intrinsic.h (gfc_check_selected_real_kind, [...]): Update prototypes.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h"
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "output.h"
45 #include "target.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "tree-pass.h"
54 #include "langhooks-def.h"
55 #include "diagnostic.h"
56 #include "tree-diagnostic.h"
57 #include "tree-pretty-print.h"
58 #include "cgraph.h"
59 #include "timevar.h"
60 #include "except.h"
61 #include "debug.h"
62 #include "intl.h"
63
64 /* Tree code classes. */
65
66 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
67 #define END_OF_BASE_TREE_CODES tcc_exceptional,
68
69 const enum tree_code_class tree_code_type[] = {
70 #include "all-tree.def"
71 };
72
73 #undef DEFTREECODE
74 #undef END_OF_BASE_TREE_CODES
75
76 /* Table indexed by tree code giving number of expression
77 operands beyond the fixed part of the node structure.
78 Not used for types or decls. */
79
80 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
81 #define END_OF_BASE_TREE_CODES 0,
82
83 const unsigned char tree_code_length[] = {
84 #include "all-tree.def"
85 };
86
87 #undef DEFTREECODE
88 #undef END_OF_BASE_TREE_CODES
89
90 /* Names of tree components.
91 Used for printing out the tree and error messages. */
92 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
93 #define END_OF_BASE_TREE_CODES "@dummy",
94
95 const char *const tree_code_name[] = {
96 #include "all-tree.def"
97 };
98
99 #undef DEFTREECODE
100 #undef END_OF_BASE_TREE_CODES
101
102 /* Each tree code class has an associated string representation.
103 These must correspond to the tree_code_class entries. */
104
105 const char *const tree_code_class_strings[] =
106 {
107 "exceptional",
108 "constant",
109 "type",
110 "declaration",
111 "reference",
112 "comparison",
113 "unary",
114 "binary",
115 "statement",
116 "vl_exp",
117 "expression"
118 };
119
120 /* obstack.[ch] explicitly declined to prototype this. */
121 extern int _obstack_allocated_p (struct obstack *h, void *obj);
122
123 #ifdef GATHER_STATISTICS
124 /* Statistics-gathering stuff. */
125
126 int tree_node_counts[(int) all_kinds];
127 int tree_node_sizes[(int) all_kinds];
128
129 /* Keep in sync with tree.h:enum tree_node_kind. */
130 static const char * const tree_node_kind_names[] = {
131 "decls",
132 "types",
133 "blocks",
134 "stmts",
135 "refs",
136 "exprs",
137 "constants",
138 "identifiers",
139 "perm_tree_lists",
140 "temp_tree_lists",
141 "vecs",
142 "binfos",
143 "ssa names",
144 "constructors",
145 "random kinds",
146 "lang_decl kinds",
147 "lang_type kinds",
148 "omp clauses",
149 };
150 #endif /* GATHER_STATISTICS */
151
152 /* Unique id for next decl created. */
153 static GTY(()) int next_decl_uid;
154 /* Unique id for next type created. */
155 static GTY(()) int next_type_uid = 1;
156 /* Unique id for next debug decl created. Use negative numbers,
157 to catch erroneous uses. */
158 static GTY(()) int next_debug_decl_uid;
159
160 /* Since we cannot rehash a type after it is in the table, we have to
161 keep the hash code. */
162
163 struct GTY(()) type_hash {
164 unsigned long hash;
165 tree type;
166 };
167
168 /* Initial size of the hash table (rounded to next prime). */
169 #define TYPE_HASH_INITIAL_SIZE 1000
170
171 /* Now here is the hash table. When recording a type, it is added to
172 the slot whose index is the hash code. Note that the hash table is
173 used for several kinds of types (function types, array types and
174 array index range types, for now). While all these live in the
175 same table, they are completely independent, and the hash code is
176 computed differently for each of these. */
177
178 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
179 htab_t type_hash_table;
180
181 /* Hash table and temporary node for larger integer const values. */
182 static GTY (()) tree int_cst_node;
183 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
184 htab_t int_cst_hash_table;
185
186 /* Hash table for optimization flags and target option flags. Use the same
187 hash table for both sets of options. Nodes for building the current
188 optimization and target option nodes. The assumption is most of the time
189 the options created will already be in the hash table, so we avoid
190 allocating and freeing up a node repeatably. */
191 static GTY (()) tree cl_optimization_node;
192 static GTY (()) tree cl_target_option_node;
193 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
194 htab_t cl_option_hash_table;
195
196 /* General tree->tree mapping structure for use in hash tables. */
197
198
199 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
200 htab_t debug_expr_for_decl;
201
202 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
203 htab_t value_expr_for_decl;
204
205 static GTY ((if_marked ("tree_priority_map_marked_p"),
206 param_is (struct tree_priority_map)))
207 htab_t init_priority_for_decl;
208
209 static void set_type_quals (tree, int);
210 static int type_hash_eq (const void *, const void *);
211 static hashval_t type_hash_hash (const void *);
212 static hashval_t int_cst_hash_hash (const void *);
213 static int int_cst_hash_eq (const void *, const void *);
214 static hashval_t cl_option_hash_hash (const void *);
215 static int cl_option_hash_eq (const void *, const void *);
216 static void print_type_hash_statistics (void);
217 static void print_debug_expr_statistics (void);
218 static void print_value_expr_statistics (void);
219 static int type_hash_marked_p (const void *);
220 static unsigned int type_hash_list (const_tree, hashval_t);
221 static unsigned int attribute_hash_list (const_tree, hashval_t);
222
223 tree global_trees[TI_MAX];
224 tree integer_types[itk_none];
225
226 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
227
228 /* Number of operands for each OpenMP clause. */
229 unsigned const char omp_clause_num_ops[] =
230 {
231 0, /* OMP_CLAUSE_ERROR */
232 1, /* OMP_CLAUSE_PRIVATE */
233 1, /* OMP_CLAUSE_SHARED */
234 1, /* OMP_CLAUSE_FIRSTPRIVATE */
235 2, /* OMP_CLAUSE_LASTPRIVATE */
236 4, /* OMP_CLAUSE_REDUCTION */
237 1, /* OMP_CLAUSE_COPYIN */
238 1, /* OMP_CLAUSE_COPYPRIVATE */
239 1, /* OMP_CLAUSE_IF */
240 1, /* OMP_CLAUSE_NUM_THREADS */
241 1, /* OMP_CLAUSE_SCHEDULE */
242 0, /* OMP_CLAUSE_NOWAIT */
243 0, /* OMP_CLAUSE_ORDERED */
244 0, /* OMP_CLAUSE_DEFAULT */
245 3, /* OMP_CLAUSE_COLLAPSE */
246 0 /* OMP_CLAUSE_UNTIED */
247 };
248
249 const char * const omp_clause_code_name[] =
250 {
251 "error_clause",
252 "private",
253 "shared",
254 "firstprivate",
255 "lastprivate",
256 "reduction",
257 "copyin",
258 "copyprivate",
259 "if",
260 "num_threads",
261 "schedule",
262 "nowait",
263 "ordered",
264 "default",
265 "collapse",
266 "untied"
267 };
268
269
270 /* Return the tree node structure used by tree code CODE. */
271
272 static inline enum tree_node_structure_enum
273 tree_node_structure_for_code (enum tree_code code)
274 {
275 switch (TREE_CODE_CLASS (code))
276 {
277 case tcc_declaration:
278 {
279 switch (code)
280 {
281 case FIELD_DECL:
282 return TS_FIELD_DECL;
283 case PARM_DECL:
284 return TS_PARM_DECL;
285 case VAR_DECL:
286 return TS_VAR_DECL;
287 case LABEL_DECL:
288 return TS_LABEL_DECL;
289 case RESULT_DECL:
290 return TS_RESULT_DECL;
291 case DEBUG_EXPR_DECL:
292 return TS_DECL_WRTL;
293 case CONST_DECL:
294 return TS_CONST_DECL;
295 case TYPE_DECL:
296 return TS_TYPE_DECL;
297 case FUNCTION_DECL:
298 return TS_FUNCTION_DECL;
299 default:
300 return TS_DECL_NON_COMMON;
301 }
302 }
303 case tcc_type:
304 return TS_TYPE;
305 case tcc_reference:
306 case tcc_comparison:
307 case tcc_unary:
308 case tcc_binary:
309 case tcc_expression:
310 case tcc_statement:
311 case tcc_vl_exp:
312 return TS_EXP;
313 default: /* tcc_constant and tcc_exceptional */
314 break;
315 }
316 switch (code)
317 {
318 /* tcc_constant cases. */
319 case INTEGER_CST: return TS_INT_CST;
320 case REAL_CST: return TS_REAL_CST;
321 case FIXED_CST: return TS_FIXED_CST;
322 case COMPLEX_CST: return TS_COMPLEX;
323 case VECTOR_CST: return TS_VECTOR;
324 case STRING_CST: return TS_STRING;
325 /* tcc_exceptional cases. */
326 case ERROR_MARK: return TS_COMMON;
327 case IDENTIFIER_NODE: return TS_IDENTIFIER;
328 case TREE_LIST: return TS_LIST;
329 case TREE_VEC: return TS_VEC;
330 case SSA_NAME: return TS_SSA_NAME;
331 case PLACEHOLDER_EXPR: return TS_COMMON;
332 case STATEMENT_LIST: return TS_STATEMENT_LIST;
333 case BLOCK: return TS_BLOCK;
334 case CONSTRUCTOR: return TS_CONSTRUCTOR;
335 case TREE_BINFO: return TS_BINFO;
336 case OMP_CLAUSE: return TS_OMP_CLAUSE;
337 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
338 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
339
340 default:
341 gcc_unreachable ();
342 }
343 }
344
345
346 /* Initialize tree_contains_struct to describe the hierarchy of tree
347 nodes. */
348
349 static void
350 initialize_tree_contains_struct (void)
351 {
352 unsigned i;
353
354 #define MARK_TS_BASE(C) \
355 do { \
356 tree_contains_struct[C][TS_BASE] = 1; \
357 } while (0)
358
359 #define MARK_TS_COMMON(C) \
360 do { \
361 MARK_TS_BASE (C); \
362 tree_contains_struct[C][TS_COMMON] = 1; \
363 } while (0)
364
365 #define MARK_TS_DECL_MINIMAL(C) \
366 do { \
367 MARK_TS_COMMON (C); \
368 tree_contains_struct[C][TS_DECL_MINIMAL] = 1; \
369 } while (0)
370
371 #define MARK_TS_DECL_COMMON(C) \
372 do { \
373 MARK_TS_DECL_MINIMAL (C); \
374 tree_contains_struct[C][TS_DECL_COMMON] = 1; \
375 } while (0)
376
377 #define MARK_TS_DECL_WRTL(C) \
378 do { \
379 MARK_TS_DECL_COMMON (C); \
380 tree_contains_struct[C][TS_DECL_WRTL] = 1; \
381 } while (0)
382
383 #define MARK_TS_DECL_WITH_VIS(C) \
384 do { \
385 MARK_TS_DECL_WRTL (C); \
386 tree_contains_struct[C][TS_DECL_WITH_VIS] = 1; \
387 } while (0)
388
389 #define MARK_TS_DECL_NON_COMMON(C) \
390 do { \
391 MARK_TS_DECL_WITH_VIS (C); \
392 tree_contains_struct[C][TS_DECL_NON_COMMON] = 1; \
393 } while (0)
394
395 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
396 {
397 enum tree_code code;
398 enum tree_node_structure_enum ts_code;
399
400 code = (enum tree_code) i;
401 ts_code = tree_node_structure_for_code (code);
402
403 /* Mark the TS structure itself. */
404 tree_contains_struct[code][ts_code] = 1;
405
406 /* Mark all the structures that TS is derived from. */
407 switch (ts_code)
408 {
409 case TS_COMMON:
410 MARK_TS_BASE (code);
411 break;
412
413 case TS_INT_CST:
414 case TS_REAL_CST:
415 case TS_FIXED_CST:
416 case TS_VECTOR:
417 case TS_STRING:
418 case TS_COMPLEX:
419 case TS_IDENTIFIER:
420 case TS_DECL_MINIMAL:
421 case TS_TYPE:
422 case TS_LIST:
423 case TS_VEC:
424 case TS_EXP:
425 case TS_SSA_NAME:
426 case TS_BLOCK:
427 case TS_BINFO:
428 case TS_STATEMENT_LIST:
429 case TS_CONSTRUCTOR:
430 case TS_OMP_CLAUSE:
431 case TS_OPTIMIZATION:
432 case TS_TARGET_OPTION:
433 MARK_TS_COMMON (code);
434 break;
435
436 case TS_DECL_COMMON:
437 MARK_TS_DECL_MINIMAL (code);
438 break;
439
440 case TS_DECL_WRTL:
441 MARK_TS_DECL_COMMON (code);
442 break;
443
444 case TS_DECL_NON_COMMON:
445 MARK_TS_DECL_WITH_VIS (code);
446 break;
447
448 case TS_DECL_WITH_VIS:
449 case TS_PARM_DECL:
450 case TS_LABEL_DECL:
451 case TS_RESULT_DECL:
452 case TS_CONST_DECL:
453 MARK_TS_DECL_WRTL (code);
454 break;
455
456 case TS_FIELD_DECL:
457 MARK_TS_DECL_COMMON (code);
458 break;
459
460 case TS_VAR_DECL:
461 MARK_TS_DECL_WITH_VIS (code);
462 break;
463
464 case TS_TYPE_DECL:
465 case TS_FUNCTION_DECL:
466 MARK_TS_DECL_NON_COMMON (code);
467 break;
468
469 default:
470 gcc_unreachable ();
471 }
472 }
473
474 /* Basic consistency checks for attributes used in fold. */
475 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
476 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON]);
477 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
478 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
479 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
480 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
481 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
482 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
483 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
484 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
485 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
486 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
487 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_WRTL]);
488 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
489 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
490 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
491 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
492 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
493 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
494 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
495 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
496 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
497 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
498 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
499 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
500 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
501 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
502 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
503 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
504 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
505 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS]);
506 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
507 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
508 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
509 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
510 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
511 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
512 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
513 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
514 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
515 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
516
517 #undef MARK_TS_BASE
518 #undef MARK_TS_COMMON
519 #undef MARK_TS_DECL_MINIMAL
520 #undef MARK_TS_DECL_COMMON
521 #undef MARK_TS_DECL_WRTL
522 #undef MARK_TS_DECL_WITH_VIS
523 #undef MARK_TS_DECL_NON_COMMON
524 }
525
526
527 /* Init tree.c. */
528
529 void
530 init_ttree (void)
531 {
532 /* Initialize the hash table of types. */
533 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
534 type_hash_eq, 0);
535
536 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
537 tree_decl_map_eq, 0);
538
539 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
540 tree_decl_map_eq, 0);
541 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
542 tree_priority_map_eq, 0);
543
544 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
545 int_cst_hash_eq, NULL);
546
547 int_cst_node = make_node (INTEGER_CST);
548
549 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
550 cl_option_hash_eq, NULL);
551
552 cl_optimization_node = make_node (OPTIMIZATION_NODE);
553 cl_target_option_node = make_node (TARGET_OPTION_NODE);
554
555 /* Initialize the tree_contains_struct array. */
556 initialize_tree_contains_struct ();
557 lang_hooks.init_ts ();
558 }
559
560 \f
561 /* The name of the object as the assembler will see it (but before any
562 translations made by ASM_OUTPUT_LABELREF). Often this is the same
563 as DECL_NAME. It is an IDENTIFIER_NODE. */
564 tree
565 decl_assembler_name (tree decl)
566 {
567 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
568 lang_hooks.set_decl_assembler_name (decl);
569 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
570 }
571
572 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
573
574 bool
575 decl_assembler_name_equal (tree decl, const_tree asmname)
576 {
577 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
578 const char *decl_str;
579 const char *asmname_str;
580 bool test = false;
581
582 if (decl_asmname == asmname)
583 return true;
584
585 decl_str = IDENTIFIER_POINTER (decl_asmname);
586 asmname_str = IDENTIFIER_POINTER (asmname);
587
588
589 /* If the target assembler name was set by the user, things are trickier.
590 We have a leading '*' to begin with. After that, it's arguable what
591 is the correct thing to do with -fleading-underscore. Arguably, we've
592 historically been doing the wrong thing in assemble_alias by always
593 printing the leading underscore. Since we're not changing that, make
594 sure user_label_prefix follows the '*' before matching. */
595 if (decl_str[0] == '*')
596 {
597 size_t ulp_len = strlen (user_label_prefix);
598
599 decl_str ++;
600
601 if (ulp_len == 0)
602 test = true;
603 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
604 decl_str += ulp_len, test=true;
605 else
606 decl_str --;
607 }
608 if (asmname_str[0] == '*')
609 {
610 size_t ulp_len = strlen (user_label_prefix);
611
612 asmname_str ++;
613
614 if (ulp_len == 0)
615 test = true;
616 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
617 asmname_str += ulp_len, test=true;
618 else
619 asmname_str --;
620 }
621
622 if (!test)
623 return false;
624 return strcmp (decl_str, asmname_str) == 0;
625 }
626
627 /* Hash asmnames ignoring the user specified marks. */
628
629 hashval_t
630 decl_assembler_name_hash (const_tree asmname)
631 {
632 if (IDENTIFIER_POINTER (asmname)[0] == '*')
633 {
634 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
635 size_t ulp_len = strlen (user_label_prefix);
636
637 if (ulp_len == 0)
638 ;
639 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
640 decl_str += ulp_len;
641
642 return htab_hash_string (decl_str);
643 }
644
645 return htab_hash_string (IDENTIFIER_POINTER (asmname));
646 }
647
648 /* Compute the number of bytes occupied by a tree with code CODE.
649 This function cannot be used for nodes that have variable sizes,
650 including TREE_VEC, STRING_CST, and CALL_EXPR. */
651 size_t
652 tree_code_size (enum tree_code code)
653 {
654 switch (TREE_CODE_CLASS (code))
655 {
656 case tcc_declaration: /* A decl node */
657 {
658 switch (code)
659 {
660 case FIELD_DECL:
661 return sizeof (struct tree_field_decl);
662 case PARM_DECL:
663 return sizeof (struct tree_parm_decl);
664 case VAR_DECL:
665 return sizeof (struct tree_var_decl);
666 case LABEL_DECL:
667 return sizeof (struct tree_label_decl);
668 case RESULT_DECL:
669 return sizeof (struct tree_result_decl);
670 case CONST_DECL:
671 return sizeof (struct tree_const_decl);
672 case TYPE_DECL:
673 return sizeof (struct tree_type_decl);
674 case FUNCTION_DECL:
675 return sizeof (struct tree_function_decl);
676 case DEBUG_EXPR_DECL:
677 return sizeof (struct tree_decl_with_rtl);
678 default:
679 return sizeof (struct tree_decl_non_common);
680 }
681 }
682
683 case tcc_type: /* a type node */
684 return sizeof (struct tree_type);
685
686 case tcc_reference: /* a reference */
687 case tcc_expression: /* an expression */
688 case tcc_statement: /* an expression with side effects */
689 case tcc_comparison: /* a comparison expression */
690 case tcc_unary: /* a unary arithmetic expression */
691 case tcc_binary: /* a binary arithmetic expression */
692 return (sizeof (struct tree_exp)
693 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
694
695 case tcc_constant: /* a constant */
696 switch (code)
697 {
698 case INTEGER_CST: return sizeof (struct tree_int_cst);
699 case REAL_CST: return sizeof (struct tree_real_cst);
700 case FIXED_CST: return sizeof (struct tree_fixed_cst);
701 case COMPLEX_CST: return sizeof (struct tree_complex);
702 case VECTOR_CST: return sizeof (struct tree_vector);
703 case STRING_CST: gcc_unreachable ();
704 default:
705 return lang_hooks.tree_size (code);
706 }
707
708 case tcc_exceptional: /* something random, like an identifier. */
709 switch (code)
710 {
711 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
712 case TREE_LIST: return sizeof (struct tree_list);
713
714 case ERROR_MARK:
715 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
716
717 case TREE_VEC:
718 case OMP_CLAUSE: gcc_unreachable ();
719
720 case SSA_NAME: return sizeof (struct tree_ssa_name);
721
722 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
723 case BLOCK: return sizeof (struct tree_block);
724 case CONSTRUCTOR: return sizeof (struct tree_constructor);
725 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
726 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
727
728 default:
729 return lang_hooks.tree_size (code);
730 }
731
732 default:
733 gcc_unreachable ();
734 }
735 }
736
737 /* Compute the number of bytes occupied by NODE. This routine only
738 looks at TREE_CODE, except for those nodes that have variable sizes. */
739 size_t
740 tree_size (const_tree node)
741 {
742 const enum tree_code code = TREE_CODE (node);
743 switch (code)
744 {
745 case TREE_BINFO:
746 return (offsetof (struct tree_binfo, base_binfos)
747 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
748
749 case TREE_VEC:
750 return (sizeof (struct tree_vec)
751 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
752
753 case STRING_CST:
754 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
755
756 case OMP_CLAUSE:
757 return (sizeof (struct tree_omp_clause)
758 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
759 * sizeof (tree));
760
761 default:
762 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
763 return (sizeof (struct tree_exp)
764 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
765 else
766 return tree_code_size (code);
767 }
768 }
769
770 /* Return a newly allocated node of code CODE. For decl and type
771 nodes, some other fields are initialized. The rest of the node is
772 initialized to zero. This function cannot be used for TREE_VEC or
773 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
774
775 Achoo! I got a code in the node. */
776
777 tree
778 make_node_stat (enum tree_code code MEM_STAT_DECL)
779 {
780 tree t;
781 enum tree_code_class type = TREE_CODE_CLASS (code);
782 size_t length = tree_code_size (code);
783 #ifdef GATHER_STATISTICS
784 tree_node_kind kind;
785
786 switch (type)
787 {
788 case tcc_declaration: /* A decl node */
789 kind = d_kind;
790 break;
791
792 case tcc_type: /* a type node */
793 kind = t_kind;
794 break;
795
796 case tcc_statement: /* an expression with side effects */
797 kind = s_kind;
798 break;
799
800 case tcc_reference: /* a reference */
801 kind = r_kind;
802 break;
803
804 case tcc_expression: /* an expression */
805 case tcc_comparison: /* a comparison expression */
806 case tcc_unary: /* a unary arithmetic expression */
807 case tcc_binary: /* a binary arithmetic expression */
808 kind = e_kind;
809 break;
810
811 case tcc_constant: /* a constant */
812 kind = c_kind;
813 break;
814
815 case tcc_exceptional: /* something random, like an identifier. */
816 switch (code)
817 {
818 case IDENTIFIER_NODE:
819 kind = id_kind;
820 break;
821
822 case TREE_VEC:
823 kind = vec_kind;
824 break;
825
826 case TREE_BINFO:
827 kind = binfo_kind;
828 break;
829
830 case SSA_NAME:
831 kind = ssa_name_kind;
832 break;
833
834 case BLOCK:
835 kind = b_kind;
836 break;
837
838 case CONSTRUCTOR:
839 kind = constr_kind;
840 break;
841
842 default:
843 kind = x_kind;
844 break;
845 }
846 break;
847
848 default:
849 gcc_unreachable ();
850 }
851
852 tree_node_counts[(int) kind]++;
853 tree_node_sizes[(int) kind] += length;
854 #endif
855
856 t = ggc_alloc_zone_cleared_tree_node_stat (
857 (code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone,
858 length PASS_MEM_STAT);
859 TREE_SET_CODE (t, code);
860
861 switch (type)
862 {
863 case tcc_statement:
864 TREE_SIDE_EFFECTS (t) = 1;
865 break;
866
867 case tcc_declaration:
868 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
869 {
870 if (code == FUNCTION_DECL)
871 {
872 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
873 DECL_MODE (t) = FUNCTION_MODE;
874 }
875 else
876 DECL_ALIGN (t) = 1;
877 }
878 DECL_SOURCE_LOCATION (t) = input_location;
879 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
880 DECL_UID (t) = --next_debug_decl_uid;
881 else
882 {
883 DECL_UID (t) = next_decl_uid++;
884 SET_DECL_PT_UID (t, -1);
885 }
886 if (TREE_CODE (t) == LABEL_DECL)
887 LABEL_DECL_UID (t) = -1;
888
889 break;
890
891 case tcc_type:
892 TYPE_UID (t) = next_type_uid++;
893 TYPE_ALIGN (t) = BITS_PER_UNIT;
894 TYPE_USER_ALIGN (t) = 0;
895 TYPE_MAIN_VARIANT (t) = t;
896 TYPE_CANONICAL (t) = t;
897
898 /* Default to no attributes for type, but let target change that. */
899 TYPE_ATTRIBUTES (t) = NULL_TREE;
900 targetm.set_default_type_attributes (t);
901
902 /* We have not yet computed the alias set for this type. */
903 TYPE_ALIAS_SET (t) = -1;
904 break;
905
906 case tcc_constant:
907 TREE_CONSTANT (t) = 1;
908 break;
909
910 case tcc_expression:
911 switch (code)
912 {
913 case INIT_EXPR:
914 case MODIFY_EXPR:
915 case VA_ARG_EXPR:
916 case PREDECREMENT_EXPR:
917 case PREINCREMENT_EXPR:
918 case POSTDECREMENT_EXPR:
919 case POSTINCREMENT_EXPR:
920 /* All of these have side-effects, no matter what their
921 operands are. */
922 TREE_SIDE_EFFECTS (t) = 1;
923 break;
924
925 default:
926 break;
927 }
928 break;
929
930 default:
931 /* Other classes need no special treatment. */
932 break;
933 }
934
935 return t;
936 }
937 \f
938 /* Return a new node with the same contents as NODE except that its
939 TREE_CHAIN is zero and it has a fresh uid. */
940
941 tree
942 copy_node_stat (tree node MEM_STAT_DECL)
943 {
944 tree t;
945 enum tree_code code = TREE_CODE (node);
946 size_t length;
947
948 gcc_assert (code != STATEMENT_LIST);
949
950 length = tree_size (node);
951 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
952 memcpy (t, node, length);
953
954 TREE_CHAIN (t) = 0;
955 TREE_ASM_WRITTEN (t) = 0;
956 TREE_VISITED (t) = 0;
957 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
958 *DECL_VAR_ANN_PTR (t) = 0;
959
960 if (TREE_CODE_CLASS (code) == tcc_declaration)
961 {
962 if (code == DEBUG_EXPR_DECL)
963 DECL_UID (t) = --next_debug_decl_uid;
964 else
965 {
966 DECL_UID (t) = next_decl_uid++;
967 if (DECL_PT_UID_SET_P (node))
968 SET_DECL_PT_UID (t, DECL_PT_UID (node));
969 }
970 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
971 && DECL_HAS_VALUE_EXPR_P (node))
972 {
973 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
974 DECL_HAS_VALUE_EXPR_P (t) = 1;
975 }
976 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
977 {
978 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
979 DECL_HAS_INIT_PRIORITY_P (t) = 1;
980 }
981 }
982 else if (TREE_CODE_CLASS (code) == tcc_type)
983 {
984 TYPE_UID (t) = next_type_uid++;
985 /* The following is so that the debug code for
986 the copy is different from the original type.
987 The two statements usually duplicate each other
988 (because they clear fields of the same union),
989 but the optimizer should catch that. */
990 TYPE_SYMTAB_POINTER (t) = 0;
991 TYPE_SYMTAB_ADDRESS (t) = 0;
992
993 /* Do not copy the values cache. */
994 if (TYPE_CACHED_VALUES_P(t))
995 {
996 TYPE_CACHED_VALUES_P (t) = 0;
997 TYPE_CACHED_VALUES (t) = NULL_TREE;
998 }
999 }
1000
1001 return t;
1002 }
1003
1004 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1005 For example, this can copy a list made of TREE_LIST nodes. */
1006
1007 tree
1008 copy_list (tree list)
1009 {
1010 tree head;
1011 tree prev, next;
1012
1013 if (list == 0)
1014 return 0;
1015
1016 head = prev = copy_node (list);
1017 next = TREE_CHAIN (list);
1018 while (next)
1019 {
1020 TREE_CHAIN (prev) = copy_node (next);
1021 prev = TREE_CHAIN (prev);
1022 next = TREE_CHAIN (next);
1023 }
1024 return head;
1025 }
1026
1027 \f
1028 /* Create an INT_CST node with a LOW value sign extended. */
1029
1030 tree
1031 build_int_cst (tree type, HOST_WIDE_INT low)
1032 {
1033 /* Support legacy code. */
1034 if (!type)
1035 type = integer_type_node;
1036
1037 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
1038 }
1039
1040 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
1041 if it is negative. This function is similar to build_int_cst, but
1042 the extra bits outside of the type precision are cleared. Constants
1043 with these extra bits may confuse the fold so that it detects overflows
1044 even in cases when they do not occur, and in general should be avoided.
1045 We cannot however make this a default behavior of build_int_cst without
1046 more intrusive changes, since there are parts of gcc that rely on the extra
1047 precision of the integer constants. */
1048
1049 tree
1050 build_int_cst_type (tree type, HOST_WIDE_INT low)
1051 {
1052 unsigned HOST_WIDE_INT low1;
1053 HOST_WIDE_INT hi;
1054
1055 gcc_assert (type);
1056
1057 fit_double_type (low, low < 0 ? -1 : 0, &low1, &hi, type);
1058
1059 return build_int_cst_wide (type, low1, hi);
1060 }
1061
1062 /* Constructs tree in type TYPE from with value given by CST. Signedness
1063 of CST is assumed to be the same as the signedness of TYPE. */
1064
1065 tree
1066 double_int_to_tree (tree type, double_int cst)
1067 {
1068 /* Size types *are* sign extended. */
1069 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1070 || (TREE_CODE (type) == INTEGER_TYPE
1071 && TYPE_IS_SIZETYPE (type)));
1072
1073 cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1074
1075 return build_int_cst_wide (type, cst.low, cst.high);
1076 }
1077
1078 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1079 to be the same as the signedness of TYPE. */
1080
1081 bool
1082 double_int_fits_to_tree_p (const_tree type, double_int cst)
1083 {
1084 /* Size types *are* sign extended. */
1085 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1086 || (TREE_CODE (type) == INTEGER_TYPE
1087 && TYPE_IS_SIZETYPE (type)));
1088
1089 double_int ext
1090 = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1091
1092 return double_int_equal_p (cst, ext);
1093 }
1094
1095 /* These are the hash table functions for the hash table of INTEGER_CST
1096 nodes of a sizetype. */
1097
1098 /* Return the hash code code X, an INTEGER_CST. */
1099
1100 static hashval_t
1101 int_cst_hash_hash (const void *x)
1102 {
1103 const_tree const t = (const_tree) x;
1104
1105 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1106 ^ htab_hash_pointer (TREE_TYPE (t)));
1107 }
1108
1109 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1110 is the same as that given by *Y, which is the same. */
1111
1112 static int
1113 int_cst_hash_eq (const void *x, const void *y)
1114 {
1115 const_tree const xt = (const_tree) x;
1116 const_tree const yt = (const_tree) y;
1117
1118 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1119 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1120 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1121 }
1122
1123 /* Create an INT_CST node of TYPE and value HI:LOW.
1124 The returned node is always shared. For small integers we use a
1125 per-type vector cache, for larger ones we use a single hash table. */
1126
1127 tree
1128 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1129 {
1130 tree t;
1131 int ix = -1;
1132 int limit = 0;
1133
1134 gcc_assert (type);
1135
1136 switch (TREE_CODE (type))
1137 {
1138 case POINTER_TYPE:
1139 case REFERENCE_TYPE:
1140 /* Cache NULL pointer. */
1141 if (!hi && !low)
1142 {
1143 limit = 1;
1144 ix = 0;
1145 }
1146 break;
1147
1148 case BOOLEAN_TYPE:
1149 /* Cache false or true. */
1150 limit = 2;
1151 if (!hi && low < 2)
1152 ix = low;
1153 break;
1154
1155 case INTEGER_TYPE:
1156 case OFFSET_TYPE:
1157 if (TYPE_UNSIGNED (type))
1158 {
1159 /* Cache 0..N */
1160 limit = INTEGER_SHARE_LIMIT;
1161 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1162 ix = low;
1163 }
1164 else
1165 {
1166 /* Cache -1..N */
1167 limit = INTEGER_SHARE_LIMIT + 1;
1168 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1169 ix = low + 1;
1170 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1171 ix = 0;
1172 }
1173 break;
1174
1175 case ENUMERAL_TYPE:
1176 break;
1177
1178 default:
1179 gcc_unreachable ();
1180 }
1181
1182 if (ix >= 0)
1183 {
1184 /* Look for it in the type's vector of small shared ints. */
1185 if (!TYPE_CACHED_VALUES_P (type))
1186 {
1187 TYPE_CACHED_VALUES_P (type) = 1;
1188 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1189 }
1190
1191 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1192 if (t)
1193 {
1194 /* Make sure no one is clobbering the shared constant. */
1195 gcc_assert (TREE_TYPE (t) == type);
1196 gcc_assert (TREE_INT_CST_LOW (t) == low);
1197 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1198 }
1199 else
1200 {
1201 /* Create a new shared int. */
1202 t = make_node (INTEGER_CST);
1203
1204 TREE_INT_CST_LOW (t) = low;
1205 TREE_INT_CST_HIGH (t) = hi;
1206 TREE_TYPE (t) = type;
1207
1208 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1209 }
1210 }
1211 else
1212 {
1213 /* Use the cache of larger shared ints. */
1214 void **slot;
1215
1216 TREE_INT_CST_LOW (int_cst_node) = low;
1217 TREE_INT_CST_HIGH (int_cst_node) = hi;
1218 TREE_TYPE (int_cst_node) = type;
1219
1220 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1221 t = (tree) *slot;
1222 if (!t)
1223 {
1224 /* Insert this one into the hash table. */
1225 t = int_cst_node;
1226 *slot = t;
1227 /* Make a new node for next time round. */
1228 int_cst_node = make_node (INTEGER_CST);
1229 }
1230 }
1231
1232 return t;
1233 }
1234
1235 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1236 and the rest are zeros. */
1237
1238 tree
1239 build_low_bits_mask (tree type, unsigned bits)
1240 {
1241 double_int mask;
1242
1243 gcc_assert (bits <= TYPE_PRECISION (type));
1244
1245 if (bits == TYPE_PRECISION (type)
1246 && !TYPE_UNSIGNED (type))
1247 /* Sign extended all-ones mask. */
1248 mask = double_int_minus_one;
1249 else
1250 mask = double_int_mask (bits);
1251
1252 return build_int_cst_wide (type, mask.low, mask.high);
1253 }
1254
1255 /* Checks that X is integer constant that can be expressed in (unsigned)
1256 HOST_WIDE_INT without loss of precision. */
1257
1258 bool
1259 cst_and_fits_in_hwi (const_tree x)
1260 {
1261 if (TREE_CODE (x) != INTEGER_CST)
1262 return false;
1263
1264 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1265 return false;
1266
1267 return (TREE_INT_CST_HIGH (x) == 0
1268 || TREE_INT_CST_HIGH (x) == -1);
1269 }
1270
1271 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1272 are in a list pointed to by VALS. */
1273
1274 tree
1275 build_vector (tree type, tree vals)
1276 {
1277 tree v = make_node (VECTOR_CST);
1278 int over = 0;
1279 tree link;
1280
1281 TREE_VECTOR_CST_ELTS (v) = vals;
1282 TREE_TYPE (v) = type;
1283
1284 /* Iterate through elements and check for overflow. */
1285 for (link = vals; link; link = TREE_CHAIN (link))
1286 {
1287 tree value = TREE_VALUE (link);
1288
1289 /* Don't crash if we get an address constant. */
1290 if (!CONSTANT_CLASS_P (value))
1291 continue;
1292
1293 over |= TREE_OVERFLOW (value);
1294 }
1295
1296 TREE_OVERFLOW (v) = over;
1297 return v;
1298 }
1299
1300 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1301 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1302
1303 tree
1304 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1305 {
1306 tree list = NULL_TREE;
1307 unsigned HOST_WIDE_INT idx;
1308 tree value;
1309
1310 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1311 list = tree_cons (NULL_TREE, value, list);
1312 return build_vector (type, nreverse (list));
1313 }
1314
1315 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1316 are in the VEC pointed to by VALS. */
1317 tree
1318 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1319 {
1320 tree c = make_node (CONSTRUCTOR);
1321 unsigned int i;
1322 constructor_elt *elt;
1323 bool constant_p = true;
1324
1325 TREE_TYPE (c) = type;
1326 CONSTRUCTOR_ELTS (c) = vals;
1327
1328 for (i = 0; VEC_iterate (constructor_elt, vals, i, elt); i++)
1329 if (!TREE_CONSTANT (elt->value))
1330 {
1331 constant_p = false;
1332 break;
1333 }
1334
1335 TREE_CONSTANT (c) = constant_p;
1336
1337 return c;
1338 }
1339
1340 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1341 INDEX and VALUE. */
1342 tree
1343 build_constructor_single (tree type, tree index, tree value)
1344 {
1345 VEC(constructor_elt,gc) *v;
1346 constructor_elt *elt;
1347
1348 v = VEC_alloc (constructor_elt, gc, 1);
1349 elt = VEC_quick_push (constructor_elt, v, NULL);
1350 elt->index = index;
1351 elt->value = value;
1352
1353 return build_constructor (type, v);
1354 }
1355
1356
1357 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1358 are in a list pointed to by VALS. */
1359 tree
1360 build_constructor_from_list (tree type, tree vals)
1361 {
1362 tree t;
1363 VEC(constructor_elt,gc) *v = NULL;
1364
1365 if (vals)
1366 {
1367 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1368 for (t = vals; t; t = TREE_CHAIN (t))
1369 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1370 }
1371
1372 return build_constructor (type, v);
1373 }
1374
1375 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1376
1377 tree
1378 build_fixed (tree type, FIXED_VALUE_TYPE f)
1379 {
1380 tree v;
1381 FIXED_VALUE_TYPE *fp;
1382
1383 v = make_node (FIXED_CST);
1384 fp = ggc_alloc_fixed_value ();
1385 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1386
1387 TREE_TYPE (v) = type;
1388 TREE_FIXED_CST_PTR (v) = fp;
1389 return v;
1390 }
1391
1392 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1393
1394 tree
1395 build_real (tree type, REAL_VALUE_TYPE d)
1396 {
1397 tree v;
1398 REAL_VALUE_TYPE *dp;
1399 int overflow = 0;
1400
1401 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1402 Consider doing it via real_convert now. */
1403
1404 v = make_node (REAL_CST);
1405 dp = ggc_alloc_real_value ();
1406 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1407
1408 TREE_TYPE (v) = type;
1409 TREE_REAL_CST_PTR (v) = dp;
1410 TREE_OVERFLOW (v) = overflow;
1411 return v;
1412 }
1413
1414 /* Return a new REAL_CST node whose type is TYPE
1415 and whose value is the integer value of the INTEGER_CST node I. */
1416
1417 REAL_VALUE_TYPE
1418 real_value_from_int_cst (const_tree type, const_tree i)
1419 {
1420 REAL_VALUE_TYPE d;
1421
1422 /* Clear all bits of the real value type so that we can later do
1423 bitwise comparisons to see if two values are the same. */
1424 memset (&d, 0, sizeof d);
1425
1426 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1427 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1428 TYPE_UNSIGNED (TREE_TYPE (i)));
1429 return d;
1430 }
1431
1432 /* Given a tree representing an integer constant I, return a tree
1433 representing the same value as a floating-point constant of type TYPE. */
1434
1435 tree
1436 build_real_from_int_cst (tree type, const_tree i)
1437 {
1438 tree v;
1439 int overflow = TREE_OVERFLOW (i);
1440
1441 v = build_real (type, real_value_from_int_cst (type, i));
1442
1443 TREE_OVERFLOW (v) |= overflow;
1444 return v;
1445 }
1446
1447 /* Return a newly constructed STRING_CST node whose value is
1448 the LEN characters at STR.
1449 The TREE_TYPE is not initialized. */
1450
1451 tree
1452 build_string (int len, const char *str)
1453 {
1454 tree s;
1455 size_t length;
1456
1457 /* Do not waste bytes provided by padding of struct tree_string. */
1458 length = len + offsetof (struct tree_string, str) + 1;
1459
1460 #ifdef GATHER_STATISTICS
1461 tree_node_counts[(int) c_kind]++;
1462 tree_node_sizes[(int) c_kind] += length;
1463 #endif
1464
1465 s = ggc_alloc_tree_node (length);
1466
1467 memset (s, 0, sizeof (struct tree_common));
1468 TREE_SET_CODE (s, STRING_CST);
1469 TREE_CONSTANT (s) = 1;
1470 TREE_STRING_LENGTH (s) = len;
1471 memcpy (s->string.str, str, len);
1472 s->string.str[len] = '\0';
1473
1474 return s;
1475 }
1476
1477 /* Return a newly constructed COMPLEX_CST node whose value is
1478 specified by the real and imaginary parts REAL and IMAG.
1479 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1480 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1481
1482 tree
1483 build_complex (tree type, tree real, tree imag)
1484 {
1485 tree t = make_node (COMPLEX_CST);
1486
1487 TREE_REALPART (t) = real;
1488 TREE_IMAGPART (t) = imag;
1489 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1490 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1491 return t;
1492 }
1493
1494 /* Return a constant of arithmetic type TYPE which is the
1495 multiplicative identity of the set TYPE. */
1496
1497 tree
1498 build_one_cst (tree type)
1499 {
1500 switch (TREE_CODE (type))
1501 {
1502 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1503 case POINTER_TYPE: case REFERENCE_TYPE:
1504 case OFFSET_TYPE:
1505 return build_int_cst (type, 1);
1506
1507 case REAL_TYPE:
1508 return build_real (type, dconst1);
1509
1510 case FIXED_POINT_TYPE:
1511 /* We can only generate 1 for accum types. */
1512 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1513 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1514
1515 case VECTOR_TYPE:
1516 {
1517 tree scalar, cst;
1518 int i;
1519
1520 scalar = build_one_cst (TREE_TYPE (type));
1521
1522 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1523 cst = NULL_TREE;
1524 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1525 cst = tree_cons (NULL_TREE, scalar, cst);
1526
1527 return build_vector (type, cst);
1528 }
1529
1530 case COMPLEX_TYPE:
1531 return build_complex (type,
1532 build_one_cst (TREE_TYPE (type)),
1533 fold_convert (TREE_TYPE (type), integer_zero_node));
1534
1535 default:
1536 gcc_unreachable ();
1537 }
1538 }
1539
1540 /* Build a BINFO with LEN language slots. */
1541
1542 tree
1543 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1544 {
1545 tree t;
1546 size_t length = (offsetof (struct tree_binfo, base_binfos)
1547 + VEC_embedded_size (tree, base_binfos));
1548
1549 #ifdef GATHER_STATISTICS
1550 tree_node_counts[(int) binfo_kind]++;
1551 tree_node_sizes[(int) binfo_kind] += length;
1552 #endif
1553
1554 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1555
1556 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1557
1558 TREE_SET_CODE (t, TREE_BINFO);
1559
1560 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1561
1562 return t;
1563 }
1564
1565
1566 /* Build a newly constructed TREE_VEC node of length LEN. */
1567
1568 tree
1569 make_tree_vec_stat (int len MEM_STAT_DECL)
1570 {
1571 tree t;
1572 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1573
1574 #ifdef GATHER_STATISTICS
1575 tree_node_counts[(int) vec_kind]++;
1576 tree_node_sizes[(int) vec_kind] += length;
1577 #endif
1578
1579 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1580
1581 TREE_SET_CODE (t, TREE_VEC);
1582 TREE_VEC_LENGTH (t) = len;
1583
1584 return t;
1585 }
1586 \f
1587 /* Return 1 if EXPR is the integer constant zero or a complex constant
1588 of zero. */
1589
1590 int
1591 integer_zerop (const_tree expr)
1592 {
1593 STRIP_NOPS (expr);
1594
1595 return ((TREE_CODE (expr) == INTEGER_CST
1596 && TREE_INT_CST_LOW (expr) == 0
1597 && TREE_INT_CST_HIGH (expr) == 0)
1598 || (TREE_CODE (expr) == COMPLEX_CST
1599 && integer_zerop (TREE_REALPART (expr))
1600 && integer_zerop (TREE_IMAGPART (expr))));
1601 }
1602
1603 /* Return 1 if EXPR is the integer constant one or the corresponding
1604 complex constant. */
1605
1606 int
1607 integer_onep (const_tree expr)
1608 {
1609 STRIP_NOPS (expr);
1610
1611 return ((TREE_CODE (expr) == INTEGER_CST
1612 && TREE_INT_CST_LOW (expr) == 1
1613 && TREE_INT_CST_HIGH (expr) == 0)
1614 || (TREE_CODE (expr) == COMPLEX_CST
1615 && integer_onep (TREE_REALPART (expr))
1616 && integer_zerop (TREE_IMAGPART (expr))));
1617 }
1618
1619 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1620 it contains. Likewise for the corresponding complex constant. */
1621
1622 int
1623 integer_all_onesp (const_tree expr)
1624 {
1625 int prec;
1626 int uns;
1627
1628 STRIP_NOPS (expr);
1629
1630 if (TREE_CODE (expr) == COMPLEX_CST
1631 && integer_all_onesp (TREE_REALPART (expr))
1632 && integer_zerop (TREE_IMAGPART (expr)))
1633 return 1;
1634
1635 else if (TREE_CODE (expr) != INTEGER_CST)
1636 return 0;
1637
1638 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1639 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1640 && TREE_INT_CST_HIGH (expr) == -1)
1641 return 1;
1642 if (!uns)
1643 return 0;
1644
1645 /* Note that using TYPE_PRECISION here is wrong. We care about the
1646 actual bits, not the (arbitrary) range of the type. */
1647 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1648 if (prec >= HOST_BITS_PER_WIDE_INT)
1649 {
1650 HOST_WIDE_INT high_value;
1651 int shift_amount;
1652
1653 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1654
1655 /* Can not handle precisions greater than twice the host int size. */
1656 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1657 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1658 /* Shifting by the host word size is undefined according to the ANSI
1659 standard, so we must handle this as a special case. */
1660 high_value = -1;
1661 else
1662 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1663
1664 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1665 && TREE_INT_CST_HIGH (expr) == high_value);
1666 }
1667 else
1668 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1669 }
1670
1671 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1672 one bit on). */
1673
1674 int
1675 integer_pow2p (const_tree expr)
1676 {
1677 int prec;
1678 HOST_WIDE_INT high, low;
1679
1680 STRIP_NOPS (expr);
1681
1682 if (TREE_CODE (expr) == COMPLEX_CST
1683 && integer_pow2p (TREE_REALPART (expr))
1684 && integer_zerop (TREE_IMAGPART (expr)))
1685 return 1;
1686
1687 if (TREE_CODE (expr) != INTEGER_CST)
1688 return 0;
1689
1690 prec = TYPE_PRECISION (TREE_TYPE (expr));
1691 high = TREE_INT_CST_HIGH (expr);
1692 low = TREE_INT_CST_LOW (expr);
1693
1694 /* First clear all bits that are beyond the type's precision in case
1695 we've been sign extended. */
1696
1697 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1698 ;
1699 else if (prec > HOST_BITS_PER_WIDE_INT)
1700 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1701 else
1702 {
1703 high = 0;
1704 if (prec < HOST_BITS_PER_WIDE_INT)
1705 low &= ~((HOST_WIDE_INT) (-1) << prec);
1706 }
1707
1708 if (high == 0 && low == 0)
1709 return 0;
1710
1711 return ((high == 0 && (low & (low - 1)) == 0)
1712 || (low == 0 && (high & (high - 1)) == 0));
1713 }
1714
1715 /* Return 1 if EXPR is an integer constant other than zero or a
1716 complex constant other than zero. */
1717
1718 int
1719 integer_nonzerop (const_tree expr)
1720 {
1721 STRIP_NOPS (expr);
1722
1723 return ((TREE_CODE (expr) == INTEGER_CST
1724 && (TREE_INT_CST_LOW (expr) != 0
1725 || TREE_INT_CST_HIGH (expr) != 0))
1726 || (TREE_CODE (expr) == COMPLEX_CST
1727 && (integer_nonzerop (TREE_REALPART (expr))
1728 || integer_nonzerop (TREE_IMAGPART (expr)))));
1729 }
1730
1731 /* Return 1 if EXPR is the fixed-point constant zero. */
1732
1733 int
1734 fixed_zerop (const_tree expr)
1735 {
1736 return (TREE_CODE (expr) == FIXED_CST
1737 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1738 }
1739
1740 /* Return the power of two represented by a tree node known to be a
1741 power of two. */
1742
1743 int
1744 tree_log2 (const_tree expr)
1745 {
1746 int prec;
1747 HOST_WIDE_INT high, low;
1748
1749 STRIP_NOPS (expr);
1750
1751 if (TREE_CODE (expr) == COMPLEX_CST)
1752 return tree_log2 (TREE_REALPART (expr));
1753
1754 prec = TYPE_PRECISION (TREE_TYPE (expr));
1755 high = TREE_INT_CST_HIGH (expr);
1756 low = TREE_INT_CST_LOW (expr);
1757
1758 /* First clear all bits that are beyond the type's precision in case
1759 we've been sign extended. */
1760
1761 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1762 ;
1763 else if (prec > HOST_BITS_PER_WIDE_INT)
1764 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1765 else
1766 {
1767 high = 0;
1768 if (prec < HOST_BITS_PER_WIDE_INT)
1769 low &= ~((HOST_WIDE_INT) (-1) << prec);
1770 }
1771
1772 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1773 : exact_log2 (low));
1774 }
1775
1776 /* Similar, but return the largest integer Y such that 2 ** Y is less
1777 than or equal to EXPR. */
1778
1779 int
1780 tree_floor_log2 (const_tree expr)
1781 {
1782 int prec;
1783 HOST_WIDE_INT high, low;
1784
1785 STRIP_NOPS (expr);
1786
1787 if (TREE_CODE (expr) == COMPLEX_CST)
1788 return tree_log2 (TREE_REALPART (expr));
1789
1790 prec = TYPE_PRECISION (TREE_TYPE (expr));
1791 high = TREE_INT_CST_HIGH (expr);
1792 low = TREE_INT_CST_LOW (expr);
1793
1794 /* First clear all bits that are beyond the type's precision in case
1795 we've been sign extended. Ignore if type's precision hasn't been set
1796 since what we are doing is setting it. */
1797
1798 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1799 ;
1800 else if (prec > HOST_BITS_PER_WIDE_INT)
1801 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1802 else
1803 {
1804 high = 0;
1805 if (prec < HOST_BITS_PER_WIDE_INT)
1806 low &= ~((HOST_WIDE_INT) (-1) << prec);
1807 }
1808
1809 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1810 : floor_log2 (low));
1811 }
1812
1813 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1814 decimal float constants, so don't return 1 for them. */
1815
1816 int
1817 real_zerop (const_tree expr)
1818 {
1819 STRIP_NOPS (expr);
1820
1821 return ((TREE_CODE (expr) == REAL_CST
1822 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1823 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1824 || (TREE_CODE (expr) == COMPLEX_CST
1825 && real_zerop (TREE_REALPART (expr))
1826 && real_zerop (TREE_IMAGPART (expr))));
1827 }
1828
1829 /* Return 1 if EXPR is the real constant one in real or complex form.
1830 Trailing zeroes matter for decimal float constants, so don't return
1831 1 for them. */
1832
1833 int
1834 real_onep (const_tree expr)
1835 {
1836 STRIP_NOPS (expr);
1837
1838 return ((TREE_CODE (expr) == REAL_CST
1839 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1840 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1841 || (TREE_CODE (expr) == COMPLEX_CST
1842 && real_onep (TREE_REALPART (expr))
1843 && real_zerop (TREE_IMAGPART (expr))));
1844 }
1845
1846 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1847 for decimal float constants, so don't return 1 for them. */
1848
1849 int
1850 real_twop (const_tree expr)
1851 {
1852 STRIP_NOPS (expr);
1853
1854 return ((TREE_CODE (expr) == REAL_CST
1855 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1856 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1857 || (TREE_CODE (expr) == COMPLEX_CST
1858 && real_twop (TREE_REALPART (expr))
1859 && real_zerop (TREE_IMAGPART (expr))));
1860 }
1861
1862 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1863 matter for decimal float constants, so don't return 1 for them. */
1864
1865 int
1866 real_minus_onep (const_tree expr)
1867 {
1868 STRIP_NOPS (expr);
1869
1870 return ((TREE_CODE (expr) == REAL_CST
1871 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1872 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1873 || (TREE_CODE (expr) == COMPLEX_CST
1874 && real_minus_onep (TREE_REALPART (expr))
1875 && real_zerop (TREE_IMAGPART (expr))));
1876 }
1877
1878 /* Nonzero if EXP is a constant or a cast of a constant. */
1879
1880 int
1881 really_constant_p (const_tree exp)
1882 {
1883 /* This is not quite the same as STRIP_NOPS. It does more. */
1884 while (CONVERT_EXPR_P (exp)
1885 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1886 exp = TREE_OPERAND (exp, 0);
1887 return TREE_CONSTANT (exp);
1888 }
1889 \f
1890 /* Return first list element whose TREE_VALUE is ELEM.
1891 Return 0 if ELEM is not in LIST. */
1892
1893 tree
1894 value_member (tree elem, tree list)
1895 {
1896 while (list)
1897 {
1898 if (elem == TREE_VALUE (list))
1899 return list;
1900 list = TREE_CHAIN (list);
1901 }
1902 return NULL_TREE;
1903 }
1904
1905 /* Return first list element whose TREE_PURPOSE is ELEM.
1906 Return 0 if ELEM is not in LIST. */
1907
1908 tree
1909 purpose_member (const_tree elem, tree list)
1910 {
1911 while (list)
1912 {
1913 if (elem == TREE_PURPOSE (list))
1914 return list;
1915 list = TREE_CHAIN (list);
1916 }
1917 return NULL_TREE;
1918 }
1919
1920 /* Return true if ELEM is in V. */
1921
1922 bool
1923 vec_member (const_tree elem, VEC(tree,gc) *v)
1924 {
1925 unsigned ix;
1926 tree t;
1927 for (ix = 0; VEC_iterate (tree, v, ix, t); ix++)
1928 if (elem == t)
1929 return true;
1930 return false;
1931 }
1932
1933 /* Returns element number IDX (zero-origin) of chain CHAIN, or
1934 NULL_TREE. */
1935
1936 tree
1937 chain_index (int idx, tree chain)
1938 {
1939 for (; chain && idx > 0; --idx)
1940 chain = TREE_CHAIN (chain);
1941 return chain;
1942 }
1943
1944 /* Return nonzero if ELEM is part of the chain CHAIN. */
1945
1946 int
1947 chain_member (const_tree elem, const_tree chain)
1948 {
1949 while (chain)
1950 {
1951 if (elem == chain)
1952 return 1;
1953 chain = TREE_CHAIN (chain);
1954 }
1955
1956 return 0;
1957 }
1958
1959 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1960 We expect a null pointer to mark the end of the chain.
1961 This is the Lisp primitive `length'. */
1962
1963 int
1964 list_length (const_tree t)
1965 {
1966 const_tree p = t;
1967 #ifdef ENABLE_TREE_CHECKING
1968 const_tree q = t;
1969 #endif
1970 int len = 0;
1971
1972 while (p)
1973 {
1974 p = TREE_CHAIN (p);
1975 #ifdef ENABLE_TREE_CHECKING
1976 if (len % 2)
1977 q = TREE_CHAIN (q);
1978 gcc_assert (p != q);
1979 #endif
1980 len++;
1981 }
1982
1983 return len;
1984 }
1985
1986 /* Returns the number of FIELD_DECLs in TYPE. */
1987
1988 int
1989 fields_length (const_tree type)
1990 {
1991 tree t = TYPE_FIELDS (type);
1992 int count = 0;
1993
1994 for (; t; t = TREE_CHAIN (t))
1995 if (TREE_CODE (t) == FIELD_DECL)
1996 ++count;
1997
1998 return count;
1999 }
2000
2001 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2002 UNION_TYPE TYPE, or NULL_TREE if none. */
2003
2004 tree
2005 first_field (const_tree type)
2006 {
2007 tree t = TYPE_FIELDS (type);
2008 while (t && TREE_CODE (t) != FIELD_DECL)
2009 t = TREE_CHAIN (t);
2010 return t;
2011 }
2012
2013 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2014 by modifying the last node in chain 1 to point to chain 2.
2015 This is the Lisp primitive `nconc'. */
2016
2017 tree
2018 chainon (tree op1, tree op2)
2019 {
2020 tree t1;
2021
2022 if (!op1)
2023 return op2;
2024 if (!op2)
2025 return op1;
2026
2027 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2028 continue;
2029 TREE_CHAIN (t1) = op2;
2030
2031 #ifdef ENABLE_TREE_CHECKING
2032 {
2033 tree t2;
2034 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2035 gcc_assert (t2 != t1);
2036 }
2037 #endif
2038
2039 return op1;
2040 }
2041
2042 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2043
2044 tree
2045 tree_last (tree chain)
2046 {
2047 tree next;
2048 if (chain)
2049 while ((next = TREE_CHAIN (chain)))
2050 chain = next;
2051 return chain;
2052 }
2053
2054 /* Reverse the order of elements in the chain T,
2055 and return the new head of the chain (old last element). */
2056
2057 tree
2058 nreverse (tree t)
2059 {
2060 tree prev = 0, decl, next;
2061 for (decl = t; decl; decl = next)
2062 {
2063 next = TREE_CHAIN (decl);
2064 TREE_CHAIN (decl) = prev;
2065 prev = decl;
2066 }
2067 return prev;
2068 }
2069 \f
2070 /* Return a newly created TREE_LIST node whose
2071 purpose and value fields are PARM and VALUE. */
2072
2073 tree
2074 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2075 {
2076 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2077 TREE_PURPOSE (t) = parm;
2078 TREE_VALUE (t) = value;
2079 return t;
2080 }
2081
2082 /* Build a chain of TREE_LIST nodes from a vector. */
2083
2084 tree
2085 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2086 {
2087 tree ret = NULL_TREE;
2088 tree *pp = &ret;
2089 unsigned int i;
2090 tree t;
2091 for (i = 0; VEC_iterate (tree, vec, i, t); ++i)
2092 {
2093 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2094 pp = &TREE_CHAIN (*pp);
2095 }
2096 return ret;
2097 }
2098
2099 /* Return a newly created TREE_LIST node whose
2100 purpose and value fields are PURPOSE and VALUE
2101 and whose TREE_CHAIN is CHAIN. */
2102
2103 tree
2104 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2105 {
2106 tree node;
2107
2108 node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list)
2109 PASS_MEM_STAT);
2110 memset (node, 0, sizeof (struct tree_common));
2111
2112 #ifdef GATHER_STATISTICS
2113 tree_node_counts[(int) x_kind]++;
2114 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
2115 #endif
2116
2117 TREE_SET_CODE (node, TREE_LIST);
2118 TREE_CHAIN (node) = chain;
2119 TREE_PURPOSE (node) = purpose;
2120 TREE_VALUE (node) = value;
2121 return node;
2122 }
2123
2124 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2125 trees. */
2126
2127 VEC(tree,gc) *
2128 ctor_to_vec (tree ctor)
2129 {
2130 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2131 unsigned int ix;
2132 tree val;
2133
2134 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2135 VEC_quick_push (tree, vec, val);
2136
2137 return vec;
2138 }
2139 \f
2140 /* Return the size nominally occupied by an object of type TYPE
2141 when it resides in memory. The value is measured in units of bytes,
2142 and its data type is that normally used for type sizes
2143 (which is the first type created by make_signed_type or
2144 make_unsigned_type). */
2145
2146 tree
2147 size_in_bytes (const_tree type)
2148 {
2149 tree t;
2150
2151 if (type == error_mark_node)
2152 return integer_zero_node;
2153
2154 type = TYPE_MAIN_VARIANT (type);
2155 t = TYPE_SIZE_UNIT (type);
2156
2157 if (t == 0)
2158 {
2159 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2160 return size_zero_node;
2161 }
2162
2163 return t;
2164 }
2165
2166 /* Return the size of TYPE (in bytes) as a wide integer
2167 or return -1 if the size can vary or is larger than an integer. */
2168
2169 HOST_WIDE_INT
2170 int_size_in_bytes (const_tree type)
2171 {
2172 tree t;
2173
2174 if (type == error_mark_node)
2175 return 0;
2176
2177 type = TYPE_MAIN_VARIANT (type);
2178 t = TYPE_SIZE_UNIT (type);
2179 if (t == 0
2180 || TREE_CODE (t) != INTEGER_CST
2181 || TREE_INT_CST_HIGH (t) != 0
2182 /* If the result would appear negative, it's too big to represent. */
2183 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2184 return -1;
2185
2186 return TREE_INT_CST_LOW (t);
2187 }
2188
2189 /* Return the maximum size of TYPE (in bytes) as a wide integer
2190 or return -1 if the size can vary or is larger than an integer. */
2191
2192 HOST_WIDE_INT
2193 max_int_size_in_bytes (const_tree type)
2194 {
2195 HOST_WIDE_INT size = -1;
2196 tree size_tree;
2197
2198 /* If this is an array type, check for a possible MAX_SIZE attached. */
2199
2200 if (TREE_CODE (type) == ARRAY_TYPE)
2201 {
2202 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2203
2204 if (size_tree && host_integerp (size_tree, 1))
2205 size = tree_low_cst (size_tree, 1);
2206 }
2207
2208 /* If we still haven't been able to get a size, see if the language
2209 can compute a maximum size. */
2210
2211 if (size == -1)
2212 {
2213 size_tree = lang_hooks.types.max_size (type);
2214
2215 if (size_tree && host_integerp (size_tree, 1))
2216 size = tree_low_cst (size_tree, 1);
2217 }
2218
2219 return size;
2220 }
2221
2222 /* Returns a tree for the size of EXP in bytes. */
2223
2224 tree
2225 tree_expr_size (const_tree exp)
2226 {
2227 if (DECL_P (exp)
2228 && DECL_SIZE_UNIT (exp) != 0)
2229 return DECL_SIZE_UNIT (exp);
2230 else
2231 return size_in_bytes (TREE_TYPE (exp));
2232 }
2233 \f
2234 /* Return the bit position of FIELD, in bits from the start of the record.
2235 This is a tree of type bitsizetype. */
2236
2237 tree
2238 bit_position (const_tree field)
2239 {
2240 return bit_from_pos (DECL_FIELD_OFFSET (field),
2241 DECL_FIELD_BIT_OFFSET (field));
2242 }
2243
2244 /* Likewise, but return as an integer. It must be representable in
2245 that way (since it could be a signed value, we don't have the
2246 option of returning -1 like int_size_in_byte can. */
2247
2248 HOST_WIDE_INT
2249 int_bit_position (const_tree field)
2250 {
2251 return tree_low_cst (bit_position (field), 0);
2252 }
2253 \f
2254 /* Return the byte position of FIELD, in bytes from the start of the record.
2255 This is a tree of type sizetype. */
2256
2257 tree
2258 byte_position (const_tree field)
2259 {
2260 return byte_from_pos (DECL_FIELD_OFFSET (field),
2261 DECL_FIELD_BIT_OFFSET (field));
2262 }
2263
2264 /* Likewise, but return as an integer. It must be representable in
2265 that way (since it could be a signed value, we don't have the
2266 option of returning -1 like int_size_in_byte can. */
2267
2268 HOST_WIDE_INT
2269 int_byte_position (const_tree field)
2270 {
2271 return tree_low_cst (byte_position (field), 0);
2272 }
2273 \f
2274 /* Return the strictest alignment, in bits, that T is known to have. */
2275
2276 unsigned int
2277 expr_align (const_tree t)
2278 {
2279 unsigned int align0, align1;
2280
2281 switch (TREE_CODE (t))
2282 {
2283 CASE_CONVERT: case NON_LVALUE_EXPR:
2284 /* If we have conversions, we know that the alignment of the
2285 object must meet each of the alignments of the types. */
2286 align0 = expr_align (TREE_OPERAND (t, 0));
2287 align1 = TYPE_ALIGN (TREE_TYPE (t));
2288 return MAX (align0, align1);
2289
2290 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2291 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2292 case CLEANUP_POINT_EXPR:
2293 /* These don't change the alignment of an object. */
2294 return expr_align (TREE_OPERAND (t, 0));
2295
2296 case COND_EXPR:
2297 /* The best we can do is say that the alignment is the least aligned
2298 of the two arms. */
2299 align0 = expr_align (TREE_OPERAND (t, 1));
2300 align1 = expr_align (TREE_OPERAND (t, 2));
2301 return MIN (align0, align1);
2302
2303 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2304 meaningfully, it's always 1. */
2305 case LABEL_DECL: case CONST_DECL:
2306 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2307 case FUNCTION_DECL:
2308 gcc_assert (DECL_ALIGN (t) != 0);
2309 return DECL_ALIGN (t);
2310
2311 default:
2312 break;
2313 }
2314
2315 /* Otherwise take the alignment from that of the type. */
2316 return TYPE_ALIGN (TREE_TYPE (t));
2317 }
2318 \f
2319 /* Return, as a tree node, the number of elements for TYPE (which is an
2320 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2321
2322 tree
2323 array_type_nelts (const_tree type)
2324 {
2325 tree index_type, min, max;
2326
2327 /* If they did it with unspecified bounds, then we should have already
2328 given an error about it before we got here. */
2329 if (! TYPE_DOMAIN (type))
2330 return error_mark_node;
2331
2332 index_type = TYPE_DOMAIN (type);
2333 min = TYPE_MIN_VALUE (index_type);
2334 max = TYPE_MAX_VALUE (index_type);
2335
2336 return (integer_zerop (min)
2337 ? max
2338 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2339 }
2340 \f
2341 /* If arg is static -- a reference to an object in static storage -- then
2342 return the object. This is not the same as the C meaning of `static'.
2343 If arg isn't static, return NULL. */
2344
2345 tree
2346 staticp (tree arg)
2347 {
2348 switch (TREE_CODE (arg))
2349 {
2350 case FUNCTION_DECL:
2351 /* Nested functions are static, even though taking their address will
2352 involve a trampoline as we unnest the nested function and create
2353 the trampoline on the tree level. */
2354 return arg;
2355
2356 case VAR_DECL:
2357 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2358 && ! DECL_THREAD_LOCAL_P (arg)
2359 && ! DECL_DLLIMPORT_P (arg)
2360 ? arg : NULL);
2361
2362 case CONST_DECL:
2363 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2364 ? arg : NULL);
2365
2366 case CONSTRUCTOR:
2367 return TREE_STATIC (arg) ? arg : NULL;
2368
2369 case LABEL_DECL:
2370 case STRING_CST:
2371 return arg;
2372
2373 case COMPONENT_REF:
2374 /* If the thing being referenced is not a field, then it is
2375 something language specific. */
2376 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2377
2378 /* If we are referencing a bitfield, we can't evaluate an
2379 ADDR_EXPR at compile time and so it isn't a constant. */
2380 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2381 return NULL;
2382
2383 return staticp (TREE_OPERAND (arg, 0));
2384
2385 case BIT_FIELD_REF:
2386 return NULL;
2387
2388 case MISALIGNED_INDIRECT_REF:
2389 case ALIGN_INDIRECT_REF:
2390 case INDIRECT_REF:
2391 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2392
2393 case ARRAY_REF:
2394 case ARRAY_RANGE_REF:
2395 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2396 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2397 return staticp (TREE_OPERAND (arg, 0));
2398 else
2399 return NULL;
2400
2401 case COMPOUND_LITERAL_EXPR:
2402 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2403
2404 default:
2405 return NULL;
2406 }
2407 }
2408
2409 \f
2410
2411
2412 /* Return whether OP is a DECL whose address is function-invariant. */
2413
2414 bool
2415 decl_address_invariant_p (const_tree op)
2416 {
2417 /* The conditions below are slightly less strict than the one in
2418 staticp. */
2419
2420 switch (TREE_CODE (op))
2421 {
2422 case PARM_DECL:
2423 case RESULT_DECL:
2424 case LABEL_DECL:
2425 case FUNCTION_DECL:
2426 return true;
2427
2428 case VAR_DECL:
2429 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2430 && !DECL_DLLIMPORT_P (op))
2431 || DECL_THREAD_LOCAL_P (op)
2432 || DECL_CONTEXT (op) == current_function_decl
2433 || decl_function_context (op) == current_function_decl)
2434 return true;
2435 break;
2436
2437 case CONST_DECL:
2438 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2439 || decl_function_context (op) == current_function_decl)
2440 return true;
2441 break;
2442
2443 default:
2444 break;
2445 }
2446
2447 return false;
2448 }
2449
2450 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2451
2452 bool
2453 decl_address_ip_invariant_p (const_tree op)
2454 {
2455 /* The conditions below are slightly less strict than the one in
2456 staticp. */
2457
2458 switch (TREE_CODE (op))
2459 {
2460 case LABEL_DECL:
2461 case FUNCTION_DECL:
2462 case STRING_CST:
2463 return true;
2464
2465 case VAR_DECL:
2466 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2467 && !DECL_DLLIMPORT_P (op))
2468 || DECL_THREAD_LOCAL_P (op))
2469 return true;
2470 break;
2471
2472 case CONST_DECL:
2473 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2474 return true;
2475 break;
2476
2477 default:
2478 break;
2479 }
2480
2481 return false;
2482 }
2483
2484
2485 /* Return true if T is function-invariant (internal function, does
2486 not handle arithmetic; that's handled in skip_simple_arithmetic and
2487 tree_invariant_p). */
2488
2489 static bool tree_invariant_p (tree t);
2490
2491 static bool
2492 tree_invariant_p_1 (tree t)
2493 {
2494 tree op;
2495
2496 if (TREE_CONSTANT (t)
2497 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2498 return true;
2499
2500 switch (TREE_CODE (t))
2501 {
2502 case SAVE_EXPR:
2503 return true;
2504
2505 case ADDR_EXPR:
2506 op = TREE_OPERAND (t, 0);
2507 while (handled_component_p (op))
2508 {
2509 switch (TREE_CODE (op))
2510 {
2511 case ARRAY_REF:
2512 case ARRAY_RANGE_REF:
2513 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2514 || TREE_OPERAND (op, 2) != NULL_TREE
2515 || TREE_OPERAND (op, 3) != NULL_TREE)
2516 return false;
2517 break;
2518
2519 case COMPONENT_REF:
2520 if (TREE_OPERAND (op, 2) != NULL_TREE)
2521 return false;
2522 break;
2523
2524 default:;
2525 }
2526 op = TREE_OPERAND (op, 0);
2527 }
2528
2529 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2530
2531 default:
2532 break;
2533 }
2534
2535 return false;
2536 }
2537
2538 /* Return true if T is function-invariant. */
2539
2540 static bool
2541 tree_invariant_p (tree t)
2542 {
2543 tree inner = skip_simple_arithmetic (t);
2544 return tree_invariant_p_1 (inner);
2545 }
2546
2547 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2548 Do this to any expression which may be used in more than one place,
2549 but must be evaluated only once.
2550
2551 Normally, expand_expr would reevaluate the expression each time.
2552 Calling save_expr produces something that is evaluated and recorded
2553 the first time expand_expr is called on it. Subsequent calls to
2554 expand_expr just reuse the recorded value.
2555
2556 The call to expand_expr that generates code that actually computes
2557 the value is the first call *at compile time*. Subsequent calls
2558 *at compile time* generate code to use the saved value.
2559 This produces correct result provided that *at run time* control
2560 always flows through the insns made by the first expand_expr
2561 before reaching the other places where the save_expr was evaluated.
2562 You, the caller of save_expr, must make sure this is so.
2563
2564 Constants, and certain read-only nodes, are returned with no
2565 SAVE_EXPR because that is safe. Expressions containing placeholders
2566 are not touched; see tree.def for an explanation of what these
2567 are used for. */
2568
2569 tree
2570 save_expr (tree expr)
2571 {
2572 tree t = fold (expr);
2573 tree inner;
2574
2575 /* If the tree evaluates to a constant, then we don't want to hide that
2576 fact (i.e. this allows further folding, and direct checks for constants).
2577 However, a read-only object that has side effects cannot be bypassed.
2578 Since it is no problem to reevaluate literals, we just return the
2579 literal node. */
2580 inner = skip_simple_arithmetic (t);
2581 if (TREE_CODE (inner) == ERROR_MARK)
2582 return inner;
2583
2584 if (tree_invariant_p_1 (inner))
2585 return t;
2586
2587 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2588 it means that the size or offset of some field of an object depends on
2589 the value within another field.
2590
2591 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2592 and some variable since it would then need to be both evaluated once and
2593 evaluated more than once. Front-ends must assure this case cannot
2594 happen by surrounding any such subexpressions in their own SAVE_EXPR
2595 and forcing evaluation at the proper time. */
2596 if (contains_placeholder_p (inner))
2597 return t;
2598
2599 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2600 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2601
2602 /* This expression might be placed ahead of a jump to ensure that the
2603 value was computed on both sides of the jump. So make sure it isn't
2604 eliminated as dead. */
2605 TREE_SIDE_EFFECTS (t) = 1;
2606 return t;
2607 }
2608
2609 /* Look inside EXPR and into any simple arithmetic operations. Return
2610 the innermost non-arithmetic node. */
2611
2612 tree
2613 skip_simple_arithmetic (tree expr)
2614 {
2615 tree inner;
2616
2617 /* We don't care about whether this can be used as an lvalue in this
2618 context. */
2619 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2620 expr = TREE_OPERAND (expr, 0);
2621
2622 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2623 a constant, it will be more efficient to not make another SAVE_EXPR since
2624 it will allow better simplification and GCSE will be able to merge the
2625 computations if they actually occur. */
2626 inner = expr;
2627 while (1)
2628 {
2629 if (UNARY_CLASS_P (inner))
2630 inner = TREE_OPERAND (inner, 0);
2631 else if (BINARY_CLASS_P (inner))
2632 {
2633 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2634 inner = TREE_OPERAND (inner, 0);
2635 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2636 inner = TREE_OPERAND (inner, 1);
2637 else
2638 break;
2639 }
2640 else
2641 break;
2642 }
2643
2644 return inner;
2645 }
2646
2647
2648 /* Return which tree structure is used by T. */
2649
2650 enum tree_node_structure_enum
2651 tree_node_structure (const_tree t)
2652 {
2653 const enum tree_code code = TREE_CODE (t);
2654 return tree_node_structure_for_code (code);
2655 }
2656
2657 /* Set various status flags when building a CALL_EXPR object T. */
2658
2659 static void
2660 process_call_operands (tree t)
2661 {
2662 bool side_effects = TREE_SIDE_EFFECTS (t);
2663 bool read_only = false;
2664 int i = call_expr_flags (t);
2665
2666 /* Calls have side-effects, except those to const or pure functions. */
2667 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2668 side_effects = true;
2669 /* Propagate TREE_READONLY of arguments for const functions. */
2670 if (i & ECF_CONST)
2671 read_only = true;
2672
2673 if (!side_effects || read_only)
2674 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2675 {
2676 tree op = TREE_OPERAND (t, i);
2677 if (op && TREE_SIDE_EFFECTS (op))
2678 side_effects = true;
2679 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2680 read_only = false;
2681 }
2682
2683 TREE_SIDE_EFFECTS (t) = side_effects;
2684 TREE_READONLY (t) = read_only;
2685 }
2686 \f
2687 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2688 or offset that depends on a field within a record. */
2689
2690 bool
2691 contains_placeholder_p (const_tree exp)
2692 {
2693 enum tree_code code;
2694
2695 if (!exp)
2696 return 0;
2697
2698 code = TREE_CODE (exp);
2699 if (code == PLACEHOLDER_EXPR)
2700 return 1;
2701
2702 switch (TREE_CODE_CLASS (code))
2703 {
2704 case tcc_reference:
2705 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2706 position computations since they will be converted into a
2707 WITH_RECORD_EXPR involving the reference, which will assume
2708 here will be valid. */
2709 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2710
2711 case tcc_exceptional:
2712 if (code == TREE_LIST)
2713 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2714 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2715 break;
2716
2717 case tcc_unary:
2718 case tcc_binary:
2719 case tcc_comparison:
2720 case tcc_expression:
2721 switch (code)
2722 {
2723 case COMPOUND_EXPR:
2724 /* Ignoring the first operand isn't quite right, but works best. */
2725 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2726
2727 case COND_EXPR:
2728 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2729 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2730 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2731
2732 case SAVE_EXPR:
2733 /* The save_expr function never wraps anything containing
2734 a PLACEHOLDER_EXPR. */
2735 return 0;
2736
2737 default:
2738 break;
2739 }
2740
2741 switch (TREE_CODE_LENGTH (code))
2742 {
2743 case 1:
2744 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2745 case 2:
2746 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2747 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2748 default:
2749 return 0;
2750 }
2751
2752 case tcc_vl_exp:
2753 switch (code)
2754 {
2755 case CALL_EXPR:
2756 {
2757 const_tree arg;
2758 const_call_expr_arg_iterator iter;
2759 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2760 if (CONTAINS_PLACEHOLDER_P (arg))
2761 return 1;
2762 return 0;
2763 }
2764 default:
2765 return 0;
2766 }
2767
2768 default:
2769 return 0;
2770 }
2771 return 0;
2772 }
2773
2774 /* Return true if any part of the computation of TYPE involves a
2775 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2776 (for QUAL_UNION_TYPE) and field positions. */
2777
2778 static bool
2779 type_contains_placeholder_1 (const_tree type)
2780 {
2781 /* If the size contains a placeholder or the parent type (component type in
2782 the case of arrays) type involves a placeholder, this type does. */
2783 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2784 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2785 || (TREE_TYPE (type) != 0
2786 && type_contains_placeholder_p (TREE_TYPE (type))))
2787 return true;
2788
2789 /* Now do type-specific checks. Note that the last part of the check above
2790 greatly limits what we have to do below. */
2791 switch (TREE_CODE (type))
2792 {
2793 case VOID_TYPE:
2794 case COMPLEX_TYPE:
2795 case ENUMERAL_TYPE:
2796 case BOOLEAN_TYPE:
2797 case POINTER_TYPE:
2798 case OFFSET_TYPE:
2799 case REFERENCE_TYPE:
2800 case METHOD_TYPE:
2801 case FUNCTION_TYPE:
2802 case VECTOR_TYPE:
2803 return false;
2804
2805 case INTEGER_TYPE:
2806 case REAL_TYPE:
2807 case FIXED_POINT_TYPE:
2808 /* Here we just check the bounds. */
2809 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2810 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2811
2812 case ARRAY_TYPE:
2813 /* We're already checked the component type (TREE_TYPE), so just check
2814 the index type. */
2815 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2816
2817 case RECORD_TYPE:
2818 case UNION_TYPE:
2819 case QUAL_UNION_TYPE:
2820 {
2821 tree field;
2822
2823 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2824 if (TREE_CODE (field) == FIELD_DECL
2825 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2826 || (TREE_CODE (type) == QUAL_UNION_TYPE
2827 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2828 || type_contains_placeholder_p (TREE_TYPE (field))))
2829 return true;
2830
2831 return false;
2832 }
2833
2834 default:
2835 gcc_unreachable ();
2836 }
2837 }
2838
2839 bool
2840 type_contains_placeholder_p (tree type)
2841 {
2842 bool result;
2843
2844 /* If the contains_placeholder_bits field has been initialized,
2845 then we know the answer. */
2846 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2847 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2848
2849 /* Indicate that we've seen this type node, and the answer is false.
2850 This is what we want to return if we run into recursion via fields. */
2851 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2852
2853 /* Compute the real value. */
2854 result = type_contains_placeholder_1 (type);
2855
2856 /* Store the real value. */
2857 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2858
2859 return result;
2860 }
2861 \f
2862 /* Push tree EXP onto vector QUEUE if it is not already present. */
2863
2864 static void
2865 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2866 {
2867 unsigned int i;
2868 tree iter;
2869
2870 for (i = 0; VEC_iterate (tree, *queue, i, iter); i++)
2871 if (simple_cst_equal (iter, exp) == 1)
2872 break;
2873
2874 if (!iter)
2875 VEC_safe_push (tree, heap, *queue, exp);
2876 }
2877
2878 /* Given a tree EXP, find all occurences of references to fields
2879 in a PLACEHOLDER_EXPR and place them in vector REFS without
2880 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
2881 we assume here that EXP contains only arithmetic expressions
2882 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
2883 argument list. */
2884
2885 void
2886 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
2887 {
2888 enum tree_code code = TREE_CODE (exp);
2889 tree inner;
2890 int i;
2891
2892 /* We handle TREE_LIST and COMPONENT_REF separately. */
2893 if (code == TREE_LIST)
2894 {
2895 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
2896 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
2897 }
2898 else if (code == COMPONENT_REF)
2899 {
2900 for (inner = TREE_OPERAND (exp, 0);
2901 REFERENCE_CLASS_P (inner);
2902 inner = TREE_OPERAND (inner, 0))
2903 ;
2904
2905 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
2906 push_without_duplicates (exp, refs);
2907 else
2908 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
2909 }
2910 else
2911 switch (TREE_CODE_CLASS (code))
2912 {
2913 case tcc_constant:
2914 break;
2915
2916 case tcc_declaration:
2917 /* Variables allocated to static storage can stay. */
2918 if (!TREE_STATIC (exp))
2919 push_without_duplicates (exp, refs);
2920 break;
2921
2922 case tcc_expression:
2923 /* This is the pattern built in ada/make_aligning_type. */
2924 if (code == ADDR_EXPR
2925 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
2926 {
2927 push_without_duplicates (exp, refs);
2928 break;
2929 }
2930
2931 /* Fall through... */
2932
2933 case tcc_exceptional:
2934 case tcc_unary:
2935 case tcc_binary:
2936 case tcc_comparison:
2937 case tcc_reference:
2938 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
2939 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2940 break;
2941
2942 case tcc_vl_exp:
2943 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
2944 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2945 break;
2946
2947 default:
2948 gcc_unreachable ();
2949 }
2950 }
2951
2952 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2953 return a tree with all occurrences of references to F in a
2954 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
2955 CONST_DECLs. Note that we assume here that EXP contains only
2956 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
2957 occurring only in their argument list. */
2958
2959 tree
2960 substitute_in_expr (tree exp, tree f, tree r)
2961 {
2962 enum tree_code code = TREE_CODE (exp);
2963 tree op0, op1, op2, op3;
2964 tree new_tree;
2965
2966 /* We handle TREE_LIST and COMPONENT_REF separately. */
2967 if (code == TREE_LIST)
2968 {
2969 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2970 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2971 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2972 return exp;
2973
2974 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2975 }
2976 else if (code == COMPONENT_REF)
2977 {
2978 tree inner;
2979
2980 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2981 and it is the right field, replace it with R. */
2982 for (inner = TREE_OPERAND (exp, 0);
2983 REFERENCE_CLASS_P (inner);
2984 inner = TREE_OPERAND (inner, 0))
2985 ;
2986
2987 /* The field. */
2988 op1 = TREE_OPERAND (exp, 1);
2989
2990 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
2991 return r;
2992
2993 /* If this expression hasn't been completed let, leave it alone. */
2994 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
2995 return exp;
2996
2997 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2998 if (op0 == TREE_OPERAND (exp, 0))
2999 return exp;
3000
3001 new_tree
3002 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3003 }
3004 else
3005 switch (TREE_CODE_CLASS (code))
3006 {
3007 case tcc_constant:
3008 return exp;
3009
3010 case tcc_declaration:
3011 if (exp == f)
3012 return r;
3013 else
3014 return exp;
3015
3016 case tcc_expression:
3017 if (exp == f)
3018 return r;
3019
3020 /* Fall through... */
3021
3022 case tcc_exceptional:
3023 case tcc_unary:
3024 case tcc_binary:
3025 case tcc_comparison:
3026 case tcc_reference:
3027 switch (TREE_CODE_LENGTH (code))
3028 {
3029 case 0:
3030 return exp;
3031
3032 case 1:
3033 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3034 if (op0 == TREE_OPERAND (exp, 0))
3035 return exp;
3036
3037 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3038 break;
3039
3040 case 2:
3041 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3042 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3043
3044 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3045 return exp;
3046
3047 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3048 break;
3049
3050 case 3:
3051 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3052 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3053 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3054
3055 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3056 && op2 == TREE_OPERAND (exp, 2))
3057 return exp;
3058
3059 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3060 break;
3061
3062 case 4:
3063 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3064 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3065 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3066 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3067
3068 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3069 && op2 == TREE_OPERAND (exp, 2)
3070 && op3 == TREE_OPERAND (exp, 3))
3071 return exp;
3072
3073 new_tree
3074 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3075 break;
3076
3077 default:
3078 gcc_unreachable ();
3079 }
3080 break;
3081
3082 case tcc_vl_exp:
3083 {
3084 int i;
3085
3086 new_tree = NULL_TREE;
3087
3088 /* If we are trying to replace F with a constant, inline back
3089 functions which do nothing else than computing a value from
3090 the arguments they are passed. This makes it possible to
3091 fold partially or entirely the replacement expression. */
3092 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3093 {
3094 tree t = maybe_inline_call_in_expr (exp);
3095 if (t)
3096 return SUBSTITUTE_IN_EXPR (t, f, r);
3097 }
3098
3099 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3100 {
3101 tree op = TREE_OPERAND (exp, i);
3102 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3103 if (new_op != op)
3104 {
3105 if (!new_tree)
3106 new_tree = copy_node (exp);
3107 TREE_OPERAND (new_tree, i) = new_op;
3108 }
3109 }
3110
3111 if (new_tree)
3112 {
3113 new_tree = fold (new_tree);
3114 if (TREE_CODE (new_tree) == CALL_EXPR)
3115 process_call_operands (new_tree);
3116 }
3117 else
3118 return exp;
3119 }
3120 break;
3121
3122 default:
3123 gcc_unreachable ();
3124 }
3125
3126 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3127 return new_tree;
3128 }
3129
3130 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3131 for it within OBJ, a tree that is an object or a chain of references. */
3132
3133 tree
3134 substitute_placeholder_in_expr (tree exp, tree obj)
3135 {
3136 enum tree_code code = TREE_CODE (exp);
3137 tree op0, op1, op2, op3;
3138 tree new_tree;
3139
3140 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3141 in the chain of OBJ. */
3142 if (code == PLACEHOLDER_EXPR)
3143 {
3144 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3145 tree elt;
3146
3147 for (elt = obj; elt != 0;
3148 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3149 || TREE_CODE (elt) == COND_EXPR)
3150 ? TREE_OPERAND (elt, 1)
3151 : (REFERENCE_CLASS_P (elt)
3152 || UNARY_CLASS_P (elt)
3153 || BINARY_CLASS_P (elt)
3154 || VL_EXP_CLASS_P (elt)
3155 || EXPRESSION_CLASS_P (elt))
3156 ? TREE_OPERAND (elt, 0) : 0))
3157 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3158 return elt;
3159
3160 for (elt = obj; elt != 0;
3161 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3162 || TREE_CODE (elt) == COND_EXPR)
3163 ? TREE_OPERAND (elt, 1)
3164 : (REFERENCE_CLASS_P (elt)
3165 || UNARY_CLASS_P (elt)
3166 || BINARY_CLASS_P (elt)
3167 || VL_EXP_CLASS_P (elt)
3168 || EXPRESSION_CLASS_P (elt))
3169 ? TREE_OPERAND (elt, 0) : 0))
3170 if (POINTER_TYPE_P (TREE_TYPE (elt))
3171 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3172 == need_type))
3173 return fold_build1 (INDIRECT_REF, need_type, elt);
3174
3175 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3176 survives until RTL generation, there will be an error. */
3177 return exp;
3178 }
3179
3180 /* TREE_LIST is special because we need to look at TREE_VALUE
3181 and TREE_CHAIN, not TREE_OPERANDS. */
3182 else if (code == TREE_LIST)
3183 {
3184 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3185 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3186 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3187 return exp;
3188
3189 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3190 }
3191 else
3192 switch (TREE_CODE_CLASS (code))
3193 {
3194 case tcc_constant:
3195 case tcc_declaration:
3196 return exp;
3197
3198 case tcc_exceptional:
3199 case tcc_unary:
3200 case tcc_binary:
3201 case tcc_comparison:
3202 case tcc_expression:
3203 case tcc_reference:
3204 case tcc_statement:
3205 switch (TREE_CODE_LENGTH (code))
3206 {
3207 case 0:
3208 return exp;
3209
3210 case 1:
3211 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3212 if (op0 == TREE_OPERAND (exp, 0))
3213 return exp;
3214
3215 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3216 break;
3217
3218 case 2:
3219 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3220 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3221
3222 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3223 return exp;
3224
3225 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3226 break;
3227
3228 case 3:
3229 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3230 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3231 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3232
3233 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3234 && op2 == TREE_OPERAND (exp, 2))
3235 return exp;
3236
3237 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3238 break;
3239
3240 case 4:
3241 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3242 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3243 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3244 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3245
3246 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3247 && op2 == TREE_OPERAND (exp, 2)
3248 && op3 == TREE_OPERAND (exp, 3))
3249 return exp;
3250
3251 new_tree
3252 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3253 break;
3254
3255 default:
3256 gcc_unreachable ();
3257 }
3258 break;
3259
3260 case tcc_vl_exp:
3261 {
3262 int i;
3263
3264 new_tree = NULL_TREE;
3265
3266 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3267 {
3268 tree op = TREE_OPERAND (exp, i);
3269 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3270 if (new_op != op)
3271 {
3272 if (!new_tree)
3273 new_tree = copy_node (exp);
3274 TREE_OPERAND (new_tree, i) = new_op;
3275 }
3276 }
3277
3278 if (new_tree)
3279 {
3280 new_tree = fold (new_tree);
3281 if (TREE_CODE (new_tree) == CALL_EXPR)
3282 process_call_operands (new_tree);
3283 }
3284 else
3285 return exp;
3286 }
3287 break;
3288
3289 default:
3290 gcc_unreachable ();
3291 }
3292
3293 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3294 return new_tree;
3295 }
3296 \f
3297 /* Stabilize a reference so that we can use it any number of times
3298 without causing its operands to be evaluated more than once.
3299 Returns the stabilized reference. This works by means of save_expr,
3300 so see the caveats in the comments about save_expr.
3301
3302 Also allows conversion expressions whose operands are references.
3303 Any other kind of expression is returned unchanged. */
3304
3305 tree
3306 stabilize_reference (tree ref)
3307 {
3308 tree result;
3309 enum tree_code code = TREE_CODE (ref);
3310
3311 switch (code)
3312 {
3313 case VAR_DECL:
3314 case PARM_DECL:
3315 case RESULT_DECL:
3316 /* No action is needed in this case. */
3317 return ref;
3318
3319 CASE_CONVERT:
3320 case FLOAT_EXPR:
3321 case FIX_TRUNC_EXPR:
3322 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3323 break;
3324
3325 case INDIRECT_REF:
3326 result = build_nt (INDIRECT_REF,
3327 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3328 break;
3329
3330 case COMPONENT_REF:
3331 result = build_nt (COMPONENT_REF,
3332 stabilize_reference (TREE_OPERAND (ref, 0)),
3333 TREE_OPERAND (ref, 1), NULL_TREE);
3334 break;
3335
3336 case BIT_FIELD_REF:
3337 result = build_nt (BIT_FIELD_REF,
3338 stabilize_reference (TREE_OPERAND (ref, 0)),
3339 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3340 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3341 break;
3342
3343 case ARRAY_REF:
3344 result = build_nt (ARRAY_REF,
3345 stabilize_reference (TREE_OPERAND (ref, 0)),
3346 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3347 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3348 break;
3349
3350 case ARRAY_RANGE_REF:
3351 result = build_nt (ARRAY_RANGE_REF,
3352 stabilize_reference (TREE_OPERAND (ref, 0)),
3353 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3354 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3355 break;
3356
3357 case COMPOUND_EXPR:
3358 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3359 it wouldn't be ignored. This matters when dealing with
3360 volatiles. */
3361 return stabilize_reference_1 (ref);
3362
3363 /* If arg isn't a kind of lvalue we recognize, make no change.
3364 Caller should recognize the error for an invalid lvalue. */
3365 default:
3366 return ref;
3367
3368 case ERROR_MARK:
3369 return error_mark_node;
3370 }
3371
3372 TREE_TYPE (result) = TREE_TYPE (ref);
3373 TREE_READONLY (result) = TREE_READONLY (ref);
3374 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3375 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3376
3377 return result;
3378 }
3379
3380 /* Subroutine of stabilize_reference; this is called for subtrees of
3381 references. Any expression with side-effects must be put in a SAVE_EXPR
3382 to ensure that it is only evaluated once.
3383
3384 We don't put SAVE_EXPR nodes around everything, because assigning very
3385 simple expressions to temporaries causes us to miss good opportunities
3386 for optimizations. Among other things, the opportunity to fold in the
3387 addition of a constant into an addressing mode often gets lost, e.g.
3388 "y[i+1] += x;". In general, we take the approach that we should not make
3389 an assignment unless we are forced into it - i.e., that any non-side effect
3390 operator should be allowed, and that cse should take care of coalescing
3391 multiple utterances of the same expression should that prove fruitful. */
3392
3393 tree
3394 stabilize_reference_1 (tree e)
3395 {
3396 tree result;
3397 enum tree_code code = TREE_CODE (e);
3398
3399 /* We cannot ignore const expressions because it might be a reference
3400 to a const array but whose index contains side-effects. But we can
3401 ignore things that are actual constant or that already have been
3402 handled by this function. */
3403
3404 if (tree_invariant_p (e))
3405 return e;
3406
3407 switch (TREE_CODE_CLASS (code))
3408 {
3409 case tcc_exceptional:
3410 case tcc_type:
3411 case tcc_declaration:
3412 case tcc_comparison:
3413 case tcc_statement:
3414 case tcc_expression:
3415 case tcc_reference:
3416 case tcc_vl_exp:
3417 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3418 so that it will only be evaluated once. */
3419 /* The reference (r) and comparison (<) classes could be handled as
3420 below, but it is generally faster to only evaluate them once. */
3421 if (TREE_SIDE_EFFECTS (e))
3422 return save_expr (e);
3423 return e;
3424
3425 case tcc_constant:
3426 /* Constants need no processing. In fact, we should never reach
3427 here. */
3428 return e;
3429
3430 case tcc_binary:
3431 /* Division is slow and tends to be compiled with jumps,
3432 especially the division by powers of 2 that is often
3433 found inside of an array reference. So do it just once. */
3434 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3435 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3436 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3437 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3438 return save_expr (e);
3439 /* Recursively stabilize each operand. */
3440 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3441 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3442 break;
3443
3444 case tcc_unary:
3445 /* Recursively stabilize each operand. */
3446 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3447 break;
3448
3449 default:
3450 gcc_unreachable ();
3451 }
3452
3453 TREE_TYPE (result) = TREE_TYPE (e);
3454 TREE_READONLY (result) = TREE_READONLY (e);
3455 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3456 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3457
3458 return result;
3459 }
3460 \f
3461 /* Low-level constructors for expressions. */
3462
3463 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3464 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3465
3466 void
3467 recompute_tree_invariant_for_addr_expr (tree t)
3468 {
3469 tree node;
3470 bool tc = true, se = false;
3471
3472 /* We started out assuming this address is both invariant and constant, but
3473 does not have side effects. Now go down any handled components and see if
3474 any of them involve offsets that are either non-constant or non-invariant.
3475 Also check for side-effects.
3476
3477 ??? Note that this code makes no attempt to deal with the case where
3478 taking the address of something causes a copy due to misalignment. */
3479
3480 #define UPDATE_FLAGS(NODE) \
3481 do { tree _node = (NODE); \
3482 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3483 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3484
3485 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3486 node = TREE_OPERAND (node, 0))
3487 {
3488 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3489 array reference (probably made temporarily by the G++ front end),
3490 so ignore all the operands. */
3491 if ((TREE_CODE (node) == ARRAY_REF
3492 || TREE_CODE (node) == ARRAY_RANGE_REF)
3493 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3494 {
3495 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3496 if (TREE_OPERAND (node, 2))
3497 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3498 if (TREE_OPERAND (node, 3))
3499 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3500 }
3501 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3502 FIELD_DECL, apparently. The G++ front end can put something else
3503 there, at least temporarily. */
3504 else if (TREE_CODE (node) == COMPONENT_REF
3505 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3506 {
3507 if (TREE_OPERAND (node, 2))
3508 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3509 }
3510 else if (TREE_CODE (node) == BIT_FIELD_REF)
3511 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3512 }
3513
3514 node = lang_hooks.expr_to_decl (node, &tc, &se);
3515
3516 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3517 the address, since &(*a)->b is a form of addition. If it's a constant, the
3518 address is constant too. If it's a decl, its address is constant if the
3519 decl is static. Everything else is not constant and, furthermore,
3520 taking the address of a volatile variable is not volatile. */
3521 if (TREE_CODE (node) == INDIRECT_REF)
3522 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3523 else if (CONSTANT_CLASS_P (node))
3524 ;
3525 else if (DECL_P (node))
3526 tc &= (staticp (node) != NULL_TREE);
3527 else
3528 {
3529 tc = false;
3530 se |= TREE_SIDE_EFFECTS (node);
3531 }
3532
3533
3534 TREE_CONSTANT (t) = tc;
3535 TREE_SIDE_EFFECTS (t) = se;
3536 #undef UPDATE_FLAGS
3537 }
3538
3539 /* Build an expression of code CODE, data type TYPE, and operands as
3540 specified. Expressions and reference nodes can be created this way.
3541 Constants, decls, types and misc nodes cannot be.
3542
3543 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3544 enough for all extant tree codes. */
3545
3546 tree
3547 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3548 {
3549 tree t;
3550
3551 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3552
3553 t = make_node_stat (code PASS_MEM_STAT);
3554 TREE_TYPE (t) = tt;
3555
3556 return t;
3557 }
3558
3559 tree
3560 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3561 {
3562 int length = sizeof (struct tree_exp);
3563 #ifdef GATHER_STATISTICS
3564 tree_node_kind kind;
3565 #endif
3566 tree t;
3567
3568 #ifdef GATHER_STATISTICS
3569 switch (TREE_CODE_CLASS (code))
3570 {
3571 case tcc_statement: /* an expression with side effects */
3572 kind = s_kind;
3573 break;
3574 case tcc_reference: /* a reference */
3575 kind = r_kind;
3576 break;
3577 default:
3578 kind = e_kind;
3579 break;
3580 }
3581
3582 tree_node_counts[(int) kind]++;
3583 tree_node_sizes[(int) kind] += length;
3584 #endif
3585
3586 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3587
3588 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
3589
3590 memset (t, 0, sizeof (struct tree_common));
3591
3592 TREE_SET_CODE (t, code);
3593
3594 TREE_TYPE (t) = type;
3595 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3596 TREE_OPERAND (t, 0) = node;
3597 TREE_BLOCK (t) = NULL_TREE;
3598 if (node && !TYPE_P (node))
3599 {
3600 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3601 TREE_READONLY (t) = TREE_READONLY (node);
3602 }
3603
3604 if (TREE_CODE_CLASS (code) == tcc_statement)
3605 TREE_SIDE_EFFECTS (t) = 1;
3606 else switch (code)
3607 {
3608 case VA_ARG_EXPR:
3609 /* All of these have side-effects, no matter what their
3610 operands are. */
3611 TREE_SIDE_EFFECTS (t) = 1;
3612 TREE_READONLY (t) = 0;
3613 break;
3614
3615 case MISALIGNED_INDIRECT_REF:
3616 case ALIGN_INDIRECT_REF:
3617 case INDIRECT_REF:
3618 /* Whether a dereference is readonly has nothing to do with whether
3619 its operand is readonly. */
3620 TREE_READONLY (t) = 0;
3621 break;
3622
3623 case ADDR_EXPR:
3624 if (node)
3625 recompute_tree_invariant_for_addr_expr (t);
3626 break;
3627
3628 default:
3629 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3630 && node && !TYPE_P (node)
3631 && TREE_CONSTANT (node))
3632 TREE_CONSTANT (t) = 1;
3633 if (TREE_CODE_CLASS (code) == tcc_reference
3634 && node && TREE_THIS_VOLATILE (node))
3635 TREE_THIS_VOLATILE (t) = 1;
3636 break;
3637 }
3638
3639 return t;
3640 }
3641
3642 #define PROCESS_ARG(N) \
3643 do { \
3644 TREE_OPERAND (t, N) = arg##N; \
3645 if (arg##N &&!TYPE_P (arg##N)) \
3646 { \
3647 if (TREE_SIDE_EFFECTS (arg##N)) \
3648 side_effects = 1; \
3649 if (!TREE_READONLY (arg##N) \
3650 && !CONSTANT_CLASS_P (arg##N)) \
3651 (void) (read_only = 0); \
3652 if (!TREE_CONSTANT (arg##N)) \
3653 (void) (constant = 0); \
3654 } \
3655 } while (0)
3656
3657 tree
3658 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3659 {
3660 bool constant, read_only, side_effects;
3661 tree t;
3662
3663 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3664
3665 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3666 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3667 /* When sizetype precision doesn't match that of pointers
3668 we need to be able to build explicit extensions or truncations
3669 of the offset argument. */
3670 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3671 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3672 && TREE_CODE (arg1) == INTEGER_CST);
3673
3674 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3675 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3676 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3677 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3678
3679 t = make_node_stat (code PASS_MEM_STAT);
3680 TREE_TYPE (t) = tt;
3681
3682 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3683 result based on those same flags for the arguments. But if the
3684 arguments aren't really even `tree' expressions, we shouldn't be trying
3685 to do this. */
3686
3687 /* Expressions without side effects may be constant if their
3688 arguments are as well. */
3689 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3690 || TREE_CODE_CLASS (code) == tcc_binary);
3691 read_only = 1;
3692 side_effects = TREE_SIDE_EFFECTS (t);
3693
3694 PROCESS_ARG(0);
3695 PROCESS_ARG(1);
3696
3697 TREE_READONLY (t) = read_only;
3698 TREE_CONSTANT (t) = constant;
3699 TREE_SIDE_EFFECTS (t) = side_effects;
3700 TREE_THIS_VOLATILE (t)
3701 = (TREE_CODE_CLASS (code) == tcc_reference
3702 && arg0 && TREE_THIS_VOLATILE (arg0));
3703
3704 return t;
3705 }
3706
3707
3708 tree
3709 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3710 tree arg2 MEM_STAT_DECL)
3711 {
3712 bool constant, read_only, side_effects;
3713 tree t;
3714
3715 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3716 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3717
3718 t = make_node_stat (code PASS_MEM_STAT);
3719 TREE_TYPE (t) = tt;
3720
3721 read_only = 1;
3722
3723 /* As a special exception, if COND_EXPR has NULL branches, we
3724 assume that it is a gimple statement and always consider
3725 it to have side effects. */
3726 if (code == COND_EXPR
3727 && tt == void_type_node
3728 && arg1 == NULL_TREE
3729 && arg2 == NULL_TREE)
3730 side_effects = true;
3731 else
3732 side_effects = TREE_SIDE_EFFECTS (t);
3733
3734 PROCESS_ARG(0);
3735 PROCESS_ARG(1);
3736 PROCESS_ARG(2);
3737
3738 if (code == COND_EXPR)
3739 TREE_READONLY (t) = read_only;
3740
3741 TREE_SIDE_EFFECTS (t) = side_effects;
3742 TREE_THIS_VOLATILE (t)
3743 = (TREE_CODE_CLASS (code) == tcc_reference
3744 && arg0 && TREE_THIS_VOLATILE (arg0));
3745
3746 return t;
3747 }
3748
3749 tree
3750 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3751 tree arg2, tree arg3 MEM_STAT_DECL)
3752 {
3753 bool constant, read_only, side_effects;
3754 tree t;
3755
3756 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3757
3758 t = make_node_stat (code PASS_MEM_STAT);
3759 TREE_TYPE (t) = tt;
3760
3761 side_effects = TREE_SIDE_EFFECTS (t);
3762
3763 PROCESS_ARG(0);
3764 PROCESS_ARG(1);
3765 PROCESS_ARG(2);
3766 PROCESS_ARG(3);
3767
3768 TREE_SIDE_EFFECTS (t) = side_effects;
3769 TREE_THIS_VOLATILE (t)
3770 = (TREE_CODE_CLASS (code) == tcc_reference
3771 && arg0 && TREE_THIS_VOLATILE (arg0));
3772
3773 return t;
3774 }
3775
3776 tree
3777 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3778 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3779 {
3780 bool constant, read_only, side_effects;
3781 tree t;
3782
3783 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3784
3785 t = make_node_stat (code PASS_MEM_STAT);
3786 TREE_TYPE (t) = tt;
3787
3788 side_effects = TREE_SIDE_EFFECTS (t);
3789
3790 PROCESS_ARG(0);
3791 PROCESS_ARG(1);
3792 PROCESS_ARG(2);
3793 PROCESS_ARG(3);
3794 PROCESS_ARG(4);
3795
3796 TREE_SIDE_EFFECTS (t) = side_effects;
3797 TREE_THIS_VOLATILE (t)
3798 = (TREE_CODE_CLASS (code) == tcc_reference
3799 && arg0 && TREE_THIS_VOLATILE (arg0));
3800
3801 return t;
3802 }
3803
3804 tree
3805 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3806 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3807 {
3808 bool constant, read_only, side_effects;
3809 tree t;
3810
3811 gcc_assert (code == TARGET_MEM_REF);
3812
3813 t = make_node_stat (code PASS_MEM_STAT);
3814 TREE_TYPE (t) = tt;
3815
3816 side_effects = TREE_SIDE_EFFECTS (t);
3817
3818 PROCESS_ARG(0);
3819 PROCESS_ARG(1);
3820 PROCESS_ARG(2);
3821 PROCESS_ARG(3);
3822 PROCESS_ARG(4);
3823 if (code == TARGET_MEM_REF)
3824 side_effects = 0;
3825 PROCESS_ARG(5);
3826
3827 TREE_SIDE_EFFECTS (t) = side_effects;
3828 TREE_THIS_VOLATILE (t)
3829 = (code == TARGET_MEM_REF
3830 && arg5 && TREE_THIS_VOLATILE (arg5));
3831
3832 return t;
3833 }
3834
3835 /* Similar except don't specify the TREE_TYPE
3836 and leave the TREE_SIDE_EFFECTS as 0.
3837 It is permissible for arguments to be null,
3838 or even garbage if their values do not matter. */
3839
3840 tree
3841 build_nt (enum tree_code code, ...)
3842 {
3843 tree t;
3844 int length;
3845 int i;
3846 va_list p;
3847
3848 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3849
3850 va_start (p, code);
3851
3852 t = make_node (code);
3853 length = TREE_CODE_LENGTH (code);
3854
3855 for (i = 0; i < length; i++)
3856 TREE_OPERAND (t, i) = va_arg (p, tree);
3857
3858 va_end (p);
3859 return t;
3860 }
3861
3862 /* Similar to build_nt, but for creating a CALL_EXPR object with a
3863 tree VEC. */
3864
3865 tree
3866 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
3867 {
3868 tree ret, t;
3869 unsigned int ix;
3870
3871 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
3872 CALL_EXPR_FN (ret) = fn;
3873 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
3874 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
3875 CALL_EXPR_ARG (ret, ix) = t;
3876 return ret;
3877 }
3878 \f
3879 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3880 We do NOT enter this node in any sort of symbol table.
3881
3882 LOC is the location of the decl.
3883
3884 layout_decl is used to set up the decl's storage layout.
3885 Other slots are initialized to 0 or null pointers. */
3886
3887 tree
3888 build_decl_stat (location_t loc, enum tree_code code, tree name,
3889 tree type MEM_STAT_DECL)
3890 {
3891 tree t;
3892
3893 t = make_node_stat (code PASS_MEM_STAT);
3894 DECL_SOURCE_LOCATION (t) = loc;
3895
3896 /* if (type == error_mark_node)
3897 type = integer_type_node; */
3898 /* That is not done, deliberately, so that having error_mark_node
3899 as the type can suppress useless errors in the use of this variable. */
3900
3901 DECL_NAME (t) = name;
3902 TREE_TYPE (t) = type;
3903
3904 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3905 layout_decl (t, 0);
3906
3907 return t;
3908 }
3909
3910 /* Builds and returns function declaration with NAME and TYPE. */
3911
3912 tree
3913 build_fn_decl (const char *name, tree type)
3914 {
3915 tree id = get_identifier (name);
3916 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
3917
3918 DECL_EXTERNAL (decl) = 1;
3919 TREE_PUBLIC (decl) = 1;
3920 DECL_ARTIFICIAL (decl) = 1;
3921 TREE_NOTHROW (decl) = 1;
3922
3923 return decl;
3924 }
3925
3926 \f
3927 /* BLOCK nodes are used to represent the structure of binding contours
3928 and declarations, once those contours have been exited and their contents
3929 compiled. This information is used for outputting debugging info. */
3930
3931 tree
3932 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3933 {
3934 tree block = make_node (BLOCK);
3935
3936 BLOCK_VARS (block) = vars;
3937 BLOCK_SUBBLOCKS (block) = subblocks;
3938 BLOCK_SUPERCONTEXT (block) = supercontext;
3939 BLOCK_CHAIN (block) = chain;
3940 return block;
3941 }
3942
3943 \f
3944 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
3945
3946 LOC is the location to use in tree T. */
3947
3948 void
3949 protected_set_expr_location (tree t, location_t loc)
3950 {
3951 if (t && CAN_HAVE_LOCATION_P (t))
3952 SET_EXPR_LOCATION (t, loc);
3953 }
3954 \f
3955 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3956 is ATTRIBUTE. */
3957
3958 tree
3959 build_decl_attribute_variant (tree ddecl, tree attribute)
3960 {
3961 DECL_ATTRIBUTES (ddecl) = attribute;
3962 return ddecl;
3963 }
3964
3965 /* Borrowed from hashtab.c iterative_hash implementation. */
3966 #define mix(a,b,c) \
3967 { \
3968 a -= b; a -= c; a ^= (c>>13); \
3969 b -= c; b -= a; b ^= (a<< 8); \
3970 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3971 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3972 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3973 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3974 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3975 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3976 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3977 }
3978
3979
3980 /* Produce good hash value combining VAL and VAL2. */
3981 hashval_t
3982 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3983 {
3984 /* the golden ratio; an arbitrary value. */
3985 hashval_t a = 0x9e3779b9;
3986
3987 mix (a, val, val2);
3988 return val2;
3989 }
3990
3991 /* Produce good hash value combining VAL and VAL2. */
3992 hashval_t
3993 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3994 {
3995 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3996 return iterative_hash_hashval_t (val, val2);
3997 else
3998 {
3999 hashval_t a = (hashval_t) val;
4000 /* Avoid warnings about shifting of more than the width of the type on
4001 hosts that won't execute this path. */
4002 int zero = 0;
4003 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4004 mix (a, b, val2);
4005 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4006 {
4007 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4008 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4009 mix (a, b, val2);
4010 }
4011 return val2;
4012 }
4013 }
4014
4015 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4016 is ATTRIBUTE and its qualifiers are QUALS.
4017
4018 Record such modified types already made so we don't make duplicates. */
4019
4020 tree
4021 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4022 {
4023 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4024 {
4025 hashval_t hashcode = 0;
4026 tree ntype;
4027 enum tree_code code = TREE_CODE (ttype);
4028
4029 /* Building a distinct copy of a tagged type is inappropriate; it
4030 causes breakage in code that expects there to be a one-to-one
4031 relationship between a struct and its fields.
4032 build_duplicate_type is another solution (as used in
4033 handle_transparent_union_attribute), but that doesn't play well
4034 with the stronger C++ type identity model. */
4035 if (TREE_CODE (ttype) == RECORD_TYPE
4036 || TREE_CODE (ttype) == UNION_TYPE
4037 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4038 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4039 {
4040 warning (OPT_Wattributes,
4041 "ignoring attributes applied to %qT after definition",
4042 TYPE_MAIN_VARIANT (ttype));
4043 return build_qualified_type (ttype, quals);
4044 }
4045
4046 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4047 ntype = build_distinct_type_copy (ttype);
4048
4049 TYPE_ATTRIBUTES (ntype) = attribute;
4050
4051 hashcode = iterative_hash_object (code, hashcode);
4052 if (TREE_TYPE (ntype))
4053 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4054 hashcode);
4055 hashcode = attribute_hash_list (attribute, hashcode);
4056
4057 switch (TREE_CODE (ntype))
4058 {
4059 case FUNCTION_TYPE:
4060 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4061 break;
4062 case ARRAY_TYPE:
4063 if (TYPE_DOMAIN (ntype))
4064 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4065 hashcode);
4066 break;
4067 case INTEGER_TYPE:
4068 hashcode = iterative_hash_object
4069 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4070 hashcode = iterative_hash_object
4071 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4072 break;
4073 case REAL_TYPE:
4074 case FIXED_POINT_TYPE:
4075 {
4076 unsigned int precision = TYPE_PRECISION (ntype);
4077 hashcode = iterative_hash_object (precision, hashcode);
4078 }
4079 break;
4080 default:
4081 break;
4082 }
4083
4084 ntype = type_hash_canon (hashcode, ntype);
4085
4086 /* If the target-dependent attributes make NTYPE different from
4087 its canonical type, we will need to use structural equality
4088 checks for this type. */
4089 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4090 || !targetm.comp_type_attributes (ntype, ttype))
4091 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4092 else if (TYPE_CANONICAL (ntype) == ntype)
4093 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4094
4095 ttype = build_qualified_type (ntype, quals);
4096 }
4097 else if (TYPE_QUALS (ttype) != quals)
4098 ttype = build_qualified_type (ttype, quals);
4099
4100 return ttype;
4101 }
4102
4103
4104 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4105 is ATTRIBUTE.
4106
4107 Record such modified types already made so we don't make duplicates. */
4108
4109 tree
4110 build_type_attribute_variant (tree ttype, tree attribute)
4111 {
4112 return build_type_attribute_qual_variant (ttype, attribute,
4113 TYPE_QUALS (ttype));
4114 }
4115
4116
4117 /* Reset the expression *EXPR_P, a size or position.
4118
4119 ??? We could reset all non-constant sizes or positions. But it's cheap
4120 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4121
4122 We need to reset self-referential sizes or positions because they cannot
4123 be gimplified and thus can contain a CALL_EXPR after the gimplification
4124 is finished, which will run afoul of LTO streaming. And they need to be
4125 reset to something essentially dummy but not constant, so as to preserve
4126 the properties of the object they are attached to. */
4127
4128 static inline void
4129 free_lang_data_in_one_sizepos (tree *expr_p)
4130 {
4131 tree expr = *expr_p;
4132 if (CONTAINS_PLACEHOLDER_P (expr))
4133 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4134 }
4135
4136
4137 /* Reset all the fields in a binfo node BINFO. We only keep
4138 BINFO_VIRTUALS, which is used by gimple_fold_obj_type_ref. */
4139
4140 static void
4141 free_lang_data_in_binfo (tree binfo)
4142 {
4143 unsigned i;
4144 tree t;
4145
4146 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4147
4148 BINFO_VTABLE (binfo) = NULL_TREE;
4149 BINFO_BASE_ACCESSES (binfo) = NULL;
4150 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4151 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4152
4153 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (binfo), i, t); i++)
4154 free_lang_data_in_binfo (t);
4155 }
4156
4157
4158 /* Reset all language specific information still present in TYPE. */
4159
4160 static void
4161 free_lang_data_in_type (tree type)
4162 {
4163 gcc_assert (TYPE_P (type));
4164
4165 /* Give the FE a chance to remove its own data first. */
4166 lang_hooks.free_lang_data (type);
4167
4168 TREE_LANG_FLAG_0 (type) = 0;
4169 TREE_LANG_FLAG_1 (type) = 0;
4170 TREE_LANG_FLAG_2 (type) = 0;
4171 TREE_LANG_FLAG_3 (type) = 0;
4172 TREE_LANG_FLAG_4 (type) = 0;
4173 TREE_LANG_FLAG_5 (type) = 0;
4174 TREE_LANG_FLAG_6 (type) = 0;
4175
4176 if (TREE_CODE (type) == FUNCTION_TYPE)
4177 {
4178 /* Remove the const and volatile qualifiers from arguments. The
4179 C++ front end removes them, but the C front end does not,
4180 leading to false ODR violation errors when merging two
4181 instances of the same function signature compiled by
4182 different front ends. */
4183 tree p;
4184
4185 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4186 {
4187 tree arg_type = TREE_VALUE (p);
4188
4189 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4190 {
4191 int quals = TYPE_QUALS (arg_type)
4192 & ~TYPE_QUAL_CONST
4193 & ~TYPE_QUAL_VOLATILE;
4194 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4195 free_lang_data_in_type (TREE_VALUE (p));
4196 }
4197 }
4198 }
4199
4200 /* Remove members that are not actually FIELD_DECLs from the field
4201 list of an aggregate. These occur in C++. */
4202 if (RECORD_OR_UNION_TYPE_P (type))
4203 {
4204 tree prev, member;
4205
4206 /* Note that TYPE_FIELDS can be shared across distinct
4207 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4208 to be removed, we cannot set its TREE_CHAIN to NULL.
4209 Otherwise, we would not be able to find all the other fields
4210 in the other instances of this TREE_TYPE.
4211
4212 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4213 prev = NULL_TREE;
4214 member = TYPE_FIELDS (type);
4215 while (member)
4216 {
4217 if (TREE_CODE (member) == FIELD_DECL)
4218 {
4219 if (prev)
4220 TREE_CHAIN (prev) = member;
4221 else
4222 TYPE_FIELDS (type) = member;
4223 prev = member;
4224 }
4225
4226 member = TREE_CHAIN (member);
4227 }
4228
4229 if (prev)
4230 TREE_CHAIN (prev) = NULL_TREE;
4231 else
4232 TYPE_FIELDS (type) = NULL_TREE;
4233
4234 TYPE_METHODS (type) = NULL_TREE;
4235 if (TYPE_BINFO (type))
4236 free_lang_data_in_binfo (TYPE_BINFO (type));
4237 }
4238 else
4239 {
4240 /* For non-aggregate types, clear out the language slot (which
4241 overloads TYPE_BINFO). */
4242 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4243
4244 if (INTEGRAL_TYPE_P (type)
4245 || SCALAR_FLOAT_TYPE_P (type)
4246 || FIXED_POINT_TYPE_P (type))
4247 {
4248 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4249 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4250 }
4251 }
4252
4253 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4254 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4255
4256 if (debug_info_level < DINFO_LEVEL_TERSE
4257 || (TYPE_CONTEXT (type)
4258 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_DECL
4259 && TREE_CODE (TYPE_CONTEXT (type)) != NAMESPACE_DECL))
4260 TYPE_CONTEXT (type) = NULL_TREE;
4261
4262 if (debug_info_level < DINFO_LEVEL_TERSE)
4263 TYPE_STUB_DECL (type) = NULL_TREE;
4264 }
4265
4266
4267 /* Return true if DECL may need an assembler name to be set. */
4268
4269 static inline bool
4270 need_assembler_name_p (tree decl)
4271 {
4272 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4273 if (TREE_CODE (decl) != FUNCTION_DECL
4274 && TREE_CODE (decl) != VAR_DECL)
4275 return false;
4276
4277 /* If DECL already has its assembler name set, it does not need a
4278 new one. */
4279 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4280 || DECL_ASSEMBLER_NAME_SET_P (decl))
4281 return false;
4282
4283 /* Abstract decls do not need an assembler name. */
4284 if (DECL_ABSTRACT (decl))
4285 return false;
4286
4287 /* For VAR_DECLs, only static, public and external symbols need an
4288 assembler name. */
4289 if (TREE_CODE (decl) == VAR_DECL
4290 && !TREE_STATIC (decl)
4291 && !TREE_PUBLIC (decl)
4292 && !DECL_EXTERNAL (decl))
4293 return false;
4294
4295 if (TREE_CODE (decl) == FUNCTION_DECL)
4296 {
4297 /* Do not set assembler name on builtins. Allow RTL expansion to
4298 decide whether to expand inline or via a regular call. */
4299 if (DECL_BUILT_IN (decl)
4300 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4301 return false;
4302
4303 /* Functions represented in the callgraph need an assembler name. */
4304 if (cgraph_get_node (decl) != NULL)
4305 return true;
4306
4307 /* Unused and not public functions don't need an assembler name. */
4308 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4309 return false;
4310 }
4311
4312 return true;
4313 }
4314
4315
4316 /* Remove all the non-variable decls from BLOCK. LOCALS is the set of
4317 variables in DECL_STRUCT_FUNCTION (FN)->local_decls. Every decl
4318 in BLOCK that is not in LOCALS is removed. */
4319
4320 static void
4321 free_lang_data_in_block (tree fn, tree block, struct pointer_set_t *locals)
4322 {
4323 tree *tp, t;
4324
4325 tp = &BLOCK_VARS (block);
4326 while (*tp)
4327 {
4328 if (!pointer_set_contains (locals, *tp))
4329 *tp = TREE_CHAIN (*tp);
4330 else
4331 tp = &TREE_CHAIN (*tp);
4332 }
4333
4334 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4335 free_lang_data_in_block (fn, t, locals);
4336 }
4337
4338
4339 /* Reset all language specific information still present in symbol
4340 DECL. */
4341
4342 static void
4343 free_lang_data_in_decl (tree decl)
4344 {
4345 gcc_assert (DECL_P (decl));
4346
4347 /* Give the FE a chance to remove its own data first. */
4348 lang_hooks.free_lang_data (decl);
4349
4350 TREE_LANG_FLAG_0 (decl) = 0;
4351 TREE_LANG_FLAG_1 (decl) = 0;
4352 TREE_LANG_FLAG_2 (decl) = 0;
4353 TREE_LANG_FLAG_3 (decl) = 0;
4354 TREE_LANG_FLAG_4 (decl) = 0;
4355 TREE_LANG_FLAG_5 (decl) = 0;
4356 TREE_LANG_FLAG_6 (decl) = 0;
4357
4358 /* Identifiers need not have a type. */
4359 if (DECL_NAME (decl))
4360 TREE_TYPE (DECL_NAME (decl)) = NULL_TREE;
4361
4362 /* Ignore any intervening types, because we are going to clear their
4363 TYPE_CONTEXT fields. */
4364 if (TREE_CODE (decl) != FIELD_DECL
4365 && TREE_CODE (decl) != FUNCTION_DECL)
4366 DECL_CONTEXT (decl) = decl_function_context (decl);
4367
4368 if (DECL_CONTEXT (decl)
4369 && TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
4370 DECL_CONTEXT (decl) = NULL_TREE;
4371
4372 if (TREE_CODE (decl) == VAR_DECL)
4373 {
4374 tree context = DECL_CONTEXT (decl);
4375
4376 if (context)
4377 {
4378 enum tree_code code = TREE_CODE (context);
4379 if (code == FUNCTION_DECL && DECL_ABSTRACT (context))
4380 {
4381 /* Do not clear the decl context here, that will promote
4382 all vars to global ones. */
4383 DECL_INITIAL (decl) = NULL_TREE;
4384 }
4385
4386 if (TREE_STATIC (decl))
4387 DECL_CONTEXT (decl) = NULL_TREE;
4388 }
4389 }
4390
4391 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4392 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4393 if (TREE_CODE (decl) == FIELD_DECL)
4394 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4395
4396 /* DECL_FCONTEXT is only used for debug info generation. */
4397 if (TREE_CODE (decl) == FIELD_DECL
4398 && debug_info_level < DINFO_LEVEL_TERSE)
4399 DECL_FCONTEXT (decl) = NULL_TREE;
4400
4401 if (TREE_CODE (decl) == FUNCTION_DECL)
4402 {
4403 if (gimple_has_body_p (decl))
4404 {
4405 tree t;
4406 struct pointer_set_t *locals;
4407
4408 /* If DECL has a gimple body, then the context for its
4409 arguments must be DECL. Otherwise, it doesn't really
4410 matter, as we will not be emitting any code for DECL. In
4411 general, there may be other instances of DECL created by
4412 the front end and since PARM_DECLs are generally shared,
4413 their DECL_CONTEXT changes as the replicas of DECL are
4414 created. The only time where DECL_CONTEXT is important
4415 is for the FUNCTION_DECLs that have a gimple body (since
4416 the PARM_DECL will be used in the function's body). */
4417 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4418 DECL_CONTEXT (t) = decl;
4419
4420 /* Collect all the symbols declared in DECL. */
4421 locals = pointer_set_create ();
4422 t = DECL_STRUCT_FUNCTION (decl)->local_decls;
4423 for (; t; t = TREE_CHAIN (t))
4424 {
4425 pointer_set_insert (locals, TREE_VALUE (t));
4426
4427 /* All the local symbols should have DECL as their
4428 context. */
4429 DECL_CONTEXT (TREE_VALUE (t)) = decl;
4430 }
4431
4432 /* Get rid of any decl not in local_decls. */
4433 free_lang_data_in_block (decl, DECL_INITIAL (decl), locals);
4434
4435 pointer_set_destroy (locals);
4436 }
4437
4438 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4439 At this point, it is not needed anymore. */
4440 DECL_SAVED_TREE (decl) = NULL_TREE;
4441 }
4442 else if (TREE_CODE (decl) == VAR_DECL)
4443 {
4444 tree expr = DECL_DEBUG_EXPR (decl);
4445 if (expr
4446 && TREE_CODE (expr) == VAR_DECL
4447 && !TREE_STATIC (expr) && !DECL_EXTERNAL (expr))
4448 SET_DECL_DEBUG_EXPR (decl, NULL_TREE);
4449
4450 if (DECL_EXTERNAL (decl)
4451 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4452 DECL_INITIAL (decl) = NULL_TREE;
4453 }
4454 else if (TREE_CODE (decl) == TYPE_DECL)
4455 {
4456 DECL_INITIAL (decl) = NULL_TREE;
4457
4458 /* DECL_CONTEXT is overloaded as DECL_FIELD_CONTEXT for
4459 FIELD_DECLs, which should be preserved. Otherwise,
4460 we shouldn't be concerned with source-level lexical
4461 nesting beyond this point. */
4462 DECL_CONTEXT (decl) = NULL_TREE;
4463 }
4464 }
4465
4466
4467 /* Data used when collecting DECLs and TYPEs for language data removal. */
4468
4469 struct free_lang_data_d
4470 {
4471 /* Worklist to avoid excessive recursion. */
4472 VEC(tree,heap) *worklist;
4473
4474 /* Set of traversed objects. Used to avoid duplicate visits. */
4475 struct pointer_set_t *pset;
4476
4477 /* Array of symbols to process with free_lang_data_in_decl. */
4478 VEC(tree,heap) *decls;
4479
4480 /* Array of types to process with free_lang_data_in_type. */
4481 VEC(tree,heap) *types;
4482 };
4483
4484
4485 /* Save all language fields needed to generate proper debug information
4486 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4487
4488 static void
4489 save_debug_info_for_decl (tree t)
4490 {
4491 /*struct saved_debug_info_d *sdi;*/
4492
4493 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4494
4495 /* FIXME. Partial implementation for saving debug info removed. */
4496 }
4497
4498
4499 /* Save all language fields needed to generate proper debug information
4500 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4501
4502 static void
4503 save_debug_info_for_type (tree t)
4504 {
4505 /*struct saved_debug_info_d *sdi;*/
4506
4507 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4508
4509 /* FIXME. Partial implementation for saving debug info removed. */
4510 }
4511
4512
4513 /* Add type or decl T to one of the list of tree nodes that need their
4514 language data removed. The lists are held inside FLD. */
4515
4516 static void
4517 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4518 {
4519 if (DECL_P (t))
4520 {
4521 VEC_safe_push (tree, heap, fld->decls, t);
4522 if (debug_info_level > DINFO_LEVEL_TERSE)
4523 save_debug_info_for_decl (t);
4524 }
4525 else if (TYPE_P (t))
4526 {
4527 VEC_safe_push (tree, heap, fld->types, t);
4528 if (debug_info_level > DINFO_LEVEL_TERSE)
4529 save_debug_info_for_type (t);
4530 }
4531 else
4532 gcc_unreachable ();
4533 }
4534
4535 /* Push tree node T into FLD->WORKLIST. */
4536
4537 static inline void
4538 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4539 {
4540 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4541 VEC_safe_push (tree, heap, fld->worklist, (t));
4542 }
4543
4544
4545 /* Operand callback helper for free_lang_data_in_node. *TP is the
4546 subtree operand being considered. */
4547
4548 static tree
4549 find_decls_types_r (tree *tp, int *ws, void *data)
4550 {
4551 tree t = *tp;
4552 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4553
4554 if (TREE_CODE (t) == TREE_LIST)
4555 return NULL_TREE;
4556
4557 /* Language specific nodes will be removed, so there is no need
4558 to gather anything under them. */
4559 if (is_lang_specific (t))
4560 {
4561 *ws = 0;
4562 return NULL_TREE;
4563 }
4564
4565 if (DECL_P (t))
4566 {
4567 /* Note that walk_tree does not traverse every possible field in
4568 decls, so we have to do our own traversals here. */
4569 add_tree_to_fld_list (t, fld);
4570
4571 fld_worklist_push (DECL_NAME (t), fld);
4572 fld_worklist_push (DECL_CONTEXT (t), fld);
4573 fld_worklist_push (DECL_SIZE (t), fld);
4574 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4575
4576 /* We are going to remove everything under DECL_INITIAL for
4577 TYPE_DECLs. No point walking them. */
4578 if (TREE_CODE (t) != TYPE_DECL)
4579 fld_worklist_push (DECL_INITIAL (t), fld);
4580
4581 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4582 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4583
4584 if (TREE_CODE (t) == FUNCTION_DECL)
4585 {
4586 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4587 fld_worklist_push (DECL_RESULT (t), fld);
4588 }
4589 else if (TREE_CODE (t) == TYPE_DECL)
4590 {
4591 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4592 fld_worklist_push (DECL_VINDEX (t), fld);
4593 }
4594 else if (TREE_CODE (t) == FIELD_DECL)
4595 {
4596 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4597 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4598 fld_worklist_push (DECL_QUALIFIER (t), fld);
4599 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4600 fld_worklist_push (DECL_FCONTEXT (t), fld);
4601 }
4602 else if (TREE_CODE (t) == VAR_DECL)
4603 {
4604 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4605 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4606 }
4607
4608 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4609 && DECL_HAS_VALUE_EXPR_P (t))
4610 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4611
4612 if (TREE_CODE (t) != FIELD_DECL)
4613 fld_worklist_push (TREE_CHAIN (t), fld);
4614 *ws = 0;
4615 }
4616 else if (TYPE_P (t))
4617 {
4618 /* Note that walk_tree does not traverse every possible field in
4619 types, so we have to do our own traversals here. */
4620 add_tree_to_fld_list (t, fld);
4621
4622 if (!RECORD_OR_UNION_TYPE_P (t))
4623 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4624 fld_worklist_push (TYPE_SIZE (t), fld);
4625 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4626 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4627 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4628 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4629 fld_worklist_push (TYPE_NAME (t), fld);
4630 fld_worklist_push (TYPE_MINVAL (t), fld);
4631 if (!RECORD_OR_UNION_TYPE_P (t))
4632 fld_worklist_push (TYPE_MAXVAL (t), fld);
4633 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4634 fld_worklist_push (TYPE_NEXT_VARIANT (t), fld);
4635 fld_worklist_push (TYPE_CONTEXT (t), fld);
4636 fld_worklist_push (TYPE_CANONICAL (t), fld);
4637
4638 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4639 {
4640 unsigned i;
4641 tree tem;
4642 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4643 i, tem); ++i)
4644 fld_worklist_push (TREE_TYPE (tem), fld);
4645 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4646 if (tem
4647 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4648 && TREE_CODE (tem) == TREE_LIST)
4649 do
4650 {
4651 fld_worklist_push (TREE_VALUE (tem), fld);
4652 tem = TREE_CHAIN (tem);
4653 }
4654 while (tem);
4655 }
4656 if (RECORD_OR_UNION_TYPE_P (t))
4657 {
4658 tree tem;
4659 /* Push all TYPE_FIELDS - there can be interleaving interesting
4660 and non-interesting things. */
4661 tem = TYPE_FIELDS (t);
4662 while (tem)
4663 {
4664 if (TREE_CODE (tem) == FIELD_DECL)
4665 fld_worklist_push (tem, fld);
4666 tem = TREE_CHAIN (tem);
4667 }
4668 }
4669
4670 fld_worklist_push (TREE_CHAIN (t), fld);
4671 *ws = 0;
4672 }
4673 else if (TREE_CODE (t) == BLOCK)
4674 {
4675 tree tem;
4676 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4677 fld_worklist_push (tem, fld);
4678 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4679 fld_worklist_push (tem, fld);
4680 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4681 }
4682
4683 fld_worklist_push (TREE_TYPE (t), fld);
4684
4685 return NULL_TREE;
4686 }
4687
4688
4689 /* Find decls and types in T. */
4690
4691 static void
4692 find_decls_types (tree t, struct free_lang_data_d *fld)
4693 {
4694 while (1)
4695 {
4696 if (!pointer_set_contains (fld->pset, t))
4697 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4698 if (VEC_empty (tree, fld->worklist))
4699 break;
4700 t = VEC_pop (tree, fld->worklist);
4701 }
4702 }
4703
4704 /* Translate all the types in LIST with the corresponding runtime
4705 types. */
4706
4707 static tree
4708 get_eh_types_for_runtime (tree list)
4709 {
4710 tree head, prev;
4711
4712 if (list == NULL_TREE)
4713 return NULL_TREE;
4714
4715 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4716 prev = head;
4717 list = TREE_CHAIN (list);
4718 while (list)
4719 {
4720 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4721 TREE_CHAIN (prev) = n;
4722 prev = TREE_CHAIN (prev);
4723 list = TREE_CHAIN (list);
4724 }
4725
4726 return head;
4727 }
4728
4729
4730 /* Find decls and types referenced in EH region R and store them in
4731 FLD->DECLS and FLD->TYPES. */
4732
4733 static void
4734 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4735 {
4736 switch (r->type)
4737 {
4738 case ERT_CLEANUP:
4739 break;
4740
4741 case ERT_TRY:
4742 {
4743 eh_catch c;
4744
4745 /* The types referenced in each catch must first be changed to the
4746 EH types used at runtime. This removes references to FE types
4747 in the region. */
4748 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4749 {
4750 c->type_list = get_eh_types_for_runtime (c->type_list);
4751 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4752 }
4753 }
4754 break;
4755
4756 case ERT_ALLOWED_EXCEPTIONS:
4757 r->u.allowed.type_list
4758 = get_eh_types_for_runtime (r->u.allowed.type_list);
4759 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4760 break;
4761
4762 case ERT_MUST_NOT_THROW:
4763 walk_tree (&r->u.must_not_throw.failure_decl,
4764 find_decls_types_r, fld, fld->pset);
4765 break;
4766 }
4767 }
4768
4769
4770 /* Find decls and types referenced in cgraph node N and store them in
4771 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4772 look for *every* kind of DECL and TYPE node reachable from N,
4773 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4774 NAMESPACE_DECLs, etc). */
4775
4776 static void
4777 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4778 {
4779 basic_block bb;
4780 struct function *fn;
4781 tree t;
4782
4783 find_decls_types (n->decl, fld);
4784
4785 if (!gimple_has_body_p (n->decl))
4786 return;
4787
4788 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
4789
4790 fn = DECL_STRUCT_FUNCTION (n->decl);
4791
4792 /* Traverse locals. */
4793 for (t = fn->local_decls; t; t = TREE_CHAIN (t))
4794 find_decls_types (TREE_VALUE (t), fld);
4795
4796 /* Traverse EH regions in FN. */
4797 {
4798 eh_region r;
4799 FOR_ALL_EH_REGION_FN (r, fn)
4800 find_decls_types_in_eh_region (r, fld);
4801 }
4802
4803 /* Traverse every statement in FN. */
4804 FOR_EACH_BB_FN (bb, fn)
4805 {
4806 gimple_stmt_iterator si;
4807 unsigned i;
4808
4809 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4810 {
4811 gimple phi = gsi_stmt (si);
4812
4813 for (i = 0; i < gimple_phi_num_args (phi); i++)
4814 {
4815 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
4816 find_decls_types (*arg_p, fld);
4817 }
4818 }
4819
4820 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4821 {
4822 gimple stmt = gsi_stmt (si);
4823
4824 for (i = 0; i < gimple_num_ops (stmt); i++)
4825 {
4826 tree arg = gimple_op (stmt, i);
4827 find_decls_types (arg, fld);
4828 }
4829 }
4830 }
4831 }
4832
4833
4834 /* Find decls and types referenced in varpool node N and store them in
4835 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4836 look for *every* kind of DECL and TYPE node reachable from N,
4837 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4838 NAMESPACE_DECLs, etc). */
4839
4840 static void
4841 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
4842 {
4843 find_decls_types (v->decl, fld);
4844 }
4845
4846 /* If T needs an assembler name, have one created for it. */
4847
4848 void
4849 assign_assembler_name_if_neeeded (tree t)
4850 {
4851 if (need_assembler_name_p (t))
4852 {
4853 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
4854 diagnostics that use input_location to show locus
4855 information. The problem here is that, at this point,
4856 input_location is generally anchored to the end of the file
4857 (since the parser is long gone), so we don't have a good
4858 position to pin it to.
4859
4860 To alleviate this problem, this uses the location of T's
4861 declaration. Examples of this are
4862 testsuite/g++.dg/template/cond2.C and
4863 testsuite/g++.dg/template/pr35240.C. */
4864 location_t saved_location = input_location;
4865 input_location = DECL_SOURCE_LOCATION (t);
4866
4867 decl_assembler_name (t);
4868
4869 input_location = saved_location;
4870 }
4871 }
4872
4873
4874 /* Free language specific information for every operand and expression
4875 in every node of the call graph. This process operates in three stages:
4876
4877 1- Every callgraph node and varpool node is traversed looking for
4878 decls and types embedded in them. This is a more exhaustive
4879 search than that done by find_referenced_vars, because it will
4880 also collect individual fields, decls embedded in types, etc.
4881
4882 2- All the decls found are sent to free_lang_data_in_decl.
4883
4884 3- All the types found are sent to free_lang_data_in_type.
4885
4886 The ordering between decls and types is important because
4887 free_lang_data_in_decl sets assembler names, which includes
4888 mangling. So types cannot be freed up until assembler names have
4889 been set up. */
4890
4891 static void
4892 free_lang_data_in_cgraph (void)
4893 {
4894 struct cgraph_node *n;
4895 struct varpool_node *v;
4896 struct free_lang_data_d fld;
4897 tree t;
4898 unsigned i;
4899 alias_pair *p;
4900
4901 /* Initialize sets and arrays to store referenced decls and types. */
4902 fld.pset = pointer_set_create ();
4903 fld.worklist = NULL;
4904 fld.decls = VEC_alloc (tree, heap, 100);
4905 fld.types = VEC_alloc (tree, heap, 100);
4906
4907 /* Find decls and types in the body of every function in the callgraph. */
4908 for (n = cgraph_nodes; n; n = n->next)
4909 find_decls_types_in_node (n, &fld);
4910
4911 for (i = 0; VEC_iterate (alias_pair, alias_pairs, i, p); i++)
4912 find_decls_types (p->decl, &fld);
4913
4914 /* Find decls and types in every varpool symbol. */
4915 for (v = varpool_nodes_queue; v; v = v->next_needed)
4916 find_decls_types_in_var (v, &fld);
4917
4918 /* Set the assembler name on every decl found. We need to do this
4919 now because free_lang_data_in_decl will invalidate data needed
4920 for mangling. This breaks mangling on interdependent decls. */
4921 for (i = 0; VEC_iterate (tree, fld.decls, i, t); i++)
4922 assign_assembler_name_if_neeeded (t);
4923
4924 /* Traverse every decl found freeing its language data. */
4925 for (i = 0; VEC_iterate (tree, fld.decls, i, t); i++)
4926 free_lang_data_in_decl (t);
4927
4928 /* Traverse every type found freeing its language data. */
4929 for (i = 0; VEC_iterate (tree, fld.types, i, t); i++)
4930 free_lang_data_in_type (t);
4931
4932 pointer_set_destroy (fld.pset);
4933 VEC_free (tree, heap, fld.worklist);
4934 VEC_free (tree, heap, fld.decls);
4935 VEC_free (tree, heap, fld.types);
4936 }
4937
4938
4939 /* Free resources that are used by FE but are not needed once they are done. */
4940
4941 static unsigned
4942 free_lang_data (void)
4943 {
4944 unsigned i;
4945
4946 /* If we are the LTO frontend we have freed lang-specific data already. */
4947 if (in_lto_p
4948 || !flag_generate_lto)
4949 return 0;
4950
4951 /* Allocate and assign alias sets to the standard integer types
4952 while the slots are still in the way the frontends generated them. */
4953 for (i = 0; i < itk_none; ++i)
4954 if (integer_types[i])
4955 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
4956
4957 /* Traverse the IL resetting language specific information for
4958 operands, expressions, etc. */
4959 free_lang_data_in_cgraph ();
4960
4961 /* Create gimple variants for common types. */
4962 ptrdiff_type_node = integer_type_node;
4963 fileptr_type_node = ptr_type_node;
4964 if (TREE_CODE (boolean_type_node) != BOOLEAN_TYPE
4965 || (TYPE_MODE (boolean_type_node)
4966 != mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0))
4967 || TYPE_PRECISION (boolean_type_node) != 1
4968 || !TYPE_UNSIGNED (boolean_type_node))
4969 {
4970 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
4971 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
4972 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
4973 TYPE_PRECISION (boolean_type_node) = 1;
4974 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
4975 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
4976 }
4977
4978 /* Unify char_type_node with its properly signed variant. */
4979 if (TYPE_UNSIGNED (char_type_node))
4980 unsigned_char_type_node = char_type_node;
4981 else
4982 signed_char_type_node = char_type_node;
4983
4984 /* Reset some langhooks. Do not reset types_compatible_p, it may
4985 still be used indirectly via the get_alias_set langhook. */
4986 lang_hooks.callgraph.analyze_expr = NULL;
4987 lang_hooks.dwarf_name = lhd_dwarf_name;
4988 lang_hooks.decl_printable_name = gimple_decl_printable_name;
4989 lang_hooks.set_decl_assembler_name = lhd_set_decl_assembler_name;
4990
4991 /* Reset diagnostic machinery. */
4992 diagnostic_starter (global_dc) = default_tree_diagnostic_starter;
4993 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
4994 diagnostic_format_decoder (global_dc) = default_tree_printer;
4995
4996 return 0;
4997 }
4998
4999
5000 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5001 {
5002 {
5003 SIMPLE_IPA_PASS,
5004 "*free_lang_data", /* name */
5005 NULL, /* gate */
5006 free_lang_data, /* execute */
5007 NULL, /* sub */
5008 NULL, /* next */
5009 0, /* static_pass_number */
5010 TV_IPA_FREE_LANG_DATA, /* tv_id */
5011 0, /* properties_required */
5012 0, /* properties_provided */
5013 0, /* properties_destroyed */
5014 0, /* todo_flags_start */
5015 TODO_ggc_collect /* todo_flags_finish */
5016 }
5017 };
5018
5019 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5020 or zero if not.
5021
5022 We try both `text' and `__text__', ATTR may be either one. */
5023 /* ??? It might be a reasonable simplification to require ATTR to be only
5024 `text'. One might then also require attribute lists to be stored in
5025 their canonicalized form. */
5026
5027 static int
5028 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
5029 {
5030 int ident_len;
5031 const char *p;
5032
5033 if (TREE_CODE (ident) != IDENTIFIER_NODE)
5034 return 0;
5035
5036 p = IDENTIFIER_POINTER (ident);
5037 ident_len = IDENTIFIER_LENGTH (ident);
5038
5039 if (ident_len == attr_len
5040 && strcmp (attr, p) == 0)
5041 return 1;
5042
5043 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
5044 if (attr[0] == '_')
5045 {
5046 gcc_assert (attr[1] == '_');
5047 gcc_assert (attr[attr_len - 2] == '_');
5048 gcc_assert (attr[attr_len - 1] == '_');
5049 if (ident_len == attr_len - 4
5050 && strncmp (attr + 2, p, attr_len - 4) == 0)
5051 return 1;
5052 }
5053 else
5054 {
5055 if (ident_len == attr_len + 4
5056 && p[0] == '_' && p[1] == '_'
5057 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5058 && strncmp (attr, p + 2, attr_len) == 0)
5059 return 1;
5060 }
5061
5062 return 0;
5063 }
5064
5065 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5066 or zero if not.
5067
5068 We try both `text' and `__text__', ATTR may be either one. */
5069
5070 int
5071 is_attribute_p (const char *attr, const_tree ident)
5072 {
5073 return is_attribute_with_length_p (attr, strlen (attr), ident);
5074 }
5075
5076 /* Given an attribute name and a list of attributes, return a pointer to the
5077 attribute's list element if the attribute is part of the list, or NULL_TREE
5078 if not found. If the attribute appears more than once, this only
5079 returns the first occurrence; the TREE_CHAIN of the return value should
5080 be passed back in if further occurrences are wanted. */
5081
5082 tree
5083 lookup_attribute (const char *attr_name, tree list)
5084 {
5085 tree l;
5086 size_t attr_len = strlen (attr_name);
5087
5088 for (l = list; l; l = TREE_CHAIN (l))
5089 {
5090 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5091 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5092 return l;
5093 }
5094 return NULL_TREE;
5095 }
5096
5097 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5098 modified list. */
5099
5100 tree
5101 remove_attribute (const char *attr_name, tree list)
5102 {
5103 tree *p;
5104 size_t attr_len = strlen (attr_name);
5105
5106 for (p = &list; *p; )
5107 {
5108 tree l = *p;
5109 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5110 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5111 *p = TREE_CHAIN (l);
5112 else
5113 p = &TREE_CHAIN (l);
5114 }
5115
5116 return list;
5117 }
5118
5119 /* Return an attribute list that is the union of a1 and a2. */
5120
5121 tree
5122 merge_attributes (tree a1, tree a2)
5123 {
5124 tree attributes;
5125
5126 /* Either one unset? Take the set one. */
5127
5128 if ((attributes = a1) == 0)
5129 attributes = a2;
5130
5131 /* One that completely contains the other? Take it. */
5132
5133 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5134 {
5135 if (attribute_list_contained (a2, a1))
5136 attributes = a2;
5137 else
5138 {
5139 /* Pick the longest list, and hang on the other list. */
5140
5141 if (list_length (a1) < list_length (a2))
5142 attributes = a2, a2 = a1;
5143
5144 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5145 {
5146 tree a;
5147 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5148 attributes);
5149 a != NULL_TREE;
5150 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5151 TREE_CHAIN (a)))
5152 {
5153 if (TREE_VALUE (a) != NULL
5154 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
5155 && TREE_VALUE (a2) != NULL
5156 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
5157 {
5158 if (simple_cst_list_equal (TREE_VALUE (a),
5159 TREE_VALUE (a2)) == 1)
5160 break;
5161 }
5162 else if (simple_cst_equal (TREE_VALUE (a),
5163 TREE_VALUE (a2)) == 1)
5164 break;
5165 }
5166 if (a == NULL_TREE)
5167 {
5168 a1 = copy_node (a2);
5169 TREE_CHAIN (a1) = attributes;
5170 attributes = a1;
5171 }
5172 }
5173 }
5174 }
5175 return attributes;
5176 }
5177
5178 /* Given types T1 and T2, merge their attributes and return
5179 the result. */
5180
5181 tree
5182 merge_type_attributes (tree t1, tree t2)
5183 {
5184 return merge_attributes (TYPE_ATTRIBUTES (t1),
5185 TYPE_ATTRIBUTES (t2));
5186 }
5187
5188 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5189 the result. */
5190
5191 tree
5192 merge_decl_attributes (tree olddecl, tree newdecl)
5193 {
5194 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5195 DECL_ATTRIBUTES (newdecl));
5196 }
5197
5198 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5199
5200 /* Specialization of merge_decl_attributes for various Windows targets.
5201
5202 This handles the following situation:
5203
5204 __declspec (dllimport) int foo;
5205 int foo;
5206
5207 The second instance of `foo' nullifies the dllimport. */
5208
5209 tree
5210 merge_dllimport_decl_attributes (tree old, tree new_tree)
5211 {
5212 tree a;
5213 int delete_dllimport_p = 1;
5214
5215 /* What we need to do here is remove from `old' dllimport if it doesn't
5216 appear in `new'. dllimport behaves like extern: if a declaration is
5217 marked dllimport and a definition appears later, then the object
5218 is not dllimport'd. We also remove a `new' dllimport if the old list
5219 contains dllexport: dllexport always overrides dllimport, regardless
5220 of the order of declaration. */
5221 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5222 delete_dllimport_p = 0;
5223 else if (DECL_DLLIMPORT_P (new_tree)
5224 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5225 {
5226 DECL_DLLIMPORT_P (new_tree) = 0;
5227 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5228 "dllimport ignored", new_tree);
5229 }
5230 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5231 {
5232 /* Warn about overriding a symbol that has already been used, e.g.:
5233 extern int __attribute__ ((dllimport)) foo;
5234 int* bar () {return &foo;}
5235 int foo;
5236 */
5237 if (TREE_USED (old))
5238 {
5239 warning (0, "%q+D redeclared without dllimport attribute "
5240 "after being referenced with dll linkage", new_tree);
5241 /* If we have used a variable's address with dllimport linkage,
5242 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5243 decl may already have had TREE_CONSTANT computed.
5244 We still remove the attribute so that assembler code refers
5245 to '&foo rather than '_imp__foo'. */
5246 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5247 DECL_DLLIMPORT_P (new_tree) = 1;
5248 }
5249
5250 /* Let an inline definition silently override the external reference,
5251 but otherwise warn about attribute inconsistency. */
5252 else if (TREE_CODE (new_tree) == VAR_DECL
5253 || !DECL_DECLARED_INLINE_P (new_tree))
5254 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5255 "previous dllimport ignored", new_tree);
5256 }
5257 else
5258 delete_dllimport_p = 0;
5259
5260 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5261
5262 if (delete_dllimport_p)
5263 {
5264 tree prev, t;
5265 const size_t attr_len = strlen ("dllimport");
5266
5267 /* Scan the list for dllimport and delete it. */
5268 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
5269 {
5270 if (is_attribute_with_length_p ("dllimport", attr_len,
5271 TREE_PURPOSE (t)))
5272 {
5273 if (prev == NULL_TREE)
5274 a = TREE_CHAIN (a);
5275 else
5276 TREE_CHAIN (prev) = TREE_CHAIN (t);
5277 break;
5278 }
5279 }
5280 }
5281
5282 return a;
5283 }
5284
5285 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5286 struct attribute_spec.handler. */
5287
5288 tree
5289 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5290 bool *no_add_attrs)
5291 {
5292 tree node = *pnode;
5293 bool is_dllimport;
5294
5295 /* These attributes may apply to structure and union types being created,
5296 but otherwise should pass to the declaration involved. */
5297 if (!DECL_P (node))
5298 {
5299 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5300 | (int) ATTR_FLAG_ARRAY_NEXT))
5301 {
5302 *no_add_attrs = true;
5303 return tree_cons (name, args, NULL_TREE);
5304 }
5305 if (TREE_CODE (node) == RECORD_TYPE
5306 || TREE_CODE (node) == UNION_TYPE)
5307 {
5308 node = TYPE_NAME (node);
5309 if (!node)
5310 return NULL_TREE;
5311 }
5312 else
5313 {
5314 warning (OPT_Wattributes, "%qE attribute ignored",
5315 name);
5316 *no_add_attrs = true;
5317 return NULL_TREE;
5318 }
5319 }
5320
5321 if (TREE_CODE (node) != FUNCTION_DECL
5322 && TREE_CODE (node) != VAR_DECL
5323 && TREE_CODE (node) != TYPE_DECL)
5324 {
5325 *no_add_attrs = true;
5326 warning (OPT_Wattributes, "%qE attribute ignored",
5327 name);
5328 return NULL_TREE;
5329 }
5330
5331 if (TREE_CODE (node) == TYPE_DECL
5332 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5333 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5334 {
5335 *no_add_attrs = true;
5336 warning (OPT_Wattributes, "%qE attribute ignored",
5337 name);
5338 return NULL_TREE;
5339 }
5340
5341 is_dllimport = is_attribute_p ("dllimport", name);
5342
5343 /* Report error on dllimport ambiguities seen now before they cause
5344 any damage. */
5345 if (is_dllimport)
5346 {
5347 /* Honor any target-specific overrides. */
5348 if (!targetm.valid_dllimport_attribute_p (node))
5349 *no_add_attrs = true;
5350
5351 else if (TREE_CODE (node) == FUNCTION_DECL
5352 && DECL_DECLARED_INLINE_P (node))
5353 {
5354 warning (OPT_Wattributes, "inline function %q+D declared as "
5355 " dllimport: attribute ignored", node);
5356 *no_add_attrs = true;
5357 }
5358 /* Like MS, treat definition of dllimported variables and
5359 non-inlined functions on declaration as syntax errors. */
5360 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5361 {
5362 error ("function %q+D definition is marked dllimport", node);
5363 *no_add_attrs = true;
5364 }
5365
5366 else if (TREE_CODE (node) == VAR_DECL)
5367 {
5368 if (DECL_INITIAL (node))
5369 {
5370 error ("variable %q+D definition is marked dllimport",
5371 node);
5372 *no_add_attrs = true;
5373 }
5374
5375 /* `extern' needn't be specified with dllimport.
5376 Specify `extern' now and hope for the best. Sigh. */
5377 DECL_EXTERNAL (node) = 1;
5378 /* Also, implicitly give dllimport'd variables declared within
5379 a function global scope, unless declared static. */
5380 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5381 TREE_PUBLIC (node) = 1;
5382 }
5383
5384 if (*no_add_attrs == false)
5385 DECL_DLLIMPORT_P (node) = 1;
5386 }
5387 else if (TREE_CODE (node) == FUNCTION_DECL
5388 && DECL_DECLARED_INLINE_P (node))
5389 /* An exported function, even if inline, must be emitted. */
5390 DECL_EXTERNAL (node) = 0;
5391
5392 /* Report error if symbol is not accessible at global scope. */
5393 if (!TREE_PUBLIC (node)
5394 && (TREE_CODE (node) == VAR_DECL
5395 || TREE_CODE (node) == FUNCTION_DECL))
5396 {
5397 error ("external linkage required for symbol %q+D because of "
5398 "%qE attribute", node, name);
5399 *no_add_attrs = true;
5400 }
5401
5402 /* A dllexport'd entity must have default visibility so that other
5403 program units (shared libraries or the main executable) can see
5404 it. A dllimport'd entity must have default visibility so that
5405 the linker knows that undefined references within this program
5406 unit can be resolved by the dynamic linker. */
5407 if (!*no_add_attrs)
5408 {
5409 if (DECL_VISIBILITY_SPECIFIED (node)
5410 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5411 error ("%qE implies default visibility, but %qD has already "
5412 "been declared with a different visibility",
5413 name, node);
5414 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5415 DECL_VISIBILITY_SPECIFIED (node) = 1;
5416 }
5417
5418 return NULL_TREE;
5419 }
5420
5421 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5422 \f
5423 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5424 of the various TYPE_QUAL values. */
5425
5426 static void
5427 set_type_quals (tree type, int type_quals)
5428 {
5429 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5430 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5431 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5432 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5433 }
5434
5435 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5436
5437 bool
5438 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5439 {
5440 return (TYPE_QUALS (cand) == type_quals
5441 && TYPE_NAME (cand) == TYPE_NAME (base)
5442 /* Apparently this is needed for Objective-C. */
5443 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5444 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5445 TYPE_ATTRIBUTES (base)));
5446 }
5447
5448 /* Return a version of the TYPE, qualified as indicated by the
5449 TYPE_QUALS, if one exists. If no qualified version exists yet,
5450 return NULL_TREE. */
5451
5452 tree
5453 get_qualified_type (tree type, int type_quals)
5454 {
5455 tree t;
5456
5457 if (TYPE_QUALS (type) == type_quals)
5458 return type;
5459
5460 /* Search the chain of variants to see if there is already one there just
5461 like the one we need to have. If so, use that existing one. We must
5462 preserve the TYPE_NAME, since there is code that depends on this. */
5463 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5464 if (check_qualified_type (t, type, type_quals))
5465 return t;
5466
5467 return NULL_TREE;
5468 }
5469
5470 /* Like get_qualified_type, but creates the type if it does not
5471 exist. This function never returns NULL_TREE. */
5472
5473 tree
5474 build_qualified_type (tree type, int type_quals)
5475 {
5476 tree t;
5477
5478 /* See if we already have the appropriate qualified variant. */
5479 t = get_qualified_type (type, type_quals);
5480
5481 /* If not, build it. */
5482 if (!t)
5483 {
5484 t = build_variant_type_copy (type);
5485 set_type_quals (t, type_quals);
5486
5487 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5488 /* Propagate structural equality. */
5489 SET_TYPE_STRUCTURAL_EQUALITY (t);
5490 else if (TYPE_CANONICAL (type) != type)
5491 /* Build the underlying canonical type, since it is different
5492 from TYPE. */
5493 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5494 type_quals);
5495 else
5496 /* T is its own canonical type. */
5497 TYPE_CANONICAL (t) = t;
5498
5499 }
5500
5501 return t;
5502 }
5503
5504 /* Create a new distinct copy of TYPE. The new type is made its own
5505 MAIN_VARIANT. If TYPE requires structural equality checks, the
5506 resulting type requires structural equality checks; otherwise, its
5507 TYPE_CANONICAL points to itself. */
5508
5509 tree
5510 build_distinct_type_copy (tree type)
5511 {
5512 tree t = copy_node (type);
5513
5514 TYPE_POINTER_TO (t) = 0;
5515 TYPE_REFERENCE_TO (t) = 0;
5516
5517 /* Set the canonical type either to a new equivalence class, or
5518 propagate the need for structural equality checks. */
5519 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5520 SET_TYPE_STRUCTURAL_EQUALITY (t);
5521 else
5522 TYPE_CANONICAL (t) = t;
5523
5524 /* Make it its own variant. */
5525 TYPE_MAIN_VARIANT (t) = t;
5526 TYPE_NEXT_VARIANT (t) = 0;
5527
5528 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5529 whose TREE_TYPE is not t. This can also happen in the Ada
5530 frontend when using subtypes. */
5531
5532 return t;
5533 }
5534
5535 /* Create a new variant of TYPE, equivalent but distinct. This is so
5536 the caller can modify it. TYPE_CANONICAL for the return type will
5537 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5538 are considered equal by the language itself (or that both types
5539 require structural equality checks). */
5540
5541 tree
5542 build_variant_type_copy (tree type)
5543 {
5544 tree t, m = TYPE_MAIN_VARIANT (type);
5545
5546 t = build_distinct_type_copy (type);
5547
5548 /* Since we're building a variant, assume that it is a non-semantic
5549 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5550 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5551
5552 /* Add the new type to the chain of variants of TYPE. */
5553 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5554 TYPE_NEXT_VARIANT (m) = t;
5555 TYPE_MAIN_VARIANT (t) = m;
5556
5557 return t;
5558 }
5559 \f
5560 /* Return true if the from tree in both tree maps are equal. */
5561
5562 int
5563 tree_map_base_eq (const void *va, const void *vb)
5564 {
5565 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5566 *const b = (const struct tree_map_base *) vb;
5567 return (a->from == b->from);
5568 }
5569
5570 /* Hash a from tree in a tree_base_map. */
5571
5572 unsigned int
5573 tree_map_base_hash (const void *item)
5574 {
5575 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5576 }
5577
5578 /* Return true if this tree map structure is marked for garbage collection
5579 purposes. We simply return true if the from tree is marked, so that this
5580 structure goes away when the from tree goes away. */
5581
5582 int
5583 tree_map_base_marked_p (const void *p)
5584 {
5585 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5586 }
5587
5588 /* Hash a from tree in a tree_map. */
5589
5590 unsigned int
5591 tree_map_hash (const void *item)
5592 {
5593 return (((const struct tree_map *) item)->hash);
5594 }
5595
5596 /* Hash a from tree in a tree_decl_map. */
5597
5598 unsigned int
5599 tree_decl_map_hash (const void *item)
5600 {
5601 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5602 }
5603
5604 /* Return the initialization priority for DECL. */
5605
5606 priority_type
5607 decl_init_priority_lookup (tree decl)
5608 {
5609 struct tree_priority_map *h;
5610 struct tree_map_base in;
5611
5612 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5613 in.from = decl;
5614 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5615 return h ? h->init : DEFAULT_INIT_PRIORITY;
5616 }
5617
5618 /* Return the finalization priority for DECL. */
5619
5620 priority_type
5621 decl_fini_priority_lookup (tree decl)
5622 {
5623 struct tree_priority_map *h;
5624 struct tree_map_base in;
5625
5626 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5627 in.from = decl;
5628 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5629 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5630 }
5631
5632 /* Return the initialization and finalization priority information for
5633 DECL. If there is no previous priority information, a freshly
5634 allocated structure is returned. */
5635
5636 static struct tree_priority_map *
5637 decl_priority_info (tree decl)
5638 {
5639 struct tree_priority_map in;
5640 struct tree_priority_map *h;
5641 void **loc;
5642
5643 in.base.from = decl;
5644 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5645 h = (struct tree_priority_map *) *loc;
5646 if (!h)
5647 {
5648 h = ggc_alloc_cleared_tree_priority_map ();
5649 *loc = h;
5650 h->base.from = decl;
5651 h->init = DEFAULT_INIT_PRIORITY;
5652 h->fini = DEFAULT_INIT_PRIORITY;
5653 }
5654
5655 return h;
5656 }
5657
5658 /* Set the initialization priority for DECL to PRIORITY. */
5659
5660 void
5661 decl_init_priority_insert (tree decl, priority_type priority)
5662 {
5663 struct tree_priority_map *h;
5664
5665 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5666 h = decl_priority_info (decl);
5667 h->init = priority;
5668 }
5669
5670 /* Set the finalization priority for DECL to PRIORITY. */
5671
5672 void
5673 decl_fini_priority_insert (tree decl, priority_type priority)
5674 {
5675 struct tree_priority_map *h;
5676
5677 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5678 h = decl_priority_info (decl);
5679 h->fini = priority;
5680 }
5681
5682 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5683
5684 static void
5685 print_debug_expr_statistics (void)
5686 {
5687 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5688 (long) htab_size (debug_expr_for_decl),
5689 (long) htab_elements (debug_expr_for_decl),
5690 htab_collisions (debug_expr_for_decl));
5691 }
5692
5693 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5694
5695 static void
5696 print_value_expr_statistics (void)
5697 {
5698 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5699 (long) htab_size (value_expr_for_decl),
5700 (long) htab_elements (value_expr_for_decl),
5701 htab_collisions (value_expr_for_decl));
5702 }
5703
5704 /* Lookup a debug expression for FROM, and return it if we find one. */
5705
5706 tree
5707 decl_debug_expr_lookup (tree from)
5708 {
5709 struct tree_decl_map *h, in;
5710 in.base.from = from;
5711
5712 h = (struct tree_decl_map *)
5713 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
5714 if (h)
5715 return h->to;
5716 return NULL_TREE;
5717 }
5718
5719 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5720
5721 void
5722 decl_debug_expr_insert (tree from, tree to)
5723 {
5724 struct tree_decl_map *h;
5725 void **loc;
5726
5727 h = ggc_alloc_tree_decl_map ();
5728 h->base.from = from;
5729 h->to = to;
5730 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
5731 INSERT);
5732 *(struct tree_decl_map **) loc = h;
5733 }
5734
5735 /* Lookup a value expression for FROM, and return it if we find one. */
5736
5737 tree
5738 decl_value_expr_lookup (tree from)
5739 {
5740 struct tree_decl_map *h, in;
5741 in.base.from = from;
5742
5743 h = (struct tree_decl_map *)
5744 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
5745 if (h)
5746 return h->to;
5747 return NULL_TREE;
5748 }
5749
5750 /* Insert a mapping FROM->TO in the value expression hashtable. */
5751
5752 void
5753 decl_value_expr_insert (tree from, tree to)
5754 {
5755 struct tree_decl_map *h;
5756 void **loc;
5757
5758 h = ggc_alloc_tree_decl_map ();
5759 h->base.from = from;
5760 h->to = to;
5761 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
5762 INSERT);
5763 *(struct tree_decl_map **) loc = h;
5764 }
5765
5766 /* Hashing of types so that we don't make duplicates.
5767 The entry point is `type_hash_canon'. */
5768
5769 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
5770 with types in the TREE_VALUE slots), by adding the hash codes
5771 of the individual types. */
5772
5773 static unsigned int
5774 type_hash_list (const_tree list, hashval_t hashcode)
5775 {
5776 const_tree tail;
5777
5778 for (tail = list; tail; tail = TREE_CHAIN (tail))
5779 if (TREE_VALUE (tail) != error_mark_node)
5780 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
5781 hashcode);
5782
5783 return hashcode;
5784 }
5785
5786 /* These are the Hashtable callback functions. */
5787
5788 /* Returns true iff the types are equivalent. */
5789
5790 static int
5791 type_hash_eq (const void *va, const void *vb)
5792 {
5793 const struct type_hash *const a = (const struct type_hash *) va,
5794 *const b = (const struct type_hash *) vb;
5795
5796 /* First test the things that are the same for all types. */
5797 if (a->hash != b->hash
5798 || TREE_CODE (a->type) != TREE_CODE (b->type)
5799 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
5800 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
5801 TYPE_ATTRIBUTES (b->type))
5802 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
5803 || TYPE_MODE (a->type) != TYPE_MODE (b->type)
5804 || (TREE_CODE (a->type) != COMPLEX_TYPE
5805 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
5806 return 0;
5807
5808 switch (TREE_CODE (a->type))
5809 {
5810 case VOID_TYPE:
5811 case COMPLEX_TYPE:
5812 case POINTER_TYPE:
5813 case REFERENCE_TYPE:
5814 return 1;
5815
5816 case VECTOR_TYPE:
5817 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
5818
5819 case ENUMERAL_TYPE:
5820 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
5821 && !(TYPE_VALUES (a->type)
5822 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
5823 && TYPE_VALUES (b->type)
5824 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
5825 && type_list_equal (TYPE_VALUES (a->type),
5826 TYPE_VALUES (b->type))))
5827 return 0;
5828
5829 /* ... fall through ... */
5830
5831 case INTEGER_TYPE:
5832 case REAL_TYPE:
5833 case BOOLEAN_TYPE:
5834 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
5835 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
5836 TYPE_MAX_VALUE (b->type)))
5837 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
5838 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
5839 TYPE_MIN_VALUE (b->type))));
5840
5841 case FIXED_POINT_TYPE:
5842 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
5843
5844 case OFFSET_TYPE:
5845 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
5846
5847 case METHOD_TYPE:
5848 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
5849 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5850 || (TYPE_ARG_TYPES (a->type)
5851 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5852 && TYPE_ARG_TYPES (b->type)
5853 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5854 && type_list_equal (TYPE_ARG_TYPES (a->type),
5855 TYPE_ARG_TYPES (b->type)))));
5856
5857 case ARRAY_TYPE:
5858 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
5859
5860 case RECORD_TYPE:
5861 case UNION_TYPE:
5862 case QUAL_UNION_TYPE:
5863 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
5864 || (TYPE_FIELDS (a->type)
5865 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
5866 && TYPE_FIELDS (b->type)
5867 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
5868 && type_list_equal (TYPE_FIELDS (a->type),
5869 TYPE_FIELDS (b->type))));
5870
5871 case FUNCTION_TYPE:
5872 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5873 || (TYPE_ARG_TYPES (a->type)
5874 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5875 && TYPE_ARG_TYPES (b->type)
5876 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5877 && type_list_equal (TYPE_ARG_TYPES (a->type),
5878 TYPE_ARG_TYPES (b->type))))
5879 break;
5880 return 0;
5881
5882 default:
5883 return 0;
5884 }
5885
5886 if (lang_hooks.types.type_hash_eq != NULL)
5887 return lang_hooks.types.type_hash_eq (a->type, b->type);
5888
5889 return 1;
5890 }
5891
5892 /* Return the cached hash value. */
5893
5894 static hashval_t
5895 type_hash_hash (const void *item)
5896 {
5897 return ((const struct type_hash *) item)->hash;
5898 }
5899
5900 /* Look in the type hash table for a type isomorphic to TYPE.
5901 If one is found, return it. Otherwise return 0. */
5902
5903 tree
5904 type_hash_lookup (hashval_t hashcode, tree type)
5905 {
5906 struct type_hash *h, in;
5907
5908 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
5909 must call that routine before comparing TYPE_ALIGNs. */
5910 layout_type (type);
5911
5912 in.hash = hashcode;
5913 in.type = type;
5914
5915 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
5916 hashcode);
5917 if (h)
5918 return h->type;
5919 return NULL_TREE;
5920 }
5921
5922 /* Add an entry to the type-hash-table
5923 for a type TYPE whose hash code is HASHCODE. */
5924
5925 void
5926 type_hash_add (hashval_t hashcode, tree type)
5927 {
5928 struct type_hash *h;
5929 void **loc;
5930
5931 h = ggc_alloc_type_hash ();
5932 h->hash = hashcode;
5933 h->type = type;
5934 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
5935 *loc = (void *)h;
5936 }
5937
5938 /* Given TYPE, and HASHCODE its hash code, return the canonical
5939 object for an identical type if one already exists.
5940 Otherwise, return TYPE, and record it as the canonical object.
5941
5942 To use this function, first create a type of the sort you want.
5943 Then compute its hash code from the fields of the type that
5944 make it different from other similar types.
5945 Then call this function and use the value. */
5946
5947 tree
5948 type_hash_canon (unsigned int hashcode, tree type)
5949 {
5950 tree t1;
5951
5952 /* The hash table only contains main variants, so ensure that's what we're
5953 being passed. */
5954 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
5955
5956 if (!lang_hooks.types.hash_types)
5957 return type;
5958
5959 /* See if the type is in the hash table already. If so, return it.
5960 Otherwise, add the type. */
5961 t1 = type_hash_lookup (hashcode, type);
5962 if (t1 != 0)
5963 {
5964 #ifdef GATHER_STATISTICS
5965 tree_node_counts[(int) t_kind]--;
5966 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
5967 #endif
5968 return t1;
5969 }
5970 else
5971 {
5972 type_hash_add (hashcode, type);
5973 return type;
5974 }
5975 }
5976
5977 /* See if the data pointed to by the type hash table is marked. We consider
5978 it marked if the type is marked or if a debug type number or symbol
5979 table entry has been made for the type. This reduces the amount of
5980 debugging output and eliminates that dependency of the debug output on
5981 the number of garbage collections. */
5982
5983 static int
5984 type_hash_marked_p (const void *p)
5985 {
5986 const_tree const type = ((const struct type_hash *) p)->type;
5987
5988 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
5989 }
5990
5991 static void
5992 print_type_hash_statistics (void)
5993 {
5994 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
5995 (long) htab_size (type_hash_table),
5996 (long) htab_elements (type_hash_table),
5997 htab_collisions (type_hash_table));
5998 }
5999
6000 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6001 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6002 by adding the hash codes of the individual attributes. */
6003
6004 static unsigned int
6005 attribute_hash_list (const_tree list, hashval_t hashcode)
6006 {
6007 const_tree tail;
6008
6009 for (tail = list; tail; tail = TREE_CHAIN (tail))
6010 /* ??? Do we want to add in TREE_VALUE too? */
6011 hashcode = iterative_hash_object
6012 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
6013 return hashcode;
6014 }
6015
6016 /* Given two lists of attributes, return true if list l2 is
6017 equivalent to l1. */
6018
6019 int
6020 attribute_list_equal (const_tree l1, const_tree l2)
6021 {
6022 return attribute_list_contained (l1, l2)
6023 && attribute_list_contained (l2, l1);
6024 }
6025
6026 /* Given two lists of attributes, return true if list L2 is
6027 completely contained within L1. */
6028 /* ??? This would be faster if attribute names were stored in a canonicalized
6029 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6030 must be used to show these elements are equivalent (which they are). */
6031 /* ??? It's not clear that attributes with arguments will always be handled
6032 correctly. */
6033
6034 int
6035 attribute_list_contained (const_tree l1, const_tree l2)
6036 {
6037 const_tree t1, t2;
6038
6039 /* First check the obvious, maybe the lists are identical. */
6040 if (l1 == l2)
6041 return 1;
6042
6043 /* Maybe the lists are similar. */
6044 for (t1 = l1, t2 = l2;
6045 t1 != 0 && t2 != 0
6046 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6047 && TREE_VALUE (t1) == TREE_VALUE (t2);
6048 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
6049
6050 /* Maybe the lists are equal. */
6051 if (t1 == 0 && t2 == 0)
6052 return 1;
6053
6054 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6055 {
6056 const_tree attr;
6057 /* This CONST_CAST is okay because lookup_attribute does not
6058 modify its argument and the return value is assigned to a
6059 const_tree. */
6060 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6061 CONST_CAST_TREE(l1));
6062 attr != NULL_TREE;
6063 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6064 TREE_CHAIN (attr)))
6065 {
6066 if (TREE_VALUE (t2) != NULL
6067 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
6068 && TREE_VALUE (attr) != NULL
6069 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
6070 {
6071 if (simple_cst_list_equal (TREE_VALUE (t2),
6072 TREE_VALUE (attr)) == 1)
6073 break;
6074 }
6075 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
6076 break;
6077 }
6078
6079 if (attr == 0)
6080 return 0;
6081 }
6082
6083 return 1;
6084 }
6085
6086 /* Given two lists of types
6087 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6088 return 1 if the lists contain the same types in the same order.
6089 Also, the TREE_PURPOSEs must match. */
6090
6091 int
6092 type_list_equal (const_tree l1, const_tree l2)
6093 {
6094 const_tree t1, t2;
6095
6096 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6097 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6098 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6099 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6100 && (TREE_TYPE (TREE_PURPOSE (t1))
6101 == TREE_TYPE (TREE_PURPOSE (t2))))))
6102 return 0;
6103
6104 return t1 == t2;
6105 }
6106
6107 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6108 given by TYPE. If the argument list accepts variable arguments,
6109 then this function counts only the ordinary arguments. */
6110
6111 int
6112 type_num_arguments (const_tree type)
6113 {
6114 int i = 0;
6115 tree t;
6116
6117 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6118 /* If the function does not take a variable number of arguments,
6119 the last element in the list will have type `void'. */
6120 if (VOID_TYPE_P (TREE_VALUE (t)))
6121 break;
6122 else
6123 ++i;
6124
6125 return i;
6126 }
6127
6128 /* Nonzero if integer constants T1 and T2
6129 represent the same constant value. */
6130
6131 int
6132 tree_int_cst_equal (const_tree t1, const_tree t2)
6133 {
6134 if (t1 == t2)
6135 return 1;
6136
6137 if (t1 == 0 || t2 == 0)
6138 return 0;
6139
6140 if (TREE_CODE (t1) == INTEGER_CST
6141 && TREE_CODE (t2) == INTEGER_CST
6142 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6143 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6144 return 1;
6145
6146 return 0;
6147 }
6148
6149 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6150 The precise way of comparison depends on their data type. */
6151
6152 int
6153 tree_int_cst_lt (const_tree t1, const_tree t2)
6154 {
6155 if (t1 == t2)
6156 return 0;
6157
6158 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6159 {
6160 int t1_sgn = tree_int_cst_sgn (t1);
6161 int t2_sgn = tree_int_cst_sgn (t2);
6162
6163 if (t1_sgn < t2_sgn)
6164 return 1;
6165 else if (t1_sgn > t2_sgn)
6166 return 0;
6167 /* Otherwise, both are non-negative, so we compare them as
6168 unsigned just in case one of them would overflow a signed
6169 type. */
6170 }
6171 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6172 return INT_CST_LT (t1, t2);
6173
6174 return INT_CST_LT_UNSIGNED (t1, t2);
6175 }
6176
6177 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6178
6179 int
6180 tree_int_cst_compare (const_tree t1, const_tree t2)
6181 {
6182 if (tree_int_cst_lt (t1, t2))
6183 return -1;
6184 else if (tree_int_cst_lt (t2, t1))
6185 return 1;
6186 else
6187 return 0;
6188 }
6189
6190 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6191 the host. If POS is zero, the value can be represented in a single
6192 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6193 be represented in a single unsigned HOST_WIDE_INT. */
6194
6195 int
6196 host_integerp (const_tree t, int pos)
6197 {
6198 if (t == NULL_TREE)
6199 return 0;
6200
6201 return (TREE_CODE (t) == INTEGER_CST
6202 && ((TREE_INT_CST_HIGH (t) == 0
6203 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6204 || (! pos && TREE_INT_CST_HIGH (t) == -1
6205 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6206 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6207 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6208 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6209 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6210 }
6211
6212 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6213 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6214 be non-negative. We must be able to satisfy the above conditions. */
6215
6216 HOST_WIDE_INT
6217 tree_low_cst (const_tree t, int pos)
6218 {
6219 gcc_assert (host_integerp (t, pos));
6220 return TREE_INT_CST_LOW (t);
6221 }
6222
6223 /* Return the most significant bit of the integer constant T. */
6224
6225 int
6226 tree_int_cst_msb (const_tree t)
6227 {
6228 int prec;
6229 HOST_WIDE_INT h;
6230 unsigned HOST_WIDE_INT l;
6231
6232 /* Note that using TYPE_PRECISION here is wrong. We care about the
6233 actual bits, not the (arbitrary) range of the type. */
6234 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
6235 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
6236 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
6237 return (l & 1) == 1;
6238 }
6239
6240 /* Return an indication of the sign of the integer constant T.
6241 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6242 Note that -1 will never be returned if T's type is unsigned. */
6243
6244 int
6245 tree_int_cst_sgn (const_tree t)
6246 {
6247 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6248 return 0;
6249 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6250 return 1;
6251 else if (TREE_INT_CST_HIGH (t) < 0)
6252 return -1;
6253 else
6254 return 1;
6255 }
6256
6257 /* Return the minimum number of bits needed to represent VALUE in a
6258 signed or unsigned type, UNSIGNEDP says which. */
6259
6260 unsigned int
6261 tree_int_cst_min_precision (tree value, bool unsignedp)
6262 {
6263 int log;
6264
6265 /* If the value is negative, compute its negative minus 1. The latter
6266 adjustment is because the absolute value of the largest negative value
6267 is one larger than the largest positive value. This is equivalent to
6268 a bit-wise negation, so use that operation instead. */
6269
6270 if (tree_int_cst_sgn (value) < 0)
6271 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6272
6273 /* Return the number of bits needed, taking into account the fact
6274 that we need one more bit for a signed than unsigned type. */
6275
6276 if (integer_zerop (value))
6277 log = 0;
6278 else
6279 log = tree_floor_log2 (value);
6280
6281 return log + 1 + !unsignedp;
6282 }
6283
6284 /* Compare two constructor-element-type constants. Return 1 if the lists
6285 are known to be equal; otherwise return 0. */
6286
6287 int
6288 simple_cst_list_equal (const_tree l1, const_tree l2)
6289 {
6290 while (l1 != NULL_TREE && l2 != NULL_TREE)
6291 {
6292 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6293 return 0;
6294
6295 l1 = TREE_CHAIN (l1);
6296 l2 = TREE_CHAIN (l2);
6297 }
6298
6299 return l1 == l2;
6300 }
6301
6302 /* Return truthvalue of whether T1 is the same tree structure as T2.
6303 Return 1 if they are the same.
6304 Return 0 if they are understandably different.
6305 Return -1 if either contains tree structure not understood by
6306 this function. */
6307
6308 int
6309 simple_cst_equal (const_tree t1, const_tree t2)
6310 {
6311 enum tree_code code1, code2;
6312 int cmp;
6313 int i;
6314
6315 if (t1 == t2)
6316 return 1;
6317 if (t1 == 0 || t2 == 0)
6318 return 0;
6319
6320 code1 = TREE_CODE (t1);
6321 code2 = TREE_CODE (t2);
6322
6323 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6324 {
6325 if (CONVERT_EXPR_CODE_P (code2)
6326 || code2 == NON_LVALUE_EXPR)
6327 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6328 else
6329 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6330 }
6331
6332 else if (CONVERT_EXPR_CODE_P (code2)
6333 || code2 == NON_LVALUE_EXPR)
6334 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6335
6336 if (code1 != code2)
6337 return 0;
6338
6339 switch (code1)
6340 {
6341 case INTEGER_CST:
6342 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6343 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6344
6345 case REAL_CST:
6346 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6347
6348 case FIXED_CST:
6349 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6350
6351 case STRING_CST:
6352 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6353 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6354 TREE_STRING_LENGTH (t1)));
6355
6356 case CONSTRUCTOR:
6357 {
6358 unsigned HOST_WIDE_INT idx;
6359 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6360 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6361
6362 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6363 return false;
6364
6365 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6366 /* ??? Should we handle also fields here? */
6367 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6368 VEC_index (constructor_elt, v2, idx)->value))
6369 return false;
6370 return true;
6371 }
6372
6373 case SAVE_EXPR:
6374 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6375
6376 case CALL_EXPR:
6377 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6378 if (cmp <= 0)
6379 return cmp;
6380 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6381 return 0;
6382 {
6383 const_tree arg1, arg2;
6384 const_call_expr_arg_iterator iter1, iter2;
6385 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6386 arg2 = first_const_call_expr_arg (t2, &iter2);
6387 arg1 && arg2;
6388 arg1 = next_const_call_expr_arg (&iter1),
6389 arg2 = next_const_call_expr_arg (&iter2))
6390 {
6391 cmp = simple_cst_equal (arg1, arg2);
6392 if (cmp <= 0)
6393 return cmp;
6394 }
6395 return arg1 == arg2;
6396 }
6397
6398 case TARGET_EXPR:
6399 /* Special case: if either target is an unallocated VAR_DECL,
6400 it means that it's going to be unified with whatever the
6401 TARGET_EXPR is really supposed to initialize, so treat it
6402 as being equivalent to anything. */
6403 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6404 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6405 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6406 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6407 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6408 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6409 cmp = 1;
6410 else
6411 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6412
6413 if (cmp <= 0)
6414 return cmp;
6415
6416 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6417
6418 case WITH_CLEANUP_EXPR:
6419 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6420 if (cmp <= 0)
6421 return cmp;
6422
6423 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6424
6425 case COMPONENT_REF:
6426 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6427 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6428
6429 return 0;
6430
6431 case VAR_DECL:
6432 case PARM_DECL:
6433 case CONST_DECL:
6434 case FUNCTION_DECL:
6435 return 0;
6436
6437 default:
6438 break;
6439 }
6440
6441 /* This general rule works for most tree codes. All exceptions should be
6442 handled above. If this is a language-specific tree code, we can't
6443 trust what might be in the operand, so say we don't know
6444 the situation. */
6445 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6446 return -1;
6447
6448 switch (TREE_CODE_CLASS (code1))
6449 {
6450 case tcc_unary:
6451 case tcc_binary:
6452 case tcc_comparison:
6453 case tcc_expression:
6454 case tcc_reference:
6455 case tcc_statement:
6456 cmp = 1;
6457 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6458 {
6459 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6460 if (cmp <= 0)
6461 return cmp;
6462 }
6463
6464 return cmp;
6465
6466 default:
6467 return -1;
6468 }
6469 }
6470
6471 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6472 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6473 than U, respectively. */
6474
6475 int
6476 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6477 {
6478 if (tree_int_cst_sgn (t) < 0)
6479 return -1;
6480 else if (TREE_INT_CST_HIGH (t) != 0)
6481 return 1;
6482 else if (TREE_INT_CST_LOW (t) == u)
6483 return 0;
6484 else if (TREE_INT_CST_LOW (t) < u)
6485 return -1;
6486 else
6487 return 1;
6488 }
6489
6490 /* Return true if CODE represents an associative tree code. Otherwise
6491 return false. */
6492 bool
6493 associative_tree_code (enum tree_code code)
6494 {
6495 switch (code)
6496 {
6497 case BIT_IOR_EXPR:
6498 case BIT_AND_EXPR:
6499 case BIT_XOR_EXPR:
6500 case PLUS_EXPR:
6501 case MULT_EXPR:
6502 case MIN_EXPR:
6503 case MAX_EXPR:
6504 return true;
6505
6506 default:
6507 break;
6508 }
6509 return false;
6510 }
6511
6512 /* Return true if CODE represents a commutative tree code. Otherwise
6513 return false. */
6514 bool
6515 commutative_tree_code (enum tree_code code)
6516 {
6517 switch (code)
6518 {
6519 case PLUS_EXPR:
6520 case MULT_EXPR:
6521 case MIN_EXPR:
6522 case MAX_EXPR:
6523 case BIT_IOR_EXPR:
6524 case BIT_XOR_EXPR:
6525 case BIT_AND_EXPR:
6526 case NE_EXPR:
6527 case EQ_EXPR:
6528 case UNORDERED_EXPR:
6529 case ORDERED_EXPR:
6530 case UNEQ_EXPR:
6531 case LTGT_EXPR:
6532 case TRUTH_AND_EXPR:
6533 case TRUTH_XOR_EXPR:
6534 case TRUTH_OR_EXPR:
6535 return true;
6536
6537 default:
6538 break;
6539 }
6540 return false;
6541 }
6542
6543 /* Return true if CODE represents a ternary tree code for which the
6544 first two operands are commutative. Otherwise return false. */
6545 bool
6546 commutative_ternary_tree_code (enum tree_code code)
6547 {
6548 switch (code)
6549 {
6550 case WIDEN_MULT_PLUS_EXPR:
6551 case WIDEN_MULT_MINUS_EXPR:
6552 return true;
6553
6554 default:
6555 break;
6556 }
6557 return false;
6558 }
6559
6560 /* Generate a hash value for an expression. This can be used iteratively
6561 by passing a previous result as the VAL argument.
6562
6563 This function is intended to produce the same hash for expressions which
6564 would compare equal using operand_equal_p. */
6565
6566 hashval_t
6567 iterative_hash_expr (const_tree t, hashval_t val)
6568 {
6569 int i;
6570 enum tree_code code;
6571 char tclass;
6572
6573 if (t == NULL_TREE)
6574 return iterative_hash_hashval_t (0, val);
6575
6576 code = TREE_CODE (t);
6577
6578 switch (code)
6579 {
6580 /* Alas, constants aren't shared, so we can't rely on pointer
6581 identity. */
6582 case INTEGER_CST:
6583 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6584 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6585 case REAL_CST:
6586 {
6587 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6588
6589 return iterative_hash_hashval_t (val2, val);
6590 }
6591 case FIXED_CST:
6592 {
6593 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6594
6595 return iterative_hash_hashval_t (val2, val);
6596 }
6597 case STRING_CST:
6598 return iterative_hash (TREE_STRING_POINTER (t),
6599 TREE_STRING_LENGTH (t), val);
6600 case COMPLEX_CST:
6601 val = iterative_hash_expr (TREE_REALPART (t), val);
6602 return iterative_hash_expr (TREE_IMAGPART (t), val);
6603 case VECTOR_CST:
6604 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6605 case SSA_NAME:
6606 /* We can just compare by pointer. */
6607 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6608 case PLACEHOLDER_EXPR:
6609 /* The node itself doesn't matter. */
6610 return val;
6611 case TREE_LIST:
6612 /* A list of expressions, for a CALL_EXPR or as the elements of a
6613 VECTOR_CST. */
6614 for (; t; t = TREE_CHAIN (t))
6615 val = iterative_hash_expr (TREE_VALUE (t), val);
6616 return val;
6617 case CONSTRUCTOR:
6618 {
6619 unsigned HOST_WIDE_INT idx;
6620 tree field, value;
6621 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6622 {
6623 val = iterative_hash_expr (field, val);
6624 val = iterative_hash_expr (value, val);
6625 }
6626 return val;
6627 }
6628 case FUNCTION_DECL:
6629 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6630 Otherwise nodes that compare equal according to operand_equal_p might
6631 get different hash codes. However, don't do this for machine specific
6632 or front end builtins, since the function code is overloaded in those
6633 cases. */
6634 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6635 && built_in_decls[DECL_FUNCTION_CODE (t)])
6636 {
6637 t = built_in_decls[DECL_FUNCTION_CODE (t)];
6638 code = TREE_CODE (t);
6639 }
6640 /* FALL THROUGH */
6641 default:
6642 tclass = TREE_CODE_CLASS (code);
6643
6644 if (tclass == tcc_declaration)
6645 {
6646 /* DECL's have a unique ID */
6647 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6648 }
6649 else
6650 {
6651 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6652
6653 val = iterative_hash_object (code, val);
6654
6655 /* Don't hash the type, that can lead to having nodes which
6656 compare equal according to operand_equal_p, but which
6657 have different hash codes. */
6658 if (CONVERT_EXPR_CODE_P (code)
6659 || code == NON_LVALUE_EXPR)
6660 {
6661 /* Make sure to include signness in the hash computation. */
6662 val += TYPE_UNSIGNED (TREE_TYPE (t));
6663 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6664 }
6665
6666 else if (commutative_tree_code (code))
6667 {
6668 /* It's a commutative expression. We want to hash it the same
6669 however it appears. We do this by first hashing both operands
6670 and then rehashing based on the order of their independent
6671 hashes. */
6672 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6673 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6674 hashval_t t;
6675
6676 if (one > two)
6677 t = one, one = two, two = t;
6678
6679 val = iterative_hash_hashval_t (one, val);
6680 val = iterative_hash_hashval_t (two, val);
6681 }
6682 else
6683 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6684 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6685 }
6686 return val;
6687 break;
6688 }
6689 }
6690
6691 /* Generate a hash value for a pair of expressions. This can be used
6692 iteratively by passing a previous result as the VAL argument.
6693
6694 The same hash value is always returned for a given pair of expressions,
6695 regardless of the order in which they are presented. This is useful in
6696 hashing the operands of commutative functions. */
6697
6698 hashval_t
6699 iterative_hash_exprs_commutative (const_tree t1,
6700 const_tree t2, hashval_t val)
6701 {
6702 hashval_t one = iterative_hash_expr (t1, 0);
6703 hashval_t two = iterative_hash_expr (t2, 0);
6704 hashval_t t;
6705
6706 if (one > two)
6707 t = one, one = two, two = t;
6708 val = iterative_hash_hashval_t (one, val);
6709 val = iterative_hash_hashval_t (two, val);
6710
6711 return val;
6712 }
6713 \f
6714 /* Constructors for pointer, array and function types.
6715 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
6716 constructed by language-dependent code, not here.) */
6717
6718 /* Construct, lay out and return the type of pointers to TO_TYPE with
6719 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
6720 reference all of memory. If such a type has already been
6721 constructed, reuse it. */
6722
6723 tree
6724 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
6725 bool can_alias_all)
6726 {
6727 tree t;
6728
6729 if (to_type == error_mark_node)
6730 return error_mark_node;
6731
6732 /* If the pointed-to type has the may_alias attribute set, force
6733 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6734 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6735 can_alias_all = true;
6736
6737 /* In some cases, languages will have things that aren't a POINTER_TYPE
6738 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
6739 In that case, return that type without regard to the rest of our
6740 operands.
6741
6742 ??? This is a kludge, but consistent with the way this function has
6743 always operated and there doesn't seem to be a good way to avoid this
6744 at the moment. */
6745 if (TYPE_POINTER_TO (to_type) != 0
6746 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
6747 return TYPE_POINTER_TO (to_type);
6748
6749 /* First, if we already have a type for pointers to TO_TYPE and it's
6750 the proper mode, use it. */
6751 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
6752 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6753 return t;
6754
6755 t = make_node (POINTER_TYPE);
6756
6757 TREE_TYPE (t) = to_type;
6758 SET_TYPE_MODE (t, mode);
6759 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6760 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
6761 TYPE_POINTER_TO (to_type) = t;
6762
6763 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6764 SET_TYPE_STRUCTURAL_EQUALITY (t);
6765 else if (TYPE_CANONICAL (to_type) != to_type)
6766 TYPE_CANONICAL (t)
6767 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
6768 mode, can_alias_all);
6769
6770 /* Lay out the type. This function has many callers that are concerned
6771 with expression-construction, and this simplifies them all. */
6772 layout_type (t);
6773
6774 return t;
6775 }
6776
6777 /* By default build pointers in ptr_mode. */
6778
6779 tree
6780 build_pointer_type (tree to_type)
6781 {
6782 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6783 : TYPE_ADDR_SPACE (to_type);
6784 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6785 return build_pointer_type_for_mode (to_type, pointer_mode, false);
6786 }
6787
6788 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
6789
6790 tree
6791 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
6792 bool can_alias_all)
6793 {
6794 tree t;
6795
6796 if (to_type == error_mark_node)
6797 return error_mark_node;
6798
6799 /* If the pointed-to type has the may_alias attribute set, force
6800 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6801 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6802 can_alias_all = true;
6803
6804 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
6805 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
6806 In that case, return that type without regard to the rest of our
6807 operands.
6808
6809 ??? This is a kludge, but consistent with the way this function has
6810 always operated and there doesn't seem to be a good way to avoid this
6811 at the moment. */
6812 if (TYPE_REFERENCE_TO (to_type) != 0
6813 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
6814 return TYPE_REFERENCE_TO (to_type);
6815
6816 /* First, if we already have a type for pointers to TO_TYPE and it's
6817 the proper mode, use it. */
6818 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
6819 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6820 return t;
6821
6822 t = make_node (REFERENCE_TYPE);
6823
6824 TREE_TYPE (t) = to_type;
6825 SET_TYPE_MODE (t, mode);
6826 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6827 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
6828 TYPE_REFERENCE_TO (to_type) = t;
6829
6830 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6831 SET_TYPE_STRUCTURAL_EQUALITY (t);
6832 else if (TYPE_CANONICAL (to_type) != to_type)
6833 TYPE_CANONICAL (t)
6834 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
6835 mode, can_alias_all);
6836
6837 layout_type (t);
6838
6839 return t;
6840 }
6841
6842
6843 /* Build the node for the type of references-to-TO_TYPE by default
6844 in ptr_mode. */
6845
6846 tree
6847 build_reference_type (tree to_type)
6848 {
6849 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6850 : TYPE_ADDR_SPACE (to_type);
6851 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6852 return build_reference_type_for_mode (to_type, pointer_mode, false);
6853 }
6854
6855 /* Build a type that is compatible with t but has no cv quals anywhere
6856 in its type, thus
6857
6858 const char *const *const * -> char ***. */
6859
6860 tree
6861 build_type_no_quals (tree t)
6862 {
6863 switch (TREE_CODE (t))
6864 {
6865 case POINTER_TYPE:
6866 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6867 TYPE_MODE (t),
6868 TYPE_REF_CAN_ALIAS_ALL (t));
6869 case REFERENCE_TYPE:
6870 return
6871 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6872 TYPE_MODE (t),
6873 TYPE_REF_CAN_ALIAS_ALL (t));
6874 default:
6875 return TYPE_MAIN_VARIANT (t);
6876 }
6877 }
6878
6879 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
6880 MAXVAL should be the maximum value in the domain
6881 (one less than the length of the array).
6882
6883 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
6884 We don't enforce this limit, that is up to caller (e.g. language front end).
6885 The limit exists because the result is a signed type and we don't handle
6886 sizes that use more than one HOST_WIDE_INT. */
6887
6888 tree
6889 build_index_type (tree maxval)
6890 {
6891 tree itype = make_node (INTEGER_TYPE);
6892
6893 TREE_TYPE (itype) = sizetype;
6894 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
6895 TYPE_MIN_VALUE (itype) = size_zero_node;
6896 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
6897 SET_TYPE_MODE (itype, TYPE_MODE (sizetype));
6898 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
6899 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
6900 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
6901 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
6902
6903 if (host_integerp (maxval, 1))
6904 return type_hash_canon (tree_low_cst (maxval, 1), itype);
6905 else
6906 {
6907 /* Since we cannot hash this type, we need to compare it using
6908 structural equality checks. */
6909 SET_TYPE_STRUCTURAL_EQUALITY (itype);
6910 return itype;
6911 }
6912 }
6913
6914 #define MAX_INT_CACHED_PREC \
6915 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
6916 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
6917
6918 /* Builds a signed or unsigned integer type of precision PRECISION.
6919 Used for C bitfields whose precision does not match that of
6920 built-in target types. */
6921 tree
6922 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
6923 int unsignedp)
6924 {
6925 tree itype, ret;
6926
6927 if (unsignedp)
6928 unsignedp = MAX_INT_CACHED_PREC + 1;
6929
6930 if (precision <= MAX_INT_CACHED_PREC)
6931 {
6932 itype = nonstandard_integer_type_cache[precision + unsignedp];
6933 if (itype)
6934 return itype;
6935 }
6936
6937 itype = make_node (INTEGER_TYPE);
6938 TYPE_PRECISION (itype) = precision;
6939
6940 if (unsignedp)
6941 fixup_unsigned_type (itype);
6942 else
6943 fixup_signed_type (itype);
6944
6945 ret = itype;
6946 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
6947 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
6948 if (precision <= MAX_INT_CACHED_PREC && lang_hooks.types.hash_types)
6949 nonstandard_integer_type_cache[precision + unsignedp] = ret;
6950
6951 return ret;
6952 }
6953
6954 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
6955 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
6956 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
6957
6958 tree
6959 build_range_type (tree type, tree lowval, tree highval)
6960 {
6961 tree itype = make_node (INTEGER_TYPE);
6962
6963 TREE_TYPE (itype) = type;
6964 if (type == NULL_TREE)
6965 type = sizetype;
6966
6967 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
6968 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
6969
6970 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
6971 SET_TYPE_MODE (itype, TYPE_MODE (type));
6972 TYPE_SIZE (itype) = TYPE_SIZE (type);
6973 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
6974 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
6975 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
6976
6977 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
6978 return type_hash_canon (tree_low_cst (highval, 0)
6979 - tree_low_cst (lowval, 0),
6980 itype);
6981 else
6982 return itype;
6983 }
6984
6985 /* Return true if the debug information for TYPE, a subtype, should be emitted
6986 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
6987 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
6988 debug info and doesn't reflect the source code. */
6989
6990 bool
6991 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
6992 {
6993 tree base_type = TREE_TYPE (type), low, high;
6994
6995 /* Subrange types have a base type which is an integral type. */
6996 if (!INTEGRAL_TYPE_P (base_type))
6997 return false;
6998
6999 /* Get the real bounds of the subtype. */
7000 if (lang_hooks.types.get_subrange_bounds)
7001 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7002 else
7003 {
7004 low = TYPE_MIN_VALUE (type);
7005 high = TYPE_MAX_VALUE (type);
7006 }
7007
7008 /* If the type and its base type have the same representation and the same
7009 name, then the type is not a subrange but a copy of the base type. */
7010 if ((TREE_CODE (base_type) == INTEGER_TYPE
7011 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7012 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7013 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7014 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7015 {
7016 tree type_name = TYPE_NAME (type);
7017 tree base_type_name = TYPE_NAME (base_type);
7018
7019 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7020 type_name = DECL_NAME (type_name);
7021
7022 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7023 base_type_name = DECL_NAME (base_type_name);
7024
7025 if (type_name == base_type_name)
7026 return false;
7027 }
7028
7029 if (lowval)
7030 *lowval = low;
7031 if (highval)
7032 *highval = high;
7033 return true;
7034 }
7035
7036 /* Just like build_index_type, but takes lowval and highval instead
7037 of just highval (maxval). */
7038
7039 tree
7040 build_index_2_type (tree lowval, tree highval)
7041 {
7042 return build_range_type (sizetype, lowval, highval);
7043 }
7044
7045 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7046 and number of elements specified by the range of values of INDEX_TYPE.
7047 If such a type has already been constructed, reuse it. */
7048
7049 tree
7050 build_array_type (tree elt_type, tree index_type)
7051 {
7052 tree t;
7053 hashval_t hashcode = 0;
7054
7055 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7056 {
7057 error ("arrays of functions are not meaningful");
7058 elt_type = integer_type_node;
7059 }
7060
7061 t = make_node (ARRAY_TYPE);
7062 TREE_TYPE (t) = elt_type;
7063 TYPE_DOMAIN (t) = index_type;
7064 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7065 layout_type (t);
7066
7067 /* If the element type is incomplete at this point we get marked for
7068 structural equality. Do not record these types in the canonical
7069 type hashtable. */
7070 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7071 return t;
7072
7073 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
7074 if (index_type)
7075 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7076 t = type_hash_canon (hashcode, t);
7077
7078 if (TYPE_CANONICAL (t) == t)
7079 {
7080 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7081 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7082 SET_TYPE_STRUCTURAL_EQUALITY (t);
7083 else if (TYPE_CANONICAL (elt_type) != elt_type
7084 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7085 TYPE_CANONICAL (t)
7086 = build_array_type (TYPE_CANONICAL (elt_type),
7087 index_type ? TYPE_CANONICAL (index_type) : NULL);
7088 }
7089
7090 return t;
7091 }
7092
7093 /* Recursively examines the array elements of TYPE, until a non-array
7094 element type is found. */
7095
7096 tree
7097 strip_array_types (tree type)
7098 {
7099 while (TREE_CODE (type) == ARRAY_TYPE)
7100 type = TREE_TYPE (type);
7101
7102 return type;
7103 }
7104
7105 /* Computes the canonical argument types from the argument type list
7106 ARGTYPES.
7107
7108 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7109 on entry to this function, or if any of the ARGTYPES are
7110 structural.
7111
7112 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7113 true on entry to this function, or if any of the ARGTYPES are
7114 non-canonical.
7115
7116 Returns a canonical argument list, which may be ARGTYPES when the
7117 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7118 true) or would not differ from ARGTYPES. */
7119
7120 static tree
7121 maybe_canonicalize_argtypes(tree argtypes,
7122 bool *any_structural_p,
7123 bool *any_noncanonical_p)
7124 {
7125 tree arg;
7126 bool any_noncanonical_argtypes_p = false;
7127
7128 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7129 {
7130 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7131 /* Fail gracefully by stating that the type is structural. */
7132 *any_structural_p = true;
7133 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7134 *any_structural_p = true;
7135 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7136 || TREE_PURPOSE (arg))
7137 /* If the argument has a default argument, we consider it
7138 non-canonical even though the type itself is canonical.
7139 That way, different variants of function and method types
7140 with default arguments will all point to the variant with
7141 no defaults as their canonical type. */
7142 any_noncanonical_argtypes_p = true;
7143 }
7144
7145 if (*any_structural_p)
7146 return argtypes;
7147
7148 if (any_noncanonical_argtypes_p)
7149 {
7150 /* Build the canonical list of argument types. */
7151 tree canon_argtypes = NULL_TREE;
7152 bool is_void = false;
7153
7154 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7155 {
7156 if (arg == void_list_node)
7157 is_void = true;
7158 else
7159 canon_argtypes = tree_cons (NULL_TREE,
7160 TYPE_CANONICAL (TREE_VALUE (arg)),
7161 canon_argtypes);
7162 }
7163
7164 canon_argtypes = nreverse (canon_argtypes);
7165 if (is_void)
7166 canon_argtypes = chainon (canon_argtypes, void_list_node);
7167
7168 /* There is a non-canonical type. */
7169 *any_noncanonical_p = true;
7170 return canon_argtypes;
7171 }
7172
7173 /* The canonical argument types are the same as ARGTYPES. */
7174 return argtypes;
7175 }
7176
7177 /* Construct, lay out and return
7178 the type of functions returning type VALUE_TYPE
7179 given arguments of types ARG_TYPES.
7180 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7181 are data type nodes for the arguments of the function.
7182 If such a type has already been constructed, reuse it. */
7183
7184 tree
7185 build_function_type (tree value_type, tree arg_types)
7186 {
7187 tree t;
7188 hashval_t hashcode = 0;
7189 bool any_structural_p, any_noncanonical_p;
7190 tree canon_argtypes;
7191
7192 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7193 {
7194 error ("function return type cannot be function");
7195 value_type = integer_type_node;
7196 }
7197
7198 /* Make a node of the sort we want. */
7199 t = make_node (FUNCTION_TYPE);
7200 TREE_TYPE (t) = value_type;
7201 TYPE_ARG_TYPES (t) = arg_types;
7202
7203 /* If we already have such a type, use the old one. */
7204 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7205 hashcode = type_hash_list (arg_types, hashcode);
7206 t = type_hash_canon (hashcode, t);
7207
7208 /* Set up the canonical type. */
7209 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7210 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7211 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7212 &any_structural_p,
7213 &any_noncanonical_p);
7214 if (any_structural_p)
7215 SET_TYPE_STRUCTURAL_EQUALITY (t);
7216 else if (any_noncanonical_p)
7217 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7218 canon_argtypes);
7219
7220 if (!COMPLETE_TYPE_P (t))
7221 layout_type (t);
7222 return t;
7223 }
7224
7225 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7226
7227 tree
7228 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7229 {
7230 tree new_type = NULL;
7231 tree args, new_args = NULL, t;
7232 tree new_reversed;
7233 int i = 0;
7234
7235 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7236 args = TREE_CHAIN (args), i++)
7237 if (!bitmap_bit_p (args_to_skip, i))
7238 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7239
7240 new_reversed = nreverse (new_args);
7241 if (args)
7242 {
7243 if (new_reversed)
7244 TREE_CHAIN (new_args) = void_list_node;
7245 else
7246 new_reversed = void_list_node;
7247 }
7248
7249 /* Use copy_node to preserve as much as possible from original type
7250 (debug info, attribute lists etc.)
7251 Exception is METHOD_TYPEs must have THIS argument.
7252 When we are asked to remove it, we need to build new FUNCTION_TYPE
7253 instead. */
7254 if (TREE_CODE (orig_type) != METHOD_TYPE
7255 || !bitmap_bit_p (args_to_skip, 0))
7256 {
7257 new_type = copy_node (orig_type);
7258 TYPE_ARG_TYPES (new_type) = new_reversed;
7259 }
7260 else
7261 {
7262 new_type
7263 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7264 new_reversed));
7265 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7266 }
7267
7268 /* This is a new type, not a copy of an old type. Need to reassociate
7269 variants. We can handle everything except the main variant lazily. */
7270 t = TYPE_MAIN_VARIANT (orig_type);
7271 if (orig_type != t)
7272 {
7273 TYPE_MAIN_VARIANT (new_type) = t;
7274 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7275 TYPE_NEXT_VARIANT (t) = new_type;
7276 }
7277 else
7278 {
7279 TYPE_MAIN_VARIANT (new_type) = new_type;
7280 TYPE_NEXT_VARIANT (new_type) = NULL;
7281 }
7282 return new_type;
7283 }
7284
7285 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7286
7287 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7288 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7289 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7290
7291 tree
7292 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7293 {
7294 tree new_decl = copy_node (orig_decl);
7295 tree new_type;
7296
7297 new_type = TREE_TYPE (orig_decl);
7298 if (prototype_p (new_type))
7299 new_type = build_function_type_skip_args (new_type, args_to_skip);
7300 TREE_TYPE (new_decl) = new_type;
7301
7302 /* For declarations setting DECL_VINDEX (i.e. methods)
7303 we expect first argument to be THIS pointer. */
7304 if (bitmap_bit_p (args_to_skip, 0))
7305 DECL_VINDEX (new_decl) = NULL_TREE;
7306 return new_decl;
7307 }
7308
7309 /* Build a function type. The RETURN_TYPE is the type returned by the
7310 function. If VAARGS is set, no void_type_node is appended to the
7311 the list. ARGP must be always be terminated be a NULL_TREE. */
7312
7313 static tree
7314 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7315 {
7316 tree t, args, last;
7317
7318 t = va_arg (argp, tree);
7319 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7320 args = tree_cons (NULL_TREE, t, args);
7321
7322 if (vaargs)
7323 {
7324 last = args;
7325 if (args != NULL_TREE)
7326 args = nreverse (args);
7327 gcc_assert (last != void_list_node);
7328 }
7329 else if (args == NULL_TREE)
7330 args = void_list_node;
7331 else
7332 {
7333 last = args;
7334 args = nreverse (args);
7335 TREE_CHAIN (last) = void_list_node;
7336 }
7337 args = build_function_type (return_type, args);
7338
7339 return args;
7340 }
7341
7342 /* Build a function type. The RETURN_TYPE is the type returned by the
7343 function. If additional arguments are provided, they are
7344 additional argument types. The list of argument types must always
7345 be terminated by NULL_TREE. */
7346
7347 tree
7348 build_function_type_list (tree return_type, ...)
7349 {
7350 tree args;
7351 va_list p;
7352
7353 va_start (p, return_type);
7354 args = build_function_type_list_1 (false, return_type, p);
7355 va_end (p);
7356 return args;
7357 }
7358
7359 /* Build a variable argument function type. The RETURN_TYPE is the
7360 type returned by the function. If additional arguments are provided,
7361 they are additional argument types. The list of argument types must
7362 always be terminated by NULL_TREE. */
7363
7364 tree
7365 build_varargs_function_type_list (tree return_type, ...)
7366 {
7367 tree args;
7368 va_list p;
7369
7370 va_start (p, return_type);
7371 args = build_function_type_list_1 (true, return_type, p);
7372 va_end (p);
7373
7374 return args;
7375 }
7376
7377 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7378 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7379 for the method. An implicit additional parameter (of type
7380 pointer-to-BASETYPE) is added to the ARGTYPES. */
7381
7382 tree
7383 build_method_type_directly (tree basetype,
7384 tree rettype,
7385 tree argtypes)
7386 {
7387 tree t;
7388 tree ptype;
7389 int hashcode = 0;
7390 bool any_structural_p, any_noncanonical_p;
7391 tree canon_argtypes;
7392
7393 /* Make a node of the sort we want. */
7394 t = make_node (METHOD_TYPE);
7395
7396 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7397 TREE_TYPE (t) = rettype;
7398 ptype = build_pointer_type (basetype);
7399
7400 /* The actual arglist for this function includes a "hidden" argument
7401 which is "this". Put it into the list of argument types. */
7402 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7403 TYPE_ARG_TYPES (t) = argtypes;
7404
7405 /* If we already have such a type, use the old one. */
7406 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7407 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7408 hashcode = type_hash_list (argtypes, hashcode);
7409 t = type_hash_canon (hashcode, t);
7410
7411 /* Set up the canonical type. */
7412 any_structural_p
7413 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7414 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7415 any_noncanonical_p
7416 = (TYPE_CANONICAL (basetype) != basetype
7417 || TYPE_CANONICAL (rettype) != rettype);
7418 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7419 &any_structural_p,
7420 &any_noncanonical_p);
7421 if (any_structural_p)
7422 SET_TYPE_STRUCTURAL_EQUALITY (t);
7423 else if (any_noncanonical_p)
7424 TYPE_CANONICAL (t)
7425 = build_method_type_directly (TYPE_CANONICAL (basetype),
7426 TYPE_CANONICAL (rettype),
7427 canon_argtypes);
7428 if (!COMPLETE_TYPE_P (t))
7429 layout_type (t);
7430
7431 return t;
7432 }
7433
7434 /* Construct, lay out and return the type of methods belonging to class
7435 BASETYPE and whose arguments and values are described by TYPE.
7436 If that type exists already, reuse it.
7437 TYPE must be a FUNCTION_TYPE node. */
7438
7439 tree
7440 build_method_type (tree basetype, tree type)
7441 {
7442 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7443
7444 return build_method_type_directly (basetype,
7445 TREE_TYPE (type),
7446 TYPE_ARG_TYPES (type));
7447 }
7448
7449 /* Construct, lay out and return the type of offsets to a value
7450 of type TYPE, within an object of type BASETYPE.
7451 If a suitable offset type exists already, reuse it. */
7452
7453 tree
7454 build_offset_type (tree basetype, tree type)
7455 {
7456 tree t;
7457 hashval_t hashcode = 0;
7458
7459 /* Make a node of the sort we want. */
7460 t = make_node (OFFSET_TYPE);
7461
7462 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7463 TREE_TYPE (t) = type;
7464
7465 /* If we already have such a type, use the old one. */
7466 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7467 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7468 t = type_hash_canon (hashcode, t);
7469
7470 if (!COMPLETE_TYPE_P (t))
7471 layout_type (t);
7472
7473 if (TYPE_CANONICAL (t) == t)
7474 {
7475 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7476 || TYPE_STRUCTURAL_EQUALITY_P (type))
7477 SET_TYPE_STRUCTURAL_EQUALITY (t);
7478 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7479 || TYPE_CANONICAL (type) != type)
7480 TYPE_CANONICAL (t)
7481 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7482 TYPE_CANONICAL (type));
7483 }
7484
7485 return t;
7486 }
7487
7488 /* Create a complex type whose components are COMPONENT_TYPE. */
7489
7490 tree
7491 build_complex_type (tree component_type)
7492 {
7493 tree t;
7494 hashval_t hashcode;
7495
7496 gcc_assert (INTEGRAL_TYPE_P (component_type)
7497 || SCALAR_FLOAT_TYPE_P (component_type)
7498 || FIXED_POINT_TYPE_P (component_type));
7499
7500 /* Make a node of the sort we want. */
7501 t = make_node (COMPLEX_TYPE);
7502
7503 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7504
7505 /* If we already have such a type, use the old one. */
7506 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7507 t = type_hash_canon (hashcode, t);
7508
7509 if (!COMPLETE_TYPE_P (t))
7510 layout_type (t);
7511
7512 if (TYPE_CANONICAL (t) == t)
7513 {
7514 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7515 SET_TYPE_STRUCTURAL_EQUALITY (t);
7516 else if (TYPE_CANONICAL (component_type) != component_type)
7517 TYPE_CANONICAL (t)
7518 = build_complex_type (TYPE_CANONICAL (component_type));
7519 }
7520
7521 /* We need to create a name, since complex is a fundamental type. */
7522 if (! TYPE_NAME (t))
7523 {
7524 const char *name;
7525 if (component_type == char_type_node)
7526 name = "complex char";
7527 else if (component_type == signed_char_type_node)
7528 name = "complex signed char";
7529 else if (component_type == unsigned_char_type_node)
7530 name = "complex unsigned char";
7531 else if (component_type == short_integer_type_node)
7532 name = "complex short int";
7533 else if (component_type == short_unsigned_type_node)
7534 name = "complex short unsigned int";
7535 else if (component_type == integer_type_node)
7536 name = "complex int";
7537 else if (component_type == unsigned_type_node)
7538 name = "complex unsigned int";
7539 else if (component_type == long_integer_type_node)
7540 name = "complex long int";
7541 else if (component_type == long_unsigned_type_node)
7542 name = "complex long unsigned int";
7543 else if (component_type == long_long_integer_type_node)
7544 name = "complex long long int";
7545 else if (component_type == long_long_unsigned_type_node)
7546 name = "complex long long unsigned int";
7547 else
7548 name = 0;
7549
7550 if (name != 0)
7551 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7552 get_identifier (name), t);
7553 }
7554
7555 return build_qualified_type (t, TYPE_QUALS (component_type));
7556 }
7557
7558 /* If TYPE is a real or complex floating-point type and the target
7559 does not directly support arithmetic on TYPE then return the wider
7560 type to be used for arithmetic on TYPE. Otherwise, return
7561 NULL_TREE. */
7562
7563 tree
7564 excess_precision_type (tree type)
7565 {
7566 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7567 {
7568 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7569 switch (TREE_CODE (type))
7570 {
7571 case REAL_TYPE:
7572 switch (flt_eval_method)
7573 {
7574 case 1:
7575 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7576 return double_type_node;
7577 break;
7578 case 2:
7579 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7580 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7581 return long_double_type_node;
7582 break;
7583 default:
7584 gcc_unreachable ();
7585 }
7586 break;
7587 case COMPLEX_TYPE:
7588 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7589 return NULL_TREE;
7590 switch (flt_eval_method)
7591 {
7592 case 1:
7593 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7594 return complex_double_type_node;
7595 break;
7596 case 2:
7597 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7598 || (TYPE_MODE (TREE_TYPE (type))
7599 == TYPE_MODE (double_type_node)))
7600 return complex_long_double_type_node;
7601 break;
7602 default:
7603 gcc_unreachable ();
7604 }
7605 break;
7606 default:
7607 break;
7608 }
7609 }
7610 return NULL_TREE;
7611 }
7612 \f
7613 /* Return OP, stripped of any conversions to wider types as much as is safe.
7614 Converting the value back to OP's type makes a value equivalent to OP.
7615
7616 If FOR_TYPE is nonzero, we return a value which, if converted to
7617 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7618
7619 OP must have integer, real or enumeral type. Pointers are not allowed!
7620
7621 There are some cases where the obvious value we could return
7622 would regenerate to OP if converted to OP's type,
7623 but would not extend like OP to wider types.
7624 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
7625 For example, if OP is (unsigned short)(signed char)-1,
7626 we avoid returning (signed char)-1 if FOR_TYPE is int,
7627 even though extending that to an unsigned short would regenerate OP,
7628 since the result of extending (signed char)-1 to (int)
7629 is different from (int) OP. */
7630
7631 tree
7632 get_unwidened (tree op, tree for_type)
7633 {
7634 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
7635 tree type = TREE_TYPE (op);
7636 unsigned final_prec
7637 = TYPE_PRECISION (for_type != 0 ? for_type : type);
7638 int uns
7639 = (for_type != 0 && for_type != type
7640 && final_prec > TYPE_PRECISION (type)
7641 && TYPE_UNSIGNED (type));
7642 tree win = op;
7643
7644 while (CONVERT_EXPR_P (op))
7645 {
7646 int bitschange;
7647
7648 /* TYPE_PRECISION on vector types has different meaning
7649 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
7650 so avoid them here. */
7651 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
7652 break;
7653
7654 bitschange = TYPE_PRECISION (TREE_TYPE (op))
7655 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
7656
7657 /* Truncations are many-one so cannot be removed.
7658 Unless we are later going to truncate down even farther. */
7659 if (bitschange < 0
7660 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
7661 break;
7662
7663 /* See what's inside this conversion. If we decide to strip it,
7664 we will set WIN. */
7665 op = TREE_OPERAND (op, 0);
7666
7667 /* If we have not stripped any zero-extensions (uns is 0),
7668 we can strip any kind of extension.
7669 If we have previously stripped a zero-extension,
7670 only zero-extensions can safely be stripped.
7671 Any extension can be stripped if the bits it would produce
7672 are all going to be discarded later by truncating to FOR_TYPE. */
7673
7674 if (bitschange > 0)
7675 {
7676 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
7677 win = op;
7678 /* TYPE_UNSIGNED says whether this is a zero-extension.
7679 Let's avoid computing it if it does not affect WIN
7680 and if UNS will not be needed again. */
7681 if ((uns
7682 || CONVERT_EXPR_P (op))
7683 && TYPE_UNSIGNED (TREE_TYPE (op)))
7684 {
7685 uns = 1;
7686 win = op;
7687 }
7688 }
7689 }
7690
7691 /* If we finally reach a constant see if it fits in for_type and
7692 in that case convert it. */
7693 if (for_type
7694 && TREE_CODE (win) == INTEGER_CST
7695 && TREE_TYPE (win) != for_type
7696 && int_fits_type_p (win, for_type))
7697 win = fold_convert (for_type, win);
7698
7699 return win;
7700 }
7701 \f
7702 /* Return OP or a simpler expression for a narrower value
7703 which can be sign-extended or zero-extended to give back OP.
7704 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
7705 or 0 if the value should be sign-extended. */
7706
7707 tree
7708 get_narrower (tree op, int *unsignedp_ptr)
7709 {
7710 int uns = 0;
7711 int first = 1;
7712 tree win = op;
7713 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
7714
7715 while (TREE_CODE (op) == NOP_EXPR)
7716 {
7717 int bitschange
7718 = (TYPE_PRECISION (TREE_TYPE (op))
7719 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
7720
7721 /* Truncations are many-one so cannot be removed. */
7722 if (bitschange < 0)
7723 break;
7724
7725 /* See what's inside this conversion. If we decide to strip it,
7726 we will set WIN. */
7727
7728 if (bitschange > 0)
7729 {
7730 op = TREE_OPERAND (op, 0);
7731 /* An extension: the outermost one can be stripped,
7732 but remember whether it is zero or sign extension. */
7733 if (first)
7734 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7735 /* Otherwise, if a sign extension has been stripped,
7736 only sign extensions can now be stripped;
7737 if a zero extension has been stripped, only zero-extensions. */
7738 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
7739 break;
7740 first = 0;
7741 }
7742 else /* bitschange == 0 */
7743 {
7744 /* A change in nominal type can always be stripped, but we must
7745 preserve the unsignedness. */
7746 if (first)
7747 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7748 first = 0;
7749 op = TREE_OPERAND (op, 0);
7750 /* Keep trying to narrow, but don't assign op to win if it
7751 would turn an integral type into something else. */
7752 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
7753 continue;
7754 }
7755
7756 win = op;
7757 }
7758
7759 if (TREE_CODE (op) == COMPONENT_REF
7760 /* Since type_for_size always gives an integer type. */
7761 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
7762 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
7763 /* Ensure field is laid out already. */
7764 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
7765 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
7766 {
7767 unsigned HOST_WIDE_INT innerprec
7768 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
7769 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
7770 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
7771 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
7772
7773 /* We can get this structure field in a narrower type that fits it,
7774 but the resulting extension to its nominal type (a fullword type)
7775 must satisfy the same conditions as for other extensions.
7776
7777 Do this only for fields that are aligned (not bit-fields),
7778 because when bit-field insns will be used there is no
7779 advantage in doing this. */
7780
7781 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
7782 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
7783 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
7784 && type != 0)
7785 {
7786 if (first)
7787 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
7788 win = fold_convert (type, op);
7789 }
7790 }
7791
7792 *unsignedp_ptr = uns;
7793 return win;
7794 }
7795 \f
7796 /* Nonzero if integer constant C has a value that is permissible
7797 for type TYPE (an INTEGER_TYPE). */
7798
7799 int
7800 int_fits_type_p (const_tree c, const_tree type)
7801 {
7802 tree type_low_bound, type_high_bound;
7803 bool ok_for_low_bound, ok_for_high_bound, unsc;
7804 double_int dc, dd;
7805
7806 dc = tree_to_double_int (c);
7807 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
7808
7809 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
7810 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
7811 && unsc)
7812 /* So c is an unsigned integer whose type is sizetype and type is not.
7813 sizetype'd integers are sign extended even though they are
7814 unsigned. If the integer value fits in the lower end word of c,
7815 and if the higher end word has all its bits set to 1, that
7816 means the higher end bits are set to 1 only for sign extension.
7817 So let's convert c into an equivalent zero extended unsigned
7818 integer. */
7819 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
7820
7821 retry:
7822 type_low_bound = TYPE_MIN_VALUE (type);
7823 type_high_bound = TYPE_MAX_VALUE (type);
7824
7825 /* If at least one bound of the type is a constant integer, we can check
7826 ourselves and maybe make a decision. If no such decision is possible, but
7827 this type is a subtype, try checking against that. Otherwise, use
7828 fit_double_type, which checks against the precision.
7829
7830 Compute the status for each possibly constant bound, and return if we see
7831 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
7832 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
7833 for "constant known to fit". */
7834
7835 /* Check if c >= type_low_bound. */
7836 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
7837 {
7838 dd = tree_to_double_int (type_low_bound);
7839 if (TREE_CODE (type) == INTEGER_TYPE
7840 && TYPE_IS_SIZETYPE (type)
7841 && TYPE_UNSIGNED (type))
7842 dd = double_int_zext (dd, TYPE_PRECISION (type));
7843 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
7844 {
7845 int c_neg = (!unsc && double_int_negative_p (dc));
7846 int t_neg = (unsc && double_int_negative_p (dd));
7847
7848 if (c_neg && !t_neg)
7849 return 0;
7850 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
7851 return 0;
7852 }
7853 else if (double_int_cmp (dc, dd, unsc) < 0)
7854 return 0;
7855 ok_for_low_bound = true;
7856 }
7857 else
7858 ok_for_low_bound = false;
7859
7860 /* Check if c <= type_high_bound. */
7861 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
7862 {
7863 dd = tree_to_double_int (type_high_bound);
7864 if (TREE_CODE (type) == INTEGER_TYPE
7865 && TYPE_IS_SIZETYPE (type)
7866 && TYPE_UNSIGNED (type))
7867 dd = double_int_zext (dd, TYPE_PRECISION (type));
7868 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
7869 {
7870 int c_neg = (!unsc && double_int_negative_p (dc));
7871 int t_neg = (unsc && double_int_negative_p (dd));
7872
7873 if (t_neg && !c_neg)
7874 return 0;
7875 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
7876 return 0;
7877 }
7878 else if (double_int_cmp (dc, dd, unsc) > 0)
7879 return 0;
7880 ok_for_high_bound = true;
7881 }
7882 else
7883 ok_for_high_bound = false;
7884
7885 /* If the constant fits both bounds, the result is known. */
7886 if (ok_for_low_bound && ok_for_high_bound)
7887 return 1;
7888
7889 /* Perform some generic filtering which may allow making a decision
7890 even if the bounds are not constant. First, negative integers
7891 never fit in unsigned types, */
7892 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
7893 return 0;
7894
7895 /* Second, narrower types always fit in wider ones. */
7896 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
7897 return 1;
7898
7899 /* Third, unsigned integers with top bit set never fit signed types. */
7900 if (! TYPE_UNSIGNED (type) && unsc)
7901 {
7902 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
7903 if (prec < HOST_BITS_PER_WIDE_INT)
7904 {
7905 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
7906 return 0;
7907 }
7908 else if (((((unsigned HOST_WIDE_INT) 1)
7909 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
7910 return 0;
7911 }
7912
7913 /* If we haven't been able to decide at this point, there nothing more we
7914 can check ourselves here. Look at the base type if we have one and it
7915 has the same precision. */
7916 if (TREE_CODE (type) == INTEGER_TYPE
7917 && TREE_TYPE (type) != 0
7918 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
7919 {
7920 type = TREE_TYPE (type);
7921 goto retry;
7922 }
7923
7924 /* Or to fit_double_type, if nothing else. */
7925 return !fit_double_type (dc.low, dc.high, &dc.low, &dc.high, type);
7926 }
7927
7928 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
7929 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
7930 represented (assuming two's-complement arithmetic) within the bit
7931 precision of the type are returned instead. */
7932
7933 void
7934 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
7935 {
7936 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
7937 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
7938 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
7939 TYPE_UNSIGNED (type));
7940 else
7941 {
7942 if (TYPE_UNSIGNED (type))
7943 mpz_set_ui (min, 0);
7944 else
7945 {
7946 double_int mn;
7947 mn = double_int_mask (TYPE_PRECISION (type) - 1);
7948 mn = double_int_sext (double_int_add (mn, double_int_one),
7949 TYPE_PRECISION (type));
7950 mpz_set_double_int (min, mn, false);
7951 }
7952 }
7953
7954 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
7955 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
7956 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
7957 TYPE_UNSIGNED (type));
7958 else
7959 {
7960 if (TYPE_UNSIGNED (type))
7961 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
7962 true);
7963 else
7964 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
7965 true);
7966 }
7967 }
7968
7969 /* Return true if VAR is an automatic variable defined in function FN. */
7970
7971 bool
7972 auto_var_in_fn_p (const_tree var, const_tree fn)
7973 {
7974 return (DECL_P (var) && DECL_CONTEXT (var) == fn
7975 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
7976 || TREE_CODE (var) == PARM_DECL)
7977 && ! TREE_STATIC (var))
7978 || TREE_CODE (var) == LABEL_DECL
7979 || TREE_CODE (var) == RESULT_DECL));
7980 }
7981
7982 /* Subprogram of following function. Called by walk_tree.
7983
7984 Return *TP if it is an automatic variable or parameter of the
7985 function passed in as DATA. */
7986
7987 static tree
7988 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
7989 {
7990 tree fn = (tree) data;
7991
7992 if (TYPE_P (*tp))
7993 *walk_subtrees = 0;
7994
7995 else if (DECL_P (*tp)
7996 && auto_var_in_fn_p (*tp, fn))
7997 return *tp;
7998
7999 return NULL_TREE;
8000 }
8001
8002 /* Returns true if T is, contains, or refers to a type with variable
8003 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8004 arguments, but not the return type. If FN is nonzero, only return
8005 true if a modifier of the type or position of FN is a variable or
8006 parameter inside FN.
8007
8008 This concept is more general than that of C99 'variably modified types':
8009 in C99, a struct type is never variably modified because a VLA may not
8010 appear as a structure member. However, in GNU C code like:
8011
8012 struct S { int i[f()]; };
8013
8014 is valid, and other languages may define similar constructs. */
8015
8016 bool
8017 variably_modified_type_p (tree type, tree fn)
8018 {
8019 tree t;
8020
8021 /* Test if T is either variable (if FN is zero) or an expression containing
8022 a variable in FN. */
8023 #define RETURN_TRUE_IF_VAR(T) \
8024 do { tree _t = (T); \
8025 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
8026 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8027 return true; } while (0)
8028
8029 if (type == error_mark_node)
8030 return false;
8031
8032 /* If TYPE itself has variable size, it is variably modified. */
8033 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8034 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8035
8036 switch (TREE_CODE (type))
8037 {
8038 case POINTER_TYPE:
8039 case REFERENCE_TYPE:
8040 case VECTOR_TYPE:
8041 if (variably_modified_type_p (TREE_TYPE (type), fn))
8042 return true;
8043 break;
8044
8045 case FUNCTION_TYPE:
8046 case METHOD_TYPE:
8047 /* If TYPE is a function type, it is variably modified if the
8048 return type is variably modified. */
8049 if (variably_modified_type_p (TREE_TYPE (type), fn))
8050 return true;
8051 break;
8052
8053 case INTEGER_TYPE:
8054 case REAL_TYPE:
8055 case FIXED_POINT_TYPE:
8056 case ENUMERAL_TYPE:
8057 case BOOLEAN_TYPE:
8058 /* Scalar types are variably modified if their end points
8059 aren't constant. */
8060 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8061 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8062 break;
8063
8064 case RECORD_TYPE:
8065 case UNION_TYPE:
8066 case QUAL_UNION_TYPE:
8067 /* We can't see if any of the fields are variably-modified by the
8068 definition we normally use, since that would produce infinite
8069 recursion via pointers. */
8070 /* This is variably modified if some field's type is. */
8071 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
8072 if (TREE_CODE (t) == FIELD_DECL)
8073 {
8074 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8075 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8076 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8077
8078 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8079 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8080 }
8081 break;
8082
8083 case ARRAY_TYPE:
8084 /* Do not call ourselves to avoid infinite recursion. This is
8085 variably modified if the element type is. */
8086 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8087 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8088 break;
8089
8090 default:
8091 break;
8092 }
8093
8094 /* The current language may have other cases to check, but in general,
8095 all other types are not variably modified. */
8096 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8097
8098 #undef RETURN_TRUE_IF_VAR
8099 }
8100
8101 /* Given a DECL or TYPE, return the scope in which it was declared, or
8102 NULL_TREE if there is no containing scope. */
8103
8104 tree
8105 get_containing_scope (const_tree t)
8106 {
8107 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8108 }
8109
8110 /* Return the innermost context enclosing DECL that is
8111 a FUNCTION_DECL, or zero if none. */
8112
8113 tree
8114 decl_function_context (const_tree decl)
8115 {
8116 tree context;
8117
8118 if (TREE_CODE (decl) == ERROR_MARK)
8119 return 0;
8120
8121 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8122 where we look up the function at runtime. Such functions always take
8123 a first argument of type 'pointer to real context'.
8124
8125 C++ should really be fixed to use DECL_CONTEXT for the real context,
8126 and use something else for the "virtual context". */
8127 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8128 context
8129 = TYPE_MAIN_VARIANT
8130 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8131 else
8132 context = DECL_CONTEXT (decl);
8133
8134 while (context && TREE_CODE (context) != FUNCTION_DECL)
8135 {
8136 if (TREE_CODE (context) == BLOCK)
8137 context = BLOCK_SUPERCONTEXT (context);
8138 else
8139 context = get_containing_scope (context);
8140 }
8141
8142 return context;
8143 }
8144
8145 /* Return the innermost context enclosing DECL that is
8146 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8147 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8148
8149 tree
8150 decl_type_context (const_tree decl)
8151 {
8152 tree context = DECL_CONTEXT (decl);
8153
8154 while (context)
8155 switch (TREE_CODE (context))
8156 {
8157 case NAMESPACE_DECL:
8158 case TRANSLATION_UNIT_DECL:
8159 return NULL_TREE;
8160
8161 case RECORD_TYPE:
8162 case UNION_TYPE:
8163 case QUAL_UNION_TYPE:
8164 return context;
8165
8166 case TYPE_DECL:
8167 case FUNCTION_DECL:
8168 context = DECL_CONTEXT (context);
8169 break;
8170
8171 case BLOCK:
8172 context = BLOCK_SUPERCONTEXT (context);
8173 break;
8174
8175 default:
8176 gcc_unreachable ();
8177 }
8178
8179 return NULL_TREE;
8180 }
8181
8182 /* CALL is a CALL_EXPR. Return the declaration for the function
8183 called, or NULL_TREE if the called function cannot be
8184 determined. */
8185
8186 tree
8187 get_callee_fndecl (const_tree call)
8188 {
8189 tree addr;
8190
8191 if (call == error_mark_node)
8192 return error_mark_node;
8193
8194 /* It's invalid to call this function with anything but a
8195 CALL_EXPR. */
8196 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8197
8198 /* The first operand to the CALL is the address of the function
8199 called. */
8200 addr = CALL_EXPR_FN (call);
8201
8202 STRIP_NOPS (addr);
8203
8204 /* If this is a readonly function pointer, extract its initial value. */
8205 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8206 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8207 && DECL_INITIAL (addr))
8208 addr = DECL_INITIAL (addr);
8209
8210 /* If the address is just `&f' for some function `f', then we know
8211 that `f' is being called. */
8212 if (TREE_CODE (addr) == ADDR_EXPR
8213 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8214 return TREE_OPERAND (addr, 0);
8215
8216 /* We couldn't figure out what was being called. */
8217 return NULL_TREE;
8218 }
8219
8220 /* Print debugging information about tree nodes generated during the compile,
8221 and any language-specific information. */
8222
8223 void
8224 dump_tree_statistics (void)
8225 {
8226 #ifdef GATHER_STATISTICS
8227 int i;
8228 int total_nodes, total_bytes;
8229 #endif
8230
8231 fprintf (stderr, "\n??? tree nodes created\n\n");
8232 #ifdef GATHER_STATISTICS
8233 fprintf (stderr, "Kind Nodes Bytes\n");
8234 fprintf (stderr, "---------------------------------------\n");
8235 total_nodes = total_bytes = 0;
8236 for (i = 0; i < (int) all_kinds; i++)
8237 {
8238 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8239 tree_node_counts[i], tree_node_sizes[i]);
8240 total_nodes += tree_node_counts[i];
8241 total_bytes += tree_node_sizes[i];
8242 }
8243 fprintf (stderr, "---------------------------------------\n");
8244 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8245 fprintf (stderr, "---------------------------------------\n");
8246 ssanames_print_statistics ();
8247 phinodes_print_statistics ();
8248 #else
8249 fprintf (stderr, "(No per-node statistics)\n");
8250 #endif
8251 print_type_hash_statistics ();
8252 print_debug_expr_statistics ();
8253 print_value_expr_statistics ();
8254 lang_hooks.print_statistics ();
8255 }
8256 \f
8257 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8258
8259 /* Generate a crc32 of a string. */
8260
8261 unsigned
8262 crc32_string (unsigned chksum, const char *string)
8263 {
8264 do
8265 {
8266 unsigned value = *string << 24;
8267 unsigned ix;
8268
8269 for (ix = 8; ix--; value <<= 1)
8270 {
8271 unsigned feedback;
8272
8273 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8274 chksum <<= 1;
8275 chksum ^= feedback;
8276 }
8277 }
8278 while (*string++);
8279 return chksum;
8280 }
8281
8282 /* P is a string that will be used in a symbol. Mask out any characters
8283 that are not valid in that context. */
8284
8285 void
8286 clean_symbol_name (char *p)
8287 {
8288 for (; *p; p++)
8289 if (! (ISALNUM (*p)
8290 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8291 || *p == '$'
8292 #endif
8293 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8294 || *p == '.'
8295 #endif
8296 ))
8297 *p = '_';
8298 }
8299
8300 /* Generate a name for a special-purpose function function.
8301 The generated name may need to be unique across the whole link.
8302 TYPE is some string to identify the purpose of this function to the
8303 linker or collect2; it must start with an uppercase letter,
8304 one of:
8305 I - for constructors
8306 D - for destructors
8307 N - for C++ anonymous namespaces
8308 F - for DWARF unwind frame information. */
8309
8310 tree
8311 get_file_function_name (const char *type)
8312 {
8313 char *buf;
8314 const char *p;
8315 char *q;
8316
8317 /* If we already have a name we know to be unique, just use that. */
8318 if (first_global_object_name)
8319 p = q = ASTRDUP (first_global_object_name);
8320 /* If the target is handling the constructors/destructors, they
8321 will be local to this file and the name is only necessary for
8322 debugging purposes. */
8323 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8324 {
8325 const char *file = main_input_filename;
8326 if (! file)
8327 file = input_filename;
8328 /* Just use the file's basename, because the full pathname
8329 might be quite long. */
8330 p = strrchr (file, '/');
8331 if (p)
8332 p++;
8333 else
8334 p = file;
8335 p = q = ASTRDUP (p);
8336 }
8337 else
8338 {
8339 /* Otherwise, the name must be unique across the entire link.
8340 We don't have anything that we know to be unique to this translation
8341 unit, so use what we do have and throw in some randomness. */
8342 unsigned len;
8343 const char *name = weak_global_object_name;
8344 const char *file = main_input_filename;
8345
8346 if (! name)
8347 name = "";
8348 if (! file)
8349 file = input_filename;
8350
8351 len = strlen (file);
8352 q = (char *) alloca (9 * 2 + len + 1);
8353 memcpy (q, file, len + 1);
8354
8355 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
8356 crc32_string (0, get_random_seed (false)));
8357
8358 p = q;
8359 }
8360
8361 clean_symbol_name (q);
8362 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8363 + strlen (type));
8364
8365 /* Set up the name of the file-level functions we may need.
8366 Use a global object (which is already required to be unique over
8367 the program) rather than the file name (which imposes extra
8368 constraints). */
8369 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8370
8371 return get_identifier (buf);
8372 }
8373 \f
8374 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8375
8376 /* Complain that the tree code of NODE does not match the expected 0
8377 terminated list of trailing codes. The trailing code list can be
8378 empty, for a more vague error message. FILE, LINE, and FUNCTION
8379 are of the caller. */
8380
8381 void
8382 tree_check_failed (const_tree node, const char *file,
8383 int line, const char *function, ...)
8384 {
8385 va_list args;
8386 const char *buffer;
8387 unsigned length = 0;
8388 int code;
8389
8390 va_start (args, function);
8391 while ((code = va_arg (args, int)))
8392 length += 4 + strlen (tree_code_name[code]);
8393 va_end (args);
8394 if (length)
8395 {
8396 char *tmp;
8397 va_start (args, function);
8398 length += strlen ("expected ");
8399 buffer = tmp = (char *) alloca (length);
8400 length = 0;
8401 while ((code = va_arg (args, int)))
8402 {
8403 const char *prefix = length ? " or " : "expected ";
8404
8405 strcpy (tmp + length, prefix);
8406 length += strlen (prefix);
8407 strcpy (tmp + length, tree_code_name[code]);
8408 length += strlen (tree_code_name[code]);
8409 }
8410 va_end (args);
8411 }
8412 else
8413 buffer = "unexpected node";
8414
8415 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8416 buffer, tree_code_name[TREE_CODE (node)],
8417 function, trim_filename (file), line);
8418 }
8419
8420 /* Complain that the tree code of NODE does match the expected 0
8421 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8422 the caller. */
8423
8424 void
8425 tree_not_check_failed (const_tree node, const char *file,
8426 int line, const char *function, ...)
8427 {
8428 va_list args;
8429 char *buffer;
8430 unsigned length = 0;
8431 int code;
8432
8433 va_start (args, function);
8434 while ((code = va_arg (args, int)))
8435 length += 4 + strlen (tree_code_name[code]);
8436 va_end (args);
8437 va_start (args, function);
8438 buffer = (char *) alloca (length);
8439 length = 0;
8440 while ((code = va_arg (args, int)))
8441 {
8442 if (length)
8443 {
8444 strcpy (buffer + length, " or ");
8445 length += 4;
8446 }
8447 strcpy (buffer + length, tree_code_name[code]);
8448 length += strlen (tree_code_name[code]);
8449 }
8450 va_end (args);
8451
8452 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8453 buffer, tree_code_name[TREE_CODE (node)],
8454 function, trim_filename (file), line);
8455 }
8456
8457 /* Similar to tree_check_failed, except that we check for a class of tree
8458 code, given in CL. */
8459
8460 void
8461 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8462 const char *file, int line, const char *function)
8463 {
8464 internal_error
8465 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8466 TREE_CODE_CLASS_STRING (cl),
8467 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8468 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8469 }
8470
8471 /* Similar to tree_check_failed, except that instead of specifying a
8472 dozen codes, use the knowledge that they're all sequential. */
8473
8474 void
8475 tree_range_check_failed (const_tree node, const char *file, int line,
8476 const char *function, enum tree_code c1,
8477 enum tree_code c2)
8478 {
8479 char *buffer;
8480 unsigned length = 0;
8481 unsigned int c;
8482
8483 for (c = c1; c <= c2; ++c)
8484 length += 4 + strlen (tree_code_name[c]);
8485
8486 length += strlen ("expected ");
8487 buffer = (char *) alloca (length);
8488 length = 0;
8489
8490 for (c = c1; c <= c2; ++c)
8491 {
8492 const char *prefix = length ? " or " : "expected ";
8493
8494 strcpy (buffer + length, prefix);
8495 length += strlen (prefix);
8496 strcpy (buffer + length, tree_code_name[c]);
8497 length += strlen (tree_code_name[c]);
8498 }
8499
8500 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8501 buffer, tree_code_name[TREE_CODE (node)],
8502 function, trim_filename (file), line);
8503 }
8504
8505
8506 /* Similar to tree_check_failed, except that we check that a tree does
8507 not have the specified code, given in CL. */
8508
8509 void
8510 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8511 const char *file, int line, const char *function)
8512 {
8513 internal_error
8514 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8515 TREE_CODE_CLASS_STRING (cl),
8516 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8517 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8518 }
8519
8520
8521 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8522
8523 void
8524 omp_clause_check_failed (const_tree node, const char *file, int line,
8525 const char *function, enum omp_clause_code code)
8526 {
8527 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8528 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8529 function, trim_filename (file), line);
8530 }
8531
8532
8533 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8534
8535 void
8536 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8537 const char *function, enum omp_clause_code c1,
8538 enum omp_clause_code c2)
8539 {
8540 char *buffer;
8541 unsigned length = 0;
8542 unsigned int c;
8543
8544 for (c = c1; c <= c2; ++c)
8545 length += 4 + strlen (omp_clause_code_name[c]);
8546
8547 length += strlen ("expected ");
8548 buffer = (char *) alloca (length);
8549 length = 0;
8550
8551 for (c = c1; c <= c2; ++c)
8552 {
8553 const char *prefix = length ? " or " : "expected ";
8554
8555 strcpy (buffer + length, prefix);
8556 length += strlen (prefix);
8557 strcpy (buffer + length, omp_clause_code_name[c]);
8558 length += strlen (omp_clause_code_name[c]);
8559 }
8560
8561 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8562 buffer, omp_clause_code_name[TREE_CODE (node)],
8563 function, trim_filename (file), line);
8564 }
8565
8566
8567 #undef DEFTREESTRUCT
8568 #define DEFTREESTRUCT(VAL, NAME) NAME,
8569
8570 static const char *ts_enum_names[] = {
8571 #include "treestruct.def"
8572 };
8573 #undef DEFTREESTRUCT
8574
8575 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8576
8577 /* Similar to tree_class_check_failed, except that we check for
8578 whether CODE contains the tree structure identified by EN. */
8579
8580 void
8581 tree_contains_struct_check_failed (const_tree node,
8582 const enum tree_node_structure_enum en,
8583 const char *file, int line,
8584 const char *function)
8585 {
8586 internal_error
8587 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8588 TS_ENUM_NAME(en),
8589 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8590 }
8591
8592
8593 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8594 (dynamically sized) vector. */
8595
8596 void
8597 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8598 const char *function)
8599 {
8600 internal_error
8601 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
8602 idx + 1, len, function, trim_filename (file), line);
8603 }
8604
8605 /* Similar to above, except that the check is for the bounds of the operand
8606 vector of an expression node EXP. */
8607
8608 void
8609 tree_operand_check_failed (int idx, const_tree exp, const char *file,
8610 int line, const char *function)
8611 {
8612 int code = TREE_CODE (exp);
8613 internal_error
8614 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
8615 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
8616 function, trim_filename (file), line);
8617 }
8618
8619 /* Similar to above, except that the check is for the number of
8620 operands of an OMP_CLAUSE node. */
8621
8622 void
8623 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
8624 int line, const char *function)
8625 {
8626 internal_error
8627 ("tree check: accessed operand %d of omp_clause %s with %d operands "
8628 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
8629 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
8630 trim_filename (file), line);
8631 }
8632 #endif /* ENABLE_TREE_CHECKING */
8633 \f
8634 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
8635 and mapped to the machine mode MODE. Initialize its fields and build
8636 the information necessary for debugging output. */
8637
8638 static tree
8639 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
8640 {
8641 tree t;
8642 hashval_t hashcode = 0;
8643
8644 t = make_node (VECTOR_TYPE);
8645 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
8646 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
8647 SET_TYPE_MODE (t, mode);
8648
8649 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
8650 SET_TYPE_STRUCTURAL_EQUALITY (t);
8651 else if (TYPE_CANONICAL (innertype) != innertype
8652 || mode != VOIDmode)
8653 TYPE_CANONICAL (t)
8654 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
8655
8656 layout_type (t);
8657
8658 {
8659 tree index = build_int_cst (NULL_TREE, nunits - 1);
8660 tree array = build_array_type (TYPE_MAIN_VARIANT (innertype),
8661 build_index_type (index));
8662 tree rt = make_node (RECORD_TYPE);
8663
8664 TYPE_FIELDS (rt) = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
8665 get_identifier ("f"), array);
8666 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
8667 layout_type (rt);
8668 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
8669 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
8670 the representation type, and we want to find that die when looking up
8671 the vector type. This is most easily achieved by making the TYPE_UID
8672 numbers equal. */
8673 TYPE_UID (rt) = TYPE_UID (t);
8674 }
8675
8676 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
8677 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
8678 hashcode = iterative_hash_host_wide_int (mode, hashcode);
8679 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
8680 t = type_hash_canon (hashcode, t);
8681
8682 /* We have built a main variant, based on the main variant of the
8683 inner type. Use it to build the variant we return. */
8684 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
8685 && TREE_TYPE (t) != innertype)
8686 return build_type_attribute_qual_variant (t,
8687 TYPE_ATTRIBUTES (innertype),
8688 TYPE_QUALS (innertype));
8689
8690 return t;
8691 }
8692
8693 static tree
8694 make_or_reuse_type (unsigned size, int unsignedp)
8695 {
8696 if (size == INT_TYPE_SIZE)
8697 return unsignedp ? unsigned_type_node : integer_type_node;
8698 if (size == CHAR_TYPE_SIZE)
8699 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
8700 if (size == SHORT_TYPE_SIZE)
8701 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
8702 if (size == LONG_TYPE_SIZE)
8703 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
8704 if (size == LONG_LONG_TYPE_SIZE)
8705 return (unsignedp ? long_long_unsigned_type_node
8706 : long_long_integer_type_node);
8707 if (size == 128 && int128_integer_type_node)
8708 return (unsignedp ? int128_unsigned_type_node
8709 : int128_integer_type_node);
8710
8711 if (unsignedp)
8712 return make_unsigned_type (size);
8713 else
8714 return make_signed_type (size);
8715 }
8716
8717 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
8718
8719 static tree
8720 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
8721 {
8722 if (satp)
8723 {
8724 if (size == SHORT_FRACT_TYPE_SIZE)
8725 return unsignedp ? sat_unsigned_short_fract_type_node
8726 : sat_short_fract_type_node;
8727 if (size == FRACT_TYPE_SIZE)
8728 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
8729 if (size == LONG_FRACT_TYPE_SIZE)
8730 return unsignedp ? sat_unsigned_long_fract_type_node
8731 : sat_long_fract_type_node;
8732 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8733 return unsignedp ? sat_unsigned_long_long_fract_type_node
8734 : sat_long_long_fract_type_node;
8735 }
8736 else
8737 {
8738 if (size == SHORT_FRACT_TYPE_SIZE)
8739 return unsignedp ? unsigned_short_fract_type_node
8740 : short_fract_type_node;
8741 if (size == FRACT_TYPE_SIZE)
8742 return unsignedp ? unsigned_fract_type_node : fract_type_node;
8743 if (size == LONG_FRACT_TYPE_SIZE)
8744 return unsignedp ? unsigned_long_fract_type_node
8745 : long_fract_type_node;
8746 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8747 return unsignedp ? unsigned_long_long_fract_type_node
8748 : long_long_fract_type_node;
8749 }
8750
8751 return make_fract_type (size, unsignedp, satp);
8752 }
8753
8754 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
8755
8756 static tree
8757 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
8758 {
8759 if (satp)
8760 {
8761 if (size == SHORT_ACCUM_TYPE_SIZE)
8762 return unsignedp ? sat_unsigned_short_accum_type_node
8763 : sat_short_accum_type_node;
8764 if (size == ACCUM_TYPE_SIZE)
8765 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
8766 if (size == LONG_ACCUM_TYPE_SIZE)
8767 return unsignedp ? sat_unsigned_long_accum_type_node
8768 : sat_long_accum_type_node;
8769 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8770 return unsignedp ? sat_unsigned_long_long_accum_type_node
8771 : sat_long_long_accum_type_node;
8772 }
8773 else
8774 {
8775 if (size == SHORT_ACCUM_TYPE_SIZE)
8776 return unsignedp ? unsigned_short_accum_type_node
8777 : short_accum_type_node;
8778 if (size == ACCUM_TYPE_SIZE)
8779 return unsignedp ? unsigned_accum_type_node : accum_type_node;
8780 if (size == LONG_ACCUM_TYPE_SIZE)
8781 return unsignedp ? unsigned_long_accum_type_node
8782 : long_accum_type_node;
8783 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8784 return unsignedp ? unsigned_long_long_accum_type_node
8785 : long_long_accum_type_node;
8786 }
8787
8788 return make_accum_type (size, unsignedp, satp);
8789 }
8790
8791 /* Create nodes for all integer types (and error_mark_node) using the sizes
8792 of C datatypes. The caller should call set_sizetype soon after calling
8793 this function to select one of the types as sizetype. */
8794
8795 void
8796 build_common_tree_nodes (bool signed_char)
8797 {
8798 error_mark_node = make_node (ERROR_MARK);
8799 TREE_TYPE (error_mark_node) = error_mark_node;
8800
8801 initialize_sizetypes ();
8802
8803 /* Define both `signed char' and `unsigned char'. */
8804 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
8805 TYPE_STRING_FLAG (signed_char_type_node) = 1;
8806 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
8807 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
8808
8809 /* Define `char', which is like either `signed char' or `unsigned char'
8810 but not the same as either. */
8811 char_type_node
8812 = (signed_char
8813 ? make_signed_type (CHAR_TYPE_SIZE)
8814 : make_unsigned_type (CHAR_TYPE_SIZE));
8815 TYPE_STRING_FLAG (char_type_node) = 1;
8816
8817 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
8818 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
8819 integer_type_node = make_signed_type (INT_TYPE_SIZE);
8820 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
8821 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
8822 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
8823 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
8824 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
8825 #if HOST_BITS_PER_WIDE_INT >= 64
8826 /* TODO: This isn't correct, but as logic depends at the moment on
8827 host's instead of target's wide-integer.
8828 If there is a target not supporting TImode, but has an 128-bit
8829 integer-scalar register, this target check needs to be adjusted. */
8830 if (targetm.scalar_mode_supported_p (TImode))
8831 {
8832 int128_integer_type_node = make_signed_type (128);
8833 int128_unsigned_type_node = make_unsigned_type (128);
8834 }
8835 #endif
8836 /* Define a boolean type. This type only represents boolean values but
8837 may be larger than char depending on the value of BOOL_TYPE_SIZE.
8838 Front ends which want to override this size (i.e. Java) can redefine
8839 boolean_type_node before calling build_common_tree_nodes_2. */
8840 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
8841 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
8842 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
8843 TYPE_PRECISION (boolean_type_node) = 1;
8844
8845 /* Fill in the rest of the sized types. Reuse existing type nodes
8846 when possible. */
8847 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
8848 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
8849 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
8850 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
8851 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
8852
8853 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
8854 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
8855 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
8856 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
8857 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
8858
8859 access_public_node = get_identifier ("public");
8860 access_protected_node = get_identifier ("protected");
8861 access_private_node = get_identifier ("private");
8862 }
8863
8864 /* Call this function after calling build_common_tree_nodes and set_sizetype.
8865 It will create several other common tree nodes. */
8866
8867 void
8868 build_common_tree_nodes_2 (int short_double)
8869 {
8870 /* Define these next since types below may used them. */
8871 integer_zero_node = build_int_cst (NULL_TREE, 0);
8872 integer_one_node = build_int_cst (NULL_TREE, 1);
8873 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
8874
8875 size_zero_node = size_int (0);
8876 size_one_node = size_int (1);
8877 bitsize_zero_node = bitsize_int (0);
8878 bitsize_one_node = bitsize_int (1);
8879 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
8880
8881 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
8882 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
8883
8884 void_type_node = make_node (VOID_TYPE);
8885 layout_type (void_type_node);
8886
8887 /* We are not going to have real types in C with less than byte alignment,
8888 so we might as well not have any types that claim to have it. */
8889 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
8890 TYPE_USER_ALIGN (void_type_node) = 0;
8891
8892 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
8893 layout_type (TREE_TYPE (null_pointer_node));
8894
8895 ptr_type_node = build_pointer_type (void_type_node);
8896 const_ptr_type_node
8897 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
8898 fileptr_type_node = ptr_type_node;
8899
8900 float_type_node = make_node (REAL_TYPE);
8901 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
8902 layout_type (float_type_node);
8903
8904 double_type_node = make_node (REAL_TYPE);
8905 if (short_double)
8906 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
8907 else
8908 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
8909 layout_type (double_type_node);
8910
8911 long_double_type_node = make_node (REAL_TYPE);
8912 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
8913 layout_type (long_double_type_node);
8914
8915 float_ptr_type_node = build_pointer_type (float_type_node);
8916 double_ptr_type_node = build_pointer_type (double_type_node);
8917 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
8918 integer_ptr_type_node = build_pointer_type (integer_type_node);
8919
8920 /* Fixed size integer types. */
8921 uint32_type_node = build_nonstandard_integer_type (32, true);
8922 uint64_type_node = build_nonstandard_integer_type (64, true);
8923
8924 /* Decimal float types. */
8925 dfloat32_type_node = make_node (REAL_TYPE);
8926 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
8927 layout_type (dfloat32_type_node);
8928 SET_TYPE_MODE (dfloat32_type_node, SDmode);
8929 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
8930
8931 dfloat64_type_node = make_node (REAL_TYPE);
8932 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
8933 layout_type (dfloat64_type_node);
8934 SET_TYPE_MODE (dfloat64_type_node, DDmode);
8935 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
8936
8937 dfloat128_type_node = make_node (REAL_TYPE);
8938 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
8939 layout_type (dfloat128_type_node);
8940 SET_TYPE_MODE (dfloat128_type_node, TDmode);
8941 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
8942
8943 complex_integer_type_node = build_complex_type (integer_type_node);
8944 complex_float_type_node = build_complex_type (float_type_node);
8945 complex_double_type_node = build_complex_type (double_type_node);
8946 complex_long_double_type_node = build_complex_type (long_double_type_node);
8947
8948 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
8949 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
8950 sat_ ## KIND ## _type_node = \
8951 make_sat_signed_ ## KIND ## _type (SIZE); \
8952 sat_unsigned_ ## KIND ## _type_node = \
8953 make_sat_unsigned_ ## KIND ## _type (SIZE); \
8954 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
8955 unsigned_ ## KIND ## _type_node = \
8956 make_unsigned_ ## KIND ## _type (SIZE);
8957
8958 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
8959 sat_ ## WIDTH ## KIND ## _type_node = \
8960 make_sat_signed_ ## KIND ## _type (SIZE); \
8961 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
8962 make_sat_unsigned_ ## KIND ## _type (SIZE); \
8963 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
8964 unsigned_ ## WIDTH ## KIND ## _type_node = \
8965 make_unsigned_ ## KIND ## _type (SIZE);
8966
8967 /* Make fixed-point type nodes based on four different widths. */
8968 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
8969 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
8970 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
8971 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
8972 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
8973
8974 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
8975 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
8976 NAME ## _type_node = \
8977 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
8978 u ## NAME ## _type_node = \
8979 make_or_reuse_unsigned_ ## KIND ## _type \
8980 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
8981 sat_ ## NAME ## _type_node = \
8982 make_or_reuse_sat_signed_ ## KIND ## _type \
8983 (GET_MODE_BITSIZE (MODE ## mode)); \
8984 sat_u ## NAME ## _type_node = \
8985 make_or_reuse_sat_unsigned_ ## KIND ## _type \
8986 (GET_MODE_BITSIZE (U ## MODE ## mode));
8987
8988 /* Fixed-point type and mode nodes. */
8989 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
8990 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
8991 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
8992 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
8993 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
8994 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
8995 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
8996 MAKE_FIXED_MODE_NODE (accum, ha, HA)
8997 MAKE_FIXED_MODE_NODE (accum, sa, SA)
8998 MAKE_FIXED_MODE_NODE (accum, da, DA)
8999 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9000
9001 {
9002 tree t = targetm.build_builtin_va_list ();
9003
9004 /* Many back-ends define record types without setting TYPE_NAME.
9005 If we copied the record type here, we'd keep the original
9006 record type without a name. This breaks name mangling. So,
9007 don't copy record types and let c_common_nodes_and_builtins()
9008 declare the type to be __builtin_va_list. */
9009 if (TREE_CODE (t) != RECORD_TYPE)
9010 t = build_variant_type_copy (t);
9011
9012 va_list_type_node = t;
9013 }
9014 }
9015
9016 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9017
9018 static void
9019 local_define_builtin (const char *name, tree type, enum built_in_function code,
9020 const char *library_name, int ecf_flags)
9021 {
9022 tree decl;
9023
9024 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9025 library_name, NULL_TREE);
9026 if (ecf_flags & ECF_CONST)
9027 TREE_READONLY (decl) = 1;
9028 if (ecf_flags & ECF_PURE)
9029 DECL_PURE_P (decl) = 1;
9030 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9031 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9032 if (ecf_flags & ECF_NORETURN)
9033 TREE_THIS_VOLATILE (decl) = 1;
9034 if (ecf_flags & ECF_NOTHROW)
9035 TREE_NOTHROW (decl) = 1;
9036 if (ecf_flags & ECF_MALLOC)
9037 DECL_IS_MALLOC (decl) = 1;
9038
9039 built_in_decls[code] = decl;
9040 implicit_built_in_decls[code] = decl;
9041 }
9042
9043 /* Call this function after instantiating all builtins that the language
9044 front end cares about. This will build the rest of the builtins that
9045 are relied upon by the tree optimizers and the middle-end. */
9046
9047 void
9048 build_common_builtin_nodes (void)
9049 {
9050 tree tmp, tmp2, ftype;
9051
9052 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
9053 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9054 {
9055 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9056 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
9057 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9058 ftype = build_function_type (ptr_type_node, tmp);
9059
9060 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
9061 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9062 "memcpy", ECF_NOTHROW);
9063 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9064 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9065 "memmove", ECF_NOTHROW);
9066 }
9067
9068 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
9069 {
9070 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9071 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
9072 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
9073 ftype = build_function_type (integer_type_node, tmp);
9074 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9075 "memcmp", ECF_PURE | ECF_NOTHROW);
9076 }
9077
9078 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
9079 {
9080 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9081 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
9082 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9083 ftype = build_function_type (ptr_type_node, tmp);
9084 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9085 "memset", ECF_NOTHROW);
9086 }
9087
9088 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
9089 {
9090 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9091 ftype = build_function_type (ptr_type_node, tmp);
9092 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9093 "alloca", ECF_MALLOC | ECF_NOTHROW);
9094 }
9095
9096 /* If we're checking the stack, `alloca' can throw. */
9097 if (flag_stack_check)
9098 TREE_NOTHROW (built_in_decls[BUILT_IN_ALLOCA]) = 0;
9099
9100 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9101 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9102 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9103 ftype = build_function_type (void_type_node, tmp);
9104 local_define_builtin ("__builtin_init_trampoline", ftype,
9105 BUILT_IN_INIT_TRAMPOLINE,
9106 "__builtin_init_trampoline", ECF_NOTHROW);
9107
9108 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9109 ftype = build_function_type (ptr_type_node, tmp);
9110 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9111 BUILT_IN_ADJUST_TRAMPOLINE,
9112 "__builtin_adjust_trampoline",
9113 ECF_CONST | ECF_NOTHROW);
9114
9115 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9116 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9117 ftype = build_function_type (void_type_node, tmp);
9118 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9119 BUILT_IN_NONLOCAL_GOTO,
9120 "__builtin_nonlocal_goto",
9121 ECF_NORETURN | ECF_NOTHROW);
9122
9123 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9124 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9125 ftype = build_function_type (void_type_node, tmp);
9126 local_define_builtin ("__builtin_setjmp_setup", ftype,
9127 BUILT_IN_SETJMP_SETUP,
9128 "__builtin_setjmp_setup", ECF_NOTHROW);
9129
9130 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9131 ftype = build_function_type (ptr_type_node, tmp);
9132 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9133 BUILT_IN_SETJMP_DISPATCHER,
9134 "__builtin_setjmp_dispatcher",
9135 ECF_PURE | ECF_NOTHROW);
9136
9137 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9138 ftype = build_function_type (void_type_node, tmp);
9139 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9140 BUILT_IN_SETJMP_RECEIVER,
9141 "__builtin_setjmp_receiver", ECF_NOTHROW);
9142
9143 ftype = build_function_type (ptr_type_node, void_list_node);
9144 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9145 "__builtin_stack_save", ECF_NOTHROW);
9146
9147 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9148 ftype = build_function_type (void_type_node, tmp);
9149 local_define_builtin ("__builtin_stack_restore", ftype,
9150 BUILT_IN_STACK_RESTORE,
9151 "__builtin_stack_restore", ECF_NOTHROW);
9152
9153 ftype = build_function_type (void_type_node, void_list_node);
9154 local_define_builtin ("__builtin_profile_func_enter", ftype,
9155 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
9156 local_define_builtin ("__builtin_profile_func_exit", ftype,
9157 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
9158
9159 /* If there's a possibility that we might use the ARM EABI, build the
9160 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9161 if (targetm.arm_eabi_unwinder)
9162 {
9163 ftype = build_function_type (void_type_node, void_list_node);
9164 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9165 BUILT_IN_CXA_END_CLEANUP,
9166 "__cxa_end_cleanup", ECF_NORETURN);
9167 }
9168
9169 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9170 ftype = build_function_type (void_type_node, tmp);
9171 local_define_builtin ("__builtin_unwind_resume", ftype,
9172 BUILT_IN_UNWIND_RESUME,
9173 (USING_SJLJ_EXCEPTIONS
9174 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9175 ECF_NORETURN);
9176
9177 /* The exception object and filter values from the runtime. The argument
9178 must be zero before exception lowering, i.e. from the front end. After
9179 exception lowering, it will be the region number for the exception
9180 landing pad. These functions are PURE instead of CONST to prevent
9181 them from being hoisted past the exception edge that will initialize
9182 its value in the landing pad. */
9183 tmp = tree_cons (NULL_TREE, integer_type_node, void_list_node);
9184 ftype = build_function_type (ptr_type_node, tmp);
9185 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9186 "__builtin_eh_pointer", ECF_PURE | ECF_NOTHROW);
9187
9188 tmp2 = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9189 ftype = build_function_type (tmp2, tmp);
9190 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9191 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW);
9192
9193 tmp = tree_cons (NULL_TREE, integer_type_node, void_list_node);
9194 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
9195 ftype = build_function_type (void_type_node, tmp);
9196 local_define_builtin ("__builtin_eh_copy_values", ftype,
9197 BUILT_IN_EH_COPY_VALUES,
9198 "__builtin_eh_copy_values", ECF_NOTHROW);
9199
9200 /* Complex multiplication and division. These are handled as builtins
9201 rather than optabs because emit_library_call_value doesn't support
9202 complex. Further, we can do slightly better with folding these
9203 beasties if the real and complex parts of the arguments are separate. */
9204 {
9205 int mode;
9206
9207 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9208 {
9209 char mode_name_buf[4], *q;
9210 const char *p;
9211 enum built_in_function mcode, dcode;
9212 tree type, inner_type;
9213
9214 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9215 if (type == NULL)
9216 continue;
9217 inner_type = TREE_TYPE (type);
9218
9219 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
9220 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9221 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9222 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9223 ftype = build_function_type (type, tmp);
9224
9225 mcode = ((enum built_in_function)
9226 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9227 dcode = ((enum built_in_function)
9228 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9229
9230 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9231 *q = TOLOWER (*p);
9232 *q = '\0';
9233
9234 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
9235 local_define_builtin (built_in_names[mcode], ftype, mcode,
9236 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
9237
9238 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
9239 local_define_builtin (built_in_names[dcode], ftype, dcode,
9240 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
9241 }
9242 }
9243 }
9244
9245 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9246 better way.
9247
9248 If we requested a pointer to a vector, build up the pointers that
9249 we stripped off while looking for the inner type. Similarly for
9250 return values from functions.
9251
9252 The argument TYPE is the top of the chain, and BOTTOM is the
9253 new type which we will point to. */
9254
9255 tree
9256 reconstruct_complex_type (tree type, tree bottom)
9257 {
9258 tree inner, outer;
9259
9260 if (TREE_CODE (type) == POINTER_TYPE)
9261 {
9262 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9263 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9264 TYPE_REF_CAN_ALIAS_ALL (type));
9265 }
9266 else if (TREE_CODE (type) == REFERENCE_TYPE)
9267 {
9268 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9269 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9270 TYPE_REF_CAN_ALIAS_ALL (type));
9271 }
9272 else if (TREE_CODE (type) == ARRAY_TYPE)
9273 {
9274 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9275 outer = build_array_type (inner, TYPE_DOMAIN (type));
9276 }
9277 else if (TREE_CODE (type) == FUNCTION_TYPE)
9278 {
9279 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9280 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9281 }
9282 else if (TREE_CODE (type) == METHOD_TYPE)
9283 {
9284 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9285 /* The build_method_type_directly() routine prepends 'this' to argument list,
9286 so we must compensate by getting rid of it. */
9287 outer
9288 = build_method_type_directly
9289 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9290 inner,
9291 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9292 }
9293 else if (TREE_CODE (type) == OFFSET_TYPE)
9294 {
9295 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9296 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9297 }
9298 else
9299 return bottom;
9300
9301 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9302 TYPE_QUALS (type));
9303 }
9304
9305 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9306 the inner type. */
9307 tree
9308 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9309 {
9310 int nunits;
9311
9312 switch (GET_MODE_CLASS (mode))
9313 {
9314 case MODE_VECTOR_INT:
9315 case MODE_VECTOR_FLOAT:
9316 case MODE_VECTOR_FRACT:
9317 case MODE_VECTOR_UFRACT:
9318 case MODE_VECTOR_ACCUM:
9319 case MODE_VECTOR_UACCUM:
9320 nunits = GET_MODE_NUNITS (mode);
9321 break;
9322
9323 case MODE_INT:
9324 /* Check that there are no leftover bits. */
9325 gcc_assert (GET_MODE_BITSIZE (mode)
9326 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9327
9328 nunits = GET_MODE_BITSIZE (mode)
9329 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9330 break;
9331
9332 default:
9333 gcc_unreachable ();
9334 }
9335
9336 return make_vector_type (innertype, nunits, mode);
9337 }
9338
9339 /* Similarly, but takes the inner type and number of units, which must be
9340 a power of two. */
9341
9342 tree
9343 build_vector_type (tree innertype, int nunits)
9344 {
9345 return make_vector_type (innertype, nunits, VOIDmode);
9346 }
9347
9348 /* Similarly, but takes the inner type and number of units, which must be
9349 a power of two. */
9350
9351 tree
9352 build_opaque_vector_type (tree innertype, int nunits)
9353 {
9354 tree t;
9355 innertype = build_distinct_type_copy (innertype);
9356 t = make_vector_type (innertype, nunits, VOIDmode);
9357 TYPE_VECTOR_OPAQUE (t) = true;
9358 return t;
9359 }
9360
9361
9362 /* Given an initializer INIT, return TRUE if INIT is zero or some
9363 aggregate of zeros. Otherwise return FALSE. */
9364 bool
9365 initializer_zerop (const_tree init)
9366 {
9367 tree elt;
9368
9369 STRIP_NOPS (init);
9370
9371 switch (TREE_CODE (init))
9372 {
9373 case INTEGER_CST:
9374 return integer_zerop (init);
9375
9376 case REAL_CST:
9377 /* ??? Note that this is not correct for C4X float formats. There,
9378 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9379 negative exponent. */
9380 return real_zerop (init)
9381 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9382
9383 case FIXED_CST:
9384 return fixed_zerop (init);
9385
9386 case COMPLEX_CST:
9387 return integer_zerop (init)
9388 || (real_zerop (init)
9389 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9390 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9391
9392 case VECTOR_CST:
9393 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9394 if (!initializer_zerop (TREE_VALUE (elt)))
9395 return false;
9396 return true;
9397
9398 case CONSTRUCTOR:
9399 {
9400 unsigned HOST_WIDE_INT idx;
9401
9402 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9403 if (!initializer_zerop (elt))
9404 return false;
9405 return true;
9406 }
9407
9408 case STRING_CST:
9409 {
9410 int i;
9411
9412 /* We need to loop through all elements to handle cases like
9413 "\0" and "\0foobar". */
9414 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
9415 if (TREE_STRING_POINTER (init)[i] != '\0')
9416 return false;
9417
9418 return true;
9419 }
9420
9421 default:
9422 return false;
9423 }
9424 }
9425
9426 /* Build an empty statement at location LOC. */
9427
9428 tree
9429 build_empty_stmt (location_t loc)
9430 {
9431 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9432 SET_EXPR_LOCATION (t, loc);
9433 return t;
9434 }
9435
9436
9437 /* Build an OpenMP clause with code CODE. LOC is the location of the
9438 clause. */
9439
9440 tree
9441 build_omp_clause (location_t loc, enum omp_clause_code code)
9442 {
9443 tree t;
9444 int size, length;
9445
9446 length = omp_clause_num_ops[code];
9447 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9448
9449 t = ggc_alloc_tree_node (size);
9450 memset (t, 0, size);
9451 TREE_SET_CODE (t, OMP_CLAUSE);
9452 OMP_CLAUSE_SET_CODE (t, code);
9453 OMP_CLAUSE_LOCATION (t) = loc;
9454
9455 #ifdef GATHER_STATISTICS
9456 tree_node_counts[(int) omp_clause_kind]++;
9457 tree_node_sizes[(int) omp_clause_kind] += size;
9458 #endif
9459
9460 return t;
9461 }
9462
9463 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9464 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9465 Except for the CODE and operand count field, other storage for the
9466 object is initialized to zeros. */
9467
9468 tree
9469 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9470 {
9471 tree t;
9472 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9473
9474 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9475 gcc_assert (len >= 1);
9476
9477 #ifdef GATHER_STATISTICS
9478 tree_node_counts[(int) e_kind]++;
9479 tree_node_sizes[(int) e_kind] += length;
9480 #endif
9481
9482 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
9483
9484 TREE_SET_CODE (t, code);
9485
9486 /* Can't use TREE_OPERAND to store the length because if checking is
9487 enabled, it will try to check the length before we store it. :-P */
9488 t->exp.operands[0] = build_int_cst (sizetype, len);
9489
9490 return t;
9491 }
9492
9493
9494 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE
9495 and FN and a null static chain slot. ARGLIST is a TREE_LIST of the
9496 arguments. */
9497
9498 tree
9499 build_call_list (tree return_type, tree fn, tree arglist)
9500 {
9501 tree t;
9502 int i;
9503
9504 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
9505 TREE_TYPE (t) = return_type;
9506 CALL_EXPR_FN (t) = fn;
9507 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9508 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
9509 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
9510 process_call_operands (t);
9511 return t;
9512 }
9513
9514 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9515 FN and a null static chain slot. NARGS is the number of call arguments
9516 which are specified as "..." arguments. */
9517
9518 tree
9519 build_call_nary (tree return_type, tree fn, int nargs, ...)
9520 {
9521 tree ret;
9522 va_list args;
9523 va_start (args, nargs);
9524 ret = build_call_valist (return_type, fn, nargs, args);
9525 va_end (args);
9526 return ret;
9527 }
9528
9529 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9530 FN and a null static chain slot. NARGS is the number of call arguments
9531 which are specified as a va_list ARGS. */
9532
9533 tree
9534 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9535 {
9536 tree t;
9537 int i;
9538
9539 t = build_vl_exp (CALL_EXPR, nargs + 3);
9540 TREE_TYPE (t) = return_type;
9541 CALL_EXPR_FN (t) = fn;
9542 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9543 for (i = 0; i < nargs; i++)
9544 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9545 process_call_operands (t);
9546 return t;
9547 }
9548
9549 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9550 FN and a null static chain slot. NARGS is the number of call arguments
9551 which are specified as a tree array ARGS. */
9552
9553 tree
9554 build_call_array_loc (location_t loc, tree return_type, tree fn,
9555 int nargs, const tree *args)
9556 {
9557 tree t;
9558 int i;
9559
9560 t = build_vl_exp (CALL_EXPR, nargs + 3);
9561 TREE_TYPE (t) = return_type;
9562 CALL_EXPR_FN (t) = fn;
9563 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9564 for (i = 0; i < nargs; i++)
9565 CALL_EXPR_ARG (t, i) = args[i];
9566 process_call_operands (t);
9567 SET_EXPR_LOCATION (t, loc);
9568 return t;
9569 }
9570
9571 /* Like build_call_array, but takes a VEC. */
9572
9573 tree
9574 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9575 {
9576 tree ret, t;
9577 unsigned int ix;
9578
9579 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
9580 TREE_TYPE (ret) = return_type;
9581 CALL_EXPR_FN (ret) = fn;
9582 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
9583 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
9584 CALL_EXPR_ARG (ret, ix) = t;
9585 process_call_operands (ret);
9586 return ret;
9587 }
9588
9589
9590 /* Returns true if it is possible to prove that the index of
9591 an array access REF (an ARRAY_REF expression) falls into the
9592 array bounds. */
9593
9594 bool
9595 in_array_bounds_p (tree ref)
9596 {
9597 tree idx = TREE_OPERAND (ref, 1);
9598 tree min, max;
9599
9600 if (TREE_CODE (idx) != INTEGER_CST)
9601 return false;
9602
9603 min = array_ref_low_bound (ref);
9604 max = array_ref_up_bound (ref);
9605 if (!min
9606 || !max
9607 || TREE_CODE (min) != INTEGER_CST
9608 || TREE_CODE (max) != INTEGER_CST)
9609 return false;
9610
9611 if (tree_int_cst_lt (idx, min)
9612 || tree_int_cst_lt (max, idx))
9613 return false;
9614
9615 return true;
9616 }
9617
9618 /* Returns true if it is possible to prove that the range of
9619 an array access REF (an ARRAY_RANGE_REF expression) falls
9620 into the array bounds. */
9621
9622 bool
9623 range_in_array_bounds_p (tree ref)
9624 {
9625 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
9626 tree range_min, range_max, min, max;
9627
9628 range_min = TYPE_MIN_VALUE (domain_type);
9629 range_max = TYPE_MAX_VALUE (domain_type);
9630 if (!range_min
9631 || !range_max
9632 || TREE_CODE (range_min) != INTEGER_CST
9633 || TREE_CODE (range_max) != INTEGER_CST)
9634 return false;
9635
9636 min = array_ref_low_bound (ref);
9637 max = array_ref_up_bound (ref);
9638 if (!min
9639 || !max
9640 || TREE_CODE (min) != INTEGER_CST
9641 || TREE_CODE (max) != INTEGER_CST)
9642 return false;
9643
9644 if (tree_int_cst_lt (range_min, min)
9645 || tree_int_cst_lt (max, range_max))
9646 return false;
9647
9648 return true;
9649 }
9650
9651 /* Return true if T (assumed to be a DECL) must be assigned a memory
9652 location. */
9653
9654 bool
9655 needs_to_live_in_memory (const_tree t)
9656 {
9657 if (TREE_CODE (t) == SSA_NAME)
9658 t = SSA_NAME_VAR (t);
9659
9660 return (TREE_ADDRESSABLE (t)
9661 || is_global_var (t)
9662 || (TREE_CODE (t) == RESULT_DECL
9663 && aggregate_value_p (t, current_function_decl)));
9664 }
9665
9666 /* There are situations in which a language considers record types
9667 compatible which have different field lists. Decide if two fields
9668 are compatible. It is assumed that the parent records are compatible. */
9669
9670 bool
9671 fields_compatible_p (const_tree f1, const_tree f2)
9672 {
9673 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
9674 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
9675 return false;
9676
9677 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
9678 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
9679 return false;
9680
9681 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
9682 return false;
9683
9684 return true;
9685 }
9686
9687 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
9688
9689 tree
9690 find_compatible_field (tree record, tree orig_field)
9691 {
9692 tree f;
9693
9694 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
9695 if (TREE_CODE (f) == FIELD_DECL
9696 && fields_compatible_p (f, orig_field))
9697 return f;
9698
9699 /* ??? Why isn't this on the main fields list? */
9700 f = TYPE_VFIELD (record);
9701 if (f && TREE_CODE (f) == FIELD_DECL
9702 && fields_compatible_p (f, orig_field))
9703 return f;
9704
9705 /* ??? We should abort here, but Java appears to do Bad Things
9706 with inherited fields. */
9707 return orig_field;
9708 }
9709
9710 /* Return value of a constant X and sign-extend it. */
9711
9712 HOST_WIDE_INT
9713 int_cst_value (const_tree x)
9714 {
9715 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9716 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
9717
9718 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9719 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9720 || TREE_INT_CST_HIGH (x) == -1);
9721
9722 if (bits < HOST_BITS_PER_WIDE_INT)
9723 {
9724 bool negative = ((val >> (bits - 1)) & 1) != 0;
9725 if (negative)
9726 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
9727 else
9728 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
9729 }
9730
9731 return val;
9732 }
9733
9734 /* Return value of a constant X and sign-extend it. */
9735
9736 HOST_WIDEST_INT
9737 widest_int_cst_value (const_tree x)
9738 {
9739 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9740 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
9741
9742 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
9743 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
9744 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
9745 << HOST_BITS_PER_WIDE_INT);
9746 #else
9747 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9748 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9749 || TREE_INT_CST_HIGH (x) == -1);
9750 #endif
9751
9752 if (bits < HOST_BITS_PER_WIDEST_INT)
9753 {
9754 bool negative = ((val >> (bits - 1)) & 1) != 0;
9755 if (negative)
9756 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
9757 else
9758 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
9759 }
9760
9761 return val;
9762 }
9763
9764 /* If TYPE is an integral type, return an equivalent type which is
9765 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
9766 return TYPE itself. */
9767
9768 tree
9769 signed_or_unsigned_type_for (int unsignedp, tree type)
9770 {
9771 tree t = type;
9772 if (POINTER_TYPE_P (type))
9773 {
9774 /* If the pointer points to the normal address space, use the
9775 size_type_node. Otherwise use an appropriate size for the pointer
9776 based on the named address space it points to. */
9777 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
9778 t = size_type_node;
9779 else
9780 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9781 }
9782
9783 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
9784 return t;
9785
9786 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9787 }
9788
9789 /* Returns unsigned variant of TYPE. */
9790
9791 tree
9792 unsigned_type_for (tree type)
9793 {
9794 return signed_or_unsigned_type_for (1, type);
9795 }
9796
9797 /* Returns signed variant of TYPE. */
9798
9799 tree
9800 signed_type_for (tree type)
9801 {
9802 return signed_or_unsigned_type_for (0, type);
9803 }
9804
9805 /* Returns the largest value obtainable by casting something in INNER type to
9806 OUTER type. */
9807
9808 tree
9809 upper_bound_in_type (tree outer, tree inner)
9810 {
9811 unsigned HOST_WIDE_INT lo, hi;
9812 unsigned int det = 0;
9813 unsigned oprec = TYPE_PRECISION (outer);
9814 unsigned iprec = TYPE_PRECISION (inner);
9815 unsigned prec;
9816
9817 /* Compute a unique number for every combination. */
9818 det |= (oprec > iprec) ? 4 : 0;
9819 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
9820 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
9821
9822 /* Determine the exponent to use. */
9823 switch (det)
9824 {
9825 case 0:
9826 case 1:
9827 /* oprec <= iprec, outer: signed, inner: don't care. */
9828 prec = oprec - 1;
9829 break;
9830 case 2:
9831 case 3:
9832 /* oprec <= iprec, outer: unsigned, inner: don't care. */
9833 prec = oprec;
9834 break;
9835 case 4:
9836 /* oprec > iprec, outer: signed, inner: signed. */
9837 prec = iprec - 1;
9838 break;
9839 case 5:
9840 /* oprec > iprec, outer: signed, inner: unsigned. */
9841 prec = iprec;
9842 break;
9843 case 6:
9844 /* oprec > iprec, outer: unsigned, inner: signed. */
9845 prec = oprec;
9846 break;
9847 case 7:
9848 /* oprec > iprec, outer: unsigned, inner: unsigned. */
9849 prec = iprec;
9850 break;
9851 default:
9852 gcc_unreachable ();
9853 }
9854
9855 /* Compute 2^^prec - 1. */
9856 if (prec <= HOST_BITS_PER_WIDE_INT)
9857 {
9858 hi = 0;
9859 lo = ((~(unsigned HOST_WIDE_INT) 0)
9860 >> (HOST_BITS_PER_WIDE_INT - prec));
9861 }
9862 else
9863 {
9864 hi = ((~(unsigned HOST_WIDE_INT) 0)
9865 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
9866 lo = ~(unsigned HOST_WIDE_INT) 0;
9867 }
9868
9869 return build_int_cst_wide (outer, lo, hi);
9870 }
9871
9872 /* Returns the smallest value obtainable by casting something in INNER type to
9873 OUTER type. */
9874
9875 tree
9876 lower_bound_in_type (tree outer, tree inner)
9877 {
9878 unsigned HOST_WIDE_INT lo, hi;
9879 unsigned oprec = TYPE_PRECISION (outer);
9880 unsigned iprec = TYPE_PRECISION (inner);
9881
9882 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
9883 and obtain 0. */
9884 if (TYPE_UNSIGNED (outer)
9885 /* If we are widening something of an unsigned type, OUTER type
9886 contains all values of INNER type. In particular, both INNER
9887 and OUTER types have zero in common. */
9888 || (oprec > iprec && TYPE_UNSIGNED (inner)))
9889 lo = hi = 0;
9890 else
9891 {
9892 /* If we are widening a signed type to another signed type, we
9893 want to obtain -2^^(iprec-1). If we are keeping the
9894 precision or narrowing to a signed type, we want to obtain
9895 -2^(oprec-1). */
9896 unsigned prec = oprec > iprec ? iprec : oprec;
9897
9898 if (prec <= HOST_BITS_PER_WIDE_INT)
9899 {
9900 hi = ~(unsigned HOST_WIDE_INT) 0;
9901 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
9902 }
9903 else
9904 {
9905 hi = ((~(unsigned HOST_WIDE_INT) 0)
9906 << (prec - HOST_BITS_PER_WIDE_INT - 1));
9907 lo = 0;
9908 }
9909 }
9910
9911 return build_int_cst_wide (outer, lo, hi);
9912 }
9913
9914 /* Return nonzero if two operands that are suitable for PHI nodes are
9915 necessarily equal. Specifically, both ARG0 and ARG1 must be either
9916 SSA_NAME or invariant. Note that this is strictly an optimization.
9917 That is, callers of this function can directly call operand_equal_p
9918 and get the same result, only slower. */
9919
9920 int
9921 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
9922 {
9923 if (arg0 == arg1)
9924 return 1;
9925 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
9926 return 0;
9927 return operand_equal_p (arg0, arg1, 0);
9928 }
9929
9930 /* Returns number of zeros at the end of binary representation of X.
9931
9932 ??? Use ffs if available? */
9933
9934 tree
9935 num_ending_zeros (const_tree x)
9936 {
9937 unsigned HOST_WIDE_INT fr, nfr;
9938 unsigned num, abits;
9939 tree type = TREE_TYPE (x);
9940
9941 if (TREE_INT_CST_LOW (x) == 0)
9942 {
9943 num = HOST_BITS_PER_WIDE_INT;
9944 fr = TREE_INT_CST_HIGH (x);
9945 }
9946 else
9947 {
9948 num = 0;
9949 fr = TREE_INT_CST_LOW (x);
9950 }
9951
9952 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
9953 {
9954 nfr = fr >> abits;
9955 if (nfr << abits == fr)
9956 {
9957 num += abits;
9958 fr = nfr;
9959 }
9960 }
9961
9962 if (num > TYPE_PRECISION (type))
9963 num = TYPE_PRECISION (type);
9964
9965 return build_int_cst_type (type, num);
9966 }
9967
9968
9969 #define WALK_SUBTREE(NODE) \
9970 do \
9971 { \
9972 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
9973 if (result) \
9974 return result; \
9975 } \
9976 while (0)
9977
9978 /* This is a subroutine of walk_tree that walks field of TYPE that are to
9979 be walked whenever a type is seen in the tree. Rest of operands and return
9980 value are as for walk_tree. */
9981
9982 static tree
9983 walk_type_fields (tree type, walk_tree_fn func, void *data,
9984 struct pointer_set_t *pset, walk_tree_lh lh)
9985 {
9986 tree result = NULL_TREE;
9987
9988 switch (TREE_CODE (type))
9989 {
9990 case POINTER_TYPE:
9991 case REFERENCE_TYPE:
9992 /* We have to worry about mutually recursive pointers. These can't
9993 be written in C. They can in Ada. It's pathological, but
9994 there's an ACATS test (c38102a) that checks it. Deal with this
9995 by checking if we're pointing to another pointer, that one
9996 points to another pointer, that one does too, and we have no htab.
9997 If so, get a hash table. We check three levels deep to avoid
9998 the cost of the hash table if we don't need one. */
9999 if (POINTER_TYPE_P (TREE_TYPE (type))
10000 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10001 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10002 && !pset)
10003 {
10004 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10005 func, data);
10006 if (result)
10007 return result;
10008
10009 break;
10010 }
10011
10012 /* ... fall through ... */
10013
10014 case COMPLEX_TYPE:
10015 WALK_SUBTREE (TREE_TYPE (type));
10016 break;
10017
10018 case METHOD_TYPE:
10019 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10020
10021 /* Fall through. */
10022
10023 case FUNCTION_TYPE:
10024 WALK_SUBTREE (TREE_TYPE (type));
10025 {
10026 tree arg;
10027
10028 /* We never want to walk into default arguments. */
10029 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10030 WALK_SUBTREE (TREE_VALUE (arg));
10031 }
10032 break;
10033
10034 case ARRAY_TYPE:
10035 /* Don't follow this nodes's type if a pointer for fear that
10036 we'll have infinite recursion. If we have a PSET, then we
10037 need not fear. */
10038 if (pset
10039 || (!POINTER_TYPE_P (TREE_TYPE (type))
10040 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10041 WALK_SUBTREE (TREE_TYPE (type));
10042 WALK_SUBTREE (TYPE_DOMAIN (type));
10043 break;
10044
10045 case OFFSET_TYPE:
10046 WALK_SUBTREE (TREE_TYPE (type));
10047 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10048 break;
10049
10050 default:
10051 break;
10052 }
10053
10054 return NULL_TREE;
10055 }
10056
10057 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10058 called with the DATA and the address of each sub-tree. If FUNC returns a
10059 non-NULL value, the traversal is stopped, and the value returned by FUNC
10060 is returned. If PSET is non-NULL it is used to record the nodes visited,
10061 and to avoid visiting a node more than once. */
10062
10063 tree
10064 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10065 struct pointer_set_t *pset, walk_tree_lh lh)
10066 {
10067 enum tree_code code;
10068 int walk_subtrees;
10069 tree result;
10070
10071 #define WALK_SUBTREE_TAIL(NODE) \
10072 do \
10073 { \
10074 tp = & (NODE); \
10075 goto tail_recurse; \
10076 } \
10077 while (0)
10078
10079 tail_recurse:
10080 /* Skip empty subtrees. */
10081 if (!*tp)
10082 return NULL_TREE;
10083
10084 /* Don't walk the same tree twice, if the user has requested
10085 that we avoid doing so. */
10086 if (pset && pointer_set_insert (pset, *tp))
10087 return NULL_TREE;
10088
10089 /* Call the function. */
10090 walk_subtrees = 1;
10091 result = (*func) (tp, &walk_subtrees, data);
10092
10093 /* If we found something, return it. */
10094 if (result)
10095 return result;
10096
10097 code = TREE_CODE (*tp);
10098
10099 /* Even if we didn't, FUNC may have decided that there was nothing
10100 interesting below this point in the tree. */
10101 if (!walk_subtrees)
10102 {
10103 /* But we still need to check our siblings. */
10104 if (code == TREE_LIST)
10105 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10106 else if (code == OMP_CLAUSE)
10107 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10108 else
10109 return NULL_TREE;
10110 }
10111
10112 if (lh)
10113 {
10114 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10115 if (result || !walk_subtrees)
10116 return result;
10117 }
10118
10119 switch (code)
10120 {
10121 case ERROR_MARK:
10122 case IDENTIFIER_NODE:
10123 case INTEGER_CST:
10124 case REAL_CST:
10125 case FIXED_CST:
10126 case VECTOR_CST:
10127 case STRING_CST:
10128 case BLOCK:
10129 case PLACEHOLDER_EXPR:
10130 case SSA_NAME:
10131 case FIELD_DECL:
10132 case RESULT_DECL:
10133 /* None of these have subtrees other than those already walked
10134 above. */
10135 break;
10136
10137 case TREE_LIST:
10138 WALK_SUBTREE (TREE_VALUE (*tp));
10139 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10140 break;
10141
10142 case TREE_VEC:
10143 {
10144 int len = TREE_VEC_LENGTH (*tp);
10145
10146 if (len == 0)
10147 break;
10148
10149 /* Walk all elements but the first. */
10150 while (--len)
10151 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10152
10153 /* Now walk the first one as a tail call. */
10154 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10155 }
10156
10157 case COMPLEX_CST:
10158 WALK_SUBTREE (TREE_REALPART (*tp));
10159 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10160
10161 case CONSTRUCTOR:
10162 {
10163 unsigned HOST_WIDE_INT idx;
10164 constructor_elt *ce;
10165
10166 for (idx = 0;
10167 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10168 idx++)
10169 WALK_SUBTREE (ce->value);
10170 }
10171 break;
10172
10173 case SAVE_EXPR:
10174 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10175
10176 case BIND_EXPR:
10177 {
10178 tree decl;
10179 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
10180 {
10181 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10182 into declarations that are just mentioned, rather than
10183 declared; they don't really belong to this part of the tree.
10184 And, we can see cycles: the initializer for a declaration
10185 can refer to the declaration itself. */
10186 WALK_SUBTREE (DECL_INITIAL (decl));
10187 WALK_SUBTREE (DECL_SIZE (decl));
10188 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10189 }
10190 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10191 }
10192
10193 case STATEMENT_LIST:
10194 {
10195 tree_stmt_iterator i;
10196 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10197 WALK_SUBTREE (*tsi_stmt_ptr (i));
10198 }
10199 break;
10200
10201 case OMP_CLAUSE:
10202 switch (OMP_CLAUSE_CODE (*tp))
10203 {
10204 case OMP_CLAUSE_PRIVATE:
10205 case OMP_CLAUSE_SHARED:
10206 case OMP_CLAUSE_FIRSTPRIVATE:
10207 case OMP_CLAUSE_COPYIN:
10208 case OMP_CLAUSE_COPYPRIVATE:
10209 case OMP_CLAUSE_IF:
10210 case OMP_CLAUSE_NUM_THREADS:
10211 case OMP_CLAUSE_SCHEDULE:
10212 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10213 /* FALLTHRU */
10214
10215 case OMP_CLAUSE_NOWAIT:
10216 case OMP_CLAUSE_ORDERED:
10217 case OMP_CLAUSE_DEFAULT:
10218 case OMP_CLAUSE_UNTIED:
10219 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10220
10221 case OMP_CLAUSE_LASTPRIVATE:
10222 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10223 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10224 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10225
10226 case OMP_CLAUSE_COLLAPSE:
10227 {
10228 int i;
10229 for (i = 0; i < 3; i++)
10230 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10231 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10232 }
10233
10234 case OMP_CLAUSE_REDUCTION:
10235 {
10236 int i;
10237 for (i = 0; i < 4; i++)
10238 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10239 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10240 }
10241
10242 default:
10243 gcc_unreachable ();
10244 }
10245 break;
10246
10247 case TARGET_EXPR:
10248 {
10249 int i, len;
10250
10251 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10252 But, we only want to walk once. */
10253 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10254 for (i = 0; i < len; ++i)
10255 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10256 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10257 }
10258
10259 case DECL_EXPR:
10260 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10261 defining. We only want to walk into these fields of a type in this
10262 case and not in the general case of a mere reference to the type.
10263
10264 The criterion is as follows: if the field can be an expression, it
10265 must be walked only here. This should be in keeping with the fields
10266 that are directly gimplified in gimplify_type_sizes in order for the
10267 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10268 variable-sized types.
10269
10270 Note that DECLs get walked as part of processing the BIND_EXPR. */
10271 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10272 {
10273 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10274 if (TREE_CODE (*type_p) == ERROR_MARK)
10275 return NULL_TREE;
10276
10277 /* Call the function for the type. See if it returns anything or
10278 doesn't want us to continue. If we are to continue, walk both
10279 the normal fields and those for the declaration case. */
10280 result = (*func) (type_p, &walk_subtrees, data);
10281 if (result || !walk_subtrees)
10282 return result;
10283
10284 result = walk_type_fields (*type_p, func, data, pset, lh);
10285 if (result)
10286 return result;
10287
10288 /* If this is a record type, also walk the fields. */
10289 if (RECORD_OR_UNION_TYPE_P (*type_p))
10290 {
10291 tree field;
10292
10293 for (field = TYPE_FIELDS (*type_p); field;
10294 field = TREE_CHAIN (field))
10295 {
10296 /* We'd like to look at the type of the field, but we can
10297 easily get infinite recursion. So assume it's pointed
10298 to elsewhere in the tree. Also, ignore things that
10299 aren't fields. */
10300 if (TREE_CODE (field) != FIELD_DECL)
10301 continue;
10302
10303 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10304 WALK_SUBTREE (DECL_SIZE (field));
10305 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10306 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10307 WALK_SUBTREE (DECL_QUALIFIER (field));
10308 }
10309 }
10310
10311 /* Same for scalar types. */
10312 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10313 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10314 || TREE_CODE (*type_p) == INTEGER_TYPE
10315 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10316 || TREE_CODE (*type_p) == REAL_TYPE)
10317 {
10318 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10319 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10320 }
10321
10322 WALK_SUBTREE (TYPE_SIZE (*type_p));
10323 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10324 }
10325 /* FALLTHRU */
10326
10327 default:
10328 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10329 {
10330 int i, len;
10331
10332 /* Walk over all the sub-trees of this operand. */
10333 len = TREE_OPERAND_LENGTH (*tp);
10334
10335 /* Go through the subtrees. We need to do this in forward order so
10336 that the scope of a FOR_EXPR is handled properly. */
10337 if (len)
10338 {
10339 for (i = 0; i < len - 1; ++i)
10340 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10341 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10342 }
10343 }
10344 /* If this is a type, walk the needed fields in the type. */
10345 else if (TYPE_P (*tp))
10346 return walk_type_fields (*tp, func, data, pset, lh);
10347 break;
10348 }
10349
10350 /* We didn't find what we were looking for. */
10351 return NULL_TREE;
10352
10353 #undef WALK_SUBTREE_TAIL
10354 }
10355 #undef WALK_SUBTREE
10356
10357 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10358
10359 tree
10360 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10361 walk_tree_lh lh)
10362 {
10363 tree result;
10364 struct pointer_set_t *pset;
10365
10366 pset = pointer_set_create ();
10367 result = walk_tree_1 (tp, func, data, pset, lh);
10368 pointer_set_destroy (pset);
10369 return result;
10370 }
10371
10372
10373 tree *
10374 tree_block (tree t)
10375 {
10376 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10377
10378 if (IS_EXPR_CODE_CLASS (c))
10379 return &t->exp.block;
10380 gcc_unreachable ();
10381 return NULL;
10382 }
10383
10384 /* Create a nameless artificial label and put it in the current
10385 function context. The label has a location of LOC. Returns the
10386 newly created label. */
10387
10388 tree
10389 create_artificial_label (location_t loc)
10390 {
10391 tree lab = build_decl (loc,
10392 LABEL_DECL, NULL_TREE, void_type_node);
10393
10394 DECL_ARTIFICIAL (lab) = 1;
10395 DECL_IGNORED_P (lab) = 1;
10396 DECL_CONTEXT (lab) = current_function_decl;
10397 return lab;
10398 }
10399
10400 /* Given a tree, try to return a useful variable name that we can use
10401 to prefix a temporary that is being assigned the value of the tree.
10402 I.E. given <temp> = &A, return A. */
10403
10404 const char *
10405 get_name (tree t)
10406 {
10407 tree stripped_decl;
10408
10409 stripped_decl = t;
10410 STRIP_NOPS (stripped_decl);
10411 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10412 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10413 else
10414 {
10415 switch (TREE_CODE (stripped_decl))
10416 {
10417 case ADDR_EXPR:
10418 return get_name (TREE_OPERAND (stripped_decl, 0));
10419 default:
10420 return NULL;
10421 }
10422 }
10423 }
10424
10425 /* Return true if TYPE has a variable argument list. */
10426
10427 bool
10428 stdarg_p (tree fntype)
10429 {
10430 function_args_iterator args_iter;
10431 tree n = NULL_TREE, t;
10432
10433 if (!fntype)
10434 return false;
10435
10436 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10437 {
10438 n = t;
10439 }
10440
10441 return n != NULL_TREE && n != void_type_node;
10442 }
10443
10444 /* Return true if TYPE has a prototype. */
10445
10446 bool
10447 prototype_p (tree fntype)
10448 {
10449 tree t;
10450
10451 gcc_assert (fntype != NULL_TREE);
10452
10453 t = TYPE_ARG_TYPES (fntype);
10454 return (t != NULL_TREE);
10455 }
10456
10457 /* If BLOCK is inlined from an __attribute__((__artificial__))
10458 routine, return pointer to location from where it has been
10459 called. */
10460 location_t *
10461 block_nonartificial_location (tree block)
10462 {
10463 location_t *ret = NULL;
10464
10465 while (block && TREE_CODE (block) == BLOCK
10466 && BLOCK_ABSTRACT_ORIGIN (block))
10467 {
10468 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10469
10470 while (TREE_CODE (ao) == BLOCK
10471 && BLOCK_ABSTRACT_ORIGIN (ao)
10472 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10473 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10474
10475 if (TREE_CODE (ao) == FUNCTION_DECL)
10476 {
10477 /* If AO is an artificial inline, point RET to the
10478 call site locus at which it has been inlined and continue
10479 the loop, in case AO's caller is also an artificial
10480 inline. */
10481 if (DECL_DECLARED_INLINE_P (ao)
10482 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10483 ret = &BLOCK_SOURCE_LOCATION (block);
10484 else
10485 break;
10486 }
10487 else if (TREE_CODE (ao) != BLOCK)
10488 break;
10489
10490 block = BLOCK_SUPERCONTEXT (block);
10491 }
10492 return ret;
10493 }
10494
10495
10496 /* If EXP is inlined from an __attribute__((__artificial__))
10497 function, return the location of the original call expression. */
10498
10499 location_t
10500 tree_nonartificial_location (tree exp)
10501 {
10502 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10503
10504 if (loc)
10505 return *loc;
10506 else
10507 return EXPR_LOCATION (exp);
10508 }
10509
10510
10511 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10512 nodes. */
10513
10514 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10515
10516 static hashval_t
10517 cl_option_hash_hash (const void *x)
10518 {
10519 const_tree const t = (const_tree) x;
10520 const char *p;
10521 size_t i;
10522 size_t len = 0;
10523 hashval_t hash = 0;
10524
10525 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10526 {
10527 p = (const char *)TREE_OPTIMIZATION (t);
10528 len = sizeof (struct cl_optimization);
10529 }
10530
10531 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10532 {
10533 p = (const char *)TREE_TARGET_OPTION (t);
10534 len = sizeof (struct cl_target_option);
10535 }
10536
10537 else
10538 gcc_unreachable ();
10539
10540 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10541 something else. */
10542 for (i = 0; i < len; i++)
10543 if (p[i])
10544 hash = (hash << 4) ^ ((i << 2) | p[i]);
10545
10546 return hash;
10547 }
10548
10549 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10550 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10551 same. */
10552
10553 static int
10554 cl_option_hash_eq (const void *x, const void *y)
10555 {
10556 const_tree const xt = (const_tree) x;
10557 const_tree const yt = (const_tree) y;
10558 const char *xp;
10559 const char *yp;
10560 size_t len;
10561
10562 if (TREE_CODE (xt) != TREE_CODE (yt))
10563 return 0;
10564
10565 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10566 {
10567 xp = (const char *)TREE_OPTIMIZATION (xt);
10568 yp = (const char *)TREE_OPTIMIZATION (yt);
10569 len = sizeof (struct cl_optimization);
10570 }
10571
10572 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10573 {
10574 xp = (const char *)TREE_TARGET_OPTION (xt);
10575 yp = (const char *)TREE_TARGET_OPTION (yt);
10576 len = sizeof (struct cl_target_option);
10577 }
10578
10579 else
10580 gcc_unreachable ();
10581
10582 return (memcmp (xp, yp, len) == 0);
10583 }
10584
10585 /* Build an OPTIMIZATION_NODE based on the current options. */
10586
10587 tree
10588 build_optimization_node (void)
10589 {
10590 tree t;
10591 void **slot;
10592
10593 /* Use the cache of optimization nodes. */
10594
10595 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node));
10596
10597 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10598 t = (tree) *slot;
10599 if (!t)
10600 {
10601 /* Insert this one into the hash table. */
10602 t = cl_optimization_node;
10603 *slot = t;
10604
10605 /* Make a new node for next time round. */
10606 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10607 }
10608
10609 return t;
10610 }
10611
10612 /* Build a TARGET_OPTION_NODE based on the current options. */
10613
10614 tree
10615 build_target_option_node (void)
10616 {
10617 tree t;
10618 void **slot;
10619
10620 /* Use the cache of optimization nodes. */
10621
10622 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node));
10623
10624 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
10625 t = (tree) *slot;
10626 if (!t)
10627 {
10628 /* Insert this one into the hash table. */
10629 t = cl_target_option_node;
10630 *slot = t;
10631
10632 /* Make a new node for next time round. */
10633 cl_target_option_node = make_node (TARGET_OPTION_NODE);
10634 }
10635
10636 return t;
10637 }
10638
10639 /* Determine the "ultimate origin" of a block. The block may be an inlined
10640 instance of an inlined instance of a block which is local to an inline
10641 function, so we have to trace all of the way back through the origin chain
10642 to find out what sort of node actually served as the original seed for the
10643 given block. */
10644
10645 tree
10646 block_ultimate_origin (const_tree block)
10647 {
10648 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
10649
10650 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
10651 nodes in the function to point to themselves; ignore that if
10652 we're trying to output the abstract instance of this function. */
10653 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
10654 return NULL_TREE;
10655
10656 if (immediate_origin == NULL_TREE)
10657 return NULL_TREE;
10658 else
10659 {
10660 tree ret_val;
10661 tree lookahead = immediate_origin;
10662
10663 do
10664 {
10665 ret_val = lookahead;
10666 lookahead = (TREE_CODE (ret_val) == BLOCK
10667 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
10668 }
10669 while (lookahead != NULL && lookahead != ret_val);
10670
10671 /* The block's abstract origin chain may not be the *ultimate* origin of
10672 the block. It could lead to a DECL that has an abstract origin set.
10673 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
10674 will give us if it has one). Note that DECL's abstract origins are
10675 supposed to be the most distant ancestor (or so decl_ultimate_origin
10676 claims), so we don't need to loop following the DECL origins. */
10677 if (DECL_P (ret_val))
10678 return DECL_ORIGIN (ret_val);
10679
10680 return ret_val;
10681 }
10682 }
10683
10684 /* Return true if T1 and T2 are equivalent lists. */
10685
10686 bool
10687 list_equal_p (const_tree t1, const_tree t2)
10688 {
10689 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
10690 if (TREE_VALUE (t1) != TREE_VALUE (t2))
10691 return false;
10692 return !t1 && !t2;
10693 }
10694
10695 /* Return true iff conversion in EXP generates no instruction. Mark
10696 it inline so that we fully inline into the stripping functions even
10697 though we have two uses of this function. */
10698
10699 static inline bool
10700 tree_nop_conversion (const_tree exp)
10701 {
10702 tree outer_type, inner_type;
10703
10704 if (!CONVERT_EXPR_P (exp)
10705 && TREE_CODE (exp) != NON_LVALUE_EXPR)
10706 return false;
10707 if (TREE_OPERAND (exp, 0) == error_mark_node)
10708 return false;
10709
10710 outer_type = TREE_TYPE (exp);
10711 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10712
10713 if (!inner_type)
10714 return false;
10715
10716 /* Use precision rather then machine mode when we can, which gives
10717 the correct answer even for submode (bit-field) types. */
10718 if ((INTEGRAL_TYPE_P (outer_type)
10719 || POINTER_TYPE_P (outer_type)
10720 || TREE_CODE (outer_type) == OFFSET_TYPE)
10721 && (INTEGRAL_TYPE_P (inner_type)
10722 || POINTER_TYPE_P (inner_type)
10723 || TREE_CODE (inner_type) == OFFSET_TYPE))
10724 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
10725
10726 /* Otherwise fall back on comparing machine modes (e.g. for
10727 aggregate types, floats). */
10728 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
10729 }
10730
10731 /* Return true iff conversion in EXP generates no instruction. Don't
10732 consider conversions changing the signedness. */
10733
10734 static bool
10735 tree_sign_nop_conversion (const_tree exp)
10736 {
10737 tree outer_type, inner_type;
10738
10739 if (!tree_nop_conversion (exp))
10740 return false;
10741
10742 outer_type = TREE_TYPE (exp);
10743 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10744
10745 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
10746 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
10747 }
10748
10749 /* Strip conversions from EXP according to tree_nop_conversion and
10750 return the resulting expression. */
10751
10752 tree
10753 tree_strip_nop_conversions (tree exp)
10754 {
10755 while (tree_nop_conversion (exp))
10756 exp = TREE_OPERAND (exp, 0);
10757 return exp;
10758 }
10759
10760 /* Strip conversions from EXP according to tree_sign_nop_conversion
10761 and return the resulting expression. */
10762
10763 tree
10764 tree_strip_sign_nop_conversions (tree exp)
10765 {
10766 while (tree_sign_nop_conversion (exp))
10767 exp = TREE_OPERAND (exp, 0);
10768 return exp;
10769 }
10770
10771 static GTY(()) tree gcc_eh_personality_decl;
10772
10773 /* Return the GCC personality function decl. */
10774
10775 tree
10776 lhd_gcc_personality (void)
10777 {
10778 if (!gcc_eh_personality_decl)
10779 gcc_eh_personality_decl
10780 = build_personality_function (USING_SJLJ_EXCEPTIONS
10781 ? "__gcc_personality_sj0"
10782 : "__gcc_personality_v0");
10783
10784 return gcc_eh_personality_decl;
10785 }
10786
10787 /* Try to find a base info of BINFO that would have its field decl at offset
10788 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
10789 found, return, otherwise return NULL_TREE. */
10790
10791 tree
10792 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
10793 {
10794 tree type;
10795
10796 if (offset == 0)
10797 return binfo;
10798
10799 type = TREE_TYPE (binfo);
10800 while (offset > 0)
10801 {
10802 tree base_binfo, found_binfo;
10803 HOST_WIDE_INT pos, size;
10804 tree fld;
10805 int i;
10806
10807 if (TREE_CODE (type) != RECORD_TYPE)
10808 return NULL_TREE;
10809
10810 for (fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld))
10811 {
10812 if (TREE_CODE (fld) != FIELD_DECL)
10813 continue;
10814
10815 pos = int_bit_position (fld);
10816 size = tree_low_cst (DECL_SIZE (fld), 1);
10817 if (pos <= offset && (pos + size) > offset)
10818 break;
10819 }
10820 if (!fld)
10821 return NULL_TREE;
10822
10823 found_binfo = NULL_TREE;
10824 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
10825 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
10826 {
10827 found_binfo = base_binfo;
10828 break;
10829 }
10830
10831 if (!found_binfo)
10832 return NULL_TREE;
10833
10834 type = TREE_TYPE (fld);
10835 binfo = found_binfo;
10836 offset -= pos;
10837 }
10838 if (type != expected_type)
10839 return NULL_TREE;
10840 return binfo;
10841 }
10842
10843 /* Returns true if X is a typedef decl. */
10844
10845 bool
10846 is_typedef_decl (tree x)
10847 {
10848 return (x && TREE_CODE (x) == TYPE_DECL
10849 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
10850 }
10851
10852 /* Returns true iff TYPE is a type variant created for a typedef. */
10853
10854 bool
10855 typedef_variant_p (tree type)
10856 {
10857 return is_typedef_decl (TYPE_NAME (type));
10858 }
10859
10860 #include "gt-tree.h"