acc3841f216c54d7831413bc9f416e4952ca4860
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h"
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "filenames.h"
45 #include "output.h"
46 #include "target.h"
47 #include "common/common-target.h"
48 #include "langhooks.h"
49 #include "tree-inline.h"
50 #include "tree-iterator.h"
51 #include "basic-block.h"
52 #include "tree-flow.h"
53 #include "params.h"
54 #include "pointer-set.h"
55 #include "tree-pass.h"
56 #include "langhooks-def.h"
57 #include "diagnostic.h"
58 #include "tree-diagnostic.h"
59 #include "tree-pretty-print.h"
60 #include "cgraph.h"
61 #include "timevar.h"
62 #include "except.h"
63 #include "debug.h"
64 #include "intl.h"
65
66 /* Tree code classes. */
67
68 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
69 #define END_OF_BASE_TREE_CODES tcc_exceptional,
70
71 const enum tree_code_class tree_code_type[] = {
72 #include "all-tree.def"
73 };
74
75 #undef DEFTREECODE
76 #undef END_OF_BASE_TREE_CODES
77
78 /* Table indexed by tree code giving number of expression
79 operands beyond the fixed part of the node structure.
80 Not used for types or decls. */
81
82 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
83 #define END_OF_BASE_TREE_CODES 0,
84
85 const unsigned char tree_code_length[] = {
86 #include "all-tree.def"
87 };
88
89 #undef DEFTREECODE
90 #undef END_OF_BASE_TREE_CODES
91
92 /* Names of tree components.
93 Used for printing out the tree and error messages. */
94 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
95 #define END_OF_BASE_TREE_CODES "@dummy",
96
97 const char *const tree_code_name[] = {
98 #include "all-tree.def"
99 };
100
101 #undef DEFTREECODE
102 #undef END_OF_BASE_TREE_CODES
103
104 /* Each tree code class has an associated string representation.
105 These must correspond to the tree_code_class entries. */
106
107 const char *const tree_code_class_strings[] =
108 {
109 "exceptional",
110 "constant",
111 "type",
112 "declaration",
113 "reference",
114 "comparison",
115 "unary",
116 "binary",
117 "statement",
118 "vl_exp",
119 "expression"
120 };
121
122 /* obstack.[ch] explicitly declined to prototype this. */
123 extern int _obstack_allocated_p (struct obstack *h, void *obj);
124
125 #ifdef GATHER_STATISTICS
126 /* Statistics-gathering stuff. */
127
128 static int tree_code_counts[MAX_TREE_CODES];
129 int tree_node_counts[(int) all_kinds];
130 int tree_node_sizes[(int) all_kinds];
131
132 /* Keep in sync with tree.h:enum tree_node_kind. */
133 static const char * const tree_node_kind_names[] = {
134 "decls",
135 "types",
136 "blocks",
137 "stmts",
138 "refs",
139 "exprs",
140 "constants",
141 "identifiers",
142 "vecs",
143 "binfos",
144 "ssa names",
145 "constructors",
146 "random kinds",
147 "lang_decl kinds",
148 "lang_type kinds",
149 "omp clauses",
150 };
151 #endif /* GATHER_STATISTICS */
152
153 /* Unique id for next decl created. */
154 static GTY(()) int next_decl_uid;
155 /* Unique id for next type created. */
156 static GTY(()) int next_type_uid = 1;
157 /* Unique id for next debug decl created. Use negative numbers,
158 to catch erroneous uses. */
159 static GTY(()) int next_debug_decl_uid;
160
161 /* Since we cannot rehash a type after it is in the table, we have to
162 keep the hash code. */
163
164 struct GTY(()) type_hash {
165 unsigned long hash;
166 tree type;
167 };
168
169 /* Initial size of the hash table (rounded to next prime). */
170 #define TYPE_HASH_INITIAL_SIZE 1000
171
172 /* Now here is the hash table. When recording a type, it is added to
173 the slot whose index is the hash code. Note that the hash table is
174 used for several kinds of types (function types, array types and
175 array index range types, for now). While all these live in the
176 same table, they are completely independent, and the hash code is
177 computed differently for each of these. */
178
179 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
180 htab_t type_hash_table;
181
182 /* Hash table and temporary node for larger integer const values. */
183 static GTY (()) tree int_cst_node;
184 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
185 htab_t int_cst_hash_table;
186
187 /* Hash table for optimization flags and target option flags. Use the same
188 hash table for both sets of options. Nodes for building the current
189 optimization and target option nodes. The assumption is most of the time
190 the options created will already be in the hash table, so we avoid
191 allocating and freeing up a node repeatably. */
192 static GTY (()) tree cl_optimization_node;
193 static GTY (()) tree cl_target_option_node;
194 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
195 htab_t cl_option_hash_table;
196
197 /* General tree->tree mapping structure for use in hash tables. */
198
199
200 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
201 htab_t debug_expr_for_decl;
202
203 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
204 htab_t value_expr_for_decl;
205
206 static GTY ((if_marked ("tree_vec_map_marked_p"), param_is (struct tree_vec_map)))
207 htab_t debug_args_for_decl;
208
209 static GTY ((if_marked ("tree_priority_map_marked_p"),
210 param_is (struct tree_priority_map)))
211 htab_t init_priority_for_decl;
212
213 static void set_type_quals (tree, int);
214 static int type_hash_eq (const void *, const void *);
215 static hashval_t type_hash_hash (const void *);
216 static hashval_t int_cst_hash_hash (const void *);
217 static int int_cst_hash_eq (const void *, const void *);
218 static hashval_t cl_option_hash_hash (const void *);
219 static int cl_option_hash_eq (const void *, const void *);
220 static void print_type_hash_statistics (void);
221 static void print_debug_expr_statistics (void);
222 static void print_value_expr_statistics (void);
223 static int type_hash_marked_p (const void *);
224 static unsigned int type_hash_list (const_tree, hashval_t);
225 static unsigned int attribute_hash_list (const_tree, hashval_t);
226
227 tree global_trees[TI_MAX];
228 tree integer_types[itk_none];
229
230 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
231
232 /* Number of operands for each OpenMP clause. */
233 unsigned const char omp_clause_num_ops[] =
234 {
235 0, /* OMP_CLAUSE_ERROR */
236 1, /* OMP_CLAUSE_PRIVATE */
237 1, /* OMP_CLAUSE_SHARED */
238 1, /* OMP_CLAUSE_FIRSTPRIVATE */
239 2, /* OMP_CLAUSE_LASTPRIVATE */
240 4, /* OMP_CLAUSE_REDUCTION */
241 1, /* OMP_CLAUSE_COPYIN */
242 1, /* OMP_CLAUSE_COPYPRIVATE */
243 1, /* OMP_CLAUSE_IF */
244 1, /* OMP_CLAUSE_NUM_THREADS */
245 1, /* OMP_CLAUSE_SCHEDULE */
246 0, /* OMP_CLAUSE_NOWAIT */
247 0, /* OMP_CLAUSE_ORDERED */
248 0, /* OMP_CLAUSE_DEFAULT */
249 3, /* OMP_CLAUSE_COLLAPSE */
250 0 /* OMP_CLAUSE_UNTIED */
251 };
252
253 const char * const omp_clause_code_name[] =
254 {
255 "error_clause",
256 "private",
257 "shared",
258 "firstprivate",
259 "lastprivate",
260 "reduction",
261 "copyin",
262 "copyprivate",
263 "if",
264 "num_threads",
265 "schedule",
266 "nowait",
267 "ordered",
268 "default",
269 "collapse",
270 "untied"
271 };
272
273
274 /* Return the tree node structure used by tree code CODE. */
275
276 static inline enum tree_node_structure_enum
277 tree_node_structure_for_code (enum tree_code code)
278 {
279 switch (TREE_CODE_CLASS (code))
280 {
281 case tcc_declaration:
282 {
283 switch (code)
284 {
285 case FIELD_DECL:
286 return TS_FIELD_DECL;
287 case PARM_DECL:
288 return TS_PARM_DECL;
289 case VAR_DECL:
290 return TS_VAR_DECL;
291 case LABEL_DECL:
292 return TS_LABEL_DECL;
293 case RESULT_DECL:
294 return TS_RESULT_DECL;
295 case DEBUG_EXPR_DECL:
296 return TS_DECL_WRTL;
297 case CONST_DECL:
298 return TS_CONST_DECL;
299 case TYPE_DECL:
300 return TS_TYPE_DECL;
301 case FUNCTION_DECL:
302 return TS_FUNCTION_DECL;
303 case TRANSLATION_UNIT_DECL:
304 return TS_TRANSLATION_UNIT_DECL;
305 default:
306 return TS_DECL_NON_COMMON;
307 }
308 }
309 case tcc_type:
310 return TS_TYPE_NON_COMMON;
311 case tcc_reference:
312 case tcc_comparison:
313 case tcc_unary:
314 case tcc_binary:
315 case tcc_expression:
316 case tcc_statement:
317 case tcc_vl_exp:
318 return TS_EXP;
319 default: /* tcc_constant and tcc_exceptional */
320 break;
321 }
322 switch (code)
323 {
324 /* tcc_constant cases. */
325 case INTEGER_CST: return TS_INT_CST;
326 case REAL_CST: return TS_REAL_CST;
327 case FIXED_CST: return TS_FIXED_CST;
328 case COMPLEX_CST: return TS_COMPLEX;
329 case VECTOR_CST: return TS_VECTOR;
330 case STRING_CST: return TS_STRING;
331 /* tcc_exceptional cases. */
332 case ERROR_MARK: return TS_COMMON;
333 case IDENTIFIER_NODE: return TS_IDENTIFIER;
334 case TREE_LIST: return TS_LIST;
335 case TREE_VEC: return TS_VEC;
336 case SSA_NAME: return TS_SSA_NAME;
337 case PLACEHOLDER_EXPR: return TS_COMMON;
338 case STATEMENT_LIST: return TS_STATEMENT_LIST;
339 case BLOCK: return TS_BLOCK;
340 case CONSTRUCTOR: return TS_CONSTRUCTOR;
341 case TREE_BINFO: return TS_BINFO;
342 case OMP_CLAUSE: return TS_OMP_CLAUSE;
343 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
344 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
345
346 default:
347 gcc_unreachable ();
348 }
349 }
350
351
352 /* Initialize tree_contains_struct to describe the hierarchy of tree
353 nodes. */
354
355 static void
356 initialize_tree_contains_struct (void)
357 {
358 unsigned i;
359
360 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
361 {
362 enum tree_code code;
363 enum tree_node_structure_enum ts_code;
364
365 code = (enum tree_code) i;
366 ts_code = tree_node_structure_for_code (code);
367
368 /* Mark the TS structure itself. */
369 tree_contains_struct[code][ts_code] = 1;
370
371 /* Mark all the structures that TS is derived from. */
372 switch (ts_code)
373 {
374 case TS_TYPED:
375 case TS_BLOCK:
376 MARK_TS_BASE (code);
377 break;
378
379 case TS_COMMON:
380 case TS_INT_CST:
381 case TS_REAL_CST:
382 case TS_FIXED_CST:
383 case TS_VECTOR:
384 case TS_STRING:
385 case TS_COMPLEX:
386 case TS_SSA_NAME:
387 case TS_CONSTRUCTOR:
388 case TS_EXP:
389 case TS_STATEMENT_LIST:
390 MARK_TS_TYPED (code);
391 break;
392
393 case TS_IDENTIFIER:
394 case TS_DECL_MINIMAL:
395 case TS_TYPE_COMMON:
396 case TS_LIST:
397 case TS_VEC:
398 case TS_BINFO:
399 case TS_OMP_CLAUSE:
400 case TS_OPTIMIZATION:
401 case TS_TARGET_OPTION:
402 MARK_TS_COMMON (code);
403 break;
404
405 case TS_TYPE_WITH_LANG_SPECIFIC:
406 MARK_TS_TYPE_COMMON (code);
407 break;
408
409 case TS_TYPE_NON_COMMON:
410 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
411 break;
412
413 case TS_DECL_COMMON:
414 MARK_TS_DECL_MINIMAL (code);
415 break;
416
417 case TS_DECL_WRTL:
418 case TS_CONST_DECL:
419 MARK_TS_DECL_COMMON (code);
420 break;
421
422 case TS_DECL_NON_COMMON:
423 MARK_TS_DECL_WITH_VIS (code);
424 break;
425
426 case TS_DECL_WITH_VIS:
427 case TS_PARM_DECL:
428 case TS_LABEL_DECL:
429 case TS_RESULT_DECL:
430 MARK_TS_DECL_WRTL (code);
431 break;
432
433 case TS_FIELD_DECL:
434 MARK_TS_DECL_COMMON (code);
435 break;
436
437 case TS_VAR_DECL:
438 MARK_TS_DECL_WITH_VIS (code);
439 break;
440
441 case TS_TYPE_DECL:
442 case TS_FUNCTION_DECL:
443 MARK_TS_DECL_NON_COMMON (code);
444 break;
445
446 case TS_TRANSLATION_UNIT_DECL:
447 MARK_TS_DECL_COMMON (code);
448 break;
449
450 default:
451 gcc_unreachable ();
452 }
453 }
454
455 /* Basic consistency checks for attributes used in fold. */
456 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
457 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
458 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
459 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
460 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
461 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
462 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
463 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
464 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
465 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
466 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
467 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
468 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
469 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
470 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
471 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
472 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
473 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
474 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
475 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
476 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
477 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
478 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
479 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
480 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
481 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
482 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
483 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
484 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
485 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
486 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
487 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
488 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
489 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
490 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
491 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
492 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
493 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
494 }
495
496
497 /* Init tree.c. */
498
499 void
500 init_ttree (void)
501 {
502 /* Initialize the hash table of types. */
503 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
504 type_hash_eq, 0);
505
506 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
507 tree_decl_map_eq, 0);
508
509 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
510 tree_decl_map_eq, 0);
511 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
512 tree_priority_map_eq, 0);
513
514 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
515 int_cst_hash_eq, NULL);
516
517 int_cst_node = make_node (INTEGER_CST);
518
519 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
520 cl_option_hash_eq, NULL);
521
522 cl_optimization_node = make_node (OPTIMIZATION_NODE);
523 cl_target_option_node = make_node (TARGET_OPTION_NODE);
524
525 /* Initialize the tree_contains_struct array. */
526 initialize_tree_contains_struct ();
527 lang_hooks.init_ts ();
528 }
529
530 \f
531 /* The name of the object as the assembler will see it (but before any
532 translations made by ASM_OUTPUT_LABELREF). Often this is the same
533 as DECL_NAME. It is an IDENTIFIER_NODE. */
534 tree
535 decl_assembler_name (tree decl)
536 {
537 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
538 lang_hooks.set_decl_assembler_name (decl);
539 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
540 }
541
542 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
543
544 bool
545 decl_assembler_name_equal (tree decl, const_tree asmname)
546 {
547 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
548 const char *decl_str;
549 const char *asmname_str;
550 bool test = false;
551
552 if (decl_asmname == asmname)
553 return true;
554
555 decl_str = IDENTIFIER_POINTER (decl_asmname);
556 asmname_str = IDENTIFIER_POINTER (asmname);
557
558
559 /* If the target assembler name was set by the user, things are trickier.
560 We have a leading '*' to begin with. After that, it's arguable what
561 is the correct thing to do with -fleading-underscore. Arguably, we've
562 historically been doing the wrong thing in assemble_alias by always
563 printing the leading underscore. Since we're not changing that, make
564 sure user_label_prefix follows the '*' before matching. */
565 if (decl_str[0] == '*')
566 {
567 size_t ulp_len = strlen (user_label_prefix);
568
569 decl_str ++;
570
571 if (ulp_len == 0)
572 test = true;
573 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
574 decl_str += ulp_len, test=true;
575 else
576 decl_str --;
577 }
578 if (asmname_str[0] == '*')
579 {
580 size_t ulp_len = strlen (user_label_prefix);
581
582 asmname_str ++;
583
584 if (ulp_len == 0)
585 test = true;
586 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
587 asmname_str += ulp_len, test=true;
588 else
589 asmname_str --;
590 }
591
592 if (!test)
593 return false;
594 return strcmp (decl_str, asmname_str) == 0;
595 }
596
597 /* Hash asmnames ignoring the user specified marks. */
598
599 hashval_t
600 decl_assembler_name_hash (const_tree asmname)
601 {
602 if (IDENTIFIER_POINTER (asmname)[0] == '*')
603 {
604 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
605 size_t ulp_len = strlen (user_label_prefix);
606
607 if (ulp_len == 0)
608 ;
609 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
610 decl_str += ulp_len;
611
612 return htab_hash_string (decl_str);
613 }
614
615 return htab_hash_string (IDENTIFIER_POINTER (asmname));
616 }
617
618 /* Compute the number of bytes occupied by a tree with code CODE.
619 This function cannot be used for nodes that have variable sizes,
620 including TREE_VEC, STRING_CST, and CALL_EXPR. */
621 size_t
622 tree_code_size (enum tree_code code)
623 {
624 switch (TREE_CODE_CLASS (code))
625 {
626 case tcc_declaration: /* A decl node */
627 {
628 switch (code)
629 {
630 case FIELD_DECL:
631 return sizeof (struct tree_field_decl);
632 case PARM_DECL:
633 return sizeof (struct tree_parm_decl);
634 case VAR_DECL:
635 return sizeof (struct tree_var_decl);
636 case LABEL_DECL:
637 return sizeof (struct tree_label_decl);
638 case RESULT_DECL:
639 return sizeof (struct tree_result_decl);
640 case CONST_DECL:
641 return sizeof (struct tree_const_decl);
642 case TYPE_DECL:
643 return sizeof (struct tree_type_decl);
644 case FUNCTION_DECL:
645 return sizeof (struct tree_function_decl);
646 case DEBUG_EXPR_DECL:
647 return sizeof (struct tree_decl_with_rtl);
648 default:
649 return sizeof (struct tree_decl_non_common);
650 }
651 }
652
653 case tcc_type: /* a type node */
654 return sizeof (struct tree_type_non_common);
655
656 case tcc_reference: /* a reference */
657 case tcc_expression: /* an expression */
658 case tcc_statement: /* an expression with side effects */
659 case tcc_comparison: /* a comparison expression */
660 case tcc_unary: /* a unary arithmetic expression */
661 case tcc_binary: /* a binary arithmetic expression */
662 return (sizeof (struct tree_exp)
663 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
664
665 case tcc_constant: /* a constant */
666 switch (code)
667 {
668 case INTEGER_CST: return sizeof (struct tree_int_cst);
669 case REAL_CST: return sizeof (struct tree_real_cst);
670 case FIXED_CST: return sizeof (struct tree_fixed_cst);
671 case COMPLEX_CST: return sizeof (struct tree_complex);
672 case VECTOR_CST: return sizeof (struct tree_vector);
673 case STRING_CST: gcc_unreachable ();
674 default:
675 return lang_hooks.tree_size (code);
676 }
677
678 case tcc_exceptional: /* something random, like an identifier. */
679 switch (code)
680 {
681 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
682 case TREE_LIST: return sizeof (struct tree_list);
683
684 case ERROR_MARK:
685 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
686
687 case TREE_VEC:
688 case OMP_CLAUSE: gcc_unreachable ();
689
690 case SSA_NAME: return sizeof (struct tree_ssa_name);
691
692 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
693 case BLOCK: return sizeof (struct tree_block);
694 case CONSTRUCTOR: return sizeof (struct tree_constructor);
695 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
696 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
697
698 default:
699 return lang_hooks.tree_size (code);
700 }
701
702 default:
703 gcc_unreachable ();
704 }
705 }
706
707 /* Compute the number of bytes occupied by NODE. This routine only
708 looks at TREE_CODE, except for those nodes that have variable sizes. */
709 size_t
710 tree_size (const_tree node)
711 {
712 const enum tree_code code = TREE_CODE (node);
713 switch (code)
714 {
715 case TREE_BINFO:
716 return (offsetof (struct tree_binfo, base_binfos)
717 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
718
719 case TREE_VEC:
720 return (sizeof (struct tree_vec)
721 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
722
723 case STRING_CST:
724 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
725
726 case OMP_CLAUSE:
727 return (sizeof (struct tree_omp_clause)
728 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
729 * sizeof (tree));
730
731 default:
732 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
733 return (sizeof (struct tree_exp)
734 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
735 else
736 return tree_code_size (code);
737 }
738 }
739
740 /* Record interesting allocation statistics for a tree node with CODE
741 and LENGTH. */
742
743 static void
744 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
745 size_t length ATTRIBUTE_UNUSED)
746 {
747 #ifdef GATHER_STATISTICS
748 enum tree_code_class type = TREE_CODE_CLASS (code);
749 tree_node_kind kind;
750
751 switch (type)
752 {
753 case tcc_declaration: /* A decl node */
754 kind = d_kind;
755 break;
756
757 case tcc_type: /* a type node */
758 kind = t_kind;
759 break;
760
761 case tcc_statement: /* an expression with side effects */
762 kind = s_kind;
763 break;
764
765 case tcc_reference: /* a reference */
766 kind = r_kind;
767 break;
768
769 case tcc_expression: /* an expression */
770 case tcc_comparison: /* a comparison expression */
771 case tcc_unary: /* a unary arithmetic expression */
772 case tcc_binary: /* a binary arithmetic expression */
773 kind = e_kind;
774 break;
775
776 case tcc_constant: /* a constant */
777 kind = c_kind;
778 break;
779
780 case tcc_exceptional: /* something random, like an identifier. */
781 switch (code)
782 {
783 case IDENTIFIER_NODE:
784 kind = id_kind;
785 break;
786
787 case TREE_VEC:
788 kind = vec_kind;
789 break;
790
791 case TREE_BINFO:
792 kind = binfo_kind;
793 break;
794
795 case SSA_NAME:
796 kind = ssa_name_kind;
797 break;
798
799 case BLOCK:
800 kind = b_kind;
801 break;
802
803 case CONSTRUCTOR:
804 kind = constr_kind;
805 break;
806
807 case OMP_CLAUSE:
808 kind = omp_clause_kind;
809 break;
810
811 default:
812 kind = x_kind;
813 break;
814 }
815 break;
816
817 case tcc_vl_exp:
818 kind = e_kind;
819 break;
820
821 default:
822 gcc_unreachable ();
823 }
824
825 tree_code_counts[(int) code]++;
826 tree_node_counts[(int) kind]++;
827 tree_node_sizes[(int) kind] += length;
828 #endif
829 }
830
831 /* Allocate and return a new UID from the DECL_UID namespace. */
832
833 int
834 allocate_decl_uid (void)
835 {
836 return next_decl_uid++;
837 }
838
839 /* Return a newly allocated node of code CODE. For decl and type
840 nodes, some other fields are initialized. The rest of the node is
841 initialized to zero. This function cannot be used for TREE_VEC or
842 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
843
844 Achoo! I got a code in the node. */
845
846 tree
847 make_node_stat (enum tree_code code MEM_STAT_DECL)
848 {
849 tree t;
850 enum tree_code_class type = TREE_CODE_CLASS (code);
851 size_t length = tree_code_size (code);
852
853 record_node_allocation_statistics (code, length);
854
855 t = ggc_alloc_zone_cleared_tree_node_stat (
856 (code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone,
857 length PASS_MEM_STAT);
858 TREE_SET_CODE (t, code);
859
860 switch (type)
861 {
862 case tcc_statement:
863 TREE_SIDE_EFFECTS (t) = 1;
864 break;
865
866 case tcc_declaration:
867 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
868 {
869 if (code == FUNCTION_DECL)
870 {
871 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
872 DECL_MODE (t) = FUNCTION_MODE;
873 }
874 else
875 DECL_ALIGN (t) = 1;
876 }
877 DECL_SOURCE_LOCATION (t) = input_location;
878 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
879 DECL_UID (t) = --next_debug_decl_uid;
880 else
881 {
882 DECL_UID (t) = allocate_decl_uid ();
883 SET_DECL_PT_UID (t, -1);
884 }
885 if (TREE_CODE (t) == LABEL_DECL)
886 LABEL_DECL_UID (t) = -1;
887
888 break;
889
890 case tcc_type:
891 TYPE_UID (t) = next_type_uid++;
892 TYPE_ALIGN (t) = BITS_PER_UNIT;
893 TYPE_USER_ALIGN (t) = 0;
894 TYPE_MAIN_VARIANT (t) = t;
895 TYPE_CANONICAL (t) = t;
896
897 /* Default to no attributes for type, but let target change that. */
898 TYPE_ATTRIBUTES (t) = NULL_TREE;
899 targetm.set_default_type_attributes (t);
900
901 /* We have not yet computed the alias set for this type. */
902 TYPE_ALIAS_SET (t) = -1;
903 break;
904
905 case tcc_constant:
906 TREE_CONSTANT (t) = 1;
907 break;
908
909 case tcc_expression:
910 switch (code)
911 {
912 case INIT_EXPR:
913 case MODIFY_EXPR:
914 case VA_ARG_EXPR:
915 case PREDECREMENT_EXPR:
916 case PREINCREMENT_EXPR:
917 case POSTDECREMENT_EXPR:
918 case POSTINCREMENT_EXPR:
919 /* All of these have side-effects, no matter what their
920 operands are. */
921 TREE_SIDE_EFFECTS (t) = 1;
922 break;
923
924 default:
925 break;
926 }
927 break;
928
929 default:
930 /* Other classes need no special treatment. */
931 break;
932 }
933
934 return t;
935 }
936 \f
937 /* Return a new node with the same contents as NODE except that its
938 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
939
940 tree
941 copy_node_stat (tree node MEM_STAT_DECL)
942 {
943 tree t;
944 enum tree_code code = TREE_CODE (node);
945 size_t length;
946
947 gcc_assert (code != STATEMENT_LIST);
948
949 length = tree_size (node);
950 record_node_allocation_statistics (code, length);
951 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
952 memcpy (t, node, length);
953
954 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
955 TREE_CHAIN (t) = 0;
956 TREE_ASM_WRITTEN (t) = 0;
957 TREE_VISITED (t) = 0;
958 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
959 *DECL_VAR_ANN_PTR (t) = 0;
960
961 if (TREE_CODE_CLASS (code) == tcc_declaration)
962 {
963 if (code == DEBUG_EXPR_DECL)
964 DECL_UID (t) = --next_debug_decl_uid;
965 else
966 {
967 DECL_UID (t) = allocate_decl_uid ();
968 if (DECL_PT_UID_SET_P (node))
969 SET_DECL_PT_UID (t, DECL_PT_UID (node));
970 }
971 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
972 && DECL_HAS_VALUE_EXPR_P (node))
973 {
974 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
975 DECL_HAS_VALUE_EXPR_P (t) = 1;
976 }
977 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
978 {
979 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
980 DECL_HAS_INIT_PRIORITY_P (t) = 1;
981 }
982 }
983 else if (TREE_CODE_CLASS (code) == tcc_type)
984 {
985 TYPE_UID (t) = next_type_uid++;
986 /* The following is so that the debug code for
987 the copy is different from the original type.
988 The two statements usually duplicate each other
989 (because they clear fields of the same union),
990 but the optimizer should catch that. */
991 TYPE_SYMTAB_POINTER (t) = 0;
992 TYPE_SYMTAB_ADDRESS (t) = 0;
993
994 /* Do not copy the values cache. */
995 if (TYPE_CACHED_VALUES_P(t))
996 {
997 TYPE_CACHED_VALUES_P (t) = 0;
998 TYPE_CACHED_VALUES (t) = NULL_TREE;
999 }
1000 }
1001
1002 return t;
1003 }
1004
1005 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1006 For example, this can copy a list made of TREE_LIST nodes. */
1007
1008 tree
1009 copy_list (tree list)
1010 {
1011 tree head;
1012 tree prev, next;
1013
1014 if (list == 0)
1015 return 0;
1016
1017 head = prev = copy_node (list);
1018 next = TREE_CHAIN (list);
1019 while (next)
1020 {
1021 TREE_CHAIN (prev) = copy_node (next);
1022 prev = TREE_CHAIN (prev);
1023 next = TREE_CHAIN (next);
1024 }
1025 return head;
1026 }
1027
1028 \f
1029 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1030
1031 tree
1032 build_int_cst (tree type, HOST_WIDE_INT low)
1033 {
1034 /* Support legacy code. */
1035 if (!type)
1036 type = integer_type_node;
1037
1038 return double_int_to_tree (type, shwi_to_double_int (low));
1039 }
1040
1041 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1042
1043 tree
1044 build_int_cst_type (tree type, HOST_WIDE_INT low)
1045 {
1046 gcc_assert (type);
1047
1048 return double_int_to_tree (type, shwi_to_double_int (low));
1049 }
1050
1051 /* Constructs tree in type TYPE from with value given by CST. Signedness
1052 of CST is assumed to be the same as the signedness of TYPE. */
1053
1054 tree
1055 double_int_to_tree (tree type, double_int cst)
1056 {
1057 /* Size types *are* sign extended. */
1058 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1059 || (TREE_CODE (type) == INTEGER_TYPE
1060 && TYPE_IS_SIZETYPE (type)));
1061
1062 cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1063
1064 return build_int_cst_wide (type, cst.low, cst.high);
1065 }
1066
1067 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1068 to be the same as the signedness of TYPE. */
1069
1070 bool
1071 double_int_fits_to_tree_p (const_tree type, double_int cst)
1072 {
1073 /* Size types *are* sign extended. */
1074 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1075 || (TREE_CODE (type) == INTEGER_TYPE
1076 && TYPE_IS_SIZETYPE (type)));
1077
1078 double_int ext
1079 = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1080
1081 return double_int_equal_p (cst, ext);
1082 }
1083
1084 /* We force the double_int CST to the range of the type TYPE by sign or
1085 zero extending it. OVERFLOWABLE indicates if we are interested in
1086 overflow of the value, when >0 we are only interested in signed
1087 overflow, for <0 we are interested in any overflow. OVERFLOWED
1088 indicates whether overflow has already occurred. CONST_OVERFLOWED
1089 indicates whether constant overflow has already occurred. We force
1090 T's value to be within range of T's type (by setting to 0 or 1 all
1091 the bits outside the type's range). We set TREE_OVERFLOWED if,
1092 OVERFLOWED is nonzero,
1093 or OVERFLOWABLE is >0 and signed overflow occurs
1094 or OVERFLOWABLE is <0 and any overflow occurs
1095 We return a new tree node for the extended double_int. The node
1096 is shared if no overflow flags are set. */
1097
1098
1099 tree
1100 force_fit_type_double (tree type, double_int cst, int overflowable,
1101 bool overflowed)
1102 {
1103 bool sign_extended_type;
1104
1105 /* Size types *are* sign extended. */
1106 sign_extended_type = (!TYPE_UNSIGNED (type)
1107 || (TREE_CODE (type) == INTEGER_TYPE
1108 && TYPE_IS_SIZETYPE (type)));
1109
1110 /* If we need to set overflow flags, return a new unshared node. */
1111 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1112 {
1113 if (overflowed
1114 || overflowable < 0
1115 || (overflowable > 0 && sign_extended_type))
1116 {
1117 tree t = make_node (INTEGER_CST);
1118 TREE_INT_CST (t) = double_int_ext (cst, TYPE_PRECISION (type),
1119 !sign_extended_type);
1120 TREE_TYPE (t) = type;
1121 TREE_OVERFLOW (t) = 1;
1122 return t;
1123 }
1124 }
1125
1126 /* Else build a shared node. */
1127 return double_int_to_tree (type, cst);
1128 }
1129
1130 /* These are the hash table functions for the hash table of INTEGER_CST
1131 nodes of a sizetype. */
1132
1133 /* Return the hash code code X, an INTEGER_CST. */
1134
1135 static hashval_t
1136 int_cst_hash_hash (const void *x)
1137 {
1138 const_tree const t = (const_tree) x;
1139
1140 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1141 ^ htab_hash_pointer (TREE_TYPE (t)));
1142 }
1143
1144 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1145 is the same as that given by *Y, which is the same. */
1146
1147 static int
1148 int_cst_hash_eq (const void *x, const void *y)
1149 {
1150 const_tree const xt = (const_tree) x;
1151 const_tree const yt = (const_tree) y;
1152
1153 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1154 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1155 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1156 }
1157
1158 /* Create an INT_CST node of TYPE and value HI:LOW.
1159 The returned node is always shared. For small integers we use a
1160 per-type vector cache, for larger ones we use a single hash table. */
1161
1162 tree
1163 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1164 {
1165 tree t;
1166 int ix = -1;
1167 int limit = 0;
1168
1169 gcc_assert (type);
1170
1171 switch (TREE_CODE (type))
1172 {
1173 case NULLPTR_TYPE:
1174 gcc_assert (hi == 0 && low == 0);
1175 /* Fallthru. */
1176
1177 case POINTER_TYPE:
1178 case REFERENCE_TYPE:
1179 /* Cache NULL pointer. */
1180 if (!hi && !low)
1181 {
1182 limit = 1;
1183 ix = 0;
1184 }
1185 break;
1186
1187 case BOOLEAN_TYPE:
1188 /* Cache false or true. */
1189 limit = 2;
1190 if (!hi && low < 2)
1191 ix = low;
1192 break;
1193
1194 case INTEGER_TYPE:
1195 case OFFSET_TYPE:
1196 if (TYPE_UNSIGNED (type))
1197 {
1198 /* Cache 0..N */
1199 limit = INTEGER_SHARE_LIMIT;
1200 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1201 ix = low;
1202 }
1203 else
1204 {
1205 /* Cache -1..N */
1206 limit = INTEGER_SHARE_LIMIT + 1;
1207 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1208 ix = low + 1;
1209 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1210 ix = 0;
1211 }
1212 break;
1213
1214 case ENUMERAL_TYPE:
1215 break;
1216
1217 default:
1218 gcc_unreachable ();
1219 }
1220
1221 if (ix >= 0)
1222 {
1223 /* Look for it in the type's vector of small shared ints. */
1224 if (!TYPE_CACHED_VALUES_P (type))
1225 {
1226 TYPE_CACHED_VALUES_P (type) = 1;
1227 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1228 }
1229
1230 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1231 if (t)
1232 {
1233 /* Make sure no one is clobbering the shared constant. */
1234 gcc_assert (TREE_TYPE (t) == type);
1235 gcc_assert (TREE_INT_CST_LOW (t) == low);
1236 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1237 }
1238 else
1239 {
1240 /* Create a new shared int. */
1241 t = make_node (INTEGER_CST);
1242
1243 TREE_INT_CST_LOW (t) = low;
1244 TREE_INT_CST_HIGH (t) = hi;
1245 TREE_TYPE (t) = type;
1246
1247 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1248 }
1249 }
1250 else
1251 {
1252 /* Use the cache of larger shared ints. */
1253 void **slot;
1254
1255 TREE_INT_CST_LOW (int_cst_node) = low;
1256 TREE_INT_CST_HIGH (int_cst_node) = hi;
1257 TREE_TYPE (int_cst_node) = type;
1258
1259 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1260 t = (tree) *slot;
1261 if (!t)
1262 {
1263 /* Insert this one into the hash table. */
1264 t = int_cst_node;
1265 *slot = t;
1266 /* Make a new node for next time round. */
1267 int_cst_node = make_node (INTEGER_CST);
1268 }
1269 }
1270
1271 return t;
1272 }
1273
1274 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1275 and the rest are zeros. */
1276
1277 tree
1278 build_low_bits_mask (tree type, unsigned bits)
1279 {
1280 double_int mask;
1281
1282 gcc_assert (bits <= TYPE_PRECISION (type));
1283
1284 if (bits == TYPE_PRECISION (type)
1285 && !TYPE_UNSIGNED (type))
1286 /* Sign extended all-ones mask. */
1287 mask = double_int_minus_one;
1288 else
1289 mask = double_int_mask (bits);
1290
1291 return build_int_cst_wide (type, mask.low, mask.high);
1292 }
1293
1294 /* Checks that X is integer constant that can be expressed in (unsigned)
1295 HOST_WIDE_INT without loss of precision. */
1296
1297 bool
1298 cst_and_fits_in_hwi (const_tree x)
1299 {
1300 if (TREE_CODE (x) != INTEGER_CST)
1301 return false;
1302
1303 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1304 return false;
1305
1306 return (TREE_INT_CST_HIGH (x) == 0
1307 || TREE_INT_CST_HIGH (x) == -1);
1308 }
1309
1310 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1311 are in a list pointed to by VALS. */
1312
1313 tree
1314 build_vector (tree type, tree vals)
1315 {
1316 tree v = make_node (VECTOR_CST);
1317 int over = 0;
1318 tree link;
1319 unsigned cnt = 0;
1320
1321 TREE_VECTOR_CST_ELTS (v) = vals;
1322 TREE_TYPE (v) = type;
1323
1324 /* Iterate through elements and check for overflow. */
1325 for (link = vals; link; link = TREE_CHAIN (link))
1326 {
1327 tree value = TREE_VALUE (link);
1328 cnt++;
1329
1330 /* Don't crash if we get an address constant. */
1331 if (!CONSTANT_CLASS_P (value))
1332 continue;
1333
1334 over |= TREE_OVERFLOW (value);
1335 }
1336
1337 gcc_assert (cnt == TYPE_VECTOR_SUBPARTS (type));
1338
1339 TREE_OVERFLOW (v) = over;
1340 return v;
1341 }
1342
1343 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1344 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1345
1346 tree
1347 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1348 {
1349 tree list = NULL_TREE;
1350 unsigned HOST_WIDE_INT idx;
1351 tree value;
1352
1353 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1354 list = tree_cons (NULL_TREE, value, list);
1355 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1356 list = tree_cons (NULL_TREE,
1357 build_zero_cst (TREE_TYPE (type)), list);
1358 return build_vector (type, nreverse (list));
1359 }
1360
1361 /* Build a vector of type VECTYPE where all the elements are SCs. */
1362 tree
1363 build_vector_from_val (tree vectype, tree sc)
1364 {
1365 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1366 VEC(constructor_elt, gc) *v = NULL;
1367
1368 if (sc == error_mark_node)
1369 return sc;
1370
1371 /* Verify that the vector type is suitable for SC. Note that there
1372 is some inconsistency in the type-system with respect to restrict
1373 qualifications of pointers. Vector types always have a main-variant
1374 element type and the qualification is applied to the vector-type.
1375 So TREE_TYPE (vector-type) does not return a properly qualified
1376 vector element-type. */
1377 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1378 TREE_TYPE (vectype)));
1379
1380 v = VEC_alloc (constructor_elt, gc, nunits);
1381 for (i = 0; i < nunits; ++i)
1382 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1383
1384 if (CONSTANT_CLASS_P (sc))
1385 return build_vector_from_ctor (vectype, v);
1386 else
1387 return build_constructor (vectype, v);
1388 }
1389
1390 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1391 are in the VEC pointed to by VALS. */
1392 tree
1393 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1394 {
1395 tree c = make_node (CONSTRUCTOR);
1396 unsigned int i;
1397 constructor_elt *elt;
1398 bool constant_p = true;
1399
1400 TREE_TYPE (c) = type;
1401 CONSTRUCTOR_ELTS (c) = vals;
1402
1403 FOR_EACH_VEC_ELT (constructor_elt, vals, i, elt)
1404 if (!TREE_CONSTANT (elt->value))
1405 {
1406 constant_p = false;
1407 break;
1408 }
1409
1410 TREE_CONSTANT (c) = constant_p;
1411
1412 return c;
1413 }
1414
1415 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1416 INDEX and VALUE. */
1417 tree
1418 build_constructor_single (tree type, tree index, tree value)
1419 {
1420 VEC(constructor_elt,gc) *v;
1421 constructor_elt *elt;
1422
1423 v = VEC_alloc (constructor_elt, gc, 1);
1424 elt = VEC_quick_push (constructor_elt, v, NULL);
1425 elt->index = index;
1426 elt->value = value;
1427
1428 return build_constructor (type, v);
1429 }
1430
1431
1432 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1433 are in a list pointed to by VALS. */
1434 tree
1435 build_constructor_from_list (tree type, tree vals)
1436 {
1437 tree t;
1438 VEC(constructor_elt,gc) *v = NULL;
1439
1440 if (vals)
1441 {
1442 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1443 for (t = vals; t; t = TREE_CHAIN (t))
1444 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1445 }
1446
1447 return build_constructor (type, v);
1448 }
1449
1450 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1451
1452 tree
1453 build_fixed (tree type, FIXED_VALUE_TYPE f)
1454 {
1455 tree v;
1456 FIXED_VALUE_TYPE *fp;
1457
1458 v = make_node (FIXED_CST);
1459 fp = ggc_alloc_fixed_value ();
1460 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1461
1462 TREE_TYPE (v) = type;
1463 TREE_FIXED_CST_PTR (v) = fp;
1464 return v;
1465 }
1466
1467 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1468
1469 tree
1470 build_real (tree type, REAL_VALUE_TYPE d)
1471 {
1472 tree v;
1473 REAL_VALUE_TYPE *dp;
1474 int overflow = 0;
1475
1476 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1477 Consider doing it via real_convert now. */
1478
1479 v = make_node (REAL_CST);
1480 dp = ggc_alloc_real_value ();
1481 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1482
1483 TREE_TYPE (v) = type;
1484 TREE_REAL_CST_PTR (v) = dp;
1485 TREE_OVERFLOW (v) = overflow;
1486 return v;
1487 }
1488
1489 /* Return a new REAL_CST node whose type is TYPE
1490 and whose value is the integer value of the INTEGER_CST node I. */
1491
1492 REAL_VALUE_TYPE
1493 real_value_from_int_cst (const_tree type, const_tree i)
1494 {
1495 REAL_VALUE_TYPE d;
1496
1497 /* Clear all bits of the real value type so that we can later do
1498 bitwise comparisons to see if two values are the same. */
1499 memset (&d, 0, sizeof d);
1500
1501 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1502 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1503 TYPE_UNSIGNED (TREE_TYPE (i)));
1504 return d;
1505 }
1506
1507 /* Given a tree representing an integer constant I, return a tree
1508 representing the same value as a floating-point constant of type TYPE. */
1509
1510 tree
1511 build_real_from_int_cst (tree type, const_tree i)
1512 {
1513 tree v;
1514 int overflow = TREE_OVERFLOW (i);
1515
1516 v = build_real (type, real_value_from_int_cst (type, i));
1517
1518 TREE_OVERFLOW (v) |= overflow;
1519 return v;
1520 }
1521
1522 /* Return a newly constructed STRING_CST node whose value is
1523 the LEN characters at STR.
1524 The TREE_TYPE is not initialized. */
1525
1526 tree
1527 build_string (int len, const char *str)
1528 {
1529 tree s;
1530 size_t length;
1531
1532 /* Do not waste bytes provided by padding of struct tree_string. */
1533 length = len + offsetof (struct tree_string, str) + 1;
1534
1535 record_node_allocation_statistics (STRING_CST, length);
1536
1537 s = ggc_alloc_tree_node (length);
1538
1539 memset (s, 0, sizeof (struct tree_typed));
1540 TREE_SET_CODE (s, STRING_CST);
1541 TREE_CONSTANT (s) = 1;
1542 TREE_STRING_LENGTH (s) = len;
1543 memcpy (s->string.str, str, len);
1544 s->string.str[len] = '\0';
1545
1546 return s;
1547 }
1548
1549 /* Return a newly constructed COMPLEX_CST node whose value is
1550 specified by the real and imaginary parts REAL and IMAG.
1551 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1552 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1553
1554 tree
1555 build_complex (tree type, tree real, tree imag)
1556 {
1557 tree t = make_node (COMPLEX_CST);
1558
1559 TREE_REALPART (t) = real;
1560 TREE_IMAGPART (t) = imag;
1561 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1562 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1563 return t;
1564 }
1565
1566 /* Return a constant of arithmetic type TYPE which is the
1567 multiplicative identity of the set TYPE. */
1568
1569 tree
1570 build_one_cst (tree type)
1571 {
1572 switch (TREE_CODE (type))
1573 {
1574 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1575 case POINTER_TYPE: case REFERENCE_TYPE:
1576 case OFFSET_TYPE:
1577 return build_int_cst (type, 1);
1578
1579 case REAL_TYPE:
1580 return build_real (type, dconst1);
1581
1582 case FIXED_POINT_TYPE:
1583 /* We can only generate 1 for accum types. */
1584 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1585 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1586
1587 case VECTOR_TYPE:
1588 {
1589 tree scalar = build_one_cst (TREE_TYPE (type));
1590
1591 return build_vector_from_val (type, scalar);
1592 }
1593
1594 case COMPLEX_TYPE:
1595 return build_complex (type,
1596 build_one_cst (TREE_TYPE (type)),
1597 build_zero_cst (TREE_TYPE (type)));
1598
1599 default:
1600 gcc_unreachable ();
1601 }
1602 }
1603
1604 /* Build 0 constant of type TYPE. This is used by constructor folding
1605 and thus the constant should be represented in memory by
1606 zero(es). */
1607
1608 tree
1609 build_zero_cst (tree type)
1610 {
1611 switch (TREE_CODE (type))
1612 {
1613 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1614 case POINTER_TYPE: case REFERENCE_TYPE:
1615 case OFFSET_TYPE:
1616 return build_int_cst (type, 0);
1617
1618 case REAL_TYPE:
1619 return build_real (type, dconst0);
1620
1621 case FIXED_POINT_TYPE:
1622 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1623
1624 case VECTOR_TYPE:
1625 {
1626 tree scalar = build_zero_cst (TREE_TYPE (type));
1627
1628 return build_vector_from_val (type, scalar);
1629 }
1630
1631 case COMPLEX_TYPE:
1632 {
1633 tree zero = build_zero_cst (TREE_TYPE (type));
1634
1635 return build_complex (type, zero, zero);
1636 }
1637
1638 default:
1639 if (!AGGREGATE_TYPE_P (type))
1640 return fold_convert (type, integer_zero_node);
1641 return build_constructor (type, NULL);
1642 }
1643 }
1644
1645
1646 /* Build a BINFO with LEN language slots. */
1647
1648 tree
1649 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1650 {
1651 tree t;
1652 size_t length = (offsetof (struct tree_binfo, base_binfos)
1653 + VEC_embedded_size (tree, base_binfos));
1654
1655 record_node_allocation_statistics (TREE_BINFO, length);
1656
1657 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1658
1659 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1660
1661 TREE_SET_CODE (t, TREE_BINFO);
1662
1663 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1664
1665 return t;
1666 }
1667
1668 /* Create a CASE_LABEL_EXPR tree node and return it. */
1669
1670 tree
1671 build_case_label (tree low_value, tree high_value, tree label_decl)
1672 {
1673 tree t = make_node (CASE_LABEL_EXPR);
1674
1675 TREE_TYPE (t) = void_type_node;
1676 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
1677
1678 CASE_LOW (t) = low_value;
1679 CASE_HIGH (t) = high_value;
1680 CASE_LABEL (t) = label_decl;
1681 CASE_CHAIN (t) = NULL_TREE;
1682
1683 return t;
1684 }
1685
1686 /* Build a newly constructed TREE_VEC node of length LEN. */
1687
1688 tree
1689 make_tree_vec_stat (int len MEM_STAT_DECL)
1690 {
1691 tree t;
1692 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1693
1694 record_node_allocation_statistics (TREE_VEC, length);
1695
1696 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1697
1698 TREE_SET_CODE (t, TREE_VEC);
1699 TREE_VEC_LENGTH (t) = len;
1700
1701 return t;
1702 }
1703 \f
1704 /* Return 1 if EXPR is the integer constant zero or a complex constant
1705 of zero. */
1706
1707 int
1708 integer_zerop (const_tree expr)
1709 {
1710 STRIP_NOPS (expr);
1711
1712 return ((TREE_CODE (expr) == INTEGER_CST
1713 && TREE_INT_CST_LOW (expr) == 0
1714 && TREE_INT_CST_HIGH (expr) == 0)
1715 || (TREE_CODE (expr) == COMPLEX_CST
1716 && integer_zerop (TREE_REALPART (expr))
1717 && integer_zerop (TREE_IMAGPART (expr))));
1718 }
1719
1720 /* Return 1 if EXPR is the integer constant one or the corresponding
1721 complex constant. */
1722
1723 int
1724 integer_onep (const_tree expr)
1725 {
1726 STRIP_NOPS (expr);
1727
1728 return ((TREE_CODE (expr) == INTEGER_CST
1729 && TREE_INT_CST_LOW (expr) == 1
1730 && TREE_INT_CST_HIGH (expr) == 0)
1731 || (TREE_CODE (expr) == COMPLEX_CST
1732 && integer_onep (TREE_REALPART (expr))
1733 && integer_zerop (TREE_IMAGPART (expr))));
1734 }
1735
1736 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1737 it contains. Likewise for the corresponding complex constant. */
1738
1739 int
1740 integer_all_onesp (const_tree expr)
1741 {
1742 int prec;
1743 int uns;
1744
1745 STRIP_NOPS (expr);
1746
1747 if (TREE_CODE (expr) == COMPLEX_CST
1748 && integer_all_onesp (TREE_REALPART (expr))
1749 && integer_zerop (TREE_IMAGPART (expr)))
1750 return 1;
1751
1752 else if (TREE_CODE (expr) != INTEGER_CST)
1753 return 0;
1754
1755 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1756 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1757 && TREE_INT_CST_HIGH (expr) == -1)
1758 return 1;
1759 if (!uns)
1760 return 0;
1761
1762 /* Note that using TYPE_PRECISION here is wrong. We care about the
1763 actual bits, not the (arbitrary) range of the type. */
1764 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1765 if (prec >= HOST_BITS_PER_WIDE_INT)
1766 {
1767 HOST_WIDE_INT high_value;
1768 int shift_amount;
1769
1770 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1771
1772 /* Can not handle precisions greater than twice the host int size. */
1773 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1774 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1775 /* Shifting by the host word size is undefined according to the ANSI
1776 standard, so we must handle this as a special case. */
1777 high_value = -1;
1778 else
1779 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1780
1781 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1782 && TREE_INT_CST_HIGH (expr) == high_value);
1783 }
1784 else
1785 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1786 }
1787
1788 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1789 one bit on). */
1790
1791 int
1792 integer_pow2p (const_tree expr)
1793 {
1794 int prec;
1795 HOST_WIDE_INT high, low;
1796
1797 STRIP_NOPS (expr);
1798
1799 if (TREE_CODE (expr) == COMPLEX_CST
1800 && integer_pow2p (TREE_REALPART (expr))
1801 && integer_zerop (TREE_IMAGPART (expr)))
1802 return 1;
1803
1804 if (TREE_CODE (expr) != INTEGER_CST)
1805 return 0;
1806
1807 prec = TYPE_PRECISION (TREE_TYPE (expr));
1808 high = TREE_INT_CST_HIGH (expr);
1809 low = TREE_INT_CST_LOW (expr);
1810
1811 /* First clear all bits that are beyond the type's precision in case
1812 we've been sign extended. */
1813
1814 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1815 ;
1816 else if (prec > HOST_BITS_PER_WIDE_INT)
1817 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1818 else
1819 {
1820 high = 0;
1821 if (prec < HOST_BITS_PER_WIDE_INT)
1822 low &= ~((HOST_WIDE_INT) (-1) << prec);
1823 }
1824
1825 if (high == 0 && low == 0)
1826 return 0;
1827
1828 return ((high == 0 && (low & (low - 1)) == 0)
1829 || (low == 0 && (high & (high - 1)) == 0));
1830 }
1831
1832 /* Return 1 if EXPR is an integer constant other than zero or a
1833 complex constant other than zero. */
1834
1835 int
1836 integer_nonzerop (const_tree expr)
1837 {
1838 STRIP_NOPS (expr);
1839
1840 return ((TREE_CODE (expr) == INTEGER_CST
1841 && (TREE_INT_CST_LOW (expr) != 0
1842 || TREE_INT_CST_HIGH (expr) != 0))
1843 || (TREE_CODE (expr) == COMPLEX_CST
1844 && (integer_nonzerop (TREE_REALPART (expr))
1845 || integer_nonzerop (TREE_IMAGPART (expr)))));
1846 }
1847
1848 /* Return 1 if EXPR is the fixed-point constant zero. */
1849
1850 int
1851 fixed_zerop (const_tree expr)
1852 {
1853 return (TREE_CODE (expr) == FIXED_CST
1854 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1855 }
1856
1857 /* Return the power of two represented by a tree node known to be a
1858 power of two. */
1859
1860 int
1861 tree_log2 (const_tree expr)
1862 {
1863 int prec;
1864 HOST_WIDE_INT high, low;
1865
1866 STRIP_NOPS (expr);
1867
1868 if (TREE_CODE (expr) == COMPLEX_CST)
1869 return tree_log2 (TREE_REALPART (expr));
1870
1871 prec = TYPE_PRECISION (TREE_TYPE (expr));
1872 high = TREE_INT_CST_HIGH (expr);
1873 low = TREE_INT_CST_LOW (expr);
1874
1875 /* First clear all bits that are beyond the type's precision in case
1876 we've been sign extended. */
1877
1878 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1879 ;
1880 else if (prec > HOST_BITS_PER_WIDE_INT)
1881 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1882 else
1883 {
1884 high = 0;
1885 if (prec < HOST_BITS_PER_WIDE_INT)
1886 low &= ~((HOST_WIDE_INT) (-1) << prec);
1887 }
1888
1889 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1890 : exact_log2 (low));
1891 }
1892
1893 /* Similar, but return the largest integer Y such that 2 ** Y is less
1894 than or equal to EXPR. */
1895
1896 int
1897 tree_floor_log2 (const_tree expr)
1898 {
1899 int prec;
1900 HOST_WIDE_INT high, low;
1901
1902 STRIP_NOPS (expr);
1903
1904 if (TREE_CODE (expr) == COMPLEX_CST)
1905 return tree_log2 (TREE_REALPART (expr));
1906
1907 prec = TYPE_PRECISION (TREE_TYPE (expr));
1908 high = TREE_INT_CST_HIGH (expr);
1909 low = TREE_INT_CST_LOW (expr);
1910
1911 /* First clear all bits that are beyond the type's precision in case
1912 we've been sign extended. Ignore if type's precision hasn't been set
1913 since what we are doing is setting it. */
1914
1915 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1916 ;
1917 else if (prec > HOST_BITS_PER_WIDE_INT)
1918 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1919 else
1920 {
1921 high = 0;
1922 if (prec < HOST_BITS_PER_WIDE_INT)
1923 low &= ~((HOST_WIDE_INT) (-1) << prec);
1924 }
1925
1926 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1927 : floor_log2 (low));
1928 }
1929
1930 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1931 decimal float constants, so don't return 1 for them. */
1932
1933 int
1934 real_zerop (const_tree expr)
1935 {
1936 STRIP_NOPS (expr);
1937
1938 return ((TREE_CODE (expr) == REAL_CST
1939 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1940 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1941 || (TREE_CODE (expr) == COMPLEX_CST
1942 && real_zerop (TREE_REALPART (expr))
1943 && real_zerop (TREE_IMAGPART (expr))));
1944 }
1945
1946 /* Return 1 if EXPR is the real constant one in real or complex form.
1947 Trailing zeroes matter for decimal float constants, so don't return
1948 1 for them. */
1949
1950 int
1951 real_onep (const_tree expr)
1952 {
1953 STRIP_NOPS (expr);
1954
1955 return ((TREE_CODE (expr) == REAL_CST
1956 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1957 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1958 || (TREE_CODE (expr) == COMPLEX_CST
1959 && real_onep (TREE_REALPART (expr))
1960 && real_zerop (TREE_IMAGPART (expr))));
1961 }
1962
1963 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1964 for decimal float constants, so don't return 1 for them. */
1965
1966 int
1967 real_twop (const_tree expr)
1968 {
1969 STRIP_NOPS (expr);
1970
1971 return ((TREE_CODE (expr) == REAL_CST
1972 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1973 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1974 || (TREE_CODE (expr) == COMPLEX_CST
1975 && real_twop (TREE_REALPART (expr))
1976 && real_zerop (TREE_IMAGPART (expr))));
1977 }
1978
1979 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1980 matter for decimal float constants, so don't return 1 for them. */
1981
1982 int
1983 real_minus_onep (const_tree expr)
1984 {
1985 STRIP_NOPS (expr);
1986
1987 return ((TREE_CODE (expr) == REAL_CST
1988 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1989 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1990 || (TREE_CODE (expr) == COMPLEX_CST
1991 && real_minus_onep (TREE_REALPART (expr))
1992 && real_zerop (TREE_IMAGPART (expr))));
1993 }
1994
1995 /* Nonzero if EXP is a constant or a cast of a constant. */
1996
1997 int
1998 really_constant_p (const_tree exp)
1999 {
2000 /* This is not quite the same as STRIP_NOPS. It does more. */
2001 while (CONVERT_EXPR_P (exp)
2002 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2003 exp = TREE_OPERAND (exp, 0);
2004 return TREE_CONSTANT (exp);
2005 }
2006 \f
2007 /* Return first list element whose TREE_VALUE is ELEM.
2008 Return 0 if ELEM is not in LIST. */
2009
2010 tree
2011 value_member (tree elem, tree list)
2012 {
2013 while (list)
2014 {
2015 if (elem == TREE_VALUE (list))
2016 return list;
2017 list = TREE_CHAIN (list);
2018 }
2019 return NULL_TREE;
2020 }
2021
2022 /* Return first list element whose TREE_PURPOSE is ELEM.
2023 Return 0 if ELEM is not in LIST. */
2024
2025 tree
2026 purpose_member (const_tree elem, tree list)
2027 {
2028 while (list)
2029 {
2030 if (elem == TREE_PURPOSE (list))
2031 return list;
2032 list = TREE_CHAIN (list);
2033 }
2034 return NULL_TREE;
2035 }
2036
2037 /* Return true if ELEM is in V. */
2038
2039 bool
2040 vec_member (const_tree elem, VEC(tree,gc) *v)
2041 {
2042 unsigned ix;
2043 tree t;
2044 FOR_EACH_VEC_ELT (tree, v, ix, t)
2045 if (elem == t)
2046 return true;
2047 return false;
2048 }
2049
2050 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2051 NULL_TREE. */
2052
2053 tree
2054 chain_index (int idx, tree chain)
2055 {
2056 for (; chain && idx > 0; --idx)
2057 chain = TREE_CHAIN (chain);
2058 return chain;
2059 }
2060
2061 /* Return nonzero if ELEM is part of the chain CHAIN. */
2062
2063 int
2064 chain_member (const_tree elem, const_tree chain)
2065 {
2066 while (chain)
2067 {
2068 if (elem == chain)
2069 return 1;
2070 chain = DECL_CHAIN (chain);
2071 }
2072
2073 return 0;
2074 }
2075
2076 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2077 We expect a null pointer to mark the end of the chain.
2078 This is the Lisp primitive `length'. */
2079
2080 int
2081 list_length (const_tree t)
2082 {
2083 const_tree p = t;
2084 #ifdef ENABLE_TREE_CHECKING
2085 const_tree q = t;
2086 #endif
2087 int len = 0;
2088
2089 while (p)
2090 {
2091 p = TREE_CHAIN (p);
2092 #ifdef ENABLE_TREE_CHECKING
2093 if (len % 2)
2094 q = TREE_CHAIN (q);
2095 gcc_assert (p != q);
2096 #endif
2097 len++;
2098 }
2099
2100 return len;
2101 }
2102
2103 /* Returns the number of FIELD_DECLs in TYPE. */
2104
2105 int
2106 fields_length (const_tree type)
2107 {
2108 tree t = TYPE_FIELDS (type);
2109 int count = 0;
2110
2111 for (; t; t = DECL_CHAIN (t))
2112 if (TREE_CODE (t) == FIELD_DECL)
2113 ++count;
2114
2115 return count;
2116 }
2117
2118 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2119 UNION_TYPE TYPE, or NULL_TREE if none. */
2120
2121 tree
2122 first_field (const_tree type)
2123 {
2124 tree t = TYPE_FIELDS (type);
2125 while (t && TREE_CODE (t) != FIELD_DECL)
2126 t = TREE_CHAIN (t);
2127 return t;
2128 }
2129
2130 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2131 by modifying the last node in chain 1 to point to chain 2.
2132 This is the Lisp primitive `nconc'. */
2133
2134 tree
2135 chainon (tree op1, tree op2)
2136 {
2137 tree t1;
2138
2139 if (!op1)
2140 return op2;
2141 if (!op2)
2142 return op1;
2143
2144 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2145 continue;
2146 TREE_CHAIN (t1) = op2;
2147
2148 #ifdef ENABLE_TREE_CHECKING
2149 {
2150 tree t2;
2151 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2152 gcc_assert (t2 != t1);
2153 }
2154 #endif
2155
2156 return op1;
2157 }
2158
2159 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2160
2161 tree
2162 tree_last (tree chain)
2163 {
2164 tree next;
2165 if (chain)
2166 while ((next = TREE_CHAIN (chain)))
2167 chain = next;
2168 return chain;
2169 }
2170
2171 /* Reverse the order of elements in the chain T,
2172 and return the new head of the chain (old last element). */
2173
2174 tree
2175 nreverse (tree t)
2176 {
2177 tree prev = 0, decl, next;
2178 for (decl = t; decl; decl = next)
2179 {
2180 /* We shouldn't be using this function to reverse BLOCK chains; we
2181 have blocks_nreverse for that. */
2182 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2183 next = TREE_CHAIN (decl);
2184 TREE_CHAIN (decl) = prev;
2185 prev = decl;
2186 }
2187 return prev;
2188 }
2189 \f
2190 /* Return a newly created TREE_LIST node whose
2191 purpose and value fields are PARM and VALUE. */
2192
2193 tree
2194 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2195 {
2196 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2197 TREE_PURPOSE (t) = parm;
2198 TREE_VALUE (t) = value;
2199 return t;
2200 }
2201
2202 /* Build a chain of TREE_LIST nodes from a vector. */
2203
2204 tree
2205 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2206 {
2207 tree ret = NULL_TREE;
2208 tree *pp = &ret;
2209 unsigned int i;
2210 tree t;
2211 FOR_EACH_VEC_ELT (tree, vec, i, t)
2212 {
2213 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2214 pp = &TREE_CHAIN (*pp);
2215 }
2216 return ret;
2217 }
2218
2219 /* Return a newly created TREE_LIST node whose
2220 purpose and value fields are PURPOSE and VALUE
2221 and whose TREE_CHAIN is CHAIN. */
2222
2223 tree
2224 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2225 {
2226 tree node;
2227
2228 node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list)
2229 PASS_MEM_STAT);
2230 memset (node, 0, sizeof (struct tree_common));
2231
2232 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2233
2234 TREE_SET_CODE (node, TREE_LIST);
2235 TREE_CHAIN (node) = chain;
2236 TREE_PURPOSE (node) = purpose;
2237 TREE_VALUE (node) = value;
2238 return node;
2239 }
2240
2241 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2242 trees. */
2243
2244 VEC(tree,gc) *
2245 ctor_to_vec (tree ctor)
2246 {
2247 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2248 unsigned int ix;
2249 tree val;
2250
2251 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2252 VEC_quick_push (tree, vec, val);
2253
2254 return vec;
2255 }
2256 \f
2257 /* Return the size nominally occupied by an object of type TYPE
2258 when it resides in memory. The value is measured in units of bytes,
2259 and its data type is that normally used for type sizes
2260 (which is the first type created by make_signed_type or
2261 make_unsigned_type). */
2262
2263 tree
2264 size_in_bytes (const_tree type)
2265 {
2266 tree t;
2267
2268 if (type == error_mark_node)
2269 return integer_zero_node;
2270
2271 type = TYPE_MAIN_VARIANT (type);
2272 t = TYPE_SIZE_UNIT (type);
2273
2274 if (t == 0)
2275 {
2276 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2277 return size_zero_node;
2278 }
2279
2280 return t;
2281 }
2282
2283 /* Return the size of TYPE (in bytes) as a wide integer
2284 or return -1 if the size can vary or is larger than an integer. */
2285
2286 HOST_WIDE_INT
2287 int_size_in_bytes (const_tree type)
2288 {
2289 tree t;
2290
2291 if (type == error_mark_node)
2292 return 0;
2293
2294 type = TYPE_MAIN_VARIANT (type);
2295 t = TYPE_SIZE_UNIT (type);
2296 if (t == 0
2297 || TREE_CODE (t) != INTEGER_CST
2298 || TREE_INT_CST_HIGH (t) != 0
2299 /* If the result would appear negative, it's too big to represent. */
2300 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2301 return -1;
2302
2303 return TREE_INT_CST_LOW (t);
2304 }
2305
2306 /* Return the maximum size of TYPE (in bytes) as a wide integer
2307 or return -1 if the size can vary or is larger than an integer. */
2308
2309 HOST_WIDE_INT
2310 max_int_size_in_bytes (const_tree type)
2311 {
2312 HOST_WIDE_INT size = -1;
2313 tree size_tree;
2314
2315 /* If this is an array type, check for a possible MAX_SIZE attached. */
2316
2317 if (TREE_CODE (type) == ARRAY_TYPE)
2318 {
2319 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2320
2321 if (size_tree && host_integerp (size_tree, 1))
2322 size = tree_low_cst (size_tree, 1);
2323 }
2324
2325 /* If we still haven't been able to get a size, see if the language
2326 can compute a maximum size. */
2327
2328 if (size == -1)
2329 {
2330 size_tree = lang_hooks.types.max_size (type);
2331
2332 if (size_tree && host_integerp (size_tree, 1))
2333 size = tree_low_cst (size_tree, 1);
2334 }
2335
2336 return size;
2337 }
2338
2339 /* Returns a tree for the size of EXP in bytes. */
2340
2341 tree
2342 tree_expr_size (const_tree exp)
2343 {
2344 if (DECL_P (exp)
2345 && DECL_SIZE_UNIT (exp) != 0)
2346 return DECL_SIZE_UNIT (exp);
2347 else
2348 return size_in_bytes (TREE_TYPE (exp));
2349 }
2350 \f
2351 /* Return the bit position of FIELD, in bits from the start of the record.
2352 This is a tree of type bitsizetype. */
2353
2354 tree
2355 bit_position (const_tree field)
2356 {
2357 return bit_from_pos (DECL_FIELD_OFFSET (field),
2358 DECL_FIELD_BIT_OFFSET (field));
2359 }
2360
2361 /* Likewise, but return as an integer. It must be representable in
2362 that way (since it could be a signed value, we don't have the
2363 option of returning -1 like int_size_in_byte can. */
2364
2365 HOST_WIDE_INT
2366 int_bit_position (const_tree field)
2367 {
2368 return tree_low_cst (bit_position (field), 0);
2369 }
2370 \f
2371 /* Return the byte position of FIELD, in bytes from the start of the record.
2372 This is a tree of type sizetype. */
2373
2374 tree
2375 byte_position (const_tree field)
2376 {
2377 return byte_from_pos (DECL_FIELD_OFFSET (field),
2378 DECL_FIELD_BIT_OFFSET (field));
2379 }
2380
2381 /* Likewise, but return as an integer. It must be representable in
2382 that way (since it could be a signed value, we don't have the
2383 option of returning -1 like int_size_in_byte can. */
2384
2385 HOST_WIDE_INT
2386 int_byte_position (const_tree field)
2387 {
2388 return tree_low_cst (byte_position (field), 0);
2389 }
2390 \f
2391 /* Return the strictest alignment, in bits, that T is known to have. */
2392
2393 unsigned int
2394 expr_align (const_tree t)
2395 {
2396 unsigned int align0, align1;
2397
2398 switch (TREE_CODE (t))
2399 {
2400 CASE_CONVERT: case NON_LVALUE_EXPR:
2401 /* If we have conversions, we know that the alignment of the
2402 object must meet each of the alignments of the types. */
2403 align0 = expr_align (TREE_OPERAND (t, 0));
2404 align1 = TYPE_ALIGN (TREE_TYPE (t));
2405 return MAX (align0, align1);
2406
2407 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2408 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2409 case CLEANUP_POINT_EXPR:
2410 /* These don't change the alignment of an object. */
2411 return expr_align (TREE_OPERAND (t, 0));
2412
2413 case COND_EXPR:
2414 /* The best we can do is say that the alignment is the least aligned
2415 of the two arms. */
2416 align0 = expr_align (TREE_OPERAND (t, 1));
2417 align1 = expr_align (TREE_OPERAND (t, 2));
2418 return MIN (align0, align1);
2419
2420 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2421 meaningfully, it's always 1. */
2422 case LABEL_DECL: case CONST_DECL:
2423 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2424 case FUNCTION_DECL:
2425 gcc_assert (DECL_ALIGN (t) != 0);
2426 return DECL_ALIGN (t);
2427
2428 default:
2429 break;
2430 }
2431
2432 /* Otherwise take the alignment from that of the type. */
2433 return TYPE_ALIGN (TREE_TYPE (t));
2434 }
2435 \f
2436 /* Return, as a tree node, the number of elements for TYPE (which is an
2437 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2438
2439 tree
2440 array_type_nelts (const_tree type)
2441 {
2442 tree index_type, min, max;
2443
2444 /* If they did it with unspecified bounds, then we should have already
2445 given an error about it before we got here. */
2446 if (! TYPE_DOMAIN (type))
2447 return error_mark_node;
2448
2449 index_type = TYPE_DOMAIN (type);
2450 min = TYPE_MIN_VALUE (index_type);
2451 max = TYPE_MAX_VALUE (index_type);
2452
2453 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
2454 if (!max)
2455 return error_mark_node;
2456
2457 return (integer_zerop (min)
2458 ? max
2459 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2460 }
2461 \f
2462 /* If arg is static -- a reference to an object in static storage -- then
2463 return the object. This is not the same as the C meaning of `static'.
2464 If arg isn't static, return NULL. */
2465
2466 tree
2467 staticp (tree arg)
2468 {
2469 switch (TREE_CODE (arg))
2470 {
2471 case FUNCTION_DECL:
2472 /* Nested functions are static, even though taking their address will
2473 involve a trampoline as we unnest the nested function and create
2474 the trampoline on the tree level. */
2475 return arg;
2476
2477 case VAR_DECL:
2478 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2479 && ! DECL_THREAD_LOCAL_P (arg)
2480 && ! DECL_DLLIMPORT_P (arg)
2481 ? arg : NULL);
2482
2483 case CONST_DECL:
2484 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2485 ? arg : NULL);
2486
2487 case CONSTRUCTOR:
2488 return TREE_STATIC (arg) ? arg : NULL;
2489
2490 case LABEL_DECL:
2491 case STRING_CST:
2492 return arg;
2493
2494 case COMPONENT_REF:
2495 /* If the thing being referenced is not a field, then it is
2496 something language specific. */
2497 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2498
2499 /* If we are referencing a bitfield, we can't evaluate an
2500 ADDR_EXPR at compile time and so it isn't a constant. */
2501 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2502 return NULL;
2503
2504 return staticp (TREE_OPERAND (arg, 0));
2505
2506 case BIT_FIELD_REF:
2507 return NULL;
2508
2509 case INDIRECT_REF:
2510 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2511
2512 case ARRAY_REF:
2513 case ARRAY_RANGE_REF:
2514 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2515 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2516 return staticp (TREE_OPERAND (arg, 0));
2517 else
2518 return NULL;
2519
2520 case COMPOUND_LITERAL_EXPR:
2521 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2522
2523 default:
2524 return NULL;
2525 }
2526 }
2527
2528 \f
2529
2530
2531 /* Return whether OP is a DECL whose address is function-invariant. */
2532
2533 bool
2534 decl_address_invariant_p (const_tree op)
2535 {
2536 /* The conditions below are slightly less strict than the one in
2537 staticp. */
2538
2539 switch (TREE_CODE (op))
2540 {
2541 case PARM_DECL:
2542 case RESULT_DECL:
2543 case LABEL_DECL:
2544 case FUNCTION_DECL:
2545 return true;
2546
2547 case VAR_DECL:
2548 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2549 || DECL_THREAD_LOCAL_P (op)
2550 || DECL_CONTEXT (op) == current_function_decl
2551 || decl_function_context (op) == current_function_decl)
2552 return true;
2553 break;
2554
2555 case CONST_DECL:
2556 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2557 || decl_function_context (op) == current_function_decl)
2558 return true;
2559 break;
2560
2561 default:
2562 break;
2563 }
2564
2565 return false;
2566 }
2567
2568 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2569
2570 bool
2571 decl_address_ip_invariant_p (const_tree op)
2572 {
2573 /* The conditions below are slightly less strict than the one in
2574 staticp. */
2575
2576 switch (TREE_CODE (op))
2577 {
2578 case LABEL_DECL:
2579 case FUNCTION_DECL:
2580 case STRING_CST:
2581 return true;
2582
2583 case VAR_DECL:
2584 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2585 && !DECL_DLLIMPORT_P (op))
2586 || DECL_THREAD_LOCAL_P (op))
2587 return true;
2588 break;
2589
2590 case CONST_DECL:
2591 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2592 return true;
2593 break;
2594
2595 default:
2596 break;
2597 }
2598
2599 return false;
2600 }
2601
2602
2603 /* Return true if T is function-invariant (internal function, does
2604 not handle arithmetic; that's handled in skip_simple_arithmetic and
2605 tree_invariant_p). */
2606
2607 static bool tree_invariant_p (tree t);
2608
2609 static bool
2610 tree_invariant_p_1 (tree t)
2611 {
2612 tree op;
2613
2614 if (TREE_CONSTANT (t)
2615 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2616 return true;
2617
2618 switch (TREE_CODE (t))
2619 {
2620 case SAVE_EXPR:
2621 return true;
2622
2623 case ADDR_EXPR:
2624 op = TREE_OPERAND (t, 0);
2625 while (handled_component_p (op))
2626 {
2627 switch (TREE_CODE (op))
2628 {
2629 case ARRAY_REF:
2630 case ARRAY_RANGE_REF:
2631 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2632 || TREE_OPERAND (op, 2) != NULL_TREE
2633 || TREE_OPERAND (op, 3) != NULL_TREE)
2634 return false;
2635 break;
2636
2637 case COMPONENT_REF:
2638 if (TREE_OPERAND (op, 2) != NULL_TREE)
2639 return false;
2640 break;
2641
2642 default:;
2643 }
2644 op = TREE_OPERAND (op, 0);
2645 }
2646
2647 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2648
2649 default:
2650 break;
2651 }
2652
2653 return false;
2654 }
2655
2656 /* Return true if T is function-invariant. */
2657
2658 static bool
2659 tree_invariant_p (tree t)
2660 {
2661 tree inner = skip_simple_arithmetic (t);
2662 return tree_invariant_p_1 (inner);
2663 }
2664
2665 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2666 Do this to any expression which may be used in more than one place,
2667 but must be evaluated only once.
2668
2669 Normally, expand_expr would reevaluate the expression each time.
2670 Calling save_expr produces something that is evaluated and recorded
2671 the first time expand_expr is called on it. Subsequent calls to
2672 expand_expr just reuse the recorded value.
2673
2674 The call to expand_expr that generates code that actually computes
2675 the value is the first call *at compile time*. Subsequent calls
2676 *at compile time* generate code to use the saved value.
2677 This produces correct result provided that *at run time* control
2678 always flows through the insns made by the first expand_expr
2679 before reaching the other places where the save_expr was evaluated.
2680 You, the caller of save_expr, must make sure this is so.
2681
2682 Constants, and certain read-only nodes, are returned with no
2683 SAVE_EXPR because that is safe. Expressions containing placeholders
2684 are not touched; see tree.def for an explanation of what these
2685 are used for. */
2686
2687 tree
2688 save_expr (tree expr)
2689 {
2690 tree t = fold (expr);
2691 tree inner;
2692
2693 /* If the tree evaluates to a constant, then we don't want to hide that
2694 fact (i.e. this allows further folding, and direct checks for constants).
2695 However, a read-only object that has side effects cannot be bypassed.
2696 Since it is no problem to reevaluate literals, we just return the
2697 literal node. */
2698 inner = skip_simple_arithmetic (t);
2699 if (TREE_CODE (inner) == ERROR_MARK)
2700 return inner;
2701
2702 if (tree_invariant_p_1 (inner))
2703 return t;
2704
2705 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2706 it means that the size or offset of some field of an object depends on
2707 the value within another field.
2708
2709 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2710 and some variable since it would then need to be both evaluated once and
2711 evaluated more than once. Front-ends must assure this case cannot
2712 happen by surrounding any such subexpressions in their own SAVE_EXPR
2713 and forcing evaluation at the proper time. */
2714 if (contains_placeholder_p (inner))
2715 return t;
2716
2717 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2718 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2719
2720 /* This expression might be placed ahead of a jump to ensure that the
2721 value was computed on both sides of the jump. So make sure it isn't
2722 eliminated as dead. */
2723 TREE_SIDE_EFFECTS (t) = 1;
2724 return t;
2725 }
2726
2727 /* Look inside EXPR and into any simple arithmetic operations. Return
2728 the innermost non-arithmetic node. */
2729
2730 tree
2731 skip_simple_arithmetic (tree expr)
2732 {
2733 tree inner;
2734
2735 /* We don't care about whether this can be used as an lvalue in this
2736 context. */
2737 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2738 expr = TREE_OPERAND (expr, 0);
2739
2740 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2741 a constant, it will be more efficient to not make another SAVE_EXPR since
2742 it will allow better simplification and GCSE will be able to merge the
2743 computations if they actually occur. */
2744 inner = expr;
2745 while (1)
2746 {
2747 if (UNARY_CLASS_P (inner))
2748 inner = TREE_OPERAND (inner, 0);
2749 else if (BINARY_CLASS_P (inner))
2750 {
2751 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2752 inner = TREE_OPERAND (inner, 0);
2753 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2754 inner = TREE_OPERAND (inner, 1);
2755 else
2756 break;
2757 }
2758 else
2759 break;
2760 }
2761
2762 return inner;
2763 }
2764
2765
2766 /* Return which tree structure is used by T. */
2767
2768 enum tree_node_structure_enum
2769 tree_node_structure (const_tree t)
2770 {
2771 const enum tree_code code = TREE_CODE (t);
2772 return tree_node_structure_for_code (code);
2773 }
2774
2775 /* Set various status flags when building a CALL_EXPR object T. */
2776
2777 static void
2778 process_call_operands (tree t)
2779 {
2780 bool side_effects = TREE_SIDE_EFFECTS (t);
2781 bool read_only = false;
2782 int i = call_expr_flags (t);
2783
2784 /* Calls have side-effects, except those to const or pure functions. */
2785 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2786 side_effects = true;
2787 /* Propagate TREE_READONLY of arguments for const functions. */
2788 if (i & ECF_CONST)
2789 read_only = true;
2790
2791 if (!side_effects || read_only)
2792 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2793 {
2794 tree op = TREE_OPERAND (t, i);
2795 if (op && TREE_SIDE_EFFECTS (op))
2796 side_effects = true;
2797 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2798 read_only = false;
2799 }
2800
2801 TREE_SIDE_EFFECTS (t) = side_effects;
2802 TREE_READONLY (t) = read_only;
2803 }
2804 \f
2805 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
2806 size or offset that depends on a field within a record. */
2807
2808 bool
2809 contains_placeholder_p (const_tree exp)
2810 {
2811 enum tree_code code;
2812
2813 if (!exp)
2814 return 0;
2815
2816 code = TREE_CODE (exp);
2817 if (code == PLACEHOLDER_EXPR)
2818 return 1;
2819
2820 switch (TREE_CODE_CLASS (code))
2821 {
2822 case tcc_reference:
2823 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2824 position computations since they will be converted into a
2825 WITH_RECORD_EXPR involving the reference, which will assume
2826 here will be valid. */
2827 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2828
2829 case tcc_exceptional:
2830 if (code == TREE_LIST)
2831 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2832 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2833 break;
2834
2835 case tcc_unary:
2836 case tcc_binary:
2837 case tcc_comparison:
2838 case tcc_expression:
2839 switch (code)
2840 {
2841 case COMPOUND_EXPR:
2842 /* Ignoring the first operand isn't quite right, but works best. */
2843 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2844
2845 case COND_EXPR:
2846 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2847 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2848 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2849
2850 case SAVE_EXPR:
2851 /* The save_expr function never wraps anything containing
2852 a PLACEHOLDER_EXPR. */
2853 return 0;
2854
2855 default:
2856 break;
2857 }
2858
2859 switch (TREE_CODE_LENGTH (code))
2860 {
2861 case 1:
2862 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2863 case 2:
2864 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2865 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2866 default:
2867 return 0;
2868 }
2869
2870 case tcc_vl_exp:
2871 switch (code)
2872 {
2873 case CALL_EXPR:
2874 {
2875 const_tree arg;
2876 const_call_expr_arg_iterator iter;
2877 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2878 if (CONTAINS_PLACEHOLDER_P (arg))
2879 return 1;
2880 return 0;
2881 }
2882 default:
2883 return 0;
2884 }
2885
2886 default:
2887 return 0;
2888 }
2889 return 0;
2890 }
2891
2892 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
2893 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
2894 field positions. */
2895
2896 static bool
2897 type_contains_placeholder_1 (const_tree type)
2898 {
2899 /* If the size contains a placeholder or the parent type (component type in
2900 the case of arrays) type involves a placeholder, this type does. */
2901 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2902 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2903 || (!POINTER_TYPE_P (type)
2904 && TREE_TYPE (type)
2905 && type_contains_placeholder_p (TREE_TYPE (type))))
2906 return true;
2907
2908 /* Now do type-specific checks. Note that the last part of the check above
2909 greatly limits what we have to do below. */
2910 switch (TREE_CODE (type))
2911 {
2912 case VOID_TYPE:
2913 case COMPLEX_TYPE:
2914 case ENUMERAL_TYPE:
2915 case BOOLEAN_TYPE:
2916 case POINTER_TYPE:
2917 case OFFSET_TYPE:
2918 case REFERENCE_TYPE:
2919 case METHOD_TYPE:
2920 case FUNCTION_TYPE:
2921 case VECTOR_TYPE:
2922 return false;
2923
2924 case INTEGER_TYPE:
2925 case REAL_TYPE:
2926 case FIXED_POINT_TYPE:
2927 /* Here we just check the bounds. */
2928 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2929 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2930
2931 case ARRAY_TYPE:
2932 /* We have already checked the component type above, so just check the
2933 domain type. */
2934 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2935
2936 case RECORD_TYPE:
2937 case UNION_TYPE:
2938 case QUAL_UNION_TYPE:
2939 {
2940 tree field;
2941
2942 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2943 if (TREE_CODE (field) == FIELD_DECL
2944 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2945 || (TREE_CODE (type) == QUAL_UNION_TYPE
2946 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2947 || type_contains_placeholder_p (TREE_TYPE (field))))
2948 return true;
2949
2950 return false;
2951 }
2952
2953 default:
2954 gcc_unreachable ();
2955 }
2956 }
2957
2958 /* Wrapper around above function used to cache its result. */
2959
2960 bool
2961 type_contains_placeholder_p (tree type)
2962 {
2963 bool result;
2964
2965 /* If the contains_placeholder_bits field has been initialized,
2966 then we know the answer. */
2967 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2968 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2969
2970 /* Indicate that we've seen this type node, and the answer is false.
2971 This is what we want to return if we run into recursion via fields. */
2972 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2973
2974 /* Compute the real value. */
2975 result = type_contains_placeholder_1 (type);
2976
2977 /* Store the real value. */
2978 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2979
2980 return result;
2981 }
2982 \f
2983 /* Push tree EXP onto vector QUEUE if it is not already present. */
2984
2985 static void
2986 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2987 {
2988 unsigned int i;
2989 tree iter;
2990
2991 FOR_EACH_VEC_ELT (tree, *queue, i, iter)
2992 if (simple_cst_equal (iter, exp) == 1)
2993 break;
2994
2995 if (!iter)
2996 VEC_safe_push (tree, heap, *queue, exp);
2997 }
2998
2999 /* Given a tree EXP, find all occurences of references to fields
3000 in a PLACEHOLDER_EXPR and place them in vector REFS without
3001 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3002 we assume here that EXP contains only arithmetic expressions
3003 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3004 argument list. */
3005
3006 void
3007 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
3008 {
3009 enum tree_code code = TREE_CODE (exp);
3010 tree inner;
3011 int i;
3012
3013 /* We handle TREE_LIST and COMPONENT_REF separately. */
3014 if (code == TREE_LIST)
3015 {
3016 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3017 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3018 }
3019 else if (code == COMPONENT_REF)
3020 {
3021 for (inner = TREE_OPERAND (exp, 0);
3022 REFERENCE_CLASS_P (inner);
3023 inner = TREE_OPERAND (inner, 0))
3024 ;
3025
3026 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3027 push_without_duplicates (exp, refs);
3028 else
3029 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3030 }
3031 else
3032 switch (TREE_CODE_CLASS (code))
3033 {
3034 case tcc_constant:
3035 break;
3036
3037 case tcc_declaration:
3038 /* Variables allocated to static storage can stay. */
3039 if (!TREE_STATIC (exp))
3040 push_without_duplicates (exp, refs);
3041 break;
3042
3043 case tcc_expression:
3044 /* This is the pattern built in ada/make_aligning_type. */
3045 if (code == ADDR_EXPR
3046 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3047 {
3048 push_without_duplicates (exp, refs);
3049 break;
3050 }
3051
3052 /* Fall through... */
3053
3054 case tcc_exceptional:
3055 case tcc_unary:
3056 case tcc_binary:
3057 case tcc_comparison:
3058 case tcc_reference:
3059 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3060 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3061 break;
3062
3063 case tcc_vl_exp:
3064 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3065 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3066 break;
3067
3068 default:
3069 gcc_unreachable ();
3070 }
3071 }
3072
3073 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3074 return a tree with all occurrences of references to F in a
3075 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3076 CONST_DECLs. Note that we assume here that EXP contains only
3077 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3078 occurring only in their argument list. */
3079
3080 tree
3081 substitute_in_expr (tree exp, tree f, tree r)
3082 {
3083 enum tree_code code = TREE_CODE (exp);
3084 tree op0, op1, op2, op3;
3085 tree new_tree;
3086
3087 /* We handle TREE_LIST and COMPONENT_REF separately. */
3088 if (code == TREE_LIST)
3089 {
3090 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3091 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3092 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3093 return exp;
3094
3095 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3096 }
3097 else if (code == COMPONENT_REF)
3098 {
3099 tree inner;
3100
3101 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3102 and it is the right field, replace it with R. */
3103 for (inner = TREE_OPERAND (exp, 0);
3104 REFERENCE_CLASS_P (inner);
3105 inner = TREE_OPERAND (inner, 0))
3106 ;
3107
3108 /* The field. */
3109 op1 = TREE_OPERAND (exp, 1);
3110
3111 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3112 return r;
3113
3114 /* If this expression hasn't been completed let, leave it alone. */
3115 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3116 return exp;
3117
3118 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3119 if (op0 == TREE_OPERAND (exp, 0))
3120 return exp;
3121
3122 new_tree
3123 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3124 }
3125 else
3126 switch (TREE_CODE_CLASS (code))
3127 {
3128 case tcc_constant:
3129 return exp;
3130
3131 case tcc_declaration:
3132 if (exp == f)
3133 return r;
3134 else
3135 return exp;
3136
3137 case tcc_expression:
3138 if (exp == f)
3139 return r;
3140
3141 /* Fall through... */
3142
3143 case tcc_exceptional:
3144 case tcc_unary:
3145 case tcc_binary:
3146 case tcc_comparison:
3147 case tcc_reference:
3148 switch (TREE_CODE_LENGTH (code))
3149 {
3150 case 0:
3151 return exp;
3152
3153 case 1:
3154 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3155 if (op0 == TREE_OPERAND (exp, 0))
3156 return exp;
3157
3158 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3159 break;
3160
3161 case 2:
3162 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3163 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3164
3165 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3166 return exp;
3167
3168 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3169 break;
3170
3171 case 3:
3172 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3173 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3174 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3175
3176 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3177 && op2 == TREE_OPERAND (exp, 2))
3178 return exp;
3179
3180 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3181 break;
3182
3183 case 4:
3184 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3185 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3186 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3187 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3188
3189 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3190 && op2 == TREE_OPERAND (exp, 2)
3191 && op3 == TREE_OPERAND (exp, 3))
3192 return exp;
3193
3194 new_tree
3195 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3196 break;
3197
3198 default:
3199 gcc_unreachable ();
3200 }
3201 break;
3202
3203 case tcc_vl_exp:
3204 {
3205 int i;
3206
3207 new_tree = NULL_TREE;
3208
3209 /* If we are trying to replace F with a constant, inline back
3210 functions which do nothing else than computing a value from
3211 the arguments they are passed. This makes it possible to
3212 fold partially or entirely the replacement expression. */
3213 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3214 {
3215 tree t = maybe_inline_call_in_expr (exp);
3216 if (t)
3217 return SUBSTITUTE_IN_EXPR (t, f, r);
3218 }
3219
3220 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3221 {
3222 tree op = TREE_OPERAND (exp, i);
3223 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3224 if (new_op != op)
3225 {
3226 if (!new_tree)
3227 new_tree = copy_node (exp);
3228 TREE_OPERAND (new_tree, i) = new_op;
3229 }
3230 }
3231
3232 if (new_tree)
3233 {
3234 new_tree = fold (new_tree);
3235 if (TREE_CODE (new_tree) == CALL_EXPR)
3236 process_call_operands (new_tree);
3237 }
3238 else
3239 return exp;
3240 }
3241 break;
3242
3243 default:
3244 gcc_unreachable ();
3245 }
3246
3247 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3248
3249 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3250 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3251
3252 return new_tree;
3253 }
3254
3255 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3256 for it within OBJ, a tree that is an object or a chain of references. */
3257
3258 tree
3259 substitute_placeholder_in_expr (tree exp, tree obj)
3260 {
3261 enum tree_code code = TREE_CODE (exp);
3262 tree op0, op1, op2, op3;
3263 tree new_tree;
3264
3265 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3266 in the chain of OBJ. */
3267 if (code == PLACEHOLDER_EXPR)
3268 {
3269 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3270 tree elt;
3271
3272 for (elt = obj; elt != 0;
3273 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3274 || TREE_CODE (elt) == COND_EXPR)
3275 ? TREE_OPERAND (elt, 1)
3276 : (REFERENCE_CLASS_P (elt)
3277 || UNARY_CLASS_P (elt)
3278 || BINARY_CLASS_P (elt)
3279 || VL_EXP_CLASS_P (elt)
3280 || EXPRESSION_CLASS_P (elt))
3281 ? TREE_OPERAND (elt, 0) : 0))
3282 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3283 return elt;
3284
3285 for (elt = obj; elt != 0;
3286 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3287 || TREE_CODE (elt) == COND_EXPR)
3288 ? TREE_OPERAND (elt, 1)
3289 : (REFERENCE_CLASS_P (elt)
3290 || UNARY_CLASS_P (elt)
3291 || BINARY_CLASS_P (elt)
3292 || VL_EXP_CLASS_P (elt)
3293 || EXPRESSION_CLASS_P (elt))
3294 ? TREE_OPERAND (elt, 0) : 0))
3295 if (POINTER_TYPE_P (TREE_TYPE (elt))
3296 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3297 == need_type))
3298 return fold_build1 (INDIRECT_REF, need_type, elt);
3299
3300 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3301 survives until RTL generation, there will be an error. */
3302 return exp;
3303 }
3304
3305 /* TREE_LIST is special because we need to look at TREE_VALUE
3306 and TREE_CHAIN, not TREE_OPERANDS. */
3307 else if (code == TREE_LIST)
3308 {
3309 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3310 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3311 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3312 return exp;
3313
3314 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3315 }
3316 else
3317 switch (TREE_CODE_CLASS (code))
3318 {
3319 case tcc_constant:
3320 case tcc_declaration:
3321 return exp;
3322
3323 case tcc_exceptional:
3324 case tcc_unary:
3325 case tcc_binary:
3326 case tcc_comparison:
3327 case tcc_expression:
3328 case tcc_reference:
3329 case tcc_statement:
3330 switch (TREE_CODE_LENGTH (code))
3331 {
3332 case 0:
3333 return exp;
3334
3335 case 1:
3336 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3337 if (op0 == TREE_OPERAND (exp, 0))
3338 return exp;
3339
3340 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3341 break;
3342
3343 case 2:
3344 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3345 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3346
3347 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3348 return exp;
3349
3350 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3351 break;
3352
3353 case 3:
3354 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3355 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3356 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3357
3358 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3359 && op2 == TREE_OPERAND (exp, 2))
3360 return exp;
3361
3362 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3363 break;
3364
3365 case 4:
3366 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3367 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3368 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3369 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3370
3371 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3372 && op2 == TREE_OPERAND (exp, 2)
3373 && op3 == TREE_OPERAND (exp, 3))
3374 return exp;
3375
3376 new_tree
3377 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3378 break;
3379
3380 default:
3381 gcc_unreachable ();
3382 }
3383 break;
3384
3385 case tcc_vl_exp:
3386 {
3387 int i;
3388
3389 new_tree = NULL_TREE;
3390
3391 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3392 {
3393 tree op = TREE_OPERAND (exp, i);
3394 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3395 if (new_op != op)
3396 {
3397 if (!new_tree)
3398 new_tree = copy_node (exp);
3399 TREE_OPERAND (new_tree, i) = new_op;
3400 }
3401 }
3402
3403 if (new_tree)
3404 {
3405 new_tree = fold (new_tree);
3406 if (TREE_CODE (new_tree) == CALL_EXPR)
3407 process_call_operands (new_tree);
3408 }
3409 else
3410 return exp;
3411 }
3412 break;
3413
3414 default:
3415 gcc_unreachable ();
3416 }
3417
3418 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3419
3420 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3421 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3422
3423 return new_tree;
3424 }
3425 \f
3426 /* Stabilize a reference so that we can use it any number of times
3427 without causing its operands to be evaluated more than once.
3428 Returns the stabilized reference. This works by means of save_expr,
3429 so see the caveats in the comments about save_expr.
3430
3431 Also allows conversion expressions whose operands are references.
3432 Any other kind of expression is returned unchanged. */
3433
3434 tree
3435 stabilize_reference (tree ref)
3436 {
3437 tree result;
3438 enum tree_code code = TREE_CODE (ref);
3439
3440 switch (code)
3441 {
3442 case VAR_DECL:
3443 case PARM_DECL:
3444 case RESULT_DECL:
3445 /* No action is needed in this case. */
3446 return ref;
3447
3448 CASE_CONVERT:
3449 case FLOAT_EXPR:
3450 case FIX_TRUNC_EXPR:
3451 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3452 break;
3453
3454 case INDIRECT_REF:
3455 result = build_nt (INDIRECT_REF,
3456 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3457 break;
3458
3459 case COMPONENT_REF:
3460 result = build_nt (COMPONENT_REF,
3461 stabilize_reference (TREE_OPERAND (ref, 0)),
3462 TREE_OPERAND (ref, 1), NULL_TREE);
3463 break;
3464
3465 case BIT_FIELD_REF:
3466 result = build_nt (BIT_FIELD_REF,
3467 stabilize_reference (TREE_OPERAND (ref, 0)),
3468 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3469 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3470 break;
3471
3472 case ARRAY_REF:
3473 result = build_nt (ARRAY_REF,
3474 stabilize_reference (TREE_OPERAND (ref, 0)),
3475 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3476 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3477 break;
3478
3479 case ARRAY_RANGE_REF:
3480 result = build_nt (ARRAY_RANGE_REF,
3481 stabilize_reference (TREE_OPERAND (ref, 0)),
3482 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3483 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3484 break;
3485
3486 case COMPOUND_EXPR:
3487 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3488 it wouldn't be ignored. This matters when dealing with
3489 volatiles. */
3490 return stabilize_reference_1 (ref);
3491
3492 /* If arg isn't a kind of lvalue we recognize, make no change.
3493 Caller should recognize the error for an invalid lvalue. */
3494 default:
3495 return ref;
3496
3497 case ERROR_MARK:
3498 return error_mark_node;
3499 }
3500
3501 TREE_TYPE (result) = TREE_TYPE (ref);
3502 TREE_READONLY (result) = TREE_READONLY (ref);
3503 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3504 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3505
3506 return result;
3507 }
3508
3509 /* Subroutine of stabilize_reference; this is called for subtrees of
3510 references. Any expression with side-effects must be put in a SAVE_EXPR
3511 to ensure that it is only evaluated once.
3512
3513 We don't put SAVE_EXPR nodes around everything, because assigning very
3514 simple expressions to temporaries causes us to miss good opportunities
3515 for optimizations. Among other things, the opportunity to fold in the
3516 addition of a constant into an addressing mode often gets lost, e.g.
3517 "y[i+1] += x;". In general, we take the approach that we should not make
3518 an assignment unless we are forced into it - i.e., that any non-side effect
3519 operator should be allowed, and that cse should take care of coalescing
3520 multiple utterances of the same expression should that prove fruitful. */
3521
3522 tree
3523 stabilize_reference_1 (tree e)
3524 {
3525 tree result;
3526 enum tree_code code = TREE_CODE (e);
3527
3528 /* We cannot ignore const expressions because it might be a reference
3529 to a const array but whose index contains side-effects. But we can
3530 ignore things that are actual constant or that already have been
3531 handled by this function. */
3532
3533 if (tree_invariant_p (e))
3534 return e;
3535
3536 switch (TREE_CODE_CLASS (code))
3537 {
3538 case tcc_exceptional:
3539 case tcc_type:
3540 case tcc_declaration:
3541 case tcc_comparison:
3542 case tcc_statement:
3543 case tcc_expression:
3544 case tcc_reference:
3545 case tcc_vl_exp:
3546 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3547 so that it will only be evaluated once. */
3548 /* The reference (r) and comparison (<) classes could be handled as
3549 below, but it is generally faster to only evaluate them once. */
3550 if (TREE_SIDE_EFFECTS (e))
3551 return save_expr (e);
3552 return e;
3553
3554 case tcc_constant:
3555 /* Constants need no processing. In fact, we should never reach
3556 here. */
3557 return e;
3558
3559 case tcc_binary:
3560 /* Division is slow and tends to be compiled with jumps,
3561 especially the division by powers of 2 that is often
3562 found inside of an array reference. So do it just once. */
3563 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3564 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3565 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3566 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3567 return save_expr (e);
3568 /* Recursively stabilize each operand. */
3569 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3570 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3571 break;
3572
3573 case tcc_unary:
3574 /* Recursively stabilize each operand. */
3575 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3576 break;
3577
3578 default:
3579 gcc_unreachable ();
3580 }
3581
3582 TREE_TYPE (result) = TREE_TYPE (e);
3583 TREE_READONLY (result) = TREE_READONLY (e);
3584 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3585 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3586
3587 return result;
3588 }
3589 \f
3590 /* Low-level constructors for expressions. */
3591
3592 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3593 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3594
3595 void
3596 recompute_tree_invariant_for_addr_expr (tree t)
3597 {
3598 tree node;
3599 bool tc = true, se = false;
3600
3601 /* We started out assuming this address is both invariant and constant, but
3602 does not have side effects. Now go down any handled components and see if
3603 any of them involve offsets that are either non-constant or non-invariant.
3604 Also check for side-effects.
3605
3606 ??? Note that this code makes no attempt to deal with the case where
3607 taking the address of something causes a copy due to misalignment. */
3608
3609 #define UPDATE_FLAGS(NODE) \
3610 do { tree _node = (NODE); \
3611 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3612 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3613
3614 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3615 node = TREE_OPERAND (node, 0))
3616 {
3617 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3618 array reference (probably made temporarily by the G++ front end),
3619 so ignore all the operands. */
3620 if ((TREE_CODE (node) == ARRAY_REF
3621 || TREE_CODE (node) == ARRAY_RANGE_REF)
3622 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3623 {
3624 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3625 if (TREE_OPERAND (node, 2))
3626 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3627 if (TREE_OPERAND (node, 3))
3628 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3629 }
3630 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3631 FIELD_DECL, apparently. The G++ front end can put something else
3632 there, at least temporarily. */
3633 else if (TREE_CODE (node) == COMPONENT_REF
3634 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3635 {
3636 if (TREE_OPERAND (node, 2))
3637 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3638 }
3639 else if (TREE_CODE (node) == BIT_FIELD_REF)
3640 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3641 }
3642
3643 node = lang_hooks.expr_to_decl (node, &tc, &se);
3644
3645 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3646 the address, since &(*a)->b is a form of addition. If it's a constant, the
3647 address is constant too. If it's a decl, its address is constant if the
3648 decl is static. Everything else is not constant and, furthermore,
3649 taking the address of a volatile variable is not volatile. */
3650 if (TREE_CODE (node) == INDIRECT_REF
3651 || TREE_CODE (node) == MEM_REF)
3652 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3653 else if (CONSTANT_CLASS_P (node))
3654 ;
3655 else if (DECL_P (node))
3656 tc &= (staticp (node) != NULL_TREE);
3657 else
3658 {
3659 tc = false;
3660 se |= TREE_SIDE_EFFECTS (node);
3661 }
3662
3663
3664 TREE_CONSTANT (t) = tc;
3665 TREE_SIDE_EFFECTS (t) = se;
3666 #undef UPDATE_FLAGS
3667 }
3668
3669 /* Build an expression of code CODE, data type TYPE, and operands as
3670 specified. Expressions and reference nodes can be created this way.
3671 Constants, decls, types and misc nodes cannot be.
3672
3673 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3674 enough for all extant tree codes. */
3675
3676 tree
3677 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3678 {
3679 tree t;
3680
3681 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3682
3683 t = make_node_stat (code PASS_MEM_STAT);
3684 TREE_TYPE (t) = tt;
3685
3686 return t;
3687 }
3688
3689 tree
3690 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3691 {
3692 int length = sizeof (struct tree_exp);
3693 tree t;
3694
3695 record_node_allocation_statistics (code, length);
3696
3697 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3698
3699 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
3700
3701 memset (t, 0, sizeof (struct tree_common));
3702
3703 TREE_SET_CODE (t, code);
3704
3705 TREE_TYPE (t) = type;
3706 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3707 TREE_OPERAND (t, 0) = node;
3708 TREE_BLOCK (t) = NULL_TREE;
3709 if (node && !TYPE_P (node))
3710 {
3711 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3712 TREE_READONLY (t) = TREE_READONLY (node);
3713 }
3714
3715 if (TREE_CODE_CLASS (code) == tcc_statement)
3716 TREE_SIDE_EFFECTS (t) = 1;
3717 else switch (code)
3718 {
3719 case VA_ARG_EXPR:
3720 /* All of these have side-effects, no matter what their
3721 operands are. */
3722 TREE_SIDE_EFFECTS (t) = 1;
3723 TREE_READONLY (t) = 0;
3724 break;
3725
3726 case INDIRECT_REF:
3727 /* Whether a dereference is readonly has nothing to do with whether
3728 its operand is readonly. */
3729 TREE_READONLY (t) = 0;
3730 break;
3731
3732 case ADDR_EXPR:
3733 if (node)
3734 recompute_tree_invariant_for_addr_expr (t);
3735 break;
3736
3737 default:
3738 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3739 && node && !TYPE_P (node)
3740 && TREE_CONSTANT (node))
3741 TREE_CONSTANT (t) = 1;
3742 if (TREE_CODE_CLASS (code) == tcc_reference
3743 && node && TREE_THIS_VOLATILE (node))
3744 TREE_THIS_VOLATILE (t) = 1;
3745 break;
3746 }
3747
3748 return t;
3749 }
3750
3751 #define PROCESS_ARG(N) \
3752 do { \
3753 TREE_OPERAND (t, N) = arg##N; \
3754 if (arg##N &&!TYPE_P (arg##N)) \
3755 { \
3756 if (TREE_SIDE_EFFECTS (arg##N)) \
3757 side_effects = 1; \
3758 if (!TREE_READONLY (arg##N) \
3759 && !CONSTANT_CLASS_P (arg##N)) \
3760 (void) (read_only = 0); \
3761 if (!TREE_CONSTANT (arg##N)) \
3762 (void) (constant = 0); \
3763 } \
3764 } while (0)
3765
3766 tree
3767 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3768 {
3769 bool constant, read_only, side_effects;
3770 tree t;
3771
3772 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3773
3774 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3775 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3776 /* When sizetype precision doesn't match that of pointers
3777 we need to be able to build explicit extensions or truncations
3778 of the offset argument. */
3779 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3780 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3781 && TREE_CODE (arg1) == INTEGER_CST);
3782
3783 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3784 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3785 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3786 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3787
3788 t = make_node_stat (code PASS_MEM_STAT);
3789 TREE_TYPE (t) = tt;
3790
3791 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3792 result based on those same flags for the arguments. But if the
3793 arguments aren't really even `tree' expressions, we shouldn't be trying
3794 to do this. */
3795
3796 /* Expressions without side effects may be constant if their
3797 arguments are as well. */
3798 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3799 || TREE_CODE_CLASS (code) == tcc_binary);
3800 read_only = 1;
3801 side_effects = TREE_SIDE_EFFECTS (t);
3802
3803 PROCESS_ARG(0);
3804 PROCESS_ARG(1);
3805
3806 TREE_READONLY (t) = read_only;
3807 TREE_CONSTANT (t) = constant;
3808 TREE_SIDE_EFFECTS (t) = side_effects;
3809 TREE_THIS_VOLATILE (t)
3810 = (TREE_CODE_CLASS (code) == tcc_reference
3811 && arg0 && TREE_THIS_VOLATILE (arg0));
3812
3813 return t;
3814 }
3815
3816
3817 tree
3818 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3819 tree arg2 MEM_STAT_DECL)
3820 {
3821 bool constant, read_only, side_effects;
3822 tree t;
3823
3824 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3825 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3826
3827 t = make_node_stat (code PASS_MEM_STAT);
3828 TREE_TYPE (t) = tt;
3829
3830 read_only = 1;
3831
3832 /* As a special exception, if COND_EXPR has NULL branches, we
3833 assume that it is a gimple statement and always consider
3834 it to have side effects. */
3835 if (code == COND_EXPR
3836 && tt == void_type_node
3837 && arg1 == NULL_TREE
3838 && arg2 == NULL_TREE)
3839 side_effects = true;
3840 else
3841 side_effects = TREE_SIDE_EFFECTS (t);
3842
3843 PROCESS_ARG(0);
3844 PROCESS_ARG(1);
3845 PROCESS_ARG(2);
3846
3847 if (code == COND_EXPR)
3848 TREE_READONLY (t) = read_only;
3849
3850 TREE_SIDE_EFFECTS (t) = side_effects;
3851 TREE_THIS_VOLATILE (t)
3852 = (TREE_CODE_CLASS (code) == tcc_reference
3853 && arg0 && TREE_THIS_VOLATILE (arg0));
3854
3855 return t;
3856 }
3857
3858 tree
3859 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3860 tree arg2, tree arg3 MEM_STAT_DECL)
3861 {
3862 bool constant, read_only, side_effects;
3863 tree t;
3864
3865 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3866
3867 t = make_node_stat (code PASS_MEM_STAT);
3868 TREE_TYPE (t) = tt;
3869
3870 side_effects = TREE_SIDE_EFFECTS (t);
3871
3872 PROCESS_ARG(0);
3873 PROCESS_ARG(1);
3874 PROCESS_ARG(2);
3875 PROCESS_ARG(3);
3876
3877 TREE_SIDE_EFFECTS (t) = side_effects;
3878 TREE_THIS_VOLATILE (t)
3879 = (TREE_CODE_CLASS (code) == tcc_reference
3880 && arg0 && TREE_THIS_VOLATILE (arg0));
3881
3882 return t;
3883 }
3884
3885 tree
3886 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3887 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3888 {
3889 bool constant, read_only, side_effects;
3890 tree t;
3891
3892 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3893
3894 t = make_node_stat (code PASS_MEM_STAT);
3895 TREE_TYPE (t) = tt;
3896
3897 side_effects = TREE_SIDE_EFFECTS (t);
3898
3899 PROCESS_ARG(0);
3900 PROCESS_ARG(1);
3901 PROCESS_ARG(2);
3902 PROCESS_ARG(3);
3903 PROCESS_ARG(4);
3904
3905 TREE_SIDE_EFFECTS (t) = side_effects;
3906 TREE_THIS_VOLATILE (t)
3907 = (TREE_CODE_CLASS (code) == tcc_reference
3908 && arg0 && TREE_THIS_VOLATILE (arg0));
3909
3910 return t;
3911 }
3912
3913 tree
3914 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3915 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3916 {
3917 bool constant, read_only, side_effects;
3918 tree t;
3919
3920 gcc_assert (code == TARGET_MEM_REF);
3921
3922 t = make_node_stat (code PASS_MEM_STAT);
3923 TREE_TYPE (t) = tt;
3924
3925 side_effects = TREE_SIDE_EFFECTS (t);
3926
3927 PROCESS_ARG(0);
3928 PROCESS_ARG(1);
3929 PROCESS_ARG(2);
3930 PROCESS_ARG(3);
3931 PROCESS_ARG(4);
3932 if (code == TARGET_MEM_REF)
3933 side_effects = 0;
3934 PROCESS_ARG(5);
3935
3936 TREE_SIDE_EFFECTS (t) = side_effects;
3937 TREE_THIS_VOLATILE (t)
3938 = (code == TARGET_MEM_REF
3939 && arg5 && TREE_THIS_VOLATILE (arg5));
3940
3941 return t;
3942 }
3943
3944 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
3945 on the pointer PTR. */
3946
3947 tree
3948 build_simple_mem_ref_loc (location_t loc, tree ptr)
3949 {
3950 HOST_WIDE_INT offset = 0;
3951 tree ptype = TREE_TYPE (ptr);
3952 tree tem;
3953 /* For convenience allow addresses that collapse to a simple base
3954 and offset. */
3955 if (TREE_CODE (ptr) == ADDR_EXPR
3956 && (handled_component_p (TREE_OPERAND (ptr, 0))
3957 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
3958 {
3959 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
3960 gcc_assert (ptr);
3961 ptr = build_fold_addr_expr (ptr);
3962 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
3963 }
3964 tem = build2 (MEM_REF, TREE_TYPE (ptype),
3965 ptr, build_int_cst (ptype, offset));
3966 SET_EXPR_LOCATION (tem, loc);
3967 return tem;
3968 }
3969
3970 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
3971
3972 double_int
3973 mem_ref_offset (const_tree t)
3974 {
3975 tree toff = TREE_OPERAND (t, 1);
3976 return double_int_sext (tree_to_double_int (toff),
3977 TYPE_PRECISION (TREE_TYPE (toff)));
3978 }
3979
3980 /* Return the pointer-type relevant for TBAA purposes from the
3981 gimple memory reference tree T. This is the type to be used for
3982 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
3983
3984 tree
3985 reference_alias_ptr_type (const_tree t)
3986 {
3987 const_tree base = t;
3988 while (handled_component_p (base))
3989 base = TREE_OPERAND (base, 0);
3990 if (TREE_CODE (base) == MEM_REF)
3991 return TREE_TYPE (TREE_OPERAND (base, 1));
3992 else if (TREE_CODE (base) == TARGET_MEM_REF)
3993 return TREE_TYPE (TMR_OFFSET (base));
3994 else
3995 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
3996 }
3997
3998 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
3999 offsetted by OFFSET units. */
4000
4001 tree
4002 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4003 {
4004 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4005 build_fold_addr_expr (base),
4006 build_int_cst (ptr_type_node, offset));
4007 tree addr = build1 (ADDR_EXPR, type, ref);
4008 recompute_tree_invariant_for_addr_expr (addr);
4009 return addr;
4010 }
4011
4012 /* Similar except don't specify the TREE_TYPE
4013 and leave the TREE_SIDE_EFFECTS as 0.
4014 It is permissible for arguments to be null,
4015 or even garbage if their values do not matter. */
4016
4017 tree
4018 build_nt (enum tree_code code, ...)
4019 {
4020 tree t;
4021 int length;
4022 int i;
4023 va_list p;
4024
4025 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4026
4027 va_start (p, code);
4028
4029 t = make_node (code);
4030 length = TREE_CODE_LENGTH (code);
4031
4032 for (i = 0; i < length; i++)
4033 TREE_OPERAND (t, i) = va_arg (p, tree);
4034
4035 va_end (p);
4036 return t;
4037 }
4038
4039 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4040 tree VEC. */
4041
4042 tree
4043 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
4044 {
4045 tree ret, t;
4046 unsigned int ix;
4047
4048 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
4049 CALL_EXPR_FN (ret) = fn;
4050 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4051 FOR_EACH_VEC_ELT (tree, args, ix, t)
4052 CALL_EXPR_ARG (ret, ix) = t;
4053 return ret;
4054 }
4055 \f
4056 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4057 We do NOT enter this node in any sort of symbol table.
4058
4059 LOC is the location of the decl.
4060
4061 layout_decl is used to set up the decl's storage layout.
4062 Other slots are initialized to 0 or null pointers. */
4063
4064 tree
4065 build_decl_stat (location_t loc, enum tree_code code, tree name,
4066 tree type MEM_STAT_DECL)
4067 {
4068 tree t;
4069
4070 t = make_node_stat (code PASS_MEM_STAT);
4071 DECL_SOURCE_LOCATION (t) = loc;
4072
4073 /* if (type == error_mark_node)
4074 type = integer_type_node; */
4075 /* That is not done, deliberately, so that having error_mark_node
4076 as the type can suppress useless errors in the use of this variable. */
4077
4078 DECL_NAME (t) = name;
4079 TREE_TYPE (t) = type;
4080
4081 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4082 layout_decl (t, 0);
4083
4084 return t;
4085 }
4086
4087 /* Builds and returns function declaration with NAME and TYPE. */
4088
4089 tree
4090 build_fn_decl (const char *name, tree type)
4091 {
4092 tree id = get_identifier (name);
4093 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4094
4095 DECL_EXTERNAL (decl) = 1;
4096 TREE_PUBLIC (decl) = 1;
4097 DECL_ARTIFICIAL (decl) = 1;
4098 TREE_NOTHROW (decl) = 1;
4099
4100 return decl;
4101 }
4102
4103 VEC(tree,gc) *all_translation_units;
4104
4105 /* Builds a new translation-unit decl with name NAME, queues it in the
4106 global list of translation-unit decls and returns it. */
4107
4108 tree
4109 build_translation_unit_decl (tree name)
4110 {
4111 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4112 name, NULL_TREE);
4113 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4114 VEC_safe_push (tree, gc, all_translation_units, tu);
4115 return tu;
4116 }
4117
4118 \f
4119 /* BLOCK nodes are used to represent the structure of binding contours
4120 and declarations, once those contours have been exited and their contents
4121 compiled. This information is used for outputting debugging info. */
4122
4123 tree
4124 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4125 {
4126 tree block = make_node (BLOCK);
4127
4128 BLOCK_VARS (block) = vars;
4129 BLOCK_SUBBLOCKS (block) = subblocks;
4130 BLOCK_SUPERCONTEXT (block) = supercontext;
4131 BLOCK_CHAIN (block) = chain;
4132 return block;
4133 }
4134
4135 \f
4136 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4137
4138 LOC is the location to use in tree T. */
4139
4140 void
4141 protected_set_expr_location (tree t, location_t loc)
4142 {
4143 if (t && CAN_HAVE_LOCATION_P (t))
4144 SET_EXPR_LOCATION (t, loc);
4145 }
4146 \f
4147 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4148 is ATTRIBUTE. */
4149
4150 tree
4151 build_decl_attribute_variant (tree ddecl, tree attribute)
4152 {
4153 DECL_ATTRIBUTES (ddecl) = attribute;
4154 return ddecl;
4155 }
4156
4157 /* Borrowed from hashtab.c iterative_hash implementation. */
4158 #define mix(a,b,c) \
4159 { \
4160 a -= b; a -= c; a ^= (c>>13); \
4161 b -= c; b -= a; b ^= (a<< 8); \
4162 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4163 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4164 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4165 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4166 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4167 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4168 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4169 }
4170
4171
4172 /* Produce good hash value combining VAL and VAL2. */
4173 hashval_t
4174 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4175 {
4176 /* the golden ratio; an arbitrary value. */
4177 hashval_t a = 0x9e3779b9;
4178
4179 mix (a, val, val2);
4180 return val2;
4181 }
4182
4183 /* Produce good hash value combining VAL and VAL2. */
4184 hashval_t
4185 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4186 {
4187 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4188 return iterative_hash_hashval_t (val, val2);
4189 else
4190 {
4191 hashval_t a = (hashval_t) val;
4192 /* Avoid warnings about shifting of more than the width of the type on
4193 hosts that won't execute this path. */
4194 int zero = 0;
4195 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4196 mix (a, b, val2);
4197 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4198 {
4199 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4200 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4201 mix (a, b, val2);
4202 }
4203 return val2;
4204 }
4205 }
4206
4207 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4208 is ATTRIBUTE and its qualifiers are QUALS.
4209
4210 Record such modified types already made so we don't make duplicates. */
4211
4212 tree
4213 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4214 {
4215 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4216 {
4217 hashval_t hashcode = 0;
4218 tree ntype;
4219 enum tree_code code = TREE_CODE (ttype);
4220
4221 /* Building a distinct copy of a tagged type is inappropriate; it
4222 causes breakage in code that expects there to be a one-to-one
4223 relationship between a struct and its fields.
4224 build_duplicate_type is another solution (as used in
4225 handle_transparent_union_attribute), but that doesn't play well
4226 with the stronger C++ type identity model. */
4227 if (TREE_CODE (ttype) == RECORD_TYPE
4228 || TREE_CODE (ttype) == UNION_TYPE
4229 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4230 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4231 {
4232 warning (OPT_Wattributes,
4233 "ignoring attributes applied to %qT after definition",
4234 TYPE_MAIN_VARIANT (ttype));
4235 return build_qualified_type (ttype, quals);
4236 }
4237
4238 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4239 ntype = build_distinct_type_copy (ttype);
4240
4241 TYPE_ATTRIBUTES (ntype) = attribute;
4242
4243 hashcode = iterative_hash_object (code, hashcode);
4244 if (TREE_TYPE (ntype))
4245 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4246 hashcode);
4247 hashcode = attribute_hash_list (attribute, hashcode);
4248
4249 switch (TREE_CODE (ntype))
4250 {
4251 case FUNCTION_TYPE:
4252 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4253 break;
4254 case ARRAY_TYPE:
4255 if (TYPE_DOMAIN (ntype))
4256 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4257 hashcode);
4258 break;
4259 case INTEGER_TYPE:
4260 hashcode = iterative_hash_object
4261 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4262 hashcode = iterative_hash_object
4263 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4264 break;
4265 case REAL_TYPE:
4266 case FIXED_POINT_TYPE:
4267 {
4268 unsigned int precision = TYPE_PRECISION (ntype);
4269 hashcode = iterative_hash_object (precision, hashcode);
4270 }
4271 break;
4272 default:
4273 break;
4274 }
4275
4276 ntype = type_hash_canon (hashcode, ntype);
4277
4278 /* If the target-dependent attributes make NTYPE different from
4279 its canonical type, we will need to use structural equality
4280 checks for this type. */
4281 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4282 || !comp_type_attributes (ntype, ttype))
4283 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4284 else if (TYPE_CANONICAL (ntype) == ntype)
4285 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4286
4287 ttype = build_qualified_type (ntype, quals);
4288 }
4289 else if (TYPE_QUALS (ttype) != quals)
4290 ttype = build_qualified_type (ttype, quals);
4291
4292 return ttype;
4293 }
4294
4295 /* Compare two attributes for their value identity. Return true if the
4296 attribute values are known to be equal; otherwise return false.
4297 */
4298
4299 static bool
4300 attribute_value_equal (const_tree attr1, const_tree attr2)
4301 {
4302 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4303 return true;
4304
4305 if (TREE_VALUE (attr1) != NULL_TREE
4306 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4307 && TREE_VALUE (attr2) != NULL
4308 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4309 return (simple_cst_list_equal (TREE_VALUE (attr1),
4310 TREE_VALUE (attr2)) == 1);
4311
4312 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
4313 }
4314
4315 /* Return 0 if the attributes for two types are incompatible, 1 if they
4316 are compatible, and 2 if they are nearly compatible (which causes a
4317 warning to be generated). */
4318 int
4319 comp_type_attributes (const_tree type1, const_tree type2)
4320 {
4321 const_tree a1 = TYPE_ATTRIBUTES (type1);
4322 const_tree a2 = TYPE_ATTRIBUTES (type2);
4323 const_tree a;
4324
4325 if (a1 == a2)
4326 return 1;
4327 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
4328 {
4329 const struct attribute_spec *as;
4330 const_tree attr;
4331
4332 as = lookup_attribute_spec (TREE_PURPOSE (a));
4333 if (!as || as->affects_type_identity == false)
4334 continue;
4335
4336 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
4337 if (!attr || !attribute_value_equal (a, attr))
4338 break;
4339 }
4340 if (!a)
4341 {
4342 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
4343 {
4344 const struct attribute_spec *as;
4345
4346 as = lookup_attribute_spec (TREE_PURPOSE (a));
4347 if (!as || as->affects_type_identity == false)
4348 continue;
4349
4350 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
4351 break;
4352 /* We don't need to compare trees again, as we did this
4353 already in first loop. */
4354 }
4355 /* All types - affecting identity - are equal, so
4356 there is no need to call target hook for comparison. */
4357 if (!a)
4358 return 1;
4359 }
4360 /* As some type combinations - like default calling-convention - might
4361 be compatible, we have to call the target hook to get the final result. */
4362 return targetm.comp_type_attributes (type1, type2);
4363 }
4364
4365 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4366 is ATTRIBUTE.
4367
4368 Record such modified types already made so we don't make duplicates. */
4369
4370 tree
4371 build_type_attribute_variant (tree ttype, tree attribute)
4372 {
4373 return build_type_attribute_qual_variant (ttype, attribute,
4374 TYPE_QUALS (ttype));
4375 }
4376
4377
4378 /* Reset the expression *EXPR_P, a size or position.
4379
4380 ??? We could reset all non-constant sizes or positions. But it's cheap
4381 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4382
4383 We need to reset self-referential sizes or positions because they cannot
4384 be gimplified and thus can contain a CALL_EXPR after the gimplification
4385 is finished, which will run afoul of LTO streaming. And they need to be
4386 reset to something essentially dummy but not constant, so as to preserve
4387 the properties of the object they are attached to. */
4388
4389 static inline void
4390 free_lang_data_in_one_sizepos (tree *expr_p)
4391 {
4392 tree expr = *expr_p;
4393 if (CONTAINS_PLACEHOLDER_P (expr))
4394 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4395 }
4396
4397
4398 /* Reset all the fields in a binfo node BINFO. We only keep
4399 BINFO_VIRTUALS, which is used by gimple_fold_obj_type_ref. */
4400
4401 static void
4402 free_lang_data_in_binfo (tree binfo)
4403 {
4404 unsigned i;
4405 tree t;
4406
4407 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4408
4409 BINFO_VTABLE (binfo) = NULL_TREE;
4410 BINFO_BASE_ACCESSES (binfo) = NULL;
4411 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4412 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4413
4414 FOR_EACH_VEC_ELT (tree, BINFO_BASE_BINFOS (binfo), i, t)
4415 free_lang_data_in_binfo (t);
4416 }
4417
4418
4419 /* Reset all language specific information still present in TYPE. */
4420
4421 static void
4422 free_lang_data_in_type (tree type)
4423 {
4424 gcc_assert (TYPE_P (type));
4425
4426 /* Give the FE a chance to remove its own data first. */
4427 lang_hooks.free_lang_data (type);
4428
4429 TREE_LANG_FLAG_0 (type) = 0;
4430 TREE_LANG_FLAG_1 (type) = 0;
4431 TREE_LANG_FLAG_2 (type) = 0;
4432 TREE_LANG_FLAG_3 (type) = 0;
4433 TREE_LANG_FLAG_4 (type) = 0;
4434 TREE_LANG_FLAG_5 (type) = 0;
4435 TREE_LANG_FLAG_6 (type) = 0;
4436
4437 if (TREE_CODE (type) == FUNCTION_TYPE)
4438 {
4439 /* Remove the const and volatile qualifiers from arguments. The
4440 C++ front end removes them, but the C front end does not,
4441 leading to false ODR violation errors when merging two
4442 instances of the same function signature compiled by
4443 different front ends. */
4444 tree p;
4445
4446 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4447 {
4448 tree arg_type = TREE_VALUE (p);
4449
4450 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4451 {
4452 int quals = TYPE_QUALS (arg_type)
4453 & ~TYPE_QUAL_CONST
4454 & ~TYPE_QUAL_VOLATILE;
4455 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4456 free_lang_data_in_type (TREE_VALUE (p));
4457 }
4458 }
4459 }
4460
4461 /* Remove members that are not actually FIELD_DECLs from the field
4462 list of an aggregate. These occur in C++. */
4463 if (RECORD_OR_UNION_TYPE_P (type))
4464 {
4465 tree prev, member;
4466
4467 /* Note that TYPE_FIELDS can be shared across distinct
4468 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4469 to be removed, we cannot set its TREE_CHAIN to NULL.
4470 Otherwise, we would not be able to find all the other fields
4471 in the other instances of this TREE_TYPE.
4472
4473 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4474 prev = NULL_TREE;
4475 member = TYPE_FIELDS (type);
4476 while (member)
4477 {
4478 if (TREE_CODE (member) == FIELD_DECL)
4479 {
4480 if (prev)
4481 TREE_CHAIN (prev) = member;
4482 else
4483 TYPE_FIELDS (type) = member;
4484 prev = member;
4485 }
4486
4487 member = TREE_CHAIN (member);
4488 }
4489
4490 if (prev)
4491 TREE_CHAIN (prev) = NULL_TREE;
4492 else
4493 TYPE_FIELDS (type) = NULL_TREE;
4494
4495 TYPE_METHODS (type) = NULL_TREE;
4496 if (TYPE_BINFO (type))
4497 free_lang_data_in_binfo (TYPE_BINFO (type));
4498 }
4499 else
4500 {
4501 /* For non-aggregate types, clear out the language slot (which
4502 overloads TYPE_BINFO). */
4503 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4504
4505 if (INTEGRAL_TYPE_P (type)
4506 || SCALAR_FLOAT_TYPE_P (type)
4507 || FIXED_POINT_TYPE_P (type))
4508 {
4509 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4510 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4511 }
4512 }
4513
4514 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4515 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4516
4517 if (debug_info_level < DINFO_LEVEL_TERSE
4518 || (TYPE_CONTEXT (type)
4519 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_DECL
4520 && TREE_CODE (TYPE_CONTEXT (type)) != NAMESPACE_DECL))
4521 TYPE_CONTEXT (type) = NULL_TREE;
4522
4523 if (debug_info_level < DINFO_LEVEL_TERSE)
4524 TYPE_STUB_DECL (type) = NULL_TREE;
4525 }
4526
4527
4528 /* Return true if DECL may need an assembler name to be set. */
4529
4530 static inline bool
4531 need_assembler_name_p (tree decl)
4532 {
4533 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4534 if (TREE_CODE (decl) != FUNCTION_DECL
4535 && TREE_CODE (decl) != VAR_DECL)
4536 return false;
4537
4538 /* If DECL already has its assembler name set, it does not need a
4539 new one. */
4540 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4541 || DECL_ASSEMBLER_NAME_SET_P (decl))
4542 return false;
4543
4544 /* Abstract decls do not need an assembler name. */
4545 if (DECL_ABSTRACT (decl))
4546 return false;
4547
4548 /* For VAR_DECLs, only static, public and external symbols need an
4549 assembler name. */
4550 if (TREE_CODE (decl) == VAR_DECL
4551 && !TREE_STATIC (decl)
4552 && !TREE_PUBLIC (decl)
4553 && !DECL_EXTERNAL (decl))
4554 return false;
4555
4556 if (TREE_CODE (decl) == FUNCTION_DECL)
4557 {
4558 /* Do not set assembler name on builtins. Allow RTL expansion to
4559 decide whether to expand inline or via a regular call. */
4560 if (DECL_BUILT_IN (decl)
4561 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4562 return false;
4563
4564 /* Functions represented in the callgraph need an assembler name. */
4565 if (cgraph_get_node (decl) != NULL)
4566 return true;
4567
4568 /* Unused and not public functions don't need an assembler name. */
4569 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4570 return false;
4571 }
4572
4573 return true;
4574 }
4575
4576
4577 /* Reset all language specific information still present in symbol
4578 DECL. */
4579
4580 static void
4581 free_lang_data_in_decl (tree decl)
4582 {
4583 gcc_assert (DECL_P (decl));
4584
4585 /* Give the FE a chance to remove its own data first. */
4586 lang_hooks.free_lang_data (decl);
4587
4588 TREE_LANG_FLAG_0 (decl) = 0;
4589 TREE_LANG_FLAG_1 (decl) = 0;
4590 TREE_LANG_FLAG_2 (decl) = 0;
4591 TREE_LANG_FLAG_3 (decl) = 0;
4592 TREE_LANG_FLAG_4 (decl) = 0;
4593 TREE_LANG_FLAG_5 (decl) = 0;
4594 TREE_LANG_FLAG_6 (decl) = 0;
4595
4596 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4597 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4598 if (TREE_CODE (decl) == FIELD_DECL)
4599 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4600
4601 /* DECL_FCONTEXT is only used for debug info generation. */
4602 if (TREE_CODE (decl) == FIELD_DECL
4603 && debug_info_level < DINFO_LEVEL_TERSE)
4604 DECL_FCONTEXT (decl) = NULL_TREE;
4605
4606 if (TREE_CODE (decl) == FUNCTION_DECL)
4607 {
4608 if (gimple_has_body_p (decl))
4609 {
4610 tree t;
4611
4612 /* If DECL has a gimple body, then the context for its
4613 arguments must be DECL. Otherwise, it doesn't really
4614 matter, as we will not be emitting any code for DECL. In
4615 general, there may be other instances of DECL created by
4616 the front end and since PARM_DECLs are generally shared,
4617 their DECL_CONTEXT changes as the replicas of DECL are
4618 created. The only time where DECL_CONTEXT is important
4619 is for the FUNCTION_DECLs that have a gimple body (since
4620 the PARM_DECL will be used in the function's body). */
4621 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4622 DECL_CONTEXT (t) = decl;
4623 }
4624
4625 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4626 At this point, it is not needed anymore. */
4627 DECL_SAVED_TREE (decl) = NULL_TREE;
4628
4629 /* Clear the abstract origin if it refers to a method. Otherwise
4630 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
4631 origin will not be output correctly. */
4632 if (DECL_ABSTRACT_ORIGIN (decl)
4633 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
4634 && RECORD_OR_UNION_TYPE_P
4635 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
4636 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
4637
4638 /* Sometimes the C++ frontend doesn't manage to transform a temporary
4639 DECL_VINDEX referring to itself into a vtable slot number as it
4640 should. Happens with functions that are copied and then forgotten
4641 about. Just clear it, it won't matter anymore. */
4642 if (DECL_VINDEX (decl) && !host_integerp (DECL_VINDEX (decl), 0))
4643 DECL_VINDEX (decl) = NULL_TREE;
4644 }
4645 else if (TREE_CODE (decl) == VAR_DECL)
4646 {
4647 if ((DECL_EXTERNAL (decl)
4648 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4649 || (decl_function_context (decl) && !TREE_STATIC (decl)))
4650 DECL_INITIAL (decl) = NULL_TREE;
4651 }
4652 else if (TREE_CODE (decl) == TYPE_DECL)
4653 DECL_INITIAL (decl) = NULL_TREE;
4654 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
4655 && DECL_INITIAL (decl)
4656 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
4657 {
4658 /* Strip builtins from the translation-unit BLOCK. We still have
4659 targets without builtin_decl support and also builtins are
4660 shared nodes and thus we can't use TREE_CHAIN in multiple
4661 lists. */
4662 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
4663 while (*nextp)
4664 {
4665 tree var = *nextp;
4666 if (TREE_CODE (var) == FUNCTION_DECL
4667 && DECL_BUILT_IN (var))
4668 *nextp = TREE_CHAIN (var);
4669 else
4670 nextp = &TREE_CHAIN (var);
4671 }
4672 }
4673 }
4674
4675
4676 /* Data used when collecting DECLs and TYPEs for language data removal. */
4677
4678 struct free_lang_data_d
4679 {
4680 /* Worklist to avoid excessive recursion. */
4681 VEC(tree,heap) *worklist;
4682
4683 /* Set of traversed objects. Used to avoid duplicate visits. */
4684 struct pointer_set_t *pset;
4685
4686 /* Array of symbols to process with free_lang_data_in_decl. */
4687 VEC(tree,heap) *decls;
4688
4689 /* Array of types to process with free_lang_data_in_type. */
4690 VEC(tree,heap) *types;
4691 };
4692
4693
4694 /* Save all language fields needed to generate proper debug information
4695 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4696
4697 static void
4698 save_debug_info_for_decl (tree t)
4699 {
4700 /*struct saved_debug_info_d *sdi;*/
4701
4702 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4703
4704 /* FIXME. Partial implementation for saving debug info removed. */
4705 }
4706
4707
4708 /* Save all language fields needed to generate proper debug information
4709 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4710
4711 static void
4712 save_debug_info_for_type (tree t)
4713 {
4714 /*struct saved_debug_info_d *sdi;*/
4715
4716 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4717
4718 /* FIXME. Partial implementation for saving debug info removed. */
4719 }
4720
4721
4722 /* Add type or decl T to one of the list of tree nodes that need their
4723 language data removed. The lists are held inside FLD. */
4724
4725 static void
4726 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4727 {
4728 if (DECL_P (t))
4729 {
4730 VEC_safe_push (tree, heap, fld->decls, t);
4731 if (debug_info_level > DINFO_LEVEL_TERSE)
4732 save_debug_info_for_decl (t);
4733 }
4734 else if (TYPE_P (t))
4735 {
4736 VEC_safe_push (tree, heap, fld->types, t);
4737 if (debug_info_level > DINFO_LEVEL_TERSE)
4738 save_debug_info_for_type (t);
4739 }
4740 else
4741 gcc_unreachable ();
4742 }
4743
4744 /* Push tree node T into FLD->WORKLIST. */
4745
4746 static inline void
4747 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4748 {
4749 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4750 VEC_safe_push (tree, heap, fld->worklist, (t));
4751 }
4752
4753
4754 /* Operand callback helper for free_lang_data_in_node. *TP is the
4755 subtree operand being considered. */
4756
4757 static tree
4758 find_decls_types_r (tree *tp, int *ws, void *data)
4759 {
4760 tree t = *tp;
4761 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4762
4763 if (TREE_CODE (t) == TREE_LIST)
4764 return NULL_TREE;
4765
4766 /* Language specific nodes will be removed, so there is no need
4767 to gather anything under them. */
4768 if (is_lang_specific (t))
4769 {
4770 *ws = 0;
4771 return NULL_TREE;
4772 }
4773
4774 if (DECL_P (t))
4775 {
4776 /* Note that walk_tree does not traverse every possible field in
4777 decls, so we have to do our own traversals here. */
4778 add_tree_to_fld_list (t, fld);
4779
4780 fld_worklist_push (DECL_NAME (t), fld);
4781 fld_worklist_push (DECL_CONTEXT (t), fld);
4782 fld_worklist_push (DECL_SIZE (t), fld);
4783 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4784
4785 /* We are going to remove everything under DECL_INITIAL for
4786 TYPE_DECLs. No point walking them. */
4787 if (TREE_CODE (t) != TYPE_DECL)
4788 fld_worklist_push (DECL_INITIAL (t), fld);
4789
4790 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4791 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4792
4793 if (TREE_CODE (t) == FUNCTION_DECL)
4794 {
4795 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4796 fld_worklist_push (DECL_RESULT (t), fld);
4797 }
4798 else if (TREE_CODE (t) == TYPE_DECL)
4799 {
4800 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4801 fld_worklist_push (DECL_VINDEX (t), fld);
4802 }
4803 else if (TREE_CODE (t) == FIELD_DECL)
4804 {
4805 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4806 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4807 fld_worklist_push (DECL_QUALIFIER (t), fld);
4808 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4809 fld_worklist_push (DECL_FCONTEXT (t), fld);
4810 }
4811 else if (TREE_CODE (t) == VAR_DECL)
4812 {
4813 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4814 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4815 }
4816
4817 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4818 && DECL_HAS_VALUE_EXPR_P (t))
4819 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4820
4821 if (TREE_CODE (t) != FIELD_DECL
4822 && TREE_CODE (t) != TYPE_DECL)
4823 fld_worklist_push (TREE_CHAIN (t), fld);
4824 *ws = 0;
4825 }
4826 else if (TYPE_P (t))
4827 {
4828 /* Note that walk_tree does not traverse every possible field in
4829 types, so we have to do our own traversals here. */
4830 add_tree_to_fld_list (t, fld);
4831
4832 if (!RECORD_OR_UNION_TYPE_P (t))
4833 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4834 fld_worklist_push (TYPE_SIZE (t), fld);
4835 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4836 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4837 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4838 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4839 fld_worklist_push (TYPE_NAME (t), fld);
4840 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
4841 them and thus do not and want not to reach unused pointer types
4842 this way. */
4843 if (!POINTER_TYPE_P (t))
4844 fld_worklist_push (TYPE_MINVAL (t), fld);
4845 if (!RECORD_OR_UNION_TYPE_P (t))
4846 fld_worklist_push (TYPE_MAXVAL (t), fld);
4847 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4848 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
4849 do not and want not to reach unused variants this way. */
4850 fld_worklist_push (TYPE_CONTEXT (t), fld);
4851 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
4852 and want not to reach unused types this way. */
4853
4854 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4855 {
4856 unsigned i;
4857 tree tem;
4858 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4859 i, tem); ++i)
4860 fld_worklist_push (TREE_TYPE (tem), fld);
4861 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4862 if (tem
4863 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4864 && TREE_CODE (tem) == TREE_LIST)
4865 do
4866 {
4867 fld_worklist_push (TREE_VALUE (tem), fld);
4868 tem = TREE_CHAIN (tem);
4869 }
4870 while (tem);
4871 }
4872 if (RECORD_OR_UNION_TYPE_P (t))
4873 {
4874 tree tem;
4875 /* Push all TYPE_FIELDS - there can be interleaving interesting
4876 and non-interesting things. */
4877 tem = TYPE_FIELDS (t);
4878 while (tem)
4879 {
4880 if (TREE_CODE (tem) == FIELD_DECL)
4881 fld_worklist_push (tem, fld);
4882 tem = TREE_CHAIN (tem);
4883 }
4884 }
4885
4886 fld_worklist_push (TREE_CHAIN (t), fld);
4887 *ws = 0;
4888 }
4889 else if (TREE_CODE (t) == BLOCK)
4890 {
4891 tree tem;
4892 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4893 fld_worklist_push (tem, fld);
4894 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4895 fld_worklist_push (tem, fld);
4896 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4897 }
4898
4899 if (TREE_CODE (t) != IDENTIFIER_NODE
4900 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
4901 fld_worklist_push (TREE_TYPE (t), fld);
4902
4903 return NULL_TREE;
4904 }
4905
4906
4907 /* Find decls and types in T. */
4908
4909 static void
4910 find_decls_types (tree t, struct free_lang_data_d *fld)
4911 {
4912 while (1)
4913 {
4914 if (!pointer_set_contains (fld->pset, t))
4915 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4916 if (VEC_empty (tree, fld->worklist))
4917 break;
4918 t = VEC_pop (tree, fld->worklist);
4919 }
4920 }
4921
4922 /* Translate all the types in LIST with the corresponding runtime
4923 types. */
4924
4925 static tree
4926 get_eh_types_for_runtime (tree list)
4927 {
4928 tree head, prev;
4929
4930 if (list == NULL_TREE)
4931 return NULL_TREE;
4932
4933 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4934 prev = head;
4935 list = TREE_CHAIN (list);
4936 while (list)
4937 {
4938 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4939 TREE_CHAIN (prev) = n;
4940 prev = TREE_CHAIN (prev);
4941 list = TREE_CHAIN (list);
4942 }
4943
4944 return head;
4945 }
4946
4947
4948 /* Find decls and types referenced in EH region R and store them in
4949 FLD->DECLS and FLD->TYPES. */
4950
4951 static void
4952 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4953 {
4954 switch (r->type)
4955 {
4956 case ERT_CLEANUP:
4957 break;
4958
4959 case ERT_TRY:
4960 {
4961 eh_catch c;
4962
4963 /* The types referenced in each catch must first be changed to the
4964 EH types used at runtime. This removes references to FE types
4965 in the region. */
4966 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4967 {
4968 c->type_list = get_eh_types_for_runtime (c->type_list);
4969 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4970 }
4971 }
4972 break;
4973
4974 case ERT_ALLOWED_EXCEPTIONS:
4975 r->u.allowed.type_list
4976 = get_eh_types_for_runtime (r->u.allowed.type_list);
4977 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4978 break;
4979
4980 case ERT_MUST_NOT_THROW:
4981 walk_tree (&r->u.must_not_throw.failure_decl,
4982 find_decls_types_r, fld, fld->pset);
4983 break;
4984 }
4985 }
4986
4987
4988 /* Find decls and types referenced in cgraph node N and store them in
4989 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4990 look for *every* kind of DECL and TYPE node reachable from N,
4991 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4992 NAMESPACE_DECLs, etc). */
4993
4994 static void
4995 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4996 {
4997 basic_block bb;
4998 struct function *fn;
4999 unsigned ix;
5000 tree t;
5001
5002 find_decls_types (n->decl, fld);
5003
5004 if (!gimple_has_body_p (n->decl))
5005 return;
5006
5007 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5008
5009 fn = DECL_STRUCT_FUNCTION (n->decl);
5010
5011 /* Traverse locals. */
5012 FOR_EACH_LOCAL_DECL (fn, ix, t)
5013 find_decls_types (t, fld);
5014
5015 /* Traverse EH regions in FN. */
5016 {
5017 eh_region r;
5018 FOR_ALL_EH_REGION_FN (r, fn)
5019 find_decls_types_in_eh_region (r, fld);
5020 }
5021
5022 /* Traverse every statement in FN. */
5023 FOR_EACH_BB_FN (bb, fn)
5024 {
5025 gimple_stmt_iterator si;
5026 unsigned i;
5027
5028 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5029 {
5030 gimple phi = gsi_stmt (si);
5031
5032 for (i = 0; i < gimple_phi_num_args (phi); i++)
5033 {
5034 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5035 find_decls_types (*arg_p, fld);
5036 }
5037 }
5038
5039 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5040 {
5041 gimple stmt = gsi_stmt (si);
5042
5043 for (i = 0; i < gimple_num_ops (stmt); i++)
5044 {
5045 tree arg = gimple_op (stmt, i);
5046 find_decls_types (arg, fld);
5047 }
5048 }
5049 }
5050 }
5051
5052
5053 /* Find decls and types referenced in varpool node N and store them in
5054 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5055 look for *every* kind of DECL and TYPE node reachable from N,
5056 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5057 NAMESPACE_DECLs, etc). */
5058
5059 static void
5060 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
5061 {
5062 find_decls_types (v->decl, fld);
5063 }
5064
5065 /* If T needs an assembler name, have one created for it. */
5066
5067 void
5068 assign_assembler_name_if_neeeded (tree t)
5069 {
5070 if (need_assembler_name_p (t))
5071 {
5072 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5073 diagnostics that use input_location to show locus
5074 information. The problem here is that, at this point,
5075 input_location is generally anchored to the end of the file
5076 (since the parser is long gone), so we don't have a good
5077 position to pin it to.
5078
5079 To alleviate this problem, this uses the location of T's
5080 declaration. Examples of this are
5081 testsuite/g++.dg/template/cond2.C and
5082 testsuite/g++.dg/template/pr35240.C. */
5083 location_t saved_location = input_location;
5084 input_location = DECL_SOURCE_LOCATION (t);
5085
5086 decl_assembler_name (t);
5087
5088 input_location = saved_location;
5089 }
5090 }
5091
5092
5093 /* Free language specific information for every operand and expression
5094 in every node of the call graph. This process operates in three stages:
5095
5096 1- Every callgraph node and varpool node is traversed looking for
5097 decls and types embedded in them. This is a more exhaustive
5098 search than that done by find_referenced_vars, because it will
5099 also collect individual fields, decls embedded in types, etc.
5100
5101 2- All the decls found are sent to free_lang_data_in_decl.
5102
5103 3- All the types found are sent to free_lang_data_in_type.
5104
5105 The ordering between decls and types is important because
5106 free_lang_data_in_decl sets assembler names, which includes
5107 mangling. So types cannot be freed up until assembler names have
5108 been set up. */
5109
5110 static void
5111 free_lang_data_in_cgraph (void)
5112 {
5113 struct cgraph_node *n;
5114 struct varpool_node *v;
5115 struct free_lang_data_d fld;
5116 tree t;
5117 unsigned i;
5118 alias_pair *p;
5119
5120 /* Initialize sets and arrays to store referenced decls and types. */
5121 fld.pset = pointer_set_create ();
5122 fld.worklist = NULL;
5123 fld.decls = VEC_alloc (tree, heap, 100);
5124 fld.types = VEC_alloc (tree, heap, 100);
5125
5126 /* Find decls and types in the body of every function in the callgraph. */
5127 for (n = cgraph_nodes; n; n = n->next)
5128 find_decls_types_in_node (n, &fld);
5129
5130 FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p)
5131 find_decls_types (p->decl, &fld);
5132
5133 /* Find decls and types in every varpool symbol. */
5134 for (v = varpool_nodes; v; v = v->next)
5135 find_decls_types_in_var (v, &fld);
5136
5137 /* Set the assembler name on every decl found. We need to do this
5138 now because free_lang_data_in_decl will invalidate data needed
5139 for mangling. This breaks mangling on interdependent decls. */
5140 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5141 assign_assembler_name_if_neeeded (t);
5142
5143 /* Traverse every decl found freeing its language data. */
5144 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5145 free_lang_data_in_decl (t);
5146
5147 /* Traverse every type found freeing its language data. */
5148 FOR_EACH_VEC_ELT (tree, fld.types, i, t)
5149 free_lang_data_in_type (t);
5150
5151 pointer_set_destroy (fld.pset);
5152 VEC_free (tree, heap, fld.worklist);
5153 VEC_free (tree, heap, fld.decls);
5154 VEC_free (tree, heap, fld.types);
5155 }
5156
5157
5158 /* Free resources that are used by FE but are not needed once they are done. */
5159
5160 static unsigned
5161 free_lang_data (void)
5162 {
5163 unsigned i;
5164
5165 /* If we are the LTO frontend we have freed lang-specific data already. */
5166 if (in_lto_p
5167 || !flag_generate_lto)
5168 return 0;
5169
5170 /* Allocate and assign alias sets to the standard integer types
5171 while the slots are still in the way the frontends generated them. */
5172 for (i = 0; i < itk_none; ++i)
5173 if (integer_types[i])
5174 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5175
5176 /* Traverse the IL resetting language specific information for
5177 operands, expressions, etc. */
5178 free_lang_data_in_cgraph ();
5179
5180 /* Create gimple variants for common types. */
5181 ptrdiff_type_node = integer_type_node;
5182 fileptr_type_node = ptr_type_node;
5183
5184 /* Reset some langhooks. Do not reset types_compatible_p, it may
5185 still be used indirectly via the get_alias_set langhook. */
5186 lang_hooks.callgraph.analyze_expr = NULL;
5187 lang_hooks.dwarf_name = lhd_dwarf_name;
5188 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5189 /* We do not want the default decl_assembler_name implementation,
5190 rather if we have fixed everything we want a wrapper around it
5191 asserting that all non-local symbols already got their assembler
5192 name and only produce assembler names for local symbols. Or rather
5193 make sure we never call decl_assembler_name on local symbols and
5194 devise a separate, middle-end private scheme for it. */
5195
5196 /* Reset diagnostic machinery. */
5197 diagnostic_starter (global_dc) = default_tree_diagnostic_starter;
5198 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
5199 diagnostic_format_decoder (global_dc) = default_tree_printer;
5200
5201 return 0;
5202 }
5203
5204
5205 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5206 {
5207 {
5208 SIMPLE_IPA_PASS,
5209 "*free_lang_data", /* name */
5210 NULL, /* gate */
5211 free_lang_data, /* execute */
5212 NULL, /* sub */
5213 NULL, /* next */
5214 0, /* static_pass_number */
5215 TV_IPA_FREE_LANG_DATA, /* tv_id */
5216 0, /* properties_required */
5217 0, /* properties_provided */
5218 0, /* properties_destroyed */
5219 0, /* todo_flags_start */
5220 TODO_ggc_collect /* todo_flags_finish */
5221 }
5222 };
5223
5224 /* The backbone of is_attribute_p(). ATTR_LEN is the string length of
5225 ATTR_NAME. Also used internally by remove_attribute(). */
5226 bool
5227 private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident)
5228 {
5229 size_t ident_len = IDENTIFIER_LENGTH (ident);
5230
5231 if (ident_len == attr_len)
5232 {
5233 if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0)
5234 return true;
5235 }
5236 else if (ident_len == attr_len + 4)
5237 {
5238 /* There is the possibility that ATTR is 'text' and IDENT is
5239 '__text__'. */
5240 const char *p = IDENTIFIER_POINTER (ident);
5241 if (p[0] == '_' && p[1] == '_'
5242 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5243 && strncmp (attr_name, p + 2, attr_len) == 0)
5244 return true;
5245 }
5246
5247 return false;
5248 }
5249
5250 /* The backbone of lookup_attribute(). ATTR_LEN is the string length
5251 of ATTR_NAME, and LIST is not NULL_TREE. */
5252 tree
5253 private_lookup_attribute (const char *attr_name, size_t attr_len, tree list)
5254 {
5255 while (list)
5256 {
5257 size_t ident_len = IDENTIFIER_LENGTH (TREE_PURPOSE (list));
5258
5259 if (ident_len == attr_len)
5260 {
5261 if (strcmp (attr_name, IDENTIFIER_POINTER (TREE_PURPOSE (list))) == 0)
5262 break;
5263 }
5264 /* TODO: If we made sure that attributes were stored in the
5265 canonical form without '__...__' (ie, as in 'text' as opposed
5266 to '__text__') then we could avoid the following case. */
5267 else if (ident_len == attr_len + 4)
5268 {
5269 const char *p = IDENTIFIER_POINTER (TREE_PURPOSE (list));
5270 if (p[0] == '_' && p[1] == '_'
5271 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5272 && strncmp (attr_name, p + 2, attr_len) == 0)
5273 break;
5274 }
5275 list = TREE_CHAIN (list);
5276 }
5277
5278 return list;
5279 }
5280
5281 /* A variant of lookup_attribute() that can be used with an identifier
5282 as the first argument, and where the identifier can be either
5283 'text' or '__text__'.
5284
5285 Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST,
5286 return a pointer to the attribute's list element if the attribute
5287 is part of the list, or NULL_TREE if not found. If the attribute
5288 appears more than once, this only returns the first occurrence; the
5289 TREE_CHAIN of the return value should be passed back in if further
5290 occurrences are wanted. ATTR_IDENTIFIER must be an identifier but
5291 can be in the form 'text' or '__text__'. */
5292 static tree
5293 lookup_ident_attribute (tree attr_identifier, tree list)
5294 {
5295 gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE);
5296
5297 while (list)
5298 {
5299 gcc_checking_assert (TREE_CODE (TREE_PURPOSE (list)) == IDENTIFIER_NODE);
5300
5301 /* Identifiers can be compared directly for equality. */
5302 if (attr_identifier == TREE_PURPOSE (list))
5303 break;
5304
5305 /* If they are not equal, they may still be one in the form
5306 'text' while the other one is in the form '__text__'. TODO:
5307 If we were storing attributes in normalized 'text' form, then
5308 this could all go away and we could take full advantage of
5309 the fact that we're comparing identifiers. :-) */
5310 {
5311 size_t attr_len = IDENTIFIER_LENGTH (attr_identifier);
5312 size_t ident_len = IDENTIFIER_LENGTH (TREE_PURPOSE (list));
5313
5314 if (ident_len == attr_len + 4)
5315 {
5316 const char *p = IDENTIFIER_POINTER (TREE_PURPOSE (list));
5317 const char *q = IDENTIFIER_POINTER (attr_identifier);
5318 if (p[0] == '_' && p[1] == '_'
5319 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5320 && strncmp (q, p + 2, attr_len) == 0)
5321 break;
5322 }
5323 else if (ident_len + 4 == attr_len)
5324 {
5325 const char *p = IDENTIFIER_POINTER (TREE_PURPOSE (list));
5326 const char *q = IDENTIFIER_POINTER (attr_identifier);
5327 if (q[0] == '_' && q[1] == '_'
5328 && q[attr_len - 2] == '_' && q[attr_len - 1] == '_'
5329 && strncmp (q + 2, p, ident_len) == 0)
5330 break;
5331 }
5332 }
5333 list = TREE_CHAIN (list);
5334 }
5335
5336 return list;
5337 }
5338
5339 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5340 modified list. */
5341
5342 tree
5343 remove_attribute (const char *attr_name, tree list)
5344 {
5345 tree *p;
5346 size_t attr_len = strlen (attr_name);
5347
5348 gcc_checking_assert (attr_name[0] != '_');
5349
5350 for (p = &list; *p; )
5351 {
5352 tree l = *p;
5353 /* TODO: If we were storing attributes in normalized form, here
5354 we could use a simple strcmp(). */
5355 if (private_is_attribute_p (attr_name, attr_len, TREE_PURPOSE (l)))
5356 *p = TREE_CHAIN (l);
5357 else
5358 p = &TREE_CHAIN (l);
5359 }
5360
5361 return list;
5362 }
5363
5364 /* Return an attribute list that is the union of a1 and a2. */
5365
5366 tree
5367 merge_attributes (tree a1, tree a2)
5368 {
5369 tree attributes;
5370
5371 /* Either one unset? Take the set one. */
5372
5373 if ((attributes = a1) == 0)
5374 attributes = a2;
5375
5376 /* One that completely contains the other? Take it. */
5377
5378 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5379 {
5380 if (attribute_list_contained (a2, a1))
5381 attributes = a2;
5382 else
5383 {
5384 /* Pick the longest list, and hang on the other list. */
5385
5386 if (list_length (a1) < list_length (a2))
5387 attributes = a2, a2 = a1;
5388
5389 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5390 {
5391 tree a;
5392 for (a = lookup_ident_attribute (TREE_PURPOSE (a2), attributes);
5393 a != NULL_TREE && !attribute_value_equal (a, a2);
5394 a = lookup_ident_attribute (TREE_PURPOSE (a2), TREE_CHAIN (a)))
5395 ;
5396 if (a == NULL_TREE)
5397 {
5398 a1 = copy_node (a2);
5399 TREE_CHAIN (a1) = attributes;
5400 attributes = a1;
5401 }
5402 }
5403 }
5404 }
5405 return attributes;
5406 }
5407
5408 /* Given types T1 and T2, merge their attributes and return
5409 the result. */
5410
5411 tree
5412 merge_type_attributes (tree t1, tree t2)
5413 {
5414 return merge_attributes (TYPE_ATTRIBUTES (t1),
5415 TYPE_ATTRIBUTES (t2));
5416 }
5417
5418 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5419 the result. */
5420
5421 tree
5422 merge_decl_attributes (tree olddecl, tree newdecl)
5423 {
5424 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5425 DECL_ATTRIBUTES (newdecl));
5426 }
5427
5428 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5429
5430 /* Specialization of merge_decl_attributes for various Windows targets.
5431
5432 This handles the following situation:
5433
5434 __declspec (dllimport) int foo;
5435 int foo;
5436
5437 The second instance of `foo' nullifies the dllimport. */
5438
5439 tree
5440 merge_dllimport_decl_attributes (tree old, tree new_tree)
5441 {
5442 tree a;
5443 int delete_dllimport_p = 1;
5444
5445 /* What we need to do here is remove from `old' dllimport if it doesn't
5446 appear in `new'. dllimport behaves like extern: if a declaration is
5447 marked dllimport and a definition appears later, then the object
5448 is not dllimport'd. We also remove a `new' dllimport if the old list
5449 contains dllexport: dllexport always overrides dllimport, regardless
5450 of the order of declaration. */
5451 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5452 delete_dllimport_p = 0;
5453 else if (DECL_DLLIMPORT_P (new_tree)
5454 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5455 {
5456 DECL_DLLIMPORT_P (new_tree) = 0;
5457 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5458 "dllimport ignored", new_tree);
5459 }
5460 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5461 {
5462 /* Warn about overriding a symbol that has already been used, e.g.:
5463 extern int __attribute__ ((dllimport)) foo;
5464 int* bar () {return &foo;}
5465 int foo;
5466 */
5467 if (TREE_USED (old))
5468 {
5469 warning (0, "%q+D redeclared without dllimport attribute "
5470 "after being referenced with dll linkage", new_tree);
5471 /* If we have used a variable's address with dllimport linkage,
5472 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5473 decl may already have had TREE_CONSTANT computed.
5474 We still remove the attribute so that assembler code refers
5475 to '&foo rather than '_imp__foo'. */
5476 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5477 DECL_DLLIMPORT_P (new_tree) = 1;
5478 }
5479
5480 /* Let an inline definition silently override the external reference,
5481 but otherwise warn about attribute inconsistency. */
5482 else if (TREE_CODE (new_tree) == VAR_DECL
5483 || !DECL_DECLARED_INLINE_P (new_tree))
5484 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5485 "previous dllimport ignored", new_tree);
5486 }
5487 else
5488 delete_dllimport_p = 0;
5489
5490 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5491
5492 if (delete_dllimport_p)
5493 a = remove_attribute ("dllimport", a);
5494
5495 return a;
5496 }
5497
5498 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5499 struct attribute_spec.handler. */
5500
5501 tree
5502 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5503 bool *no_add_attrs)
5504 {
5505 tree node = *pnode;
5506 bool is_dllimport;
5507
5508 /* These attributes may apply to structure and union types being created,
5509 but otherwise should pass to the declaration involved. */
5510 if (!DECL_P (node))
5511 {
5512 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5513 | (int) ATTR_FLAG_ARRAY_NEXT))
5514 {
5515 *no_add_attrs = true;
5516 return tree_cons (name, args, NULL_TREE);
5517 }
5518 if (TREE_CODE (node) == RECORD_TYPE
5519 || TREE_CODE (node) == UNION_TYPE)
5520 {
5521 node = TYPE_NAME (node);
5522 if (!node)
5523 return NULL_TREE;
5524 }
5525 else
5526 {
5527 warning (OPT_Wattributes, "%qE attribute ignored",
5528 name);
5529 *no_add_attrs = true;
5530 return NULL_TREE;
5531 }
5532 }
5533
5534 if (TREE_CODE (node) != FUNCTION_DECL
5535 && TREE_CODE (node) != VAR_DECL
5536 && TREE_CODE (node) != TYPE_DECL)
5537 {
5538 *no_add_attrs = true;
5539 warning (OPT_Wattributes, "%qE attribute ignored",
5540 name);
5541 return NULL_TREE;
5542 }
5543
5544 if (TREE_CODE (node) == TYPE_DECL
5545 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5546 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5547 {
5548 *no_add_attrs = true;
5549 warning (OPT_Wattributes, "%qE attribute ignored",
5550 name);
5551 return NULL_TREE;
5552 }
5553
5554 is_dllimport = is_attribute_p ("dllimport", name);
5555
5556 /* Report error on dllimport ambiguities seen now before they cause
5557 any damage. */
5558 if (is_dllimport)
5559 {
5560 /* Honor any target-specific overrides. */
5561 if (!targetm.valid_dllimport_attribute_p (node))
5562 *no_add_attrs = true;
5563
5564 else if (TREE_CODE (node) == FUNCTION_DECL
5565 && DECL_DECLARED_INLINE_P (node))
5566 {
5567 warning (OPT_Wattributes, "inline function %q+D declared as "
5568 " dllimport: attribute ignored", node);
5569 *no_add_attrs = true;
5570 }
5571 /* Like MS, treat definition of dllimported variables and
5572 non-inlined functions on declaration as syntax errors. */
5573 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5574 {
5575 error ("function %q+D definition is marked dllimport", node);
5576 *no_add_attrs = true;
5577 }
5578
5579 else if (TREE_CODE (node) == VAR_DECL)
5580 {
5581 if (DECL_INITIAL (node))
5582 {
5583 error ("variable %q+D definition is marked dllimport",
5584 node);
5585 *no_add_attrs = true;
5586 }
5587
5588 /* `extern' needn't be specified with dllimport.
5589 Specify `extern' now and hope for the best. Sigh. */
5590 DECL_EXTERNAL (node) = 1;
5591 /* Also, implicitly give dllimport'd variables declared within
5592 a function global scope, unless declared static. */
5593 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5594 TREE_PUBLIC (node) = 1;
5595 }
5596
5597 if (*no_add_attrs == false)
5598 DECL_DLLIMPORT_P (node) = 1;
5599 }
5600 else if (TREE_CODE (node) == FUNCTION_DECL
5601 && DECL_DECLARED_INLINE_P (node)
5602 && flag_keep_inline_dllexport)
5603 /* An exported function, even if inline, must be emitted. */
5604 DECL_EXTERNAL (node) = 0;
5605
5606 /* Report error if symbol is not accessible at global scope. */
5607 if (!TREE_PUBLIC (node)
5608 && (TREE_CODE (node) == VAR_DECL
5609 || TREE_CODE (node) == FUNCTION_DECL))
5610 {
5611 error ("external linkage required for symbol %q+D because of "
5612 "%qE attribute", node, name);
5613 *no_add_attrs = true;
5614 }
5615
5616 /* A dllexport'd entity must have default visibility so that other
5617 program units (shared libraries or the main executable) can see
5618 it. A dllimport'd entity must have default visibility so that
5619 the linker knows that undefined references within this program
5620 unit can be resolved by the dynamic linker. */
5621 if (!*no_add_attrs)
5622 {
5623 if (DECL_VISIBILITY_SPECIFIED (node)
5624 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5625 error ("%qE implies default visibility, but %qD has already "
5626 "been declared with a different visibility",
5627 name, node);
5628 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5629 DECL_VISIBILITY_SPECIFIED (node) = 1;
5630 }
5631
5632 return NULL_TREE;
5633 }
5634
5635 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5636 \f
5637 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5638 of the various TYPE_QUAL values. */
5639
5640 static void
5641 set_type_quals (tree type, int type_quals)
5642 {
5643 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5644 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5645 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5646 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5647 }
5648
5649 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5650
5651 bool
5652 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5653 {
5654 return (TYPE_QUALS (cand) == type_quals
5655 && TYPE_NAME (cand) == TYPE_NAME (base)
5656 /* Apparently this is needed for Objective-C. */
5657 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5658 /* Check alignment. */
5659 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5660 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5661 TYPE_ATTRIBUTES (base)));
5662 }
5663
5664 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5665
5666 static bool
5667 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5668 {
5669 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5670 && TYPE_NAME (cand) == TYPE_NAME (base)
5671 /* Apparently this is needed for Objective-C. */
5672 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5673 /* Check alignment. */
5674 && TYPE_ALIGN (cand) == align
5675 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5676 TYPE_ATTRIBUTES (base)));
5677 }
5678
5679 /* Return a version of the TYPE, qualified as indicated by the
5680 TYPE_QUALS, if one exists. If no qualified version exists yet,
5681 return NULL_TREE. */
5682
5683 tree
5684 get_qualified_type (tree type, int type_quals)
5685 {
5686 tree t;
5687
5688 if (TYPE_QUALS (type) == type_quals)
5689 return type;
5690
5691 /* Search the chain of variants to see if there is already one there just
5692 like the one we need to have. If so, use that existing one. We must
5693 preserve the TYPE_NAME, since there is code that depends on this. */
5694 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5695 if (check_qualified_type (t, type, type_quals))
5696 return t;
5697
5698 return NULL_TREE;
5699 }
5700
5701 /* Like get_qualified_type, but creates the type if it does not
5702 exist. This function never returns NULL_TREE. */
5703
5704 tree
5705 build_qualified_type (tree type, int type_quals)
5706 {
5707 tree t;
5708
5709 /* See if we already have the appropriate qualified variant. */
5710 t = get_qualified_type (type, type_quals);
5711
5712 /* If not, build it. */
5713 if (!t)
5714 {
5715 t = build_variant_type_copy (type);
5716 set_type_quals (t, type_quals);
5717
5718 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5719 /* Propagate structural equality. */
5720 SET_TYPE_STRUCTURAL_EQUALITY (t);
5721 else if (TYPE_CANONICAL (type) != type)
5722 /* Build the underlying canonical type, since it is different
5723 from TYPE. */
5724 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5725 type_quals);
5726 else
5727 /* T is its own canonical type. */
5728 TYPE_CANONICAL (t) = t;
5729
5730 }
5731
5732 return t;
5733 }
5734
5735 /* Create a variant of type T with alignment ALIGN. */
5736
5737 tree
5738 build_aligned_type (tree type, unsigned int align)
5739 {
5740 tree t;
5741
5742 if (TYPE_PACKED (type)
5743 || TYPE_ALIGN (type) == align)
5744 return type;
5745
5746 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5747 if (check_aligned_type (t, type, align))
5748 return t;
5749
5750 t = build_variant_type_copy (type);
5751 TYPE_ALIGN (t) = align;
5752
5753 return t;
5754 }
5755
5756 /* Create a new distinct copy of TYPE. The new type is made its own
5757 MAIN_VARIANT. If TYPE requires structural equality checks, the
5758 resulting type requires structural equality checks; otherwise, its
5759 TYPE_CANONICAL points to itself. */
5760
5761 tree
5762 build_distinct_type_copy (tree type)
5763 {
5764 tree t = copy_node (type);
5765
5766 TYPE_POINTER_TO (t) = 0;
5767 TYPE_REFERENCE_TO (t) = 0;
5768
5769 /* Set the canonical type either to a new equivalence class, or
5770 propagate the need for structural equality checks. */
5771 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5772 SET_TYPE_STRUCTURAL_EQUALITY (t);
5773 else
5774 TYPE_CANONICAL (t) = t;
5775
5776 /* Make it its own variant. */
5777 TYPE_MAIN_VARIANT (t) = t;
5778 TYPE_NEXT_VARIANT (t) = 0;
5779
5780 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5781 whose TREE_TYPE is not t. This can also happen in the Ada
5782 frontend when using subtypes. */
5783
5784 return t;
5785 }
5786
5787 /* Create a new variant of TYPE, equivalent but distinct. This is so
5788 the caller can modify it. TYPE_CANONICAL for the return type will
5789 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5790 are considered equal by the language itself (or that both types
5791 require structural equality checks). */
5792
5793 tree
5794 build_variant_type_copy (tree type)
5795 {
5796 tree t, m = TYPE_MAIN_VARIANT (type);
5797
5798 t = build_distinct_type_copy (type);
5799
5800 /* Since we're building a variant, assume that it is a non-semantic
5801 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5802 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5803
5804 /* Add the new type to the chain of variants of TYPE. */
5805 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5806 TYPE_NEXT_VARIANT (m) = t;
5807 TYPE_MAIN_VARIANT (t) = m;
5808
5809 return t;
5810 }
5811 \f
5812 /* Return true if the from tree in both tree maps are equal. */
5813
5814 int
5815 tree_map_base_eq (const void *va, const void *vb)
5816 {
5817 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5818 *const b = (const struct tree_map_base *) vb;
5819 return (a->from == b->from);
5820 }
5821
5822 /* Hash a from tree in a tree_base_map. */
5823
5824 unsigned int
5825 tree_map_base_hash (const void *item)
5826 {
5827 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5828 }
5829
5830 /* Return true if this tree map structure is marked for garbage collection
5831 purposes. We simply return true if the from tree is marked, so that this
5832 structure goes away when the from tree goes away. */
5833
5834 int
5835 tree_map_base_marked_p (const void *p)
5836 {
5837 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5838 }
5839
5840 /* Hash a from tree in a tree_map. */
5841
5842 unsigned int
5843 tree_map_hash (const void *item)
5844 {
5845 return (((const struct tree_map *) item)->hash);
5846 }
5847
5848 /* Hash a from tree in a tree_decl_map. */
5849
5850 unsigned int
5851 tree_decl_map_hash (const void *item)
5852 {
5853 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5854 }
5855
5856 /* Return the initialization priority for DECL. */
5857
5858 priority_type
5859 decl_init_priority_lookup (tree decl)
5860 {
5861 struct tree_priority_map *h;
5862 struct tree_map_base in;
5863
5864 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5865 in.from = decl;
5866 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5867 return h ? h->init : DEFAULT_INIT_PRIORITY;
5868 }
5869
5870 /* Return the finalization priority for DECL. */
5871
5872 priority_type
5873 decl_fini_priority_lookup (tree decl)
5874 {
5875 struct tree_priority_map *h;
5876 struct tree_map_base in;
5877
5878 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5879 in.from = decl;
5880 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5881 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5882 }
5883
5884 /* Return the initialization and finalization priority information for
5885 DECL. If there is no previous priority information, a freshly
5886 allocated structure is returned. */
5887
5888 static struct tree_priority_map *
5889 decl_priority_info (tree decl)
5890 {
5891 struct tree_priority_map in;
5892 struct tree_priority_map *h;
5893 void **loc;
5894
5895 in.base.from = decl;
5896 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5897 h = (struct tree_priority_map *) *loc;
5898 if (!h)
5899 {
5900 h = ggc_alloc_cleared_tree_priority_map ();
5901 *loc = h;
5902 h->base.from = decl;
5903 h->init = DEFAULT_INIT_PRIORITY;
5904 h->fini = DEFAULT_INIT_PRIORITY;
5905 }
5906
5907 return h;
5908 }
5909
5910 /* Set the initialization priority for DECL to PRIORITY. */
5911
5912 void
5913 decl_init_priority_insert (tree decl, priority_type priority)
5914 {
5915 struct tree_priority_map *h;
5916
5917 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5918 if (priority == DEFAULT_INIT_PRIORITY)
5919 return;
5920 h = decl_priority_info (decl);
5921 h->init = priority;
5922 }
5923
5924 /* Set the finalization priority for DECL to PRIORITY. */
5925
5926 void
5927 decl_fini_priority_insert (tree decl, priority_type priority)
5928 {
5929 struct tree_priority_map *h;
5930
5931 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5932 if (priority == DEFAULT_INIT_PRIORITY)
5933 return;
5934 h = decl_priority_info (decl);
5935 h->fini = priority;
5936 }
5937
5938 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5939
5940 static void
5941 print_debug_expr_statistics (void)
5942 {
5943 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5944 (long) htab_size (debug_expr_for_decl),
5945 (long) htab_elements (debug_expr_for_decl),
5946 htab_collisions (debug_expr_for_decl));
5947 }
5948
5949 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5950
5951 static void
5952 print_value_expr_statistics (void)
5953 {
5954 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5955 (long) htab_size (value_expr_for_decl),
5956 (long) htab_elements (value_expr_for_decl),
5957 htab_collisions (value_expr_for_decl));
5958 }
5959
5960 /* Lookup a debug expression for FROM, and return it if we find one. */
5961
5962 tree
5963 decl_debug_expr_lookup (tree from)
5964 {
5965 struct tree_decl_map *h, in;
5966 in.base.from = from;
5967
5968 h = (struct tree_decl_map *)
5969 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
5970 if (h)
5971 return h->to;
5972 return NULL_TREE;
5973 }
5974
5975 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5976
5977 void
5978 decl_debug_expr_insert (tree from, tree to)
5979 {
5980 struct tree_decl_map *h;
5981 void **loc;
5982
5983 h = ggc_alloc_tree_decl_map ();
5984 h->base.from = from;
5985 h->to = to;
5986 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
5987 INSERT);
5988 *(struct tree_decl_map **) loc = h;
5989 }
5990
5991 /* Lookup a value expression for FROM, and return it if we find one. */
5992
5993 tree
5994 decl_value_expr_lookup (tree from)
5995 {
5996 struct tree_decl_map *h, in;
5997 in.base.from = from;
5998
5999 h = (struct tree_decl_map *)
6000 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
6001 if (h)
6002 return h->to;
6003 return NULL_TREE;
6004 }
6005
6006 /* Insert a mapping FROM->TO in the value expression hashtable. */
6007
6008 void
6009 decl_value_expr_insert (tree from, tree to)
6010 {
6011 struct tree_decl_map *h;
6012 void **loc;
6013
6014 h = ggc_alloc_tree_decl_map ();
6015 h->base.from = from;
6016 h->to = to;
6017 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
6018 INSERT);
6019 *(struct tree_decl_map **) loc = h;
6020 }
6021
6022 /* Lookup a vector of debug arguments for FROM, and return it if we
6023 find one. */
6024
6025 VEC(tree, gc) **
6026 decl_debug_args_lookup (tree from)
6027 {
6028 struct tree_vec_map *h, in;
6029
6030 if (!DECL_HAS_DEBUG_ARGS_P (from))
6031 return NULL;
6032 gcc_checking_assert (debug_args_for_decl != NULL);
6033 in.base.from = from;
6034 h = (struct tree_vec_map *)
6035 htab_find_with_hash (debug_args_for_decl, &in, DECL_UID (from));
6036 if (h)
6037 return &h->to;
6038 return NULL;
6039 }
6040
6041 /* Insert a mapping FROM->empty vector of debug arguments in the value
6042 expression hashtable. */
6043
6044 VEC(tree, gc) **
6045 decl_debug_args_insert (tree from)
6046 {
6047 struct tree_vec_map *h;
6048 void **loc;
6049
6050 if (DECL_HAS_DEBUG_ARGS_P (from))
6051 return decl_debug_args_lookup (from);
6052 if (debug_args_for_decl == NULL)
6053 debug_args_for_decl = htab_create_ggc (64, tree_vec_map_hash,
6054 tree_vec_map_eq, 0);
6055 h = ggc_alloc_tree_vec_map ();
6056 h->base.from = from;
6057 h->to = NULL;
6058 loc = htab_find_slot_with_hash (debug_args_for_decl, h, DECL_UID (from),
6059 INSERT);
6060 *(struct tree_vec_map **) loc = h;
6061 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6062 return &h->to;
6063 }
6064
6065 /* Hashing of types so that we don't make duplicates.
6066 The entry point is `type_hash_canon'. */
6067
6068 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6069 with types in the TREE_VALUE slots), by adding the hash codes
6070 of the individual types. */
6071
6072 static unsigned int
6073 type_hash_list (const_tree list, hashval_t hashcode)
6074 {
6075 const_tree tail;
6076
6077 for (tail = list; tail; tail = TREE_CHAIN (tail))
6078 if (TREE_VALUE (tail) != error_mark_node)
6079 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
6080 hashcode);
6081
6082 return hashcode;
6083 }
6084
6085 /* These are the Hashtable callback functions. */
6086
6087 /* Returns true iff the types are equivalent. */
6088
6089 static int
6090 type_hash_eq (const void *va, const void *vb)
6091 {
6092 const struct type_hash *const a = (const struct type_hash *) va,
6093 *const b = (const struct type_hash *) vb;
6094
6095 /* First test the things that are the same for all types. */
6096 if (a->hash != b->hash
6097 || TREE_CODE (a->type) != TREE_CODE (b->type)
6098 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6099 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6100 TYPE_ATTRIBUTES (b->type))
6101 || (TREE_CODE (a->type) != COMPLEX_TYPE
6102 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6103 return 0;
6104
6105 /* Be careful about comparing arrays before and after the element type
6106 has been completed; don't compare TYPE_ALIGN unless both types are
6107 complete. */
6108 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6109 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6110 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6111 return 0;
6112
6113 switch (TREE_CODE (a->type))
6114 {
6115 case VOID_TYPE:
6116 case COMPLEX_TYPE:
6117 case POINTER_TYPE:
6118 case REFERENCE_TYPE:
6119 return 1;
6120
6121 case VECTOR_TYPE:
6122 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6123
6124 case ENUMERAL_TYPE:
6125 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6126 && !(TYPE_VALUES (a->type)
6127 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6128 && TYPE_VALUES (b->type)
6129 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6130 && type_list_equal (TYPE_VALUES (a->type),
6131 TYPE_VALUES (b->type))))
6132 return 0;
6133
6134 /* ... fall through ... */
6135
6136 case INTEGER_TYPE:
6137 case REAL_TYPE:
6138 case BOOLEAN_TYPE:
6139 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6140 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6141 TYPE_MAX_VALUE (b->type)))
6142 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6143 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6144 TYPE_MIN_VALUE (b->type))));
6145
6146 case FIXED_POINT_TYPE:
6147 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6148
6149 case OFFSET_TYPE:
6150 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6151
6152 case METHOD_TYPE:
6153 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6154 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6155 || (TYPE_ARG_TYPES (a->type)
6156 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6157 && TYPE_ARG_TYPES (b->type)
6158 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6159 && type_list_equal (TYPE_ARG_TYPES (a->type),
6160 TYPE_ARG_TYPES (b->type)))))
6161 break;
6162 return 0;
6163 case ARRAY_TYPE:
6164 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6165
6166 case RECORD_TYPE:
6167 case UNION_TYPE:
6168 case QUAL_UNION_TYPE:
6169 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6170 || (TYPE_FIELDS (a->type)
6171 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6172 && TYPE_FIELDS (b->type)
6173 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6174 && type_list_equal (TYPE_FIELDS (a->type),
6175 TYPE_FIELDS (b->type))));
6176
6177 case FUNCTION_TYPE:
6178 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6179 || (TYPE_ARG_TYPES (a->type)
6180 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6181 && TYPE_ARG_TYPES (b->type)
6182 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6183 && type_list_equal (TYPE_ARG_TYPES (a->type),
6184 TYPE_ARG_TYPES (b->type))))
6185 break;
6186 return 0;
6187
6188 default:
6189 return 0;
6190 }
6191
6192 if (lang_hooks.types.type_hash_eq != NULL)
6193 return lang_hooks.types.type_hash_eq (a->type, b->type);
6194
6195 return 1;
6196 }
6197
6198 /* Return the cached hash value. */
6199
6200 static hashval_t
6201 type_hash_hash (const void *item)
6202 {
6203 return ((const struct type_hash *) item)->hash;
6204 }
6205
6206 /* Look in the type hash table for a type isomorphic to TYPE.
6207 If one is found, return it. Otherwise return 0. */
6208
6209 tree
6210 type_hash_lookup (hashval_t hashcode, tree type)
6211 {
6212 struct type_hash *h, in;
6213
6214 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6215 must call that routine before comparing TYPE_ALIGNs. */
6216 layout_type (type);
6217
6218 in.hash = hashcode;
6219 in.type = type;
6220
6221 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6222 hashcode);
6223 if (h)
6224 return h->type;
6225 return NULL_TREE;
6226 }
6227
6228 /* Add an entry to the type-hash-table
6229 for a type TYPE whose hash code is HASHCODE. */
6230
6231 void
6232 type_hash_add (hashval_t hashcode, tree type)
6233 {
6234 struct type_hash *h;
6235 void **loc;
6236
6237 h = ggc_alloc_type_hash ();
6238 h->hash = hashcode;
6239 h->type = type;
6240 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6241 *loc = (void *)h;
6242 }
6243
6244 /* Given TYPE, and HASHCODE its hash code, return the canonical
6245 object for an identical type if one already exists.
6246 Otherwise, return TYPE, and record it as the canonical object.
6247
6248 To use this function, first create a type of the sort you want.
6249 Then compute its hash code from the fields of the type that
6250 make it different from other similar types.
6251 Then call this function and use the value. */
6252
6253 tree
6254 type_hash_canon (unsigned int hashcode, tree type)
6255 {
6256 tree t1;
6257
6258 /* The hash table only contains main variants, so ensure that's what we're
6259 being passed. */
6260 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6261
6262 /* See if the type is in the hash table already. If so, return it.
6263 Otherwise, add the type. */
6264 t1 = type_hash_lookup (hashcode, type);
6265 if (t1 != 0)
6266 {
6267 #ifdef GATHER_STATISTICS
6268 tree_code_counts[(int) TREE_CODE (type)]--;
6269 tree_node_counts[(int) t_kind]--;
6270 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
6271 #endif
6272 return t1;
6273 }
6274 else
6275 {
6276 type_hash_add (hashcode, type);
6277 return type;
6278 }
6279 }
6280
6281 /* See if the data pointed to by the type hash table is marked. We consider
6282 it marked if the type is marked or if a debug type number or symbol
6283 table entry has been made for the type. */
6284
6285 static int
6286 type_hash_marked_p (const void *p)
6287 {
6288 const_tree const type = ((const struct type_hash *) p)->type;
6289
6290 return ggc_marked_p (type);
6291 }
6292
6293 static void
6294 print_type_hash_statistics (void)
6295 {
6296 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6297 (long) htab_size (type_hash_table),
6298 (long) htab_elements (type_hash_table),
6299 htab_collisions (type_hash_table));
6300 }
6301
6302 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6303 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6304 by adding the hash codes of the individual attributes. */
6305
6306 static unsigned int
6307 attribute_hash_list (const_tree list, hashval_t hashcode)
6308 {
6309 const_tree tail;
6310
6311 for (tail = list; tail; tail = TREE_CHAIN (tail))
6312 /* ??? Do we want to add in TREE_VALUE too? */
6313 hashcode = iterative_hash_object
6314 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
6315 return hashcode;
6316 }
6317
6318 /* Given two lists of attributes, return true if list l2 is
6319 equivalent to l1. */
6320
6321 int
6322 attribute_list_equal (const_tree l1, const_tree l2)
6323 {
6324 if (l1 == l2)
6325 return 1;
6326
6327 return attribute_list_contained (l1, l2)
6328 && attribute_list_contained (l2, l1);
6329 }
6330
6331 /* Given two lists of attributes, return true if list L2 is
6332 completely contained within L1. */
6333 /* ??? This would be faster if attribute names were stored in a canonicalized
6334 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6335 must be used to show these elements are equivalent (which they are). */
6336 /* ??? It's not clear that attributes with arguments will always be handled
6337 correctly. */
6338
6339 int
6340 attribute_list_contained (const_tree l1, const_tree l2)
6341 {
6342 const_tree t1, t2;
6343
6344 /* First check the obvious, maybe the lists are identical. */
6345 if (l1 == l2)
6346 return 1;
6347
6348 /* Maybe the lists are similar. */
6349 for (t1 = l1, t2 = l2;
6350 t1 != 0 && t2 != 0
6351 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6352 && TREE_VALUE (t1) == TREE_VALUE (t2);
6353 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6354 ;
6355
6356 /* Maybe the lists are equal. */
6357 if (t1 == 0 && t2 == 0)
6358 return 1;
6359
6360 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6361 {
6362 const_tree attr;
6363 /* This CONST_CAST is okay because lookup_attribute does not
6364 modify its argument and the return value is assigned to a
6365 const_tree. */
6366 for (attr = lookup_ident_attribute (TREE_PURPOSE (t2), CONST_CAST_TREE(l1));
6367 attr != NULL_TREE && !attribute_value_equal (t2, attr);
6368 attr = lookup_ident_attribute (TREE_PURPOSE (t2), TREE_CHAIN (attr)))
6369 ;
6370
6371 if (attr == NULL_TREE)
6372 return 0;
6373 }
6374
6375 return 1;
6376 }
6377
6378 /* Given two lists of types
6379 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6380 return 1 if the lists contain the same types in the same order.
6381 Also, the TREE_PURPOSEs must match. */
6382
6383 int
6384 type_list_equal (const_tree l1, const_tree l2)
6385 {
6386 const_tree t1, t2;
6387
6388 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6389 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6390 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6391 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6392 && (TREE_TYPE (TREE_PURPOSE (t1))
6393 == TREE_TYPE (TREE_PURPOSE (t2))))))
6394 return 0;
6395
6396 return t1 == t2;
6397 }
6398
6399 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6400 given by TYPE. If the argument list accepts variable arguments,
6401 then this function counts only the ordinary arguments. */
6402
6403 int
6404 type_num_arguments (const_tree type)
6405 {
6406 int i = 0;
6407 tree t;
6408
6409 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6410 /* If the function does not take a variable number of arguments,
6411 the last element in the list will have type `void'. */
6412 if (VOID_TYPE_P (TREE_VALUE (t)))
6413 break;
6414 else
6415 ++i;
6416
6417 return i;
6418 }
6419
6420 /* Nonzero if integer constants T1 and T2
6421 represent the same constant value. */
6422
6423 int
6424 tree_int_cst_equal (const_tree t1, const_tree t2)
6425 {
6426 if (t1 == t2)
6427 return 1;
6428
6429 if (t1 == 0 || t2 == 0)
6430 return 0;
6431
6432 if (TREE_CODE (t1) == INTEGER_CST
6433 && TREE_CODE (t2) == INTEGER_CST
6434 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6435 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6436 return 1;
6437
6438 return 0;
6439 }
6440
6441 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6442 The precise way of comparison depends on their data type. */
6443
6444 int
6445 tree_int_cst_lt (const_tree t1, const_tree t2)
6446 {
6447 if (t1 == t2)
6448 return 0;
6449
6450 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6451 {
6452 int t1_sgn = tree_int_cst_sgn (t1);
6453 int t2_sgn = tree_int_cst_sgn (t2);
6454
6455 if (t1_sgn < t2_sgn)
6456 return 1;
6457 else if (t1_sgn > t2_sgn)
6458 return 0;
6459 /* Otherwise, both are non-negative, so we compare them as
6460 unsigned just in case one of them would overflow a signed
6461 type. */
6462 }
6463 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6464 return INT_CST_LT (t1, t2);
6465
6466 return INT_CST_LT_UNSIGNED (t1, t2);
6467 }
6468
6469 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6470
6471 int
6472 tree_int_cst_compare (const_tree t1, const_tree t2)
6473 {
6474 if (tree_int_cst_lt (t1, t2))
6475 return -1;
6476 else if (tree_int_cst_lt (t2, t1))
6477 return 1;
6478 else
6479 return 0;
6480 }
6481
6482 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6483 the host. If POS is zero, the value can be represented in a single
6484 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6485 be represented in a single unsigned HOST_WIDE_INT. */
6486
6487 int
6488 host_integerp (const_tree t, int pos)
6489 {
6490 if (t == NULL_TREE)
6491 return 0;
6492
6493 return (TREE_CODE (t) == INTEGER_CST
6494 && ((TREE_INT_CST_HIGH (t) == 0
6495 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6496 || (! pos && TREE_INT_CST_HIGH (t) == -1
6497 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6498 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6499 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6500 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6501 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6502 }
6503
6504 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6505 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6506 be non-negative. We must be able to satisfy the above conditions. */
6507
6508 HOST_WIDE_INT
6509 tree_low_cst (const_tree t, int pos)
6510 {
6511 gcc_assert (host_integerp (t, pos));
6512 return TREE_INT_CST_LOW (t);
6513 }
6514
6515 /* Return the most significant bit of the integer constant T. */
6516
6517 int
6518 tree_int_cst_msb (const_tree t)
6519 {
6520 int prec;
6521 HOST_WIDE_INT h;
6522 unsigned HOST_WIDE_INT l;
6523
6524 /* Note that using TYPE_PRECISION here is wrong. We care about the
6525 actual bits, not the (arbitrary) range of the type. */
6526 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
6527 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
6528 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
6529 return (l & 1) == 1;
6530 }
6531
6532 /* Return an indication of the sign of the integer constant T.
6533 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6534 Note that -1 will never be returned if T's type is unsigned. */
6535
6536 int
6537 tree_int_cst_sgn (const_tree t)
6538 {
6539 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6540 return 0;
6541 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6542 return 1;
6543 else if (TREE_INT_CST_HIGH (t) < 0)
6544 return -1;
6545 else
6546 return 1;
6547 }
6548
6549 /* Return the minimum number of bits needed to represent VALUE in a
6550 signed or unsigned type, UNSIGNEDP says which. */
6551
6552 unsigned int
6553 tree_int_cst_min_precision (tree value, bool unsignedp)
6554 {
6555 int log;
6556
6557 /* If the value is negative, compute its negative minus 1. The latter
6558 adjustment is because the absolute value of the largest negative value
6559 is one larger than the largest positive value. This is equivalent to
6560 a bit-wise negation, so use that operation instead. */
6561
6562 if (tree_int_cst_sgn (value) < 0)
6563 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6564
6565 /* Return the number of bits needed, taking into account the fact
6566 that we need one more bit for a signed than unsigned type. */
6567
6568 if (integer_zerop (value))
6569 log = 0;
6570 else
6571 log = tree_floor_log2 (value);
6572
6573 return log + 1 + !unsignedp;
6574 }
6575
6576 /* Compare two constructor-element-type constants. Return 1 if the lists
6577 are known to be equal; otherwise return 0. */
6578
6579 int
6580 simple_cst_list_equal (const_tree l1, const_tree l2)
6581 {
6582 while (l1 != NULL_TREE && l2 != NULL_TREE)
6583 {
6584 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6585 return 0;
6586
6587 l1 = TREE_CHAIN (l1);
6588 l2 = TREE_CHAIN (l2);
6589 }
6590
6591 return l1 == l2;
6592 }
6593
6594 /* Return truthvalue of whether T1 is the same tree structure as T2.
6595 Return 1 if they are the same.
6596 Return 0 if they are understandably different.
6597 Return -1 if either contains tree structure not understood by
6598 this function. */
6599
6600 int
6601 simple_cst_equal (const_tree t1, const_tree t2)
6602 {
6603 enum tree_code code1, code2;
6604 int cmp;
6605 int i;
6606
6607 if (t1 == t2)
6608 return 1;
6609 if (t1 == 0 || t2 == 0)
6610 return 0;
6611
6612 code1 = TREE_CODE (t1);
6613 code2 = TREE_CODE (t2);
6614
6615 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6616 {
6617 if (CONVERT_EXPR_CODE_P (code2)
6618 || code2 == NON_LVALUE_EXPR)
6619 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6620 else
6621 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6622 }
6623
6624 else if (CONVERT_EXPR_CODE_P (code2)
6625 || code2 == NON_LVALUE_EXPR)
6626 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6627
6628 if (code1 != code2)
6629 return 0;
6630
6631 switch (code1)
6632 {
6633 case INTEGER_CST:
6634 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6635 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6636
6637 case REAL_CST:
6638 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6639
6640 case FIXED_CST:
6641 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6642
6643 case STRING_CST:
6644 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6645 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6646 TREE_STRING_LENGTH (t1)));
6647
6648 case CONSTRUCTOR:
6649 {
6650 unsigned HOST_WIDE_INT idx;
6651 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6652 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6653
6654 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6655 return false;
6656
6657 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6658 /* ??? Should we handle also fields here? */
6659 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6660 VEC_index (constructor_elt, v2, idx)->value))
6661 return false;
6662 return true;
6663 }
6664
6665 case SAVE_EXPR:
6666 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6667
6668 case CALL_EXPR:
6669 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6670 if (cmp <= 0)
6671 return cmp;
6672 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6673 return 0;
6674 {
6675 const_tree arg1, arg2;
6676 const_call_expr_arg_iterator iter1, iter2;
6677 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6678 arg2 = first_const_call_expr_arg (t2, &iter2);
6679 arg1 && arg2;
6680 arg1 = next_const_call_expr_arg (&iter1),
6681 arg2 = next_const_call_expr_arg (&iter2))
6682 {
6683 cmp = simple_cst_equal (arg1, arg2);
6684 if (cmp <= 0)
6685 return cmp;
6686 }
6687 return arg1 == arg2;
6688 }
6689
6690 case TARGET_EXPR:
6691 /* Special case: if either target is an unallocated VAR_DECL,
6692 it means that it's going to be unified with whatever the
6693 TARGET_EXPR is really supposed to initialize, so treat it
6694 as being equivalent to anything. */
6695 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6696 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6697 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6698 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6699 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6700 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6701 cmp = 1;
6702 else
6703 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6704
6705 if (cmp <= 0)
6706 return cmp;
6707
6708 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6709
6710 case WITH_CLEANUP_EXPR:
6711 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6712 if (cmp <= 0)
6713 return cmp;
6714
6715 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6716
6717 case COMPONENT_REF:
6718 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6719 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6720
6721 return 0;
6722
6723 case VAR_DECL:
6724 case PARM_DECL:
6725 case CONST_DECL:
6726 case FUNCTION_DECL:
6727 return 0;
6728
6729 default:
6730 break;
6731 }
6732
6733 /* This general rule works for most tree codes. All exceptions should be
6734 handled above. If this is a language-specific tree code, we can't
6735 trust what might be in the operand, so say we don't know
6736 the situation. */
6737 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6738 return -1;
6739
6740 switch (TREE_CODE_CLASS (code1))
6741 {
6742 case tcc_unary:
6743 case tcc_binary:
6744 case tcc_comparison:
6745 case tcc_expression:
6746 case tcc_reference:
6747 case tcc_statement:
6748 cmp = 1;
6749 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6750 {
6751 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6752 if (cmp <= 0)
6753 return cmp;
6754 }
6755
6756 return cmp;
6757
6758 default:
6759 return -1;
6760 }
6761 }
6762
6763 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6764 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6765 than U, respectively. */
6766
6767 int
6768 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6769 {
6770 if (tree_int_cst_sgn (t) < 0)
6771 return -1;
6772 else if (TREE_INT_CST_HIGH (t) != 0)
6773 return 1;
6774 else if (TREE_INT_CST_LOW (t) == u)
6775 return 0;
6776 else if (TREE_INT_CST_LOW (t) < u)
6777 return -1;
6778 else
6779 return 1;
6780 }
6781
6782 /* Return true if CODE represents an associative tree code. Otherwise
6783 return false. */
6784 bool
6785 associative_tree_code (enum tree_code code)
6786 {
6787 switch (code)
6788 {
6789 case BIT_IOR_EXPR:
6790 case BIT_AND_EXPR:
6791 case BIT_XOR_EXPR:
6792 case PLUS_EXPR:
6793 case MULT_EXPR:
6794 case MIN_EXPR:
6795 case MAX_EXPR:
6796 return true;
6797
6798 default:
6799 break;
6800 }
6801 return false;
6802 }
6803
6804 /* Return true if CODE represents a commutative tree code. Otherwise
6805 return false. */
6806 bool
6807 commutative_tree_code (enum tree_code code)
6808 {
6809 switch (code)
6810 {
6811 case PLUS_EXPR:
6812 case MULT_EXPR:
6813 case MIN_EXPR:
6814 case MAX_EXPR:
6815 case BIT_IOR_EXPR:
6816 case BIT_XOR_EXPR:
6817 case BIT_AND_EXPR:
6818 case NE_EXPR:
6819 case EQ_EXPR:
6820 case UNORDERED_EXPR:
6821 case ORDERED_EXPR:
6822 case UNEQ_EXPR:
6823 case LTGT_EXPR:
6824 case TRUTH_AND_EXPR:
6825 case TRUTH_XOR_EXPR:
6826 case TRUTH_OR_EXPR:
6827 return true;
6828
6829 default:
6830 break;
6831 }
6832 return false;
6833 }
6834
6835 /* Return true if CODE represents a ternary tree code for which the
6836 first two operands are commutative. Otherwise return false. */
6837 bool
6838 commutative_ternary_tree_code (enum tree_code code)
6839 {
6840 switch (code)
6841 {
6842 case WIDEN_MULT_PLUS_EXPR:
6843 case WIDEN_MULT_MINUS_EXPR:
6844 return true;
6845
6846 default:
6847 break;
6848 }
6849 return false;
6850 }
6851
6852 /* Generate a hash value for an expression. This can be used iteratively
6853 by passing a previous result as the VAL argument.
6854
6855 This function is intended to produce the same hash for expressions which
6856 would compare equal using operand_equal_p. */
6857
6858 hashval_t
6859 iterative_hash_expr (const_tree t, hashval_t val)
6860 {
6861 int i;
6862 enum tree_code code;
6863 char tclass;
6864
6865 if (t == NULL_TREE)
6866 return iterative_hash_hashval_t (0, val);
6867
6868 code = TREE_CODE (t);
6869
6870 switch (code)
6871 {
6872 /* Alas, constants aren't shared, so we can't rely on pointer
6873 identity. */
6874 case INTEGER_CST:
6875 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6876 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6877 case REAL_CST:
6878 {
6879 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6880
6881 return iterative_hash_hashval_t (val2, val);
6882 }
6883 case FIXED_CST:
6884 {
6885 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6886
6887 return iterative_hash_hashval_t (val2, val);
6888 }
6889 case STRING_CST:
6890 return iterative_hash (TREE_STRING_POINTER (t),
6891 TREE_STRING_LENGTH (t), val);
6892 case COMPLEX_CST:
6893 val = iterative_hash_expr (TREE_REALPART (t), val);
6894 return iterative_hash_expr (TREE_IMAGPART (t), val);
6895 case VECTOR_CST:
6896 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6897 case SSA_NAME:
6898 /* We can just compare by pointer. */
6899 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6900 case PLACEHOLDER_EXPR:
6901 /* The node itself doesn't matter. */
6902 return val;
6903 case TREE_LIST:
6904 /* A list of expressions, for a CALL_EXPR or as the elements of a
6905 VECTOR_CST. */
6906 for (; t; t = TREE_CHAIN (t))
6907 val = iterative_hash_expr (TREE_VALUE (t), val);
6908 return val;
6909 case CONSTRUCTOR:
6910 {
6911 unsigned HOST_WIDE_INT idx;
6912 tree field, value;
6913 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6914 {
6915 val = iterative_hash_expr (field, val);
6916 val = iterative_hash_expr (value, val);
6917 }
6918 return val;
6919 }
6920 case MEM_REF:
6921 {
6922 /* The type of the second operand is relevant, except for
6923 its top-level qualifiers. */
6924 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
6925
6926 val = iterative_hash_object (TYPE_HASH (type), val);
6927
6928 /* We could use the standard hash computation from this point
6929 on. */
6930 val = iterative_hash_object (code, val);
6931 val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
6932 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6933 return val;
6934 }
6935 case FUNCTION_DECL:
6936 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6937 Otherwise nodes that compare equal according to operand_equal_p might
6938 get different hash codes. However, don't do this for machine specific
6939 or front end builtins, since the function code is overloaded in those
6940 cases. */
6941 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6942 && built_in_decls[DECL_FUNCTION_CODE (t)])
6943 {
6944 t = built_in_decls[DECL_FUNCTION_CODE (t)];
6945 code = TREE_CODE (t);
6946 }
6947 /* FALL THROUGH */
6948 default:
6949 tclass = TREE_CODE_CLASS (code);
6950
6951 if (tclass == tcc_declaration)
6952 {
6953 /* DECL's have a unique ID */
6954 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6955 }
6956 else
6957 {
6958 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6959
6960 val = iterative_hash_object (code, val);
6961
6962 /* Don't hash the type, that can lead to having nodes which
6963 compare equal according to operand_equal_p, but which
6964 have different hash codes. */
6965 if (CONVERT_EXPR_CODE_P (code)
6966 || code == NON_LVALUE_EXPR)
6967 {
6968 /* Make sure to include signness in the hash computation. */
6969 val += TYPE_UNSIGNED (TREE_TYPE (t));
6970 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6971 }
6972
6973 else if (commutative_tree_code (code))
6974 {
6975 /* It's a commutative expression. We want to hash it the same
6976 however it appears. We do this by first hashing both operands
6977 and then rehashing based on the order of their independent
6978 hashes. */
6979 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6980 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6981 hashval_t t;
6982
6983 if (one > two)
6984 t = one, one = two, two = t;
6985
6986 val = iterative_hash_hashval_t (one, val);
6987 val = iterative_hash_hashval_t (two, val);
6988 }
6989 else
6990 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6991 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6992 }
6993 return val;
6994 break;
6995 }
6996 }
6997
6998 /* Generate a hash value for a pair of expressions. This can be used
6999 iteratively by passing a previous result as the VAL argument.
7000
7001 The same hash value is always returned for a given pair of expressions,
7002 regardless of the order in which they are presented. This is useful in
7003 hashing the operands of commutative functions. */
7004
7005 hashval_t
7006 iterative_hash_exprs_commutative (const_tree t1,
7007 const_tree t2, hashval_t val)
7008 {
7009 hashval_t one = iterative_hash_expr (t1, 0);
7010 hashval_t two = iterative_hash_expr (t2, 0);
7011 hashval_t t;
7012
7013 if (one > two)
7014 t = one, one = two, two = t;
7015 val = iterative_hash_hashval_t (one, val);
7016 val = iterative_hash_hashval_t (two, val);
7017
7018 return val;
7019 }
7020 \f
7021 /* Constructors for pointer, array and function types.
7022 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7023 constructed by language-dependent code, not here.) */
7024
7025 /* Construct, lay out and return the type of pointers to TO_TYPE with
7026 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7027 reference all of memory. If such a type has already been
7028 constructed, reuse it. */
7029
7030 tree
7031 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
7032 bool can_alias_all)
7033 {
7034 tree t;
7035
7036 if (to_type == error_mark_node)
7037 return error_mark_node;
7038
7039 /* If the pointed-to type has the may_alias attribute set, force
7040 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7041 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7042 can_alias_all = true;
7043
7044 /* In some cases, languages will have things that aren't a POINTER_TYPE
7045 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7046 In that case, return that type without regard to the rest of our
7047 operands.
7048
7049 ??? This is a kludge, but consistent with the way this function has
7050 always operated and there doesn't seem to be a good way to avoid this
7051 at the moment. */
7052 if (TYPE_POINTER_TO (to_type) != 0
7053 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7054 return TYPE_POINTER_TO (to_type);
7055
7056 /* First, if we already have a type for pointers to TO_TYPE and it's
7057 the proper mode, use it. */
7058 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7059 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7060 return t;
7061
7062 t = make_node (POINTER_TYPE);
7063
7064 TREE_TYPE (t) = to_type;
7065 SET_TYPE_MODE (t, mode);
7066 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7067 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7068 TYPE_POINTER_TO (to_type) = t;
7069
7070 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7071 SET_TYPE_STRUCTURAL_EQUALITY (t);
7072 else if (TYPE_CANONICAL (to_type) != to_type)
7073 TYPE_CANONICAL (t)
7074 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7075 mode, can_alias_all);
7076
7077 /* Lay out the type. This function has many callers that are concerned
7078 with expression-construction, and this simplifies them all. */
7079 layout_type (t);
7080
7081 return t;
7082 }
7083
7084 /* By default build pointers in ptr_mode. */
7085
7086 tree
7087 build_pointer_type (tree to_type)
7088 {
7089 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7090 : TYPE_ADDR_SPACE (to_type);
7091 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7092 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7093 }
7094
7095 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7096
7097 tree
7098 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
7099 bool can_alias_all)
7100 {
7101 tree t;
7102
7103 if (to_type == error_mark_node)
7104 return error_mark_node;
7105
7106 /* If the pointed-to type has the may_alias attribute set, force
7107 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7108 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7109 can_alias_all = true;
7110
7111 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7112 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7113 In that case, return that type without regard to the rest of our
7114 operands.
7115
7116 ??? This is a kludge, but consistent with the way this function has
7117 always operated and there doesn't seem to be a good way to avoid this
7118 at the moment. */
7119 if (TYPE_REFERENCE_TO (to_type) != 0
7120 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7121 return TYPE_REFERENCE_TO (to_type);
7122
7123 /* First, if we already have a type for pointers to TO_TYPE and it's
7124 the proper mode, use it. */
7125 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7126 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7127 return t;
7128
7129 t = make_node (REFERENCE_TYPE);
7130
7131 TREE_TYPE (t) = to_type;
7132 SET_TYPE_MODE (t, mode);
7133 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7134 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7135 TYPE_REFERENCE_TO (to_type) = t;
7136
7137 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7138 SET_TYPE_STRUCTURAL_EQUALITY (t);
7139 else if (TYPE_CANONICAL (to_type) != to_type)
7140 TYPE_CANONICAL (t)
7141 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7142 mode, can_alias_all);
7143
7144 layout_type (t);
7145
7146 return t;
7147 }
7148
7149
7150 /* Build the node for the type of references-to-TO_TYPE by default
7151 in ptr_mode. */
7152
7153 tree
7154 build_reference_type (tree to_type)
7155 {
7156 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7157 : TYPE_ADDR_SPACE (to_type);
7158 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7159 return build_reference_type_for_mode (to_type, pointer_mode, false);
7160 }
7161
7162 /* Build a type that is compatible with t but has no cv quals anywhere
7163 in its type, thus
7164
7165 const char *const *const * -> char ***. */
7166
7167 tree
7168 build_type_no_quals (tree t)
7169 {
7170 switch (TREE_CODE (t))
7171 {
7172 case POINTER_TYPE:
7173 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7174 TYPE_MODE (t),
7175 TYPE_REF_CAN_ALIAS_ALL (t));
7176 case REFERENCE_TYPE:
7177 return
7178 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7179 TYPE_MODE (t),
7180 TYPE_REF_CAN_ALIAS_ALL (t));
7181 default:
7182 return TYPE_MAIN_VARIANT (t);
7183 }
7184 }
7185
7186 #define MAX_INT_CACHED_PREC \
7187 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7188 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7189
7190 /* Builds a signed or unsigned integer type of precision PRECISION.
7191 Used for C bitfields whose precision does not match that of
7192 built-in target types. */
7193 tree
7194 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7195 int unsignedp)
7196 {
7197 tree itype, ret;
7198
7199 if (unsignedp)
7200 unsignedp = MAX_INT_CACHED_PREC + 1;
7201
7202 if (precision <= MAX_INT_CACHED_PREC)
7203 {
7204 itype = nonstandard_integer_type_cache[precision + unsignedp];
7205 if (itype)
7206 return itype;
7207 }
7208
7209 itype = make_node (INTEGER_TYPE);
7210 TYPE_PRECISION (itype) = precision;
7211
7212 if (unsignedp)
7213 fixup_unsigned_type (itype);
7214 else
7215 fixup_signed_type (itype);
7216
7217 ret = itype;
7218 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7219 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7220 if (precision <= MAX_INT_CACHED_PREC)
7221 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7222
7223 return ret;
7224 }
7225
7226 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7227 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7228 is true, reuse such a type that has already been constructed. */
7229
7230 static tree
7231 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7232 {
7233 tree itype = make_node (INTEGER_TYPE);
7234 hashval_t hashcode = 0;
7235
7236 TREE_TYPE (itype) = type;
7237
7238 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7239 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7240
7241 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7242 SET_TYPE_MODE (itype, TYPE_MODE (type));
7243 TYPE_SIZE (itype) = TYPE_SIZE (type);
7244 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7245 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7246 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7247
7248 if (!shared)
7249 return itype;
7250
7251 if ((TYPE_MIN_VALUE (itype)
7252 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7253 || (TYPE_MAX_VALUE (itype)
7254 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7255 {
7256 /* Since we cannot reliably merge this type, we need to compare it using
7257 structural equality checks. */
7258 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7259 return itype;
7260 }
7261
7262 hashcode = iterative_hash_expr (TYPE_MIN_VALUE (itype), hashcode);
7263 hashcode = iterative_hash_expr (TYPE_MAX_VALUE (itype), hashcode);
7264 hashcode = iterative_hash_hashval_t (TYPE_HASH (type), hashcode);
7265 itype = type_hash_canon (hashcode, itype);
7266
7267 return itype;
7268 }
7269
7270 /* Wrapper around build_range_type_1 with SHARED set to true. */
7271
7272 tree
7273 build_range_type (tree type, tree lowval, tree highval)
7274 {
7275 return build_range_type_1 (type, lowval, highval, true);
7276 }
7277
7278 /* Wrapper around build_range_type_1 with SHARED set to false. */
7279
7280 tree
7281 build_nonshared_range_type (tree type, tree lowval, tree highval)
7282 {
7283 return build_range_type_1 (type, lowval, highval, false);
7284 }
7285
7286 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7287 MAXVAL should be the maximum value in the domain
7288 (one less than the length of the array).
7289
7290 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7291 We don't enforce this limit, that is up to caller (e.g. language front end).
7292 The limit exists because the result is a signed type and we don't handle
7293 sizes that use more than one HOST_WIDE_INT. */
7294
7295 tree
7296 build_index_type (tree maxval)
7297 {
7298 return build_range_type (sizetype, size_zero_node, maxval);
7299 }
7300
7301 /* Return true if the debug information for TYPE, a subtype, should be emitted
7302 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7303 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7304 debug info and doesn't reflect the source code. */
7305
7306 bool
7307 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7308 {
7309 tree base_type = TREE_TYPE (type), low, high;
7310
7311 /* Subrange types have a base type which is an integral type. */
7312 if (!INTEGRAL_TYPE_P (base_type))
7313 return false;
7314
7315 /* Get the real bounds of the subtype. */
7316 if (lang_hooks.types.get_subrange_bounds)
7317 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7318 else
7319 {
7320 low = TYPE_MIN_VALUE (type);
7321 high = TYPE_MAX_VALUE (type);
7322 }
7323
7324 /* If the type and its base type have the same representation and the same
7325 name, then the type is not a subrange but a copy of the base type. */
7326 if ((TREE_CODE (base_type) == INTEGER_TYPE
7327 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7328 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7329 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7330 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7331 {
7332 tree type_name = TYPE_NAME (type);
7333 tree base_type_name = TYPE_NAME (base_type);
7334
7335 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7336 type_name = DECL_NAME (type_name);
7337
7338 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7339 base_type_name = DECL_NAME (base_type_name);
7340
7341 if (type_name == base_type_name)
7342 return false;
7343 }
7344
7345 if (lowval)
7346 *lowval = low;
7347 if (highval)
7348 *highval = high;
7349 return true;
7350 }
7351
7352 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7353 and number of elements specified by the range of values of INDEX_TYPE.
7354 If SHARED is true, reuse such a type that has already been constructed. */
7355
7356 static tree
7357 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7358 {
7359 tree t;
7360
7361 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7362 {
7363 error ("arrays of functions are not meaningful");
7364 elt_type = integer_type_node;
7365 }
7366
7367 t = make_node (ARRAY_TYPE);
7368 TREE_TYPE (t) = elt_type;
7369 TYPE_DOMAIN (t) = index_type;
7370 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7371 layout_type (t);
7372
7373 /* If the element type is incomplete at this point we get marked for
7374 structural equality. Do not record these types in the canonical
7375 type hashtable. */
7376 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7377 return t;
7378
7379 if (shared)
7380 {
7381 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7382 if (index_type)
7383 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7384 t = type_hash_canon (hashcode, t);
7385 }
7386
7387 if (TYPE_CANONICAL (t) == t)
7388 {
7389 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7390 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7391 SET_TYPE_STRUCTURAL_EQUALITY (t);
7392 else if (TYPE_CANONICAL (elt_type) != elt_type
7393 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7394 TYPE_CANONICAL (t)
7395 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7396 index_type
7397 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7398 shared);
7399 }
7400
7401 return t;
7402 }
7403
7404 /* Wrapper around build_array_type_1 with SHARED set to true. */
7405
7406 tree
7407 build_array_type (tree elt_type, tree index_type)
7408 {
7409 return build_array_type_1 (elt_type, index_type, true);
7410 }
7411
7412 /* Wrapper around build_array_type_1 with SHARED set to false. */
7413
7414 tree
7415 build_nonshared_array_type (tree elt_type, tree index_type)
7416 {
7417 return build_array_type_1 (elt_type, index_type, false);
7418 }
7419
7420 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7421 sizetype. */
7422
7423 tree
7424 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7425 {
7426 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7427 }
7428
7429 /* Recursively examines the array elements of TYPE, until a non-array
7430 element type is found. */
7431
7432 tree
7433 strip_array_types (tree type)
7434 {
7435 while (TREE_CODE (type) == ARRAY_TYPE)
7436 type = TREE_TYPE (type);
7437
7438 return type;
7439 }
7440
7441 /* Computes the canonical argument types from the argument type list
7442 ARGTYPES.
7443
7444 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7445 on entry to this function, or if any of the ARGTYPES are
7446 structural.
7447
7448 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7449 true on entry to this function, or if any of the ARGTYPES are
7450 non-canonical.
7451
7452 Returns a canonical argument list, which may be ARGTYPES when the
7453 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7454 true) or would not differ from ARGTYPES. */
7455
7456 static tree
7457 maybe_canonicalize_argtypes(tree argtypes,
7458 bool *any_structural_p,
7459 bool *any_noncanonical_p)
7460 {
7461 tree arg;
7462 bool any_noncanonical_argtypes_p = false;
7463
7464 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7465 {
7466 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7467 /* Fail gracefully by stating that the type is structural. */
7468 *any_structural_p = true;
7469 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7470 *any_structural_p = true;
7471 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7472 || TREE_PURPOSE (arg))
7473 /* If the argument has a default argument, we consider it
7474 non-canonical even though the type itself is canonical.
7475 That way, different variants of function and method types
7476 with default arguments will all point to the variant with
7477 no defaults as their canonical type. */
7478 any_noncanonical_argtypes_p = true;
7479 }
7480
7481 if (*any_structural_p)
7482 return argtypes;
7483
7484 if (any_noncanonical_argtypes_p)
7485 {
7486 /* Build the canonical list of argument types. */
7487 tree canon_argtypes = NULL_TREE;
7488 bool is_void = false;
7489
7490 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7491 {
7492 if (arg == void_list_node)
7493 is_void = true;
7494 else
7495 canon_argtypes = tree_cons (NULL_TREE,
7496 TYPE_CANONICAL (TREE_VALUE (arg)),
7497 canon_argtypes);
7498 }
7499
7500 canon_argtypes = nreverse (canon_argtypes);
7501 if (is_void)
7502 canon_argtypes = chainon (canon_argtypes, void_list_node);
7503
7504 /* There is a non-canonical type. */
7505 *any_noncanonical_p = true;
7506 return canon_argtypes;
7507 }
7508
7509 /* The canonical argument types are the same as ARGTYPES. */
7510 return argtypes;
7511 }
7512
7513 /* Construct, lay out and return
7514 the type of functions returning type VALUE_TYPE
7515 given arguments of types ARG_TYPES.
7516 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7517 are data type nodes for the arguments of the function.
7518 If such a type has already been constructed, reuse it. */
7519
7520 tree
7521 build_function_type (tree value_type, tree arg_types)
7522 {
7523 tree t;
7524 hashval_t hashcode = 0;
7525 bool any_structural_p, any_noncanonical_p;
7526 tree canon_argtypes;
7527
7528 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7529 {
7530 error ("function return type cannot be function");
7531 value_type = integer_type_node;
7532 }
7533
7534 /* Make a node of the sort we want. */
7535 t = make_node (FUNCTION_TYPE);
7536 TREE_TYPE (t) = value_type;
7537 TYPE_ARG_TYPES (t) = arg_types;
7538
7539 /* If we already have such a type, use the old one. */
7540 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7541 hashcode = type_hash_list (arg_types, hashcode);
7542 t = type_hash_canon (hashcode, t);
7543
7544 /* Set up the canonical type. */
7545 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7546 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7547 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7548 &any_structural_p,
7549 &any_noncanonical_p);
7550 if (any_structural_p)
7551 SET_TYPE_STRUCTURAL_EQUALITY (t);
7552 else if (any_noncanonical_p)
7553 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7554 canon_argtypes);
7555
7556 if (!COMPLETE_TYPE_P (t))
7557 layout_type (t);
7558 return t;
7559 }
7560
7561 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7562
7563 tree
7564 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7565 {
7566 tree new_type = NULL;
7567 tree args, new_args = NULL, t;
7568 tree new_reversed;
7569 int i = 0;
7570
7571 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7572 args = TREE_CHAIN (args), i++)
7573 if (!bitmap_bit_p (args_to_skip, i))
7574 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7575
7576 new_reversed = nreverse (new_args);
7577 if (args)
7578 {
7579 if (new_reversed)
7580 TREE_CHAIN (new_args) = void_list_node;
7581 else
7582 new_reversed = void_list_node;
7583 }
7584
7585 /* Use copy_node to preserve as much as possible from original type
7586 (debug info, attribute lists etc.)
7587 Exception is METHOD_TYPEs must have THIS argument.
7588 When we are asked to remove it, we need to build new FUNCTION_TYPE
7589 instead. */
7590 if (TREE_CODE (orig_type) != METHOD_TYPE
7591 || !bitmap_bit_p (args_to_skip, 0))
7592 {
7593 new_type = build_distinct_type_copy (orig_type);
7594 TYPE_ARG_TYPES (new_type) = new_reversed;
7595 }
7596 else
7597 {
7598 new_type
7599 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7600 new_reversed));
7601 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7602 }
7603
7604 /* This is a new type, not a copy of an old type. Need to reassociate
7605 variants. We can handle everything except the main variant lazily. */
7606 t = TYPE_MAIN_VARIANT (orig_type);
7607 if (orig_type != t)
7608 {
7609 TYPE_MAIN_VARIANT (new_type) = t;
7610 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7611 TYPE_NEXT_VARIANT (t) = new_type;
7612 }
7613 else
7614 {
7615 TYPE_MAIN_VARIANT (new_type) = new_type;
7616 TYPE_NEXT_VARIANT (new_type) = NULL;
7617 }
7618 return new_type;
7619 }
7620
7621 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7622
7623 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7624 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7625 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7626
7627 tree
7628 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7629 {
7630 tree new_decl = copy_node (orig_decl);
7631 tree new_type;
7632
7633 new_type = TREE_TYPE (orig_decl);
7634 if (prototype_p (new_type))
7635 new_type = build_function_type_skip_args (new_type, args_to_skip);
7636 TREE_TYPE (new_decl) = new_type;
7637
7638 /* For declarations setting DECL_VINDEX (i.e. methods)
7639 we expect first argument to be THIS pointer. */
7640 if (bitmap_bit_p (args_to_skip, 0))
7641 DECL_VINDEX (new_decl) = NULL_TREE;
7642
7643 /* When signature changes, we need to clear builtin info. */
7644 if (DECL_BUILT_IN (new_decl) && !bitmap_empty_p (args_to_skip))
7645 {
7646 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
7647 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
7648 }
7649 return new_decl;
7650 }
7651
7652 /* Build a function type. The RETURN_TYPE is the type returned by the
7653 function. If VAARGS is set, no void_type_node is appended to the
7654 the list. ARGP must be always be terminated be a NULL_TREE. */
7655
7656 static tree
7657 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7658 {
7659 tree t, args, last;
7660
7661 t = va_arg (argp, tree);
7662 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7663 args = tree_cons (NULL_TREE, t, args);
7664
7665 if (vaargs)
7666 {
7667 last = args;
7668 if (args != NULL_TREE)
7669 args = nreverse (args);
7670 gcc_assert (last != void_list_node);
7671 }
7672 else if (args == NULL_TREE)
7673 args = void_list_node;
7674 else
7675 {
7676 last = args;
7677 args = nreverse (args);
7678 TREE_CHAIN (last) = void_list_node;
7679 }
7680 args = build_function_type (return_type, args);
7681
7682 return args;
7683 }
7684
7685 /* Build a function type. The RETURN_TYPE is the type returned by the
7686 function. If additional arguments are provided, they are
7687 additional argument types. The list of argument types must always
7688 be terminated by NULL_TREE. */
7689
7690 tree
7691 build_function_type_list (tree return_type, ...)
7692 {
7693 tree args;
7694 va_list p;
7695
7696 va_start (p, return_type);
7697 args = build_function_type_list_1 (false, return_type, p);
7698 va_end (p);
7699 return args;
7700 }
7701
7702 /* Build a variable argument function type. The RETURN_TYPE is the
7703 type returned by the function. If additional arguments are provided,
7704 they are additional argument types. The list of argument types must
7705 always be terminated by NULL_TREE. */
7706
7707 tree
7708 build_varargs_function_type_list (tree return_type, ...)
7709 {
7710 tree args;
7711 va_list p;
7712
7713 va_start (p, return_type);
7714 args = build_function_type_list_1 (true, return_type, p);
7715 va_end (p);
7716
7717 return args;
7718 }
7719
7720 /* Build a function type. RETURN_TYPE is the type returned by the
7721 function; VAARGS indicates whether the function takes varargs. The
7722 function takes N named arguments, the types of which are provided in
7723 ARG_TYPES. */
7724
7725 static tree
7726 build_function_type_array_1 (bool vaargs, tree return_type, int n,
7727 tree *arg_types)
7728 {
7729 int i;
7730 tree t = vaargs ? NULL_TREE : void_list_node;
7731
7732 for (i = n - 1; i >= 0; i--)
7733 t = tree_cons (NULL_TREE, arg_types[i], t);
7734
7735 return build_function_type (return_type, t);
7736 }
7737
7738 /* Build a function type. RETURN_TYPE is the type returned by the
7739 function. The function takes N named arguments, the types of which
7740 are provided in ARG_TYPES. */
7741
7742 tree
7743 build_function_type_array (tree return_type, int n, tree *arg_types)
7744 {
7745 return build_function_type_array_1 (false, return_type, n, arg_types);
7746 }
7747
7748 /* Build a variable argument function type. RETURN_TYPE is the type
7749 returned by the function. The function takes N named arguments, the
7750 types of which are provided in ARG_TYPES. */
7751
7752 tree
7753 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
7754 {
7755 return build_function_type_array_1 (true, return_type, n, arg_types);
7756 }
7757
7758 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7759 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7760 for the method. An implicit additional parameter (of type
7761 pointer-to-BASETYPE) is added to the ARGTYPES. */
7762
7763 tree
7764 build_method_type_directly (tree basetype,
7765 tree rettype,
7766 tree argtypes)
7767 {
7768 tree t;
7769 tree ptype;
7770 int hashcode = 0;
7771 bool any_structural_p, any_noncanonical_p;
7772 tree canon_argtypes;
7773
7774 /* Make a node of the sort we want. */
7775 t = make_node (METHOD_TYPE);
7776
7777 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7778 TREE_TYPE (t) = rettype;
7779 ptype = build_pointer_type (basetype);
7780
7781 /* The actual arglist for this function includes a "hidden" argument
7782 which is "this". Put it into the list of argument types. */
7783 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7784 TYPE_ARG_TYPES (t) = argtypes;
7785
7786 /* If we already have such a type, use the old one. */
7787 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7788 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7789 hashcode = type_hash_list (argtypes, hashcode);
7790 t = type_hash_canon (hashcode, t);
7791
7792 /* Set up the canonical type. */
7793 any_structural_p
7794 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7795 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7796 any_noncanonical_p
7797 = (TYPE_CANONICAL (basetype) != basetype
7798 || TYPE_CANONICAL (rettype) != rettype);
7799 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7800 &any_structural_p,
7801 &any_noncanonical_p);
7802 if (any_structural_p)
7803 SET_TYPE_STRUCTURAL_EQUALITY (t);
7804 else if (any_noncanonical_p)
7805 TYPE_CANONICAL (t)
7806 = build_method_type_directly (TYPE_CANONICAL (basetype),
7807 TYPE_CANONICAL (rettype),
7808 canon_argtypes);
7809 if (!COMPLETE_TYPE_P (t))
7810 layout_type (t);
7811
7812 return t;
7813 }
7814
7815 /* Construct, lay out and return the type of methods belonging to class
7816 BASETYPE and whose arguments and values are described by TYPE.
7817 If that type exists already, reuse it.
7818 TYPE must be a FUNCTION_TYPE node. */
7819
7820 tree
7821 build_method_type (tree basetype, tree type)
7822 {
7823 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7824
7825 return build_method_type_directly (basetype,
7826 TREE_TYPE (type),
7827 TYPE_ARG_TYPES (type));
7828 }
7829
7830 /* Construct, lay out and return the type of offsets to a value
7831 of type TYPE, within an object of type BASETYPE.
7832 If a suitable offset type exists already, reuse it. */
7833
7834 tree
7835 build_offset_type (tree basetype, tree type)
7836 {
7837 tree t;
7838 hashval_t hashcode = 0;
7839
7840 /* Make a node of the sort we want. */
7841 t = make_node (OFFSET_TYPE);
7842
7843 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7844 TREE_TYPE (t) = type;
7845
7846 /* If we already have such a type, use the old one. */
7847 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7848 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7849 t = type_hash_canon (hashcode, t);
7850
7851 if (!COMPLETE_TYPE_P (t))
7852 layout_type (t);
7853
7854 if (TYPE_CANONICAL (t) == t)
7855 {
7856 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7857 || TYPE_STRUCTURAL_EQUALITY_P (type))
7858 SET_TYPE_STRUCTURAL_EQUALITY (t);
7859 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7860 || TYPE_CANONICAL (type) != type)
7861 TYPE_CANONICAL (t)
7862 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7863 TYPE_CANONICAL (type));
7864 }
7865
7866 return t;
7867 }
7868
7869 /* Create a complex type whose components are COMPONENT_TYPE. */
7870
7871 tree
7872 build_complex_type (tree component_type)
7873 {
7874 tree t;
7875 hashval_t hashcode;
7876
7877 gcc_assert (INTEGRAL_TYPE_P (component_type)
7878 || SCALAR_FLOAT_TYPE_P (component_type)
7879 || FIXED_POINT_TYPE_P (component_type));
7880
7881 /* Make a node of the sort we want. */
7882 t = make_node (COMPLEX_TYPE);
7883
7884 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7885
7886 /* If we already have such a type, use the old one. */
7887 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7888 t = type_hash_canon (hashcode, t);
7889
7890 if (!COMPLETE_TYPE_P (t))
7891 layout_type (t);
7892
7893 if (TYPE_CANONICAL (t) == t)
7894 {
7895 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7896 SET_TYPE_STRUCTURAL_EQUALITY (t);
7897 else if (TYPE_CANONICAL (component_type) != component_type)
7898 TYPE_CANONICAL (t)
7899 = build_complex_type (TYPE_CANONICAL (component_type));
7900 }
7901
7902 /* We need to create a name, since complex is a fundamental type. */
7903 if (! TYPE_NAME (t))
7904 {
7905 const char *name;
7906 if (component_type == char_type_node)
7907 name = "complex char";
7908 else if (component_type == signed_char_type_node)
7909 name = "complex signed char";
7910 else if (component_type == unsigned_char_type_node)
7911 name = "complex unsigned char";
7912 else if (component_type == short_integer_type_node)
7913 name = "complex short int";
7914 else if (component_type == short_unsigned_type_node)
7915 name = "complex short unsigned int";
7916 else if (component_type == integer_type_node)
7917 name = "complex int";
7918 else if (component_type == unsigned_type_node)
7919 name = "complex unsigned int";
7920 else if (component_type == long_integer_type_node)
7921 name = "complex long int";
7922 else if (component_type == long_unsigned_type_node)
7923 name = "complex long unsigned int";
7924 else if (component_type == long_long_integer_type_node)
7925 name = "complex long long int";
7926 else if (component_type == long_long_unsigned_type_node)
7927 name = "complex long long unsigned int";
7928 else
7929 name = 0;
7930
7931 if (name != 0)
7932 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7933 get_identifier (name), t);
7934 }
7935
7936 return build_qualified_type (t, TYPE_QUALS (component_type));
7937 }
7938
7939 /* If TYPE is a real or complex floating-point type and the target
7940 does not directly support arithmetic on TYPE then return the wider
7941 type to be used for arithmetic on TYPE. Otherwise, return
7942 NULL_TREE. */
7943
7944 tree
7945 excess_precision_type (tree type)
7946 {
7947 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7948 {
7949 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7950 switch (TREE_CODE (type))
7951 {
7952 case REAL_TYPE:
7953 switch (flt_eval_method)
7954 {
7955 case 1:
7956 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7957 return double_type_node;
7958 break;
7959 case 2:
7960 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7961 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7962 return long_double_type_node;
7963 break;
7964 default:
7965 gcc_unreachable ();
7966 }
7967 break;
7968 case COMPLEX_TYPE:
7969 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7970 return NULL_TREE;
7971 switch (flt_eval_method)
7972 {
7973 case 1:
7974 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7975 return complex_double_type_node;
7976 break;
7977 case 2:
7978 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7979 || (TYPE_MODE (TREE_TYPE (type))
7980 == TYPE_MODE (double_type_node)))
7981 return complex_long_double_type_node;
7982 break;
7983 default:
7984 gcc_unreachable ();
7985 }
7986 break;
7987 default:
7988 break;
7989 }
7990 }
7991 return NULL_TREE;
7992 }
7993 \f
7994 /* Return OP, stripped of any conversions to wider types as much as is safe.
7995 Converting the value back to OP's type makes a value equivalent to OP.
7996
7997 If FOR_TYPE is nonzero, we return a value which, if converted to
7998 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7999
8000 OP must have integer, real or enumeral type. Pointers are not allowed!
8001
8002 There are some cases where the obvious value we could return
8003 would regenerate to OP if converted to OP's type,
8004 but would not extend like OP to wider types.
8005 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8006 For example, if OP is (unsigned short)(signed char)-1,
8007 we avoid returning (signed char)-1 if FOR_TYPE is int,
8008 even though extending that to an unsigned short would regenerate OP,
8009 since the result of extending (signed char)-1 to (int)
8010 is different from (int) OP. */
8011
8012 tree
8013 get_unwidened (tree op, tree for_type)
8014 {
8015 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8016 tree type = TREE_TYPE (op);
8017 unsigned final_prec
8018 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8019 int uns
8020 = (for_type != 0 && for_type != type
8021 && final_prec > TYPE_PRECISION (type)
8022 && TYPE_UNSIGNED (type));
8023 tree win = op;
8024
8025 while (CONVERT_EXPR_P (op))
8026 {
8027 int bitschange;
8028
8029 /* TYPE_PRECISION on vector types has different meaning
8030 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8031 so avoid them here. */
8032 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8033 break;
8034
8035 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8036 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8037
8038 /* Truncations are many-one so cannot be removed.
8039 Unless we are later going to truncate down even farther. */
8040 if (bitschange < 0
8041 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8042 break;
8043
8044 /* See what's inside this conversion. If we decide to strip it,
8045 we will set WIN. */
8046 op = TREE_OPERAND (op, 0);
8047
8048 /* If we have not stripped any zero-extensions (uns is 0),
8049 we can strip any kind of extension.
8050 If we have previously stripped a zero-extension,
8051 only zero-extensions can safely be stripped.
8052 Any extension can be stripped if the bits it would produce
8053 are all going to be discarded later by truncating to FOR_TYPE. */
8054
8055 if (bitschange > 0)
8056 {
8057 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8058 win = op;
8059 /* TYPE_UNSIGNED says whether this is a zero-extension.
8060 Let's avoid computing it if it does not affect WIN
8061 and if UNS will not be needed again. */
8062 if ((uns
8063 || CONVERT_EXPR_P (op))
8064 && TYPE_UNSIGNED (TREE_TYPE (op)))
8065 {
8066 uns = 1;
8067 win = op;
8068 }
8069 }
8070 }
8071
8072 /* If we finally reach a constant see if it fits in for_type and
8073 in that case convert it. */
8074 if (for_type
8075 && TREE_CODE (win) == INTEGER_CST
8076 && TREE_TYPE (win) != for_type
8077 && int_fits_type_p (win, for_type))
8078 win = fold_convert (for_type, win);
8079
8080 return win;
8081 }
8082 \f
8083 /* Return OP or a simpler expression for a narrower value
8084 which can be sign-extended or zero-extended to give back OP.
8085 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8086 or 0 if the value should be sign-extended. */
8087
8088 tree
8089 get_narrower (tree op, int *unsignedp_ptr)
8090 {
8091 int uns = 0;
8092 int first = 1;
8093 tree win = op;
8094 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8095
8096 while (TREE_CODE (op) == NOP_EXPR)
8097 {
8098 int bitschange
8099 = (TYPE_PRECISION (TREE_TYPE (op))
8100 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8101
8102 /* Truncations are many-one so cannot be removed. */
8103 if (bitschange < 0)
8104 break;
8105
8106 /* See what's inside this conversion. If we decide to strip it,
8107 we will set WIN. */
8108
8109 if (bitschange > 0)
8110 {
8111 op = TREE_OPERAND (op, 0);
8112 /* An extension: the outermost one can be stripped,
8113 but remember whether it is zero or sign extension. */
8114 if (first)
8115 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8116 /* Otherwise, if a sign extension has been stripped,
8117 only sign extensions can now be stripped;
8118 if a zero extension has been stripped, only zero-extensions. */
8119 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8120 break;
8121 first = 0;
8122 }
8123 else /* bitschange == 0 */
8124 {
8125 /* A change in nominal type can always be stripped, but we must
8126 preserve the unsignedness. */
8127 if (first)
8128 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8129 first = 0;
8130 op = TREE_OPERAND (op, 0);
8131 /* Keep trying to narrow, but don't assign op to win if it
8132 would turn an integral type into something else. */
8133 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8134 continue;
8135 }
8136
8137 win = op;
8138 }
8139
8140 if (TREE_CODE (op) == COMPONENT_REF
8141 /* Since type_for_size always gives an integer type. */
8142 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8143 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8144 /* Ensure field is laid out already. */
8145 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8146 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
8147 {
8148 unsigned HOST_WIDE_INT innerprec
8149 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
8150 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8151 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8152 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8153
8154 /* We can get this structure field in a narrower type that fits it,
8155 but the resulting extension to its nominal type (a fullword type)
8156 must satisfy the same conditions as for other extensions.
8157
8158 Do this only for fields that are aligned (not bit-fields),
8159 because when bit-field insns will be used there is no
8160 advantage in doing this. */
8161
8162 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8163 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8164 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8165 && type != 0)
8166 {
8167 if (first)
8168 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8169 win = fold_convert (type, op);
8170 }
8171 }
8172
8173 *unsignedp_ptr = uns;
8174 return win;
8175 }
8176 \f
8177 /* Returns true if integer constant C has a value that is permissible
8178 for type TYPE (an INTEGER_TYPE). */
8179
8180 bool
8181 int_fits_type_p (const_tree c, const_tree type)
8182 {
8183 tree type_low_bound, type_high_bound;
8184 bool ok_for_low_bound, ok_for_high_bound, unsc;
8185 double_int dc, dd;
8186
8187 dc = tree_to_double_int (c);
8188 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
8189
8190 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
8191 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
8192 && unsc)
8193 /* So c is an unsigned integer whose type is sizetype and type is not.
8194 sizetype'd integers are sign extended even though they are
8195 unsigned. If the integer value fits in the lower end word of c,
8196 and if the higher end word has all its bits set to 1, that
8197 means the higher end bits are set to 1 only for sign extension.
8198 So let's convert c into an equivalent zero extended unsigned
8199 integer. */
8200 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
8201
8202 retry:
8203 type_low_bound = TYPE_MIN_VALUE (type);
8204 type_high_bound = TYPE_MAX_VALUE (type);
8205
8206 /* If at least one bound of the type is a constant integer, we can check
8207 ourselves and maybe make a decision. If no such decision is possible, but
8208 this type is a subtype, try checking against that. Otherwise, use
8209 double_int_fits_to_tree_p, which checks against the precision.
8210
8211 Compute the status for each possibly constant bound, and return if we see
8212 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8213 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8214 for "constant known to fit". */
8215
8216 /* Check if c >= type_low_bound. */
8217 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8218 {
8219 dd = tree_to_double_int (type_low_bound);
8220 if (TREE_CODE (type) == INTEGER_TYPE
8221 && TYPE_IS_SIZETYPE (type)
8222 && TYPE_UNSIGNED (type))
8223 dd = double_int_zext (dd, TYPE_PRECISION (type));
8224 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
8225 {
8226 int c_neg = (!unsc && double_int_negative_p (dc));
8227 int t_neg = (unsc && double_int_negative_p (dd));
8228
8229 if (c_neg && !t_neg)
8230 return false;
8231 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
8232 return false;
8233 }
8234 else if (double_int_cmp (dc, dd, unsc) < 0)
8235 return false;
8236 ok_for_low_bound = true;
8237 }
8238 else
8239 ok_for_low_bound = false;
8240
8241 /* Check if c <= type_high_bound. */
8242 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8243 {
8244 dd = tree_to_double_int (type_high_bound);
8245 if (TREE_CODE (type) == INTEGER_TYPE
8246 && TYPE_IS_SIZETYPE (type)
8247 && TYPE_UNSIGNED (type))
8248 dd = double_int_zext (dd, TYPE_PRECISION (type));
8249 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8250 {
8251 int c_neg = (!unsc && double_int_negative_p (dc));
8252 int t_neg = (unsc && double_int_negative_p (dd));
8253
8254 if (t_neg && !c_neg)
8255 return false;
8256 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
8257 return false;
8258 }
8259 else if (double_int_cmp (dc, dd, unsc) > 0)
8260 return false;
8261 ok_for_high_bound = true;
8262 }
8263 else
8264 ok_for_high_bound = false;
8265
8266 /* If the constant fits both bounds, the result is known. */
8267 if (ok_for_low_bound && ok_for_high_bound)
8268 return true;
8269
8270 /* Perform some generic filtering which may allow making a decision
8271 even if the bounds are not constant. First, negative integers
8272 never fit in unsigned types, */
8273 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
8274 return false;
8275
8276 /* Second, narrower types always fit in wider ones. */
8277 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8278 return true;
8279
8280 /* Third, unsigned integers with top bit set never fit signed types. */
8281 if (! TYPE_UNSIGNED (type) && unsc)
8282 {
8283 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8284 if (prec < HOST_BITS_PER_WIDE_INT)
8285 {
8286 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8287 return false;
8288 }
8289 else if (((((unsigned HOST_WIDE_INT) 1)
8290 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8291 return false;
8292 }
8293
8294 /* If we haven't been able to decide at this point, there nothing more we
8295 can check ourselves here. Look at the base type if we have one and it
8296 has the same precision. */
8297 if (TREE_CODE (type) == INTEGER_TYPE
8298 && TREE_TYPE (type) != 0
8299 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8300 {
8301 type = TREE_TYPE (type);
8302 goto retry;
8303 }
8304
8305 /* Or to double_int_fits_to_tree_p, if nothing else. */
8306 return double_int_fits_to_tree_p (type, dc);
8307 }
8308
8309 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8310 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8311 represented (assuming two's-complement arithmetic) within the bit
8312 precision of the type are returned instead. */
8313
8314 void
8315 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8316 {
8317 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8318 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8319 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8320 TYPE_UNSIGNED (type));
8321 else
8322 {
8323 if (TYPE_UNSIGNED (type))
8324 mpz_set_ui (min, 0);
8325 else
8326 {
8327 double_int mn;
8328 mn = double_int_mask (TYPE_PRECISION (type) - 1);
8329 mn = double_int_sext (double_int_add (mn, double_int_one),
8330 TYPE_PRECISION (type));
8331 mpz_set_double_int (min, mn, false);
8332 }
8333 }
8334
8335 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8336 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8337 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8338 TYPE_UNSIGNED (type));
8339 else
8340 {
8341 if (TYPE_UNSIGNED (type))
8342 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
8343 true);
8344 else
8345 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
8346 true);
8347 }
8348 }
8349
8350 /* Return true if VAR is an automatic variable defined in function FN. */
8351
8352 bool
8353 auto_var_in_fn_p (const_tree var, const_tree fn)
8354 {
8355 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8356 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8357 || TREE_CODE (var) == PARM_DECL)
8358 && ! TREE_STATIC (var))
8359 || TREE_CODE (var) == LABEL_DECL
8360 || TREE_CODE (var) == RESULT_DECL));
8361 }
8362
8363 /* Subprogram of following function. Called by walk_tree.
8364
8365 Return *TP if it is an automatic variable or parameter of the
8366 function passed in as DATA. */
8367
8368 static tree
8369 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8370 {
8371 tree fn = (tree) data;
8372
8373 if (TYPE_P (*tp))
8374 *walk_subtrees = 0;
8375
8376 else if (DECL_P (*tp)
8377 && auto_var_in_fn_p (*tp, fn))
8378 return *tp;
8379
8380 return NULL_TREE;
8381 }
8382
8383 /* Returns true if T is, contains, or refers to a type with variable
8384 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8385 arguments, but not the return type. If FN is nonzero, only return
8386 true if a modifier of the type or position of FN is a variable or
8387 parameter inside FN.
8388
8389 This concept is more general than that of C99 'variably modified types':
8390 in C99, a struct type is never variably modified because a VLA may not
8391 appear as a structure member. However, in GNU C code like:
8392
8393 struct S { int i[f()]; };
8394
8395 is valid, and other languages may define similar constructs. */
8396
8397 bool
8398 variably_modified_type_p (tree type, tree fn)
8399 {
8400 tree t;
8401
8402 /* Test if T is either variable (if FN is zero) or an expression containing
8403 a variable in FN. */
8404 #define RETURN_TRUE_IF_VAR(T) \
8405 do { tree _t = (T); \
8406 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
8407 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8408 return true; } while (0)
8409
8410 if (type == error_mark_node)
8411 return false;
8412
8413 /* If TYPE itself has variable size, it is variably modified. */
8414 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8415 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8416
8417 switch (TREE_CODE (type))
8418 {
8419 case POINTER_TYPE:
8420 case REFERENCE_TYPE:
8421 case VECTOR_TYPE:
8422 if (variably_modified_type_p (TREE_TYPE (type), fn))
8423 return true;
8424 break;
8425
8426 case FUNCTION_TYPE:
8427 case METHOD_TYPE:
8428 /* If TYPE is a function type, it is variably modified if the
8429 return type is variably modified. */
8430 if (variably_modified_type_p (TREE_TYPE (type), fn))
8431 return true;
8432 break;
8433
8434 case INTEGER_TYPE:
8435 case REAL_TYPE:
8436 case FIXED_POINT_TYPE:
8437 case ENUMERAL_TYPE:
8438 case BOOLEAN_TYPE:
8439 /* Scalar types are variably modified if their end points
8440 aren't constant. */
8441 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8442 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8443 break;
8444
8445 case RECORD_TYPE:
8446 case UNION_TYPE:
8447 case QUAL_UNION_TYPE:
8448 /* We can't see if any of the fields are variably-modified by the
8449 definition we normally use, since that would produce infinite
8450 recursion via pointers. */
8451 /* This is variably modified if some field's type is. */
8452 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8453 if (TREE_CODE (t) == FIELD_DECL)
8454 {
8455 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8456 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8457 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8458
8459 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8460 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8461 }
8462 break;
8463
8464 case ARRAY_TYPE:
8465 /* Do not call ourselves to avoid infinite recursion. This is
8466 variably modified if the element type is. */
8467 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8468 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8469 break;
8470
8471 default:
8472 break;
8473 }
8474
8475 /* The current language may have other cases to check, but in general,
8476 all other types are not variably modified. */
8477 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8478
8479 #undef RETURN_TRUE_IF_VAR
8480 }
8481
8482 /* Given a DECL or TYPE, return the scope in which it was declared, or
8483 NULL_TREE if there is no containing scope. */
8484
8485 tree
8486 get_containing_scope (const_tree t)
8487 {
8488 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8489 }
8490
8491 /* Return the innermost context enclosing DECL that is
8492 a FUNCTION_DECL, or zero if none. */
8493
8494 tree
8495 decl_function_context (const_tree decl)
8496 {
8497 tree context;
8498
8499 if (TREE_CODE (decl) == ERROR_MARK)
8500 return 0;
8501
8502 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8503 where we look up the function at runtime. Such functions always take
8504 a first argument of type 'pointer to real context'.
8505
8506 C++ should really be fixed to use DECL_CONTEXT for the real context,
8507 and use something else for the "virtual context". */
8508 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8509 context
8510 = TYPE_MAIN_VARIANT
8511 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8512 else
8513 context = DECL_CONTEXT (decl);
8514
8515 while (context && TREE_CODE (context) != FUNCTION_DECL)
8516 {
8517 if (TREE_CODE (context) == BLOCK)
8518 context = BLOCK_SUPERCONTEXT (context);
8519 else
8520 context = get_containing_scope (context);
8521 }
8522
8523 return context;
8524 }
8525
8526 /* Return the innermost context enclosing DECL that is
8527 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8528 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8529
8530 tree
8531 decl_type_context (const_tree decl)
8532 {
8533 tree context = DECL_CONTEXT (decl);
8534
8535 while (context)
8536 switch (TREE_CODE (context))
8537 {
8538 case NAMESPACE_DECL:
8539 case TRANSLATION_UNIT_DECL:
8540 return NULL_TREE;
8541
8542 case RECORD_TYPE:
8543 case UNION_TYPE:
8544 case QUAL_UNION_TYPE:
8545 return context;
8546
8547 case TYPE_DECL:
8548 case FUNCTION_DECL:
8549 context = DECL_CONTEXT (context);
8550 break;
8551
8552 case BLOCK:
8553 context = BLOCK_SUPERCONTEXT (context);
8554 break;
8555
8556 default:
8557 gcc_unreachable ();
8558 }
8559
8560 return NULL_TREE;
8561 }
8562
8563 /* CALL is a CALL_EXPR. Return the declaration for the function
8564 called, or NULL_TREE if the called function cannot be
8565 determined. */
8566
8567 tree
8568 get_callee_fndecl (const_tree call)
8569 {
8570 tree addr;
8571
8572 if (call == error_mark_node)
8573 return error_mark_node;
8574
8575 /* It's invalid to call this function with anything but a
8576 CALL_EXPR. */
8577 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8578
8579 /* The first operand to the CALL is the address of the function
8580 called. */
8581 addr = CALL_EXPR_FN (call);
8582
8583 STRIP_NOPS (addr);
8584
8585 /* If this is a readonly function pointer, extract its initial value. */
8586 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8587 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8588 && DECL_INITIAL (addr))
8589 addr = DECL_INITIAL (addr);
8590
8591 /* If the address is just `&f' for some function `f', then we know
8592 that `f' is being called. */
8593 if (TREE_CODE (addr) == ADDR_EXPR
8594 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8595 return TREE_OPERAND (addr, 0);
8596
8597 /* We couldn't figure out what was being called. */
8598 return NULL_TREE;
8599 }
8600
8601 /* Print debugging information about tree nodes generated during the compile,
8602 and any language-specific information. */
8603
8604 void
8605 dump_tree_statistics (void)
8606 {
8607 #ifdef GATHER_STATISTICS
8608 int i;
8609 int total_nodes, total_bytes;
8610 #endif
8611
8612 fprintf (stderr, "\n??? tree nodes created\n\n");
8613 #ifdef GATHER_STATISTICS
8614 fprintf (stderr, "Kind Nodes Bytes\n");
8615 fprintf (stderr, "---------------------------------------\n");
8616 total_nodes = total_bytes = 0;
8617 for (i = 0; i < (int) all_kinds; i++)
8618 {
8619 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8620 tree_node_counts[i], tree_node_sizes[i]);
8621 total_nodes += tree_node_counts[i];
8622 total_bytes += tree_node_sizes[i];
8623 }
8624 fprintf (stderr, "---------------------------------------\n");
8625 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8626 fprintf (stderr, "---------------------------------------\n");
8627 fprintf (stderr, "Code Nodes\n");
8628 fprintf (stderr, "----------------------------\n");
8629 for (i = 0; i < (int) MAX_TREE_CODES; i++)
8630 fprintf (stderr, "%-20s %7d\n", tree_code_name[i], tree_code_counts[i]);
8631 fprintf (stderr, "----------------------------\n");
8632 ssanames_print_statistics ();
8633 phinodes_print_statistics ();
8634 #else
8635 fprintf (stderr, "(No per-node statistics)\n");
8636 #endif
8637 print_type_hash_statistics ();
8638 print_debug_expr_statistics ();
8639 print_value_expr_statistics ();
8640 lang_hooks.print_statistics ();
8641 }
8642 \f
8643 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8644
8645 /* Generate a crc32 of a byte. */
8646
8647 unsigned
8648 crc32_byte (unsigned chksum, char byte)
8649 {
8650 unsigned value = (unsigned) byte << 24;
8651 unsigned ix;
8652
8653 for (ix = 8; ix--; value <<= 1)
8654 {
8655 unsigned feedback;
8656
8657 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8658 chksum <<= 1;
8659 chksum ^= feedback;
8660 }
8661 return chksum;
8662 }
8663
8664
8665 /* Generate a crc32 of a string. */
8666
8667 unsigned
8668 crc32_string (unsigned chksum, const char *string)
8669 {
8670 do
8671 {
8672 chksum = crc32_byte (chksum, *string);
8673 }
8674 while (*string++);
8675 return chksum;
8676 }
8677
8678 /* P is a string that will be used in a symbol. Mask out any characters
8679 that are not valid in that context. */
8680
8681 void
8682 clean_symbol_name (char *p)
8683 {
8684 for (; *p; p++)
8685 if (! (ISALNUM (*p)
8686 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8687 || *p == '$'
8688 #endif
8689 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8690 || *p == '.'
8691 #endif
8692 ))
8693 *p = '_';
8694 }
8695
8696 /* Generate a name for a special-purpose function.
8697 The generated name may need to be unique across the whole link.
8698 Changes to this function may also require corresponding changes to
8699 xstrdup_mask_random.
8700 TYPE is some string to identify the purpose of this function to the
8701 linker or collect2; it must start with an uppercase letter,
8702 one of:
8703 I - for constructors
8704 D - for destructors
8705 N - for C++ anonymous namespaces
8706 F - for DWARF unwind frame information. */
8707
8708 tree
8709 get_file_function_name (const char *type)
8710 {
8711 char *buf;
8712 const char *p;
8713 char *q;
8714
8715 /* If we already have a name we know to be unique, just use that. */
8716 if (first_global_object_name)
8717 p = q = ASTRDUP (first_global_object_name);
8718 /* If the target is handling the constructors/destructors, they
8719 will be local to this file and the name is only necessary for
8720 debugging purposes.
8721 We also assign sub_I and sub_D sufixes to constructors called from
8722 the global static constructors. These are always local. */
8723 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8724 || (strncmp (type, "sub_", 4) == 0
8725 && (type[4] == 'I' || type[4] == 'D')))
8726 {
8727 const char *file = main_input_filename;
8728 if (! file)
8729 file = input_filename;
8730 /* Just use the file's basename, because the full pathname
8731 might be quite long. */
8732 p = q = ASTRDUP (lbasename (file));
8733 }
8734 else
8735 {
8736 /* Otherwise, the name must be unique across the entire link.
8737 We don't have anything that we know to be unique to this translation
8738 unit, so use what we do have and throw in some randomness. */
8739 unsigned len;
8740 const char *name = weak_global_object_name;
8741 const char *file = main_input_filename;
8742
8743 if (! name)
8744 name = "";
8745 if (! file)
8746 file = input_filename;
8747
8748 len = strlen (file);
8749 q = (char *) alloca (9 * 2 + len + 1);
8750 memcpy (q, file, len + 1);
8751
8752 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
8753 crc32_string (0, get_random_seed (false)));
8754
8755 p = q;
8756 }
8757
8758 clean_symbol_name (q);
8759 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8760 + strlen (type));
8761
8762 /* Set up the name of the file-level functions we may need.
8763 Use a global object (which is already required to be unique over
8764 the program) rather than the file name (which imposes extra
8765 constraints). */
8766 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8767
8768 return get_identifier (buf);
8769 }
8770 \f
8771 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8772
8773 /* Complain that the tree code of NODE does not match the expected 0
8774 terminated list of trailing codes. The trailing code list can be
8775 empty, for a more vague error message. FILE, LINE, and FUNCTION
8776 are of the caller. */
8777
8778 void
8779 tree_check_failed (const_tree node, const char *file,
8780 int line, const char *function, ...)
8781 {
8782 va_list args;
8783 const char *buffer;
8784 unsigned length = 0;
8785 int code;
8786
8787 va_start (args, function);
8788 while ((code = va_arg (args, int)))
8789 length += 4 + strlen (tree_code_name[code]);
8790 va_end (args);
8791 if (length)
8792 {
8793 char *tmp;
8794 va_start (args, function);
8795 length += strlen ("expected ");
8796 buffer = tmp = (char *) alloca (length);
8797 length = 0;
8798 while ((code = va_arg (args, int)))
8799 {
8800 const char *prefix = length ? " or " : "expected ";
8801
8802 strcpy (tmp + length, prefix);
8803 length += strlen (prefix);
8804 strcpy (tmp + length, tree_code_name[code]);
8805 length += strlen (tree_code_name[code]);
8806 }
8807 va_end (args);
8808 }
8809 else
8810 buffer = "unexpected node";
8811
8812 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8813 buffer, tree_code_name[TREE_CODE (node)],
8814 function, trim_filename (file), line);
8815 }
8816
8817 /* Complain that the tree code of NODE does match the expected 0
8818 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8819 the caller. */
8820
8821 void
8822 tree_not_check_failed (const_tree node, const char *file,
8823 int line, const char *function, ...)
8824 {
8825 va_list args;
8826 char *buffer;
8827 unsigned length = 0;
8828 int code;
8829
8830 va_start (args, function);
8831 while ((code = va_arg (args, int)))
8832 length += 4 + strlen (tree_code_name[code]);
8833 va_end (args);
8834 va_start (args, function);
8835 buffer = (char *) alloca (length);
8836 length = 0;
8837 while ((code = va_arg (args, int)))
8838 {
8839 if (length)
8840 {
8841 strcpy (buffer + length, " or ");
8842 length += 4;
8843 }
8844 strcpy (buffer + length, tree_code_name[code]);
8845 length += strlen (tree_code_name[code]);
8846 }
8847 va_end (args);
8848
8849 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8850 buffer, tree_code_name[TREE_CODE (node)],
8851 function, trim_filename (file), line);
8852 }
8853
8854 /* Similar to tree_check_failed, except that we check for a class of tree
8855 code, given in CL. */
8856
8857 void
8858 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8859 const char *file, int line, const char *function)
8860 {
8861 internal_error
8862 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8863 TREE_CODE_CLASS_STRING (cl),
8864 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8865 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8866 }
8867
8868 /* Similar to tree_check_failed, except that instead of specifying a
8869 dozen codes, use the knowledge that they're all sequential. */
8870
8871 void
8872 tree_range_check_failed (const_tree node, const char *file, int line,
8873 const char *function, enum tree_code c1,
8874 enum tree_code c2)
8875 {
8876 char *buffer;
8877 unsigned length = 0;
8878 unsigned int c;
8879
8880 for (c = c1; c <= c2; ++c)
8881 length += 4 + strlen (tree_code_name[c]);
8882
8883 length += strlen ("expected ");
8884 buffer = (char *) alloca (length);
8885 length = 0;
8886
8887 for (c = c1; c <= c2; ++c)
8888 {
8889 const char *prefix = length ? " or " : "expected ";
8890
8891 strcpy (buffer + length, prefix);
8892 length += strlen (prefix);
8893 strcpy (buffer + length, tree_code_name[c]);
8894 length += strlen (tree_code_name[c]);
8895 }
8896
8897 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8898 buffer, tree_code_name[TREE_CODE (node)],
8899 function, trim_filename (file), line);
8900 }
8901
8902
8903 /* Similar to tree_check_failed, except that we check that a tree does
8904 not have the specified code, given in CL. */
8905
8906 void
8907 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8908 const char *file, int line, const char *function)
8909 {
8910 internal_error
8911 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8912 TREE_CODE_CLASS_STRING (cl),
8913 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8914 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8915 }
8916
8917
8918 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8919
8920 void
8921 omp_clause_check_failed (const_tree node, const char *file, int line,
8922 const char *function, enum omp_clause_code code)
8923 {
8924 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8925 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8926 function, trim_filename (file), line);
8927 }
8928
8929
8930 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8931
8932 void
8933 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8934 const char *function, enum omp_clause_code c1,
8935 enum omp_clause_code c2)
8936 {
8937 char *buffer;
8938 unsigned length = 0;
8939 unsigned int c;
8940
8941 for (c = c1; c <= c2; ++c)
8942 length += 4 + strlen (omp_clause_code_name[c]);
8943
8944 length += strlen ("expected ");
8945 buffer = (char *) alloca (length);
8946 length = 0;
8947
8948 for (c = c1; c <= c2; ++c)
8949 {
8950 const char *prefix = length ? " or " : "expected ";
8951
8952 strcpy (buffer + length, prefix);
8953 length += strlen (prefix);
8954 strcpy (buffer + length, omp_clause_code_name[c]);
8955 length += strlen (omp_clause_code_name[c]);
8956 }
8957
8958 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8959 buffer, omp_clause_code_name[TREE_CODE (node)],
8960 function, trim_filename (file), line);
8961 }
8962
8963
8964 #undef DEFTREESTRUCT
8965 #define DEFTREESTRUCT(VAL, NAME) NAME,
8966
8967 static const char *ts_enum_names[] = {
8968 #include "treestruct.def"
8969 };
8970 #undef DEFTREESTRUCT
8971
8972 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8973
8974 /* Similar to tree_class_check_failed, except that we check for
8975 whether CODE contains the tree structure identified by EN. */
8976
8977 void
8978 tree_contains_struct_check_failed (const_tree node,
8979 const enum tree_node_structure_enum en,
8980 const char *file, int line,
8981 const char *function)
8982 {
8983 internal_error
8984 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8985 TS_ENUM_NAME(en),
8986 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8987 }
8988
8989
8990 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8991 (dynamically sized) vector. */
8992
8993 void
8994 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8995 const char *function)
8996 {
8997 internal_error
8998 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
8999 idx + 1, len, function, trim_filename (file), line);
9000 }
9001
9002 /* Similar to above, except that the check is for the bounds of the operand
9003 vector of an expression node EXP. */
9004
9005 void
9006 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9007 int line, const char *function)
9008 {
9009 int code = TREE_CODE (exp);
9010 internal_error
9011 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9012 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
9013 function, trim_filename (file), line);
9014 }
9015
9016 /* Similar to above, except that the check is for the number of
9017 operands of an OMP_CLAUSE node. */
9018
9019 void
9020 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9021 int line, const char *function)
9022 {
9023 internal_error
9024 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9025 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9026 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9027 trim_filename (file), line);
9028 }
9029 #endif /* ENABLE_TREE_CHECKING */
9030 \f
9031 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9032 and mapped to the machine mode MODE. Initialize its fields and build
9033 the information necessary for debugging output. */
9034
9035 static tree
9036 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
9037 {
9038 tree t;
9039 hashval_t hashcode = 0;
9040
9041 t = make_node (VECTOR_TYPE);
9042 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
9043 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9044 SET_TYPE_MODE (t, mode);
9045
9046 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
9047 SET_TYPE_STRUCTURAL_EQUALITY (t);
9048 else if (TYPE_CANONICAL (innertype) != innertype
9049 || mode != VOIDmode)
9050 TYPE_CANONICAL (t)
9051 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
9052
9053 layout_type (t);
9054
9055 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
9056 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
9057 hashcode = iterative_hash_host_wide_int (mode, hashcode);
9058 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
9059 t = type_hash_canon (hashcode, t);
9060
9061 /* We have built a main variant, based on the main variant of the
9062 inner type. Use it to build the variant we return. */
9063 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9064 && TREE_TYPE (t) != innertype)
9065 return build_type_attribute_qual_variant (t,
9066 TYPE_ATTRIBUTES (innertype),
9067 TYPE_QUALS (innertype));
9068
9069 return t;
9070 }
9071
9072 static tree
9073 make_or_reuse_type (unsigned size, int unsignedp)
9074 {
9075 if (size == INT_TYPE_SIZE)
9076 return unsignedp ? unsigned_type_node : integer_type_node;
9077 if (size == CHAR_TYPE_SIZE)
9078 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9079 if (size == SHORT_TYPE_SIZE)
9080 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9081 if (size == LONG_TYPE_SIZE)
9082 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9083 if (size == LONG_LONG_TYPE_SIZE)
9084 return (unsignedp ? long_long_unsigned_type_node
9085 : long_long_integer_type_node);
9086 if (size == 128 && int128_integer_type_node)
9087 return (unsignedp ? int128_unsigned_type_node
9088 : int128_integer_type_node);
9089
9090 if (unsignedp)
9091 return make_unsigned_type (size);
9092 else
9093 return make_signed_type (size);
9094 }
9095
9096 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9097
9098 static tree
9099 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9100 {
9101 if (satp)
9102 {
9103 if (size == SHORT_FRACT_TYPE_SIZE)
9104 return unsignedp ? sat_unsigned_short_fract_type_node
9105 : sat_short_fract_type_node;
9106 if (size == FRACT_TYPE_SIZE)
9107 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9108 if (size == LONG_FRACT_TYPE_SIZE)
9109 return unsignedp ? sat_unsigned_long_fract_type_node
9110 : sat_long_fract_type_node;
9111 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9112 return unsignedp ? sat_unsigned_long_long_fract_type_node
9113 : sat_long_long_fract_type_node;
9114 }
9115 else
9116 {
9117 if (size == SHORT_FRACT_TYPE_SIZE)
9118 return unsignedp ? unsigned_short_fract_type_node
9119 : short_fract_type_node;
9120 if (size == FRACT_TYPE_SIZE)
9121 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9122 if (size == LONG_FRACT_TYPE_SIZE)
9123 return unsignedp ? unsigned_long_fract_type_node
9124 : long_fract_type_node;
9125 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9126 return unsignedp ? unsigned_long_long_fract_type_node
9127 : long_long_fract_type_node;
9128 }
9129
9130 return make_fract_type (size, unsignedp, satp);
9131 }
9132
9133 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9134
9135 static tree
9136 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9137 {
9138 if (satp)
9139 {
9140 if (size == SHORT_ACCUM_TYPE_SIZE)
9141 return unsignedp ? sat_unsigned_short_accum_type_node
9142 : sat_short_accum_type_node;
9143 if (size == ACCUM_TYPE_SIZE)
9144 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9145 if (size == LONG_ACCUM_TYPE_SIZE)
9146 return unsignedp ? sat_unsigned_long_accum_type_node
9147 : sat_long_accum_type_node;
9148 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9149 return unsignedp ? sat_unsigned_long_long_accum_type_node
9150 : sat_long_long_accum_type_node;
9151 }
9152 else
9153 {
9154 if (size == SHORT_ACCUM_TYPE_SIZE)
9155 return unsignedp ? unsigned_short_accum_type_node
9156 : short_accum_type_node;
9157 if (size == ACCUM_TYPE_SIZE)
9158 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9159 if (size == LONG_ACCUM_TYPE_SIZE)
9160 return unsignedp ? unsigned_long_accum_type_node
9161 : long_accum_type_node;
9162 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9163 return unsignedp ? unsigned_long_long_accum_type_node
9164 : long_long_accum_type_node;
9165 }
9166
9167 return make_accum_type (size, unsignedp, satp);
9168 }
9169
9170 /* Create nodes for all integer types (and error_mark_node) using the sizes
9171 of C datatypes. SIGNED_CHAR specifies whether char is signed,
9172 SHORT_DOUBLE specifies whether double should be of the same precision
9173 as float. */
9174
9175 void
9176 build_common_tree_nodes (bool signed_char, bool short_double)
9177 {
9178 error_mark_node = make_node (ERROR_MARK);
9179 TREE_TYPE (error_mark_node) = error_mark_node;
9180
9181 initialize_sizetypes ();
9182
9183 /* Define both `signed char' and `unsigned char'. */
9184 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9185 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9186 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9187 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9188
9189 /* Define `char', which is like either `signed char' or `unsigned char'
9190 but not the same as either. */
9191 char_type_node
9192 = (signed_char
9193 ? make_signed_type (CHAR_TYPE_SIZE)
9194 : make_unsigned_type (CHAR_TYPE_SIZE));
9195 TYPE_STRING_FLAG (char_type_node) = 1;
9196
9197 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9198 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9199 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9200 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9201 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9202 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9203 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9204 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9205 #if HOST_BITS_PER_WIDE_INT >= 64
9206 /* TODO: This isn't correct, but as logic depends at the moment on
9207 host's instead of target's wide-integer.
9208 If there is a target not supporting TImode, but has an 128-bit
9209 integer-scalar register, this target check needs to be adjusted. */
9210 if (targetm.scalar_mode_supported_p (TImode))
9211 {
9212 int128_integer_type_node = make_signed_type (128);
9213 int128_unsigned_type_node = make_unsigned_type (128);
9214 }
9215 #endif
9216
9217 /* Define a boolean type. This type only represents boolean values but
9218 may be larger than char depending on the value of BOOL_TYPE_SIZE.
9219 Front ends which want to override this size (i.e. Java) can redefine
9220 boolean_type_node before calling build_common_tree_nodes_2. */
9221 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9222 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9223 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9224 TYPE_PRECISION (boolean_type_node) = 1;
9225
9226 /* Define what type to use for size_t. */
9227 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9228 size_type_node = unsigned_type_node;
9229 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9230 size_type_node = long_unsigned_type_node;
9231 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9232 size_type_node = long_long_unsigned_type_node;
9233 else
9234 gcc_unreachable ();
9235
9236 /* Fill in the rest of the sized types. Reuse existing type nodes
9237 when possible. */
9238 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9239 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9240 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9241 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9242 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9243
9244 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9245 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9246 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9247 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9248 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9249
9250 access_public_node = get_identifier ("public");
9251 access_protected_node = get_identifier ("protected");
9252 access_private_node = get_identifier ("private");
9253
9254 /* Define these next since types below may used them. */
9255 integer_zero_node = build_int_cst (integer_type_node, 0);
9256 integer_one_node = build_int_cst (integer_type_node, 1);
9257 integer_three_node = build_int_cst (integer_type_node, 3);
9258 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9259
9260 size_zero_node = size_int (0);
9261 size_one_node = size_int (1);
9262 bitsize_zero_node = bitsize_int (0);
9263 bitsize_one_node = bitsize_int (1);
9264 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9265
9266 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9267 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9268
9269 void_type_node = make_node (VOID_TYPE);
9270 layout_type (void_type_node);
9271
9272 /* We are not going to have real types in C with less than byte alignment,
9273 so we might as well not have any types that claim to have it. */
9274 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9275 TYPE_USER_ALIGN (void_type_node) = 0;
9276
9277 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9278 layout_type (TREE_TYPE (null_pointer_node));
9279
9280 ptr_type_node = build_pointer_type (void_type_node);
9281 const_ptr_type_node
9282 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9283 fileptr_type_node = ptr_type_node;
9284
9285 float_type_node = make_node (REAL_TYPE);
9286 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9287 layout_type (float_type_node);
9288
9289 double_type_node = make_node (REAL_TYPE);
9290 if (short_double)
9291 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9292 else
9293 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9294 layout_type (double_type_node);
9295
9296 long_double_type_node = make_node (REAL_TYPE);
9297 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9298 layout_type (long_double_type_node);
9299
9300 float_ptr_type_node = build_pointer_type (float_type_node);
9301 double_ptr_type_node = build_pointer_type (double_type_node);
9302 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9303 integer_ptr_type_node = build_pointer_type (integer_type_node);
9304
9305 /* Fixed size integer types. */
9306 uint32_type_node = build_nonstandard_integer_type (32, true);
9307 uint64_type_node = build_nonstandard_integer_type (64, true);
9308
9309 /* Decimal float types. */
9310 dfloat32_type_node = make_node (REAL_TYPE);
9311 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9312 layout_type (dfloat32_type_node);
9313 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9314 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9315
9316 dfloat64_type_node = make_node (REAL_TYPE);
9317 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9318 layout_type (dfloat64_type_node);
9319 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9320 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9321
9322 dfloat128_type_node = make_node (REAL_TYPE);
9323 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9324 layout_type (dfloat128_type_node);
9325 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9326 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9327
9328 complex_integer_type_node = build_complex_type (integer_type_node);
9329 complex_float_type_node = build_complex_type (float_type_node);
9330 complex_double_type_node = build_complex_type (double_type_node);
9331 complex_long_double_type_node = build_complex_type (long_double_type_node);
9332
9333 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9334 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9335 sat_ ## KIND ## _type_node = \
9336 make_sat_signed_ ## KIND ## _type (SIZE); \
9337 sat_unsigned_ ## KIND ## _type_node = \
9338 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9339 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9340 unsigned_ ## KIND ## _type_node = \
9341 make_unsigned_ ## KIND ## _type (SIZE);
9342
9343 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9344 sat_ ## WIDTH ## KIND ## _type_node = \
9345 make_sat_signed_ ## KIND ## _type (SIZE); \
9346 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9347 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9348 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9349 unsigned_ ## WIDTH ## KIND ## _type_node = \
9350 make_unsigned_ ## KIND ## _type (SIZE);
9351
9352 /* Make fixed-point type nodes based on four different widths. */
9353 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9354 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9355 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9356 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9357 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9358
9359 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9360 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9361 NAME ## _type_node = \
9362 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9363 u ## NAME ## _type_node = \
9364 make_or_reuse_unsigned_ ## KIND ## _type \
9365 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9366 sat_ ## NAME ## _type_node = \
9367 make_or_reuse_sat_signed_ ## KIND ## _type \
9368 (GET_MODE_BITSIZE (MODE ## mode)); \
9369 sat_u ## NAME ## _type_node = \
9370 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9371 (GET_MODE_BITSIZE (U ## MODE ## mode));
9372
9373 /* Fixed-point type and mode nodes. */
9374 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9375 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9376 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9377 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9378 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9379 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9380 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9381 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9382 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9383 MAKE_FIXED_MODE_NODE (accum, da, DA)
9384 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9385
9386 {
9387 tree t = targetm.build_builtin_va_list ();
9388
9389 /* Many back-ends define record types without setting TYPE_NAME.
9390 If we copied the record type here, we'd keep the original
9391 record type without a name. This breaks name mangling. So,
9392 don't copy record types and let c_common_nodes_and_builtins()
9393 declare the type to be __builtin_va_list. */
9394 if (TREE_CODE (t) != RECORD_TYPE)
9395 t = build_variant_type_copy (t);
9396
9397 va_list_type_node = t;
9398 }
9399 }
9400
9401 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9402
9403 static void
9404 local_define_builtin (const char *name, tree type, enum built_in_function code,
9405 const char *library_name, int ecf_flags)
9406 {
9407 tree decl;
9408
9409 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9410 library_name, NULL_TREE);
9411 if (ecf_flags & ECF_CONST)
9412 TREE_READONLY (decl) = 1;
9413 if (ecf_flags & ECF_PURE)
9414 DECL_PURE_P (decl) = 1;
9415 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9416 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9417 if (ecf_flags & ECF_NORETURN)
9418 TREE_THIS_VOLATILE (decl) = 1;
9419 if (ecf_flags & ECF_NOTHROW)
9420 TREE_NOTHROW (decl) = 1;
9421 if (ecf_flags & ECF_MALLOC)
9422 DECL_IS_MALLOC (decl) = 1;
9423 if (ecf_flags & ECF_LEAF)
9424 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9425 NULL, DECL_ATTRIBUTES (decl));
9426
9427 built_in_decls[code] = decl;
9428 implicit_built_in_decls[code] = decl;
9429 }
9430
9431 /* Call this function after instantiating all builtins that the language
9432 front end cares about. This will build the rest of the builtins that
9433 are relied upon by the tree optimizers and the middle-end. */
9434
9435 void
9436 build_common_builtin_nodes (void)
9437 {
9438 tree tmp, ftype;
9439
9440 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
9441 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9442 {
9443 ftype = build_function_type_list (ptr_type_node,
9444 ptr_type_node, const_ptr_type_node,
9445 size_type_node, NULL_TREE);
9446
9447 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
9448 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9449 "memcpy", ECF_NOTHROW | ECF_LEAF);
9450 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9451 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9452 "memmove", ECF_NOTHROW | ECF_LEAF);
9453 }
9454
9455 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
9456 {
9457 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9458 const_ptr_type_node, size_type_node,
9459 NULL_TREE);
9460 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9461 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9462 }
9463
9464 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
9465 {
9466 ftype = build_function_type_list (ptr_type_node,
9467 ptr_type_node, integer_type_node,
9468 size_type_node, NULL_TREE);
9469 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9470 "memset", ECF_NOTHROW | ECF_LEAF);
9471 }
9472
9473 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
9474 {
9475 ftype = build_function_type_list (ptr_type_node,
9476 size_type_node, NULL_TREE);
9477 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9478 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9479 }
9480
9481 /* If we're checking the stack, `alloca' can throw. */
9482 if (flag_stack_check)
9483 TREE_NOTHROW (built_in_decls[BUILT_IN_ALLOCA]) = 0;
9484
9485 ftype = build_function_type_list (void_type_node,
9486 ptr_type_node, ptr_type_node,
9487 ptr_type_node, NULL_TREE);
9488 local_define_builtin ("__builtin_init_trampoline", ftype,
9489 BUILT_IN_INIT_TRAMPOLINE,
9490 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9491
9492 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9493 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9494 BUILT_IN_ADJUST_TRAMPOLINE,
9495 "__builtin_adjust_trampoline",
9496 ECF_CONST | ECF_NOTHROW);
9497
9498 ftype = build_function_type_list (void_type_node,
9499 ptr_type_node, ptr_type_node, NULL_TREE);
9500 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9501 BUILT_IN_NONLOCAL_GOTO,
9502 "__builtin_nonlocal_goto",
9503 ECF_NORETURN | ECF_NOTHROW);
9504
9505 ftype = build_function_type_list (void_type_node,
9506 ptr_type_node, ptr_type_node, NULL_TREE);
9507 local_define_builtin ("__builtin_setjmp_setup", ftype,
9508 BUILT_IN_SETJMP_SETUP,
9509 "__builtin_setjmp_setup", ECF_NOTHROW);
9510
9511 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9512 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9513 BUILT_IN_SETJMP_DISPATCHER,
9514 "__builtin_setjmp_dispatcher",
9515 ECF_PURE | ECF_NOTHROW);
9516
9517 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9518 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9519 BUILT_IN_SETJMP_RECEIVER,
9520 "__builtin_setjmp_receiver", ECF_NOTHROW);
9521
9522 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9523 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9524 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9525
9526 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9527 local_define_builtin ("__builtin_stack_restore", ftype,
9528 BUILT_IN_STACK_RESTORE,
9529 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9530
9531 /* If there's a possibility that we might use the ARM EABI, build the
9532 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9533 if (targetm.arm_eabi_unwinder)
9534 {
9535 ftype = build_function_type_list (void_type_node, NULL_TREE);
9536 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9537 BUILT_IN_CXA_END_CLEANUP,
9538 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9539 }
9540
9541 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9542 local_define_builtin ("__builtin_unwind_resume", ftype,
9543 BUILT_IN_UNWIND_RESUME,
9544 ((targetm_common.except_unwind_info (&global_options)
9545 == UI_SJLJ)
9546 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9547 ECF_NORETURN);
9548
9549 /* The exception object and filter values from the runtime. The argument
9550 must be zero before exception lowering, i.e. from the front end. After
9551 exception lowering, it will be the region number for the exception
9552 landing pad. These functions are PURE instead of CONST to prevent
9553 them from being hoisted past the exception edge that will initialize
9554 its value in the landing pad. */
9555 ftype = build_function_type_list (ptr_type_node,
9556 integer_type_node, NULL_TREE);
9557 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9558 "__builtin_eh_pointer", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9559
9560 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9561 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
9562 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9563 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9564
9565 ftype = build_function_type_list (void_type_node,
9566 integer_type_node, integer_type_node,
9567 NULL_TREE);
9568 local_define_builtin ("__builtin_eh_copy_values", ftype,
9569 BUILT_IN_EH_COPY_VALUES,
9570 "__builtin_eh_copy_values", ECF_NOTHROW);
9571
9572 /* Complex multiplication and division. These are handled as builtins
9573 rather than optabs because emit_library_call_value doesn't support
9574 complex. Further, we can do slightly better with folding these
9575 beasties if the real and complex parts of the arguments are separate. */
9576 {
9577 int mode;
9578
9579 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9580 {
9581 char mode_name_buf[4], *q;
9582 const char *p;
9583 enum built_in_function mcode, dcode;
9584 tree type, inner_type;
9585 const char *prefix = "__";
9586
9587 if (targetm.libfunc_gnu_prefix)
9588 prefix = "__gnu_";
9589
9590 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9591 if (type == NULL)
9592 continue;
9593 inner_type = TREE_TYPE (type);
9594
9595 ftype = build_function_type_list (type, inner_type, inner_type,
9596 inner_type, inner_type, NULL_TREE);
9597
9598 mcode = ((enum built_in_function)
9599 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9600 dcode = ((enum built_in_function)
9601 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9602
9603 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9604 *q = TOLOWER (*p);
9605 *q = '\0';
9606
9607 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
9608 NULL);
9609 local_define_builtin (built_in_names[mcode], ftype, mcode,
9610 built_in_names[mcode],
9611 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9612
9613 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
9614 NULL);
9615 local_define_builtin (built_in_names[dcode], ftype, dcode,
9616 built_in_names[dcode],
9617 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9618 }
9619 }
9620 }
9621
9622 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9623 better way.
9624
9625 If we requested a pointer to a vector, build up the pointers that
9626 we stripped off while looking for the inner type. Similarly for
9627 return values from functions.
9628
9629 The argument TYPE is the top of the chain, and BOTTOM is the
9630 new type which we will point to. */
9631
9632 tree
9633 reconstruct_complex_type (tree type, tree bottom)
9634 {
9635 tree inner, outer;
9636
9637 if (TREE_CODE (type) == POINTER_TYPE)
9638 {
9639 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9640 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9641 TYPE_REF_CAN_ALIAS_ALL (type));
9642 }
9643 else if (TREE_CODE (type) == REFERENCE_TYPE)
9644 {
9645 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9646 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9647 TYPE_REF_CAN_ALIAS_ALL (type));
9648 }
9649 else if (TREE_CODE (type) == ARRAY_TYPE)
9650 {
9651 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9652 outer = build_array_type (inner, TYPE_DOMAIN (type));
9653 }
9654 else if (TREE_CODE (type) == FUNCTION_TYPE)
9655 {
9656 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9657 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9658 }
9659 else if (TREE_CODE (type) == METHOD_TYPE)
9660 {
9661 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9662 /* The build_method_type_directly() routine prepends 'this' to argument list,
9663 so we must compensate by getting rid of it. */
9664 outer
9665 = build_method_type_directly
9666 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9667 inner,
9668 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9669 }
9670 else if (TREE_CODE (type) == OFFSET_TYPE)
9671 {
9672 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9673 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9674 }
9675 else
9676 return bottom;
9677
9678 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9679 TYPE_QUALS (type));
9680 }
9681
9682 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9683 the inner type. */
9684 tree
9685 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9686 {
9687 int nunits;
9688
9689 switch (GET_MODE_CLASS (mode))
9690 {
9691 case MODE_VECTOR_INT:
9692 case MODE_VECTOR_FLOAT:
9693 case MODE_VECTOR_FRACT:
9694 case MODE_VECTOR_UFRACT:
9695 case MODE_VECTOR_ACCUM:
9696 case MODE_VECTOR_UACCUM:
9697 nunits = GET_MODE_NUNITS (mode);
9698 break;
9699
9700 case MODE_INT:
9701 /* Check that there are no leftover bits. */
9702 gcc_assert (GET_MODE_BITSIZE (mode)
9703 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9704
9705 nunits = GET_MODE_BITSIZE (mode)
9706 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9707 break;
9708
9709 default:
9710 gcc_unreachable ();
9711 }
9712
9713 return make_vector_type (innertype, nunits, mode);
9714 }
9715
9716 /* Similarly, but takes the inner type and number of units, which must be
9717 a power of two. */
9718
9719 tree
9720 build_vector_type (tree innertype, int nunits)
9721 {
9722 return make_vector_type (innertype, nunits, VOIDmode);
9723 }
9724
9725 /* Similarly, but takes the inner type and number of units, which must be
9726 a power of two. */
9727
9728 tree
9729 build_opaque_vector_type (tree innertype, int nunits)
9730 {
9731 tree t;
9732 innertype = build_distinct_type_copy (innertype);
9733 t = make_vector_type (innertype, nunits, VOIDmode);
9734 TYPE_VECTOR_OPAQUE (t) = true;
9735 return t;
9736 }
9737
9738
9739 /* Given an initializer INIT, return TRUE if INIT is zero or some
9740 aggregate of zeros. Otherwise return FALSE. */
9741 bool
9742 initializer_zerop (const_tree init)
9743 {
9744 tree elt;
9745
9746 STRIP_NOPS (init);
9747
9748 switch (TREE_CODE (init))
9749 {
9750 case INTEGER_CST:
9751 return integer_zerop (init);
9752
9753 case REAL_CST:
9754 /* ??? Note that this is not correct for C4X float formats. There,
9755 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9756 negative exponent. */
9757 return real_zerop (init)
9758 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9759
9760 case FIXED_CST:
9761 return fixed_zerop (init);
9762
9763 case COMPLEX_CST:
9764 return integer_zerop (init)
9765 || (real_zerop (init)
9766 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9767 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9768
9769 case VECTOR_CST:
9770 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9771 if (!initializer_zerop (TREE_VALUE (elt)))
9772 return false;
9773 return true;
9774
9775 case CONSTRUCTOR:
9776 {
9777 unsigned HOST_WIDE_INT idx;
9778
9779 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9780 if (!initializer_zerop (elt))
9781 return false;
9782 return true;
9783 }
9784
9785 case STRING_CST:
9786 {
9787 int i;
9788
9789 /* We need to loop through all elements to handle cases like
9790 "\0" and "\0foobar". */
9791 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
9792 if (TREE_STRING_POINTER (init)[i] != '\0')
9793 return false;
9794
9795 return true;
9796 }
9797
9798 default:
9799 return false;
9800 }
9801 }
9802
9803 /* Build an empty statement at location LOC. */
9804
9805 tree
9806 build_empty_stmt (location_t loc)
9807 {
9808 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9809 SET_EXPR_LOCATION (t, loc);
9810 return t;
9811 }
9812
9813
9814 /* Build an OpenMP clause with code CODE. LOC is the location of the
9815 clause. */
9816
9817 tree
9818 build_omp_clause (location_t loc, enum omp_clause_code code)
9819 {
9820 tree t;
9821 int size, length;
9822
9823 length = omp_clause_num_ops[code];
9824 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9825
9826 record_node_allocation_statistics (OMP_CLAUSE, size);
9827
9828 t = ggc_alloc_tree_node (size);
9829 memset (t, 0, size);
9830 TREE_SET_CODE (t, OMP_CLAUSE);
9831 OMP_CLAUSE_SET_CODE (t, code);
9832 OMP_CLAUSE_LOCATION (t) = loc;
9833
9834 return t;
9835 }
9836
9837 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9838 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9839 Except for the CODE and operand count field, other storage for the
9840 object is initialized to zeros. */
9841
9842 tree
9843 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9844 {
9845 tree t;
9846 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9847
9848 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9849 gcc_assert (len >= 1);
9850
9851 record_node_allocation_statistics (code, length);
9852
9853 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
9854
9855 TREE_SET_CODE (t, code);
9856
9857 /* Can't use TREE_OPERAND to store the length because if checking is
9858 enabled, it will try to check the length before we store it. :-P */
9859 t->exp.operands[0] = build_int_cst (sizetype, len);
9860
9861 return t;
9862 }
9863
9864 /* Helper function for build_call_* functions; build a CALL_EXPR with
9865 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
9866 the argument slots. */
9867
9868 static tree
9869 build_call_1 (tree return_type, tree fn, int nargs)
9870 {
9871 tree t;
9872
9873 t = build_vl_exp (CALL_EXPR, nargs + 3);
9874 TREE_TYPE (t) = return_type;
9875 CALL_EXPR_FN (t) = fn;
9876 CALL_EXPR_STATIC_CHAIN (t) = NULL;
9877
9878 return t;
9879 }
9880
9881 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9882 FN and a null static chain slot. NARGS is the number of call arguments
9883 which are specified as "..." arguments. */
9884
9885 tree
9886 build_call_nary (tree return_type, tree fn, int nargs, ...)
9887 {
9888 tree ret;
9889 va_list args;
9890 va_start (args, nargs);
9891 ret = build_call_valist (return_type, fn, nargs, args);
9892 va_end (args);
9893 return ret;
9894 }
9895
9896 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9897 FN and a null static chain slot. NARGS is the number of call arguments
9898 which are specified as a va_list ARGS. */
9899
9900 tree
9901 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9902 {
9903 tree t;
9904 int i;
9905
9906 t = build_call_1 (return_type, fn, nargs);
9907 for (i = 0; i < nargs; i++)
9908 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9909 process_call_operands (t);
9910 return t;
9911 }
9912
9913 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9914 FN and a null static chain slot. NARGS is the number of call arguments
9915 which are specified as a tree array ARGS. */
9916
9917 tree
9918 build_call_array_loc (location_t loc, tree return_type, tree fn,
9919 int nargs, const tree *args)
9920 {
9921 tree t;
9922 int i;
9923
9924 t = build_call_1 (return_type, fn, nargs);
9925 for (i = 0; i < nargs; i++)
9926 CALL_EXPR_ARG (t, i) = args[i];
9927 process_call_operands (t);
9928 SET_EXPR_LOCATION (t, loc);
9929 return t;
9930 }
9931
9932 /* Like build_call_array, but takes a VEC. */
9933
9934 tree
9935 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9936 {
9937 tree ret, t;
9938 unsigned int ix;
9939
9940 ret = build_call_1 (return_type, fn, VEC_length (tree, args));
9941 FOR_EACH_VEC_ELT (tree, args, ix, t)
9942 CALL_EXPR_ARG (ret, ix) = t;
9943 process_call_operands (ret);
9944 return ret;
9945 }
9946
9947
9948 /* Returns true if it is possible to prove that the index of
9949 an array access REF (an ARRAY_REF expression) falls into the
9950 array bounds. */
9951
9952 bool
9953 in_array_bounds_p (tree ref)
9954 {
9955 tree idx = TREE_OPERAND (ref, 1);
9956 tree min, max;
9957
9958 if (TREE_CODE (idx) != INTEGER_CST)
9959 return false;
9960
9961 min = array_ref_low_bound (ref);
9962 max = array_ref_up_bound (ref);
9963 if (!min
9964 || !max
9965 || TREE_CODE (min) != INTEGER_CST
9966 || TREE_CODE (max) != INTEGER_CST)
9967 return false;
9968
9969 if (tree_int_cst_lt (idx, min)
9970 || tree_int_cst_lt (max, idx))
9971 return false;
9972
9973 return true;
9974 }
9975
9976 /* Returns true if it is possible to prove that the range of
9977 an array access REF (an ARRAY_RANGE_REF expression) falls
9978 into the array bounds. */
9979
9980 bool
9981 range_in_array_bounds_p (tree ref)
9982 {
9983 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
9984 tree range_min, range_max, min, max;
9985
9986 range_min = TYPE_MIN_VALUE (domain_type);
9987 range_max = TYPE_MAX_VALUE (domain_type);
9988 if (!range_min
9989 || !range_max
9990 || TREE_CODE (range_min) != INTEGER_CST
9991 || TREE_CODE (range_max) != INTEGER_CST)
9992 return false;
9993
9994 min = array_ref_low_bound (ref);
9995 max = array_ref_up_bound (ref);
9996 if (!min
9997 || !max
9998 || TREE_CODE (min) != INTEGER_CST
9999 || TREE_CODE (max) != INTEGER_CST)
10000 return false;
10001
10002 if (tree_int_cst_lt (range_min, min)
10003 || tree_int_cst_lt (max, range_max))
10004 return false;
10005
10006 return true;
10007 }
10008
10009 /* Return true if T (assumed to be a DECL) must be assigned a memory
10010 location. */
10011
10012 bool
10013 needs_to_live_in_memory (const_tree t)
10014 {
10015 if (TREE_CODE (t) == SSA_NAME)
10016 t = SSA_NAME_VAR (t);
10017
10018 return (TREE_ADDRESSABLE (t)
10019 || is_global_var (t)
10020 || (TREE_CODE (t) == RESULT_DECL
10021 && !DECL_BY_REFERENCE (t)
10022 && aggregate_value_p (t, current_function_decl)));
10023 }
10024
10025 /* Return value of a constant X and sign-extend it. */
10026
10027 HOST_WIDE_INT
10028 int_cst_value (const_tree x)
10029 {
10030 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10031 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
10032
10033 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10034 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10035 || TREE_INT_CST_HIGH (x) == -1);
10036
10037 if (bits < HOST_BITS_PER_WIDE_INT)
10038 {
10039 bool negative = ((val >> (bits - 1)) & 1) != 0;
10040 if (negative)
10041 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
10042 else
10043 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
10044 }
10045
10046 return val;
10047 }
10048
10049 /* Return value of a constant X and sign-extend it. */
10050
10051 HOST_WIDEST_INT
10052 widest_int_cst_value (const_tree x)
10053 {
10054 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10055 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
10056
10057 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
10058 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
10059 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
10060 << HOST_BITS_PER_WIDE_INT);
10061 #else
10062 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10063 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10064 || TREE_INT_CST_HIGH (x) == -1);
10065 #endif
10066
10067 if (bits < HOST_BITS_PER_WIDEST_INT)
10068 {
10069 bool negative = ((val >> (bits - 1)) & 1) != 0;
10070 if (negative)
10071 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
10072 else
10073 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
10074 }
10075
10076 return val;
10077 }
10078
10079 /* If TYPE is an integral type, return an equivalent type which is
10080 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
10081 return TYPE itself. */
10082
10083 tree
10084 signed_or_unsigned_type_for (int unsignedp, tree type)
10085 {
10086 tree t = type;
10087 if (POINTER_TYPE_P (type))
10088 {
10089 /* If the pointer points to the normal address space, use the
10090 size_type_node. Otherwise use an appropriate size for the pointer
10091 based on the named address space it points to. */
10092 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
10093 t = size_type_node;
10094 else
10095 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
10096 }
10097
10098 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
10099 return t;
10100
10101 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
10102 }
10103
10104 /* Returns unsigned variant of TYPE. */
10105
10106 tree
10107 unsigned_type_for (tree type)
10108 {
10109 return signed_or_unsigned_type_for (1, type);
10110 }
10111
10112 /* Returns signed variant of TYPE. */
10113
10114 tree
10115 signed_type_for (tree type)
10116 {
10117 return signed_or_unsigned_type_for (0, type);
10118 }
10119
10120 /* Returns the largest value obtainable by casting something in INNER type to
10121 OUTER type. */
10122
10123 tree
10124 upper_bound_in_type (tree outer, tree inner)
10125 {
10126 double_int high;
10127 unsigned int det = 0;
10128 unsigned oprec = TYPE_PRECISION (outer);
10129 unsigned iprec = TYPE_PRECISION (inner);
10130 unsigned prec;
10131
10132 /* Compute a unique number for every combination. */
10133 det |= (oprec > iprec) ? 4 : 0;
10134 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10135 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10136
10137 /* Determine the exponent to use. */
10138 switch (det)
10139 {
10140 case 0:
10141 case 1:
10142 /* oprec <= iprec, outer: signed, inner: don't care. */
10143 prec = oprec - 1;
10144 break;
10145 case 2:
10146 case 3:
10147 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10148 prec = oprec;
10149 break;
10150 case 4:
10151 /* oprec > iprec, outer: signed, inner: signed. */
10152 prec = iprec - 1;
10153 break;
10154 case 5:
10155 /* oprec > iprec, outer: signed, inner: unsigned. */
10156 prec = iprec;
10157 break;
10158 case 6:
10159 /* oprec > iprec, outer: unsigned, inner: signed. */
10160 prec = oprec;
10161 break;
10162 case 7:
10163 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10164 prec = iprec;
10165 break;
10166 default:
10167 gcc_unreachable ();
10168 }
10169
10170 /* Compute 2^^prec - 1. */
10171 if (prec <= HOST_BITS_PER_WIDE_INT)
10172 {
10173 high.high = 0;
10174 high.low = ((~(unsigned HOST_WIDE_INT) 0)
10175 >> (HOST_BITS_PER_WIDE_INT - prec));
10176 }
10177 else
10178 {
10179 high.high = ((~(unsigned HOST_WIDE_INT) 0)
10180 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
10181 high.low = ~(unsigned HOST_WIDE_INT) 0;
10182 }
10183
10184 return double_int_to_tree (outer, high);
10185 }
10186
10187 /* Returns the smallest value obtainable by casting something in INNER type to
10188 OUTER type. */
10189
10190 tree
10191 lower_bound_in_type (tree outer, tree inner)
10192 {
10193 double_int low;
10194 unsigned oprec = TYPE_PRECISION (outer);
10195 unsigned iprec = TYPE_PRECISION (inner);
10196
10197 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10198 and obtain 0. */
10199 if (TYPE_UNSIGNED (outer)
10200 /* If we are widening something of an unsigned type, OUTER type
10201 contains all values of INNER type. In particular, both INNER
10202 and OUTER types have zero in common. */
10203 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10204 low.low = low.high = 0;
10205 else
10206 {
10207 /* If we are widening a signed type to another signed type, we
10208 want to obtain -2^^(iprec-1). If we are keeping the
10209 precision or narrowing to a signed type, we want to obtain
10210 -2^(oprec-1). */
10211 unsigned prec = oprec > iprec ? iprec : oprec;
10212
10213 if (prec <= HOST_BITS_PER_WIDE_INT)
10214 {
10215 low.high = ~(unsigned HOST_WIDE_INT) 0;
10216 low.low = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
10217 }
10218 else
10219 {
10220 low.high = ((~(unsigned HOST_WIDE_INT) 0)
10221 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10222 low.low = 0;
10223 }
10224 }
10225
10226 return double_int_to_tree (outer, low);
10227 }
10228
10229 /* Return nonzero if two operands that are suitable for PHI nodes are
10230 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10231 SSA_NAME or invariant. Note that this is strictly an optimization.
10232 That is, callers of this function can directly call operand_equal_p
10233 and get the same result, only slower. */
10234
10235 int
10236 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10237 {
10238 if (arg0 == arg1)
10239 return 1;
10240 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10241 return 0;
10242 return operand_equal_p (arg0, arg1, 0);
10243 }
10244
10245 /* Returns number of zeros at the end of binary representation of X.
10246
10247 ??? Use ffs if available? */
10248
10249 tree
10250 num_ending_zeros (const_tree x)
10251 {
10252 unsigned HOST_WIDE_INT fr, nfr;
10253 unsigned num, abits;
10254 tree type = TREE_TYPE (x);
10255
10256 if (TREE_INT_CST_LOW (x) == 0)
10257 {
10258 num = HOST_BITS_PER_WIDE_INT;
10259 fr = TREE_INT_CST_HIGH (x);
10260 }
10261 else
10262 {
10263 num = 0;
10264 fr = TREE_INT_CST_LOW (x);
10265 }
10266
10267 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10268 {
10269 nfr = fr >> abits;
10270 if (nfr << abits == fr)
10271 {
10272 num += abits;
10273 fr = nfr;
10274 }
10275 }
10276
10277 if (num > TYPE_PRECISION (type))
10278 num = TYPE_PRECISION (type);
10279
10280 return build_int_cst_type (type, num);
10281 }
10282
10283
10284 #define WALK_SUBTREE(NODE) \
10285 do \
10286 { \
10287 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10288 if (result) \
10289 return result; \
10290 } \
10291 while (0)
10292
10293 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10294 be walked whenever a type is seen in the tree. Rest of operands and return
10295 value are as for walk_tree. */
10296
10297 static tree
10298 walk_type_fields (tree type, walk_tree_fn func, void *data,
10299 struct pointer_set_t *pset, walk_tree_lh lh)
10300 {
10301 tree result = NULL_TREE;
10302
10303 switch (TREE_CODE (type))
10304 {
10305 case POINTER_TYPE:
10306 case REFERENCE_TYPE:
10307 /* We have to worry about mutually recursive pointers. These can't
10308 be written in C. They can in Ada. It's pathological, but
10309 there's an ACATS test (c38102a) that checks it. Deal with this
10310 by checking if we're pointing to another pointer, that one
10311 points to another pointer, that one does too, and we have no htab.
10312 If so, get a hash table. We check three levels deep to avoid
10313 the cost of the hash table if we don't need one. */
10314 if (POINTER_TYPE_P (TREE_TYPE (type))
10315 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10316 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10317 && !pset)
10318 {
10319 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10320 func, data);
10321 if (result)
10322 return result;
10323
10324 break;
10325 }
10326
10327 /* ... fall through ... */
10328
10329 case COMPLEX_TYPE:
10330 WALK_SUBTREE (TREE_TYPE (type));
10331 break;
10332
10333 case METHOD_TYPE:
10334 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10335
10336 /* Fall through. */
10337
10338 case FUNCTION_TYPE:
10339 WALK_SUBTREE (TREE_TYPE (type));
10340 {
10341 tree arg;
10342
10343 /* We never want to walk into default arguments. */
10344 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10345 WALK_SUBTREE (TREE_VALUE (arg));
10346 }
10347 break;
10348
10349 case ARRAY_TYPE:
10350 /* Don't follow this nodes's type if a pointer for fear that
10351 we'll have infinite recursion. If we have a PSET, then we
10352 need not fear. */
10353 if (pset
10354 || (!POINTER_TYPE_P (TREE_TYPE (type))
10355 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10356 WALK_SUBTREE (TREE_TYPE (type));
10357 WALK_SUBTREE (TYPE_DOMAIN (type));
10358 break;
10359
10360 case OFFSET_TYPE:
10361 WALK_SUBTREE (TREE_TYPE (type));
10362 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10363 break;
10364
10365 default:
10366 break;
10367 }
10368
10369 return NULL_TREE;
10370 }
10371
10372 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10373 called with the DATA and the address of each sub-tree. If FUNC returns a
10374 non-NULL value, the traversal is stopped, and the value returned by FUNC
10375 is returned. If PSET is non-NULL it is used to record the nodes visited,
10376 and to avoid visiting a node more than once. */
10377
10378 tree
10379 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10380 struct pointer_set_t *pset, walk_tree_lh lh)
10381 {
10382 enum tree_code code;
10383 int walk_subtrees;
10384 tree result;
10385
10386 #define WALK_SUBTREE_TAIL(NODE) \
10387 do \
10388 { \
10389 tp = & (NODE); \
10390 goto tail_recurse; \
10391 } \
10392 while (0)
10393
10394 tail_recurse:
10395 /* Skip empty subtrees. */
10396 if (!*tp)
10397 return NULL_TREE;
10398
10399 /* Don't walk the same tree twice, if the user has requested
10400 that we avoid doing so. */
10401 if (pset && pointer_set_insert (pset, *tp))
10402 return NULL_TREE;
10403
10404 /* Call the function. */
10405 walk_subtrees = 1;
10406 result = (*func) (tp, &walk_subtrees, data);
10407
10408 /* If we found something, return it. */
10409 if (result)
10410 return result;
10411
10412 code = TREE_CODE (*tp);
10413
10414 /* Even if we didn't, FUNC may have decided that there was nothing
10415 interesting below this point in the tree. */
10416 if (!walk_subtrees)
10417 {
10418 /* But we still need to check our siblings. */
10419 if (code == TREE_LIST)
10420 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10421 else if (code == OMP_CLAUSE)
10422 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10423 else
10424 return NULL_TREE;
10425 }
10426
10427 if (lh)
10428 {
10429 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10430 if (result || !walk_subtrees)
10431 return result;
10432 }
10433
10434 switch (code)
10435 {
10436 case ERROR_MARK:
10437 case IDENTIFIER_NODE:
10438 case INTEGER_CST:
10439 case REAL_CST:
10440 case FIXED_CST:
10441 case VECTOR_CST:
10442 case STRING_CST:
10443 case BLOCK:
10444 case PLACEHOLDER_EXPR:
10445 case SSA_NAME:
10446 case FIELD_DECL:
10447 case RESULT_DECL:
10448 /* None of these have subtrees other than those already walked
10449 above. */
10450 break;
10451
10452 case TREE_LIST:
10453 WALK_SUBTREE (TREE_VALUE (*tp));
10454 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10455 break;
10456
10457 case TREE_VEC:
10458 {
10459 int len = TREE_VEC_LENGTH (*tp);
10460
10461 if (len == 0)
10462 break;
10463
10464 /* Walk all elements but the first. */
10465 while (--len)
10466 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10467
10468 /* Now walk the first one as a tail call. */
10469 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10470 }
10471
10472 case COMPLEX_CST:
10473 WALK_SUBTREE (TREE_REALPART (*tp));
10474 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10475
10476 case CONSTRUCTOR:
10477 {
10478 unsigned HOST_WIDE_INT idx;
10479 constructor_elt *ce;
10480
10481 for (idx = 0;
10482 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10483 idx++)
10484 WALK_SUBTREE (ce->value);
10485 }
10486 break;
10487
10488 case SAVE_EXPR:
10489 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10490
10491 case BIND_EXPR:
10492 {
10493 tree decl;
10494 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
10495 {
10496 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10497 into declarations that are just mentioned, rather than
10498 declared; they don't really belong to this part of the tree.
10499 And, we can see cycles: the initializer for a declaration
10500 can refer to the declaration itself. */
10501 WALK_SUBTREE (DECL_INITIAL (decl));
10502 WALK_SUBTREE (DECL_SIZE (decl));
10503 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10504 }
10505 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10506 }
10507
10508 case STATEMENT_LIST:
10509 {
10510 tree_stmt_iterator i;
10511 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10512 WALK_SUBTREE (*tsi_stmt_ptr (i));
10513 }
10514 break;
10515
10516 case OMP_CLAUSE:
10517 switch (OMP_CLAUSE_CODE (*tp))
10518 {
10519 case OMP_CLAUSE_PRIVATE:
10520 case OMP_CLAUSE_SHARED:
10521 case OMP_CLAUSE_FIRSTPRIVATE:
10522 case OMP_CLAUSE_COPYIN:
10523 case OMP_CLAUSE_COPYPRIVATE:
10524 case OMP_CLAUSE_IF:
10525 case OMP_CLAUSE_NUM_THREADS:
10526 case OMP_CLAUSE_SCHEDULE:
10527 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10528 /* FALLTHRU */
10529
10530 case OMP_CLAUSE_NOWAIT:
10531 case OMP_CLAUSE_ORDERED:
10532 case OMP_CLAUSE_DEFAULT:
10533 case OMP_CLAUSE_UNTIED:
10534 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10535
10536 case OMP_CLAUSE_LASTPRIVATE:
10537 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10538 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10539 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10540
10541 case OMP_CLAUSE_COLLAPSE:
10542 {
10543 int i;
10544 for (i = 0; i < 3; i++)
10545 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10546 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10547 }
10548
10549 case OMP_CLAUSE_REDUCTION:
10550 {
10551 int i;
10552 for (i = 0; i < 4; i++)
10553 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10554 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10555 }
10556
10557 default:
10558 gcc_unreachable ();
10559 }
10560 break;
10561
10562 case TARGET_EXPR:
10563 {
10564 int i, len;
10565
10566 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10567 But, we only want to walk once. */
10568 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10569 for (i = 0; i < len; ++i)
10570 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10571 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10572 }
10573
10574 case DECL_EXPR:
10575 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10576 defining. We only want to walk into these fields of a type in this
10577 case and not in the general case of a mere reference to the type.
10578
10579 The criterion is as follows: if the field can be an expression, it
10580 must be walked only here. This should be in keeping with the fields
10581 that are directly gimplified in gimplify_type_sizes in order for the
10582 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10583 variable-sized types.
10584
10585 Note that DECLs get walked as part of processing the BIND_EXPR. */
10586 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10587 {
10588 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10589 if (TREE_CODE (*type_p) == ERROR_MARK)
10590 return NULL_TREE;
10591
10592 /* Call the function for the type. See if it returns anything or
10593 doesn't want us to continue. If we are to continue, walk both
10594 the normal fields and those for the declaration case. */
10595 result = (*func) (type_p, &walk_subtrees, data);
10596 if (result || !walk_subtrees)
10597 return result;
10598
10599 result = walk_type_fields (*type_p, func, data, pset, lh);
10600 if (result)
10601 return result;
10602
10603 /* If this is a record type, also walk the fields. */
10604 if (RECORD_OR_UNION_TYPE_P (*type_p))
10605 {
10606 tree field;
10607
10608 for (field = TYPE_FIELDS (*type_p); field;
10609 field = DECL_CHAIN (field))
10610 {
10611 /* We'd like to look at the type of the field, but we can
10612 easily get infinite recursion. So assume it's pointed
10613 to elsewhere in the tree. Also, ignore things that
10614 aren't fields. */
10615 if (TREE_CODE (field) != FIELD_DECL)
10616 continue;
10617
10618 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10619 WALK_SUBTREE (DECL_SIZE (field));
10620 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10621 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10622 WALK_SUBTREE (DECL_QUALIFIER (field));
10623 }
10624 }
10625
10626 /* Same for scalar types. */
10627 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10628 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10629 || TREE_CODE (*type_p) == INTEGER_TYPE
10630 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10631 || TREE_CODE (*type_p) == REAL_TYPE)
10632 {
10633 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10634 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10635 }
10636
10637 WALK_SUBTREE (TYPE_SIZE (*type_p));
10638 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10639 }
10640 /* FALLTHRU */
10641
10642 default:
10643 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10644 {
10645 int i, len;
10646
10647 /* Walk over all the sub-trees of this operand. */
10648 len = TREE_OPERAND_LENGTH (*tp);
10649
10650 /* Go through the subtrees. We need to do this in forward order so
10651 that the scope of a FOR_EXPR is handled properly. */
10652 if (len)
10653 {
10654 for (i = 0; i < len - 1; ++i)
10655 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10656 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10657 }
10658 }
10659 /* If this is a type, walk the needed fields in the type. */
10660 else if (TYPE_P (*tp))
10661 return walk_type_fields (*tp, func, data, pset, lh);
10662 break;
10663 }
10664
10665 /* We didn't find what we were looking for. */
10666 return NULL_TREE;
10667
10668 #undef WALK_SUBTREE_TAIL
10669 }
10670 #undef WALK_SUBTREE
10671
10672 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10673
10674 tree
10675 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10676 walk_tree_lh lh)
10677 {
10678 tree result;
10679 struct pointer_set_t *pset;
10680
10681 pset = pointer_set_create ();
10682 result = walk_tree_1 (tp, func, data, pset, lh);
10683 pointer_set_destroy (pset);
10684 return result;
10685 }
10686
10687
10688 tree *
10689 tree_block (tree t)
10690 {
10691 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10692
10693 if (IS_EXPR_CODE_CLASS (c))
10694 return &t->exp.block;
10695 gcc_unreachable ();
10696 return NULL;
10697 }
10698
10699 /* Create a nameless artificial label and put it in the current
10700 function context. The label has a location of LOC. Returns the
10701 newly created label. */
10702
10703 tree
10704 create_artificial_label (location_t loc)
10705 {
10706 tree lab = build_decl (loc,
10707 LABEL_DECL, NULL_TREE, void_type_node);
10708
10709 DECL_ARTIFICIAL (lab) = 1;
10710 DECL_IGNORED_P (lab) = 1;
10711 DECL_CONTEXT (lab) = current_function_decl;
10712 return lab;
10713 }
10714
10715 /* Given a tree, try to return a useful variable name that we can use
10716 to prefix a temporary that is being assigned the value of the tree.
10717 I.E. given <temp> = &A, return A. */
10718
10719 const char *
10720 get_name (tree t)
10721 {
10722 tree stripped_decl;
10723
10724 stripped_decl = t;
10725 STRIP_NOPS (stripped_decl);
10726 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10727 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10728 else
10729 {
10730 switch (TREE_CODE (stripped_decl))
10731 {
10732 case ADDR_EXPR:
10733 return get_name (TREE_OPERAND (stripped_decl, 0));
10734 default:
10735 return NULL;
10736 }
10737 }
10738 }
10739
10740 /* Return true if TYPE has a variable argument list. */
10741
10742 bool
10743 stdarg_p (const_tree fntype)
10744 {
10745 function_args_iterator args_iter;
10746 tree n = NULL_TREE, t;
10747
10748 if (!fntype)
10749 return false;
10750
10751 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10752 {
10753 n = t;
10754 }
10755
10756 return n != NULL_TREE && n != void_type_node;
10757 }
10758
10759 /* Return true if TYPE has a prototype. */
10760
10761 bool
10762 prototype_p (tree fntype)
10763 {
10764 tree t;
10765
10766 gcc_assert (fntype != NULL_TREE);
10767
10768 t = TYPE_ARG_TYPES (fntype);
10769 return (t != NULL_TREE);
10770 }
10771
10772 /* If BLOCK is inlined from an __attribute__((__artificial__))
10773 routine, return pointer to location from where it has been
10774 called. */
10775 location_t *
10776 block_nonartificial_location (tree block)
10777 {
10778 location_t *ret = NULL;
10779
10780 while (block && TREE_CODE (block) == BLOCK
10781 && BLOCK_ABSTRACT_ORIGIN (block))
10782 {
10783 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10784
10785 while (TREE_CODE (ao) == BLOCK
10786 && BLOCK_ABSTRACT_ORIGIN (ao)
10787 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10788 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10789
10790 if (TREE_CODE (ao) == FUNCTION_DECL)
10791 {
10792 /* If AO is an artificial inline, point RET to the
10793 call site locus at which it has been inlined and continue
10794 the loop, in case AO's caller is also an artificial
10795 inline. */
10796 if (DECL_DECLARED_INLINE_P (ao)
10797 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10798 ret = &BLOCK_SOURCE_LOCATION (block);
10799 else
10800 break;
10801 }
10802 else if (TREE_CODE (ao) != BLOCK)
10803 break;
10804
10805 block = BLOCK_SUPERCONTEXT (block);
10806 }
10807 return ret;
10808 }
10809
10810
10811 /* If EXP is inlined from an __attribute__((__artificial__))
10812 function, return the location of the original call expression. */
10813
10814 location_t
10815 tree_nonartificial_location (tree exp)
10816 {
10817 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10818
10819 if (loc)
10820 return *loc;
10821 else
10822 return EXPR_LOCATION (exp);
10823 }
10824
10825
10826 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10827 nodes. */
10828
10829 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10830
10831 static hashval_t
10832 cl_option_hash_hash (const void *x)
10833 {
10834 const_tree const t = (const_tree) x;
10835 const char *p;
10836 size_t i;
10837 size_t len = 0;
10838 hashval_t hash = 0;
10839
10840 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10841 {
10842 p = (const char *)TREE_OPTIMIZATION (t);
10843 len = sizeof (struct cl_optimization);
10844 }
10845
10846 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10847 {
10848 p = (const char *)TREE_TARGET_OPTION (t);
10849 len = sizeof (struct cl_target_option);
10850 }
10851
10852 else
10853 gcc_unreachable ();
10854
10855 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10856 something else. */
10857 for (i = 0; i < len; i++)
10858 if (p[i])
10859 hash = (hash << 4) ^ ((i << 2) | p[i]);
10860
10861 return hash;
10862 }
10863
10864 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10865 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10866 same. */
10867
10868 static int
10869 cl_option_hash_eq (const void *x, const void *y)
10870 {
10871 const_tree const xt = (const_tree) x;
10872 const_tree const yt = (const_tree) y;
10873 const char *xp;
10874 const char *yp;
10875 size_t len;
10876
10877 if (TREE_CODE (xt) != TREE_CODE (yt))
10878 return 0;
10879
10880 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10881 {
10882 xp = (const char *)TREE_OPTIMIZATION (xt);
10883 yp = (const char *)TREE_OPTIMIZATION (yt);
10884 len = sizeof (struct cl_optimization);
10885 }
10886
10887 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10888 {
10889 xp = (const char *)TREE_TARGET_OPTION (xt);
10890 yp = (const char *)TREE_TARGET_OPTION (yt);
10891 len = sizeof (struct cl_target_option);
10892 }
10893
10894 else
10895 gcc_unreachable ();
10896
10897 return (memcmp (xp, yp, len) == 0);
10898 }
10899
10900 /* Build an OPTIMIZATION_NODE based on the current options. */
10901
10902 tree
10903 build_optimization_node (void)
10904 {
10905 tree t;
10906 void **slot;
10907
10908 /* Use the cache of optimization nodes. */
10909
10910 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
10911 &global_options);
10912
10913 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10914 t = (tree) *slot;
10915 if (!t)
10916 {
10917 /* Insert this one into the hash table. */
10918 t = cl_optimization_node;
10919 *slot = t;
10920
10921 /* Make a new node for next time round. */
10922 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10923 }
10924
10925 return t;
10926 }
10927
10928 /* Build a TARGET_OPTION_NODE based on the current options. */
10929
10930 tree
10931 build_target_option_node (void)
10932 {
10933 tree t;
10934 void **slot;
10935
10936 /* Use the cache of optimization nodes. */
10937
10938 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
10939 &global_options);
10940
10941 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
10942 t = (tree) *slot;
10943 if (!t)
10944 {
10945 /* Insert this one into the hash table. */
10946 t = cl_target_option_node;
10947 *slot = t;
10948
10949 /* Make a new node for next time round. */
10950 cl_target_option_node = make_node (TARGET_OPTION_NODE);
10951 }
10952
10953 return t;
10954 }
10955
10956 /* Determine the "ultimate origin" of a block. The block may be an inlined
10957 instance of an inlined instance of a block which is local to an inline
10958 function, so we have to trace all of the way back through the origin chain
10959 to find out what sort of node actually served as the original seed for the
10960 given block. */
10961
10962 tree
10963 block_ultimate_origin (const_tree block)
10964 {
10965 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
10966
10967 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
10968 nodes in the function to point to themselves; ignore that if
10969 we're trying to output the abstract instance of this function. */
10970 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
10971 return NULL_TREE;
10972
10973 if (immediate_origin == NULL_TREE)
10974 return NULL_TREE;
10975 else
10976 {
10977 tree ret_val;
10978 tree lookahead = immediate_origin;
10979
10980 do
10981 {
10982 ret_val = lookahead;
10983 lookahead = (TREE_CODE (ret_val) == BLOCK
10984 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
10985 }
10986 while (lookahead != NULL && lookahead != ret_val);
10987
10988 /* The block's abstract origin chain may not be the *ultimate* origin of
10989 the block. It could lead to a DECL that has an abstract origin set.
10990 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
10991 will give us if it has one). Note that DECL's abstract origins are
10992 supposed to be the most distant ancestor (or so decl_ultimate_origin
10993 claims), so we don't need to loop following the DECL origins. */
10994 if (DECL_P (ret_val))
10995 return DECL_ORIGIN (ret_val);
10996
10997 return ret_val;
10998 }
10999 }
11000
11001 /* Return true if T1 and T2 are equivalent lists. */
11002
11003 bool
11004 list_equal_p (const_tree t1, const_tree t2)
11005 {
11006 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
11007 if (TREE_VALUE (t1) != TREE_VALUE (t2))
11008 return false;
11009 return !t1 && !t2;
11010 }
11011
11012 /* Return true iff conversion in EXP generates no instruction. Mark
11013 it inline so that we fully inline into the stripping functions even
11014 though we have two uses of this function. */
11015
11016 static inline bool
11017 tree_nop_conversion (const_tree exp)
11018 {
11019 tree outer_type, inner_type;
11020
11021 if (!CONVERT_EXPR_P (exp)
11022 && TREE_CODE (exp) != NON_LVALUE_EXPR)
11023 return false;
11024 if (TREE_OPERAND (exp, 0) == error_mark_node)
11025 return false;
11026
11027 outer_type = TREE_TYPE (exp);
11028 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11029
11030 if (!inner_type)
11031 return false;
11032
11033 /* Use precision rather then machine mode when we can, which gives
11034 the correct answer even for submode (bit-field) types. */
11035 if ((INTEGRAL_TYPE_P (outer_type)
11036 || POINTER_TYPE_P (outer_type)
11037 || TREE_CODE (outer_type) == OFFSET_TYPE)
11038 && (INTEGRAL_TYPE_P (inner_type)
11039 || POINTER_TYPE_P (inner_type)
11040 || TREE_CODE (inner_type) == OFFSET_TYPE))
11041 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
11042
11043 /* Otherwise fall back on comparing machine modes (e.g. for
11044 aggregate types, floats). */
11045 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
11046 }
11047
11048 /* Return true iff conversion in EXP generates no instruction. Don't
11049 consider conversions changing the signedness. */
11050
11051 static bool
11052 tree_sign_nop_conversion (const_tree exp)
11053 {
11054 tree outer_type, inner_type;
11055
11056 if (!tree_nop_conversion (exp))
11057 return false;
11058
11059 outer_type = TREE_TYPE (exp);
11060 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11061
11062 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11063 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11064 }
11065
11066 /* Strip conversions from EXP according to tree_nop_conversion and
11067 return the resulting expression. */
11068
11069 tree
11070 tree_strip_nop_conversions (tree exp)
11071 {
11072 while (tree_nop_conversion (exp))
11073 exp = TREE_OPERAND (exp, 0);
11074 return exp;
11075 }
11076
11077 /* Strip conversions from EXP according to tree_sign_nop_conversion
11078 and return the resulting expression. */
11079
11080 tree
11081 tree_strip_sign_nop_conversions (tree exp)
11082 {
11083 while (tree_sign_nop_conversion (exp))
11084 exp = TREE_OPERAND (exp, 0);
11085 return exp;
11086 }
11087
11088 static GTY(()) tree gcc_eh_personality_decl;
11089
11090 /* Return the GCC personality function decl. */
11091
11092 tree
11093 lhd_gcc_personality (void)
11094 {
11095 if (!gcc_eh_personality_decl)
11096 gcc_eh_personality_decl = build_personality_function ("gcc");
11097 return gcc_eh_personality_decl;
11098 }
11099
11100 /* Try to find a base info of BINFO that would have its field decl at offset
11101 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
11102 found, return, otherwise return NULL_TREE. */
11103
11104 tree
11105 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
11106 {
11107 tree type = BINFO_TYPE (binfo);
11108
11109 while (true)
11110 {
11111 HOST_WIDE_INT pos, size;
11112 tree fld;
11113 int i;
11114
11115 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (expected_type))
11116 return binfo;
11117 if (offset < 0)
11118 return NULL_TREE;
11119
11120 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
11121 {
11122 if (TREE_CODE (fld) != FIELD_DECL)
11123 continue;
11124
11125 pos = int_bit_position (fld);
11126 size = tree_low_cst (DECL_SIZE (fld), 1);
11127 if (pos <= offset && (pos + size) > offset)
11128 break;
11129 }
11130 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
11131 return NULL_TREE;
11132
11133 if (!DECL_ARTIFICIAL (fld))
11134 {
11135 binfo = TYPE_BINFO (TREE_TYPE (fld));
11136 if (!binfo)
11137 return NULL_TREE;
11138 }
11139 /* Offset 0 indicates the primary base, whose vtable contents are
11140 represented in the binfo for the derived class. */
11141 else if (offset != 0)
11142 {
11143 tree base_binfo, found_binfo = NULL_TREE;
11144 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
11145 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
11146 {
11147 found_binfo = base_binfo;
11148 break;
11149 }
11150 if (!found_binfo)
11151 return NULL_TREE;
11152 binfo = found_binfo;
11153 }
11154
11155 type = TREE_TYPE (fld);
11156 offset -= pos;
11157 }
11158 }
11159
11160 /* Returns true if X is a typedef decl. */
11161
11162 bool
11163 is_typedef_decl (tree x)
11164 {
11165 return (x && TREE_CODE (x) == TYPE_DECL
11166 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
11167 }
11168
11169 /* Returns true iff TYPE is a type variant created for a typedef. */
11170
11171 bool
11172 typedef_variant_p (tree type)
11173 {
11174 return is_typedef_decl (TYPE_NAME (type));
11175 }
11176
11177 /* Warn about a use of an identifier which was marked deprecated. */
11178 void
11179 warn_deprecated_use (tree node, tree attr)
11180 {
11181 const char *msg;
11182
11183 if (node == 0 || !warn_deprecated_decl)
11184 return;
11185
11186 if (!attr)
11187 {
11188 if (DECL_P (node))
11189 attr = DECL_ATTRIBUTES (node);
11190 else if (TYPE_P (node))
11191 {
11192 tree decl = TYPE_STUB_DECL (node);
11193 if (decl)
11194 attr = lookup_attribute ("deprecated",
11195 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
11196 }
11197 }
11198
11199 if (attr)
11200 attr = lookup_attribute ("deprecated", attr);
11201
11202 if (attr)
11203 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
11204 else
11205 msg = NULL;
11206
11207 if (DECL_P (node))
11208 {
11209 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
11210 if (msg)
11211 warning (OPT_Wdeprecated_declarations,
11212 "%qD is deprecated (declared at %s:%d): %s",
11213 node, xloc.file, xloc.line, msg);
11214 else
11215 warning (OPT_Wdeprecated_declarations,
11216 "%qD is deprecated (declared at %s:%d)",
11217 node, xloc.file, xloc.line);
11218 }
11219 else if (TYPE_P (node))
11220 {
11221 tree what = NULL_TREE;
11222 tree decl = TYPE_STUB_DECL (node);
11223
11224 if (TYPE_NAME (node))
11225 {
11226 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
11227 what = TYPE_NAME (node);
11228 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
11229 && DECL_NAME (TYPE_NAME (node)))
11230 what = DECL_NAME (TYPE_NAME (node));
11231 }
11232
11233 if (decl)
11234 {
11235 expanded_location xloc
11236 = expand_location (DECL_SOURCE_LOCATION (decl));
11237 if (what)
11238 {
11239 if (msg)
11240 warning (OPT_Wdeprecated_declarations,
11241 "%qE is deprecated (declared at %s:%d): %s",
11242 what, xloc.file, xloc.line, msg);
11243 else
11244 warning (OPT_Wdeprecated_declarations,
11245 "%qE is deprecated (declared at %s:%d)", what,
11246 xloc.file, xloc.line);
11247 }
11248 else
11249 {
11250 if (msg)
11251 warning (OPT_Wdeprecated_declarations,
11252 "type is deprecated (declared at %s:%d): %s",
11253 xloc.file, xloc.line, msg);
11254 else
11255 warning (OPT_Wdeprecated_declarations,
11256 "type is deprecated (declared at %s:%d)",
11257 xloc.file, xloc.line);
11258 }
11259 }
11260 else
11261 {
11262 if (what)
11263 {
11264 if (msg)
11265 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
11266 what, msg);
11267 else
11268 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
11269 }
11270 else
11271 {
11272 if (msg)
11273 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
11274 msg);
11275 else
11276 warning (OPT_Wdeprecated_declarations, "type is deprecated");
11277 }
11278 }
11279 }
11280 }
11281
11282 #include "gt-tree.h"