re PR c++/24780 (ICE set_mem_attributes_minus_bitpos)
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53
54 /* Each tree code class has an associated string representation.
55 These must correspond to the tree_code_class entries. */
56
57 const char *const tree_code_class_strings[] =
58 {
59 "exceptional",
60 "constant",
61 "type",
62 "declaration",
63 "reference",
64 "comparison",
65 "unary",
66 "binary",
67 "statement",
68 "expression",
69 };
70
71 /* obstack.[ch] explicitly declined to prototype this. */
72 extern int _obstack_allocated_p (struct obstack *h, void *obj);
73
74 #ifdef GATHER_STATISTICS
75 /* Statistics-gathering stuff. */
76
77 int tree_node_counts[(int) all_kinds];
78 int tree_node_sizes[(int) all_kinds];
79
80 /* Keep in sync with tree.h:enum tree_node_kind. */
81 static const char * const tree_node_kind_names[] = {
82 "decls",
83 "types",
84 "blocks",
85 "stmts",
86 "refs",
87 "exprs",
88 "constants",
89 "identifiers",
90 "perm_tree_lists",
91 "temp_tree_lists",
92 "vecs",
93 "binfos",
94 "phi_nodes",
95 "ssa names",
96 "constructors",
97 "random kinds",
98 "lang_decl kinds",
99 "lang_type kinds"
100 };
101 #endif /* GATHER_STATISTICS */
102
103 /* Unique id for next decl created. */
104 static GTY(()) int next_decl_uid;
105 /* Unique id for next type created. */
106 static GTY(()) int next_type_uid = 1;
107
108 /* Since we cannot rehash a type after it is in the table, we have to
109 keep the hash code. */
110
111 struct type_hash GTY(())
112 {
113 unsigned long hash;
114 tree type;
115 };
116
117 /* Initial size of the hash table (rounded to next prime). */
118 #define TYPE_HASH_INITIAL_SIZE 1000
119
120 /* Now here is the hash table. When recording a type, it is added to
121 the slot whose index is the hash code. Note that the hash table is
122 used for several kinds of types (function types, array types and
123 array index range types, for now). While all these live in the
124 same table, they are completely independent, and the hash code is
125 computed differently for each of these. */
126
127 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
128 htab_t type_hash_table;
129
130 /* Hash table and temporary node for larger integer const values. */
131 static GTY (()) tree int_cst_node;
132 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
133 htab_t int_cst_hash_table;
134
135 /* General tree->tree mapping structure for use in hash tables. */
136
137
138 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
139 htab_t debug_expr_for_decl;
140
141 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
142 htab_t value_expr_for_decl;
143
144 static GTY ((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
145 htab_t init_priority_for_decl;
146
147 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
148 htab_t restrict_base_for_decl;
149
150 struct tree_int_map GTY(())
151 {
152 tree from;
153 unsigned short to;
154 };
155 static unsigned int tree_int_map_hash (const void *);
156 static int tree_int_map_eq (const void *, const void *);
157 static int tree_int_map_marked_p (const void *);
158 static void set_type_quals (tree, int);
159 static int type_hash_eq (const void *, const void *);
160 static hashval_t type_hash_hash (const void *);
161 static hashval_t int_cst_hash_hash (const void *);
162 static int int_cst_hash_eq (const void *, const void *);
163 static void print_type_hash_statistics (void);
164 static void print_debug_expr_statistics (void);
165 static void print_value_expr_statistics (void);
166 static tree make_vector_type (tree, int, enum machine_mode);
167 static int type_hash_marked_p (const void *);
168 static unsigned int type_hash_list (tree, hashval_t);
169 static unsigned int attribute_hash_list (tree, hashval_t);
170
171 tree global_trees[TI_MAX];
172 tree integer_types[itk_none];
173
174 unsigned char tree_contains_struct[256][64];
175 \f
176 /* Init tree.c. */
177
178 void
179 init_ttree (void)
180 {
181
182 /* Initialize the hash table of types. */
183 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
184 type_hash_eq, 0);
185
186 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
187 tree_map_eq, 0);
188
189 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
190 tree_map_eq, 0);
191 init_priority_for_decl = htab_create_ggc (512, tree_int_map_hash,
192 tree_int_map_eq, 0);
193 restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
194 tree_map_eq, 0);
195
196 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
197 int_cst_hash_eq, NULL);
198
199 int_cst_node = make_node (INTEGER_CST);
200
201 tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
202 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
203 tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
204
205
206 tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
207 tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
208 tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
209 tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
210 tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
211 tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
212 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
213 tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
214 tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
215
216
217 tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
218 tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
219 tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
220 tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
221 tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
222 tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1;
223
224 tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
225 tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
226 tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
227 tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
228 tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
229 tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
230 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
231 tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
232 tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
233
234 tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
235 tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
236 tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
237 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
238
239 tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
240 tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
241 tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
242 tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
243 tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
244 tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
245 tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
246 tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
247
248 lang_hooks.init_ts ();
249 }
250
251 \f
252 /* The name of the object as the assembler will see it (but before any
253 translations made by ASM_OUTPUT_LABELREF). Often this is the same
254 as DECL_NAME. It is an IDENTIFIER_NODE. */
255 tree
256 decl_assembler_name (tree decl)
257 {
258 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
259 lang_hooks.set_decl_assembler_name (decl);
260 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
261 }
262
263 /* Compute the number of bytes occupied by a tree with code CODE.
264 This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
265 codes, which are of variable length. */
266 size_t
267 tree_code_size (enum tree_code code)
268 {
269 switch (TREE_CODE_CLASS (code))
270 {
271 case tcc_declaration: /* A decl node */
272 {
273 switch (code)
274 {
275 case FIELD_DECL:
276 return sizeof (struct tree_field_decl);
277 case PARM_DECL:
278 return sizeof (struct tree_parm_decl);
279 case VAR_DECL:
280 return sizeof (struct tree_var_decl);
281 case LABEL_DECL:
282 return sizeof (struct tree_label_decl);
283 case RESULT_DECL:
284 return sizeof (struct tree_result_decl);
285 case CONST_DECL:
286 return sizeof (struct tree_const_decl);
287 case TYPE_DECL:
288 return sizeof (struct tree_type_decl);
289 case FUNCTION_DECL:
290 return sizeof (struct tree_function_decl);
291 default:
292 return sizeof (struct tree_decl_non_common);
293 }
294 }
295
296 case tcc_type: /* a type node */
297 return sizeof (struct tree_type);
298
299 case tcc_reference: /* a reference */
300 case tcc_expression: /* an expression */
301 case tcc_statement: /* an expression with side effects */
302 case tcc_comparison: /* a comparison expression */
303 case tcc_unary: /* a unary arithmetic expression */
304 case tcc_binary: /* a binary arithmetic expression */
305 return (sizeof (struct tree_exp)
306 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
307
308 case tcc_constant: /* a constant */
309 switch (code)
310 {
311 case INTEGER_CST: return sizeof (struct tree_int_cst);
312 case REAL_CST: return sizeof (struct tree_real_cst);
313 case COMPLEX_CST: return sizeof (struct tree_complex);
314 case VECTOR_CST: return sizeof (struct tree_vector);
315 case STRING_CST: gcc_unreachable ();
316 default:
317 return lang_hooks.tree_size (code);
318 }
319
320 case tcc_exceptional: /* something random, like an identifier. */
321 switch (code)
322 {
323 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
324 case TREE_LIST: return sizeof (struct tree_list);
325
326 case ERROR_MARK:
327 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
328
329 case TREE_VEC:
330 case PHI_NODE: gcc_unreachable ();
331
332 case SSA_NAME: return sizeof (struct tree_ssa_name);
333
334 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
335 case BLOCK: return sizeof (struct tree_block);
336 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
337 case CONSTRUCTOR: return sizeof (struct tree_constructor);
338
339 default:
340 return lang_hooks.tree_size (code);
341 }
342
343 default:
344 gcc_unreachable ();
345 }
346 }
347
348 /* Compute the number of bytes occupied by NODE. This routine only
349 looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes. */
350 size_t
351 tree_size (tree node)
352 {
353 enum tree_code code = TREE_CODE (node);
354 switch (code)
355 {
356 case PHI_NODE:
357 return (sizeof (struct tree_phi_node)
358 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
359
360 case TREE_BINFO:
361 return (offsetof (struct tree_binfo, base_binfos)
362 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
363
364 case TREE_VEC:
365 return (sizeof (struct tree_vec)
366 + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
367
368 case STRING_CST:
369 return sizeof (struct tree_string) + TREE_STRING_LENGTH (node) - 1;
370
371 default:
372 return tree_code_size (code);
373 }
374 }
375
376 /* Return a newly allocated node of code CODE. For decl and type
377 nodes, some other fields are initialized. The rest of the node is
378 initialized to zero. This function cannot be used for PHI_NODE or
379 TREE_VEC nodes, which is enforced by asserts in tree_code_size.
380
381 Achoo! I got a code in the node. */
382
383 tree
384 make_node_stat (enum tree_code code MEM_STAT_DECL)
385 {
386 tree t;
387 enum tree_code_class type = TREE_CODE_CLASS (code);
388 size_t length = tree_code_size (code);
389 #ifdef GATHER_STATISTICS
390 tree_node_kind kind;
391
392 switch (type)
393 {
394 case tcc_declaration: /* A decl node */
395 kind = d_kind;
396 break;
397
398 case tcc_type: /* a type node */
399 kind = t_kind;
400 break;
401
402 case tcc_statement: /* an expression with side effects */
403 kind = s_kind;
404 break;
405
406 case tcc_reference: /* a reference */
407 kind = r_kind;
408 break;
409
410 case tcc_expression: /* an expression */
411 case tcc_comparison: /* a comparison expression */
412 case tcc_unary: /* a unary arithmetic expression */
413 case tcc_binary: /* a binary arithmetic expression */
414 kind = e_kind;
415 break;
416
417 case tcc_constant: /* a constant */
418 kind = c_kind;
419 break;
420
421 case tcc_exceptional: /* something random, like an identifier. */
422 switch (code)
423 {
424 case IDENTIFIER_NODE:
425 kind = id_kind;
426 break;
427
428 case TREE_VEC:
429 kind = vec_kind;
430 break;
431
432 case TREE_BINFO:
433 kind = binfo_kind;
434 break;
435
436 case PHI_NODE:
437 kind = phi_kind;
438 break;
439
440 case SSA_NAME:
441 kind = ssa_name_kind;
442 break;
443
444 case BLOCK:
445 kind = b_kind;
446 break;
447
448 case CONSTRUCTOR:
449 kind = constr_kind;
450 break;
451
452 default:
453 kind = x_kind;
454 break;
455 }
456 break;
457
458 default:
459 gcc_unreachable ();
460 }
461
462 tree_node_counts[(int) kind]++;
463 tree_node_sizes[(int) kind] += length;
464 #endif
465
466 if (code == IDENTIFIER_NODE)
467 t = ggc_alloc_zone_pass_stat (length, &tree_id_zone);
468 else
469 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
470
471 memset (t, 0, length);
472
473 TREE_SET_CODE (t, code);
474
475 switch (type)
476 {
477 case tcc_statement:
478 TREE_SIDE_EFFECTS (t) = 1;
479 break;
480
481 case tcc_declaration:
482 if (code != FUNCTION_DECL)
483 DECL_ALIGN (t) = 1;
484 DECL_USER_ALIGN (t) = 0;
485 if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
486 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
487 /* We have not yet computed the alias set for this declaration. */
488 DECL_POINTER_ALIAS_SET (t) = -1;
489 DECL_SOURCE_LOCATION (t) = input_location;
490 DECL_UID (t) = next_decl_uid++;
491
492 break;
493
494 case tcc_type:
495 TYPE_UID (t) = next_type_uid++;
496 TYPE_ALIGN (t) = BITS_PER_UNIT;
497 TYPE_USER_ALIGN (t) = 0;
498 TYPE_MAIN_VARIANT (t) = t;
499
500 /* Default to no attributes for type, but let target change that. */
501 TYPE_ATTRIBUTES (t) = NULL_TREE;
502 targetm.set_default_type_attributes (t);
503
504 /* We have not yet computed the alias set for this type. */
505 TYPE_ALIAS_SET (t) = -1;
506 break;
507
508 case tcc_constant:
509 TREE_CONSTANT (t) = 1;
510 TREE_INVARIANT (t) = 1;
511 break;
512
513 case tcc_expression:
514 switch (code)
515 {
516 case INIT_EXPR:
517 case MODIFY_EXPR:
518 case VA_ARG_EXPR:
519 case PREDECREMENT_EXPR:
520 case PREINCREMENT_EXPR:
521 case POSTDECREMENT_EXPR:
522 case POSTINCREMENT_EXPR:
523 /* All of these have side-effects, no matter what their
524 operands are. */
525 TREE_SIDE_EFFECTS (t) = 1;
526 break;
527
528 default:
529 break;
530 }
531 break;
532
533 default:
534 /* Other classes need no special treatment. */
535 break;
536 }
537
538 return t;
539 }
540 \f
541 /* Return a new node with the same contents as NODE except that its
542 TREE_CHAIN is zero and it has a fresh uid. */
543
544 tree
545 copy_node_stat (tree node MEM_STAT_DECL)
546 {
547 tree t;
548 enum tree_code code = TREE_CODE (node);
549 size_t length;
550
551 gcc_assert (code != STATEMENT_LIST);
552
553 length = tree_size (node);
554 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
555 memcpy (t, node, length);
556
557 TREE_CHAIN (t) = 0;
558 TREE_ASM_WRITTEN (t) = 0;
559 TREE_VISITED (t) = 0;
560 t->common.ann = 0;
561
562 if (TREE_CODE_CLASS (code) == tcc_declaration)
563 {
564 DECL_UID (t) = next_decl_uid++;
565 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
566 && DECL_HAS_VALUE_EXPR_P (node))
567 {
568 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
569 DECL_HAS_VALUE_EXPR_P (t) = 1;
570 }
571 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
572 {
573 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
574 DECL_HAS_INIT_PRIORITY_P (t) = 1;
575 }
576 if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
577 {
578 SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
579 DECL_BASED_ON_RESTRICT_P (t) = 1;
580 }
581 }
582 else if (TREE_CODE_CLASS (code) == tcc_type)
583 {
584 TYPE_UID (t) = next_type_uid++;
585 /* The following is so that the debug code for
586 the copy is different from the original type.
587 The two statements usually duplicate each other
588 (because they clear fields of the same union),
589 but the optimizer should catch that. */
590 TYPE_SYMTAB_POINTER (t) = 0;
591 TYPE_SYMTAB_ADDRESS (t) = 0;
592
593 /* Do not copy the values cache. */
594 if (TYPE_CACHED_VALUES_P(t))
595 {
596 TYPE_CACHED_VALUES_P (t) = 0;
597 TYPE_CACHED_VALUES (t) = NULL_TREE;
598 }
599 }
600
601 return t;
602 }
603
604 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
605 For example, this can copy a list made of TREE_LIST nodes. */
606
607 tree
608 copy_list (tree list)
609 {
610 tree head;
611 tree prev, next;
612
613 if (list == 0)
614 return 0;
615
616 head = prev = copy_node (list);
617 next = TREE_CHAIN (list);
618 while (next)
619 {
620 TREE_CHAIN (prev) = copy_node (next);
621 prev = TREE_CHAIN (prev);
622 next = TREE_CHAIN (next);
623 }
624 return head;
625 }
626
627 \f
628 /* Create an INT_CST node with a LOW value sign extended. */
629
630 tree
631 build_int_cst (tree type, HOST_WIDE_INT low)
632 {
633 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
634 }
635
636 /* Create an INT_CST node with a LOW value zero extended. */
637
638 tree
639 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
640 {
641 return build_int_cst_wide (type, low, 0);
642 }
643
644 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
645 if it is negative. This function is similar to build_int_cst, but
646 the extra bits outside of the type precision are cleared. Constants
647 with these extra bits may confuse the fold so that it detects overflows
648 even in cases when they do not occur, and in general should be avoided.
649 We cannot however make this a default behavior of build_int_cst without
650 more intrusive changes, since there are parts of gcc that rely on the extra
651 precision of the integer constants. */
652
653 tree
654 build_int_cst_type (tree type, HOST_WIDE_INT low)
655 {
656 unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
657 unsigned HOST_WIDE_INT hi, mask;
658 unsigned bits;
659 bool signed_p;
660 bool negative;
661
662 if (!type)
663 type = integer_type_node;
664
665 bits = TYPE_PRECISION (type);
666 signed_p = !TYPE_UNSIGNED (type);
667
668 if (bits >= HOST_BITS_PER_WIDE_INT)
669 negative = (low < 0);
670 else
671 {
672 /* If the sign bit is inside precision of LOW, use it to determine
673 the sign of the constant. */
674 negative = ((val >> (bits - 1)) & 1) != 0;
675
676 /* Mask out the bits outside of the precision of the constant. */
677 mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
678
679 if (signed_p && negative)
680 val |= ~mask;
681 else
682 val &= mask;
683 }
684
685 /* Determine the high bits. */
686 hi = (negative ? ~(unsigned HOST_WIDE_INT) 0 : 0);
687
688 /* For unsigned type we need to mask out the bits outside of the type
689 precision. */
690 if (!signed_p)
691 {
692 if (bits <= HOST_BITS_PER_WIDE_INT)
693 hi = 0;
694 else
695 {
696 bits -= HOST_BITS_PER_WIDE_INT;
697 mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
698 hi &= mask;
699 }
700 }
701
702 return build_int_cst_wide (type, val, hi);
703 }
704
705 /* These are the hash table functions for the hash table of INTEGER_CST
706 nodes of a sizetype. */
707
708 /* Return the hash code code X, an INTEGER_CST. */
709
710 static hashval_t
711 int_cst_hash_hash (const void *x)
712 {
713 tree t = (tree) x;
714
715 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
716 ^ htab_hash_pointer (TREE_TYPE (t)));
717 }
718
719 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
720 is the same as that given by *Y, which is the same. */
721
722 static int
723 int_cst_hash_eq (const void *x, const void *y)
724 {
725 tree xt = (tree) x;
726 tree yt = (tree) y;
727
728 return (TREE_TYPE (xt) == TREE_TYPE (yt)
729 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
730 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
731 }
732
733 /* Create an INT_CST node of TYPE and value HI:LOW. If TYPE is NULL,
734 integer_type_node is used. The returned node is always shared.
735 For small integers we use a per-type vector cache, for larger ones
736 we use a single hash table. */
737
738 tree
739 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
740 {
741 tree t;
742 int ix = -1;
743 int limit = 0;
744
745 if (!type)
746 type = integer_type_node;
747
748 switch (TREE_CODE (type))
749 {
750 case POINTER_TYPE:
751 case REFERENCE_TYPE:
752 /* Cache NULL pointer. */
753 if (!hi && !low)
754 {
755 limit = 1;
756 ix = 0;
757 }
758 break;
759
760 case BOOLEAN_TYPE:
761 /* Cache false or true. */
762 limit = 2;
763 if (!hi && low < 2)
764 ix = low;
765 break;
766
767 case INTEGER_TYPE:
768 case CHAR_TYPE:
769 case OFFSET_TYPE:
770 if (TYPE_UNSIGNED (type))
771 {
772 /* Cache 0..N */
773 limit = INTEGER_SHARE_LIMIT;
774 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
775 ix = low;
776 }
777 else
778 {
779 /* Cache -1..N */
780 limit = INTEGER_SHARE_LIMIT + 1;
781 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
782 ix = low + 1;
783 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
784 ix = 0;
785 }
786 break;
787 default:
788 break;
789 }
790
791 if (ix >= 0)
792 {
793 /* Look for it in the type's vector of small shared ints. */
794 if (!TYPE_CACHED_VALUES_P (type))
795 {
796 TYPE_CACHED_VALUES_P (type) = 1;
797 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
798 }
799
800 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
801 if (t)
802 {
803 /* Make sure no one is clobbering the shared constant. */
804 gcc_assert (TREE_TYPE (t) == type);
805 gcc_assert (TREE_INT_CST_LOW (t) == low);
806 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
807 }
808 else
809 {
810 /* Create a new shared int. */
811 t = make_node (INTEGER_CST);
812
813 TREE_INT_CST_LOW (t) = low;
814 TREE_INT_CST_HIGH (t) = hi;
815 TREE_TYPE (t) = type;
816
817 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
818 }
819 }
820 else
821 {
822 /* Use the cache of larger shared ints. */
823 void **slot;
824
825 TREE_INT_CST_LOW (int_cst_node) = low;
826 TREE_INT_CST_HIGH (int_cst_node) = hi;
827 TREE_TYPE (int_cst_node) = type;
828
829 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
830 t = *slot;
831 if (!t)
832 {
833 /* Insert this one into the hash table. */
834 t = int_cst_node;
835 *slot = t;
836 /* Make a new node for next time round. */
837 int_cst_node = make_node (INTEGER_CST);
838 }
839 }
840
841 return t;
842 }
843
844 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
845 and the rest are zeros. */
846
847 tree
848 build_low_bits_mask (tree type, unsigned bits)
849 {
850 unsigned HOST_WIDE_INT low;
851 HOST_WIDE_INT high;
852 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
853
854 gcc_assert (bits <= TYPE_PRECISION (type));
855
856 if (bits == TYPE_PRECISION (type)
857 && !TYPE_UNSIGNED (type))
858 {
859 /* Sign extended all-ones mask. */
860 low = all_ones;
861 high = -1;
862 }
863 else if (bits <= HOST_BITS_PER_WIDE_INT)
864 {
865 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
866 high = 0;
867 }
868 else
869 {
870 bits -= HOST_BITS_PER_WIDE_INT;
871 low = all_ones;
872 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
873 }
874
875 return build_int_cst_wide (type, low, high);
876 }
877
878 /* Checks that X is integer constant that can be expressed in (unsigned)
879 HOST_WIDE_INT without loss of precision. */
880
881 bool
882 cst_and_fits_in_hwi (tree x)
883 {
884 if (TREE_CODE (x) != INTEGER_CST)
885 return false;
886
887 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
888 return false;
889
890 return (TREE_INT_CST_HIGH (x) == 0
891 || TREE_INT_CST_HIGH (x) == -1);
892 }
893
894 /* Return a new VECTOR_CST node whose type is TYPE and whose values
895 are in a list pointed to by VALS. */
896
897 tree
898 build_vector (tree type, tree vals)
899 {
900 tree v = make_node (VECTOR_CST);
901 int over1 = 0, over2 = 0;
902 tree link;
903
904 TREE_VECTOR_CST_ELTS (v) = vals;
905 TREE_TYPE (v) = type;
906
907 /* Iterate through elements and check for overflow. */
908 for (link = vals; link; link = TREE_CHAIN (link))
909 {
910 tree value = TREE_VALUE (link);
911
912 over1 |= TREE_OVERFLOW (value);
913 over2 |= TREE_CONSTANT_OVERFLOW (value);
914 }
915
916 TREE_OVERFLOW (v) = over1;
917 TREE_CONSTANT_OVERFLOW (v) = over2;
918
919 return v;
920 }
921
922 /* Return a new VECTOR_CST node whose type is TYPE and whose values
923 are extracted from V, a vector of CONSTRUCTOR_ELT. */
924
925 tree
926 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
927 {
928 tree list = NULL_TREE;
929 unsigned HOST_WIDE_INT idx;
930 tree value;
931
932 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
933 list = tree_cons (NULL_TREE, value, list);
934 return build_vector (type, nreverse (list));
935 }
936
937 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
938 are in the VEC pointed to by VALS. */
939 tree
940 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
941 {
942 tree c = make_node (CONSTRUCTOR);
943 TREE_TYPE (c) = type;
944 CONSTRUCTOR_ELTS (c) = vals;
945 return c;
946 }
947
948 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
949 INDEX and VALUE. */
950 tree
951 build_constructor_single (tree type, tree index, tree value)
952 {
953 VEC(constructor_elt,gc) *v;
954 constructor_elt *elt;
955
956 v = VEC_alloc (constructor_elt, gc, 1);
957 elt = VEC_quick_push (constructor_elt, v, NULL);
958 elt->index = index;
959 elt->value = value;
960
961 return build_constructor (type, v);
962 }
963
964
965 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
966 are in a list pointed to by VALS. */
967 tree
968 build_constructor_from_list (tree type, tree vals)
969 {
970 tree t;
971 VEC(constructor_elt,gc) *v = NULL;
972
973 if (vals)
974 {
975 v = VEC_alloc (constructor_elt, gc, list_length (vals));
976 for (t = vals; t; t = TREE_CHAIN (t))
977 {
978 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
979 elt->index = TREE_PURPOSE (t);
980 elt->value = TREE_VALUE (t);
981 }
982 }
983
984 return build_constructor (type, v);
985 }
986
987
988 /* Return a new REAL_CST node whose type is TYPE and value is D. */
989
990 tree
991 build_real (tree type, REAL_VALUE_TYPE d)
992 {
993 tree v;
994 REAL_VALUE_TYPE *dp;
995 int overflow = 0;
996
997 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
998 Consider doing it via real_convert now. */
999
1000 v = make_node (REAL_CST);
1001 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
1002 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1003
1004 TREE_TYPE (v) = type;
1005 TREE_REAL_CST_PTR (v) = dp;
1006 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1007 return v;
1008 }
1009
1010 /* Return a new REAL_CST node whose type is TYPE
1011 and whose value is the integer value of the INTEGER_CST node I. */
1012
1013 REAL_VALUE_TYPE
1014 real_value_from_int_cst (tree type, tree i)
1015 {
1016 REAL_VALUE_TYPE d;
1017
1018 /* Clear all bits of the real value type so that we can later do
1019 bitwise comparisons to see if two values are the same. */
1020 memset (&d, 0, sizeof d);
1021
1022 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1023 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1024 TYPE_UNSIGNED (TREE_TYPE (i)));
1025 return d;
1026 }
1027
1028 /* Given a tree representing an integer constant I, return a tree
1029 representing the same value as a floating-point constant of type TYPE. */
1030
1031 tree
1032 build_real_from_int_cst (tree type, tree i)
1033 {
1034 tree v;
1035 int overflow = TREE_OVERFLOW (i);
1036
1037 v = build_real (type, real_value_from_int_cst (type, i));
1038
1039 TREE_OVERFLOW (v) |= overflow;
1040 TREE_CONSTANT_OVERFLOW (v) |= overflow;
1041 return v;
1042 }
1043
1044 /* Return a newly constructed STRING_CST node whose value is
1045 the LEN characters at STR.
1046 The TREE_TYPE is not initialized. */
1047
1048 tree
1049 build_string (int len, const char *str)
1050 {
1051 tree s;
1052 size_t length;
1053
1054 length = len + sizeof (struct tree_string);
1055
1056 #ifdef GATHER_STATISTICS
1057 tree_node_counts[(int) c_kind]++;
1058 tree_node_sizes[(int) c_kind] += length;
1059 #endif
1060
1061 s = ggc_alloc_tree (length);
1062
1063 memset (s, 0, sizeof (struct tree_common));
1064 TREE_SET_CODE (s, STRING_CST);
1065 TREE_CONSTANT (s) = 1;
1066 TREE_INVARIANT (s) = 1;
1067 TREE_STRING_LENGTH (s) = len;
1068 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
1069 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
1070
1071 return s;
1072 }
1073
1074 /* Return a newly constructed COMPLEX_CST node whose value is
1075 specified by the real and imaginary parts REAL and IMAG.
1076 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1077 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1078
1079 tree
1080 build_complex (tree type, tree real, tree imag)
1081 {
1082 tree t = make_node (COMPLEX_CST);
1083
1084 TREE_REALPART (t) = real;
1085 TREE_IMAGPART (t) = imag;
1086 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1087 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1088 TREE_CONSTANT_OVERFLOW (t)
1089 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1090 return t;
1091 }
1092
1093 /* Build a BINFO with LEN language slots. */
1094
1095 tree
1096 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1097 {
1098 tree t;
1099 size_t length = (offsetof (struct tree_binfo, base_binfos)
1100 + VEC_embedded_size (tree, base_binfos));
1101
1102 #ifdef GATHER_STATISTICS
1103 tree_node_counts[(int) binfo_kind]++;
1104 tree_node_sizes[(int) binfo_kind] += length;
1105 #endif
1106
1107 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1108
1109 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1110
1111 TREE_SET_CODE (t, TREE_BINFO);
1112
1113 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1114
1115 return t;
1116 }
1117
1118
1119 /* Build a newly constructed TREE_VEC node of length LEN. */
1120
1121 tree
1122 make_tree_vec_stat (int len MEM_STAT_DECL)
1123 {
1124 tree t;
1125 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1126
1127 #ifdef GATHER_STATISTICS
1128 tree_node_counts[(int) vec_kind]++;
1129 tree_node_sizes[(int) vec_kind] += length;
1130 #endif
1131
1132 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1133
1134 memset (t, 0, length);
1135
1136 TREE_SET_CODE (t, TREE_VEC);
1137 TREE_VEC_LENGTH (t) = len;
1138
1139 return t;
1140 }
1141 \f
1142 /* Return 1 if EXPR is the integer constant zero or a complex constant
1143 of zero. */
1144
1145 int
1146 integer_zerop (tree expr)
1147 {
1148 STRIP_NOPS (expr);
1149
1150 return ((TREE_CODE (expr) == INTEGER_CST
1151 && ! TREE_CONSTANT_OVERFLOW (expr)
1152 && TREE_INT_CST_LOW (expr) == 0
1153 && TREE_INT_CST_HIGH (expr) == 0)
1154 || (TREE_CODE (expr) == COMPLEX_CST
1155 && integer_zerop (TREE_REALPART (expr))
1156 && integer_zerop (TREE_IMAGPART (expr))));
1157 }
1158
1159 /* Return 1 if EXPR is the integer constant one or the corresponding
1160 complex constant. */
1161
1162 int
1163 integer_onep (tree expr)
1164 {
1165 STRIP_NOPS (expr);
1166
1167 return ((TREE_CODE (expr) == INTEGER_CST
1168 && ! TREE_CONSTANT_OVERFLOW (expr)
1169 && TREE_INT_CST_LOW (expr) == 1
1170 && TREE_INT_CST_HIGH (expr) == 0)
1171 || (TREE_CODE (expr) == COMPLEX_CST
1172 && integer_onep (TREE_REALPART (expr))
1173 && integer_zerop (TREE_IMAGPART (expr))));
1174 }
1175
1176 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1177 it contains. Likewise for the corresponding complex constant. */
1178
1179 int
1180 integer_all_onesp (tree expr)
1181 {
1182 int prec;
1183 int uns;
1184
1185 STRIP_NOPS (expr);
1186
1187 if (TREE_CODE (expr) == COMPLEX_CST
1188 && integer_all_onesp (TREE_REALPART (expr))
1189 && integer_zerop (TREE_IMAGPART (expr)))
1190 return 1;
1191
1192 else if (TREE_CODE (expr) != INTEGER_CST
1193 || TREE_CONSTANT_OVERFLOW (expr))
1194 return 0;
1195
1196 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1197 if (!uns)
1198 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1199 && TREE_INT_CST_HIGH (expr) == -1);
1200
1201 /* Note that using TYPE_PRECISION here is wrong. We care about the
1202 actual bits, not the (arbitrary) range of the type. */
1203 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1204 if (prec >= HOST_BITS_PER_WIDE_INT)
1205 {
1206 HOST_WIDE_INT high_value;
1207 int shift_amount;
1208
1209 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1210
1211 /* Can not handle precisions greater than twice the host int size. */
1212 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1213 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1214 /* Shifting by the host word size is undefined according to the ANSI
1215 standard, so we must handle this as a special case. */
1216 high_value = -1;
1217 else
1218 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1219
1220 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1221 && TREE_INT_CST_HIGH (expr) == high_value);
1222 }
1223 else
1224 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1225 }
1226
1227 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1228 one bit on). */
1229
1230 int
1231 integer_pow2p (tree expr)
1232 {
1233 int prec;
1234 HOST_WIDE_INT high, low;
1235
1236 STRIP_NOPS (expr);
1237
1238 if (TREE_CODE (expr) == COMPLEX_CST
1239 && integer_pow2p (TREE_REALPART (expr))
1240 && integer_zerop (TREE_IMAGPART (expr)))
1241 return 1;
1242
1243 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1244 return 0;
1245
1246 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1247 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1248 high = TREE_INT_CST_HIGH (expr);
1249 low = TREE_INT_CST_LOW (expr);
1250
1251 /* First clear all bits that are beyond the type's precision in case
1252 we've been sign extended. */
1253
1254 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1255 ;
1256 else if (prec > HOST_BITS_PER_WIDE_INT)
1257 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1258 else
1259 {
1260 high = 0;
1261 if (prec < HOST_BITS_PER_WIDE_INT)
1262 low &= ~((HOST_WIDE_INT) (-1) << prec);
1263 }
1264
1265 if (high == 0 && low == 0)
1266 return 0;
1267
1268 return ((high == 0 && (low & (low - 1)) == 0)
1269 || (low == 0 && (high & (high - 1)) == 0));
1270 }
1271
1272 /* Return 1 if EXPR is an integer constant other than zero or a
1273 complex constant other than zero. */
1274
1275 int
1276 integer_nonzerop (tree expr)
1277 {
1278 STRIP_NOPS (expr);
1279
1280 return ((TREE_CODE (expr) == INTEGER_CST
1281 && ! TREE_CONSTANT_OVERFLOW (expr)
1282 && (TREE_INT_CST_LOW (expr) != 0
1283 || TREE_INT_CST_HIGH (expr) != 0))
1284 || (TREE_CODE (expr) == COMPLEX_CST
1285 && (integer_nonzerop (TREE_REALPART (expr))
1286 || integer_nonzerop (TREE_IMAGPART (expr)))));
1287 }
1288
1289 /* Return the power of two represented by a tree node known to be a
1290 power of two. */
1291
1292 int
1293 tree_log2 (tree expr)
1294 {
1295 int prec;
1296 HOST_WIDE_INT high, low;
1297
1298 STRIP_NOPS (expr);
1299
1300 if (TREE_CODE (expr) == COMPLEX_CST)
1301 return tree_log2 (TREE_REALPART (expr));
1302
1303 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1304 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1305
1306 high = TREE_INT_CST_HIGH (expr);
1307 low = TREE_INT_CST_LOW (expr);
1308
1309 /* First clear all bits that are beyond the type's precision in case
1310 we've been sign extended. */
1311
1312 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1313 ;
1314 else if (prec > HOST_BITS_PER_WIDE_INT)
1315 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1316 else
1317 {
1318 high = 0;
1319 if (prec < HOST_BITS_PER_WIDE_INT)
1320 low &= ~((HOST_WIDE_INT) (-1) << prec);
1321 }
1322
1323 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1324 : exact_log2 (low));
1325 }
1326
1327 /* Similar, but return the largest integer Y such that 2 ** Y is less
1328 than or equal to EXPR. */
1329
1330 int
1331 tree_floor_log2 (tree expr)
1332 {
1333 int prec;
1334 HOST_WIDE_INT high, low;
1335
1336 STRIP_NOPS (expr);
1337
1338 if (TREE_CODE (expr) == COMPLEX_CST)
1339 return tree_log2 (TREE_REALPART (expr));
1340
1341 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1342 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1343
1344 high = TREE_INT_CST_HIGH (expr);
1345 low = TREE_INT_CST_LOW (expr);
1346
1347 /* First clear all bits that are beyond the type's precision in case
1348 we've been sign extended. Ignore if type's precision hasn't been set
1349 since what we are doing is setting it. */
1350
1351 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1352 ;
1353 else if (prec > HOST_BITS_PER_WIDE_INT)
1354 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1355 else
1356 {
1357 high = 0;
1358 if (prec < HOST_BITS_PER_WIDE_INT)
1359 low &= ~((HOST_WIDE_INT) (-1) << prec);
1360 }
1361
1362 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1363 : floor_log2 (low));
1364 }
1365
1366 /* Return 1 if EXPR is the real constant zero. */
1367
1368 int
1369 real_zerop (tree expr)
1370 {
1371 STRIP_NOPS (expr);
1372
1373 return ((TREE_CODE (expr) == REAL_CST
1374 && ! TREE_CONSTANT_OVERFLOW (expr)
1375 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1376 || (TREE_CODE (expr) == COMPLEX_CST
1377 && real_zerop (TREE_REALPART (expr))
1378 && real_zerop (TREE_IMAGPART (expr))));
1379 }
1380
1381 /* Return 1 if EXPR is the real constant one in real or complex form. */
1382
1383 int
1384 real_onep (tree expr)
1385 {
1386 STRIP_NOPS (expr);
1387
1388 return ((TREE_CODE (expr) == REAL_CST
1389 && ! TREE_CONSTANT_OVERFLOW (expr)
1390 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1391 || (TREE_CODE (expr) == COMPLEX_CST
1392 && real_onep (TREE_REALPART (expr))
1393 && real_zerop (TREE_IMAGPART (expr))));
1394 }
1395
1396 /* Return 1 if EXPR is the real constant two. */
1397
1398 int
1399 real_twop (tree expr)
1400 {
1401 STRIP_NOPS (expr);
1402
1403 return ((TREE_CODE (expr) == REAL_CST
1404 && ! TREE_CONSTANT_OVERFLOW (expr)
1405 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1406 || (TREE_CODE (expr) == COMPLEX_CST
1407 && real_twop (TREE_REALPART (expr))
1408 && real_zerop (TREE_IMAGPART (expr))));
1409 }
1410
1411 /* Return 1 if EXPR is the real constant minus one. */
1412
1413 int
1414 real_minus_onep (tree expr)
1415 {
1416 STRIP_NOPS (expr);
1417
1418 return ((TREE_CODE (expr) == REAL_CST
1419 && ! TREE_CONSTANT_OVERFLOW (expr)
1420 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1421 || (TREE_CODE (expr) == COMPLEX_CST
1422 && real_minus_onep (TREE_REALPART (expr))
1423 && real_zerop (TREE_IMAGPART (expr))));
1424 }
1425
1426 /* Nonzero if EXP is a constant or a cast of a constant. */
1427
1428 int
1429 really_constant_p (tree exp)
1430 {
1431 /* This is not quite the same as STRIP_NOPS. It does more. */
1432 while (TREE_CODE (exp) == NOP_EXPR
1433 || TREE_CODE (exp) == CONVERT_EXPR
1434 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1435 exp = TREE_OPERAND (exp, 0);
1436 return TREE_CONSTANT (exp);
1437 }
1438 \f
1439 /* Return first list element whose TREE_VALUE is ELEM.
1440 Return 0 if ELEM is not in LIST. */
1441
1442 tree
1443 value_member (tree elem, tree list)
1444 {
1445 while (list)
1446 {
1447 if (elem == TREE_VALUE (list))
1448 return list;
1449 list = TREE_CHAIN (list);
1450 }
1451 return NULL_TREE;
1452 }
1453
1454 /* Return first list element whose TREE_PURPOSE is ELEM.
1455 Return 0 if ELEM is not in LIST. */
1456
1457 tree
1458 purpose_member (tree elem, tree list)
1459 {
1460 while (list)
1461 {
1462 if (elem == TREE_PURPOSE (list))
1463 return list;
1464 list = TREE_CHAIN (list);
1465 }
1466 return NULL_TREE;
1467 }
1468
1469 /* Return nonzero if ELEM is part of the chain CHAIN. */
1470
1471 int
1472 chain_member (tree elem, tree chain)
1473 {
1474 while (chain)
1475 {
1476 if (elem == chain)
1477 return 1;
1478 chain = TREE_CHAIN (chain);
1479 }
1480
1481 return 0;
1482 }
1483
1484 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1485 We expect a null pointer to mark the end of the chain.
1486 This is the Lisp primitive `length'. */
1487
1488 int
1489 list_length (tree t)
1490 {
1491 tree p = t;
1492 #ifdef ENABLE_TREE_CHECKING
1493 tree q = t;
1494 #endif
1495 int len = 0;
1496
1497 while (p)
1498 {
1499 p = TREE_CHAIN (p);
1500 #ifdef ENABLE_TREE_CHECKING
1501 if (len % 2)
1502 q = TREE_CHAIN (q);
1503 gcc_assert (p != q);
1504 #endif
1505 len++;
1506 }
1507
1508 return len;
1509 }
1510
1511 /* Returns the number of FIELD_DECLs in TYPE. */
1512
1513 int
1514 fields_length (tree type)
1515 {
1516 tree t = TYPE_FIELDS (type);
1517 int count = 0;
1518
1519 for (; t; t = TREE_CHAIN (t))
1520 if (TREE_CODE (t) == FIELD_DECL)
1521 ++count;
1522
1523 return count;
1524 }
1525
1526 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1527 by modifying the last node in chain 1 to point to chain 2.
1528 This is the Lisp primitive `nconc'. */
1529
1530 tree
1531 chainon (tree op1, tree op2)
1532 {
1533 tree t1;
1534
1535 if (!op1)
1536 return op2;
1537 if (!op2)
1538 return op1;
1539
1540 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1541 continue;
1542 TREE_CHAIN (t1) = op2;
1543
1544 #ifdef ENABLE_TREE_CHECKING
1545 {
1546 tree t2;
1547 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1548 gcc_assert (t2 != t1);
1549 }
1550 #endif
1551
1552 return op1;
1553 }
1554
1555 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1556
1557 tree
1558 tree_last (tree chain)
1559 {
1560 tree next;
1561 if (chain)
1562 while ((next = TREE_CHAIN (chain)))
1563 chain = next;
1564 return chain;
1565 }
1566
1567 /* Reverse the order of elements in the chain T,
1568 and return the new head of the chain (old last element). */
1569
1570 tree
1571 nreverse (tree t)
1572 {
1573 tree prev = 0, decl, next;
1574 for (decl = t; decl; decl = next)
1575 {
1576 next = TREE_CHAIN (decl);
1577 TREE_CHAIN (decl) = prev;
1578 prev = decl;
1579 }
1580 return prev;
1581 }
1582 \f
1583 /* Return a newly created TREE_LIST node whose
1584 purpose and value fields are PARM and VALUE. */
1585
1586 tree
1587 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1588 {
1589 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1590 TREE_PURPOSE (t) = parm;
1591 TREE_VALUE (t) = value;
1592 return t;
1593 }
1594
1595 /* Return a newly created TREE_LIST node whose
1596 purpose and value fields are PURPOSE and VALUE
1597 and whose TREE_CHAIN is CHAIN. */
1598
1599 tree
1600 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1601 {
1602 tree node;
1603
1604 node = ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
1605
1606 memset (node, 0, sizeof (struct tree_common));
1607
1608 #ifdef GATHER_STATISTICS
1609 tree_node_counts[(int) x_kind]++;
1610 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1611 #endif
1612
1613 TREE_SET_CODE (node, TREE_LIST);
1614 TREE_CHAIN (node) = chain;
1615 TREE_PURPOSE (node) = purpose;
1616 TREE_VALUE (node) = value;
1617 return node;
1618 }
1619
1620 \f
1621 /* Return the size nominally occupied by an object of type TYPE
1622 when it resides in memory. The value is measured in units of bytes,
1623 and its data type is that normally used for type sizes
1624 (which is the first type created by make_signed_type or
1625 make_unsigned_type). */
1626
1627 tree
1628 size_in_bytes (tree type)
1629 {
1630 tree t;
1631
1632 if (type == error_mark_node)
1633 return integer_zero_node;
1634
1635 type = TYPE_MAIN_VARIANT (type);
1636 t = TYPE_SIZE_UNIT (type);
1637
1638 if (t == 0)
1639 {
1640 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1641 return size_zero_node;
1642 }
1643
1644 if (TREE_CODE (t) == INTEGER_CST)
1645 t = force_fit_type (t, 0, false, false);
1646
1647 return t;
1648 }
1649
1650 /* Return the size of TYPE (in bytes) as a wide integer
1651 or return -1 if the size can vary or is larger than an integer. */
1652
1653 HOST_WIDE_INT
1654 int_size_in_bytes (tree type)
1655 {
1656 tree t;
1657
1658 if (type == error_mark_node)
1659 return 0;
1660
1661 type = TYPE_MAIN_VARIANT (type);
1662 t = TYPE_SIZE_UNIT (type);
1663 if (t == 0
1664 || TREE_CODE (t) != INTEGER_CST
1665 || TREE_OVERFLOW (t)
1666 || TREE_INT_CST_HIGH (t) != 0
1667 /* If the result would appear negative, it's too big to represent. */
1668 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1669 return -1;
1670
1671 return TREE_INT_CST_LOW (t);
1672 }
1673 \f
1674 /* Return the bit position of FIELD, in bits from the start of the record.
1675 This is a tree of type bitsizetype. */
1676
1677 tree
1678 bit_position (tree field)
1679 {
1680 return bit_from_pos (DECL_FIELD_OFFSET (field),
1681 DECL_FIELD_BIT_OFFSET (field));
1682 }
1683
1684 /* Likewise, but return as an integer. It must be representable in
1685 that way (since it could be a signed value, we don't have the
1686 option of returning -1 like int_size_in_byte can. */
1687
1688 HOST_WIDE_INT
1689 int_bit_position (tree field)
1690 {
1691 return tree_low_cst (bit_position (field), 0);
1692 }
1693 \f
1694 /* Return the byte position of FIELD, in bytes from the start of the record.
1695 This is a tree of type sizetype. */
1696
1697 tree
1698 byte_position (tree field)
1699 {
1700 return byte_from_pos (DECL_FIELD_OFFSET (field),
1701 DECL_FIELD_BIT_OFFSET (field));
1702 }
1703
1704 /* Likewise, but return as an integer. It must be representable in
1705 that way (since it could be a signed value, we don't have the
1706 option of returning -1 like int_size_in_byte can. */
1707
1708 HOST_WIDE_INT
1709 int_byte_position (tree field)
1710 {
1711 return tree_low_cst (byte_position (field), 0);
1712 }
1713 \f
1714 /* Return the strictest alignment, in bits, that T is known to have. */
1715
1716 unsigned int
1717 expr_align (tree t)
1718 {
1719 unsigned int align0, align1;
1720
1721 switch (TREE_CODE (t))
1722 {
1723 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1724 /* If we have conversions, we know that the alignment of the
1725 object must meet each of the alignments of the types. */
1726 align0 = expr_align (TREE_OPERAND (t, 0));
1727 align1 = TYPE_ALIGN (TREE_TYPE (t));
1728 return MAX (align0, align1);
1729
1730 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1731 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1732 case CLEANUP_POINT_EXPR:
1733 /* These don't change the alignment of an object. */
1734 return expr_align (TREE_OPERAND (t, 0));
1735
1736 case COND_EXPR:
1737 /* The best we can do is say that the alignment is the least aligned
1738 of the two arms. */
1739 align0 = expr_align (TREE_OPERAND (t, 1));
1740 align1 = expr_align (TREE_OPERAND (t, 2));
1741 return MIN (align0, align1);
1742
1743 case LABEL_DECL: case CONST_DECL:
1744 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1745 if (DECL_ALIGN (t) != 0)
1746 return DECL_ALIGN (t);
1747 break;
1748
1749 case FUNCTION_DECL:
1750 return FUNCTION_BOUNDARY;
1751
1752 default:
1753 break;
1754 }
1755
1756 /* Otherwise take the alignment from that of the type. */
1757 return TYPE_ALIGN (TREE_TYPE (t));
1758 }
1759 \f
1760 /* Return, as a tree node, the number of elements for TYPE (which is an
1761 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1762
1763 tree
1764 array_type_nelts (tree type)
1765 {
1766 tree index_type, min, max;
1767
1768 /* If they did it with unspecified bounds, then we should have already
1769 given an error about it before we got here. */
1770 if (! TYPE_DOMAIN (type))
1771 return error_mark_node;
1772
1773 index_type = TYPE_DOMAIN (type);
1774 min = TYPE_MIN_VALUE (index_type);
1775 max = TYPE_MAX_VALUE (index_type);
1776
1777 return (integer_zerop (min)
1778 ? max
1779 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
1780 }
1781 \f
1782 /* If arg is static -- a reference to an object in static storage -- then
1783 return the object. This is not the same as the C meaning of `static'.
1784 If arg isn't static, return NULL. */
1785
1786 tree
1787 staticp (tree arg)
1788 {
1789 switch (TREE_CODE (arg))
1790 {
1791 case FUNCTION_DECL:
1792 /* Nested functions are static, even though taking their address will
1793 involve a trampoline as we unnest the nested function and create
1794 the trampoline on the tree level. */
1795 return arg;
1796
1797 case VAR_DECL:
1798 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1799 && ! DECL_THREAD_LOCAL_P (arg)
1800 && ! DECL_DLLIMPORT_P (arg)
1801 ? arg : NULL);
1802
1803 case CONST_DECL:
1804 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1805 ? arg : NULL);
1806
1807 case CONSTRUCTOR:
1808 return TREE_STATIC (arg) ? arg : NULL;
1809
1810 case LABEL_DECL:
1811 case STRING_CST:
1812 return arg;
1813
1814 case COMPONENT_REF:
1815 /* If the thing being referenced is not a field, then it is
1816 something language specific. */
1817 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1818 return (*lang_hooks.staticp) (arg);
1819
1820 /* If we are referencing a bitfield, we can't evaluate an
1821 ADDR_EXPR at compile time and so it isn't a constant. */
1822 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1823 return NULL;
1824
1825 return staticp (TREE_OPERAND (arg, 0));
1826
1827 case BIT_FIELD_REF:
1828 return NULL;
1829
1830 case MISALIGNED_INDIRECT_REF:
1831 case ALIGN_INDIRECT_REF:
1832 case INDIRECT_REF:
1833 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
1834
1835 case ARRAY_REF:
1836 case ARRAY_RANGE_REF:
1837 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1838 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1839 return staticp (TREE_OPERAND (arg, 0));
1840 else
1841 return false;
1842
1843 default:
1844 if ((unsigned int) TREE_CODE (arg)
1845 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1846 return lang_hooks.staticp (arg);
1847 else
1848 return NULL;
1849 }
1850 }
1851 \f
1852 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1853 Do this to any expression which may be used in more than one place,
1854 but must be evaluated only once.
1855
1856 Normally, expand_expr would reevaluate the expression each time.
1857 Calling save_expr produces something that is evaluated and recorded
1858 the first time expand_expr is called on it. Subsequent calls to
1859 expand_expr just reuse the recorded value.
1860
1861 The call to expand_expr that generates code that actually computes
1862 the value is the first call *at compile time*. Subsequent calls
1863 *at compile time* generate code to use the saved value.
1864 This produces correct result provided that *at run time* control
1865 always flows through the insns made by the first expand_expr
1866 before reaching the other places where the save_expr was evaluated.
1867 You, the caller of save_expr, must make sure this is so.
1868
1869 Constants, and certain read-only nodes, are returned with no
1870 SAVE_EXPR because that is safe. Expressions containing placeholders
1871 are not touched; see tree.def for an explanation of what these
1872 are used for. */
1873
1874 tree
1875 save_expr (tree expr)
1876 {
1877 tree t = fold (expr);
1878 tree inner;
1879
1880 /* If the tree evaluates to a constant, then we don't want to hide that
1881 fact (i.e. this allows further folding, and direct checks for constants).
1882 However, a read-only object that has side effects cannot be bypassed.
1883 Since it is no problem to reevaluate literals, we just return the
1884 literal node. */
1885 inner = skip_simple_arithmetic (t);
1886
1887 if (TREE_INVARIANT (inner)
1888 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1889 || TREE_CODE (inner) == SAVE_EXPR
1890 || TREE_CODE (inner) == ERROR_MARK)
1891 return t;
1892
1893 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1894 it means that the size or offset of some field of an object depends on
1895 the value within another field.
1896
1897 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1898 and some variable since it would then need to be both evaluated once and
1899 evaluated more than once. Front-ends must assure this case cannot
1900 happen by surrounding any such subexpressions in their own SAVE_EXPR
1901 and forcing evaluation at the proper time. */
1902 if (contains_placeholder_p (inner))
1903 return t;
1904
1905 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
1906
1907 /* This expression might be placed ahead of a jump to ensure that the
1908 value was computed on both sides of the jump. So make sure it isn't
1909 eliminated as dead. */
1910 TREE_SIDE_EFFECTS (t) = 1;
1911 TREE_INVARIANT (t) = 1;
1912 return t;
1913 }
1914
1915 /* Look inside EXPR and into any simple arithmetic operations. Return
1916 the innermost non-arithmetic node. */
1917
1918 tree
1919 skip_simple_arithmetic (tree expr)
1920 {
1921 tree inner;
1922
1923 /* We don't care about whether this can be used as an lvalue in this
1924 context. */
1925 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1926 expr = TREE_OPERAND (expr, 0);
1927
1928 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1929 a constant, it will be more efficient to not make another SAVE_EXPR since
1930 it will allow better simplification and GCSE will be able to merge the
1931 computations if they actually occur. */
1932 inner = expr;
1933 while (1)
1934 {
1935 if (UNARY_CLASS_P (inner))
1936 inner = TREE_OPERAND (inner, 0);
1937 else if (BINARY_CLASS_P (inner))
1938 {
1939 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
1940 inner = TREE_OPERAND (inner, 0);
1941 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
1942 inner = TREE_OPERAND (inner, 1);
1943 else
1944 break;
1945 }
1946 else
1947 break;
1948 }
1949
1950 return inner;
1951 }
1952
1953 /* Return which tree structure is used by T. */
1954
1955 enum tree_node_structure_enum
1956 tree_node_structure (tree t)
1957 {
1958 enum tree_code code = TREE_CODE (t);
1959
1960 switch (TREE_CODE_CLASS (code))
1961 {
1962 case tcc_declaration:
1963 {
1964 switch (code)
1965 {
1966 case FIELD_DECL:
1967 return TS_FIELD_DECL;
1968 case PARM_DECL:
1969 return TS_PARM_DECL;
1970 case VAR_DECL:
1971 return TS_VAR_DECL;
1972 case LABEL_DECL:
1973 return TS_LABEL_DECL;
1974 case RESULT_DECL:
1975 return TS_RESULT_DECL;
1976 case CONST_DECL:
1977 return TS_CONST_DECL;
1978 case TYPE_DECL:
1979 return TS_TYPE_DECL;
1980 case FUNCTION_DECL:
1981 return TS_FUNCTION_DECL;
1982 default:
1983 return TS_DECL_NON_COMMON;
1984 }
1985 }
1986 case tcc_type:
1987 return TS_TYPE;
1988 case tcc_reference:
1989 case tcc_comparison:
1990 case tcc_unary:
1991 case tcc_binary:
1992 case tcc_expression:
1993 case tcc_statement:
1994 return TS_EXP;
1995 default: /* tcc_constant and tcc_exceptional */
1996 break;
1997 }
1998 switch (code)
1999 {
2000 /* tcc_constant cases. */
2001 case INTEGER_CST: return TS_INT_CST;
2002 case REAL_CST: return TS_REAL_CST;
2003 case COMPLEX_CST: return TS_COMPLEX;
2004 case VECTOR_CST: return TS_VECTOR;
2005 case STRING_CST: return TS_STRING;
2006 /* tcc_exceptional cases. */
2007 case ERROR_MARK: return TS_COMMON;
2008 case IDENTIFIER_NODE: return TS_IDENTIFIER;
2009 case TREE_LIST: return TS_LIST;
2010 case TREE_VEC: return TS_VEC;
2011 case PHI_NODE: return TS_PHI_NODE;
2012 case SSA_NAME: return TS_SSA_NAME;
2013 case PLACEHOLDER_EXPR: return TS_COMMON;
2014 case STATEMENT_LIST: return TS_STATEMENT_LIST;
2015 case BLOCK: return TS_BLOCK;
2016 case CONSTRUCTOR: return TS_CONSTRUCTOR;
2017 case TREE_BINFO: return TS_BINFO;
2018 case VALUE_HANDLE: return TS_VALUE_HANDLE;
2019
2020 default:
2021 gcc_unreachable ();
2022 }
2023 }
2024 \f
2025 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2026 or offset that depends on a field within a record. */
2027
2028 bool
2029 contains_placeholder_p (tree exp)
2030 {
2031 enum tree_code code;
2032
2033 if (!exp)
2034 return 0;
2035
2036 code = TREE_CODE (exp);
2037 if (code == PLACEHOLDER_EXPR)
2038 return 1;
2039
2040 switch (TREE_CODE_CLASS (code))
2041 {
2042 case tcc_reference:
2043 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2044 position computations since they will be converted into a
2045 WITH_RECORD_EXPR involving the reference, which will assume
2046 here will be valid. */
2047 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2048
2049 case tcc_exceptional:
2050 if (code == TREE_LIST)
2051 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2052 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2053 break;
2054
2055 case tcc_unary:
2056 case tcc_binary:
2057 case tcc_comparison:
2058 case tcc_expression:
2059 switch (code)
2060 {
2061 case COMPOUND_EXPR:
2062 /* Ignoring the first operand isn't quite right, but works best. */
2063 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2064
2065 case COND_EXPR:
2066 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2067 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2068 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2069
2070 case CALL_EXPR:
2071 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2072
2073 default:
2074 break;
2075 }
2076
2077 switch (TREE_CODE_LENGTH (code))
2078 {
2079 case 1:
2080 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2081 case 2:
2082 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2083 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2084 default:
2085 return 0;
2086 }
2087
2088 default:
2089 return 0;
2090 }
2091 return 0;
2092 }
2093
2094 /* Return true if any part of the computation of TYPE involves a
2095 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2096 (for QUAL_UNION_TYPE) and field positions. */
2097
2098 static bool
2099 type_contains_placeholder_1 (tree type)
2100 {
2101 /* If the size contains a placeholder or the parent type (component type in
2102 the case of arrays) type involves a placeholder, this type does. */
2103 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2104 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2105 || (TREE_TYPE (type) != 0
2106 && type_contains_placeholder_p (TREE_TYPE (type))))
2107 return true;
2108
2109 /* Now do type-specific checks. Note that the last part of the check above
2110 greatly limits what we have to do below. */
2111 switch (TREE_CODE (type))
2112 {
2113 case VOID_TYPE:
2114 case COMPLEX_TYPE:
2115 case ENUMERAL_TYPE:
2116 case BOOLEAN_TYPE:
2117 case CHAR_TYPE:
2118 case POINTER_TYPE:
2119 case OFFSET_TYPE:
2120 case REFERENCE_TYPE:
2121 case METHOD_TYPE:
2122 case FUNCTION_TYPE:
2123 case VECTOR_TYPE:
2124 return false;
2125
2126 case INTEGER_TYPE:
2127 case REAL_TYPE:
2128 /* Here we just check the bounds. */
2129 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2130 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2131
2132 case ARRAY_TYPE:
2133 /* We're already checked the component type (TREE_TYPE), so just check
2134 the index type. */
2135 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2136
2137 case RECORD_TYPE:
2138 case UNION_TYPE:
2139 case QUAL_UNION_TYPE:
2140 {
2141 tree field;
2142
2143 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2144 if (TREE_CODE (field) == FIELD_DECL
2145 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2146 || (TREE_CODE (type) == QUAL_UNION_TYPE
2147 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2148 || type_contains_placeholder_p (TREE_TYPE (field))))
2149 return true;
2150
2151 return false;
2152 }
2153
2154 default:
2155 gcc_unreachable ();
2156 }
2157 }
2158
2159 bool
2160 type_contains_placeholder_p (tree type)
2161 {
2162 bool result;
2163
2164 /* If the contains_placeholder_bits field has been initialized,
2165 then we know the answer. */
2166 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2167 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2168
2169 /* Indicate that we've seen this type node, and the answer is false.
2170 This is what we want to return if we run into recursion via fields. */
2171 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2172
2173 /* Compute the real value. */
2174 result = type_contains_placeholder_1 (type);
2175
2176 /* Store the real value. */
2177 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2178
2179 return result;
2180 }
2181 \f
2182 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2183 return a tree with all occurrences of references to F in a
2184 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2185 contains only arithmetic expressions or a CALL_EXPR with a
2186 PLACEHOLDER_EXPR occurring only in its arglist. */
2187
2188 tree
2189 substitute_in_expr (tree exp, tree f, tree r)
2190 {
2191 enum tree_code code = TREE_CODE (exp);
2192 tree op0, op1, op2, op3;
2193 tree new;
2194 tree inner;
2195
2196 /* We handle TREE_LIST and COMPONENT_REF separately. */
2197 if (code == TREE_LIST)
2198 {
2199 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2200 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2201 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2202 return exp;
2203
2204 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2205 }
2206 else if (code == COMPONENT_REF)
2207 {
2208 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2209 and it is the right field, replace it with R. */
2210 for (inner = TREE_OPERAND (exp, 0);
2211 REFERENCE_CLASS_P (inner);
2212 inner = TREE_OPERAND (inner, 0))
2213 ;
2214 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2215 && TREE_OPERAND (exp, 1) == f)
2216 return r;
2217
2218 /* If this expression hasn't been completed let, leave it alone. */
2219 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2220 return exp;
2221
2222 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2223 if (op0 == TREE_OPERAND (exp, 0))
2224 return exp;
2225
2226 new = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
2227 op0, TREE_OPERAND (exp, 1), NULL_TREE);
2228 }
2229 else
2230 switch (TREE_CODE_CLASS (code))
2231 {
2232 case tcc_constant:
2233 case tcc_declaration:
2234 return exp;
2235
2236 case tcc_exceptional:
2237 case tcc_unary:
2238 case tcc_binary:
2239 case tcc_comparison:
2240 case tcc_expression:
2241 case tcc_reference:
2242 switch (TREE_CODE_LENGTH (code))
2243 {
2244 case 0:
2245 return exp;
2246
2247 case 1:
2248 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2249 if (op0 == TREE_OPERAND (exp, 0))
2250 return exp;
2251
2252 new = fold_build1 (code, TREE_TYPE (exp), op0);
2253 break;
2254
2255 case 2:
2256 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2257 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2258
2259 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2260 return exp;
2261
2262 new = fold_build2 (code, TREE_TYPE (exp), op0, op1);
2263 break;
2264
2265 case 3:
2266 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2267 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2268 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2269
2270 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2271 && op2 == TREE_OPERAND (exp, 2))
2272 return exp;
2273
2274 new = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2275 break;
2276
2277 case 4:
2278 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2279 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2280 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2281 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
2282
2283 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2284 && op2 == TREE_OPERAND (exp, 2)
2285 && op3 == TREE_OPERAND (exp, 3))
2286 return exp;
2287
2288 new = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2289 break;
2290
2291 default:
2292 gcc_unreachable ();
2293 }
2294 break;
2295
2296 default:
2297 gcc_unreachable ();
2298 }
2299
2300 TREE_READONLY (new) = TREE_READONLY (exp);
2301 return new;
2302 }
2303
2304 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2305 for it within OBJ, a tree that is an object or a chain of references. */
2306
2307 tree
2308 substitute_placeholder_in_expr (tree exp, tree obj)
2309 {
2310 enum tree_code code = TREE_CODE (exp);
2311 tree op0, op1, op2, op3;
2312
2313 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2314 in the chain of OBJ. */
2315 if (code == PLACEHOLDER_EXPR)
2316 {
2317 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2318 tree elt;
2319
2320 for (elt = obj; elt != 0;
2321 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2322 || TREE_CODE (elt) == COND_EXPR)
2323 ? TREE_OPERAND (elt, 1)
2324 : (REFERENCE_CLASS_P (elt)
2325 || UNARY_CLASS_P (elt)
2326 || BINARY_CLASS_P (elt)
2327 || EXPRESSION_CLASS_P (elt))
2328 ? TREE_OPERAND (elt, 0) : 0))
2329 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2330 return elt;
2331
2332 for (elt = obj; elt != 0;
2333 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2334 || TREE_CODE (elt) == COND_EXPR)
2335 ? TREE_OPERAND (elt, 1)
2336 : (REFERENCE_CLASS_P (elt)
2337 || UNARY_CLASS_P (elt)
2338 || BINARY_CLASS_P (elt)
2339 || EXPRESSION_CLASS_P (elt))
2340 ? TREE_OPERAND (elt, 0) : 0))
2341 if (POINTER_TYPE_P (TREE_TYPE (elt))
2342 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2343 == need_type))
2344 return fold_build1 (INDIRECT_REF, need_type, elt);
2345
2346 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2347 survives until RTL generation, there will be an error. */
2348 return exp;
2349 }
2350
2351 /* TREE_LIST is special because we need to look at TREE_VALUE
2352 and TREE_CHAIN, not TREE_OPERANDS. */
2353 else if (code == TREE_LIST)
2354 {
2355 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2356 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2357 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2358 return exp;
2359
2360 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2361 }
2362 else
2363 switch (TREE_CODE_CLASS (code))
2364 {
2365 case tcc_constant:
2366 case tcc_declaration:
2367 return exp;
2368
2369 case tcc_exceptional:
2370 case tcc_unary:
2371 case tcc_binary:
2372 case tcc_comparison:
2373 case tcc_expression:
2374 case tcc_reference:
2375 case tcc_statement:
2376 switch (TREE_CODE_LENGTH (code))
2377 {
2378 case 0:
2379 return exp;
2380
2381 case 1:
2382 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2383 if (op0 == TREE_OPERAND (exp, 0))
2384 return exp;
2385 else
2386 return fold_build1 (code, TREE_TYPE (exp), op0);
2387
2388 case 2:
2389 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2390 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2391
2392 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2393 return exp;
2394 else
2395 return fold_build2 (code, TREE_TYPE (exp), op0, op1);
2396
2397 case 3:
2398 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2399 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2400 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2401
2402 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2403 && op2 == TREE_OPERAND (exp, 2))
2404 return exp;
2405 else
2406 return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2407
2408 case 4:
2409 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2410 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2411 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2412 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2413
2414 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2415 && op2 == TREE_OPERAND (exp, 2)
2416 && op3 == TREE_OPERAND (exp, 3))
2417 return exp;
2418 else
2419 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2420
2421 default:
2422 gcc_unreachable ();
2423 }
2424 break;
2425
2426 default:
2427 gcc_unreachable ();
2428 }
2429 }
2430 \f
2431 /* Stabilize a reference so that we can use it any number of times
2432 without causing its operands to be evaluated more than once.
2433 Returns the stabilized reference. This works by means of save_expr,
2434 so see the caveats in the comments about save_expr.
2435
2436 Also allows conversion expressions whose operands are references.
2437 Any other kind of expression is returned unchanged. */
2438
2439 tree
2440 stabilize_reference (tree ref)
2441 {
2442 tree result;
2443 enum tree_code code = TREE_CODE (ref);
2444
2445 switch (code)
2446 {
2447 case VAR_DECL:
2448 case PARM_DECL:
2449 case RESULT_DECL:
2450 /* No action is needed in this case. */
2451 return ref;
2452
2453 case NOP_EXPR:
2454 case CONVERT_EXPR:
2455 case FLOAT_EXPR:
2456 case FIX_TRUNC_EXPR:
2457 case FIX_FLOOR_EXPR:
2458 case FIX_ROUND_EXPR:
2459 case FIX_CEIL_EXPR:
2460 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2461 break;
2462
2463 case INDIRECT_REF:
2464 result = build_nt (INDIRECT_REF,
2465 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2466 break;
2467
2468 case COMPONENT_REF:
2469 result = build_nt (COMPONENT_REF,
2470 stabilize_reference (TREE_OPERAND (ref, 0)),
2471 TREE_OPERAND (ref, 1), NULL_TREE);
2472 break;
2473
2474 case BIT_FIELD_REF:
2475 result = build_nt (BIT_FIELD_REF,
2476 stabilize_reference (TREE_OPERAND (ref, 0)),
2477 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2478 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2479 break;
2480
2481 case ARRAY_REF:
2482 result = build_nt (ARRAY_REF,
2483 stabilize_reference (TREE_OPERAND (ref, 0)),
2484 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2485 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2486 break;
2487
2488 case ARRAY_RANGE_REF:
2489 result = build_nt (ARRAY_RANGE_REF,
2490 stabilize_reference (TREE_OPERAND (ref, 0)),
2491 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2492 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2493 break;
2494
2495 case COMPOUND_EXPR:
2496 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2497 it wouldn't be ignored. This matters when dealing with
2498 volatiles. */
2499 return stabilize_reference_1 (ref);
2500
2501 /* If arg isn't a kind of lvalue we recognize, make no change.
2502 Caller should recognize the error for an invalid lvalue. */
2503 default:
2504 return ref;
2505
2506 case ERROR_MARK:
2507 return error_mark_node;
2508 }
2509
2510 TREE_TYPE (result) = TREE_TYPE (ref);
2511 TREE_READONLY (result) = TREE_READONLY (ref);
2512 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2513 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2514
2515 return result;
2516 }
2517
2518 /* Subroutine of stabilize_reference; this is called for subtrees of
2519 references. Any expression with side-effects must be put in a SAVE_EXPR
2520 to ensure that it is only evaluated once.
2521
2522 We don't put SAVE_EXPR nodes around everything, because assigning very
2523 simple expressions to temporaries causes us to miss good opportunities
2524 for optimizations. Among other things, the opportunity to fold in the
2525 addition of a constant into an addressing mode often gets lost, e.g.
2526 "y[i+1] += x;". In general, we take the approach that we should not make
2527 an assignment unless we are forced into it - i.e., that any non-side effect
2528 operator should be allowed, and that cse should take care of coalescing
2529 multiple utterances of the same expression should that prove fruitful. */
2530
2531 tree
2532 stabilize_reference_1 (tree e)
2533 {
2534 tree result;
2535 enum tree_code code = TREE_CODE (e);
2536
2537 /* We cannot ignore const expressions because it might be a reference
2538 to a const array but whose index contains side-effects. But we can
2539 ignore things that are actual constant or that already have been
2540 handled by this function. */
2541
2542 if (TREE_INVARIANT (e))
2543 return e;
2544
2545 switch (TREE_CODE_CLASS (code))
2546 {
2547 case tcc_exceptional:
2548 case tcc_type:
2549 case tcc_declaration:
2550 case tcc_comparison:
2551 case tcc_statement:
2552 case tcc_expression:
2553 case tcc_reference:
2554 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2555 so that it will only be evaluated once. */
2556 /* The reference (r) and comparison (<) classes could be handled as
2557 below, but it is generally faster to only evaluate them once. */
2558 if (TREE_SIDE_EFFECTS (e))
2559 return save_expr (e);
2560 return e;
2561
2562 case tcc_constant:
2563 /* Constants need no processing. In fact, we should never reach
2564 here. */
2565 return e;
2566
2567 case tcc_binary:
2568 /* Division is slow and tends to be compiled with jumps,
2569 especially the division by powers of 2 that is often
2570 found inside of an array reference. So do it just once. */
2571 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2572 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2573 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2574 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2575 return save_expr (e);
2576 /* Recursively stabilize each operand. */
2577 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2578 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2579 break;
2580
2581 case tcc_unary:
2582 /* Recursively stabilize each operand. */
2583 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2584 break;
2585
2586 default:
2587 gcc_unreachable ();
2588 }
2589
2590 TREE_TYPE (result) = TREE_TYPE (e);
2591 TREE_READONLY (result) = TREE_READONLY (e);
2592 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2593 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2594 TREE_INVARIANT (result) = 1;
2595
2596 return result;
2597 }
2598 \f
2599 /* Low-level constructors for expressions. */
2600
2601 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2602 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2603
2604 void
2605 recompute_tree_invarant_for_addr_expr (tree t)
2606 {
2607 tree node;
2608 bool tc = true, ti = true, se = false;
2609
2610 /* We started out assuming this address is both invariant and constant, but
2611 does not have side effects. Now go down any handled components and see if
2612 any of them involve offsets that are either non-constant or non-invariant.
2613 Also check for side-effects.
2614
2615 ??? Note that this code makes no attempt to deal with the case where
2616 taking the address of something causes a copy due to misalignment. */
2617
2618 #define UPDATE_TITCSE(NODE) \
2619 do { tree _node = (NODE); \
2620 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2621 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2622 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2623
2624 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2625 node = TREE_OPERAND (node, 0))
2626 {
2627 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2628 array reference (probably made temporarily by the G++ front end),
2629 so ignore all the operands. */
2630 if ((TREE_CODE (node) == ARRAY_REF
2631 || TREE_CODE (node) == ARRAY_RANGE_REF)
2632 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2633 {
2634 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2635 if (TREE_OPERAND (node, 2))
2636 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2637 if (TREE_OPERAND (node, 3))
2638 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2639 }
2640 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2641 FIELD_DECL, apparently. The G++ front end can put something else
2642 there, at least temporarily. */
2643 else if (TREE_CODE (node) == COMPONENT_REF
2644 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2645 {
2646 if (TREE_OPERAND (node, 2))
2647 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2648 }
2649 else if (TREE_CODE (node) == BIT_FIELD_REF)
2650 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2651 }
2652
2653 node = lang_hooks.expr_to_decl (node, &tc, &ti, &se);
2654
2655 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2656 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2657 invariant and constant if the decl is static. It's also invariant if it's
2658 a decl in the current function. Taking the address of a volatile variable
2659 is not volatile. If it's a constant, the address is both invariant and
2660 constant. Otherwise it's neither. */
2661 if (TREE_CODE (node) == INDIRECT_REF)
2662 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2663 else if (DECL_P (node))
2664 {
2665 if (staticp (node))
2666 ;
2667 else if (decl_function_context (node) == current_function_decl
2668 /* Addresses of thread-local variables are invariant. */
2669 || (TREE_CODE (node) == VAR_DECL
2670 && DECL_THREAD_LOCAL_P (node)))
2671 tc = false;
2672 else
2673 ti = tc = false;
2674 }
2675 else if (CONSTANT_CLASS_P (node))
2676 ;
2677 else
2678 {
2679 ti = tc = false;
2680 se |= TREE_SIDE_EFFECTS (node);
2681 }
2682
2683 TREE_CONSTANT (t) = tc;
2684 TREE_INVARIANT (t) = ti;
2685 TREE_SIDE_EFFECTS (t) = se;
2686 #undef UPDATE_TITCSE
2687 }
2688
2689 /* Build an expression of code CODE, data type TYPE, and operands as
2690 specified. Expressions and reference nodes can be created this way.
2691 Constants, decls, types and misc nodes cannot be.
2692
2693 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2694 enough for all extant tree codes. These functions can be called
2695 directly (preferably!), but can also be obtained via GCC preprocessor
2696 magic within the build macro. */
2697
2698 tree
2699 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2700 {
2701 tree t;
2702
2703 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2704
2705 t = make_node_stat (code PASS_MEM_STAT);
2706 TREE_TYPE (t) = tt;
2707
2708 return t;
2709 }
2710
2711 tree
2712 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2713 {
2714 int length = sizeof (struct tree_exp);
2715 #ifdef GATHER_STATISTICS
2716 tree_node_kind kind;
2717 #endif
2718 tree t;
2719
2720 #ifdef GATHER_STATISTICS
2721 switch (TREE_CODE_CLASS (code))
2722 {
2723 case tcc_statement: /* an expression with side effects */
2724 kind = s_kind;
2725 break;
2726 case tcc_reference: /* a reference */
2727 kind = r_kind;
2728 break;
2729 default:
2730 kind = e_kind;
2731 break;
2732 }
2733
2734 tree_node_counts[(int) kind]++;
2735 tree_node_sizes[(int) kind] += length;
2736 #endif
2737
2738 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2739
2740 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
2741
2742 memset (t, 0, sizeof (struct tree_common));
2743
2744 TREE_SET_CODE (t, code);
2745
2746 TREE_TYPE (t) = type;
2747 #ifdef USE_MAPPED_LOCATION
2748 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2749 #else
2750 SET_EXPR_LOCUS (t, NULL);
2751 #endif
2752 TREE_COMPLEXITY (t) = 0;
2753 TREE_OPERAND (t, 0) = node;
2754 TREE_BLOCK (t) = NULL_TREE;
2755 if (node && !TYPE_P (node))
2756 {
2757 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2758 TREE_READONLY (t) = TREE_READONLY (node);
2759 }
2760
2761 if (TREE_CODE_CLASS (code) == tcc_statement)
2762 TREE_SIDE_EFFECTS (t) = 1;
2763 else switch (code)
2764 {
2765 case VA_ARG_EXPR:
2766 /* All of these have side-effects, no matter what their
2767 operands are. */
2768 TREE_SIDE_EFFECTS (t) = 1;
2769 TREE_READONLY (t) = 0;
2770 break;
2771
2772 case MISALIGNED_INDIRECT_REF:
2773 case ALIGN_INDIRECT_REF:
2774 case INDIRECT_REF:
2775 /* Whether a dereference is readonly has nothing to do with whether
2776 its operand is readonly. */
2777 TREE_READONLY (t) = 0;
2778 break;
2779
2780 case ADDR_EXPR:
2781 if (node)
2782 recompute_tree_invarant_for_addr_expr (t);
2783 break;
2784
2785 default:
2786 if (TREE_CODE_CLASS (code) == tcc_unary
2787 && node && !TYPE_P (node)
2788 && TREE_CONSTANT (node))
2789 TREE_CONSTANT (t) = 1;
2790 if (TREE_CODE_CLASS (code) == tcc_unary
2791 && node && TREE_INVARIANT (node))
2792 TREE_INVARIANT (t) = 1;
2793 if (TREE_CODE_CLASS (code) == tcc_reference
2794 && node && TREE_THIS_VOLATILE (node))
2795 TREE_THIS_VOLATILE (t) = 1;
2796 break;
2797 }
2798
2799 return t;
2800 }
2801
2802 #define PROCESS_ARG(N) \
2803 do { \
2804 TREE_OPERAND (t, N) = arg##N; \
2805 if (arg##N &&!TYPE_P (arg##N)) \
2806 { \
2807 if (TREE_SIDE_EFFECTS (arg##N)) \
2808 side_effects = 1; \
2809 if (!TREE_READONLY (arg##N)) \
2810 read_only = 0; \
2811 if (!TREE_CONSTANT (arg##N)) \
2812 constant = 0; \
2813 if (!TREE_INVARIANT (arg##N)) \
2814 invariant = 0; \
2815 } \
2816 } while (0)
2817
2818 tree
2819 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2820 {
2821 bool constant, read_only, side_effects, invariant;
2822 tree t;
2823
2824 gcc_assert (TREE_CODE_LENGTH (code) == 2);
2825
2826 t = make_node_stat (code PASS_MEM_STAT);
2827 TREE_TYPE (t) = tt;
2828
2829 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2830 result based on those same flags for the arguments. But if the
2831 arguments aren't really even `tree' expressions, we shouldn't be trying
2832 to do this. */
2833
2834 /* Expressions without side effects may be constant if their
2835 arguments are as well. */
2836 constant = (TREE_CODE_CLASS (code) == tcc_comparison
2837 || TREE_CODE_CLASS (code) == tcc_binary);
2838 read_only = 1;
2839 side_effects = TREE_SIDE_EFFECTS (t);
2840 invariant = constant;
2841
2842 PROCESS_ARG(0);
2843 PROCESS_ARG(1);
2844
2845 TREE_READONLY (t) = read_only;
2846 TREE_CONSTANT (t) = constant;
2847 TREE_INVARIANT (t) = invariant;
2848 TREE_SIDE_EFFECTS (t) = side_effects;
2849 TREE_THIS_VOLATILE (t)
2850 = (TREE_CODE_CLASS (code) == tcc_reference
2851 && arg0 && TREE_THIS_VOLATILE (arg0));
2852
2853 return t;
2854 }
2855
2856 tree
2857 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2858 tree arg2 MEM_STAT_DECL)
2859 {
2860 bool constant, read_only, side_effects, invariant;
2861 tree t;
2862
2863 gcc_assert (TREE_CODE_LENGTH (code) == 3);
2864
2865 t = make_node_stat (code PASS_MEM_STAT);
2866 TREE_TYPE (t) = tt;
2867
2868 side_effects = TREE_SIDE_EFFECTS (t);
2869
2870 PROCESS_ARG(0);
2871 PROCESS_ARG(1);
2872 PROCESS_ARG(2);
2873
2874 if (code == CALL_EXPR && !side_effects)
2875 {
2876 tree node;
2877 int i;
2878
2879 /* Calls have side-effects, except those to const or
2880 pure functions. */
2881 i = call_expr_flags (t);
2882 if (!(i & (ECF_CONST | ECF_PURE)))
2883 side_effects = 1;
2884
2885 /* And even those have side-effects if their arguments do. */
2886 else for (node = arg1; node; node = TREE_CHAIN (node))
2887 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2888 {
2889 side_effects = 1;
2890 break;
2891 }
2892 }
2893
2894 TREE_SIDE_EFFECTS (t) = side_effects;
2895 TREE_THIS_VOLATILE (t)
2896 = (TREE_CODE_CLASS (code) == tcc_reference
2897 && arg0 && TREE_THIS_VOLATILE (arg0));
2898
2899 return t;
2900 }
2901
2902 tree
2903 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2904 tree arg2, tree arg3 MEM_STAT_DECL)
2905 {
2906 bool constant, read_only, side_effects, invariant;
2907 tree t;
2908
2909 gcc_assert (TREE_CODE_LENGTH (code) == 4);
2910
2911 t = make_node_stat (code PASS_MEM_STAT);
2912 TREE_TYPE (t) = tt;
2913
2914 side_effects = TREE_SIDE_EFFECTS (t);
2915
2916 PROCESS_ARG(0);
2917 PROCESS_ARG(1);
2918 PROCESS_ARG(2);
2919 PROCESS_ARG(3);
2920
2921 TREE_SIDE_EFFECTS (t) = side_effects;
2922 TREE_THIS_VOLATILE (t)
2923 = (TREE_CODE_CLASS (code) == tcc_reference
2924 && arg0 && TREE_THIS_VOLATILE (arg0));
2925
2926 return t;
2927 }
2928
2929 tree
2930 build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2931 tree arg2, tree arg3, tree arg4, tree arg5,
2932 tree arg6 MEM_STAT_DECL)
2933 {
2934 bool constant, read_only, side_effects, invariant;
2935 tree t;
2936
2937 gcc_assert (code == TARGET_MEM_REF);
2938
2939 t = make_node_stat (code PASS_MEM_STAT);
2940 TREE_TYPE (t) = tt;
2941
2942 side_effects = TREE_SIDE_EFFECTS (t);
2943
2944 PROCESS_ARG(0);
2945 PROCESS_ARG(1);
2946 PROCESS_ARG(2);
2947 PROCESS_ARG(3);
2948 PROCESS_ARG(4);
2949 PROCESS_ARG(5);
2950 PROCESS_ARG(6);
2951
2952 TREE_SIDE_EFFECTS (t) = side_effects;
2953 TREE_THIS_VOLATILE (t) = 0;
2954
2955 return t;
2956 }
2957
2958 /* Backup definition for non-gcc build compilers. */
2959
2960 tree
2961 (build) (enum tree_code code, tree tt, ...)
2962 {
2963 tree t, arg0, arg1, arg2, arg3, arg4, arg5, arg6;
2964 int length = TREE_CODE_LENGTH (code);
2965 va_list p;
2966
2967 va_start (p, tt);
2968 switch (length)
2969 {
2970 case 0:
2971 t = build0 (code, tt);
2972 break;
2973 case 1:
2974 arg0 = va_arg (p, tree);
2975 t = build1 (code, tt, arg0);
2976 break;
2977 case 2:
2978 arg0 = va_arg (p, tree);
2979 arg1 = va_arg (p, tree);
2980 t = build2 (code, tt, arg0, arg1);
2981 break;
2982 case 3:
2983 arg0 = va_arg (p, tree);
2984 arg1 = va_arg (p, tree);
2985 arg2 = va_arg (p, tree);
2986 t = build3 (code, tt, arg0, arg1, arg2);
2987 break;
2988 case 4:
2989 arg0 = va_arg (p, tree);
2990 arg1 = va_arg (p, tree);
2991 arg2 = va_arg (p, tree);
2992 arg3 = va_arg (p, tree);
2993 t = build4 (code, tt, arg0, arg1, arg2, arg3);
2994 break;
2995 case 7:
2996 arg0 = va_arg (p, tree);
2997 arg1 = va_arg (p, tree);
2998 arg2 = va_arg (p, tree);
2999 arg3 = va_arg (p, tree);
3000 arg4 = va_arg (p, tree);
3001 arg5 = va_arg (p, tree);
3002 arg6 = va_arg (p, tree);
3003 t = build7 (code, tt, arg0, arg1, arg2, arg3, arg4, arg5, arg6);
3004 break;
3005 default:
3006 gcc_unreachable ();
3007 }
3008 va_end (p);
3009
3010 return t;
3011 }
3012
3013 /* Similar except don't specify the TREE_TYPE
3014 and leave the TREE_SIDE_EFFECTS as 0.
3015 It is permissible for arguments to be null,
3016 or even garbage if their values do not matter. */
3017
3018 tree
3019 build_nt (enum tree_code code, ...)
3020 {
3021 tree t;
3022 int length;
3023 int i;
3024 va_list p;
3025
3026 va_start (p, code);
3027
3028 t = make_node (code);
3029 length = TREE_CODE_LENGTH (code);
3030
3031 for (i = 0; i < length; i++)
3032 TREE_OPERAND (t, i) = va_arg (p, tree);
3033
3034 va_end (p);
3035 return t;
3036 }
3037 \f
3038 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3039 We do NOT enter this node in any sort of symbol table.
3040
3041 layout_decl is used to set up the decl's storage layout.
3042 Other slots are initialized to 0 or null pointers. */
3043
3044 tree
3045 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
3046 {
3047 tree t;
3048
3049 t = make_node_stat (code PASS_MEM_STAT);
3050
3051 /* if (type == error_mark_node)
3052 type = integer_type_node; */
3053 /* That is not done, deliberately, so that having error_mark_node
3054 as the type can suppress useless errors in the use of this variable. */
3055
3056 DECL_NAME (t) = name;
3057 TREE_TYPE (t) = type;
3058
3059 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3060 layout_decl (t, 0);
3061 else if (code == FUNCTION_DECL)
3062 DECL_MODE (t) = FUNCTION_MODE;
3063
3064 if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
3065 {
3066 /* Set default visibility to whatever the user supplied with
3067 visibility_specified depending on #pragma GCC visibility. */
3068 DECL_VISIBILITY (t) = default_visibility;
3069 DECL_VISIBILITY_SPECIFIED (t) = visibility_options.inpragma;
3070 }
3071
3072 return t;
3073 }
3074
3075 /* Builds and returns function declaration with NAME and TYPE. */
3076
3077 tree
3078 build_fn_decl (const char *name, tree type)
3079 {
3080 tree id = get_identifier (name);
3081 tree decl = build_decl (FUNCTION_DECL, id, type);
3082
3083 DECL_EXTERNAL (decl) = 1;
3084 TREE_PUBLIC (decl) = 1;
3085 DECL_ARTIFICIAL (decl) = 1;
3086 TREE_NOTHROW (decl) = 1;
3087
3088 return decl;
3089 }
3090
3091 \f
3092 /* BLOCK nodes are used to represent the structure of binding contours
3093 and declarations, once those contours have been exited and their contents
3094 compiled. This information is used for outputting debugging info. */
3095
3096 tree
3097 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3098 {
3099 tree block = make_node (BLOCK);
3100
3101 BLOCK_VARS (block) = vars;
3102 BLOCK_SUBBLOCKS (block) = subblocks;
3103 BLOCK_SUPERCONTEXT (block) = supercontext;
3104 BLOCK_CHAIN (block) = chain;
3105 return block;
3106 }
3107
3108 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
3109 /* ??? gengtype doesn't handle conditionals */
3110 static GTY(()) location_t *last_annotated_node;
3111 #endif
3112
3113 #ifdef USE_MAPPED_LOCATION
3114
3115 expanded_location
3116 expand_location (source_location loc)
3117 {
3118 expanded_location xloc;
3119 if (loc == 0) { xloc.file = NULL; xloc.line = 0; xloc.column = 0; }
3120 else
3121 {
3122 const struct line_map *map = linemap_lookup (&line_table, loc);
3123 xloc.file = map->to_file;
3124 xloc.line = SOURCE_LINE (map, loc);
3125 xloc.column = SOURCE_COLUMN (map, loc);
3126 };
3127 return xloc;
3128 }
3129
3130 #else
3131
3132 /* Record the exact location where an expression or an identifier were
3133 encountered. */
3134
3135 void
3136 annotate_with_file_line (tree node, const char *file, int line)
3137 {
3138 /* Roughly one percent of the calls to this function are to annotate
3139 a node with the same information already attached to that node!
3140 Just return instead of wasting memory. */
3141 if (EXPR_LOCUS (node)
3142 && EXPR_LINENO (node) == line
3143 && (EXPR_FILENAME (node) == file
3144 || !strcmp (EXPR_FILENAME (node), file)))
3145 {
3146 last_annotated_node = EXPR_LOCUS (node);
3147 return;
3148 }
3149
3150 /* In heavily macroized code (such as GCC itself) this single
3151 entry cache can reduce the number of allocations by more
3152 than half. */
3153 if (last_annotated_node
3154 && last_annotated_node->line == line
3155 && (last_annotated_node->file == file
3156 || !strcmp (last_annotated_node->file, file)))
3157 {
3158 SET_EXPR_LOCUS (node, last_annotated_node);
3159 return;
3160 }
3161
3162 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
3163 EXPR_LINENO (node) = line;
3164 EXPR_FILENAME (node) = file;
3165 last_annotated_node = EXPR_LOCUS (node);
3166 }
3167
3168 void
3169 annotate_with_locus (tree node, location_t locus)
3170 {
3171 annotate_with_file_line (node, locus.file, locus.line);
3172 }
3173 #endif
3174 \f
3175 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3176 is ATTRIBUTE. */
3177
3178 tree
3179 build_decl_attribute_variant (tree ddecl, tree attribute)
3180 {
3181 DECL_ATTRIBUTES (ddecl) = attribute;
3182 return ddecl;
3183 }
3184
3185 /* Borrowed from hashtab.c iterative_hash implementation. */
3186 #define mix(a,b,c) \
3187 { \
3188 a -= b; a -= c; a ^= (c>>13); \
3189 b -= c; b -= a; b ^= (a<< 8); \
3190 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3191 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3192 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3193 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3194 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3195 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3196 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3197 }
3198
3199
3200 /* Produce good hash value combining VAL and VAL2. */
3201 static inline hashval_t
3202 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3203 {
3204 /* the golden ratio; an arbitrary value. */
3205 hashval_t a = 0x9e3779b9;
3206
3207 mix (a, val, val2);
3208 return val2;
3209 }
3210
3211 /* Produce good hash value combining PTR and VAL2. */
3212 static inline hashval_t
3213 iterative_hash_pointer (void *ptr, hashval_t val2)
3214 {
3215 if (sizeof (ptr) == sizeof (hashval_t))
3216 return iterative_hash_hashval_t ((size_t) ptr, val2);
3217 else
3218 {
3219 hashval_t a = (hashval_t) (size_t) ptr;
3220 /* Avoid warnings about shifting of more than the width of the type on
3221 hosts that won't execute this path. */
3222 int zero = 0;
3223 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
3224 mix (a, b, val2);
3225 return val2;
3226 }
3227 }
3228
3229 /* Produce good hash value combining VAL and VAL2. */
3230 static inline hashval_t
3231 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3232 {
3233 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3234 return iterative_hash_hashval_t (val, val2);
3235 else
3236 {
3237 hashval_t a = (hashval_t) val;
3238 /* Avoid warnings about shifting of more than the width of the type on
3239 hosts that won't execute this path. */
3240 int zero = 0;
3241 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
3242 mix (a, b, val2);
3243 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
3244 {
3245 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
3246 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
3247 mix (a, b, val2);
3248 }
3249 return val2;
3250 }
3251 }
3252
3253 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3254 is ATTRIBUTE.
3255
3256 Record such modified types already made so we don't make duplicates. */
3257
3258 tree
3259 build_type_attribute_variant (tree ttype, tree attribute)
3260 {
3261 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3262 {
3263 hashval_t hashcode = 0;
3264 tree ntype;
3265 enum tree_code code = TREE_CODE (ttype);
3266
3267 ntype = copy_node (ttype);
3268
3269 TYPE_POINTER_TO (ntype) = 0;
3270 TYPE_REFERENCE_TO (ntype) = 0;
3271 TYPE_ATTRIBUTES (ntype) = attribute;
3272
3273 /* Create a new main variant of TYPE. */
3274 TYPE_MAIN_VARIANT (ntype) = ntype;
3275 TYPE_NEXT_VARIANT (ntype) = 0;
3276 set_type_quals (ntype, TYPE_UNQUALIFIED);
3277
3278 hashcode = iterative_hash_object (code, hashcode);
3279 if (TREE_TYPE (ntype))
3280 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3281 hashcode);
3282 hashcode = attribute_hash_list (attribute, hashcode);
3283
3284 switch (TREE_CODE (ntype))
3285 {
3286 case FUNCTION_TYPE:
3287 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3288 break;
3289 case ARRAY_TYPE:
3290 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3291 hashcode);
3292 break;
3293 case INTEGER_TYPE:
3294 hashcode = iterative_hash_object
3295 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3296 hashcode = iterative_hash_object
3297 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3298 break;
3299 case REAL_TYPE:
3300 {
3301 unsigned int precision = TYPE_PRECISION (ntype);
3302 hashcode = iterative_hash_object (precision, hashcode);
3303 }
3304 break;
3305 default:
3306 break;
3307 }
3308
3309 ntype = type_hash_canon (hashcode, ntype);
3310 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
3311 }
3312
3313 return ttype;
3314 }
3315
3316
3317 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3318 or zero if not.
3319
3320 We try both `text' and `__text__', ATTR may be either one. */
3321 /* ??? It might be a reasonable simplification to require ATTR to be only
3322 `text'. One might then also require attribute lists to be stored in
3323 their canonicalized form. */
3324
3325 static int
3326 is_attribute_with_length_p (const char *attr, int attr_len, tree ident)
3327 {
3328 int ident_len;
3329 const char *p;
3330
3331 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3332 return 0;
3333
3334 p = IDENTIFIER_POINTER (ident);
3335 ident_len = IDENTIFIER_LENGTH (ident);
3336
3337 if (ident_len == attr_len
3338 && strcmp (attr, p) == 0)
3339 return 1;
3340
3341 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3342 if (attr[0] == '_')
3343 {
3344 gcc_assert (attr[1] == '_');
3345 gcc_assert (attr[attr_len - 2] == '_');
3346 gcc_assert (attr[attr_len - 1] == '_');
3347 gcc_assert (attr[1] == '_');
3348 if (ident_len == attr_len - 4
3349 && strncmp (attr + 2, p, attr_len - 4) == 0)
3350 return 1;
3351 }
3352 else
3353 {
3354 if (ident_len == attr_len + 4
3355 && p[0] == '_' && p[1] == '_'
3356 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3357 && strncmp (attr, p + 2, attr_len) == 0)
3358 return 1;
3359 }
3360
3361 return 0;
3362 }
3363
3364 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3365 or zero if not.
3366
3367 We try both `text' and `__text__', ATTR may be either one. */
3368
3369 int
3370 is_attribute_p (const char *attr, tree ident)
3371 {
3372 return is_attribute_with_length_p (attr, strlen (attr), ident);
3373 }
3374
3375 /* Given an attribute name and a list of attributes, return a pointer to the
3376 attribute's list element if the attribute is part of the list, or NULL_TREE
3377 if not found. If the attribute appears more than once, this only
3378 returns the first occurrence; the TREE_CHAIN of the return value should
3379 be passed back in if further occurrences are wanted. */
3380
3381 tree
3382 lookup_attribute (const char *attr_name, tree list)
3383 {
3384 tree l;
3385 size_t attr_len = strlen (attr_name);
3386
3387 for (l = list; l; l = TREE_CHAIN (l))
3388 {
3389 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3390 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3391 return l;
3392 }
3393
3394 return NULL_TREE;
3395 }
3396
3397 /* Return an attribute list that is the union of a1 and a2. */
3398
3399 tree
3400 merge_attributes (tree a1, tree a2)
3401 {
3402 tree attributes;
3403
3404 /* Either one unset? Take the set one. */
3405
3406 if ((attributes = a1) == 0)
3407 attributes = a2;
3408
3409 /* One that completely contains the other? Take it. */
3410
3411 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3412 {
3413 if (attribute_list_contained (a2, a1))
3414 attributes = a2;
3415 else
3416 {
3417 /* Pick the longest list, and hang on the other list. */
3418
3419 if (list_length (a1) < list_length (a2))
3420 attributes = a2, a2 = a1;
3421
3422 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3423 {
3424 tree a;
3425 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3426 attributes);
3427 a != NULL_TREE;
3428 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3429 TREE_CHAIN (a)))
3430 {
3431 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
3432 break;
3433 }
3434 if (a == NULL_TREE)
3435 {
3436 a1 = copy_node (a2);
3437 TREE_CHAIN (a1) = attributes;
3438 attributes = a1;
3439 }
3440 }
3441 }
3442 }
3443 return attributes;
3444 }
3445
3446 /* Given types T1 and T2, merge their attributes and return
3447 the result. */
3448
3449 tree
3450 merge_type_attributes (tree t1, tree t2)
3451 {
3452 return merge_attributes (TYPE_ATTRIBUTES (t1),
3453 TYPE_ATTRIBUTES (t2));
3454 }
3455
3456 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3457 the result. */
3458
3459 tree
3460 merge_decl_attributes (tree olddecl, tree newdecl)
3461 {
3462 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3463 DECL_ATTRIBUTES (newdecl));
3464 }
3465
3466 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3467
3468 /* Specialization of merge_decl_attributes for various Windows targets.
3469
3470 This handles the following situation:
3471
3472 __declspec (dllimport) int foo;
3473 int foo;
3474
3475 The second instance of `foo' nullifies the dllimport. */
3476
3477 tree
3478 merge_dllimport_decl_attributes (tree old, tree new)
3479 {
3480 tree a;
3481 int delete_dllimport_p = 1;
3482
3483 /* What we need to do here is remove from `old' dllimport if it doesn't
3484 appear in `new'. dllimport behaves like extern: if a declaration is
3485 marked dllimport and a definition appears later, then the object
3486 is not dllimport'd. We also remove a `new' dllimport if the old list
3487 contains dllexport: dllexport always overrides dllimport, regardless
3488 of the order of declaration. */
3489 if (!VAR_OR_FUNCTION_DECL_P (new))
3490 delete_dllimport_p = 0;
3491 else if (DECL_DLLIMPORT_P (new)
3492 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
3493 {
3494 DECL_DLLIMPORT_P (new) = 0;
3495 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
3496 "dllimport ignored", new);
3497 }
3498 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new))
3499 {
3500 /* Warn about overriding a symbol that has already been used. eg:
3501 extern int __attribute__ ((dllimport)) foo;
3502 int* bar () {return &foo;}
3503 int foo;
3504 */
3505 if (TREE_USED (old))
3506 {
3507 warning (0, "%q+D redeclared without dllimport attribute "
3508 "after being referenced with dll linkage", new);
3509 /* If we have used a variable's address with dllimport linkage,
3510 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
3511 decl may already have had TREE_INVARIANT and TREE_CONSTANT
3512 computed.
3513 We still remove the attribute so that assembler code refers
3514 to '&foo rather than '_imp__foo'. */
3515 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
3516 DECL_DLLIMPORT_P (new) = 1;
3517 }
3518
3519 /* Let an inline definition silently override the external reference,
3520 but otherwise warn about attribute inconsistency. */
3521 else if (TREE_CODE (new) == VAR_DECL
3522 || !DECL_DECLARED_INLINE_P (new))
3523 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
3524 "previous dllimport ignored", new);
3525 }
3526 else
3527 delete_dllimport_p = 0;
3528
3529 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new));
3530
3531 if (delete_dllimport_p)
3532 {
3533 tree prev, t;
3534 const size_t attr_len = strlen ("dllimport");
3535
3536 /* Scan the list for dllimport and delete it. */
3537 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3538 {
3539 if (is_attribute_with_length_p ("dllimport", attr_len,
3540 TREE_PURPOSE (t)))
3541 {
3542 if (prev == NULL_TREE)
3543 a = TREE_CHAIN (a);
3544 else
3545 TREE_CHAIN (prev) = TREE_CHAIN (t);
3546 break;
3547 }
3548 }
3549 }
3550
3551 return a;
3552 }
3553
3554 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3555 struct attribute_spec.handler. */
3556
3557 tree
3558 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3559 bool *no_add_attrs)
3560 {
3561 tree node = *pnode;
3562
3563 /* These attributes may apply to structure and union types being created,
3564 but otherwise should pass to the declaration involved. */
3565 if (!DECL_P (node))
3566 {
3567 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3568 | (int) ATTR_FLAG_ARRAY_NEXT))
3569 {
3570 *no_add_attrs = true;
3571 return tree_cons (name, args, NULL_TREE);
3572 }
3573 if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3574 {
3575 warning (OPT_Wattributes, "%qs attribute ignored",
3576 IDENTIFIER_POINTER (name));
3577 *no_add_attrs = true;
3578 }
3579
3580 return NULL_TREE;
3581 }
3582
3583 /* Report error on dllimport ambiguities seen now before they cause
3584 any damage. */
3585 if (is_attribute_p ("dllimport", name))
3586 {
3587 /* Honor any target-specific overrides. */
3588 if (!targetm.valid_dllimport_attribute_p (node))
3589 *no_add_attrs = true;
3590
3591 else if (TREE_CODE (node) == FUNCTION_DECL
3592 && DECL_DECLARED_INLINE_P (node))
3593 {
3594 warning (OPT_Wattributes, "inline function %q+D declared as "
3595 " dllimport: attribute ignored", node);
3596 *no_add_attrs = true;
3597 }
3598 /* Like MS, treat definition of dllimported variables and
3599 non-inlined functions on declaration as syntax errors. */
3600 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
3601 {
3602 error ("function %q+D definition is marked dllimport", node);
3603 *no_add_attrs = true;
3604 }
3605
3606 else if (TREE_CODE (node) == VAR_DECL)
3607 {
3608 if (DECL_INITIAL (node))
3609 {
3610 error ("variable %q+D definition is marked dllimport",
3611 node);
3612 *no_add_attrs = true;
3613 }
3614
3615 /* `extern' needn't be specified with dllimport.
3616 Specify `extern' now and hope for the best. Sigh. */
3617 DECL_EXTERNAL (node) = 1;
3618 /* Also, implicitly give dllimport'd variables declared within
3619 a function global scope, unless declared static. */
3620 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
3621 TREE_PUBLIC (node) = 1;
3622 }
3623
3624 if (*no_add_attrs == false)
3625 DECL_DLLIMPORT_P (node) = 1;
3626 }
3627
3628 /* Report error if symbol is not accessible at global scope. */
3629 if (!TREE_PUBLIC (node)
3630 && (TREE_CODE (node) == VAR_DECL
3631 || TREE_CODE (node) == FUNCTION_DECL))
3632 {
3633 error ("external linkage required for symbol %q+D because of "
3634 "%qs attribute", node, IDENTIFIER_POINTER (name));
3635 *no_add_attrs = true;
3636 }
3637
3638 return NULL_TREE;
3639 }
3640
3641 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
3642 \f
3643 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3644 of the various TYPE_QUAL values. */
3645
3646 static void
3647 set_type_quals (tree type, int type_quals)
3648 {
3649 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3650 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3651 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3652 }
3653
3654 /* Returns true iff cand is equivalent to base with type_quals. */
3655
3656 bool
3657 check_qualified_type (tree cand, tree base, int type_quals)
3658 {
3659 return (TYPE_QUALS (cand) == type_quals
3660 && TYPE_NAME (cand) == TYPE_NAME (base)
3661 /* Apparently this is needed for Objective-C. */
3662 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3663 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3664 TYPE_ATTRIBUTES (base)));
3665 }
3666
3667 /* Return a version of the TYPE, qualified as indicated by the
3668 TYPE_QUALS, if one exists. If no qualified version exists yet,
3669 return NULL_TREE. */
3670
3671 tree
3672 get_qualified_type (tree type, int type_quals)
3673 {
3674 tree t;
3675
3676 if (TYPE_QUALS (type) == type_quals)
3677 return type;
3678
3679 /* Search the chain of variants to see if there is already one there just
3680 like the one we need to have. If so, use that existing one. We must
3681 preserve the TYPE_NAME, since there is code that depends on this. */
3682 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3683 if (check_qualified_type (t, type, type_quals))
3684 return t;
3685
3686 return NULL_TREE;
3687 }
3688
3689 /* Like get_qualified_type, but creates the type if it does not
3690 exist. This function never returns NULL_TREE. */
3691
3692 tree
3693 build_qualified_type (tree type, int type_quals)
3694 {
3695 tree t;
3696
3697 /* See if we already have the appropriate qualified variant. */
3698 t = get_qualified_type (type, type_quals);
3699
3700 /* If not, build it. */
3701 if (!t)
3702 {
3703 t = build_variant_type_copy (type);
3704 set_type_quals (t, type_quals);
3705
3706 /* If it's a pointer type, the new variant points to the same type. */
3707 if (TREE_CODE (type) == POINTER_TYPE)
3708 {
3709 TYPE_NEXT_PTR_TO (t) = TYPE_NEXT_PTR_TO (type);
3710 TYPE_NEXT_PTR_TO (type) = t;
3711 }
3712
3713 /* Same for a reference type. */
3714 else if (TREE_CODE (type) == REFERENCE_TYPE)
3715 {
3716 TYPE_NEXT_REF_TO (t) = TYPE_NEXT_REF_TO (type);
3717 TYPE_NEXT_REF_TO (type) = t;
3718 }
3719 }
3720
3721 return t;
3722 }
3723
3724 /* Create a new distinct copy of TYPE. The new type is made its own
3725 MAIN_VARIANT. */
3726
3727 tree
3728 build_distinct_type_copy (tree type)
3729 {
3730 tree t = copy_node (type);
3731
3732 TYPE_POINTER_TO (t) = 0;
3733 TYPE_REFERENCE_TO (t) = 0;
3734
3735 /* Make it its own variant. */
3736 TYPE_MAIN_VARIANT (t) = t;
3737 TYPE_NEXT_VARIANT (t) = 0;
3738
3739 return t;
3740 }
3741
3742 /* Create a new variant of TYPE, equivalent but distinct.
3743 This is so the caller can modify it. */
3744
3745 tree
3746 build_variant_type_copy (tree type)
3747 {
3748 tree t, m = TYPE_MAIN_VARIANT (type);
3749
3750 t = build_distinct_type_copy (type);
3751
3752 /* Add the new type to the chain of variants of TYPE. */
3753 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3754 TYPE_NEXT_VARIANT (m) = t;
3755 TYPE_MAIN_VARIANT (t) = m;
3756
3757 return t;
3758 }
3759 \f
3760 /* Return true if the from tree in both tree maps are equal. */
3761
3762 int
3763 tree_map_eq (const void *va, const void *vb)
3764 {
3765 const struct tree_map *a = va, *b = vb;
3766 return (a->from == b->from);
3767 }
3768
3769 /* Hash a from tree in a tree_map. */
3770
3771 unsigned int
3772 tree_map_hash (const void *item)
3773 {
3774 return (((const struct tree_map *) item)->hash);
3775 }
3776
3777 /* Return true if this tree map structure is marked for garbage collection
3778 purposes. We simply return true if the from tree is marked, so that this
3779 structure goes away when the from tree goes away. */
3780
3781 int
3782 tree_map_marked_p (const void *p)
3783 {
3784 tree from = ((struct tree_map *) p)->from;
3785
3786 return ggc_marked_p (from);
3787 }
3788
3789 /* Return true if the trees in the tree_int_map *'s VA and VB are equal. */
3790
3791 static int
3792 tree_int_map_eq (const void *va, const void *vb)
3793 {
3794 const struct tree_int_map *a = va, *b = vb;
3795 return (a->from == b->from);
3796 }
3797
3798 /* Hash a from tree in the tree_int_map * ITEM. */
3799
3800 static unsigned int
3801 tree_int_map_hash (const void *item)
3802 {
3803 return htab_hash_pointer (((const struct tree_int_map *)item)->from);
3804 }
3805
3806 /* Return true if this tree int map structure is marked for garbage collection
3807 purposes. We simply return true if the from tree_int_map *P's from tree is marked, so that this
3808 structure goes away when the from tree goes away. */
3809
3810 static int
3811 tree_int_map_marked_p (const void *p)
3812 {
3813 tree from = ((struct tree_int_map *) p)->from;
3814
3815 return ggc_marked_p (from);
3816 }
3817 /* Lookup an init priority for FROM, and return it if we find one. */
3818
3819 unsigned short
3820 decl_init_priority_lookup (tree from)
3821 {
3822 struct tree_int_map *h, in;
3823 in.from = from;
3824
3825 h = htab_find_with_hash (init_priority_for_decl,
3826 &in, htab_hash_pointer (from));
3827 if (h)
3828 return h->to;
3829 return 0;
3830 }
3831
3832 /* Insert a mapping FROM->TO in the init priority hashtable. */
3833
3834 void
3835 decl_init_priority_insert (tree from, unsigned short to)
3836 {
3837 struct tree_int_map *h;
3838 void **loc;
3839
3840 h = ggc_alloc (sizeof (struct tree_int_map));
3841 h->from = from;
3842 h->to = to;
3843 loc = htab_find_slot_with_hash (init_priority_for_decl, h,
3844 htab_hash_pointer (from), INSERT);
3845 *(struct tree_int_map **) loc = h;
3846 }
3847
3848 /* Look up a restrict qualified base decl for FROM. */
3849
3850 tree
3851 decl_restrict_base_lookup (tree from)
3852 {
3853 struct tree_map *h;
3854 struct tree_map in;
3855
3856 in.from = from;
3857 h = htab_find_with_hash (restrict_base_for_decl, &in,
3858 htab_hash_pointer (from));
3859 return h ? h->to : NULL_TREE;
3860 }
3861
3862 /* Record the restrict qualified base TO for FROM. */
3863
3864 void
3865 decl_restrict_base_insert (tree from, tree to)
3866 {
3867 struct tree_map *h;
3868 void **loc;
3869
3870 h = ggc_alloc (sizeof (struct tree_map));
3871 h->hash = htab_hash_pointer (from);
3872 h->from = from;
3873 h->to = to;
3874 loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
3875 *(struct tree_map **) loc = h;
3876 }
3877
3878 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
3879
3880 static void
3881 print_debug_expr_statistics (void)
3882 {
3883 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
3884 (long) htab_size (debug_expr_for_decl),
3885 (long) htab_elements (debug_expr_for_decl),
3886 htab_collisions (debug_expr_for_decl));
3887 }
3888
3889 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
3890
3891 static void
3892 print_value_expr_statistics (void)
3893 {
3894 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
3895 (long) htab_size (value_expr_for_decl),
3896 (long) htab_elements (value_expr_for_decl),
3897 htab_collisions (value_expr_for_decl));
3898 }
3899
3900 /* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
3901 don't print anything if the table is empty. */
3902
3903 static void
3904 print_restrict_base_statistics (void)
3905 {
3906 if (htab_elements (restrict_base_for_decl) != 0)
3907 fprintf (stderr,
3908 "RESTRICT_BASE hash: size %ld, %ld elements, %f collisions\n",
3909 (long) htab_size (restrict_base_for_decl),
3910 (long) htab_elements (restrict_base_for_decl),
3911 htab_collisions (restrict_base_for_decl));
3912 }
3913
3914 /* Lookup a debug expression for FROM, and return it if we find one. */
3915
3916 tree
3917 decl_debug_expr_lookup (tree from)
3918 {
3919 struct tree_map *h, in;
3920 in.from = from;
3921
3922 h = htab_find_with_hash (debug_expr_for_decl, &in, htab_hash_pointer (from));
3923 if (h)
3924 return h->to;
3925 return NULL_TREE;
3926 }
3927
3928 /* Insert a mapping FROM->TO in the debug expression hashtable. */
3929
3930 void
3931 decl_debug_expr_insert (tree from, tree to)
3932 {
3933 struct tree_map *h;
3934 void **loc;
3935
3936 h = ggc_alloc (sizeof (struct tree_map));
3937 h->hash = htab_hash_pointer (from);
3938 h->from = from;
3939 h->to = to;
3940 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
3941 *(struct tree_map **) loc = h;
3942 }
3943
3944 /* Lookup a value expression for FROM, and return it if we find one. */
3945
3946 tree
3947 decl_value_expr_lookup (tree from)
3948 {
3949 struct tree_map *h, in;
3950 in.from = from;
3951
3952 h = htab_find_with_hash (value_expr_for_decl, &in, htab_hash_pointer (from));
3953 if (h)
3954 return h->to;
3955 return NULL_TREE;
3956 }
3957
3958 /* Insert a mapping FROM->TO in the value expression hashtable. */
3959
3960 void
3961 decl_value_expr_insert (tree from, tree to)
3962 {
3963 struct tree_map *h;
3964 void **loc;
3965
3966 h = ggc_alloc (sizeof (struct tree_map));
3967 h->hash = htab_hash_pointer (from);
3968 h->from = from;
3969 h->to = to;
3970 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
3971 *(struct tree_map **) loc = h;
3972 }
3973
3974 /* Hashing of types so that we don't make duplicates.
3975 The entry point is `type_hash_canon'. */
3976
3977 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3978 with types in the TREE_VALUE slots), by adding the hash codes
3979 of the individual types. */
3980
3981 unsigned int
3982 type_hash_list (tree list, hashval_t hashcode)
3983 {
3984 tree tail;
3985
3986 for (tail = list; tail; tail = TREE_CHAIN (tail))
3987 if (TREE_VALUE (tail) != error_mark_node)
3988 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
3989 hashcode);
3990
3991 return hashcode;
3992 }
3993
3994 /* These are the Hashtable callback functions. */
3995
3996 /* Returns true iff the types are equivalent. */
3997
3998 static int
3999 type_hash_eq (const void *va, const void *vb)
4000 {
4001 const struct type_hash *a = va, *b = vb;
4002
4003 /* First test the things that are the same for all types. */
4004 if (a->hash != b->hash
4005 || TREE_CODE (a->type) != TREE_CODE (b->type)
4006 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
4007 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
4008 TYPE_ATTRIBUTES (b->type))
4009 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
4010 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
4011 return 0;
4012
4013 switch (TREE_CODE (a->type))
4014 {
4015 case VOID_TYPE:
4016 case COMPLEX_TYPE:
4017 case POINTER_TYPE:
4018 case REFERENCE_TYPE:
4019 return 1;
4020
4021 case VECTOR_TYPE:
4022 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
4023
4024 case ENUMERAL_TYPE:
4025 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
4026 && !(TYPE_VALUES (a->type)
4027 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
4028 && TYPE_VALUES (b->type)
4029 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
4030 && type_list_equal (TYPE_VALUES (a->type),
4031 TYPE_VALUES (b->type))))
4032 return 0;
4033
4034 /* ... fall through ... */
4035
4036 case INTEGER_TYPE:
4037 case REAL_TYPE:
4038 case BOOLEAN_TYPE:
4039 case CHAR_TYPE:
4040 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4041 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4042 TYPE_MAX_VALUE (b->type)))
4043 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4044 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4045 TYPE_MIN_VALUE (b->type))));
4046
4047 case OFFSET_TYPE:
4048 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4049
4050 case METHOD_TYPE:
4051 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4052 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4053 || (TYPE_ARG_TYPES (a->type)
4054 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4055 && TYPE_ARG_TYPES (b->type)
4056 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4057 && type_list_equal (TYPE_ARG_TYPES (a->type),
4058 TYPE_ARG_TYPES (b->type)))));
4059
4060 case ARRAY_TYPE:
4061 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4062
4063 case RECORD_TYPE:
4064 case UNION_TYPE:
4065 case QUAL_UNION_TYPE:
4066 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4067 || (TYPE_FIELDS (a->type)
4068 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4069 && TYPE_FIELDS (b->type)
4070 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4071 && type_list_equal (TYPE_FIELDS (a->type),
4072 TYPE_FIELDS (b->type))));
4073
4074 case FUNCTION_TYPE:
4075 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4076 || (TYPE_ARG_TYPES (a->type)
4077 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4078 && TYPE_ARG_TYPES (b->type)
4079 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4080 && type_list_equal (TYPE_ARG_TYPES (a->type),
4081 TYPE_ARG_TYPES (b->type))));
4082
4083 default:
4084 return 0;
4085 }
4086 }
4087
4088 /* Return the cached hash value. */
4089
4090 static hashval_t
4091 type_hash_hash (const void *item)
4092 {
4093 return ((const struct type_hash *) item)->hash;
4094 }
4095
4096 /* Look in the type hash table for a type isomorphic to TYPE.
4097 If one is found, return it. Otherwise return 0. */
4098
4099 tree
4100 type_hash_lookup (hashval_t hashcode, tree type)
4101 {
4102 struct type_hash *h, in;
4103
4104 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4105 must call that routine before comparing TYPE_ALIGNs. */
4106 layout_type (type);
4107
4108 in.hash = hashcode;
4109 in.type = type;
4110
4111 h = htab_find_with_hash (type_hash_table, &in, hashcode);
4112 if (h)
4113 return h->type;
4114 return NULL_TREE;
4115 }
4116
4117 /* Add an entry to the type-hash-table
4118 for a type TYPE whose hash code is HASHCODE. */
4119
4120 void
4121 type_hash_add (hashval_t hashcode, tree type)
4122 {
4123 struct type_hash *h;
4124 void **loc;
4125
4126 h = ggc_alloc (sizeof (struct type_hash));
4127 h->hash = hashcode;
4128 h->type = type;
4129 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
4130 *(struct type_hash **) loc = h;
4131 }
4132
4133 /* Given TYPE, and HASHCODE its hash code, return the canonical
4134 object for an identical type if one already exists.
4135 Otherwise, return TYPE, and record it as the canonical object.
4136
4137 To use this function, first create a type of the sort you want.
4138 Then compute its hash code from the fields of the type that
4139 make it different from other similar types.
4140 Then call this function and use the value. */
4141
4142 tree
4143 type_hash_canon (unsigned int hashcode, tree type)
4144 {
4145 tree t1;
4146
4147 /* The hash table only contains main variants, so ensure that's what we're
4148 being passed. */
4149 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
4150
4151 if (!lang_hooks.types.hash_types)
4152 return type;
4153
4154 /* See if the type is in the hash table already. If so, return it.
4155 Otherwise, add the type. */
4156 t1 = type_hash_lookup (hashcode, type);
4157 if (t1 != 0)
4158 {
4159 #ifdef GATHER_STATISTICS
4160 tree_node_counts[(int) t_kind]--;
4161 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
4162 #endif
4163 return t1;
4164 }
4165 else
4166 {
4167 type_hash_add (hashcode, type);
4168 return type;
4169 }
4170 }
4171
4172 /* See if the data pointed to by the type hash table is marked. We consider
4173 it marked if the type is marked or if a debug type number or symbol
4174 table entry has been made for the type. This reduces the amount of
4175 debugging output and eliminates that dependency of the debug output on
4176 the number of garbage collections. */
4177
4178 static int
4179 type_hash_marked_p (const void *p)
4180 {
4181 tree type = ((struct type_hash *) p)->type;
4182
4183 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
4184 }
4185
4186 static void
4187 print_type_hash_statistics (void)
4188 {
4189 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
4190 (long) htab_size (type_hash_table),
4191 (long) htab_elements (type_hash_table),
4192 htab_collisions (type_hash_table));
4193 }
4194
4195 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4196 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4197 by adding the hash codes of the individual attributes. */
4198
4199 unsigned int
4200 attribute_hash_list (tree list, hashval_t hashcode)
4201 {
4202 tree tail;
4203
4204 for (tail = list; tail; tail = TREE_CHAIN (tail))
4205 /* ??? Do we want to add in TREE_VALUE too? */
4206 hashcode = iterative_hash_object
4207 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
4208 return hashcode;
4209 }
4210
4211 /* Given two lists of attributes, return true if list l2 is
4212 equivalent to l1. */
4213
4214 int
4215 attribute_list_equal (tree l1, tree l2)
4216 {
4217 return attribute_list_contained (l1, l2)
4218 && attribute_list_contained (l2, l1);
4219 }
4220
4221 /* Given two lists of attributes, return true if list L2 is
4222 completely contained within L1. */
4223 /* ??? This would be faster if attribute names were stored in a canonicalized
4224 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4225 must be used to show these elements are equivalent (which they are). */
4226 /* ??? It's not clear that attributes with arguments will always be handled
4227 correctly. */
4228
4229 int
4230 attribute_list_contained (tree l1, tree l2)
4231 {
4232 tree t1, t2;
4233
4234 /* First check the obvious, maybe the lists are identical. */
4235 if (l1 == l2)
4236 return 1;
4237
4238 /* Maybe the lists are similar. */
4239 for (t1 = l1, t2 = l2;
4240 t1 != 0 && t2 != 0
4241 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4242 && TREE_VALUE (t1) == TREE_VALUE (t2);
4243 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4244
4245 /* Maybe the lists are equal. */
4246 if (t1 == 0 && t2 == 0)
4247 return 1;
4248
4249 for (; t2 != 0; t2 = TREE_CHAIN (t2))
4250 {
4251 tree attr;
4252 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
4253 attr != NULL_TREE;
4254 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4255 TREE_CHAIN (attr)))
4256 {
4257 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
4258 break;
4259 }
4260
4261 if (attr == 0)
4262 return 0;
4263
4264 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
4265 return 0;
4266 }
4267
4268 return 1;
4269 }
4270
4271 /* Given two lists of types
4272 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4273 return 1 if the lists contain the same types in the same order.
4274 Also, the TREE_PURPOSEs must match. */
4275
4276 int
4277 type_list_equal (tree l1, tree l2)
4278 {
4279 tree t1, t2;
4280
4281 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4282 if (TREE_VALUE (t1) != TREE_VALUE (t2)
4283 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4284 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4285 && (TREE_TYPE (TREE_PURPOSE (t1))
4286 == TREE_TYPE (TREE_PURPOSE (t2))))))
4287 return 0;
4288
4289 return t1 == t2;
4290 }
4291
4292 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
4293 given by TYPE. If the argument list accepts variable arguments,
4294 then this function counts only the ordinary arguments. */
4295
4296 int
4297 type_num_arguments (tree type)
4298 {
4299 int i = 0;
4300 tree t;
4301
4302 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
4303 /* If the function does not take a variable number of arguments,
4304 the last element in the list will have type `void'. */
4305 if (VOID_TYPE_P (TREE_VALUE (t)))
4306 break;
4307 else
4308 ++i;
4309
4310 return i;
4311 }
4312
4313 /* Nonzero if integer constants T1 and T2
4314 represent the same constant value. */
4315
4316 int
4317 tree_int_cst_equal (tree t1, tree t2)
4318 {
4319 if (t1 == t2)
4320 return 1;
4321
4322 if (t1 == 0 || t2 == 0)
4323 return 0;
4324
4325 if (TREE_CODE (t1) == INTEGER_CST
4326 && TREE_CODE (t2) == INTEGER_CST
4327 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4328 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4329 return 1;
4330
4331 return 0;
4332 }
4333
4334 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4335 The precise way of comparison depends on their data type. */
4336
4337 int
4338 tree_int_cst_lt (tree t1, tree t2)
4339 {
4340 if (t1 == t2)
4341 return 0;
4342
4343 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
4344 {
4345 int t1_sgn = tree_int_cst_sgn (t1);
4346 int t2_sgn = tree_int_cst_sgn (t2);
4347
4348 if (t1_sgn < t2_sgn)
4349 return 1;
4350 else if (t1_sgn > t2_sgn)
4351 return 0;
4352 /* Otherwise, both are non-negative, so we compare them as
4353 unsigned just in case one of them would overflow a signed
4354 type. */
4355 }
4356 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
4357 return INT_CST_LT (t1, t2);
4358
4359 return INT_CST_LT_UNSIGNED (t1, t2);
4360 }
4361
4362 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
4363
4364 int
4365 tree_int_cst_compare (tree t1, tree t2)
4366 {
4367 if (tree_int_cst_lt (t1, t2))
4368 return -1;
4369 else if (tree_int_cst_lt (t2, t1))
4370 return 1;
4371 else
4372 return 0;
4373 }
4374
4375 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
4376 the host. If POS is zero, the value can be represented in a single
4377 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
4378 be represented in a single unsigned HOST_WIDE_INT. */
4379
4380 int
4381 host_integerp (tree t, int pos)
4382 {
4383 return (TREE_CODE (t) == INTEGER_CST
4384 && ! TREE_OVERFLOW (t)
4385 && ((TREE_INT_CST_HIGH (t) == 0
4386 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4387 || (! pos && TREE_INT_CST_HIGH (t) == -1
4388 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
4389 && !TYPE_UNSIGNED (TREE_TYPE (t)))
4390 || (pos && TREE_INT_CST_HIGH (t) == 0)));
4391 }
4392
4393 /* Return the HOST_WIDE_INT least significant bits of T if it is an
4394 INTEGER_CST and there is no overflow. POS is nonzero if the result must
4395 be non-negative. We must be able to satisfy the above conditions. */
4396
4397 HOST_WIDE_INT
4398 tree_low_cst (tree t, int pos)
4399 {
4400 gcc_assert (host_integerp (t, pos));
4401 return TREE_INT_CST_LOW (t);
4402 }
4403
4404 /* Return the most significant bit of the integer constant T. */
4405
4406 int
4407 tree_int_cst_msb (tree t)
4408 {
4409 int prec;
4410 HOST_WIDE_INT h;
4411 unsigned HOST_WIDE_INT l;
4412
4413 /* Note that using TYPE_PRECISION here is wrong. We care about the
4414 actual bits, not the (arbitrary) range of the type. */
4415 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
4416 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
4417 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
4418 return (l & 1) == 1;
4419 }
4420
4421 /* Return an indication of the sign of the integer constant T.
4422 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
4423 Note that -1 will never be returned if T's type is unsigned. */
4424
4425 int
4426 tree_int_cst_sgn (tree t)
4427 {
4428 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4429 return 0;
4430 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
4431 return 1;
4432 else if (TREE_INT_CST_HIGH (t) < 0)
4433 return -1;
4434 else
4435 return 1;
4436 }
4437
4438 /* Compare two constructor-element-type constants. Return 1 if the lists
4439 are known to be equal; otherwise return 0. */
4440
4441 int
4442 simple_cst_list_equal (tree l1, tree l2)
4443 {
4444 while (l1 != NULL_TREE && l2 != NULL_TREE)
4445 {
4446 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4447 return 0;
4448
4449 l1 = TREE_CHAIN (l1);
4450 l2 = TREE_CHAIN (l2);
4451 }
4452
4453 return l1 == l2;
4454 }
4455
4456 /* Return truthvalue of whether T1 is the same tree structure as T2.
4457 Return 1 if they are the same.
4458 Return 0 if they are understandably different.
4459 Return -1 if either contains tree structure not understood by
4460 this function. */
4461
4462 int
4463 simple_cst_equal (tree t1, tree t2)
4464 {
4465 enum tree_code code1, code2;
4466 int cmp;
4467 int i;
4468
4469 if (t1 == t2)
4470 return 1;
4471 if (t1 == 0 || t2 == 0)
4472 return 0;
4473
4474 code1 = TREE_CODE (t1);
4475 code2 = TREE_CODE (t2);
4476
4477 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
4478 {
4479 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4480 || code2 == NON_LVALUE_EXPR)
4481 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4482 else
4483 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
4484 }
4485
4486 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4487 || code2 == NON_LVALUE_EXPR)
4488 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
4489
4490 if (code1 != code2)
4491 return 0;
4492
4493 switch (code1)
4494 {
4495 case INTEGER_CST:
4496 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4497 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
4498
4499 case REAL_CST:
4500 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
4501
4502 case STRING_CST:
4503 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
4504 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
4505 TREE_STRING_LENGTH (t1)));
4506
4507 case CONSTRUCTOR:
4508 {
4509 unsigned HOST_WIDE_INT idx;
4510 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
4511 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
4512
4513 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
4514 return false;
4515
4516 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
4517 /* ??? Should we handle also fields here? */
4518 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
4519 VEC_index (constructor_elt, v2, idx)->value))
4520 return false;
4521 return true;
4522 }
4523
4524 case SAVE_EXPR:
4525 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4526
4527 case CALL_EXPR:
4528 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4529 if (cmp <= 0)
4530 return cmp;
4531 return
4532 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4533
4534 case TARGET_EXPR:
4535 /* Special case: if either target is an unallocated VAR_DECL,
4536 it means that it's going to be unified with whatever the
4537 TARGET_EXPR is really supposed to initialize, so treat it
4538 as being equivalent to anything. */
4539 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
4540 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
4541 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
4542 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
4543 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
4544 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
4545 cmp = 1;
4546 else
4547 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4548
4549 if (cmp <= 0)
4550 return cmp;
4551
4552 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4553
4554 case WITH_CLEANUP_EXPR:
4555 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4556 if (cmp <= 0)
4557 return cmp;
4558
4559 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
4560
4561 case COMPONENT_REF:
4562 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
4563 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4564
4565 return 0;
4566
4567 case VAR_DECL:
4568 case PARM_DECL:
4569 case CONST_DECL:
4570 case FUNCTION_DECL:
4571 return 0;
4572
4573 default:
4574 break;
4575 }
4576
4577 /* This general rule works for most tree codes. All exceptions should be
4578 handled above. If this is a language-specific tree code, we can't
4579 trust what might be in the operand, so say we don't know
4580 the situation. */
4581 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4582 return -1;
4583
4584 switch (TREE_CODE_CLASS (code1))
4585 {
4586 case tcc_unary:
4587 case tcc_binary:
4588 case tcc_comparison:
4589 case tcc_expression:
4590 case tcc_reference:
4591 case tcc_statement:
4592 cmp = 1;
4593 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
4594 {
4595 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4596 if (cmp <= 0)
4597 return cmp;
4598 }
4599
4600 return cmp;
4601
4602 default:
4603 return -1;
4604 }
4605 }
4606
4607 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
4608 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
4609 than U, respectively. */
4610
4611 int
4612 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
4613 {
4614 if (tree_int_cst_sgn (t) < 0)
4615 return -1;
4616 else if (TREE_INT_CST_HIGH (t) != 0)
4617 return 1;
4618 else if (TREE_INT_CST_LOW (t) == u)
4619 return 0;
4620 else if (TREE_INT_CST_LOW (t) < u)
4621 return -1;
4622 else
4623 return 1;
4624 }
4625
4626 /* Return true if CODE represents an associative tree code. Otherwise
4627 return false. */
4628 bool
4629 associative_tree_code (enum tree_code code)
4630 {
4631 switch (code)
4632 {
4633 case BIT_IOR_EXPR:
4634 case BIT_AND_EXPR:
4635 case BIT_XOR_EXPR:
4636 case PLUS_EXPR:
4637 case MULT_EXPR:
4638 case MIN_EXPR:
4639 case MAX_EXPR:
4640 return true;
4641
4642 default:
4643 break;
4644 }
4645 return false;
4646 }
4647
4648 /* Return true if CODE represents a commutative tree code. Otherwise
4649 return false. */
4650 bool
4651 commutative_tree_code (enum tree_code code)
4652 {
4653 switch (code)
4654 {
4655 case PLUS_EXPR:
4656 case MULT_EXPR:
4657 case MIN_EXPR:
4658 case MAX_EXPR:
4659 case BIT_IOR_EXPR:
4660 case BIT_XOR_EXPR:
4661 case BIT_AND_EXPR:
4662 case NE_EXPR:
4663 case EQ_EXPR:
4664 case UNORDERED_EXPR:
4665 case ORDERED_EXPR:
4666 case UNEQ_EXPR:
4667 case LTGT_EXPR:
4668 case TRUTH_AND_EXPR:
4669 case TRUTH_XOR_EXPR:
4670 case TRUTH_OR_EXPR:
4671 return true;
4672
4673 default:
4674 break;
4675 }
4676 return false;
4677 }
4678
4679 /* Generate a hash value for an expression. This can be used iteratively
4680 by passing a previous result as the "val" argument.
4681
4682 This function is intended to produce the same hash for expressions which
4683 would compare equal using operand_equal_p. */
4684
4685 hashval_t
4686 iterative_hash_expr (tree t, hashval_t val)
4687 {
4688 int i;
4689 enum tree_code code;
4690 char class;
4691
4692 if (t == NULL_TREE)
4693 return iterative_hash_pointer (t, val);
4694
4695 code = TREE_CODE (t);
4696
4697 switch (code)
4698 {
4699 /* Alas, constants aren't shared, so we can't rely on pointer
4700 identity. */
4701 case INTEGER_CST:
4702 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
4703 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
4704 case REAL_CST:
4705 {
4706 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
4707
4708 return iterative_hash_hashval_t (val2, val);
4709 }
4710 case STRING_CST:
4711 return iterative_hash (TREE_STRING_POINTER (t),
4712 TREE_STRING_LENGTH (t), val);
4713 case COMPLEX_CST:
4714 val = iterative_hash_expr (TREE_REALPART (t), val);
4715 return iterative_hash_expr (TREE_IMAGPART (t), val);
4716 case VECTOR_CST:
4717 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
4718
4719 case SSA_NAME:
4720 case VALUE_HANDLE:
4721 /* we can just compare by pointer. */
4722 return iterative_hash_pointer (t, val);
4723
4724 case TREE_LIST:
4725 /* A list of expressions, for a CALL_EXPR or as the elements of a
4726 VECTOR_CST. */
4727 for (; t; t = TREE_CHAIN (t))
4728 val = iterative_hash_expr (TREE_VALUE (t), val);
4729 return val;
4730 case CONSTRUCTOR:
4731 {
4732 unsigned HOST_WIDE_INT idx;
4733 tree field, value;
4734 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
4735 {
4736 val = iterative_hash_expr (field, val);
4737 val = iterative_hash_expr (value, val);
4738 }
4739 return val;
4740 }
4741 case FUNCTION_DECL:
4742 /* When referring to a built-in FUNCTION_DECL, use the
4743 __builtin__ form. Otherwise nodes that compare equal
4744 according to operand_equal_p might get different
4745 hash codes. */
4746 if (DECL_BUILT_IN (t))
4747 {
4748 val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
4749 val);
4750 return val;
4751 }
4752 /* else FALL THROUGH */
4753 default:
4754 class = TREE_CODE_CLASS (code);
4755
4756 if (class == tcc_declaration)
4757 {
4758 /* Otherwise, we can just compare decls by pointer. */
4759 val = iterative_hash_pointer (t, val);
4760 }
4761 else
4762 {
4763 gcc_assert (IS_EXPR_CODE_CLASS (class));
4764
4765 val = iterative_hash_object (code, val);
4766
4767 /* Don't hash the type, that can lead to having nodes which
4768 compare equal according to operand_equal_p, but which
4769 have different hash codes. */
4770 if (code == NOP_EXPR
4771 || code == CONVERT_EXPR
4772 || code == NON_LVALUE_EXPR)
4773 {
4774 /* Make sure to include signness in the hash computation. */
4775 val += TYPE_UNSIGNED (TREE_TYPE (t));
4776 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
4777 }
4778
4779 else if (commutative_tree_code (code))
4780 {
4781 /* It's a commutative expression. We want to hash it the same
4782 however it appears. We do this by first hashing both operands
4783 and then rehashing based on the order of their independent
4784 hashes. */
4785 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
4786 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
4787 hashval_t t;
4788
4789 if (one > two)
4790 t = one, one = two, two = t;
4791
4792 val = iterative_hash_hashval_t (one, val);
4793 val = iterative_hash_hashval_t (two, val);
4794 }
4795 else
4796 for (i = TREE_CODE_LENGTH (code) - 1; i >= 0; --i)
4797 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
4798 }
4799 return val;
4800 break;
4801 }
4802 }
4803 \f
4804 /* Constructors for pointer, array and function types.
4805 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4806 constructed by language-dependent code, not here.) */
4807
4808 /* Construct, lay out and return the type of pointers to TO_TYPE with
4809 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
4810 reference all of memory. If such a type has already been
4811 constructed, reuse it. */
4812
4813 tree
4814 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
4815 bool can_alias_all)
4816 {
4817 tree t;
4818
4819 if (to_type == error_mark_node)
4820 return error_mark_node;
4821
4822 /* In some cases, languages will have things that aren't a POINTER_TYPE
4823 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
4824 In that case, return that type without regard to the rest of our
4825 operands.
4826
4827 ??? This is a kludge, but consistent with the way this function has
4828 always operated and there doesn't seem to be a good way to avoid this
4829 at the moment. */
4830 if (TYPE_POINTER_TO (to_type) != 0
4831 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
4832 return TYPE_POINTER_TO (to_type);
4833
4834 /* First, if we already have an unqualified type for pointers to TO_TYPE
4835 and it's the proper mode, use it. */
4836 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
4837 if (TYPE_MODE (t) == mode
4838 && !TYPE_QUALS (t)
4839 && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4840 return t;
4841
4842 t = make_node (POINTER_TYPE);
4843
4844 TREE_TYPE (t) = to_type;
4845 TYPE_MODE (t) = mode;
4846 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4847 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
4848 TYPE_POINTER_TO (to_type) = t;
4849
4850 /* Lay out the type. This function has many callers that are concerned
4851 with expression-construction, and this simplifies them all. */
4852 layout_type (t);
4853
4854 return t;
4855 }
4856
4857 /* By default build pointers in ptr_mode. */
4858
4859 tree
4860 build_pointer_type (tree to_type)
4861 {
4862 return build_pointer_type_for_mode (to_type, ptr_mode, false);
4863 }
4864
4865 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
4866
4867 tree
4868 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
4869 bool can_alias_all)
4870 {
4871 tree t;
4872
4873 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
4874 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
4875 In that case, return that type without regard to the rest of our
4876 operands.
4877
4878 ??? This is a kludge, but consistent with the way this function has
4879 always operated and there doesn't seem to be a good way to avoid this
4880 at the moment. */
4881 if (TYPE_REFERENCE_TO (to_type) != 0
4882 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
4883 return TYPE_REFERENCE_TO (to_type);
4884
4885 /* First, if we already have an unqualified type for references to TO_TYPE
4886 and it's the proper mode, use it. */
4887 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
4888 if (TYPE_MODE (t) == mode
4889 && !TYPE_QUALS (t)
4890 && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4891 return t;
4892
4893 t = make_node (REFERENCE_TYPE);
4894
4895 TREE_TYPE (t) = to_type;
4896 TYPE_MODE (t) = mode;
4897 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4898 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
4899 TYPE_REFERENCE_TO (to_type) = t;
4900
4901 layout_type (t);
4902
4903 return t;
4904 }
4905
4906
4907 /* Build the node for the type of references-to-TO_TYPE by default
4908 in ptr_mode. */
4909
4910 tree
4911 build_reference_type (tree to_type)
4912 {
4913 return build_reference_type_for_mode (to_type, ptr_mode, false);
4914 }
4915
4916 /* Build a type that is compatible with t but has no cv quals anywhere
4917 in its type, thus
4918
4919 const char *const *const * -> char ***. */
4920
4921 tree
4922 build_type_no_quals (tree t)
4923 {
4924 switch (TREE_CODE (t))
4925 {
4926 case POINTER_TYPE:
4927 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4928 TYPE_MODE (t),
4929 TYPE_REF_CAN_ALIAS_ALL (t));
4930 case REFERENCE_TYPE:
4931 return
4932 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4933 TYPE_MODE (t),
4934 TYPE_REF_CAN_ALIAS_ALL (t));
4935 default:
4936 return TYPE_MAIN_VARIANT (t);
4937 }
4938 }
4939
4940 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4941 MAXVAL should be the maximum value in the domain
4942 (one less than the length of the array).
4943
4944 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4945 We don't enforce this limit, that is up to caller (e.g. language front end).
4946 The limit exists because the result is a signed type and we don't handle
4947 sizes that use more than one HOST_WIDE_INT. */
4948
4949 tree
4950 build_index_type (tree maxval)
4951 {
4952 tree itype = make_node (INTEGER_TYPE);
4953
4954 TREE_TYPE (itype) = sizetype;
4955 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4956 TYPE_MIN_VALUE (itype) = size_zero_node;
4957 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
4958 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4959 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4960 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4961 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4962 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
4963
4964 if (host_integerp (maxval, 1))
4965 return type_hash_canon (tree_low_cst (maxval, 1), itype);
4966 else
4967 return itype;
4968 }
4969
4970 /* Builds a signed or unsigned integer type of precision PRECISION.
4971 Used for C bitfields whose precision does not match that of
4972 built-in target types. */
4973 tree
4974 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
4975 int unsignedp)
4976 {
4977 tree itype = make_node (INTEGER_TYPE);
4978
4979 TYPE_PRECISION (itype) = precision;
4980
4981 if (unsignedp)
4982 fixup_unsigned_type (itype);
4983 else
4984 fixup_signed_type (itype);
4985
4986 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
4987 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
4988
4989 return itype;
4990 }
4991
4992 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4993 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4994 low bound LOWVAL and high bound HIGHVAL.
4995 if TYPE==NULL_TREE, sizetype is used. */
4996
4997 tree
4998 build_range_type (tree type, tree lowval, tree highval)
4999 {
5000 tree itype = make_node (INTEGER_TYPE);
5001
5002 TREE_TYPE (itype) = type;
5003 if (type == NULL_TREE)
5004 type = sizetype;
5005
5006 TYPE_MIN_VALUE (itype) = convert (type, lowval);
5007 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
5008
5009 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
5010 TYPE_MODE (itype) = TYPE_MODE (type);
5011 TYPE_SIZE (itype) = TYPE_SIZE (type);
5012 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
5013 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
5014 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
5015
5016 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
5017 return type_hash_canon (tree_low_cst (highval, 0)
5018 - tree_low_cst (lowval, 0),
5019 itype);
5020 else
5021 return itype;
5022 }
5023
5024 /* Just like build_index_type, but takes lowval and highval instead
5025 of just highval (maxval). */
5026
5027 tree
5028 build_index_2_type (tree lowval, tree highval)
5029 {
5030 return build_range_type (sizetype, lowval, highval);
5031 }
5032
5033 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
5034 and number of elements specified by the range of values of INDEX_TYPE.
5035 If such a type has already been constructed, reuse it. */
5036
5037 tree
5038 build_array_type (tree elt_type, tree index_type)
5039 {
5040 tree t;
5041 hashval_t hashcode = 0;
5042
5043 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
5044 {
5045 error ("arrays of functions are not meaningful");
5046 elt_type = integer_type_node;
5047 }
5048
5049 t = make_node (ARRAY_TYPE);
5050 TREE_TYPE (t) = elt_type;
5051 TYPE_DOMAIN (t) = index_type;
5052
5053 if (index_type == 0)
5054 {
5055 layout_type (t);
5056 return t;
5057 }
5058
5059 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5060 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
5061 t = type_hash_canon (hashcode, t);
5062
5063 if (!COMPLETE_TYPE_P (t))
5064 layout_type (t);
5065 return t;
5066 }
5067
5068 /* Return the TYPE of the elements comprising
5069 the innermost dimension of ARRAY. */
5070
5071 tree
5072 get_inner_array_type (tree array)
5073 {
5074 tree type = TREE_TYPE (array);
5075
5076 while (TREE_CODE (type) == ARRAY_TYPE)
5077 type = TREE_TYPE (type);
5078
5079 return type;
5080 }
5081
5082 /* Construct, lay out and return
5083 the type of functions returning type VALUE_TYPE
5084 given arguments of types ARG_TYPES.
5085 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
5086 are data type nodes for the arguments of the function.
5087 If such a type has already been constructed, reuse it. */
5088
5089 tree
5090 build_function_type (tree value_type, tree arg_types)
5091 {
5092 tree t;
5093 hashval_t hashcode = 0;
5094
5095 if (TREE_CODE (value_type) == FUNCTION_TYPE)
5096 {
5097 error ("function return type cannot be function");
5098 value_type = integer_type_node;
5099 }
5100
5101 /* Make a node of the sort we want. */
5102 t = make_node (FUNCTION_TYPE);
5103 TREE_TYPE (t) = value_type;
5104 TYPE_ARG_TYPES (t) = arg_types;
5105
5106 /* If we already have such a type, use the old one. */
5107 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
5108 hashcode = type_hash_list (arg_types, hashcode);
5109 t = type_hash_canon (hashcode, t);
5110
5111 if (!COMPLETE_TYPE_P (t))
5112 layout_type (t);
5113 return t;
5114 }
5115
5116 /* Build a function type. The RETURN_TYPE is the type returned by the
5117 function. If additional arguments are provided, they are
5118 additional argument types. The list of argument types must always
5119 be terminated by NULL_TREE. */
5120
5121 tree
5122 build_function_type_list (tree return_type, ...)
5123 {
5124 tree t, args, last;
5125 va_list p;
5126
5127 va_start (p, return_type);
5128
5129 t = va_arg (p, tree);
5130 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
5131 args = tree_cons (NULL_TREE, t, args);
5132
5133 if (args == NULL_TREE)
5134 args = void_list_node;
5135 else
5136 {
5137 last = args;
5138 args = nreverse (args);
5139 TREE_CHAIN (last) = void_list_node;
5140 }
5141 args = build_function_type (return_type, args);
5142
5143 va_end (p);
5144 return args;
5145 }
5146
5147 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
5148 and ARGTYPES (a TREE_LIST) are the return type and arguments types
5149 for the method. An implicit additional parameter (of type
5150 pointer-to-BASETYPE) is added to the ARGTYPES. */
5151
5152 tree
5153 build_method_type_directly (tree basetype,
5154 tree rettype,
5155 tree argtypes)
5156 {
5157 tree t;
5158 tree ptype;
5159 int hashcode = 0;
5160
5161 /* Make a node of the sort we want. */
5162 t = make_node (METHOD_TYPE);
5163
5164 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5165 TREE_TYPE (t) = rettype;
5166 ptype = build_pointer_type (basetype);
5167
5168 /* The actual arglist for this function includes a "hidden" argument
5169 which is "this". Put it into the list of argument types. */
5170 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
5171 TYPE_ARG_TYPES (t) = argtypes;
5172
5173 /* If we already have such a type, use the old one. */
5174 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5175 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
5176 hashcode = type_hash_list (argtypes, hashcode);
5177 t = type_hash_canon (hashcode, t);
5178
5179 if (!COMPLETE_TYPE_P (t))
5180 layout_type (t);
5181
5182 return t;
5183 }
5184
5185 /* Construct, lay out and return the type of methods belonging to class
5186 BASETYPE and whose arguments and values are described by TYPE.
5187 If that type exists already, reuse it.
5188 TYPE must be a FUNCTION_TYPE node. */
5189
5190 tree
5191 build_method_type (tree basetype, tree type)
5192 {
5193 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
5194
5195 return build_method_type_directly (basetype,
5196 TREE_TYPE (type),
5197 TYPE_ARG_TYPES (type));
5198 }
5199
5200 /* Construct, lay out and return the type of offsets to a value
5201 of type TYPE, within an object of type BASETYPE.
5202 If a suitable offset type exists already, reuse it. */
5203
5204 tree
5205 build_offset_type (tree basetype, tree type)
5206 {
5207 tree t;
5208 hashval_t hashcode = 0;
5209
5210 /* Make a node of the sort we want. */
5211 t = make_node (OFFSET_TYPE);
5212
5213 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5214 TREE_TYPE (t) = type;
5215
5216 /* If we already have such a type, use the old one. */
5217 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5218 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
5219 t = type_hash_canon (hashcode, t);
5220
5221 if (!COMPLETE_TYPE_P (t))
5222 layout_type (t);
5223
5224 return t;
5225 }
5226
5227 /* Create a complex type whose components are COMPONENT_TYPE. */
5228
5229 tree
5230 build_complex_type (tree component_type)
5231 {
5232 tree t;
5233 hashval_t hashcode;
5234
5235 /* Make a node of the sort we want. */
5236 t = make_node (COMPLEX_TYPE);
5237
5238 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
5239
5240 /* If we already have such a type, use the old one. */
5241 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
5242 t = type_hash_canon (hashcode, t);
5243
5244 if (!COMPLETE_TYPE_P (t))
5245 layout_type (t);
5246
5247 /* If we are writing Dwarf2 output we need to create a name,
5248 since complex is a fundamental type. */
5249 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
5250 && ! TYPE_NAME (t))
5251 {
5252 const char *name;
5253 if (component_type == char_type_node)
5254 name = "complex char";
5255 else if (component_type == signed_char_type_node)
5256 name = "complex signed char";
5257 else if (component_type == unsigned_char_type_node)
5258 name = "complex unsigned char";
5259 else if (component_type == short_integer_type_node)
5260 name = "complex short int";
5261 else if (component_type == short_unsigned_type_node)
5262 name = "complex short unsigned int";
5263 else if (component_type == integer_type_node)
5264 name = "complex int";
5265 else if (component_type == unsigned_type_node)
5266 name = "complex unsigned int";
5267 else if (component_type == long_integer_type_node)
5268 name = "complex long int";
5269 else if (component_type == long_unsigned_type_node)
5270 name = "complex long unsigned int";
5271 else if (component_type == long_long_integer_type_node)
5272 name = "complex long long int";
5273 else if (component_type == long_long_unsigned_type_node)
5274 name = "complex long long unsigned int";
5275 else
5276 name = 0;
5277
5278 if (name != 0)
5279 TYPE_NAME (t) = get_identifier (name);
5280 }
5281
5282 return build_qualified_type (t, TYPE_QUALS (component_type));
5283 }
5284 \f
5285 /* Return OP, stripped of any conversions to wider types as much as is safe.
5286 Converting the value back to OP's type makes a value equivalent to OP.
5287
5288 If FOR_TYPE is nonzero, we return a value which, if converted to
5289 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
5290
5291 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
5292 narrowest type that can hold the value, even if they don't exactly fit.
5293 Otherwise, bit-field references are changed to a narrower type
5294 only if they can be fetched directly from memory in that type.
5295
5296 OP must have integer, real or enumeral type. Pointers are not allowed!
5297
5298 There are some cases where the obvious value we could return
5299 would regenerate to OP if converted to OP's type,
5300 but would not extend like OP to wider types.
5301 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
5302 For example, if OP is (unsigned short)(signed char)-1,
5303 we avoid returning (signed char)-1 if FOR_TYPE is int,
5304 even though extending that to an unsigned short would regenerate OP,
5305 since the result of extending (signed char)-1 to (int)
5306 is different from (int) OP. */
5307
5308 tree
5309 get_unwidened (tree op, tree for_type)
5310 {
5311 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
5312 tree type = TREE_TYPE (op);
5313 unsigned final_prec
5314 = TYPE_PRECISION (for_type != 0 ? for_type : type);
5315 int uns
5316 = (for_type != 0 && for_type != type
5317 && final_prec > TYPE_PRECISION (type)
5318 && TYPE_UNSIGNED (type));
5319 tree win = op;
5320
5321 while (TREE_CODE (op) == NOP_EXPR
5322 || TREE_CODE (op) == CONVERT_EXPR)
5323 {
5324 int bitschange;
5325
5326 /* TYPE_PRECISION on vector types has different meaning
5327 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
5328 so avoid them here. */
5329 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
5330 break;
5331
5332 bitschange = TYPE_PRECISION (TREE_TYPE (op))
5333 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
5334
5335 /* Truncations are many-one so cannot be removed.
5336 Unless we are later going to truncate down even farther. */
5337 if (bitschange < 0
5338 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
5339 break;
5340
5341 /* See what's inside this conversion. If we decide to strip it,
5342 we will set WIN. */
5343 op = TREE_OPERAND (op, 0);
5344
5345 /* If we have not stripped any zero-extensions (uns is 0),
5346 we can strip any kind of extension.
5347 If we have previously stripped a zero-extension,
5348 only zero-extensions can safely be stripped.
5349 Any extension can be stripped if the bits it would produce
5350 are all going to be discarded later by truncating to FOR_TYPE. */
5351
5352 if (bitschange > 0)
5353 {
5354 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
5355 win = op;
5356 /* TYPE_UNSIGNED says whether this is a zero-extension.
5357 Let's avoid computing it if it does not affect WIN
5358 and if UNS will not be needed again. */
5359 if ((uns
5360 || TREE_CODE (op) == NOP_EXPR
5361 || TREE_CODE (op) == CONVERT_EXPR)
5362 && TYPE_UNSIGNED (TREE_TYPE (op)))
5363 {
5364 uns = 1;
5365 win = op;
5366 }
5367 }
5368 }
5369
5370 if (TREE_CODE (op) == COMPONENT_REF
5371 /* Since type_for_size always gives an integer type. */
5372 && TREE_CODE (type) != REAL_TYPE
5373 /* Don't crash if field not laid out yet. */
5374 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5375 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5376 {
5377 unsigned int innerprec
5378 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5379 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5380 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5381 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5382
5383 /* We can get this structure field in the narrowest type it fits in.
5384 If FOR_TYPE is 0, do this only for a field that matches the
5385 narrower type exactly and is aligned for it
5386 The resulting extension to its nominal type (a fullword type)
5387 must fit the same conditions as for other extensions. */
5388
5389 if (type != 0
5390 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
5391 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
5392 && (! uns || final_prec <= innerprec || unsignedp))
5393 {
5394 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
5395 TREE_OPERAND (op, 1), NULL_TREE);
5396 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
5397 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
5398 }
5399 }
5400
5401 return win;
5402 }
5403 \f
5404 /* Return OP or a simpler expression for a narrower value
5405 which can be sign-extended or zero-extended to give back OP.
5406 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
5407 or 0 if the value should be sign-extended. */
5408
5409 tree
5410 get_narrower (tree op, int *unsignedp_ptr)
5411 {
5412 int uns = 0;
5413 int first = 1;
5414 tree win = op;
5415 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
5416
5417 while (TREE_CODE (op) == NOP_EXPR)
5418 {
5419 int bitschange
5420 = (TYPE_PRECISION (TREE_TYPE (op))
5421 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
5422
5423 /* Truncations are many-one so cannot be removed. */
5424 if (bitschange < 0)
5425 break;
5426
5427 /* See what's inside this conversion. If we decide to strip it,
5428 we will set WIN. */
5429
5430 if (bitschange > 0)
5431 {
5432 op = TREE_OPERAND (op, 0);
5433 /* An extension: the outermost one can be stripped,
5434 but remember whether it is zero or sign extension. */
5435 if (first)
5436 uns = TYPE_UNSIGNED (TREE_TYPE (op));
5437 /* Otherwise, if a sign extension has been stripped,
5438 only sign extensions can now be stripped;
5439 if a zero extension has been stripped, only zero-extensions. */
5440 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
5441 break;
5442 first = 0;
5443 }
5444 else /* bitschange == 0 */
5445 {
5446 /* A change in nominal type can always be stripped, but we must
5447 preserve the unsignedness. */
5448 if (first)
5449 uns = TYPE_UNSIGNED (TREE_TYPE (op));
5450 first = 0;
5451 op = TREE_OPERAND (op, 0);
5452 /* Keep trying to narrow, but don't assign op to win if it
5453 would turn an integral type into something else. */
5454 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
5455 continue;
5456 }
5457
5458 win = op;
5459 }
5460
5461 if (TREE_CODE (op) == COMPONENT_REF
5462 /* Since type_for_size always gives an integer type. */
5463 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
5464 /* Ensure field is laid out already. */
5465 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5466 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5467 {
5468 unsigned HOST_WIDE_INT innerprec
5469 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5470 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5471 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5472 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5473
5474 /* We can get this structure field in a narrower type that fits it,
5475 but the resulting extension to its nominal type (a fullword type)
5476 must satisfy the same conditions as for other extensions.
5477
5478 Do this only for fields that are aligned (not bit-fields),
5479 because when bit-field insns will be used there is no
5480 advantage in doing this. */
5481
5482 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
5483 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
5484 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
5485 && type != 0)
5486 {
5487 if (first)
5488 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
5489 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
5490 TREE_OPERAND (op, 1), NULL_TREE);
5491 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
5492 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
5493 }
5494 }
5495 *unsignedp_ptr = uns;
5496 return win;
5497 }
5498 \f
5499 /* Nonzero if integer constant C has a value that is permissible
5500 for type TYPE (an INTEGER_TYPE). */
5501
5502 int
5503 int_fits_type_p (tree c, tree type)
5504 {
5505 tree type_low_bound = TYPE_MIN_VALUE (type);
5506 tree type_high_bound = TYPE_MAX_VALUE (type);
5507 bool ok_for_low_bound, ok_for_high_bound;
5508 tree tmp;
5509
5510 /* If at least one bound of the type is a constant integer, we can check
5511 ourselves and maybe make a decision. If no such decision is possible, but
5512 this type is a subtype, try checking against that. Otherwise, use
5513 force_fit_type, which checks against the precision.
5514
5515 Compute the status for each possibly constant bound, and return if we see
5516 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
5517 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
5518 for "constant known to fit". */
5519
5520 /* Check if C >= type_low_bound. */
5521 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
5522 {
5523 if (tree_int_cst_lt (c, type_low_bound))
5524 return 0;
5525 ok_for_low_bound = true;
5526 }
5527 else
5528 ok_for_low_bound = false;
5529
5530 /* Check if c <= type_high_bound. */
5531 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
5532 {
5533 if (tree_int_cst_lt (type_high_bound, c))
5534 return 0;
5535 ok_for_high_bound = true;
5536 }
5537 else
5538 ok_for_high_bound = false;
5539
5540 /* If the constant fits both bounds, the result is known. */
5541 if (ok_for_low_bound && ok_for_high_bound)
5542 return 1;
5543
5544 /* Perform some generic filtering which may allow making a decision
5545 even if the bounds are not constant. First, negative integers
5546 never fit in unsigned types, */
5547 if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
5548 return 0;
5549
5550 /* Second, narrower types always fit in wider ones. */
5551 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
5552 return 1;
5553
5554 /* Third, unsigned integers with top bit set never fit signed types. */
5555 if (! TYPE_UNSIGNED (type)
5556 && TYPE_UNSIGNED (TREE_TYPE (c))
5557 && tree_int_cst_msb (c))
5558 return 0;
5559
5560 /* If we haven't been able to decide at this point, there nothing more we
5561 can check ourselves here. Look at the base type if we have one and it
5562 has the same precision. */
5563 if (TREE_CODE (type) == INTEGER_TYPE
5564 && TREE_TYPE (type) != 0
5565 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
5566 return int_fits_type_p (c, TREE_TYPE (type));
5567
5568 /* Or to force_fit_type, if nothing else. */
5569 tmp = copy_node (c);
5570 TREE_TYPE (tmp) = type;
5571 tmp = force_fit_type (tmp, -1, false, false);
5572 return TREE_INT_CST_HIGH (tmp) == TREE_INT_CST_HIGH (c)
5573 && TREE_INT_CST_LOW (tmp) == TREE_INT_CST_LOW (c);
5574 }
5575
5576 /* Subprogram of following function. Called by walk_tree.
5577
5578 Return *TP if it is an automatic variable or parameter of the
5579 function passed in as DATA. */
5580
5581 static tree
5582 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
5583 {
5584 tree fn = (tree) data;
5585
5586 if (TYPE_P (*tp))
5587 *walk_subtrees = 0;
5588
5589 else if (DECL_P (*tp)
5590 && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
5591 return *tp;
5592
5593 return NULL_TREE;
5594 }
5595
5596 /* Returns true if T is, contains, or refers to a type with variable
5597 size. If FN is nonzero, only return true if a modifier of the type
5598 or position of FN is a variable or parameter inside FN.
5599
5600 This concept is more general than that of C99 'variably modified types':
5601 in C99, a struct type is never variably modified because a VLA may not
5602 appear as a structure member. However, in GNU C code like:
5603
5604 struct S { int i[f()]; };
5605
5606 is valid, and other languages may define similar constructs. */
5607
5608 bool
5609 variably_modified_type_p (tree type, tree fn)
5610 {
5611 tree t;
5612
5613 /* Test if T is either variable (if FN is zero) or an expression containing
5614 a variable in FN. */
5615 #define RETURN_TRUE_IF_VAR(T) \
5616 do { tree _t = (T); \
5617 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
5618 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
5619 return true; } while (0)
5620
5621 if (type == error_mark_node)
5622 return false;
5623
5624 /* If TYPE itself has variable size, it is variably modified.
5625
5626 We do not yet have a representation of the C99 '[*]' syntax.
5627 When a representation is chosen, this function should be modified
5628 to test for that case as well. */
5629 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
5630 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT(type));
5631
5632 switch (TREE_CODE (type))
5633 {
5634 case POINTER_TYPE:
5635 case REFERENCE_TYPE:
5636 case ARRAY_TYPE:
5637 case VECTOR_TYPE:
5638 if (variably_modified_type_p (TREE_TYPE (type), fn))
5639 return true;
5640 break;
5641
5642 case FUNCTION_TYPE:
5643 case METHOD_TYPE:
5644 /* If TYPE is a function type, it is variably modified if any of the
5645 parameters or the return type are variably modified. */
5646 if (variably_modified_type_p (TREE_TYPE (type), fn))
5647 return true;
5648
5649 for (t = TYPE_ARG_TYPES (type);
5650 t && t != void_list_node;
5651 t = TREE_CHAIN (t))
5652 if (variably_modified_type_p (TREE_VALUE (t), fn))
5653 return true;
5654 break;
5655
5656 case INTEGER_TYPE:
5657 case REAL_TYPE:
5658 case ENUMERAL_TYPE:
5659 case BOOLEAN_TYPE:
5660 case CHAR_TYPE:
5661 /* Scalar types are variably modified if their end points
5662 aren't constant. */
5663 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
5664 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
5665 break;
5666
5667 case RECORD_TYPE:
5668 case UNION_TYPE:
5669 case QUAL_UNION_TYPE:
5670 /* We can't see if any of the field are variably-modified by the
5671 definition we normally use, since that would produce infinite
5672 recursion via pointers. */
5673 /* This is variably modified if some field's type is. */
5674 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
5675 if (TREE_CODE (t) == FIELD_DECL)
5676 {
5677 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
5678 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
5679 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
5680
5681 if (TREE_CODE (type) == QUAL_UNION_TYPE)
5682 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
5683 }
5684 break;
5685
5686 default:
5687 break;
5688 }
5689
5690 /* The current language may have other cases to check, but in general,
5691 all other types are not variably modified. */
5692 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
5693
5694 #undef RETURN_TRUE_IF_VAR
5695 }
5696
5697 /* Given a DECL or TYPE, return the scope in which it was declared, or
5698 NULL_TREE if there is no containing scope. */
5699
5700 tree
5701 get_containing_scope (tree t)
5702 {
5703 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
5704 }
5705
5706 /* Return the innermost context enclosing DECL that is
5707 a FUNCTION_DECL, or zero if none. */
5708
5709 tree
5710 decl_function_context (tree decl)
5711 {
5712 tree context;
5713
5714 if (TREE_CODE (decl) == ERROR_MARK)
5715 return 0;
5716
5717 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
5718 where we look up the function at runtime. Such functions always take
5719 a first argument of type 'pointer to real context'.
5720
5721 C++ should really be fixed to use DECL_CONTEXT for the real context,
5722 and use something else for the "virtual context". */
5723 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
5724 context
5725 = TYPE_MAIN_VARIANT
5726 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
5727 else
5728 context = DECL_CONTEXT (decl);
5729
5730 while (context && TREE_CODE (context) != FUNCTION_DECL)
5731 {
5732 if (TREE_CODE (context) == BLOCK)
5733 context = BLOCK_SUPERCONTEXT (context);
5734 else
5735 context = get_containing_scope (context);
5736 }
5737
5738 return context;
5739 }
5740
5741 /* Return the innermost context enclosing DECL that is
5742 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
5743 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
5744
5745 tree
5746 decl_type_context (tree decl)
5747 {
5748 tree context = DECL_CONTEXT (decl);
5749
5750 while (context)
5751 switch (TREE_CODE (context))
5752 {
5753 case NAMESPACE_DECL:
5754 case TRANSLATION_UNIT_DECL:
5755 return NULL_TREE;
5756
5757 case RECORD_TYPE:
5758 case UNION_TYPE:
5759 case QUAL_UNION_TYPE:
5760 return context;
5761
5762 case TYPE_DECL:
5763 case FUNCTION_DECL:
5764 context = DECL_CONTEXT (context);
5765 break;
5766
5767 case BLOCK:
5768 context = BLOCK_SUPERCONTEXT (context);
5769 break;
5770
5771 default:
5772 gcc_unreachable ();
5773 }
5774
5775 return NULL_TREE;
5776 }
5777
5778 /* CALL is a CALL_EXPR. Return the declaration for the function
5779 called, or NULL_TREE if the called function cannot be
5780 determined. */
5781
5782 tree
5783 get_callee_fndecl (tree call)
5784 {
5785 tree addr;
5786
5787 /* It's invalid to call this function with anything but a
5788 CALL_EXPR. */
5789 gcc_assert (TREE_CODE (call) == CALL_EXPR);
5790
5791 /* The first operand to the CALL is the address of the function
5792 called. */
5793 addr = TREE_OPERAND (call, 0);
5794
5795 STRIP_NOPS (addr);
5796
5797 /* If this is a readonly function pointer, extract its initial value. */
5798 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
5799 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
5800 && DECL_INITIAL (addr))
5801 addr = DECL_INITIAL (addr);
5802
5803 /* If the address is just `&f' for some function `f', then we know
5804 that `f' is being called. */
5805 if (TREE_CODE (addr) == ADDR_EXPR
5806 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
5807 return TREE_OPERAND (addr, 0);
5808
5809 /* We couldn't figure out what was being called. Maybe the front
5810 end has some idea. */
5811 return lang_hooks.lang_get_callee_fndecl (call);
5812 }
5813
5814 /* Print debugging information about tree nodes generated during the compile,
5815 and any language-specific information. */
5816
5817 void
5818 dump_tree_statistics (void)
5819 {
5820 #ifdef GATHER_STATISTICS
5821 int i;
5822 int total_nodes, total_bytes;
5823 #endif
5824
5825 fprintf (stderr, "\n??? tree nodes created\n\n");
5826 #ifdef GATHER_STATISTICS
5827 fprintf (stderr, "Kind Nodes Bytes\n");
5828 fprintf (stderr, "---------------------------------------\n");
5829 total_nodes = total_bytes = 0;
5830 for (i = 0; i < (int) all_kinds; i++)
5831 {
5832 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
5833 tree_node_counts[i], tree_node_sizes[i]);
5834 total_nodes += tree_node_counts[i];
5835 total_bytes += tree_node_sizes[i];
5836 }
5837 fprintf (stderr, "---------------------------------------\n");
5838 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
5839 fprintf (stderr, "---------------------------------------\n");
5840 ssanames_print_statistics ();
5841 phinodes_print_statistics ();
5842 #else
5843 fprintf (stderr, "(No per-node statistics)\n");
5844 #endif
5845 print_type_hash_statistics ();
5846 print_debug_expr_statistics ();
5847 print_value_expr_statistics ();
5848 print_restrict_base_statistics ();
5849 lang_hooks.print_statistics ();
5850 }
5851 \f
5852 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
5853
5854 /* Generate a crc32 of a string. */
5855
5856 unsigned
5857 crc32_string (unsigned chksum, const char *string)
5858 {
5859 do
5860 {
5861 unsigned value = *string << 24;
5862 unsigned ix;
5863
5864 for (ix = 8; ix--; value <<= 1)
5865 {
5866 unsigned feedback;
5867
5868 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
5869 chksum <<= 1;
5870 chksum ^= feedback;
5871 }
5872 }
5873 while (*string++);
5874 return chksum;
5875 }
5876
5877 /* P is a string that will be used in a symbol. Mask out any characters
5878 that are not valid in that context. */
5879
5880 void
5881 clean_symbol_name (char *p)
5882 {
5883 for (; *p; p++)
5884 if (! (ISALNUM (*p)
5885 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
5886 || *p == '$'
5887 #endif
5888 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
5889 || *p == '.'
5890 #endif
5891 ))
5892 *p = '_';
5893 }
5894
5895 /* Generate a name for a function unique to this translation unit.
5896 TYPE is some string to identify the purpose of this function to the
5897 linker or collect2. */
5898
5899 tree
5900 get_file_function_name_long (const char *type)
5901 {
5902 char *buf;
5903 const char *p;
5904 char *q;
5905
5906 if (first_global_object_name)
5907 p = first_global_object_name;
5908 else
5909 {
5910 /* We don't have anything that we know to be unique to this translation
5911 unit, so use what we do have and throw in some randomness. */
5912 unsigned len;
5913 const char *name = weak_global_object_name;
5914 const char *file = main_input_filename;
5915
5916 if (! name)
5917 name = "";
5918 if (! file)
5919 file = input_filename;
5920
5921 len = strlen (file);
5922 q = alloca (9 * 2 + len + 1);
5923 memcpy (q, file, len + 1);
5924 clean_symbol_name (q);
5925
5926 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
5927 crc32_string (0, flag_random_seed));
5928
5929 p = q;
5930 }
5931
5932 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
5933
5934 /* Set up the name of the file-level functions we may need.
5935 Use a global object (which is already required to be unique over
5936 the program) rather than the file name (which imposes extra
5937 constraints). */
5938 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
5939
5940 return get_identifier (buf);
5941 }
5942
5943 /* If KIND=='I', return a suitable global initializer (constructor) name.
5944 If KIND=='D', return a suitable global clean-up (destructor) name. */
5945
5946 tree
5947 get_file_function_name (int kind)
5948 {
5949 char p[2];
5950
5951 p[0] = kind;
5952 p[1] = 0;
5953
5954 return get_file_function_name_long (p);
5955 }
5956 \f
5957 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
5958
5959 /* Complain that the tree code of NODE does not match the expected 0
5960 terminated list of trailing codes. The trailing code list can be
5961 empty, for a more vague error message. FILE, LINE, and FUNCTION
5962 are of the caller. */
5963
5964 void
5965 tree_check_failed (const tree node, const char *file,
5966 int line, const char *function, ...)
5967 {
5968 va_list args;
5969 char *buffer;
5970 unsigned length = 0;
5971 int code;
5972
5973 va_start (args, function);
5974 while ((code = va_arg (args, int)))
5975 length += 4 + strlen (tree_code_name[code]);
5976 va_end (args);
5977 if (length)
5978 {
5979 va_start (args, function);
5980 length += strlen ("expected ");
5981 buffer = alloca (length);
5982 length = 0;
5983 while ((code = va_arg (args, int)))
5984 {
5985 const char *prefix = length ? " or " : "expected ";
5986
5987 strcpy (buffer + length, prefix);
5988 length += strlen (prefix);
5989 strcpy (buffer + length, tree_code_name[code]);
5990 length += strlen (tree_code_name[code]);
5991 }
5992 va_end (args);
5993 }
5994 else
5995 buffer = (char *)"unexpected node";
5996
5997 internal_error ("tree check: %s, have %s in %s, at %s:%d",
5998 buffer, tree_code_name[TREE_CODE (node)],
5999 function, trim_filename (file), line);
6000 }
6001
6002 /* Complain that the tree code of NODE does match the expected 0
6003 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
6004 the caller. */
6005
6006 void
6007 tree_not_check_failed (const tree node, const char *file,
6008 int line, const char *function, ...)
6009 {
6010 va_list args;
6011 char *buffer;
6012 unsigned length = 0;
6013 int code;
6014
6015 va_start (args, function);
6016 while ((code = va_arg (args, int)))
6017 length += 4 + strlen (tree_code_name[code]);
6018 va_end (args);
6019 va_start (args, function);
6020 buffer = alloca (length);
6021 length = 0;
6022 while ((code = va_arg (args, int)))
6023 {
6024 if (length)
6025 {
6026 strcpy (buffer + length, " or ");
6027 length += 4;
6028 }
6029 strcpy (buffer + length, tree_code_name[code]);
6030 length += strlen (tree_code_name[code]);
6031 }
6032 va_end (args);
6033
6034 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
6035 buffer, tree_code_name[TREE_CODE (node)],
6036 function, trim_filename (file), line);
6037 }
6038
6039 /* Similar to tree_check_failed, except that we check for a class of tree
6040 code, given in CL. */
6041
6042 void
6043 tree_class_check_failed (const tree node, const enum tree_code_class cl,
6044 const char *file, int line, const char *function)
6045 {
6046 internal_error
6047 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
6048 TREE_CODE_CLASS_STRING (cl),
6049 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6050 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6051 }
6052 #undef DEFTREESTRUCT
6053 #define DEFTREESTRUCT(VAL, NAME) NAME,
6054
6055 static const char *ts_enum_names[] = {
6056 #include "treestruct.def"
6057 };
6058 #undef DEFTREESTRUCT
6059
6060 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
6061
6062 /* Similar to tree_class_check_failed, except that we check for
6063 whether CODE contains the tree structure identified by EN. */
6064
6065 void
6066 tree_contains_struct_check_failed (const tree node,
6067 const enum tree_node_structure_enum en,
6068 const char *file, int line,
6069 const char *function)
6070 {
6071 internal_error
6072 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
6073 TS_ENUM_NAME(en),
6074 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6075 }
6076
6077
6078 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
6079 (dynamically sized) vector. */
6080
6081 void
6082 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
6083 const char *function)
6084 {
6085 internal_error
6086 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
6087 idx + 1, len, function, trim_filename (file), line);
6088 }
6089
6090 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
6091 (dynamically sized) vector. */
6092
6093 void
6094 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
6095 const char *function)
6096 {
6097 internal_error
6098 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
6099 idx + 1, len, function, trim_filename (file), line);
6100 }
6101
6102 /* Similar to above, except that the check is for the bounds of the operand
6103 vector of an expression node. */
6104
6105 void
6106 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
6107 int line, const char *function)
6108 {
6109 internal_error
6110 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
6111 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
6112 function, trim_filename (file), line);
6113 }
6114 #endif /* ENABLE_TREE_CHECKING */
6115 \f
6116 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
6117 and mapped to the machine mode MODE. Initialize its fields and build
6118 the information necessary for debugging output. */
6119
6120 static tree
6121 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
6122 {
6123 tree t = make_node (VECTOR_TYPE);
6124
6125 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
6126 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
6127 TYPE_MODE (t) = mode;
6128 TYPE_READONLY (t) = TYPE_READONLY (innertype);
6129 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
6130
6131 layout_type (t);
6132
6133 {
6134 tree index = build_int_cst (NULL_TREE, nunits - 1);
6135 tree array = build_array_type (innertype, build_index_type (index));
6136 tree rt = make_node (RECORD_TYPE);
6137
6138 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
6139 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
6140 layout_type (rt);
6141 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
6142 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
6143 the representation type, and we want to find that die when looking up
6144 the vector type. This is most easily achieved by making the TYPE_UID
6145 numbers equal. */
6146 TYPE_UID (rt) = TYPE_UID (t);
6147 }
6148
6149 /* Build our main variant, based on the main variant of the inner type. */
6150 if (TYPE_MAIN_VARIANT (innertype) != innertype)
6151 {
6152 tree innertype_main_variant = TYPE_MAIN_VARIANT (innertype);
6153 unsigned int hash = TYPE_HASH (innertype_main_variant);
6154 TYPE_MAIN_VARIANT (t)
6155 = type_hash_canon (hash, make_vector_type (innertype_main_variant,
6156 nunits, mode));
6157 }
6158
6159 return t;
6160 }
6161
6162 static tree
6163 make_or_reuse_type (unsigned size, int unsignedp)
6164 {
6165 if (size == INT_TYPE_SIZE)
6166 return unsignedp ? unsigned_type_node : integer_type_node;
6167 if (size == CHAR_TYPE_SIZE)
6168 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
6169 if (size == SHORT_TYPE_SIZE)
6170 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
6171 if (size == LONG_TYPE_SIZE)
6172 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
6173 if (size == LONG_LONG_TYPE_SIZE)
6174 return (unsignedp ? long_long_unsigned_type_node
6175 : long_long_integer_type_node);
6176
6177 if (unsignedp)
6178 return make_unsigned_type (size);
6179 else
6180 return make_signed_type (size);
6181 }
6182
6183 /* Create nodes for all integer types (and error_mark_node) using the sizes
6184 of C datatypes. The caller should call set_sizetype soon after calling
6185 this function to select one of the types as sizetype. */
6186
6187 void
6188 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
6189 {
6190 error_mark_node = make_node (ERROR_MARK);
6191 TREE_TYPE (error_mark_node) = error_mark_node;
6192
6193 initialize_sizetypes (signed_sizetype);
6194
6195 /* Define both `signed char' and `unsigned char'. */
6196 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
6197 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
6198
6199 /* Define `char', which is like either `signed char' or `unsigned char'
6200 but not the same as either. */
6201 char_type_node
6202 = (signed_char
6203 ? make_signed_type (CHAR_TYPE_SIZE)
6204 : make_unsigned_type (CHAR_TYPE_SIZE));
6205
6206 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
6207 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
6208 integer_type_node = make_signed_type (INT_TYPE_SIZE);
6209 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
6210 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
6211 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
6212 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
6213 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
6214
6215 /* Define a boolean type. This type only represents boolean values but
6216 may be larger than char depending on the value of BOOL_TYPE_SIZE.
6217 Front ends which want to override this size (i.e. Java) can redefine
6218 boolean_type_node before calling build_common_tree_nodes_2. */
6219 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
6220 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
6221 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
6222 TYPE_PRECISION (boolean_type_node) = 1;
6223
6224 /* Fill in the rest of the sized types. Reuse existing type nodes
6225 when possible. */
6226 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
6227 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
6228 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
6229 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
6230 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
6231
6232 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
6233 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
6234 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
6235 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
6236 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
6237
6238 access_public_node = get_identifier ("public");
6239 access_protected_node = get_identifier ("protected");
6240 access_private_node = get_identifier ("private");
6241 }
6242
6243 /* Call this function after calling build_common_tree_nodes and set_sizetype.
6244 It will create several other common tree nodes. */
6245
6246 void
6247 build_common_tree_nodes_2 (int short_double)
6248 {
6249 /* Define these next since types below may used them. */
6250 integer_zero_node = build_int_cst (NULL_TREE, 0);
6251 integer_one_node = build_int_cst (NULL_TREE, 1);
6252 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
6253
6254 size_zero_node = size_int (0);
6255 size_one_node = size_int (1);
6256 bitsize_zero_node = bitsize_int (0);
6257 bitsize_one_node = bitsize_int (1);
6258 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
6259
6260 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
6261 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
6262
6263 void_type_node = make_node (VOID_TYPE);
6264 layout_type (void_type_node);
6265
6266 /* We are not going to have real types in C with less than byte alignment,
6267 so we might as well not have any types that claim to have it. */
6268 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
6269 TYPE_USER_ALIGN (void_type_node) = 0;
6270
6271 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
6272 layout_type (TREE_TYPE (null_pointer_node));
6273
6274 ptr_type_node = build_pointer_type (void_type_node);
6275 const_ptr_type_node
6276 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
6277 fileptr_type_node = ptr_type_node;
6278
6279 float_type_node = make_node (REAL_TYPE);
6280 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
6281 layout_type (float_type_node);
6282
6283 double_type_node = make_node (REAL_TYPE);
6284 if (short_double)
6285 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
6286 else
6287 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
6288 layout_type (double_type_node);
6289
6290 long_double_type_node = make_node (REAL_TYPE);
6291 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
6292 layout_type (long_double_type_node);
6293
6294 float_ptr_type_node = build_pointer_type (float_type_node);
6295 double_ptr_type_node = build_pointer_type (double_type_node);
6296 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
6297 integer_ptr_type_node = build_pointer_type (integer_type_node);
6298
6299 complex_integer_type_node = make_node (COMPLEX_TYPE);
6300 TREE_TYPE (complex_integer_type_node) = integer_type_node;
6301 layout_type (complex_integer_type_node);
6302
6303 complex_float_type_node = make_node (COMPLEX_TYPE);
6304 TREE_TYPE (complex_float_type_node) = float_type_node;
6305 layout_type (complex_float_type_node);
6306
6307 complex_double_type_node = make_node (COMPLEX_TYPE);
6308 TREE_TYPE (complex_double_type_node) = double_type_node;
6309 layout_type (complex_double_type_node);
6310
6311 complex_long_double_type_node = make_node (COMPLEX_TYPE);
6312 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
6313 layout_type (complex_long_double_type_node);
6314
6315 {
6316 tree t = targetm.build_builtin_va_list ();
6317
6318 /* Many back-ends define record types without setting TYPE_NAME.
6319 If we copied the record type here, we'd keep the original
6320 record type without a name. This breaks name mangling. So,
6321 don't copy record types and let c_common_nodes_and_builtins()
6322 declare the type to be __builtin_va_list. */
6323 if (TREE_CODE (t) != RECORD_TYPE)
6324 t = build_variant_type_copy (t);
6325
6326 va_list_type_node = t;
6327 }
6328 }
6329
6330 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
6331
6332 static void
6333 local_define_builtin (const char *name, tree type, enum built_in_function code,
6334 const char *library_name, int ecf_flags)
6335 {
6336 tree decl;
6337
6338 decl = lang_hooks.builtin_function (name, type, code, BUILT_IN_NORMAL,
6339 library_name, NULL_TREE);
6340 if (ecf_flags & ECF_CONST)
6341 TREE_READONLY (decl) = 1;
6342 if (ecf_flags & ECF_PURE)
6343 DECL_IS_PURE (decl) = 1;
6344 if (ecf_flags & ECF_NORETURN)
6345 TREE_THIS_VOLATILE (decl) = 1;
6346 if (ecf_flags & ECF_NOTHROW)
6347 TREE_NOTHROW (decl) = 1;
6348 if (ecf_flags & ECF_MALLOC)
6349 DECL_IS_MALLOC (decl) = 1;
6350
6351 built_in_decls[code] = decl;
6352 implicit_built_in_decls[code] = decl;
6353 }
6354
6355 /* Call this function after instantiating all builtins that the language
6356 front end cares about. This will build the rest of the builtins that
6357 are relied upon by the tree optimizers and the middle-end. */
6358
6359 void
6360 build_common_builtin_nodes (void)
6361 {
6362 tree tmp, ftype;
6363
6364 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
6365 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
6366 {
6367 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6368 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6369 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6370 ftype = build_function_type (ptr_type_node, tmp);
6371
6372 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
6373 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
6374 "memcpy", ECF_NOTHROW);
6375 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
6376 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
6377 "memmove", ECF_NOTHROW);
6378 }
6379
6380 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
6381 {
6382 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6383 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6384 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6385 ftype = build_function_type (integer_type_node, tmp);
6386 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
6387 "memcmp", ECF_PURE | ECF_NOTHROW);
6388 }
6389
6390 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
6391 {
6392 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6393 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
6394 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6395 ftype = build_function_type (ptr_type_node, tmp);
6396 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
6397 "memset", ECF_NOTHROW);
6398 }
6399
6400 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
6401 {
6402 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6403 ftype = build_function_type (ptr_type_node, tmp);
6404 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
6405 "alloca", ECF_NOTHROW | ECF_MALLOC);
6406 }
6407
6408 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6409 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6410 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6411 ftype = build_function_type (void_type_node, tmp);
6412 local_define_builtin ("__builtin_init_trampoline", ftype,
6413 BUILT_IN_INIT_TRAMPOLINE,
6414 "__builtin_init_trampoline", ECF_NOTHROW);
6415
6416 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6417 ftype = build_function_type (ptr_type_node, tmp);
6418 local_define_builtin ("__builtin_adjust_trampoline", ftype,
6419 BUILT_IN_ADJUST_TRAMPOLINE,
6420 "__builtin_adjust_trampoline",
6421 ECF_CONST | ECF_NOTHROW);
6422
6423 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6424 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6425 ftype = build_function_type (void_type_node, tmp);
6426 local_define_builtin ("__builtin_nonlocal_goto", ftype,
6427 BUILT_IN_NONLOCAL_GOTO,
6428 "__builtin_nonlocal_goto",
6429 ECF_NORETURN | ECF_NOTHROW);
6430
6431 ftype = build_function_type (ptr_type_node, void_list_node);
6432 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
6433 "__builtin_stack_save", ECF_NOTHROW);
6434
6435 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6436 ftype = build_function_type (void_type_node, tmp);
6437 local_define_builtin ("__builtin_stack_restore", ftype,
6438 BUILT_IN_STACK_RESTORE,
6439 "__builtin_stack_restore", ECF_NOTHROW);
6440
6441 ftype = build_function_type (void_type_node, void_list_node);
6442 local_define_builtin ("__builtin_profile_func_enter", ftype,
6443 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
6444 local_define_builtin ("__builtin_profile_func_exit", ftype,
6445 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
6446
6447 /* Complex multiplication and division. These are handled as builtins
6448 rather than optabs because emit_library_call_value doesn't support
6449 complex. Further, we can do slightly better with folding these
6450 beasties if the real and complex parts of the arguments are separate. */
6451 {
6452 enum machine_mode mode;
6453
6454 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
6455 {
6456 char mode_name_buf[4], *q;
6457 const char *p;
6458 enum built_in_function mcode, dcode;
6459 tree type, inner_type;
6460
6461 type = lang_hooks.types.type_for_mode (mode, 0);
6462 if (type == NULL)
6463 continue;
6464 inner_type = TREE_TYPE (type);
6465
6466 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
6467 tmp = tree_cons (NULL_TREE, inner_type, tmp);
6468 tmp = tree_cons (NULL_TREE, inner_type, tmp);
6469 tmp = tree_cons (NULL_TREE, inner_type, tmp);
6470 ftype = build_function_type (type, tmp);
6471
6472 mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
6473 dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
6474
6475 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
6476 *q = TOLOWER (*p);
6477 *q = '\0';
6478
6479 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
6480 local_define_builtin (built_in_names[mcode], ftype, mcode,
6481 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
6482
6483 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
6484 local_define_builtin (built_in_names[dcode], ftype, dcode,
6485 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
6486 }
6487 }
6488 }
6489
6490 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
6491 better way.
6492
6493 If we requested a pointer to a vector, build up the pointers that
6494 we stripped off while looking for the inner type. Similarly for
6495 return values from functions.
6496
6497 The argument TYPE is the top of the chain, and BOTTOM is the
6498 new type which we will point to. */
6499
6500 tree
6501 reconstruct_complex_type (tree type, tree bottom)
6502 {
6503 tree inner, outer;
6504
6505 if (POINTER_TYPE_P (type))
6506 {
6507 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6508 outer = build_pointer_type (inner);
6509 }
6510 else if (TREE_CODE (type) == ARRAY_TYPE)
6511 {
6512 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6513 outer = build_array_type (inner, TYPE_DOMAIN (type));
6514 }
6515 else if (TREE_CODE (type) == FUNCTION_TYPE)
6516 {
6517 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6518 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
6519 }
6520 else if (TREE_CODE (type) == METHOD_TYPE)
6521 {
6522 tree argtypes;
6523 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6524 /* The build_method_type_directly() routine prepends 'this' to argument list,
6525 so we must compensate by getting rid of it. */
6526 argtypes = TYPE_ARG_TYPES (type);
6527 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
6528 inner,
6529 TYPE_ARG_TYPES (type));
6530 TYPE_ARG_TYPES (outer) = argtypes;
6531 }
6532 else
6533 return bottom;
6534
6535 TYPE_READONLY (outer) = TYPE_READONLY (type);
6536 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
6537
6538 return outer;
6539 }
6540
6541 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
6542 the inner type. */
6543 tree
6544 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
6545 {
6546 int nunits;
6547
6548 switch (GET_MODE_CLASS (mode))
6549 {
6550 case MODE_VECTOR_INT:
6551 case MODE_VECTOR_FLOAT:
6552 nunits = GET_MODE_NUNITS (mode);
6553 break;
6554
6555 case MODE_INT:
6556 /* Check that there are no leftover bits. */
6557 gcc_assert (GET_MODE_BITSIZE (mode)
6558 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
6559
6560 nunits = GET_MODE_BITSIZE (mode)
6561 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
6562 break;
6563
6564 default:
6565 gcc_unreachable ();
6566 }
6567
6568 return make_vector_type (innertype, nunits, mode);
6569 }
6570
6571 /* Similarly, but takes the inner type and number of units, which must be
6572 a power of two. */
6573
6574 tree
6575 build_vector_type (tree innertype, int nunits)
6576 {
6577 return make_vector_type (innertype, nunits, VOIDmode);
6578 }
6579
6580 /* Build RESX_EXPR with given REGION_NUMBER. */
6581 tree
6582 build_resx (int region_number)
6583 {
6584 tree t;
6585 t = build1 (RESX_EXPR, void_type_node,
6586 build_int_cst (NULL_TREE, region_number));
6587 return t;
6588 }
6589
6590 /* Given an initializer INIT, return TRUE if INIT is zero or some
6591 aggregate of zeros. Otherwise return FALSE. */
6592 bool
6593 initializer_zerop (tree init)
6594 {
6595 tree elt;
6596
6597 STRIP_NOPS (init);
6598
6599 switch (TREE_CODE (init))
6600 {
6601 case INTEGER_CST:
6602 return integer_zerop (init);
6603
6604 case REAL_CST:
6605 /* ??? Note that this is not correct for C4X float formats. There,
6606 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
6607 negative exponent. */
6608 return real_zerop (init)
6609 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
6610
6611 case COMPLEX_CST:
6612 return integer_zerop (init)
6613 || (real_zerop (init)
6614 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
6615 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
6616
6617 case VECTOR_CST:
6618 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
6619 if (!initializer_zerop (TREE_VALUE (elt)))
6620 return false;
6621 return true;
6622
6623 case CONSTRUCTOR:
6624 {
6625 unsigned HOST_WIDE_INT idx;
6626
6627 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
6628 if (!initializer_zerop (elt))
6629 return false;
6630 return true;
6631 }
6632
6633 default:
6634 return false;
6635 }
6636 }
6637
6638 void
6639 add_var_to_bind_expr (tree bind_expr, tree var)
6640 {
6641 BIND_EXPR_VARS (bind_expr)
6642 = chainon (BIND_EXPR_VARS (bind_expr), var);
6643 if (BIND_EXPR_BLOCK (bind_expr))
6644 BLOCK_VARS (BIND_EXPR_BLOCK (bind_expr))
6645 = BIND_EXPR_VARS (bind_expr);
6646 }
6647
6648 /* Build an empty statement. */
6649
6650 tree
6651 build_empty_stmt (void)
6652 {
6653 return build1 (NOP_EXPR, void_type_node, size_zero_node);
6654 }
6655
6656
6657 /* Returns true if it is possible to prove that the index of
6658 an array access REF (an ARRAY_REF expression) falls into the
6659 array bounds. */
6660
6661 bool
6662 in_array_bounds_p (tree ref)
6663 {
6664 tree idx = TREE_OPERAND (ref, 1);
6665 tree min, max;
6666
6667 if (TREE_CODE (idx) != INTEGER_CST)
6668 return false;
6669
6670 min = array_ref_low_bound (ref);
6671 max = array_ref_up_bound (ref);
6672 if (!min
6673 || !max
6674 || TREE_CODE (min) != INTEGER_CST
6675 || TREE_CODE (max) != INTEGER_CST)
6676 return false;
6677
6678 if (tree_int_cst_lt (idx, min)
6679 || tree_int_cst_lt (max, idx))
6680 return false;
6681
6682 return true;
6683 }
6684
6685 /* Return true if T (assumed to be a DECL) is a global variable. */
6686
6687 bool
6688 is_global_var (tree t)
6689 {
6690 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
6691 }
6692
6693 /* Return true if T (assumed to be a DECL) must be assigned a memory
6694 location. */
6695
6696 bool
6697 needs_to_live_in_memory (tree t)
6698 {
6699 return (TREE_ADDRESSABLE (t)
6700 || is_global_var (t)
6701 || (TREE_CODE (t) == RESULT_DECL
6702 && aggregate_value_p (t, current_function_decl)));
6703 }
6704
6705 /* There are situations in which a language considers record types
6706 compatible which have different field lists. Decide if two fields
6707 are compatible. It is assumed that the parent records are compatible. */
6708
6709 bool
6710 fields_compatible_p (tree f1, tree f2)
6711 {
6712 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
6713 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
6714 return false;
6715
6716 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
6717 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
6718 return false;
6719
6720 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
6721 return false;
6722
6723 return true;
6724 }
6725
6726 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
6727
6728 tree
6729 find_compatible_field (tree record, tree orig_field)
6730 {
6731 tree f;
6732
6733 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
6734 if (TREE_CODE (f) == FIELD_DECL
6735 && fields_compatible_p (f, orig_field))
6736 return f;
6737
6738 /* ??? Why isn't this on the main fields list? */
6739 f = TYPE_VFIELD (record);
6740 if (f && TREE_CODE (f) == FIELD_DECL
6741 && fields_compatible_p (f, orig_field))
6742 return f;
6743
6744 /* ??? We should abort here, but Java appears to do Bad Things
6745 with inherited fields. */
6746 return orig_field;
6747 }
6748
6749 /* Return value of a constant X. */
6750
6751 HOST_WIDE_INT
6752 int_cst_value (tree x)
6753 {
6754 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
6755 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
6756 bool negative = ((val >> (bits - 1)) & 1) != 0;
6757
6758 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
6759
6760 if (negative)
6761 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
6762 else
6763 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
6764
6765 return val;
6766 }
6767
6768 /* Returns the greatest common divisor of A and B, which must be
6769 INTEGER_CSTs. */
6770
6771 tree
6772 tree_fold_gcd (tree a, tree b)
6773 {
6774 tree a_mod_b;
6775 tree type = TREE_TYPE (a);
6776
6777 gcc_assert (TREE_CODE (a) == INTEGER_CST);
6778 gcc_assert (TREE_CODE (b) == INTEGER_CST);
6779
6780 if (integer_zerop (a))
6781 return b;
6782
6783 if (integer_zerop (b))
6784 return a;
6785
6786 if (tree_int_cst_sgn (a) == -1)
6787 a = fold_build2 (MULT_EXPR, type, a,
6788 convert (type, integer_minus_one_node));
6789
6790 if (tree_int_cst_sgn (b) == -1)
6791 b = fold_build2 (MULT_EXPR, type, b,
6792 convert (type, integer_minus_one_node));
6793
6794 while (1)
6795 {
6796 a_mod_b = fold_build2 (FLOOR_MOD_EXPR, type, a, b);
6797
6798 if (!TREE_INT_CST_LOW (a_mod_b)
6799 && !TREE_INT_CST_HIGH (a_mod_b))
6800 return b;
6801
6802 a = b;
6803 b = a_mod_b;
6804 }
6805 }
6806
6807 /* Returns unsigned variant of TYPE. */
6808
6809 tree
6810 unsigned_type_for (tree type)
6811 {
6812 return lang_hooks.types.unsigned_type (type);
6813 }
6814
6815 /* Returns signed variant of TYPE. */
6816
6817 tree
6818 signed_type_for (tree type)
6819 {
6820 return lang_hooks.types.signed_type (type);
6821 }
6822
6823 /* Returns the largest value obtainable by casting something in INNER type to
6824 OUTER type. */
6825
6826 tree
6827 upper_bound_in_type (tree outer, tree inner)
6828 {
6829 unsigned HOST_WIDE_INT lo, hi;
6830 unsigned int det = 0;
6831 unsigned oprec = TYPE_PRECISION (outer);
6832 unsigned iprec = TYPE_PRECISION (inner);
6833 unsigned prec;
6834
6835 /* Compute a unique number for every combination. */
6836 det |= (oprec > iprec) ? 4 : 0;
6837 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
6838 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
6839
6840 /* Determine the exponent to use. */
6841 switch (det)
6842 {
6843 case 0:
6844 case 1:
6845 /* oprec <= iprec, outer: signed, inner: don't care. */
6846 prec = oprec - 1;
6847 break;
6848 case 2:
6849 case 3:
6850 /* oprec <= iprec, outer: unsigned, inner: don't care. */
6851 prec = oprec;
6852 break;
6853 case 4:
6854 /* oprec > iprec, outer: signed, inner: signed. */
6855 prec = iprec - 1;
6856 break;
6857 case 5:
6858 /* oprec > iprec, outer: signed, inner: unsigned. */
6859 prec = iprec;
6860 break;
6861 case 6:
6862 /* oprec > iprec, outer: unsigned, inner: signed. */
6863 prec = oprec;
6864 break;
6865 case 7:
6866 /* oprec > iprec, outer: unsigned, inner: unsigned. */
6867 prec = iprec;
6868 break;
6869 default:
6870 gcc_unreachable ();
6871 }
6872
6873 /* Compute 2^^prec - 1. */
6874 if (prec <= HOST_BITS_PER_WIDE_INT)
6875 {
6876 hi = 0;
6877 lo = ((~(unsigned HOST_WIDE_INT) 0)
6878 >> (HOST_BITS_PER_WIDE_INT - prec));
6879 }
6880 else
6881 {
6882 hi = ((~(unsigned HOST_WIDE_INT) 0)
6883 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
6884 lo = ~(unsigned HOST_WIDE_INT) 0;
6885 }
6886
6887 return build_int_cst_wide (outer, lo, hi);
6888 }
6889
6890 /* Returns the smallest value obtainable by casting something in INNER type to
6891 OUTER type. */
6892
6893 tree
6894 lower_bound_in_type (tree outer, tree inner)
6895 {
6896 unsigned HOST_WIDE_INT lo, hi;
6897 unsigned oprec = TYPE_PRECISION (outer);
6898 unsigned iprec = TYPE_PRECISION (inner);
6899
6900 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
6901 and obtain 0. */
6902 if (TYPE_UNSIGNED (outer)
6903 /* If we are widening something of an unsigned type, OUTER type
6904 contains all values of INNER type. In particular, both INNER
6905 and OUTER types have zero in common. */
6906 || (oprec > iprec && TYPE_UNSIGNED (inner)))
6907 lo = hi = 0;
6908 else
6909 {
6910 /* If we are widening a signed type to another signed type, we
6911 want to obtain -2^^(iprec-1). If we are keeping the
6912 precision or narrowing to a signed type, we want to obtain
6913 -2^(oprec-1). */
6914 unsigned prec = oprec > iprec ? iprec : oprec;
6915
6916 if (prec <= HOST_BITS_PER_WIDE_INT)
6917 {
6918 hi = ~(unsigned HOST_WIDE_INT) 0;
6919 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
6920 }
6921 else
6922 {
6923 hi = ((~(unsigned HOST_WIDE_INT) 0)
6924 << (prec - HOST_BITS_PER_WIDE_INT - 1));
6925 lo = 0;
6926 }
6927 }
6928
6929 return build_int_cst_wide (outer, lo, hi);
6930 }
6931
6932 /* Return nonzero if two operands that are suitable for PHI nodes are
6933 necessarily equal. Specifically, both ARG0 and ARG1 must be either
6934 SSA_NAME or invariant. Note that this is strictly an optimization.
6935 That is, callers of this function can directly call operand_equal_p
6936 and get the same result, only slower. */
6937
6938 int
6939 operand_equal_for_phi_arg_p (tree arg0, tree arg1)
6940 {
6941 if (arg0 == arg1)
6942 return 1;
6943 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
6944 return 0;
6945 return operand_equal_p (arg0, arg1, 0);
6946 }
6947
6948 /* Returns number of zeros at the end of binary representation of X.
6949
6950 ??? Use ffs if available? */
6951
6952 tree
6953 num_ending_zeros (tree x)
6954 {
6955 unsigned HOST_WIDE_INT fr, nfr;
6956 unsigned num, abits;
6957 tree type = TREE_TYPE (x);
6958
6959 if (TREE_INT_CST_LOW (x) == 0)
6960 {
6961 num = HOST_BITS_PER_WIDE_INT;
6962 fr = TREE_INT_CST_HIGH (x);
6963 }
6964 else
6965 {
6966 num = 0;
6967 fr = TREE_INT_CST_LOW (x);
6968 }
6969
6970 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
6971 {
6972 nfr = fr >> abits;
6973 if (nfr << abits == fr)
6974 {
6975 num += abits;
6976 fr = nfr;
6977 }
6978 }
6979
6980 if (num > TYPE_PRECISION (type))
6981 num = TYPE_PRECISION (type);
6982
6983 return build_int_cst_type (type, num);
6984 }
6985
6986
6987 #define WALK_SUBTREE(NODE) \
6988 do \
6989 { \
6990 result = walk_tree (&(NODE), func, data, pset); \
6991 if (result) \
6992 return result; \
6993 } \
6994 while (0)
6995
6996 /* This is a subroutine of walk_tree that walks field of TYPE that are to
6997 be walked whenever a type is seen in the tree. Rest of operands and return
6998 value are as for walk_tree. */
6999
7000 static tree
7001 walk_type_fields (tree type, walk_tree_fn func, void *data,
7002 struct pointer_set_t *pset)
7003 {
7004 tree result = NULL_TREE;
7005
7006 switch (TREE_CODE (type))
7007 {
7008 case POINTER_TYPE:
7009 case REFERENCE_TYPE:
7010 /* We have to worry about mutually recursive pointers. These can't
7011 be written in C. They can in Ada. It's pathological, but
7012 there's an ACATS test (c38102a) that checks it. Deal with this
7013 by checking if we're pointing to another pointer, that one
7014 points to another pointer, that one does too, and we have no htab.
7015 If so, get a hash table. We check three levels deep to avoid
7016 the cost of the hash table if we don't need one. */
7017 if (POINTER_TYPE_P (TREE_TYPE (type))
7018 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
7019 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
7020 && !pset)
7021 {
7022 result = walk_tree_without_duplicates (&TREE_TYPE (type),
7023 func, data);
7024 if (result)
7025 return result;
7026
7027 break;
7028 }
7029
7030 /* ... fall through ... */
7031
7032 case COMPLEX_TYPE:
7033 WALK_SUBTREE (TREE_TYPE (type));
7034 break;
7035
7036 case METHOD_TYPE:
7037 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
7038
7039 /* Fall through. */
7040
7041 case FUNCTION_TYPE:
7042 WALK_SUBTREE (TREE_TYPE (type));
7043 {
7044 tree arg;
7045
7046 /* We never want to walk into default arguments. */
7047 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
7048 WALK_SUBTREE (TREE_VALUE (arg));
7049 }
7050 break;
7051
7052 case ARRAY_TYPE:
7053 /* Don't follow this nodes's type if a pointer for fear that we'll
7054 have infinite recursion. Those types are uninteresting anyway. */
7055 if (!POINTER_TYPE_P (TREE_TYPE (type))
7056 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE)
7057 WALK_SUBTREE (TREE_TYPE (type));
7058 WALK_SUBTREE (TYPE_DOMAIN (type));
7059 break;
7060
7061 case BOOLEAN_TYPE:
7062 case ENUMERAL_TYPE:
7063 case INTEGER_TYPE:
7064 case CHAR_TYPE:
7065 case REAL_TYPE:
7066 WALK_SUBTREE (TYPE_MIN_VALUE (type));
7067 WALK_SUBTREE (TYPE_MAX_VALUE (type));
7068 break;
7069
7070 case OFFSET_TYPE:
7071 WALK_SUBTREE (TREE_TYPE (type));
7072 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
7073 break;
7074
7075 default:
7076 break;
7077 }
7078
7079 return NULL_TREE;
7080 }
7081
7082 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
7083 called with the DATA and the address of each sub-tree. If FUNC returns a
7084 non-NULL value, the traversal is stopped, and the value returned by FUNC
7085 is returned. If PSET is non-NULL it is used to record the nodes visited,
7086 and to avoid visiting a node more than once. */
7087
7088 tree
7089 walk_tree (tree *tp, walk_tree_fn func, void *data, struct pointer_set_t *pset)
7090 {
7091 enum tree_code code;
7092 int walk_subtrees;
7093 tree result;
7094
7095 #define WALK_SUBTREE_TAIL(NODE) \
7096 do \
7097 { \
7098 tp = & (NODE); \
7099 goto tail_recurse; \
7100 } \
7101 while (0)
7102
7103 tail_recurse:
7104 /* Skip empty subtrees. */
7105 if (!*tp)
7106 return NULL_TREE;
7107
7108 /* Don't walk the same tree twice, if the user has requested
7109 that we avoid doing so. */
7110 if (pset && pointer_set_insert (pset, *tp))
7111 return NULL_TREE;
7112
7113 /* Call the function. */
7114 walk_subtrees = 1;
7115 result = (*func) (tp, &walk_subtrees, data);
7116
7117 /* If we found something, return it. */
7118 if (result)
7119 return result;
7120
7121 code = TREE_CODE (*tp);
7122
7123 /* Even if we didn't, FUNC may have decided that there was nothing
7124 interesting below this point in the tree. */
7125 if (!walk_subtrees)
7126 {
7127 if (code == TREE_LIST)
7128 /* But we still need to check our siblings. */
7129 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7130 else
7131 return NULL_TREE;
7132 }
7133
7134 result = lang_hooks.tree_inlining.walk_subtrees (tp, &walk_subtrees, func,
7135 data, pset);
7136 if (result || ! walk_subtrees)
7137 return result;
7138
7139 /* If this is a DECL_EXPR, walk into various fields of the type that it's
7140 defining. We only want to walk into these fields of a type in this
7141 case. Note that decls get walked as part of the processing of a
7142 BIND_EXPR.
7143
7144 ??? Precisely which fields of types that we are supposed to walk in
7145 this case vs. the normal case aren't well defined. */
7146 if (code == DECL_EXPR
7147 && TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL
7148 && TREE_CODE (TREE_TYPE (DECL_EXPR_DECL (*tp))) != ERROR_MARK)
7149 {
7150 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
7151
7152 /* Call the function for the type. See if it returns anything or
7153 doesn't want us to continue. If we are to continue, walk both
7154 the normal fields and those for the declaration case. */
7155 result = (*func) (type_p, &walk_subtrees, data);
7156 if (result || !walk_subtrees)
7157 return NULL_TREE;
7158
7159 result = walk_type_fields (*type_p, func, data, pset);
7160 if (result)
7161 return result;
7162
7163 WALK_SUBTREE (TYPE_SIZE (*type_p));
7164 WALK_SUBTREE (TYPE_SIZE_UNIT (*type_p));
7165
7166 /* If this is a record type, also walk the fields. */
7167 if (TREE_CODE (*type_p) == RECORD_TYPE
7168 || TREE_CODE (*type_p) == UNION_TYPE
7169 || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
7170 {
7171 tree field;
7172
7173 for (field = TYPE_FIELDS (*type_p); field;
7174 field = TREE_CHAIN (field))
7175 {
7176 /* We'd like to look at the type of the field, but we can easily
7177 get infinite recursion. So assume it's pointed to elsewhere
7178 in the tree. Also, ignore things that aren't fields. */
7179 if (TREE_CODE (field) != FIELD_DECL)
7180 continue;
7181
7182 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
7183 WALK_SUBTREE (DECL_SIZE (field));
7184 WALK_SUBTREE (DECL_SIZE_UNIT (field));
7185 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
7186 WALK_SUBTREE (DECL_QUALIFIER (field));
7187 }
7188 }
7189 }
7190
7191 else if (code != SAVE_EXPR
7192 && code != BIND_EXPR
7193 && IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
7194 {
7195 int i, len;
7196
7197 /* Walk over all the sub-trees of this operand. */
7198 len = TREE_CODE_LENGTH (code);
7199 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
7200 But, we only want to walk once. */
7201 if (code == TARGET_EXPR
7202 && TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1))
7203 --len;
7204
7205 /* Go through the subtrees. We need to do this in forward order so
7206 that the scope of a FOR_EXPR is handled properly. */
7207 #ifdef DEBUG_WALK_TREE
7208 for (i = 0; i < len; ++i)
7209 WALK_SUBTREE (TREE_OPERAND (*tp, i));
7210 #else
7211 for (i = 0; i < len - 1; ++i)
7212 WALK_SUBTREE (TREE_OPERAND (*tp, i));
7213
7214 if (len)
7215 {
7216 /* The common case is that we may tail recurse here. */
7217 if (code != BIND_EXPR
7218 && !TREE_CHAIN (*tp))
7219 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
7220 else
7221 WALK_SUBTREE (TREE_OPERAND (*tp, len - 1));
7222 }
7223 #endif
7224 }
7225
7226 /* If this is a type, walk the needed fields in the type. */
7227 else if (TYPE_P (*tp))
7228 {
7229 result = walk_type_fields (*tp, func, data, pset);
7230 if (result)
7231 return result;
7232 }
7233 else
7234 {
7235 /* Not one of the easy cases. We must explicitly go through the
7236 children. */
7237 switch (code)
7238 {
7239 case ERROR_MARK:
7240 case IDENTIFIER_NODE:
7241 case INTEGER_CST:
7242 case REAL_CST:
7243 case VECTOR_CST:
7244 case STRING_CST:
7245 case BLOCK:
7246 case PLACEHOLDER_EXPR:
7247 case SSA_NAME:
7248 case FIELD_DECL:
7249 case RESULT_DECL:
7250 /* None of these have subtrees other than those already walked
7251 above. */
7252 break;
7253
7254 case TREE_LIST:
7255 WALK_SUBTREE (TREE_VALUE (*tp));
7256 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7257 break;
7258
7259 case TREE_VEC:
7260 {
7261 int len = TREE_VEC_LENGTH (*tp);
7262
7263 if (len == 0)
7264 break;
7265
7266 /* Walk all elements but the first. */
7267 while (--len)
7268 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
7269
7270 /* Now walk the first one as a tail call. */
7271 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
7272 }
7273
7274 case COMPLEX_CST:
7275 WALK_SUBTREE (TREE_REALPART (*tp));
7276 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
7277
7278 case CONSTRUCTOR:
7279 {
7280 unsigned HOST_WIDE_INT idx;
7281 constructor_elt *ce;
7282
7283 for (idx = 0;
7284 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
7285 idx++)
7286 WALK_SUBTREE (ce->value);
7287 }
7288 break;
7289
7290 case SAVE_EXPR:
7291 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
7292
7293 case BIND_EXPR:
7294 {
7295 tree decl;
7296 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
7297 {
7298 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
7299 into declarations that are just mentioned, rather than
7300 declared; they don't really belong to this part of the tree.
7301 And, we can see cycles: the initializer for a declaration
7302 can refer to the declaration itself. */
7303 WALK_SUBTREE (DECL_INITIAL (decl));
7304 WALK_SUBTREE (DECL_SIZE (decl));
7305 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
7306 }
7307 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
7308 }
7309
7310 case STATEMENT_LIST:
7311 {
7312 tree_stmt_iterator i;
7313 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
7314 WALK_SUBTREE (*tsi_stmt_ptr (i));
7315 }
7316 break;
7317
7318 default:
7319 /* ??? This could be a language-defined node. We really should make
7320 a hook for it, but right now just ignore it. */
7321 break;
7322 }
7323 }
7324
7325 /* We didn't find what we were looking for. */
7326 return NULL_TREE;
7327
7328 #undef WALK_SUBTREE_TAIL
7329 }
7330 #undef WALK_SUBTREE
7331
7332 /* Like walk_tree, but does not walk duplicate nodes more than once. */
7333
7334 tree
7335 walk_tree_without_duplicates (tree *tp, walk_tree_fn func, void *data)
7336 {
7337 tree result;
7338 struct pointer_set_t *pset;
7339
7340 pset = pointer_set_create ();
7341 result = walk_tree (tp, func, data, pset);
7342 pointer_set_destroy (pset);
7343 return result;
7344 }
7345
7346 #include "gt-tree.h"