Daily bump.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent but can occasionally
28 calls language-dependent routines. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "params.h"
58 #include "langhooks-def.h"
59 #include "tree-diagnostic.h"
60 #include "except.h"
61 #include "builtins.h"
62 #include "print-tree.h"
63 #include "ipa-utils.h"
64 #include "selftest.h"
65 #include "stringpool.h"
66 #include "attribs.h"
67 #include "rtl.h"
68 #include "regs.h"
69 #include "tree-vector-builder.h"
70
71 /* Tree code classes. */
72
73 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
74 #define END_OF_BASE_TREE_CODES tcc_exceptional,
75
76 const enum tree_code_class tree_code_type[] = {
77 #include "all-tree.def"
78 };
79
80 #undef DEFTREECODE
81 #undef END_OF_BASE_TREE_CODES
82
83 /* Table indexed by tree code giving number of expression
84 operands beyond the fixed part of the node structure.
85 Not used for types or decls. */
86
87 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
88 #define END_OF_BASE_TREE_CODES 0,
89
90 const unsigned char tree_code_length[] = {
91 #include "all-tree.def"
92 };
93
94 #undef DEFTREECODE
95 #undef END_OF_BASE_TREE_CODES
96
97 /* Names of tree components.
98 Used for printing out the tree and error messages. */
99 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
100 #define END_OF_BASE_TREE_CODES "@dummy",
101
102 static const char *const tree_code_name[] = {
103 #include "all-tree.def"
104 };
105
106 #undef DEFTREECODE
107 #undef END_OF_BASE_TREE_CODES
108
109 /* Each tree code class has an associated string representation.
110 These must correspond to the tree_code_class entries. */
111
112 const char *const tree_code_class_strings[] =
113 {
114 "exceptional",
115 "constant",
116 "type",
117 "declaration",
118 "reference",
119 "comparison",
120 "unary",
121 "binary",
122 "statement",
123 "vl_exp",
124 "expression"
125 };
126
127 /* obstack.[ch] explicitly declined to prototype this. */
128 extern int _obstack_allocated_p (struct obstack *h, void *obj);
129
130 /* Statistics-gathering stuff. */
131
132 static uint64_t tree_code_counts[MAX_TREE_CODES];
133 uint64_t tree_node_counts[(int) all_kinds];
134 uint64_t tree_node_sizes[(int) all_kinds];
135
136 /* Keep in sync with tree.h:enum tree_node_kind. */
137 static const char * const tree_node_kind_names[] = {
138 "decls",
139 "types",
140 "blocks",
141 "stmts",
142 "refs",
143 "exprs",
144 "constants",
145 "identifiers",
146 "vecs",
147 "binfos",
148 "ssa names",
149 "constructors",
150 "random kinds",
151 "lang_decl kinds",
152 "lang_type kinds",
153 "omp clauses",
154 };
155
156 /* Unique id for next decl created. */
157 static GTY(()) int next_decl_uid;
158 /* Unique id for next type created. */
159 static GTY(()) unsigned next_type_uid = 1;
160 /* Unique id for next debug decl created. Use negative numbers,
161 to catch erroneous uses. */
162 static GTY(()) int next_debug_decl_uid;
163
164 /* Since we cannot rehash a type after it is in the table, we have to
165 keep the hash code. */
166
167 struct GTY((for_user)) type_hash {
168 unsigned long hash;
169 tree type;
170 };
171
172 /* Initial size of the hash table (rounded to next prime). */
173 #define TYPE_HASH_INITIAL_SIZE 1000
174
175 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
176 {
177 static hashval_t hash (type_hash *t) { return t->hash; }
178 static bool equal (type_hash *a, type_hash *b);
179
180 static int
181 keep_cache_entry (type_hash *&t)
182 {
183 return ggc_marked_p (t->type);
184 }
185 };
186
187 /* Now here is the hash table. When recording a type, it is added to
188 the slot whose index is the hash code. Note that the hash table is
189 used for several kinds of types (function types, array types and
190 array index range types, for now). While all these live in the
191 same table, they are completely independent, and the hash code is
192 computed differently for each of these. */
193
194 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
195
196 /* Hash table and temporary node for larger integer const values. */
197 static GTY (()) tree int_cst_node;
198
199 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
200 {
201 static hashval_t hash (tree t);
202 static bool equal (tree x, tree y);
203 };
204
205 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
206
207 /* Class and variable for making sure that there is a single POLY_INT_CST
208 for a given value. */
209 struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
210 {
211 typedef std::pair<tree, const poly_wide_int *> compare_type;
212 static hashval_t hash (tree t);
213 static bool equal (tree x, const compare_type &y);
214 };
215
216 static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
217
218 /* Hash table for optimization flags and target option flags. Use the same
219 hash table for both sets of options. Nodes for building the current
220 optimization and target option nodes. The assumption is most of the time
221 the options created will already be in the hash table, so we avoid
222 allocating and freeing up a node repeatably. */
223 static GTY (()) tree cl_optimization_node;
224 static GTY (()) tree cl_target_option_node;
225
226 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
227 {
228 static hashval_t hash (tree t);
229 static bool equal (tree x, tree y);
230 };
231
232 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
233
234 /* General tree->tree mapping structure for use in hash tables. */
235
236
237 static GTY ((cache))
238 hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
239
240 static GTY ((cache))
241 hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
242
243 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
244 {
245 static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
246
247 static bool
248 equal (tree_vec_map *a, tree_vec_map *b)
249 {
250 return a->base.from == b->base.from;
251 }
252
253 static int
254 keep_cache_entry (tree_vec_map *&m)
255 {
256 return ggc_marked_p (m->base.from);
257 }
258 };
259
260 static GTY ((cache))
261 hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
262
263 static void set_type_quals (tree, int);
264 static void print_type_hash_statistics (void);
265 static void print_debug_expr_statistics (void);
266 static void print_value_expr_statistics (void);
267
268 tree global_trees[TI_MAX];
269 tree integer_types[itk_none];
270
271 bool int_n_enabled_p[NUM_INT_N_ENTS];
272 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
273
274 bool tree_contains_struct[MAX_TREE_CODES][64];
275
276 /* Number of operands for each OpenMP clause. */
277 unsigned const char omp_clause_num_ops[] =
278 {
279 0, /* OMP_CLAUSE_ERROR */
280 1, /* OMP_CLAUSE_PRIVATE */
281 1, /* OMP_CLAUSE_SHARED */
282 1, /* OMP_CLAUSE_FIRSTPRIVATE */
283 2, /* OMP_CLAUSE_LASTPRIVATE */
284 5, /* OMP_CLAUSE_REDUCTION */
285 1, /* OMP_CLAUSE_COPYIN */
286 1, /* OMP_CLAUSE_COPYPRIVATE */
287 3, /* OMP_CLAUSE_LINEAR */
288 2, /* OMP_CLAUSE_ALIGNED */
289 1, /* OMP_CLAUSE_DEPEND */
290 1, /* OMP_CLAUSE_UNIFORM */
291 1, /* OMP_CLAUSE_TO_DECLARE */
292 1, /* OMP_CLAUSE_LINK */
293 2, /* OMP_CLAUSE_FROM */
294 2, /* OMP_CLAUSE_TO */
295 2, /* OMP_CLAUSE_MAP */
296 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
297 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
298 2, /* OMP_CLAUSE__CACHE_ */
299 2, /* OMP_CLAUSE_GANG */
300 1, /* OMP_CLAUSE_ASYNC */
301 1, /* OMP_CLAUSE_WAIT */
302 0, /* OMP_CLAUSE_AUTO */
303 0, /* OMP_CLAUSE_SEQ */
304 1, /* OMP_CLAUSE__LOOPTEMP_ */
305 1, /* OMP_CLAUSE_IF */
306 1, /* OMP_CLAUSE_NUM_THREADS */
307 1, /* OMP_CLAUSE_SCHEDULE */
308 0, /* OMP_CLAUSE_NOWAIT */
309 1, /* OMP_CLAUSE_ORDERED */
310 0, /* OMP_CLAUSE_DEFAULT */
311 3, /* OMP_CLAUSE_COLLAPSE */
312 0, /* OMP_CLAUSE_UNTIED */
313 1, /* OMP_CLAUSE_FINAL */
314 0, /* OMP_CLAUSE_MERGEABLE */
315 1, /* OMP_CLAUSE_DEVICE */
316 1, /* OMP_CLAUSE_DIST_SCHEDULE */
317 0, /* OMP_CLAUSE_INBRANCH */
318 0, /* OMP_CLAUSE_NOTINBRANCH */
319 1, /* OMP_CLAUSE_NUM_TEAMS */
320 1, /* OMP_CLAUSE_THREAD_LIMIT */
321 0, /* OMP_CLAUSE_PROC_BIND */
322 1, /* OMP_CLAUSE_SAFELEN */
323 1, /* OMP_CLAUSE_SIMDLEN */
324 0, /* OMP_CLAUSE_FOR */
325 0, /* OMP_CLAUSE_PARALLEL */
326 0, /* OMP_CLAUSE_SECTIONS */
327 0, /* OMP_CLAUSE_TASKGROUP */
328 1, /* OMP_CLAUSE_PRIORITY */
329 1, /* OMP_CLAUSE_GRAINSIZE */
330 1, /* OMP_CLAUSE_NUM_TASKS */
331 0, /* OMP_CLAUSE_NOGROUP */
332 0, /* OMP_CLAUSE_THREADS */
333 0, /* OMP_CLAUSE_SIMD */
334 1, /* OMP_CLAUSE_HINT */
335 0, /* OMP_CLAUSE_DEFALTMAP */
336 1, /* OMP_CLAUSE__SIMDUID_ */
337 0, /* OMP_CLAUSE__SIMT_ */
338 0, /* OMP_CLAUSE_INDEPENDENT */
339 1, /* OMP_CLAUSE_WORKER */
340 1, /* OMP_CLAUSE_VECTOR */
341 1, /* OMP_CLAUSE_NUM_GANGS */
342 1, /* OMP_CLAUSE_NUM_WORKERS */
343 1, /* OMP_CLAUSE_VECTOR_LENGTH */
344 3, /* OMP_CLAUSE_TILE */
345 2, /* OMP_CLAUSE__GRIDDIM_ */
346 0, /* OMP_CLAUSE_IF_PRESENT */
347 0, /* OMP_CLAUSE_FINALIZE */
348 };
349
350 const char * const omp_clause_code_name[] =
351 {
352 "error_clause",
353 "private",
354 "shared",
355 "firstprivate",
356 "lastprivate",
357 "reduction",
358 "copyin",
359 "copyprivate",
360 "linear",
361 "aligned",
362 "depend",
363 "uniform",
364 "to",
365 "link",
366 "from",
367 "to",
368 "map",
369 "use_device_ptr",
370 "is_device_ptr",
371 "_cache_",
372 "gang",
373 "async",
374 "wait",
375 "auto",
376 "seq",
377 "_looptemp_",
378 "if",
379 "num_threads",
380 "schedule",
381 "nowait",
382 "ordered",
383 "default",
384 "collapse",
385 "untied",
386 "final",
387 "mergeable",
388 "device",
389 "dist_schedule",
390 "inbranch",
391 "notinbranch",
392 "num_teams",
393 "thread_limit",
394 "proc_bind",
395 "safelen",
396 "simdlen",
397 "for",
398 "parallel",
399 "sections",
400 "taskgroup",
401 "priority",
402 "grainsize",
403 "num_tasks",
404 "nogroup",
405 "threads",
406 "simd",
407 "hint",
408 "defaultmap",
409 "_simduid_",
410 "_simt_",
411 "independent",
412 "worker",
413 "vector",
414 "num_gangs",
415 "num_workers",
416 "vector_length",
417 "tile",
418 "_griddim_",
419 "if_present",
420 "finalize",
421 };
422
423
424 /* Return the tree node structure used by tree code CODE. */
425
426 static inline enum tree_node_structure_enum
427 tree_node_structure_for_code (enum tree_code code)
428 {
429 switch (TREE_CODE_CLASS (code))
430 {
431 case tcc_declaration:
432 {
433 switch (code)
434 {
435 case FIELD_DECL:
436 return TS_FIELD_DECL;
437 case PARM_DECL:
438 return TS_PARM_DECL;
439 case VAR_DECL:
440 return TS_VAR_DECL;
441 case LABEL_DECL:
442 return TS_LABEL_DECL;
443 case RESULT_DECL:
444 return TS_RESULT_DECL;
445 case DEBUG_EXPR_DECL:
446 return TS_DECL_WRTL;
447 case CONST_DECL:
448 return TS_CONST_DECL;
449 case TYPE_DECL:
450 return TS_TYPE_DECL;
451 case FUNCTION_DECL:
452 return TS_FUNCTION_DECL;
453 case TRANSLATION_UNIT_DECL:
454 return TS_TRANSLATION_UNIT_DECL;
455 default:
456 return TS_DECL_NON_COMMON;
457 }
458 }
459 case tcc_type:
460 return TS_TYPE_NON_COMMON;
461 case tcc_reference:
462 case tcc_comparison:
463 case tcc_unary:
464 case tcc_binary:
465 case tcc_expression:
466 case tcc_statement:
467 case tcc_vl_exp:
468 return TS_EXP;
469 default: /* tcc_constant and tcc_exceptional */
470 break;
471 }
472 switch (code)
473 {
474 /* tcc_constant cases. */
475 case VOID_CST: return TS_TYPED;
476 case INTEGER_CST: return TS_INT_CST;
477 case POLY_INT_CST: return TS_POLY_INT_CST;
478 case REAL_CST: return TS_REAL_CST;
479 case FIXED_CST: return TS_FIXED_CST;
480 case COMPLEX_CST: return TS_COMPLEX;
481 case VECTOR_CST: return TS_VECTOR;
482 case STRING_CST: return TS_STRING;
483 /* tcc_exceptional cases. */
484 case ERROR_MARK: return TS_COMMON;
485 case IDENTIFIER_NODE: return TS_IDENTIFIER;
486 case TREE_LIST: return TS_LIST;
487 case TREE_VEC: return TS_VEC;
488 case SSA_NAME: return TS_SSA_NAME;
489 case PLACEHOLDER_EXPR: return TS_COMMON;
490 case STATEMENT_LIST: return TS_STATEMENT_LIST;
491 case BLOCK: return TS_BLOCK;
492 case CONSTRUCTOR: return TS_CONSTRUCTOR;
493 case TREE_BINFO: return TS_BINFO;
494 case OMP_CLAUSE: return TS_OMP_CLAUSE;
495 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
496 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
497
498 default:
499 gcc_unreachable ();
500 }
501 }
502
503
504 /* Initialize tree_contains_struct to describe the hierarchy of tree
505 nodes. */
506
507 static void
508 initialize_tree_contains_struct (void)
509 {
510 unsigned i;
511
512 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
513 {
514 enum tree_code code;
515 enum tree_node_structure_enum ts_code;
516
517 code = (enum tree_code) i;
518 ts_code = tree_node_structure_for_code (code);
519
520 /* Mark the TS structure itself. */
521 tree_contains_struct[code][ts_code] = 1;
522
523 /* Mark all the structures that TS is derived from. */
524 switch (ts_code)
525 {
526 case TS_TYPED:
527 case TS_BLOCK:
528 case TS_OPTIMIZATION:
529 case TS_TARGET_OPTION:
530 MARK_TS_BASE (code);
531 break;
532
533 case TS_COMMON:
534 case TS_INT_CST:
535 case TS_POLY_INT_CST:
536 case TS_REAL_CST:
537 case TS_FIXED_CST:
538 case TS_VECTOR:
539 case TS_STRING:
540 case TS_COMPLEX:
541 case TS_SSA_NAME:
542 case TS_CONSTRUCTOR:
543 case TS_EXP:
544 case TS_STATEMENT_LIST:
545 MARK_TS_TYPED (code);
546 break;
547
548 case TS_IDENTIFIER:
549 case TS_DECL_MINIMAL:
550 case TS_TYPE_COMMON:
551 case TS_LIST:
552 case TS_VEC:
553 case TS_BINFO:
554 case TS_OMP_CLAUSE:
555 MARK_TS_COMMON (code);
556 break;
557
558 case TS_TYPE_WITH_LANG_SPECIFIC:
559 MARK_TS_TYPE_COMMON (code);
560 break;
561
562 case TS_TYPE_NON_COMMON:
563 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
564 break;
565
566 case TS_DECL_COMMON:
567 MARK_TS_DECL_MINIMAL (code);
568 break;
569
570 case TS_DECL_WRTL:
571 case TS_CONST_DECL:
572 MARK_TS_DECL_COMMON (code);
573 break;
574
575 case TS_DECL_NON_COMMON:
576 MARK_TS_DECL_WITH_VIS (code);
577 break;
578
579 case TS_DECL_WITH_VIS:
580 case TS_PARM_DECL:
581 case TS_LABEL_DECL:
582 case TS_RESULT_DECL:
583 MARK_TS_DECL_WRTL (code);
584 break;
585
586 case TS_FIELD_DECL:
587 MARK_TS_DECL_COMMON (code);
588 break;
589
590 case TS_VAR_DECL:
591 MARK_TS_DECL_WITH_VIS (code);
592 break;
593
594 case TS_TYPE_DECL:
595 case TS_FUNCTION_DECL:
596 MARK_TS_DECL_NON_COMMON (code);
597 break;
598
599 case TS_TRANSLATION_UNIT_DECL:
600 MARK_TS_DECL_COMMON (code);
601 break;
602
603 default:
604 gcc_unreachable ();
605 }
606 }
607
608 /* Basic consistency checks for attributes used in fold. */
609 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
610 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
611 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
612 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
613 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
614 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
615 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
616 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
617 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
618 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
619 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
620 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
621 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
622 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
623 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
624 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
625 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
626 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
627 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
628 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
629 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
630 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
631 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
632 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
633 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
634 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
635 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
636 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
637 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
638 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
639 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
640 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
641 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
642 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
643 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
644 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
645 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
646 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
647 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
648 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
649 }
650
651
652 /* Init tree.c. */
653
654 void
655 init_ttree (void)
656 {
657 /* Initialize the hash table of types. */
658 type_hash_table
659 = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
660
661 debug_expr_for_decl
662 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
663
664 value_expr_for_decl
665 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
666
667 int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
668
669 poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
670
671 int_cst_node = make_int_cst (1, 1);
672
673 cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
674
675 cl_optimization_node = make_node (OPTIMIZATION_NODE);
676 cl_target_option_node = make_node (TARGET_OPTION_NODE);
677
678 /* Initialize the tree_contains_struct array. */
679 initialize_tree_contains_struct ();
680 lang_hooks.init_ts ();
681 }
682
683 \f
684 /* The name of the object as the assembler will see it (but before any
685 translations made by ASM_OUTPUT_LABELREF). Often this is the same
686 as DECL_NAME. It is an IDENTIFIER_NODE. */
687 tree
688 decl_assembler_name (tree decl)
689 {
690 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
691 lang_hooks.set_decl_assembler_name (decl);
692 return DECL_ASSEMBLER_NAME_RAW (decl);
693 }
694
695 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
696 (either of which may be NULL). Inform the FE, if this changes the
697 name. */
698
699 void
700 overwrite_decl_assembler_name (tree decl, tree name)
701 {
702 if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
703 lang_hooks.overwrite_decl_assembler_name (decl, name);
704 }
705
706 /* When the target supports COMDAT groups, this indicates which group the
707 DECL is associated with. This can be either an IDENTIFIER_NODE or a
708 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
709 tree
710 decl_comdat_group (const_tree node)
711 {
712 struct symtab_node *snode = symtab_node::get (node);
713 if (!snode)
714 return NULL;
715 return snode->get_comdat_group ();
716 }
717
718 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
719 tree
720 decl_comdat_group_id (const_tree node)
721 {
722 struct symtab_node *snode = symtab_node::get (node);
723 if (!snode)
724 return NULL;
725 return snode->get_comdat_group_id ();
726 }
727
728 /* When the target supports named section, return its name as IDENTIFIER_NODE
729 or NULL if it is in no section. */
730 const char *
731 decl_section_name (const_tree node)
732 {
733 struct symtab_node *snode = symtab_node::get (node);
734 if (!snode)
735 return NULL;
736 return snode->get_section ();
737 }
738
739 /* Set section name of NODE to VALUE (that is expected to be
740 identifier node) */
741 void
742 set_decl_section_name (tree node, const char *value)
743 {
744 struct symtab_node *snode;
745
746 if (value == NULL)
747 {
748 snode = symtab_node::get (node);
749 if (!snode)
750 return;
751 }
752 else if (VAR_P (node))
753 snode = varpool_node::get_create (node);
754 else
755 snode = cgraph_node::get_create (node);
756 snode->set_section (value);
757 }
758
759 /* Return TLS model of a variable NODE. */
760 enum tls_model
761 decl_tls_model (const_tree node)
762 {
763 struct varpool_node *snode = varpool_node::get (node);
764 if (!snode)
765 return TLS_MODEL_NONE;
766 return snode->tls_model;
767 }
768
769 /* Set TLS model of variable NODE to MODEL. */
770 void
771 set_decl_tls_model (tree node, enum tls_model model)
772 {
773 struct varpool_node *vnode;
774
775 if (model == TLS_MODEL_NONE)
776 {
777 vnode = varpool_node::get (node);
778 if (!vnode)
779 return;
780 }
781 else
782 vnode = varpool_node::get_create (node);
783 vnode->tls_model = model;
784 }
785
786 /* Compute the number of bytes occupied by a tree with code CODE.
787 This function cannot be used for nodes that have variable sizes,
788 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
789 size_t
790 tree_code_size (enum tree_code code)
791 {
792 switch (TREE_CODE_CLASS (code))
793 {
794 case tcc_declaration: /* A decl node */
795 switch (code)
796 {
797 case FIELD_DECL: return sizeof (tree_field_decl);
798 case PARM_DECL: return sizeof (tree_parm_decl);
799 case VAR_DECL: return sizeof (tree_var_decl);
800 case LABEL_DECL: return sizeof (tree_label_decl);
801 case RESULT_DECL: return sizeof (tree_result_decl);
802 case CONST_DECL: return sizeof (tree_const_decl);
803 case TYPE_DECL: return sizeof (tree_type_decl);
804 case FUNCTION_DECL: return sizeof (tree_function_decl);
805 case DEBUG_EXPR_DECL: return sizeof (tree_decl_with_rtl);
806 case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
807 case NAMESPACE_DECL:
808 case IMPORTED_DECL:
809 case NAMELIST_DECL: return sizeof (tree_decl_non_common);
810 default:
811 gcc_checking_assert (code >= NUM_TREE_CODES);
812 return lang_hooks.tree_size (code);
813 }
814
815 case tcc_type: /* a type node */
816 switch (code)
817 {
818 case OFFSET_TYPE:
819 case ENUMERAL_TYPE:
820 case BOOLEAN_TYPE:
821 case INTEGER_TYPE:
822 case REAL_TYPE:
823 case POINTER_TYPE:
824 case REFERENCE_TYPE:
825 case NULLPTR_TYPE:
826 case FIXED_POINT_TYPE:
827 case COMPLEX_TYPE:
828 case VECTOR_TYPE:
829 case ARRAY_TYPE:
830 case RECORD_TYPE:
831 case UNION_TYPE:
832 case QUAL_UNION_TYPE:
833 case VOID_TYPE:
834 case FUNCTION_TYPE:
835 case METHOD_TYPE:
836 case LANG_TYPE: return sizeof (tree_type_non_common);
837 default:
838 gcc_checking_assert (code >= NUM_TREE_CODES);
839 return lang_hooks.tree_size (code);
840 }
841
842 case tcc_reference: /* a reference */
843 case tcc_expression: /* an expression */
844 case tcc_statement: /* an expression with side effects */
845 case tcc_comparison: /* a comparison expression */
846 case tcc_unary: /* a unary arithmetic expression */
847 case tcc_binary: /* a binary arithmetic expression */
848 return (sizeof (struct tree_exp)
849 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
850
851 case tcc_constant: /* a constant */
852 switch (code)
853 {
854 case VOID_CST: return sizeof (tree_typed);
855 case INTEGER_CST: gcc_unreachable ();
856 case POLY_INT_CST: return sizeof (tree_poly_int_cst);
857 case REAL_CST: return sizeof (tree_real_cst);
858 case FIXED_CST: return sizeof (tree_fixed_cst);
859 case COMPLEX_CST: return sizeof (tree_complex);
860 case VECTOR_CST: gcc_unreachable ();
861 case STRING_CST: gcc_unreachable ();
862 default:
863 gcc_checking_assert (code >= NUM_TREE_CODES);
864 return lang_hooks.tree_size (code);
865 }
866
867 case tcc_exceptional: /* something random, like an identifier. */
868 switch (code)
869 {
870 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
871 case TREE_LIST: return sizeof (tree_list);
872
873 case ERROR_MARK:
874 case PLACEHOLDER_EXPR: return sizeof (tree_common);
875
876 case TREE_VEC: gcc_unreachable ();
877 case OMP_CLAUSE: gcc_unreachable ();
878
879 case SSA_NAME: return sizeof (tree_ssa_name);
880
881 case STATEMENT_LIST: return sizeof (tree_statement_list);
882 case BLOCK: return sizeof (struct tree_block);
883 case CONSTRUCTOR: return sizeof (tree_constructor);
884 case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
885 case TARGET_OPTION_NODE: return sizeof (tree_target_option);
886
887 default:
888 gcc_checking_assert (code >= NUM_TREE_CODES);
889 return lang_hooks.tree_size (code);
890 }
891
892 default:
893 gcc_unreachable ();
894 }
895 }
896
897 /* Compute the number of bytes occupied by NODE. This routine only
898 looks at TREE_CODE, except for those nodes that have variable sizes. */
899 size_t
900 tree_size (const_tree node)
901 {
902 const enum tree_code code = TREE_CODE (node);
903 switch (code)
904 {
905 case INTEGER_CST:
906 return (sizeof (struct tree_int_cst)
907 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
908
909 case TREE_BINFO:
910 return (offsetof (struct tree_binfo, base_binfos)
911 + vec<tree, va_gc>
912 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
913
914 case TREE_VEC:
915 return (sizeof (struct tree_vec)
916 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
917
918 case VECTOR_CST:
919 return (sizeof (struct tree_vector)
920 + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
921
922 case STRING_CST:
923 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
924
925 case OMP_CLAUSE:
926 return (sizeof (struct tree_omp_clause)
927 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
928 * sizeof (tree));
929
930 default:
931 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
932 return (sizeof (struct tree_exp)
933 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
934 else
935 return tree_code_size (code);
936 }
937 }
938
939 /* Return tree node kind based on tree CODE. */
940
941 static tree_node_kind
942 get_stats_node_kind (enum tree_code code)
943 {
944 enum tree_code_class type = TREE_CODE_CLASS (code);
945
946 switch (type)
947 {
948 case tcc_declaration: /* A decl node */
949 return d_kind;
950 case tcc_type: /* a type node */
951 return t_kind;
952 case tcc_statement: /* an expression with side effects */
953 return s_kind;
954 case tcc_reference: /* a reference */
955 return r_kind;
956 case tcc_expression: /* an expression */
957 case tcc_comparison: /* a comparison expression */
958 case tcc_unary: /* a unary arithmetic expression */
959 case tcc_binary: /* a binary arithmetic expression */
960 return e_kind;
961 case tcc_constant: /* a constant */
962 return c_kind;
963 case tcc_exceptional: /* something random, like an identifier. */
964 switch (code)
965 {
966 case IDENTIFIER_NODE:
967 return id_kind;
968 case TREE_VEC:
969 return vec_kind;
970 case TREE_BINFO:
971 return binfo_kind;
972 case SSA_NAME:
973 return ssa_name_kind;
974 case BLOCK:
975 return b_kind;
976 case CONSTRUCTOR:
977 return constr_kind;
978 case OMP_CLAUSE:
979 return omp_clause_kind;
980 default:
981 return x_kind;
982 }
983 break;
984 case tcc_vl_exp:
985 return e_kind;
986 default:
987 gcc_unreachable ();
988 }
989 }
990
991 /* Record interesting allocation statistics for a tree node with CODE
992 and LENGTH. */
993
994 static void
995 record_node_allocation_statistics (enum tree_code code, size_t length)
996 {
997 if (!GATHER_STATISTICS)
998 return;
999
1000 tree_node_kind kind = get_stats_node_kind (code);
1001
1002 tree_code_counts[(int) code]++;
1003 tree_node_counts[(int) kind]++;
1004 tree_node_sizes[(int) kind] += length;
1005 }
1006
1007 /* Allocate and return a new UID from the DECL_UID namespace. */
1008
1009 int
1010 allocate_decl_uid (void)
1011 {
1012 return next_decl_uid++;
1013 }
1014
1015 /* Return a newly allocated node of code CODE. For decl and type
1016 nodes, some other fields are initialized. The rest of the node is
1017 initialized to zero. This function cannot be used for TREE_VEC,
1018 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1019 tree_code_size.
1020
1021 Achoo! I got a code in the node. */
1022
1023 tree
1024 make_node (enum tree_code code MEM_STAT_DECL)
1025 {
1026 tree t;
1027 enum tree_code_class type = TREE_CODE_CLASS (code);
1028 size_t length = tree_code_size (code);
1029
1030 record_node_allocation_statistics (code, length);
1031
1032 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1033 TREE_SET_CODE (t, code);
1034
1035 switch (type)
1036 {
1037 case tcc_statement:
1038 if (code != DEBUG_BEGIN_STMT)
1039 TREE_SIDE_EFFECTS (t) = 1;
1040 break;
1041
1042 case tcc_declaration:
1043 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1044 {
1045 if (code == FUNCTION_DECL)
1046 {
1047 SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1048 SET_DECL_MODE (t, FUNCTION_MODE);
1049 }
1050 else
1051 SET_DECL_ALIGN (t, 1);
1052 }
1053 DECL_SOURCE_LOCATION (t) = input_location;
1054 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1055 DECL_UID (t) = --next_debug_decl_uid;
1056 else
1057 {
1058 DECL_UID (t) = allocate_decl_uid ();
1059 SET_DECL_PT_UID (t, -1);
1060 }
1061 if (TREE_CODE (t) == LABEL_DECL)
1062 LABEL_DECL_UID (t) = -1;
1063
1064 break;
1065
1066 case tcc_type:
1067 TYPE_UID (t) = next_type_uid++;
1068 SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1069 TYPE_USER_ALIGN (t) = 0;
1070 TYPE_MAIN_VARIANT (t) = t;
1071 TYPE_CANONICAL (t) = t;
1072
1073 /* Default to no attributes for type, but let target change that. */
1074 TYPE_ATTRIBUTES (t) = NULL_TREE;
1075 targetm.set_default_type_attributes (t);
1076
1077 /* We have not yet computed the alias set for this type. */
1078 TYPE_ALIAS_SET (t) = -1;
1079 break;
1080
1081 case tcc_constant:
1082 TREE_CONSTANT (t) = 1;
1083 break;
1084
1085 case tcc_expression:
1086 switch (code)
1087 {
1088 case INIT_EXPR:
1089 case MODIFY_EXPR:
1090 case VA_ARG_EXPR:
1091 case PREDECREMENT_EXPR:
1092 case PREINCREMENT_EXPR:
1093 case POSTDECREMENT_EXPR:
1094 case POSTINCREMENT_EXPR:
1095 /* All of these have side-effects, no matter what their
1096 operands are. */
1097 TREE_SIDE_EFFECTS (t) = 1;
1098 break;
1099
1100 default:
1101 break;
1102 }
1103 break;
1104
1105 case tcc_exceptional:
1106 switch (code)
1107 {
1108 case TARGET_OPTION_NODE:
1109 TREE_TARGET_OPTION(t)
1110 = ggc_cleared_alloc<struct cl_target_option> ();
1111 break;
1112
1113 case OPTIMIZATION_NODE:
1114 TREE_OPTIMIZATION (t)
1115 = ggc_cleared_alloc<struct cl_optimization> ();
1116 break;
1117
1118 default:
1119 break;
1120 }
1121 break;
1122
1123 default:
1124 /* Other classes need no special treatment. */
1125 break;
1126 }
1127
1128 return t;
1129 }
1130
1131 /* Free tree node. */
1132
1133 void
1134 free_node (tree node)
1135 {
1136 enum tree_code code = TREE_CODE (node);
1137 if (GATHER_STATISTICS)
1138 {
1139 enum tree_node_kind kind = get_stats_node_kind (code);
1140
1141 gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
1142 gcc_checking_assert (tree_node_counts[(int) kind] != 0);
1143 gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
1144
1145 tree_code_counts[(int) TREE_CODE (node)]--;
1146 tree_node_counts[(int) kind]--;
1147 tree_node_sizes[(int) kind] -= tree_size (node);
1148 }
1149 if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1150 vec_free (CONSTRUCTOR_ELTS (node));
1151 else if (code == BLOCK)
1152 vec_free (BLOCK_NONLOCALIZED_VARS (node));
1153 else if (code == TREE_BINFO)
1154 vec_free (BINFO_BASE_ACCESSES (node));
1155 ggc_free (node);
1156 }
1157 \f
1158 /* Return a new node with the same contents as NODE except that its
1159 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1160
1161 tree
1162 copy_node (tree node MEM_STAT_DECL)
1163 {
1164 tree t;
1165 enum tree_code code = TREE_CODE (node);
1166 size_t length;
1167
1168 gcc_assert (code != STATEMENT_LIST);
1169
1170 length = tree_size (node);
1171 record_node_allocation_statistics (code, length);
1172 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1173 memcpy (t, node, length);
1174
1175 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1176 TREE_CHAIN (t) = 0;
1177 TREE_ASM_WRITTEN (t) = 0;
1178 TREE_VISITED (t) = 0;
1179
1180 if (TREE_CODE_CLASS (code) == tcc_declaration)
1181 {
1182 if (code == DEBUG_EXPR_DECL)
1183 DECL_UID (t) = --next_debug_decl_uid;
1184 else
1185 {
1186 DECL_UID (t) = allocate_decl_uid ();
1187 if (DECL_PT_UID_SET_P (node))
1188 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1189 }
1190 if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1191 && DECL_HAS_VALUE_EXPR_P (node))
1192 {
1193 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1194 DECL_HAS_VALUE_EXPR_P (t) = 1;
1195 }
1196 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1197 if (VAR_P (node))
1198 {
1199 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1200 t->decl_with_vis.symtab_node = NULL;
1201 }
1202 if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1203 {
1204 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1205 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1206 }
1207 if (TREE_CODE (node) == FUNCTION_DECL)
1208 {
1209 DECL_STRUCT_FUNCTION (t) = NULL;
1210 t->decl_with_vis.symtab_node = NULL;
1211 }
1212 }
1213 else if (TREE_CODE_CLASS (code) == tcc_type)
1214 {
1215 TYPE_UID (t) = next_type_uid++;
1216 /* The following is so that the debug code for
1217 the copy is different from the original type.
1218 The two statements usually duplicate each other
1219 (because they clear fields of the same union),
1220 but the optimizer should catch that. */
1221 TYPE_SYMTAB_ADDRESS (t) = 0;
1222 TYPE_SYMTAB_DIE (t) = 0;
1223
1224 /* Do not copy the values cache. */
1225 if (TYPE_CACHED_VALUES_P (t))
1226 {
1227 TYPE_CACHED_VALUES_P (t) = 0;
1228 TYPE_CACHED_VALUES (t) = NULL_TREE;
1229 }
1230 }
1231 else if (code == TARGET_OPTION_NODE)
1232 {
1233 TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1234 memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1235 sizeof (struct cl_target_option));
1236 }
1237 else if (code == OPTIMIZATION_NODE)
1238 {
1239 TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1240 memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1241 sizeof (struct cl_optimization));
1242 }
1243
1244 return t;
1245 }
1246
1247 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1248 For example, this can copy a list made of TREE_LIST nodes. */
1249
1250 tree
1251 copy_list (tree list)
1252 {
1253 tree head;
1254 tree prev, next;
1255
1256 if (list == 0)
1257 return 0;
1258
1259 head = prev = copy_node (list);
1260 next = TREE_CHAIN (list);
1261 while (next)
1262 {
1263 TREE_CHAIN (prev) = copy_node (next);
1264 prev = TREE_CHAIN (prev);
1265 next = TREE_CHAIN (next);
1266 }
1267 return head;
1268 }
1269
1270 \f
1271 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1272 INTEGER_CST with value CST and type TYPE. */
1273
1274 static unsigned int
1275 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1276 {
1277 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1278 /* We need extra HWIs if CST is an unsigned integer with its
1279 upper bit set. */
1280 if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1281 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1282 return cst.get_len ();
1283 }
1284
1285 /* Return a new INTEGER_CST with value CST and type TYPE. */
1286
1287 static tree
1288 build_new_int_cst (tree type, const wide_int &cst)
1289 {
1290 unsigned int len = cst.get_len ();
1291 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1292 tree nt = make_int_cst (len, ext_len);
1293
1294 if (len < ext_len)
1295 {
1296 --ext_len;
1297 TREE_INT_CST_ELT (nt, ext_len)
1298 = zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1299 for (unsigned int i = len; i < ext_len; ++i)
1300 TREE_INT_CST_ELT (nt, i) = -1;
1301 }
1302 else if (TYPE_UNSIGNED (type)
1303 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1304 {
1305 len--;
1306 TREE_INT_CST_ELT (nt, len)
1307 = zext_hwi (cst.elt (len),
1308 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1309 }
1310
1311 for (unsigned int i = 0; i < len; i++)
1312 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1313 TREE_TYPE (nt) = type;
1314 return nt;
1315 }
1316
1317 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */
1318
1319 static tree
1320 build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
1321 CXX_MEM_STAT_INFO)
1322 {
1323 size_t length = sizeof (struct tree_poly_int_cst);
1324 record_node_allocation_statistics (POLY_INT_CST, length);
1325
1326 tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1327
1328 TREE_SET_CODE (t, POLY_INT_CST);
1329 TREE_CONSTANT (t) = 1;
1330 TREE_TYPE (t) = type;
1331 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1332 POLY_INT_CST_COEFF (t, i) = coeffs[i];
1333 return t;
1334 }
1335
1336 /* Create a constant tree that contains CST sign-extended to TYPE. */
1337
1338 tree
1339 build_int_cst (tree type, poly_int64 cst)
1340 {
1341 /* Support legacy code. */
1342 if (!type)
1343 type = integer_type_node;
1344
1345 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1346 }
1347
1348 /* Create a constant tree that contains CST zero-extended to TYPE. */
1349
1350 tree
1351 build_int_cstu (tree type, poly_uint64 cst)
1352 {
1353 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1354 }
1355
1356 /* Create a constant tree that contains CST sign-extended to TYPE. */
1357
1358 tree
1359 build_int_cst_type (tree type, poly_int64 cst)
1360 {
1361 gcc_assert (type);
1362 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1363 }
1364
1365 /* Constructs tree in type TYPE from with value given by CST. Signedness
1366 of CST is assumed to be the same as the signedness of TYPE. */
1367
1368 tree
1369 double_int_to_tree (tree type, double_int cst)
1370 {
1371 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1372 }
1373
1374 /* We force the wide_int CST to the range of the type TYPE by sign or
1375 zero extending it. OVERFLOWABLE indicates if we are interested in
1376 overflow of the value, when >0 we are only interested in signed
1377 overflow, for <0 we are interested in any overflow. OVERFLOWED
1378 indicates whether overflow has already occurred. CONST_OVERFLOWED
1379 indicates whether constant overflow has already occurred. We force
1380 T's value to be within range of T's type (by setting to 0 or 1 all
1381 the bits outside the type's range). We set TREE_OVERFLOWED if,
1382 OVERFLOWED is nonzero,
1383 or OVERFLOWABLE is >0 and signed overflow occurs
1384 or OVERFLOWABLE is <0 and any overflow occurs
1385 We return a new tree node for the extended wide_int. The node
1386 is shared if no overflow flags are set. */
1387
1388
1389 tree
1390 force_fit_type (tree type, const poly_wide_int_ref &cst,
1391 int overflowable, bool overflowed)
1392 {
1393 signop sign = TYPE_SIGN (type);
1394
1395 /* If we need to set overflow flags, return a new unshared node. */
1396 if (overflowed || !wi::fits_to_tree_p (cst, type))
1397 {
1398 if (overflowed
1399 || overflowable < 0
1400 || (overflowable > 0 && sign == SIGNED))
1401 {
1402 poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
1403 sign);
1404 tree t;
1405 if (tmp.is_constant ())
1406 t = build_new_int_cst (type, tmp.coeffs[0]);
1407 else
1408 {
1409 tree coeffs[NUM_POLY_INT_COEFFS];
1410 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1411 {
1412 coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
1413 TREE_OVERFLOW (coeffs[i]) = 1;
1414 }
1415 t = build_new_poly_int_cst (type, coeffs);
1416 }
1417 TREE_OVERFLOW (t) = 1;
1418 return t;
1419 }
1420 }
1421
1422 /* Else build a shared node. */
1423 return wide_int_to_tree (type, cst);
1424 }
1425
1426 /* These are the hash table functions for the hash table of INTEGER_CST
1427 nodes of a sizetype. */
1428
1429 /* Return the hash code X, an INTEGER_CST. */
1430
1431 hashval_t
1432 int_cst_hasher::hash (tree x)
1433 {
1434 const_tree const t = x;
1435 hashval_t code = TYPE_UID (TREE_TYPE (t));
1436 int i;
1437
1438 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1439 code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1440
1441 return code;
1442 }
1443
1444 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1445 is the same as that given by *Y, which is the same. */
1446
1447 bool
1448 int_cst_hasher::equal (tree x, tree y)
1449 {
1450 const_tree const xt = x;
1451 const_tree const yt = y;
1452
1453 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1454 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1455 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1456 return false;
1457
1458 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1459 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1460 return false;
1461
1462 return true;
1463 }
1464
1465 /* Create an INT_CST node of TYPE and value CST.
1466 The returned node is always shared. For small integers we use a
1467 per-type vector cache, for larger ones we use a single hash table.
1468 The value is extended from its precision according to the sign of
1469 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1470 the upper bits and ensures that hashing and value equality based
1471 upon the underlying HOST_WIDE_INTs works without masking. */
1472
1473 static tree
1474 wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
1475 {
1476 tree t;
1477 int ix = -1;
1478 int limit = 0;
1479
1480 gcc_assert (type);
1481 unsigned int prec = TYPE_PRECISION (type);
1482 signop sgn = TYPE_SIGN (type);
1483
1484 /* Verify that everything is canonical. */
1485 int l = pcst.get_len ();
1486 if (l > 1)
1487 {
1488 if (pcst.elt (l - 1) == 0)
1489 gcc_checking_assert (pcst.elt (l - 2) < 0);
1490 if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1491 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1492 }
1493
1494 wide_int cst = wide_int::from (pcst, prec, sgn);
1495 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1496
1497 if (ext_len == 1)
1498 {
1499 /* We just need to store a single HOST_WIDE_INT. */
1500 HOST_WIDE_INT hwi;
1501 if (TYPE_UNSIGNED (type))
1502 hwi = cst.to_uhwi ();
1503 else
1504 hwi = cst.to_shwi ();
1505
1506 switch (TREE_CODE (type))
1507 {
1508 case NULLPTR_TYPE:
1509 gcc_assert (hwi == 0);
1510 /* Fallthru. */
1511
1512 case POINTER_TYPE:
1513 case REFERENCE_TYPE:
1514 /* Cache NULL pointer and zero bounds. */
1515 if (hwi == 0)
1516 {
1517 limit = 1;
1518 ix = 0;
1519 }
1520 break;
1521
1522 case BOOLEAN_TYPE:
1523 /* Cache false or true. */
1524 limit = 2;
1525 if (IN_RANGE (hwi, 0, 1))
1526 ix = hwi;
1527 break;
1528
1529 case INTEGER_TYPE:
1530 case OFFSET_TYPE:
1531 if (TYPE_SIGN (type) == UNSIGNED)
1532 {
1533 /* Cache [0, N). */
1534 limit = INTEGER_SHARE_LIMIT;
1535 if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1536 ix = hwi;
1537 }
1538 else
1539 {
1540 /* Cache [-1, N). */
1541 limit = INTEGER_SHARE_LIMIT + 1;
1542 if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1543 ix = hwi + 1;
1544 }
1545 break;
1546
1547 case ENUMERAL_TYPE:
1548 break;
1549
1550 default:
1551 gcc_unreachable ();
1552 }
1553
1554 if (ix >= 0)
1555 {
1556 /* Look for it in the type's vector of small shared ints. */
1557 if (!TYPE_CACHED_VALUES_P (type))
1558 {
1559 TYPE_CACHED_VALUES_P (type) = 1;
1560 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1561 }
1562
1563 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1564 if (t)
1565 /* Make sure no one is clobbering the shared constant. */
1566 gcc_checking_assert (TREE_TYPE (t) == type
1567 && TREE_INT_CST_NUNITS (t) == 1
1568 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1569 && TREE_INT_CST_EXT_NUNITS (t) == 1
1570 && TREE_INT_CST_ELT (t, 0) == hwi);
1571 else
1572 {
1573 /* Create a new shared int. */
1574 t = build_new_int_cst (type, cst);
1575 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1576 }
1577 }
1578 else
1579 {
1580 /* Use the cache of larger shared ints, using int_cst_node as
1581 a temporary. */
1582
1583 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1584 TREE_TYPE (int_cst_node) = type;
1585
1586 tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1587 t = *slot;
1588 if (!t)
1589 {
1590 /* Insert this one into the hash table. */
1591 t = int_cst_node;
1592 *slot = t;
1593 /* Make a new node for next time round. */
1594 int_cst_node = make_int_cst (1, 1);
1595 }
1596 }
1597 }
1598 else
1599 {
1600 /* The value either hashes properly or we drop it on the floor
1601 for the gc to take care of. There will not be enough of them
1602 to worry about. */
1603
1604 tree nt = build_new_int_cst (type, cst);
1605 tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1606 t = *slot;
1607 if (!t)
1608 {
1609 /* Insert this one into the hash table. */
1610 t = nt;
1611 *slot = t;
1612 }
1613 else
1614 ggc_free (nt);
1615 }
1616
1617 return t;
1618 }
1619
1620 hashval_t
1621 poly_int_cst_hasher::hash (tree t)
1622 {
1623 inchash::hash hstate;
1624
1625 hstate.add_int (TYPE_UID (TREE_TYPE (t)));
1626 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1627 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
1628
1629 return hstate.end ();
1630 }
1631
1632 bool
1633 poly_int_cst_hasher::equal (tree x, const compare_type &y)
1634 {
1635 if (TREE_TYPE (x) != y.first)
1636 return false;
1637 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1638 if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
1639 return false;
1640 return true;
1641 }
1642
1643 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1644 The elements must also have type TYPE. */
1645
1646 tree
1647 build_poly_int_cst (tree type, const poly_wide_int_ref &values)
1648 {
1649 unsigned int prec = TYPE_PRECISION (type);
1650 gcc_assert (prec <= values.coeffs[0].get_precision ());
1651 poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
1652
1653 inchash::hash h;
1654 h.add_int (TYPE_UID (type));
1655 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1656 h.add_wide_int (c.coeffs[i]);
1657 poly_int_cst_hasher::compare_type comp (type, &c);
1658 tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
1659 INSERT);
1660 if (*slot == NULL_TREE)
1661 {
1662 tree coeffs[NUM_POLY_INT_COEFFS];
1663 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1664 coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
1665 *slot = build_new_poly_int_cst (type, coeffs);
1666 }
1667 return *slot;
1668 }
1669
1670 /* Create a constant tree with value VALUE in type TYPE. */
1671
1672 tree
1673 wide_int_to_tree (tree type, const poly_wide_int_ref &value)
1674 {
1675 if (value.is_constant ())
1676 return wide_int_to_tree_1 (type, value.coeffs[0]);
1677 return build_poly_int_cst (type, value);
1678 }
1679
1680 void
1681 cache_integer_cst (tree t)
1682 {
1683 tree type = TREE_TYPE (t);
1684 int ix = -1;
1685 int limit = 0;
1686 int prec = TYPE_PRECISION (type);
1687
1688 gcc_assert (!TREE_OVERFLOW (t));
1689
1690 switch (TREE_CODE (type))
1691 {
1692 case NULLPTR_TYPE:
1693 gcc_assert (integer_zerop (t));
1694 /* Fallthru. */
1695
1696 case POINTER_TYPE:
1697 case REFERENCE_TYPE:
1698 /* Cache NULL pointer. */
1699 if (integer_zerop (t))
1700 {
1701 limit = 1;
1702 ix = 0;
1703 }
1704 break;
1705
1706 case BOOLEAN_TYPE:
1707 /* Cache false or true. */
1708 limit = 2;
1709 if (wi::ltu_p (wi::to_wide (t), 2))
1710 ix = TREE_INT_CST_ELT (t, 0);
1711 break;
1712
1713 case INTEGER_TYPE:
1714 case OFFSET_TYPE:
1715 if (TYPE_UNSIGNED (type))
1716 {
1717 /* Cache 0..N */
1718 limit = INTEGER_SHARE_LIMIT;
1719
1720 /* This is a little hokie, but if the prec is smaller than
1721 what is necessary to hold INTEGER_SHARE_LIMIT, then the
1722 obvious test will not get the correct answer. */
1723 if (prec < HOST_BITS_PER_WIDE_INT)
1724 {
1725 if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1726 ix = tree_to_uhwi (t);
1727 }
1728 else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1729 ix = tree_to_uhwi (t);
1730 }
1731 else
1732 {
1733 /* Cache -1..N */
1734 limit = INTEGER_SHARE_LIMIT + 1;
1735
1736 if (integer_minus_onep (t))
1737 ix = 0;
1738 else if (!wi::neg_p (wi::to_wide (t)))
1739 {
1740 if (prec < HOST_BITS_PER_WIDE_INT)
1741 {
1742 if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1743 ix = tree_to_shwi (t) + 1;
1744 }
1745 else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1746 ix = tree_to_shwi (t) + 1;
1747 }
1748 }
1749 break;
1750
1751 case ENUMERAL_TYPE:
1752 break;
1753
1754 default:
1755 gcc_unreachable ();
1756 }
1757
1758 if (ix >= 0)
1759 {
1760 /* Look for it in the type's vector of small shared ints. */
1761 if (!TYPE_CACHED_VALUES_P (type))
1762 {
1763 TYPE_CACHED_VALUES_P (type) = 1;
1764 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1765 }
1766
1767 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1768 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1769 }
1770 else
1771 {
1772 /* Use the cache of larger shared ints. */
1773 tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1774 /* If there is already an entry for the number verify it's the
1775 same. */
1776 if (*slot)
1777 gcc_assert (wi::to_wide (tree (*slot)) == wi::to_wide (t));
1778 else
1779 /* Otherwise insert this one into the hash table. */
1780 *slot = t;
1781 }
1782 }
1783
1784
1785 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1786 and the rest are zeros. */
1787
1788 tree
1789 build_low_bits_mask (tree type, unsigned bits)
1790 {
1791 gcc_assert (bits <= TYPE_PRECISION (type));
1792
1793 return wide_int_to_tree (type, wi::mask (bits, false,
1794 TYPE_PRECISION (type)));
1795 }
1796
1797 /* Checks that X is integer constant that can be expressed in (unsigned)
1798 HOST_WIDE_INT without loss of precision. */
1799
1800 bool
1801 cst_and_fits_in_hwi (const_tree x)
1802 {
1803 return (TREE_CODE (x) == INTEGER_CST
1804 && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
1805 }
1806
1807 /* Build a newly constructed VECTOR_CST with the given values of
1808 (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */
1809
1810 tree
1811 make_vector (unsigned log2_npatterns,
1812 unsigned int nelts_per_pattern MEM_STAT_DECL)
1813 {
1814 gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
1815 tree t;
1816 unsigned npatterns = 1 << log2_npatterns;
1817 unsigned encoded_nelts = npatterns * nelts_per_pattern;
1818 unsigned length = (sizeof (struct tree_vector)
1819 + (encoded_nelts - 1) * sizeof (tree));
1820
1821 record_node_allocation_statistics (VECTOR_CST, length);
1822
1823 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1824
1825 TREE_SET_CODE (t, VECTOR_CST);
1826 TREE_CONSTANT (t) = 1;
1827 VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
1828 VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
1829
1830 return t;
1831 }
1832
1833 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1834 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1835
1836 tree
1837 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1838 {
1839 unsigned HOST_WIDE_INT idx, nelts;
1840 tree value;
1841
1842 /* We can't construct a VECTOR_CST for a variable number of elements. */
1843 nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
1844 tree_vector_builder vec (type, nelts, 1);
1845 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1846 {
1847 if (TREE_CODE (value) == VECTOR_CST)
1848 {
1849 /* If NELTS is constant then this must be too. */
1850 unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
1851 for (unsigned i = 0; i < sub_nelts; ++i)
1852 vec.quick_push (VECTOR_CST_ELT (value, i));
1853 }
1854 else
1855 vec.quick_push (value);
1856 }
1857 while (vec.length () < nelts)
1858 vec.quick_push (build_zero_cst (TREE_TYPE (type)));
1859
1860 return vec.build ();
1861 }
1862
1863 /* Build a vector of type VECTYPE where all the elements are SCs. */
1864 tree
1865 build_vector_from_val (tree vectype, tree sc)
1866 {
1867 unsigned HOST_WIDE_INT i, nunits;
1868
1869 if (sc == error_mark_node)
1870 return sc;
1871
1872 /* Verify that the vector type is suitable for SC. Note that there
1873 is some inconsistency in the type-system with respect to restrict
1874 qualifications of pointers. Vector types always have a main-variant
1875 element type and the qualification is applied to the vector-type.
1876 So TREE_TYPE (vector-type) does not return a properly qualified
1877 vector element-type. */
1878 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1879 TREE_TYPE (vectype)));
1880
1881 if (CONSTANT_CLASS_P (sc))
1882 {
1883 tree_vector_builder v (vectype, 1, 1);
1884 v.quick_push (sc);
1885 return v.build ();
1886 }
1887 else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
1888 return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
1889 else
1890 {
1891 vec<constructor_elt, va_gc> *v;
1892 vec_alloc (v, nunits);
1893 for (i = 0; i < nunits; ++i)
1894 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1895 return build_constructor (vectype, v);
1896 }
1897 }
1898
1899 /* Build a vector series of type TYPE in which element I has the value
1900 BASE + I * STEP. The result is a constant if BASE and STEP are constant
1901 and a VEC_SERIES_EXPR otherwise. */
1902
1903 tree
1904 build_vec_series (tree type, tree base, tree step)
1905 {
1906 if (integer_zerop (step))
1907 return build_vector_from_val (type, base);
1908 if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
1909 {
1910 tree_vector_builder builder (type, 1, 3);
1911 tree elt1 = wide_int_to_tree (TREE_TYPE (base),
1912 wi::to_wide (base) + wi::to_wide (step));
1913 tree elt2 = wide_int_to_tree (TREE_TYPE (base),
1914 wi::to_wide (elt1) + wi::to_wide (step));
1915 builder.quick_push (base);
1916 builder.quick_push (elt1);
1917 builder.quick_push (elt2);
1918 return builder.build ();
1919 }
1920 return build2 (VEC_SERIES_EXPR, type, base, step);
1921 }
1922
1923 /* Return a vector with the same number of units and number of bits
1924 as VEC_TYPE, but in which the elements are a linear series of unsigned
1925 integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */
1926
1927 tree
1928 build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
1929 {
1930 tree index_vec_type = vec_type;
1931 tree index_elt_type = TREE_TYPE (vec_type);
1932 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
1933 if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
1934 {
1935 index_elt_type = build_nonstandard_integer_type
1936 (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
1937 index_vec_type = build_vector_type (index_elt_type, nunits);
1938 }
1939
1940 tree_vector_builder v (index_vec_type, 1, 3);
1941 for (unsigned int i = 0; i < 3; ++i)
1942 v.quick_push (build_int_cstu (index_elt_type, base + i * step));
1943 return v.build ();
1944 }
1945
1946 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
1947 calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
1948
1949 void
1950 recompute_constructor_flags (tree c)
1951 {
1952 unsigned int i;
1953 tree val;
1954 bool constant_p = true;
1955 bool side_effects_p = false;
1956 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1957
1958 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1959 {
1960 /* Mostly ctors will have elts that don't have side-effects, so
1961 the usual case is to scan all the elements. Hence a single
1962 loop for both const and side effects, rather than one loop
1963 each (with early outs). */
1964 if (!TREE_CONSTANT (val))
1965 constant_p = false;
1966 if (TREE_SIDE_EFFECTS (val))
1967 side_effects_p = true;
1968 }
1969
1970 TREE_SIDE_EFFECTS (c) = side_effects_p;
1971 TREE_CONSTANT (c) = constant_p;
1972 }
1973
1974 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
1975 CONSTRUCTOR C. */
1976
1977 void
1978 verify_constructor_flags (tree c)
1979 {
1980 unsigned int i;
1981 tree val;
1982 bool constant_p = TREE_CONSTANT (c);
1983 bool side_effects_p = TREE_SIDE_EFFECTS (c);
1984 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1985
1986 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1987 {
1988 if (constant_p && !TREE_CONSTANT (val))
1989 internal_error ("non-constant element in constant CONSTRUCTOR");
1990 if (!side_effects_p && TREE_SIDE_EFFECTS (val))
1991 internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
1992 }
1993 }
1994
1995 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1996 are in the vec pointed to by VALS. */
1997 tree
1998 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1999 {
2000 tree c = make_node (CONSTRUCTOR);
2001
2002 TREE_TYPE (c) = type;
2003 CONSTRUCTOR_ELTS (c) = vals;
2004
2005 recompute_constructor_flags (c);
2006
2007 return c;
2008 }
2009
2010 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
2011 INDEX and VALUE. */
2012 tree
2013 build_constructor_single (tree type, tree index, tree value)
2014 {
2015 vec<constructor_elt, va_gc> *v;
2016 constructor_elt elt = {index, value};
2017
2018 vec_alloc (v, 1);
2019 v->quick_push (elt);
2020
2021 return build_constructor (type, v);
2022 }
2023
2024
2025 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2026 are in a list pointed to by VALS. */
2027 tree
2028 build_constructor_from_list (tree type, tree vals)
2029 {
2030 tree t;
2031 vec<constructor_elt, va_gc> *v = NULL;
2032
2033 if (vals)
2034 {
2035 vec_alloc (v, list_length (vals));
2036 for (t = vals; t; t = TREE_CHAIN (t))
2037 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
2038 }
2039
2040 return build_constructor (type, v);
2041 }
2042
2043 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
2044 of elements, provided as index/value pairs. */
2045
2046 tree
2047 build_constructor_va (tree type, int nelts, ...)
2048 {
2049 vec<constructor_elt, va_gc> *v = NULL;
2050 va_list p;
2051
2052 va_start (p, nelts);
2053 vec_alloc (v, nelts);
2054 while (nelts--)
2055 {
2056 tree index = va_arg (p, tree);
2057 tree value = va_arg (p, tree);
2058 CONSTRUCTOR_APPEND_ELT (v, index, value);
2059 }
2060 va_end (p);
2061 return build_constructor (type, v);
2062 }
2063
2064 /* Return a node of type TYPE for which TREE_CLOBBER_P is true. */
2065
2066 tree
2067 build_clobber (tree type)
2068 {
2069 tree clobber = build_constructor (type, NULL);
2070 TREE_THIS_VOLATILE (clobber) = true;
2071 return clobber;
2072 }
2073
2074 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
2075
2076 tree
2077 build_fixed (tree type, FIXED_VALUE_TYPE f)
2078 {
2079 tree v;
2080 FIXED_VALUE_TYPE *fp;
2081
2082 v = make_node (FIXED_CST);
2083 fp = ggc_alloc<fixed_value> ();
2084 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
2085
2086 TREE_TYPE (v) = type;
2087 TREE_FIXED_CST_PTR (v) = fp;
2088 return v;
2089 }
2090
2091 /* Return a new REAL_CST node whose type is TYPE and value is D. */
2092
2093 tree
2094 build_real (tree type, REAL_VALUE_TYPE d)
2095 {
2096 tree v;
2097 REAL_VALUE_TYPE *dp;
2098 int overflow = 0;
2099
2100 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2101 Consider doing it via real_convert now. */
2102
2103 v = make_node (REAL_CST);
2104 dp = ggc_alloc<real_value> ();
2105 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
2106
2107 TREE_TYPE (v) = type;
2108 TREE_REAL_CST_PTR (v) = dp;
2109 TREE_OVERFLOW (v) = overflow;
2110 return v;
2111 }
2112
2113 /* Like build_real, but first truncate D to the type. */
2114
2115 tree
2116 build_real_truncate (tree type, REAL_VALUE_TYPE d)
2117 {
2118 return build_real (type, real_value_truncate (TYPE_MODE (type), d));
2119 }
2120
2121 /* Return a new REAL_CST node whose type is TYPE
2122 and whose value is the integer value of the INTEGER_CST node I. */
2123
2124 REAL_VALUE_TYPE
2125 real_value_from_int_cst (const_tree type, const_tree i)
2126 {
2127 REAL_VALUE_TYPE d;
2128
2129 /* Clear all bits of the real value type so that we can later do
2130 bitwise comparisons to see if two values are the same. */
2131 memset (&d, 0, sizeof d);
2132
2133 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
2134 TYPE_SIGN (TREE_TYPE (i)));
2135 return d;
2136 }
2137
2138 /* Given a tree representing an integer constant I, return a tree
2139 representing the same value as a floating-point constant of type TYPE. */
2140
2141 tree
2142 build_real_from_int_cst (tree type, const_tree i)
2143 {
2144 tree v;
2145 int overflow = TREE_OVERFLOW (i);
2146
2147 v = build_real (type, real_value_from_int_cst (type, i));
2148
2149 TREE_OVERFLOW (v) |= overflow;
2150 return v;
2151 }
2152
2153 /* Return a newly constructed STRING_CST node whose value is
2154 the LEN characters at STR.
2155 Note that for a C string literal, LEN should include the trailing NUL.
2156 The TREE_TYPE is not initialized. */
2157
2158 tree
2159 build_string (int len, const char *str)
2160 {
2161 tree s;
2162 size_t length;
2163
2164 /* Do not waste bytes provided by padding of struct tree_string. */
2165 length = len + offsetof (struct tree_string, str) + 1;
2166
2167 record_node_allocation_statistics (STRING_CST, length);
2168
2169 s = (tree) ggc_internal_alloc (length);
2170
2171 memset (s, 0, sizeof (struct tree_typed));
2172 TREE_SET_CODE (s, STRING_CST);
2173 TREE_CONSTANT (s) = 1;
2174 TREE_STRING_LENGTH (s) = len;
2175 memcpy (s->string.str, str, len);
2176 s->string.str[len] = '\0';
2177
2178 return s;
2179 }
2180
2181 /* Return a newly constructed COMPLEX_CST node whose value is
2182 specified by the real and imaginary parts REAL and IMAG.
2183 Both REAL and IMAG should be constant nodes. TYPE, if specified,
2184 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
2185
2186 tree
2187 build_complex (tree type, tree real, tree imag)
2188 {
2189 tree t = make_node (COMPLEX_CST);
2190
2191 TREE_REALPART (t) = real;
2192 TREE_IMAGPART (t) = imag;
2193 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2194 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2195 return t;
2196 }
2197
2198 /* Build a complex (inf +- 0i), such as for the result of cproj.
2199 TYPE is the complex tree type of the result. If NEG is true, the
2200 imaginary zero is negative. */
2201
2202 tree
2203 build_complex_inf (tree type, bool neg)
2204 {
2205 REAL_VALUE_TYPE rinf, rzero = dconst0;
2206
2207 real_inf (&rinf);
2208 rzero.sign = neg;
2209 return build_complex (type, build_real (TREE_TYPE (type), rinf),
2210 build_real (TREE_TYPE (type), rzero));
2211 }
2212
2213 /* Return the constant 1 in type TYPE. If TYPE has several elements, each
2214 element is set to 1. In particular, this is 1 + i for complex types. */
2215
2216 tree
2217 build_each_one_cst (tree type)
2218 {
2219 if (TREE_CODE (type) == COMPLEX_TYPE)
2220 {
2221 tree scalar = build_one_cst (TREE_TYPE (type));
2222 return build_complex (type, scalar, scalar);
2223 }
2224 else
2225 return build_one_cst (type);
2226 }
2227
2228 /* Return a constant of arithmetic type TYPE which is the
2229 multiplicative identity of the set TYPE. */
2230
2231 tree
2232 build_one_cst (tree type)
2233 {
2234 switch (TREE_CODE (type))
2235 {
2236 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2237 case POINTER_TYPE: case REFERENCE_TYPE:
2238 case OFFSET_TYPE:
2239 return build_int_cst (type, 1);
2240
2241 case REAL_TYPE:
2242 return build_real (type, dconst1);
2243
2244 case FIXED_POINT_TYPE:
2245 /* We can only generate 1 for accum types. */
2246 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2247 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2248
2249 case VECTOR_TYPE:
2250 {
2251 tree scalar = build_one_cst (TREE_TYPE (type));
2252
2253 return build_vector_from_val (type, scalar);
2254 }
2255
2256 case COMPLEX_TYPE:
2257 return build_complex (type,
2258 build_one_cst (TREE_TYPE (type)),
2259 build_zero_cst (TREE_TYPE (type)));
2260
2261 default:
2262 gcc_unreachable ();
2263 }
2264 }
2265
2266 /* Return an integer of type TYPE containing all 1's in as much precision as
2267 it contains, or a complex or vector whose subparts are such integers. */
2268
2269 tree
2270 build_all_ones_cst (tree type)
2271 {
2272 if (TREE_CODE (type) == COMPLEX_TYPE)
2273 {
2274 tree scalar = build_all_ones_cst (TREE_TYPE (type));
2275 return build_complex (type, scalar, scalar);
2276 }
2277 else
2278 return build_minus_one_cst (type);
2279 }
2280
2281 /* Return a constant of arithmetic type TYPE which is the
2282 opposite of the multiplicative identity of the set TYPE. */
2283
2284 tree
2285 build_minus_one_cst (tree type)
2286 {
2287 switch (TREE_CODE (type))
2288 {
2289 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2290 case POINTER_TYPE: case REFERENCE_TYPE:
2291 case OFFSET_TYPE:
2292 return build_int_cst (type, -1);
2293
2294 case REAL_TYPE:
2295 return build_real (type, dconstm1);
2296
2297 case FIXED_POINT_TYPE:
2298 /* We can only generate 1 for accum types. */
2299 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2300 return build_fixed (type,
2301 fixed_from_double_int (double_int_minus_one,
2302 SCALAR_TYPE_MODE (type)));
2303
2304 case VECTOR_TYPE:
2305 {
2306 tree scalar = build_minus_one_cst (TREE_TYPE (type));
2307
2308 return build_vector_from_val (type, scalar);
2309 }
2310
2311 case COMPLEX_TYPE:
2312 return build_complex (type,
2313 build_minus_one_cst (TREE_TYPE (type)),
2314 build_zero_cst (TREE_TYPE (type)));
2315
2316 default:
2317 gcc_unreachable ();
2318 }
2319 }
2320
2321 /* Build 0 constant of type TYPE. This is used by constructor folding
2322 and thus the constant should be represented in memory by
2323 zero(es). */
2324
2325 tree
2326 build_zero_cst (tree type)
2327 {
2328 switch (TREE_CODE (type))
2329 {
2330 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2331 case POINTER_TYPE: case REFERENCE_TYPE:
2332 case OFFSET_TYPE: case NULLPTR_TYPE:
2333 return build_int_cst (type, 0);
2334
2335 case REAL_TYPE:
2336 return build_real (type, dconst0);
2337
2338 case FIXED_POINT_TYPE:
2339 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2340
2341 case VECTOR_TYPE:
2342 {
2343 tree scalar = build_zero_cst (TREE_TYPE (type));
2344
2345 return build_vector_from_val (type, scalar);
2346 }
2347
2348 case COMPLEX_TYPE:
2349 {
2350 tree zero = build_zero_cst (TREE_TYPE (type));
2351
2352 return build_complex (type, zero, zero);
2353 }
2354
2355 default:
2356 if (!AGGREGATE_TYPE_P (type))
2357 return fold_convert (type, integer_zero_node);
2358 return build_constructor (type, NULL);
2359 }
2360 }
2361
2362
2363 /* Build a BINFO with LEN language slots. */
2364
2365 tree
2366 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2367 {
2368 tree t;
2369 size_t length = (offsetof (struct tree_binfo, base_binfos)
2370 + vec<tree, va_gc>::embedded_size (base_binfos));
2371
2372 record_node_allocation_statistics (TREE_BINFO, length);
2373
2374 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2375
2376 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2377
2378 TREE_SET_CODE (t, TREE_BINFO);
2379
2380 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2381
2382 return t;
2383 }
2384
2385 /* Create a CASE_LABEL_EXPR tree node and return it. */
2386
2387 tree
2388 build_case_label (tree low_value, tree high_value, tree label_decl)
2389 {
2390 tree t = make_node (CASE_LABEL_EXPR);
2391
2392 TREE_TYPE (t) = void_type_node;
2393 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2394
2395 CASE_LOW (t) = low_value;
2396 CASE_HIGH (t) = high_value;
2397 CASE_LABEL (t) = label_decl;
2398 CASE_CHAIN (t) = NULL_TREE;
2399
2400 return t;
2401 }
2402
2403 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2404 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2405 The latter determines the length of the HOST_WIDE_INT vector. */
2406
2407 tree
2408 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2409 {
2410 tree t;
2411 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2412 + sizeof (struct tree_int_cst));
2413
2414 gcc_assert (len);
2415 record_node_allocation_statistics (INTEGER_CST, length);
2416
2417 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2418
2419 TREE_SET_CODE (t, INTEGER_CST);
2420 TREE_INT_CST_NUNITS (t) = len;
2421 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2422 /* to_offset can only be applied to trees that are offset_int-sized
2423 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2424 must be exactly the precision of offset_int and so LEN is correct. */
2425 if (ext_len <= OFFSET_INT_ELTS)
2426 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2427 else
2428 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2429
2430 TREE_CONSTANT (t) = 1;
2431
2432 return t;
2433 }
2434
2435 /* Build a newly constructed TREE_VEC node of length LEN. */
2436
2437 tree
2438 make_tree_vec (int len MEM_STAT_DECL)
2439 {
2440 tree t;
2441 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2442
2443 record_node_allocation_statistics (TREE_VEC, length);
2444
2445 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2446
2447 TREE_SET_CODE (t, TREE_VEC);
2448 TREE_VEC_LENGTH (t) = len;
2449
2450 return t;
2451 }
2452
2453 /* Grow a TREE_VEC node to new length LEN. */
2454
2455 tree
2456 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2457 {
2458 gcc_assert (TREE_CODE (v) == TREE_VEC);
2459
2460 int oldlen = TREE_VEC_LENGTH (v);
2461 gcc_assert (len > oldlen);
2462
2463 size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2464 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2465
2466 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2467
2468 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2469
2470 TREE_VEC_LENGTH (v) = len;
2471
2472 return v;
2473 }
2474 \f
2475 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2476 fixed, and scalar, complex or vector. */
2477
2478 int
2479 zerop (const_tree expr)
2480 {
2481 return (integer_zerop (expr)
2482 || real_zerop (expr)
2483 || fixed_zerop (expr));
2484 }
2485
2486 /* Return 1 if EXPR is the integer constant zero or a complex constant
2487 of zero. */
2488
2489 int
2490 integer_zerop (const_tree expr)
2491 {
2492 switch (TREE_CODE (expr))
2493 {
2494 case INTEGER_CST:
2495 return wi::to_wide (expr) == 0;
2496 case COMPLEX_CST:
2497 return (integer_zerop (TREE_REALPART (expr))
2498 && integer_zerop (TREE_IMAGPART (expr)));
2499 case VECTOR_CST:
2500 return (VECTOR_CST_NPATTERNS (expr) == 1
2501 && VECTOR_CST_DUPLICATE_P (expr)
2502 && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
2503 default:
2504 return false;
2505 }
2506 }
2507
2508 /* Return 1 if EXPR is the integer constant one or the corresponding
2509 complex constant. */
2510
2511 int
2512 integer_onep (const_tree expr)
2513 {
2514 switch (TREE_CODE (expr))
2515 {
2516 case INTEGER_CST:
2517 return wi::eq_p (wi::to_widest (expr), 1);
2518 case COMPLEX_CST:
2519 return (integer_onep (TREE_REALPART (expr))
2520 && integer_zerop (TREE_IMAGPART (expr)));
2521 case VECTOR_CST:
2522 return (VECTOR_CST_NPATTERNS (expr) == 1
2523 && VECTOR_CST_DUPLICATE_P (expr)
2524 && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2525 default:
2526 return false;
2527 }
2528 }
2529
2530 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2531 return 1 if every piece is the integer constant one. */
2532
2533 int
2534 integer_each_onep (const_tree expr)
2535 {
2536 if (TREE_CODE (expr) == COMPLEX_CST)
2537 return (integer_onep (TREE_REALPART (expr))
2538 && integer_onep (TREE_IMAGPART (expr)));
2539 else
2540 return integer_onep (expr);
2541 }
2542
2543 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2544 it contains, or a complex or vector whose subparts are such integers. */
2545
2546 int
2547 integer_all_onesp (const_tree expr)
2548 {
2549 if (TREE_CODE (expr) == COMPLEX_CST
2550 && integer_all_onesp (TREE_REALPART (expr))
2551 && integer_all_onesp (TREE_IMAGPART (expr)))
2552 return 1;
2553
2554 else if (TREE_CODE (expr) == VECTOR_CST)
2555 return (VECTOR_CST_NPATTERNS (expr) == 1
2556 && VECTOR_CST_DUPLICATE_P (expr)
2557 && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
2558
2559 else if (TREE_CODE (expr) != INTEGER_CST)
2560 return 0;
2561
2562 return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
2563 == wi::to_wide (expr));
2564 }
2565
2566 /* Return 1 if EXPR is the integer constant minus one. */
2567
2568 int
2569 integer_minus_onep (const_tree expr)
2570 {
2571 if (TREE_CODE (expr) == COMPLEX_CST)
2572 return (integer_all_onesp (TREE_REALPART (expr))
2573 && integer_zerop (TREE_IMAGPART (expr)));
2574 else
2575 return integer_all_onesp (expr);
2576 }
2577
2578 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2579 one bit on). */
2580
2581 int
2582 integer_pow2p (const_tree expr)
2583 {
2584 if (TREE_CODE (expr) == COMPLEX_CST
2585 && integer_pow2p (TREE_REALPART (expr))
2586 && integer_zerop (TREE_IMAGPART (expr)))
2587 return 1;
2588
2589 if (TREE_CODE (expr) != INTEGER_CST)
2590 return 0;
2591
2592 return wi::popcount (wi::to_wide (expr)) == 1;
2593 }
2594
2595 /* Return 1 if EXPR is an integer constant other than zero or a
2596 complex constant other than zero. */
2597
2598 int
2599 integer_nonzerop (const_tree expr)
2600 {
2601 return ((TREE_CODE (expr) == INTEGER_CST
2602 && wi::to_wide (expr) != 0)
2603 || (TREE_CODE (expr) == COMPLEX_CST
2604 && (integer_nonzerop (TREE_REALPART (expr))
2605 || integer_nonzerop (TREE_IMAGPART (expr)))));
2606 }
2607
2608 /* Return 1 if EXPR is the integer constant one. For vector,
2609 return 1 if every piece is the integer constant minus one
2610 (representing the value TRUE). */
2611
2612 int
2613 integer_truep (const_tree expr)
2614 {
2615 if (TREE_CODE (expr) == VECTOR_CST)
2616 return integer_all_onesp (expr);
2617 return integer_onep (expr);
2618 }
2619
2620 /* Return 1 if EXPR is the fixed-point constant zero. */
2621
2622 int
2623 fixed_zerop (const_tree expr)
2624 {
2625 return (TREE_CODE (expr) == FIXED_CST
2626 && TREE_FIXED_CST (expr).data.is_zero ());
2627 }
2628
2629 /* Return the power of two represented by a tree node known to be a
2630 power of two. */
2631
2632 int
2633 tree_log2 (const_tree expr)
2634 {
2635 if (TREE_CODE (expr) == COMPLEX_CST)
2636 return tree_log2 (TREE_REALPART (expr));
2637
2638 return wi::exact_log2 (wi::to_wide (expr));
2639 }
2640
2641 /* Similar, but return the largest integer Y such that 2 ** Y is less
2642 than or equal to EXPR. */
2643
2644 int
2645 tree_floor_log2 (const_tree expr)
2646 {
2647 if (TREE_CODE (expr) == COMPLEX_CST)
2648 return tree_log2 (TREE_REALPART (expr));
2649
2650 return wi::floor_log2 (wi::to_wide (expr));
2651 }
2652
2653 /* Return number of known trailing zero bits in EXPR, or, if the value of
2654 EXPR is known to be zero, the precision of it's type. */
2655
2656 unsigned int
2657 tree_ctz (const_tree expr)
2658 {
2659 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2660 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2661 return 0;
2662
2663 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2664 switch (TREE_CODE (expr))
2665 {
2666 case INTEGER_CST:
2667 ret1 = wi::ctz (wi::to_wide (expr));
2668 return MIN (ret1, prec);
2669 case SSA_NAME:
2670 ret1 = wi::ctz (get_nonzero_bits (expr));
2671 return MIN (ret1, prec);
2672 case PLUS_EXPR:
2673 case MINUS_EXPR:
2674 case BIT_IOR_EXPR:
2675 case BIT_XOR_EXPR:
2676 case MIN_EXPR:
2677 case MAX_EXPR:
2678 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2679 if (ret1 == 0)
2680 return ret1;
2681 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2682 return MIN (ret1, ret2);
2683 case POINTER_PLUS_EXPR:
2684 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2685 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2686 /* Second operand is sizetype, which could be in theory
2687 wider than pointer's precision. Make sure we never
2688 return more than prec. */
2689 ret2 = MIN (ret2, prec);
2690 return MIN (ret1, ret2);
2691 case BIT_AND_EXPR:
2692 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2693 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2694 return MAX (ret1, ret2);
2695 case MULT_EXPR:
2696 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2697 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2698 return MIN (ret1 + ret2, prec);
2699 case LSHIFT_EXPR:
2700 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2701 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2702 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2703 {
2704 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2705 return MIN (ret1 + ret2, prec);
2706 }
2707 return ret1;
2708 case RSHIFT_EXPR:
2709 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2710 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2711 {
2712 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2713 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2714 if (ret1 > ret2)
2715 return ret1 - ret2;
2716 }
2717 return 0;
2718 case TRUNC_DIV_EXPR:
2719 case CEIL_DIV_EXPR:
2720 case FLOOR_DIV_EXPR:
2721 case ROUND_DIV_EXPR:
2722 case EXACT_DIV_EXPR:
2723 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2724 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2725 {
2726 int l = tree_log2 (TREE_OPERAND (expr, 1));
2727 if (l >= 0)
2728 {
2729 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2730 ret2 = l;
2731 if (ret1 > ret2)
2732 return ret1 - ret2;
2733 }
2734 }
2735 return 0;
2736 CASE_CONVERT:
2737 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2738 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2739 ret1 = prec;
2740 return MIN (ret1, prec);
2741 case SAVE_EXPR:
2742 return tree_ctz (TREE_OPERAND (expr, 0));
2743 case COND_EXPR:
2744 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2745 if (ret1 == 0)
2746 return 0;
2747 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2748 return MIN (ret1, ret2);
2749 case COMPOUND_EXPR:
2750 return tree_ctz (TREE_OPERAND (expr, 1));
2751 case ADDR_EXPR:
2752 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2753 if (ret1 > BITS_PER_UNIT)
2754 {
2755 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2756 return MIN (ret1, prec);
2757 }
2758 return 0;
2759 default:
2760 return 0;
2761 }
2762 }
2763
2764 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2765 decimal float constants, so don't return 1 for them. */
2766
2767 int
2768 real_zerop (const_tree expr)
2769 {
2770 switch (TREE_CODE (expr))
2771 {
2772 case REAL_CST:
2773 return real_equal (&TREE_REAL_CST (expr), &dconst0)
2774 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2775 case COMPLEX_CST:
2776 return real_zerop (TREE_REALPART (expr))
2777 && real_zerop (TREE_IMAGPART (expr));
2778 case VECTOR_CST:
2779 {
2780 /* Don't simply check for a duplicate because the predicate
2781 accepts both +0.0 and -0.0. */
2782 unsigned count = vector_cst_encoded_nelts (expr);
2783 for (unsigned int i = 0; i < count; ++i)
2784 if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
2785 return false;
2786 return true;
2787 }
2788 default:
2789 return false;
2790 }
2791 }
2792
2793 /* Return 1 if EXPR is the real constant one in real or complex form.
2794 Trailing zeroes matter for decimal float constants, so don't return
2795 1 for them. */
2796
2797 int
2798 real_onep (const_tree expr)
2799 {
2800 switch (TREE_CODE (expr))
2801 {
2802 case REAL_CST:
2803 return real_equal (&TREE_REAL_CST (expr), &dconst1)
2804 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2805 case COMPLEX_CST:
2806 return real_onep (TREE_REALPART (expr))
2807 && real_zerop (TREE_IMAGPART (expr));
2808 case VECTOR_CST:
2809 return (VECTOR_CST_NPATTERNS (expr) == 1
2810 && VECTOR_CST_DUPLICATE_P (expr)
2811 && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2812 default:
2813 return false;
2814 }
2815 }
2816
2817 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2818 matter for decimal float constants, so don't return 1 for them. */
2819
2820 int
2821 real_minus_onep (const_tree expr)
2822 {
2823 switch (TREE_CODE (expr))
2824 {
2825 case REAL_CST:
2826 return real_equal (&TREE_REAL_CST (expr), &dconstm1)
2827 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2828 case COMPLEX_CST:
2829 return real_minus_onep (TREE_REALPART (expr))
2830 && real_zerop (TREE_IMAGPART (expr));
2831 case VECTOR_CST:
2832 return (VECTOR_CST_NPATTERNS (expr) == 1
2833 && VECTOR_CST_DUPLICATE_P (expr)
2834 && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2835 default:
2836 return false;
2837 }
2838 }
2839
2840 /* Nonzero if EXP is a constant or a cast of a constant. */
2841
2842 int
2843 really_constant_p (const_tree exp)
2844 {
2845 /* This is not quite the same as STRIP_NOPS. It does more. */
2846 while (CONVERT_EXPR_P (exp)
2847 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2848 exp = TREE_OPERAND (exp, 0);
2849 return TREE_CONSTANT (exp);
2850 }
2851
2852 /* Return true if T holds a polynomial pointer difference, storing it in
2853 *VALUE if so. A true return means that T's precision is no greater
2854 than 64 bits, which is the largest address space we support, so *VALUE
2855 never loses precision. However, the signedness of the result does
2856 not necessarily match the signedness of T: sometimes an unsigned type
2857 like sizetype is used to encode a value that is actually negative. */
2858
2859 bool
2860 ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
2861 {
2862 if (!t)
2863 return false;
2864 if (TREE_CODE (t) == INTEGER_CST)
2865 {
2866 if (!cst_and_fits_in_hwi (t))
2867 return false;
2868 *value = int_cst_value (t);
2869 return true;
2870 }
2871 if (POLY_INT_CST_P (t))
2872 {
2873 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2874 if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
2875 return false;
2876 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2877 value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
2878 return true;
2879 }
2880 return false;
2881 }
2882
2883 poly_int64
2884 tree_to_poly_int64 (const_tree t)
2885 {
2886 gcc_assert (tree_fits_poly_int64_p (t));
2887 if (POLY_INT_CST_P (t))
2888 return poly_int_cst_value (t).force_shwi ();
2889 return TREE_INT_CST_LOW (t);
2890 }
2891
2892 poly_uint64
2893 tree_to_poly_uint64 (const_tree t)
2894 {
2895 gcc_assert (tree_fits_poly_uint64_p (t));
2896 if (POLY_INT_CST_P (t))
2897 return poly_int_cst_value (t).force_uhwi ();
2898 return TREE_INT_CST_LOW (t);
2899 }
2900 \f
2901 /* Return first list element whose TREE_VALUE is ELEM.
2902 Return 0 if ELEM is not in LIST. */
2903
2904 tree
2905 value_member (tree elem, tree list)
2906 {
2907 while (list)
2908 {
2909 if (elem == TREE_VALUE (list))
2910 return list;
2911 list = TREE_CHAIN (list);
2912 }
2913 return NULL_TREE;
2914 }
2915
2916 /* Return first list element whose TREE_PURPOSE is ELEM.
2917 Return 0 if ELEM is not in LIST. */
2918
2919 tree
2920 purpose_member (const_tree elem, tree list)
2921 {
2922 while (list)
2923 {
2924 if (elem == TREE_PURPOSE (list))
2925 return list;
2926 list = TREE_CHAIN (list);
2927 }
2928 return NULL_TREE;
2929 }
2930
2931 /* Return true if ELEM is in V. */
2932
2933 bool
2934 vec_member (const_tree elem, vec<tree, va_gc> *v)
2935 {
2936 unsigned ix;
2937 tree t;
2938 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2939 if (elem == t)
2940 return true;
2941 return false;
2942 }
2943
2944 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2945 NULL_TREE. */
2946
2947 tree
2948 chain_index (int idx, tree chain)
2949 {
2950 for (; chain && idx > 0; --idx)
2951 chain = TREE_CHAIN (chain);
2952 return chain;
2953 }
2954
2955 /* Return nonzero if ELEM is part of the chain CHAIN. */
2956
2957 int
2958 chain_member (const_tree elem, const_tree chain)
2959 {
2960 while (chain)
2961 {
2962 if (elem == chain)
2963 return 1;
2964 chain = DECL_CHAIN (chain);
2965 }
2966
2967 return 0;
2968 }
2969
2970 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2971 We expect a null pointer to mark the end of the chain.
2972 This is the Lisp primitive `length'. */
2973
2974 int
2975 list_length (const_tree t)
2976 {
2977 const_tree p = t;
2978 #ifdef ENABLE_TREE_CHECKING
2979 const_tree q = t;
2980 #endif
2981 int len = 0;
2982
2983 while (p)
2984 {
2985 p = TREE_CHAIN (p);
2986 #ifdef ENABLE_TREE_CHECKING
2987 if (len % 2)
2988 q = TREE_CHAIN (q);
2989 gcc_assert (p != q);
2990 #endif
2991 len++;
2992 }
2993
2994 return len;
2995 }
2996
2997 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2998 UNION_TYPE TYPE, or NULL_TREE if none. */
2999
3000 tree
3001 first_field (const_tree type)
3002 {
3003 tree t = TYPE_FIELDS (type);
3004 while (t && TREE_CODE (t) != FIELD_DECL)
3005 t = TREE_CHAIN (t);
3006 return t;
3007 }
3008
3009 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
3010 by modifying the last node in chain 1 to point to chain 2.
3011 This is the Lisp primitive `nconc'. */
3012
3013 tree
3014 chainon (tree op1, tree op2)
3015 {
3016 tree t1;
3017
3018 if (!op1)
3019 return op2;
3020 if (!op2)
3021 return op1;
3022
3023 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
3024 continue;
3025 TREE_CHAIN (t1) = op2;
3026
3027 #ifdef ENABLE_TREE_CHECKING
3028 {
3029 tree t2;
3030 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
3031 gcc_assert (t2 != t1);
3032 }
3033 #endif
3034
3035 return op1;
3036 }
3037
3038 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
3039
3040 tree
3041 tree_last (tree chain)
3042 {
3043 tree next;
3044 if (chain)
3045 while ((next = TREE_CHAIN (chain)))
3046 chain = next;
3047 return chain;
3048 }
3049
3050 /* Reverse the order of elements in the chain T,
3051 and return the new head of the chain (old last element). */
3052
3053 tree
3054 nreverse (tree t)
3055 {
3056 tree prev = 0, decl, next;
3057 for (decl = t; decl; decl = next)
3058 {
3059 /* We shouldn't be using this function to reverse BLOCK chains; we
3060 have blocks_nreverse for that. */
3061 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
3062 next = TREE_CHAIN (decl);
3063 TREE_CHAIN (decl) = prev;
3064 prev = decl;
3065 }
3066 return prev;
3067 }
3068 \f
3069 /* Return a newly created TREE_LIST node whose
3070 purpose and value fields are PARM and VALUE. */
3071
3072 tree
3073 build_tree_list (tree parm, tree value MEM_STAT_DECL)
3074 {
3075 tree t = make_node (TREE_LIST PASS_MEM_STAT);
3076 TREE_PURPOSE (t) = parm;
3077 TREE_VALUE (t) = value;
3078 return t;
3079 }
3080
3081 /* Build a chain of TREE_LIST nodes from a vector. */
3082
3083 tree
3084 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
3085 {
3086 tree ret = NULL_TREE;
3087 tree *pp = &ret;
3088 unsigned int i;
3089 tree t;
3090 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
3091 {
3092 *pp = build_tree_list (NULL, t PASS_MEM_STAT);
3093 pp = &TREE_CHAIN (*pp);
3094 }
3095 return ret;
3096 }
3097
3098 /* Return a newly created TREE_LIST node whose
3099 purpose and value fields are PURPOSE and VALUE
3100 and whose TREE_CHAIN is CHAIN. */
3101
3102 tree
3103 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
3104 {
3105 tree node;
3106
3107 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
3108 memset (node, 0, sizeof (struct tree_common));
3109
3110 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
3111
3112 TREE_SET_CODE (node, TREE_LIST);
3113 TREE_CHAIN (node) = chain;
3114 TREE_PURPOSE (node) = purpose;
3115 TREE_VALUE (node) = value;
3116 return node;
3117 }
3118
3119 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3120 trees. */
3121
3122 vec<tree, va_gc> *
3123 ctor_to_vec (tree ctor)
3124 {
3125 vec<tree, va_gc> *vec;
3126 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
3127 unsigned int ix;
3128 tree val;
3129
3130 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
3131 vec->quick_push (val);
3132
3133 return vec;
3134 }
3135 \f
3136 /* Return the size nominally occupied by an object of type TYPE
3137 when it resides in memory. The value is measured in units of bytes,
3138 and its data type is that normally used for type sizes
3139 (which is the first type created by make_signed_type or
3140 make_unsigned_type). */
3141
3142 tree
3143 size_in_bytes_loc (location_t loc, const_tree type)
3144 {
3145 tree t;
3146
3147 if (type == error_mark_node)
3148 return integer_zero_node;
3149
3150 type = TYPE_MAIN_VARIANT (type);
3151 t = TYPE_SIZE_UNIT (type);
3152
3153 if (t == 0)
3154 {
3155 lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
3156 return size_zero_node;
3157 }
3158
3159 return t;
3160 }
3161
3162 /* Return the size of TYPE (in bytes) as a wide integer
3163 or return -1 if the size can vary or is larger than an integer. */
3164
3165 HOST_WIDE_INT
3166 int_size_in_bytes (const_tree type)
3167 {
3168 tree t;
3169
3170 if (type == error_mark_node)
3171 return 0;
3172
3173 type = TYPE_MAIN_VARIANT (type);
3174 t = TYPE_SIZE_UNIT (type);
3175
3176 if (t && tree_fits_uhwi_p (t))
3177 return TREE_INT_CST_LOW (t);
3178 else
3179 return -1;
3180 }
3181
3182 /* Return the maximum size of TYPE (in bytes) as a wide integer
3183 or return -1 if the size can vary or is larger than an integer. */
3184
3185 HOST_WIDE_INT
3186 max_int_size_in_bytes (const_tree type)
3187 {
3188 HOST_WIDE_INT size = -1;
3189 tree size_tree;
3190
3191 /* If this is an array type, check for a possible MAX_SIZE attached. */
3192
3193 if (TREE_CODE (type) == ARRAY_TYPE)
3194 {
3195 size_tree = TYPE_ARRAY_MAX_SIZE (type);
3196
3197 if (size_tree && tree_fits_uhwi_p (size_tree))
3198 size = tree_to_uhwi (size_tree);
3199 }
3200
3201 /* If we still haven't been able to get a size, see if the language
3202 can compute a maximum size. */
3203
3204 if (size == -1)
3205 {
3206 size_tree = lang_hooks.types.max_size (type);
3207
3208 if (size_tree && tree_fits_uhwi_p (size_tree))
3209 size = tree_to_uhwi (size_tree);
3210 }
3211
3212 return size;
3213 }
3214 \f
3215 /* Return the bit position of FIELD, in bits from the start of the record.
3216 This is a tree of type bitsizetype. */
3217
3218 tree
3219 bit_position (const_tree field)
3220 {
3221 return bit_from_pos (DECL_FIELD_OFFSET (field),
3222 DECL_FIELD_BIT_OFFSET (field));
3223 }
3224 \f
3225 /* Return the byte position of FIELD, in bytes from the start of the record.
3226 This is a tree of type sizetype. */
3227
3228 tree
3229 byte_position (const_tree field)
3230 {
3231 return byte_from_pos (DECL_FIELD_OFFSET (field),
3232 DECL_FIELD_BIT_OFFSET (field));
3233 }
3234
3235 /* Likewise, but return as an integer. It must be representable in
3236 that way (since it could be a signed value, we don't have the
3237 option of returning -1 like int_size_in_byte can. */
3238
3239 HOST_WIDE_INT
3240 int_byte_position (const_tree field)
3241 {
3242 return tree_to_shwi (byte_position (field));
3243 }
3244 \f
3245 /* Return the strictest alignment, in bits, that T is known to have. */
3246
3247 unsigned int
3248 expr_align (const_tree t)
3249 {
3250 unsigned int align0, align1;
3251
3252 switch (TREE_CODE (t))
3253 {
3254 CASE_CONVERT: case NON_LVALUE_EXPR:
3255 /* If we have conversions, we know that the alignment of the
3256 object must meet each of the alignments of the types. */
3257 align0 = expr_align (TREE_OPERAND (t, 0));
3258 align1 = TYPE_ALIGN (TREE_TYPE (t));
3259 return MAX (align0, align1);
3260
3261 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
3262 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
3263 case CLEANUP_POINT_EXPR:
3264 /* These don't change the alignment of an object. */
3265 return expr_align (TREE_OPERAND (t, 0));
3266
3267 case COND_EXPR:
3268 /* The best we can do is say that the alignment is the least aligned
3269 of the two arms. */
3270 align0 = expr_align (TREE_OPERAND (t, 1));
3271 align1 = expr_align (TREE_OPERAND (t, 2));
3272 return MIN (align0, align1);
3273
3274 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
3275 meaningfully, it's always 1. */
3276 case LABEL_DECL: case CONST_DECL:
3277 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
3278 case FUNCTION_DECL:
3279 gcc_assert (DECL_ALIGN (t) != 0);
3280 return DECL_ALIGN (t);
3281
3282 default:
3283 break;
3284 }
3285
3286 /* Otherwise take the alignment from that of the type. */
3287 return TYPE_ALIGN (TREE_TYPE (t));
3288 }
3289 \f
3290 /* Return, as a tree node, the number of elements for TYPE (which is an
3291 ARRAY_TYPE) minus one. This counts only elements of the top array. */
3292
3293 tree
3294 array_type_nelts (const_tree type)
3295 {
3296 tree index_type, min, max;
3297
3298 /* If they did it with unspecified bounds, then we should have already
3299 given an error about it before we got here. */
3300 if (! TYPE_DOMAIN (type))
3301 return error_mark_node;
3302
3303 index_type = TYPE_DOMAIN (type);
3304 min = TYPE_MIN_VALUE (index_type);
3305 max = TYPE_MAX_VALUE (index_type);
3306
3307 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
3308 if (!max)
3309 return error_mark_node;
3310
3311 return (integer_zerop (min)
3312 ? max
3313 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3314 }
3315 \f
3316 /* If arg is static -- a reference to an object in static storage -- then
3317 return the object. This is not the same as the C meaning of `static'.
3318 If arg isn't static, return NULL. */
3319
3320 tree
3321 staticp (tree arg)
3322 {
3323 switch (TREE_CODE (arg))
3324 {
3325 case FUNCTION_DECL:
3326 /* Nested functions are static, even though taking their address will
3327 involve a trampoline as we unnest the nested function and create
3328 the trampoline on the tree level. */
3329 return arg;
3330
3331 case VAR_DECL:
3332 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3333 && ! DECL_THREAD_LOCAL_P (arg)
3334 && ! DECL_DLLIMPORT_P (arg)
3335 ? arg : NULL);
3336
3337 case CONST_DECL:
3338 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3339 ? arg : NULL);
3340
3341 case CONSTRUCTOR:
3342 return TREE_STATIC (arg) ? arg : NULL;
3343
3344 case LABEL_DECL:
3345 case STRING_CST:
3346 return arg;
3347
3348 case COMPONENT_REF:
3349 /* If the thing being referenced is not a field, then it is
3350 something language specific. */
3351 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3352
3353 /* If we are referencing a bitfield, we can't evaluate an
3354 ADDR_EXPR at compile time and so it isn't a constant. */
3355 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3356 return NULL;
3357
3358 return staticp (TREE_OPERAND (arg, 0));
3359
3360 case BIT_FIELD_REF:
3361 return NULL;
3362
3363 case INDIRECT_REF:
3364 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3365
3366 case ARRAY_REF:
3367 case ARRAY_RANGE_REF:
3368 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3369 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3370 return staticp (TREE_OPERAND (arg, 0));
3371 else
3372 return NULL;
3373
3374 case COMPOUND_LITERAL_EXPR:
3375 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3376
3377 default:
3378 return NULL;
3379 }
3380 }
3381
3382 \f
3383
3384
3385 /* Return whether OP is a DECL whose address is function-invariant. */
3386
3387 bool
3388 decl_address_invariant_p (const_tree op)
3389 {
3390 /* The conditions below are slightly less strict than the one in
3391 staticp. */
3392
3393 switch (TREE_CODE (op))
3394 {
3395 case PARM_DECL:
3396 case RESULT_DECL:
3397 case LABEL_DECL:
3398 case FUNCTION_DECL:
3399 return true;
3400
3401 case VAR_DECL:
3402 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3403 || DECL_THREAD_LOCAL_P (op)
3404 || DECL_CONTEXT (op) == current_function_decl
3405 || decl_function_context (op) == current_function_decl)
3406 return true;
3407 break;
3408
3409 case CONST_DECL:
3410 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3411 || decl_function_context (op) == current_function_decl)
3412 return true;
3413 break;
3414
3415 default:
3416 break;
3417 }
3418
3419 return false;
3420 }
3421
3422 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3423
3424 bool
3425 decl_address_ip_invariant_p (const_tree op)
3426 {
3427 /* The conditions below are slightly less strict than the one in
3428 staticp. */
3429
3430 switch (TREE_CODE (op))
3431 {
3432 case LABEL_DECL:
3433 case FUNCTION_DECL:
3434 case STRING_CST:
3435 return true;
3436
3437 case VAR_DECL:
3438 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3439 && !DECL_DLLIMPORT_P (op))
3440 || DECL_THREAD_LOCAL_P (op))
3441 return true;
3442 break;
3443
3444 case CONST_DECL:
3445 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3446 return true;
3447 break;
3448
3449 default:
3450 break;
3451 }
3452
3453 return false;
3454 }
3455
3456
3457 /* Return true if T is function-invariant (internal function, does
3458 not handle arithmetic; that's handled in skip_simple_arithmetic and
3459 tree_invariant_p). */
3460
3461 static bool
3462 tree_invariant_p_1 (tree t)
3463 {
3464 tree op;
3465
3466 if (TREE_CONSTANT (t)
3467 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3468 return true;
3469
3470 switch (TREE_CODE (t))
3471 {
3472 case SAVE_EXPR:
3473 return true;
3474
3475 case ADDR_EXPR:
3476 op = TREE_OPERAND (t, 0);
3477 while (handled_component_p (op))
3478 {
3479 switch (TREE_CODE (op))
3480 {
3481 case ARRAY_REF:
3482 case ARRAY_RANGE_REF:
3483 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3484 || TREE_OPERAND (op, 2) != NULL_TREE
3485 || TREE_OPERAND (op, 3) != NULL_TREE)
3486 return false;
3487 break;
3488
3489 case COMPONENT_REF:
3490 if (TREE_OPERAND (op, 2) != NULL_TREE)
3491 return false;
3492 break;
3493
3494 default:;
3495 }
3496 op = TREE_OPERAND (op, 0);
3497 }
3498
3499 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3500
3501 default:
3502 break;
3503 }
3504
3505 return false;
3506 }
3507
3508 /* Return true if T is function-invariant. */
3509
3510 bool
3511 tree_invariant_p (tree t)
3512 {
3513 tree inner = skip_simple_arithmetic (t);
3514 return tree_invariant_p_1 (inner);
3515 }
3516
3517 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3518 Do this to any expression which may be used in more than one place,
3519 but must be evaluated only once.
3520
3521 Normally, expand_expr would reevaluate the expression each time.
3522 Calling save_expr produces something that is evaluated and recorded
3523 the first time expand_expr is called on it. Subsequent calls to
3524 expand_expr just reuse the recorded value.
3525
3526 The call to expand_expr that generates code that actually computes
3527 the value is the first call *at compile time*. Subsequent calls
3528 *at compile time* generate code to use the saved value.
3529 This produces correct result provided that *at run time* control
3530 always flows through the insns made by the first expand_expr
3531 before reaching the other places where the save_expr was evaluated.
3532 You, the caller of save_expr, must make sure this is so.
3533
3534 Constants, and certain read-only nodes, are returned with no
3535 SAVE_EXPR because that is safe. Expressions containing placeholders
3536 are not touched; see tree.def for an explanation of what these
3537 are used for. */
3538
3539 tree
3540 save_expr (tree expr)
3541 {
3542 tree inner;
3543
3544 /* If the tree evaluates to a constant, then we don't want to hide that
3545 fact (i.e. this allows further folding, and direct checks for constants).
3546 However, a read-only object that has side effects cannot be bypassed.
3547 Since it is no problem to reevaluate literals, we just return the
3548 literal node. */
3549 inner = skip_simple_arithmetic (expr);
3550 if (TREE_CODE (inner) == ERROR_MARK)
3551 return inner;
3552
3553 if (tree_invariant_p_1 (inner))
3554 return expr;
3555
3556 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3557 it means that the size or offset of some field of an object depends on
3558 the value within another field.
3559
3560 Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3561 and some variable since it would then need to be both evaluated once and
3562 evaluated more than once. Front-ends must assure this case cannot
3563 happen by surrounding any such subexpressions in their own SAVE_EXPR
3564 and forcing evaluation at the proper time. */
3565 if (contains_placeholder_p (inner))
3566 return expr;
3567
3568 expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3569
3570 /* This expression might be placed ahead of a jump to ensure that the
3571 value was computed on both sides of the jump. So make sure it isn't
3572 eliminated as dead. */
3573 TREE_SIDE_EFFECTS (expr) = 1;
3574 return expr;
3575 }
3576
3577 /* Look inside EXPR into any simple arithmetic operations. Return the
3578 outermost non-arithmetic or non-invariant node. */
3579
3580 tree
3581 skip_simple_arithmetic (tree expr)
3582 {
3583 /* We don't care about whether this can be used as an lvalue in this
3584 context. */
3585 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3586 expr = TREE_OPERAND (expr, 0);
3587
3588 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3589 a constant, it will be more efficient to not make another SAVE_EXPR since
3590 it will allow better simplification and GCSE will be able to merge the
3591 computations if they actually occur. */
3592 while (true)
3593 {
3594 if (UNARY_CLASS_P (expr))
3595 expr = TREE_OPERAND (expr, 0);
3596 else if (BINARY_CLASS_P (expr))
3597 {
3598 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3599 expr = TREE_OPERAND (expr, 0);
3600 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3601 expr = TREE_OPERAND (expr, 1);
3602 else
3603 break;
3604 }
3605 else
3606 break;
3607 }
3608
3609 return expr;
3610 }
3611
3612 /* Look inside EXPR into simple arithmetic operations involving constants.
3613 Return the outermost non-arithmetic or non-constant node. */
3614
3615 tree
3616 skip_simple_constant_arithmetic (tree expr)
3617 {
3618 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3619 expr = TREE_OPERAND (expr, 0);
3620
3621 while (true)
3622 {
3623 if (UNARY_CLASS_P (expr))
3624 expr = TREE_OPERAND (expr, 0);
3625 else if (BINARY_CLASS_P (expr))
3626 {
3627 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3628 expr = TREE_OPERAND (expr, 0);
3629 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3630 expr = TREE_OPERAND (expr, 1);
3631 else
3632 break;
3633 }
3634 else
3635 break;
3636 }
3637
3638 return expr;
3639 }
3640
3641 /* Return which tree structure is used by T. */
3642
3643 enum tree_node_structure_enum
3644 tree_node_structure (const_tree t)
3645 {
3646 const enum tree_code code = TREE_CODE (t);
3647 return tree_node_structure_for_code (code);
3648 }
3649
3650 /* Set various status flags when building a CALL_EXPR object T. */
3651
3652 static void
3653 process_call_operands (tree t)
3654 {
3655 bool side_effects = TREE_SIDE_EFFECTS (t);
3656 bool read_only = false;
3657 int i = call_expr_flags (t);
3658
3659 /* Calls have side-effects, except those to const or pure functions. */
3660 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3661 side_effects = true;
3662 /* Propagate TREE_READONLY of arguments for const functions. */
3663 if (i & ECF_CONST)
3664 read_only = true;
3665
3666 if (!side_effects || read_only)
3667 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3668 {
3669 tree op = TREE_OPERAND (t, i);
3670 if (op && TREE_SIDE_EFFECTS (op))
3671 side_effects = true;
3672 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3673 read_only = false;
3674 }
3675
3676 TREE_SIDE_EFFECTS (t) = side_effects;
3677 TREE_READONLY (t) = read_only;
3678 }
3679 \f
3680 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3681 size or offset that depends on a field within a record. */
3682
3683 bool
3684 contains_placeholder_p (const_tree exp)
3685 {
3686 enum tree_code code;
3687
3688 if (!exp)
3689 return 0;
3690
3691 code = TREE_CODE (exp);
3692 if (code == PLACEHOLDER_EXPR)
3693 return 1;
3694
3695 switch (TREE_CODE_CLASS (code))
3696 {
3697 case tcc_reference:
3698 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3699 position computations since they will be converted into a
3700 WITH_RECORD_EXPR involving the reference, which will assume
3701 here will be valid. */
3702 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3703
3704 case tcc_exceptional:
3705 if (code == TREE_LIST)
3706 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3707 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3708 break;
3709
3710 case tcc_unary:
3711 case tcc_binary:
3712 case tcc_comparison:
3713 case tcc_expression:
3714 switch (code)
3715 {
3716 case COMPOUND_EXPR:
3717 /* Ignoring the first operand isn't quite right, but works best. */
3718 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3719
3720 case COND_EXPR:
3721 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3722 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3723 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3724
3725 case SAVE_EXPR:
3726 /* The save_expr function never wraps anything containing
3727 a PLACEHOLDER_EXPR. */
3728 return 0;
3729
3730 default:
3731 break;
3732 }
3733
3734 switch (TREE_CODE_LENGTH (code))
3735 {
3736 case 1:
3737 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3738 case 2:
3739 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3740 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3741 default:
3742 return 0;
3743 }
3744
3745 case tcc_vl_exp:
3746 switch (code)
3747 {
3748 case CALL_EXPR:
3749 {
3750 const_tree arg;
3751 const_call_expr_arg_iterator iter;
3752 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3753 if (CONTAINS_PLACEHOLDER_P (arg))
3754 return 1;
3755 return 0;
3756 }
3757 default:
3758 return 0;
3759 }
3760
3761 default:
3762 return 0;
3763 }
3764 return 0;
3765 }
3766
3767 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3768 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3769 field positions. */
3770
3771 static bool
3772 type_contains_placeholder_1 (const_tree type)
3773 {
3774 /* If the size contains a placeholder or the parent type (component type in
3775 the case of arrays) type involves a placeholder, this type does. */
3776 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3777 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3778 || (!POINTER_TYPE_P (type)
3779 && TREE_TYPE (type)
3780 && type_contains_placeholder_p (TREE_TYPE (type))))
3781 return true;
3782
3783 /* Now do type-specific checks. Note that the last part of the check above
3784 greatly limits what we have to do below. */
3785 switch (TREE_CODE (type))
3786 {
3787 case VOID_TYPE:
3788 case COMPLEX_TYPE:
3789 case ENUMERAL_TYPE:
3790 case BOOLEAN_TYPE:
3791 case POINTER_TYPE:
3792 case OFFSET_TYPE:
3793 case REFERENCE_TYPE:
3794 case METHOD_TYPE:
3795 case FUNCTION_TYPE:
3796 case VECTOR_TYPE:
3797 case NULLPTR_TYPE:
3798 return false;
3799
3800 case INTEGER_TYPE:
3801 case REAL_TYPE:
3802 case FIXED_POINT_TYPE:
3803 /* Here we just check the bounds. */
3804 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3805 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3806
3807 case ARRAY_TYPE:
3808 /* We have already checked the component type above, so just check
3809 the domain type. Flexible array members have a null domain. */
3810 return TYPE_DOMAIN (type) ?
3811 type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
3812
3813 case RECORD_TYPE:
3814 case UNION_TYPE:
3815 case QUAL_UNION_TYPE:
3816 {
3817 tree field;
3818
3819 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3820 if (TREE_CODE (field) == FIELD_DECL
3821 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3822 || (TREE_CODE (type) == QUAL_UNION_TYPE
3823 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3824 || type_contains_placeholder_p (TREE_TYPE (field))))
3825 return true;
3826
3827 return false;
3828 }
3829
3830 default:
3831 gcc_unreachable ();
3832 }
3833 }
3834
3835 /* Wrapper around above function used to cache its result. */
3836
3837 bool
3838 type_contains_placeholder_p (tree type)
3839 {
3840 bool result;
3841
3842 /* If the contains_placeholder_bits field has been initialized,
3843 then we know the answer. */
3844 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3845 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3846
3847 /* Indicate that we've seen this type node, and the answer is false.
3848 This is what we want to return if we run into recursion via fields. */
3849 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3850
3851 /* Compute the real value. */
3852 result = type_contains_placeholder_1 (type);
3853
3854 /* Store the real value. */
3855 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3856
3857 return result;
3858 }
3859 \f
3860 /* Push tree EXP onto vector QUEUE if it is not already present. */
3861
3862 static void
3863 push_without_duplicates (tree exp, vec<tree> *queue)
3864 {
3865 unsigned int i;
3866 tree iter;
3867
3868 FOR_EACH_VEC_ELT (*queue, i, iter)
3869 if (simple_cst_equal (iter, exp) == 1)
3870 break;
3871
3872 if (!iter)
3873 queue->safe_push (exp);
3874 }
3875
3876 /* Given a tree EXP, find all occurrences of references to fields
3877 in a PLACEHOLDER_EXPR and place them in vector REFS without
3878 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3879 we assume here that EXP contains only arithmetic expressions
3880 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3881 argument list. */
3882
3883 void
3884 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3885 {
3886 enum tree_code code = TREE_CODE (exp);
3887 tree inner;
3888 int i;
3889
3890 /* We handle TREE_LIST and COMPONENT_REF separately. */
3891 if (code == TREE_LIST)
3892 {
3893 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3894 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3895 }
3896 else if (code == COMPONENT_REF)
3897 {
3898 for (inner = TREE_OPERAND (exp, 0);
3899 REFERENCE_CLASS_P (inner);
3900 inner = TREE_OPERAND (inner, 0))
3901 ;
3902
3903 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3904 push_without_duplicates (exp, refs);
3905 else
3906 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3907 }
3908 else
3909 switch (TREE_CODE_CLASS (code))
3910 {
3911 case tcc_constant:
3912 break;
3913
3914 case tcc_declaration:
3915 /* Variables allocated to static storage can stay. */
3916 if (!TREE_STATIC (exp))
3917 push_without_duplicates (exp, refs);
3918 break;
3919
3920 case tcc_expression:
3921 /* This is the pattern built in ada/make_aligning_type. */
3922 if (code == ADDR_EXPR
3923 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3924 {
3925 push_without_duplicates (exp, refs);
3926 break;
3927 }
3928
3929 /* Fall through. */
3930
3931 case tcc_exceptional:
3932 case tcc_unary:
3933 case tcc_binary:
3934 case tcc_comparison:
3935 case tcc_reference:
3936 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3937 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3938 break;
3939
3940 case tcc_vl_exp:
3941 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3942 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3943 break;
3944
3945 default:
3946 gcc_unreachable ();
3947 }
3948 }
3949
3950 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3951 return a tree with all occurrences of references to F in a
3952 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3953 CONST_DECLs. Note that we assume here that EXP contains only
3954 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3955 occurring only in their argument list. */
3956
3957 tree
3958 substitute_in_expr (tree exp, tree f, tree r)
3959 {
3960 enum tree_code code = TREE_CODE (exp);
3961 tree op0, op1, op2, op3;
3962 tree new_tree;
3963
3964 /* We handle TREE_LIST and COMPONENT_REF separately. */
3965 if (code == TREE_LIST)
3966 {
3967 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3968 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3969 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3970 return exp;
3971
3972 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3973 }
3974 else if (code == COMPONENT_REF)
3975 {
3976 tree inner;
3977
3978 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3979 and it is the right field, replace it with R. */
3980 for (inner = TREE_OPERAND (exp, 0);
3981 REFERENCE_CLASS_P (inner);
3982 inner = TREE_OPERAND (inner, 0))
3983 ;
3984
3985 /* The field. */
3986 op1 = TREE_OPERAND (exp, 1);
3987
3988 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3989 return r;
3990
3991 /* If this expression hasn't been completed let, leave it alone. */
3992 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3993 return exp;
3994
3995 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3996 if (op0 == TREE_OPERAND (exp, 0))
3997 return exp;
3998
3999 new_tree
4000 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
4001 }
4002 else
4003 switch (TREE_CODE_CLASS (code))
4004 {
4005 case tcc_constant:
4006 return exp;
4007
4008 case tcc_declaration:
4009 if (exp == f)
4010 return r;
4011 else
4012 return exp;
4013
4014 case tcc_expression:
4015 if (exp == f)
4016 return r;
4017
4018 /* Fall through. */
4019
4020 case tcc_exceptional:
4021 case tcc_unary:
4022 case tcc_binary:
4023 case tcc_comparison:
4024 case tcc_reference:
4025 switch (TREE_CODE_LENGTH (code))
4026 {
4027 case 0:
4028 return exp;
4029
4030 case 1:
4031 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4032 if (op0 == TREE_OPERAND (exp, 0))
4033 return exp;
4034
4035 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4036 break;
4037
4038 case 2:
4039 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4040 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4041
4042 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4043 return exp;
4044
4045 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4046 break;
4047
4048 case 3:
4049 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4050 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4051 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4052
4053 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4054 && op2 == TREE_OPERAND (exp, 2))
4055 return exp;
4056
4057 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4058 break;
4059
4060 case 4:
4061 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4062 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4063 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4064 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
4065
4066 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4067 && op2 == TREE_OPERAND (exp, 2)
4068 && op3 == TREE_OPERAND (exp, 3))
4069 return exp;
4070
4071 new_tree
4072 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4073 break;
4074
4075 default:
4076 gcc_unreachable ();
4077 }
4078 break;
4079
4080 case tcc_vl_exp:
4081 {
4082 int i;
4083
4084 new_tree = NULL_TREE;
4085
4086 /* If we are trying to replace F with a constant or with another
4087 instance of one of the arguments of the call, inline back
4088 functions which do nothing else than computing a value from
4089 the arguments they are passed. This makes it possible to
4090 fold partially or entirely the replacement expression. */
4091 if (code == CALL_EXPR)
4092 {
4093 bool maybe_inline = false;
4094 if (CONSTANT_CLASS_P (r))
4095 maybe_inline = true;
4096 else
4097 for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
4098 if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
4099 {
4100 maybe_inline = true;
4101 break;
4102 }
4103 if (maybe_inline)
4104 {
4105 tree t = maybe_inline_call_in_expr (exp);
4106 if (t)
4107 return SUBSTITUTE_IN_EXPR (t, f, r);
4108 }
4109 }
4110
4111 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4112 {
4113 tree op = TREE_OPERAND (exp, i);
4114 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
4115 if (new_op != op)
4116 {
4117 if (!new_tree)
4118 new_tree = copy_node (exp);
4119 TREE_OPERAND (new_tree, i) = new_op;
4120 }
4121 }
4122
4123 if (new_tree)
4124 {
4125 new_tree = fold (new_tree);
4126 if (TREE_CODE (new_tree) == CALL_EXPR)
4127 process_call_operands (new_tree);
4128 }
4129 else
4130 return exp;
4131 }
4132 break;
4133
4134 default:
4135 gcc_unreachable ();
4136 }
4137
4138 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4139
4140 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4141 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4142
4143 return new_tree;
4144 }
4145
4146 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4147 for it within OBJ, a tree that is an object or a chain of references. */
4148
4149 tree
4150 substitute_placeholder_in_expr (tree exp, tree obj)
4151 {
4152 enum tree_code code = TREE_CODE (exp);
4153 tree op0, op1, op2, op3;
4154 tree new_tree;
4155
4156 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4157 in the chain of OBJ. */
4158 if (code == PLACEHOLDER_EXPR)
4159 {
4160 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
4161 tree elt;
4162
4163 for (elt = obj; elt != 0;
4164 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4165 || TREE_CODE (elt) == COND_EXPR)
4166 ? TREE_OPERAND (elt, 1)
4167 : (REFERENCE_CLASS_P (elt)
4168 || UNARY_CLASS_P (elt)
4169 || BINARY_CLASS_P (elt)
4170 || VL_EXP_CLASS_P (elt)
4171 || EXPRESSION_CLASS_P (elt))
4172 ? TREE_OPERAND (elt, 0) : 0))
4173 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
4174 return elt;
4175
4176 for (elt = obj; elt != 0;
4177 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4178 || TREE_CODE (elt) == COND_EXPR)
4179 ? TREE_OPERAND (elt, 1)
4180 : (REFERENCE_CLASS_P (elt)
4181 || UNARY_CLASS_P (elt)
4182 || BINARY_CLASS_P (elt)
4183 || VL_EXP_CLASS_P (elt)
4184 || EXPRESSION_CLASS_P (elt))
4185 ? TREE_OPERAND (elt, 0) : 0))
4186 if (POINTER_TYPE_P (TREE_TYPE (elt))
4187 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
4188 == need_type))
4189 return fold_build1 (INDIRECT_REF, need_type, elt);
4190
4191 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
4192 survives until RTL generation, there will be an error. */
4193 return exp;
4194 }
4195
4196 /* TREE_LIST is special because we need to look at TREE_VALUE
4197 and TREE_CHAIN, not TREE_OPERANDS. */
4198 else if (code == TREE_LIST)
4199 {
4200 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4201 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4202 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4203 return exp;
4204
4205 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4206 }
4207 else
4208 switch (TREE_CODE_CLASS (code))
4209 {
4210 case tcc_constant:
4211 case tcc_declaration:
4212 return exp;
4213
4214 case tcc_exceptional:
4215 case tcc_unary:
4216 case tcc_binary:
4217 case tcc_comparison:
4218 case tcc_expression:
4219 case tcc_reference:
4220 case tcc_statement:
4221 switch (TREE_CODE_LENGTH (code))
4222 {
4223 case 0:
4224 return exp;
4225
4226 case 1:
4227 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4228 if (op0 == TREE_OPERAND (exp, 0))
4229 return exp;
4230
4231 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4232 break;
4233
4234 case 2:
4235 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4236 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4237
4238 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4239 return exp;
4240
4241 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4242 break;
4243
4244 case 3:
4245 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4246 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4247 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4248
4249 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4250 && op2 == TREE_OPERAND (exp, 2))
4251 return exp;
4252
4253 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4254 break;
4255
4256 case 4:
4257 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4258 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4259 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4260 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4261
4262 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4263 && op2 == TREE_OPERAND (exp, 2)
4264 && op3 == TREE_OPERAND (exp, 3))
4265 return exp;
4266
4267 new_tree
4268 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4269 break;
4270
4271 default:
4272 gcc_unreachable ();
4273 }
4274 break;
4275
4276 case tcc_vl_exp:
4277 {
4278 int i;
4279
4280 new_tree = NULL_TREE;
4281
4282 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4283 {
4284 tree op = TREE_OPERAND (exp, i);
4285 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4286 if (new_op != op)
4287 {
4288 if (!new_tree)
4289 new_tree = copy_node (exp);
4290 TREE_OPERAND (new_tree, i) = new_op;
4291 }
4292 }
4293
4294 if (new_tree)
4295 {
4296 new_tree = fold (new_tree);
4297 if (TREE_CODE (new_tree) == CALL_EXPR)
4298 process_call_operands (new_tree);
4299 }
4300 else
4301 return exp;
4302 }
4303 break;
4304
4305 default:
4306 gcc_unreachable ();
4307 }
4308
4309 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4310
4311 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4312 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4313
4314 return new_tree;
4315 }
4316 \f
4317
4318 /* Subroutine of stabilize_reference; this is called for subtrees of
4319 references. Any expression with side-effects must be put in a SAVE_EXPR
4320 to ensure that it is only evaluated once.
4321
4322 We don't put SAVE_EXPR nodes around everything, because assigning very
4323 simple expressions to temporaries causes us to miss good opportunities
4324 for optimizations. Among other things, the opportunity to fold in the
4325 addition of a constant into an addressing mode often gets lost, e.g.
4326 "y[i+1] += x;". In general, we take the approach that we should not make
4327 an assignment unless we are forced into it - i.e., that any non-side effect
4328 operator should be allowed, and that cse should take care of coalescing
4329 multiple utterances of the same expression should that prove fruitful. */
4330
4331 static tree
4332 stabilize_reference_1 (tree e)
4333 {
4334 tree result;
4335 enum tree_code code = TREE_CODE (e);
4336
4337 /* We cannot ignore const expressions because it might be a reference
4338 to a const array but whose index contains side-effects. But we can
4339 ignore things that are actual constant or that already have been
4340 handled by this function. */
4341
4342 if (tree_invariant_p (e))
4343 return e;
4344
4345 switch (TREE_CODE_CLASS (code))
4346 {
4347 case tcc_exceptional:
4348 /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
4349 have side-effects. */
4350 if (code == STATEMENT_LIST)
4351 return save_expr (e);
4352 /* FALLTHRU */
4353 case tcc_type:
4354 case tcc_declaration:
4355 case tcc_comparison:
4356 case tcc_statement:
4357 case tcc_expression:
4358 case tcc_reference:
4359 case tcc_vl_exp:
4360 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4361 so that it will only be evaluated once. */
4362 /* The reference (r) and comparison (<) classes could be handled as
4363 below, but it is generally faster to only evaluate them once. */
4364 if (TREE_SIDE_EFFECTS (e))
4365 return save_expr (e);
4366 return e;
4367
4368 case tcc_constant:
4369 /* Constants need no processing. In fact, we should never reach
4370 here. */
4371 return e;
4372
4373 case tcc_binary:
4374 /* Division is slow and tends to be compiled with jumps,
4375 especially the division by powers of 2 that is often
4376 found inside of an array reference. So do it just once. */
4377 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4378 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4379 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4380 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4381 return save_expr (e);
4382 /* Recursively stabilize each operand. */
4383 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4384 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4385 break;
4386
4387 case tcc_unary:
4388 /* Recursively stabilize each operand. */
4389 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4390 break;
4391
4392 default:
4393 gcc_unreachable ();
4394 }
4395
4396 TREE_TYPE (result) = TREE_TYPE (e);
4397 TREE_READONLY (result) = TREE_READONLY (e);
4398 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4399 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4400
4401 return result;
4402 }
4403
4404 /* Stabilize a reference so that we can use it any number of times
4405 without causing its operands to be evaluated more than once.
4406 Returns the stabilized reference. This works by means of save_expr,
4407 so see the caveats in the comments about save_expr.
4408
4409 Also allows conversion expressions whose operands are references.
4410 Any other kind of expression is returned unchanged. */
4411
4412 tree
4413 stabilize_reference (tree ref)
4414 {
4415 tree result;
4416 enum tree_code code = TREE_CODE (ref);
4417
4418 switch (code)
4419 {
4420 case VAR_DECL:
4421 case PARM_DECL:
4422 case RESULT_DECL:
4423 /* No action is needed in this case. */
4424 return ref;
4425
4426 CASE_CONVERT:
4427 case FLOAT_EXPR:
4428 case FIX_TRUNC_EXPR:
4429 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4430 break;
4431
4432 case INDIRECT_REF:
4433 result = build_nt (INDIRECT_REF,
4434 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4435 break;
4436
4437 case COMPONENT_REF:
4438 result = build_nt (COMPONENT_REF,
4439 stabilize_reference (TREE_OPERAND (ref, 0)),
4440 TREE_OPERAND (ref, 1), NULL_TREE);
4441 break;
4442
4443 case BIT_FIELD_REF:
4444 result = build_nt (BIT_FIELD_REF,
4445 stabilize_reference (TREE_OPERAND (ref, 0)),
4446 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4447 REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4448 break;
4449
4450 case ARRAY_REF:
4451 result = build_nt (ARRAY_REF,
4452 stabilize_reference (TREE_OPERAND (ref, 0)),
4453 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4454 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4455 break;
4456
4457 case ARRAY_RANGE_REF:
4458 result = build_nt (ARRAY_RANGE_REF,
4459 stabilize_reference (TREE_OPERAND (ref, 0)),
4460 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4461 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4462 break;
4463
4464 case COMPOUND_EXPR:
4465 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4466 it wouldn't be ignored. This matters when dealing with
4467 volatiles. */
4468 return stabilize_reference_1 (ref);
4469
4470 /* If arg isn't a kind of lvalue we recognize, make no change.
4471 Caller should recognize the error for an invalid lvalue. */
4472 default:
4473 return ref;
4474
4475 case ERROR_MARK:
4476 return error_mark_node;
4477 }
4478
4479 TREE_TYPE (result) = TREE_TYPE (ref);
4480 TREE_READONLY (result) = TREE_READONLY (ref);
4481 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4482 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4483
4484 return result;
4485 }
4486 \f
4487 /* Low-level constructors for expressions. */
4488
4489 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4490 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4491
4492 void
4493 recompute_tree_invariant_for_addr_expr (tree t)
4494 {
4495 tree node;
4496 bool tc = true, se = false;
4497
4498 gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4499
4500 /* We started out assuming this address is both invariant and constant, but
4501 does not have side effects. Now go down any handled components and see if
4502 any of them involve offsets that are either non-constant or non-invariant.
4503 Also check for side-effects.
4504
4505 ??? Note that this code makes no attempt to deal with the case where
4506 taking the address of something causes a copy due to misalignment. */
4507
4508 #define UPDATE_FLAGS(NODE) \
4509 do { tree _node = (NODE); \
4510 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4511 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4512
4513 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4514 node = TREE_OPERAND (node, 0))
4515 {
4516 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4517 array reference (probably made temporarily by the G++ front end),
4518 so ignore all the operands. */
4519 if ((TREE_CODE (node) == ARRAY_REF
4520 || TREE_CODE (node) == ARRAY_RANGE_REF)
4521 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4522 {
4523 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4524 if (TREE_OPERAND (node, 2))
4525 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4526 if (TREE_OPERAND (node, 3))
4527 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4528 }
4529 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4530 FIELD_DECL, apparently. The G++ front end can put something else
4531 there, at least temporarily. */
4532 else if (TREE_CODE (node) == COMPONENT_REF
4533 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4534 {
4535 if (TREE_OPERAND (node, 2))
4536 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4537 }
4538 }
4539
4540 node = lang_hooks.expr_to_decl (node, &tc, &se);
4541
4542 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4543 the address, since &(*a)->b is a form of addition. If it's a constant, the
4544 address is constant too. If it's a decl, its address is constant if the
4545 decl is static. Everything else is not constant and, furthermore,
4546 taking the address of a volatile variable is not volatile. */
4547 if (TREE_CODE (node) == INDIRECT_REF
4548 || TREE_CODE (node) == MEM_REF)
4549 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4550 else if (CONSTANT_CLASS_P (node))
4551 ;
4552 else if (DECL_P (node))
4553 tc &= (staticp (node) != NULL_TREE);
4554 else
4555 {
4556 tc = false;
4557 se |= TREE_SIDE_EFFECTS (node);
4558 }
4559
4560
4561 TREE_CONSTANT (t) = tc;
4562 TREE_SIDE_EFFECTS (t) = se;
4563 #undef UPDATE_FLAGS
4564 }
4565
4566 /* Build an expression of code CODE, data type TYPE, and operands as
4567 specified. Expressions and reference nodes can be created this way.
4568 Constants, decls, types and misc nodes cannot be.
4569
4570 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4571 enough for all extant tree codes. */
4572
4573 tree
4574 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4575 {
4576 tree t;
4577
4578 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4579
4580 t = make_node (code PASS_MEM_STAT);
4581 TREE_TYPE (t) = tt;
4582
4583 return t;
4584 }
4585
4586 tree
4587 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4588 {
4589 int length = sizeof (struct tree_exp);
4590 tree t;
4591
4592 record_node_allocation_statistics (code, length);
4593
4594 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4595
4596 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4597
4598 memset (t, 0, sizeof (struct tree_common));
4599
4600 TREE_SET_CODE (t, code);
4601
4602 TREE_TYPE (t) = type;
4603 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4604 TREE_OPERAND (t, 0) = node;
4605 if (node && !TYPE_P (node))
4606 {
4607 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4608 TREE_READONLY (t) = TREE_READONLY (node);
4609 }
4610
4611 if (TREE_CODE_CLASS (code) == tcc_statement)
4612 {
4613 if (code != DEBUG_BEGIN_STMT)
4614 TREE_SIDE_EFFECTS (t) = 1;
4615 }
4616 else switch (code)
4617 {
4618 case VA_ARG_EXPR:
4619 /* All of these have side-effects, no matter what their
4620 operands are. */
4621 TREE_SIDE_EFFECTS (t) = 1;
4622 TREE_READONLY (t) = 0;
4623 break;
4624
4625 case INDIRECT_REF:
4626 /* Whether a dereference is readonly has nothing to do with whether
4627 its operand is readonly. */
4628 TREE_READONLY (t) = 0;
4629 break;
4630
4631 case ADDR_EXPR:
4632 if (node)
4633 recompute_tree_invariant_for_addr_expr (t);
4634 break;
4635
4636 default:
4637 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4638 && node && !TYPE_P (node)
4639 && TREE_CONSTANT (node))
4640 TREE_CONSTANT (t) = 1;
4641 if (TREE_CODE_CLASS (code) == tcc_reference
4642 && node && TREE_THIS_VOLATILE (node))
4643 TREE_THIS_VOLATILE (t) = 1;
4644 break;
4645 }
4646
4647 return t;
4648 }
4649
4650 #define PROCESS_ARG(N) \
4651 do { \
4652 TREE_OPERAND (t, N) = arg##N; \
4653 if (arg##N &&!TYPE_P (arg##N)) \
4654 { \
4655 if (TREE_SIDE_EFFECTS (arg##N)) \
4656 side_effects = 1; \
4657 if (!TREE_READONLY (arg##N) \
4658 && !CONSTANT_CLASS_P (arg##N)) \
4659 (void) (read_only = 0); \
4660 if (!TREE_CONSTANT (arg##N)) \
4661 (void) (constant = 0); \
4662 } \
4663 } while (0)
4664
4665 tree
4666 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4667 {
4668 bool constant, read_only, side_effects, div_by_zero;
4669 tree t;
4670
4671 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4672
4673 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4674 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4675 /* When sizetype precision doesn't match that of pointers
4676 we need to be able to build explicit extensions or truncations
4677 of the offset argument. */
4678 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4679 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4680 && TREE_CODE (arg1) == INTEGER_CST);
4681
4682 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4683 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4684 && ptrofftype_p (TREE_TYPE (arg1)));
4685
4686 t = make_node (code PASS_MEM_STAT);
4687 TREE_TYPE (t) = tt;
4688
4689 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4690 result based on those same flags for the arguments. But if the
4691 arguments aren't really even `tree' expressions, we shouldn't be trying
4692 to do this. */
4693
4694 /* Expressions without side effects may be constant if their
4695 arguments are as well. */
4696 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4697 || TREE_CODE_CLASS (code) == tcc_binary);
4698 read_only = 1;
4699 side_effects = TREE_SIDE_EFFECTS (t);
4700
4701 switch (code)
4702 {
4703 case TRUNC_DIV_EXPR:
4704 case CEIL_DIV_EXPR:
4705 case FLOOR_DIV_EXPR:
4706 case ROUND_DIV_EXPR:
4707 case EXACT_DIV_EXPR:
4708 case CEIL_MOD_EXPR:
4709 case FLOOR_MOD_EXPR:
4710 case ROUND_MOD_EXPR:
4711 case TRUNC_MOD_EXPR:
4712 div_by_zero = integer_zerop (arg1);
4713 break;
4714 default:
4715 div_by_zero = false;
4716 }
4717
4718 PROCESS_ARG (0);
4719 PROCESS_ARG (1);
4720
4721 TREE_SIDE_EFFECTS (t) = side_effects;
4722 if (code == MEM_REF)
4723 {
4724 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4725 {
4726 tree o = TREE_OPERAND (arg0, 0);
4727 TREE_READONLY (t) = TREE_READONLY (o);
4728 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4729 }
4730 }
4731 else
4732 {
4733 TREE_READONLY (t) = read_only;
4734 /* Don't mark X / 0 as constant. */
4735 TREE_CONSTANT (t) = constant && !div_by_zero;
4736 TREE_THIS_VOLATILE (t)
4737 = (TREE_CODE_CLASS (code) == tcc_reference
4738 && arg0 && TREE_THIS_VOLATILE (arg0));
4739 }
4740
4741 return t;
4742 }
4743
4744
4745 tree
4746 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
4747 tree arg2 MEM_STAT_DECL)
4748 {
4749 bool constant, read_only, side_effects;
4750 tree t;
4751
4752 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4753 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4754
4755 t = make_node (code PASS_MEM_STAT);
4756 TREE_TYPE (t) = tt;
4757
4758 read_only = 1;
4759
4760 /* As a special exception, if COND_EXPR has NULL branches, we
4761 assume that it is a gimple statement and always consider
4762 it to have side effects. */
4763 if (code == COND_EXPR
4764 && tt == void_type_node
4765 && arg1 == NULL_TREE
4766 && arg2 == NULL_TREE)
4767 side_effects = true;
4768 else
4769 side_effects = TREE_SIDE_EFFECTS (t);
4770
4771 PROCESS_ARG (0);
4772 PROCESS_ARG (1);
4773 PROCESS_ARG (2);
4774
4775 if (code == COND_EXPR)
4776 TREE_READONLY (t) = read_only;
4777
4778 TREE_SIDE_EFFECTS (t) = side_effects;
4779 TREE_THIS_VOLATILE (t)
4780 = (TREE_CODE_CLASS (code) == tcc_reference
4781 && arg0 && TREE_THIS_VOLATILE (arg0));
4782
4783 return t;
4784 }
4785
4786 tree
4787 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
4788 tree arg2, tree arg3 MEM_STAT_DECL)
4789 {
4790 bool constant, read_only, side_effects;
4791 tree t;
4792
4793 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4794
4795 t = make_node (code PASS_MEM_STAT);
4796 TREE_TYPE (t) = tt;
4797
4798 side_effects = TREE_SIDE_EFFECTS (t);
4799
4800 PROCESS_ARG (0);
4801 PROCESS_ARG (1);
4802 PROCESS_ARG (2);
4803 PROCESS_ARG (3);
4804
4805 TREE_SIDE_EFFECTS (t) = side_effects;
4806 TREE_THIS_VOLATILE (t)
4807 = (TREE_CODE_CLASS (code) == tcc_reference
4808 && arg0 && TREE_THIS_VOLATILE (arg0));
4809
4810 return t;
4811 }
4812
4813 tree
4814 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
4815 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4816 {
4817 bool constant, read_only, side_effects;
4818 tree t;
4819
4820 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4821
4822 t = make_node (code PASS_MEM_STAT);
4823 TREE_TYPE (t) = tt;
4824
4825 side_effects = TREE_SIDE_EFFECTS (t);
4826
4827 PROCESS_ARG (0);
4828 PROCESS_ARG (1);
4829 PROCESS_ARG (2);
4830 PROCESS_ARG (3);
4831 PROCESS_ARG (4);
4832
4833 TREE_SIDE_EFFECTS (t) = side_effects;
4834 if (code == TARGET_MEM_REF)
4835 {
4836 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4837 {
4838 tree o = TREE_OPERAND (arg0, 0);
4839 TREE_READONLY (t) = TREE_READONLY (o);
4840 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4841 }
4842 }
4843 else
4844 TREE_THIS_VOLATILE (t)
4845 = (TREE_CODE_CLASS (code) == tcc_reference
4846 && arg0 && TREE_THIS_VOLATILE (arg0));
4847
4848 return t;
4849 }
4850
4851 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4852 on the pointer PTR. */
4853
4854 tree
4855 build_simple_mem_ref_loc (location_t loc, tree ptr)
4856 {
4857 poly_int64 offset = 0;
4858 tree ptype = TREE_TYPE (ptr);
4859 tree tem;
4860 /* For convenience allow addresses that collapse to a simple base
4861 and offset. */
4862 if (TREE_CODE (ptr) == ADDR_EXPR
4863 && (handled_component_p (TREE_OPERAND (ptr, 0))
4864 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4865 {
4866 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4867 gcc_assert (ptr);
4868 if (TREE_CODE (ptr) == MEM_REF)
4869 {
4870 offset += mem_ref_offset (ptr).force_shwi ();
4871 ptr = TREE_OPERAND (ptr, 0);
4872 }
4873 else
4874 ptr = build_fold_addr_expr (ptr);
4875 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4876 }
4877 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4878 ptr, build_int_cst (ptype, offset));
4879 SET_EXPR_LOCATION (tem, loc);
4880 return tem;
4881 }
4882
4883 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4884
4885 poly_offset_int
4886 mem_ref_offset (const_tree t)
4887 {
4888 return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
4889 SIGNED);
4890 }
4891
4892 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4893 offsetted by OFFSET units. */
4894
4895 tree
4896 build_invariant_address (tree type, tree base, poly_int64 offset)
4897 {
4898 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4899 build_fold_addr_expr (base),
4900 build_int_cst (ptr_type_node, offset));
4901 tree addr = build1 (ADDR_EXPR, type, ref);
4902 recompute_tree_invariant_for_addr_expr (addr);
4903 return addr;
4904 }
4905
4906 /* Similar except don't specify the TREE_TYPE
4907 and leave the TREE_SIDE_EFFECTS as 0.
4908 It is permissible for arguments to be null,
4909 or even garbage if their values do not matter. */
4910
4911 tree
4912 build_nt (enum tree_code code, ...)
4913 {
4914 tree t;
4915 int length;
4916 int i;
4917 va_list p;
4918
4919 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4920
4921 va_start (p, code);
4922
4923 t = make_node (code);
4924 length = TREE_CODE_LENGTH (code);
4925
4926 for (i = 0; i < length; i++)
4927 TREE_OPERAND (t, i) = va_arg (p, tree);
4928
4929 va_end (p);
4930 return t;
4931 }
4932
4933 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4934 tree vec. */
4935
4936 tree
4937 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4938 {
4939 tree ret, t;
4940 unsigned int ix;
4941
4942 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4943 CALL_EXPR_FN (ret) = fn;
4944 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4945 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4946 CALL_EXPR_ARG (ret, ix) = t;
4947 return ret;
4948 }
4949 \f
4950 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4951 We do NOT enter this node in any sort of symbol table.
4952
4953 LOC is the location of the decl.
4954
4955 layout_decl is used to set up the decl's storage layout.
4956 Other slots are initialized to 0 or null pointers. */
4957
4958 tree
4959 build_decl (location_t loc, enum tree_code code, tree name,
4960 tree type MEM_STAT_DECL)
4961 {
4962 tree t;
4963
4964 t = make_node (code PASS_MEM_STAT);
4965 DECL_SOURCE_LOCATION (t) = loc;
4966
4967 /* if (type == error_mark_node)
4968 type = integer_type_node; */
4969 /* That is not done, deliberately, so that having error_mark_node
4970 as the type can suppress useless errors in the use of this variable. */
4971
4972 DECL_NAME (t) = name;
4973 TREE_TYPE (t) = type;
4974
4975 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4976 layout_decl (t, 0);
4977
4978 return t;
4979 }
4980
4981 /* Builds and returns function declaration with NAME and TYPE. */
4982
4983 tree
4984 build_fn_decl (const char *name, tree type)
4985 {
4986 tree id = get_identifier (name);
4987 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4988
4989 DECL_EXTERNAL (decl) = 1;
4990 TREE_PUBLIC (decl) = 1;
4991 DECL_ARTIFICIAL (decl) = 1;
4992 TREE_NOTHROW (decl) = 1;
4993
4994 return decl;
4995 }
4996
4997 vec<tree, va_gc> *all_translation_units;
4998
4999 /* Builds a new translation-unit decl with name NAME, queues it in the
5000 global list of translation-unit decls and returns it. */
5001
5002 tree
5003 build_translation_unit_decl (tree name)
5004 {
5005 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
5006 name, NULL_TREE);
5007 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
5008 vec_safe_push (all_translation_units, tu);
5009 return tu;
5010 }
5011
5012 \f
5013 /* BLOCK nodes are used to represent the structure of binding contours
5014 and declarations, once those contours have been exited and their contents
5015 compiled. This information is used for outputting debugging info. */
5016
5017 tree
5018 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
5019 {
5020 tree block = make_node (BLOCK);
5021
5022 BLOCK_VARS (block) = vars;
5023 BLOCK_SUBBLOCKS (block) = subblocks;
5024 BLOCK_SUPERCONTEXT (block) = supercontext;
5025 BLOCK_CHAIN (block) = chain;
5026 return block;
5027 }
5028
5029 \f
5030 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5031
5032 LOC is the location to use in tree T. */
5033
5034 void
5035 protected_set_expr_location (tree t, location_t loc)
5036 {
5037 if (CAN_HAVE_LOCATION_P (t))
5038 SET_EXPR_LOCATION (t, loc);
5039 }
5040 \f
5041 /* Reset the expression *EXPR_P, a size or position.
5042
5043 ??? We could reset all non-constant sizes or positions. But it's cheap
5044 enough to not do so and refrain from adding workarounds to dwarf2out.c.
5045
5046 We need to reset self-referential sizes or positions because they cannot
5047 be gimplified and thus can contain a CALL_EXPR after the gimplification
5048 is finished, which will run afoul of LTO streaming. And they need to be
5049 reset to something essentially dummy but not constant, so as to preserve
5050 the properties of the object they are attached to. */
5051
5052 static inline void
5053 free_lang_data_in_one_sizepos (tree *expr_p)
5054 {
5055 tree expr = *expr_p;
5056 if (CONTAINS_PLACEHOLDER_P (expr))
5057 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
5058 }
5059
5060
5061 /* Reset all the fields in a binfo node BINFO. We only keep
5062 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
5063
5064 static void
5065 free_lang_data_in_binfo (tree binfo)
5066 {
5067 unsigned i;
5068 tree t;
5069
5070 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
5071
5072 BINFO_VIRTUALS (binfo) = NULL_TREE;
5073 BINFO_BASE_ACCESSES (binfo) = NULL;
5074 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
5075 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
5076 BINFO_VPTR_FIELD (binfo) = NULL_TREE;
5077
5078 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
5079 free_lang_data_in_binfo (t);
5080 }
5081
5082
5083 /* Reset all language specific information still present in TYPE. */
5084
5085 static void
5086 free_lang_data_in_type (tree type)
5087 {
5088 gcc_assert (TYPE_P (type));
5089
5090 /* Give the FE a chance to remove its own data first. */
5091 lang_hooks.free_lang_data (type);
5092
5093 TREE_LANG_FLAG_0 (type) = 0;
5094 TREE_LANG_FLAG_1 (type) = 0;
5095 TREE_LANG_FLAG_2 (type) = 0;
5096 TREE_LANG_FLAG_3 (type) = 0;
5097 TREE_LANG_FLAG_4 (type) = 0;
5098 TREE_LANG_FLAG_5 (type) = 0;
5099 TREE_LANG_FLAG_6 (type) = 0;
5100
5101 if (TREE_CODE (type) == FUNCTION_TYPE)
5102 {
5103 /* Remove the const and volatile qualifiers from arguments. The
5104 C++ front end removes them, but the C front end does not,
5105 leading to false ODR violation errors when merging two
5106 instances of the same function signature compiled by
5107 different front ends. */
5108 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5109 {
5110 tree arg_type = TREE_VALUE (p);
5111
5112 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
5113 {
5114 int quals = TYPE_QUALS (arg_type)
5115 & ~TYPE_QUAL_CONST
5116 & ~TYPE_QUAL_VOLATILE;
5117 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
5118 free_lang_data_in_type (TREE_VALUE (p));
5119 }
5120 /* C++ FE uses TREE_PURPOSE to store initial values. */
5121 TREE_PURPOSE (p) = NULL;
5122 }
5123 }
5124 else if (TREE_CODE (type) == METHOD_TYPE)
5125 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5126 /* C++ FE uses TREE_PURPOSE to store initial values. */
5127 TREE_PURPOSE (p) = NULL;
5128 else if (RECORD_OR_UNION_TYPE_P (type))
5129 {
5130 /* Remove members that are not FIELD_DECLs from the field list
5131 of an aggregate. These occur in C++. */
5132 for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
5133 if (TREE_CODE (member) == FIELD_DECL)
5134 prev = &DECL_CHAIN (member);
5135 else
5136 *prev = DECL_CHAIN (member);
5137
5138 TYPE_VFIELD (type) = NULL_TREE;
5139
5140 if (TYPE_BINFO (type))
5141 {
5142 free_lang_data_in_binfo (TYPE_BINFO (type));
5143 /* We need to preserve link to bases and virtual table for all
5144 polymorphic types to make devirtualization machinery working. */
5145 if (!BINFO_VTABLE (TYPE_BINFO (type))
5146 || !flag_devirtualize)
5147 TYPE_BINFO (type) = NULL;
5148 }
5149 }
5150 else if (INTEGRAL_TYPE_P (type)
5151 || SCALAR_FLOAT_TYPE_P (type)
5152 || FIXED_POINT_TYPE_P (type))
5153 {
5154 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
5155 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
5156 }
5157
5158 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
5159
5160 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
5161 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
5162
5163 if (TYPE_CONTEXT (type)
5164 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
5165 {
5166 tree ctx = TYPE_CONTEXT (type);
5167 do
5168 {
5169 ctx = BLOCK_SUPERCONTEXT (ctx);
5170 }
5171 while (ctx && TREE_CODE (ctx) == BLOCK);
5172 TYPE_CONTEXT (type) = ctx;
5173 }
5174
5175 /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
5176 TYPE_DECL if the type doesn't have linkage. */
5177 if (! type_with_linkage_p (type))
5178 {
5179 TYPE_NAME (type) = TYPE_IDENTIFIER (type);
5180 TYPE_STUB_DECL (type) = NULL;
5181 }
5182 }
5183
5184
5185 /* Return true if DECL may need an assembler name to be set. */
5186
5187 static inline bool
5188 need_assembler_name_p (tree decl)
5189 {
5190 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5191 Rule merging. This makes type_odr_p to return true on those types during
5192 LTO and by comparing the mangled name, we can say what types are intended
5193 to be equivalent across compilation unit.
5194
5195 We do not store names of type_in_anonymous_namespace_p.
5196
5197 Record, union and enumeration type have linkage that allows use
5198 to check type_in_anonymous_namespace_p. We do not mangle compound types
5199 that always can be compared structurally.
5200
5201 Similarly for builtin types, we compare properties of their main variant.
5202 A special case are integer types where mangling do make differences
5203 between char/signed char/unsigned char etc. Storing name for these makes
5204 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
5205 See cp/mangle.c:write_builtin_type for details. */
5206
5207 if (flag_lto_odr_type_mering
5208 && TREE_CODE (decl) == TYPE_DECL
5209 && DECL_NAME (decl)
5210 && decl == TYPE_NAME (TREE_TYPE (decl))
5211 && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
5212 && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5213 && (type_with_linkage_p (TREE_TYPE (decl))
5214 || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5215 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5216 return !DECL_ASSEMBLER_NAME_SET_P (decl);
5217 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5218 if (!VAR_OR_FUNCTION_DECL_P (decl))
5219 return false;
5220
5221 /* If DECL already has its assembler name set, it does not need a
5222 new one. */
5223 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5224 || DECL_ASSEMBLER_NAME_SET_P (decl))
5225 return false;
5226
5227 /* Abstract decls do not need an assembler name. */
5228 if (DECL_ABSTRACT_P (decl))
5229 return false;
5230
5231 /* For VAR_DECLs, only static, public and external symbols need an
5232 assembler name. */
5233 if (VAR_P (decl)
5234 && !TREE_STATIC (decl)
5235 && !TREE_PUBLIC (decl)
5236 && !DECL_EXTERNAL (decl))
5237 return false;
5238
5239 if (TREE_CODE (decl) == FUNCTION_DECL)
5240 {
5241 /* Do not set assembler name on builtins. Allow RTL expansion to
5242 decide whether to expand inline or via a regular call. */
5243 if (fndecl_built_in_p (decl)
5244 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5245 return false;
5246
5247 /* Functions represented in the callgraph need an assembler name. */
5248 if (cgraph_node::get (decl) != NULL)
5249 return true;
5250
5251 /* Unused and not public functions don't need an assembler name. */
5252 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5253 return false;
5254 }
5255
5256 return true;
5257 }
5258
5259
5260 /* Reset all language specific information still present in symbol
5261 DECL. */
5262
5263 static void
5264 free_lang_data_in_decl (tree decl)
5265 {
5266 gcc_assert (DECL_P (decl));
5267
5268 /* Give the FE a chance to remove its own data first. */
5269 lang_hooks.free_lang_data (decl);
5270
5271 TREE_LANG_FLAG_0 (decl) = 0;
5272 TREE_LANG_FLAG_1 (decl) = 0;
5273 TREE_LANG_FLAG_2 (decl) = 0;
5274 TREE_LANG_FLAG_3 (decl) = 0;
5275 TREE_LANG_FLAG_4 (decl) = 0;
5276 TREE_LANG_FLAG_5 (decl) = 0;
5277 TREE_LANG_FLAG_6 (decl) = 0;
5278
5279 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5280 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5281 if (TREE_CODE (decl) == FIELD_DECL)
5282 {
5283 DECL_FCONTEXT (decl) = NULL;
5284 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5285 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5286 DECL_QUALIFIER (decl) = NULL_TREE;
5287 }
5288
5289 if (TREE_CODE (decl) == FUNCTION_DECL)
5290 {
5291 struct cgraph_node *node;
5292 if (!(node = cgraph_node::get (decl))
5293 || (!node->definition && !node->clones))
5294 {
5295 if (node)
5296 node->release_body ();
5297 else
5298 {
5299 release_function_body (decl);
5300 DECL_ARGUMENTS (decl) = NULL;
5301 DECL_RESULT (decl) = NULL;
5302 DECL_INITIAL (decl) = error_mark_node;
5303 }
5304 }
5305 if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p))
5306 {
5307 tree t;
5308
5309 /* If DECL has a gimple body, then the context for its
5310 arguments must be DECL. Otherwise, it doesn't really
5311 matter, as we will not be emitting any code for DECL. In
5312 general, there may be other instances of DECL created by
5313 the front end and since PARM_DECLs are generally shared,
5314 their DECL_CONTEXT changes as the replicas of DECL are
5315 created. The only time where DECL_CONTEXT is important
5316 is for the FUNCTION_DECLs that have a gimple body (since
5317 the PARM_DECL will be used in the function's body). */
5318 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5319 DECL_CONTEXT (t) = decl;
5320 if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5321 DECL_FUNCTION_SPECIFIC_TARGET (decl)
5322 = target_option_default_node;
5323 if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5324 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5325 = optimization_default_node;
5326 }
5327
5328 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5329 At this point, it is not needed anymore. */
5330 DECL_SAVED_TREE (decl) = NULL_TREE;
5331
5332 /* Clear the abstract origin if it refers to a method.
5333 Otherwise dwarf2out.c will ICE as we splice functions out of
5334 TYPE_FIELDS and thus the origin will not be output
5335 correctly. */
5336 if (DECL_ABSTRACT_ORIGIN (decl)
5337 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5338 && RECORD_OR_UNION_TYPE_P
5339 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5340 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5341
5342 DECL_VINDEX (decl) = NULL_TREE;
5343 }
5344 else if (VAR_P (decl))
5345 {
5346 if ((DECL_EXTERNAL (decl)
5347 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5348 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5349 DECL_INITIAL (decl) = NULL_TREE;
5350 }
5351 else if (TREE_CODE (decl) == TYPE_DECL)
5352 {
5353 DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
5354 DECL_VISIBILITY_SPECIFIED (decl) = 0;
5355 DECL_INITIAL (decl) = NULL_TREE;
5356 DECL_ORIGINAL_TYPE (decl) = NULL_TREE;
5357 }
5358 else if (TREE_CODE (decl) == FIELD_DECL)
5359 DECL_INITIAL (decl) = NULL_TREE;
5360 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5361 && DECL_INITIAL (decl)
5362 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5363 {
5364 /* Strip builtins from the translation-unit BLOCK. We still have targets
5365 without builtin_decl_explicit support and also builtins are shared
5366 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5367 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5368 while (*nextp)
5369 {
5370 tree var = *nextp;
5371 if (fndecl_built_in_p (var))
5372 *nextp = TREE_CHAIN (var);
5373 else
5374 nextp = &TREE_CHAIN (var);
5375 }
5376 }
5377 /* We need to keep field decls associated with their trees. Otherwise tree
5378 merging may merge some fileds and keep others disjoint wich in turn will
5379 not do well with TREE_CHAIN pointers linking them.
5380
5381 Also do not drop containing types for virtual methods and tables because
5382 these are needed by devirtualization. */
5383 if (TREE_CODE (decl) != FIELD_DECL
5384 && ((TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != FUNCTION_DECL)
5385 || !DECL_VIRTUAL_P (decl)))
5386 {
5387 tree ctx = DECL_CONTEXT (decl);
5388 /* Variably modified types are needed for tree_is_indexable to decide
5389 whether the type needs to go to local or global section.
5390 This code is semi-broken but for now it is easiest to keep contexts
5391 as expected. */
5392 if (ctx && TYPE_P (ctx)
5393 && !variably_modified_type_p (ctx, NULL_TREE))
5394 {
5395 while (ctx && TYPE_P (ctx))
5396 ctx = TYPE_CONTEXT (ctx);
5397 DECL_CONTEXT (decl) = ctx;
5398 }
5399 }
5400 }
5401
5402
5403 /* Data used when collecting DECLs and TYPEs for language data removal. */
5404
5405 struct free_lang_data_d
5406 {
5407 free_lang_data_d () : decls (100), types (100) {}
5408
5409 /* Worklist to avoid excessive recursion. */
5410 auto_vec<tree> worklist;
5411
5412 /* Set of traversed objects. Used to avoid duplicate visits. */
5413 hash_set<tree> pset;
5414
5415 /* Array of symbols to process with free_lang_data_in_decl. */
5416 auto_vec<tree> decls;
5417
5418 /* Array of types to process with free_lang_data_in_type. */
5419 auto_vec<tree> types;
5420 };
5421
5422
5423 /* Add type or decl T to one of the list of tree nodes that need their
5424 language data removed. The lists are held inside FLD. */
5425
5426 static void
5427 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5428 {
5429 if (DECL_P (t))
5430 fld->decls.safe_push (t);
5431 else if (TYPE_P (t))
5432 fld->types.safe_push (t);
5433 else
5434 gcc_unreachable ();
5435 }
5436
5437 /* Push tree node T into FLD->WORKLIST. */
5438
5439 static inline void
5440 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5441 {
5442 if (t && !is_lang_specific (t) && !fld->pset.contains (t))
5443 fld->worklist.safe_push ((t));
5444 }
5445
5446
5447 /* Operand callback helper for free_lang_data_in_node. *TP is the
5448 subtree operand being considered. */
5449
5450 static tree
5451 find_decls_types_r (tree *tp, int *ws, void *data)
5452 {
5453 tree t = *tp;
5454 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5455
5456 if (TREE_CODE (t) == TREE_LIST)
5457 return NULL_TREE;
5458
5459 /* Language specific nodes will be removed, so there is no need
5460 to gather anything under them. */
5461 if (is_lang_specific (t))
5462 {
5463 *ws = 0;
5464 return NULL_TREE;
5465 }
5466
5467 if (DECL_P (t))
5468 {
5469 /* Note that walk_tree does not traverse every possible field in
5470 decls, so we have to do our own traversals here. */
5471 add_tree_to_fld_list (t, fld);
5472
5473 fld_worklist_push (DECL_NAME (t), fld);
5474 fld_worklist_push (DECL_CONTEXT (t), fld);
5475 fld_worklist_push (DECL_SIZE (t), fld);
5476 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5477
5478 /* We are going to remove everything under DECL_INITIAL for
5479 TYPE_DECLs. No point walking them. */
5480 if (TREE_CODE (t) != TYPE_DECL)
5481 fld_worklist_push (DECL_INITIAL (t), fld);
5482
5483 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5484 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5485
5486 if (TREE_CODE (t) == FUNCTION_DECL)
5487 {
5488 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5489 fld_worklist_push (DECL_RESULT (t), fld);
5490 }
5491 else if (TREE_CODE (t) == FIELD_DECL)
5492 {
5493 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5494 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5495 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5496 fld_worklist_push (DECL_FCONTEXT (t), fld);
5497 }
5498
5499 if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
5500 && DECL_HAS_VALUE_EXPR_P (t))
5501 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5502
5503 if (TREE_CODE (t) != FIELD_DECL
5504 && TREE_CODE (t) != TYPE_DECL)
5505 fld_worklist_push (TREE_CHAIN (t), fld);
5506 *ws = 0;
5507 }
5508 else if (TYPE_P (t))
5509 {
5510 /* Note that walk_tree does not traverse every possible field in
5511 types, so we have to do our own traversals here. */
5512 add_tree_to_fld_list (t, fld);
5513
5514 if (!RECORD_OR_UNION_TYPE_P (t))
5515 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5516 fld_worklist_push (TYPE_SIZE (t), fld);
5517 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5518 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5519 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5520 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5521 fld_worklist_push (TYPE_NAME (t), fld);
5522 /* While we do not stream TYPE_POINTER_TO and TYPE_REFERENCE_TO
5523 lists, we may look types up in these lists and use them while
5524 optimizing the function body. Thus we need to free lang data
5525 in them. */
5526 if (TREE_CODE (t) == POINTER_TYPE)
5527 fld_worklist_push (TYPE_NEXT_PTR_TO (t), fld);
5528 if (TREE_CODE (t) == REFERENCE_TYPE)
5529 fld_worklist_push (TYPE_NEXT_REF_TO (t), fld);
5530 if (!POINTER_TYPE_P (t))
5531 fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
5532 /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types. */
5533 if (!RECORD_OR_UNION_TYPE_P (t))
5534 fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
5535 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5536 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5537 do not and want not to reach unused variants this way. */
5538 if (TYPE_CONTEXT (t))
5539 {
5540 tree ctx = TYPE_CONTEXT (t);
5541 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5542 So push that instead. */
5543 while (ctx && TREE_CODE (ctx) == BLOCK)
5544 ctx = BLOCK_SUPERCONTEXT (ctx);
5545 fld_worklist_push (ctx, fld);
5546 }
5547 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5548 and want not to reach unused types this way. */
5549
5550 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5551 {
5552 unsigned i;
5553 tree tem;
5554 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5555 fld_worklist_push (TREE_TYPE (tem), fld);
5556 fld_worklist_push (BINFO_TYPE (TYPE_BINFO (t)), fld);
5557 fld_worklist_push (BINFO_VTABLE (TYPE_BINFO (t)), fld);
5558 }
5559 if (RECORD_OR_UNION_TYPE_P (t))
5560 {
5561 tree tem;
5562 /* Push all TYPE_FIELDS - there can be interleaving interesting
5563 and non-interesting things. */
5564 tem = TYPE_FIELDS (t);
5565 while (tem)
5566 {
5567 if (TREE_CODE (tem) == FIELD_DECL)
5568 fld_worklist_push (tem, fld);
5569 tem = TREE_CHAIN (tem);
5570 }
5571 }
5572 if (FUNC_OR_METHOD_TYPE_P (t))
5573 fld_worklist_push (TYPE_METHOD_BASETYPE (t), fld);
5574
5575 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5576 *ws = 0;
5577 }
5578 else if (TREE_CODE (t) == BLOCK)
5579 {
5580 for (tree *tem = &BLOCK_VARS (t); *tem; )
5581 {
5582 if (TREE_CODE (*tem) != VAR_DECL
5583 || !auto_var_in_fn_p (*tem, DECL_CONTEXT (*tem)))
5584 {
5585 gcc_assert (TREE_CODE (*tem) != RESULT_DECL
5586 && TREE_CODE (*tem) != PARM_DECL);
5587 *tem = TREE_CHAIN (*tem);
5588 }
5589 else
5590 {
5591 fld_worklist_push (*tem, fld);
5592 tem = &TREE_CHAIN (*tem);
5593 }
5594 }
5595 for (tree tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5596 fld_worklist_push (tem, fld);
5597 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5598 }
5599
5600 if (TREE_CODE (t) != IDENTIFIER_NODE
5601 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5602 fld_worklist_push (TREE_TYPE (t), fld);
5603
5604 return NULL_TREE;
5605 }
5606
5607
5608 /* Find decls and types in T. */
5609
5610 static void
5611 find_decls_types (tree t, struct free_lang_data_d *fld)
5612 {
5613 while (1)
5614 {
5615 if (!fld->pset.contains (t))
5616 walk_tree (&t, find_decls_types_r, fld, &fld->pset);
5617 if (fld->worklist.is_empty ())
5618 break;
5619 t = fld->worklist.pop ();
5620 }
5621 }
5622
5623 /* Translate all the types in LIST with the corresponding runtime
5624 types. */
5625
5626 static tree
5627 get_eh_types_for_runtime (tree list)
5628 {
5629 tree head, prev;
5630
5631 if (list == NULL_TREE)
5632 return NULL_TREE;
5633
5634 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5635 prev = head;
5636 list = TREE_CHAIN (list);
5637 while (list)
5638 {
5639 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5640 TREE_CHAIN (prev) = n;
5641 prev = TREE_CHAIN (prev);
5642 list = TREE_CHAIN (list);
5643 }
5644
5645 return head;
5646 }
5647
5648
5649 /* Find decls and types referenced in EH region R and store them in
5650 FLD->DECLS and FLD->TYPES. */
5651
5652 static void
5653 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5654 {
5655 switch (r->type)
5656 {
5657 case ERT_CLEANUP:
5658 break;
5659
5660 case ERT_TRY:
5661 {
5662 eh_catch c;
5663
5664 /* The types referenced in each catch must first be changed to the
5665 EH types used at runtime. This removes references to FE types
5666 in the region. */
5667 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5668 {
5669 c->type_list = get_eh_types_for_runtime (c->type_list);
5670 walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
5671 }
5672 }
5673 break;
5674
5675 case ERT_ALLOWED_EXCEPTIONS:
5676 r->u.allowed.type_list
5677 = get_eh_types_for_runtime (r->u.allowed.type_list);
5678 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
5679 break;
5680
5681 case ERT_MUST_NOT_THROW:
5682 walk_tree (&r->u.must_not_throw.failure_decl,
5683 find_decls_types_r, fld, &fld->pset);
5684 break;
5685 }
5686 }
5687
5688
5689 /* Find decls and types referenced in cgraph node N and store them in
5690 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5691 look for *every* kind of DECL and TYPE node reachable from N,
5692 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5693 NAMESPACE_DECLs, etc). */
5694
5695 static void
5696 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5697 {
5698 basic_block bb;
5699 struct function *fn;
5700 unsigned ix;
5701 tree t;
5702
5703 find_decls_types (n->decl, fld);
5704
5705 if (!gimple_has_body_p (n->decl))
5706 return;
5707
5708 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5709
5710 fn = DECL_STRUCT_FUNCTION (n->decl);
5711
5712 /* Traverse locals. */
5713 FOR_EACH_LOCAL_DECL (fn, ix, t)
5714 find_decls_types (t, fld);
5715
5716 /* Traverse EH regions in FN. */
5717 {
5718 eh_region r;
5719 FOR_ALL_EH_REGION_FN (r, fn)
5720 find_decls_types_in_eh_region (r, fld);
5721 }
5722
5723 /* Traverse every statement in FN. */
5724 FOR_EACH_BB_FN (bb, fn)
5725 {
5726 gphi_iterator psi;
5727 gimple_stmt_iterator si;
5728 unsigned i;
5729
5730 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
5731 {
5732 gphi *phi = psi.phi ();
5733
5734 for (i = 0; i < gimple_phi_num_args (phi); i++)
5735 {
5736 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5737 find_decls_types (*arg_p, fld);
5738 }
5739 }
5740
5741 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5742 {
5743 gimple *stmt = gsi_stmt (si);
5744
5745 if (is_gimple_call (stmt))
5746 find_decls_types (gimple_call_fntype (stmt), fld);
5747
5748 for (i = 0; i < gimple_num_ops (stmt); i++)
5749 {
5750 tree arg = gimple_op (stmt, i);
5751 find_decls_types (arg, fld);
5752 }
5753 }
5754 }
5755 }
5756
5757
5758 /* Find decls and types referenced in varpool node N and store them in
5759 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5760 look for *every* kind of DECL and TYPE node reachable from N,
5761 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5762 NAMESPACE_DECLs, etc). */
5763
5764 static void
5765 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
5766 {
5767 find_decls_types (v->decl, fld);
5768 }
5769
5770 /* If T needs an assembler name, have one created for it. */
5771
5772 void
5773 assign_assembler_name_if_needed (tree t)
5774 {
5775 if (need_assembler_name_p (t))
5776 {
5777 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5778 diagnostics that use input_location to show locus
5779 information. The problem here is that, at this point,
5780 input_location is generally anchored to the end of the file
5781 (since the parser is long gone), so we don't have a good
5782 position to pin it to.
5783
5784 To alleviate this problem, this uses the location of T's
5785 declaration. Examples of this are
5786 testsuite/g++.dg/template/cond2.C and
5787 testsuite/g++.dg/template/pr35240.C. */
5788 location_t saved_location = input_location;
5789 input_location = DECL_SOURCE_LOCATION (t);
5790
5791 decl_assembler_name (t);
5792
5793 input_location = saved_location;
5794 }
5795 }
5796
5797
5798 /* Free language specific information for every operand and expression
5799 in every node of the call graph. This process operates in three stages:
5800
5801 1- Every callgraph node and varpool node is traversed looking for
5802 decls and types embedded in them. This is a more exhaustive
5803 search than that done by find_referenced_vars, because it will
5804 also collect individual fields, decls embedded in types, etc.
5805
5806 2- All the decls found are sent to free_lang_data_in_decl.
5807
5808 3- All the types found are sent to free_lang_data_in_type.
5809
5810 The ordering between decls and types is important because
5811 free_lang_data_in_decl sets assembler names, which includes
5812 mangling. So types cannot be freed up until assembler names have
5813 been set up. */
5814
5815 static void
5816 free_lang_data_in_cgraph (void)
5817 {
5818 struct cgraph_node *n;
5819 varpool_node *v;
5820 struct free_lang_data_d fld;
5821 tree t;
5822 unsigned i;
5823 alias_pair *p;
5824
5825 /* Find decls and types in the body of every function in the callgraph. */
5826 FOR_EACH_FUNCTION (n)
5827 find_decls_types_in_node (n, &fld);
5828
5829 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5830 find_decls_types (p->decl, &fld);
5831
5832 /* Find decls and types in every varpool symbol. */
5833 FOR_EACH_VARIABLE (v)
5834 find_decls_types_in_var (v, &fld);
5835
5836 /* Set the assembler name on every decl found. We need to do this
5837 now because free_lang_data_in_decl will invalidate data needed
5838 for mangling. This breaks mangling on interdependent decls. */
5839 FOR_EACH_VEC_ELT (fld.decls, i, t)
5840 assign_assembler_name_if_needed (t);
5841
5842 /* Traverse every decl found freeing its language data. */
5843 FOR_EACH_VEC_ELT (fld.decls, i, t)
5844 free_lang_data_in_decl (t);
5845
5846 /* Traverse every type found freeing its language data. */
5847 FOR_EACH_VEC_ELT (fld.types, i, t)
5848 free_lang_data_in_type (t);
5849 if (flag_checking)
5850 {
5851 FOR_EACH_VEC_ELT (fld.types, i, t)
5852 verify_type (t);
5853 }
5854 }
5855
5856
5857 /* Free resources that are used by FE but are not needed once they are done. */
5858
5859 static unsigned
5860 free_lang_data (void)
5861 {
5862 unsigned i;
5863
5864 /* If we are the LTO frontend we have freed lang-specific data already. */
5865 if (in_lto_p
5866 || (!flag_generate_lto && !flag_generate_offload))
5867 return 0;
5868
5869 /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one. */
5870 if (vec_safe_is_empty (all_translation_units))
5871 build_translation_unit_decl (NULL_TREE);
5872
5873 /* Allocate and assign alias sets to the standard integer types
5874 while the slots are still in the way the frontends generated them. */
5875 for (i = 0; i < itk_none; ++i)
5876 if (integer_types[i])
5877 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5878
5879 /* Traverse the IL resetting language specific information for
5880 operands, expressions, etc. */
5881 free_lang_data_in_cgraph ();
5882
5883 /* Create gimple variants for common types. */
5884 for (unsigned i = 0;
5885 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
5886 ++i)
5887 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
5888
5889 /* Reset some langhooks. Do not reset types_compatible_p, it may
5890 still be used indirectly via the get_alias_set langhook. */
5891 lang_hooks.dwarf_name = lhd_dwarf_name;
5892 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5893 lang_hooks.gimplify_expr = lhd_gimplify_expr;
5894
5895 /* We do not want the default decl_assembler_name implementation,
5896 rather if we have fixed everything we want a wrapper around it
5897 asserting that all non-local symbols already got their assembler
5898 name and only produce assembler names for local symbols. Or rather
5899 make sure we never call decl_assembler_name on local symbols and
5900 devise a separate, middle-end private scheme for it. */
5901
5902 /* Reset diagnostic machinery. */
5903 tree_diagnostics_defaults (global_dc);
5904
5905 rebuild_type_inheritance_graph ();
5906
5907 return 0;
5908 }
5909
5910
5911 namespace {
5912
5913 const pass_data pass_data_ipa_free_lang_data =
5914 {
5915 SIMPLE_IPA_PASS, /* type */
5916 "*free_lang_data", /* name */
5917 OPTGROUP_NONE, /* optinfo_flags */
5918 TV_IPA_FREE_LANG_DATA, /* tv_id */
5919 0, /* properties_required */
5920 0, /* properties_provided */
5921 0, /* properties_destroyed */
5922 0, /* todo_flags_start */
5923 0, /* todo_flags_finish */
5924 };
5925
5926 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
5927 {
5928 public:
5929 pass_ipa_free_lang_data (gcc::context *ctxt)
5930 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
5931 {}
5932
5933 /* opt_pass methods: */
5934 virtual unsigned int execute (function *) { return free_lang_data (); }
5935
5936 }; // class pass_ipa_free_lang_data
5937
5938 } // anon namespace
5939
5940 simple_ipa_opt_pass *
5941 make_pass_ipa_free_lang_data (gcc::context *ctxt)
5942 {
5943 return new pass_ipa_free_lang_data (ctxt);
5944 }
5945 \f
5946 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5947 of the various TYPE_QUAL values. */
5948
5949 static void
5950 set_type_quals (tree type, int type_quals)
5951 {
5952 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5953 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5954 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5955 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
5956 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5957 }
5958
5959 /* Returns true iff CAND and BASE have equivalent language-specific
5960 qualifiers. */
5961
5962 bool
5963 check_lang_type (const_tree cand, const_tree base)
5964 {
5965 if (lang_hooks.types.type_hash_eq == NULL)
5966 return true;
5967 /* type_hash_eq currently only applies to these types. */
5968 if (TREE_CODE (cand) != FUNCTION_TYPE
5969 && TREE_CODE (cand) != METHOD_TYPE)
5970 return true;
5971 return lang_hooks.types.type_hash_eq (cand, base);
5972 }
5973
5974 /* Returns true iff unqualified CAND and BASE are equivalent. */
5975
5976 bool
5977 check_base_type (const_tree cand, const_tree base)
5978 {
5979 return (TYPE_NAME (cand) == TYPE_NAME (base)
5980 /* Apparently this is needed for Objective-C. */
5981 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5982 /* Check alignment. */
5983 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5984 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5985 TYPE_ATTRIBUTES (base)));
5986 }
5987
5988 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5989
5990 bool
5991 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5992 {
5993 return (TYPE_QUALS (cand) == type_quals
5994 && check_base_type (cand, base)
5995 && check_lang_type (cand, base));
5996 }
5997
5998 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5999
6000 static bool
6001 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6002 {
6003 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6004 && TYPE_NAME (cand) == TYPE_NAME (base)
6005 /* Apparently this is needed for Objective-C. */
6006 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6007 /* Check alignment. */
6008 && TYPE_ALIGN (cand) == align
6009 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6010 TYPE_ATTRIBUTES (base))
6011 && check_lang_type (cand, base));
6012 }
6013
6014 /* This function checks to see if TYPE matches the size one of the built-in
6015 atomic types, and returns that core atomic type. */
6016
6017 static tree
6018 find_atomic_core_type (tree type)
6019 {
6020 tree base_atomic_type;
6021
6022 /* Only handle complete types. */
6023 if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
6024 return NULL_TREE;
6025
6026 switch (tree_to_uhwi (TYPE_SIZE (type)))
6027 {
6028 case 8:
6029 base_atomic_type = atomicQI_type_node;
6030 break;
6031
6032 case 16:
6033 base_atomic_type = atomicHI_type_node;
6034 break;
6035
6036 case 32:
6037 base_atomic_type = atomicSI_type_node;
6038 break;
6039
6040 case 64:
6041 base_atomic_type = atomicDI_type_node;
6042 break;
6043
6044 case 128:
6045 base_atomic_type = atomicTI_type_node;
6046 break;
6047
6048 default:
6049 base_atomic_type = NULL_TREE;
6050 }
6051
6052 return base_atomic_type;
6053 }
6054
6055 /* Return a version of the TYPE, qualified as indicated by the
6056 TYPE_QUALS, if one exists. If no qualified version exists yet,
6057 return NULL_TREE. */
6058
6059 tree
6060 get_qualified_type (tree type, int type_quals)
6061 {
6062 tree t;
6063
6064 if (TYPE_QUALS (type) == type_quals)
6065 return type;
6066
6067 /* Search the chain of variants to see if there is already one there just
6068 like the one we need to have. If so, use that existing one. We must
6069 preserve the TYPE_NAME, since there is code that depends on this. */
6070 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6071 if (check_qualified_type (t, type, type_quals))
6072 return t;
6073
6074 return NULL_TREE;
6075 }
6076
6077 /* Like get_qualified_type, but creates the type if it does not
6078 exist. This function never returns NULL_TREE. */
6079
6080 tree
6081 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
6082 {
6083 tree t;
6084
6085 /* See if we already have the appropriate qualified variant. */
6086 t = get_qualified_type (type, type_quals);
6087
6088 /* If not, build it. */
6089 if (!t)
6090 {
6091 t = build_variant_type_copy (type PASS_MEM_STAT);
6092 set_type_quals (t, type_quals);
6093
6094 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6095 {
6096 /* See if this object can map to a basic atomic type. */
6097 tree atomic_type = find_atomic_core_type (type);
6098 if (atomic_type)
6099 {
6100 /* Ensure the alignment of this type is compatible with
6101 the required alignment of the atomic type. */
6102 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6103 SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
6104 }
6105 }
6106
6107 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6108 /* Propagate structural equality. */
6109 SET_TYPE_STRUCTURAL_EQUALITY (t);
6110 else if (TYPE_CANONICAL (type) != type)
6111 /* Build the underlying canonical type, since it is different
6112 from TYPE. */
6113 {
6114 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6115 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6116 }
6117 else
6118 /* T is its own canonical type. */
6119 TYPE_CANONICAL (t) = t;
6120
6121 }
6122
6123 return t;
6124 }
6125
6126 /* Create a variant of type T with alignment ALIGN. */
6127
6128 tree
6129 build_aligned_type (tree type, unsigned int align)
6130 {
6131 tree t;
6132
6133 if (TYPE_PACKED (type)
6134 || TYPE_ALIGN (type) == align)
6135 return type;
6136
6137 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6138 if (check_aligned_type (t, type, align))
6139 return t;
6140
6141 t = build_variant_type_copy (type);
6142 SET_TYPE_ALIGN (t, align);
6143 TYPE_USER_ALIGN (t) = 1;
6144
6145 return t;
6146 }
6147
6148 /* Create a new distinct copy of TYPE. The new type is made its own
6149 MAIN_VARIANT. If TYPE requires structural equality checks, the
6150 resulting type requires structural equality checks; otherwise, its
6151 TYPE_CANONICAL points to itself. */
6152
6153 tree
6154 build_distinct_type_copy (tree type MEM_STAT_DECL)
6155 {
6156 tree t = copy_node (type PASS_MEM_STAT);
6157
6158 TYPE_POINTER_TO (t) = 0;
6159 TYPE_REFERENCE_TO (t) = 0;
6160
6161 /* Set the canonical type either to a new equivalence class, or
6162 propagate the need for structural equality checks. */
6163 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6164 SET_TYPE_STRUCTURAL_EQUALITY (t);
6165 else
6166 TYPE_CANONICAL (t) = t;
6167
6168 /* Make it its own variant. */
6169 TYPE_MAIN_VARIANT (t) = t;
6170 TYPE_NEXT_VARIANT (t) = 0;
6171
6172 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6173 whose TREE_TYPE is not t. This can also happen in the Ada
6174 frontend when using subtypes. */
6175
6176 return t;
6177 }
6178
6179 /* Create a new variant of TYPE, equivalent but distinct. This is so
6180 the caller can modify it. TYPE_CANONICAL for the return type will
6181 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6182 are considered equal by the language itself (or that both types
6183 require structural equality checks). */
6184
6185 tree
6186 build_variant_type_copy (tree type MEM_STAT_DECL)
6187 {
6188 tree t, m = TYPE_MAIN_VARIANT (type);
6189
6190 t = build_distinct_type_copy (type PASS_MEM_STAT);
6191
6192 /* Since we're building a variant, assume that it is a non-semantic
6193 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6194 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6195 /* Type variants have no alias set defined. */
6196 TYPE_ALIAS_SET (t) = -1;
6197
6198 /* Add the new type to the chain of variants of TYPE. */
6199 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6200 TYPE_NEXT_VARIANT (m) = t;
6201 TYPE_MAIN_VARIANT (t) = m;
6202
6203 return t;
6204 }
6205 \f
6206 /* Return true if the from tree in both tree maps are equal. */
6207
6208 int
6209 tree_map_base_eq (const void *va, const void *vb)
6210 {
6211 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6212 *const b = (const struct tree_map_base *) vb;
6213 return (a->from == b->from);
6214 }
6215
6216 /* Hash a from tree in a tree_base_map. */
6217
6218 unsigned int
6219 tree_map_base_hash (const void *item)
6220 {
6221 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6222 }
6223
6224 /* Return true if this tree map structure is marked for garbage collection
6225 purposes. We simply return true if the from tree is marked, so that this
6226 structure goes away when the from tree goes away. */
6227
6228 int
6229 tree_map_base_marked_p (const void *p)
6230 {
6231 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6232 }
6233
6234 /* Hash a from tree in a tree_map. */
6235
6236 unsigned int
6237 tree_map_hash (const void *item)
6238 {
6239 return (((const struct tree_map *) item)->hash);
6240 }
6241
6242 /* Hash a from tree in a tree_decl_map. */
6243
6244 unsigned int
6245 tree_decl_map_hash (const void *item)
6246 {
6247 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6248 }
6249
6250 /* Return the initialization priority for DECL. */
6251
6252 priority_type
6253 decl_init_priority_lookup (tree decl)
6254 {
6255 symtab_node *snode = symtab_node::get (decl);
6256
6257 if (!snode)
6258 return DEFAULT_INIT_PRIORITY;
6259 return
6260 snode->get_init_priority ();
6261 }
6262
6263 /* Return the finalization priority for DECL. */
6264
6265 priority_type
6266 decl_fini_priority_lookup (tree decl)
6267 {
6268 cgraph_node *node = cgraph_node::get (decl);
6269
6270 if (!node)
6271 return DEFAULT_INIT_PRIORITY;
6272 return
6273 node->get_fini_priority ();
6274 }
6275
6276 /* Set the initialization priority for DECL to PRIORITY. */
6277
6278 void
6279 decl_init_priority_insert (tree decl, priority_type priority)
6280 {
6281 struct symtab_node *snode;
6282
6283 if (priority == DEFAULT_INIT_PRIORITY)
6284 {
6285 snode = symtab_node::get (decl);
6286 if (!snode)
6287 return;
6288 }
6289 else if (VAR_P (decl))
6290 snode = varpool_node::get_create (decl);
6291 else
6292 snode = cgraph_node::get_create (decl);
6293 snode->set_init_priority (priority);
6294 }
6295
6296 /* Set the finalization priority for DECL to PRIORITY. */
6297
6298 void
6299 decl_fini_priority_insert (tree decl, priority_type priority)
6300 {
6301 struct cgraph_node *node;
6302
6303 if (priority == DEFAULT_INIT_PRIORITY)
6304 {
6305 node = cgraph_node::get (decl);
6306 if (!node)
6307 return;
6308 }
6309 else
6310 node = cgraph_node::get_create (decl);
6311 node->set_fini_priority (priority);
6312 }
6313
6314 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6315
6316 static void
6317 print_debug_expr_statistics (void)
6318 {
6319 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6320 (long) debug_expr_for_decl->size (),
6321 (long) debug_expr_for_decl->elements (),
6322 debug_expr_for_decl->collisions ());
6323 }
6324
6325 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6326
6327 static void
6328 print_value_expr_statistics (void)
6329 {
6330 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6331 (long) value_expr_for_decl->size (),
6332 (long) value_expr_for_decl->elements (),
6333 value_expr_for_decl->collisions ());
6334 }
6335
6336 /* Lookup a debug expression for FROM, and return it if we find one. */
6337
6338 tree
6339 decl_debug_expr_lookup (tree from)
6340 {
6341 struct tree_decl_map *h, in;
6342 in.base.from = from;
6343
6344 h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6345 if (h)
6346 return h->to;
6347 return NULL_TREE;
6348 }
6349
6350 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6351
6352 void
6353 decl_debug_expr_insert (tree from, tree to)
6354 {
6355 struct tree_decl_map *h;
6356
6357 h = ggc_alloc<tree_decl_map> ();
6358 h->base.from = from;
6359 h->to = to;
6360 *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6361 }
6362
6363 /* Lookup a value expression for FROM, and return it if we find one. */
6364
6365 tree
6366 decl_value_expr_lookup (tree from)
6367 {
6368 struct tree_decl_map *h, in;
6369 in.base.from = from;
6370
6371 h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6372 if (h)
6373 return h->to;
6374 return NULL_TREE;
6375 }
6376
6377 /* Insert a mapping FROM->TO in the value expression hashtable. */
6378
6379 void
6380 decl_value_expr_insert (tree from, tree to)
6381 {
6382 struct tree_decl_map *h;
6383
6384 h = ggc_alloc<tree_decl_map> ();
6385 h->base.from = from;
6386 h->to = to;
6387 *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6388 }
6389
6390 /* Lookup a vector of debug arguments for FROM, and return it if we
6391 find one. */
6392
6393 vec<tree, va_gc> **
6394 decl_debug_args_lookup (tree from)
6395 {
6396 struct tree_vec_map *h, in;
6397
6398 if (!DECL_HAS_DEBUG_ARGS_P (from))
6399 return NULL;
6400 gcc_checking_assert (debug_args_for_decl != NULL);
6401 in.base.from = from;
6402 h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6403 if (h)
6404 return &h->to;
6405 return NULL;
6406 }
6407
6408 /* Insert a mapping FROM->empty vector of debug arguments in the value
6409 expression hashtable. */
6410
6411 vec<tree, va_gc> **
6412 decl_debug_args_insert (tree from)
6413 {
6414 struct tree_vec_map *h;
6415 tree_vec_map **loc;
6416
6417 if (DECL_HAS_DEBUG_ARGS_P (from))
6418 return decl_debug_args_lookup (from);
6419 if (debug_args_for_decl == NULL)
6420 debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6421 h = ggc_alloc<tree_vec_map> ();
6422 h->base.from = from;
6423 h->to = NULL;
6424 loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6425 *loc = h;
6426 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6427 return &h->to;
6428 }
6429
6430 /* Hashing of types so that we don't make duplicates.
6431 The entry point is `type_hash_canon'. */
6432
6433 /* Generate the default hash code for TYPE. This is designed for
6434 speed, rather than maximum entropy. */
6435
6436 hashval_t
6437 type_hash_canon_hash (tree type)
6438 {
6439 inchash::hash hstate;
6440
6441 hstate.add_int (TREE_CODE (type));
6442
6443 if (TREE_TYPE (type))
6444 hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
6445
6446 for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
6447 /* Just the identifier is adequate to distinguish. */
6448 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
6449
6450 switch (TREE_CODE (type))
6451 {
6452 case METHOD_TYPE:
6453 hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
6454 /* FALLTHROUGH. */
6455 case FUNCTION_TYPE:
6456 for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6457 if (TREE_VALUE (t) != error_mark_node)
6458 hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
6459 break;
6460
6461 case OFFSET_TYPE:
6462 hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
6463 break;
6464
6465 case ARRAY_TYPE:
6466 {
6467 if (TYPE_DOMAIN (type))
6468 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
6469 if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
6470 {
6471 unsigned typeless = TYPE_TYPELESS_STORAGE (type);
6472 hstate.add_object (typeless);
6473 }
6474 }
6475 break;
6476
6477 case INTEGER_TYPE:
6478 {
6479 tree t = TYPE_MAX_VALUE (type);
6480 if (!t)
6481 t = TYPE_MIN_VALUE (type);
6482 for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
6483 hstate.add_object (TREE_INT_CST_ELT (t, i));
6484 break;
6485 }
6486
6487 case REAL_TYPE:
6488 case FIXED_POINT_TYPE:
6489 {
6490 unsigned prec = TYPE_PRECISION (type);
6491 hstate.add_object (prec);
6492 break;
6493 }
6494
6495 case VECTOR_TYPE:
6496 hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
6497 break;
6498
6499 default:
6500 break;
6501 }
6502
6503 return hstate.end ();
6504 }
6505
6506 /* These are the Hashtable callback functions. */
6507
6508 /* Returns true iff the types are equivalent. */
6509
6510 bool
6511 type_cache_hasher::equal (type_hash *a, type_hash *b)
6512 {
6513 /* First test the things that are the same for all types. */
6514 if (a->hash != b->hash
6515 || TREE_CODE (a->type) != TREE_CODE (b->type)
6516 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6517 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6518 TYPE_ATTRIBUTES (b->type))
6519 || (TREE_CODE (a->type) != COMPLEX_TYPE
6520 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6521 return 0;
6522
6523 /* Be careful about comparing arrays before and after the element type
6524 has been completed; don't compare TYPE_ALIGN unless both types are
6525 complete. */
6526 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6527 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6528 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6529 return 0;
6530
6531 switch (TREE_CODE (a->type))
6532 {
6533 case VOID_TYPE:
6534 case COMPLEX_TYPE:
6535 case POINTER_TYPE:
6536 case REFERENCE_TYPE:
6537 case NULLPTR_TYPE:
6538 return 1;
6539
6540 case VECTOR_TYPE:
6541 return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
6542 TYPE_VECTOR_SUBPARTS (b->type));
6543
6544 case ENUMERAL_TYPE:
6545 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6546 && !(TYPE_VALUES (a->type)
6547 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6548 && TYPE_VALUES (b->type)
6549 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6550 && type_list_equal (TYPE_VALUES (a->type),
6551 TYPE_VALUES (b->type))))
6552 return 0;
6553
6554 /* fall through */
6555
6556 case INTEGER_TYPE:
6557 case REAL_TYPE:
6558 case BOOLEAN_TYPE:
6559 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6560 return false;
6561 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6562 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6563 TYPE_MAX_VALUE (b->type)))
6564 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6565 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6566 TYPE_MIN_VALUE (b->type))));
6567
6568 case FIXED_POINT_TYPE:
6569 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6570
6571 case OFFSET_TYPE:
6572 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6573
6574 case METHOD_TYPE:
6575 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6576 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6577 || (TYPE_ARG_TYPES (a->type)
6578 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6579 && TYPE_ARG_TYPES (b->type)
6580 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6581 && type_list_equal (TYPE_ARG_TYPES (a->type),
6582 TYPE_ARG_TYPES (b->type)))))
6583 break;
6584 return 0;
6585 case ARRAY_TYPE:
6586 /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
6587 where the flag should be inherited from the element type
6588 and can change after ARRAY_TYPEs are created; on non-aggregates
6589 compare it and hash it, scalars will never have that flag set
6590 and we need to differentiate between arrays created by different
6591 front-ends or middle-end created arrays. */
6592 return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
6593 && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
6594 || (TYPE_TYPELESS_STORAGE (a->type)
6595 == TYPE_TYPELESS_STORAGE (b->type))));
6596
6597 case RECORD_TYPE:
6598 case UNION_TYPE:
6599 case QUAL_UNION_TYPE:
6600 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6601 || (TYPE_FIELDS (a->type)
6602 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6603 && TYPE_FIELDS (b->type)
6604 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6605 && type_list_equal (TYPE_FIELDS (a->type),
6606 TYPE_FIELDS (b->type))));
6607
6608 case FUNCTION_TYPE:
6609 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6610 || (TYPE_ARG_TYPES (a->type)
6611 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6612 && TYPE_ARG_TYPES (b->type)
6613 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6614 && type_list_equal (TYPE_ARG_TYPES (a->type),
6615 TYPE_ARG_TYPES (b->type))))
6616 break;
6617 return 0;
6618
6619 default:
6620 return 0;
6621 }
6622
6623 if (lang_hooks.types.type_hash_eq != NULL)
6624 return lang_hooks.types.type_hash_eq (a->type, b->type);
6625
6626 return 1;
6627 }
6628
6629 /* Given TYPE, and HASHCODE its hash code, return the canonical
6630 object for an identical type if one already exists.
6631 Otherwise, return TYPE, and record it as the canonical object.
6632
6633 To use this function, first create a type of the sort you want.
6634 Then compute its hash code from the fields of the type that
6635 make it different from other similar types.
6636 Then call this function and use the value. */
6637
6638 tree
6639 type_hash_canon (unsigned int hashcode, tree type)
6640 {
6641 type_hash in;
6642 type_hash **loc;
6643
6644 /* The hash table only contains main variants, so ensure that's what we're
6645 being passed. */
6646 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6647
6648 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6649 must call that routine before comparing TYPE_ALIGNs. */
6650 layout_type (type);
6651
6652 in.hash = hashcode;
6653 in.type = type;
6654
6655 loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
6656 if (*loc)
6657 {
6658 tree t1 = ((type_hash *) *loc)->type;
6659 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1
6660 && t1 != type);
6661 if (TYPE_UID (type) + 1 == next_type_uid)
6662 --next_type_uid;
6663 /* Free also min/max values and the cache for integer
6664 types. This can't be done in free_node, as LTO frees
6665 those on its own. */
6666 if (TREE_CODE (type) == INTEGER_TYPE)
6667 {
6668 if (TYPE_MIN_VALUE (type)
6669 && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
6670 {
6671 /* Zero is always in TYPE_CACHED_VALUES. */
6672 if (! TYPE_UNSIGNED (type))
6673 int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
6674 ggc_free (TYPE_MIN_VALUE (type));
6675 }
6676 if (TYPE_MAX_VALUE (type)
6677 && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
6678 {
6679 int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
6680 ggc_free (TYPE_MAX_VALUE (type));
6681 }
6682 if (TYPE_CACHED_VALUES_P (type))
6683 ggc_free (TYPE_CACHED_VALUES (type));
6684 }
6685 free_node (type);
6686 return t1;
6687 }
6688 else
6689 {
6690 struct type_hash *h;
6691
6692 h = ggc_alloc<type_hash> ();
6693 h->hash = hashcode;
6694 h->type = type;
6695 *loc = h;
6696
6697 return type;
6698 }
6699 }
6700
6701 static void
6702 print_type_hash_statistics (void)
6703 {
6704 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6705 (long) type_hash_table->size (),
6706 (long) type_hash_table->elements (),
6707 type_hash_table->collisions ());
6708 }
6709
6710 /* Given two lists of types
6711 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6712 return 1 if the lists contain the same types in the same order.
6713 Also, the TREE_PURPOSEs must match. */
6714
6715 int
6716 type_list_equal (const_tree l1, const_tree l2)
6717 {
6718 const_tree t1, t2;
6719
6720 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6721 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6722 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6723 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6724 && (TREE_TYPE (TREE_PURPOSE (t1))
6725 == TREE_TYPE (TREE_PURPOSE (t2))))))
6726 return 0;
6727
6728 return t1 == t2;
6729 }
6730
6731 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6732 given by TYPE. If the argument list accepts variable arguments,
6733 then this function counts only the ordinary arguments. */
6734
6735 int
6736 type_num_arguments (const_tree type)
6737 {
6738 int i = 0;
6739 tree t;
6740
6741 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6742 /* If the function does not take a variable number of arguments,
6743 the last element in the list will have type `void'. */
6744 if (VOID_TYPE_P (TREE_VALUE (t)))
6745 break;
6746 else
6747 ++i;
6748
6749 return i;
6750 }
6751
6752 /* Nonzero if integer constants T1 and T2
6753 represent the same constant value. */
6754
6755 int
6756 tree_int_cst_equal (const_tree t1, const_tree t2)
6757 {
6758 if (t1 == t2)
6759 return 1;
6760
6761 if (t1 == 0 || t2 == 0)
6762 return 0;
6763
6764 if (TREE_CODE (t1) == INTEGER_CST
6765 && TREE_CODE (t2) == INTEGER_CST
6766 && wi::to_widest (t1) == wi::to_widest (t2))
6767 return 1;
6768
6769 return 0;
6770 }
6771
6772 /* Return true if T is an INTEGER_CST whose numerical value (extended
6773 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
6774
6775 bool
6776 tree_fits_shwi_p (const_tree t)
6777 {
6778 return (t != NULL_TREE
6779 && TREE_CODE (t) == INTEGER_CST
6780 && wi::fits_shwi_p (wi::to_widest (t)));
6781 }
6782
6783 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6784 value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */
6785
6786 bool
6787 tree_fits_poly_int64_p (const_tree t)
6788 {
6789 if (t == NULL_TREE)
6790 return false;
6791 if (POLY_INT_CST_P (t))
6792 {
6793 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
6794 if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
6795 return false;
6796 return true;
6797 }
6798 return (TREE_CODE (t) == INTEGER_CST
6799 && wi::fits_shwi_p (wi::to_widest (t)));
6800 }
6801
6802 /* Return true if T is an INTEGER_CST whose numerical value (extended
6803 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
6804
6805 bool
6806 tree_fits_uhwi_p (const_tree t)
6807 {
6808 return (t != NULL_TREE
6809 && TREE_CODE (t) == INTEGER_CST
6810 && wi::fits_uhwi_p (wi::to_widest (t)));
6811 }
6812
6813 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6814 value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */
6815
6816 bool
6817 tree_fits_poly_uint64_p (const_tree t)
6818 {
6819 if (t == NULL_TREE)
6820 return false;
6821 if (POLY_INT_CST_P (t))
6822 {
6823 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
6824 if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
6825 return false;
6826 return true;
6827 }
6828 return (TREE_CODE (t) == INTEGER_CST
6829 && wi::fits_uhwi_p (wi::to_widest (t)));
6830 }
6831
6832 /* T is an INTEGER_CST whose numerical value (extended according to
6833 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
6834 HOST_WIDE_INT. */
6835
6836 HOST_WIDE_INT
6837 tree_to_shwi (const_tree t)
6838 {
6839 gcc_assert (tree_fits_shwi_p (t));
6840 return TREE_INT_CST_LOW (t);
6841 }
6842
6843 /* T is an INTEGER_CST whose numerical value (extended according to
6844 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
6845 HOST_WIDE_INT. */
6846
6847 unsigned HOST_WIDE_INT
6848 tree_to_uhwi (const_tree t)
6849 {
6850 gcc_assert (tree_fits_uhwi_p (t));
6851 return TREE_INT_CST_LOW (t);
6852 }
6853
6854 /* Return the most significant (sign) bit of T. */
6855
6856 int
6857 tree_int_cst_sign_bit (const_tree t)
6858 {
6859 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
6860
6861 return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
6862 }
6863
6864 /* Return an indication of the sign of the integer constant T.
6865 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6866 Note that -1 will never be returned if T's type is unsigned. */
6867
6868 int
6869 tree_int_cst_sgn (const_tree t)
6870 {
6871 if (wi::to_wide (t) == 0)
6872 return 0;
6873 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6874 return 1;
6875 else if (wi::neg_p (wi::to_wide (t)))
6876 return -1;
6877 else
6878 return 1;
6879 }
6880
6881 /* Return the minimum number of bits needed to represent VALUE in a
6882 signed or unsigned type, UNSIGNEDP says which. */
6883
6884 unsigned int
6885 tree_int_cst_min_precision (tree value, signop sgn)
6886 {
6887 /* If the value is negative, compute its negative minus 1. The latter
6888 adjustment is because the absolute value of the largest negative value
6889 is one larger than the largest positive value. This is equivalent to
6890 a bit-wise negation, so use that operation instead. */
6891
6892 if (tree_int_cst_sgn (value) < 0)
6893 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6894
6895 /* Return the number of bits needed, taking into account the fact
6896 that we need one more bit for a signed than unsigned type.
6897 If value is 0 or -1, the minimum precision is 1 no matter
6898 whether unsignedp is true or false. */
6899
6900 if (integer_zerop (value))
6901 return 1;
6902 else
6903 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
6904 }
6905
6906 /* Return truthvalue of whether T1 is the same tree structure as T2.
6907 Return 1 if they are the same.
6908 Return 0 if they are understandably different.
6909 Return -1 if either contains tree structure not understood by
6910 this function. */
6911
6912 int
6913 simple_cst_equal (const_tree t1, const_tree t2)
6914 {
6915 enum tree_code code1, code2;
6916 int cmp;
6917 int i;
6918
6919 if (t1 == t2)
6920 return 1;
6921 if (t1 == 0 || t2 == 0)
6922 return 0;
6923
6924 code1 = TREE_CODE (t1);
6925 code2 = TREE_CODE (t2);
6926
6927 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6928 {
6929 if (CONVERT_EXPR_CODE_P (code2)
6930 || code2 == NON_LVALUE_EXPR)
6931 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6932 else
6933 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6934 }
6935
6936 else if (CONVERT_EXPR_CODE_P (code2)
6937 || code2 == NON_LVALUE_EXPR)
6938 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6939
6940 if (code1 != code2)
6941 return 0;
6942
6943 switch (code1)
6944 {
6945 case INTEGER_CST:
6946 return wi::to_widest (t1) == wi::to_widest (t2);
6947
6948 case REAL_CST:
6949 return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
6950
6951 case FIXED_CST:
6952 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6953
6954 case STRING_CST:
6955 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6956 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6957 TREE_STRING_LENGTH (t1)));
6958
6959 case CONSTRUCTOR:
6960 {
6961 unsigned HOST_WIDE_INT idx;
6962 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
6963 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
6964
6965 if (vec_safe_length (v1) != vec_safe_length (v2))
6966 return false;
6967
6968 for (idx = 0; idx < vec_safe_length (v1); ++idx)
6969 /* ??? Should we handle also fields here? */
6970 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
6971 return false;
6972 return true;
6973 }
6974
6975 case SAVE_EXPR:
6976 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6977
6978 case CALL_EXPR:
6979 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6980 if (cmp <= 0)
6981 return cmp;
6982 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6983 return 0;
6984 {
6985 const_tree arg1, arg2;
6986 const_call_expr_arg_iterator iter1, iter2;
6987 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6988 arg2 = first_const_call_expr_arg (t2, &iter2);
6989 arg1 && arg2;
6990 arg1 = next_const_call_expr_arg (&iter1),
6991 arg2 = next_const_call_expr_arg (&iter2))
6992 {
6993 cmp = simple_cst_equal (arg1, arg2);
6994 if (cmp <= 0)
6995 return cmp;
6996 }
6997 return arg1 == arg2;
6998 }
6999
7000 case TARGET_EXPR:
7001 /* Special case: if either target is an unallocated VAR_DECL,
7002 it means that it's going to be unified with whatever the
7003 TARGET_EXPR is really supposed to initialize, so treat it
7004 as being equivalent to anything. */
7005 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7006 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7007 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7008 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7009 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7010 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7011 cmp = 1;
7012 else
7013 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7014
7015 if (cmp <= 0)
7016 return cmp;
7017
7018 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7019
7020 case WITH_CLEANUP_EXPR:
7021 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7022 if (cmp <= 0)
7023 return cmp;
7024
7025 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7026
7027 case COMPONENT_REF:
7028 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7029 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7030
7031 return 0;
7032
7033 case VAR_DECL:
7034 case PARM_DECL:
7035 case CONST_DECL:
7036 case FUNCTION_DECL:
7037 return 0;
7038
7039 default:
7040 if (POLY_INT_CST_P (t1))
7041 /* A false return means maybe_ne rather than known_ne. */
7042 return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
7043 TYPE_SIGN (TREE_TYPE (t1))),
7044 poly_widest_int::from (poly_int_cst_value (t2),
7045 TYPE_SIGN (TREE_TYPE (t2))));
7046 break;
7047 }
7048
7049 /* This general rule works for most tree codes. All exceptions should be
7050 handled above. If this is a language-specific tree code, we can't
7051 trust what might be in the operand, so say we don't know
7052 the situation. */
7053 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7054 return -1;
7055
7056 switch (TREE_CODE_CLASS (code1))
7057 {
7058 case tcc_unary:
7059 case tcc_binary:
7060 case tcc_comparison:
7061 case tcc_expression:
7062 case tcc_reference:
7063 case tcc_statement:
7064 cmp = 1;
7065 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7066 {
7067 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7068 if (cmp <= 0)
7069 return cmp;
7070 }
7071
7072 return cmp;
7073
7074 default:
7075 return -1;
7076 }
7077 }
7078
7079 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7080 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7081 than U, respectively. */
7082
7083 int
7084 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7085 {
7086 if (tree_int_cst_sgn (t) < 0)
7087 return -1;
7088 else if (!tree_fits_uhwi_p (t))
7089 return 1;
7090 else if (TREE_INT_CST_LOW (t) == u)
7091 return 0;
7092 else if (TREE_INT_CST_LOW (t) < u)
7093 return -1;
7094 else
7095 return 1;
7096 }
7097
7098 /* Return true if SIZE represents a constant size that is in bounds of
7099 what the middle-end and the backend accepts (covering not more than
7100 half of the address-space). */
7101
7102 bool
7103 valid_constant_size_p (const_tree size)
7104 {
7105 if (POLY_INT_CST_P (size))
7106 {
7107 if (TREE_OVERFLOW (size))
7108 return false;
7109 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7110 if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
7111 return false;
7112 return true;
7113 }
7114 if (! tree_fits_uhwi_p (size)
7115 || TREE_OVERFLOW (size)
7116 || tree_int_cst_sign_bit (size) != 0)
7117 return false;
7118 return true;
7119 }
7120
7121 /* Return the precision of the type, or for a complex or vector type the
7122 precision of the type of its elements. */
7123
7124 unsigned int
7125 element_precision (const_tree type)
7126 {
7127 if (!TYPE_P (type))
7128 type = TREE_TYPE (type);
7129 enum tree_code code = TREE_CODE (type);
7130 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7131 type = TREE_TYPE (type);
7132
7133 return TYPE_PRECISION (type);
7134 }
7135
7136 /* Return true if CODE represents an associative tree code. Otherwise
7137 return false. */
7138 bool
7139 associative_tree_code (enum tree_code code)
7140 {
7141 switch (code)
7142 {
7143 case BIT_IOR_EXPR:
7144 case BIT_AND_EXPR:
7145 case BIT_XOR_EXPR:
7146 case PLUS_EXPR:
7147 case MULT_EXPR:
7148 case MIN_EXPR:
7149 case MAX_EXPR:
7150 return true;
7151
7152 default:
7153 break;
7154 }
7155 return false;
7156 }
7157
7158 /* Return true if CODE represents a commutative tree code. Otherwise
7159 return false. */
7160 bool
7161 commutative_tree_code (enum tree_code code)
7162 {
7163 switch (code)
7164 {
7165 case PLUS_EXPR:
7166 case MULT_EXPR:
7167 case MULT_HIGHPART_EXPR:
7168 case MIN_EXPR:
7169 case MAX_EXPR:
7170 case BIT_IOR_EXPR:
7171 case BIT_XOR_EXPR:
7172 case BIT_AND_EXPR:
7173 case NE_EXPR:
7174 case EQ_EXPR:
7175 case UNORDERED_EXPR:
7176 case ORDERED_EXPR:
7177 case UNEQ_EXPR:
7178 case LTGT_EXPR:
7179 case TRUTH_AND_EXPR:
7180 case TRUTH_XOR_EXPR:
7181 case TRUTH_OR_EXPR:
7182 case WIDEN_MULT_EXPR:
7183 case VEC_WIDEN_MULT_HI_EXPR:
7184 case VEC_WIDEN_MULT_LO_EXPR:
7185 case VEC_WIDEN_MULT_EVEN_EXPR:
7186 case VEC_WIDEN_MULT_ODD_EXPR:
7187 return true;
7188
7189 default:
7190 break;
7191 }
7192 return false;
7193 }
7194
7195 /* Return true if CODE represents a ternary tree code for which the
7196 first two operands are commutative. Otherwise return false. */
7197 bool
7198 commutative_ternary_tree_code (enum tree_code code)
7199 {
7200 switch (code)
7201 {
7202 case WIDEN_MULT_PLUS_EXPR:
7203 case WIDEN_MULT_MINUS_EXPR:
7204 case DOT_PROD_EXPR:
7205 return true;
7206
7207 default:
7208 break;
7209 }
7210 return false;
7211 }
7212
7213 /* Returns true if CODE can overflow. */
7214
7215 bool
7216 operation_can_overflow (enum tree_code code)
7217 {
7218 switch (code)
7219 {
7220 case PLUS_EXPR:
7221 case MINUS_EXPR:
7222 case MULT_EXPR:
7223 case LSHIFT_EXPR:
7224 /* Can overflow in various ways. */
7225 return true;
7226 case TRUNC_DIV_EXPR:
7227 case EXACT_DIV_EXPR:
7228 case FLOOR_DIV_EXPR:
7229 case CEIL_DIV_EXPR:
7230 /* For INT_MIN / -1. */
7231 return true;
7232 case NEGATE_EXPR:
7233 case ABS_EXPR:
7234 /* For -INT_MIN. */
7235 return true;
7236 default:
7237 /* These operators cannot overflow. */
7238 return false;
7239 }
7240 }
7241
7242 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7243 ftrapv doesn't generate trapping insns for CODE. */
7244
7245 bool
7246 operation_no_trapping_overflow (tree type, enum tree_code code)
7247 {
7248 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
7249
7250 /* We don't generate instructions that trap on overflow for complex or vector
7251 types. */
7252 if (!INTEGRAL_TYPE_P (type))
7253 return true;
7254
7255 if (!TYPE_OVERFLOW_TRAPS (type))
7256 return true;
7257
7258 switch (code)
7259 {
7260 case PLUS_EXPR:
7261 case MINUS_EXPR:
7262 case MULT_EXPR:
7263 case NEGATE_EXPR:
7264 case ABS_EXPR:
7265 /* These operators can overflow, and -ftrapv generates trapping code for
7266 these. */
7267 return false;
7268 case TRUNC_DIV_EXPR:
7269 case EXACT_DIV_EXPR:
7270 case FLOOR_DIV_EXPR:
7271 case CEIL_DIV_EXPR:
7272 case LSHIFT_EXPR:
7273 /* These operators can overflow, but -ftrapv does not generate trapping
7274 code for these. */
7275 return true;
7276 default:
7277 /* These operators cannot overflow. */
7278 return true;
7279 }
7280 }
7281
7282 namespace inchash
7283 {
7284
7285 /* Generate a hash value for an expression. This can be used iteratively
7286 by passing a previous result as the HSTATE argument.
7287
7288 This function is intended to produce the same hash for expressions which
7289 would compare equal using operand_equal_p. */
7290 void
7291 add_expr (const_tree t, inchash::hash &hstate, unsigned int flags)
7292 {
7293 int i;
7294 enum tree_code code;
7295 enum tree_code_class tclass;
7296
7297 if (t == NULL_TREE || t == error_mark_node)
7298 {
7299 hstate.merge_hash (0);
7300 return;
7301 }
7302
7303 if (!(flags & OEP_ADDRESS_OF))
7304 STRIP_NOPS (t);
7305
7306 code = TREE_CODE (t);
7307
7308 switch (code)
7309 {
7310 /* Alas, constants aren't shared, so we can't rely on pointer
7311 identity. */
7312 case VOID_CST:
7313 hstate.merge_hash (0);
7314 return;
7315 case INTEGER_CST:
7316 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7317 for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++)
7318 hstate.add_hwi (TREE_INT_CST_ELT (t, i));
7319 return;
7320 case REAL_CST:
7321 {
7322 unsigned int val2;
7323 if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t))
7324 val2 = rvc_zero;
7325 else
7326 val2 = real_hash (TREE_REAL_CST_PTR (t));
7327 hstate.merge_hash (val2);
7328 return;
7329 }
7330 case FIXED_CST:
7331 {
7332 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7333 hstate.merge_hash (val2);
7334 return;
7335 }
7336 case STRING_CST:
7337 hstate.add ((const void *) TREE_STRING_POINTER (t),
7338 TREE_STRING_LENGTH (t));
7339 return;
7340 case COMPLEX_CST:
7341 inchash::add_expr (TREE_REALPART (t), hstate, flags);
7342 inchash::add_expr (TREE_IMAGPART (t), hstate, flags);
7343 return;
7344 case VECTOR_CST:
7345 {
7346 hstate.add_int (VECTOR_CST_NPATTERNS (t));
7347 hstate.add_int (VECTOR_CST_NELTS_PER_PATTERN (t));
7348 unsigned int count = vector_cst_encoded_nelts (t);
7349 for (unsigned int i = 0; i < count; ++i)
7350 inchash::add_expr (VECTOR_CST_ENCODED_ELT (t, i), hstate, flags);
7351 return;
7352 }
7353 case SSA_NAME:
7354 /* We can just compare by pointer. */
7355 hstate.add_hwi (SSA_NAME_VERSION (t));
7356 return;
7357 case PLACEHOLDER_EXPR:
7358 /* The node itself doesn't matter. */
7359 return;
7360 case BLOCK:
7361 case OMP_CLAUSE:
7362 /* Ignore. */
7363 return;
7364 case TREE_LIST:
7365 /* A list of expressions, for a CALL_EXPR or as the elements of a
7366 VECTOR_CST. */
7367 for (; t; t = TREE_CHAIN (t))
7368 inchash::add_expr (TREE_VALUE (t), hstate, flags);
7369 return;
7370 case CONSTRUCTOR:
7371 {
7372 unsigned HOST_WIDE_INT idx;
7373 tree field, value;
7374 flags &= ~OEP_ADDRESS_OF;
7375 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7376 {
7377 inchash::add_expr (field, hstate, flags);
7378 inchash::add_expr (value, hstate, flags);
7379 }
7380 return;
7381 }
7382 case STATEMENT_LIST:
7383 {
7384 tree_stmt_iterator i;
7385 for (i = tsi_start (CONST_CAST_TREE (t));
7386 !tsi_end_p (i); tsi_next (&i))
7387 inchash::add_expr (tsi_stmt (i), hstate, flags);
7388 return;
7389 }
7390 case TREE_VEC:
7391 for (i = 0; i < TREE_VEC_LENGTH (t); ++i)
7392 inchash::add_expr (TREE_VEC_ELT (t, i), hstate, flags);
7393 return;
7394 case IDENTIFIER_NODE:
7395 hstate.add_object (IDENTIFIER_HASH_VALUE (t));
7396 return;
7397 case FUNCTION_DECL:
7398 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7399 Otherwise nodes that compare equal according to operand_equal_p might
7400 get different hash codes. However, don't do this for machine specific
7401 or front end builtins, since the function code is overloaded in those
7402 cases. */
7403 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7404 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7405 {
7406 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7407 code = TREE_CODE (t);
7408 }
7409 /* FALL THROUGH */
7410 default:
7411 if (POLY_INT_CST_P (t))
7412 {
7413 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7414 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
7415 return;
7416 }
7417 tclass = TREE_CODE_CLASS (code);
7418
7419 if (tclass == tcc_declaration)
7420 {
7421 /* DECL's have a unique ID */
7422 hstate.add_hwi (DECL_UID (t));
7423 }
7424 else if (tclass == tcc_comparison && !commutative_tree_code (code))
7425 {
7426 /* For comparisons that can be swapped, use the lower
7427 tree code. */
7428 enum tree_code ccode = swap_tree_comparison (code);
7429 if (code < ccode)
7430 ccode = code;
7431 hstate.add_object (ccode);
7432 inchash::add_expr (TREE_OPERAND (t, ccode != code), hstate, flags);
7433 inchash::add_expr (TREE_OPERAND (t, ccode == code), hstate, flags);
7434 }
7435 else if (CONVERT_EXPR_CODE_P (code))
7436 {
7437 /* NOP_EXPR and CONVERT_EXPR are considered equal by
7438 operand_equal_p. */
7439 enum tree_code ccode = NOP_EXPR;
7440 hstate.add_object (ccode);
7441
7442 /* Don't hash the type, that can lead to having nodes which
7443 compare equal according to operand_equal_p, but which
7444 have different hash codes. Make sure to include signedness
7445 in the hash computation. */
7446 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7447 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7448 }
7449 /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl. */
7450 else if (code == MEM_REF
7451 && (flags & OEP_ADDRESS_OF) != 0
7452 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
7453 && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
7454 && integer_zerop (TREE_OPERAND (t, 1)))
7455 inchash::add_expr (TREE_OPERAND (TREE_OPERAND (t, 0), 0),
7456 hstate, flags);
7457 /* Don't ICE on FE specific trees, or their arguments etc.
7458 during operand_equal_p hash verification. */
7459 else if (!IS_EXPR_CODE_CLASS (tclass))
7460 gcc_assert (flags & OEP_HASH_CHECK);
7461 else
7462 {
7463 unsigned int sflags = flags;
7464
7465 hstate.add_object (code);
7466
7467 switch (code)
7468 {
7469 case ADDR_EXPR:
7470 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7471 flags |= OEP_ADDRESS_OF;
7472 sflags = flags;
7473 break;
7474
7475 case INDIRECT_REF:
7476 case MEM_REF:
7477 case TARGET_MEM_REF:
7478 flags &= ~OEP_ADDRESS_OF;
7479 sflags = flags;
7480 break;
7481
7482 case ARRAY_REF:
7483 case ARRAY_RANGE_REF:
7484 case COMPONENT_REF:
7485 case BIT_FIELD_REF:
7486 sflags &= ~OEP_ADDRESS_OF;
7487 break;
7488
7489 case COND_EXPR:
7490 flags &= ~OEP_ADDRESS_OF;
7491 break;
7492
7493 case WIDEN_MULT_PLUS_EXPR:
7494 case WIDEN_MULT_MINUS_EXPR:
7495 {
7496 /* The multiplication operands are commutative. */
7497 inchash::hash one, two;
7498 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7499 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7500 hstate.add_commutative (one, two);
7501 inchash::add_expr (TREE_OPERAND (t, 2), two, flags);
7502 return;
7503 }
7504
7505 case CALL_EXPR:
7506 if (CALL_EXPR_FN (t) == NULL_TREE)
7507 hstate.add_int (CALL_EXPR_IFN (t));
7508 break;
7509
7510 case TARGET_EXPR:
7511 /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
7512 Usually different TARGET_EXPRs just should use
7513 different temporaries in their slots. */
7514 inchash::add_expr (TARGET_EXPR_SLOT (t), hstate, flags);
7515 return;
7516
7517 default:
7518 break;
7519 }
7520
7521 /* Don't hash the type, that can lead to having nodes which
7522 compare equal according to operand_equal_p, but which
7523 have different hash codes. */
7524 if (code == NON_LVALUE_EXPR)
7525 {
7526 /* Make sure to include signness in the hash computation. */
7527 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7528 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7529 }
7530
7531 else if (commutative_tree_code (code))
7532 {
7533 /* It's a commutative expression. We want to hash it the same
7534 however it appears. We do this by first hashing both operands
7535 and then rehashing based on the order of their independent
7536 hashes. */
7537 inchash::hash one, two;
7538 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7539 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7540 hstate.add_commutative (one, two);
7541 }
7542 else
7543 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7544 inchash::add_expr (TREE_OPERAND (t, i), hstate,
7545 i == 0 ? flags : sflags);
7546 }
7547 return;
7548 }
7549 }
7550
7551 }
7552
7553 /* Constructors for pointer, array and function types.
7554 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7555 constructed by language-dependent code, not here.) */
7556
7557 /* Construct, lay out and return the type of pointers to TO_TYPE with
7558 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7559 reference all of memory. If such a type has already been
7560 constructed, reuse it. */
7561
7562 tree
7563 build_pointer_type_for_mode (tree to_type, machine_mode mode,
7564 bool can_alias_all)
7565 {
7566 tree t;
7567 bool could_alias = can_alias_all;
7568
7569 if (to_type == error_mark_node)
7570 return error_mark_node;
7571
7572 /* If the pointed-to type has the may_alias attribute set, force
7573 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7574 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7575 can_alias_all = true;
7576
7577 /* In some cases, languages will have things that aren't a POINTER_TYPE
7578 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7579 In that case, return that type without regard to the rest of our
7580 operands.
7581
7582 ??? This is a kludge, but consistent with the way this function has
7583 always operated and there doesn't seem to be a good way to avoid this
7584 at the moment. */
7585 if (TYPE_POINTER_TO (to_type) != 0
7586 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7587 return TYPE_POINTER_TO (to_type);
7588
7589 /* First, if we already have a type for pointers to TO_TYPE and it's
7590 the proper mode, use it. */
7591 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7592 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7593 return t;
7594
7595 t = make_node (POINTER_TYPE);
7596
7597 TREE_TYPE (t) = to_type;
7598 SET_TYPE_MODE (t, mode);
7599 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7600 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7601 TYPE_POINTER_TO (to_type) = t;
7602
7603 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7604 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7605 SET_TYPE_STRUCTURAL_EQUALITY (t);
7606 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7607 TYPE_CANONICAL (t)
7608 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7609 mode, false);
7610
7611 /* Lay out the type. This function has many callers that are concerned
7612 with expression-construction, and this simplifies them all. */
7613 layout_type (t);
7614
7615 return t;
7616 }
7617
7618 /* By default build pointers in ptr_mode. */
7619
7620 tree
7621 build_pointer_type (tree to_type)
7622 {
7623 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7624 : TYPE_ADDR_SPACE (to_type);
7625 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7626 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7627 }
7628
7629 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7630
7631 tree
7632 build_reference_type_for_mode (tree to_type, machine_mode mode,
7633 bool can_alias_all)
7634 {
7635 tree t;
7636 bool could_alias = can_alias_all;
7637
7638 if (to_type == error_mark_node)
7639 return error_mark_node;
7640
7641 /* If the pointed-to type has the may_alias attribute set, force
7642 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7643 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7644 can_alias_all = true;
7645
7646 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7647 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7648 In that case, return that type without regard to the rest of our
7649 operands.
7650
7651 ??? This is a kludge, but consistent with the way this function has
7652 always operated and there doesn't seem to be a good way to avoid this
7653 at the moment. */
7654 if (TYPE_REFERENCE_TO (to_type) != 0
7655 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7656 return TYPE_REFERENCE_TO (to_type);
7657
7658 /* First, if we already have a type for pointers to TO_TYPE and it's
7659 the proper mode, use it. */
7660 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7661 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7662 return t;
7663
7664 t = make_node (REFERENCE_TYPE);
7665
7666 TREE_TYPE (t) = to_type;
7667 SET_TYPE_MODE (t, mode);
7668 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7669 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7670 TYPE_REFERENCE_TO (to_type) = t;
7671
7672 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7673 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7674 SET_TYPE_STRUCTURAL_EQUALITY (t);
7675 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7676 TYPE_CANONICAL (t)
7677 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7678 mode, false);
7679
7680 layout_type (t);
7681
7682 return t;
7683 }
7684
7685
7686 /* Build the node for the type of references-to-TO_TYPE by default
7687 in ptr_mode. */
7688
7689 tree
7690 build_reference_type (tree to_type)
7691 {
7692 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7693 : TYPE_ADDR_SPACE (to_type);
7694 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7695 return build_reference_type_for_mode (to_type, pointer_mode, false);
7696 }
7697
7698 #define MAX_INT_CACHED_PREC \
7699 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7700 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7701
7702 /* Builds a signed or unsigned integer type of precision PRECISION.
7703 Used for C bitfields whose precision does not match that of
7704 built-in target types. */
7705 tree
7706 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7707 int unsignedp)
7708 {
7709 tree itype, ret;
7710
7711 if (unsignedp)
7712 unsignedp = MAX_INT_CACHED_PREC + 1;
7713
7714 if (precision <= MAX_INT_CACHED_PREC)
7715 {
7716 itype = nonstandard_integer_type_cache[precision + unsignedp];
7717 if (itype)
7718 return itype;
7719 }
7720
7721 itype = make_node (INTEGER_TYPE);
7722 TYPE_PRECISION (itype) = precision;
7723
7724 if (unsignedp)
7725 fixup_unsigned_type (itype);
7726 else
7727 fixup_signed_type (itype);
7728
7729 ret = itype;
7730
7731 inchash::hash hstate;
7732 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
7733 ret = type_hash_canon (hstate.end (), itype);
7734 if (precision <= MAX_INT_CACHED_PREC)
7735 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7736
7737 return ret;
7738 }
7739
7740 #define MAX_BOOL_CACHED_PREC \
7741 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7742 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
7743
7744 /* Builds a boolean type of precision PRECISION.
7745 Used for boolean vectors to choose proper vector element size. */
7746 tree
7747 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
7748 {
7749 tree type;
7750
7751 if (precision <= MAX_BOOL_CACHED_PREC)
7752 {
7753 type = nonstandard_boolean_type_cache[precision];
7754 if (type)
7755 return type;
7756 }
7757
7758 type = make_node (BOOLEAN_TYPE);
7759 TYPE_PRECISION (type) = precision;
7760 fixup_signed_type (type);
7761
7762 if (precision <= MAX_INT_CACHED_PREC)
7763 nonstandard_boolean_type_cache[precision] = type;
7764
7765 return type;
7766 }
7767
7768 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7769 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7770 is true, reuse such a type that has already been constructed. */
7771
7772 static tree
7773 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7774 {
7775 tree itype = make_node (INTEGER_TYPE);
7776
7777 TREE_TYPE (itype) = type;
7778
7779 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7780 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7781
7782 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7783 SET_TYPE_MODE (itype, TYPE_MODE (type));
7784 TYPE_SIZE (itype) = TYPE_SIZE (type);
7785 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7786 SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
7787 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7788 SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
7789
7790 if (!shared)
7791 return itype;
7792
7793 if ((TYPE_MIN_VALUE (itype)
7794 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7795 || (TYPE_MAX_VALUE (itype)
7796 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7797 {
7798 /* Since we cannot reliably merge this type, we need to compare it using
7799 structural equality checks. */
7800 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7801 return itype;
7802 }
7803
7804 hashval_t hash = type_hash_canon_hash (itype);
7805 itype = type_hash_canon (hash, itype);
7806
7807 return itype;
7808 }
7809
7810 /* Wrapper around build_range_type_1 with SHARED set to true. */
7811
7812 tree
7813 build_range_type (tree type, tree lowval, tree highval)
7814 {
7815 return build_range_type_1 (type, lowval, highval, true);
7816 }
7817
7818 /* Wrapper around build_range_type_1 with SHARED set to false. */
7819
7820 tree
7821 build_nonshared_range_type (tree type, tree lowval, tree highval)
7822 {
7823 return build_range_type_1 (type, lowval, highval, false);
7824 }
7825
7826 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7827 MAXVAL should be the maximum value in the domain
7828 (one less than the length of the array).
7829
7830 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7831 We don't enforce this limit, that is up to caller (e.g. language front end).
7832 The limit exists because the result is a signed type and we don't handle
7833 sizes that use more than one HOST_WIDE_INT. */
7834
7835 tree
7836 build_index_type (tree maxval)
7837 {
7838 return build_range_type (sizetype, size_zero_node, maxval);
7839 }
7840
7841 /* Return true if the debug information for TYPE, a subtype, should be emitted
7842 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7843 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7844 debug info and doesn't reflect the source code. */
7845
7846 bool
7847 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7848 {
7849 tree base_type = TREE_TYPE (type), low, high;
7850
7851 /* Subrange types have a base type which is an integral type. */
7852 if (!INTEGRAL_TYPE_P (base_type))
7853 return false;
7854
7855 /* Get the real bounds of the subtype. */
7856 if (lang_hooks.types.get_subrange_bounds)
7857 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7858 else
7859 {
7860 low = TYPE_MIN_VALUE (type);
7861 high = TYPE_MAX_VALUE (type);
7862 }
7863
7864 /* If the type and its base type have the same representation and the same
7865 name, then the type is not a subrange but a copy of the base type. */
7866 if ((TREE_CODE (base_type) == INTEGER_TYPE
7867 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7868 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7869 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7870 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
7871 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
7872 return false;
7873
7874 if (lowval)
7875 *lowval = low;
7876 if (highval)
7877 *highval = high;
7878 return true;
7879 }
7880
7881 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7882 and number of elements specified by the range of values of INDEX_TYPE.
7883 If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
7884 If SHARED is true, reuse such a type that has already been constructed. */
7885
7886 static tree
7887 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
7888 bool shared)
7889 {
7890 tree t;
7891
7892 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7893 {
7894 error ("arrays of functions are not meaningful");
7895 elt_type = integer_type_node;
7896 }
7897
7898 t = make_node (ARRAY_TYPE);
7899 TREE_TYPE (t) = elt_type;
7900 TYPE_DOMAIN (t) = index_type;
7901 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7902 TYPE_TYPELESS_STORAGE (t) = typeless_storage;
7903 layout_type (t);
7904
7905 /* If the element type is incomplete at this point we get marked for
7906 structural equality. Do not record these types in the canonical
7907 type hashtable. */
7908 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7909 return t;
7910
7911 if (shared)
7912 {
7913 hashval_t hash = type_hash_canon_hash (t);
7914 t = type_hash_canon (hash, t);
7915 }
7916
7917 if (TYPE_CANONICAL (t) == t)
7918 {
7919 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7920 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
7921 || in_lto_p)
7922 SET_TYPE_STRUCTURAL_EQUALITY (t);
7923 else if (TYPE_CANONICAL (elt_type) != elt_type
7924 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7925 TYPE_CANONICAL (t)
7926 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7927 index_type
7928 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7929 typeless_storage, shared);
7930 }
7931
7932 return t;
7933 }
7934
7935 /* Wrapper around build_array_type_1 with SHARED set to true. */
7936
7937 tree
7938 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
7939 {
7940 return build_array_type_1 (elt_type, index_type, typeless_storage, true);
7941 }
7942
7943 /* Wrapper around build_array_type_1 with SHARED set to false. */
7944
7945 tree
7946 build_nonshared_array_type (tree elt_type, tree index_type)
7947 {
7948 return build_array_type_1 (elt_type, index_type, false, false);
7949 }
7950
7951 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7952 sizetype. */
7953
7954 tree
7955 build_array_type_nelts (tree elt_type, poly_uint64 nelts)
7956 {
7957 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7958 }
7959
7960 /* Recursively examines the array elements of TYPE, until a non-array
7961 element type is found. */
7962
7963 tree
7964 strip_array_types (tree type)
7965 {
7966 while (TREE_CODE (type) == ARRAY_TYPE)
7967 type = TREE_TYPE (type);
7968
7969 return type;
7970 }
7971
7972 /* Computes the canonical argument types from the argument type list
7973 ARGTYPES.
7974
7975 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7976 on entry to this function, or if any of the ARGTYPES are
7977 structural.
7978
7979 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7980 true on entry to this function, or if any of the ARGTYPES are
7981 non-canonical.
7982
7983 Returns a canonical argument list, which may be ARGTYPES when the
7984 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7985 true) or would not differ from ARGTYPES. */
7986
7987 static tree
7988 maybe_canonicalize_argtypes (tree argtypes,
7989 bool *any_structural_p,
7990 bool *any_noncanonical_p)
7991 {
7992 tree arg;
7993 bool any_noncanonical_argtypes_p = false;
7994
7995 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7996 {
7997 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7998 /* Fail gracefully by stating that the type is structural. */
7999 *any_structural_p = true;
8000 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
8001 *any_structural_p = true;
8002 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
8003 || TREE_PURPOSE (arg))
8004 /* If the argument has a default argument, we consider it
8005 non-canonical even though the type itself is canonical.
8006 That way, different variants of function and method types
8007 with default arguments will all point to the variant with
8008 no defaults as their canonical type. */
8009 any_noncanonical_argtypes_p = true;
8010 }
8011
8012 if (*any_structural_p)
8013 return argtypes;
8014
8015 if (any_noncanonical_argtypes_p)
8016 {
8017 /* Build the canonical list of argument types. */
8018 tree canon_argtypes = NULL_TREE;
8019 bool is_void = false;
8020
8021 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
8022 {
8023 if (arg == void_list_node)
8024 is_void = true;
8025 else
8026 canon_argtypes = tree_cons (NULL_TREE,
8027 TYPE_CANONICAL (TREE_VALUE (arg)),
8028 canon_argtypes);
8029 }
8030
8031 canon_argtypes = nreverse (canon_argtypes);
8032 if (is_void)
8033 canon_argtypes = chainon (canon_argtypes, void_list_node);
8034
8035 /* There is a non-canonical type. */
8036 *any_noncanonical_p = true;
8037 return canon_argtypes;
8038 }
8039
8040 /* The canonical argument types are the same as ARGTYPES. */
8041 return argtypes;
8042 }
8043
8044 /* Construct, lay out and return
8045 the type of functions returning type VALUE_TYPE
8046 given arguments of types ARG_TYPES.
8047 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8048 are data type nodes for the arguments of the function.
8049 If such a type has already been constructed, reuse it. */
8050
8051 tree
8052 build_function_type (tree value_type, tree arg_types)
8053 {
8054 tree t;
8055 inchash::hash hstate;
8056 bool any_structural_p, any_noncanonical_p;
8057 tree canon_argtypes;
8058
8059 if (TREE_CODE (value_type) == FUNCTION_TYPE)
8060 {
8061 error ("function return type cannot be function");
8062 value_type = integer_type_node;
8063 }
8064
8065 /* Make a node of the sort we want. */
8066 t = make_node (FUNCTION_TYPE);
8067 TREE_TYPE (t) = value_type;
8068 TYPE_ARG_TYPES (t) = arg_types;
8069
8070 /* If we already have such a type, use the old one. */
8071 hashval_t hash = type_hash_canon_hash (t);
8072 t = type_hash_canon (hash, t);
8073
8074 /* Set up the canonical type. */
8075 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8076 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8077 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8078 &any_structural_p,
8079 &any_noncanonical_p);
8080 if (any_structural_p)
8081 SET_TYPE_STRUCTURAL_EQUALITY (t);
8082 else if (any_noncanonical_p)
8083 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8084 canon_argtypes);
8085
8086 if (!COMPLETE_TYPE_P (t))
8087 layout_type (t);
8088 return t;
8089 }
8090
8091 /* Build a function type. The RETURN_TYPE is the type returned by the
8092 function. If VAARGS is set, no void_type_node is appended to the
8093 list. ARGP must be always be terminated be a NULL_TREE. */
8094
8095 static tree
8096 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8097 {
8098 tree t, args, last;
8099
8100 t = va_arg (argp, tree);
8101 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8102 args = tree_cons (NULL_TREE, t, args);
8103
8104 if (vaargs)
8105 {
8106 last = args;
8107 if (args != NULL_TREE)
8108 args = nreverse (args);
8109 gcc_assert (last != void_list_node);
8110 }
8111 else if (args == NULL_TREE)
8112 args = void_list_node;
8113 else
8114 {
8115 last = args;
8116 args = nreverse (args);
8117 TREE_CHAIN (last) = void_list_node;
8118 }
8119 args = build_function_type (return_type, args);
8120
8121 return args;
8122 }
8123
8124 /* Build a function type. The RETURN_TYPE is the type returned by the
8125 function. If additional arguments are provided, they are
8126 additional argument types. The list of argument types must always
8127 be terminated by NULL_TREE. */
8128
8129 tree
8130 build_function_type_list (tree return_type, ...)
8131 {
8132 tree args;
8133 va_list p;
8134
8135 va_start (p, return_type);
8136 args = build_function_type_list_1 (false, return_type, p);
8137 va_end (p);
8138 return args;
8139 }
8140
8141 /* Build a variable argument function type. The RETURN_TYPE is the
8142 type returned by the function. If additional arguments are provided,
8143 they are additional argument types. The list of argument types must
8144 always be terminated by NULL_TREE. */
8145
8146 tree
8147 build_varargs_function_type_list (tree return_type, ...)
8148 {
8149 tree args;
8150 va_list p;
8151
8152 va_start (p, return_type);
8153 args = build_function_type_list_1 (true, return_type, p);
8154 va_end (p);
8155
8156 return args;
8157 }
8158
8159 /* Build a function type. RETURN_TYPE is the type returned by the
8160 function; VAARGS indicates whether the function takes varargs. The
8161 function takes N named arguments, the types of which are provided in
8162 ARG_TYPES. */
8163
8164 static tree
8165 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8166 tree *arg_types)
8167 {
8168 int i;
8169 tree t = vaargs ? NULL_TREE : void_list_node;
8170
8171 for (i = n - 1; i >= 0; i--)
8172 t = tree_cons (NULL_TREE, arg_types[i], t);
8173
8174 return build_function_type (return_type, t);
8175 }
8176
8177 /* Build a function type. RETURN_TYPE is the type returned by the
8178 function. The function takes N named arguments, the types of which
8179 are provided in ARG_TYPES. */
8180
8181 tree
8182 build_function_type_array (tree return_type, int n, tree *arg_types)
8183 {
8184 return build_function_type_array_1 (false, return_type, n, arg_types);
8185 }
8186
8187 /* Build a variable argument function type. RETURN_TYPE is the type
8188 returned by the function. The function takes N named arguments, the
8189 types of which are provided in ARG_TYPES. */
8190
8191 tree
8192 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8193 {
8194 return build_function_type_array_1 (true, return_type, n, arg_types);
8195 }
8196
8197 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8198 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8199 for the method. An implicit additional parameter (of type
8200 pointer-to-BASETYPE) is added to the ARGTYPES. */
8201
8202 tree
8203 build_method_type_directly (tree basetype,
8204 tree rettype,
8205 tree argtypes)
8206 {
8207 tree t;
8208 tree ptype;
8209 bool any_structural_p, any_noncanonical_p;
8210 tree canon_argtypes;
8211
8212 /* Make a node of the sort we want. */
8213 t = make_node (METHOD_TYPE);
8214
8215 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8216 TREE_TYPE (t) = rettype;
8217 ptype = build_pointer_type (basetype);
8218
8219 /* The actual arglist for this function includes a "hidden" argument
8220 which is "this". Put it into the list of argument types. */
8221 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8222 TYPE_ARG_TYPES (t) = argtypes;
8223
8224 /* If we already have such a type, use the old one. */
8225 hashval_t hash = type_hash_canon_hash (t);
8226 t = type_hash_canon (hash, t);
8227
8228 /* Set up the canonical type. */
8229 any_structural_p
8230 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8231 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8232 any_noncanonical_p
8233 = (TYPE_CANONICAL (basetype) != basetype
8234 || TYPE_CANONICAL (rettype) != rettype);
8235 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8236 &any_structural_p,
8237 &any_noncanonical_p);
8238 if (any_structural_p)
8239 SET_TYPE_STRUCTURAL_EQUALITY (t);
8240 else if (any_noncanonical_p)
8241 TYPE_CANONICAL (t)
8242 = build_method_type_directly (TYPE_CANONICAL (basetype),
8243 TYPE_CANONICAL (rettype),
8244 canon_argtypes);
8245 if (!COMPLETE_TYPE_P (t))
8246 layout_type (t);
8247
8248 return t;
8249 }
8250
8251 /* Construct, lay out and return the type of methods belonging to class
8252 BASETYPE and whose arguments and values are described by TYPE.
8253 If that type exists already, reuse it.
8254 TYPE must be a FUNCTION_TYPE node. */
8255
8256 tree
8257 build_method_type (tree basetype, tree type)
8258 {
8259 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8260
8261 return build_method_type_directly (basetype,
8262 TREE_TYPE (type),
8263 TYPE_ARG_TYPES (type));
8264 }
8265
8266 /* Construct, lay out and return the type of offsets to a value
8267 of type TYPE, within an object of type BASETYPE.
8268 If a suitable offset type exists already, reuse it. */
8269
8270 tree
8271 build_offset_type (tree basetype, tree type)
8272 {
8273 tree t;
8274
8275 /* Make a node of the sort we want. */
8276 t = make_node (OFFSET_TYPE);
8277
8278 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8279 TREE_TYPE (t) = type;
8280
8281 /* If we already have such a type, use the old one. */
8282 hashval_t hash = type_hash_canon_hash (t);
8283 t = type_hash_canon (hash, t);
8284
8285 if (!COMPLETE_TYPE_P (t))
8286 layout_type (t);
8287
8288 if (TYPE_CANONICAL (t) == t)
8289 {
8290 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8291 || TYPE_STRUCTURAL_EQUALITY_P (type))
8292 SET_TYPE_STRUCTURAL_EQUALITY (t);
8293 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8294 || TYPE_CANONICAL (type) != type)
8295 TYPE_CANONICAL (t)
8296 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8297 TYPE_CANONICAL (type));
8298 }
8299
8300 return t;
8301 }
8302
8303 /* Create a complex type whose components are COMPONENT_TYPE.
8304
8305 If NAMED is true, the type is given a TYPE_NAME. We do not always
8306 do so because this creates a DECL node and thus make the DECL_UIDs
8307 dependent on the type canonicalization hashtable, which is GC-ed,
8308 so the DECL_UIDs would not be stable wrt garbage collection. */
8309
8310 tree
8311 build_complex_type (tree component_type, bool named)
8312 {
8313 gcc_assert (INTEGRAL_TYPE_P (component_type)
8314 || SCALAR_FLOAT_TYPE_P (component_type)
8315 || FIXED_POINT_TYPE_P (component_type));
8316
8317 /* Make a node of the sort we want. */
8318 tree probe = make_node (COMPLEX_TYPE);
8319
8320 TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
8321
8322 /* If we already have such a type, use the old one. */
8323 hashval_t hash = type_hash_canon_hash (probe);
8324 tree t = type_hash_canon (hash, probe);
8325
8326 if (t == probe)
8327 {
8328 /* We created a new type. The hash insertion will have laid
8329 out the type. We need to check the canonicalization and
8330 maybe set the name. */
8331 gcc_checking_assert (COMPLETE_TYPE_P (t)
8332 && !TYPE_NAME (t)
8333 && TYPE_CANONICAL (t) == t);
8334
8335 if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
8336 SET_TYPE_STRUCTURAL_EQUALITY (t);
8337 else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
8338 TYPE_CANONICAL (t)
8339 = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
8340
8341 /* We need to create a name, since complex is a fundamental type. */
8342 if (named)
8343 {
8344 const char *name = NULL;
8345
8346 if (TREE_TYPE (t) == char_type_node)
8347 name = "complex char";
8348 else if (TREE_TYPE (t) == signed_char_type_node)
8349 name = "complex signed char";
8350 else if (TREE_TYPE (t) == unsigned_char_type_node)
8351 name = "complex unsigned char";
8352 else if (TREE_TYPE (t) == short_integer_type_node)
8353 name = "complex short int";
8354 else if (TREE_TYPE (t) == short_unsigned_type_node)
8355 name = "complex short unsigned int";
8356 else if (TREE_TYPE (t) == integer_type_node)
8357 name = "complex int";
8358 else if (TREE_TYPE (t) == unsigned_type_node)
8359 name = "complex unsigned int";
8360 else if (TREE_TYPE (t) == long_integer_type_node)
8361 name = "complex long int";
8362 else if (TREE_TYPE (t) == long_unsigned_type_node)
8363 name = "complex long unsigned int";
8364 else if (TREE_TYPE (t) == long_long_integer_type_node)
8365 name = "complex long long int";
8366 else if (TREE_TYPE (t) == long_long_unsigned_type_node)
8367 name = "complex long long unsigned int";
8368
8369 if (name != NULL)
8370 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8371 get_identifier (name), t);
8372 }
8373 }
8374
8375 return build_qualified_type (t, TYPE_QUALS (component_type));
8376 }
8377
8378 /* If TYPE is a real or complex floating-point type and the target
8379 does not directly support arithmetic on TYPE then return the wider
8380 type to be used for arithmetic on TYPE. Otherwise, return
8381 NULL_TREE. */
8382
8383 tree
8384 excess_precision_type (tree type)
8385 {
8386 /* The target can give two different responses to the question of
8387 which excess precision mode it would like depending on whether we
8388 are in -fexcess-precision=standard or -fexcess-precision=fast. */
8389
8390 enum excess_precision_type requested_type
8391 = (flag_excess_precision == EXCESS_PRECISION_FAST
8392 ? EXCESS_PRECISION_TYPE_FAST
8393 : EXCESS_PRECISION_TYPE_STANDARD);
8394
8395 enum flt_eval_method target_flt_eval_method
8396 = targetm.c.excess_precision (requested_type);
8397
8398 /* The target should not ask for unpredictable float evaluation (though
8399 it might advertise that implicitly the evaluation is unpredictable,
8400 but we don't care about that here, it will have been reported
8401 elsewhere). If it does ask for unpredictable evaluation, we have
8402 nothing to do here. */
8403 gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
8404
8405 /* Nothing to do. The target has asked for all types we know about
8406 to be computed with their native precision and range. */
8407 if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
8408 return NULL_TREE;
8409
8410 /* The target will promote this type in a target-dependent way, so excess
8411 precision ought to leave it alone. */
8412 if (targetm.promoted_type (type) != NULL_TREE)
8413 return NULL_TREE;
8414
8415 machine_mode float16_type_mode = (float16_type_node
8416 ? TYPE_MODE (float16_type_node)
8417 : VOIDmode);
8418 machine_mode float_type_mode = TYPE_MODE (float_type_node);
8419 machine_mode double_type_mode = TYPE_MODE (double_type_node);
8420
8421 switch (TREE_CODE (type))
8422 {
8423 case REAL_TYPE:
8424 {
8425 machine_mode type_mode = TYPE_MODE (type);
8426 switch (target_flt_eval_method)
8427 {
8428 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8429 if (type_mode == float16_type_mode)
8430 return float_type_node;
8431 break;
8432 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8433 if (type_mode == float16_type_mode
8434 || type_mode == float_type_mode)
8435 return double_type_node;
8436 break;
8437 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8438 if (type_mode == float16_type_mode
8439 || type_mode == float_type_mode
8440 || type_mode == double_type_mode)
8441 return long_double_type_node;
8442 break;
8443 default:
8444 gcc_unreachable ();
8445 }
8446 break;
8447 }
8448 case COMPLEX_TYPE:
8449 {
8450 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8451 return NULL_TREE;
8452 machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
8453 switch (target_flt_eval_method)
8454 {
8455 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8456 if (type_mode == float16_type_mode)
8457 return complex_float_type_node;
8458 break;
8459 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8460 if (type_mode == float16_type_mode
8461 || type_mode == float_type_mode)
8462 return complex_double_type_node;
8463 break;
8464 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8465 if (type_mode == float16_type_mode
8466 || type_mode == float_type_mode
8467 || type_mode == double_type_mode)
8468 return complex_long_double_type_node;
8469 break;
8470 default:
8471 gcc_unreachable ();
8472 }
8473 break;
8474 }
8475 default:
8476 break;
8477 }
8478
8479 return NULL_TREE;
8480 }
8481 \f
8482 /* Return OP, stripped of any conversions to wider types as much as is safe.
8483 Converting the value back to OP's type makes a value equivalent to OP.
8484
8485 If FOR_TYPE is nonzero, we return a value which, if converted to
8486 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8487
8488 OP must have integer, real or enumeral type. Pointers are not allowed!
8489
8490 There are some cases where the obvious value we could return
8491 would regenerate to OP if converted to OP's type,
8492 but would not extend like OP to wider types.
8493 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8494 For example, if OP is (unsigned short)(signed char)-1,
8495 we avoid returning (signed char)-1 if FOR_TYPE is int,
8496 even though extending that to an unsigned short would regenerate OP,
8497 since the result of extending (signed char)-1 to (int)
8498 is different from (int) OP. */
8499
8500 tree
8501 get_unwidened (tree op, tree for_type)
8502 {
8503 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8504 tree type = TREE_TYPE (op);
8505 unsigned final_prec
8506 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8507 int uns
8508 = (for_type != 0 && for_type != type
8509 && final_prec > TYPE_PRECISION (type)
8510 && TYPE_UNSIGNED (type));
8511 tree win = op;
8512
8513 while (CONVERT_EXPR_P (op))
8514 {
8515 int bitschange;
8516
8517 /* TYPE_PRECISION on vector types has different meaning
8518 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8519 so avoid them here. */
8520 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8521 break;
8522
8523 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8524 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8525
8526 /* Truncations are many-one so cannot be removed.
8527 Unless we are later going to truncate down even farther. */
8528 if (bitschange < 0
8529 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8530 break;
8531
8532 /* See what's inside this conversion. If we decide to strip it,
8533 we will set WIN. */
8534 op = TREE_OPERAND (op, 0);
8535
8536 /* If we have not stripped any zero-extensions (uns is 0),
8537 we can strip any kind of extension.
8538 If we have previously stripped a zero-extension,
8539 only zero-extensions can safely be stripped.
8540 Any extension can be stripped if the bits it would produce
8541 are all going to be discarded later by truncating to FOR_TYPE. */
8542
8543 if (bitschange > 0)
8544 {
8545 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8546 win = op;
8547 /* TYPE_UNSIGNED says whether this is a zero-extension.
8548 Let's avoid computing it if it does not affect WIN
8549 and if UNS will not be needed again. */
8550 if ((uns
8551 || CONVERT_EXPR_P (op))
8552 && TYPE_UNSIGNED (TREE_TYPE (op)))
8553 {
8554 uns = 1;
8555 win = op;
8556 }
8557 }
8558 }
8559
8560 /* If we finally reach a constant see if it fits in sth smaller and
8561 in that case convert it. */
8562 if (TREE_CODE (win) == INTEGER_CST)
8563 {
8564 tree wtype = TREE_TYPE (win);
8565 unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
8566 if (for_type)
8567 prec = MAX (prec, final_prec);
8568 if (prec < TYPE_PRECISION (wtype))
8569 {
8570 tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
8571 if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
8572 win = fold_convert (t, win);
8573 }
8574 }
8575
8576 return win;
8577 }
8578 \f
8579 /* Return OP or a simpler expression for a narrower value
8580 which can be sign-extended or zero-extended to give back OP.
8581 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8582 or 0 if the value should be sign-extended. */
8583
8584 tree
8585 get_narrower (tree op, int *unsignedp_ptr)
8586 {
8587 int uns = 0;
8588 int first = 1;
8589 tree win = op;
8590 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8591
8592 while (TREE_CODE (op) == NOP_EXPR)
8593 {
8594 int bitschange
8595 = (TYPE_PRECISION (TREE_TYPE (op))
8596 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8597
8598 /* Truncations are many-one so cannot be removed. */
8599 if (bitschange < 0)
8600 break;
8601
8602 /* See what's inside this conversion. If we decide to strip it,
8603 we will set WIN. */
8604
8605 if (bitschange > 0)
8606 {
8607 op = TREE_OPERAND (op, 0);
8608 /* An extension: the outermost one can be stripped,
8609 but remember whether it is zero or sign extension. */
8610 if (first)
8611 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8612 /* Otherwise, if a sign extension has been stripped,
8613 only sign extensions can now be stripped;
8614 if a zero extension has been stripped, only zero-extensions. */
8615 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8616 break;
8617 first = 0;
8618 }
8619 else /* bitschange == 0 */
8620 {
8621 /* A change in nominal type can always be stripped, but we must
8622 preserve the unsignedness. */
8623 if (first)
8624 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8625 first = 0;
8626 op = TREE_OPERAND (op, 0);
8627 /* Keep trying to narrow, but don't assign op to win if it
8628 would turn an integral type into something else. */
8629 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8630 continue;
8631 }
8632
8633 win = op;
8634 }
8635
8636 if (TREE_CODE (op) == COMPONENT_REF
8637 /* Since type_for_size always gives an integer type. */
8638 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8639 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8640 /* Ensure field is laid out already. */
8641 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8642 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8643 {
8644 unsigned HOST_WIDE_INT innerprec
8645 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8646 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8647 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8648 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8649
8650 /* We can get this structure field in a narrower type that fits it,
8651 but the resulting extension to its nominal type (a fullword type)
8652 must satisfy the same conditions as for other extensions.
8653
8654 Do this only for fields that are aligned (not bit-fields),
8655 because when bit-field insns will be used there is no
8656 advantage in doing this. */
8657
8658 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8659 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8660 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8661 && type != 0)
8662 {
8663 if (first)
8664 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8665 win = fold_convert (type, op);
8666 }
8667 }
8668
8669 *unsignedp_ptr = uns;
8670 return win;
8671 }
8672 \f
8673 /* Return true if integer constant C has a value that is permissible
8674 for TYPE, an integral type. */
8675
8676 bool
8677 int_fits_type_p (const_tree c, const_tree type)
8678 {
8679 tree type_low_bound, type_high_bound;
8680 bool ok_for_low_bound, ok_for_high_bound;
8681 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8682
8683 /* Non-standard boolean types can have arbitrary precision but various
8684 transformations assume that they can only take values 0 and +/-1. */
8685 if (TREE_CODE (type) == BOOLEAN_TYPE)
8686 return wi::fits_to_boolean_p (wi::to_wide (c), type);
8687
8688 retry:
8689 type_low_bound = TYPE_MIN_VALUE (type);
8690 type_high_bound = TYPE_MAX_VALUE (type);
8691
8692 /* If at least one bound of the type is a constant integer, we can check
8693 ourselves and maybe make a decision. If no such decision is possible, but
8694 this type is a subtype, try checking against that. Otherwise, use
8695 fits_to_tree_p, which checks against the precision.
8696
8697 Compute the status for each possibly constant bound, and return if we see
8698 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8699 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8700 for "constant known to fit". */
8701
8702 /* Check if c >= type_low_bound. */
8703 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8704 {
8705 if (tree_int_cst_lt (c, type_low_bound))
8706 return false;
8707 ok_for_low_bound = true;
8708 }
8709 else
8710 ok_for_low_bound = false;
8711
8712 /* Check if c <= type_high_bound. */
8713 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8714 {
8715 if (tree_int_cst_lt (type_high_bound, c))
8716 return false;
8717 ok_for_high_bound = true;
8718 }
8719 else
8720 ok_for_high_bound = false;
8721
8722 /* If the constant fits both bounds, the result is known. */
8723 if (ok_for_low_bound && ok_for_high_bound)
8724 return true;
8725
8726 /* Perform some generic filtering which may allow making a decision
8727 even if the bounds are not constant. First, negative integers
8728 never fit in unsigned types, */
8729 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
8730 return false;
8731
8732 /* Second, narrower types always fit in wider ones. */
8733 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8734 return true;
8735
8736 /* Third, unsigned integers with top bit set never fit signed types. */
8737 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
8738 {
8739 int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
8740 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
8741 {
8742 /* When a tree_cst is converted to a wide-int, the precision
8743 is taken from the type. However, if the precision of the
8744 mode underneath the type is smaller than that, it is
8745 possible that the value will not fit. The test below
8746 fails if any bit is set between the sign bit of the
8747 underlying mode and the top bit of the type. */
8748 if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
8749 return false;
8750 }
8751 else if (wi::neg_p (wi::to_wide (c)))
8752 return false;
8753 }
8754
8755 /* If we haven't been able to decide at this point, there nothing more we
8756 can check ourselves here. Look at the base type if we have one and it
8757 has the same precision. */
8758 if (TREE_CODE (type) == INTEGER_TYPE
8759 && TREE_TYPE (type) != 0
8760 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8761 {
8762 type = TREE_TYPE (type);
8763 goto retry;
8764 }
8765
8766 /* Or to fits_to_tree_p, if nothing else. */
8767 return wi::fits_to_tree_p (wi::to_wide (c), type);
8768 }
8769
8770 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8771 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8772 represented (assuming two's-complement arithmetic) within the bit
8773 precision of the type are returned instead. */
8774
8775 void
8776 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8777 {
8778 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8779 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8780 wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
8781 else
8782 {
8783 if (TYPE_UNSIGNED (type))
8784 mpz_set_ui (min, 0);
8785 else
8786 {
8787 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
8788 wi::to_mpz (mn, min, SIGNED);
8789 }
8790 }
8791
8792 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8793 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8794 wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
8795 else
8796 {
8797 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
8798 wi::to_mpz (mn, max, TYPE_SIGN (type));
8799 }
8800 }
8801
8802 /* Return true if VAR is an automatic variable defined in function FN. */
8803
8804 bool
8805 auto_var_in_fn_p (const_tree var, const_tree fn)
8806 {
8807 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8808 && ((((VAR_P (var) && ! DECL_EXTERNAL (var))
8809 || TREE_CODE (var) == PARM_DECL)
8810 && ! TREE_STATIC (var))
8811 || TREE_CODE (var) == LABEL_DECL
8812 || TREE_CODE (var) == RESULT_DECL));
8813 }
8814
8815 /* Subprogram of following function. Called by walk_tree.
8816
8817 Return *TP if it is an automatic variable or parameter of the
8818 function passed in as DATA. */
8819
8820 static tree
8821 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8822 {
8823 tree fn = (tree) data;
8824
8825 if (TYPE_P (*tp))
8826 *walk_subtrees = 0;
8827
8828 else if (DECL_P (*tp)
8829 && auto_var_in_fn_p (*tp, fn))
8830 return *tp;
8831
8832 return NULL_TREE;
8833 }
8834
8835 /* Returns true if T is, contains, or refers to a type with variable
8836 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8837 arguments, but not the return type. If FN is nonzero, only return
8838 true if a modifier of the type or position of FN is a variable or
8839 parameter inside FN.
8840
8841 This concept is more general than that of C99 'variably modified types':
8842 in C99, a struct type is never variably modified because a VLA may not
8843 appear as a structure member. However, in GNU C code like:
8844
8845 struct S { int i[f()]; };
8846
8847 is valid, and other languages may define similar constructs. */
8848
8849 bool
8850 variably_modified_type_p (tree type, tree fn)
8851 {
8852 tree t;
8853
8854 /* Test if T is either variable (if FN is zero) or an expression containing
8855 a variable in FN. If TYPE isn't gimplified, return true also if
8856 gimplify_one_sizepos would gimplify the expression into a local
8857 variable. */
8858 #define RETURN_TRUE_IF_VAR(T) \
8859 do { tree _t = (T); \
8860 if (_t != NULL_TREE \
8861 && _t != error_mark_node \
8862 && !CONSTANT_CLASS_P (_t) \
8863 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8864 && (!fn \
8865 || (!TYPE_SIZES_GIMPLIFIED (type) \
8866 && (TREE_CODE (_t) != VAR_DECL \
8867 && !CONTAINS_PLACEHOLDER_P (_t))) \
8868 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8869 return true; } while (0)
8870
8871 if (type == error_mark_node)
8872 return false;
8873
8874 /* If TYPE itself has variable size, it is variably modified. */
8875 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8876 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8877
8878 switch (TREE_CODE (type))
8879 {
8880 case POINTER_TYPE:
8881 case REFERENCE_TYPE:
8882 case VECTOR_TYPE:
8883 /* Ada can have pointer types refering to themselves indirectly. */
8884 if (TREE_VISITED (type))
8885 return false;
8886 TREE_VISITED (type) = true;
8887 if (variably_modified_type_p (TREE_TYPE (type), fn))
8888 {
8889 TREE_VISITED (type) = false;
8890 return true;
8891 }
8892 TREE_VISITED (type) = false;
8893 break;
8894
8895 case FUNCTION_TYPE:
8896 case METHOD_TYPE:
8897 /* If TYPE is a function type, it is variably modified if the
8898 return type is variably modified. */
8899 if (variably_modified_type_p (TREE_TYPE (type), fn))
8900 return true;
8901 break;
8902
8903 case INTEGER_TYPE:
8904 case REAL_TYPE:
8905 case FIXED_POINT_TYPE:
8906 case ENUMERAL_TYPE:
8907 case BOOLEAN_TYPE:
8908 /* Scalar types are variably modified if their end points
8909 aren't constant. */
8910 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8911 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8912 break;
8913
8914 case RECORD_TYPE:
8915 case UNION_TYPE:
8916 case QUAL_UNION_TYPE:
8917 /* We can't see if any of the fields are variably-modified by the
8918 definition we normally use, since that would produce infinite
8919 recursion via pointers. */
8920 /* This is variably modified if some field's type is. */
8921 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8922 if (TREE_CODE (t) == FIELD_DECL)
8923 {
8924 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8925 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8926 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8927
8928 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8929 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8930 }
8931 break;
8932
8933 case ARRAY_TYPE:
8934 /* Do not call ourselves to avoid infinite recursion. This is
8935 variably modified if the element type is. */
8936 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8937 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8938 break;
8939
8940 default:
8941 break;
8942 }
8943
8944 /* The current language may have other cases to check, but in general,
8945 all other types are not variably modified. */
8946 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8947
8948 #undef RETURN_TRUE_IF_VAR
8949 }
8950
8951 /* Given a DECL or TYPE, return the scope in which it was declared, or
8952 NULL_TREE if there is no containing scope. */
8953
8954 tree
8955 get_containing_scope (const_tree t)
8956 {
8957 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8958 }
8959
8960 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
8961
8962 const_tree
8963 get_ultimate_context (const_tree decl)
8964 {
8965 while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
8966 {
8967 if (TREE_CODE (decl) == BLOCK)
8968 decl = BLOCK_SUPERCONTEXT (decl);
8969 else
8970 decl = get_containing_scope (decl);
8971 }
8972 return decl;
8973 }
8974
8975 /* Return the innermost context enclosing DECL that is
8976 a FUNCTION_DECL, or zero if none. */
8977
8978 tree
8979 decl_function_context (const_tree decl)
8980 {
8981 tree context;
8982
8983 if (TREE_CODE (decl) == ERROR_MARK)
8984 return 0;
8985
8986 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8987 where we look up the function at runtime. Such functions always take
8988 a first argument of type 'pointer to real context'.
8989
8990 C++ should really be fixed to use DECL_CONTEXT for the real context,
8991 and use something else for the "virtual context". */
8992 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl))
8993 context
8994 = TYPE_MAIN_VARIANT
8995 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8996 else
8997 context = DECL_CONTEXT (decl);
8998
8999 while (context && TREE_CODE (context) != FUNCTION_DECL)
9000 {
9001 if (TREE_CODE (context) == BLOCK)
9002 context = BLOCK_SUPERCONTEXT (context);
9003 else
9004 context = get_containing_scope (context);
9005 }
9006
9007 return context;
9008 }
9009
9010 /* Return the innermost context enclosing DECL that is
9011 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
9012 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
9013
9014 tree
9015 decl_type_context (const_tree decl)
9016 {
9017 tree context = DECL_CONTEXT (decl);
9018
9019 while (context)
9020 switch (TREE_CODE (context))
9021 {
9022 case NAMESPACE_DECL:
9023 case TRANSLATION_UNIT_DECL:
9024 return NULL_TREE;
9025
9026 case RECORD_TYPE:
9027 case UNION_TYPE:
9028 case QUAL_UNION_TYPE:
9029 return context;
9030
9031 case TYPE_DECL:
9032 case FUNCTION_DECL:
9033 context = DECL_CONTEXT (context);
9034 break;
9035
9036 case BLOCK:
9037 context = BLOCK_SUPERCONTEXT (context);
9038 break;
9039
9040 default:
9041 gcc_unreachable ();
9042 }
9043
9044 return NULL_TREE;
9045 }
9046
9047 /* CALL is a CALL_EXPR. Return the declaration for the function
9048 called, or NULL_TREE if the called function cannot be
9049 determined. */
9050
9051 tree
9052 get_callee_fndecl (const_tree call)
9053 {
9054 tree addr;
9055
9056 if (call == error_mark_node)
9057 return error_mark_node;
9058
9059 /* It's invalid to call this function with anything but a
9060 CALL_EXPR. */
9061 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9062
9063 /* The first operand to the CALL is the address of the function
9064 called. */
9065 addr = CALL_EXPR_FN (call);
9066
9067 /* If there is no function, return early. */
9068 if (addr == NULL_TREE)
9069 return NULL_TREE;
9070
9071 STRIP_NOPS (addr);
9072
9073 /* If this is a readonly function pointer, extract its initial value. */
9074 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
9075 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
9076 && DECL_INITIAL (addr))
9077 addr = DECL_INITIAL (addr);
9078
9079 /* If the address is just `&f' for some function `f', then we know
9080 that `f' is being called. */
9081 if (TREE_CODE (addr) == ADDR_EXPR
9082 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
9083 return TREE_OPERAND (addr, 0);
9084
9085 /* We couldn't figure out what was being called. */
9086 return NULL_TREE;
9087 }
9088
9089 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9090 return the associated function code, otherwise return CFN_LAST. */
9091
9092 combined_fn
9093 get_call_combined_fn (const_tree call)
9094 {
9095 /* It's invalid to call this function with anything but a CALL_EXPR. */
9096 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9097
9098 if (!CALL_EXPR_FN (call))
9099 return as_combined_fn (CALL_EXPR_IFN (call));
9100
9101 tree fndecl = get_callee_fndecl (call);
9102 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
9103 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
9104
9105 return CFN_LAST;
9106 }
9107
9108 #define TREE_MEM_USAGE_SPACES 40
9109
9110 /* Print debugging information about tree nodes generated during the compile,
9111 and any language-specific information. */
9112
9113 void
9114 dump_tree_statistics (void)
9115 {
9116 if (GATHER_STATISTICS)
9117 {
9118 int i;
9119 uint64_t total_nodes, total_bytes;
9120 fprintf (stderr, "\nKind Nodes Bytes\n");
9121 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9122 total_nodes = total_bytes = 0;
9123 for (i = 0; i < (int) all_kinds; i++)
9124 {
9125 fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n",
9126 tree_node_kind_names[i], tree_node_counts[i],
9127 tree_node_sizes[i]);
9128 total_nodes += tree_node_counts[i];
9129 total_bytes += tree_node_sizes[i];
9130 }
9131 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9132 fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n", "Total",
9133 total_nodes, total_bytes);
9134 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9135 fprintf (stderr, "Code Nodes\n");
9136 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9137 for (i = 0; i < (int) MAX_TREE_CODES; i++)
9138 fprintf (stderr, "%-32s %7" PRIu64 "\n",
9139 get_tree_code_name ((enum tree_code) i), tree_code_counts[i]);
9140 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9141 fprintf (stderr, "\n");
9142 ssanames_print_statistics ();
9143 fprintf (stderr, "\n");
9144 phinodes_print_statistics ();
9145 fprintf (stderr, "\n");
9146 }
9147 else
9148 fprintf (stderr, "(No per-node statistics)\n");
9149
9150 print_type_hash_statistics ();
9151 print_debug_expr_statistics ();
9152 print_value_expr_statistics ();
9153 lang_hooks.print_statistics ();
9154 }
9155 \f
9156 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9157
9158 /* Generate a crc32 of the low BYTES bytes of VALUE. */
9159
9160 unsigned
9161 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
9162 {
9163 /* This relies on the raw feedback's top 4 bits being zero. */
9164 #define FEEDBACK(X) ((X) * 0x04c11db7)
9165 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
9166 ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
9167 static const unsigned syndromes[16] =
9168 {
9169 SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
9170 SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
9171 SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
9172 SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
9173 };
9174 #undef FEEDBACK
9175 #undef SYNDROME
9176
9177 value <<= (32 - bytes * 8);
9178 for (unsigned ix = bytes * 2; ix--; value <<= 4)
9179 {
9180 unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
9181
9182 chksum = (chksum << 4) ^ feedback;
9183 }
9184
9185 return chksum;
9186 }
9187
9188 /* Generate a crc32 of a string. */
9189
9190 unsigned
9191 crc32_string (unsigned chksum, const char *string)
9192 {
9193 do
9194 chksum = crc32_byte (chksum, *string);
9195 while (*string++);
9196 return chksum;
9197 }
9198
9199 /* P is a string that will be used in a symbol. Mask out any characters
9200 that are not valid in that context. */
9201
9202 void
9203 clean_symbol_name (char *p)
9204 {
9205 for (; *p; p++)
9206 if (! (ISALNUM (*p)
9207 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9208 || *p == '$'
9209 #endif
9210 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9211 || *p == '.'
9212 #endif
9213 ))
9214 *p = '_';
9215 }
9216
9217 /* For anonymous aggregate types, we need some sort of name to
9218 hold on to. In practice, this should not appear, but it should
9219 not be harmful if it does. */
9220 bool
9221 anon_aggrname_p(const_tree id_node)
9222 {
9223 #ifndef NO_DOT_IN_LABEL
9224 return (IDENTIFIER_POINTER (id_node)[0] == '.'
9225 && IDENTIFIER_POINTER (id_node)[1] == '_');
9226 #else /* NO_DOT_IN_LABEL */
9227 #ifndef NO_DOLLAR_IN_LABEL
9228 return (IDENTIFIER_POINTER (id_node)[0] == '$' \
9229 && IDENTIFIER_POINTER (id_node)[1] == '_');
9230 #else /* NO_DOLLAR_IN_LABEL */
9231 #define ANON_AGGRNAME_PREFIX "__anon_"
9232 return (!strncmp (IDENTIFIER_POINTER (id_node), ANON_AGGRNAME_PREFIX,
9233 sizeof (ANON_AGGRNAME_PREFIX) - 1));
9234 #endif /* NO_DOLLAR_IN_LABEL */
9235 #endif /* NO_DOT_IN_LABEL */
9236 }
9237
9238 /* Return a format for an anonymous aggregate name. */
9239 const char *
9240 anon_aggrname_format()
9241 {
9242 #ifndef NO_DOT_IN_LABEL
9243 return "._%d";
9244 #else /* NO_DOT_IN_LABEL */
9245 #ifndef NO_DOLLAR_IN_LABEL
9246 return "$_%d";
9247 #else /* NO_DOLLAR_IN_LABEL */
9248 return "__anon_%d";
9249 #endif /* NO_DOLLAR_IN_LABEL */
9250 #endif /* NO_DOT_IN_LABEL */
9251 }
9252
9253 /* Generate a name for a special-purpose function.
9254 The generated name may need to be unique across the whole link.
9255 Changes to this function may also require corresponding changes to
9256 xstrdup_mask_random.
9257 TYPE is some string to identify the purpose of this function to the
9258 linker or collect2; it must start with an uppercase letter,
9259 one of:
9260 I - for constructors
9261 D - for destructors
9262 N - for C++ anonymous namespaces
9263 F - for DWARF unwind frame information. */
9264
9265 tree
9266 get_file_function_name (const char *type)
9267 {
9268 char *buf;
9269 const char *p;
9270 char *q;
9271
9272 /* If we already have a name we know to be unique, just use that. */
9273 if (first_global_object_name)
9274 p = q = ASTRDUP (first_global_object_name);
9275 /* If the target is handling the constructors/destructors, they
9276 will be local to this file and the name is only necessary for
9277 debugging purposes.
9278 We also assign sub_I and sub_D sufixes to constructors called from
9279 the global static constructors. These are always local. */
9280 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9281 || (strncmp (type, "sub_", 4) == 0
9282 && (type[4] == 'I' || type[4] == 'D')))
9283 {
9284 const char *file = main_input_filename;
9285 if (! file)
9286 file = LOCATION_FILE (input_location);
9287 /* Just use the file's basename, because the full pathname
9288 might be quite long. */
9289 p = q = ASTRDUP (lbasename (file));
9290 }
9291 else
9292 {
9293 /* Otherwise, the name must be unique across the entire link.
9294 We don't have anything that we know to be unique to this translation
9295 unit, so use what we do have and throw in some randomness. */
9296 unsigned len;
9297 const char *name = weak_global_object_name;
9298 const char *file = main_input_filename;
9299
9300 if (! name)
9301 name = "";
9302 if (! file)
9303 file = LOCATION_FILE (input_location);
9304
9305 len = strlen (file);
9306 q = (char *) alloca (9 + 19 + len + 1);
9307 memcpy (q, file, len + 1);
9308
9309 snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9310 crc32_string (0, name), get_random_seed (false));
9311
9312 p = q;
9313 }
9314
9315 clean_symbol_name (q);
9316 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9317 + strlen (type));
9318
9319 /* Set up the name of the file-level functions we may need.
9320 Use a global object (which is already required to be unique over
9321 the program) rather than the file name (which imposes extra
9322 constraints). */
9323 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9324
9325 return get_identifier (buf);
9326 }
9327 \f
9328 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9329
9330 /* Complain that the tree code of NODE does not match the expected 0
9331 terminated list of trailing codes. The trailing code list can be
9332 empty, for a more vague error message. FILE, LINE, and FUNCTION
9333 are of the caller. */
9334
9335 void
9336 tree_check_failed (const_tree node, const char *file,
9337 int line, const char *function, ...)
9338 {
9339 va_list args;
9340 const char *buffer;
9341 unsigned length = 0;
9342 enum tree_code code;
9343
9344 va_start (args, function);
9345 while ((code = (enum tree_code) va_arg (args, int)))
9346 length += 4 + strlen (get_tree_code_name (code));
9347 va_end (args);
9348 if (length)
9349 {
9350 char *tmp;
9351 va_start (args, function);
9352 length += strlen ("expected ");
9353 buffer = tmp = (char *) alloca (length);
9354 length = 0;
9355 while ((code = (enum tree_code) va_arg (args, int)))
9356 {
9357 const char *prefix = length ? " or " : "expected ";
9358
9359 strcpy (tmp + length, prefix);
9360 length += strlen (prefix);
9361 strcpy (tmp + length, get_tree_code_name (code));
9362 length += strlen (get_tree_code_name (code));
9363 }
9364 va_end (args);
9365 }
9366 else
9367 buffer = "unexpected node";
9368
9369 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9370 buffer, get_tree_code_name (TREE_CODE (node)),
9371 function, trim_filename (file), line);
9372 }
9373
9374 /* Complain that the tree code of NODE does match the expected 0
9375 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9376 the caller. */
9377
9378 void
9379 tree_not_check_failed (const_tree node, const char *file,
9380 int line, const char *function, ...)
9381 {
9382 va_list args;
9383 char *buffer;
9384 unsigned length = 0;
9385 enum tree_code code;
9386
9387 va_start (args, function);
9388 while ((code = (enum tree_code) va_arg (args, int)))
9389 length += 4 + strlen (get_tree_code_name (code));
9390 va_end (args);
9391 va_start (args, function);
9392 buffer = (char *) alloca (length);
9393 length = 0;
9394 while ((code = (enum tree_code) va_arg (args, int)))
9395 {
9396 if (length)
9397 {
9398 strcpy (buffer + length, " or ");
9399 length += 4;
9400 }
9401 strcpy (buffer + length, get_tree_code_name (code));
9402 length += strlen (get_tree_code_name (code));
9403 }
9404 va_end (args);
9405
9406 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9407 buffer, get_tree_code_name (TREE_CODE (node)),
9408 function, trim_filename (file), line);
9409 }
9410
9411 /* Similar to tree_check_failed, except that we check for a class of tree
9412 code, given in CL. */
9413
9414 void
9415 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9416 const char *file, int line, const char *function)
9417 {
9418 internal_error
9419 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9420 TREE_CODE_CLASS_STRING (cl),
9421 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9422 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9423 }
9424
9425 /* Similar to tree_check_failed, except that instead of specifying a
9426 dozen codes, use the knowledge that they're all sequential. */
9427
9428 void
9429 tree_range_check_failed (const_tree node, const char *file, int line,
9430 const char *function, enum tree_code c1,
9431 enum tree_code c2)
9432 {
9433 char *buffer;
9434 unsigned length = 0;
9435 unsigned int c;
9436
9437 for (c = c1; c <= c2; ++c)
9438 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9439
9440 length += strlen ("expected ");
9441 buffer = (char *) alloca (length);
9442 length = 0;
9443
9444 for (c = c1; c <= c2; ++c)
9445 {
9446 const char *prefix = length ? " or " : "expected ";
9447
9448 strcpy (buffer + length, prefix);
9449 length += strlen (prefix);
9450 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9451 length += strlen (get_tree_code_name ((enum tree_code) c));
9452 }
9453
9454 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9455 buffer, get_tree_code_name (TREE_CODE (node)),
9456 function, trim_filename (file), line);
9457 }
9458
9459
9460 /* Similar to tree_check_failed, except that we check that a tree does
9461 not have the specified code, given in CL. */
9462
9463 void
9464 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9465 const char *file, int line, const char *function)
9466 {
9467 internal_error
9468 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9469 TREE_CODE_CLASS_STRING (cl),
9470 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9471 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9472 }
9473
9474
9475 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9476
9477 void
9478 omp_clause_check_failed (const_tree node, const char *file, int line,
9479 const char *function, enum omp_clause_code code)
9480 {
9481 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9482 omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9483 function, trim_filename (file), line);
9484 }
9485
9486
9487 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9488
9489 void
9490 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9491 const char *function, enum omp_clause_code c1,
9492 enum omp_clause_code c2)
9493 {
9494 char *buffer;
9495 unsigned length = 0;
9496 unsigned int c;
9497
9498 for (c = c1; c <= c2; ++c)
9499 length += 4 + strlen (omp_clause_code_name[c]);
9500
9501 length += strlen ("expected ");
9502 buffer = (char *) alloca (length);
9503 length = 0;
9504
9505 for (c = c1; c <= c2; ++c)
9506 {
9507 const char *prefix = length ? " or " : "expected ";
9508
9509 strcpy (buffer + length, prefix);
9510 length += strlen (prefix);
9511 strcpy (buffer + length, omp_clause_code_name[c]);
9512 length += strlen (omp_clause_code_name[c]);
9513 }
9514
9515 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9516 buffer, omp_clause_code_name[TREE_CODE (node)],
9517 function, trim_filename (file), line);
9518 }
9519
9520
9521 #undef DEFTREESTRUCT
9522 #define DEFTREESTRUCT(VAL, NAME) NAME,
9523
9524 static const char *ts_enum_names[] = {
9525 #include "treestruct.def"
9526 };
9527 #undef DEFTREESTRUCT
9528
9529 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9530
9531 /* Similar to tree_class_check_failed, except that we check for
9532 whether CODE contains the tree structure identified by EN. */
9533
9534 void
9535 tree_contains_struct_check_failed (const_tree node,
9536 const enum tree_node_structure_enum en,
9537 const char *file, int line,
9538 const char *function)
9539 {
9540 internal_error
9541 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9542 TS_ENUM_NAME (en),
9543 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9544 }
9545
9546
9547 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9548 (dynamically sized) vector. */
9549
9550 void
9551 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9552 const char *function)
9553 {
9554 internal_error
9555 ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
9556 idx + 1, len, function, trim_filename (file), line);
9557 }
9558
9559 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9560 (dynamically sized) vector. */
9561
9562 void
9563 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9564 const char *function)
9565 {
9566 internal_error
9567 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9568 idx + 1, len, function, trim_filename (file), line);
9569 }
9570
9571 /* Similar to above, except that the check is for the bounds of the operand
9572 vector of an expression node EXP. */
9573
9574 void
9575 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9576 int line, const char *function)
9577 {
9578 enum tree_code code = TREE_CODE (exp);
9579 internal_error
9580 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9581 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9582 function, trim_filename (file), line);
9583 }
9584
9585 /* Similar to above, except that the check is for the number of
9586 operands of an OMP_CLAUSE node. */
9587
9588 void
9589 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9590 int line, const char *function)
9591 {
9592 internal_error
9593 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9594 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9595 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9596 trim_filename (file), line);
9597 }
9598 #endif /* ENABLE_TREE_CHECKING */
9599 \f
9600 /* Create a new vector type node holding NUNITS units of type INNERTYPE,
9601 and mapped to the machine mode MODE. Initialize its fields and build
9602 the information necessary for debugging output. */
9603
9604 static tree
9605 make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
9606 {
9607 tree t;
9608 tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
9609
9610 t = make_node (VECTOR_TYPE);
9611 TREE_TYPE (t) = mv_innertype;
9612 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9613 SET_TYPE_MODE (t, mode);
9614
9615 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
9616 SET_TYPE_STRUCTURAL_EQUALITY (t);
9617 else if ((TYPE_CANONICAL (mv_innertype) != innertype
9618 || mode != VOIDmode)
9619 && !VECTOR_BOOLEAN_TYPE_P (t))
9620 TYPE_CANONICAL (t)
9621 = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
9622
9623 layout_type (t);
9624
9625 hashval_t hash = type_hash_canon_hash (t);
9626 t = type_hash_canon (hash, t);
9627
9628 /* We have built a main variant, based on the main variant of the
9629 inner type. Use it to build the variant we return. */
9630 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9631 && TREE_TYPE (t) != innertype)
9632 return build_type_attribute_qual_variant (t,
9633 TYPE_ATTRIBUTES (innertype),
9634 TYPE_QUALS (innertype));
9635
9636 return t;
9637 }
9638
9639 static tree
9640 make_or_reuse_type (unsigned size, int unsignedp)
9641 {
9642 int i;
9643
9644 if (size == INT_TYPE_SIZE)
9645 return unsignedp ? unsigned_type_node : integer_type_node;
9646 if (size == CHAR_TYPE_SIZE)
9647 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9648 if (size == SHORT_TYPE_SIZE)
9649 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9650 if (size == LONG_TYPE_SIZE)
9651 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9652 if (size == LONG_LONG_TYPE_SIZE)
9653 return (unsignedp ? long_long_unsigned_type_node
9654 : long_long_integer_type_node);
9655
9656 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9657 if (size == int_n_data[i].bitsize
9658 && int_n_enabled_p[i])
9659 return (unsignedp ? int_n_trees[i].unsigned_type
9660 : int_n_trees[i].signed_type);
9661
9662 if (unsignedp)
9663 return make_unsigned_type (size);
9664 else
9665 return make_signed_type (size);
9666 }
9667
9668 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9669
9670 static tree
9671 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9672 {
9673 if (satp)
9674 {
9675 if (size == SHORT_FRACT_TYPE_SIZE)
9676 return unsignedp ? sat_unsigned_short_fract_type_node
9677 : sat_short_fract_type_node;
9678 if (size == FRACT_TYPE_SIZE)
9679 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9680 if (size == LONG_FRACT_TYPE_SIZE)
9681 return unsignedp ? sat_unsigned_long_fract_type_node
9682 : sat_long_fract_type_node;
9683 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9684 return unsignedp ? sat_unsigned_long_long_fract_type_node
9685 : sat_long_long_fract_type_node;
9686 }
9687 else
9688 {
9689 if (size == SHORT_FRACT_TYPE_SIZE)
9690 return unsignedp ? unsigned_short_fract_type_node
9691 : short_fract_type_node;
9692 if (size == FRACT_TYPE_SIZE)
9693 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9694 if (size == LONG_FRACT_TYPE_SIZE)
9695 return unsignedp ? unsigned_long_fract_type_node
9696 : long_fract_type_node;
9697 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9698 return unsignedp ? unsigned_long_long_fract_type_node
9699 : long_long_fract_type_node;
9700 }
9701
9702 return make_fract_type (size, unsignedp, satp);
9703 }
9704
9705 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9706
9707 static tree
9708 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9709 {
9710 if (satp)
9711 {
9712 if (size == SHORT_ACCUM_TYPE_SIZE)
9713 return unsignedp ? sat_unsigned_short_accum_type_node
9714 : sat_short_accum_type_node;
9715 if (size == ACCUM_TYPE_SIZE)
9716 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9717 if (size == LONG_ACCUM_TYPE_SIZE)
9718 return unsignedp ? sat_unsigned_long_accum_type_node
9719 : sat_long_accum_type_node;
9720 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9721 return unsignedp ? sat_unsigned_long_long_accum_type_node
9722 : sat_long_long_accum_type_node;
9723 }
9724 else
9725 {
9726 if (size == SHORT_ACCUM_TYPE_SIZE)
9727 return unsignedp ? unsigned_short_accum_type_node
9728 : short_accum_type_node;
9729 if (size == ACCUM_TYPE_SIZE)
9730 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9731 if (size == LONG_ACCUM_TYPE_SIZE)
9732 return unsignedp ? unsigned_long_accum_type_node
9733 : long_accum_type_node;
9734 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9735 return unsignedp ? unsigned_long_long_accum_type_node
9736 : long_long_accum_type_node;
9737 }
9738
9739 return make_accum_type (size, unsignedp, satp);
9740 }
9741
9742
9743 /* Create an atomic variant node for TYPE. This routine is called
9744 during initialization of data types to create the 5 basic atomic
9745 types. The generic build_variant_type function requires these to
9746 already be set up in order to function properly, so cannot be
9747 called from there. If ALIGN is non-zero, then ensure alignment is
9748 overridden to this value. */
9749
9750 static tree
9751 build_atomic_base (tree type, unsigned int align)
9752 {
9753 tree t;
9754
9755 /* Make sure its not already registered. */
9756 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
9757 return t;
9758
9759 t = build_variant_type_copy (type);
9760 set_type_quals (t, TYPE_QUAL_ATOMIC);
9761
9762 if (align)
9763 SET_TYPE_ALIGN (t, align);
9764
9765 return t;
9766 }
9767
9768 /* Information about the _FloatN and _FloatNx types. This must be in
9769 the same order as the corresponding TI_* enum values. */
9770 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
9771 {
9772 { 16, false },
9773 { 32, false },
9774 { 64, false },
9775 { 128, false },
9776 { 32, true },
9777 { 64, true },
9778 { 128, true },
9779 };
9780
9781
9782 /* Create nodes for all integer types (and error_mark_node) using the sizes
9783 of C datatypes. SIGNED_CHAR specifies whether char is signed. */
9784
9785 void
9786 build_common_tree_nodes (bool signed_char)
9787 {
9788 int i;
9789
9790 error_mark_node = make_node (ERROR_MARK);
9791 TREE_TYPE (error_mark_node) = error_mark_node;
9792
9793 initialize_sizetypes ();
9794
9795 /* Define both `signed char' and `unsigned char'. */
9796 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9797 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9798 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9799 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9800
9801 /* Define `char', which is like either `signed char' or `unsigned char'
9802 but not the same as either. */
9803 char_type_node
9804 = (signed_char
9805 ? make_signed_type (CHAR_TYPE_SIZE)
9806 : make_unsigned_type (CHAR_TYPE_SIZE));
9807 TYPE_STRING_FLAG (char_type_node) = 1;
9808
9809 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9810 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9811 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9812 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9813 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9814 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9815 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9816 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9817
9818 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9819 {
9820 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
9821 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
9822
9823 if (int_n_enabled_p[i])
9824 {
9825 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
9826 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
9827 }
9828 }
9829
9830 /* Define a boolean type. This type only represents boolean values but
9831 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
9832 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9833 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9834 TYPE_PRECISION (boolean_type_node) = 1;
9835 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9836
9837 /* Define what type to use for size_t. */
9838 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9839 size_type_node = unsigned_type_node;
9840 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9841 size_type_node = long_unsigned_type_node;
9842 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9843 size_type_node = long_long_unsigned_type_node;
9844 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9845 size_type_node = short_unsigned_type_node;
9846 else
9847 {
9848 int i;
9849
9850 size_type_node = NULL_TREE;
9851 for (i = 0; i < NUM_INT_N_ENTS; i++)
9852 if (int_n_enabled_p[i])
9853 {
9854 char name[50];
9855 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
9856
9857 if (strcmp (name, SIZE_TYPE) == 0)
9858 {
9859 size_type_node = int_n_trees[i].unsigned_type;
9860 }
9861 }
9862 if (size_type_node == NULL_TREE)
9863 gcc_unreachable ();
9864 }
9865
9866 /* Define what type to use for ptrdiff_t. */
9867 if (strcmp (PTRDIFF_TYPE, "int") == 0)
9868 ptrdiff_type_node = integer_type_node;
9869 else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
9870 ptrdiff_type_node = long_integer_type_node;
9871 else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
9872 ptrdiff_type_node = long_long_integer_type_node;
9873 else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
9874 ptrdiff_type_node = short_integer_type_node;
9875 else
9876 {
9877 ptrdiff_type_node = NULL_TREE;
9878 for (int i = 0; i < NUM_INT_N_ENTS; i++)
9879 if (int_n_enabled_p[i])
9880 {
9881 char name[50];
9882 sprintf (name, "__int%d", int_n_data[i].bitsize);
9883 if (strcmp (name, PTRDIFF_TYPE) == 0)
9884 ptrdiff_type_node = int_n_trees[i].signed_type;
9885 }
9886 if (ptrdiff_type_node == NULL_TREE)
9887 gcc_unreachable ();
9888 }
9889
9890 /* Fill in the rest of the sized types. Reuse existing type nodes
9891 when possible. */
9892 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9893 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9894 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9895 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9896 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9897
9898 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9899 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9900 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9901 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9902 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9903
9904 /* Don't call build_qualified type for atomics. That routine does
9905 special processing for atomics, and until they are initialized
9906 it's better not to make that call.
9907
9908 Check to see if there is a target override for atomic types. */
9909
9910 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
9911 targetm.atomic_align_for_mode (QImode));
9912 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
9913 targetm.atomic_align_for_mode (HImode));
9914 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
9915 targetm.atomic_align_for_mode (SImode));
9916 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
9917 targetm.atomic_align_for_mode (DImode));
9918 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
9919 targetm.atomic_align_for_mode (TImode));
9920
9921 access_public_node = get_identifier ("public");
9922 access_protected_node = get_identifier ("protected");
9923 access_private_node = get_identifier ("private");
9924
9925 /* Define these next since types below may used them. */
9926 integer_zero_node = build_int_cst (integer_type_node, 0);
9927 integer_one_node = build_int_cst (integer_type_node, 1);
9928 integer_three_node = build_int_cst (integer_type_node, 3);
9929 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9930
9931 size_zero_node = size_int (0);
9932 size_one_node = size_int (1);
9933 bitsize_zero_node = bitsize_int (0);
9934 bitsize_one_node = bitsize_int (1);
9935 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9936
9937 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9938 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9939
9940 void_type_node = make_node (VOID_TYPE);
9941 layout_type (void_type_node);
9942
9943 /* We are not going to have real types in C with less than byte alignment,
9944 so we might as well not have any types that claim to have it. */
9945 SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
9946 TYPE_USER_ALIGN (void_type_node) = 0;
9947
9948 void_node = make_node (VOID_CST);
9949 TREE_TYPE (void_node) = void_type_node;
9950
9951 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9952 layout_type (TREE_TYPE (null_pointer_node));
9953
9954 ptr_type_node = build_pointer_type (void_type_node);
9955 const_ptr_type_node
9956 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9957 for (unsigned i = 0;
9958 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
9959 ++i)
9960 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
9961
9962 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
9963
9964 float_type_node = make_node (REAL_TYPE);
9965 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9966 layout_type (float_type_node);
9967
9968 double_type_node = make_node (REAL_TYPE);
9969 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9970 layout_type (double_type_node);
9971
9972 long_double_type_node = make_node (REAL_TYPE);
9973 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9974 layout_type (long_double_type_node);
9975
9976 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
9977 {
9978 int n = floatn_nx_types[i].n;
9979 bool extended = floatn_nx_types[i].extended;
9980 scalar_float_mode mode;
9981 if (!targetm.floatn_mode (n, extended).exists (&mode))
9982 continue;
9983 int precision = GET_MODE_PRECISION (mode);
9984 /* Work around the rs6000 KFmode having precision 113 not
9985 128. */
9986 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
9987 gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
9988 int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
9989 if (!extended)
9990 gcc_assert (min_precision == n);
9991 if (precision < min_precision)
9992 precision = min_precision;
9993 FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
9994 TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
9995 layout_type (FLOATN_NX_TYPE_NODE (i));
9996 SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
9997 }
9998
9999 float_ptr_type_node = build_pointer_type (float_type_node);
10000 double_ptr_type_node = build_pointer_type (double_type_node);
10001 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
10002 integer_ptr_type_node = build_pointer_type (integer_type_node);
10003
10004 /* Fixed size integer types. */
10005 uint16_type_node = make_or_reuse_type (16, 1);
10006 uint32_type_node = make_or_reuse_type (32, 1);
10007 uint64_type_node = make_or_reuse_type (64, 1);
10008
10009 /* Decimal float types. */
10010 dfloat32_type_node = make_node (REAL_TYPE);
10011 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
10012 SET_TYPE_MODE (dfloat32_type_node, SDmode);
10013 layout_type (dfloat32_type_node);
10014 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
10015
10016 dfloat64_type_node = make_node (REAL_TYPE);
10017 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
10018 SET_TYPE_MODE (dfloat64_type_node, DDmode);
10019 layout_type (dfloat64_type_node);
10020 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
10021
10022 dfloat128_type_node = make_node (REAL_TYPE);
10023 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
10024 SET_TYPE_MODE (dfloat128_type_node, TDmode);
10025 layout_type (dfloat128_type_node);
10026 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
10027
10028 complex_integer_type_node = build_complex_type (integer_type_node, true);
10029 complex_float_type_node = build_complex_type (float_type_node, true);
10030 complex_double_type_node = build_complex_type (double_type_node, true);
10031 complex_long_double_type_node = build_complex_type (long_double_type_node,
10032 true);
10033
10034 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10035 {
10036 if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
10037 COMPLEX_FLOATN_NX_TYPE_NODE (i)
10038 = build_complex_type (FLOATN_NX_TYPE_NODE (i));
10039 }
10040
10041 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
10042 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10043 sat_ ## KIND ## _type_node = \
10044 make_sat_signed_ ## KIND ## _type (SIZE); \
10045 sat_unsigned_ ## KIND ## _type_node = \
10046 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10047 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10048 unsigned_ ## KIND ## _type_node = \
10049 make_unsigned_ ## KIND ## _type (SIZE);
10050
10051 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10052 sat_ ## WIDTH ## KIND ## _type_node = \
10053 make_sat_signed_ ## KIND ## _type (SIZE); \
10054 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10055 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10056 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10057 unsigned_ ## WIDTH ## KIND ## _type_node = \
10058 make_unsigned_ ## KIND ## _type (SIZE);
10059
10060 /* Make fixed-point type nodes based on four different widths. */
10061 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10062 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10063 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10064 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10065 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10066
10067 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
10068 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10069 NAME ## _type_node = \
10070 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10071 u ## NAME ## _type_node = \
10072 make_or_reuse_unsigned_ ## KIND ## _type \
10073 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10074 sat_ ## NAME ## _type_node = \
10075 make_or_reuse_sat_signed_ ## KIND ## _type \
10076 (GET_MODE_BITSIZE (MODE ## mode)); \
10077 sat_u ## NAME ## _type_node = \
10078 make_or_reuse_sat_unsigned_ ## KIND ## _type \
10079 (GET_MODE_BITSIZE (U ## MODE ## mode));
10080
10081 /* Fixed-point type and mode nodes. */
10082 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
10083 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
10084 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
10085 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
10086 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
10087 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
10088 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
10089 MAKE_FIXED_MODE_NODE (accum, ha, HA)
10090 MAKE_FIXED_MODE_NODE (accum, sa, SA)
10091 MAKE_FIXED_MODE_NODE (accum, da, DA)
10092 MAKE_FIXED_MODE_NODE (accum, ta, TA)
10093
10094 {
10095 tree t = targetm.build_builtin_va_list ();
10096
10097 /* Many back-ends define record types without setting TYPE_NAME.
10098 If we copied the record type here, we'd keep the original
10099 record type without a name. This breaks name mangling. So,
10100 don't copy record types and let c_common_nodes_and_builtins()
10101 declare the type to be __builtin_va_list. */
10102 if (TREE_CODE (t) != RECORD_TYPE)
10103 t = build_variant_type_copy (t);
10104
10105 va_list_type_node = t;
10106 }
10107 }
10108
10109 /* Modify DECL for given flags.
10110 TM_PURE attribute is set only on types, so the function will modify
10111 DECL's type when ECF_TM_PURE is used. */
10112
10113 void
10114 set_call_expr_flags (tree decl, int flags)
10115 {
10116 if (flags & ECF_NOTHROW)
10117 TREE_NOTHROW (decl) = 1;
10118 if (flags & ECF_CONST)
10119 TREE_READONLY (decl) = 1;
10120 if (flags & ECF_PURE)
10121 DECL_PURE_P (decl) = 1;
10122 if (flags & ECF_LOOPING_CONST_OR_PURE)
10123 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
10124 if (flags & ECF_NOVOPS)
10125 DECL_IS_NOVOPS (decl) = 1;
10126 if (flags & ECF_NORETURN)
10127 TREE_THIS_VOLATILE (decl) = 1;
10128 if (flags & ECF_MALLOC)
10129 DECL_IS_MALLOC (decl) = 1;
10130 if (flags & ECF_RETURNS_TWICE)
10131 DECL_IS_RETURNS_TWICE (decl) = 1;
10132 if (flags & ECF_LEAF)
10133 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
10134 NULL, DECL_ATTRIBUTES (decl));
10135 if (flags & ECF_COLD)
10136 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
10137 NULL, DECL_ATTRIBUTES (decl));
10138 if (flags & ECF_RET1)
10139 DECL_ATTRIBUTES (decl)
10140 = tree_cons (get_identifier ("fn spec"),
10141 build_tree_list (NULL_TREE, build_string (1, "1")),
10142 DECL_ATTRIBUTES (decl));
10143 if ((flags & ECF_TM_PURE) && flag_tm)
10144 apply_tm_attr (decl, get_identifier ("transaction_pure"));
10145 /* Looping const or pure is implied by noreturn.
10146 There is currently no way to declare looping const or looping pure alone. */
10147 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
10148 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
10149 }
10150
10151
10152 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
10153
10154 static void
10155 local_define_builtin (const char *name, tree type, enum built_in_function code,
10156 const char *library_name, int ecf_flags)
10157 {
10158 tree decl;
10159
10160 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
10161 library_name, NULL_TREE);
10162 set_call_expr_flags (decl, ecf_flags);
10163
10164 set_builtin_decl (code, decl, true);
10165 }
10166
10167 /* Call this function after instantiating all builtins that the language
10168 front end cares about. This will build the rest of the builtins
10169 and internal functions that are relied upon by the tree optimizers and
10170 the middle-end. */
10171
10172 void
10173 build_common_builtin_nodes (void)
10174 {
10175 tree tmp, ftype;
10176 int ecf_flags;
10177
10178 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
10179 || !builtin_decl_explicit_p (BUILT_IN_ABORT))
10180 {
10181 ftype = build_function_type (void_type_node, void_list_node);
10182 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
10183 local_define_builtin ("__builtin_unreachable", ftype,
10184 BUILT_IN_UNREACHABLE,
10185 "__builtin_unreachable",
10186 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
10187 | ECF_CONST | ECF_COLD);
10188 if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
10189 local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
10190 "abort",
10191 ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
10192 }
10193
10194 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
10195 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10196 {
10197 ftype = build_function_type_list (ptr_type_node,
10198 ptr_type_node, const_ptr_type_node,
10199 size_type_node, NULL_TREE);
10200
10201 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
10202 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
10203 "memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10204 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10205 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
10206 "memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10207 }
10208
10209 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
10210 {
10211 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10212 const_ptr_type_node, size_type_node,
10213 NULL_TREE);
10214 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
10215 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10216 }
10217
10218 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
10219 {
10220 ftype = build_function_type_list (ptr_type_node,
10221 ptr_type_node, integer_type_node,
10222 size_type_node, NULL_TREE);
10223 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
10224 "memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10225 }
10226
10227 /* If we're checking the stack, `alloca' can throw. */
10228 const int alloca_flags
10229 = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
10230
10231 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
10232 {
10233 ftype = build_function_type_list (ptr_type_node,
10234 size_type_node, NULL_TREE);
10235 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
10236 "alloca", alloca_flags);
10237 }
10238
10239 ftype = build_function_type_list (ptr_type_node, size_type_node,
10240 size_type_node, NULL_TREE);
10241 local_define_builtin ("__builtin_alloca_with_align", ftype,
10242 BUILT_IN_ALLOCA_WITH_ALIGN,
10243 "__builtin_alloca_with_align",
10244 alloca_flags);
10245
10246 ftype = build_function_type_list (ptr_type_node, size_type_node,
10247 size_type_node, size_type_node, NULL_TREE);
10248 local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
10249 BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
10250 "__builtin_alloca_with_align_and_max",
10251 alloca_flags);
10252
10253 ftype = build_function_type_list (void_type_node,
10254 ptr_type_node, ptr_type_node,
10255 ptr_type_node, NULL_TREE);
10256 local_define_builtin ("__builtin_init_trampoline", ftype,
10257 BUILT_IN_INIT_TRAMPOLINE,
10258 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
10259 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
10260 BUILT_IN_INIT_HEAP_TRAMPOLINE,
10261 "__builtin_init_heap_trampoline",
10262 ECF_NOTHROW | ECF_LEAF);
10263 local_define_builtin ("__builtin_init_descriptor", ftype,
10264 BUILT_IN_INIT_DESCRIPTOR,
10265 "__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
10266
10267 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10268 local_define_builtin ("__builtin_adjust_trampoline", ftype,
10269 BUILT_IN_ADJUST_TRAMPOLINE,
10270 "__builtin_adjust_trampoline",
10271 ECF_CONST | ECF_NOTHROW);
10272 local_define_builtin ("__builtin_adjust_descriptor", ftype,
10273 BUILT_IN_ADJUST_DESCRIPTOR,
10274 "__builtin_adjust_descriptor",
10275 ECF_CONST | ECF_NOTHROW);
10276
10277 ftype = build_function_type_list (void_type_node,
10278 ptr_type_node, ptr_type_node, NULL_TREE);
10279 local_define_builtin ("__builtin_nonlocal_goto", ftype,
10280 BUILT_IN_NONLOCAL_GOTO,
10281 "__builtin_nonlocal_goto",
10282 ECF_NORETURN | ECF_NOTHROW);
10283
10284 ftype = build_function_type_list (void_type_node,
10285 ptr_type_node, ptr_type_node, NULL_TREE);
10286 local_define_builtin ("__builtin_setjmp_setup", ftype,
10287 BUILT_IN_SETJMP_SETUP,
10288 "__builtin_setjmp_setup", ECF_NOTHROW);
10289
10290 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10291 local_define_builtin ("__builtin_setjmp_receiver", ftype,
10292 BUILT_IN_SETJMP_RECEIVER,
10293 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10294
10295 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10296 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10297 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10298
10299 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10300 local_define_builtin ("__builtin_stack_restore", ftype,
10301 BUILT_IN_STACK_RESTORE,
10302 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10303
10304 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10305 const_ptr_type_node, size_type_node,
10306 NULL_TREE);
10307 local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10308 "__builtin_memcmp_eq",
10309 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10310
10311 local_define_builtin ("__builtin_strncmp_eq", ftype, BUILT_IN_STRNCMP_EQ,
10312 "__builtin_strncmp_eq",
10313 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10314
10315 local_define_builtin ("__builtin_strcmp_eq", ftype, BUILT_IN_STRCMP_EQ,
10316 "__builtin_strcmp_eq",
10317 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10318
10319 /* If there's a possibility that we might use the ARM EABI, build the
10320 alternate __cxa_end_cleanup node used to resume from C++. */
10321 if (targetm.arm_eabi_unwinder)
10322 {
10323 ftype = build_function_type_list (void_type_node, NULL_TREE);
10324 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10325 BUILT_IN_CXA_END_CLEANUP,
10326 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10327 }
10328
10329 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10330 local_define_builtin ("__builtin_unwind_resume", ftype,
10331 BUILT_IN_UNWIND_RESUME,
10332 ((targetm_common.except_unwind_info (&global_options)
10333 == UI_SJLJ)
10334 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10335 ECF_NORETURN);
10336
10337 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10338 {
10339 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10340 NULL_TREE);
10341 local_define_builtin ("__builtin_return_address", ftype,
10342 BUILT_IN_RETURN_ADDRESS,
10343 "__builtin_return_address",
10344 ECF_NOTHROW);
10345 }
10346
10347 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10348 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10349 {
10350 ftype = build_function_type_list (void_type_node, ptr_type_node,
10351 ptr_type_node, NULL_TREE);
10352 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10353 local_define_builtin ("__cyg_profile_func_enter", ftype,
10354 BUILT_IN_PROFILE_FUNC_ENTER,
10355 "__cyg_profile_func_enter", 0);
10356 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10357 local_define_builtin ("__cyg_profile_func_exit", ftype,
10358 BUILT_IN_PROFILE_FUNC_EXIT,
10359 "__cyg_profile_func_exit", 0);
10360 }
10361
10362 /* The exception object and filter values from the runtime. The argument
10363 must be zero before exception lowering, i.e. from the front end. After
10364 exception lowering, it will be the region number for the exception
10365 landing pad. These functions are PURE instead of CONST to prevent
10366 them from being hoisted past the exception edge that will initialize
10367 its value in the landing pad. */
10368 ftype = build_function_type_list (ptr_type_node,
10369 integer_type_node, NULL_TREE);
10370 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10371 /* Only use TM_PURE if we have TM language support. */
10372 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10373 ecf_flags |= ECF_TM_PURE;
10374 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10375 "__builtin_eh_pointer", ecf_flags);
10376
10377 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10378 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10379 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10380 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10381
10382 ftype = build_function_type_list (void_type_node,
10383 integer_type_node, integer_type_node,
10384 NULL_TREE);
10385 local_define_builtin ("__builtin_eh_copy_values", ftype,
10386 BUILT_IN_EH_COPY_VALUES,
10387 "__builtin_eh_copy_values", ECF_NOTHROW);
10388
10389 /* Complex multiplication and division. These are handled as builtins
10390 rather than optabs because emit_library_call_value doesn't support
10391 complex. Further, we can do slightly better with folding these
10392 beasties if the real and complex parts of the arguments are separate. */
10393 {
10394 int mode;
10395
10396 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10397 {
10398 char mode_name_buf[4], *q;
10399 const char *p;
10400 enum built_in_function mcode, dcode;
10401 tree type, inner_type;
10402 const char *prefix = "__";
10403
10404 if (targetm.libfunc_gnu_prefix)
10405 prefix = "__gnu_";
10406
10407 type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10408 if (type == NULL)
10409 continue;
10410 inner_type = TREE_TYPE (type);
10411
10412 ftype = build_function_type_list (type, inner_type, inner_type,
10413 inner_type, inner_type, NULL_TREE);
10414
10415 mcode = ((enum built_in_function)
10416 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10417 dcode = ((enum built_in_function)
10418 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10419
10420 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10421 *q = TOLOWER (*p);
10422 *q = '\0';
10423
10424 /* For -ftrapping-math these should throw from a former
10425 -fnon-call-exception stmt. */
10426 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10427 NULL);
10428 local_define_builtin (built_in_names[mcode], ftype, mcode,
10429 built_in_names[mcode],
10430 ECF_CONST | ECF_LEAF);
10431
10432 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10433 NULL);
10434 local_define_builtin (built_in_names[dcode], ftype, dcode,
10435 built_in_names[dcode],
10436 ECF_CONST | ECF_LEAF);
10437 }
10438 }
10439
10440 init_internal_fns ();
10441 }
10442
10443 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10444 better way.
10445
10446 If we requested a pointer to a vector, build up the pointers that
10447 we stripped off while looking for the inner type. Similarly for
10448 return values from functions.
10449
10450 The argument TYPE is the top of the chain, and BOTTOM is the
10451 new type which we will point to. */
10452
10453 tree
10454 reconstruct_complex_type (tree type, tree bottom)
10455 {
10456 tree inner, outer;
10457
10458 if (TREE_CODE (type) == POINTER_TYPE)
10459 {
10460 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10461 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10462 TYPE_REF_CAN_ALIAS_ALL (type));
10463 }
10464 else if (TREE_CODE (type) == REFERENCE_TYPE)
10465 {
10466 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10467 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10468 TYPE_REF_CAN_ALIAS_ALL (type));
10469 }
10470 else if (TREE_CODE (type) == ARRAY_TYPE)
10471 {
10472 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10473 outer = build_array_type (inner, TYPE_DOMAIN (type));
10474 }
10475 else if (TREE_CODE (type) == FUNCTION_TYPE)
10476 {
10477 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10478 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10479 }
10480 else if (TREE_CODE (type) == METHOD_TYPE)
10481 {
10482 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10483 /* The build_method_type_directly() routine prepends 'this' to argument list,
10484 so we must compensate by getting rid of it. */
10485 outer
10486 = build_method_type_directly
10487 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10488 inner,
10489 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10490 }
10491 else if (TREE_CODE (type) == OFFSET_TYPE)
10492 {
10493 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10494 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10495 }
10496 else
10497 return bottom;
10498
10499 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10500 TYPE_QUALS (type));
10501 }
10502
10503 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10504 the inner type. */
10505 tree
10506 build_vector_type_for_mode (tree innertype, machine_mode mode)
10507 {
10508 poly_int64 nunits;
10509 unsigned int bitsize;
10510
10511 switch (GET_MODE_CLASS (mode))
10512 {
10513 case MODE_VECTOR_BOOL:
10514 case MODE_VECTOR_INT:
10515 case MODE_VECTOR_FLOAT:
10516 case MODE_VECTOR_FRACT:
10517 case MODE_VECTOR_UFRACT:
10518 case MODE_VECTOR_ACCUM:
10519 case MODE_VECTOR_UACCUM:
10520 nunits = GET_MODE_NUNITS (mode);
10521 break;
10522
10523 case MODE_INT:
10524 /* Check that there are no leftover bits. */
10525 bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
10526 gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10527 nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10528 break;
10529
10530 default:
10531 gcc_unreachable ();
10532 }
10533
10534 return make_vector_type (innertype, nunits, mode);
10535 }
10536
10537 /* Similarly, but takes the inner type and number of units, which must be
10538 a power of two. */
10539
10540 tree
10541 build_vector_type (tree innertype, poly_int64 nunits)
10542 {
10543 return make_vector_type (innertype, nunits, VOIDmode);
10544 }
10545
10546 /* Build truth vector with specified length and number of units. */
10547
10548 tree
10549 build_truth_vector_type (poly_uint64 nunits, poly_uint64 vector_size)
10550 {
10551 machine_mode mask_mode
10552 = targetm.vectorize.get_mask_mode (nunits, vector_size).else_blk ();
10553
10554 poly_uint64 vsize;
10555 if (mask_mode == BLKmode)
10556 vsize = vector_size * BITS_PER_UNIT;
10557 else
10558 vsize = GET_MODE_BITSIZE (mask_mode);
10559
10560 unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
10561
10562 tree bool_type = build_nonstandard_boolean_type (esize);
10563
10564 return make_vector_type (bool_type, nunits, mask_mode);
10565 }
10566
10567 /* Returns a vector type corresponding to a comparison of VECTYPE. */
10568
10569 tree
10570 build_same_sized_truth_vector_type (tree vectype)
10571 {
10572 if (VECTOR_BOOLEAN_TYPE_P (vectype))
10573 return vectype;
10574
10575 poly_uint64 size = GET_MODE_SIZE (TYPE_MODE (vectype));
10576
10577 if (known_eq (size, 0U))
10578 size = tree_to_uhwi (TYPE_SIZE_UNIT (vectype));
10579
10580 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype), size);
10581 }
10582
10583 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
10584
10585 tree
10586 build_opaque_vector_type (tree innertype, poly_int64 nunits)
10587 {
10588 tree t = make_vector_type (innertype, nunits, VOIDmode);
10589 tree cand;
10590 /* We always build the non-opaque variant before the opaque one,
10591 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10592 cand = TYPE_NEXT_VARIANT (t);
10593 if (cand
10594 && TYPE_VECTOR_OPAQUE (cand)
10595 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10596 return cand;
10597 /* Othewise build a variant type and make sure to queue it after
10598 the non-opaque type. */
10599 cand = build_distinct_type_copy (t);
10600 TYPE_VECTOR_OPAQUE (cand) = true;
10601 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10602 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10603 TYPE_NEXT_VARIANT (t) = cand;
10604 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10605 return cand;
10606 }
10607
10608 /* Return the value of element I of VECTOR_CST T as a wide_int. */
10609
10610 wide_int
10611 vector_cst_int_elt (const_tree t, unsigned int i)
10612 {
10613 /* First handle elements that are directly encoded. */
10614 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10615 if (i < encoded_nelts)
10616 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, i));
10617
10618 /* Identify the pattern that contains element I and work out the index of
10619 the last encoded element for that pattern. */
10620 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10621 unsigned int pattern = i % npatterns;
10622 unsigned int count = i / npatterns;
10623 unsigned int final_i = encoded_nelts - npatterns + pattern;
10624
10625 /* If there are no steps, the final encoded value is the right one. */
10626 if (!VECTOR_CST_STEPPED_P (t))
10627 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
10628
10629 /* Otherwise work out the value from the last two encoded elements. */
10630 tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
10631 tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
10632 wide_int diff = wi::to_wide (v2) - wi::to_wide (v1);
10633 return wi::to_wide (v2) + (count - 2) * diff;
10634 }
10635
10636 /* Return the value of element I of VECTOR_CST T. */
10637
10638 tree
10639 vector_cst_elt (const_tree t, unsigned int i)
10640 {
10641 /* First handle elements that are directly encoded. */
10642 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10643 if (i < encoded_nelts)
10644 return VECTOR_CST_ENCODED_ELT (t, i);
10645
10646 /* If there are no steps, the final encoded value is the right one. */
10647 if (!VECTOR_CST_STEPPED_P (t))
10648 {
10649 /* Identify the pattern that contains element I and work out the index of
10650 the last encoded element for that pattern. */
10651 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10652 unsigned int pattern = i % npatterns;
10653 unsigned int final_i = encoded_nelts - npatterns + pattern;
10654 return VECTOR_CST_ENCODED_ELT (t, final_i);
10655 }
10656
10657 /* Otherwise work out the value from the last two encoded elements. */
10658 return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
10659 vector_cst_int_elt (t, i));
10660 }
10661
10662 /* Given an initializer INIT, return TRUE if INIT is zero or some
10663 aggregate of zeros. Otherwise return FALSE. If NONZERO is not
10664 null, set *NONZERO if and only if INIT is known not to be all
10665 zeros. The combination of return value of false and *NONZERO
10666 false implies that INIT may but need not be all zeros. Other
10667 combinations indicate definitive answers. */
10668
10669 bool
10670 initializer_zerop (const_tree init, bool *nonzero /* = NULL */)
10671 {
10672 bool dummy;
10673 if (!nonzero)
10674 nonzero = &dummy;
10675
10676 /* Conservatively clear NONZERO and set it only if INIT is definitely
10677 not all zero. */
10678 *nonzero = false;
10679
10680 STRIP_NOPS (init);
10681
10682 unsigned HOST_WIDE_INT off = 0;
10683
10684 switch (TREE_CODE (init))
10685 {
10686 case INTEGER_CST:
10687 if (integer_zerop (init))
10688 return true;
10689
10690 *nonzero = true;
10691 return false;
10692
10693 case REAL_CST:
10694 /* ??? Note that this is not correct for C4X float formats. There,
10695 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10696 negative exponent. */
10697 if (real_zerop (init)
10698 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init)))
10699 return true;
10700
10701 *nonzero = true;
10702 return false;
10703
10704 case FIXED_CST:
10705 if (fixed_zerop (init))
10706 return true;
10707
10708 *nonzero = true;
10709 return false;
10710
10711 case COMPLEX_CST:
10712 if (integer_zerop (init)
10713 || (real_zerop (init)
10714 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10715 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init)))))
10716 return true;
10717
10718 *nonzero = true;
10719 return false;
10720
10721 case VECTOR_CST:
10722 if (VECTOR_CST_NPATTERNS (init) == 1
10723 && VECTOR_CST_DUPLICATE_P (init)
10724 && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)))
10725 return true;
10726
10727 *nonzero = true;
10728 return false;
10729
10730 case CONSTRUCTOR:
10731 {
10732 if (TREE_CLOBBER_P (init))
10733 return false;
10734
10735 unsigned HOST_WIDE_INT idx;
10736 tree elt;
10737
10738 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10739 if (!initializer_zerop (elt, nonzero))
10740 return false;
10741
10742 return true;
10743 }
10744
10745 case MEM_REF:
10746 {
10747 tree arg = TREE_OPERAND (init, 0);
10748 if (TREE_CODE (arg) != ADDR_EXPR)
10749 return false;
10750 tree offset = TREE_OPERAND (init, 1);
10751 if (TREE_CODE (offset) != INTEGER_CST
10752 || !tree_fits_uhwi_p (offset))
10753 return false;
10754 off = tree_to_uhwi (offset);
10755 if (INT_MAX < off)
10756 return false;
10757 arg = TREE_OPERAND (arg, 0);
10758 if (TREE_CODE (arg) != STRING_CST)
10759 return false;
10760 init = arg;
10761 }
10762 /* Fall through. */
10763
10764 case STRING_CST:
10765 {
10766 gcc_assert (off <= INT_MAX);
10767
10768 int i = off;
10769 int n = TREE_STRING_LENGTH (init);
10770 if (n <= i)
10771 return false;
10772
10773 /* We need to loop through all elements to handle cases like
10774 "\0" and "\0foobar". */
10775 for (i = 0; i < n; ++i)
10776 if (TREE_STRING_POINTER (init)[i] != '\0')
10777 {
10778 *nonzero = true;
10779 return false;
10780 }
10781
10782 return true;
10783 }
10784
10785 default:
10786 return false;
10787 }
10788 }
10789
10790 /* Check if vector VEC consists of all the equal elements and
10791 that the number of elements corresponds to the type of VEC.
10792 The function returns first element of the vector
10793 or NULL_TREE if the vector is not uniform. */
10794 tree
10795 uniform_vector_p (const_tree vec)
10796 {
10797 tree first, t;
10798 unsigned HOST_WIDE_INT i, nelts;
10799
10800 if (vec == NULL_TREE)
10801 return NULL_TREE;
10802
10803 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10804
10805 if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
10806 return TREE_OPERAND (vec, 0);
10807
10808 else if (TREE_CODE (vec) == VECTOR_CST)
10809 {
10810 if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
10811 return VECTOR_CST_ENCODED_ELT (vec, 0);
10812 return NULL_TREE;
10813 }
10814
10815 else if (TREE_CODE (vec) == CONSTRUCTOR
10816 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
10817 {
10818 first = error_mark_node;
10819
10820 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10821 {
10822 if (i == 0)
10823 {
10824 first = t;
10825 continue;
10826 }
10827 if (!operand_equal_p (first, t, 0))
10828 return NULL_TREE;
10829 }
10830 if (i != nelts)
10831 return NULL_TREE;
10832
10833 return first;
10834 }
10835
10836 return NULL_TREE;
10837 }
10838
10839 /* Build an empty statement at location LOC. */
10840
10841 tree
10842 build_empty_stmt (location_t loc)
10843 {
10844 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10845 SET_EXPR_LOCATION (t, loc);
10846 return t;
10847 }
10848
10849
10850 /* Build an OpenMP clause with code CODE. LOC is the location of the
10851 clause. */
10852
10853 tree
10854 build_omp_clause (location_t loc, enum omp_clause_code code)
10855 {
10856 tree t;
10857 int size, length;
10858
10859 length = omp_clause_num_ops[code];
10860 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10861
10862 record_node_allocation_statistics (OMP_CLAUSE, size);
10863
10864 t = (tree) ggc_internal_alloc (size);
10865 memset (t, 0, size);
10866 TREE_SET_CODE (t, OMP_CLAUSE);
10867 OMP_CLAUSE_SET_CODE (t, code);
10868 OMP_CLAUSE_LOCATION (t) = loc;
10869
10870 return t;
10871 }
10872
10873 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10874 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10875 Except for the CODE and operand count field, other storage for the
10876 object is initialized to zeros. */
10877
10878 tree
10879 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
10880 {
10881 tree t;
10882 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10883
10884 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10885 gcc_assert (len >= 1);
10886
10887 record_node_allocation_statistics (code, length);
10888
10889 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10890
10891 TREE_SET_CODE (t, code);
10892
10893 /* Can't use TREE_OPERAND to store the length because if checking is
10894 enabled, it will try to check the length before we store it. :-P */
10895 t->exp.operands[0] = build_int_cst (sizetype, len);
10896
10897 return t;
10898 }
10899
10900 /* Helper function for build_call_* functions; build a CALL_EXPR with
10901 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10902 the argument slots. */
10903
10904 static tree
10905 build_call_1 (tree return_type, tree fn, int nargs)
10906 {
10907 tree t;
10908
10909 t = build_vl_exp (CALL_EXPR, nargs + 3);
10910 TREE_TYPE (t) = return_type;
10911 CALL_EXPR_FN (t) = fn;
10912 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10913
10914 return t;
10915 }
10916
10917 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10918 FN and a null static chain slot. NARGS is the number of call arguments
10919 which are specified as "..." arguments. */
10920
10921 tree
10922 build_call_nary (tree return_type, tree fn, int nargs, ...)
10923 {
10924 tree ret;
10925 va_list args;
10926 va_start (args, nargs);
10927 ret = build_call_valist (return_type, fn, nargs, args);
10928 va_end (args);
10929 return ret;
10930 }
10931
10932 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10933 FN and a null static chain slot. NARGS is the number of call arguments
10934 which are specified as a va_list ARGS. */
10935
10936 tree
10937 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10938 {
10939 tree t;
10940 int i;
10941
10942 t = build_call_1 (return_type, fn, nargs);
10943 for (i = 0; i < nargs; i++)
10944 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10945 process_call_operands (t);
10946 return t;
10947 }
10948
10949 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10950 FN and a null static chain slot. NARGS is the number of call arguments
10951 which are specified as a tree array ARGS. */
10952
10953 tree
10954 build_call_array_loc (location_t loc, tree return_type, tree fn,
10955 int nargs, const tree *args)
10956 {
10957 tree t;
10958 int i;
10959
10960 t = build_call_1 (return_type, fn, nargs);
10961 for (i = 0; i < nargs; i++)
10962 CALL_EXPR_ARG (t, i) = args[i];
10963 process_call_operands (t);
10964 SET_EXPR_LOCATION (t, loc);
10965 return t;
10966 }
10967
10968 /* Like build_call_array, but takes a vec. */
10969
10970 tree
10971 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10972 {
10973 tree ret, t;
10974 unsigned int ix;
10975
10976 ret = build_call_1 (return_type, fn, vec_safe_length (args));
10977 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10978 CALL_EXPR_ARG (ret, ix) = t;
10979 process_call_operands (ret);
10980 return ret;
10981 }
10982
10983 /* Conveniently construct a function call expression. FNDECL names the
10984 function to be called and N arguments are passed in the array
10985 ARGARRAY. */
10986
10987 tree
10988 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
10989 {
10990 tree fntype = TREE_TYPE (fndecl);
10991 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
10992
10993 return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
10994 }
10995
10996 /* Conveniently construct a function call expression. FNDECL names the
10997 function to be called and the arguments are passed in the vector
10998 VEC. */
10999
11000 tree
11001 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
11002 {
11003 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
11004 vec_safe_address (vec));
11005 }
11006
11007
11008 /* Conveniently construct a function call expression. FNDECL names the
11009 function to be called, N is the number of arguments, and the "..."
11010 parameters are the argument expressions. */
11011
11012 tree
11013 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
11014 {
11015 va_list ap;
11016 tree *argarray = XALLOCAVEC (tree, n);
11017 int i;
11018
11019 va_start (ap, n);
11020 for (i = 0; i < n; i++)
11021 argarray[i] = va_arg (ap, tree);
11022 va_end (ap);
11023 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11024 }
11025
11026 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
11027 varargs macros aren't supported by all bootstrap compilers. */
11028
11029 tree
11030 build_call_expr (tree fndecl, int n, ...)
11031 {
11032 va_list ap;
11033 tree *argarray = XALLOCAVEC (tree, n);
11034 int i;
11035
11036 va_start (ap, n);
11037 for (i = 0; i < n; i++)
11038 argarray[i] = va_arg (ap, tree);
11039 va_end (ap);
11040 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
11041 }
11042
11043 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
11044 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
11045 It will get gimplified later into an ordinary internal function. */
11046
11047 tree
11048 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
11049 tree type, int n, const tree *args)
11050 {
11051 tree t = build_call_1 (type, NULL_TREE, n);
11052 for (int i = 0; i < n; ++i)
11053 CALL_EXPR_ARG (t, i) = args[i];
11054 SET_EXPR_LOCATION (t, loc);
11055 CALL_EXPR_IFN (t) = ifn;
11056 return t;
11057 }
11058
11059 /* Build internal call expression. This is just like CALL_EXPR, except
11060 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
11061 internal function. */
11062
11063 tree
11064 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
11065 tree type, int n, ...)
11066 {
11067 va_list ap;
11068 tree *argarray = XALLOCAVEC (tree, n);
11069 int i;
11070
11071 va_start (ap, n);
11072 for (i = 0; i < n; i++)
11073 argarray[i] = va_arg (ap, tree);
11074 va_end (ap);
11075 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11076 }
11077
11078 /* Return a function call to FN, if the target is guaranteed to support it,
11079 or null otherwise.
11080
11081 N is the number of arguments, passed in the "...", and TYPE is the
11082 type of the return value. */
11083
11084 tree
11085 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
11086 int n, ...)
11087 {
11088 va_list ap;
11089 tree *argarray = XALLOCAVEC (tree, n);
11090 int i;
11091
11092 va_start (ap, n);
11093 for (i = 0; i < n; i++)
11094 argarray[i] = va_arg (ap, tree);
11095 va_end (ap);
11096 if (internal_fn_p (fn))
11097 {
11098 internal_fn ifn = as_internal_fn (fn);
11099 if (direct_internal_fn_p (ifn))
11100 {
11101 tree_pair types = direct_internal_fn_types (ifn, type, argarray);
11102 if (!direct_internal_fn_supported_p (ifn, types,
11103 OPTIMIZE_FOR_BOTH))
11104 return NULL_TREE;
11105 }
11106 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11107 }
11108 else
11109 {
11110 tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
11111 if (!fndecl)
11112 return NULL_TREE;
11113 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11114 }
11115 }
11116
11117 /* Return a function call to the appropriate builtin alloca variant.
11118
11119 SIZE is the size to be allocated. ALIGN, if non-zero, is the requested
11120 alignment of the allocated area. MAX_SIZE, if non-negative, is an upper
11121 bound for SIZE in case it is not a fixed value. */
11122
11123 tree
11124 build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
11125 {
11126 if (max_size >= 0)
11127 {
11128 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
11129 return
11130 build_call_expr (t, 3, size, size_int (align), size_int (max_size));
11131 }
11132 else if (align > 0)
11133 {
11134 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
11135 return build_call_expr (t, 2, size, size_int (align));
11136 }
11137 else
11138 {
11139 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
11140 return build_call_expr (t, 1, size);
11141 }
11142 }
11143
11144 /* Create a new constant string literal and return a char* pointer to it.
11145 The STRING_CST value is the LEN characters at STR. */
11146 tree
11147 build_string_literal (int len, const char *str)
11148 {
11149 tree t, elem, index, type;
11150
11151 t = build_string (len, str);
11152 elem = build_type_variant (char_type_node, 1, 0);
11153 index = build_index_type (size_int (len - 1));
11154 type = build_array_type (elem, index);
11155 TREE_TYPE (t) = type;
11156 TREE_CONSTANT (t) = 1;
11157 TREE_READONLY (t) = 1;
11158 TREE_STATIC (t) = 1;
11159
11160 type = build_pointer_type (elem);
11161 t = build1 (ADDR_EXPR, type,
11162 build4 (ARRAY_REF, elem,
11163 t, integer_zero_node, NULL_TREE, NULL_TREE));
11164 return t;
11165 }
11166
11167
11168
11169 /* Return true if T (assumed to be a DECL) must be assigned a memory
11170 location. */
11171
11172 bool
11173 needs_to_live_in_memory (const_tree t)
11174 {
11175 return (TREE_ADDRESSABLE (t)
11176 || is_global_var (t)
11177 || (TREE_CODE (t) == RESULT_DECL
11178 && !DECL_BY_REFERENCE (t)
11179 && aggregate_value_p (t, current_function_decl)));
11180 }
11181
11182 /* Return value of a constant X and sign-extend it. */
11183
11184 HOST_WIDE_INT
11185 int_cst_value (const_tree x)
11186 {
11187 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
11188 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
11189
11190 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
11191 gcc_assert (cst_and_fits_in_hwi (x));
11192
11193 if (bits < HOST_BITS_PER_WIDE_INT)
11194 {
11195 bool negative = ((val >> (bits - 1)) & 1) != 0;
11196 if (negative)
11197 val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
11198 else
11199 val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
11200 }
11201
11202 return val;
11203 }
11204
11205 /* If TYPE is an integral or pointer type, return an integer type with
11206 the same precision which is unsigned iff UNSIGNEDP is true, or itself
11207 if TYPE is already an integer type of signedness UNSIGNEDP. */
11208
11209 tree
11210 signed_or_unsigned_type_for (int unsignedp, tree type)
11211 {
11212 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
11213 return type;
11214
11215 if (TREE_CODE (type) == VECTOR_TYPE)
11216 {
11217 tree inner = TREE_TYPE (type);
11218 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11219 if (!inner2)
11220 return NULL_TREE;
11221 if (inner == inner2)
11222 return type;
11223 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
11224 }
11225
11226 if (!INTEGRAL_TYPE_P (type)
11227 && !POINTER_TYPE_P (type)
11228 && TREE_CODE (type) != OFFSET_TYPE)
11229 return NULL_TREE;
11230
11231 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
11232 }
11233
11234 /* If TYPE is an integral or pointer type, return an integer type with
11235 the same precision which is unsigned, or itself if TYPE is already an
11236 unsigned integer type. */
11237
11238 tree
11239 unsigned_type_for (tree type)
11240 {
11241 return signed_or_unsigned_type_for (1, type);
11242 }
11243
11244 /* If TYPE is an integral or pointer type, return an integer type with
11245 the same precision which is signed, or itself if TYPE is already a
11246 signed integer type. */
11247
11248 tree
11249 signed_type_for (tree type)
11250 {
11251 return signed_or_unsigned_type_for (0, type);
11252 }
11253
11254 /* If TYPE is a vector type, return a signed integer vector type with the
11255 same width and number of subparts. Otherwise return boolean_type_node. */
11256
11257 tree
11258 truth_type_for (tree type)
11259 {
11260 if (TREE_CODE (type) == VECTOR_TYPE)
11261 {
11262 if (VECTOR_BOOLEAN_TYPE_P (type))
11263 return type;
11264 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (type),
11265 GET_MODE_SIZE (TYPE_MODE (type)));
11266 }
11267 else
11268 return boolean_type_node;
11269 }
11270
11271 /* Returns the largest value obtainable by casting something in INNER type to
11272 OUTER type. */
11273
11274 tree
11275 upper_bound_in_type (tree outer, tree inner)
11276 {
11277 unsigned int det = 0;
11278 unsigned oprec = TYPE_PRECISION (outer);
11279 unsigned iprec = TYPE_PRECISION (inner);
11280 unsigned prec;
11281
11282 /* Compute a unique number for every combination. */
11283 det |= (oprec > iprec) ? 4 : 0;
11284 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
11285 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
11286
11287 /* Determine the exponent to use. */
11288 switch (det)
11289 {
11290 case 0:
11291 case 1:
11292 /* oprec <= iprec, outer: signed, inner: don't care. */
11293 prec = oprec - 1;
11294 break;
11295 case 2:
11296 case 3:
11297 /* oprec <= iprec, outer: unsigned, inner: don't care. */
11298 prec = oprec;
11299 break;
11300 case 4:
11301 /* oprec > iprec, outer: signed, inner: signed. */
11302 prec = iprec - 1;
11303 break;
11304 case 5:
11305 /* oprec > iprec, outer: signed, inner: unsigned. */
11306 prec = iprec;
11307 break;
11308 case 6:
11309 /* oprec > iprec, outer: unsigned, inner: signed. */
11310 prec = oprec;
11311 break;
11312 case 7:
11313 /* oprec > iprec, outer: unsigned, inner: unsigned. */
11314 prec = iprec;
11315 break;
11316 default:
11317 gcc_unreachable ();
11318 }
11319
11320 return wide_int_to_tree (outer,
11321 wi::mask (prec, false, TYPE_PRECISION (outer)));
11322 }
11323
11324 /* Returns the smallest value obtainable by casting something in INNER type to
11325 OUTER type. */
11326
11327 tree
11328 lower_bound_in_type (tree outer, tree inner)
11329 {
11330 unsigned oprec = TYPE_PRECISION (outer);
11331 unsigned iprec = TYPE_PRECISION (inner);
11332
11333 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11334 and obtain 0. */
11335 if (TYPE_UNSIGNED (outer)
11336 /* If we are widening something of an unsigned type, OUTER type
11337 contains all values of INNER type. In particular, both INNER
11338 and OUTER types have zero in common. */
11339 || (oprec > iprec && TYPE_UNSIGNED (inner)))
11340 return build_int_cst (outer, 0);
11341 else
11342 {
11343 /* If we are widening a signed type to another signed type, we
11344 want to obtain -2^^(iprec-1). If we are keeping the
11345 precision or narrowing to a signed type, we want to obtain
11346 -2^(oprec-1). */
11347 unsigned prec = oprec > iprec ? iprec : oprec;
11348 return wide_int_to_tree (outer,
11349 wi::mask (prec - 1, true,
11350 TYPE_PRECISION (outer)));
11351 }
11352 }
11353
11354 /* Return nonzero if two operands that are suitable for PHI nodes are
11355 necessarily equal. Specifically, both ARG0 and ARG1 must be either
11356 SSA_NAME or invariant. Note that this is strictly an optimization.
11357 That is, callers of this function can directly call operand_equal_p
11358 and get the same result, only slower. */
11359
11360 int
11361 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
11362 {
11363 if (arg0 == arg1)
11364 return 1;
11365 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
11366 return 0;
11367 return operand_equal_p (arg0, arg1, 0);
11368 }
11369
11370 /* Returns number of zeros at the end of binary representation of X. */
11371
11372 tree
11373 num_ending_zeros (const_tree x)
11374 {
11375 return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
11376 }
11377
11378
11379 #define WALK_SUBTREE(NODE) \
11380 do \
11381 { \
11382 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
11383 if (result) \
11384 return result; \
11385 } \
11386 while (0)
11387
11388 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11389 be walked whenever a type is seen in the tree. Rest of operands and return
11390 value are as for walk_tree. */
11391
11392 static tree
11393 walk_type_fields (tree type, walk_tree_fn func, void *data,
11394 hash_set<tree> *pset, walk_tree_lh lh)
11395 {
11396 tree result = NULL_TREE;
11397
11398 switch (TREE_CODE (type))
11399 {
11400 case POINTER_TYPE:
11401 case REFERENCE_TYPE:
11402 case VECTOR_TYPE:
11403 /* We have to worry about mutually recursive pointers. These can't
11404 be written in C. They can in Ada. It's pathological, but
11405 there's an ACATS test (c38102a) that checks it. Deal with this
11406 by checking if we're pointing to another pointer, that one
11407 points to another pointer, that one does too, and we have no htab.
11408 If so, get a hash table. We check three levels deep to avoid
11409 the cost of the hash table if we don't need one. */
11410 if (POINTER_TYPE_P (TREE_TYPE (type))
11411 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
11412 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
11413 && !pset)
11414 {
11415 result = walk_tree_without_duplicates (&TREE_TYPE (type),
11416 func, data);
11417 if (result)
11418 return result;
11419
11420 break;
11421 }
11422
11423 /* fall through */
11424
11425 case COMPLEX_TYPE:
11426 WALK_SUBTREE (TREE_TYPE (type));
11427 break;
11428
11429 case METHOD_TYPE:
11430 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
11431
11432 /* Fall through. */
11433
11434 case FUNCTION_TYPE:
11435 WALK_SUBTREE (TREE_TYPE (type));
11436 {
11437 tree arg;
11438
11439 /* We never want to walk into default arguments. */
11440 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
11441 WALK_SUBTREE (TREE_VALUE (arg));
11442 }
11443 break;
11444
11445 case ARRAY_TYPE:
11446 /* Don't follow this nodes's type if a pointer for fear that
11447 we'll have infinite recursion. If we have a PSET, then we
11448 need not fear. */
11449 if (pset
11450 || (!POINTER_TYPE_P (TREE_TYPE (type))
11451 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
11452 WALK_SUBTREE (TREE_TYPE (type));
11453 WALK_SUBTREE (TYPE_DOMAIN (type));
11454 break;
11455
11456 case OFFSET_TYPE:
11457 WALK_SUBTREE (TREE_TYPE (type));
11458 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
11459 break;
11460
11461 default:
11462 break;
11463 }
11464
11465 return NULL_TREE;
11466 }
11467
11468 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
11469 called with the DATA and the address of each sub-tree. If FUNC returns a
11470 non-NULL value, the traversal is stopped, and the value returned by FUNC
11471 is returned. If PSET is non-NULL it is used to record the nodes visited,
11472 and to avoid visiting a node more than once. */
11473
11474 tree
11475 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
11476 hash_set<tree> *pset, walk_tree_lh lh)
11477 {
11478 enum tree_code code;
11479 int walk_subtrees;
11480 tree result;
11481
11482 #define WALK_SUBTREE_TAIL(NODE) \
11483 do \
11484 { \
11485 tp = & (NODE); \
11486 goto tail_recurse; \
11487 } \
11488 while (0)
11489
11490 tail_recurse:
11491 /* Skip empty subtrees. */
11492 if (!*tp)
11493 return NULL_TREE;
11494
11495 /* Don't walk the same tree twice, if the user has requested
11496 that we avoid doing so. */
11497 if (pset && pset->add (*tp))
11498 return NULL_TREE;
11499
11500 /* Call the function. */
11501 walk_subtrees = 1;
11502 result = (*func) (tp, &walk_subtrees, data);
11503
11504 /* If we found something, return it. */
11505 if (result)
11506 return result;
11507
11508 code = TREE_CODE (*tp);
11509
11510 /* Even if we didn't, FUNC may have decided that there was nothing
11511 interesting below this point in the tree. */
11512 if (!walk_subtrees)
11513 {
11514 /* But we still need to check our siblings. */
11515 if (code == TREE_LIST)
11516 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11517 else if (code == OMP_CLAUSE)
11518 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11519 else
11520 return NULL_TREE;
11521 }
11522
11523 if (lh)
11524 {
11525 result = (*lh) (tp, &walk_subtrees, func, data, pset);
11526 if (result || !walk_subtrees)
11527 return result;
11528 }
11529
11530 switch (code)
11531 {
11532 case ERROR_MARK:
11533 case IDENTIFIER_NODE:
11534 case INTEGER_CST:
11535 case REAL_CST:
11536 case FIXED_CST:
11537 case VECTOR_CST:
11538 case STRING_CST:
11539 case BLOCK:
11540 case PLACEHOLDER_EXPR:
11541 case SSA_NAME:
11542 case FIELD_DECL:
11543 case RESULT_DECL:
11544 /* None of these have subtrees other than those already walked
11545 above. */
11546 break;
11547
11548 case TREE_LIST:
11549 WALK_SUBTREE (TREE_VALUE (*tp));
11550 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11551 break;
11552
11553 case TREE_VEC:
11554 {
11555 int len = TREE_VEC_LENGTH (*tp);
11556
11557 if (len == 0)
11558 break;
11559
11560 /* Walk all elements but the first. */
11561 while (--len)
11562 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
11563
11564 /* Now walk the first one as a tail call. */
11565 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
11566 }
11567
11568 case COMPLEX_CST:
11569 WALK_SUBTREE (TREE_REALPART (*tp));
11570 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
11571
11572 case CONSTRUCTOR:
11573 {
11574 unsigned HOST_WIDE_INT idx;
11575 constructor_elt *ce;
11576
11577 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
11578 idx++)
11579 WALK_SUBTREE (ce->value);
11580 }
11581 break;
11582
11583 case SAVE_EXPR:
11584 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
11585
11586 case BIND_EXPR:
11587 {
11588 tree decl;
11589 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11590 {
11591 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11592 into declarations that are just mentioned, rather than
11593 declared; they don't really belong to this part of the tree.
11594 And, we can see cycles: the initializer for a declaration
11595 can refer to the declaration itself. */
11596 WALK_SUBTREE (DECL_INITIAL (decl));
11597 WALK_SUBTREE (DECL_SIZE (decl));
11598 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11599 }
11600 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11601 }
11602
11603 case STATEMENT_LIST:
11604 {
11605 tree_stmt_iterator i;
11606 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11607 WALK_SUBTREE (*tsi_stmt_ptr (i));
11608 }
11609 break;
11610
11611 case OMP_CLAUSE:
11612 switch (OMP_CLAUSE_CODE (*tp))
11613 {
11614 case OMP_CLAUSE_GANG:
11615 case OMP_CLAUSE__GRIDDIM_:
11616 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11617 /* FALLTHRU */
11618
11619 case OMP_CLAUSE_ASYNC:
11620 case OMP_CLAUSE_WAIT:
11621 case OMP_CLAUSE_WORKER:
11622 case OMP_CLAUSE_VECTOR:
11623 case OMP_CLAUSE_NUM_GANGS:
11624 case OMP_CLAUSE_NUM_WORKERS:
11625 case OMP_CLAUSE_VECTOR_LENGTH:
11626 case OMP_CLAUSE_PRIVATE:
11627 case OMP_CLAUSE_SHARED:
11628 case OMP_CLAUSE_FIRSTPRIVATE:
11629 case OMP_CLAUSE_COPYIN:
11630 case OMP_CLAUSE_COPYPRIVATE:
11631 case OMP_CLAUSE_FINAL:
11632 case OMP_CLAUSE_IF:
11633 case OMP_CLAUSE_NUM_THREADS:
11634 case OMP_CLAUSE_SCHEDULE:
11635 case OMP_CLAUSE_UNIFORM:
11636 case OMP_CLAUSE_DEPEND:
11637 case OMP_CLAUSE_NUM_TEAMS:
11638 case OMP_CLAUSE_THREAD_LIMIT:
11639 case OMP_CLAUSE_DEVICE:
11640 case OMP_CLAUSE_DIST_SCHEDULE:
11641 case OMP_CLAUSE_SAFELEN:
11642 case OMP_CLAUSE_SIMDLEN:
11643 case OMP_CLAUSE_ORDERED:
11644 case OMP_CLAUSE_PRIORITY:
11645 case OMP_CLAUSE_GRAINSIZE:
11646 case OMP_CLAUSE_NUM_TASKS:
11647 case OMP_CLAUSE_HINT:
11648 case OMP_CLAUSE_TO_DECLARE:
11649 case OMP_CLAUSE_LINK:
11650 case OMP_CLAUSE_USE_DEVICE_PTR:
11651 case OMP_CLAUSE_IS_DEVICE_PTR:
11652 case OMP_CLAUSE__LOOPTEMP_:
11653 case OMP_CLAUSE__SIMDUID_:
11654 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11655 /* FALLTHRU */
11656
11657 case OMP_CLAUSE_INDEPENDENT:
11658 case OMP_CLAUSE_NOWAIT:
11659 case OMP_CLAUSE_DEFAULT:
11660 case OMP_CLAUSE_UNTIED:
11661 case OMP_CLAUSE_MERGEABLE:
11662 case OMP_CLAUSE_PROC_BIND:
11663 case OMP_CLAUSE_INBRANCH:
11664 case OMP_CLAUSE_NOTINBRANCH:
11665 case OMP_CLAUSE_FOR:
11666 case OMP_CLAUSE_PARALLEL:
11667 case OMP_CLAUSE_SECTIONS:
11668 case OMP_CLAUSE_TASKGROUP:
11669 case OMP_CLAUSE_NOGROUP:
11670 case OMP_CLAUSE_THREADS:
11671 case OMP_CLAUSE_SIMD:
11672 case OMP_CLAUSE_DEFAULTMAP:
11673 case OMP_CLAUSE_AUTO:
11674 case OMP_CLAUSE_SEQ:
11675 case OMP_CLAUSE_TILE:
11676 case OMP_CLAUSE__SIMT_:
11677 case OMP_CLAUSE_IF_PRESENT:
11678 case OMP_CLAUSE_FINALIZE:
11679 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11680
11681 case OMP_CLAUSE_LASTPRIVATE:
11682 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11683 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11684 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11685
11686 case OMP_CLAUSE_COLLAPSE:
11687 {
11688 int i;
11689 for (i = 0; i < 3; i++)
11690 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11691 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11692 }
11693
11694 case OMP_CLAUSE_LINEAR:
11695 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11696 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
11697 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
11698 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11699
11700 case OMP_CLAUSE_ALIGNED:
11701 case OMP_CLAUSE_FROM:
11702 case OMP_CLAUSE_TO:
11703 case OMP_CLAUSE_MAP:
11704 case OMP_CLAUSE__CACHE_:
11705 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11706 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11707 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11708
11709 case OMP_CLAUSE_REDUCTION:
11710 {
11711 int i;
11712 for (i = 0; i < 5; i++)
11713 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11714 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11715 }
11716
11717 default:
11718 gcc_unreachable ();
11719 }
11720 break;
11721
11722 case TARGET_EXPR:
11723 {
11724 int i, len;
11725
11726 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11727 But, we only want to walk once. */
11728 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11729 for (i = 0; i < len; ++i)
11730 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11731 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11732 }
11733
11734 case DECL_EXPR:
11735 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11736 defining. We only want to walk into these fields of a type in this
11737 case and not in the general case of a mere reference to the type.
11738
11739 The criterion is as follows: if the field can be an expression, it
11740 must be walked only here. This should be in keeping with the fields
11741 that are directly gimplified in gimplify_type_sizes in order for the
11742 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11743 variable-sized types.
11744
11745 Note that DECLs get walked as part of processing the BIND_EXPR. */
11746 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11747 {
11748 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11749 if (TREE_CODE (*type_p) == ERROR_MARK)
11750 return NULL_TREE;
11751
11752 /* Call the function for the type. See if it returns anything or
11753 doesn't want us to continue. If we are to continue, walk both
11754 the normal fields and those for the declaration case. */
11755 result = (*func) (type_p, &walk_subtrees, data);
11756 if (result || !walk_subtrees)
11757 return result;
11758
11759 /* But do not walk a pointed-to type since it may itself need to
11760 be walked in the declaration case if it isn't anonymous. */
11761 if (!POINTER_TYPE_P (*type_p))
11762 {
11763 result = walk_type_fields (*type_p, func, data, pset, lh);
11764 if (result)
11765 return result;
11766 }
11767
11768 /* If this is a record type, also walk the fields. */
11769 if (RECORD_OR_UNION_TYPE_P (*type_p))
11770 {
11771 tree field;
11772
11773 for (field = TYPE_FIELDS (*type_p); field;
11774 field = DECL_CHAIN (field))
11775 {
11776 /* We'd like to look at the type of the field, but we can
11777 easily get infinite recursion. So assume it's pointed
11778 to elsewhere in the tree. Also, ignore things that
11779 aren't fields. */
11780 if (TREE_CODE (field) != FIELD_DECL)
11781 continue;
11782
11783 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11784 WALK_SUBTREE (DECL_SIZE (field));
11785 WALK_SUBTREE (DECL_SIZE_UNIT (field));
11786 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
11787 WALK_SUBTREE (DECL_QUALIFIER (field));
11788 }
11789 }
11790
11791 /* Same for scalar types. */
11792 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
11793 || TREE_CODE (*type_p) == ENUMERAL_TYPE
11794 || TREE_CODE (*type_p) == INTEGER_TYPE
11795 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
11796 || TREE_CODE (*type_p) == REAL_TYPE)
11797 {
11798 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
11799 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
11800 }
11801
11802 WALK_SUBTREE (TYPE_SIZE (*type_p));
11803 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
11804 }
11805 /* FALLTHRU */
11806
11807 default:
11808 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11809 {
11810 int i, len;
11811
11812 /* Walk over all the sub-trees of this operand. */
11813 len = TREE_OPERAND_LENGTH (*tp);
11814
11815 /* Go through the subtrees. We need to do this in forward order so
11816 that the scope of a FOR_EXPR is handled properly. */
11817 if (len)
11818 {
11819 for (i = 0; i < len - 1; ++i)
11820 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11821 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
11822 }
11823 }
11824 /* If this is a type, walk the needed fields in the type. */
11825 else if (TYPE_P (*tp))
11826 return walk_type_fields (*tp, func, data, pset, lh);
11827 break;
11828 }
11829
11830 /* We didn't find what we were looking for. */
11831 return NULL_TREE;
11832
11833 #undef WALK_SUBTREE_TAIL
11834 }
11835 #undef WALK_SUBTREE
11836
11837 /* Like walk_tree, but does not walk duplicate nodes more than once. */
11838
11839 tree
11840 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11841 walk_tree_lh lh)
11842 {
11843 tree result;
11844
11845 hash_set<tree> pset;
11846 result = walk_tree_1 (tp, func, data, &pset, lh);
11847 return result;
11848 }
11849
11850
11851 tree
11852 tree_block (tree t)
11853 {
11854 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11855
11856 if (IS_EXPR_CODE_CLASS (c))
11857 return LOCATION_BLOCK (t->exp.locus);
11858 gcc_unreachable ();
11859 return NULL;
11860 }
11861
11862 void
11863 tree_set_block (tree t, tree b)
11864 {
11865 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11866
11867 if (IS_EXPR_CODE_CLASS (c))
11868 {
11869 t->exp.locus = set_block (t->exp.locus, b);
11870 }
11871 else
11872 gcc_unreachable ();
11873 }
11874
11875 /* Create a nameless artificial label and put it in the current
11876 function context. The label has a location of LOC. Returns the
11877 newly created label. */
11878
11879 tree
11880 create_artificial_label (location_t loc)
11881 {
11882 tree lab = build_decl (loc,
11883 LABEL_DECL, NULL_TREE, void_type_node);
11884
11885 DECL_ARTIFICIAL (lab) = 1;
11886 DECL_IGNORED_P (lab) = 1;
11887 DECL_CONTEXT (lab) = current_function_decl;
11888 return lab;
11889 }
11890
11891 /* Given a tree, try to return a useful variable name that we can use
11892 to prefix a temporary that is being assigned the value of the tree.
11893 I.E. given <temp> = &A, return A. */
11894
11895 const char *
11896 get_name (tree t)
11897 {
11898 tree stripped_decl;
11899
11900 stripped_decl = t;
11901 STRIP_NOPS (stripped_decl);
11902 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11903 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11904 else if (TREE_CODE (stripped_decl) == SSA_NAME)
11905 {
11906 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11907 if (!name)
11908 return NULL;
11909 return IDENTIFIER_POINTER (name);
11910 }
11911 else
11912 {
11913 switch (TREE_CODE (stripped_decl))
11914 {
11915 case ADDR_EXPR:
11916 return get_name (TREE_OPERAND (stripped_decl, 0));
11917 default:
11918 return NULL;
11919 }
11920 }
11921 }
11922
11923 /* Return true if TYPE has a variable argument list. */
11924
11925 bool
11926 stdarg_p (const_tree fntype)
11927 {
11928 function_args_iterator args_iter;
11929 tree n = NULL_TREE, t;
11930
11931 if (!fntype)
11932 return false;
11933
11934 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
11935 {
11936 n = t;
11937 }
11938
11939 return n != NULL_TREE && n != void_type_node;
11940 }
11941
11942 /* Return true if TYPE has a prototype. */
11943
11944 bool
11945 prototype_p (const_tree fntype)
11946 {
11947 tree t;
11948
11949 gcc_assert (fntype != NULL_TREE);
11950
11951 t = TYPE_ARG_TYPES (fntype);
11952 return (t != NULL_TREE);
11953 }
11954
11955 /* If BLOCK is inlined from an __attribute__((__artificial__))
11956 routine, return pointer to location from where it has been
11957 called. */
11958 location_t *
11959 block_nonartificial_location (tree block)
11960 {
11961 location_t *ret = NULL;
11962
11963 while (block && TREE_CODE (block) == BLOCK
11964 && BLOCK_ABSTRACT_ORIGIN (block))
11965 {
11966 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11967
11968 while (TREE_CODE (ao) == BLOCK
11969 && BLOCK_ABSTRACT_ORIGIN (ao)
11970 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11971 ao = BLOCK_ABSTRACT_ORIGIN (ao);
11972
11973 if (TREE_CODE (ao) == FUNCTION_DECL)
11974 {
11975 /* If AO is an artificial inline, point RET to the
11976 call site locus at which it has been inlined and continue
11977 the loop, in case AO's caller is also an artificial
11978 inline. */
11979 if (DECL_DECLARED_INLINE_P (ao)
11980 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11981 ret = &BLOCK_SOURCE_LOCATION (block);
11982 else
11983 break;
11984 }
11985 else if (TREE_CODE (ao) != BLOCK)
11986 break;
11987
11988 block = BLOCK_SUPERCONTEXT (block);
11989 }
11990 return ret;
11991 }
11992
11993
11994 /* If EXP is inlined from an __attribute__((__artificial__))
11995 function, return the location of the original call expression. */
11996
11997 location_t
11998 tree_nonartificial_location (tree exp)
11999 {
12000 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
12001
12002 if (loc)
12003 return *loc;
12004 else
12005 return EXPR_LOCATION (exp);
12006 }
12007
12008
12009 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
12010 nodes. */
12011
12012 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
12013
12014 hashval_t
12015 cl_option_hasher::hash (tree x)
12016 {
12017 const_tree const t = x;
12018 const char *p;
12019 size_t i;
12020 size_t len = 0;
12021 hashval_t hash = 0;
12022
12023 if (TREE_CODE (t) == OPTIMIZATION_NODE)
12024 {
12025 p = (const char *)TREE_OPTIMIZATION (t);
12026 len = sizeof (struct cl_optimization);
12027 }
12028
12029 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
12030 return cl_target_option_hash (TREE_TARGET_OPTION (t));
12031
12032 else
12033 gcc_unreachable ();
12034
12035 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
12036 something else. */
12037 for (i = 0; i < len; i++)
12038 if (p[i])
12039 hash = (hash << 4) ^ ((i << 2) | p[i]);
12040
12041 return hash;
12042 }
12043
12044 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
12045 TARGET_OPTION tree node) is the same as that given by *Y, which is the
12046 same. */
12047
12048 bool
12049 cl_option_hasher::equal (tree x, tree y)
12050 {
12051 const_tree const xt = x;
12052 const_tree const yt = y;
12053
12054 if (TREE_CODE (xt) != TREE_CODE (yt))
12055 return 0;
12056
12057 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
12058 return cl_optimization_option_eq (TREE_OPTIMIZATION (xt),
12059 TREE_OPTIMIZATION (yt));
12060 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
12061 return cl_target_option_eq (TREE_TARGET_OPTION (xt),
12062 TREE_TARGET_OPTION (yt));
12063 else
12064 gcc_unreachable ();
12065 }
12066
12067 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
12068
12069 tree
12070 build_optimization_node (struct gcc_options *opts)
12071 {
12072 tree t;
12073
12074 /* Use the cache of optimization nodes. */
12075
12076 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
12077 opts);
12078
12079 tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
12080 t = *slot;
12081 if (!t)
12082 {
12083 /* Insert this one into the hash table. */
12084 t = cl_optimization_node;
12085 *slot = t;
12086
12087 /* Make a new node for next time round. */
12088 cl_optimization_node = make_node (OPTIMIZATION_NODE);
12089 }
12090
12091 return t;
12092 }
12093
12094 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
12095
12096 tree
12097 build_target_option_node (struct gcc_options *opts)
12098 {
12099 tree t;
12100
12101 /* Use the cache of optimization nodes. */
12102
12103 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
12104 opts);
12105
12106 tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
12107 t = *slot;
12108 if (!t)
12109 {
12110 /* Insert this one into the hash table. */
12111 t = cl_target_option_node;
12112 *slot = t;
12113
12114 /* Make a new node for next time round. */
12115 cl_target_option_node = make_node (TARGET_OPTION_NODE);
12116 }
12117
12118 return t;
12119 }
12120
12121 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12122 so that they aren't saved during PCH writing. */
12123
12124 void
12125 prepare_target_option_nodes_for_pch (void)
12126 {
12127 hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
12128 for (; iter != cl_option_hash_table->end (); ++iter)
12129 if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
12130 TREE_TARGET_GLOBALS (*iter) = NULL;
12131 }
12132
12133 /* Determine the "ultimate origin" of a block. The block may be an inlined
12134 instance of an inlined instance of a block which is local to an inline
12135 function, so we have to trace all of the way back through the origin chain
12136 to find out what sort of node actually served as the original seed for the
12137 given block. */
12138
12139 tree
12140 block_ultimate_origin (const_tree block)
12141 {
12142 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
12143
12144 /* BLOCK_ABSTRACT_ORIGIN can point to itself; ignore that if
12145 we're trying to output the abstract instance of this function. */
12146 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
12147 return NULL_TREE;
12148
12149 if (immediate_origin == NULL_TREE)
12150 return NULL_TREE;
12151 else
12152 {
12153 tree ret_val;
12154 tree lookahead = immediate_origin;
12155
12156 do
12157 {
12158 ret_val = lookahead;
12159 lookahead = (TREE_CODE (ret_val) == BLOCK
12160 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
12161 }
12162 while (lookahead != NULL && lookahead != ret_val);
12163
12164 /* The block's abstract origin chain may not be the *ultimate* origin of
12165 the block. It could lead to a DECL that has an abstract origin set.
12166 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
12167 will give us if it has one). Note that DECL's abstract origins are
12168 supposed to be the most distant ancestor (or so decl_ultimate_origin
12169 claims), so we don't need to loop following the DECL origins. */
12170 if (DECL_P (ret_val))
12171 return DECL_ORIGIN (ret_val);
12172
12173 return ret_val;
12174 }
12175 }
12176
12177 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12178 no instruction. */
12179
12180 bool
12181 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
12182 {
12183 /* Do not strip casts into or out of differing address spaces. */
12184 if (POINTER_TYPE_P (outer_type)
12185 && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
12186 {
12187 if (!POINTER_TYPE_P (inner_type)
12188 || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
12189 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
12190 return false;
12191 }
12192 else if (POINTER_TYPE_P (inner_type)
12193 && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
12194 {
12195 /* We already know that outer_type is not a pointer with
12196 a non-generic address space. */
12197 return false;
12198 }
12199
12200 /* Use precision rather then machine mode when we can, which gives
12201 the correct answer even for submode (bit-field) types. */
12202 if ((INTEGRAL_TYPE_P (outer_type)
12203 || POINTER_TYPE_P (outer_type)
12204 || TREE_CODE (outer_type) == OFFSET_TYPE)
12205 && (INTEGRAL_TYPE_P (inner_type)
12206 || POINTER_TYPE_P (inner_type)
12207 || TREE_CODE (inner_type) == OFFSET_TYPE))
12208 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
12209
12210 /* Otherwise fall back on comparing machine modes (e.g. for
12211 aggregate types, floats). */
12212 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
12213 }
12214
12215 /* Return true iff conversion in EXP generates no instruction. Mark
12216 it inline so that we fully inline into the stripping functions even
12217 though we have two uses of this function. */
12218
12219 static inline bool
12220 tree_nop_conversion (const_tree exp)
12221 {
12222 tree outer_type, inner_type;
12223
12224 if (location_wrapper_p (exp))
12225 return true;
12226 if (!CONVERT_EXPR_P (exp)
12227 && TREE_CODE (exp) != NON_LVALUE_EXPR)
12228 return false;
12229 if (TREE_OPERAND (exp, 0) == error_mark_node)
12230 return false;
12231
12232 outer_type = TREE_TYPE (exp);
12233 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12234
12235 if (!inner_type)
12236 return false;
12237
12238 return tree_nop_conversion_p (outer_type, inner_type);
12239 }
12240
12241 /* Return true iff conversion in EXP generates no instruction. Don't
12242 consider conversions changing the signedness. */
12243
12244 static bool
12245 tree_sign_nop_conversion (const_tree exp)
12246 {
12247 tree outer_type, inner_type;
12248
12249 if (!tree_nop_conversion (exp))
12250 return false;
12251
12252 outer_type = TREE_TYPE (exp);
12253 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12254
12255 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
12256 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
12257 }
12258
12259 /* Strip conversions from EXP according to tree_nop_conversion and
12260 return the resulting expression. */
12261
12262 tree
12263 tree_strip_nop_conversions (tree exp)
12264 {
12265 while (tree_nop_conversion (exp))
12266 exp = TREE_OPERAND (exp, 0);
12267 return exp;
12268 }
12269
12270 /* Strip conversions from EXP according to tree_sign_nop_conversion
12271 and return the resulting expression. */
12272
12273 tree
12274 tree_strip_sign_nop_conversions (tree exp)
12275 {
12276 while (tree_sign_nop_conversion (exp))
12277 exp = TREE_OPERAND (exp, 0);
12278 return exp;
12279 }
12280
12281 /* Avoid any floating point extensions from EXP. */
12282 tree
12283 strip_float_extensions (tree exp)
12284 {
12285 tree sub, expt, subt;
12286
12287 /* For floating point constant look up the narrowest type that can hold
12288 it properly and handle it like (type)(narrowest_type)constant.
12289 This way we can optimize for instance a=a*2.0 where "a" is float
12290 but 2.0 is double constant. */
12291 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
12292 {
12293 REAL_VALUE_TYPE orig;
12294 tree type = NULL;
12295
12296 orig = TREE_REAL_CST (exp);
12297 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
12298 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
12299 type = float_type_node;
12300 else if (TYPE_PRECISION (TREE_TYPE (exp))
12301 > TYPE_PRECISION (double_type_node)
12302 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
12303 type = double_type_node;
12304 if (type)
12305 return build_real_truncate (type, orig);
12306 }
12307
12308 if (!CONVERT_EXPR_P (exp))
12309 return exp;
12310
12311 sub = TREE_OPERAND (exp, 0);
12312 subt = TREE_TYPE (sub);
12313 expt = TREE_TYPE (exp);
12314
12315 if (!FLOAT_TYPE_P (subt))
12316 return exp;
12317
12318 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
12319 return exp;
12320
12321 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
12322 return exp;
12323
12324 return strip_float_extensions (sub);
12325 }
12326
12327 /* Strip out all handled components that produce invariant
12328 offsets. */
12329
12330 const_tree
12331 strip_invariant_refs (const_tree op)
12332 {
12333 while (handled_component_p (op))
12334 {
12335 switch (TREE_CODE (op))
12336 {
12337 case ARRAY_REF:
12338 case ARRAY_RANGE_REF:
12339 if (!is_gimple_constant (TREE_OPERAND (op, 1))
12340 || TREE_OPERAND (op, 2) != NULL_TREE
12341 || TREE_OPERAND (op, 3) != NULL_TREE)
12342 return NULL;
12343 break;
12344
12345 case COMPONENT_REF:
12346 if (TREE_OPERAND (op, 2) != NULL_TREE)
12347 return NULL;
12348 break;
12349
12350 default:;
12351 }
12352 op = TREE_OPERAND (op, 0);
12353 }
12354
12355 return op;
12356 }
12357
12358 static GTY(()) tree gcc_eh_personality_decl;
12359
12360 /* Return the GCC personality function decl. */
12361
12362 tree
12363 lhd_gcc_personality (void)
12364 {
12365 if (!gcc_eh_personality_decl)
12366 gcc_eh_personality_decl = build_personality_function ("gcc");
12367 return gcc_eh_personality_decl;
12368 }
12369
12370 /* TARGET is a call target of GIMPLE call statement
12371 (obtained by gimple_call_fn). Return true if it is
12372 OBJ_TYPE_REF representing an virtual call of C++ method.
12373 (As opposed to OBJ_TYPE_REF representing objc calls
12374 through a cast where middle-end devirtualization machinery
12375 can't apply.) */
12376
12377 bool
12378 virtual_method_call_p (const_tree target)
12379 {
12380 if (TREE_CODE (target) != OBJ_TYPE_REF)
12381 return false;
12382 tree t = TREE_TYPE (target);
12383 gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
12384 t = TREE_TYPE (t);
12385 if (TREE_CODE (t) == FUNCTION_TYPE)
12386 return false;
12387 gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
12388 /* If we do not have BINFO associated, it means that type was built
12389 without devirtualization enabled. Do not consider this a virtual
12390 call. */
12391 if (!TYPE_BINFO (obj_type_ref_class (target)))
12392 return false;
12393 return true;
12394 }
12395
12396 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
12397
12398 tree
12399 obj_type_ref_class (const_tree ref)
12400 {
12401 gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
12402 ref = TREE_TYPE (ref);
12403 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12404 ref = TREE_TYPE (ref);
12405 /* We look for type THIS points to. ObjC also builds
12406 OBJ_TYPE_REF with non-method calls, Their first parameter
12407 ID however also corresponds to class type. */
12408 gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
12409 || TREE_CODE (ref) == FUNCTION_TYPE);
12410 ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
12411 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12412 return TREE_TYPE (ref);
12413 }
12414
12415 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
12416
12417 static tree
12418 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
12419 {
12420 unsigned int i;
12421 tree base_binfo, b;
12422
12423 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12424 if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
12425 && types_same_for_odr (TREE_TYPE (base_binfo), type))
12426 return base_binfo;
12427 else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
12428 return b;
12429 return NULL;
12430 }
12431
12432 /* Try to find a base info of BINFO that would have its field decl at offset
12433 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
12434 found, return, otherwise return NULL_TREE. */
12435
12436 tree
12437 get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
12438 {
12439 tree type = BINFO_TYPE (binfo);
12440
12441 while (true)
12442 {
12443 HOST_WIDE_INT pos, size;
12444 tree fld;
12445 int i;
12446
12447 if (types_same_for_odr (type, expected_type))
12448 return binfo;
12449 if (maybe_lt (offset, 0))
12450 return NULL_TREE;
12451
12452 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
12453 {
12454 if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
12455 continue;
12456
12457 pos = int_bit_position (fld);
12458 size = tree_to_uhwi (DECL_SIZE (fld));
12459 if (known_in_range_p (offset, pos, size))
12460 break;
12461 }
12462 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
12463 return NULL_TREE;
12464
12465 /* Offset 0 indicates the primary base, whose vtable contents are
12466 represented in the binfo for the derived class. */
12467 else if (maybe_ne (offset, 0))
12468 {
12469 tree found_binfo = NULL, base_binfo;
12470 /* Offsets in BINFO are in bytes relative to the whole structure
12471 while POS is in bits relative to the containing field. */
12472 int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
12473 / BITS_PER_UNIT);
12474
12475 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12476 if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
12477 && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
12478 {
12479 found_binfo = base_binfo;
12480 break;
12481 }
12482 if (found_binfo)
12483 binfo = found_binfo;
12484 else
12485 binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
12486 binfo_offset);
12487 }
12488
12489 type = TREE_TYPE (fld);
12490 offset -= pos;
12491 }
12492 }
12493
12494 /* Returns true if X is a typedef decl. */
12495
12496 bool
12497 is_typedef_decl (const_tree x)
12498 {
12499 return (x && TREE_CODE (x) == TYPE_DECL
12500 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
12501 }
12502
12503 /* Returns true iff TYPE is a type variant created for a typedef. */
12504
12505 bool
12506 typedef_variant_p (const_tree type)
12507 {
12508 return is_typedef_decl (TYPE_NAME (type));
12509 }
12510
12511 /* A class to handle converting a string that might contain
12512 control characters, (eg newline, form-feed, etc), into one
12513 in which contains escape sequences instead. */
12514
12515 class escaped_string
12516 {
12517 public:
12518 escaped_string () { m_owned = false; m_str = NULL; };
12519 ~escaped_string () { if (m_owned) free (m_str); }
12520 operator const char *() const { return (const char *) m_str; }
12521 void escape (const char *);
12522 private:
12523 char *m_str;
12524 bool m_owned;
12525 };
12526
12527 /* PR 84195: Replace control characters in "unescaped" with their
12528 escaped equivalents. Allow newlines if -fmessage-length has
12529 been set to a non-zero value. This is done here, rather than
12530 where the attribute is recorded as the message length can
12531 change between these two locations. */
12532
12533 void
12534 escaped_string::escape (const char *unescaped)
12535 {
12536 char *escaped;
12537 size_t i, new_i, len;
12538
12539 if (m_owned)
12540 free (m_str);
12541
12542 m_str = const_cast<char *> (unescaped);
12543 m_owned = false;
12544
12545 if (unescaped == NULL || *unescaped == 0)
12546 return;
12547
12548 len = strlen (unescaped);
12549 escaped = NULL;
12550 new_i = 0;
12551
12552 for (i = 0; i < len; i++)
12553 {
12554 char c = unescaped[i];
12555
12556 if (!ISCNTRL (c))
12557 {
12558 if (escaped)
12559 escaped[new_i++] = c;
12560 continue;
12561 }
12562
12563 if (c != '\n' || !pp_is_wrapping_line (global_dc->printer))
12564 {
12565 if (escaped == NULL)
12566 {
12567 /* We only allocate space for a new string if we
12568 actually encounter a control character that
12569 needs replacing. */
12570 escaped = (char *) xmalloc (len * 2 + 1);
12571 strncpy (escaped, unescaped, i);
12572 new_i = i;
12573 }
12574
12575 escaped[new_i++] = '\\';
12576
12577 switch (c)
12578 {
12579 case '\a': escaped[new_i++] = 'a'; break;
12580 case '\b': escaped[new_i++] = 'b'; break;
12581 case '\f': escaped[new_i++] = 'f'; break;
12582 case '\n': escaped[new_i++] = 'n'; break;
12583 case '\r': escaped[new_i++] = 'r'; break;
12584 case '\t': escaped[new_i++] = 't'; break;
12585 case '\v': escaped[new_i++] = 'v'; break;
12586 default: escaped[new_i++] = '?'; break;
12587 }
12588 }
12589 else if (escaped)
12590 escaped[new_i++] = c;
12591 }
12592
12593 if (escaped)
12594 {
12595 escaped[new_i] = 0;
12596 m_str = escaped;
12597 m_owned = true;
12598 }
12599 }
12600
12601 /* Warn about a use of an identifier which was marked deprecated. Returns
12602 whether a warning was given. */
12603
12604 bool
12605 warn_deprecated_use (tree node, tree attr)
12606 {
12607 escaped_string msg;
12608
12609 if (node == 0 || !warn_deprecated_decl)
12610 return false;
12611
12612 if (!attr)
12613 {
12614 if (DECL_P (node))
12615 attr = DECL_ATTRIBUTES (node);
12616 else if (TYPE_P (node))
12617 {
12618 tree decl = TYPE_STUB_DECL (node);
12619 if (decl)
12620 attr = lookup_attribute ("deprecated",
12621 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
12622 }
12623 }
12624
12625 if (attr)
12626 attr = lookup_attribute ("deprecated", attr);
12627
12628 if (attr)
12629 msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
12630
12631 bool w = false;
12632 if (DECL_P (node))
12633 {
12634 auto_diagnostic_group d;
12635 if (msg)
12636 w = warning (OPT_Wdeprecated_declarations,
12637 "%qD is deprecated: %s", node, (const char *) msg);
12638 else
12639 w = warning (OPT_Wdeprecated_declarations,
12640 "%qD is deprecated", node);
12641 if (w)
12642 inform (DECL_SOURCE_LOCATION (node), "declared here");
12643 }
12644 else if (TYPE_P (node))
12645 {
12646 tree what = NULL_TREE;
12647 tree decl = TYPE_STUB_DECL (node);
12648
12649 if (TYPE_NAME (node))
12650 {
12651 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
12652 what = TYPE_NAME (node);
12653 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
12654 && DECL_NAME (TYPE_NAME (node)))
12655 what = DECL_NAME (TYPE_NAME (node));
12656 }
12657
12658 auto_diagnostic_group d;
12659 if (what)
12660 {
12661 if (msg)
12662 w = warning (OPT_Wdeprecated_declarations,
12663 "%qE is deprecated: %s", what, (const char *) msg);
12664 else
12665 w = warning (OPT_Wdeprecated_declarations,
12666 "%qE is deprecated", what);
12667 }
12668 else
12669 {
12670 if (msg)
12671 w = warning (OPT_Wdeprecated_declarations,
12672 "type is deprecated: %s", (const char *) msg);
12673 else
12674 w = warning (OPT_Wdeprecated_declarations,
12675 "type is deprecated");
12676 }
12677
12678 if (w && decl)
12679 inform (DECL_SOURCE_LOCATION (decl), "declared here");
12680 }
12681
12682 return w;
12683 }
12684
12685 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12686 somewhere in it. */
12687
12688 bool
12689 contains_bitfld_component_ref_p (const_tree ref)
12690 {
12691 while (handled_component_p (ref))
12692 {
12693 if (TREE_CODE (ref) == COMPONENT_REF
12694 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12695 return true;
12696 ref = TREE_OPERAND (ref, 0);
12697 }
12698
12699 return false;
12700 }
12701
12702 /* Try to determine whether a TRY_CATCH expression can fall through.
12703 This is a subroutine of block_may_fallthru. */
12704
12705 static bool
12706 try_catch_may_fallthru (const_tree stmt)
12707 {
12708 tree_stmt_iterator i;
12709
12710 /* If the TRY block can fall through, the whole TRY_CATCH can
12711 fall through. */
12712 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
12713 return true;
12714
12715 i = tsi_start (TREE_OPERAND (stmt, 1));
12716 switch (TREE_CODE (tsi_stmt (i)))
12717 {
12718 case CATCH_EXPR:
12719 /* We expect to see a sequence of CATCH_EXPR trees, each with a
12720 catch expression and a body. The whole TRY_CATCH may fall
12721 through iff any of the catch bodies falls through. */
12722 for (; !tsi_end_p (i); tsi_next (&i))
12723 {
12724 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
12725 return true;
12726 }
12727 return false;
12728
12729 case EH_FILTER_EXPR:
12730 /* The exception filter expression only matters if there is an
12731 exception. If the exception does not match EH_FILTER_TYPES,
12732 we will execute EH_FILTER_FAILURE, and we will fall through
12733 if that falls through. If the exception does match
12734 EH_FILTER_TYPES, the stack unwinder will continue up the
12735 stack, so we will not fall through. We don't know whether we
12736 will throw an exception which matches EH_FILTER_TYPES or not,
12737 so we just ignore EH_FILTER_TYPES and assume that we might
12738 throw an exception which doesn't match. */
12739 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
12740
12741 default:
12742 /* This case represents statements to be executed when an
12743 exception occurs. Those statements are implicitly followed
12744 by a RESX statement to resume execution after the exception.
12745 So in this case the TRY_CATCH never falls through. */
12746 return false;
12747 }
12748 }
12749
12750 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
12751 need not be 100% accurate; simply be conservative and return true if we
12752 don't know. This is used only to avoid stupidly generating extra code.
12753 If we're wrong, we'll just delete the extra code later. */
12754
12755 bool
12756 block_may_fallthru (const_tree block)
12757 {
12758 /* This CONST_CAST is okay because expr_last returns its argument
12759 unmodified and we assign it to a const_tree. */
12760 const_tree stmt = expr_last (CONST_CAST_TREE (block));
12761
12762 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
12763 {
12764 case GOTO_EXPR:
12765 case RETURN_EXPR:
12766 /* Easy cases. If the last statement of the block implies
12767 control transfer, then we can't fall through. */
12768 return false;
12769
12770 case SWITCH_EXPR:
12771 /* If there is a default: label or case labels cover all possible
12772 SWITCH_COND values, then the SWITCH_EXPR will transfer control
12773 to some case label in all cases and all we care is whether the
12774 SWITCH_BODY falls through. */
12775 if (SWITCH_ALL_CASES_P (stmt))
12776 return block_may_fallthru (SWITCH_BODY (stmt));
12777 return true;
12778
12779 case COND_EXPR:
12780 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
12781 return true;
12782 return block_may_fallthru (COND_EXPR_ELSE (stmt));
12783
12784 case BIND_EXPR:
12785 return block_may_fallthru (BIND_EXPR_BODY (stmt));
12786
12787 case TRY_CATCH_EXPR:
12788 return try_catch_may_fallthru (stmt);
12789
12790 case TRY_FINALLY_EXPR:
12791 /* The finally clause is always executed after the try clause,
12792 so if it does not fall through, then the try-finally will not
12793 fall through. Otherwise, if the try clause does not fall
12794 through, then when the finally clause falls through it will
12795 resume execution wherever the try clause was going. So the
12796 whole try-finally will only fall through if both the try
12797 clause and the finally clause fall through. */
12798 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
12799 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
12800
12801 case MODIFY_EXPR:
12802 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
12803 stmt = TREE_OPERAND (stmt, 1);
12804 else
12805 return true;
12806 /* FALLTHRU */
12807
12808 case CALL_EXPR:
12809 /* Functions that do not return do not fall through. */
12810 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
12811
12812 case CLEANUP_POINT_EXPR:
12813 return block_may_fallthru (TREE_OPERAND (stmt, 0));
12814
12815 case TARGET_EXPR:
12816 return block_may_fallthru (TREE_OPERAND (stmt, 1));
12817
12818 case ERROR_MARK:
12819 return true;
12820
12821 default:
12822 return lang_hooks.block_may_fallthru (stmt);
12823 }
12824 }
12825
12826 /* True if we are using EH to handle cleanups. */
12827 static bool using_eh_for_cleanups_flag = false;
12828
12829 /* This routine is called from front ends to indicate eh should be used for
12830 cleanups. */
12831 void
12832 using_eh_for_cleanups (void)
12833 {
12834 using_eh_for_cleanups_flag = true;
12835 }
12836
12837 /* Query whether EH is used for cleanups. */
12838 bool
12839 using_eh_for_cleanups_p (void)
12840 {
12841 return using_eh_for_cleanups_flag;
12842 }
12843
12844 /* Wrapper for tree_code_name to ensure that tree code is valid */
12845 const char *
12846 get_tree_code_name (enum tree_code code)
12847 {
12848 const char *invalid = "<invalid tree code>";
12849
12850 if (code >= MAX_TREE_CODES)
12851 return invalid;
12852
12853 return tree_code_name[code];
12854 }
12855
12856 /* Drops the TREE_OVERFLOW flag from T. */
12857
12858 tree
12859 drop_tree_overflow (tree t)
12860 {
12861 gcc_checking_assert (TREE_OVERFLOW (t));
12862
12863 /* For tree codes with a sharing machinery re-build the result. */
12864 if (poly_int_tree_p (t))
12865 return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
12866
12867 /* For VECTOR_CST, remove the overflow bits from the encoded elements
12868 and canonicalize the result. */
12869 if (TREE_CODE (t) == VECTOR_CST)
12870 {
12871 tree_vector_builder builder;
12872 builder.new_unary_operation (TREE_TYPE (t), t, true);
12873 unsigned int count = builder.encoded_nelts ();
12874 for (unsigned int i = 0; i < count; ++i)
12875 {
12876 tree elt = VECTOR_CST_ELT (t, i);
12877 if (TREE_OVERFLOW (elt))
12878 elt = drop_tree_overflow (elt);
12879 builder.quick_push (elt);
12880 }
12881 return builder.build ();
12882 }
12883
12884 /* Otherwise, as all tcc_constants are possibly shared, copy the node
12885 and drop the flag. */
12886 t = copy_node (t);
12887 TREE_OVERFLOW (t) = 0;
12888
12889 /* For constants that contain nested constants, drop the flag
12890 from those as well. */
12891 if (TREE_CODE (t) == COMPLEX_CST)
12892 {
12893 if (TREE_OVERFLOW (TREE_REALPART (t)))
12894 TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
12895 if (TREE_OVERFLOW (TREE_IMAGPART (t)))
12896 TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
12897 }
12898
12899 return t;
12900 }
12901
12902 /* Given a memory reference expression T, return its base address.
12903 The base address of a memory reference expression is the main
12904 object being referenced. For instance, the base address for
12905 'array[i].fld[j]' is 'array'. You can think of this as stripping
12906 away the offset part from a memory address.
12907
12908 This function calls handled_component_p to strip away all the inner
12909 parts of the memory reference until it reaches the base object. */
12910
12911 tree
12912 get_base_address (tree t)
12913 {
12914 while (handled_component_p (t))
12915 t = TREE_OPERAND (t, 0);
12916
12917 if ((TREE_CODE (t) == MEM_REF
12918 || TREE_CODE (t) == TARGET_MEM_REF)
12919 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
12920 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
12921
12922 /* ??? Either the alias oracle or all callers need to properly deal
12923 with WITH_SIZE_EXPRs before we can look through those. */
12924 if (TREE_CODE (t) == WITH_SIZE_EXPR)
12925 return NULL_TREE;
12926
12927 return t;
12928 }
12929
12930 /* Return a tree of sizetype representing the size, in bytes, of the element
12931 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12932
12933 tree
12934 array_ref_element_size (tree exp)
12935 {
12936 tree aligned_size = TREE_OPERAND (exp, 3);
12937 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
12938 location_t loc = EXPR_LOCATION (exp);
12939
12940 /* If a size was specified in the ARRAY_REF, it's the size measured
12941 in alignment units of the element type. So multiply by that value. */
12942 if (aligned_size)
12943 {
12944 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12945 sizetype from another type of the same width and signedness. */
12946 if (TREE_TYPE (aligned_size) != sizetype)
12947 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
12948 return size_binop_loc (loc, MULT_EXPR, aligned_size,
12949 size_int (TYPE_ALIGN_UNIT (elmt_type)));
12950 }
12951
12952 /* Otherwise, take the size from that of the element type. Substitute
12953 any PLACEHOLDER_EXPR that we have. */
12954 else
12955 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
12956 }
12957
12958 /* Return a tree representing the lower bound of the array mentioned in
12959 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12960
12961 tree
12962 array_ref_low_bound (tree exp)
12963 {
12964 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12965
12966 /* If a lower bound is specified in EXP, use it. */
12967 if (TREE_OPERAND (exp, 2))
12968 return TREE_OPERAND (exp, 2);
12969
12970 /* Otherwise, if there is a domain type and it has a lower bound, use it,
12971 substituting for a PLACEHOLDER_EXPR as needed. */
12972 if (domain_type && TYPE_MIN_VALUE (domain_type))
12973 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
12974
12975 /* Otherwise, return a zero of the appropriate type. */
12976 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
12977 }
12978
12979 /* Return a tree representing the upper bound of the array mentioned in
12980 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12981
12982 tree
12983 array_ref_up_bound (tree exp)
12984 {
12985 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12986
12987 /* If there is a domain type and it has an upper bound, use it, substituting
12988 for a PLACEHOLDER_EXPR as needed. */
12989 if (domain_type && TYPE_MAX_VALUE (domain_type))
12990 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
12991
12992 /* Otherwise fail. */
12993 return NULL_TREE;
12994 }
12995
12996 /* Returns true if REF is an array reference or a component reference
12997 to an array at the end of a structure.
12998 If this is the case, the array may be allocated larger
12999 than its upper bound implies. */
13000
13001 bool
13002 array_at_struct_end_p (tree ref)
13003 {
13004 tree atype;
13005
13006 if (TREE_CODE (ref) == ARRAY_REF
13007 || TREE_CODE (ref) == ARRAY_RANGE_REF)
13008 {
13009 atype = TREE_TYPE (TREE_OPERAND (ref, 0));
13010 ref = TREE_OPERAND (ref, 0);
13011 }
13012 else if (TREE_CODE (ref) == COMPONENT_REF
13013 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
13014 atype = TREE_TYPE (TREE_OPERAND (ref, 1));
13015 else
13016 return false;
13017
13018 if (TREE_CODE (ref) == STRING_CST)
13019 return false;
13020
13021 tree ref_to_array = ref;
13022 while (handled_component_p (ref))
13023 {
13024 /* If the reference chain contains a component reference to a
13025 non-union type and there follows another field the reference
13026 is not at the end of a structure. */
13027 if (TREE_CODE (ref) == COMPONENT_REF)
13028 {
13029 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
13030 {
13031 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
13032 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
13033 nextf = DECL_CHAIN (nextf);
13034 if (nextf)
13035 return false;
13036 }
13037 }
13038 /* If we have a multi-dimensional array we do not consider
13039 a non-innermost dimension as flex array if the whole
13040 multi-dimensional array is at struct end.
13041 Same for an array of aggregates with a trailing array
13042 member. */
13043 else if (TREE_CODE (ref) == ARRAY_REF)
13044 return false;
13045 else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
13046 ;
13047 /* If we view an underlying object as sth else then what we
13048 gathered up to now is what we have to rely on. */
13049 else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
13050 break;
13051 else
13052 gcc_unreachable ();
13053
13054 ref = TREE_OPERAND (ref, 0);
13055 }
13056
13057 /* The array now is at struct end. Treat flexible arrays as
13058 always subject to extend, even into just padding constrained by
13059 an underlying decl. */
13060 if (! TYPE_SIZE (atype)
13061 || ! TYPE_DOMAIN (atype)
13062 || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13063 return true;
13064
13065 if (TREE_CODE (ref) == MEM_REF
13066 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
13067 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
13068
13069 /* If the reference is based on a declared entity, the size of the array
13070 is constrained by its given domain. (Do not trust commons PR/69368). */
13071 if (DECL_P (ref)
13072 && !(flag_unconstrained_commons
13073 && VAR_P (ref) && DECL_COMMON (ref))
13074 && DECL_SIZE_UNIT (ref)
13075 && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
13076 {
13077 /* Check whether the array domain covers all of the available
13078 padding. */
13079 poly_int64 offset;
13080 if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
13081 || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
13082 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
13083 return true;
13084 if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
13085 return true;
13086
13087 /* If at least one extra element fits it is a flexarray. */
13088 if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13089 - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
13090 + 2)
13091 * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
13092 wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
13093 return true;
13094
13095 return false;
13096 }
13097
13098 return true;
13099 }
13100
13101 /* Return a tree representing the offset, in bytes, of the field referenced
13102 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
13103
13104 tree
13105 component_ref_field_offset (tree exp)
13106 {
13107 tree aligned_offset = TREE_OPERAND (exp, 2);
13108 tree field = TREE_OPERAND (exp, 1);
13109 location_t loc = EXPR_LOCATION (exp);
13110
13111 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
13112 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
13113 value. */
13114 if (aligned_offset)
13115 {
13116 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13117 sizetype from another type of the same width and signedness. */
13118 if (TREE_TYPE (aligned_offset) != sizetype)
13119 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
13120 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
13121 size_int (DECL_OFFSET_ALIGN (field)
13122 / BITS_PER_UNIT));
13123 }
13124
13125 /* Otherwise, take the offset from that of the field. Substitute
13126 any PLACEHOLDER_EXPR that we have. */
13127 else
13128 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
13129 }
13130
13131 /* Return the machine mode of T. For vectors, returns the mode of the
13132 inner type. The main use case is to feed the result to HONOR_NANS,
13133 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
13134
13135 machine_mode
13136 element_mode (const_tree t)
13137 {
13138 if (!TYPE_P (t))
13139 t = TREE_TYPE (t);
13140 if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
13141 t = TREE_TYPE (t);
13142 return TYPE_MODE (t);
13143 }
13144
13145 /* Vector types need to re-check the target flags each time we report
13146 the machine mode. We need to do this because attribute target can
13147 change the result of vector_mode_supported_p and have_regs_of_mode
13148 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
13149 change on a per-function basis. */
13150 /* ??? Possibly a better solution is to run through all the types
13151 referenced by a function and re-compute the TYPE_MODE once, rather
13152 than make the TYPE_MODE macro call a function. */
13153
13154 machine_mode
13155 vector_type_mode (const_tree t)
13156 {
13157 machine_mode mode;
13158
13159 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
13160
13161 mode = t->type_common.mode;
13162 if (VECTOR_MODE_P (mode)
13163 && (!targetm.vector_mode_supported_p (mode)
13164 || !have_regs_of_mode[mode]))
13165 {
13166 scalar_int_mode innermode;
13167
13168 /* For integers, try mapping it to a same-sized scalar mode. */
13169 if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
13170 {
13171 poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
13172 * GET_MODE_BITSIZE (innermode));
13173 scalar_int_mode mode;
13174 if (int_mode_for_size (size, 0).exists (&mode)
13175 && have_regs_of_mode[mode])
13176 return mode;
13177 }
13178
13179 return BLKmode;
13180 }
13181
13182 return mode;
13183 }
13184
13185 /* Verify that basic properties of T match TV and thus T can be a variant of
13186 TV. TV should be the more specified variant (i.e. the main variant). */
13187
13188 static bool
13189 verify_type_variant (const_tree t, tree tv)
13190 {
13191 /* Type variant can differ by:
13192
13193 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
13194 ENCODE_QUAL_ADDR_SPACE.
13195 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
13196 in this case some values may not be set in the variant types
13197 (see TYPE_COMPLETE_P checks).
13198 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
13199 - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
13200 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
13201 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
13202 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
13203 this is necessary to make it possible to merge types form different TUs
13204 - arrays, pointers and references may have TREE_TYPE that is a variant
13205 of TREE_TYPE of their main variants.
13206 - aggregates may have new TYPE_FIELDS list that list variants of
13207 the main variant TYPE_FIELDS.
13208 - vector types may differ by TYPE_VECTOR_OPAQUE
13209 */
13210
13211 /* Convenience macro for matching individual fields. */
13212 #define verify_variant_match(flag) \
13213 do { \
13214 if (flag (tv) != flag (t)) \
13215 { \
13216 error ("type variant differs by %s", #flag); \
13217 debug_tree (tv); \
13218 return false; \
13219 } \
13220 } while (false)
13221
13222 /* tree_base checks. */
13223
13224 verify_variant_match (TREE_CODE);
13225 /* FIXME: Ada builds non-artificial variants of artificial types. */
13226 if (TYPE_ARTIFICIAL (tv) && 0)
13227 verify_variant_match (TYPE_ARTIFICIAL);
13228 if (POINTER_TYPE_P (tv))
13229 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
13230 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
13231 verify_variant_match (TYPE_UNSIGNED);
13232 verify_variant_match (TYPE_PACKED);
13233 if (TREE_CODE (t) == REFERENCE_TYPE)
13234 verify_variant_match (TYPE_REF_IS_RVALUE);
13235 if (AGGREGATE_TYPE_P (t))
13236 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
13237 else
13238 verify_variant_match (TYPE_SATURATING);
13239 /* FIXME: This check trigger during libstdc++ build. */
13240 if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
13241 verify_variant_match (TYPE_FINAL_P);
13242
13243 /* tree_type_common checks. */
13244
13245 if (COMPLETE_TYPE_P (t))
13246 {
13247 verify_variant_match (TYPE_MODE);
13248 if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
13249 && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
13250 verify_variant_match (TYPE_SIZE);
13251 if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
13252 && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
13253 && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
13254 {
13255 gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
13256 TYPE_SIZE_UNIT (tv), 0));
13257 error ("type variant has different TYPE_SIZE_UNIT");
13258 debug_tree (tv);
13259 error ("type variant's TYPE_SIZE_UNIT");
13260 debug_tree (TYPE_SIZE_UNIT (tv));
13261 error ("type's TYPE_SIZE_UNIT");
13262 debug_tree (TYPE_SIZE_UNIT (t));
13263 return false;
13264 }
13265 }
13266 verify_variant_match (TYPE_PRECISION);
13267 verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
13268 if (RECORD_OR_UNION_TYPE_P (t))
13269 verify_variant_match (TYPE_TRANSPARENT_AGGR);
13270 else if (TREE_CODE (t) == ARRAY_TYPE)
13271 verify_variant_match (TYPE_NONALIASED_COMPONENT);
13272 /* During LTO we merge variant lists from diferent translation units
13273 that may differ BY TYPE_CONTEXT that in turn may point
13274 to TRANSLATION_UNIT_DECL.
13275 Ada also builds variants of types with different TYPE_CONTEXT. */
13276 if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
13277 verify_variant_match (TYPE_CONTEXT);
13278 verify_variant_match (TYPE_STRING_FLAG);
13279 if (TYPE_ALIAS_SET_KNOWN_P (t))
13280 {
13281 error ("type variant with TYPE_ALIAS_SET_KNOWN_P");
13282 debug_tree (tv);
13283 return false;
13284 }
13285
13286 /* tree_type_non_common checks. */
13287
13288 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13289 and dangle the pointer from time to time. */
13290 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
13291 && (in_lto_p || !TYPE_VFIELD (tv)
13292 || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
13293 {
13294 error ("type variant has different TYPE_VFIELD");
13295 debug_tree (tv);
13296 return false;
13297 }
13298 if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
13299 || TREE_CODE (t) == INTEGER_TYPE
13300 || TREE_CODE (t) == BOOLEAN_TYPE
13301 || TREE_CODE (t) == REAL_TYPE
13302 || TREE_CODE (t) == FIXED_POINT_TYPE)
13303 {
13304 verify_variant_match (TYPE_MAX_VALUE);
13305 verify_variant_match (TYPE_MIN_VALUE);
13306 }
13307 if (TREE_CODE (t) == METHOD_TYPE)
13308 verify_variant_match (TYPE_METHOD_BASETYPE);
13309 if (TREE_CODE (t) == OFFSET_TYPE)
13310 verify_variant_match (TYPE_OFFSET_BASETYPE);
13311 if (TREE_CODE (t) == ARRAY_TYPE)
13312 verify_variant_match (TYPE_ARRAY_MAX_SIZE);
13313 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
13314 or even type's main variant. This is needed to make bootstrap pass
13315 and the bug seems new in GCC 5.
13316 C++ FE should be updated to make this consistent and we should check
13317 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
13318 is a match with main variant.
13319
13320 Also disable the check for Java for now because of parser hack that builds
13321 first an dummy BINFO and then sometimes replace it by real BINFO in some
13322 of the copies. */
13323 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
13324 && TYPE_BINFO (t) != TYPE_BINFO (tv)
13325 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
13326 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
13327 at LTO time only. */
13328 && (in_lto_p && odr_type_p (t)))
13329 {
13330 error ("type variant has different TYPE_BINFO");
13331 debug_tree (tv);
13332 error ("type variant's TYPE_BINFO");
13333 debug_tree (TYPE_BINFO (tv));
13334 error ("type's TYPE_BINFO");
13335 debug_tree (TYPE_BINFO (t));
13336 return false;
13337 }
13338
13339 /* Check various uses of TYPE_VALUES_RAW. */
13340 if (TREE_CODE (t) == ENUMERAL_TYPE)
13341 verify_variant_match (TYPE_VALUES);
13342 else if (TREE_CODE (t) == ARRAY_TYPE)
13343 verify_variant_match (TYPE_DOMAIN);
13344 /* Permit incomplete variants of complete type. While FEs may complete
13345 all variants, this does not happen for C++ templates in all cases. */
13346 else if (RECORD_OR_UNION_TYPE_P (t)
13347 && COMPLETE_TYPE_P (t)
13348 && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
13349 {
13350 tree f1, f2;
13351
13352 /* Fortran builds qualified variants as new records with items of
13353 qualified type. Verify that they looks same. */
13354 for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
13355 f1 && f2;
13356 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13357 if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
13358 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
13359 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
13360 /* FIXME: gfc_nonrestricted_type builds all types as variants
13361 with exception of pointer types. It deeply copies the type
13362 which means that we may end up with a variant type
13363 referring non-variant pointer. We may change it to
13364 produce types as variants, too, like
13365 objc_get_protocol_qualified_type does. */
13366 && !POINTER_TYPE_P (TREE_TYPE (f1)))
13367 || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
13368 || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
13369 break;
13370 if (f1 || f2)
13371 {
13372 error ("type variant has different TYPE_FIELDS");
13373 debug_tree (tv);
13374 error ("first mismatch is field");
13375 debug_tree (f1);
13376 error ("and field");
13377 debug_tree (f2);
13378 return false;
13379 }
13380 }
13381 else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
13382 verify_variant_match (TYPE_ARG_TYPES);
13383 /* For C++ the qualified variant of array type is really an array type
13384 of qualified TREE_TYPE.
13385 objc builds variants of pointer where pointer to type is a variant, too
13386 in objc_get_protocol_qualified_type. */
13387 if (TREE_TYPE (t) != TREE_TYPE (tv)
13388 && ((TREE_CODE (t) != ARRAY_TYPE
13389 && !POINTER_TYPE_P (t))
13390 || TYPE_MAIN_VARIANT (TREE_TYPE (t))
13391 != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
13392 {
13393 error ("type variant has different TREE_TYPE");
13394 debug_tree (tv);
13395 error ("type variant's TREE_TYPE");
13396 debug_tree (TREE_TYPE (tv));
13397 error ("type's TREE_TYPE");
13398 debug_tree (TREE_TYPE (t));
13399 return false;
13400 }
13401 if (type_with_alias_set_p (t)
13402 && !gimple_canonical_types_compatible_p (t, tv, false))
13403 {
13404 error ("type is not compatible with its variant");
13405 debug_tree (tv);
13406 error ("type variant's TREE_TYPE");
13407 debug_tree (TREE_TYPE (tv));
13408 error ("type's TREE_TYPE");
13409 debug_tree (TREE_TYPE (t));
13410 return false;
13411 }
13412 return true;
13413 #undef verify_variant_match
13414 }
13415
13416
13417 /* The TYPE_CANONICAL merging machinery. It should closely resemble
13418 the middle-end types_compatible_p function. It needs to avoid
13419 claiming types are different for types that should be treated
13420 the same with respect to TBAA. Canonical types are also used
13421 for IL consistency checks via the useless_type_conversion_p
13422 predicate which does not handle all type kinds itself but falls
13423 back to pointer-comparison of TYPE_CANONICAL for aggregates
13424 for example. */
13425
13426 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
13427 type calculation because we need to allow inter-operability between signed
13428 and unsigned variants. */
13429
13430 bool
13431 type_with_interoperable_signedness (const_tree type)
13432 {
13433 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
13434 signed char and unsigned char. Similarly fortran FE builds
13435 C_SIZE_T as signed type, while C defines it unsigned. */
13436
13437 return tree_code_for_canonical_type_merging (TREE_CODE (type))
13438 == INTEGER_TYPE
13439 && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
13440 || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
13441 }
13442
13443 /* Return true iff T1 and T2 are structurally identical for what
13444 TBAA is concerned.
13445 This function is used both by lto.c canonical type merging and by the
13446 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
13447 that have TYPE_CANONICAL defined and assume them equivalent. This is useful
13448 only for LTO because only in these cases TYPE_CANONICAL equivalence
13449 correspond to one defined by gimple_canonical_types_compatible_p. */
13450
13451 bool
13452 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
13453 bool trust_type_canonical)
13454 {
13455 /* Type variants should be same as the main variant. When not doing sanity
13456 checking to verify this fact, go to main variants and save some work. */
13457 if (trust_type_canonical)
13458 {
13459 t1 = TYPE_MAIN_VARIANT (t1);
13460 t2 = TYPE_MAIN_VARIANT (t2);
13461 }
13462
13463 /* Check first for the obvious case of pointer identity. */
13464 if (t1 == t2)
13465 return true;
13466
13467 /* Check that we have two types to compare. */
13468 if (t1 == NULL_TREE || t2 == NULL_TREE)
13469 return false;
13470
13471 /* We consider complete types always compatible with incomplete type.
13472 This does not make sense for canonical type calculation and thus we
13473 need to ensure that we are never called on it.
13474
13475 FIXME: For more correctness the function probably should have three modes
13476 1) mode assuming that types are complete mathcing their structure
13477 2) mode allowing incomplete types but producing equivalence classes
13478 and thus ignoring all info from complete types
13479 3) mode allowing incomplete types to match complete but checking
13480 compatibility between complete types.
13481
13482 1 and 2 can be used for canonical type calculation. 3 is the real
13483 definition of type compatibility that can be used i.e. for warnings during
13484 declaration merging. */
13485
13486 gcc_assert (!trust_type_canonical
13487 || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
13488 /* If the types have been previously registered and found equal
13489 they still are. */
13490
13491 if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
13492 && trust_type_canonical)
13493 {
13494 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
13495 they are always NULL, but they are set to non-NULL for types
13496 constructed by build_pointer_type and variants. In this case the
13497 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
13498 all pointers are considered equal. Be sure to not return false
13499 negatives. */
13500 gcc_checking_assert (canonical_type_used_p (t1)
13501 && canonical_type_used_p (t2));
13502 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
13503 }
13504
13505 /* Can't be the same type if the types don't have the same code. */
13506 enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
13507 if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
13508 return false;
13509
13510 /* Qualifiers do not matter for canonical type comparison purposes. */
13511
13512 /* Void types and nullptr types are always the same. */
13513 if (TREE_CODE (t1) == VOID_TYPE
13514 || TREE_CODE (t1) == NULLPTR_TYPE)
13515 return true;
13516
13517 /* Can't be the same type if they have different mode. */
13518 if (TYPE_MODE (t1) != TYPE_MODE (t2))
13519 return false;
13520
13521 /* Non-aggregate types can be handled cheaply. */
13522 if (INTEGRAL_TYPE_P (t1)
13523 || SCALAR_FLOAT_TYPE_P (t1)
13524 || FIXED_POINT_TYPE_P (t1)
13525 || TREE_CODE (t1) == VECTOR_TYPE
13526 || TREE_CODE (t1) == COMPLEX_TYPE
13527 || TREE_CODE (t1) == OFFSET_TYPE
13528 || POINTER_TYPE_P (t1))
13529 {
13530 /* Can't be the same type if they have different recision. */
13531 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
13532 return false;
13533
13534 /* In some cases the signed and unsigned types are required to be
13535 inter-operable. */
13536 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
13537 && !type_with_interoperable_signedness (t1))
13538 return false;
13539
13540 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
13541 interoperable with "signed char". Unless all frontends are revisited
13542 to agree on these types, we must ignore the flag completely. */
13543
13544 /* Fortran standard define C_PTR type that is compatible with every
13545 C pointer. For this reason we need to glob all pointers into one.
13546 Still pointers in different address spaces are not compatible. */
13547 if (POINTER_TYPE_P (t1))
13548 {
13549 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
13550 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
13551 return false;
13552 }
13553
13554 /* Tail-recurse to components. */
13555 if (TREE_CODE (t1) == VECTOR_TYPE
13556 || TREE_CODE (t1) == COMPLEX_TYPE)
13557 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
13558 TREE_TYPE (t2),
13559 trust_type_canonical);
13560
13561 return true;
13562 }
13563
13564 /* Do type-specific comparisons. */
13565 switch (TREE_CODE (t1))
13566 {
13567 case ARRAY_TYPE:
13568 /* Array types are the same if the element types are the same and
13569 the number of elements are the same. */
13570 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13571 trust_type_canonical)
13572 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
13573 || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
13574 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
13575 return false;
13576 else
13577 {
13578 tree i1 = TYPE_DOMAIN (t1);
13579 tree i2 = TYPE_DOMAIN (t2);
13580
13581 /* For an incomplete external array, the type domain can be
13582 NULL_TREE. Check this condition also. */
13583 if (i1 == NULL_TREE && i2 == NULL_TREE)
13584 return true;
13585 else if (i1 == NULL_TREE || i2 == NULL_TREE)
13586 return false;
13587 else
13588 {
13589 tree min1 = TYPE_MIN_VALUE (i1);
13590 tree min2 = TYPE_MIN_VALUE (i2);
13591 tree max1 = TYPE_MAX_VALUE (i1);
13592 tree max2 = TYPE_MAX_VALUE (i2);
13593
13594 /* The minimum/maximum values have to be the same. */
13595 if ((min1 == min2
13596 || (min1 && min2
13597 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
13598 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
13599 || operand_equal_p (min1, min2, 0))))
13600 && (max1 == max2
13601 || (max1 && max2
13602 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
13603 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
13604 || operand_equal_p (max1, max2, 0)))))
13605 return true;
13606 else
13607 return false;
13608 }
13609 }
13610
13611 case METHOD_TYPE:
13612 case FUNCTION_TYPE:
13613 /* Function types are the same if the return type and arguments types
13614 are the same. */
13615 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13616 trust_type_canonical))
13617 return false;
13618
13619 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
13620 return true;
13621 else
13622 {
13623 tree parms1, parms2;
13624
13625 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
13626 parms1 && parms2;
13627 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
13628 {
13629 if (!gimple_canonical_types_compatible_p
13630 (TREE_VALUE (parms1), TREE_VALUE (parms2),
13631 trust_type_canonical))
13632 return false;
13633 }
13634
13635 if (parms1 || parms2)
13636 return false;
13637
13638 return true;
13639 }
13640
13641 case RECORD_TYPE:
13642 case UNION_TYPE:
13643 case QUAL_UNION_TYPE:
13644 {
13645 tree f1, f2;
13646
13647 /* Don't try to compare variants of an incomplete type, before
13648 TYPE_FIELDS has been copied around. */
13649 if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
13650 return true;
13651
13652
13653 if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
13654 return false;
13655
13656 /* For aggregate types, all the fields must be the same. */
13657 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
13658 f1 || f2;
13659 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13660 {
13661 /* Skip non-fields and zero-sized fields. */
13662 while (f1 && (TREE_CODE (f1) != FIELD_DECL
13663 || (DECL_SIZE (f1)
13664 && integer_zerop (DECL_SIZE (f1)))))
13665 f1 = TREE_CHAIN (f1);
13666 while (f2 && (TREE_CODE (f2) != FIELD_DECL
13667 || (DECL_SIZE (f2)
13668 && integer_zerop (DECL_SIZE (f2)))))
13669 f2 = TREE_CHAIN (f2);
13670 if (!f1 || !f2)
13671 break;
13672 /* The fields must have the same name, offset and type. */
13673 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
13674 || !gimple_compare_field_offset (f1, f2)
13675 || !gimple_canonical_types_compatible_p
13676 (TREE_TYPE (f1), TREE_TYPE (f2),
13677 trust_type_canonical))
13678 return false;
13679 }
13680
13681 /* If one aggregate has more fields than the other, they
13682 are not the same. */
13683 if (f1 || f2)
13684 return false;
13685
13686 return true;
13687 }
13688
13689 default:
13690 /* Consider all types with language specific trees in them mutually
13691 compatible. This is executed only from verify_type and false
13692 positives can be tolerated. */
13693 gcc_assert (!in_lto_p);
13694 return true;
13695 }
13696 }
13697
13698 /* Verify type T. */
13699
13700 void
13701 verify_type (const_tree t)
13702 {
13703 bool error_found = false;
13704 tree mv = TYPE_MAIN_VARIANT (t);
13705 if (!mv)
13706 {
13707 error ("Main variant is not defined");
13708 error_found = true;
13709 }
13710 else if (mv != TYPE_MAIN_VARIANT (mv))
13711 {
13712 error ("TYPE_MAIN_VARIANT has different TYPE_MAIN_VARIANT");
13713 debug_tree (mv);
13714 error_found = true;
13715 }
13716 else if (t != mv && !verify_type_variant (t, mv))
13717 error_found = true;
13718
13719 tree ct = TYPE_CANONICAL (t);
13720 if (!ct)
13721 ;
13722 else if (TYPE_CANONICAL (t) != ct)
13723 {
13724 error ("TYPE_CANONICAL has different TYPE_CANONICAL");
13725 debug_tree (ct);
13726 error_found = true;
13727 }
13728 /* Method and function types can not be used to address memory and thus
13729 TYPE_CANONICAL really matters only for determining useless conversions.
13730
13731 FIXME: C++ FE produce declarations of builtin functions that are not
13732 compatible with main variants. */
13733 else if (TREE_CODE (t) == FUNCTION_TYPE)
13734 ;
13735 else if (t != ct
13736 /* FIXME: gimple_canonical_types_compatible_p can not compare types
13737 with variably sized arrays because their sizes possibly
13738 gimplified to different variables. */
13739 && !variably_modified_type_p (ct, NULL)
13740 && !gimple_canonical_types_compatible_p (t, ct, false))
13741 {
13742 error ("TYPE_CANONICAL is not compatible");
13743 debug_tree (ct);
13744 error_found = true;
13745 }
13746
13747 if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
13748 && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
13749 {
13750 error ("TYPE_MODE of TYPE_CANONICAL is not compatible");
13751 debug_tree (ct);
13752 error_found = true;
13753 }
13754 if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
13755 {
13756 error ("TYPE_CANONICAL of main variant is not main variant");
13757 debug_tree (ct);
13758 debug_tree (TYPE_MAIN_VARIANT (ct));
13759 error_found = true;
13760 }
13761
13762
13763 /* Check various uses of TYPE_MIN_VALUE_RAW. */
13764 if (RECORD_OR_UNION_TYPE_P (t))
13765 {
13766 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13767 and danagle the pointer from time to time. */
13768 if (TYPE_VFIELD (t)
13769 && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
13770 && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
13771 {
13772 error ("TYPE_VFIELD is not FIELD_DECL nor TREE_LIST");
13773 debug_tree (TYPE_VFIELD (t));
13774 error_found = true;
13775 }
13776 }
13777 else if (TREE_CODE (t) == POINTER_TYPE)
13778 {
13779 if (TYPE_NEXT_PTR_TO (t)
13780 && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
13781 {
13782 error ("TYPE_NEXT_PTR_TO is not POINTER_TYPE");
13783 debug_tree (TYPE_NEXT_PTR_TO (t));
13784 error_found = true;
13785 }
13786 }
13787 else if (TREE_CODE (t) == REFERENCE_TYPE)
13788 {
13789 if (TYPE_NEXT_REF_TO (t)
13790 && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
13791 {
13792 error ("TYPE_NEXT_REF_TO is not REFERENCE_TYPE");
13793 debug_tree (TYPE_NEXT_REF_TO (t));
13794 error_found = true;
13795 }
13796 }
13797 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13798 || TREE_CODE (t) == FIXED_POINT_TYPE)
13799 {
13800 /* FIXME: The following check should pass:
13801 useless_type_conversion_p (const_cast <tree> (t),
13802 TREE_TYPE (TYPE_MIN_VALUE (t))
13803 but does not for C sizetypes in LTO. */
13804 }
13805
13806 /* Check various uses of TYPE_MAXVAL_RAW. */
13807 if (RECORD_OR_UNION_TYPE_P (t))
13808 {
13809 if (!TYPE_BINFO (t))
13810 ;
13811 else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
13812 {
13813 error ("TYPE_BINFO is not TREE_BINFO");
13814 debug_tree (TYPE_BINFO (t));
13815 error_found = true;
13816 }
13817 else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
13818 {
13819 error ("TYPE_BINFO type is not TYPE_MAIN_VARIANT");
13820 debug_tree (TREE_TYPE (TYPE_BINFO (t)));
13821 error_found = true;
13822 }
13823 }
13824 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
13825 {
13826 if (TYPE_METHOD_BASETYPE (t)
13827 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
13828 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
13829 {
13830 error ("TYPE_METHOD_BASETYPE is not record nor union");
13831 debug_tree (TYPE_METHOD_BASETYPE (t));
13832 error_found = true;
13833 }
13834 }
13835 else if (TREE_CODE (t) == OFFSET_TYPE)
13836 {
13837 if (TYPE_OFFSET_BASETYPE (t)
13838 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
13839 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
13840 {
13841 error ("TYPE_OFFSET_BASETYPE is not record nor union");
13842 debug_tree (TYPE_OFFSET_BASETYPE (t));
13843 error_found = true;
13844 }
13845 }
13846 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13847 || TREE_CODE (t) == FIXED_POINT_TYPE)
13848 {
13849 /* FIXME: The following check should pass:
13850 useless_type_conversion_p (const_cast <tree> (t),
13851 TREE_TYPE (TYPE_MAX_VALUE (t))
13852 but does not for C sizetypes in LTO. */
13853 }
13854 else if (TREE_CODE (t) == ARRAY_TYPE)
13855 {
13856 if (TYPE_ARRAY_MAX_SIZE (t)
13857 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
13858 {
13859 error ("TYPE_ARRAY_MAX_SIZE not INTEGER_CST");
13860 debug_tree (TYPE_ARRAY_MAX_SIZE (t));
13861 error_found = true;
13862 }
13863 }
13864 else if (TYPE_MAX_VALUE_RAW (t))
13865 {
13866 error ("TYPE_MAX_VALUE_RAW non-NULL");
13867 debug_tree (TYPE_MAX_VALUE_RAW (t));
13868 error_found = true;
13869 }
13870
13871 if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
13872 {
13873 error ("TYPE_LANG_SLOT_1 (binfo) field is non-NULL");
13874 debug_tree (TYPE_LANG_SLOT_1 (t));
13875 error_found = true;
13876 }
13877
13878 /* Check various uses of TYPE_VALUES_RAW. */
13879 if (TREE_CODE (t) == ENUMERAL_TYPE)
13880 for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
13881 {
13882 tree value = TREE_VALUE (l);
13883 tree name = TREE_PURPOSE (l);
13884
13885 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
13886 CONST_DECL of ENUMERAL TYPE. */
13887 if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
13888 {
13889 error ("Enum value is not CONST_DECL or INTEGER_CST");
13890 debug_tree (value);
13891 debug_tree (name);
13892 error_found = true;
13893 }
13894 if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
13895 && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
13896 {
13897 error ("Enum value type is not INTEGER_TYPE nor convertible to the enum");
13898 debug_tree (value);
13899 debug_tree (name);
13900 error_found = true;
13901 }
13902 if (TREE_CODE (name) != IDENTIFIER_NODE)
13903 {
13904 error ("Enum value name is not IDENTIFIER_NODE");
13905 debug_tree (value);
13906 debug_tree (name);
13907 error_found = true;
13908 }
13909 }
13910 else if (TREE_CODE (t) == ARRAY_TYPE)
13911 {
13912 if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
13913 {
13914 error ("Array TYPE_DOMAIN is not integer type");
13915 debug_tree (TYPE_DOMAIN (t));
13916 error_found = true;
13917 }
13918 }
13919 else if (RECORD_OR_UNION_TYPE_P (t))
13920 {
13921 if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
13922 {
13923 error ("TYPE_FIELDS defined in incomplete type");
13924 error_found = true;
13925 }
13926 for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
13927 {
13928 /* TODO: verify properties of decls. */
13929 if (TREE_CODE (fld) == FIELD_DECL)
13930 ;
13931 else if (TREE_CODE (fld) == TYPE_DECL)
13932 ;
13933 else if (TREE_CODE (fld) == CONST_DECL)
13934 ;
13935 else if (VAR_P (fld))
13936 ;
13937 else if (TREE_CODE (fld) == TEMPLATE_DECL)
13938 ;
13939 else if (TREE_CODE (fld) == USING_DECL)
13940 ;
13941 else if (TREE_CODE (fld) == FUNCTION_DECL)
13942 ;
13943 else
13944 {
13945 error ("Wrong tree in TYPE_FIELDS list");
13946 debug_tree (fld);
13947 error_found = true;
13948 }
13949 }
13950 }
13951 else if (TREE_CODE (t) == INTEGER_TYPE
13952 || TREE_CODE (t) == BOOLEAN_TYPE
13953 || TREE_CODE (t) == OFFSET_TYPE
13954 || TREE_CODE (t) == REFERENCE_TYPE
13955 || TREE_CODE (t) == NULLPTR_TYPE
13956 || TREE_CODE (t) == POINTER_TYPE)
13957 {
13958 if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
13959 {
13960 error ("TYPE_CACHED_VALUES_P is %i while TYPE_CACHED_VALUES is %p",
13961 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
13962 error_found = true;
13963 }
13964 else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
13965 {
13966 error ("TYPE_CACHED_VALUES is not TREE_VEC");
13967 debug_tree (TYPE_CACHED_VALUES (t));
13968 error_found = true;
13969 }
13970 /* Verify just enough of cache to ensure that no one copied it to new type.
13971 All copying should go by copy_node that should clear it. */
13972 else if (TYPE_CACHED_VALUES_P (t))
13973 {
13974 int i;
13975 for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
13976 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
13977 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
13978 {
13979 error ("wrong TYPE_CACHED_VALUES entry");
13980 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
13981 error_found = true;
13982 break;
13983 }
13984 }
13985 }
13986 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
13987 for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
13988 {
13989 /* C++ FE uses TREE_PURPOSE to store initial values. */
13990 if (TREE_PURPOSE (l) && in_lto_p)
13991 {
13992 error ("TREE_PURPOSE is non-NULL in TYPE_ARG_TYPES list");
13993 debug_tree (l);
13994 error_found = true;
13995 }
13996 if (!TYPE_P (TREE_VALUE (l)))
13997 {
13998 error ("Wrong entry in TYPE_ARG_TYPES list");
13999 debug_tree (l);
14000 error_found = true;
14001 }
14002 }
14003 else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
14004 {
14005 error ("TYPE_VALUES_RAW field is non-NULL");
14006 debug_tree (TYPE_VALUES_RAW (t));
14007 error_found = true;
14008 }
14009 if (TREE_CODE (t) != INTEGER_TYPE
14010 && TREE_CODE (t) != BOOLEAN_TYPE
14011 && TREE_CODE (t) != OFFSET_TYPE
14012 && TREE_CODE (t) != REFERENCE_TYPE
14013 && TREE_CODE (t) != NULLPTR_TYPE
14014 && TREE_CODE (t) != POINTER_TYPE
14015 && TYPE_CACHED_VALUES_P (t))
14016 {
14017 error ("TYPE_CACHED_VALUES_P is set while it should not");
14018 error_found = true;
14019 }
14020 if (TYPE_STRING_FLAG (t)
14021 && TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != INTEGER_TYPE)
14022 {
14023 error ("TYPE_STRING_FLAG is set on wrong type code");
14024 error_found = true;
14025 }
14026
14027 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
14028 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
14029 of a type. */
14030 if (TREE_CODE (t) == METHOD_TYPE
14031 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
14032 {
14033 error ("TYPE_METHOD_BASETYPE is not main variant");
14034 error_found = true;
14035 }
14036
14037 if (error_found)
14038 {
14039 debug_tree (const_cast <tree> (t));
14040 internal_error ("verify_type failed");
14041 }
14042 }
14043
14044
14045 /* Return 1 if ARG interpreted as signed in its precision is known to be
14046 always positive or 2 if ARG is known to be always negative, or 3 if
14047 ARG may be positive or negative. */
14048
14049 int
14050 get_range_pos_neg (tree arg)
14051 {
14052 if (arg == error_mark_node)
14053 return 3;
14054
14055 int prec = TYPE_PRECISION (TREE_TYPE (arg));
14056 int cnt = 0;
14057 if (TREE_CODE (arg) == INTEGER_CST)
14058 {
14059 wide_int w = wi::sext (wi::to_wide (arg), prec);
14060 if (wi::neg_p (w))
14061 return 2;
14062 else
14063 return 1;
14064 }
14065 while (CONVERT_EXPR_P (arg)
14066 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
14067 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
14068 {
14069 arg = TREE_OPERAND (arg, 0);
14070 /* Narrower value zero extended into wider type
14071 will always result in positive values. */
14072 if (TYPE_UNSIGNED (TREE_TYPE (arg))
14073 && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
14074 return 1;
14075 prec = TYPE_PRECISION (TREE_TYPE (arg));
14076 if (++cnt > 30)
14077 return 3;
14078 }
14079
14080 if (TREE_CODE (arg) != SSA_NAME)
14081 return 3;
14082 wide_int arg_min, arg_max;
14083 while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
14084 {
14085 gimple *g = SSA_NAME_DEF_STMT (arg);
14086 if (is_gimple_assign (g)
14087 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
14088 {
14089 tree t = gimple_assign_rhs1 (g);
14090 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
14091 && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
14092 {
14093 if (TYPE_UNSIGNED (TREE_TYPE (t))
14094 && TYPE_PRECISION (TREE_TYPE (t)) < prec)
14095 return 1;
14096 prec = TYPE_PRECISION (TREE_TYPE (t));
14097 arg = t;
14098 if (++cnt > 30)
14099 return 3;
14100 continue;
14101 }
14102 }
14103 return 3;
14104 }
14105 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
14106 {
14107 /* For unsigned values, the "positive" range comes
14108 below the "negative" range. */
14109 if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14110 return 1;
14111 if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14112 return 2;
14113 }
14114 else
14115 {
14116 if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14117 return 1;
14118 if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14119 return 2;
14120 }
14121 return 3;
14122 }
14123
14124
14125
14126
14127 /* Return true if ARG is marked with the nonnull attribute in the
14128 current function signature. */
14129
14130 bool
14131 nonnull_arg_p (const_tree arg)
14132 {
14133 tree t, attrs, fntype;
14134 unsigned HOST_WIDE_INT arg_num;
14135
14136 gcc_assert (TREE_CODE (arg) == PARM_DECL
14137 && (POINTER_TYPE_P (TREE_TYPE (arg))
14138 || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
14139
14140 /* The static chain decl is always non null. */
14141 if (arg == cfun->static_chain_decl)
14142 return true;
14143
14144 /* THIS argument of method is always non-NULL. */
14145 if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
14146 && arg == DECL_ARGUMENTS (cfun->decl)
14147 && flag_delete_null_pointer_checks)
14148 return true;
14149
14150 /* Values passed by reference are always non-NULL. */
14151 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
14152 && flag_delete_null_pointer_checks)
14153 return true;
14154
14155 fntype = TREE_TYPE (cfun->decl);
14156 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
14157 {
14158 attrs = lookup_attribute ("nonnull", attrs);
14159
14160 /* If "nonnull" wasn't specified, we know nothing about the argument. */
14161 if (attrs == NULL_TREE)
14162 return false;
14163
14164 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
14165 if (TREE_VALUE (attrs) == NULL_TREE)
14166 return true;
14167
14168 /* Get the position number for ARG in the function signature. */
14169 for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
14170 t;
14171 t = DECL_CHAIN (t), arg_num++)
14172 {
14173 if (t == arg)
14174 break;
14175 }
14176
14177 gcc_assert (t == arg);
14178
14179 /* Now see if ARG_NUM is mentioned in the nonnull list. */
14180 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
14181 {
14182 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
14183 return true;
14184 }
14185 }
14186
14187 return false;
14188 }
14189
14190 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
14191 information. */
14192
14193 location_t
14194 set_block (location_t loc, tree block)
14195 {
14196 location_t pure_loc = get_pure_location (loc);
14197 source_range src_range = get_range_from_loc (line_table, loc);
14198 return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
14199 }
14200
14201 location_t
14202 set_source_range (tree expr, location_t start, location_t finish)
14203 {
14204 source_range src_range;
14205 src_range.m_start = start;
14206 src_range.m_finish = finish;
14207 return set_source_range (expr, src_range);
14208 }
14209
14210 location_t
14211 set_source_range (tree expr, source_range src_range)
14212 {
14213 if (!EXPR_P (expr))
14214 return UNKNOWN_LOCATION;
14215
14216 location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
14217 location_t adhoc = COMBINE_LOCATION_DATA (line_table,
14218 pure_loc,
14219 src_range,
14220 NULL);
14221 SET_EXPR_LOCATION (expr, adhoc);
14222 return adhoc;
14223 }
14224
14225 /* Return EXPR, potentially wrapped with a node expression LOC,
14226 if !CAN_HAVE_LOCATION_P (expr).
14227
14228 NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
14229 VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
14230
14231 Wrapper nodes can be identified using location_wrapper_p. */
14232
14233 tree
14234 maybe_wrap_with_location (tree expr, location_t loc)
14235 {
14236 if (expr == NULL)
14237 return NULL;
14238 if (loc == UNKNOWN_LOCATION)
14239 return expr;
14240 if (CAN_HAVE_LOCATION_P (expr))
14241 return expr;
14242 /* We should only be adding wrappers for constants and for decls,
14243 or for some exceptional tree nodes (e.g. BASELINK in the C++ FE). */
14244 gcc_assert (CONSTANT_CLASS_P (expr)
14245 || DECL_P (expr)
14246 || EXCEPTIONAL_CLASS_P (expr));
14247
14248 /* For now, don't add wrappers to exceptional tree nodes, to minimize
14249 any impact of the wrapper nodes. */
14250 if (EXCEPTIONAL_CLASS_P (expr))
14251 return expr;
14252
14253 tree_code code
14254 = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
14255 || (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
14256 ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
14257 tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
14258 /* Mark this node as being a wrapper. */
14259 EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
14260 return wrapper;
14261 }
14262
14263 /* Return the name of combined function FN, for debugging purposes. */
14264
14265 const char *
14266 combined_fn_name (combined_fn fn)
14267 {
14268 if (builtin_fn_p (fn))
14269 {
14270 tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
14271 return IDENTIFIER_POINTER (DECL_NAME (fndecl));
14272 }
14273 else
14274 return internal_fn_name (as_internal_fn (fn));
14275 }
14276
14277 /* Return a bitmap with a bit set corresponding to each argument in
14278 a function call type FNTYPE declared with attribute nonnull,
14279 or null if none of the function's argument are nonnull. The caller
14280 must free the bitmap. */
14281
14282 bitmap
14283 get_nonnull_args (const_tree fntype)
14284 {
14285 if (fntype == NULL_TREE)
14286 return NULL;
14287
14288 tree attrs = TYPE_ATTRIBUTES (fntype);
14289 if (!attrs)
14290 return NULL;
14291
14292 bitmap argmap = NULL;
14293
14294 /* A function declaration can specify multiple attribute nonnull,
14295 each with zero or more arguments. The loop below creates a bitmap
14296 representing a union of all the arguments. An empty (but non-null)
14297 bitmap means that all arguments have been declaraed nonnull. */
14298 for ( ; attrs; attrs = TREE_CHAIN (attrs))
14299 {
14300 attrs = lookup_attribute ("nonnull", attrs);
14301 if (!attrs)
14302 break;
14303
14304 if (!argmap)
14305 argmap = BITMAP_ALLOC (NULL);
14306
14307 if (!TREE_VALUE (attrs))
14308 {
14309 /* Clear the bitmap in case a previous attribute nonnull
14310 set it and this one overrides it for all arguments. */
14311 bitmap_clear (argmap);
14312 return argmap;
14313 }
14314
14315 /* Iterate over the indices of the format arguments declared nonnull
14316 and set a bit for each. */
14317 for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
14318 {
14319 unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
14320 bitmap_set_bit (argmap, val);
14321 }
14322 }
14323
14324 return argmap;
14325 }
14326
14327 /* Returns true if TYPE is a type where it and all of its subobjects
14328 (recursively) are of structure, union, or array type. */
14329
14330 static bool
14331 default_is_empty_type (tree type)
14332 {
14333 if (RECORD_OR_UNION_TYPE_P (type))
14334 {
14335 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
14336 if (TREE_CODE (field) == FIELD_DECL
14337 && !DECL_PADDING_P (field)
14338 && !default_is_empty_type (TREE_TYPE (field)))
14339 return false;
14340 return true;
14341 }
14342 else if (TREE_CODE (type) == ARRAY_TYPE)
14343 return (integer_minus_onep (array_type_nelts (type))
14344 || TYPE_DOMAIN (type) == NULL_TREE
14345 || default_is_empty_type (TREE_TYPE (type)));
14346 return false;
14347 }
14348
14349 /* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type
14350 that shouldn't be passed via stack. */
14351
14352 bool
14353 default_is_empty_record (const_tree type)
14354 {
14355 if (!abi_version_at_least (12))
14356 return false;
14357
14358 if (type == error_mark_node)
14359 return false;
14360
14361 if (TREE_ADDRESSABLE (type))
14362 return false;
14363
14364 return default_is_empty_type (TYPE_MAIN_VARIANT (type));
14365 }
14366
14367 /* Like int_size_in_bytes, but handle empty records specially. */
14368
14369 HOST_WIDE_INT
14370 arg_int_size_in_bytes (const_tree type)
14371 {
14372 return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
14373 }
14374
14375 /* Like size_in_bytes, but handle empty records specially. */
14376
14377 tree
14378 arg_size_in_bytes (const_tree type)
14379 {
14380 return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
14381 }
14382
14383 /* Return true if an expression with CODE has to have the same result type as
14384 its first operand. */
14385
14386 bool
14387 expr_type_first_operand_type_p (tree_code code)
14388 {
14389 switch (code)
14390 {
14391 case NEGATE_EXPR:
14392 case ABS_EXPR:
14393 case BIT_NOT_EXPR:
14394 case PAREN_EXPR:
14395 case CONJ_EXPR:
14396
14397 case PLUS_EXPR:
14398 case MINUS_EXPR:
14399 case MULT_EXPR:
14400 case TRUNC_DIV_EXPR:
14401 case CEIL_DIV_EXPR:
14402 case FLOOR_DIV_EXPR:
14403 case ROUND_DIV_EXPR:
14404 case TRUNC_MOD_EXPR:
14405 case CEIL_MOD_EXPR:
14406 case FLOOR_MOD_EXPR:
14407 case ROUND_MOD_EXPR:
14408 case RDIV_EXPR:
14409 case EXACT_DIV_EXPR:
14410 case MIN_EXPR:
14411 case MAX_EXPR:
14412 case BIT_IOR_EXPR:
14413 case BIT_XOR_EXPR:
14414 case BIT_AND_EXPR:
14415
14416 case LSHIFT_EXPR:
14417 case RSHIFT_EXPR:
14418 case LROTATE_EXPR:
14419 case RROTATE_EXPR:
14420 return true;
14421
14422 default:
14423 return false;
14424 }
14425 }
14426
14427 /* List of pointer types used to declare builtins before we have seen their
14428 real declaration.
14429
14430 Keep the size up to date in tree.h ! */
14431 const builtin_structptr_type builtin_structptr_types[6] =
14432 {
14433 { fileptr_type_node, ptr_type_node, "FILE" },
14434 { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
14435 { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
14436 { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
14437 { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
14438 { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
14439 };
14440
14441 #if CHECKING_P
14442
14443 namespace selftest {
14444
14445 /* Selftests for tree. */
14446
14447 /* Verify that integer constants are sane. */
14448
14449 static void
14450 test_integer_constants ()
14451 {
14452 ASSERT_TRUE (integer_type_node != NULL);
14453 ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
14454
14455 tree type = integer_type_node;
14456
14457 tree zero = build_zero_cst (type);
14458 ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
14459 ASSERT_EQ (type, TREE_TYPE (zero));
14460
14461 tree one = build_int_cst (type, 1);
14462 ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
14463 ASSERT_EQ (type, TREE_TYPE (zero));
14464 }
14465
14466 /* Verify identifiers. */
14467
14468 static void
14469 test_identifiers ()
14470 {
14471 tree identifier = get_identifier ("foo");
14472 ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
14473 ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
14474 }
14475
14476 /* Verify LABEL_DECL. */
14477
14478 static void
14479 test_labels ()
14480 {
14481 tree identifier = get_identifier ("err");
14482 tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
14483 identifier, void_type_node);
14484 ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
14485 ASSERT_FALSE (FORCED_LABEL (label_decl));
14486 }
14487
14488 /* Return a new VECTOR_CST node whose type is TYPE and whose values
14489 are given by VALS. */
14490
14491 static tree
14492 build_vector (tree type, vec<tree> vals MEM_STAT_DECL)
14493 {
14494 gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
14495 tree_vector_builder builder (type, vals.length (), 1);
14496 builder.splice (vals);
14497 return builder.build ();
14498 }
14499
14500 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */
14501
14502 static void
14503 check_vector_cst (vec<tree> expected, tree actual)
14504 {
14505 ASSERT_KNOWN_EQ (expected.length (),
14506 TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
14507 for (unsigned int i = 0; i < expected.length (); ++i)
14508 ASSERT_EQ (wi::to_wide (expected[i]),
14509 wi::to_wide (vector_cst_elt (actual, i)));
14510 }
14511
14512 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
14513 and that its elements match EXPECTED. */
14514
14515 static void
14516 check_vector_cst_duplicate (vec<tree> expected, tree actual,
14517 unsigned int npatterns)
14518 {
14519 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14520 ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
14521 ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
14522 ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
14523 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
14524 check_vector_cst (expected, actual);
14525 }
14526
14527 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
14528 and NPATTERNS background elements, and that its elements match
14529 EXPECTED. */
14530
14531 static void
14532 check_vector_cst_fill (vec<tree> expected, tree actual,
14533 unsigned int npatterns)
14534 {
14535 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14536 ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
14537 ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
14538 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
14539 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
14540 check_vector_cst (expected, actual);
14541 }
14542
14543 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
14544 and that its elements match EXPECTED. */
14545
14546 static void
14547 check_vector_cst_stepped (vec<tree> expected, tree actual,
14548 unsigned int npatterns)
14549 {
14550 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14551 ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
14552 ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
14553 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
14554 ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
14555 check_vector_cst (expected, actual);
14556 }
14557
14558 /* Test the creation of VECTOR_CSTs. */
14559
14560 static void
14561 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
14562 {
14563 auto_vec<tree, 8> elements (8);
14564 elements.quick_grow (8);
14565 tree element_type = build_nonstandard_integer_type (16, true);
14566 tree vector_type = build_vector_type (element_type, 8);
14567
14568 /* Test a simple linear series with a base of 0 and a step of 1:
14569 { 0, 1, 2, 3, 4, 5, 6, 7 }. */
14570 for (unsigned int i = 0; i < 8; ++i)
14571 elements[i] = build_int_cst (element_type, i);
14572 tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
14573 check_vector_cst_stepped (elements, vector, 1);
14574
14575 /* Try the same with the first element replaced by 100:
14576 { 100, 1, 2, 3, 4, 5, 6, 7 }. */
14577 elements[0] = build_int_cst (element_type, 100);
14578 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14579 check_vector_cst_stepped (elements, vector, 1);
14580
14581 /* Try a series that wraps around.
14582 { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */
14583 for (unsigned int i = 1; i < 8; ++i)
14584 elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
14585 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14586 check_vector_cst_stepped (elements, vector, 1);
14587
14588 /* Try a downward series:
14589 { 100, 79, 78, 77, 76, 75, 75, 73 }. */
14590 for (unsigned int i = 1; i < 8; ++i)
14591 elements[i] = build_int_cst (element_type, 80 - i);
14592 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14593 check_vector_cst_stepped (elements, vector, 1);
14594
14595 /* Try two interleaved series with different bases and steps:
14596 { 100, 53, 66, 206, 62, 212, 58, 218 }. */
14597 elements[1] = build_int_cst (element_type, 53);
14598 for (unsigned int i = 2; i < 8; i += 2)
14599 {
14600 elements[i] = build_int_cst (element_type, 70 - i * 2);
14601 elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
14602 }
14603 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14604 check_vector_cst_stepped (elements, vector, 2);
14605
14606 /* Try a duplicated value:
14607 { 100, 100, 100, 100, 100, 100, 100, 100 }. */
14608 for (unsigned int i = 1; i < 8; ++i)
14609 elements[i] = elements[0];
14610 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14611 check_vector_cst_duplicate (elements, vector, 1);
14612
14613 /* Try an interleaved duplicated value:
14614 { 100, 55, 100, 55, 100, 55, 100, 55 }. */
14615 elements[1] = build_int_cst (element_type, 55);
14616 for (unsigned int i = 2; i < 8; ++i)
14617 elements[i] = elements[i - 2];
14618 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14619 check_vector_cst_duplicate (elements, vector, 2);
14620
14621 /* Try a duplicated value with 2 exceptions
14622 { 41, 97, 100, 55, 100, 55, 100, 55 }. */
14623 elements[0] = build_int_cst (element_type, 41);
14624 elements[1] = build_int_cst (element_type, 97);
14625 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14626 check_vector_cst_fill (elements, vector, 2);
14627
14628 /* Try with and without a step
14629 { 41, 97, 100, 21, 100, 35, 100, 49 }. */
14630 for (unsigned int i = 3; i < 8; i += 2)
14631 elements[i] = build_int_cst (element_type, i * 7);
14632 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14633 check_vector_cst_stepped (elements, vector, 2);
14634
14635 /* Try a fully-general constant:
14636 { 41, 97, 100, 21, 100, 9990, 100, 49 }. */
14637 elements[5] = build_int_cst (element_type, 9990);
14638 vector = build_vector (vector_type, elements PASS_MEM_STAT);
14639 check_vector_cst_fill (elements, vector, 4);
14640 }
14641
14642 /* Verify that STRIP_NOPS (NODE) is EXPECTED.
14643 Helper function for test_location_wrappers, to deal with STRIP_NOPS
14644 modifying its argument in-place. */
14645
14646 static void
14647 check_strip_nops (tree node, tree expected)
14648 {
14649 STRIP_NOPS (node);
14650 ASSERT_EQ (expected, node);
14651 }
14652
14653 /* Verify location wrappers. */
14654
14655 static void
14656 test_location_wrappers ()
14657 {
14658 location_t loc = BUILTINS_LOCATION;
14659
14660 ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));
14661
14662 /* Wrapping a constant. */
14663 tree int_cst = build_int_cst (integer_type_node, 42);
14664 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
14665 ASSERT_FALSE (location_wrapper_p (int_cst));
14666
14667 tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
14668 ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
14669 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
14670 ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));
14671
14672 /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION. */
14673 ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));
14674
14675 /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P. */
14676 tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
14677 ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
14678 ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));
14679
14680 /* Wrapping a STRING_CST. */
14681 tree string_cst = build_string (4, "foo");
14682 ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
14683 ASSERT_FALSE (location_wrapper_p (string_cst));
14684
14685 tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
14686 ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
14687 ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
14688 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
14689 ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));
14690
14691
14692 /* Wrapping a variable. */
14693 tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
14694 get_identifier ("some_int_var"),
14695 integer_type_node);
14696 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
14697 ASSERT_FALSE (location_wrapper_p (int_var));
14698
14699 tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
14700 ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
14701 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
14702 ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));
14703
14704 /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
14705 wrapper. */
14706 tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
14707 ASSERT_FALSE (location_wrapper_p (r_cast));
14708 ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));
14709
14710 /* Verify that STRIP_NOPS removes wrappers. */
14711 check_strip_nops (wrapped_int_cst, int_cst);
14712 check_strip_nops (wrapped_string_cst, string_cst);
14713 check_strip_nops (wrapped_int_var, int_var);
14714 }
14715
14716 /* Check that string escaping works correctly. */
14717
14718 static void
14719 test_escaped_strings (void)
14720 {
14721 int saved_cutoff;
14722 escaped_string msg;
14723
14724 msg.escape (NULL);
14725 /* ASSERT_STREQ does not accept NULL as a valid test
14726 result, so we have to use ASSERT_EQ instead. */
14727 ASSERT_EQ (NULL, (const char *) msg);
14728
14729 msg.escape ("");
14730 ASSERT_STREQ ("", (const char *) msg);
14731
14732 msg.escape ("foobar");
14733 ASSERT_STREQ ("foobar", (const char *) msg);
14734
14735 /* Ensure that we have -fmessage-length set to 0. */
14736 saved_cutoff = pp_line_cutoff (global_dc->printer);
14737 pp_line_cutoff (global_dc->printer) = 0;
14738
14739 msg.escape ("foo\nbar");
14740 ASSERT_STREQ ("foo\\nbar", (const char *) msg);
14741
14742 msg.escape ("\a\b\f\n\r\t\v");
14743 ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg);
14744
14745 /* Now repeat the tests with -fmessage-length set to 5. */
14746 pp_line_cutoff (global_dc->printer) = 5;
14747
14748 /* Note that the newline is not translated into an escape. */
14749 msg.escape ("foo\nbar");
14750 ASSERT_STREQ ("foo\nbar", (const char *) msg);
14751
14752 msg.escape ("\a\b\f\n\r\t\v");
14753 ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg);
14754
14755 /* Restore the original message length setting. */
14756 pp_line_cutoff (global_dc->printer) = saved_cutoff;
14757 }
14758
14759 /* Run all of the selftests within this file. */
14760
14761 void
14762 tree_c_tests ()
14763 {
14764 test_integer_constants ();
14765 test_identifiers ();
14766 test_labels ();
14767 test_vector_cst_patterns ();
14768 test_location_wrappers ();
14769 test_escaped_strings ();
14770 }
14771
14772 } // namespace selftest
14773
14774 #endif /* CHECKING_P */
14775
14776 #include "gt-tree.h"