 #endif
2607
2608 return op1;
2609 }
2610
2611 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2612
2613 tree
2614 tree_last (tree chain)
2615 {
2616 tree next;
2617 if (chain)
2618 while ((next = TREE_CHAIN (chain)))
2619 chain = next;
2620 return chain;
2621 }
2622
2623 /* Reverse the order of elements in the chain T,
2624 and return the new head of the chain (old last element). */
2625
2626 tree
2627 nreverse (tree t)
2628 {
2629 tree prev = 0, decl, next;
2630 for (decl = t; decl; decl = next)
2631 {
2632 /* We shouldn't be using this function to reverse BLOCK chains; we
2633 have blocks_nreverse for that. */
2634 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2635 next = TREE_CHAIN (decl);
2636 TREE_CHAIN (decl) = prev;
2637 prev = decl;
2638 }
2639 return prev;
2640 }
2641 \f
2642 /* Return a newly created TREE_LIST node whose
2643 purpose and value fields are PARM and VALUE. */
2644
2645 tree
2646 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2647 {
2648 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2649 TREE_PURPOSE (t) = parm;
2650 TREE_VALUE (t) = value;
2651 return t;
2652 }
2653
2654 /* Build a chain of TREE_LIST nodes from a vector. */
2655
2656 tree
2657 build_tree_list_vec_stat (const vec<tree, va_gc> *vec MEM_STAT_DECL)
2658 {
2659 tree ret = NULL_TREE;
2660 tree *pp = &ret;
2661 unsigned int i;
2662 tree t;
2663 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
2664 {
2665 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2666 pp = &TREE_CHAIN (*pp);
2667 }
2668 return ret;
2669 }
2670
2671 /* Return a newly created TREE_LIST node whose
2672 purpose and value fields are PURPOSE and VALUE
2673 and whose TREE_CHAIN is CHAIN. */
2674
2675 tree
2676 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2677 {
2678 tree node;
2679
2680 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
2681 memset (node, 0, sizeof (struct tree_common));
2682
2683 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2684
2685 TREE_SET_CODE (node, TREE_LIST);
2686 TREE_CHAIN (node) = chain;
2687 TREE_PURPOSE (node) = purpose;
2688 TREE_VALUE (node) = value;
2689 return node;
2690 }
2691
2692 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2693 trees. */
2694
2695 vec<tree, va_gc> *
2696 ctor_to_vec (tree ctor)
2697 {
2698 vec<tree, va_gc> *vec;
2699 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
2700 unsigned int ix;
2701 tree val;
2702
2703 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2704 vec->quick_push (val);
2705
2706 return vec;
2707 }
2708 \f
2709 /* Return the size nominally occupied by an object of type TYPE
2710 when it resides in memory. The value is measured in units of bytes,
2711 and its data type is that normally used for type sizes
2712 (which is the first type created by make_signed_type or
2713 make_unsigned_type). */
2714
2715 tree
2716 size_in_bytes (const_tree type)
2717 {
2718 tree t;
2719
2720 if (type == error_mark_node)
2721 return integer_zero_node;
2722
2723 type = TYPE_MAIN_VARIANT (type);
2724 t = TYPE_SIZE_UNIT (type);
2725
2726 if (t == 0)
2727 {
2728 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2729 return size_zero_node;
2730 }
2731
2732 return t;
2733 }
2734
2735 /* Return the size of TYPE (in bytes) as a wide integer
2736 or return -1 if the size can vary or is larger than an integer. */
2737
2738 HOST_WIDE_INT
2739 int_size_in_bytes (const_tree type)
2740 {
2741 tree t;
2742
2743 if (type == error_mark_node)
2744 return 0;
2745
2746 type = TYPE_MAIN_VARIANT (type);
2747 t = TYPE_SIZE_UNIT (type);
2748 if (t == 0
2749 || TREE_CODE (t) != INTEGER_CST
2750 || TREE_INT_CST_HIGH (t) != 0
2751 /* If the result would appear negative, it's too big to represent. */
2752 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2753 return -1;
2754
2755 return TREE_INT_CST_LOW (t);
2756 }
2757
2758 /* Return the maximum size of TYPE (in bytes) as a wide integer
2759 or return -1 if the size can vary or is larger than an integer. */
2760
2761 HOST_WIDE_INT
2762 max_int_size_in_bytes (const_tree type)
2763 {
2764 HOST_WIDE_INT size = -1;
2765 tree size_tree;
2766
2767 /* If this is an array type, check for a possible MAX_SIZE attached. */
2768
2769 if (TREE_CODE (type) == ARRAY_TYPE)
2770 {
2771 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2772
2773 if (size_tree && host_integerp (size_tree, 1))
2774 size = tree_low_cst (size_tree, 1);
2775 }
2776
2777 /* If we still haven't been able to get a size, see if the language
2778 can compute a maximum size. */
2779
2780 if (size == -1)
2781 {
2782 size_tree = lang_hooks.types.max_size (type);
2783
2784 if (size_tree && host_integerp (size_tree, 1))
2785 size = tree_low_cst (size_tree, 1);
2786 }
2787
2788 return size;
2789 }
2790
2791 /* Returns a tree for the size of EXP in bytes. */
2792
2793 tree
2794 tree_expr_size (const_tree exp)
2795 {
2796 if (DECL_P (exp)
2797 && DECL_SIZE_UNIT (exp) != 0)
2798 return DECL_SIZE_UNIT (exp);
2799 else
2800 return size_in_bytes (TREE_TYPE (exp));
2801 }
2802 \f
2803 /* Return the bit position of FIELD, in bits from the start of the record.
2804 This is a tree of type bitsizetype. */
2805
2806 tree
2807 bit_position (const_tree field)
2808 {
2809 return bit_from_pos (DECL_FIELD_OFFSET (field),
2810 DECL_FIELD_BIT_OFFSET (field));
2811 }
2812
2813 /* Likewise, but return as an integer. It must be representable in
2814 that way (since it could be a signed value, we don't have the
2815 option of returning -1 like int_size_in_byte can. */
2816
2817 HOST_WIDE_INT
2818 int_bit_position (const_tree field)
2819 {
2820 return tree_low_cst (bit_position (field), 0);
2821 }
2822 \f
2823 /* Return the byte position of FIELD, in bytes from the start of the record.
2824 This is a tree of type sizetype. */
2825
2826 tree
2827 byte_position (const_tree field)
2828 {
2829 return byte_from_pos (DECL_FIELD_OFFSET (field),
2830 DECL_FIELD_BIT_OFFSET (field));
2831 }
2832
2833 /* Likewise, but return as an integer. It must be representable in
2834 that way (since it could be a signed value, we don't have the
2835 option of returning -1 like int_size_in_byte can. */
2836
2837 HOST_WIDE_INT
2838 int_byte_position (const_tree field)
2839 {
2840 return tree_low_cst (byte_position (field), 0);
2841 }
2842 \f
2843 /* Return the strictest alignment, in bits, that T is known to have. */
2844
2845 unsigned int
2846 expr_align (const_tree t)
2847 {
2848 unsigned int align0, align1;
2849
2850 switch (TREE_CODE (t))
2851 {
2852 CASE_CONVERT: case NON_LVALUE_EXPR:
2853 /* If we have conversions, we know that the alignment of the
2854 object must meet each of the alignments of the types. */
2855 align0 = expr_align (TREE_OPERAND (t, 0));
2856 align1 = TYPE_ALIGN (TREE_TYPE (t));
2857 return MAX (align0, align1);
2858
2859 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2860 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2861 case CLEANUP_POINT_EXPR:
2862 /* These don't change the alignment of an object. */
2863 return expr_align (TREE_OPERAND (t, 0));
2864
2865 case COND_EXPR:
2866 /* The best we can do is say that the alignment is the least aligned
2867 of the two arms. */
2868 align0 = expr_align (TREE_OPERAND (t, 1));
2869 align1 = expr_align (TREE_OPERAND (t, 2));
2870 return MIN (align0, align1);
2871
2872 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2873 meaningfully, it's always 1. */
2874 case LABEL_DECL: case CONST_DECL:
2875 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2876 case FUNCTION_DECL:
2877 gcc_assert (DECL_ALIGN (t) != 0);
2878 return DECL_ALIGN (t);
2879
2880 default:
2881 break;
2882 }
2883
2884 /* Otherwise take the alignment from that of the type. */
2885 return TYPE_ALIGN (TREE_TYPE (t));
2886 }
2887 \f
2888 /* Return, as a tree node, the number of elements for TYPE (which is an
2889 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2890
2891 tree
2892 array_type_nelts (const_tree type)
2893 {
2894 tree index_type, min, max;
2895
2896 /* If they did it with unspecified bounds, then we should have already
2897 given an error about it before we got here. */
2898 if (! TYPE_DOMAIN (type))
2899 return error_mark_node;
2900
2901 index_type = TYPE_DOMAIN (type);
2902 min = TYPE_MIN_VALUE (index_type);
2903 max = TYPE_MAX_VALUE (index_type);
2904
2905 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
2906 if (!max)
2907 return error_mark_node;
2908
2909 return (integer_zerop (min)
2910 ? max
2911 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2912 }
2913 \f
2914 /* If arg is static -- a reference to an object in static storage -- then
2915 return the object. This is not the same as the C meaning of `static'.
2916 If arg isn't static, return NULL. */
2917
2918 tree
2919 staticp (tree arg)
2920 {
2921 switch (TREE_CODE (arg))
2922 {
2923 case FUNCTION_DECL:
2924 /* Nested functions are static, even though taking their address will
2925 involve a trampoline as we unnest the nested function and create
2926 the trampoline on the tree level. */
2927 return arg;
2928
2929 case VAR_DECL:
2930 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2931 && ! DECL_THREAD_LOCAL_P (arg)
2932 && ! DECL_DLLIMPORT_P (arg)
2933 ? arg : NULL);
2934
2935 case CONST_DECL:
2936 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2937 ? arg : NULL);
2938
2939 case CONSTRUCTOR:
2940 return TREE_STATIC (arg) ? arg : NULL;
2941
2942 case LABEL_DECL:
2943 case STRING_CST:
2944 return arg;
2945
2946 case COMPONENT_REF:
2947 /* If the thing being referenced is not a field, then it is
2948 something language specific. */
2949 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2950
2951 /* If we are referencing a bitfield, we can't evaluate an
2952 ADDR_EXPR at compile time and so it isn't a constant. */
2953 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2954 return NULL;
2955
2956 return staticp (TREE_OPERAND (arg, 0));
2957
2958 case BIT_FIELD_REF:
2959 return NULL;
2960
2961 case INDIRECT_REF:
2962 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2963
2964 case ARRAY_REF:
2965 case ARRAY_RANGE_REF:
2966 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2967 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2968 return staticp (TREE_OPERAND (arg, 0));
2969 else
2970 return NULL;
2971
2972 case COMPOUND_LITERAL_EXPR:
2973 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2974
2975 default:
2976 return NULL;
2977 }
2978 }
2979
2980 \f
2981
2982
2983 /* Return whether OP is a DECL whose address is function-invariant. */
2984
2985 bool
2986 decl_address_invariant_p (const_tree op)
2987 {
2988 /* The conditions below are slightly less strict than the one in
2989 staticp. */
2990
2991 switch (TREE_CODE (op))
2992 {
2993 case PARM_DECL:
2994 case RESULT_DECL:
2995 case LABEL_DECL:
2996 case FUNCTION_DECL:
2997 return true;
2998
2999 case VAR_DECL:
3000 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3001 || DECL_THREAD_LOCAL_P (op)
3002 || DECL_CONTEXT (op) == current_function_decl
3003 || decl_function_context (op) == current_function_decl)
3004 return true;
3005 break;
3006
3007 case CONST_DECL:
3008 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3009 || decl_function_context (op) == current_function_decl)
3010 return true;
3011 break;
3012
3013 default:
3014 break;
3015 }
3016
3017 return false;
3018 }
3019
3020 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3021
3022 bool
3023 decl_address_ip_invariant_p (const_tree op)
3024 {
3025 /* The conditions below are slightly less strict than the one in
3026 staticp. */
3027
3028 switch (TREE_CODE (op))
3029 {
3030 case LABEL_DECL:
3031 case FUNCTION_DECL:
3032 case STRING_CST:
3033 return true;
3034
3035 case VAR_DECL:
3036 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3037 && !DECL_DLLIMPORT_P (op))
3038 || DECL_THREAD_LOCAL_P (op))
3039 return true;
3040 break;
3041
3042 case CONST_DECL:
3043 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3044 return true;
3045 break;
3046
3047 default:
3048 break;
3049 }
3050
3051 return false;
3052 }
3053
3054
3055 /* Return true if T is function-invariant (internal function, does
3056 not handle arithmetic; that's handled in skip_simple_arithmetic and
3057 tree_invariant_p). */
3058
3059 static bool tree_invariant_p (tree t);
3060
3061 static bool
3062 tree_invariant_p_1 (tree t)
3063 {
3064 tree op;
3065
3066 if (TREE_CONSTANT (t)
3067 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3068 return true;
3069
3070 switch (TREE_CODE (t))
3071 {
3072 case SAVE_EXPR:
3073 return true;
3074
3075 case ADDR_EXPR:
3076 op = TREE_OPERAND (t, 0);
3077 while (handled_component_p (op))
3078 {
3079 switch (TREE_CODE (op))
3080 {
3081 case ARRAY_REF:
3082 case ARRAY_RANGE_REF:
3083 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3084 || TREE_OPERAND (op, 2) != NULL_TREE
3085 || TREE_OPERAND (op, 3) != NULL_TREE)
3086 return false;
3087 break;
3088
3089 case COMPONENT_REF:
3090 if (TREE_OPERAND (op, 2) != NULL_TREE)
3091 return false;
3092 break;
3093
3094 default:;
3095 }
3096 op = TREE_OPERAND (op, 0);
3097 }
3098
3099 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3100
3101 default:
3102 break;
3103 }
3104
3105 return false;
3106 }
3107
3108 /* Return true if T is function-invariant. */
3109
3110 static bool
3111 tree_invariant_p (tree t)
3112 {
3113 tree inner = skip_simple_arithmetic (t);
3114 return tree_invariant_p_1 (inner);
3115 }
3116
3117 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3118 Do this to any expression which may be used in more than one place,
3119 but must be evaluated only once.
3120
3121 Normally, expand_expr would reevaluate the expression each time.
3122 Calling save_expr produces something that is evaluated and recorded
3123 the first time expand_expr is called on it. Subsequent calls to
3124 expand_expr just reuse the recorded value.
3125
3126 The call to expand_expr that generates code that actually computes
3127 the value is the first call *at compile time*. Subsequent calls
3128 *at compile time* generate code to use the saved value.
3129 This produces correct result provided that *at run time* control
3130 always flows through the insns made by the first expand_expr
3131 before reaching the other places where the save_expr was evaluated.
3132 You, the caller of save_expr, must make sure this is so.
3133
3134 Constants, and certain read-only nodes, are returned with no
3135 SAVE_EXPR because that is safe. Expressions containing placeholders
3136 are not touched; see tree.def for an explanation of what these
3137 are used for. */
3138
3139 tree
3140 save_expr (tree expr)
3141 {
3142 tree t = fold (expr);
3143 tree inner;
3144
3145 /* If the tree evaluates to a constant, then we don't want to hide that
3146 fact (i.e. this allows further folding, and direct checks for constants).
3147 However, a read-only object that has side effects cannot be bypassed.
3148 Since it is no problem to reevaluate literals, we just return the
3149 literal node. */
3150 inner = skip_simple_arithmetic (t);
3151 if (TREE_CODE (inner) == ERROR_MARK)
3152 return inner;
3153
3154 if (tree_invariant_p_1 (inner))
3155 return t;
3156
3157 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3158 it means that the size or offset of some field of an object depends on
3159 the value within another field.
3160
3161 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
3162 and some variable since it would then need to be both evaluated once and
3163 evaluated more than once. Front-ends must assure this case cannot
3164 happen by surrounding any such subexpressions in their own SAVE_EXPR
3165 and forcing evaluation at the proper time. */
3166 if (contains_placeholder_p (inner))
3167 return t;
3168
3169 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
3170 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
3171
3172 /* This expression might be placed ahead of a jump to ensure that the
3173 value was computed on both sides of the jump. So make sure it isn't
3174 eliminated as dead. */
3175 TREE_SIDE_EFFECTS (t) = 1;
3176 return t;
3177 }
3178
3179 /* Look inside EXPR into any simple arithmetic operations. Return the
3180 outermost non-arithmetic or non-invariant node. */
3181
3182 tree
3183 skip_simple_arithmetic (tree expr)
3184 {
3185 /* We don't care about whether this can be used as an lvalue in this
3186 context. */
3187 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3188 expr = TREE_OPERAND (expr, 0);
3189
3190 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3191 a constant, it will be more efficient to not make another SAVE_EXPR since
3192 it will allow better simplification and GCSE will be able to merge the
3193 computations if they actually occur. */
3194 while (true)
3195 {
3196 if (UNARY_CLASS_P (expr))
3197 expr = TREE_OPERAND (expr, 0);
3198 else if (BINARY_CLASS_P (expr))
3199 {
3200 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3201 expr = TREE_OPERAND (expr, 0);
3202 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3203 expr = TREE_OPERAND (expr, 1);
3204 else
3205 break;
3206 }
3207 else
3208 break;
3209 }
3210
3211 return expr;
3212 }
3213
3214 /* Look inside EXPR into simple arithmetic operations involving constants.
3215 Return the outermost non-arithmetic or non-constant node. */
3216
3217 tree
3218 skip_simple_constant_arithmetic (tree expr)
3219 {
3220 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3221 expr = TREE_OPERAND (expr, 0);
3222
3223 while (true)
3224 {
3225 if (UNARY_CLASS_P (expr))
3226 expr = TREE_OPERAND (expr, 0);
3227 else if (BINARY_CLASS_P (expr))
3228 {
3229 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3230 expr = TREE_OPERAND (expr, 0);
3231 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3232 expr = TREE_OPERAND (expr, 1);
3233 else
3234 break;
3235 }
3236 else
3237 break;
3238 }
3239
3240 return expr;
3241 }
3242
3243 /* Return which tree structure is used by T. */
3244
3245 enum tree_node_structure_enum
3246 tree_node_structure (const_tree t)
3247 {
3248 const enum tree_code code = TREE_CODE (t);
3249 return tree_node_structure_for_code (code);
3250 }
3251
3252 /* Set various status flags when building a CALL_EXPR object T. */
3253
3254 static void
3255 process_call_operands (tree t)
3256 {
3257 bool side_effects = TREE_SIDE_EFFECTS (t);
3258 bool read_only = false;
3259 int i = call_expr_flags (t);
3260
3261 /* Calls have side-effects, except those to const or pure functions. */
3262 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3263 side_effects = true;
3264 /* Propagate TREE_READONLY of arguments for const functions. */
3265 if (i & ECF_CONST)
3266 read_only = true;
3267
3268 if (!side_effects || read_only)
3269 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3270 {
3271 tree op = TREE_OPERAND (t, i);
3272 if (op && TREE_SIDE_EFFECTS (op))
3273 side_effects = true;
3274 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3275 read_only = false;
3276 }
3277
3278 TREE_SIDE_EFFECTS (t) = side_effects;
3279 TREE_READONLY (t) = read_only;
3280 }
3281 \f
3282 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3283 size or offset that depends on a field within a record. */
3284
3285 bool
3286 contains_placeholder_p (const_tree exp)
3287 {
3288 enum tree_code code;
3289
3290 if (!exp)
3291 return 0;
3292
3293 code = TREE_CODE (exp);
3294 if (code == PLACEHOLDER_EXPR)
3295 return 1;
3296
3297 switch (TREE_CODE_CLASS (code))
3298 {
3299 case tcc_reference:
3300 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3301 position computations since they will be converted into a
3302 WITH_RECORD_EXPR involving the reference, which will assume
3303 here will be valid. */
3304 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3305
3306 case tcc_exceptional:
3307 if (code == TREE_LIST)
3308 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3309 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3310 break;
3311
3312 case tcc_unary:
3313 case tcc_binary:
3314 case tcc_comparison:
3315 case tcc_expression:
3316 switch (code)
3317 {
3318 case COMPOUND_EXPR:
3319 /* Ignoring the first operand isn't quite right, but works best. */
3320 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3321
3322 case COND_EXPR:
3323 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3324 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3325 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3326
3327 case SAVE_EXPR:
3328 /* The save_expr function never wraps anything containing
3329 a PLACEHOLDER_EXPR. */
3330 return 0;
3331
3332 default:
3333 break;
3334 }
3335
3336 switch (TREE_CODE_LENGTH (code))
3337 {
3338 case 1:
3339 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3340 case 2:
3341 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3342 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3343 default:
3344 return 0;
3345 }
3346
3347 case tcc_vl_exp:
3348 switch (code)
3349 {
3350 case CALL_EXPR:
3351 {
3352 const_tree arg;
3353 const_call_expr_arg_iterator iter;
3354 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3355 if (CONTAINS_PLACEHOLDER_P (arg))
3356 return 1;
3357 return 0;
3358 }
3359 default:
3360 return 0;
3361 }
3362
3363 default:
3364 return 0;
3365 }
3366 return 0;
3367 }
3368
3369 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3370 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3371 field positions. */
3372
3373 static bool
3374 type_contains_placeholder_1 (const_tree type)
3375 {
3376 /* If the size contains a placeholder or the parent type (component type in
3377 the case of arrays) type involves a placeholder, this type does. */
3378 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3379 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3380 || (!POINTER_TYPE_P (type)
3381 && TREE_TYPE (type)
3382 && type_contains_placeholder_p (TREE_TYPE (type))))
3383 return true;
3384
3385 /* Now do type-specific checks. Note that the last part of the check above
3386 greatly limits what we have to do below. */
3387 switch (TREE_CODE (type))
3388 {
3389 case VOID_TYPE:
3390 case POINTER_BOUNDS_TYPE:
3391 case COMPLEX_TYPE:
3392 case ENUMERAL_TYPE:
3393 case BOOLEAN_TYPE:
3394 case POINTER_TYPE:
3395 case OFFSET_TYPE:
3396 case REFERENCE_TYPE:
3397 case METHOD_TYPE:
3398 case FUNCTION_TYPE:
3399 case VECTOR_TYPE:
3400 case NULLPTR_TYPE:
3401 return false;
3402
3403 case INTEGER_TYPE:
3404 case REAL_TYPE:
3405 case FIXED_POINT_TYPE:
3406 /* Here we just check the bounds. */
3407 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3408 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3409
3410 case ARRAY_TYPE:
3411 /* We have already checked the component type above, so just check the
3412 domain type. */
3413 return type_contains_placeholder_p (TYPE_DOMAIN (type));
3414
3415 case RECORD_TYPE:
3416 case UNION_TYPE:
3417 case QUAL_UNION_TYPE:
3418 {
3419 tree field;
3420
3421 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3422 if (TREE_CODE (field) == FIELD_DECL
3423 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3424 || (TREE_CODE (type) == QUAL_UNION_TYPE
3425 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3426 || type_contains_placeholder_p (TREE_TYPE (field))))
3427 return true;
3428
3429 return false;
3430 }
3431
3432 default:
3433 gcc_unreachable ();
3434 }
3435 }
3436
3437 /* Wrapper around above function used to cache its result. */
3438
3439 bool
3440 type_contains_placeholder_p (tree type)
3441 {
3442 bool result;
3443
3444 /* If the contains_placeholder_bits field has been initialized,
3445 then we know the answer. */
3446 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3447 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3448
3449 /* Indicate that we've seen this type node, and the answer is false.
3450 This is what we want to return if we run into recursion via fields. */
3451 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3452
3453 /* Compute the real value. */
3454 result = type_contains_placeholder_1 (type);
3455
3456 /* Store the real value. */
3457 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3458
3459 return result;
3460 }
3461 \f
3462 /* Push tree EXP onto vector QUEUE if it is not already present. */
3463
3464 static void
3465 push_without_duplicates (tree exp, vec<tree> *queue)
3466 {
3467 unsigned int i;
3468 tree iter;
3469
3470 FOR_EACH_VEC_ELT (*queue, i, iter)
3471 if (simple_cst_equal (iter, exp) == 1)
3472 break;
3473
3474 if (!iter)
3475 queue->safe_push (exp);
3476 }
3477
3478 /* Given a tree EXP, find all occurrences of references to fields
3479 in a PLACEHOLDER_EXPR and place them in vector REFS without
3480 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3481 we assume here that EXP contains only arithmetic expressions
3482 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3483 argument list. */
3484
3485 void
3486 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3487 {
3488 enum tree_code code = TREE_CODE (exp);
3489 tree inner;
3490 int i;
3491
3492 /* We handle TREE_LIST and COMPONENT_REF separately. */
3493 if (code == TREE_LIST)
3494 {
3495 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3496 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3497 }
3498 else if (code == COMPONENT_REF)
3499 {
3500 for (inner = TREE_OPERAND (exp, 0);
3501 REFERENCE_CLASS_P (inner);
3502 inner = TREE_OPERAND (inner, 0))
3503 ;
3504
3505 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3506 push_without_duplicates (exp, refs);
3507 else
3508 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3509 }
3510 else
3511 switch (TREE_CODE_CLASS (code))
3512 {
3513 case tcc_constant:
3514 break;
3515
3516 case tcc_declaration:
3517 /* Variables allocated to static storage can stay. */
3518 if (!TREE_STATIC (exp))
3519 push_without_duplicates (exp, refs);
3520 break;
3521
3522 case tcc_expression:
3523 /* This is the pattern built in ada/make_aligning_type. */
3524 if (code == ADDR_EXPR
3525 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3526 {
3527 push_without_duplicates (exp, refs);
3528 break;
3529 }
3530
3531 /* Fall through... */
3532
3533 case tcc_exceptional:
3534 case tcc_unary:
3535 case tcc_binary:
3536 case tcc_comparison:
3537 case tcc_reference:
3538 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3539 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3540 break;
3541
3542 case tcc_vl_exp:
3543 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3544 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3545 break;
3546
3547 default:
3548 gcc_unreachable ();
3549 }
3550 }
3551
3552 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3553 return a tree with all occurrences of references to F in a
3554 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3555 CONST_DECLs. Note that we assume here that EXP contains only
3556 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3557 occurring only in their argument list. */
3558
3559 tree
3560 substitute_in_expr (tree exp, tree f, tree r)
3561 {
3562 enum tree_code code = TREE_CODE (exp);
3563 tree op0, op1, op2, op3;
3564 tree new_tree;
3565
3566 /* We handle TREE_LIST and COMPONENT_REF separately. */
3567 if (code == TREE_LIST)
3568 {
3569 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3570 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3571 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3572 return exp;
3573
3574 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3575 }
3576 else if (code == COMPONENT_REF)
3577 {
3578 tree inner;
3579
3580 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3581 and it is the right field, replace it with R. */
3582 for (inner = TREE_OPERAND (exp, 0);
3583 REFERENCE_CLASS_P (inner);
3584 inner = TREE_OPERAND (inner, 0))
3585 ;
3586
3587 /* The field. */
3588 op1 = TREE_OPERAND (exp, 1);
3589
3590 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3591 return r;
3592
3593 /* If this expression hasn't been completed let, leave it alone. */
3594 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3595 return exp;
3596
3597 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3598 if (op0 == TREE_OPERAND (exp, 0))
3599 return exp;
3600
3601 new_tree
3602 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3603 }
3604 else
3605 switch (TREE_CODE_CLASS (code))
3606 {
3607 case tcc_constant:
3608 return exp;
3609
3610 case tcc_declaration:
3611 if (exp == f)
3612 return r;
3613 else
3614 return exp;
3615
3616 case tcc_expression:
3617 if (exp == f)
3618 return r;
3619
3620 /* Fall through... */
3621
3622 case tcc_exceptional:
3623 case tcc_unary:
3624 case tcc_binary:
3625 case tcc_comparison:
3626 case tcc_reference:
3627 switch (TREE_CODE_LENGTH (code))
3628 {
3629 case 0:
3630 return exp;
3631
3632 case 1:
3633 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3634 if (op0 == TREE_OPERAND (exp, 0))
3635 return exp;
3636
3637 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3638 break;
3639
3640 case 2:
3641 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3642 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3643
3644 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3645 return exp;
3646
3647 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3648 break;
3649
3650 case 3:
3651 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3652 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3653 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3654
3655 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3656 && op2 == TREE_OPERAND (exp, 2))
3657 return exp;
3658
3659 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3660 break;
3661
3662 case 4:
3663 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3664 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3665 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3666 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3667
3668 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3669 && op2 == TREE_OPERAND (exp, 2)
3670 && op3 == TREE_OPERAND (exp, 3))
3671 return exp;
3672
3673 new_tree
3674 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3675 break;
3676
3677 default:
3678 gcc_unreachable ();
3679 }
3680 break;
3681
3682 case tcc_vl_exp:
3683 {
3684 int i;
3685
3686 new_tree = NULL_TREE;
3687
3688 /* If we are trying to replace F with a constant, inline back
3689 functions which do nothing else than computing a value from
3690 the arguments they are passed. This makes it possible to
3691 fold partially or entirely the replacement expression. */
3692 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3693 {
3694 tree t = maybe_inline_call_in_expr (exp);
3695 if (t)
3696 return SUBSTITUTE_IN_EXPR (t, f, r);
3697 }
3698
3699 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3700 {
3701 tree op = TREE_OPERAND (exp, i);
3702 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3703 if (new_op != op)
3704 {
3705 if (!new_tree)
3706 new_tree = copy_node (exp);
3707 TREE_OPERAND (new_tree, i) = new_op;
3708 }
3709 }
3710
3711 if (new_tree)
3712 {
3713 new_tree = fold (new_tree);
3714 if (TREE_CODE (new_tree) == CALL_EXPR)
3715 process_call_operands (new_tree);
3716 }
3717 else
3718 return exp;
3719 }
3720 break;
3721
3722 default:
3723 gcc_unreachable ();
3724 }
3725
3726 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3727
3728 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3729 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3730
3731 return new_tree;
3732 }
3733
3734 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3735 for it within OBJ, a tree that is an object or a chain of references. */
3736
3737 tree
3738 substitute_placeholder_in_expr (tree exp, tree obj)
3739 {
3740 enum tree_code code = TREE_CODE (exp);
3741 tree op0, op1, op2, op3;
3742 tree new_tree;
3743
3744 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3745 in the chain of OBJ. */
3746 if (code == PLACEHOLDER_EXPR)
3747 {
3748 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3749 tree elt;
3750
3751 for (elt = obj; elt != 0;
3752 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3753 || TREE_CODE (elt) == COND_EXPR)
3754 ? TREE_OPERAND (elt, 1)
3755 : (REFERENCE_CLASS_P (elt)
3756 || UNARY_CLASS_P (elt)
3757 || BINARY_CLASS_P (elt)
3758 || VL_EXP_CLASS_P (elt)
3759 || EXPRESSION_CLASS_P (elt))
3760 ? TREE_OPERAND (elt, 0) : 0))
3761 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3762 return elt;
3763
3764 for (elt = obj; elt != 0;
3765 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3766 || TREE_CODE (elt) == COND_EXPR)
3767 ? TREE_OPERAND (elt, 1)
3768 : (REFERENCE_CLASS_P (elt)
3769 || UNARY_CLASS_P (elt)
3770 || BINARY_CLASS_P (elt)
3771 || VL_EXP_CLASS_P (elt)
3772 || EXPRESSION_CLASS_P (elt))
3773 ? TREE_OPERAND (elt, 0) : 0))
3774 if (POINTER_TYPE_P (TREE_TYPE (elt))
3775 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3776 == need_type))
3777 return fold_build1 (INDIRECT_REF, need_type, elt);
3778
3779 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3780 survives until RTL generation, there will be an error. */
3781 return exp;
3782 }
3783
3784 /* TREE_LIST is special because we need to look at TREE_VALUE
3785 and TREE_CHAIN, not TREE_OPERANDS. */
3786 else if (code == TREE_LIST)
3787 {
3788 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3789 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3790 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3791 return exp;
3792
3793 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3794 }
3795 else
3796 switch (TREE_CODE_CLASS (code))
3797 {
3798 case tcc_constant:
3799 case tcc_declaration:
3800 return exp;
3801
3802 case tcc_exceptional:
3803 case tcc_unary:
3804 case tcc_binary:
3805 case tcc_comparison:
3806 case tcc_expression:
3807 case tcc_reference:
3808 case tcc_statement:
3809 switch (TREE_CODE_LENGTH (code))
3810 {
3811 case 0:
3812 return exp;
3813
3814 case 1:
3815 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3816 if (op0 == TREE_OPERAND (exp, 0))
3817 return exp;
3818
3819 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3820 break;
3821
3822 case 2:
3823 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3824 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3825
3826 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3827 return exp;
3828
3829 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3830 break;
3831
3832 case 3:
3833 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3834 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3835 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3836
3837 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3838 && op2 == TREE_OPERAND (exp, 2))
3839 return exp;
3840
3841 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3842 break;
3843
3844 case 4:
3845 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3846 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3847 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3848 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3849
3850 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3851 && op2 == TREE_OPERAND (exp, 2)
3852 && op3 == TREE_OPERAND (exp, 3))
3853 return exp;
3854
3855 new_tree
3856 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3857 break;
3858
3859 default:
3860 gcc_unreachable ();
3861 }
3862 break;
3863
3864 case tcc_vl_exp:
3865 {
3866 int i;
3867
3868 new_tree = NULL_TREE;
3869
3870 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3871 {
3872 tree op = TREE_OPERAND (exp, i);
3873 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3874 if (new_op != op)
3875 {
3876 if (!new_tree)
3877 new_tree = copy_node (exp);
3878 TREE_OPERAND (new_tree, i) = new_op;
3879 }
3880 }
3881
3882 if (new_tree)
3883 {
3884 new_tree = fold (new_tree);
3885 if (TREE_CODE (new_tree) == CALL_EXPR)
3886 process_call_operands (new_tree);
3887 }
3888 else
3889 return exp;
3890 }
3891 break;
3892
3893 default:
3894 gcc_unreachable ();
3895 }
3896
3897 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3898
3899 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3900 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3901
3902 return new_tree;
3903 }
3904 \f
3905 /* Stabilize a reference so that we can use it any number of times
3906 without causing its operands to be evaluated more than once.
3907 Returns the stabilized reference. This works by means of save_expr,
3908 so see the caveats in the comments about save_expr.
3909
3910 Also allows conversion expressions whose operands are references.
3911 Any other kind of expression is returned unchanged. */
3912
3913 tree
3914 stabilize_reference (tree ref)
3915 {
3916 tree result;
3917 enum tree_code code = TREE_CODE (ref);
3918
3919 switch (code)
3920 {
3921 case VAR_DECL:
3922 case PARM_DECL:
3923 case RESULT_DECL:
3924 /* No action is needed in this case. */
3925 return ref;
3926
3927 CASE_CONVERT:
3928 case FLOAT_EXPR:
3929 case FIX_TRUNC_EXPR:
3930 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3931 break;
3932
3933 case INDIRECT_REF:
3934 result = build_nt (INDIRECT_REF,
3935 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3936 break;
3937
3938 case COMPONENT_REF:
3939 result = build_nt (COMPONENT_REF,
3940 stabilize_reference (TREE_OPERAND (ref, 0)),
3941 TREE_OPERAND (ref, 1), NULL_TREE);
3942 break;
3943
3944 case BIT_FIELD_REF:
3945 result = build_nt (BIT_FIELD_REF,
3946 stabilize_reference (TREE_OPERAND (ref, 0)),
3947 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
3948 break;
3949
3950 case ARRAY_REF:
3951 result = build_nt (ARRAY_REF,
3952 stabilize_reference (TREE_OPERAND (ref, 0)),
3953 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3954 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3955 break;
3956
3957 case ARRAY_RANGE_REF:
3958 result = build_nt (ARRAY_RANGE_REF,
3959 stabilize_reference (TREE_OPERAND (ref, 0)),
3960 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3961 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3962 break;
3963
3964 case COMPOUND_EXPR:
3965 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3966 it wouldn't be ignored. This matters when dealing with
3967 volatiles. */
3968 return stabilize_reference_1 (ref);
3969
3970 /* If arg isn't a kind of lvalue we recognize, make no change.
3971 Caller should recognize the error for an invalid lvalue. */
3972 default:
3973 return ref;
3974
3975 case ERROR_MARK:
3976 return error_mark_node;
3977 }
3978
3979 TREE_TYPE (result) = TREE_TYPE (ref);
3980 TREE_READONLY (result) = TREE_READONLY (ref);
3981 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3982 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3983
3984 return result;
3985 }
3986
3987 /* Subroutine of stabilize_reference; this is called for subtrees of
3988 references. Any expression with side-effects must be put in a SAVE_EXPR
3989 to ensure that it is only evaluated once.
3990
3991 We don't put SAVE_EXPR nodes around everything, because assigning very
3992 simple expressions to temporaries causes us to miss good opportunities
3993 for optimizations. Among other things, the opportunity to fold in the
3994 addition of a constant into an addressing mode often gets lost, e.g.
3995 "y[i+1] += x;". In general, we take the approach that we should not make
3996 an assignment unless we are forced into it - i.e., that any non-side effect
3997 operator should be allowed, and that cse should take care of coalescing
3998 multiple utterances of the same expression should that prove fruitful. */
3999
4000 tree
4001 stabilize_reference_1 (tree e)
4002 {
4003 tree result;
4004 enum tree_code code = TREE_CODE (e);
4005
4006 /* We cannot ignore const expressions because it might be a reference
4007 to a const array but whose index contains side-effects. But we can
4008 ignore things that are actual constant or that already have been
4009 handled by this function. */
4010
4011 if (tree_invariant_p (e))
4012 return e;
4013
4014 switch (TREE_CODE_CLASS (code))
4015 {
4016 case tcc_exceptional:
4017 case tcc_type:
4018 case tcc_declaration:
4019 case tcc_comparison:
4020 case tcc_statement:
4021 case tcc_expression:
4022 case tcc_reference:
4023 case tcc_vl_exp:
4024 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4025 so that it will only be evaluated once. */
4026 /* The reference (r) and comparison (<) classes could be handled as
4027 below, but it is generally faster to only evaluate them once. */
4028 if (TREE_SIDE_EFFECTS (e))
4029 return save_expr (e);
4030 return e;
4031
4032 case tcc_constant:
4033 /* Constants need no processing. In fact, we should never reach
4034 here. */
4035 return e;
4036
4037 case tcc_binary:
4038 /* Division is slow and tends to be compiled with jumps,
4039 especially the division by powers of 2 that is often
4040 found inside of an array reference. So do it just once. */
4041 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4042 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4043 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4044 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4045 return save_expr (e);
4046 /* Recursively stabilize each operand. */
4047 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4048 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4049 break;
4050
4051 case tcc_unary:
4052 /* Recursively stabilize each operand. */
4053 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4054 break;
4055
4056 default:
4057 gcc_unreachable ();
4058 }
4059
4060 TREE_TYPE (result) = TREE_TYPE (e);
4061 TREE_READONLY (result) = TREE_READONLY (e);
4062 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4063 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4064
4065 return result;
4066 }
4067 \f
4068 /* Low-level constructors for expressions. */
4069
4070 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4071 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4072
4073 void
4074 recompute_tree_invariant_for_addr_expr (tree t)
4075 {
4076 tree node;
4077 bool tc = true, se = false;
4078
4079 /* We started out assuming this address is both invariant and constant, but
4080 does not have side effects. Now go down any handled components and see if
4081 any of them involve offsets that are either non-constant or non-invariant.
4082 Also check for side-effects.
4083
4084 ??? Note that this code makes no attempt to deal with the case where
4085 taking the address of something causes a copy due to misalignment. */
4086
4087 #define UPDATE_FLAGS(NODE) \
4088 do { tree _node = (NODE); \
4089 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4090 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4091
4092 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4093 node = TREE_OPERAND (node, 0))
4094 {
4095 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4096 array reference (probably made temporarily by the G++ front end),
4097 so ignore all the operands. */
4098 if ((TREE_CODE (node) == ARRAY_REF
4099 || TREE_CODE (node) == ARRAY_RANGE_REF)
4100 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4101 {
4102 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4103 if (TREE_OPERAND (node, 2))
4104 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4105 if (TREE_OPERAND (node, 3))
4106 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4107 }
4108 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4109 FIELD_DECL, apparently. The G++ front end can put something else
4110 there, at least temporarily. */
4111 else if (TREE_CODE (node) == COMPONENT_REF
4112 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4113 {
4114 if (TREE_OPERAND (node, 2))
4115 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4116 }
4117 }
4118
4119 node = lang_hooks.expr_to_decl (node, &tc, &se);
4120
4121 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4122 the address, since &(*a)->b is a form of addition. If it's a constant, the
4123 address is constant too. If it's a decl, its address is constant if the
4124 decl is static. Everything else is not constant and, furthermore,
4125 taking the address of a volatile variable is not volatile. */
4126 if (TREE_CODE (node) == INDIRECT_REF
4127 || TREE_CODE (node) == MEM_REF)
4128 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4129 else if (CONSTANT_CLASS_P (node))
4130 ;
4131 else if (DECL_P (node))
4132 tc &= (staticp (node) != NULL_TREE);
4133 else
4134 {
4135 tc = false;
4136 se |= TREE_SIDE_EFFECTS (node);
4137 }
4138
4139
4140 TREE_CONSTANT (t) = tc;
4141 TREE_SIDE_EFFECTS (t) = se;
4142 #undef UPDATE_FLAGS
4143 }
4144
4145 /* Build an expression of code CODE, data type TYPE, and operands as
4146 specified. Expressions and reference nodes can be created this way.
4147 Constants, decls, types and misc nodes cannot be.
4148
4149 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4150 enough for all extant tree codes. */
4151
4152 tree
4153 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
4154 {
4155 tree t;
4156
4157 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4158
4159 t = make_node_stat (code PASS_MEM_STAT);
4160 TREE_TYPE (t) = tt;
4161
4162 return t;
4163 }
4164
4165 tree
4166 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4167 {
4168 int length = sizeof (struct tree_exp);
4169 tree t;
4170
4171 record_node_allocation_statistics (code, length);
4172
4173 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4174
4175 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4176
4177 memset (t, 0, sizeof (struct tree_common));
4178
4179 TREE_SET_CODE (t, code);
4180
4181 TREE_TYPE (t) = type;
4182 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4183 TREE_OPERAND (t, 0) = node;
4184 if (node && !TYPE_P (node))
4185 {
4186 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4187 TREE_READONLY (t) = TREE_READONLY (node);
4188 }
4189
4190 if (TREE_CODE_CLASS (code) == tcc_statement)
4191 TREE_SIDE_EFFECTS (t) = 1;
4192 else switch (code)
4193 {
4194 case VA_ARG_EXPR:
4195 /* All of these have side-effects, no matter what their
4196 operands are. */
4197 TREE_SIDE_EFFECTS (t) = 1;
4198 TREE_READONLY (t) = 0;
4199 break;
4200
4201 case INDIRECT_REF:
4202 /* Whether a dereference is readonly has nothing to do with whether
4203 its operand is readonly. */
4204 TREE_READONLY (t) = 0;
4205 break;
4206
4207 case ADDR_EXPR:
4208 if (node)
4209 recompute_tree_invariant_for_addr_expr (t);
4210 break;
4211
4212 default:
4213 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4214 && node && !TYPE_P (node)
4215 && TREE_CONSTANT (node))
4216 TREE_CONSTANT (t) = 1;
4217 if (TREE_CODE_CLASS (code) == tcc_reference
4218 && node && TREE_THIS_VOLATILE (node))
4219 TREE_THIS_VOLATILE (t) = 1;
4220 break;
4221 }
4222
4223 return t;
4224 }
4225
4226 #define PROCESS_ARG(N) \
4227 do { \
4228 TREE_OPERAND (t, N) = arg##N; \
4229 if (arg##N &&!TYPE_P (arg##N)) \
4230 { \
4231 if (TREE_SIDE_EFFECTS (arg##N)) \
4232 side_effects = 1; \
4233 if (!TREE_READONLY (arg##N) \
4234 && !CONSTANT_CLASS_P (arg##N)) \
4235 (void) (read_only = 0); \
4236 if (!TREE_CONSTANT (arg##N)) \
4237 (void) (constant = 0); \
4238 } \
4239 } while (0)
4240
4241 tree
4242 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4243 {
4244 bool constant, read_only, side_effects;
4245 tree t;
4246
4247 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4248
4249 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4250 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4251 /* When sizetype precision doesn't match that of pointers
4252 we need to be able to build explicit extensions or truncations
4253 of the offset argument. */
4254 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4255 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4256 && TREE_CODE (arg1) == INTEGER_CST);
4257
4258 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4259 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4260 && ptrofftype_p (TREE_TYPE (arg1)));
4261
4262 t = make_node_stat (code PASS_MEM_STAT);
4263 TREE_TYPE (t) = tt;
4264
4265 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4266 result based on those same flags for the arguments. But if the
4267 arguments aren't really even `tree' expressions, we shouldn't be trying
4268 to do this. */
4269
4270 /* Expressions without side effects may be constant if their
4271 arguments are as well. */
4272 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4273 || TREE_CODE_CLASS (code) == tcc_binary);
4274 read_only = 1;
4275 side_effects = TREE_SIDE_EFFECTS (t);
4276
4277 PROCESS_ARG (0);
4278 PROCESS_ARG (1);
4279
4280 TREE_READONLY (t) = read_only;
4281 TREE_CONSTANT (t) = constant;
4282 TREE_SIDE_EFFECTS (t) = side_effects;
4283 TREE_THIS_VOLATILE (t)
4284 = (TREE_CODE_CLASS (code) == tcc_reference
4285 && arg0 && TREE_THIS_VOLATILE (arg0));
4286
4287 return t;
4288 }
4289
4290
4291 tree
4292 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4293 tree arg2 MEM_STAT_DECL)
4294 {
4295 bool constant, read_only, side_effects;
4296 tree t;
4297
4298 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4299 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4300
4301 t = make_node_stat (code PASS_MEM_STAT);
4302 TREE_TYPE (t) = tt;
4303
4304 read_only = 1;
4305
4306 /* As a special exception, if COND_EXPR has NULL branches, we
4307 assume that it is a gimple statement and always consider
4308 it to have side effects. */
4309 if (code == COND_EXPR
4310 && tt == void_type_node
4311 && arg1 == NULL_TREE
4312 && arg2 == NULL_TREE)
4313 side_effects = true;
4314 else
4315 side_effects = TREE_SIDE_EFFECTS (t);
4316
4317 PROCESS_ARG (0);
4318 PROCESS_ARG (1);
4319 PROCESS_ARG (2);
4320
4321 if (code == COND_EXPR)
4322 TREE_READONLY (t) = read_only;
4323
4324 TREE_SIDE_EFFECTS (t) = side_effects;
4325 TREE_THIS_VOLATILE (t)
4326 = (TREE_CODE_CLASS (code) == tcc_reference
4327 && arg0 && TREE_THIS_VOLATILE (arg0));
4328
4329 return t;
4330 }
4331
4332 tree
4333 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4334 tree arg2, tree arg3 MEM_STAT_DECL)
4335 {
4336 bool constant, read_only, side_effects;
4337 tree t;
4338
4339 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4340
4341 t = make_node_stat (code PASS_MEM_STAT);
4342 TREE_TYPE (t) = tt;
4343
4344 side_effects = TREE_SIDE_EFFECTS (t);
4345
4346 PROCESS_ARG (0);
4347 PROCESS_ARG (1);
4348 PROCESS_ARG (2);
4349 PROCESS_ARG (3);
4350
4351 TREE_SIDE_EFFECTS (t) = side_effects;
4352 TREE_THIS_VOLATILE (t)
4353 = (TREE_CODE_CLASS (code) == tcc_reference
4354 && arg0 && TREE_THIS_VOLATILE (arg0));
4355
4356 return t;
4357 }
4358
4359 tree
4360 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4361 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4362 {
4363 bool constant, read_only, side_effects;
4364 tree t;
4365
4366 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4367
4368 t = make_node_stat (code PASS_MEM_STAT);
4369 TREE_TYPE (t) = tt;
4370
4371 side_effects = TREE_SIDE_EFFECTS (t);
4372
4373 PROCESS_ARG (0);
4374 PROCESS_ARG (1);
4375 PROCESS_ARG (2);
4376 PROCESS_ARG (3);
4377 PROCESS_ARG (4);
4378
4379 TREE_SIDE_EFFECTS (t) = side_effects;
4380 TREE_THIS_VOLATILE (t)
4381 = (TREE_CODE_CLASS (code) == tcc_reference
4382 && arg0 && TREE_THIS_VOLATILE (arg0));
4383
4384 return t;
4385 }
4386
4387 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4388 on the pointer PTR. */
4389
4390 tree
4391 build_simple_mem_ref_loc (location_t loc, tree ptr)
4392 {
4393 HOST_WIDE_INT offset = 0;
4394 tree ptype = TREE_TYPE (ptr);
4395 tree tem;
4396 /* For convenience allow addresses that collapse to a simple base
4397 and offset. */
4398 if (TREE_CODE (ptr) == ADDR_EXPR
4399 && (handled_component_p (TREE_OPERAND (ptr, 0))
4400 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4401 {
4402 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4403 gcc_assert (ptr);
4404 ptr = build_fold_addr_expr (ptr);
4405 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4406 }
4407 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4408 ptr, build_int_cst (ptype, offset));
4409 SET_EXPR_LOCATION (tem, loc);
4410 return tem;
4411 }
4412
4413 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4414
4415 double_int
4416 mem_ref_offset (const_tree t)
4417 {
4418 tree toff = TREE_OPERAND (t, 1);
4419 return tree_to_double_int (toff).sext (TYPE_PRECISION (TREE_TYPE (toff)));
4420 }
4421
4422 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4423 offsetted by OFFSET units. */
4424
4425 tree
4426 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4427 {
4428 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4429 build_fold_addr_expr (base),
4430 build_int_cst (ptr_type_node, offset));
4431 tree addr = build1 (ADDR_EXPR, type, ref);
4432 recompute_tree_invariant_for_addr_expr (addr);
4433 return addr;
4434 }
4435
4436 /* Similar except don't specify the TREE_TYPE
4437 and leave the TREE_SIDE_EFFECTS as 0.
4438 It is permissible for arguments to be null,
4439 or even garbage if their values do not matter. */
4440
4441 tree
4442 build_nt (enum tree_code code, ...)
4443 {
4444 tree t;
4445 int length;
4446 int i;
4447 va_list p;
4448
4449 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4450
4451 va_start (p, code);
4452
4453 t = make_node (code);
4454 length = TREE_CODE_LENGTH (code);
4455
4456 for (i = 0; i < length; i++)
4457 TREE_OPERAND (t, i) = va_arg (p, tree);
4458
4459 va_end (p);
4460 return t;
4461 }
4462
4463 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4464 tree vec. */
4465
4466 tree
4467 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4468 {
4469 tree ret, t;
4470 unsigned int ix;
4471
4472 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4473 CALL_EXPR_FN (ret) = fn;
4474 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4475 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4476 CALL_EXPR_ARG (ret, ix) = t;
4477 return ret;
4478 }
4479 \f
4480 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4481 We do NOT enter this node in any sort of symbol table.
4482
4483 LOC is the location of the decl.
4484
4485 layout_decl is used to set up the decl's storage layout.
4486 Other slots are initialized to 0 or null pointers. */
4487
4488 tree
4489 build_decl_stat (location_t loc, enum tree_code code, tree name,
4490 tree type MEM_STAT_DECL)
4491 {
4492 tree t;
4493
4494 t = make_node_stat (code PASS_MEM_STAT);
4495 DECL_SOURCE_LOCATION (t) = loc;
4496
4497 /* if (type == error_mark_node)
4498 type = integer_type_node; */
4499 /* That is not done, deliberately, so that having error_mark_node
4500 as the type can suppress useless errors in the use of this variable. */
4501
4502 DECL_NAME (t) = name;
4503 TREE_TYPE (t) = type;
4504
4505 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4506 layout_decl (t, 0);
4507
4508 return t;
4509 }
4510
4511 /* Builds and returns function declaration with NAME and TYPE. */
4512
4513 tree
4514 build_fn_decl (const char *name, tree type)
4515 {
4516 tree id = get_identifier (name);
4517 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4518
4519 DECL_EXTERNAL (decl) = 1;
4520 TREE_PUBLIC (decl) = 1;
4521 DECL_ARTIFICIAL (decl) = 1;
4522 TREE_NOTHROW (decl) = 1;
4523
4524 return decl;
4525 }
4526
4527 vec<tree, va_gc> *all_translation_units;
4528
4529 /* Builds a new translation-unit decl with name NAME, queues it in the
4530 global list of translation-unit decls and returns it. */
4531
4532 tree
4533 build_translation_unit_decl (tree name)
4534 {
4535 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4536 name, NULL_TREE);
4537 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4538 vec_safe_push (all_translation_units, tu);
4539 return tu;
4540 }
4541
4542 \f
4543 /* BLOCK nodes are used to represent the structure of binding contours
4544 and declarations, once those contours have been exited and their contents
4545 compiled. This information is used for outputting debugging info. */
4546
4547 tree
4548 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4549 {
4550 tree block = make_node (BLOCK);
4551
4552 BLOCK_VARS (block) = vars;
4553 BLOCK_SUBBLOCKS (block) = subblocks;
4554 BLOCK_SUPERCONTEXT (block) = supercontext;
4555 BLOCK_CHAIN (block) = chain;
4556 return block;
4557 }
4558
4559 \f
4560 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4561
4562 LOC is the location to use in tree T. */
4563
4564 void
4565 protected_set_expr_location (tree t, location_t loc)
4566 {
4567 if (t && CAN_HAVE_LOCATION_P (t))
4568 SET_EXPR_LOCATION (t, loc);
4569 }
4570 \f
4571 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4572 is ATTRIBUTE. */
4573
4574 tree
4575 build_decl_attribute_variant (tree ddecl, tree attribute)
4576 {
4577 DECL_ATTRIBUTES (ddecl) = attribute;
4578 return ddecl;
4579 }
4580
4581 /* Borrowed from hashtab.c iterative_hash implementation. */
4582 #define mix(a,b,c) \
4583 { \
4584 a -= b; a -= c; a ^= (c>>13); \
4585 b -= c; b -= a; b ^= (a<< 8); \
4586 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4587 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4588 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4589 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4590 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4591 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4592 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4593 }
4594
4595
4596 /* Produce good hash value combining VAL and VAL2. */
4597 hashval_t
4598 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4599 {
4600 /* the golden ratio; an arbitrary value. */
4601 hashval_t a = 0x9e3779b9;
4602
4603 mix (a, val, val2);
4604 return val2;
4605 }
4606
4607 /* Produce good hash value combining VAL and VAL2. */
4608 hashval_t
4609 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4610 {
4611 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4612 return iterative_hash_hashval_t (val, val2);
4613 else
4614 {
4615 hashval_t a = (hashval_t) val;
4616 /* Avoid warnings about shifting of more than the width of the type on
4617 hosts that won't execute this path. */
4618 int zero = 0;
4619 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4620 mix (a, b, val2);
4621 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4622 {
4623 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4624 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4625 mix (a, b, val2);
4626 }
4627 return val2;
4628 }
4629 }
4630
4631 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4632 is ATTRIBUTE and its qualifiers are QUALS.
4633
4634 Record such modified types already made so we don't make duplicates. */
4635
4636 tree
4637 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4638 {
4639 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4640 {
4641 hashval_t hashcode = 0;
4642 tree ntype;
4643 enum tree_code code = TREE_CODE (ttype);
4644
4645 /* Building a distinct copy of a tagged type is inappropriate; it
4646 causes breakage in code that expects there to be a one-to-one
4647 relationship between a struct and its fields.
4648 build_duplicate_type is another solution (as used in
4649 handle_transparent_union_attribute), but that doesn't play well
4650 with the stronger C++ type identity model. */
4651 if (TREE_CODE (ttype) == RECORD_TYPE
4652 || TREE_CODE (ttype) == UNION_TYPE
4653 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4654 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4655 {
4656 warning (OPT_Wattributes,
4657 "ignoring attributes applied to %qT after definition",
4658 TYPE_MAIN_VARIANT (ttype));
4659 return build_qualified_type (ttype, quals);
4660 }
4661
4662 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4663 ntype = build_distinct_type_copy (ttype);
4664
4665 TYPE_ATTRIBUTES (ntype) = attribute;
4666
4667 hashcode = iterative_hash_object (code, hashcode);
4668 if (TREE_TYPE (ntype))
4669 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4670 hashcode);
4671 hashcode = attribute_hash_list (attribute, hashcode);
4672
4673 switch (TREE_CODE (ntype))
4674 {
4675 case FUNCTION_TYPE:
4676 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4677 break;
4678 case ARRAY_TYPE:
4679 if (TYPE_DOMAIN (ntype))
4680 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4681 hashcode);
4682 break;
4683 case INTEGER_TYPE:
4684 hashcode = iterative_hash_object
4685 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4686 hashcode = iterative_hash_object
4687 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4688 break;
4689 case REAL_TYPE:
4690 case FIXED_POINT_TYPE:
4691 {
4692 unsigned int precision = TYPE_PRECISION (ntype);
4693 hashcode = iterative_hash_object (precision, hashcode);
4694 }
4695 break;
4696 default:
4697 break;
4698 }
4699
4700 ntype = type_hash_canon (hashcode, ntype);
4701
4702 /* If the target-dependent attributes make NTYPE different from
4703 its canonical type, we will need to use structural equality
4704 checks for this type. */
4705 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4706 || !comp_type_attributes (ntype, ttype))
4707 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4708 else if (TYPE_CANONICAL (ntype) == ntype)
4709 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4710
4711 ttype = build_qualified_type (ntype, quals);
4712 }
4713 else if (TYPE_QUALS (ttype) != quals)
4714 ttype = build_qualified_type (ttype, quals);
4715
4716 return ttype;
4717 }
4718
4719 /* Check if "omp declare simd" attribute arguments, CLAUSES1 and CLAUSES2, are
4720 the same. */
4721
4722 static bool
4723 omp_declare_simd_clauses_equal (tree clauses1, tree clauses2)
4724 {
4725 tree cl1, cl2;
4726 for (cl1 = clauses1, cl2 = clauses2;
4727 cl1 && cl2;
4728 cl1 = OMP_CLAUSE_CHAIN (cl1), cl2 = OMP_CLAUSE_CHAIN (cl2))
4729 {
4730 if (OMP_CLAUSE_CODE (cl1) != OMP_CLAUSE_CODE (cl2))
4731 return false;
4732 if (OMP_CLAUSE_CODE (cl1) != OMP_CLAUSE_SIMDLEN)
4733 {
4734 if (simple_cst_equal (OMP_CLAUSE_DECL (cl1),
4735 OMP_CLAUSE_DECL (cl2)) != 1)
4736 return false;
4737 }
4738 switch (OMP_CLAUSE_CODE (cl1))
4739 {
4740 case OMP_CLAUSE_ALIGNED:
4741 if (simple_cst_equal (OMP_CLAUSE_ALIGNED_ALIGNMENT (cl1),
4742 OMP_CLAUSE_ALIGNED_ALIGNMENT (cl2)) != 1)
4743 return false;
4744 break;
4745 case OMP_CLAUSE_LINEAR:
4746 if (simple_cst_equal (OMP_CLAUSE_LINEAR_STEP (cl1),
4747 OMP_CLAUSE_LINEAR_STEP (cl2)) != 1)
4748 return false;
4749 break;
4750 case OMP_CLAUSE_SIMDLEN:
4751 if (simple_cst_equal (OMP_CLAUSE_SIMDLEN_EXPR (cl1),
4752 OMP_CLAUSE_SIMDLEN_EXPR (cl2)) != 1)
4753 return false;
4754 default:
4755 break;
4756 }
4757 }
4758 return true;
4759 }
4760
4761 /* Remove duplicate "omp declare simd" attributes. */
4762
4763 void
4764 omp_remove_redundant_declare_simd_attrs (tree fndecl)
4765 {
4766 tree attr, end_attr = NULL_TREE, last_attr = NULL_TREE;
4767 for (attr = lookup_attribute ("omp declare simd", DECL_ATTRIBUTES (fndecl));
4768 attr;
4769 attr = lookup_attribute ("omp declare simd", TREE_CHAIN (attr)))
4770 {
4771 tree *pc;
4772 for (pc = &TREE_CHAIN (attr); *pc && *pc != end_attr; )
4773 {
4774 if (is_attribute_p ("omp declare simd", TREE_PURPOSE (*pc)))
4775 {
4776 last_attr = TREE_CHAIN (*pc);
4777 if (TREE_VALUE (attr) == NULL_TREE)
4778 {
4779 if (TREE_VALUE (*pc) == NULL_TREE)
4780 {
4781 *pc = TREE_CHAIN (*pc);
4782 continue;
4783 }
4784 }
4785 else if (TREE_VALUE (*pc) != NULL_TREE
4786 && omp_declare_simd_clauses_equal
4787 (TREE_VALUE (TREE_VALUE (*pc)),
4788 TREE_VALUE (TREE_VALUE (attr))))
4789 {
4790 *pc = TREE_CHAIN (*pc);
4791 continue;
4792 }
4793 }
4794 pc = &TREE_CHAIN (*pc);
4795 }
4796 end_attr = last_attr;
4797 }
4798 }
4799
4800 /* Compare two attributes for their value identity. Return true if the
4801 attribute values are known to be equal; otherwise return false.
4802 */
4803
4804 static bool
4805 attribute_value_equal (const_tree attr1, const_tree attr2)
4806 {
4807 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4808 return true;
4809
4810 if (TREE_VALUE (attr1) != NULL_TREE
4811 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4812 && TREE_VALUE (attr2) != NULL
4813 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4814 return (simple_cst_list_equal (TREE_VALUE (attr1),
4815 TREE_VALUE (attr2)) == 1);
4816
4817 if ((flag_openmp || flag_openmp_simd)
4818 && TREE_VALUE (attr1) && TREE_VALUE (attr2)
4819 && TREE_CODE (TREE_VALUE (attr1)) == OMP_CLAUSE
4820 && TREE_CODE (TREE_VALUE (attr2)) == OMP_CLAUSE)
4821 return omp_declare_simd_clauses_equal (TREE_VALUE (attr1),
4822 TREE_VALUE (attr2));
4823
4824 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
4825 }
4826
4827 /* Return 0 if the attributes for two types are incompatible, 1 if they
4828 are compatible, and 2 if they are nearly compatible (which causes a
4829 warning to be generated). */
4830 int
4831 comp_type_attributes (const_tree type1, const_tree type2)
4832 {
4833 const_tree a1 = TYPE_ATTRIBUTES (type1);
4834 const_tree a2 = TYPE_ATTRIBUTES (type2);
4835 const_tree a;
4836
4837 if (a1 == a2)
4838 return 1;
4839 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
4840 {
4841 const struct attribute_spec *as;
4842 const_tree attr;
4843
4844 as = lookup_attribute_spec (get_attribute_name (a));
4845 if (!as || as->affects_type_identity == false)
4846 continue;
4847
4848 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
4849 if (!attr || !attribute_value_equal (a, attr))
4850 break;
4851 }
4852 if (!a)
4853 {
4854 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
4855 {
4856 const struct attribute_spec *as;
4857
4858 as = lookup_attribute_spec (get_attribute_name (a));
4859 if (!as || as->affects_type_identity == false)
4860 continue;
4861
4862 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
4863 break;
4864 /* We don't need to compare trees again, as we did this
4865 already in first loop. */
4866 }
4867 /* All types - affecting identity - are equal, so
4868 there is no need to call target hook for comparison. */
4869 if (!a)
4870 return 1;
4871 }
4872 /* As some type combinations - like default calling-convention - might
4873 be compatible, we have to call the target hook to get the final result. */
4874 return targetm.comp_type_attributes (type1, type2);
4875 }
4876
4877 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4878 is ATTRIBUTE.
4879
4880 Record such modified types already made so we don't make duplicates. */
4881
4882 tree
4883 build_type_attribute_variant (tree ttype, tree attribute)
4884 {
4885 return build_type_attribute_qual_variant (ttype, attribute,
4886 TYPE_QUALS (ttype));
4887 }
4888
4889
4890 /* Reset the expression *EXPR_P, a size or position.
4891
4892 ??? We could reset all non-constant sizes or positions. But it's cheap
4893 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4894
4895 We need to reset self-referential sizes or positions because they cannot
4896 be gimplified and thus can contain a CALL_EXPR after the gimplification
4897 is finished, which will run afoul of LTO streaming. And they need to be
4898 reset to something essentially dummy but not constant, so as to preserve
4899 the properties of the object they are attached to. */
4900
4901 static inline void
4902 free_lang_data_in_one_sizepos (tree *expr_p)
4903 {
4904 tree expr = *expr_p;
4905 if (CONTAINS_PLACEHOLDER_P (expr))
4906 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4907 }
4908
4909
4910 /* Reset all the fields in a binfo node BINFO. We only keep
4911 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
4912
4913 static void
4914 free_lang_data_in_binfo (tree binfo)
4915 {
4916 unsigned i;
4917 tree t;
4918
4919 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4920
4921 BINFO_VIRTUALS (binfo) = NULL_TREE;
4922 BINFO_BASE_ACCESSES (binfo) = NULL;
4923 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4924 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4925
4926 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
4927 free_lang_data_in_binfo (t);
4928 }
4929
4930
4931 /* Reset all language specific information still present in TYPE. */
4932
4933 static void
4934 free_lang_data_in_type (tree type)
4935 {
4936 gcc_assert (TYPE_P (type));
4937
4938 /* Give the FE a chance to remove its own data first. */
4939 lang_hooks.free_lang_data (type);
4940
4941 TREE_LANG_FLAG_0 (type) = 0;
4942 TREE_LANG_FLAG_1 (type) = 0;
4943 TREE_LANG_FLAG_2 (type) = 0;
4944 TREE_LANG_FLAG_3 (type) = 0;
4945 TREE_LANG_FLAG_4 (type) = 0;
4946 TREE_LANG_FLAG_5 (type) = 0;
4947 TREE_LANG_FLAG_6 (type) = 0;
4948
4949 if (TREE_CODE (type) == FUNCTION_TYPE)
4950 {
4951 /* Remove the const and volatile qualifiers from arguments. The
4952 C++ front end removes them, but the C front end does not,
4953 leading to false ODR violation errors when merging two
4954 instances of the same function signature compiled by
4955 different front ends. */
4956 tree p;
4957
4958 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4959 {
4960 tree arg_type = TREE_VALUE (p);
4961
4962 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4963 {
4964 int quals = TYPE_QUALS (arg_type)
4965 & ~TYPE_QUAL_CONST
4966 & ~TYPE_QUAL_VOLATILE;
4967 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4968 free_lang_data_in_type (TREE_VALUE (p));
4969 }
4970 }
4971 }
4972
4973 /* Remove members that are not actually FIELD_DECLs from the field
4974 list of an aggregate. These occur in C++. */
4975 if (RECORD_OR_UNION_TYPE_P (type))
4976 {
4977 tree prev, member;
4978
4979 /* Note that TYPE_FIELDS can be shared across distinct
4980 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4981 to be removed, we cannot set its TREE_CHAIN to NULL.
4982 Otherwise, we would not be able to find all the other fields
4983 in the other instances of this TREE_TYPE.
4984
4985 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4986 prev = NULL_TREE;
4987 member = TYPE_FIELDS (type);
4988 while (member)
4989 {
4990 if (TREE_CODE (member) == FIELD_DECL
4991 || TREE_CODE (member) == TYPE_DECL)
4992 {
4993 if (prev)
4994 TREE_CHAIN (prev) = member;
4995 else
4996 TYPE_FIELDS (type) = member;
4997 prev = member;
4998 }
4999
5000 member = TREE_CHAIN (member);
5001 }
5002
5003 if (prev)
5004 TREE_CHAIN (prev) = NULL_TREE;
5005 else
5006 TYPE_FIELDS (type) = NULL_TREE;
5007
5008 TYPE_METHODS (type) = NULL_TREE;
5009 if (TYPE_BINFO (type))
5010 free_lang_data_in_binfo (TYPE_BINFO (type));
5011 }
5012 else
5013 {
5014 /* For non-aggregate types, clear out the language slot (which
5015 overloads TYPE_BINFO). */
5016 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
5017
5018 if (INTEGRAL_TYPE_P (type)
5019 || SCALAR_FLOAT_TYPE_P (type)
5020 || FIXED_POINT_TYPE_P (type))
5021 {
5022 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
5023 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
5024 }
5025 }
5026
5027 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
5028 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
5029
5030 if (TYPE_CONTEXT (type)
5031 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
5032 {
5033 tree ctx = TYPE_CONTEXT (type);
5034 do
5035 {
5036 ctx = BLOCK_SUPERCONTEXT (ctx);
5037 }
5038 while (ctx && TREE_CODE (ctx) == BLOCK);
5039 TYPE_CONTEXT (type) = ctx;
5040 }
5041 }
5042
5043
5044 /* Return true if DECL may need an assembler name to be set. */
5045
5046 static inline bool
5047 need_assembler_name_p (tree decl)
5048 {
5049 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5050 if (TREE_CODE (decl) != FUNCTION_DECL
5051 && TREE_CODE (decl) != VAR_DECL)
5052 return false;
5053
5054 /* If DECL already has its assembler name set, it does not need a
5055 new one. */
5056 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5057 || DECL_ASSEMBLER_NAME_SET_P (decl))
5058 return false;
5059
5060 /* Abstract decls do not need an assembler name. */
5061 if (DECL_ABSTRACT (decl))
5062 return false;
5063
5064 /* For VAR_DECLs, only static, public and external symbols need an
5065 assembler name. */
5066 if (TREE_CODE (decl) == VAR_DECL
5067 && !TREE_STATIC (decl)
5068 && !TREE_PUBLIC (decl)
5069 && !DECL_EXTERNAL (decl))
5070 return false;
5071
5072 if (TREE_CODE (decl) == FUNCTION_DECL)
5073 {
5074 /* Do not set assembler name on builtins. Allow RTL expansion to
5075 decide whether to expand inline or via a regular call. */
5076 if (DECL_BUILT_IN (decl)
5077 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5078 return false;
5079
5080 /* Functions represented in the callgraph need an assembler name. */
5081 if (cgraph_get_node (decl) != NULL)
5082 return true;
5083
5084 /* Unused and not public functions don't need an assembler name. */
5085 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5086 return false;
5087 }
5088
5089 return true;
5090 }
5091
5092
5093 /* Reset all language specific information still present in symbol
5094 DECL. */
5095
5096 static void
5097 free_lang_data_in_decl (tree decl)
5098 {
5099 gcc_assert (DECL_P (decl));
5100
5101 /* Give the FE a chance to remove its own data first. */
5102 lang_hooks.free_lang_data (decl);
5103
5104 TREE_LANG_FLAG_0 (decl) = 0;
5105 TREE_LANG_FLAG_1 (decl) = 0;
5106 TREE_LANG_FLAG_2 (decl) = 0;
5107 TREE_LANG_FLAG_3 (decl) = 0;
5108 TREE_LANG_FLAG_4 (decl) = 0;
5109 TREE_LANG_FLAG_5 (decl) = 0;
5110 TREE_LANG_FLAG_6 (decl) = 0;
5111
5112 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5113 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5114 if (TREE_CODE (decl) == FIELD_DECL)
5115 {
5116 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5117 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5118 DECL_QUALIFIER (decl) = NULL_TREE;
5119 }
5120
5121 if (TREE_CODE (decl) == FUNCTION_DECL)
5122 {
5123 struct cgraph_node *node;
5124 if (!(node = cgraph_get_node (decl))
5125 || (!node->definition && !node->clones))
5126 {
5127 if (node)
5128 cgraph_release_function_body (node);
5129 else
5130 {
5131 release_function_body (decl);
5132 DECL_ARGUMENTS (decl) = NULL;
5133 DECL_RESULT (decl) = NULL;
5134 DECL_INITIAL (decl) = error_mark_node;
5135 }
5136 }
5137 if (gimple_has_body_p (decl))
5138 {
5139 tree t;
5140
5141 /* If DECL has a gimple body, then the context for its
5142 arguments must be DECL. Otherwise, it doesn't really
5143 matter, as we will not be emitting any code for DECL. In
5144 general, there may be other instances of DECL created by
5145 the front end and since PARM_DECLs are generally shared,
5146 their DECL_CONTEXT changes as the replicas of DECL are
5147 created. The only time where DECL_CONTEXT is important
5148 is for the FUNCTION_DECLs that have a gimple body (since
5149 the PARM_DECL will be used in the function's body). */
5150 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5151 DECL_CONTEXT (t) = decl;
5152 }
5153
5154 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5155 At this point, it is not needed anymore. */
5156 DECL_SAVED_TREE (decl) = NULL_TREE;
5157
5158 /* Clear the abstract origin if it refers to a method. Otherwise
5159 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
5160 origin will not be output correctly. */
5161 if (DECL_ABSTRACT_ORIGIN (decl)
5162 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5163 && RECORD_OR_UNION_TYPE_P
5164 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5165 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5166
5167 /* Sometimes the C++ frontend doesn't manage to transform a temporary
5168 DECL_VINDEX referring to itself into a vtable slot number as it
5169 should. Happens with functions that are copied and then forgotten
5170 about. Just clear it, it won't matter anymore. */
5171 if (DECL_VINDEX (decl) && !host_integerp (DECL_VINDEX (decl), 0))
5172 DECL_VINDEX (decl) = NULL_TREE;
5173 }
5174 else if (TREE_CODE (decl) == VAR_DECL)
5175 {
5176 if ((DECL_EXTERNAL (decl)
5177 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5178 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5179 DECL_INITIAL (decl) = NULL_TREE;
5180 }
5181 else if (TREE_CODE (decl) == TYPE_DECL
5182 || TREE_CODE (decl) == FIELD_DECL)
5183 DECL_INITIAL (decl) = NULL_TREE;
5184 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5185 && DECL_INITIAL (decl)
5186 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5187 {
5188 /* Strip builtins from the translation-unit BLOCK. We still have targets
5189 without builtin_decl_explicit support and also builtins are shared
5190 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5191 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5192 while (*nextp)
5193 {
5194 tree var = *nextp;
5195 if (TREE_CODE (var) == FUNCTION_DECL
5196 && DECL_BUILT_IN (var))
5197 *nextp = TREE_CHAIN (var);
5198 else
5199 nextp = &TREE_CHAIN (var);
5200 }
5201 }
5202 }
5203
5204
5205 /* Data used when collecting DECLs and TYPEs for language data removal. */
5206
5207 struct free_lang_data_d
5208 {
5209 /* Worklist to avoid excessive recursion. */
5210 vec<tree> worklist;
5211
5212 /* Set of traversed objects. Used to avoid duplicate visits. */
5213 struct pointer_set_t *pset;
5214
5215 /* Array of symbols to process with free_lang_data_in_decl. */
5216 vec<tree> decls;
5217
5218 /* Array of types to process with free_lang_data_in_type. */
5219 vec<tree> types;
5220 };
5221
5222
5223 /* Save all language fields needed to generate proper debug information
5224 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
5225
5226 static void
5227 save_debug_info_for_decl (tree t)
5228 {
5229 /*struct saved_debug_info_d *sdi;*/
5230
5231 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
5232
5233 /* FIXME. Partial implementation for saving debug info removed. */
5234 }
5235
5236
5237 /* Save all language fields needed to generate proper debug information
5238 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
5239
5240 static void
5241 save_debug_info_for_type (tree t)
5242 {
5243 /*struct saved_debug_info_d *sdi;*/
5244
5245 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
5246
5247 /* FIXME. Partial implementation for saving debug info removed. */
5248 }
5249
5250
5251 /* Add type or decl T to one of the list of tree nodes that need their
5252 language data removed. The lists are held inside FLD. */
5253
5254 static void
5255 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5256 {
5257 if (DECL_P (t))
5258 {
5259 fld->decls.safe_push (t);
5260 if (debug_info_level > DINFO_LEVEL_TERSE)
5261 save_debug_info_for_decl (t);
5262 }
5263 else if (TYPE_P (t))
5264 {
5265 fld->types.safe_push (t);
5266 if (debug_info_level > DINFO_LEVEL_TERSE)
5267 save_debug_info_for_type (t);
5268 }
5269 else
5270 gcc_unreachable ();
5271 }
5272
5273 /* Push tree node T into FLD->WORKLIST. */
5274
5275 static inline void
5276 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5277 {
5278 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
5279 fld->worklist.safe_push ((t));
5280 }
5281
5282
5283 /* Operand callback helper for free_lang_data_in_node. *TP is the
5284 subtree operand being considered. */
5285
5286 static tree
5287 find_decls_types_r (tree *tp, int *ws, void *data)
5288 {
5289 tree t = *tp;
5290 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5291
5292 if (TREE_CODE (t) == TREE_LIST)
5293 return NULL_TREE;
5294
5295 /* Language specific nodes will be removed, so there is no need
5296 to gather anything under them. */
5297 if (is_lang_specific (t))
5298 {
5299 *ws = 0;
5300 return NULL_TREE;
5301 }
5302
5303 if (DECL_P (t))
5304 {
5305 /* Note that walk_tree does not traverse every possible field in
5306 decls, so we have to do our own traversals here. */
5307 add_tree_to_fld_list (t, fld);
5308
5309 fld_worklist_push (DECL_NAME (t), fld);
5310 fld_worklist_push (DECL_CONTEXT (t), fld);
5311 fld_worklist_push (DECL_SIZE (t), fld);
5312 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5313
5314 /* We are going to remove everything under DECL_INITIAL for
5315 TYPE_DECLs. No point walking them. */
5316 if (TREE_CODE (t) != TYPE_DECL)
5317 fld_worklist_push (DECL_INITIAL (t), fld);
5318
5319 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5320 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5321
5322 if (TREE_CODE (t) == FUNCTION_DECL)
5323 {
5324 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5325 fld_worklist_push (DECL_RESULT (t), fld);
5326 }
5327 else if (TREE_CODE (t) == TYPE_DECL)
5328 {
5329 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
5330 fld_worklist_push (DECL_VINDEX (t), fld);
5331 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
5332 }
5333 else if (TREE_CODE (t) == FIELD_DECL)
5334 {
5335 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5336 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5337 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5338 fld_worklist_push (DECL_FCONTEXT (t), fld);
5339 }
5340 else if (TREE_CODE (t) == VAR_DECL)
5341 {
5342 fld_worklist_push (DECL_SECTION_NAME (t), fld);
5343 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
5344 }
5345
5346 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
5347 && DECL_HAS_VALUE_EXPR_P (t))
5348 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5349
5350 if (TREE_CODE (t) != FIELD_DECL
5351 && TREE_CODE (t) != TYPE_DECL)
5352 fld_worklist_push (TREE_CHAIN (t), fld);
5353 *ws = 0;
5354 }
5355 else if (TYPE_P (t))
5356 {
5357 /* Note that walk_tree does not traverse every possible field in
5358 types, so we have to do our own traversals here. */
5359 add_tree_to_fld_list (t, fld);
5360
5361 if (!RECORD_OR_UNION_TYPE_P (t))
5362 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5363 fld_worklist_push (TYPE_SIZE (t), fld);
5364 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5365 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5366 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5367 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5368 fld_worklist_push (TYPE_NAME (t), fld);
5369 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
5370 them and thus do not and want not to reach unused pointer types
5371 this way. */
5372 if (!POINTER_TYPE_P (t))
5373 fld_worklist_push (TYPE_MINVAL (t), fld);
5374 if (!RECORD_OR_UNION_TYPE_P (t))
5375 fld_worklist_push (TYPE_MAXVAL (t), fld);
5376 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5377 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5378 do not and want not to reach unused variants this way. */
5379 if (TYPE_CONTEXT (t))
5380 {
5381 tree ctx = TYPE_CONTEXT (t);
5382 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5383 So push that instead. */
5384 while (ctx && TREE_CODE (ctx) == BLOCK)
5385 ctx = BLOCK_SUPERCONTEXT (ctx);
5386 fld_worklist_push (ctx, fld);
5387 }
5388 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5389 and want not to reach unused types this way. */
5390
5391 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5392 {
5393 unsigned i;
5394 tree tem;
5395 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5396 fld_worklist_push (TREE_TYPE (tem), fld);
5397 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
5398 if (tem
5399 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
5400 && TREE_CODE (tem) == TREE_LIST)
5401 do
5402 {
5403 fld_worklist_push (TREE_VALUE (tem), fld);
5404 tem = TREE_CHAIN (tem);
5405 }
5406 while (tem);
5407 }
5408 if (RECORD_OR_UNION_TYPE_P (t))
5409 {
5410 tree tem;
5411 /* Push all TYPE_FIELDS - there can be interleaving interesting
5412 and non-interesting things. */
5413 tem = TYPE_FIELDS (t);
5414 while (tem)
5415 {
5416 if (TREE_CODE (tem) == FIELD_DECL
5417 || TREE_CODE (tem) == TYPE_DECL)
5418 fld_worklist_push (tem, fld);
5419 tem = TREE_CHAIN (tem);
5420 }
5421 }
5422
5423 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5424 *ws = 0;
5425 }
5426 else if (TREE_CODE (t) == BLOCK)
5427 {
5428 tree tem;
5429 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
5430 fld_worklist_push (tem, fld);
5431 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5432 fld_worklist_push (tem, fld);
5433 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5434 }
5435
5436 if (TREE_CODE (t) != IDENTIFIER_NODE
5437 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5438 fld_worklist_push (TREE_TYPE (t), fld);
5439
5440 return NULL_TREE;
5441 }
5442
5443
5444 /* Find decls and types in T. */
5445
5446 static void
5447 find_decls_types (tree t, struct free_lang_data_d *fld)
5448 {
5449 while (1)
5450 {
5451 if (!pointer_set_contains (fld->pset, t))
5452 walk_tree (&t, find_decls_types_r, fld, fld->pset);
5453 if (fld->worklist.is_empty ())
5454 break;
5455 t = fld->worklist.pop ();
5456 }
5457 }
5458
5459 /* Translate all the types in LIST with the corresponding runtime
5460 types. */
5461
5462 static tree
5463 get_eh_types_for_runtime (tree list)
5464 {
5465 tree head, prev;
5466
5467 if (list == NULL_TREE)
5468 return NULL_TREE;
5469
5470 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5471 prev = head;
5472 list = TREE_CHAIN (list);
5473 while (list)
5474 {
5475 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5476 TREE_CHAIN (prev) = n;
5477 prev = TREE_CHAIN (prev);
5478 list = TREE_CHAIN (list);
5479 }
5480
5481 return head;
5482 }
5483
5484
5485 /* Find decls and types referenced in EH region R and store them in
5486 FLD->DECLS and FLD->TYPES. */
5487
5488 static void
5489 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5490 {
5491 switch (r->type)
5492 {
5493 case ERT_CLEANUP:
5494 break;
5495
5496 case ERT_TRY:
5497 {
5498 eh_catch c;
5499
5500 /* The types referenced in each catch must first be changed to the
5501 EH types used at runtime. This removes references to FE types
5502 in the region. */
5503 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5504 {
5505 c->type_list = get_eh_types_for_runtime (c->type_list);
5506 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
5507 }
5508 }
5509 break;
5510
5511 case ERT_ALLOWED_EXCEPTIONS:
5512 r->u.allowed.type_list
5513 = get_eh_types_for_runtime (r->u.allowed.type_list);
5514 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
5515 break;
5516
5517 case ERT_MUST_NOT_THROW:
5518 walk_tree (&r->u.must_not_throw.failure_decl,
5519 find_decls_types_r, fld, fld->pset);
5520 break;
5521 }
5522 }
5523
5524
5525 /* Find decls and types referenced in cgraph node N and store them in
5526 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5527 look for *every* kind of DECL and TYPE node reachable from N,
5528 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5529 NAMESPACE_DECLs, etc). */
5530
5531 static void
5532 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5533 {
5534 basic_block bb;
5535 struct function *fn;
5536 unsigned ix;
5537 tree t;
5538
5539 find_decls_types (n->decl, fld);
5540
5541 if (!gimple_has_body_p (n->decl))
5542 return;
5543
5544 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5545
5546 fn = DECL_STRUCT_FUNCTION (n->decl);
5547
5548 /* Traverse locals. */
5549 FOR_EACH_LOCAL_DECL (fn, ix, t)
5550 find_decls_types (t, fld);
5551
5552 /* Traverse EH regions in FN. */
5553 {
5554 eh_region r;
5555 FOR_ALL_EH_REGION_FN (r, fn)
5556 find_decls_types_in_eh_region (r, fld);
5557 }
5558
5559 /* Traverse every statement in FN. */
5560 FOR_EACH_BB_FN (bb, fn)
5561 {
5562 gimple_stmt_iterator si;
5563 unsigned i;
5564
5565 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5566 {
5567 gimple phi = gsi_stmt (si);
5568
5569 for (i = 0; i < gimple_phi_num_args (phi); i++)
5570 {
5571 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5572 find_decls_types (*arg_p, fld);
5573 }
5574 }
5575
5576 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5577 {
5578 gimple stmt = gsi_stmt (si);
5579
5580 if (is_gimple_call (stmt))
5581 find_decls_types (gimple_call_fntype (stmt), fld);
5582
5583 for (i = 0; i < gimple_num_ops (stmt); i++)
5584 {
5585 tree arg = gimple_op (stmt, i);
5586 find_decls_types (arg, fld);
5587 }
5588 }
5589 }
5590 }
5591
5592
5593 /* Find decls and types referenced in varpool node N and store them in
5594 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5595 look for *every* kind of DECL and TYPE node reachable from N,
5596 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5597 NAMESPACE_DECLs, etc). */
5598
5599 static void
5600 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
5601 {
5602 find_decls_types (v->decl, fld);
5603 }
5604
5605 /* If T needs an assembler name, have one created for it. */
5606
5607 void
5608 assign_assembler_name_if_neeeded (tree t)
5609 {
5610 if (need_assembler_name_p (t))
5611 {
5612 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5613 diagnostics that use input_location to show locus
5614 information. The problem here is that, at this point,
5615 input_location is generally anchored to the end of the file
5616 (since the parser is long gone), so we don't have a good
5617 position to pin it to.
5618
5619 To alleviate this problem, this uses the location of T's
5620 declaration. Examples of this are
5621 testsuite/g++.dg/template/cond2.C and
5622 testsuite/g++.dg/template/pr35240.C. */
5623 location_t saved_location = input_location;
5624 input_location = DECL_SOURCE_LOCATION (t);
5625
5626 decl_assembler_name (t);
5627
5628 input_location = saved_location;
5629 }
5630 }
5631
5632
5633 /* Free language specific information for every operand and expression
5634 in every node of the call graph. This process operates in three stages:
5635
5636 1- Every callgraph node and varpool node is traversed looking for
5637 decls and types embedded in them. This is a more exhaustive
5638 search than that done by find_referenced_vars, because it will
5639 also collect individual fields, decls embedded in types, etc.
5640
5641 2- All the decls found are sent to free_lang_data_in_decl.
5642
5643 3- All the types found are sent to free_lang_data_in_type.
5644
5645 The ordering between decls and types is important because
5646 free_lang_data_in_decl sets assembler names, which includes
5647 mangling. So types cannot be freed up until assembler names have
5648 been set up. */
5649
5650 static void
5651 free_lang_data_in_cgraph (void)
5652 {
5653 struct cgraph_node *n;
5654 struct varpool_node *v;
5655 struct free_lang_data_d fld;
5656 tree t;
5657 unsigned i;
5658 alias_pair *p;
5659
5660 /* Initialize sets and arrays to store referenced decls and types. */
5661 fld.pset = pointer_set_create ();
5662 fld.worklist.create (0);
5663 fld.decls.create (100);
5664 fld.types.create (100);
5665
5666 /* Find decls and types in the body of every function in the callgraph. */
5667 FOR_EACH_FUNCTION (n)
5668 find_decls_types_in_node (n, &fld);
5669
5670 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5671 find_decls_types (p->decl, &fld);
5672
5673 /* Find decls and types in every varpool symbol. */
5674 FOR_EACH_VARIABLE (v)
5675 find_decls_types_in_var (v, &fld);
5676
5677 /* Set the assembler name on every decl found. We need to do this
5678 now because free_lang_data_in_decl will invalidate data needed
5679 for mangling. This breaks mangling on interdependent decls. */
5680 FOR_EACH_VEC_ELT (fld.decls, i, t)
5681 assign_assembler_name_if_neeeded (t);
5682
5683 /* Traverse every decl found freeing its language data. */
5684 FOR_EACH_VEC_ELT (fld.decls, i, t)
5685 free_lang_data_in_decl (t);
5686
5687 /* Traverse every type found freeing its language data. */
5688 FOR_EACH_VEC_ELT (fld.types, i, t)
5689 free_lang_data_in_type (t);
5690
5691 pointer_set_destroy (fld.pset);
5692 fld.worklist.release ();
5693 fld.decls.release ();
5694 fld.types.release ();
5695 }
5696
5697
5698 /* Free resources that are used by FE but are not needed once they are done. */
5699
5700 static unsigned
5701 free_lang_data (void)
5702 {
5703 unsigned i;
5704
5705 /* If we are the LTO frontend we have freed lang-specific data already. */
5706 if (in_lto_p
5707 || !flag_generate_lto)
5708 return 0;
5709
5710 /* Allocate and assign alias sets to the standard integer types
5711 while the slots are still in the way the frontends generated them. */
5712 for (i = 0; i < itk_none; ++i)
5713 if (integer_types[i])
5714 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5715
5716 /* Traverse the IL resetting language specific information for
5717 operands, expressions, etc. */
5718 free_lang_data_in_cgraph ();
5719
5720 /* Create gimple variants for common types. */
5721 ptrdiff_type_node = integer_type_node;
5722 fileptr_type_node = ptr_type_node;
5723
5724 /* Reset some langhooks. Do not reset types_compatible_p, it may
5725 still be used indirectly via the get_alias_set langhook. */
5726 lang_hooks.dwarf_name = lhd_dwarf_name;
5727 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5728 /* We do not want the default decl_assembler_name implementation,
5729 rather if we have fixed everything we want a wrapper around it
5730 asserting that all non-local symbols already got their assembler
5731 name and only produce assembler names for local symbols. Or rather
5732 make sure we never call decl_assembler_name on local symbols and
5733 devise a separate, middle-end private scheme for it. */
5734
5735 /* Reset diagnostic machinery. */
5736 tree_diagnostics_defaults (global_dc);
5737
5738 return 0;
5739 }
5740
5741
5742 namespace {
5743
5744 const pass_data pass_data_ipa_free_lang_data =
5745 {
5746 SIMPLE_IPA_PASS, /* type */
5747 "*free_lang_data", /* name */
5748 OPTGROUP_NONE, /* optinfo_flags */
5749 false, /* has_gate */
5750 true, /* has_execute */
5751 TV_IPA_FREE_LANG_DATA, /* tv_id */
5752 0, /* properties_required */
5753 0, /* properties_provided */
5754 0, /* properties_destroyed */
5755 0, /* todo_flags_start */
5756 0, /* todo_flags_finish */
5757 };
5758
5759 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
5760 {
5761 public:
5762 pass_ipa_free_lang_data (gcc::context *ctxt)
5763 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
5764 {}
5765
5766 /* opt_pass methods: */
5767 unsigned int execute () { return free_lang_data (); }
5768
5769 }; // class pass_ipa_free_lang_data
5770
5771 } // anon namespace
5772
5773 simple_ipa_opt_pass *
5774 make_pass_ipa_free_lang_data (gcc::context *ctxt)
5775 {
5776 return new pass_ipa_free_lang_data (ctxt);
5777 }
5778
5779 /* The backbone of is_attribute_p(). ATTR_LEN is the string length of
5780 ATTR_NAME. Also used internally by remove_attribute(). */
5781 bool
5782 private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident)
5783 {
5784 size_t ident_len = IDENTIFIER_LENGTH (ident);
5785
5786 if (ident_len == attr_len)
5787 {
5788 if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0)
5789 return true;
5790 }
5791 else if (ident_len == attr_len + 4)
5792 {
5793 /* There is the possibility that ATTR is 'text' and IDENT is
5794 '__text__'. */
5795 const char *p = IDENTIFIER_POINTER (ident);
5796 if (p[0] == '_' && p[1] == '_'
5797 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5798 && strncmp (attr_name, p + 2, attr_len) == 0)
5799 return true;
5800 }
5801
5802 return false;
5803 }
5804
5805 /* The backbone of lookup_attribute(). ATTR_LEN is the string length
5806 of ATTR_NAME, and LIST is not NULL_TREE. */
5807 tree
5808 private_lookup_attribute (const char *attr_name, size_t attr_len, tree list)
5809 {
5810 while (list)
5811 {
5812 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5813
5814 if (ident_len == attr_len)
5815 {
5816 if (!strcmp (attr_name,
5817 IDENTIFIER_POINTER (get_attribute_name (list))))
5818 break;
5819 }
5820 /* TODO: If we made sure that attributes were stored in the
5821 canonical form without '__...__' (ie, as in 'text' as opposed
5822 to '__text__') then we could avoid the following case. */
5823 else if (ident_len == attr_len + 4)
5824 {
5825 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5826 if (p[0] == '_' && p[1] == '_'
5827 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5828 && strncmp (attr_name, p + 2, attr_len) == 0)
5829 break;
5830 }
5831 list = TREE_CHAIN (list);
5832 }
5833
5834 return list;
5835 }
5836
5837 /* A variant of lookup_attribute() that can be used with an identifier
5838 as the first argument, and where the identifier can be either
5839 'text' or '__text__'.
5840
5841 Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST,
5842 return a pointer to the attribute's list element if the attribute
5843 is part of the list, or NULL_TREE if not found. If the attribute
5844 appears more than once, this only returns the first occurrence; the
5845 TREE_CHAIN of the return value should be passed back in if further
5846 occurrences are wanted. ATTR_IDENTIFIER must be an identifier but
5847 can be in the form 'text' or '__text__'. */
5848 static tree
5849 lookup_ident_attribute (tree attr_identifier, tree list)
5850 {
5851 gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE);
5852
5853 while (list)
5854 {
5855 gcc_checking_assert (TREE_CODE (get_attribute_name (list))
5856 == IDENTIFIER_NODE);
5857
5858 /* Identifiers can be compared directly for equality. */
5859 if (attr_identifier == get_attribute_name (list))
5860 break;
5861
5862 /* If they are not equal, they may still be one in the form
5863 'text' while the other one is in the form '__text__'. TODO:
5864 If we were storing attributes in normalized 'text' form, then
5865 this could all go away and we could take full advantage of
5866 the fact that we're comparing identifiers. :-) */
5867 {
5868 size_t attr_len = IDENTIFIER_LENGTH (attr_identifier);
5869 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5870
5871 if (ident_len == attr_len + 4)
5872 {
5873 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5874 const char *q = IDENTIFIER_POINTER (attr_identifier);
5875 if (p[0] == '_' && p[1] == '_'
5876 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5877 && strncmp (q, p + 2, attr_len) == 0)
5878 break;
5879 }
5880 else if (ident_len + 4 == attr_len)
5881 {
5882 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5883 const char *q = IDENTIFIER_POINTER (attr_identifier);
5884 if (q[0] == '_' && q[1] == '_'
5885 && q[attr_len - 2] == '_' && q[attr_len - 1] == '_'
5886 && strncmp (q + 2, p, ident_len) == 0)
5887 break;
5888 }
5889 }
5890 list = TREE_CHAIN (list);
5891 }
5892
5893 return list;
5894 }
5895
5896 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5897 modified list. */
5898
5899 tree
5900 remove_attribute (const char *attr_name, tree list)
5901 {
5902 tree *p;
5903 size_t attr_len = strlen (attr_name);
5904
5905 gcc_checking_assert (attr_name[0] != '_');
5906
5907 for (p = &list; *p; )
5908 {
5909 tree l = *p;
5910 /* TODO: If we were storing attributes in normalized form, here
5911 we could use a simple strcmp(). */
5912 if (private_is_attribute_p (attr_name, attr_len, get_attribute_name (l)))
5913 *p = TREE_CHAIN (l);
5914 else
5915 p = &TREE_CHAIN (l);
5916 }
5917
5918 return list;
5919 }
5920
5921 /* Return an attribute list that is the union of a1 and a2. */
5922
5923 tree
5924 merge_attributes (tree a1, tree a2)
5925 {
5926 tree attributes;
5927
5928 /* Either one unset? Take the set one. */
5929
5930 if ((attributes = a1) == 0)
5931 attributes = a2;
5932
5933 /* One that completely contains the other? Take it. */
5934
5935 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5936 {
5937 if (attribute_list_contained (a2, a1))
5938 attributes = a2;
5939 else
5940 {
5941 /* Pick the longest list, and hang on the other list. */
5942
5943 if (list_length (a1) < list_length (a2))
5944 attributes = a2, a2 = a1;
5945
5946 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5947 {
5948 tree a;
5949 for (a = lookup_ident_attribute (get_attribute_name (a2),
5950 attributes);
5951 a != NULL_TREE && !attribute_value_equal (a, a2);
5952 a = lookup_ident_attribute (get_attribute_name (a2),
5953 TREE_CHAIN (a)))
5954 ;
5955 if (a == NULL_TREE)
5956 {
5957 a1 = copy_node (a2);
5958 TREE_CHAIN (a1) = attributes;
5959 attributes = a1;
5960 }
5961 }
5962 }
5963 }
5964 return attributes;
5965 }
5966
5967 /* Given types T1 and T2, merge their attributes and return
5968 the result. */
5969
5970 tree
5971 merge_type_attributes (tree t1, tree t2)
5972 {
5973 return merge_attributes (TYPE_ATTRIBUTES (t1),
5974 TYPE_ATTRIBUTES (t2));
5975 }
5976
5977 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5978 the result. */
5979
5980 tree
5981 merge_decl_attributes (tree olddecl, tree newdecl)
5982 {
5983 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5984 DECL_ATTRIBUTES (newdecl));
5985 }
5986
5987 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5988
5989 /* Specialization of merge_decl_attributes for various Windows targets.
5990
5991 This handles the following situation:
5992
5993 __declspec (dllimport) int foo;
5994 int foo;
5995
5996 The second instance of `foo' nullifies the dllimport. */
5997
5998 tree
5999 merge_dllimport_decl_attributes (tree old, tree new_tree)
6000 {
6001 tree a;
6002 int delete_dllimport_p = 1;
6003
6004 /* What we need to do here is remove from `old' dllimport if it doesn't
6005 appear in `new'. dllimport behaves like extern: if a declaration is
6006 marked dllimport and a definition appears later, then the object
6007 is not dllimport'd. We also remove a `new' dllimport if the old list
6008 contains dllexport: dllexport always overrides dllimport, regardless
6009 of the order of declaration. */
6010 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
6011 delete_dllimport_p = 0;
6012 else if (DECL_DLLIMPORT_P (new_tree)
6013 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
6014 {
6015 DECL_DLLIMPORT_P (new_tree) = 0;
6016 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
6017 "dllimport ignored", new_tree);
6018 }
6019 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
6020 {
6021 /* Warn about overriding a symbol that has already been used, e.g.:
6022 extern int __attribute__ ((dllimport)) foo;
6023 int* bar () {return &foo;}
6024 int foo;
6025 */
6026 if (TREE_USED (old))
6027 {
6028 warning (0, "%q+D redeclared without dllimport attribute "
6029 "after being referenced with dll linkage", new_tree);
6030 /* If we have used a variable's address with dllimport linkage,
6031 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
6032 decl may already have had TREE_CONSTANT computed.
6033 We still remove the attribute so that assembler code refers
6034 to '&foo rather than '_imp__foo'. */
6035 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
6036 DECL_DLLIMPORT_P (new_tree) = 1;
6037 }
6038
6039 /* Let an inline definition silently override the external reference,
6040 but otherwise warn about attribute inconsistency. */
6041 else if (TREE_CODE (new_tree) == VAR_DECL
6042 || !DECL_DECLARED_INLINE_P (new_tree))
6043 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
6044 "previous dllimport ignored", new_tree);
6045 }
6046 else
6047 delete_dllimport_p = 0;
6048
6049 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
6050
6051 if (delete_dllimport_p)
6052 a = remove_attribute ("dllimport", a);
6053
6054 return a;
6055 }
6056
6057 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
6058 struct attribute_spec.handler. */
6059
6060 tree
6061 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
6062 bool *no_add_attrs)
6063 {
6064 tree node = *pnode;
6065 bool is_dllimport;
6066
6067 /* These attributes may apply to structure and union types being created,
6068 but otherwise should pass to the declaration involved. */
6069 if (!DECL_P (node))
6070 {
6071 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
6072 | (int) ATTR_FLAG_ARRAY_NEXT))
6073 {
6074 *no_add_attrs = true;
6075 return tree_cons (name, args, NULL_TREE);
6076 }
6077 if (TREE_CODE (node) == RECORD_TYPE
6078 || TREE_CODE (node) == UNION_TYPE)
6079 {
6080 node = TYPE_NAME (node);
6081 if (!node)
6082 return NULL_TREE;
6083 }
6084 else
6085 {
6086 warning (OPT_Wattributes, "%qE attribute ignored",
6087 name);
6088 *no_add_attrs = true;
6089 return NULL_TREE;
6090 }
6091 }
6092
6093 if (TREE_CODE (node) != FUNCTION_DECL
6094 && TREE_CODE (node) != VAR_DECL
6095 && TREE_CODE (node) != TYPE_DECL)
6096 {
6097 *no_add_attrs = true;
6098 warning (OPT_Wattributes, "%qE attribute ignored",
6099 name);
6100 return NULL_TREE;
6101 }
6102
6103 if (TREE_CODE (node) == TYPE_DECL
6104 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
6105 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
6106 {
6107 *no_add_attrs = true;
6108 warning (OPT_Wattributes, "%qE attribute ignored",
6109 name);
6110 return NULL_TREE;
6111 }
6112
6113 is_dllimport = is_attribute_p ("dllimport", name);
6114
6115 /* Report error on dllimport ambiguities seen now before they cause
6116 any damage. */
6117 if (is_dllimport)
6118 {
6119 /* Honor any target-specific overrides. */
6120 if (!targetm.valid_dllimport_attribute_p (node))
6121 *no_add_attrs = true;
6122
6123 else if (TREE_CODE (node) == FUNCTION_DECL
6124 && DECL_DECLARED_INLINE_P (node))
6125 {
6126 warning (OPT_Wattributes, "inline function %q+D declared as "
6127 " dllimport: attribute ignored", node);
6128 *no_add_attrs = true;
6129 }
6130 /* Like MS, treat definition of dllimported variables and
6131 non-inlined functions on declaration as syntax errors. */
6132 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
6133 {
6134 error ("function %q+D definition is marked dllimport", node);
6135 *no_add_attrs = true;
6136 }
6137
6138 else if (TREE_CODE (node) == VAR_DECL)
6139 {
6140 if (DECL_INITIAL (node))
6141 {
6142 error ("variable %q+D definition is marked dllimport",
6143 node);
6144 *no_add_attrs = true;
6145 }
6146
6147 /* `extern' needn't be specified with dllimport.
6148 Specify `extern' now and hope for the best. Sigh. */
6149 DECL_EXTERNAL (node) = 1;
6150 /* Also, implicitly give dllimport'd variables declared within
6151 a function global scope, unless declared static. */
6152 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
6153 TREE_PUBLIC (node) = 1;
6154 }
6155
6156 if (*no_add_attrs == false)
6157 DECL_DLLIMPORT_P (node) = 1;
6158 }
6159 else if (TREE_CODE (node) == FUNCTION_DECL
6160 && DECL_DECLARED_INLINE_P (node)
6161 && flag_keep_inline_dllexport)
6162 /* An exported function, even if inline, must be emitted. */
6163 DECL_EXTERNAL (node) = 0;
6164
6165 /* Report error if symbol is not accessible at global scope. */
6166 if (!TREE_PUBLIC (node)
6167 && (TREE_CODE (node) == VAR_DECL
6168 || TREE_CODE (node) == FUNCTION_DECL))
6169 {
6170 error ("external linkage required for symbol %q+D because of "
6171 "%qE attribute", node, name);
6172 *no_add_attrs = true;
6173 }
6174
6175 /* A dllexport'd entity must have default visibility so that other
6176 program units (shared libraries or the main executable) can see
6177 it. A dllimport'd entity must have default visibility so that
6178 the linker knows that undefined references within this program
6179 unit can be resolved by the dynamic linker. */
6180 if (!*no_add_attrs)
6181 {
6182 if (DECL_VISIBILITY_SPECIFIED (node)
6183 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
6184 error ("%qE implies default visibility, but %qD has already "
6185 "been declared with a different visibility",
6186 name, node);
6187 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
6188 DECL_VISIBILITY_SPECIFIED (node) = 1;
6189 }
6190
6191 return NULL_TREE;
6192 }
6193
6194 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
6195 \f
6196 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
6197 of the various TYPE_QUAL values. */
6198
6199 static void
6200 set_type_quals (tree type, int type_quals)
6201 {
6202 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
6203 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
6204 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
6205 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
6206 }
6207
6208 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
6209
6210 bool
6211 check_qualified_type (const_tree cand, const_tree base, int type_quals)
6212 {
6213 return (TYPE_QUALS (cand) == type_quals
6214 && TYPE_NAME (cand) == TYPE_NAME (base)
6215 /* Apparently this is needed for Objective-C. */
6216 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6217 /* Check alignment. */
6218 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
6219 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6220 TYPE_ATTRIBUTES (base)));
6221 }
6222
6223 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
6224
6225 static bool
6226 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6227 {
6228 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6229 && TYPE_NAME (cand) == TYPE_NAME (base)
6230 /* Apparently this is needed for Objective-C. */
6231 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6232 /* Check alignment. */
6233 && TYPE_ALIGN (cand) == align
6234 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6235 TYPE_ATTRIBUTES (base)));
6236 }
6237
6238 /* Return a version of the TYPE, qualified as indicated by the
6239 TYPE_QUALS, if one exists. If no qualified version exists yet,
6240 return NULL_TREE. */
6241
6242 tree
6243 get_qualified_type (tree type, int type_quals)
6244 {
6245 tree t;
6246
6247 if (TYPE_QUALS (type) == type_quals)
6248 return type;
6249
6250 /* Search the chain of variants to see if there is already one there just
6251 like the one we need to have. If so, use that existing one. We must
6252 preserve the TYPE_NAME, since there is code that depends on this. */
6253 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6254 if (check_qualified_type (t, type, type_quals))
6255 return t;
6256
6257 return NULL_TREE;
6258 }
6259
6260 /* Like get_qualified_type, but creates the type if it does not
6261 exist. This function never returns NULL_TREE. */
6262
6263 tree
6264 build_qualified_type (tree type, int type_quals)
6265 {
6266 tree t;
6267
6268 /* See if we already have the appropriate qualified variant. */
6269 t = get_qualified_type (type, type_quals);
6270
6271 /* If not, build it. */
6272 if (!t)
6273 {
6274 t = build_variant_type_copy (type);
6275 set_type_quals (t, type_quals);
6276
6277 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6278 /* Propagate structural equality. */
6279 SET_TYPE_STRUCTURAL_EQUALITY (t);
6280 else if (TYPE_CANONICAL (type) != type)
6281 /* Build the underlying canonical type, since it is different
6282 from TYPE. */
6283 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
6284 type_quals);
6285 else
6286 /* T is its own canonical type. */
6287 TYPE_CANONICAL (t) = t;
6288
6289 }
6290
6291 return t;
6292 }
6293
6294 /* Create a variant of type T with alignment ALIGN. */
6295
6296 tree
6297 build_aligned_type (tree type, unsigned int align)
6298 {
6299 tree t;
6300
6301 if (TYPE_PACKED (type)
6302 || TYPE_ALIGN (type) == align)
6303 return type;
6304
6305 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6306 if (check_aligned_type (t, type, align))
6307 return t;
6308
6309 t = build_variant_type_copy (type);
6310 TYPE_ALIGN (t) = align;
6311
6312 return t;
6313 }
6314
6315 /* Create a new distinct copy of TYPE. The new type is made its own
6316 MAIN_VARIANT. If TYPE requires structural equality checks, the
6317 resulting type requires structural equality checks; otherwise, its
6318 TYPE_CANONICAL points to itself. */
6319
6320 tree
6321 build_distinct_type_copy (tree type)
6322 {
6323 tree t = copy_node (type);
6324
6325 TYPE_POINTER_TO (t) = 0;
6326 TYPE_REFERENCE_TO (t) = 0;
6327
6328 /* Set the canonical type either to a new equivalence class, or
6329 propagate the need for structural equality checks. */
6330 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6331 SET_TYPE_STRUCTURAL_EQUALITY (t);
6332 else
6333 TYPE_CANONICAL (t) = t;
6334
6335 /* Make it its own variant. */
6336 TYPE_MAIN_VARIANT (t) = t;
6337 TYPE_NEXT_VARIANT (t) = 0;
6338
6339 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6340 whose TREE_TYPE is not t. This can also happen in the Ada
6341 frontend when using subtypes. */
6342
6343 return t;
6344 }
6345
6346 /* Create a new variant of TYPE, equivalent but distinct. This is so
6347 the caller can modify it. TYPE_CANONICAL for the return type will
6348 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6349 are considered equal by the language itself (or that both types
6350 require structural equality checks). */
6351
6352 tree
6353 build_variant_type_copy (tree type)
6354 {
6355 tree t, m = TYPE_MAIN_VARIANT (type);
6356
6357 t = build_distinct_type_copy (type);
6358
6359 /* Since we're building a variant, assume that it is a non-semantic
6360 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6361 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6362
6363 /* Add the new type to the chain of variants of TYPE. */
6364 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6365 TYPE_NEXT_VARIANT (m) = t;
6366 TYPE_MAIN_VARIANT (t) = m;
6367
6368 return t;
6369 }
6370 \f
6371 /* Return true if the from tree in both tree maps are equal. */
6372
6373 int
6374 tree_map_base_eq (const void *va, const void *vb)
6375 {
6376 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6377 *const b = (const struct tree_map_base *) vb;
6378 return (a->from == b->from);
6379 }
6380
6381 /* Hash a from tree in a tree_base_map. */
6382
6383 unsigned int
6384 tree_map_base_hash (const void *item)
6385 {
6386 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6387 }
6388
6389 /* Return true if this tree map structure is marked for garbage collection
6390 purposes. We simply return true if the from tree is marked, so that this
6391 structure goes away when the from tree goes away. */
6392
6393 int
6394 tree_map_base_marked_p (const void *p)
6395 {
6396 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6397 }
6398
6399 /* Hash a from tree in a tree_map. */
6400
6401 unsigned int
6402 tree_map_hash (const void *item)
6403 {
6404 return (((const struct tree_map *) item)->hash);
6405 }
6406
6407 /* Hash a from tree in a tree_decl_map. */
6408
6409 unsigned int
6410 tree_decl_map_hash (const void *item)
6411 {
6412 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6413 }
6414
6415 /* Return the initialization priority for DECL. */
6416
6417 priority_type
6418 decl_init_priority_lookup (tree decl)
6419 {
6420 struct tree_priority_map *h;
6421 struct tree_map_base in;
6422
6423 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
6424 in.from = decl;
6425 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
6426 return h ? h->init : DEFAULT_INIT_PRIORITY;
6427 }
6428
6429 /* Return the finalization priority for DECL. */
6430
6431 priority_type
6432 decl_fini_priority_lookup (tree decl)
6433 {
6434 struct tree_priority_map *h;
6435 struct tree_map_base in;
6436
6437 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
6438 in.from = decl;
6439 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
6440 return h ? h->fini : DEFAULT_INIT_PRIORITY;
6441 }
6442
6443 /* Return the initialization and finalization priority information for
6444 DECL. If there is no previous priority information, a freshly
6445 allocated structure is returned. */
6446
6447 static struct tree_priority_map *
6448 decl_priority_info (tree decl)
6449 {
6450 struct tree_priority_map in;
6451 struct tree_priority_map *h;
6452 void **loc;
6453
6454 in.base.from = decl;
6455 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
6456 h = (struct tree_priority_map *) *loc;
6457 if (!h)
6458 {
6459 h = ggc_alloc_cleared_tree_priority_map ();
6460 *loc = h;
6461 h->base.from = decl;
6462 h->init = DEFAULT_INIT_PRIORITY;
6463 h->fini = DEFAULT_INIT_PRIORITY;
6464 }
6465
6466 return h;
6467 }
6468
6469 /* Set the initialization priority for DECL to PRIORITY. */
6470
6471 void
6472 decl_init_priority_insert (tree decl, priority_type priority)
6473 {
6474 struct tree_priority_map *h;
6475
6476 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
6477 if (priority == DEFAULT_INIT_PRIORITY)
6478 return;
6479 h = decl_priority_info (decl);
6480 h->init = priority;
6481 }
6482
6483 /* Set the finalization priority for DECL to PRIORITY. */
6484
6485 void
6486 decl_fini_priority_insert (tree decl, priority_type priority)
6487 {
6488 struct tree_priority_map *h;
6489
6490 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
6491 if (priority == DEFAULT_INIT_PRIORITY)
6492 return;
6493 h = decl_priority_info (decl);
6494 h->fini = priority;
6495 }
6496
6497 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6498
6499 static void
6500 print_debug_expr_statistics (void)
6501 {
6502 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6503 (long) htab_size (debug_expr_for_decl),
6504 (long) htab_elements (debug_expr_for_decl),
6505 htab_collisions (debug_expr_for_decl));
6506 }
6507
6508 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6509
6510 static void
6511 print_value_expr_statistics (void)
6512 {
6513 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6514 (long) htab_size (value_expr_for_decl),
6515 (long) htab_elements (value_expr_for_decl),
6516 htab_collisions (value_expr_for_decl));
6517 }
6518
6519 /* Lookup a debug expression for FROM, and return it if we find one. */
6520
6521 tree
6522 decl_debug_expr_lookup (tree from)
6523 {
6524 struct tree_decl_map *h, in;
6525 in.base.from = from;
6526
6527 h = (struct tree_decl_map *)
6528 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
6529 if (h)
6530 return h->to;
6531 return NULL_TREE;
6532 }
6533
6534 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6535
6536 void
6537 decl_debug_expr_insert (tree from, tree to)
6538 {
6539 struct tree_decl_map *h;
6540 void **loc;
6541
6542 h = ggc_alloc_tree_decl_map ();
6543 h->base.from = from;
6544 h->to = to;
6545 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
6546 INSERT);
6547 *(struct tree_decl_map **) loc = h;
6548 }
6549
6550 /* Lookup a value expression for FROM, and return it if we find one. */
6551
6552 tree
6553 decl_value_expr_lookup (tree from)
6554 {
6555 struct tree_decl_map *h, in;
6556 in.base.from = from;
6557
6558 h = (struct tree_decl_map *)
6559 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
6560 if (h)
6561 return h->to;
6562 return NULL_TREE;
6563 }
6564
6565 /* Insert a mapping FROM->TO in the value expression hashtable. */
6566
6567 void
6568 decl_value_expr_insert (tree from, tree to)
6569 {
6570 struct tree_decl_map *h;
6571 void **loc;
6572
6573 h = ggc_alloc_tree_decl_map ();
6574 h->base.from = from;
6575 h->to = to;
6576 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
6577 INSERT);
6578 *(struct tree_decl_map **) loc = h;
6579 }
6580
6581 /* Lookup a vector of debug arguments for FROM, and return it if we
6582 find one. */
6583
6584 vec<tree, va_gc> **
6585 decl_debug_args_lookup (tree from)
6586 {
6587 struct tree_vec_map *h, in;
6588
6589 if (!DECL_HAS_DEBUG_ARGS_P (from))
6590 return NULL;
6591 gcc_checking_assert (debug_args_for_decl != NULL);
6592 in.base.from = from;
6593 h = (struct tree_vec_map *)
6594 htab_find_with_hash (debug_args_for_decl, &in, DECL_UID (from));
6595 if (h)
6596 return &h->to;
6597 return NULL;
6598 }
6599
6600 /* Insert a mapping FROM->empty vector of debug arguments in the value
6601 expression hashtable. */
6602
6603 vec<tree, va_gc> **
6604 decl_debug_args_insert (tree from)
6605 {
6606 struct tree_vec_map *h;
6607 void **loc;
6608
6609 if (DECL_HAS_DEBUG_ARGS_P (from))
6610 return decl_debug_args_lookup (from);
6611 if (debug_args_for_decl == NULL)
6612 debug_args_for_decl = htab_create_ggc (64, tree_vec_map_hash,
6613 tree_vec_map_eq, 0);
6614 h = ggc_alloc_tree_vec_map ();
6615 h->base.from = from;
6616 h->to = NULL;
6617 loc = htab_find_slot_with_hash (debug_args_for_decl, h, DECL_UID (from),
6618 INSERT);
6619 *(struct tree_vec_map **) loc = h;
6620 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6621 return &h->to;
6622 }
6623
6624 /* Hashing of types so that we don't make duplicates.
6625 The entry point is `type_hash_canon'. */
6626
6627 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6628 with types in the TREE_VALUE slots), by adding the hash codes
6629 of the individual types. */
6630
6631 static unsigned int
6632 type_hash_list (const_tree list, hashval_t hashcode)
6633 {
6634 const_tree tail;
6635
6636 for (tail = list; tail; tail = TREE_CHAIN (tail))
6637 if (TREE_VALUE (tail) != error_mark_node)
6638 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
6639 hashcode);
6640
6641 return hashcode;
6642 }
6643
6644 /* These are the Hashtable callback functions. */
6645
6646 /* Returns true iff the types are equivalent. */
6647
6648 static int
6649 type_hash_eq (const void *va, const void *vb)
6650 {
6651 const struct type_hash *const a = (const struct type_hash *) va,
6652 *const b = (const struct type_hash *) vb;
6653
6654 /* First test the things that are the same for all types. */
6655 if (a->hash != b->hash
6656 || TREE_CODE (a->type) != TREE_CODE (b->type)
6657 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6658 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6659 TYPE_ATTRIBUTES (b->type))
6660 || (TREE_CODE (a->type) != COMPLEX_TYPE
6661 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6662 return 0;
6663
6664 /* Be careful about comparing arrays before and after the element type
6665 has been completed; don't compare TYPE_ALIGN unless both types are
6666 complete. */
6667 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6668 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6669 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6670 return 0;
6671
6672 switch (TREE_CODE (a->type))
6673 {
6674 case VOID_TYPE:
6675 case COMPLEX_TYPE:
6676 case POINTER_TYPE:
6677 case REFERENCE_TYPE:
6678 case NULLPTR_TYPE:
6679 return 1;
6680
6681 case VECTOR_TYPE:
6682 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6683
6684 case ENUMERAL_TYPE:
6685 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6686 && !(TYPE_VALUES (a->type)
6687 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6688 && TYPE_VALUES (b->type)
6689 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6690 && type_list_equal (TYPE_VALUES (a->type),
6691 TYPE_VALUES (b->type))))
6692 return 0;
6693
6694 /* ... fall through ... */
6695
6696 case INTEGER_TYPE:
6697 case REAL_TYPE:
6698 case BOOLEAN_TYPE:
6699 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6700 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6701 TYPE_MAX_VALUE (b->type)))
6702 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6703 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6704 TYPE_MIN_VALUE (b->type))));
6705
6706 case FIXED_POINT_TYPE:
6707 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6708
6709 case OFFSET_TYPE:
6710 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6711
6712 case METHOD_TYPE:
6713 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6714 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6715 || (TYPE_ARG_TYPES (a->type)
6716 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6717 && TYPE_ARG_TYPES (b->type)
6718 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6719 && type_list_equal (TYPE_ARG_TYPES (a->type),
6720 TYPE_ARG_TYPES (b->type)))))
6721 break;
6722 return 0;
6723 case ARRAY_TYPE:
6724 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6725
6726 case RECORD_TYPE:
6727 case UNION_TYPE:
6728 case QUAL_UNION_TYPE:
6729 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6730 || (TYPE_FIELDS (a->type)
6731 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6732 && TYPE_FIELDS (b->type)
6733 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6734 && type_list_equal (TYPE_FIELDS (a->type),
6735 TYPE_FIELDS (b->type))));
6736
6737 case FUNCTION_TYPE:
6738 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6739 || (TYPE_ARG_TYPES (a->type)
6740 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6741 && TYPE_ARG_TYPES (b->type)
6742 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6743 && type_list_equal (TYPE_ARG_TYPES (a->type),
6744 TYPE_ARG_TYPES (b->type))))
6745 break;
6746 return 0;
6747
6748 default:
6749 return 0;
6750 }
6751
6752 if (lang_hooks.types.type_hash_eq != NULL)
6753 return lang_hooks.types.type_hash_eq (a->type, b->type);
6754
6755 return 1;
6756 }
6757
6758 /* Return the cached hash value. */
6759
6760 static hashval_t
6761 type_hash_hash (const void *item)
6762 {
6763 return ((const struct type_hash *) item)->hash;
6764 }
6765
6766 /* Look in the type hash table for a type isomorphic to TYPE.
6767 If one is found, return it. Otherwise return 0. */
6768
6769 static tree
6770 type_hash_lookup (hashval_t hashcode, tree type)
6771 {
6772 struct type_hash *h, in;
6773
6774 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6775 must call that routine before comparing TYPE_ALIGNs. */
6776 layout_type (type);
6777
6778 in.hash = hashcode;
6779 in.type = type;
6780
6781 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6782 hashcode);
6783 if (h)
6784 return h->type;
6785 return NULL_TREE;
6786 }
6787
6788 /* Add an entry to the type-hash-table
6789 for a type TYPE whose hash code is HASHCODE. */
6790
6791 static void
6792 type_hash_add (hashval_t hashcode, tree type)
6793 {
6794 struct type_hash *h;
6795 void **loc;
6796
6797 h = ggc_alloc_type_hash ();
6798 h->hash = hashcode;
6799 h->type = type;
6800 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6801 *loc = (void *)h;
6802 }
6803
6804 /* Given TYPE, and HASHCODE its hash code, return the canonical
6805 object for an identical type if one already exists.
6806 Otherwise, return TYPE, and record it as the canonical object.
6807
6808 To use this function, first create a type of the sort you want.
6809 Then compute its hash code from the fields of the type that
6810 make it different from other similar types.
6811 Then call this function and use the value. */
6812
6813 tree
6814 type_hash_canon (unsigned int hashcode, tree type)
6815 {
6816 tree t1;
6817
6818 /* The hash table only contains main variants, so ensure that's what we're
6819 being passed. */
6820 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6821
6822 /* See if the type is in the hash table already. If so, return it.
6823 Otherwise, add the type. */
6824 t1 = type_hash_lookup (hashcode, type);
6825 if (t1 != 0)
6826 {
6827 if (GATHER_STATISTICS)
6828 {
6829 tree_code_counts[(int) TREE_CODE (type)]--;
6830 tree_node_counts[(int) t_kind]--;
6831 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
6832 }
6833 return t1;
6834 }
6835 else
6836 {
6837 type_hash_add (hashcode, type);
6838 return type;
6839 }
6840 }
6841
6842 /* See if the data pointed to by the type hash table is marked. We consider
6843 it marked if the type is marked or if a debug type number or symbol
6844 table entry has been made for the type. */
6845
6846 static int
6847 type_hash_marked_p (const void *p)
6848 {
6849 const_tree const type = ((const struct type_hash *) p)->type;
6850
6851 return ggc_marked_p (type);
6852 }
6853
6854 static void
6855 print_type_hash_statistics (void)
6856 {
6857 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6858 (long) htab_size (type_hash_table),
6859 (long) htab_elements (type_hash_table),
6860 htab_collisions (type_hash_table));
6861 }
6862
6863 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6864 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6865 by adding the hash codes of the individual attributes. */
6866
6867 static unsigned int
6868 attribute_hash_list (const_tree list, hashval_t hashcode)
6869 {
6870 const_tree tail;
6871
6872 for (tail = list; tail; tail = TREE_CHAIN (tail))
6873 /* ??? Do we want to add in TREE_VALUE too? */
6874 hashcode = iterative_hash_object
6875 (IDENTIFIER_HASH_VALUE (get_attribute_name (tail)), hashcode);
6876 return hashcode;
6877 }
6878
6879 /* Given two lists of attributes, return true if list l2 is
6880 equivalent to l1. */
6881
6882 int
6883 attribute_list_equal (const_tree l1, const_tree l2)
6884 {
6885 if (l1 == l2)
6886 return 1;
6887
6888 return attribute_list_contained (l1, l2)
6889 && attribute_list_contained (l2, l1);
6890 }
6891
6892 /* Given two lists of attributes, return true if list L2 is
6893 completely contained within L1. */
6894 /* ??? This would be faster if attribute names were stored in a canonicalized
6895 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6896 must be used to show these elements are equivalent (which they are). */
6897 /* ??? It's not clear that attributes with arguments will always be handled
6898 correctly. */
6899
6900 int
6901 attribute_list_contained (const_tree l1, const_tree l2)
6902 {
6903 const_tree t1, t2;
6904
6905 /* First check the obvious, maybe the lists are identical. */
6906 if (l1 == l2)
6907 return 1;
6908
6909 /* Maybe the lists are similar. */
6910 for (t1 = l1, t2 = l2;
6911 t1 != 0 && t2 != 0
6912 && get_attribute_name (t1) == get_attribute_name (t2)
6913 && TREE_VALUE (t1) == TREE_VALUE (t2);
6914 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6915 ;
6916
6917 /* Maybe the lists are equal. */
6918 if (t1 == 0 && t2 == 0)
6919 return 1;
6920
6921 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6922 {
6923 const_tree attr;
6924 /* This CONST_CAST is okay because lookup_attribute does not
6925 modify its argument and the return value is assigned to a
6926 const_tree. */
6927 for (attr = lookup_ident_attribute (get_attribute_name (t2),
6928 CONST_CAST_TREE (l1));
6929 attr != NULL_TREE && !attribute_value_equal (t2, attr);
6930 attr = lookup_ident_attribute (get_attribute_name (t2),
6931 TREE_CHAIN (attr)))
6932 ;
6933
6934 if (attr == NULL_TREE)
6935 return 0;
6936 }
6937
6938 return 1;
6939 }
6940
6941 /* Given two lists of types
6942 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6943 return 1 if the lists contain the same types in the same order.
6944 Also, the TREE_PURPOSEs must match. */
6945
6946 int
6947 type_list_equal (const_tree l1, const_tree l2)
6948 {
6949 const_tree t1, t2;
6950
6951 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6952 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6953 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6954 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6955 && (TREE_TYPE (TREE_PURPOSE (t1))
6956 == TREE_TYPE (TREE_PURPOSE (t2))))))
6957 return 0;
6958
6959 return t1 == t2;
6960 }
6961
6962 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6963 given by TYPE. If the argument list accepts variable arguments,
6964 then this function counts only the ordinary arguments. */
6965
6966 int
6967 type_num_arguments (const_tree type)
6968 {
6969 int i = 0;
6970 tree t;
6971
6972 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6973 /* If the function does not take a variable number of arguments,
6974 the last element in the list will have type `void'. */
6975 if (VOID_TYPE_P (TREE_VALUE (t)))
6976 break;
6977 else
6978 ++i;
6979
6980 return i;
6981 }
6982
6983 /* Nonzero if integer constants T1 and T2
6984 represent the same constant value. */
6985
6986 int
6987 tree_int_cst_equal (const_tree t1, const_tree t2)
6988 {
6989 if (t1 == t2)
6990 return 1;
6991
6992 if (t1 == 0 || t2 == 0)
6993 return 0;
6994
6995 if (TREE_CODE (t1) == INTEGER_CST
6996 && TREE_CODE (t2) == INTEGER_CST
6997 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6998 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6999 return 1;
7000
7001 return 0;
7002 }
7003
7004 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
7005 The precise way of comparison depends on their data type. */
7006
7007 int
7008 tree_int_cst_lt (const_tree t1, const_tree t2)
7009 {
7010 if (t1 == t2)
7011 return 0;
7012
7013 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
7014 {
7015 int t1_sgn = tree_int_cst_sgn (t1);
7016 int t2_sgn = tree_int_cst_sgn (t2);
7017
7018 if (t1_sgn < t2_sgn)
7019 return 1;
7020 else if (t1_sgn > t2_sgn)
7021 return 0;
7022 /* Otherwise, both are non-negative, so we compare them as
7023 unsigned just in case one of them would overflow a signed
7024 type. */
7025 }
7026 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
7027 return INT_CST_LT (t1, t2);
7028
7029 return INT_CST_LT_UNSIGNED (t1, t2);
7030 }
7031
7032 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
7033
7034 int
7035 tree_int_cst_compare (const_tree t1, const_tree t2)
7036 {
7037 if (tree_int_cst_lt (t1, t2))
7038 return -1;
7039 else if (tree_int_cst_lt (t2, t1))
7040 return 1;
7041 else
7042 return 0;
7043 }
7044
7045 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
7046 the host. If POS is zero, the value can be represented in a single
7047 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
7048 be represented in a single unsigned HOST_WIDE_INT. */
7049
7050 int
7051 host_integerp (const_tree t, int pos)
7052 {
7053 if (t == NULL_TREE)
7054 return 0;
7055
7056 return (TREE_CODE (t) == INTEGER_CST
7057 && ((TREE_INT_CST_HIGH (t) == 0
7058 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
7059 || (! pos && TREE_INT_CST_HIGH (t) == -1
7060 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
7061 && !TYPE_UNSIGNED (TREE_TYPE (t)))
7062 || (pos && TREE_INT_CST_HIGH (t) == 0)));
7063 }
7064
7065 /* Return the HOST_WIDE_INT least significant bits of T if it is an
7066 INTEGER_CST and there is no overflow. POS is nonzero if the result must
7067 be non-negative. We must be able to satisfy the above conditions. */
7068
7069 HOST_WIDE_INT
7070 tree_low_cst (const_tree t, int pos)
7071 {
7072 gcc_assert (host_integerp (t, pos));
7073 return TREE_INT_CST_LOW (t);
7074 }
7075
7076 /* Return the HOST_WIDE_INT least significant bits of T, a sizetype
7077 kind INTEGER_CST. This makes sure to properly sign-extend the
7078 constant. */
7079
7080 HOST_WIDE_INT
7081 size_low_cst (const_tree t)
7082 {
7083 double_int d = tree_to_double_int (t);
7084 return d.sext (TYPE_PRECISION (TREE_TYPE (t))).low;
7085 }
7086
7087 /* Return the most significant (sign) bit of T. */
7088
7089 int
7090 tree_int_cst_sign_bit (const_tree t)
7091 {
7092 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
7093 unsigned HOST_WIDE_INT w;
7094
7095 if (bitno < HOST_BITS_PER_WIDE_INT)
7096 w = TREE_INT_CST_LOW (t);
7097 else
7098 {
7099 w = TREE_INT_CST_HIGH (t);
7100 bitno -= HOST_BITS_PER_WIDE_INT;
7101 }
7102
7103 return (w >> bitno) & 1;
7104 }
7105
7106 /* Return an indication of the sign of the integer constant T.
7107 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
7108 Note that -1 will never be returned if T's type is unsigned. */
7109
7110 int
7111 tree_int_cst_sgn (const_tree t)
7112 {
7113 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
7114 return 0;
7115 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
7116 return 1;
7117 else if (TREE_INT_CST_HIGH (t) < 0)
7118 return -1;
7119 else
7120 return 1;
7121 }
7122
7123 /* Return the minimum number of bits needed to represent VALUE in a
7124 signed or unsigned type, UNSIGNEDP says which. */
7125
7126 unsigned int
7127 tree_int_cst_min_precision (tree value, bool unsignedp)
7128 {
7129 /* If the value is negative, compute its negative minus 1. The latter
7130 adjustment is because the absolute value of the largest negative value
7131 is one larger than the largest positive value. This is equivalent to
7132 a bit-wise negation, so use that operation instead. */
7133
7134 if (tree_int_cst_sgn (value) < 0)
7135 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
7136
7137 /* Return the number of bits needed, taking into account the fact
7138 that we need one more bit for a signed than unsigned type.
7139 If value is 0 or -1, the minimum precision is 1 no matter
7140 whether unsignedp is true or false. */
7141
7142 if (integer_zerop (value))
7143 return 1;
7144 else
7145 return tree_floor_log2 (value) + 1 + !unsignedp;
7146 }
7147
7148 /* Compare two constructor-element-type constants. Return 1 if the lists
7149 are known to be equal; otherwise return 0. */
7150
7151 int
7152 simple_cst_list_equal (const_tree l1, const_tree l2)
7153 {
7154 while (l1 != NULL_TREE && l2 != NULL_TREE)
7155 {
7156 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
7157 return 0;
7158
7159 l1 = TREE_CHAIN (l1);
7160 l2 = TREE_CHAIN (l2);
7161 }
7162
7163 return l1 == l2;
7164 }
7165
7166 /* Return truthvalue of whether T1 is the same tree structure as T2.
7167 Return 1 if they are the same.
7168 Return 0 if they are understandably different.
7169 Return -1 if either contains tree structure not understood by
7170 this function. */
7171
7172 int
7173 simple_cst_equal (const_tree t1, const_tree t2)
7174 {
7175 enum tree_code code1, code2;
7176 int cmp;
7177 int i;
7178
7179 if (t1 == t2)
7180 return 1;
7181 if (t1 == 0 || t2 == 0)
7182 return 0;
7183
7184 code1 = TREE_CODE (t1);
7185 code2 = TREE_CODE (t2);
7186
7187 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
7188 {
7189 if (CONVERT_EXPR_CODE_P (code2)
7190 || code2 == NON_LVALUE_EXPR)
7191 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7192 else
7193 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
7194 }
7195
7196 else if (CONVERT_EXPR_CODE_P (code2)
7197 || code2 == NON_LVALUE_EXPR)
7198 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
7199
7200 if (code1 != code2)
7201 return 0;
7202
7203 switch (code1)
7204 {
7205 case INTEGER_CST:
7206 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
7207 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
7208
7209 case REAL_CST:
7210 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
7211
7212 case FIXED_CST:
7213 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
7214
7215 case STRING_CST:
7216 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
7217 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
7218 TREE_STRING_LENGTH (t1)));
7219
7220 case CONSTRUCTOR:
7221 {
7222 unsigned HOST_WIDE_INT idx;
7223 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
7224 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
7225
7226 if (vec_safe_length (v1) != vec_safe_length (v2))
7227 return false;
7228
7229 for (idx = 0; idx < vec_safe_length (v1); ++idx)
7230 /* ??? Should we handle also fields here? */
7231 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7232 return false;
7233 return true;
7234 }
7235
7236 case SAVE_EXPR:
7237 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7238
7239 case CALL_EXPR:
7240 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7241 if (cmp <= 0)
7242 return cmp;
7243 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7244 return 0;
7245 {
7246 const_tree arg1, arg2;
7247 const_call_expr_arg_iterator iter1, iter2;
7248 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7249 arg2 = first_const_call_expr_arg (t2, &iter2);
7250 arg1 && arg2;
7251 arg1 = next_const_call_expr_arg (&iter1),
7252 arg2 = next_const_call_expr_arg (&iter2))
7253 {
7254 cmp = simple_cst_equal (arg1, arg2);
7255 if (cmp <= 0)
7256 return cmp;
7257 }
7258 return arg1 == arg2;
7259 }
7260
7261 case TARGET_EXPR:
7262 /* Special case: if either target is an unallocated VAR_DECL,
7263 it means that it's going to be unified with whatever the
7264 TARGET_EXPR is really supposed to initialize, so treat it
7265 as being equivalent to anything. */
7266 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7267 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7268 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7269 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7270 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7271 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7272 cmp = 1;
7273 else
7274 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7275
7276 if (cmp <= 0)
7277 return cmp;
7278
7279 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7280
7281 case WITH_CLEANUP_EXPR:
7282 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7283 if (cmp <= 0)
7284 return cmp;
7285
7286 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7287
7288 case COMPONENT_REF:
7289 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7290 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7291
7292 return 0;
7293
7294 case VAR_DECL:
7295 case PARM_DECL:
7296 case CONST_DECL:
7297 case FUNCTION_DECL:
7298 return 0;
7299
7300 default:
7301 break;
7302 }
7303
7304 /* This general rule works for most tree codes. All exceptions should be
7305 handled above. If this is a language-specific tree code, we can't
7306 trust what might be in the operand, so say we don't know
7307 the situation. */
7308 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7309 return -1;
7310
7311 switch (TREE_CODE_CLASS (code1))
7312 {
7313 case tcc_unary:
7314 case tcc_binary:
7315 case tcc_comparison:
7316 case tcc_expression:
7317 case tcc_reference:
7318 case tcc_statement:
7319 cmp = 1;
7320 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7321 {
7322 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7323 if (cmp <= 0)
7324 return cmp;
7325 }
7326
7327 return cmp;
7328
7329 default:
7330 return -1;
7331 }
7332 }
7333
7334 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7335 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7336 than U, respectively. */
7337
7338 int
7339 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7340 {
7341 if (tree_int_cst_sgn (t) < 0)
7342 return -1;
7343 else if (TREE_INT_CST_HIGH (t) != 0)
7344 return 1;
7345 else if (TREE_INT_CST_LOW (t) == u)
7346 return 0;
7347 else if (TREE_INT_CST_LOW (t) < u)
7348 return -1;
7349 else
7350 return 1;
7351 }
7352
7353 /* Return true if SIZE represents a constant size that is in bounds of
7354 what the middle-end and the backend accepts (covering not more than
7355 half of the address-space). */
7356
7357 bool
7358 valid_constant_size_p (const_tree size)
7359 {
7360 if (! host_integerp (size, 1)
7361 || TREE_OVERFLOW (size)
7362 || tree_int_cst_sign_bit (size) != 0)
7363 return false;
7364 return true;
7365 }
7366
7367 /* Return the precision of the type, or for a complex or vector type the
7368 precision of the type of its elements. */
7369
7370 unsigned int
7371 element_precision (const_tree type)
7372 {
7373 enum tree_code code = TREE_CODE (type);
7374 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7375 type = TREE_TYPE (type);
7376
7377 return TYPE_PRECISION (type);
7378 }
7379
7380 /* Return true if CODE represents an associative tree code. Otherwise
7381 return false. */
7382 bool
7383 associative_tree_code (enum tree_code code)
7384 {
7385 switch (code)
7386 {
7387 case BIT_IOR_EXPR:
7388 case BIT_AND_EXPR:
7389 case BIT_XOR_EXPR:
7390 case PLUS_EXPR:
7391 case MULT_EXPR:
7392 case MIN_EXPR:
7393 case MAX_EXPR:
7394 return true;
7395
7396 default:
7397 break;
7398 }
7399 return false;
7400 }
7401
7402 /* Return true if CODE represents a commutative tree code. Otherwise
7403 return false. */
7404 bool
7405 commutative_tree_code (enum tree_code code)
7406 {
7407 switch (code)
7408 {
7409 case PLUS_EXPR:
7410 case MULT_EXPR:
7411 case MULT_HIGHPART_EXPR:
7412 case MIN_EXPR:
7413 case MAX_EXPR:
7414 case BIT_IOR_EXPR:
7415 case BIT_XOR_EXPR:
7416 case BIT_AND_EXPR:
7417 case NE_EXPR:
7418 case EQ_EXPR:
7419 case UNORDERED_EXPR:
7420 case ORDERED_EXPR:
7421 case UNEQ_EXPR:
7422 case LTGT_EXPR:
7423 case TRUTH_AND_EXPR:
7424 case TRUTH_XOR_EXPR:
7425 case TRUTH_OR_EXPR:
7426 case WIDEN_MULT_EXPR:
7427 case VEC_WIDEN_MULT_HI_EXPR:
7428 case VEC_WIDEN_MULT_LO_EXPR:
7429 case VEC_WIDEN_MULT_EVEN_EXPR:
7430 case VEC_WIDEN_MULT_ODD_EXPR:
7431 return true;
7432
7433 default:
7434 break;
7435 }
7436 return false;
7437 }
7438
7439 /* Return true if CODE represents a ternary tree code for which the
7440 first two operands are commutative. Otherwise return false. */
7441 bool
7442 commutative_ternary_tree_code (enum tree_code code)
7443 {
7444 switch (code)
7445 {
7446 case WIDEN_MULT_PLUS_EXPR:
7447 case WIDEN_MULT_MINUS_EXPR:
7448 return true;
7449
7450 default:
7451 break;
7452 }
7453 return false;
7454 }
7455
7456 /* Generate a hash value for an expression. This can be used iteratively
7457 by passing a previous result as the VAL argument.
7458
7459 This function is intended to produce the same hash for expressions which
7460 would compare equal using operand_equal_p. */
7461
7462 hashval_t
7463 iterative_hash_expr (const_tree t, hashval_t val)
7464 {
7465 int i;
7466 enum tree_code code;
7467 char tclass;
7468
7469 if (t == NULL_TREE)
7470 return iterative_hash_hashval_t (0, val);
7471
7472 code = TREE_CODE (t);
7473
7474 switch (code)
7475 {
7476 /* Alas, constants aren't shared, so we can't rely on pointer
7477 identity. */
7478 case INTEGER_CST:
7479 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
7480 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
7481 case REAL_CST:
7482 {
7483 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
7484
7485 return iterative_hash_hashval_t (val2, val);
7486 }
7487 case FIXED_CST:
7488 {
7489 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7490
7491 return iterative_hash_hashval_t (val2, val);
7492 }
7493 case STRING_CST:
7494 return iterative_hash (TREE_STRING_POINTER (t),
7495 TREE_STRING_LENGTH (t), val);
7496 case COMPLEX_CST:
7497 val = iterative_hash_expr (TREE_REALPART (t), val);
7498 return iterative_hash_expr (TREE_IMAGPART (t), val);
7499 case VECTOR_CST:
7500 {
7501 unsigned i;
7502 for (i = 0; i < VECTOR_CST_NELTS (t); ++i)
7503 val = iterative_hash_expr (VECTOR_CST_ELT (t, i), val);
7504 return val;
7505 }
7506 case SSA_NAME:
7507 /* We can just compare by pointer. */
7508 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
7509 case PLACEHOLDER_EXPR:
7510 /* The node itself doesn't matter. */
7511 return val;
7512 case TREE_LIST:
7513 /* A list of expressions, for a CALL_EXPR or as the elements of a
7514 VECTOR_CST. */
7515 for (; t; t = TREE_CHAIN (t))
7516 val = iterative_hash_expr (TREE_VALUE (t), val);
7517 return val;
7518 case CONSTRUCTOR:
7519 {
7520 unsigned HOST_WIDE_INT idx;
7521 tree field, value;
7522 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7523 {
7524 val = iterative_hash_expr (field, val);
7525 val = iterative_hash_expr (value, val);
7526 }
7527 return val;
7528 }
7529 case FUNCTION_DECL:
7530 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7531 Otherwise nodes that compare equal according to operand_equal_p might
7532 get different hash codes. However, don't do this for machine specific
7533 or front end builtins, since the function code is overloaded in those
7534 cases. */
7535 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7536 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7537 {
7538 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7539 code = TREE_CODE (t);
7540 }
7541 /* FALL THROUGH */
7542 default:
7543 tclass = TREE_CODE_CLASS (code);
7544
7545 if (tclass == tcc_declaration)
7546 {
7547 /* DECL's have a unique ID */
7548 val = iterative_hash_host_wide_int (DECL_UID (t), val);
7549 }
7550 else
7551 {
7552 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
7553
7554 val = iterative_hash_object (code, val);
7555
7556 /* Don't hash the type, that can lead to having nodes which
7557 compare equal according to operand_equal_p, but which
7558 have different hash codes. */
7559 if (CONVERT_EXPR_CODE_P (code)
7560 || code == NON_LVALUE_EXPR)
7561 {
7562 /* Make sure to include signness in the hash computation. */
7563 val += TYPE_UNSIGNED (TREE_TYPE (t));
7564 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
7565 }
7566
7567 else if (commutative_tree_code (code))
7568 {
7569 /* It's a commutative expression. We want to hash it the same
7570 however it appears. We do this by first hashing both operands
7571 and then rehashing based on the order of their independent
7572 hashes. */
7573 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
7574 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
7575 hashval_t t;
7576
7577 if (one > two)
7578 t = one, one = two, two = t;
7579
7580 val = iterative_hash_hashval_t (one, val);
7581 val = iterative_hash_hashval_t (two, val);
7582 }
7583 else
7584 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7585 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
7586 }
7587 return val;
7588 }
7589 }
7590
7591 /* Generate a hash value for a pair of expressions. This can be used
7592 iteratively by passing a previous result as the VAL argument.
7593
7594 The same hash value is always returned for a given pair of expressions,
7595 regardless of the order in which they are presented. This is useful in
7596 hashing the operands of commutative functions. */
7597
7598 hashval_t
7599 iterative_hash_exprs_commutative (const_tree t1,
7600 const_tree t2, hashval_t val)
7601 {
7602 hashval_t one = iterative_hash_expr (t1, 0);
7603 hashval_t two = iterative_hash_expr (t2, 0);
7604 hashval_t t;
7605
7606 if (one > two)
7607 t = one, one = two, two = t;
7608 val = iterative_hash_hashval_t (one, val);
7609 val = iterative_hash_hashval_t (two, val);
7610
7611 return val;
7612 }
7613 \f
7614 /* Constructors for pointer, array and function types.
7615 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7616 constructed by language-dependent code, not here.) */
7617
7618 /* Construct, lay out and return the type of pointers to TO_TYPE with
7619 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7620 reference all of memory. If such a type has already been
7621 constructed, reuse it. */
7622
7623 tree
7624 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
7625 bool can_alias_all)
7626 {
7627 tree t;
7628
7629 if (to_type == error_mark_node)
7630 return error_mark_node;
7631
7632 /* If the pointed-to type has the may_alias attribute set, force
7633 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7634 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7635 can_alias_all = true;
7636
7637 /* In some cases, languages will have things that aren't a POINTER_TYPE
7638 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7639 In that case, return that type without regard to the rest of our
7640 operands.
7641
7642 ??? This is a kludge, but consistent with the way this function has
7643 always operated and there doesn't seem to be a good way to avoid this
7644 at the moment. */
7645 if (TYPE_POINTER_TO (to_type) != 0
7646 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7647 return TYPE_POINTER_TO (to_type);
7648
7649 /* First, if we already have a type for pointers to TO_TYPE and it's
7650 the proper mode, use it. */
7651 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7652 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7653 return t;
7654
7655 t = make_node (POINTER_TYPE);
7656
7657 TREE_TYPE (t) = to_type;
7658 SET_TYPE_MODE (t, mode);
7659 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7660 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7661 TYPE_POINTER_TO (to_type) = t;
7662
7663 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7664 SET_TYPE_STRUCTURAL_EQUALITY (t);
7665 else if (TYPE_CANONICAL (to_type) != to_type)
7666 TYPE_CANONICAL (t)
7667 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7668 mode, can_alias_all);
7669
7670 /* Lay out the type. This function has many callers that are concerned
7671 with expression-construction, and this simplifies them all. */
7672 layout_type (t);
7673
7674 return t;
7675 }
7676
7677 /* By default build pointers in ptr_mode. */
7678
7679 tree
7680 build_pointer_type (tree to_type)
7681 {
7682 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7683 : TYPE_ADDR_SPACE (to_type);
7684 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7685 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7686 }
7687
7688 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7689
7690 tree
7691 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
7692 bool can_alias_all)
7693 {
7694 tree t;
7695
7696 if (to_type == error_mark_node)
7697 return error_mark_node;
7698
7699 /* If the pointed-to type has the may_alias attribute set, force
7700 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7701 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7702 can_alias_all = true;
7703
7704 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7705 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7706 In that case, return that type without regard to the rest of our
7707 operands.
7708
7709 ??? This is a kludge, but consistent with the way this function has
7710 always operated and there doesn't seem to be a good way to avoid this
7711 at the moment. */
7712 if (TYPE_REFERENCE_TO (to_type) != 0
7713 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7714 return TYPE_REFERENCE_TO (to_type);
7715
7716 /* First, if we already have a type for pointers to TO_TYPE and it's
7717 the proper mode, use it. */
7718 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7719 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7720 return t;
7721
7722 t = make_node (REFERENCE_TYPE);
7723
7724 TREE_TYPE (t) = to_type;
7725 SET_TYPE_MODE (t, mode);
7726 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7727 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7728 TYPE_REFERENCE_TO (to_type) = t;
7729
7730 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7731 SET_TYPE_STRUCTURAL_EQUALITY (t);
7732 else if (TYPE_CANONICAL (to_type) != to_type)
7733 TYPE_CANONICAL (t)
7734 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7735 mode, can_alias_all);
7736
7737 layout_type (t);
7738
7739 return t;
7740 }
7741
7742
7743 /* Build the node for the type of references-to-TO_TYPE by default
7744 in ptr_mode. */
7745
7746 tree
7747 build_reference_type (tree to_type)
7748 {
7749 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7750 : TYPE_ADDR_SPACE (to_type);
7751 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7752 return build_reference_type_for_mode (to_type, pointer_mode, false);
7753 }
7754
7755 /* Build a type that is compatible with t but has no cv quals anywhere
7756 in its type, thus
7757
7758 const char *const *const * -> char ***. */
7759
7760 tree
7761 build_type_no_quals (tree t)
7762 {
7763 switch (TREE_CODE (t))
7764 {
7765 case POINTER_TYPE:
7766 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7767 TYPE_MODE (t),
7768 TYPE_REF_CAN_ALIAS_ALL (t));
7769 case REFERENCE_TYPE:
7770 return
7771 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7772 TYPE_MODE (t),
7773 TYPE_REF_CAN_ALIAS_ALL (t));
7774 default:
7775 return TYPE_MAIN_VARIANT (t);
7776 }
7777 }
7778
7779 #define MAX_INT_CACHED_PREC \
7780 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7781 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7782
7783 /* Builds a signed or unsigned integer type of precision PRECISION.
7784 Used for C bitfields whose precision does not match that of
7785 built-in target types. */
7786 tree
7787 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7788 int unsignedp)
7789 {
7790 tree itype, ret;
7791
7792 if (unsignedp)
7793 unsignedp = MAX_INT_CACHED_PREC + 1;
7794
7795 if (precision <= MAX_INT_CACHED_PREC)
7796 {
7797 itype = nonstandard_integer_type_cache[precision + unsignedp];
7798 if (itype)
7799 return itype;
7800 }
7801
7802 itype = make_node (INTEGER_TYPE);
7803 TYPE_PRECISION (itype) = precision;
7804
7805 if (unsignedp)
7806 fixup_unsigned_type (itype);
7807 else
7808 fixup_signed_type (itype);
7809
7810 ret = itype;
7811 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7812 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7813 if (precision <= MAX_INT_CACHED_PREC)
7814 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7815
7816 return ret;
7817 }
7818
7819 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7820 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7821 is true, reuse such a type that has already been constructed. */
7822
7823 static tree
7824 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7825 {
7826 tree itype = make_node (INTEGER_TYPE);
7827 hashval_t hashcode = 0;
7828
7829 TREE_TYPE (itype) = type;
7830
7831 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7832 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7833
7834 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7835 SET_TYPE_MODE (itype, TYPE_MODE (type));
7836 TYPE_SIZE (itype) = TYPE_SIZE (type);
7837 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7838 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7839 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7840
7841 if (!shared)
7842 return itype;
7843
7844 if ((TYPE_MIN_VALUE (itype)
7845 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7846 || (TYPE_MAX_VALUE (itype)
7847 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7848 {
7849 /* Since we cannot reliably merge this type, we need to compare it using
7850 structural equality checks. */
7851 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7852 return itype;
7853 }
7854
7855 hashcode = iterative_hash_expr (TYPE_MIN_VALUE (itype), hashcode);
7856 hashcode = iterative_hash_expr (TYPE_MAX_VALUE (itype), hashcode);
7857 hashcode = iterative_hash_hashval_t (TYPE_HASH (type), hashcode);
7858 itype = type_hash_canon (hashcode, itype);
7859
7860 return itype;
7861 }
7862
7863 /* Wrapper around build_range_type_1 with SHARED set to true. */
7864
7865 tree
7866 build_range_type (tree type, tree lowval, tree highval)
7867 {
7868 return build_range_type_1 (type, lowval, highval, true);
7869 }
7870
7871 /* Wrapper around build_range_type_1 with SHARED set to false. */
7872
7873 tree
7874 build_nonshared_range_type (tree type, tree lowval, tree highval)
7875 {
7876 return build_range_type_1 (type, lowval, highval, false);
7877 }
7878
7879 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7880 MAXVAL should be the maximum value in the domain
7881 (one less than the length of the array).
7882
7883 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7884 We don't enforce this limit, that is up to caller (e.g. language front end).
7885 The limit exists because the result is a signed type and we don't handle
7886 sizes that use more than one HOST_WIDE_INT. */
7887
7888 tree
7889 build_index_type (tree maxval)
7890 {
7891 return build_range_type (sizetype, size_zero_node, maxval);
7892 }
7893
7894 /* Return true if the debug information for TYPE, a subtype, should be emitted
7895 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7896 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7897 debug info and doesn't reflect the source code. */
7898
7899 bool
7900 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7901 {
7902 tree base_type = TREE_TYPE (type), low, high;
7903
7904 /* Subrange types have a base type which is an integral type. */
7905 if (!INTEGRAL_TYPE_P (base_type))
7906 return false;
7907
7908 /* Get the real bounds of the subtype. */
7909 if (lang_hooks.types.get_subrange_bounds)
7910 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7911 else
7912 {
7913 low = TYPE_MIN_VALUE (type);
7914 high = TYPE_MAX_VALUE (type);
7915 }
7916
7917 /* If the type and its base type have the same representation and the same
7918 name, then the type is not a subrange but a copy of the base type. */
7919 if ((TREE_CODE (base_type) == INTEGER_TYPE
7920 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7921 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7922 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7923 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7924 {
7925 tree type_name = TYPE_NAME (type);
7926 tree base_type_name = TYPE_NAME (base_type);
7927
7928 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7929 type_name = DECL_NAME (type_name);
7930
7931 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7932 base_type_name = DECL_NAME (base_type_name);
7933
7934 if (type_name == base_type_name)
7935 return false;
7936 }
7937
7938 if (lowval)
7939 *lowval = low;
7940 if (highval)
7941 *highval = high;
7942 return true;
7943 }
7944
7945 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7946 and number of elements specified by the range of values of INDEX_TYPE.
7947 If SHARED is true, reuse such a type that has already been constructed. */
7948
7949 static tree
7950 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7951 {
7952 tree t;
7953
7954 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7955 {
7956 error ("arrays of functions are not meaningful");
7957 elt_type = integer_type_node;
7958 }
7959
7960 t = make_node (ARRAY_TYPE);
7961 TREE_TYPE (t) = elt_type;
7962 TYPE_DOMAIN (t) = index_type;
7963 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7964 layout_type (t);
7965
7966 /* If the element type is incomplete at this point we get marked for
7967 structural equality. Do not record these types in the canonical
7968 type hashtable. */
7969 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7970 return t;
7971
7972 if (shared)
7973 {
7974 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7975 if (index_type)
7976 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7977 t = type_hash_canon (hashcode, t);
7978 }
7979
7980 if (TYPE_CANONICAL (t) == t)
7981 {
7982 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7983 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7984 SET_TYPE_STRUCTURAL_EQUALITY (t);
7985 else if (TYPE_CANONICAL (elt_type) != elt_type
7986 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7987 TYPE_CANONICAL (t)
7988 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7989 index_type
7990 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7991 shared);
7992 }
7993
7994 return t;
7995 }
7996
7997 /* Wrapper around build_array_type_1 with SHARED set to true. */
7998
7999 tree
8000 build_array_type (tree elt_type, tree index_type)
8001 {
8002 return build_array_type_1 (elt_type, index_type, true);
8003 }
8004
8005 /* Wrapper around build_array_type_1 with SHARED set to false. */
8006
8007 tree
8008 build_nonshared_array_type (tree elt_type, tree index_type)
8009 {
8010 return build_array_type_1 (elt_type, index_type, false);
8011 }
8012
8013 /* Return a representation of ELT_TYPE[NELTS], using indices of type
8014 sizetype. */
8015
8016 tree
8017 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
8018 {
8019 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
8020 }
8021
8022 /* Recursively examines the array elements of TYPE, until a non-array
8023 element type is found. */
8024
8025 tree
8026 strip_array_types (tree type)
8027 {
8028 while (TREE_CODE (type) == ARRAY_TYPE)
8029 type = TREE_TYPE (type);
8030
8031 return type;
8032 }
8033
8034 /* Computes the canonical argument types from the argument type list
8035 ARGTYPES.
8036
8037 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
8038 on entry to this function, or if any of the ARGTYPES are
8039 structural.
8040
8041 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
8042 true on entry to this function, or if any of the ARGTYPES are
8043 non-canonical.
8044
8045 Returns a canonical argument list, which may be ARGTYPES when the
8046 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
8047 true) or would not differ from ARGTYPES. */
8048
8049 static tree
8050 maybe_canonicalize_argtypes (tree argtypes,
8051 bool *any_structural_p,
8052 bool *any_noncanonical_p)
8053 {
8054 tree arg;
8055 bool any_noncanonical_argtypes_p = false;
8056
8057 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
8058 {
8059 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
8060 /* Fail gracefully by stating that the type is structural. */
8061 *any_structural_p = true;
8062 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
8063 *any_structural_p = true;
8064 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
8065 || TREE_PURPOSE (arg))
8066 /* If the argument has a default argument, we consider it
8067 non-canonical even though the type itself is canonical.
8068 That way, different variants of function and method types
8069 with default arguments will all point to the variant with
8070 no defaults as their canonical type. */
8071 any_noncanonical_argtypes_p = true;
8072 }
8073
8074 if (*any_structural_p)
8075 return argtypes;
8076
8077 if (any_noncanonical_argtypes_p)
8078 {
8079 /* Build the canonical list of argument types. */
8080 tree canon_argtypes = NULL_TREE;
8081 bool is_void = false;
8082
8083 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
8084 {
8085 if (arg == void_list_node)
8086 is_void = true;
8087 else
8088 canon_argtypes = tree_cons (NULL_TREE,
8089 TYPE_CANONICAL (TREE_VALUE (arg)),
8090 canon_argtypes);
8091 }
8092
8093 canon_argtypes = nreverse (canon_argtypes);
8094 if (is_void)
8095 canon_argtypes = chainon (canon_argtypes, void_list_node);
8096
8097 /* There is a non-canonical type. */
8098 *any_noncanonical_p = true;
8099 return canon_argtypes;
8100 }
8101
8102 /* The canonical argument types are the same as ARGTYPES. */
8103 return argtypes;
8104 }
8105
8106 /* Construct, lay out and return
8107 the type of functions returning type VALUE_TYPE
8108 given arguments of types ARG_TYPES.
8109 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8110 are data type nodes for the arguments of the function.
8111 If such a type has already been constructed, reuse it. */
8112
8113 tree
8114 build_function_type (tree value_type, tree arg_types)
8115 {
8116 tree t;
8117 hashval_t hashcode = 0;
8118 bool any_structural_p, any_noncanonical_p;
8119 tree canon_argtypes;
8120
8121 if (TREE_CODE (value_type) == FUNCTION_TYPE)
8122 {
8123 error ("function return type cannot be function");
8124 value_type = integer_type_node;
8125 }
8126
8127 /* Make a node of the sort we want. */
8128 t = make_node (FUNCTION_TYPE);
8129 TREE_TYPE (t) = value_type;
8130 TYPE_ARG_TYPES (t) = arg_types;
8131
8132 /* If we already have such a type, use the old one. */
8133 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
8134 hashcode = type_hash_list (arg_types, hashcode);
8135 t = type_hash_canon (hashcode, t);
8136
8137 /* Set up the canonical type. */
8138 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8139 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8140 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8141 &any_structural_p,
8142 &any_noncanonical_p);
8143 if (any_structural_p)
8144 SET_TYPE_STRUCTURAL_EQUALITY (t);
8145 else if (any_noncanonical_p)
8146 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8147 canon_argtypes);
8148
8149 if (!COMPLETE_TYPE_P (t))
8150 layout_type (t);
8151 return t;
8152 }
8153
8154 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP and the
8155 return value if SKIP_RETURN is true. */
8156
8157 static tree
8158 build_function_type_skip_args (tree orig_type, bitmap args_to_skip,
8159 bool skip_return)
8160 {
8161 tree new_type = NULL;
8162 tree args, new_args = NULL, t;
8163 tree new_reversed;
8164 int i = 0;
8165
8166 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
8167 args = TREE_CHAIN (args), i++)
8168 if (!args_to_skip || !bitmap_bit_p (args_to_skip, i))
8169 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
8170
8171 new_reversed = nreverse (new_args);
8172 if (args)
8173 {
8174 if (new_reversed)
8175 TREE_CHAIN (new_args) = void_list_node;
8176 else
8177 new_reversed = void_list_node;
8178 }
8179
8180 /* Use copy_node to preserve as much as possible from original type
8181 (debug info, attribute lists etc.)
8182 Exception is METHOD_TYPEs must have THIS argument.
8183 When we are asked to remove it, we need to build new FUNCTION_TYPE
8184 instead. */
8185 if (TREE_CODE (orig_type) != METHOD_TYPE
8186 || !args_to_skip
8187 || !bitmap_bit_p (args_to_skip, 0))
8188 {
8189 new_type = build_distinct_type_copy (orig_type);
8190 TYPE_ARG_TYPES (new_type) = new_reversed;
8191 }
8192 else
8193 {
8194 new_type
8195 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
8196 new_reversed));
8197 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
8198 }
8199
8200 if (skip_return)
8201 TREE_TYPE (new_type) = void_type_node;
8202
8203 /* This is a new type, not a copy of an old type. Need to reassociate
8204 variants. We can handle everything except the main variant lazily. */
8205 t = TYPE_MAIN_VARIANT (orig_type);
8206 if (t != orig_type)
8207 {
8208 t = build_function_type_skip_args (t, args_to_skip, skip_return);
8209 TYPE_MAIN_VARIANT (new_type) = t;
8210 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
8211 TYPE_NEXT_VARIANT (t) = new_type;
8212 }
8213 else
8214 {
8215 TYPE_MAIN_VARIANT (new_type) = new_type;
8216 TYPE_NEXT_VARIANT (new_type) = NULL;
8217 }
8218
8219 return new_type;
8220 }
8221
8222 /* Build variant of function decl ORIG_DECL skipping ARGS_TO_SKIP and the
8223 return value if SKIP_RETURN is true.
8224
8225 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
8226 linked by TREE_CHAIN directly. The caller is responsible for eliminating
8227 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
8228
8229 tree
8230 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip,
8231 bool skip_return)
8232 {
8233 tree new_decl = copy_node (orig_decl);
8234 tree new_type;
8235
8236 new_type = TREE_TYPE (orig_decl);
8237 if (prototype_p (new_type)
8238 || (skip_return && !VOID_TYPE_P (TREE_TYPE (new_type))))
8239 new_type
8240 = build_function_type_skip_args (new_type, args_to_skip, skip_return);
8241 TREE_TYPE (new_decl) = new_type;
8242
8243 /* For declarations setting DECL_VINDEX (i.e. methods)
8244 we expect first argument to be THIS pointer. */
8245 if (args_to_skip && bitmap_bit_p (args_to_skip, 0))
8246 DECL_VINDEX (new_decl) = NULL_TREE;
8247
8248 /* When signature changes, we need to clear builtin info. */
8249 if (DECL_BUILT_IN (new_decl)
8250 && args_to_skip
8251 && !bitmap_empty_p (args_to_skip))
8252 {
8253 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
8254 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
8255 }
8256 return new_decl;
8257 }
8258
8259 /* Build a function type. The RETURN_TYPE is the type returned by the
8260 function. If VAARGS is set, no void_type_node is appended to the
8261 the list. ARGP must be always be terminated be a NULL_TREE. */
8262
8263 static tree
8264 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8265 {
8266 tree t, args, last;
8267
8268 t = va_arg (argp, tree);
8269 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8270 args = tree_cons (NULL_TREE, t, args);
8271
8272 if (vaargs)
8273 {
8274 last = args;
8275 if (args != NULL_TREE)
8276 args = nreverse (args);
8277 gcc_assert (last != void_list_node);
8278 }
8279 else if (args == NULL_TREE)
8280 args = void_list_node;
8281 else
8282 {
8283 last = args;
8284 args = nreverse (args);
8285 TREE_CHAIN (last) = void_list_node;
8286 }
8287 args = build_function_type (return_type, args);
8288
8289 return args;
8290 }
8291
8292 /* Build a function type. The RETURN_TYPE is the type returned by the
8293 function. If additional arguments are provided, they are
8294 additional argument types. The list of argument types must always
8295 be terminated by NULL_TREE. */
8296
8297 tree
8298 build_function_type_list (tree return_type, ...)
8299 {
8300 tree args;
8301 va_list p;
8302
8303 va_start (p, return_type);
8304 args = build_function_type_list_1 (false, return_type, p);
8305 va_end (p);
8306 return args;
8307 }
8308
8309 /* Build a variable argument function type. The RETURN_TYPE is the
8310 type returned by the function. If additional arguments are provided,
8311 they are additional argument types. The list of argument types must
8312 always be terminated by NULL_TREE. */
8313
8314 tree
8315 build_varargs_function_type_list (tree return_type, ...)
8316 {
8317 tree args;
8318 va_list p;
8319
8320 va_start (p, return_type);
8321 args = build_function_type_list_1 (true, return_type, p);
8322 va_end (p);
8323
8324 return args;
8325 }
8326
8327 /* Build a function type. RETURN_TYPE is the type returned by the
8328 function; VAARGS indicates whether the function takes varargs. The
8329 function takes N named arguments, the types of which are provided in
8330 ARG_TYPES. */
8331
8332 static tree
8333 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8334 tree *arg_types)
8335 {
8336 int i;
8337 tree t = vaargs ? NULL_TREE : void_list_node;
8338
8339 for (i = n - 1; i >= 0; i--)
8340 t = tree_cons (NULL_TREE, arg_types[i], t);
8341
8342 return build_function_type (return_type, t);
8343 }
8344
8345 /* Build a function type. RETURN_TYPE is the type returned by the
8346 function. The function takes N named arguments, the types of which
8347 are provided in ARG_TYPES. */
8348
8349 tree
8350 build_function_type_array (tree return_type, int n, tree *arg_types)
8351 {
8352 return build_function_type_array_1 (false, return_type, n, arg_types);
8353 }
8354
8355 /* Build a variable argument function type. RETURN_TYPE is the type
8356 returned by the function. The function takes N named arguments, the
8357 types of which are provided in ARG_TYPES. */
8358
8359 tree
8360 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8361 {
8362 return build_function_type_array_1 (true, return_type, n, arg_types);
8363 }
8364
8365 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8366 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8367 for the method. An implicit additional parameter (of type
8368 pointer-to-BASETYPE) is added to the ARGTYPES. */
8369
8370 tree
8371 build_method_type_directly (tree basetype,
8372 tree rettype,
8373 tree argtypes)
8374 {
8375 tree t;
8376 tree ptype;
8377 int hashcode = 0;
8378 bool any_structural_p, any_noncanonical_p;
8379 tree canon_argtypes;
8380
8381 /* Make a node of the sort we want. */
8382 t = make_node (METHOD_TYPE);
8383
8384 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8385 TREE_TYPE (t) = rettype;
8386 ptype = build_pointer_type (basetype);
8387
8388 /* The actual arglist for this function includes a "hidden" argument
8389 which is "this". Put it into the list of argument types. */
8390 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8391 TYPE_ARG_TYPES (t) = argtypes;
8392
8393 /* If we already have such a type, use the old one. */
8394 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
8395 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
8396 hashcode = type_hash_list (argtypes, hashcode);
8397 t = type_hash_canon (hashcode, t);
8398
8399 /* Set up the canonical type. */
8400 any_structural_p
8401 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8402 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8403 any_noncanonical_p
8404 = (TYPE_CANONICAL (basetype) != basetype
8405 || TYPE_CANONICAL (rettype) != rettype);
8406 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8407 &any_structural_p,
8408 &any_noncanonical_p);
8409 if (any_structural_p)
8410 SET_TYPE_STRUCTURAL_EQUALITY (t);
8411 else if (any_noncanonical_p)
8412 TYPE_CANONICAL (t)
8413 = build_method_type_directly (TYPE_CANONICAL (basetype),
8414 TYPE_CANONICAL (rettype),
8415 canon_argtypes);
8416 if (!COMPLETE_TYPE_P (t))
8417 layout_type (t);
8418
8419 return t;
8420 }
8421
8422 /* Construct, lay out and return the type of methods belonging to class
8423 BASETYPE and whose arguments and values are described by TYPE.
8424 If that type exists already, reuse it.
8425 TYPE must be a FUNCTION_TYPE node. */
8426
8427 tree
8428 build_method_type (tree basetype, tree type)
8429 {
8430 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8431
8432 return build_method_type_directly (basetype,
8433 TREE_TYPE (type),
8434 TYPE_ARG_TYPES (type));
8435 }
8436
8437 /* Construct, lay out and return the type of offsets to a value
8438 of type TYPE, within an object of type BASETYPE.
8439 If a suitable offset type exists already, reuse it. */
8440
8441 tree
8442 build_offset_type (tree basetype, tree type)
8443 {
8444 tree t;
8445 hashval_t hashcode = 0;
8446
8447 /* Make a node of the sort we want. */
8448 t = make_node (OFFSET_TYPE);
8449
8450 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8451 TREE_TYPE (t) = type;
8452
8453 /* If we already have such a type, use the old one. */
8454 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
8455 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
8456 t = type_hash_canon (hashcode, t);
8457
8458 if (!COMPLETE_TYPE_P (t))
8459 layout_type (t);
8460
8461 if (TYPE_CANONICAL (t) == t)
8462 {
8463 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8464 || TYPE_STRUCTURAL_EQUALITY_P (type))
8465 SET_TYPE_STRUCTURAL_EQUALITY (t);
8466 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8467 || TYPE_CANONICAL (type) != type)
8468 TYPE_CANONICAL (t)
8469 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8470 TYPE_CANONICAL (type));
8471 }
8472
8473 return t;
8474 }
8475
8476 /* Create a complex type whose components are COMPONENT_TYPE. */
8477
8478 tree
8479 build_complex_type (tree component_type)
8480 {
8481 tree t;
8482 hashval_t hashcode;
8483
8484 gcc_assert (INTEGRAL_TYPE_P (component_type)
8485 || SCALAR_FLOAT_TYPE_P (component_type)
8486 || FIXED_POINT_TYPE_P (component_type));
8487
8488 /* Make a node of the sort we want. */
8489 t = make_node (COMPLEX_TYPE);
8490
8491 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
8492
8493 /* If we already have such a type, use the old one. */
8494 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
8495 t = type_hash_canon (hashcode, t);
8496
8497 if (!COMPLETE_TYPE_P (t))
8498 layout_type (t);
8499
8500 if (TYPE_CANONICAL (t) == t)
8501 {
8502 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
8503 SET_TYPE_STRUCTURAL_EQUALITY (t);
8504 else if (TYPE_CANONICAL (component_type) != component_type)
8505 TYPE_CANONICAL (t)
8506 = build_complex_type (TYPE_CANONICAL (component_type));
8507 }
8508
8509 /* We need to create a name, since complex is a fundamental type. */
8510 if (! TYPE_NAME (t))
8511 {
8512 const char *name;
8513 if (component_type == char_type_node)
8514 name = "complex char";
8515 else if (component_type == signed_char_type_node)
8516 name = "complex signed char";
8517 else if (component_type == unsigned_char_type_node)
8518 name = "complex unsigned char";
8519 else if (component_type == short_integer_type_node)
8520 name = "complex short int";
8521 else if (component_type == short_unsigned_type_node)
8522 name = "complex short unsigned int";
8523 else if (component_type == integer_type_node)
8524 name = "complex int";
8525 else if (component_type == unsigned_type_node)
8526 name = "complex unsigned int";
8527 else if (component_type == long_integer_type_node)
8528 name = "complex long int";
8529 else if (component_type == long_unsigned_type_node)
8530 name = "complex long unsigned int";
8531 else if (component_type == long_long_integer_type_node)
8532 name = "complex long long int";
8533 else if (component_type == long_long_unsigned_type_node)
8534 name = "complex long long unsigned int";
8535 else
8536 name = 0;
8537
8538 if (name != 0)
8539 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8540 get_identifier (name), t);
8541 }
8542
8543 return build_qualified_type (t, TYPE_QUALS (component_type));
8544 }
8545
8546 /* If TYPE is a real or complex floating-point type and the target
8547 does not directly support arithmetic on TYPE then return the wider
8548 type to be used for arithmetic on TYPE. Otherwise, return
8549 NULL_TREE. */
8550
8551 tree
8552 excess_precision_type (tree type)
8553 {
8554 if (flag_excess_precision != EXCESS_PRECISION_FAST)
8555 {
8556 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
8557 switch (TREE_CODE (type))
8558 {
8559 case REAL_TYPE:
8560 switch (flt_eval_method)
8561 {
8562 case 1:
8563 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
8564 return double_type_node;
8565 break;
8566 case 2:
8567 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
8568 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
8569 return long_double_type_node;
8570 break;
8571 default:
8572 gcc_unreachable ();
8573 }
8574 break;
8575 case COMPLEX_TYPE:
8576 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8577 return NULL_TREE;
8578 switch (flt_eval_method)
8579 {
8580 case 1:
8581 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
8582 return complex_double_type_node;
8583 break;
8584 case 2:
8585 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
8586 || (TYPE_MODE (TREE_TYPE (type))
8587 == TYPE_MODE (double_type_node)))
8588 return complex_long_double_type_node;
8589 break;
8590 default:
8591 gcc_unreachable ();
8592 }
8593 break;
8594 default:
8595 break;
8596 }
8597 }
8598 return NULL_TREE;
8599 }
8600 \f
8601 /* Return OP, stripped of any conversions to wider types as much as is safe.
8602 Converting the value back to OP's type makes a value equivalent to OP.
8603
8604 If FOR_TYPE is nonzero, we return a value which, if converted to
8605 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8606
8607 OP must have integer, real or enumeral type. Pointers are not allowed!
8608
8609 There are some cases where the obvious value we could return
8610 would regenerate to OP if converted to OP's type,
8611 but would not extend like OP to wider types.
8612 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8613 For example, if OP is (unsigned short)(signed char)-1,
8614 we avoid returning (signed char)-1 if FOR_TYPE is int,
8615 even though extending that to an unsigned short would regenerate OP,
8616 since the result of extending (signed char)-1 to (int)
8617 is different from (int) OP. */
8618
8619 tree
8620 get_unwidened (tree op, tree for_type)
8621 {
8622 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8623 tree type = TREE_TYPE (op);
8624 unsigned final_prec
8625 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8626 int uns
8627 = (for_type != 0 && for_type != type
8628 && final_prec > TYPE_PRECISION (type)
8629 && TYPE_UNSIGNED (type));
8630 tree win = op;
8631
8632 while (CONVERT_EXPR_P (op))
8633 {
8634 int bitschange;
8635
8636 /* TYPE_PRECISION on vector types has different meaning
8637 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8638 so avoid them here. */
8639 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8640 break;
8641
8642 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8643 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8644
8645 /* Truncations are many-one so cannot be removed.
8646 Unless we are later going to truncate down even farther. */
8647 if (bitschange < 0
8648 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8649 break;
8650
8651 /* See what's inside this conversion. If we decide to strip it,
8652 we will set WIN. */
8653 op = TREE_OPERAND (op, 0);
8654
8655 /* If we have not stripped any zero-extensions (uns is 0),
8656 we can strip any kind of extension.
8657 If we have previously stripped a zero-extension,
8658 only zero-extensions can safely be stripped.
8659 Any extension can be stripped if the bits it would produce
8660 are all going to be discarded later by truncating to FOR_TYPE. */
8661
8662 if (bitschange > 0)
8663 {
8664 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8665 win = op;
8666 /* TYPE_UNSIGNED says whether this is a zero-extension.
8667 Let's avoid computing it if it does not affect WIN
8668 and if UNS will not be needed again. */
8669 if ((uns
8670 || CONVERT_EXPR_P (op))
8671 && TYPE_UNSIGNED (TREE_TYPE (op)))
8672 {
8673 uns = 1;
8674 win = op;
8675 }
8676 }
8677 }
8678
8679 /* If we finally reach a constant see if it fits in for_type and
8680 in that case convert it. */
8681 if (for_type
8682 && TREE_CODE (win) == INTEGER_CST
8683 && TREE_TYPE (win) != for_type
8684 && int_fits_type_p (win, for_type))
8685 win = fold_convert (for_type, win);
8686
8687 return win;
8688 }
8689 \f
8690 /* Return OP or a simpler expression for a narrower value
8691 which can be sign-extended or zero-extended to give back OP.
8692 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8693 or 0 if the value should be sign-extended. */
8694
8695 tree
8696 get_narrower (tree op, int *unsignedp_ptr)
8697 {
8698 int uns = 0;
8699 int first = 1;
8700 tree win = op;
8701 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8702
8703 while (TREE_CODE (op) == NOP_EXPR)
8704 {
8705 int bitschange
8706 = (TYPE_PRECISION (TREE_TYPE (op))
8707 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8708
8709 /* Truncations are many-one so cannot be removed. */
8710 if (bitschange < 0)
8711 break;
8712
8713 /* See what's inside this conversion. If we decide to strip it,
8714 we will set WIN. */
8715
8716 if (bitschange > 0)
8717 {
8718 op = TREE_OPERAND (op, 0);
8719 /* An extension: the outermost one can be stripped,
8720 but remember whether it is zero or sign extension. */
8721 if (first)
8722 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8723 /* Otherwise, if a sign extension has been stripped,
8724 only sign extensions can now be stripped;
8725 if a zero extension has been stripped, only zero-extensions. */
8726 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8727 break;
8728 first = 0;
8729 }
8730 else /* bitschange == 0 */
8731 {
8732 /* A change in nominal type can always be stripped, but we must
8733 preserve the unsignedness. */
8734 if (first)
8735 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8736 first = 0;
8737 op = TREE_OPERAND (op, 0);
8738 /* Keep trying to narrow, but don't assign op to win if it
8739 would turn an integral type into something else. */
8740 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8741 continue;
8742 }
8743
8744 win = op;
8745 }
8746
8747 if (TREE_CODE (op) == COMPONENT_REF
8748 /* Since type_for_size always gives an integer type. */
8749 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8750 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8751 /* Ensure field is laid out already. */
8752 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8753 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
8754 {
8755 unsigned HOST_WIDE_INT innerprec
8756 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
8757 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8758 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8759 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8760
8761 /* We can get this structure field in a narrower type that fits it,
8762 but the resulting extension to its nominal type (a fullword type)
8763 must satisfy the same conditions as for other extensions.
8764
8765 Do this only for fields that are aligned (not bit-fields),
8766 because when bit-field insns will be used there is no
8767 advantage in doing this. */
8768
8769 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8770 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8771 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8772 && type != 0)
8773 {
8774 if (first)
8775 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8776 win = fold_convert (type, op);
8777 }
8778 }
8779
8780 *unsignedp_ptr = uns;
8781 return win;
8782 }
8783 \f
8784 /* Returns true if integer constant C has a value that is permissible
8785 for type TYPE (an INTEGER_TYPE). */
8786
8787 bool
8788 int_fits_type_p (const_tree c, const_tree type)
8789 {
8790 tree type_low_bound, type_high_bound;
8791 bool ok_for_low_bound, ok_for_high_bound, unsc;
8792 double_int dc, dd;
8793
8794 dc = tree_to_double_int (c);
8795 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
8796
8797 retry:
8798 type_low_bound = TYPE_MIN_VALUE (type);
8799 type_high_bound = TYPE_MAX_VALUE (type);
8800
8801 /* If at least one bound of the type is a constant integer, we can check
8802 ourselves and maybe make a decision. If no such decision is possible, but
8803 this type is a subtype, try checking against that. Otherwise, use
8804 double_int_fits_to_tree_p, which checks against the precision.
8805
8806 Compute the status for each possibly constant bound, and return if we see
8807 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8808 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8809 for "constant known to fit". */
8810
8811 /* Check if c >= type_low_bound. */
8812 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8813 {
8814 dd = tree_to_double_int (type_low_bound);
8815 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
8816 {
8817 int c_neg = (!unsc && dc.is_negative ());
8818 int t_neg = (unsc && dd.is_negative ());
8819
8820 if (c_neg && !t_neg)
8821 return false;
8822 if ((c_neg || !t_neg) && dc.ult (dd))
8823 return false;
8824 }
8825 else if (dc.cmp (dd, unsc) < 0)
8826 return false;
8827 ok_for_low_bound = true;
8828 }
8829 else
8830 ok_for_low_bound = false;
8831
8832 /* Check if c <= type_high_bound. */
8833 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8834 {
8835 dd = tree_to_double_int (type_high_bound);
8836 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8837 {
8838 int c_neg = (!unsc && dc.is_negative ());
8839 int t_neg = (unsc && dd.is_negative ());
8840
8841 if (t_neg && !c_neg)
8842 return false;
8843 if ((t_neg || !c_neg) && dc.ugt (dd))
8844 return false;
8845 }
8846 else if (dc.cmp (dd, unsc) > 0)
8847 return false;
8848 ok_for_high_bound = true;
8849 }
8850 else
8851 ok_for_high_bound = false;
8852
8853 /* If the constant fits both bounds, the result is known. */
8854 if (ok_for_low_bound && ok_for_high_bound)
8855 return true;
8856
8857 /* Perform some generic filtering which may allow making a decision
8858 even if the bounds are not constant. First, negative integers
8859 never fit in unsigned types, */
8860 if (TYPE_UNSIGNED (type) && !unsc && dc.is_negative ())
8861 return false;
8862
8863 /* Second, narrower types always fit in wider ones. */
8864 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8865 return true;
8866
8867 /* Third, unsigned integers with top bit set never fit signed types. */
8868 if (! TYPE_UNSIGNED (type) && unsc)
8869 {
8870 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8871 if (prec < HOST_BITS_PER_WIDE_INT)
8872 {
8873 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8874 return false;
8875 }
8876 else if (((((unsigned HOST_WIDE_INT) 1)
8877 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8878 return false;
8879 }
8880
8881 /* If we haven't been able to decide at this point, there nothing more we
8882 can check ourselves here. Look at the base type if we have one and it
8883 has the same precision. */
8884 if (TREE_CODE (type) == INTEGER_TYPE
8885 && TREE_TYPE (type) != 0
8886 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8887 {
8888 type = TREE_TYPE (type);
8889 goto retry;
8890 }
8891
8892 /* Or to double_int_fits_to_tree_p, if nothing else. */
8893 return double_int_fits_to_tree_p (type, dc);
8894 }
8895
8896 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8897 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8898 represented (assuming two's-complement arithmetic) within the bit
8899 precision of the type are returned instead. */
8900
8901 void
8902 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8903 {
8904 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8905 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8906 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8907 TYPE_UNSIGNED (type));
8908 else
8909 {
8910 if (TYPE_UNSIGNED (type))
8911 mpz_set_ui (min, 0);
8912 else
8913 {
8914 double_int mn;
8915 mn = double_int::mask (TYPE_PRECISION (type) - 1);
8916 mn = (mn + double_int_one).sext (TYPE_PRECISION (type));
8917 mpz_set_double_int (min, mn, false);
8918 }
8919 }
8920
8921 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8922 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8923 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8924 TYPE_UNSIGNED (type));
8925 else
8926 {
8927 if (TYPE_UNSIGNED (type))
8928 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)),
8929 true);
8930 else
8931 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type) - 1),
8932 true);
8933 }
8934 }
8935
8936 /* Return true if VAR is an automatic variable defined in function FN. */
8937
8938 bool
8939 auto_var_in_fn_p (const_tree var, const_tree fn)
8940 {
8941 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8942 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8943 || TREE_CODE (var) == PARM_DECL)
8944 && ! TREE_STATIC (var))
8945 || TREE_CODE (var) == LABEL_DECL
8946 || TREE_CODE (var) == RESULT_DECL));
8947 }
8948
8949 /* Subprogram of following function. Called by walk_tree.
8950
8951 Return *TP if it is an automatic variable or parameter of the
8952 function passed in as DATA. */
8953
8954 static tree
8955 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8956 {
8957 tree fn = (tree) data;
8958
8959 if (TYPE_P (*tp))
8960 *walk_subtrees = 0;
8961
8962 else if (DECL_P (*tp)
8963 && auto_var_in_fn_p (*tp, fn))
8964 return *tp;
8965
8966 return NULL_TREE;
8967 }
8968
8969 /* Returns true if T is, contains, or refers to a type with variable
8970 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8971 arguments, but not the return type. If FN is nonzero, only return
8972 true if a modifier of the type or position of FN is a variable or
8973 parameter inside FN.
8974
8975 This concept is more general than that of C99 'variably modified types':
8976 in C99, a struct type is never variably modified because a VLA may not
8977 appear as a structure member. However, in GNU C code like:
8978
8979 struct S { int i[f()]; };
8980
8981 is valid, and other languages may define similar constructs. */
8982
8983 bool
8984 variably_modified_type_p (tree type, tree fn)
8985 {
8986 tree t;
8987
8988 /* Test if T is either variable (if FN is zero) or an expression containing
8989 a variable in FN. If TYPE isn't gimplified, return true also if
8990 gimplify_one_sizepos would gimplify the expression into a local
8991 variable. */
8992 #define RETURN_TRUE_IF_VAR(T) \
8993 do { tree _t = (T); \
8994 if (_t != NULL_TREE \
8995 && _t != error_mark_node \
8996 && TREE_CODE (_t) != INTEGER_CST \
8997 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8998 && (!fn \
8999 || (!TYPE_SIZES_GIMPLIFIED (type) \
9000 && !is_gimple_sizepos (_t)) \
9001 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
9002 return true; } while (0)
9003
9004 if (type == error_mark_node)
9005 return false;
9006
9007 /* If TYPE itself has variable size, it is variably modified. */
9008 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
9009 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
9010
9011 switch (TREE_CODE (type))
9012 {
9013 case POINTER_TYPE:
9014 case REFERENCE_TYPE:
9015 case VECTOR_TYPE:
9016 if (variably_modified_type_p (TREE_TYPE (type), fn))
9017 return true;
9018 break;
9019
9020 case FUNCTION_TYPE:
9021 case METHOD_TYPE:
9022 /* If TYPE is a function type, it is variably modified if the
9023 return type is variably modified. */
9024 if (variably_modified_type_p (TREE_TYPE (type), fn))
9025 return true;
9026 break;
9027
9028 case INTEGER_TYPE:
9029 case REAL_TYPE:
9030 case FIXED_POINT_TYPE:
9031 case ENUMERAL_TYPE:
9032 case BOOLEAN_TYPE:
9033 /* Scalar types are variably modified if their end points
9034 aren't constant. */
9035 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
9036 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
9037 break;
9038
9039 case RECORD_TYPE:
9040 case UNION_TYPE:
9041 case QUAL_UNION_TYPE:
9042 /* We can't see if any of the fields are variably-modified by the
9043 definition we normally use, since that would produce infinite
9044 recursion via pointers. */
9045 /* This is variably modified if some field's type is. */
9046 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
9047 if (TREE_CODE (t) == FIELD_DECL)
9048 {
9049 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
9050 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
9051 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
9052
9053 if (TREE_CODE (type) == QUAL_UNION_TYPE)
9054 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
9055 }
9056 break;
9057
9058 case ARRAY_TYPE:
9059 /* Do not call ourselves to avoid infinite recursion. This is
9060 variably modified if the element type is. */
9061 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
9062 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
9063 break;
9064
9065 default:
9066 break;
9067 }
9068
9069 /* The current language may have other cases to check, but in general,
9070 all other types are not variably modified. */
9071 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
9072
9073 #undef RETURN_TRUE_IF_VAR
9074 }
9075
9076 /* Given a DECL or TYPE, return the scope in which it was declared, or
9077 NULL_TREE if there is no containing scope. */
9078
9079 tree
9080 get_containing_scope (const_tree t)
9081 {
9082 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
9083 }
9084
9085 /* Return the innermost context enclosing DECL that is
9086 a FUNCTION_DECL, or zero if none. */
9087
9088 tree
9089 decl_function_context (const_tree decl)
9090 {
9091 tree context;
9092
9093 if (TREE_CODE (decl) == ERROR_MARK)
9094 return 0;
9095
9096 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
9097 where we look up the function at runtime. Such functions always take
9098 a first argument of type 'pointer to real context'.
9099
9100 C++ should really be fixed to use DECL_CONTEXT for the real context,
9101 and use something else for the "virtual context". */
9102 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
9103 context
9104 = TYPE_MAIN_VARIANT
9105 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
9106 else
9107 context = DECL_CONTEXT (decl);
9108
9109 while (context && TREE_CODE (context) != FUNCTION_DECL)
9110 {
9111 if (TREE_CODE (context) == BLOCK)
9112 context = BLOCK_SUPERCONTEXT (context);
9113 else
9114 context = get_containing_scope (context);
9115 }
9116
9117 return context;
9118 }
9119
9120 /* Return the innermost context enclosing DECL that is
9121 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
9122 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
9123
9124 tree
9125 decl_type_context (const_tree decl)
9126 {
9127 tree context = DECL_CONTEXT (decl);
9128
9129 while (context)
9130 switch (TREE_CODE (context))
9131 {
9132 case NAMESPACE_DECL:
9133 case TRANSLATION_UNIT_DECL:
9134 return NULL_TREE;
9135
9136 case RECORD_TYPE:
9137 case UNION_TYPE:
9138 case QUAL_UNION_TYPE:
9139 return context;
9140
9141 case TYPE_DECL:
9142 case FUNCTION_DECL:
9143 context = DECL_CONTEXT (context);
9144 break;
9145
9146 case BLOCK:
9147 context = BLOCK_SUPERCONTEXT (context);
9148 break;
9149
9150 default:
9151 gcc_unreachable ();
9152 }
9153
9154 return NULL_TREE;
9155 }
9156
9157 /* CALL is a CALL_EXPR. Return the declaration for the function
9158 called, or NULL_TREE if the called function cannot be
9159 determined. */
9160
9161 tree
9162 get_callee_fndecl (const_tree call)
9163 {
9164 tree addr;
9165
9166 if (call == error_mark_node)
9167 return error_mark_node;
9168
9169 /* It's invalid to call this function with anything but a
9170 CALL_EXPR. */
9171 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9172
9173 /* The first operand to the CALL is the address of the function
9174 called. */
9175 addr = CALL_EXPR_FN (call);
9176
9177 STRIP_NOPS (addr);
9178
9179 /* If this is a readonly function pointer, extract its initial value. */
9180 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
9181 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
9182 && DECL_INITIAL (addr))
9183 addr = DECL_INITIAL (addr);
9184
9185 /* If the address is just `&f' for some function `f', then we know
9186 that `f' is being called. */
9187 if (TREE_CODE (addr) == ADDR_EXPR
9188 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
9189 return TREE_OPERAND (addr, 0);
9190
9191 /* We couldn't figure out what was being called. */
9192 return NULL_TREE;
9193 }
9194
9195 /* Print debugging information about tree nodes generated during the compile,
9196 and any language-specific information. */
9197
9198 void
9199 dump_tree_statistics (void)
9200 {
9201 if (GATHER_STATISTICS)
9202 {
9203 int i;
9204 int total_nodes, total_bytes;
9205 fprintf (stderr, "Kind Nodes Bytes\n");
9206 fprintf (stderr, "---------------------------------------\n");
9207 total_nodes = total_bytes = 0;
9208 for (i = 0; i < (int) all_kinds; i++)
9209 {
9210 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
9211 tree_node_counts[i], tree_node_sizes[i]);
9212 total_nodes += tree_node_counts[i];
9213 total_bytes += tree_node_sizes[i];
9214 }
9215 fprintf (stderr, "---------------------------------------\n");
9216 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
9217 fprintf (stderr, "---------------------------------------\n");
9218 fprintf (stderr, "Code Nodes\n");
9219 fprintf (stderr, "----------------------------\n");
9220 for (i = 0; i < (int) MAX_TREE_CODES; i++)
9221 fprintf (stderr, "%-20s %7d\n", get_tree_code_name ((enum tree_code) i),
9222 tree_code_counts[i]);
9223 fprintf (stderr, "----------------------------\n");
9224 ssanames_print_statistics ();
9225 phinodes_print_statistics ();
9226 }
9227 else
9228 fprintf (stderr, "(No per-node statistics)\n");
9229
9230 print_type_hash_statistics ();
9231 print_debug_expr_statistics ();
9232 print_value_expr_statistics ();
9233 lang_hooks.print_statistics ();
9234 }
9235 \f
9236 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9237
9238 /* Generate a crc32 of a byte. */
9239
9240 static unsigned
9241 crc32_unsigned_bits (unsigned chksum, unsigned value, unsigned bits)
9242 {
9243 unsigned ix;
9244
9245 for (ix = bits; ix--; value <<= 1)
9246 {
9247 unsigned feedback;
9248
9249 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
9250 chksum <<= 1;
9251 chksum ^= feedback;
9252 }
9253 return chksum;
9254 }
9255
9256 /* Generate a crc32 of a 32-bit unsigned. */
9257
9258 unsigned
9259 crc32_unsigned (unsigned chksum, unsigned value)
9260 {
9261 return crc32_unsigned_bits (chksum, value, 32);
9262 }
9263
9264 /* Generate a crc32 of a byte. */
9265
9266 unsigned
9267 crc32_byte (unsigned chksum, char byte)
9268 {
9269 return crc32_unsigned_bits (chksum, (unsigned) byte << 24, 8);
9270 }
9271
9272 /* Generate a crc32 of a string. */
9273
9274 unsigned
9275 crc32_string (unsigned chksum, const char *string)
9276 {
9277 do
9278 {
9279 chksum = crc32_byte (chksum, *string);
9280 }
9281 while (*string++);
9282 return chksum;
9283 }
9284
9285 /* P is a string that will be used in a symbol. Mask out any characters
9286 that are not valid in that context. */
9287
9288 void
9289 clean_symbol_name (char *p)
9290 {
9291 for (; *p; p++)
9292 if (! (ISALNUM (*p)
9293 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9294 || *p == '$'
9295 #endif
9296 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9297 || *p == '.'
9298 #endif
9299 ))
9300 *p = '_';
9301 }
9302
9303 /* Generate a name for a special-purpose function.
9304 The generated name may need to be unique across the whole link.
9305 Changes to this function may also require corresponding changes to
9306 xstrdup_mask_random.
9307 TYPE is some string to identify the purpose of this function to the
9308 linker or collect2; it must start with an uppercase letter,
9309 one of:
9310 I - for constructors
9311 D - for destructors
9312 N - for C++ anonymous namespaces
9313 F - for DWARF unwind frame information. */
9314
9315 tree
9316 get_file_function_name (const char *type)
9317 {
9318 char *buf;
9319 const char *p;
9320 char *q;
9321
9322 /* If we already have a name we know to be unique, just use that. */
9323 if (first_global_object_name)
9324 p = q = ASTRDUP (first_global_object_name);
9325 /* If the target is handling the constructors/destructors, they
9326 will be local to this file and the name is only necessary for
9327 debugging purposes.
9328 We also assign sub_I and sub_D sufixes to constructors called from
9329 the global static constructors. These are always local. */
9330 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9331 || (strncmp (type, "sub_", 4) == 0
9332 && (type[4] == 'I' || type[4] == 'D')))
9333 {
9334 const char *file = main_input_filename;
9335 if (! file)
9336 file = input_filename;
9337 /* Just use the file's basename, because the full pathname
9338 might be quite long. */
9339 p = q = ASTRDUP (lbasename (file));
9340 }
9341 else
9342 {
9343 /* Otherwise, the name must be unique across the entire link.
9344 We don't have anything that we know to be unique to this translation
9345 unit, so use what we do have and throw in some randomness. */
9346 unsigned len;
9347 const char *name = weak_global_object_name;
9348 const char *file = main_input_filename;
9349
9350 if (! name)
9351 name = "";
9352 if (! file)
9353 file = input_filename;
9354
9355 len = strlen (file);
9356 q = (char *) alloca (9 + 17 + len + 1);
9357 memcpy (q, file, len + 1);
9358
9359 snprintf (q + len, 9 + 17 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9360 crc32_string (0, name), get_random_seed (false));
9361
9362 p = q;
9363 }
9364
9365 clean_symbol_name (q);
9366 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9367 + strlen (type));
9368
9369 /* Set up the name of the file-level functions we may need.
9370 Use a global object (which is already required to be unique over
9371 the program) rather than the file name (which imposes extra
9372 constraints). */
9373 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9374
9375 return get_identifier (buf);
9376 }
9377 \f
9378 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9379
9380 /* Complain that the tree code of NODE does not match the expected 0
9381 terminated list of trailing codes. The trailing code list can be
9382 empty, for a more vague error message. FILE, LINE, and FUNCTION
9383 are of the caller. */
9384
9385 void
9386 tree_check_failed (const_tree node, const char *file,
9387 int line, const char *function, ...)
9388 {
9389 va_list args;
9390 const char *buffer;
9391 unsigned length = 0;
9392 enum tree_code code;
9393
9394 va_start (args, function);
9395 while ((code = (enum tree_code) va_arg (args, int)))
9396 length += 4 + strlen (get_tree_code_name (code));
9397 va_end (args);
9398 if (length)
9399 {
9400 char *tmp;
9401 va_start (args, function);
9402 length += strlen ("expected ");
9403 buffer = tmp = (char *) alloca (length);
9404 length = 0;
9405 while ((code = (enum tree_code) va_arg (args, int)))
9406 {
9407 const char *prefix = length ? " or " : "expected ";
9408
9409 strcpy (tmp + length, prefix);
9410 length += strlen (prefix);
9411 strcpy (tmp + length, get_tree_code_name (code));
9412 length += strlen (get_tree_code_name (code));
9413 }
9414 va_end (args);
9415 }
9416 else
9417 buffer = "unexpected node";
9418
9419 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9420 buffer, get_tree_code_name (TREE_CODE (node)),
9421 function, trim_filename (file), line);
9422 }
9423
9424 /* Complain that the tree code of NODE does match the expected 0
9425 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9426 the caller. */
9427
9428 void
9429 tree_not_check_failed (const_tree node, const char *file,
9430 int line, const char *function, ...)
9431 {
9432 va_list args;
9433 char *buffer;
9434 unsigned length = 0;
9435 enum tree_code code;
9436
9437 va_start (args, function);
9438 while ((code = (enum tree_code) va_arg (args, int)))
9439 length += 4 + strlen (get_tree_code_name (code));
9440 va_end (args);
9441 va_start (args, function);
9442 buffer = (char *) alloca (length);
9443 length = 0;
9444 while ((code = (enum tree_code) va_arg (args, int)))
9445 {
9446 if (length)
9447 {
9448 strcpy (buffer + length, " or ");
9449 length += 4;
9450 }
9451 strcpy (buffer + length, get_tree_code_name (code));
9452 length += strlen (get_tree_code_name (code));
9453 }
9454 va_end (args);
9455
9456 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9457 buffer, get_tree_code_name (TREE_CODE (node)),
9458 function, trim_filename (file), line);
9459 }
9460
9461 /* Similar to tree_check_failed, except that we check for a class of tree
9462 code, given in CL. */
9463
9464 void
9465 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9466 const char *file, int line, const char *function)
9467 {
9468 internal_error
9469 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9470 TREE_CODE_CLASS_STRING (cl),
9471 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9472 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9473 }
9474
9475 /* Similar to tree_check_failed, except that instead of specifying a
9476 dozen codes, use the knowledge that they're all sequential. */
9477
9478 void
9479 tree_range_check_failed (const_tree node, const char *file, int line,
9480 const char *function, enum tree_code c1,
9481 enum tree_code c2)
9482 {
9483 char *buffer;
9484 unsigned length = 0;
9485 unsigned int c;
9486
9487 for (c = c1; c <= c2; ++c)
9488 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9489
9490 length += strlen ("expected ");
9491 buffer = (char *) alloca (length);
9492 length = 0;
9493
9494 for (c = c1; c <= c2; ++c)
9495 {
9496 const char *prefix = length ? " or " : "expected ";
9497
9498 strcpy (buffer + length, prefix);
9499 length += strlen (prefix);
9500 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9501 length += strlen (get_tree_code_name ((enum tree_code) c));
9502 }
9503
9504 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9505 buffer, get_tree_code_name (TREE_CODE (node)),
9506 function, trim_filename (file), line);
9507 }
9508
9509
9510 /* Similar to tree_check_failed, except that we check that a tree does
9511 not have the specified code, given in CL. */
9512
9513 void
9514 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9515 const char *file, int line, const char *function)
9516 {
9517 internal_error
9518 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9519 TREE_CODE_CLASS_STRING (cl),
9520 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9521 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9522 }
9523
9524
9525 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9526
9527 void
9528 omp_clause_check_failed (const_tree node, const char *file, int line,
9529 const char *function, enum omp_clause_code code)
9530 {
9531 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9532 omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9533 function, trim_filename (file), line);
9534 }
9535
9536
9537 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9538
9539 void
9540 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9541 const char *function, enum omp_clause_code c1,
9542 enum omp_clause_code c2)
9543 {
9544 char *buffer;
9545 unsigned length = 0;
9546 unsigned int c;
9547
9548 for (c = c1; c <= c2; ++c)
9549 length += 4 + strlen (omp_clause_code_name[c]);
9550
9551 length += strlen ("expected ");
9552 buffer = (char *) alloca (length);
9553 length = 0;
9554
9555 for (c = c1; c <= c2; ++c)
9556 {
9557 const char *prefix = length ? " or " : "expected ";
9558
9559 strcpy (buffer + length, prefix);
9560 length += strlen (prefix);
9561 strcpy (buffer + length, omp_clause_code_name[c]);
9562 length += strlen (omp_clause_code_name[c]);
9563 }
9564
9565 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9566 buffer, omp_clause_code_name[TREE_CODE (node)],
9567 function, trim_filename (file), line);
9568 }
9569
9570
9571 #undef DEFTREESTRUCT
9572 #define DEFTREESTRUCT(VAL, NAME) NAME,
9573
9574 static const char *ts_enum_names[] = {
9575 #include "treestruct.def"
9576 };
9577 #undef DEFTREESTRUCT
9578
9579 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9580
9581 /* Similar to tree_class_check_failed, except that we check for
9582 whether CODE contains the tree structure identified by EN. */
9583
9584 void
9585 tree_contains_struct_check_failed (const_tree node,
9586 const enum tree_node_structure_enum en,
9587 const char *file, int line,
9588 const char *function)
9589 {
9590 internal_error
9591 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9592 TS_ENUM_NAME (en),
9593 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9594 }
9595
9596
9597 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9598 (dynamically sized) vector. */
9599
9600 void
9601 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9602 const char *function)
9603 {
9604 internal_error
9605 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9606 idx + 1, len, function, trim_filename (file), line);
9607 }
9608
9609 /* Similar to above, except that the check is for the bounds of the operand
9610 vector of an expression node EXP. */
9611
9612 void
9613 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9614 int line, const char *function)
9615 {
9616 enum tree_code code = TREE_CODE (exp);
9617 internal_error
9618 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9619 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9620 function, trim_filename (file), line);
9621 }
9622
9623 /* Similar to above, except that the check is for the number of
9624 operands of an OMP_CLAUSE node. */
9625
9626 void
9627 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9628 int line, const char *function)
9629 {
9630 internal_error
9631 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9632 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9633 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9634 trim_filename (file), line);
9635 }
9636 #endif /* ENABLE_TREE_CHECKING */
9637 \f
9638 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9639 and mapped to the machine mode MODE. Initialize its fields and build
9640 the information necessary for debugging output. */
9641
9642 static tree
9643 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
9644 {
9645 tree t;
9646 hashval_t hashcode = 0;
9647
9648 t = make_node (VECTOR_TYPE);
9649 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
9650 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9651 SET_TYPE_MODE (t, mode);
9652
9653 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
9654 SET_TYPE_STRUCTURAL_EQUALITY (t);
9655 else if (TYPE_CANONICAL (innertype) != innertype
9656 || mode != VOIDmode)
9657 TYPE_CANONICAL (t)
9658 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
9659
9660 layout_type (t);
9661
9662 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
9663 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
9664 hashcode = iterative_hash_host_wide_int (mode, hashcode);
9665 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
9666 t = type_hash_canon (hashcode, t);
9667
9668 /* We have built a main variant, based on the main variant of the
9669 inner type. Use it to build the variant we return. */
9670 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9671 && TREE_TYPE (t) != innertype)
9672 return build_type_attribute_qual_variant (t,
9673 TYPE_ATTRIBUTES (innertype),
9674 TYPE_QUALS (innertype));
9675
9676 return t;
9677 }
9678
9679 static tree
9680 make_or_reuse_type (unsigned size, int unsignedp)
9681 {
9682 if (size == INT_TYPE_SIZE)
9683 return unsignedp ? unsigned_type_node : integer_type_node;
9684 if (size == CHAR_TYPE_SIZE)
9685 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9686 if (size == SHORT_TYPE_SIZE)
9687 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9688 if (size == LONG_TYPE_SIZE)
9689 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9690 if (size == LONG_LONG_TYPE_SIZE)
9691 return (unsignedp ? long_long_unsigned_type_node
9692 : long_long_integer_type_node);
9693 if (size == 128 && int128_integer_type_node)
9694 return (unsignedp ? int128_unsigned_type_node
9695 : int128_integer_type_node);
9696
9697 if (unsignedp)
9698 return make_unsigned_type (size);
9699 else
9700 return make_signed_type (size);
9701 }
9702
9703 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9704
9705 static tree
9706 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9707 {
9708 if (satp)
9709 {
9710 if (size == SHORT_FRACT_TYPE_SIZE)
9711 return unsignedp ? sat_unsigned_short_fract_type_node
9712 : sat_short_fract_type_node;
9713 if (size == FRACT_TYPE_SIZE)
9714 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9715 if (size == LONG_FRACT_TYPE_SIZE)
9716 return unsignedp ? sat_unsigned_long_fract_type_node
9717 : sat_long_fract_type_node;
9718 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9719 return unsignedp ? sat_unsigned_long_long_fract_type_node
9720 : sat_long_long_fract_type_node;
9721 }
9722 else
9723 {
9724 if (size == SHORT_FRACT_TYPE_SIZE)
9725 return unsignedp ? unsigned_short_fract_type_node
9726 : short_fract_type_node;
9727 if (size == FRACT_TYPE_SIZE)
9728 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9729 if (size == LONG_FRACT_TYPE_SIZE)
9730 return unsignedp ? unsigned_long_fract_type_node
9731 : long_fract_type_node;
9732 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9733 return unsignedp ? unsigned_long_long_fract_type_node
9734 : long_long_fract_type_node;
9735 }
9736
9737 return make_fract_type (size, unsignedp, satp);
9738 }
9739
9740 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9741
9742 static tree
9743 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9744 {
9745 if (satp)
9746 {
9747 if (size == SHORT_ACCUM_TYPE_SIZE)
9748 return unsignedp ? sat_unsigned_short_accum_type_node
9749 : sat_short_accum_type_node;
9750 if (size == ACCUM_TYPE_SIZE)
9751 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9752 if (size == LONG_ACCUM_TYPE_SIZE)
9753 return unsignedp ? sat_unsigned_long_accum_type_node
9754 : sat_long_accum_type_node;
9755 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9756 return unsignedp ? sat_unsigned_long_long_accum_type_node
9757 : sat_long_long_accum_type_node;
9758 }
9759 else
9760 {
9761 if (size == SHORT_ACCUM_TYPE_SIZE)
9762 return unsignedp ? unsigned_short_accum_type_node
9763 : short_accum_type_node;
9764 if (size == ACCUM_TYPE_SIZE)
9765 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9766 if (size == LONG_ACCUM_TYPE_SIZE)
9767 return unsignedp ? unsigned_long_accum_type_node
9768 : long_accum_type_node;
9769 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9770 return unsignedp ? unsigned_long_long_accum_type_node
9771 : long_long_accum_type_node;
9772 }
9773
9774 return make_accum_type (size, unsignedp, satp);
9775 }
9776
9777 /* Create nodes for all integer types (and error_mark_node) using the sizes
9778 of C datatypes. SIGNED_CHAR specifies whether char is signed,
9779 SHORT_DOUBLE specifies whether double should be of the same precision
9780 as float. */
9781
9782 void
9783 build_common_tree_nodes (bool signed_char, bool short_double)
9784 {
9785 error_mark_node = make_node (ERROR_MARK);
9786 TREE_TYPE (error_mark_node) = error_mark_node;
9787
9788 initialize_sizetypes ();
9789
9790 /* Define both `signed char' and `unsigned char'. */
9791 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9792 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9793 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9794 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9795
9796 /* Define `char', which is like either `signed char' or `unsigned char'
9797 but not the same as either. */
9798 char_type_node
9799 = (signed_char
9800 ? make_signed_type (CHAR_TYPE_SIZE)
9801 : make_unsigned_type (CHAR_TYPE_SIZE));
9802 TYPE_STRING_FLAG (char_type_node) = 1;
9803
9804 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9805 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9806 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9807 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9808 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9809 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9810 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9811 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9812 #if HOST_BITS_PER_WIDE_INT >= 64
9813 /* TODO: This isn't correct, but as logic depends at the moment on
9814 host's instead of target's wide-integer.
9815 If there is a target not supporting TImode, but has an 128-bit
9816 integer-scalar register, this target check needs to be adjusted. */
9817 if (targetm.scalar_mode_supported_p (TImode))
9818 {
9819 int128_integer_type_node = make_signed_type (128);
9820 int128_unsigned_type_node = make_unsigned_type (128);
9821 }
9822 #endif
9823
9824 /* Define a boolean type. This type only represents boolean values but
9825 may be larger than char depending on the value of BOOL_TYPE_SIZE.
9826 Front ends which want to override this size (i.e. Java) can redefine
9827 boolean_type_node before calling build_common_tree_nodes_2. */
9828 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9829 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9830 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9831 TYPE_PRECISION (boolean_type_node) = 1;
9832
9833 /* Define what type to use for size_t. */
9834 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9835 size_type_node = unsigned_type_node;
9836 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9837 size_type_node = long_unsigned_type_node;
9838 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9839 size_type_node = long_long_unsigned_type_node;
9840 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9841 size_type_node = short_unsigned_type_node;
9842 else
9843 gcc_unreachable ();
9844
9845 /* Fill in the rest of the sized types. Reuse existing type nodes
9846 when possible. */
9847 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9848 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9849 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9850 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9851 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9852
9853 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9854 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9855 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9856 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9857 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9858
9859 access_public_node = get_identifier ("public");
9860 access_protected_node = get_identifier ("protected");
9861 access_private_node = get_identifier ("private");
9862
9863 /* Define these next since types below may used them. */
9864 integer_zero_node = build_int_cst (integer_type_node, 0);
9865 integer_one_node = build_int_cst (integer_type_node, 1);
9866 integer_three_node = build_int_cst (integer_type_node, 3);
9867 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9868
9869 size_zero_node = size_int (0);
9870 size_one_node = size_int (1);
9871 bitsize_zero_node = bitsize_int (0);
9872 bitsize_one_node = bitsize_int (1);
9873 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9874
9875 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9876 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9877
9878 void_type_node = make_node (VOID_TYPE);
9879 layout_type (void_type_node);
9880
9881 pointer_bounds_type_node = targetm.chkp_bound_type ();
9882
9883 /* We are not going to have real types in C with less than byte alignment,
9884 so we might as well not have any types that claim to have it. */
9885 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9886 TYPE_USER_ALIGN (void_type_node) = 0;
9887
9888 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9889 layout_type (TREE_TYPE (null_pointer_node));
9890
9891 ptr_type_node = build_pointer_type (void_type_node);
9892 const_ptr_type_node
9893 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9894 fileptr_type_node = ptr_type_node;
9895
9896 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
9897
9898 float_type_node = make_node (REAL_TYPE);
9899 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9900 layout_type (float_type_node);
9901
9902 double_type_node = make_node (REAL_TYPE);
9903 if (short_double)
9904 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9905 else
9906 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9907 layout_type (double_type_node);
9908
9909 long_double_type_node = make_node (REAL_TYPE);
9910 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9911 layout_type (long_double_type_node);
9912
9913 float_ptr_type_node = build_pointer_type (float_type_node);
9914 double_ptr_type_node = build_pointer_type (double_type_node);
9915 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9916 integer_ptr_type_node = build_pointer_type (integer_type_node);
9917
9918 /* Fixed size integer types. */
9919 uint16_type_node = build_nonstandard_integer_type (16, true);
9920 uint32_type_node = build_nonstandard_integer_type (32, true);
9921 uint64_type_node = build_nonstandard_integer_type (64, true);
9922
9923 /* Decimal float types. */
9924 dfloat32_type_node = make_node (REAL_TYPE);
9925 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9926 layout_type (dfloat32_type_node);
9927 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9928 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9929
9930 dfloat64_type_node = make_node (REAL_TYPE);
9931 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9932 layout_type (dfloat64_type_node);
9933 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9934 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9935
9936 dfloat128_type_node = make_node (REAL_TYPE);
9937 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9938 layout_type (dfloat128_type_node);
9939 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9940 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9941
9942 complex_integer_type_node = build_complex_type (integer_type_node);
9943 complex_float_type_node = build_complex_type (float_type_node);
9944 complex_double_type_node = build_complex_type (double_type_node);
9945 complex_long_double_type_node = build_complex_type (long_double_type_node);
9946
9947 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9948 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9949 sat_ ## KIND ## _type_node = \
9950 make_sat_signed_ ## KIND ## _type (SIZE); \
9951 sat_unsigned_ ## KIND ## _type_node = \
9952 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9953 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9954 unsigned_ ## KIND ## _type_node = \
9955 make_unsigned_ ## KIND ## _type (SIZE);
9956
9957 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9958 sat_ ## WIDTH ## KIND ## _type_node = \
9959 make_sat_signed_ ## KIND ## _type (SIZE); \
9960 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9961 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9962 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9963 unsigned_ ## WIDTH ## KIND ## _type_node = \
9964 make_unsigned_ ## KIND ## _type (SIZE);
9965
9966 /* Make fixed-point type nodes based on four different widths. */
9967 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9968 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9969 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9970 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9971 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9972
9973 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9974 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9975 NAME ## _type_node = \
9976 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9977 u ## NAME ## _type_node = \
9978 make_or_reuse_unsigned_ ## KIND ## _type \
9979 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9980 sat_ ## NAME ## _type_node = \
9981 make_or_reuse_sat_signed_ ## KIND ## _type \
9982 (GET_MODE_BITSIZE (MODE ## mode)); \
9983 sat_u ## NAME ## _type_node = \
9984 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9985 (GET_MODE_BITSIZE (U ## MODE ## mode));
9986
9987 /* Fixed-point type and mode nodes. */
9988 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9989 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9990 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9991 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9992 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9993 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9994 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9995 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9996 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9997 MAKE_FIXED_MODE_NODE (accum, da, DA)
9998 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9999
10000 {
10001 tree t = targetm.build_builtin_va_list ();
10002
10003 /* Many back-ends define record types without setting TYPE_NAME.
10004 If we copied the record type here, we'd keep the original
10005 record type without a name. This breaks name mangling. So,
10006 don't copy record types and let c_common_nodes_and_builtins()
10007 declare the type to be __builtin_va_list. */
10008 if (TREE_CODE (t) != RECORD_TYPE)
10009 t = build_variant_type_copy (t);
10010
10011 va_list_type_node = t;
10012 }
10013 }
10014
10015 /* Modify DECL for given flags.
10016 TM_PURE attribute is set only on types, so the function will modify
10017 DECL's type when ECF_TM_PURE is used. */
10018
10019 void
10020 set_call_expr_flags (tree decl, int flags)
10021 {
10022 if (flags & ECF_NOTHROW)
10023 TREE_NOTHROW (decl) = 1;
10024 if (flags & ECF_CONST)
10025 TREE_READONLY (decl) = 1;
10026 if (flags & ECF_PURE)
10027 DECL_PURE_P (decl) = 1;
10028 if (flags & ECF_LOOPING_CONST_OR_PURE)
10029 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
10030 if (flags & ECF_NOVOPS)
10031 DECL_IS_NOVOPS (decl) = 1;
10032 if (flags & ECF_NORETURN)
10033 TREE_THIS_VOLATILE (decl) = 1;
10034 if (flags & ECF_MALLOC)
10035 DECL_IS_MALLOC (decl) = 1;
10036 if (flags & ECF_RETURNS_TWICE)
10037 DECL_IS_RETURNS_TWICE (decl) = 1;
10038 if (flags & ECF_LEAF)
10039 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
10040 NULL, DECL_ATTRIBUTES (decl));
10041 if ((flags & ECF_TM_PURE) && flag_tm)
10042 apply_tm_attr (decl, get_identifier ("transaction_pure"));
10043 /* Looping const or pure is implied by noreturn.
10044 There is currently no way to declare looping const or looping pure alone. */
10045 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
10046 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
10047 }
10048
10049
10050 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
10051
10052 static void
10053 local_define_builtin (const char *name, tree type, enum built_in_function code,
10054 const char *library_name, int ecf_flags)
10055 {
10056 tree decl;
10057
10058 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
10059 library_name, NULL_TREE);
10060 set_call_expr_flags (decl, ecf_flags);
10061
10062 set_builtin_decl (code, decl, true);
10063 }
10064
10065 /* Call this function after instantiating all builtins that the language
10066 front end cares about. This will build the rest of the builtins that
10067 are relied upon by the tree optimizers and the middle-end. */
10068
10069 void
10070 build_common_builtin_nodes (void)
10071 {
10072 tree tmp, ftype;
10073 int ecf_flags;
10074
10075 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
10076 {
10077 ftype = build_function_type (void_type_node, void_list_node);
10078 local_define_builtin ("__builtin_unreachable", ftype, BUILT_IN_UNREACHABLE,
10079 "__builtin_unreachable",
10080 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
10081 | ECF_CONST | ECF_LEAF);
10082 }
10083
10084 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
10085 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10086 {
10087 ftype = build_function_type_list (ptr_type_node,
10088 ptr_type_node, const_ptr_type_node,
10089 size_type_node, NULL_TREE);
10090
10091 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
10092 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
10093 "memcpy", ECF_NOTHROW | ECF_LEAF);
10094 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10095 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
10096 "memmove", ECF_NOTHROW | ECF_LEAF);
10097 }
10098
10099 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
10100 {
10101 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10102 const_ptr_type_node, size_type_node,
10103 NULL_TREE);
10104 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
10105 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10106 }
10107
10108 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
10109 {
10110 ftype = build_function_type_list (ptr_type_node,
10111 ptr_type_node, integer_type_node,
10112 size_type_node, NULL_TREE);
10113 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
10114 "memset", ECF_NOTHROW | ECF_LEAF);
10115 }
10116
10117 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
10118 {
10119 ftype = build_function_type_list (ptr_type_node,
10120 size_type_node, NULL_TREE);
10121 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
10122 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
10123 }
10124
10125 ftype = build_function_type_list (ptr_type_node, size_type_node,
10126 size_type_node, NULL_TREE);
10127 local_define_builtin ("__builtin_alloca_with_align", ftype,
10128 BUILT_IN_ALLOCA_WITH_ALIGN, "alloca",
10129 ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
10130
10131 /* If we're checking the stack, `alloca' can throw. */
10132 if (flag_stack_check)
10133 {
10134 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA)) = 0;
10135 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN)) = 0;
10136 }
10137
10138 ftype = build_function_type_list (void_type_node,
10139 ptr_type_node, ptr_type_node,
10140 ptr_type_node, NULL_TREE);
10141 local_define_builtin ("__builtin_init_trampoline", ftype,
10142 BUILT_IN_INIT_TRAMPOLINE,
10143 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
10144 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
10145 BUILT_IN_INIT_HEAP_TRAMPOLINE,
10146 "__builtin_init_heap_trampoline",
10147 ECF_NOTHROW | ECF_LEAF);
10148
10149 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10150 local_define_builtin ("__builtin_adjust_trampoline", ftype,
10151 BUILT_IN_ADJUST_TRAMPOLINE,
10152 "__builtin_adjust_trampoline",
10153 ECF_CONST | ECF_NOTHROW);
10154
10155 ftype = build_function_type_list (void_type_node,
10156 ptr_type_node, ptr_type_node, NULL_TREE);
10157 local_define_builtin ("__builtin_nonlocal_goto", ftype,
10158 BUILT_IN_NONLOCAL_GOTO,
10159 "__builtin_nonlocal_goto",
10160 ECF_NORETURN | ECF_NOTHROW);
10161
10162 ftype = build_function_type_list (void_type_node,
10163 ptr_type_node, ptr_type_node, NULL_TREE);
10164 local_define_builtin ("__builtin_setjmp_setup", ftype,
10165 BUILT_IN_SETJMP_SETUP,
10166 "__builtin_setjmp_setup", ECF_NOTHROW);
10167
10168 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10169 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
10170 BUILT_IN_SETJMP_DISPATCHER,
10171 "__builtin_setjmp_dispatcher",
10172 ECF_PURE | ECF_NOTHROW);
10173
10174 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10175 local_define_builtin ("__builtin_setjmp_receiver", ftype,
10176 BUILT_IN_SETJMP_RECEIVER,
10177 "__builtin_setjmp_receiver", ECF_NOTHROW);
10178
10179 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10180 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10181 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10182
10183 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10184 local_define_builtin ("__builtin_stack_restore", ftype,
10185 BUILT_IN_STACK_RESTORE,
10186 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10187
10188 /* If there's a possibility that we might use the ARM EABI, build the
10189 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
10190 if (targetm.arm_eabi_unwinder)
10191 {
10192 ftype = build_function_type_list (void_type_node, NULL_TREE);
10193 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10194 BUILT_IN_CXA_END_CLEANUP,
10195 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10196 }
10197
10198 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10199 local_define_builtin ("__builtin_unwind_resume", ftype,
10200 BUILT_IN_UNWIND_RESUME,
10201 ((targetm_common.except_unwind_info (&global_options)
10202 == UI_SJLJ)
10203 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10204 ECF_NORETURN);
10205
10206 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10207 {
10208 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10209 NULL_TREE);
10210 local_define_builtin ("__builtin_return_address", ftype,
10211 BUILT_IN_RETURN_ADDRESS,
10212 "__builtin_return_address",
10213 ECF_NOTHROW);
10214 }
10215
10216 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10217 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10218 {
10219 ftype = build_function_type_list (void_type_node, ptr_type_node,
10220 ptr_type_node, NULL_TREE);
10221 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10222 local_define_builtin ("__cyg_profile_func_enter", ftype,
10223 BUILT_IN_PROFILE_FUNC_ENTER,
10224 "__cyg_profile_func_enter", 0);
10225 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10226 local_define_builtin ("__cyg_profile_func_exit", ftype,
10227 BUILT_IN_PROFILE_FUNC_EXIT,
10228 "__cyg_profile_func_exit", 0);
10229 }
10230
10231 /* The exception object and filter values from the runtime. The argument
10232 must be zero before exception lowering, i.e. from the front end. After
10233 exception lowering, it will be the region number for the exception
10234 landing pad. These functions are PURE instead of CONST to prevent
10235 them from being hoisted past the exception edge that will initialize
10236 its value in the landing pad. */
10237 ftype = build_function_type_list (ptr_type_node,
10238 integer_type_node, NULL_TREE);
10239 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10240 /* Only use TM_PURE if we we have TM language support. */
10241 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10242 ecf_flags |= ECF_TM_PURE;
10243 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10244 "__builtin_eh_pointer", ecf_flags);
10245
10246 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10247 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10248 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10249 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10250
10251 ftype = build_function_type_list (void_type_node,
10252 integer_type_node, integer_type_node,
10253 NULL_TREE);
10254 local_define_builtin ("__builtin_eh_copy_values", ftype,
10255 BUILT_IN_EH_COPY_VALUES,
10256 "__builtin_eh_copy_values", ECF_NOTHROW);
10257
10258 /* Complex multiplication and division. These are handled as builtins
10259 rather than optabs because emit_library_call_value doesn't support
10260 complex. Further, we can do slightly better with folding these
10261 beasties if the real and complex parts of the arguments are separate. */
10262 {
10263 int mode;
10264
10265 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10266 {
10267 char mode_name_buf[4], *q;
10268 const char *p;
10269 enum built_in_function mcode, dcode;
10270 tree type, inner_type;
10271 const char *prefix = "__";
10272
10273 if (targetm.libfunc_gnu_prefix)
10274 prefix = "__gnu_";
10275
10276 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
10277 if (type == NULL)
10278 continue;
10279 inner_type = TREE_TYPE (type);
10280
10281 ftype = build_function_type_list (type, inner_type, inner_type,
10282 inner_type, inner_type, NULL_TREE);
10283
10284 mcode = ((enum built_in_function)
10285 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10286 dcode = ((enum built_in_function)
10287 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10288
10289 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10290 *q = TOLOWER (*p);
10291 *q = '\0';
10292
10293 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10294 NULL);
10295 local_define_builtin (built_in_names[mcode], ftype, mcode,
10296 built_in_names[mcode],
10297 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10298
10299 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10300 NULL);
10301 local_define_builtin (built_in_names[dcode], ftype, dcode,
10302 built_in_names[dcode],
10303 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10304 }
10305 }
10306 }
10307
10308 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10309 better way.
10310
10311 If we requested a pointer to a vector, build up the pointers that
10312 we stripped off while looking for the inner type. Similarly for
10313 return values from functions.
10314
10315 The argument TYPE is the top of the chain, and BOTTOM is the
10316 new type which we will point to. */
10317
10318 tree
10319 reconstruct_complex_type (tree type, tree bottom)
10320 {
10321 tree inner, outer;
10322
10323 if (TREE_CODE (type) == POINTER_TYPE)
10324 {
10325 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10326 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10327 TYPE_REF_CAN_ALIAS_ALL (type));
10328 }
10329 else if (TREE_CODE (type) == REFERENCE_TYPE)
10330 {
10331 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10332 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10333 TYPE_REF_CAN_ALIAS_ALL (type));
10334 }
10335 else if (TREE_CODE (type) == ARRAY_TYPE)
10336 {
10337 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10338 outer = build_array_type (inner, TYPE_DOMAIN (type));
10339 }
10340 else if (TREE_CODE (type) == FUNCTION_TYPE)
10341 {
10342 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10343 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10344 }
10345 else if (TREE_CODE (type) == METHOD_TYPE)
10346 {
10347 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10348 /* The build_method_type_directly() routine prepends 'this' to argument list,
10349 so we must compensate by getting rid of it. */
10350 outer
10351 = build_method_type_directly
10352 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10353 inner,
10354 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10355 }
10356 else if (TREE_CODE (type) == OFFSET_TYPE)
10357 {
10358 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10359 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10360 }
10361 else
10362 return bottom;
10363
10364 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10365 TYPE_QUALS (type));
10366 }
10367
10368 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10369 the inner type. */
10370 tree
10371 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
10372 {
10373 int nunits;
10374
10375 switch (GET_MODE_CLASS (mode))
10376 {
10377 case MODE_VECTOR_INT:
10378 case MODE_VECTOR_FLOAT:
10379 case MODE_VECTOR_FRACT:
10380 case MODE_VECTOR_UFRACT:
10381 case MODE_VECTOR_ACCUM:
10382 case MODE_VECTOR_UACCUM:
10383 nunits = GET_MODE_NUNITS (mode);
10384 break;
10385
10386 case MODE_INT:
10387 /* Check that there are no leftover bits. */
10388 gcc_assert (GET_MODE_BITSIZE (mode)
10389 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10390
10391 nunits = GET_MODE_BITSIZE (mode)
10392 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10393 break;
10394
10395 default:
10396 gcc_unreachable ();
10397 }
10398
10399 return make_vector_type (innertype, nunits, mode);
10400 }
10401
10402 /* Similarly, but takes the inner type and number of units, which must be
10403 a power of two. */
10404
10405 tree
10406 build_vector_type (tree innertype, int nunits)
10407 {
10408 return make_vector_type (innertype, nunits, VOIDmode);
10409 }
10410
10411 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
10412
10413 tree
10414 build_opaque_vector_type (tree innertype, int nunits)
10415 {
10416 tree t = make_vector_type (innertype, nunits, VOIDmode);
10417 tree cand;
10418 /* We always build the non-opaque variant before the opaque one,
10419 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10420 cand = TYPE_NEXT_VARIANT (t);
10421 if (cand
10422 && TYPE_VECTOR_OPAQUE (cand)
10423 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10424 return cand;
10425 /* Othewise build a variant type and make sure to queue it after
10426 the non-opaque type. */
10427 cand = build_distinct_type_copy (t);
10428 TYPE_VECTOR_OPAQUE (cand) = true;
10429 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10430 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10431 TYPE_NEXT_VARIANT (t) = cand;
10432 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10433 return cand;
10434 }
10435
10436
10437 /* Given an initializer INIT, return TRUE if INIT is zero or some
10438 aggregate of zeros. Otherwise return FALSE. */
10439 bool
10440 initializer_zerop (const_tree init)
10441 {
10442 tree elt;
10443
10444 STRIP_NOPS (init);
10445
10446 switch (TREE_CODE (init))
10447 {
10448 case INTEGER_CST:
10449 return integer_zerop (init);
10450
10451 case REAL_CST:
10452 /* ??? Note that this is not correct for C4X float formats. There,
10453 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10454 negative exponent. */
10455 return real_zerop (init)
10456 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
10457
10458 case FIXED_CST:
10459 return fixed_zerop (init);
10460
10461 case COMPLEX_CST:
10462 return integer_zerop (init)
10463 || (real_zerop (init)
10464 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10465 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
10466
10467 case VECTOR_CST:
10468 {
10469 unsigned i;
10470 for (i = 0; i < VECTOR_CST_NELTS (init); ++i)
10471 if (!initializer_zerop (VECTOR_CST_ELT (init, i)))
10472 return false;
10473 return true;
10474 }
10475
10476 case CONSTRUCTOR:
10477 {
10478 unsigned HOST_WIDE_INT idx;
10479
10480 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10481 if (!initializer_zerop (elt))
10482 return false;
10483 return true;
10484 }
10485
10486 case STRING_CST:
10487 {
10488 int i;
10489
10490 /* We need to loop through all elements to handle cases like
10491 "\0" and "\0foobar". */
10492 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10493 if (TREE_STRING_POINTER (init)[i] != '\0')
10494 return false;
10495
10496 return true;
10497 }
10498
10499 default:
10500 return false;
10501 }
10502 }
10503
10504 /* Check if vector VEC consists of all the equal elements and
10505 that the number of elements corresponds to the type of VEC.
10506 The function returns first element of the vector
10507 or NULL_TREE if the vector is not uniform. */
10508 tree
10509 uniform_vector_p (const_tree vec)
10510 {
10511 tree first, t;
10512 unsigned i;
10513
10514 if (vec == NULL_TREE)
10515 return NULL_TREE;
10516
10517 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10518
10519 if (TREE_CODE (vec) == VECTOR_CST)
10520 {
10521 first = VECTOR_CST_ELT (vec, 0);
10522 for (i = 1; i < VECTOR_CST_NELTS (vec); ++i)
10523 if (!operand_equal_p (first, VECTOR_CST_ELT (vec, i), 0))
10524 return NULL_TREE;
10525
10526 return first;
10527 }
10528
10529 else if (TREE_CODE (vec) == CONSTRUCTOR)
10530 {
10531 first = error_mark_node;
10532
10533 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10534 {
10535 if (i == 0)
10536 {
10537 first = t;
10538 continue;
10539 }
10540 if (!operand_equal_p (first, t, 0))
10541 return NULL_TREE;
10542 }
10543 if (i != TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)))
10544 return NULL_TREE;
10545
10546 return first;
10547 }
10548
10549 return NULL_TREE;
10550 }
10551
10552 /* Build an empty statement at location LOC. */
10553
10554 tree
10555 build_empty_stmt (location_t loc)
10556 {
10557 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10558 SET_EXPR_LOCATION (t, loc);
10559 return t;
10560 }
10561
10562
10563 /* Build an OpenMP clause with code CODE. LOC is the location of the
10564 clause. */
10565
10566 tree
10567 build_omp_clause (location_t loc, enum omp_clause_code code)
10568 {
10569 tree t;
10570 int size, length;
10571
10572 length = omp_clause_num_ops[code];
10573 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10574
10575 record_node_allocation_statistics (OMP_CLAUSE, size);
10576
10577 t = ggc_alloc_tree_node (size);
10578 memset (t, 0, size);
10579 TREE_SET_CODE (t, OMP_CLAUSE);
10580 OMP_CLAUSE_SET_CODE (t, code);
10581 OMP_CLAUSE_LOCATION (t) = loc;
10582
10583 return t;
10584 }
10585
10586 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10587 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10588 Except for the CODE and operand count field, other storage for the
10589 object is initialized to zeros. */
10590
10591 tree
10592 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
10593 {
10594 tree t;
10595 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10596
10597 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10598 gcc_assert (len >= 1);
10599
10600 record_node_allocation_statistics (code, length);
10601
10602 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10603
10604 TREE_SET_CODE (t, code);
10605
10606 /* Can't use TREE_OPERAND to store the length because if checking is
10607 enabled, it will try to check the length before we store it. :-P */
10608 t->exp.operands[0] = build_int_cst (sizetype, len);
10609
10610 return t;
10611 }
10612
10613 /* Helper function for build_call_* functions; build a CALL_EXPR with
10614 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10615 the argument slots. */
10616
10617 static tree
10618 build_call_1 (tree return_type, tree fn, int nargs)
10619 {
10620 tree t;
10621
10622 t = build_vl_exp (CALL_EXPR, nargs + 3);
10623 TREE_TYPE (t) = return_type;
10624 CALL_EXPR_FN (t) = fn;
10625 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10626
10627 return t;
10628 }
10629
10630 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10631 FN and a null static chain slot. NARGS is the number of call arguments
10632 which are specified as "..." arguments. */
10633
10634 tree
10635 build_call_nary (tree return_type, tree fn, int nargs, ...)
10636 {
10637 tree ret;
10638 va_list args;
10639 va_start (args, nargs);
10640 ret = build_call_valist (return_type, fn, nargs, args);
10641 va_end (args);
10642 return ret;
10643 }
10644
10645 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10646 FN and a null static chain slot. NARGS is the number of call arguments
10647 which are specified as a va_list ARGS. */
10648
10649 tree
10650 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10651 {
10652 tree t;
10653 int i;
10654
10655 t = build_call_1 (return_type, fn, nargs);
10656 for (i = 0; i < nargs; i++)
10657 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10658 process_call_operands (t);
10659 return t;
10660 }
10661
10662 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10663 FN and a null static chain slot. NARGS is the number of call arguments
10664 which are specified as a tree array ARGS. */
10665
10666 tree
10667 build_call_array_loc (location_t loc, tree return_type, tree fn,
10668 int nargs, const tree *args)
10669 {
10670 tree t;
10671 int i;
10672
10673 t = build_call_1 (return_type, fn, nargs);
10674 for (i = 0; i < nargs; i++)
10675 CALL_EXPR_ARG (t, i) = args[i];
10676 process_call_operands (t);
10677 SET_EXPR_LOCATION (t, loc);
10678 return t;
10679 }
10680
10681 /* Like build_call_array, but takes a vec. */
10682
10683 tree
10684 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10685 {
10686 tree ret, t;
10687 unsigned int ix;
10688
10689 ret = build_call_1 (return_type, fn, vec_safe_length (args));
10690 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10691 CALL_EXPR_ARG (ret, ix) = t;
10692 process_call_operands (ret);
10693 return ret;
10694 }
10695
10696
10697 /* Returns true if it is possible to prove that the index of
10698 an array access REF (an ARRAY_REF expression) falls into the
10699 array bounds. */
10700
10701 bool
10702 in_array_bounds_p (tree ref)
10703 {
10704 tree idx = TREE_OPERAND (ref, 1);
10705 tree min, max;
10706
10707 if (TREE_CODE (idx) != INTEGER_CST)
10708 return false;
10709
10710 min = array_ref_low_bound (ref);
10711 max = array_ref_up_bound (ref);
10712 if (!min
10713 || !max
10714 || TREE_CODE (min) != INTEGER_CST
10715 || TREE_CODE (max) != INTEGER_CST)
10716 return false;
10717
10718 if (tree_int_cst_lt (idx, min)
10719 || tree_int_cst_lt (max, idx))
10720 return false;
10721
10722 return true;
10723 }
10724
10725 /* Returns true if it is possible to prove that the range of
10726 an array access REF (an ARRAY_RANGE_REF expression) falls
10727 into the array bounds. */
10728
10729 bool
10730 range_in_array_bounds_p (tree ref)
10731 {
10732 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
10733 tree range_min, range_max, min, max;
10734
10735 range_min = TYPE_MIN_VALUE (domain_type);
10736 range_max = TYPE_MAX_VALUE (domain_type);
10737 if (!range_min
10738 || !range_max
10739 || TREE_CODE (range_min) != INTEGER_CST
10740 || TREE_CODE (range_max) != INTEGER_CST)
10741 return false;
10742
10743 min = array_ref_low_bound (ref);
10744 max = array_ref_up_bound (ref);
10745 if (!min
10746 || !max
10747 || TREE_CODE (min) != INTEGER_CST
10748 || TREE_CODE (max) != INTEGER_CST)
10749 return false;
10750
10751 if (tree_int_cst_lt (range_min, min)
10752 || tree_int_cst_lt (max, range_max))
10753 return false;
10754
10755 return true;
10756 }
10757
10758 /* Return true if T (assumed to be a DECL) must be assigned a memory
10759 location. */
10760
10761 bool
10762 needs_to_live_in_memory (const_tree t)
10763 {
10764 return (TREE_ADDRESSABLE (t)
10765 || is_global_var (t)
10766 || (TREE_CODE (t) == RESULT_DECL
10767 && !DECL_BY_REFERENCE (t)
10768 && aggregate_value_p (t, current_function_decl)));
10769 }
10770
10771 /* Return value of a constant X and sign-extend it. */
10772
10773 HOST_WIDE_INT
10774 int_cst_value (const_tree x)
10775 {
10776 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10777 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
10778
10779 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10780 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10781 || TREE_INT_CST_HIGH (x) == -1);
10782
10783 if (bits < HOST_BITS_PER_WIDE_INT)
10784 {
10785 bool negative = ((val >> (bits - 1)) & 1) != 0;
10786 if (negative)
10787 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
10788 else
10789 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
10790 }
10791
10792 return val;
10793 }
10794
10795 /* Return value of a constant X and sign-extend it. */
10796
10797 HOST_WIDEST_INT
10798 widest_int_cst_value (const_tree x)
10799 {
10800 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10801 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
10802
10803 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
10804 gcc_assert (HOST_BITS_PER_WIDEST_INT >= HOST_BITS_PER_DOUBLE_INT);
10805 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
10806 << HOST_BITS_PER_WIDE_INT);
10807 #else
10808 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10809 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10810 || TREE_INT_CST_HIGH (x) == -1);
10811 #endif
10812
10813 if (bits < HOST_BITS_PER_WIDEST_INT)
10814 {
10815 bool negative = ((val >> (bits - 1)) & 1) != 0;
10816 if (negative)
10817 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
10818 else
10819 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
10820 }
10821
10822 return val;
10823 }
10824
10825 /* If TYPE is an integral or pointer type, return an integer type with
10826 the same precision which is unsigned iff UNSIGNEDP is true, or itself
10827 if TYPE is already an integer type of signedness UNSIGNEDP. */
10828
10829 tree
10830 signed_or_unsigned_type_for (int unsignedp, tree type)
10831 {
10832 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
10833 return type;
10834
10835 if (TREE_CODE (type) == VECTOR_TYPE)
10836 {
10837 tree inner = TREE_TYPE (type);
10838 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
10839 if (!inner2)
10840 return NULL_TREE;
10841 if (inner == inner2)
10842 return type;
10843 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
10844 }
10845
10846 if (!INTEGRAL_TYPE_P (type)
10847 && !POINTER_TYPE_P (type))
10848 return NULL_TREE;
10849
10850 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
10851 }
10852
10853 /* If TYPE is an integral or pointer type, return an integer type with
10854 the same precision which is unsigned, or itself if TYPE is already an
10855 unsigned integer type. */
10856
10857 tree
10858 unsigned_type_for (tree type)
10859 {
10860 return signed_or_unsigned_type_for (1, type);
10861 }
10862
10863 /* If TYPE is an integral or pointer type, return an integer type with
10864 the same precision which is signed, or itself if TYPE is already a
10865 signed integer type. */
10866
10867 tree
10868 signed_type_for (tree type)
10869 {
10870 return signed_or_unsigned_type_for (0, type);
10871 }
10872
10873 /* If TYPE is a vector type, return a signed integer vector type with the
10874 same width and number of subparts. Otherwise return boolean_type_node. */
10875
10876 tree
10877 truth_type_for (tree type)
10878 {
10879 if (TREE_CODE (type) == VECTOR_TYPE)
10880 {
10881 tree elem = lang_hooks.types.type_for_size
10882 (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))), 0);
10883 return build_opaque_vector_type (elem, TYPE_VECTOR_SUBPARTS (type));
10884 }
10885 else
10886 return boolean_type_node;
10887 }
10888
10889 /* Returns the largest value obtainable by casting something in INNER type to
10890 OUTER type. */
10891
10892 tree
10893 upper_bound_in_type (tree outer, tree inner)
10894 {
10895 double_int high;
10896 unsigned int det = 0;
10897 unsigned oprec = TYPE_PRECISION (outer);
10898 unsigned iprec = TYPE_PRECISION (inner);
10899 unsigned prec;
10900
10901 /* Compute a unique number for every combination. */
10902 det |= (oprec > iprec) ? 4 : 0;
10903 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10904 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10905
10906 /* Determine the exponent to use. */
10907 switch (det)
10908 {
10909 case 0:
10910 case 1:
10911 /* oprec <= iprec, outer: signed, inner: don't care. */
10912 prec = oprec - 1;
10913 break;
10914 case 2:
10915 case 3:
10916 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10917 prec = oprec;
10918 break;
10919 case 4:
10920 /* oprec > iprec, outer: signed, inner: signed. */
10921 prec = iprec - 1;
10922 break;
10923 case 5:
10924 /* oprec > iprec, outer: signed, inner: unsigned. */
10925 prec = iprec;
10926 break;
10927 case 6:
10928 /* oprec > iprec, outer: unsigned, inner: signed. */
10929 prec = oprec;
10930 break;
10931 case 7:
10932 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10933 prec = iprec;
10934 break;
10935 default:
10936 gcc_unreachable ();
10937 }
10938
10939 /* Compute 2^^prec - 1. */
10940 if (prec <= HOST_BITS_PER_WIDE_INT)
10941 {
10942 high.high = 0;
10943 high.low = ((~(unsigned HOST_WIDE_INT) 0)
10944 >> (HOST_BITS_PER_WIDE_INT - prec));
10945 }
10946 else
10947 {
10948 high.high = ((~(unsigned HOST_WIDE_INT) 0)
10949 >> (HOST_BITS_PER_DOUBLE_INT - prec));
10950 high.low = ~(unsigned HOST_WIDE_INT) 0;
10951 }
10952
10953 return double_int_to_tree (outer, high);
10954 }
10955
10956 /* Returns the smallest value obtainable by casting something in INNER type to
10957 OUTER type. */
10958
10959 tree
10960 lower_bound_in_type (tree outer, tree inner)
10961 {
10962 double_int low;
10963 unsigned oprec = TYPE_PRECISION (outer);
10964 unsigned iprec = TYPE_PRECISION (inner);
10965
10966 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10967 and obtain 0. */
10968 if (TYPE_UNSIGNED (outer)
10969 /* If we are widening something of an unsigned type, OUTER type
10970 contains all values of INNER type. In particular, both INNER
10971 and OUTER types have zero in common. */
10972 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10973 low.low = low.high = 0;
10974 else
10975 {
10976 /* If we are widening a signed type to another signed type, we
10977 want to obtain -2^^(iprec-1). If we are keeping the
10978 precision or narrowing to a signed type, we want to obtain
10979 -2^(oprec-1). */
10980 unsigned prec = oprec > iprec ? iprec : oprec;
10981
10982 if (prec <= HOST_BITS_PER_WIDE_INT)
10983 {
10984 low.high = ~(unsigned HOST_WIDE_INT) 0;
10985 low.low = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
10986 }
10987 else
10988 {
10989 low.high = ((~(unsigned HOST_WIDE_INT) 0)
10990 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10991 low.low = 0;
10992 }
10993 }
10994
10995 return double_int_to_tree (outer, low);
10996 }
10997
10998 /* Return nonzero if two operands that are suitable for PHI nodes are
10999 necessarily equal. Specifically, both ARG0 and ARG1 must be either
11000 SSA_NAME or invariant. Note that this is strictly an optimization.
11001 That is, callers of this function can directly call operand_equal_p
11002 and get the same result, only slower. */
11003
11004 int
11005 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
11006 {
11007 if (arg0 == arg1)
11008 return 1;
11009 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
11010 return 0;
11011 return operand_equal_p (arg0, arg1, 0);
11012 }
11013
11014 /* Returns number of zeros at the end of binary representation of X.
11015
11016 ??? Use ffs if available? */
11017
11018 tree
11019 num_ending_zeros (const_tree x)
11020 {
11021 unsigned HOST_WIDE_INT fr, nfr;
11022 unsigned num, abits;
11023 tree type = TREE_TYPE (x);
11024
11025 if (TREE_INT_CST_LOW (x) == 0)
11026 {
11027 num = HOST_BITS_PER_WIDE_INT;
11028 fr = TREE_INT_CST_HIGH (x);
11029 }
11030 else
11031 {
11032 num = 0;
11033 fr = TREE_INT_CST_LOW (x);
11034 }
11035
11036 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
11037 {
11038 nfr = fr >> abits;
11039 if (nfr << abits == fr)
11040 {
11041 num += abits;
11042 fr = nfr;
11043 }
11044 }
11045
11046 if (num > TYPE_PRECISION (type))
11047 num = TYPE_PRECISION (type);
11048
11049 return build_int_cst_type (type, num);
11050 }
11051
11052
11053 #define WALK_SUBTREE(NODE) \
11054 do \
11055 { \
11056 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
11057 if (result) \
11058 return result; \
11059 } \
11060 while (0)
11061
11062 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11063 be walked whenever a type is seen in the tree. Rest of operands and return
11064 value are as for walk_tree. */
11065
11066 static tree
11067 walk_type_fields (tree type, walk_tree_fn func, void *data,
11068 struct pointer_set_t *pset, walk_tree_lh lh)
11069 {
11070 tree result = NULL_TREE;
11071
11072 switch (TREE_CODE (type))
11073 {
11074 case POINTER_TYPE:
11075 case REFERENCE_TYPE:
11076 /* We have to worry about mutually recursive pointers. These can't
11077 be written in C. They can in Ada. It's pathological, but
11078 there's an ACATS test (c38102a) that checks it. Deal with this
11079 by checking if we're pointing to another pointer, that one
11080 points to another pointer, that one does too, and we have no htab.
11081 If so, get a hash table. We check three levels deep to avoid
11082 the cost of the hash table if we don't need one. */
11083 if (POINTER_TYPE_P (TREE_TYPE (type))
11084 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
11085 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
11086 && !pset)
11087 {
11088 result = walk_tree_without_duplicates (&TREE_TYPE (type),
11089 func, data);
11090 if (result)
11091 return result;
11092
11093 break;
11094 }
11095
11096 /* ... fall through ... */
11097
11098 case COMPLEX_TYPE:
11099 WALK_SUBTREE (TREE_TYPE (type));
11100 break;
11101
11102 case METHOD_TYPE:
11103 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
11104
11105 /* Fall through. */
11106
11107 case FUNCTION_TYPE:
11108 WALK_SUBTREE (TREE_TYPE (type));
11109 {
11110 tree arg;
11111
11112 /* We never want to walk into default arguments. */
11113 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
11114 WALK_SUBTREE (TREE_VALUE (arg));
11115 }
11116 break;
11117
11118 case ARRAY_TYPE:
11119 /* Don't follow this nodes's type if a pointer for fear that
11120 we'll have infinite recursion. If we have a PSET, then we
11121 need not fear. */
11122 if (pset
11123 || (!POINTER_TYPE_P (TREE_TYPE (type))
11124 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
11125 WALK_SUBTREE (TREE_TYPE (type));
11126 WALK_SUBTREE (TYPE_DOMAIN (type));
11127 break;
11128
11129 case OFFSET_TYPE:
11130 WALK_SUBTREE (TREE_TYPE (type));
11131 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
11132 break;
11133
11134 default:
11135 break;
11136 }
11137
11138 return NULL_TREE;
11139 }
11140
11141 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
11142 called with the DATA and the address of each sub-tree. If FUNC returns a
11143 non-NULL value, the traversal is stopped, and the value returned by FUNC
11144 is returned. If PSET is non-NULL it is used to record the nodes visited,
11145 and to avoid visiting a node more than once. */
11146
11147 tree
11148 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
11149 struct pointer_set_t *pset, walk_tree_lh lh)
11150 {
11151 enum tree_code code;
11152 int walk_subtrees;
11153 tree result;
11154
11155 #define WALK_SUBTREE_TAIL(NODE) \
11156 do \
11157 { \
11158 tp = & (NODE); \
11159 goto tail_recurse; \
11160 } \
11161 while (0)
11162
11163 tail_recurse:
11164 /* Skip empty subtrees. */
11165 if (!*tp)
11166 return NULL_TREE;
11167
11168 /* Don't walk the same tree twice, if the user has requested
11169 that we avoid doing so. */
11170 if (pset && pointer_set_insert (pset, *tp))
11171 return NULL_TREE;
11172
11173 /* Call the function. */
11174 walk_subtrees = 1;
11175 result = (*func) (tp, &walk_subtrees, data);
11176
11177 /* If we found something, return it. */
11178 if (result)
11179 return result;
11180
11181 code = TREE_CODE (*tp);
11182
11183 /* Even if we didn't, FUNC may have decided that there was nothing
11184 interesting below this point in the tree. */
11185 if (!walk_subtrees)
11186 {
11187 /* But we still need to check our siblings. */
11188 if (code == TREE_LIST)
11189 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11190 else if (code == OMP_CLAUSE)
11191 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11192 else
11193 return NULL_TREE;
11194 }
11195
11196 if (lh)
11197 {
11198 result = (*lh) (tp, &walk_subtrees, func, data, pset);
11199 if (result || !walk_subtrees)
11200 return result;
11201 }
11202
11203 switch (code)
11204 {
11205 case ERROR_MARK:
11206 case IDENTIFIER_NODE:
11207 case INTEGER_CST:
11208 case REAL_CST:
11209 case FIXED_CST:
11210 case VECTOR_CST:
11211 case STRING_CST:
11212 case BLOCK:
11213 case PLACEHOLDER_EXPR:
11214 case SSA_NAME:
11215 case FIELD_DECL:
11216 case RESULT_DECL:
11217 /* None of these have subtrees other than those already walked
11218 above. */
11219 break;
11220
11221 case TREE_LIST:
11222 WALK_SUBTREE (TREE_VALUE (*tp));
11223 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11224 break;
11225
11226 case TREE_VEC:
11227 {
11228 int len = TREE_VEC_LENGTH (*tp);
11229
11230 if (len == 0)
11231 break;
11232
11233 /* Walk all elements but the first. */
11234 while (--len)
11235 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
11236
11237 /* Now walk the first one as a tail call. */
11238 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
11239 }
11240
11241 case COMPLEX_CST:
11242 WALK_SUBTREE (TREE_REALPART (*tp));
11243 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
11244
11245 case CONSTRUCTOR:
11246 {
11247 unsigned HOST_WIDE_INT idx;
11248 constructor_elt *ce;
11249
11250 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
11251 idx++)
11252 WALK_SUBTREE (ce->value);
11253 }
11254 break;
11255
11256 case SAVE_EXPR:
11257 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
11258
11259 case BIND_EXPR:
11260 {
11261 tree decl;
11262 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11263 {
11264 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11265 into declarations that are just mentioned, rather than
11266 declared; they don't really belong to this part of the tree.
11267 And, we can see cycles: the initializer for a declaration
11268 can refer to the declaration itself. */
11269 WALK_SUBTREE (DECL_INITIAL (decl));
11270 WALK_SUBTREE (DECL_SIZE (decl));
11271 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11272 }
11273 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11274 }
11275
11276 case STATEMENT_LIST:
11277 {
11278 tree_stmt_iterator i;
11279 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11280 WALK_SUBTREE (*tsi_stmt_ptr (i));
11281 }
11282 break;
11283
11284 case OMP_CLAUSE:
11285 switch (OMP_CLAUSE_CODE (*tp))
11286 {
11287 case OMP_CLAUSE_PRIVATE:
11288 case OMP_CLAUSE_SHARED:
11289 case OMP_CLAUSE_FIRSTPRIVATE:
11290 case OMP_CLAUSE_COPYIN:
11291 case OMP_CLAUSE_COPYPRIVATE:
11292 case OMP_CLAUSE_FINAL:
11293 case OMP_CLAUSE_IF:
11294 case OMP_CLAUSE_NUM_THREADS:
11295 case OMP_CLAUSE_SCHEDULE:
11296 case OMP_CLAUSE_UNIFORM:
11297 case OMP_CLAUSE_DEPEND:
11298 case OMP_CLAUSE_NUM_TEAMS:
11299 case OMP_CLAUSE_THREAD_LIMIT:
11300 case OMP_CLAUSE_DEVICE:
11301 case OMP_CLAUSE_DIST_SCHEDULE:
11302 case OMP_CLAUSE_SAFELEN:
11303 case OMP_CLAUSE_SIMDLEN:
11304 case OMP_CLAUSE__LOOPTEMP_:
11305 case OMP_CLAUSE__SIMDUID_:
11306 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11307 /* FALLTHRU */
11308
11309 case OMP_CLAUSE_NOWAIT:
11310 case OMP_CLAUSE_ORDERED:
11311 case OMP_CLAUSE_DEFAULT:
11312 case OMP_CLAUSE_UNTIED:
11313 case OMP_CLAUSE_MERGEABLE:
11314 case OMP_CLAUSE_PROC_BIND:
11315 case OMP_CLAUSE_INBRANCH:
11316 case OMP_CLAUSE_NOTINBRANCH:
11317 case OMP_CLAUSE_FOR:
11318 case OMP_CLAUSE_PARALLEL:
11319 case OMP_CLAUSE_SECTIONS:
11320 case OMP_CLAUSE_TASKGROUP:
11321 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11322
11323 case OMP_CLAUSE_LASTPRIVATE:
11324 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11325 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11326 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11327
11328 case OMP_CLAUSE_COLLAPSE:
11329 {
11330 int i;
11331 for (i = 0; i < 3; i++)
11332 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11333 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11334 }
11335
11336 case OMP_CLAUSE_ALIGNED:
11337 case OMP_CLAUSE_LINEAR:
11338 case OMP_CLAUSE_FROM:
11339 case OMP_CLAUSE_TO:
11340 case OMP_CLAUSE_MAP:
11341 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11342 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11343 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11344
11345 case OMP_CLAUSE_REDUCTION:
11346 {
11347 int i;
11348 for (i = 0; i < 4; i++)
11349 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11350 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11351 }
11352
11353 default:
11354 gcc_unreachable ();
11355 }
11356 break;
11357
11358 case TARGET_EXPR:
11359 {
11360 int i, len;
11361
11362 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11363 But, we only want to walk once. */
11364 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11365 for (i = 0; i < len; ++i)
11366 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11367 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11368 }
11369
11370 case DECL_EXPR:
11371 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11372 defining. We only want to walk into these fields of a type in this
11373 case and not in the general case of a mere reference to the type.
11374
11375 The criterion is as follows: if the field can be an expression, it
11376 must be walked only here. This should be in keeping with the fields
11377 that are directly gimplified in gimplify_type_sizes in order for the
11378 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11379 variable-sized types.
11380
11381 Note that DECLs get walked as part of processing the BIND_EXPR. */
11382 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11383 {
11384 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11385 if (TREE_CODE (*type_p) == ERROR_MARK)
11386 return NULL_TREE;
11387
11388 /* Call the function for the type. See if it returns anything or
11389 doesn't want us to continue. If we are to continue, walk both
11390 the normal fields and those for the declaration case. */
11391 result = (*func) (type_p, &walk_subtrees, data);
11392 if (result || !walk_subtrees)
11393 return result;
11394
11395 /* But do not walk a pointed-to type since it may itself need to
11396 be walked in the declaration case if it isn't anonymous. */
11397 if (!POINTER_TYPE_P (*type_p))
11398 {
11399 result = walk_type_fields (*type_p, func, data, pset, lh);
11400 if (result)
11401 return result;
11402 }
11403
11404 /* If this is a record type, also walk the fields. */
11405 if (RECORD_OR_UNION_TYPE_P (*type_p))
11406 {
11407 tree field;
11408
11409 for (field = TYPE_FIELDS (*type_p); field;
11410 field = DECL_CHAIN (field))
11411 {
11412 /* We'd like to look at the type of the field, but we can
11413 easily get infinite recursion. So assume it's pointed
11414 to elsewhere in the tree. Also, ignore things that
11415 aren't fields. */
11416 if (TREE_CODE (field) != FIELD_DECL)
11417 continue;
11418
11419 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11420 WALK_SUBTREE (DECL_SIZE (field));
11421 WALK_SUBTREE (DECL_SIZE_UNIT (field));
11422 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
11423 WALK_SUBTREE (DECL_QUALIFIER (field));
11424 }
11425 }
11426
11427 /* Same for scalar types. */
11428 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
11429 || TREE_CODE (*type_p) == ENUMERAL_TYPE
11430 || TREE_CODE (*type_p) == INTEGER_TYPE
11431 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
11432 || TREE_CODE (*type_p) == REAL_TYPE)
11433 {
11434 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
11435 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
11436 }
11437
11438 WALK_SUBTREE (TYPE_SIZE (*type_p));
11439 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
11440 }
11441 /* FALLTHRU */
11442
11443 default:
11444 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11445 {
11446 int i, len;
11447
11448 /* Walk over all the sub-trees of this operand. */
11449 len = TREE_OPERAND_LENGTH (*tp);
11450
11451 /* Go through the subtrees. We need to do this in forward order so
11452 that the scope of a FOR_EXPR is handled properly. */
11453 if (len)
11454 {
11455 for (i = 0; i < len - 1; ++i)
11456 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11457 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
11458 }
11459 }
11460 /* If this is a type, walk the needed fields in the type. */
11461 else if (TYPE_P (*tp))
11462 return walk_type_fields (*tp, func, data, pset, lh);
11463 break;
11464 }
11465
11466 /* We didn't find what we were looking for. */
11467 return NULL_TREE;
11468
11469 #undef WALK_SUBTREE_TAIL
11470 }
11471 #undef WALK_SUBTREE
11472
11473 /* Like walk_tree, but does not walk duplicate nodes more than once. */
11474
11475 tree
11476 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11477 walk_tree_lh lh)
11478 {
11479 tree result;
11480 struct pointer_set_t *pset;
11481
11482 pset = pointer_set_create ();
11483 result = walk_tree_1 (tp, func, data, pset, lh);
11484 pointer_set_destroy (pset);
11485 return result;
11486 }
11487
11488
11489 tree
11490 tree_block (tree t)
11491 {
11492 char const c = TREE_CODE_CLASS (TREE_CODE (t));
11493
11494 if (IS_EXPR_CODE_CLASS (c))
11495 return LOCATION_BLOCK (t->exp.locus);
11496 gcc_unreachable ();
11497 return NULL;
11498 }
11499
11500 void
11501 tree_set_block (tree t, tree b)
11502 {
11503 char const c = TREE_CODE_CLASS (TREE_CODE (t));
11504
11505 if (IS_EXPR_CODE_CLASS (c))
11506 {
11507 if (b)
11508 t->exp.locus = COMBINE_LOCATION_DATA (line_table, t->exp.locus, b);
11509 else
11510 t->exp.locus = LOCATION_LOCUS (t->exp.locus);
11511 }
11512 else
11513 gcc_unreachable ();
11514 }
11515
11516 /* Create a nameless artificial label and put it in the current
11517 function context. The label has a location of LOC. Returns the
11518 newly created label. */
11519
11520 tree
11521 create_artificial_label (location_t loc)
11522 {
11523 tree lab = build_decl (loc,
11524 LABEL_DECL, NULL_TREE, void_type_node);
11525
11526 DECL_ARTIFICIAL (lab) = 1;
11527 DECL_IGNORED_P (lab) = 1;
11528 DECL_CONTEXT (lab) = current_function_decl;
11529 return lab;
11530 }
11531
11532 /* Given a tree, try to return a useful variable name that we can use
11533 to prefix a temporary that is being assigned the value of the tree.
11534 I.E. given <temp> = &A, return A. */
11535
11536 const char *
11537 get_name (tree t)
11538 {
11539 tree stripped_decl;
11540
11541 stripped_decl = t;
11542 STRIP_NOPS (stripped_decl);
11543 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11544 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11545 else if (TREE_CODE (stripped_decl) == SSA_NAME)
11546 {
11547 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11548 if (!name)
11549 return NULL;
11550 return IDENTIFIER_POINTER (name);
11551 }
11552 else
11553 {
11554 switch (TREE_CODE (stripped_decl))
11555 {
11556 case ADDR_EXPR:
11557 return get_name (TREE_OPERAND (stripped_decl, 0));
11558 default:
11559 return NULL;
11560 }
11561 }
11562 }
11563
11564 /* Return true if TYPE has a variable argument list. */
11565
11566 bool
11567 stdarg_p (const_tree fntype)
11568 {
11569 function_args_iterator args_iter;
11570 tree n = NULL_TREE, t;
11571
11572 if (!fntype)
11573 return false;
11574
11575 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
11576 {
11577 n = t;
11578 }
11579
11580 return n != NULL_TREE && n != void_type_node;
11581 }
11582
11583 /* Return true if TYPE has a prototype. */
11584
11585 bool
11586 prototype_p (tree fntype)
11587 {
11588 tree t;
11589
11590 gcc_assert (fntype != NULL_TREE);
11591
11592 t = TYPE_ARG_TYPES (fntype);
11593 return (t != NULL_TREE);
11594 }
11595
11596 /* If BLOCK is inlined from an __attribute__((__artificial__))
11597 routine, return pointer to location from where it has been
11598 called. */
11599 location_t *
11600 block_nonartificial_location (tree block)
11601 {
11602 location_t *ret = NULL;
11603
11604 while (block && TREE_CODE (block) == BLOCK
11605 && BLOCK_ABSTRACT_ORIGIN (block))
11606 {
11607 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11608
11609 while (TREE_CODE (ao) == BLOCK
11610 && BLOCK_ABSTRACT_ORIGIN (ao)
11611 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11612 ao = BLOCK_ABSTRACT_ORIGIN (ao);
11613
11614 if (TREE_CODE (ao) == FUNCTION_DECL)
11615 {
11616 /* If AO is an artificial inline, point RET to the
11617 call site locus at which it has been inlined and continue
11618 the loop, in case AO's caller is also an artificial
11619 inline. */
11620 if (DECL_DECLARED_INLINE_P (ao)
11621 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11622 ret = &BLOCK_SOURCE_LOCATION (block);
11623 else
11624 break;
11625 }
11626 else if (TREE_CODE (ao) != BLOCK)
11627 break;
11628
11629 block = BLOCK_SUPERCONTEXT (block);
11630 }
11631 return ret;
11632 }
11633
11634
11635 /* If EXP is inlined from an __attribute__((__artificial__))
11636 function, return the location of the original call expression. */
11637
11638 location_t
11639 tree_nonartificial_location (tree exp)
11640 {
11641 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11642
11643 if (loc)
11644 return *loc;
11645 else
11646 return EXPR_LOCATION (exp);
11647 }
11648
11649
11650 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11651 nodes. */
11652
11653 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
11654
11655 static hashval_t
11656 cl_option_hash_hash (const void *x)
11657 {
11658 const_tree const t = (const_tree) x;
11659 const char *p;
11660 size_t i;
11661 size_t len = 0;
11662 hashval_t hash = 0;
11663
11664 if (TREE_CODE (t) == OPTIMIZATION_NODE)
11665 {
11666 p = (const char *)TREE_OPTIMIZATION (t);
11667 len = sizeof (struct cl_optimization);
11668 }
11669
11670 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11671 {
11672 p = (const char *)TREE_TARGET_OPTION (t);
11673 len = sizeof (struct cl_target_option);
11674 }
11675
11676 else
11677 gcc_unreachable ();
11678
11679 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11680 something else. */
11681 for (i = 0; i < len; i++)
11682 if (p[i])
11683 hash = (hash << 4) ^ ((i << 2) | p[i]);
11684
11685 return hash;
11686 }
11687
11688 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11689 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11690 same. */
11691
11692 static int
11693 cl_option_hash_eq (const void *x, const void *y)
11694 {
11695 const_tree const xt = (const_tree) x;
11696 const_tree const yt = (const_tree) y;
11697 const char *xp;
11698 const char *yp;
11699 size_t len;
11700
11701 if (TREE_CODE (xt) != TREE_CODE (yt))
11702 return 0;
11703
11704 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11705 {
11706 xp = (const char *)TREE_OPTIMIZATION (xt);
11707 yp = (const char *)TREE_OPTIMIZATION (yt);
11708 len = sizeof (struct cl_optimization);
11709 }
11710
11711 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11712 {
11713 xp = (const char *)TREE_TARGET_OPTION (xt);
11714 yp = (const char *)TREE_TARGET_OPTION (yt);
11715 len = sizeof (struct cl_target_option);
11716 }
11717
11718 else
11719 gcc_unreachable ();
11720
11721 return (memcmp (xp, yp, len) == 0);
11722 }
11723
11724 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
11725
11726 tree
11727 build_optimization_node (struct gcc_options *opts)
11728 {
11729 tree t;
11730 void **slot;
11731
11732 /* Use the cache of optimization nodes. */
11733
11734 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11735 opts);
11736
11737 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
11738 t = (tree) *slot;
11739 if (!t)
11740 {
11741 /* Insert this one into the hash table. */
11742 t = cl_optimization_node;
11743 *slot = t;
11744
11745 /* Make a new node for next time round. */
11746 cl_optimization_node = make_node (OPTIMIZATION_NODE);
11747 }
11748
11749 return t;
11750 }
11751
11752 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
11753
11754 tree
11755 build_target_option_node (struct gcc_options *opts)
11756 {
11757 tree t;
11758 void **slot;
11759
11760 /* Use the cache of optimization nodes. */
11761
11762 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
11763 opts);
11764
11765 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
11766 t = (tree) *slot;
11767 if (!t)
11768 {
11769 /* Insert this one into the hash table. */
11770 t = cl_target_option_node;
11771 *slot = t;
11772
11773 /* Make a new node for next time round. */
11774 cl_target_option_node = make_node (TARGET_OPTION_NODE);
11775 }
11776
11777 return t;
11778 }
11779
11780 /* Determine the "ultimate origin" of a block. The block may be an inlined
11781 instance of an inlined instance of a block which is local to an inline
11782 function, so we have to trace all of the way back through the origin chain
11783 to find out what sort of node actually served as the original seed for the
11784 given block. */
11785
11786 tree
11787 block_ultimate_origin (const_tree block)
11788 {
11789 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
11790
11791 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
11792 nodes in the function to point to themselves; ignore that if
11793 we're trying to output the abstract instance of this function. */
11794 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
11795 return NULL_TREE;
11796
11797 if (immediate_origin == NULL_TREE)
11798 return NULL_TREE;
11799 else
11800 {
11801 tree ret_val;
11802 tree lookahead = immediate_origin;
11803
11804 do
11805 {
11806 ret_val = lookahead;
11807 lookahead = (TREE_CODE (ret_val) == BLOCK
11808 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
11809 }
11810 while (lookahead != NULL && lookahead != ret_val);
11811
11812 /* The block's abstract origin chain may not be the *ultimate* origin of
11813 the block. It could lead to a DECL that has an abstract origin set.
11814 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
11815 will give us if it has one). Note that DECL's abstract origins are
11816 supposed to be the most distant ancestor (or so decl_ultimate_origin
11817 claims), so we don't need to loop following the DECL origins. */
11818 if (DECL_P (ret_val))
11819 return DECL_ORIGIN (ret_val);
11820
11821 return ret_val;
11822 }
11823 }
11824
11825 /* Return true if T1 and T2 are equivalent lists. */
11826
11827 bool
11828 list_equal_p (const_tree t1, const_tree t2)
11829 {
11830 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
11831 if (TREE_VALUE (t1) != TREE_VALUE (t2))
11832 return false;
11833 return !t1 && !t2;
11834 }
11835
11836 /* Return true iff conversion in EXP generates no instruction. Mark
11837 it inline so that we fully inline into the stripping functions even
11838 though we have two uses of this function. */
11839
11840 static inline bool
11841 tree_nop_conversion (const_tree exp)
11842 {
11843 tree outer_type, inner_type;
11844
11845 if (!CONVERT_EXPR_P (exp)
11846 && TREE_CODE (exp) != NON_LVALUE_EXPR)
11847 return false;
11848 if (TREE_OPERAND (exp, 0) == error_mark_node)
11849 return false;
11850
11851 outer_type = TREE_TYPE (exp);
11852 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11853
11854 if (!inner_type)
11855 return false;
11856
11857 /* Use precision rather then machine mode when we can, which gives
11858 the correct answer even for submode (bit-field) types. */
11859 if ((INTEGRAL_TYPE_P (outer_type)
11860 || POINTER_TYPE_P (outer_type)
11861 || TREE_CODE (outer_type) == OFFSET_TYPE)
11862 && (INTEGRAL_TYPE_P (inner_type)
11863 || POINTER_TYPE_P (inner_type)
11864 || TREE_CODE (inner_type) == OFFSET_TYPE))
11865 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
11866
11867 /* Otherwise fall back on comparing machine modes (e.g. for
11868 aggregate types, floats). */
11869 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
11870 }
11871
11872 /* Return true iff conversion in EXP generates no instruction. Don't
11873 consider conversions changing the signedness. */
11874
11875 static bool
11876 tree_sign_nop_conversion (const_tree exp)
11877 {
11878 tree outer_type, inner_type;
11879
11880 if (!tree_nop_conversion (exp))
11881 return false;
11882
11883 outer_type = TREE_TYPE (exp);
11884 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11885
11886 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11887 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11888 }
11889
11890 /* Strip conversions from EXP according to tree_nop_conversion and
11891 return the resulting expression. */
11892
11893 tree
11894 tree_strip_nop_conversions (tree exp)
11895 {
11896 while (tree_nop_conversion (exp))
11897 exp = TREE_OPERAND (exp, 0);
11898 return exp;
11899 }
11900
11901 /* Strip conversions from EXP according to tree_sign_nop_conversion
11902 and return the resulting expression. */
11903
11904 tree
11905 tree_strip_sign_nop_conversions (tree exp)
11906 {
11907 while (tree_sign_nop_conversion (exp))
11908 exp = TREE_OPERAND (exp, 0);
11909 return exp;
11910 }
11911
11912 /* Avoid any floating point extensions from EXP. */
11913 tree
11914 strip_float_extensions (tree exp)
11915 {
11916 tree sub, expt, subt;
11917
11918 /* For floating point constant look up the narrowest type that can hold
11919 it properly and handle it like (type)(narrowest_type)constant.
11920 This way we can optimize for instance a=a*2.0 where "a" is float
11921 but 2.0 is double constant. */
11922 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
11923 {
11924 REAL_VALUE_TYPE orig;
11925 tree type = NULL;
11926
11927 orig = TREE_REAL_CST (exp);
11928 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
11929 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
11930 type = float_type_node;
11931 else if (TYPE_PRECISION (TREE_TYPE (exp))
11932 > TYPE_PRECISION (double_type_node)
11933 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
11934 type = double_type_node;
11935 if (type)
11936 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
11937 }
11938
11939 if (!CONVERT_EXPR_P (exp))
11940 return exp;
11941
11942 sub = TREE_OPERAND (exp, 0);
11943 subt = TREE_TYPE (sub);
11944 expt = TREE_TYPE (exp);
11945
11946 if (!FLOAT_TYPE_P (subt))
11947 return exp;
11948
11949 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
11950 return exp;
11951
11952 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
11953 return exp;
11954
11955 return strip_float_extensions (sub);
11956 }
11957
11958 /* Strip out all handled components that produce invariant
11959 offsets. */
11960
11961 const_tree
11962 strip_invariant_refs (const_tree op)
11963 {
11964 while (handled_component_p (op))
11965 {
11966 switch (TREE_CODE (op))
11967 {
11968 case ARRAY_REF:
11969 case ARRAY_RANGE_REF:
11970 if (!is_gimple_constant (TREE_OPERAND (op, 1))
11971 || TREE_OPERAND (op, 2) != NULL_TREE
11972 || TREE_OPERAND (op, 3) != NULL_TREE)
11973 return NULL;
11974 break;
11975
11976 case COMPONENT_REF:
11977 if (TREE_OPERAND (op, 2) != NULL_TREE)
11978 return NULL;
11979 break;
11980
11981 default:;
11982 }
11983 op = TREE_OPERAND (op, 0);
11984 }
11985
11986 return op;
11987 }
11988
11989 static GTY(()) tree gcc_eh_personality_decl;
11990
11991 /* Return the GCC personality function decl. */
11992
11993 tree
11994 lhd_gcc_personality (void)
11995 {
11996 if (!gcc_eh_personality_decl)
11997 gcc_eh_personality_decl = build_personality_function ("gcc");
11998 return gcc_eh_personality_decl;
11999 }
12000
12001 /* For languages with One Definition Rule, work out if
12002 trees are actually the same even if the tree representation
12003 differs. This handles only decls appearing in TYPE_NAME
12004 and TYPE_CONTEXT. That is NAMESPACE_DECL, TYPE_DECL,
12005 RECORD_TYPE and IDENTIFIER_NODE. */
12006
12007 static bool
12008 same_for_odr (tree t1, tree t2)
12009 {
12010 if (t1 == t2)
12011 return true;
12012 if (!t1 || !t2)
12013 return false;
12014 /* C and C++ FEs differ by using IDENTIFIER_NODE and TYPE_DECL. */
12015 if (TREE_CODE (t1) == IDENTIFIER_NODE
12016 && TREE_CODE (t2) == TYPE_DECL
12017 && DECL_FILE_SCOPE_P (t1))
12018 {
12019 t2 = DECL_NAME (t2);
12020 gcc_assert (TREE_CODE (t2) == IDENTIFIER_NODE);
12021 }
12022 if (TREE_CODE (t2) == IDENTIFIER_NODE
12023 && TREE_CODE (t1) == TYPE_DECL
12024 && DECL_FILE_SCOPE_P (t2))
12025 {
12026 t1 = DECL_NAME (t1);
12027 gcc_assert (TREE_CODE (t1) == IDENTIFIER_NODE);
12028 }
12029 if (TREE_CODE (t1) != TREE_CODE (t2))
12030 return false;
12031 if (TYPE_P (t1))
12032 return types_same_for_odr (t1, t2);
12033 if (DECL_P (t1))
12034 return decls_same_for_odr (t1, t2);
12035 return false;
12036 }
12037
12038 /* For languages with One Definition Rule, work out if
12039 decls are actually the same even if the tree representation
12040 differs. This handles only decls appearing in TYPE_NAME
12041 and TYPE_CONTEXT. That is NAMESPACE_DECL, TYPE_DECL,
12042 RECORD_TYPE and IDENTIFIER_NODE. */
12043
12044 static bool
12045 decls_same_for_odr (tree decl1, tree decl2)
12046 {
12047 if (decl1 && TREE_CODE (decl1) == TYPE_DECL
12048 && DECL_ORIGINAL_TYPE (decl1))
12049 decl1 = DECL_ORIGINAL_TYPE (decl1);
12050 if (decl2 && TREE_CODE (decl2) == TYPE_DECL
12051 && DECL_ORIGINAL_TYPE (decl2))
12052 decl2 = DECL_ORIGINAL_TYPE (decl2);
12053 if (decl1 == decl2)
12054 return true;
12055 if (!decl1 || !decl2)
12056 return false;
12057 gcc_checking_assert (DECL_P (decl1) && DECL_P (decl2));
12058 if (TREE_CODE (decl1) != TREE_CODE (decl2))
12059 return false;
12060 if (TREE_CODE (decl1) == TRANSLATION_UNIT_DECL)
12061 return true;
12062 if (TREE_CODE (decl1) != NAMESPACE_DECL
12063 && TREE_CODE (decl1) != TYPE_DECL)
12064 return false;
12065 if (!DECL_NAME (decl1))
12066 return false;
12067 gcc_checking_assert (TREE_CODE (DECL_NAME (decl1)) == IDENTIFIER_NODE);
12068 gcc_checking_assert (!DECL_NAME (decl2)
12069 || TREE_CODE (DECL_NAME (decl2)) == IDENTIFIER_NODE);
12070 if (DECL_NAME (decl1) != DECL_NAME (decl2))
12071 return false;
12072 return same_for_odr (DECL_CONTEXT (decl1),
12073 DECL_CONTEXT (decl2));
12074 }
12075
12076 /* For languages with One Definition Rule, work out if
12077 types are same even if the tree representation differs.
12078 This is non-trivial for LTO where minnor differences in
12079 the type representation may have prevented type merging
12080 to merge two copies of otherwise equivalent type. */
12081
12082 bool
12083 types_same_for_odr (tree type1, tree type2)
12084 {
12085 gcc_checking_assert (TYPE_P (type1) && TYPE_P (type2));
12086 type1 = TYPE_MAIN_VARIANT (type1);
12087 type2 = TYPE_MAIN_VARIANT (type2);
12088 if (type1 == type2)
12089 return true;
12090
12091 #ifndef ENABLE_CHECKING
12092 if (!in_lto_p)
12093 return false;
12094 #endif
12095
12096 /* Check for anonymous namespaces. Those have !TREE_PUBLIC
12097 on the corresponding TYPE_STUB_DECL. */
12098 if (type_in_anonymous_namespace_p (type1)
12099 || type_in_anonymous_namespace_p (type2))
12100 return false;
12101 /* When assembler name of virtual table is available, it is
12102 easy to compare types for equivalence. */
12103 if (TYPE_BINFO (type1) && TYPE_BINFO (type2)
12104 && BINFO_VTABLE (TYPE_BINFO (type1))
12105 && BINFO_VTABLE (TYPE_BINFO (type2)))
12106 {
12107 tree v1 = BINFO_VTABLE (TYPE_BINFO (type1));
12108 tree v2 = BINFO_VTABLE (TYPE_BINFO (type2));
12109
12110 if (TREE_CODE (v1) == POINTER_PLUS_EXPR)
12111 {
12112 if (TREE_CODE (v2) != POINTER_PLUS_EXPR
12113 || !operand_equal_p (TREE_OPERAND (v1, 1),
12114 TREE_OPERAND (v2, 1), 0))
12115 return false;
12116 v1 = TREE_OPERAND (TREE_OPERAND (v1, 0), 0);
12117 v2 = TREE_OPERAND (TREE_OPERAND (v2, 0), 0);
12118 }
12119 v1 = DECL_ASSEMBLER_NAME (v1);
12120 v2 = DECL_ASSEMBLER_NAME (v2);
12121 return (v1 == v2);
12122 }
12123
12124 /* FIXME: the code comparing type names consider all instantiations of the
12125 same template to have same name. This is because we have no access
12126 to template parameters. For types with no virtual method tables
12127 we thus can return false positives. At the moment we do not need
12128 to compare types in other scenarios than devirtualization. */
12129
12130 /* If types are not structuraly same, do not bother to contnue.
12131 Match in the remainder of code would mean ODR violation. */
12132 if (!types_compatible_p (type1, type2))
12133 return false;
12134 if (!TYPE_NAME (type1))
12135 return false;
12136 if (!decls_same_for_odr (TYPE_NAME (type1), TYPE_NAME (type2)))
12137 return false;
12138 if (!same_for_odr (TYPE_CONTEXT (type1), TYPE_CONTEXT (type2)))
12139 return false;
12140 /* When not in LTO the MAIN_VARIANT check should be the same. */
12141 gcc_assert (in_lto_p);
12142
12143 return true;
12144 }
12145
12146 /* TARGET is a call target of GIMPLE call statement
12147 (obtained by gimple_call_fn). Return true if it is
12148 OBJ_TYPE_REF representing an virtual call of C++ method.
12149 (As opposed to OBJ_TYPE_REF representing objc calls
12150 through a cast where middle-end devirtualization machinery
12151 can't apply.) */
12152
12153 bool
12154 virtual_method_call_p (tree target)
12155 {
12156 if (TREE_CODE (target) != OBJ_TYPE_REF)
12157 return false;
12158 target = TREE_TYPE (target);
12159 gcc_checking_assert (TREE_CODE (target) == POINTER_TYPE);
12160 target = TREE_TYPE (target);
12161 if (TREE_CODE (target) == FUNCTION_TYPE)
12162 return false;
12163 gcc_checking_assert (TREE_CODE (target) == METHOD_TYPE);
12164 return true;
12165 }
12166
12167 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
12168
12169 tree
12170 obj_type_ref_class (tree ref)
12171 {
12172 gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
12173 ref = TREE_TYPE (ref);
12174 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12175 ref = TREE_TYPE (ref);
12176 /* We look for type THIS points to. ObjC also builds
12177 OBJ_TYPE_REF with non-method calls, Their first parameter
12178 ID however also corresponds to class type. */
12179 gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
12180 || TREE_CODE (ref) == FUNCTION_TYPE);
12181 ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
12182 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12183 return TREE_TYPE (ref);
12184 }
12185
12186 /* Return true if T is in anonymous namespace. */
12187
12188 bool
12189 type_in_anonymous_namespace_p (tree t)
12190 {
12191 return (TYPE_STUB_DECL (t) && !TREE_PUBLIC (TYPE_STUB_DECL (t)));
12192 }
12193
12194 /* Try to find a base info of BINFO that would have its field decl at offset
12195 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
12196 found, return, otherwise return NULL_TREE. */
12197
12198 tree
12199 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
12200 {
12201 tree type = BINFO_TYPE (binfo);
12202
12203 while (true)
12204 {
12205 HOST_WIDE_INT pos, size;
12206 tree fld;
12207 int i;
12208
12209 if (types_same_for_odr (type, expected_type))
12210 return binfo;
12211 if (offset < 0)
12212 return NULL_TREE;
12213
12214 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
12215 {
12216 if (TREE_CODE (fld) != FIELD_DECL)
12217 continue;
12218
12219 pos = int_bit_position (fld);
12220 size = tree_low_cst (DECL_SIZE (fld), 1);
12221 if (pos <= offset && (pos + size) > offset)
12222 break;
12223 }
12224 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
12225 return NULL_TREE;
12226
12227 if (!DECL_ARTIFICIAL (fld))
12228 {
12229 binfo = TYPE_BINFO (TREE_TYPE (fld));
12230 if (!binfo)
12231 return NULL_TREE;
12232 }
12233 /* Offset 0 indicates the primary base, whose vtable contents are
12234 represented in the binfo for the derived class. */
12235 else if (offset != 0)
12236 {
12237 tree base_binfo, found_binfo = NULL_TREE;
12238 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12239 if (types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
12240 {
12241 found_binfo = base_binfo;
12242 break;
12243 }
12244 if (!found_binfo)
12245 return NULL_TREE;
12246 binfo = found_binfo;
12247 }
12248
12249 type = TREE_TYPE (fld);
12250 offset -= pos;
12251 }
12252 }
12253
12254 /* Returns true if X is a typedef decl. */
12255
12256 bool
12257 is_typedef_decl (tree x)
12258 {
12259 return (x && TREE_CODE (x) == TYPE_DECL
12260 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
12261 }
12262
12263 /* Returns true iff TYPE is a type variant created for a typedef. */
12264
12265 bool
12266 typedef_variant_p (tree type)
12267 {
12268 return is_typedef_decl (TYPE_NAME (type));
12269 }
12270
12271 /* Warn about a use of an identifier which was marked deprecated. */
12272 void
12273 warn_deprecated_use (tree node, tree attr)
12274 {
12275 const char *msg;
12276
12277 if (node == 0 || !warn_deprecated_decl)
12278 return;
12279
12280 if (!attr)
12281 {
12282 if (DECL_P (node))
12283 attr = DECL_ATTRIBUTES (node);
12284 else if (TYPE_P (node))
12285 {
12286 tree decl = TYPE_STUB_DECL (node);
12287 if (decl)
12288 attr = lookup_attribute ("deprecated",
12289 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
12290 }
12291 }
12292
12293 if (attr)
12294 attr = lookup_attribute ("deprecated", attr);
12295
12296 if (attr)
12297 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
12298 else
12299 msg = NULL;
12300
12301 if (DECL_P (node))
12302 {
12303 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
12304 if (msg)
12305 warning (OPT_Wdeprecated_declarations,
12306 "%qD is deprecated (declared at %r%s:%d%R): %s",
12307 node, "locus", xloc.file, xloc.line, msg);
12308 else
12309 warning (OPT_Wdeprecated_declarations,
12310 "%qD is deprecated (declared at %r%s:%d%R)",
12311 node, "locus", xloc.file, xloc.line);
12312 }
12313 else if (TYPE_P (node))
12314 {
12315 tree what = NULL_TREE;
12316 tree decl = TYPE_STUB_DECL (node);
12317
12318 if (TYPE_NAME (node))
12319 {
12320 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
12321 what = TYPE_NAME (node);
12322 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
12323 && DECL_NAME (TYPE_NAME (node)))
12324 what = DECL_NAME (TYPE_NAME (node));
12325 }
12326
12327 if (decl)
12328 {
12329 expanded_location xloc
12330 = expand_location (DECL_SOURCE_LOCATION (decl));
12331 if (what)
12332 {
12333 if (msg)
12334 warning (OPT_Wdeprecated_declarations,
12335 "%qE is deprecated (declared at %r%s:%d%R): %s",
12336 what, "locus", xloc.file, xloc.line, msg);
12337 else
12338 warning (OPT_Wdeprecated_declarations,
12339 "%qE is deprecated (declared at %r%s:%d%R)",
12340 what, "locus", xloc.file, xloc.line);
12341 }
12342 else
12343 {
12344 if (msg)
12345 warning (OPT_Wdeprecated_declarations,
12346 "type is deprecated (declared at %r%s:%d%R): %s",
12347 "locus", xloc.file, xloc.line, msg);
12348 else
12349 warning (OPT_Wdeprecated_declarations,
12350 "type is deprecated (declared at %r%s:%d%R)",
12351 "locus", xloc.file, xloc.line);
12352 }
12353 }
12354 else
12355 {
12356 if (what)
12357 {
12358 if (msg)
12359 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
12360 what, msg);
12361 else
12362 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
12363 }
12364 else
12365 {
12366 if (msg)
12367 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
12368 msg);
12369 else
12370 warning (OPT_Wdeprecated_declarations, "type is deprecated");
12371 }
12372 }
12373 }
12374 }
12375
12376 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12377 somewhere in it. */
12378
12379 bool
12380 contains_bitfld_component_ref_p (const_tree ref)
12381 {
12382 while (handled_component_p (ref))
12383 {
12384 if (TREE_CODE (ref) == COMPONENT_REF
12385 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12386 return true;
12387 ref = TREE_OPERAND (ref, 0);
12388 }
12389
12390 return false;
12391 }
12392
12393 /* Try to determine whether a TRY_CATCH expression can fall through.
12394 This is a subroutine of block_may_fallthru. */
12395
12396 static bool
12397 try_catch_may_fallthru (const_tree stmt)
12398 {
12399 tree_stmt_iterator i;
12400
12401 /* If the TRY block can fall through, the whole TRY_CATCH can
12402 fall through. */
12403 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
12404 return true;
12405
12406 i = tsi_start (TREE_OPERAND (stmt, 1));
12407 switch (TREE_CODE (tsi_stmt (i)))
12408 {
12409 case CATCH_EXPR:
12410 /* We expect to see a sequence of CATCH_EXPR trees, each with a
12411 catch expression and a body. The whole TRY_CATCH may fall
12412 through iff any of the catch bodies falls through. */
12413 for (; !tsi_end_p (i); tsi_next (&i))
12414 {
12415 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
12416 return true;
12417 }
12418 return false;
12419
12420 case EH_FILTER_EXPR:
12421 /* The exception filter expression only matters if there is an
12422 exception. If the exception does not match EH_FILTER_TYPES,
12423 we will execute EH_FILTER_FAILURE, and we will fall through
12424 if that falls through. If the exception does match
12425 EH_FILTER_TYPES, the stack unwinder will continue up the
12426 stack, so we will not fall through. We don't know whether we
12427 will throw an exception which matches EH_FILTER_TYPES or not,
12428 so we just ignore EH_FILTER_TYPES and assume that we might
12429 throw an exception which doesn't match. */
12430 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
12431
12432 default:
12433 /* This case represents statements to be executed when an
12434 exception occurs. Those statements are implicitly followed
12435 by a RESX statement to resume execution after the exception.
12436 So in this case the TRY_CATCH never falls through. */
12437 return false;
12438 }
12439 }
12440
12441 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
12442 need not be 100% accurate; simply be conservative and return true if we
12443 don't know. This is used only to avoid stupidly generating extra code.
12444 If we're wrong, we'll just delete the extra code later. */
12445
12446 bool
12447 block_may_fallthru (const_tree block)
12448 {
12449 /* This CONST_CAST is okay because expr_last returns its argument
12450 unmodified and we assign it to a const_tree. */
12451 const_tree stmt = expr_last (CONST_CAST_TREE (block));
12452
12453 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
12454 {
12455 case GOTO_EXPR:
12456 case RETURN_EXPR:
12457 /* Easy cases. If the last statement of the block implies
12458 control transfer, then we can't fall through. */
12459 return false;
12460
12461 case SWITCH_EXPR:
12462 /* If SWITCH_LABELS is set, this is lowered, and represents a
12463 branch to a selected label and hence can not fall through.
12464 Otherwise SWITCH_BODY is set, and the switch can fall
12465 through. */
12466 return SWITCH_LABELS (stmt) == NULL_TREE;
12467
12468 case COND_EXPR:
12469 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
12470 return true;
12471 return block_may_fallthru (COND_EXPR_ELSE (stmt));
12472
12473 case BIND_EXPR:
12474 return block_may_fallthru (BIND_EXPR_BODY (stmt));
12475
12476 case TRY_CATCH_EXPR:
12477 return try_catch_may_fallthru (stmt);
12478
12479 case TRY_FINALLY_EXPR:
12480 /* The finally clause is always executed after the try clause,
12481 so if it does not fall through, then the try-finally will not
12482 fall through. Otherwise, if the try clause does not fall
12483 through, then when the finally clause falls through it will
12484 resume execution wherever the try clause was going. So the
12485 whole try-finally will only fall through if both the try
12486 clause and the finally clause fall through. */
12487 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
12488 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
12489
12490 case MODIFY_EXPR:
12491 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
12492 stmt = TREE_OPERAND (stmt, 1);
12493 else
12494 return true;
12495 /* FALLTHRU */
12496
12497 case CALL_EXPR:
12498 /* Functions that do not return do not fall through. */
12499 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
12500
12501 case CLEANUP_POINT_EXPR:
12502 return block_may_fallthru (TREE_OPERAND (stmt, 0));
12503
12504 case TARGET_EXPR:
12505 return block_may_fallthru (TREE_OPERAND (stmt, 1));
12506
12507 case ERROR_MARK:
12508 return true;
12509
12510 default:
12511 return lang_hooks.block_may_fallthru (stmt);
12512 }
12513 }
12514
12515 /* True if we are using EH to handle cleanups. */
12516 static bool using_eh_for_cleanups_flag = false;
12517
12518 /* This routine is called from front ends to indicate eh should be used for
12519 cleanups. */
12520 void
12521 using_eh_for_cleanups (void)
12522 {
12523 using_eh_for_cleanups_flag = true;
12524 }
12525
12526 /* Query whether EH is used for cleanups. */
12527 bool
12528 using_eh_for_cleanups_p (void)
12529 {
12530 return using_eh_for_cleanups_flag;
12531 }
12532
12533 /* Wrapper for tree_code_name to ensure that tree code is valid */
12534 const char *
12535 get_tree_code_name (enum tree_code code)
12536 {
12537 const char *invalid = "<invalid tree code>";
12538
12539 if (code >= MAX_TREE_CODES)
12540 return invalid;
12541
12542 return tree_code_name[code];
12543 }
12544
12545 /* Drops the TREE_OVERFLOW flag from T. */
12546
12547 tree
12548 drop_tree_overflow (tree t)
12549 {
12550 gcc_checking_assert (TREE_OVERFLOW (t));
12551
12552 /* For tree codes with a sharing machinery re-build the result. */
12553 if (TREE_CODE (t) == INTEGER_CST)
12554 return build_int_cst_wide (TREE_TYPE (t),
12555 TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t));
12556
12557 /* Otherwise, as all tcc_constants are possibly shared, copy the node
12558 and drop the flag. */
12559 t = copy_node (t);
12560 TREE_OVERFLOW (t) = 0;
12561 return t;
12562 }
12563
12564 #include "gt-tree.h"