* config/mips/mips.c (mips_got_alias_set): Mark for PCH.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48
49 /* obstack.[ch] explicitly declined to prototype this. */
50 extern int _obstack_allocated_p (struct obstack *h, void *obj);
51
52 #ifdef GATHER_STATISTICS
53 /* Statistics-gathering stuff. */
54
55 int tree_node_counts[(int) all_kinds];
56 int tree_node_sizes[(int) all_kinds];
57
58 /* Keep in sync with tree.h:enum tree_node_kind. */
59 static const char * const tree_node_kind_names[] = {
60 "decls",
61 "types",
62 "blocks",
63 "stmts",
64 "refs",
65 "exprs",
66 "constants",
67 "identifiers",
68 "perm_tree_lists",
69 "temp_tree_lists",
70 "vecs",
71 "random kinds",
72 "lang_decl kinds",
73 "lang_type kinds"
74 };
75 #endif /* GATHER_STATISTICS */
76
77 /* Unique id for next decl created. */
78 static GTY(()) int next_decl_uid;
79 /* Unique id for next type created. */
80 static GTY(()) int next_type_uid = 1;
81
82 /* Since we cannot rehash a type after it is in the table, we have to
83 keep the hash code. */
84
85 struct type_hash GTY(())
86 {
87 unsigned long hash;
88 tree type;
89 };
90
91 /* Initial size of the hash table (rounded to next prime). */
92 #define TYPE_HASH_INITIAL_SIZE 1000
93
94 /* Now here is the hash table. When recording a type, it is added to
95 the slot whose index is the hash code. Note that the hash table is
96 used for several kinds of types (function types, array types and
97 array index range types, for now). While all these live in the
98 same table, they are completely independent, and the hash code is
99 computed differently for each of these. */
100
101 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
102 htab_t type_hash_table;
103
104 static void set_type_quals (tree, int);
105 static int type_hash_eq (const void *, const void *);
106 static hashval_t type_hash_hash (const void *);
107 static void print_type_hash_statistics (void);
108 static void finish_vector_type (tree);
109 static tree make_vector (enum machine_mode, tree, int);
110 static int type_hash_marked_p (const void *);
111
112 tree global_trees[TI_MAX];
113 tree integer_types[itk_none];
114 \f
115 /* Init tree.c. */
116
117 void
118 init_ttree (void)
119 {
120 /* Initialize the hash table of types. */
121 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
122 type_hash_eq, 0);
123 }
124
125 \f
126 /* The name of the object as the assembler will see it (but before any
127 translations made by ASM_OUTPUT_LABELREF). Often this is the same
128 as DECL_NAME. It is an IDENTIFIER_NODE. */
129 tree
130 decl_assembler_name (tree decl)
131 {
132 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
133 (*lang_hooks.set_decl_assembler_name) (decl);
134 return DECL_CHECK (decl)->decl.assembler_name;
135 }
136
137 /* Compute the number of bytes occupied by 'node'. This routine only
138 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
139 size_t
140 tree_size (tree node)
141 {
142 enum tree_code code = TREE_CODE (node);
143
144 switch (TREE_CODE_CLASS (code))
145 {
146 case 'd': /* A decl node */
147 return sizeof (struct tree_decl);
148
149 case 't': /* a type node */
150 return sizeof (struct tree_type);
151
152 case 'b': /* a lexical block node */
153 return sizeof (struct tree_block);
154
155 case 'r': /* a reference */
156 case 'e': /* an expression */
157 case 's': /* an expression with side effects */
158 case '<': /* a comparison expression */
159 case '1': /* a unary arithmetic expression */
160 case '2': /* a binary arithmetic expression */
161 return (sizeof (struct tree_exp)
162 + TREE_CODE_LENGTH (code) * sizeof (char *) - sizeof (char *));
163
164 case 'c': /* a constant */
165 switch (code)
166 {
167 case INTEGER_CST: return sizeof (struct tree_int_cst);
168 case REAL_CST: return sizeof (struct tree_real_cst);
169 case COMPLEX_CST: return sizeof (struct tree_complex);
170 case VECTOR_CST: return sizeof (struct tree_vector);
171 case STRING_CST:
172 return sizeof (struct tree_string) + TREE_STRING_LENGTH (node);
173 default:
174 return (*lang_hooks.tree_size) (code);
175 }
176
177 case 'x': /* something random, like an identifier. */
178 switch (code)
179 {
180 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
181 case TREE_LIST: return sizeof (struct tree_list);
182 case TREE_VEC: return (sizeof (struct tree_vec)
183 + TREE_VEC_LENGTH(node) * sizeof(char *)
184 - sizeof (char *));
185
186 case ERROR_MARK:
187 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
188
189 default:
190 return (*lang_hooks.tree_size) (code);
191 }
192
193 default:
194 abort ();
195 }
196 }
197
198 /* Return a newly allocated node of code CODE.
199 For decl and type nodes, some other fields are initialized.
200 The rest of the node is initialized to zero.
201
202 Achoo! I got a code in the node. */
203
204 tree
205 make_node (enum tree_code code)
206 {
207 tree t;
208 int type = TREE_CODE_CLASS (code);
209 size_t length;
210 #ifdef GATHER_STATISTICS
211 tree_node_kind kind;
212 #endif
213 struct tree_common ttmp;
214
215 /* We can't allocate a TREE_VEC without knowing how many elements
216 it will have; likewise a STRING_CST without knowing the length. */
217 if (code == TREE_VEC || code == STRING_CST)
218 abort ();
219
220 TREE_SET_CODE ((tree)&ttmp, code);
221 length = tree_size ((tree)&ttmp);
222
223 #ifdef GATHER_STATISTICS
224 switch (type)
225 {
226 case 'd': /* A decl node */
227 kind = d_kind;
228 break;
229
230 case 't': /* a type node */
231 kind = t_kind;
232 break;
233
234 case 'b': /* a lexical block */
235 kind = b_kind;
236 break;
237
238 case 's': /* an expression with side effects */
239 kind = s_kind;
240 break;
241
242 case 'r': /* a reference */
243 kind = r_kind;
244 break;
245
246 case 'e': /* an expression */
247 case '<': /* a comparison expression */
248 case '1': /* a unary arithmetic expression */
249 case '2': /* a binary arithmetic expression */
250 kind = e_kind;
251 break;
252
253 case 'c': /* a constant */
254 kind = c_kind;
255 break;
256
257 case 'x': /* something random, like an identifier. */
258 if (code == IDENTIFIER_NODE)
259 kind = id_kind;
260 else if (code == TREE_VEC)
261 kind = vec_kind;
262 else
263 kind = x_kind;
264 break;
265
266 default:
267 abort ();
268 }
269
270 tree_node_counts[(int) kind]++;
271 tree_node_sizes[(int) kind] += length;
272 #endif
273
274 t = ggc_alloc_tree (length);
275
276 memset (t, 0, length);
277
278 TREE_SET_CODE (t, code);
279
280 switch (type)
281 {
282 case 's':
283 TREE_SIDE_EFFECTS (t) = 1;
284 break;
285
286 case 'd':
287 if (code != FUNCTION_DECL)
288 DECL_ALIGN (t) = 1;
289 DECL_USER_ALIGN (t) = 0;
290 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
291 DECL_SOURCE_LOCATION (t) = input_location;
292 DECL_UID (t) = next_decl_uid++;
293
294 /* We have not yet computed the alias set for this declaration. */
295 DECL_POINTER_ALIAS_SET (t) = -1;
296 break;
297
298 case 't':
299 TYPE_UID (t) = next_type_uid++;
300 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
301 TYPE_USER_ALIGN (t) = 0;
302 TYPE_MAIN_VARIANT (t) = t;
303
304 /* Default to no attributes for type, but let target change that. */
305 TYPE_ATTRIBUTES (t) = NULL_TREE;
306 (*targetm.set_default_type_attributes) (t);
307
308 /* We have not yet computed the alias set for this type. */
309 TYPE_ALIAS_SET (t) = -1;
310 break;
311
312 case 'c':
313 TREE_CONSTANT (t) = 1;
314 break;
315
316 case 'e':
317 switch (code)
318 {
319 case INIT_EXPR:
320 case MODIFY_EXPR:
321 case VA_ARG_EXPR:
322 case RTL_EXPR:
323 case PREDECREMENT_EXPR:
324 case PREINCREMENT_EXPR:
325 case POSTDECREMENT_EXPR:
326 case POSTINCREMENT_EXPR:
327 /* All of these have side-effects, no matter what their
328 operands are. */
329 TREE_SIDE_EFFECTS (t) = 1;
330 break;
331
332 default:
333 break;
334 }
335 break;
336 }
337
338 return t;
339 }
340 \f
341 /* Return a new node with the same contents as NODE except that its
342 TREE_CHAIN is zero and it has a fresh uid. */
343
344 tree
345 copy_node (tree node)
346 {
347 tree t;
348 enum tree_code code = TREE_CODE (node);
349 size_t length;
350
351 length = tree_size (node);
352 t = ggc_alloc_tree (length);
353 memcpy (t, node, length);
354
355 TREE_CHAIN (t) = 0;
356 TREE_ASM_WRITTEN (t) = 0;
357
358 if (TREE_CODE_CLASS (code) == 'd')
359 DECL_UID (t) = next_decl_uid++;
360 else if (TREE_CODE_CLASS (code) == 't')
361 {
362 TYPE_UID (t) = next_type_uid++;
363 /* The following is so that the debug code for
364 the copy is different from the original type.
365 The two statements usually duplicate each other
366 (because they clear fields of the same union),
367 but the optimizer should catch that. */
368 TYPE_SYMTAB_POINTER (t) = 0;
369 TYPE_SYMTAB_ADDRESS (t) = 0;
370 }
371
372 return t;
373 }
374
375 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
376 For example, this can copy a list made of TREE_LIST nodes. */
377
378 tree
379 copy_list (tree list)
380 {
381 tree head;
382 tree prev, next;
383
384 if (list == 0)
385 return 0;
386
387 head = prev = copy_node (list);
388 next = TREE_CHAIN (list);
389 while (next)
390 {
391 TREE_CHAIN (prev) = copy_node (next);
392 prev = TREE_CHAIN (prev);
393 next = TREE_CHAIN (next);
394 }
395 return head;
396 }
397
398 \f
399 /* Return a newly constructed INTEGER_CST node whose constant value
400 is specified by the two ints LOW and HI.
401 The TREE_TYPE is set to `int'.
402
403 This function should be used via the `build_int_2' macro. */
404
405 tree
406 build_int_2_wide (unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
407 {
408 tree t = make_node (INTEGER_CST);
409
410 TREE_INT_CST_LOW (t) = low;
411 TREE_INT_CST_HIGH (t) = hi;
412 TREE_TYPE (t) = integer_type_node;
413 return t;
414 }
415
416 /* Return a new VECTOR_CST node whose type is TYPE and whose values
417 are in a list pointed by VALS. */
418
419 tree
420 build_vector (tree type, tree vals)
421 {
422 tree v = make_node (VECTOR_CST);
423 int over1 = 0, over2 = 0;
424 tree link;
425
426 TREE_VECTOR_CST_ELTS (v) = vals;
427 TREE_TYPE (v) = type;
428
429 /* Iterate through elements and check for overflow. */
430 for (link = vals; link; link = TREE_CHAIN (link))
431 {
432 tree value = TREE_VALUE (link);
433
434 over1 |= TREE_OVERFLOW (value);
435 over2 |= TREE_CONSTANT_OVERFLOW (value);
436 }
437
438 TREE_OVERFLOW (v) = over1;
439 TREE_CONSTANT_OVERFLOW (v) = over2;
440
441 return v;
442 }
443
444 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
445 are in a list pointed to by VALS. */
446 tree
447 build_constructor (tree type, tree vals)
448 {
449 tree c = make_node (CONSTRUCTOR);
450 TREE_TYPE (c) = type;
451 CONSTRUCTOR_ELTS (c) = vals;
452
453 /* ??? May not be necessary. Mirrors what build does. */
454 if (vals)
455 {
456 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
457 TREE_READONLY (c) = TREE_READONLY (vals);
458 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
459 }
460 else
461 TREE_CONSTANT (c) = 0; /* safe side */
462
463 return c;
464 }
465
466 /* Return a new REAL_CST node whose type is TYPE and value is D. */
467
468 tree
469 build_real (tree type, REAL_VALUE_TYPE d)
470 {
471 tree v;
472 REAL_VALUE_TYPE *dp;
473 int overflow = 0;
474
475 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
476 Consider doing it via real_convert now. */
477
478 v = make_node (REAL_CST);
479 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
480 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
481
482 TREE_TYPE (v) = type;
483 TREE_REAL_CST_PTR (v) = dp;
484 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
485 return v;
486 }
487
488 /* Return a new REAL_CST node whose type is TYPE
489 and whose value is the integer value of the INTEGER_CST node I. */
490
491 REAL_VALUE_TYPE
492 real_value_from_int_cst (tree type, tree i)
493 {
494 REAL_VALUE_TYPE d;
495
496 /* Clear all bits of the real value type so that we can later do
497 bitwise comparisons to see if two values are the same. */
498 memset (&d, 0, sizeof d);
499
500 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
501 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
502 TREE_UNSIGNED (TREE_TYPE (i)));
503 return d;
504 }
505
506 /* Given a tree representing an integer constant I, return a tree
507 representing the same value as a floating-point constant of type TYPE. */
508
509 tree
510 build_real_from_int_cst (tree type, tree i)
511 {
512 tree v;
513 int overflow = TREE_OVERFLOW (i);
514
515 v = build_real (type, real_value_from_int_cst (type, i));
516
517 TREE_OVERFLOW (v) |= overflow;
518 TREE_CONSTANT_OVERFLOW (v) |= overflow;
519 return v;
520 }
521
522 /* Return a newly constructed STRING_CST node whose value is
523 the LEN characters at STR.
524 The TREE_TYPE is not initialized. */
525
526 tree
527 build_string (int len, const char *str)
528 {
529 tree s;
530 size_t length;
531
532 length = len + sizeof (struct tree_string);
533
534 #ifdef GATHER_STATISTICS
535 tree_node_counts[(int) c_kind]++;
536 tree_node_sizes[(int) c_kind] += length;
537 #endif
538
539 s = ggc_alloc_tree (length);
540
541 memset (s, 0, sizeof (struct tree_common));
542 TREE_SET_CODE (s, STRING_CST);
543 TREE_STRING_LENGTH (s) = len;
544 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
545 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
546
547 return s;
548 }
549
550 /* Return a newly constructed COMPLEX_CST node whose value is
551 specified by the real and imaginary parts REAL and IMAG.
552 Both REAL and IMAG should be constant nodes. TYPE, if specified,
553 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
554
555 tree
556 build_complex (tree type, tree real, tree imag)
557 {
558 tree t = make_node (COMPLEX_CST);
559
560 TREE_REALPART (t) = real;
561 TREE_IMAGPART (t) = imag;
562 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
563 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
564 TREE_CONSTANT_OVERFLOW (t)
565 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
566 return t;
567 }
568
569 /* Build a newly constructed TREE_VEC node of length LEN. */
570
571 tree
572 make_tree_vec (int len)
573 {
574 tree t;
575 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
576
577 #ifdef GATHER_STATISTICS
578 tree_node_counts[(int) vec_kind]++;
579 tree_node_sizes[(int) vec_kind] += length;
580 #endif
581
582 t = ggc_alloc_tree (length);
583
584 memset (t, 0, length);
585 TREE_SET_CODE (t, TREE_VEC);
586 TREE_VEC_LENGTH (t) = len;
587
588 return t;
589 }
590 \f
591 /* Return 1 if EXPR is the integer constant zero or a complex constant
592 of zero. */
593
594 int
595 integer_zerop (tree expr)
596 {
597 STRIP_NOPS (expr);
598
599 return ((TREE_CODE (expr) == INTEGER_CST
600 && ! TREE_CONSTANT_OVERFLOW (expr)
601 && TREE_INT_CST_LOW (expr) == 0
602 && TREE_INT_CST_HIGH (expr) == 0)
603 || (TREE_CODE (expr) == COMPLEX_CST
604 && integer_zerop (TREE_REALPART (expr))
605 && integer_zerop (TREE_IMAGPART (expr))));
606 }
607
608 /* Return 1 if EXPR is the integer constant one or the corresponding
609 complex constant. */
610
611 int
612 integer_onep (tree expr)
613 {
614 STRIP_NOPS (expr);
615
616 return ((TREE_CODE (expr) == INTEGER_CST
617 && ! TREE_CONSTANT_OVERFLOW (expr)
618 && TREE_INT_CST_LOW (expr) == 1
619 && TREE_INT_CST_HIGH (expr) == 0)
620 || (TREE_CODE (expr) == COMPLEX_CST
621 && integer_onep (TREE_REALPART (expr))
622 && integer_zerop (TREE_IMAGPART (expr))));
623 }
624
625 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
626 it contains. Likewise for the corresponding complex constant. */
627
628 int
629 integer_all_onesp (tree expr)
630 {
631 int prec;
632 int uns;
633
634 STRIP_NOPS (expr);
635
636 if (TREE_CODE (expr) == COMPLEX_CST
637 && integer_all_onesp (TREE_REALPART (expr))
638 && integer_zerop (TREE_IMAGPART (expr)))
639 return 1;
640
641 else if (TREE_CODE (expr) != INTEGER_CST
642 || TREE_CONSTANT_OVERFLOW (expr))
643 return 0;
644
645 uns = TREE_UNSIGNED (TREE_TYPE (expr));
646 if (!uns)
647 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
648 && TREE_INT_CST_HIGH (expr) == -1);
649
650 /* Note that using TYPE_PRECISION here is wrong. We care about the
651 actual bits, not the (arbitrary) range of the type. */
652 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
653 if (prec >= HOST_BITS_PER_WIDE_INT)
654 {
655 HOST_WIDE_INT high_value;
656 int shift_amount;
657
658 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
659
660 if (shift_amount > HOST_BITS_PER_WIDE_INT)
661 /* Can not handle precisions greater than twice the host int size. */
662 abort ();
663 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
664 /* Shifting by the host word size is undefined according to the ANSI
665 standard, so we must handle this as a special case. */
666 high_value = -1;
667 else
668 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
669
670 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
671 && TREE_INT_CST_HIGH (expr) == high_value);
672 }
673 else
674 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
675 }
676
677 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
678 one bit on). */
679
680 int
681 integer_pow2p (tree expr)
682 {
683 int prec;
684 HOST_WIDE_INT high, low;
685
686 STRIP_NOPS (expr);
687
688 if (TREE_CODE (expr) == COMPLEX_CST
689 && integer_pow2p (TREE_REALPART (expr))
690 && integer_zerop (TREE_IMAGPART (expr)))
691 return 1;
692
693 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
694 return 0;
695
696 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
697 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
698 high = TREE_INT_CST_HIGH (expr);
699 low = TREE_INT_CST_LOW (expr);
700
701 /* First clear all bits that are beyond the type's precision in case
702 we've been sign extended. */
703
704 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
705 ;
706 else if (prec > HOST_BITS_PER_WIDE_INT)
707 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
708 else
709 {
710 high = 0;
711 if (prec < HOST_BITS_PER_WIDE_INT)
712 low &= ~((HOST_WIDE_INT) (-1) << prec);
713 }
714
715 if (high == 0 && low == 0)
716 return 0;
717
718 return ((high == 0 && (low & (low - 1)) == 0)
719 || (low == 0 && (high & (high - 1)) == 0));
720 }
721
722 /* Return 1 if EXPR is an integer constant other than zero or a
723 complex constant other than zero. */
724
725 int
726 integer_nonzerop (tree expr)
727 {
728 STRIP_NOPS (expr);
729
730 return ((TREE_CODE (expr) == INTEGER_CST
731 && ! TREE_CONSTANT_OVERFLOW (expr)
732 && (TREE_INT_CST_LOW (expr) != 0
733 || TREE_INT_CST_HIGH (expr) != 0))
734 || (TREE_CODE (expr) == COMPLEX_CST
735 && (integer_nonzerop (TREE_REALPART (expr))
736 || integer_nonzerop (TREE_IMAGPART (expr)))));
737 }
738
739 /* Return the power of two represented by a tree node known to be a
740 power of two. */
741
742 int
743 tree_log2 (tree expr)
744 {
745 int prec;
746 HOST_WIDE_INT high, low;
747
748 STRIP_NOPS (expr);
749
750 if (TREE_CODE (expr) == COMPLEX_CST)
751 return tree_log2 (TREE_REALPART (expr));
752
753 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
754 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
755
756 high = TREE_INT_CST_HIGH (expr);
757 low = TREE_INT_CST_LOW (expr);
758
759 /* First clear all bits that are beyond the type's precision in case
760 we've been sign extended. */
761
762 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
763 ;
764 else if (prec > HOST_BITS_PER_WIDE_INT)
765 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
766 else
767 {
768 high = 0;
769 if (prec < HOST_BITS_PER_WIDE_INT)
770 low &= ~((HOST_WIDE_INT) (-1) << prec);
771 }
772
773 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
774 : exact_log2 (low));
775 }
776
777 /* Similar, but return the largest integer Y such that 2 ** Y is less
778 than or equal to EXPR. */
779
780 int
781 tree_floor_log2 (tree expr)
782 {
783 int prec;
784 HOST_WIDE_INT high, low;
785
786 STRIP_NOPS (expr);
787
788 if (TREE_CODE (expr) == COMPLEX_CST)
789 return tree_log2 (TREE_REALPART (expr));
790
791 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
792 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
793
794 high = TREE_INT_CST_HIGH (expr);
795 low = TREE_INT_CST_LOW (expr);
796
797 /* First clear all bits that are beyond the type's precision in case
798 we've been sign extended. Ignore if type's precision hasn't been set
799 since what we are doing is setting it. */
800
801 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
802 ;
803 else if (prec > HOST_BITS_PER_WIDE_INT)
804 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
805 else
806 {
807 high = 0;
808 if (prec < HOST_BITS_PER_WIDE_INT)
809 low &= ~((HOST_WIDE_INT) (-1) << prec);
810 }
811
812 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
813 : floor_log2 (low));
814 }
815
816 /* Return 1 if EXPR is the real constant zero. */
817
818 int
819 real_zerop (tree expr)
820 {
821 STRIP_NOPS (expr);
822
823 return ((TREE_CODE (expr) == REAL_CST
824 && ! TREE_CONSTANT_OVERFLOW (expr)
825 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
826 || (TREE_CODE (expr) == COMPLEX_CST
827 && real_zerop (TREE_REALPART (expr))
828 && real_zerop (TREE_IMAGPART (expr))));
829 }
830
831 /* Return 1 if EXPR is the real constant one in real or complex form. */
832
833 int
834 real_onep (tree expr)
835 {
836 STRIP_NOPS (expr);
837
838 return ((TREE_CODE (expr) == REAL_CST
839 && ! TREE_CONSTANT_OVERFLOW (expr)
840 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
841 || (TREE_CODE (expr) == COMPLEX_CST
842 && real_onep (TREE_REALPART (expr))
843 && real_zerop (TREE_IMAGPART (expr))));
844 }
845
846 /* Return 1 if EXPR is the real constant two. */
847
848 int
849 real_twop (tree expr)
850 {
851 STRIP_NOPS (expr);
852
853 return ((TREE_CODE (expr) == REAL_CST
854 && ! TREE_CONSTANT_OVERFLOW (expr)
855 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
856 || (TREE_CODE (expr) == COMPLEX_CST
857 && real_twop (TREE_REALPART (expr))
858 && real_zerop (TREE_IMAGPART (expr))));
859 }
860
861 /* Return 1 if EXPR is the real constant minus one. */
862
863 int
864 real_minus_onep (tree expr)
865 {
866 STRIP_NOPS (expr);
867
868 return ((TREE_CODE (expr) == REAL_CST
869 && ! TREE_CONSTANT_OVERFLOW (expr)
870 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
871 || (TREE_CODE (expr) == COMPLEX_CST
872 && real_minus_onep (TREE_REALPART (expr))
873 && real_zerop (TREE_IMAGPART (expr))));
874 }
875
876 /* Nonzero if EXP is a constant or a cast of a constant. */
877
878 int
879 really_constant_p (tree exp)
880 {
881 /* This is not quite the same as STRIP_NOPS. It does more. */
882 while (TREE_CODE (exp) == NOP_EXPR
883 || TREE_CODE (exp) == CONVERT_EXPR
884 || TREE_CODE (exp) == NON_LVALUE_EXPR)
885 exp = TREE_OPERAND (exp, 0);
886 return TREE_CONSTANT (exp);
887 }
888 \f
889 /* Return first list element whose TREE_VALUE is ELEM.
890 Return 0 if ELEM is not in LIST. */
891
892 tree
893 value_member (tree elem, tree list)
894 {
895 while (list)
896 {
897 if (elem == TREE_VALUE (list))
898 return list;
899 list = TREE_CHAIN (list);
900 }
901 return NULL_TREE;
902 }
903
904 /* Return first list element whose TREE_PURPOSE is ELEM.
905 Return 0 if ELEM is not in LIST. */
906
907 tree
908 purpose_member (tree elem, tree list)
909 {
910 while (list)
911 {
912 if (elem == TREE_PURPOSE (list))
913 return list;
914 list = TREE_CHAIN (list);
915 }
916 return NULL_TREE;
917 }
918
919 /* Return first list element whose BINFO_TYPE is ELEM.
920 Return 0 if ELEM is not in LIST. */
921
922 tree
923 binfo_member (tree elem, tree list)
924 {
925 while (list)
926 {
927 if (elem == BINFO_TYPE (list))
928 return list;
929 list = TREE_CHAIN (list);
930 }
931 return NULL_TREE;
932 }
933
934 /* Return nonzero if ELEM is part of the chain CHAIN. */
935
936 int
937 chain_member (tree elem, tree chain)
938 {
939 while (chain)
940 {
941 if (elem == chain)
942 return 1;
943 chain = TREE_CHAIN (chain);
944 }
945
946 return 0;
947 }
948
949 /* Return the length of a chain of nodes chained through TREE_CHAIN.
950 We expect a null pointer to mark the end of the chain.
951 This is the Lisp primitive `length'. */
952
953 int
954 list_length (tree t)
955 {
956 tree tail;
957 int len = 0;
958
959 for (tail = t; tail; tail = TREE_CHAIN (tail))
960 len++;
961
962 return len;
963 }
964
965 /* Returns the number of FIELD_DECLs in TYPE. */
966
967 int
968 fields_length (tree type)
969 {
970 tree t = TYPE_FIELDS (type);
971 int count = 0;
972
973 for (; t; t = TREE_CHAIN (t))
974 if (TREE_CODE (t) == FIELD_DECL)
975 ++count;
976
977 return count;
978 }
979
980 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
981 by modifying the last node in chain 1 to point to chain 2.
982 This is the Lisp primitive `nconc'. */
983
984 tree
985 chainon (tree op1, tree op2)
986 {
987 tree t1;
988
989 if (!op1)
990 return op2;
991 if (!op2)
992 return op1;
993
994 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
995 continue;
996 TREE_CHAIN (t1) = op2;
997
998 #ifdef ENABLE_TREE_CHECKING
999 {
1000 tree t2;
1001 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1002 if (t2 == t1)
1003 abort (); /* Circularity created. */
1004 }
1005 #endif
1006
1007 return op1;
1008 }
1009
1010 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1011
1012 tree
1013 tree_last (tree chain)
1014 {
1015 tree next;
1016 if (chain)
1017 while ((next = TREE_CHAIN (chain)))
1018 chain = next;
1019 return chain;
1020 }
1021
1022 /* Reverse the order of elements in the chain T,
1023 and return the new head of the chain (old last element). */
1024
1025 tree
1026 nreverse (tree t)
1027 {
1028 tree prev = 0, decl, next;
1029 for (decl = t; decl; decl = next)
1030 {
1031 next = TREE_CHAIN (decl);
1032 TREE_CHAIN (decl) = prev;
1033 prev = decl;
1034 }
1035 return prev;
1036 }
1037 \f
1038 /* Return a newly created TREE_LIST node whose
1039 purpose and value fields are PARM and VALUE. */
1040
1041 tree
1042 build_tree_list (tree parm, tree value)
1043 {
1044 tree t = make_node (TREE_LIST);
1045 TREE_PURPOSE (t) = parm;
1046 TREE_VALUE (t) = value;
1047 return t;
1048 }
1049
1050 /* Return a newly created TREE_LIST node whose
1051 purpose and value fields are PURPOSE and VALUE
1052 and whose TREE_CHAIN is CHAIN. */
1053
1054 tree
1055 tree_cons (tree purpose, tree value, tree chain)
1056 {
1057 tree node;
1058
1059 node = ggc_alloc_tree (sizeof (struct tree_list));
1060
1061 memset (node, 0, sizeof (struct tree_common));
1062
1063 #ifdef GATHER_STATISTICS
1064 tree_node_counts[(int) x_kind]++;
1065 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1066 #endif
1067
1068 TREE_SET_CODE (node, TREE_LIST);
1069 TREE_CHAIN (node) = chain;
1070 TREE_PURPOSE (node) = purpose;
1071 TREE_VALUE (node) = value;
1072 return node;
1073 }
1074
1075 /* Return the first expression in a sequence of COMPOUND_EXPRs. */
1076
1077 tree
1078 expr_first (tree expr)
1079 {
1080 if (expr == NULL_TREE)
1081 return expr;
1082 while (TREE_CODE (expr) == COMPOUND_EXPR)
1083 expr = TREE_OPERAND (expr, 0);
1084 return expr;
1085 }
1086
1087 /* Return the last expression in a sequence of COMPOUND_EXPRs. */
1088
1089 tree
1090 expr_last (tree expr)
1091 {
1092 if (expr == NULL_TREE)
1093 return expr;
1094 while (TREE_CODE (expr) == COMPOUND_EXPR)
1095 expr = TREE_OPERAND (expr, 1);
1096 return expr;
1097 }
1098
1099 /* Return the number of subexpressions in a sequence of COMPOUND_EXPRs. */
1100
1101 int
1102 expr_length (tree expr)
1103 {
1104 int len = 0;
1105
1106 if (expr == NULL_TREE)
1107 return 0;
1108 for (; TREE_CODE (expr) == COMPOUND_EXPR; expr = TREE_OPERAND (expr, 1))
1109 len += expr_length (TREE_OPERAND (expr, 0));
1110 ++len;
1111 return len;
1112 }
1113 \f
1114 /* Return the size nominally occupied by an object of type TYPE
1115 when it resides in memory. The value is measured in units of bytes,
1116 and its data type is that normally used for type sizes
1117 (which is the first type created by make_signed_type or
1118 make_unsigned_type). */
1119
1120 tree
1121 size_in_bytes (tree type)
1122 {
1123 tree t;
1124
1125 if (type == error_mark_node)
1126 return integer_zero_node;
1127
1128 type = TYPE_MAIN_VARIANT (type);
1129 t = TYPE_SIZE_UNIT (type);
1130
1131 if (t == 0)
1132 {
1133 (*lang_hooks.types.incomplete_type_error) (NULL_TREE, type);
1134 return size_zero_node;
1135 }
1136
1137 if (TREE_CODE (t) == INTEGER_CST)
1138 force_fit_type (t, 0);
1139
1140 return t;
1141 }
1142
1143 /* Return the size of TYPE (in bytes) as a wide integer
1144 or return -1 if the size can vary or is larger than an integer. */
1145
1146 HOST_WIDE_INT
1147 int_size_in_bytes (tree type)
1148 {
1149 tree t;
1150
1151 if (type == error_mark_node)
1152 return 0;
1153
1154 type = TYPE_MAIN_VARIANT (type);
1155 t = TYPE_SIZE_UNIT (type);
1156 if (t == 0
1157 || TREE_CODE (t) != INTEGER_CST
1158 || TREE_OVERFLOW (t)
1159 || TREE_INT_CST_HIGH (t) != 0
1160 /* If the result would appear negative, it's too big to represent. */
1161 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1162 return -1;
1163
1164 return TREE_INT_CST_LOW (t);
1165 }
1166 \f
1167 /* Return the bit position of FIELD, in bits from the start of the record.
1168 This is a tree of type bitsizetype. */
1169
1170 tree
1171 bit_position (tree field)
1172 {
1173 return bit_from_pos (DECL_FIELD_OFFSET (field),
1174 DECL_FIELD_BIT_OFFSET (field));
1175 }
1176
1177 /* Likewise, but return as an integer. Abort if it cannot be represented
1178 in that way (since it could be a signed value, we don't have the option
1179 of returning -1 like int_size_in_byte can. */
1180
1181 HOST_WIDE_INT
1182 int_bit_position (tree field)
1183 {
1184 return tree_low_cst (bit_position (field), 0);
1185 }
1186 \f
1187 /* Return the byte position of FIELD, in bytes from the start of the record.
1188 This is a tree of type sizetype. */
1189
1190 tree
1191 byte_position (tree field)
1192 {
1193 return byte_from_pos (DECL_FIELD_OFFSET (field),
1194 DECL_FIELD_BIT_OFFSET (field));
1195 }
1196
1197 /* Likewise, but return as an integer. Abort if it cannot be represented
1198 in that way (since it could be a signed value, we don't have the option
1199 of returning -1 like int_size_in_byte can. */
1200
1201 HOST_WIDE_INT
1202 int_byte_position (tree field)
1203 {
1204 return tree_low_cst (byte_position (field), 0);
1205 }
1206 \f
1207 /* Return the strictest alignment, in bits, that T is known to have. */
1208
1209 unsigned int
1210 expr_align (tree t)
1211 {
1212 unsigned int align0, align1;
1213
1214 switch (TREE_CODE (t))
1215 {
1216 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1217 /* If we have conversions, we know that the alignment of the
1218 object must meet each of the alignments of the types. */
1219 align0 = expr_align (TREE_OPERAND (t, 0));
1220 align1 = TYPE_ALIGN (TREE_TYPE (t));
1221 return MAX (align0, align1);
1222
1223 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1224 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1225 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1226 /* These don't change the alignment of an object. */
1227 return expr_align (TREE_OPERAND (t, 0));
1228
1229 case COND_EXPR:
1230 /* The best we can do is say that the alignment is the least aligned
1231 of the two arms. */
1232 align0 = expr_align (TREE_OPERAND (t, 1));
1233 align1 = expr_align (TREE_OPERAND (t, 2));
1234 return MIN (align0, align1);
1235
1236 case LABEL_DECL: case CONST_DECL:
1237 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1238 if (DECL_ALIGN (t) != 0)
1239 return DECL_ALIGN (t);
1240 break;
1241
1242 case FUNCTION_DECL:
1243 return FUNCTION_BOUNDARY;
1244
1245 default:
1246 break;
1247 }
1248
1249 /* Otherwise take the alignment from that of the type. */
1250 return TYPE_ALIGN (TREE_TYPE (t));
1251 }
1252 \f
1253 /* Return, as a tree node, the number of elements for TYPE (which is an
1254 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1255
1256 tree
1257 array_type_nelts (tree type)
1258 {
1259 tree index_type, min, max;
1260
1261 /* If they did it with unspecified bounds, then we should have already
1262 given an error about it before we got here. */
1263 if (! TYPE_DOMAIN (type))
1264 return error_mark_node;
1265
1266 index_type = TYPE_DOMAIN (type);
1267 min = TYPE_MIN_VALUE (index_type);
1268 max = TYPE_MAX_VALUE (index_type);
1269
1270 return (integer_zerop (min)
1271 ? max
1272 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1273 }
1274 \f
1275 /* Return nonzero if arg is static -- a reference to an object in
1276 static storage. This is not the same as the C meaning of `static'. */
1277
1278 int
1279 staticp (tree arg)
1280 {
1281 switch (TREE_CODE (arg))
1282 {
1283 case FUNCTION_DECL:
1284 /* Nested functions aren't static, since taking their address
1285 involves a trampoline. */
1286 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1287 && ! DECL_NON_ADDR_CONST_P (arg));
1288
1289 case VAR_DECL:
1290 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1291 && ! DECL_THREAD_LOCAL (arg)
1292 && ! DECL_NON_ADDR_CONST_P (arg));
1293
1294 case CONSTRUCTOR:
1295 return TREE_STATIC (arg);
1296
1297 case LABEL_DECL:
1298 case STRING_CST:
1299 return 1;
1300
1301 /* If we are referencing a bitfield, we can't evaluate an
1302 ADDR_EXPR at compile time and so it isn't a constant. */
1303 case COMPONENT_REF:
1304 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1305 && staticp (TREE_OPERAND (arg, 0)));
1306
1307 case BIT_FIELD_REF:
1308 return 0;
1309
1310 #if 0
1311 /* This case is technically correct, but results in setting
1312 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1313 compile time. */
1314 case INDIRECT_REF:
1315 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1316 #endif
1317
1318 case ARRAY_REF:
1319 case ARRAY_RANGE_REF:
1320 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1321 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1322 return staticp (TREE_OPERAND (arg, 0));
1323
1324 default:
1325 if ((unsigned int) TREE_CODE (arg)
1326 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1327 return (*lang_hooks.staticp) (arg);
1328 else
1329 return 0;
1330 }
1331 }
1332 \f
1333 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1334 Do this to any expression which may be used in more than one place,
1335 but must be evaluated only once.
1336
1337 Normally, expand_expr would reevaluate the expression each time.
1338 Calling save_expr produces something that is evaluated and recorded
1339 the first time expand_expr is called on it. Subsequent calls to
1340 expand_expr just reuse the recorded value.
1341
1342 The call to expand_expr that generates code that actually computes
1343 the value is the first call *at compile time*. Subsequent calls
1344 *at compile time* generate code to use the saved value.
1345 This produces correct result provided that *at run time* control
1346 always flows through the insns made by the first expand_expr
1347 before reaching the other places where the save_expr was evaluated.
1348 You, the caller of save_expr, must make sure this is so.
1349
1350 Constants, and certain read-only nodes, are returned with no
1351 SAVE_EXPR because that is safe. Expressions containing placeholders
1352 are not touched; see tree.def for an explanation of what these
1353 are used for. */
1354
1355 tree
1356 save_expr (tree expr)
1357 {
1358 tree t = fold (expr);
1359 tree inner;
1360
1361 /* If the tree evaluates to a constant, then we don't want to hide that
1362 fact (i.e. this allows further folding, and direct checks for constants).
1363 However, a read-only object that has side effects cannot be bypassed.
1364 Since it is no problem to reevaluate literals, we just return the
1365 literal node. */
1366 inner = skip_simple_arithmetic (t);
1367 if (TREE_CONSTANT (inner)
1368 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1369 || TREE_CODE (inner) == SAVE_EXPR
1370 || TREE_CODE (inner) == ERROR_MARK)
1371 return t;
1372
1373 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1374 it means that the size or offset of some field of an object depends on
1375 the value within another field.
1376
1377 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1378 and some variable since it would then need to be both evaluated once and
1379 evaluated more than once. Front-ends must assure this case cannot
1380 happen by surrounding any such subexpressions in their own SAVE_EXPR
1381 and forcing evaluation at the proper time. */
1382 if (contains_placeholder_p (inner))
1383 return t;
1384
1385 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1386
1387 /* This expression might be placed ahead of a jump to ensure that the
1388 value was computed on both sides of the jump. So make sure it isn't
1389 eliminated as dead. */
1390 TREE_SIDE_EFFECTS (t) = 1;
1391 TREE_READONLY (t) = 1;
1392 return t;
1393 }
1394
1395 /* Look inside EXPR and into any simple arithmetic operations. Return
1396 the innermost non-arithmetic node. */
1397
1398 tree
1399 skip_simple_arithmetic (tree expr)
1400 {
1401 tree inner;
1402
1403 /* We don't care about whether this can be used as an lvalue in this
1404 context. */
1405 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1406 expr = TREE_OPERAND (expr, 0);
1407
1408 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1409 a constant, it will be more efficient to not make another SAVE_EXPR since
1410 it will allow better simplification and GCSE will be able to merge the
1411 computations if they actually occur. */
1412 inner = expr;
1413 while (1)
1414 {
1415 if (TREE_CODE_CLASS (TREE_CODE (inner)) == '1')
1416 inner = TREE_OPERAND (inner, 0);
1417 else if (TREE_CODE_CLASS (TREE_CODE (inner)) == '2')
1418 {
1419 if (TREE_CONSTANT (TREE_OPERAND (inner, 1)))
1420 inner = TREE_OPERAND (inner, 0);
1421 else if (TREE_CONSTANT (TREE_OPERAND (inner, 0)))
1422 inner = TREE_OPERAND (inner, 1);
1423 else
1424 break;
1425 }
1426 else
1427 break;
1428 }
1429
1430 return inner;
1431 }
1432
1433 /* Return TRUE if EXPR is a SAVE_EXPR or wraps simple arithmetic around a
1434 SAVE_EXPR. Return FALSE otherwise. */
1435
1436 bool
1437 saved_expr_p (tree expr)
1438 {
1439 return TREE_CODE (skip_simple_arithmetic (expr)) == SAVE_EXPR;
1440 }
1441
1442 /* Arrange for an expression to be expanded multiple independent
1443 times. This is useful for cleanup actions, as the backend can
1444 expand them multiple times in different places. */
1445
1446 tree
1447 unsave_expr (tree expr)
1448 {
1449 tree t;
1450
1451 /* If this is already protected, no sense in protecting it again. */
1452 if (TREE_CODE (expr) == UNSAVE_EXPR)
1453 return expr;
1454
1455 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1456 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1457 return t;
1458 }
1459
1460 /* Returns the index of the first non-tree operand for CODE, or the number
1461 of operands if all are trees. */
1462
1463 int
1464 first_rtl_op (enum tree_code code)
1465 {
1466 switch (code)
1467 {
1468 case SAVE_EXPR:
1469 return 2;
1470 case GOTO_SUBROUTINE_EXPR:
1471 case RTL_EXPR:
1472 return 0;
1473 case WITH_CLEANUP_EXPR:
1474 return 2;
1475 default:
1476 return TREE_CODE_LENGTH (code);
1477 }
1478 }
1479
1480 /* Return which tree structure is used by T. */
1481
1482 enum tree_node_structure_enum
1483 tree_node_structure (tree t)
1484 {
1485 enum tree_code code = TREE_CODE (t);
1486
1487 switch (TREE_CODE_CLASS (code))
1488 {
1489 case 'd': return TS_DECL;
1490 case 't': return TS_TYPE;
1491 case 'b': return TS_BLOCK;
1492 case 'r': case '<': case '1': case '2': case 'e': case 's':
1493 return TS_EXP;
1494 default: /* 'c' and 'x' */
1495 break;
1496 }
1497 switch (code)
1498 {
1499 /* 'c' cases. */
1500 case INTEGER_CST: return TS_INT_CST;
1501 case REAL_CST: return TS_REAL_CST;
1502 case COMPLEX_CST: return TS_COMPLEX;
1503 case VECTOR_CST: return TS_VECTOR;
1504 case STRING_CST: return TS_STRING;
1505 /* 'x' cases. */
1506 case ERROR_MARK: return TS_COMMON;
1507 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1508 case TREE_LIST: return TS_LIST;
1509 case TREE_VEC: return TS_VEC;
1510 case PLACEHOLDER_EXPR: return TS_COMMON;
1511
1512 default:
1513 abort ();
1514 }
1515 }
1516
1517 /* Perform any modifications to EXPR required when it is unsaved. Does
1518 not recurse into EXPR's subtrees. */
1519
1520 void
1521 unsave_expr_1 (tree expr)
1522 {
1523 switch (TREE_CODE (expr))
1524 {
1525 case SAVE_EXPR:
1526 if (! SAVE_EXPR_PERSISTENT_P (expr))
1527 SAVE_EXPR_RTL (expr) = 0;
1528 break;
1529
1530 case TARGET_EXPR:
1531 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1532 It's OK for this to happen if it was part of a subtree that
1533 isn't immediately expanded, such as operand 2 of another
1534 TARGET_EXPR. */
1535 if (TREE_OPERAND (expr, 1))
1536 break;
1537
1538 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1539 TREE_OPERAND (expr, 3) = NULL_TREE;
1540 break;
1541
1542 case RTL_EXPR:
1543 /* I don't yet know how to emit a sequence multiple times. */
1544 if (RTL_EXPR_SEQUENCE (expr) != 0)
1545 abort ();
1546 break;
1547
1548 default:
1549 break;
1550 }
1551 }
1552
1553 /* Default lang hook for "unsave_expr_now". */
1554
1555 tree
1556 lhd_unsave_expr_now (tree expr)
1557 {
1558 enum tree_code code;
1559
1560 /* There's nothing to do for NULL_TREE. */
1561 if (expr == 0)
1562 return expr;
1563
1564 unsave_expr_1 (expr);
1565
1566 code = TREE_CODE (expr);
1567 switch (TREE_CODE_CLASS (code))
1568 {
1569 case 'c': /* a constant */
1570 case 't': /* a type node */
1571 case 'd': /* A decl node */
1572 case 'b': /* A block node */
1573 break;
1574
1575 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1576 if (code == TREE_LIST)
1577 {
1578 lhd_unsave_expr_now (TREE_VALUE (expr));
1579 lhd_unsave_expr_now (TREE_CHAIN (expr));
1580 }
1581 break;
1582
1583 case 'e': /* an expression */
1584 case 'r': /* a reference */
1585 case 's': /* an expression with side effects */
1586 case '<': /* a comparison expression */
1587 case '2': /* a binary arithmetic expression */
1588 case '1': /* a unary arithmetic expression */
1589 {
1590 int i;
1591
1592 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1593 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1594 }
1595 break;
1596
1597 default:
1598 abort ();
1599 }
1600
1601 return expr;
1602 }
1603
1604 /* Return 0 if it is safe to evaluate EXPR multiple times,
1605 return 1 if it is safe if EXPR is unsaved afterward, or
1606 return 2 if it is completely unsafe.
1607
1608 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1609 an expression tree, so that it safe to unsave them and the surrounding
1610 context will be correct.
1611
1612 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1613 occasionally across the whole of a function. It is therefore only
1614 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1615 below the UNSAVE_EXPR.
1616
1617 RTL_EXPRs consume their rtl during evaluation. It is therefore
1618 never possible to unsave them. */
1619
1620 int
1621 unsafe_for_reeval (tree expr)
1622 {
1623 int unsafeness = 0;
1624 enum tree_code code;
1625 int i, tmp, tmp2;
1626 tree exp;
1627 int first_rtl;
1628
1629 if (expr == NULL_TREE)
1630 return 1;
1631
1632 code = TREE_CODE (expr);
1633 first_rtl = first_rtl_op (code);
1634
1635 switch (code)
1636 {
1637 case SAVE_EXPR:
1638 case RTL_EXPR:
1639 return 2;
1640
1641 case TREE_LIST:
1642 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1643 {
1644 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1645 unsafeness = MAX (tmp, unsafeness);
1646 }
1647
1648 return unsafeness;
1649
1650 case CALL_EXPR:
1651 tmp2 = unsafe_for_reeval (TREE_OPERAND (expr, 0));
1652 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1653 return MAX (MAX (tmp, 1), tmp2);
1654
1655 case TARGET_EXPR:
1656 unsafeness = 1;
1657 break;
1658
1659 default:
1660 tmp = (*lang_hooks.unsafe_for_reeval) (expr);
1661 if (tmp >= 0)
1662 return tmp;
1663 break;
1664 }
1665
1666 switch (TREE_CODE_CLASS (code))
1667 {
1668 case 'c': /* a constant */
1669 case 't': /* a type node */
1670 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1671 case 'd': /* A decl node */
1672 case 'b': /* A block node */
1673 return 0;
1674
1675 case 'e': /* an expression */
1676 case 'r': /* a reference */
1677 case 's': /* an expression with side effects */
1678 case '<': /* a comparison expression */
1679 case '2': /* a binary arithmetic expression */
1680 case '1': /* a unary arithmetic expression */
1681 for (i = first_rtl - 1; i >= 0; i--)
1682 {
1683 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1684 unsafeness = MAX (tmp, unsafeness);
1685 }
1686
1687 return unsafeness;
1688
1689 default:
1690 return 2;
1691 }
1692 }
1693 \f
1694 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1695 or offset that depends on a field within a record. */
1696
1697 bool
1698 contains_placeholder_p (tree exp)
1699 {
1700 enum tree_code code;
1701 int result;
1702
1703 if (!exp)
1704 return 0;
1705
1706 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1707 in it since it is supplying a value for it. */
1708 code = TREE_CODE (exp);
1709 if (code == WITH_RECORD_EXPR)
1710 return 0;
1711 else if (code == PLACEHOLDER_EXPR)
1712 return 1;
1713
1714 switch (TREE_CODE_CLASS (code))
1715 {
1716 case 'r':
1717 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1718 position computations since they will be converted into a
1719 WITH_RECORD_EXPR involving the reference, which will assume
1720 here will be valid. */
1721 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1722
1723 case 'x':
1724 if (code == TREE_LIST)
1725 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1726 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1727 break;
1728
1729 case '1':
1730 case '2': case '<':
1731 case 'e':
1732 switch (code)
1733 {
1734 case COMPOUND_EXPR:
1735 /* Ignoring the first operand isn't quite right, but works best. */
1736 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1737
1738 case RTL_EXPR:
1739 case CONSTRUCTOR:
1740 return 0;
1741
1742 case COND_EXPR:
1743 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1744 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1745 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1746
1747 case SAVE_EXPR:
1748 /* If we already know this doesn't have a placeholder, don't
1749 check again. */
1750 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1751 return 0;
1752
1753 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1754 result = CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1755 if (result)
1756 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1757
1758 return result;
1759
1760 case CALL_EXPR:
1761 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1762
1763 default:
1764 break;
1765 }
1766
1767 switch (TREE_CODE_LENGTH (code))
1768 {
1769 case 1:
1770 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1771 case 2:
1772 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1773 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1774 default:
1775 return 0;
1776 }
1777
1778 default:
1779 return 0;
1780 }
1781 return 0;
1782 }
1783
1784 /* Return 1 if any part of the computation of TYPE involves a PLACEHOLDER_EXPR.
1785 This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and field
1786 positions. */
1787
1788 bool
1789 type_contains_placeholder_p (tree type)
1790 {
1791 /* If the size contains a placeholder or the parent type (component type in
1792 the case of arrays) type involves a placeholder, this type does. */
1793 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1794 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1795 || (TREE_TYPE (type) != 0
1796 && type_contains_placeholder_p (TREE_TYPE (type))))
1797 return 1;
1798
1799 /* Now do type-specific checks. Note that the last part of the check above
1800 greatly limits what we have to do below. */
1801 switch (TREE_CODE (type))
1802 {
1803 case VOID_TYPE:
1804 case COMPLEX_TYPE:
1805 case VECTOR_TYPE:
1806 case ENUMERAL_TYPE:
1807 case BOOLEAN_TYPE:
1808 case CHAR_TYPE:
1809 case POINTER_TYPE:
1810 case OFFSET_TYPE:
1811 case REFERENCE_TYPE:
1812 case METHOD_TYPE:
1813 case FILE_TYPE:
1814 case FUNCTION_TYPE:
1815 return 0;
1816
1817 case INTEGER_TYPE:
1818 case REAL_TYPE:
1819 /* Here we just check the bounds. */
1820 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1821 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1822
1823 case ARRAY_TYPE:
1824 case SET_TYPE:
1825 /* We're already checked the component type (TREE_TYPE), so just check
1826 the index type. */
1827 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1828
1829 case RECORD_TYPE:
1830 case UNION_TYPE:
1831 case QUAL_UNION_TYPE:
1832 {
1833 static tree seen_types = 0;
1834 tree field;
1835 bool ret = 0;
1836
1837 /* We have to be careful here that we don't end up in infinite
1838 recursions due to a field of a type being a pointer to that type
1839 or to a mutually-recursive type. So we store a list of record
1840 types that we've seen and see if this type is in them. To save
1841 memory, we don't use a list for just one type. Here we check
1842 whether we've seen this type before and store it if not. */
1843 if (seen_types == 0)
1844 seen_types = type;
1845 else if (TREE_CODE (seen_types) != TREE_LIST)
1846 {
1847 if (seen_types == type)
1848 return 0;
1849
1850 seen_types = tree_cons (NULL_TREE, type,
1851 build_tree_list (NULL_TREE, seen_types));
1852 }
1853 else
1854 {
1855 if (value_member (type, seen_types) != 0)
1856 return 0;
1857
1858 seen_types = tree_cons (NULL_TREE, type, seen_types);
1859 }
1860
1861 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1862 if (TREE_CODE (field) == FIELD_DECL
1863 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1864 || (TREE_CODE (type) == QUAL_UNION_TYPE
1865 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1866 || type_contains_placeholder_p (TREE_TYPE (field))))
1867 {
1868 ret = true;
1869 break;
1870 }
1871
1872 /* Now remove us from seen_types and return the result. */
1873 if (seen_types == type)
1874 seen_types = 0;
1875 else
1876 seen_types = TREE_CHAIN (seen_types);
1877
1878 return ret;
1879 }
1880
1881 default:
1882 abort ();
1883 }
1884 }
1885
1886 /* Return 1 if EXP contains any expressions that produce cleanups for an
1887 outer scope to deal with. Used by fold. */
1888
1889 int
1890 has_cleanups (tree exp)
1891 {
1892 int i, nops, cmp;
1893
1894 if (! TREE_SIDE_EFFECTS (exp))
1895 return 0;
1896
1897 switch (TREE_CODE (exp))
1898 {
1899 case TARGET_EXPR:
1900 case GOTO_SUBROUTINE_EXPR:
1901 case WITH_CLEANUP_EXPR:
1902 return 1;
1903
1904 case CLEANUP_POINT_EXPR:
1905 return 0;
1906
1907 case CALL_EXPR:
1908 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1909 {
1910 cmp = has_cleanups (TREE_VALUE (exp));
1911 if (cmp)
1912 return cmp;
1913 }
1914 return 0;
1915
1916 default:
1917 break;
1918 }
1919
1920 /* This general rule works for most tree codes. All exceptions should be
1921 handled above. If this is a language-specific tree code, we can't
1922 trust what might be in the operand, so say we don't know
1923 the situation. */
1924 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1925 return -1;
1926
1927 nops = first_rtl_op (TREE_CODE (exp));
1928 for (i = 0; i < nops; i++)
1929 if (TREE_OPERAND (exp, i) != 0)
1930 {
1931 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1932 if (type == 'e' || type == '<' || type == '1' || type == '2'
1933 || type == 'r' || type == 's')
1934 {
1935 cmp = has_cleanups (TREE_OPERAND (exp, i));
1936 if (cmp)
1937 return cmp;
1938 }
1939 }
1940
1941 return 0;
1942 }
1943 \f
1944 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1945 return a tree with all occurrences of references to F in a
1946 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1947 contains only arithmetic expressions or a CALL_EXPR with a
1948 PLACEHOLDER_EXPR occurring only in its arglist. */
1949
1950 tree
1951 substitute_in_expr (tree exp, tree f, tree r)
1952 {
1953 enum tree_code code = TREE_CODE (exp);
1954 tree op0, op1, op2;
1955 tree new;
1956 tree inner;
1957
1958 switch (TREE_CODE_CLASS (code))
1959 {
1960 case 'c':
1961 case 'd':
1962 return exp;
1963
1964 case 'x':
1965 if (code == PLACEHOLDER_EXPR)
1966 return exp;
1967 else if (code == TREE_LIST)
1968 {
1969 op0 = (TREE_CHAIN (exp) == 0
1970 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1971 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1972 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1973 return exp;
1974
1975 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1976 }
1977
1978 abort ();
1979
1980 case '1':
1981 case '2':
1982 case '<':
1983 case 'e':
1984 switch (TREE_CODE_LENGTH (code))
1985 {
1986 case 1:
1987 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1988 if (op0 == TREE_OPERAND (exp, 0))
1989 return exp;
1990
1991 if (code == NON_LVALUE_EXPR)
1992 return op0;
1993
1994 new = fold (build1 (code, TREE_TYPE (exp), op0));
1995 break;
1996
1997 case 2:
1998 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1999 could, but we don't support it. */
2000 if (code == RTL_EXPR)
2001 return exp;
2002 else if (code == CONSTRUCTOR)
2003 abort ();
2004
2005 op0 = TREE_OPERAND (exp, 0);
2006 op1 = TREE_OPERAND (exp, 1);
2007 if (CONTAINS_PLACEHOLDER_P (op0))
2008 op0 = substitute_in_expr (op0, f, r);
2009 if (CONTAINS_PLACEHOLDER_P (op1))
2010 op1 = substitute_in_expr (op1, f, r);
2011
2012 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2013 return exp;
2014
2015 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2016 break;
2017
2018 case 3:
2019 /* It cannot be that anything inside a SAVE_EXPR contains a
2020 PLACEHOLDER_EXPR. */
2021 if (code == SAVE_EXPR)
2022 return exp;
2023
2024 else if (code == CALL_EXPR)
2025 {
2026 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2027 if (op1 == TREE_OPERAND (exp, 1))
2028 return exp;
2029
2030 return build (code, TREE_TYPE (exp),
2031 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2032 }
2033
2034 else if (code != COND_EXPR)
2035 abort ();
2036
2037 op0 = TREE_OPERAND (exp, 0);
2038 op1 = TREE_OPERAND (exp, 1);
2039 op2 = TREE_OPERAND (exp, 2);
2040
2041 if (CONTAINS_PLACEHOLDER_P (op0))
2042 op0 = substitute_in_expr (op0, f, r);
2043 if (CONTAINS_PLACEHOLDER_P (op1))
2044 op1 = substitute_in_expr (op1, f, r);
2045 if (CONTAINS_PLACEHOLDER_P (op2))
2046 op2 = substitute_in_expr (op2, f, r);
2047
2048 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2049 && op2 == TREE_OPERAND (exp, 2))
2050 return exp;
2051
2052 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2053 break;
2054
2055 default:
2056 abort ();
2057 }
2058
2059 break;
2060
2061 case 'r':
2062 switch (code)
2063 {
2064 case COMPONENT_REF:
2065 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2066 and it is the right field, replace it with R. */
2067 for (inner = TREE_OPERAND (exp, 0);
2068 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2069 inner = TREE_OPERAND (inner, 0))
2070 ;
2071 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2072 && TREE_OPERAND (exp, 1) == f)
2073 return r;
2074
2075 /* If this expression hasn't been completed let, leave it
2076 alone. */
2077 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2078 && TREE_TYPE (inner) == 0)
2079 return exp;
2080
2081 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2082 if (op0 == TREE_OPERAND (exp, 0))
2083 return exp;
2084
2085 new = fold (build (code, TREE_TYPE (exp), op0,
2086 TREE_OPERAND (exp, 1)));
2087 break;
2088
2089 case BIT_FIELD_REF:
2090 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2091 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2092 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2093 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2094 && op2 == TREE_OPERAND (exp, 2))
2095 return exp;
2096
2097 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2098 break;
2099
2100 case INDIRECT_REF:
2101 case BUFFER_REF:
2102 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2103 if (op0 == TREE_OPERAND (exp, 0))
2104 return exp;
2105
2106 new = fold (build1 (code, TREE_TYPE (exp), op0));
2107 break;
2108
2109 default:
2110 abort ();
2111 }
2112 break;
2113
2114 default:
2115 abort ();
2116 }
2117
2118 TREE_READONLY (new) = TREE_READONLY (exp);
2119 return new;
2120 }
2121 \f
2122 /* Stabilize a reference so that we can use it any number of times
2123 without causing its operands to be evaluated more than once.
2124 Returns the stabilized reference. This works by means of save_expr,
2125 so see the caveats in the comments about save_expr.
2126
2127 Also allows conversion expressions whose operands are references.
2128 Any other kind of expression is returned unchanged. */
2129
2130 tree
2131 stabilize_reference (tree ref)
2132 {
2133 tree result;
2134 enum tree_code code = TREE_CODE (ref);
2135
2136 switch (code)
2137 {
2138 case VAR_DECL:
2139 case PARM_DECL:
2140 case RESULT_DECL:
2141 /* No action is needed in this case. */
2142 return ref;
2143
2144 case NOP_EXPR:
2145 case CONVERT_EXPR:
2146 case FLOAT_EXPR:
2147 case FIX_TRUNC_EXPR:
2148 case FIX_FLOOR_EXPR:
2149 case FIX_ROUND_EXPR:
2150 case FIX_CEIL_EXPR:
2151 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2152 break;
2153
2154 case INDIRECT_REF:
2155 result = build_nt (INDIRECT_REF,
2156 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2157 break;
2158
2159 case COMPONENT_REF:
2160 result = build_nt (COMPONENT_REF,
2161 stabilize_reference (TREE_OPERAND (ref, 0)),
2162 TREE_OPERAND (ref, 1));
2163 break;
2164
2165 case BIT_FIELD_REF:
2166 result = build_nt (BIT_FIELD_REF,
2167 stabilize_reference (TREE_OPERAND (ref, 0)),
2168 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2169 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2170 break;
2171
2172 case ARRAY_REF:
2173 result = build_nt (ARRAY_REF,
2174 stabilize_reference (TREE_OPERAND (ref, 0)),
2175 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2176 break;
2177
2178 case ARRAY_RANGE_REF:
2179 result = build_nt (ARRAY_RANGE_REF,
2180 stabilize_reference (TREE_OPERAND (ref, 0)),
2181 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2182 break;
2183
2184 case COMPOUND_EXPR:
2185 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2186 it wouldn't be ignored. This matters when dealing with
2187 volatiles. */
2188 return stabilize_reference_1 (ref);
2189
2190 case RTL_EXPR:
2191 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2192 save_expr (build1 (ADDR_EXPR,
2193 build_pointer_type (TREE_TYPE (ref)),
2194 ref)));
2195 break;
2196
2197 /* If arg isn't a kind of lvalue we recognize, make no change.
2198 Caller should recognize the error for an invalid lvalue. */
2199 default:
2200 return ref;
2201
2202 case ERROR_MARK:
2203 return error_mark_node;
2204 }
2205
2206 TREE_TYPE (result) = TREE_TYPE (ref);
2207 TREE_READONLY (result) = TREE_READONLY (ref);
2208 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2209 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2210
2211 return result;
2212 }
2213
2214 /* Subroutine of stabilize_reference; this is called for subtrees of
2215 references. Any expression with side-effects must be put in a SAVE_EXPR
2216 to ensure that it is only evaluated once.
2217
2218 We don't put SAVE_EXPR nodes around everything, because assigning very
2219 simple expressions to temporaries causes us to miss good opportunities
2220 for optimizations. Among other things, the opportunity to fold in the
2221 addition of a constant into an addressing mode often gets lost, e.g.
2222 "y[i+1] += x;". In general, we take the approach that we should not make
2223 an assignment unless we are forced into it - i.e., that any non-side effect
2224 operator should be allowed, and that cse should take care of coalescing
2225 multiple utterances of the same expression should that prove fruitful. */
2226
2227 tree
2228 stabilize_reference_1 (tree e)
2229 {
2230 tree result;
2231 enum tree_code code = TREE_CODE (e);
2232
2233 /* We cannot ignore const expressions because it might be a reference
2234 to a const array but whose index contains side-effects. But we can
2235 ignore things that are actual constant or that already have been
2236 handled by this function. */
2237
2238 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2239 return e;
2240
2241 switch (TREE_CODE_CLASS (code))
2242 {
2243 case 'x':
2244 case 't':
2245 case 'd':
2246 case 'b':
2247 case '<':
2248 case 's':
2249 case 'e':
2250 case 'r':
2251 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2252 so that it will only be evaluated once. */
2253 /* The reference (r) and comparison (<) classes could be handled as
2254 below, but it is generally faster to only evaluate them once. */
2255 if (TREE_SIDE_EFFECTS (e))
2256 return save_expr (e);
2257 return e;
2258
2259 case 'c':
2260 /* Constants need no processing. In fact, we should never reach
2261 here. */
2262 return e;
2263
2264 case '2':
2265 /* Division is slow and tends to be compiled with jumps,
2266 especially the division by powers of 2 that is often
2267 found inside of an array reference. So do it just once. */
2268 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2269 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2270 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2271 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2272 return save_expr (e);
2273 /* Recursively stabilize each operand. */
2274 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2275 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2276 break;
2277
2278 case '1':
2279 /* Recursively stabilize each operand. */
2280 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2281 break;
2282
2283 default:
2284 abort ();
2285 }
2286
2287 TREE_TYPE (result) = TREE_TYPE (e);
2288 TREE_READONLY (result) = TREE_READONLY (e);
2289 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2290 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2291
2292 return result;
2293 }
2294 \f
2295 /* Low-level constructors for expressions. */
2296
2297 /* Build an expression of code CODE, data type TYPE,
2298 and operands as specified by the arguments ARG1 and following arguments.
2299 Expressions and reference nodes can be created this way.
2300 Constants, decls, types and misc nodes cannot be. */
2301
2302 tree
2303 build (enum tree_code code, tree tt, ...)
2304 {
2305 tree t;
2306 int length;
2307 int i;
2308 int fro;
2309 int constant;
2310 va_list p;
2311 tree node;
2312
2313 va_start (p, tt);
2314
2315 t = make_node (code);
2316 length = TREE_CODE_LENGTH (code);
2317 TREE_TYPE (t) = tt;
2318
2319 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2320 result based on those same flags for the arguments. But if the
2321 arguments aren't really even `tree' expressions, we shouldn't be trying
2322 to do this. */
2323 fro = first_rtl_op (code);
2324
2325 /* Expressions without side effects may be constant if their
2326 arguments are as well. */
2327 constant = (TREE_CODE_CLASS (code) == '<'
2328 || TREE_CODE_CLASS (code) == '1'
2329 || TREE_CODE_CLASS (code) == '2'
2330 || TREE_CODE_CLASS (code) == 'c');
2331
2332 if (length == 2)
2333 {
2334 /* This is equivalent to the loop below, but faster. */
2335 tree arg0 = va_arg (p, tree);
2336 tree arg1 = va_arg (p, tree);
2337
2338 TREE_OPERAND (t, 0) = arg0;
2339 TREE_OPERAND (t, 1) = arg1;
2340 TREE_READONLY (t) = 1;
2341 if (arg0 && fro > 0)
2342 {
2343 if (TREE_SIDE_EFFECTS (arg0))
2344 TREE_SIDE_EFFECTS (t) = 1;
2345 if (!TREE_READONLY (arg0))
2346 TREE_READONLY (t) = 0;
2347 if (!TREE_CONSTANT (arg0))
2348 constant = 0;
2349 }
2350
2351 if (arg1 && fro > 1)
2352 {
2353 if (TREE_SIDE_EFFECTS (arg1))
2354 TREE_SIDE_EFFECTS (t) = 1;
2355 if (!TREE_READONLY (arg1))
2356 TREE_READONLY (t) = 0;
2357 if (!TREE_CONSTANT (arg1))
2358 constant = 0;
2359 }
2360 }
2361 else if (length == 1)
2362 {
2363 tree arg0 = va_arg (p, tree);
2364
2365 /* The only one-operand cases we handle here are those with side-effects.
2366 Others are handled with build1. So don't bother checked if the
2367 arg has side-effects since we'll already have set it.
2368
2369 ??? This really should use build1 too. */
2370 if (TREE_CODE_CLASS (code) != 's')
2371 abort ();
2372 TREE_OPERAND (t, 0) = arg0;
2373 }
2374 else
2375 {
2376 for (i = 0; i < length; i++)
2377 {
2378 tree operand = va_arg (p, tree);
2379
2380 TREE_OPERAND (t, i) = operand;
2381 if (operand && fro > i)
2382 {
2383 if (TREE_SIDE_EFFECTS (operand))
2384 TREE_SIDE_EFFECTS (t) = 1;
2385 if (!TREE_CONSTANT (operand))
2386 constant = 0;
2387 }
2388 }
2389 }
2390 va_end (p);
2391
2392 TREE_CONSTANT (t) = constant;
2393
2394 if (code == CALL_EXPR && !TREE_SIDE_EFFECTS (t))
2395 {
2396 /* Calls have side-effects, except those to const or
2397 pure functions. */
2398 i = call_expr_flags (t);
2399 if (!(i & (ECF_CONST | ECF_PURE)))
2400 TREE_SIDE_EFFECTS (t) = 1;
2401
2402 /* And even those have side-effects if their arguments do. */
2403 else for (node = TREE_OPERAND (t, 1); node; node = TREE_CHAIN (node))
2404 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2405 {
2406 TREE_SIDE_EFFECTS (t) = 1;
2407 break;
2408 }
2409 }
2410
2411 return t;
2412 }
2413
2414 /* Same as above, but only builds for unary operators.
2415 Saves lions share of calls to `build'; cuts down use
2416 of varargs, which is expensive for RISC machines. */
2417
2418 tree
2419 build1 (enum tree_code code, tree type, tree node)
2420 {
2421 int length = sizeof (struct tree_exp);
2422 #ifdef GATHER_STATISTICS
2423 tree_node_kind kind;
2424 #endif
2425 tree t;
2426
2427 #ifdef GATHER_STATISTICS
2428 switch (TREE_CODE_CLASS (code))
2429 {
2430 case 's': /* an expression with side effects */
2431 kind = s_kind;
2432 break;
2433 case 'r': /* a reference */
2434 kind = r_kind;
2435 break;
2436 default:
2437 kind = e_kind;
2438 break;
2439 }
2440
2441 tree_node_counts[(int) kind]++;
2442 tree_node_sizes[(int) kind] += length;
2443 #endif
2444
2445 #ifdef ENABLE_CHECKING
2446 if (TREE_CODE_CLASS (code) == '2'
2447 || TREE_CODE_CLASS (code) == '<'
2448 || TREE_CODE_LENGTH (code) != 1)
2449 abort ();
2450 #endif /* ENABLE_CHECKING */
2451
2452 t = ggc_alloc_tree (length);
2453
2454 memset (t, 0, sizeof (struct tree_common));
2455
2456 TREE_SET_CODE (t, code);
2457
2458 TREE_TYPE (t) = type;
2459 TREE_COMPLEXITY (t) = 0;
2460 TREE_OPERAND (t, 0) = node;
2461 if (node && first_rtl_op (code) != 0)
2462 {
2463 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2464 TREE_READONLY (t) = TREE_READONLY (node);
2465 }
2466
2467 if (TREE_CODE_CLASS (code) == 's')
2468 TREE_SIDE_EFFECTS (t) = 1;
2469 else switch (code)
2470 {
2471 case INIT_EXPR:
2472 case MODIFY_EXPR:
2473 case VA_ARG_EXPR:
2474 case RTL_EXPR:
2475 case PREDECREMENT_EXPR:
2476 case PREINCREMENT_EXPR:
2477 case POSTDECREMENT_EXPR:
2478 case POSTINCREMENT_EXPR:
2479 /* All of these have side-effects, no matter what their
2480 operands are. */
2481 TREE_SIDE_EFFECTS (t) = 1;
2482 TREE_READONLY (t) = 0;
2483 break;
2484
2485 case INDIRECT_REF:
2486 /* Whether a dereference is readonly has nothing to do with whether
2487 its operand is readonly. */
2488 TREE_READONLY (t) = 0;
2489 break;
2490
2491 case ADDR_EXPR:
2492 if (node)
2493 {
2494 /* The address of a volatile decl or reference does not have
2495 side-effects. But be careful not to ignore side-effects from
2496 other sources deeper in the expression--if node is a _REF and
2497 one of its operands has side-effects, so do we. */
2498 if (TREE_THIS_VOLATILE (node))
2499 {
2500 TREE_SIDE_EFFECTS (t) = 0;
2501 if (!DECL_P (node))
2502 {
2503 int i = first_rtl_op (TREE_CODE (node)) - 1;
2504 for (; i >= 0; --i)
2505 {
2506 if (TREE_SIDE_EFFECTS (TREE_OPERAND (node, i)))
2507 TREE_SIDE_EFFECTS (t) = 1;
2508 }
2509 }
2510 }
2511 }
2512 break;
2513
2514 default:
2515 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2516 TREE_CONSTANT (t) = 1;
2517 break;
2518 }
2519
2520 return t;
2521 }
2522
2523 /* Similar except don't specify the TREE_TYPE
2524 and leave the TREE_SIDE_EFFECTS as 0.
2525 It is permissible for arguments to be null,
2526 or even garbage if their values do not matter. */
2527
2528 tree
2529 build_nt (enum tree_code code, ...)
2530 {
2531 tree t;
2532 int length;
2533 int i;
2534 va_list p;
2535
2536 va_start (p, code);
2537
2538 t = make_node (code);
2539 length = TREE_CODE_LENGTH (code);
2540
2541 for (i = 0; i < length; i++)
2542 TREE_OPERAND (t, i) = va_arg (p, tree);
2543
2544 va_end (p);
2545 return t;
2546 }
2547 \f
2548 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2549 We do NOT enter this node in any sort of symbol table.
2550
2551 layout_decl is used to set up the decl's storage layout.
2552 Other slots are initialized to 0 or null pointers. */
2553
2554 tree
2555 build_decl (enum tree_code code, tree name, tree type)
2556 {
2557 tree t;
2558
2559 t = make_node (code);
2560
2561 /* if (type == error_mark_node)
2562 type = integer_type_node; */
2563 /* That is not done, deliberately, so that having error_mark_node
2564 as the type can suppress useless errors in the use of this variable. */
2565
2566 DECL_NAME (t) = name;
2567 TREE_TYPE (t) = type;
2568
2569 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2570 layout_decl (t, 0);
2571 else if (code == FUNCTION_DECL)
2572 DECL_MODE (t) = FUNCTION_MODE;
2573
2574 return t;
2575 }
2576 \f
2577 /* BLOCK nodes are used to represent the structure of binding contours
2578 and declarations, once those contours have been exited and their contents
2579 compiled. This information is used for outputting debugging info. */
2580
2581 tree
2582 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2583 tree supercontext, tree chain)
2584 {
2585 tree block = make_node (BLOCK);
2586
2587 BLOCK_VARS (block) = vars;
2588 BLOCK_SUBBLOCKS (block) = subblocks;
2589 BLOCK_SUPERCONTEXT (block) = supercontext;
2590 BLOCK_CHAIN (block) = chain;
2591 return block;
2592 }
2593
2594 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2595 location where an expression or an identifier were encountered. It
2596 is necessary for languages where the frontend parser will handle
2597 recursively more than one file (Java is one of them). */
2598
2599 tree
2600 build_expr_wfl (tree node, const char *file, int line, int col)
2601 {
2602 static const char *last_file = 0;
2603 static tree last_filenode = NULL_TREE;
2604 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2605
2606 EXPR_WFL_NODE (wfl) = node;
2607 EXPR_WFL_SET_LINECOL (wfl, line, col);
2608 if (file != last_file)
2609 {
2610 last_file = file;
2611 last_filenode = file ? get_identifier (file) : NULL_TREE;
2612 }
2613
2614 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2615 if (node)
2616 {
2617 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2618 TREE_TYPE (wfl) = TREE_TYPE (node);
2619 }
2620
2621 return wfl;
2622 }
2623 \f
2624 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2625 is ATTRIBUTE. */
2626
2627 tree
2628 build_decl_attribute_variant (tree ddecl, tree attribute)
2629 {
2630 DECL_ATTRIBUTES (ddecl) = attribute;
2631 return ddecl;
2632 }
2633
2634 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2635 is ATTRIBUTE.
2636
2637 Record such modified types already made so we don't make duplicates. */
2638
2639 tree
2640 build_type_attribute_variant (tree ttype, tree attribute)
2641 {
2642 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2643 {
2644 unsigned int hashcode;
2645 tree ntype;
2646
2647 ntype = copy_node (ttype);
2648
2649 TYPE_POINTER_TO (ntype) = 0;
2650 TYPE_REFERENCE_TO (ntype) = 0;
2651 TYPE_ATTRIBUTES (ntype) = attribute;
2652
2653 /* Create a new main variant of TYPE. */
2654 TYPE_MAIN_VARIANT (ntype) = ntype;
2655 TYPE_NEXT_VARIANT (ntype) = 0;
2656 set_type_quals (ntype, TYPE_UNQUALIFIED);
2657
2658 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2659 + TYPE_HASH (TREE_TYPE (ntype))
2660 + attribute_hash_list (attribute));
2661
2662 switch (TREE_CODE (ntype))
2663 {
2664 case FUNCTION_TYPE:
2665 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2666 break;
2667 case ARRAY_TYPE:
2668 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2669 break;
2670 case INTEGER_TYPE:
2671 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2672 break;
2673 case REAL_TYPE:
2674 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2675 break;
2676 default:
2677 break;
2678 }
2679
2680 ntype = type_hash_canon (hashcode, ntype);
2681 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2682 }
2683
2684 return ttype;
2685 }
2686
2687 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2688 or zero if not.
2689
2690 We try both `text' and `__text__', ATTR may be either one. */
2691 /* ??? It might be a reasonable simplification to require ATTR to be only
2692 `text'. One might then also require attribute lists to be stored in
2693 their canonicalized form. */
2694
2695 int
2696 is_attribute_p (const char *attr, tree ident)
2697 {
2698 int ident_len, attr_len;
2699 const char *p;
2700
2701 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2702 return 0;
2703
2704 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2705 return 1;
2706
2707 p = IDENTIFIER_POINTER (ident);
2708 ident_len = strlen (p);
2709 attr_len = strlen (attr);
2710
2711 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2712 if (attr[0] == '_')
2713 {
2714 if (attr[1] != '_'
2715 || attr[attr_len - 2] != '_'
2716 || attr[attr_len - 1] != '_')
2717 abort ();
2718 if (ident_len == attr_len - 4
2719 && strncmp (attr + 2, p, attr_len - 4) == 0)
2720 return 1;
2721 }
2722 else
2723 {
2724 if (ident_len == attr_len + 4
2725 && p[0] == '_' && p[1] == '_'
2726 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2727 && strncmp (attr, p + 2, attr_len) == 0)
2728 return 1;
2729 }
2730
2731 return 0;
2732 }
2733
2734 /* Given an attribute name and a list of attributes, return a pointer to the
2735 attribute's list element if the attribute is part of the list, or NULL_TREE
2736 if not found. If the attribute appears more than once, this only
2737 returns the first occurrence; the TREE_CHAIN of the return value should
2738 be passed back in if further occurrences are wanted. */
2739
2740 tree
2741 lookup_attribute (const char *attr_name, tree list)
2742 {
2743 tree l;
2744
2745 for (l = list; l; l = TREE_CHAIN (l))
2746 {
2747 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2748 abort ();
2749 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2750 return l;
2751 }
2752
2753 return NULL_TREE;
2754 }
2755
2756 /* Return an attribute list that is the union of a1 and a2. */
2757
2758 tree
2759 merge_attributes (tree a1, tree a2)
2760 {
2761 tree attributes;
2762
2763 /* Either one unset? Take the set one. */
2764
2765 if ((attributes = a1) == 0)
2766 attributes = a2;
2767
2768 /* One that completely contains the other? Take it. */
2769
2770 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2771 {
2772 if (attribute_list_contained (a2, a1))
2773 attributes = a2;
2774 else
2775 {
2776 /* Pick the longest list, and hang on the other list. */
2777
2778 if (list_length (a1) < list_length (a2))
2779 attributes = a2, a2 = a1;
2780
2781 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2782 {
2783 tree a;
2784 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2785 attributes);
2786 a != NULL_TREE;
2787 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2788 TREE_CHAIN (a)))
2789 {
2790 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2791 break;
2792 }
2793 if (a == NULL_TREE)
2794 {
2795 a1 = copy_node (a2);
2796 TREE_CHAIN (a1) = attributes;
2797 attributes = a1;
2798 }
2799 }
2800 }
2801 }
2802 return attributes;
2803 }
2804
2805 /* Given types T1 and T2, merge their attributes and return
2806 the result. */
2807
2808 tree
2809 merge_type_attributes (tree t1, tree t2)
2810 {
2811 return merge_attributes (TYPE_ATTRIBUTES (t1),
2812 TYPE_ATTRIBUTES (t2));
2813 }
2814
2815 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2816 the result. */
2817
2818 tree
2819 merge_decl_attributes (tree olddecl, tree newdecl)
2820 {
2821 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2822 DECL_ATTRIBUTES (newdecl));
2823 }
2824
2825 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2826
2827 /* Specialization of merge_decl_attributes for various Windows targets.
2828
2829 This handles the following situation:
2830
2831 __declspec (dllimport) int foo;
2832 int foo;
2833
2834 The second instance of `foo' nullifies the dllimport. */
2835
2836 tree
2837 merge_dllimport_decl_attributes (tree old, tree new)
2838 {
2839 tree a;
2840 int delete_dllimport_p;
2841
2842 old = DECL_ATTRIBUTES (old);
2843 new = DECL_ATTRIBUTES (new);
2844
2845 /* What we need to do here is remove from `old' dllimport if it doesn't
2846 appear in `new'. dllimport behaves like extern: if a declaration is
2847 marked dllimport and a definition appears later, then the object
2848 is not dllimport'd. */
2849 if (lookup_attribute ("dllimport", old) != NULL_TREE
2850 && lookup_attribute ("dllimport", new) == NULL_TREE)
2851 delete_dllimport_p = 1;
2852 else
2853 delete_dllimport_p = 0;
2854
2855 a = merge_attributes (old, new);
2856
2857 if (delete_dllimport_p)
2858 {
2859 tree prev, t;
2860
2861 /* Scan the list for dllimport and delete it. */
2862 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2863 {
2864 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2865 {
2866 if (prev == NULL_TREE)
2867 a = TREE_CHAIN (a);
2868 else
2869 TREE_CHAIN (prev) = TREE_CHAIN (t);
2870 break;
2871 }
2872 }
2873 }
2874
2875 return a;
2876 }
2877
2878 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2879 \f
2880 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2881 of the various TYPE_QUAL values. */
2882
2883 static void
2884 set_type_quals (tree type, int type_quals)
2885 {
2886 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2887 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2888 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2889 }
2890
2891 /* Return a version of the TYPE, qualified as indicated by the
2892 TYPE_QUALS, if one exists. If no qualified version exists yet,
2893 return NULL_TREE. */
2894
2895 tree
2896 get_qualified_type (tree type, int type_quals)
2897 {
2898 tree t;
2899
2900 /* Search the chain of variants to see if there is already one there just
2901 like the one we need to have. If so, use that existing one. We must
2902 preserve the TYPE_NAME, since there is code that depends on this. */
2903 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2904 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type)
2905 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
2906 && attribute_list_equal (TYPE_ATTRIBUTES (t), TYPE_ATTRIBUTES (type)))
2907 return t;
2908
2909 return NULL_TREE;
2910 }
2911
2912 /* Like get_qualified_type, but creates the type if it does not
2913 exist. This function never returns NULL_TREE. */
2914
2915 tree
2916 build_qualified_type (tree type, int type_quals)
2917 {
2918 tree t;
2919
2920 /* See if we already have the appropriate qualified variant. */
2921 t = get_qualified_type (type, type_quals);
2922
2923 /* If not, build it. */
2924 if (!t)
2925 {
2926 t = build_type_copy (type);
2927 set_type_quals (t, type_quals);
2928 }
2929
2930 return t;
2931 }
2932
2933 /* Create a new variant of TYPE, equivalent but distinct.
2934 This is so the caller can modify it. */
2935
2936 tree
2937 build_type_copy (tree type)
2938 {
2939 tree t, m = TYPE_MAIN_VARIANT (type);
2940
2941 t = copy_node (type);
2942
2943 TYPE_POINTER_TO (t) = 0;
2944 TYPE_REFERENCE_TO (t) = 0;
2945
2946 /* Add this type to the chain of variants of TYPE. */
2947 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2948 TYPE_NEXT_VARIANT (m) = t;
2949
2950 return t;
2951 }
2952 \f
2953 /* Hashing of types so that we don't make duplicates.
2954 The entry point is `type_hash_canon'. */
2955
2956 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2957 with types in the TREE_VALUE slots), by adding the hash codes
2958 of the individual types. */
2959
2960 unsigned int
2961 type_hash_list (tree list)
2962 {
2963 unsigned int hashcode;
2964 tree tail;
2965
2966 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2967 hashcode += TYPE_HASH (TREE_VALUE (tail));
2968
2969 return hashcode;
2970 }
2971
2972 /* These are the Hashtable callback functions. */
2973
2974 /* Returns true if the types are equal. */
2975
2976 static int
2977 type_hash_eq (const void *va, const void *vb)
2978 {
2979 const struct type_hash *a = va, *b = vb;
2980 if (a->hash == b->hash
2981 && TREE_CODE (a->type) == TREE_CODE (b->type)
2982 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
2983 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
2984 TYPE_ATTRIBUTES (b->type))
2985 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
2986 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
2987 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
2988 TYPE_MAX_VALUE (b->type)))
2989 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
2990 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
2991 TYPE_MIN_VALUE (b->type)))
2992 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2993 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
2994 || (TYPE_DOMAIN (a->type)
2995 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
2996 && TYPE_DOMAIN (b->type)
2997 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
2998 && type_list_equal (TYPE_DOMAIN (a->type),
2999 TYPE_DOMAIN (b->type)))))
3000 return 1;
3001 return 0;
3002 }
3003
3004 /* Return the cached hash value. */
3005
3006 static hashval_t
3007 type_hash_hash (const void *item)
3008 {
3009 return ((const struct type_hash *) item)->hash;
3010 }
3011
3012 /* Look in the type hash table for a type isomorphic to TYPE.
3013 If one is found, return it. Otherwise return 0. */
3014
3015 tree
3016 type_hash_lookup (unsigned int hashcode, tree type)
3017 {
3018 struct type_hash *h, in;
3019
3020 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3021 must call that routine before comparing TYPE_ALIGNs. */
3022 layout_type (type);
3023
3024 in.hash = hashcode;
3025 in.type = type;
3026
3027 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3028 if (h)
3029 return h->type;
3030 return NULL_TREE;
3031 }
3032
3033 /* Add an entry to the type-hash-table
3034 for a type TYPE whose hash code is HASHCODE. */
3035
3036 void
3037 type_hash_add (unsigned int hashcode, tree type)
3038 {
3039 struct type_hash *h;
3040 void **loc;
3041
3042 h = ggc_alloc (sizeof (struct type_hash));
3043 h->hash = hashcode;
3044 h->type = type;
3045 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3046 *(struct type_hash **) loc = h;
3047 }
3048
3049 /* Given TYPE, and HASHCODE its hash code, return the canonical
3050 object for an identical type if one already exists.
3051 Otherwise, return TYPE, and record it as the canonical object
3052 if it is a permanent object.
3053
3054 To use this function, first create a type of the sort you want.
3055 Then compute its hash code from the fields of the type that
3056 make it different from other similar types.
3057 Then call this function and use the value.
3058 This function frees the type you pass in if it is a duplicate. */
3059
3060 /* Set to 1 to debug without canonicalization. Never set by program. */
3061 int debug_no_type_hash = 0;
3062
3063 tree
3064 type_hash_canon (unsigned int hashcode, tree type)
3065 {
3066 tree t1;
3067
3068 if (debug_no_type_hash)
3069 return type;
3070
3071 /* See if the type is in the hash table already. If so, return it.
3072 Otherwise, add the type. */
3073 t1 = type_hash_lookup (hashcode, type);
3074 if (t1 != 0)
3075 {
3076 #ifdef GATHER_STATISTICS
3077 tree_node_counts[(int) t_kind]--;
3078 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3079 #endif
3080 return t1;
3081 }
3082 else
3083 {
3084 type_hash_add (hashcode, type);
3085 return type;
3086 }
3087 }
3088
3089 /* See if the data pointed to by the type hash table is marked. We consider
3090 it marked if the type is marked or if a debug type number or symbol
3091 table entry has been made for the type. This reduces the amount of
3092 debugging output and eliminates that dependency of the debug output on
3093 the number of garbage collections. */
3094
3095 static int
3096 type_hash_marked_p (const void *p)
3097 {
3098 tree type = ((struct type_hash *) p)->type;
3099
3100 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3101 }
3102
3103 static void
3104 print_type_hash_statistics (void)
3105 {
3106 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3107 (long) htab_size (type_hash_table),
3108 (long) htab_elements (type_hash_table),
3109 htab_collisions (type_hash_table));
3110 }
3111
3112 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3113 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3114 by adding the hash codes of the individual attributes. */
3115
3116 unsigned int
3117 attribute_hash_list (tree list)
3118 {
3119 unsigned int hashcode;
3120 tree tail;
3121
3122 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3123 /* ??? Do we want to add in TREE_VALUE too? */
3124 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3125 return hashcode;
3126 }
3127
3128 /* Given two lists of attributes, return true if list l2 is
3129 equivalent to l1. */
3130
3131 int
3132 attribute_list_equal (tree l1, tree l2)
3133 {
3134 return attribute_list_contained (l1, l2)
3135 && attribute_list_contained (l2, l1);
3136 }
3137
3138 /* Given two lists of attributes, return true if list L2 is
3139 completely contained within L1. */
3140 /* ??? This would be faster if attribute names were stored in a canonicalized
3141 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3142 must be used to show these elements are equivalent (which they are). */
3143 /* ??? It's not clear that attributes with arguments will always be handled
3144 correctly. */
3145
3146 int
3147 attribute_list_contained (tree l1, tree l2)
3148 {
3149 tree t1, t2;
3150
3151 /* First check the obvious, maybe the lists are identical. */
3152 if (l1 == l2)
3153 return 1;
3154
3155 /* Maybe the lists are similar. */
3156 for (t1 = l1, t2 = l2;
3157 t1 != 0 && t2 != 0
3158 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3159 && TREE_VALUE (t1) == TREE_VALUE (t2);
3160 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3161
3162 /* Maybe the lists are equal. */
3163 if (t1 == 0 && t2 == 0)
3164 return 1;
3165
3166 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3167 {
3168 tree attr;
3169 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3170 attr != NULL_TREE;
3171 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3172 TREE_CHAIN (attr)))
3173 {
3174 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3175 break;
3176 }
3177
3178 if (attr == 0)
3179 return 0;
3180
3181 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3182 return 0;
3183 }
3184
3185 return 1;
3186 }
3187
3188 /* Given two lists of types
3189 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3190 return 1 if the lists contain the same types in the same order.
3191 Also, the TREE_PURPOSEs must match. */
3192
3193 int
3194 type_list_equal (tree l1, tree l2)
3195 {
3196 tree t1, t2;
3197
3198 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3199 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3200 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3201 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3202 && (TREE_TYPE (TREE_PURPOSE (t1))
3203 == TREE_TYPE (TREE_PURPOSE (t2))))))
3204 return 0;
3205
3206 return t1 == t2;
3207 }
3208
3209 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3210 given by TYPE. If the argument list accepts variable arguments,
3211 then this function counts only the ordinary arguments. */
3212
3213 int
3214 type_num_arguments (tree type)
3215 {
3216 int i = 0;
3217 tree t;
3218
3219 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3220 /* If the function does not take a variable number of arguments,
3221 the last element in the list will have type `void'. */
3222 if (VOID_TYPE_P (TREE_VALUE (t)))
3223 break;
3224 else
3225 ++i;
3226
3227 return i;
3228 }
3229
3230 /* Nonzero if integer constants T1 and T2
3231 represent the same constant value. */
3232
3233 int
3234 tree_int_cst_equal (tree t1, tree t2)
3235 {
3236 if (t1 == t2)
3237 return 1;
3238
3239 if (t1 == 0 || t2 == 0)
3240 return 0;
3241
3242 if (TREE_CODE (t1) == INTEGER_CST
3243 && TREE_CODE (t2) == INTEGER_CST
3244 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3245 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3246 return 1;
3247
3248 return 0;
3249 }
3250
3251 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3252 The precise way of comparison depends on their data type. */
3253
3254 int
3255 tree_int_cst_lt (tree t1, tree t2)
3256 {
3257 if (t1 == t2)
3258 return 0;
3259
3260 if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
3261 {
3262 int t1_sgn = tree_int_cst_sgn (t1);
3263 int t2_sgn = tree_int_cst_sgn (t2);
3264
3265 if (t1_sgn < t2_sgn)
3266 return 1;
3267 else if (t1_sgn > t2_sgn)
3268 return 0;
3269 /* Otherwise, both are non-negative, so we compare them as
3270 unsigned just in case one of them would overflow a signed
3271 type. */
3272 }
3273 else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3274 return INT_CST_LT (t1, t2);
3275
3276 return INT_CST_LT_UNSIGNED (t1, t2);
3277 }
3278
3279 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3280
3281 int
3282 tree_int_cst_compare (tree t1, tree t2)
3283 {
3284 if (tree_int_cst_lt (t1, t2))
3285 return -1;
3286 else if (tree_int_cst_lt (t2, t1))
3287 return 1;
3288 else
3289 return 0;
3290 }
3291
3292 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3293 the host. If POS is zero, the value can be represented in a single
3294 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3295 be represented in a single unsigned HOST_WIDE_INT. */
3296
3297 int
3298 host_integerp (tree t, int pos)
3299 {
3300 return (TREE_CODE (t) == INTEGER_CST
3301 && ! TREE_OVERFLOW (t)
3302 && ((TREE_INT_CST_HIGH (t) == 0
3303 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3304 || (! pos && TREE_INT_CST_HIGH (t) == -1
3305 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3306 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3307 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3308 }
3309
3310 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3311 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3312 be positive. Abort if we cannot satisfy the above conditions. */
3313
3314 HOST_WIDE_INT
3315 tree_low_cst (tree t, int pos)
3316 {
3317 if (host_integerp (t, pos))
3318 return TREE_INT_CST_LOW (t);
3319 else
3320 abort ();
3321 }
3322
3323 /* Return the most significant bit of the integer constant T. */
3324
3325 int
3326 tree_int_cst_msb (tree t)
3327 {
3328 int prec;
3329 HOST_WIDE_INT h;
3330 unsigned HOST_WIDE_INT l;
3331
3332 /* Note that using TYPE_PRECISION here is wrong. We care about the
3333 actual bits, not the (arbitrary) range of the type. */
3334 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3335 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3336 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3337 return (l & 1) == 1;
3338 }
3339
3340 /* Return an indication of the sign of the integer constant T.
3341 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3342 Note that -1 will never be returned it T's type is unsigned. */
3343
3344 int
3345 tree_int_cst_sgn (tree t)
3346 {
3347 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3348 return 0;
3349 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3350 return 1;
3351 else if (TREE_INT_CST_HIGH (t) < 0)
3352 return -1;
3353 else
3354 return 1;
3355 }
3356
3357 /* Compare two constructor-element-type constants. Return 1 if the lists
3358 are known to be equal; otherwise return 0. */
3359
3360 int
3361 simple_cst_list_equal (tree l1, tree l2)
3362 {
3363 while (l1 != NULL_TREE && l2 != NULL_TREE)
3364 {
3365 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3366 return 0;
3367
3368 l1 = TREE_CHAIN (l1);
3369 l2 = TREE_CHAIN (l2);
3370 }
3371
3372 return l1 == l2;
3373 }
3374
3375 /* Return truthvalue of whether T1 is the same tree structure as T2.
3376 Return 1 if they are the same.
3377 Return 0 if they are understandably different.
3378 Return -1 if either contains tree structure not understood by
3379 this function. */
3380
3381 int
3382 simple_cst_equal (tree t1, tree t2)
3383 {
3384 enum tree_code code1, code2;
3385 int cmp;
3386 int i;
3387
3388 if (t1 == t2)
3389 return 1;
3390 if (t1 == 0 || t2 == 0)
3391 return 0;
3392
3393 code1 = TREE_CODE (t1);
3394 code2 = TREE_CODE (t2);
3395
3396 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3397 {
3398 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3399 || code2 == NON_LVALUE_EXPR)
3400 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3401 else
3402 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3403 }
3404
3405 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3406 || code2 == NON_LVALUE_EXPR)
3407 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3408
3409 if (code1 != code2)
3410 return 0;
3411
3412 switch (code1)
3413 {
3414 case INTEGER_CST:
3415 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3416 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3417
3418 case REAL_CST:
3419 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3420
3421 case STRING_CST:
3422 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3423 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3424 TREE_STRING_LENGTH (t1)));
3425
3426 case CONSTRUCTOR:
3427 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3428 return 1;
3429 else
3430 abort ();
3431
3432 case SAVE_EXPR:
3433 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3434
3435 case CALL_EXPR:
3436 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3437 if (cmp <= 0)
3438 return cmp;
3439 return
3440 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3441
3442 case TARGET_EXPR:
3443 /* Special case: if either target is an unallocated VAR_DECL,
3444 it means that it's going to be unified with whatever the
3445 TARGET_EXPR is really supposed to initialize, so treat it
3446 as being equivalent to anything. */
3447 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3448 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3449 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3450 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3451 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3452 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3453 cmp = 1;
3454 else
3455 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3456
3457 if (cmp <= 0)
3458 return cmp;
3459
3460 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3461
3462 case WITH_CLEANUP_EXPR:
3463 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3464 if (cmp <= 0)
3465 return cmp;
3466
3467 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3468
3469 case COMPONENT_REF:
3470 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3471 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3472
3473 return 0;
3474
3475 case VAR_DECL:
3476 case PARM_DECL:
3477 case CONST_DECL:
3478 case FUNCTION_DECL:
3479 return 0;
3480
3481 default:
3482 break;
3483 }
3484
3485 /* This general rule works for most tree codes. All exceptions should be
3486 handled above. If this is a language-specific tree code, we can't
3487 trust what might be in the operand, so say we don't know
3488 the situation. */
3489 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3490 return -1;
3491
3492 switch (TREE_CODE_CLASS (code1))
3493 {
3494 case '1':
3495 case '2':
3496 case '<':
3497 case 'e':
3498 case 'r':
3499 case 's':
3500 cmp = 1;
3501 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3502 {
3503 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3504 if (cmp <= 0)
3505 return cmp;
3506 }
3507
3508 return cmp;
3509
3510 default:
3511 return -1;
3512 }
3513 }
3514
3515 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3516 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3517 than U, respectively. */
3518
3519 int
3520 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
3521 {
3522 if (tree_int_cst_sgn (t) < 0)
3523 return -1;
3524 else if (TREE_INT_CST_HIGH (t) != 0)
3525 return 1;
3526 else if (TREE_INT_CST_LOW (t) == u)
3527 return 0;
3528 else if (TREE_INT_CST_LOW (t) < u)
3529 return -1;
3530 else
3531 return 1;
3532 }
3533
3534 /* Generate a hash value for an expression. This can be used iteratively
3535 by passing a previous result as the "val" argument.
3536
3537 This function is intended to produce the same hash for expressions which
3538 would compare equal using operand_equal_p. */
3539
3540 hashval_t
3541 iterative_hash_expr (tree t, hashval_t val)
3542 {
3543 int i;
3544 enum tree_code code;
3545 char class;
3546
3547 if (t == NULL_TREE)
3548 return iterative_hash_object (t, val);
3549
3550 code = TREE_CODE (t);
3551 class = TREE_CODE_CLASS (code);
3552
3553 if (class == 'd')
3554 {
3555 /* Decls we can just compare by pointer. */
3556 val = iterative_hash_object (t, val);
3557 }
3558 else if (class == 'c')
3559 {
3560 /* Alas, constants aren't shared, so we can't rely on pointer
3561 identity. */
3562 if (code == INTEGER_CST)
3563 {
3564 val = iterative_hash_object (TREE_INT_CST_LOW (t), val);
3565 val = iterative_hash_object (TREE_INT_CST_HIGH (t), val);
3566 }
3567 else if (code == REAL_CST)
3568 val = iterative_hash (TREE_REAL_CST_PTR (t),
3569 sizeof (REAL_VALUE_TYPE), val);
3570 else if (code == STRING_CST)
3571 val = iterative_hash (TREE_STRING_POINTER (t),
3572 TREE_STRING_LENGTH (t), val);
3573 else if (code == COMPLEX_CST)
3574 {
3575 val = iterative_hash_expr (TREE_REALPART (t), val);
3576 val = iterative_hash_expr (TREE_IMAGPART (t), val);
3577 }
3578 else if (code == VECTOR_CST)
3579 val = iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
3580 else
3581 abort ();
3582 }
3583 else if (IS_EXPR_CODE_CLASS (class))
3584 {
3585 val = iterative_hash_object (code, val);
3586
3587 if (code == NOP_EXPR || code == CONVERT_EXPR
3588 || code == NON_LVALUE_EXPR)
3589 val = iterative_hash_object (TREE_TYPE (t), val);
3590
3591 if (code == PLUS_EXPR || code == MULT_EXPR || code == MIN_EXPR
3592 || code == MAX_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR
3593 || code == BIT_AND_EXPR || code == NE_EXPR || code == EQ_EXPR)
3594 {
3595 /* It's a commutative expression. We want to hash it the same
3596 however it appears. We do this by first hashing both operands
3597 and then rehashing based on the order of their independent
3598 hashes. */
3599 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
3600 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
3601 hashval_t t;
3602
3603 if (one > two)
3604 t = one, one = two, two = t;
3605
3606 val = iterative_hash_object (one, val);
3607 val = iterative_hash_object (two, val);
3608 }
3609 else
3610 for (i = first_rtl_op (code) - 1; i >= 0; --i)
3611 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
3612 }
3613 else if (code == TREE_LIST)
3614 {
3615 /* A list of expressions, for a CALL_EXPR or as the elements of a
3616 VECTOR_CST. */
3617 for (; t; t = TREE_CHAIN (t))
3618 val = iterative_hash_expr (TREE_VALUE (t), val);
3619 }
3620 else
3621 abort ();
3622
3623 return val;
3624 }
3625 \f
3626 /* Constructors for pointer, array and function types.
3627 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3628 constructed by language-dependent code, not here.) */
3629
3630 /* Construct, lay out and return the type of pointers to TO_TYPE
3631 with mode MODE. If such a type has already been constructed,
3632 reuse it. */
3633
3634 tree
3635 build_pointer_type_for_mode (tree to_type, enum machine_mode mode)
3636 {
3637 tree t = TYPE_POINTER_TO (to_type);
3638
3639 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3640 if (t != 0 && mode == ptr_mode)
3641 return t;
3642
3643 t = make_node (POINTER_TYPE);
3644
3645 TREE_TYPE (t) = to_type;
3646 TYPE_MODE (t) = mode;
3647
3648 /* Record this type as the pointer to TO_TYPE. */
3649 if (mode == ptr_mode)
3650 TYPE_POINTER_TO (to_type) = t;
3651
3652 /* Lay out the type. This function has many callers that are concerned
3653 with expression-construction, and this simplifies them all.
3654 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3655 layout_type (t);
3656
3657 return t;
3658 }
3659
3660 /* By default build pointers in ptr_mode. */
3661
3662 tree
3663 build_pointer_type (tree to_type)
3664 {
3665 return build_pointer_type_for_mode (to_type, ptr_mode);
3666 }
3667
3668 /* Construct, lay out and return the type of references to TO_TYPE
3669 with mode MODE. If such a type has already been constructed,
3670 reuse it. */
3671
3672 tree
3673 build_reference_type_for_mode (tree to_type, enum machine_mode mode)
3674 {
3675 tree t = TYPE_REFERENCE_TO (to_type);
3676
3677 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3678 if (t != 0 && mode == ptr_mode)
3679 return t;
3680
3681 t = make_node (REFERENCE_TYPE);
3682
3683 TREE_TYPE (t) = to_type;
3684 TYPE_MODE (t) = mode;
3685
3686 /* Record this type as the pointer to TO_TYPE. */
3687 if (mode == ptr_mode)
3688 TYPE_REFERENCE_TO (to_type) = t;
3689
3690 layout_type (t);
3691
3692 return t;
3693 }
3694
3695
3696 /* Build the node for the type of references-to-TO_TYPE by default
3697 in ptr_mode. */
3698
3699 tree
3700 build_reference_type (tree to_type)
3701 {
3702 return build_reference_type_for_mode (to_type, ptr_mode);
3703 }
3704
3705 /* Build a type that is compatible with t but has no cv quals anywhere
3706 in its type, thus
3707
3708 const char *const *const * -> char ***. */
3709
3710 tree
3711 build_type_no_quals (tree t)
3712 {
3713 switch (TREE_CODE (t))
3714 {
3715 case POINTER_TYPE:
3716 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3717 case REFERENCE_TYPE:
3718 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3719 default:
3720 return TYPE_MAIN_VARIANT (t);
3721 }
3722 }
3723
3724 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3725 MAXVAL should be the maximum value in the domain
3726 (one less than the length of the array).
3727
3728 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3729 We don't enforce this limit, that is up to caller (e.g. language front end).
3730 The limit exists because the result is a signed type and we don't handle
3731 sizes that use more than one HOST_WIDE_INT. */
3732
3733 tree
3734 build_index_type (tree maxval)
3735 {
3736 tree itype = make_node (INTEGER_TYPE);
3737
3738 TREE_TYPE (itype) = sizetype;
3739 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3740 TYPE_MIN_VALUE (itype) = size_zero_node;
3741 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3742 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3743 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3744 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3745 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3746 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3747
3748 if (host_integerp (maxval, 1))
3749 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3750 else
3751 return itype;
3752 }
3753
3754 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3755 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3756 low bound LOWVAL and high bound HIGHVAL.
3757 if TYPE==NULL_TREE, sizetype is used. */
3758
3759 tree
3760 build_range_type (tree type, tree lowval, tree highval)
3761 {
3762 tree itype = make_node (INTEGER_TYPE);
3763
3764 TREE_TYPE (itype) = type;
3765 if (type == NULL_TREE)
3766 type = sizetype;
3767
3768 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3769 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3770
3771 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3772 TYPE_MODE (itype) = TYPE_MODE (type);
3773 TYPE_SIZE (itype) = TYPE_SIZE (type);
3774 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3775 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3776 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3777
3778 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3779 return type_hash_canon (tree_low_cst (highval, 0)
3780 - tree_low_cst (lowval, 0),
3781 itype);
3782 else
3783 return itype;
3784 }
3785
3786 /* Just like build_index_type, but takes lowval and highval instead
3787 of just highval (maxval). */
3788
3789 tree
3790 build_index_2_type (tree lowval, tree highval)
3791 {
3792 return build_range_type (sizetype, lowval, highval);
3793 }
3794
3795 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3796 and number of elements specified by the range of values of INDEX_TYPE.
3797 If such a type has already been constructed, reuse it. */
3798
3799 tree
3800 build_array_type (tree elt_type, tree index_type)
3801 {
3802 tree t;
3803 unsigned int hashcode;
3804
3805 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3806 {
3807 error ("arrays of functions are not meaningful");
3808 elt_type = integer_type_node;
3809 }
3810
3811 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3812 build_pointer_type (elt_type);
3813
3814 /* Allocate the array after the pointer type,
3815 in case we free it in type_hash_canon. */
3816 t = make_node (ARRAY_TYPE);
3817 TREE_TYPE (t) = elt_type;
3818 TYPE_DOMAIN (t) = index_type;
3819
3820 if (index_type == 0)
3821 {
3822 return t;
3823 }
3824
3825 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3826 t = type_hash_canon (hashcode, t);
3827
3828 if (!COMPLETE_TYPE_P (t))
3829 layout_type (t);
3830 return t;
3831 }
3832
3833 /* Return the TYPE of the elements comprising
3834 the innermost dimension of ARRAY. */
3835
3836 tree
3837 get_inner_array_type (tree array)
3838 {
3839 tree type = TREE_TYPE (array);
3840
3841 while (TREE_CODE (type) == ARRAY_TYPE)
3842 type = TREE_TYPE (type);
3843
3844 return type;
3845 }
3846
3847 /* Construct, lay out and return
3848 the type of functions returning type VALUE_TYPE
3849 given arguments of types ARG_TYPES.
3850 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3851 are data type nodes for the arguments of the function.
3852 If such a type has already been constructed, reuse it. */
3853
3854 tree
3855 build_function_type (tree value_type, tree arg_types)
3856 {
3857 tree t;
3858 unsigned int hashcode;
3859
3860 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3861 {
3862 error ("function return type cannot be function");
3863 value_type = integer_type_node;
3864 }
3865
3866 /* Make a node of the sort we want. */
3867 t = make_node (FUNCTION_TYPE);
3868 TREE_TYPE (t) = value_type;
3869 TYPE_ARG_TYPES (t) = arg_types;
3870
3871 /* If we already have such a type, use the old one and free this one. */
3872 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3873 t = type_hash_canon (hashcode, t);
3874
3875 if (!COMPLETE_TYPE_P (t))
3876 layout_type (t);
3877 return t;
3878 }
3879
3880 /* Build a function type. The RETURN_TYPE is the type returned by the
3881 function. If additional arguments are provided, they are
3882 additional argument types. The list of argument types must always
3883 be terminated by NULL_TREE. */
3884
3885 tree
3886 build_function_type_list (tree return_type, ...)
3887 {
3888 tree t, args, last;
3889 va_list p;
3890
3891 va_start (p, return_type);
3892
3893 t = va_arg (p, tree);
3894 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
3895 args = tree_cons (NULL_TREE, t, args);
3896
3897 last = args;
3898 args = nreverse (args);
3899 TREE_CHAIN (last) = void_list_node;
3900 args = build_function_type (return_type, args);
3901
3902 va_end (p);
3903 return args;
3904 }
3905
3906 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
3907 and ARGTYPES (a TREE_LIST) are the return type and arguments types
3908 for the method. An implicit additional parameter (of type
3909 pointer-to-BASETYPE) is added to the ARGTYPES. */
3910
3911 tree
3912 build_method_type_directly (tree basetype,
3913 tree rettype,
3914 tree argtypes)
3915 {
3916 tree t;
3917 tree ptype;
3918 int hashcode;
3919
3920 /* Make a node of the sort we want. */
3921 t = make_node (METHOD_TYPE);
3922
3923 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3924 TREE_TYPE (t) = rettype;
3925 ptype = build_pointer_type (basetype);
3926
3927 /* The actual arglist for this function includes a "hidden" argument
3928 which is "this". Put it into the list of argument types. */
3929 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
3930 TYPE_ARG_TYPES (t) = argtypes;
3931
3932 /* If we already have such a type, use the old one and free this one.
3933 Note that it also frees up the above cons cell if found. */
3934 hashcode = TYPE_HASH (basetype) + TYPE_HASH (rettype) +
3935 type_hash_list (argtypes);
3936
3937 t = type_hash_canon (hashcode, t);
3938
3939 if (!COMPLETE_TYPE_P (t))
3940 layout_type (t);
3941
3942 return t;
3943 }
3944
3945 /* Construct, lay out and return the type of methods belonging to class
3946 BASETYPE and whose arguments and values are described by TYPE.
3947 If that type exists already, reuse it.
3948 TYPE must be a FUNCTION_TYPE node. */
3949
3950 tree
3951 build_method_type (tree basetype, tree type)
3952 {
3953 if (TREE_CODE (type) != FUNCTION_TYPE)
3954 abort ();
3955
3956 return build_method_type_directly (basetype,
3957 TREE_TYPE (type),
3958 TYPE_ARG_TYPES (type));
3959 }
3960
3961 /* Construct, lay out and return the type of offsets to a value
3962 of type TYPE, within an object of type BASETYPE.
3963 If a suitable offset type exists already, reuse it. */
3964
3965 tree
3966 build_offset_type (tree basetype, tree type)
3967 {
3968 tree t;
3969 unsigned int hashcode;
3970
3971 /* Make a node of the sort we want. */
3972 t = make_node (OFFSET_TYPE);
3973
3974 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3975 TREE_TYPE (t) = type;
3976
3977 /* If we already have such a type, use the old one and free this one. */
3978 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3979 t = type_hash_canon (hashcode, t);
3980
3981 if (!COMPLETE_TYPE_P (t))
3982 layout_type (t);
3983
3984 return t;
3985 }
3986
3987 /* Create a complex type whose components are COMPONENT_TYPE. */
3988
3989 tree
3990 build_complex_type (tree component_type)
3991 {
3992 tree t;
3993 unsigned int hashcode;
3994
3995 /* Make a node of the sort we want. */
3996 t = make_node (COMPLEX_TYPE);
3997
3998 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3999 set_type_quals (t, TYPE_QUALS (component_type));
4000
4001 /* If we already have such a type, use the old one and free this one. */
4002 hashcode = TYPE_HASH (component_type);
4003 t = type_hash_canon (hashcode, t);
4004
4005 if (!COMPLETE_TYPE_P (t))
4006 layout_type (t);
4007
4008 /* If we are writing Dwarf2 output we need to create a name,
4009 since complex is a fundamental type. */
4010 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
4011 && ! TYPE_NAME (t))
4012 {
4013 const char *name;
4014 if (component_type == char_type_node)
4015 name = "complex char";
4016 else if (component_type == signed_char_type_node)
4017 name = "complex signed char";
4018 else if (component_type == unsigned_char_type_node)
4019 name = "complex unsigned char";
4020 else if (component_type == short_integer_type_node)
4021 name = "complex short int";
4022 else if (component_type == short_unsigned_type_node)
4023 name = "complex short unsigned int";
4024 else if (component_type == integer_type_node)
4025 name = "complex int";
4026 else if (component_type == unsigned_type_node)
4027 name = "complex unsigned int";
4028 else if (component_type == long_integer_type_node)
4029 name = "complex long int";
4030 else if (component_type == long_unsigned_type_node)
4031 name = "complex long unsigned int";
4032 else if (component_type == long_long_integer_type_node)
4033 name = "complex long long int";
4034 else if (component_type == long_long_unsigned_type_node)
4035 name = "complex long long unsigned int";
4036 else
4037 name = 0;
4038
4039 if (name != 0)
4040 TYPE_NAME (t) = get_identifier (name);
4041 }
4042
4043 return t;
4044 }
4045 \f
4046 /* Return OP, stripped of any conversions to wider types as much as is safe.
4047 Converting the value back to OP's type makes a value equivalent to OP.
4048
4049 If FOR_TYPE is nonzero, we return a value which, if converted to
4050 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4051
4052 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4053 narrowest type that can hold the value, even if they don't exactly fit.
4054 Otherwise, bit-field references are changed to a narrower type
4055 only if they can be fetched directly from memory in that type.
4056
4057 OP must have integer, real or enumeral type. Pointers are not allowed!
4058
4059 There are some cases where the obvious value we could return
4060 would regenerate to OP if converted to OP's type,
4061 but would not extend like OP to wider types.
4062 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4063 For example, if OP is (unsigned short)(signed char)-1,
4064 we avoid returning (signed char)-1 if FOR_TYPE is int,
4065 even though extending that to an unsigned short would regenerate OP,
4066 since the result of extending (signed char)-1 to (int)
4067 is different from (int) OP. */
4068
4069 tree
4070 get_unwidened (tree op, tree for_type)
4071 {
4072 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4073 tree type = TREE_TYPE (op);
4074 unsigned final_prec
4075 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4076 int uns
4077 = (for_type != 0 && for_type != type
4078 && final_prec > TYPE_PRECISION (type)
4079 && TREE_UNSIGNED (type));
4080 tree win = op;
4081
4082 while (TREE_CODE (op) == NOP_EXPR)
4083 {
4084 int bitschange
4085 = TYPE_PRECISION (TREE_TYPE (op))
4086 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4087
4088 /* Truncations are many-one so cannot be removed.
4089 Unless we are later going to truncate down even farther. */
4090 if (bitschange < 0
4091 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4092 break;
4093
4094 /* See what's inside this conversion. If we decide to strip it,
4095 we will set WIN. */
4096 op = TREE_OPERAND (op, 0);
4097
4098 /* If we have not stripped any zero-extensions (uns is 0),
4099 we can strip any kind of extension.
4100 If we have previously stripped a zero-extension,
4101 only zero-extensions can safely be stripped.
4102 Any extension can be stripped if the bits it would produce
4103 are all going to be discarded later by truncating to FOR_TYPE. */
4104
4105 if (bitschange > 0)
4106 {
4107 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4108 win = op;
4109 /* TREE_UNSIGNED says whether this is a zero-extension.
4110 Let's avoid computing it if it does not affect WIN
4111 and if UNS will not be needed again. */
4112 if ((uns || TREE_CODE (op) == NOP_EXPR)
4113 && TREE_UNSIGNED (TREE_TYPE (op)))
4114 {
4115 uns = 1;
4116 win = op;
4117 }
4118 }
4119 }
4120
4121 if (TREE_CODE (op) == COMPONENT_REF
4122 /* Since type_for_size always gives an integer type. */
4123 && TREE_CODE (type) != REAL_TYPE
4124 /* Don't crash if field not laid out yet. */
4125 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4126 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4127 {
4128 unsigned int innerprec
4129 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4130 int unsignedp = (TREE_UNSIGNED (TREE_OPERAND (op, 1))
4131 || TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4132 type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
4133
4134 /* We can get this structure field in the narrowest type it fits in.
4135 If FOR_TYPE is 0, do this only for a field that matches the
4136 narrower type exactly and is aligned for it
4137 The resulting extension to its nominal type (a fullword type)
4138 must fit the same conditions as for other extensions. */
4139
4140 if (type != 0
4141 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
4142 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4143 && (! uns || final_prec <= innerprec || unsignedp))
4144 {
4145 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4146 TREE_OPERAND (op, 1));
4147 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4148 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4149 }
4150 }
4151
4152 return win;
4153 }
4154 \f
4155 /* Return OP or a simpler expression for a narrower value
4156 which can be sign-extended or zero-extended to give back OP.
4157 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4158 or 0 if the value should be sign-extended. */
4159
4160 tree
4161 get_narrower (tree op, int *unsignedp_ptr)
4162 {
4163 int uns = 0;
4164 int first = 1;
4165 tree win = op;
4166
4167 while (TREE_CODE (op) == NOP_EXPR)
4168 {
4169 int bitschange
4170 = (TYPE_PRECISION (TREE_TYPE (op))
4171 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4172
4173 /* Truncations are many-one so cannot be removed. */
4174 if (bitschange < 0)
4175 break;
4176
4177 /* See what's inside this conversion. If we decide to strip it,
4178 we will set WIN. */
4179
4180 if (bitschange > 0)
4181 {
4182 op = TREE_OPERAND (op, 0);
4183 /* An extension: the outermost one can be stripped,
4184 but remember whether it is zero or sign extension. */
4185 if (first)
4186 uns = TREE_UNSIGNED (TREE_TYPE (op));
4187 /* Otherwise, if a sign extension has been stripped,
4188 only sign extensions can now be stripped;
4189 if a zero extension has been stripped, only zero-extensions. */
4190 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4191 break;
4192 first = 0;
4193 }
4194 else /* bitschange == 0 */
4195 {
4196 /* A change in nominal type can always be stripped, but we must
4197 preserve the unsignedness. */
4198 if (first)
4199 uns = TREE_UNSIGNED (TREE_TYPE (op));
4200 first = 0;
4201 op = TREE_OPERAND (op, 0);
4202 }
4203
4204 win = op;
4205 }
4206
4207 if (TREE_CODE (op) == COMPONENT_REF
4208 /* Since type_for_size always gives an integer type. */
4209 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4210 /* Ensure field is laid out already. */
4211 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4212 {
4213 unsigned HOST_WIDE_INT innerprec
4214 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4215 int unsignedp = (TREE_UNSIGNED (TREE_OPERAND (op, 1))
4216 || TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4217 tree type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
4218
4219 /* We can get this structure field in a narrower type that fits it,
4220 but the resulting extension to its nominal type (a fullword type)
4221 must satisfy the same conditions as for other extensions.
4222
4223 Do this only for fields that are aligned (not bit-fields),
4224 because when bit-field insns will be used there is no
4225 advantage in doing this. */
4226
4227 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4228 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4229 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4230 && type != 0)
4231 {
4232 if (first)
4233 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4234 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4235 TREE_OPERAND (op, 1));
4236 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4237 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4238 }
4239 }
4240 *unsignedp_ptr = uns;
4241 return win;
4242 }
4243 \f
4244 /* Nonzero if integer constant C has a value that is permissible
4245 for type TYPE (an INTEGER_TYPE). */
4246
4247 int
4248 int_fits_type_p (tree c, tree type)
4249 {
4250 tree type_low_bound = TYPE_MIN_VALUE (type);
4251 tree type_high_bound = TYPE_MAX_VALUE (type);
4252 int ok_for_low_bound, ok_for_high_bound;
4253
4254 /* Perform some generic filtering first, which may allow making a decision
4255 even if the bounds are not constant. First, negative integers never fit
4256 in unsigned types, */
4257 if ((TREE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4258 /* Also, unsigned integers with top bit set never fit signed types. */
4259 || (! TREE_UNSIGNED (type)
4260 && TREE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4261 return 0;
4262
4263 /* If at least one bound of the type is a constant integer, we can check
4264 ourselves and maybe make a decision. If no such decision is possible, but
4265 this type is a subtype, try checking against that. Otherwise, use
4266 force_fit_type, which checks against the precision.
4267
4268 Compute the status for each possibly constant bound, and return if we see
4269 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4270 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4271 for "constant known to fit". */
4272
4273 ok_for_low_bound = -1;
4274 ok_for_high_bound = -1;
4275
4276 /* Check if C >= type_low_bound. */
4277 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4278 {
4279 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4280 if (! ok_for_low_bound)
4281 return 0;
4282 }
4283
4284 /* Check if c <= type_high_bound. */
4285 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4286 {
4287 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4288 if (! ok_for_high_bound)
4289 return 0;
4290 }
4291
4292 /* If the constant fits both bounds, the result is known. */
4293 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4294 return 1;
4295
4296 /* If we haven't been able to decide at this point, there nothing more we
4297 can check ourselves here. Look at the base type if we have one. */
4298 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4299 return int_fits_type_p (c, TREE_TYPE (type));
4300
4301 /* Or to force_fit_type, if nothing else. */
4302 else
4303 {
4304 c = copy_node (c);
4305 TREE_TYPE (c) = type;
4306 return !force_fit_type (c, 0);
4307 }
4308 }
4309
4310 /* Returns true if T is, contains, or refers to a type with variable
4311 size. This concept is more general than that of C99 'variably
4312 modified types': in C99, a struct type is never variably modified
4313 because a VLA may not appear as a structure member. However, in
4314 GNU C code like:
4315
4316 struct S { int i[f()]; };
4317
4318 is valid, and other languages may define similar constructs. */
4319
4320 bool
4321 variably_modified_type_p (tree type)
4322 {
4323 tree t;
4324
4325 if (type == error_mark_node)
4326 return false;
4327
4328 /* If TYPE itself has variable size, it is variably modified.
4329
4330 We do not yet have a representation of the C99 '[*]' syntax.
4331 When a representation is chosen, this function should be modified
4332 to test for that case as well. */
4333 t = TYPE_SIZE (type);
4334 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4335 return true;
4336
4337 switch (TREE_CODE (type))
4338 {
4339 case POINTER_TYPE:
4340 case REFERENCE_TYPE:
4341 case ARRAY_TYPE:
4342 /* If TYPE is a pointer or reference, it is variably modified if
4343 the type pointed to is variably modified. Similarly for arrays;
4344 note that VLAs are handled by the TYPE_SIZE check above. */
4345 return variably_modified_type_p (TREE_TYPE (type));
4346
4347 case FUNCTION_TYPE:
4348 case METHOD_TYPE:
4349 /* If TYPE is a function type, it is variably modified if any of the
4350 parameters or the return type are variably modified. */
4351 {
4352 tree parm;
4353
4354 if (variably_modified_type_p (TREE_TYPE (type)))
4355 return true;
4356 for (parm = TYPE_ARG_TYPES (type);
4357 parm && parm != void_list_node;
4358 parm = TREE_CHAIN (parm))
4359 if (variably_modified_type_p (TREE_VALUE (parm)))
4360 return true;
4361 }
4362 break;
4363
4364 case INTEGER_TYPE:
4365 /* Scalar types are variably modified if their end points
4366 aren't constant. */
4367 t = TYPE_MIN_VALUE (type);
4368 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4369 return true;
4370 t = TYPE_MAX_VALUE (type);
4371 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4372 return true;
4373 return false;
4374
4375 default:
4376 break;
4377 }
4378
4379 /* The current language may have other cases to check, but in general,
4380 all other types are not variably modified. */
4381 return (*lang_hooks.tree_inlining.var_mod_type_p) (type);
4382 }
4383
4384 /* Given a DECL or TYPE, return the scope in which it was declared, or
4385 NULL_TREE if there is no containing scope. */
4386
4387 tree
4388 get_containing_scope (tree t)
4389 {
4390 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4391 }
4392
4393 /* Return the innermost context enclosing DECL that is
4394 a FUNCTION_DECL, or zero if none. */
4395
4396 tree
4397 decl_function_context (tree decl)
4398 {
4399 tree context;
4400
4401 if (TREE_CODE (decl) == ERROR_MARK)
4402 return 0;
4403
4404 if (TREE_CODE (decl) == SAVE_EXPR)
4405 context = SAVE_EXPR_CONTEXT (decl);
4406
4407 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4408 where we look up the function at runtime. Such functions always take
4409 a first argument of type 'pointer to real context'.
4410
4411 C++ should really be fixed to use DECL_CONTEXT for the real context,
4412 and use something else for the "virtual context". */
4413 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4414 context
4415 = TYPE_MAIN_VARIANT
4416 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4417 else
4418 context = DECL_CONTEXT (decl);
4419
4420 while (context && TREE_CODE (context) != FUNCTION_DECL)
4421 {
4422 if (TREE_CODE (context) == BLOCK)
4423 context = BLOCK_SUPERCONTEXT (context);
4424 else
4425 context = get_containing_scope (context);
4426 }
4427
4428 return context;
4429 }
4430
4431 /* Return the innermost context enclosing DECL that is
4432 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4433 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4434
4435 tree
4436 decl_type_context (tree decl)
4437 {
4438 tree context = DECL_CONTEXT (decl);
4439
4440 while (context)
4441 switch (TREE_CODE (context))
4442 {
4443 case NAMESPACE_DECL:
4444 case TRANSLATION_UNIT_DECL:
4445 return NULL_TREE;
4446
4447 case RECORD_TYPE:
4448 case UNION_TYPE:
4449 case QUAL_UNION_TYPE:
4450 return context;
4451
4452 case TYPE_DECL:
4453 case FUNCTION_DECL:
4454 context = DECL_CONTEXT (context);
4455 break;
4456
4457 case BLOCK:
4458 context = BLOCK_SUPERCONTEXT (context);
4459 break;
4460
4461 default:
4462 abort ();
4463 }
4464
4465 return NULL_TREE;
4466 }
4467
4468 /* CALL is a CALL_EXPR. Return the declaration for the function
4469 called, or NULL_TREE if the called function cannot be
4470 determined. */
4471
4472 tree
4473 get_callee_fndecl (tree call)
4474 {
4475 tree addr;
4476
4477 /* It's invalid to call this function with anything but a
4478 CALL_EXPR. */
4479 if (TREE_CODE (call) != CALL_EXPR)
4480 abort ();
4481
4482 /* The first operand to the CALL is the address of the function
4483 called. */
4484 addr = TREE_OPERAND (call, 0);
4485
4486 STRIP_NOPS (addr);
4487
4488 /* If this is a readonly function pointer, extract its initial value. */
4489 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4490 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4491 && DECL_INITIAL (addr))
4492 addr = DECL_INITIAL (addr);
4493
4494 /* If the address is just `&f' for some function `f', then we know
4495 that `f' is being called. */
4496 if (TREE_CODE (addr) == ADDR_EXPR
4497 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4498 return TREE_OPERAND (addr, 0);
4499
4500 /* We couldn't figure out what was being called. Maybe the front
4501 end has some idea. */
4502 return (*lang_hooks.lang_get_callee_fndecl) (call);
4503 }
4504
4505 /* Print debugging information about tree nodes generated during the compile,
4506 and any language-specific information. */
4507
4508 void
4509 dump_tree_statistics (void)
4510 {
4511 #ifdef GATHER_STATISTICS
4512 int i;
4513 int total_nodes, total_bytes;
4514 #endif
4515
4516 fprintf (stderr, "\n??? tree nodes created\n\n");
4517 #ifdef GATHER_STATISTICS
4518 fprintf (stderr, "Kind Nodes Bytes\n");
4519 fprintf (stderr, "---------------------------------------\n");
4520 total_nodes = total_bytes = 0;
4521 for (i = 0; i < (int) all_kinds; i++)
4522 {
4523 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
4524 tree_node_counts[i], tree_node_sizes[i]);
4525 total_nodes += tree_node_counts[i];
4526 total_bytes += tree_node_sizes[i];
4527 }
4528 fprintf (stderr, "---------------------------------------\n");
4529 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
4530 fprintf (stderr, "---------------------------------------\n");
4531 #else
4532 fprintf (stderr, "(No per-node statistics)\n");
4533 #endif
4534 print_type_hash_statistics ();
4535 (*lang_hooks.print_statistics) ();
4536 }
4537 \f
4538 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4539
4540 /* Generate a crc32 of a string. */
4541
4542 unsigned
4543 crc32_string (unsigned chksum, const char *string)
4544 {
4545 do
4546 {
4547 unsigned value = *string << 24;
4548 unsigned ix;
4549
4550 for (ix = 8; ix--; value <<= 1)
4551 {
4552 unsigned feedback;
4553
4554 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
4555 chksum <<= 1;
4556 chksum ^= feedback;
4557 }
4558 }
4559 while (*string++);
4560 return chksum;
4561 }
4562
4563 /* P is a string that will be used in a symbol. Mask out any characters
4564 that are not valid in that context. */
4565
4566 void
4567 clean_symbol_name (char *p)
4568 {
4569 for (; *p; p++)
4570 if (! (ISALNUM (*p)
4571 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4572 || *p == '$'
4573 #endif
4574 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4575 || *p == '.'
4576 #endif
4577 ))
4578 *p = '_';
4579 }
4580
4581 /* Generate a name for a function unique to this translation unit.
4582 TYPE is some string to identify the purpose of this function to the
4583 linker or collect2. */
4584
4585 tree
4586 get_file_function_name_long (const char *type)
4587 {
4588 char *buf;
4589 const char *p;
4590 char *q;
4591
4592 if (first_global_object_name)
4593 p = first_global_object_name;
4594 else
4595 {
4596 /* We don't have anything that we know to be unique to this translation
4597 unit, so use what we do have and throw in some randomness. */
4598 unsigned len;
4599 const char *name = weak_global_object_name;
4600 const char *file = main_input_filename;
4601
4602 if (! name)
4603 name = "";
4604 if (! file)
4605 file = input_filename;
4606
4607 len = strlen (file);
4608 q = alloca (9 * 2 + len + 1);
4609 memcpy (q, file, len + 1);
4610 clean_symbol_name (q);
4611
4612 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
4613 crc32_string (0, flag_random_seed));
4614
4615 p = q;
4616 }
4617
4618 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
4619
4620 /* Set up the name of the file-level functions we may need.
4621 Use a global object (which is already required to be unique over
4622 the program) rather than the file name (which imposes extra
4623 constraints). */
4624 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4625
4626 return get_identifier (buf);
4627 }
4628
4629 /* If KIND=='I', return a suitable global initializer (constructor) name.
4630 If KIND=='D', return a suitable global clean-up (destructor) name. */
4631
4632 tree
4633 get_file_function_name (int kind)
4634 {
4635 char p[2];
4636
4637 p[0] = kind;
4638 p[1] = 0;
4639
4640 return get_file_function_name_long (p);
4641 }
4642 \f
4643 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4644 The result is placed in BUFFER (which has length BIT_SIZE),
4645 with one bit in each char ('\000' or '\001').
4646
4647 If the constructor is constant, NULL_TREE is returned.
4648 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4649
4650 tree
4651 get_set_constructor_bits (tree init, char *buffer, int bit_size)
4652 {
4653 int i;
4654 tree vals;
4655 HOST_WIDE_INT domain_min
4656 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4657 tree non_const_bits = NULL_TREE;
4658
4659 for (i = 0; i < bit_size; i++)
4660 buffer[i] = 0;
4661
4662 for (vals = TREE_OPERAND (init, 1);
4663 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4664 {
4665 if (!host_integerp (TREE_VALUE (vals), 0)
4666 || (TREE_PURPOSE (vals) != NULL_TREE
4667 && !host_integerp (TREE_PURPOSE (vals), 0)))
4668 non_const_bits
4669 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4670 else if (TREE_PURPOSE (vals) != NULL_TREE)
4671 {
4672 /* Set a range of bits to ones. */
4673 HOST_WIDE_INT lo_index
4674 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4675 HOST_WIDE_INT hi_index
4676 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4677
4678 if (lo_index < 0 || lo_index >= bit_size
4679 || hi_index < 0 || hi_index >= bit_size)
4680 abort ();
4681 for (; lo_index <= hi_index; lo_index++)
4682 buffer[lo_index] = 1;
4683 }
4684 else
4685 {
4686 /* Set a single bit to one. */
4687 HOST_WIDE_INT index
4688 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4689 if (index < 0 || index >= bit_size)
4690 {
4691 error ("invalid initializer for bit string");
4692 return NULL_TREE;
4693 }
4694 buffer[index] = 1;
4695 }
4696 }
4697 return non_const_bits;
4698 }
4699
4700 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4701 The result is placed in BUFFER (which is an array of bytes).
4702 If the constructor is constant, NULL_TREE is returned.
4703 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4704
4705 tree
4706 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
4707 {
4708 int i;
4709 int set_word_size = BITS_PER_UNIT;
4710 int bit_size = wd_size * set_word_size;
4711 int bit_pos = 0;
4712 unsigned char *bytep = buffer;
4713 char *bit_buffer = alloca (bit_size);
4714 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4715
4716 for (i = 0; i < wd_size; i++)
4717 buffer[i] = 0;
4718
4719 for (i = 0; i < bit_size; i++)
4720 {
4721 if (bit_buffer[i])
4722 {
4723 if (BYTES_BIG_ENDIAN)
4724 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4725 else
4726 *bytep |= 1 << bit_pos;
4727 }
4728 bit_pos++;
4729 if (bit_pos >= set_word_size)
4730 bit_pos = 0, bytep++;
4731 }
4732 return non_const_bits;
4733 }
4734 \f
4735 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4736 /* Complain that the tree code of NODE does not match the expected CODE.
4737 FILE, LINE, and FUNCTION are of the caller. */
4738
4739 void
4740 tree_check_failed (const tree node, enum tree_code code, const char *file,
4741 int line, const char *function)
4742 {
4743 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4744 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4745 function, trim_filename (file), line);
4746 }
4747
4748 /* Similar to above, except that we check for a class of tree
4749 code, given in CL. */
4750
4751 void
4752 tree_class_check_failed (const tree node, int cl, const char *file,
4753 int line, const char *function)
4754 {
4755 internal_error
4756 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4757 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4758 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4759 }
4760
4761 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
4762 (dynamically sized) vector. */
4763
4764 void
4765 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
4766 const char *function)
4767 {
4768 internal_error
4769 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
4770 idx + 1, len, function, trim_filename (file), line);
4771 }
4772
4773 /* Similar to above, except that the check is for the bounds of the operand
4774 vector of an expression node. */
4775
4776 void
4777 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
4778 int line, const char *function)
4779 {
4780 internal_error
4781 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
4782 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
4783 function, trim_filename (file), line);
4784 }
4785 #endif /* ENABLE_TREE_CHECKING */
4786 \f
4787 /* For a new vector type node T, build the information necessary for
4788 debugging output. */
4789
4790 static void
4791 finish_vector_type (tree t)
4792 {
4793 layout_type (t);
4794
4795 {
4796 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4797 tree array = build_array_type (TREE_TYPE (t),
4798 build_index_type (index));
4799 tree rt = make_node (RECORD_TYPE);
4800
4801 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4802 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4803 layout_type (rt);
4804 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4805 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4806 the representation type, and we want to find that die when looking up
4807 the vector type. This is most easily achieved by making the TYPE_UID
4808 numbers equal. */
4809 TYPE_UID (rt) = TYPE_UID (t);
4810 }
4811 }
4812
4813 /* Create nodes for all integer types (and error_mark_node) using the sizes
4814 of C datatypes. The caller should call set_sizetype soon after calling
4815 this function to select one of the types as sizetype. */
4816
4817 void
4818 build_common_tree_nodes (int signed_char)
4819 {
4820 error_mark_node = make_node (ERROR_MARK);
4821 TREE_TYPE (error_mark_node) = error_mark_node;
4822
4823 initialize_sizetypes ();
4824
4825 /* Define both `signed char' and `unsigned char'. */
4826 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4827 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4828
4829 /* Define `char', which is like either `signed char' or `unsigned char'
4830 but not the same as either. */
4831 char_type_node
4832 = (signed_char
4833 ? make_signed_type (CHAR_TYPE_SIZE)
4834 : make_unsigned_type (CHAR_TYPE_SIZE));
4835
4836 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4837 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4838 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4839 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4840 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4841 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4842 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4843 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4844
4845 /* Define a boolean type. This type only represents boolean values but
4846 may be larger than char depending on the value of BOOL_TYPE_SIZE.
4847 Front ends which want to override this size (i.e. Java) can redefine
4848 boolean_type_node before calling build_common_tree_nodes_2. */
4849 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
4850 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
4851 TYPE_MAX_VALUE (boolean_type_node) = build_int_2 (1, 0);
4852 TREE_TYPE (TYPE_MAX_VALUE (boolean_type_node)) = boolean_type_node;
4853 TYPE_PRECISION (boolean_type_node) = 1;
4854
4855 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4856 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4857 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4858 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4859 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4860
4861 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4862 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4863 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4864 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4865 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4866 }
4867
4868 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4869 It will create several other common tree nodes. */
4870
4871 void
4872 build_common_tree_nodes_2 (int short_double)
4873 {
4874 /* Define these next since types below may used them. */
4875 integer_zero_node = build_int_2 (0, 0);
4876 integer_one_node = build_int_2 (1, 0);
4877 integer_minus_one_node = build_int_2 (-1, -1);
4878
4879 size_zero_node = size_int (0);
4880 size_one_node = size_int (1);
4881 bitsize_zero_node = bitsize_int (0);
4882 bitsize_one_node = bitsize_int (1);
4883 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4884
4885 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
4886 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
4887
4888 void_type_node = make_node (VOID_TYPE);
4889 layout_type (void_type_node);
4890
4891 /* We are not going to have real types in C with less than byte alignment,
4892 so we might as well not have any types that claim to have it. */
4893 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4894 TYPE_USER_ALIGN (void_type_node) = 0;
4895
4896 null_pointer_node = build_int_2 (0, 0);
4897 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4898 layout_type (TREE_TYPE (null_pointer_node));
4899
4900 ptr_type_node = build_pointer_type (void_type_node);
4901 const_ptr_type_node
4902 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4903
4904 float_type_node = make_node (REAL_TYPE);
4905 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4906 layout_type (float_type_node);
4907
4908 double_type_node = make_node (REAL_TYPE);
4909 if (short_double)
4910 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4911 else
4912 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4913 layout_type (double_type_node);
4914
4915 long_double_type_node = make_node (REAL_TYPE);
4916 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4917 layout_type (long_double_type_node);
4918
4919 float_ptr_type_node = build_pointer_type (float_type_node);
4920 double_ptr_type_node = build_pointer_type (double_type_node);
4921 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
4922 integer_ptr_type_node = build_pointer_type (integer_type_node);
4923
4924 complex_integer_type_node = make_node (COMPLEX_TYPE);
4925 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4926 layout_type (complex_integer_type_node);
4927
4928 complex_float_type_node = make_node (COMPLEX_TYPE);
4929 TREE_TYPE (complex_float_type_node) = float_type_node;
4930 layout_type (complex_float_type_node);
4931
4932 complex_double_type_node = make_node (COMPLEX_TYPE);
4933 TREE_TYPE (complex_double_type_node) = double_type_node;
4934 layout_type (complex_double_type_node);
4935
4936 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4937 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4938 layout_type (complex_long_double_type_node);
4939
4940 {
4941 tree t = (*targetm.build_builtin_va_list) ();
4942
4943 /* Many back-ends define record types without setting TYPE_NAME.
4944 If we copied the record type here, we'd keep the original
4945 record type without a name. This breaks name mangling. So,
4946 don't copy record types and let c_common_nodes_and_builtins()
4947 declare the type to be __builtin_va_list. */
4948 if (TREE_CODE (t) != RECORD_TYPE)
4949 t = build_type_copy (t);
4950
4951 va_list_type_node = t;
4952 }
4953
4954 unsigned_V4SI_type_node
4955 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
4956 unsigned_V2HI_type_node
4957 = make_vector (V2HImode, unsigned_intHI_type_node, 1);
4958 unsigned_V2SI_type_node
4959 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
4960 unsigned_V2DI_type_node
4961 = make_vector (V2DImode, unsigned_intDI_type_node, 1);
4962 unsigned_V4HI_type_node
4963 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
4964 unsigned_V8QI_type_node
4965 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
4966 unsigned_V8HI_type_node
4967 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
4968 unsigned_V16QI_type_node
4969 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
4970 unsigned_V1DI_type_node
4971 = make_vector (V1DImode, unsigned_intDI_type_node, 1);
4972
4973 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
4974 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
4975 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
4976 V2HI_type_node = make_vector (V2HImode, intHI_type_node, 0);
4977 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
4978 V2DI_type_node = make_vector (V2DImode, intDI_type_node, 0);
4979 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
4980 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
4981 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
4982 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
4983 V2DF_type_node = make_vector (V2DFmode, double_type_node, 0);
4984 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
4985 V1DI_type_node = make_vector (V1DImode, intDI_type_node, 0);
4986 V4DF_type_node = make_vector (V4DFmode, double_type_node, 0);
4987 }
4988
4989 /* Returns a vector tree node given a vector mode, the inner type, and
4990 the signness. */
4991
4992 static tree
4993 make_vector (enum machine_mode mode, tree innertype, int unsignedp)
4994 {
4995 tree t;
4996
4997 t = make_node (VECTOR_TYPE);
4998 TREE_TYPE (t) = innertype;
4999 TYPE_MODE (t) = mode;
5000 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
5001 finish_vector_type (t);
5002
5003 return t;
5004 }
5005
5006 /* Given an initializer INIT, return TRUE if INIT is zero or some
5007 aggregate of zeros. Otherwise return FALSE. */
5008
5009 bool
5010 initializer_zerop (tree init)
5011 {
5012 STRIP_NOPS (init);
5013
5014 switch (TREE_CODE (init))
5015 {
5016 case INTEGER_CST:
5017 return integer_zerop (init);
5018 case REAL_CST:
5019 return real_zerop (init)
5020 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
5021 case COMPLEX_CST:
5022 return integer_zerop (init)
5023 || (real_zerop (init)
5024 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
5025 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
5026 case CONSTRUCTOR:
5027 {
5028 /* Set is empty if it has no elements. */
5029 if ((TREE_CODE (TREE_TYPE (init)) == SET_TYPE)
5030 && CONSTRUCTOR_ELTS (init))
5031 return false;
5032
5033 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
5034 {
5035 tree aggr_init = CONSTRUCTOR_ELTS (init);
5036
5037 while (aggr_init)
5038 {
5039 if (! initializer_zerop (TREE_VALUE (aggr_init)))
5040 return false;
5041 aggr_init = TREE_CHAIN (aggr_init);
5042 }
5043 return true;
5044 }
5045 return false;
5046 }
5047 default:
5048 return false;
5049 }
5050 }
5051
5052 #include "gt-tree.h"