tree.h: Include vec.h
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51
52 /* obstack.[ch] explicitly declined to prototype this. */
53 extern int _obstack_allocated_p (struct obstack *h, void *obj);
54
55 #ifdef GATHER_STATISTICS
56 /* Statistics-gathering stuff. */
57
58 int tree_node_counts[(int) all_kinds];
59 int tree_node_sizes[(int) all_kinds];
60
61 /* Keep in sync with tree.h:enum tree_node_kind. */
62 static const char * const tree_node_kind_names[] = {
63 "decls",
64 "types",
65 "blocks",
66 "stmts",
67 "refs",
68 "exprs",
69 "constants",
70 "identifiers",
71 "perm_tree_lists",
72 "temp_tree_lists",
73 "vecs",
74 "binfos",
75 "phi_nodes",
76 "ssa names",
77 "random kinds",
78 "lang_decl kinds",
79 "lang_type kinds"
80 };
81 #endif /* GATHER_STATISTICS */
82
83 /* Unique id for next decl created. */
84 static GTY(()) int next_decl_uid;
85 /* Unique id for next type created. */
86 static GTY(()) int next_type_uid = 1;
87
88 /* Since we cannot rehash a type after it is in the table, we have to
89 keep the hash code. */
90
91 struct type_hash GTY(())
92 {
93 unsigned long hash;
94 tree type;
95 };
96
97 /* Initial size of the hash table (rounded to next prime). */
98 #define TYPE_HASH_INITIAL_SIZE 1000
99
100 /* Now here is the hash table. When recording a type, it is added to
101 the slot whose index is the hash code. Note that the hash table is
102 used for several kinds of types (function types, array types and
103 array index range types, for now). While all these live in the
104 same table, they are completely independent, and the hash code is
105 computed differently for each of these. */
106
107 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
108 htab_t type_hash_table;
109
110 static void set_type_quals (tree, int);
111 static int type_hash_eq (const void *, const void *);
112 static hashval_t type_hash_hash (const void *);
113 static void print_type_hash_statistics (void);
114 static void finish_vector_type (tree);
115 static int type_hash_marked_p (const void *);
116 static unsigned int type_hash_list (tree, hashval_t);
117 static unsigned int attribute_hash_list (tree, hashval_t);
118
119 tree global_trees[TI_MAX];
120 tree integer_types[itk_none];
121 \f
122 /* Init tree.c. */
123
124 void
125 init_ttree (void)
126 {
127 /* Initialize the hash table of types. */
128 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
129 type_hash_eq, 0);
130 }
131
132 \f
133 /* The name of the object as the assembler will see it (but before any
134 translations made by ASM_OUTPUT_LABELREF). Often this is the same
135 as DECL_NAME. It is an IDENTIFIER_NODE. */
136 tree
137 decl_assembler_name (tree decl)
138 {
139 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
140 lang_hooks.set_decl_assembler_name (decl);
141 return DECL_CHECK (decl)->decl.assembler_name;
142 }
143
144 /* Compute the number of bytes occupied by 'node'. This routine only
145 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
146 size_t
147 tree_size (tree node)
148 {
149 enum tree_code code = TREE_CODE (node);
150
151 switch (TREE_CODE_CLASS (code))
152 {
153 case 'd': /* A decl node */
154 return sizeof (struct tree_decl);
155
156 case 't': /* a type node */
157 return sizeof (struct tree_type);
158
159 case 'r': /* a reference */
160 case 'e': /* an expression */
161 case 's': /* an expression with side effects */
162 case '<': /* a comparison expression */
163 case '1': /* a unary arithmetic expression */
164 case '2': /* a binary arithmetic expression */
165 return (sizeof (struct tree_exp)
166 + TREE_CODE_LENGTH (code) * sizeof (char *) - sizeof (char *));
167
168 case 'c': /* a constant */
169 switch (code)
170 {
171 case INTEGER_CST: return sizeof (struct tree_int_cst);
172 case REAL_CST: return sizeof (struct tree_real_cst);
173 case COMPLEX_CST: return sizeof (struct tree_complex);
174 case VECTOR_CST: return sizeof (struct tree_vector);
175 case STRING_CST: return sizeof (struct tree_string);
176 default:
177 return lang_hooks.tree_size (code);
178 }
179
180 case 'x': /* something random, like an identifier. */
181 switch (code)
182 {
183 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
184 case TREE_LIST: return sizeof (struct tree_list);
185 case TREE_VEC: return (sizeof (struct tree_vec)
186 + TREE_VEC_LENGTH(node) * sizeof(char *)
187 - sizeof (char *));
188
189 case ERROR_MARK:
190 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
191
192 case PHI_NODE: return (sizeof (struct tree_phi_node)
193 + (PHI_ARG_CAPACITY (node) - 1) *
194 sizeof (struct phi_arg_d));
195
196 case SSA_NAME: return sizeof (struct tree_ssa_name);
197
198 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
199 case BLOCK: return sizeof (struct tree_block);
200 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
201
202 default:
203 return lang_hooks.tree_size (code);
204 }
205
206 default:
207 abort ();
208 }
209 }
210
211 /* Return a newly allocated node of code CODE.
212 For decl and type nodes, some other fields are initialized.
213 The rest of the node is initialized to zero.
214
215 Achoo! I got a code in the node. */
216
217 tree
218 make_node_stat (enum tree_code code MEM_STAT_DECL)
219 {
220 tree t;
221 int type = TREE_CODE_CLASS (code);
222 size_t length;
223 #ifdef GATHER_STATISTICS
224 tree_node_kind kind;
225 #endif
226 struct tree_common ttmp;
227
228 /* We can't allocate a TREE_VEC, PHI_NODE, or STRING_CST
229 without knowing how many elements it will have. */
230 if (code == TREE_VEC || code == PHI_NODE)
231 abort ();
232
233 TREE_SET_CODE ((tree)&ttmp, code);
234 length = tree_size ((tree)&ttmp);
235
236 #ifdef GATHER_STATISTICS
237 switch (type)
238 {
239 case 'd': /* A decl node */
240 kind = d_kind;
241 break;
242
243 case 't': /* a type node */
244 kind = t_kind;
245 break;
246
247 case 's': /* an expression with side effects */
248 kind = s_kind;
249 break;
250
251 case 'r': /* a reference */
252 kind = r_kind;
253 break;
254
255 case 'e': /* an expression */
256 case '<': /* a comparison expression */
257 case '1': /* a unary arithmetic expression */
258 case '2': /* a binary arithmetic expression */
259 kind = e_kind;
260 break;
261
262 case 'c': /* a constant */
263 kind = c_kind;
264 break;
265
266 case 'x': /* something random, like an identifier. */
267 if (code == IDENTIFIER_NODE)
268 kind = id_kind;
269 else if (code == TREE_VEC)
270 kind = vec_kind;
271 else if (code == TREE_BINFO)
272 kind = binfo_kind;
273 else if (code == PHI_NODE)
274 kind = phi_kind;
275 else if (code == SSA_NAME)
276 kind = ssa_name_kind;
277 else if (code == BLOCK)
278 kind = b_kind;
279 else
280 kind = x_kind;
281 break;
282
283 default:
284 abort ();
285 }
286
287 tree_node_counts[(int) kind]++;
288 tree_node_sizes[(int) kind] += length;
289 #endif
290
291 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
292
293 memset (t, 0, length);
294
295 TREE_SET_CODE (t, code);
296
297 switch (type)
298 {
299 case 's':
300 TREE_SIDE_EFFECTS (t) = 1;
301 break;
302
303 case 'd':
304 if (code != FUNCTION_DECL)
305 DECL_ALIGN (t) = 1;
306 DECL_USER_ALIGN (t) = 0;
307 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
308 DECL_SOURCE_LOCATION (t) = input_location;
309 DECL_UID (t) = next_decl_uid++;
310
311 /* We have not yet computed the alias set for this declaration. */
312 DECL_POINTER_ALIAS_SET (t) = -1;
313 break;
314
315 case 't':
316 TYPE_UID (t) = next_type_uid++;
317 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
318 TYPE_USER_ALIGN (t) = 0;
319 TYPE_MAIN_VARIANT (t) = t;
320
321 /* Default to no attributes for type, but let target change that. */
322 TYPE_ATTRIBUTES (t) = NULL_TREE;
323 targetm.set_default_type_attributes (t);
324
325 /* We have not yet computed the alias set for this type. */
326 TYPE_ALIAS_SET (t) = -1;
327 break;
328
329 case 'c':
330 TREE_CONSTANT (t) = 1;
331 TREE_INVARIANT (t) = 1;
332 break;
333
334 case 'e':
335 switch (code)
336 {
337 case INIT_EXPR:
338 case MODIFY_EXPR:
339 case VA_ARG_EXPR:
340 case PREDECREMENT_EXPR:
341 case PREINCREMENT_EXPR:
342 case POSTDECREMENT_EXPR:
343 case POSTINCREMENT_EXPR:
344 /* All of these have side-effects, no matter what their
345 operands are. */
346 TREE_SIDE_EFFECTS (t) = 1;
347 break;
348
349 default:
350 break;
351 }
352 break;
353 }
354
355 return t;
356 }
357 \f
358 /* Return a new node with the same contents as NODE except that its
359 TREE_CHAIN is zero and it has a fresh uid. */
360
361 tree
362 copy_node_stat (tree node MEM_STAT_DECL)
363 {
364 tree t;
365 enum tree_code code = TREE_CODE (node);
366 size_t length;
367
368 #ifdef ENABLE_CHECKING
369 if (code == STATEMENT_LIST)
370 abort ();
371 #endif
372
373 length = tree_size (node);
374 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
375 memcpy (t, node, length);
376
377 TREE_CHAIN (t) = 0;
378 TREE_ASM_WRITTEN (t) = 0;
379 TREE_VISITED (t) = 0;
380 t->common.ann = 0;
381
382 if (TREE_CODE_CLASS (code) == 'd')
383 DECL_UID (t) = next_decl_uid++;
384 else if (TREE_CODE_CLASS (code) == 't')
385 {
386 TYPE_UID (t) = next_type_uid++;
387 /* The following is so that the debug code for
388 the copy is different from the original type.
389 The two statements usually duplicate each other
390 (because they clear fields of the same union),
391 but the optimizer should catch that. */
392 TYPE_SYMTAB_POINTER (t) = 0;
393 TYPE_SYMTAB_ADDRESS (t) = 0;
394 }
395
396 return t;
397 }
398
399 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
400 For example, this can copy a list made of TREE_LIST nodes. */
401
402 tree
403 copy_list (tree list)
404 {
405 tree head;
406 tree prev, next;
407
408 if (list == 0)
409 return 0;
410
411 head = prev = copy_node (list);
412 next = TREE_CHAIN (list);
413 while (next)
414 {
415 TREE_CHAIN (prev) = copy_node (next);
416 prev = TREE_CHAIN (prev);
417 next = TREE_CHAIN (next);
418 }
419 return head;
420 }
421
422 \f
423 /* Return a newly constructed INTEGER_CST node whose constant value
424 is specified by the two ints LOW and HI.
425 The TREE_TYPE is set to `int'.
426
427 This function should be used via the `build_int_2' macro. */
428
429 tree
430 build_int_2_wide (unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
431 {
432 tree t = make_node (INTEGER_CST);
433
434 TREE_INT_CST_LOW (t) = low;
435 TREE_INT_CST_HIGH (t) = hi;
436 TREE_TYPE (t) = integer_type_node;
437 return t;
438 }
439
440 /* Return a new VECTOR_CST node whose type is TYPE and whose values
441 are in a list pointed by VALS. */
442
443 tree
444 build_vector (tree type, tree vals)
445 {
446 tree v = make_node (VECTOR_CST);
447 int over1 = 0, over2 = 0;
448 tree link;
449
450 TREE_VECTOR_CST_ELTS (v) = vals;
451 TREE_TYPE (v) = type;
452
453 /* Iterate through elements and check for overflow. */
454 for (link = vals; link; link = TREE_CHAIN (link))
455 {
456 tree value = TREE_VALUE (link);
457
458 over1 |= TREE_OVERFLOW (value);
459 over2 |= TREE_CONSTANT_OVERFLOW (value);
460 }
461
462 TREE_OVERFLOW (v) = over1;
463 TREE_CONSTANT_OVERFLOW (v) = over2;
464
465 return v;
466 }
467
468 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
469 are in a list pointed to by VALS. */
470 tree
471 build_constructor (tree type, tree vals)
472 {
473 tree c = make_node (CONSTRUCTOR);
474 TREE_TYPE (c) = type;
475 CONSTRUCTOR_ELTS (c) = vals;
476
477 /* ??? May not be necessary. Mirrors what build does. */
478 if (vals)
479 {
480 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
481 TREE_READONLY (c) = TREE_READONLY (vals);
482 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
483 TREE_INVARIANT (c) = TREE_INVARIANT (vals);
484 }
485
486 return c;
487 }
488
489 /* Return a new REAL_CST node whose type is TYPE and value is D. */
490
491 tree
492 build_real (tree type, REAL_VALUE_TYPE d)
493 {
494 tree v;
495 REAL_VALUE_TYPE *dp;
496 int overflow = 0;
497
498 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
499 Consider doing it via real_convert now. */
500
501 v = make_node (REAL_CST);
502 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
503 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
504
505 TREE_TYPE (v) = type;
506 TREE_REAL_CST_PTR (v) = dp;
507 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
508 return v;
509 }
510
511 /* Return a new REAL_CST node whose type is TYPE
512 and whose value is the integer value of the INTEGER_CST node I. */
513
514 REAL_VALUE_TYPE
515 real_value_from_int_cst (tree type, tree i)
516 {
517 REAL_VALUE_TYPE d;
518
519 /* Clear all bits of the real value type so that we can later do
520 bitwise comparisons to see if two values are the same. */
521 memset (&d, 0, sizeof d);
522
523 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
524 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
525 TYPE_UNSIGNED (TREE_TYPE (i)));
526 return d;
527 }
528
529 /* Given a tree representing an integer constant I, return a tree
530 representing the same value as a floating-point constant of type TYPE. */
531
532 tree
533 build_real_from_int_cst (tree type, tree i)
534 {
535 tree v;
536 int overflow = TREE_OVERFLOW (i);
537
538 v = build_real (type, real_value_from_int_cst (type, i));
539
540 TREE_OVERFLOW (v) |= overflow;
541 TREE_CONSTANT_OVERFLOW (v) |= overflow;
542 return v;
543 }
544
545 /* Return a newly constructed STRING_CST node whose value is
546 the LEN characters at STR.
547 The TREE_TYPE is not initialized. */
548
549 tree
550 build_string (int len, const char *str)
551 {
552 tree s = make_node (STRING_CST);
553
554 TREE_STRING_LENGTH (s) = len;
555 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
556
557 return s;
558 }
559
560 /* Return a newly constructed COMPLEX_CST node whose value is
561 specified by the real and imaginary parts REAL and IMAG.
562 Both REAL and IMAG should be constant nodes. TYPE, if specified,
563 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
564
565 tree
566 build_complex (tree type, tree real, tree imag)
567 {
568 tree t = make_node (COMPLEX_CST);
569
570 TREE_REALPART (t) = real;
571 TREE_IMAGPART (t) = imag;
572 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
573 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
574 TREE_CONSTANT_OVERFLOW (t)
575 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
576 return t;
577 }
578
579 /* Build a BINFO with LEN language slots. */
580
581 tree
582 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
583 {
584 tree t;
585 size_t length = (offsetof (struct tree_binfo, base_binfos)
586 + VEC_embedded_size (tree, base_binfos));
587
588 #ifdef GATHER_STATISTICS
589 tree_node_counts[(int) binfo_kind]++;
590 tree_node_sizes[(int) binfo_kind] += length;
591 #endif
592
593 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
594
595 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
596
597 TREE_SET_CODE (t, TREE_BINFO);
598
599 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
600
601 return t;
602 }
603
604
605 /* Build a newly constructed TREE_VEC node of length LEN. */
606
607 tree
608 make_tree_vec_stat (int len MEM_STAT_DECL)
609 {
610 tree t;
611 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
612
613 #ifdef GATHER_STATISTICS
614 tree_node_counts[(int) vec_kind]++;
615 tree_node_sizes[(int) vec_kind] += length;
616 #endif
617
618 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
619
620 memset (t, 0, length);
621
622 TREE_SET_CODE (t, TREE_VEC);
623 TREE_VEC_LENGTH (t) = len;
624
625 return t;
626 }
627 \f
628 /* Return 1 if EXPR is the integer constant zero or a complex constant
629 of zero. */
630
631 int
632 integer_zerop (tree expr)
633 {
634 STRIP_NOPS (expr);
635
636 return ((TREE_CODE (expr) == INTEGER_CST
637 && ! TREE_CONSTANT_OVERFLOW (expr)
638 && TREE_INT_CST_LOW (expr) == 0
639 && TREE_INT_CST_HIGH (expr) == 0)
640 || (TREE_CODE (expr) == COMPLEX_CST
641 && integer_zerop (TREE_REALPART (expr))
642 && integer_zerop (TREE_IMAGPART (expr))));
643 }
644
645 /* Return 1 if EXPR is the integer constant one or the corresponding
646 complex constant. */
647
648 int
649 integer_onep (tree expr)
650 {
651 STRIP_NOPS (expr);
652
653 return ((TREE_CODE (expr) == INTEGER_CST
654 && ! TREE_CONSTANT_OVERFLOW (expr)
655 && TREE_INT_CST_LOW (expr) == 1
656 && TREE_INT_CST_HIGH (expr) == 0)
657 || (TREE_CODE (expr) == COMPLEX_CST
658 && integer_onep (TREE_REALPART (expr))
659 && integer_zerop (TREE_IMAGPART (expr))));
660 }
661
662 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
663 it contains. Likewise for the corresponding complex constant. */
664
665 int
666 integer_all_onesp (tree expr)
667 {
668 int prec;
669 int uns;
670
671 STRIP_NOPS (expr);
672
673 if (TREE_CODE (expr) == COMPLEX_CST
674 && integer_all_onesp (TREE_REALPART (expr))
675 && integer_zerop (TREE_IMAGPART (expr)))
676 return 1;
677
678 else if (TREE_CODE (expr) != INTEGER_CST
679 || TREE_CONSTANT_OVERFLOW (expr))
680 return 0;
681
682 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
683 if (!uns)
684 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
685 && TREE_INT_CST_HIGH (expr) == -1);
686
687 /* Note that using TYPE_PRECISION here is wrong. We care about the
688 actual bits, not the (arbitrary) range of the type. */
689 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
690 if (prec >= HOST_BITS_PER_WIDE_INT)
691 {
692 HOST_WIDE_INT high_value;
693 int shift_amount;
694
695 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
696
697 if (shift_amount > HOST_BITS_PER_WIDE_INT)
698 /* Can not handle precisions greater than twice the host int size. */
699 abort ();
700 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
701 /* Shifting by the host word size is undefined according to the ANSI
702 standard, so we must handle this as a special case. */
703 high_value = -1;
704 else
705 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
706
707 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
708 && TREE_INT_CST_HIGH (expr) == high_value);
709 }
710 else
711 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
712 }
713
714 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
715 one bit on). */
716
717 int
718 integer_pow2p (tree expr)
719 {
720 int prec;
721 HOST_WIDE_INT high, low;
722
723 STRIP_NOPS (expr);
724
725 if (TREE_CODE (expr) == COMPLEX_CST
726 && integer_pow2p (TREE_REALPART (expr))
727 && integer_zerop (TREE_IMAGPART (expr)))
728 return 1;
729
730 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
731 return 0;
732
733 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
734 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
735 high = TREE_INT_CST_HIGH (expr);
736 low = TREE_INT_CST_LOW (expr);
737
738 /* First clear all bits that are beyond the type's precision in case
739 we've been sign extended. */
740
741 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
742 ;
743 else if (prec > HOST_BITS_PER_WIDE_INT)
744 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
745 else
746 {
747 high = 0;
748 if (prec < HOST_BITS_PER_WIDE_INT)
749 low &= ~((HOST_WIDE_INT) (-1) << prec);
750 }
751
752 if (high == 0 && low == 0)
753 return 0;
754
755 return ((high == 0 && (low & (low - 1)) == 0)
756 || (low == 0 && (high & (high - 1)) == 0));
757 }
758
759 /* Return 1 if EXPR is an integer constant other than zero or a
760 complex constant other than zero. */
761
762 int
763 integer_nonzerop (tree expr)
764 {
765 STRIP_NOPS (expr);
766
767 return ((TREE_CODE (expr) == INTEGER_CST
768 && ! TREE_CONSTANT_OVERFLOW (expr)
769 && (TREE_INT_CST_LOW (expr) != 0
770 || TREE_INT_CST_HIGH (expr) != 0))
771 || (TREE_CODE (expr) == COMPLEX_CST
772 && (integer_nonzerop (TREE_REALPART (expr))
773 || integer_nonzerop (TREE_IMAGPART (expr)))));
774 }
775
776 /* Return the power of two represented by a tree node known to be a
777 power of two. */
778
779 int
780 tree_log2 (tree expr)
781 {
782 int prec;
783 HOST_WIDE_INT high, low;
784
785 STRIP_NOPS (expr);
786
787 if (TREE_CODE (expr) == COMPLEX_CST)
788 return tree_log2 (TREE_REALPART (expr));
789
790 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
791 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
792
793 high = TREE_INT_CST_HIGH (expr);
794 low = TREE_INT_CST_LOW (expr);
795
796 /* First clear all bits that are beyond the type's precision in case
797 we've been sign extended. */
798
799 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
800 ;
801 else if (prec > HOST_BITS_PER_WIDE_INT)
802 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
803 else
804 {
805 high = 0;
806 if (prec < HOST_BITS_PER_WIDE_INT)
807 low &= ~((HOST_WIDE_INT) (-1) << prec);
808 }
809
810 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
811 : exact_log2 (low));
812 }
813
814 /* Similar, but return the largest integer Y such that 2 ** Y is less
815 than or equal to EXPR. */
816
817 int
818 tree_floor_log2 (tree expr)
819 {
820 int prec;
821 HOST_WIDE_INT high, low;
822
823 STRIP_NOPS (expr);
824
825 if (TREE_CODE (expr) == COMPLEX_CST)
826 return tree_log2 (TREE_REALPART (expr));
827
828 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
829 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
830
831 high = TREE_INT_CST_HIGH (expr);
832 low = TREE_INT_CST_LOW (expr);
833
834 /* First clear all bits that are beyond the type's precision in case
835 we've been sign extended. Ignore if type's precision hasn't been set
836 since what we are doing is setting it. */
837
838 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
839 ;
840 else if (prec > HOST_BITS_PER_WIDE_INT)
841 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
842 else
843 {
844 high = 0;
845 if (prec < HOST_BITS_PER_WIDE_INT)
846 low &= ~((HOST_WIDE_INT) (-1) << prec);
847 }
848
849 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
850 : floor_log2 (low));
851 }
852
853 /* Return 1 if EXPR is the real constant zero. */
854
855 int
856 real_zerop (tree expr)
857 {
858 STRIP_NOPS (expr);
859
860 return ((TREE_CODE (expr) == REAL_CST
861 && ! TREE_CONSTANT_OVERFLOW (expr)
862 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
863 || (TREE_CODE (expr) == COMPLEX_CST
864 && real_zerop (TREE_REALPART (expr))
865 && real_zerop (TREE_IMAGPART (expr))));
866 }
867
868 /* Return 1 if EXPR is the real constant one in real or complex form. */
869
870 int
871 real_onep (tree expr)
872 {
873 STRIP_NOPS (expr);
874
875 return ((TREE_CODE (expr) == REAL_CST
876 && ! TREE_CONSTANT_OVERFLOW (expr)
877 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
878 || (TREE_CODE (expr) == COMPLEX_CST
879 && real_onep (TREE_REALPART (expr))
880 && real_zerop (TREE_IMAGPART (expr))));
881 }
882
883 /* Return 1 if EXPR is the real constant two. */
884
885 int
886 real_twop (tree expr)
887 {
888 STRIP_NOPS (expr);
889
890 return ((TREE_CODE (expr) == REAL_CST
891 && ! TREE_CONSTANT_OVERFLOW (expr)
892 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
893 || (TREE_CODE (expr) == COMPLEX_CST
894 && real_twop (TREE_REALPART (expr))
895 && real_zerop (TREE_IMAGPART (expr))));
896 }
897
898 /* Return 1 if EXPR is the real constant minus one. */
899
900 int
901 real_minus_onep (tree expr)
902 {
903 STRIP_NOPS (expr);
904
905 return ((TREE_CODE (expr) == REAL_CST
906 && ! TREE_CONSTANT_OVERFLOW (expr)
907 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
908 || (TREE_CODE (expr) == COMPLEX_CST
909 && real_minus_onep (TREE_REALPART (expr))
910 && real_zerop (TREE_IMAGPART (expr))));
911 }
912
913 /* Nonzero if EXP is a constant or a cast of a constant. */
914
915 int
916 really_constant_p (tree exp)
917 {
918 /* This is not quite the same as STRIP_NOPS. It does more. */
919 while (TREE_CODE (exp) == NOP_EXPR
920 || TREE_CODE (exp) == CONVERT_EXPR
921 || TREE_CODE (exp) == NON_LVALUE_EXPR)
922 exp = TREE_OPERAND (exp, 0);
923 return TREE_CONSTANT (exp);
924 }
925 \f
926 /* Return first list element whose TREE_VALUE is ELEM.
927 Return 0 if ELEM is not in LIST. */
928
929 tree
930 value_member (tree elem, tree list)
931 {
932 while (list)
933 {
934 if (elem == TREE_VALUE (list))
935 return list;
936 list = TREE_CHAIN (list);
937 }
938 return NULL_TREE;
939 }
940
941 /* Return first list element whose TREE_PURPOSE is ELEM.
942 Return 0 if ELEM is not in LIST. */
943
944 tree
945 purpose_member (tree elem, tree list)
946 {
947 while (list)
948 {
949 if (elem == TREE_PURPOSE (list))
950 return list;
951 list = TREE_CHAIN (list);
952 }
953 return NULL_TREE;
954 }
955
956 /* Return first list element whose BINFO_TYPE is ELEM.
957 Return 0 if ELEM is not in LIST. */
958
959 tree
960 binfo_member (tree elem, tree list)
961 {
962 while (list)
963 {
964 if (elem == BINFO_TYPE (list))
965 return list;
966 list = TREE_CHAIN (list);
967 }
968 return NULL_TREE;
969 }
970
971 /* Return nonzero if ELEM is part of the chain CHAIN. */
972
973 int
974 chain_member (tree elem, tree chain)
975 {
976 while (chain)
977 {
978 if (elem == chain)
979 return 1;
980 chain = TREE_CHAIN (chain);
981 }
982
983 return 0;
984 }
985
986 /* Return the length of a chain of nodes chained through TREE_CHAIN.
987 We expect a null pointer to mark the end of the chain.
988 This is the Lisp primitive `length'. */
989
990 int
991 list_length (tree t)
992 {
993 tree p = t;
994 #ifdef ENABLE_TREE_CHECKING
995 tree q = t;
996 #endif
997 int len = 0;
998
999 while (p)
1000 {
1001 p = TREE_CHAIN (p);
1002 #ifdef ENABLE_TREE_CHECKING
1003 if (len % 2)
1004 q = TREE_CHAIN (q);
1005 if (p == q)
1006 abort ();
1007 #endif
1008 len++;
1009 }
1010
1011 return len;
1012 }
1013
1014 /* Returns the number of FIELD_DECLs in TYPE. */
1015
1016 int
1017 fields_length (tree type)
1018 {
1019 tree t = TYPE_FIELDS (type);
1020 int count = 0;
1021
1022 for (; t; t = TREE_CHAIN (t))
1023 if (TREE_CODE (t) == FIELD_DECL)
1024 ++count;
1025
1026 return count;
1027 }
1028
1029 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1030 by modifying the last node in chain 1 to point to chain 2.
1031 This is the Lisp primitive `nconc'. */
1032
1033 tree
1034 chainon (tree op1, tree op2)
1035 {
1036 tree t1;
1037
1038 if (!op1)
1039 return op2;
1040 if (!op2)
1041 return op1;
1042
1043 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1044 continue;
1045 TREE_CHAIN (t1) = op2;
1046
1047 #ifdef ENABLE_TREE_CHECKING
1048 {
1049 tree t2;
1050 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1051 if (t2 == t1)
1052 abort (); /* Circularity created. */
1053 }
1054 #endif
1055
1056 return op1;
1057 }
1058
1059 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1060
1061 tree
1062 tree_last (tree chain)
1063 {
1064 tree next;
1065 if (chain)
1066 while ((next = TREE_CHAIN (chain)))
1067 chain = next;
1068 return chain;
1069 }
1070
1071 /* Reverse the order of elements in the chain T,
1072 and return the new head of the chain (old last element). */
1073
1074 tree
1075 nreverse (tree t)
1076 {
1077 tree prev = 0, decl, next;
1078 for (decl = t; decl; decl = next)
1079 {
1080 next = TREE_CHAIN (decl);
1081 TREE_CHAIN (decl) = prev;
1082 prev = decl;
1083 }
1084 return prev;
1085 }
1086 \f
1087 /* Return a newly created TREE_LIST node whose
1088 purpose and value fields are PARM and VALUE. */
1089
1090 tree
1091 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1092 {
1093 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1094 TREE_PURPOSE (t) = parm;
1095 TREE_VALUE (t) = value;
1096 return t;
1097 }
1098
1099 /* Return a newly created TREE_LIST node whose
1100 purpose and value fields are PURPOSE and VALUE
1101 and whose TREE_CHAIN is CHAIN. */
1102
1103 tree
1104 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1105 {
1106 tree node;
1107
1108 node = ggc_alloc_zone_stat (sizeof (struct tree_list),
1109 tree_zone PASS_MEM_STAT);
1110
1111 memset (node, 0, sizeof (struct tree_common));
1112
1113 #ifdef GATHER_STATISTICS
1114 tree_node_counts[(int) x_kind]++;
1115 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1116 #endif
1117
1118 TREE_SET_CODE (node, TREE_LIST);
1119 TREE_CHAIN (node) = chain;
1120 TREE_PURPOSE (node) = purpose;
1121 TREE_VALUE (node) = value;
1122 return node;
1123 }
1124
1125 \f
1126 /* Return the size nominally occupied by an object of type TYPE
1127 when it resides in memory. The value is measured in units of bytes,
1128 and its data type is that normally used for type sizes
1129 (which is the first type created by make_signed_type or
1130 make_unsigned_type). */
1131
1132 tree
1133 size_in_bytes (tree type)
1134 {
1135 tree t;
1136
1137 if (type == error_mark_node)
1138 return integer_zero_node;
1139
1140 type = TYPE_MAIN_VARIANT (type);
1141 t = TYPE_SIZE_UNIT (type);
1142
1143 if (t == 0)
1144 {
1145 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1146 return size_zero_node;
1147 }
1148
1149 if (TREE_CODE (t) == INTEGER_CST)
1150 force_fit_type (t, 0);
1151
1152 return t;
1153 }
1154
1155 /* Return the size of TYPE (in bytes) as a wide integer
1156 or return -1 if the size can vary or is larger than an integer. */
1157
1158 HOST_WIDE_INT
1159 int_size_in_bytes (tree type)
1160 {
1161 tree t;
1162
1163 if (type == error_mark_node)
1164 return 0;
1165
1166 type = TYPE_MAIN_VARIANT (type);
1167 t = TYPE_SIZE_UNIT (type);
1168 if (t == 0
1169 || TREE_CODE (t) != INTEGER_CST
1170 || TREE_OVERFLOW (t)
1171 || TREE_INT_CST_HIGH (t) != 0
1172 /* If the result would appear negative, it's too big to represent. */
1173 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1174 return -1;
1175
1176 return TREE_INT_CST_LOW (t);
1177 }
1178 \f
1179 /* Return the bit position of FIELD, in bits from the start of the record.
1180 This is a tree of type bitsizetype. */
1181
1182 tree
1183 bit_position (tree field)
1184 {
1185 return bit_from_pos (DECL_FIELD_OFFSET (field),
1186 DECL_FIELD_BIT_OFFSET (field));
1187 }
1188
1189 /* Likewise, but return as an integer. Abort if it cannot be represented
1190 in that way (since it could be a signed value, we don't have the option
1191 of returning -1 like int_size_in_byte can. */
1192
1193 HOST_WIDE_INT
1194 int_bit_position (tree field)
1195 {
1196 return tree_low_cst (bit_position (field), 0);
1197 }
1198 \f
1199 /* Return the byte position of FIELD, in bytes from the start of the record.
1200 This is a tree of type sizetype. */
1201
1202 tree
1203 byte_position (tree field)
1204 {
1205 return byte_from_pos (DECL_FIELD_OFFSET (field),
1206 DECL_FIELD_BIT_OFFSET (field));
1207 }
1208
1209 /* Likewise, but return as an integer. Abort if it cannot be represented
1210 in that way (since it could be a signed value, we don't have the option
1211 of returning -1 like int_size_in_byte can. */
1212
1213 HOST_WIDE_INT
1214 int_byte_position (tree field)
1215 {
1216 return tree_low_cst (byte_position (field), 0);
1217 }
1218 \f
1219 /* Return the strictest alignment, in bits, that T is known to have. */
1220
1221 unsigned int
1222 expr_align (tree t)
1223 {
1224 unsigned int align0, align1;
1225
1226 switch (TREE_CODE (t))
1227 {
1228 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1229 /* If we have conversions, we know that the alignment of the
1230 object must meet each of the alignments of the types. */
1231 align0 = expr_align (TREE_OPERAND (t, 0));
1232 align1 = TYPE_ALIGN (TREE_TYPE (t));
1233 return MAX (align0, align1);
1234
1235 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1236 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1237 case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1238 /* These don't change the alignment of an object. */
1239 return expr_align (TREE_OPERAND (t, 0));
1240
1241 case COND_EXPR:
1242 /* The best we can do is say that the alignment is the least aligned
1243 of the two arms. */
1244 align0 = expr_align (TREE_OPERAND (t, 1));
1245 align1 = expr_align (TREE_OPERAND (t, 2));
1246 return MIN (align0, align1);
1247
1248 case LABEL_DECL: case CONST_DECL:
1249 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1250 if (DECL_ALIGN (t) != 0)
1251 return DECL_ALIGN (t);
1252 break;
1253
1254 case FUNCTION_DECL:
1255 return FUNCTION_BOUNDARY;
1256
1257 default:
1258 break;
1259 }
1260
1261 /* Otherwise take the alignment from that of the type. */
1262 return TYPE_ALIGN (TREE_TYPE (t));
1263 }
1264 \f
1265 /* Return, as a tree node, the number of elements for TYPE (which is an
1266 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1267
1268 tree
1269 array_type_nelts (tree type)
1270 {
1271 tree index_type, min, max;
1272
1273 /* If they did it with unspecified bounds, then we should have already
1274 given an error about it before we got here. */
1275 if (! TYPE_DOMAIN (type))
1276 return error_mark_node;
1277
1278 index_type = TYPE_DOMAIN (type);
1279 min = TYPE_MIN_VALUE (index_type);
1280 max = TYPE_MAX_VALUE (index_type);
1281
1282 return (integer_zerop (min)
1283 ? max
1284 : fold (build2 (MINUS_EXPR, TREE_TYPE (max), max, min)));
1285 }
1286 \f
1287 /* Return nonzero if arg is static -- a reference to an object in
1288 static storage. This is not the same as the C meaning of `static'. */
1289
1290 int
1291 staticp (tree arg)
1292 {
1293 switch (TREE_CODE (arg))
1294 {
1295 case FUNCTION_DECL:
1296 /* Nested functions aren't static, since taking their address
1297 involves a trampoline. */
1298 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1299 && ! DECL_NON_ADDR_CONST_P (arg));
1300
1301 case VAR_DECL:
1302 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1303 && ! DECL_THREAD_LOCAL (arg)
1304 && ! DECL_NON_ADDR_CONST_P (arg));
1305
1306 case CONSTRUCTOR:
1307 return TREE_STATIC (arg);
1308
1309 case LABEL_DECL:
1310 case STRING_CST:
1311 return 1;
1312
1313 case COMPONENT_REF:
1314 /* If the thing being referenced is not a field, then it is
1315 something language specific. */
1316 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1317 return (*lang_hooks.staticp) (arg);
1318
1319 /* If we are referencing a bitfield, we can't evaluate an
1320 ADDR_EXPR at compile time and so it isn't a constant. */
1321 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1322 return 0;
1323
1324 return staticp (TREE_OPERAND (arg, 0));
1325
1326 case BIT_FIELD_REF:
1327 return 0;
1328
1329 #if 0
1330 /* This case is technically correct, but results in setting
1331 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1332 compile time. */
1333 case INDIRECT_REF:
1334 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1335 #endif
1336
1337 case ARRAY_REF:
1338 case ARRAY_RANGE_REF:
1339 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1340 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1341 return staticp (TREE_OPERAND (arg, 0));
1342 else
1343 return 0;
1344
1345 default:
1346 if ((unsigned int) TREE_CODE (arg)
1347 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1348 return lang_hooks.staticp (arg);
1349 else
1350 return 0;
1351 }
1352 }
1353 \f
1354 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1355 Do this to any expression which may be used in more than one place,
1356 but must be evaluated only once.
1357
1358 Normally, expand_expr would reevaluate the expression each time.
1359 Calling save_expr produces something that is evaluated and recorded
1360 the first time expand_expr is called on it. Subsequent calls to
1361 expand_expr just reuse the recorded value.
1362
1363 The call to expand_expr that generates code that actually computes
1364 the value is the first call *at compile time*. Subsequent calls
1365 *at compile time* generate code to use the saved value.
1366 This produces correct result provided that *at run time* control
1367 always flows through the insns made by the first expand_expr
1368 before reaching the other places where the save_expr was evaluated.
1369 You, the caller of save_expr, must make sure this is so.
1370
1371 Constants, and certain read-only nodes, are returned with no
1372 SAVE_EXPR because that is safe. Expressions containing placeholders
1373 are not touched; see tree.def for an explanation of what these
1374 are used for. */
1375
1376 tree
1377 save_expr (tree expr)
1378 {
1379 tree t = fold (expr);
1380 tree inner;
1381
1382 /* If the tree evaluates to a constant, then we don't want to hide that
1383 fact (i.e. this allows further folding, and direct checks for constants).
1384 However, a read-only object that has side effects cannot be bypassed.
1385 Since it is no problem to reevaluate literals, we just return the
1386 literal node. */
1387 inner = skip_simple_arithmetic (t);
1388
1389 if (TREE_INVARIANT (inner)
1390 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1391 || TREE_CODE (inner) == SAVE_EXPR
1392 || TREE_CODE (inner) == ERROR_MARK)
1393 return t;
1394
1395 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1396 it means that the size or offset of some field of an object depends on
1397 the value within another field.
1398
1399 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1400 and some variable since it would then need to be both evaluated once and
1401 evaluated more than once. Front-ends must assure this case cannot
1402 happen by surrounding any such subexpressions in their own SAVE_EXPR
1403 and forcing evaluation at the proper time. */
1404 if (contains_placeholder_p (inner))
1405 return t;
1406
1407 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
1408
1409 /* This expression might be placed ahead of a jump to ensure that the
1410 value was computed on both sides of the jump. So make sure it isn't
1411 eliminated as dead. */
1412 TREE_SIDE_EFFECTS (t) = 1;
1413 TREE_READONLY (t) = 1;
1414 TREE_INVARIANT (t) = 1;
1415 return t;
1416 }
1417
1418 /* Look inside EXPR and into any simple arithmetic operations. Return
1419 the innermost non-arithmetic node. */
1420
1421 tree
1422 skip_simple_arithmetic (tree expr)
1423 {
1424 tree inner;
1425
1426 /* We don't care about whether this can be used as an lvalue in this
1427 context. */
1428 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1429 expr = TREE_OPERAND (expr, 0);
1430
1431 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1432 a constant, it will be more efficient to not make another SAVE_EXPR since
1433 it will allow better simplification and GCSE will be able to merge the
1434 computations if they actually occur. */
1435 inner = expr;
1436 while (1)
1437 {
1438 if (TREE_CODE_CLASS (TREE_CODE (inner)) == '1')
1439 inner = TREE_OPERAND (inner, 0);
1440 else if (TREE_CODE_CLASS (TREE_CODE (inner)) == '2')
1441 {
1442 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
1443 inner = TREE_OPERAND (inner, 0);
1444 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
1445 inner = TREE_OPERAND (inner, 1);
1446 else
1447 break;
1448 }
1449 else
1450 break;
1451 }
1452
1453 return inner;
1454 }
1455
1456 /* Arrange for an expression to be expanded multiple independent
1457 times. This is useful for cleanup actions, as the backend can
1458 expand them multiple times in different places. */
1459
1460 tree
1461 unsave_expr (tree expr)
1462 {
1463 tree t;
1464
1465 /* If this is already protected, no sense in protecting it again. */
1466 if (TREE_CODE (expr) == UNSAVE_EXPR)
1467 return expr;
1468
1469 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1470 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1471 return t;
1472 }
1473
1474 /* Returns the index of the first non-tree operand for CODE, or the number
1475 of operands if all are trees. */
1476
1477 int
1478 first_rtl_op (enum tree_code code)
1479 {
1480 switch (code)
1481 {
1482 default:
1483 return TREE_CODE_LENGTH (code);
1484 }
1485 }
1486
1487 /* Return which tree structure is used by T. */
1488
1489 enum tree_node_structure_enum
1490 tree_node_structure (tree t)
1491 {
1492 enum tree_code code = TREE_CODE (t);
1493
1494 switch (TREE_CODE_CLASS (code))
1495 {
1496 case 'd': return TS_DECL;
1497 case 't': return TS_TYPE;
1498 case 'r': case '<': case '1': case '2': case 'e': case 's':
1499 return TS_EXP;
1500 default: /* 'c' and 'x' */
1501 break;
1502 }
1503 switch (code)
1504 {
1505 /* 'c' cases. */
1506 case INTEGER_CST: return TS_INT_CST;
1507 case REAL_CST: return TS_REAL_CST;
1508 case COMPLEX_CST: return TS_COMPLEX;
1509 case VECTOR_CST: return TS_VECTOR;
1510 case STRING_CST: return TS_STRING;
1511 /* 'x' cases. */
1512 case ERROR_MARK: return TS_COMMON;
1513 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1514 case TREE_LIST: return TS_LIST;
1515 case TREE_VEC: return TS_VEC;
1516 case PHI_NODE: return TS_PHI_NODE;
1517 case SSA_NAME: return TS_SSA_NAME;
1518 case PLACEHOLDER_EXPR: return TS_COMMON;
1519 case STATEMENT_LIST: return TS_STATEMENT_LIST;
1520 case BLOCK: return TS_BLOCK;
1521 case TREE_BINFO: return TS_BINFO;
1522 case VALUE_HANDLE: return TS_VALUE_HANDLE;
1523
1524 default:
1525 abort ();
1526 }
1527 }
1528
1529 /* Perform any modifications to EXPR required when it is unsaved. Does
1530 not recurse into EXPR's subtrees. */
1531
1532 void
1533 unsave_expr_1 (tree expr)
1534 {
1535 switch (TREE_CODE (expr))
1536 {
1537 case TARGET_EXPR:
1538 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1539 It's OK for this to happen if it was part of a subtree that
1540 isn't immediately expanded, such as operand 2 of another
1541 TARGET_EXPR. */
1542 if (TREE_OPERAND (expr, 1))
1543 break;
1544
1545 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1546 TREE_OPERAND (expr, 3) = NULL_TREE;
1547 break;
1548
1549 default:
1550 break;
1551 }
1552 }
1553
1554 /* Return 0 if it is safe to evaluate EXPR multiple times,
1555 return 1 if it is safe if EXPR is unsaved afterward, or
1556 return 2 if it is completely unsafe.
1557
1558 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1559 an expression tree, so that it safe to unsave them and the surrounding
1560 context will be correct.
1561
1562 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1563 occasionally across the whole of a function. It is therefore only
1564 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1565 below the UNSAVE_EXPR. */
1566
1567 int
1568 unsafe_for_reeval (tree expr)
1569 {
1570 int unsafeness = 0;
1571 enum tree_code code;
1572 int i, tmp, tmp2;
1573 tree exp;
1574 int first_rtl;
1575
1576 if (expr == NULL_TREE)
1577 return 1;
1578
1579 code = TREE_CODE (expr);
1580 first_rtl = first_rtl_op (code);
1581
1582 switch (code)
1583 {
1584 case SAVE_EXPR:
1585 return 2;
1586
1587 /* A label can only be emitted once. */
1588 case LABEL_EXPR:
1589 return 1;
1590
1591 case BIND_EXPR:
1592 unsafeness = 1;
1593 break;
1594
1595 case TREE_LIST:
1596 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1597 {
1598 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1599 unsafeness = MAX (tmp, unsafeness);
1600 }
1601
1602 return unsafeness;
1603
1604 case CALL_EXPR:
1605 tmp2 = unsafe_for_reeval (TREE_OPERAND (expr, 0));
1606 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1607 return MAX (MAX (tmp, 1), tmp2);
1608
1609 case TARGET_EXPR:
1610 unsafeness = 1;
1611 break;
1612
1613 case EXIT_BLOCK_EXPR:
1614 /* EXIT_BLOCK_LABELED_BLOCK, a.k.a. TREE_OPERAND (expr, 0), holds
1615 a reference to an ancestor LABELED_BLOCK, so we need to avoid
1616 unbounded recursion in the 'e' traversal code below. */
1617 exp = EXIT_BLOCK_RETURN (expr);
1618 return exp ? unsafe_for_reeval (exp) : 0;
1619
1620 default:
1621 tmp = lang_hooks.unsafe_for_reeval (expr);
1622 if (tmp >= 0)
1623 return tmp;
1624 break;
1625 }
1626
1627 switch (TREE_CODE_CLASS (code))
1628 {
1629 case 'c': /* a constant */
1630 case 't': /* a type node */
1631 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1632 case 'd': /* A decl node */
1633 return 0;
1634
1635 case 'e': /* an expression */
1636 case 'r': /* a reference */
1637 case 's': /* an expression with side effects */
1638 case '<': /* a comparison expression */
1639 case '2': /* a binary arithmetic expression */
1640 case '1': /* a unary arithmetic expression */
1641 for (i = first_rtl - 1; i >= 0; i--)
1642 {
1643 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1644 unsafeness = MAX (tmp, unsafeness);
1645 }
1646
1647 return unsafeness;
1648
1649 default:
1650 return 2;
1651 }
1652 }
1653 \f
1654 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1655 or offset that depends on a field within a record. */
1656
1657 bool
1658 contains_placeholder_p (tree exp)
1659 {
1660 enum tree_code code;
1661
1662 if (!exp)
1663 return 0;
1664
1665 code = TREE_CODE (exp);
1666 if (code == PLACEHOLDER_EXPR)
1667 return 1;
1668
1669 switch (TREE_CODE_CLASS (code))
1670 {
1671 case 'r':
1672 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1673 position computations since they will be converted into a
1674 WITH_RECORD_EXPR involving the reference, which will assume
1675 here will be valid. */
1676 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1677
1678 case 'x':
1679 if (code == TREE_LIST)
1680 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1681 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1682 break;
1683
1684 case '1':
1685 case '2': case '<':
1686 case 'e':
1687 switch (code)
1688 {
1689 case COMPOUND_EXPR:
1690 /* Ignoring the first operand isn't quite right, but works best. */
1691 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1692
1693 case COND_EXPR:
1694 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1695 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1696 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1697
1698 default:
1699 break;
1700 }
1701
1702 switch (first_rtl_op (code))
1703 {
1704 case 1:
1705 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1706 case 2:
1707 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1708 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1709 default:
1710 return 0;
1711 }
1712
1713 default:
1714 return 0;
1715 }
1716 return 0;
1717 }
1718
1719 /* Return 1 if any part of the computation of TYPE involves a PLACEHOLDER_EXPR.
1720 This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and field
1721 positions. */
1722
1723 bool
1724 type_contains_placeholder_p (tree type)
1725 {
1726 /* If the size contains a placeholder or the parent type (component type in
1727 the case of arrays) type involves a placeholder, this type does. */
1728 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1729 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1730 || (TREE_TYPE (type) != 0
1731 && type_contains_placeholder_p (TREE_TYPE (type))))
1732 return 1;
1733
1734 /* Now do type-specific checks. Note that the last part of the check above
1735 greatly limits what we have to do below. */
1736 switch (TREE_CODE (type))
1737 {
1738 case VOID_TYPE:
1739 case COMPLEX_TYPE:
1740 case ENUMERAL_TYPE:
1741 case BOOLEAN_TYPE:
1742 case CHAR_TYPE:
1743 case POINTER_TYPE:
1744 case OFFSET_TYPE:
1745 case REFERENCE_TYPE:
1746 case METHOD_TYPE:
1747 case FILE_TYPE:
1748 case FUNCTION_TYPE:
1749 return 0;
1750
1751 case INTEGER_TYPE:
1752 case REAL_TYPE:
1753 /* Here we just check the bounds. */
1754 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1755 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1756
1757 case ARRAY_TYPE:
1758 case SET_TYPE:
1759 case VECTOR_TYPE:
1760 /* We're already checked the component type (TREE_TYPE), so just check
1761 the index type. */
1762 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1763
1764 case RECORD_TYPE:
1765 case UNION_TYPE:
1766 case QUAL_UNION_TYPE:
1767 {
1768 static tree seen_types = 0;
1769 tree field;
1770 bool ret = 0;
1771
1772 /* We have to be careful here that we don't end up in infinite
1773 recursions due to a field of a type being a pointer to that type
1774 or to a mutually-recursive type. So we store a list of record
1775 types that we've seen and see if this type is in them. To save
1776 memory, we don't use a list for just one type. Here we check
1777 whether we've seen this type before and store it if not. */
1778 if (seen_types == 0)
1779 seen_types = type;
1780 else if (TREE_CODE (seen_types) != TREE_LIST)
1781 {
1782 if (seen_types == type)
1783 return 0;
1784
1785 seen_types = tree_cons (NULL_TREE, type,
1786 build_tree_list (NULL_TREE, seen_types));
1787 }
1788 else
1789 {
1790 if (value_member (type, seen_types) != 0)
1791 return 0;
1792
1793 seen_types = tree_cons (NULL_TREE, type, seen_types);
1794 }
1795
1796 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1797 if (TREE_CODE (field) == FIELD_DECL
1798 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1799 || (TREE_CODE (type) == QUAL_UNION_TYPE
1800 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1801 || type_contains_placeholder_p (TREE_TYPE (field))))
1802 {
1803 ret = true;
1804 break;
1805 }
1806
1807 /* Now remove us from seen_types and return the result. */
1808 if (seen_types == type)
1809 seen_types = 0;
1810 else
1811 seen_types = TREE_CHAIN (seen_types);
1812
1813 return ret;
1814 }
1815
1816 default:
1817 abort ();
1818 }
1819 }
1820
1821 /* Return 1 if EXP contains any expressions that produce cleanups for an
1822 outer scope to deal with. Used by fold. */
1823
1824 int
1825 has_cleanups (tree exp)
1826 {
1827 int i, nops, cmp;
1828
1829 if (! TREE_SIDE_EFFECTS (exp))
1830 return 0;
1831
1832 switch (TREE_CODE (exp))
1833 {
1834 case TARGET_EXPR:
1835 case WITH_CLEANUP_EXPR:
1836 return 1;
1837
1838 case CLEANUP_POINT_EXPR:
1839 return 0;
1840
1841 case CALL_EXPR:
1842 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1843 {
1844 cmp = has_cleanups (TREE_VALUE (exp));
1845 if (cmp)
1846 return cmp;
1847 }
1848 return 0;
1849
1850 case DECL_EXPR:
1851 return (DECL_INITIAL (DECL_EXPR_DECL (exp))
1852 && has_cleanups (DECL_INITIAL (DECL_EXPR_DECL (exp))));
1853
1854 default:
1855 break;
1856 }
1857
1858 /* This general rule works for most tree codes. All exceptions should be
1859 handled above. If this is a language-specific tree code, we can't
1860 trust what might be in the operand, so say we don't know
1861 the situation. */
1862 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1863 return -1;
1864
1865 nops = first_rtl_op (TREE_CODE (exp));
1866 for (i = 0; i < nops; i++)
1867 if (TREE_OPERAND (exp, i) != 0)
1868 {
1869 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1870 if (type == 'e' || type == '<' || type == '1' || type == '2'
1871 || type == 'r' || type == 's')
1872 {
1873 cmp = has_cleanups (TREE_OPERAND (exp, i));
1874 if (cmp)
1875 return cmp;
1876 }
1877 }
1878
1879 return 0;
1880 }
1881 \f
1882 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1883 return a tree with all occurrences of references to F in a
1884 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1885 contains only arithmetic expressions or a CALL_EXPR with a
1886 PLACEHOLDER_EXPR occurring only in its arglist. */
1887
1888 tree
1889 substitute_in_expr (tree exp, tree f, tree r)
1890 {
1891 enum tree_code code = TREE_CODE (exp);
1892 tree op0, op1, op2;
1893 tree new;
1894 tree inner;
1895
1896 /* We handle TREE_LIST and COMPONENT_REF separately. */
1897 if (code == TREE_LIST)
1898 {
1899 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
1900 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
1901 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1902 return exp;
1903
1904 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1905 }
1906 else if (code == COMPONENT_REF)
1907 {
1908 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1909 and it is the right field, replace it with R. */
1910 for (inner = TREE_OPERAND (exp, 0);
1911 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
1912 inner = TREE_OPERAND (inner, 0))
1913 ;
1914 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1915 && TREE_OPERAND (exp, 1) == f)
1916 return r;
1917
1918 /* If this expression hasn't been completed let, leave it
1919 alone. */
1920 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
1921 return exp;
1922
1923 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1924 if (op0 == TREE_OPERAND (exp, 0))
1925 return exp;
1926
1927 new = fold (build (code, TREE_TYPE (exp), op0, TREE_OPERAND (exp, 1),
1928 NULL_TREE));
1929 }
1930 else
1931 switch (TREE_CODE_CLASS (code))
1932 {
1933 case 'c':
1934 case 'd':
1935 return exp;
1936
1937 case 'x':
1938 case '1':
1939 case '2':
1940 case '<':
1941 case 'e':
1942 case 'r':
1943 switch (first_rtl_op (code))
1944 {
1945 case 0:
1946 return exp;
1947
1948 case 1:
1949 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1950 if (op0 == TREE_OPERAND (exp, 0))
1951 return exp;
1952
1953 new = fold (build1 (code, TREE_TYPE (exp), op0));
1954 break;
1955
1956 case 2:
1957 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1958 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
1959
1960 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
1961 return exp;
1962
1963 new = fold (build2 (code, TREE_TYPE (exp), op0, op1));
1964 break;
1965
1966 case 3:
1967 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1968 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
1969 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
1970
1971 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1972 && op2 == TREE_OPERAND (exp, 2))
1973 return exp;
1974
1975 new = fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
1976 break;
1977
1978 default:
1979 abort ();
1980 }
1981 break;
1982
1983 default:
1984 abort ();
1985 }
1986
1987 TREE_READONLY (new) = TREE_READONLY (exp);
1988 return new;
1989 }
1990
1991 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
1992 for it within OBJ, a tree that is an object or a chain of references. */
1993
1994 tree
1995 substitute_placeholder_in_expr (tree exp, tree obj)
1996 {
1997 enum tree_code code = TREE_CODE (exp);
1998 tree op0, op1, op2, op3;
1999
2000 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2001 in the chain of OBJ. */
2002 if (code == PLACEHOLDER_EXPR)
2003 {
2004 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2005 tree elt;
2006
2007 for (elt = obj; elt != 0;
2008 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2009 || TREE_CODE (elt) == COND_EXPR)
2010 ? TREE_OPERAND (elt, 1)
2011 : (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
2012 || TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
2013 || TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
2014 || TREE_CODE_CLASS (TREE_CODE (elt)) == 'e')
2015 ? TREE_OPERAND (elt, 0) : 0))
2016 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2017 return elt;
2018
2019 for (elt = obj; elt != 0;
2020 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2021 || TREE_CODE (elt) == COND_EXPR)
2022 ? TREE_OPERAND (elt, 1)
2023 : (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
2024 || TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
2025 || TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
2026 || TREE_CODE_CLASS (TREE_CODE (elt)) == 'e')
2027 ? TREE_OPERAND (elt, 0) : 0))
2028 if (POINTER_TYPE_P (TREE_TYPE (elt))
2029 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2030 == need_type))
2031 return fold (build1 (INDIRECT_REF, need_type, elt));
2032
2033 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2034 survives until RTL generation, there will be an error. */
2035 return exp;
2036 }
2037
2038 /* TREE_LIST is special because we need to look at TREE_VALUE
2039 and TREE_CHAIN, not TREE_OPERANDS. */
2040 else if (code == TREE_LIST)
2041 {
2042 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2043 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2044 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2045 return exp;
2046
2047 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2048 }
2049 else
2050 switch (TREE_CODE_CLASS (code))
2051 {
2052 case 'c':
2053 case 'd':
2054 return exp;
2055
2056 case 'x':
2057 case '1':
2058 case '2':
2059 case '<':
2060 case 'e':
2061 case 'r':
2062 case 's':
2063 switch (first_rtl_op (code))
2064 {
2065 case 0:
2066 return exp;
2067
2068 case 1:
2069 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2070 if (op0 == TREE_OPERAND (exp, 0))
2071 return exp;
2072 else
2073 return fold (build1 (code, TREE_TYPE (exp), op0));
2074
2075 case 2:
2076 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2077 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2078
2079 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2080 return exp;
2081 else
2082 return fold (build2 (code, TREE_TYPE (exp), op0, op1));
2083
2084 case 3:
2085 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2086 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2087 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2088
2089 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2090 && op2 == TREE_OPERAND (exp, 2))
2091 return exp;
2092 else
2093 return fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2094
2095 case 4:
2096 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2097 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2098 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2099 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2100
2101 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2102 && op2 == TREE_OPERAND (exp, 2)
2103 && op3 == TREE_OPERAND (exp, 3))
2104 return exp;
2105 else
2106 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2107
2108 default:
2109 abort ();
2110 }
2111 break;
2112
2113 default:
2114 abort ();
2115 }
2116 }
2117 \f
2118 /* Stabilize a reference so that we can use it any number of times
2119 without causing its operands to be evaluated more than once.
2120 Returns the stabilized reference. This works by means of save_expr,
2121 so see the caveats in the comments about save_expr.
2122
2123 Also allows conversion expressions whose operands are references.
2124 Any other kind of expression is returned unchanged. */
2125
2126 tree
2127 stabilize_reference (tree ref)
2128 {
2129 tree result;
2130 enum tree_code code = TREE_CODE (ref);
2131
2132 switch (code)
2133 {
2134 case VAR_DECL:
2135 case PARM_DECL:
2136 case RESULT_DECL:
2137 /* No action is needed in this case. */
2138 return ref;
2139
2140 case NOP_EXPR:
2141 case CONVERT_EXPR:
2142 case FLOAT_EXPR:
2143 case FIX_TRUNC_EXPR:
2144 case FIX_FLOOR_EXPR:
2145 case FIX_ROUND_EXPR:
2146 case FIX_CEIL_EXPR:
2147 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2148 break;
2149
2150 case INDIRECT_REF:
2151 result = build_nt (INDIRECT_REF,
2152 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2153 break;
2154
2155 case COMPONENT_REF:
2156 result = build_nt (COMPONENT_REF,
2157 stabilize_reference (TREE_OPERAND (ref, 0)),
2158 TREE_OPERAND (ref, 1), NULL_TREE);
2159 break;
2160
2161 case BIT_FIELD_REF:
2162 result = build_nt (BIT_FIELD_REF,
2163 stabilize_reference (TREE_OPERAND (ref, 0)),
2164 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2165 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2166 break;
2167
2168 case ARRAY_REF:
2169 result = build_nt (ARRAY_REF,
2170 stabilize_reference (TREE_OPERAND (ref, 0)),
2171 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2172 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2173 break;
2174
2175 case ARRAY_RANGE_REF:
2176 result = build_nt (ARRAY_RANGE_REF,
2177 stabilize_reference (TREE_OPERAND (ref, 0)),
2178 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2179 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2180 break;
2181
2182 case COMPOUND_EXPR:
2183 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2184 it wouldn't be ignored. This matters when dealing with
2185 volatiles. */
2186 return stabilize_reference_1 (ref);
2187
2188 /* If arg isn't a kind of lvalue we recognize, make no change.
2189 Caller should recognize the error for an invalid lvalue. */
2190 default:
2191 return ref;
2192
2193 case ERROR_MARK:
2194 return error_mark_node;
2195 }
2196
2197 TREE_TYPE (result) = TREE_TYPE (ref);
2198 TREE_READONLY (result) = TREE_READONLY (ref);
2199 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2200 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2201
2202 return result;
2203 }
2204
2205 /* Subroutine of stabilize_reference; this is called for subtrees of
2206 references. Any expression with side-effects must be put in a SAVE_EXPR
2207 to ensure that it is only evaluated once.
2208
2209 We don't put SAVE_EXPR nodes around everything, because assigning very
2210 simple expressions to temporaries causes us to miss good opportunities
2211 for optimizations. Among other things, the opportunity to fold in the
2212 addition of a constant into an addressing mode often gets lost, e.g.
2213 "y[i+1] += x;". In general, we take the approach that we should not make
2214 an assignment unless we are forced into it - i.e., that any non-side effect
2215 operator should be allowed, and that cse should take care of coalescing
2216 multiple utterances of the same expression should that prove fruitful. */
2217
2218 tree
2219 stabilize_reference_1 (tree e)
2220 {
2221 tree result;
2222 enum tree_code code = TREE_CODE (e);
2223
2224 /* We cannot ignore const expressions because it might be a reference
2225 to a const array but whose index contains side-effects. But we can
2226 ignore things that are actual constant or that already have been
2227 handled by this function. */
2228
2229 if (TREE_INVARIANT (e))
2230 return e;
2231
2232 switch (TREE_CODE_CLASS (code))
2233 {
2234 case 'x':
2235 case 't':
2236 case 'd':
2237 case '<':
2238 case 's':
2239 case 'e':
2240 case 'r':
2241 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2242 so that it will only be evaluated once. */
2243 /* The reference (r) and comparison (<) classes could be handled as
2244 below, but it is generally faster to only evaluate them once. */
2245 if (TREE_SIDE_EFFECTS (e))
2246 return save_expr (e);
2247 return e;
2248
2249 case 'c':
2250 /* Constants need no processing. In fact, we should never reach
2251 here. */
2252 return e;
2253
2254 case '2':
2255 /* Division is slow and tends to be compiled with jumps,
2256 especially the division by powers of 2 that is often
2257 found inside of an array reference. So do it just once. */
2258 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2259 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2260 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2261 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2262 return save_expr (e);
2263 /* Recursively stabilize each operand. */
2264 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2265 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2266 break;
2267
2268 case '1':
2269 /* Recursively stabilize each operand. */
2270 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2271 break;
2272
2273 default:
2274 abort ();
2275 }
2276
2277 TREE_TYPE (result) = TREE_TYPE (e);
2278 TREE_READONLY (result) = TREE_READONLY (e);
2279 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2280 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2281 TREE_INVARIANT (result) = 1;
2282
2283 return result;
2284 }
2285 \f
2286 /* Low-level constructors for expressions. */
2287
2288 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2289 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2290
2291 void
2292 recompute_tree_invarant_for_addr_expr (tree t)
2293 {
2294 tree node;
2295 bool tc = true, ti = true, se = false;
2296
2297 /* We started out assuming this address is both invariant and constant, but
2298 does not have side effects. Now go down any handled components and see if
2299 any of them involve offsets that are either non-constant or non-invariant.
2300 Also check for side-effects.
2301
2302 ??? Note that this code makes no attempt to deal with the case where
2303 taking the address of something causes a copy due to misalignment. */
2304
2305 #define UPDATE_TITCSE(NODE) \
2306 do { tree _node = (NODE); \
2307 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2308 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2309 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2310
2311 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2312 node = TREE_OPERAND (node, 0))
2313 {
2314 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2315 array reference (probably made temporarily by the G++ front end),
2316 so ignore all the operands. */
2317 if ((TREE_CODE (node) == ARRAY_REF
2318 || TREE_CODE (node) == ARRAY_RANGE_REF)
2319 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2320 {
2321 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2322 UPDATE_TITCSE (array_ref_low_bound (node));
2323 UPDATE_TITCSE (array_ref_element_size (node));
2324 }
2325 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2326 FIELD_DECL, apparently. The G++ front end can put something else
2327 there, at least temporarily. */
2328 else if (TREE_CODE (node) == COMPONENT_REF
2329 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2330 UPDATE_TITCSE (component_ref_field_offset (node));
2331 else if (TREE_CODE (node) == BIT_FIELD_REF)
2332 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2333 }
2334
2335 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2336 it. If it's a decl, it's invariant and constant if the decl is static.
2337 It's also invariant if it's a decl in the current function. (Taking the
2338 address of a volatile variable is not volatile.) If it's a constant,
2339 the address is both invariant and constant. Otherwise it's neither. */
2340 if (TREE_CODE (node) == INDIRECT_REF)
2341 UPDATE_TITCSE (node);
2342 else if (DECL_P (node))
2343 {
2344 if (staticp (node))
2345 ;
2346 else if (decl_function_context (node) == current_function_decl)
2347 tc = false;
2348 else
2349 ti = tc = false;
2350 }
2351 else if (TREE_CODE_CLASS (TREE_CODE (node)) == 'c')
2352 ;
2353 else
2354 {
2355 ti = tc = false;
2356 se |= TREE_SIDE_EFFECTS (node);
2357 }
2358
2359 TREE_CONSTANT (t) = tc;
2360 TREE_INVARIANT (t) = ti;
2361 TREE_SIDE_EFFECTS (t) = se;
2362 #undef UPDATE_TITCSE
2363 }
2364
2365 /* Build an expression of code CODE, data type TYPE, and operands as
2366 specified. Expressions and reference nodes can be created this way.
2367 Constants, decls, types and misc nodes cannot be.
2368
2369 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2370 enough for all extant tree codes. These functions can be called
2371 directly (preferably!), but can also be obtained via GCC preprocessor
2372 magic within the build macro. */
2373
2374 tree
2375 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2376 {
2377 tree t;
2378
2379 #ifdef ENABLE_CHECKING
2380 if (TREE_CODE_LENGTH (code) != 0)
2381 abort ();
2382 #endif
2383
2384 t = make_node_stat (code PASS_MEM_STAT);
2385 TREE_TYPE (t) = tt;
2386
2387 return t;
2388 }
2389
2390 tree
2391 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2392 {
2393 int length = sizeof (struct tree_exp);
2394 #ifdef GATHER_STATISTICS
2395 tree_node_kind kind;
2396 #endif
2397 tree t;
2398
2399 #ifdef GATHER_STATISTICS
2400 switch (TREE_CODE_CLASS (code))
2401 {
2402 case 's': /* an expression with side effects */
2403 kind = s_kind;
2404 break;
2405 case 'r': /* a reference */
2406 kind = r_kind;
2407 break;
2408 default:
2409 kind = e_kind;
2410 break;
2411 }
2412
2413 tree_node_counts[(int) kind]++;
2414 tree_node_sizes[(int) kind] += length;
2415 #endif
2416
2417 #ifdef ENABLE_CHECKING
2418 if (TREE_CODE_LENGTH (code) != 1)
2419 abort ();
2420 #endif /* ENABLE_CHECKING */
2421
2422 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
2423
2424 memset (t, 0, sizeof (struct tree_common));
2425
2426 TREE_SET_CODE (t, code);
2427
2428 TREE_TYPE (t) = type;
2429 #ifdef USE_MAPPED_LOCATION
2430 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2431 #else
2432 SET_EXPR_LOCUS (t, NULL);
2433 #endif
2434 TREE_COMPLEXITY (t) = 0;
2435 TREE_OPERAND (t, 0) = node;
2436 TREE_BLOCK (t) = NULL_TREE;
2437 if (node && !TYPE_P (node) && first_rtl_op (code) != 0)
2438 {
2439 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2440 TREE_READONLY (t) = TREE_READONLY (node);
2441 }
2442
2443 if (TREE_CODE_CLASS (code) == 's')
2444 TREE_SIDE_EFFECTS (t) = 1;
2445 else switch (code)
2446 {
2447 case INIT_EXPR:
2448 case MODIFY_EXPR:
2449 case VA_ARG_EXPR:
2450 case PREDECREMENT_EXPR:
2451 case PREINCREMENT_EXPR:
2452 case POSTDECREMENT_EXPR:
2453 case POSTINCREMENT_EXPR:
2454 /* All of these have side-effects, no matter what their
2455 operands are. */
2456 TREE_SIDE_EFFECTS (t) = 1;
2457 TREE_READONLY (t) = 0;
2458 break;
2459
2460 case INDIRECT_REF:
2461 /* Whether a dereference is readonly has nothing to do with whether
2462 its operand is readonly. */
2463 TREE_READONLY (t) = 0;
2464 break;
2465
2466 case ADDR_EXPR:
2467 if (node)
2468 recompute_tree_invarant_for_addr_expr (t);
2469 break;
2470
2471 default:
2472 if (TREE_CODE_CLASS (code) == '1' && node && !TYPE_P (node)
2473 && TREE_CONSTANT (node))
2474 TREE_CONSTANT (t) = 1;
2475 if (TREE_CODE_CLASS (code) == '1' && node && TREE_INVARIANT (node))
2476 TREE_INVARIANT (t) = 1;
2477 if (TREE_CODE_CLASS (code) == 'r' && node && TREE_THIS_VOLATILE (node))
2478 TREE_THIS_VOLATILE (t) = 1;
2479 break;
2480 }
2481
2482 return t;
2483 }
2484
2485 #define PROCESS_ARG(N) \
2486 do { \
2487 TREE_OPERAND (t, N) = arg##N; \
2488 if (arg##N &&!TYPE_P (arg##N) && fro > N) \
2489 { \
2490 if (TREE_SIDE_EFFECTS (arg##N)) \
2491 side_effects = 1; \
2492 if (!TREE_READONLY (arg##N)) \
2493 read_only = 0; \
2494 if (!TREE_CONSTANT (arg##N)) \
2495 constant = 0; \
2496 if (!TREE_INVARIANT (arg##N)) \
2497 invariant = 0; \
2498 } \
2499 } while (0)
2500
2501 tree
2502 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2503 {
2504 bool constant, read_only, side_effects, invariant;
2505 tree t;
2506 int fro;
2507
2508 #ifdef ENABLE_CHECKING
2509 if (TREE_CODE_LENGTH (code) != 2)
2510 abort ();
2511 #endif
2512
2513 t = make_node_stat (code PASS_MEM_STAT);
2514 TREE_TYPE (t) = tt;
2515
2516 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2517 result based on those same flags for the arguments. But if the
2518 arguments aren't really even `tree' expressions, we shouldn't be trying
2519 to do this. */
2520 fro = first_rtl_op (code);
2521
2522 /* Expressions without side effects may be constant if their
2523 arguments are as well. */
2524 constant = (TREE_CODE_CLASS (code) == '<'
2525 || TREE_CODE_CLASS (code) == '2');
2526 read_only = 1;
2527 side_effects = TREE_SIDE_EFFECTS (t);
2528 invariant = constant;
2529
2530 PROCESS_ARG(0);
2531 PROCESS_ARG(1);
2532
2533 TREE_READONLY (t) = read_only;
2534 TREE_CONSTANT (t) = constant;
2535 TREE_INVARIANT (t) = invariant;
2536 TREE_SIDE_EFFECTS (t) = side_effects;
2537 TREE_THIS_VOLATILE (t)
2538 = TREE_CODE_CLASS (code) == 'r' && arg0 && TREE_THIS_VOLATILE (arg0);
2539
2540 return t;
2541 }
2542
2543 tree
2544 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2545 tree arg2 MEM_STAT_DECL)
2546 {
2547 bool constant, read_only, side_effects, invariant;
2548 tree t;
2549 int fro;
2550
2551 #ifdef ENABLE_CHECKING
2552 if (TREE_CODE_LENGTH (code) != 3)
2553 abort ();
2554 #endif
2555
2556 t = make_node_stat (code PASS_MEM_STAT);
2557 TREE_TYPE (t) = tt;
2558
2559 fro = first_rtl_op (code);
2560
2561 side_effects = TREE_SIDE_EFFECTS (t);
2562
2563 PROCESS_ARG(0);
2564 PROCESS_ARG(1);
2565 PROCESS_ARG(2);
2566
2567 if (code == CALL_EXPR && !side_effects)
2568 {
2569 tree node;
2570 int i;
2571
2572 /* Calls have side-effects, except those to const or
2573 pure functions. */
2574 i = call_expr_flags (t);
2575 if (!(i & (ECF_CONST | ECF_PURE)))
2576 side_effects = 1;
2577
2578 /* And even those have side-effects if their arguments do. */
2579 else for (node = arg1; node; node = TREE_CHAIN (node))
2580 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2581 {
2582 side_effects = 1;
2583 break;
2584 }
2585 }
2586
2587 TREE_SIDE_EFFECTS (t) = side_effects;
2588 TREE_THIS_VOLATILE (t)
2589 = TREE_CODE_CLASS (code) == 'r' && arg0 && TREE_THIS_VOLATILE (arg0);
2590
2591 return t;
2592 }
2593
2594 tree
2595 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2596 tree arg2, tree arg3 MEM_STAT_DECL)
2597 {
2598 bool constant, read_only, side_effects, invariant;
2599 tree t;
2600 int fro;
2601
2602 #ifdef ENABLE_CHECKING
2603 if (TREE_CODE_LENGTH (code) != 4)
2604 abort ();
2605 #endif
2606
2607 t = make_node_stat (code PASS_MEM_STAT);
2608 TREE_TYPE (t) = tt;
2609
2610 fro = first_rtl_op (code);
2611
2612 side_effects = TREE_SIDE_EFFECTS (t);
2613
2614 PROCESS_ARG(0);
2615 PROCESS_ARG(1);
2616 PROCESS_ARG(2);
2617 PROCESS_ARG(3);
2618
2619 TREE_SIDE_EFFECTS (t) = side_effects;
2620 TREE_THIS_VOLATILE (t)
2621 = TREE_CODE_CLASS (code) == 'r' && arg0 && TREE_THIS_VOLATILE (arg0);
2622
2623 return t;
2624 }
2625
2626 /* Backup definition for non-gcc build compilers. */
2627
2628 tree
2629 (build) (enum tree_code code, tree tt, ...)
2630 {
2631 tree t, arg0, arg1, arg2, arg3;
2632 int length = TREE_CODE_LENGTH (code);
2633 va_list p;
2634
2635 va_start (p, tt);
2636 switch (length)
2637 {
2638 case 0:
2639 t = build0 (code, tt);
2640 break;
2641 case 1:
2642 arg0 = va_arg (p, tree);
2643 t = build1 (code, tt, arg0);
2644 break;
2645 case 2:
2646 arg0 = va_arg (p, tree);
2647 arg1 = va_arg (p, tree);
2648 t = build2 (code, tt, arg0, arg1);
2649 break;
2650 case 3:
2651 arg0 = va_arg (p, tree);
2652 arg1 = va_arg (p, tree);
2653 arg2 = va_arg (p, tree);
2654 t = build3 (code, tt, arg0, arg1, arg2);
2655 break;
2656 case 4:
2657 arg0 = va_arg (p, tree);
2658 arg1 = va_arg (p, tree);
2659 arg2 = va_arg (p, tree);
2660 arg3 = va_arg (p, tree);
2661 t = build4 (code, tt, arg0, arg1, arg2, arg3);
2662 break;
2663 default:
2664 abort ();
2665 }
2666 va_end (p);
2667
2668 return t;
2669 }
2670
2671 /* Similar except don't specify the TREE_TYPE
2672 and leave the TREE_SIDE_EFFECTS as 0.
2673 It is permissible for arguments to be null,
2674 or even garbage if their values do not matter. */
2675
2676 tree
2677 build_nt (enum tree_code code, ...)
2678 {
2679 tree t;
2680 int length;
2681 int i;
2682 va_list p;
2683
2684 va_start (p, code);
2685
2686 t = make_node (code);
2687 length = TREE_CODE_LENGTH (code);
2688
2689 for (i = 0; i < length; i++)
2690 TREE_OPERAND (t, i) = va_arg (p, tree);
2691
2692 va_end (p);
2693 return t;
2694 }
2695 \f
2696 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2697 We do NOT enter this node in any sort of symbol table.
2698
2699 layout_decl is used to set up the decl's storage layout.
2700 Other slots are initialized to 0 or null pointers. */
2701
2702 tree
2703 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
2704 {
2705 tree t;
2706
2707 t = make_node_stat (code PASS_MEM_STAT);
2708
2709 /* if (type == error_mark_node)
2710 type = integer_type_node; */
2711 /* That is not done, deliberately, so that having error_mark_node
2712 as the type can suppress useless errors in the use of this variable. */
2713
2714 DECL_NAME (t) = name;
2715 TREE_TYPE (t) = type;
2716
2717 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2718 layout_decl (t, 0);
2719 else if (code == FUNCTION_DECL)
2720 DECL_MODE (t) = FUNCTION_MODE;
2721
2722 return t;
2723 }
2724 \f
2725 /* BLOCK nodes are used to represent the structure of binding contours
2726 and declarations, once those contours have been exited and their contents
2727 compiled. This information is used for outputting debugging info. */
2728
2729 tree
2730 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2731 tree supercontext, tree chain)
2732 {
2733 tree block = make_node (BLOCK);
2734
2735 BLOCK_VARS (block) = vars;
2736 BLOCK_SUBBLOCKS (block) = subblocks;
2737 BLOCK_SUPERCONTEXT (block) = supercontext;
2738 BLOCK_CHAIN (block) = chain;
2739 return block;
2740 }
2741
2742 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
2743 /* ??? gengtype doesn't handle conditionals */
2744 static GTY(()) tree last_annotated_node;
2745 #endif
2746
2747 #ifdef USE_MAPPED_LOCATION
2748
2749 expanded_location
2750 expand_location (source_location loc)
2751 {
2752 expanded_location xloc;
2753 if (loc == 0) { xloc.file = NULL; xloc.line = 0; xloc.column = 0; }
2754 else
2755 {
2756 const struct line_map *map = linemap_lookup (&line_table, loc);
2757 xloc.file = map->to_file;
2758 xloc.line = SOURCE_LINE (map, loc);
2759 xloc.column = SOURCE_COLUMN (map, loc);
2760 };
2761 return xloc;
2762 }
2763
2764 #else
2765
2766 /* Record the exact location where an expression or an identifier were
2767 encountered. */
2768
2769 void
2770 annotate_with_file_line (tree node, const char *file, int line)
2771 {
2772 /* Roughly one percent of the calls to this function are to annotate
2773 a node with the same information already attached to that node!
2774 Just return instead of wasting memory. */
2775 if (EXPR_LOCUS (node)
2776 && (EXPR_FILENAME (node) == file
2777 || ! strcmp (EXPR_FILENAME (node), file))
2778 && EXPR_LINENO (node) == line)
2779 {
2780 last_annotated_node = node;
2781 return;
2782 }
2783
2784 /* In heavily macroized code (such as GCC itself) this single
2785 entry cache can reduce the number of allocations by more
2786 than half. */
2787 if (last_annotated_node
2788 && EXPR_LOCUS (last_annotated_node)
2789 && (EXPR_FILENAME (last_annotated_node) == file
2790 || ! strcmp (EXPR_FILENAME (last_annotated_node), file))
2791 && EXPR_LINENO (last_annotated_node) == line)
2792 {
2793 SET_EXPR_LOCUS (node, EXPR_LOCUS (last_annotated_node));
2794 return;
2795 }
2796
2797 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
2798 EXPR_LINENO (node) = line;
2799 EXPR_FILENAME (node) = file;
2800 last_annotated_node = node;
2801 }
2802
2803 void
2804 annotate_with_locus (tree node, location_t locus)
2805 {
2806 annotate_with_file_line (node, locus.file, locus.line);
2807 }
2808 #endif
2809 \f
2810 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2811 is ATTRIBUTE. */
2812
2813 tree
2814 build_decl_attribute_variant (tree ddecl, tree attribute)
2815 {
2816 DECL_ATTRIBUTES (ddecl) = attribute;
2817 return ddecl;
2818 }
2819
2820 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2821 is ATTRIBUTE.
2822
2823 Record such modified types already made so we don't make duplicates. */
2824
2825 tree
2826 build_type_attribute_variant (tree ttype, tree attribute)
2827 {
2828 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2829 {
2830 hashval_t hashcode = 0;
2831 tree ntype;
2832 enum tree_code code = TREE_CODE (ttype);
2833
2834 ntype = copy_node (ttype);
2835
2836 TYPE_POINTER_TO (ntype) = 0;
2837 TYPE_REFERENCE_TO (ntype) = 0;
2838 TYPE_ATTRIBUTES (ntype) = attribute;
2839
2840 /* Create a new main variant of TYPE. */
2841 TYPE_MAIN_VARIANT (ntype) = ntype;
2842 TYPE_NEXT_VARIANT (ntype) = 0;
2843 set_type_quals (ntype, TYPE_UNQUALIFIED);
2844
2845 hashcode = iterative_hash_object (code, hashcode);
2846 if (TREE_TYPE (ntype))
2847 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
2848 hashcode);
2849 hashcode = attribute_hash_list (attribute, hashcode);
2850
2851 switch (TREE_CODE (ntype))
2852 {
2853 case FUNCTION_TYPE:
2854 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
2855 break;
2856 case ARRAY_TYPE:
2857 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
2858 hashcode);
2859 break;
2860 case INTEGER_TYPE:
2861 hashcode = iterative_hash_object
2862 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
2863 hashcode = iterative_hash_object
2864 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
2865 break;
2866 case REAL_TYPE:
2867 {
2868 unsigned int precision = TYPE_PRECISION (ntype);
2869 hashcode = iterative_hash_object (precision, hashcode);
2870 }
2871 break;
2872 default:
2873 break;
2874 }
2875
2876 ntype = type_hash_canon (hashcode, ntype);
2877 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2878 }
2879
2880 return ttype;
2881 }
2882
2883 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2884 or zero if not.
2885
2886 We try both `text' and `__text__', ATTR may be either one. */
2887 /* ??? It might be a reasonable simplification to require ATTR to be only
2888 `text'. One might then also require attribute lists to be stored in
2889 their canonicalized form. */
2890
2891 int
2892 is_attribute_p (const char *attr, tree ident)
2893 {
2894 int ident_len, attr_len;
2895 const char *p;
2896
2897 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2898 return 0;
2899
2900 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2901 return 1;
2902
2903 p = IDENTIFIER_POINTER (ident);
2904 ident_len = strlen (p);
2905 attr_len = strlen (attr);
2906
2907 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2908 if (attr[0] == '_')
2909 {
2910 if (attr[1] != '_'
2911 || attr[attr_len - 2] != '_'
2912 || attr[attr_len - 1] != '_')
2913 abort ();
2914 if (ident_len == attr_len - 4
2915 && strncmp (attr + 2, p, attr_len - 4) == 0)
2916 return 1;
2917 }
2918 else
2919 {
2920 if (ident_len == attr_len + 4
2921 && p[0] == '_' && p[1] == '_'
2922 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2923 && strncmp (attr, p + 2, attr_len) == 0)
2924 return 1;
2925 }
2926
2927 return 0;
2928 }
2929
2930 /* Given an attribute name and a list of attributes, return a pointer to the
2931 attribute's list element if the attribute is part of the list, or NULL_TREE
2932 if not found. If the attribute appears more than once, this only
2933 returns the first occurrence; the TREE_CHAIN of the return value should
2934 be passed back in if further occurrences are wanted. */
2935
2936 tree
2937 lookup_attribute (const char *attr_name, tree list)
2938 {
2939 tree l;
2940
2941 for (l = list; l; l = TREE_CHAIN (l))
2942 {
2943 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2944 abort ();
2945 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2946 return l;
2947 }
2948
2949 return NULL_TREE;
2950 }
2951
2952 /* Return an attribute list that is the union of a1 and a2. */
2953
2954 tree
2955 merge_attributes (tree a1, tree a2)
2956 {
2957 tree attributes;
2958
2959 /* Either one unset? Take the set one. */
2960
2961 if ((attributes = a1) == 0)
2962 attributes = a2;
2963
2964 /* One that completely contains the other? Take it. */
2965
2966 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2967 {
2968 if (attribute_list_contained (a2, a1))
2969 attributes = a2;
2970 else
2971 {
2972 /* Pick the longest list, and hang on the other list. */
2973
2974 if (list_length (a1) < list_length (a2))
2975 attributes = a2, a2 = a1;
2976
2977 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2978 {
2979 tree a;
2980 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2981 attributes);
2982 a != NULL_TREE;
2983 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2984 TREE_CHAIN (a)))
2985 {
2986 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2987 break;
2988 }
2989 if (a == NULL_TREE)
2990 {
2991 a1 = copy_node (a2);
2992 TREE_CHAIN (a1) = attributes;
2993 attributes = a1;
2994 }
2995 }
2996 }
2997 }
2998 return attributes;
2999 }
3000
3001 /* Given types T1 and T2, merge their attributes and return
3002 the result. */
3003
3004 tree
3005 merge_type_attributes (tree t1, tree t2)
3006 {
3007 return merge_attributes (TYPE_ATTRIBUTES (t1),
3008 TYPE_ATTRIBUTES (t2));
3009 }
3010
3011 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3012 the result. */
3013
3014 tree
3015 merge_decl_attributes (tree olddecl, tree newdecl)
3016 {
3017 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3018 DECL_ATTRIBUTES (newdecl));
3019 }
3020
3021 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
3022
3023 /* Specialization of merge_decl_attributes for various Windows targets.
3024
3025 This handles the following situation:
3026
3027 __declspec (dllimport) int foo;
3028 int foo;
3029
3030 The second instance of `foo' nullifies the dllimport. */
3031
3032 tree
3033 merge_dllimport_decl_attributes (tree old, tree new)
3034 {
3035 tree a;
3036 int delete_dllimport_p;
3037
3038 old = DECL_ATTRIBUTES (old);
3039 new = DECL_ATTRIBUTES (new);
3040
3041 /* What we need to do here is remove from `old' dllimport if it doesn't
3042 appear in `new'. dllimport behaves like extern: if a declaration is
3043 marked dllimport and a definition appears later, then the object
3044 is not dllimport'd. */
3045 if (lookup_attribute ("dllimport", old) != NULL_TREE
3046 && lookup_attribute ("dllimport", new) == NULL_TREE)
3047 delete_dllimport_p = 1;
3048 else
3049 delete_dllimport_p = 0;
3050
3051 a = merge_attributes (old, new);
3052
3053 if (delete_dllimport_p)
3054 {
3055 tree prev, t;
3056
3057 /* Scan the list for dllimport and delete it. */
3058 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3059 {
3060 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
3061 {
3062 if (prev == NULL_TREE)
3063 a = TREE_CHAIN (a);
3064 else
3065 TREE_CHAIN (prev) = TREE_CHAIN (t);
3066 break;
3067 }
3068 }
3069 }
3070
3071 return a;
3072 }
3073
3074 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
3075 \f
3076 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3077 of the various TYPE_QUAL values. */
3078
3079 static void
3080 set_type_quals (tree type, int type_quals)
3081 {
3082 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3083 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3084 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3085 }
3086
3087 /* Returns true iff cand is equivalent to base with type_quals. */
3088
3089 bool
3090 check_qualified_type (tree cand, tree base, int type_quals)
3091 {
3092 return (TYPE_QUALS (cand) == type_quals
3093 && TYPE_NAME (cand) == TYPE_NAME (base)
3094 /* Apparently this is needed for Objective-C. */
3095 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3096 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3097 TYPE_ATTRIBUTES (base)));
3098 }
3099
3100 /* Return a version of the TYPE, qualified as indicated by the
3101 TYPE_QUALS, if one exists. If no qualified version exists yet,
3102 return NULL_TREE. */
3103
3104 tree
3105 get_qualified_type (tree type, int type_quals)
3106 {
3107 tree t;
3108
3109 if (TYPE_QUALS (type) == type_quals)
3110 return type;
3111
3112 /* Search the chain of variants to see if there is already one there just
3113 like the one we need to have. If so, use that existing one. We must
3114 preserve the TYPE_NAME, since there is code that depends on this. */
3115 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3116 if (check_qualified_type (t, type, type_quals))
3117 return t;
3118
3119 return NULL_TREE;
3120 }
3121
3122 /* Like get_qualified_type, but creates the type if it does not
3123 exist. This function never returns NULL_TREE. */
3124
3125 tree
3126 build_qualified_type (tree type, int type_quals)
3127 {
3128 tree t;
3129
3130 /* See if we already have the appropriate qualified variant. */
3131 t = get_qualified_type (type, type_quals);
3132
3133 /* If not, build it. */
3134 if (!t)
3135 {
3136 t = build_type_copy (type);
3137 set_type_quals (t, type_quals);
3138 }
3139
3140 return t;
3141 }
3142
3143 /* Create a new variant of TYPE, equivalent but distinct.
3144 This is so the caller can modify it. */
3145
3146 tree
3147 build_type_copy (tree type)
3148 {
3149 tree t, m = TYPE_MAIN_VARIANT (type);
3150
3151 t = copy_node (type);
3152
3153 TYPE_POINTER_TO (t) = 0;
3154 TYPE_REFERENCE_TO (t) = 0;
3155
3156 /* Add this type to the chain of variants of TYPE. */
3157 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3158 TYPE_NEXT_VARIANT (m) = t;
3159
3160 return t;
3161 }
3162 \f
3163 /* Hashing of types so that we don't make duplicates.
3164 The entry point is `type_hash_canon'. */
3165
3166 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3167 with types in the TREE_VALUE slots), by adding the hash codes
3168 of the individual types. */
3169
3170 unsigned int
3171 type_hash_list (tree list, hashval_t hashcode)
3172 {
3173 tree tail;
3174
3175 for (tail = list; tail; tail = TREE_CHAIN (tail))
3176 if (TREE_VALUE (tail) != error_mark_node)
3177 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
3178 hashcode);
3179
3180 return hashcode;
3181 }
3182
3183 /* These are the Hashtable callback functions. */
3184
3185 /* Returns true iff the types are equivalent. */
3186
3187 static int
3188 type_hash_eq (const void *va, const void *vb)
3189 {
3190 const struct type_hash *a = va, *b = vb;
3191
3192 /* First test the things that are the same for all types. */
3193 if (a->hash != b->hash
3194 || TREE_CODE (a->type) != TREE_CODE (b->type)
3195 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
3196 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3197 TYPE_ATTRIBUTES (b->type))
3198 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
3199 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
3200 return 0;
3201
3202 switch (TREE_CODE (a->type))
3203 {
3204 case VOID_TYPE:
3205 case COMPLEX_TYPE:
3206 case VECTOR_TYPE:
3207 case POINTER_TYPE:
3208 case REFERENCE_TYPE:
3209 return 1;
3210
3211 case ENUMERAL_TYPE:
3212 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
3213 && !(TYPE_VALUES (a->type)
3214 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
3215 && TYPE_VALUES (b->type)
3216 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
3217 && type_list_equal (TYPE_VALUES (a->type),
3218 TYPE_VALUES (b->type))))
3219 return 0;
3220
3221 /* ... fall through ... */
3222
3223 case INTEGER_TYPE:
3224 case REAL_TYPE:
3225 case BOOLEAN_TYPE:
3226 case CHAR_TYPE:
3227 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3228 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3229 TYPE_MAX_VALUE (b->type)))
3230 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3231 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3232 TYPE_MIN_VALUE (b->type))));
3233
3234 case OFFSET_TYPE:
3235 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
3236
3237 case METHOD_TYPE:
3238 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
3239 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3240 || (TYPE_ARG_TYPES (a->type)
3241 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3242 && TYPE_ARG_TYPES (b->type)
3243 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3244 && type_list_equal (TYPE_ARG_TYPES (a->type),
3245 TYPE_ARG_TYPES (b->type)))));
3246
3247 case ARRAY_TYPE:
3248 case SET_TYPE:
3249 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
3250
3251 case RECORD_TYPE:
3252 case UNION_TYPE:
3253 case QUAL_UNION_TYPE:
3254 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
3255 || (TYPE_FIELDS (a->type)
3256 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
3257 && TYPE_FIELDS (b->type)
3258 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
3259 && type_list_equal (TYPE_FIELDS (a->type),
3260 TYPE_FIELDS (b->type))));
3261
3262 case FUNCTION_TYPE:
3263 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3264 || (TYPE_ARG_TYPES (a->type)
3265 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3266 && TYPE_ARG_TYPES (b->type)
3267 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3268 && type_list_equal (TYPE_ARG_TYPES (a->type),
3269 TYPE_ARG_TYPES (b->type))));
3270
3271 default:
3272 return 0;
3273 }
3274 }
3275
3276 /* Return the cached hash value. */
3277
3278 static hashval_t
3279 type_hash_hash (const void *item)
3280 {
3281 return ((const struct type_hash *) item)->hash;
3282 }
3283
3284 /* Look in the type hash table for a type isomorphic to TYPE.
3285 If one is found, return it. Otherwise return 0. */
3286
3287 tree
3288 type_hash_lookup (hashval_t hashcode, tree type)
3289 {
3290 struct type_hash *h, in;
3291
3292 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3293 must call that routine before comparing TYPE_ALIGNs. */
3294 layout_type (type);
3295
3296 in.hash = hashcode;
3297 in.type = type;
3298
3299 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3300 if (h)
3301 return h->type;
3302 return NULL_TREE;
3303 }
3304
3305 /* Add an entry to the type-hash-table
3306 for a type TYPE whose hash code is HASHCODE. */
3307
3308 void
3309 type_hash_add (hashval_t hashcode, tree type)
3310 {
3311 struct type_hash *h;
3312 void **loc;
3313
3314 h = ggc_alloc (sizeof (struct type_hash));
3315 h->hash = hashcode;
3316 h->type = type;
3317 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3318 *(struct type_hash **) loc = h;
3319 }
3320
3321 /* Given TYPE, and HASHCODE its hash code, return the canonical
3322 object for an identical type if one already exists.
3323 Otherwise, return TYPE, and record it as the canonical object.
3324
3325 To use this function, first create a type of the sort you want.
3326 Then compute its hash code from the fields of the type that
3327 make it different from other similar types.
3328 Then call this function and use the value. */
3329
3330 tree
3331 type_hash_canon (unsigned int hashcode, tree type)
3332 {
3333 tree t1;
3334
3335 /* The hash table only contains main variants, so ensure that's what we're
3336 being passed. */
3337 if (TYPE_MAIN_VARIANT (type) != type)
3338 abort ();
3339
3340 if (!lang_hooks.types.hash_types)
3341 return type;
3342
3343 /* See if the type is in the hash table already. If so, return it.
3344 Otherwise, add the type. */
3345 t1 = type_hash_lookup (hashcode, type);
3346 if (t1 != 0)
3347 {
3348 #ifdef GATHER_STATISTICS
3349 tree_node_counts[(int) t_kind]--;
3350 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3351 #endif
3352 return t1;
3353 }
3354 else
3355 {
3356 type_hash_add (hashcode, type);
3357 return type;
3358 }
3359 }
3360
3361 /* See if the data pointed to by the type hash table is marked. We consider
3362 it marked if the type is marked or if a debug type number or symbol
3363 table entry has been made for the type. This reduces the amount of
3364 debugging output and eliminates that dependency of the debug output on
3365 the number of garbage collections. */
3366
3367 static int
3368 type_hash_marked_p (const void *p)
3369 {
3370 tree type = ((struct type_hash *) p)->type;
3371
3372 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3373 }
3374
3375 static void
3376 print_type_hash_statistics (void)
3377 {
3378 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3379 (long) htab_size (type_hash_table),
3380 (long) htab_elements (type_hash_table),
3381 htab_collisions (type_hash_table));
3382 }
3383
3384 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3385 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3386 by adding the hash codes of the individual attributes. */
3387
3388 unsigned int
3389 attribute_hash_list (tree list, hashval_t hashcode)
3390 {
3391 tree tail;
3392
3393 for (tail = list; tail; tail = TREE_CHAIN (tail))
3394 /* ??? Do we want to add in TREE_VALUE too? */
3395 hashcode = iterative_hash_object
3396 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
3397 return hashcode;
3398 }
3399
3400 /* Given two lists of attributes, return true if list l2 is
3401 equivalent to l1. */
3402
3403 int
3404 attribute_list_equal (tree l1, tree l2)
3405 {
3406 return attribute_list_contained (l1, l2)
3407 && attribute_list_contained (l2, l1);
3408 }
3409
3410 /* Given two lists of attributes, return true if list L2 is
3411 completely contained within L1. */
3412 /* ??? This would be faster if attribute names were stored in a canonicalized
3413 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3414 must be used to show these elements are equivalent (which they are). */
3415 /* ??? It's not clear that attributes with arguments will always be handled
3416 correctly. */
3417
3418 int
3419 attribute_list_contained (tree l1, tree l2)
3420 {
3421 tree t1, t2;
3422
3423 /* First check the obvious, maybe the lists are identical. */
3424 if (l1 == l2)
3425 return 1;
3426
3427 /* Maybe the lists are similar. */
3428 for (t1 = l1, t2 = l2;
3429 t1 != 0 && t2 != 0
3430 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3431 && TREE_VALUE (t1) == TREE_VALUE (t2);
3432 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3433
3434 /* Maybe the lists are equal. */
3435 if (t1 == 0 && t2 == 0)
3436 return 1;
3437
3438 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3439 {
3440 tree attr;
3441 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3442 attr != NULL_TREE;
3443 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3444 TREE_CHAIN (attr)))
3445 {
3446 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3447 break;
3448 }
3449
3450 if (attr == 0)
3451 return 0;
3452
3453 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3454 return 0;
3455 }
3456
3457 return 1;
3458 }
3459
3460 /* Given two lists of types
3461 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3462 return 1 if the lists contain the same types in the same order.
3463 Also, the TREE_PURPOSEs must match. */
3464
3465 int
3466 type_list_equal (tree l1, tree l2)
3467 {
3468 tree t1, t2;
3469
3470 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3471 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3472 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3473 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3474 && (TREE_TYPE (TREE_PURPOSE (t1))
3475 == TREE_TYPE (TREE_PURPOSE (t2))))))
3476 return 0;
3477
3478 return t1 == t2;
3479 }
3480
3481 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3482 given by TYPE. If the argument list accepts variable arguments,
3483 then this function counts only the ordinary arguments. */
3484
3485 int
3486 type_num_arguments (tree type)
3487 {
3488 int i = 0;
3489 tree t;
3490
3491 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3492 /* If the function does not take a variable number of arguments,
3493 the last element in the list will have type `void'. */
3494 if (VOID_TYPE_P (TREE_VALUE (t)))
3495 break;
3496 else
3497 ++i;
3498
3499 return i;
3500 }
3501
3502 /* Nonzero if integer constants T1 and T2
3503 represent the same constant value. */
3504
3505 int
3506 tree_int_cst_equal (tree t1, tree t2)
3507 {
3508 if (t1 == t2)
3509 return 1;
3510
3511 if (t1 == 0 || t2 == 0)
3512 return 0;
3513
3514 if (TREE_CODE (t1) == INTEGER_CST
3515 && TREE_CODE (t2) == INTEGER_CST
3516 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3517 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3518 return 1;
3519
3520 return 0;
3521 }
3522
3523 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3524 The precise way of comparison depends on their data type. */
3525
3526 int
3527 tree_int_cst_lt (tree t1, tree t2)
3528 {
3529 if (t1 == t2)
3530 return 0;
3531
3532 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
3533 {
3534 int t1_sgn = tree_int_cst_sgn (t1);
3535 int t2_sgn = tree_int_cst_sgn (t2);
3536
3537 if (t1_sgn < t2_sgn)
3538 return 1;
3539 else if (t1_sgn > t2_sgn)
3540 return 0;
3541 /* Otherwise, both are non-negative, so we compare them as
3542 unsigned just in case one of them would overflow a signed
3543 type. */
3544 }
3545 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
3546 return INT_CST_LT (t1, t2);
3547
3548 return INT_CST_LT_UNSIGNED (t1, t2);
3549 }
3550
3551 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3552
3553 int
3554 tree_int_cst_compare (tree t1, tree t2)
3555 {
3556 if (tree_int_cst_lt (t1, t2))
3557 return -1;
3558 else if (tree_int_cst_lt (t2, t1))
3559 return 1;
3560 else
3561 return 0;
3562 }
3563
3564 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3565 the host. If POS is zero, the value can be represented in a single
3566 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3567 be represented in a single unsigned HOST_WIDE_INT. */
3568
3569 int
3570 host_integerp (tree t, int pos)
3571 {
3572 return (TREE_CODE (t) == INTEGER_CST
3573 && ! TREE_OVERFLOW (t)
3574 && ((TREE_INT_CST_HIGH (t) == 0
3575 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3576 || (! pos && TREE_INT_CST_HIGH (t) == -1
3577 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3578 && !TYPE_UNSIGNED (TREE_TYPE (t)))
3579 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3580 }
3581
3582 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3583 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3584 be positive. Abort if we cannot satisfy the above conditions. */
3585
3586 HOST_WIDE_INT
3587 tree_low_cst (tree t, int pos)
3588 {
3589 if (host_integerp (t, pos))
3590 return TREE_INT_CST_LOW (t);
3591 else
3592 abort ();
3593 }
3594
3595 /* Return the most significant bit of the integer constant T. */
3596
3597 int
3598 tree_int_cst_msb (tree t)
3599 {
3600 int prec;
3601 HOST_WIDE_INT h;
3602 unsigned HOST_WIDE_INT l;
3603
3604 /* Note that using TYPE_PRECISION here is wrong. We care about the
3605 actual bits, not the (arbitrary) range of the type. */
3606 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3607 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3608 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3609 return (l & 1) == 1;
3610 }
3611
3612 /* Return an indication of the sign of the integer constant T.
3613 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3614 Note that -1 will never be returned it T's type is unsigned. */
3615
3616 int
3617 tree_int_cst_sgn (tree t)
3618 {
3619 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3620 return 0;
3621 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
3622 return 1;
3623 else if (TREE_INT_CST_HIGH (t) < 0)
3624 return -1;
3625 else
3626 return 1;
3627 }
3628
3629 /* Compare two constructor-element-type constants. Return 1 if the lists
3630 are known to be equal; otherwise return 0. */
3631
3632 int
3633 simple_cst_list_equal (tree l1, tree l2)
3634 {
3635 while (l1 != NULL_TREE && l2 != NULL_TREE)
3636 {
3637 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3638 return 0;
3639
3640 l1 = TREE_CHAIN (l1);
3641 l2 = TREE_CHAIN (l2);
3642 }
3643
3644 return l1 == l2;
3645 }
3646
3647 /* Return truthvalue of whether T1 is the same tree structure as T2.
3648 Return 1 if they are the same.
3649 Return 0 if they are understandably different.
3650 Return -1 if either contains tree structure not understood by
3651 this function. */
3652
3653 int
3654 simple_cst_equal (tree t1, tree t2)
3655 {
3656 enum tree_code code1, code2;
3657 int cmp;
3658 int i;
3659
3660 if (t1 == t2)
3661 return 1;
3662 if (t1 == 0 || t2 == 0)
3663 return 0;
3664
3665 code1 = TREE_CODE (t1);
3666 code2 = TREE_CODE (t2);
3667
3668 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3669 {
3670 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3671 || code2 == NON_LVALUE_EXPR)
3672 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3673 else
3674 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3675 }
3676
3677 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3678 || code2 == NON_LVALUE_EXPR)
3679 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3680
3681 if (code1 != code2)
3682 return 0;
3683
3684 switch (code1)
3685 {
3686 case INTEGER_CST:
3687 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3688 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3689
3690 case REAL_CST:
3691 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3692
3693 case STRING_CST:
3694 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3695 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3696 TREE_STRING_LENGTH (t1)));
3697
3698 case CONSTRUCTOR:
3699 return simple_cst_list_equal (CONSTRUCTOR_ELTS (t1),
3700 CONSTRUCTOR_ELTS (t2));
3701
3702 case SAVE_EXPR:
3703 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3704
3705 case CALL_EXPR:
3706 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3707 if (cmp <= 0)
3708 return cmp;
3709 return
3710 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3711
3712 case TARGET_EXPR:
3713 /* Special case: if either target is an unallocated VAR_DECL,
3714 it means that it's going to be unified with whatever the
3715 TARGET_EXPR is really supposed to initialize, so treat it
3716 as being equivalent to anything. */
3717 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3718 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3719 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3720 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3721 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3722 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3723 cmp = 1;
3724 else
3725 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3726
3727 if (cmp <= 0)
3728 return cmp;
3729
3730 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3731
3732 case WITH_CLEANUP_EXPR:
3733 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3734 if (cmp <= 0)
3735 return cmp;
3736
3737 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3738
3739 case COMPONENT_REF:
3740 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3741 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3742
3743 return 0;
3744
3745 case VAR_DECL:
3746 case PARM_DECL:
3747 case CONST_DECL:
3748 case FUNCTION_DECL:
3749 return 0;
3750
3751 default:
3752 break;
3753 }
3754
3755 /* This general rule works for most tree codes. All exceptions should be
3756 handled above. If this is a language-specific tree code, we can't
3757 trust what might be in the operand, so say we don't know
3758 the situation. */
3759 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3760 return -1;
3761
3762 switch (TREE_CODE_CLASS (code1))
3763 {
3764 case '1':
3765 case '2':
3766 case '<':
3767 case 'e':
3768 case 'r':
3769 case 's':
3770 cmp = 1;
3771 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3772 {
3773 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3774 if (cmp <= 0)
3775 return cmp;
3776 }
3777
3778 return cmp;
3779
3780 default:
3781 return -1;
3782 }
3783 }
3784
3785 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3786 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3787 than U, respectively. */
3788
3789 int
3790 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
3791 {
3792 if (tree_int_cst_sgn (t) < 0)
3793 return -1;
3794 else if (TREE_INT_CST_HIGH (t) != 0)
3795 return 1;
3796 else if (TREE_INT_CST_LOW (t) == u)
3797 return 0;
3798 else if (TREE_INT_CST_LOW (t) < u)
3799 return -1;
3800 else
3801 return 1;
3802 }
3803
3804 /* Return true if CODE represents an associative tree code. Otherwise
3805 return false. */
3806 bool
3807 associative_tree_code (enum tree_code code)
3808 {
3809 switch (code)
3810 {
3811 case BIT_IOR_EXPR:
3812 case BIT_AND_EXPR:
3813 case BIT_XOR_EXPR:
3814 case PLUS_EXPR:
3815 case MULT_EXPR:
3816 case MIN_EXPR:
3817 case MAX_EXPR:
3818 return true;
3819
3820 default:
3821 break;
3822 }
3823 return false;
3824 }
3825
3826 /* Return true if CODE represents an commutative tree code. Otherwise
3827 return false. */
3828 bool
3829 commutative_tree_code (enum tree_code code)
3830 {
3831 switch (code)
3832 {
3833 case PLUS_EXPR:
3834 case MULT_EXPR:
3835 case MIN_EXPR:
3836 case MAX_EXPR:
3837 case BIT_IOR_EXPR:
3838 case BIT_XOR_EXPR:
3839 case BIT_AND_EXPR:
3840 case NE_EXPR:
3841 case EQ_EXPR:
3842 case UNORDERED_EXPR:
3843 case ORDERED_EXPR:
3844 case UNEQ_EXPR:
3845 case LTGT_EXPR:
3846 case TRUTH_AND_EXPR:
3847 case TRUTH_XOR_EXPR:
3848 case TRUTH_OR_EXPR:
3849 return true;
3850
3851 default:
3852 break;
3853 }
3854 return false;
3855 }
3856
3857 /* Generate a hash value for an expression. This can be used iteratively
3858 by passing a previous result as the "val" argument.
3859
3860 This function is intended to produce the same hash for expressions which
3861 would compare equal using operand_equal_p. */
3862
3863 hashval_t
3864 iterative_hash_expr (tree t, hashval_t val)
3865 {
3866 int i;
3867 enum tree_code code;
3868 char class;
3869
3870 if (t == NULL_TREE)
3871 return iterative_hash_object (t, val);
3872
3873 code = TREE_CODE (t);
3874 class = TREE_CODE_CLASS (code);
3875
3876 if (class == 'd'
3877 || TREE_CODE (t) == VALUE_HANDLE)
3878 {
3879 /* Decls we can just compare by pointer. */
3880 val = iterative_hash_object (t, val);
3881 }
3882 else if (class == 'c')
3883 {
3884 /* Alas, constants aren't shared, so we can't rely on pointer
3885 identity. */
3886 if (code == INTEGER_CST)
3887 {
3888 val = iterative_hash_object (TREE_INT_CST_LOW (t), val);
3889 val = iterative_hash_object (TREE_INT_CST_HIGH (t), val);
3890 }
3891 else if (code == REAL_CST)
3892 {
3893 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
3894
3895 val = iterative_hash (&val2, sizeof (unsigned int), val);
3896 }
3897 else if (code == STRING_CST)
3898 val = iterative_hash (TREE_STRING_POINTER (t),
3899 TREE_STRING_LENGTH (t), val);
3900 else if (code == COMPLEX_CST)
3901 {
3902 val = iterative_hash_expr (TREE_REALPART (t), val);
3903 val = iterative_hash_expr (TREE_IMAGPART (t), val);
3904 }
3905 else if (code == VECTOR_CST)
3906 val = iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
3907 else
3908 abort ();
3909 }
3910 else if (IS_EXPR_CODE_CLASS (class))
3911 {
3912 val = iterative_hash_object (code, val);
3913
3914 /* Don't hash the type, that can lead to having nodes which
3915 compare equal according to operand_equal_p, but which
3916 have different hash codes. */
3917 if (code == NOP_EXPR
3918 || code == CONVERT_EXPR
3919 || code == NON_LVALUE_EXPR)
3920 {
3921 /* Make sure to include signness in the hash computation. */
3922 val += TYPE_UNSIGNED (TREE_TYPE (t));
3923 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
3924 }
3925
3926 if (commutative_tree_code (code))
3927 {
3928 /* It's a commutative expression. We want to hash it the same
3929 however it appears. We do this by first hashing both operands
3930 and then rehashing based on the order of their independent
3931 hashes. */
3932 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
3933 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
3934 hashval_t t;
3935
3936 if (one > two)
3937 t = one, one = two, two = t;
3938
3939 val = iterative_hash_object (one, val);
3940 val = iterative_hash_object (two, val);
3941 }
3942 else
3943 for (i = first_rtl_op (code) - 1; i >= 0; --i)
3944 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
3945 }
3946 else if (code == TREE_LIST)
3947 {
3948 /* A list of expressions, for a CALL_EXPR or as the elements of a
3949 VECTOR_CST. */
3950 for (; t; t = TREE_CHAIN (t))
3951 val = iterative_hash_expr (TREE_VALUE (t), val);
3952 }
3953 else if (code == SSA_NAME)
3954 {
3955 val = iterative_hash_object (SSA_NAME_VERSION (t), val);
3956 val = iterative_hash_expr (SSA_NAME_VAR (t), val);
3957 }
3958 else
3959 abort ();
3960
3961 return val;
3962 }
3963 \f
3964 /* Constructors for pointer, array and function types.
3965 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3966 constructed by language-dependent code, not here.) */
3967
3968 /* Construct, lay out and return the type of pointers to TO_TYPE with
3969 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
3970 reference all of memory. If such a type has already been
3971 constructed, reuse it. */
3972
3973 tree
3974 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
3975 bool can_alias_all)
3976 {
3977 tree t;
3978
3979 /* In some cases, languages will have things that aren't a POINTER_TYPE
3980 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
3981 In that case, return that type without regard to the rest of our
3982 operands.
3983
3984 ??? This is a kludge, but consistent with the way this function has
3985 always operated and there doesn't seem to be a good way to avoid this
3986 at the moment. */
3987 if (TYPE_POINTER_TO (to_type) != 0
3988 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
3989 return TYPE_POINTER_TO (to_type);
3990
3991 /* First, if we already have a type for pointers to TO_TYPE and it's
3992 the proper mode, use it. */
3993 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
3994 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
3995 return t;
3996
3997 t = make_node (POINTER_TYPE);
3998
3999 TREE_TYPE (t) = to_type;
4000 TYPE_MODE (t) = mode;
4001 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4002 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
4003 TYPE_POINTER_TO (to_type) = t;
4004
4005 /* Lay out the type. This function has many callers that are concerned
4006 with expression-construction, and this simplifies them all. */
4007 layout_type (t);
4008
4009 return t;
4010 }
4011
4012 /* By default build pointers in ptr_mode. */
4013
4014 tree
4015 build_pointer_type (tree to_type)
4016 {
4017 return build_pointer_type_for_mode (to_type, ptr_mode, false);
4018 }
4019
4020 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
4021
4022 tree
4023 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
4024 bool can_alias_all)
4025 {
4026 tree t;
4027
4028 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
4029 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
4030 In that case, return that type without regard to the rest of our
4031 operands.
4032
4033 ??? This is a kludge, but consistent with the way this function has
4034 always operated and there doesn't seem to be a good way to avoid this
4035 at the moment. */
4036 if (TYPE_REFERENCE_TO (to_type) != 0
4037 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
4038 return TYPE_REFERENCE_TO (to_type);
4039
4040 /* First, if we already have a type for pointers to TO_TYPE and it's
4041 the proper mode, use it. */
4042 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
4043 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4044 return t;
4045
4046 t = make_node (REFERENCE_TYPE);
4047
4048 TREE_TYPE (t) = to_type;
4049 TYPE_MODE (t) = mode;
4050 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4051 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
4052 TYPE_REFERENCE_TO (to_type) = t;
4053
4054 layout_type (t);
4055
4056 return t;
4057 }
4058
4059
4060 /* Build the node for the type of references-to-TO_TYPE by default
4061 in ptr_mode. */
4062
4063 tree
4064 build_reference_type (tree to_type)
4065 {
4066 return build_reference_type_for_mode (to_type, ptr_mode, false);
4067 }
4068
4069 /* Build a type that is compatible with t but has no cv quals anywhere
4070 in its type, thus
4071
4072 const char *const *const * -> char ***. */
4073
4074 tree
4075 build_type_no_quals (tree t)
4076 {
4077 switch (TREE_CODE (t))
4078 {
4079 case POINTER_TYPE:
4080 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4081 TYPE_MODE (t),
4082 TYPE_REF_CAN_ALIAS_ALL (t));
4083 case REFERENCE_TYPE:
4084 return
4085 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4086 TYPE_MODE (t),
4087 TYPE_REF_CAN_ALIAS_ALL (t));
4088 default:
4089 return TYPE_MAIN_VARIANT (t);
4090 }
4091 }
4092
4093 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4094 MAXVAL should be the maximum value in the domain
4095 (one less than the length of the array).
4096
4097 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4098 We don't enforce this limit, that is up to caller (e.g. language front end).
4099 The limit exists because the result is a signed type and we don't handle
4100 sizes that use more than one HOST_WIDE_INT. */
4101
4102 tree
4103 build_index_type (tree maxval)
4104 {
4105 tree itype = make_node (INTEGER_TYPE);
4106
4107 TREE_TYPE (itype) = sizetype;
4108 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4109 TYPE_MIN_VALUE (itype) = size_zero_node;
4110 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
4111 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4112 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4113 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4114 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4115 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
4116
4117 if (host_integerp (maxval, 1))
4118 return type_hash_canon (tree_low_cst (maxval, 1), itype);
4119 else
4120 return itype;
4121 }
4122
4123 /* Builds a signed or unsigned integer type of precision PRECISION.
4124 Used for C bitfields whose precision does not match that of
4125 built-in target types. */
4126 tree
4127 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
4128 int unsignedp)
4129 {
4130 tree itype = make_node (INTEGER_TYPE);
4131
4132 TYPE_PRECISION (itype) = precision;
4133
4134 if (unsignedp)
4135 fixup_unsigned_type (itype);
4136 else
4137 fixup_signed_type (itype);
4138
4139 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
4140 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
4141
4142 return itype;
4143 }
4144
4145 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4146 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4147 low bound LOWVAL and high bound HIGHVAL.
4148 if TYPE==NULL_TREE, sizetype is used. */
4149
4150 tree
4151 build_range_type (tree type, tree lowval, tree highval)
4152 {
4153 tree itype = make_node (INTEGER_TYPE);
4154
4155 TREE_TYPE (itype) = type;
4156 if (type == NULL_TREE)
4157 type = sizetype;
4158
4159 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4160 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4161
4162 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4163 TYPE_MODE (itype) = TYPE_MODE (type);
4164 TYPE_SIZE (itype) = TYPE_SIZE (type);
4165 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4166 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4167 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
4168
4169 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
4170 return type_hash_canon (tree_low_cst (highval, 0)
4171 - tree_low_cst (lowval, 0),
4172 itype);
4173 else
4174 return itype;
4175 }
4176
4177 /* Just like build_index_type, but takes lowval and highval instead
4178 of just highval (maxval). */
4179
4180 tree
4181 build_index_2_type (tree lowval, tree highval)
4182 {
4183 return build_range_type (sizetype, lowval, highval);
4184 }
4185
4186 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4187 and number of elements specified by the range of values of INDEX_TYPE.
4188 If such a type has already been constructed, reuse it. */
4189
4190 tree
4191 build_array_type (tree elt_type, tree index_type)
4192 {
4193 tree t;
4194 hashval_t hashcode = 0;
4195
4196 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4197 {
4198 error ("arrays of functions are not meaningful");
4199 elt_type = integer_type_node;
4200 }
4201
4202 t = make_node (ARRAY_TYPE);
4203 TREE_TYPE (t) = elt_type;
4204 TYPE_DOMAIN (t) = index_type;
4205
4206 if (index_type == 0)
4207 return t;
4208
4209 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
4210 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
4211 t = type_hash_canon (hashcode, t);
4212
4213 if (!COMPLETE_TYPE_P (t))
4214 layout_type (t);
4215 return t;
4216 }
4217
4218 /* Return the TYPE of the elements comprising
4219 the innermost dimension of ARRAY. */
4220
4221 tree
4222 get_inner_array_type (tree array)
4223 {
4224 tree type = TREE_TYPE (array);
4225
4226 while (TREE_CODE (type) == ARRAY_TYPE)
4227 type = TREE_TYPE (type);
4228
4229 return type;
4230 }
4231
4232 /* Construct, lay out and return
4233 the type of functions returning type VALUE_TYPE
4234 given arguments of types ARG_TYPES.
4235 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4236 are data type nodes for the arguments of the function.
4237 If such a type has already been constructed, reuse it. */
4238
4239 tree
4240 build_function_type (tree value_type, tree arg_types)
4241 {
4242 tree t;
4243 hashval_t hashcode = 0;
4244
4245 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4246 {
4247 error ("function return type cannot be function");
4248 value_type = integer_type_node;
4249 }
4250
4251 /* Make a node of the sort we want. */
4252 t = make_node (FUNCTION_TYPE);
4253 TREE_TYPE (t) = value_type;
4254 TYPE_ARG_TYPES (t) = arg_types;
4255
4256 /* If we already have such a type, use the old one. */
4257 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
4258 hashcode = type_hash_list (arg_types, hashcode);
4259 t = type_hash_canon (hashcode, t);
4260
4261 if (!COMPLETE_TYPE_P (t))
4262 layout_type (t);
4263 return t;
4264 }
4265
4266 /* Build a function type. The RETURN_TYPE is the type returned by the
4267 function. If additional arguments are provided, they are
4268 additional argument types. The list of argument types must always
4269 be terminated by NULL_TREE. */
4270
4271 tree
4272 build_function_type_list (tree return_type, ...)
4273 {
4274 tree t, args, last;
4275 va_list p;
4276
4277 va_start (p, return_type);
4278
4279 t = va_arg (p, tree);
4280 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
4281 args = tree_cons (NULL_TREE, t, args);
4282
4283 last = args;
4284 args = nreverse (args);
4285 TREE_CHAIN (last) = void_list_node;
4286 args = build_function_type (return_type, args);
4287
4288 va_end (p);
4289 return args;
4290 }
4291
4292 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
4293 and ARGTYPES (a TREE_LIST) are the return type and arguments types
4294 for the method. An implicit additional parameter (of type
4295 pointer-to-BASETYPE) is added to the ARGTYPES. */
4296
4297 tree
4298 build_method_type_directly (tree basetype,
4299 tree rettype,
4300 tree argtypes)
4301 {
4302 tree t;
4303 tree ptype;
4304 int hashcode = 0;
4305
4306 /* Make a node of the sort we want. */
4307 t = make_node (METHOD_TYPE);
4308
4309 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4310 TREE_TYPE (t) = rettype;
4311 ptype = build_pointer_type (basetype);
4312
4313 /* The actual arglist for this function includes a "hidden" argument
4314 which is "this". Put it into the list of argument types. */
4315 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
4316 TYPE_ARG_TYPES (t) = argtypes;
4317
4318 /* If we already have such a type, use the old one. */
4319 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4320 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
4321 hashcode = type_hash_list (argtypes, hashcode);
4322 t = type_hash_canon (hashcode, t);
4323
4324 if (!COMPLETE_TYPE_P (t))
4325 layout_type (t);
4326
4327 return t;
4328 }
4329
4330 /* Construct, lay out and return the type of methods belonging to class
4331 BASETYPE and whose arguments and values are described by TYPE.
4332 If that type exists already, reuse it.
4333 TYPE must be a FUNCTION_TYPE node. */
4334
4335 tree
4336 build_method_type (tree basetype, tree type)
4337 {
4338 if (TREE_CODE (type) != FUNCTION_TYPE)
4339 abort ();
4340
4341 return build_method_type_directly (basetype,
4342 TREE_TYPE (type),
4343 TYPE_ARG_TYPES (type));
4344 }
4345
4346 /* Construct, lay out and return the type of offsets to a value
4347 of type TYPE, within an object of type BASETYPE.
4348 If a suitable offset type exists already, reuse it. */
4349
4350 tree
4351 build_offset_type (tree basetype, tree type)
4352 {
4353 tree t;
4354 hashval_t hashcode = 0;
4355
4356 /* Make a node of the sort we want. */
4357 t = make_node (OFFSET_TYPE);
4358
4359 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4360 TREE_TYPE (t) = type;
4361
4362 /* If we already have such a type, use the old one. */
4363 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4364 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
4365 t = type_hash_canon (hashcode, t);
4366
4367 if (!COMPLETE_TYPE_P (t))
4368 layout_type (t);
4369
4370 return t;
4371 }
4372
4373 /* Create a complex type whose components are COMPONENT_TYPE. */
4374
4375 tree
4376 build_complex_type (tree component_type)
4377 {
4378 tree t;
4379 hashval_t hashcode;
4380
4381 /* Make a node of the sort we want. */
4382 t = make_node (COMPLEX_TYPE);
4383
4384 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4385
4386 /* If we already have such a type, use the old one. */
4387 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
4388 t = type_hash_canon (hashcode, t);
4389
4390 if (!COMPLETE_TYPE_P (t))
4391 layout_type (t);
4392
4393 /* If we are writing Dwarf2 output we need to create a name,
4394 since complex is a fundamental type. */
4395 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
4396 && ! TYPE_NAME (t))
4397 {
4398 const char *name;
4399 if (component_type == char_type_node)
4400 name = "complex char";
4401 else if (component_type == signed_char_type_node)
4402 name = "complex signed char";
4403 else if (component_type == unsigned_char_type_node)
4404 name = "complex unsigned char";
4405 else if (component_type == short_integer_type_node)
4406 name = "complex short int";
4407 else if (component_type == short_unsigned_type_node)
4408 name = "complex short unsigned int";
4409 else if (component_type == integer_type_node)
4410 name = "complex int";
4411 else if (component_type == unsigned_type_node)
4412 name = "complex unsigned int";
4413 else if (component_type == long_integer_type_node)
4414 name = "complex long int";
4415 else if (component_type == long_unsigned_type_node)
4416 name = "complex long unsigned int";
4417 else if (component_type == long_long_integer_type_node)
4418 name = "complex long long int";
4419 else if (component_type == long_long_unsigned_type_node)
4420 name = "complex long long unsigned int";
4421 else
4422 name = 0;
4423
4424 if (name != 0)
4425 TYPE_NAME (t) = get_identifier (name);
4426 }
4427
4428 return build_qualified_type (t, TYPE_QUALS (component_type));
4429 }
4430 \f
4431 /* Return OP, stripped of any conversions to wider types as much as is safe.
4432 Converting the value back to OP's type makes a value equivalent to OP.
4433
4434 If FOR_TYPE is nonzero, we return a value which, if converted to
4435 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4436
4437 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4438 narrowest type that can hold the value, even if they don't exactly fit.
4439 Otherwise, bit-field references are changed to a narrower type
4440 only if they can be fetched directly from memory in that type.
4441
4442 OP must have integer, real or enumeral type. Pointers are not allowed!
4443
4444 There are some cases where the obvious value we could return
4445 would regenerate to OP if converted to OP's type,
4446 but would not extend like OP to wider types.
4447 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4448 For example, if OP is (unsigned short)(signed char)-1,
4449 we avoid returning (signed char)-1 if FOR_TYPE is int,
4450 even though extending that to an unsigned short would regenerate OP,
4451 since the result of extending (signed char)-1 to (int)
4452 is different from (int) OP. */
4453
4454 tree
4455 get_unwidened (tree op, tree for_type)
4456 {
4457 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4458 tree type = TREE_TYPE (op);
4459 unsigned final_prec
4460 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4461 int uns
4462 = (for_type != 0 && for_type != type
4463 && final_prec > TYPE_PRECISION (type)
4464 && TYPE_UNSIGNED (type));
4465 tree win = op;
4466
4467 while (TREE_CODE (op) == NOP_EXPR)
4468 {
4469 int bitschange
4470 = TYPE_PRECISION (TREE_TYPE (op))
4471 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4472
4473 /* Truncations are many-one so cannot be removed.
4474 Unless we are later going to truncate down even farther. */
4475 if (bitschange < 0
4476 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4477 break;
4478
4479 /* See what's inside this conversion. If we decide to strip it,
4480 we will set WIN. */
4481 op = TREE_OPERAND (op, 0);
4482
4483 /* If we have not stripped any zero-extensions (uns is 0),
4484 we can strip any kind of extension.
4485 If we have previously stripped a zero-extension,
4486 only zero-extensions can safely be stripped.
4487 Any extension can be stripped if the bits it would produce
4488 are all going to be discarded later by truncating to FOR_TYPE. */
4489
4490 if (bitschange > 0)
4491 {
4492 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4493 win = op;
4494 /* TYPE_UNSIGNED says whether this is a zero-extension.
4495 Let's avoid computing it if it does not affect WIN
4496 and if UNS will not be needed again. */
4497 if ((uns || TREE_CODE (op) == NOP_EXPR)
4498 && TYPE_UNSIGNED (TREE_TYPE (op)))
4499 {
4500 uns = 1;
4501 win = op;
4502 }
4503 }
4504 }
4505
4506 if (TREE_CODE (op) == COMPONENT_REF
4507 /* Since type_for_size always gives an integer type. */
4508 && TREE_CODE (type) != REAL_TYPE
4509 /* Don't crash if field not laid out yet. */
4510 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4511 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4512 {
4513 unsigned int innerprec
4514 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4515 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4516 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4517 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4518
4519 /* We can get this structure field in the narrowest type it fits in.
4520 If FOR_TYPE is 0, do this only for a field that matches the
4521 narrower type exactly and is aligned for it
4522 The resulting extension to its nominal type (a fullword type)
4523 must fit the same conditions as for other extensions. */
4524
4525 if (type != 0
4526 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
4527 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4528 && (! uns || final_prec <= innerprec || unsignedp))
4529 {
4530 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4531 TREE_OPERAND (op, 1), NULL_TREE);
4532 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4533 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4534 }
4535 }
4536
4537 return win;
4538 }
4539 \f
4540 /* Return OP or a simpler expression for a narrower value
4541 which can be sign-extended or zero-extended to give back OP.
4542 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4543 or 0 if the value should be sign-extended. */
4544
4545 tree
4546 get_narrower (tree op, int *unsignedp_ptr)
4547 {
4548 int uns = 0;
4549 int first = 1;
4550 tree win = op;
4551 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
4552
4553 while (TREE_CODE (op) == NOP_EXPR)
4554 {
4555 int bitschange
4556 = (TYPE_PRECISION (TREE_TYPE (op))
4557 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4558
4559 /* Truncations are many-one so cannot be removed. */
4560 if (bitschange < 0)
4561 break;
4562
4563 /* See what's inside this conversion. If we decide to strip it,
4564 we will set WIN. */
4565
4566 if (bitschange > 0)
4567 {
4568 op = TREE_OPERAND (op, 0);
4569 /* An extension: the outermost one can be stripped,
4570 but remember whether it is zero or sign extension. */
4571 if (first)
4572 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4573 /* Otherwise, if a sign extension has been stripped,
4574 only sign extensions can now be stripped;
4575 if a zero extension has been stripped, only zero-extensions. */
4576 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
4577 break;
4578 first = 0;
4579 }
4580 else /* bitschange == 0 */
4581 {
4582 /* A change in nominal type can always be stripped, but we must
4583 preserve the unsignedness. */
4584 if (first)
4585 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4586 first = 0;
4587 op = TREE_OPERAND (op, 0);
4588 /* Keep trying to narrow, but don't assign op to win if it
4589 would turn an integral type into something else. */
4590 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
4591 continue;
4592 }
4593
4594 win = op;
4595 }
4596
4597 if (TREE_CODE (op) == COMPONENT_REF
4598 /* Since type_for_size always gives an integer type. */
4599 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4600 /* Ensure field is laid out already. */
4601 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4602 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4603 {
4604 unsigned HOST_WIDE_INT innerprec
4605 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4606 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4607 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4608 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4609
4610 /* We can get this structure field in a narrower type that fits it,
4611 but the resulting extension to its nominal type (a fullword type)
4612 must satisfy the same conditions as for other extensions.
4613
4614 Do this only for fields that are aligned (not bit-fields),
4615 because when bit-field insns will be used there is no
4616 advantage in doing this. */
4617
4618 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4619 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4620 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
4621 && type != 0)
4622 {
4623 if (first)
4624 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
4625 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4626 TREE_OPERAND (op, 1), NULL_TREE);
4627 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4628 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4629 }
4630 }
4631 *unsignedp_ptr = uns;
4632 return win;
4633 }
4634 \f
4635 /* Nonzero if integer constant C has a value that is permissible
4636 for type TYPE (an INTEGER_TYPE). */
4637
4638 int
4639 int_fits_type_p (tree c, tree type)
4640 {
4641 tree type_low_bound = TYPE_MIN_VALUE (type);
4642 tree type_high_bound = TYPE_MAX_VALUE (type);
4643 int ok_for_low_bound, ok_for_high_bound;
4644
4645 /* Perform some generic filtering first, which may allow making a decision
4646 even if the bounds are not constant. First, negative integers never fit
4647 in unsigned types, */
4648 if ((TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4649 /* Also, unsigned integers with top bit set never fit signed types. */
4650 || (! TYPE_UNSIGNED (type)
4651 && TYPE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4652 return 0;
4653
4654 /* If at least one bound of the type is a constant integer, we can check
4655 ourselves and maybe make a decision. If no such decision is possible, but
4656 this type is a subtype, try checking against that. Otherwise, use
4657 force_fit_type, which checks against the precision.
4658
4659 Compute the status for each possibly constant bound, and return if we see
4660 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4661 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4662 for "constant known to fit". */
4663
4664 ok_for_low_bound = -1;
4665 ok_for_high_bound = -1;
4666
4667 /* Check if C >= type_low_bound. */
4668 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4669 {
4670 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4671 if (! ok_for_low_bound)
4672 return 0;
4673 }
4674
4675 /* Check if c <= type_high_bound. */
4676 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4677 {
4678 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4679 if (! ok_for_high_bound)
4680 return 0;
4681 }
4682
4683 /* If the constant fits both bounds, the result is known. */
4684 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4685 return 1;
4686
4687 /* If we haven't been able to decide at this point, there nothing more we
4688 can check ourselves here. Look at the base type if we have one. */
4689 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4690 return int_fits_type_p (c, TREE_TYPE (type));
4691
4692 /* Or to force_fit_type, if nothing else. */
4693 else
4694 {
4695 c = copy_node (c);
4696 TREE_TYPE (c) = type;
4697 return !force_fit_type (c, 0);
4698 }
4699 }
4700
4701 /* Subprogram of following function. Called by walk_tree.
4702
4703 Return *TP if it is an automatic variable or parameter of the
4704 function passed in as DATA. */
4705
4706 static tree
4707 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
4708 {
4709 tree fn = (tree) data;
4710
4711 if (TYPE_P (*tp))
4712 *walk_subtrees = 0;
4713
4714 else if (DECL_P (*tp) && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
4715 return *tp;
4716
4717 return NULL_TREE;
4718 }
4719
4720 /* Returns true if T is, contains, or refers to a type with variable
4721 size. If FN is nonzero, only return true if a modifier of the type
4722 or position of FN is a variable or parameter inside FN.
4723
4724 This concept is more general than that of C99 'variably modified types':
4725 in C99, a struct type is never variably modified because a VLA may not
4726 appear as a structure member. However, in GNU C code like:
4727
4728 struct S { int i[f()]; };
4729
4730 is valid, and other languages may define similar constructs. */
4731
4732 bool
4733 variably_modified_type_p (tree type, tree fn)
4734 {
4735 tree t;
4736
4737 /* Test if T is either variable (if FN is zero) or an expression containing
4738 a variable in FN. */
4739 #define RETURN_TRUE_IF_VAR(T) \
4740 do { tree _t = (T); \
4741 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
4742 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
4743 return true; } while (0)
4744
4745 if (type == error_mark_node)
4746 return false;
4747
4748 /* If TYPE itself has variable size, it is variably modified.
4749
4750 We do not yet have a representation of the C99 '[*]' syntax.
4751 When a representation is chosen, this function should be modified
4752 to test for that case as well. */
4753 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
4754 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT(type));
4755
4756 switch (TREE_CODE (type))
4757 {
4758 case POINTER_TYPE:
4759 case REFERENCE_TYPE:
4760 case ARRAY_TYPE:
4761 case SET_TYPE:
4762 case VECTOR_TYPE:
4763 if (variably_modified_type_p (TREE_TYPE (type), fn))
4764 return true;
4765 break;
4766
4767 case FUNCTION_TYPE:
4768 case METHOD_TYPE:
4769 /* If TYPE is a function type, it is variably modified if any of the
4770 parameters or the return type are variably modified. */
4771 if (variably_modified_type_p (TREE_TYPE (type), fn))
4772 return true;
4773
4774 for (t = TYPE_ARG_TYPES (type);
4775 t && t != void_list_node;
4776 t = TREE_CHAIN (t))
4777 if (variably_modified_type_p (TREE_VALUE (t), fn))
4778 return true;
4779 break;
4780
4781 case INTEGER_TYPE:
4782 case REAL_TYPE:
4783 case ENUMERAL_TYPE:
4784 case BOOLEAN_TYPE:
4785 case CHAR_TYPE:
4786 /* Scalar types are variably modified if their end points
4787 aren't constant. */
4788 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
4789 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
4790 break;
4791
4792 case RECORD_TYPE:
4793 case UNION_TYPE:
4794 case QUAL_UNION_TYPE:
4795 /* We can't see if any of the field are variably-modified by the
4796 definition we normally use, since that would produce infinite
4797 recursion via pointers. */
4798 /* This is variably modified if some field's type is. */
4799 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
4800 if (TREE_CODE (t) == FIELD_DECL)
4801 {
4802 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
4803 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
4804 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
4805
4806 if (TREE_CODE (type) == QUAL_UNION_TYPE)
4807 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
4808 }
4809 break;
4810
4811 default:
4812 break;
4813 }
4814
4815 /* The current language may have other cases to check, but in general,
4816 all other types are not variably modified. */
4817 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
4818
4819 #undef RETURN_TRUE_IF_VAR
4820 }
4821
4822 /* Given a DECL or TYPE, return the scope in which it was declared, or
4823 NULL_TREE if there is no containing scope. */
4824
4825 tree
4826 get_containing_scope (tree t)
4827 {
4828 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4829 }
4830
4831 /* Return the innermost context enclosing DECL that is
4832 a FUNCTION_DECL, or zero if none. */
4833
4834 tree
4835 decl_function_context (tree decl)
4836 {
4837 tree context;
4838
4839 if (TREE_CODE (decl) == ERROR_MARK)
4840 return 0;
4841
4842 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4843 where we look up the function at runtime. Such functions always take
4844 a first argument of type 'pointer to real context'.
4845
4846 C++ should really be fixed to use DECL_CONTEXT for the real context,
4847 and use something else for the "virtual context". */
4848 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4849 context
4850 = TYPE_MAIN_VARIANT
4851 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4852 else
4853 context = DECL_CONTEXT (decl);
4854
4855 while (context && TREE_CODE (context) != FUNCTION_DECL)
4856 {
4857 if (TREE_CODE (context) == BLOCK)
4858 context = BLOCK_SUPERCONTEXT (context);
4859 else
4860 context = get_containing_scope (context);
4861 }
4862
4863 return context;
4864 }
4865
4866 /* Return the innermost context enclosing DECL that is
4867 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4868 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4869
4870 tree
4871 decl_type_context (tree decl)
4872 {
4873 tree context = DECL_CONTEXT (decl);
4874
4875 while (context)
4876 switch (TREE_CODE (context))
4877 {
4878 case NAMESPACE_DECL:
4879 case TRANSLATION_UNIT_DECL:
4880 return NULL_TREE;
4881
4882 case RECORD_TYPE:
4883 case UNION_TYPE:
4884 case QUAL_UNION_TYPE:
4885 return context;
4886
4887 case TYPE_DECL:
4888 case FUNCTION_DECL:
4889 context = DECL_CONTEXT (context);
4890 break;
4891
4892 case BLOCK:
4893 context = BLOCK_SUPERCONTEXT (context);
4894 break;
4895
4896 default:
4897 abort ();
4898 }
4899
4900 return NULL_TREE;
4901 }
4902
4903 /* CALL is a CALL_EXPR. Return the declaration for the function
4904 called, or NULL_TREE if the called function cannot be
4905 determined. */
4906
4907 tree
4908 get_callee_fndecl (tree call)
4909 {
4910 tree addr;
4911
4912 /* It's invalid to call this function with anything but a
4913 CALL_EXPR. */
4914 if (TREE_CODE (call) != CALL_EXPR)
4915 abort ();
4916
4917 /* The first operand to the CALL is the address of the function
4918 called. */
4919 addr = TREE_OPERAND (call, 0);
4920
4921 STRIP_NOPS (addr);
4922
4923 /* If this is a readonly function pointer, extract its initial value. */
4924 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4925 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4926 && DECL_INITIAL (addr))
4927 addr = DECL_INITIAL (addr);
4928
4929 /* If the address is just `&f' for some function `f', then we know
4930 that `f' is being called. */
4931 if (TREE_CODE (addr) == ADDR_EXPR
4932 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4933 return TREE_OPERAND (addr, 0);
4934
4935 /* We couldn't figure out what was being called. Maybe the front
4936 end has some idea. */
4937 return lang_hooks.lang_get_callee_fndecl (call);
4938 }
4939
4940 /* Print debugging information about tree nodes generated during the compile,
4941 and any language-specific information. */
4942
4943 void
4944 dump_tree_statistics (void)
4945 {
4946 #ifdef GATHER_STATISTICS
4947 int i;
4948 int total_nodes, total_bytes;
4949 #endif
4950
4951 fprintf (stderr, "\n??? tree nodes created\n\n");
4952 #ifdef GATHER_STATISTICS
4953 fprintf (stderr, "Kind Nodes Bytes\n");
4954 fprintf (stderr, "---------------------------------------\n");
4955 total_nodes = total_bytes = 0;
4956 for (i = 0; i < (int) all_kinds; i++)
4957 {
4958 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
4959 tree_node_counts[i], tree_node_sizes[i]);
4960 total_nodes += tree_node_counts[i];
4961 total_bytes += tree_node_sizes[i];
4962 }
4963 fprintf (stderr, "---------------------------------------\n");
4964 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
4965 fprintf (stderr, "---------------------------------------\n");
4966 ssanames_print_statistics ();
4967 phinodes_print_statistics ();
4968 #else
4969 fprintf (stderr, "(No per-node statistics)\n");
4970 #endif
4971 print_type_hash_statistics ();
4972 lang_hooks.print_statistics ();
4973 }
4974 \f
4975 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4976
4977 /* Generate a crc32 of a string. */
4978
4979 unsigned
4980 crc32_string (unsigned chksum, const char *string)
4981 {
4982 do
4983 {
4984 unsigned value = *string << 24;
4985 unsigned ix;
4986
4987 for (ix = 8; ix--; value <<= 1)
4988 {
4989 unsigned feedback;
4990
4991 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
4992 chksum <<= 1;
4993 chksum ^= feedback;
4994 }
4995 }
4996 while (*string++);
4997 return chksum;
4998 }
4999
5000 /* P is a string that will be used in a symbol. Mask out any characters
5001 that are not valid in that context. */
5002
5003 void
5004 clean_symbol_name (char *p)
5005 {
5006 for (; *p; p++)
5007 if (! (ISALNUM (*p)
5008 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
5009 || *p == '$'
5010 #endif
5011 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
5012 || *p == '.'
5013 #endif
5014 ))
5015 *p = '_';
5016 }
5017
5018 /* Generate a name for a function unique to this translation unit.
5019 TYPE is some string to identify the purpose of this function to the
5020 linker or collect2. */
5021
5022 tree
5023 get_file_function_name_long (const char *type)
5024 {
5025 char *buf;
5026 const char *p;
5027 char *q;
5028
5029 if (first_global_object_name)
5030 p = first_global_object_name;
5031 else
5032 {
5033 /* We don't have anything that we know to be unique to this translation
5034 unit, so use what we do have and throw in some randomness. */
5035 unsigned len;
5036 const char *name = weak_global_object_name;
5037 const char *file = main_input_filename;
5038
5039 if (! name)
5040 name = "";
5041 if (! file)
5042 file = input_filename;
5043
5044 len = strlen (file);
5045 q = alloca (9 * 2 + len + 1);
5046 memcpy (q, file, len + 1);
5047 clean_symbol_name (q);
5048
5049 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
5050 crc32_string (0, flag_random_seed));
5051
5052 p = q;
5053 }
5054
5055 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
5056
5057 /* Set up the name of the file-level functions we may need.
5058 Use a global object (which is already required to be unique over
5059 the program) rather than the file name (which imposes extra
5060 constraints). */
5061 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
5062
5063 return get_identifier (buf);
5064 }
5065
5066 /* If KIND=='I', return a suitable global initializer (constructor) name.
5067 If KIND=='D', return a suitable global clean-up (destructor) name. */
5068
5069 tree
5070 get_file_function_name (int kind)
5071 {
5072 char p[2];
5073
5074 p[0] = kind;
5075 p[1] = 0;
5076
5077 return get_file_function_name_long (p);
5078 }
5079 \f
5080 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5081 The result is placed in BUFFER (which has length BIT_SIZE),
5082 with one bit in each char ('\000' or '\001').
5083
5084 If the constructor is constant, NULL_TREE is returned.
5085 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5086
5087 tree
5088 get_set_constructor_bits (tree init, char *buffer, int bit_size)
5089 {
5090 int i;
5091 tree vals;
5092 HOST_WIDE_INT domain_min
5093 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
5094 tree non_const_bits = NULL_TREE;
5095
5096 for (i = 0; i < bit_size; i++)
5097 buffer[i] = 0;
5098
5099 for (vals = TREE_OPERAND (init, 1);
5100 vals != NULL_TREE; vals = TREE_CHAIN (vals))
5101 {
5102 if (!host_integerp (TREE_VALUE (vals), 0)
5103 || (TREE_PURPOSE (vals) != NULL_TREE
5104 && !host_integerp (TREE_PURPOSE (vals), 0)))
5105 non_const_bits
5106 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
5107 else if (TREE_PURPOSE (vals) != NULL_TREE)
5108 {
5109 /* Set a range of bits to ones. */
5110 HOST_WIDE_INT lo_index
5111 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
5112 HOST_WIDE_INT hi_index
5113 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5114
5115 if (lo_index < 0 || lo_index >= bit_size
5116 || hi_index < 0 || hi_index >= bit_size)
5117 abort ();
5118 for (; lo_index <= hi_index; lo_index++)
5119 buffer[lo_index] = 1;
5120 }
5121 else
5122 {
5123 /* Set a single bit to one. */
5124 HOST_WIDE_INT index
5125 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5126 if (index < 0 || index >= bit_size)
5127 {
5128 error ("invalid initializer for bit string");
5129 return NULL_TREE;
5130 }
5131 buffer[index] = 1;
5132 }
5133 }
5134 return non_const_bits;
5135 }
5136
5137 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5138 The result is placed in BUFFER (which is an array of bytes).
5139 If the constructor is constant, NULL_TREE is returned.
5140 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5141
5142 tree
5143 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
5144 {
5145 int i;
5146 int set_word_size = BITS_PER_UNIT;
5147 int bit_size = wd_size * set_word_size;
5148 int bit_pos = 0;
5149 unsigned char *bytep = buffer;
5150 char *bit_buffer = alloca (bit_size);
5151 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
5152
5153 for (i = 0; i < wd_size; i++)
5154 buffer[i] = 0;
5155
5156 for (i = 0; i < bit_size; i++)
5157 {
5158 if (bit_buffer[i])
5159 {
5160 if (BYTES_BIG_ENDIAN)
5161 *bytep |= (1 << (set_word_size - 1 - bit_pos));
5162 else
5163 *bytep |= 1 << bit_pos;
5164 }
5165 bit_pos++;
5166 if (bit_pos >= set_word_size)
5167 bit_pos = 0, bytep++;
5168 }
5169 return non_const_bits;
5170 }
5171 \f
5172 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
5173
5174 /* Complain that the tree code of NODE does not match the expected 0
5175 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
5176 the caller. */
5177
5178 void
5179 tree_check_failed (const tree node, const char *file,
5180 int line, const char *function, ...)
5181 {
5182 va_list args;
5183 char *buffer;
5184 unsigned length = 0;
5185 int code;
5186
5187 va_start (args, function);
5188 while ((code = va_arg (args, int)))
5189 length += 4 + strlen (tree_code_name[code]);
5190 va_end (args);
5191 va_start (args, function);
5192 buffer = alloca (length);
5193 length = 0;
5194 while ((code = va_arg (args, int)))
5195 {
5196 if (length)
5197 {
5198 strcpy (buffer + length, " or ");
5199 length += 4;
5200 }
5201 strcpy (buffer + length, tree_code_name[code]);
5202 length += strlen (tree_code_name[code]);
5203 }
5204 va_end (args);
5205
5206 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
5207 buffer, tree_code_name[TREE_CODE (node)],
5208 function, trim_filename (file), line);
5209 }
5210
5211 /* Complain that the tree code of NODE does match the expected 0
5212 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
5213 the caller. */
5214
5215 void
5216 tree_not_check_failed (const tree node, const char *file,
5217 int line, const char *function, ...)
5218 {
5219 va_list args;
5220 char *buffer;
5221 unsigned length = 0;
5222 int code;
5223
5224 va_start (args, function);
5225 while ((code = va_arg (args, int)))
5226 length += 4 + strlen (tree_code_name[code]);
5227 va_end (args);
5228 va_start (args, function);
5229 buffer = alloca (length);
5230 length = 0;
5231 while ((code = va_arg (args, int)))
5232 {
5233 if (length)
5234 {
5235 strcpy (buffer + length, " or ");
5236 length += 4;
5237 }
5238 strcpy (buffer + length, tree_code_name[code]);
5239 length += strlen (tree_code_name[code]);
5240 }
5241 va_end (args);
5242
5243 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
5244 buffer, tree_code_name[TREE_CODE (node)],
5245 function, trim_filename (file), line);
5246 }
5247
5248 /* Similar to tree_check_failed, except that we check for a class of tree
5249 code, given in CL. */
5250
5251 void
5252 tree_class_check_failed (const tree node, int cl, const char *file,
5253 int line, const char *function)
5254 {
5255 internal_error
5256 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
5257 cl, TREE_CODE_CLASS (TREE_CODE (node)),
5258 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
5259 }
5260
5261 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
5262 (dynamically sized) vector. */
5263
5264 void
5265 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
5266 const char *function)
5267 {
5268 internal_error
5269 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
5270 idx + 1, len, function, trim_filename (file), line);
5271 }
5272
5273 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
5274 (dynamically sized) vector. */
5275
5276 void
5277 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
5278 const char *function)
5279 {
5280 internal_error
5281 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
5282 idx + 1, len, function, trim_filename (file), line);
5283 }
5284
5285 /* Similar to above, except that the check is for the bounds of the operand
5286 vector of an expression node. */
5287
5288 void
5289 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
5290 int line, const char *function)
5291 {
5292 internal_error
5293 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
5294 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
5295 function, trim_filename (file), line);
5296 }
5297 #endif /* ENABLE_TREE_CHECKING */
5298 \f
5299 /* For a new vector type node T, build the information necessary for
5300 debugging output. */
5301
5302 static void
5303 finish_vector_type (tree t)
5304 {
5305 layout_type (t);
5306
5307 {
5308 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
5309 tree array = build_array_type (TREE_TYPE (t),
5310 build_index_type (index));
5311 tree rt = make_node (RECORD_TYPE);
5312
5313 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
5314 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
5315 layout_type (rt);
5316 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
5317 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
5318 the representation type, and we want to find that die when looking up
5319 the vector type. This is most easily achieved by making the TYPE_UID
5320 numbers equal. */
5321 TYPE_UID (rt) = TYPE_UID (t);
5322 }
5323 }
5324
5325 static tree
5326 make_or_reuse_type (unsigned size, int unsignedp)
5327 {
5328 if (size == INT_TYPE_SIZE)
5329 return unsignedp ? unsigned_type_node : integer_type_node;
5330 if (size == CHAR_TYPE_SIZE)
5331 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
5332 if (size == SHORT_TYPE_SIZE)
5333 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
5334 if (size == LONG_TYPE_SIZE)
5335 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
5336 if (size == LONG_LONG_TYPE_SIZE)
5337 return (unsignedp ? long_long_unsigned_type_node
5338 : long_long_integer_type_node);
5339
5340 if (unsignedp)
5341 return make_unsigned_type (size);
5342 else
5343 return make_signed_type (size);
5344 }
5345
5346 /* Create nodes for all integer types (and error_mark_node) using the sizes
5347 of C datatypes. The caller should call set_sizetype soon after calling
5348 this function to select one of the types as sizetype. */
5349
5350 void
5351 build_common_tree_nodes (int signed_char)
5352 {
5353 error_mark_node = make_node (ERROR_MARK);
5354 TREE_TYPE (error_mark_node) = error_mark_node;
5355
5356 initialize_sizetypes ();
5357
5358 /* Define both `signed char' and `unsigned char'. */
5359 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
5360 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
5361
5362 /* Define `char', which is like either `signed char' or `unsigned char'
5363 but not the same as either. */
5364 char_type_node
5365 = (signed_char
5366 ? make_signed_type (CHAR_TYPE_SIZE)
5367 : make_unsigned_type (CHAR_TYPE_SIZE));
5368
5369 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
5370 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
5371 integer_type_node = make_signed_type (INT_TYPE_SIZE);
5372 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
5373 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
5374 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
5375 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
5376 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
5377
5378 /* Define a boolean type. This type only represents boolean values but
5379 may be larger than char depending on the value of BOOL_TYPE_SIZE.
5380 Front ends which want to override this size (i.e. Java) can redefine
5381 boolean_type_node before calling build_common_tree_nodes_2. */
5382 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5383 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5384 TYPE_MAX_VALUE (boolean_type_node) = build_int_2 (1, 0);
5385 TREE_TYPE (TYPE_MAX_VALUE (boolean_type_node)) = boolean_type_node;
5386 TYPE_PRECISION (boolean_type_node) = 1;
5387
5388 /* Fill in the rest of the sized types. Reuse existing type nodes
5389 when possible. */
5390 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
5391 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
5392 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
5393 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
5394 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
5395
5396 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
5397 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
5398 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
5399 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
5400 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
5401
5402 access_public_node = get_identifier ("public");
5403 access_protected_node = get_identifier ("protected");
5404 access_private_node = get_identifier ("private");
5405 }
5406
5407 /* Call this function after calling build_common_tree_nodes and set_sizetype.
5408 It will create several other common tree nodes. */
5409
5410 void
5411 build_common_tree_nodes_2 (int short_double)
5412 {
5413 /* Define these next since types below may used them. */
5414 integer_zero_node = build_int_2 (0, 0);
5415 integer_one_node = build_int_2 (1, 0);
5416 integer_minus_one_node = build_int_2 (-1, -1);
5417
5418 size_zero_node = size_int (0);
5419 size_one_node = size_int (1);
5420 bitsize_zero_node = bitsize_int (0);
5421 bitsize_one_node = bitsize_int (1);
5422 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
5423
5424 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5425 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5426
5427 void_type_node = make_node (VOID_TYPE);
5428 layout_type (void_type_node);
5429
5430 /* We are not going to have real types in C with less than byte alignment,
5431 so we might as well not have any types that claim to have it. */
5432 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
5433 TYPE_USER_ALIGN (void_type_node) = 0;
5434
5435 null_pointer_node = build_int_2 (0, 0);
5436 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
5437 layout_type (TREE_TYPE (null_pointer_node));
5438
5439 ptr_type_node = build_pointer_type (void_type_node);
5440 const_ptr_type_node
5441 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
5442 fileptr_type_node = ptr_type_node;
5443
5444 float_type_node = make_node (REAL_TYPE);
5445 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
5446 layout_type (float_type_node);
5447
5448 double_type_node = make_node (REAL_TYPE);
5449 if (short_double)
5450 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
5451 else
5452 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
5453 layout_type (double_type_node);
5454
5455 long_double_type_node = make_node (REAL_TYPE);
5456 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
5457 layout_type (long_double_type_node);
5458
5459 float_ptr_type_node = build_pointer_type (float_type_node);
5460 double_ptr_type_node = build_pointer_type (double_type_node);
5461 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
5462 integer_ptr_type_node = build_pointer_type (integer_type_node);
5463
5464 complex_integer_type_node = make_node (COMPLEX_TYPE);
5465 TREE_TYPE (complex_integer_type_node) = integer_type_node;
5466 layout_type (complex_integer_type_node);
5467
5468 complex_float_type_node = make_node (COMPLEX_TYPE);
5469 TREE_TYPE (complex_float_type_node) = float_type_node;
5470 layout_type (complex_float_type_node);
5471
5472 complex_double_type_node = make_node (COMPLEX_TYPE);
5473 TREE_TYPE (complex_double_type_node) = double_type_node;
5474 layout_type (complex_double_type_node);
5475
5476 complex_long_double_type_node = make_node (COMPLEX_TYPE);
5477 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
5478 layout_type (complex_long_double_type_node);
5479
5480 {
5481 tree t = targetm.build_builtin_va_list ();
5482
5483 /* Many back-ends define record types without setting TYPE_NAME.
5484 If we copied the record type here, we'd keep the original
5485 record type without a name. This breaks name mangling. So,
5486 don't copy record types and let c_common_nodes_and_builtins()
5487 declare the type to be __builtin_va_list. */
5488 if (TREE_CODE (t) != RECORD_TYPE)
5489 t = build_type_copy (t);
5490
5491 va_list_type_node = t;
5492 }
5493 }
5494
5495 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
5496 better way.
5497
5498 If we requested a pointer to a vector, build up the pointers that
5499 we stripped off while looking for the inner type. Similarly for
5500 return values from functions.
5501
5502 The argument TYPE is the top of the chain, and BOTTOM is the
5503 new type which we will point to. */
5504
5505 tree
5506 reconstruct_complex_type (tree type, tree bottom)
5507 {
5508 tree inner, outer;
5509
5510 if (POINTER_TYPE_P (type))
5511 {
5512 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5513 outer = build_pointer_type (inner);
5514 }
5515 else if (TREE_CODE (type) == ARRAY_TYPE)
5516 {
5517 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5518 outer = build_array_type (inner, TYPE_DOMAIN (type));
5519 }
5520 else if (TREE_CODE (type) == FUNCTION_TYPE)
5521 {
5522 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5523 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
5524 }
5525 else if (TREE_CODE (type) == METHOD_TYPE)
5526 {
5527 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5528 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
5529 inner,
5530 TYPE_ARG_TYPES (type));
5531 }
5532 else
5533 return bottom;
5534
5535 TYPE_READONLY (outer) = TYPE_READONLY (type);
5536 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
5537
5538 return outer;
5539 }
5540
5541 /* Returns a vector tree node given a vector mode and inner type. */
5542 tree
5543 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
5544 {
5545 tree t;
5546 t = make_node (VECTOR_TYPE);
5547 TREE_TYPE (t) = innertype;
5548 TYPE_MODE (t) = mode;
5549 finish_vector_type (t);
5550 return t;
5551 }
5552
5553 /* Similarly, but takes inner type and units. */
5554
5555 tree
5556 build_vector_type (tree innertype, int nunits)
5557 {
5558 enum machine_mode innermode = TYPE_MODE (innertype);
5559 enum machine_mode mode;
5560
5561 if (GET_MODE_CLASS (innermode) == MODE_FLOAT)
5562 mode = MIN_MODE_VECTOR_FLOAT;
5563 else
5564 mode = MIN_MODE_VECTOR_INT;
5565
5566 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
5567 if (GET_MODE_NUNITS (mode) == nunits && GET_MODE_INNER (mode) == innermode)
5568 return build_vector_type_for_mode (innertype, mode);
5569
5570 return NULL_TREE;
5571 }
5572
5573 /* Given an initializer INIT, return TRUE if INIT is zero or some
5574 aggregate of zeros. Otherwise return FALSE. */
5575 bool
5576 initializer_zerop (tree init)
5577 {
5578 tree elt;
5579
5580 STRIP_NOPS (init);
5581
5582 switch (TREE_CODE (init))
5583 {
5584 case INTEGER_CST:
5585 return integer_zerop (init);
5586
5587 case REAL_CST:
5588 /* ??? Note that this is not correct for C4X float formats. There,
5589 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
5590 negative exponent. */
5591 return real_zerop (init)
5592 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
5593
5594 case COMPLEX_CST:
5595 return integer_zerop (init)
5596 || (real_zerop (init)
5597 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
5598 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
5599
5600 case VECTOR_CST:
5601 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
5602 if (!initializer_zerop (TREE_VALUE (elt)))
5603 return false;
5604 return true;
5605
5606 case CONSTRUCTOR:
5607 elt = CONSTRUCTOR_ELTS (init);
5608 if (elt == NULL_TREE)
5609 return true;
5610
5611 /* A set is empty only if it has no elements. */
5612 if (TREE_CODE (TREE_TYPE (init)) == SET_TYPE)
5613 return false;
5614
5615 for (; elt ; elt = TREE_CHAIN (elt))
5616 if (! initializer_zerop (TREE_VALUE (elt)))
5617 return false;
5618 return true;
5619
5620 default:
5621 return false;
5622 }
5623 }
5624
5625 void
5626 add_var_to_bind_expr (tree bind_expr, tree var)
5627 {
5628 BIND_EXPR_VARS (bind_expr)
5629 = chainon (BIND_EXPR_VARS (bind_expr), var);
5630 if (BIND_EXPR_BLOCK (bind_expr))
5631 BLOCK_VARS (BIND_EXPR_BLOCK (bind_expr))
5632 = BIND_EXPR_VARS (bind_expr);
5633 }
5634
5635 /* Build an empty statement. */
5636
5637 tree
5638 build_empty_stmt (void)
5639 {
5640 return build1 (NOP_EXPR, void_type_node, size_zero_node);
5641 }
5642
5643
5644 /* Returns true if it is possible to prove that the index of
5645 an array access REF (an ARRAY_REF expression) falls into the
5646 array bounds. */
5647
5648 bool
5649 in_array_bounds_p (tree ref)
5650 {
5651 tree idx = TREE_OPERAND (ref, 1);
5652 tree min, max;
5653
5654 if (TREE_CODE (idx) != INTEGER_CST)
5655 return false;
5656
5657 min = array_ref_low_bound (ref);
5658 max = array_ref_up_bound (ref);
5659 if (!min
5660 || !max
5661 || TREE_CODE (min) != INTEGER_CST
5662 || TREE_CODE (max) != INTEGER_CST)
5663 return false;
5664
5665 if (tree_int_cst_lt (idx, min)
5666 || tree_int_cst_lt (max, idx))
5667 return false;
5668
5669 return true;
5670 }
5671
5672 /* Return true if T (assumed to be a DECL) must be assigned a memory
5673 location. */
5674
5675 bool
5676 needs_to_live_in_memory (tree t)
5677 {
5678 return (DECL_NEEDS_TO_LIVE_IN_MEMORY_INTERNAL (t)
5679 || TREE_STATIC (t)
5680 || DECL_EXTERNAL (t)
5681 || DECL_NONLOCAL (t)
5682 || (TREE_CODE (t) == RESULT_DECL
5683 && aggregate_value_p (t, current_function_decl))
5684 || decl_function_context (t) != current_function_decl);
5685 }
5686
5687 /* There are situations in which a language considers record types
5688 compatible which have different field lists. Decide if two fields
5689 are compatible. It is assumed that the parent records are compatible. */
5690
5691 bool
5692 fields_compatible_p (tree f1, tree f2)
5693 {
5694 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
5695 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
5696 return false;
5697
5698 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
5699 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
5700 return false;
5701
5702 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
5703 return false;
5704
5705 return true;
5706 }
5707
5708 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
5709
5710 tree
5711 find_compatible_field (tree record, tree orig_field)
5712 {
5713 tree f;
5714
5715 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
5716 if (TREE_CODE (f) == FIELD_DECL
5717 && fields_compatible_p (f, orig_field))
5718 return f;
5719
5720 /* ??? Why isn't this on the main fields list? */
5721 f = TYPE_VFIELD (record);
5722 if (f && TREE_CODE (f) == FIELD_DECL
5723 && fields_compatible_p (f, orig_field))
5724 return f;
5725
5726 /* ??? We should abort here, but Java appears to do Bad Things
5727 with inherited fields. */
5728 return orig_field;
5729 }
5730
5731 /* Return value of a constant X. */
5732
5733 HOST_WIDE_INT
5734 int_cst_value (tree x)
5735 {
5736 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
5737 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
5738 bool negative = ((val >> (bits - 1)) & 1) != 0;
5739
5740 if (bits > HOST_BITS_PER_WIDE_INT)
5741 abort ();
5742
5743 if (negative)
5744 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
5745 else
5746 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
5747
5748 return val;
5749 }
5750
5751 /* Returns the greatest common divisor of A and B, which must be
5752 INTEGER_CSTs. */
5753
5754 tree
5755 tree_fold_gcd (tree a, tree b)
5756 {
5757 tree a_mod_b;
5758 tree type = TREE_TYPE (a);
5759
5760 #if defined ENABLE_CHECKING
5761 if (TREE_CODE (a) != INTEGER_CST
5762 || TREE_CODE (b) != INTEGER_CST)
5763 abort ();
5764 #endif
5765
5766 if (integer_zerop (a))
5767 return b;
5768
5769 if (integer_zerop (b))
5770 return a;
5771
5772 if (tree_int_cst_sgn (a) == -1)
5773 a = fold (build (MULT_EXPR, type, a,
5774 convert (type, integer_minus_one_node)));
5775
5776 if (tree_int_cst_sgn (b) == -1)
5777 b = fold (build (MULT_EXPR, type, b,
5778 convert (type, integer_minus_one_node)));
5779
5780 while (1)
5781 {
5782 a_mod_b = fold (build (CEIL_MOD_EXPR, type, a, b));
5783
5784 if (!TREE_INT_CST_LOW (a_mod_b)
5785 && !TREE_INT_CST_HIGH (a_mod_b))
5786 return b;
5787
5788 a = b;
5789 b = a_mod_b;
5790 }
5791 }
5792
5793 #include "gt-tree.h"