d664866301d9f69243957b20d51698c9105ea76d
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
31
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "flags.h"
39 #include "tree.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
47 #include "target.h"
48 #include "langhooks.h"
49
50 #define obstack_chunk_alloc xmalloc
51 #define obstack_chunk_free free
52 /* obstack.[ch] explicitly declined to prototype this. */
53 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
54
55 static void unsave_expr_now_r PARAMS ((tree));
56
57 /* Objects allocated on this obstack last forever. */
58
59 struct obstack permanent_obstack;
60
61 /* Table indexed by tree code giving a string containing a character
62 classifying the tree code. Possibilities are
63 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
64
65 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
66
67 char tree_code_type[MAX_TREE_CODES] = {
68 #include "tree.def"
69 };
70 #undef DEFTREECODE
71
72 /* Table indexed by tree code giving number of expression
73 operands beyond the fixed part of the node structure.
74 Not used for types or decls. */
75
76 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
77
78 int tree_code_length[MAX_TREE_CODES] = {
79 #include "tree.def"
80 };
81 #undef DEFTREECODE
82
83 /* Names of tree components.
84 Used for printing out the tree and error messages. */
85 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
86
87 const char *tree_code_name[MAX_TREE_CODES] = {
88 #include "tree.def"
89 };
90 #undef DEFTREECODE
91
92 /* Statistics-gathering stuff. */
93 typedef enum
94 {
95 d_kind,
96 t_kind,
97 b_kind,
98 s_kind,
99 r_kind,
100 e_kind,
101 c_kind,
102 id_kind,
103 perm_list_kind,
104 temp_list_kind,
105 vec_kind,
106 x_kind,
107 lang_decl,
108 lang_type,
109 all_kinds
110 } tree_node_kind;
111
112 int tree_node_counts[(int) all_kinds];
113 int tree_node_sizes[(int) all_kinds];
114
115 static const char * const tree_node_kind_names[] = {
116 "decls",
117 "types",
118 "blocks",
119 "stmts",
120 "refs",
121 "exprs",
122 "constants",
123 "identifiers",
124 "perm_tree_lists",
125 "temp_tree_lists",
126 "vecs",
127 "random kinds",
128 "lang_decl kinds",
129 "lang_type kinds"
130 };
131
132 /* Unique id for next decl created. */
133 static int next_decl_uid;
134 /* Unique id for next type created. */
135 static int next_type_uid = 1;
136
137 /* Since we cannot rehash a type after it is in the table, we have to
138 keep the hash code. */
139
140 struct type_hash
141 {
142 unsigned long hash;
143 tree type;
144 };
145
146 /* Initial size of the hash table (rounded to next prime). */
147 #define TYPE_HASH_INITIAL_SIZE 1000
148
149 /* Now here is the hash table. When recording a type, it is added to
150 the slot whose index is the hash code. Note that the hash table is
151 used for several kinds of types (function types, array types and
152 array index range types, for now). While all these live in the
153 same table, they are completely independent, and the hash code is
154 computed differently for each of these. */
155
156 htab_t type_hash_table;
157
158 static void build_real_from_int_cst_1 PARAMS ((PTR));
159 static void set_type_quals PARAMS ((tree, int));
160 static void append_random_chars PARAMS ((char *));
161 static int type_hash_eq PARAMS ((const void*, const void*));
162 static unsigned int type_hash_hash PARAMS ((const void*));
163 static void print_type_hash_statistics PARAMS((void));
164 static void finish_vector_type PARAMS((tree));
165 static tree make_vector PARAMS ((enum machine_mode, tree, int));
166 static int type_hash_marked_p PARAMS ((const void *));
167 static void type_hash_mark PARAMS ((const void *));
168 static int mark_tree_hashtable_entry PARAMS((void **, void *));
169
170 /* If non-null, these are language-specific helper functions for
171 unsave_expr_now. If present, LANG_UNSAVE is called before its
172 argument (an UNSAVE_EXPR) is to be unsaved, and all other
173 processing in unsave_expr_now is aborted. LANG_UNSAVE_EXPR_NOW is
174 called from unsave_expr_1 for language-specific tree codes. */
175 void (*lang_unsave) PARAMS ((tree *));
176 void (*lang_unsave_expr_now) PARAMS ((tree));
177
178 /* If non-null, these are language-specific helper functions for
179 unsafe_for_reeval. Return negative to not handle some tree. */
180 int (*lang_unsafe_for_reeval) PARAMS ((tree));
181
182 /* Set the DECL_ASSEMBLER_NAME for a node. If it is the sort of thing
183 that the assembler should talk about, set DECL_ASSEMBLER_NAME to an
184 appropriate IDENTIFIER_NODE. Otherwise, set it to the
185 ERROR_MARK_NODE to ensure that the assembler does not talk about
186 it. */
187 void (*lang_set_decl_assembler_name) PARAMS ((tree));
188 \f
189 tree global_trees[TI_MAX];
190 tree integer_types[itk_none];
191 \f
192 /* Set the DECL_ASSEMBLER_NAME for DECL. */
193 void
194 set_decl_assembler_name (decl)
195 tree decl;
196 {
197 /* The language-independent code should never use the
198 DECL_ASSEMBLER_NAME for lots of DECLs. Only FUNCTION_DECLs and
199 VAR_DECLs for variables with static storage duration need a real
200 DECL_ASSEMBLER_NAME. */
201 if (TREE_CODE (decl) == FUNCTION_DECL
202 || (TREE_CODE (decl) == VAR_DECL
203 && (TREE_STATIC (decl)
204 || DECL_EXTERNAL (decl)
205 || TREE_PUBLIC (decl))))
206 /* By default, assume the name to use in assembly code is the
207 same as that used in the source language. (That's correct
208 for C, and GCC used to set DECL_ASSEMBLER_NAME to the same
209 value as DECL_NAME in build_decl, so this choice provides
210 backwards compatibility with existing front-ends. */
211 SET_DECL_ASSEMBLER_NAME (decl, DECL_NAME (decl));
212 else
213 /* Nobody should ever be asking for the DECL_ASSEMBLER_NAME of
214 these DECLs -- unless they're in language-dependent code, in
215 which case lang_set_decl_assembler_name should handle things. */
216 abort ();
217 }
218 \f
219 /* Init the principal obstacks. */
220
221 void
222 init_obstacks ()
223 {
224 gcc_obstack_init (&permanent_obstack);
225
226 /* Initialize the hash table of types. */
227 type_hash_table = htab_create (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
228 type_hash_eq, 0);
229 ggc_add_deletable_htab (type_hash_table, type_hash_marked_p,
230 type_hash_mark);
231 ggc_add_tree_root (global_trees, TI_MAX);
232 ggc_add_tree_root (integer_types, itk_none);
233
234 /* Set lang_set_decl_set_assembler_name to a default value. */
235 lang_set_decl_assembler_name = set_decl_assembler_name;
236 }
237
238 \f
239 /* Allocate SIZE bytes in the permanent obstack
240 and return a pointer to them. */
241
242 char *
243 permalloc (size)
244 int size;
245 {
246 return (char *) obstack_alloc (&permanent_obstack, size);
247 }
248
249 /* Allocate NELEM items of SIZE bytes in the permanent obstack
250 and return a pointer to them. The storage is cleared before
251 returning the value. */
252
253 char *
254 perm_calloc (nelem, size)
255 int nelem;
256 long size;
257 {
258 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
259 memset (rval, 0, nelem * size);
260 return rval;
261 }
262
263 /* Compute the number of bytes occupied by 'node'. This routine only
264 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
265 size_t
266 tree_size (node)
267 tree node;
268 {
269 enum tree_code code = TREE_CODE (node);
270
271 switch (TREE_CODE_CLASS (code))
272 {
273 case 'd': /* A decl node */
274 return sizeof (struct tree_decl);
275
276 case 't': /* a type node */
277 return sizeof (struct tree_type);
278
279 case 'b': /* a lexical block node */
280 return sizeof (struct tree_block);
281
282 case 'r': /* a reference */
283 case 'e': /* an expression */
284 case 's': /* an expression with side effects */
285 case '<': /* a comparison expression */
286 case '1': /* a unary arithmetic expression */
287 case '2': /* a binary arithmetic expression */
288 return (sizeof (struct tree_exp)
289 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
290
291 case 'c': /* a constant */
292 /* We can't use TREE_CODE_LENGTH for INTEGER_CST, since the number of
293 words is machine-dependent due to varying length of HOST_WIDE_INT,
294 which might be wider than a pointer (e.g., long long). Similarly
295 for REAL_CST, since the number of words is machine-dependent due
296 to varying size and alignment of `double'. */
297 if (code == INTEGER_CST)
298 return sizeof (struct tree_int_cst);
299 else if (code == REAL_CST)
300 return sizeof (struct tree_real_cst);
301 else
302 return (sizeof (struct tree_common)
303 + TREE_CODE_LENGTH (code) * sizeof (char *));
304
305 case 'x': /* something random, like an identifier. */
306 {
307 size_t length;
308 length = (sizeof (struct tree_common)
309 + TREE_CODE_LENGTH (code) * sizeof (char *));
310 if (code == TREE_VEC)
311 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
312 return length;
313 }
314
315 default:
316 abort ();
317 }
318 }
319
320 /* Return a newly allocated node of code CODE.
321 For decl and type nodes, some other fields are initialized.
322 The rest of the node is initialized to zero.
323
324 Achoo! I got a code in the node. */
325
326 tree
327 make_node (code)
328 enum tree_code code;
329 {
330 tree t;
331 int type = TREE_CODE_CLASS (code);
332 size_t length;
333 #ifdef GATHER_STATISTICS
334 tree_node_kind kind;
335 #endif
336 struct tree_common ttmp;
337
338 /* We can't allocate a TREE_VEC without knowing how many elements
339 it will have. */
340 if (code == TREE_VEC)
341 abort ();
342
343 TREE_SET_CODE ((tree)&ttmp, code);
344 length = tree_size ((tree)&ttmp);
345
346 #ifdef GATHER_STATISTICS
347 switch (type)
348 {
349 case 'd': /* A decl node */
350 kind = d_kind;
351 break;
352
353 case 't': /* a type node */
354 kind = t_kind;
355 break;
356
357 case 'b': /* a lexical block */
358 kind = b_kind;
359 break;
360
361 case 's': /* an expression with side effects */
362 kind = s_kind;
363 break;
364
365 case 'r': /* a reference */
366 kind = r_kind;
367 break;
368
369 case 'e': /* an expression */
370 case '<': /* a comparison expression */
371 case '1': /* a unary arithmetic expression */
372 case '2': /* a binary arithmetic expression */
373 kind = e_kind;
374 break;
375
376 case 'c': /* a constant */
377 kind = c_kind;
378 break;
379
380 case 'x': /* something random, like an identifier. */
381 if (code == IDENTIFIER_NODE)
382 kind = id_kind;
383 else if (code == TREE_VEC)
384 kind = vec_kind;
385 else
386 kind = x_kind;
387 break;
388
389 default:
390 abort ();
391 }
392
393 tree_node_counts[(int) kind]++;
394 tree_node_sizes[(int) kind] += length;
395 #endif
396
397 t = ggc_alloc_tree (length);
398
399 memset ((PTR) t, 0, length);
400
401 TREE_SET_CODE (t, code);
402
403 switch (type)
404 {
405 case 's':
406 TREE_SIDE_EFFECTS (t) = 1;
407 TREE_TYPE (t) = void_type_node;
408 break;
409
410 case 'd':
411 if (code != FUNCTION_DECL)
412 DECL_ALIGN (t) = 1;
413 DECL_USER_ALIGN (t) = 0;
414 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
415 DECL_SOURCE_LINE (t) = lineno;
416 DECL_SOURCE_FILE (t) =
417 (input_filename) ? input_filename : "<built-in>";
418 DECL_UID (t) = next_decl_uid++;
419
420 /* We have not yet computed the alias set for this declaration. */
421 DECL_POINTER_ALIAS_SET (t) = -1;
422 break;
423
424 case 't':
425 TYPE_UID (t) = next_type_uid++;
426 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
427 TYPE_USER_ALIGN (t) = 0;
428 TYPE_MAIN_VARIANT (t) = t;
429
430 /* Default to no attributes for type, but let target change that. */
431 TYPE_ATTRIBUTES (t) = NULL_TREE;
432 (*targetm.set_default_type_attributes) (t);
433
434 /* We have not yet computed the alias set for this type. */
435 TYPE_ALIAS_SET (t) = -1;
436 break;
437
438 case 'c':
439 TREE_CONSTANT (t) = 1;
440 break;
441
442 case 'e':
443 switch (code)
444 {
445 case INIT_EXPR:
446 case MODIFY_EXPR:
447 case VA_ARG_EXPR:
448 case RTL_EXPR:
449 case PREDECREMENT_EXPR:
450 case PREINCREMENT_EXPR:
451 case POSTDECREMENT_EXPR:
452 case POSTINCREMENT_EXPR:
453 /* All of these have side-effects, no matter what their
454 operands are. */
455 TREE_SIDE_EFFECTS (t) = 1;
456 break;
457
458 default:
459 break;
460 }
461 break;
462 }
463
464 return t;
465 }
466
467 /* A front-end can reset this to an appropriate function if types need
468 special handling. */
469
470 tree (*make_lang_type_fn) PARAMS ((enum tree_code)) = make_node;
471
472 /* Return a new type (with the indicated CODE), doing whatever
473 language-specific processing is required. */
474
475 tree
476 make_lang_type (code)
477 enum tree_code code;
478 {
479 return (*make_lang_type_fn) (code);
480 }
481 \f
482 /* Return a new node with the same contents as NODE except that its
483 TREE_CHAIN is zero and it has a fresh uid. */
484
485 tree
486 copy_node (node)
487 tree node;
488 {
489 tree t;
490 enum tree_code code = TREE_CODE (node);
491 size_t length;
492
493 length = tree_size (node);
494 t = ggc_alloc_tree (length);
495 memcpy (t, node, length);
496
497 TREE_CHAIN (t) = 0;
498 TREE_ASM_WRITTEN (t) = 0;
499
500 if (TREE_CODE_CLASS (code) == 'd')
501 DECL_UID (t) = next_decl_uid++;
502 else if (TREE_CODE_CLASS (code) == 't')
503 {
504 TYPE_UID (t) = next_type_uid++;
505 /* The following is so that the debug code for
506 the copy is different from the original type.
507 The two statements usually duplicate each other
508 (because they clear fields of the same union),
509 but the optimizer should catch that. */
510 TYPE_SYMTAB_POINTER (t) = 0;
511 TYPE_SYMTAB_ADDRESS (t) = 0;
512 }
513
514 return t;
515 }
516
517 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
518 For example, this can copy a list made of TREE_LIST nodes. */
519
520 tree
521 copy_list (list)
522 tree list;
523 {
524 tree head;
525 tree prev, next;
526
527 if (list == 0)
528 return 0;
529
530 head = prev = copy_node (list);
531 next = TREE_CHAIN (list);
532 while (next)
533 {
534 TREE_CHAIN (prev) = copy_node (next);
535 prev = TREE_CHAIN (prev);
536 next = TREE_CHAIN (next);
537 }
538 return head;
539 }
540
541 \f
542 /* Return a newly constructed INTEGER_CST node whose constant value
543 is specified by the two ints LOW and HI.
544 The TREE_TYPE is set to `int'.
545
546 This function should be used via the `build_int_2' macro. */
547
548 tree
549 build_int_2_wide (low, hi)
550 unsigned HOST_WIDE_INT low;
551 HOST_WIDE_INT hi;
552 {
553 tree t = make_node (INTEGER_CST);
554
555 TREE_INT_CST_LOW (t) = low;
556 TREE_INT_CST_HIGH (t) = hi;
557 TREE_TYPE (t) = integer_type_node;
558 return t;
559 }
560
561 /* Return a new REAL_CST node whose type is TYPE and value is D. */
562
563 tree
564 build_real (type, d)
565 tree type;
566 REAL_VALUE_TYPE d;
567 {
568 tree v;
569 int overflow = 0;
570
571 /* Check for valid float value for this type on this target machine;
572 if not, can print error message and store a valid value in D. */
573 #ifdef CHECK_FLOAT_VALUE
574 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
575 #endif
576
577 v = make_node (REAL_CST);
578 TREE_TYPE (v) = type;
579 TREE_REAL_CST (v) = d;
580 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
581 return v;
582 }
583
584 /* Return a new REAL_CST node whose type is TYPE
585 and whose value is the integer value of the INTEGER_CST node I. */
586
587 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
588
589 REAL_VALUE_TYPE
590 real_value_from_int_cst (type, i)
591 tree type ATTRIBUTE_UNUSED, i;
592 {
593 REAL_VALUE_TYPE d;
594
595 #ifdef REAL_ARITHMETIC
596 /* Clear all bits of the real value type so that we can later do
597 bitwise comparisons to see if two values are the same. */
598 memset ((char *) &d, 0, sizeof d);
599
600 if (! TREE_UNSIGNED (TREE_TYPE (i)))
601 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
602 TYPE_MODE (type));
603 else
604 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
605 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
606 #else /* not REAL_ARITHMETIC */
607 /* Some 386 compilers mishandle unsigned int to float conversions,
608 so introduce a temporary variable E to avoid those bugs. */
609 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
610 {
611 REAL_VALUE_TYPE e;
612
613 d = (double) (~TREE_INT_CST_HIGH (i));
614 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
615 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
616 d *= e;
617 e = (double) (~TREE_INT_CST_LOW (i));
618 d += e;
619 d = (- d - 1.0);
620 }
621 else
622 {
623 REAL_VALUE_TYPE e;
624
625 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
626 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
627 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
628 d *= e;
629 e = (double) TREE_INT_CST_LOW (i);
630 d += e;
631 }
632 #endif /* not REAL_ARITHMETIC */
633 return d;
634 }
635
636 /* Args to pass to and from build_real_from_int_cst_1. */
637
638 struct brfic_args
639 {
640 tree type; /* Input: type to conver to. */
641 tree i; /* Input: operand to convert. */
642 REAL_VALUE_TYPE d; /* Output: floating point value. */
643 };
644
645 /* Convert an integer to a floating point value while protected by a floating
646 point exception handler. */
647
648 static void
649 build_real_from_int_cst_1 (data)
650 PTR data;
651 {
652 struct brfic_args *args = (struct brfic_args *) data;
653
654 #ifdef REAL_ARITHMETIC
655 args->d = real_value_from_int_cst (args->type, args->i);
656 #else
657 args->d
658 = REAL_VALUE_TRUNCATE (TYPE_MODE (args->type),
659 real_value_from_int_cst (args->type, args->i));
660 #endif
661 }
662
663 /* Given a tree representing an integer constant I, return a tree
664 representing the same value as a floating-point constant of type TYPE.
665 We cannot perform this operation if there is no way of doing arithmetic
666 on floating-point values. */
667
668 tree
669 build_real_from_int_cst (type, i)
670 tree type;
671 tree i;
672 {
673 tree v;
674 int overflow = TREE_OVERFLOW (i);
675 REAL_VALUE_TYPE d;
676 struct brfic_args args;
677
678 v = make_node (REAL_CST);
679 TREE_TYPE (v) = type;
680
681 /* Setup input for build_real_from_int_cst_1() */
682 args.type = type;
683 args.i = i;
684
685 if (do_float_handler (build_real_from_int_cst_1, (PTR) &args))
686 /* Receive output from build_real_from_int_cst_1() */
687 d = args.d;
688 else
689 {
690 /* We got an exception from build_real_from_int_cst_1() */
691 d = dconst0;
692 overflow = 1;
693 }
694
695 /* Check for valid float value for this type on this target machine. */
696
697 #ifdef CHECK_FLOAT_VALUE
698 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
699 #endif
700
701 TREE_REAL_CST (v) = d;
702 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
703 return v;
704 }
705
706 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
707
708 /* Return a newly constructed STRING_CST node whose value is
709 the LEN characters at STR.
710 The TREE_TYPE is not initialized. */
711
712 tree
713 build_string (len, str)
714 int len;
715 const char *str;
716 {
717 tree s = make_node (STRING_CST);
718
719 TREE_STRING_LENGTH (s) = len;
720 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
721
722 return s;
723 }
724
725 /* Return a newly constructed COMPLEX_CST node whose value is
726 specified by the real and imaginary parts REAL and IMAG.
727 Both REAL and IMAG should be constant nodes. TYPE, if specified,
728 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
729
730 tree
731 build_complex (type, real, imag)
732 tree type;
733 tree real, imag;
734 {
735 tree t = make_node (COMPLEX_CST);
736
737 TREE_REALPART (t) = real;
738 TREE_IMAGPART (t) = imag;
739 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
740 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
741 TREE_CONSTANT_OVERFLOW (t)
742 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
743 return t;
744 }
745
746 /* Build a newly constructed TREE_VEC node of length LEN. */
747
748 tree
749 make_tree_vec (len)
750 int len;
751 {
752 tree t;
753 int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
754
755 #ifdef GATHER_STATISTICS
756 tree_node_counts[(int)vec_kind]++;
757 tree_node_sizes[(int)vec_kind] += length;
758 #endif
759
760 t = ggc_alloc_tree (length);
761
762 memset ((PTR) t, 0, length);
763 TREE_SET_CODE (t, TREE_VEC);
764 TREE_VEC_LENGTH (t) = len;
765
766 return t;
767 }
768 \f
769 /* Return 1 if EXPR is the integer constant zero or a complex constant
770 of zero. */
771
772 int
773 integer_zerop (expr)
774 tree expr;
775 {
776 STRIP_NOPS (expr);
777
778 return ((TREE_CODE (expr) == INTEGER_CST
779 && ! TREE_CONSTANT_OVERFLOW (expr)
780 && TREE_INT_CST_LOW (expr) == 0
781 && TREE_INT_CST_HIGH (expr) == 0)
782 || (TREE_CODE (expr) == COMPLEX_CST
783 && integer_zerop (TREE_REALPART (expr))
784 && integer_zerop (TREE_IMAGPART (expr))));
785 }
786
787 /* Return 1 if EXPR is the integer constant one or the corresponding
788 complex constant. */
789
790 int
791 integer_onep (expr)
792 tree expr;
793 {
794 STRIP_NOPS (expr);
795
796 return ((TREE_CODE (expr) == INTEGER_CST
797 && ! TREE_CONSTANT_OVERFLOW (expr)
798 && TREE_INT_CST_LOW (expr) == 1
799 && TREE_INT_CST_HIGH (expr) == 0)
800 || (TREE_CODE (expr) == COMPLEX_CST
801 && integer_onep (TREE_REALPART (expr))
802 && integer_zerop (TREE_IMAGPART (expr))));
803 }
804
805 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
806 it contains. Likewise for the corresponding complex constant. */
807
808 int
809 integer_all_onesp (expr)
810 tree expr;
811 {
812 int prec;
813 int uns;
814
815 STRIP_NOPS (expr);
816
817 if (TREE_CODE (expr) == COMPLEX_CST
818 && integer_all_onesp (TREE_REALPART (expr))
819 && integer_zerop (TREE_IMAGPART (expr)))
820 return 1;
821
822 else if (TREE_CODE (expr) != INTEGER_CST
823 || TREE_CONSTANT_OVERFLOW (expr))
824 return 0;
825
826 uns = TREE_UNSIGNED (TREE_TYPE (expr));
827 if (!uns)
828 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
829 && TREE_INT_CST_HIGH (expr) == -1);
830
831 /* Note that using TYPE_PRECISION here is wrong. We care about the
832 actual bits, not the (arbitrary) range of the type. */
833 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
834 if (prec >= HOST_BITS_PER_WIDE_INT)
835 {
836 HOST_WIDE_INT high_value;
837 int shift_amount;
838
839 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
840
841 if (shift_amount > HOST_BITS_PER_WIDE_INT)
842 /* Can not handle precisions greater than twice the host int size. */
843 abort ();
844 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
845 /* Shifting by the host word size is undefined according to the ANSI
846 standard, so we must handle this as a special case. */
847 high_value = -1;
848 else
849 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
850
851 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
852 && TREE_INT_CST_HIGH (expr) == high_value);
853 }
854 else
855 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
856 }
857
858 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
859 one bit on). */
860
861 int
862 integer_pow2p (expr)
863 tree expr;
864 {
865 int prec;
866 HOST_WIDE_INT high, low;
867
868 STRIP_NOPS (expr);
869
870 if (TREE_CODE (expr) == COMPLEX_CST
871 && integer_pow2p (TREE_REALPART (expr))
872 && integer_zerop (TREE_IMAGPART (expr)))
873 return 1;
874
875 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
876 return 0;
877
878 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
879 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
880 high = TREE_INT_CST_HIGH (expr);
881 low = TREE_INT_CST_LOW (expr);
882
883 /* First clear all bits that are beyond the type's precision in case
884 we've been sign extended. */
885
886 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
887 ;
888 else if (prec > HOST_BITS_PER_WIDE_INT)
889 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
890 else
891 {
892 high = 0;
893 if (prec < HOST_BITS_PER_WIDE_INT)
894 low &= ~((HOST_WIDE_INT) (-1) << prec);
895 }
896
897 if (high == 0 && low == 0)
898 return 0;
899
900 return ((high == 0 && (low & (low - 1)) == 0)
901 || (low == 0 && (high & (high - 1)) == 0));
902 }
903
904 /* Return the power of two represented by a tree node known to be a
905 power of two. */
906
907 int
908 tree_log2 (expr)
909 tree expr;
910 {
911 int prec;
912 HOST_WIDE_INT high, low;
913
914 STRIP_NOPS (expr);
915
916 if (TREE_CODE (expr) == COMPLEX_CST)
917 return tree_log2 (TREE_REALPART (expr));
918
919 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
920 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
921
922 high = TREE_INT_CST_HIGH (expr);
923 low = TREE_INT_CST_LOW (expr);
924
925 /* First clear all bits that are beyond the type's precision in case
926 we've been sign extended. */
927
928 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
929 ;
930 else if (prec > HOST_BITS_PER_WIDE_INT)
931 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
932 else
933 {
934 high = 0;
935 if (prec < HOST_BITS_PER_WIDE_INT)
936 low &= ~((HOST_WIDE_INT) (-1) << prec);
937 }
938
939 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
940 : exact_log2 (low));
941 }
942
943 /* Similar, but return the largest integer Y such that 2 ** Y is less
944 than or equal to EXPR. */
945
946 int
947 tree_floor_log2 (expr)
948 tree expr;
949 {
950 int prec;
951 HOST_WIDE_INT high, low;
952
953 STRIP_NOPS (expr);
954
955 if (TREE_CODE (expr) == COMPLEX_CST)
956 return tree_log2 (TREE_REALPART (expr));
957
958 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
959 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
960
961 high = TREE_INT_CST_HIGH (expr);
962 low = TREE_INT_CST_LOW (expr);
963
964 /* First clear all bits that are beyond the type's precision in case
965 we've been sign extended. Ignore if type's precision hasn't been set
966 since what we are doing is setting it. */
967
968 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
969 ;
970 else if (prec > HOST_BITS_PER_WIDE_INT)
971 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
972 else
973 {
974 high = 0;
975 if (prec < HOST_BITS_PER_WIDE_INT)
976 low &= ~((HOST_WIDE_INT) (-1) << prec);
977 }
978
979 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
980 : floor_log2 (low));
981 }
982
983 /* Return 1 if EXPR is the real constant zero. */
984
985 int
986 real_zerop (expr)
987 tree expr;
988 {
989 STRIP_NOPS (expr);
990
991 return ((TREE_CODE (expr) == REAL_CST
992 && ! TREE_CONSTANT_OVERFLOW (expr)
993 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
994 || (TREE_CODE (expr) == COMPLEX_CST
995 && real_zerop (TREE_REALPART (expr))
996 && real_zerop (TREE_IMAGPART (expr))));
997 }
998
999 /* Return 1 if EXPR is the real constant one in real or complex form. */
1000
1001 int
1002 real_onep (expr)
1003 tree expr;
1004 {
1005 STRIP_NOPS (expr);
1006
1007 return ((TREE_CODE (expr) == REAL_CST
1008 && ! TREE_CONSTANT_OVERFLOW (expr)
1009 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1010 || (TREE_CODE (expr) == COMPLEX_CST
1011 && real_onep (TREE_REALPART (expr))
1012 && real_zerop (TREE_IMAGPART (expr))));
1013 }
1014
1015 /* Return 1 if EXPR is the real constant two. */
1016
1017 int
1018 real_twop (expr)
1019 tree expr;
1020 {
1021 STRIP_NOPS (expr);
1022
1023 return ((TREE_CODE (expr) == REAL_CST
1024 && ! TREE_CONSTANT_OVERFLOW (expr)
1025 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1026 || (TREE_CODE (expr) == COMPLEX_CST
1027 && real_twop (TREE_REALPART (expr))
1028 && real_zerop (TREE_IMAGPART (expr))));
1029 }
1030
1031 /* Nonzero if EXP is a constant or a cast of a constant. */
1032
1033 int
1034 really_constant_p (exp)
1035 tree exp;
1036 {
1037 /* This is not quite the same as STRIP_NOPS. It does more. */
1038 while (TREE_CODE (exp) == NOP_EXPR
1039 || TREE_CODE (exp) == CONVERT_EXPR
1040 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1041 exp = TREE_OPERAND (exp, 0);
1042 return TREE_CONSTANT (exp);
1043 }
1044 \f
1045 /* Return first list element whose TREE_VALUE is ELEM.
1046 Return 0 if ELEM is not in LIST. */
1047
1048 tree
1049 value_member (elem, list)
1050 tree elem, list;
1051 {
1052 while (list)
1053 {
1054 if (elem == TREE_VALUE (list))
1055 return list;
1056 list = TREE_CHAIN (list);
1057 }
1058 return NULL_TREE;
1059 }
1060
1061 /* Return first list element whose TREE_PURPOSE is ELEM.
1062 Return 0 if ELEM is not in LIST. */
1063
1064 tree
1065 purpose_member (elem, list)
1066 tree elem, list;
1067 {
1068 while (list)
1069 {
1070 if (elem == TREE_PURPOSE (list))
1071 return list;
1072 list = TREE_CHAIN (list);
1073 }
1074 return NULL_TREE;
1075 }
1076
1077 /* Return first list element whose BINFO_TYPE is ELEM.
1078 Return 0 if ELEM is not in LIST. */
1079
1080 tree
1081 binfo_member (elem, list)
1082 tree elem, list;
1083 {
1084 while (list)
1085 {
1086 if (elem == BINFO_TYPE (list))
1087 return list;
1088 list = TREE_CHAIN (list);
1089 }
1090 return NULL_TREE;
1091 }
1092
1093 /* Return nonzero if ELEM is part of the chain CHAIN. */
1094
1095 int
1096 chain_member (elem, chain)
1097 tree elem, chain;
1098 {
1099 while (chain)
1100 {
1101 if (elem == chain)
1102 return 1;
1103 chain = TREE_CHAIN (chain);
1104 }
1105
1106 return 0;
1107 }
1108
1109 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1110 chain CHAIN. This and the next function are currently unused, but
1111 are retained for completeness. */
1112
1113 int
1114 chain_member_value (elem, chain)
1115 tree elem, chain;
1116 {
1117 while (chain)
1118 {
1119 if (elem == TREE_VALUE (chain))
1120 return 1;
1121 chain = TREE_CHAIN (chain);
1122 }
1123
1124 return 0;
1125 }
1126
1127 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1128 for any piece of chain CHAIN. */
1129
1130 int
1131 chain_member_purpose (elem, chain)
1132 tree elem, chain;
1133 {
1134 while (chain)
1135 {
1136 if (elem == TREE_PURPOSE (chain))
1137 return 1;
1138 chain = TREE_CHAIN (chain);
1139 }
1140
1141 return 0;
1142 }
1143
1144 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1145 We expect a null pointer to mark the end of the chain.
1146 This is the Lisp primitive `length'. */
1147
1148 int
1149 list_length (t)
1150 tree t;
1151 {
1152 tree tail;
1153 int len = 0;
1154
1155 for (tail = t; tail; tail = TREE_CHAIN (tail))
1156 len++;
1157
1158 return len;
1159 }
1160
1161 /* Returns the number of FIELD_DECLs in TYPE. */
1162
1163 int
1164 fields_length (type)
1165 tree type;
1166 {
1167 tree t = TYPE_FIELDS (type);
1168 int count = 0;
1169
1170 for (; t; t = TREE_CHAIN (t))
1171 if (TREE_CODE (t) == FIELD_DECL)
1172 ++count;
1173
1174 return count;
1175 }
1176
1177 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1178 by modifying the last node in chain 1 to point to chain 2.
1179 This is the Lisp primitive `nconc'. */
1180
1181 tree
1182 chainon (op1, op2)
1183 tree op1, op2;
1184 {
1185
1186 if (op1)
1187 {
1188 tree t1;
1189 #ifdef ENABLE_TREE_CHECKING
1190 tree t2;
1191 #endif
1192
1193 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1194 ;
1195 TREE_CHAIN (t1) = op2;
1196 #ifdef ENABLE_TREE_CHECKING
1197 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1198 if (t2 == t1)
1199 abort (); /* Circularity created. */
1200 #endif
1201 return op1;
1202 }
1203 else
1204 return op2;
1205 }
1206
1207 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1208
1209 tree
1210 tree_last (chain)
1211 tree chain;
1212 {
1213 tree next;
1214 if (chain)
1215 while ((next = TREE_CHAIN (chain)))
1216 chain = next;
1217 return chain;
1218 }
1219
1220 /* Reverse the order of elements in the chain T,
1221 and return the new head of the chain (old last element). */
1222
1223 tree
1224 nreverse (t)
1225 tree t;
1226 {
1227 tree prev = 0, decl, next;
1228 for (decl = t; decl; decl = next)
1229 {
1230 next = TREE_CHAIN (decl);
1231 TREE_CHAIN (decl) = prev;
1232 prev = decl;
1233 }
1234 return prev;
1235 }
1236
1237 /* Given a chain CHAIN of tree nodes,
1238 construct and return a list of those nodes. */
1239
1240 tree
1241 listify (chain)
1242 tree chain;
1243 {
1244 tree result = NULL_TREE;
1245 tree in_tail = chain;
1246 tree out_tail = NULL_TREE;
1247
1248 while (in_tail)
1249 {
1250 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1251 if (out_tail)
1252 TREE_CHAIN (out_tail) = next;
1253 else
1254 result = next;
1255 out_tail = next;
1256 in_tail = TREE_CHAIN (in_tail);
1257 }
1258
1259 return result;
1260 }
1261 \f
1262 /* Return a newly created TREE_LIST node whose
1263 purpose and value fields are PARM and VALUE. */
1264
1265 tree
1266 build_tree_list (parm, value)
1267 tree parm, value;
1268 {
1269 tree t = make_node (TREE_LIST);
1270 TREE_PURPOSE (t) = parm;
1271 TREE_VALUE (t) = value;
1272 return t;
1273 }
1274
1275 /* Return a newly created TREE_LIST node whose
1276 purpose and value fields are PARM and VALUE
1277 and whose TREE_CHAIN is CHAIN. */
1278
1279 tree
1280 tree_cons (purpose, value, chain)
1281 tree purpose, value, chain;
1282 {
1283 tree node;
1284
1285 node = ggc_alloc_tree (sizeof (struct tree_list));
1286
1287 memset (node, 0, sizeof (struct tree_common));
1288
1289 #ifdef GATHER_STATISTICS
1290 tree_node_counts[(int) x_kind]++;
1291 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1292 #endif
1293
1294 TREE_SET_CODE (node, TREE_LIST);
1295 TREE_CHAIN (node) = chain;
1296 TREE_PURPOSE (node) = purpose;
1297 TREE_VALUE (node) = value;
1298 return node;
1299 }
1300
1301 \f
1302 /* Return the size nominally occupied by an object of type TYPE
1303 when it resides in memory. The value is measured in units of bytes,
1304 and its data type is that normally used for type sizes
1305 (which is the first type created by make_signed_type or
1306 make_unsigned_type). */
1307
1308 tree
1309 size_in_bytes (type)
1310 tree type;
1311 {
1312 tree t;
1313
1314 if (type == error_mark_node)
1315 return integer_zero_node;
1316
1317 type = TYPE_MAIN_VARIANT (type);
1318 t = TYPE_SIZE_UNIT (type);
1319
1320 if (t == 0)
1321 {
1322 incomplete_type_error (NULL_TREE, type);
1323 return size_zero_node;
1324 }
1325
1326 if (TREE_CODE (t) == INTEGER_CST)
1327 force_fit_type (t, 0);
1328
1329 return t;
1330 }
1331
1332 /* Return the size of TYPE (in bytes) as a wide integer
1333 or return -1 if the size can vary or is larger than an integer. */
1334
1335 HOST_WIDE_INT
1336 int_size_in_bytes (type)
1337 tree type;
1338 {
1339 tree t;
1340
1341 if (type == error_mark_node)
1342 return 0;
1343
1344 type = TYPE_MAIN_VARIANT (type);
1345 t = TYPE_SIZE_UNIT (type);
1346 if (t == 0
1347 || TREE_CODE (t) != INTEGER_CST
1348 || TREE_OVERFLOW (t)
1349 || TREE_INT_CST_HIGH (t) != 0
1350 /* If the result would appear negative, it's too big to represent. */
1351 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1352 return -1;
1353
1354 return TREE_INT_CST_LOW (t);
1355 }
1356 \f
1357 /* Return the bit position of FIELD, in bits from the start of the record.
1358 This is a tree of type bitsizetype. */
1359
1360 tree
1361 bit_position (field)
1362 tree field;
1363 {
1364
1365 return bit_from_pos (DECL_FIELD_OFFSET (field),
1366 DECL_FIELD_BIT_OFFSET (field));
1367 }
1368
1369 /* Likewise, but return as an integer. Abort if it cannot be represented
1370 in that way (since it could be a signed value, we don't have the option
1371 of returning -1 like int_size_in_byte can. */
1372
1373 HOST_WIDE_INT
1374 int_bit_position (field)
1375 tree field;
1376 {
1377 return tree_low_cst (bit_position (field), 0);
1378 }
1379 \f
1380 /* Return the byte position of FIELD, in bytes from the start of the record.
1381 This is a tree of type sizetype. */
1382
1383 tree
1384 byte_position (field)
1385 tree field;
1386 {
1387 return byte_from_pos (DECL_FIELD_OFFSET (field),
1388 DECL_FIELD_BIT_OFFSET (field));
1389 }
1390
1391 /* Likewise, but return as an integer. Abort if it cannot be represented
1392 in that way (since it could be a signed value, we don't have the option
1393 of returning -1 like int_size_in_byte can. */
1394
1395 HOST_WIDE_INT
1396 int_byte_position (field)
1397 tree field;
1398 {
1399 return tree_low_cst (byte_position (field), 0);
1400 }
1401 \f
1402 /* Return the strictest alignment, in bits, that T is known to have. */
1403
1404 unsigned int
1405 expr_align (t)
1406 tree t;
1407 {
1408 unsigned int align0, align1;
1409
1410 switch (TREE_CODE (t))
1411 {
1412 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1413 /* If we have conversions, we know that the alignment of the
1414 object must meet each of the alignments of the types. */
1415 align0 = expr_align (TREE_OPERAND (t, 0));
1416 align1 = TYPE_ALIGN (TREE_TYPE (t));
1417 return MAX (align0, align1);
1418
1419 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1420 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1421 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1422 /* These don't change the alignment of an object. */
1423 return expr_align (TREE_OPERAND (t, 0));
1424
1425 case COND_EXPR:
1426 /* The best we can do is say that the alignment is the least aligned
1427 of the two arms. */
1428 align0 = expr_align (TREE_OPERAND (t, 1));
1429 align1 = expr_align (TREE_OPERAND (t, 2));
1430 return MIN (align0, align1);
1431
1432 case LABEL_DECL: case CONST_DECL:
1433 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1434 if (DECL_ALIGN (t) != 0)
1435 return DECL_ALIGN (t);
1436 break;
1437
1438 case FUNCTION_DECL:
1439 return FUNCTION_BOUNDARY;
1440
1441 default:
1442 break;
1443 }
1444
1445 /* Otherwise take the alignment from that of the type. */
1446 return TYPE_ALIGN (TREE_TYPE (t));
1447 }
1448 \f
1449 /* Return, as a tree node, the number of elements for TYPE (which is an
1450 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1451
1452 tree
1453 array_type_nelts (type)
1454 tree type;
1455 {
1456 tree index_type, min, max;
1457
1458 /* If they did it with unspecified bounds, then we should have already
1459 given an error about it before we got here. */
1460 if (! TYPE_DOMAIN (type))
1461 return error_mark_node;
1462
1463 index_type = TYPE_DOMAIN (type);
1464 min = TYPE_MIN_VALUE (index_type);
1465 max = TYPE_MAX_VALUE (index_type);
1466
1467 return (integer_zerop (min)
1468 ? max
1469 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1470 }
1471 \f
1472 /* Return nonzero if arg is static -- a reference to an object in
1473 static storage. This is not the same as the C meaning of `static'. */
1474
1475 int
1476 staticp (arg)
1477 tree arg;
1478 {
1479 switch (TREE_CODE (arg))
1480 {
1481 case FUNCTION_DECL:
1482 /* Nested functions aren't static, since taking their address
1483 involves a trampoline. */
1484 return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1485 && ! DECL_NON_ADDR_CONST_P (arg);
1486
1487 case VAR_DECL:
1488 return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1489 && ! DECL_NON_ADDR_CONST_P (arg);
1490
1491 case CONSTRUCTOR:
1492 return TREE_STATIC (arg);
1493
1494 case LABEL_DECL:
1495 case STRING_CST:
1496 return 1;
1497
1498 /* If we are referencing a bitfield, we can't evaluate an
1499 ADDR_EXPR at compile time and so it isn't a constant. */
1500 case COMPONENT_REF:
1501 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1502 && staticp (TREE_OPERAND (arg, 0)));
1503
1504 case BIT_FIELD_REF:
1505 return 0;
1506
1507 #if 0
1508 /* This case is technically correct, but results in setting
1509 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1510 compile time. */
1511 case INDIRECT_REF:
1512 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1513 #endif
1514
1515 case ARRAY_REF:
1516 case ARRAY_RANGE_REF:
1517 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1518 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1519 return staticp (TREE_OPERAND (arg, 0));
1520
1521 default:
1522 if ((unsigned int) TREE_CODE (arg)
1523 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1524 return (*lang_hooks.staticp) (arg);
1525 else
1526 return 0;
1527 }
1528 }
1529 \f
1530 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1531 Do this to any expression which may be used in more than one place,
1532 but must be evaluated only once.
1533
1534 Normally, expand_expr would reevaluate the expression each time.
1535 Calling save_expr produces something that is evaluated and recorded
1536 the first time expand_expr is called on it. Subsequent calls to
1537 expand_expr just reuse the recorded value.
1538
1539 The call to expand_expr that generates code that actually computes
1540 the value is the first call *at compile time*. Subsequent calls
1541 *at compile time* generate code to use the saved value.
1542 This produces correct result provided that *at run time* control
1543 always flows through the insns made by the first expand_expr
1544 before reaching the other places where the save_expr was evaluated.
1545 You, the caller of save_expr, must make sure this is so.
1546
1547 Constants, and certain read-only nodes, are returned with no
1548 SAVE_EXPR because that is safe. Expressions containing placeholders
1549 are not touched; see tree.def for an explanation of what these
1550 are used for. */
1551
1552 tree
1553 save_expr (expr)
1554 tree expr;
1555 {
1556 tree t = fold (expr);
1557 tree inner;
1558
1559 /* We don't care about whether this can be used as an lvalue in this
1560 context. */
1561 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1562 t = TREE_OPERAND (t, 0);
1563
1564 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1565 a constant, it will be more efficient to not make another SAVE_EXPR since
1566 it will allow better simplification and GCSE will be able to merge the
1567 computations if they actualy occur. */
1568 for (inner = t;
1569 (TREE_CODE_CLASS (TREE_CODE (inner)) == '1'
1570 || (TREE_CODE_CLASS (TREE_CODE (inner)) == '2'
1571 && TREE_CONSTANT (TREE_OPERAND (inner, 1))));
1572 inner = TREE_OPERAND (inner, 0))
1573 ;
1574
1575 /* If the tree evaluates to a constant, then we don't want to hide that
1576 fact (i.e. this allows further folding, and direct checks for constants).
1577 However, a read-only object that has side effects cannot be bypassed.
1578 Since it is no problem to reevaluate literals, we just return the
1579 literal node. */
1580 if (TREE_CONSTANT (inner)
1581 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1582 || TREE_CODE (inner) == SAVE_EXPR || TREE_CODE (inner) == ERROR_MARK)
1583 return t;
1584
1585 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1586 it means that the size or offset of some field of an object depends on
1587 the value within another field.
1588
1589 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1590 and some variable since it would then need to be both evaluated once and
1591 evaluated more than once. Front-ends must assure this case cannot
1592 happen by surrounding any such subexpressions in their own SAVE_EXPR
1593 and forcing evaluation at the proper time. */
1594 if (contains_placeholder_p (t))
1595 return t;
1596
1597 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1598
1599 /* This expression might be placed ahead of a jump to ensure that the
1600 value was computed on both sides of the jump. So make sure it isn't
1601 eliminated as dead. */
1602 TREE_SIDE_EFFECTS (t) = 1;
1603 TREE_READONLY (t) = 1;
1604 return t;
1605 }
1606
1607 /* Arrange for an expression to be expanded multiple independent
1608 times. This is useful for cleanup actions, as the backend can
1609 expand them multiple times in different places. */
1610
1611 tree
1612 unsave_expr (expr)
1613 tree expr;
1614 {
1615 tree t;
1616
1617 /* If this is already protected, no sense in protecting it again. */
1618 if (TREE_CODE (expr) == UNSAVE_EXPR)
1619 return expr;
1620
1621 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1622 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1623 return t;
1624 }
1625
1626 /* Returns the index of the first non-tree operand for CODE, or the number
1627 of operands if all are trees. */
1628
1629 int
1630 first_rtl_op (code)
1631 enum tree_code code;
1632 {
1633 switch (code)
1634 {
1635 case SAVE_EXPR:
1636 return 2;
1637 case GOTO_SUBROUTINE_EXPR:
1638 case RTL_EXPR:
1639 return 0;
1640 case WITH_CLEANUP_EXPR:
1641 return 2;
1642 case METHOD_CALL_EXPR:
1643 return 3;
1644 default:
1645 return TREE_CODE_LENGTH (code);
1646 }
1647 }
1648
1649 /* Perform any modifications to EXPR required when it is unsaved. Does
1650 not recurse into EXPR's subtrees. */
1651
1652 void
1653 unsave_expr_1 (expr)
1654 tree expr;
1655 {
1656 switch (TREE_CODE (expr))
1657 {
1658 case SAVE_EXPR:
1659 if (! SAVE_EXPR_PERSISTENT_P (expr))
1660 SAVE_EXPR_RTL (expr) = 0;
1661 break;
1662
1663 case TARGET_EXPR:
1664 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1665 It's OK for this to happen if it was part of a subtree that
1666 isn't immediately expanded, such as operand 2 of another
1667 TARGET_EXPR. */
1668 if (TREE_OPERAND (expr, 1))
1669 break;
1670
1671 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1672 TREE_OPERAND (expr, 3) = NULL_TREE;
1673 break;
1674
1675 case RTL_EXPR:
1676 /* I don't yet know how to emit a sequence multiple times. */
1677 if (RTL_EXPR_SEQUENCE (expr) != 0)
1678 abort ();
1679 break;
1680
1681 default:
1682 if (lang_unsave_expr_now != 0)
1683 (*lang_unsave_expr_now) (expr);
1684 break;
1685 }
1686 }
1687
1688 /* Helper function for unsave_expr_now. */
1689
1690 static void
1691 unsave_expr_now_r (expr)
1692 tree expr;
1693 {
1694 enum tree_code code;
1695
1696 /* There's nothing to do for NULL_TREE. */
1697 if (expr == 0)
1698 return;
1699
1700 unsave_expr_1 (expr);
1701
1702 code = TREE_CODE (expr);
1703 switch (TREE_CODE_CLASS (code))
1704 {
1705 case 'c': /* a constant */
1706 case 't': /* a type node */
1707 case 'd': /* A decl node */
1708 case 'b': /* A block node */
1709 break;
1710
1711 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1712 if (code == TREE_LIST)
1713 {
1714 unsave_expr_now_r (TREE_VALUE (expr));
1715 unsave_expr_now_r (TREE_CHAIN (expr));
1716 }
1717 break;
1718
1719 case 'e': /* an expression */
1720 case 'r': /* a reference */
1721 case 's': /* an expression with side effects */
1722 case '<': /* a comparison expression */
1723 case '2': /* a binary arithmetic expression */
1724 case '1': /* a unary arithmetic expression */
1725 {
1726 int i;
1727
1728 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1729 unsave_expr_now_r (TREE_OPERAND (expr, i));
1730 }
1731 break;
1732
1733 default:
1734 abort ();
1735 }
1736 }
1737
1738 /* Modify a tree in place so that all the evaluate only once things
1739 are cleared out. Return the EXPR given. */
1740
1741 tree
1742 unsave_expr_now (expr)
1743 tree expr;
1744 {
1745 if (lang_unsave!= 0)
1746 (*lang_unsave) (&expr);
1747 else
1748 unsave_expr_now_r (expr);
1749
1750 return expr;
1751 }
1752
1753 /* Return 0 if it is safe to evaluate EXPR multiple times,
1754 return 1 if it is safe if EXPR is unsaved afterward, or
1755 return 2 if it is completely unsafe.
1756
1757 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1758 an expression tree, so that it safe to unsave them and the surrounding
1759 context will be correct.
1760
1761 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1762 occasionally across the whole of a function. It is therefore only
1763 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1764 below the UNSAVE_EXPR.
1765
1766 RTL_EXPRs consume their rtl during evaluation. It is therefore
1767 never possible to unsave them. */
1768
1769 int
1770 unsafe_for_reeval (expr)
1771 tree expr;
1772 {
1773 int unsafeness = 0;
1774 enum tree_code code;
1775 int i, tmp;
1776 tree exp;
1777 int first_rtl;
1778
1779 if (expr == NULL_TREE)
1780 return 1;
1781
1782 code = TREE_CODE (expr);
1783 first_rtl = first_rtl_op (code);
1784
1785 switch (code)
1786 {
1787 case SAVE_EXPR:
1788 case RTL_EXPR:
1789 return 2;
1790
1791 case TREE_LIST:
1792 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1793 {
1794 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1795 unsafeness = MAX (tmp, unsafeness);
1796 }
1797
1798 return unsafeness;
1799
1800 case CALL_EXPR:
1801 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1802 return MAX (tmp, 1);
1803
1804 case TARGET_EXPR:
1805 unsafeness = 1;
1806 break;
1807
1808 default:
1809 if (lang_unsafe_for_reeval != 0)
1810 {
1811 tmp = (*lang_unsafe_for_reeval) (expr);
1812 if (tmp >= 0)
1813 return tmp;
1814 }
1815 break;
1816 }
1817
1818 switch (TREE_CODE_CLASS (code))
1819 {
1820 case 'c': /* a constant */
1821 case 't': /* a type node */
1822 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1823 case 'd': /* A decl node */
1824 case 'b': /* A block node */
1825 return 0;
1826
1827 case 'e': /* an expression */
1828 case 'r': /* a reference */
1829 case 's': /* an expression with side effects */
1830 case '<': /* a comparison expression */
1831 case '2': /* a binary arithmetic expression */
1832 case '1': /* a unary arithmetic expression */
1833 for (i = first_rtl - 1; i >= 0; i--)
1834 {
1835 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1836 unsafeness = MAX (tmp, unsafeness);
1837 }
1838
1839 return unsafeness;
1840
1841 default:
1842 return 2;
1843 }
1844 }
1845 \f
1846 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1847 or offset that depends on a field within a record. */
1848
1849 int
1850 contains_placeholder_p (exp)
1851 tree exp;
1852 {
1853 enum tree_code code;
1854 int result;
1855
1856 if (!exp)
1857 return 0;
1858
1859 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1860 in it since it is supplying a value for it. */
1861 code = TREE_CODE (exp);
1862 if (code == WITH_RECORD_EXPR)
1863 return 0;
1864 else if (code == PLACEHOLDER_EXPR)
1865 return 1;
1866
1867 switch (TREE_CODE_CLASS (code))
1868 {
1869 case 'r':
1870 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1871 position computations since they will be converted into a
1872 WITH_RECORD_EXPR involving the reference, which will assume
1873 here will be valid. */
1874 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1875
1876 case 'x':
1877 if (code == TREE_LIST)
1878 return (contains_placeholder_p (TREE_VALUE (exp))
1879 || (TREE_CHAIN (exp) != 0
1880 && contains_placeholder_p (TREE_CHAIN (exp))));
1881 break;
1882
1883 case '1':
1884 case '2': case '<':
1885 case 'e':
1886 switch (code)
1887 {
1888 case COMPOUND_EXPR:
1889 /* Ignoring the first operand isn't quite right, but works best. */
1890 return contains_placeholder_p (TREE_OPERAND (exp, 1));
1891
1892 case RTL_EXPR:
1893 case CONSTRUCTOR:
1894 return 0;
1895
1896 case COND_EXPR:
1897 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1898 || contains_placeholder_p (TREE_OPERAND (exp, 1))
1899 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
1900
1901 case SAVE_EXPR:
1902 /* If we already know this doesn't have a placeholder, don't
1903 check again. */
1904 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1905 return 0;
1906
1907 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1908 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
1909 if (result)
1910 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1911
1912 return result;
1913
1914 case CALL_EXPR:
1915 return (TREE_OPERAND (exp, 1) != 0
1916 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
1917
1918 default:
1919 break;
1920 }
1921
1922 switch (TREE_CODE_LENGTH (code))
1923 {
1924 case 1:
1925 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1926 case 2:
1927 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1928 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
1929 default:
1930 return 0;
1931 }
1932
1933 default:
1934 return 0;
1935 }
1936 return 0;
1937 }
1938
1939 /* Return 1 if EXP contains any expressions that produce cleanups for an
1940 outer scope to deal with. Used by fold. */
1941
1942 int
1943 has_cleanups (exp)
1944 tree exp;
1945 {
1946 int i, nops, cmp;
1947
1948 if (! TREE_SIDE_EFFECTS (exp))
1949 return 0;
1950
1951 switch (TREE_CODE (exp))
1952 {
1953 case TARGET_EXPR:
1954 case GOTO_SUBROUTINE_EXPR:
1955 case WITH_CLEANUP_EXPR:
1956 return 1;
1957
1958 case CLEANUP_POINT_EXPR:
1959 return 0;
1960
1961 case CALL_EXPR:
1962 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1963 {
1964 cmp = has_cleanups (TREE_VALUE (exp));
1965 if (cmp)
1966 return cmp;
1967 }
1968 return 0;
1969
1970 default:
1971 break;
1972 }
1973
1974 /* This general rule works for most tree codes. All exceptions should be
1975 handled above. If this is a language-specific tree code, we can't
1976 trust what might be in the operand, so say we don't know
1977 the situation. */
1978 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1979 return -1;
1980
1981 nops = first_rtl_op (TREE_CODE (exp));
1982 for (i = 0; i < nops; i++)
1983 if (TREE_OPERAND (exp, i) != 0)
1984 {
1985 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1986 if (type == 'e' || type == '<' || type == '1' || type == '2'
1987 || type == 'r' || type == 's')
1988 {
1989 cmp = has_cleanups (TREE_OPERAND (exp, i));
1990 if (cmp)
1991 return cmp;
1992 }
1993 }
1994
1995 return 0;
1996 }
1997 \f
1998 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1999 return a tree with all occurrences of references to F in a
2000 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2001 contains only arithmetic expressions or a CALL_EXPR with a
2002 PLACEHOLDER_EXPR occurring only in its arglist. */
2003
2004 tree
2005 substitute_in_expr (exp, f, r)
2006 tree exp;
2007 tree f;
2008 tree r;
2009 {
2010 enum tree_code code = TREE_CODE (exp);
2011 tree op0, op1, op2;
2012 tree new;
2013 tree inner;
2014
2015 switch (TREE_CODE_CLASS (code))
2016 {
2017 case 'c':
2018 case 'd':
2019 return exp;
2020
2021 case 'x':
2022 if (code == PLACEHOLDER_EXPR)
2023 return exp;
2024 else if (code == TREE_LIST)
2025 {
2026 op0 = (TREE_CHAIN (exp) == 0
2027 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
2028 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
2029 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2030 return exp;
2031
2032 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2033 }
2034
2035 abort ();
2036
2037 case '1':
2038 case '2':
2039 case '<':
2040 case 'e':
2041 switch (TREE_CODE_LENGTH (code))
2042 {
2043 case 1:
2044 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2045 if (op0 == TREE_OPERAND (exp, 0))
2046 return exp;
2047
2048 if (code == NON_LVALUE_EXPR)
2049 return op0;
2050
2051 new = fold (build1 (code, TREE_TYPE (exp), op0));
2052 break;
2053
2054 case 2:
2055 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2056 could, but we don't support it. */
2057 if (code == RTL_EXPR)
2058 return exp;
2059 else if (code == CONSTRUCTOR)
2060 abort ();
2061
2062 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2063 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2064 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2065 return exp;
2066
2067 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2068 break;
2069
2070 case 3:
2071 /* It cannot be that anything inside a SAVE_EXPR contains a
2072 PLACEHOLDER_EXPR. */
2073 if (code == SAVE_EXPR)
2074 return exp;
2075
2076 else if (code == CALL_EXPR)
2077 {
2078 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2079 if (op1 == TREE_OPERAND (exp, 1))
2080 return exp;
2081
2082 return build (code, TREE_TYPE (exp),
2083 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2084 }
2085
2086 else if (code != COND_EXPR)
2087 abort ();
2088
2089 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2090 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2091 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2092 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2093 && op2 == TREE_OPERAND (exp, 2))
2094 return exp;
2095
2096 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2097 break;
2098
2099 default:
2100 abort ();
2101 }
2102
2103 break;
2104
2105 case 'r':
2106 switch (code)
2107 {
2108 case COMPONENT_REF:
2109 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2110 and it is the right field, replace it with R. */
2111 for (inner = TREE_OPERAND (exp, 0);
2112 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2113 inner = TREE_OPERAND (inner, 0))
2114 ;
2115 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2116 && TREE_OPERAND (exp, 1) == f)
2117 return r;
2118
2119 /* If this expression hasn't been completed let, leave it
2120 alone. */
2121 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2122 && TREE_TYPE (inner) == 0)
2123 return exp;
2124
2125 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2126 if (op0 == TREE_OPERAND (exp, 0))
2127 return exp;
2128
2129 new = fold (build (code, TREE_TYPE (exp), op0,
2130 TREE_OPERAND (exp, 1)));
2131 break;
2132
2133 case BIT_FIELD_REF:
2134 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2135 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2136 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2137 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2138 && op2 == TREE_OPERAND (exp, 2))
2139 return exp;
2140
2141 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2142 break;
2143
2144 case INDIRECT_REF:
2145 case BUFFER_REF:
2146 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2147 if (op0 == TREE_OPERAND (exp, 0))
2148 return exp;
2149
2150 new = fold (build1 (code, TREE_TYPE (exp), op0));
2151 break;
2152
2153 default:
2154 abort ();
2155 }
2156 break;
2157
2158 default:
2159 abort ();
2160 }
2161
2162 TREE_READONLY (new) = TREE_READONLY (exp);
2163 return new;
2164 }
2165 \f
2166 /* Stabilize a reference so that we can use it any number of times
2167 without causing its operands to be evaluated more than once.
2168 Returns the stabilized reference. This works by means of save_expr,
2169 so see the caveats in the comments about save_expr.
2170
2171 Also allows conversion expressions whose operands are references.
2172 Any other kind of expression is returned unchanged. */
2173
2174 tree
2175 stabilize_reference (ref)
2176 tree ref;
2177 {
2178 tree result;
2179 enum tree_code code = TREE_CODE (ref);
2180
2181 switch (code)
2182 {
2183 case VAR_DECL:
2184 case PARM_DECL:
2185 case RESULT_DECL:
2186 /* No action is needed in this case. */
2187 return ref;
2188
2189 case NOP_EXPR:
2190 case CONVERT_EXPR:
2191 case FLOAT_EXPR:
2192 case FIX_TRUNC_EXPR:
2193 case FIX_FLOOR_EXPR:
2194 case FIX_ROUND_EXPR:
2195 case FIX_CEIL_EXPR:
2196 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2197 break;
2198
2199 case INDIRECT_REF:
2200 result = build_nt (INDIRECT_REF,
2201 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2202 break;
2203
2204 case COMPONENT_REF:
2205 result = build_nt (COMPONENT_REF,
2206 stabilize_reference (TREE_OPERAND (ref, 0)),
2207 TREE_OPERAND (ref, 1));
2208 break;
2209
2210 case BIT_FIELD_REF:
2211 result = build_nt (BIT_FIELD_REF,
2212 stabilize_reference (TREE_OPERAND (ref, 0)),
2213 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2214 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2215 break;
2216
2217 case ARRAY_REF:
2218 result = build_nt (ARRAY_REF,
2219 stabilize_reference (TREE_OPERAND (ref, 0)),
2220 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2221 break;
2222
2223 case ARRAY_RANGE_REF:
2224 result = build_nt (ARRAY_RANGE_REF,
2225 stabilize_reference (TREE_OPERAND (ref, 0)),
2226 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2227 break;
2228
2229 case COMPOUND_EXPR:
2230 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2231 it wouldn't be ignored. This matters when dealing with
2232 volatiles. */
2233 return stabilize_reference_1 (ref);
2234
2235 case RTL_EXPR:
2236 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2237 save_expr (build1 (ADDR_EXPR,
2238 build_pointer_type (TREE_TYPE (ref)),
2239 ref)));
2240 break;
2241
2242 /* If arg isn't a kind of lvalue we recognize, make no change.
2243 Caller should recognize the error for an invalid lvalue. */
2244 default:
2245 return ref;
2246
2247 case ERROR_MARK:
2248 return error_mark_node;
2249 }
2250
2251 TREE_TYPE (result) = TREE_TYPE (ref);
2252 TREE_READONLY (result) = TREE_READONLY (ref);
2253 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2254 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2255
2256 return result;
2257 }
2258
2259 /* Subroutine of stabilize_reference; this is called for subtrees of
2260 references. Any expression with side-effects must be put in a SAVE_EXPR
2261 to ensure that it is only evaluated once.
2262
2263 We don't put SAVE_EXPR nodes around everything, because assigning very
2264 simple expressions to temporaries causes us to miss good opportunities
2265 for optimizations. Among other things, the opportunity to fold in the
2266 addition of a constant into an addressing mode often gets lost, e.g.
2267 "y[i+1] += x;". In general, we take the approach that we should not make
2268 an assignment unless we are forced into it - i.e., that any non-side effect
2269 operator should be allowed, and that cse should take care of coalescing
2270 multiple utterances of the same expression should that prove fruitful. */
2271
2272 tree
2273 stabilize_reference_1 (e)
2274 tree e;
2275 {
2276 tree result;
2277 enum tree_code code = TREE_CODE (e);
2278
2279 /* We cannot ignore const expressions because it might be a reference
2280 to a const array but whose index contains side-effects. But we can
2281 ignore things that are actual constant or that already have been
2282 handled by this function. */
2283
2284 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2285 return e;
2286
2287 switch (TREE_CODE_CLASS (code))
2288 {
2289 case 'x':
2290 case 't':
2291 case 'd':
2292 case 'b':
2293 case '<':
2294 case 's':
2295 case 'e':
2296 case 'r':
2297 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2298 so that it will only be evaluated once. */
2299 /* The reference (r) and comparison (<) classes could be handled as
2300 below, but it is generally faster to only evaluate them once. */
2301 if (TREE_SIDE_EFFECTS (e))
2302 return save_expr (e);
2303 return e;
2304
2305 case 'c':
2306 /* Constants need no processing. In fact, we should never reach
2307 here. */
2308 return e;
2309
2310 case '2':
2311 /* Division is slow and tends to be compiled with jumps,
2312 especially the division by powers of 2 that is often
2313 found inside of an array reference. So do it just once. */
2314 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2315 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2316 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2317 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2318 return save_expr (e);
2319 /* Recursively stabilize each operand. */
2320 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2321 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2322 break;
2323
2324 case '1':
2325 /* Recursively stabilize each operand. */
2326 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2327 break;
2328
2329 default:
2330 abort ();
2331 }
2332
2333 TREE_TYPE (result) = TREE_TYPE (e);
2334 TREE_READONLY (result) = TREE_READONLY (e);
2335 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2336 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2337
2338 return result;
2339 }
2340 \f
2341 /* Low-level constructors for expressions. */
2342
2343 /* Build an expression of code CODE, data type TYPE,
2344 and operands as specified by the arguments ARG1 and following arguments.
2345 Expressions and reference nodes can be created this way.
2346 Constants, decls, types and misc nodes cannot be. */
2347
2348 tree
2349 build VPARAMS ((enum tree_code code, tree tt, ...))
2350 {
2351 tree t;
2352 int length;
2353 int i;
2354 int fro;
2355 int constant;
2356
2357 VA_OPEN (p, tt);
2358 VA_FIXEDARG (p, enum tree_code, code);
2359 VA_FIXEDARG (p, tree, tt);
2360
2361 t = make_node (code);
2362 length = TREE_CODE_LENGTH (code);
2363 TREE_TYPE (t) = tt;
2364
2365 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2366 result based on those same flags for the arguments. But if the
2367 arguments aren't really even `tree' expressions, we shouldn't be trying
2368 to do this. */
2369 fro = first_rtl_op (code);
2370
2371 /* Expressions without side effects may be constant if their
2372 arguments are as well. */
2373 constant = (TREE_CODE_CLASS (code) == '<'
2374 || TREE_CODE_CLASS (code) == '1'
2375 || TREE_CODE_CLASS (code) == '2'
2376 || TREE_CODE_CLASS (code) == 'c');
2377
2378 if (length == 2)
2379 {
2380 /* This is equivalent to the loop below, but faster. */
2381 tree arg0 = va_arg (p, tree);
2382 tree arg1 = va_arg (p, tree);
2383
2384 TREE_OPERAND (t, 0) = arg0;
2385 TREE_OPERAND (t, 1) = arg1;
2386 TREE_READONLY (t) = 1;
2387 if (arg0 && fro > 0)
2388 {
2389 if (TREE_SIDE_EFFECTS (arg0))
2390 TREE_SIDE_EFFECTS (t) = 1;
2391 if (!TREE_READONLY (arg0))
2392 TREE_READONLY (t) = 0;
2393 if (!TREE_CONSTANT (arg0))
2394 constant = 0;
2395 }
2396
2397 if (arg1 && fro > 1)
2398 {
2399 if (TREE_SIDE_EFFECTS (arg1))
2400 TREE_SIDE_EFFECTS (t) = 1;
2401 if (!TREE_READONLY (arg1))
2402 TREE_READONLY (t) = 0;
2403 if (!TREE_CONSTANT (arg1))
2404 constant = 0;
2405 }
2406 }
2407 else if (length == 1)
2408 {
2409 tree arg0 = va_arg (p, tree);
2410
2411 /* The only one-operand cases we handle here are those with side-effects.
2412 Others are handled with build1. So don't bother checked if the
2413 arg has side-effects since we'll already have set it.
2414
2415 ??? This really should use build1 too. */
2416 if (TREE_CODE_CLASS (code) != 's')
2417 abort ();
2418 TREE_OPERAND (t, 0) = arg0;
2419 }
2420 else
2421 {
2422 for (i = 0; i < length; i++)
2423 {
2424 tree operand = va_arg (p, tree);
2425
2426 TREE_OPERAND (t, i) = operand;
2427 if (operand && fro > i)
2428 {
2429 if (TREE_SIDE_EFFECTS (operand))
2430 TREE_SIDE_EFFECTS (t) = 1;
2431 if (!TREE_CONSTANT (operand))
2432 constant = 0;
2433 }
2434 }
2435 }
2436 VA_CLOSE (p);
2437
2438 TREE_CONSTANT (t) = constant;
2439 return t;
2440 }
2441
2442 /* Same as above, but only builds for unary operators.
2443 Saves lions share of calls to `build'; cuts down use
2444 of varargs, which is expensive for RISC machines. */
2445
2446 tree
2447 build1 (code, type, node)
2448 enum tree_code code;
2449 tree type;
2450 tree node;
2451 {
2452 int length;
2453 #ifdef GATHER_STATISTICS
2454 tree_node_kind kind;
2455 #endif
2456 tree t;
2457
2458 #ifdef GATHER_STATISTICS
2459 if (TREE_CODE_CLASS (code) == 'r')
2460 kind = r_kind;
2461 else
2462 kind = e_kind;
2463 #endif
2464
2465 #ifdef ENABLE_CHECKING
2466 if (TREE_CODE_CLASS (code) == '2'
2467 || TREE_CODE_CLASS (code) == '<'
2468 || TREE_CODE_LENGTH (code) != 1)
2469 abort ();
2470 #endif /* ENABLE_CHECKING */
2471
2472 length = sizeof (struct tree_exp);
2473
2474 t = ggc_alloc_tree (length);
2475
2476 memset ((PTR) t, 0, sizeof (struct tree_common));
2477
2478 #ifdef GATHER_STATISTICS
2479 tree_node_counts[(int) kind]++;
2480 tree_node_sizes[(int) kind] += length;
2481 #endif
2482
2483 TREE_SET_CODE (t, code);
2484
2485 TREE_TYPE (t) = type;
2486 TREE_COMPLEXITY (t) = 0;
2487 TREE_OPERAND (t, 0) = node;
2488 if (node && first_rtl_op (code) != 0)
2489 {
2490 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2491 TREE_READONLY (t) = TREE_READONLY (node);
2492 }
2493
2494 switch (code)
2495 {
2496 case INIT_EXPR:
2497 case MODIFY_EXPR:
2498 case VA_ARG_EXPR:
2499 case RTL_EXPR:
2500 case PREDECREMENT_EXPR:
2501 case PREINCREMENT_EXPR:
2502 case POSTDECREMENT_EXPR:
2503 case POSTINCREMENT_EXPR:
2504 /* All of these have side-effects, no matter what their
2505 operands are. */
2506 TREE_SIDE_EFFECTS (t) = 1;
2507 TREE_READONLY (t) = 0;
2508 break;
2509
2510 case INDIRECT_REF:
2511 /* Whether a dereference is readonly has nothing to do with whether
2512 its operand is readonly. */
2513 TREE_READONLY (t) = 0;
2514 break;
2515
2516 default:
2517 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2518 TREE_CONSTANT (t) = 1;
2519 break;
2520 }
2521
2522 return t;
2523 }
2524
2525 /* Similar except don't specify the TREE_TYPE
2526 and leave the TREE_SIDE_EFFECTS as 0.
2527 It is permissible for arguments to be null,
2528 or even garbage if their values do not matter. */
2529
2530 tree
2531 build_nt VPARAMS ((enum tree_code code, ...))
2532 {
2533 tree t;
2534 int length;
2535 int i;
2536
2537 VA_OPEN (p, code);
2538 VA_FIXEDARG (p, enum tree_code, code);
2539
2540 t = make_node (code);
2541 length = TREE_CODE_LENGTH (code);
2542
2543 for (i = 0; i < length; i++)
2544 TREE_OPERAND (t, i) = va_arg (p, tree);
2545
2546 VA_CLOSE (p);
2547 return t;
2548 }
2549 \f
2550 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2551 We do NOT enter this node in any sort of symbol table.
2552
2553 layout_decl is used to set up the decl's storage layout.
2554 Other slots are initialized to 0 or null pointers. */
2555
2556 tree
2557 build_decl (code, name, type)
2558 enum tree_code code;
2559 tree name, type;
2560 {
2561 tree t;
2562
2563 t = make_node (code);
2564
2565 /* if (type == error_mark_node)
2566 type = integer_type_node; */
2567 /* That is not done, deliberately, so that having error_mark_node
2568 as the type can suppress useless errors in the use of this variable. */
2569
2570 DECL_NAME (t) = name;
2571 TREE_TYPE (t) = type;
2572
2573 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2574 layout_decl (t, 0);
2575 else if (code == FUNCTION_DECL)
2576 DECL_MODE (t) = FUNCTION_MODE;
2577
2578 return t;
2579 }
2580 \f
2581 /* BLOCK nodes are used to represent the structure of binding contours
2582 and declarations, once those contours have been exited and their contents
2583 compiled. This information is used for outputting debugging info. */
2584
2585 tree
2586 build_block (vars, tags, subblocks, supercontext, chain)
2587 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
2588 {
2589 tree block = make_node (BLOCK);
2590
2591 BLOCK_VARS (block) = vars;
2592 BLOCK_SUBBLOCKS (block) = subblocks;
2593 BLOCK_SUPERCONTEXT (block) = supercontext;
2594 BLOCK_CHAIN (block) = chain;
2595 return block;
2596 }
2597
2598 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2599 location where an expression or an identifier were encountered. It
2600 is necessary for languages where the frontend parser will handle
2601 recursively more than one file (Java is one of them). */
2602
2603 tree
2604 build_expr_wfl (node, file, line, col)
2605 tree node;
2606 const char *file;
2607 int line, col;
2608 {
2609 static const char *last_file = 0;
2610 static tree last_filenode = NULL_TREE;
2611 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2612
2613 EXPR_WFL_NODE (wfl) = node;
2614 EXPR_WFL_SET_LINECOL (wfl, line, col);
2615 if (file != last_file)
2616 {
2617 last_file = file;
2618 last_filenode = file ? get_identifier (file) : NULL_TREE;
2619 }
2620
2621 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2622 if (node)
2623 {
2624 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2625 TREE_TYPE (wfl) = TREE_TYPE (node);
2626 }
2627
2628 return wfl;
2629 }
2630 \f
2631 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2632 is ATTRIBUTE. */
2633
2634 tree
2635 build_decl_attribute_variant (ddecl, attribute)
2636 tree ddecl, attribute;
2637 {
2638 DECL_ATTRIBUTES (ddecl) = attribute;
2639 return ddecl;
2640 }
2641
2642 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2643 is ATTRIBUTE.
2644
2645 Record such modified types already made so we don't make duplicates. */
2646
2647 tree
2648 build_type_attribute_variant (ttype, attribute)
2649 tree ttype, attribute;
2650 {
2651 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2652 {
2653 unsigned int hashcode;
2654 tree ntype;
2655
2656 ntype = copy_node (ttype);
2657
2658 TYPE_POINTER_TO (ntype) = 0;
2659 TYPE_REFERENCE_TO (ntype) = 0;
2660 TYPE_ATTRIBUTES (ntype) = attribute;
2661
2662 /* Create a new main variant of TYPE. */
2663 TYPE_MAIN_VARIANT (ntype) = ntype;
2664 TYPE_NEXT_VARIANT (ntype) = 0;
2665 set_type_quals (ntype, TYPE_UNQUALIFIED);
2666
2667 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2668 + TYPE_HASH (TREE_TYPE (ntype))
2669 + attribute_hash_list (attribute));
2670
2671 switch (TREE_CODE (ntype))
2672 {
2673 case FUNCTION_TYPE:
2674 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2675 break;
2676 case ARRAY_TYPE:
2677 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2678 break;
2679 case INTEGER_TYPE:
2680 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2681 break;
2682 case REAL_TYPE:
2683 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2684 break;
2685 default:
2686 break;
2687 }
2688
2689 ntype = type_hash_canon (hashcode, ntype);
2690 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2691 }
2692
2693 return ttype;
2694 }
2695
2696 /* Default value of targetm.comp_type_attributes that always returns 1. */
2697
2698 int
2699 default_comp_type_attributes (type1, type2)
2700 tree type1 ATTRIBUTE_UNUSED;
2701 tree type2 ATTRIBUTE_UNUSED;
2702 {
2703 return 1;
2704 }
2705
2706 /* Default version of targetm.set_default_type_attributes that always does
2707 nothing. */
2708
2709 void
2710 default_set_default_type_attributes (type)
2711 tree type ATTRIBUTE_UNUSED;
2712 {
2713 }
2714
2715 /* Default version of targetm.insert_attributes that always does nothing. */
2716 void
2717 default_insert_attributes (decl, attr_ptr)
2718 tree decl ATTRIBUTE_UNUSED;
2719 tree *attr_ptr ATTRIBUTE_UNUSED;
2720 {
2721 }
2722
2723 /* Default value of targetm.attribute_table that is empty. */
2724 const struct attribute_spec default_target_attribute_table[] =
2725 {
2726 { NULL, 0, 0, false, false, false, NULL }
2727 };
2728
2729 /* Default value of targetm.function_attribute_inlinable_p that always
2730 returns false. */
2731 bool
2732 default_function_attribute_inlinable_p (fndecl)
2733 tree fndecl ATTRIBUTE_UNUSED;
2734 {
2735 /* By default, functions with machine attributes cannot be inlined. */
2736 return false;
2737 }
2738
2739 /* Default value of targetm.ms_bitfield_layout_p that always returns
2740 false. */
2741 bool
2742 default_ms_bitfield_layout_p (record)
2743 tree record ATTRIBUTE_UNUSED;
2744 {
2745 /* By default, GCC does not use the MS VC++ bitfield layout rules. */
2746 return false;
2747 }
2748
2749 /* Return non-zero if IDENT is a valid name for attribute ATTR,
2750 or zero if not.
2751
2752 We try both `text' and `__text__', ATTR may be either one. */
2753 /* ??? It might be a reasonable simplification to require ATTR to be only
2754 `text'. One might then also require attribute lists to be stored in
2755 their canonicalized form. */
2756
2757 int
2758 is_attribute_p (attr, ident)
2759 const char *attr;
2760 tree ident;
2761 {
2762 int ident_len, attr_len;
2763 const char *p;
2764
2765 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2766 return 0;
2767
2768 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2769 return 1;
2770
2771 p = IDENTIFIER_POINTER (ident);
2772 ident_len = strlen (p);
2773 attr_len = strlen (attr);
2774
2775 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2776 if (attr[0] == '_')
2777 {
2778 if (attr[1] != '_'
2779 || attr[attr_len - 2] != '_'
2780 || attr[attr_len - 1] != '_')
2781 abort ();
2782 if (ident_len == attr_len - 4
2783 && strncmp (attr + 2, p, attr_len - 4) == 0)
2784 return 1;
2785 }
2786 else
2787 {
2788 if (ident_len == attr_len + 4
2789 && p[0] == '_' && p[1] == '_'
2790 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2791 && strncmp (attr, p + 2, attr_len) == 0)
2792 return 1;
2793 }
2794
2795 return 0;
2796 }
2797
2798 /* Given an attribute name and a list of attributes, return a pointer to the
2799 attribute's list element if the attribute is part of the list, or NULL_TREE
2800 if not found. If the attribute appears more than once, this only
2801 returns the first occurrence; the TREE_CHAIN of the return value should
2802 be passed back in if further occurrences are wanted. */
2803
2804 tree
2805 lookup_attribute (attr_name, list)
2806 const char *attr_name;
2807 tree list;
2808 {
2809 tree l;
2810
2811 for (l = list; l; l = TREE_CHAIN (l))
2812 {
2813 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2814 abort ();
2815 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2816 return l;
2817 }
2818
2819 return NULL_TREE;
2820 }
2821
2822 /* Return an attribute list that is the union of a1 and a2. */
2823
2824 tree
2825 merge_attributes (a1, a2)
2826 tree a1, a2;
2827 {
2828 tree attributes;
2829
2830 /* Either one unset? Take the set one. */
2831
2832 if ((attributes = a1) == 0)
2833 attributes = a2;
2834
2835 /* One that completely contains the other? Take it. */
2836
2837 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2838 {
2839 if (attribute_list_contained (a2, a1))
2840 attributes = a2;
2841 else
2842 {
2843 /* Pick the longest list, and hang on the other list. */
2844
2845 if (list_length (a1) < list_length (a2))
2846 attributes = a2, a2 = a1;
2847
2848 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2849 {
2850 tree a;
2851 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2852 attributes);
2853 a != NULL_TREE;
2854 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2855 TREE_CHAIN (a)))
2856 {
2857 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2858 break;
2859 }
2860 if (a == NULL_TREE)
2861 {
2862 a1 = copy_node (a2);
2863 TREE_CHAIN (a1) = attributes;
2864 attributes = a1;
2865 }
2866 }
2867 }
2868 }
2869 return attributes;
2870 }
2871
2872 /* Given types T1 and T2, merge their attributes and return
2873 the result. */
2874
2875 tree
2876 merge_type_attributes (t1, t2)
2877 tree t1, t2;
2878 {
2879 return merge_attributes (TYPE_ATTRIBUTES (t1),
2880 TYPE_ATTRIBUTES (t2));
2881 }
2882
2883 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2884 the result. */
2885
2886 tree
2887 merge_decl_attributes (olddecl, newdecl)
2888 tree olddecl, newdecl;
2889 {
2890 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2891 DECL_ATTRIBUTES (newdecl));
2892 }
2893
2894 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2895
2896 /* Specialization of merge_decl_attributes for various Windows targets.
2897
2898 This handles the following situation:
2899
2900 __declspec (dllimport) int foo;
2901 int foo;
2902
2903 The second instance of `foo' nullifies the dllimport. */
2904
2905 tree
2906 merge_dllimport_decl_attributes (old, new)
2907 tree old;
2908 tree new;
2909 {
2910 tree a;
2911 int delete_dllimport_p;
2912
2913 old = DECL_ATTRIBUTES (old);
2914 new = DECL_ATTRIBUTES (new);
2915
2916 /* What we need to do here is remove from `old' dllimport if it doesn't
2917 appear in `new'. dllimport behaves like extern: if a declaration is
2918 marked dllimport and a definition appears later, then the object
2919 is not dllimport'd. */
2920 if (lookup_attribute ("dllimport", old) != NULL_TREE
2921 && lookup_attribute ("dllimport", new) == NULL_TREE)
2922 delete_dllimport_p = 1;
2923 else
2924 delete_dllimport_p = 0;
2925
2926 a = merge_attributes (old, new);
2927
2928 if (delete_dllimport_p)
2929 {
2930 tree prev, t;
2931
2932 /* Scan the list for dllimport and delete it. */
2933 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2934 {
2935 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2936 {
2937 if (prev == NULL_TREE)
2938 a = TREE_CHAIN (a);
2939 else
2940 TREE_CHAIN (prev) = TREE_CHAIN (t);
2941 break;
2942 }
2943 }
2944 }
2945
2946 return a;
2947 }
2948
2949 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2950 \f
2951 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2952 of the various TYPE_QUAL values. */
2953
2954 static void
2955 set_type_quals (type, type_quals)
2956 tree type;
2957 int type_quals;
2958 {
2959 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2960 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2961 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2962 }
2963
2964 /* Return a version of the TYPE, qualified as indicated by the
2965 TYPE_QUALS, if one exists. If no qualified version exists yet,
2966 return NULL_TREE. */
2967
2968 tree
2969 get_qualified_type (type, type_quals)
2970 tree type;
2971 int type_quals;
2972 {
2973 tree t;
2974
2975 /* Search the chain of variants to see if there is already one there just
2976 like the one we need to have. If so, use that existing one. We must
2977 preserve the TYPE_NAME, since there is code that depends on this. */
2978 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2979 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
2980 return t;
2981
2982 return NULL_TREE;
2983 }
2984
2985 /* Like get_qualified_type, but creates the type if it does not
2986 exist. This function never returns NULL_TREE. */
2987
2988 tree
2989 build_qualified_type (type, type_quals)
2990 tree type;
2991 int type_quals;
2992 {
2993 tree t;
2994
2995 /* See if we already have the appropriate qualified variant. */
2996 t = get_qualified_type (type, type_quals);
2997
2998 /* If not, build it. */
2999 if (!t)
3000 {
3001 t = build_type_copy (type);
3002 set_type_quals (t, type_quals);
3003 }
3004
3005 return t;
3006 }
3007
3008 /* Create a new variant of TYPE, equivalent but distinct.
3009 This is so the caller can modify it. */
3010
3011 tree
3012 build_type_copy (type)
3013 tree type;
3014 {
3015 tree t, m = TYPE_MAIN_VARIANT (type);
3016
3017 t = copy_node (type);
3018
3019 TYPE_POINTER_TO (t) = 0;
3020 TYPE_REFERENCE_TO (t) = 0;
3021
3022 /* Add this type to the chain of variants of TYPE. */
3023 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3024 TYPE_NEXT_VARIANT (m) = t;
3025
3026 return t;
3027 }
3028 \f
3029 /* Hashing of types so that we don't make duplicates.
3030 The entry point is `type_hash_canon'. */
3031
3032 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3033 with types in the TREE_VALUE slots), by adding the hash codes
3034 of the individual types. */
3035
3036 unsigned int
3037 type_hash_list (list)
3038 tree list;
3039 {
3040 unsigned int hashcode;
3041 tree tail;
3042
3043 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3044 hashcode += TYPE_HASH (TREE_VALUE (tail));
3045
3046 return hashcode;
3047 }
3048
3049 /* These are the Hashtable callback functions. */
3050
3051 /* Returns true if the types are equal. */
3052
3053 static int
3054 type_hash_eq (va, vb)
3055 const void *va;
3056 const void *vb;
3057 {
3058 const struct type_hash *a = va, *b = vb;
3059 if (a->hash == b->hash
3060 && TREE_CODE (a->type) == TREE_CODE (b->type)
3061 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
3062 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3063 TYPE_ATTRIBUTES (b->type))
3064 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
3065 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3066 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3067 TYPE_MAX_VALUE (b->type)))
3068 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3069 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3070 TYPE_MIN_VALUE (b->type)))
3071 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3072 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
3073 || (TYPE_DOMAIN (a->type)
3074 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
3075 && TYPE_DOMAIN (b->type)
3076 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
3077 && type_list_equal (TYPE_DOMAIN (a->type),
3078 TYPE_DOMAIN (b->type)))))
3079 return 1;
3080 return 0;
3081 }
3082
3083 /* Return the cached hash value. */
3084
3085 static unsigned int
3086 type_hash_hash (item)
3087 const void *item;
3088 {
3089 return ((const struct type_hash *) item)->hash;
3090 }
3091
3092 /* Look in the type hash table for a type isomorphic to TYPE.
3093 If one is found, return it. Otherwise return 0. */
3094
3095 tree
3096 type_hash_lookup (hashcode, type)
3097 unsigned int hashcode;
3098 tree type;
3099 {
3100 struct type_hash *h, in;
3101
3102 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3103 must call that routine before comparing TYPE_ALIGNs. */
3104 layout_type (type);
3105
3106 in.hash = hashcode;
3107 in.type = type;
3108
3109 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3110 if (h)
3111 return h->type;
3112 return NULL_TREE;
3113 }
3114
3115 /* Add an entry to the type-hash-table
3116 for a type TYPE whose hash code is HASHCODE. */
3117
3118 void
3119 type_hash_add (hashcode, type)
3120 unsigned int hashcode;
3121 tree type;
3122 {
3123 struct type_hash *h;
3124 void **loc;
3125
3126 h = (struct type_hash *) ggc_alloc (sizeof (struct type_hash));
3127 h->hash = hashcode;
3128 h->type = type;
3129 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3130 *(struct type_hash **) loc = h;
3131 }
3132
3133 /* Given TYPE, and HASHCODE its hash code, return the canonical
3134 object for an identical type if one already exists.
3135 Otherwise, return TYPE, and record it as the canonical object
3136 if it is a permanent object.
3137
3138 To use this function, first create a type of the sort you want.
3139 Then compute its hash code from the fields of the type that
3140 make it different from other similar types.
3141 Then call this function and use the value.
3142 This function frees the type you pass in if it is a duplicate. */
3143
3144 /* Set to 1 to debug without canonicalization. Never set by program. */
3145 int debug_no_type_hash = 0;
3146
3147 tree
3148 type_hash_canon (hashcode, type)
3149 unsigned int hashcode;
3150 tree type;
3151 {
3152 tree t1;
3153
3154 if (debug_no_type_hash)
3155 return type;
3156
3157 /* See if the type is in the hash table already. If so, return it.
3158 Otherwise, add the type. */
3159 t1 = type_hash_lookup (hashcode, type);
3160 if (t1 != 0)
3161 {
3162 #ifdef GATHER_STATISTICS
3163 tree_node_counts[(int) t_kind]--;
3164 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3165 #endif
3166 return t1;
3167 }
3168 else
3169 {
3170 type_hash_add (hashcode, type);
3171 return type;
3172 }
3173 }
3174
3175 /* See if the data pointed to by the type hash table is marked. We consider
3176 it marked if the type is marked or if a debug type number or symbol
3177 table entry has been made for the type. This reduces the amount of
3178 debugging output and eliminates that dependency of the debug output on
3179 the number of garbage collections. */
3180
3181 static int
3182 type_hash_marked_p (p)
3183 const void *p;
3184 {
3185 tree type = ((struct type_hash *) p)->type;
3186
3187 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3188 }
3189
3190 /* Mark the entry in the type hash table the type it points to is marked.
3191 Also mark the type in case we are considering this entry "marked" by
3192 virtue of TYPE_SYMTAB_POINTER being set. */
3193
3194 static void
3195 type_hash_mark (p)
3196 const void *p;
3197 {
3198 ggc_mark (p);
3199 ggc_mark_tree (((struct type_hash *) p)->type);
3200 }
3201
3202 /* Mark the hashtable slot pointed to by ENTRY (which is really a
3203 `tree**') for GC. */
3204
3205 static int
3206 mark_tree_hashtable_entry (entry, data)
3207 void **entry;
3208 void *data ATTRIBUTE_UNUSED;
3209 {
3210 ggc_mark_tree ((tree) *entry);
3211 return 1;
3212 }
3213
3214 /* Mark ARG (which is really a htab_t whose slots are trees) for
3215 GC. */
3216
3217 void
3218 mark_tree_hashtable (arg)
3219 void *arg;
3220 {
3221 htab_t t = *(htab_t *) arg;
3222 htab_traverse (t, mark_tree_hashtable_entry, 0);
3223 }
3224
3225 static void
3226 print_type_hash_statistics ()
3227 {
3228 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3229 (long) htab_size (type_hash_table),
3230 (long) htab_elements (type_hash_table),
3231 htab_collisions (type_hash_table));
3232 }
3233
3234 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3235 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3236 by adding the hash codes of the individual attributes. */
3237
3238 unsigned int
3239 attribute_hash_list (list)
3240 tree list;
3241 {
3242 unsigned int hashcode;
3243 tree tail;
3244
3245 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3246 /* ??? Do we want to add in TREE_VALUE too? */
3247 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3248 return hashcode;
3249 }
3250
3251 /* Given two lists of attributes, return true if list l2 is
3252 equivalent to l1. */
3253
3254 int
3255 attribute_list_equal (l1, l2)
3256 tree l1, l2;
3257 {
3258 return attribute_list_contained (l1, l2)
3259 && attribute_list_contained (l2, l1);
3260 }
3261
3262 /* Given two lists of attributes, return true if list L2 is
3263 completely contained within L1. */
3264 /* ??? This would be faster if attribute names were stored in a canonicalized
3265 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3266 must be used to show these elements are equivalent (which they are). */
3267 /* ??? It's not clear that attributes with arguments will always be handled
3268 correctly. */
3269
3270 int
3271 attribute_list_contained (l1, l2)
3272 tree l1, l2;
3273 {
3274 tree t1, t2;
3275
3276 /* First check the obvious, maybe the lists are identical. */
3277 if (l1 == l2)
3278 return 1;
3279
3280 /* Maybe the lists are similar. */
3281 for (t1 = l1, t2 = l2;
3282 t1 != 0 && t2 != 0
3283 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3284 && TREE_VALUE (t1) == TREE_VALUE (t2);
3285 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3286
3287 /* Maybe the lists are equal. */
3288 if (t1 == 0 && t2 == 0)
3289 return 1;
3290
3291 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3292 {
3293 tree attr;
3294 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3295 attr != NULL_TREE;
3296 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3297 TREE_CHAIN (attr)))
3298 {
3299 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3300 break;
3301 }
3302
3303 if (attr == 0)
3304 return 0;
3305
3306 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3307 return 0;
3308 }
3309
3310 return 1;
3311 }
3312
3313 /* Given two lists of types
3314 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3315 return 1 if the lists contain the same types in the same order.
3316 Also, the TREE_PURPOSEs must match. */
3317
3318 int
3319 type_list_equal (l1, l2)
3320 tree l1, l2;
3321 {
3322 tree t1, t2;
3323
3324 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3325 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3326 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3327 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3328 && (TREE_TYPE (TREE_PURPOSE (t1))
3329 == TREE_TYPE (TREE_PURPOSE (t2))))))
3330 return 0;
3331
3332 return t1 == t2;
3333 }
3334
3335 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3336 given by TYPE. If the argument list accepts variable arguments,
3337 then this function counts only the ordinary arguments. */
3338
3339 int
3340 type_num_arguments (type)
3341 tree type;
3342 {
3343 int i = 0;
3344 tree t;
3345
3346 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3347 /* If the function does not take a variable number of arguments,
3348 the last element in the list will have type `void'. */
3349 if (VOID_TYPE_P (TREE_VALUE (t)))
3350 break;
3351 else
3352 ++i;
3353
3354 return i;
3355 }
3356
3357 /* Nonzero if integer constants T1 and T2
3358 represent the same constant value. */
3359
3360 int
3361 tree_int_cst_equal (t1, t2)
3362 tree t1, t2;
3363 {
3364 if (t1 == t2)
3365 return 1;
3366
3367 if (t1 == 0 || t2 == 0)
3368 return 0;
3369
3370 if (TREE_CODE (t1) == INTEGER_CST
3371 && TREE_CODE (t2) == INTEGER_CST
3372 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3373 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3374 return 1;
3375
3376 return 0;
3377 }
3378
3379 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3380 The precise way of comparison depends on their data type. */
3381
3382 int
3383 tree_int_cst_lt (t1, t2)
3384 tree t1, t2;
3385 {
3386 if (t1 == t2)
3387 return 0;
3388
3389 if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3390 return INT_CST_LT (t1, t2);
3391
3392 return INT_CST_LT_UNSIGNED (t1, t2);
3393 }
3394
3395 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3396
3397 int
3398 tree_int_cst_compare (t1, t2)
3399 tree t1;
3400 tree t2;
3401 {
3402 if (tree_int_cst_lt (t1, t2))
3403 return -1;
3404 else if (tree_int_cst_lt (t2, t1))
3405 return 1;
3406 else
3407 return 0;
3408 }
3409
3410 /* Return 1 if T is an INTEGER_CST that can be represented in a single
3411 HOST_WIDE_INT value. If POS is nonzero, the result must be positive. */
3412
3413 int
3414 host_integerp (t, pos)
3415 tree t;
3416 int pos;
3417 {
3418 return (TREE_CODE (t) == INTEGER_CST
3419 && ! TREE_OVERFLOW (t)
3420 && ((TREE_INT_CST_HIGH (t) == 0
3421 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3422 || (! pos && TREE_INT_CST_HIGH (t) == -1
3423 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
3424 || (! pos && TREE_INT_CST_HIGH (t) == 0
3425 && TREE_UNSIGNED (TREE_TYPE (t)))));
3426 }
3427
3428 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3429 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3430 be positive. Abort if we cannot satisfy the above conditions. */
3431
3432 HOST_WIDE_INT
3433 tree_low_cst (t, pos)
3434 tree t;
3435 int pos;
3436 {
3437 if (host_integerp (t, pos))
3438 return TREE_INT_CST_LOW (t);
3439 else
3440 abort ();
3441 }
3442
3443 /* Return the most significant bit of the integer constant T. */
3444
3445 int
3446 tree_int_cst_msb (t)
3447 tree t;
3448 {
3449 int prec;
3450 HOST_WIDE_INT h;
3451 unsigned HOST_WIDE_INT l;
3452
3453 /* Note that using TYPE_PRECISION here is wrong. We care about the
3454 actual bits, not the (arbitrary) range of the type. */
3455 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3456 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3457 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3458 return (l & 1) == 1;
3459 }
3460
3461 /* Return an indication of the sign of the integer constant T.
3462 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3463 Note that -1 will never be returned it T's type is unsigned. */
3464
3465 int
3466 tree_int_cst_sgn (t)
3467 tree t;
3468 {
3469 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3470 return 0;
3471 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3472 return 1;
3473 else if (TREE_INT_CST_HIGH (t) < 0)
3474 return -1;
3475 else
3476 return 1;
3477 }
3478
3479 /* Compare two constructor-element-type constants. Return 1 if the lists
3480 are known to be equal; otherwise return 0. */
3481
3482 int
3483 simple_cst_list_equal (l1, l2)
3484 tree l1, l2;
3485 {
3486 while (l1 != NULL_TREE && l2 != NULL_TREE)
3487 {
3488 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3489 return 0;
3490
3491 l1 = TREE_CHAIN (l1);
3492 l2 = TREE_CHAIN (l2);
3493 }
3494
3495 return l1 == l2;
3496 }
3497
3498 /* Return truthvalue of whether T1 is the same tree structure as T2.
3499 Return 1 if they are the same.
3500 Return 0 if they are understandably different.
3501 Return -1 if either contains tree structure not understood by
3502 this function. */
3503
3504 int
3505 simple_cst_equal (t1, t2)
3506 tree t1, t2;
3507 {
3508 enum tree_code code1, code2;
3509 int cmp;
3510 int i;
3511
3512 if (t1 == t2)
3513 return 1;
3514 if (t1 == 0 || t2 == 0)
3515 return 0;
3516
3517 code1 = TREE_CODE (t1);
3518 code2 = TREE_CODE (t2);
3519
3520 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3521 {
3522 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3523 || code2 == NON_LVALUE_EXPR)
3524 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3525 else
3526 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3527 }
3528
3529 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3530 || code2 == NON_LVALUE_EXPR)
3531 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3532
3533 if (code1 != code2)
3534 return 0;
3535
3536 switch (code1)
3537 {
3538 case INTEGER_CST:
3539 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3540 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3541
3542 case REAL_CST:
3543 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3544
3545 case STRING_CST:
3546 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3547 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3548 TREE_STRING_LENGTH (t1)));
3549
3550 case CONSTRUCTOR:
3551 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3552 return 1;
3553 else
3554 abort ();
3555
3556 case SAVE_EXPR:
3557 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3558
3559 case CALL_EXPR:
3560 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3561 if (cmp <= 0)
3562 return cmp;
3563 return
3564 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3565
3566 case TARGET_EXPR:
3567 /* Special case: if either target is an unallocated VAR_DECL,
3568 it means that it's going to be unified with whatever the
3569 TARGET_EXPR is really supposed to initialize, so treat it
3570 as being equivalent to anything. */
3571 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3572 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3573 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3574 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3575 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3576 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3577 cmp = 1;
3578 else
3579 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3580
3581 if (cmp <= 0)
3582 return cmp;
3583
3584 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3585
3586 case WITH_CLEANUP_EXPR:
3587 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3588 if (cmp <= 0)
3589 return cmp;
3590
3591 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3592
3593 case COMPONENT_REF:
3594 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3595 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3596
3597 return 0;
3598
3599 case VAR_DECL:
3600 case PARM_DECL:
3601 case CONST_DECL:
3602 case FUNCTION_DECL:
3603 return 0;
3604
3605 default:
3606 break;
3607 }
3608
3609 /* This general rule works for most tree codes. All exceptions should be
3610 handled above. If this is a language-specific tree code, we can't
3611 trust what might be in the operand, so say we don't know
3612 the situation. */
3613 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3614 return -1;
3615
3616 switch (TREE_CODE_CLASS (code1))
3617 {
3618 case '1':
3619 case '2':
3620 case '<':
3621 case 'e':
3622 case 'r':
3623 case 's':
3624 cmp = 1;
3625 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3626 {
3627 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3628 if (cmp <= 0)
3629 return cmp;
3630 }
3631
3632 return cmp;
3633
3634 default:
3635 return -1;
3636 }
3637 }
3638
3639 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3640 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3641 than U, respectively. */
3642
3643 int
3644 compare_tree_int (t, u)
3645 tree t;
3646 unsigned HOST_WIDE_INT u;
3647 {
3648 if (tree_int_cst_sgn (t) < 0)
3649 return -1;
3650 else if (TREE_INT_CST_HIGH (t) != 0)
3651 return 1;
3652 else if (TREE_INT_CST_LOW (t) == u)
3653 return 0;
3654 else if (TREE_INT_CST_LOW (t) < u)
3655 return -1;
3656 else
3657 return 1;
3658 }
3659 \f
3660 /* Constructors for pointer, array and function types.
3661 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3662 constructed by language-dependent code, not here.) */
3663
3664 /* Construct, lay out and return the type of pointers to TO_TYPE.
3665 If such a type has already been constructed, reuse it. */
3666
3667 tree
3668 build_pointer_type (to_type)
3669 tree to_type;
3670 {
3671 tree t = TYPE_POINTER_TO (to_type);
3672
3673 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3674
3675 if (t != 0)
3676 return t;
3677
3678 /* We need a new one. */
3679 t = make_node (POINTER_TYPE);
3680
3681 TREE_TYPE (t) = to_type;
3682
3683 /* Record this type as the pointer to TO_TYPE. */
3684 TYPE_POINTER_TO (to_type) = t;
3685
3686 /* Lay out the type. This function has many callers that are concerned
3687 with expression-construction, and this simplifies them all.
3688 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3689 layout_type (t);
3690
3691 return t;
3692 }
3693
3694 /* Build the node for the type of references-to-TO_TYPE. */
3695
3696 tree
3697 build_reference_type (to_type)
3698 tree to_type;
3699 {
3700 tree t = TYPE_REFERENCE_TO (to_type);
3701
3702 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3703
3704 if (t)
3705 return t;
3706
3707 /* We need a new one. */
3708 t = make_node (REFERENCE_TYPE);
3709
3710 TREE_TYPE (t) = to_type;
3711
3712 /* Record this type as the pointer to TO_TYPE. */
3713 TYPE_REFERENCE_TO (to_type) = t;
3714
3715 layout_type (t);
3716
3717 return t;
3718 }
3719
3720 /* Build a type that is compatible with t but has no cv quals anywhere
3721 in its type, thus
3722
3723 const char *const *const * -> char ***. */
3724
3725 tree
3726 build_type_no_quals (t)
3727 tree t;
3728 {
3729 switch (TREE_CODE (t))
3730 {
3731 case POINTER_TYPE:
3732 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3733 case REFERENCE_TYPE:
3734 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3735 default:
3736 return TYPE_MAIN_VARIANT (t);
3737 }
3738 }
3739
3740 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3741 MAXVAL should be the maximum value in the domain
3742 (one less than the length of the array).
3743
3744 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3745 We don't enforce this limit, that is up to caller (e.g. language front end).
3746 The limit exists because the result is a signed type and we don't handle
3747 sizes that use more than one HOST_WIDE_INT. */
3748
3749 tree
3750 build_index_type (maxval)
3751 tree maxval;
3752 {
3753 tree itype = make_node (INTEGER_TYPE);
3754
3755 TREE_TYPE (itype) = sizetype;
3756 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3757 TYPE_MIN_VALUE (itype) = size_zero_node;
3758 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3759 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3760 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3761 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3762 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3763 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3764
3765 if (host_integerp (maxval, 1))
3766 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3767 else
3768 return itype;
3769 }
3770
3771 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3772 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3773 low bound LOWVAL and high bound HIGHVAL.
3774 if TYPE==NULL_TREE, sizetype is used. */
3775
3776 tree
3777 build_range_type (type, lowval, highval)
3778 tree type, lowval, highval;
3779 {
3780 tree itype = make_node (INTEGER_TYPE);
3781
3782 TREE_TYPE (itype) = type;
3783 if (type == NULL_TREE)
3784 type = sizetype;
3785
3786 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3787 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3788
3789 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3790 TYPE_MODE (itype) = TYPE_MODE (type);
3791 TYPE_SIZE (itype) = TYPE_SIZE (type);
3792 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3793 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3794 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3795
3796 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3797 return type_hash_canon (tree_low_cst (highval, 0)
3798 - tree_low_cst (lowval, 0),
3799 itype);
3800 else
3801 return itype;
3802 }
3803
3804 /* Just like build_index_type, but takes lowval and highval instead
3805 of just highval (maxval). */
3806
3807 tree
3808 build_index_2_type (lowval, highval)
3809 tree lowval, highval;
3810 {
3811 return build_range_type (sizetype, lowval, highval);
3812 }
3813
3814 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
3815 Needed because when index types are not hashed, equal index types
3816 built at different times appear distinct, even though structurally,
3817 they are not. */
3818
3819 int
3820 index_type_equal (itype1, itype2)
3821 tree itype1, itype2;
3822 {
3823 if (TREE_CODE (itype1) != TREE_CODE (itype2))
3824 return 0;
3825
3826 if (TREE_CODE (itype1) == INTEGER_TYPE)
3827 {
3828 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
3829 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
3830 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
3831 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
3832 return 0;
3833
3834 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
3835 TYPE_MIN_VALUE (itype2))
3836 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
3837 TYPE_MAX_VALUE (itype2)))
3838 return 1;
3839 }
3840
3841 return 0;
3842 }
3843
3844 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3845 and number of elements specified by the range of values of INDEX_TYPE.
3846 If such a type has already been constructed, reuse it. */
3847
3848 tree
3849 build_array_type (elt_type, index_type)
3850 tree elt_type, index_type;
3851 {
3852 tree t;
3853 unsigned int hashcode;
3854
3855 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3856 {
3857 error ("arrays of functions are not meaningful");
3858 elt_type = integer_type_node;
3859 }
3860
3861 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3862 build_pointer_type (elt_type);
3863
3864 /* Allocate the array after the pointer type,
3865 in case we free it in type_hash_canon. */
3866 t = make_node (ARRAY_TYPE);
3867 TREE_TYPE (t) = elt_type;
3868 TYPE_DOMAIN (t) = index_type;
3869
3870 if (index_type == 0)
3871 {
3872 return t;
3873 }
3874
3875 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3876 t = type_hash_canon (hashcode, t);
3877
3878 if (!COMPLETE_TYPE_P (t))
3879 layout_type (t);
3880 return t;
3881 }
3882
3883 /* Return the TYPE of the elements comprising
3884 the innermost dimension of ARRAY. */
3885
3886 tree
3887 get_inner_array_type (array)
3888 tree array;
3889 {
3890 tree type = TREE_TYPE (array);
3891
3892 while (TREE_CODE (type) == ARRAY_TYPE)
3893 type = TREE_TYPE (type);
3894
3895 return type;
3896 }
3897
3898 /* Construct, lay out and return
3899 the type of functions returning type VALUE_TYPE
3900 given arguments of types ARG_TYPES.
3901 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3902 are data type nodes for the arguments of the function.
3903 If such a type has already been constructed, reuse it. */
3904
3905 tree
3906 build_function_type (value_type, arg_types)
3907 tree value_type, arg_types;
3908 {
3909 tree t;
3910 unsigned int hashcode;
3911
3912 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3913 {
3914 error ("function return type cannot be function");
3915 value_type = integer_type_node;
3916 }
3917
3918 /* Make a node of the sort we want. */
3919 t = make_node (FUNCTION_TYPE);
3920 TREE_TYPE (t) = value_type;
3921 TYPE_ARG_TYPES (t) = arg_types;
3922
3923 /* If we already have such a type, use the old one and free this one. */
3924 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3925 t = type_hash_canon (hashcode, t);
3926
3927 if (!COMPLETE_TYPE_P (t))
3928 layout_type (t);
3929 return t;
3930 }
3931
3932 /* Construct, lay out and return the type of methods belonging to class
3933 BASETYPE and whose arguments and values are described by TYPE.
3934 If that type exists already, reuse it.
3935 TYPE must be a FUNCTION_TYPE node. */
3936
3937 tree
3938 build_method_type (basetype, type)
3939 tree basetype, type;
3940 {
3941 tree t;
3942 unsigned int hashcode;
3943
3944 /* Make a node of the sort we want. */
3945 t = make_node (METHOD_TYPE);
3946
3947 if (TREE_CODE (type) != FUNCTION_TYPE)
3948 abort ();
3949
3950 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3951 TREE_TYPE (t) = TREE_TYPE (type);
3952
3953 /* The actual arglist for this function includes a "hidden" argument
3954 which is "this". Put it into the list of argument types. */
3955
3956 TYPE_ARG_TYPES (t)
3957 = tree_cons (NULL_TREE,
3958 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3959
3960 /* If we already have such a type, use the old one and free this one. */
3961 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3962 t = type_hash_canon (hashcode, t);
3963
3964 if (!COMPLETE_TYPE_P (t))
3965 layout_type (t);
3966
3967 return t;
3968 }
3969
3970 /* Construct, lay out and return the type of offsets to a value
3971 of type TYPE, within an object of type BASETYPE.
3972 If a suitable offset type exists already, reuse it. */
3973
3974 tree
3975 build_offset_type (basetype, type)
3976 tree basetype, type;
3977 {
3978 tree t;
3979 unsigned int hashcode;
3980
3981 /* Make a node of the sort we want. */
3982 t = make_node (OFFSET_TYPE);
3983
3984 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3985 TREE_TYPE (t) = type;
3986
3987 /* If we already have such a type, use the old one and free this one. */
3988 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3989 t = type_hash_canon (hashcode, t);
3990
3991 if (!COMPLETE_TYPE_P (t))
3992 layout_type (t);
3993
3994 return t;
3995 }
3996
3997 /* Create a complex type whose components are COMPONENT_TYPE. */
3998
3999 tree
4000 build_complex_type (component_type)
4001 tree component_type;
4002 {
4003 tree t;
4004 unsigned int hashcode;
4005
4006 /* Make a node of the sort we want. */
4007 t = make_node (COMPLEX_TYPE);
4008
4009 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4010 set_type_quals (t, TYPE_QUALS (component_type));
4011
4012 /* If we already have such a type, use the old one and free this one. */
4013 hashcode = TYPE_HASH (component_type);
4014 t = type_hash_canon (hashcode, t);
4015
4016 if (!COMPLETE_TYPE_P (t))
4017 layout_type (t);
4018
4019 /* If we are writing Dwarf2 output we need to create a name,
4020 since complex is a fundamental type. */
4021 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
4022 && ! TYPE_NAME (t))
4023 {
4024 const char *name;
4025 if (component_type == char_type_node)
4026 name = "complex char";
4027 else if (component_type == signed_char_type_node)
4028 name = "complex signed char";
4029 else if (component_type == unsigned_char_type_node)
4030 name = "complex unsigned char";
4031 else if (component_type == short_integer_type_node)
4032 name = "complex short int";
4033 else if (component_type == short_unsigned_type_node)
4034 name = "complex short unsigned int";
4035 else if (component_type == integer_type_node)
4036 name = "complex int";
4037 else if (component_type == unsigned_type_node)
4038 name = "complex unsigned int";
4039 else if (component_type == long_integer_type_node)
4040 name = "complex long int";
4041 else if (component_type == long_unsigned_type_node)
4042 name = "complex long unsigned int";
4043 else if (component_type == long_long_integer_type_node)
4044 name = "complex long long int";
4045 else if (component_type == long_long_unsigned_type_node)
4046 name = "complex long long unsigned int";
4047 else
4048 name = 0;
4049
4050 if (name != 0)
4051 TYPE_NAME (t) = get_identifier (name);
4052 }
4053
4054 return t;
4055 }
4056 \f
4057 /* Return OP, stripped of any conversions to wider types as much as is safe.
4058 Converting the value back to OP's type makes a value equivalent to OP.
4059
4060 If FOR_TYPE is nonzero, we return a value which, if converted to
4061 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4062
4063 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4064 narrowest type that can hold the value, even if they don't exactly fit.
4065 Otherwise, bit-field references are changed to a narrower type
4066 only if they can be fetched directly from memory in that type.
4067
4068 OP must have integer, real or enumeral type. Pointers are not allowed!
4069
4070 There are some cases where the obvious value we could return
4071 would regenerate to OP if converted to OP's type,
4072 but would not extend like OP to wider types.
4073 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4074 For example, if OP is (unsigned short)(signed char)-1,
4075 we avoid returning (signed char)-1 if FOR_TYPE is int,
4076 even though extending that to an unsigned short would regenerate OP,
4077 since the result of extending (signed char)-1 to (int)
4078 is different from (int) OP. */
4079
4080 tree
4081 get_unwidened (op, for_type)
4082 tree op;
4083 tree for_type;
4084 {
4085 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4086 tree type = TREE_TYPE (op);
4087 unsigned final_prec
4088 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4089 int uns
4090 = (for_type != 0 && for_type != type
4091 && final_prec > TYPE_PRECISION (type)
4092 && TREE_UNSIGNED (type));
4093 tree win = op;
4094
4095 while (TREE_CODE (op) == NOP_EXPR)
4096 {
4097 int bitschange
4098 = TYPE_PRECISION (TREE_TYPE (op))
4099 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4100
4101 /* Truncations are many-one so cannot be removed.
4102 Unless we are later going to truncate down even farther. */
4103 if (bitschange < 0
4104 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4105 break;
4106
4107 /* See what's inside this conversion. If we decide to strip it,
4108 we will set WIN. */
4109 op = TREE_OPERAND (op, 0);
4110
4111 /* If we have not stripped any zero-extensions (uns is 0),
4112 we can strip any kind of extension.
4113 If we have previously stripped a zero-extension,
4114 only zero-extensions can safely be stripped.
4115 Any extension can be stripped if the bits it would produce
4116 are all going to be discarded later by truncating to FOR_TYPE. */
4117
4118 if (bitschange > 0)
4119 {
4120 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4121 win = op;
4122 /* TREE_UNSIGNED says whether this is a zero-extension.
4123 Let's avoid computing it if it does not affect WIN
4124 and if UNS will not be needed again. */
4125 if ((uns || TREE_CODE (op) == NOP_EXPR)
4126 && TREE_UNSIGNED (TREE_TYPE (op)))
4127 {
4128 uns = 1;
4129 win = op;
4130 }
4131 }
4132 }
4133
4134 if (TREE_CODE (op) == COMPONENT_REF
4135 /* Since type_for_size always gives an integer type. */
4136 && TREE_CODE (type) != REAL_TYPE
4137 /* Don't crash if field not laid out yet. */
4138 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4139 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4140 {
4141 unsigned int innerprec
4142 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4143
4144 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4145
4146 /* We can get this structure field in the narrowest type it fits in.
4147 If FOR_TYPE is 0, do this only for a field that matches the
4148 narrower type exactly and is aligned for it
4149 The resulting extension to its nominal type (a fullword type)
4150 must fit the same conditions as for other extensions. */
4151
4152 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4153 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4154 && (! uns || final_prec <= innerprec
4155 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4156 && type != 0)
4157 {
4158 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4159 TREE_OPERAND (op, 1));
4160 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4161 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4162 }
4163 }
4164
4165 return win;
4166 }
4167 \f
4168 /* Return OP or a simpler expression for a narrower value
4169 which can be sign-extended or zero-extended to give back OP.
4170 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4171 or 0 if the value should be sign-extended. */
4172
4173 tree
4174 get_narrower (op, unsignedp_ptr)
4175 tree op;
4176 int *unsignedp_ptr;
4177 {
4178 int uns = 0;
4179 int first = 1;
4180 tree win = op;
4181
4182 while (TREE_CODE (op) == NOP_EXPR)
4183 {
4184 int bitschange
4185 = (TYPE_PRECISION (TREE_TYPE (op))
4186 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4187
4188 /* Truncations are many-one so cannot be removed. */
4189 if (bitschange < 0)
4190 break;
4191
4192 /* See what's inside this conversion. If we decide to strip it,
4193 we will set WIN. */
4194 op = TREE_OPERAND (op, 0);
4195
4196 if (bitschange > 0)
4197 {
4198 /* An extension: the outermost one can be stripped,
4199 but remember whether it is zero or sign extension. */
4200 if (first)
4201 uns = TREE_UNSIGNED (TREE_TYPE (op));
4202 /* Otherwise, if a sign extension has been stripped,
4203 only sign extensions can now be stripped;
4204 if a zero extension has been stripped, only zero-extensions. */
4205 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4206 break;
4207 first = 0;
4208 }
4209 else /* bitschange == 0 */
4210 {
4211 /* A change in nominal type can always be stripped, but we must
4212 preserve the unsignedness. */
4213 if (first)
4214 uns = TREE_UNSIGNED (TREE_TYPE (op));
4215 first = 0;
4216 }
4217
4218 win = op;
4219 }
4220
4221 if (TREE_CODE (op) == COMPONENT_REF
4222 /* Since type_for_size always gives an integer type. */
4223 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4224 /* Ensure field is laid out already. */
4225 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4226 {
4227 unsigned HOST_WIDE_INT innerprec
4228 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4229 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4230
4231 /* We can get this structure field in a narrower type that fits it,
4232 but the resulting extension to its nominal type (a fullword type)
4233 must satisfy the same conditions as for other extensions.
4234
4235 Do this only for fields that are aligned (not bit-fields),
4236 because when bit-field insns will be used there is no
4237 advantage in doing this. */
4238
4239 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4240 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4241 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4242 && type != 0)
4243 {
4244 if (first)
4245 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4246 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4247 TREE_OPERAND (op, 1));
4248 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4249 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4250 }
4251 }
4252 *unsignedp_ptr = uns;
4253 return win;
4254 }
4255 \f
4256 /* Nonzero if integer constant C has a value that is permissible
4257 for type TYPE (an INTEGER_TYPE). */
4258
4259 int
4260 int_fits_type_p (c, type)
4261 tree c, type;
4262 {
4263 /* If the bounds of the type are integers, we can check ourselves.
4264 If not, but this type is a subtype, try checking against that.
4265 Otherwise, use force_fit_type, which checks against the precision. */
4266 if (TYPE_MAX_VALUE (type) != NULL_TREE
4267 && TYPE_MIN_VALUE (type) != NULL_TREE
4268 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4269 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
4270 {
4271 if (TREE_UNSIGNED (type))
4272 return (! INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
4273 && ! INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
4274 /* Negative ints never fit unsigned types. */
4275 && ! (TREE_INT_CST_HIGH (c) < 0
4276 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4277 else
4278 return (! INT_CST_LT (TYPE_MAX_VALUE (type), c)
4279 && ! INT_CST_LT (c, TYPE_MIN_VALUE (type))
4280 /* Unsigned ints with top bit set never fit signed types. */
4281 && ! (TREE_INT_CST_HIGH (c) < 0
4282 && TREE_UNSIGNED (TREE_TYPE (c))));
4283 }
4284 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4285 return int_fits_type_p (c, TREE_TYPE (type));
4286 else
4287 {
4288 c = copy_node (c);
4289 TREE_TYPE (c) = type;
4290 return !force_fit_type (c, 0);
4291 }
4292 }
4293
4294 /* Given a DECL or TYPE, return the scope in which it was declared, or
4295 NULL_TREE if there is no containing scope. */
4296
4297 tree
4298 get_containing_scope (t)
4299 tree t;
4300 {
4301 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4302 }
4303
4304 /* Return the innermost context enclosing DECL that is
4305 a FUNCTION_DECL, or zero if none. */
4306
4307 tree
4308 decl_function_context (decl)
4309 tree decl;
4310 {
4311 tree context;
4312
4313 if (TREE_CODE (decl) == ERROR_MARK)
4314 return 0;
4315
4316 if (TREE_CODE (decl) == SAVE_EXPR)
4317 context = SAVE_EXPR_CONTEXT (decl);
4318
4319 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4320 where we look up the function at runtime. Such functions always take
4321 a first argument of type 'pointer to real context'.
4322
4323 C++ should really be fixed to use DECL_CONTEXT for the real context,
4324 and use something else for the "virtual context". */
4325 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4326 context
4327 = TYPE_MAIN_VARIANT
4328 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4329 else
4330 context = DECL_CONTEXT (decl);
4331
4332 while (context && TREE_CODE (context) != FUNCTION_DECL)
4333 {
4334 if (TREE_CODE (context) == BLOCK)
4335 context = BLOCK_SUPERCONTEXT (context);
4336 else
4337 context = get_containing_scope (context);
4338 }
4339
4340 return context;
4341 }
4342
4343 /* Return the innermost context enclosing DECL that is
4344 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4345 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4346
4347 tree
4348 decl_type_context (decl)
4349 tree decl;
4350 {
4351 tree context = DECL_CONTEXT (decl);
4352
4353 while (context)
4354 {
4355 if (TREE_CODE (context) == RECORD_TYPE
4356 || TREE_CODE (context) == UNION_TYPE
4357 || TREE_CODE (context) == QUAL_UNION_TYPE)
4358 return context;
4359
4360 if (TREE_CODE (context) == TYPE_DECL
4361 || TREE_CODE (context) == FUNCTION_DECL)
4362 context = DECL_CONTEXT (context);
4363
4364 else if (TREE_CODE (context) == BLOCK)
4365 context = BLOCK_SUPERCONTEXT (context);
4366
4367 else
4368 /* Unhandled CONTEXT!? */
4369 abort ();
4370 }
4371 return NULL_TREE;
4372 }
4373
4374 /* CALL is a CALL_EXPR. Return the declaration for the function
4375 called, or NULL_TREE if the called function cannot be
4376 determined. */
4377
4378 tree
4379 get_callee_fndecl (call)
4380 tree call;
4381 {
4382 tree addr;
4383
4384 /* It's invalid to call this function with anything but a
4385 CALL_EXPR. */
4386 if (TREE_CODE (call) != CALL_EXPR)
4387 abort ();
4388
4389 /* The first operand to the CALL is the address of the function
4390 called. */
4391 addr = TREE_OPERAND (call, 0);
4392
4393 STRIP_NOPS (addr);
4394
4395 /* If this is a readonly function pointer, extract its initial value. */
4396 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4397 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4398 && DECL_INITIAL (addr))
4399 addr = DECL_INITIAL (addr);
4400
4401 /* If the address is just `&f' for some function `f', then we know
4402 that `f' is being called. */
4403 if (TREE_CODE (addr) == ADDR_EXPR
4404 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4405 return TREE_OPERAND (addr, 0);
4406
4407 /* We couldn't figure out what was being called. */
4408 return NULL_TREE;
4409 }
4410
4411 /* Print debugging information about the obstack O, named STR. */
4412
4413 void
4414 print_obstack_statistics (str, o)
4415 const char *str;
4416 struct obstack *o;
4417 {
4418 struct _obstack_chunk *chunk = o->chunk;
4419 int n_chunks = 1;
4420 int n_alloc = 0;
4421
4422 n_alloc += o->next_free - chunk->contents;
4423 chunk = chunk->prev;
4424 while (chunk)
4425 {
4426 n_chunks += 1;
4427 n_alloc += chunk->limit - &chunk->contents[0];
4428 chunk = chunk->prev;
4429 }
4430 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4431 str, n_alloc, n_chunks);
4432 }
4433
4434 /* Print debugging information about tree nodes generated during the compile,
4435 and any language-specific information. */
4436
4437 void
4438 dump_tree_statistics ()
4439 {
4440 #ifdef GATHER_STATISTICS
4441 int i;
4442 int total_nodes, total_bytes;
4443 #endif
4444
4445 fprintf (stderr, "\n??? tree nodes created\n\n");
4446 #ifdef GATHER_STATISTICS
4447 fprintf (stderr, "Kind Nodes Bytes\n");
4448 fprintf (stderr, "-------------------------------------\n");
4449 total_nodes = total_bytes = 0;
4450 for (i = 0; i < (int) all_kinds; i++)
4451 {
4452 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4453 tree_node_counts[i], tree_node_sizes[i]);
4454 total_nodes += tree_node_counts[i];
4455 total_bytes += tree_node_sizes[i];
4456 }
4457 fprintf (stderr, "-------------------------------------\n");
4458 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4459 fprintf (stderr, "-------------------------------------\n");
4460 #else
4461 fprintf (stderr, "(No per-node statistics)\n");
4462 #endif
4463 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4464 print_type_hash_statistics ();
4465 (*lang_hooks.print_statistics) ();
4466 }
4467 \f
4468 #define FILE_FUNCTION_PREFIX_LEN 9
4469
4470 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4471
4472 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4473 clashes in cases where we can't reliably choose a unique name.
4474
4475 Derived from mkstemp.c in libiberty. */
4476
4477 static void
4478 append_random_chars (template)
4479 char *template;
4480 {
4481 static const char letters[]
4482 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4483 static unsigned HOST_WIDE_INT value;
4484 unsigned HOST_WIDE_INT v;
4485
4486 if (! value)
4487 {
4488 struct stat st;
4489
4490 /* VALUE should be unique for each file and must not change between
4491 compiles since this can cause bootstrap comparison errors. */
4492
4493 if (stat (main_input_filename, &st) < 0)
4494 abort ();
4495
4496 /* In VMS, ino is an array, so we have to use both values. We
4497 conditionalize that. */
4498 #ifdef VMS
4499 #define INO_TO_INT(INO) ((int) (INO)[1] << 16 ^ (int) (INO)[2])
4500 #else
4501 #define INO_TO_INT(INO) INO
4502 #endif
4503 value = st.st_dev ^ INO_TO_INT (st.st_ino) ^ st.st_mtime;
4504 }
4505
4506 template += strlen (template);
4507
4508 v = value;
4509
4510 /* Fill in the random bits. */
4511 template[0] = letters[v % 62];
4512 v /= 62;
4513 template[1] = letters[v % 62];
4514 v /= 62;
4515 template[2] = letters[v % 62];
4516 v /= 62;
4517 template[3] = letters[v % 62];
4518 v /= 62;
4519 template[4] = letters[v % 62];
4520 v /= 62;
4521 template[5] = letters[v % 62];
4522
4523 template[6] = '\0';
4524 }
4525
4526 /* P is a string that will be used in a symbol. Mask out any characters
4527 that are not valid in that context. */
4528
4529 void
4530 clean_symbol_name (p)
4531 char *p;
4532 {
4533 for (; *p; p++)
4534 if (! (ISALNUM (*p)
4535 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4536 || *p == '$'
4537 #endif
4538 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4539 || *p == '.'
4540 #endif
4541 ))
4542 *p = '_';
4543 }
4544
4545 /* Generate a name for a function unique to this translation unit.
4546 TYPE is some string to identify the purpose of this function to the
4547 linker or collect2. */
4548
4549 tree
4550 get_file_function_name_long (type)
4551 const char *type;
4552 {
4553 char *buf;
4554 const char *p;
4555 char *q;
4556
4557 if (first_global_object_name)
4558 p = first_global_object_name;
4559 else
4560 {
4561 /* We don't have anything that we know to be unique to this translation
4562 unit, so use what we do have and throw in some randomness. */
4563
4564 const char *name = weak_global_object_name;
4565 const char *file = main_input_filename;
4566
4567 if (! name)
4568 name = "";
4569 if (! file)
4570 file = input_filename;
4571
4572 q = (char *) alloca (7 + strlen (name) + strlen (file));
4573
4574 sprintf (q, "%s%s", name, file);
4575 append_random_chars (q);
4576 p = q;
4577 }
4578
4579 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4580 + strlen (type));
4581
4582 /* Set up the name of the file-level functions we may need.
4583 Use a global object (which is already required to be unique over
4584 the program) rather than the file name (which imposes extra
4585 constraints). */
4586 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4587
4588 /* Don't need to pull weird characters out of global names. */
4589 if (p != first_global_object_name)
4590 clean_symbol_name (buf + 11);
4591
4592 return get_identifier (buf);
4593 }
4594
4595 /* If KIND=='I', return a suitable global initializer (constructor) name.
4596 If KIND=='D', return a suitable global clean-up (destructor) name. */
4597
4598 tree
4599 get_file_function_name (kind)
4600 int kind;
4601 {
4602 char p[2];
4603
4604 p[0] = kind;
4605 p[1] = 0;
4606
4607 return get_file_function_name_long (p);
4608 }
4609 \f
4610 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4611 The result is placed in BUFFER (which has length BIT_SIZE),
4612 with one bit in each char ('\000' or '\001').
4613
4614 If the constructor is constant, NULL_TREE is returned.
4615 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4616
4617 tree
4618 get_set_constructor_bits (init, buffer, bit_size)
4619 tree init;
4620 char *buffer;
4621 int bit_size;
4622 {
4623 int i;
4624 tree vals;
4625 HOST_WIDE_INT domain_min
4626 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4627 tree non_const_bits = NULL_TREE;
4628
4629 for (i = 0; i < bit_size; i++)
4630 buffer[i] = 0;
4631
4632 for (vals = TREE_OPERAND (init, 1);
4633 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4634 {
4635 if (!host_integerp (TREE_VALUE (vals), 0)
4636 || (TREE_PURPOSE (vals) != NULL_TREE
4637 && !host_integerp (TREE_PURPOSE (vals), 0)))
4638 non_const_bits
4639 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4640 else if (TREE_PURPOSE (vals) != NULL_TREE)
4641 {
4642 /* Set a range of bits to ones. */
4643 HOST_WIDE_INT lo_index
4644 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4645 HOST_WIDE_INT hi_index
4646 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4647
4648 if (lo_index < 0 || lo_index >= bit_size
4649 || hi_index < 0 || hi_index >= bit_size)
4650 abort ();
4651 for (; lo_index <= hi_index; lo_index++)
4652 buffer[lo_index] = 1;
4653 }
4654 else
4655 {
4656 /* Set a single bit to one. */
4657 HOST_WIDE_INT index
4658 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4659 if (index < 0 || index >= bit_size)
4660 {
4661 error ("invalid initializer for bit string");
4662 return NULL_TREE;
4663 }
4664 buffer[index] = 1;
4665 }
4666 }
4667 return non_const_bits;
4668 }
4669
4670 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4671 The result is placed in BUFFER (which is an array of bytes).
4672 If the constructor is constant, NULL_TREE is returned.
4673 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4674
4675 tree
4676 get_set_constructor_bytes (init, buffer, wd_size)
4677 tree init;
4678 unsigned char *buffer;
4679 int wd_size;
4680 {
4681 int i;
4682 int set_word_size = BITS_PER_UNIT;
4683 int bit_size = wd_size * set_word_size;
4684 int bit_pos = 0;
4685 unsigned char *bytep = buffer;
4686 char *bit_buffer = (char *) alloca (bit_size);
4687 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4688
4689 for (i = 0; i < wd_size; i++)
4690 buffer[i] = 0;
4691
4692 for (i = 0; i < bit_size; i++)
4693 {
4694 if (bit_buffer[i])
4695 {
4696 if (BYTES_BIG_ENDIAN)
4697 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4698 else
4699 *bytep |= 1 << bit_pos;
4700 }
4701 bit_pos++;
4702 if (bit_pos >= set_word_size)
4703 bit_pos = 0, bytep++;
4704 }
4705 return non_const_bits;
4706 }
4707 \f
4708 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4709 /* Complain that the tree code of NODE does not match the expected CODE.
4710 FILE, LINE, and FUNCTION are of the caller. */
4711
4712 void
4713 tree_check_failed (node, code, file, line, function)
4714 const tree node;
4715 enum tree_code code;
4716 const char *file;
4717 int line;
4718 const char *function;
4719 {
4720 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4721 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4722 function, trim_filename (file), line);
4723 }
4724
4725 /* Similar to above, except that we check for a class of tree
4726 code, given in CL. */
4727
4728 void
4729 tree_class_check_failed (node, cl, file, line, function)
4730 const tree node;
4731 int cl;
4732 const char *file;
4733 int line;
4734 const char *function;
4735 {
4736 internal_error
4737 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4738 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4739 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4740 }
4741
4742 #endif /* ENABLE_TREE_CHECKING */
4743 \f
4744 /* For a new vector type node T, build the information necessary for
4745 debuggint output. */
4746
4747 static void
4748 finish_vector_type (t)
4749 tree t;
4750 {
4751 layout_type (t);
4752
4753 {
4754 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4755 tree array = build_array_type (TREE_TYPE (t),
4756 build_index_type (index));
4757 tree rt = make_node (RECORD_TYPE);
4758
4759 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4760 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4761 layout_type (rt);
4762 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4763 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4764 the representation type, and we want to find that die when looking up
4765 the vector type. This is most easily achieved by making the TYPE_UID
4766 numbers equal. */
4767 TYPE_UID (rt) = TYPE_UID (t);
4768 }
4769 }
4770
4771 /* Create nodes for all integer types (and error_mark_node) using the sizes
4772 of C datatypes. The caller should call set_sizetype soon after calling
4773 this function to select one of the types as sizetype. */
4774
4775 void
4776 build_common_tree_nodes (signed_char)
4777 int signed_char;
4778 {
4779 error_mark_node = make_node (ERROR_MARK);
4780 TREE_TYPE (error_mark_node) = error_mark_node;
4781
4782 initialize_sizetypes ();
4783
4784 /* Define both `signed char' and `unsigned char'. */
4785 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4786 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4787
4788 /* Define `char', which is like either `signed char' or `unsigned char'
4789 but not the same as either. */
4790 char_type_node
4791 = (signed_char
4792 ? make_signed_type (CHAR_TYPE_SIZE)
4793 : make_unsigned_type (CHAR_TYPE_SIZE));
4794
4795 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4796 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4797 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4798 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4799 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4800 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4801 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4802 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4803
4804 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4805 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4806 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4807 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4808 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4809
4810 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4811 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4812 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4813 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4814 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4815 }
4816
4817 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4818 It will create several other common tree nodes. */
4819
4820 void
4821 build_common_tree_nodes_2 (short_double)
4822 int short_double;
4823 {
4824 /* Define these next since types below may used them. */
4825 integer_zero_node = build_int_2 (0, 0);
4826 integer_one_node = build_int_2 (1, 0);
4827 integer_minus_one_node = build_int_2 (-1, -1);
4828
4829 size_zero_node = size_int (0);
4830 size_one_node = size_int (1);
4831 bitsize_zero_node = bitsize_int (0);
4832 bitsize_one_node = bitsize_int (1);
4833 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4834
4835 void_type_node = make_node (VOID_TYPE);
4836 layout_type (void_type_node);
4837
4838 /* We are not going to have real types in C with less than byte alignment,
4839 so we might as well not have any types that claim to have it. */
4840 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4841 TYPE_USER_ALIGN (void_type_node) = 0;
4842
4843 null_pointer_node = build_int_2 (0, 0);
4844 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4845 layout_type (TREE_TYPE (null_pointer_node));
4846
4847 ptr_type_node = build_pointer_type (void_type_node);
4848 const_ptr_type_node
4849 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4850
4851 float_type_node = make_node (REAL_TYPE);
4852 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4853 layout_type (float_type_node);
4854
4855 double_type_node = make_node (REAL_TYPE);
4856 if (short_double)
4857 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4858 else
4859 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4860 layout_type (double_type_node);
4861
4862 long_double_type_node = make_node (REAL_TYPE);
4863 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4864 layout_type (long_double_type_node);
4865
4866 complex_integer_type_node = make_node (COMPLEX_TYPE);
4867 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4868 layout_type (complex_integer_type_node);
4869
4870 complex_float_type_node = make_node (COMPLEX_TYPE);
4871 TREE_TYPE (complex_float_type_node) = float_type_node;
4872 layout_type (complex_float_type_node);
4873
4874 complex_double_type_node = make_node (COMPLEX_TYPE);
4875 TREE_TYPE (complex_double_type_node) = double_type_node;
4876 layout_type (complex_double_type_node);
4877
4878 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4879 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4880 layout_type (complex_long_double_type_node);
4881
4882 {
4883 tree t;
4884 BUILD_VA_LIST_TYPE (t);
4885
4886 /* Many back-ends define record types without seting TYPE_NAME.
4887 If we copied the record type here, we'd keep the original
4888 record type without a name. This breaks name mangling. So,
4889 don't copy record types and let c_common_nodes_and_builtins()
4890 declare the type to be __builtin_va_list. */
4891 if (TREE_CODE (t) != RECORD_TYPE)
4892 t = build_type_copy (t);
4893
4894 va_list_type_node = t;
4895 }
4896
4897 unsigned_V4SI_type_node
4898 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
4899 unsigned_V2SI_type_node
4900 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
4901 unsigned_V4HI_type_node
4902 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
4903 unsigned_V8QI_type_node
4904 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
4905 unsigned_V8HI_type_node
4906 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
4907 unsigned_V16QI_type_node
4908 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
4909
4910 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
4911 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
4912 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
4913 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
4914 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
4915 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
4916 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
4917 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
4918 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
4919 }
4920
4921 /* Returns a vector tree node given a vector mode, the inner type, and
4922 the signness. */
4923
4924 static tree
4925 make_vector (mode, innertype, unsignedp)
4926 enum machine_mode mode;
4927 tree innertype;
4928 int unsignedp;
4929 {
4930 tree t;
4931
4932 t = make_node (VECTOR_TYPE);
4933 TREE_TYPE (t) = innertype;
4934 TYPE_MODE (t) = mode;
4935 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
4936 finish_vector_type (t);
4937
4938 return t;
4939 }