re PR target/83488 (ICE on a CET test-case)
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent but can occasionally
28 calls language-dependent routines. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "params.h"
58 #include "langhooks-def.h"
59 #include "tree-diagnostic.h"
60 #include "except.h"
61 #include "builtins.h"
62 #include "print-tree.h"
63 #include "ipa-utils.h"
64 #include "selftest.h"
65 #include "stringpool.h"
66 #include "attribs.h"
67 #include "rtl.h"
68 #include "regs.h"
69 #include "tree-vector-builder.h"
70
71 /* Tree code classes. */
72
73 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
74 #define END_OF_BASE_TREE_CODES tcc_exceptional,
75
76 const enum tree_code_class tree_code_type[] = {
77 #include "all-tree.def"
78 };
79
80 #undef DEFTREECODE
81 #undef END_OF_BASE_TREE_CODES
82
83 /* Table indexed by tree code giving number of expression
84 operands beyond the fixed part of the node structure.
85 Not used for types or decls. */
86
87 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
88 #define END_OF_BASE_TREE_CODES 0,
89
90 const unsigned char tree_code_length[] = {
91 #include "all-tree.def"
92 };
93
94 #undef DEFTREECODE
95 #undef END_OF_BASE_TREE_CODES
96
97 /* Names of tree components.
98 Used for printing out the tree and error messages. */
99 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
100 #define END_OF_BASE_TREE_CODES "@dummy",
101
102 static const char *const tree_code_name[] = {
103 #include "all-tree.def"
104 };
105
106 #undef DEFTREECODE
107 #undef END_OF_BASE_TREE_CODES
108
109 /* Each tree code class has an associated string representation.
110 These must correspond to the tree_code_class entries. */
111
112 const char *const tree_code_class_strings[] =
113 {
114 "exceptional",
115 "constant",
116 "type",
117 "declaration",
118 "reference",
119 "comparison",
120 "unary",
121 "binary",
122 "statement",
123 "vl_exp",
124 "expression"
125 };
126
127 /* obstack.[ch] explicitly declined to prototype this. */
128 extern int _obstack_allocated_p (struct obstack *h, void *obj);
129
130 /* Statistics-gathering stuff. */
131
132 static int tree_code_counts[MAX_TREE_CODES];
133 int tree_node_counts[(int) all_kinds];
134 int tree_node_sizes[(int) all_kinds];
135
136 /* Keep in sync with tree.h:enum tree_node_kind. */
137 static const char * const tree_node_kind_names[] = {
138 "decls",
139 "types",
140 "blocks",
141 "stmts",
142 "refs",
143 "exprs",
144 "constants",
145 "identifiers",
146 "vecs",
147 "binfos",
148 "ssa names",
149 "constructors",
150 "random kinds",
151 "lang_decl kinds",
152 "lang_type kinds",
153 "omp clauses",
154 };
155
156 /* Unique id for next decl created. */
157 static GTY(()) int next_decl_uid;
158 /* Unique id for next type created. */
159 static GTY(()) unsigned next_type_uid = 1;
160 /* Unique id for next debug decl created. Use negative numbers,
161 to catch erroneous uses. */
162 static GTY(()) int next_debug_decl_uid;
163
164 /* Since we cannot rehash a type after it is in the table, we have to
165 keep the hash code. */
166
167 struct GTY((for_user)) type_hash {
168 unsigned long hash;
169 tree type;
170 };
171
172 /* Initial size of the hash table (rounded to next prime). */
173 #define TYPE_HASH_INITIAL_SIZE 1000
174
175 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
176 {
177 static hashval_t hash (type_hash *t) { return t->hash; }
178 static bool equal (type_hash *a, type_hash *b);
179
180 static int
181 keep_cache_entry (type_hash *&t)
182 {
183 return ggc_marked_p (t->type);
184 }
185 };
186
187 /* Now here is the hash table. When recording a type, it is added to
188 the slot whose index is the hash code. Note that the hash table is
189 used for several kinds of types (function types, array types and
190 array index range types, for now). While all these live in the
191 same table, they are completely independent, and the hash code is
192 computed differently for each of these. */
193
194 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
195
196 /* Hash table and temporary node for larger integer const values. */
197 static GTY (()) tree int_cst_node;
198
199 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
200 {
201 static hashval_t hash (tree t);
202 static bool equal (tree x, tree y);
203 };
204
205 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
206
207 /* Class and variable for making sure that there is a single POLY_INT_CST
208 for a given value. */
209 struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
210 {
211 typedef std::pair<tree, const poly_wide_int *> compare_type;
212 static hashval_t hash (tree t);
213 static bool equal (tree x, const compare_type &y);
214 };
215
216 static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
217
218 /* Hash table for optimization flags and target option flags. Use the same
219 hash table for both sets of options. Nodes for building the current
220 optimization and target option nodes. The assumption is most of the time
221 the options created will already be in the hash table, so we avoid
222 allocating and freeing up a node repeatably. */
223 static GTY (()) tree cl_optimization_node;
224 static GTY (()) tree cl_target_option_node;
225
226 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
227 {
228 static hashval_t hash (tree t);
229 static bool equal (tree x, tree y);
230 };
231
232 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
233
234 /* General tree->tree mapping structure for use in hash tables. */
235
236
237 static GTY ((cache))
238 hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
239
240 static GTY ((cache))
241 hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
242
243 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
244 {
245 static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
246
247 static bool
248 equal (tree_vec_map *a, tree_vec_map *b)
249 {
250 return a->base.from == b->base.from;
251 }
252
253 static int
254 keep_cache_entry (tree_vec_map *&m)
255 {
256 return ggc_marked_p (m->base.from);
257 }
258 };
259
260 static GTY ((cache))
261 hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
262
263 static void set_type_quals (tree, int);
264 static void print_type_hash_statistics (void);
265 static void print_debug_expr_statistics (void);
266 static void print_value_expr_statistics (void);
267
268 tree global_trees[TI_MAX];
269 tree integer_types[itk_none];
270
271 bool int_n_enabled_p[NUM_INT_N_ENTS];
272 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
273
274 bool tree_contains_struct[MAX_TREE_CODES][64];
275
276 /* Number of operands for each OpenMP clause. */
277 unsigned const char omp_clause_num_ops[] =
278 {
279 0, /* OMP_CLAUSE_ERROR */
280 1, /* OMP_CLAUSE_PRIVATE */
281 1, /* OMP_CLAUSE_SHARED */
282 1, /* OMP_CLAUSE_FIRSTPRIVATE */
283 2, /* OMP_CLAUSE_LASTPRIVATE */
284 5, /* OMP_CLAUSE_REDUCTION */
285 1, /* OMP_CLAUSE_COPYIN */
286 1, /* OMP_CLAUSE_COPYPRIVATE */
287 3, /* OMP_CLAUSE_LINEAR */
288 2, /* OMP_CLAUSE_ALIGNED */
289 1, /* OMP_CLAUSE_DEPEND */
290 1, /* OMP_CLAUSE_UNIFORM */
291 1, /* OMP_CLAUSE_TO_DECLARE */
292 1, /* OMP_CLAUSE_LINK */
293 2, /* OMP_CLAUSE_FROM */
294 2, /* OMP_CLAUSE_TO */
295 2, /* OMP_CLAUSE_MAP */
296 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
297 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
298 2, /* OMP_CLAUSE__CACHE_ */
299 2, /* OMP_CLAUSE_GANG */
300 1, /* OMP_CLAUSE_ASYNC */
301 1, /* OMP_CLAUSE_WAIT */
302 0, /* OMP_CLAUSE_AUTO */
303 0, /* OMP_CLAUSE_SEQ */
304 1, /* OMP_CLAUSE__LOOPTEMP_ */
305 1, /* OMP_CLAUSE_IF */
306 1, /* OMP_CLAUSE_NUM_THREADS */
307 1, /* OMP_CLAUSE_SCHEDULE */
308 0, /* OMP_CLAUSE_NOWAIT */
309 1, /* OMP_CLAUSE_ORDERED */
310 0, /* OMP_CLAUSE_DEFAULT */
311 3, /* OMP_CLAUSE_COLLAPSE */
312 0, /* OMP_CLAUSE_UNTIED */
313 1, /* OMP_CLAUSE_FINAL */
314 0, /* OMP_CLAUSE_MERGEABLE */
315 1, /* OMP_CLAUSE_DEVICE */
316 1, /* OMP_CLAUSE_DIST_SCHEDULE */
317 0, /* OMP_CLAUSE_INBRANCH */
318 0, /* OMP_CLAUSE_NOTINBRANCH */
319 1, /* OMP_CLAUSE_NUM_TEAMS */
320 1, /* OMP_CLAUSE_THREAD_LIMIT */
321 0, /* OMP_CLAUSE_PROC_BIND */
322 1, /* OMP_CLAUSE_SAFELEN */
323 1, /* OMP_CLAUSE_SIMDLEN */
324 0, /* OMP_CLAUSE_FOR */
325 0, /* OMP_CLAUSE_PARALLEL */
326 0, /* OMP_CLAUSE_SECTIONS */
327 0, /* OMP_CLAUSE_TASKGROUP */
328 1, /* OMP_CLAUSE_PRIORITY */
329 1, /* OMP_CLAUSE_GRAINSIZE */
330 1, /* OMP_CLAUSE_NUM_TASKS */
331 0, /* OMP_CLAUSE_NOGROUP */
332 0, /* OMP_CLAUSE_THREADS */
333 0, /* OMP_CLAUSE_SIMD */
334 1, /* OMP_CLAUSE_HINT */
335 0, /* OMP_CLAUSE_DEFALTMAP */
336 1, /* OMP_CLAUSE__SIMDUID_ */
337 0, /* OMP_CLAUSE__SIMT_ */
338 0, /* OMP_CLAUSE_INDEPENDENT */
339 1, /* OMP_CLAUSE_WORKER */
340 1, /* OMP_CLAUSE_VECTOR */
341 1, /* OMP_CLAUSE_NUM_GANGS */
342 1, /* OMP_CLAUSE_NUM_WORKERS */
343 1, /* OMP_CLAUSE_VECTOR_LENGTH */
344 3, /* OMP_CLAUSE_TILE */
345 2, /* OMP_CLAUSE__GRIDDIM_ */
346 };
347
348 const char * const omp_clause_code_name[] =
349 {
350 "error_clause",
351 "private",
352 "shared",
353 "firstprivate",
354 "lastprivate",
355 "reduction",
356 "copyin",
357 "copyprivate",
358 "linear",
359 "aligned",
360 "depend",
361 "uniform",
362 "to",
363 "link",
364 "from",
365 "to",
366 "map",
367 "use_device_ptr",
368 "is_device_ptr",
369 "_cache_",
370 "gang",
371 "async",
372 "wait",
373 "auto",
374 "seq",
375 "_looptemp_",
376 "if",
377 "num_threads",
378 "schedule",
379 "nowait",
380 "ordered",
381 "default",
382 "collapse",
383 "untied",
384 "final",
385 "mergeable",
386 "device",
387 "dist_schedule",
388 "inbranch",
389 "notinbranch",
390 "num_teams",
391 "thread_limit",
392 "proc_bind",
393 "safelen",
394 "simdlen",
395 "for",
396 "parallel",
397 "sections",
398 "taskgroup",
399 "priority",
400 "grainsize",
401 "num_tasks",
402 "nogroup",
403 "threads",
404 "simd",
405 "hint",
406 "defaultmap",
407 "_simduid_",
408 "_simt_",
409 "independent",
410 "worker",
411 "vector",
412 "num_gangs",
413 "num_workers",
414 "vector_length",
415 "tile",
416 "_griddim_"
417 };
418
419
420 /* Return the tree node structure used by tree code CODE. */
421
422 static inline enum tree_node_structure_enum
423 tree_node_structure_for_code (enum tree_code code)
424 {
425 switch (TREE_CODE_CLASS (code))
426 {
427 case tcc_declaration:
428 {
429 switch (code)
430 {
431 case FIELD_DECL:
432 return TS_FIELD_DECL;
433 case PARM_DECL:
434 return TS_PARM_DECL;
435 case VAR_DECL:
436 return TS_VAR_DECL;
437 case LABEL_DECL:
438 return TS_LABEL_DECL;
439 case RESULT_DECL:
440 return TS_RESULT_DECL;
441 case DEBUG_EXPR_DECL:
442 return TS_DECL_WRTL;
443 case CONST_DECL:
444 return TS_CONST_DECL;
445 case TYPE_DECL:
446 return TS_TYPE_DECL;
447 case FUNCTION_DECL:
448 return TS_FUNCTION_DECL;
449 case TRANSLATION_UNIT_DECL:
450 return TS_TRANSLATION_UNIT_DECL;
451 default:
452 return TS_DECL_NON_COMMON;
453 }
454 }
455 case tcc_type:
456 return TS_TYPE_NON_COMMON;
457 case tcc_reference:
458 case tcc_comparison:
459 case tcc_unary:
460 case tcc_binary:
461 case tcc_expression:
462 case tcc_statement:
463 case tcc_vl_exp:
464 return TS_EXP;
465 default: /* tcc_constant and tcc_exceptional */
466 break;
467 }
468 switch (code)
469 {
470 /* tcc_constant cases. */
471 case VOID_CST: return TS_TYPED;
472 case INTEGER_CST: return TS_INT_CST;
473 case POLY_INT_CST: return TS_POLY_INT_CST;
474 case REAL_CST: return TS_REAL_CST;
475 case FIXED_CST: return TS_FIXED_CST;
476 case COMPLEX_CST: return TS_COMPLEX;
477 case VECTOR_CST: return TS_VECTOR;
478 case STRING_CST: return TS_STRING;
479 /* tcc_exceptional cases. */
480 case ERROR_MARK: return TS_COMMON;
481 case IDENTIFIER_NODE: return TS_IDENTIFIER;
482 case TREE_LIST: return TS_LIST;
483 case TREE_VEC: return TS_VEC;
484 case SSA_NAME: return TS_SSA_NAME;
485 case PLACEHOLDER_EXPR: return TS_COMMON;
486 case STATEMENT_LIST: return TS_STATEMENT_LIST;
487 case BLOCK: return TS_BLOCK;
488 case CONSTRUCTOR: return TS_CONSTRUCTOR;
489 case TREE_BINFO: return TS_BINFO;
490 case OMP_CLAUSE: return TS_OMP_CLAUSE;
491 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
492 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
493
494 default:
495 gcc_unreachable ();
496 }
497 }
498
499
500 /* Initialize tree_contains_struct to describe the hierarchy of tree
501 nodes. */
502
503 static void
504 initialize_tree_contains_struct (void)
505 {
506 unsigned i;
507
508 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
509 {
510 enum tree_code code;
511 enum tree_node_structure_enum ts_code;
512
513 code = (enum tree_code) i;
514 ts_code = tree_node_structure_for_code (code);
515
516 /* Mark the TS structure itself. */
517 tree_contains_struct[code][ts_code] = 1;
518
519 /* Mark all the structures that TS is derived from. */
520 switch (ts_code)
521 {
522 case TS_TYPED:
523 case TS_BLOCK:
524 case TS_OPTIMIZATION:
525 case TS_TARGET_OPTION:
526 MARK_TS_BASE (code);
527 break;
528
529 case TS_COMMON:
530 case TS_INT_CST:
531 case TS_POLY_INT_CST:
532 case TS_REAL_CST:
533 case TS_FIXED_CST:
534 case TS_VECTOR:
535 case TS_STRING:
536 case TS_COMPLEX:
537 case TS_SSA_NAME:
538 case TS_CONSTRUCTOR:
539 case TS_EXP:
540 case TS_STATEMENT_LIST:
541 MARK_TS_TYPED (code);
542 break;
543
544 case TS_IDENTIFIER:
545 case TS_DECL_MINIMAL:
546 case TS_TYPE_COMMON:
547 case TS_LIST:
548 case TS_VEC:
549 case TS_BINFO:
550 case TS_OMP_CLAUSE:
551 MARK_TS_COMMON (code);
552 break;
553
554 case TS_TYPE_WITH_LANG_SPECIFIC:
555 MARK_TS_TYPE_COMMON (code);
556 break;
557
558 case TS_TYPE_NON_COMMON:
559 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
560 break;
561
562 case TS_DECL_COMMON:
563 MARK_TS_DECL_MINIMAL (code);
564 break;
565
566 case TS_DECL_WRTL:
567 case TS_CONST_DECL:
568 MARK_TS_DECL_COMMON (code);
569 break;
570
571 case TS_DECL_NON_COMMON:
572 MARK_TS_DECL_WITH_VIS (code);
573 break;
574
575 case TS_DECL_WITH_VIS:
576 case TS_PARM_DECL:
577 case TS_LABEL_DECL:
578 case TS_RESULT_DECL:
579 MARK_TS_DECL_WRTL (code);
580 break;
581
582 case TS_FIELD_DECL:
583 MARK_TS_DECL_COMMON (code);
584 break;
585
586 case TS_VAR_DECL:
587 MARK_TS_DECL_WITH_VIS (code);
588 break;
589
590 case TS_TYPE_DECL:
591 case TS_FUNCTION_DECL:
592 MARK_TS_DECL_NON_COMMON (code);
593 break;
594
595 case TS_TRANSLATION_UNIT_DECL:
596 MARK_TS_DECL_COMMON (code);
597 break;
598
599 default:
600 gcc_unreachable ();
601 }
602 }
603
604 /* Basic consistency checks for attributes used in fold. */
605 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
606 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
607 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
608 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
609 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
610 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
611 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
612 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
613 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
614 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
615 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
616 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
617 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
618 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
619 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
620 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
621 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
622 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
623 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
624 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
625 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
626 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
627 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
628 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
629 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
630 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
631 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
632 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
633 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
634 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
635 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
636 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
637 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
638 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
639 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
640 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
641 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
642 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
643 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
644 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
645 }
646
647
648 /* Init tree.c. */
649
650 void
651 init_ttree (void)
652 {
653 /* Initialize the hash table of types. */
654 type_hash_table
655 = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
656
657 debug_expr_for_decl
658 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
659
660 value_expr_for_decl
661 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
662
663 int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
664
665 poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
666
667 int_cst_node = make_int_cst (1, 1);
668
669 cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
670
671 cl_optimization_node = make_node (OPTIMIZATION_NODE);
672 cl_target_option_node = make_node (TARGET_OPTION_NODE);
673
674 /* Initialize the tree_contains_struct array. */
675 initialize_tree_contains_struct ();
676 lang_hooks.init_ts ();
677 }
678
679 \f
680 /* The name of the object as the assembler will see it (but before any
681 translations made by ASM_OUTPUT_LABELREF). Often this is the same
682 as DECL_NAME. It is an IDENTIFIER_NODE. */
683 tree
684 decl_assembler_name (tree decl)
685 {
686 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
687 lang_hooks.set_decl_assembler_name (decl);
688 return DECL_ASSEMBLER_NAME_RAW (decl);
689 }
690
691 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
692 (either of which may be NULL). Inform the FE, if this changes the
693 name. */
694
695 void
696 overwrite_decl_assembler_name (tree decl, tree name)
697 {
698 if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
699 lang_hooks.overwrite_decl_assembler_name (decl, name);
700 }
701
702 /* When the target supports COMDAT groups, this indicates which group the
703 DECL is associated with. This can be either an IDENTIFIER_NODE or a
704 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
705 tree
706 decl_comdat_group (const_tree node)
707 {
708 struct symtab_node *snode = symtab_node::get (node);
709 if (!snode)
710 return NULL;
711 return snode->get_comdat_group ();
712 }
713
714 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
715 tree
716 decl_comdat_group_id (const_tree node)
717 {
718 struct symtab_node *snode = symtab_node::get (node);
719 if (!snode)
720 return NULL;
721 return snode->get_comdat_group_id ();
722 }
723
724 /* When the target supports named section, return its name as IDENTIFIER_NODE
725 or NULL if it is in no section. */
726 const char *
727 decl_section_name (const_tree node)
728 {
729 struct symtab_node *snode = symtab_node::get (node);
730 if (!snode)
731 return NULL;
732 return snode->get_section ();
733 }
734
735 /* Set section name of NODE to VALUE (that is expected to be
736 identifier node) */
737 void
738 set_decl_section_name (tree node, const char *value)
739 {
740 struct symtab_node *snode;
741
742 if (value == NULL)
743 {
744 snode = symtab_node::get (node);
745 if (!snode)
746 return;
747 }
748 else if (VAR_P (node))
749 snode = varpool_node::get_create (node);
750 else
751 snode = cgraph_node::get_create (node);
752 snode->set_section (value);
753 }
754
755 /* Return TLS model of a variable NODE. */
756 enum tls_model
757 decl_tls_model (const_tree node)
758 {
759 struct varpool_node *snode = varpool_node::get (node);
760 if (!snode)
761 return TLS_MODEL_NONE;
762 return snode->tls_model;
763 }
764
765 /* Set TLS model of variable NODE to MODEL. */
766 void
767 set_decl_tls_model (tree node, enum tls_model model)
768 {
769 struct varpool_node *vnode;
770
771 if (model == TLS_MODEL_NONE)
772 {
773 vnode = varpool_node::get (node);
774 if (!vnode)
775 return;
776 }
777 else
778 vnode = varpool_node::get_create (node);
779 vnode->tls_model = model;
780 }
781
782 /* Compute the number of bytes occupied by a tree with code CODE.
783 This function cannot be used for nodes that have variable sizes,
784 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
785 size_t
786 tree_code_size (enum tree_code code)
787 {
788 switch (TREE_CODE_CLASS (code))
789 {
790 case tcc_declaration: /* A decl node */
791 switch (code)
792 {
793 case FIELD_DECL: return sizeof (tree_field_decl);
794 case PARM_DECL: return sizeof (tree_parm_decl);
795 case VAR_DECL: return sizeof (tree_var_decl);
796 case LABEL_DECL: return sizeof (tree_label_decl);
797 case RESULT_DECL: return sizeof (tree_result_decl);
798 case CONST_DECL: return sizeof (tree_const_decl);
799 case TYPE_DECL: return sizeof (tree_type_decl);
800 case FUNCTION_DECL: return sizeof (tree_function_decl);
801 case DEBUG_EXPR_DECL: return sizeof (tree_decl_with_rtl);
802 case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
803 case NAMESPACE_DECL:
804 case IMPORTED_DECL:
805 case NAMELIST_DECL: return sizeof (tree_decl_non_common);
806 default:
807 gcc_checking_assert (code >= NUM_TREE_CODES);
808 return lang_hooks.tree_size (code);
809 }
810
811 case tcc_type: /* a type node */
812 switch (code)
813 {
814 case OFFSET_TYPE:
815 case ENUMERAL_TYPE:
816 case BOOLEAN_TYPE:
817 case INTEGER_TYPE:
818 case REAL_TYPE:
819 case POINTER_TYPE:
820 case REFERENCE_TYPE:
821 case NULLPTR_TYPE:
822 case FIXED_POINT_TYPE:
823 case COMPLEX_TYPE:
824 case VECTOR_TYPE:
825 case ARRAY_TYPE:
826 case RECORD_TYPE:
827 case UNION_TYPE:
828 case QUAL_UNION_TYPE:
829 case VOID_TYPE:
830 case POINTER_BOUNDS_TYPE:
831 case FUNCTION_TYPE:
832 case METHOD_TYPE:
833 case LANG_TYPE: return sizeof (tree_type_non_common);
834 default:
835 gcc_checking_assert (code >= NUM_TREE_CODES);
836 return lang_hooks.tree_size (code);
837 }
838
839 case tcc_reference: /* a reference */
840 case tcc_expression: /* an expression */
841 case tcc_statement: /* an expression with side effects */
842 case tcc_comparison: /* a comparison expression */
843 case tcc_unary: /* a unary arithmetic expression */
844 case tcc_binary: /* a binary arithmetic expression */
845 return (sizeof (struct tree_exp)
846 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
847
848 case tcc_constant: /* a constant */
849 switch (code)
850 {
851 case VOID_CST: return sizeof (tree_typed);
852 case INTEGER_CST: gcc_unreachable ();
853 case POLY_INT_CST: return sizeof (tree_poly_int_cst);
854 case REAL_CST: return sizeof (tree_real_cst);
855 case FIXED_CST: return sizeof (tree_fixed_cst);
856 case COMPLEX_CST: return sizeof (tree_complex);
857 case VECTOR_CST: gcc_unreachable ();
858 case STRING_CST: gcc_unreachable ();
859 default:
860 gcc_checking_assert (code >= NUM_TREE_CODES);
861 return lang_hooks.tree_size (code);
862 }
863
864 case tcc_exceptional: /* something random, like an identifier. */
865 switch (code)
866 {
867 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
868 case TREE_LIST: return sizeof (tree_list);
869
870 case ERROR_MARK:
871 case PLACEHOLDER_EXPR: return sizeof (tree_common);
872
873 case TREE_VEC: gcc_unreachable ();
874 case OMP_CLAUSE: gcc_unreachable ();
875
876 case SSA_NAME: return sizeof (tree_ssa_name);
877
878 case STATEMENT_LIST: return sizeof (tree_statement_list);
879 case BLOCK: return sizeof (struct tree_block);
880 case CONSTRUCTOR: return sizeof (tree_constructor);
881 case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
882 case TARGET_OPTION_NODE: return sizeof (tree_target_option);
883
884 default:
885 gcc_checking_assert (code >= NUM_TREE_CODES);
886 return lang_hooks.tree_size (code);
887 }
888
889 default:
890 gcc_unreachable ();
891 }
892 }
893
894 /* Compute the number of bytes occupied by NODE. This routine only
895 looks at TREE_CODE, except for those nodes that have variable sizes. */
896 size_t
897 tree_size (const_tree node)
898 {
899 const enum tree_code code = TREE_CODE (node);
900 switch (code)
901 {
902 case INTEGER_CST:
903 return (sizeof (struct tree_int_cst)
904 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
905
906 case TREE_BINFO:
907 return (offsetof (struct tree_binfo, base_binfos)
908 + vec<tree, va_gc>
909 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
910
911 case TREE_VEC:
912 return (sizeof (struct tree_vec)
913 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
914
915 case VECTOR_CST:
916 return (sizeof (struct tree_vector)
917 + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
918
919 case STRING_CST:
920 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
921
922 case OMP_CLAUSE:
923 return (sizeof (struct tree_omp_clause)
924 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
925 * sizeof (tree));
926
927 default:
928 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
929 return (sizeof (struct tree_exp)
930 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
931 else
932 return tree_code_size (code);
933 }
934 }
935
936 /* Record interesting allocation statistics for a tree node with CODE
937 and LENGTH. */
938
939 static void
940 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
941 size_t length ATTRIBUTE_UNUSED)
942 {
943 enum tree_code_class type = TREE_CODE_CLASS (code);
944 tree_node_kind kind;
945
946 if (!GATHER_STATISTICS)
947 return;
948
949 switch (type)
950 {
951 case tcc_declaration: /* A decl node */
952 kind = d_kind;
953 break;
954
955 case tcc_type: /* a type node */
956 kind = t_kind;
957 break;
958
959 case tcc_statement: /* an expression with side effects */
960 kind = s_kind;
961 break;
962
963 case tcc_reference: /* a reference */
964 kind = r_kind;
965 break;
966
967 case tcc_expression: /* an expression */
968 case tcc_comparison: /* a comparison expression */
969 case tcc_unary: /* a unary arithmetic expression */
970 case tcc_binary: /* a binary arithmetic expression */
971 kind = e_kind;
972 break;
973
974 case tcc_constant: /* a constant */
975 kind = c_kind;
976 break;
977
978 case tcc_exceptional: /* something random, like an identifier. */
979 switch (code)
980 {
981 case IDENTIFIER_NODE:
982 kind = id_kind;
983 break;
984
985 case TREE_VEC:
986 kind = vec_kind;
987 break;
988
989 case TREE_BINFO:
990 kind = binfo_kind;
991 break;
992
993 case SSA_NAME:
994 kind = ssa_name_kind;
995 break;
996
997 case BLOCK:
998 kind = b_kind;
999 break;
1000
1001 case CONSTRUCTOR:
1002 kind = constr_kind;
1003 break;
1004
1005 case OMP_CLAUSE:
1006 kind = omp_clause_kind;
1007 break;
1008
1009 default:
1010 kind = x_kind;
1011 break;
1012 }
1013 break;
1014
1015 case tcc_vl_exp:
1016 kind = e_kind;
1017 break;
1018
1019 default:
1020 gcc_unreachable ();
1021 }
1022
1023 tree_code_counts[(int) code]++;
1024 tree_node_counts[(int) kind]++;
1025 tree_node_sizes[(int) kind] += length;
1026 }
1027
1028 /* Allocate and return a new UID from the DECL_UID namespace. */
1029
1030 int
1031 allocate_decl_uid (void)
1032 {
1033 return next_decl_uid++;
1034 }
1035
1036 /* Return a newly allocated node of code CODE. For decl and type
1037 nodes, some other fields are initialized. The rest of the node is
1038 initialized to zero. This function cannot be used for TREE_VEC,
1039 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1040 tree_code_size.
1041
1042 Achoo! I got a code in the node. */
1043
1044 tree
1045 make_node (enum tree_code code MEM_STAT_DECL)
1046 {
1047 tree t;
1048 enum tree_code_class type = TREE_CODE_CLASS (code);
1049 size_t length = tree_code_size (code);
1050
1051 record_node_allocation_statistics (code, length);
1052
1053 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1054 TREE_SET_CODE (t, code);
1055
1056 switch (type)
1057 {
1058 case tcc_statement:
1059 if (code != DEBUG_BEGIN_STMT)
1060 TREE_SIDE_EFFECTS (t) = 1;
1061 break;
1062
1063 case tcc_declaration:
1064 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1065 {
1066 if (code == FUNCTION_DECL)
1067 {
1068 SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1069 SET_DECL_MODE (t, FUNCTION_MODE);
1070 }
1071 else
1072 SET_DECL_ALIGN (t, 1);
1073 }
1074 DECL_SOURCE_LOCATION (t) = input_location;
1075 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1076 DECL_UID (t) = --next_debug_decl_uid;
1077 else
1078 {
1079 DECL_UID (t) = allocate_decl_uid ();
1080 SET_DECL_PT_UID (t, -1);
1081 }
1082 if (TREE_CODE (t) == LABEL_DECL)
1083 LABEL_DECL_UID (t) = -1;
1084
1085 break;
1086
1087 case tcc_type:
1088 TYPE_UID (t) = next_type_uid++;
1089 SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1090 TYPE_USER_ALIGN (t) = 0;
1091 TYPE_MAIN_VARIANT (t) = t;
1092 TYPE_CANONICAL (t) = t;
1093
1094 /* Default to no attributes for type, but let target change that. */
1095 TYPE_ATTRIBUTES (t) = NULL_TREE;
1096 targetm.set_default_type_attributes (t);
1097
1098 /* We have not yet computed the alias set for this type. */
1099 TYPE_ALIAS_SET (t) = -1;
1100 break;
1101
1102 case tcc_constant:
1103 TREE_CONSTANT (t) = 1;
1104 break;
1105
1106 case tcc_expression:
1107 switch (code)
1108 {
1109 case INIT_EXPR:
1110 case MODIFY_EXPR:
1111 case VA_ARG_EXPR:
1112 case PREDECREMENT_EXPR:
1113 case PREINCREMENT_EXPR:
1114 case POSTDECREMENT_EXPR:
1115 case POSTINCREMENT_EXPR:
1116 /* All of these have side-effects, no matter what their
1117 operands are. */
1118 TREE_SIDE_EFFECTS (t) = 1;
1119 break;
1120
1121 default:
1122 break;
1123 }
1124 break;
1125
1126 case tcc_exceptional:
1127 switch (code)
1128 {
1129 case TARGET_OPTION_NODE:
1130 TREE_TARGET_OPTION(t)
1131 = ggc_cleared_alloc<struct cl_target_option> ();
1132 break;
1133
1134 case OPTIMIZATION_NODE:
1135 TREE_OPTIMIZATION (t)
1136 = ggc_cleared_alloc<struct cl_optimization> ();
1137 break;
1138
1139 default:
1140 break;
1141 }
1142 break;
1143
1144 default:
1145 /* Other classes need no special treatment. */
1146 break;
1147 }
1148
1149 return t;
1150 }
1151
1152 /* Free tree node. */
1153
1154 void
1155 free_node (tree node)
1156 {
1157 enum tree_code code = TREE_CODE (node);
1158 if (GATHER_STATISTICS)
1159 {
1160 tree_code_counts[(int) TREE_CODE (node)]--;
1161 tree_node_counts[(int) t_kind]--;
1162 tree_node_sizes[(int) t_kind] -= tree_size (node);
1163 }
1164 if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1165 vec_free (CONSTRUCTOR_ELTS (node));
1166 else if (code == BLOCK)
1167 vec_free (BLOCK_NONLOCALIZED_VARS (node));
1168 else if (code == TREE_BINFO)
1169 vec_free (BINFO_BASE_ACCESSES (node));
1170 ggc_free (node);
1171 }
1172 \f
1173 /* Return a new node with the same contents as NODE except that its
1174 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1175
1176 tree
1177 copy_node (tree node MEM_STAT_DECL)
1178 {
1179 tree t;
1180 enum tree_code code = TREE_CODE (node);
1181 size_t length;
1182
1183 gcc_assert (code != STATEMENT_LIST);
1184
1185 length = tree_size (node);
1186 record_node_allocation_statistics (code, length);
1187 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1188 memcpy (t, node, length);
1189
1190 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1191 TREE_CHAIN (t) = 0;
1192 TREE_ASM_WRITTEN (t) = 0;
1193 TREE_VISITED (t) = 0;
1194
1195 if (TREE_CODE_CLASS (code) == tcc_declaration)
1196 {
1197 if (code == DEBUG_EXPR_DECL)
1198 DECL_UID (t) = --next_debug_decl_uid;
1199 else
1200 {
1201 DECL_UID (t) = allocate_decl_uid ();
1202 if (DECL_PT_UID_SET_P (node))
1203 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1204 }
1205 if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1206 && DECL_HAS_VALUE_EXPR_P (node))
1207 {
1208 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1209 DECL_HAS_VALUE_EXPR_P (t) = 1;
1210 }
1211 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1212 if (VAR_P (node))
1213 {
1214 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1215 t->decl_with_vis.symtab_node = NULL;
1216 }
1217 if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1218 {
1219 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1220 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1221 }
1222 if (TREE_CODE (node) == FUNCTION_DECL)
1223 {
1224 DECL_STRUCT_FUNCTION (t) = NULL;
1225 t->decl_with_vis.symtab_node = NULL;
1226 }
1227 }
1228 else if (TREE_CODE_CLASS (code) == tcc_type)
1229 {
1230 TYPE_UID (t) = next_type_uid++;
1231 /* The following is so that the debug code for
1232 the copy is different from the original type.
1233 The two statements usually duplicate each other
1234 (because they clear fields of the same union),
1235 but the optimizer should catch that. */
1236 TYPE_SYMTAB_ADDRESS (t) = 0;
1237 TYPE_SYMTAB_DIE (t) = 0;
1238
1239 /* Do not copy the values cache. */
1240 if (TYPE_CACHED_VALUES_P (t))
1241 {
1242 TYPE_CACHED_VALUES_P (t) = 0;
1243 TYPE_CACHED_VALUES (t) = NULL_TREE;
1244 }
1245 }
1246 else if (code == TARGET_OPTION_NODE)
1247 {
1248 TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1249 memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1250 sizeof (struct cl_target_option));
1251 }
1252 else if (code == OPTIMIZATION_NODE)
1253 {
1254 TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1255 memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1256 sizeof (struct cl_optimization));
1257 }
1258
1259 return t;
1260 }
1261
1262 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1263 For example, this can copy a list made of TREE_LIST nodes. */
1264
1265 tree
1266 copy_list (tree list)
1267 {
1268 tree head;
1269 tree prev, next;
1270
1271 if (list == 0)
1272 return 0;
1273
1274 head = prev = copy_node (list);
1275 next = TREE_CHAIN (list);
1276 while (next)
1277 {
1278 TREE_CHAIN (prev) = copy_node (next);
1279 prev = TREE_CHAIN (prev);
1280 next = TREE_CHAIN (next);
1281 }
1282 return head;
1283 }
1284
1285 \f
1286 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1287 INTEGER_CST with value CST and type TYPE. */
1288
1289 static unsigned int
1290 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1291 {
1292 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1293 /* We need extra HWIs if CST is an unsigned integer with its
1294 upper bit set. */
1295 if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1296 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1297 return cst.get_len ();
1298 }
1299
1300 /* Return a new INTEGER_CST with value CST and type TYPE. */
1301
1302 static tree
1303 build_new_int_cst (tree type, const wide_int &cst)
1304 {
1305 unsigned int len = cst.get_len ();
1306 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1307 tree nt = make_int_cst (len, ext_len);
1308
1309 if (len < ext_len)
1310 {
1311 --ext_len;
1312 TREE_INT_CST_ELT (nt, ext_len)
1313 = zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1314 for (unsigned int i = len; i < ext_len; ++i)
1315 TREE_INT_CST_ELT (nt, i) = -1;
1316 }
1317 else if (TYPE_UNSIGNED (type)
1318 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1319 {
1320 len--;
1321 TREE_INT_CST_ELT (nt, len)
1322 = zext_hwi (cst.elt (len),
1323 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1324 }
1325
1326 for (unsigned int i = 0; i < len; i++)
1327 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1328 TREE_TYPE (nt) = type;
1329 return nt;
1330 }
1331
1332 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */
1333
1334 static tree
1335 build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS])
1336 {
1337 size_t length = sizeof (struct tree_poly_int_cst);
1338 record_node_allocation_statistics (POLY_INT_CST, length);
1339
1340 tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1341
1342 TREE_SET_CODE (t, POLY_INT_CST);
1343 TREE_CONSTANT (t) = 1;
1344 TREE_TYPE (t) = type;
1345 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1346 POLY_INT_CST_COEFF (t, i) = coeffs[i];
1347 return t;
1348 }
1349
1350 /* Create a constant tree that contains CST sign-extended to TYPE. */
1351
1352 tree
1353 build_int_cst (tree type, poly_int64 cst)
1354 {
1355 /* Support legacy code. */
1356 if (!type)
1357 type = integer_type_node;
1358
1359 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1360 }
1361
1362 /* Create a constant tree that contains CST zero-extended to TYPE. */
1363
1364 tree
1365 build_int_cstu (tree type, poly_uint64 cst)
1366 {
1367 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1368 }
1369
1370 /* Create a constant tree that contains CST sign-extended to TYPE. */
1371
1372 tree
1373 build_int_cst_type (tree type, poly_int64 cst)
1374 {
1375 gcc_assert (type);
1376 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1377 }
1378
1379 /* Constructs tree in type TYPE from with value given by CST. Signedness
1380 of CST is assumed to be the same as the signedness of TYPE. */
1381
1382 tree
1383 double_int_to_tree (tree type, double_int cst)
1384 {
1385 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1386 }
1387
1388 /* We force the wide_int CST to the range of the type TYPE by sign or
1389 zero extending it. OVERFLOWABLE indicates if we are interested in
1390 overflow of the value, when >0 we are only interested in signed
1391 overflow, for <0 we are interested in any overflow. OVERFLOWED
1392 indicates whether overflow has already occurred. CONST_OVERFLOWED
1393 indicates whether constant overflow has already occurred. We force
1394 T's value to be within range of T's type (by setting to 0 or 1 all
1395 the bits outside the type's range). We set TREE_OVERFLOWED if,
1396 OVERFLOWED is nonzero,
1397 or OVERFLOWABLE is >0 and signed overflow occurs
1398 or OVERFLOWABLE is <0 and any overflow occurs
1399 We return a new tree node for the extended wide_int. The node
1400 is shared if no overflow flags are set. */
1401
1402
1403 tree
1404 force_fit_type (tree type, const poly_wide_int_ref &cst,
1405 int overflowable, bool overflowed)
1406 {
1407 signop sign = TYPE_SIGN (type);
1408
1409 /* If we need to set overflow flags, return a new unshared node. */
1410 if (overflowed || !wi::fits_to_tree_p (cst, type))
1411 {
1412 if (overflowed
1413 || overflowable < 0
1414 || (overflowable > 0 && sign == SIGNED))
1415 {
1416 poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
1417 sign);
1418 tree t;
1419 if (tmp.is_constant ())
1420 t = build_new_int_cst (type, tmp.coeffs[0]);
1421 else
1422 {
1423 tree coeffs[NUM_POLY_INT_COEFFS];
1424 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1425 {
1426 coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
1427 TREE_OVERFLOW (coeffs[i]) = 1;
1428 }
1429 t = build_new_poly_int_cst (type, coeffs);
1430 }
1431 TREE_OVERFLOW (t) = 1;
1432 return t;
1433 }
1434 }
1435
1436 /* Else build a shared node. */
1437 return wide_int_to_tree (type, cst);
1438 }
1439
1440 /* These are the hash table functions for the hash table of INTEGER_CST
1441 nodes of a sizetype. */
1442
1443 /* Return the hash code X, an INTEGER_CST. */
1444
1445 hashval_t
1446 int_cst_hasher::hash (tree x)
1447 {
1448 const_tree const t = x;
1449 hashval_t code = TYPE_UID (TREE_TYPE (t));
1450 int i;
1451
1452 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1453 code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1454
1455 return code;
1456 }
1457
1458 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1459 is the same as that given by *Y, which is the same. */
1460
1461 bool
1462 int_cst_hasher::equal (tree x, tree y)
1463 {
1464 const_tree const xt = x;
1465 const_tree const yt = y;
1466
1467 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1468 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1469 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1470 return false;
1471
1472 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1473 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1474 return false;
1475
1476 return true;
1477 }
1478
1479 /* Create an INT_CST node of TYPE and value CST.
1480 The returned node is always shared. For small integers we use a
1481 per-type vector cache, for larger ones we use a single hash table.
1482 The value is extended from its precision according to the sign of
1483 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1484 the upper bits and ensures that hashing and value equality based
1485 upon the underlying HOST_WIDE_INTs works without masking. */
1486
1487 static tree
1488 wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
1489 {
1490 tree t;
1491 int ix = -1;
1492 int limit = 0;
1493
1494 gcc_assert (type);
1495 unsigned int prec = TYPE_PRECISION (type);
1496 signop sgn = TYPE_SIGN (type);
1497
1498 /* Verify that everything is canonical. */
1499 int l = pcst.get_len ();
1500 if (l > 1)
1501 {
1502 if (pcst.elt (l - 1) == 0)
1503 gcc_checking_assert (pcst.elt (l - 2) < 0);
1504 if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1505 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1506 }
1507
1508 wide_int cst = wide_int::from (pcst, prec, sgn);
1509 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1510
1511 if (ext_len == 1)
1512 {
1513 /* We just need to store a single HOST_WIDE_INT. */
1514 HOST_WIDE_INT hwi;
1515 if (TYPE_UNSIGNED (type))
1516 hwi = cst.to_uhwi ();
1517 else
1518 hwi = cst.to_shwi ();
1519
1520 switch (TREE_CODE (type))
1521 {
1522 case NULLPTR_TYPE:
1523 gcc_assert (hwi == 0);
1524 /* Fallthru. */
1525
1526 case POINTER_TYPE:
1527 case REFERENCE_TYPE:
1528 case POINTER_BOUNDS_TYPE:
1529 /* Cache NULL pointer and zero bounds. */
1530 if (hwi == 0)
1531 {
1532 limit = 1;
1533 ix = 0;
1534 }
1535 break;
1536
1537 case BOOLEAN_TYPE:
1538 /* Cache false or true. */
1539 limit = 2;
1540 if (IN_RANGE (hwi, 0, 1))
1541 ix = hwi;
1542 break;
1543
1544 case INTEGER_TYPE:
1545 case OFFSET_TYPE:
1546 if (TYPE_SIGN (type) == UNSIGNED)
1547 {
1548 /* Cache [0, N). */
1549 limit = INTEGER_SHARE_LIMIT;
1550 if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1551 ix = hwi;
1552 }
1553 else
1554 {
1555 /* Cache [-1, N). */
1556 limit = INTEGER_SHARE_LIMIT + 1;
1557 if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1558 ix = hwi + 1;
1559 }
1560 break;
1561
1562 case ENUMERAL_TYPE:
1563 break;
1564
1565 default:
1566 gcc_unreachable ();
1567 }
1568
1569 if (ix >= 0)
1570 {
1571 /* Look for it in the type's vector of small shared ints. */
1572 if (!TYPE_CACHED_VALUES_P (type))
1573 {
1574 TYPE_CACHED_VALUES_P (type) = 1;
1575 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1576 }
1577
1578 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1579 if (t)
1580 /* Make sure no one is clobbering the shared constant. */
1581 gcc_checking_assert (TREE_TYPE (t) == type
1582 && TREE_INT_CST_NUNITS (t) == 1
1583 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1584 && TREE_INT_CST_EXT_NUNITS (t) == 1
1585 && TREE_INT_CST_ELT (t, 0) == hwi);
1586 else
1587 {
1588 /* Create a new shared int. */
1589 t = build_new_int_cst (type, cst);
1590 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1591 }
1592 }
1593 else
1594 {
1595 /* Use the cache of larger shared ints, using int_cst_node as
1596 a temporary. */
1597
1598 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1599 TREE_TYPE (int_cst_node) = type;
1600
1601 tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1602 t = *slot;
1603 if (!t)
1604 {
1605 /* Insert this one into the hash table. */
1606 t = int_cst_node;
1607 *slot = t;
1608 /* Make a new node for next time round. */
1609 int_cst_node = make_int_cst (1, 1);
1610 }
1611 }
1612 }
1613 else
1614 {
1615 /* The value either hashes properly or we drop it on the floor
1616 for the gc to take care of. There will not be enough of them
1617 to worry about. */
1618
1619 tree nt = build_new_int_cst (type, cst);
1620 tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1621 t = *slot;
1622 if (!t)
1623 {
1624 /* Insert this one into the hash table. */
1625 t = nt;
1626 *slot = t;
1627 }
1628 else
1629 ggc_free (nt);
1630 }
1631
1632 return t;
1633 }
1634
1635 hashval_t
1636 poly_int_cst_hasher::hash (tree t)
1637 {
1638 inchash::hash hstate;
1639
1640 hstate.add_int (TYPE_UID (TREE_TYPE (t)));
1641 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1642 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
1643
1644 return hstate.end ();
1645 }
1646
1647 bool
1648 poly_int_cst_hasher::equal (tree x, const compare_type &y)
1649 {
1650 if (TREE_TYPE (x) != y.first)
1651 return false;
1652 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1653 if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
1654 return false;
1655 return true;
1656 }
1657
1658 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1659 The elements must also have type TYPE. */
1660
1661 tree
1662 build_poly_int_cst (tree type, const poly_wide_int_ref &values)
1663 {
1664 unsigned int prec = TYPE_PRECISION (type);
1665 gcc_assert (prec <= values.coeffs[0].get_precision ());
1666 poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
1667
1668 inchash::hash h;
1669 h.add_int (TYPE_UID (type));
1670 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1671 h.add_wide_int (c.coeffs[i]);
1672 poly_int_cst_hasher::compare_type comp (type, &c);
1673 tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
1674 INSERT);
1675 if (*slot == NULL_TREE)
1676 {
1677 tree coeffs[NUM_POLY_INT_COEFFS];
1678 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1679 coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
1680 *slot = build_new_poly_int_cst (type, coeffs);
1681 }
1682 return *slot;
1683 }
1684
1685 /* Create a constant tree with value VALUE in type TYPE. */
1686
1687 tree
1688 wide_int_to_tree (tree type, const poly_wide_int_ref &value)
1689 {
1690 if (value.is_constant ())
1691 return wide_int_to_tree_1 (type, value.coeffs[0]);
1692 return build_poly_int_cst (type, value);
1693 }
1694
1695 void
1696 cache_integer_cst (tree t)
1697 {
1698 tree type = TREE_TYPE (t);
1699 int ix = -1;
1700 int limit = 0;
1701 int prec = TYPE_PRECISION (type);
1702
1703 gcc_assert (!TREE_OVERFLOW (t));
1704
1705 switch (TREE_CODE (type))
1706 {
1707 case NULLPTR_TYPE:
1708 gcc_assert (integer_zerop (t));
1709 /* Fallthru. */
1710
1711 case POINTER_TYPE:
1712 case REFERENCE_TYPE:
1713 /* Cache NULL pointer. */
1714 if (integer_zerop (t))
1715 {
1716 limit = 1;
1717 ix = 0;
1718 }
1719 break;
1720
1721 case BOOLEAN_TYPE:
1722 /* Cache false or true. */
1723 limit = 2;
1724 if (wi::ltu_p (wi::to_wide (t), 2))
1725 ix = TREE_INT_CST_ELT (t, 0);
1726 break;
1727
1728 case INTEGER_TYPE:
1729 case OFFSET_TYPE:
1730 if (TYPE_UNSIGNED (type))
1731 {
1732 /* Cache 0..N */
1733 limit = INTEGER_SHARE_LIMIT;
1734
1735 /* This is a little hokie, but if the prec is smaller than
1736 what is necessary to hold INTEGER_SHARE_LIMIT, then the
1737 obvious test will not get the correct answer. */
1738 if (prec < HOST_BITS_PER_WIDE_INT)
1739 {
1740 if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1741 ix = tree_to_uhwi (t);
1742 }
1743 else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1744 ix = tree_to_uhwi (t);
1745 }
1746 else
1747 {
1748 /* Cache -1..N */
1749 limit = INTEGER_SHARE_LIMIT + 1;
1750
1751 if (integer_minus_onep (t))
1752 ix = 0;
1753 else if (!wi::neg_p (wi::to_wide (t)))
1754 {
1755 if (prec < HOST_BITS_PER_WIDE_INT)
1756 {
1757 if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1758 ix = tree_to_shwi (t) + 1;
1759 }
1760 else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1761 ix = tree_to_shwi (t) + 1;
1762 }
1763 }
1764 break;
1765
1766 case ENUMERAL_TYPE:
1767 break;
1768
1769 default:
1770 gcc_unreachable ();
1771 }
1772
1773 if (ix >= 0)
1774 {
1775 /* Look for it in the type's vector of small shared ints. */
1776 if (!TYPE_CACHED_VALUES_P (type))
1777 {
1778 TYPE_CACHED_VALUES_P (type) = 1;
1779 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1780 }
1781
1782 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1783 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1784 }
1785 else
1786 {
1787 /* Use the cache of larger shared ints. */
1788 tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1789 /* If there is already an entry for the number verify it's the
1790 same. */
1791 if (*slot)
1792 gcc_assert (wi::to_wide (tree (*slot)) == wi::to_wide (t));
1793 else
1794 /* Otherwise insert this one into the hash table. */
1795 *slot = t;
1796 }
1797 }
1798
1799
1800 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1801 and the rest are zeros. */
1802
1803 tree
1804 build_low_bits_mask (tree type, unsigned bits)
1805 {
1806 gcc_assert (bits <= TYPE_PRECISION (type));
1807
1808 return wide_int_to_tree (type, wi::mask (bits, false,
1809 TYPE_PRECISION (type)));
1810 }
1811
1812 /* Checks that X is integer constant that can be expressed in (unsigned)
1813 HOST_WIDE_INT without loss of precision. */
1814
1815 bool
1816 cst_and_fits_in_hwi (const_tree x)
1817 {
1818 return (TREE_CODE (x) == INTEGER_CST
1819 && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
1820 }
1821
1822 /* Build a newly constructed VECTOR_CST with the given values of
1823 (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */
1824
1825 tree
1826 make_vector (unsigned log2_npatterns,
1827 unsigned int nelts_per_pattern MEM_STAT_DECL)
1828 {
1829 gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
1830 tree t;
1831 unsigned npatterns = 1 << log2_npatterns;
1832 unsigned encoded_nelts = npatterns * nelts_per_pattern;
1833 unsigned length = (sizeof (struct tree_vector)
1834 + (encoded_nelts - 1) * sizeof (tree));
1835
1836 record_node_allocation_statistics (VECTOR_CST, length);
1837
1838 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1839
1840 TREE_SET_CODE (t, VECTOR_CST);
1841 TREE_CONSTANT (t) = 1;
1842 VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
1843 VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
1844
1845 return t;
1846 }
1847
1848 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1849 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1850
1851 tree
1852 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1853 {
1854 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type);
1855 unsigned HOST_WIDE_INT idx;
1856 tree value;
1857
1858 tree_vector_builder vec (type, nelts, 1);
1859 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1860 {
1861 if (TREE_CODE (value) == VECTOR_CST)
1862 for (unsigned i = 0; i < VECTOR_CST_NELTS (value); ++i)
1863 vec.quick_push (VECTOR_CST_ELT (value, i));
1864 else
1865 vec.quick_push (value);
1866 }
1867 while (vec.length () < nelts)
1868 vec.quick_push (build_zero_cst (TREE_TYPE (type)));
1869
1870 return vec.build ();
1871 }
1872
1873 /* Build a vector of type VECTYPE where all the elements are SCs. */
1874 tree
1875 build_vector_from_val (tree vectype, tree sc)
1876 {
1877 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1878
1879 if (sc == error_mark_node)
1880 return sc;
1881
1882 /* Verify that the vector type is suitable for SC. Note that there
1883 is some inconsistency in the type-system with respect to restrict
1884 qualifications of pointers. Vector types always have a main-variant
1885 element type and the qualification is applied to the vector-type.
1886 So TREE_TYPE (vector-type) does not return a properly qualified
1887 vector element-type. */
1888 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1889 TREE_TYPE (vectype)));
1890
1891 if (CONSTANT_CLASS_P (sc))
1892 {
1893 tree_vector_builder v (vectype, 1, 1);
1894 v.quick_push (sc);
1895 return v.build ();
1896 }
1897 else if (0)
1898 return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
1899 else
1900 {
1901 vec<constructor_elt, va_gc> *v;
1902 vec_alloc (v, nunits);
1903 for (i = 0; i < nunits; ++i)
1904 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1905 return build_constructor (vectype, v);
1906 }
1907 }
1908
1909 /* Build a vector series of type TYPE in which element I has the value
1910 BASE + I * STEP. The result is a constant if BASE and STEP are constant
1911 and a VEC_SERIES_EXPR otherwise. */
1912
1913 tree
1914 build_vec_series (tree type, tree base, tree step)
1915 {
1916 if (integer_zerop (step))
1917 return build_vector_from_val (type, base);
1918 if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
1919 {
1920 tree_vector_builder builder (type, 1, 3);
1921 tree elt1 = wide_int_to_tree (TREE_TYPE (base),
1922 wi::to_wide (base) + wi::to_wide (step));
1923 tree elt2 = wide_int_to_tree (TREE_TYPE (base),
1924 wi::to_wide (elt1) + wi::to_wide (step));
1925 builder.quick_push (base);
1926 builder.quick_push (elt1);
1927 builder.quick_push (elt2);
1928 return builder.build ();
1929 }
1930 return build2 (VEC_SERIES_EXPR, type, base, step);
1931 }
1932
1933 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
1934 calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
1935
1936 void
1937 recompute_constructor_flags (tree c)
1938 {
1939 unsigned int i;
1940 tree val;
1941 bool constant_p = true;
1942 bool side_effects_p = false;
1943 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1944
1945 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1946 {
1947 /* Mostly ctors will have elts that don't have side-effects, so
1948 the usual case is to scan all the elements. Hence a single
1949 loop for both const and side effects, rather than one loop
1950 each (with early outs). */
1951 if (!TREE_CONSTANT (val))
1952 constant_p = false;
1953 if (TREE_SIDE_EFFECTS (val))
1954 side_effects_p = true;
1955 }
1956
1957 TREE_SIDE_EFFECTS (c) = side_effects_p;
1958 TREE_CONSTANT (c) = constant_p;
1959 }
1960
1961 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
1962 CONSTRUCTOR C. */
1963
1964 void
1965 verify_constructor_flags (tree c)
1966 {
1967 unsigned int i;
1968 tree val;
1969 bool constant_p = TREE_CONSTANT (c);
1970 bool side_effects_p = TREE_SIDE_EFFECTS (c);
1971 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1972
1973 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1974 {
1975 if (constant_p && !TREE_CONSTANT (val))
1976 internal_error ("non-constant element in constant CONSTRUCTOR");
1977 if (!side_effects_p && TREE_SIDE_EFFECTS (val))
1978 internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
1979 }
1980 }
1981
1982 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1983 are in the vec pointed to by VALS. */
1984 tree
1985 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1986 {
1987 tree c = make_node (CONSTRUCTOR);
1988
1989 TREE_TYPE (c) = type;
1990 CONSTRUCTOR_ELTS (c) = vals;
1991
1992 recompute_constructor_flags (c);
1993
1994 return c;
1995 }
1996
1997 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1998 INDEX and VALUE. */
1999 tree
2000 build_constructor_single (tree type, tree index, tree value)
2001 {
2002 vec<constructor_elt, va_gc> *v;
2003 constructor_elt elt = {index, value};
2004
2005 vec_alloc (v, 1);
2006 v->quick_push (elt);
2007
2008 return build_constructor (type, v);
2009 }
2010
2011
2012 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2013 are in a list pointed to by VALS. */
2014 tree
2015 build_constructor_from_list (tree type, tree vals)
2016 {
2017 tree t;
2018 vec<constructor_elt, va_gc> *v = NULL;
2019
2020 if (vals)
2021 {
2022 vec_alloc (v, list_length (vals));
2023 for (t = vals; t; t = TREE_CHAIN (t))
2024 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
2025 }
2026
2027 return build_constructor (type, v);
2028 }
2029
2030 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
2031 of elements, provided as index/value pairs. */
2032
2033 tree
2034 build_constructor_va (tree type, int nelts, ...)
2035 {
2036 vec<constructor_elt, va_gc> *v = NULL;
2037 va_list p;
2038
2039 va_start (p, nelts);
2040 vec_alloc (v, nelts);
2041 while (nelts--)
2042 {
2043 tree index = va_arg (p, tree);
2044 tree value = va_arg (p, tree);
2045 CONSTRUCTOR_APPEND_ELT (v, index, value);
2046 }
2047 va_end (p);
2048 return build_constructor (type, v);
2049 }
2050
2051 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
2052
2053 tree
2054 build_fixed (tree type, FIXED_VALUE_TYPE f)
2055 {
2056 tree v;
2057 FIXED_VALUE_TYPE *fp;
2058
2059 v = make_node (FIXED_CST);
2060 fp = ggc_alloc<fixed_value> ();
2061 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
2062
2063 TREE_TYPE (v) = type;
2064 TREE_FIXED_CST_PTR (v) = fp;
2065 return v;
2066 }
2067
2068 /* Return a new REAL_CST node whose type is TYPE and value is D. */
2069
2070 tree
2071 build_real (tree type, REAL_VALUE_TYPE d)
2072 {
2073 tree v;
2074 REAL_VALUE_TYPE *dp;
2075 int overflow = 0;
2076
2077 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2078 Consider doing it via real_convert now. */
2079
2080 v = make_node (REAL_CST);
2081 dp = ggc_alloc<real_value> ();
2082 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
2083
2084 TREE_TYPE (v) = type;
2085 TREE_REAL_CST_PTR (v) = dp;
2086 TREE_OVERFLOW (v) = overflow;
2087 return v;
2088 }
2089
2090 /* Like build_real, but first truncate D to the type. */
2091
2092 tree
2093 build_real_truncate (tree type, REAL_VALUE_TYPE d)
2094 {
2095 return build_real (type, real_value_truncate (TYPE_MODE (type), d));
2096 }
2097
2098 /* Return a new REAL_CST node whose type is TYPE
2099 and whose value is the integer value of the INTEGER_CST node I. */
2100
2101 REAL_VALUE_TYPE
2102 real_value_from_int_cst (const_tree type, const_tree i)
2103 {
2104 REAL_VALUE_TYPE d;
2105
2106 /* Clear all bits of the real value type so that we can later do
2107 bitwise comparisons to see if two values are the same. */
2108 memset (&d, 0, sizeof d);
2109
2110 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
2111 TYPE_SIGN (TREE_TYPE (i)));
2112 return d;
2113 }
2114
2115 /* Given a tree representing an integer constant I, return a tree
2116 representing the same value as a floating-point constant of type TYPE. */
2117
2118 tree
2119 build_real_from_int_cst (tree type, const_tree i)
2120 {
2121 tree v;
2122 int overflow = TREE_OVERFLOW (i);
2123
2124 v = build_real (type, real_value_from_int_cst (type, i));
2125
2126 TREE_OVERFLOW (v) |= overflow;
2127 return v;
2128 }
2129
2130 /* Return a newly constructed STRING_CST node whose value is
2131 the LEN characters at STR.
2132 Note that for a C string literal, LEN should include the trailing NUL.
2133 The TREE_TYPE is not initialized. */
2134
2135 tree
2136 build_string (int len, const char *str)
2137 {
2138 tree s;
2139 size_t length;
2140
2141 /* Do not waste bytes provided by padding of struct tree_string. */
2142 length = len + offsetof (struct tree_string, str) + 1;
2143
2144 record_node_allocation_statistics (STRING_CST, length);
2145
2146 s = (tree) ggc_internal_alloc (length);
2147
2148 memset (s, 0, sizeof (struct tree_typed));
2149 TREE_SET_CODE (s, STRING_CST);
2150 TREE_CONSTANT (s) = 1;
2151 TREE_STRING_LENGTH (s) = len;
2152 memcpy (s->string.str, str, len);
2153 s->string.str[len] = '\0';
2154
2155 return s;
2156 }
2157
2158 /* Return a newly constructed COMPLEX_CST node whose value is
2159 specified by the real and imaginary parts REAL and IMAG.
2160 Both REAL and IMAG should be constant nodes. TYPE, if specified,
2161 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
2162
2163 tree
2164 build_complex (tree type, tree real, tree imag)
2165 {
2166 tree t = make_node (COMPLEX_CST);
2167
2168 TREE_REALPART (t) = real;
2169 TREE_IMAGPART (t) = imag;
2170 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2171 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2172 return t;
2173 }
2174
2175 /* Build a complex (inf +- 0i), such as for the result of cproj.
2176 TYPE is the complex tree type of the result. If NEG is true, the
2177 imaginary zero is negative. */
2178
2179 tree
2180 build_complex_inf (tree type, bool neg)
2181 {
2182 REAL_VALUE_TYPE rinf, rzero = dconst0;
2183
2184 real_inf (&rinf);
2185 rzero.sign = neg;
2186 return build_complex (type, build_real (TREE_TYPE (type), rinf),
2187 build_real (TREE_TYPE (type), rzero));
2188 }
2189
2190 /* Return the constant 1 in type TYPE. If TYPE has several elements, each
2191 element is set to 1. In particular, this is 1 + i for complex types. */
2192
2193 tree
2194 build_each_one_cst (tree type)
2195 {
2196 if (TREE_CODE (type) == COMPLEX_TYPE)
2197 {
2198 tree scalar = build_one_cst (TREE_TYPE (type));
2199 return build_complex (type, scalar, scalar);
2200 }
2201 else
2202 return build_one_cst (type);
2203 }
2204
2205 /* Return a constant of arithmetic type TYPE which is the
2206 multiplicative identity of the set TYPE. */
2207
2208 tree
2209 build_one_cst (tree type)
2210 {
2211 switch (TREE_CODE (type))
2212 {
2213 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2214 case POINTER_TYPE: case REFERENCE_TYPE:
2215 case OFFSET_TYPE:
2216 return build_int_cst (type, 1);
2217
2218 case REAL_TYPE:
2219 return build_real (type, dconst1);
2220
2221 case FIXED_POINT_TYPE:
2222 /* We can only generate 1 for accum types. */
2223 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2224 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2225
2226 case VECTOR_TYPE:
2227 {
2228 tree scalar = build_one_cst (TREE_TYPE (type));
2229
2230 return build_vector_from_val (type, scalar);
2231 }
2232
2233 case COMPLEX_TYPE:
2234 return build_complex (type,
2235 build_one_cst (TREE_TYPE (type)),
2236 build_zero_cst (TREE_TYPE (type)));
2237
2238 default:
2239 gcc_unreachable ();
2240 }
2241 }
2242
2243 /* Return an integer of type TYPE containing all 1's in as much precision as
2244 it contains, or a complex or vector whose subparts are such integers. */
2245
2246 tree
2247 build_all_ones_cst (tree type)
2248 {
2249 if (TREE_CODE (type) == COMPLEX_TYPE)
2250 {
2251 tree scalar = build_all_ones_cst (TREE_TYPE (type));
2252 return build_complex (type, scalar, scalar);
2253 }
2254 else
2255 return build_minus_one_cst (type);
2256 }
2257
2258 /* Return a constant of arithmetic type TYPE which is the
2259 opposite of the multiplicative identity of the set TYPE. */
2260
2261 tree
2262 build_minus_one_cst (tree type)
2263 {
2264 switch (TREE_CODE (type))
2265 {
2266 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2267 case POINTER_TYPE: case REFERENCE_TYPE:
2268 case OFFSET_TYPE:
2269 return build_int_cst (type, -1);
2270
2271 case REAL_TYPE:
2272 return build_real (type, dconstm1);
2273
2274 case FIXED_POINT_TYPE:
2275 /* We can only generate 1 for accum types. */
2276 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2277 return build_fixed (type,
2278 fixed_from_double_int (double_int_minus_one,
2279 SCALAR_TYPE_MODE (type)));
2280
2281 case VECTOR_TYPE:
2282 {
2283 tree scalar = build_minus_one_cst (TREE_TYPE (type));
2284
2285 return build_vector_from_val (type, scalar);
2286 }
2287
2288 case COMPLEX_TYPE:
2289 return build_complex (type,
2290 build_minus_one_cst (TREE_TYPE (type)),
2291 build_zero_cst (TREE_TYPE (type)));
2292
2293 default:
2294 gcc_unreachable ();
2295 }
2296 }
2297
2298 /* Build 0 constant of type TYPE. This is used by constructor folding
2299 and thus the constant should be represented in memory by
2300 zero(es). */
2301
2302 tree
2303 build_zero_cst (tree type)
2304 {
2305 switch (TREE_CODE (type))
2306 {
2307 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2308 case POINTER_TYPE: case REFERENCE_TYPE:
2309 case OFFSET_TYPE: case NULLPTR_TYPE:
2310 return build_int_cst (type, 0);
2311
2312 case REAL_TYPE:
2313 return build_real (type, dconst0);
2314
2315 case FIXED_POINT_TYPE:
2316 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2317
2318 case VECTOR_TYPE:
2319 {
2320 tree scalar = build_zero_cst (TREE_TYPE (type));
2321
2322 return build_vector_from_val (type, scalar);
2323 }
2324
2325 case COMPLEX_TYPE:
2326 {
2327 tree zero = build_zero_cst (TREE_TYPE (type));
2328
2329 return build_complex (type, zero, zero);
2330 }
2331
2332 default:
2333 if (!AGGREGATE_TYPE_P (type))
2334 return fold_convert (type, integer_zero_node);
2335 return build_constructor (type, NULL);
2336 }
2337 }
2338
2339
2340 /* Build a BINFO with LEN language slots. */
2341
2342 tree
2343 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2344 {
2345 tree t;
2346 size_t length = (offsetof (struct tree_binfo, base_binfos)
2347 + vec<tree, va_gc>::embedded_size (base_binfos));
2348
2349 record_node_allocation_statistics (TREE_BINFO, length);
2350
2351 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2352
2353 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2354
2355 TREE_SET_CODE (t, TREE_BINFO);
2356
2357 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2358
2359 return t;
2360 }
2361
2362 /* Create a CASE_LABEL_EXPR tree node and return it. */
2363
2364 tree
2365 build_case_label (tree low_value, tree high_value, tree label_decl)
2366 {
2367 tree t = make_node (CASE_LABEL_EXPR);
2368
2369 TREE_TYPE (t) = void_type_node;
2370 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2371
2372 CASE_LOW (t) = low_value;
2373 CASE_HIGH (t) = high_value;
2374 CASE_LABEL (t) = label_decl;
2375 CASE_CHAIN (t) = NULL_TREE;
2376
2377 return t;
2378 }
2379
2380 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2381 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2382 The latter determines the length of the HOST_WIDE_INT vector. */
2383
2384 tree
2385 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2386 {
2387 tree t;
2388 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2389 + sizeof (struct tree_int_cst));
2390
2391 gcc_assert (len);
2392 record_node_allocation_statistics (INTEGER_CST, length);
2393
2394 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2395
2396 TREE_SET_CODE (t, INTEGER_CST);
2397 TREE_INT_CST_NUNITS (t) = len;
2398 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2399 /* to_offset can only be applied to trees that are offset_int-sized
2400 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2401 must be exactly the precision of offset_int and so LEN is correct. */
2402 if (ext_len <= OFFSET_INT_ELTS)
2403 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2404 else
2405 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2406
2407 TREE_CONSTANT (t) = 1;
2408
2409 return t;
2410 }
2411
2412 /* Build a newly constructed TREE_VEC node of length LEN. */
2413
2414 tree
2415 make_tree_vec (int len MEM_STAT_DECL)
2416 {
2417 tree t;
2418 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2419
2420 record_node_allocation_statistics (TREE_VEC, length);
2421
2422 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2423
2424 TREE_SET_CODE (t, TREE_VEC);
2425 TREE_VEC_LENGTH (t) = len;
2426
2427 return t;
2428 }
2429
2430 /* Grow a TREE_VEC node to new length LEN. */
2431
2432 tree
2433 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2434 {
2435 gcc_assert (TREE_CODE (v) == TREE_VEC);
2436
2437 int oldlen = TREE_VEC_LENGTH (v);
2438 gcc_assert (len > oldlen);
2439
2440 size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2441 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2442
2443 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2444
2445 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2446
2447 TREE_VEC_LENGTH (v) = len;
2448
2449 return v;
2450 }
2451 \f
2452 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2453 fixed, and scalar, complex or vector. */
2454
2455 int
2456 zerop (const_tree expr)
2457 {
2458 return (integer_zerop (expr)
2459 || real_zerop (expr)
2460 || fixed_zerop (expr));
2461 }
2462
2463 /* Return 1 if EXPR is the integer constant zero or a complex constant
2464 of zero. */
2465
2466 int
2467 integer_zerop (const_tree expr)
2468 {
2469 switch (TREE_CODE (expr))
2470 {
2471 case INTEGER_CST:
2472 return wi::to_wide (expr) == 0;
2473 case COMPLEX_CST:
2474 return (integer_zerop (TREE_REALPART (expr))
2475 && integer_zerop (TREE_IMAGPART (expr)));
2476 case VECTOR_CST:
2477 return (VECTOR_CST_NPATTERNS (expr) == 1
2478 && VECTOR_CST_DUPLICATE_P (expr)
2479 && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
2480 default:
2481 return false;
2482 }
2483 }
2484
2485 /* Return 1 if EXPR is the integer constant one or the corresponding
2486 complex constant. */
2487
2488 int
2489 integer_onep (const_tree expr)
2490 {
2491 switch (TREE_CODE (expr))
2492 {
2493 case INTEGER_CST:
2494 return wi::eq_p (wi::to_widest (expr), 1);
2495 case COMPLEX_CST:
2496 return (integer_onep (TREE_REALPART (expr))
2497 && integer_zerop (TREE_IMAGPART (expr)));
2498 case VECTOR_CST:
2499 return (VECTOR_CST_NPATTERNS (expr) == 1
2500 && VECTOR_CST_DUPLICATE_P (expr)
2501 && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2502 default:
2503 return false;
2504 }
2505 }
2506
2507 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2508 return 1 if every piece is the integer constant one. */
2509
2510 int
2511 integer_each_onep (const_tree expr)
2512 {
2513 if (TREE_CODE (expr) == COMPLEX_CST)
2514 return (integer_onep (TREE_REALPART (expr))
2515 && integer_onep (TREE_IMAGPART (expr)));
2516 else
2517 return integer_onep (expr);
2518 }
2519
2520 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2521 it contains, or a complex or vector whose subparts are such integers. */
2522
2523 int
2524 integer_all_onesp (const_tree expr)
2525 {
2526 if (TREE_CODE (expr) == COMPLEX_CST
2527 && integer_all_onesp (TREE_REALPART (expr))
2528 && integer_all_onesp (TREE_IMAGPART (expr)))
2529 return 1;
2530
2531 else if (TREE_CODE (expr) == VECTOR_CST)
2532 return (VECTOR_CST_NPATTERNS (expr) == 1
2533 && VECTOR_CST_DUPLICATE_P (expr)
2534 && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
2535
2536 else if (TREE_CODE (expr) != INTEGER_CST)
2537 return 0;
2538
2539 return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
2540 == wi::to_wide (expr));
2541 }
2542
2543 /* Return 1 if EXPR is the integer constant minus one. */
2544
2545 int
2546 integer_minus_onep (const_tree expr)
2547 {
2548 if (TREE_CODE (expr) == COMPLEX_CST)
2549 return (integer_all_onesp (TREE_REALPART (expr))
2550 && integer_zerop (TREE_IMAGPART (expr)));
2551 else
2552 return integer_all_onesp (expr);
2553 }
2554
2555 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2556 one bit on). */
2557
2558 int
2559 integer_pow2p (const_tree expr)
2560 {
2561 if (TREE_CODE (expr) == COMPLEX_CST
2562 && integer_pow2p (TREE_REALPART (expr))
2563 && integer_zerop (TREE_IMAGPART (expr)))
2564 return 1;
2565
2566 if (TREE_CODE (expr) != INTEGER_CST)
2567 return 0;
2568
2569 return wi::popcount (wi::to_wide (expr)) == 1;
2570 }
2571
2572 /* Return 1 if EXPR is an integer constant other than zero or a
2573 complex constant other than zero. */
2574
2575 int
2576 integer_nonzerop (const_tree expr)
2577 {
2578 return ((TREE_CODE (expr) == INTEGER_CST
2579 && wi::to_wide (expr) != 0)
2580 || (TREE_CODE (expr) == COMPLEX_CST
2581 && (integer_nonzerop (TREE_REALPART (expr))
2582 || integer_nonzerop (TREE_IMAGPART (expr)))));
2583 }
2584
2585 /* Return 1 if EXPR is the integer constant one. For vector,
2586 return 1 if every piece is the integer constant minus one
2587 (representing the value TRUE). */
2588
2589 int
2590 integer_truep (const_tree expr)
2591 {
2592 if (TREE_CODE (expr) == VECTOR_CST)
2593 return integer_all_onesp (expr);
2594 return integer_onep (expr);
2595 }
2596
2597 /* Return 1 if EXPR is the fixed-point constant zero. */
2598
2599 int
2600 fixed_zerop (const_tree expr)
2601 {
2602 return (TREE_CODE (expr) == FIXED_CST
2603 && TREE_FIXED_CST (expr).data.is_zero ());
2604 }
2605
2606 /* Return the power of two represented by a tree node known to be a
2607 power of two. */
2608
2609 int
2610 tree_log2 (const_tree expr)
2611 {
2612 if (TREE_CODE (expr) == COMPLEX_CST)
2613 return tree_log2 (TREE_REALPART (expr));
2614
2615 return wi::exact_log2 (wi::to_wide (expr));
2616 }
2617
2618 /* Similar, but return the largest integer Y such that 2 ** Y is less
2619 than or equal to EXPR. */
2620
2621 int
2622 tree_floor_log2 (const_tree expr)
2623 {
2624 if (TREE_CODE (expr) == COMPLEX_CST)
2625 return tree_log2 (TREE_REALPART (expr));
2626
2627 return wi::floor_log2 (wi::to_wide (expr));
2628 }
2629
2630 /* Return number of known trailing zero bits in EXPR, or, if the value of
2631 EXPR is known to be zero, the precision of it's type. */
2632
2633 unsigned int
2634 tree_ctz (const_tree expr)
2635 {
2636 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2637 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2638 return 0;
2639
2640 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2641 switch (TREE_CODE (expr))
2642 {
2643 case INTEGER_CST:
2644 ret1 = wi::ctz (wi::to_wide (expr));
2645 return MIN (ret1, prec);
2646 case SSA_NAME:
2647 ret1 = wi::ctz (get_nonzero_bits (expr));
2648 return MIN (ret1, prec);
2649 case PLUS_EXPR:
2650 case MINUS_EXPR:
2651 case BIT_IOR_EXPR:
2652 case BIT_XOR_EXPR:
2653 case MIN_EXPR:
2654 case MAX_EXPR:
2655 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2656 if (ret1 == 0)
2657 return ret1;
2658 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2659 return MIN (ret1, ret2);
2660 case POINTER_PLUS_EXPR:
2661 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2662 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2663 /* Second operand is sizetype, which could be in theory
2664 wider than pointer's precision. Make sure we never
2665 return more than prec. */
2666 ret2 = MIN (ret2, prec);
2667 return MIN (ret1, ret2);
2668 case BIT_AND_EXPR:
2669 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2670 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2671 return MAX (ret1, ret2);
2672 case MULT_EXPR:
2673 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2674 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2675 return MIN (ret1 + ret2, prec);
2676 case LSHIFT_EXPR:
2677 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2678 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2679 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2680 {
2681 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2682 return MIN (ret1 + ret2, prec);
2683 }
2684 return ret1;
2685 case RSHIFT_EXPR:
2686 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2687 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2688 {
2689 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2690 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2691 if (ret1 > ret2)
2692 return ret1 - ret2;
2693 }
2694 return 0;
2695 case TRUNC_DIV_EXPR:
2696 case CEIL_DIV_EXPR:
2697 case FLOOR_DIV_EXPR:
2698 case ROUND_DIV_EXPR:
2699 case EXACT_DIV_EXPR:
2700 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2701 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2702 {
2703 int l = tree_log2 (TREE_OPERAND (expr, 1));
2704 if (l >= 0)
2705 {
2706 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2707 ret2 = l;
2708 if (ret1 > ret2)
2709 return ret1 - ret2;
2710 }
2711 }
2712 return 0;
2713 CASE_CONVERT:
2714 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2715 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2716 ret1 = prec;
2717 return MIN (ret1, prec);
2718 case SAVE_EXPR:
2719 return tree_ctz (TREE_OPERAND (expr, 0));
2720 case COND_EXPR:
2721 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2722 if (ret1 == 0)
2723 return 0;
2724 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2725 return MIN (ret1, ret2);
2726 case COMPOUND_EXPR:
2727 return tree_ctz (TREE_OPERAND (expr, 1));
2728 case ADDR_EXPR:
2729 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2730 if (ret1 > BITS_PER_UNIT)
2731 {
2732 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2733 return MIN (ret1, prec);
2734 }
2735 return 0;
2736 default:
2737 return 0;
2738 }
2739 }
2740
2741 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2742 decimal float constants, so don't return 1 for them. */
2743
2744 int
2745 real_zerop (const_tree expr)
2746 {
2747 switch (TREE_CODE (expr))
2748 {
2749 case REAL_CST:
2750 return real_equal (&TREE_REAL_CST (expr), &dconst0)
2751 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2752 case COMPLEX_CST:
2753 return real_zerop (TREE_REALPART (expr))
2754 && real_zerop (TREE_IMAGPART (expr));
2755 case VECTOR_CST:
2756 {
2757 /* Don't simply check for a duplicate because the predicate
2758 accepts both +0.0 and -0.0. */
2759 unsigned count = vector_cst_encoded_nelts (expr);
2760 for (unsigned int i = 0; i < count; ++i)
2761 if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
2762 return false;
2763 return true;
2764 }
2765 default:
2766 return false;
2767 }
2768 }
2769
2770 /* Return 1 if EXPR is the real constant one in real or complex form.
2771 Trailing zeroes matter for decimal float constants, so don't return
2772 1 for them. */
2773
2774 int
2775 real_onep (const_tree expr)
2776 {
2777 switch (TREE_CODE (expr))
2778 {
2779 case REAL_CST:
2780 return real_equal (&TREE_REAL_CST (expr), &dconst1)
2781 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2782 case COMPLEX_CST:
2783 return real_onep (TREE_REALPART (expr))
2784 && real_zerop (TREE_IMAGPART (expr));
2785 case VECTOR_CST:
2786 return (VECTOR_CST_NPATTERNS (expr) == 1
2787 && VECTOR_CST_DUPLICATE_P (expr)
2788 && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2789 default:
2790 return false;
2791 }
2792 }
2793
2794 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2795 matter for decimal float constants, so don't return 1 for them. */
2796
2797 int
2798 real_minus_onep (const_tree expr)
2799 {
2800 switch (TREE_CODE (expr))
2801 {
2802 case REAL_CST:
2803 return real_equal (&TREE_REAL_CST (expr), &dconstm1)
2804 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2805 case COMPLEX_CST:
2806 return real_minus_onep (TREE_REALPART (expr))
2807 && real_zerop (TREE_IMAGPART (expr));
2808 case VECTOR_CST:
2809 return (VECTOR_CST_NPATTERNS (expr) == 1
2810 && VECTOR_CST_DUPLICATE_P (expr)
2811 && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2812 default:
2813 return false;
2814 }
2815 }
2816
2817 /* Nonzero if EXP is a constant or a cast of a constant. */
2818
2819 int
2820 really_constant_p (const_tree exp)
2821 {
2822 /* This is not quite the same as STRIP_NOPS. It does more. */
2823 while (CONVERT_EXPR_P (exp)
2824 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2825 exp = TREE_OPERAND (exp, 0);
2826 return TREE_CONSTANT (exp);
2827 }
2828
2829 /* Return true if T holds a polynomial pointer difference, storing it in
2830 *VALUE if so. A true return means that T's precision is no greater
2831 than 64 bits, which is the largest address space we support, so *VALUE
2832 never loses precision. However, the signedness of the result does
2833 not necessarily match the signedness of T: sometimes an unsigned type
2834 like sizetype is used to encode a value that is actually negative. */
2835
2836 bool
2837 ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
2838 {
2839 if (!t)
2840 return false;
2841 if (TREE_CODE (t) == INTEGER_CST)
2842 {
2843 if (!cst_and_fits_in_hwi (t))
2844 return false;
2845 *value = int_cst_value (t);
2846 return true;
2847 }
2848 if (POLY_INT_CST_P (t))
2849 {
2850 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2851 if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
2852 return false;
2853 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2854 value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
2855 return true;
2856 }
2857 return false;
2858 }
2859
2860 poly_int64
2861 tree_to_poly_int64 (const_tree t)
2862 {
2863 gcc_assert (tree_fits_poly_int64_p (t));
2864 if (POLY_INT_CST_P (t))
2865 return poly_int_cst_value (t).force_shwi ();
2866 return TREE_INT_CST_LOW (t);
2867 }
2868
2869 poly_uint64
2870 tree_to_poly_uint64 (const_tree t)
2871 {
2872 gcc_assert (tree_fits_poly_uint64_p (t));
2873 if (POLY_INT_CST_P (t))
2874 return poly_int_cst_value (t).force_uhwi ();
2875 return TREE_INT_CST_LOW (t);
2876 }
2877 \f
2878 /* Return first list element whose TREE_VALUE is ELEM.
2879 Return 0 if ELEM is not in LIST. */
2880
2881 tree
2882 value_member (tree elem, tree list)
2883 {
2884 while (list)
2885 {
2886 if (elem == TREE_VALUE (list))
2887 return list;
2888 list = TREE_CHAIN (list);
2889 }
2890 return NULL_TREE;
2891 }
2892
2893 /* Return first list element whose TREE_PURPOSE is ELEM.
2894 Return 0 if ELEM is not in LIST. */
2895
2896 tree
2897 purpose_member (const_tree elem, tree list)
2898 {
2899 while (list)
2900 {
2901 if (elem == TREE_PURPOSE (list))
2902 return list;
2903 list = TREE_CHAIN (list);
2904 }
2905 return NULL_TREE;
2906 }
2907
2908 /* Return true if ELEM is in V. */
2909
2910 bool
2911 vec_member (const_tree elem, vec<tree, va_gc> *v)
2912 {
2913 unsigned ix;
2914 tree t;
2915 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2916 if (elem == t)
2917 return true;
2918 return false;
2919 }
2920
2921 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2922 NULL_TREE. */
2923
2924 tree
2925 chain_index (int idx, tree chain)
2926 {
2927 for (; chain && idx > 0; --idx)
2928 chain = TREE_CHAIN (chain);
2929 return chain;
2930 }
2931
2932 /* Return nonzero if ELEM is part of the chain CHAIN. */
2933
2934 int
2935 chain_member (const_tree elem, const_tree chain)
2936 {
2937 while (chain)
2938 {
2939 if (elem == chain)
2940 return 1;
2941 chain = DECL_CHAIN (chain);
2942 }
2943
2944 return 0;
2945 }
2946
2947 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2948 We expect a null pointer to mark the end of the chain.
2949 This is the Lisp primitive `length'. */
2950
2951 int
2952 list_length (const_tree t)
2953 {
2954 const_tree p = t;
2955 #ifdef ENABLE_TREE_CHECKING
2956 const_tree q = t;
2957 #endif
2958 int len = 0;
2959
2960 while (p)
2961 {
2962 p = TREE_CHAIN (p);
2963 #ifdef ENABLE_TREE_CHECKING
2964 if (len % 2)
2965 q = TREE_CHAIN (q);
2966 gcc_assert (p != q);
2967 #endif
2968 len++;
2969 }
2970
2971 return len;
2972 }
2973
2974 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2975 UNION_TYPE TYPE, or NULL_TREE if none. */
2976
2977 tree
2978 first_field (const_tree type)
2979 {
2980 tree t = TYPE_FIELDS (type);
2981 while (t && TREE_CODE (t) != FIELD_DECL)
2982 t = TREE_CHAIN (t);
2983 return t;
2984 }
2985
2986 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2987 by modifying the last node in chain 1 to point to chain 2.
2988 This is the Lisp primitive `nconc'. */
2989
2990 tree
2991 chainon (tree op1, tree op2)
2992 {
2993 tree t1;
2994
2995 if (!op1)
2996 return op2;
2997 if (!op2)
2998 return op1;
2999
3000 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
3001 continue;
3002 TREE_CHAIN (t1) = op2;
3003
3004 #ifdef ENABLE_TREE_CHECKING
3005 {
3006 tree t2;
3007 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
3008 gcc_assert (t2 != t1);
3009 }
3010 #endif
3011
3012 return op1;
3013 }
3014
3015 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
3016
3017 tree
3018 tree_last (tree chain)
3019 {
3020 tree next;
3021 if (chain)
3022 while ((next = TREE_CHAIN (chain)))
3023 chain = next;
3024 return chain;
3025 }
3026
3027 /* Reverse the order of elements in the chain T,
3028 and return the new head of the chain (old last element). */
3029
3030 tree
3031 nreverse (tree t)
3032 {
3033 tree prev = 0, decl, next;
3034 for (decl = t; decl; decl = next)
3035 {
3036 /* We shouldn't be using this function to reverse BLOCK chains; we
3037 have blocks_nreverse for that. */
3038 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
3039 next = TREE_CHAIN (decl);
3040 TREE_CHAIN (decl) = prev;
3041 prev = decl;
3042 }
3043 return prev;
3044 }
3045 \f
3046 /* Return a newly created TREE_LIST node whose
3047 purpose and value fields are PARM and VALUE. */
3048
3049 tree
3050 build_tree_list (tree parm, tree value MEM_STAT_DECL)
3051 {
3052 tree t = make_node (TREE_LIST PASS_MEM_STAT);
3053 TREE_PURPOSE (t) = parm;
3054 TREE_VALUE (t) = value;
3055 return t;
3056 }
3057
3058 /* Build a chain of TREE_LIST nodes from a vector. */
3059
3060 tree
3061 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
3062 {
3063 tree ret = NULL_TREE;
3064 tree *pp = &ret;
3065 unsigned int i;
3066 tree t;
3067 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
3068 {
3069 *pp = build_tree_list (NULL, t PASS_MEM_STAT);
3070 pp = &TREE_CHAIN (*pp);
3071 }
3072 return ret;
3073 }
3074
3075 /* Return a newly created TREE_LIST node whose
3076 purpose and value fields are PURPOSE and VALUE
3077 and whose TREE_CHAIN is CHAIN. */
3078
3079 tree
3080 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
3081 {
3082 tree node;
3083
3084 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
3085 memset (node, 0, sizeof (struct tree_common));
3086
3087 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
3088
3089 TREE_SET_CODE (node, TREE_LIST);
3090 TREE_CHAIN (node) = chain;
3091 TREE_PURPOSE (node) = purpose;
3092 TREE_VALUE (node) = value;
3093 return node;
3094 }
3095
3096 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3097 trees. */
3098
3099 vec<tree, va_gc> *
3100 ctor_to_vec (tree ctor)
3101 {
3102 vec<tree, va_gc> *vec;
3103 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
3104 unsigned int ix;
3105 tree val;
3106
3107 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
3108 vec->quick_push (val);
3109
3110 return vec;
3111 }
3112 \f
3113 /* Return the size nominally occupied by an object of type TYPE
3114 when it resides in memory. The value is measured in units of bytes,
3115 and its data type is that normally used for type sizes
3116 (which is the first type created by make_signed_type or
3117 make_unsigned_type). */
3118
3119 tree
3120 size_in_bytes_loc (location_t loc, const_tree type)
3121 {
3122 tree t;
3123
3124 if (type == error_mark_node)
3125 return integer_zero_node;
3126
3127 type = TYPE_MAIN_VARIANT (type);
3128 t = TYPE_SIZE_UNIT (type);
3129
3130 if (t == 0)
3131 {
3132 lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
3133 return size_zero_node;
3134 }
3135
3136 return t;
3137 }
3138
3139 /* Return the size of TYPE (in bytes) as a wide integer
3140 or return -1 if the size can vary or is larger than an integer. */
3141
3142 HOST_WIDE_INT
3143 int_size_in_bytes (const_tree type)
3144 {
3145 tree t;
3146
3147 if (type == error_mark_node)
3148 return 0;
3149
3150 type = TYPE_MAIN_VARIANT (type);
3151 t = TYPE_SIZE_UNIT (type);
3152
3153 if (t && tree_fits_uhwi_p (t))
3154 return TREE_INT_CST_LOW (t);
3155 else
3156 return -1;
3157 }
3158
3159 /* Return the maximum size of TYPE (in bytes) as a wide integer
3160 or return -1 if the size can vary or is larger than an integer. */
3161
3162 HOST_WIDE_INT
3163 max_int_size_in_bytes (const_tree type)
3164 {
3165 HOST_WIDE_INT size = -1;
3166 tree size_tree;
3167
3168 /* If this is an array type, check for a possible MAX_SIZE attached. */
3169
3170 if (TREE_CODE (type) == ARRAY_TYPE)
3171 {
3172 size_tree = TYPE_ARRAY_MAX_SIZE (type);
3173
3174 if (size_tree && tree_fits_uhwi_p (size_tree))
3175 size = tree_to_uhwi (size_tree);
3176 }
3177
3178 /* If we still haven't been able to get a size, see if the language
3179 can compute a maximum size. */
3180
3181 if (size == -1)
3182 {
3183 size_tree = lang_hooks.types.max_size (type);
3184
3185 if (size_tree && tree_fits_uhwi_p (size_tree))
3186 size = tree_to_uhwi (size_tree);
3187 }
3188
3189 return size;
3190 }
3191 \f
3192 /* Return the bit position of FIELD, in bits from the start of the record.
3193 This is a tree of type bitsizetype. */
3194
3195 tree
3196 bit_position (const_tree field)
3197 {
3198 return bit_from_pos (DECL_FIELD_OFFSET (field),
3199 DECL_FIELD_BIT_OFFSET (field));
3200 }
3201 \f
3202 /* Return the byte position of FIELD, in bytes from the start of the record.
3203 This is a tree of type sizetype. */
3204
3205 tree
3206 byte_position (const_tree field)
3207 {
3208 return byte_from_pos (DECL_FIELD_OFFSET (field),
3209 DECL_FIELD_BIT_OFFSET (field));
3210 }
3211
3212 /* Likewise, but return as an integer. It must be representable in
3213 that way (since it could be a signed value, we don't have the
3214 option of returning -1 like int_size_in_byte can. */
3215
3216 HOST_WIDE_INT
3217 int_byte_position (const_tree field)
3218 {
3219 return tree_to_shwi (byte_position (field));
3220 }
3221 \f
3222 /* Return the strictest alignment, in bits, that T is known to have. */
3223
3224 unsigned int
3225 expr_align (const_tree t)
3226 {
3227 unsigned int align0, align1;
3228
3229 switch (TREE_CODE (t))
3230 {
3231 CASE_CONVERT: case NON_LVALUE_EXPR:
3232 /* If we have conversions, we know that the alignment of the
3233 object must meet each of the alignments of the types. */
3234 align0 = expr_align (TREE_OPERAND (t, 0));
3235 align1 = TYPE_ALIGN (TREE_TYPE (t));
3236 return MAX (align0, align1);
3237
3238 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
3239 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
3240 case CLEANUP_POINT_EXPR:
3241 /* These don't change the alignment of an object. */
3242 return expr_align (TREE_OPERAND (t, 0));
3243
3244 case COND_EXPR:
3245 /* The best we can do is say that the alignment is the least aligned
3246 of the two arms. */
3247 align0 = expr_align (TREE_OPERAND (t, 1));
3248 align1 = expr_align (TREE_OPERAND (t, 2));
3249 return MIN (align0, align1);
3250
3251 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
3252 meaningfully, it's always 1. */
3253 case LABEL_DECL: case CONST_DECL:
3254 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
3255 case FUNCTION_DECL:
3256 gcc_assert (DECL_ALIGN (t) != 0);
3257 return DECL_ALIGN (t);
3258
3259 default:
3260 break;
3261 }
3262
3263 /* Otherwise take the alignment from that of the type. */
3264 return TYPE_ALIGN (TREE_TYPE (t));
3265 }
3266 \f
3267 /* Return, as a tree node, the number of elements for TYPE (which is an
3268 ARRAY_TYPE) minus one. This counts only elements of the top array. */
3269
3270 tree
3271 array_type_nelts (const_tree type)
3272 {
3273 tree index_type, min, max;
3274
3275 /* If they did it with unspecified bounds, then we should have already
3276 given an error about it before we got here. */
3277 if (! TYPE_DOMAIN (type))
3278 return error_mark_node;
3279
3280 index_type = TYPE_DOMAIN (type);
3281 min = TYPE_MIN_VALUE (index_type);
3282 max = TYPE_MAX_VALUE (index_type);
3283
3284 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
3285 if (!max)
3286 return error_mark_node;
3287
3288 return (integer_zerop (min)
3289 ? max
3290 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3291 }
3292 \f
3293 /* If arg is static -- a reference to an object in static storage -- then
3294 return the object. This is not the same as the C meaning of `static'.
3295 If arg isn't static, return NULL. */
3296
3297 tree
3298 staticp (tree arg)
3299 {
3300 switch (TREE_CODE (arg))
3301 {
3302 case FUNCTION_DECL:
3303 /* Nested functions are static, even though taking their address will
3304 involve a trampoline as we unnest the nested function and create
3305 the trampoline on the tree level. */
3306 return arg;
3307
3308 case VAR_DECL:
3309 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3310 && ! DECL_THREAD_LOCAL_P (arg)
3311 && ! DECL_DLLIMPORT_P (arg)
3312 ? arg : NULL);
3313
3314 case CONST_DECL:
3315 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3316 ? arg : NULL);
3317
3318 case CONSTRUCTOR:
3319 return TREE_STATIC (arg) ? arg : NULL;
3320
3321 case LABEL_DECL:
3322 case STRING_CST:
3323 return arg;
3324
3325 case COMPONENT_REF:
3326 /* If the thing being referenced is not a field, then it is
3327 something language specific. */
3328 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3329
3330 /* If we are referencing a bitfield, we can't evaluate an
3331 ADDR_EXPR at compile time and so it isn't a constant. */
3332 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3333 return NULL;
3334
3335 return staticp (TREE_OPERAND (arg, 0));
3336
3337 case BIT_FIELD_REF:
3338 return NULL;
3339
3340 case INDIRECT_REF:
3341 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3342
3343 case ARRAY_REF:
3344 case ARRAY_RANGE_REF:
3345 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3346 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3347 return staticp (TREE_OPERAND (arg, 0));
3348 else
3349 return NULL;
3350
3351 case COMPOUND_LITERAL_EXPR:
3352 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3353
3354 default:
3355 return NULL;
3356 }
3357 }
3358
3359 \f
3360
3361
3362 /* Return whether OP is a DECL whose address is function-invariant. */
3363
3364 bool
3365 decl_address_invariant_p (const_tree op)
3366 {
3367 /* The conditions below are slightly less strict than the one in
3368 staticp. */
3369
3370 switch (TREE_CODE (op))
3371 {
3372 case PARM_DECL:
3373 case RESULT_DECL:
3374 case LABEL_DECL:
3375 case FUNCTION_DECL:
3376 return true;
3377
3378 case VAR_DECL:
3379 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3380 || DECL_THREAD_LOCAL_P (op)
3381 || DECL_CONTEXT (op) == current_function_decl
3382 || decl_function_context (op) == current_function_decl)
3383 return true;
3384 break;
3385
3386 case CONST_DECL:
3387 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3388 || decl_function_context (op) == current_function_decl)
3389 return true;
3390 break;
3391
3392 default:
3393 break;
3394 }
3395
3396 return false;
3397 }
3398
3399 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3400
3401 bool
3402 decl_address_ip_invariant_p (const_tree op)
3403 {
3404 /* The conditions below are slightly less strict than the one in
3405 staticp. */
3406
3407 switch (TREE_CODE (op))
3408 {
3409 case LABEL_DECL:
3410 case FUNCTION_DECL:
3411 case STRING_CST:
3412 return true;
3413
3414 case VAR_DECL:
3415 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3416 && !DECL_DLLIMPORT_P (op))
3417 || DECL_THREAD_LOCAL_P (op))
3418 return true;
3419 break;
3420
3421 case CONST_DECL:
3422 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3423 return true;
3424 break;
3425
3426 default:
3427 break;
3428 }
3429
3430 return false;
3431 }
3432
3433
3434 /* Return true if T is function-invariant (internal function, does
3435 not handle arithmetic; that's handled in skip_simple_arithmetic and
3436 tree_invariant_p). */
3437
3438 static bool
3439 tree_invariant_p_1 (tree t)
3440 {
3441 tree op;
3442
3443 if (TREE_CONSTANT (t)
3444 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3445 return true;
3446
3447 switch (TREE_CODE (t))
3448 {
3449 case SAVE_EXPR:
3450 return true;
3451
3452 case ADDR_EXPR:
3453 op = TREE_OPERAND (t, 0);
3454 while (handled_component_p (op))
3455 {
3456 switch (TREE_CODE (op))
3457 {
3458 case ARRAY_REF:
3459 case ARRAY_RANGE_REF:
3460 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3461 || TREE_OPERAND (op, 2) != NULL_TREE
3462 || TREE_OPERAND (op, 3) != NULL_TREE)
3463 return false;
3464 break;
3465
3466 case COMPONENT_REF:
3467 if (TREE_OPERAND (op, 2) != NULL_TREE)
3468 return false;
3469 break;
3470
3471 default:;
3472 }
3473 op = TREE_OPERAND (op, 0);
3474 }
3475
3476 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3477
3478 default:
3479 break;
3480 }
3481
3482 return false;
3483 }
3484
3485 /* Return true if T is function-invariant. */
3486
3487 bool
3488 tree_invariant_p (tree t)
3489 {
3490 tree inner = skip_simple_arithmetic (t);
3491 return tree_invariant_p_1 (inner);
3492 }
3493
3494 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3495 Do this to any expression which may be used in more than one place,
3496 but must be evaluated only once.
3497
3498 Normally, expand_expr would reevaluate the expression each time.
3499 Calling save_expr produces something that is evaluated and recorded
3500 the first time expand_expr is called on it. Subsequent calls to
3501 expand_expr just reuse the recorded value.
3502
3503 The call to expand_expr that generates code that actually computes
3504 the value is the first call *at compile time*. Subsequent calls
3505 *at compile time* generate code to use the saved value.
3506 This produces correct result provided that *at run time* control
3507 always flows through the insns made by the first expand_expr
3508 before reaching the other places where the save_expr was evaluated.
3509 You, the caller of save_expr, must make sure this is so.
3510
3511 Constants, and certain read-only nodes, are returned with no
3512 SAVE_EXPR because that is safe. Expressions containing placeholders
3513 are not touched; see tree.def for an explanation of what these
3514 are used for. */
3515
3516 tree
3517 save_expr (tree expr)
3518 {
3519 tree inner;
3520
3521 /* If the tree evaluates to a constant, then we don't want to hide that
3522 fact (i.e. this allows further folding, and direct checks for constants).
3523 However, a read-only object that has side effects cannot be bypassed.
3524 Since it is no problem to reevaluate literals, we just return the
3525 literal node. */
3526 inner = skip_simple_arithmetic (expr);
3527 if (TREE_CODE (inner) == ERROR_MARK)
3528 return inner;
3529
3530 if (tree_invariant_p_1 (inner))
3531 return expr;
3532
3533 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3534 it means that the size or offset of some field of an object depends on
3535 the value within another field.
3536
3537 Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3538 and some variable since it would then need to be both evaluated once and
3539 evaluated more than once. Front-ends must assure this case cannot
3540 happen by surrounding any such subexpressions in their own SAVE_EXPR
3541 and forcing evaluation at the proper time. */
3542 if (contains_placeholder_p (inner))
3543 return expr;
3544
3545 expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3546
3547 /* This expression might be placed ahead of a jump to ensure that the
3548 value was computed on both sides of the jump. So make sure it isn't
3549 eliminated as dead. */
3550 TREE_SIDE_EFFECTS (expr) = 1;
3551 return expr;
3552 }
3553
3554 /* Look inside EXPR into any simple arithmetic operations. Return the
3555 outermost non-arithmetic or non-invariant node. */
3556
3557 tree
3558 skip_simple_arithmetic (tree expr)
3559 {
3560 /* We don't care about whether this can be used as an lvalue in this
3561 context. */
3562 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3563 expr = TREE_OPERAND (expr, 0);
3564
3565 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3566 a constant, it will be more efficient to not make another SAVE_EXPR since
3567 it will allow better simplification and GCSE will be able to merge the
3568 computations if they actually occur. */
3569 while (true)
3570 {
3571 if (UNARY_CLASS_P (expr))
3572 expr = TREE_OPERAND (expr, 0);
3573 else if (BINARY_CLASS_P (expr))
3574 {
3575 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3576 expr = TREE_OPERAND (expr, 0);
3577 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3578 expr = TREE_OPERAND (expr, 1);
3579 else
3580 break;
3581 }
3582 else
3583 break;
3584 }
3585
3586 return expr;
3587 }
3588
3589 /* Look inside EXPR into simple arithmetic operations involving constants.
3590 Return the outermost non-arithmetic or non-constant node. */
3591
3592 tree
3593 skip_simple_constant_arithmetic (tree expr)
3594 {
3595 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3596 expr = TREE_OPERAND (expr, 0);
3597
3598 while (true)
3599 {
3600 if (UNARY_CLASS_P (expr))
3601 expr = TREE_OPERAND (expr, 0);
3602 else if (BINARY_CLASS_P (expr))
3603 {
3604 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3605 expr = TREE_OPERAND (expr, 0);
3606 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3607 expr = TREE_OPERAND (expr, 1);
3608 else
3609 break;
3610 }
3611 else
3612 break;
3613 }
3614
3615 return expr;
3616 }
3617
3618 /* Return which tree structure is used by T. */
3619
3620 enum tree_node_structure_enum
3621 tree_node_structure (const_tree t)
3622 {
3623 const enum tree_code code = TREE_CODE (t);
3624 return tree_node_structure_for_code (code);
3625 }
3626
3627 /* Set various status flags when building a CALL_EXPR object T. */
3628
3629 static void
3630 process_call_operands (tree t)
3631 {
3632 bool side_effects = TREE_SIDE_EFFECTS (t);
3633 bool read_only = false;
3634 int i = call_expr_flags (t);
3635
3636 /* Calls have side-effects, except those to const or pure functions. */
3637 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3638 side_effects = true;
3639 /* Propagate TREE_READONLY of arguments for const functions. */
3640 if (i & ECF_CONST)
3641 read_only = true;
3642
3643 if (!side_effects || read_only)
3644 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3645 {
3646 tree op = TREE_OPERAND (t, i);
3647 if (op && TREE_SIDE_EFFECTS (op))
3648 side_effects = true;
3649 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3650 read_only = false;
3651 }
3652
3653 TREE_SIDE_EFFECTS (t) = side_effects;
3654 TREE_READONLY (t) = read_only;
3655 }
3656 \f
3657 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3658 size or offset that depends on a field within a record. */
3659
3660 bool
3661 contains_placeholder_p (const_tree exp)
3662 {
3663 enum tree_code code;
3664
3665 if (!exp)
3666 return 0;
3667
3668 code = TREE_CODE (exp);
3669 if (code == PLACEHOLDER_EXPR)
3670 return 1;
3671
3672 switch (TREE_CODE_CLASS (code))
3673 {
3674 case tcc_reference:
3675 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3676 position computations since they will be converted into a
3677 WITH_RECORD_EXPR involving the reference, which will assume
3678 here will be valid. */
3679 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3680
3681 case tcc_exceptional:
3682 if (code == TREE_LIST)
3683 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3684 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3685 break;
3686
3687 case tcc_unary:
3688 case tcc_binary:
3689 case tcc_comparison:
3690 case tcc_expression:
3691 switch (code)
3692 {
3693 case COMPOUND_EXPR:
3694 /* Ignoring the first operand isn't quite right, but works best. */
3695 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3696
3697 case COND_EXPR:
3698 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3699 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3700 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3701
3702 case SAVE_EXPR:
3703 /* The save_expr function never wraps anything containing
3704 a PLACEHOLDER_EXPR. */
3705 return 0;
3706
3707 default:
3708 break;
3709 }
3710
3711 switch (TREE_CODE_LENGTH (code))
3712 {
3713 case 1:
3714 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3715 case 2:
3716 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3717 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3718 default:
3719 return 0;
3720 }
3721
3722 case tcc_vl_exp:
3723 switch (code)
3724 {
3725 case CALL_EXPR:
3726 {
3727 const_tree arg;
3728 const_call_expr_arg_iterator iter;
3729 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3730 if (CONTAINS_PLACEHOLDER_P (arg))
3731 return 1;
3732 return 0;
3733 }
3734 default:
3735 return 0;
3736 }
3737
3738 default:
3739 return 0;
3740 }
3741 return 0;
3742 }
3743
3744 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3745 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3746 field positions. */
3747
3748 static bool
3749 type_contains_placeholder_1 (const_tree type)
3750 {
3751 /* If the size contains a placeholder or the parent type (component type in
3752 the case of arrays) type involves a placeholder, this type does. */
3753 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3754 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3755 || (!POINTER_TYPE_P (type)
3756 && TREE_TYPE (type)
3757 && type_contains_placeholder_p (TREE_TYPE (type))))
3758 return true;
3759
3760 /* Now do type-specific checks. Note that the last part of the check above
3761 greatly limits what we have to do below. */
3762 switch (TREE_CODE (type))
3763 {
3764 case VOID_TYPE:
3765 case POINTER_BOUNDS_TYPE:
3766 case COMPLEX_TYPE:
3767 case ENUMERAL_TYPE:
3768 case BOOLEAN_TYPE:
3769 case POINTER_TYPE:
3770 case OFFSET_TYPE:
3771 case REFERENCE_TYPE:
3772 case METHOD_TYPE:
3773 case FUNCTION_TYPE:
3774 case VECTOR_TYPE:
3775 case NULLPTR_TYPE:
3776 return false;
3777
3778 case INTEGER_TYPE:
3779 case REAL_TYPE:
3780 case FIXED_POINT_TYPE:
3781 /* Here we just check the bounds. */
3782 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3783 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3784
3785 case ARRAY_TYPE:
3786 /* We have already checked the component type above, so just check
3787 the domain type. Flexible array members have a null domain. */
3788 return TYPE_DOMAIN (type) ?
3789 type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
3790
3791 case RECORD_TYPE:
3792 case UNION_TYPE:
3793 case QUAL_UNION_TYPE:
3794 {
3795 tree field;
3796
3797 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3798 if (TREE_CODE (field) == FIELD_DECL
3799 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3800 || (TREE_CODE (type) == QUAL_UNION_TYPE
3801 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3802 || type_contains_placeholder_p (TREE_TYPE (field))))
3803 return true;
3804
3805 return false;
3806 }
3807
3808 default:
3809 gcc_unreachable ();
3810 }
3811 }
3812
3813 /* Wrapper around above function used to cache its result. */
3814
3815 bool
3816 type_contains_placeholder_p (tree type)
3817 {
3818 bool result;
3819
3820 /* If the contains_placeholder_bits field has been initialized,
3821 then we know the answer. */
3822 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3823 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3824
3825 /* Indicate that we've seen this type node, and the answer is false.
3826 This is what we want to return if we run into recursion via fields. */
3827 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3828
3829 /* Compute the real value. */
3830 result = type_contains_placeholder_1 (type);
3831
3832 /* Store the real value. */
3833 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3834
3835 return result;
3836 }
3837 \f
3838 /* Push tree EXP onto vector QUEUE if it is not already present. */
3839
3840 static void
3841 push_without_duplicates (tree exp, vec<tree> *queue)
3842 {
3843 unsigned int i;
3844 tree iter;
3845
3846 FOR_EACH_VEC_ELT (*queue, i, iter)
3847 if (simple_cst_equal (iter, exp) == 1)
3848 break;
3849
3850 if (!iter)
3851 queue->safe_push (exp);
3852 }
3853
3854 /* Given a tree EXP, find all occurrences of references to fields
3855 in a PLACEHOLDER_EXPR and place them in vector REFS without
3856 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3857 we assume here that EXP contains only arithmetic expressions
3858 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3859 argument list. */
3860
3861 void
3862 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3863 {
3864 enum tree_code code = TREE_CODE (exp);
3865 tree inner;
3866 int i;
3867
3868 /* We handle TREE_LIST and COMPONENT_REF separately. */
3869 if (code == TREE_LIST)
3870 {
3871 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3872 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3873 }
3874 else if (code == COMPONENT_REF)
3875 {
3876 for (inner = TREE_OPERAND (exp, 0);
3877 REFERENCE_CLASS_P (inner);
3878 inner = TREE_OPERAND (inner, 0))
3879 ;
3880
3881 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3882 push_without_duplicates (exp, refs);
3883 else
3884 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3885 }
3886 else
3887 switch (TREE_CODE_CLASS (code))
3888 {
3889 case tcc_constant:
3890 break;
3891
3892 case tcc_declaration:
3893 /* Variables allocated to static storage can stay. */
3894 if (!TREE_STATIC (exp))
3895 push_without_duplicates (exp, refs);
3896 break;
3897
3898 case tcc_expression:
3899 /* This is the pattern built in ada/make_aligning_type. */
3900 if (code == ADDR_EXPR
3901 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3902 {
3903 push_without_duplicates (exp, refs);
3904 break;
3905 }
3906
3907 /* Fall through. */
3908
3909 case tcc_exceptional:
3910 case tcc_unary:
3911 case tcc_binary:
3912 case tcc_comparison:
3913 case tcc_reference:
3914 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3915 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3916 break;
3917
3918 case tcc_vl_exp:
3919 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3920 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3921 break;
3922
3923 default:
3924 gcc_unreachable ();
3925 }
3926 }
3927
3928 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3929 return a tree with all occurrences of references to F in a
3930 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3931 CONST_DECLs. Note that we assume here that EXP contains only
3932 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3933 occurring only in their argument list. */
3934
3935 tree
3936 substitute_in_expr (tree exp, tree f, tree r)
3937 {
3938 enum tree_code code = TREE_CODE (exp);
3939 tree op0, op1, op2, op3;
3940 tree new_tree;
3941
3942 /* We handle TREE_LIST and COMPONENT_REF separately. */
3943 if (code == TREE_LIST)
3944 {
3945 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3946 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3947 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3948 return exp;
3949
3950 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3951 }
3952 else if (code == COMPONENT_REF)
3953 {
3954 tree inner;
3955
3956 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3957 and it is the right field, replace it with R. */
3958 for (inner = TREE_OPERAND (exp, 0);
3959 REFERENCE_CLASS_P (inner);
3960 inner = TREE_OPERAND (inner, 0))
3961 ;
3962
3963 /* The field. */
3964 op1 = TREE_OPERAND (exp, 1);
3965
3966 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3967 return r;
3968
3969 /* If this expression hasn't been completed let, leave it alone. */
3970 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3971 return exp;
3972
3973 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3974 if (op0 == TREE_OPERAND (exp, 0))
3975 return exp;
3976
3977 new_tree
3978 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3979 }
3980 else
3981 switch (TREE_CODE_CLASS (code))
3982 {
3983 case tcc_constant:
3984 return exp;
3985
3986 case tcc_declaration:
3987 if (exp == f)
3988 return r;
3989 else
3990 return exp;
3991
3992 case tcc_expression:
3993 if (exp == f)
3994 return r;
3995
3996 /* Fall through. */
3997
3998 case tcc_exceptional:
3999 case tcc_unary:
4000 case tcc_binary:
4001 case tcc_comparison:
4002 case tcc_reference:
4003 switch (TREE_CODE_LENGTH (code))
4004 {
4005 case 0:
4006 return exp;
4007
4008 case 1:
4009 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4010 if (op0 == TREE_OPERAND (exp, 0))
4011 return exp;
4012
4013 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4014 break;
4015
4016 case 2:
4017 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4018 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4019
4020 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4021 return exp;
4022
4023 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4024 break;
4025
4026 case 3:
4027 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4028 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4029 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4030
4031 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4032 && op2 == TREE_OPERAND (exp, 2))
4033 return exp;
4034
4035 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4036 break;
4037
4038 case 4:
4039 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4040 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4041 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4042 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
4043
4044 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4045 && op2 == TREE_OPERAND (exp, 2)
4046 && op3 == TREE_OPERAND (exp, 3))
4047 return exp;
4048
4049 new_tree
4050 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4051 break;
4052
4053 default:
4054 gcc_unreachable ();
4055 }
4056 break;
4057
4058 case tcc_vl_exp:
4059 {
4060 int i;
4061
4062 new_tree = NULL_TREE;
4063
4064 /* If we are trying to replace F with a constant or with another
4065 instance of one of the arguments of the call, inline back
4066 functions which do nothing else than computing a value from
4067 the arguments they are passed. This makes it possible to
4068 fold partially or entirely the replacement expression. */
4069 if (code == CALL_EXPR)
4070 {
4071 bool maybe_inline = false;
4072 if (CONSTANT_CLASS_P (r))
4073 maybe_inline = true;
4074 else
4075 for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
4076 if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
4077 {
4078 maybe_inline = true;
4079 break;
4080 }
4081 if (maybe_inline)
4082 {
4083 tree t = maybe_inline_call_in_expr (exp);
4084 if (t)
4085 return SUBSTITUTE_IN_EXPR (t, f, r);
4086 }
4087 }
4088
4089 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4090 {
4091 tree op = TREE_OPERAND (exp, i);
4092 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
4093 if (new_op != op)
4094 {
4095 if (!new_tree)
4096 new_tree = copy_node (exp);
4097 TREE_OPERAND (new_tree, i) = new_op;
4098 }
4099 }
4100
4101 if (new_tree)
4102 {
4103 new_tree = fold (new_tree);
4104 if (TREE_CODE (new_tree) == CALL_EXPR)
4105 process_call_operands (new_tree);
4106 }
4107 else
4108 return exp;
4109 }
4110 break;
4111
4112 default:
4113 gcc_unreachable ();
4114 }
4115
4116 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4117
4118 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4119 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4120
4121 return new_tree;
4122 }
4123
4124 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4125 for it within OBJ, a tree that is an object or a chain of references. */
4126
4127 tree
4128 substitute_placeholder_in_expr (tree exp, tree obj)
4129 {
4130 enum tree_code code = TREE_CODE (exp);
4131 tree op0, op1, op2, op3;
4132 tree new_tree;
4133
4134 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4135 in the chain of OBJ. */
4136 if (code == PLACEHOLDER_EXPR)
4137 {
4138 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
4139 tree elt;
4140
4141 for (elt = obj; elt != 0;
4142 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4143 || TREE_CODE (elt) == COND_EXPR)
4144 ? TREE_OPERAND (elt, 1)
4145 : (REFERENCE_CLASS_P (elt)
4146 || UNARY_CLASS_P (elt)
4147 || BINARY_CLASS_P (elt)
4148 || VL_EXP_CLASS_P (elt)
4149 || EXPRESSION_CLASS_P (elt))
4150 ? TREE_OPERAND (elt, 0) : 0))
4151 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
4152 return elt;
4153
4154 for (elt = obj; elt != 0;
4155 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4156 || TREE_CODE (elt) == COND_EXPR)
4157 ? TREE_OPERAND (elt, 1)
4158 : (REFERENCE_CLASS_P (elt)
4159 || UNARY_CLASS_P (elt)
4160 || BINARY_CLASS_P (elt)
4161 || VL_EXP_CLASS_P (elt)
4162 || EXPRESSION_CLASS_P (elt))
4163 ? TREE_OPERAND (elt, 0) : 0))
4164 if (POINTER_TYPE_P (TREE_TYPE (elt))
4165 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
4166 == need_type))
4167 return fold_build1 (INDIRECT_REF, need_type, elt);
4168
4169 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
4170 survives until RTL generation, there will be an error. */
4171 return exp;
4172 }
4173
4174 /* TREE_LIST is special because we need to look at TREE_VALUE
4175 and TREE_CHAIN, not TREE_OPERANDS. */
4176 else if (code == TREE_LIST)
4177 {
4178 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4179 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4180 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4181 return exp;
4182
4183 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4184 }
4185 else
4186 switch (TREE_CODE_CLASS (code))
4187 {
4188 case tcc_constant:
4189 case tcc_declaration:
4190 return exp;
4191
4192 case tcc_exceptional:
4193 case tcc_unary:
4194 case tcc_binary:
4195 case tcc_comparison:
4196 case tcc_expression:
4197 case tcc_reference:
4198 case tcc_statement:
4199 switch (TREE_CODE_LENGTH (code))
4200 {
4201 case 0:
4202 return exp;
4203
4204 case 1:
4205 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4206 if (op0 == TREE_OPERAND (exp, 0))
4207 return exp;
4208
4209 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4210 break;
4211
4212 case 2:
4213 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4214 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4215
4216 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4217 return exp;
4218
4219 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4220 break;
4221
4222 case 3:
4223 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4224 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4225 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4226
4227 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4228 && op2 == TREE_OPERAND (exp, 2))
4229 return exp;
4230
4231 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4232 break;
4233
4234 case 4:
4235 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4236 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4237 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4238 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4239
4240 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4241 && op2 == TREE_OPERAND (exp, 2)
4242 && op3 == TREE_OPERAND (exp, 3))
4243 return exp;
4244
4245 new_tree
4246 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4247 break;
4248
4249 default:
4250 gcc_unreachable ();
4251 }
4252 break;
4253
4254 case tcc_vl_exp:
4255 {
4256 int i;
4257
4258 new_tree = NULL_TREE;
4259
4260 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4261 {
4262 tree op = TREE_OPERAND (exp, i);
4263 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4264 if (new_op != op)
4265 {
4266 if (!new_tree)
4267 new_tree = copy_node (exp);
4268 TREE_OPERAND (new_tree, i) = new_op;
4269 }
4270 }
4271
4272 if (new_tree)
4273 {
4274 new_tree = fold (new_tree);
4275 if (TREE_CODE (new_tree) == CALL_EXPR)
4276 process_call_operands (new_tree);
4277 }
4278 else
4279 return exp;
4280 }
4281 break;
4282
4283 default:
4284 gcc_unreachable ();
4285 }
4286
4287 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4288
4289 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4290 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4291
4292 return new_tree;
4293 }
4294 \f
4295
4296 /* Subroutine of stabilize_reference; this is called for subtrees of
4297 references. Any expression with side-effects must be put in a SAVE_EXPR
4298 to ensure that it is only evaluated once.
4299
4300 We don't put SAVE_EXPR nodes around everything, because assigning very
4301 simple expressions to temporaries causes us to miss good opportunities
4302 for optimizations. Among other things, the opportunity to fold in the
4303 addition of a constant into an addressing mode often gets lost, e.g.
4304 "y[i+1] += x;". In general, we take the approach that we should not make
4305 an assignment unless we are forced into it - i.e., that any non-side effect
4306 operator should be allowed, and that cse should take care of coalescing
4307 multiple utterances of the same expression should that prove fruitful. */
4308
4309 static tree
4310 stabilize_reference_1 (tree e)
4311 {
4312 tree result;
4313 enum tree_code code = TREE_CODE (e);
4314
4315 /* We cannot ignore const expressions because it might be a reference
4316 to a const array but whose index contains side-effects. But we can
4317 ignore things that are actual constant or that already have been
4318 handled by this function. */
4319
4320 if (tree_invariant_p (e))
4321 return e;
4322
4323 switch (TREE_CODE_CLASS (code))
4324 {
4325 case tcc_exceptional:
4326 case tcc_type:
4327 case tcc_declaration:
4328 case tcc_comparison:
4329 case tcc_statement:
4330 case tcc_expression:
4331 case tcc_reference:
4332 case tcc_vl_exp:
4333 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4334 so that it will only be evaluated once. */
4335 /* The reference (r) and comparison (<) classes could be handled as
4336 below, but it is generally faster to only evaluate them once. */
4337 if (TREE_SIDE_EFFECTS (e))
4338 return save_expr (e);
4339 return e;
4340
4341 case tcc_constant:
4342 /* Constants need no processing. In fact, we should never reach
4343 here. */
4344 return e;
4345
4346 case tcc_binary:
4347 /* Division is slow and tends to be compiled with jumps,
4348 especially the division by powers of 2 that is often
4349 found inside of an array reference. So do it just once. */
4350 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4351 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4352 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4353 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4354 return save_expr (e);
4355 /* Recursively stabilize each operand. */
4356 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4357 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4358 break;
4359
4360 case tcc_unary:
4361 /* Recursively stabilize each operand. */
4362 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4363 break;
4364
4365 default:
4366 gcc_unreachable ();
4367 }
4368
4369 TREE_TYPE (result) = TREE_TYPE (e);
4370 TREE_READONLY (result) = TREE_READONLY (e);
4371 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4372 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4373
4374 return result;
4375 }
4376
4377 /* Stabilize a reference so that we can use it any number of times
4378 without causing its operands to be evaluated more than once.
4379 Returns the stabilized reference. This works by means of save_expr,
4380 so see the caveats in the comments about save_expr.
4381
4382 Also allows conversion expressions whose operands are references.
4383 Any other kind of expression is returned unchanged. */
4384
4385 tree
4386 stabilize_reference (tree ref)
4387 {
4388 tree result;
4389 enum tree_code code = TREE_CODE (ref);
4390
4391 switch (code)
4392 {
4393 case VAR_DECL:
4394 case PARM_DECL:
4395 case RESULT_DECL:
4396 /* No action is needed in this case. */
4397 return ref;
4398
4399 CASE_CONVERT:
4400 case FLOAT_EXPR:
4401 case FIX_TRUNC_EXPR:
4402 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4403 break;
4404
4405 case INDIRECT_REF:
4406 result = build_nt (INDIRECT_REF,
4407 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4408 break;
4409
4410 case COMPONENT_REF:
4411 result = build_nt (COMPONENT_REF,
4412 stabilize_reference (TREE_OPERAND (ref, 0)),
4413 TREE_OPERAND (ref, 1), NULL_TREE);
4414 break;
4415
4416 case BIT_FIELD_REF:
4417 result = build_nt (BIT_FIELD_REF,
4418 stabilize_reference (TREE_OPERAND (ref, 0)),
4419 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4420 REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4421 break;
4422
4423 case ARRAY_REF:
4424 result = build_nt (ARRAY_REF,
4425 stabilize_reference (TREE_OPERAND (ref, 0)),
4426 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4427 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4428 break;
4429
4430 case ARRAY_RANGE_REF:
4431 result = build_nt (ARRAY_RANGE_REF,
4432 stabilize_reference (TREE_OPERAND (ref, 0)),
4433 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4434 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4435 break;
4436
4437 case COMPOUND_EXPR:
4438 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4439 it wouldn't be ignored. This matters when dealing with
4440 volatiles. */
4441 return stabilize_reference_1 (ref);
4442
4443 /* If arg isn't a kind of lvalue we recognize, make no change.
4444 Caller should recognize the error for an invalid lvalue. */
4445 default:
4446 return ref;
4447
4448 case ERROR_MARK:
4449 return error_mark_node;
4450 }
4451
4452 TREE_TYPE (result) = TREE_TYPE (ref);
4453 TREE_READONLY (result) = TREE_READONLY (ref);
4454 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4455 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4456
4457 return result;
4458 }
4459 \f
4460 /* Low-level constructors for expressions. */
4461
4462 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4463 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4464
4465 void
4466 recompute_tree_invariant_for_addr_expr (tree t)
4467 {
4468 tree node;
4469 bool tc = true, se = false;
4470
4471 gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4472
4473 /* We started out assuming this address is both invariant and constant, but
4474 does not have side effects. Now go down any handled components and see if
4475 any of them involve offsets that are either non-constant or non-invariant.
4476 Also check for side-effects.
4477
4478 ??? Note that this code makes no attempt to deal with the case where
4479 taking the address of something causes a copy due to misalignment. */
4480
4481 #define UPDATE_FLAGS(NODE) \
4482 do { tree _node = (NODE); \
4483 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4484 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4485
4486 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4487 node = TREE_OPERAND (node, 0))
4488 {
4489 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4490 array reference (probably made temporarily by the G++ front end),
4491 so ignore all the operands. */
4492 if ((TREE_CODE (node) == ARRAY_REF
4493 || TREE_CODE (node) == ARRAY_RANGE_REF)
4494 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4495 {
4496 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4497 if (TREE_OPERAND (node, 2))
4498 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4499 if (TREE_OPERAND (node, 3))
4500 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4501 }
4502 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4503 FIELD_DECL, apparently. The G++ front end can put something else
4504 there, at least temporarily. */
4505 else if (TREE_CODE (node) == COMPONENT_REF
4506 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4507 {
4508 if (TREE_OPERAND (node, 2))
4509 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4510 }
4511 }
4512
4513 node = lang_hooks.expr_to_decl (node, &tc, &se);
4514
4515 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4516 the address, since &(*a)->b is a form of addition. If it's a constant, the
4517 address is constant too. If it's a decl, its address is constant if the
4518 decl is static. Everything else is not constant and, furthermore,
4519 taking the address of a volatile variable is not volatile. */
4520 if (TREE_CODE (node) == INDIRECT_REF
4521 || TREE_CODE (node) == MEM_REF)
4522 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4523 else if (CONSTANT_CLASS_P (node))
4524 ;
4525 else if (DECL_P (node))
4526 tc &= (staticp (node) != NULL_TREE);
4527 else
4528 {
4529 tc = false;
4530 se |= TREE_SIDE_EFFECTS (node);
4531 }
4532
4533
4534 TREE_CONSTANT (t) = tc;
4535 TREE_SIDE_EFFECTS (t) = se;
4536 #undef UPDATE_FLAGS
4537 }
4538
4539 /* Build an expression of code CODE, data type TYPE, and operands as
4540 specified. Expressions and reference nodes can be created this way.
4541 Constants, decls, types and misc nodes cannot be.
4542
4543 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4544 enough for all extant tree codes. */
4545
4546 tree
4547 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4548 {
4549 tree t;
4550
4551 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4552
4553 t = make_node (code PASS_MEM_STAT);
4554 TREE_TYPE (t) = tt;
4555
4556 return t;
4557 }
4558
4559 tree
4560 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4561 {
4562 int length = sizeof (struct tree_exp);
4563 tree t;
4564
4565 record_node_allocation_statistics (code, length);
4566
4567 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4568
4569 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4570
4571 memset (t, 0, sizeof (struct tree_common));
4572
4573 TREE_SET_CODE (t, code);
4574
4575 TREE_TYPE (t) = type;
4576 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4577 TREE_OPERAND (t, 0) = node;
4578 if (node && !TYPE_P (node))
4579 {
4580 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4581 TREE_READONLY (t) = TREE_READONLY (node);
4582 }
4583
4584 if (TREE_CODE_CLASS (code) == tcc_statement)
4585 {
4586 if (code != DEBUG_BEGIN_STMT)
4587 TREE_SIDE_EFFECTS (t) = 1;
4588 }
4589 else switch (code)
4590 {
4591 case VA_ARG_EXPR:
4592 /* All of these have side-effects, no matter what their
4593 operands are. */
4594 TREE_SIDE_EFFECTS (t) = 1;
4595 TREE_READONLY (t) = 0;
4596 break;
4597
4598 case INDIRECT_REF:
4599 /* Whether a dereference is readonly has nothing to do with whether
4600 its operand is readonly. */
4601 TREE_READONLY (t) = 0;
4602 break;
4603
4604 case ADDR_EXPR:
4605 if (node)
4606 recompute_tree_invariant_for_addr_expr (t);
4607 break;
4608
4609 default:
4610 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4611 && node && !TYPE_P (node)
4612 && TREE_CONSTANT (node))
4613 TREE_CONSTANT (t) = 1;
4614 if (TREE_CODE_CLASS (code) == tcc_reference
4615 && node && TREE_THIS_VOLATILE (node))
4616 TREE_THIS_VOLATILE (t) = 1;
4617 break;
4618 }
4619
4620 return t;
4621 }
4622
4623 #define PROCESS_ARG(N) \
4624 do { \
4625 TREE_OPERAND (t, N) = arg##N; \
4626 if (arg##N &&!TYPE_P (arg##N)) \
4627 { \
4628 if (TREE_SIDE_EFFECTS (arg##N)) \
4629 side_effects = 1; \
4630 if (!TREE_READONLY (arg##N) \
4631 && !CONSTANT_CLASS_P (arg##N)) \
4632 (void) (read_only = 0); \
4633 if (!TREE_CONSTANT (arg##N)) \
4634 (void) (constant = 0); \
4635 } \
4636 } while (0)
4637
4638 tree
4639 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4640 {
4641 bool constant, read_only, side_effects, div_by_zero;
4642 tree t;
4643
4644 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4645
4646 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4647 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4648 /* When sizetype precision doesn't match that of pointers
4649 we need to be able to build explicit extensions or truncations
4650 of the offset argument. */
4651 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4652 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4653 && TREE_CODE (arg1) == INTEGER_CST);
4654
4655 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4656 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4657 && ptrofftype_p (TREE_TYPE (arg1)));
4658
4659 t = make_node (code PASS_MEM_STAT);
4660 TREE_TYPE (t) = tt;
4661
4662 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4663 result based on those same flags for the arguments. But if the
4664 arguments aren't really even `tree' expressions, we shouldn't be trying
4665 to do this. */
4666
4667 /* Expressions without side effects may be constant if their
4668 arguments are as well. */
4669 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4670 || TREE_CODE_CLASS (code) == tcc_binary);
4671 read_only = 1;
4672 side_effects = TREE_SIDE_EFFECTS (t);
4673
4674 switch (code)
4675 {
4676 case TRUNC_DIV_EXPR:
4677 case CEIL_DIV_EXPR:
4678 case FLOOR_DIV_EXPR:
4679 case ROUND_DIV_EXPR:
4680 case EXACT_DIV_EXPR:
4681 case CEIL_MOD_EXPR:
4682 case FLOOR_MOD_EXPR:
4683 case ROUND_MOD_EXPR:
4684 case TRUNC_MOD_EXPR:
4685 div_by_zero = integer_zerop (arg1);
4686 break;
4687 default:
4688 div_by_zero = false;
4689 }
4690
4691 PROCESS_ARG (0);
4692 PROCESS_ARG (1);
4693
4694 TREE_SIDE_EFFECTS (t) = side_effects;
4695 if (code == MEM_REF)
4696 {
4697 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4698 {
4699 tree o = TREE_OPERAND (arg0, 0);
4700 TREE_READONLY (t) = TREE_READONLY (o);
4701 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4702 }
4703 }
4704 else
4705 {
4706 TREE_READONLY (t) = read_only;
4707 /* Don't mark X / 0 as constant. */
4708 TREE_CONSTANT (t) = constant && !div_by_zero;
4709 TREE_THIS_VOLATILE (t)
4710 = (TREE_CODE_CLASS (code) == tcc_reference
4711 && arg0 && TREE_THIS_VOLATILE (arg0));
4712 }
4713
4714 return t;
4715 }
4716
4717
4718 tree
4719 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
4720 tree arg2 MEM_STAT_DECL)
4721 {
4722 bool constant, read_only, side_effects;
4723 tree t;
4724
4725 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4726 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4727
4728 t = make_node (code PASS_MEM_STAT);
4729 TREE_TYPE (t) = tt;
4730
4731 read_only = 1;
4732
4733 /* As a special exception, if COND_EXPR has NULL branches, we
4734 assume that it is a gimple statement and always consider
4735 it to have side effects. */
4736 if (code == COND_EXPR
4737 && tt == void_type_node
4738 && arg1 == NULL_TREE
4739 && arg2 == NULL_TREE)
4740 side_effects = true;
4741 else
4742 side_effects = TREE_SIDE_EFFECTS (t);
4743
4744 PROCESS_ARG (0);
4745 PROCESS_ARG (1);
4746 PROCESS_ARG (2);
4747
4748 if (code == COND_EXPR)
4749 TREE_READONLY (t) = read_only;
4750
4751 TREE_SIDE_EFFECTS (t) = side_effects;
4752 TREE_THIS_VOLATILE (t)
4753 = (TREE_CODE_CLASS (code) == tcc_reference
4754 && arg0 && TREE_THIS_VOLATILE (arg0));
4755
4756 return t;
4757 }
4758
4759 tree
4760 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
4761 tree arg2, tree arg3 MEM_STAT_DECL)
4762 {
4763 bool constant, read_only, side_effects;
4764 tree t;
4765
4766 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4767
4768 t = make_node (code PASS_MEM_STAT);
4769 TREE_TYPE (t) = tt;
4770
4771 side_effects = TREE_SIDE_EFFECTS (t);
4772
4773 PROCESS_ARG (0);
4774 PROCESS_ARG (1);
4775 PROCESS_ARG (2);
4776 PROCESS_ARG (3);
4777
4778 TREE_SIDE_EFFECTS (t) = side_effects;
4779 TREE_THIS_VOLATILE (t)
4780 = (TREE_CODE_CLASS (code) == tcc_reference
4781 && arg0 && TREE_THIS_VOLATILE (arg0));
4782
4783 return t;
4784 }
4785
4786 tree
4787 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
4788 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4789 {
4790 bool constant, read_only, side_effects;
4791 tree t;
4792
4793 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4794
4795 t = make_node (code PASS_MEM_STAT);
4796 TREE_TYPE (t) = tt;
4797
4798 side_effects = TREE_SIDE_EFFECTS (t);
4799
4800 PROCESS_ARG (0);
4801 PROCESS_ARG (1);
4802 PROCESS_ARG (2);
4803 PROCESS_ARG (3);
4804 PROCESS_ARG (4);
4805
4806 TREE_SIDE_EFFECTS (t) = side_effects;
4807 if (code == TARGET_MEM_REF)
4808 {
4809 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4810 {
4811 tree o = TREE_OPERAND (arg0, 0);
4812 TREE_READONLY (t) = TREE_READONLY (o);
4813 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4814 }
4815 }
4816 else
4817 TREE_THIS_VOLATILE (t)
4818 = (TREE_CODE_CLASS (code) == tcc_reference
4819 && arg0 && TREE_THIS_VOLATILE (arg0));
4820
4821 return t;
4822 }
4823
4824 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4825 on the pointer PTR. */
4826
4827 tree
4828 build_simple_mem_ref_loc (location_t loc, tree ptr)
4829 {
4830 poly_int64 offset = 0;
4831 tree ptype = TREE_TYPE (ptr);
4832 tree tem;
4833 /* For convenience allow addresses that collapse to a simple base
4834 and offset. */
4835 if (TREE_CODE (ptr) == ADDR_EXPR
4836 && (handled_component_p (TREE_OPERAND (ptr, 0))
4837 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4838 {
4839 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4840 gcc_assert (ptr);
4841 if (TREE_CODE (ptr) == MEM_REF)
4842 {
4843 offset += mem_ref_offset (ptr).force_shwi ();
4844 ptr = TREE_OPERAND (ptr, 0);
4845 }
4846 else
4847 ptr = build_fold_addr_expr (ptr);
4848 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4849 }
4850 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4851 ptr, build_int_cst (ptype, offset));
4852 SET_EXPR_LOCATION (tem, loc);
4853 return tem;
4854 }
4855
4856 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4857
4858 poly_offset_int
4859 mem_ref_offset (const_tree t)
4860 {
4861 return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
4862 SIGNED);
4863 }
4864
4865 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4866 offsetted by OFFSET units. */
4867
4868 tree
4869 build_invariant_address (tree type, tree base, poly_int64 offset)
4870 {
4871 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4872 build_fold_addr_expr (base),
4873 build_int_cst (ptr_type_node, offset));
4874 tree addr = build1 (ADDR_EXPR, type, ref);
4875 recompute_tree_invariant_for_addr_expr (addr);
4876 return addr;
4877 }
4878
4879 /* Similar except don't specify the TREE_TYPE
4880 and leave the TREE_SIDE_EFFECTS as 0.
4881 It is permissible for arguments to be null,
4882 or even garbage if their values do not matter. */
4883
4884 tree
4885 build_nt (enum tree_code code, ...)
4886 {
4887 tree t;
4888 int length;
4889 int i;
4890 va_list p;
4891
4892 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4893
4894 va_start (p, code);
4895
4896 t = make_node (code);
4897 length = TREE_CODE_LENGTH (code);
4898
4899 for (i = 0; i < length; i++)
4900 TREE_OPERAND (t, i) = va_arg (p, tree);
4901
4902 va_end (p);
4903 return t;
4904 }
4905
4906 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4907 tree vec. */
4908
4909 tree
4910 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4911 {
4912 tree ret, t;
4913 unsigned int ix;
4914
4915 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4916 CALL_EXPR_FN (ret) = fn;
4917 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4918 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4919 CALL_EXPR_ARG (ret, ix) = t;
4920 return ret;
4921 }
4922 \f
4923 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4924 We do NOT enter this node in any sort of symbol table.
4925
4926 LOC is the location of the decl.
4927
4928 layout_decl is used to set up the decl's storage layout.
4929 Other slots are initialized to 0 or null pointers. */
4930
4931 tree
4932 build_decl (location_t loc, enum tree_code code, tree name,
4933 tree type MEM_STAT_DECL)
4934 {
4935 tree t;
4936
4937 t = make_node (code PASS_MEM_STAT);
4938 DECL_SOURCE_LOCATION (t) = loc;
4939
4940 /* if (type == error_mark_node)
4941 type = integer_type_node; */
4942 /* That is not done, deliberately, so that having error_mark_node
4943 as the type can suppress useless errors in the use of this variable. */
4944
4945 DECL_NAME (t) = name;
4946 TREE_TYPE (t) = type;
4947
4948 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4949 layout_decl (t, 0);
4950
4951 return t;
4952 }
4953
4954 /* Builds and returns function declaration with NAME and TYPE. */
4955
4956 tree
4957 build_fn_decl (const char *name, tree type)
4958 {
4959 tree id = get_identifier (name);
4960 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4961
4962 DECL_EXTERNAL (decl) = 1;
4963 TREE_PUBLIC (decl) = 1;
4964 DECL_ARTIFICIAL (decl) = 1;
4965 TREE_NOTHROW (decl) = 1;
4966
4967 return decl;
4968 }
4969
4970 vec<tree, va_gc> *all_translation_units;
4971
4972 /* Builds a new translation-unit decl with name NAME, queues it in the
4973 global list of translation-unit decls and returns it. */
4974
4975 tree
4976 build_translation_unit_decl (tree name)
4977 {
4978 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4979 name, NULL_TREE);
4980 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4981 vec_safe_push (all_translation_units, tu);
4982 return tu;
4983 }
4984
4985 \f
4986 /* BLOCK nodes are used to represent the structure of binding contours
4987 and declarations, once those contours have been exited and their contents
4988 compiled. This information is used for outputting debugging info. */
4989
4990 tree
4991 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4992 {
4993 tree block = make_node (BLOCK);
4994
4995 BLOCK_VARS (block) = vars;
4996 BLOCK_SUBBLOCKS (block) = subblocks;
4997 BLOCK_SUPERCONTEXT (block) = supercontext;
4998 BLOCK_CHAIN (block) = chain;
4999 return block;
5000 }
5001
5002 \f
5003 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5004
5005 LOC is the location to use in tree T. */
5006
5007 void
5008 protected_set_expr_location (tree t, location_t loc)
5009 {
5010 if (CAN_HAVE_LOCATION_P (t))
5011 SET_EXPR_LOCATION (t, loc);
5012 }
5013 \f
5014 /* Reset the expression *EXPR_P, a size or position.
5015
5016 ??? We could reset all non-constant sizes or positions. But it's cheap
5017 enough to not do so and refrain from adding workarounds to dwarf2out.c.
5018
5019 We need to reset self-referential sizes or positions because they cannot
5020 be gimplified and thus can contain a CALL_EXPR after the gimplification
5021 is finished, which will run afoul of LTO streaming. And they need to be
5022 reset to something essentially dummy but not constant, so as to preserve
5023 the properties of the object they are attached to. */
5024
5025 static inline void
5026 free_lang_data_in_one_sizepos (tree *expr_p)
5027 {
5028 tree expr = *expr_p;
5029 if (CONTAINS_PLACEHOLDER_P (expr))
5030 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
5031 }
5032
5033
5034 /* Reset all the fields in a binfo node BINFO. We only keep
5035 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
5036
5037 static void
5038 free_lang_data_in_binfo (tree binfo)
5039 {
5040 unsigned i;
5041 tree t;
5042
5043 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
5044
5045 BINFO_VIRTUALS (binfo) = NULL_TREE;
5046 BINFO_BASE_ACCESSES (binfo) = NULL;
5047 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
5048 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
5049
5050 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
5051 free_lang_data_in_binfo (t);
5052 }
5053
5054
5055 /* Reset all language specific information still present in TYPE. */
5056
5057 static void
5058 free_lang_data_in_type (tree type)
5059 {
5060 gcc_assert (TYPE_P (type));
5061
5062 /* Give the FE a chance to remove its own data first. */
5063 lang_hooks.free_lang_data (type);
5064
5065 TREE_LANG_FLAG_0 (type) = 0;
5066 TREE_LANG_FLAG_1 (type) = 0;
5067 TREE_LANG_FLAG_2 (type) = 0;
5068 TREE_LANG_FLAG_3 (type) = 0;
5069 TREE_LANG_FLAG_4 (type) = 0;
5070 TREE_LANG_FLAG_5 (type) = 0;
5071 TREE_LANG_FLAG_6 (type) = 0;
5072
5073 if (TREE_CODE (type) == FUNCTION_TYPE)
5074 {
5075 /* Remove the const and volatile qualifiers from arguments. The
5076 C++ front end removes them, but the C front end does not,
5077 leading to false ODR violation errors when merging two
5078 instances of the same function signature compiled by
5079 different front ends. */
5080 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5081 {
5082 tree arg_type = TREE_VALUE (p);
5083
5084 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
5085 {
5086 int quals = TYPE_QUALS (arg_type)
5087 & ~TYPE_QUAL_CONST
5088 & ~TYPE_QUAL_VOLATILE;
5089 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
5090 free_lang_data_in_type (TREE_VALUE (p));
5091 }
5092 /* C++ FE uses TREE_PURPOSE to store initial values. */
5093 TREE_PURPOSE (p) = NULL;
5094 }
5095 }
5096 else if (TREE_CODE (type) == METHOD_TYPE)
5097 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5098 /* C++ FE uses TREE_PURPOSE to store initial values. */
5099 TREE_PURPOSE (p) = NULL;
5100 else if (RECORD_OR_UNION_TYPE_P (type))
5101 {
5102 /* Remove members that are not FIELD_DECLs (and maybe
5103 TYPE_DECLs) from the field list of an aggregate. These occur
5104 in C++. */
5105 for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
5106 if (TREE_CODE (member) == FIELD_DECL
5107 || (TREE_CODE (member) == TYPE_DECL
5108 && !DECL_IGNORED_P (member)
5109 && debug_info_level > DINFO_LEVEL_TERSE
5110 && !is_redundant_typedef (member)))
5111 prev = &DECL_CHAIN (member);
5112 else
5113 *prev = DECL_CHAIN (member);
5114
5115 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
5116 and danagle the pointer from time to time. */
5117 if (TYPE_VFIELD (type) && TREE_CODE (TYPE_VFIELD (type)) != FIELD_DECL)
5118 TYPE_VFIELD (type) = NULL_TREE;
5119
5120 if (TYPE_BINFO (type))
5121 {
5122 free_lang_data_in_binfo (TYPE_BINFO (type));
5123 /* We need to preserve link to bases and virtual table for all
5124 polymorphic types to make devirtualization machinery working.
5125 Debug output cares only about bases, but output also
5126 virtual table pointers so merging of -fdevirtualize and
5127 -fno-devirtualize units is easier. */
5128 if ((!BINFO_VTABLE (TYPE_BINFO (type))
5129 || !flag_devirtualize)
5130 && ((!BINFO_N_BASE_BINFOS (TYPE_BINFO (type))
5131 && !BINFO_VTABLE (TYPE_BINFO (type)))
5132 || debug_info_level != DINFO_LEVEL_NONE))
5133 TYPE_BINFO (type) = NULL;
5134 }
5135 }
5136 else if (INTEGRAL_TYPE_P (type)
5137 || SCALAR_FLOAT_TYPE_P (type)
5138 || FIXED_POINT_TYPE_P (type))
5139 {
5140 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
5141 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
5142 }
5143
5144 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
5145
5146 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
5147 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
5148
5149 if (TYPE_CONTEXT (type)
5150 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
5151 {
5152 tree ctx = TYPE_CONTEXT (type);
5153 do
5154 {
5155 ctx = BLOCK_SUPERCONTEXT (ctx);
5156 }
5157 while (ctx && TREE_CODE (ctx) == BLOCK);
5158 TYPE_CONTEXT (type) = ctx;
5159 }
5160 }
5161
5162
5163 /* Return true if DECL may need an assembler name to be set. */
5164
5165 static inline bool
5166 need_assembler_name_p (tree decl)
5167 {
5168 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5169 Rule merging. This makes type_odr_p to return true on those types during
5170 LTO and by comparing the mangled name, we can say what types are intended
5171 to be equivalent across compilation unit.
5172
5173 We do not store names of type_in_anonymous_namespace_p.
5174
5175 Record, union and enumeration type have linkage that allows use
5176 to check type_in_anonymous_namespace_p. We do not mangle compound types
5177 that always can be compared structurally.
5178
5179 Similarly for builtin types, we compare properties of their main variant.
5180 A special case are integer types where mangling do make differences
5181 between char/signed char/unsigned char etc. Storing name for these makes
5182 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
5183 See cp/mangle.c:write_builtin_type for details. */
5184
5185 if (flag_lto_odr_type_mering
5186 && TREE_CODE (decl) == TYPE_DECL
5187 && DECL_NAME (decl)
5188 && decl == TYPE_NAME (TREE_TYPE (decl))
5189 && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
5190 && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5191 && (type_with_linkage_p (TREE_TYPE (decl))
5192 || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5193 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5194 return !DECL_ASSEMBLER_NAME_SET_P (decl);
5195 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5196 if (!VAR_OR_FUNCTION_DECL_P (decl))
5197 return false;
5198
5199 /* If DECL already has its assembler name set, it does not need a
5200 new one. */
5201 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5202 || DECL_ASSEMBLER_NAME_SET_P (decl))
5203 return false;
5204
5205 /* Abstract decls do not need an assembler name. */
5206 if (DECL_ABSTRACT_P (decl))
5207 return false;
5208
5209 /* For VAR_DECLs, only static, public and external symbols need an
5210 assembler name. */
5211 if (VAR_P (decl)
5212 && !TREE_STATIC (decl)
5213 && !TREE_PUBLIC (decl)
5214 && !DECL_EXTERNAL (decl))
5215 return false;
5216
5217 if (TREE_CODE (decl) == FUNCTION_DECL)
5218 {
5219 /* Do not set assembler name on builtins. Allow RTL expansion to
5220 decide whether to expand inline or via a regular call. */
5221 if (DECL_BUILT_IN (decl)
5222 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5223 return false;
5224
5225 /* Functions represented in the callgraph need an assembler name. */
5226 if (cgraph_node::get (decl) != NULL)
5227 return true;
5228
5229 /* Unused and not public functions don't need an assembler name. */
5230 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5231 return false;
5232 }
5233
5234 return true;
5235 }
5236
5237
5238 /* Reset all language specific information still present in symbol
5239 DECL. */
5240
5241 static void
5242 free_lang_data_in_decl (tree decl)
5243 {
5244 gcc_assert (DECL_P (decl));
5245
5246 /* Give the FE a chance to remove its own data first. */
5247 lang_hooks.free_lang_data (decl);
5248
5249 TREE_LANG_FLAG_0 (decl) = 0;
5250 TREE_LANG_FLAG_1 (decl) = 0;
5251 TREE_LANG_FLAG_2 (decl) = 0;
5252 TREE_LANG_FLAG_3 (decl) = 0;
5253 TREE_LANG_FLAG_4 (decl) = 0;
5254 TREE_LANG_FLAG_5 (decl) = 0;
5255 TREE_LANG_FLAG_6 (decl) = 0;
5256
5257 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5258 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5259 if (TREE_CODE (decl) == FIELD_DECL)
5260 {
5261 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5262 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5263 DECL_QUALIFIER (decl) = NULL_TREE;
5264 }
5265
5266 if (TREE_CODE (decl) == FUNCTION_DECL)
5267 {
5268 struct cgraph_node *node;
5269 if (!(node = cgraph_node::get (decl))
5270 || (!node->definition && !node->clones))
5271 {
5272 if (node)
5273 node->release_body ();
5274 else
5275 {
5276 release_function_body (decl);
5277 DECL_ARGUMENTS (decl) = NULL;
5278 DECL_RESULT (decl) = NULL;
5279 DECL_INITIAL (decl) = error_mark_node;
5280 }
5281 }
5282 if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p))
5283 {
5284 tree t;
5285
5286 /* If DECL has a gimple body, then the context for its
5287 arguments must be DECL. Otherwise, it doesn't really
5288 matter, as we will not be emitting any code for DECL. In
5289 general, there may be other instances of DECL created by
5290 the front end and since PARM_DECLs are generally shared,
5291 their DECL_CONTEXT changes as the replicas of DECL are
5292 created. The only time where DECL_CONTEXT is important
5293 is for the FUNCTION_DECLs that have a gimple body (since
5294 the PARM_DECL will be used in the function's body). */
5295 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5296 DECL_CONTEXT (t) = decl;
5297 if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5298 DECL_FUNCTION_SPECIFIC_TARGET (decl)
5299 = target_option_default_node;
5300 if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5301 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5302 = optimization_default_node;
5303 }
5304
5305 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5306 At this point, it is not needed anymore. */
5307 DECL_SAVED_TREE (decl) = NULL_TREE;
5308
5309 /* Clear the abstract origin if it refers to a method.
5310 Otherwise dwarf2out.c will ICE as we splice functions out of
5311 TYPE_FIELDS and thus the origin will not be output
5312 correctly. */
5313 if (DECL_ABSTRACT_ORIGIN (decl)
5314 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5315 && RECORD_OR_UNION_TYPE_P
5316 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5317 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5318
5319 /* Sometimes the C++ frontend doesn't manage to transform a temporary
5320 DECL_VINDEX referring to itself into a vtable slot number as it
5321 should. Happens with functions that are copied and then forgotten
5322 about. Just clear it, it won't matter anymore. */
5323 if (DECL_VINDEX (decl) && !tree_fits_shwi_p (DECL_VINDEX (decl)))
5324 DECL_VINDEX (decl) = NULL_TREE;
5325 }
5326 else if (VAR_P (decl))
5327 {
5328 if ((DECL_EXTERNAL (decl)
5329 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5330 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5331 DECL_INITIAL (decl) = NULL_TREE;
5332 }
5333 else if (TREE_CODE (decl) == TYPE_DECL)
5334 {
5335 DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
5336 DECL_VISIBILITY_SPECIFIED (decl) = 0;
5337 DECL_INITIAL (decl) = NULL_TREE;
5338 }
5339 else if (TREE_CODE (decl) == FIELD_DECL)
5340 DECL_INITIAL (decl) = NULL_TREE;
5341 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5342 && DECL_INITIAL (decl)
5343 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5344 {
5345 /* Strip builtins from the translation-unit BLOCK. We still have targets
5346 without builtin_decl_explicit support and also builtins are shared
5347 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5348 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5349 while (*nextp)
5350 {
5351 tree var = *nextp;
5352 if (TREE_CODE (var) == FUNCTION_DECL
5353 && DECL_BUILT_IN (var))
5354 *nextp = TREE_CHAIN (var);
5355 else
5356 nextp = &TREE_CHAIN (var);
5357 }
5358 }
5359 }
5360
5361
5362 /* Data used when collecting DECLs and TYPEs for language data removal. */
5363
5364 struct free_lang_data_d
5365 {
5366 free_lang_data_d () : decls (100), types (100) {}
5367
5368 /* Worklist to avoid excessive recursion. */
5369 auto_vec<tree> worklist;
5370
5371 /* Set of traversed objects. Used to avoid duplicate visits. */
5372 hash_set<tree> pset;
5373
5374 /* Array of symbols to process with free_lang_data_in_decl. */
5375 auto_vec<tree> decls;
5376
5377 /* Array of types to process with free_lang_data_in_type. */
5378 auto_vec<tree> types;
5379 };
5380
5381
5382 /* Save all language fields needed to generate proper debug information
5383 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
5384
5385 static void
5386 save_debug_info_for_decl (tree t)
5387 {
5388 /*struct saved_debug_info_d *sdi;*/
5389
5390 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
5391
5392 /* FIXME. Partial implementation for saving debug info removed. */
5393 }
5394
5395
5396 /* Save all language fields needed to generate proper debug information
5397 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
5398
5399 static void
5400 save_debug_info_for_type (tree t)
5401 {
5402 /*struct saved_debug_info_d *sdi;*/
5403
5404 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
5405
5406 /* FIXME. Partial implementation for saving debug info removed. */
5407 }
5408
5409
5410 /* Add type or decl T to one of the list of tree nodes that need their
5411 language data removed. The lists are held inside FLD. */
5412
5413 static void
5414 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5415 {
5416 if (DECL_P (t))
5417 {
5418 fld->decls.safe_push (t);
5419 if (debug_info_level > DINFO_LEVEL_TERSE)
5420 save_debug_info_for_decl (t);
5421 }
5422 else if (TYPE_P (t))
5423 {
5424 fld->types.safe_push (t);
5425 if (debug_info_level > DINFO_LEVEL_TERSE)
5426 save_debug_info_for_type (t);
5427 }
5428 else
5429 gcc_unreachable ();
5430 }
5431
5432 /* Push tree node T into FLD->WORKLIST. */
5433
5434 static inline void
5435 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5436 {
5437 if (t && !is_lang_specific (t) && !fld->pset.contains (t))
5438 fld->worklist.safe_push ((t));
5439 }
5440
5441
5442 /* Operand callback helper for free_lang_data_in_node. *TP is the
5443 subtree operand being considered. */
5444
5445 static tree
5446 find_decls_types_r (tree *tp, int *ws, void *data)
5447 {
5448 tree t = *tp;
5449 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5450
5451 if (TREE_CODE (t) == TREE_LIST)
5452 return NULL_TREE;
5453
5454 /* Language specific nodes will be removed, so there is no need
5455 to gather anything under them. */
5456 if (is_lang_specific (t))
5457 {
5458 *ws = 0;
5459 return NULL_TREE;
5460 }
5461
5462 if (DECL_P (t))
5463 {
5464 /* Note that walk_tree does not traverse every possible field in
5465 decls, so we have to do our own traversals here. */
5466 add_tree_to_fld_list (t, fld);
5467
5468 fld_worklist_push (DECL_NAME (t), fld);
5469 fld_worklist_push (DECL_CONTEXT (t), fld);
5470 fld_worklist_push (DECL_SIZE (t), fld);
5471 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5472
5473 /* We are going to remove everything under DECL_INITIAL for
5474 TYPE_DECLs. No point walking them. */
5475 if (TREE_CODE (t) != TYPE_DECL)
5476 fld_worklist_push (DECL_INITIAL (t), fld);
5477
5478 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5479 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5480
5481 if (TREE_CODE (t) == FUNCTION_DECL)
5482 {
5483 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5484 fld_worklist_push (DECL_RESULT (t), fld);
5485 }
5486 else if (TREE_CODE (t) == TYPE_DECL)
5487 {
5488 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
5489 }
5490 else if (TREE_CODE (t) == FIELD_DECL)
5491 {
5492 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5493 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5494 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5495 fld_worklist_push (DECL_FCONTEXT (t), fld);
5496 }
5497
5498 if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
5499 && DECL_HAS_VALUE_EXPR_P (t))
5500 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5501
5502 if (TREE_CODE (t) != FIELD_DECL
5503 && TREE_CODE (t) != TYPE_DECL)
5504 fld_worklist_push (TREE_CHAIN (t), fld);
5505 *ws = 0;
5506 }
5507 else if (TYPE_P (t))
5508 {
5509 /* Note that walk_tree does not traverse every possible field in
5510 types, so we have to do our own traversals here. */
5511 add_tree_to_fld_list (t, fld);
5512
5513 if (!RECORD_OR_UNION_TYPE_P (t))
5514 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5515 fld_worklist_push (TYPE_SIZE (t), fld);
5516 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5517 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5518 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5519 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5520 fld_worklist_push (TYPE_NAME (t), fld);
5521 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
5522 them and thus do not and want not to reach unused pointer types
5523 this way. */
5524 if (!POINTER_TYPE_P (t))
5525 fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
5526 /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types. */
5527 if (!RECORD_OR_UNION_TYPE_P (t))
5528 fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
5529 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5530 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5531 do not and want not to reach unused variants this way. */
5532 if (TYPE_CONTEXT (t))
5533 {
5534 tree ctx = TYPE_CONTEXT (t);
5535 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5536 So push that instead. */
5537 while (ctx && TREE_CODE (ctx) == BLOCK)
5538 ctx = BLOCK_SUPERCONTEXT (ctx);
5539 fld_worklist_push (ctx, fld);
5540 }
5541 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5542 and want not to reach unused types this way. */
5543
5544 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5545 {
5546 unsigned i;
5547 tree tem;
5548 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5549 fld_worklist_push (TREE_TYPE (tem), fld);
5550 fld_worklist_push (BINFO_VIRTUALS (TYPE_BINFO (t)), fld);
5551 }
5552 if (RECORD_OR_UNION_TYPE_P (t))
5553 {
5554 tree tem;
5555 /* Push all TYPE_FIELDS - there can be interleaving interesting
5556 and non-interesting things. */
5557 tem = TYPE_FIELDS (t);
5558 while (tem)
5559 {
5560 if (TREE_CODE (tem) == FIELD_DECL
5561 || (TREE_CODE (tem) == TYPE_DECL
5562 && !DECL_IGNORED_P (tem)
5563 && debug_info_level > DINFO_LEVEL_TERSE
5564 && !is_redundant_typedef (tem)))
5565 fld_worklist_push (tem, fld);
5566 tem = TREE_CHAIN (tem);
5567 }
5568 }
5569
5570 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5571 *ws = 0;
5572 }
5573 else if (TREE_CODE (t) == BLOCK)
5574 {
5575 tree tem;
5576 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
5577 fld_worklist_push (tem, fld);
5578 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5579 fld_worklist_push (tem, fld);
5580 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5581 }
5582
5583 if (TREE_CODE (t) != IDENTIFIER_NODE
5584 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5585 fld_worklist_push (TREE_TYPE (t), fld);
5586
5587 return NULL_TREE;
5588 }
5589
5590
5591 /* Find decls and types in T. */
5592
5593 static void
5594 find_decls_types (tree t, struct free_lang_data_d *fld)
5595 {
5596 while (1)
5597 {
5598 if (!fld->pset.contains (t))
5599 walk_tree (&t, find_decls_types_r, fld, &fld->pset);
5600 if (fld->worklist.is_empty ())
5601 break;
5602 t = fld->worklist.pop ();
5603 }
5604 }
5605
5606 /* Translate all the types in LIST with the corresponding runtime
5607 types. */
5608
5609 static tree
5610 get_eh_types_for_runtime (tree list)
5611 {
5612 tree head, prev;
5613
5614 if (list == NULL_TREE)
5615 return NULL_TREE;
5616
5617 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5618 prev = head;
5619 list = TREE_CHAIN (list);
5620 while (list)
5621 {
5622 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5623 TREE_CHAIN (prev) = n;
5624 prev = TREE_CHAIN (prev);
5625 list = TREE_CHAIN (list);
5626 }
5627
5628 return head;
5629 }
5630
5631
5632 /* Find decls and types referenced in EH region R and store them in
5633 FLD->DECLS and FLD->TYPES. */
5634
5635 static void
5636 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5637 {
5638 switch (r->type)
5639 {
5640 case ERT_CLEANUP:
5641 break;
5642
5643 case ERT_TRY:
5644 {
5645 eh_catch c;
5646
5647 /* The types referenced in each catch must first be changed to the
5648 EH types used at runtime. This removes references to FE types
5649 in the region. */
5650 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5651 {
5652 c->type_list = get_eh_types_for_runtime (c->type_list);
5653 walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
5654 }
5655 }
5656 break;
5657
5658 case ERT_ALLOWED_EXCEPTIONS:
5659 r->u.allowed.type_list
5660 = get_eh_types_for_runtime (r->u.allowed.type_list);
5661 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
5662 break;
5663
5664 case ERT_MUST_NOT_THROW:
5665 walk_tree (&r->u.must_not_throw.failure_decl,
5666 find_decls_types_r, fld, &fld->pset);
5667 break;
5668 }
5669 }
5670
5671
5672 /* Find decls and types referenced in cgraph node N and store them in
5673 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5674 look for *every* kind of DECL and TYPE node reachable from N,
5675 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5676 NAMESPACE_DECLs, etc). */
5677
5678 static void
5679 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5680 {
5681 basic_block bb;
5682 struct function *fn;
5683 unsigned ix;
5684 tree t;
5685
5686 find_decls_types (n->decl, fld);
5687
5688 if (!gimple_has_body_p (n->decl))
5689 return;
5690
5691 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5692
5693 fn = DECL_STRUCT_FUNCTION (n->decl);
5694
5695 /* Traverse locals. */
5696 FOR_EACH_LOCAL_DECL (fn, ix, t)
5697 find_decls_types (t, fld);
5698
5699 /* Traverse EH regions in FN. */
5700 {
5701 eh_region r;
5702 FOR_ALL_EH_REGION_FN (r, fn)
5703 find_decls_types_in_eh_region (r, fld);
5704 }
5705
5706 /* Traverse every statement in FN. */
5707 FOR_EACH_BB_FN (bb, fn)
5708 {
5709 gphi_iterator psi;
5710 gimple_stmt_iterator si;
5711 unsigned i;
5712
5713 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
5714 {
5715 gphi *phi = psi.phi ();
5716
5717 for (i = 0; i < gimple_phi_num_args (phi); i++)
5718 {
5719 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5720 find_decls_types (*arg_p, fld);
5721 }
5722 }
5723
5724 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5725 {
5726 gimple *stmt = gsi_stmt (si);
5727
5728 if (is_gimple_call (stmt))
5729 find_decls_types (gimple_call_fntype (stmt), fld);
5730
5731 for (i = 0; i < gimple_num_ops (stmt); i++)
5732 {
5733 tree arg = gimple_op (stmt, i);
5734 find_decls_types (arg, fld);
5735 }
5736 }
5737 }
5738 }
5739
5740
5741 /* Find decls and types referenced in varpool node N and store them in
5742 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5743 look for *every* kind of DECL and TYPE node reachable from N,
5744 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5745 NAMESPACE_DECLs, etc). */
5746
5747 static void
5748 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
5749 {
5750 find_decls_types (v->decl, fld);
5751 }
5752
5753 /* If T needs an assembler name, have one created for it. */
5754
5755 void
5756 assign_assembler_name_if_needed (tree t)
5757 {
5758 if (need_assembler_name_p (t))
5759 {
5760 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5761 diagnostics that use input_location to show locus
5762 information. The problem here is that, at this point,
5763 input_location is generally anchored to the end of the file
5764 (since the parser is long gone), so we don't have a good
5765 position to pin it to.
5766
5767 To alleviate this problem, this uses the location of T's
5768 declaration. Examples of this are
5769 testsuite/g++.dg/template/cond2.C and
5770 testsuite/g++.dg/template/pr35240.C. */
5771 location_t saved_location = input_location;
5772 input_location = DECL_SOURCE_LOCATION (t);
5773
5774 decl_assembler_name (t);
5775
5776 input_location = saved_location;
5777 }
5778 }
5779
5780
5781 /* Free language specific information for every operand and expression
5782 in every node of the call graph. This process operates in three stages:
5783
5784 1- Every callgraph node and varpool node is traversed looking for
5785 decls and types embedded in them. This is a more exhaustive
5786 search than that done by find_referenced_vars, because it will
5787 also collect individual fields, decls embedded in types, etc.
5788
5789 2- All the decls found are sent to free_lang_data_in_decl.
5790
5791 3- All the types found are sent to free_lang_data_in_type.
5792
5793 The ordering between decls and types is important because
5794 free_lang_data_in_decl sets assembler names, which includes
5795 mangling. So types cannot be freed up until assembler names have
5796 been set up. */
5797
5798 static void
5799 free_lang_data_in_cgraph (void)
5800 {
5801 struct cgraph_node *n;
5802 varpool_node *v;
5803 struct free_lang_data_d fld;
5804 tree t;
5805 unsigned i;
5806 alias_pair *p;
5807
5808 /* Find decls and types in the body of every function in the callgraph. */
5809 FOR_EACH_FUNCTION (n)
5810 find_decls_types_in_node (n, &fld);
5811
5812 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5813 find_decls_types (p->decl, &fld);
5814
5815 /* Find decls and types in every varpool symbol. */
5816 FOR_EACH_VARIABLE (v)
5817 find_decls_types_in_var (v, &fld);
5818
5819 /* Set the assembler name on every decl found. We need to do this
5820 now because free_lang_data_in_decl will invalidate data needed
5821 for mangling. This breaks mangling on interdependent decls. */
5822 FOR_EACH_VEC_ELT (fld.decls, i, t)
5823 assign_assembler_name_if_needed (t);
5824
5825 /* Traverse every decl found freeing its language data. */
5826 FOR_EACH_VEC_ELT (fld.decls, i, t)
5827 free_lang_data_in_decl (t);
5828
5829 /* Traverse every type found freeing its language data. */
5830 FOR_EACH_VEC_ELT (fld.types, i, t)
5831 free_lang_data_in_type (t);
5832 if (flag_checking)
5833 {
5834 FOR_EACH_VEC_ELT (fld.types, i, t)
5835 verify_type (t);
5836 }
5837 }
5838
5839
5840 /* Free resources that are used by FE but are not needed once they are done. */
5841
5842 static unsigned
5843 free_lang_data (void)
5844 {
5845 unsigned i;
5846
5847 /* If we are the LTO frontend we have freed lang-specific data already. */
5848 if (in_lto_p
5849 || (!flag_generate_lto && !flag_generate_offload))
5850 return 0;
5851
5852 /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one. */
5853 if (vec_safe_is_empty (all_translation_units))
5854 build_translation_unit_decl (NULL_TREE);
5855
5856 /* Allocate and assign alias sets to the standard integer types
5857 while the slots are still in the way the frontends generated them. */
5858 for (i = 0; i < itk_none; ++i)
5859 if (integer_types[i])
5860 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5861
5862 /* Traverse the IL resetting language specific information for
5863 operands, expressions, etc. */
5864 free_lang_data_in_cgraph ();
5865
5866 /* Create gimple variants for common types. */
5867 for (unsigned i = 0;
5868 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
5869 ++i)
5870 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
5871
5872 /* Reset some langhooks. Do not reset types_compatible_p, it may
5873 still be used indirectly via the get_alias_set langhook. */
5874 lang_hooks.dwarf_name = lhd_dwarf_name;
5875 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5876 lang_hooks.gimplify_expr = lhd_gimplify_expr;
5877
5878 /* We do not want the default decl_assembler_name implementation,
5879 rather if we have fixed everything we want a wrapper around it
5880 asserting that all non-local symbols already got their assembler
5881 name and only produce assembler names for local symbols. Or rather
5882 make sure we never call decl_assembler_name on local symbols and
5883 devise a separate, middle-end private scheme for it. */
5884
5885 /* Reset diagnostic machinery. */
5886 tree_diagnostics_defaults (global_dc);
5887
5888 return 0;
5889 }
5890
5891
5892 namespace {
5893
5894 const pass_data pass_data_ipa_free_lang_data =
5895 {
5896 SIMPLE_IPA_PASS, /* type */
5897 "*free_lang_data", /* name */
5898 OPTGROUP_NONE, /* optinfo_flags */
5899 TV_IPA_FREE_LANG_DATA, /* tv_id */
5900 0, /* properties_required */
5901 0, /* properties_provided */
5902 0, /* properties_destroyed */
5903 0, /* todo_flags_start */
5904 0, /* todo_flags_finish */
5905 };
5906
5907 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
5908 {
5909 public:
5910 pass_ipa_free_lang_data (gcc::context *ctxt)
5911 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
5912 {}
5913
5914 /* opt_pass methods: */
5915 virtual unsigned int execute (function *) { return free_lang_data (); }
5916
5917 }; // class pass_ipa_free_lang_data
5918
5919 } // anon namespace
5920
5921 simple_ipa_opt_pass *
5922 make_pass_ipa_free_lang_data (gcc::context *ctxt)
5923 {
5924 return new pass_ipa_free_lang_data (ctxt);
5925 }
5926 \f
5927 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5928 of the various TYPE_QUAL values. */
5929
5930 static void
5931 set_type_quals (tree type, int type_quals)
5932 {
5933 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5934 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5935 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5936 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
5937 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5938 }
5939
5940 /* Returns true iff CAND and BASE have equivalent language-specific
5941 qualifiers. */
5942
5943 bool
5944 check_lang_type (const_tree cand, const_tree base)
5945 {
5946 if (lang_hooks.types.type_hash_eq == NULL)
5947 return true;
5948 /* type_hash_eq currently only applies to these types. */
5949 if (TREE_CODE (cand) != FUNCTION_TYPE
5950 && TREE_CODE (cand) != METHOD_TYPE)
5951 return true;
5952 return lang_hooks.types.type_hash_eq (cand, base);
5953 }
5954
5955 /* Returns true iff unqualified CAND and BASE are equivalent. */
5956
5957 bool
5958 check_base_type (const_tree cand, const_tree base)
5959 {
5960 return (TYPE_NAME (cand) == TYPE_NAME (base)
5961 /* Apparently this is needed for Objective-C. */
5962 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5963 /* Check alignment. */
5964 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5965 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5966 TYPE_ATTRIBUTES (base)));
5967 }
5968
5969 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5970
5971 bool
5972 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5973 {
5974 return (TYPE_QUALS (cand) == type_quals
5975 && check_base_type (cand, base)
5976 && check_lang_type (cand, base));
5977 }
5978
5979 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5980
5981 static bool
5982 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5983 {
5984 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5985 && TYPE_NAME (cand) == TYPE_NAME (base)
5986 /* Apparently this is needed for Objective-C. */
5987 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5988 /* Check alignment. */
5989 && TYPE_ALIGN (cand) == align
5990 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5991 TYPE_ATTRIBUTES (base))
5992 && check_lang_type (cand, base));
5993 }
5994
5995 /* This function checks to see if TYPE matches the size one of the built-in
5996 atomic types, and returns that core atomic type. */
5997
5998 static tree
5999 find_atomic_core_type (tree type)
6000 {
6001 tree base_atomic_type;
6002
6003 /* Only handle complete types. */
6004 if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
6005 return NULL_TREE;
6006
6007 switch (tree_to_uhwi (TYPE_SIZE (type)))
6008 {
6009 case 8:
6010 base_atomic_type = atomicQI_type_node;
6011 break;
6012
6013 case 16:
6014 base_atomic_type = atomicHI_type_node;
6015 break;
6016
6017 case 32:
6018 base_atomic_type = atomicSI_type_node;
6019 break;
6020
6021 case 64:
6022 base_atomic_type = atomicDI_type_node;
6023 break;
6024
6025 case 128:
6026 base_atomic_type = atomicTI_type_node;
6027 break;
6028
6029 default:
6030 base_atomic_type = NULL_TREE;
6031 }
6032
6033 return base_atomic_type;
6034 }
6035
6036 /* Return a version of the TYPE, qualified as indicated by the
6037 TYPE_QUALS, if one exists. If no qualified version exists yet,
6038 return NULL_TREE. */
6039
6040 tree
6041 get_qualified_type (tree type, int type_quals)
6042 {
6043 tree t;
6044
6045 if (TYPE_QUALS (type) == type_quals)
6046 return type;
6047
6048 /* Search the chain of variants to see if there is already one there just
6049 like the one we need to have. If so, use that existing one. We must
6050 preserve the TYPE_NAME, since there is code that depends on this. */
6051 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6052 if (check_qualified_type (t, type, type_quals))
6053 return t;
6054
6055 return NULL_TREE;
6056 }
6057
6058 /* Like get_qualified_type, but creates the type if it does not
6059 exist. This function never returns NULL_TREE. */
6060
6061 tree
6062 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
6063 {
6064 tree t;
6065
6066 /* See if we already have the appropriate qualified variant. */
6067 t = get_qualified_type (type, type_quals);
6068
6069 /* If not, build it. */
6070 if (!t)
6071 {
6072 t = build_variant_type_copy (type PASS_MEM_STAT);
6073 set_type_quals (t, type_quals);
6074
6075 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6076 {
6077 /* See if this object can map to a basic atomic type. */
6078 tree atomic_type = find_atomic_core_type (type);
6079 if (atomic_type)
6080 {
6081 /* Ensure the alignment of this type is compatible with
6082 the required alignment of the atomic type. */
6083 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6084 SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
6085 }
6086 }
6087
6088 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6089 /* Propagate structural equality. */
6090 SET_TYPE_STRUCTURAL_EQUALITY (t);
6091 else if (TYPE_CANONICAL (type) != type)
6092 /* Build the underlying canonical type, since it is different
6093 from TYPE. */
6094 {
6095 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6096 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6097 }
6098 else
6099 /* T is its own canonical type. */
6100 TYPE_CANONICAL (t) = t;
6101
6102 }
6103
6104 return t;
6105 }
6106
6107 /* Create a variant of type T with alignment ALIGN. */
6108
6109 tree
6110 build_aligned_type (tree type, unsigned int align)
6111 {
6112 tree t;
6113
6114 if (TYPE_PACKED (type)
6115 || TYPE_ALIGN (type) == align)
6116 return type;
6117
6118 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6119 if (check_aligned_type (t, type, align))
6120 return t;
6121
6122 t = build_variant_type_copy (type);
6123 SET_TYPE_ALIGN (t, align);
6124 TYPE_USER_ALIGN (t) = 1;
6125
6126 return t;
6127 }
6128
6129 /* Create a new distinct copy of TYPE. The new type is made its own
6130 MAIN_VARIANT. If TYPE requires structural equality checks, the
6131 resulting type requires structural equality checks; otherwise, its
6132 TYPE_CANONICAL points to itself. */
6133
6134 tree
6135 build_distinct_type_copy (tree type MEM_STAT_DECL)
6136 {
6137 tree t = copy_node (type PASS_MEM_STAT);
6138
6139 TYPE_POINTER_TO (t) = 0;
6140 TYPE_REFERENCE_TO (t) = 0;
6141
6142 /* Set the canonical type either to a new equivalence class, or
6143 propagate the need for structural equality checks. */
6144 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6145 SET_TYPE_STRUCTURAL_EQUALITY (t);
6146 else
6147 TYPE_CANONICAL (t) = t;
6148
6149 /* Make it its own variant. */
6150 TYPE_MAIN_VARIANT (t) = t;
6151 TYPE_NEXT_VARIANT (t) = 0;
6152
6153 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6154 whose TREE_TYPE is not t. This can also happen in the Ada
6155 frontend when using subtypes. */
6156
6157 return t;
6158 }
6159
6160 /* Create a new variant of TYPE, equivalent but distinct. This is so
6161 the caller can modify it. TYPE_CANONICAL for the return type will
6162 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6163 are considered equal by the language itself (or that both types
6164 require structural equality checks). */
6165
6166 tree
6167 build_variant_type_copy (tree type MEM_STAT_DECL)
6168 {
6169 tree t, m = TYPE_MAIN_VARIANT (type);
6170
6171 t = build_distinct_type_copy (type PASS_MEM_STAT);
6172
6173 /* Since we're building a variant, assume that it is a non-semantic
6174 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6175 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6176 /* Type variants have no alias set defined. */
6177 TYPE_ALIAS_SET (t) = -1;
6178
6179 /* Add the new type to the chain of variants of TYPE. */
6180 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6181 TYPE_NEXT_VARIANT (m) = t;
6182 TYPE_MAIN_VARIANT (t) = m;
6183
6184 return t;
6185 }
6186 \f
6187 /* Return true if the from tree in both tree maps are equal. */
6188
6189 int
6190 tree_map_base_eq (const void *va, const void *vb)
6191 {
6192 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6193 *const b = (const struct tree_map_base *) vb;
6194 return (a->from == b->from);
6195 }
6196
6197 /* Hash a from tree in a tree_base_map. */
6198
6199 unsigned int
6200 tree_map_base_hash (const void *item)
6201 {
6202 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6203 }
6204
6205 /* Return true if this tree map structure is marked for garbage collection
6206 purposes. We simply return true if the from tree is marked, so that this
6207 structure goes away when the from tree goes away. */
6208
6209 int
6210 tree_map_base_marked_p (const void *p)
6211 {
6212 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6213 }
6214
6215 /* Hash a from tree in a tree_map. */
6216
6217 unsigned int
6218 tree_map_hash (const void *item)
6219 {
6220 return (((const struct tree_map *) item)->hash);
6221 }
6222
6223 /* Hash a from tree in a tree_decl_map. */
6224
6225 unsigned int
6226 tree_decl_map_hash (const void *item)
6227 {
6228 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6229 }
6230
6231 /* Return the initialization priority for DECL. */
6232
6233 priority_type
6234 decl_init_priority_lookup (tree decl)
6235 {
6236 symtab_node *snode = symtab_node::get (decl);
6237
6238 if (!snode)
6239 return DEFAULT_INIT_PRIORITY;
6240 return
6241 snode->get_init_priority ();
6242 }
6243
6244 /* Return the finalization priority for DECL. */
6245
6246 priority_type
6247 decl_fini_priority_lookup (tree decl)
6248 {
6249 cgraph_node *node = cgraph_node::get (decl);
6250
6251 if (!node)
6252 return DEFAULT_INIT_PRIORITY;
6253 return
6254 node->get_fini_priority ();
6255 }
6256
6257 /* Set the initialization priority for DECL to PRIORITY. */
6258
6259 void
6260 decl_init_priority_insert (tree decl, priority_type priority)
6261 {
6262 struct symtab_node *snode;
6263
6264 if (priority == DEFAULT_INIT_PRIORITY)
6265 {
6266 snode = symtab_node::get (decl);
6267 if (!snode)
6268 return;
6269 }
6270 else if (VAR_P (decl))
6271 snode = varpool_node::get_create (decl);
6272 else
6273 snode = cgraph_node::get_create (decl);
6274 snode->set_init_priority (priority);
6275 }
6276
6277 /* Set the finalization priority for DECL to PRIORITY. */
6278
6279 void
6280 decl_fini_priority_insert (tree decl, priority_type priority)
6281 {
6282 struct cgraph_node *node;
6283
6284 if (priority == DEFAULT_INIT_PRIORITY)
6285 {
6286 node = cgraph_node::get (decl);
6287 if (!node)
6288 return;
6289 }
6290 else
6291 node = cgraph_node::get_create (decl);
6292 node->set_fini_priority (priority);
6293 }
6294
6295 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6296
6297 static void
6298 print_debug_expr_statistics (void)
6299 {
6300 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6301 (long) debug_expr_for_decl->size (),
6302 (long) debug_expr_for_decl->elements (),
6303 debug_expr_for_decl->collisions ());
6304 }
6305
6306 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6307
6308 static void
6309 print_value_expr_statistics (void)
6310 {
6311 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6312 (long) value_expr_for_decl->size (),
6313 (long) value_expr_for_decl->elements (),
6314 value_expr_for_decl->collisions ());
6315 }
6316
6317 /* Lookup a debug expression for FROM, and return it if we find one. */
6318
6319 tree
6320 decl_debug_expr_lookup (tree from)
6321 {
6322 struct tree_decl_map *h, in;
6323 in.base.from = from;
6324
6325 h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6326 if (h)
6327 return h->to;
6328 return NULL_TREE;
6329 }
6330
6331 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6332
6333 void
6334 decl_debug_expr_insert (tree from, tree to)
6335 {
6336 struct tree_decl_map *h;
6337
6338 h = ggc_alloc<tree_decl_map> ();
6339 h->base.from = from;
6340 h->to = to;
6341 *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6342 }
6343
6344 /* Lookup a value expression for FROM, and return it if we find one. */
6345
6346 tree
6347 decl_value_expr_lookup (tree from)
6348 {
6349 struct tree_decl_map *h, in;
6350 in.base.from = from;
6351
6352 h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6353 if (h)
6354 return h->to;
6355 return NULL_TREE;
6356 }
6357
6358 /* Insert a mapping FROM->TO in the value expression hashtable. */
6359
6360 void
6361 decl_value_expr_insert (tree from, tree to)
6362 {
6363 struct tree_decl_map *h;
6364
6365 h = ggc_alloc<tree_decl_map> ();
6366 h->base.from = from;
6367 h->to = to;
6368 *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6369 }
6370
6371 /* Lookup a vector of debug arguments for FROM, and return it if we
6372 find one. */
6373
6374 vec<tree, va_gc> **
6375 decl_debug_args_lookup (tree from)
6376 {
6377 struct tree_vec_map *h, in;
6378
6379 if (!DECL_HAS_DEBUG_ARGS_P (from))
6380 return NULL;
6381 gcc_checking_assert (debug_args_for_decl != NULL);
6382 in.base.from = from;
6383 h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6384 if (h)
6385 return &h->to;
6386 return NULL;
6387 }
6388
6389 /* Insert a mapping FROM->empty vector of debug arguments in the value
6390 expression hashtable. */
6391
6392 vec<tree, va_gc> **
6393 decl_debug_args_insert (tree from)
6394 {
6395 struct tree_vec_map *h;
6396 tree_vec_map **loc;
6397
6398 if (DECL_HAS_DEBUG_ARGS_P (from))
6399 return decl_debug_args_lookup (from);
6400 if (debug_args_for_decl == NULL)
6401 debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6402 h = ggc_alloc<tree_vec_map> ();
6403 h->base.from = from;
6404 h->to = NULL;
6405 loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6406 *loc = h;
6407 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6408 return &h->to;
6409 }
6410
6411 /* Hashing of types so that we don't make duplicates.
6412 The entry point is `type_hash_canon'. */
6413
6414 /* Generate the default hash code for TYPE. This is designed for
6415 speed, rather than maximum entropy. */
6416
6417 hashval_t
6418 type_hash_canon_hash (tree type)
6419 {
6420 inchash::hash hstate;
6421
6422 hstate.add_int (TREE_CODE (type));
6423
6424 if (TREE_TYPE (type))
6425 hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
6426
6427 for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
6428 /* Just the identifier is adequate to distinguish. */
6429 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
6430
6431 switch (TREE_CODE (type))
6432 {
6433 case METHOD_TYPE:
6434 hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
6435 /* FALLTHROUGH. */
6436 case FUNCTION_TYPE:
6437 for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6438 if (TREE_VALUE (t) != error_mark_node)
6439 hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
6440 break;
6441
6442 case OFFSET_TYPE:
6443 hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
6444 break;
6445
6446 case ARRAY_TYPE:
6447 {
6448 if (TYPE_DOMAIN (type))
6449 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
6450 if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
6451 {
6452 unsigned typeless = TYPE_TYPELESS_STORAGE (type);
6453 hstate.add_object (typeless);
6454 }
6455 }
6456 break;
6457
6458 case INTEGER_TYPE:
6459 {
6460 tree t = TYPE_MAX_VALUE (type);
6461 if (!t)
6462 t = TYPE_MIN_VALUE (type);
6463 for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
6464 hstate.add_object (TREE_INT_CST_ELT (t, i));
6465 break;
6466 }
6467
6468 case REAL_TYPE:
6469 case FIXED_POINT_TYPE:
6470 {
6471 unsigned prec = TYPE_PRECISION (type);
6472 hstate.add_object (prec);
6473 break;
6474 }
6475
6476 case VECTOR_TYPE:
6477 {
6478 unsigned nunits = TYPE_VECTOR_SUBPARTS (type);
6479 hstate.add_object (nunits);
6480 break;
6481 }
6482
6483 default:
6484 break;
6485 }
6486
6487 return hstate.end ();
6488 }
6489
6490 /* These are the Hashtable callback functions. */
6491
6492 /* Returns true iff the types are equivalent. */
6493
6494 bool
6495 type_cache_hasher::equal (type_hash *a, type_hash *b)
6496 {
6497 /* First test the things that are the same for all types. */
6498 if (a->hash != b->hash
6499 || TREE_CODE (a->type) != TREE_CODE (b->type)
6500 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6501 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6502 TYPE_ATTRIBUTES (b->type))
6503 || (TREE_CODE (a->type) != COMPLEX_TYPE
6504 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6505 return 0;
6506
6507 /* Be careful about comparing arrays before and after the element type
6508 has been completed; don't compare TYPE_ALIGN unless both types are
6509 complete. */
6510 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6511 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6512 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6513 return 0;
6514
6515 switch (TREE_CODE (a->type))
6516 {
6517 case VOID_TYPE:
6518 case COMPLEX_TYPE:
6519 case POINTER_TYPE:
6520 case REFERENCE_TYPE:
6521 case NULLPTR_TYPE:
6522 return 1;
6523
6524 case VECTOR_TYPE:
6525 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6526
6527 case ENUMERAL_TYPE:
6528 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6529 && !(TYPE_VALUES (a->type)
6530 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6531 && TYPE_VALUES (b->type)
6532 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6533 && type_list_equal (TYPE_VALUES (a->type),
6534 TYPE_VALUES (b->type))))
6535 return 0;
6536
6537 /* fall through */
6538
6539 case INTEGER_TYPE:
6540 case REAL_TYPE:
6541 case BOOLEAN_TYPE:
6542 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6543 return false;
6544 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6545 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6546 TYPE_MAX_VALUE (b->type)))
6547 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6548 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6549 TYPE_MIN_VALUE (b->type))));
6550
6551 case FIXED_POINT_TYPE:
6552 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6553
6554 case OFFSET_TYPE:
6555 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6556
6557 case METHOD_TYPE:
6558 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6559 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6560 || (TYPE_ARG_TYPES (a->type)
6561 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6562 && TYPE_ARG_TYPES (b->type)
6563 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6564 && type_list_equal (TYPE_ARG_TYPES (a->type),
6565 TYPE_ARG_TYPES (b->type)))))
6566 break;
6567 return 0;
6568 case ARRAY_TYPE:
6569 /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
6570 where the flag should be inherited from the element type
6571 and can change after ARRAY_TYPEs are created; on non-aggregates
6572 compare it and hash it, scalars will never have that flag set
6573 and we need to differentiate between arrays created by different
6574 front-ends or middle-end created arrays. */
6575 return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
6576 && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
6577 || (TYPE_TYPELESS_STORAGE (a->type)
6578 == TYPE_TYPELESS_STORAGE (b->type))));
6579
6580 case RECORD_TYPE:
6581 case UNION_TYPE:
6582 case QUAL_UNION_TYPE:
6583 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6584 || (TYPE_FIELDS (a->type)
6585 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6586 && TYPE_FIELDS (b->type)
6587 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6588 && type_list_equal (TYPE_FIELDS (a->type),
6589 TYPE_FIELDS (b->type))));
6590
6591 case FUNCTION_TYPE:
6592 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6593 || (TYPE_ARG_TYPES (a->type)
6594 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6595 && TYPE_ARG_TYPES (b->type)
6596 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6597 && type_list_equal (TYPE_ARG_TYPES (a->type),
6598 TYPE_ARG_TYPES (b->type))))
6599 break;
6600 return 0;
6601
6602 default:
6603 return 0;
6604 }
6605
6606 if (lang_hooks.types.type_hash_eq != NULL)
6607 return lang_hooks.types.type_hash_eq (a->type, b->type);
6608
6609 return 1;
6610 }
6611
6612 /* Given TYPE, and HASHCODE its hash code, return the canonical
6613 object for an identical type if one already exists.
6614 Otherwise, return TYPE, and record it as the canonical object.
6615
6616 To use this function, first create a type of the sort you want.
6617 Then compute its hash code from the fields of the type that
6618 make it different from other similar types.
6619 Then call this function and use the value. */
6620
6621 tree
6622 type_hash_canon (unsigned int hashcode, tree type)
6623 {
6624 type_hash in;
6625 type_hash **loc;
6626
6627 /* The hash table only contains main variants, so ensure that's what we're
6628 being passed. */
6629 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6630
6631 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6632 must call that routine before comparing TYPE_ALIGNs. */
6633 layout_type (type);
6634
6635 in.hash = hashcode;
6636 in.type = type;
6637
6638 loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
6639 if (*loc)
6640 {
6641 tree t1 = ((type_hash *) *loc)->type;
6642 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1);
6643 if (TYPE_UID (type) + 1 == next_type_uid)
6644 --next_type_uid;
6645 /* Free also min/max values and the cache for integer
6646 types. This can't be done in free_node, as LTO frees
6647 those on its own. */
6648 if (TREE_CODE (type) == INTEGER_TYPE)
6649 {
6650 if (TYPE_MIN_VALUE (type)
6651 && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
6652 {
6653 /* Zero is always in TYPE_CACHED_VALUES. */
6654 if (! TYPE_UNSIGNED (type))
6655 int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
6656 ggc_free (TYPE_MIN_VALUE (type));
6657 }
6658 if (TYPE_MAX_VALUE (type)
6659 && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
6660 {
6661 int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
6662 ggc_free (TYPE_MAX_VALUE (type));
6663 }
6664 if (TYPE_CACHED_VALUES_P (type))
6665 ggc_free (TYPE_CACHED_VALUES (type));
6666 }
6667 free_node (type);
6668 return t1;
6669 }
6670 else
6671 {
6672 struct type_hash *h;
6673
6674 h = ggc_alloc<type_hash> ();
6675 h->hash = hashcode;
6676 h->type = type;
6677 *loc = h;
6678
6679 return type;
6680 }
6681 }
6682
6683 static void
6684 print_type_hash_statistics (void)
6685 {
6686 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6687 (long) type_hash_table->size (),
6688 (long) type_hash_table->elements (),
6689 type_hash_table->collisions ());
6690 }
6691
6692 /* Given two lists of types
6693 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6694 return 1 if the lists contain the same types in the same order.
6695 Also, the TREE_PURPOSEs must match. */
6696
6697 int
6698 type_list_equal (const_tree l1, const_tree l2)
6699 {
6700 const_tree t1, t2;
6701
6702 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6703 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6704 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6705 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6706 && (TREE_TYPE (TREE_PURPOSE (t1))
6707 == TREE_TYPE (TREE_PURPOSE (t2))))))
6708 return 0;
6709
6710 return t1 == t2;
6711 }
6712
6713 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6714 given by TYPE. If the argument list accepts variable arguments,
6715 then this function counts only the ordinary arguments. */
6716
6717 int
6718 type_num_arguments (const_tree type)
6719 {
6720 int i = 0;
6721 tree t;
6722
6723 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6724 /* If the function does not take a variable number of arguments,
6725 the last element in the list will have type `void'. */
6726 if (VOID_TYPE_P (TREE_VALUE (t)))
6727 break;
6728 else
6729 ++i;
6730
6731 return i;
6732 }
6733
6734 /* Nonzero if integer constants T1 and T2
6735 represent the same constant value. */
6736
6737 int
6738 tree_int_cst_equal (const_tree t1, const_tree t2)
6739 {
6740 if (t1 == t2)
6741 return 1;
6742
6743 if (t1 == 0 || t2 == 0)
6744 return 0;
6745
6746 if (TREE_CODE (t1) == INTEGER_CST
6747 && TREE_CODE (t2) == INTEGER_CST
6748 && wi::to_widest (t1) == wi::to_widest (t2))
6749 return 1;
6750
6751 return 0;
6752 }
6753
6754 /* Return true if T is an INTEGER_CST whose numerical value (extended
6755 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
6756
6757 bool
6758 tree_fits_shwi_p (const_tree t)
6759 {
6760 return (t != NULL_TREE
6761 && TREE_CODE (t) == INTEGER_CST
6762 && wi::fits_shwi_p (wi::to_widest (t)));
6763 }
6764
6765 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6766 value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */
6767
6768 bool
6769 tree_fits_poly_int64_p (const_tree t)
6770 {
6771 if (t == NULL_TREE)
6772 return false;
6773 if (POLY_INT_CST_P (t))
6774 {
6775 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
6776 if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
6777 return false;
6778 return true;
6779 }
6780 return (TREE_CODE (t) == INTEGER_CST
6781 && wi::fits_shwi_p (wi::to_widest (t)));
6782 }
6783
6784 /* Return true if T is an INTEGER_CST whose numerical value (extended
6785 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
6786
6787 bool
6788 tree_fits_uhwi_p (const_tree t)
6789 {
6790 return (t != NULL_TREE
6791 && TREE_CODE (t) == INTEGER_CST
6792 && wi::fits_uhwi_p (wi::to_widest (t)));
6793 }
6794
6795 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6796 value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */
6797
6798 bool
6799 tree_fits_poly_uint64_p (const_tree t)
6800 {
6801 if (t == NULL_TREE)
6802 return false;
6803 if (POLY_INT_CST_P (t))
6804 {
6805 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
6806 if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
6807 return false;
6808 return true;
6809 }
6810 return (TREE_CODE (t) == INTEGER_CST
6811 && wi::fits_uhwi_p (wi::to_widest (t)));
6812 }
6813
6814 /* T is an INTEGER_CST whose numerical value (extended according to
6815 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
6816 HOST_WIDE_INT. */
6817
6818 HOST_WIDE_INT
6819 tree_to_shwi (const_tree t)
6820 {
6821 gcc_assert (tree_fits_shwi_p (t));
6822 return TREE_INT_CST_LOW (t);
6823 }
6824
6825 /* T is an INTEGER_CST whose numerical value (extended according to
6826 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
6827 HOST_WIDE_INT. */
6828
6829 unsigned HOST_WIDE_INT
6830 tree_to_uhwi (const_tree t)
6831 {
6832 gcc_assert (tree_fits_uhwi_p (t));
6833 return TREE_INT_CST_LOW (t);
6834 }
6835
6836 /* Return the most significant (sign) bit of T. */
6837
6838 int
6839 tree_int_cst_sign_bit (const_tree t)
6840 {
6841 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
6842
6843 return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
6844 }
6845
6846 /* Return an indication of the sign of the integer constant T.
6847 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6848 Note that -1 will never be returned if T's type is unsigned. */
6849
6850 int
6851 tree_int_cst_sgn (const_tree t)
6852 {
6853 if (wi::to_wide (t) == 0)
6854 return 0;
6855 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6856 return 1;
6857 else if (wi::neg_p (wi::to_wide (t)))
6858 return -1;
6859 else
6860 return 1;
6861 }
6862
6863 /* Return the minimum number of bits needed to represent VALUE in a
6864 signed or unsigned type, UNSIGNEDP says which. */
6865
6866 unsigned int
6867 tree_int_cst_min_precision (tree value, signop sgn)
6868 {
6869 /* If the value is negative, compute its negative minus 1. The latter
6870 adjustment is because the absolute value of the largest negative value
6871 is one larger than the largest positive value. This is equivalent to
6872 a bit-wise negation, so use that operation instead. */
6873
6874 if (tree_int_cst_sgn (value) < 0)
6875 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6876
6877 /* Return the number of bits needed, taking into account the fact
6878 that we need one more bit for a signed than unsigned type.
6879 If value is 0 or -1, the minimum precision is 1 no matter
6880 whether unsignedp is true or false. */
6881
6882 if (integer_zerop (value))
6883 return 1;
6884 else
6885 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
6886 }
6887
6888 /* Return truthvalue of whether T1 is the same tree structure as T2.
6889 Return 1 if they are the same.
6890 Return 0 if they are understandably different.
6891 Return -1 if either contains tree structure not understood by
6892 this function. */
6893
6894 int
6895 simple_cst_equal (const_tree t1, const_tree t2)
6896 {
6897 enum tree_code code1, code2;
6898 int cmp;
6899 int i;
6900
6901 if (t1 == t2)
6902 return 1;
6903 if (t1 == 0 || t2 == 0)
6904 return 0;
6905
6906 code1 = TREE_CODE (t1);
6907 code2 = TREE_CODE (t2);
6908
6909 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6910 {
6911 if (CONVERT_EXPR_CODE_P (code2)
6912 || code2 == NON_LVALUE_EXPR)
6913 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6914 else
6915 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6916 }
6917
6918 else if (CONVERT_EXPR_CODE_P (code2)
6919 || code2 == NON_LVALUE_EXPR)
6920 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6921
6922 if (code1 != code2)
6923 return 0;
6924
6925 switch (code1)
6926 {
6927 case INTEGER_CST:
6928 return wi::to_widest (t1) == wi::to_widest (t2);
6929
6930 case REAL_CST:
6931 return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
6932
6933 case FIXED_CST:
6934 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6935
6936 case STRING_CST:
6937 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6938 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6939 TREE_STRING_LENGTH (t1)));
6940
6941 case CONSTRUCTOR:
6942 {
6943 unsigned HOST_WIDE_INT idx;
6944 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
6945 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
6946
6947 if (vec_safe_length (v1) != vec_safe_length (v2))
6948 return false;
6949
6950 for (idx = 0; idx < vec_safe_length (v1); ++idx)
6951 /* ??? Should we handle also fields here? */
6952 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
6953 return false;
6954 return true;
6955 }
6956
6957 case SAVE_EXPR:
6958 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6959
6960 case CALL_EXPR:
6961 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6962 if (cmp <= 0)
6963 return cmp;
6964 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6965 return 0;
6966 {
6967 const_tree arg1, arg2;
6968 const_call_expr_arg_iterator iter1, iter2;
6969 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6970 arg2 = first_const_call_expr_arg (t2, &iter2);
6971 arg1 && arg2;
6972 arg1 = next_const_call_expr_arg (&iter1),
6973 arg2 = next_const_call_expr_arg (&iter2))
6974 {
6975 cmp = simple_cst_equal (arg1, arg2);
6976 if (cmp <= 0)
6977 return cmp;
6978 }
6979 return arg1 == arg2;
6980 }
6981
6982 case TARGET_EXPR:
6983 /* Special case: if either target is an unallocated VAR_DECL,
6984 it means that it's going to be unified with whatever the
6985 TARGET_EXPR is really supposed to initialize, so treat it
6986 as being equivalent to anything. */
6987 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6988 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6989 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6990 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6991 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6992 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6993 cmp = 1;
6994 else
6995 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6996
6997 if (cmp <= 0)
6998 return cmp;
6999
7000 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7001
7002 case WITH_CLEANUP_EXPR:
7003 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7004 if (cmp <= 0)
7005 return cmp;
7006
7007 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7008
7009 case COMPONENT_REF:
7010 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7011 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7012
7013 return 0;
7014
7015 case VAR_DECL:
7016 case PARM_DECL:
7017 case CONST_DECL:
7018 case FUNCTION_DECL:
7019 return 0;
7020
7021 default:
7022 if (POLY_INT_CST_P (t1))
7023 /* A false return means maybe_ne rather than known_ne. */
7024 return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
7025 TYPE_SIGN (TREE_TYPE (t1))),
7026 poly_widest_int::from (poly_int_cst_value (t2),
7027 TYPE_SIGN (TREE_TYPE (t2))));
7028 break;
7029 }
7030
7031 /* This general rule works for most tree codes. All exceptions should be
7032 handled above. If this is a language-specific tree code, we can't
7033 trust what might be in the operand, so say we don't know
7034 the situation. */
7035 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7036 return -1;
7037
7038 switch (TREE_CODE_CLASS (code1))
7039 {
7040 case tcc_unary:
7041 case tcc_binary:
7042 case tcc_comparison:
7043 case tcc_expression:
7044 case tcc_reference:
7045 case tcc_statement:
7046 cmp = 1;
7047 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7048 {
7049 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7050 if (cmp <= 0)
7051 return cmp;
7052 }
7053
7054 return cmp;
7055
7056 default:
7057 return -1;
7058 }
7059 }
7060
7061 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7062 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7063 than U, respectively. */
7064
7065 int
7066 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7067 {
7068 if (tree_int_cst_sgn (t) < 0)
7069 return -1;
7070 else if (!tree_fits_uhwi_p (t))
7071 return 1;
7072 else if (TREE_INT_CST_LOW (t) == u)
7073 return 0;
7074 else if (TREE_INT_CST_LOW (t) < u)
7075 return -1;
7076 else
7077 return 1;
7078 }
7079
7080 /* Return true if SIZE represents a constant size that is in bounds of
7081 what the middle-end and the backend accepts (covering not more than
7082 half of the address-space). */
7083
7084 bool
7085 valid_constant_size_p (const_tree size)
7086 {
7087 if (POLY_INT_CST_P (size))
7088 {
7089 if (TREE_OVERFLOW (size))
7090 return false;
7091 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7092 if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
7093 return false;
7094 return true;
7095 }
7096 if (! tree_fits_uhwi_p (size)
7097 || TREE_OVERFLOW (size)
7098 || tree_int_cst_sign_bit (size) != 0)
7099 return false;
7100 return true;
7101 }
7102
7103 /* Return the precision of the type, or for a complex or vector type the
7104 precision of the type of its elements. */
7105
7106 unsigned int
7107 element_precision (const_tree type)
7108 {
7109 if (!TYPE_P (type))
7110 type = TREE_TYPE (type);
7111 enum tree_code code = TREE_CODE (type);
7112 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7113 type = TREE_TYPE (type);
7114
7115 return TYPE_PRECISION (type);
7116 }
7117
7118 /* Return true if CODE represents an associative tree code. Otherwise
7119 return false. */
7120 bool
7121 associative_tree_code (enum tree_code code)
7122 {
7123 switch (code)
7124 {
7125 case BIT_IOR_EXPR:
7126 case BIT_AND_EXPR:
7127 case BIT_XOR_EXPR:
7128 case PLUS_EXPR:
7129 case MULT_EXPR:
7130 case MIN_EXPR:
7131 case MAX_EXPR:
7132 return true;
7133
7134 default:
7135 break;
7136 }
7137 return false;
7138 }
7139
7140 /* Return true if CODE represents a commutative tree code. Otherwise
7141 return false. */
7142 bool
7143 commutative_tree_code (enum tree_code code)
7144 {
7145 switch (code)
7146 {
7147 case PLUS_EXPR:
7148 case MULT_EXPR:
7149 case MULT_HIGHPART_EXPR:
7150 case MIN_EXPR:
7151 case MAX_EXPR:
7152 case BIT_IOR_EXPR:
7153 case BIT_XOR_EXPR:
7154 case BIT_AND_EXPR:
7155 case NE_EXPR:
7156 case EQ_EXPR:
7157 case UNORDERED_EXPR:
7158 case ORDERED_EXPR:
7159 case UNEQ_EXPR:
7160 case LTGT_EXPR:
7161 case TRUTH_AND_EXPR:
7162 case TRUTH_XOR_EXPR:
7163 case TRUTH_OR_EXPR:
7164 case WIDEN_MULT_EXPR:
7165 case VEC_WIDEN_MULT_HI_EXPR:
7166 case VEC_WIDEN_MULT_LO_EXPR:
7167 case VEC_WIDEN_MULT_EVEN_EXPR:
7168 case VEC_WIDEN_MULT_ODD_EXPR:
7169 return true;
7170
7171 default:
7172 break;
7173 }
7174 return false;
7175 }
7176
7177 /* Return true if CODE represents a ternary tree code for which the
7178 first two operands are commutative. Otherwise return false. */
7179 bool
7180 commutative_ternary_tree_code (enum tree_code code)
7181 {
7182 switch (code)
7183 {
7184 case WIDEN_MULT_PLUS_EXPR:
7185 case WIDEN_MULT_MINUS_EXPR:
7186 case DOT_PROD_EXPR:
7187 case FMA_EXPR:
7188 return true;
7189
7190 default:
7191 break;
7192 }
7193 return false;
7194 }
7195
7196 /* Returns true if CODE can overflow. */
7197
7198 bool
7199 operation_can_overflow (enum tree_code code)
7200 {
7201 switch (code)
7202 {
7203 case PLUS_EXPR:
7204 case MINUS_EXPR:
7205 case MULT_EXPR:
7206 case LSHIFT_EXPR:
7207 /* Can overflow in various ways. */
7208 return true;
7209 case TRUNC_DIV_EXPR:
7210 case EXACT_DIV_EXPR:
7211 case FLOOR_DIV_EXPR:
7212 case CEIL_DIV_EXPR:
7213 /* For INT_MIN / -1. */
7214 return true;
7215 case NEGATE_EXPR:
7216 case ABS_EXPR:
7217 /* For -INT_MIN. */
7218 return true;
7219 default:
7220 /* These operators cannot overflow. */
7221 return false;
7222 }
7223 }
7224
7225 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7226 ftrapv doesn't generate trapping insns for CODE. */
7227
7228 bool
7229 operation_no_trapping_overflow (tree type, enum tree_code code)
7230 {
7231 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
7232
7233 /* We don't generate instructions that trap on overflow for complex or vector
7234 types. */
7235 if (!INTEGRAL_TYPE_P (type))
7236 return true;
7237
7238 if (!TYPE_OVERFLOW_TRAPS (type))
7239 return true;
7240
7241 switch (code)
7242 {
7243 case PLUS_EXPR:
7244 case MINUS_EXPR:
7245 case MULT_EXPR:
7246 case NEGATE_EXPR:
7247 case ABS_EXPR:
7248 /* These operators can overflow, and -ftrapv generates trapping code for
7249 these. */
7250 return false;
7251 case TRUNC_DIV_EXPR:
7252 case EXACT_DIV_EXPR:
7253 case FLOOR_DIV_EXPR:
7254 case CEIL_DIV_EXPR:
7255 case LSHIFT_EXPR:
7256 /* These operators can overflow, but -ftrapv does not generate trapping
7257 code for these. */
7258 return true;
7259 default:
7260 /* These operators cannot overflow. */
7261 return true;
7262 }
7263 }
7264
7265 namespace inchash
7266 {
7267
7268 /* Generate a hash value for an expression. This can be used iteratively
7269 by passing a previous result as the HSTATE argument.
7270
7271 This function is intended to produce the same hash for expressions which
7272 would compare equal using operand_equal_p. */
7273 void
7274 add_expr (const_tree t, inchash::hash &hstate, unsigned int flags)
7275 {
7276 int i;
7277 enum tree_code code;
7278 enum tree_code_class tclass;
7279
7280 if (t == NULL_TREE || t == error_mark_node)
7281 {
7282 hstate.merge_hash (0);
7283 return;
7284 }
7285
7286 if (!(flags & OEP_ADDRESS_OF))
7287 STRIP_NOPS (t);
7288
7289 code = TREE_CODE (t);
7290
7291 switch (code)
7292 {
7293 /* Alas, constants aren't shared, so we can't rely on pointer
7294 identity. */
7295 case VOID_CST:
7296 hstate.merge_hash (0);
7297 return;
7298 case INTEGER_CST:
7299 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7300 for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++)
7301 hstate.add_hwi (TREE_INT_CST_ELT (t, i));
7302 return;
7303 case REAL_CST:
7304 {
7305 unsigned int val2;
7306 if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t))
7307 val2 = rvc_zero;
7308 else
7309 val2 = real_hash (TREE_REAL_CST_PTR (t));
7310 hstate.merge_hash (val2);
7311 return;
7312 }
7313 case FIXED_CST:
7314 {
7315 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7316 hstate.merge_hash (val2);
7317 return;
7318 }
7319 case STRING_CST:
7320 hstate.add ((const void *) TREE_STRING_POINTER (t),
7321 TREE_STRING_LENGTH (t));
7322 return;
7323 case COMPLEX_CST:
7324 inchash::add_expr (TREE_REALPART (t), hstate, flags);
7325 inchash::add_expr (TREE_IMAGPART (t), hstate, flags);
7326 return;
7327 case VECTOR_CST:
7328 {
7329 hstate.add_int (VECTOR_CST_NPATTERNS (t));
7330 hstate.add_int (VECTOR_CST_NELTS_PER_PATTERN (t));
7331 unsigned int count = vector_cst_encoded_nelts (t);
7332 for (unsigned int i = 0; i < count; ++i)
7333 inchash::add_expr (VECTOR_CST_ENCODED_ELT (t, i), hstate, flags);
7334 return;
7335 }
7336 case SSA_NAME:
7337 /* We can just compare by pointer. */
7338 hstate.add_hwi (SSA_NAME_VERSION (t));
7339 return;
7340 case PLACEHOLDER_EXPR:
7341 /* The node itself doesn't matter. */
7342 return;
7343 case BLOCK:
7344 case OMP_CLAUSE:
7345 /* Ignore. */
7346 return;
7347 case TREE_LIST:
7348 /* A list of expressions, for a CALL_EXPR or as the elements of a
7349 VECTOR_CST. */
7350 for (; t; t = TREE_CHAIN (t))
7351 inchash::add_expr (TREE_VALUE (t), hstate, flags);
7352 return;
7353 case CONSTRUCTOR:
7354 {
7355 unsigned HOST_WIDE_INT idx;
7356 tree field, value;
7357 flags &= ~OEP_ADDRESS_OF;
7358 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7359 {
7360 inchash::add_expr (field, hstate, flags);
7361 inchash::add_expr (value, hstate, flags);
7362 }
7363 return;
7364 }
7365 case STATEMENT_LIST:
7366 {
7367 tree_stmt_iterator i;
7368 for (i = tsi_start (CONST_CAST_TREE (t));
7369 !tsi_end_p (i); tsi_next (&i))
7370 inchash::add_expr (tsi_stmt (i), hstate, flags);
7371 return;
7372 }
7373 case TREE_VEC:
7374 for (i = 0; i < TREE_VEC_LENGTH (t); ++i)
7375 inchash::add_expr (TREE_VEC_ELT (t, i), hstate, flags);
7376 return;
7377 case FUNCTION_DECL:
7378 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7379 Otherwise nodes that compare equal according to operand_equal_p might
7380 get different hash codes. However, don't do this for machine specific
7381 or front end builtins, since the function code is overloaded in those
7382 cases. */
7383 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7384 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7385 {
7386 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7387 code = TREE_CODE (t);
7388 }
7389 /* FALL THROUGH */
7390 default:
7391 if (POLY_INT_CST_P (t))
7392 {
7393 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7394 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
7395 return;
7396 }
7397 tclass = TREE_CODE_CLASS (code);
7398
7399 if (tclass == tcc_declaration)
7400 {
7401 /* DECL's have a unique ID */
7402 hstate.add_hwi (DECL_UID (t));
7403 }
7404 else if (tclass == tcc_comparison && !commutative_tree_code (code))
7405 {
7406 /* For comparisons that can be swapped, use the lower
7407 tree code. */
7408 enum tree_code ccode = swap_tree_comparison (code);
7409 if (code < ccode)
7410 ccode = code;
7411 hstate.add_object (ccode);
7412 inchash::add_expr (TREE_OPERAND (t, ccode != code), hstate, flags);
7413 inchash::add_expr (TREE_OPERAND (t, ccode == code), hstate, flags);
7414 }
7415 else if (CONVERT_EXPR_CODE_P (code))
7416 {
7417 /* NOP_EXPR and CONVERT_EXPR are considered equal by
7418 operand_equal_p. */
7419 enum tree_code ccode = NOP_EXPR;
7420 hstate.add_object (ccode);
7421
7422 /* Don't hash the type, that can lead to having nodes which
7423 compare equal according to operand_equal_p, but which
7424 have different hash codes. Make sure to include signedness
7425 in the hash computation. */
7426 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7427 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7428 }
7429 /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl. */
7430 else if (code == MEM_REF
7431 && (flags & OEP_ADDRESS_OF) != 0
7432 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
7433 && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
7434 && integer_zerop (TREE_OPERAND (t, 1)))
7435 inchash::add_expr (TREE_OPERAND (TREE_OPERAND (t, 0), 0),
7436 hstate, flags);
7437 /* Don't ICE on FE specific trees, or their arguments etc.
7438 during operand_equal_p hash verification. */
7439 else if (!IS_EXPR_CODE_CLASS (tclass))
7440 gcc_assert (flags & OEP_HASH_CHECK);
7441 else
7442 {
7443 unsigned int sflags = flags;
7444
7445 hstate.add_object (code);
7446
7447 switch (code)
7448 {
7449 case ADDR_EXPR:
7450 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7451 flags |= OEP_ADDRESS_OF;
7452 sflags = flags;
7453 break;
7454
7455 case INDIRECT_REF:
7456 case MEM_REF:
7457 case TARGET_MEM_REF:
7458 flags &= ~OEP_ADDRESS_OF;
7459 sflags = flags;
7460 break;
7461
7462 case ARRAY_REF:
7463 case ARRAY_RANGE_REF:
7464 case COMPONENT_REF:
7465 case BIT_FIELD_REF:
7466 sflags &= ~OEP_ADDRESS_OF;
7467 break;
7468
7469 case COND_EXPR:
7470 flags &= ~OEP_ADDRESS_OF;
7471 break;
7472
7473 case FMA_EXPR:
7474 case WIDEN_MULT_PLUS_EXPR:
7475 case WIDEN_MULT_MINUS_EXPR:
7476 {
7477 /* The multiplication operands are commutative. */
7478 inchash::hash one, two;
7479 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7480 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7481 hstate.add_commutative (one, two);
7482 inchash::add_expr (TREE_OPERAND (t, 2), two, flags);
7483 return;
7484 }
7485
7486 case CALL_EXPR:
7487 if (CALL_EXPR_FN (t) == NULL_TREE)
7488 hstate.add_int (CALL_EXPR_IFN (t));
7489 break;
7490
7491 case TARGET_EXPR:
7492 /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
7493 Usually different TARGET_EXPRs just should use
7494 different temporaries in their slots. */
7495 inchash::add_expr (TARGET_EXPR_SLOT (t), hstate, flags);
7496 return;
7497
7498 default:
7499 break;
7500 }
7501
7502 /* Don't hash the type, that can lead to having nodes which
7503 compare equal according to operand_equal_p, but which
7504 have different hash codes. */
7505 if (code == NON_LVALUE_EXPR)
7506 {
7507 /* Make sure to include signness in the hash computation. */
7508 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7509 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7510 }
7511
7512 else if (commutative_tree_code (code))
7513 {
7514 /* It's a commutative expression. We want to hash it the same
7515 however it appears. We do this by first hashing both operands
7516 and then rehashing based on the order of their independent
7517 hashes. */
7518 inchash::hash one, two;
7519 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7520 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7521 hstate.add_commutative (one, two);
7522 }
7523 else
7524 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7525 inchash::add_expr (TREE_OPERAND (t, i), hstate,
7526 i == 0 ? flags : sflags);
7527 }
7528 return;
7529 }
7530 }
7531
7532 }
7533
7534 /* Constructors for pointer, array and function types.
7535 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7536 constructed by language-dependent code, not here.) */
7537
7538 /* Construct, lay out and return the type of pointers to TO_TYPE with
7539 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7540 reference all of memory. If such a type has already been
7541 constructed, reuse it. */
7542
7543 tree
7544 build_pointer_type_for_mode (tree to_type, machine_mode mode,
7545 bool can_alias_all)
7546 {
7547 tree t;
7548 bool could_alias = can_alias_all;
7549
7550 if (to_type == error_mark_node)
7551 return error_mark_node;
7552
7553 /* If the pointed-to type has the may_alias attribute set, force
7554 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7555 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7556 can_alias_all = true;
7557
7558 /* In some cases, languages will have things that aren't a POINTER_TYPE
7559 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7560 In that case, return that type without regard to the rest of our
7561 operands.
7562
7563 ??? This is a kludge, but consistent with the way this function has
7564 always operated and there doesn't seem to be a good way to avoid this
7565 at the moment. */
7566 if (TYPE_POINTER_TO (to_type) != 0
7567 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7568 return TYPE_POINTER_TO (to_type);
7569
7570 /* First, if we already have a type for pointers to TO_TYPE and it's
7571 the proper mode, use it. */
7572 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7573 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7574 return t;
7575
7576 t = make_node (POINTER_TYPE);
7577
7578 TREE_TYPE (t) = to_type;
7579 SET_TYPE_MODE (t, mode);
7580 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7581 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7582 TYPE_POINTER_TO (to_type) = t;
7583
7584 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7585 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7586 SET_TYPE_STRUCTURAL_EQUALITY (t);
7587 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7588 TYPE_CANONICAL (t)
7589 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7590 mode, false);
7591
7592 /* Lay out the type. This function has many callers that are concerned
7593 with expression-construction, and this simplifies them all. */
7594 layout_type (t);
7595
7596 return t;
7597 }
7598
7599 /* By default build pointers in ptr_mode. */
7600
7601 tree
7602 build_pointer_type (tree to_type)
7603 {
7604 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7605 : TYPE_ADDR_SPACE (to_type);
7606 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7607 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7608 }
7609
7610 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7611
7612 tree
7613 build_reference_type_for_mode (tree to_type, machine_mode mode,
7614 bool can_alias_all)
7615 {
7616 tree t;
7617 bool could_alias = can_alias_all;
7618
7619 if (to_type == error_mark_node)
7620 return error_mark_node;
7621
7622 /* If the pointed-to type has the may_alias attribute set, force
7623 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7624 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7625 can_alias_all = true;
7626
7627 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7628 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7629 In that case, return that type without regard to the rest of our
7630 operands.
7631
7632 ??? This is a kludge, but consistent with the way this function has
7633 always operated and there doesn't seem to be a good way to avoid this
7634 at the moment. */
7635 if (TYPE_REFERENCE_TO (to_type) != 0
7636 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7637 return TYPE_REFERENCE_TO (to_type);
7638
7639 /* First, if we already have a type for pointers to TO_TYPE and it's
7640 the proper mode, use it. */
7641 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7642 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7643 return t;
7644
7645 t = make_node (REFERENCE_TYPE);
7646
7647 TREE_TYPE (t) = to_type;
7648 SET_TYPE_MODE (t, mode);
7649 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7650 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7651 TYPE_REFERENCE_TO (to_type) = t;
7652
7653 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7654 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7655 SET_TYPE_STRUCTURAL_EQUALITY (t);
7656 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7657 TYPE_CANONICAL (t)
7658 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7659 mode, false);
7660
7661 layout_type (t);
7662
7663 return t;
7664 }
7665
7666
7667 /* Build the node for the type of references-to-TO_TYPE by default
7668 in ptr_mode. */
7669
7670 tree
7671 build_reference_type (tree to_type)
7672 {
7673 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7674 : TYPE_ADDR_SPACE (to_type);
7675 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7676 return build_reference_type_for_mode (to_type, pointer_mode, false);
7677 }
7678
7679 #define MAX_INT_CACHED_PREC \
7680 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7681 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7682
7683 /* Builds a signed or unsigned integer type of precision PRECISION.
7684 Used for C bitfields whose precision does not match that of
7685 built-in target types. */
7686 tree
7687 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7688 int unsignedp)
7689 {
7690 tree itype, ret;
7691
7692 if (unsignedp)
7693 unsignedp = MAX_INT_CACHED_PREC + 1;
7694
7695 if (precision <= MAX_INT_CACHED_PREC)
7696 {
7697 itype = nonstandard_integer_type_cache[precision + unsignedp];
7698 if (itype)
7699 return itype;
7700 }
7701
7702 itype = make_node (INTEGER_TYPE);
7703 TYPE_PRECISION (itype) = precision;
7704
7705 if (unsignedp)
7706 fixup_unsigned_type (itype);
7707 else
7708 fixup_signed_type (itype);
7709
7710 ret = itype;
7711
7712 inchash::hash hstate;
7713 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
7714 ret = type_hash_canon (hstate.end (), itype);
7715 if (precision <= MAX_INT_CACHED_PREC)
7716 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7717
7718 return ret;
7719 }
7720
7721 #define MAX_BOOL_CACHED_PREC \
7722 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7723 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
7724
7725 /* Builds a boolean type of precision PRECISION.
7726 Used for boolean vectors to choose proper vector element size. */
7727 tree
7728 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
7729 {
7730 tree type;
7731
7732 if (precision <= MAX_BOOL_CACHED_PREC)
7733 {
7734 type = nonstandard_boolean_type_cache[precision];
7735 if (type)
7736 return type;
7737 }
7738
7739 type = make_node (BOOLEAN_TYPE);
7740 TYPE_PRECISION (type) = precision;
7741 fixup_signed_type (type);
7742
7743 if (precision <= MAX_INT_CACHED_PREC)
7744 nonstandard_boolean_type_cache[precision] = type;
7745
7746 return type;
7747 }
7748
7749 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7750 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7751 is true, reuse such a type that has already been constructed. */
7752
7753 static tree
7754 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7755 {
7756 tree itype = make_node (INTEGER_TYPE);
7757
7758 TREE_TYPE (itype) = type;
7759
7760 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7761 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7762
7763 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7764 SET_TYPE_MODE (itype, TYPE_MODE (type));
7765 TYPE_SIZE (itype) = TYPE_SIZE (type);
7766 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7767 SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
7768 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7769 SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
7770
7771 if (!shared)
7772 return itype;
7773
7774 if ((TYPE_MIN_VALUE (itype)
7775 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7776 || (TYPE_MAX_VALUE (itype)
7777 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7778 {
7779 /* Since we cannot reliably merge this type, we need to compare it using
7780 structural equality checks. */
7781 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7782 return itype;
7783 }
7784
7785 hashval_t hash = type_hash_canon_hash (itype);
7786 itype = type_hash_canon (hash, itype);
7787
7788 return itype;
7789 }
7790
7791 /* Wrapper around build_range_type_1 with SHARED set to true. */
7792
7793 tree
7794 build_range_type (tree type, tree lowval, tree highval)
7795 {
7796 return build_range_type_1 (type, lowval, highval, true);
7797 }
7798
7799 /* Wrapper around build_range_type_1 with SHARED set to false. */
7800
7801 tree
7802 build_nonshared_range_type (tree type, tree lowval, tree highval)
7803 {
7804 return build_range_type_1 (type, lowval, highval, false);
7805 }
7806
7807 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7808 MAXVAL should be the maximum value in the domain
7809 (one less than the length of the array).
7810
7811 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7812 We don't enforce this limit, that is up to caller (e.g. language front end).
7813 The limit exists because the result is a signed type and we don't handle
7814 sizes that use more than one HOST_WIDE_INT. */
7815
7816 tree
7817 build_index_type (tree maxval)
7818 {
7819 return build_range_type (sizetype, size_zero_node, maxval);
7820 }
7821
7822 /* Return true if the debug information for TYPE, a subtype, should be emitted
7823 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7824 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7825 debug info and doesn't reflect the source code. */
7826
7827 bool
7828 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7829 {
7830 tree base_type = TREE_TYPE (type), low, high;
7831
7832 /* Subrange types have a base type which is an integral type. */
7833 if (!INTEGRAL_TYPE_P (base_type))
7834 return false;
7835
7836 /* Get the real bounds of the subtype. */
7837 if (lang_hooks.types.get_subrange_bounds)
7838 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7839 else
7840 {
7841 low = TYPE_MIN_VALUE (type);
7842 high = TYPE_MAX_VALUE (type);
7843 }
7844
7845 /* If the type and its base type have the same representation and the same
7846 name, then the type is not a subrange but a copy of the base type. */
7847 if ((TREE_CODE (base_type) == INTEGER_TYPE
7848 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7849 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7850 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7851 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
7852 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
7853 return false;
7854
7855 if (lowval)
7856 *lowval = low;
7857 if (highval)
7858 *highval = high;
7859 return true;
7860 }
7861
7862 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7863 and number of elements specified by the range of values of INDEX_TYPE.
7864 If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
7865 If SHARED is true, reuse such a type that has already been constructed. */
7866
7867 static tree
7868 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
7869 bool shared)
7870 {
7871 tree t;
7872
7873 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7874 {
7875 error ("arrays of functions are not meaningful");
7876 elt_type = integer_type_node;
7877 }
7878
7879 t = make_node (ARRAY_TYPE);
7880 TREE_TYPE (t) = elt_type;
7881 TYPE_DOMAIN (t) = index_type;
7882 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7883 TYPE_TYPELESS_STORAGE (t) = typeless_storage;
7884 layout_type (t);
7885
7886 /* If the element type is incomplete at this point we get marked for
7887 structural equality. Do not record these types in the canonical
7888 type hashtable. */
7889 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7890 return t;
7891
7892 if (shared)
7893 {
7894 hashval_t hash = type_hash_canon_hash (t);
7895 t = type_hash_canon (hash, t);
7896 }
7897
7898 if (TYPE_CANONICAL (t) == t)
7899 {
7900 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7901 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
7902 || in_lto_p)
7903 SET_TYPE_STRUCTURAL_EQUALITY (t);
7904 else if (TYPE_CANONICAL (elt_type) != elt_type
7905 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7906 TYPE_CANONICAL (t)
7907 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7908 index_type
7909 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7910 typeless_storage, shared);
7911 }
7912
7913 return t;
7914 }
7915
7916 /* Wrapper around build_array_type_1 with SHARED set to true. */
7917
7918 tree
7919 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
7920 {
7921 return build_array_type_1 (elt_type, index_type, typeless_storage, true);
7922 }
7923
7924 /* Wrapper around build_array_type_1 with SHARED set to false. */
7925
7926 tree
7927 build_nonshared_array_type (tree elt_type, tree index_type)
7928 {
7929 return build_array_type_1 (elt_type, index_type, false, false);
7930 }
7931
7932 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7933 sizetype. */
7934
7935 tree
7936 build_array_type_nelts (tree elt_type, poly_uint64 nelts)
7937 {
7938 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7939 }
7940
7941 /* Recursively examines the array elements of TYPE, until a non-array
7942 element type is found. */
7943
7944 tree
7945 strip_array_types (tree type)
7946 {
7947 while (TREE_CODE (type) == ARRAY_TYPE)
7948 type = TREE_TYPE (type);
7949
7950 return type;
7951 }
7952
7953 /* Computes the canonical argument types from the argument type list
7954 ARGTYPES.
7955
7956 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7957 on entry to this function, or if any of the ARGTYPES are
7958 structural.
7959
7960 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7961 true on entry to this function, or if any of the ARGTYPES are
7962 non-canonical.
7963
7964 Returns a canonical argument list, which may be ARGTYPES when the
7965 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7966 true) or would not differ from ARGTYPES. */
7967
7968 static tree
7969 maybe_canonicalize_argtypes (tree argtypes,
7970 bool *any_structural_p,
7971 bool *any_noncanonical_p)
7972 {
7973 tree arg;
7974 bool any_noncanonical_argtypes_p = false;
7975
7976 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7977 {
7978 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7979 /* Fail gracefully by stating that the type is structural. */
7980 *any_structural_p = true;
7981 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7982 *any_structural_p = true;
7983 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7984 || TREE_PURPOSE (arg))
7985 /* If the argument has a default argument, we consider it
7986 non-canonical even though the type itself is canonical.
7987 That way, different variants of function and method types
7988 with default arguments will all point to the variant with
7989 no defaults as their canonical type. */
7990 any_noncanonical_argtypes_p = true;
7991 }
7992
7993 if (*any_structural_p)
7994 return argtypes;
7995
7996 if (any_noncanonical_argtypes_p)
7997 {
7998 /* Build the canonical list of argument types. */
7999 tree canon_argtypes = NULL_TREE;
8000 bool is_void = false;
8001
8002 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
8003 {
8004 if (arg == void_list_node)
8005 is_void = true;
8006 else
8007 canon_argtypes = tree_cons (NULL_TREE,
8008 TYPE_CANONICAL (TREE_VALUE (arg)),
8009 canon_argtypes);
8010 }
8011
8012 canon_argtypes = nreverse (canon_argtypes);
8013 if (is_void)
8014 canon_argtypes = chainon (canon_argtypes, void_list_node);
8015
8016 /* There is a non-canonical type. */
8017 *any_noncanonical_p = true;
8018 return canon_argtypes;
8019 }
8020
8021 /* The canonical argument types are the same as ARGTYPES. */
8022 return argtypes;
8023 }
8024
8025 /* Construct, lay out and return
8026 the type of functions returning type VALUE_TYPE
8027 given arguments of types ARG_TYPES.
8028 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8029 are data type nodes for the arguments of the function.
8030 If such a type has already been constructed, reuse it. */
8031
8032 tree
8033 build_function_type (tree value_type, tree arg_types)
8034 {
8035 tree t;
8036 inchash::hash hstate;
8037 bool any_structural_p, any_noncanonical_p;
8038 tree canon_argtypes;
8039
8040 if (TREE_CODE (value_type) == FUNCTION_TYPE)
8041 {
8042 error ("function return type cannot be function");
8043 value_type = integer_type_node;
8044 }
8045
8046 /* Make a node of the sort we want. */
8047 t = make_node (FUNCTION_TYPE);
8048 TREE_TYPE (t) = value_type;
8049 TYPE_ARG_TYPES (t) = arg_types;
8050
8051 /* If we already have such a type, use the old one. */
8052 hashval_t hash = type_hash_canon_hash (t);
8053 t = type_hash_canon (hash, t);
8054
8055 /* Set up the canonical type. */
8056 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8057 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8058 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8059 &any_structural_p,
8060 &any_noncanonical_p);
8061 if (any_structural_p)
8062 SET_TYPE_STRUCTURAL_EQUALITY (t);
8063 else if (any_noncanonical_p)
8064 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8065 canon_argtypes);
8066
8067 if (!COMPLETE_TYPE_P (t))
8068 layout_type (t);
8069 return t;
8070 }
8071
8072 /* Build a function type. The RETURN_TYPE is the type returned by the
8073 function. If VAARGS is set, no void_type_node is appended to the
8074 list. ARGP must be always be terminated be a NULL_TREE. */
8075
8076 static tree
8077 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8078 {
8079 tree t, args, last;
8080
8081 t = va_arg (argp, tree);
8082 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8083 args = tree_cons (NULL_TREE, t, args);
8084
8085 if (vaargs)
8086 {
8087 last = args;
8088 if (args != NULL_TREE)
8089 args = nreverse (args);
8090 gcc_assert (last != void_list_node);
8091 }
8092 else if (args == NULL_TREE)
8093 args = void_list_node;
8094 else
8095 {
8096 last = args;
8097 args = nreverse (args);
8098 TREE_CHAIN (last) = void_list_node;
8099 }
8100 args = build_function_type (return_type, args);
8101
8102 return args;
8103 }
8104
8105 /* Build a function type. The RETURN_TYPE is the type returned by the
8106 function. If additional arguments are provided, they are
8107 additional argument types. The list of argument types must always
8108 be terminated by NULL_TREE. */
8109
8110 tree
8111 build_function_type_list (tree return_type, ...)
8112 {
8113 tree args;
8114 va_list p;
8115
8116 va_start (p, return_type);
8117 args = build_function_type_list_1 (false, return_type, p);
8118 va_end (p);
8119 return args;
8120 }
8121
8122 /* Build a variable argument function type. The RETURN_TYPE is the
8123 type returned by the function. If additional arguments are provided,
8124 they are additional argument types. The list of argument types must
8125 always be terminated by NULL_TREE. */
8126
8127 tree
8128 build_varargs_function_type_list (tree return_type, ...)
8129 {
8130 tree args;
8131 va_list p;
8132
8133 va_start (p, return_type);
8134 args = build_function_type_list_1 (true, return_type, p);
8135 va_end (p);
8136
8137 return args;
8138 }
8139
8140 /* Build a function type. RETURN_TYPE is the type returned by the
8141 function; VAARGS indicates whether the function takes varargs. The
8142 function takes N named arguments, the types of which are provided in
8143 ARG_TYPES. */
8144
8145 static tree
8146 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8147 tree *arg_types)
8148 {
8149 int i;
8150 tree t = vaargs ? NULL_TREE : void_list_node;
8151
8152 for (i = n - 1; i >= 0; i--)
8153 t = tree_cons (NULL_TREE, arg_types[i], t);
8154
8155 return build_function_type (return_type, t);
8156 }
8157
8158 /* Build a function type. RETURN_TYPE is the type returned by the
8159 function. The function takes N named arguments, the types of which
8160 are provided in ARG_TYPES. */
8161
8162 tree
8163 build_function_type_array (tree return_type, int n, tree *arg_types)
8164 {
8165 return build_function_type_array_1 (false, return_type, n, arg_types);
8166 }
8167
8168 /* Build a variable argument function type. RETURN_TYPE is the type
8169 returned by the function. The function takes N named arguments, the
8170 types of which are provided in ARG_TYPES. */
8171
8172 tree
8173 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8174 {
8175 return build_function_type_array_1 (true, return_type, n, arg_types);
8176 }
8177
8178 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8179 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8180 for the method. An implicit additional parameter (of type
8181 pointer-to-BASETYPE) is added to the ARGTYPES. */
8182
8183 tree
8184 build_method_type_directly (tree basetype,
8185 tree rettype,
8186 tree argtypes)
8187 {
8188 tree t;
8189 tree ptype;
8190 bool any_structural_p, any_noncanonical_p;
8191 tree canon_argtypes;
8192
8193 /* Make a node of the sort we want. */
8194 t = make_node (METHOD_TYPE);
8195
8196 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8197 TREE_TYPE (t) = rettype;
8198 ptype = build_pointer_type (basetype);
8199
8200 /* The actual arglist for this function includes a "hidden" argument
8201 which is "this". Put it into the list of argument types. */
8202 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8203 TYPE_ARG_TYPES (t) = argtypes;
8204
8205 /* If we already have such a type, use the old one. */
8206 hashval_t hash = type_hash_canon_hash (t);
8207 t = type_hash_canon (hash, t);
8208
8209 /* Set up the canonical type. */
8210 any_structural_p
8211 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8212 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8213 any_noncanonical_p
8214 = (TYPE_CANONICAL (basetype) != basetype
8215 || TYPE_CANONICAL (rettype) != rettype);
8216 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8217 &any_structural_p,
8218 &any_noncanonical_p);
8219 if (any_structural_p)
8220 SET_TYPE_STRUCTURAL_EQUALITY (t);
8221 else if (any_noncanonical_p)
8222 TYPE_CANONICAL (t)
8223 = build_method_type_directly (TYPE_CANONICAL (basetype),
8224 TYPE_CANONICAL (rettype),
8225 canon_argtypes);
8226 if (!COMPLETE_TYPE_P (t))
8227 layout_type (t);
8228
8229 return t;
8230 }
8231
8232 /* Construct, lay out and return the type of methods belonging to class
8233 BASETYPE and whose arguments and values are described by TYPE.
8234 If that type exists already, reuse it.
8235 TYPE must be a FUNCTION_TYPE node. */
8236
8237 tree
8238 build_method_type (tree basetype, tree type)
8239 {
8240 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8241
8242 return build_method_type_directly (basetype,
8243 TREE_TYPE (type),
8244 TYPE_ARG_TYPES (type));
8245 }
8246
8247 /* Construct, lay out and return the type of offsets to a value
8248 of type TYPE, within an object of type BASETYPE.
8249 If a suitable offset type exists already, reuse it. */
8250
8251 tree
8252 build_offset_type (tree basetype, tree type)
8253 {
8254 tree t;
8255
8256 /* Make a node of the sort we want. */
8257 t = make_node (OFFSET_TYPE);
8258
8259 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8260 TREE_TYPE (t) = type;
8261
8262 /* If we already have such a type, use the old one. */
8263 hashval_t hash = type_hash_canon_hash (t);
8264 t = type_hash_canon (hash, t);
8265
8266 if (!COMPLETE_TYPE_P (t))
8267 layout_type (t);
8268
8269 if (TYPE_CANONICAL (t) == t)
8270 {
8271 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8272 || TYPE_STRUCTURAL_EQUALITY_P (type))
8273 SET_TYPE_STRUCTURAL_EQUALITY (t);
8274 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8275 || TYPE_CANONICAL (type) != type)
8276 TYPE_CANONICAL (t)
8277 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8278 TYPE_CANONICAL (type));
8279 }
8280
8281 return t;
8282 }
8283
8284 /* Create a complex type whose components are COMPONENT_TYPE.
8285
8286 If NAMED is true, the type is given a TYPE_NAME. We do not always
8287 do so because this creates a DECL node and thus make the DECL_UIDs
8288 dependent on the type canonicalization hashtable, which is GC-ed,
8289 so the DECL_UIDs would not be stable wrt garbage collection. */
8290
8291 tree
8292 build_complex_type (tree component_type, bool named)
8293 {
8294 gcc_assert (INTEGRAL_TYPE_P (component_type)
8295 || SCALAR_FLOAT_TYPE_P (component_type)
8296 || FIXED_POINT_TYPE_P (component_type));
8297
8298 /* Make a node of the sort we want. */
8299 tree probe = make_node (COMPLEX_TYPE);
8300
8301 TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
8302
8303 /* If we already have such a type, use the old one. */
8304 hashval_t hash = type_hash_canon_hash (probe);
8305 tree t = type_hash_canon (hash, probe);
8306
8307 if (t == probe)
8308 {
8309 /* We created a new type. The hash insertion will have laid
8310 out the type. We need to check the canonicalization and
8311 maybe set the name. */
8312 gcc_checking_assert (COMPLETE_TYPE_P (t)
8313 && !TYPE_NAME (t)
8314 && TYPE_CANONICAL (t) == t);
8315
8316 if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
8317 SET_TYPE_STRUCTURAL_EQUALITY (t);
8318 else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
8319 TYPE_CANONICAL (t)
8320 = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
8321
8322 /* We need to create a name, since complex is a fundamental type. */
8323 if (named)
8324 {
8325 const char *name = NULL;
8326
8327 if (TREE_TYPE (t) == char_type_node)
8328 name = "complex char";
8329 else if (TREE_TYPE (t) == signed_char_type_node)
8330 name = "complex signed char";
8331 else if (TREE_TYPE (t) == unsigned_char_type_node)
8332 name = "complex unsigned char";
8333 else if (TREE_TYPE (t) == short_integer_type_node)
8334 name = "complex short int";
8335 else if (TREE_TYPE (t) == short_unsigned_type_node)
8336 name = "complex short unsigned int";
8337 else if (TREE_TYPE (t) == integer_type_node)
8338 name = "complex int";
8339 else if (TREE_TYPE (t) == unsigned_type_node)
8340 name = "complex unsigned int";
8341 else if (TREE_TYPE (t) == long_integer_type_node)
8342 name = "complex long int";
8343 else if (TREE_TYPE (t) == long_unsigned_type_node)
8344 name = "complex long unsigned int";
8345 else if (TREE_TYPE (t) == long_long_integer_type_node)
8346 name = "complex long long int";
8347 else if (TREE_TYPE (t) == long_long_unsigned_type_node)
8348 name = "complex long long unsigned int";
8349
8350 if (name != NULL)
8351 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8352 get_identifier (name), t);
8353 }
8354 }
8355
8356 return build_qualified_type (t, TYPE_QUALS (component_type));
8357 }
8358
8359 /* If TYPE is a real or complex floating-point type and the target
8360 does not directly support arithmetic on TYPE then return the wider
8361 type to be used for arithmetic on TYPE. Otherwise, return
8362 NULL_TREE. */
8363
8364 tree
8365 excess_precision_type (tree type)
8366 {
8367 /* The target can give two different responses to the question of
8368 which excess precision mode it would like depending on whether we
8369 are in -fexcess-precision=standard or -fexcess-precision=fast. */
8370
8371 enum excess_precision_type requested_type
8372 = (flag_excess_precision == EXCESS_PRECISION_FAST
8373 ? EXCESS_PRECISION_TYPE_FAST
8374 : EXCESS_PRECISION_TYPE_STANDARD);
8375
8376 enum flt_eval_method target_flt_eval_method
8377 = targetm.c.excess_precision (requested_type);
8378
8379 /* The target should not ask for unpredictable float evaluation (though
8380 it might advertise that implicitly the evaluation is unpredictable,
8381 but we don't care about that here, it will have been reported
8382 elsewhere). If it does ask for unpredictable evaluation, we have
8383 nothing to do here. */
8384 gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
8385
8386 /* Nothing to do. The target has asked for all types we know about
8387 to be computed with their native precision and range. */
8388 if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
8389 return NULL_TREE;
8390
8391 /* The target will promote this type in a target-dependent way, so excess
8392 precision ought to leave it alone. */
8393 if (targetm.promoted_type (type) != NULL_TREE)
8394 return NULL_TREE;
8395
8396 machine_mode float16_type_mode = (float16_type_node
8397 ? TYPE_MODE (float16_type_node)
8398 : VOIDmode);
8399 machine_mode float_type_mode = TYPE_MODE (float_type_node);
8400 machine_mode double_type_mode = TYPE_MODE (double_type_node);
8401
8402 switch (TREE_CODE (type))
8403 {
8404 case REAL_TYPE:
8405 {
8406 machine_mode type_mode = TYPE_MODE (type);
8407 switch (target_flt_eval_method)
8408 {
8409 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8410 if (type_mode == float16_type_mode)
8411 return float_type_node;
8412 break;
8413 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8414 if (type_mode == float16_type_mode
8415 || type_mode == float_type_mode)
8416 return double_type_node;
8417 break;
8418 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8419 if (type_mode == float16_type_mode
8420 || type_mode == float_type_mode
8421 || type_mode == double_type_mode)
8422 return long_double_type_node;
8423 break;
8424 default:
8425 gcc_unreachable ();
8426 }
8427 break;
8428 }
8429 case COMPLEX_TYPE:
8430 {
8431 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8432 return NULL_TREE;
8433 machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
8434 switch (target_flt_eval_method)
8435 {
8436 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8437 if (type_mode == float16_type_mode)
8438 return complex_float_type_node;
8439 break;
8440 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8441 if (type_mode == float16_type_mode
8442 || type_mode == float_type_mode)
8443 return complex_double_type_node;
8444 break;
8445 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8446 if (type_mode == float16_type_mode
8447 || type_mode == float_type_mode
8448 || type_mode == double_type_mode)
8449 return complex_long_double_type_node;
8450 break;
8451 default:
8452 gcc_unreachable ();
8453 }
8454 break;
8455 }
8456 default:
8457 break;
8458 }
8459
8460 return NULL_TREE;
8461 }
8462 \f
8463 /* Return OP, stripped of any conversions to wider types as much as is safe.
8464 Converting the value back to OP's type makes a value equivalent to OP.
8465
8466 If FOR_TYPE is nonzero, we return a value which, if converted to
8467 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8468
8469 OP must have integer, real or enumeral type. Pointers are not allowed!
8470
8471 There are some cases where the obvious value we could return
8472 would regenerate to OP if converted to OP's type,
8473 but would not extend like OP to wider types.
8474 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8475 For example, if OP is (unsigned short)(signed char)-1,
8476 we avoid returning (signed char)-1 if FOR_TYPE is int,
8477 even though extending that to an unsigned short would regenerate OP,
8478 since the result of extending (signed char)-1 to (int)
8479 is different from (int) OP. */
8480
8481 tree
8482 get_unwidened (tree op, tree for_type)
8483 {
8484 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8485 tree type = TREE_TYPE (op);
8486 unsigned final_prec
8487 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8488 int uns
8489 = (for_type != 0 && for_type != type
8490 && final_prec > TYPE_PRECISION (type)
8491 && TYPE_UNSIGNED (type));
8492 tree win = op;
8493
8494 while (CONVERT_EXPR_P (op))
8495 {
8496 int bitschange;
8497
8498 /* TYPE_PRECISION on vector types has different meaning
8499 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8500 so avoid them here. */
8501 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8502 break;
8503
8504 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8505 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8506
8507 /* Truncations are many-one so cannot be removed.
8508 Unless we are later going to truncate down even farther. */
8509 if (bitschange < 0
8510 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8511 break;
8512
8513 /* See what's inside this conversion. If we decide to strip it,
8514 we will set WIN. */
8515 op = TREE_OPERAND (op, 0);
8516
8517 /* If we have not stripped any zero-extensions (uns is 0),
8518 we can strip any kind of extension.
8519 If we have previously stripped a zero-extension,
8520 only zero-extensions can safely be stripped.
8521 Any extension can be stripped if the bits it would produce
8522 are all going to be discarded later by truncating to FOR_TYPE. */
8523
8524 if (bitschange > 0)
8525 {
8526 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8527 win = op;
8528 /* TYPE_UNSIGNED says whether this is a zero-extension.
8529 Let's avoid computing it if it does not affect WIN
8530 and if UNS will not be needed again. */
8531 if ((uns
8532 || CONVERT_EXPR_P (op))
8533 && TYPE_UNSIGNED (TREE_TYPE (op)))
8534 {
8535 uns = 1;
8536 win = op;
8537 }
8538 }
8539 }
8540
8541 /* If we finally reach a constant see if it fits in sth smaller and
8542 in that case convert it. */
8543 if (TREE_CODE (win) == INTEGER_CST)
8544 {
8545 tree wtype = TREE_TYPE (win);
8546 unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
8547 if (for_type)
8548 prec = MAX (prec, final_prec);
8549 if (prec < TYPE_PRECISION (wtype))
8550 {
8551 tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
8552 if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
8553 win = fold_convert (t, win);
8554 }
8555 }
8556
8557 return win;
8558 }
8559 \f
8560 /* Return OP or a simpler expression for a narrower value
8561 which can be sign-extended or zero-extended to give back OP.
8562 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8563 or 0 if the value should be sign-extended. */
8564
8565 tree
8566 get_narrower (tree op, int *unsignedp_ptr)
8567 {
8568 int uns = 0;
8569 int first = 1;
8570 tree win = op;
8571 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8572
8573 while (TREE_CODE (op) == NOP_EXPR)
8574 {
8575 int bitschange
8576 = (TYPE_PRECISION (TREE_TYPE (op))
8577 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8578
8579 /* Truncations are many-one so cannot be removed. */
8580 if (bitschange < 0)
8581 break;
8582
8583 /* See what's inside this conversion. If we decide to strip it,
8584 we will set WIN. */
8585
8586 if (bitschange > 0)
8587 {
8588 op = TREE_OPERAND (op, 0);
8589 /* An extension: the outermost one can be stripped,
8590 but remember whether it is zero or sign extension. */
8591 if (first)
8592 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8593 /* Otherwise, if a sign extension has been stripped,
8594 only sign extensions can now be stripped;
8595 if a zero extension has been stripped, only zero-extensions. */
8596 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8597 break;
8598 first = 0;
8599 }
8600 else /* bitschange == 0 */
8601 {
8602 /* A change in nominal type can always be stripped, but we must
8603 preserve the unsignedness. */
8604 if (first)
8605 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8606 first = 0;
8607 op = TREE_OPERAND (op, 0);
8608 /* Keep trying to narrow, but don't assign op to win if it
8609 would turn an integral type into something else. */
8610 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8611 continue;
8612 }
8613
8614 win = op;
8615 }
8616
8617 if (TREE_CODE (op) == COMPONENT_REF
8618 /* Since type_for_size always gives an integer type. */
8619 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8620 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8621 /* Ensure field is laid out already. */
8622 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8623 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8624 {
8625 unsigned HOST_WIDE_INT innerprec
8626 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8627 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8628 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8629 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8630
8631 /* We can get this structure field in a narrower type that fits it,
8632 but the resulting extension to its nominal type (a fullword type)
8633 must satisfy the same conditions as for other extensions.
8634
8635 Do this only for fields that are aligned (not bit-fields),
8636 because when bit-field insns will be used there is no
8637 advantage in doing this. */
8638
8639 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8640 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8641 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8642 && type != 0)
8643 {
8644 if (first)
8645 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8646 win = fold_convert (type, op);
8647 }
8648 }
8649
8650 *unsignedp_ptr = uns;
8651 return win;
8652 }
8653 \f
8654 /* Return true if integer constant C has a value that is permissible
8655 for TYPE, an integral type. */
8656
8657 bool
8658 int_fits_type_p (const_tree c, const_tree type)
8659 {
8660 tree type_low_bound, type_high_bound;
8661 bool ok_for_low_bound, ok_for_high_bound;
8662 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8663
8664 /* Non-standard boolean types can have arbitrary precision but various
8665 transformations assume that they can only take values 0 and +/-1. */
8666 if (TREE_CODE (type) == BOOLEAN_TYPE)
8667 return wi::fits_to_boolean_p (wi::to_wide (c), type);
8668
8669 retry:
8670 type_low_bound = TYPE_MIN_VALUE (type);
8671 type_high_bound = TYPE_MAX_VALUE (type);
8672
8673 /* If at least one bound of the type is a constant integer, we can check
8674 ourselves and maybe make a decision. If no such decision is possible, but
8675 this type is a subtype, try checking against that. Otherwise, use
8676 fits_to_tree_p, which checks against the precision.
8677
8678 Compute the status for each possibly constant bound, and return if we see
8679 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8680 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8681 for "constant known to fit". */
8682
8683 /* Check if c >= type_low_bound. */
8684 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8685 {
8686 if (tree_int_cst_lt (c, type_low_bound))
8687 return false;
8688 ok_for_low_bound = true;
8689 }
8690 else
8691 ok_for_low_bound = false;
8692
8693 /* Check if c <= type_high_bound. */
8694 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8695 {
8696 if (tree_int_cst_lt (type_high_bound, c))
8697 return false;
8698 ok_for_high_bound = true;
8699 }
8700 else
8701 ok_for_high_bound = false;
8702
8703 /* If the constant fits both bounds, the result is known. */
8704 if (ok_for_low_bound && ok_for_high_bound)
8705 return true;
8706
8707 /* Perform some generic filtering which may allow making a decision
8708 even if the bounds are not constant. First, negative integers
8709 never fit in unsigned types, */
8710 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
8711 return false;
8712
8713 /* Second, narrower types always fit in wider ones. */
8714 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8715 return true;
8716
8717 /* Third, unsigned integers with top bit set never fit signed types. */
8718 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
8719 {
8720 int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
8721 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
8722 {
8723 /* When a tree_cst is converted to a wide-int, the precision
8724 is taken from the type. However, if the precision of the
8725 mode underneath the type is smaller than that, it is
8726 possible that the value will not fit. The test below
8727 fails if any bit is set between the sign bit of the
8728 underlying mode and the top bit of the type. */
8729 if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
8730 return false;
8731 }
8732 else if (wi::neg_p (wi::to_wide (c)))
8733 return false;
8734 }
8735
8736 /* If we haven't been able to decide at this point, there nothing more we
8737 can check ourselves here. Look at the base type if we have one and it
8738 has the same precision. */
8739 if (TREE_CODE (type) == INTEGER_TYPE
8740 && TREE_TYPE (type) != 0
8741 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8742 {
8743 type = TREE_TYPE (type);
8744 goto retry;
8745 }
8746
8747 /* Or to fits_to_tree_p, if nothing else. */
8748 return wi::fits_to_tree_p (wi::to_wide (c), type);
8749 }
8750
8751 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8752 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8753 represented (assuming two's-complement arithmetic) within the bit
8754 precision of the type are returned instead. */
8755
8756 void
8757 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8758 {
8759 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8760 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8761 wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
8762 else
8763 {
8764 if (TYPE_UNSIGNED (type))
8765 mpz_set_ui (min, 0);
8766 else
8767 {
8768 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
8769 wi::to_mpz (mn, min, SIGNED);
8770 }
8771 }
8772
8773 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8774 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8775 wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
8776 else
8777 {
8778 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
8779 wi::to_mpz (mn, max, TYPE_SIGN (type));
8780 }
8781 }
8782
8783 /* Return true if VAR is an automatic variable defined in function FN. */
8784
8785 bool
8786 auto_var_in_fn_p (const_tree var, const_tree fn)
8787 {
8788 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8789 && ((((VAR_P (var) && ! DECL_EXTERNAL (var))
8790 || TREE_CODE (var) == PARM_DECL)
8791 && ! TREE_STATIC (var))
8792 || TREE_CODE (var) == LABEL_DECL
8793 || TREE_CODE (var) == RESULT_DECL));
8794 }
8795
8796 /* Subprogram of following function. Called by walk_tree.
8797
8798 Return *TP if it is an automatic variable or parameter of the
8799 function passed in as DATA. */
8800
8801 static tree
8802 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8803 {
8804 tree fn = (tree) data;
8805
8806 if (TYPE_P (*tp))
8807 *walk_subtrees = 0;
8808
8809 else if (DECL_P (*tp)
8810 && auto_var_in_fn_p (*tp, fn))
8811 return *tp;
8812
8813 return NULL_TREE;
8814 }
8815
8816 /* Returns true if T is, contains, or refers to a type with variable
8817 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8818 arguments, but not the return type. If FN is nonzero, only return
8819 true if a modifier of the type or position of FN is a variable or
8820 parameter inside FN.
8821
8822 This concept is more general than that of C99 'variably modified types':
8823 in C99, a struct type is never variably modified because a VLA may not
8824 appear as a structure member. However, in GNU C code like:
8825
8826 struct S { int i[f()]; };
8827
8828 is valid, and other languages may define similar constructs. */
8829
8830 bool
8831 variably_modified_type_p (tree type, tree fn)
8832 {
8833 tree t;
8834
8835 /* Test if T is either variable (if FN is zero) or an expression containing
8836 a variable in FN. If TYPE isn't gimplified, return true also if
8837 gimplify_one_sizepos would gimplify the expression into a local
8838 variable. */
8839 #define RETURN_TRUE_IF_VAR(T) \
8840 do { tree _t = (T); \
8841 if (_t != NULL_TREE \
8842 && _t != error_mark_node \
8843 && TREE_CODE (_t) != INTEGER_CST \
8844 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8845 && (!fn \
8846 || (!TYPE_SIZES_GIMPLIFIED (type) \
8847 && !is_gimple_sizepos (_t)) \
8848 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8849 return true; } while (0)
8850
8851 if (type == error_mark_node)
8852 return false;
8853
8854 /* If TYPE itself has variable size, it is variably modified. */
8855 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8856 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8857
8858 switch (TREE_CODE (type))
8859 {
8860 case POINTER_TYPE:
8861 case REFERENCE_TYPE:
8862 case VECTOR_TYPE:
8863 /* Ada can have pointer types refering to themselves indirectly. */
8864 if (TREE_VISITED (type))
8865 return false;
8866 TREE_VISITED (type) = true;
8867 if (variably_modified_type_p (TREE_TYPE (type), fn))
8868 {
8869 TREE_VISITED (type) = false;
8870 return true;
8871 }
8872 TREE_VISITED (type) = false;
8873 break;
8874
8875 case FUNCTION_TYPE:
8876 case METHOD_TYPE:
8877 /* If TYPE is a function type, it is variably modified if the
8878 return type is variably modified. */
8879 if (variably_modified_type_p (TREE_TYPE (type), fn))
8880 return true;
8881 break;
8882
8883 case INTEGER_TYPE:
8884 case REAL_TYPE:
8885 case FIXED_POINT_TYPE:
8886 case ENUMERAL_TYPE:
8887 case BOOLEAN_TYPE:
8888 /* Scalar types are variably modified if their end points
8889 aren't constant. */
8890 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8891 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8892 break;
8893
8894 case RECORD_TYPE:
8895 case UNION_TYPE:
8896 case QUAL_UNION_TYPE:
8897 /* We can't see if any of the fields are variably-modified by the
8898 definition we normally use, since that would produce infinite
8899 recursion via pointers. */
8900 /* This is variably modified if some field's type is. */
8901 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8902 if (TREE_CODE (t) == FIELD_DECL)
8903 {
8904 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8905 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8906 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8907
8908 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8909 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8910 }
8911 break;
8912
8913 case ARRAY_TYPE:
8914 /* Do not call ourselves to avoid infinite recursion. This is
8915 variably modified if the element type is. */
8916 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8917 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8918 break;
8919
8920 default:
8921 break;
8922 }
8923
8924 /* The current language may have other cases to check, but in general,
8925 all other types are not variably modified. */
8926 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8927
8928 #undef RETURN_TRUE_IF_VAR
8929 }
8930
8931 /* Given a DECL or TYPE, return the scope in which it was declared, or
8932 NULL_TREE if there is no containing scope. */
8933
8934 tree
8935 get_containing_scope (const_tree t)
8936 {
8937 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8938 }
8939
8940 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
8941
8942 const_tree
8943 get_ultimate_context (const_tree decl)
8944 {
8945 while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
8946 {
8947 if (TREE_CODE (decl) == BLOCK)
8948 decl = BLOCK_SUPERCONTEXT (decl);
8949 else
8950 decl = get_containing_scope (decl);
8951 }
8952 return decl;
8953 }
8954
8955 /* Return the innermost context enclosing DECL that is
8956 a FUNCTION_DECL, or zero if none. */
8957
8958 tree
8959 decl_function_context (const_tree decl)
8960 {
8961 tree context;
8962
8963 if (TREE_CODE (decl) == ERROR_MARK)
8964 return 0;
8965
8966 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8967 where we look up the function at runtime. Such functions always take
8968 a first argument of type 'pointer to real context'.
8969
8970 C++ should really be fixed to use DECL_CONTEXT for the real context,
8971 and use something else for the "virtual context". */
8972 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8973 context
8974 = TYPE_MAIN_VARIANT
8975 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8976 else
8977 context = DECL_CONTEXT (decl);
8978
8979 while (context && TREE_CODE (context) != FUNCTION_DECL)
8980 {
8981 if (TREE_CODE (context) == BLOCK)
8982 context = BLOCK_SUPERCONTEXT (context);
8983 else
8984 context = get_containing_scope (context);
8985 }
8986
8987 return context;
8988 }
8989
8990 /* Return the innermost context enclosing DECL that is
8991 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8992 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8993
8994 tree
8995 decl_type_context (const_tree decl)
8996 {
8997 tree context = DECL_CONTEXT (decl);
8998
8999 while (context)
9000 switch (TREE_CODE (context))
9001 {
9002 case NAMESPACE_DECL:
9003 case TRANSLATION_UNIT_DECL:
9004 return NULL_TREE;
9005
9006 case RECORD_TYPE:
9007 case UNION_TYPE:
9008 case QUAL_UNION_TYPE:
9009 return context;
9010
9011 case TYPE_DECL:
9012 case FUNCTION_DECL:
9013 context = DECL_CONTEXT (context);
9014 break;
9015
9016 case BLOCK:
9017 context = BLOCK_SUPERCONTEXT (context);
9018 break;
9019
9020 default:
9021 gcc_unreachable ();
9022 }
9023
9024 return NULL_TREE;
9025 }
9026
9027 /* CALL is a CALL_EXPR. Return the declaration for the function
9028 called, or NULL_TREE if the called function cannot be
9029 determined. */
9030
9031 tree
9032 get_callee_fndecl (const_tree call)
9033 {
9034 tree addr;
9035
9036 if (call == error_mark_node)
9037 return error_mark_node;
9038
9039 /* It's invalid to call this function with anything but a
9040 CALL_EXPR. */
9041 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9042
9043 /* The first operand to the CALL is the address of the function
9044 called. */
9045 addr = CALL_EXPR_FN (call);
9046
9047 /* If there is no function, return early. */
9048 if (addr == NULL_TREE)
9049 return NULL_TREE;
9050
9051 STRIP_NOPS (addr);
9052
9053 /* If this is a readonly function pointer, extract its initial value. */
9054 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
9055 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
9056 && DECL_INITIAL (addr))
9057 addr = DECL_INITIAL (addr);
9058
9059 /* If the address is just `&f' for some function `f', then we know
9060 that `f' is being called. */
9061 if (TREE_CODE (addr) == ADDR_EXPR
9062 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
9063 return TREE_OPERAND (addr, 0);
9064
9065 /* We couldn't figure out what was being called. */
9066 return NULL_TREE;
9067 }
9068
9069 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9070 return the associated function code, otherwise return CFN_LAST. */
9071
9072 combined_fn
9073 get_call_combined_fn (const_tree call)
9074 {
9075 /* It's invalid to call this function with anything but a CALL_EXPR. */
9076 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9077
9078 if (!CALL_EXPR_FN (call))
9079 return as_combined_fn (CALL_EXPR_IFN (call));
9080
9081 tree fndecl = get_callee_fndecl (call);
9082 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
9083 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
9084
9085 return CFN_LAST;
9086 }
9087
9088 #define TREE_MEM_USAGE_SPACES 40
9089
9090 /* Print debugging information about tree nodes generated during the compile,
9091 and any language-specific information. */
9092
9093 void
9094 dump_tree_statistics (void)
9095 {
9096 if (GATHER_STATISTICS)
9097 {
9098 int i;
9099 int total_nodes, total_bytes;
9100 fprintf (stderr, "\nKind Nodes Bytes\n");
9101 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9102 total_nodes = total_bytes = 0;
9103 for (i = 0; i < (int) all_kinds; i++)
9104 {
9105 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
9106 tree_node_counts[i], tree_node_sizes[i]);
9107 total_nodes += tree_node_counts[i];
9108 total_bytes += tree_node_sizes[i];
9109 }
9110 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9111 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
9112 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9113 fprintf (stderr, "Code Nodes\n");
9114 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9115 for (i = 0; i < (int) MAX_TREE_CODES; i++)
9116 fprintf (stderr, "%-32s %7d\n", get_tree_code_name ((enum tree_code) i),
9117 tree_code_counts[i]);
9118 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9119 fprintf (stderr, "\n");
9120 ssanames_print_statistics ();
9121 fprintf (stderr, "\n");
9122 phinodes_print_statistics ();
9123 fprintf (stderr, "\n");
9124 }
9125 else
9126 fprintf (stderr, "(No per-node statistics)\n");
9127
9128 print_type_hash_statistics ();
9129 print_debug_expr_statistics ();
9130 print_value_expr_statistics ();
9131 lang_hooks.print_statistics ();
9132 }
9133 \f
9134 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9135
9136 /* Generate a crc32 of the low BYTES bytes of VALUE. */
9137
9138 unsigned
9139 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
9140 {
9141 /* This relies on the raw feedback's top 4 bits being zero. */
9142 #define FEEDBACK(X) ((X) * 0x04c11db7)
9143 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
9144 ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
9145 static const unsigned syndromes[16] =
9146 {
9147 SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
9148 SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
9149 SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
9150 SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
9151 };
9152 #undef FEEDBACK
9153 #undef SYNDROME
9154
9155 value <<= (32 - bytes * 8);
9156 for (unsigned ix = bytes * 2; ix--; value <<= 4)
9157 {
9158 unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
9159
9160 chksum = (chksum << 4) ^ feedback;
9161 }
9162
9163 return chksum;
9164 }
9165
9166 /* Generate a crc32 of a string. */
9167
9168 unsigned
9169 crc32_string (unsigned chksum, const char *string)
9170 {
9171 do
9172 chksum = crc32_byte (chksum, *string);
9173 while (*string++);
9174 return chksum;
9175 }
9176
9177 /* P is a string that will be used in a symbol. Mask out any characters
9178 that are not valid in that context. */
9179
9180 void
9181 clean_symbol_name (char *p)
9182 {
9183 for (; *p; p++)
9184 if (! (ISALNUM (*p)
9185 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9186 || *p == '$'
9187 #endif
9188 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9189 || *p == '.'
9190 #endif
9191 ))
9192 *p = '_';
9193 }
9194
9195 /* For anonymous aggregate types, we need some sort of name to
9196 hold on to. In practice, this should not appear, but it should
9197 not be harmful if it does. */
9198 bool
9199 anon_aggrname_p(const_tree id_node)
9200 {
9201 #ifndef NO_DOT_IN_LABEL
9202 return (IDENTIFIER_POINTER (id_node)[0] == '.'
9203 && IDENTIFIER_POINTER (id_node)[1] == '_');
9204 #else /* NO_DOT_IN_LABEL */
9205 #ifndef NO_DOLLAR_IN_LABEL
9206 return (IDENTIFIER_POINTER (id_node)[0] == '$' \
9207 && IDENTIFIER_POINTER (id_node)[1] == '_');
9208 #else /* NO_DOLLAR_IN_LABEL */
9209 #define ANON_AGGRNAME_PREFIX "__anon_"
9210 return (!strncmp (IDENTIFIER_POINTER (id_node), ANON_AGGRNAME_PREFIX,
9211 sizeof (ANON_AGGRNAME_PREFIX) - 1));
9212 #endif /* NO_DOLLAR_IN_LABEL */
9213 #endif /* NO_DOT_IN_LABEL */
9214 }
9215
9216 /* Return a format for an anonymous aggregate name. */
9217 const char *
9218 anon_aggrname_format()
9219 {
9220 #ifndef NO_DOT_IN_LABEL
9221 return "._%d";
9222 #else /* NO_DOT_IN_LABEL */
9223 #ifndef NO_DOLLAR_IN_LABEL
9224 return "$_%d";
9225 #else /* NO_DOLLAR_IN_LABEL */
9226 return "__anon_%d";
9227 #endif /* NO_DOLLAR_IN_LABEL */
9228 #endif /* NO_DOT_IN_LABEL */
9229 }
9230
9231 /* Generate a name for a special-purpose function.
9232 The generated name may need to be unique across the whole link.
9233 Changes to this function may also require corresponding changes to
9234 xstrdup_mask_random.
9235 TYPE is some string to identify the purpose of this function to the
9236 linker or collect2; it must start with an uppercase letter,
9237 one of:
9238 I - for constructors
9239 D - for destructors
9240 N - for C++ anonymous namespaces
9241 F - for DWARF unwind frame information. */
9242
9243 tree
9244 get_file_function_name (const char *type)
9245 {
9246 char *buf;
9247 const char *p;
9248 char *q;
9249
9250 /* If we already have a name we know to be unique, just use that. */
9251 if (first_global_object_name)
9252 p = q = ASTRDUP (first_global_object_name);
9253 /* If the target is handling the constructors/destructors, they
9254 will be local to this file and the name is only necessary for
9255 debugging purposes.
9256 We also assign sub_I and sub_D sufixes to constructors called from
9257 the global static constructors. These are always local. */
9258 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9259 || (strncmp (type, "sub_", 4) == 0
9260 && (type[4] == 'I' || type[4] == 'D')))
9261 {
9262 const char *file = main_input_filename;
9263 if (! file)
9264 file = LOCATION_FILE (input_location);
9265 /* Just use the file's basename, because the full pathname
9266 might be quite long. */
9267 p = q = ASTRDUP (lbasename (file));
9268 }
9269 else
9270 {
9271 /* Otherwise, the name must be unique across the entire link.
9272 We don't have anything that we know to be unique to this translation
9273 unit, so use what we do have and throw in some randomness. */
9274 unsigned len;
9275 const char *name = weak_global_object_name;
9276 const char *file = main_input_filename;
9277
9278 if (! name)
9279 name = "";
9280 if (! file)
9281 file = LOCATION_FILE (input_location);
9282
9283 len = strlen (file);
9284 q = (char *) alloca (9 + 19 + len + 1);
9285 memcpy (q, file, len + 1);
9286
9287 snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9288 crc32_string (0, name), get_random_seed (false));
9289
9290 p = q;
9291 }
9292
9293 clean_symbol_name (q);
9294 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9295 + strlen (type));
9296
9297 /* Set up the name of the file-level functions we may need.
9298 Use a global object (which is already required to be unique over
9299 the program) rather than the file name (which imposes extra
9300 constraints). */
9301 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9302
9303 return get_identifier (buf);
9304 }
9305 \f
9306 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9307
9308 /* Complain that the tree code of NODE does not match the expected 0
9309 terminated list of trailing codes. The trailing code list can be
9310 empty, for a more vague error message. FILE, LINE, and FUNCTION
9311 are of the caller. */
9312
9313 void
9314 tree_check_failed (const_tree node, const char *file,
9315 int line, const char *function, ...)
9316 {
9317 va_list args;
9318 const char *buffer;
9319 unsigned length = 0;
9320 enum tree_code code;
9321
9322 va_start (args, function);
9323 while ((code = (enum tree_code) va_arg (args, int)))
9324 length += 4 + strlen (get_tree_code_name (code));
9325 va_end (args);
9326 if (length)
9327 {
9328 char *tmp;
9329 va_start (args, function);
9330 length += strlen ("expected ");
9331 buffer = tmp = (char *) alloca (length);
9332 length = 0;
9333 while ((code = (enum tree_code) va_arg (args, int)))
9334 {
9335 const char *prefix = length ? " or " : "expected ";
9336
9337 strcpy (tmp + length, prefix);
9338 length += strlen (prefix);
9339 strcpy (tmp + length, get_tree_code_name (code));
9340 length += strlen (get_tree_code_name (code));
9341 }
9342 va_end (args);
9343 }
9344 else
9345 buffer = "unexpected node";
9346
9347 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9348 buffer, get_tree_code_name (TREE_CODE (node)),
9349 function, trim_filename (file), line);
9350 }
9351
9352 /* Complain that the tree code of NODE does match the expected 0
9353 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9354 the caller. */
9355
9356 void
9357 tree_not_check_failed (const_tree node, const char *file,
9358 int line, const char *function, ...)
9359 {
9360 va_list args;
9361 char *buffer;
9362 unsigned length = 0;
9363 enum tree_code code;
9364
9365 va_start (args, function);
9366 while ((code = (enum tree_code) va_arg (args, int)))
9367 length += 4 + strlen (get_tree_code_name (code));
9368 va_end (args);
9369 va_start (args, function);
9370 buffer = (char *) alloca (length);
9371 length = 0;
9372 while ((code = (enum tree_code) va_arg (args, int)))
9373 {
9374 if (length)
9375 {
9376 strcpy (buffer + length, " or ");
9377 length += 4;
9378 }
9379 strcpy (buffer + length, get_tree_code_name (code));
9380 length += strlen (get_tree_code_name (code));
9381 }
9382 va_end (args);
9383
9384 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9385 buffer, get_tree_code_name (TREE_CODE (node)),
9386 function, trim_filename (file), line);
9387 }
9388
9389 /* Similar to tree_check_failed, except that we check for a class of tree
9390 code, given in CL. */
9391
9392 void
9393 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9394 const char *file, int line, const char *function)
9395 {
9396 internal_error
9397 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9398 TREE_CODE_CLASS_STRING (cl),
9399 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9400 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9401 }
9402
9403 /* Similar to tree_check_failed, except that instead of specifying a
9404 dozen codes, use the knowledge that they're all sequential. */
9405
9406 void
9407 tree_range_check_failed (const_tree node, const char *file, int line,
9408 const char *function, enum tree_code c1,
9409 enum tree_code c2)
9410 {
9411 char *buffer;
9412 unsigned length = 0;
9413 unsigned int c;
9414
9415 for (c = c1; c <= c2; ++c)
9416 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9417
9418 length += strlen ("expected ");
9419 buffer = (char *) alloca (length);
9420 length = 0;
9421
9422 for (c = c1; c <= c2; ++c)
9423 {
9424 const char *prefix = length ? " or " : "expected ";
9425
9426 strcpy (buffer + length, prefix);
9427 length += strlen (prefix);
9428 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9429 length += strlen (get_tree_code_name ((enum tree_code) c));
9430 }
9431
9432 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9433 buffer, get_tree_code_name (TREE_CODE (node)),
9434 function, trim_filename (file), line);
9435 }
9436
9437
9438 /* Similar to tree_check_failed, except that we check that a tree does
9439 not have the specified code, given in CL. */
9440
9441 void
9442 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9443 const char *file, int line, const char *function)
9444 {
9445 internal_error
9446 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9447 TREE_CODE_CLASS_STRING (cl),
9448 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9449 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9450 }
9451
9452
9453 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9454
9455 void
9456 omp_clause_check_failed (const_tree node, const char *file, int line,
9457 const char *function, enum omp_clause_code code)
9458 {
9459 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9460 omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9461 function, trim_filename (file), line);
9462 }
9463
9464
9465 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9466
9467 void
9468 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9469 const char *function, enum omp_clause_code c1,
9470 enum omp_clause_code c2)
9471 {
9472 char *buffer;
9473 unsigned length = 0;
9474 unsigned int c;
9475
9476 for (c = c1; c <= c2; ++c)
9477 length += 4 + strlen (omp_clause_code_name[c]);
9478
9479 length += strlen ("expected ");
9480 buffer = (char *) alloca (length);
9481 length = 0;
9482
9483 for (c = c1; c <= c2; ++c)
9484 {
9485 const char *prefix = length ? " or " : "expected ";
9486
9487 strcpy (buffer + length, prefix);
9488 length += strlen (prefix);
9489 strcpy (buffer + length, omp_clause_code_name[c]);
9490 length += strlen (omp_clause_code_name[c]);
9491 }
9492
9493 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9494 buffer, omp_clause_code_name[TREE_CODE (node)],
9495 function, trim_filename (file), line);
9496 }
9497
9498
9499 #undef DEFTREESTRUCT
9500 #define DEFTREESTRUCT(VAL, NAME) NAME,
9501
9502 static const char *ts_enum_names[] = {
9503 #include "treestruct.def"
9504 };
9505 #undef DEFTREESTRUCT
9506
9507 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9508
9509 /* Similar to tree_class_check_failed, except that we check for
9510 whether CODE contains the tree structure identified by EN. */
9511
9512 void
9513 tree_contains_struct_check_failed (const_tree node,
9514 const enum tree_node_structure_enum en,
9515 const char *file, int line,
9516 const char *function)
9517 {
9518 internal_error
9519 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9520 TS_ENUM_NAME (en),
9521 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9522 }
9523
9524
9525 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9526 (dynamically sized) vector. */
9527
9528 void
9529 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9530 const char *function)
9531 {
9532 internal_error
9533 ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
9534 idx + 1, len, function, trim_filename (file), line);
9535 }
9536
9537 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9538 (dynamically sized) vector. */
9539
9540 void
9541 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9542 const char *function)
9543 {
9544 internal_error
9545 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9546 idx + 1, len, function, trim_filename (file), line);
9547 }
9548
9549 /* Similar to above, except that the check is for the bounds of the operand
9550 vector of an expression node EXP. */
9551
9552 void
9553 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9554 int line, const char *function)
9555 {
9556 enum tree_code code = TREE_CODE (exp);
9557 internal_error
9558 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9559 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9560 function, trim_filename (file), line);
9561 }
9562
9563 /* Similar to above, except that the check is for the number of
9564 operands of an OMP_CLAUSE node. */
9565
9566 void
9567 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9568 int line, const char *function)
9569 {
9570 internal_error
9571 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9572 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9573 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9574 trim_filename (file), line);
9575 }
9576 #endif /* ENABLE_TREE_CHECKING */
9577 \f
9578 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9579 and mapped to the machine mode MODE. Initialize its fields and build
9580 the information necessary for debugging output. */
9581
9582 static tree
9583 make_vector_type (tree innertype, int nunits, machine_mode mode)
9584 {
9585 tree t;
9586 tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
9587
9588 t = make_node (VECTOR_TYPE);
9589 TREE_TYPE (t) = mv_innertype;
9590 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9591 SET_TYPE_MODE (t, mode);
9592
9593 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
9594 SET_TYPE_STRUCTURAL_EQUALITY (t);
9595 else if ((TYPE_CANONICAL (mv_innertype) != innertype
9596 || mode != VOIDmode)
9597 && !VECTOR_BOOLEAN_TYPE_P (t))
9598 TYPE_CANONICAL (t)
9599 = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
9600
9601 layout_type (t);
9602
9603 hashval_t hash = type_hash_canon_hash (t);
9604 t = type_hash_canon (hash, t);
9605
9606 /* We have built a main variant, based on the main variant of the
9607 inner type. Use it to build the variant we return. */
9608 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9609 && TREE_TYPE (t) != innertype)
9610 return build_type_attribute_qual_variant (t,
9611 TYPE_ATTRIBUTES (innertype),
9612 TYPE_QUALS (innertype));
9613
9614 return t;
9615 }
9616
9617 static tree
9618 make_or_reuse_type (unsigned size, int unsignedp)
9619 {
9620 int i;
9621
9622 if (size == INT_TYPE_SIZE)
9623 return unsignedp ? unsigned_type_node : integer_type_node;
9624 if (size == CHAR_TYPE_SIZE)
9625 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9626 if (size == SHORT_TYPE_SIZE)
9627 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9628 if (size == LONG_TYPE_SIZE)
9629 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9630 if (size == LONG_LONG_TYPE_SIZE)
9631 return (unsignedp ? long_long_unsigned_type_node
9632 : long_long_integer_type_node);
9633
9634 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9635 if (size == int_n_data[i].bitsize
9636 && int_n_enabled_p[i])
9637 return (unsignedp ? int_n_trees[i].unsigned_type
9638 : int_n_trees[i].signed_type);
9639
9640 if (unsignedp)
9641 return make_unsigned_type (size);
9642 else
9643 return make_signed_type (size);
9644 }
9645
9646 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9647
9648 static tree
9649 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9650 {
9651 if (satp)
9652 {
9653 if (size == SHORT_FRACT_TYPE_SIZE)
9654 return unsignedp ? sat_unsigned_short_fract_type_node
9655 : sat_short_fract_type_node;
9656 if (size == FRACT_TYPE_SIZE)
9657 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9658 if (size == LONG_FRACT_TYPE_SIZE)
9659 return unsignedp ? sat_unsigned_long_fract_type_node
9660 : sat_long_fract_type_node;
9661 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9662 return unsignedp ? sat_unsigned_long_long_fract_type_node
9663 : sat_long_long_fract_type_node;
9664 }
9665 else
9666 {
9667 if (size == SHORT_FRACT_TYPE_SIZE)
9668 return unsignedp ? unsigned_short_fract_type_node
9669 : short_fract_type_node;
9670 if (size == FRACT_TYPE_SIZE)
9671 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9672 if (size == LONG_FRACT_TYPE_SIZE)
9673 return unsignedp ? unsigned_long_fract_type_node
9674 : long_fract_type_node;
9675 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9676 return unsignedp ? unsigned_long_long_fract_type_node
9677 : long_long_fract_type_node;
9678 }
9679
9680 return make_fract_type (size, unsignedp, satp);
9681 }
9682
9683 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9684
9685 static tree
9686 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9687 {
9688 if (satp)
9689 {
9690 if (size == SHORT_ACCUM_TYPE_SIZE)
9691 return unsignedp ? sat_unsigned_short_accum_type_node
9692 : sat_short_accum_type_node;
9693 if (size == ACCUM_TYPE_SIZE)
9694 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9695 if (size == LONG_ACCUM_TYPE_SIZE)
9696 return unsignedp ? sat_unsigned_long_accum_type_node
9697 : sat_long_accum_type_node;
9698 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9699 return unsignedp ? sat_unsigned_long_long_accum_type_node
9700 : sat_long_long_accum_type_node;
9701 }
9702 else
9703 {
9704 if (size == SHORT_ACCUM_TYPE_SIZE)
9705 return unsignedp ? unsigned_short_accum_type_node
9706 : short_accum_type_node;
9707 if (size == ACCUM_TYPE_SIZE)
9708 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9709 if (size == LONG_ACCUM_TYPE_SIZE)
9710 return unsignedp ? unsigned_long_accum_type_node
9711 : long_accum_type_node;
9712 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9713 return unsignedp ? unsigned_long_long_accum_type_node
9714 : long_long_accum_type_node;
9715 }
9716
9717 return make_accum_type (size, unsignedp, satp);
9718 }
9719
9720
9721 /* Create an atomic variant node for TYPE. This routine is called
9722 during initialization of data types to create the 5 basic atomic
9723 types. The generic build_variant_type function requires these to
9724 already be set up in order to function properly, so cannot be
9725 called from there. If ALIGN is non-zero, then ensure alignment is
9726 overridden to this value. */
9727
9728 static tree
9729 build_atomic_base (tree type, unsigned int align)
9730 {
9731 tree t;
9732
9733 /* Make sure its not already registered. */
9734 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
9735 return t;
9736
9737 t = build_variant_type_copy (type);
9738 set_type_quals (t, TYPE_QUAL_ATOMIC);
9739
9740 if (align)
9741 SET_TYPE_ALIGN (t, align);
9742
9743 return t;
9744 }
9745
9746 /* Information about the _FloatN and _FloatNx types. This must be in
9747 the same order as the corresponding TI_* enum values. */
9748 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
9749 {
9750 { 16, false },
9751 { 32, false },
9752 { 64, false },
9753 { 128, false },
9754 { 32, true },
9755 { 64, true },
9756 { 128, true },
9757 };
9758
9759
9760 /* Create nodes for all integer types (and error_mark_node) using the sizes
9761 of C datatypes. SIGNED_CHAR specifies whether char is signed. */
9762
9763 void
9764 build_common_tree_nodes (bool signed_char)
9765 {
9766 int i;
9767
9768 error_mark_node = make_node (ERROR_MARK);
9769 TREE_TYPE (error_mark_node) = error_mark_node;
9770
9771 initialize_sizetypes ();
9772
9773 /* Define both `signed char' and `unsigned char'. */
9774 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9775 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9776 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9777 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9778
9779 /* Define `char', which is like either `signed char' or `unsigned char'
9780 but not the same as either. */
9781 char_type_node
9782 = (signed_char
9783 ? make_signed_type (CHAR_TYPE_SIZE)
9784 : make_unsigned_type (CHAR_TYPE_SIZE));
9785 TYPE_STRING_FLAG (char_type_node) = 1;
9786
9787 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9788 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9789 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9790 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9791 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9792 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9793 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9794 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9795
9796 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9797 {
9798 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
9799 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
9800 TYPE_SIZE (int_n_trees[i].signed_type) = bitsize_int (int_n_data[i].bitsize);
9801 TYPE_SIZE (int_n_trees[i].unsigned_type) = bitsize_int (int_n_data[i].bitsize);
9802
9803 if (int_n_data[i].bitsize > LONG_LONG_TYPE_SIZE
9804 && int_n_enabled_p[i])
9805 {
9806 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
9807 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
9808 }
9809 }
9810
9811 /* Define a boolean type. This type only represents boolean values but
9812 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
9813 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9814 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9815 TYPE_PRECISION (boolean_type_node) = 1;
9816 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9817
9818 /* Define what type to use for size_t. */
9819 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9820 size_type_node = unsigned_type_node;
9821 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9822 size_type_node = long_unsigned_type_node;
9823 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9824 size_type_node = long_long_unsigned_type_node;
9825 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9826 size_type_node = short_unsigned_type_node;
9827 else
9828 {
9829 int i;
9830
9831 size_type_node = NULL_TREE;
9832 for (i = 0; i < NUM_INT_N_ENTS; i++)
9833 if (int_n_enabled_p[i])
9834 {
9835 char name[50];
9836 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
9837
9838 if (strcmp (name, SIZE_TYPE) == 0)
9839 {
9840 size_type_node = int_n_trees[i].unsigned_type;
9841 }
9842 }
9843 if (size_type_node == NULL_TREE)
9844 gcc_unreachable ();
9845 }
9846
9847 /* Define what type to use for ptrdiff_t. */
9848 if (strcmp (PTRDIFF_TYPE, "int") == 0)
9849 ptrdiff_type_node = integer_type_node;
9850 else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
9851 ptrdiff_type_node = long_integer_type_node;
9852 else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
9853 ptrdiff_type_node = long_long_integer_type_node;
9854 else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
9855 ptrdiff_type_node = short_integer_type_node;
9856 else
9857 {
9858 ptrdiff_type_node = NULL_TREE;
9859 for (int i = 0; i < NUM_INT_N_ENTS; i++)
9860 if (int_n_enabled_p[i])
9861 {
9862 char name[50];
9863 sprintf (name, "__int%d", int_n_data[i].bitsize);
9864 if (strcmp (name, PTRDIFF_TYPE) == 0)
9865 ptrdiff_type_node = int_n_trees[i].signed_type;
9866 }
9867 if (ptrdiff_type_node == NULL_TREE)
9868 gcc_unreachable ();
9869 }
9870
9871 /* Fill in the rest of the sized types. Reuse existing type nodes
9872 when possible. */
9873 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9874 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9875 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9876 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9877 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9878
9879 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9880 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9881 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9882 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9883 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9884
9885 /* Don't call build_qualified type for atomics. That routine does
9886 special processing for atomics, and until they are initialized
9887 it's better not to make that call.
9888
9889 Check to see if there is a target override for atomic types. */
9890
9891 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
9892 targetm.atomic_align_for_mode (QImode));
9893 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
9894 targetm.atomic_align_for_mode (HImode));
9895 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
9896 targetm.atomic_align_for_mode (SImode));
9897 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
9898 targetm.atomic_align_for_mode (DImode));
9899 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
9900 targetm.atomic_align_for_mode (TImode));
9901
9902 access_public_node = get_identifier ("public");
9903 access_protected_node = get_identifier ("protected");
9904 access_private_node = get_identifier ("private");
9905
9906 /* Define these next since types below may used them. */
9907 integer_zero_node = build_int_cst (integer_type_node, 0);
9908 integer_one_node = build_int_cst (integer_type_node, 1);
9909 integer_three_node = build_int_cst (integer_type_node, 3);
9910 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9911
9912 size_zero_node = size_int (0);
9913 size_one_node = size_int (1);
9914 bitsize_zero_node = bitsize_int (0);
9915 bitsize_one_node = bitsize_int (1);
9916 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9917
9918 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9919 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9920
9921 void_type_node = make_node (VOID_TYPE);
9922 layout_type (void_type_node);
9923
9924 pointer_bounds_type_node = targetm.chkp_bound_type ();
9925
9926 /* We are not going to have real types in C with less than byte alignment,
9927 so we might as well not have any types that claim to have it. */
9928 SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
9929 TYPE_USER_ALIGN (void_type_node) = 0;
9930
9931 void_node = make_node (VOID_CST);
9932 TREE_TYPE (void_node) = void_type_node;
9933
9934 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9935 layout_type (TREE_TYPE (null_pointer_node));
9936
9937 ptr_type_node = build_pointer_type (void_type_node);
9938 const_ptr_type_node
9939 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9940 for (unsigned i = 0;
9941 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
9942 ++i)
9943 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
9944
9945 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
9946
9947 float_type_node = make_node (REAL_TYPE);
9948 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9949 layout_type (float_type_node);
9950
9951 double_type_node = make_node (REAL_TYPE);
9952 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9953 layout_type (double_type_node);
9954
9955 long_double_type_node = make_node (REAL_TYPE);
9956 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9957 layout_type (long_double_type_node);
9958
9959 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
9960 {
9961 int n = floatn_nx_types[i].n;
9962 bool extended = floatn_nx_types[i].extended;
9963 scalar_float_mode mode;
9964 if (!targetm.floatn_mode (n, extended).exists (&mode))
9965 continue;
9966 int precision = GET_MODE_PRECISION (mode);
9967 /* Work around the rs6000 KFmode having precision 113 not
9968 128. */
9969 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
9970 gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
9971 int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
9972 if (!extended)
9973 gcc_assert (min_precision == n);
9974 if (precision < min_precision)
9975 precision = min_precision;
9976 FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
9977 TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
9978 layout_type (FLOATN_NX_TYPE_NODE (i));
9979 SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
9980 }
9981
9982 float_ptr_type_node = build_pointer_type (float_type_node);
9983 double_ptr_type_node = build_pointer_type (double_type_node);
9984 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9985 integer_ptr_type_node = build_pointer_type (integer_type_node);
9986
9987 /* Fixed size integer types. */
9988 uint16_type_node = make_or_reuse_type (16, 1);
9989 uint32_type_node = make_or_reuse_type (32, 1);
9990 uint64_type_node = make_or_reuse_type (64, 1);
9991
9992 /* Decimal float types. */
9993 dfloat32_type_node = make_node (REAL_TYPE);
9994 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9995 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9996 layout_type (dfloat32_type_node);
9997 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9998
9999 dfloat64_type_node = make_node (REAL_TYPE);
10000 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
10001 SET_TYPE_MODE (dfloat64_type_node, DDmode);
10002 layout_type (dfloat64_type_node);
10003 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
10004
10005 dfloat128_type_node = make_node (REAL_TYPE);
10006 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
10007 SET_TYPE_MODE (dfloat128_type_node, TDmode);
10008 layout_type (dfloat128_type_node);
10009 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
10010
10011 complex_integer_type_node = build_complex_type (integer_type_node, true);
10012 complex_float_type_node = build_complex_type (float_type_node, true);
10013 complex_double_type_node = build_complex_type (double_type_node, true);
10014 complex_long_double_type_node = build_complex_type (long_double_type_node,
10015 true);
10016
10017 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10018 {
10019 if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
10020 COMPLEX_FLOATN_NX_TYPE_NODE (i)
10021 = build_complex_type (FLOATN_NX_TYPE_NODE (i));
10022 }
10023
10024 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
10025 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10026 sat_ ## KIND ## _type_node = \
10027 make_sat_signed_ ## KIND ## _type (SIZE); \
10028 sat_unsigned_ ## KIND ## _type_node = \
10029 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10030 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10031 unsigned_ ## KIND ## _type_node = \
10032 make_unsigned_ ## KIND ## _type (SIZE);
10033
10034 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10035 sat_ ## WIDTH ## KIND ## _type_node = \
10036 make_sat_signed_ ## KIND ## _type (SIZE); \
10037 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10038 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10039 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10040 unsigned_ ## WIDTH ## KIND ## _type_node = \
10041 make_unsigned_ ## KIND ## _type (SIZE);
10042
10043 /* Make fixed-point type nodes based on four different widths. */
10044 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10045 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10046 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10047 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10048 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10049
10050 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
10051 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10052 NAME ## _type_node = \
10053 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10054 u ## NAME ## _type_node = \
10055 make_or_reuse_unsigned_ ## KIND ## _type \
10056 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10057 sat_ ## NAME ## _type_node = \
10058 make_or_reuse_sat_signed_ ## KIND ## _type \
10059 (GET_MODE_BITSIZE (MODE ## mode)); \
10060 sat_u ## NAME ## _type_node = \
10061 make_or_reuse_sat_unsigned_ ## KIND ## _type \
10062 (GET_MODE_BITSIZE (U ## MODE ## mode));
10063
10064 /* Fixed-point type and mode nodes. */
10065 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
10066 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
10067 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
10068 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
10069 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
10070 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
10071 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
10072 MAKE_FIXED_MODE_NODE (accum, ha, HA)
10073 MAKE_FIXED_MODE_NODE (accum, sa, SA)
10074 MAKE_FIXED_MODE_NODE (accum, da, DA)
10075 MAKE_FIXED_MODE_NODE (accum, ta, TA)
10076
10077 {
10078 tree t = targetm.build_builtin_va_list ();
10079
10080 /* Many back-ends define record types without setting TYPE_NAME.
10081 If we copied the record type here, we'd keep the original
10082 record type without a name. This breaks name mangling. So,
10083 don't copy record types and let c_common_nodes_and_builtins()
10084 declare the type to be __builtin_va_list. */
10085 if (TREE_CODE (t) != RECORD_TYPE)
10086 t = build_variant_type_copy (t);
10087
10088 va_list_type_node = t;
10089 }
10090 }
10091
10092 /* Modify DECL for given flags.
10093 TM_PURE attribute is set only on types, so the function will modify
10094 DECL's type when ECF_TM_PURE is used. */
10095
10096 void
10097 set_call_expr_flags (tree decl, int flags)
10098 {
10099 if (flags & ECF_NOTHROW)
10100 TREE_NOTHROW (decl) = 1;
10101 if (flags & ECF_CONST)
10102 TREE_READONLY (decl) = 1;
10103 if (flags & ECF_PURE)
10104 DECL_PURE_P (decl) = 1;
10105 if (flags & ECF_LOOPING_CONST_OR_PURE)
10106 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
10107 if (flags & ECF_NOVOPS)
10108 DECL_IS_NOVOPS (decl) = 1;
10109 if (flags & ECF_NORETURN)
10110 TREE_THIS_VOLATILE (decl) = 1;
10111 if (flags & ECF_MALLOC)
10112 DECL_IS_MALLOC (decl) = 1;
10113 if (flags & ECF_RETURNS_TWICE)
10114 DECL_IS_RETURNS_TWICE (decl) = 1;
10115 if (flags & ECF_LEAF)
10116 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
10117 NULL, DECL_ATTRIBUTES (decl));
10118 if (flags & ECF_COLD)
10119 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
10120 NULL, DECL_ATTRIBUTES (decl));
10121 if (flags & ECF_RET1)
10122 DECL_ATTRIBUTES (decl)
10123 = tree_cons (get_identifier ("fn spec"),
10124 build_tree_list (NULL_TREE, build_string (1, "1")),
10125 DECL_ATTRIBUTES (decl));
10126 if ((flags & ECF_TM_PURE) && flag_tm)
10127 apply_tm_attr (decl, get_identifier ("transaction_pure"));
10128 /* Looping const or pure is implied by noreturn.
10129 There is currently no way to declare looping const or looping pure alone. */
10130 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
10131 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
10132 }
10133
10134
10135 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
10136
10137 static void
10138 local_define_builtin (const char *name, tree type, enum built_in_function code,
10139 const char *library_name, int ecf_flags)
10140 {
10141 tree decl;
10142
10143 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
10144 library_name, NULL_TREE);
10145 set_call_expr_flags (decl, ecf_flags);
10146
10147 set_builtin_decl (code, decl, true);
10148 }
10149
10150 /* Call this function after instantiating all builtins that the language
10151 front end cares about. This will build the rest of the builtins
10152 and internal functions that are relied upon by the tree optimizers and
10153 the middle-end. */
10154
10155 void
10156 build_common_builtin_nodes (void)
10157 {
10158 tree tmp, ftype;
10159 int ecf_flags;
10160
10161 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
10162 || !builtin_decl_explicit_p (BUILT_IN_ABORT))
10163 {
10164 ftype = build_function_type (void_type_node, void_list_node);
10165 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
10166 local_define_builtin ("__builtin_unreachable", ftype,
10167 BUILT_IN_UNREACHABLE,
10168 "__builtin_unreachable",
10169 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
10170 | ECF_CONST | ECF_COLD);
10171 if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
10172 local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
10173 "abort",
10174 ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
10175 }
10176
10177 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
10178 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10179 {
10180 ftype = build_function_type_list (ptr_type_node,
10181 ptr_type_node, const_ptr_type_node,
10182 size_type_node, NULL_TREE);
10183
10184 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
10185 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
10186 "memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10187 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10188 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
10189 "memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10190 }
10191
10192 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
10193 {
10194 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10195 const_ptr_type_node, size_type_node,
10196 NULL_TREE);
10197 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
10198 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10199 }
10200
10201 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
10202 {
10203 ftype = build_function_type_list (ptr_type_node,
10204 ptr_type_node, integer_type_node,
10205 size_type_node, NULL_TREE);
10206 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
10207 "memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10208 }
10209
10210 /* If we're checking the stack, `alloca' can throw. */
10211 const int alloca_flags
10212 = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
10213
10214 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
10215 {
10216 ftype = build_function_type_list (ptr_type_node,
10217 size_type_node, NULL_TREE);
10218 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
10219 "alloca", alloca_flags);
10220 }
10221
10222 ftype = build_function_type_list (ptr_type_node, size_type_node,
10223 size_type_node, NULL_TREE);
10224 local_define_builtin ("__builtin_alloca_with_align", ftype,
10225 BUILT_IN_ALLOCA_WITH_ALIGN,
10226 "__builtin_alloca_with_align",
10227 alloca_flags);
10228
10229 ftype = build_function_type_list (ptr_type_node, size_type_node,
10230 size_type_node, size_type_node, NULL_TREE);
10231 local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
10232 BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
10233 "__builtin_alloca_with_align_and_max",
10234 alloca_flags);
10235
10236 ftype = build_function_type_list (void_type_node,
10237 ptr_type_node, ptr_type_node,
10238 ptr_type_node, NULL_TREE);
10239 local_define_builtin ("__builtin_init_trampoline", ftype,
10240 BUILT_IN_INIT_TRAMPOLINE,
10241 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
10242 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
10243 BUILT_IN_INIT_HEAP_TRAMPOLINE,
10244 "__builtin_init_heap_trampoline",
10245 ECF_NOTHROW | ECF_LEAF);
10246 local_define_builtin ("__builtin_init_descriptor", ftype,
10247 BUILT_IN_INIT_DESCRIPTOR,
10248 "__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
10249
10250 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10251 local_define_builtin ("__builtin_adjust_trampoline", ftype,
10252 BUILT_IN_ADJUST_TRAMPOLINE,
10253 "__builtin_adjust_trampoline",
10254 ECF_CONST | ECF_NOTHROW);
10255 local_define_builtin ("__builtin_adjust_descriptor", ftype,
10256 BUILT_IN_ADJUST_DESCRIPTOR,
10257 "__builtin_adjust_descriptor",
10258 ECF_CONST | ECF_NOTHROW);
10259
10260 ftype = build_function_type_list (void_type_node,
10261 ptr_type_node, ptr_type_node, NULL_TREE);
10262 local_define_builtin ("__builtin_nonlocal_goto", ftype,
10263 BUILT_IN_NONLOCAL_GOTO,
10264 "__builtin_nonlocal_goto",
10265 ECF_NORETURN | ECF_NOTHROW);
10266
10267 ftype = build_function_type_list (void_type_node,
10268 ptr_type_node, ptr_type_node, NULL_TREE);
10269 local_define_builtin ("__builtin_setjmp_setup", ftype,
10270 BUILT_IN_SETJMP_SETUP,
10271 "__builtin_setjmp_setup", ECF_NOTHROW);
10272
10273 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10274 local_define_builtin ("__builtin_setjmp_receiver", ftype,
10275 BUILT_IN_SETJMP_RECEIVER,
10276 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10277
10278 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10279 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10280 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10281
10282 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10283 local_define_builtin ("__builtin_stack_restore", ftype,
10284 BUILT_IN_STACK_RESTORE,
10285 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10286
10287 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10288 const_ptr_type_node, size_type_node,
10289 NULL_TREE);
10290 local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10291 "__builtin_memcmp_eq",
10292 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10293
10294 /* If there's a possibility that we might use the ARM EABI, build the
10295 alternate __cxa_end_cleanup node used to resume from C++. */
10296 if (targetm.arm_eabi_unwinder)
10297 {
10298 ftype = build_function_type_list (void_type_node, NULL_TREE);
10299 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10300 BUILT_IN_CXA_END_CLEANUP,
10301 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10302 }
10303
10304 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10305 local_define_builtin ("__builtin_unwind_resume", ftype,
10306 BUILT_IN_UNWIND_RESUME,
10307 ((targetm_common.except_unwind_info (&global_options)
10308 == UI_SJLJ)
10309 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10310 ECF_NORETURN);
10311
10312 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10313 {
10314 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10315 NULL_TREE);
10316 local_define_builtin ("__builtin_return_address", ftype,
10317 BUILT_IN_RETURN_ADDRESS,
10318 "__builtin_return_address",
10319 ECF_NOTHROW);
10320 }
10321
10322 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10323 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10324 {
10325 ftype = build_function_type_list (void_type_node, ptr_type_node,
10326 ptr_type_node, NULL_TREE);
10327 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10328 local_define_builtin ("__cyg_profile_func_enter", ftype,
10329 BUILT_IN_PROFILE_FUNC_ENTER,
10330 "__cyg_profile_func_enter", 0);
10331 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10332 local_define_builtin ("__cyg_profile_func_exit", ftype,
10333 BUILT_IN_PROFILE_FUNC_EXIT,
10334 "__cyg_profile_func_exit", 0);
10335 }
10336
10337 /* The exception object and filter values from the runtime. The argument
10338 must be zero before exception lowering, i.e. from the front end. After
10339 exception lowering, it will be the region number for the exception
10340 landing pad. These functions are PURE instead of CONST to prevent
10341 them from being hoisted past the exception edge that will initialize
10342 its value in the landing pad. */
10343 ftype = build_function_type_list (ptr_type_node,
10344 integer_type_node, NULL_TREE);
10345 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10346 /* Only use TM_PURE if we have TM language support. */
10347 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10348 ecf_flags |= ECF_TM_PURE;
10349 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10350 "__builtin_eh_pointer", ecf_flags);
10351
10352 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10353 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10354 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10355 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10356
10357 ftype = build_function_type_list (void_type_node,
10358 integer_type_node, integer_type_node,
10359 NULL_TREE);
10360 local_define_builtin ("__builtin_eh_copy_values", ftype,
10361 BUILT_IN_EH_COPY_VALUES,
10362 "__builtin_eh_copy_values", ECF_NOTHROW);
10363
10364 /* Complex multiplication and division. These are handled as builtins
10365 rather than optabs because emit_library_call_value doesn't support
10366 complex. Further, we can do slightly better with folding these
10367 beasties if the real and complex parts of the arguments are separate. */
10368 {
10369 int mode;
10370
10371 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10372 {
10373 char mode_name_buf[4], *q;
10374 const char *p;
10375 enum built_in_function mcode, dcode;
10376 tree type, inner_type;
10377 const char *prefix = "__";
10378
10379 if (targetm.libfunc_gnu_prefix)
10380 prefix = "__gnu_";
10381
10382 type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10383 if (type == NULL)
10384 continue;
10385 inner_type = TREE_TYPE (type);
10386
10387 ftype = build_function_type_list (type, inner_type, inner_type,
10388 inner_type, inner_type, NULL_TREE);
10389
10390 mcode = ((enum built_in_function)
10391 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10392 dcode = ((enum built_in_function)
10393 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10394
10395 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10396 *q = TOLOWER (*p);
10397 *q = '\0';
10398
10399 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10400 NULL);
10401 local_define_builtin (built_in_names[mcode], ftype, mcode,
10402 built_in_names[mcode],
10403 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10404
10405 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10406 NULL);
10407 local_define_builtin (built_in_names[dcode], ftype, dcode,
10408 built_in_names[dcode],
10409 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10410 }
10411 }
10412
10413 init_internal_fns ();
10414 }
10415
10416 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10417 better way.
10418
10419 If we requested a pointer to a vector, build up the pointers that
10420 we stripped off while looking for the inner type. Similarly for
10421 return values from functions.
10422
10423 The argument TYPE is the top of the chain, and BOTTOM is the
10424 new type which we will point to. */
10425
10426 tree
10427 reconstruct_complex_type (tree type, tree bottom)
10428 {
10429 tree inner, outer;
10430
10431 if (TREE_CODE (type) == POINTER_TYPE)
10432 {
10433 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10434 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10435 TYPE_REF_CAN_ALIAS_ALL (type));
10436 }
10437 else if (TREE_CODE (type) == REFERENCE_TYPE)
10438 {
10439 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10440 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10441 TYPE_REF_CAN_ALIAS_ALL (type));
10442 }
10443 else if (TREE_CODE (type) == ARRAY_TYPE)
10444 {
10445 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10446 outer = build_array_type (inner, TYPE_DOMAIN (type));
10447 }
10448 else if (TREE_CODE (type) == FUNCTION_TYPE)
10449 {
10450 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10451 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10452 }
10453 else if (TREE_CODE (type) == METHOD_TYPE)
10454 {
10455 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10456 /* The build_method_type_directly() routine prepends 'this' to argument list,
10457 so we must compensate by getting rid of it. */
10458 outer
10459 = build_method_type_directly
10460 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10461 inner,
10462 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10463 }
10464 else if (TREE_CODE (type) == OFFSET_TYPE)
10465 {
10466 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10467 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10468 }
10469 else
10470 return bottom;
10471
10472 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10473 TYPE_QUALS (type));
10474 }
10475
10476 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10477 the inner type. */
10478 tree
10479 build_vector_type_for_mode (tree innertype, machine_mode mode)
10480 {
10481 int nunits;
10482 unsigned int bitsize;
10483
10484 switch (GET_MODE_CLASS (mode))
10485 {
10486 case MODE_VECTOR_INT:
10487 case MODE_VECTOR_FLOAT:
10488 case MODE_VECTOR_FRACT:
10489 case MODE_VECTOR_UFRACT:
10490 case MODE_VECTOR_ACCUM:
10491 case MODE_VECTOR_UACCUM:
10492 nunits = GET_MODE_NUNITS (mode);
10493 break;
10494
10495 case MODE_INT:
10496 /* Check that there are no leftover bits. */
10497 bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
10498 gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10499 nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10500 break;
10501
10502 default:
10503 gcc_unreachable ();
10504 }
10505
10506 return make_vector_type (innertype, nunits, mode);
10507 }
10508
10509 /* Similarly, but takes the inner type and number of units, which must be
10510 a power of two. */
10511
10512 tree
10513 build_vector_type (tree innertype, int nunits)
10514 {
10515 return make_vector_type (innertype, nunits, VOIDmode);
10516 }
10517
10518 /* Build truth vector with specified length and number of units. */
10519
10520 tree
10521 build_truth_vector_type (unsigned nunits, unsigned vector_size)
10522 {
10523 machine_mode mask_mode
10524 = targetm.vectorize.get_mask_mode (nunits, vector_size).else_blk ();
10525
10526 unsigned HOST_WIDE_INT vsize;
10527 if (mask_mode == BLKmode)
10528 vsize = vector_size * BITS_PER_UNIT;
10529 else
10530 vsize = GET_MODE_BITSIZE (mask_mode);
10531
10532 unsigned HOST_WIDE_INT esize = vsize / nunits;
10533 gcc_assert (esize * nunits == vsize);
10534
10535 tree bool_type = build_nonstandard_boolean_type (esize);
10536
10537 return make_vector_type (bool_type, nunits, mask_mode);
10538 }
10539
10540 /* Returns a vector type corresponding to a comparison of VECTYPE. */
10541
10542 tree
10543 build_same_sized_truth_vector_type (tree vectype)
10544 {
10545 if (VECTOR_BOOLEAN_TYPE_P (vectype))
10546 return vectype;
10547
10548 unsigned HOST_WIDE_INT size = GET_MODE_SIZE (TYPE_MODE (vectype));
10549
10550 if (!size)
10551 size = tree_to_uhwi (TYPE_SIZE_UNIT (vectype));
10552
10553 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype), size);
10554 }
10555
10556 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
10557
10558 tree
10559 build_opaque_vector_type (tree innertype, int nunits)
10560 {
10561 tree t = make_vector_type (innertype, nunits, VOIDmode);
10562 tree cand;
10563 /* We always build the non-opaque variant before the opaque one,
10564 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10565 cand = TYPE_NEXT_VARIANT (t);
10566 if (cand
10567 && TYPE_VECTOR_OPAQUE (cand)
10568 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10569 return cand;
10570 /* Othewise build a variant type and make sure to queue it after
10571 the non-opaque type. */
10572 cand = build_distinct_type_copy (t);
10573 TYPE_VECTOR_OPAQUE (cand) = true;
10574 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10575 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10576 TYPE_NEXT_VARIANT (t) = cand;
10577 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10578 return cand;
10579 }
10580
10581 /* Return the value of element I of VECTOR_CST T as a wide_int. */
10582
10583 wide_int
10584 vector_cst_int_elt (const_tree t, unsigned int i)
10585 {
10586 /* First handle elements that are directly encoded. */
10587 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10588 if (i < encoded_nelts)
10589 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, i));
10590
10591 /* Identify the pattern that contains element I and work out the index of
10592 the last encoded element for that pattern. */
10593 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10594 unsigned int pattern = i % npatterns;
10595 unsigned int count = i / npatterns;
10596 unsigned int final_i = encoded_nelts - npatterns + pattern;
10597
10598 /* If there are no steps, the final encoded value is the right one. */
10599 if (!VECTOR_CST_STEPPED_P (t))
10600 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
10601
10602 /* Otherwise work out the value from the last two encoded elements. */
10603 tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
10604 tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
10605 wide_int diff = wi::to_wide (v2) - wi::to_wide (v1);
10606 return wi::to_wide (v2) + (count - 2) * diff;
10607 }
10608
10609 /* Return the value of element I of VECTOR_CST T. */
10610
10611 tree
10612 vector_cst_elt (const_tree t, unsigned int i)
10613 {
10614 /* First handle elements that are directly encoded. */
10615 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10616 if (i < encoded_nelts)
10617 return VECTOR_CST_ENCODED_ELT (t, i);
10618
10619 /* If there are no steps, the final encoded value is the right one. */
10620 if (!VECTOR_CST_STEPPED_P (t))
10621 {
10622 /* Identify the pattern that contains element I and work out the index of
10623 the last encoded element for that pattern. */
10624 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10625 unsigned int pattern = i % npatterns;
10626 unsigned int final_i = encoded_nelts - npatterns + pattern;
10627 return VECTOR_CST_ENCODED_ELT (t, final_i);
10628 }
10629
10630 /* Otherwise work out the value from the last two encoded elements. */
10631 return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
10632 vector_cst_int_elt (t, i));
10633 }
10634
10635 /* Given an initializer INIT, return TRUE if INIT is zero or some
10636 aggregate of zeros. Otherwise return FALSE. */
10637 bool
10638 initializer_zerop (const_tree init)
10639 {
10640 tree elt;
10641
10642 STRIP_NOPS (init);
10643
10644 switch (TREE_CODE (init))
10645 {
10646 case INTEGER_CST:
10647 return integer_zerop (init);
10648
10649 case REAL_CST:
10650 /* ??? Note that this is not correct for C4X float formats. There,
10651 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10652 negative exponent. */
10653 return real_zerop (init)
10654 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
10655
10656 case FIXED_CST:
10657 return fixed_zerop (init);
10658
10659 case COMPLEX_CST:
10660 return integer_zerop (init)
10661 || (real_zerop (init)
10662 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10663 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
10664
10665 case VECTOR_CST:
10666 return (VECTOR_CST_NPATTERNS (init) == 1
10667 && VECTOR_CST_DUPLICATE_P (init)
10668 && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)));
10669
10670 case CONSTRUCTOR:
10671 {
10672 unsigned HOST_WIDE_INT idx;
10673
10674 if (TREE_CLOBBER_P (init))
10675 return false;
10676 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10677 if (!initializer_zerop (elt))
10678 return false;
10679 return true;
10680 }
10681
10682 case STRING_CST:
10683 {
10684 int i;
10685
10686 /* We need to loop through all elements to handle cases like
10687 "\0" and "\0foobar". */
10688 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10689 if (TREE_STRING_POINTER (init)[i] != '\0')
10690 return false;
10691
10692 return true;
10693 }
10694
10695 default:
10696 return false;
10697 }
10698 }
10699
10700 /* Check if vector VEC consists of all the equal elements and
10701 that the number of elements corresponds to the type of VEC.
10702 The function returns first element of the vector
10703 or NULL_TREE if the vector is not uniform. */
10704 tree
10705 uniform_vector_p (const_tree vec)
10706 {
10707 tree first, t;
10708 unsigned i;
10709
10710 if (vec == NULL_TREE)
10711 return NULL_TREE;
10712
10713 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10714
10715 if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
10716 return TREE_OPERAND (vec, 0);
10717
10718 else if (TREE_CODE (vec) == VECTOR_CST)
10719 {
10720 if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
10721 return VECTOR_CST_ENCODED_ELT (vec, 0);
10722 return NULL_TREE;
10723 }
10724
10725 else if (TREE_CODE (vec) == CONSTRUCTOR)
10726 {
10727 first = error_mark_node;
10728
10729 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10730 {
10731 if (i == 0)
10732 {
10733 first = t;
10734 continue;
10735 }
10736 if (!operand_equal_p (first, t, 0))
10737 return NULL_TREE;
10738 }
10739 if (i != TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)))
10740 return NULL_TREE;
10741
10742 return first;
10743 }
10744
10745 return NULL_TREE;
10746 }
10747
10748 /* Build an empty statement at location LOC. */
10749
10750 tree
10751 build_empty_stmt (location_t loc)
10752 {
10753 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10754 SET_EXPR_LOCATION (t, loc);
10755 return t;
10756 }
10757
10758
10759 /* Build an OpenMP clause with code CODE. LOC is the location of the
10760 clause. */
10761
10762 tree
10763 build_omp_clause (location_t loc, enum omp_clause_code code)
10764 {
10765 tree t;
10766 int size, length;
10767
10768 length = omp_clause_num_ops[code];
10769 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10770
10771 record_node_allocation_statistics (OMP_CLAUSE, size);
10772
10773 t = (tree) ggc_internal_alloc (size);
10774 memset (t, 0, size);
10775 TREE_SET_CODE (t, OMP_CLAUSE);
10776 OMP_CLAUSE_SET_CODE (t, code);
10777 OMP_CLAUSE_LOCATION (t) = loc;
10778
10779 return t;
10780 }
10781
10782 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10783 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10784 Except for the CODE and operand count field, other storage for the
10785 object is initialized to zeros. */
10786
10787 tree
10788 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
10789 {
10790 tree t;
10791 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10792
10793 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10794 gcc_assert (len >= 1);
10795
10796 record_node_allocation_statistics (code, length);
10797
10798 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10799
10800 TREE_SET_CODE (t, code);
10801
10802 /* Can't use TREE_OPERAND to store the length because if checking is
10803 enabled, it will try to check the length before we store it. :-P */
10804 t->exp.operands[0] = build_int_cst (sizetype, len);
10805
10806 return t;
10807 }
10808
10809 /* Helper function for build_call_* functions; build a CALL_EXPR with
10810 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10811 the argument slots. */
10812
10813 static tree
10814 build_call_1 (tree return_type, tree fn, int nargs)
10815 {
10816 tree t;
10817
10818 t = build_vl_exp (CALL_EXPR, nargs + 3);
10819 TREE_TYPE (t) = return_type;
10820 CALL_EXPR_FN (t) = fn;
10821 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10822
10823 return t;
10824 }
10825
10826 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10827 FN and a null static chain slot. NARGS is the number of call arguments
10828 which are specified as "..." arguments. */
10829
10830 tree
10831 build_call_nary (tree return_type, tree fn, int nargs, ...)
10832 {
10833 tree ret;
10834 va_list args;
10835 va_start (args, nargs);
10836 ret = build_call_valist (return_type, fn, nargs, args);
10837 va_end (args);
10838 return ret;
10839 }
10840
10841 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10842 FN and a null static chain slot. NARGS is the number of call arguments
10843 which are specified as a va_list ARGS. */
10844
10845 tree
10846 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10847 {
10848 tree t;
10849 int i;
10850
10851 t = build_call_1 (return_type, fn, nargs);
10852 for (i = 0; i < nargs; i++)
10853 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10854 process_call_operands (t);
10855 return t;
10856 }
10857
10858 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10859 FN and a null static chain slot. NARGS is the number of call arguments
10860 which are specified as a tree array ARGS. */
10861
10862 tree
10863 build_call_array_loc (location_t loc, tree return_type, tree fn,
10864 int nargs, const tree *args)
10865 {
10866 tree t;
10867 int i;
10868
10869 t = build_call_1 (return_type, fn, nargs);
10870 for (i = 0; i < nargs; i++)
10871 CALL_EXPR_ARG (t, i) = args[i];
10872 process_call_operands (t);
10873 SET_EXPR_LOCATION (t, loc);
10874 return t;
10875 }
10876
10877 /* Like build_call_array, but takes a vec. */
10878
10879 tree
10880 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10881 {
10882 tree ret, t;
10883 unsigned int ix;
10884
10885 ret = build_call_1 (return_type, fn, vec_safe_length (args));
10886 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10887 CALL_EXPR_ARG (ret, ix) = t;
10888 process_call_operands (ret);
10889 return ret;
10890 }
10891
10892 /* Conveniently construct a function call expression. FNDECL names the
10893 function to be called and N arguments are passed in the array
10894 ARGARRAY. */
10895
10896 tree
10897 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
10898 {
10899 tree fntype = TREE_TYPE (fndecl);
10900 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
10901
10902 return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
10903 }
10904
10905 /* Conveniently construct a function call expression. FNDECL names the
10906 function to be called and the arguments are passed in the vector
10907 VEC. */
10908
10909 tree
10910 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
10911 {
10912 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
10913 vec_safe_address (vec));
10914 }
10915
10916
10917 /* Conveniently construct a function call expression. FNDECL names the
10918 function to be called, N is the number of arguments, and the "..."
10919 parameters are the argument expressions. */
10920
10921 tree
10922 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
10923 {
10924 va_list ap;
10925 tree *argarray = XALLOCAVEC (tree, n);
10926 int i;
10927
10928 va_start (ap, n);
10929 for (i = 0; i < n; i++)
10930 argarray[i] = va_arg (ap, tree);
10931 va_end (ap);
10932 return build_call_expr_loc_array (loc, fndecl, n, argarray);
10933 }
10934
10935 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
10936 varargs macros aren't supported by all bootstrap compilers. */
10937
10938 tree
10939 build_call_expr (tree fndecl, int n, ...)
10940 {
10941 va_list ap;
10942 tree *argarray = XALLOCAVEC (tree, n);
10943 int i;
10944
10945 va_start (ap, n);
10946 for (i = 0; i < n; i++)
10947 argarray[i] = va_arg (ap, tree);
10948 va_end (ap);
10949 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
10950 }
10951
10952 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
10953 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
10954 It will get gimplified later into an ordinary internal function. */
10955
10956 tree
10957 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
10958 tree type, int n, const tree *args)
10959 {
10960 tree t = build_call_1 (type, NULL_TREE, n);
10961 for (int i = 0; i < n; ++i)
10962 CALL_EXPR_ARG (t, i) = args[i];
10963 SET_EXPR_LOCATION (t, loc);
10964 CALL_EXPR_IFN (t) = ifn;
10965 return t;
10966 }
10967
10968 /* Build internal call expression. This is just like CALL_EXPR, except
10969 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
10970 internal function. */
10971
10972 tree
10973 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
10974 tree type, int n, ...)
10975 {
10976 va_list ap;
10977 tree *argarray = XALLOCAVEC (tree, n);
10978 int i;
10979
10980 va_start (ap, n);
10981 for (i = 0; i < n; i++)
10982 argarray[i] = va_arg (ap, tree);
10983 va_end (ap);
10984 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
10985 }
10986
10987 /* Return a function call to FN, if the target is guaranteed to support it,
10988 or null otherwise.
10989
10990 N is the number of arguments, passed in the "...", and TYPE is the
10991 type of the return value. */
10992
10993 tree
10994 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
10995 int n, ...)
10996 {
10997 va_list ap;
10998 tree *argarray = XALLOCAVEC (tree, n);
10999 int i;
11000
11001 va_start (ap, n);
11002 for (i = 0; i < n; i++)
11003 argarray[i] = va_arg (ap, tree);
11004 va_end (ap);
11005 if (internal_fn_p (fn))
11006 {
11007 internal_fn ifn = as_internal_fn (fn);
11008 if (direct_internal_fn_p (ifn))
11009 {
11010 tree_pair types = direct_internal_fn_types (ifn, type, argarray);
11011 if (!direct_internal_fn_supported_p (ifn, types,
11012 OPTIMIZE_FOR_BOTH))
11013 return NULL_TREE;
11014 }
11015 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11016 }
11017 else
11018 {
11019 tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
11020 if (!fndecl)
11021 return NULL_TREE;
11022 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11023 }
11024 }
11025
11026 /* Return a function call to the appropriate builtin alloca variant.
11027
11028 SIZE is the size to be allocated. ALIGN, if non-zero, is the requested
11029 alignment of the allocated area. MAX_SIZE, if non-negative, is an upper
11030 bound for SIZE in case it is not a fixed value. */
11031
11032 tree
11033 build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
11034 {
11035 if (max_size >= 0)
11036 {
11037 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
11038 return
11039 build_call_expr (t, 3, size, size_int (align), size_int (max_size));
11040 }
11041 else if (align > 0)
11042 {
11043 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
11044 return build_call_expr (t, 2, size, size_int (align));
11045 }
11046 else
11047 {
11048 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
11049 return build_call_expr (t, 1, size);
11050 }
11051 }
11052
11053 /* Create a new constant string literal and return a char* pointer to it.
11054 The STRING_CST value is the LEN characters at STR. */
11055 tree
11056 build_string_literal (int len, const char *str)
11057 {
11058 tree t, elem, index, type;
11059
11060 t = build_string (len, str);
11061 elem = build_type_variant (char_type_node, 1, 0);
11062 index = build_index_type (size_int (len - 1));
11063 type = build_array_type (elem, index);
11064 TREE_TYPE (t) = type;
11065 TREE_CONSTANT (t) = 1;
11066 TREE_READONLY (t) = 1;
11067 TREE_STATIC (t) = 1;
11068
11069 type = build_pointer_type (elem);
11070 t = build1 (ADDR_EXPR, type,
11071 build4 (ARRAY_REF, elem,
11072 t, integer_zero_node, NULL_TREE, NULL_TREE));
11073 return t;
11074 }
11075
11076
11077
11078 /* Return true if T (assumed to be a DECL) must be assigned a memory
11079 location. */
11080
11081 bool
11082 needs_to_live_in_memory (const_tree t)
11083 {
11084 return (TREE_ADDRESSABLE (t)
11085 || is_global_var (t)
11086 || (TREE_CODE (t) == RESULT_DECL
11087 && !DECL_BY_REFERENCE (t)
11088 && aggregate_value_p (t, current_function_decl)));
11089 }
11090
11091 /* Return value of a constant X and sign-extend it. */
11092
11093 HOST_WIDE_INT
11094 int_cst_value (const_tree x)
11095 {
11096 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
11097 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
11098
11099 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
11100 gcc_assert (cst_and_fits_in_hwi (x));
11101
11102 if (bits < HOST_BITS_PER_WIDE_INT)
11103 {
11104 bool negative = ((val >> (bits - 1)) & 1) != 0;
11105 if (negative)
11106 val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
11107 else
11108 val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
11109 }
11110
11111 return val;
11112 }
11113
11114 /* If TYPE is an integral or pointer type, return an integer type with
11115 the same precision which is unsigned iff UNSIGNEDP is true, or itself
11116 if TYPE is already an integer type of signedness UNSIGNEDP. */
11117
11118 tree
11119 signed_or_unsigned_type_for (int unsignedp, tree type)
11120 {
11121 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
11122 return type;
11123
11124 if (TREE_CODE (type) == VECTOR_TYPE)
11125 {
11126 tree inner = TREE_TYPE (type);
11127 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11128 if (!inner2)
11129 return NULL_TREE;
11130 if (inner == inner2)
11131 return type;
11132 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
11133 }
11134
11135 if (!INTEGRAL_TYPE_P (type)
11136 && !POINTER_TYPE_P (type)
11137 && TREE_CODE (type) != OFFSET_TYPE)
11138 return NULL_TREE;
11139
11140 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
11141 }
11142
11143 /* If TYPE is an integral or pointer type, return an integer type with
11144 the same precision which is unsigned, or itself if TYPE is already an
11145 unsigned integer type. */
11146
11147 tree
11148 unsigned_type_for (tree type)
11149 {
11150 return signed_or_unsigned_type_for (1, type);
11151 }
11152
11153 /* If TYPE is an integral or pointer type, return an integer type with
11154 the same precision which is signed, or itself if TYPE is already a
11155 signed integer type. */
11156
11157 tree
11158 signed_type_for (tree type)
11159 {
11160 return signed_or_unsigned_type_for (0, type);
11161 }
11162
11163 /* If TYPE is a vector type, return a signed integer vector type with the
11164 same width and number of subparts. Otherwise return boolean_type_node. */
11165
11166 tree
11167 truth_type_for (tree type)
11168 {
11169 if (TREE_CODE (type) == VECTOR_TYPE)
11170 {
11171 if (VECTOR_BOOLEAN_TYPE_P (type))
11172 return type;
11173 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (type),
11174 GET_MODE_SIZE (TYPE_MODE (type)));
11175 }
11176 else
11177 return boolean_type_node;
11178 }
11179
11180 /* Returns the largest value obtainable by casting something in INNER type to
11181 OUTER type. */
11182
11183 tree
11184 upper_bound_in_type (tree outer, tree inner)
11185 {
11186 unsigned int det = 0;
11187 unsigned oprec = TYPE_PRECISION (outer);
11188 unsigned iprec = TYPE_PRECISION (inner);
11189 unsigned prec;
11190
11191 /* Compute a unique number for every combination. */
11192 det |= (oprec > iprec) ? 4 : 0;
11193 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
11194 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
11195
11196 /* Determine the exponent to use. */
11197 switch (det)
11198 {
11199 case 0:
11200 case 1:
11201 /* oprec <= iprec, outer: signed, inner: don't care. */
11202 prec = oprec - 1;
11203 break;
11204 case 2:
11205 case 3:
11206 /* oprec <= iprec, outer: unsigned, inner: don't care. */
11207 prec = oprec;
11208 break;
11209 case 4:
11210 /* oprec > iprec, outer: signed, inner: signed. */
11211 prec = iprec - 1;
11212 break;
11213 case 5:
11214 /* oprec > iprec, outer: signed, inner: unsigned. */
11215 prec = iprec;
11216 break;
11217 case 6:
11218 /* oprec > iprec, outer: unsigned, inner: signed. */
11219 prec = oprec;
11220 break;
11221 case 7:
11222 /* oprec > iprec, outer: unsigned, inner: unsigned. */
11223 prec = iprec;
11224 break;
11225 default:
11226 gcc_unreachable ();
11227 }
11228
11229 return wide_int_to_tree (outer,
11230 wi::mask (prec, false, TYPE_PRECISION (outer)));
11231 }
11232
11233 /* Returns the smallest value obtainable by casting something in INNER type to
11234 OUTER type. */
11235
11236 tree
11237 lower_bound_in_type (tree outer, tree inner)
11238 {
11239 unsigned oprec = TYPE_PRECISION (outer);
11240 unsigned iprec = TYPE_PRECISION (inner);
11241
11242 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11243 and obtain 0. */
11244 if (TYPE_UNSIGNED (outer)
11245 /* If we are widening something of an unsigned type, OUTER type
11246 contains all values of INNER type. In particular, both INNER
11247 and OUTER types have zero in common. */
11248 || (oprec > iprec && TYPE_UNSIGNED (inner)))
11249 return build_int_cst (outer, 0);
11250 else
11251 {
11252 /* If we are widening a signed type to another signed type, we
11253 want to obtain -2^^(iprec-1). If we are keeping the
11254 precision or narrowing to a signed type, we want to obtain
11255 -2^(oprec-1). */
11256 unsigned prec = oprec > iprec ? iprec : oprec;
11257 return wide_int_to_tree (outer,
11258 wi::mask (prec - 1, true,
11259 TYPE_PRECISION (outer)));
11260 }
11261 }
11262
11263 /* Return nonzero if two operands that are suitable for PHI nodes are
11264 necessarily equal. Specifically, both ARG0 and ARG1 must be either
11265 SSA_NAME or invariant. Note that this is strictly an optimization.
11266 That is, callers of this function can directly call operand_equal_p
11267 and get the same result, only slower. */
11268
11269 int
11270 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
11271 {
11272 if (arg0 == arg1)
11273 return 1;
11274 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
11275 return 0;
11276 return operand_equal_p (arg0, arg1, 0);
11277 }
11278
11279 /* Returns number of zeros at the end of binary representation of X. */
11280
11281 tree
11282 num_ending_zeros (const_tree x)
11283 {
11284 return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
11285 }
11286
11287
11288 #define WALK_SUBTREE(NODE) \
11289 do \
11290 { \
11291 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
11292 if (result) \
11293 return result; \
11294 } \
11295 while (0)
11296
11297 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11298 be walked whenever a type is seen in the tree. Rest of operands and return
11299 value are as for walk_tree. */
11300
11301 static tree
11302 walk_type_fields (tree type, walk_tree_fn func, void *data,
11303 hash_set<tree> *pset, walk_tree_lh lh)
11304 {
11305 tree result = NULL_TREE;
11306
11307 switch (TREE_CODE (type))
11308 {
11309 case POINTER_TYPE:
11310 case REFERENCE_TYPE:
11311 case VECTOR_TYPE:
11312 /* We have to worry about mutually recursive pointers. These can't
11313 be written in C. They can in Ada. It's pathological, but
11314 there's an ACATS test (c38102a) that checks it. Deal with this
11315 by checking if we're pointing to another pointer, that one
11316 points to another pointer, that one does too, and we have no htab.
11317 If so, get a hash table. We check three levels deep to avoid
11318 the cost of the hash table if we don't need one. */
11319 if (POINTER_TYPE_P (TREE_TYPE (type))
11320 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
11321 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
11322 && !pset)
11323 {
11324 result = walk_tree_without_duplicates (&TREE_TYPE (type),
11325 func, data);
11326 if (result)
11327 return result;
11328
11329 break;
11330 }
11331
11332 /* fall through */
11333
11334 case COMPLEX_TYPE:
11335 WALK_SUBTREE (TREE_TYPE (type));
11336 break;
11337
11338 case METHOD_TYPE:
11339 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
11340
11341 /* Fall through. */
11342
11343 case FUNCTION_TYPE:
11344 WALK_SUBTREE (TREE_TYPE (type));
11345 {
11346 tree arg;
11347
11348 /* We never want to walk into default arguments. */
11349 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
11350 WALK_SUBTREE (TREE_VALUE (arg));
11351 }
11352 break;
11353
11354 case ARRAY_TYPE:
11355 /* Don't follow this nodes's type if a pointer for fear that
11356 we'll have infinite recursion. If we have a PSET, then we
11357 need not fear. */
11358 if (pset
11359 || (!POINTER_TYPE_P (TREE_TYPE (type))
11360 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
11361 WALK_SUBTREE (TREE_TYPE (type));
11362 WALK_SUBTREE (TYPE_DOMAIN (type));
11363 break;
11364
11365 case OFFSET_TYPE:
11366 WALK_SUBTREE (TREE_TYPE (type));
11367 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
11368 break;
11369
11370 default:
11371 break;
11372 }
11373
11374 return NULL_TREE;
11375 }
11376
11377 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
11378 called with the DATA and the address of each sub-tree. If FUNC returns a
11379 non-NULL value, the traversal is stopped, and the value returned by FUNC
11380 is returned. If PSET is non-NULL it is used to record the nodes visited,
11381 and to avoid visiting a node more than once. */
11382
11383 tree
11384 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
11385 hash_set<tree> *pset, walk_tree_lh lh)
11386 {
11387 enum tree_code code;
11388 int walk_subtrees;
11389 tree result;
11390
11391 #define WALK_SUBTREE_TAIL(NODE) \
11392 do \
11393 { \
11394 tp = & (NODE); \
11395 goto tail_recurse; \
11396 } \
11397 while (0)
11398
11399 tail_recurse:
11400 /* Skip empty subtrees. */
11401 if (!*tp)
11402 return NULL_TREE;
11403
11404 /* Don't walk the same tree twice, if the user has requested
11405 that we avoid doing so. */
11406 if (pset && pset->add (*tp))
11407 return NULL_TREE;
11408
11409 /* Call the function. */
11410 walk_subtrees = 1;
11411 result = (*func) (tp, &walk_subtrees, data);
11412
11413 /* If we found something, return it. */
11414 if (result)
11415 return result;
11416
11417 code = TREE_CODE (*tp);
11418
11419 /* Even if we didn't, FUNC may have decided that there was nothing
11420 interesting below this point in the tree. */
11421 if (!walk_subtrees)
11422 {
11423 /* But we still need to check our siblings. */
11424 if (code == TREE_LIST)
11425 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11426 else if (code == OMP_CLAUSE)
11427 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11428 else
11429 return NULL_TREE;
11430 }
11431
11432 if (lh)
11433 {
11434 result = (*lh) (tp, &walk_subtrees, func, data, pset);
11435 if (result || !walk_subtrees)
11436 return result;
11437 }
11438
11439 switch (code)
11440 {
11441 case ERROR_MARK:
11442 case IDENTIFIER_NODE:
11443 case INTEGER_CST:
11444 case REAL_CST:
11445 case FIXED_CST:
11446 case VECTOR_CST:
11447 case STRING_CST:
11448 case BLOCK:
11449 case PLACEHOLDER_EXPR:
11450 case SSA_NAME:
11451 case FIELD_DECL:
11452 case RESULT_DECL:
11453 /* None of these have subtrees other than those already walked
11454 above. */
11455 break;
11456
11457 case TREE_LIST:
11458 WALK_SUBTREE (TREE_VALUE (*tp));
11459 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11460 break;
11461
11462 case TREE_VEC:
11463 {
11464 int len = TREE_VEC_LENGTH (*tp);
11465
11466 if (len == 0)
11467 break;
11468
11469 /* Walk all elements but the first. */
11470 while (--len)
11471 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
11472
11473 /* Now walk the first one as a tail call. */
11474 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
11475 }
11476
11477 case COMPLEX_CST:
11478 WALK_SUBTREE (TREE_REALPART (*tp));
11479 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
11480
11481 case CONSTRUCTOR:
11482 {
11483 unsigned HOST_WIDE_INT idx;
11484 constructor_elt *ce;
11485
11486 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
11487 idx++)
11488 WALK_SUBTREE (ce->value);
11489 }
11490 break;
11491
11492 case SAVE_EXPR:
11493 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
11494
11495 case BIND_EXPR:
11496 {
11497 tree decl;
11498 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11499 {
11500 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11501 into declarations that are just mentioned, rather than
11502 declared; they don't really belong to this part of the tree.
11503 And, we can see cycles: the initializer for a declaration
11504 can refer to the declaration itself. */
11505 WALK_SUBTREE (DECL_INITIAL (decl));
11506 WALK_SUBTREE (DECL_SIZE (decl));
11507 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11508 }
11509 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11510 }
11511
11512 case STATEMENT_LIST:
11513 {
11514 tree_stmt_iterator i;
11515 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11516 WALK_SUBTREE (*tsi_stmt_ptr (i));
11517 }
11518 break;
11519
11520 case OMP_CLAUSE:
11521 switch (OMP_CLAUSE_CODE (*tp))
11522 {
11523 case OMP_CLAUSE_GANG:
11524 case OMP_CLAUSE__GRIDDIM_:
11525 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11526 /* FALLTHRU */
11527
11528 case OMP_CLAUSE_ASYNC:
11529 case OMP_CLAUSE_WAIT:
11530 case OMP_CLAUSE_WORKER:
11531 case OMP_CLAUSE_VECTOR:
11532 case OMP_CLAUSE_NUM_GANGS:
11533 case OMP_CLAUSE_NUM_WORKERS:
11534 case OMP_CLAUSE_VECTOR_LENGTH:
11535 case OMP_CLAUSE_PRIVATE:
11536 case OMP_CLAUSE_SHARED:
11537 case OMP_CLAUSE_FIRSTPRIVATE:
11538 case OMP_CLAUSE_COPYIN:
11539 case OMP_CLAUSE_COPYPRIVATE:
11540 case OMP_CLAUSE_FINAL:
11541 case OMP_CLAUSE_IF:
11542 case OMP_CLAUSE_NUM_THREADS:
11543 case OMP_CLAUSE_SCHEDULE:
11544 case OMP_CLAUSE_UNIFORM:
11545 case OMP_CLAUSE_DEPEND:
11546 case OMP_CLAUSE_NUM_TEAMS:
11547 case OMP_CLAUSE_THREAD_LIMIT:
11548 case OMP_CLAUSE_DEVICE:
11549 case OMP_CLAUSE_DIST_SCHEDULE:
11550 case OMP_CLAUSE_SAFELEN:
11551 case OMP_CLAUSE_SIMDLEN:
11552 case OMP_CLAUSE_ORDERED:
11553 case OMP_CLAUSE_PRIORITY:
11554 case OMP_CLAUSE_GRAINSIZE:
11555 case OMP_CLAUSE_NUM_TASKS:
11556 case OMP_CLAUSE_HINT:
11557 case OMP_CLAUSE_TO_DECLARE:
11558 case OMP_CLAUSE_LINK:
11559 case OMP_CLAUSE_USE_DEVICE_PTR:
11560 case OMP_CLAUSE_IS_DEVICE_PTR:
11561 case OMP_CLAUSE__LOOPTEMP_:
11562 case OMP_CLAUSE__SIMDUID_:
11563 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11564 /* FALLTHRU */
11565
11566 case OMP_CLAUSE_INDEPENDENT:
11567 case OMP_CLAUSE_NOWAIT:
11568 case OMP_CLAUSE_DEFAULT:
11569 case OMP_CLAUSE_UNTIED:
11570 case OMP_CLAUSE_MERGEABLE:
11571 case OMP_CLAUSE_PROC_BIND:
11572 case OMP_CLAUSE_INBRANCH:
11573 case OMP_CLAUSE_NOTINBRANCH:
11574 case OMP_CLAUSE_FOR:
11575 case OMP_CLAUSE_PARALLEL:
11576 case OMP_CLAUSE_SECTIONS:
11577 case OMP_CLAUSE_TASKGROUP:
11578 case OMP_CLAUSE_NOGROUP:
11579 case OMP_CLAUSE_THREADS:
11580 case OMP_CLAUSE_SIMD:
11581 case OMP_CLAUSE_DEFAULTMAP:
11582 case OMP_CLAUSE_AUTO:
11583 case OMP_CLAUSE_SEQ:
11584 case OMP_CLAUSE_TILE:
11585 case OMP_CLAUSE__SIMT_:
11586 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11587
11588 case OMP_CLAUSE_LASTPRIVATE:
11589 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11590 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11591 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11592
11593 case OMP_CLAUSE_COLLAPSE:
11594 {
11595 int i;
11596 for (i = 0; i < 3; i++)
11597 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11598 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11599 }
11600
11601 case OMP_CLAUSE_LINEAR:
11602 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11603 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
11604 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
11605 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11606
11607 case OMP_CLAUSE_ALIGNED:
11608 case OMP_CLAUSE_FROM:
11609 case OMP_CLAUSE_TO:
11610 case OMP_CLAUSE_MAP:
11611 case OMP_CLAUSE__CACHE_:
11612 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11613 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11614 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11615
11616 case OMP_CLAUSE_REDUCTION:
11617 {
11618 int i;
11619 for (i = 0; i < 5; i++)
11620 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11621 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11622 }
11623
11624 default:
11625 gcc_unreachable ();
11626 }
11627 break;
11628
11629 case TARGET_EXPR:
11630 {
11631 int i, len;
11632
11633 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11634 But, we only want to walk once. */
11635 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11636 for (i = 0; i < len; ++i)
11637 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11638 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11639 }
11640
11641 case DECL_EXPR:
11642 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11643 defining. We only want to walk into these fields of a type in this
11644 case and not in the general case of a mere reference to the type.
11645
11646 The criterion is as follows: if the field can be an expression, it
11647 must be walked only here. This should be in keeping with the fields
11648 that are directly gimplified in gimplify_type_sizes in order for the
11649 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11650 variable-sized types.
11651
11652 Note that DECLs get walked as part of processing the BIND_EXPR. */
11653 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11654 {
11655 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11656 if (TREE_CODE (*type_p) == ERROR_MARK)
11657 return NULL_TREE;
11658
11659 /* Call the function for the type. See if it returns anything or
11660 doesn't want us to continue. If we are to continue, walk both
11661 the normal fields and those for the declaration case. */
11662 result = (*func) (type_p, &walk_subtrees, data);
11663 if (result || !walk_subtrees)
11664 return result;
11665
11666 /* But do not walk a pointed-to type since it may itself need to
11667 be walked in the declaration case if it isn't anonymous. */
11668 if (!POINTER_TYPE_P (*type_p))
11669 {
11670 result = walk_type_fields (*type_p, func, data, pset, lh);
11671 if (result)
11672 return result;
11673 }
11674
11675 /* If this is a record type, also walk the fields. */
11676 if (RECORD_OR_UNION_TYPE_P (*type_p))
11677 {
11678 tree field;
11679
11680 for (field = TYPE_FIELDS (*type_p); field;
11681 field = DECL_CHAIN (field))
11682 {
11683 /* We'd like to look at the type of the field, but we can
11684 easily get infinite recursion. So assume it's pointed
11685 to elsewhere in the tree. Also, ignore things that
11686 aren't fields. */
11687 if (TREE_CODE (field) != FIELD_DECL)
11688 continue;
11689
11690 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11691 WALK_SUBTREE (DECL_SIZE (field));
11692 WALK_SUBTREE (DECL_SIZE_UNIT (field));
11693 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
11694 WALK_SUBTREE (DECL_QUALIFIER (field));
11695 }
11696 }
11697
11698 /* Same for scalar types. */
11699 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
11700 || TREE_CODE (*type_p) == ENUMERAL_TYPE
11701 || TREE_CODE (*type_p) == INTEGER_TYPE
11702 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
11703 || TREE_CODE (*type_p) == REAL_TYPE)
11704 {
11705 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
11706 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
11707 }
11708
11709 WALK_SUBTREE (TYPE_SIZE (*type_p));
11710 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
11711 }
11712 /* FALLTHRU */
11713
11714 default:
11715 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11716 {
11717 int i, len;
11718
11719 /* Walk over all the sub-trees of this operand. */
11720 len = TREE_OPERAND_LENGTH (*tp);
11721
11722 /* Go through the subtrees. We need to do this in forward order so
11723 that the scope of a FOR_EXPR is handled properly. */
11724 if (len)
11725 {
11726 for (i = 0; i < len - 1; ++i)
11727 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11728 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
11729 }
11730 }
11731 /* If this is a type, walk the needed fields in the type. */
11732 else if (TYPE_P (*tp))
11733 return walk_type_fields (*tp, func, data, pset, lh);
11734 break;
11735 }
11736
11737 /* We didn't find what we were looking for. */
11738 return NULL_TREE;
11739
11740 #undef WALK_SUBTREE_TAIL
11741 }
11742 #undef WALK_SUBTREE
11743
11744 /* Like walk_tree, but does not walk duplicate nodes more than once. */
11745
11746 tree
11747 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11748 walk_tree_lh lh)
11749 {
11750 tree result;
11751
11752 hash_set<tree> pset;
11753 result = walk_tree_1 (tp, func, data, &pset, lh);
11754 return result;
11755 }
11756
11757
11758 tree
11759 tree_block (tree t)
11760 {
11761 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11762
11763 if (IS_EXPR_CODE_CLASS (c))
11764 return LOCATION_BLOCK (t->exp.locus);
11765 gcc_unreachable ();
11766 return NULL;
11767 }
11768
11769 void
11770 tree_set_block (tree t, tree b)
11771 {
11772 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11773
11774 if (IS_EXPR_CODE_CLASS (c))
11775 {
11776 t->exp.locus = set_block (t->exp.locus, b);
11777 }
11778 else
11779 gcc_unreachable ();
11780 }
11781
11782 /* Create a nameless artificial label and put it in the current
11783 function context. The label has a location of LOC. Returns the
11784 newly created label. */
11785
11786 tree
11787 create_artificial_label (location_t loc)
11788 {
11789 tree lab = build_decl (loc,
11790 LABEL_DECL, NULL_TREE, void_type_node);
11791
11792 DECL_ARTIFICIAL (lab) = 1;
11793 DECL_IGNORED_P (lab) = 1;
11794 DECL_CONTEXT (lab) = current_function_decl;
11795 return lab;
11796 }
11797
11798 /* Given a tree, try to return a useful variable name that we can use
11799 to prefix a temporary that is being assigned the value of the tree.
11800 I.E. given <temp> = &A, return A. */
11801
11802 const char *
11803 get_name (tree t)
11804 {
11805 tree stripped_decl;
11806
11807 stripped_decl = t;
11808 STRIP_NOPS (stripped_decl);
11809 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11810 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11811 else if (TREE_CODE (stripped_decl) == SSA_NAME)
11812 {
11813 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11814 if (!name)
11815 return NULL;
11816 return IDENTIFIER_POINTER (name);
11817 }
11818 else
11819 {
11820 switch (TREE_CODE (stripped_decl))
11821 {
11822 case ADDR_EXPR:
11823 return get_name (TREE_OPERAND (stripped_decl, 0));
11824 default:
11825 return NULL;
11826 }
11827 }
11828 }
11829
11830 /* Return true if TYPE has a variable argument list. */
11831
11832 bool
11833 stdarg_p (const_tree fntype)
11834 {
11835 function_args_iterator args_iter;
11836 tree n = NULL_TREE, t;
11837
11838 if (!fntype)
11839 return false;
11840
11841 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
11842 {
11843 n = t;
11844 }
11845
11846 return n != NULL_TREE && n != void_type_node;
11847 }
11848
11849 /* Return true if TYPE has a prototype. */
11850
11851 bool
11852 prototype_p (const_tree fntype)
11853 {
11854 tree t;
11855
11856 gcc_assert (fntype != NULL_TREE);
11857
11858 t = TYPE_ARG_TYPES (fntype);
11859 return (t != NULL_TREE);
11860 }
11861
11862 /* If BLOCK is inlined from an __attribute__((__artificial__))
11863 routine, return pointer to location from where it has been
11864 called. */
11865 location_t *
11866 block_nonartificial_location (tree block)
11867 {
11868 location_t *ret = NULL;
11869
11870 while (block && TREE_CODE (block) == BLOCK
11871 && BLOCK_ABSTRACT_ORIGIN (block))
11872 {
11873 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11874
11875 while (TREE_CODE (ao) == BLOCK
11876 && BLOCK_ABSTRACT_ORIGIN (ao)
11877 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11878 ao = BLOCK_ABSTRACT_ORIGIN (ao);
11879
11880 if (TREE_CODE (ao) == FUNCTION_DECL)
11881 {
11882 /* If AO is an artificial inline, point RET to the
11883 call site locus at which it has been inlined and continue
11884 the loop, in case AO's caller is also an artificial
11885 inline. */
11886 if (DECL_DECLARED_INLINE_P (ao)
11887 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11888 ret = &BLOCK_SOURCE_LOCATION (block);
11889 else
11890 break;
11891 }
11892 else if (TREE_CODE (ao) != BLOCK)
11893 break;
11894
11895 block = BLOCK_SUPERCONTEXT (block);
11896 }
11897 return ret;
11898 }
11899
11900
11901 /* If EXP is inlined from an __attribute__((__artificial__))
11902 function, return the location of the original call expression. */
11903
11904 location_t
11905 tree_nonartificial_location (tree exp)
11906 {
11907 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11908
11909 if (loc)
11910 return *loc;
11911 else
11912 return EXPR_LOCATION (exp);
11913 }
11914
11915
11916 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11917 nodes. */
11918
11919 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
11920
11921 hashval_t
11922 cl_option_hasher::hash (tree x)
11923 {
11924 const_tree const t = x;
11925 const char *p;
11926 size_t i;
11927 size_t len = 0;
11928 hashval_t hash = 0;
11929
11930 if (TREE_CODE (t) == OPTIMIZATION_NODE)
11931 {
11932 p = (const char *)TREE_OPTIMIZATION (t);
11933 len = sizeof (struct cl_optimization);
11934 }
11935
11936 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11937 return cl_target_option_hash (TREE_TARGET_OPTION (t));
11938
11939 else
11940 gcc_unreachable ();
11941
11942 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11943 something else. */
11944 for (i = 0; i < len; i++)
11945 if (p[i])
11946 hash = (hash << 4) ^ ((i << 2) | p[i]);
11947
11948 return hash;
11949 }
11950
11951 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11952 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11953 same. */
11954
11955 bool
11956 cl_option_hasher::equal (tree x, tree y)
11957 {
11958 const_tree const xt = x;
11959 const_tree const yt = y;
11960 const char *xp;
11961 const char *yp;
11962 size_t len;
11963
11964 if (TREE_CODE (xt) != TREE_CODE (yt))
11965 return 0;
11966
11967 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11968 {
11969 xp = (const char *)TREE_OPTIMIZATION (xt);
11970 yp = (const char *)TREE_OPTIMIZATION (yt);
11971 len = sizeof (struct cl_optimization);
11972 }
11973
11974 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11975 {
11976 return cl_target_option_eq (TREE_TARGET_OPTION (xt),
11977 TREE_TARGET_OPTION (yt));
11978 }
11979
11980 else
11981 gcc_unreachable ();
11982
11983 return (memcmp (xp, yp, len) == 0);
11984 }
11985
11986 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
11987
11988 tree
11989 build_optimization_node (struct gcc_options *opts)
11990 {
11991 tree t;
11992
11993 /* Use the cache of optimization nodes. */
11994
11995 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11996 opts);
11997
11998 tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
11999 t = *slot;
12000 if (!t)
12001 {
12002 /* Insert this one into the hash table. */
12003 t = cl_optimization_node;
12004 *slot = t;
12005
12006 /* Make a new node for next time round. */
12007 cl_optimization_node = make_node (OPTIMIZATION_NODE);
12008 }
12009
12010 return t;
12011 }
12012
12013 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
12014
12015 tree
12016 build_target_option_node (struct gcc_options *opts)
12017 {
12018 tree t;
12019
12020 /* Use the cache of optimization nodes. */
12021
12022 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
12023 opts);
12024
12025 tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
12026 t = *slot;
12027 if (!t)
12028 {
12029 /* Insert this one into the hash table. */
12030 t = cl_target_option_node;
12031 *slot = t;
12032
12033 /* Make a new node for next time round. */
12034 cl_target_option_node = make_node (TARGET_OPTION_NODE);
12035 }
12036
12037 return t;
12038 }
12039
12040 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12041 so that they aren't saved during PCH writing. */
12042
12043 void
12044 prepare_target_option_nodes_for_pch (void)
12045 {
12046 hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
12047 for (; iter != cl_option_hash_table->end (); ++iter)
12048 if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
12049 TREE_TARGET_GLOBALS (*iter) = NULL;
12050 }
12051
12052 /* Determine the "ultimate origin" of a block. The block may be an inlined
12053 instance of an inlined instance of a block which is local to an inline
12054 function, so we have to trace all of the way back through the origin chain
12055 to find out what sort of node actually served as the original seed for the
12056 given block. */
12057
12058 tree
12059 block_ultimate_origin (const_tree block)
12060 {
12061 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
12062
12063 /* BLOCK_ABSTRACT_ORIGIN can point to itself; ignore that if
12064 we're trying to output the abstract instance of this function. */
12065 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
12066 return NULL_TREE;
12067
12068 if (immediate_origin == NULL_TREE)
12069 return NULL_TREE;
12070 else
12071 {
12072 tree ret_val;
12073 tree lookahead = immediate_origin;
12074
12075 do
12076 {
12077 ret_val = lookahead;
12078 lookahead = (TREE_CODE (ret_val) == BLOCK
12079 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
12080 }
12081 while (lookahead != NULL && lookahead != ret_val);
12082
12083 /* The block's abstract origin chain may not be the *ultimate* origin of
12084 the block. It could lead to a DECL that has an abstract origin set.
12085 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
12086 will give us if it has one). Note that DECL's abstract origins are
12087 supposed to be the most distant ancestor (or so decl_ultimate_origin
12088 claims), so we don't need to loop following the DECL origins. */
12089 if (DECL_P (ret_val))
12090 return DECL_ORIGIN (ret_val);
12091
12092 return ret_val;
12093 }
12094 }
12095
12096 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12097 no instruction. */
12098
12099 bool
12100 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
12101 {
12102 /* Do not strip casts into or out of differing address spaces. */
12103 if (POINTER_TYPE_P (outer_type)
12104 && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
12105 {
12106 if (!POINTER_TYPE_P (inner_type)
12107 || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
12108 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
12109 return false;
12110 }
12111 else if (POINTER_TYPE_P (inner_type)
12112 && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
12113 {
12114 /* We already know that outer_type is not a pointer with
12115 a non-generic address space. */
12116 return false;
12117 }
12118
12119 /* Use precision rather then machine mode when we can, which gives
12120 the correct answer even for submode (bit-field) types. */
12121 if ((INTEGRAL_TYPE_P (outer_type)
12122 || POINTER_TYPE_P (outer_type)
12123 || TREE_CODE (outer_type) == OFFSET_TYPE)
12124 && (INTEGRAL_TYPE_P (inner_type)
12125 || POINTER_TYPE_P (inner_type)
12126 || TREE_CODE (inner_type) == OFFSET_TYPE))
12127 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
12128
12129 /* Otherwise fall back on comparing machine modes (e.g. for
12130 aggregate types, floats). */
12131 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
12132 }
12133
12134 /* Return true iff conversion in EXP generates no instruction. Mark
12135 it inline so that we fully inline into the stripping functions even
12136 though we have two uses of this function. */
12137
12138 static inline bool
12139 tree_nop_conversion (const_tree exp)
12140 {
12141 tree outer_type, inner_type;
12142
12143 if (!CONVERT_EXPR_P (exp)
12144 && TREE_CODE (exp) != NON_LVALUE_EXPR)
12145 return false;
12146 if (TREE_OPERAND (exp, 0) == error_mark_node)
12147 return false;
12148
12149 outer_type = TREE_TYPE (exp);
12150 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12151
12152 if (!inner_type)
12153 return false;
12154
12155 return tree_nop_conversion_p (outer_type, inner_type);
12156 }
12157
12158 /* Return true iff conversion in EXP generates no instruction. Don't
12159 consider conversions changing the signedness. */
12160
12161 static bool
12162 tree_sign_nop_conversion (const_tree exp)
12163 {
12164 tree outer_type, inner_type;
12165
12166 if (!tree_nop_conversion (exp))
12167 return false;
12168
12169 outer_type = TREE_TYPE (exp);
12170 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12171
12172 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
12173 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
12174 }
12175
12176 /* Strip conversions from EXP according to tree_nop_conversion and
12177 return the resulting expression. */
12178
12179 tree
12180 tree_strip_nop_conversions (tree exp)
12181 {
12182 while (tree_nop_conversion (exp))
12183 exp = TREE_OPERAND (exp, 0);
12184 return exp;
12185 }
12186
12187 /* Strip conversions from EXP according to tree_sign_nop_conversion
12188 and return the resulting expression. */
12189
12190 tree
12191 tree_strip_sign_nop_conversions (tree exp)
12192 {
12193 while (tree_sign_nop_conversion (exp))
12194 exp = TREE_OPERAND (exp, 0);
12195 return exp;
12196 }
12197
12198 /* Avoid any floating point extensions from EXP. */
12199 tree
12200 strip_float_extensions (tree exp)
12201 {
12202 tree sub, expt, subt;
12203
12204 /* For floating point constant look up the narrowest type that can hold
12205 it properly and handle it like (type)(narrowest_type)constant.
12206 This way we can optimize for instance a=a*2.0 where "a" is float
12207 but 2.0 is double constant. */
12208 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
12209 {
12210 REAL_VALUE_TYPE orig;
12211 tree type = NULL;
12212
12213 orig = TREE_REAL_CST (exp);
12214 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
12215 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
12216 type = float_type_node;
12217 else if (TYPE_PRECISION (TREE_TYPE (exp))
12218 > TYPE_PRECISION (double_type_node)
12219 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
12220 type = double_type_node;
12221 if (type)
12222 return build_real_truncate (type, orig);
12223 }
12224
12225 if (!CONVERT_EXPR_P (exp))
12226 return exp;
12227
12228 sub = TREE_OPERAND (exp, 0);
12229 subt = TREE_TYPE (sub);
12230 expt = TREE_TYPE (exp);
12231
12232 if (!FLOAT_TYPE_P (subt))
12233 return exp;
12234
12235 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
12236 return exp;
12237
12238 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
12239 return exp;
12240
12241 return strip_float_extensions (sub);
12242 }
12243
12244 /* Strip out all handled components that produce invariant
12245 offsets. */
12246
12247 const_tree
12248 strip_invariant_refs (const_tree op)
12249 {
12250 while (handled_component_p (op))
12251 {
12252 switch (TREE_CODE (op))
12253 {
12254 case ARRAY_REF:
12255 case ARRAY_RANGE_REF:
12256 if (!is_gimple_constant (TREE_OPERAND (op, 1))
12257 || TREE_OPERAND (op, 2) != NULL_TREE
12258 || TREE_OPERAND (op, 3) != NULL_TREE)
12259 return NULL;
12260 break;
12261
12262 case COMPONENT_REF:
12263 if (TREE_OPERAND (op, 2) != NULL_TREE)
12264 return NULL;
12265 break;
12266
12267 default:;
12268 }
12269 op = TREE_OPERAND (op, 0);
12270 }
12271
12272 return op;
12273 }
12274
12275 static GTY(()) tree gcc_eh_personality_decl;
12276
12277 /* Return the GCC personality function decl. */
12278
12279 tree
12280 lhd_gcc_personality (void)
12281 {
12282 if (!gcc_eh_personality_decl)
12283 gcc_eh_personality_decl = build_personality_function ("gcc");
12284 return gcc_eh_personality_decl;
12285 }
12286
12287 /* TARGET is a call target of GIMPLE call statement
12288 (obtained by gimple_call_fn). Return true if it is
12289 OBJ_TYPE_REF representing an virtual call of C++ method.
12290 (As opposed to OBJ_TYPE_REF representing objc calls
12291 through a cast where middle-end devirtualization machinery
12292 can't apply.) */
12293
12294 bool
12295 virtual_method_call_p (const_tree target)
12296 {
12297 if (TREE_CODE (target) != OBJ_TYPE_REF)
12298 return false;
12299 tree t = TREE_TYPE (target);
12300 gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
12301 t = TREE_TYPE (t);
12302 if (TREE_CODE (t) == FUNCTION_TYPE)
12303 return false;
12304 gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
12305 /* If we do not have BINFO associated, it means that type was built
12306 without devirtualization enabled. Do not consider this a virtual
12307 call. */
12308 if (!TYPE_BINFO (obj_type_ref_class (target)))
12309 return false;
12310 return true;
12311 }
12312
12313 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
12314
12315 tree
12316 obj_type_ref_class (const_tree ref)
12317 {
12318 gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
12319 ref = TREE_TYPE (ref);
12320 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12321 ref = TREE_TYPE (ref);
12322 /* We look for type THIS points to. ObjC also builds
12323 OBJ_TYPE_REF with non-method calls, Their first parameter
12324 ID however also corresponds to class type. */
12325 gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
12326 || TREE_CODE (ref) == FUNCTION_TYPE);
12327 ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
12328 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12329 return TREE_TYPE (ref);
12330 }
12331
12332 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
12333
12334 static tree
12335 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
12336 {
12337 unsigned int i;
12338 tree base_binfo, b;
12339
12340 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12341 if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
12342 && types_same_for_odr (TREE_TYPE (base_binfo), type))
12343 return base_binfo;
12344 else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
12345 return b;
12346 return NULL;
12347 }
12348
12349 /* Try to find a base info of BINFO that would have its field decl at offset
12350 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
12351 found, return, otherwise return NULL_TREE. */
12352
12353 tree
12354 get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
12355 {
12356 tree type = BINFO_TYPE (binfo);
12357
12358 while (true)
12359 {
12360 HOST_WIDE_INT pos, size;
12361 tree fld;
12362 int i;
12363
12364 if (types_same_for_odr (type, expected_type))
12365 return binfo;
12366 if (maybe_lt (offset, 0))
12367 return NULL_TREE;
12368
12369 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
12370 {
12371 if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
12372 continue;
12373
12374 pos = int_bit_position (fld);
12375 size = tree_to_uhwi (DECL_SIZE (fld));
12376 if (known_in_range_p (offset, pos, size))
12377 break;
12378 }
12379 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
12380 return NULL_TREE;
12381
12382 /* Offset 0 indicates the primary base, whose vtable contents are
12383 represented in the binfo for the derived class. */
12384 else if (maybe_ne (offset, 0))
12385 {
12386 tree found_binfo = NULL, base_binfo;
12387 /* Offsets in BINFO are in bytes relative to the whole structure
12388 while POS is in bits relative to the containing field. */
12389 int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
12390 / BITS_PER_UNIT);
12391
12392 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12393 if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
12394 && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
12395 {
12396 found_binfo = base_binfo;
12397 break;
12398 }
12399 if (found_binfo)
12400 binfo = found_binfo;
12401 else
12402 binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
12403 binfo_offset);
12404 }
12405
12406 type = TREE_TYPE (fld);
12407 offset -= pos;
12408 }
12409 }
12410
12411 /* Returns true if X is a typedef decl. */
12412
12413 bool
12414 is_typedef_decl (const_tree x)
12415 {
12416 return (x && TREE_CODE (x) == TYPE_DECL
12417 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
12418 }
12419
12420 /* Returns true iff TYPE is a type variant created for a typedef. */
12421
12422 bool
12423 typedef_variant_p (const_tree type)
12424 {
12425 return is_typedef_decl (TYPE_NAME (type));
12426 }
12427
12428 /* Warn about a use of an identifier which was marked deprecated. */
12429 void
12430 warn_deprecated_use (tree node, tree attr)
12431 {
12432 const char *msg;
12433
12434 if (node == 0 || !warn_deprecated_decl)
12435 return;
12436
12437 if (!attr)
12438 {
12439 if (DECL_P (node))
12440 attr = DECL_ATTRIBUTES (node);
12441 else if (TYPE_P (node))
12442 {
12443 tree decl = TYPE_STUB_DECL (node);
12444 if (decl)
12445 attr = lookup_attribute ("deprecated",
12446 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
12447 }
12448 }
12449
12450 if (attr)
12451 attr = lookup_attribute ("deprecated", attr);
12452
12453 if (attr)
12454 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
12455 else
12456 msg = NULL;
12457
12458 bool w;
12459 if (DECL_P (node))
12460 {
12461 if (msg)
12462 w = warning (OPT_Wdeprecated_declarations,
12463 "%qD is deprecated: %s", node, msg);
12464 else
12465 w = warning (OPT_Wdeprecated_declarations,
12466 "%qD is deprecated", node);
12467 if (w)
12468 inform (DECL_SOURCE_LOCATION (node), "declared here");
12469 }
12470 else if (TYPE_P (node))
12471 {
12472 tree what = NULL_TREE;
12473 tree decl = TYPE_STUB_DECL (node);
12474
12475 if (TYPE_NAME (node))
12476 {
12477 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
12478 what = TYPE_NAME (node);
12479 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
12480 && DECL_NAME (TYPE_NAME (node)))
12481 what = DECL_NAME (TYPE_NAME (node));
12482 }
12483
12484 if (decl)
12485 {
12486 if (what)
12487 {
12488 if (msg)
12489 w = warning (OPT_Wdeprecated_declarations,
12490 "%qE is deprecated: %s", what, msg);
12491 else
12492 w = warning (OPT_Wdeprecated_declarations,
12493 "%qE is deprecated", what);
12494 }
12495 else
12496 {
12497 if (msg)
12498 w = warning (OPT_Wdeprecated_declarations,
12499 "type is deprecated: %s", msg);
12500 else
12501 w = warning (OPT_Wdeprecated_declarations,
12502 "type is deprecated");
12503 }
12504 if (w)
12505 inform (DECL_SOURCE_LOCATION (decl), "declared here");
12506 }
12507 else
12508 {
12509 if (what)
12510 {
12511 if (msg)
12512 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
12513 what, msg);
12514 else
12515 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
12516 }
12517 else
12518 {
12519 if (msg)
12520 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
12521 msg);
12522 else
12523 warning (OPT_Wdeprecated_declarations, "type is deprecated");
12524 }
12525 }
12526 }
12527 }
12528
12529 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12530 somewhere in it. */
12531
12532 bool
12533 contains_bitfld_component_ref_p (const_tree ref)
12534 {
12535 while (handled_component_p (ref))
12536 {
12537 if (TREE_CODE (ref) == COMPONENT_REF
12538 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12539 return true;
12540 ref = TREE_OPERAND (ref, 0);
12541 }
12542
12543 return false;
12544 }
12545
12546 /* Try to determine whether a TRY_CATCH expression can fall through.
12547 This is a subroutine of block_may_fallthru. */
12548
12549 static bool
12550 try_catch_may_fallthru (const_tree stmt)
12551 {
12552 tree_stmt_iterator i;
12553
12554 /* If the TRY block can fall through, the whole TRY_CATCH can
12555 fall through. */
12556 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
12557 return true;
12558
12559 i = tsi_start (TREE_OPERAND (stmt, 1));
12560 switch (TREE_CODE (tsi_stmt (i)))
12561 {
12562 case CATCH_EXPR:
12563 /* We expect to see a sequence of CATCH_EXPR trees, each with a
12564 catch expression and a body. The whole TRY_CATCH may fall
12565 through iff any of the catch bodies falls through. */
12566 for (; !tsi_end_p (i); tsi_next (&i))
12567 {
12568 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
12569 return true;
12570 }
12571 return false;
12572
12573 case EH_FILTER_EXPR:
12574 /* The exception filter expression only matters if there is an
12575 exception. If the exception does not match EH_FILTER_TYPES,
12576 we will execute EH_FILTER_FAILURE, and we will fall through
12577 if that falls through. If the exception does match
12578 EH_FILTER_TYPES, the stack unwinder will continue up the
12579 stack, so we will not fall through. We don't know whether we
12580 will throw an exception which matches EH_FILTER_TYPES or not,
12581 so we just ignore EH_FILTER_TYPES and assume that we might
12582 throw an exception which doesn't match. */
12583 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
12584
12585 default:
12586 /* This case represents statements to be executed when an
12587 exception occurs. Those statements are implicitly followed
12588 by a RESX statement to resume execution after the exception.
12589 So in this case the TRY_CATCH never falls through. */
12590 return false;
12591 }
12592 }
12593
12594 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
12595 need not be 100% accurate; simply be conservative and return true if we
12596 don't know. This is used only to avoid stupidly generating extra code.
12597 If we're wrong, we'll just delete the extra code later. */
12598
12599 bool
12600 block_may_fallthru (const_tree block)
12601 {
12602 /* This CONST_CAST is okay because expr_last returns its argument
12603 unmodified and we assign it to a const_tree. */
12604 const_tree stmt = expr_last (CONST_CAST_TREE (block));
12605
12606 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
12607 {
12608 case GOTO_EXPR:
12609 case RETURN_EXPR:
12610 /* Easy cases. If the last statement of the block implies
12611 control transfer, then we can't fall through. */
12612 return false;
12613
12614 case SWITCH_EXPR:
12615 /* If there is a default: label or case labels cover all possible
12616 SWITCH_COND values, then the SWITCH_EXPR will transfer control
12617 to some case label in all cases and all we care is whether the
12618 SWITCH_BODY falls through. */
12619 if (SWITCH_ALL_CASES_P (stmt))
12620 return block_may_fallthru (SWITCH_BODY (stmt));
12621 return true;
12622
12623 case COND_EXPR:
12624 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
12625 return true;
12626 return block_may_fallthru (COND_EXPR_ELSE (stmt));
12627
12628 case BIND_EXPR:
12629 return block_may_fallthru (BIND_EXPR_BODY (stmt));
12630
12631 case TRY_CATCH_EXPR:
12632 return try_catch_may_fallthru (stmt);
12633
12634 case TRY_FINALLY_EXPR:
12635 /* The finally clause is always executed after the try clause,
12636 so if it does not fall through, then the try-finally will not
12637 fall through. Otherwise, if the try clause does not fall
12638 through, then when the finally clause falls through it will
12639 resume execution wherever the try clause was going. So the
12640 whole try-finally will only fall through if both the try
12641 clause and the finally clause fall through. */
12642 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
12643 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
12644
12645 case MODIFY_EXPR:
12646 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
12647 stmt = TREE_OPERAND (stmt, 1);
12648 else
12649 return true;
12650 /* FALLTHRU */
12651
12652 case CALL_EXPR:
12653 /* Functions that do not return do not fall through. */
12654 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
12655
12656 case CLEANUP_POINT_EXPR:
12657 return block_may_fallthru (TREE_OPERAND (stmt, 0));
12658
12659 case TARGET_EXPR:
12660 return block_may_fallthru (TREE_OPERAND (stmt, 1));
12661
12662 case ERROR_MARK:
12663 return true;
12664
12665 default:
12666 return lang_hooks.block_may_fallthru (stmt);
12667 }
12668 }
12669
12670 /* True if we are using EH to handle cleanups. */
12671 static bool using_eh_for_cleanups_flag = false;
12672
12673 /* This routine is called from front ends to indicate eh should be used for
12674 cleanups. */
12675 void
12676 using_eh_for_cleanups (void)
12677 {
12678 using_eh_for_cleanups_flag = true;
12679 }
12680
12681 /* Query whether EH is used for cleanups. */
12682 bool
12683 using_eh_for_cleanups_p (void)
12684 {
12685 return using_eh_for_cleanups_flag;
12686 }
12687
12688 /* Wrapper for tree_code_name to ensure that tree code is valid */
12689 const char *
12690 get_tree_code_name (enum tree_code code)
12691 {
12692 const char *invalid = "<invalid tree code>";
12693
12694 if (code >= MAX_TREE_CODES)
12695 return invalid;
12696
12697 return tree_code_name[code];
12698 }
12699
12700 /* Drops the TREE_OVERFLOW flag from T. */
12701
12702 tree
12703 drop_tree_overflow (tree t)
12704 {
12705 gcc_checking_assert (TREE_OVERFLOW (t));
12706
12707 /* For tree codes with a sharing machinery re-build the result. */
12708 if (poly_int_tree_p (t))
12709 return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
12710
12711 /* For VECTOR_CST, remove the overflow bits from the encoded elements
12712 and canonicalize the result. */
12713 if (TREE_CODE (t) == VECTOR_CST)
12714 {
12715 tree_vector_builder builder;
12716 builder.new_unary_operation (TREE_TYPE (t), t, true);
12717 unsigned int count = builder.encoded_nelts ();
12718 for (unsigned int i = 0; i < count; ++i)
12719 {
12720 tree elt = VECTOR_CST_ELT (t, i);
12721 if (TREE_OVERFLOW (elt))
12722 elt = drop_tree_overflow (elt);
12723 builder.quick_push (elt);
12724 }
12725 return builder.build ();
12726 }
12727
12728 /* Otherwise, as all tcc_constants are possibly shared, copy the node
12729 and drop the flag. */
12730 t = copy_node (t);
12731 TREE_OVERFLOW (t) = 0;
12732
12733 /* For constants that contain nested constants, drop the flag
12734 from those as well. */
12735 if (TREE_CODE (t) == COMPLEX_CST)
12736 {
12737 if (TREE_OVERFLOW (TREE_REALPART (t)))
12738 TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
12739 if (TREE_OVERFLOW (TREE_IMAGPART (t)))
12740 TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
12741 }
12742
12743 return t;
12744 }
12745
12746 /* Given a memory reference expression T, return its base address.
12747 The base address of a memory reference expression is the main
12748 object being referenced. For instance, the base address for
12749 'array[i].fld[j]' is 'array'. You can think of this as stripping
12750 away the offset part from a memory address.
12751
12752 This function calls handled_component_p to strip away all the inner
12753 parts of the memory reference until it reaches the base object. */
12754
12755 tree
12756 get_base_address (tree t)
12757 {
12758 while (handled_component_p (t))
12759 t = TREE_OPERAND (t, 0);
12760
12761 if ((TREE_CODE (t) == MEM_REF
12762 || TREE_CODE (t) == TARGET_MEM_REF)
12763 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
12764 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
12765
12766 /* ??? Either the alias oracle or all callers need to properly deal
12767 with WITH_SIZE_EXPRs before we can look through those. */
12768 if (TREE_CODE (t) == WITH_SIZE_EXPR)
12769 return NULL_TREE;
12770
12771 return t;
12772 }
12773
12774 /* Return a tree of sizetype representing the size, in bytes, of the element
12775 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12776
12777 tree
12778 array_ref_element_size (tree exp)
12779 {
12780 tree aligned_size = TREE_OPERAND (exp, 3);
12781 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
12782 location_t loc = EXPR_LOCATION (exp);
12783
12784 /* If a size was specified in the ARRAY_REF, it's the size measured
12785 in alignment units of the element type. So multiply by that value. */
12786 if (aligned_size)
12787 {
12788 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12789 sizetype from another type of the same width and signedness. */
12790 if (TREE_TYPE (aligned_size) != sizetype)
12791 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
12792 return size_binop_loc (loc, MULT_EXPR, aligned_size,
12793 size_int (TYPE_ALIGN_UNIT (elmt_type)));
12794 }
12795
12796 /* Otherwise, take the size from that of the element type. Substitute
12797 any PLACEHOLDER_EXPR that we have. */
12798 else
12799 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
12800 }
12801
12802 /* Return a tree representing the lower bound of the array mentioned in
12803 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12804
12805 tree
12806 array_ref_low_bound (tree exp)
12807 {
12808 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12809
12810 /* If a lower bound is specified in EXP, use it. */
12811 if (TREE_OPERAND (exp, 2))
12812 return TREE_OPERAND (exp, 2);
12813
12814 /* Otherwise, if there is a domain type and it has a lower bound, use it,
12815 substituting for a PLACEHOLDER_EXPR as needed. */
12816 if (domain_type && TYPE_MIN_VALUE (domain_type))
12817 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
12818
12819 /* Otherwise, return a zero of the appropriate type. */
12820 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
12821 }
12822
12823 /* Return a tree representing the upper bound of the array mentioned in
12824 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12825
12826 tree
12827 array_ref_up_bound (tree exp)
12828 {
12829 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12830
12831 /* If there is a domain type and it has an upper bound, use it, substituting
12832 for a PLACEHOLDER_EXPR as needed. */
12833 if (domain_type && TYPE_MAX_VALUE (domain_type))
12834 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
12835
12836 /* Otherwise fail. */
12837 return NULL_TREE;
12838 }
12839
12840 /* Returns true if REF is an array reference or a component reference
12841 to an array at the end of a structure.
12842 If this is the case, the array may be allocated larger
12843 than its upper bound implies. */
12844
12845 bool
12846 array_at_struct_end_p (tree ref)
12847 {
12848 tree atype;
12849
12850 if (TREE_CODE (ref) == ARRAY_REF
12851 || TREE_CODE (ref) == ARRAY_RANGE_REF)
12852 {
12853 atype = TREE_TYPE (TREE_OPERAND (ref, 0));
12854 ref = TREE_OPERAND (ref, 0);
12855 }
12856 else if (TREE_CODE (ref) == COMPONENT_REF
12857 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
12858 atype = TREE_TYPE (TREE_OPERAND (ref, 1));
12859 else
12860 return false;
12861
12862 if (TREE_CODE (ref) == STRING_CST)
12863 return false;
12864
12865 tree ref_to_array = ref;
12866 while (handled_component_p (ref))
12867 {
12868 /* If the reference chain contains a component reference to a
12869 non-union type and there follows another field the reference
12870 is not at the end of a structure. */
12871 if (TREE_CODE (ref) == COMPONENT_REF)
12872 {
12873 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
12874 {
12875 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
12876 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
12877 nextf = DECL_CHAIN (nextf);
12878 if (nextf)
12879 return false;
12880 }
12881 }
12882 /* If we have a multi-dimensional array we do not consider
12883 a non-innermost dimension as flex array if the whole
12884 multi-dimensional array is at struct end.
12885 Same for an array of aggregates with a trailing array
12886 member. */
12887 else if (TREE_CODE (ref) == ARRAY_REF)
12888 return false;
12889 else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
12890 ;
12891 /* If we view an underlying object as sth else then what we
12892 gathered up to now is what we have to rely on. */
12893 else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
12894 break;
12895 else
12896 gcc_unreachable ();
12897
12898 ref = TREE_OPERAND (ref, 0);
12899 }
12900
12901 /* The array now is at struct end. Treat flexible arrays as
12902 always subject to extend, even into just padding constrained by
12903 an underlying decl. */
12904 if (! TYPE_SIZE (atype)
12905 || ! TYPE_DOMAIN (atype)
12906 || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
12907 return true;
12908
12909 if (TREE_CODE (ref) == MEM_REF
12910 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
12911 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
12912
12913 /* If the reference is based on a declared entity, the size of the array
12914 is constrained by its given domain. (Do not trust commons PR/69368). */
12915 if (DECL_P (ref)
12916 && !(flag_unconstrained_commons
12917 && VAR_P (ref) && DECL_COMMON (ref))
12918 && DECL_SIZE_UNIT (ref)
12919 && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
12920 {
12921 /* Check whether the array domain covers all of the available
12922 padding. */
12923 poly_int64 offset;
12924 if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
12925 || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
12926 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
12927 return true;
12928 if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
12929 return true;
12930
12931 /* If at least one extra element fits it is a flexarray. */
12932 if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
12933 - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
12934 + 2)
12935 * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
12936 wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
12937 return true;
12938
12939 return false;
12940 }
12941
12942 return true;
12943 }
12944
12945 /* Return a tree representing the offset, in bytes, of the field referenced
12946 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
12947
12948 tree
12949 component_ref_field_offset (tree exp)
12950 {
12951 tree aligned_offset = TREE_OPERAND (exp, 2);
12952 tree field = TREE_OPERAND (exp, 1);
12953 location_t loc = EXPR_LOCATION (exp);
12954
12955 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
12956 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
12957 value. */
12958 if (aligned_offset)
12959 {
12960 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12961 sizetype from another type of the same width and signedness. */
12962 if (TREE_TYPE (aligned_offset) != sizetype)
12963 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
12964 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
12965 size_int (DECL_OFFSET_ALIGN (field)
12966 / BITS_PER_UNIT));
12967 }
12968
12969 /* Otherwise, take the offset from that of the field. Substitute
12970 any PLACEHOLDER_EXPR that we have. */
12971 else
12972 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
12973 }
12974
12975 /* Return the machine mode of T. For vectors, returns the mode of the
12976 inner type. The main use case is to feed the result to HONOR_NANS,
12977 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
12978
12979 machine_mode
12980 element_mode (const_tree t)
12981 {
12982 if (!TYPE_P (t))
12983 t = TREE_TYPE (t);
12984 if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
12985 t = TREE_TYPE (t);
12986 return TYPE_MODE (t);
12987 }
12988
12989 /* Vector types need to re-check the target flags each time we report
12990 the machine mode. We need to do this because attribute target can
12991 change the result of vector_mode_supported_p and have_regs_of_mode
12992 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
12993 change on a per-function basis. */
12994 /* ??? Possibly a better solution is to run through all the types
12995 referenced by a function and re-compute the TYPE_MODE once, rather
12996 than make the TYPE_MODE macro call a function. */
12997
12998 machine_mode
12999 vector_type_mode (const_tree t)
13000 {
13001 machine_mode mode;
13002
13003 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
13004
13005 mode = t->type_common.mode;
13006 if (VECTOR_MODE_P (mode)
13007 && (!targetm.vector_mode_supported_p (mode)
13008 || !have_regs_of_mode[mode]))
13009 {
13010 scalar_int_mode innermode;
13011
13012 /* For integers, try mapping it to a same-sized scalar mode. */
13013 if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
13014 {
13015 unsigned int size = (TYPE_VECTOR_SUBPARTS (t)
13016 * GET_MODE_BITSIZE (innermode));
13017 scalar_int_mode mode;
13018 if (int_mode_for_size (size, 0).exists (&mode)
13019 && have_regs_of_mode[mode])
13020 return mode;
13021 }
13022
13023 return BLKmode;
13024 }
13025
13026 return mode;
13027 }
13028
13029 /* Verify that basic properties of T match TV and thus T can be a variant of
13030 TV. TV should be the more specified variant (i.e. the main variant). */
13031
13032 static bool
13033 verify_type_variant (const_tree t, tree tv)
13034 {
13035 /* Type variant can differ by:
13036
13037 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
13038 ENCODE_QUAL_ADDR_SPACE.
13039 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
13040 in this case some values may not be set in the variant types
13041 (see TYPE_COMPLETE_P checks).
13042 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
13043 - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
13044 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
13045 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
13046 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
13047 this is necessary to make it possible to merge types form different TUs
13048 - arrays, pointers and references may have TREE_TYPE that is a variant
13049 of TREE_TYPE of their main variants.
13050 - aggregates may have new TYPE_FIELDS list that list variants of
13051 the main variant TYPE_FIELDS.
13052 - vector types may differ by TYPE_VECTOR_OPAQUE
13053 */
13054
13055 /* Convenience macro for matching individual fields. */
13056 #define verify_variant_match(flag) \
13057 do { \
13058 if (flag (tv) != flag (t)) \
13059 { \
13060 error ("type variant differs by " #flag "."); \
13061 debug_tree (tv); \
13062 return false; \
13063 } \
13064 } while (false)
13065
13066 /* tree_base checks. */
13067
13068 verify_variant_match (TREE_CODE);
13069 /* FIXME: Ada builds non-artificial variants of artificial types. */
13070 if (TYPE_ARTIFICIAL (tv) && 0)
13071 verify_variant_match (TYPE_ARTIFICIAL);
13072 if (POINTER_TYPE_P (tv))
13073 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
13074 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
13075 verify_variant_match (TYPE_UNSIGNED);
13076 verify_variant_match (TYPE_PACKED);
13077 if (TREE_CODE (t) == REFERENCE_TYPE)
13078 verify_variant_match (TYPE_REF_IS_RVALUE);
13079 if (AGGREGATE_TYPE_P (t))
13080 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
13081 else
13082 verify_variant_match (TYPE_SATURATING);
13083 /* FIXME: This check trigger during libstdc++ build. */
13084 if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
13085 verify_variant_match (TYPE_FINAL_P);
13086
13087 /* tree_type_common checks. */
13088
13089 if (COMPLETE_TYPE_P (t))
13090 {
13091 verify_variant_match (TYPE_MODE);
13092 if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
13093 && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
13094 verify_variant_match (TYPE_SIZE);
13095 if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
13096 && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
13097 && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
13098 {
13099 gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
13100 TYPE_SIZE_UNIT (tv), 0));
13101 error ("type variant has different TYPE_SIZE_UNIT");
13102 debug_tree (tv);
13103 error ("type variant's TYPE_SIZE_UNIT");
13104 debug_tree (TYPE_SIZE_UNIT (tv));
13105 error ("type's TYPE_SIZE_UNIT");
13106 debug_tree (TYPE_SIZE_UNIT (t));
13107 return false;
13108 }
13109 }
13110 verify_variant_match (TYPE_PRECISION);
13111 verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
13112 if (RECORD_OR_UNION_TYPE_P (t))
13113 verify_variant_match (TYPE_TRANSPARENT_AGGR);
13114 else if (TREE_CODE (t) == ARRAY_TYPE)
13115 verify_variant_match (TYPE_NONALIASED_COMPONENT);
13116 /* During LTO we merge variant lists from diferent translation units
13117 that may differ BY TYPE_CONTEXT that in turn may point
13118 to TRANSLATION_UNIT_DECL.
13119 Ada also builds variants of types with different TYPE_CONTEXT. */
13120 if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
13121 verify_variant_match (TYPE_CONTEXT);
13122 verify_variant_match (TYPE_STRING_FLAG);
13123 if (TYPE_ALIAS_SET_KNOWN_P (t))
13124 {
13125 error ("type variant with TYPE_ALIAS_SET_KNOWN_P");
13126 debug_tree (tv);
13127 return false;
13128 }
13129
13130 /* tree_type_non_common checks. */
13131
13132 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13133 and dangle the pointer from time to time. */
13134 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
13135 && (in_lto_p || !TYPE_VFIELD (tv)
13136 || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
13137 {
13138 error ("type variant has different TYPE_VFIELD");
13139 debug_tree (tv);
13140 return false;
13141 }
13142 if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
13143 || TREE_CODE (t) == INTEGER_TYPE
13144 || TREE_CODE (t) == BOOLEAN_TYPE
13145 || TREE_CODE (t) == REAL_TYPE
13146 || TREE_CODE (t) == FIXED_POINT_TYPE)
13147 {
13148 verify_variant_match (TYPE_MAX_VALUE);
13149 verify_variant_match (TYPE_MIN_VALUE);
13150 }
13151 if (TREE_CODE (t) == METHOD_TYPE)
13152 verify_variant_match (TYPE_METHOD_BASETYPE);
13153 if (TREE_CODE (t) == OFFSET_TYPE)
13154 verify_variant_match (TYPE_OFFSET_BASETYPE);
13155 if (TREE_CODE (t) == ARRAY_TYPE)
13156 verify_variant_match (TYPE_ARRAY_MAX_SIZE);
13157 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
13158 or even type's main variant. This is needed to make bootstrap pass
13159 and the bug seems new in GCC 5.
13160 C++ FE should be updated to make this consistent and we should check
13161 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
13162 is a match with main variant.
13163
13164 Also disable the check for Java for now because of parser hack that builds
13165 first an dummy BINFO and then sometimes replace it by real BINFO in some
13166 of the copies. */
13167 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
13168 && TYPE_BINFO (t) != TYPE_BINFO (tv)
13169 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
13170 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
13171 at LTO time only. */
13172 && (in_lto_p && odr_type_p (t)))
13173 {
13174 error ("type variant has different TYPE_BINFO");
13175 debug_tree (tv);
13176 error ("type variant's TYPE_BINFO");
13177 debug_tree (TYPE_BINFO (tv));
13178 error ("type's TYPE_BINFO");
13179 debug_tree (TYPE_BINFO (t));
13180 return false;
13181 }
13182
13183 /* Check various uses of TYPE_VALUES_RAW. */
13184 if (TREE_CODE (t) == ENUMERAL_TYPE)
13185 verify_variant_match (TYPE_VALUES);
13186 else if (TREE_CODE (t) == ARRAY_TYPE)
13187 verify_variant_match (TYPE_DOMAIN);
13188 /* Permit incomplete variants of complete type. While FEs may complete
13189 all variants, this does not happen for C++ templates in all cases. */
13190 else if (RECORD_OR_UNION_TYPE_P (t)
13191 && COMPLETE_TYPE_P (t)
13192 && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
13193 {
13194 tree f1, f2;
13195
13196 /* Fortran builds qualified variants as new records with items of
13197 qualified type. Verify that they looks same. */
13198 for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
13199 f1 && f2;
13200 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13201 if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
13202 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
13203 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
13204 /* FIXME: gfc_nonrestricted_type builds all types as variants
13205 with exception of pointer types. It deeply copies the type
13206 which means that we may end up with a variant type
13207 referring non-variant pointer. We may change it to
13208 produce types as variants, too, like
13209 objc_get_protocol_qualified_type does. */
13210 && !POINTER_TYPE_P (TREE_TYPE (f1)))
13211 || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
13212 || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
13213 break;
13214 if (f1 || f2)
13215 {
13216 error ("type variant has different TYPE_FIELDS");
13217 debug_tree (tv);
13218 error ("first mismatch is field");
13219 debug_tree (f1);
13220 error ("and field");
13221 debug_tree (f2);
13222 return false;
13223 }
13224 }
13225 else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
13226 verify_variant_match (TYPE_ARG_TYPES);
13227 /* For C++ the qualified variant of array type is really an array type
13228 of qualified TREE_TYPE.
13229 objc builds variants of pointer where pointer to type is a variant, too
13230 in objc_get_protocol_qualified_type. */
13231 if (TREE_TYPE (t) != TREE_TYPE (tv)
13232 && ((TREE_CODE (t) != ARRAY_TYPE
13233 && !POINTER_TYPE_P (t))
13234 || TYPE_MAIN_VARIANT (TREE_TYPE (t))
13235 != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
13236 {
13237 error ("type variant has different TREE_TYPE");
13238 debug_tree (tv);
13239 error ("type variant's TREE_TYPE");
13240 debug_tree (TREE_TYPE (tv));
13241 error ("type's TREE_TYPE");
13242 debug_tree (TREE_TYPE (t));
13243 return false;
13244 }
13245 if (type_with_alias_set_p (t)
13246 && !gimple_canonical_types_compatible_p (t, tv, false))
13247 {
13248 error ("type is not compatible with its variant");
13249 debug_tree (tv);
13250 error ("type variant's TREE_TYPE");
13251 debug_tree (TREE_TYPE (tv));
13252 error ("type's TREE_TYPE");
13253 debug_tree (TREE_TYPE (t));
13254 return false;
13255 }
13256 return true;
13257 #undef verify_variant_match
13258 }
13259
13260
13261 /* The TYPE_CANONICAL merging machinery. It should closely resemble
13262 the middle-end types_compatible_p function. It needs to avoid
13263 claiming types are different for types that should be treated
13264 the same with respect to TBAA. Canonical types are also used
13265 for IL consistency checks via the useless_type_conversion_p
13266 predicate which does not handle all type kinds itself but falls
13267 back to pointer-comparison of TYPE_CANONICAL for aggregates
13268 for example. */
13269
13270 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
13271 type calculation because we need to allow inter-operability between signed
13272 and unsigned variants. */
13273
13274 bool
13275 type_with_interoperable_signedness (const_tree type)
13276 {
13277 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
13278 signed char and unsigned char. Similarly fortran FE builds
13279 C_SIZE_T as signed type, while C defines it unsigned. */
13280
13281 return tree_code_for_canonical_type_merging (TREE_CODE (type))
13282 == INTEGER_TYPE
13283 && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
13284 || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
13285 }
13286
13287 /* Return true iff T1 and T2 are structurally identical for what
13288 TBAA is concerned.
13289 This function is used both by lto.c canonical type merging and by the
13290 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
13291 that have TYPE_CANONICAL defined and assume them equivalent. This is useful
13292 only for LTO because only in these cases TYPE_CANONICAL equivalence
13293 correspond to one defined by gimple_canonical_types_compatible_p. */
13294
13295 bool
13296 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
13297 bool trust_type_canonical)
13298 {
13299 /* Type variants should be same as the main variant. When not doing sanity
13300 checking to verify this fact, go to main variants and save some work. */
13301 if (trust_type_canonical)
13302 {
13303 t1 = TYPE_MAIN_VARIANT (t1);
13304 t2 = TYPE_MAIN_VARIANT (t2);
13305 }
13306
13307 /* Check first for the obvious case of pointer identity. */
13308 if (t1 == t2)
13309 return true;
13310
13311 /* Check that we have two types to compare. */
13312 if (t1 == NULL_TREE || t2 == NULL_TREE)
13313 return false;
13314
13315 /* We consider complete types always compatible with incomplete type.
13316 This does not make sense for canonical type calculation and thus we
13317 need to ensure that we are never called on it.
13318
13319 FIXME: For more correctness the function probably should have three modes
13320 1) mode assuming that types are complete mathcing their structure
13321 2) mode allowing incomplete types but producing equivalence classes
13322 and thus ignoring all info from complete types
13323 3) mode allowing incomplete types to match complete but checking
13324 compatibility between complete types.
13325
13326 1 and 2 can be used for canonical type calculation. 3 is the real
13327 definition of type compatibility that can be used i.e. for warnings during
13328 declaration merging. */
13329
13330 gcc_assert (!trust_type_canonical
13331 || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
13332 /* If the types have been previously registered and found equal
13333 they still are. */
13334
13335 if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
13336 && trust_type_canonical)
13337 {
13338 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
13339 they are always NULL, but they are set to non-NULL for types
13340 constructed by build_pointer_type and variants. In this case the
13341 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
13342 all pointers are considered equal. Be sure to not return false
13343 negatives. */
13344 gcc_checking_assert (canonical_type_used_p (t1)
13345 && canonical_type_used_p (t2));
13346 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
13347 }
13348
13349 /* Can't be the same type if the types don't have the same code. */
13350 enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
13351 if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
13352 return false;
13353
13354 /* Qualifiers do not matter for canonical type comparison purposes. */
13355
13356 /* Void types and nullptr types are always the same. */
13357 if (TREE_CODE (t1) == VOID_TYPE
13358 || TREE_CODE (t1) == NULLPTR_TYPE)
13359 return true;
13360
13361 /* Can't be the same type if they have different mode. */
13362 if (TYPE_MODE (t1) != TYPE_MODE (t2))
13363 return false;
13364
13365 /* Non-aggregate types can be handled cheaply. */
13366 if (INTEGRAL_TYPE_P (t1)
13367 || SCALAR_FLOAT_TYPE_P (t1)
13368 || FIXED_POINT_TYPE_P (t1)
13369 || TREE_CODE (t1) == VECTOR_TYPE
13370 || TREE_CODE (t1) == COMPLEX_TYPE
13371 || TREE_CODE (t1) == OFFSET_TYPE
13372 || POINTER_TYPE_P (t1))
13373 {
13374 /* Can't be the same type if they have different recision. */
13375 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
13376 return false;
13377
13378 /* In some cases the signed and unsigned types are required to be
13379 inter-operable. */
13380 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
13381 && !type_with_interoperable_signedness (t1))
13382 return false;
13383
13384 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
13385 interoperable with "signed char". Unless all frontends are revisited
13386 to agree on these types, we must ignore the flag completely. */
13387
13388 /* Fortran standard define C_PTR type that is compatible with every
13389 C pointer. For this reason we need to glob all pointers into one.
13390 Still pointers in different address spaces are not compatible. */
13391 if (POINTER_TYPE_P (t1))
13392 {
13393 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
13394 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
13395 return false;
13396 }
13397
13398 /* Tail-recurse to components. */
13399 if (TREE_CODE (t1) == VECTOR_TYPE
13400 || TREE_CODE (t1) == COMPLEX_TYPE)
13401 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
13402 TREE_TYPE (t2),
13403 trust_type_canonical);
13404
13405 return true;
13406 }
13407
13408 /* Do type-specific comparisons. */
13409 switch (TREE_CODE (t1))
13410 {
13411 case ARRAY_TYPE:
13412 /* Array types are the same if the element types are the same and
13413 the number of elements are the same. */
13414 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13415 trust_type_canonical)
13416 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
13417 || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
13418 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
13419 return false;
13420 else
13421 {
13422 tree i1 = TYPE_DOMAIN (t1);
13423 tree i2 = TYPE_DOMAIN (t2);
13424
13425 /* For an incomplete external array, the type domain can be
13426 NULL_TREE. Check this condition also. */
13427 if (i1 == NULL_TREE && i2 == NULL_TREE)
13428 return true;
13429 else if (i1 == NULL_TREE || i2 == NULL_TREE)
13430 return false;
13431 else
13432 {
13433 tree min1 = TYPE_MIN_VALUE (i1);
13434 tree min2 = TYPE_MIN_VALUE (i2);
13435 tree max1 = TYPE_MAX_VALUE (i1);
13436 tree max2 = TYPE_MAX_VALUE (i2);
13437
13438 /* The minimum/maximum values have to be the same. */
13439 if ((min1 == min2
13440 || (min1 && min2
13441 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
13442 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
13443 || operand_equal_p (min1, min2, 0))))
13444 && (max1 == max2
13445 || (max1 && max2
13446 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
13447 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
13448 || operand_equal_p (max1, max2, 0)))))
13449 return true;
13450 else
13451 return false;
13452 }
13453 }
13454
13455 case METHOD_TYPE:
13456 case FUNCTION_TYPE:
13457 /* Function types are the same if the return type and arguments types
13458 are the same. */
13459 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13460 trust_type_canonical))
13461 return false;
13462
13463 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
13464 return true;
13465 else
13466 {
13467 tree parms1, parms2;
13468
13469 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
13470 parms1 && parms2;
13471 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
13472 {
13473 if (!gimple_canonical_types_compatible_p
13474 (TREE_VALUE (parms1), TREE_VALUE (parms2),
13475 trust_type_canonical))
13476 return false;
13477 }
13478
13479 if (parms1 || parms2)
13480 return false;
13481
13482 return true;
13483 }
13484
13485 case RECORD_TYPE:
13486 case UNION_TYPE:
13487 case QUAL_UNION_TYPE:
13488 {
13489 tree f1, f2;
13490
13491 /* Don't try to compare variants of an incomplete type, before
13492 TYPE_FIELDS has been copied around. */
13493 if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
13494 return true;
13495
13496
13497 if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
13498 return false;
13499
13500 /* For aggregate types, all the fields must be the same. */
13501 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
13502 f1 || f2;
13503 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13504 {
13505 /* Skip non-fields and zero-sized fields. */
13506 while (f1 && (TREE_CODE (f1) != FIELD_DECL
13507 || (DECL_SIZE (f1)
13508 && integer_zerop (DECL_SIZE (f1)))))
13509 f1 = TREE_CHAIN (f1);
13510 while (f2 && (TREE_CODE (f2) != FIELD_DECL
13511 || (DECL_SIZE (f2)
13512 && integer_zerop (DECL_SIZE (f2)))))
13513 f2 = TREE_CHAIN (f2);
13514 if (!f1 || !f2)
13515 break;
13516 /* The fields must have the same name, offset and type. */
13517 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
13518 || !gimple_compare_field_offset (f1, f2)
13519 || !gimple_canonical_types_compatible_p
13520 (TREE_TYPE (f1), TREE_TYPE (f2),
13521 trust_type_canonical))
13522 return false;
13523 }
13524
13525 /* If one aggregate has more fields than the other, they
13526 are not the same. */
13527 if (f1 || f2)
13528 return false;
13529
13530 return true;
13531 }
13532
13533 default:
13534 /* Consider all types with language specific trees in them mutually
13535 compatible. This is executed only from verify_type and false
13536 positives can be tolerated. */
13537 gcc_assert (!in_lto_p);
13538 return true;
13539 }
13540 }
13541
13542 /* Verify type T. */
13543
13544 void
13545 verify_type (const_tree t)
13546 {
13547 bool error_found = false;
13548 tree mv = TYPE_MAIN_VARIANT (t);
13549 if (!mv)
13550 {
13551 error ("Main variant is not defined");
13552 error_found = true;
13553 }
13554 else if (mv != TYPE_MAIN_VARIANT (mv))
13555 {
13556 error ("TYPE_MAIN_VARIANT has different TYPE_MAIN_VARIANT");
13557 debug_tree (mv);
13558 error_found = true;
13559 }
13560 else if (t != mv && !verify_type_variant (t, mv))
13561 error_found = true;
13562
13563 tree ct = TYPE_CANONICAL (t);
13564 if (!ct)
13565 ;
13566 else if (TYPE_CANONICAL (t) != ct)
13567 {
13568 error ("TYPE_CANONICAL has different TYPE_CANONICAL");
13569 debug_tree (ct);
13570 error_found = true;
13571 }
13572 /* Method and function types can not be used to address memory and thus
13573 TYPE_CANONICAL really matters only for determining useless conversions.
13574
13575 FIXME: C++ FE produce declarations of builtin functions that are not
13576 compatible with main variants. */
13577 else if (TREE_CODE (t) == FUNCTION_TYPE)
13578 ;
13579 else if (t != ct
13580 /* FIXME: gimple_canonical_types_compatible_p can not compare types
13581 with variably sized arrays because their sizes possibly
13582 gimplified to different variables. */
13583 && !variably_modified_type_p (ct, NULL)
13584 && !gimple_canonical_types_compatible_p (t, ct, false))
13585 {
13586 error ("TYPE_CANONICAL is not compatible");
13587 debug_tree (ct);
13588 error_found = true;
13589 }
13590
13591 if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
13592 && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
13593 {
13594 error ("TYPE_MODE of TYPE_CANONICAL is not compatible");
13595 debug_tree (ct);
13596 error_found = true;
13597 }
13598 if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
13599 {
13600 error ("TYPE_CANONICAL of main variant is not main variant");
13601 debug_tree (ct);
13602 debug_tree (TYPE_MAIN_VARIANT (ct));
13603 error_found = true;
13604 }
13605
13606
13607 /* Check various uses of TYPE_MIN_VALUE_RAW. */
13608 if (RECORD_OR_UNION_TYPE_P (t))
13609 {
13610 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13611 and danagle the pointer from time to time. */
13612 if (TYPE_VFIELD (t)
13613 && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
13614 && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
13615 {
13616 error ("TYPE_VFIELD is not FIELD_DECL nor TREE_LIST");
13617 debug_tree (TYPE_VFIELD (t));
13618 error_found = true;
13619 }
13620 }
13621 else if (TREE_CODE (t) == POINTER_TYPE)
13622 {
13623 if (TYPE_NEXT_PTR_TO (t)
13624 && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
13625 {
13626 error ("TYPE_NEXT_PTR_TO is not POINTER_TYPE");
13627 debug_tree (TYPE_NEXT_PTR_TO (t));
13628 error_found = true;
13629 }
13630 }
13631 else if (TREE_CODE (t) == REFERENCE_TYPE)
13632 {
13633 if (TYPE_NEXT_REF_TO (t)
13634 && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
13635 {
13636 error ("TYPE_NEXT_REF_TO is not REFERENCE_TYPE");
13637 debug_tree (TYPE_NEXT_REF_TO (t));
13638 error_found = true;
13639 }
13640 }
13641 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13642 || TREE_CODE (t) == FIXED_POINT_TYPE)
13643 {
13644 /* FIXME: The following check should pass:
13645 useless_type_conversion_p (const_cast <tree> (t),
13646 TREE_TYPE (TYPE_MIN_VALUE (t))
13647 but does not for C sizetypes in LTO. */
13648 }
13649
13650 /* Check various uses of TYPE_MAXVAL_RAW. */
13651 if (RECORD_OR_UNION_TYPE_P (t))
13652 {
13653 if (!TYPE_BINFO (t))
13654 ;
13655 else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
13656 {
13657 error ("TYPE_BINFO is not TREE_BINFO");
13658 debug_tree (TYPE_BINFO (t));
13659 error_found = true;
13660 }
13661 else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
13662 {
13663 error ("TYPE_BINFO type is not TYPE_MAIN_VARIANT");
13664 debug_tree (TREE_TYPE (TYPE_BINFO (t)));
13665 error_found = true;
13666 }
13667 }
13668 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
13669 {
13670 if (TYPE_METHOD_BASETYPE (t)
13671 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
13672 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
13673 {
13674 error ("TYPE_METHOD_BASETYPE is not record nor union");
13675 debug_tree (TYPE_METHOD_BASETYPE (t));
13676 error_found = true;
13677 }
13678 }
13679 else if (TREE_CODE (t) == OFFSET_TYPE)
13680 {
13681 if (TYPE_OFFSET_BASETYPE (t)
13682 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
13683 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
13684 {
13685 error ("TYPE_OFFSET_BASETYPE is not record nor union");
13686 debug_tree (TYPE_OFFSET_BASETYPE (t));
13687 error_found = true;
13688 }
13689 }
13690 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13691 || TREE_CODE (t) == FIXED_POINT_TYPE)
13692 {
13693 /* FIXME: The following check should pass:
13694 useless_type_conversion_p (const_cast <tree> (t),
13695 TREE_TYPE (TYPE_MAX_VALUE (t))
13696 but does not for C sizetypes in LTO. */
13697 }
13698 else if (TREE_CODE (t) == ARRAY_TYPE)
13699 {
13700 if (TYPE_ARRAY_MAX_SIZE (t)
13701 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
13702 {
13703 error ("TYPE_ARRAY_MAX_SIZE not INTEGER_CST");
13704 debug_tree (TYPE_ARRAY_MAX_SIZE (t));
13705 error_found = true;
13706 }
13707 }
13708 else if (TYPE_MAX_VALUE_RAW (t))
13709 {
13710 error ("TYPE_MAX_VALUE_RAW non-NULL");
13711 debug_tree (TYPE_MAX_VALUE_RAW (t));
13712 error_found = true;
13713 }
13714
13715 if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
13716 {
13717 error ("TYPE_LANG_SLOT_1 (binfo) field is non-NULL");
13718 debug_tree (TYPE_LANG_SLOT_1 (t));
13719 error_found = true;
13720 }
13721
13722 /* Check various uses of TYPE_VALUES_RAW. */
13723 if (TREE_CODE (t) == ENUMERAL_TYPE)
13724 for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
13725 {
13726 tree value = TREE_VALUE (l);
13727 tree name = TREE_PURPOSE (l);
13728
13729 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
13730 CONST_DECL of ENUMERAL TYPE. */
13731 if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
13732 {
13733 error ("Enum value is not CONST_DECL or INTEGER_CST");
13734 debug_tree (value);
13735 debug_tree (name);
13736 error_found = true;
13737 }
13738 if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
13739 && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
13740 {
13741 error ("Enum value type is not INTEGER_TYPE nor convertible to the enum");
13742 debug_tree (value);
13743 debug_tree (name);
13744 error_found = true;
13745 }
13746 if (TREE_CODE (name) != IDENTIFIER_NODE)
13747 {
13748 error ("Enum value name is not IDENTIFIER_NODE");
13749 debug_tree (value);
13750 debug_tree (name);
13751 error_found = true;
13752 }
13753 }
13754 else if (TREE_CODE (t) == ARRAY_TYPE)
13755 {
13756 if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
13757 {
13758 error ("Array TYPE_DOMAIN is not integer type");
13759 debug_tree (TYPE_DOMAIN (t));
13760 error_found = true;
13761 }
13762 }
13763 else if (RECORD_OR_UNION_TYPE_P (t))
13764 {
13765 if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
13766 {
13767 error ("TYPE_FIELDS defined in incomplete type");
13768 error_found = true;
13769 }
13770 for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
13771 {
13772 /* TODO: verify properties of decls. */
13773 if (TREE_CODE (fld) == FIELD_DECL)
13774 ;
13775 else if (TREE_CODE (fld) == TYPE_DECL)
13776 ;
13777 else if (TREE_CODE (fld) == CONST_DECL)
13778 ;
13779 else if (VAR_P (fld))
13780 ;
13781 else if (TREE_CODE (fld) == TEMPLATE_DECL)
13782 ;
13783 else if (TREE_CODE (fld) == USING_DECL)
13784 ;
13785 else if (TREE_CODE (fld) == FUNCTION_DECL)
13786 ;
13787 else
13788 {
13789 error ("Wrong tree in TYPE_FIELDS list");
13790 debug_tree (fld);
13791 error_found = true;
13792 }
13793 }
13794 }
13795 else if (TREE_CODE (t) == INTEGER_TYPE
13796 || TREE_CODE (t) == BOOLEAN_TYPE
13797 || TREE_CODE (t) == OFFSET_TYPE
13798 || TREE_CODE (t) == REFERENCE_TYPE
13799 || TREE_CODE (t) == NULLPTR_TYPE
13800 || TREE_CODE (t) == POINTER_TYPE)
13801 {
13802 if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
13803 {
13804 error ("TYPE_CACHED_VALUES_P is %i while TYPE_CACHED_VALUES is %p",
13805 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
13806 error_found = true;
13807 }
13808 else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
13809 {
13810 error ("TYPE_CACHED_VALUES is not TREE_VEC");
13811 debug_tree (TYPE_CACHED_VALUES (t));
13812 error_found = true;
13813 }
13814 /* Verify just enough of cache to ensure that no one copied it to new type.
13815 All copying should go by copy_node that should clear it. */
13816 else if (TYPE_CACHED_VALUES_P (t))
13817 {
13818 int i;
13819 for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
13820 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
13821 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
13822 {
13823 error ("wrong TYPE_CACHED_VALUES entry");
13824 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
13825 error_found = true;
13826 break;
13827 }
13828 }
13829 }
13830 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
13831 for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
13832 {
13833 /* C++ FE uses TREE_PURPOSE to store initial values. */
13834 if (TREE_PURPOSE (l) && in_lto_p)
13835 {
13836 error ("TREE_PURPOSE is non-NULL in TYPE_ARG_TYPES list");
13837 debug_tree (l);
13838 error_found = true;
13839 }
13840 if (!TYPE_P (TREE_VALUE (l)))
13841 {
13842 error ("Wrong entry in TYPE_ARG_TYPES list");
13843 debug_tree (l);
13844 error_found = true;
13845 }
13846 }
13847 else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
13848 {
13849 error ("TYPE_VALUES_RAW field is non-NULL");
13850 debug_tree (TYPE_VALUES_RAW (t));
13851 error_found = true;
13852 }
13853 if (TREE_CODE (t) != INTEGER_TYPE
13854 && TREE_CODE (t) != BOOLEAN_TYPE
13855 && TREE_CODE (t) != OFFSET_TYPE
13856 && TREE_CODE (t) != REFERENCE_TYPE
13857 && TREE_CODE (t) != NULLPTR_TYPE
13858 && TREE_CODE (t) != POINTER_TYPE
13859 && TYPE_CACHED_VALUES_P (t))
13860 {
13861 error ("TYPE_CACHED_VALUES_P is set while it should not");
13862 error_found = true;
13863 }
13864 if (TYPE_STRING_FLAG (t)
13865 && TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != INTEGER_TYPE)
13866 {
13867 error ("TYPE_STRING_FLAG is set on wrong type code");
13868 error_found = true;
13869 }
13870
13871 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
13872 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
13873 of a type. */
13874 if (TREE_CODE (t) == METHOD_TYPE
13875 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
13876 {
13877 error ("TYPE_METHOD_BASETYPE is not main variant");
13878 error_found = true;
13879 }
13880
13881 if (error_found)
13882 {
13883 debug_tree (const_cast <tree> (t));
13884 internal_error ("verify_type failed");
13885 }
13886 }
13887
13888
13889 /* Return 1 if ARG interpreted as signed in its precision is known to be
13890 always positive or 2 if ARG is known to be always negative, or 3 if
13891 ARG may be positive or negative. */
13892
13893 int
13894 get_range_pos_neg (tree arg)
13895 {
13896 if (arg == error_mark_node)
13897 return 3;
13898
13899 int prec = TYPE_PRECISION (TREE_TYPE (arg));
13900 int cnt = 0;
13901 if (TREE_CODE (arg) == INTEGER_CST)
13902 {
13903 wide_int w = wi::sext (wi::to_wide (arg), prec);
13904 if (wi::neg_p (w))
13905 return 2;
13906 else
13907 return 1;
13908 }
13909 while (CONVERT_EXPR_P (arg)
13910 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
13911 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
13912 {
13913 arg = TREE_OPERAND (arg, 0);
13914 /* Narrower value zero extended into wider type
13915 will always result in positive values. */
13916 if (TYPE_UNSIGNED (TREE_TYPE (arg))
13917 && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
13918 return 1;
13919 prec = TYPE_PRECISION (TREE_TYPE (arg));
13920 if (++cnt > 30)
13921 return 3;
13922 }
13923
13924 if (TREE_CODE (arg) != SSA_NAME)
13925 return 3;
13926 wide_int arg_min, arg_max;
13927 while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
13928 {
13929 gimple *g = SSA_NAME_DEF_STMT (arg);
13930 if (is_gimple_assign (g)
13931 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
13932 {
13933 tree t = gimple_assign_rhs1 (g);
13934 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
13935 && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
13936 {
13937 if (TYPE_UNSIGNED (TREE_TYPE (t))
13938 && TYPE_PRECISION (TREE_TYPE (t)) < prec)
13939 return 1;
13940 prec = TYPE_PRECISION (TREE_TYPE (t));
13941 arg = t;
13942 if (++cnt > 30)
13943 return 3;
13944 continue;
13945 }
13946 }
13947 return 3;
13948 }
13949 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
13950 {
13951 /* For unsigned values, the "positive" range comes
13952 below the "negative" range. */
13953 if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
13954 return 1;
13955 if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
13956 return 2;
13957 }
13958 else
13959 {
13960 if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
13961 return 1;
13962 if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
13963 return 2;
13964 }
13965 return 3;
13966 }
13967
13968
13969
13970
13971 /* Return true if ARG is marked with the nonnull attribute in the
13972 current function signature. */
13973
13974 bool
13975 nonnull_arg_p (const_tree arg)
13976 {
13977 tree t, attrs, fntype;
13978 unsigned HOST_WIDE_INT arg_num;
13979
13980 gcc_assert (TREE_CODE (arg) == PARM_DECL
13981 && (POINTER_TYPE_P (TREE_TYPE (arg))
13982 || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
13983
13984 /* The static chain decl is always non null. */
13985 if (arg == cfun->static_chain_decl)
13986 return true;
13987
13988 /* THIS argument of method is always non-NULL. */
13989 if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
13990 && arg == DECL_ARGUMENTS (cfun->decl)
13991 && flag_delete_null_pointer_checks)
13992 return true;
13993
13994 /* Values passed by reference are always non-NULL. */
13995 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
13996 && flag_delete_null_pointer_checks)
13997 return true;
13998
13999 fntype = TREE_TYPE (cfun->decl);
14000 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
14001 {
14002 attrs = lookup_attribute ("nonnull", attrs);
14003
14004 /* If "nonnull" wasn't specified, we know nothing about the argument. */
14005 if (attrs == NULL_TREE)
14006 return false;
14007
14008 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
14009 if (TREE_VALUE (attrs) == NULL_TREE)
14010 return true;
14011
14012 /* Get the position number for ARG in the function signature. */
14013 for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
14014 t;
14015 t = DECL_CHAIN (t), arg_num++)
14016 {
14017 if (t == arg)
14018 break;
14019 }
14020
14021 gcc_assert (t == arg);
14022
14023 /* Now see if ARG_NUM is mentioned in the nonnull list. */
14024 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
14025 {
14026 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
14027 return true;
14028 }
14029 }
14030
14031 return false;
14032 }
14033
14034 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
14035 information. */
14036
14037 location_t
14038 set_block (location_t loc, tree block)
14039 {
14040 location_t pure_loc = get_pure_location (loc);
14041 source_range src_range = get_range_from_loc (line_table, loc);
14042 return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
14043 }
14044
14045 location_t
14046 set_source_range (tree expr, location_t start, location_t finish)
14047 {
14048 source_range src_range;
14049 src_range.m_start = start;
14050 src_range.m_finish = finish;
14051 return set_source_range (expr, src_range);
14052 }
14053
14054 location_t
14055 set_source_range (tree expr, source_range src_range)
14056 {
14057 if (!EXPR_P (expr))
14058 return UNKNOWN_LOCATION;
14059
14060 location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
14061 location_t adhoc = COMBINE_LOCATION_DATA (line_table,
14062 pure_loc,
14063 src_range,
14064 NULL);
14065 SET_EXPR_LOCATION (expr, adhoc);
14066 return adhoc;
14067 }
14068
14069 /* Return the name of combined function FN, for debugging purposes. */
14070
14071 const char *
14072 combined_fn_name (combined_fn fn)
14073 {
14074 if (builtin_fn_p (fn))
14075 {
14076 tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
14077 return IDENTIFIER_POINTER (DECL_NAME (fndecl));
14078 }
14079 else
14080 return internal_fn_name (as_internal_fn (fn));
14081 }
14082
14083 /* Return a bitmap with a bit set corresponding to each argument in
14084 a function call type FNTYPE declared with attribute nonnull,
14085 or null if none of the function's argument are nonnull. The caller
14086 must free the bitmap. */
14087
14088 bitmap
14089 get_nonnull_args (const_tree fntype)
14090 {
14091 if (fntype == NULL_TREE)
14092 return NULL;
14093
14094 tree attrs = TYPE_ATTRIBUTES (fntype);
14095 if (!attrs)
14096 return NULL;
14097
14098 bitmap argmap = NULL;
14099
14100 /* A function declaration can specify multiple attribute nonnull,
14101 each with zero or more arguments. The loop below creates a bitmap
14102 representing a union of all the arguments. An empty (but non-null)
14103 bitmap means that all arguments have been declaraed nonnull. */
14104 for ( ; attrs; attrs = TREE_CHAIN (attrs))
14105 {
14106 attrs = lookup_attribute ("nonnull", attrs);
14107 if (!attrs)
14108 break;
14109
14110 if (!argmap)
14111 argmap = BITMAP_ALLOC (NULL);
14112
14113 if (!TREE_VALUE (attrs))
14114 {
14115 /* Clear the bitmap in case a previous attribute nonnull
14116 set it and this one overrides it for all arguments. */
14117 bitmap_clear (argmap);
14118 return argmap;
14119 }
14120
14121 /* Iterate over the indices of the format arguments declared nonnull
14122 and set a bit for each. */
14123 for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
14124 {
14125 unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
14126 bitmap_set_bit (argmap, val);
14127 }
14128 }
14129
14130 return argmap;
14131 }
14132
14133 /* Returns true if TYPE is a type where it and all of its subobjects
14134 (recursively) are of structure, union, or array type. */
14135
14136 static bool
14137 default_is_empty_type (tree type)
14138 {
14139 if (RECORD_OR_UNION_TYPE_P (type))
14140 {
14141 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
14142 if (TREE_CODE (field) == FIELD_DECL
14143 && !DECL_PADDING_P (field)
14144 && !default_is_empty_type (TREE_TYPE (field)))
14145 return false;
14146 return true;
14147 }
14148 else if (TREE_CODE (type) == ARRAY_TYPE)
14149 return (integer_minus_onep (array_type_nelts (type))
14150 || TYPE_DOMAIN (type) == NULL_TREE
14151 || default_is_empty_type (TREE_TYPE (type)));
14152 return false;
14153 }
14154
14155 /* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type
14156 that shouldn't be passed via stack. */
14157
14158 bool
14159 default_is_empty_record (const_tree type)
14160 {
14161 if (!abi_version_at_least (12))
14162 return false;
14163
14164 if (type == error_mark_node)
14165 return false;
14166
14167 if (TREE_ADDRESSABLE (type))
14168 return false;
14169
14170 return default_is_empty_type (TYPE_MAIN_VARIANT (type));
14171 }
14172
14173 /* Like int_size_in_bytes, but handle empty records specially. */
14174
14175 HOST_WIDE_INT
14176 arg_int_size_in_bytes (const_tree type)
14177 {
14178 return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
14179 }
14180
14181 /* Like size_in_bytes, but handle empty records specially. */
14182
14183 tree
14184 arg_size_in_bytes (const_tree type)
14185 {
14186 return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
14187 }
14188
14189 /* Return true if an expression with CODE has to have the same result type as
14190 its first operand. */
14191
14192 bool
14193 expr_type_first_operand_type_p (tree_code code)
14194 {
14195 switch (code)
14196 {
14197 case NEGATE_EXPR:
14198 case ABS_EXPR:
14199 case BIT_NOT_EXPR:
14200 case PAREN_EXPR:
14201 case CONJ_EXPR:
14202
14203 case PLUS_EXPR:
14204 case MINUS_EXPR:
14205 case MULT_EXPR:
14206 case TRUNC_DIV_EXPR:
14207 case CEIL_DIV_EXPR:
14208 case FLOOR_DIV_EXPR:
14209 case ROUND_DIV_EXPR:
14210 case TRUNC_MOD_EXPR:
14211 case CEIL_MOD_EXPR:
14212 case FLOOR_MOD_EXPR:
14213 case ROUND_MOD_EXPR:
14214 case RDIV_EXPR:
14215 case EXACT_DIV_EXPR:
14216 case MIN_EXPR:
14217 case MAX_EXPR:
14218 case BIT_IOR_EXPR:
14219 case BIT_XOR_EXPR:
14220 case BIT_AND_EXPR:
14221
14222 case LSHIFT_EXPR:
14223 case RSHIFT_EXPR:
14224 case LROTATE_EXPR:
14225 case RROTATE_EXPR:
14226 return true;
14227
14228 default:
14229 return false;
14230 }
14231 }
14232
14233 /* List of pointer types used to declare builtins before we have seen their
14234 real declaration.
14235
14236 Keep the size up to date in tree.h ! */
14237 const builtin_structptr_type builtin_structptr_types[6] =
14238 {
14239 { fileptr_type_node, ptr_type_node, "FILE" },
14240 { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
14241 { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
14242 { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
14243 { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
14244 { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
14245 };
14246
14247 #if CHECKING_P
14248
14249 namespace selftest {
14250
14251 /* Selftests for tree. */
14252
14253 /* Verify that integer constants are sane. */
14254
14255 static void
14256 test_integer_constants ()
14257 {
14258 ASSERT_TRUE (integer_type_node != NULL);
14259 ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
14260
14261 tree type = integer_type_node;
14262
14263 tree zero = build_zero_cst (type);
14264 ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
14265 ASSERT_EQ (type, TREE_TYPE (zero));
14266
14267 tree one = build_int_cst (type, 1);
14268 ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
14269 ASSERT_EQ (type, TREE_TYPE (zero));
14270 }
14271
14272 /* Verify identifiers. */
14273
14274 static void
14275 test_identifiers ()
14276 {
14277 tree identifier = get_identifier ("foo");
14278 ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
14279 ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
14280 }
14281
14282 /* Verify LABEL_DECL. */
14283
14284 static void
14285 test_labels ()
14286 {
14287 tree identifier = get_identifier ("err");
14288 tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
14289 identifier, void_type_node);
14290 ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
14291 ASSERT_FALSE (FORCED_LABEL (label_decl));
14292 }
14293
14294 /* Return a new VECTOR_CST node whose type is TYPE and whose values
14295 are given by VALS. */
14296
14297 static tree
14298 build_vector (tree type, vec<tree> vals MEM_STAT_DECL)
14299 {
14300 gcc_assert (vals.length () == TYPE_VECTOR_SUBPARTS (type));
14301 tree_vector_builder builder (type, vals.length (), 1);
14302 builder.splice (vals);
14303 return builder.build ();
14304 }
14305
14306 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */
14307
14308 static void
14309 check_vector_cst (vec<tree> expected, tree actual)
14310 {
14311 ASSERT_EQ (expected.length (), TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
14312 for (unsigned int i = 0; i < expected.length (); ++i)
14313 ASSERT_EQ (wi::to_wide (expected[i]),
14314 wi::to_wide (vector_cst_elt (actual, i)));
14315 }
14316
14317 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
14318 and that its elements match EXPECTED. */
14319
14320 static void
14321 check_vector_cst_duplicate (vec<tree> expected, tree actual,
14322 unsigned int npatterns)
14323 {
14324 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14325 ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
14326 ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
14327 ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
14328 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
14329 check_vector_cst (expected, actual);
14330 }
14331
14332 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
14333 and NPATTERNS background elements, and that its elements match
14334 EXPECTED. */
14335
14336 static void
14337 check_vector_cst_fill (vec<tree> expected, tree actual,
14338 unsigned int npatterns)
14339 {
14340 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14341 ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
14342 ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
14343 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
14344 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
14345 check_vector_cst (expected, actual);
14346 }
14347
14348 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
14349 and that its elements match EXPECTED. */
14350
14351 static void
14352 check_vector_cst_stepped (vec<tree> expected, tree actual,
14353 unsigned int npatterns)
14354 {
14355 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14356 ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
14357 ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
14358 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
14359 ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
14360 check_vector_cst (expected, actual);
14361 }
14362
14363 /* Test the creation of VECTOR_CSTs. */
14364
14365 static void
14366 test_vector_cst_patterns ()
14367 {
14368 auto_vec<tree, 8> elements (8);
14369 elements.quick_grow (8);
14370 tree element_type = build_nonstandard_integer_type (16, true);
14371 tree vector_type = build_vector_type (element_type, 8);
14372
14373 /* Test a simple linear series with a base of 0 and a step of 1:
14374 { 0, 1, 2, 3, 4, 5, 6, 7 }. */
14375 for (unsigned int i = 0; i < 8; ++i)
14376 elements[i] = build_int_cst (element_type, i);
14377 check_vector_cst_stepped (elements, build_vector (vector_type, elements), 1);
14378
14379 /* Try the same with the first element replaced by 100:
14380 { 100, 1, 2, 3, 4, 5, 6, 7 }. */
14381 elements[0] = build_int_cst (element_type, 100);
14382 check_vector_cst_stepped (elements, build_vector (vector_type, elements), 1);
14383
14384 /* Try a series that wraps around.
14385 { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */
14386 for (unsigned int i = 1; i < 8; ++i)
14387 elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
14388 check_vector_cst_stepped (elements, build_vector (vector_type, elements), 1);
14389
14390 /* Try a downward series:
14391 { 100, 79, 78, 77, 76, 75, 75, 73 }. */
14392 for (unsigned int i = 1; i < 8; ++i)
14393 elements[i] = build_int_cst (element_type, 80 - i);
14394 check_vector_cst_stepped (elements, build_vector (vector_type, elements), 1);
14395
14396 /* Try two interleaved series with different bases and steps:
14397 { 100, 53, 66, 206, 62, 212, 58, 218 }. */
14398 elements[1] = build_int_cst (element_type, 53);
14399 for (unsigned int i = 2; i < 8; i += 2)
14400 {
14401 elements[i] = build_int_cst (element_type, 70 - i * 2);
14402 elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
14403 }
14404 check_vector_cst_stepped (elements, build_vector (vector_type, elements), 2);
14405
14406 /* Try a duplicated value:
14407 { 100, 100, 100, 100, 100, 100, 100, 100 }. */
14408 for (unsigned int i = 1; i < 8; ++i)
14409 elements[i] = elements[0];
14410 check_vector_cst_duplicate (elements,
14411 build_vector (vector_type, elements), 1);
14412
14413 /* Try an interleaved duplicated value:
14414 { 100, 55, 100, 55, 100, 55, 100, 55 }. */
14415 elements[1] = build_int_cst (element_type, 55);
14416 for (unsigned int i = 2; i < 8; ++i)
14417 elements[i] = elements[i - 2];
14418 check_vector_cst_duplicate (elements,
14419 build_vector (vector_type, elements), 2);
14420
14421 /* Try a duplicated value with 2 exceptions
14422 { 41, 97, 100, 55, 100, 55, 100, 55 }. */
14423 elements[0] = build_int_cst (element_type, 41);
14424 elements[1] = build_int_cst (element_type, 97);
14425 check_vector_cst_fill (elements, build_vector (vector_type, elements), 2);
14426
14427 /* Try with and without a step
14428 { 41, 97, 100, 21, 100, 35, 100, 49 }. */
14429 for (unsigned int i = 3; i < 8; i += 2)
14430 elements[i] = build_int_cst (element_type, i * 7);
14431 check_vector_cst_stepped (elements, build_vector (vector_type, elements), 2);
14432
14433 /* Try a fully-general constant:
14434 { 41, 97, 100, 21, 100, 9990, 100, 49 }. */
14435 elements[5] = build_int_cst (element_type, 9990);
14436 check_vector_cst_fill (elements, build_vector (vector_type, elements), 4);
14437 }
14438
14439 /* Run all of the selftests within this file. */
14440
14441 void
14442 tree_c_tests ()
14443 {
14444 test_integer_constants ();
14445 test_identifiers ();
14446 test_labels ();
14447 test_vector_cst_patterns ();
14448 }
14449
14450 } // namespace selftest
14451
14452 #endif /* CHECKING_P */
14453
14454 #include "gt-tree.h"