[17/77] Add an int_mode_for_size helper function
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent but can occasionally
28 calls language-dependent routines. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "params.h"
58 #include "langhooks-def.h"
59 #include "tree-diagnostic.h"
60 #include "except.h"
61 #include "builtins.h"
62 #include "print-tree.h"
63 #include "ipa-utils.h"
64 #include "selftest.h"
65 #include "stringpool.h"
66 #include "attribs.h"
67 #include "rtl.h"
68 #include "regs.h"
69
70 /* Tree code classes. */
71
72 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
73 #define END_OF_BASE_TREE_CODES tcc_exceptional,
74
75 const enum tree_code_class tree_code_type[] = {
76 #include "all-tree.def"
77 };
78
79 #undef DEFTREECODE
80 #undef END_OF_BASE_TREE_CODES
81
82 /* Table indexed by tree code giving number of expression
83 operands beyond the fixed part of the node structure.
84 Not used for types or decls. */
85
86 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
87 #define END_OF_BASE_TREE_CODES 0,
88
89 const unsigned char tree_code_length[] = {
90 #include "all-tree.def"
91 };
92
93 #undef DEFTREECODE
94 #undef END_OF_BASE_TREE_CODES
95
96 /* Names of tree components.
97 Used for printing out the tree and error messages. */
98 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
99 #define END_OF_BASE_TREE_CODES "@dummy",
100
101 static const char *const tree_code_name[] = {
102 #include "all-tree.def"
103 };
104
105 #undef DEFTREECODE
106 #undef END_OF_BASE_TREE_CODES
107
108 /* Each tree code class has an associated string representation.
109 These must correspond to the tree_code_class entries. */
110
111 const char *const tree_code_class_strings[] =
112 {
113 "exceptional",
114 "constant",
115 "type",
116 "declaration",
117 "reference",
118 "comparison",
119 "unary",
120 "binary",
121 "statement",
122 "vl_exp",
123 "expression"
124 };
125
126 /* obstack.[ch] explicitly declined to prototype this. */
127 extern int _obstack_allocated_p (struct obstack *h, void *obj);
128
129 /* Statistics-gathering stuff. */
130
131 static int tree_code_counts[MAX_TREE_CODES];
132 int tree_node_counts[(int) all_kinds];
133 int tree_node_sizes[(int) all_kinds];
134
135 /* Keep in sync with tree.h:enum tree_node_kind. */
136 static const char * const tree_node_kind_names[] = {
137 "decls",
138 "types",
139 "blocks",
140 "stmts",
141 "refs",
142 "exprs",
143 "constants",
144 "identifiers",
145 "vecs",
146 "binfos",
147 "ssa names",
148 "constructors",
149 "random kinds",
150 "lang_decl kinds",
151 "lang_type kinds",
152 "omp clauses",
153 };
154
155 /* Unique id for next decl created. */
156 static GTY(()) int next_decl_uid;
157 /* Unique id for next type created. */
158 static GTY(()) unsigned next_type_uid = 1;
159 /* Unique id for next debug decl created. Use negative numbers,
160 to catch erroneous uses. */
161 static GTY(()) int next_debug_decl_uid;
162
163 /* Since we cannot rehash a type after it is in the table, we have to
164 keep the hash code. */
165
166 struct GTY((for_user)) type_hash {
167 unsigned long hash;
168 tree type;
169 };
170
171 /* Initial size of the hash table (rounded to next prime). */
172 #define TYPE_HASH_INITIAL_SIZE 1000
173
174 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
175 {
176 static hashval_t hash (type_hash *t) { return t->hash; }
177 static bool equal (type_hash *a, type_hash *b);
178
179 static int
180 keep_cache_entry (type_hash *&t)
181 {
182 return ggc_marked_p (t->type);
183 }
184 };
185
186 /* Now here is the hash table. When recording a type, it is added to
187 the slot whose index is the hash code. Note that the hash table is
188 used for several kinds of types (function types, array types and
189 array index range types, for now). While all these live in the
190 same table, they are completely independent, and the hash code is
191 computed differently for each of these. */
192
193 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
194
195 /* Hash table and temporary node for larger integer const values. */
196 static GTY (()) tree int_cst_node;
197
198 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
199 {
200 static hashval_t hash (tree t);
201 static bool equal (tree x, tree y);
202 };
203
204 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
205
206 /* Hash table for optimization flags and target option flags. Use the same
207 hash table for both sets of options. Nodes for building the current
208 optimization and target option nodes. The assumption is most of the time
209 the options created will already be in the hash table, so we avoid
210 allocating and freeing up a node repeatably. */
211 static GTY (()) tree cl_optimization_node;
212 static GTY (()) tree cl_target_option_node;
213
214 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
215 {
216 static hashval_t hash (tree t);
217 static bool equal (tree x, tree y);
218 };
219
220 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
221
222 /* General tree->tree mapping structure for use in hash tables. */
223
224
225 static GTY ((cache))
226 hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
227
228 static GTY ((cache))
229 hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
230
231 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
232 {
233 static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
234
235 static bool
236 equal (tree_vec_map *a, tree_vec_map *b)
237 {
238 return a->base.from == b->base.from;
239 }
240
241 static int
242 keep_cache_entry (tree_vec_map *&m)
243 {
244 return ggc_marked_p (m->base.from);
245 }
246 };
247
248 static GTY ((cache))
249 hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
250
251 static void set_type_quals (tree, int);
252 static void print_type_hash_statistics (void);
253 static void print_debug_expr_statistics (void);
254 static void print_value_expr_statistics (void);
255
256 tree global_trees[TI_MAX];
257 tree integer_types[itk_none];
258
259 bool int_n_enabled_p[NUM_INT_N_ENTS];
260 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
261
262 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
263
264 /* Number of operands for each OpenMP clause. */
265 unsigned const char omp_clause_num_ops[] =
266 {
267 0, /* OMP_CLAUSE_ERROR */
268 1, /* OMP_CLAUSE_PRIVATE */
269 1, /* OMP_CLAUSE_SHARED */
270 1, /* OMP_CLAUSE_FIRSTPRIVATE */
271 2, /* OMP_CLAUSE_LASTPRIVATE */
272 5, /* OMP_CLAUSE_REDUCTION */
273 1, /* OMP_CLAUSE_COPYIN */
274 1, /* OMP_CLAUSE_COPYPRIVATE */
275 3, /* OMP_CLAUSE_LINEAR */
276 2, /* OMP_CLAUSE_ALIGNED */
277 1, /* OMP_CLAUSE_DEPEND */
278 1, /* OMP_CLAUSE_UNIFORM */
279 1, /* OMP_CLAUSE_TO_DECLARE */
280 1, /* OMP_CLAUSE_LINK */
281 2, /* OMP_CLAUSE_FROM */
282 2, /* OMP_CLAUSE_TO */
283 2, /* OMP_CLAUSE_MAP */
284 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
285 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
286 2, /* OMP_CLAUSE__CACHE_ */
287 2, /* OMP_CLAUSE_GANG */
288 1, /* OMP_CLAUSE_ASYNC */
289 1, /* OMP_CLAUSE_WAIT */
290 0, /* OMP_CLAUSE_AUTO */
291 0, /* OMP_CLAUSE_SEQ */
292 1, /* OMP_CLAUSE__LOOPTEMP_ */
293 1, /* OMP_CLAUSE_IF */
294 1, /* OMP_CLAUSE_NUM_THREADS */
295 1, /* OMP_CLAUSE_SCHEDULE */
296 0, /* OMP_CLAUSE_NOWAIT */
297 1, /* OMP_CLAUSE_ORDERED */
298 0, /* OMP_CLAUSE_DEFAULT */
299 3, /* OMP_CLAUSE_COLLAPSE */
300 0, /* OMP_CLAUSE_UNTIED */
301 1, /* OMP_CLAUSE_FINAL */
302 0, /* OMP_CLAUSE_MERGEABLE */
303 1, /* OMP_CLAUSE_DEVICE */
304 1, /* OMP_CLAUSE_DIST_SCHEDULE */
305 0, /* OMP_CLAUSE_INBRANCH */
306 0, /* OMP_CLAUSE_NOTINBRANCH */
307 1, /* OMP_CLAUSE_NUM_TEAMS */
308 1, /* OMP_CLAUSE_THREAD_LIMIT */
309 0, /* OMP_CLAUSE_PROC_BIND */
310 1, /* OMP_CLAUSE_SAFELEN */
311 1, /* OMP_CLAUSE_SIMDLEN */
312 0, /* OMP_CLAUSE_FOR */
313 0, /* OMP_CLAUSE_PARALLEL */
314 0, /* OMP_CLAUSE_SECTIONS */
315 0, /* OMP_CLAUSE_TASKGROUP */
316 1, /* OMP_CLAUSE_PRIORITY */
317 1, /* OMP_CLAUSE_GRAINSIZE */
318 1, /* OMP_CLAUSE_NUM_TASKS */
319 0, /* OMP_CLAUSE_NOGROUP */
320 0, /* OMP_CLAUSE_THREADS */
321 0, /* OMP_CLAUSE_SIMD */
322 1, /* OMP_CLAUSE_HINT */
323 0, /* OMP_CLAUSE_DEFALTMAP */
324 1, /* OMP_CLAUSE__SIMDUID_ */
325 0, /* OMP_CLAUSE__SIMT_ */
326 1, /* OMP_CLAUSE__CILK_FOR_COUNT_ */
327 0, /* OMP_CLAUSE_INDEPENDENT */
328 1, /* OMP_CLAUSE_WORKER */
329 1, /* OMP_CLAUSE_VECTOR */
330 1, /* OMP_CLAUSE_NUM_GANGS */
331 1, /* OMP_CLAUSE_NUM_WORKERS */
332 1, /* OMP_CLAUSE_VECTOR_LENGTH */
333 3, /* OMP_CLAUSE_TILE */
334 2, /* OMP_CLAUSE__GRIDDIM_ */
335 };
336
337 const char * const omp_clause_code_name[] =
338 {
339 "error_clause",
340 "private",
341 "shared",
342 "firstprivate",
343 "lastprivate",
344 "reduction",
345 "copyin",
346 "copyprivate",
347 "linear",
348 "aligned",
349 "depend",
350 "uniform",
351 "to",
352 "link",
353 "from",
354 "to",
355 "map",
356 "use_device_ptr",
357 "is_device_ptr",
358 "_cache_",
359 "gang",
360 "async",
361 "wait",
362 "auto",
363 "seq",
364 "_looptemp_",
365 "if",
366 "num_threads",
367 "schedule",
368 "nowait",
369 "ordered",
370 "default",
371 "collapse",
372 "untied",
373 "final",
374 "mergeable",
375 "device",
376 "dist_schedule",
377 "inbranch",
378 "notinbranch",
379 "num_teams",
380 "thread_limit",
381 "proc_bind",
382 "safelen",
383 "simdlen",
384 "for",
385 "parallel",
386 "sections",
387 "taskgroup",
388 "priority",
389 "grainsize",
390 "num_tasks",
391 "nogroup",
392 "threads",
393 "simd",
394 "hint",
395 "defaultmap",
396 "_simduid_",
397 "_simt_",
398 "_Cilk_for_count_",
399 "independent",
400 "worker",
401 "vector",
402 "num_gangs",
403 "num_workers",
404 "vector_length",
405 "tile",
406 "_griddim_"
407 };
408
409
410 /* Return the tree node structure used by tree code CODE. */
411
412 static inline enum tree_node_structure_enum
413 tree_node_structure_for_code (enum tree_code code)
414 {
415 switch (TREE_CODE_CLASS (code))
416 {
417 case tcc_declaration:
418 {
419 switch (code)
420 {
421 case FIELD_DECL:
422 return TS_FIELD_DECL;
423 case PARM_DECL:
424 return TS_PARM_DECL;
425 case VAR_DECL:
426 return TS_VAR_DECL;
427 case LABEL_DECL:
428 return TS_LABEL_DECL;
429 case RESULT_DECL:
430 return TS_RESULT_DECL;
431 case DEBUG_EXPR_DECL:
432 return TS_DECL_WRTL;
433 case CONST_DECL:
434 return TS_CONST_DECL;
435 case TYPE_DECL:
436 return TS_TYPE_DECL;
437 case FUNCTION_DECL:
438 return TS_FUNCTION_DECL;
439 case TRANSLATION_UNIT_DECL:
440 return TS_TRANSLATION_UNIT_DECL;
441 default:
442 return TS_DECL_NON_COMMON;
443 }
444 }
445 case tcc_type:
446 return TS_TYPE_NON_COMMON;
447 case tcc_reference:
448 case tcc_comparison:
449 case tcc_unary:
450 case tcc_binary:
451 case tcc_expression:
452 case tcc_statement:
453 case tcc_vl_exp:
454 return TS_EXP;
455 default: /* tcc_constant and tcc_exceptional */
456 break;
457 }
458 switch (code)
459 {
460 /* tcc_constant cases. */
461 case VOID_CST: return TS_TYPED;
462 case INTEGER_CST: return TS_INT_CST;
463 case REAL_CST: return TS_REAL_CST;
464 case FIXED_CST: return TS_FIXED_CST;
465 case COMPLEX_CST: return TS_COMPLEX;
466 case VECTOR_CST: return TS_VECTOR;
467 case STRING_CST: return TS_STRING;
468 /* tcc_exceptional cases. */
469 case ERROR_MARK: return TS_COMMON;
470 case IDENTIFIER_NODE: return TS_IDENTIFIER;
471 case TREE_LIST: return TS_LIST;
472 case TREE_VEC: return TS_VEC;
473 case SSA_NAME: return TS_SSA_NAME;
474 case PLACEHOLDER_EXPR: return TS_COMMON;
475 case STATEMENT_LIST: return TS_STATEMENT_LIST;
476 case BLOCK: return TS_BLOCK;
477 case CONSTRUCTOR: return TS_CONSTRUCTOR;
478 case TREE_BINFO: return TS_BINFO;
479 case OMP_CLAUSE: return TS_OMP_CLAUSE;
480 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
481 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
482
483 default:
484 gcc_unreachable ();
485 }
486 }
487
488
489 /* Initialize tree_contains_struct to describe the hierarchy of tree
490 nodes. */
491
492 static void
493 initialize_tree_contains_struct (void)
494 {
495 unsigned i;
496
497 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
498 {
499 enum tree_code code;
500 enum tree_node_structure_enum ts_code;
501
502 code = (enum tree_code) i;
503 ts_code = tree_node_structure_for_code (code);
504
505 /* Mark the TS structure itself. */
506 tree_contains_struct[code][ts_code] = 1;
507
508 /* Mark all the structures that TS is derived from. */
509 switch (ts_code)
510 {
511 case TS_TYPED:
512 case TS_BLOCK:
513 case TS_OPTIMIZATION:
514 case TS_TARGET_OPTION:
515 MARK_TS_BASE (code);
516 break;
517
518 case TS_COMMON:
519 case TS_INT_CST:
520 case TS_REAL_CST:
521 case TS_FIXED_CST:
522 case TS_VECTOR:
523 case TS_STRING:
524 case TS_COMPLEX:
525 case TS_SSA_NAME:
526 case TS_CONSTRUCTOR:
527 case TS_EXP:
528 case TS_STATEMENT_LIST:
529 MARK_TS_TYPED (code);
530 break;
531
532 case TS_IDENTIFIER:
533 case TS_DECL_MINIMAL:
534 case TS_TYPE_COMMON:
535 case TS_LIST:
536 case TS_VEC:
537 case TS_BINFO:
538 case TS_OMP_CLAUSE:
539 MARK_TS_COMMON (code);
540 break;
541
542 case TS_TYPE_WITH_LANG_SPECIFIC:
543 MARK_TS_TYPE_COMMON (code);
544 break;
545
546 case TS_TYPE_NON_COMMON:
547 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
548 break;
549
550 case TS_DECL_COMMON:
551 MARK_TS_DECL_MINIMAL (code);
552 break;
553
554 case TS_DECL_WRTL:
555 case TS_CONST_DECL:
556 MARK_TS_DECL_COMMON (code);
557 break;
558
559 case TS_DECL_NON_COMMON:
560 MARK_TS_DECL_WITH_VIS (code);
561 break;
562
563 case TS_DECL_WITH_VIS:
564 case TS_PARM_DECL:
565 case TS_LABEL_DECL:
566 case TS_RESULT_DECL:
567 MARK_TS_DECL_WRTL (code);
568 break;
569
570 case TS_FIELD_DECL:
571 MARK_TS_DECL_COMMON (code);
572 break;
573
574 case TS_VAR_DECL:
575 MARK_TS_DECL_WITH_VIS (code);
576 break;
577
578 case TS_TYPE_DECL:
579 case TS_FUNCTION_DECL:
580 MARK_TS_DECL_NON_COMMON (code);
581 break;
582
583 case TS_TRANSLATION_UNIT_DECL:
584 MARK_TS_DECL_COMMON (code);
585 break;
586
587 default:
588 gcc_unreachable ();
589 }
590 }
591
592 /* Basic consistency checks for attributes used in fold. */
593 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
594 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
595 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
596 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
597 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
598 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
599 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
600 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
601 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
602 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
603 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
604 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
605 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
606 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
607 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
608 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
609 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
610 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
611 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
612 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
613 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
614 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
615 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
616 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
617 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
618 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
619 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
620 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
621 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
622 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
623 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
624 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
625 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
626 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
627 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
628 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
629 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
630 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
631 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
632 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
633 }
634
635
636 /* Init tree.c. */
637
638 void
639 init_ttree (void)
640 {
641 /* Initialize the hash table of types. */
642 type_hash_table
643 = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
644
645 debug_expr_for_decl
646 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
647
648 value_expr_for_decl
649 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
650
651 int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
652
653 int_cst_node = make_int_cst (1, 1);
654
655 cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
656
657 cl_optimization_node = make_node (OPTIMIZATION_NODE);
658 cl_target_option_node = make_node (TARGET_OPTION_NODE);
659
660 /* Initialize the tree_contains_struct array. */
661 initialize_tree_contains_struct ();
662 lang_hooks.init_ts ();
663 }
664
665 \f
666 /* The name of the object as the assembler will see it (but before any
667 translations made by ASM_OUTPUT_LABELREF). Often this is the same
668 as DECL_NAME. It is an IDENTIFIER_NODE. */
669 tree
670 decl_assembler_name (tree decl)
671 {
672 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
673 lang_hooks.set_decl_assembler_name (decl);
674 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
675 }
676
677 /* When the target supports COMDAT groups, this indicates which group the
678 DECL is associated with. This can be either an IDENTIFIER_NODE or a
679 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
680 tree
681 decl_comdat_group (const_tree node)
682 {
683 struct symtab_node *snode = symtab_node::get (node);
684 if (!snode)
685 return NULL;
686 return snode->get_comdat_group ();
687 }
688
689 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
690 tree
691 decl_comdat_group_id (const_tree node)
692 {
693 struct symtab_node *snode = symtab_node::get (node);
694 if (!snode)
695 return NULL;
696 return snode->get_comdat_group_id ();
697 }
698
699 /* When the target supports named section, return its name as IDENTIFIER_NODE
700 or NULL if it is in no section. */
701 const char *
702 decl_section_name (const_tree node)
703 {
704 struct symtab_node *snode = symtab_node::get (node);
705 if (!snode)
706 return NULL;
707 return snode->get_section ();
708 }
709
710 /* Set section name of NODE to VALUE (that is expected to be
711 identifier node) */
712 void
713 set_decl_section_name (tree node, const char *value)
714 {
715 struct symtab_node *snode;
716
717 if (value == NULL)
718 {
719 snode = symtab_node::get (node);
720 if (!snode)
721 return;
722 }
723 else if (VAR_P (node))
724 snode = varpool_node::get_create (node);
725 else
726 snode = cgraph_node::get_create (node);
727 snode->set_section (value);
728 }
729
730 /* Return TLS model of a variable NODE. */
731 enum tls_model
732 decl_tls_model (const_tree node)
733 {
734 struct varpool_node *snode = varpool_node::get (node);
735 if (!snode)
736 return TLS_MODEL_NONE;
737 return snode->tls_model;
738 }
739
740 /* Set TLS model of variable NODE to MODEL. */
741 void
742 set_decl_tls_model (tree node, enum tls_model model)
743 {
744 struct varpool_node *vnode;
745
746 if (model == TLS_MODEL_NONE)
747 {
748 vnode = varpool_node::get (node);
749 if (!vnode)
750 return;
751 }
752 else
753 vnode = varpool_node::get_create (node);
754 vnode->tls_model = model;
755 }
756
757 /* Compute the number of bytes occupied by a tree with code CODE.
758 This function cannot be used for nodes that have variable sizes,
759 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
760 size_t
761 tree_code_size (enum tree_code code)
762 {
763 switch (TREE_CODE_CLASS (code))
764 {
765 case tcc_declaration: /* A decl node */
766 {
767 switch (code)
768 {
769 case FIELD_DECL:
770 return sizeof (struct tree_field_decl);
771 case PARM_DECL:
772 return sizeof (struct tree_parm_decl);
773 case VAR_DECL:
774 return sizeof (struct tree_var_decl);
775 case LABEL_DECL:
776 return sizeof (struct tree_label_decl);
777 case RESULT_DECL:
778 return sizeof (struct tree_result_decl);
779 case CONST_DECL:
780 return sizeof (struct tree_const_decl);
781 case TYPE_DECL:
782 return sizeof (struct tree_type_decl);
783 case FUNCTION_DECL:
784 return sizeof (struct tree_function_decl);
785 case DEBUG_EXPR_DECL:
786 return sizeof (struct tree_decl_with_rtl);
787 case TRANSLATION_UNIT_DECL:
788 return sizeof (struct tree_translation_unit_decl);
789 case NAMESPACE_DECL:
790 case IMPORTED_DECL:
791 case NAMELIST_DECL:
792 return sizeof (struct tree_decl_non_common);
793 default:
794 return lang_hooks.tree_size (code);
795 }
796 }
797
798 case tcc_type: /* a type node */
799 return sizeof (struct tree_type_non_common);
800
801 case tcc_reference: /* a reference */
802 case tcc_expression: /* an expression */
803 case tcc_statement: /* an expression with side effects */
804 case tcc_comparison: /* a comparison expression */
805 case tcc_unary: /* a unary arithmetic expression */
806 case tcc_binary: /* a binary arithmetic expression */
807 return (sizeof (struct tree_exp)
808 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
809
810 case tcc_constant: /* a constant */
811 switch (code)
812 {
813 case VOID_CST: return sizeof (struct tree_typed);
814 case INTEGER_CST: gcc_unreachable ();
815 case REAL_CST: return sizeof (struct tree_real_cst);
816 case FIXED_CST: return sizeof (struct tree_fixed_cst);
817 case COMPLEX_CST: return sizeof (struct tree_complex);
818 case VECTOR_CST: return sizeof (struct tree_vector);
819 case STRING_CST: gcc_unreachable ();
820 default:
821 return lang_hooks.tree_size (code);
822 }
823
824 case tcc_exceptional: /* something random, like an identifier. */
825 switch (code)
826 {
827 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
828 case TREE_LIST: return sizeof (struct tree_list);
829
830 case ERROR_MARK:
831 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
832
833 case TREE_VEC:
834 case OMP_CLAUSE: gcc_unreachable ();
835
836 case SSA_NAME: return sizeof (struct tree_ssa_name);
837
838 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
839 case BLOCK: return sizeof (struct tree_block);
840 case CONSTRUCTOR: return sizeof (struct tree_constructor);
841 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
842 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
843
844 default:
845 return lang_hooks.tree_size (code);
846 }
847
848 default:
849 gcc_unreachable ();
850 }
851 }
852
853 /* Compute the number of bytes occupied by NODE. This routine only
854 looks at TREE_CODE, except for those nodes that have variable sizes. */
855 size_t
856 tree_size (const_tree node)
857 {
858 const enum tree_code code = TREE_CODE (node);
859 switch (code)
860 {
861 case INTEGER_CST:
862 return (sizeof (struct tree_int_cst)
863 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
864
865 case TREE_BINFO:
866 return (offsetof (struct tree_binfo, base_binfos)
867 + vec<tree, va_gc>
868 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
869
870 case TREE_VEC:
871 return (sizeof (struct tree_vec)
872 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
873
874 case VECTOR_CST:
875 return (sizeof (struct tree_vector)
876 + (TYPE_VECTOR_SUBPARTS (TREE_TYPE (node)) - 1) * sizeof (tree));
877
878 case STRING_CST:
879 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
880
881 case OMP_CLAUSE:
882 return (sizeof (struct tree_omp_clause)
883 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
884 * sizeof (tree));
885
886 default:
887 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
888 return (sizeof (struct tree_exp)
889 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
890 else
891 return tree_code_size (code);
892 }
893 }
894
895 /* Record interesting allocation statistics for a tree node with CODE
896 and LENGTH. */
897
898 static void
899 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
900 size_t length ATTRIBUTE_UNUSED)
901 {
902 enum tree_code_class type = TREE_CODE_CLASS (code);
903 tree_node_kind kind;
904
905 if (!GATHER_STATISTICS)
906 return;
907
908 switch (type)
909 {
910 case tcc_declaration: /* A decl node */
911 kind = d_kind;
912 break;
913
914 case tcc_type: /* a type node */
915 kind = t_kind;
916 break;
917
918 case tcc_statement: /* an expression with side effects */
919 kind = s_kind;
920 break;
921
922 case tcc_reference: /* a reference */
923 kind = r_kind;
924 break;
925
926 case tcc_expression: /* an expression */
927 case tcc_comparison: /* a comparison expression */
928 case tcc_unary: /* a unary arithmetic expression */
929 case tcc_binary: /* a binary arithmetic expression */
930 kind = e_kind;
931 break;
932
933 case tcc_constant: /* a constant */
934 kind = c_kind;
935 break;
936
937 case tcc_exceptional: /* something random, like an identifier. */
938 switch (code)
939 {
940 case IDENTIFIER_NODE:
941 kind = id_kind;
942 break;
943
944 case TREE_VEC:
945 kind = vec_kind;
946 break;
947
948 case TREE_BINFO:
949 kind = binfo_kind;
950 break;
951
952 case SSA_NAME:
953 kind = ssa_name_kind;
954 break;
955
956 case BLOCK:
957 kind = b_kind;
958 break;
959
960 case CONSTRUCTOR:
961 kind = constr_kind;
962 break;
963
964 case OMP_CLAUSE:
965 kind = omp_clause_kind;
966 break;
967
968 default:
969 kind = x_kind;
970 break;
971 }
972 break;
973
974 case tcc_vl_exp:
975 kind = e_kind;
976 break;
977
978 default:
979 gcc_unreachable ();
980 }
981
982 tree_code_counts[(int) code]++;
983 tree_node_counts[(int) kind]++;
984 tree_node_sizes[(int) kind] += length;
985 }
986
987 /* Allocate and return a new UID from the DECL_UID namespace. */
988
989 int
990 allocate_decl_uid (void)
991 {
992 return next_decl_uid++;
993 }
994
995 /* Return a newly allocated node of code CODE. For decl and type
996 nodes, some other fields are initialized. The rest of the node is
997 initialized to zero. This function cannot be used for TREE_VEC,
998 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
999 tree_code_size.
1000
1001 Achoo! I got a code in the node. */
1002
1003 tree
1004 make_node (enum tree_code code MEM_STAT_DECL)
1005 {
1006 tree t;
1007 enum tree_code_class type = TREE_CODE_CLASS (code);
1008 size_t length = tree_code_size (code);
1009
1010 record_node_allocation_statistics (code, length);
1011
1012 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1013 TREE_SET_CODE (t, code);
1014
1015 switch (type)
1016 {
1017 case tcc_statement:
1018 TREE_SIDE_EFFECTS (t) = 1;
1019 break;
1020
1021 case tcc_declaration:
1022 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1023 {
1024 if (code == FUNCTION_DECL)
1025 {
1026 SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1027 SET_DECL_MODE (t, FUNCTION_MODE);
1028 }
1029 else
1030 SET_DECL_ALIGN (t, 1);
1031 }
1032 DECL_SOURCE_LOCATION (t) = input_location;
1033 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1034 DECL_UID (t) = --next_debug_decl_uid;
1035 else
1036 {
1037 DECL_UID (t) = allocate_decl_uid ();
1038 SET_DECL_PT_UID (t, -1);
1039 }
1040 if (TREE_CODE (t) == LABEL_DECL)
1041 LABEL_DECL_UID (t) = -1;
1042
1043 break;
1044
1045 case tcc_type:
1046 TYPE_UID (t) = next_type_uid++;
1047 SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1048 TYPE_USER_ALIGN (t) = 0;
1049 TYPE_MAIN_VARIANT (t) = t;
1050 TYPE_CANONICAL (t) = t;
1051
1052 /* Default to no attributes for type, but let target change that. */
1053 TYPE_ATTRIBUTES (t) = NULL_TREE;
1054 targetm.set_default_type_attributes (t);
1055
1056 /* We have not yet computed the alias set for this type. */
1057 TYPE_ALIAS_SET (t) = -1;
1058 break;
1059
1060 case tcc_constant:
1061 TREE_CONSTANT (t) = 1;
1062 break;
1063
1064 case tcc_expression:
1065 switch (code)
1066 {
1067 case INIT_EXPR:
1068 case MODIFY_EXPR:
1069 case VA_ARG_EXPR:
1070 case PREDECREMENT_EXPR:
1071 case PREINCREMENT_EXPR:
1072 case POSTDECREMENT_EXPR:
1073 case POSTINCREMENT_EXPR:
1074 /* All of these have side-effects, no matter what their
1075 operands are. */
1076 TREE_SIDE_EFFECTS (t) = 1;
1077 break;
1078
1079 default:
1080 break;
1081 }
1082 break;
1083
1084 case tcc_exceptional:
1085 switch (code)
1086 {
1087 case TARGET_OPTION_NODE:
1088 TREE_TARGET_OPTION(t)
1089 = ggc_cleared_alloc<struct cl_target_option> ();
1090 break;
1091
1092 case OPTIMIZATION_NODE:
1093 TREE_OPTIMIZATION (t)
1094 = ggc_cleared_alloc<struct cl_optimization> ();
1095 break;
1096
1097 default:
1098 break;
1099 }
1100 break;
1101
1102 default:
1103 /* Other classes need no special treatment. */
1104 break;
1105 }
1106
1107 return t;
1108 }
1109
1110 /* Free tree node. */
1111
1112 void
1113 free_node (tree node)
1114 {
1115 enum tree_code code = TREE_CODE (node);
1116 if (GATHER_STATISTICS)
1117 {
1118 tree_code_counts[(int) TREE_CODE (node)]--;
1119 tree_node_counts[(int) t_kind]--;
1120 tree_node_sizes[(int) t_kind] -= tree_size (node);
1121 }
1122 if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1123 vec_free (CONSTRUCTOR_ELTS (node));
1124 else if (code == BLOCK)
1125 vec_free (BLOCK_NONLOCALIZED_VARS (node));
1126 else if (code == TREE_BINFO)
1127 vec_free (BINFO_BASE_ACCESSES (node));
1128 ggc_free (node);
1129 }
1130 \f
1131 /* Return a new node with the same contents as NODE except that its
1132 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1133
1134 tree
1135 copy_node (tree node MEM_STAT_DECL)
1136 {
1137 tree t;
1138 enum tree_code code = TREE_CODE (node);
1139 size_t length;
1140
1141 gcc_assert (code != STATEMENT_LIST);
1142
1143 length = tree_size (node);
1144 record_node_allocation_statistics (code, length);
1145 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1146 memcpy (t, node, length);
1147
1148 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1149 TREE_CHAIN (t) = 0;
1150 TREE_ASM_WRITTEN (t) = 0;
1151 TREE_VISITED (t) = 0;
1152
1153 if (TREE_CODE_CLASS (code) == tcc_declaration)
1154 {
1155 if (code == DEBUG_EXPR_DECL)
1156 DECL_UID (t) = --next_debug_decl_uid;
1157 else
1158 {
1159 DECL_UID (t) = allocate_decl_uid ();
1160 if (DECL_PT_UID_SET_P (node))
1161 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1162 }
1163 if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1164 && DECL_HAS_VALUE_EXPR_P (node))
1165 {
1166 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1167 DECL_HAS_VALUE_EXPR_P (t) = 1;
1168 }
1169 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1170 if (VAR_P (node))
1171 {
1172 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1173 t->decl_with_vis.symtab_node = NULL;
1174 }
1175 if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1176 {
1177 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1178 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1179 }
1180 if (TREE_CODE (node) == FUNCTION_DECL)
1181 {
1182 DECL_STRUCT_FUNCTION (t) = NULL;
1183 t->decl_with_vis.symtab_node = NULL;
1184 }
1185 }
1186 else if (TREE_CODE_CLASS (code) == tcc_type)
1187 {
1188 TYPE_UID (t) = next_type_uid++;
1189 /* The following is so that the debug code for
1190 the copy is different from the original type.
1191 The two statements usually duplicate each other
1192 (because they clear fields of the same union),
1193 but the optimizer should catch that. */
1194 TYPE_SYMTAB_POINTER (t) = 0;
1195 TYPE_SYMTAB_ADDRESS (t) = 0;
1196
1197 /* Do not copy the values cache. */
1198 if (TYPE_CACHED_VALUES_P (t))
1199 {
1200 TYPE_CACHED_VALUES_P (t) = 0;
1201 TYPE_CACHED_VALUES (t) = NULL_TREE;
1202 }
1203 }
1204 else if (code == TARGET_OPTION_NODE)
1205 {
1206 TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1207 memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1208 sizeof (struct cl_target_option));
1209 }
1210 else if (code == OPTIMIZATION_NODE)
1211 {
1212 TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1213 memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1214 sizeof (struct cl_optimization));
1215 }
1216
1217 return t;
1218 }
1219
1220 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1221 For example, this can copy a list made of TREE_LIST nodes. */
1222
1223 tree
1224 copy_list (tree list)
1225 {
1226 tree head;
1227 tree prev, next;
1228
1229 if (list == 0)
1230 return 0;
1231
1232 head = prev = copy_node (list);
1233 next = TREE_CHAIN (list);
1234 while (next)
1235 {
1236 TREE_CHAIN (prev) = copy_node (next);
1237 prev = TREE_CHAIN (prev);
1238 next = TREE_CHAIN (next);
1239 }
1240 return head;
1241 }
1242
1243 \f
1244 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1245 INTEGER_CST with value CST and type TYPE. */
1246
1247 static unsigned int
1248 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1249 {
1250 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1251 /* We need extra HWIs if CST is an unsigned integer with its
1252 upper bit set. */
1253 if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1254 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1255 return cst.get_len ();
1256 }
1257
1258 /* Return a new INTEGER_CST with value CST and type TYPE. */
1259
1260 static tree
1261 build_new_int_cst (tree type, const wide_int &cst)
1262 {
1263 unsigned int len = cst.get_len ();
1264 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1265 tree nt = make_int_cst (len, ext_len);
1266
1267 if (len < ext_len)
1268 {
1269 --ext_len;
1270 TREE_INT_CST_ELT (nt, ext_len)
1271 = zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1272 for (unsigned int i = len; i < ext_len; ++i)
1273 TREE_INT_CST_ELT (nt, i) = -1;
1274 }
1275 else if (TYPE_UNSIGNED (type)
1276 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1277 {
1278 len--;
1279 TREE_INT_CST_ELT (nt, len)
1280 = zext_hwi (cst.elt (len),
1281 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1282 }
1283
1284 for (unsigned int i = 0; i < len; i++)
1285 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1286 TREE_TYPE (nt) = type;
1287 return nt;
1288 }
1289
1290 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1291
1292 tree
1293 build_int_cst (tree type, HOST_WIDE_INT low)
1294 {
1295 /* Support legacy code. */
1296 if (!type)
1297 type = integer_type_node;
1298
1299 return wide_int_to_tree (type, wi::shwi (low, TYPE_PRECISION (type)));
1300 }
1301
1302 tree
1303 build_int_cstu (tree type, unsigned HOST_WIDE_INT cst)
1304 {
1305 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1306 }
1307
1308 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1309
1310 tree
1311 build_int_cst_type (tree type, HOST_WIDE_INT low)
1312 {
1313 gcc_assert (type);
1314 return wide_int_to_tree (type, wi::shwi (low, TYPE_PRECISION (type)));
1315 }
1316
1317 /* Constructs tree in type TYPE from with value given by CST. Signedness
1318 of CST is assumed to be the same as the signedness of TYPE. */
1319
1320 tree
1321 double_int_to_tree (tree type, double_int cst)
1322 {
1323 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1324 }
1325
1326 /* We force the wide_int CST to the range of the type TYPE by sign or
1327 zero extending it. OVERFLOWABLE indicates if we are interested in
1328 overflow of the value, when >0 we are only interested in signed
1329 overflow, for <0 we are interested in any overflow. OVERFLOWED
1330 indicates whether overflow has already occurred. CONST_OVERFLOWED
1331 indicates whether constant overflow has already occurred. We force
1332 T's value to be within range of T's type (by setting to 0 or 1 all
1333 the bits outside the type's range). We set TREE_OVERFLOWED if,
1334 OVERFLOWED is nonzero,
1335 or OVERFLOWABLE is >0 and signed overflow occurs
1336 or OVERFLOWABLE is <0 and any overflow occurs
1337 We return a new tree node for the extended wide_int. The node
1338 is shared if no overflow flags are set. */
1339
1340
1341 tree
1342 force_fit_type (tree type, const wide_int_ref &cst,
1343 int overflowable, bool overflowed)
1344 {
1345 signop sign = TYPE_SIGN (type);
1346
1347 /* If we need to set overflow flags, return a new unshared node. */
1348 if (overflowed || !wi::fits_to_tree_p (cst, type))
1349 {
1350 if (overflowed
1351 || overflowable < 0
1352 || (overflowable > 0 && sign == SIGNED))
1353 {
1354 wide_int tmp = wide_int::from (cst, TYPE_PRECISION (type), sign);
1355 tree t = build_new_int_cst (type, tmp);
1356 TREE_OVERFLOW (t) = 1;
1357 return t;
1358 }
1359 }
1360
1361 /* Else build a shared node. */
1362 return wide_int_to_tree (type, cst);
1363 }
1364
1365 /* These are the hash table functions for the hash table of INTEGER_CST
1366 nodes of a sizetype. */
1367
1368 /* Return the hash code X, an INTEGER_CST. */
1369
1370 hashval_t
1371 int_cst_hasher::hash (tree x)
1372 {
1373 const_tree const t = x;
1374 hashval_t code = TYPE_UID (TREE_TYPE (t));
1375 int i;
1376
1377 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1378 code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1379
1380 return code;
1381 }
1382
1383 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1384 is the same as that given by *Y, which is the same. */
1385
1386 bool
1387 int_cst_hasher::equal (tree x, tree y)
1388 {
1389 const_tree const xt = x;
1390 const_tree const yt = y;
1391
1392 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1393 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1394 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1395 return false;
1396
1397 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1398 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1399 return false;
1400
1401 return true;
1402 }
1403
1404 /* Create an INT_CST node of TYPE and value CST.
1405 The returned node is always shared. For small integers we use a
1406 per-type vector cache, for larger ones we use a single hash table.
1407 The value is extended from its precision according to the sign of
1408 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1409 the upper bits and ensures that hashing and value equality based
1410 upon the underlying HOST_WIDE_INTs works without masking. */
1411
1412 tree
1413 wide_int_to_tree (tree type, const wide_int_ref &pcst)
1414 {
1415 tree t;
1416 int ix = -1;
1417 int limit = 0;
1418
1419 gcc_assert (type);
1420 unsigned int prec = TYPE_PRECISION (type);
1421 signop sgn = TYPE_SIGN (type);
1422
1423 /* Verify that everything is canonical. */
1424 int l = pcst.get_len ();
1425 if (l > 1)
1426 {
1427 if (pcst.elt (l - 1) == 0)
1428 gcc_checking_assert (pcst.elt (l - 2) < 0);
1429 if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1430 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1431 }
1432
1433 wide_int cst = wide_int::from (pcst, prec, sgn);
1434 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1435
1436 if (ext_len == 1)
1437 {
1438 /* We just need to store a single HOST_WIDE_INT. */
1439 HOST_WIDE_INT hwi;
1440 if (TYPE_UNSIGNED (type))
1441 hwi = cst.to_uhwi ();
1442 else
1443 hwi = cst.to_shwi ();
1444
1445 switch (TREE_CODE (type))
1446 {
1447 case NULLPTR_TYPE:
1448 gcc_assert (hwi == 0);
1449 /* Fallthru. */
1450
1451 case POINTER_TYPE:
1452 case REFERENCE_TYPE:
1453 case POINTER_BOUNDS_TYPE:
1454 /* Cache NULL pointer and zero bounds. */
1455 if (hwi == 0)
1456 {
1457 limit = 1;
1458 ix = 0;
1459 }
1460 break;
1461
1462 case BOOLEAN_TYPE:
1463 /* Cache false or true. */
1464 limit = 2;
1465 if (IN_RANGE (hwi, 0, 1))
1466 ix = hwi;
1467 break;
1468
1469 case INTEGER_TYPE:
1470 case OFFSET_TYPE:
1471 if (TYPE_SIGN (type) == UNSIGNED)
1472 {
1473 /* Cache [0, N). */
1474 limit = INTEGER_SHARE_LIMIT;
1475 if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1476 ix = hwi;
1477 }
1478 else
1479 {
1480 /* Cache [-1, N). */
1481 limit = INTEGER_SHARE_LIMIT + 1;
1482 if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1483 ix = hwi + 1;
1484 }
1485 break;
1486
1487 case ENUMERAL_TYPE:
1488 break;
1489
1490 default:
1491 gcc_unreachable ();
1492 }
1493
1494 if (ix >= 0)
1495 {
1496 /* Look for it in the type's vector of small shared ints. */
1497 if (!TYPE_CACHED_VALUES_P (type))
1498 {
1499 TYPE_CACHED_VALUES_P (type) = 1;
1500 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1501 }
1502
1503 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1504 if (t)
1505 /* Make sure no one is clobbering the shared constant. */
1506 gcc_checking_assert (TREE_TYPE (t) == type
1507 && TREE_INT_CST_NUNITS (t) == 1
1508 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1509 && TREE_INT_CST_EXT_NUNITS (t) == 1
1510 && TREE_INT_CST_ELT (t, 0) == hwi);
1511 else
1512 {
1513 /* Create a new shared int. */
1514 t = build_new_int_cst (type, cst);
1515 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1516 }
1517 }
1518 else
1519 {
1520 /* Use the cache of larger shared ints, using int_cst_node as
1521 a temporary. */
1522
1523 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1524 TREE_TYPE (int_cst_node) = type;
1525
1526 tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1527 t = *slot;
1528 if (!t)
1529 {
1530 /* Insert this one into the hash table. */
1531 t = int_cst_node;
1532 *slot = t;
1533 /* Make a new node for next time round. */
1534 int_cst_node = make_int_cst (1, 1);
1535 }
1536 }
1537 }
1538 else
1539 {
1540 /* The value either hashes properly or we drop it on the floor
1541 for the gc to take care of. There will not be enough of them
1542 to worry about. */
1543
1544 tree nt = build_new_int_cst (type, cst);
1545 tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1546 t = *slot;
1547 if (!t)
1548 {
1549 /* Insert this one into the hash table. */
1550 t = nt;
1551 *slot = t;
1552 }
1553 }
1554
1555 return t;
1556 }
1557
1558 void
1559 cache_integer_cst (tree t)
1560 {
1561 tree type = TREE_TYPE (t);
1562 int ix = -1;
1563 int limit = 0;
1564 int prec = TYPE_PRECISION (type);
1565
1566 gcc_assert (!TREE_OVERFLOW (t));
1567
1568 switch (TREE_CODE (type))
1569 {
1570 case NULLPTR_TYPE:
1571 gcc_assert (integer_zerop (t));
1572 /* Fallthru. */
1573
1574 case POINTER_TYPE:
1575 case REFERENCE_TYPE:
1576 /* Cache NULL pointer. */
1577 if (integer_zerop (t))
1578 {
1579 limit = 1;
1580 ix = 0;
1581 }
1582 break;
1583
1584 case BOOLEAN_TYPE:
1585 /* Cache false or true. */
1586 limit = 2;
1587 if (wi::ltu_p (t, 2))
1588 ix = TREE_INT_CST_ELT (t, 0);
1589 break;
1590
1591 case INTEGER_TYPE:
1592 case OFFSET_TYPE:
1593 if (TYPE_UNSIGNED (type))
1594 {
1595 /* Cache 0..N */
1596 limit = INTEGER_SHARE_LIMIT;
1597
1598 /* This is a little hokie, but if the prec is smaller than
1599 what is necessary to hold INTEGER_SHARE_LIMIT, then the
1600 obvious test will not get the correct answer. */
1601 if (prec < HOST_BITS_PER_WIDE_INT)
1602 {
1603 if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1604 ix = tree_to_uhwi (t);
1605 }
1606 else if (wi::ltu_p (t, INTEGER_SHARE_LIMIT))
1607 ix = tree_to_uhwi (t);
1608 }
1609 else
1610 {
1611 /* Cache -1..N */
1612 limit = INTEGER_SHARE_LIMIT + 1;
1613
1614 if (integer_minus_onep (t))
1615 ix = 0;
1616 else if (!wi::neg_p (t))
1617 {
1618 if (prec < HOST_BITS_PER_WIDE_INT)
1619 {
1620 if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1621 ix = tree_to_shwi (t) + 1;
1622 }
1623 else if (wi::ltu_p (t, INTEGER_SHARE_LIMIT))
1624 ix = tree_to_shwi (t) + 1;
1625 }
1626 }
1627 break;
1628
1629 case ENUMERAL_TYPE:
1630 break;
1631
1632 default:
1633 gcc_unreachable ();
1634 }
1635
1636 if (ix >= 0)
1637 {
1638 /* Look for it in the type's vector of small shared ints. */
1639 if (!TYPE_CACHED_VALUES_P (type))
1640 {
1641 TYPE_CACHED_VALUES_P (type) = 1;
1642 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1643 }
1644
1645 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1646 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1647 }
1648 else
1649 {
1650 /* Use the cache of larger shared ints. */
1651 tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1652 /* If there is already an entry for the number verify it's the
1653 same. */
1654 if (*slot)
1655 gcc_assert (wi::eq_p (tree (*slot), t));
1656 else
1657 /* Otherwise insert this one into the hash table. */
1658 *slot = t;
1659 }
1660 }
1661
1662
1663 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1664 and the rest are zeros. */
1665
1666 tree
1667 build_low_bits_mask (tree type, unsigned bits)
1668 {
1669 gcc_assert (bits <= TYPE_PRECISION (type));
1670
1671 return wide_int_to_tree (type, wi::mask (bits, false,
1672 TYPE_PRECISION (type)));
1673 }
1674
1675 /* Checks that X is integer constant that can be expressed in (unsigned)
1676 HOST_WIDE_INT without loss of precision. */
1677
1678 bool
1679 cst_and_fits_in_hwi (const_tree x)
1680 {
1681 return (TREE_CODE (x) == INTEGER_CST
1682 && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
1683 }
1684
1685 /* Build a newly constructed VECTOR_CST node of length LEN. */
1686
1687 tree
1688 make_vector (unsigned len MEM_STAT_DECL)
1689 {
1690 tree t;
1691 unsigned length = (len - 1) * sizeof (tree) + sizeof (struct tree_vector);
1692
1693 record_node_allocation_statistics (VECTOR_CST, length);
1694
1695 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1696
1697 TREE_SET_CODE (t, VECTOR_CST);
1698 TREE_CONSTANT (t) = 1;
1699
1700 return t;
1701 }
1702
1703 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1704 are in a list pointed to by VALS. */
1705
1706 tree
1707 build_vector (tree type, tree *vals MEM_STAT_DECL)
1708 {
1709 int over = 0;
1710 unsigned cnt = 0;
1711 tree v = make_vector (TYPE_VECTOR_SUBPARTS (type));
1712 TREE_TYPE (v) = type;
1713
1714 /* Iterate through elements and check for overflow. */
1715 for (cnt = 0; cnt < TYPE_VECTOR_SUBPARTS (type); ++cnt)
1716 {
1717 tree value = vals[cnt];
1718
1719 VECTOR_CST_ELT (v, cnt) = value;
1720
1721 /* Don't crash if we get an address constant. */
1722 if (!CONSTANT_CLASS_P (value))
1723 continue;
1724
1725 over |= TREE_OVERFLOW (value);
1726 }
1727
1728 TREE_OVERFLOW (v) = over;
1729 return v;
1730 }
1731
1732 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1733 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1734
1735 tree
1736 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1737 {
1738 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
1739 unsigned HOST_WIDE_INT idx, pos = 0;
1740 tree value;
1741
1742 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1743 {
1744 if (TREE_CODE (value) == VECTOR_CST)
1745 for (unsigned i = 0; i < VECTOR_CST_NELTS (value); ++i)
1746 vec[pos++] = VECTOR_CST_ELT (value, i);
1747 else
1748 vec[pos++] = value;
1749 }
1750 while (pos < TYPE_VECTOR_SUBPARTS (type))
1751 vec[pos++] = build_zero_cst (TREE_TYPE (type));
1752
1753 return build_vector (type, vec);
1754 }
1755
1756 /* Build a vector of type VECTYPE where all the elements are SCs. */
1757 tree
1758 build_vector_from_val (tree vectype, tree sc)
1759 {
1760 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1761
1762 if (sc == error_mark_node)
1763 return sc;
1764
1765 /* Verify that the vector type is suitable for SC. Note that there
1766 is some inconsistency in the type-system with respect to restrict
1767 qualifications of pointers. Vector types always have a main-variant
1768 element type and the qualification is applied to the vector-type.
1769 So TREE_TYPE (vector-type) does not return a properly qualified
1770 vector element-type. */
1771 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1772 TREE_TYPE (vectype)));
1773
1774 if (CONSTANT_CLASS_P (sc))
1775 {
1776 tree *v = XALLOCAVEC (tree, nunits);
1777 for (i = 0; i < nunits; ++i)
1778 v[i] = sc;
1779 return build_vector (vectype, v);
1780 }
1781 else
1782 {
1783 vec<constructor_elt, va_gc> *v;
1784 vec_alloc (v, nunits);
1785 for (i = 0; i < nunits; ++i)
1786 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1787 return build_constructor (vectype, v);
1788 }
1789 }
1790
1791 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
1792 calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
1793
1794 void
1795 recompute_constructor_flags (tree c)
1796 {
1797 unsigned int i;
1798 tree val;
1799 bool constant_p = true;
1800 bool side_effects_p = false;
1801 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1802
1803 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1804 {
1805 /* Mostly ctors will have elts that don't have side-effects, so
1806 the usual case is to scan all the elements. Hence a single
1807 loop for both const and side effects, rather than one loop
1808 each (with early outs). */
1809 if (!TREE_CONSTANT (val))
1810 constant_p = false;
1811 if (TREE_SIDE_EFFECTS (val))
1812 side_effects_p = true;
1813 }
1814
1815 TREE_SIDE_EFFECTS (c) = side_effects_p;
1816 TREE_CONSTANT (c) = constant_p;
1817 }
1818
1819 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
1820 CONSTRUCTOR C. */
1821
1822 void
1823 verify_constructor_flags (tree c)
1824 {
1825 unsigned int i;
1826 tree val;
1827 bool constant_p = TREE_CONSTANT (c);
1828 bool side_effects_p = TREE_SIDE_EFFECTS (c);
1829 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1830
1831 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1832 {
1833 if (constant_p && !TREE_CONSTANT (val))
1834 internal_error ("non-constant element in constant CONSTRUCTOR");
1835 if (!side_effects_p && TREE_SIDE_EFFECTS (val))
1836 internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
1837 }
1838 }
1839
1840 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1841 are in the vec pointed to by VALS. */
1842 tree
1843 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1844 {
1845 tree c = make_node (CONSTRUCTOR);
1846
1847 TREE_TYPE (c) = type;
1848 CONSTRUCTOR_ELTS (c) = vals;
1849
1850 recompute_constructor_flags (c);
1851
1852 return c;
1853 }
1854
1855 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1856 INDEX and VALUE. */
1857 tree
1858 build_constructor_single (tree type, tree index, tree value)
1859 {
1860 vec<constructor_elt, va_gc> *v;
1861 constructor_elt elt = {index, value};
1862
1863 vec_alloc (v, 1);
1864 v->quick_push (elt);
1865
1866 return build_constructor (type, v);
1867 }
1868
1869
1870 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1871 are in a list pointed to by VALS. */
1872 tree
1873 build_constructor_from_list (tree type, tree vals)
1874 {
1875 tree t;
1876 vec<constructor_elt, va_gc> *v = NULL;
1877
1878 if (vals)
1879 {
1880 vec_alloc (v, list_length (vals));
1881 for (t = vals; t; t = TREE_CHAIN (t))
1882 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1883 }
1884
1885 return build_constructor (type, v);
1886 }
1887
1888 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
1889 of elements, provided as index/value pairs. */
1890
1891 tree
1892 build_constructor_va (tree type, int nelts, ...)
1893 {
1894 vec<constructor_elt, va_gc> *v = NULL;
1895 va_list p;
1896
1897 va_start (p, nelts);
1898 vec_alloc (v, nelts);
1899 while (nelts--)
1900 {
1901 tree index = va_arg (p, tree);
1902 tree value = va_arg (p, tree);
1903 CONSTRUCTOR_APPEND_ELT (v, index, value);
1904 }
1905 va_end (p);
1906 return build_constructor (type, v);
1907 }
1908
1909 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1910
1911 tree
1912 build_fixed (tree type, FIXED_VALUE_TYPE f)
1913 {
1914 tree v;
1915 FIXED_VALUE_TYPE *fp;
1916
1917 v = make_node (FIXED_CST);
1918 fp = ggc_alloc<fixed_value> ();
1919 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1920
1921 TREE_TYPE (v) = type;
1922 TREE_FIXED_CST_PTR (v) = fp;
1923 return v;
1924 }
1925
1926 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1927
1928 tree
1929 build_real (tree type, REAL_VALUE_TYPE d)
1930 {
1931 tree v;
1932 REAL_VALUE_TYPE *dp;
1933 int overflow = 0;
1934
1935 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1936 Consider doing it via real_convert now. */
1937
1938 v = make_node (REAL_CST);
1939 dp = ggc_alloc<real_value> ();
1940 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1941
1942 TREE_TYPE (v) = type;
1943 TREE_REAL_CST_PTR (v) = dp;
1944 TREE_OVERFLOW (v) = overflow;
1945 return v;
1946 }
1947
1948 /* Like build_real, but first truncate D to the type. */
1949
1950 tree
1951 build_real_truncate (tree type, REAL_VALUE_TYPE d)
1952 {
1953 return build_real (type, real_value_truncate (TYPE_MODE (type), d));
1954 }
1955
1956 /* Return a new REAL_CST node whose type is TYPE
1957 and whose value is the integer value of the INTEGER_CST node I. */
1958
1959 REAL_VALUE_TYPE
1960 real_value_from_int_cst (const_tree type, const_tree i)
1961 {
1962 REAL_VALUE_TYPE d;
1963
1964 /* Clear all bits of the real value type so that we can later do
1965 bitwise comparisons to see if two values are the same. */
1966 memset (&d, 0, sizeof d);
1967
1968 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, i,
1969 TYPE_SIGN (TREE_TYPE (i)));
1970 return d;
1971 }
1972
1973 /* Given a tree representing an integer constant I, return a tree
1974 representing the same value as a floating-point constant of type TYPE. */
1975
1976 tree
1977 build_real_from_int_cst (tree type, const_tree i)
1978 {
1979 tree v;
1980 int overflow = TREE_OVERFLOW (i);
1981
1982 v = build_real (type, real_value_from_int_cst (type, i));
1983
1984 TREE_OVERFLOW (v) |= overflow;
1985 return v;
1986 }
1987
1988 /* Return a newly constructed STRING_CST node whose value is
1989 the LEN characters at STR.
1990 Note that for a C string literal, LEN should include the trailing NUL.
1991 The TREE_TYPE is not initialized. */
1992
1993 tree
1994 build_string (int len, const char *str)
1995 {
1996 tree s;
1997 size_t length;
1998
1999 /* Do not waste bytes provided by padding of struct tree_string. */
2000 length = len + offsetof (struct tree_string, str) + 1;
2001
2002 record_node_allocation_statistics (STRING_CST, length);
2003
2004 s = (tree) ggc_internal_alloc (length);
2005
2006 memset (s, 0, sizeof (struct tree_typed));
2007 TREE_SET_CODE (s, STRING_CST);
2008 TREE_CONSTANT (s) = 1;
2009 TREE_STRING_LENGTH (s) = len;
2010 memcpy (s->string.str, str, len);
2011 s->string.str[len] = '\0';
2012
2013 return s;
2014 }
2015
2016 /* Return a newly constructed COMPLEX_CST node whose value is
2017 specified by the real and imaginary parts REAL and IMAG.
2018 Both REAL and IMAG should be constant nodes. TYPE, if specified,
2019 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
2020
2021 tree
2022 build_complex (tree type, tree real, tree imag)
2023 {
2024 tree t = make_node (COMPLEX_CST);
2025
2026 TREE_REALPART (t) = real;
2027 TREE_IMAGPART (t) = imag;
2028 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2029 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2030 return t;
2031 }
2032
2033 /* Build a complex (inf +- 0i), such as for the result of cproj.
2034 TYPE is the complex tree type of the result. If NEG is true, the
2035 imaginary zero is negative. */
2036
2037 tree
2038 build_complex_inf (tree type, bool neg)
2039 {
2040 REAL_VALUE_TYPE rinf, rzero = dconst0;
2041
2042 real_inf (&rinf);
2043 rzero.sign = neg;
2044 return build_complex (type, build_real (TREE_TYPE (type), rinf),
2045 build_real (TREE_TYPE (type), rzero));
2046 }
2047
2048 /* Return the constant 1 in type TYPE. If TYPE has several elements, each
2049 element is set to 1. In particular, this is 1 + i for complex types. */
2050
2051 tree
2052 build_each_one_cst (tree type)
2053 {
2054 if (TREE_CODE (type) == COMPLEX_TYPE)
2055 {
2056 tree scalar = build_one_cst (TREE_TYPE (type));
2057 return build_complex (type, scalar, scalar);
2058 }
2059 else
2060 return build_one_cst (type);
2061 }
2062
2063 /* Return a constant of arithmetic type TYPE which is the
2064 multiplicative identity of the set TYPE. */
2065
2066 tree
2067 build_one_cst (tree type)
2068 {
2069 switch (TREE_CODE (type))
2070 {
2071 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2072 case POINTER_TYPE: case REFERENCE_TYPE:
2073 case OFFSET_TYPE:
2074 return build_int_cst (type, 1);
2075
2076 case REAL_TYPE:
2077 return build_real (type, dconst1);
2078
2079 case FIXED_POINT_TYPE:
2080 /* We can only generate 1 for accum types. */
2081 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2082 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2083
2084 case VECTOR_TYPE:
2085 {
2086 tree scalar = build_one_cst (TREE_TYPE (type));
2087
2088 return build_vector_from_val (type, scalar);
2089 }
2090
2091 case COMPLEX_TYPE:
2092 return build_complex (type,
2093 build_one_cst (TREE_TYPE (type)),
2094 build_zero_cst (TREE_TYPE (type)));
2095
2096 default:
2097 gcc_unreachable ();
2098 }
2099 }
2100
2101 /* Return an integer of type TYPE containing all 1's in as much precision as
2102 it contains, or a complex or vector whose subparts are such integers. */
2103
2104 tree
2105 build_all_ones_cst (tree type)
2106 {
2107 if (TREE_CODE (type) == COMPLEX_TYPE)
2108 {
2109 tree scalar = build_all_ones_cst (TREE_TYPE (type));
2110 return build_complex (type, scalar, scalar);
2111 }
2112 else
2113 return build_minus_one_cst (type);
2114 }
2115
2116 /* Return a constant of arithmetic type TYPE which is the
2117 opposite of the multiplicative identity of the set TYPE. */
2118
2119 tree
2120 build_minus_one_cst (tree type)
2121 {
2122 switch (TREE_CODE (type))
2123 {
2124 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2125 case POINTER_TYPE: case REFERENCE_TYPE:
2126 case OFFSET_TYPE:
2127 return build_int_cst (type, -1);
2128
2129 case REAL_TYPE:
2130 return build_real (type, dconstm1);
2131
2132 case FIXED_POINT_TYPE:
2133 /* We can only generate 1 for accum types. */
2134 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2135 return build_fixed (type, fixed_from_double_int (double_int_minus_one,
2136 TYPE_MODE (type)));
2137
2138 case VECTOR_TYPE:
2139 {
2140 tree scalar = build_minus_one_cst (TREE_TYPE (type));
2141
2142 return build_vector_from_val (type, scalar);
2143 }
2144
2145 case COMPLEX_TYPE:
2146 return build_complex (type,
2147 build_minus_one_cst (TREE_TYPE (type)),
2148 build_zero_cst (TREE_TYPE (type)));
2149
2150 default:
2151 gcc_unreachable ();
2152 }
2153 }
2154
2155 /* Build 0 constant of type TYPE. This is used by constructor folding
2156 and thus the constant should be represented in memory by
2157 zero(es). */
2158
2159 tree
2160 build_zero_cst (tree type)
2161 {
2162 switch (TREE_CODE (type))
2163 {
2164 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2165 case POINTER_TYPE: case REFERENCE_TYPE:
2166 case OFFSET_TYPE: case NULLPTR_TYPE:
2167 return build_int_cst (type, 0);
2168
2169 case REAL_TYPE:
2170 return build_real (type, dconst0);
2171
2172 case FIXED_POINT_TYPE:
2173 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2174
2175 case VECTOR_TYPE:
2176 {
2177 tree scalar = build_zero_cst (TREE_TYPE (type));
2178
2179 return build_vector_from_val (type, scalar);
2180 }
2181
2182 case COMPLEX_TYPE:
2183 {
2184 tree zero = build_zero_cst (TREE_TYPE (type));
2185
2186 return build_complex (type, zero, zero);
2187 }
2188
2189 default:
2190 if (!AGGREGATE_TYPE_P (type))
2191 return fold_convert (type, integer_zero_node);
2192 return build_constructor (type, NULL);
2193 }
2194 }
2195
2196
2197 /* Build a BINFO with LEN language slots. */
2198
2199 tree
2200 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2201 {
2202 tree t;
2203 size_t length = (offsetof (struct tree_binfo, base_binfos)
2204 + vec<tree, va_gc>::embedded_size (base_binfos));
2205
2206 record_node_allocation_statistics (TREE_BINFO, length);
2207
2208 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2209
2210 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2211
2212 TREE_SET_CODE (t, TREE_BINFO);
2213
2214 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2215
2216 return t;
2217 }
2218
2219 /* Create a CASE_LABEL_EXPR tree node and return it. */
2220
2221 tree
2222 build_case_label (tree low_value, tree high_value, tree label_decl)
2223 {
2224 tree t = make_node (CASE_LABEL_EXPR);
2225
2226 TREE_TYPE (t) = void_type_node;
2227 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2228
2229 CASE_LOW (t) = low_value;
2230 CASE_HIGH (t) = high_value;
2231 CASE_LABEL (t) = label_decl;
2232 CASE_CHAIN (t) = NULL_TREE;
2233
2234 return t;
2235 }
2236
2237 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2238 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2239 The latter determines the length of the HOST_WIDE_INT vector. */
2240
2241 tree
2242 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2243 {
2244 tree t;
2245 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2246 + sizeof (struct tree_int_cst));
2247
2248 gcc_assert (len);
2249 record_node_allocation_statistics (INTEGER_CST, length);
2250
2251 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2252
2253 TREE_SET_CODE (t, INTEGER_CST);
2254 TREE_INT_CST_NUNITS (t) = len;
2255 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2256 /* to_offset can only be applied to trees that are offset_int-sized
2257 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2258 must be exactly the precision of offset_int and so LEN is correct. */
2259 if (ext_len <= OFFSET_INT_ELTS)
2260 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2261 else
2262 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2263
2264 TREE_CONSTANT (t) = 1;
2265
2266 return t;
2267 }
2268
2269 /* Build a newly constructed TREE_VEC node of length LEN. */
2270
2271 tree
2272 make_tree_vec (int len MEM_STAT_DECL)
2273 {
2274 tree t;
2275 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2276
2277 record_node_allocation_statistics (TREE_VEC, length);
2278
2279 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2280
2281 TREE_SET_CODE (t, TREE_VEC);
2282 TREE_VEC_LENGTH (t) = len;
2283
2284 return t;
2285 }
2286
2287 /* Grow a TREE_VEC node to new length LEN. */
2288
2289 tree
2290 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2291 {
2292 gcc_assert (TREE_CODE (v) == TREE_VEC);
2293
2294 int oldlen = TREE_VEC_LENGTH (v);
2295 gcc_assert (len > oldlen);
2296
2297 size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2298 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2299
2300 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2301
2302 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2303
2304 TREE_VEC_LENGTH (v) = len;
2305
2306 return v;
2307 }
2308 \f
2309 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2310 fixed, and scalar, complex or vector. */
2311
2312 int
2313 zerop (const_tree expr)
2314 {
2315 return (integer_zerop (expr)
2316 || real_zerop (expr)
2317 || fixed_zerop (expr));
2318 }
2319
2320 /* Return 1 if EXPR is the integer constant zero or a complex constant
2321 of zero. */
2322
2323 int
2324 integer_zerop (const_tree expr)
2325 {
2326 switch (TREE_CODE (expr))
2327 {
2328 case INTEGER_CST:
2329 return wi::eq_p (expr, 0);
2330 case COMPLEX_CST:
2331 return (integer_zerop (TREE_REALPART (expr))
2332 && integer_zerop (TREE_IMAGPART (expr)));
2333 case VECTOR_CST:
2334 {
2335 unsigned i;
2336 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2337 if (!integer_zerop (VECTOR_CST_ELT (expr, i)))
2338 return false;
2339 return true;
2340 }
2341 default:
2342 return false;
2343 }
2344 }
2345
2346 /* Return 1 if EXPR is the integer constant one or the corresponding
2347 complex constant. */
2348
2349 int
2350 integer_onep (const_tree expr)
2351 {
2352 switch (TREE_CODE (expr))
2353 {
2354 case INTEGER_CST:
2355 return wi::eq_p (wi::to_widest (expr), 1);
2356 case COMPLEX_CST:
2357 return (integer_onep (TREE_REALPART (expr))
2358 && integer_zerop (TREE_IMAGPART (expr)));
2359 case VECTOR_CST:
2360 {
2361 unsigned i;
2362 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2363 if (!integer_onep (VECTOR_CST_ELT (expr, i)))
2364 return false;
2365 return true;
2366 }
2367 default:
2368 return false;
2369 }
2370 }
2371
2372 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2373 return 1 if every piece is the integer constant one. */
2374
2375 int
2376 integer_each_onep (const_tree expr)
2377 {
2378 if (TREE_CODE (expr) == COMPLEX_CST)
2379 return (integer_onep (TREE_REALPART (expr))
2380 && integer_onep (TREE_IMAGPART (expr)));
2381 else
2382 return integer_onep (expr);
2383 }
2384
2385 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2386 it contains, or a complex or vector whose subparts are such integers. */
2387
2388 int
2389 integer_all_onesp (const_tree expr)
2390 {
2391 if (TREE_CODE (expr) == COMPLEX_CST
2392 && integer_all_onesp (TREE_REALPART (expr))
2393 && integer_all_onesp (TREE_IMAGPART (expr)))
2394 return 1;
2395
2396 else if (TREE_CODE (expr) == VECTOR_CST)
2397 {
2398 unsigned i;
2399 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2400 if (!integer_all_onesp (VECTOR_CST_ELT (expr, i)))
2401 return 0;
2402 return 1;
2403 }
2404
2405 else if (TREE_CODE (expr) != INTEGER_CST)
2406 return 0;
2407
2408 return wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED) == expr;
2409 }
2410
2411 /* Return 1 if EXPR is the integer constant minus one. */
2412
2413 int
2414 integer_minus_onep (const_tree expr)
2415 {
2416 if (TREE_CODE (expr) == COMPLEX_CST)
2417 return (integer_all_onesp (TREE_REALPART (expr))
2418 && integer_zerop (TREE_IMAGPART (expr)));
2419 else
2420 return integer_all_onesp (expr);
2421 }
2422
2423 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2424 one bit on). */
2425
2426 int
2427 integer_pow2p (const_tree expr)
2428 {
2429 if (TREE_CODE (expr) == COMPLEX_CST
2430 && integer_pow2p (TREE_REALPART (expr))
2431 && integer_zerop (TREE_IMAGPART (expr)))
2432 return 1;
2433
2434 if (TREE_CODE (expr) != INTEGER_CST)
2435 return 0;
2436
2437 return wi::popcount (expr) == 1;
2438 }
2439
2440 /* Return 1 if EXPR is an integer constant other than zero or a
2441 complex constant other than zero. */
2442
2443 int
2444 integer_nonzerop (const_tree expr)
2445 {
2446 return ((TREE_CODE (expr) == INTEGER_CST
2447 && !wi::eq_p (expr, 0))
2448 || (TREE_CODE (expr) == COMPLEX_CST
2449 && (integer_nonzerop (TREE_REALPART (expr))
2450 || integer_nonzerop (TREE_IMAGPART (expr)))));
2451 }
2452
2453 /* Return 1 if EXPR is the integer constant one. For vector,
2454 return 1 if every piece is the integer constant minus one
2455 (representing the value TRUE). */
2456
2457 int
2458 integer_truep (const_tree expr)
2459 {
2460 if (TREE_CODE (expr) == VECTOR_CST)
2461 return integer_all_onesp (expr);
2462 return integer_onep (expr);
2463 }
2464
2465 /* Return 1 if EXPR is the fixed-point constant zero. */
2466
2467 int
2468 fixed_zerop (const_tree expr)
2469 {
2470 return (TREE_CODE (expr) == FIXED_CST
2471 && TREE_FIXED_CST (expr).data.is_zero ());
2472 }
2473
2474 /* Return the power of two represented by a tree node known to be a
2475 power of two. */
2476
2477 int
2478 tree_log2 (const_tree expr)
2479 {
2480 if (TREE_CODE (expr) == COMPLEX_CST)
2481 return tree_log2 (TREE_REALPART (expr));
2482
2483 return wi::exact_log2 (expr);
2484 }
2485
2486 /* Similar, but return the largest integer Y such that 2 ** Y is less
2487 than or equal to EXPR. */
2488
2489 int
2490 tree_floor_log2 (const_tree expr)
2491 {
2492 if (TREE_CODE (expr) == COMPLEX_CST)
2493 return tree_log2 (TREE_REALPART (expr));
2494
2495 return wi::floor_log2 (expr);
2496 }
2497
2498 /* Return number of known trailing zero bits in EXPR, or, if the value of
2499 EXPR is known to be zero, the precision of it's type. */
2500
2501 unsigned int
2502 tree_ctz (const_tree expr)
2503 {
2504 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2505 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2506 return 0;
2507
2508 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2509 switch (TREE_CODE (expr))
2510 {
2511 case INTEGER_CST:
2512 ret1 = wi::ctz (expr);
2513 return MIN (ret1, prec);
2514 case SSA_NAME:
2515 ret1 = wi::ctz (get_nonzero_bits (expr));
2516 return MIN (ret1, prec);
2517 case PLUS_EXPR:
2518 case MINUS_EXPR:
2519 case BIT_IOR_EXPR:
2520 case BIT_XOR_EXPR:
2521 case MIN_EXPR:
2522 case MAX_EXPR:
2523 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2524 if (ret1 == 0)
2525 return ret1;
2526 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2527 return MIN (ret1, ret2);
2528 case POINTER_PLUS_EXPR:
2529 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2530 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2531 /* Second operand is sizetype, which could be in theory
2532 wider than pointer's precision. Make sure we never
2533 return more than prec. */
2534 ret2 = MIN (ret2, prec);
2535 return MIN (ret1, ret2);
2536 case BIT_AND_EXPR:
2537 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2538 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2539 return MAX (ret1, ret2);
2540 case MULT_EXPR:
2541 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2542 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2543 return MIN (ret1 + ret2, prec);
2544 case LSHIFT_EXPR:
2545 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2546 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2547 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2548 {
2549 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2550 return MIN (ret1 + ret2, prec);
2551 }
2552 return ret1;
2553 case RSHIFT_EXPR:
2554 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2555 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2556 {
2557 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2558 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2559 if (ret1 > ret2)
2560 return ret1 - ret2;
2561 }
2562 return 0;
2563 case TRUNC_DIV_EXPR:
2564 case CEIL_DIV_EXPR:
2565 case FLOOR_DIV_EXPR:
2566 case ROUND_DIV_EXPR:
2567 case EXACT_DIV_EXPR:
2568 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2569 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2570 {
2571 int l = tree_log2 (TREE_OPERAND (expr, 1));
2572 if (l >= 0)
2573 {
2574 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2575 ret2 = l;
2576 if (ret1 > ret2)
2577 return ret1 - ret2;
2578 }
2579 }
2580 return 0;
2581 CASE_CONVERT:
2582 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2583 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2584 ret1 = prec;
2585 return MIN (ret1, prec);
2586 case SAVE_EXPR:
2587 return tree_ctz (TREE_OPERAND (expr, 0));
2588 case COND_EXPR:
2589 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2590 if (ret1 == 0)
2591 return 0;
2592 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2593 return MIN (ret1, ret2);
2594 case COMPOUND_EXPR:
2595 return tree_ctz (TREE_OPERAND (expr, 1));
2596 case ADDR_EXPR:
2597 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2598 if (ret1 > BITS_PER_UNIT)
2599 {
2600 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2601 return MIN (ret1, prec);
2602 }
2603 return 0;
2604 default:
2605 return 0;
2606 }
2607 }
2608
2609 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2610 decimal float constants, so don't return 1 for them. */
2611
2612 int
2613 real_zerop (const_tree expr)
2614 {
2615 switch (TREE_CODE (expr))
2616 {
2617 case REAL_CST:
2618 return real_equal (&TREE_REAL_CST (expr), &dconst0)
2619 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2620 case COMPLEX_CST:
2621 return real_zerop (TREE_REALPART (expr))
2622 && real_zerop (TREE_IMAGPART (expr));
2623 case VECTOR_CST:
2624 {
2625 unsigned i;
2626 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2627 if (!real_zerop (VECTOR_CST_ELT (expr, i)))
2628 return false;
2629 return true;
2630 }
2631 default:
2632 return false;
2633 }
2634 }
2635
2636 /* Return 1 if EXPR is the real constant one in real or complex form.
2637 Trailing zeroes matter for decimal float constants, so don't return
2638 1 for them. */
2639
2640 int
2641 real_onep (const_tree expr)
2642 {
2643 switch (TREE_CODE (expr))
2644 {
2645 case REAL_CST:
2646 return real_equal (&TREE_REAL_CST (expr), &dconst1)
2647 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2648 case COMPLEX_CST:
2649 return real_onep (TREE_REALPART (expr))
2650 && real_zerop (TREE_IMAGPART (expr));
2651 case VECTOR_CST:
2652 {
2653 unsigned i;
2654 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2655 if (!real_onep (VECTOR_CST_ELT (expr, i)))
2656 return false;
2657 return true;
2658 }
2659 default:
2660 return false;
2661 }
2662 }
2663
2664 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2665 matter for decimal float constants, so don't return 1 for them. */
2666
2667 int
2668 real_minus_onep (const_tree expr)
2669 {
2670 switch (TREE_CODE (expr))
2671 {
2672 case REAL_CST:
2673 return real_equal (&TREE_REAL_CST (expr), &dconstm1)
2674 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2675 case COMPLEX_CST:
2676 return real_minus_onep (TREE_REALPART (expr))
2677 && real_zerop (TREE_IMAGPART (expr));
2678 case VECTOR_CST:
2679 {
2680 unsigned i;
2681 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2682 if (!real_minus_onep (VECTOR_CST_ELT (expr, i)))
2683 return false;
2684 return true;
2685 }
2686 default:
2687 return false;
2688 }
2689 }
2690
2691 /* Nonzero if EXP is a constant or a cast of a constant. */
2692
2693 int
2694 really_constant_p (const_tree exp)
2695 {
2696 /* This is not quite the same as STRIP_NOPS. It does more. */
2697 while (CONVERT_EXPR_P (exp)
2698 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2699 exp = TREE_OPERAND (exp, 0);
2700 return TREE_CONSTANT (exp);
2701 }
2702 \f
2703 /* Return first list element whose TREE_VALUE is ELEM.
2704 Return 0 if ELEM is not in LIST. */
2705
2706 tree
2707 value_member (tree elem, tree list)
2708 {
2709 while (list)
2710 {
2711 if (elem == TREE_VALUE (list))
2712 return list;
2713 list = TREE_CHAIN (list);
2714 }
2715 return NULL_TREE;
2716 }
2717
2718 /* Return first list element whose TREE_PURPOSE is ELEM.
2719 Return 0 if ELEM is not in LIST. */
2720
2721 tree
2722 purpose_member (const_tree elem, tree list)
2723 {
2724 while (list)
2725 {
2726 if (elem == TREE_PURPOSE (list))
2727 return list;
2728 list = TREE_CHAIN (list);
2729 }
2730 return NULL_TREE;
2731 }
2732
2733 /* Return true if ELEM is in V. */
2734
2735 bool
2736 vec_member (const_tree elem, vec<tree, va_gc> *v)
2737 {
2738 unsigned ix;
2739 tree t;
2740 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2741 if (elem == t)
2742 return true;
2743 return false;
2744 }
2745
2746 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2747 NULL_TREE. */
2748
2749 tree
2750 chain_index (int idx, tree chain)
2751 {
2752 for (; chain && idx > 0; --idx)
2753 chain = TREE_CHAIN (chain);
2754 return chain;
2755 }
2756
2757 /* Return nonzero if ELEM is part of the chain CHAIN. */
2758
2759 int
2760 chain_member (const_tree elem, const_tree chain)
2761 {
2762 while (chain)
2763 {
2764 if (elem == chain)
2765 return 1;
2766 chain = DECL_CHAIN (chain);
2767 }
2768
2769 return 0;
2770 }
2771
2772 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2773 We expect a null pointer to mark the end of the chain.
2774 This is the Lisp primitive `length'. */
2775
2776 int
2777 list_length (const_tree t)
2778 {
2779 const_tree p = t;
2780 #ifdef ENABLE_TREE_CHECKING
2781 const_tree q = t;
2782 #endif
2783 int len = 0;
2784
2785 while (p)
2786 {
2787 p = TREE_CHAIN (p);
2788 #ifdef ENABLE_TREE_CHECKING
2789 if (len % 2)
2790 q = TREE_CHAIN (q);
2791 gcc_assert (p != q);
2792 #endif
2793 len++;
2794 }
2795
2796 return len;
2797 }
2798
2799 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2800 UNION_TYPE TYPE, or NULL_TREE if none. */
2801
2802 tree
2803 first_field (const_tree type)
2804 {
2805 tree t = TYPE_FIELDS (type);
2806 while (t && TREE_CODE (t) != FIELD_DECL)
2807 t = TREE_CHAIN (t);
2808 return t;
2809 }
2810
2811 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2812 by modifying the last node in chain 1 to point to chain 2.
2813 This is the Lisp primitive `nconc'. */
2814
2815 tree
2816 chainon (tree op1, tree op2)
2817 {
2818 tree t1;
2819
2820 if (!op1)
2821 return op2;
2822 if (!op2)
2823 return op1;
2824
2825 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2826 continue;
2827 TREE_CHAIN (t1) = op2;
2828
2829 #ifdef ENABLE_TREE_CHECKING
2830 {
2831 tree t2;
2832 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2833 gcc_assert (t2 != t1);
2834 }
2835 #endif
2836
2837 return op1;
2838 }
2839
2840 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2841
2842 tree
2843 tree_last (tree chain)
2844 {
2845 tree next;
2846 if (chain)
2847 while ((next = TREE_CHAIN (chain)))
2848 chain = next;
2849 return chain;
2850 }
2851
2852 /* Reverse the order of elements in the chain T,
2853 and return the new head of the chain (old last element). */
2854
2855 tree
2856 nreverse (tree t)
2857 {
2858 tree prev = 0, decl, next;
2859 for (decl = t; decl; decl = next)
2860 {
2861 /* We shouldn't be using this function to reverse BLOCK chains; we
2862 have blocks_nreverse for that. */
2863 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2864 next = TREE_CHAIN (decl);
2865 TREE_CHAIN (decl) = prev;
2866 prev = decl;
2867 }
2868 return prev;
2869 }
2870 \f
2871 /* Return a newly created TREE_LIST node whose
2872 purpose and value fields are PARM and VALUE. */
2873
2874 tree
2875 build_tree_list (tree parm, tree value MEM_STAT_DECL)
2876 {
2877 tree t = make_node (TREE_LIST PASS_MEM_STAT);
2878 TREE_PURPOSE (t) = parm;
2879 TREE_VALUE (t) = value;
2880 return t;
2881 }
2882
2883 /* Build a chain of TREE_LIST nodes from a vector. */
2884
2885 tree
2886 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
2887 {
2888 tree ret = NULL_TREE;
2889 tree *pp = &ret;
2890 unsigned int i;
2891 tree t;
2892 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
2893 {
2894 *pp = build_tree_list (NULL, t PASS_MEM_STAT);
2895 pp = &TREE_CHAIN (*pp);
2896 }
2897 return ret;
2898 }
2899
2900 /* Return a newly created TREE_LIST node whose
2901 purpose and value fields are PURPOSE and VALUE
2902 and whose TREE_CHAIN is CHAIN. */
2903
2904 tree
2905 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
2906 {
2907 tree node;
2908
2909 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
2910 memset (node, 0, sizeof (struct tree_common));
2911
2912 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2913
2914 TREE_SET_CODE (node, TREE_LIST);
2915 TREE_CHAIN (node) = chain;
2916 TREE_PURPOSE (node) = purpose;
2917 TREE_VALUE (node) = value;
2918 return node;
2919 }
2920
2921 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2922 trees. */
2923
2924 vec<tree, va_gc> *
2925 ctor_to_vec (tree ctor)
2926 {
2927 vec<tree, va_gc> *vec;
2928 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
2929 unsigned int ix;
2930 tree val;
2931
2932 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2933 vec->quick_push (val);
2934
2935 return vec;
2936 }
2937 \f
2938 /* Return the size nominally occupied by an object of type TYPE
2939 when it resides in memory. The value is measured in units of bytes,
2940 and its data type is that normally used for type sizes
2941 (which is the first type created by make_signed_type or
2942 make_unsigned_type). */
2943
2944 tree
2945 size_in_bytes_loc (location_t loc, const_tree type)
2946 {
2947 tree t;
2948
2949 if (type == error_mark_node)
2950 return integer_zero_node;
2951
2952 type = TYPE_MAIN_VARIANT (type);
2953 t = TYPE_SIZE_UNIT (type);
2954
2955 if (t == 0)
2956 {
2957 lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
2958 return size_zero_node;
2959 }
2960
2961 return t;
2962 }
2963
2964 /* Return the size of TYPE (in bytes) as a wide integer
2965 or return -1 if the size can vary or is larger than an integer. */
2966
2967 HOST_WIDE_INT
2968 int_size_in_bytes (const_tree type)
2969 {
2970 tree t;
2971
2972 if (type == error_mark_node)
2973 return 0;
2974
2975 type = TYPE_MAIN_VARIANT (type);
2976 t = TYPE_SIZE_UNIT (type);
2977
2978 if (t && tree_fits_uhwi_p (t))
2979 return TREE_INT_CST_LOW (t);
2980 else
2981 return -1;
2982 }
2983
2984 /* Return the maximum size of TYPE (in bytes) as a wide integer
2985 or return -1 if the size can vary or is larger than an integer. */
2986
2987 HOST_WIDE_INT
2988 max_int_size_in_bytes (const_tree type)
2989 {
2990 HOST_WIDE_INT size = -1;
2991 tree size_tree;
2992
2993 /* If this is an array type, check for a possible MAX_SIZE attached. */
2994
2995 if (TREE_CODE (type) == ARRAY_TYPE)
2996 {
2997 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2998
2999 if (size_tree && tree_fits_uhwi_p (size_tree))
3000 size = tree_to_uhwi (size_tree);
3001 }
3002
3003 /* If we still haven't been able to get a size, see if the language
3004 can compute a maximum size. */
3005
3006 if (size == -1)
3007 {
3008 size_tree = lang_hooks.types.max_size (type);
3009
3010 if (size_tree && tree_fits_uhwi_p (size_tree))
3011 size = tree_to_uhwi (size_tree);
3012 }
3013
3014 return size;
3015 }
3016 \f
3017 /* Return the bit position of FIELD, in bits from the start of the record.
3018 This is a tree of type bitsizetype. */
3019
3020 tree
3021 bit_position (const_tree field)
3022 {
3023 return bit_from_pos (DECL_FIELD_OFFSET (field),
3024 DECL_FIELD_BIT_OFFSET (field));
3025 }
3026 \f
3027 /* Return the byte position of FIELD, in bytes from the start of the record.
3028 This is a tree of type sizetype. */
3029
3030 tree
3031 byte_position (const_tree field)
3032 {
3033 return byte_from_pos (DECL_FIELD_OFFSET (field),
3034 DECL_FIELD_BIT_OFFSET (field));
3035 }
3036
3037 /* Likewise, but return as an integer. It must be representable in
3038 that way (since it could be a signed value, we don't have the
3039 option of returning -1 like int_size_in_byte can. */
3040
3041 HOST_WIDE_INT
3042 int_byte_position (const_tree field)
3043 {
3044 return tree_to_shwi (byte_position (field));
3045 }
3046 \f
3047 /* Return the strictest alignment, in bits, that T is known to have. */
3048
3049 unsigned int
3050 expr_align (const_tree t)
3051 {
3052 unsigned int align0, align1;
3053
3054 switch (TREE_CODE (t))
3055 {
3056 CASE_CONVERT: case NON_LVALUE_EXPR:
3057 /* If we have conversions, we know that the alignment of the
3058 object must meet each of the alignments of the types. */
3059 align0 = expr_align (TREE_OPERAND (t, 0));
3060 align1 = TYPE_ALIGN (TREE_TYPE (t));
3061 return MAX (align0, align1);
3062
3063 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
3064 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
3065 case CLEANUP_POINT_EXPR:
3066 /* These don't change the alignment of an object. */
3067 return expr_align (TREE_OPERAND (t, 0));
3068
3069 case COND_EXPR:
3070 /* The best we can do is say that the alignment is the least aligned
3071 of the two arms. */
3072 align0 = expr_align (TREE_OPERAND (t, 1));
3073 align1 = expr_align (TREE_OPERAND (t, 2));
3074 return MIN (align0, align1);
3075
3076 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
3077 meaningfully, it's always 1. */
3078 case LABEL_DECL: case CONST_DECL:
3079 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
3080 case FUNCTION_DECL:
3081 gcc_assert (DECL_ALIGN (t) != 0);
3082 return DECL_ALIGN (t);
3083
3084 default:
3085 break;
3086 }
3087
3088 /* Otherwise take the alignment from that of the type. */
3089 return TYPE_ALIGN (TREE_TYPE (t));
3090 }
3091 \f
3092 /* Return, as a tree node, the number of elements for TYPE (which is an
3093 ARRAY_TYPE) minus one. This counts only elements of the top array. */
3094
3095 tree
3096 array_type_nelts (const_tree type)
3097 {
3098 tree index_type, min, max;
3099
3100 /* If they did it with unspecified bounds, then we should have already
3101 given an error about it before we got here. */
3102 if (! TYPE_DOMAIN (type))
3103 return error_mark_node;
3104
3105 index_type = TYPE_DOMAIN (type);
3106 min = TYPE_MIN_VALUE (index_type);
3107 max = TYPE_MAX_VALUE (index_type);
3108
3109 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
3110 if (!max)
3111 return error_mark_node;
3112
3113 return (integer_zerop (min)
3114 ? max
3115 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3116 }
3117 \f
3118 /* If arg is static -- a reference to an object in static storage -- then
3119 return the object. This is not the same as the C meaning of `static'.
3120 If arg isn't static, return NULL. */
3121
3122 tree
3123 staticp (tree arg)
3124 {
3125 switch (TREE_CODE (arg))
3126 {
3127 case FUNCTION_DECL:
3128 /* Nested functions are static, even though taking their address will
3129 involve a trampoline as we unnest the nested function and create
3130 the trampoline on the tree level. */
3131 return arg;
3132
3133 case VAR_DECL:
3134 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3135 && ! DECL_THREAD_LOCAL_P (arg)
3136 && ! DECL_DLLIMPORT_P (arg)
3137 ? arg : NULL);
3138
3139 case CONST_DECL:
3140 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3141 ? arg : NULL);
3142
3143 case CONSTRUCTOR:
3144 return TREE_STATIC (arg) ? arg : NULL;
3145
3146 case LABEL_DECL:
3147 case STRING_CST:
3148 return arg;
3149
3150 case COMPONENT_REF:
3151 /* If the thing being referenced is not a field, then it is
3152 something language specific. */
3153 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3154
3155 /* If we are referencing a bitfield, we can't evaluate an
3156 ADDR_EXPR at compile time and so it isn't a constant. */
3157 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3158 return NULL;
3159
3160 return staticp (TREE_OPERAND (arg, 0));
3161
3162 case BIT_FIELD_REF:
3163 return NULL;
3164
3165 case INDIRECT_REF:
3166 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3167
3168 case ARRAY_REF:
3169 case ARRAY_RANGE_REF:
3170 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3171 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3172 return staticp (TREE_OPERAND (arg, 0));
3173 else
3174 return NULL;
3175
3176 case COMPOUND_LITERAL_EXPR:
3177 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3178
3179 default:
3180 return NULL;
3181 }
3182 }
3183
3184 \f
3185
3186
3187 /* Return whether OP is a DECL whose address is function-invariant. */
3188
3189 bool
3190 decl_address_invariant_p (const_tree op)
3191 {
3192 /* The conditions below are slightly less strict than the one in
3193 staticp. */
3194
3195 switch (TREE_CODE (op))
3196 {
3197 case PARM_DECL:
3198 case RESULT_DECL:
3199 case LABEL_DECL:
3200 case FUNCTION_DECL:
3201 return true;
3202
3203 case VAR_DECL:
3204 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3205 || DECL_THREAD_LOCAL_P (op)
3206 || DECL_CONTEXT (op) == current_function_decl
3207 || decl_function_context (op) == current_function_decl)
3208 return true;
3209 break;
3210
3211 case CONST_DECL:
3212 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3213 || decl_function_context (op) == current_function_decl)
3214 return true;
3215 break;
3216
3217 default:
3218 break;
3219 }
3220
3221 return false;
3222 }
3223
3224 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3225
3226 bool
3227 decl_address_ip_invariant_p (const_tree op)
3228 {
3229 /* The conditions below are slightly less strict than the one in
3230 staticp. */
3231
3232 switch (TREE_CODE (op))
3233 {
3234 case LABEL_DECL:
3235 case FUNCTION_DECL:
3236 case STRING_CST:
3237 return true;
3238
3239 case VAR_DECL:
3240 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3241 && !DECL_DLLIMPORT_P (op))
3242 || DECL_THREAD_LOCAL_P (op))
3243 return true;
3244 break;
3245
3246 case CONST_DECL:
3247 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3248 return true;
3249 break;
3250
3251 default:
3252 break;
3253 }
3254
3255 return false;
3256 }
3257
3258
3259 /* Return true if T is function-invariant (internal function, does
3260 not handle arithmetic; that's handled in skip_simple_arithmetic and
3261 tree_invariant_p). */
3262
3263 static bool
3264 tree_invariant_p_1 (tree t)
3265 {
3266 tree op;
3267
3268 if (TREE_CONSTANT (t)
3269 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3270 return true;
3271
3272 switch (TREE_CODE (t))
3273 {
3274 case SAVE_EXPR:
3275 return true;
3276
3277 case ADDR_EXPR:
3278 op = TREE_OPERAND (t, 0);
3279 while (handled_component_p (op))
3280 {
3281 switch (TREE_CODE (op))
3282 {
3283 case ARRAY_REF:
3284 case ARRAY_RANGE_REF:
3285 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3286 || TREE_OPERAND (op, 2) != NULL_TREE
3287 || TREE_OPERAND (op, 3) != NULL_TREE)
3288 return false;
3289 break;
3290
3291 case COMPONENT_REF:
3292 if (TREE_OPERAND (op, 2) != NULL_TREE)
3293 return false;
3294 break;
3295
3296 default:;
3297 }
3298 op = TREE_OPERAND (op, 0);
3299 }
3300
3301 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3302
3303 default:
3304 break;
3305 }
3306
3307 return false;
3308 }
3309
3310 /* Return true if T is function-invariant. */
3311
3312 bool
3313 tree_invariant_p (tree t)
3314 {
3315 tree inner = skip_simple_arithmetic (t);
3316 return tree_invariant_p_1 (inner);
3317 }
3318
3319 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3320 Do this to any expression which may be used in more than one place,
3321 but must be evaluated only once.
3322
3323 Normally, expand_expr would reevaluate the expression each time.
3324 Calling save_expr produces something that is evaluated and recorded
3325 the first time expand_expr is called on it. Subsequent calls to
3326 expand_expr just reuse the recorded value.
3327
3328 The call to expand_expr that generates code that actually computes
3329 the value is the first call *at compile time*. Subsequent calls
3330 *at compile time* generate code to use the saved value.
3331 This produces correct result provided that *at run time* control
3332 always flows through the insns made by the first expand_expr
3333 before reaching the other places where the save_expr was evaluated.
3334 You, the caller of save_expr, must make sure this is so.
3335
3336 Constants, and certain read-only nodes, are returned with no
3337 SAVE_EXPR because that is safe. Expressions containing placeholders
3338 are not touched; see tree.def for an explanation of what these
3339 are used for. */
3340
3341 tree
3342 save_expr (tree expr)
3343 {
3344 tree inner;
3345
3346 /* If the tree evaluates to a constant, then we don't want to hide that
3347 fact (i.e. this allows further folding, and direct checks for constants).
3348 However, a read-only object that has side effects cannot be bypassed.
3349 Since it is no problem to reevaluate literals, we just return the
3350 literal node. */
3351 inner = skip_simple_arithmetic (expr);
3352 if (TREE_CODE (inner) == ERROR_MARK)
3353 return inner;
3354
3355 if (tree_invariant_p_1 (inner))
3356 return expr;
3357
3358 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3359 it means that the size or offset of some field of an object depends on
3360 the value within another field.
3361
3362 Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3363 and some variable since it would then need to be both evaluated once and
3364 evaluated more than once. Front-ends must assure this case cannot
3365 happen by surrounding any such subexpressions in their own SAVE_EXPR
3366 and forcing evaluation at the proper time. */
3367 if (contains_placeholder_p (inner))
3368 return expr;
3369
3370 expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3371
3372 /* This expression might be placed ahead of a jump to ensure that the
3373 value was computed on both sides of the jump. So make sure it isn't
3374 eliminated as dead. */
3375 TREE_SIDE_EFFECTS (expr) = 1;
3376 return expr;
3377 }
3378
3379 /* Look inside EXPR into any simple arithmetic operations. Return the
3380 outermost non-arithmetic or non-invariant node. */
3381
3382 tree
3383 skip_simple_arithmetic (tree expr)
3384 {
3385 /* We don't care about whether this can be used as an lvalue in this
3386 context. */
3387 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3388 expr = TREE_OPERAND (expr, 0);
3389
3390 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3391 a constant, it will be more efficient to not make another SAVE_EXPR since
3392 it will allow better simplification and GCSE will be able to merge the
3393 computations if they actually occur. */
3394 while (true)
3395 {
3396 if (UNARY_CLASS_P (expr))
3397 expr = TREE_OPERAND (expr, 0);
3398 else if (BINARY_CLASS_P (expr))
3399 {
3400 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3401 expr = TREE_OPERAND (expr, 0);
3402 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3403 expr = TREE_OPERAND (expr, 1);
3404 else
3405 break;
3406 }
3407 else
3408 break;
3409 }
3410
3411 return expr;
3412 }
3413
3414 /* Look inside EXPR into simple arithmetic operations involving constants.
3415 Return the outermost non-arithmetic or non-constant node. */
3416
3417 tree
3418 skip_simple_constant_arithmetic (tree expr)
3419 {
3420 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3421 expr = TREE_OPERAND (expr, 0);
3422
3423 while (true)
3424 {
3425 if (UNARY_CLASS_P (expr))
3426 expr = TREE_OPERAND (expr, 0);
3427 else if (BINARY_CLASS_P (expr))
3428 {
3429 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3430 expr = TREE_OPERAND (expr, 0);
3431 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3432 expr = TREE_OPERAND (expr, 1);
3433 else
3434 break;
3435 }
3436 else
3437 break;
3438 }
3439
3440 return expr;
3441 }
3442
3443 /* Return which tree structure is used by T. */
3444
3445 enum tree_node_structure_enum
3446 tree_node_structure (const_tree t)
3447 {
3448 const enum tree_code code = TREE_CODE (t);
3449 return tree_node_structure_for_code (code);
3450 }
3451
3452 /* Set various status flags when building a CALL_EXPR object T. */
3453
3454 static void
3455 process_call_operands (tree t)
3456 {
3457 bool side_effects = TREE_SIDE_EFFECTS (t);
3458 bool read_only = false;
3459 int i = call_expr_flags (t);
3460
3461 /* Calls have side-effects, except those to const or pure functions. */
3462 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3463 side_effects = true;
3464 /* Propagate TREE_READONLY of arguments for const functions. */
3465 if (i & ECF_CONST)
3466 read_only = true;
3467
3468 if (!side_effects || read_only)
3469 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3470 {
3471 tree op = TREE_OPERAND (t, i);
3472 if (op && TREE_SIDE_EFFECTS (op))
3473 side_effects = true;
3474 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3475 read_only = false;
3476 }
3477
3478 TREE_SIDE_EFFECTS (t) = side_effects;
3479 TREE_READONLY (t) = read_only;
3480 }
3481 \f
3482 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3483 size or offset that depends on a field within a record. */
3484
3485 bool
3486 contains_placeholder_p (const_tree exp)
3487 {
3488 enum tree_code code;
3489
3490 if (!exp)
3491 return 0;
3492
3493 code = TREE_CODE (exp);
3494 if (code == PLACEHOLDER_EXPR)
3495 return 1;
3496
3497 switch (TREE_CODE_CLASS (code))
3498 {
3499 case tcc_reference:
3500 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3501 position computations since they will be converted into a
3502 WITH_RECORD_EXPR involving the reference, which will assume
3503 here will be valid. */
3504 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3505
3506 case tcc_exceptional:
3507 if (code == TREE_LIST)
3508 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3509 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3510 break;
3511
3512 case tcc_unary:
3513 case tcc_binary:
3514 case tcc_comparison:
3515 case tcc_expression:
3516 switch (code)
3517 {
3518 case COMPOUND_EXPR:
3519 /* Ignoring the first operand isn't quite right, but works best. */
3520 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3521
3522 case COND_EXPR:
3523 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3524 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3525 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3526
3527 case SAVE_EXPR:
3528 /* The save_expr function never wraps anything containing
3529 a PLACEHOLDER_EXPR. */
3530 return 0;
3531
3532 default:
3533 break;
3534 }
3535
3536 switch (TREE_CODE_LENGTH (code))
3537 {
3538 case 1:
3539 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3540 case 2:
3541 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3542 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3543 default:
3544 return 0;
3545 }
3546
3547 case tcc_vl_exp:
3548 switch (code)
3549 {
3550 case CALL_EXPR:
3551 {
3552 const_tree arg;
3553 const_call_expr_arg_iterator iter;
3554 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3555 if (CONTAINS_PLACEHOLDER_P (arg))
3556 return 1;
3557 return 0;
3558 }
3559 default:
3560 return 0;
3561 }
3562
3563 default:
3564 return 0;
3565 }
3566 return 0;
3567 }
3568
3569 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3570 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3571 field positions. */
3572
3573 static bool
3574 type_contains_placeholder_1 (const_tree type)
3575 {
3576 /* If the size contains a placeholder or the parent type (component type in
3577 the case of arrays) type involves a placeholder, this type does. */
3578 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3579 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3580 || (!POINTER_TYPE_P (type)
3581 && TREE_TYPE (type)
3582 && type_contains_placeholder_p (TREE_TYPE (type))))
3583 return true;
3584
3585 /* Now do type-specific checks. Note that the last part of the check above
3586 greatly limits what we have to do below. */
3587 switch (TREE_CODE (type))
3588 {
3589 case VOID_TYPE:
3590 case POINTER_BOUNDS_TYPE:
3591 case COMPLEX_TYPE:
3592 case ENUMERAL_TYPE:
3593 case BOOLEAN_TYPE:
3594 case POINTER_TYPE:
3595 case OFFSET_TYPE:
3596 case REFERENCE_TYPE:
3597 case METHOD_TYPE:
3598 case FUNCTION_TYPE:
3599 case VECTOR_TYPE:
3600 case NULLPTR_TYPE:
3601 return false;
3602
3603 case INTEGER_TYPE:
3604 case REAL_TYPE:
3605 case FIXED_POINT_TYPE:
3606 /* Here we just check the bounds. */
3607 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3608 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3609
3610 case ARRAY_TYPE:
3611 /* We have already checked the component type above, so just check
3612 the domain type. Flexible array members have a null domain. */
3613 return TYPE_DOMAIN (type) ?
3614 type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
3615
3616 case RECORD_TYPE:
3617 case UNION_TYPE:
3618 case QUAL_UNION_TYPE:
3619 {
3620 tree field;
3621
3622 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3623 if (TREE_CODE (field) == FIELD_DECL
3624 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3625 || (TREE_CODE (type) == QUAL_UNION_TYPE
3626 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3627 || type_contains_placeholder_p (TREE_TYPE (field))))
3628 return true;
3629
3630 return false;
3631 }
3632
3633 default:
3634 gcc_unreachable ();
3635 }
3636 }
3637
3638 /* Wrapper around above function used to cache its result. */
3639
3640 bool
3641 type_contains_placeholder_p (tree type)
3642 {
3643 bool result;
3644
3645 /* If the contains_placeholder_bits field has been initialized,
3646 then we know the answer. */
3647 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3648 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3649
3650 /* Indicate that we've seen this type node, and the answer is false.
3651 This is what we want to return if we run into recursion via fields. */
3652 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3653
3654 /* Compute the real value. */
3655 result = type_contains_placeholder_1 (type);
3656
3657 /* Store the real value. */
3658 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3659
3660 return result;
3661 }
3662 \f
3663 /* Push tree EXP onto vector QUEUE if it is not already present. */
3664
3665 static void
3666 push_without_duplicates (tree exp, vec<tree> *queue)
3667 {
3668 unsigned int i;
3669 tree iter;
3670
3671 FOR_EACH_VEC_ELT (*queue, i, iter)
3672 if (simple_cst_equal (iter, exp) == 1)
3673 break;
3674
3675 if (!iter)
3676 queue->safe_push (exp);
3677 }
3678
3679 /* Given a tree EXP, find all occurrences of references to fields
3680 in a PLACEHOLDER_EXPR and place them in vector REFS without
3681 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3682 we assume here that EXP contains only arithmetic expressions
3683 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3684 argument list. */
3685
3686 void
3687 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3688 {
3689 enum tree_code code = TREE_CODE (exp);
3690 tree inner;
3691 int i;
3692
3693 /* We handle TREE_LIST and COMPONENT_REF separately. */
3694 if (code == TREE_LIST)
3695 {
3696 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3697 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3698 }
3699 else if (code == COMPONENT_REF)
3700 {
3701 for (inner = TREE_OPERAND (exp, 0);
3702 REFERENCE_CLASS_P (inner);
3703 inner = TREE_OPERAND (inner, 0))
3704 ;
3705
3706 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3707 push_without_duplicates (exp, refs);
3708 else
3709 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3710 }
3711 else
3712 switch (TREE_CODE_CLASS (code))
3713 {
3714 case tcc_constant:
3715 break;
3716
3717 case tcc_declaration:
3718 /* Variables allocated to static storage can stay. */
3719 if (!TREE_STATIC (exp))
3720 push_without_duplicates (exp, refs);
3721 break;
3722
3723 case tcc_expression:
3724 /* This is the pattern built in ada/make_aligning_type. */
3725 if (code == ADDR_EXPR
3726 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3727 {
3728 push_without_duplicates (exp, refs);
3729 break;
3730 }
3731
3732 /* Fall through. */
3733
3734 case tcc_exceptional:
3735 case tcc_unary:
3736 case tcc_binary:
3737 case tcc_comparison:
3738 case tcc_reference:
3739 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3740 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3741 break;
3742
3743 case tcc_vl_exp:
3744 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3745 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3746 break;
3747
3748 default:
3749 gcc_unreachable ();
3750 }
3751 }
3752
3753 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3754 return a tree with all occurrences of references to F in a
3755 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3756 CONST_DECLs. Note that we assume here that EXP contains only
3757 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3758 occurring only in their argument list. */
3759
3760 tree
3761 substitute_in_expr (tree exp, tree f, tree r)
3762 {
3763 enum tree_code code = TREE_CODE (exp);
3764 tree op0, op1, op2, op3;
3765 tree new_tree;
3766
3767 /* We handle TREE_LIST and COMPONENT_REF separately. */
3768 if (code == TREE_LIST)
3769 {
3770 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3771 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3772 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3773 return exp;
3774
3775 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3776 }
3777 else if (code == COMPONENT_REF)
3778 {
3779 tree inner;
3780
3781 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3782 and it is the right field, replace it with R. */
3783 for (inner = TREE_OPERAND (exp, 0);
3784 REFERENCE_CLASS_P (inner);
3785 inner = TREE_OPERAND (inner, 0))
3786 ;
3787
3788 /* The field. */
3789 op1 = TREE_OPERAND (exp, 1);
3790
3791 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3792 return r;
3793
3794 /* If this expression hasn't been completed let, leave it alone. */
3795 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3796 return exp;
3797
3798 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3799 if (op0 == TREE_OPERAND (exp, 0))
3800 return exp;
3801
3802 new_tree
3803 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3804 }
3805 else
3806 switch (TREE_CODE_CLASS (code))
3807 {
3808 case tcc_constant:
3809 return exp;
3810
3811 case tcc_declaration:
3812 if (exp == f)
3813 return r;
3814 else
3815 return exp;
3816
3817 case tcc_expression:
3818 if (exp == f)
3819 return r;
3820
3821 /* Fall through. */
3822
3823 case tcc_exceptional:
3824 case tcc_unary:
3825 case tcc_binary:
3826 case tcc_comparison:
3827 case tcc_reference:
3828 switch (TREE_CODE_LENGTH (code))
3829 {
3830 case 0:
3831 return exp;
3832
3833 case 1:
3834 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3835 if (op0 == TREE_OPERAND (exp, 0))
3836 return exp;
3837
3838 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3839 break;
3840
3841 case 2:
3842 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3843 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3844
3845 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3846 return exp;
3847
3848 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3849 break;
3850
3851 case 3:
3852 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3853 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3854 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3855
3856 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3857 && op2 == TREE_OPERAND (exp, 2))
3858 return exp;
3859
3860 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3861 break;
3862
3863 case 4:
3864 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3865 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3866 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3867 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3868
3869 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3870 && op2 == TREE_OPERAND (exp, 2)
3871 && op3 == TREE_OPERAND (exp, 3))
3872 return exp;
3873
3874 new_tree
3875 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3876 break;
3877
3878 default:
3879 gcc_unreachable ();
3880 }
3881 break;
3882
3883 case tcc_vl_exp:
3884 {
3885 int i;
3886
3887 new_tree = NULL_TREE;
3888
3889 /* If we are trying to replace F with a constant or with another
3890 instance of one of the arguments of the call, inline back
3891 functions which do nothing else than computing a value from
3892 the arguments they are passed. This makes it possible to
3893 fold partially or entirely the replacement expression. */
3894 if (code == CALL_EXPR)
3895 {
3896 bool maybe_inline = false;
3897 if (CONSTANT_CLASS_P (r))
3898 maybe_inline = true;
3899 else
3900 for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
3901 if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
3902 {
3903 maybe_inline = true;
3904 break;
3905 }
3906 if (maybe_inline)
3907 {
3908 tree t = maybe_inline_call_in_expr (exp);
3909 if (t)
3910 return SUBSTITUTE_IN_EXPR (t, f, r);
3911 }
3912 }
3913
3914 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3915 {
3916 tree op = TREE_OPERAND (exp, i);
3917 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3918 if (new_op != op)
3919 {
3920 if (!new_tree)
3921 new_tree = copy_node (exp);
3922 TREE_OPERAND (new_tree, i) = new_op;
3923 }
3924 }
3925
3926 if (new_tree)
3927 {
3928 new_tree = fold (new_tree);
3929 if (TREE_CODE (new_tree) == CALL_EXPR)
3930 process_call_operands (new_tree);
3931 }
3932 else
3933 return exp;
3934 }
3935 break;
3936
3937 default:
3938 gcc_unreachable ();
3939 }
3940
3941 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3942
3943 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3944 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3945
3946 return new_tree;
3947 }
3948
3949 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3950 for it within OBJ, a tree that is an object or a chain of references. */
3951
3952 tree
3953 substitute_placeholder_in_expr (tree exp, tree obj)
3954 {
3955 enum tree_code code = TREE_CODE (exp);
3956 tree op0, op1, op2, op3;
3957 tree new_tree;
3958
3959 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3960 in the chain of OBJ. */
3961 if (code == PLACEHOLDER_EXPR)
3962 {
3963 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3964 tree elt;
3965
3966 for (elt = obj; elt != 0;
3967 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3968 || TREE_CODE (elt) == COND_EXPR)
3969 ? TREE_OPERAND (elt, 1)
3970 : (REFERENCE_CLASS_P (elt)
3971 || UNARY_CLASS_P (elt)
3972 || BINARY_CLASS_P (elt)
3973 || VL_EXP_CLASS_P (elt)
3974 || EXPRESSION_CLASS_P (elt))
3975 ? TREE_OPERAND (elt, 0) : 0))
3976 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3977 return elt;
3978
3979 for (elt = obj; elt != 0;
3980 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3981 || TREE_CODE (elt) == COND_EXPR)
3982 ? TREE_OPERAND (elt, 1)
3983 : (REFERENCE_CLASS_P (elt)
3984 || UNARY_CLASS_P (elt)
3985 || BINARY_CLASS_P (elt)
3986 || VL_EXP_CLASS_P (elt)
3987 || EXPRESSION_CLASS_P (elt))
3988 ? TREE_OPERAND (elt, 0) : 0))
3989 if (POINTER_TYPE_P (TREE_TYPE (elt))
3990 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3991 == need_type))
3992 return fold_build1 (INDIRECT_REF, need_type, elt);
3993
3994 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3995 survives until RTL generation, there will be an error. */
3996 return exp;
3997 }
3998
3999 /* TREE_LIST is special because we need to look at TREE_VALUE
4000 and TREE_CHAIN, not TREE_OPERANDS. */
4001 else if (code == TREE_LIST)
4002 {
4003 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4004 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4005 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4006 return exp;
4007
4008 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4009 }
4010 else
4011 switch (TREE_CODE_CLASS (code))
4012 {
4013 case tcc_constant:
4014 case tcc_declaration:
4015 return exp;
4016
4017 case tcc_exceptional:
4018 case tcc_unary:
4019 case tcc_binary:
4020 case tcc_comparison:
4021 case tcc_expression:
4022 case tcc_reference:
4023 case tcc_statement:
4024 switch (TREE_CODE_LENGTH (code))
4025 {
4026 case 0:
4027 return exp;
4028
4029 case 1:
4030 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4031 if (op0 == TREE_OPERAND (exp, 0))
4032 return exp;
4033
4034 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4035 break;
4036
4037 case 2:
4038 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4039 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4040
4041 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4042 return exp;
4043
4044 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4045 break;
4046
4047 case 3:
4048 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4049 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4050 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4051
4052 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4053 && op2 == TREE_OPERAND (exp, 2))
4054 return exp;
4055
4056 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4057 break;
4058
4059 case 4:
4060 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4061 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4062 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4063 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4064
4065 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4066 && op2 == TREE_OPERAND (exp, 2)
4067 && op3 == TREE_OPERAND (exp, 3))
4068 return exp;
4069
4070 new_tree
4071 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4072 break;
4073
4074 default:
4075 gcc_unreachable ();
4076 }
4077 break;
4078
4079 case tcc_vl_exp:
4080 {
4081 int i;
4082
4083 new_tree = NULL_TREE;
4084
4085 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4086 {
4087 tree op = TREE_OPERAND (exp, i);
4088 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4089 if (new_op != op)
4090 {
4091 if (!new_tree)
4092 new_tree = copy_node (exp);
4093 TREE_OPERAND (new_tree, i) = new_op;
4094 }
4095 }
4096
4097 if (new_tree)
4098 {
4099 new_tree = fold (new_tree);
4100 if (TREE_CODE (new_tree) == CALL_EXPR)
4101 process_call_operands (new_tree);
4102 }
4103 else
4104 return exp;
4105 }
4106 break;
4107
4108 default:
4109 gcc_unreachable ();
4110 }
4111
4112 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4113
4114 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4115 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4116
4117 return new_tree;
4118 }
4119 \f
4120
4121 /* Subroutine of stabilize_reference; this is called for subtrees of
4122 references. Any expression with side-effects must be put in a SAVE_EXPR
4123 to ensure that it is only evaluated once.
4124
4125 We don't put SAVE_EXPR nodes around everything, because assigning very
4126 simple expressions to temporaries causes us to miss good opportunities
4127 for optimizations. Among other things, the opportunity to fold in the
4128 addition of a constant into an addressing mode often gets lost, e.g.
4129 "y[i+1] += x;". In general, we take the approach that we should not make
4130 an assignment unless we are forced into it - i.e., that any non-side effect
4131 operator should be allowed, and that cse should take care of coalescing
4132 multiple utterances of the same expression should that prove fruitful. */
4133
4134 static tree
4135 stabilize_reference_1 (tree e)
4136 {
4137 tree result;
4138 enum tree_code code = TREE_CODE (e);
4139
4140 /* We cannot ignore const expressions because it might be a reference
4141 to a const array but whose index contains side-effects. But we can
4142 ignore things that are actual constant or that already have been
4143 handled by this function. */
4144
4145 if (tree_invariant_p (e))
4146 return e;
4147
4148 switch (TREE_CODE_CLASS (code))
4149 {
4150 case tcc_exceptional:
4151 case tcc_type:
4152 case tcc_declaration:
4153 case tcc_comparison:
4154 case tcc_statement:
4155 case tcc_expression:
4156 case tcc_reference:
4157 case tcc_vl_exp:
4158 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4159 so that it will only be evaluated once. */
4160 /* The reference (r) and comparison (<) classes could be handled as
4161 below, but it is generally faster to only evaluate them once. */
4162 if (TREE_SIDE_EFFECTS (e))
4163 return save_expr (e);
4164 return e;
4165
4166 case tcc_constant:
4167 /* Constants need no processing. In fact, we should never reach
4168 here. */
4169 return e;
4170
4171 case tcc_binary:
4172 /* Division is slow and tends to be compiled with jumps,
4173 especially the division by powers of 2 that is often
4174 found inside of an array reference. So do it just once. */
4175 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4176 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4177 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4178 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4179 return save_expr (e);
4180 /* Recursively stabilize each operand. */
4181 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4182 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4183 break;
4184
4185 case tcc_unary:
4186 /* Recursively stabilize each operand. */
4187 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4188 break;
4189
4190 default:
4191 gcc_unreachable ();
4192 }
4193
4194 TREE_TYPE (result) = TREE_TYPE (e);
4195 TREE_READONLY (result) = TREE_READONLY (e);
4196 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4197 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4198
4199 return result;
4200 }
4201
4202 /* Stabilize a reference so that we can use it any number of times
4203 without causing its operands to be evaluated more than once.
4204 Returns the stabilized reference. This works by means of save_expr,
4205 so see the caveats in the comments about save_expr.
4206
4207 Also allows conversion expressions whose operands are references.
4208 Any other kind of expression is returned unchanged. */
4209
4210 tree
4211 stabilize_reference (tree ref)
4212 {
4213 tree result;
4214 enum tree_code code = TREE_CODE (ref);
4215
4216 switch (code)
4217 {
4218 case VAR_DECL:
4219 case PARM_DECL:
4220 case RESULT_DECL:
4221 /* No action is needed in this case. */
4222 return ref;
4223
4224 CASE_CONVERT:
4225 case FLOAT_EXPR:
4226 case FIX_TRUNC_EXPR:
4227 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4228 break;
4229
4230 case INDIRECT_REF:
4231 result = build_nt (INDIRECT_REF,
4232 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4233 break;
4234
4235 case COMPONENT_REF:
4236 result = build_nt (COMPONENT_REF,
4237 stabilize_reference (TREE_OPERAND (ref, 0)),
4238 TREE_OPERAND (ref, 1), NULL_TREE);
4239 break;
4240
4241 case BIT_FIELD_REF:
4242 result = build_nt (BIT_FIELD_REF,
4243 stabilize_reference (TREE_OPERAND (ref, 0)),
4244 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4245 REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4246 break;
4247
4248 case ARRAY_REF:
4249 result = build_nt (ARRAY_REF,
4250 stabilize_reference (TREE_OPERAND (ref, 0)),
4251 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4252 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4253 break;
4254
4255 case ARRAY_RANGE_REF:
4256 result = build_nt (ARRAY_RANGE_REF,
4257 stabilize_reference (TREE_OPERAND (ref, 0)),
4258 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4259 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4260 break;
4261
4262 case COMPOUND_EXPR:
4263 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4264 it wouldn't be ignored. This matters when dealing with
4265 volatiles. */
4266 return stabilize_reference_1 (ref);
4267
4268 /* If arg isn't a kind of lvalue we recognize, make no change.
4269 Caller should recognize the error for an invalid lvalue. */
4270 default:
4271 return ref;
4272
4273 case ERROR_MARK:
4274 return error_mark_node;
4275 }
4276
4277 TREE_TYPE (result) = TREE_TYPE (ref);
4278 TREE_READONLY (result) = TREE_READONLY (ref);
4279 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4280 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4281
4282 return result;
4283 }
4284 \f
4285 /* Low-level constructors for expressions. */
4286
4287 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4288 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4289
4290 void
4291 recompute_tree_invariant_for_addr_expr (tree t)
4292 {
4293 tree node;
4294 bool tc = true, se = false;
4295
4296 gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4297
4298 /* We started out assuming this address is both invariant and constant, but
4299 does not have side effects. Now go down any handled components and see if
4300 any of them involve offsets that are either non-constant or non-invariant.
4301 Also check for side-effects.
4302
4303 ??? Note that this code makes no attempt to deal with the case where
4304 taking the address of something causes a copy due to misalignment. */
4305
4306 #define UPDATE_FLAGS(NODE) \
4307 do { tree _node = (NODE); \
4308 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4309 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4310
4311 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4312 node = TREE_OPERAND (node, 0))
4313 {
4314 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4315 array reference (probably made temporarily by the G++ front end),
4316 so ignore all the operands. */
4317 if ((TREE_CODE (node) == ARRAY_REF
4318 || TREE_CODE (node) == ARRAY_RANGE_REF)
4319 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4320 {
4321 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4322 if (TREE_OPERAND (node, 2))
4323 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4324 if (TREE_OPERAND (node, 3))
4325 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4326 }
4327 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4328 FIELD_DECL, apparently. The G++ front end can put something else
4329 there, at least temporarily. */
4330 else if (TREE_CODE (node) == COMPONENT_REF
4331 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4332 {
4333 if (TREE_OPERAND (node, 2))
4334 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4335 }
4336 }
4337
4338 node = lang_hooks.expr_to_decl (node, &tc, &se);
4339
4340 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4341 the address, since &(*a)->b is a form of addition. If it's a constant, the
4342 address is constant too. If it's a decl, its address is constant if the
4343 decl is static. Everything else is not constant and, furthermore,
4344 taking the address of a volatile variable is not volatile. */
4345 if (TREE_CODE (node) == INDIRECT_REF
4346 || TREE_CODE (node) == MEM_REF)
4347 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4348 else if (CONSTANT_CLASS_P (node))
4349 ;
4350 else if (DECL_P (node))
4351 tc &= (staticp (node) != NULL_TREE);
4352 else
4353 {
4354 tc = false;
4355 se |= TREE_SIDE_EFFECTS (node);
4356 }
4357
4358
4359 TREE_CONSTANT (t) = tc;
4360 TREE_SIDE_EFFECTS (t) = se;
4361 #undef UPDATE_FLAGS
4362 }
4363
4364 /* Build an expression of code CODE, data type TYPE, and operands as
4365 specified. Expressions and reference nodes can be created this way.
4366 Constants, decls, types and misc nodes cannot be.
4367
4368 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4369 enough for all extant tree codes. */
4370
4371 tree
4372 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4373 {
4374 tree t;
4375
4376 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4377
4378 t = make_node (code PASS_MEM_STAT);
4379 TREE_TYPE (t) = tt;
4380
4381 return t;
4382 }
4383
4384 tree
4385 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4386 {
4387 int length = sizeof (struct tree_exp);
4388 tree t;
4389
4390 record_node_allocation_statistics (code, length);
4391
4392 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4393
4394 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4395
4396 memset (t, 0, sizeof (struct tree_common));
4397
4398 TREE_SET_CODE (t, code);
4399
4400 TREE_TYPE (t) = type;
4401 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4402 TREE_OPERAND (t, 0) = node;
4403 if (node && !TYPE_P (node))
4404 {
4405 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4406 TREE_READONLY (t) = TREE_READONLY (node);
4407 }
4408
4409 if (TREE_CODE_CLASS (code) == tcc_statement)
4410 TREE_SIDE_EFFECTS (t) = 1;
4411 else switch (code)
4412 {
4413 case VA_ARG_EXPR:
4414 /* All of these have side-effects, no matter what their
4415 operands are. */
4416 TREE_SIDE_EFFECTS (t) = 1;
4417 TREE_READONLY (t) = 0;
4418 break;
4419
4420 case INDIRECT_REF:
4421 /* Whether a dereference is readonly has nothing to do with whether
4422 its operand is readonly. */
4423 TREE_READONLY (t) = 0;
4424 break;
4425
4426 case ADDR_EXPR:
4427 if (node)
4428 recompute_tree_invariant_for_addr_expr (t);
4429 break;
4430
4431 default:
4432 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4433 && node && !TYPE_P (node)
4434 && TREE_CONSTANT (node))
4435 TREE_CONSTANT (t) = 1;
4436 if (TREE_CODE_CLASS (code) == tcc_reference
4437 && node && TREE_THIS_VOLATILE (node))
4438 TREE_THIS_VOLATILE (t) = 1;
4439 break;
4440 }
4441
4442 return t;
4443 }
4444
4445 #define PROCESS_ARG(N) \
4446 do { \
4447 TREE_OPERAND (t, N) = arg##N; \
4448 if (arg##N &&!TYPE_P (arg##N)) \
4449 { \
4450 if (TREE_SIDE_EFFECTS (arg##N)) \
4451 side_effects = 1; \
4452 if (!TREE_READONLY (arg##N) \
4453 && !CONSTANT_CLASS_P (arg##N)) \
4454 (void) (read_only = 0); \
4455 if (!TREE_CONSTANT (arg##N)) \
4456 (void) (constant = 0); \
4457 } \
4458 } while (0)
4459
4460 tree
4461 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4462 {
4463 bool constant, read_only, side_effects, div_by_zero;
4464 tree t;
4465
4466 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4467
4468 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4469 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4470 /* When sizetype precision doesn't match that of pointers
4471 we need to be able to build explicit extensions or truncations
4472 of the offset argument. */
4473 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4474 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4475 && TREE_CODE (arg1) == INTEGER_CST);
4476
4477 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4478 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4479 && ptrofftype_p (TREE_TYPE (arg1)));
4480
4481 t = make_node (code PASS_MEM_STAT);
4482 TREE_TYPE (t) = tt;
4483
4484 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4485 result based on those same flags for the arguments. But if the
4486 arguments aren't really even `tree' expressions, we shouldn't be trying
4487 to do this. */
4488
4489 /* Expressions without side effects may be constant if their
4490 arguments are as well. */
4491 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4492 || TREE_CODE_CLASS (code) == tcc_binary);
4493 read_only = 1;
4494 side_effects = TREE_SIDE_EFFECTS (t);
4495
4496 switch (code)
4497 {
4498 case TRUNC_DIV_EXPR:
4499 case CEIL_DIV_EXPR:
4500 case FLOOR_DIV_EXPR:
4501 case ROUND_DIV_EXPR:
4502 case EXACT_DIV_EXPR:
4503 case CEIL_MOD_EXPR:
4504 case FLOOR_MOD_EXPR:
4505 case ROUND_MOD_EXPR:
4506 case TRUNC_MOD_EXPR:
4507 div_by_zero = integer_zerop (arg1);
4508 break;
4509 default:
4510 div_by_zero = false;
4511 }
4512
4513 PROCESS_ARG (0);
4514 PROCESS_ARG (1);
4515
4516 TREE_SIDE_EFFECTS (t) = side_effects;
4517 if (code == MEM_REF)
4518 {
4519 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4520 {
4521 tree o = TREE_OPERAND (arg0, 0);
4522 TREE_READONLY (t) = TREE_READONLY (o);
4523 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4524 }
4525 }
4526 else
4527 {
4528 TREE_READONLY (t) = read_only;
4529 /* Don't mark X / 0 as constant. */
4530 TREE_CONSTANT (t) = constant && !div_by_zero;
4531 TREE_THIS_VOLATILE (t)
4532 = (TREE_CODE_CLASS (code) == tcc_reference
4533 && arg0 && TREE_THIS_VOLATILE (arg0));
4534 }
4535
4536 return t;
4537 }
4538
4539
4540 tree
4541 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
4542 tree arg2 MEM_STAT_DECL)
4543 {
4544 bool constant, read_only, side_effects;
4545 tree t;
4546
4547 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4548 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4549
4550 t = make_node (code PASS_MEM_STAT);
4551 TREE_TYPE (t) = tt;
4552
4553 read_only = 1;
4554
4555 /* As a special exception, if COND_EXPR has NULL branches, we
4556 assume that it is a gimple statement and always consider
4557 it to have side effects. */
4558 if (code == COND_EXPR
4559 && tt == void_type_node
4560 && arg1 == NULL_TREE
4561 && arg2 == NULL_TREE)
4562 side_effects = true;
4563 else
4564 side_effects = TREE_SIDE_EFFECTS (t);
4565
4566 PROCESS_ARG (0);
4567 PROCESS_ARG (1);
4568 PROCESS_ARG (2);
4569
4570 if (code == COND_EXPR)
4571 TREE_READONLY (t) = read_only;
4572
4573 TREE_SIDE_EFFECTS (t) = side_effects;
4574 TREE_THIS_VOLATILE (t)
4575 = (TREE_CODE_CLASS (code) == tcc_reference
4576 && arg0 && TREE_THIS_VOLATILE (arg0));
4577
4578 return t;
4579 }
4580
4581 tree
4582 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
4583 tree arg2, tree arg3 MEM_STAT_DECL)
4584 {
4585 bool constant, read_only, side_effects;
4586 tree t;
4587
4588 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4589
4590 t = make_node (code PASS_MEM_STAT);
4591 TREE_TYPE (t) = tt;
4592
4593 side_effects = TREE_SIDE_EFFECTS (t);
4594
4595 PROCESS_ARG (0);
4596 PROCESS_ARG (1);
4597 PROCESS_ARG (2);
4598 PROCESS_ARG (3);
4599
4600 TREE_SIDE_EFFECTS (t) = side_effects;
4601 TREE_THIS_VOLATILE (t)
4602 = (TREE_CODE_CLASS (code) == tcc_reference
4603 && arg0 && TREE_THIS_VOLATILE (arg0));
4604
4605 return t;
4606 }
4607
4608 tree
4609 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
4610 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4611 {
4612 bool constant, read_only, side_effects;
4613 tree t;
4614
4615 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4616
4617 t = make_node (code PASS_MEM_STAT);
4618 TREE_TYPE (t) = tt;
4619
4620 side_effects = TREE_SIDE_EFFECTS (t);
4621
4622 PROCESS_ARG (0);
4623 PROCESS_ARG (1);
4624 PROCESS_ARG (2);
4625 PROCESS_ARG (3);
4626 PROCESS_ARG (4);
4627
4628 TREE_SIDE_EFFECTS (t) = side_effects;
4629 if (code == TARGET_MEM_REF)
4630 {
4631 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4632 {
4633 tree o = TREE_OPERAND (arg0, 0);
4634 TREE_READONLY (t) = TREE_READONLY (o);
4635 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4636 }
4637 }
4638 else
4639 TREE_THIS_VOLATILE (t)
4640 = (TREE_CODE_CLASS (code) == tcc_reference
4641 && arg0 && TREE_THIS_VOLATILE (arg0));
4642
4643 return t;
4644 }
4645
4646 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4647 on the pointer PTR. */
4648
4649 tree
4650 build_simple_mem_ref_loc (location_t loc, tree ptr)
4651 {
4652 HOST_WIDE_INT offset = 0;
4653 tree ptype = TREE_TYPE (ptr);
4654 tree tem;
4655 /* For convenience allow addresses that collapse to a simple base
4656 and offset. */
4657 if (TREE_CODE (ptr) == ADDR_EXPR
4658 && (handled_component_p (TREE_OPERAND (ptr, 0))
4659 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4660 {
4661 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4662 gcc_assert (ptr);
4663 ptr = build_fold_addr_expr (ptr);
4664 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4665 }
4666 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4667 ptr, build_int_cst (ptype, offset));
4668 SET_EXPR_LOCATION (tem, loc);
4669 return tem;
4670 }
4671
4672 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4673
4674 offset_int
4675 mem_ref_offset (const_tree t)
4676 {
4677 return offset_int::from (TREE_OPERAND (t, 1), SIGNED);
4678 }
4679
4680 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4681 offsetted by OFFSET units. */
4682
4683 tree
4684 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4685 {
4686 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4687 build_fold_addr_expr (base),
4688 build_int_cst (ptr_type_node, offset));
4689 tree addr = build1 (ADDR_EXPR, type, ref);
4690 recompute_tree_invariant_for_addr_expr (addr);
4691 return addr;
4692 }
4693
4694 /* Similar except don't specify the TREE_TYPE
4695 and leave the TREE_SIDE_EFFECTS as 0.
4696 It is permissible for arguments to be null,
4697 or even garbage if their values do not matter. */
4698
4699 tree
4700 build_nt (enum tree_code code, ...)
4701 {
4702 tree t;
4703 int length;
4704 int i;
4705 va_list p;
4706
4707 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4708
4709 va_start (p, code);
4710
4711 t = make_node (code);
4712 length = TREE_CODE_LENGTH (code);
4713
4714 for (i = 0; i < length; i++)
4715 TREE_OPERAND (t, i) = va_arg (p, tree);
4716
4717 va_end (p);
4718 return t;
4719 }
4720
4721 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4722 tree vec. */
4723
4724 tree
4725 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4726 {
4727 tree ret, t;
4728 unsigned int ix;
4729
4730 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4731 CALL_EXPR_FN (ret) = fn;
4732 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4733 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4734 CALL_EXPR_ARG (ret, ix) = t;
4735 return ret;
4736 }
4737 \f
4738 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4739 We do NOT enter this node in any sort of symbol table.
4740
4741 LOC is the location of the decl.
4742
4743 layout_decl is used to set up the decl's storage layout.
4744 Other slots are initialized to 0 or null pointers. */
4745
4746 tree
4747 build_decl (location_t loc, enum tree_code code, tree name,
4748 tree type MEM_STAT_DECL)
4749 {
4750 tree t;
4751
4752 t = make_node (code PASS_MEM_STAT);
4753 DECL_SOURCE_LOCATION (t) = loc;
4754
4755 /* if (type == error_mark_node)
4756 type = integer_type_node; */
4757 /* That is not done, deliberately, so that having error_mark_node
4758 as the type can suppress useless errors in the use of this variable. */
4759
4760 DECL_NAME (t) = name;
4761 TREE_TYPE (t) = type;
4762
4763 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4764 layout_decl (t, 0);
4765
4766 return t;
4767 }
4768
4769 /* Builds and returns function declaration with NAME and TYPE. */
4770
4771 tree
4772 build_fn_decl (const char *name, tree type)
4773 {
4774 tree id = get_identifier (name);
4775 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4776
4777 DECL_EXTERNAL (decl) = 1;
4778 TREE_PUBLIC (decl) = 1;
4779 DECL_ARTIFICIAL (decl) = 1;
4780 TREE_NOTHROW (decl) = 1;
4781
4782 return decl;
4783 }
4784
4785 vec<tree, va_gc> *all_translation_units;
4786
4787 /* Builds a new translation-unit decl with name NAME, queues it in the
4788 global list of translation-unit decls and returns it. */
4789
4790 tree
4791 build_translation_unit_decl (tree name)
4792 {
4793 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4794 name, NULL_TREE);
4795 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4796 vec_safe_push (all_translation_units, tu);
4797 return tu;
4798 }
4799
4800 \f
4801 /* BLOCK nodes are used to represent the structure of binding contours
4802 and declarations, once those contours have been exited and their contents
4803 compiled. This information is used for outputting debugging info. */
4804
4805 tree
4806 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4807 {
4808 tree block = make_node (BLOCK);
4809
4810 BLOCK_VARS (block) = vars;
4811 BLOCK_SUBBLOCKS (block) = subblocks;
4812 BLOCK_SUPERCONTEXT (block) = supercontext;
4813 BLOCK_CHAIN (block) = chain;
4814 return block;
4815 }
4816
4817 \f
4818 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4819
4820 LOC is the location to use in tree T. */
4821
4822 void
4823 protected_set_expr_location (tree t, location_t loc)
4824 {
4825 if (CAN_HAVE_LOCATION_P (t))
4826 SET_EXPR_LOCATION (t, loc);
4827 }
4828 \f
4829 /* Reset the expression *EXPR_P, a size or position.
4830
4831 ??? We could reset all non-constant sizes or positions. But it's cheap
4832 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4833
4834 We need to reset self-referential sizes or positions because they cannot
4835 be gimplified and thus can contain a CALL_EXPR after the gimplification
4836 is finished, which will run afoul of LTO streaming. And they need to be
4837 reset to something essentially dummy but not constant, so as to preserve
4838 the properties of the object they are attached to. */
4839
4840 static inline void
4841 free_lang_data_in_one_sizepos (tree *expr_p)
4842 {
4843 tree expr = *expr_p;
4844 if (CONTAINS_PLACEHOLDER_P (expr))
4845 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4846 }
4847
4848
4849 /* Reset all the fields in a binfo node BINFO. We only keep
4850 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
4851
4852 static void
4853 free_lang_data_in_binfo (tree binfo)
4854 {
4855 unsigned i;
4856 tree t;
4857
4858 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4859
4860 BINFO_VIRTUALS (binfo) = NULL_TREE;
4861 BINFO_BASE_ACCESSES (binfo) = NULL;
4862 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4863 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4864
4865 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
4866 free_lang_data_in_binfo (t);
4867 }
4868
4869
4870 /* Reset all language specific information still present in TYPE. */
4871
4872 static void
4873 free_lang_data_in_type (tree type)
4874 {
4875 gcc_assert (TYPE_P (type));
4876
4877 /* Give the FE a chance to remove its own data first. */
4878 lang_hooks.free_lang_data (type);
4879
4880 TREE_LANG_FLAG_0 (type) = 0;
4881 TREE_LANG_FLAG_1 (type) = 0;
4882 TREE_LANG_FLAG_2 (type) = 0;
4883 TREE_LANG_FLAG_3 (type) = 0;
4884 TREE_LANG_FLAG_4 (type) = 0;
4885 TREE_LANG_FLAG_5 (type) = 0;
4886 TREE_LANG_FLAG_6 (type) = 0;
4887
4888 if (TREE_CODE (type) == FUNCTION_TYPE)
4889 {
4890 /* Remove the const and volatile qualifiers from arguments. The
4891 C++ front end removes them, but the C front end does not,
4892 leading to false ODR violation errors when merging two
4893 instances of the same function signature compiled by
4894 different front ends. */
4895 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4896 {
4897 tree arg_type = TREE_VALUE (p);
4898
4899 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4900 {
4901 int quals = TYPE_QUALS (arg_type)
4902 & ~TYPE_QUAL_CONST
4903 & ~TYPE_QUAL_VOLATILE;
4904 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4905 free_lang_data_in_type (TREE_VALUE (p));
4906 }
4907 /* C++ FE uses TREE_PURPOSE to store initial values. */
4908 TREE_PURPOSE (p) = NULL;
4909 }
4910 }
4911 else if (TREE_CODE (type) == METHOD_TYPE)
4912 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4913 /* C++ FE uses TREE_PURPOSE to store initial values. */
4914 TREE_PURPOSE (p) = NULL;
4915 else if (RECORD_OR_UNION_TYPE_P (type))
4916 {
4917 /* Remove members that are not FIELD_DECLs (and maybe
4918 TYPE_DECLs) from the field list of an aggregate. These occur
4919 in C++. */
4920 for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
4921 if (TREE_CODE (member) == FIELD_DECL
4922 || (TREE_CODE (member) == TYPE_DECL
4923 && !DECL_IGNORED_P (member)
4924 && debug_info_level > DINFO_LEVEL_TERSE
4925 && !is_redundant_typedef (member)))
4926 prev = &DECL_CHAIN (member);
4927 else
4928 *prev = DECL_CHAIN (member);
4929
4930 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
4931 and danagle the pointer from time to time. */
4932 if (TYPE_VFIELD (type) && TREE_CODE (TYPE_VFIELD (type)) != FIELD_DECL)
4933 TYPE_VFIELD (type) = NULL_TREE;
4934
4935 if (TYPE_BINFO (type))
4936 {
4937 free_lang_data_in_binfo (TYPE_BINFO (type));
4938 /* We need to preserve link to bases and virtual table for all
4939 polymorphic types to make devirtualization machinery working.
4940 Debug output cares only about bases, but output also
4941 virtual table pointers so merging of -fdevirtualize and
4942 -fno-devirtualize units is easier. */
4943 if ((!BINFO_VTABLE (TYPE_BINFO (type))
4944 || !flag_devirtualize)
4945 && ((!BINFO_N_BASE_BINFOS (TYPE_BINFO (type))
4946 && !BINFO_VTABLE (TYPE_BINFO (type)))
4947 || debug_info_level != DINFO_LEVEL_NONE))
4948 TYPE_BINFO (type) = NULL;
4949 }
4950 }
4951 else if (INTEGRAL_TYPE_P (type)
4952 || SCALAR_FLOAT_TYPE_P (type)
4953 || FIXED_POINT_TYPE_P (type))
4954 {
4955 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4956 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4957 }
4958
4959 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4960
4961 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4962 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4963
4964 if (TYPE_CONTEXT (type)
4965 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
4966 {
4967 tree ctx = TYPE_CONTEXT (type);
4968 do
4969 {
4970 ctx = BLOCK_SUPERCONTEXT (ctx);
4971 }
4972 while (ctx && TREE_CODE (ctx) == BLOCK);
4973 TYPE_CONTEXT (type) = ctx;
4974 }
4975 }
4976
4977
4978 /* Return true if DECL may need an assembler name to be set. */
4979
4980 static inline bool
4981 need_assembler_name_p (tree decl)
4982 {
4983 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
4984 Rule merging. This makes type_odr_p to return true on those types during
4985 LTO and by comparing the mangled name, we can say what types are intended
4986 to be equivalent across compilation unit.
4987
4988 We do not store names of type_in_anonymous_namespace_p.
4989
4990 Record, union and enumeration type have linkage that allows use
4991 to check type_in_anonymous_namespace_p. We do not mangle compound types
4992 that always can be compared structurally.
4993
4994 Similarly for builtin types, we compare properties of their main variant.
4995 A special case are integer types where mangling do make differences
4996 between char/signed char/unsigned char etc. Storing name for these makes
4997 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
4998 See cp/mangle.c:write_builtin_type for details. */
4999
5000 if (flag_lto_odr_type_mering
5001 && TREE_CODE (decl) == TYPE_DECL
5002 && DECL_NAME (decl)
5003 && decl == TYPE_NAME (TREE_TYPE (decl))
5004 && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
5005 && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5006 && (type_with_linkage_p (TREE_TYPE (decl))
5007 || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5008 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5009 return !DECL_ASSEMBLER_NAME_SET_P (decl);
5010 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5011 if (!VAR_OR_FUNCTION_DECL_P (decl))
5012 return false;
5013
5014 /* If DECL already has its assembler name set, it does not need a
5015 new one. */
5016 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5017 || DECL_ASSEMBLER_NAME_SET_P (decl))
5018 return false;
5019
5020 /* Abstract decls do not need an assembler name. */
5021 if (DECL_ABSTRACT_P (decl))
5022 return false;
5023
5024 /* For VAR_DECLs, only static, public and external symbols need an
5025 assembler name. */
5026 if (VAR_P (decl)
5027 && !TREE_STATIC (decl)
5028 && !TREE_PUBLIC (decl)
5029 && !DECL_EXTERNAL (decl))
5030 return false;
5031
5032 if (TREE_CODE (decl) == FUNCTION_DECL)
5033 {
5034 /* Do not set assembler name on builtins. Allow RTL expansion to
5035 decide whether to expand inline or via a regular call. */
5036 if (DECL_BUILT_IN (decl)
5037 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5038 return false;
5039
5040 /* Functions represented in the callgraph need an assembler name. */
5041 if (cgraph_node::get (decl) != NULL)
5042 return true;
5043
5044 /* Unused and not public functions don't need an assembler name. */
5045 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5046 return false;
5047 }
5048
5049 return true;
5050 }
5051
5052
5053 /* Reset all language specific information still present in symbol
5054 DECL. */
5055
5056 static void
5057 free_lang_data_in_decl (tree decl)
5058 {
5059 gcc_assert (DECL_P (decl));
5060
5061 /* Give the FE a chance to remove its own data first. */
5062 lang_hooks.free_lang_data (decl);
5063
5064 TREE_LANG_FLAG_0 (decl) = 0;
5065 TREE_LANG_FLAG_1 (decl) = 0;
5066 TREE_LANG_FLAG_2 (decl) = 0;
5067 TREE_LANG_FLAG_3 (decl) = 0;
5068 TREE_LANG_FLAG_4 (decl) = 0;
5069 TREE_LANG_FLAG_5 (decl) = 0;
5070 TREE_LANG_FLAG_6 (decl) = 0;
5071
5072 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5073 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5074 if (TREE_CODE (decl) == FIELD_DECL)
5075 {
5076 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5077 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5078 DECL_QUALIFIER (decl) = NULL_TREE;
5079 }
5080
5081 if (TREE_CODE (decl) == FUNCTION_DECL)
5082 {
5083 struct cgraph_node *node;
5084 if (!(node = cgraph_node::get (decl))
5085 || (!node->definition && !node->clones))
5086 {
5087 if (node)
5088 node->release_body ();
5089 else
5090 {
5091 release_function_body (decl);
5092 DECL_ARGUMENTS (decl) = NULL;
5093 DECL_RESULT (decl) = NULL;
5094 DECL_INITIAL (decl) = error_mark_node;
5095 }
5096 }
5097 if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p))
5098 {
5099 tree t;
5100
5101 /* If DECL has a gimple body, then the context for its
5102 arguments must be DECL. Otherwise, it doesn't really
5103 matter, as we will not be emitting any code for DECL. In
5104 general, there may be other instances of DECL created by
5105 the front end and since PARM_DECLs are generally shared,
5106 their DECL_CONTEXT changes as the replicas of DECL are
5107 created. The only time where DECL_CONTEXT is important
5108 is for the FUNCTION_DECLs that have a gimple body (since
5109 the PARM_DECL will be used in the function's body). */
5110 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5111 DECL_CONTEXT (t) = decl;
5112 if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5113 DECL_FUNCTION_SPECIFIC_TARGET (decl)
5114 = target_option_default_node;
5115 if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5116 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5117 = optimization_default_node;
5118 }
5119
5120 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5121 At this point, it is not needed anymore. */
5122 DECL_SAVED_TREE (decl) = NULL_TREE;
5123
5124 /* Clear the abstract origin if it refers to a method.
5125 Otherwise dwarf2out.c will ICE as we splice functions out of
5126 TYPE_FIELDS and thus the origin will not be output
5127 correctly. */
5128 if (DECL_ABSTRACT_ORIGIN (decl)
5129 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5130 && RECORD_OR_UNION_TYPE_P
5131 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5132 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5133
5134 /* Sometimes the C++ frontend doesn't manage to transform a temporary
5135 DECL_VINDEX referring to itself into a vtable slot number as it
5136 should. Happens with functions that are copied and then forgotten
5137 about. Just clear it, it won't matter anymore. */
5138 if (DECL_VINDEX (decl) && !tree_fits_shwi_p (DECL_VINDEX (decl)))
5139 DECL_VINDEX (decl) = NULL_TREE;
5140 }
5141 else if (VAR_P (decl))
5142 {
5143 if ((DECL_EXTERNAL (decl)
5144 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5145 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5146 DECL_INITIAL (decl) = NULL_TREE;
5147 }
5148 else if (TREE_CODE (decl) == TYPE_DECL)
5149 {
5150 DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
5151 DECL_VISIBILITY_SPECIFIED (decl) = 0;
5152 DECL_INITIAL (decl) = NULL_TREE;
5153 }
5154 else if (TREE_CODE (decl) == FIELD_DECL)
5155 DECL_INITIAL (decl) = NULL_TREE;
5156 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5157 && DECL_INITIAL (decl)
5158 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5159 {
5160 /* Strip builtins from the translation-unit BLOCK. We still have targets
5161 without builtin_decl_explicit support and also builtins are shared
5162 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5163 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5164 while (*nextp)
5165 {
5166 tree var = *nextp;
5167 if (TREE_CODE (var) == FUNCTION_DECL
5168 && DECL_BUILT_IN (var))
5169 *nextp = TREE_CHAIN (var);
5170 else
5171 nextp = &TREE_CHAIN (var);
5172 }
5173 }
5174 }
5175
5176
5177 /* Data used when collecting DECLs and TYPEs for language data removal. */
5178
5179 struct free_lang_data_d
5180 {
5181 free_lang_data_d () : decls (100), types (100) {}
5182
5183 /* Worklist to avoid excessive recursion. */
5184 auto_vec<tree> worklist;
5185
5186 /* Set of traversed objects. Used to avoid duplicate visits. */
5187 hash_set<tree> pset;
5188
5189 /* Array of symbols to process with free_lang_data_in_decl. */
5190 auto_vec<tree> decls;
5191
5192 /* Array of types to process with free_lang_data_in_type. */
5193 auto_vec<tree> types;
5194 };
5195
5196
5197 /* Save all language fields needed to generate proper debug information
5198 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
5199
5200 static void
5201 save_debug_info_for_decl (tree t)
5202 {
5203 /*struct saved_debug_info_d *sdi;*/
5204
5205 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
5206
5207 /* FIXME. Partial implementation for saving debug info removed. */
5208 }
5209
5210
5211 /* Save all language fields needed to generate proper debug information
5212 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
5213
5214 static void
5215 save_debug_info_for_type (tree t)
5216 {
5217 /*struct saved_debug_info_d *sdi;*/
5218
5219 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
5220
5221 /* FIXME. Partial implementation for saving debug info removed. */
5222 }
5223
5224
5225 /* Add type or decl T to one of the list of tree nodes that need their
5226 language data removed. The lists are held inside FLD. */
5227
5228 static void
5229 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5230 {
5231 if (DECL_P (t))
5232 {
5233 fld->decls.safe_push (t);
5234 if (debug_info_level > DINFO_LEVEL_TERSE)
5235 save_debug_info_for_decl (t);
5236 }
5237 else if (TYPE_P (t))
5238 {
5239 fld->types.safe_push (t);
5240 if (debug_info_level > DINFO_LEVEL_TERSE)
5241 save_debug_info_for_type (t);
5242 }
5243 else
5244 gcc_unreachable ();
5245 }
5246
5247 /* Push tree node T into FLD->WORKLIST. */
5248
5249 static inline void
5250 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5251 {
5252 if (t && !is_lang_specific (t) && !fld->pset.contains (t))
5253 fld->worklist.safe_push ((t));
5254 }
5255
5256
5257 /* Operand callback helper for free_lang_data_in_node. *TP is the
5258 subtree operand being considered. */
5259
5260 static tree
5261 find_decls_types_r (tree *tp, int *ws, void *data)
5262 {
5263 tree t = *tp;
5264 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5265
5266 if (TREE_CODE (t) == TREE_LIST)
5267 return NULL_TREE;
5268
5269 /* Language specific nodes will be removed, so there is no need
5270 to gather anything under them. */
5271 if (is_lang_specific (t))
5272 {
5273 *ws = 0;
5274 return NULL_TREE;
5275 }
5276
5277 if (DECL_P (t))
5278 {
5279 /* Note that walk_tree does not traverse every possible field in
5280 decls, so we have to do our own traversals here. */
5281 add_tree_to_fld_list (t, fld);
5282
5283 fld_worklist_push (DECL_NAME (t), fld);
5284 fld_worklist_push (DECL_CONTEXT (t), fld);
5285 fld_worklist_push (DECL_SIZE (t), fld);
5286 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5287
5288 /* We are going to remove everything under DECL_INITIAL for
5289 TYPE_DECLs. No point walking them. */
5290 if (TREE_CODE (t) != TYPE_DECL)
5291 fld_worklist_push (DECL_INITIAL (t), fld);
5292
5293 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5294 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5295
5296 if (TREE_CODE (t) == FUNCTION_DECL)
5297 {
5298 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5299 fld_worklist_push (DECL_RESULT (t), fld);
5300 }
5301 else if (TREE_CODE (t) == TYPE_DECL)
5302 {
5303 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
5304 }
5305 else if (TREE_CODE (t) == FIELD_DECL)
5306 {
5307 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5308 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5309 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5310 fld_worklist_push (DECL_FCONTEXT (t), fld);
5311 }
5312
5313 if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
5314 && DECL_HAS_VALUE_EXPR_P (t))
5315 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5316
5317 if (TREE_CODE (t) != FIELD_DECL
5318 && TREE_CODE (t) != TYPE_DECL)
5319 fld_worklist_push (TREE_CHAIN (t), fld);
5320 *ws = 0;
5321 }
5322 else if (TYPE_P (t))
5323 {
5324 /* Note that walk_tree does not traverse every possible field in
5325 types, so we have to do our own traversals here. */
5326 add_tree_to_fld_list (t, fld);
5327
5328 if (!RECORD_OR_UNION_TYPE_P (t))
5329 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5330 fld_worklist_push (TYPE_SIZE (t), fld);
5331 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5332 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5333 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5334 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5335 fld_worklist_push (TYPE_NAME (t), fld);
5336 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
5337 them and thus do not and want not to reach unused pointer types
5338 this way. */
5339 if (!POINTER_TYPE_P (t))
5340 fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
5341 /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types. */
5342 if (!RECORD_OR_UNION_TYPE_P (t))
5343 fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
5344 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5345 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5346 do not and want not to reach unused variants this way. */
5347 if (TYPE_CONTEXT (t))
5348 {
5349 tree ctx = TYPE_CONTEXT (t);
5350 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5351 So push that instead. */
5352 while (ctx && TREE_CODE (ctx) == BLOCK)
5353 ctx = BLOCK_SUPERCONTEXT (ctx);
5354 fld_worklist_push (ctx, fld);
5355 }
5356 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5357 and want not to reach unused types this way. */
5358
5359 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5360 {
5361 unsigned i;
5362 tree tem;
5363 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5364 fld_worklist_push (TREE_TYPE (tem), fld);
5365 fld_worklist_push (BINFO_VIRTUALS (TYPE_BINFO (t)), fld);
5366 }
5367 if (RECORD_OR_UNION_TYPE_P (t))
5368 {
5369 tree tem;
5370 /* Push all TYPE_FIELDS - there can be interleaving interesting
5371 and non-interesting things. */
5372 tem = TYPE_FIELDS (t);
5373 while (tem)
5374 {
5375 if (TREE_CODE (tem) == FIELD_DECL
5376 || (TREE_CODE (tem) == TYPE_DECL
5377 && !DECL_IGNORED_P (tem)
5378 && debug_info_level > DINFO_LEVEL_TERSE
5379 && !is_redundant_typedef (tem)))
5380 fld_worklist_push (tem, fld);
5381 tem = TREE_CHAIN (tem);
5382 }
5383 }
5384
5385 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5386 *ws = 0;
5387 }
5388 else if (TREE_CODE (t) == BLOCK)
5389 {
5390 tree tem;
5391 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
5392 fld_worklist_push (tem, fld);
5393 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5394 fld_worklist_push (tem, fld);
5395 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5396 }
5397
5398 if (TREE_CODE (t) != IDENTIFIER_NODE
5399 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5400 fld_worklist_push (TREE_TYPE (t), fld);
5401
5402 return NULL_TREE;
5403 }
5404
5405
5406 /* Find decls and types in T. */
5407
5408 static void
5409 find_decls_types (tree t, struct free_lang_data_d *fld)
5410 {
5411 while (1)
5412 {
5413 if (!fld->pset.contains (t))
5414 walk_tree (&t, find_decls_types_r, fld, &fld->pset);
5415 if (fld->worklist.is_empty ())
5416 break;
5417 t = fld->worklist.pop ();
5418 }
5419 }
5420
5421 /* Translate all the types in LIST with the corresponding runtime
5422 types. */
5423
5424 static tree
5425 get_eh_types_for_runtime (tree list)
5426 {
5427 tree head, prev;
5428
5429 if (list == NULL_TREE)
5430 return NULL_TREE;
5431
5432 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5433 prev = head;
5434 list = TREE_CHAIN (list);
5435 while (list)
5436 {
5437 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5438 TREE_CHAIN (prev) = n;
5439 prev = TREE_CHAIN (prev);
5440 list = TREE_CHAIN (list);
5441 }
5442
5443 return head;
5444 }
5445
5446
5447 /* Find decls and types referenced in EH region R and store them in
5448 FLD->DECLS and FLD->TYPES. */
5449
5450 static void
5451 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5452 {
5453 switch (r->type)
5454 {
5455 case ERT_CLEANUP:
5456 break;
5457
5458 case ERT_TRY:
5459 {
5460 eh_catch c;
5461
5462 /* The types referenced in each catch must first be changed to the
5463 EH types used at runtime. This removes references to FE types
5464 in the region. */
5465 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5466 {
5467 c->type_list = get_eh_types_for_runtime (c->type_list);
5468 walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
5469 }
5470 }
5471 break;
5472
5473 case ERT_ALLOWED_EXCEPTIONS:
5474 r->u.allowed.type_list
5475 = get_eh_types_for_runtime (r->u.allowed.type_list);
5476 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
5477 break;
5478
5479 case ERT_MUST_NOT_THROW:
5480 walk_tree (&r->u.must_not_throw.failure_decl,
5481 find_decls_types_r, fld, &fld->pset);
5482 break;
5483 }
5484 }
5485
5486
5487 /* Find decls and types referenced in cgraph node N and store them in
5488 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5489 look for *every* kind of DECL and TYPE node reachable from N,
5490 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5491 NAMESPACE_DECLs, etc). */
5492
5493 static void
5494 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5495 {
5496 basic_block bb;
5497 struct function *fn;
5498 unsigned ix;
5499 tree t;
5500
5501 find_decls_types (n->decl, fld);
5502
5503 if (!gimple_has_body_p (n->decl))
5504 return;
5505
5506 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5507
5508 fn = DECL_STRUCT_FUNCTION (n->decl);
5509
5510 /* Traverse locals. */
5511 FOR_EACH_LOCAL_DECL (fn, ix, t)
5512 find_decls_types (t, fld);
5513
5514 /* Traverse EH regions in FN. */
5515 {
5516 eh_region r;
5517 FOR_ALL_EH_REGION_FN (r, fn)
5518 find_decls_types_in_eh_region (r, fld);
5519 }
5520
5521 /* Traverse every statement in FN. */
5522 FOR_EACH_BB_FN (bb, fn)
5523 {
5524 gphi_iterator psi;
5525 gimple_stmt_iterator si;
5526 unsigned i;
5527
5528 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
5529 {
5530 gphi *phi = psi.phi ();
5531
5532 for (i = 0; i < gimple_phi_num_args (phi); i++)
5533 {
5534 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5535 find_decls_types (*arg_p, fld);
5536 }
5537 }
5538
5539 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5540 {
5541 gimple *stmt = gsi_stmt (si);
5542
5543 if (is_gimple_call (stmt))
5544 find_decls_types (gimple_call_fntype (stmt), fld);
5545
5546 for (i = 0; i < gimple_num_ops (stmt); i++)
5547 {
5548 tree arg = gimple_op (stmt, i);
5549 find_decls_types (arg, fld);
5550 }
5551 }
5552 }
5553 }
5554
5555
5556 /* Find decls and types referenced in varpool node N and store them in
5557 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5558 look for *every* kind of DECL and TYPE node reachable from N,
5559 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5560 NAMESPACE_DECLs, etc). */
5561
5562 static void
5563 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
5564 {
5565 find_decls_types (v->decl, fld);
5566 }
5567
5568 /* If T needs an assembler name, have one created for it. */
5569
5570 void
5571 assign_assembler_name_if_needed (tree t)
5572 {
5573 if (need_assembler_name_p (t))
5574 {
5575 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5576 diagnostics that use input_location to show locus
5577 information. The problem here is that, at this point,
5578 input_location is generally anchored to the end of the file
5579 (since the parser is long gone), so we don't have a good
5580 position to pin it to.
5581
5582 To alleviate this problem, this uses the location of T's
5583 declaration. Examples of this are
5584 testsuite/g++.dg/template/cond2.C and
5585 testsuite/g++.dg/template/pr35240.C. */
5586 location_t saved_location = input_location;
5587 input_location = DECL_SOURCE_LOCATION (t);
5588
5589 decl_assembler_name (t);
5590
5591 input_location = saved_location;
5592 }
5593 }
5594
5595
5596 /* Free language specific information for every operand and expression
5597 in every node of the call graph. This process operates in three stages:
5598
5599 1- Every callgraph node and varpool node is traversed looking for
5600 decls and types embedded in them. This is a more exhaustive
5601 search than that done by find_referenced_vars, because it will
5602 also collect individual fields, decls embedded in types, etc.
5603
5604 2- All the decls found are sent to free_lang_data_in_decl.
5605
5606 3- All the types found are sent to free_lang_data_in_type.
5607
5608 The ordering between decls and types is important because
5609 free_lang_data_in_decl sets assembler names, which includes
5610 mangling. So types cannot be freed up until assembler names have
5611 been set up. */
5612
5613 static void
5614 free_lang_data_in_cgraph (void)
5615 {
5616 struct cgraph_node *n;
5617 varpool_node *v;
5618 struct free_lang_data_d fld;
5619 tree t;
5620 unsigned i;
5621 alias_pair *p;
5622
5623 /* Find decls and types in the body of every function in the callgraph. */
5624 FOR_EACH_FUNCTION (n)
5625 find_decls_types_in_node (n, &fld);
5626
5627 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5628 find_decls_types (p->decl, &fld);
5629
5630 /* Find decls and types in every varpool symbol. */
5631 FOR_EACH_VARIABLE (v)
5632 find_decls_types_in_var (v, &fld);
5633
5634 /* Set the assembler name on every decl found. We need to do this
5635 now because free_lang_data_in_decl will invalidate data needed
5636 for mangling. This breaks mangling on interdependent decls. */
5637 FOR_EACH_VEC_ELT (fld.decls, i, t)
5638 assign_assembler_name_if_needed (t);
5639
5640 /* Traverse every decl found freeing its language data. */
5641 FOR_EACH_VEC_ELT (fld.decls, i, t)
5642 free_lang_data_in_decl (t);
5643
5644 /* Traverse every type found freeing its language data. */
5645 FOR_EACH_VEC_ELT (fld.types, i, t)
5646 free_lang_data_in_type (t);
5647 if (flag_checking)
5648 {
5649 FOR_EACH_VEC_ELT (fld.types, i, t)
5650 verify_type (t);
5651 }
5652 }
5653
5654
5655 /* Free resources that are used by FE but are not needed once they are done. */
5656
5657 static unsigned
5658 free_lang_data (void)
5659 {
5660 unsigned i;
5661
5662 /* If we are the LTO frontend we have freed lang-specific data already. */
5663 if (in_lto_p
5664 || (!flag_generate_lto && !flag_generate_offload))
5665 return 0;
5666
5667 /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one. */
5668 if (vec_safe_is_empty (all_translation_units))
5669 build_translation_unit_decl (NULL_TREE);
5670
5671 /* Allocate and assign alias sets to the standard integer types
5672 while the slots are still in the way the frontends generated them. */
5673 for (i = 0; i < itk_none; ++i)
5674 if (integer_types[i])
5675 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5676
5677 /* Traverse the IL resetting language specific information for
5678 operands, expressions, etc. */
5679 free_lang_data_in_cgraph ();
5680
5681 /* Create gimple variants for common types. */
5682 for (unsigned i = 0;
5683 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
5684 ++i)
5685 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
5686
5687 /* Reset some langhooks. Do not reset types_compatible_p, it may
5688 still be used indirectly via the get_alias_set langhook. */
5689 lang_hooks.dwarf_name = lhd_dwarf_name;
5690 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5691 lang_hooks.gimplify_expr = lhd_gimplify_expr;
5692
5693 /* We do not want the default decl_assembler_name implementation,
5694 rather if we have fixed everything we want a wrapper around it
5695 asserting that all non-local symbols already got their assembler
5696 name and only produce assembler names for local symbols. Or rather
5697 make sure we never call decl_assembler_name on local symbols and
5698 devise a separate, middle-end private scheme for it. */
5699
5700 /* Reset diagnostic machinery. */
5701 tree_diagnostics_defaults (global_dc);
5702
5703 return 0;
5704 }
5705
5706
5707 namespace {
5708
5709 const pass_data pass_data_ipa_free_lang_data =
5710 {
5711 SIMPLE_IPA_PASS, /* type */
5712 "*free_lang_data", /* name */
5713 OPTGROUP_NONE, /* optinfo_flags */
5714 TV_IPA_FREE_LANG_DATA, /* tv_id */
5715 0, /* properties_required */
5716 0, /* properties_provided */
5717 0, /* properties_destroyed */
5718 0, /* todo_flags_start */
5719 0, /* todo_flags_finish */
5720 };
5721
5722 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
5723 {
5724 public:
5725 pass_ipa_free_lang_data (gcc::context *ctxt)
5726 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
5727 {}
5728
5729 /* opt_pass methods: */
5730 virtual unsigned int execute (function *) { return free_lang_data (); }
5731
5732 }; // class pass_ipa_free_lang_data
5733
5734 } // anon namespace
5735
5736 simple_ipa_opt_pass *
5737 make_pass_ipa_free_lang_data (gcc::context *ctxt)
5738 {
5739 return new pass_ipa_free_lang_data (ctxt);
5740 }
5741 \f
5742 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5743 of the various TYPE_QUAL values. */
5744
5745 static void
5746 set_type_quals (tree type, int type_quals)
5747 {
5748 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5749 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5750 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5751 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
5752 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5753 }
5754
5755 /* Returns true iff CAND and BASE have equivalent language-specific
5756 qualifiers. */
5757
5758 bool
5759 check_lang_type (const_tree cand, const_tree base)
5760 {
5761 if (lang_hooks.types.type_hash_eq == NULL)
5762 return true;
5763 /* type_hash_eq currently only applies to these types. */
5764 if (TREE_CODE (cand) != FUNCTION_TYPE
5765 && TREE_CODE (cand) != METHOD_TYPE)
5766 return true;
5767 return lang_hooks.types.type_hash_eq (cand, base);
5768 }
5769
5770 /* Returns true iff unqualified CAND and BASE are equivalent. */
5771
5772 bool
5773 check_base_type (const_tree cand, const_tree base)
5774 {
5775 return (TYPE_NAME (cand) == TYPE_NAME (base)
5776 /* Apparently this is needed for Objective-C. */
5777 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5778 /* Check alignment. */
5779 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5780 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5781 TYPE_ATTRIBUTES (base)));
5782 }
5783
5784 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5785
5786 bool
5787 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5788 {
5789 return (TYPE_QUALS (cand) == type_quals
5790 && check_base_type (cand, base)
5791 && check_lang_type (cand, base));
5792 }
5793
5794 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5795
5796 static bool
5797 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5798 {
5799 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5800 && TYPE_NAME (cand) == TYPE_NAME (base)
5801 /* Apparently this is needed for Objective-C. */
5802 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5803 /* Check alignment. */
5804 && TYPE_ALIGN (cand) == align
5805 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5806 TYPE_ATTRIBUTES (base))
5807 && check_lang_type (cand, base));
5808 }
5809
5810 /* This function checks to see if TYPE matches the size one of the built-in
5811 atomic types, and returns that core atomic type. */
5812
5813 static tree
5814 find_atomic_core_type (tree type)
5815 {
5816 tree base_atomic_type;
5817
5818 /* Only handle complete types. */
5819 if (TYPE_SIZE (type) == NULL_TREE)
5820 return NULL_TREE;
5821
5822 HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
5823 switch (type_size)
5824 {
5825 case 8:
5826 base_atomic_type = atomicQI_type_node;
5827 break;
5828
5829 case 16:
5830 base_atomic_type = atomicHI_type_node;
5831 break;
5832
5833 case 32:
5834 base_atomic_type = atomicSI_type_node;
5835 break;
5836
5837 case 64:
5838 base_atomic_type = atomicDI_type_node;
5839 break;
5840
5841 case 128:
5842 base_atomic_type = atomicTI_type_node;
5843 break;
5844
5845 default:
5846 base_atomic_type = NULL_TREE;
5847 }
5848
5849 return base_atomic_type;
5850 }
5851
5852 /* Return a version of the TYPE, qualified as indicated by the
5853 TYPE_QUALS, if one exists. If no qualified version exists yet,
5854 return NULL_TREE. */
5855
5856 tree
5857 get_qualified_type (tree type, int type_quals)
5858 {
5859 tree t;
5860
5861 if (TYPE_QUALS (type) == type_quals)
5862 return type;
5863
5864 /* Search the chain of variants to see if there is already one there just
5865 like the one we need to have. If so, use that existing one. We must
5866 preserve the TYPE_NAME, since there is code that depends on this. */
5867 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5868 if (check_qualified_type (t, type, type_quals))
5869 return t;
5870
5871 return NULL_TREE;
5872 }
5873
5874 /* Like get_qualified_type, but creates the type if it does not
5875 exist. This function never returns NULL_TREE. */
5876
5877 tree
5878 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
5879 {
5880 tree t;
5881
5882 /* See if we already have the appropriate qualified variant. */
5883 t = get_qualified_type (type, type_quals);
5884
5885 /* If not, build it. */
5886 if (!t)
5887 {
5888 t = build_variant_type_copy (type PASS_MEM_STAT);
5889 set_type_quals (t, type_quals);
5890
5891 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
5892 {
5893 /* See if this object can map to a basic atomic type. */
5894 tree atomic_type = find_atomic_core_type (type);
5895 if (atomic_type)
5896 {
5897 /* Ensure the alignment of this type is compatible with
5898 the required alignment of the atomic type. */
5899 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
5900 SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
5901 }
5902 }
5903
5904 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5905 /* Propagate structural equality. */
5906 SET_TYPE_STRUCTURAL_EQUALITY (t);
5907 else if (TYPE_CANONICAL (type) != type)
5908 /* Build the underlying canonical type, since it is different
5909 from TYPE. */
5910 {
5911 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
5912 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
5913 }
5914 else
5915 /* T is its own canonical type. */
5916 TYPE_CANONICAL (t) = t;
5917
5918 }
5919
5920 return t;
5921 }
5922
5923 /* Create a variant of type T with alignment ALIGN. */
5924
5925 tree
5926 build_aligned_type (tree type, unsigned int align)
5927 {
5928 tree t;
5929
5930 if (TYPE_PACKED (type)
5931 || TYPE_ALIGN (type) == align)
5932 return type;
5933
5934 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5935 if (check_aligned_type (t, type, align))
5936 return t;
5937
5938 t = build_variant_type_copy (type);
5939 SET_TYPE_ALIGN (t, align);
5940 TYPE_USER_ALIGN (t) = 1;
5941
5942 return t;
5943 }
5944
5945 /* Create a new distinct copy of TYPE. The new type is made its own
5946 MAIN_VARIANT. If TYPE requires structural equality checks, the
5947 resulting type requires structural equality checks; otherwise, its
5948 TYPE_CANONICAL points to itself. */
5949
5950 tree
5951 build_distinct_type_copy (tree type MEM_STAT_DECL)
5952 {
5953 tree t = copy_node (type PASS_MEM_STAT);
5954
5955 TYPE_POINTER_TO (t) = 0;
5956 TYPE_REFERENCE_TO (t) = 0;
5957
5958 /* Set the canonical type either to a new equivalence class, or
5959 propagate the need for structural equality checks. */
5960 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5961 SET_TYPE_STRUCTURAL_EQUALITY (t);
5962 else
5963 TYPE_CANONICAL (t) = t;
5964
5965 /* Make it its own variant. */
5966 TYPE_MAIN_VARIANT (t) = t;
5967 TYPE_NEXT_VARIANT (t) = 0;
5968
5969 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5970 whose TREE_TYPE is not t. This can also happen in the Ada
5971 frontend when using subtypes. */
5972
5973 return t;
5974 }
5975
5976 /* Create a new variant of TYPE, equivalent but distinct. This is so
5977 the caller can modify it. TYPE_CANONICAL for the return type will
5978 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5979 are considered equal by the language itself (or that both types
5980 require structural equality checks). */
5981
5982 tree
5983 build_variant_type_copy (tree type MEM_STAT_DECL)
5984 {
5985 tree t, m = TYPE_MAIN_VARIANT (type);
5986
5987 t = build_distinct_type_copy (type PASS_MEM_STAT);
5988
5989 /* Since we're building a variant, assume that it is a non-semantic
5990 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5991 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5992 /* Type variants have no alias set defined. */
5993 TYPE_ALIAS_SET (t) = -1;
5994
5995 /* Add the new type to the chain of variants of TYPE. */
5996 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5997 TYPE_NEXT_VARIANT (m) = t;
5998 TYPE_MAIN_VARIANT (t) = m;
5999
6000 return t;
6001 }
6002 \f
6003 /* Return true if the from tree in both tree maps are equal. */
6004
6005 int
6006 tree_map_base_eq (const void *va, const void *vb)
6007 {
6008 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6009 *const b = (const struct tree_map_base *) vb;
6010 return (a->from == b->from);
6011 }
6012
6013 /* Hash a from tree in a tree_base_map. */
6014
6015 unsigned int
6016 tree_map_base_hash (const void *item)
6017 {
6018 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6019 }
6020
6021 /* Return true if this tree map structure is marked for garbage collection
6022 purposes. We simply return true if the from tree is marked, so that this
6023 structure goes away when the from tree goes away. */
6024
6025 int
6026 tree_map_base_marked_p (const void *p)
6027 {
6028 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6029 }
6030
6031 /* Hash a from tree in a tree_map. */
6032
6033 unsigned int
6034 tree_map_hash (const void *item)
6035 {
6036 return (((const struct tree_map *) item)->hash);
6037 }
6038
6039 /* Hash a from tree in a tree_decl_map. */
6040
6041 unsigned int
6042 tree_decl_map_hash (const void *item)
6043 {
6044 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6045 }
6046
6047 /* Return the initialization priority for DECL. */
6048
6049 priority_type
6050 decl_init_priority_lookup (tree decl)
6051 {
6052 symtab_node *snode = symtab_node::get (decl);
6053
6054 if (!snode)
6055 return DEFAULT_INIT_PRIORITY;
6056 return
6057 snode->get_init_priority ();
6058 }
6059
6060 /* Return the finalization priority for DECL. */
6061
6062 priority_type
6063 decl_fini_priority_lookup (tree decl)
6064 {
6065 cgraph_node *node = cgraph_node::get (decl);
6066
6067 if (!node)
6068 return DEFAULT_INIT_PRIORITY;
6069 return
6070 node->get_fini_priority ();
6071 }
6072
6073 /* Set the initialization priority for DECL to PRIORITY. */
6074
6075 void
6076 decl_init_priority_insert (tree decl, priority_type priority)
6077 {
6078 struct symtab_node *snode;
6079
6080 if (priority == DEFAULT_INIT_PRIORITY)
6081 {
6082 snode = symtab_node::get (decl);
6083 if (!snode)
6084 return;
6085 }
6086 else if (VAR_P (decl))
6087 snode = varpool_node::get_create (decl);
6088 else
6089 snode = cgraph_node::get_create (decl);
6090 snode->set_init_priority (priority);
6091 }
6092
6093 /* Set the finalization priority for DECL to PRIORITY. */
6094
6095 void
6096 decl_fini_priority_insert (tree decl, priority_type priority)
6097 {
6098 struct cgraph_node *node;
6099
6100 if (priority == DEFAULT_INIT_PRIORITY)
6101 {
6102 node = cgraph_node::get (decl);
6103 if (!node)
6104 return;
6105 }
6106 else
6107 node = cgraph_node::get_create (decl);
6108 node->set_fini_priority (priority);
6109 }
6110
6111 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6112
6113 static void
6114 print_debug_expr_statistics (void)
6115 {
6116 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6117 (long) debug_expr_for_decl->size (),
6118 (long) debug_expr_for_decl->elements (),
6119 debug_expr_for_decl->collisions ());
6120 }
6121
6122 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6123
6124 static void
6125 print_value_expr_statistics (void)
6126 {
6127 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6128 (long) value_expr_for_decl->size (),
6129 (long) value_expr_for_decl->elements (),
6130 value_expr_for_decl->collisions ());
6131 }
6132
6133 /* Lookup a debug expression for FROM, and return it if we find one. */
6134
6135 tree
6136 decl_debug_expr_lookup (tree from)
6137 {
6138 struct tree_decl_map *h, in;
6139 in.base.from = from;
6140
6141 h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6142 if (h)
6143 return h->to;
6144 return NULL_TREE;
6145 }
6146
6147 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6148
6149 void
6150 decl_debug_expr_insert (tree from, tree to)
6151 {
6152 struct tree_decl_map *h;
6153
6154 h = ggc_alloc<tree_decl_map> ();
6155 h->base.from = from;
6156 h->to = to;
6157 *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6158 }
6159
6160 /* Lookup a value expression for FROM, and return it if we find one. */
6161
6162 tree
6163 decl_value_expr_lookup (tree from)
6164 {
6165 struct tree_decl_map *h, in;
6166 in.base.from = from;
6167
6168 h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6169 if (h)
6170 return h->to;
6171 return NULL_TREE;
6172 }
6173
6174 /* Insert a mapping FROM->TO in the value expression hashtable. */
6175
6176 void
6177 decl_value_expr_insert (tree from, tree to)
6178 {
6179 struct tree_decl_map *h;
6180
6181 h = ggc_alloc<tree_decl_map> ();
6182 h->base.from = from;
6183 h->to = to;
6184 *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6185 }
6186
6187 /* Lookup a vector of debug arguments for FROM, and return it if we
6188 find one. */
6189
6190 vec<tree, va_gc> **
6191 decl_debug_args_lookup (tree from)
6192 {
6193 struct tree_vec_map *h, in;
6194
6195 if (!DECL_HAS_DEBUG_ARGS_P (from))
6196 return NULL;
6197 gcc_checking_assert (debug_args_for_decl != NULL);
6198 in.base.from = from;
6199 h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6200 if (h)
6201 return &h->to;
6202 return NULL;
6203 }
6204
6205 /* Insert a mapping FROM->empty vector of debug arguments in the value
6206 expression hashtable. */
6207
6208 vec<tree, va_gc> **
6209 decl_debug_args_insert (tree from)
6210 {
6211 struct tree_vec_map *h;
6212 tree_vec_map **loc;
6213
6214 if (DECL_HAS_DEBUG_ARGS_P (from))
6215 return decl_debug_args_lookup (from);
6216 if (debug_args_for_decl == NULL)
6217 debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6218 h = ggc_alloc<tree_vec_map> ();
6219 h->base.from = from;
6220 h->to = NULL;
6221 loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6222 *loc = h;
6223 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6224 return &h->to;
6225 }
6226
6227 /* Hashing of types so that we don't make duplicates.
6228 The entry point is `type_hash_canon'. */
6229
6230 /* Generate the default hash code for TYPE. This is designed for
6231 speed, rather than maximum entropy. */
6232
6233 hashval_t
6234 type_hash_canon_hash (tree type)
6235 {
6236 inchash::hash hstate;
6237
6238 hstate.add_int (TREE_CODE (type));
6239
6240 if (TREE_TYPE (type))
6241 hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
6242
6243 for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
6244 /* Just the identifier is adequate to distinguish. */
6245 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
6246
6247 switch (TREE_CODE (type))
6248 {
6249 case METHOD_TYPE:
6250 hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
6251 /* FALLTHROUGH. */
6252 case FUNCTION_TYPE:
6253 for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6254 if (TREE_VALUE (t) != error_mark_node)
6255 hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
6256 break;
6257
6258 case OFFSET_TYPE:
6259 hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
6260 break;
6261
6262 case ARRAY_TYPE:
6263 {
6264 if (TYPE_DOMAIN (type))
6265 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
6266 if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
6267 {
6268 unsigned typeless = TYPE_TYPELESS_STORAGE (type);
6269 hstate.add_object (typeless);
6270 }
6271 }
6272 break;
6273
6274 case INTEGER_TYPE:
6275 {
6276 tree t = TYPE_MAX_VALUE (type);
6277 if (!t)
6278 t = TYPE_MIN_VALUE (type);
6279 for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
6280 hstate.add_object (TREE_INT_CST_ELT (t, i));
6281 break;
6282 }
6283
6284 case REAL_TYPE:
6285 case FIXED_POINT_TYPE:
6286 {
6287 unsigned prec = TYPE_PRECISION (type);
6288 hstate.add_object (prec);
6289 break;
6290 }
6291
6292 case VECTOR_TYPE:
6293 {
6294 unsigned nunits = TYPE_VECTOR_SUBPARTS (type);
6295 hstate.add_object (nunits);
6296 break;
6297 }
6298
6299 default:
6300 break;
6301 }
6302
6303 return hstate.end ();
6304 }
6305
6306 /* These are the Hashtable callback functions. */
6307
6308 /* Returns true iff the types are equivalent. */
6309
6310 bool
6311 type_cache_hasher::equal (type_hash *a, type_hash *b)
6312 {
6313 /* First test the things that are the same for all types. */
6314 if (a->hash != b->hash
6315 || TREE_CODE (a->type) != TREE_CODE (b->type)
6316 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6317 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6318 TYPE_ATTRIBUTES (b->type))
6319 || (TREE_CODE (a->type) != COMPLEX_TYPE
6320 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6321 return 0;
6322
6323 /* Be careful about comparing arrays before and after the element type
6324 has been completed; don't compare TYPE_ALIGN unless both types are
6325 complete. */
6326 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6327 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6328 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6329 return 0;
6330
6331 switch (TREE_CODE (a->type))
6332 {
6333 case VOID_TYPE:
6334 case COMPLEX_TYPE:
6335 case POINTER_TYPE:
6336 case REFERENCE_TYPE:
6337 case NULLPTR_TYPE:
6338 return 1;
6339
6340 case VECTOR_TYPE:
6341 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6342
6343 case ENUMERAL_TYPE:
6344 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6345 && !(TYPE_VALUES (a->type)
6346 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6347 && TYPE_VALUES (b->type)
6348 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6349 && type_list_equal (TYPE_VALUES (a->type),
6350 TYPE_VALUES (b->type))))
6351 return 0;
6352
6353 /* fall through */
6354
6355 case INTEGER_TYPE:
6356 case REAL_TYPE:
6357 case BOOLEAN_TYPE:
6358 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6359 return false;
6360 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6361 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6362 TYPE_MAX_VALUE (b->type)))
6363 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6364 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6365 TYPE_MIN_VALUE (b->type))));
6366
6367 case FIXED_POINT_TYPE:
6368 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6369
6370 case OFFSET_TYPE:
6371 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6372
6373 case METHOD_TYPE:
6374 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6375 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6376 || (TYPE_ARG_TYPES (a->type)
6377 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6378 && TYPE_ARG_TYPES (b->type)
6379 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6380 && type_list_equal (TYPE_ARG_TYPES (a->type),
6381 TYPE_ARG_TYPES (b->type)))))
6382 break;
6383 return 0;
6384 case ARRAY_TYPE:
6385 /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
6386 where the flag should be inherited from the element type
6387 and can change after ARRAY_TYPEs are created; on non-aggregates
6388 compare it and hash it, scalars will never have that flag set
6389 and we need to differentiate between arrays created by different
6390 front-ends or middle-end created arrays. */
6391 return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
6392 && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
6393 || (TYPE_TYPELESS_STORAGE (a->type)
6394 == TYPE_TYPELESS_STORAGE (b->type))));
6395
6396 case RECORD_TYPE:
6397 case UNION_TYPE:
6398 case QUAL_UNION_TYPE:
6399 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6400 || (TYPE_FIELDS (a->type)
6401 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6402 && TYPE_FIELDS (b->type)
6403 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6404 && type_list_equal (TYPE_FIELDS (a->type),
6405 TYPE_FIELDS (b->type))));
6406
6407 case FUNCTION_TYPE:
6408 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6409 || (TYPE_ARG_TYPES (a->type)
6410 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6411 && TYPE_ARG_TYPES (b->type)
6412 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6413 && type_list_equal (TYPE_ARG_TYPES (a->type),
6414 TYPE_ARG_TYPES (b->type))))
6415 break;
6416 return 0;
6417
6418 default:
6419 return 0;
6420 }
6421
6422 if (lang_hooks.types.type_hash_eq != NULL)
6423 return lang_hooks.types.type_hash_eq (a->type, b->type);
6424
6425 return 1;
6426 }
6427
6428 /* Given TYPE, and HASHCODE its hash code, return the canonical
6429 object for an identical type if one already exists.
6430 Otherwise, return TYPE, and record it as the canonical object.
6431
6432 To use this function, first create a type of the sort you want.
6433 Then compute its hash code from the fields of the type that
6434 make it different from other similar types.
6435 Then call this function and use the value. */
6436
6437 tree
6438 type_hash_canon (unsigned int hashcode, tree type)
6439 {
6440 type_hash in;
6441 type_hash **loc;
6442
6443 /* The hash table only contains main variants, so ensure that's what we're
6444 being passed. */
6445 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6446
6447 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6448 must call that routine before comparing TYPE_ALIGNs. */
6449 layout_type (type);
6450
6451 in.hash = hashcode;
6452 in.type = type;
6453
6454 loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
6455 if (*loc)
6456 {
6457 tree t1 = ((type_hash *) *loc)->type;
6458 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1);
6459 if (TYPE_UID (type) + 1 == next_type_uid)
6460 --next_type_uid;
6461 /* Free also min/max values and the cache for integer
6462 types. This can't be done in free_node, as LTO frees
6463 those on its own. */
6464 if (TREE_CODE (type) == INTEGER_TYPE)
6465 {
6466 if (TYPE_MIN_VALUE (type)
6467 && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
6468 ggc_free (TYPE_MIN_VALUE (type));
6469 if (TYPE_MAX_VALUE (type)
6470 && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
6471 ggc_free (TYPE_MAX_VALUE (type));
6472 if (TYPE_CACHED_VALUES_P (type))
6473 ggc_free (TYPE_CACHED_VALUES (type));
6474 }
6475 free_node (type);
6476 return t1;
6477 }
6478 else
6479 {
6480 struct type_hash *h;
6481
6482 h = ggc_alloc<type_hash> ();
6483 h->hash = hashcode;
6484 h->type = type;
6485 *loc = h;
6486
6487 return type;
6488 }
6489 }
6490
6491 static void
6492 print_type_hash_statistics (void)
6493 {
6494 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6495 (long) type_hash_table->size (),
6496 (long) type_hash_table->elements (),
6497 type_hash_table->collisions ());
6498 }
6499
6500 /* Given two lists of types
6501 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6502 return 1 if the lists contain the same types in the same order.
6503 Also, the TREE_PURPOSEs must match. */
6504
6505 int
6506 type_list_equal (const_tree l1, const_tree l2)
6507 {
6508 const_tree t1, t2;
6509
6510 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6511 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6512 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6513 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6514 && (TREE_TYPE (TREE_PURPOSE (t1))
6515 == TREE_TYPE (TREE_PURPOSE (t2))))))
6516 return 0;
6517
6518 return t1 == t2;
6519 }
6520
6521 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6522 given by TYPE. If the argument list accepts variable arguments,
6523 then this function counts only the ordinary arguments. */
6524
6525 int
6526 type_num_arguments (const_tree type)
6527 {
6528 int i = 0;
6529 tree t;
6530
6531 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6532 /* If the function does not take a variable number of arguments,
6533 the last element in the list will have type `void'. */
6534 if (VOID_TYPE_P (TREE_VALUE (t)))
6535 break;
6536 else
6537 ++i;
6538
6539 return i;
6540 }
6541
6542 /* Nonzero if integer constants T1 and T2
6543 represent the same constant value. */
6544
6545 int
6546 tree_int_cst_equal (const_tree t1, const_tree t2)
6547 {
6548 if (t1 == t2)
6549 return 1;
6550
6551 if (t1 == 0 || t2 == 0)
6552 return 0;
6553
6554 if (TREE_CODE (t1) == INTEGER_CST
6555 && TREE_CODE (t2) == INTEGER_CST
6556 && wi::to_widest (t1) == wi::to_widest (t2))
6557 return 1;
6558
6559 return 0;
6560 }
6561
6562 /* Return true if T is an INTEGER_CST whose numerical value (extended
6563 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
6564
6565 bool
6566 tree_fits_shwi_p (const_tree t)
6567 {
6568 return (t != NULL_TREE
6569 && TREE_CODE (t) == INTEGER_CST
6570 && wi::fits_shwi_p (wi::to_widest (t)));
6571 }
6572
6573 /* Return true if T is an INTEGER_CST whose numerical value (extended
6574 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
6575
6576 bool
6577 tree_fits_uhwi_p (const_tree t)
6578 {
6579 return (t != NULL_TREE
6580 && TREE_CODE (t) == INTEGER_CST
6581 && wi::fits_uhwi_p (wi::to_widest (t)));
6582 }
6583
6584 /* T is an INTEGER_CST whose numerical value (extended according to
6585 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
6586 HOST_WIDE_INT. */
6587
6588 HOST_WIDE_INT
6589 tree_to_shwi (const_tree t)
6590 {
6591 gcc_assert (tree_fits_shwi_p (t));
6592 return TREE_INT_CST_LOW (t);
6593 }
6594
6595 /* T is an INTEGER_CST whose numerical value (extended according to
6596 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
6597 HOST_WIDE_INT. */
6598
6599 unsigned HOST_WIDE_INT
6600 tree_to_uhwi (const_tree t)
6601 {
6602 gcc_assert (tree_fits_uhwi_p (t));
6603 return TREE_INT_CST_LOW (t);
6604 }
6605
6606 /* Return the most significant (sign) bit of T. */
6607
6608 int
6609 tree_int_cst_sign_bit (const_tree t)
6610 {
6611 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
6612
6613 return wi::extract_uhwi (t, bitno, 1);
6614 }
6615
6616 /* Return an indication of the sign of the integer constant T.
6617 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6618 Note that -1 will never be returned if T's type is unsigned. */
6619
6620 int
6621 tree_int_cst_sgn (const_tree t)
6622 {
6623 if (wi::eq_p (t, 0))
6624 return 0;
6625 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6626 return 1;
6627 else if (wi::neg_p (t))
6628 return -1;
6629 else
6630 return 1;
6631 }
6632
6633 /* Return the minimum number of bits needed to represent VALUE in a
6634 signed or unsigned type, UNSIGNEDP says which. */
6635
6636 unsigned int
6637 tree_int_cst_min_precision (tree value, signop sgn)
6638 {
6639 /* If the value is negative, compute its negative minus 1. The latter
6640 adjustment is because the absolute value of the largest negative value
6641 is one larger than the largest positive value. This is equivalent to
6642 a bit-wise negation, so use that operation instead. */
6643
6644 if (tree_int_cst_sgn (value) < 0)
6645 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6646
6647 /* Return the number of bits needed, taking into account the fact
6648 that we need one more bit for a signed than unsigned type.
6649 If value is 0 or -1, the minimum precision is 1 no matter
6650 whether unsignedp is true or false. */
6651
6652 if (integer_zerop (value))
6653 return 1;
6654 else
6655 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
6656 }
6657
6658 /* Return truthvalue of whether T1 is the same tree structure as T2.
6659 Return 1 if they are the same.
6660 Return 0 if they are understandably different.
6661 Return -1 if either contains tree structure not understood by
6662 this function. */
6663
6664 int
6665 simple_cst_equal (const_tree t1, const_tree t2)
6666 {
6667 enum tree_code code1, code2;
6668 int cmp;
6669 int i;
6670
6671 if (t1 == t2)
6672 return 1;
6673 if (t1 == 0 || t2 == 0)
6674 return 0;
6675
6676 code1 = TREE_CODE (t1);
6677 code2 = TREE_CODE (t2);
6678
6679 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6680 {
6681 if (CONVERT_EXPR_CODE_P (code2)
6682 || code2 == NON_LVALUE_EXPR)
6683 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6684 else
6685 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6686 }
6687
6688 else if (CONVERT_EXPR_CODE_P (code2)
6689 || code2 == NON_LVALUE_EXPR)
6690 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6691
6692 if (code1 != code2)
6693 return 0;
6694
6695 switch (code1)
6696 {
6697 case INTEGER_CST:
6698 return wi::to_widest (t1) == wi::to_widest (t2);
6699
6700 case REAL_CST:
6701 return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
6702
6703 case FIXED_CST:
6704 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6705
6706 case STRING_CST:
6707 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6708 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6709 TREE_STRING_LENGTH (t1)));
6710
6711 case CONSTRUCTOR:
6712 {
6713 unsigned HOST_WIDE_INT idx;
6714 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
6715 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
6716
6717 if (vec_safe_length (v1) != vec_safe_length (v2))
6718 return false;
6719
6720 for (idx = 0; idx < vec_safe_length (v1); ++idx)
6721 /* ??? Should we handle also fields here? */
6722 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
6723 return false;
6724 return true;
6725 }
6726
6727 case SAVE_EXPR:
6728 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6729
6730 case CALL_EXPR:
6731 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6732 if (cmp <= 0)
6733 return cmp;
6734 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6735 return 0;
6736 {
6737 const_tree arg1, arg2;
6738 const_call_expr_arg_iterator iter1, iter2;
6739 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6740 arg2 = first_const_call_expr_arg (t2, &iter2);
6741 arg1 && arg2;
6742 arg1 = next_const_call_expr_arg (&iter1),
6743 arg2 = next_const_call_expr_arg (&iter2))
6744 {
6745 cmp = simple_cst_equal (arg1, arg2);
6746 if (cmp <= 0)
6747 return cmp;
6748 }
6749 return arg1 == arg2;
6750 }
6751
6752 case TARGET_EXPR:
6753 /* Special case: if either target is an unallocated VAR_DECL,
6754 it means that it's going to be unified with whatever the
6755 TARGET_EXPR is really supposed to initialize, so treat it
6756 as being equivalent to anything. */
6757 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6758 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6759 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6760 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6761 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6762 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6763 cmp = 1;
6764 else
6765 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6766
6767 if (cmp <= 0)
6768 return cmp;
6769
6770 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6771
6772 case WITH_CLEANUP_EXPR:
6773 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6774 if (cmp <= 0)
6775 return cmp;
6776
6777 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6778
6779 case COMPONENT_REF:
6780 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6781 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6782
6783 return 0;
6784
6785 case VAR_DECL:
6786 case PARM_DECL:
6787 case CONST_DECL:
6788 case FUNCTION_DECL:
6789 return 0;
6790
6791 default:
6792 break;
6793 }
6794
6795 /* This general rule works for most tree codes. All exceptions should be
6796 handled above. If this is a language-specific tree code, we can't
6797 trust what might be in the operand, so say we don't know
6798 the situation. */
6799 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6800 return -1;
6801
6802 switch (TREE_CODE_CLASS (code1))
6803 {
6804 case tcc_unary:
6805 case tcc_binary:
6806 case tcc_comparison:
6807 case tcc_expression:
6808 case tcc_reference:
6809 case tcc_statement:
6810 cmp = 1;
6811 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6812 {
6813 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6814 if (cmp <= 0)
6815 return cmp;
6816 }
6817
6818 return cmp;
6819
6820 default:
6821 return -1;
6822 }
6823 }
6824
6825 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6826 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6827 than U, respectively. */
6828
6829 int
6830 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6831 {
6832 if (tree_int_cst_sgn (t) < 0)
6833 return -1;
6834 else if (!tree_fits_uhwi_p (t))
6835 return 1;
6836 else if (TREE_INT_CST_LOW (t) == u)
6837 return 0;
6838 else if (TREE_INT_CST_LOW (t) < u)
6839 return -1;
6840 else
6841 return 1;
6842 }
6843
6844 /* Return true if SIZE represents a constant size that is in bounds of
6845 what the middle-end and the backend accepts (covering not more than
6846 half of the address-space). */
6847
6848 bool
6849 valid_constant_size_p (const_tree size)
6850 {
6851 if (! tree_fits_uhwi_p (size)
6852 || TREE_OVERFLOW (size)
6853 || tree_int_cst_sign_bit (size) != 0)
6854 return false;
6855 return true;
6856 }
6857
6858 /* Return the precision of the type, or for a complex or vector type the
6859 precision of the type of its elements. */
6860
6861 unsigned int
6862 element_precision (const_tree type)
6863 {
6864 if (!TYPE_P (type))
6865 type = TREE_TYPE (type);
6866 enum tree_code code = TREE_CODE (type);
6867 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
6868 type = TREE_TYPE (type);
6869
6870 return TYPE_PRECISION (type);
6871 }
6872
6873 /* Return true if CODE represents an associative tree code. Otherwise
6874 return false. */
6875 bool
6876 associative_tree_code (enum tree_code code)
6877 {
6878 switch (code)
6879 {
6880 case BIT_IOR_EXPR:
6881 case BIT_AND_EXPR:
6882 case BIT_XOR_EXPR:
6883 case PLUS_EXPR:
6884 case MULT_EXPR:
6885 case MIN_EXPR:
6886 case MAX_EXPR:
6887 return true;
6888
6889 default:
6890 break;
6891 }
6892 return false;
6893 }
6894
6895 /* Return true if CODE represents a commutative tree code. Otherwise
6896 return false. */
6897 bool
6898 commutative_tree_code (enum tree_code code)
6899 {
6900 switch (code)
6901 {
6902 case PLUS_EXPR:
6903 case MULT_EXPR:
6904 case MULT_HIGHPART_EXPR:
6905 case MIN_EXPR:
6906 case MAX_EXPR:
6907 case BIT_IOR_EXPR:
6908 case BIT_XOR_EXPR:
6909 case BIT_AND_EXPR:
6910 case NE_EXPR:
6911 case EQ_EXPR:
6912 case UNORDERED_EXPR:
6913 case ORDERED_EXPR:
6914 case UNEQ_EXPR:
6915 case LTGT_EXPR:
6916 case TRUTH_AND_EXPR:
6917 case TRUTH_XOR_EXPR:
6918 case TRUTH_OR_EXPR:
6919 case WIDEN_MULT_EXPR:
6920 case VEC_WIDEN_MULT_HI_EXPR:
6921 case VEC_WIDEN_MULT_LO_EXPR:
6922 case VEC_WIDEN_MULT_EVEN_EXPR:
6923 case VEC_WIDEN_MULT_ODD_EXPR:
6924 return true;
6925
6926 default:
6927 break;
6928 }
6929 return false;
6930 }
6931
6932 /* Return true if CODE represents a ternary tree code for which the
6933 first two operands are commutative. Otherwise return false. */
6934 bool
6935 commutative_ternary_tree_code (enum tree_code code)
6936 {
6937 switch (code)
6938 {
6939 case WIDEN_MULT_PLUS_EXPR:
6940 case WIDEN_MULT_MINUS_EXPR:
6941 case DOT_PROD_EXPR:
6942 case FMA_EXPR:
6943 return true;
6944
6945 default:
6946 break;
6947 }
6948 return false;
6949 }
6950
6951 /* Returns true if CODE can overflow. */
6952
6953 bool
6954 operation_can_overflow (enum tree_code code)
6955 {
6956 switch (code)
6957 {
6958 case PLUS_EXPR:
6959 case MINUS_EXPR:
6960 case MULT_EXPR:
6961 case LSHIFT_EXPR:
6962 /* Can overflow in various ways. */
6963 return true;
6964 case TRUNC_DIV_EXPR:
6965 case EXACT_DIV_EXPR:
6966 case FLOOR_DIV_EXPR:
6967 case CEIL_DIV_EXPR:
6968 /* For INT_MIN / -1. */
6969 return true;
6970 case NEGATE_EXPR:
6971 case ABS_EXPR:
6972 /* For -INT_MIN. */
6973 return true;
6974 default:
6975 /* These operators cannot overflow. */
6976 return false;
6977 }
6978 }
6979
6980 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
6981 ftrapv doesn't generate trapping insns for CODE. */
6982
6983 bool
6984 operation_no_trapping_overflow (tree type, enum tree_code code)
6985 {
6986 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
6987
6988 /* We don't generate instructions that trap on overflow for complex or vector
6989 types. */
6990 if (!INTEGRAL_TYPE_P (type))
6991 return true;
6992
6993 if (!TYPE_OVERFLOW_TRAPS (type))
6994 return true;
6995
6996 switch (code)
6997 {
6998 case PLUS_EXPR:
6999 case MINUS_EXPR:
7000 case MULT_EXPR:
7001 case NEGATE_EXPR:
7002 case ABS_EXPR:
7003 /* These operators can overflow, and -ftrapv generates trapping code for
7004 these. */
7005 return false;
7006 case TRUNC_DIV_EXPR:
7007 case EXACT_DIV_EXPR:
7008 case FLOOR_DIV_EXPR:
7009 case CEIL_DIV_EXPR:
7010 case LSHIFT_EXPR:
7011 /* These operators can overflow, but -ftrapv does not generate trapping
7012 code for these. */
7013 return true;
7014 default:
7015 /* These operators cannot overflow. */
7016 return true;
7017 }
7018 }
7019
7020 namespace inchash
7021 {
7022
7023 /* Generate a hash value for an expression. This can be used iteratively
7024 by passing a previous result as the HSTATE argument.
7025
7026 This function is intended to produce the same hash for expressions which
7027 would compare equal using operand_equal_p. */
7028 void
7029 add_expr (const_tree t, inchash::hash &hstate, unsigned int flags)
7030 {
7031 int i;
7032 enum tree_code code;
7033 enum tree_code_class tclass;
7034
7035 if (t == NULL_TREE || t == error_mark_node)
7036 {
7037 hstate.merge_hash (0);
7038 return;
7039 }
7040
7041 if (!(flags & OEP_ADDRESS_OF))
7042 STRIP_NOPS (t);
7043
7044 code = TREE_CODE (t);
7045
7046 switch (code)
7047 {
7048 /* Alas, constants aren't shared, so we can't rely on pointer
7049 identity. */
7050 case VOID_CST:
7051 hstate.merge_hash (0);
7052 return;
7053 case INTEGER_CST:
7054 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7055 for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++)
7056 hstate.add_wide_int (TREE_INT_CST_ELT (t, i));
7057 return;
7058 case REAL_CST:
7059 {
7060 unsigned int val2;
7061 if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t))
7062 val2 = rvc_zero;
7063 else
7064 val2 = real_hash (TREE_REAL_CST_PTR (t));
7065 hstate.merge_hash (val2);
7066 return;
7067 }
7068 case FIXED_CST:
7069 {
7070 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7071 hstate.merge_hash (val2);
7072 return;
7073 }
7074 case STRING_CST:
7075 hstate.add ((const void *) TREE_STRING_POINTER (t),
7076 TREE_STRING_LENGTH (t));
7077 return;
7078 case COMPLEX_CST:
7079 inchash::add_expr (TREE_REALPART (t), hstate, flags);
7080 inchash::add_expr (TREE_IMAGPART (t), hstate, flags);
7081 return;
7082 case VECTOR_CST:
7083 {
7084 unsigned i;
7085 for (i = 0; i < VECTOR_CST_NELTS (t); ++i)
7086 inchash::add_expr (VECTOR_CST_ELT (t, i), hstate, flags);
7087 return;
7088 }
7089 case SSA_NAME:
7090 /* We can just compare by pointer. */
7091 hstate.add_wide_int (SSA_NAME_VERSION (t));
7092 return;
7093 case PLACEHOLDER_EXPR:
7094 /* The node itself doesn't matter. */
7095 return;
7096 case BLOCK:
7097 case OMP_CLAUSE:
7098 /* Ignore. */
7099 return;
7100 case TREE_LIST:
7101 /* A list of expressions, for a CALL_EXPR or as the elements of a
7102 VECTOR_CST. */
7103 for (; t; t = TREE_CHAIN (t))
7104 inchash::add_expr (TREE_VALUE (t), hstate, flags);
7105 return;
7106 case CONSTRUCTOR:
7107 {
7108 unsigned HOST_WIDE_INT idx;
7109 tree field, value;
7110 flags &= ~OEP_ADDRESS_OF;
7111 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7112 {
7113 inchash::add_expr (field, hstate, flags);
7114 inchash::add_expr (value, hstate, flags);
7115 }
7116 return;
7117 }
7118 case STATEMENT_LIST:
7119 {
7120 tree_stmt_iterator i;
7121 for (i = tsi_start (CONST_CAST_TREE (t));
7122 !tsi_end_p (i); tsi_next (&i))
7123 inchash::add_expr (tsi_stmt (i), hstate, flags);
7124 return;
7125 }
7126 case TREE_VEC:
7127 for (i = 0; i < TREE_VEC_LENGTH (t); ++i)
7128 inchash::add_expr (TREE_VEC_ELT (t, i), hstate, flags);
7129 return;
7130 case FUNCTION_DECL:
7131 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7132 Otherwise nodes that compare equal according to operand_equal_p might
7133 get different hash codes. However, don't do this for machine specific
7134 or front end builtins, since the function code is overloaded in those
7135 cases. */
7136 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7137 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7138 {
7139 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7140 code = TREE_CODE (t);
7141 }
7142 /* FALL THROUGH */
7143 default:
7144 tclass = TREE_CODE_CLASS (code);
7145
7146 if (tclass == tcc_declaration)
7147 {
7148 /* DECL's have a unique ID */
7149 hstate.add_wide_int (DECL_UID (t));
7150 }
7151 else if (tclass == tcc_comparison && !commutative_tree_code (code))
7152 {
7153 /* For comparisons that can be swapped, use the lower
7154 tree code. */
7155 enum tree_code ccode = swap_tree_comparison (code);
7156 if (code < ccode)
7157 ccode = code;
7158 hstate.add_object (ccode);
7159 inchash::add_expr (TREE_OPERAND (t, ccode != code), hstate, flags);
7160 inchash::add_expr (TREE_OPERAND (t, ccode == code), hstate, flags);
7161 }
7162 else if (CONVERT_EXPR_CODE_P (code))
7163 {
7164 /* NOP_EXPR and CONVERT_EXPR are considered equal by
7165 operand_equal_p. */
7166 enum tree_code ccode = NOP_EXPR;
7167 hstate.add_object (ccode);
7168
7169 /* Don't hash the type, that can lead to having nodes which
7170 compare equal according to operand_equal_p, but which
7171 have different hash codes. Make sure to include signedness
7172 in the hash computation. */
7173 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7174 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7175 }
7176 /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl. */
7177 else if (code == MEM_REF
7178 && (flags & OEP_ADDRESS_OF) != 0
7179 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
7180 && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
7181 && integer_zerop (TREE_OPERAND (t, 1)))
7182 inchash::add_expr (TREE_OPERAND (TREE_OPERAND (t, 0), 0),
7183 hstate, flags);
7184 /* Don't ICE on FE specific trees, or their arguments etc.
7185 during operand_equal_p hash verification. */
7186 else if (!IS_EXPR_CODE_CLASS (tclass))
7187 gcc_assert (flags & OEP_HASH_CHECK);
7188 else
7189 {
7190 unsigned int sflags = flags;
7191
7192 hstate.add_object (code);
7193
7194 switch (code)
7195 {
7196 case ADDR_EXPR:
7197 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7198 flags |= OEP_ADDRESS_OF;
7199 sflags = flags;
7200 break;
7201
7202 case INDIRECT_REF:
7203 case MEM_REF:
7204 case TARGET_MEM_REF:
7205 flags &= ~OEP_ADDRESS_OF;
7206 sflags = flags;
7207 break;
7208
7209 case ARRAY_REF:
7210 case ARRAY_RANGE_REF:
7211 case COMPONENT_REF:
7212 case BIT_FIELD_REF:
7213 sflags &= ~OEP_ADDRESS_OF;
7214 break;
7215
7216 case COND_EXPR:
7217 flags &= ~OEP_ADDRESS_OF;
7218 break;
7219
7220 case FMA_EXPR:
7221 case WIDEN_MULT_PLUS_EXPR:
7222 case WIDEN_MULT_MINUS_EXPR:
7223 {
7224 /* The multiplication operands are commutative. */
7225 inchash::hash one, two;
7226 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7227 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7228 hstate.add_commutative (one, two);
7229 inchash::add_expr (TREE_OPERAND (t, 2), two, flags);
7230 return;
7231 }
7232
7233 case CALL_EXPR:
7234 if (CALL_EXPR_FN (t) == NULL_TREE)
7235 hstate.add_int (CALL_EXPR_IFN (t));
7236 break;
7237
7238 case TARGET_EXPR:
7239 /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
7240 Usually different TARGET_EXPRs just should use
7241 different temporaries in their slots. */
7242 inchash::add_expr (TARGET_EXPR_SLOT (t), hstate, flags);
7243 return;
7244
7245 default:
7246 break;
7247 }
7248
7249 /* Don't hash the type, that can lead to having nodes which
7250 compare equal according to operand_equal_p, but which
7251 have different hash codes. */
7252 if (code == NON_LVALUE_EXPR)
7253 {
7254 /* Make sure to include signness in the hash computation. */
7255 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7256 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7257 }
7258
7259 else if (commutative_tree_code (code))
7260 {
7261 /* It's a commutative expression. We want to hash it the same
7262 however it appears. We do this by first hashing both operands
7263 and then rehashing based on the order of their independent
7264 hashes. */
7265 inchash::hash one, two;
7266 inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7267 inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7268 hstate.add_commutative (one, two);
7269 }
7270 else
7271 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7272 inchash::add_expr (TREE_OPERAND (t, i), hstate,
7273 i == 0 ? flags : sflags);
7274 }
7275 return;
7276 }
7277 }
7278
7279 }
7280
7281 /* Constructors for pointer, array and function types.
7282 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7283 constructed by language-dependent code, not here.) */
7284
7285 /* Construct, lay out and return the type of pointers to TO_TYPE with
7286 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7287 reference all of memory. If such a type has already been
7288 constructed, reuse it. */
7289
7290 tree
7291 build_pointer_type_for_mode (tree to_type, machine_mode mode,
7292 bool can_alias_all)
7293 {
7294 tree t;
7295 bool could_alias = can_alias_all;
7296
7297 if (to_type == error_mark_node)
7298 return error_mark_node;
7299
7300 /* If the pointed-to type has the may_alias attribute set, force
7301 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7302 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7303 can_alias_all = true;
7304
7305 /* In some cases, languages will have things that aren't a POINTER_TYPE
7306 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7307 In that case, return that type without regard to the rest of our
7308 operands.
7309
7310 ??? This is a kludge, but consistent with the way this function has
7311 always operated and there doesn't seem to be a good way to avoid this
7312 at the moment. */
7313 if (TYPE_POINTER_TO (to_type) != 0
7314 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7315 return TYPE_POINTER_TO (to_type);
7316
7317 /* First, if we already have a type for pointers to TO_TYPE and it's
7318 the proper mode, use it. */
7319 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7320 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7321 return t;
7322
7323 t = make_node (POINTER_TYPE);
7324
7325 TREE_TYPE (t) = to_type;
7326 SET_TYPE_MODE (t, mode);
7327 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7328 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7329 TYPE_POINTER_TO (to_type) = t;
7330
7331 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7332 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7333 SET_TYPE_STRUCTURAL_EQUALITY (t);
7334 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7335 TYPE_CANONICAL (t)
7336 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7337 mode, false);
7338
7339 /* Lay out the type. This function has many callers that are concerned
7340 with expression-construction, and this simplifies them all. */
7341 layout_type (t);
7342
7343 return t;
7344 }
7345
7346 /* By default build pointers in ptr_mode. */
7347
7348 tree
7349 build_pointer_type (tree to_type)
7350 {
7351 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7352 : TYPE_ADDR_SPACE (to_type);
7353 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7354 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7355 }
7356
7357 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7358
7359 tree
7360 build_reference_type_for_mode (tree to_type, machine_mode mode,
7361 bool can_alias_all)
7362 {
7363 tree t;
7364 bool could_alias = can_alias_all;
7365
7366 if (to_type == error_mark_node)
7367 return error_mark_node;
7368
7369 /* If the pointed-to type has the may_alias attribute set, force
7370 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7371 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7372 can_alias_all = true;
7373
7374 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7375 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7376 In that case, return that type without regard to the rest of our
7377 operands.
7378
7379 ??? This is a kludge, but consistent with the way this function has
7380 always operated and there doesn't seem to be a good way to avoid this
7381 at the moment. */
7382 if (TYPE_REFERENCE_TO (to_type) != 0
7383 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7384 return TYPE_REFERENCE_TO (to_type);
7385
7386 /* First, if we already have a type for pointers to TO_TYPE and it's
7387 the proper mode, use it. */
7388 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7389 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7390 return t;
7391
7392 t = make_node (REFERENCE_TYPE);
7393
7394 TREE_TYPE (t) = to_type;
7395 SET_TYPE_MODE (t, mode);
7396 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7397 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7398 TYPE_REFERENCE_TO (to_type) = t;
7399
7400 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7401 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7402 SET_TYPE_STRUCTURAL_EQUALITY (t);
7403 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7404 TYPE_CANONICAL (t)
7405 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7406 mode, false);
7407
7408 layout_type (t);
7409
7410 return t;
7411 }
7412
7413
7414 /* Build the node for the type of references-to-TO_TYPE by default
7415 in ptr_mode. */
7416
7417 tree
7418 build_reference_type (tree to_type)
7419 {
7420 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7421 : TYPE_ADDR_SPACE (to_type);
7422 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7423 return build_reference_type_for_mode (to_type, pointer_mode, false);
7424 }
7425
7426 #define MAX_INT_CACHED_PREC \
7427 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7428 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7429
7430 /* Builds a signed or unsigned integer type of precision PRECISION.
7431 Used for C bitfields whose precision does not match that of
7432 built-in target types. */
7433 tree
7434 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7435 int unsignedp)
7436 {
7437 tree itype, ret;
7438
7439 if (unsignedp)
7440 unsignedp = MAX_INT_CACHED_PREC + 1;
7441
7442 if (precision <= MAX_INT_CACHED_PREC)
7443 {
7444 itype = nonstandard_integer_type_cache[precision + unsignedp];
7445 if (itype)
7446 return itype;
7447 }
7448
7449 itype = make_node (INTEGER_TYPE);
7450 TYPE_PRECISION (itype) = precision;
7451
7452 if (unsignedp)
7453 fixup_unsigned_type (itype);
7454 else
7455 fixup_signed_type (itype);
7456
7457 ret = itype;
7458 if (tree_fits_uhwi_p (TYPE_MAX_VALUE (itype)))
7459 ret = type_hash_canon (tree_to_uhwi (TYPE_MAX_VALUE (itype)), itype);
7460 if (precision <= MAX_INT_CACHED_PREC)
7461 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7462
7463 return ret;
7464 }
7465
7466 #define MAX_BOOL_CACHED_PREC \
7467 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7468 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
7469
7470 /* Builds a boolean type of precision PRECISION.
7471 Used for boolean vectors to choose proper vector element size. */
7472 tree
7473 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
7474 {
7475 tree type;
7476
7477 if (precision <= MAX_BOOL_CACHED_PREC)
7478 {
7479 type = nonstandard_boolean_type_cache[precision];
7480 if (type)
7481 return type;
7482 }
7483
7484 type = make_node (BOOLEAN_TYPE);
7485 TYPE_PRECISION (type) = precision;
7486 fixup_signed_type (type);
7487
7488 if (precision <= MAX_INT_CACHED_PREC)
7489 nonstandard_boolean_type_cache[precision] = type;
7490
7491 return type;
7492 }
7493
7494 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7495 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7496 is true, reuse such a type that has already been constructed. */
7497
7498 static tree
7499 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7500 {
7501 tree itype = make_node (INTEGER_TYPE);
7502
7503 TREE_TYPE (itype) = type;
7504
7505 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7506 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7507
7508 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7509 SET_TYPE_MODE (itype, TYPE_MODE (type));
7510 TYPE_SIZE (itype) = TYPE_SIZE (type);
7511 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7512 SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
7513 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7514 SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
7515
7516 if (!shared)
7517 return itype;
7518
7519 if ((TYPE_MIN_VALUE (itype)
7520 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7521 || (TYPE_MAX_VALUE (itype)
7522 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7523 {
7524 /* Since we cannot reliably merge this type, we need to compare it using
7525 structural equality checks. */
7526 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7527 return itype;
7528 }
7529
7530 hashval_t hash = type_hash_canon_hash (itype);
7531 itype = type_hash_canon (hash, itype);
7532
7533 return itype;
7534 }
7535
7536 /* Wrapper around build_range_type_1 with SHARED set to true. */
7537
7538 tree
7539 build_range_type (tree type, tree lowval, tree highval)
7540 {
7541 return build_range_type_1 (type, lowval, highval, true);
7542 }
7543
7544 /* Wrapper around build_range_type_1 with SHARED set to false. */
7545
7546 tree
7547 build_nonshared_range_type (tree type, tree lowval, tree highval)
7548 {
7549 return build_range_type_1 (type, lowval, highval, false);
7550 }
7551
7552 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7553 MAXVAL should be the maximum value in the domain
7554 (one less than the length of the array).
7555
7556 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7557 We don't enforce this limit, that is up to caller (e.g. language front end).
7558 The limit exists because the result is a signed type and we don't handle
7559 sizes that use more than one HOST_WIDE_INT. */
7560
7561 tree
7562 build_index_type (tree maxval)
7563 {
7564 return build_range_type (sizetype, size_zero_node, maxval);
7565 }
7566
7567 /* Return true if the debug information for TYPE, a subtype, should be emitted
7568 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7569 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7570 debug info and doesn't reflect the source code. */
7571
7572 bool
7573 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7574 {
7575 tree base_type = TREE_TYPE (type), low, high;
7576
7577 /* Subrange types have a base type which is an integral type. */
7578 if (!INTEGRAL_TYPE_P (base_type))
7579 return false;
7580
7581 /* Get the real bounds of the subtype. */
7582 if (lang_hooks.types.get_subrange_bounds)
7583 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7584 else
7585 {
7586 low = TYPE_MIN_VALUE (type);
7587 high = TYPE_MAX_VALUE (type);
7588 }
7589
7590 /* If the type and its base type have the same representation and the same
7591 name, then the type is not a subrange but a copy of the base type. */
7592 if ((TREE_CODE (base_type) == INTEGER_TYPE
7593 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7594 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7595 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7596 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
7597 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
7598 return false;
7599
7600 if (lowval)
7601 *lowval = low;
7602 if (highval)
7603 *highval = high;
7604 return true;
7605 }
7606
7607 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7608 and number of elements specified by the range of values of INDEX_TYPE.
7609 If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
7610 If SHARED is true, reuse such a type that has already been constructed. */
7611
7612 static tree
7613 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
7614 bool shared)
7615 {
7616 tree t;
7617
7618 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7619 {
7620 error ("arrays of functions are not meaningful");
7621 elt_type = integer_type_node;
7622 }
7623
7624 t = make_node (ARRAY_TYPE);
7625 TREE_TYPE (t) = elt_type;
7626 TYPE_DOMAIN (t) = index_type;
7627 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7628 TYPE_TYPELESS_STORAGE (t) = typeless_storage;
7629 layout_type (t);
7630
7631 /* If the element type is incomplete at this point we get marked for
7632 structural equality. Do not record these types in the canonical
7633 type hashtable. */
7634 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7635 return t;
7636
7637 if (shared)
7638 {
7639 hashval_t hash = type_hash_canon_hash (t);
7640 t = type_hash_canon (hash, t);
7641 }
7642
7643 if (TYPE_CANONICAL (t) == t)
7644 {
7645 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7646 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
7647 || in_lto_p)
7648 SET_TYPE_STRUCTURAL_EQUALITY (t);
7649 else if (TYPE_CANONICAL (elt_type) != elt_type
7650 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7651 TYPE_CANONICAL (t)
7652 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7653 index_type
7654 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7655 typeless_storage, shared);
7656 }
7657
7658 return t;
7659 }
7660
7661 /* Wrapper around build_array_type_1 with SHARED set to true. */
7662
7663 tree
7664 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
7665 {
7666 return build_array_type_1 (elt_type, index_type, typeless_storage, true);
7667 }
7668
7669 /* Wrapper around build_array_type_1 with SHARED set to false. */
7670
7671 tree
7672 build_nonshared_array_type (tree elt_type, tree index_type)
7673 {
7674 return build_array_type_1 (elt_type, index_type, false, false);
7675 }
7676
7677 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7678 sizetype. */
7679
7680 tree
7681 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7682 {
7683 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7684 }
7685
7686 /* Recursively examines the array elements of TYPE, until a non-array
7687 element type is found. */
7688
7689 tree
7690 strip_array_types (tree type)
7691 {
7692 while (TREE_CODE (type) == ARRAY_TYPE)
7693 type = TREE_TYPE (type);
7694
7695 return type;
7696 }
7697
7698 /* Computes the canonical argument types from the argument type list
7699 ARGTYPES.
7700
7701 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7702 on entry to this function, or if any of the ARGTYPES are
7703 structural.
7704
7705 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7706 true on entry to this function, or if any of the ARGTYPES are
7707 non-canonical.
7708
7709 Returns a canonical argument list, which may be ARGTYPES when the
7710 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7711 true) or would not differ from ARGTYPES. */
7712
7713 static tree
7714 maybe_canonicalize_argtypes (tree argtypes,
7715 bool *any_structural_p,
7716 bool *any_noncanonical_p)
7717 {
7718 tree arg;
7719 bool any_noncanonical_argtypes_p = false;
7720
7721 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7722 {
7723 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7724 /* Fail gracefully by stating that the type is structural. */
7725 *any_structural_p = true;
7726 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7727 *any_structural_p = true;
7728 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7729 || TREE_PURPOSE (arg))
7730 /* If the argument has a default argument, we consider it
7731 non-canonical even though the type itself is canonical.
7732 That way, different variants of function and method types
7733 with default arguments will all point to the variant with
7734 no defaults as their canonical type. */
7735 any_noncanonical_argtypes_p = true;
7736 }
7737
7738 if (*any_structural_p)
7739 return argtypes;
7740
7741 if (any_noncanonical_argtypes_p)
7742 {
7743 /* Build the canonical list of argument types. */
7744 tree canon_argtypes = NULL_TREE;
7745 bool is_void = false;
7746
7747 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7748 {
7749 if (arg == void_list_node)
7750 is_void = true;
7751 else
7752 canon_argtypes = tree_cons (NULL_TREE,
7753 TYPE_CANONICAL (TREE_VALUE (arg)),
7754 canon_argtypes);
7755 }
7756
7757 canon_argtypes = nreverse (canon_argtypes);
7758 if (is_void)
7759 canon_argtypes = chainon (canon_argtypes, void_list_node);
7760
7761 /* There is a non-canonical type. */
7762 *any_noncanonical_p = true;
7763 return canon_argtypes;
7764 }
7765
7766 /* The canonical argument types are the same as ARGTYPES. */
7767 return argtypes;
7768 }
7769
7770 /* Construct, lay out and return
7771 the type of functions returning type VALUE_TYPE
7772 given arguments of types ARG_TYPES.
7773 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7774 are data type nodes for the arguments of the function.
7775 If such a type has already been constructed, reuse it. */
7776
7777 tree
7778 build_function_type (tree value_type, tree arg_types)
7779 {
7780 tree t;
7781 inchash::hash hstate;
7782 bool any_structural_p, any_noncanonical_p;
7783 tree canon_argtypes;
7784
7785 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7786 {
7787 error ("function return type cannot be function");
7788 value_type = integer_type_node;
7789 }
7790
7791 /* Make a node of the sort we want. */
7792 t = make_node (FUNCTION_TYPE);
7793 TREE_TYPE (t) = value_type;
7794 TYPE_ARG_TYPES (t) = arg_types;
7795
7796 /* If we already have such a type, use the old one. */
7797 hashval_t hash = type_hash_canon_hash (t);
7798 t = type_hash_canon (hash, t);
7799
7800 /* Set up the canonical type. */
7801 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7802 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7803 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7804 &any_structural_p,
7805 &any_noncanonical_p);
7806 if (any_structural_p)
7807 SET_TYPE_STRUCTURAL_EQUALITY (t);
7808 else if (any_noncanonical_p)
7809 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7810 canon_argtypes);
7811
7812 if (!COMPLETE_TYPE_P (t))
7813 layout_type (t);
7814 return t;
7815 }
7816
7817 /* Build a function type. The RETURN_TYPE is the type returned by the
7818 function. If VAARGS is set, no void_type_node is appended to the
7819 list. ARGP must be always be terminated be a NULL_TREE. */
7820
7821 static tree
7822 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7823 {
7824 tree t, args, last;
7825
7826 t = va_arg (argp, tree);
7827 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7828 args = tree_cons (NULL_TREE, t, args);
7829
7830 if (vaargs)
7831 {
7832 last = args;
7833 if (args != NULL_TREE)
7834 args = nreverse (args);
7835 gcc_assert (last != void_list_node);
7836 }
7837 else if (args == NULL_TREE)
7838 args = void_list_node;
7839 else
7840 {
7841 last = args;
7842 args = nreverse (args);
7843 TREE_CHAIN (last) = void_list_node;
7844 }
7845 args = build_function_type (return_type, args);
7846
7847 return args;
7848 }
7849
7850 /* Build a function type. The RETURN_TYPE is the type returned by the
7851 function. If additional arguments are provided, they are
7852 additional argument types. The list of argument types must always
7853 be terminated by NULL_TREE. */
7854
7855 tree
7856 build_function_type_list (tree return_type, ...)
7857 {
7858 tree args;
7859 va_list p;
7860
7861 va_start (p, return_type);
7862 args = build_function_type_list_1 (false, return_type, p);
7863 va_end (p);
7864 return args;
7865 }
7866
7867 /* Build a variable argument function type. The RETURN_TYPE is the
7868 type returned by the function. If additional arguments are provided,
7869 they are additional argument types. The list of argument types must
7870 always be terminated by NULL_TREE. */
7871
7872 tree
7873 build_varargs_function_type_list (tree return_type, ...)
7874 {
7875 tree args;
7876 va_list p;
7877
7878 va_start (p, return_type);
7879 args = build_function_type_list_1 (true, return_type, p);
7880 va_end (p);
7881
7882 return args;
7883 }
7884
7885 /* Build a function type. RETURN_TYPE is the type returned by the
7886 function; VAARGS indicates whether the function takes varargs. The
7887 function takes N named arguments, the types of which are provided in
7888 ARG_TYPES. */
7889
7890 static tree
7891 build_function_type_array_1 (bool vaargs, tree return_type, int n,
7892 tree *arg_types)
7893 {
7894 int i;
7895 tree t = vaargs ? NULL_TREE : void_list_node;
7896
7897 for (i = n - 1; i >= 0; i--)
7898 t = tree_cons (NULL_TREE, arg_types[i], t);
7899
7900 return build_function_type (return_type, t);
7901 }
7902
7903 /* Build a function type. RETURN_TYPE is the type returned by the
7904 function. The function takes N named arguments, the types of which
7905 are provided in ARG_TYPES. */
7906
7907 tree
7908 build_function_type_array (tree return_type, int n, tree *arg_types)
7909 {
7910 return build_function_type_array_1 (false, return_type, n, arg_types);
7911 }
7912
7913 /* Build a variable argument function type. RETURN_TYPE is the type
7914 returned by the function. The function takes N named arguments, the
7915 types of which are provided in ARG_TYPES. */
7916
7917 tree
7918 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
7919 {
7920 return build_function_type_array_1 (true, return_type, n, arg_types);
7921 }
7922
7923 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7924 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7925 for the method. An implicit additional parameter (of type
7926 pointer-to-BASETYPE) is added to the ARGTYPES. */
7927
7928 tree
7929 build_method_type_directly (tree basetype,
7930 tree rettype,
7931 tree argtypes)
7932 {
7933 tree t;
7934 tree ptype;
7935 bool any_structural_p, any_noncanonical_p;
7936 tree canon_argtypes;
7937
7938 /* Make a node of the sort we want. */
7939 t = make_node (METHOD_TYPE);
7940
7941 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7942 TREE_TYPE (t) = rettype;
7943 ptype = build_pointer_type (basetype);
7944
7945 /* The actual arglist for this function includes a "hidden" argument
7946 which is "this". Put it into the list of argument types. */
7947 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7948 TYPE_ARG_TYPES (t) = argtypes;
7949
7950 /* If we already have such a type, use the old one. */
7951 hashval_t hash = type_hash_canon_hash (t);
7952 t = type_hash_canon (hash, t);
7953
7954 /* Set up the canonical type. */
7955 any_structural_p
7956 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7957 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7958 any_noncanonical_p
7959 = (TYPE_CANONICAL (basetype) != basetype
7960 || TYPE_CANONICAL (rettype) != rettype);
7961 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7962 &any_structural_p,
7963 &any_noncanonical_p);
7964 if (any_structural_p)
7965 SET_TYPE_STRUCTURAL_EQUALITY (t);
7966 else if (any_noncanonical_p)
7967 TYPE_CANONICAL (t)
7968 = build_method_type_directly (TYPE_CANONICAL (basetype),
7969 TYPE_CANONICAL (rettype),
7970 canon_argtypes);
7971 if (!COMPLETE_TYPE_P (t))
7972 layout_type (t);
7973
7974 return t;
7975 }
7976
7977 /* Construct, lay out and return the type of methods belonging to class
7978 BASETYPE and whose arguments and values are described by TYPE.
7979 If that type exists already, reuse it.
7980 TYPE must be a FUNCTION_TYPE node. */
7981
7982 tree
7983 build_method_type (tree basetype, tree type)
7984 {
7985 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7986
7987 return build_method_type_directly (basetype,
7988 TREE_TYPE (type),
7989 TYPE_ARG_TYPES (type));
7990 }
7991
7992 /* Construct, lay out and return the type of offsets to a value
7993 of type TYPE, within an object of type BASETYPE.
7994 If a suitable offset type exists already, reuse it. */
7995
7996 tree
7997 build_offset_type (tree basetype, tree type)
7998 {
7999 tree t;
8000
8001 /* Make a node of the sort we want. */
8002 t = make_node (OFFSET_TYPE);
8003
8004 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8005 TREE_TYPE (t) = type;
8006
8007 /* If we already have such a type, use the old one. */
8008 hashval_t hash = type_hash_canon_hash (t);
8009 t = type_hash_canon (hash, t);
8010
8011 if (!COMPLETE_TYPE_P (t))
8012 layout_type (t);
8013
8014 if (TYPE_CANONICAL (t) == t)
8015 {
8016 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8017 || TYPE_STRUCTURAL_EQUALITY_P (type))
8018 SET_TYPE_STRUCTURAL_EQUALITY (t);
8019 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8020 || TYPE_CANONICAL (type) != type)
8021 TYPE_CANONICAL (t)
8022 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8023 TYPE_CANONICAL (type));
8024 }
8025
8026 return t;
8027 }
8028
8029 /* Create a complex type whose components are COMPONENT_TYPE.
8030
8031 If NAMED is true, the type is given a TYPE_NAME. We do not always
8032 do so because this creates a DECL node and thus make the DECL_UIDs
8033 dependent on the type canonicalization hashtable, which is GC-ed,
8034 so the DECL_UIDs would not be stable wrt garbage collection. */
8035
8036 tree
8037 build_complex_type (tree component_type, bool named)
8038 {
8039 tree t;
8040
8041 gcc_assert (INTEGRAL_TYPE_P (component_type)
8042 || SCALAR_FLOAT_TYPE_P (component_type)
8043 || FIXED_POINT_TYPE_P (component_type));
8044
8045 /* Make a node of the sort we want. */
8046 t = make_node (COMPLEX_TYPE);
8047
8048 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
8049
8050 /* If we already have such a type, use the old one. */
8051 hashval_t hash = type_hash_canon_hash (t);
8052 t = type_hash_canon (hash, t);
8053
8054 if (!COMPLETE_TYPE_P (t))
8055 layout_type (t);
8056
8057 if (TYPE_CANONICAL (t) == t)
8058 {
8059 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
8060 SET_TYPE_STRUCTURAL_EQUALITY (t);
8061 else if (TYPE_CANONICAL (component_type) != component_type)
8062 TYPE_CANONICAL (t)
8063 = build_complex_type (TYPE_CANONICAL (component_type), named);
8064 }
8065
8066 /* We need to create a name, since complex is a fundamental type. */
8067 if (!TYPE_NAME (t) && named)
8068 {
8069 const char *name;
8070 if (component_type == char_type_node)
8071 name = "complex char";
8072 else if (component_type == signed_char_type_node)
8073 name = "complex signed char";
8074 else if (component_type == unsigned_char_type_node)
8075 name = "complex unsigned char";
8076 else if (component_type == short_integer_type_node)
8077 name = "complex short int";
8078 else if (component_type == short_unsigned_type_node)
8079 name = "complex short unsigned int";
8080 else if (component_type == integer_type_node)
8081 name = "complex int";
8082 else if (component_type == unsigned_type_node)
8083 name = "complex unsigned int";
8084 else if (component_type == long_integer_type_node)
8085 name = "complex long int";
8086 else if (component_type == long_unsigned_type_node)
8087 name = "complex long unsigned int";
8088 else if (component_type == long_long_integer_type_node)
8089 name = "complex long long int";
8090 else if (component_type == long_long_unsigned_type_node)
8091 name = "complex long long unsigned int";
8092 else
8093 name = 0;
8094
8095 if (name != 0)
8096 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8097 get_identifier (name), t);
8098 }
8099
8100 return build_qualified_type (t, TYPE_QUALS (component_type));
8101 }
8102
8103 /* If TYPE is a real or complex floating-point type and the target
8104 does not directly support arithmetic on TYPE then return the wider
8105 type to be used for arithmetic on TYPE. Otherwise, return
8106 NULL_TREE. */
8107
8108 tree
8109 excess_precision_type (tree type)
8110 {
8111 /* The target can give two different responses to the question of
8112 which excess precision mode it would like depending on whether we
8113 are in -fexcess-precision=standard or -fexcess-precision=fast. */
8114
8115 enum excess_precision_type requested_type
8116 = (flag_excess_precision == EXCESS_PRECISION_FAST
8117 ? EXCESS_PRECISION_TYPE_FAST
8118 : EXCESS_PRECISION_TYPE_STANDARD);
8119
8120 enum flt_eval_method target_flt_eval_method
8121 = targetm.c.excess_precision (requested_type);
8122
8123 /* The target should not ask for unpredictable float evaluation (though
8124 it might advertise that implicitly the evaluation is unpredictable,
8125 but we don't care about that here, it will have been reported
8126 elsewhere). If it does ask for unpredictable evaluation, we have
8127 nothing to do here. */
8128 gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
8129
8130 /* Nothing to do. The target has asked for all types we know about
8131 to be computed with their native precision and range. */
8132 if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
8133 return NULL_TREE;
8134
8135 /* The target will promote this type in a target-dependent way, so excess
8136 precision ought to leave it alone. */
8137 if (targetm.promoted_type (type) != NULL_TREE)
8138 return NULL_TREE;
8139
8140 machine_mode float16_type_mode = (float16_type_node
8141 ? TYPE_MODE (float16_type_node)
8142 : VOIDmode);
8143 machine_mode float_type_mode = TYPE_MODE (float_type_node);
8144 machine_mode double_type_mode = TYPE_MODE (double_type_node);
8145
8146 switch (TREE_CODE (type))
8147 {
8148 case REAL_TYPE:
8149 {
8150 machine_mode type_mode = TYPE_MODE (type);
8151 switch (target_flt_eval_method)
8152 {
8153 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8154 if (type_mode == float16_type_mode)
8155 return float_type_node;
8156 break;
8157 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8158 if (type_mode == float16_type_mode
8159 || type_mode == float_type_mode)
8160 return double_type_node;
8161 break;
8162 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8163 if (type_mode == float16_type_mode
8164 || type_mode == float_type_mode
8165 || type_mode == double_type_mode)
8166 return long_double_type_node;
8167 break;
8168 default:
8169 gcc_unreachable ();
8170 }
8171 break;
8172 }
8173 case COMPLEX_TYPE:
8174 {
8175 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8176 return NULL_TREE;
8177 machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
8178 switch (target_flt_eval_method)
8179 {
8180 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8181 if (type_mode == float16_type_mode)
8182 return complex_float_type_node;
8183 break;
8184 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8185 if (type_mode == float16_type_mode
8186 || type_mode == float_type_mode)
8187 return complex_double_type_node;
8188 break;
8189 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8190 if (type_mode == float16_type_mode
8191 || type_mode == float_type_mode
8192 || type_mode == double_type_mode)
8193 return complex_long_double_type_node;
8194 break;
8195 default:
8196 gcc_unreachable ();
8197 }
8198 break;
8199 }
8200 default:
8201 break;
8202 }
8203
8204 return NULL_TREE;
8205 }
8206 \f
8207 /* Return OP, stripped of any conversions to wider types as much as is safe.
8208 Converting the value back to OP's type makes a value equivalent to OP.
8209
8210 If FOR_TYPE is nonzero, we return a value which, if converted to
8211 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8212
8213 OP must have integer, real or enumeral type. Pointers are not allowed!
8214
8215 There are some cases where the obvious value we could return
8216 would regenerate to OP if converted to OP's type,
8217 but would not extend like OP to wider types.
8218 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8219 For example, if OP is (unsigned short)(signed char)-1,
8220 we avoid returning (signed char)-1 if FOR_TYPE is int,
8221 even though extending that to an unsigned short would regenerate OP,
8222 since the result of extending (signed char)-1 to (int)
8223 is different from (int) OP. */
8224
8225 tree
8226 get_unwidened (tree op, tree for_type)
8227 {
8228 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8229 tree type = TREE_TYPE (op);
8230 unsigned final_prec
8231 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8232 int uns
8233 = (for_type != 0 && for_type != type
8234 && final_prec > TYPE_PRECISION (type)
8235 && TYPE_UNSIGNED (type));
8236 tree win = op;
8237
8238 while (CONVERT_EXPR_P (op))
8239 {
8240 int bitschange;
8241
8242 /* TYPE_PRECISION on vector types has different meaning
8243 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8244 so avoid them here. */
8245 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8246 break;
8247
8248 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8249 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8250
8251 /* Truncations are many-one so cannot be removed.
8252 Unless we are later going to truncate down even farther. */
8253 if (bitschange < 0
8254 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8255 break;
8256
8257 /* See what's inside this conversion. If we decide to strip it,
8258 we will set WIN. */
8259 op = TREE_OPERAND (op, 0);
8260
8261 /* If we have not stripped any zero-extensions (uns is 0),
8262 we can strip any kind of extension.
8263 If we have previously stripped a zero-extension,
8264 only zero-extensions can safely be stripped.
8265 Any extension can be stripped if the bits it would produce
8266 are all going to be discarded later by truncating to FOR_TYPE. */
8267
8268 if (bitschange > 0)
8269 {
8270 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8271 win = op;
8272 /* TYPE_UNSIGNED says whether this is a zero-extension.
8273 Let's avoid computing it if it does not affect WIN
8274 and if UNS will not be needed again. */
8275 if ((uns
8276 || CONVERT_EXPR_P (op))
8277 && TYPE_UNSIGNED (TREE_TYPE (op)))
8278 {
8279 uns = 1;
8280 win = op;
8281 }
8282 }
8283 }
8284
8285 /* If we finally reach a constant see if it fits in sth smaller and
8286 in that case convert it. */
8287 if (TREE_CODE (win) == INTEGER_CST)
8288 {
8289 tree wtype = TREE_TYPE (win);
8290 unsigned prec = wi::min_precision (win, TYPE_SIGN (wtype));
8291 if (for_type)
8292 prec = MAX (prec, final_prec);
8293 if (prec < TYPE_PRECISION (wtype))
8294 {
8295 tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
8296 if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
8297 win = fold_convert (t, win);
8298 }
8299 }
8300
8301 return win;
8302 }
8303 \f
8304 /* Return OP or a simpler expression for a narrower value
8305 which can be sign-extended or zero-extended to give back OP.
8306 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8307 or 0 if the value should be sign-extended. */
8308
8309 tree
8310 get_narrower (tree op, int *unsignedp_ptr)
8311 {
8312 int uns = 0;
8313 int first = 1;
8314 tree win = op;
8315 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8316
8317 while (TREE_CODE (op) == NOP_EXPR)
8318 {
8319 int bitschange
8320 = (TYPE_PRECISION (TREE_TYPE (op))
8321 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8322
8323 /* Truncations are many-one so cannot be removed. */
8324 if (bitschange < 0)
8325 break;
8326
8327 /* See what's inside this conversion. If we decide to strip it,
8328 we will set WIN. */
8329
8330 if (bitschange > 0)
8331 {
8332 op = TREE_OPERAND (op, 0);
8333 /* An extension: the outermost one can be stripped,
8334 but remember whether it is zero or sign extension. */
8335 if (first)
8336 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8337 /* Otherwise, if a sign extension has been stripped,
8338 only sign extensions can now be stripped;
8339 if a zero extension has been stripped, only zero-extensions. */
8340 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8341 break;
8342 first = 0;
8343 }
8344 else /* bitschange == 0 */
8345 {
8346 /* A change in nominal type can always be stripped, but we must
8347 preserve the unsignedness. */
8348 if (first)
8349 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8350 first = 0;
8351 op = TREE_OPERAND (op, 0);
8352 /* Keep trying to narrow, but don't assign op to win if it
8353 would turn an integral type into something else. */
8354 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8355 continue;
8356 }
8357
8358 win = op;
8359 }
8360
8361 if (TREE_CODE (op) == COMPONENT_REF
8362 /* Since type_for_size always gives an integer type. */
8363 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8364 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8365 /* Ensure field is laid out already. */
8366 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8367 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8368 {
8369 unsigned HOST_WIDE_INT innerprec
8370 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8371 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8372 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8373 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8374
8375 /* We can get this structure field in a narrower type that fits it,
8376 but the resulting extension to its nominal type (a fullword type)
8377 must satisfy the same conditions as for other extensions.
8378
8379 Do this only for fields that are aligned (not bit-fields),
8380 because when bit-field insns will be used there is no
8381 advantage in doing this. */
8382
8383 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8384 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8385 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8386 && type != 0)
8387 {
8388 if (first)
8389 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8390 win = fold_convert (type, op);
8391 }
8392 }
8393
8394 *unsignedp_ptr = uns;
8395 return win;
8396 }
8397 \f
8398 /* Return true if integer constant C has a value that is permissible
8399 for TYPE, an integral type. */
8400
8401 bool
8402 int_fits_type_p (const_tree c, const_tree type)
8403 {
8404 tree type_low_bound, type_high_bound;
8405 bool ok_for_low_bound, ok_for_high_bound;
8406 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8407
8408 /* Non-standard boolean types can have arbitrary precision but various
8409 transformations assume that they can only take values 0 and +/-1. */
8410 if (TREE_CODE (type) == BOOLEAN_TYPE)
8411 return wi::fits_to_boolean_p (c, type);
8412
8413 retry:
8414 type_low_bound = TYPE_MIN_VALUE (type);
8415 type_high_bound = TYPE_MAX_VALUE (type);
8416
8417 /* If at least one bound of the type is a constant integer, we can check
8418 ourselves and maybe make a decision. If no such decision is possible, but
8419 this type is a subtype, try checking against that. Otherwise, use
8420 fits_to_tree_p, which checks against the precision.
8421
8422 Compute the status for each possibly constant bound, and return if we see
8423 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8424 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8425 for "constant known to fit". */
8426
8427 /* Check if c >= type_low_bound. */
8428 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8429 {
8430 if (tree_int_cst_lt (c, type_low_bound))
8431 return false;
8432 ok_for_low_bound = true;
8433 }
8434 else
8435 ok_for_low_bound = false;
8436
8437 /* Check if c <= type_high_bound. */
8438 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8439 {
8440 if (tree_int_cst_lt (type_high_bound, c))
8441 return false;
8442 ok_for_high_bound = true;
8443 }
8444 else
8445 ok_for_high_bound = false;
8446
8447 /* If the constant fits both bounds, the result is known. */
8448 if (ok_for_low_bound && ok_for_high_bound)
8449 return true;
8450
8451 /* Perform some generic filtering which may allow making a decision
8452 even if the bounds are not constant. First, negative integers
8453 never fit in unsigned types, */
8454 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (c))
8455 return false;
8456
8457 /* Second, narrower types always fit in wider ones. */
8458 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8459 return true;
8460
8461 /* Third, unsigned integers with top bit set never fit signed types. */
8462 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
8463 {
8464 int prec = GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (c))) - 1;
8465 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
8466 {
8467 /* When a tree_cst is converted to a wide-int, the precision
8468 is taken from the type. However, if the precision of the
8469 mode underneath the type is smaller than that, it is
8470 possible that the value will not fit. The test below
8471 fails if any bit is set between the sign bit of the
8472 underlying mode and the top bit of the type. */
8473 if (wi::ne_p (wi::zext (c, prec - 1), c))
8474 return false;
8475 }
8476 else if (wi::neg_p (c))
8477 return false;
8478 }
8479
8480 /* If we haven't been able to decide at this point, there nothing more we
8481 can check ourselves here. Look at the base type if we have one and it
8482 has the same precision. */
8483 if (TREE_CODE (type) == INTEGER_TYPE
8484 && TREE_TYPE (type) != 0
8485 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8486 {
8487 type = TREE_TYPE (type);
8488 goto retry;
8489 }
8490
8491 /* Or to fits_to_tree_p, if nothing else. */
8492 return wi::fits_to_tree_p (c, type);
8493 }
8494
8495 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8496 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8497 represented (assuming two's-complement arithmetic) within the bit
8498 precision of the type are returned instead. */
8499
8500 void
8501 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8502 {
8503 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8504 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8505 wi::to_mpz (TYPE_MIN_VALUE (type), min, TYPE_SIGN (type));
8506 else
8507 {
8508 if (TYPE_UNSIGNED (type))
8509 mpz_set_ui (min, 0);
8510 else
8511 {
8512 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
8513 wi::to_mpz (mn, min, SIGNED);
8514 }
8515 }
8516
8517 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8518 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8519 wi::to_mpz (TYPE_MAX_VALUE (type), max, TYPE_SIGN (type));
8520 else
8521 {
8522 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
8523 wi::to_mpz (mn, max, TYPE_SIGN (type));
8524 }
8525 }
8526
8527 /* Return true if VAR is an automatic variable defined in function FN. */
8528
8529 bool
8530 auto_var_in_fn_p (const_tree var, const_tree fn)
8531 {
8532 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8533 && ((((VAR_P (var) && ! DECL_EXTERNAL (var))
8534 || TREE_CODE (var) == PARM_DECL)
8535 && ! TREE_STATIC (var))
8536 || TREE_CODE (var) == LABEL_DECL
8537 || TREE_CODE (var) == RESULT_DECL));
8538 }
8539
8540 /* Subprogram of following function. Called by walk_tree.
8541
8542 Return *TP if it is an automatic variable or parameter of the
8543 function passed in as DATA. */
8544
8545 static tree
8546 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8547 {
8548 tree fn = (tree) data;
8549
8550 if (TYPE_P (*tp))
8551 *walk_subtrees = 0;
8552
8553 else if (DECL_P (*tp)
8554 && auto_var_in_fn_p (*tp, fn))
8555 return *tp;
8556
8557 return NULL_TREE;
8558 }
8559
8560 /* Returns true if T is, contains, or refers to a type with variable
8561 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8562 arguments, but not the return type. If FN is nonzero, only return
8563 true if a modifier of the type or position of FN is a variable or
8564 parameter inside FN.
8565
8566 This concept is more general than that of C99 'variably modified types':
8567 in C99, a struct type is never variably modified because a VLA may not
8568 appear as a structure member. However, in GNU C code like:
8569
8570 struct S { int i[f()]; };
8571
8572 is valid, and other languages may define similar constructs. */
8573
8574 bool
8575 variably_modified_type_p (tree type, tree fn)
8576 {
8577 tree t;
8578
8579 /* Test if T is either variable (if FN is zero) or an expression containing
8580 a variable in FN. If TYPE isn't gimplified, return true also if
8581 gimplify_one_sizepos would gimplify the expression into a local
8582 variable. */
8583 #define RETURN_TRUE_IF_VAR(T) \
8584 do { tree _t = (T); \
8585 if (_t != NULL_TREE \
8586 && _t != error_mark_node \
8587 && TREE_CODE (_t) != INTEGER_CST \
8588 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8589 && (!fn \
8590 || (!TYPE_SIZES_GIMPLIFIED (type) \
8591 && !is_gimple_sizepos (_t)) \
8592 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8593 return true; } while (0)
8594
8595 if (type == error_mark_node)
8596 return false;
8597
8598 /* If TYPE itself has variable size, it is variably modified. */
8599 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8600 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8601
8602 switch (TREE_CODE (type))
8603 {
8604 case POINTER_TYPE:
8605 case REFERENCE_TYPE:
8606 case VECTOR_TYPE:
8607 /* Ada can have pointer types refering to themselves indirectly. */
8608 if (TREE_VISITED (type))
8609 return false;
8610 TREE_VISITED (type) = true;
8611 if (variably_modified_type_p (TREE_TYPE (type), fn))
8612 {
8613 TREE_VISITED (type) = false;
8614 return true;
8615 }
8616 TREE_VISITED (type) = false;
8617 break;
8618
8619 case FUNCTION_TYPE:
8620 case METHOD_TYPE:
8621 /* If TYPE is a function type, it is variably modified if the
8622 return type is variably modified. */
8623 if (variably_modified_type_p (TREE_TYPE (type), fn))
8624 return true;
8625 break;
8626
8627 case INTEGER_TYPE:
8628 case REAL_TYPE:
8629 case FIXED_POINT_TYPE:
8630 case ENUMERAL_TYPE:
8631 case BOOLEAN_TYPE:
8632 /* Scalar types are variably modified if their end points
8633 aren't constant. */
8634 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8635 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8636 break;
8637
8638 case RECORD_TYPE:
8639 case UNION_TYPE:
8640 case QUAL_UNION_TYPE:
8641 /* We can't see if any of the fields are variably-modified by the
8642 definition we normally use, since that would produce infinite
8643 recursion via pointers. */
8644 /* This is variably modified if some field's type is. */
8645 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8646 if (TREE_CODE (t) == FIELD_DECL)
8647 {
8648 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8649 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8650 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8651
8652 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8653 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8654 }
8655 break;
8656
8657 case ARRAY_TYPE:
8658 /* Do not call ourselves to avoid infinite recursion. This is
8659 variably modified if the element type is. */
8660 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8661 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8662 break;
8663
8664 default:
8665 break;
8666 }
8667
8668 /* The current language may have other cases to check, but in general,
8669 all other types are not variably modified. */
8670 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8671
8672 #undef RETURN_TRUE_IF_VAR
8673 }
8674
8675 /* Given a DECL or TYPE, return the scope in which it was declared, or
8676 NULL_TREE if there is no containing scope. */
8677
8678 tree
8679 get_containing_scope (const_tree t)
8680 {
8681 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8682 }
8683
8684 /* Return the innermost context enclosing DECL that is
8685 a FUNCTION_DECL, or zero if none. */
8686
8687 tree
8688 decl_function_context (const_tree decl)
8689 {
8690 tree context;
8691
8692 if (TREE_CODE (decl) == ERROR_MARK)
8693 return 0;
8694
8695 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8696 where we look up the function at runtime. Such functions always take
8697 a first argument of type 'pointer to real context'.
8698
8699 C++ should really be fixed to use DECL_CONTEXT for the real context,
8700 and use something else for the "virtual context". */
8701 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8702 context
8703 = TYPE_MAIN_VARIANT
8704 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8705 else
8706 context = DECL_CONTEXT (decl);
8707
8708 while (context && TREE_CODE (context) != FUNCTION_DECL)
8709 {
8710 if (TREE_CODE (context) == BLOCK)
8711 context = BLOCK_SUPERCONTEXT (context);
8712 else
8713 context = get_containing_scope (context);
8714 }
8715
8716 return context;
8717 }
8718
8719 /* Return the innermost context enclosing DECL that is
8720 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8721 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8722
8723 tree
8724 decl_type_context (const_tree decl)
8725 {
8726 tree context = DECL_CONTEXT (decl);
8727
8728 while (context)
8729 switch (TREE_CODE (context))
8730 {
8731 case NAMESPACE_DECL:
8732 case TRANSLATION_UNIT_DECL:
8733 return NULL_TREE;
8734
8735 case RECORD_TYPE:
8736 case UNION_TYPE:
8737 case QUAL_UNION_TYPE:
8738 return context;
8739
8740 case TYPE_DECL:
8741 case FUNCTION_DECL:
8742 context = DECL_CONTEXT (context);
8743 break;
8744
8745 case BLOCK:
8746 context = BLOCK_SUPERCONTEXT (context);
8747 break;
8748
8749 default:
8750 gcc_unreachable ();
8751 }
8752
8753 return NULL_TREE;
8754 }
8755
8756 /* CALL is a CALL_EXPR. Return the declaration for the function
8757 called, or NULL_TREE if the called function cannot be
8758 determined. */
8759
8760 tree
8761 get_callee_fndecl (const_tree call)
8762 {
8763 tree addr;
8764
8765 if (call == error_mark_node)
8766 return error_mark_node;
8767
8768 /* It's invalid to call this function with anything but a
8769 CALL_EXPR. */
8770 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8771
8772 /* The first operand to the CALL is the address of the function
8773 called. */
8774 addr = CALL_EXPR_FN (call);
8775
8776 /* If there is no function, return early. */
8777 if (addr == NULL_TREE)
8778 return NULL_TREE;
8779
8780 STRIP_NOPS (addr);
8781
8782 /* If this is a readonly function pointer, extract its initial value. */
8783 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8784 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8785 && DECL_INITIAL (addr))
8786 addr = DECL_INITIAL (addr);
8787
8788 /* If the address is just `&f' for some function `f', then we know
8789 that `f' is being called. */
8790 if (TREE_CODE (addr) == ADDR_EXPR
8791 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8792 return TREE_OPERAND (addr, 0);
8793
8794 /* We couldn't figure out what was being called. */
8795 return NULL_TREE;
8796 }
8797
8798 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
8799 return the associated function code, otherwise return CFN_LAST. */
8800
8801 combined_fn
8802 get_call_combined_fn (const_tree call)
8803 {
8804 /* It's invalid to call this function with anything but a CALL_EXPR. */
8805 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8806
8807 if (!CALL_EXPR_FN (call))
8808 return as_combined_fn (CALL_EXPR_IFN (call));
8809
8810 tree fndecl = get_callee_fndecl (call);
8811 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
8812 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
8813
8814 return CFN_LAST;
8815 }
8816
8817 #define TREE_MEM_USAGE_SPACES 40
8818
8819 /* Print debugging information about tree nodes generated during the compile,
8820 and any language-specific information. */
8821
8822 void
8823 dump_tree_statistics (void)
8824 {
8825 if (GATHER_STATISTICS)
8826 {
8827 int i;
8828 int total_nodes, total_bytes;
8829 fprintf (stderr, "\nKind Nodes Bytes\n");
8830 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
8831 total_nodes = total_bytes = 0;
8832 for (i = 0; i < (int) all_kinds; i++)
8833 {
8834 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8835 tree_node_counts[i], tree_node_sizes[i]);
8836 total_nodes += tree_node_counts[i];
8837 total_bytes += tree_node_sizes[i];
8838 }
8839 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
8840 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8841 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
8842 fprintf (stderr, "Code Nodes\n");
8843 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
8844 for (i = 0; i < (int) MAX_TREE_CODES; i++)
8845 fprintf (stderr, "%-32s %7d\n", get_tree_code_name ((enum tree_code) i),
8846 tree_code_counts[i]);
8847 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
8848 fprintf (stderr, "\n");
8849 ssanames_print_statistics ();
8850 fprintf (stderr, "\n");
8851 phinodes_print_statistics ();
8852 fprintf (stderr, "\n");
8853 }
8854 else
8855 fprintf (stderr, "(No per-node statistics)\n");
8856
8857 print_type_hash_statistics ();
8858 print_debug_expr_statistics ();
8859 print_value_expr_statistics ();
8860 lang_hooks.print_statistics ();
8861 }
8862 \f
8863 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8864
8865 /* Generate a crc32 of the low BYTES bytes of VALUE. */
8866
8867 unsigned
8868 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
8869 {
8870 /* This relies on the raw feedback's top 4 bits being zero. */
8871 #define FEEDBACK(X) ((X) * 0x04c11db7)
8872 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
8873 ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
8874 static const unsigned syndromes[16] =
8875 {
8876 SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
8877 SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
8878 SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
8879 SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
8880 };
8881 #undef FEEDBACK
8882 #undef SYNDROME
8883
8884 value <<= (32 - bytes * 8);
8885 for (unsigned ix = bytes * 2; ix--; value <<= 4)
8886 {
8887 unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
8888
8889 chksum = (chksum << 4) ^ feedback;
8890 }
8891
8892 return chksum;
8893 }
8894
8895 /* Generate a crc32 of a string. */
8896
8897 unsigned
8898 crc32_string (unsigned chksum, const char *string)
8899 {
8900 do
8901 chksum = crc32_byte (chksum, *string);
8902 while (*string++);
8903 return chksum;
8904 }
8905
8906 /* P is a string that will be used in a symbol. Mask out any characters
8907 that are not valid in that context. */
8908
8909 void
8910 clean_symbol_name (char *p)
8911 {
8912 for (; *p; p++)
8913 if (! (ISALNUM (*p)
8914 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8915 || *p == '$'
8916 #endif
8917 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8918 || *p == '.'
8919 #endif
8920 ))
8921 *p = '_';
8922 }
8923
8924 /* For anonymous aggregate types, we need some sort of name to
8925 hold on to. In practice, this should not appear, but it should
8926 not be harmful if it does. */
8927 bool
8928 anon_aggrname_p(const_tree id_node)
8929 {
8930 #ifndef NO_DOT_IN_LABEL
8931 return (IDENTIFIER_POINTER (id_node)[0] == '.'
8932 && IDENTIFIER_POINTER (id_node)[1] == '_');
8933 #else /* NO_DOT_IN_LABEL */
8934 #ifndef NO_DOLLAR_IN_LABEL
8935 return (IDENTIFIER_POINTER (id_node)[0] == '$' \
8936 && IDENTIFIER_POINTER (id_node)[1] == '_');
8937 #else /* NO_DOLLAR_IN_LABEL */
8938 #define ANON_AGGRNAME_PREFIX "__anon_"
8939 return (!strncmp (IDENTIFIER_POINTER (id_node), ANON_AGGRNAME_PREFIX,
8940 sizeof (ANON_AGGRNAME_PREFIX) - 1));
8941 #endif /* NO_DOLLAR_IN_LABEL */
8942 #endif /* NO_DOT_IN_LABEL */
8943 }
8944
8945 /* Return a format for an anonymous aggregate name. */
8946 const char *
8947 anon_aggrname_format()
8948 {
8949 #ifndef NO_DOT_IN_LABEL
8950 return "._%d";
8951 #else /* NO_DOT_IN_LABEL */
8952 #ifndef NO_DOLLAR_IN_LABEL
8953 return "$_%d";
8954 #else /* NO_DOLLAR_IN_LABEL */
8955 return "__anon_%d";
8956 #endif /* NO_DOLLAR_IN_LABEL */
8957 #endif /* NO_DOT_IN_LABEL */
8958 }
8959
8960 /* Generate a name for a special-purpose function.
8961 The generated name may need to be unique across the whole link.
8962 Changes to this function may also require corresponding changes to
8963 xstrdup_mask_random.
8964 TYPE is some string to identify the purpose of this function to the
8965 linker or collect2; it must start with an uppercase letter,
8966 one of:
8967 I - for constructors
8968 D - for destructors
8969 N - for C++ anonymous namespaces
8970 F - for DWARF unwind frame information. */
8971
8972 tree
8973 get_file_function_name (const char *type)
8974 {
8975 char *buf;
8976 const char *p;
8977 char *q;
8978
8979 /* If we already have a name we know to be unique, just use that. */
8980 if (first_global_object_name)
8981 p = q = ASTRDUP (first_global_object_name);
8982 /* If the target is handling the constructors/destructors, they
8983 will be local to this file and the name is only necessary for
8984 debugging purposes.
8985 We also assign sub_I and sub_D sufixes to constructors called from
8986 the global static constructors. These are always local. */
8987 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8988 || (strncmp (type, "sub_", 4) == 0
8989 && (type[4] == 'I' || type[4] == 'D')))
8990 {
8991 const char *file = main_input_filename;
8992 if (! file)
8993 file = LOCATION_FILE (input_location);
8994 /* Just use the file's basename, because the full pathname
8995 might be quite long. */
8996 p = q = ASTRDUP (lbasename (file));
8997 }
8998 else
8999 {
9000 /* Otherwise, the name must be unique across the entire link.
9001 We don't have anything that we know to be unique to this translation
9002 unit, so use what we do have and throw in some randomness. */
9003 unsigned len;
9004 const char *name = weak_global_object_name;
9005 const char *file = main_input_filename;
9006
9007 if (! name)
9008 name = "";
9009 if (! file)
9010 file = LOCATION_FILE (input_location);
9011
9012 len = strlen (file);
9013 q = (char *) alloca (9 + 19 + len + 1);
9014 memcpy (q, file, len + 1);
9015
9016 snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9017 crc32_string (0, name), get_random_seed (false));
9018
9019 p = q;
9020 }
9021
9022 clean_symbol_name (q);
9023 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9024 + strlen (type));
9025
9026 /* Set up the name of the file-level functions we may need.
9027 Use a global object (which is already required to be unique over
9028 the program) rather than the file name (which imposes extra
9029 constraints). */
9030 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9031
9032 return get_identifier (buf);
9033 }
9034 \f
9035 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9036
9037 /* Complain that the tree code of NODE does not match the expected 0
9038 terminated list of trailing codes. The trailing code list can be
9039 empty, for a more vague error message. FILE, LINE, and FUNCTION
9040 are of the caller. */
9041
9042 void
9043 tree_check_failed (const_tree node, const char *file,
9044 int line, const char *function, ...)
9045 {
9046 va_list args;
9047 const char *buffer;
9048 unsigned length = 0;
9049 enum tree_code code;
9050
9051 va_start (args, function);
9052 while ((code = (enum tree_code) va_arg (args, int)))
9053 length += 4 + strlen (get_tree_code_name (code));
9054 va_end (args);
9055 if (length)
9056 {
9057 char *tmp;
9058 va_start (args, function);
9059 length += strlen ("expected ");
9060 buffer = tmp = (char *) alloca (length);
9061 length = 0;
9062 while ((code = (enum tree_code) va_arg (args, int)))
9063 {
9064 const char *prefix = length ? " or " : "expected ";
9065
9066 strcpy (tmp + length, prefix);
9067 length += strlen (prefix);
9068 strcpy (tmp + length, get_tree_code_name (code));
9069 length += strlen (get_tree_code_name (code));
9070 }
9071 va_end (args);
9072 }
9073 else
9074 buffer = "unexpected node";
9075
9076 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9077 buffer, get_tree_code_name (TREE_CODE (node)),
9078 function, trim_filename (file), line);
9079 }
9080
9081 /* Complain that the tree code of NODE does match the expected 0
9082 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9083 the caller. */
9084
9085 void
9086 tree_not_check_failed (const_tree node, const char *file,
9087 int line, const char *function, ...)
9088 {
9089 va_list args;
9090 char *buffer;
9091 unsigned length = 0;
9092 enum tree_code code;
9093
9094 va_start (args, function);
9095 while ((code = (enum tree_code) va_arg (args, int)))
9096 length += 4 + strlen (get_tree_code_name (code));
9097 va_end (args);
9098 va_start (args, function);
9099 buffer = (char *) alloca (length);
9100 length = 0;
9101 while ((code = (enum tree_code) va_arg (args, int)))
9102 {
9103 if (length)
9104 {
9105 strcpy (buffer + length, " or ");
9106 length += 4;
9107 }
9108 strcpy (buffer + length, get_tree_code_name (code));
9109 length += strlen (get_tree_code_name (code));
9110 }
9111 va_end (args);
9112
9113 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9114 buffer, get_tree_code_name (TREE_CODE (node)),
9115 function, trim_filename (file), line);
9116 }
9117
9118 /* Similar to tree_check_failed, except that we check for a class of tree
9119 code, given in CL. */
9120
9121 void
9122 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9123 const char *file, int line, const char *function)
9124 {
9125 internal_error
9126 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9127 TREE_CODE_CLASS_STRING (cl),
9128 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9129 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9130 }
9131
9132 /* Similar to tree_check_failed, except that instead of specifying a
9133 dozen codes, use the knowledge that they're all sequential. */
9134
9135 void
9136 tree_range_check_failed (const_tree node, const char *file, int line,
9137 const char *function, enum tree_code c1,
9138 enum tree_code c2)
9139 {
9140 char *buffer;
9141 unsigned length = 0;
9142 unsigned int c;
9143
9144 for (c = c1; c <= c2; ++c)
9145 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9146
9147 length += strlen ("expected ");
9148 buffer = (char *) alloca (length);
9149 length = 0;
9150
9151 for (c = c1; c <= c2; ++c)
9152 {
9153 const char *prefix = length ? " or " : "expected ";
9154
9155 strcpy (buffer + length, prefix);
9156 length += strlen (prefix);
9157 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9158 length += strlen (get_tree_code_name ((enum tree_code) c));
9159 }
9160
9161 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9162 buffer, get_tree_code_name (TREE_CODE (node)),
9163 function, trim_filename (file), line);
9164 }
9165
9166
9167 /* Similar to tree_check_failed, except that we check that a tree does
9168 not have the specified code, given in CL. */
9169
9170 void
9171 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9172 const char *file, int line, const char *function)
9173 {
9174 internal_error
9175 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9176 TREE_CODE_CLASS_STRING (cl),
9177 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9178 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9179 }
9180
9181
9182 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9183
9184 void
9185 omp_clause_check_failed (const_tree node, const char *file, int line,
9186 const char *function, enum omp_clause_code code)
9187 {
9188 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9189 omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9190 function, trim_filename (file), line);
9191 }
9192
9193
9194 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9195
9196 void
9197 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9198 const char *function, enum omp_clause_code c1,
9199 enum omp_clause_code c2)
9200 {
9201 char *buffer;
9202 unsigned length = 0;
9203 unsigned int c;
9204
9205 for (c = c1; c <= c2; ++c)
9206 length += 4 + strlen (omp_clause_code_name[c]);
9207
9208 length += strlen ("expected ");
9209 buffer = (char *) alloca (length);
9210 length = 0;
9211
9212 for (c = c1; c <= c2; ++c)
9213 {
9214 const char *prefix = length ? " or " : "expected ";
9215
9216 strcpy (buffer + length, prefix);
9217 length += strlen (prefix);
9218 strcpy (buffer + length, omp_clause_code_name[c]);
9219 length += strlen (omp_clause_code_name[c]);
9220 }
9221
9222 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9223 buffer, omp_clause_code_name[TREE_CODE (node)],
9224 function, trim_filename (file), line);
9225 }
9226
9227
9228 #undef DEFTREESTRUCT
9229 #define DEFTREESTRUCT(VAL, NAME) NAME,
9230
9231 static const char *ts_enum_names[] = {
9232 #include "treestruct.def"
9233 };
9234 #undef DEFTREESTRUCT
9235
9236 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9237
9238 /* Similar to tree_class_check_failed, except that we check for
9239 whether CODE contains the tree structure identified by EN. */
9240
9241 void
9242 tree_contains_struct_check_failed (const_tree node,
9243 const enum tree_node_structure_enum en,
9244 const char *file, int line,
9245 const char *function)
9246 {
9247 internal_error
9248 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9249 TS_ENUM_NAME (en),
9250 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9251 }
9252
9253
9254 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9255 (dynamically sized) vector. */
9256
9257 void
9258 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9259 const char *function)
9260 {
9261 internal_error
9262 ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
9263 idx + 1, len, function, trim_filename (file), line);
9264 }
9265
9266 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9267 (dynamically sized) vector. */
9268
9269 void
9270 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9271 const char *function)
9272 {
9273 internal_error
9274 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9275 idx + 1, len, function, trim_filename (file), line);
9276 }
9277
9278 /* Similar to above, except that the check is for the bounds of the operand
9279 vector of an expression node EXP. */
9280
9281 void
9282 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9283 int line, const char *function)
9284 {
9285 enum tree_code code = TREE_CODE (exp);
9286 internal_error
9287 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9288 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9289 function, trim_filename (file), line);
9290 }
9291
9292 /* Similar to above, except that the check is for the number of
9293 operands of an OMP_CLAUSE node. */
9294
9295 void
9296 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9297 int line, const char *function)
9298 {
9299 internal_error
9300 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9301 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9302 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9303 trim_filename (file), line);
9304 }
9305 #endif /* ENABLE_TREE_CHECKING */
9306 \f
9307 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9308 and mapped to the machine mode MODE. Initialize its fields and build
9309 the information necessary for debugging output. */
9310
9311 static tree
9312 make_vector_type (tree innertype, int nunits, machine_mode mode)
9313 {
9314 tree t;
9315 tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
9316
9317 t = make_node (VECTOR_TYPE);
9318 TREE_TYPE (t) = mv_innertype;
9319 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9320 SET_TYPE_MODE (t, mode);
9321
9322 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
9323 SET_TYPE_STRUCTURAL_EQUALITY (t);
9324 else if ((TYPE_CANONICAL (mv_innertype) != innertype
9325 || mode != VOIDmode)
9326 && !VECTOR_BOOLEAN_TYPE_P (t))
9327 TYPE_CANONICAL (t)
9328 = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
9329
9330 layout_type (t);
9331
9332 hashval_t hash = type_hash_canon_hash (t);
9333 t = type_hash_canon (hash, t);
9334
9335 /* We have built a main variant, based on the main variant of the
9336 inner type. Use it to build the variant we return. */
9337 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9338 && TREE_TYPE (t) != innertype)
9339 return build_type_attribute_qual_variant (t,
9340 TYPE_ATTRIBUTES (innertype),
9341 TYPE_QUALS (innertype));
9342
9343 return t;
9344 }
9345
9346 static tree
9347 make_or_reuse_type (unsigned size, int unsignedp)
9348 {
9349 int i;
9350
9351 if (size == INT_TYPE_SIZE)
9352 return unsignedp ? unsigned_type_node : integer_type_node;
9353 if (size == CHAR_TYPE_SIZE)
9354 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9355 if (size == SHORT_TYPE_SIZE)
9356 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9357 if (size == LONG_TYPE_SIZE)
9358 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9359 if (size == LONG_LONG_TYPE_SIZE)
9360 return (unsignedp ? long_long_unsigned_type_node
9361 : long_long_integer_type_node);
9362
9363 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9364 if (size == int_n_data[i].bitsize
9365 && int_n_enabled_p[i])
9366 return (unsignedp ? int_n_trees[i].unsigned_type
9367 : int_n_trees[i].signed_type);
9368
9369 if (unsignedp)
9370 return make_unsigned_type (size);
9371 else
9372 return make_signed_type (size);
9373 }
9374
9375 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9376
9377 static tree
9378 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9379 {
9380 if (satp)
9381 {
9382 if (size == SHORT_FRACT_TYPE_SIZE)
9383 return unsignedp ? sat_unsigned_short_fract_type_node
9384 : sat_short_fract_type_node;
9385 if (size == FRACT_TYPE_SIZE)
9386 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9387 if (size == LONG_FRACT_TYPE_SIZE)
9388 return unsignedp ? sat_unsigned_long_fract_type_node
9389 : sat_long_fract_type_node;
9390 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9391 return unsignedp ? sat_unsigned_long_long_fract_type_node
9392 : sat_long_long_fract_type_node;
9393 }
9394 else
9395 {
9396 if (size == SHORT_FRACT_TYPE_SIZE)
9397 return unsignedp ? unsigned_short_fract_type_node
9398 : short_fract_type_node;
9399 if (size == FRACT_TYPE_SIZE)
9400 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9401 if (size == LONG_FRACT_TYPE_SIZE)
9402 return unsignedp ? unsigned_long_fract_type_node
9403 : long_fract_type_node;
9404 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9405 return unsignedp ? unsigned_long_long_fract_type_node
9406 : long_long_fract_type_node;
9407 }
9408
9409 return make_fract_type (size, unsignedp, satp);
9410 }
9411
9412 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9413
9414 static tree
9415 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9416 {
9417 if (satp)
9418 {
9419 if (size == SHORT_ACCUM_TYPE_SIZE)
9420 return unsignedp ? sat_unsigned_short_accum_type_node
9421 : sat_short_accum_type_node;
9422 if (size == ACCUM_TYPE_SIZE)
9423 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9424 if (size == LONG_ACCUM_TYPE_SIZE)
9425 return unsignedp ? sat_unsigned_long_accum_type_node
9426 : sat_long_accum_type_node;
9427 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9428 return unsignedp ? sat_unsigned_long_long_accum_type_node
9429 : sat_long_long_accum_type_node;
9430 }
9431 else
9432 {
9433 if (size == SHORT_ACCUM_TYPE_SIZE)
9434 return unsignedp ? unsigned_short_accum_type_node
9435 : short_accum_type_node;
9436 if (size == ACCUM_TYPE_SIZE)
9437 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9438 if (size == LONG_ACCUM_TYPE_SIZE)
9439 return unsignedp ? unsigned_long_accum_type_node
9440 : long_accum_type_node;
9441 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9442 return unsignedp ? unsigned_long_long_accum_type_node
9443 : long_long_accum_type_node;
9444 }
9445
9446 return make_accum_type (size, unsignedp, satp);
9447 }
9448
9449
9450 /* Create an atomic variant node for TYPE. This routine is called
9451 during initialization of data types to create the 5 basic atomic
9452 types. The generic build_variant_type function requires these to
9453 already be set up in order to function properly, so cannot be
9454 called from there. If ALIGN is non-zero, then ensure alignment is
9455 overridden to this value. */
9456
9457 static tree
9458 build_atomic_base (tree type, unsigned int align)
9459 {
9460 tree t;
9461
9462 /* Make sure its not already registered. */
9463 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
9464 return t;
9465
9466 t = build_variant_type_copy (type);
9467 set_type_quals (t, TYPE_QUAL_ATOMIC);
9468
9469 if (align)
9470 SET_TYPE_ALIGN (t, align);
9471
9472 return t;
9473 }
9474
9475 /* Information about the _FloatN and _FloatNx types. This must be in
9476 the same order as the corresponding TI_* enum values. */
9477 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
9478 {
9479 { 16, false },
9480 { 32, false },
9481 { 64, false },
9482 { 128, false },
9483 { 32, true },
9484 { 64, true },
9485 { 128, true },
9486 };
9487
9488
9489 /* Create nodes for all integer types (and error_mark_node) using the sizes
9490 of C datatypes. SIGNED_CHAR specifies whether char is signed. */
9491
9492 void
9493 build_common_tree_nodes (bool signed_char)
9494 {
9495 int i;
9496
9497 error_mark_node = make_node (ERROR_MARK);
9498 TREE_TYPE (error_mark_node) = error_mark_node;
9499
9500 initialize_sizetypes ();
9501
9502 /* Define both `signed char' and `unsigned char'. */
9503 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9504 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9505 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9506 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9507
9508 /* Define `char', which is like either `signed char' or `unsigned char'
9509 but not the same as either. */
9510 char_type_node
9511 = (signed_char
9512 ? make_signed_type (CHAR_TYPE_SIZE)
9513 : make_unsigned_type (CHAR_TYPE_SIZE));
9514 TYPE_STRING_FLAG (char_type_node) = 1;
9515
9516 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9517 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9518 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9519 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9520 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9521 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9522 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9523 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9524
9525 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9526 {
9527 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
9528 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
9529 TYPE_SIZE (int_n_trees[i].signed_type) = bitsize_int (int_n_data[i].bitsize);
9530 TYPE_SIZE (int_n_trees[i].unsigned_type) = bitsize_int (int_n_data[i].bitsize);
9531
9532 if (int_n_data[i].bitsize > LONG_LONG_TYPE_SIZE
9533 && int_n_enabled_p[i])
9534 {
9535 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
9536 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
9537 }
9538 }
9539
9540 /* Define a boolean type. This type only represents boolean values but
9541 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
9542 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9543 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9544 TYPE_PRECISION (boolean_type_node) = 1;
9545 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9546
9547 /* Define what type to use for size_t. */
9548 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9549 size_type_node = unsigned_type_node;
9550 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9551 size_type_node = long_unsigned_type_node;
9552 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9553 size_type_node = long_long_unsigned_type_node;
9554 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9555 size_type_node = short_unsigned_type_node;
9556 else
9557 {
9558 int i;
9559
9560 size_type_node = NULL_TREE;
9561 for (i = 0; i < NUM_INT_N_ENTS; i++)
9562 if (int_n_enabled_p[i])
9563 {
9564 char name[50];
9565 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
9566
9567 if (strcmp (name, SIZE_TYPE) == 0)
9568 {
9569 size_type_node = int_n_trees[i].unsigned_type;
9570 }
9571 }
9572 if (size_type_node == NULL_TREE)
9573 gcc_unreachable ();
9574 }
9575
9576 /* Define what type to use for ptrdiff_t. */
9577 if (strcmp (PTRDIFF_TYPE, "int") == 0)
9578 ptrdiff_type_node = integer_type_node;
9579 else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
9580 ptrdiff_type_node = long_integer_type_node;
9581 else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
9582 ptrdiff_type_node = long_long_integer_type_node;
9583 else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
9584 ptrdiff_type_node = short_integer_type_node;
9585 else
9586 {
9587 ptrdiff_type_node = NULL_TREE;
9588 for (int i = 0; i < NUM_INT_N_ENTS; i++)
9589 if (int_n_enabled_p[i])
9590 {
9591 char name[50];
9592 sprintf (name, "__int%d", int_n_data[i].bitsize);
9593 if (strcmp (name, PTRDIFF_TYPE) == 0)
9594 ptrdiff_type_node = int_n_trees[i].signed_type;
9595 }
9596 if (ptrdiff_type_node == NULL_TREE)
9597 gcc_unreachable ();
9598 }
9599
9600 /* Fill in the rest of the sized types. Reuse existing type nodes
9601 when possible. */
9602 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9603 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9604 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9605 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9606 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9607
9608 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9609 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9610 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9611 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9612 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9613
9614 /* Don't call build_qualified type for atomics. That routine does
9615 special processing for atomics, and until they are initialized
9616 it's better not to make that call.
9617
9618 Check to see if there is a target override for atomic types. */
9619
9620 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
9621 targetm.atomic_align_for_mode (QImode));
9622 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
9623 targetm.atomic_align_for_mode (HImode));
9624 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
9625 targetm.atomic_align_for_mode (SImode));
9626 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
9627 targetm.atomic_align_for_mode (DImode));
9628 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
9629 targetm.atomic_align_for_mode (TImode));
9630
9631 access_public_node = get_identifier ("public");
9632 access_protected_node = get_identifier ("protected");
9633 access_private_node = get_identifier ("private");
9634
9635 /* Define these next since types below may used them. */
9636 integer_zero_node = build_int_cst (integer_type_node, 0);
9637 integer_one_node = build_int_cst (integer_type_node, 1);
9638 integer_three_node = build_int_cst (integer_type_node, 3);
9639 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9640
9641 size_zero_node = size_int (0);
9642 size_one_node = size_int (1);
9643 bitsize_zero_node = bitsize_int (0);
9644 bitsize_one_node = bitsize_int (1);
9645 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9646
9647 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9648 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9649
9650 void_type_node = make_node (VOID_TYPE);
9651 layout_type (void_type_node);
9652
9653 pointer_bounds_type_node = targetm.chkp_bound_type ();
9654
9655 /* We are not going to have real types in C with less than byte alignment,
9656 so we might as well not have any types that claim to have it. */
9657 SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
9658 TYPE_USER_ALIGN (void_type_node) = 0;
9659
9660 void_node = make_node (VOID_CST);
9661 TREE_TYPE (void_node) = void_type_node;
9662
9663 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9664 layout_type (TREE_TYPE (null_pointer_node));
9665
9666 ptr_type_node = build_pointer_type (void_type_node);
9667 const_ptr_type_node
9668 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9669 for (unsigned i = 0;
9670 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
9671 ++i)
9672 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
9673
9674 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
9675
9676 float_type_node = make_node (REAL_TYPE);
9677 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9678 layout_type (float_type_node);
9679
9680 double_type_node = make_node (REAL_TYPE);
9681 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9682 layout_type (double_type_node);
9683
9684 long_double_type_node = make_node (REAL_TYPE);
9685 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9686 layout_type (long_double_type_node);
9687
9688 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
9689 {
9690 int n = floatn_nx_types[i].n;
9691 bool extended = floatn_nx_types[i].extended;
9692 scalar_float_mode mode;
9693 if (!targetm.floatn_mode (n, extended).exists (&mode))
9694 continue;
9695 int precision = GET_MODE_PRECISION (mode);
9696 /* Work around the rs6000 KFmode having precision 113 not
9697 128. */
9698 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
9699 gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
9700 int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
9701 if (!extended)
9702 gcc_assert (min_precision == n);
9703 if (precision < min_precision)
9704 precision = min_precision;
9705 FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
9706 TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
9707 layout_type (FLOATN_NX_TYPE_NODE (i));
9708 SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
9709 }
9710
9711 float_ptr_type_node = build_pointer_type (float_type_node);
9712 double_ptr_type_node = build_pointer_type (double_type_node);
9713 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9714 integer_ptr_type_node = build_pointer_type (integer_type_node);
9715
9716 /* Fixed size integer types. */
9717 uint16_type_node = make_or_reuse_type (16, 1);
9718 uint32_type_node = make_or_reuse_type (32, 1);
9719 uint64_type_node = make_or_reuse_type (64, 1);
9720
9721 /* Decimal float types. */
9722 dfloat32_type_node = make_node (REAL_TYPE);
9723 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9724 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9725 layout_type (dfloat32_type_node);
9726 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9727
9728 dfloat64_type_node = make_node (REAL_TYPE);
9729 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9730 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9731 layout_type (dfloat64_type_node);
9732 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9733
9734 dfloat128_type_node = make_node (REAL_TYPE);
9735 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9736 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9737 layout_type (dfloat128_type_node);
9738 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9739
9740 complex_integer_type_node = build_complex_type (integer_type_node, true);
9741 complex_float_type_node = build_complex_type (float_type_node, true);
9742 complex_double_type_node = build_complex_type (double_type_node, true);
9743 complex_long_double_type_node = build_complex_type (long_double_type_node,
9744 true);
9745
9746 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
9747 {
9748 if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
9749 COMPLEX_FLOATN_NX_TYPE_NODE (i)
9750 = build_complex_type (FLOATN_NX_TYPE_NODE (i));
9751 }
9752
9753 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9754 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9755 sat_ ## KIND ## _type_node = \
9756 make_sat_signed_ ## KIND ## _type (SIZE); \
9757 sat_unsigned_ ## KIND ## _type_node = \
9758 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9759 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9760 unsigned_ ## KIND ## _type_node = \
9761 make_unsigned_ ## KIND ## _type (SIZE);
9762
9763 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9764 sat_ ## WIDTH ## KIND ## _type_node = \
9765 make_sat_signed_ ## KIND ## _type (SIZE); \
9766 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9767 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9768 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9769 unsigned_ ## WIDTH ## KIND ## _type_node = \
9770 make_unsigned_ ## KIND ## _type (SIZE);
9771
9772 /* Make fixed-point type nodes based on four different widths. */
9773 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9774 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9775 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9776 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9777 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9778
9779 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9780 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9781 NAME ## _type_node = \
9782 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9783 u ## NAME ## _type_node = \
9784 make_or_reuse_unsigned_ ## KIND ## _type \
9785 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9786 sat_ ## NAME ## _type_node = \
9787 make_or_reuse_sat_signed_ ## KIND ## _type \
9788 (GET_MODE_BITSIZE (MODE ## mode)); \
9789 sat_u ## NAME ## _type_node = \
9790 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9791 (GET_MODE_BITSIZE (U ## MODE ## mode));
9792
9793 /* Fixed-point type and mode nodes. */
9794 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9795 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9796 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9797 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9798 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9799 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9800 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9801 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9802 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9803 MAKE_FIXED_MODE_NODE (accum, da, DA)
9804 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9805
9806 {
9807 tree t = targetm.build_builtin_va_list ();
9808
9809 /* Many back-ends define record types without setting TYPE_NAME.
9810 If we copied the record type here, we'd keep the original
9811 record type without a name. This breaks name mangling. So,
9812 don't copy record types and let c_common_nodes_and_builtins()
9813 declare the type to be __builtin_va_list. */
9814 if (TREE_CODE (t) != RECORD_TYPE)
9815 t = build_variant_type_copy (t);
9816
9817 va_list_type_node = t;
9818 }
9819 }
9820
9821 /* Modify DECL for given flags.
9822 TM_PURE attribute is set only on types, so the function will modify
9823 DECL's type when ECF_TM_PURE is used. */
9824
9825 void
9826 set_call_expr_flags (tree decl, int flags)
9827 {
9828 if (flags & ECF_NOTHROW)
9829 TREE_NOTHROW (decl) = 1;
9830 if (flags & ECF_CONST)
9831 TREE_READONLY (decl) = 1;
9832 if (flags & ECF_PURE)
9833 DECL_PURE_P (decl) = 1;
9834 if (flags & ECF_LOOPING_CONST_OR_PURE)
9835 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9836 if (flags & ECF_NOVOPS)
9837 DECL_IS_NOVOPS (decl) = 1;
9838 if (flags & ECF_NORETURN)
9839 TREE_THIS_VOLATILE (decl) = 1;
9840 if (flags & ECF_MALLOC)
9841 DECL_IS_MALLOC (decl) = 1;
9842 if (flags & ECF_RETURNS_TWICE)
9843 DECL_IS_RETURNS_TWICE (decl) = 1;
9844 if (flags & ECF_LEAF)
9845 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9846 NULL, DECL_ATTRIBUTES (decl));
9847 if (flags & ECF_COLD)
9848 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
9849 NULL, DECL_ATTRIBUTES (decl));
9850 if (flags & ECF_RET1)
9851 DECL_ATTRIBUTES (decl)
9852 = tree_cons (get_identifier ("fn spec"),
9853 build_tree_list (NULL_TREE, build_string (1, "1")),
9854 DECL_ATTRIBUTES (decl));
9855 if ((flags & ECF_TM_PURE) && flag_tm)
9856 apply_tm_attr (decl, get_identifier ("transaction_pure"));
9857 /* Looping const or pure is implied by noreturn.
9858 There is currently no way to declare looping const or looping pure alone. */
9859 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
9860 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
9861 }
9862
9863
9864 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9865
9866 static void
9867 local_define_builtin (const char *name, tree type, enum built_in_function code,
9868 const char *library_name, int ecf_flags)
9869 {
9870 tree decl;
9871
9872 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9873 library_name, NULL_TREE);
9874 set_call_expr_flags (decl, ecf_flags);
9875
9876 set_builtin_decl (code, decl, true);
9877 }
9878
9879 /* Call this function after instantiating all builtins that the language
9880 front end cares about. This will build the rest of the builtins
9881 and internal functions that are relied upon by the tree optimizers and
9882 the middle-end. */
9883
9884 void
9885 build_common_builtin_nodes (void)
9886 {
9887 tree tmp, ftype;
9888 int ecf_flags;
9889
9890 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
9891 || !builtin_decl_explicit_p (BUILT_IN_ABORT))
9892 {
9893 ftype = build_function_type (void_type_node, void_list_node);
9894 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
9895 local_define_builtin ("__builtin_unreachable", ftype,
9896 BUILT_IN_UNREACHABLE,
9897 "__builtin_unreachable",
9898 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
9899 | ECF_CONST | ECF_COLD);
9900 if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
9901 local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
9902 "abort",
9903 ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
9904 }
9905
9906 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
9907 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9908 {
9909 ftype = build_function_type_list (ptr_type_node,
9910 ptr_type_node, const_ptr_type_node,
9911 size_type_node, NULL_TREE);
9912
9913 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
9914 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9915 "memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
9916 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9917 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9918 "memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
9919 }
9920
9921 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
9922 {
9923 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9924 const_ptr_type_node, size_type_node,
9925 NULL_TREE);
9926 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9927 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9928 }
9929
9930 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
9931 {
9932 ftype = build_function_type_list (ptr_type_node,
9933 ptr_type_node, integer_type_node,
9934 size_type_node, NULL_TREE);
9935 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9936 "memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
9937 }
9938
9939 /* If we're checking the stack, `alloca' can throw. */
9940 const int alloca_flags
9941 = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
9942
9943 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
9944 {
9945 ftype = build_function_type_list (ptr_type_node,
9946 size_type_node, NULL_TREE);
9947 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9948 "alloca", alloca_flags);
9949 }
9950
9951 ftype = build_function_type_list (ptr_type_node, size_type_node,
9952 size_type_node, NULL_TREE);
9953 local_define_builtin ("__builtin_alloca_with_align", ftype,
9954 BUILT_IN_ALLOCA_WITH_ALIGN,
9955 "__builtin_alloca_with_align",
9956 alloca_flags);
9957
9958 ftype = build_function_type_list (void_type_node,
9959 ptr_type_node, ptr_type_node,
9960 ptr_type_node, NULL_TREE);
9961 local_define_builtin ("__builtin_init_trampoline", ftype,
9962 BUILT_IN_INIT_TRAMPOLINE,
9963 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9964 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
9965 BUILT_IN_INIT_HEAP_TRAMPOLINE,
9966 "__builtin_init_heap_trampoline",
9967 ECF_NOTHROW | ECF_LEAF);
9968 local_define_builtin ("__builtin_init_descriptor", ftype,
9969 BUILT_IN_INIT_DESCRIPTOR,
9970 "__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
9971
9972 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9973 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9974 BUILT_IN_ADJUST_TRAMPOLINE,
9975 "__builtin_adjust_trampoline",
9976 ECF_CONST | ECF_NOTHROW);
9977 local_define_builtin ("__builtin_adjust_descriptor", ftype,
9978 BUILT_IN_ADJUST_DESCRIPTOR,
9979 "__builtin_adjust_descriptor",
9980 ECF_CONST | ECF_NOTHROW);
9981
9982 ftype = build_function_type_list (void_type_node,
9983 ptr_type_node, ptr_type_node, NULL_TREE);
9984 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9985 BUILT_IN_NONLOCAL_GOTO,
9986 "__builtin_nonlocal_goto",
9987 ECF_NORETURN | ECF_NOTHROW);
9988
9989 ftype = build_function_type_list (void_type_node,
9990 ptr_type_node, ptr_type_node, NULL_TREE);
9991 local_define_builtin ("__builtin_setjmp_setup", ftype,
9992 BUILT_IN_SETJMP_SETUP,
9993 "__builtin_setjmp_setup", ECF_NOTHROW);
9994
9995 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9996 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9997 BUILT_IN_SETJMP_RECEIVER,
9998 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
9999
10000 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10001 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10002 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10003
10004 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10005 local_define_builtin ("__builtin_stack_restore", ftype,
10006 BUILT_IN_STACK_RESTORE,
10007 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10008
10009 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10010 const_ptr_type_node, size_type_node,
10011 NULL_TREE);
10012 local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10013 "__builtin_memcmp_eq",
10014 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10015
10016 /* If there's a possibility that we might use the ARM EABI, build the
10017 alternate __cxa_end_cleanup node used to resume from C++. */
10018 if (targetm.arm_eabi_unwinder)
10019 {
10020 ftype = build_function_type_list (void_type_node, NULL_TREE);
10021 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10022 BUILT_IN_CXA_END_CLEANUP,
10023 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10024 }
10025
10026 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10027 local_define_builtin ("__builtin_unwind_resume", ftype,
10028 BUILT_IN_UNWIND_RESUME,
10029 ((targetm_common.except_unwind_info (&global_options)
10030 == UI_SJLJ)
10031 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10032 ECF_NORETURN);
10033
10034 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10035 {
10036 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10037 NULL_TREE);
10038 local_define_builtin ("__builtin_return_address", ftype,
10039 BUILT_IN_RETURN_ADDRESS,
10040 "__builtin_return_address",
10041 ECF_NOTHROW);
10042 }
10043
10044 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10045 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10046 {
10047 ftype = build_function_type_list (void_type_node, ptr_type_node,
10048 ptr_type_node, NULL_TREE);
10049 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10050 local_define_builtin ("__cyg_profile_func_enter", ftype,
10051 BUILT_IN_PROFILE_FUNC_ENTER,
10052 "__cyg_profile_func_enter", 0);
10053 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10054 local_define_builtin ("__cyg_profile_func_exit", ftype,
10055 BUILT_IN_PROFILE_FUNC_EXIT,
10056 "__cyg_profile_func_exit", 0);
10057 }
10058
10059 /* The exception object and filter values from the runtime. The argument
10060 must be zero before exception lowering, i.e. from the front end. After
10061 exception lowering, it will be the region number for the exception
10062 landing pad. These functions are PURE instead of CONST to prevent
10063 them from being hoisted past the exception edge that will initialize
10064 its value in the landing pad. */
10065 ftype = build_function_type_list (ptr_type_node,
10066 integer_type_node, NULL_TREE);
10067 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10068 /* Only use TM_PURE if we have TM language support. */
10069 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10070 ecf_flags |= ECF_TM_PURE;
10071 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10072 "__builtin_eh_pointer", ecf_flags);
10073
10074 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10075 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10076 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10077 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10078
10079 ftype = build_function_type_list (void_type_node,
10080 integer_type_node, integer_type_node,
10081 NULL_TREE);
10082 local_define_builtin ("__builtin_eh_copy_values", ftype,
10083 BUILT_IN_EH_COPY_VALUES,
10084 "__builtin_eh_copy_values", ECF_NOTHROW);
10085
10086 /* Complex multiplication and division. These are handled as builtins
10087 rather than optabs because emit_library_call_value doesn't support
10088 complex. Further, we can do slightly better with folding these
10089 beasties if the real and complex parts of the arguments are separate. */
10090 {
10091 int mode;
10092
10093 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10094 {
10095 char mode_name_buf[4], *q;
10096 const char *p;
10097 enum built_in_function mcode, dcode;
10098 tree type, inner_type;
10099 const char *prefix = "__";
10100
10101 if (targetm.libfunc_gnu_prefix)
10102 prefix = "__gnu_";
10103
10104 type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10105 if (type == NULL)
10106 continue;
10107 inner_type = TREE_TYPE (type);
10108
10109 ftype = build_function_type_list (type, inner_type, inner_type,
10110 inner_type, inner_type, NULL_TREE);
10111
10112 mcode = ((enum built_in_function)
10113 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10114 dcode = ((enum built_in_function)
10115 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10116
10117 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10118 *q = TOLOWER (*p);
10119 *q = '\0';
10120
10121 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10122 NULL);
10123 local_define_builtin (built_in_names[mcode], ftype, mcode,
10124 built_in_names[mcode],
10125 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10126
10127 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10128 NULL);
10129 local_define_builtin (built_in_names[dcode], ftype, dcode,
10130 built_in_names[dcode],
10131 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10132 }
10133 }
10134
10135 init_internal_fns ();
10136 }
10137
10138 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10139 better way.
10140
10141 If we requested a pointer to a vector, build up the pointers that
10142 we stripped off while looking for the inner type. Similarly for
10143 return values from functions.
10144
10145 The argument TYPE is the top of the chain, and BOTTOM is the
10146 new type which we will point to. */
10147
10148 tree
10149 reconstruct_complex_type (tree type, tree bottom)
10150 {
10151 tree inner, outer;
10152
10153 if (TREE_CODE (type) == POINTER_TYPE)
10154 {
10155 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10156 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10157 TYPE_REF_CAN_ALIAS_ALL (type));
10158 }
10159 else if (TREE_CODE (type) == REFERENCE_TYPE)
10160 {
10161 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10162 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10163 TYPE_REF_CAN_ALIAS_ALL (type));
10164 }
10165 else if (TREE_CODE (type) == ARRAY_TYPE)
10166 {
10167 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10168 outer = build_array_type (inner, TYPE_DOMAIN (type));
10169 }
10170 else if (TREE_CODE (type) == FUNCTION_TYPE)
10171 {
10172 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10173 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10174 }
10175 else if (TREE_CODE (type) == METHOD_TYPE)
10176 {
10177 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10178 /* The build_method_type_directly() routine prepends 'this' to argument list,
10179 so we must compensate by getting rid of it. */
10180 outer
10181 = build_method_type_directly
10182 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10183 inner,
10184 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10185 }
10186 else if (TREE_CODE (type) == OFFSET_TYPE)
10187 {
10188 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10189 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10190 }
10191 else
10192 return bottom;
10193
10194 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10195 TYPE_QUALS (type));
10196 }
10197
10198 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10199 the inner type. */
10200 tree
10201 build_vector_type_for_mode (tree innertype, machine_mode mode)
10202 {
10203 int nunits;
10204
10205 switch (GET_MODE_CLASS (mode))
10206 {
10207 case MODE_VECTOR_INT:
10208 case MODE_VECTOR_FLOAT:
10209 case MODE_VECTOR_FRACT:
10210 case MODE_VECTOR_UFRACT:
10211 case MODE_VECTOR_ACCUM:
10212 case MODE_VECTOR_UACCUM:
10213 nunits = GET_MODE_NUNITS (mode);
10214 break;
10215
10216 case MODE_INT:
10217 /* Check that there are no leftover bits. */
10218 gcc_assert (GET_MODE_BITSIZE (mode)
10219 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10220
10221 nunits = GET_MODE_BITSIZE (mode)
10222 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10223 break;
10224
10225 default:
10226 gcc_unreachable ();
10227 }
10228
10229 return make_vector_type (innertype, nunits, mode);
10230 }
10231
10232 /* Similarly, but takes the inner type and number of units, which must be
10233 a power of two. */
10234
10235 tree
10236 build_vector_type (tree innertype, int nunits)
10237 {
10238 return make_vector_type (innertype, nunits, VOIDmode);
10239 }
10240
10241 /* Build truth vector with specified length and number of units. */
10242
10243 tree
10244 build_truth_vector_type (unsigned nunits, unsigned vector_size)
10245 {
10246 machine_mode mask_mode = targetm.vectorize.get_mask_mode (nunits,
10247 vector_size);
10248
10249 gcc_assert (mask_mode != VOIDmode);
10250
10251 unsigned HOST_WIDE_INT vsize;
10252 if (mask_mode == BLKmode)
10253 vsize = vector_size * BITS_PER_UNIT;
10254 else
10255 vsize = GET_MODE_BITSIZE (mask_mode);
10256
10257 unsigned HOST_WIDE_INT esize = vsize / nunits;
10258 gcc_assert (esize * nunits == vsize);
10259
10260 tree bool_type = build_nonstandard_boolean_type (esize);
10261
10262 return make_vector_type (bool_type, nunits, mask_mode);
10263 }
10264
10265 /* Returns a vector type corresponding to a comparison of VECTYPE. */
10266
10267 tree
10268 build_same_sized_truth_vector_type (tree vectype)
10269 {
10270 if (VECTOR_BOOLEAN_TYPE_P (vectype))
10271 return vectype;
10272
10273 unsigned HOST_WIDE_INT size = GET_MODE_SIZE (TYPE_MODE (vectype));
10274
10275 if (!size)
10276 size = tree_to_uhwi (TYPE_SIZE_UNIT (vectype));
10277
10278 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype), size);
10279 }
10280
10281 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
10282
10283 tree
10284 build_opaque_vector_type (tree innertype, int nunits)
10285 {
10286 tree t = make_vector_type (innertype, nunits, VOIDmode);
10287 tree cand;
10288 /* We always build the non-opaque variant before the opaque one,
10289 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10290 cand = TYPE_NEXT_VARIANT (t);
10291 if (cand
10292 && TYPE_VECTOR_OPAQUE (cand)
10293 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10294 return cand;
10295 /* Othewise build a variant type and make sure to queue it after
10296 the non-opaque type. */
10297 cand = build_distinct_type_copy (t);
10298 TYPE_VECTOR_OPAQUE (cand) = true;
10299 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10300 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10301 TYPE_NEXT_VARIANT (t) = cand;
10302 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10303 return cand;
10304 }
10305
10306
10307 /* Given an initializer INIT, return TRUE if INIT is zero or some
10308 aggregate of zeros. Otherwise return FALSE. */
10309 bool
10310 initializer_zerop (const_tree init)
10311 {
10312 tree elt;
10313
10314 STRIP_NOPS (init);
10315
10316 switch (TREE_CODE (init))
10317 {
10318 case INTEGER_CST:
10319 return integer_zerop (init);
10320
10321 case REAL_CST:
10322 /* ??? Note that this is not correct for C4X float formats. There,
10323 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10324 negative exponent. */
10325 return real_zerop (init)
10326 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
10327
10328 case FIXED_CST:
10329 return fixed_zerop (init);
10330
10331 case COMPLEX_CST:
10332 return integer_zerop (init)
10333 || (real_zerop (init)
10334 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10335 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
10336
10337 case VECTOR_CST:
10338 {
10339 unsigned i;
10340 for (i = 0; i < VECTOR_CST_NELTS (init); ++i)
10341 if (!initializer_zerop (VECTOR_CST_ELT (init, i)))
10342 return false;
10343 return true;
10344 }
10345
10346 case CONSTRUCTOR:
10347 {
10348 unsigned HOST_WIDE_INT idx;
10349
10350 if (TREE_CLOBBER_P (init))
10351 return false;
10352 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10353 if (!initializer_zerop (elt))
10354 return false;
10355 return true;
10356 }
10357
10358 case STRING_CST:
10359 {
10360 int i;
10361
10362 /* We need to loop through all elements to handle cases like
10363 "\0" and "\0foobar". */
10364 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10365 if (TREE_STRING_POINTER (init)[i] != '\0')
10366 return false;
10367
10368 return true;
10369 }
10370
10371 default:
10372 return false;
10373 }
10374 }
10375
10376 /* Check if vector VEC consists of all the equal elements and
10377 that the number of elements corresponds to the type of VEC.
10378 The function returns first element of the vector
10379 or NULL_TREE if the vector is not uniform. */
10380 tree
10381 uniform_vector_p (const_tree vec)
10382 {
10383 tree first, t;
10384 unsigned i;
10385
10386 if (vec == NULL_TREE)
10387 return NULL_TREE;
10388
10389 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10390
10391 if (TREE_CODE (vec) == VECTOR_CST)
10392 {
10393 first = VECTOR_CST_ELT (vec, 0);
10394 for (i = 1; i < VECTOR_CST_NELTS (vec); ++i)
10395 if (!operand_equal_p (first, VECTOR_CST_ELT (vec, i), 0))
10396 return NULL_TREE;
10397
10398 return first;
10399 }
10400
10401 else if (TREE_CODE (vec) == CONSTRUCTOR)
10402 {
10403 first = error_mark_node;
10404
10405 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10406 {
10407 if (i == 0)
10408 {
10409 first = t;
10410 continue;
10411 }
10412 if (!operand_equal_p (first, t, 0))
10413 return NULL_TREE;
10414 }
10415 if (i != TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)))
10416 return NULL_TREE;
10417
10418 return first;
10419 }
10420
10421 return NULL_TREE;
10422 }
10423
10424 /* Build an empty statement at location LOC. */
10425
10426 tree
10427 build_empty_stmt (location_t loc)
10428 {
10429 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10430 SET_EXPR_LOCATION (t, loc);
10431 return t;
10432 }
10433
10434
10435 /* Build an OpenMP clause with code CODE. LOC is the location of the
10436 clause. */
10437
10438 tree
10439 build_omp_clause (location_t loc, enum omp_clause_code code)
10440 {
10441 tree t;
10442 int size, length;
10443
10444 length = omp_clause_num_ops[code];
10445 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10446
10447 record_node_allocation_statistics (OMP_CLAUSE, size);
10448
10449 t = (tree) ggc_internal_alloc (size);
10450 memset (t, 0, size);
10451 TREE_SET_CODE (t, OMP_CLAUSE);
10452 OMP_CLAUSE_SET_CODE (t, code);
10453 OMP_CLAUSE_LOCATION (t) = loc;
10454
10455 return t;
10456 }
10457
10458 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10459 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10460 Except for the CODE and operand count field, other storage for the
10461 object is initialized to zeros. */
10462
10463 tree
10464 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
10465 {
10466 tree t;
10467 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10468
10469 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10470 gcc_assert (len >= 1);
10471
10472 record_node_allocation_statistics (code, length);
10473
10474 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10475
10476 TREE_SET_CODE (t, code);
10477
10478 /* Can't use TREE_OPERAND to store the length because if checking is
10479 enabled, it will try to check the length before we store it. :-P */
10480 t->exp.operands[0] = build_int_cst (sizetype, len);
10481
10482 return t;
10483 }
10484
10485 /* Helper function for build_call_* functions; build a CALL_EXPR with
10486 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10487 the argument slots. */
10488
10489 static tree
10490 build_call_1 (tree return_type, tree fn, int nargs)
10491 {
10492 tree t;
10493
10494 t = build_vl_exp (CALL_EXPR, nargs + 3);
10495 TREE_TYPE (t) = return_type;
10496 CALL_EXPR_FN (t) = fn;
10497 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10498
10499 return t;
10500 }
10501
10502 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10503 FN and a null static chain slot. NARGS is the number of call arguments
10504 which are specified as "..." arguments. */
10505
10506 tree
10507 build_call_nary (tree return_type, tree fn, int nargs, ...)
10508 {
10509 tree ret;
10510 va_list args;
10511 va_start (args, nargs);
10512 ret = build_call_valist (return_type, fn, nargs, args);
10513 va_end (args);
10514 return ret;
10515 }
10516
10517 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10518 FN and a null static chain slot. NARGS is the number of call arguments
10519 which are specified as a va_list ARGS. */
10520
10521 tree
10522 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10523 {
10524 tree t;
10525 int i;
10526
10527 t = build_call_1 (return_type, fn, nargs);
10528 for (i = 0; i < nargs; i++)
10529 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10530 process_call_operands (t);
10531 return t;
10532 }
10533
10534 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10535 FN and a null static chain slot. NARGS is the number of call arguments
10536 which are specified as a tree array ARGS. */
10537
10538 tree
10539 build_call_array_loc (location_t loc, tree return_type, tree fn,
10540 int nargs, const tree *args)
10541 {
10542 tree t;
10543 int i;
10544
10545 t = build_call_1 (return_type, fn, nargs);
10546 for (i = 0; i < nargs; i++)
10547 CALL_EXPR_ARG (t, i) = args[i];
10548 process_call_operands (t);
10549 SET_EXPR_LOCATION (t, loc);
10550 return t;
10551 }
10552
10553 /* Like build_call_array, but takes a vec. */
10554
10555 tree
10556 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10557 {
10558 tree ret, t;
10559 unsigned int ix;
10560
10561 ret = build_call_1 (return_type, fn, vec_safe_length (args));
10562 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10563 CALL_EXPR_ARG (ret, ix) = t;
10564 process_call_operands (ret);
10565 return ret;
10566 }
10567
10568 /* Conveniently construct a function call expression. FNDECL names the
10569 function to be called and N arguments are passed in the array
10570 ARGARRAY. */
10571
10572 tree
10573 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
10574 {
10575 tree fntype = TREE_TYPE (fndecl);
10576 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
10577
10578 return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
10579 }
10580
10581 /* Conveniently construct a function call expression. FNDECL names the
10582 function to be called and the arguments are passed in the vector
10583 VEC. */
10584
10585 tree
10586 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
10587 {
10588 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
10589 vec_safe_address (vec));
10590 }
10591
10592
10593 /* Conveniently construct a function call expression. FNDECL names the
10594 function to be called, N is the number of arguments, and the "..."
10595 parameters are the argument expressions. */
10596
10597 tree
10598 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
10599 {
10600 va_list ap;
10601 tree *argarray = XALLOCAVEC (tree, n);
10602 int i;
10603
10604 va_start (ap, n);
10605 for (i = 0; i < n; i++)
10606 argarray[i] = va_arg (ap, tree);
10607 va_end (ap);
10608 return build_call_expr_loc_array (loc, fndecl, n, argarray);
10609 }
10610
10611 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
10612 varargs macros aren't supported by all bootstrap compilers. */
10613
10614 tree
10615 build_call_expr (tree fndecl, int n, ...)
10616 {
10617 va_list ap;
10618 tree *argarray = XALLOCAVEC (tree, n);
10619 int i;
10620
10621 va_start (ap, n);
10622 for (i = 0; i < n; i++)
10623 argarray[i] = va_arg (ap, tree);
10624 va_end (ap);
10625 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
10626 }
10627
10628 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
10629 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
10630 It will get gimplified later into an ordinary internal function. */
10631
10632 tree
10633 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
10634 tree type, int n, const tree *args)
10635 {
10636 tree t = build_call_1 (type, NULL_TREE, n);
10637 for (int i = 0; i < n; ++i)
10638 CALL_EXPR_ARG (t, i) = args[i];
10639 SET_EXPR_LOCATION (t, loc);
10640 CALL_EXPR_IFN (t) = ifn;
10641 return t;
10642 }
10643
10644 /* Build internal call expression. This is just like CALL_EXPR, except
10645 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
10646 internal function. */
10647
10648 tree
10649 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
10650 tree type, int n, ...)
10651 {
10652 va_list ap;
10653 tree *argarray = XALLOCAVEC (tree, n);
10654 int i;
10655
10656 va_start (ap, n);
10657 for (i = 0; i < n; i++)
10658 argarray[i] = va_arg (ap, tree);
10659 va_end (ap);
10660 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
10661 }
10662
10663 /* Return a function call to FN, if the target is guaranteed to support it,
10664 or null otherwise.
10665
10666 N is the number of arguments, passed in the "...", and TYPE is the
10667 type of the return value. */
10668
10669 tree
10670 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
10671 int n, ...)
10672 {
10673 va_list ap;
10674 tree *argarray = XALLOCAVEC (tree, n);
10675 int i;
10676
10677 va_start (ap, n);
10678 for (i = 0; i < n; i++)
10679 argarray[i] = va_arg (ap, tree);
10680 va_end (ap);
10681 if (internal_fn_p (fn))
10682 {
10683 internal_fn ifn = as_internal_fn (fn);
10684 if (direct_internal_fn_p (ifn))
10685 {
10686 tree_pair types = direct_internal_fn_types (ifn, type, argarray);
10687 if (!direct_internal_fn_supported_p (ifn, types,
10688 OPTIMIZE_FOR_BOTH))
10689 return NULL_TREE;
10690 }
10691 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
10692 }
10693 else
10694 {
10695 tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
10696 if (!fndecl)
10697 return NULL_TREE;
10698 return build_call_expr_loc_array (loc, fndecl, n, argarray);
10699 }
10700 }
10701
10702 /* Create a new constant string literal and return a char* pointer to it.
10703 The STRING_CST value is the LEN characters at STR. */
10704 tree
10705 build_string_literal (int len, const char *str)
10706 {
10707 tree t, elem, index, type;
10708
10709 t = build_string (len, str);
10710 elem = build_type_variant (char_type_node, 1, 0);
10711 index = build_index_type (size_int (len - 1));
10712 type = build_array_type (elem, index);
10713 TREE_TYPE (t) = type;
10714 TREE_CONSTANT (t) = 1;
10715 TREE_READONLY (t) = 1;
10716 TREE_STATIC (t) = 1;
10717
10718 type = build_pointer_type (elem);
10719 t = build1 (ADDR_EXPR, type,
10720 build4 (ARRAY_REF, elem,
10721 t, integer_zero_node, NULL_TREE, NULL_TREE));
10722 return t;
10723 }
10724
10725
10726
10727 /* Return true if T (assumed to be a DECL) must be assigned a memory
10728 location. */
10729
10730 bool
10731 needs_to_live_in_memory (const_tree t)
10732 {
10733 return (TREE_ADDRESSABLE (t)
10734 || is_global_var (t)
10735 || (TREE_CODE (t) == RESULT_DECL
10736 && !DECL_BY_REFERENCE (t)
10737 && aggregate_value_p (t, current_function_decl)));
10738 }
10739
10740 /* Return value of a constant X and sign-extend it. */
10741
10742 HOST_WIDE_INT
10743 int_cst_value (const_tree x)
10744 {
10745 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10746 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
10747
10748 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10749 gcc_assert (cst_and_fits_in_hwi (x));
10750
10751 if (bits < HOST_BITS_PER_WIDE_INT)
10752 {
10753 bool negative = ((val >> (bits - 1)) & 1) != 0;
10754 if (negative)
10755 val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
10756 else
10757 val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
10758 }
10759
10760 return val;
10761 }
10762
10763 /* If TYPE is an integral or pointer type, return an integer type with
10764 the same precision which is unsigned iff UNSIGNEDP is true, or itself
10765 if TYPE is already an integer type of signedness UNSIGNEDP. */
10766
10767 tree
10768 signed_or_unsigned_type_for (int unsignedp, tree type)
10769 {
10770 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
10771 return type;
10772
10773 if (TREE_CODE (type) == VECTOR_TYPE)
10774 {
10775 tree inner = TREE_TYPE (type);
10776 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
10777 if (!inner2)
10778 return NULL_TREE;
10779 if (inner == inner2)
10780 return type;
10781 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
10782 }
10783
10784 if (!INTEGRAL_TYPE_P (type)
10785 && !POINTER_TYPE_P (type)
10786 && TREE_CODE (type) != OFFSET_TYPE)
10787 return NULL_TREE;
10788
10789 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
10790 }
10791
10792 /* If TYPE is an integral or pointer type, return an integer type with
10793 the same precision which is unsigned, or itself if TYPE is already an
10794 unsigned integer type. */
10795
10796 tree
10797 unsigned_type_for (tree type)
10798 {
10799 return signed_or_unsigned_type_for (1, type);
10800 }
10801
10802 /* If TYPE is an integral or pointer type, return an integer type with
10803 the same precision which is signed, or itself if TYPE is already a
10804 signed integer type. */
10805
10806 tree
10807 signed_type_for (tree type)
10808 {
10809 return signed_or_unsigned_type_for (0, type);
10810 }
10811
10812 /* If TYPE is a vector type, return a signed integer vector type with the
10813 same width and number of subparts. Otherwise return boolean_type_node. */
10814
10815 tree
10816 truth_type_for (tree type)
10817 {
10818 if (TREE_CODE (type) == VECTOR_TYPE)
10819 {
10820 if (VECTOR_BOOLEAN_TYPE_P (type))
10821 return type;
10822 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (type),
10823 GET_MODE_SIZE (TYPE_MODE (type)));
10824 }
10825 else
10826 return boolean_type_node;
10827 }
10828
10829 /* Returns the largest value obtainable by casting something in INNER type to
10830 OUTER type. */
10831
10832 tree
10833 upper_bound_in_type (tree outer, tree inner)
10834 {
10835 unsigned int det = 0;
10836 unsigned oprec = TYPE_PRECISION (outer);
10837 unsigned iprec = TYPE_PRECISION (inner);
10838 unsigned prec;
10839
10840 /* Compute a unique number for every combination. */
10841 det |= (oprec > iprec) ? 4 : 0;
10842 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10843 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10844
10845 /* Determine the exponent to use. */
10846 switch (det)
10847 {
10848 case 0:
10849 case 1:
10850 /* oprec <= iprec, outer: signed, inner: don't care. */
10851 prec = oprec - 1;
10852 break;
10853 case 2:
10854 case 3:
10855 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10856 prec = oprec;
10857 break;
10858 case 4:
10859 /* oprec > iprec, outer: signed, inner: signed. */
10860 prec = iprec - 1;
10861 break;
10862 case 5:
10863 /* oprec > iprec, outer: signed, inner: unsigned. */
10864 prec = iprec;
10865 break;
10866 case 6:
10867 /* oprec > iprec, outer: unsigned, inner: signed. */
10868 prec = oprec;
10869 break;
10870 case 7:
10871 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10872 prec = iprec;
10873 break;
10874 default:
10875 gcc_unreachable ();
10876 }
10877
10878 return wide_int_to_tree (outer,
10879 wi::mask (prec, false, TYPE_PRECISION (outer)));
10880 }
10881
10882 /* Returns the smallest value obtainable by casting something in INNER type to
10883 OUTER type. */
10884
10885 tree
10886 lower_bound_in_type (tree outer, tree inner)
10887 {
10888 unsigned oprec = TYPE_PRECISION (outer);
10889 unsigned iprec = TYPE_PRECISION (inner);
10890
10891 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10892 and obtain 0. */
10893 if (TYPE_UNSIGNED (outer)
10894 /* If we are widening something of an unsigned type, OUTER type
10895 contains all values of INNER type. In particular, both INNER
10896 and OUTER types have zero in common. */
10897 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10898 return build_int_cst (outer, 0);
10899 else
10900 {
10901 /* If we are widening a signed type to another signed type, we
10902 want to obtain -2^^(iprec-1). If we are keeping the
10903 precision or narrowing to a signed type, we want to obtain
10904 -2^(oprec-1). */
10905 unsigned prec = oprec > iprec ? iprec : oprec;
10906 return wide_int_to_tree (outer,
10907 wi::mask (prec - 1, true,
10908 TYPE_PRECISION (outer)));
10909 }
10910 }
10911
10912 /* Return nonzero if two operands that are suitable for PHI nodes are
10913 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10914 SSA_NAME or invariant. Note that this is strictly an optimization.
10915 That is, callers of this function can directly call operand_equal_p
10916 and get the same result, only slower. */
10917
10918 int
10919 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10920 {
10921 if (arg0 == arg1)
10922 return 1;
10923 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10924 return 0;
10925 return operand_equal_p (arg0, arg1, 0);
10926 }
10927
10928 /* Returns number of zeros at the end of binary representation of X. */
10929
10930 tree
10931 num_ending_zeros (const_tree x)
10932 {
10933 return build_int_cst (TREE_TYPE (x), wi::ctz (x));
10934 }
10935
10936
10937 #define WALK_SUBTREE(NODE) \
10938 do \
10939 { \
10940 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10941 if (result) \
10942 return result; \
10943 } \
10944 while (0)
10945
10946 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10947 be walked whenever a type is seen in the tree. Rest of operands and return
10948 value are as for walk_tree. */
10949
10950 static tree
10951 walk_type_fields (tree type, walk_tree_fn func, void *data,
10952 hash_set<tree> *pset, walk_tree_lh lh)
10953 {
10954 tree result = NULL_TREE;
10955
10956 switch (TREE_CODE (type))
10957 {
10958 case POINTER_TYPE:
10959 case REFERENCE_TYPE:
10960 case VECTOR_TYPE:
10961 /* We have to worry about mutually recursive pointers. These can't
10962 be written in C. They can in Ada. It's pathological, but
10963 there's an ACATS test (c38102a) that checks it. Deal with this
10964 by checking if we're pointing to another pointer, that one
10965 points to another pointer, that one does too, and we have no htab.
10966 If so, get a hash table. We check three levels deep to avoid
10967 the cost of the hash table if we don't need one. */
10968 if (POINTER_TYPE_P (TREE_TYPE (type))
10969 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10970 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10971 && !pset)
10972 {
10973 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10974 func, data);
10975 if (result)
10976 return result;
10977
10978 break;
10979 }
10980
10981 /* fall through */
10982
10983 case COMPLEX_TYPE:
10984 WALK_SUBTREE (TREE_TYPE (type));
10985 break;
10986
10987 case METHOD_TYPE:
10988 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10989
10990 /* Fall through. */
10991
10992 case FUNCTION_TYPE:
10993 WALK_SUBTREE (TREE_TYPE (type));
10994 {
10995 tree arg;
10996
10997 /* We never want to walk into default arguments. */
10998 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10999 WALK_SUBTREE (TREE_VALUE (arg));
11000 }
11001 break;
11002
11003 case ARRAY_TYPE:
11004 /* Don't follow this nodes's type if a pointer for fear that
11005 we'll have infinite recursion. If we have a PSET, then we
11006 need not fear. */
11007 if (pset
11008 || (!POINTER_TYPE_P (TREE_TYPE (type))
11009 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
11010 WALK_SUBTREE (TREE_TYPE (type));
11011 WALK_SUBTREE (TYPE_DOMAIN (type));
11012 break;
11013
11014 case OFFSET_TYPE:
11015 WALK_SUBTREE (TREE_TYPE (type));
11016 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
11017 break;
11018
11019 default:
11020 break;
11021 }
11022
11023 return NULL_TREE;
11024 }
11025
11026 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
11027 called with the DATA and the address of each sub-tree. If FUNC returns a
11028 non-NULL value, the traversal is stopped, and the value returned by FUNC
11029 is returned. If PSET is non-NULL it is used to record the nodes visited,
11030 and to avoid visiting a node more than once. */
11031
11032 tree
11033 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
11034 hash_set<tree> *pset, walk_tree_lh lh)
11035 {
11036 enum tree_code code;
11037 int walk_subtrees;
11038 tree result;
11039
11040 #define WALK_SUBTREE_TAIL(NODE) \
11041 do \
11042 { \
11043 tp = & (NODE); \
11044 goto tail_recurse; \
11045 } \
11046 while (0)
11047
11048 tail_recurse:
11049 /* Skip empty subtrees. */
11050 if (!*tp)
11051 return NULL_TREE;
11052
11053 /* Don't walk the same tree twice, if the user has requested
11054 that we avoid doing so. */
11055 if (pset && pset->add (*tp))
11056 return NULL_TREE;
11057
11058 /* Call the function. */
11059 walk_subtrees = 1;
11060 result = (*func) (tp, &walk_subtrees, data);
11061
11062 /* If we found something, return it. */
11063 if (result)
11064 return result;
11065
11066 code = TREE_CODE (*tp);
11067
11068 /* Even if we didn't, FUNC may have decided that there was nothing
11069 interesting below this point in the tree. */
11070 if (!walk_subtrees)
11071 {
11072 /* But we still need to check our siblings. */
11073 if (code == TREE_LIST)
11074 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11075 else if (code == OMP_CLAUSE)
11076 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11077 else
11078 return NULL_TREE;
11079 }
11080
11081 if (lh)
11082 {
11083 result = (*lh) (tp, &walk_subtrees, func, data, pset);
11084 if (result || !walk_subtrees)
11085 return result;
11086 }
11087
11088 switch (code)
11089 {
11090 case ERROR_MARK:
11091 case IDENTIFIER_NODE:
11092 case INTEGER_CST:
11093 case REAL_CST:
11094 case FIXED_CST:
11095 case VECTOR_CST:
11096 case STRING_CST:
11097 case BLOCK:
11098 case PLACEHOLDER_EXPR:
11099 case SSA_NAME:
11100 case FIELD_DECL:
11101 case RESULT_DECL:
11102 /* None of these have subtrees other than those already walked
11103 above. */
11104 break;
11105
11106 case TREE_LIST:
11107 WALK_SUBTREE (TREE_VALUE (*tp));
11108 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11109 break;
11110
11111 case TREE_VEC:
11112 {
11113 int len = TREE_VEC_LENGTH (*tp);
11114
11115 if (len == 0)
11116 break;
11117
11118 /* Walk all elements but the first. */
11119 while (--len)
11120 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
11121
11122 /* Now walk the first one as a tail call. */
11123 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
11124 }
11125
11126 case COMPLEX_CST:
11127 WALK_SUBTREE (TREE_REALPART (*tp));
11128 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
11129
11130 case CONSTRUCTOR:
11131 {
11132 unsigned HOST_WIDE_INT idx;
11133 constructor_elt *ce;
11134
11135 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
11136 idx++)
11137 WALK_SUBTREE (ce->value);
11138 }
11139 break;
11140
11141 case SAVE_EXPR:
11142 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
11143
11144 case BIND_EXPR:
11145 {
11146 tree decl;
11147 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11148 {
11149 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11150 into declarations that are just mentioned, rather than
11151 declared; they don't really belong to this part of the tree.
11152 And, we can see cycles: the initializer for a declaration
11153 can refer to the declaration itself. */
11154 WALK_SUBTREE (DECL_INITIAL (decl));
11155 WALK_SUBTREE (DECL_SIZE (decl));
11156 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11157 }
11158 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11159 }
11160
11161 case STATEMENT_LIST:
11162 {
11163 tree_stmt_iterator i;
11164 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11165 WALK_SUBTREE (*tsi_stmt_ptr (i));
11166 }
11167 break;
11168
11169 case OMP_CLAUSE:
11170 switch (OMP_CLAUSE_CODE (*tp))
11171 {
11172 case OMP_CLAUSE_GANG:
11173 case OMP_CLAUSE__GRIDDIM_:
11174 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11175 /* FALLTHRU */
11176
11177 case OMP_CLAUSE_ASYNC:
11178 case OMP_CLAUSE_WAIT:
11179 case OMP_CLAUSE_WORKER:
11180 case OMP_CLAUSE_VECTOR:
11181 case OMP_CLAUSE_NUM_GANGS:
11182 case OMP_CLAUSE_NUM_WORKERS:
11183 case OMP_CLAUSE_VECTOR_LENGTH:
11184 case OMP_CLAUSE_PRIVATE:
11185 case OMP_CLAUSE_SHARED:
11186 case OMP_CLAUSE_FIRSTPRIVATE:
11187 case OMP_CLAUSE_COPYIN:
11188 case OMP_CLAUSE_COPYPRIVATE:
11189 case OMP_CLAUSE_FINAL:
11190 case OMP_CLAUSE_IF:
11191 case OMP_CLAUSE_NUM_THREADS:
11192 case OMP_CLAUSE_SCHEDULE:
11193 case OMP_CLAUSE_UNIFORM:
11194 case OMP_CLAUSE_DEPEND:
11195 case OMP_CLAUSE_NUM_TEAMS:
11196 case OMP_CLAUSE_THREAD_LIMIT:
11197 case OMP_CLAUSE_DEVICE:
11198 case OMP_CLAUSE_DIST_SCHEDULE:
11199 case OMP_CLAUSE_SAFELEN:
11200 case OMP_CLAUSE_SIMDLEN:
11201 case OMP_CLAUSE_ORDERED:
11202 case OMP_CLAUSE_PRIORITY:
11203 case OMP_CLAUSE_GRAINSIZE:
11204 case OMP_CLAUSE_NUM_TASKS:
11205 case OMP_CLAUSE_HINT:
11206 case OMP_CLAUSE_TO_DECLARE:
11207 case OMP_CLAUSE_LINK:
11208 case OMP_CLAUSE_USE_DEVICE_PTR:
11209 case OMP_CLAUSE_IS_DEVICE_PTR:
11210 case OMP_CLAUSE__LOOPTEMP_:
11211 case OMP_CLAUSE__SIMDUID_:
11212 case OMP_CLAUSE__CILK_FOR_COUNT_:
11213 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11214 /* FALLTHRU */
11215
11216 case OMP_CLAUSE_INDEPENDENT:
11217 case OMP_CLAUSE_NOWAIT:
11218 case OMP_CLAUSE_DEFAULT:
11219 case OMP_CLAUSE_UNTIED:
11220 case OMP_CLAUSE_MERGEABLE:
11221 case OMP_CLAUSE_PROC_BIND:
11222 case OMP_CLAUSE_INBRANCH:
11223 case OMP_CLAUSE_NOTINBRANCH:
11224 case OMP_CLAUSE_FOR:
11225 case OMP_CLAUSE_PARALLEL:
11226 case OMP_CLAUSE_SECTIONS:
11227 case OMP_CLAUSE_TASKGROUP:
11228 case OMP_CLAUSE_NOGROUP:
11229 case OMP_CLAUSE_THREADS:
11230 case OMP_CLAUSE_SIMD:
11231 case OMP_CLAUSE_DEFAULTMAP:
11232 case OMP_CLAUSE_AUTO:
11233 case OMP_CLAUSE_SEQ:
11234 case OMP_CLAUSE_TILE:
11235 case OMP_CLAUSE__SIMT_:
11236 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11237
11238 case OMP_CLAUSE_LASTPRIVATE:
11239 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11240 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11241 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11242
11243 case OMP_CLAUSE_COLLAPSE:
11244 {
11245 int i;
11246 for (i = 0; i < 3; i++)
11247 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11248 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11249 }
11250
11251 case OMP_CLAUSE_LINEAR:
11252 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11253 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
11254 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
11255 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11256
11257 case OMP_CLAUSE_ALIGNED:
11258 case OMP_CLAUSE_FROM:
11259 case OMP_CLAUSE_TO:
11260 case OMP_CLAUSE_MAP:
11261 case OMP_CLAUSE__CACHE_:
11262 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11263 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11264 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11265
11266 case OMP_CLAUSE_REDUCTION:
11267 {
11268 int i;
11269 for (i = 0; i < 5; i++)
11270 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11271 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11272 }
11273
11274 default:
11275 gcc_unreachable ();
11276 }
11277 break;
11278
11279 case TARGET_EXPR:
11280 {
11281 int i, len;
11282
11283 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11284 But, we only want to walk once. */
11285 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11286 for (i = 0; i < len; ++i)
11287 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11288 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11289 }
11290
11291 case DECL_EXPR:
11292 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11293 defining. We only want to walk into these fields of a type in this
11294 case and not in the general case of a mere reference to the type.
11295
11296 The criterion is as follows: if the field can be an expression, it
11297 must be walked only here. This should be in keeping with the fields
11298 that are directly gimplified in gimplify_type_sizes in order for the
11299 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11300 variable-sized types.
11301
11302 Note that DECLs get walked as part of processing the BIND_EXPR. */
11303 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11304 {
11305 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11306 if (TREE_CODE (*type_p) == ERROR_MARK)
11307 return NULL_TREE;
11308
11309 /* Call the function for the type. See if it returns anything or
11310 doesn't want us to continue. If we are to continue, walk both
11311 the normal fields and those for the declaration case. */
11312 result = (*func) (type_p, &walk_subtrees, data);
11313 if (result || !walk_subtrees)
11314 return result;
11315
11316 /* But do not walk a pointed-to type since it may itself need to
11317 be walked in the declaration case if it isn't anonymous. */
11318 if (!POINTER_TYPE_P (*type_p))
11319 {
11320 result = walk_type_fields (*type_p, func, data, pset, lh);
11321 if (result)
11322 return result;
11323 }
11324
11325 /* If this is a record type, also walk the fields. */
11326 if (RECORD_OR_UNION_TYPE_P (*type_p))
11327 {
11328 tree field;
11329
11330 for (field = TYPE_FIELDS (*type_p); field;
11331 field = DECL_CHAIN (field))
11332 {
11333 /* We'd like to look at the type of the field, but we can
11334 easily get infinite recursion. So assume it's pointed
11335 to elsewhere in the tree. Also, ignore things that
11336 aren't fields. */
11337 if (TREE_CODE (field) != FIELD_DECL)
11338 continue;
11339
11340 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11341 WALK_SUBTREE (DECL_SIZE (field));
11342 WALK_SUBTREE (DECL_SIZE_UNIT (field));
11343 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
11344 WALK_SUBTREE (DECL_QUALIFIER (field));
11345 }
11346 }
11347
11348 /* Same for scalar types. */
11349 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
11350 || TREE_CODE (*type_p) == ENUMERAL_TYPE
11351 || TREE_CODE (*type_p) == INTEGER_TYPE
11352 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
11353 || TREE_CODE (*type_p) == REAL_TYPE)
11354 {
11355 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
11356 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
11357 }
11358
11359 WALK_SUBTREE (TYPE_SIZE (*type_p));
11360 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
11361 }
11362 /* FALLTHRU */
11363
11364 default:
11365 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11366 {
11367 int i, len;
11368
11369 /* Walk over all the sub-trees of this operand. */
11370 len = TREE_OPERAND_LENGTH (*tp);
11371
11372 /* Go through the subtrees. We need to do this in forward order so
11373 that the scope of a FOR_EXPR is handled properly. */
11374 if (len)
11375 {
11376 for (i = 0; i < len - 1; ++i)
11377 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11378 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
11379 }
11380 }
11381 /* If this is a type, walk the needed fields in the type. */
11382 else if (TYPE_P (*tp))
11383 return walk_type_fields (*tp, func, data, pset, lh);
11384 break;
11385 }
11386
11387 /* We didn't find what we were looking for. */
11388 return NULL_TREE;
11389
11390 #undef WALK_SUBTREE_TAIL
11391 }
11392 #undef WALK_SUBTREE
11393
11394 /* Like walk_tree, but does not walk duplicate nodes more than once. */
11395
11396 tree
11397 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11398 walk_tree_lh lh)
11399 {
11400 tree result;
11401
11402 hash_set<tree> pset;
11403 result = walk_tree_1 (tp, func, data, &pset, lh);
11404 return result;
11405 }
11406
11407
11408 tree
11409 tree_block (tree t)
11410 {
11411 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11412
11413 if (IS_EXPR_CODE_CLASS (c))
11414 return LOCATION_BLOCK (t->exp.locus);
11415 gcc_unreachable ();
11416 return NULL;
11417 }
11418
11419 void
11420 tree_set_block (tree t, tree b)
11421 {
11422 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11423
11424 if (IS_EXPR_CODE_CLASS (c))
11425 {
11426 t->exp.locus = set_block (t->exp.locus, b);
11427 }
11428 else
11429 gcc_unreachable ();
11430 }
11431
11432 /* Create a nameless artificial label and put it in the current
11433 function context. The label has a location of LOC. Returns the
11434 newly created label. */
11435
11436 tree
11437 create_artificial_label (location_t loc)
11438 {
11439 tree lab = build_decl (loc,
11440 LABEL_DECL, NULL_TREE, void_type_node);
11441
11442 DECL_ARTIFICIAL (lab) = 1;
11443 DECL_IGNORED_P (lab) = 1;
11444 DECL_CONTEXT (lab) = current_function_decl;
11445 return lab;
11446 }
11447
11448 /* Given a tree, try to return a useful variable name that we can use
11449 to prefix a temporary that is being assigned the value of the tree.
11450 I.E. given <temp> = &A, return A. */
11451
11452 const char *
11453 get_name (tree t)
11454 {
11455 tree stripped_decl;
11456
11457 stripped_decl = t;
11458 STRIP_NOPS (stripped_decl);
11459 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11460 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11461 else if (TREE_CODE (stripped_decl) == SSA_NAME)
11462 {
11463 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11464 if (!name)
11465 return NULL;
11466 return IDENTIFIER_POINTER (name);
11467 }
11468 else
11469 {
11470 switch (TREE_CODE (stripped_decl))
11471 {
11472 case ADDR_EXPR:
11473 return get_name (TREE_OPERAND (stripped_decl, 0));
11474 default:
11475 return NULL;
11476 }
11477 }
11478 }
11479
11480 /* Return true if TYPE has a variable argument list. */
11481
11482 bool
11483 stdarg_p (const_tree fntype)
11484 {
11485 function_args_iterator args_iter;
11486 tree n = NULL_TREE, t;
11487
11488 if (!fntype)
11489 return false;
11490
11491 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
11492 {
11493 n = t;
11494 }
11495
11496 return n != NULL_TREE && n != void_type_node;
11497 }
11498
11499 /* Return true if TYPE has a prototype. */
11500
11501 bool
11502 prototype_p (const_tree fntype)
11503 {
11504 tree t;
11505
11506 gcc_assert (fntype != NULL_TREE);
11507
11508 t = TYPE_ARG_TYPES (fntype);
11509 return (t != NULL_TREE);
11510 }
11511
11512 /* If BLOCK is inlined from an __attribute__((__artificial__))
11513 routine, return pointer to location from where it has been
11514 called. */
11515 location_t *
11516 block_nonartificial_location (tree block)
11517 {
11518 location_t *ret = NULL;
11519
11520 while (block && TREE_CODE (block) == BLOCK
11521 && BLOCK_ABSTRACT_ORIGIN (block))
11522 {
11523 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11524
11525 while (TREE_CODE (ao) == BLOCK
11526 && BLOCK_ABSTRACT_ORIGIN (ao)
11527 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11528 ao = BLOCK_ABSTRACT_ORIGIN (ao);
11529
11530 if (TREE_CODE (ao) == FUNCTION_DECL)
11531 {
11532 /* If AO is an artificial inline, point RET to the
11533 call site locus at which it has been inlined and continue
11534 the loop, in case AO's caller is also an artificial
11535 inline. */
11536 if (DECL_DECLARED_INLINE_P (ao)
11537 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11538 ret = &BLOCK_SOURCE_LOCATION (block);
11539 else
11540 break;
11541 }
11542 else if (TREE_CODE (ao) != BLOCK)
11543 break;
11544
11545 block = BLOCK_SUPERCONTEXT (block);
11546 }
11547 return ret;
11548 }
11549
11550
11551 /* If EXP is inlined from an __attribute__((__artificial__))
11552 function, return the location of the original call expression. */
11553
11554 location_t
11555 tree_nonartificial_location (tree exp)
11556 {
11557 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11558
11559 if (loc)
11560 return *loc;
11561 else
11562 return EXPR_LOCATION (exp);
11563 }
11564
11565
11566 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11567 nodes. */
11568
11569 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
11570
11571 hashval_t
11572 cl_option_hasher::hash (tree x)
11573 {
11574 const_tree const t = x;
11575 const char *p;
11576 size_t i;
11577 size_t len = 0;
11578 hashval_t hash = 0;
11579
11580 if (TREE_CODE (t) == OPTIMIZATION_NODE)
11581 {
11582 p = (const char *)TREE_OPTIMIZATION (t);
11583 len = sizeof (struct cl_optimization);
11584 }
11585
11586 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11587 return cl_target_option_hash (TREE_TARGET_OPTION (t));
11588
11589 else
11590 gcc_unreachable ();
11591
11592 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11593 something else. */
11594 for (i = 0; i < len; i++)
11595 if (p[i])
11596 hash = (hash << 4) ^ ((i << 2) | p[i]);
11597
11598 return hash;
11599 }
11600
11601 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11602 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11603 same. */
11604
11605 bool
11606 cl_option_hasher::equal (tree x, tree y)
11607 {
11608 const_tree const xt = x;
11609 const_tree const yt = y;
11610 const char *xp;
11611 const char *yp;
11612 size_t len;
11613
11614 if (TREE_CODE (xt) != TREE_CODE (yt))
11615 return 0;
11616
11617 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11618 {
11619 xp = (const char *)TREE_OPTIMIZATION (xt);
11620 yp = (const char *)TREE_OPTIMIZATION (yt);
11621 len = sizeof (struct cl_optimization);
11622 }
11623
11624 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11625 {
11626 return cl_target_option_eq (TREE_TARGET_OPTION (xt),
11627 TREE_TARGET_OPTION (yt));
11628 }
11629
11630 else
11631 gcc_unreachable ();
11632
11633 return (memcmp (xp, yp, len) == 0);
11634 }
11635
11636 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
11637
11638 tree
11639 build_optimization_node (struct gcc_options *opts)
11640 {
11641 tree t;
11642
11643 /* Use the cache of optimization nodes. */
11644
11645 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11646 opts);
11647
11648 tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
11649 t = *slot;
11650 if (!t)
11651 {
11652 /* Insert this one into the hash table. */
11653 t = cl_optimization_node;
11654 *slot = t;
11655
11656 /* Make a new node for next time round. */
11657 cl_optimization_node = make_node (OPTIMIZATION_NODE);
11658 }
11659
11660 return t;
11661 }
11662
11663 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
11664
11665 tree
11666 build_target_option_node (struct gcc_options *opts)
11667 {
11668 tree t;
11669
11670 /* Use the cache of optimization nodes. */
11671
11672 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
11673 opts);
11674
11675 tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
11676 t = *slot;
11677 if (!t)
11678 {
11679 /* Insert this one into the hash table. */
11680 t = cl_target_option_node;
11681 *slot = t;
11682
11683 /* Make a new node for next time round. */
11684 cl_target_option_node = make_node (TARGET_OPTION_NODE);
11685 }
11686
11687 return t;
11688 }
11689
11690 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
11691 so that they aren't saved during PCH writing. */
11692
11693 void
11694 prepare_target_option_nodes_for_pch (void)
11695 {
11696 hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
11697 for (; iter != cl_option_hash_table->end (); ++iter)
11698 if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
11699 TREE_TARGET_GLOBALS (*iter) = NULL;
11700 }
11701
11702 /* Determine the "ultimate origin" of a block. The block may be an inlined
11703 instance of an inlined instance of a block which is local to an inline
11704 function, so we have to trace all of the way back through the origin chain
11705 to find out what sort of node actually served as the original seed for the
11706 given block. */
11707
11708 tree
11709 block_ultimate_origin (const_tree block)
11710 {
11711 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
11712
11713 /* BLOCK_ABSTRACT_ORIGIN can point to itself; ignore that if
11714 we're trying to output the abstract instance of this function. */
11715 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
11716 return NULL_TREE;
11717
11718 if (immediate_origin == NULL_TREE)
11719 return NULL_TREE;
11720 else
11721 {
11722 tree ret_val;
11723 tree lookahead = immediate_origin;
11724
11725 do
11726 {
11727 ret_val = lookahead;
11728 lookahead = (TREE_CODE (ret_val) == BLOCK
11729 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
11730 }
11731 while (lookahead != NULL && lookahead != ret_val);
11732
11733 /* The block's abstract origin chain may not be the *ultimate* origin of
11734 the block. It could lead to a DECL that has an abstract origin set.
11735 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
11736 will give us if it has one). Note that DECL's abstract origins are
11737 supposed to be the most distant ancestor (or so decl_ultimate_origin
11738 claims), so we don't need to loop following the DECL origins. */
11739 if (DECL_P (ret_val))
11740 return DECL_ORIGIN (ret_val);
11741
11742 return ret_val;
11743 }
11744 }
11745
11746 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
11747 no instruction. */
11748
11749 bool
11750 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
11751 {
11752 /* Do not strip casts into or out of differing address spaces. */
11753 if (POINTER_TYPE_P (outer_type)
11754 && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
11755 {
11756 if (!POINTER_TYPE_P (inner_type)
11757 || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
11758 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
11759 return false;
11760 }
11761 else if (POINTER_TYPE_P (inner_type)
11762 && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
11763 {
11764 /* We already know that outer_type is not a pointer with
11765 a non-generic address space. */
11766 return false;
11767 }
11768
11769 /* Use precision rather then machine mode when we can, which gives
11770 the correct answer even for submode (bit-field) types. */
11771 if ((INTEGRAL_TYPE_P (outer_type)
11772 || POINTER_TYPE_P (outer_type)
11773 || TREE_CODE (outer_type) == OFFSET_TYPE)
11774 && (INTEGRAL_TYPE_P (inner_type)
11775 || POINTER_TYPE_P (inner_type)
11776 || TREE_CODE (inner_type) == OFFSET_TYPE))
11777 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
11778
11779 /* Otherwise fall back on comparing machine modes (e.g. for
11780 aggregate types, floats). */
11781 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
11782 }
11783
11784 /* Return true iff conversion in EXP generates no instruction. Mark
11785 it inline so that we fully inline into the stripping functions even
11786 though we have two uses of this function. */
11787
11788 static inline bool
11789 tree_nop_conversion (const_tree exp)
11790 {
11791 tree outer_type, inner_type;
11792
11793 if (!CONVERT_EXPR_P (exp)
11794 && TREE_CODE (exp) != NON_LVALUE_EXPR)
11795 return false;
11796 if (TREE_OPERAND (exp, 0) == error_mark_node)
11797 return false;
11798
11799 outer_type = TREE_TYPE (exp);
11800 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11801
11802 if (!inner_type)
11803 return false;
11804
11805 return tree_nop_conversion_p (outer_type, inner_type);
11806 }
11807
11808 /* Return true iff conversion in EXP generates no instruction. Don't
11809 consider conversions changing the signedness. */
11810
11811 static bool
11812 tree_sign_nop_conversion (const_tree exp)
11813 {
11814 tree outer_type, inner_type;
11815
11816 if (!tree_nop_conversion (exp))
11817 return false;
11818
11819 outer_type = TREE_TYPE (exp);
11820 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11821
11822 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11823 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11824 }
11825
11826 /* Strip conversions from EXP according to tree_nop_conversion and
11827 return the resulting expression. */
11828
11829 tree
11830 tree_strip_nop_conversions (tree exp)
11831 {
11832 while (tree_nop_conversion (exp))
11833 exp = TREE_OPERAND (exp, 0);
11834 return exp;
11835 }
11836
11837 /* Strip conversions from EXP according to tree_sign_nop_conversion
11838 and return the resulting expression. */
11839
11840 tree
11841 tree_strip_sign_nop_conversions (tree exp)
11842 {
11843 while (tree_sign_nop_conversion (exp))
11844 exp = TREE_OPERAND (exp, 0);
11845 return exp;
11846 }
11847
11848 /* Avoid any floating point extensions from EXP. */
11849 tree
11850 strip_float_extensions (tree exp)
11851 {
11852 tree sub, expt, subt;
11853
11854 /* For floating point constant look up the narrowest type that can hold
11855 it properly and handle it like (type)(narrowest_type)constant.
11856 This way we can optimize for instance a=a*2.0 where "a" is float
11857 but 2.0 is double constant. */
11858 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
11859 {
11860 REAL_VALUE_TYPE orig;
11861 tree type = NULL;
11862
11863 orig = TREE_REAL_CST (exp);
11864 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
11865 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
11866 type = float_type_node;
11867 else if (TYPE_PRECISION (TREE_TYPE (exp))
11868 > TYPE_PRECISION (double_type_node)
11869 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
11870 type = double_type_node;
11871 if (type)
11872 return build_real_truncate (type, orig);
11873 }
11874
11875 if (!CONVERT_EXPR_P (exp))
11876 return exp;
11877
11878 sub = TREE_OPERAND (exp, 0);
11879 subt = TREE_TYPE (sub);
11880 expt = TREE_TYPE (exp);
11881
11882 if (!FLOAT_TYPE_P (subt))
11883 return exp;
11884
11885 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
11886 return exp;
11887
11888 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
11889 return exp;
11890
11891 return strip_float_extensions (sub);
11892 }
11893
11894 /* Strip out all handled components that produce invariant
11895 offsets. */
11896
11897 const_tree
11898 strip_invariant_refs (const_tree op)
11899 {
11900 while (handled_component_p (op))
11901 {
11902 switch (TREE_CODE (op))
11903 {
11904 case ARRAY_REF:
11905 case ARRAY_RANGE_REF:
11906 if (!is_gimple_constant (TREE_OPERAND (op, 1))
11907 || TREE_OPERAND (op, 2) != NULL_TREE
11908 || TREE_OPERAND (op, 3) != NULL_TREE)
11909 return NULL;
11910 break;
11911
11912 case COMPONENT_REF:
11913 if (TREE_OPERAND (op, 2) != NULL_TREE)
11914 return NULL;
11915 break;
11916
11917 default:;
11918 }
11919 op = TREE_OPERAND (op, 0);
11920 }
11921
11922 return op;
11923 }
11924
11925 static GTY(()) tree gcc_eh_personality_decl;
11926
11927 /* Return the GCC personality function decl. */
11928
11929 tree
11930 lhd_gcc_personality (void)
11931 {
11932 if (!gcc_eh_personality_decl)
11933 gcc_eh_personality_decl = build_personality_function ("gcc");
11934 return gcc_eh_personality_decl;
11935 }
11936
11937 /* TARGET is a call target of GIMPLE call statement
11938 (obtained by gimple_call_fn). Return true if it is
11939 OBJ_TYPE_REF representing an virtual call of C++ method.
11940 (As opposed to OBJ_TYPE_REF representing objc calls
11941 through a cast where middle-end devirtualization machinery
11942 can't apply.) */
11943
11944 bool
11945 virtual_method_call_p (const_tree target)
11946 {
11947 if (TREE_CODE (target) != OBJ_TYPE_REF)
11948 return false;
11949 tree t = TREE_TYPE (target);
11950 gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
11951 t = TREE_TYPE (t);
11952 if (TREE_CODE (t) == FUNCTION_TYPE)
11953 return false;
11954 gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
11955 /* If we do not have BINFO associated, it means that type was built
11956 without devirtualization enabled. Do not consider this a virtual
11957 call. */
11958 if (!TYPE_BINFO (obj_type_ref_class (target)))
11959 return false;
11960 return true;
11961 }
11962
11963 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
11964
11965 tree
11966 obj_type_ref_class (const_tree ref)
11967 {
11968 gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
11969 ref = TREE_TYPE (ref);
11970 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11971 ref = TREE_TYPE (ref);
11972 /* We look for type THIS points to. ObjC also builds
11973 OBJ_TYPE_REF with non-method calls, Their first parameter
11974 ID however also corresponds to class type. */
11975 gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
11976 || TREE_CODE (ref) == FUNCTION_TYPE);
11977 ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
11978 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11979 return TREE_TYPE (ref);
11980 }
11981
11982 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
11983
11984 static tree
11985 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
11986 {
11987 unsigned int i;
11988 tree base_binfo, b;
11989
11990 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
11991 if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
11992 && types_same_for_odr (TREE_TYPE (base_binfo), type))
11993 return base_binfo;
11994 else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
11995 return b;
11996 return NULL;
11997 }
11998
11999 /* Try to find a base info of BINFO that would have its field decl at offset
12000 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
12001 found, return, otherwise return NULL_TREE. */
12002
12003 tree
12004 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
12005 {
12006 tree type = BINFO_TYPE (binfo);
12007
12008 while (true)
12009 {
12010 HOST_WIDE_INT pos, size;
12011 tree fld;
12012 int i;
12013
12014 if (types_same_for_odr (type, expected_type))
12015 return binfo;
12016 if (offset < 0)
12017 return NULL_TREE;
12018
12019 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
12020 {
12021 if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
12022 continue;
12023
12024 pos = int_bit_position (fld);
12025 size = tree_to_uhwi (DECL_SIZE (fld));
12026 if (pos <= offset && (pos + size) > offset)
12027 break;
12028 }
12029 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
12030 return NULL_TREE;
12031
12032 /* Offset 0 indicates the primary base, whose vtable contents are
12033 represented in the binfo for the derived class. */
12034 else if (offset != 0)
12035 {
12036 tree found_binfo = NULL, base_binfo;
12037 /* Offsets in BINFO are in bytes relative to the whole structure
12038 while POS is in bits relative to the containing field. */
12039 int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
12040 / BITS_PER_UNIT);
12041
12042 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12043 if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
12044 && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
12045 {
12046 found_binfo = base_binfo;
12047 break;
12048 }
12049 if (found_binfo)
12050 binfo = found_binfo;
12051 else
12052 binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
12053 binfo_offset);
12054 }
12055
12056 type = TREE_TYPE (fld);
12057 offset -= pos;
12058 }
12059 }
12060
12061 /* Returns true if X is a typedef decl. */
12062
12063 bool
12064 is_typedef_decl (const_tree x)
12065 {
12066 return (x && TREE_CODE (x) == TYPE_DECL
12067 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
12068 }
12069
12070 /* Returns true iff TYPE is a type variant created for a typedef. */
12071
12072 bool
12073 typedef_variant_p (const_tree type)
12074 {
12075 return is_typedef_decl (TYPE_NAME (type));
12076 }
12077
12078 /* Warn about a use of an identifier which was marked deprecated. */
12079 void
12080 warn_deprecated_use (tree node, tree attr)
12081 {
12082 const char *msg;
12083
12084 if (node == 0 || !warn_deprecated_decl)
12085 return;
12086
12087 if (!attr)
12088 {
12089 if (DECL_P (node))
12090 attr = DECL_ATTRIBUTES (node);
12091 else if (TYPE_P (node))
12092 {
12093 tree decl = TYPE_STUB_DECL (node);
12094 if (decl)
12095 attr = lookup_attribute ("deprecated",
12096 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
12097 }
12098 }
12099
12100 if (attr)
12101 attr = lookup_attribute ("deprecated", attr);
12102
12103 if (attr)
12104 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
12105 else
12106 msg = NULL;
12107
12108 bool w;
12109 if (DECL_P (node))
12110 {
12111 if (msg)
12112 w = warning (OPT_Wdeprecated_declarations,
12113 "%qD is deprecated: %s", node, msg);
12114 else
12115 w = warning (OPT_Wdeprecated_declarations,
12116 "%qD is deprecated", node);
12117 if (w)
12118 inform (DECL_SOURCE_LOCATION (node), "declared here");
12119 }
12120 else if (TYPE_P (node))
12121 {
12122 tree what = NULL_TREE;
12123 tree decl = TYPE_STUB_DECL (node);
12124
12125 if (TYPE_NAME (node))
12126 {
12127 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
12128 what = TYPE_NAME (node);
12129 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
12130 && DECL_NAME (TYPE_NAME (node)))
12131 what = DECL_NAME (TYPE_NAME (node));
12132 }
12133
12134 if (decl)
12135 {
12136 if (what)
12137 {
12138 if (msg)
12139 w = warning (OPT_Wdeprecated_declarations,
12140 "%qE is deprecated: %s", what, msg);
12141 else
12142 w = warning (OPT_Wdeprecated_declarations,
12143 "%qE is deprecated", what);
12144 }
12145 else
12146 {
12147 if (msg)
12148 w = warning (OPT_Wdeprecated_declarations,
12149 "type is deprecated: %s", msg);
12150 else
12151 w = warning (OPT_Wdeprecated_declarations,
12152 "type is deprecated");
12153 }
12154 if (w)
12155 inform (DECL_SOURCE_LOCATION (decl), "declared here");
12156 }
12157 else
12158 {
12159 if (what)
12160 {
12161 if (msg)
12162 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
12163 what, msg);
12164 else
12165 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
12166 }
12167 else
12168 {
12169 if (msg)
12170 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
12171 msg);
12172 else
12173 warning (OPT_Wdeprecated_declarations, "type is deprecated");
12174 }
12175 }
12176 }
12177 }
12178
12179 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12180 somewhere in it. */
12181
12182 bool
12183 contains_bitfld_component_ref_p (const_tree ref)
12184 {
12185 while (handled_component_p (ref))
12186 {
12187 if (TREE_CODE (ref) == COMPONENT_REF
12188 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12189 return true;
12190 ref = TREE_OPERAND (ref, 0);
12191 }
12192
12193 return false;
12194 }
12195
12196 /* Try to determine whether a TRY_CATCH expression can fall through.
12197 This is a subroutine of block_may_fallthru. */
12198
12199 static bool
12200 try_catch_may_fallthru (const_tree stmt)
12201 {
12202 tree_stmt_iterator i;
12203
12204 /* If the TRY block can fall through, the whole TRY_CATCH can
12205 fall through. */
12206 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
12207 return true;
12208
12209 i = tsi_start (TREE_OPERAND (stmt, 1));
12210 switch (TREE_CODE (tsi_stmt (i)))
12211 {
12212 case CATCH_EXPR:
12213 /* We expect to see a sequence of CATCH_EXPR trees, each with a
12214 catch expression and a body. The whole TRY_CATCH may fall
12215 through iff any of the catch bodies falls through. */
12216 for (; !tsi_end_p (i); tsi_next (&i))
12217 {
12218 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
12219 return true;
12220 }
12221 return false;
12222
12223 case EH_FILTER_EXPR:
12224 /* The exception filter expression only matters if there is an
12225 exception. If the exception does not match EH_FILTER_TYPES,
12226 we will execute EH_FILTER_FAILURE, and we will fall through
12227 if that falls through. If the exception does match
12228 EH_FILTER_TYPES, the stack unwinder will continue up the
12229 stack, so we will not fall through. We don't know whether we
12230 will throw an exception which matches EH_FILTER_TYPES or not,
12231 so we just ignore EH_FILTER_TYPES and assume that we might
12232 throw an exception which doesn't match. */
12233 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
12234
12235 default:
12236 /* This case represents statements to be executed when an
12237 exception occurs. Those statements are implicitly followed
12238 by a RESX statement to resume execution after the exception.
12239 So in this case the TRY_CATCH never falls through. */
12240 return false;
12241 }
12242 }
12243
12244 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
12245 need not be 100% accurate; simply be conservative and return true if we
12246 don't know. This is used only to avoid stupidly generating extra code.
12247 If we're wrong, we'll just delete the extra code later. */
12248
12249 bool
12250 block_may_fallthru (const_tree block)
12251 {
12252 /* This CONST_CAST is okay because expr_last returns its argument
12253 unmodified and we assign it to a const_tree. */
12254 const_tree stmt = expr_last (CONST_CAST_TREE (block));
12255
12256 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
12257 {
12258 case GOTO_EXPR:
12259 case RETURN_EXPR:
12260 /* Easy cases. If the last statement of the block implies
12261 control transfer, then we can't fall through. */
12262 return false;
12263
12264 case SWITCH_EXPR:
12265 /* If SWITCH_LABELS is set, this is lowered, and represents a
12266 branch to a selected label and hence can not fall through.
12267 Otherwise SWITCH_BODY is set, and the switch can fall
12268 through. */
12269 return SWITCH_LABELS (stmt) == NULL_TREE;
12270
12271 case COND_EXPR:
12272 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
12273 return true;
12274 return block_may_fallthru (COND_EXPR_ELSE (stmt));
12275
12276 case BIND_EXPR:
12277 return block_may_fallthru (BIND_EXPR_BODY (stmt));
12278
12279 case TRY_CATCH_EXPR:
12280 return try_catch_may_fallthru (stmt);
12281
12282 case TRY_FINALLY_EXPR:
12283 /* The finally clause is always executed after the try clause,
12284 so if it does not fall through, then the try-finally will not
12285 fall through. Otherwise, if the try clause does not fall
12286 through, then when the finally clause falls through it will
12287 resume execution wherever the try clause was going. So the
12288 whole try-finally will only fall through if both the try
12289 clause and the finally clause fall through. */
12290 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
12291 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
12292
12293 case MODIFY_EXPR:
12294 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
12295 stmt = TREE_OPERAND (stmt, 1);
12296 else
12297 return true;
12298 /* FALLTHRU */
12299
12300 case CALL_EXPR:
12301 /* Functions that do not return do not fall through. */
12302 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
12303
12304 case CLEANUP_POINT_EXPR:
12305 return block_may_fallthru (TREE_OPERAND (stmt, 0));
12306
12307 case TARGET_EXPR:
12308 return block_may_fallthru (TREE_OPERAND (stmt, 1));
12309
12310 case ERROR_MARK:
12311 return true;
12312
12313 default:
12314 return lang_hooks.block_may_fallthru (stmt);
12315 }
12316 }
12317
12318 /* True if we are using EH to handle cleanups. */
12319 static bool using_eh_for_cleanups_flag = false;
12320
12321 /* This routine is called from front ends to indicate eh should be used for
12322 cleanups. */
12323 void
12324 using_eh_for_cleanups (void)
12325 {
12326 using_eh_for_cleanups_flag = true;
12327 }
12328
12329 /* Query whether EH is used for cleanups. */
12330 bool
12331 using_eh_for_cleanups_p (void)
12332 {
12333 return using_eh_for_cleanups_flag;
12334 }
12335
12336 /* Wrapper for tree_code_name to ensure that tree code is valid */
12337 const char *
12338 get_tree_code_name (enum tree_code code)
12339 {
12340 const char *invalid = "<invalid tree code>";
12341
12342 if (code >= MAX_TREE_CODES)
12343 return invalid;
12344
12345 return tree_code_name[code];
12346 }
12347
12348 /* Drops the TREE_OVERFLOW flag from T. */
12349
12350 tree
12351 drop_tree_overflow (tree t)
12352 {
12353 gcc_checking_assert (TREE_OVERFLOW (t));
12354
12355 /* For tree codes with a sharing machinery re-build the result. */
12356 if (TREE_CODE (t) == INTEGER_CST)
12357 return wide_int_to_tree (TREE_TYPE (t), t);
12358
12359 /* Otherwise, as all tcc_constants are possibly shared, copy the node
12360 and drop the flag. */
12361 t = copy_node (t);
12362 TREE_OVERFLOW (t) = 0;
12363
12364 /* For constants that contain nested constants, drop the flag
12365 from those as well. */
12366 if (TREE_CODE (t) == COMPLEX_CST)
12367 {
12368 if (TREE_OVERFLOW (TREE_REALPART (t)))
12369 TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
12370 if (TREE_OVERFLOW (TREE_IMAGPART (t)))
12371 TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
12372 }
12373 if (TREE_CODE (t) == VECTOR_CST)
12374 {
12375 for (unsigned i = 0; i < VECTOR_CST_NELTS (t); ++i)
12376 {
12377 tree& elt = VECTOR_CST_ELT (t, i);
12378 if (TREE_OVERFLOW (elt))
12379 elt = drop_tree_overflow (elt);
12380 }
12381 }
12382 return t;
12383 }
12384
12385 /* Given a memory reference expression T, return its base address.
12386 The base address of a memory reference expression is the main
12387 object being referenced. For instance, the base address for
12388 'array[i].fld[j]' is 'array'. You can think of this as stripping
12389 away the offset part from a memory address.
12390
12391 This function calls handled_component_p to strip away all the inner
12392 parts of the memory reference until it reaches the base object. */
12393
12394 tree
12395 get_base_address (tree t)
12396 {
12397 while (handled_component_p (t))
12398 t = TREE_OPERAND (t, 0);
12399
12400 if ((TREE_CODE (t) == MEM_REF
12401 || TREE_CODE (t) == TARGET_MEM_REF)
12402 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
12403 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
12404
12405 /* ??? Either the alias oracle or all callers need to properly deal
12406 with WITH_SIZE_EXPRs before we can look through those. */
12407 if (TREE_CODE (t) == WITH_SIZE_EXPR)
12408 return NULL_TREE;
12409
12410 return t;
12411 }
12412
12413 /* Return a tree of sizetype representing the size, in bytes, of the element
12414 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12415
12416 tree
12417 array_ref_element_size (tree exp)
12418 {
12419 tree aligned_size = TREE_OPERAND (exp, 3);
12420 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
12421 location_t loc = EXPR_LOCATION (exp);
12422
12423 /* If a size was specified in the ARRAY_REF, it's the size measured
12424 in alignment units of the element type. So multiply by that value. */
12425 if (aligned_size)
12426 {
12427 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12428 sizetype from another type of the same width and signedness. */
12429 if (TREE_TYPE (aligned_size) != sizetype)
12430 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
12431 return size_binop_loc (loc, MULT_EXPR, aligned_size,
12432 size_int (TYPE_ALIGN_UNIT (elmt_type)));
12433 }
12434
12435 /* Otherwise, take the size from that of the element type. Substitute
12436 any PLACEHOLDER_EXPR that we have. */
12437 else
12438 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
12439 }
12440
12441 /* Return a tree representing the lower bound of the array mentioned in
12442 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12443
12444 tree
12445 array_ref_low_bound (tree exp)
12446 {
12447 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12448
12449 /* If a lower bound is specified in EXP, use it. */
12450 if (TREE_OPERAND (exp, 2))
12451 return TREE_OPERAND (exp, 2);
12452
12453 /* Otherwise, if there is a domain type and it has a lower bound, use it,
12454 substituting for a PLACEHOLDER_EXPR as needed. */
12455 if (domain_type && TYPE_MIN_VALUE (domain_type))
12456 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
12457
12458 /* Otherwise, return a zero of the appropriate type. */
12459 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
12460 }
12461
12462 /* Return a tree representing the upper bound of the array mentioned in
12463 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12464
12465 tree
12466 array_ref_up_bound (tree exp)
12467 {
12468 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12469
12470 /* If there is a domain type and it has an upper bound, use it, substituting
12471 for a PLACEHOLDER_EXPR as needed. */
12472 if (domain_type && TYPE_MAX_VALUE (domain_type))
12473 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
12474
12475 /* Otherwise fail. */
12476 return NULL_TREE;
12477 }
12478
12479 /* Returns true if REF is an array reference or a component reference
12480 to an array at the end of a structure.
12481 If this is the case, the array may be allocated larger
12482 than its upper bound implies. */
12483
12484 bool
12485 array_at_struct_end_p (tree ref)
12486 {
12487 tree atype;
12488
12489 if (TREE_CODE (ref) == ARRAY_REF
12490 || TREE_CODE (ref) == ARRAY_RANGE_REF)
12491 {
12492 atype = TREE_TYPE (TREE_OPERAND (ref, 0));
12493 ref = TREE_OPERAND (ref, 0);
12494 }
12495 else if (TREE_CODE (ref) == COMPONENT_REF
12496 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
12497 atype = TREE_TYPE (TREE_OPERAND (ref, 1));
12498 else
12499 return false;
12500
12501 while (handled_component_p (ref))
12502 {
12503 /* If the reference chain contains a component reference to a
12504 non-union type and there follows another field the reference
12505 is not at the end of a structure. */
12506 if (TREE_CODE (ref) == COMPONENT_REF)
12507 {
12508 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
12509 {
12510 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
12511 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
12512 nextf = DECL_CHAIN (nextf);
12513 if (nextf)
12514 return false;
12515 }
12516 }
12517 /* If we have a multi-dimensional array we do not consider
12518 a non-innermost dimension as flex array if the whole
12519 multi-dimensional array is at struct end.
12520 Same for an array of aggregates with a trailing array
12521 member. */
12522 else if (TREE_CODE (ref) == ARRAY_REF)
12523 return false;
12524 else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
12525 ;
12526 /* If we view an underlying object as sth else then what we
12527 gathered up to now is what we have to rely on. */
12528 else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
12529 break;
12530 else
12531 gcc_unreachable ();
12532
12533 ref = TREE_OPERAND (ref, 0);
12534 }
12535
12536 /* The array now is at struct end. Treat flexible arrays as
12537 always subject to extend, even into just padding constrained by
12538 an underlying decl. */
12539 if (! TYPE_SIZE (atype))
12540 return true;
12541
12542 tree size = NULL;
12543
12544 if (TREE_CODE (ref) == MEM_REF
12545 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
12546 {
12547 size = TYPE_SIZE (TREE_TYPE (ref));
12548 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
12549 }
12550
12551 /* If the reference is based on a declared entity, the size of the array
12552 is constrained by its given domain. (Do not trust commons PR/69368). */
12553 if (DECL_P (ref)
12554 /* Be sure the size of MEM_REF target match. For example:
12555
12556 char buf[10];
12557 struct foo *str = (struct foo *)&buf;
12558
12559 str->trailin_array[2] = 1;
12560
12561 is valid because BUF allocate enough space. */
12562
12563 && (!size || (DECL_SIZE (ref) != NULL
12564 && operand_equal_p (DECL_SIZE (ref), size, 0)))
12565 && !(flag_unconstrained_commons
12566 && VAR_P (ref) && DECL_COMMON (ref)))
12567 return false;
12568
12569 return true;
12570 }
12571
12572 /* Return a tree representing the offset, in bytes, of the field referenced
12573 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
12574
12575 tree
12576 component_ref_field_offset (tree exp)
12577 {
12578 tree aligned_offset = TREE_OPERAND (exp, 2);
12579 tree field = TREE_OPERAND (exp, 1);
12580 location_t loc = EXPR_LOCATION (exp);
12581
12582 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
12583 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
12584 value. */
12585 if (aligned_offset)
12586 {
12587 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12588 sizetype from another type of the same width and signedness. */
12589 if (TREE_TYPE (aligned_offset) != sizetype)
12590 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
12591 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
12592 size_int (DECL_OFFSET_ALIGN (field)
12593 / BITS_PER_UNIT));
12594 }
12595
12596 /* Otherwise, take the offset from that of the field. Substitute
12597 any PLACEHOLDER_EXPR that we have. */
12598 else
12599 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
12600 }
12601
12602 /* Return the machine mode of T. For vectors, returns the mode of the
12603 inner type. The main use case is to feed the result to HONOR_NANS,
12604 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
12605
12606 machine_mode
12607 element_mode (const_tree t)
12608 {
12609 if (!TYPE_P (t))
12610 t = TREE_TYPE (t);
12611 if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
12612 t = TREE_TYPE (t);
12613 return TYPE_MODE (t);
12614 }
12615
12616 /* Vector types need to re-check the target flags each time we report
12617 the machine mode. We need to do this because attribute target can
12618 change the result of vector_mode_supported_p and have_regs_of_mode
12619 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
12620 change on a per-function basis. */
12621 /* ??? Possibly a better solution is to run through all the types
12622 referenced by a function and re-compute the TYPE_MODE once, rather
12623 than make the TYPE_MODE macro call a function. */
12624
12625 machine_mode
12626 vector_type_mode (const_tree t)
12627 {
12628 machine_mode mode;
12629
12630 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
12631
12632 mode = t->type_common.mode;
12633 if (VECTOR_MODE_P (mode)
12634 && (!targetm.vector_mode_supported_p (mode)
12635 || !have_regs_of_mode[mode]))
12636 {
12637 machine_mode innermode = TREE_TYPE (t)->type_common.mode;
12638
12639 /* For integers, try mapping it to a same-sized scalar mode. */
12640 if (GET_MODE_CLASS (innermode) == MODE_INT)
12641 {
12642 unsigned int size = (TYPE_VECTOR_SUBPARTS (t)
12643 * GET_MODE_BITSIZE (innermode));
12644 scalar_int_mode mode;
12645 if (int_mode_for_size (size, 0).exists (&mode)
12646 && have_regs_of_mode[mode])
12647 return mode;
12648 }
12649
12650 return BLKmode;
12651 }
12652
12653 return mode;
12654 }
12655
12656 /* Verify that basic properties of T match TV and thus T can be a variant of
12657 TV. TV should be the more specified variant (i.e. the main variant). */
12658
12659 static bool
12660 verify_type_variant (const_tree t, tree tv)
12661 {
12662 /* Type variant can differ by:
12663
12664 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
12665 ENCODE_QUAL_ADDR_SPACE.
12666 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
12667 in this case some values may not be set in the variant types
12668 (see TYPE_COMPLETE_P checks).
12669 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
12670 - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
12671 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
12672 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
12673 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
12674 this is necessary to make it possible to merge types form different TUs
12675 - arrays, pointers and references may have TREE_TYPE that is a variant
12676 of TREE_TYPE of their main variants.
12677 - aggregates may have new TYPE_FIELDS list that list variants of
12678 the main variant TYPE_FIELDS.
12679 - vector types may differ by TYPE_VECTOR_OPAQUE
12680 */
12681
12682 /* Convenience macro for matching individual fields. */
12683 #define verify_variant_match(flag) \
12684 do { \
12685 if (flag (tv) != flag (t)) \
12686 { \
12687 error ("type variant differs by " #flag "."); \
12688 debug_tree (tv); \
12689 return false; \
12690 } \
12691 } while (false)
12692
12693 /* tree_base checks. */
12694
12695 verify_variant_match (TREE_CODE);
12696 /* FIXME: Ada builds non-artificial variants of artificial types. */
12697 if (TYPE_ARTIFICIAL (tv) && 0)
12698 verify_variant_match (TYPE_ARTIFICIAL);
12699 if (POINTER_TYPE_P (tv))
12700 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
12701 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
12702 verify_variant_match (TYPE_UNSIGNED);
12703 verify_variant_match (TYPE_PACKED);
12704 if (TREE_CODE (t) == REFERENCE_TYPE)
12705 verify_variant_match (TYPE_REF_IS_RVALUE);
12706 if (AGGREGATE_TYPE_P (t))
12707 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
12708 else
12709 verify_variant_match (TYPE_SATURATING);
12710 /* FIXME: This check trigger during libstdc++ build. */
12711 if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
12712 verify_variant_match (TYPE_FINAL_P);
12713
12714 /* tree_type_common checks. */
12715
12716 if (COMPLETE_TYPE_P (t))
12717 {
12718 verify_variant_match (TYPE_MODE);
12719 if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
12720 && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
12721 verify_variant_match (TYPE_SIZE);
12722 if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
12723 && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
12724 && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
12725 {
12726 gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
12727 TYPE_SIZE_UNIT (tv), 0));
12728 error ("type variant has different TYPE_SIZE_UNIT");
12729 debug_tree (tv);
12730 error ("type variant's TYPE_SIZE_UNIT");
12731 debug_tree (TYPE_SIZE_UNIT (tv));
12732 error ("type's TYPE_SIZE_UNIT");
12733 debug_tree (TYPE_SIZE_UNIT (t));
12734 return false;
12735 }
12736 }
12737 verify_variant_match (TYPE_PRECISION);
12738 verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
12739 if (RECORD_OR_UNION_TYPE_P (t))
12740 verify_variant_match (TYPE_TRANSPARENT_AGGR);
12741 else if (TREE_CODE (t) == ARRAY_TYPE)
12742 verify_variant_match (TYPE_NONALIASED_COMPONENT);
12743 /* During LTO we merge variant lists from diferent translation units
12744 that may differ BY TYPE_CONTEXT that in turn may point
12745 to TRANSLATION_UNIT_DECL.
12746 Ada also builds variants of types with different TYPE_CONTEXT. */
12747 if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
12748 verify_variant_match (TYPE_CONTEXT);
12749 verify_variant_match (TYPE_STRING_FLAG);
12750 if (TYPE_ALIAS_SET_KNOWN_P (t))
12751 {
12752 error ("type variant with TYPE_ALIAS_SET_KNOWN_P");
12753 debug_tree (tv);
12754 return false;
12755 }
12756
12757 /* tree_type_non_common checks. */
12758
12759 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
12760 and dangle the pointer from time to time. */
12761 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
12762 && (in_lto_p || !TYPE_VFIELD (tv)
12763 || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
12764 {
12765 error ("type variant has different TYPE_VFIELD");
12766 debug_tree (tv);
12767 return false;
12768 }
12769 if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
12770 || TREE_CODE (t) == INTEGER_TYPE
12771 || TREE_CODE (t) == BOOLEAN_TYPE
12772 || TREE_CODE (t) == REAL_TYPE
12773 || TREE_CODE (t) == FIXED_POINT_TYPE)
12774 {
12775 verify_variant_match (TYPE_MAX_VALUE);
12776 verify_variant_match (TYPE_MIN_VALUE);
12777 }
12778 if (TREE_CODE (t) == METHOD_TYPE)
12779 verify_variant_match (TYPE_METHOD_BASETYPE);
12780 if (TREE_CODE (t) == OFFSET_TYPE)
12781 verify_variant_match (TYPE_OFFSET_BASETYPE);
12782 if (TREE_CODE (t) == ARRAY_TYPE)
12783 verify_variant_match (TYPE_ARRAY_MAX_SIZE);
12784 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
12785 or even type's main variant. This is needed to make bootstrap pass
12786 and the bug seems new in GCC 5.
12787 C++ FE should be updated to make this consistent and we should check
12788 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
12789 is a match with main variant.
12790
12791 Also disable the check for Java for now because of parser hack that builds
12792 first an dummy BINFO and then sometimes replace it by real BINFO in some
12793 of the copies. */
12794 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
12795 && TYPE_BINFO (t) != TYPE_BINFO (tv)
12796 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
12797 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
12798 at LTO time only. */
12799 && (in_lto_p && odr_type_p (t)))
12800 {
12801 error ("type variant has different TYPE_BINFO");
12802 debug_tree (tv);
12803 error ("type variant's TYPE_BINFO");
12804 debug_tree (TYPE_BINFO (tv));
12805 error ("type's TYPE_BINFO");
12806 debug_tree (TYPE_BINFO (t));
12807 return false;
12808 }
12809
12810 /* Check various uses of TYPE_VALUES_RAW. */
12811 if (TREE_CODE (t) == ENUMERAL_TYPE)
12812 verify_variant_match (TYPE_VALUES);
12813 else if (TREE_CODE (t) == ARRAY_TYPE)
12814 verify_variant_match (TYPE_DOMAIN);
12815 /* Permit incomplete variants of complete type. While FEs may complete
12816 all variants, this does not happen for C++ templates in all cases. */
12817 else if (RECORD_OR_UNION_TYPE_P (t)
12818 && COMPLETE_TYPE_P (t)
12819 && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
12820 {
12821 tree f1, f2;
12822
12823 /* Fortran builds qualified variants as new records with items of
12824 qualified type. Verify that they looks same. */
12825 for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
12826 f1 && f2;
12827 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
12828 if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
12829 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
12830 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
12831 /* FIXME: gfc_nonrestricted_type builds all types as variants
12832 with exception of pointer types. It deeply copies the type
12833 which means that we may end up with a variant type
12834 referring non-variant pointer. We may change it to
12835 produce types as variants, too, like
12836 objc_get_protocol_qualified_type does. */
12837 && !POINTER_TYPE_P (TREE_TYPE (f1)))
12838 || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
12839 || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
12840 break;
12841 if (f1 || f2)
12842 {
12843 error ("type variant has different TYPE_FIELDS");
12844 debug_tree (tv);
12845 error ("first mismatch is field");
12846 debug_tree (f1);
12847 error ("and field");
12848 debug_tree (f2);
12849 return false;
12850 }
12851 }
12852 else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
12853 verify_variant_match (TYPE_ARG_TYPES);
12854 /* For C++ the qualified variant of array type is really an array type
12855 of qualified TREE_TYPE.
12856 objc builds variants of pointer where pointer to type is a variant, too
12857 in objc_get_protocol_qualified_type. */
12858 if (TREE_TYPE (t) != TREE_TYPE (tv)
12859 && ((TREE_CODE (t) != ARRAY_TYPE
12860 && !POINTER_TYPE_P (t))
12861 || TYPE_MAIN_VARIANT (TREE_TYPE (t))
12862 != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
12863 {
12864 error ("type variant has different TREE_TYPE");
12865 debug_tree (tv);
12866 error ("type variant's TREE_TYPE");
12867 debug_tree (TREE_TYPE (tv));
12868 error ("type's TREE_TYPE");
12869 debug_tree (TREE_TYPE (t));
12870 return false;
12871 }
12872 if (type_with_alias_set_p (t)
12873 && !gimple_canonical_types_compatible_p (t, tv, false))
12874 {
12875 error ("type is not compatible with its variant");
12876 debug_tree (tv);
12877 error ("type variant's TREE_TYPE");
12878 debug_tree (TREE_TYPE (tv));
12879 error ("type's TREE_TYPE");
12880 debug_tree (TREE_TYPE (t));
12881 return false;
12882 }
12883 return true;
12884 #undef verify_variant_match
12885 }
12886
12887
12888 /* The TYPE_CANONICAL merging machinery. It should closely resemble
12889 the middle-end types_compatible_p function. It needs to avoid
12890 claiming types are different for types that should be treated
12891 the same with respect to TBAA. Canonical types are also used
12892 for IL consistency checks via the useless_type_conversion_p
12893 predicate which does not handle all type kinds itself but falls
12894 back to pointer-comparison of TYPE_CANONICAL for aggregates
12895 for example. */
12896
12897 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
12898 type calculation because we need to allow inter-operability between signed
12899 and unsigned variants. */
12900
12901 bool
12902 type_with_interoperable_signedness (const_tree type)
12903 {
12904 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
12905 signed char and unsigned char. Similarly fortran FE builds
12906 C_SIZE_T as signed type, while C defines it unsigned. */
12907
12908 return tree_code_for_canonical_type_merging (TREE_CODE (type))
12909 == INTEGER_TYPE
12910 && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
12911 || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
12912 }
12913
12914 /* Return true iff T1 and T2 are structurally identical for what
12915 TBAA is concerned.
12916 This function is used both by lto.c canonical type merging and by the
12917 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
12918 that have TYPE_CANONICAL defined and assume them equivalent. This is useful
12919 only for LTO because only in these cases TYPE_CANONICAL equivalence
12920 correspond to one defined by gimple_canonical_types_compatible_p. */
12921
12922 bool
12923 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
12924 bool trust_type_canonical)
12925 {
12926 /* Type variants should be same as the main variant. When not doing sanity
12927 checking to verify this fact, go to main variants and save some work. */
12928 if (trust_type_canonical)
12929 {
12930 t1 = TYPE_MAIN_VARIANT (t1);
12931 t2 = TYPE_MAIN_VARIANT (t2);
12932 }
12933
12934 /* Check first for the obvious case of pointer identity. */
12935 if (t1 == t2)
12936 return true;
12937
12938 /* Check that we have two types to compare. */
12939 if (t1 == NULL_TREE || t2 == NULL_TREE)
12940 return false;
12941
12942 /* We consider complete types always compatible with incomplete type.
12943 This does not make sense for canonical type calculation and thus we
12944 need to ensure that we are never called on it.
12945
12946 FIXME: For more correctness the function probably should have three modes
12947 1) mode assuming that types are complete mathcing their structure
12948 2) mode allowing incomplete types but producing equivalence classes
12949 and thus ignoring all info from complete types
12950 3) mode allowing incomplete types to match complete but checking
12951 compatibility between complete types.
12952
12953 1 and 2 can be used for canonical type calculation. 3 is the real
12954 definition of type compatibility that can be used i.e. for warnings during
12955 declaration merging. */
12956
12957 gcc_assert (!trust_type_canonical
12958 || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
12959 /* If the types have been previously registered and found equal
12960 they still are. */
12961
12962 if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
12963 && trust_type_canonical)
12964 {
12965 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
12966 they are always NULL, but they are set to non-NULL for types
12967 constructed by build_pointer_type and variants. In this case the
12968 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
12969 all pointers are considered equal. Be sure to not return false
12970 negatives. */
12971 gcc_checking_assert (canonical_type_used_p (t1)
12972 && canonical_type_used_p (t2));
12973 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
12974 }
12975
12976 /* Can't be the same type if the types don't have the same code. */
12977 enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
12978 if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
12979 return false;
12980
12981 /* Qualifiers do not matter for canonical type comparison purposes. */
12982
12983 /* Void types and nullptr types are always the same. */
12984 if (TREE_CODE (t1) == VOID_TYPE
12985 || TREE_CODE (t1) == NULLPTR_TYPE)
12986 return true;
12987
12988 /* Can't be the same type if they have different mode. */
12989 if (TYPE_MODE (t1) != TYPE_MODE (t2))
12990 return false;
12991
12992 /* Non-aggregate types can be handled cheaply. */
12993 if (INTEGRAL_TYPE_P (t1)
12994 || SCALAR_FLOAT_TYPE_P (t1)
12995 || FIXED_POINT_TYPE_P (t1)
12996 || TREE_CODE (t1) == VECTOR_TYPE
12997 || TREE_CODE (t1) == COMPLEX_TYPE
12998 || TREE_CODE (t1) == OFFSET_TYPE
12999 || POINTER_TYPE_P (t1))
13000 {
13001 /* Can't be the same type if they have different recision. */
13002 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
13003 return false;
13004
13005 /* In some cases the signed and unsigned types are required to be
13006 inter-operable. */
13007 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
13008 && !type_with_interoperable_signedness (t1))
13009 return false;
13010
13011 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
13012 interoperable with "signed char". Unless all frontends are revisited
13013 to agree on these types, we must ignore the flag completely. */
13014
13015 /* Fortran standard define C_PTR type that is compatible with every
13016 C pointer. For this reason we need to glob all pointers into one.
13017 Still pointers in different address spaces are not compatible. */
13018 if (POINTER_TYPE_P (t1))
13019 {
13020 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
13021 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
13022 return false;
13023 }
13024
13025 /* Tail-recurse to components. */
13026 if (TREE_CODE (t1) == VECTOR_TYPE
13027 || TREE_CODE (t1) == COMPLEX_TYPE)
13028 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
13029 TREE_TYPE (t2),
13030 trust_type_canonical);
13031
13032 return true;
13033 }
13034
13035 /* Do type-specific comparisons. */
13036 switch (TREE_CODE (t1))
13037 {
13038 case ARRAY_TYPE:
13039 /* Array types are the same if the element types are the same and
13040 the number of elements are the same. */
13041 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13042 trust_type_canonical)
13043 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
13044 || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
13045 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
13046 return false;
13047 else
13048 {
13049 tree i1 = TYPE_DOMAIN (t1);
13050 tree i2 = TYPE_DOMAIN (t2);
13051
13052 /* For an incomplete external array, the type domain can be
13053 NULL_TREE. Check this condition also. */
13054 if (i1 == NULL_TREE && i2 == NULL_TREE)
13055 return true;
13056 else if (i1 == NULL_TREE || i2 == NULL_TREE)
13057 return false;
13058 else
13059 {
13060 tree min1 = TYPE_MIN_VALUE (i1);
13061 tree min2 = TYPE_MIN_VALUE (i2);
13062 tree max1 = TYPE_MAX_VALUE (i1);
13063 tree max2 = TYPE_MAX_VALUE (i2);
13064
13065 /* The minimum/maximum values have to be the same. */
13066 if ((min1 == min2
13067 || (min1 && min2
13068 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
13069 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
13070 || operand_equal_p (min1, min2, 0))))
13071 && (max1 == max2
13072 || (max1 && max2
13073 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
13074 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
13075 || operand_equal_p (max1, max2, 0)))))
13076 return true;
13077 else
13078 return false;
13079 }
13080 }
13081
13082 case METHOD_TYPE:
13083 case FUNCTION_TYPE:
13084 /* Function types are the same if the return type and arguments types
13085 are the same. */
13086 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13087 trust_type_canonical))
13088 return false;
13089
13090 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
13091 return true;
13092 else
13093 {
13094 tree parms1, parms2;
13095
13096 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
13097 parms1 && parms2;
13098 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
13099 {
13100 if (!gimple_canonical_types_compatible_p
13101 (TREE_VALUE (parms1), TREE_VALUE (parms2),
13102 trust_type_canonical))
13103 return false;
13104 }
13105
13106 if (parms1 || parms2)
13107 return false;
13108
13109 return true;
13110 }
13111
13112 case RECORD_TYPE:
13113 case UNION_TYPE:
13114 case QUAL_UNION_TYPE:
13115 {
13116 tree f1, f2;
13117
13118 /* Don't try to compare variants of an incomplete type, before
13119 TYPE_FIELDS has been copied around. */
13120 if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
13121 return true;
13122
13123
13124 if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
13125 return false;
13126
13127 /* For aggregate types, all the fields must be the same. */
13128 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
13129 f1 || f2;
13130 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13131 {
13132 /* Skip non-fields and zero-sized fields. */
13133 while (f1 && (TREE_CODE (f1) != FIELD_DECL
13134 || (DECL_SIZE (f1)
13135 && integer_zerop (DECL_SIZE (f1)))))
13136 f1 = TREE_CHAIN (f1);
13137 while (f2 && (TREE_CODE (f2) != FIELD_DECL
13138 || (DECL_SIZE (f2)
13139 && integer_zerop (DECL_SIZE (f2)))))
13140 f2 = TREE_CHAIN (f2);
13141 if (!f1 || !f2)
13142 break;
13143 /* The fields must have the same name, offset and type. */
13144 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
13145 || !gimple_compare_field_offset (f1, f2)
13146 || !gimple_canonical_types_compatible_p
13147 (TREE_TYPE (f1), TREE_TYPE (f2),
13148 trust_type_canonical))
13149 return false;
13150 }
13151
13152 /* If one aggregate has more fields than the other, they
13153 are not the same. */
13154 if (f1 || f2)
13155 return false;
13156
13157 return true;
13158 }
13159
13160 default:
13161 /* Consider all types with language specific trees in them mutually
13162 compatible. This is executed only from verify_type and false
13163 positives can be tolerated. */
13164 gcc_assert (!in_lto_p);
13165 return true;
13166 }
13167 }
13168
13169 /* Verify type T. */
13170
13171 void
13172 verify_type (const_tree t)
13173 {
13174 bool error_found = false;
13175 tree mv = TYPE_MAIN_VARIANT (t);
13176 if (!mv)
13177 {
13178 error ("Main variant is not defined");
13179 error_found = true;
13180 }
13181 else if (mv != TYPE_MAIN_VARIANT (mv))
13182 {
13183 error ("TYPE_MAIN_VARIANT has different TYPE_MAIN_VARIANT");
13184 debug_tree (mv);
13185 error_found = true;
13186 }
13187 else if (t != mv && !verify_type_variant (t, mv))
13188 error_found = true;
13189
13190 tree ct = TYPE_CANONICAL (t);
13191 if (!ct)
13192 ;
13193 else if (TYPE_CANONICAL (t) != ct)
13194 {
13195 error ("TYPE_CANONICAL has different TYPE_CANONICAL");
13196 debug_tree (ct);
13197 error_found = true;
13198 }
13199 /* Method and function types can not be used to address memory and thus
13200 TYPE_CANONICAL really matters only for determining useless conversions.
13201
13202 FIXME: C++ FE produce declarations of builtin functions that are not
13203 compatible with main variants. */
13204 else if (TREE_CODE (t) == FUNCTION_TYPE)
13205 ;
13206 else if (t != ct
13207 /* FIXME: gimple_canonical_types_compatible_p can not compare types
13208 with variably sized arrays because their sizes possibly
13209 gimplified to different variables. */
13210 && !variably_modified_type_p (ct, NULL)
13211 && !gimple_canonical_types_compatible_p (t, ct, false))
13212 {
13213 error ("TYPE_CANONICAL is not compatible");
13214 debug_tree (ct);
13215 error_found = true;
13216 }
13217
13218 if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
13219 && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
13220 {
13221 error ("TYPE_MODE of TYPE_CANONICAL is not compatible");
13222 debug_tree (ct);
13223 error_found = true;
13224 }
13225 /* FIXME: this is violated by the C++ FE as discussed in PR70029, when
13226 FUNCTION_*_QUALIFIED flags are set. */
13227 if (0 && TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
13228 {
13229 error ("TYPE_CANONICAL of main variant is not main variant");
13230 debug_tree (ct);
13231 debug_tree (TYPE_MAIN_VARIANT (ct));
13232 error_found = true;
13233 }
13234
13235
13236 /* Check various uses of TYPE_MIN_VALUE_RAW. */
13237 if (RECORD_OR_UNION_TYPE_P (t))
13238 {
13239 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13240 and danagle the pointer from time to time. */
13241 if (TYPE_VFIELD (t)
13242 && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
13243 && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
13244 {
13245 error ("TYPE_VFIELD is not FIELD_DECL nor TREE_LIST");
13246 debug_tree (TYPE_VFIELD (t));
13247 error_found = true;
13248 }
13249 }
13250 else if (TREE_CODE (t) == POINTER_TYPE)
13251 {
13252 if (TYPE_NEXT_PTR_TO (t)
13253 && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
13254 {
13255 error ("TYPE_NEXT_PTR_TO is not POINTER_TYPE");
13256 debug_tree (TYPE_NEXT_PTR_TO (t));
13257 error_found = true;
13258 }
13259 }
13260 else if (TREE_CODE (t) == REFERENCE_TYPE)
13261 {
13262 if (TYPE_NEXT_REF_TO (t)
13263 && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
13264 {
13265 error ("TYPE_NEXT_REF_TO is not REFERENCE_TYPE");
13266 debug_tree (TYPE_NEXT_REF_TO (t));
13267 error_found = true;
13268 }
13269 }
13270 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13271 || TREE_CODE (t) == FIXED_POINT_TYPE)
13272 {
13273 /* FIXME: The following check should pass:
13274 useless_type_conversion_p (const_cast <tree> (t),
13275 TREE_TYPE (TYPE_MIN_VALUE (t))
13276 but does not for C sizetypes in LTO. */
13277 }
13278
13279 /* Check various uses of TYPE_MAXVAL_RAW. */
13280 if (RECORD_OR_UNION_TYPE_P (t))
13281 {
13282 if (!TYPE_BINFO (t))
13283 ;
13284 else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
13285 {
13286 error ("TYPE_BINFO is not TREE_BINFO");
13287 debug_tree (TYPE_BINFO (t));
13288 error_found = true;
13289 }
13290 else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
13291 {
13292 error ("TYPE_BINFO type is not TYPE_MAIN_VARIANT");
13293 debug_tree (TREE_TYPE (TYPE_BINFO (t)));
13294 error_found = true;
13295 }
13296 }
13297 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
13298 {
13299 if (TYPE_METHOD_BASETYPE (t)
13300 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
13301 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
13302 {
13303 error ("TYPE_METHOD_BASETYPE is not record nor union");
13304 debug_tree (TYPE_METHOD_BASETYPE (t));
13305 error_found = true;
13306 }
13307 }
13308 else if (TREE_CODE (t) == OFFSET_TYPE)
13309 {
13310 if (TYPE_OFFSET_BASETYPE (t)
13311 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
13312 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
13313 {
13314 error ("TYPE_OFFSET_BASETYPE is not record nor union");
13315 debug_tree (TYPE_OFFSET_BASETYPE (t));
13316 error_found = true;
13317 }
13318 }
13319 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13320 || TREE_CODE (t) == FIXED_POINT_TYPE)
13321 {
13322 /* FIXME: The following check should pass:
13323 useless_type_conversion_p (const_cast <tree> (t),
13324 TREE_TYPE (TYPE_MAX_VALUE (t))
13325 but does not for C sizetypes in LTO. */
13326 }
13327 else if (TREE_CODE (t) == ARRAY_TYPE)
13328 {
13329 if (TYPE_ARRAY_MAX_SIZE (t)
13330 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
13331 {
13332 error ("TYPE_ARRAY_MAX_SIZE not INTEGER_CST");
13333 debug_tree (TYPE_ARRAY_MAX_SIZE (t));
13334 error_found = true;
13335 }
13336 }
13337 else if (TYPE_MAX_VALUE_RAW (t))
13338 {
13339 error ("TYPE_MAX_VALUE_RAW non-NULL");
13340 debug_tree (TYPE_MAX_VALUE_RAW (t));
13341 error_found = true;
13342 }
13343
13344 if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
13345 {
13346 error ("TYPE_LANG_SLOT_1 (binfo) field is non-NULL");
13347 debug_tree (TYPE_LANG_SLOT_1 (t));
13348 error_found = true;
13349 }
13350
13351 /* Check various uses of TYPE_VALUES_RAW. */
13352 if (TREE_CODE (t) == ENUMERAL_TYPE)
13353 for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
13354 {
13355 tree value = TREE_VALUE (l);
13356 tree name = TREE_PURPOSE (l);
13357
13358 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
13359 CONST_DECL of ENUMERAL TYPE. */
13360 if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
13361 {
13362 error ("Enum value is not CONST_DECL or INTEGER_CST");
13363 debug_tree (value);
13364 debug_tree (name);
13365 error_found = true;
13366 }
13367 if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
13368 && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
13369 {
13370 error ("Enum value type is not INTEGER_TYPE nor convertible to the enum");
13371 debug_tree (value);
13372 debug_tree (name);
13373 error_found = true;
13374 }
13375 if (TREE_CODE (name) != IDENTIFIER_NODE)
13376 {
13377 error ("Enum value name is not IDENTIFIER_NODE");
13378 debug_tree (value);
13379 debug_tree (name);
13380 error_found = true;
13381 }
13382 }
13383 else if (TREE_CODE (t) == ARRAY_TYPE)
13384 {
13385 if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
13386 {
13387 error ("Array TYPE_DOMAIN is not integer type");
13388 debug_tree (TYPE_DOMAIN (t));
13389 error_found = true;
13390 }
13391 }
13392 else if (RECORD_OR_UNION_TYPE_P (t))
13393 {
13394 if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
13395 {
13396 error ("TYPE_FIELDS defined in incomplete type");
13397 error_found = true;
13398 }
13399 for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
13400 {
13401 /* TODO: verify properties of decls. */
13402 if (TREE_CODE (fld) == FIELD_DECL)
13403 ;
13404 else if (TREE_CODE (fld) == TYPE_DECL)
13405 ;
13406 else if (TREE_CODE (fld) == CONST_DECL)
13407 ;
13408 else if (VAR_P (fld))
13409 ;
13410 else if (TREE_CODE (fld) == TEMPLATE_DECL)
13411 ;
13412 else if (TREE_CODE (fld) == USING_DECL)
13413 ;
13414 else if (TREE_CODE (fld) == FUNCTION_DECL)
13415 ;
13416 else
13417 {
13418 error ("Wrong tree in TYPE_FIELDS list");
13419 debug_tree (fld);
13420 error_found = true;
13421 }
13422 }
13423 }
13424 else if (TREE_CODE (t) == INTEGER_TYPE
13425 || TREE_CODE (t) == BOOLEAN_TYPE
13426 || TREE_CODE (t) == OFFSET_TYPE
13427 || TREE_CODE (t) == REFERENCE_TYPE
13428 || TREE_CODE (t) == NULLPTR_TYPE
13429 || TREE_CODE (t) == POINTER_TYPE)
13430 {
13431 if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
13432 {
13433 error ("TYPE_CACHED_VALUES_P is %i while TYPE_CACHED_VALUES is %p",
13434 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
13435 error_found = true;
13436 }
13437 else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
13438 {
13439 error ("TYPE_CACHED_VALUES is not TREE_VEC");
13440 debug_tree (TYPE_CACHED_VALUES (t));
13441 error_found = true;
13442 }
13443 /* Verify just enough of cache to ensure that no one copied it to new type.
13444 All copying should go by copy_node that should clear it. */
13445 else if (TYPE_CACHED_VALUES_P (t))
13446 {
13447 int i;
13448 for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
13449 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
13450 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
13451 {
13452 error ("wrong TYPE_CACHED_VALUES entry");
13453 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
13454 error_found = true;
13455 break;
13456 }
13457 }
13458 }
13459 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
13460 for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
13461 {
13462 /* C++ FE uses TREE_PURPOSE to store initial values. */
13463 if (TREE_PURPOSE (l) && in_lto_p)
13464 {
13465 error ("TREE_PURPOSE is non-NULL in TYPE_ARG_TYPES list");
13466 debug_tree (l);
13467 error_found = true;
13468 }
13469 if (!TYPE_P (TREE_VALUE (l)))
13470 {
13471 error ("Wrong entry in TYPE_ARG_TYPES list");
13472 debug_tree (l);
13473 error_found = true;
13474 }
13475 }
13476 else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
13477 {
13478 error ("TYPE_VALUES_RAW field is non-NULL");
13479 debug_tree (TYPE_VALUES_RAW (t));
13480 error_found = true;
13481 }
13482 if (TREE_CODE (t) != INTEGER_TYPE
13483 && TREE_CODE (t) != BOOLEAN_TYPE
13484 && TREE_CODE (t) != OFFSET_TYPE
13485 && TREE_CODE (t) != REFERENCE_TYPE
13486 && TREE_CODE (t) != NULLPTR_TYPE
13487 && TREE_CODE (t) != POINTER_TYPE
13488 && TYPE_CACHED_VALUES_P (t))
13489 {
13490 error ("TYPE_CACHED_VALUES_P is set while it should not");
13491 error_found = true;
13492 }
13493 if (TYPE_STRING_FLAG (t)
13494 && TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != INTEGER_TYPE)
13495 {
13496 error ("TYPE_STRING_FLAG is set on wrong type code");
13497 error_found = true;
13498 }
13499
13500 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
13501 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
13502 of a type. */
13503 if (TREE_CODE (t) == METHOD_TYPE
13504 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
13505 {
13506 error ("TYPE_METHOD_BASETYPE is not main variant");
13507 error_found = true;
13508 }
13509
13510 if (error_found)
13511 {
13512 debug_tree (const_cast <tree> (t));
13513 internal_error ("verify_type failed");
13514 }
13515 }
13516
13517
13518 /* Return 1 if ARG interpreted as signed in its precision is known to be
13519 always positive or 2 if ARG is known to be always negative, or 3 if
13520 ARG may be positive or negative. */
13521
13522 int
13523 get_range_pos_neg (tree arg)
13524 {
13525 if (arg == error_mark_node)
13526 return 3;
13527
13528 int prec = TYPE_PRECISION (TREE_TYPE (arg));
13529 int cnt = 0;
13530 if (TREE_CODE (arg) == INTEGER_CST)
13531 {
13532 wide_int w = wi::sext (arg, prec);
13533 if (wi::neg_p (w))
13534 return 2;
13535 else
13536 return 1;
13537 }
13538 while (CONVERT_EXPR_P (arg)
13539 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
13540 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
13541 {
13542 arg = TREE_OPERAND (arg, 0);
13543 /* Narrower value zero extended into wider type
13544 will always result in positive values. */
13545 if (TYPE_UNSIGNED (TREE_TYPE (arg))
13546 && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
13547 return 1;
13548 prec = TYPE_PRECISION (TREE_TYPE (arg));
13549 if (++cnt > 30)
13550 return 3;
13551 }
13552
13553 if (TREE_CODE (arg) != SSA_NAME)
13554 return 3;
13555 wide_int arg_min, arg_max;
13556 while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
13557 {
13558 gimple *g = SSA_NAME_DEF_STMT (arg);
13559 if (is_gimple_assign (g)
13560 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
13561 {
13562 tree t = gimple_assign_rhs1 (g);
13563 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
13564 && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
13565 {
13566 if (TYPE_UNSIGNED (TREE_TYPE (t))
13567 && TYPE_PRECISION (TREE_TYPE (t)) < prec)
13568 return 1;
13569 prec = TYPE_PRECISION (TREE_TYPE (t));
13570 arg = t;
13571 if (++cnt > 30)
13572 return 3;
13573 continue;
13574 }
13575 }
13576 return 3;
13577 }
13578 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
13579 {
13580 /* For unsigned values, the "positive" range comes
13581 below the "negative" range. */
13582 if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
13583 return 1;
13584 if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
13585 return 2;
13586 }
13587 else
13588 {
13589 if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
13590 return 1;
13591 if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
13592 return 2;
13593 }
13594 return 3;
13595 }
13596
13597
13598
13599
13600 /* Return true if ARG is marked with the nonnull attribute in the
13601 current function signature. */
13602
13603 bool
13604 nonnull_arg_p (const_tree arg)
13605 {
13606 tree t, attrs, fntype;
13607 unsigned HOST_WIDE_INT arg_num;
13608
13609 gcc_assert (TREE_CODE (arg) == PARM_DECL
13610 && (POINTER_TYPE_P (TREE_TYPE (arg))
13611 || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
13612
13613 /* The static chain decl is always non null. */
13614 if (arg == cfun->static_chain_decl)
13615 return true;
13616
13617 /* THIS argument of method is always non-NULL. */
13618 if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
13619 && arg == DECL_ARGUMENTS (cfun->decl)
13620 && flag_delete_null_pointer_checks)
13621 return true;
13622
13623 /* Values passed by reference are always non-NULL. */
13624 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
13625 && flag_delete_null_pointer_checks)
13626 return true;
13627
13628 fntype = TREE_TYPE (cfun->decl);
13629 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
13630 {
13631 attrs = lookup_attribute ("nonnull", attrs);
13632
13633 /* If "nonnull" wasn't specified, we know nothing about the argument. */
13634 if (attrs == NULL_TREE)
13635 return false;
13636
13637 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
13638 if (TREE_VALUE (attrs) == NULL_TREE)
13639 return true;
13640
13641 /* Get the position number for ARG in the function signature. */
13642 for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
13643 t;
13644 t = DECL_CHAIN (t), arg_num++)
13645 {
13646 if (t == arg)
13647 break;
13648 }
13649
13650 gcc_assert (t == arg);
13651
13652 /* Now see if ARG_NUM is mentioned in the nonnull list. */
13653 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
13654 {
13655 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
13656 return true;
13657 }
13658 }
13659
13660 return false;
13661 }
13662
13663 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
13664 information. */
13665
13666 location_t
13667 set_block (location_t loc, tree block)
13668 {
13669 location_t pure_loc = get_pure_location (loc);
13670 source_range src_range = get_range_from_loc (line_table, loc);
13671 return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
13672 }
13673
13674 location_t
13675 set_source_range (tree expr, location_t start, location_t finish)
13676 {
13677 source_range src_range;
13678 src_range.m_start = start;
13679 src_range.m_finish = finish;
13680 return set_source_range (expr, src_range);
13681 }
13682
13683 location_t
13684 set_source_range (tree expr, source_range src_range)
13685 {
13686 if (!EXPR_P (expr))
13687 return UNKNOWN_LOCATION;
13688
13689 location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
13690 location_t adhoc = COMBINE_LOCATION_DATA (line_table,
13691 pure_loc,
13692 src_range,
13693 NULL);
13694 SET_EXPR_LOCATION (expr, adhoc);
13695 return adhoc;
13696 }
13697
13698 /* Return the name of combined function FN, for debugging purposes. */
13699
13700 const char *
13701 combined_fn_name (combined_fn fn)
13702 {
13703 if (builtin_fn_p (fn))
13704 {
13705 tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
13706 return IDENTIFIER_POINTER (DECL_NAME (fndecl));
13707 }
13708 else
13709 return internal_fn_name (as_internal_fn (fn));
13710 }
13711
13712 /* Return a bitmap with a bit set corresponding to each argument in
13713 a function call type FNTYPE declared with attribute nonnull,
13714 or null if none of the function's argument are nonnull. The caller
13715 must free the bitmap. */
13716
13717 bitmap
13718 get_nonnull_args (const_tree fntype)
13719 {
13720 if (fntype == NULL_TREE)
13721 return NULL;
13722
13723 tree attrs = TYPE_ATTRIBUTES (fntype);
13724 if (!attrs)
13725 return NULL;
13726
13727 bitmap argmap = NULL;
13728
13729 /* A function declaration can specify multiple attribute nonnull,
13730 each with zero or more arguments. The loop below creates a bitmap
13731 representing a union of all the arguments. An empty (but non-null)
13732 bitmap means that all arguments have been declaraed nonnull. */
13733 for ( ; attrs; attrs = TREE_CHAIN (attrs))
13734 {
13735 attrs = lookup_attribute ("nonnull", attrs);
13736 if (!attrs)
13737 break;
13738
13739 if (!argmap)
13740 argmap = BITMAP_ALLOC (NULL);
13741
13742 if (!TREE_VALUE (attrs))
13743 {
13744 /* Clear the bitmap in case a previous attribute nonnull
13745 set it and this one overrides it for all arguments. */
13746 bitmap_clear (argmap);
13747 return argmap;
13748 }
13749
13750 /* Iterate over the indices of the format arguments declared nonnull
13751 and set a bit for each. */
13752 for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
13753 {
13754 unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
13755 bitmap_set_bit (argmap, val);
13756 }
13757 }
13758
13759 return argmap;
13760 }
13761
13762 /* List of pointer types used to declare builtins before we have seen their
13763 real declaration.
13764
13765 Keep the size up to date in tree.h ! */
13766 const builtin_structptr_type builtin_structptr_types[6] =
13767 {
13768 { fileptr_type_node, ptr_type_node, "FILE" },
13769 { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
13770 { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
13771 { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
13772 { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
13773 { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
13774 };
13775
13776 #if CHECKING_P
13777
13778 namespace selftest {
13779
13780 /* Selftests for tree. */
13781
13782 /* Verify that integer constants are sane. */
13783
13784 static void
13785 test_integer_constants ()
13786 {
13787 ASSERT_TRUE (integer_type_node != NULL);
13788 ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
13789
13790 tree type = integer_type_node;
13791
13792 tree zero = build_zero_cst (type);
13793 ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
13794 ASSERT_EQ (type, TREE_TYPE (zero));
13795
13796 tree one = build_int_cst (type, 1);
13797 ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
13798 ASSERT_EQ (type, TREE_TYPE (zero));
13799 }
13800
13801 /* Verify identifiers. */
13802
13803 static void
13804 test_identifiers ()
13805 {
13806 tree identifier = get_identifier ("foo");
13807 ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
13808 ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
13809 }
13810
13811 /* Verify LABEL_DECL. */
13812
13813 static void
13814 test_labels ()
13815 {
13816 tree identifier = get_identifier ("err");
13817 tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
13818 identifier, void_type_node);
13819 ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
13820 ASSERT_FALSE (FORCED_LABEL (label_decl));
13821 }
13822
13823 /* Run all of the selftests within this file. */
13824
13825 void
13826 tree_c_tests ()
13827 {
13828 test_integer_constants ();
13829 test_identifiers ();
13830 test_labels ();
13831 }
13832
13833 } // namespace selftest
13834
13835 #endif /* CHECKING_P */
13836
13837 #include "gt-tree.h"