target.h (globalize_decl_name): New.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This file contains the low level primitives for operating on tree nodes,
24 including allocation, list operations, interning of identifiers,
25 construction of data type nodes and statement nodes,
26 and construction of type conversion nodes. It also contains
27 tables index by tree code that describe how to take apart
28 nodes of that code.
29
30 It is intended to be language-independent, but occasionally
31 calls language-dependent routines defined (for C) in typecheck.c. */
32
33 #include "config.h"
34 #include "system.h"
35 #include "coretypes.h"
36 #include "tm.h"
37 #include "flags.h"
38 #include "tree.h"
39 #include "real.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
47 #include "target.h"
48 #include "langhooks.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-flow.h"
52 #include "params.h"
53 #include "pointer-set.h"
54
55 /* Each tree code class has an associated string representation.
56 These must correspond to the tree_code_class entries. */
57
58 const char *const tree_code_class_strings[] =
59 {
60 "exceptional",
61 "constant",
62 "type",
63 "declaration",
64 "reference",
65 "comparison",
66 "unary",
67 "binary",
68 "statement",
69 "expression",
70 };
71
72 /* obstack.[ch] explicitly declined to prototype this. */
73 extern int _obstack_allocated_p (struct obstack *h, void *obj);
74
75 #ifdef GATHER_STATISTICS
76 /* Statistics-gathering stuff. */
77
78 int tree_node_counts[(int) all_kinds];
79 int tree_node_sizes[(int) all_kinds];
80
81 /* Keep in sync with tree.h:enum tree_node_kind. */
82 static const char * const tree_node_kind_names[] = {
83 "decls",
84 "types",
85 "blocks",
86 "stmts",
87 "refs",
88 "exprs",
89 "constants",
90 "identifiers",
91 "perm_tree_lists",
92 "temp_tree_lists",
93 "vecs",
94 "binfos",
95 "phi_nodes",
96 "ssa names",
97 "constructors",
98 "random kinds",
99 "lang_decl kinds",
100 "lang_type kinds",
101 "omp clauses",
102 "gimple statements"
103 };
104 #endif /* GATHER_STATISTICS */
105
106 /* Unique id for next decl created. */
107 static GTY(()) int next_decl_uid;
108 /* Unique id for next type created. */
109 static GTY(()) int next_type_uid = 1;
110
111 /* Since we cannot rehash a type after it is in the table, we have to
112 keep the hash code. */
113
114 struct type_hash GTY(())
115 {
116 unsigned long hash;
117 tree type;
118 };
119
120 /* Initial size of the hash table (rounded to next prime). */
121 #define TYPE_HASH_INITIAL_SIZE 1000
122
123 /* Now here is the hash table. When recording a type, it is added to
124 the slot whose index is the hash code. Note that the hash table is
125 used for several kinds of types (function types, array types and
126 array index range types, for now). While all these live in the
127 same table, they are completely independent, and the hash code is
128 computed differently for each of these. */
129
130 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
131 htab_t type_hash_table;
132
133 /* Hash table and temporary node for larger integer const values. */
134 static GTY (()) tree int_cst_node;
135 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
136 htab_t int_cst_hash_table;
137
138 /* General tree->tree mapping structure for use in hash tables. */
139
140
141 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
142 htab_t debug_expr_for_decl;
143
144 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
145 htab_t value_expr_for_decl;
146
147 static GTY ((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
148 htab_t init_priority_for_decl;
149
150 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
151 htab_t restrict_base_for_decl;
152
153 struct tree_int_map GTY(())
154 {
155 tree from;
156 unsigned short to;
157 };
158 static unsigned int tree_int_map_hash (const void *);
159 static int tree_int_map_eq (const void *, const void *);
160 static int tree_int_map_marked_p (const void *);
161 static void set_type_quals (tree, int);
162 static int type_hash_eq (const void *, const void *);
163 static hashval_t type_hash_hash (const void *);
164 static hashval_t int_cst_hash_hash (const void *);
165 static int int_cst_hash_eq (const void *, const void *);
166 static void print_type_hash_statistics (void);
167 static void print_debug_expr_statistics (void);
168 static void print_value_expr_statistics (void);
169 static int type_hash_marked_p (const void *);
170 static unsigned int type_hash_list (tree, hashval_t);
171 static unsigned int attribute_hash_list (tree, hashval_t);
172
173 tree global_trees[TI_MAX];
174 tree integer_types[itk_none];
175
176 unsigned char tree_contains_struct[256][64];
177
178 /* Number of operands for each OpenMP clause. */
179 unsigned const char omp_clause_num_ops[] =
180 {
181 0, /* OMP_CLAUSE_ERROR */
182 1, /* OMP_CLAUSE_PRIVATE */
183 1, /* OMP_CLAUSE_SHARED */
184 1, /* OMP_CLAUSE_FIRSTPRIVATE */
185 1, /* OMP_CLAUSE_LASTPRIVATE */
186 4, /* OMP_CLAUSE_REDUCTION */
187 1, /* OMP_CLAUSE_COPYIN */
188 1, /* OMP_CLAUSE_COPYPRIVATE */
189 1, /* OMP_CLAUSE_IF */
190 1, /* OMP_CLAUSE_NUM_THREADS */
191 1, /* OMP_CLAUSE_SCHEDULE */
192 0, /* OMP_CLAUSE_NOWAIT */
193 0, /* OMP_CLAUSE_ORDERED */
194 0 /* OMP_CLAUSE_DEFAULT */
195 };
196
197 const char * const omp_clause_code_name[] =
198 {
199 "error_clause",
200 "private",
201 "shared",
202 "firstprivate",
203 "lastprivate",
204 "reduction",
205 "copyin",
206 "copyprivate",
207 "if",
208 "num_threads",
209 "schedule",
210 "nowait",
211 "ordered",
212 "default"
213 };
214 \f
215 /* Init tree.c. */
216
217 void
218 init_ttree (void)
219 {
220 /* Initialize the hash table of types. */
221 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
222 type_hash_eq, 0);
223
224 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
225 tree_map_eq, 0);
226
227 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
228 tree_map_eq, 0);
229 init_priority_for_decl = htab_create_ggc (512, tree_int_map_hash,
230 tree_int_map_eq, 0);
231 restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
232 tree_map_eq, 0);
233
234 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
235 int_cst_hash_eq, NULL);
236
237 int_cst_node = make_node (INTEGER_CST);
238
239 tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
240 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
241 tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
242
243
244 tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
245 tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
246 tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
247 tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
248 tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
249 tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
250 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
251 tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
252 tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
253
254
255 tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
256 tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
257 tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
258 tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
259 tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
260 tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1;
261
262 tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
263 tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
264 tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
265 tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
266 tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
267 tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
268 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
269 tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
270 tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
271 tree_contains_struct[STRUCT_FIELD_TAG][TS_DECL_MINIMAL] = 1;
272 tree_contains_struct[NAME_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
273 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
274 tree_contains_struct[MEMORY_PARTITION_TAG][TS_DECL_MINIMAL] = 1;
275
276 tree_contains_struct[STRUCT_FIELD_TAG][TS_MEMORY_TAG] = 1;
277 tree_contains_struct[NAME_MEMORY_TAG][TS_MEMORY_TAG] = 1;
278 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_MEMORY_TAG] = 1;
279 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_TAG] = 1;
280
281 tree_contains_struct[STRUCT_FIELD_TAG][TS_STRUCT_FIELD_TAG] = 1;
282 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_PARTITION_TAG] = 1;
283
284 tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
285 tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
286 tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
287 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
288
289 tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
290 tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
291 tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
292 tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
293 tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
294 tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
295 tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
296 tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
297
298 lang_hooks.init_ts ();
299 }
300
301 \f
302 /* The name of the object as the assembler will see it (but before any
303 translations made by ASM_OUTPUT_LABELREF). Often this is the same
304 as DECL_NAME. It is an IDENTIFIER_NODE. */
305 tree
306 decl_assembler_name (tree decl)
307 {
308 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
309 lang_hooks.set_decl_assembler_name (decl);
310 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
311 }
312
313 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
314
315 bool
316 decl_assembler_name_equal (tree decl, tree asmname)
317 {
318 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
319
320 if (decl_asmname == asmname)
321 return true;
322
323 /* If the target assembler name was set by the user, things are trickier.
324 We have a leading '*' to begin with. After that, it's arguable what
325 is the correct thing to do with -fleading-underscore. Arguably, we've
326 historically been doing the wrong thing in assemble_alias by always
327 printing the leading underscore. Since we're not changing that, make
328 sure user_label_prefix follows the '*' before matching. */
329 if (IDENTIFIER_POINTER (decl_asmname)[0] == '*')
330 {
331 const char *decl_str = IDENTIFIER_POINTER (decl_asmname) + 1;
332 size_t ulp_len = strlen (user_label_prefix);
333
334 if (ulp_len == 0)
335 ;
336 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
337 decl_str += ulp_len;
338 else
339 return false;
340
341 return strcmp (decl_str, IDENTIFIER_POINTER (asmname)) == 0;
342 }
343
344 return false;
345 }
346
347 /* Compute the number of bytes occupied by a tree with code CODE.
348 This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
349 codes, which are of variable length. */
350 size_t
351 tree_code_size (enum tree_code code)
352 {
353 switch (TREE_CODE_CLASS (code))
354 {
355 case tcc_declaration: /* A decl node */
356 {
357 switch (code)
358 {
359 case FIELD_DECL:
360 return sizeof (struct tree_field_decl);
361 case PARM_DECL:
362 return sizeof (struct tree_parm_decl);
363 case VAR_DECL:
364 return sizeof (struct tree_var_decl);
365 case LABEL_DECL:
366 return sizeof (struct tree_label_decl);
367 case RESULT_DECL:
368 return sizeof (struct tree_result_decl);
369 case CONST_DECL:
370 return sizeof (struct tree_const_decl);
371 case TYPE_DECL:
372 return sizeof (struct tree_type_decl);
373 case FUNCTION_DECL:
374 return sizeof (struct tree_function_decl);
375 case NAME_MEMORY_TAG:
376 case SYMBOL_MEMORY_TAG:
377 return sizeof (struct tree_memory_tag);
378 case STRUCT_FIELD_TAG:
379 return sizeof (struct tree_struct_field_tag);
380 case MEMORY_PARTITION_TAG:
381 return sizeof (struct tree_memory_partition_tag);
382 default:
383 return sizeof (struct tree_decl_non_common);
384 }
385 }
386
387 case tcc_type: /* a type node */
388 return sizeof (struct tree_type);
389
390 case tcc_reference: /* a reference */
391 case tcc_expression: /* an expression */
392 case tcc_statement: /* an expression with side effects */
393 case tcc_comparison: /* a comparison expression */
394 case tcc_unary: /* a unary arithmetic expression */
395 case tcc_binary: /* a binary arithmetic expression */
396 return (sizeof (struct tree_exp)
397 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
398
399 case tcc_gimple_stmt:
400 return (sizeof (struct gimple_stmt)
401 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
402
403 case tcc_constant: /* a constant */
404 switch (code)
405 {
406 case INTEGER_CST: return sizeof (struct tree_int_cst);
407 case REAL_CST: return sizeof (struct tree_real_cst);
408 case COMPLEX_CST: return sizeof (struct tree_complex);
409 case VECTOR_CST: return sizeof (struct tree_vector);
410 case STRING_CST: gcc_unreachable ();
411 default:
412 return lang_hooks.tree_size (code);
413 }
414
415 case tcc_exceptional: /* something random, like an identifier. */
416 switch (code)
417 {
418 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
419 case TREE_LIST: return sizeof (struct tree_list);
420
421 case ERROR_MARK:
422 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
423
424 case TREE_VEC:
425 case OMP_CLAUSE:
426 case PHI_NODE: gcc_unreachable ();
427
428 case SSA_NAME: return sizeof (struct tree_ssa_name);
429
430 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
431 case BLOCK: return sizeof (struct tree_block);
432 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
433 case CONSTRUCTOR: return sizeof (struct tree_constructor);
434
435 default:
436 return lang_hooks.tree_size (code);
437 }
438
439 default:
440 gcc_unreachable ();
441 }
442 }
443
444 /* Compute the number of bytes occupied by NODE. This routine only
445 looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes. */
446 size_t
447 tree_size (tree node)
448 {
449 enum tree_code code = TREE_CODE (node);
450 switch (code)
451 {
452 case PHI_NODE:
453 return (sizeof (struct tree_phi_node)
454 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
455
456 case TREE_BINFO:
457 return (offsetof (struct tree_binfo, base_binfos)
458 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
459
460 case TREE_VEC:
461 return (sizeof (struct tree_vec)
462 + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
463
464 case STRING_CST:
465 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
466
467 case OMP_CLAUSE:
468 return (sizeof (struct tree_omp_clause)
469 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
470 * sizeof (tree));
471
472 default:
473 return tree_code_size (code);
474 }
475 }
476
477 /* Return a newly allocated node of code CODE. For decl and type
478 nodes, some other fields are initialized. The rest of the node is
479 initialized to zero. This function cannot be used for PHI_NODE,
480 TREE_VEC or OMP_CLAUSE nodes, which is enforced by asserts in
481 tree_code_size.
482
483 Achoo! I got a code in the node. */
484
485 tree
486 make_node_stat (enum tree_code code MEM_STAT_DECL)
487 {
488 tree t;
489 enum tree_code_class type = TREE_CODE_CLASS (code);
490 size_t length = tree_code_size (code);
491 #ifdef GATHER_STATISTICS
492 tree_node_kind kind;
493
494 switch (type)
495 {
496 case tcc_declaration: /* A decl node */
497 kind = d_kind;
498 break;
499
500 case tcc_type: /* a type node */
501 kind = t_kind;
502 break;
503
504 case tcc_statement: /* an expression with side effects */
505 kind = s_kind;
506 break;
507
508 case tcc_reference: /* a reference */
509 kind = r_kind;
510 break;
511
512 case tcc_expression: /* an expression */
513 case tcc_comparison: /* a comparison expression */
514 case tcc_unary: /* a unary arithmetic expression */
515 case tcc_binary: /* a binary arithmetic expression */
516 kind = e_kind;
517 break;
518
519 case tcc_constant: /* a constant */
520 kind = c_kind;
521 break;
522
523 case tcc_gimple_stmt:
524 kind = gimple_stmt_kind;
525 break;
526
527 case tcc_exceptional: /* something random, like an identifier. */
528 switch (code)
529 {
530 case IDENTIFIER_NODE:
531 kind = id_kind;
532 break;
533
534 case TREE_VEC:
535 kind = vec_kind;
536 break;
537
538 case TREE_BINFO:
539 kind = binfo_kind;
540 break;
541
542 case PHI_NODE:
543 kind = phi_kind;
544 break;
545
546 case SSA_NAME:
547 kind = ssa_name_kind;
548 break;
549
550 case BLOCK:
551 kind = b_kind;
552 break;
553
554 case CONSTRUCTOR:
555 kind = constr_kind;
556 break;
557
558 default:
559 kind = x_kind;
560 break;
561 }
562 break;
563
564 default:
565 gcc_unreachable ();
566 }
567
568 tree_node_counts[(int) kind]++;
569 tree_node_sizes[(int) kind] += length;
570 #endif
571
572 if (code == IDENTIFIER_NODE)
573 t = ggc_alloc_zone_pass_stat (length, &tree_id_zone);
574 else
575 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
576
577 memset (t, 0, length);
578
579 TREE_SET_CODE (t, code);
580
581 switch (type)
582 {
583 case tcc_statement:
584 TREE_SIDE_EFFECTS (t) = 1;
585 break;
586
587 case tcc_declaration:
588 if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
589 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
590 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
591 {
592 if (code != FUNCTION_DECL)
593 DECL_ALIGN (t) = 1;
594 DECL_USER_ALIGN (t) = 0;
595 /* We have not yet computed the alias set for this declaration. */
596 DECL_POINTER_ALIAS_SET (t) = -1;
597 }
598 DECL_SOURCE_LOCATION (t) = input_location;
599 DECL_UID (t) = next_decl_uid++;
600
601 break;
602
603 case tcc_type:
604 TYPE_UID (t) = next_type_uid++;
605 TYPE_ALIGN (t) = BITS_PER_UNIT;
606 TYPE_USER_ALIGN (t) = 0;
607 TYPE_MAIN_VARIANT (t) = t;
608 TYPE_CANONICAL (t) = t;
609
610 /* Default to no attributes for type, but let target change that. */
611 TYPE_ATTRIBUTES (t) = NULL_TREE;
612 targetm.set_default_type_attributes (t);
613
614 /* We have not yet computed the alias set for this type. */
615 TYPE_ALIAS_SET (t) = -1;
616 break;
617
618 case tcc_constant:
619 TREE_CONSTANT (t) = 1;
620 TREE_INVARIANT (t) = 1;
621 break;
622
623 case tcc_expression:
624 switch (code)
625 {
626 case INIT_EXPR:
627 case MODIFY_EXPR:
628 case VA_ARG_EXPR:
629 case PREDECREMENT_EXPR:
630 case PREINCREMENT_EXPR:
631 case POSTDECREMENT_EXPR:
632 case POSTINCREMENT_EXPR:
633 /* All of these have side-effects, no matter what their
634 operands are. */
635 TREE_SIDE_EFFECTS (t) = 1;
636 break;
637
638 default:
639 break;
640 }
641 break;
642
643 case tcc_gimple_stmt:
644 switch (code)
645 {
646 case GIMPLE_MODIFY_STMT:
647 TREE_SIDE_EFFECTS (t) = 1;
648 break;
649
650 default:
651 break;
652 }
653
654 default:
655 /* Other classes need no special treatment. */
656 break;
657 }
658
659 return t;
660 }
661 \f
662 /* Return a new node with the same contents as NODE except that its
663 TREE_CHAIN is zero and it has a fresh uid. */
664
665 tree
666 copy_node_stat (tree node MEM_STAT_DECL)
667 {
668 tree t;
669 enum tree_code code = TREE_CODE (node);
670 size_t length;
671
672 gcc_assert (code != STATEMENT_LIST);
673
674 length = tree_size (node);
675 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
676 memcpy (t, node, length);
677
678 if (!GIMPLE_TUPLE_P (node))
679 TREE_CHAIN (t) = 0;
680 TREE_ASM_WRITTEN (t) = 0;
681 TREE_VISITED (t) = 0;
682 t->base.ann = 0;
683
684 if (TREE_CODE_CLASS (code) == tcc_declaration)
685 {
686 DECL_UID (t) = next_decl_uid++;
687 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
688 && DECL_HAS_VALUE_EXPR_P (node))
689 {
690 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
691 DECL_HAS_VALUE_EXPR_P (t) = 1;
692 }
693 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
694 {
695 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
696 DECL_HAS_INIT_PRIORITY_P (t) = 1;
697 }
698 if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
699 {
700 SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
701 DECL_BASED_ON_RESTRICT_P (t) = 1;
702 }
703 }
704 else if (TREE_CODE_CLASS (code) == tcc_type)
705 {
706 TYPE_UID (t) = next_type_uid++;
707 /* The following is so that the debug code for
708 the copy is different from the original type.
709 The two statements usually duplicate each other
710 (because they clear fields of the same union),
711 but the optimizer should catch that. */
712 TYPE_SYMTAB_POINTER (t) = 0;
713 TYPE_SYMTAB_ADDRESS (t) = 0;
714
715 /* Do not copy the values cache. */
716 if (TYPE_CACHED_VALUES_P(t))
717 {
718 TYPE_CACHED_VALUES_P (t) = 0;
719 TYPE_CACHED_VALUES (t) = NULL_TREE;
720 }
721 }
722
723 return t;
724 }
725
726 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
727 For example, this can copy a list made of TREE_LIST nodes. */
728
729 tree
730 copy_list (tree list)
731 {
732 tree head;
733 tree prev, next;
734
735 if (list == 0)
736 return 0;
737
738 head = prev = copy_node (list);
739 next = TREE_CHAIN (list);
740 while (next)
741 {
742 TREE_CHAIN (prev) = copy_node (next);
743 prev = TREE_CHAIN (prev);
744 next = TREE_CHAIN (next);
745 }
746 return head;
747 }
748
749 \f
750 /* Create an INT_CST node with a LOW value sign extended. */
751
752 tree
753 build_int_cst (tree type, HOST_WIDE_INT low)
754 {
755 /* Support legacy code. */
756 if (!type)
757 type = integer_type_node;
758
759 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
760 }
761
762 /* Create an INT_CST node with a LOW value zero extended. */
763
764 tree
765 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
766 {
767 return build_int_cst_wide (type, low, 0);
768 }
769
770 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
771 if it is negative. This function is similar to build_int_cst, but
772 the extra bits outside of the type precision are cleared. Constants
773 with these extra bits may confuse the fold so that it detects overflows
774 even in cases when they do not occur, and in general should be avoided.
775 We cannot however make this a default behavior of build_int_cst without
776 more intrusive changes, since there are parts of gcc that rely on the extra
777 precision of the integer constants. */
778
779 tree
780 build_int_cst_type (tree type, HOST_WIDE_INT low)
781 {
782 unsigned HOST_WIDE_INT low1;
783 HOST_WIDE_INT hi;
784
785 gcc_assert (type);
786
787 fit_double_type (low, low < 0 ? -1 : 0, &low1, &hi, type);
788
789 return build_int_cst_wide (type, low1, hi);
790 }
791
792 /* Create an INT_CST node of TYPE and value HI:LOW. The value is truncated
793 and sign extended according to the value range of TYPE. */
794
795 tree
796 build_int_cst_wide_type (tree type,
797 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high)
798 {
799 fit_double_type (low, high, &low, &high, type);
800 return build_int_cst_wide (type, low, high);
801 }
802
803 /* These are the hash table functions for the hash table of INTEGER_CST
804 nodes of a sizetype. */
805
806 /* Return the hash code code X, an INTEGER_CST. */
807
808 static hashval_t
809 int_cst_hash_hash (const void *x)
810 {
811 tree t = (tree) x;
812
813 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
814 ^ htab_hash_pointer (TREE_TYPE (t)));
815 }
816
817 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
818 is the same as that given by *Y, which is the same. */
819
820 static int
821 int_cst_hash_eq (const void *x, const void *y)
822 {
823 tree xt = (tree) x;
824 tree yt = (tree) y;
825
826 return (TREE_TYPE (xt) == TREE_TYPE (yt)
827 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
828 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
829 }
830
831 /* Create an INT_CST node of TYPE and value HI:LOW.
832 The returned node is always shared. For small integers we use a
833 per-type vector cache, for larger ones we use a single hash table. */
834
835 tree
836 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
837 {
838 tree t;
839 int ix = -1;
840 int limit = 0;
841
842 gcc_assert (type);
843
844 switch (TREE_CODE (type))
845 {
846 case POINTER_TYPE:
847 case REFERENCE_TYPE:
848 /* Cache NULL pointer. */
849 if (!hi && !low)
850 {
851 limit = 1;
852 ix = 0;
853 }
854 break;
855
856 case BOOLEAN_TYPE:
857 /* Cache false or true. */
858 limit = 2;
859 if (!hi && low < 2)
860 ix = low;
861 break;
862
863 case INTEGER_TYPE:
864 case OFFSET_TYPE:
865 if (TYPE_UNSIGNED (type))
866 {
867 /* Cache 0..N */
868 limit = INTEGER_SHARE_LIMIT;
869 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
870 ix = low;
871 }
872 else
873 {
874 /* Cache -1..N */
875 limit = INTEGER_SHARE_LIMIT + 1;
876 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
877 ix = low + 1;
878 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
879 ix = 0;
880 }
881 break;
882
883 case ENUMERAL_TYPE:
884 break;
885
886 default:
887 gcc_unreachable ();
888 }
889
890 if (ix >= 0)
891 {
892 /* Look for it in the type's vector of small shared ints. */
893 if (!TYPE_CACHED_VALUES_P (type))
894 {
895 TYPE_CACHED_VALUES_P (type) = 1;
896 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
897 }
898
899 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
900 if (t)
901 {
902 /* Make sure no one is clobbering the shared constant. */
903 gcc_assert (TREE_TYPE (t) == type);
904 gcc_assert (TREE_INT_CST_LOW (t) == low);
905 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
906 }
907 else
908 {
909 /* Create a new shared int. */
910 t = make_node (INTEGER_CST);
911
912 TREE_INT_CST_LOW (t) = low;
913 TREE_INT_CST_HIGH (t) = hi;
914 TREE_TYPE (t) = type;
915
916 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
917 }
918 }
919 else
920 {
921 /* Use the cache of larger shared ints. */
922 void **slot;
923
924 TREE_INT_CST_LOW (int_cst_node) = low;
925 TREE_INT_CST_HIGH (int_cst_node) = hi;
926 TREE_TYPE (int_cst_node) = type;
927
928 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
929 t = *slot;
930 if (!t)
931 {
932 /* Insert this one into the hash table. */
933 t = int_cst_node;
934 *slot = t;
935 /* Make a new node for next time round. */
936 int_cst_node = make_node (INTEGER_CST);
937 }
938 }
939
940 return t;
941 }
942
943 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
944 and the rest are zeros. */
945
946 tree
947 build_low_bits_mask (tree type, unsigned bits)
948 {
949 unsigned HOST_WIDE_INT low;
950 HOST_WIDE_INT high;
951 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
952
953 gcc_assert (bits <= TYPE_PRECISION (type));
954
955 if (bits == TYPE_PRECISION (type)
956 && !TYPE_UNSIGNED (type))
957 {
958 /* Sign extended all-ones mask. */
959 low = all_ones;
960 high = -1;
961 }
962 else if (bits <= HOST_BITS_PER_WIDE_INT)
963 {
964 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
965 high = 0;
966 }
967 else
968 {
969 bits -= HOST_BITS_PER_WIDE_INT;
970 low = all_ones;
971 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
972 }
973
974 return build_int_cst_wide (type, low, high);
975 }
976
977 /* Checks that X is integer constant that can be expressed in (unsigned)
978 HOST_WIDE_INT without loss of precision. */
979
980 bool
981 cst_and_fits_in_hwi (tree x)
982 {
983 if (TREE_CODE (x) != INTEGER_CST)
984 return false;
985
986 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
987 return false;
988
989 return (TREE_INT_CST_HIGH (x) == 0
990 || TREE_INT_CST_HIGH (x) == -1);
991 }
992
993 /* Return a new VECTOR_CST node whose type is TYPE and whose values
994 are in a list pointed to by VALS. */
995
996 tree
997 build_vector (tree type, tree vals)
998 {
999 tree v = make_node (VECTOR_CST);
1000 int over = 0;
1001 tree link;
1002
1003 TREE_VECTOR_CST_ELTS (v) = vals;
1004 TREE_TYPE (v) = type;
1005
1006 /* Iterate through elements and check for overflow. */
1007 for (link = vals; link; link = TREE_CHAIN (link))
1008 {
1009 tree value = TREE_VALUE (link);
1010
1011 /* Don't crash if we get an address constant. */
1012 if (!CONSTANT_CLASS_P (value))
1013 continue;
1014
1015 over |= TREE_OVERFLOW (value);
1016 }
1017
1018 TREE_OVERFLOW (v) = over;
1019 return v;
1020 }
1021
1022 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1023 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1024
1025 tree
1026 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1027 {
1028 tree list = NULL_TREE;
1029 unsigned HOST_WIDE_INT idx;
1030 tree value;
1031
1032 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1033 list = tree_cons (NULL_TREE, value, list);
1034 return build_vector (type, nreverse (list));
1035 }
1036
1037 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1038 are in the VEC pointed to by VALS. */
1039 tree
1040 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1041 {
1042 tree c = make_node (CONSTRUCTOR);
1043 TREE_TYPE (c) = type;
1044 CONSTRUCTOR_ELTS (c) = vals;
1045 return c;
1046 }
1047
1048 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1049 INDEX and VALUE. */
1050 tree
1051 build_constructor_single (tree type, tree index, tree value)
1052 {
1053 VEC(constructor_elt,gc) *v;
1054 constructor_elt *elt;
1055 tree t;
1056
1057 v = VEC_alloc (constructor_elt, gc, 1);
1058 elt = VEC_quick_push (constructor_elt, v, NULL);
1059 elt->index = index;
1060 elt->value = value;
1061
1062 t = build_constructor (type, v);
1063 TREE_CONSTANT (t) = TREE_CONSTANT (value);
1064 return t;
1065 }
1066
1067
1068 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1069 are in a list pointed to by VALS. */
1070 tree
1071 build_constructor_from_list (tree type, tree vals)
1072 {
1073 tree t, val;
1074 VEC(constructor_elt,gc) *v = NULL;
1075 bool constant_p = true;
1076
1077 if (vals)
1078 {
1079 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1080 for (t = vals; t; t = TREE_CHAIN (t))
1081 {
1082 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1083 val = TREE_VALUE (t);
1084 elt->index = TREE_PURPOSE (t);
1085 elt->value = val;
1086 if (!TREE_CONSTANT (val))
1087 constant_p = false;
1088 }
1089 }
1090
1091 t = build_constructor (type, v);
1092 TREE_CONSTANT (t) = constant_p;
1093 return t;
1094 }
1095
1096
1097 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1098
1099 tree
1100 build_real (tree type, REAL_VALUE_TYPE d)
1101 {
1102 tree v;
1103 REAL_VALUE_TYPE *dp;
1104 int overflow = 0;
1105
1106 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1107 Consider doing it via real_convert now. */
1108
1109 v = make_node (REAL_CST);
1110 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
1111 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1112
1113 TREE_TYPE (v) = type;
1114 TREE_REAL_CST_PTR (v) = dp;
1115 TREE_OVERFLOW (v) = overflow;
1116 return v;
1117 }
1118
1119 /* Return a new REAL_CST node whose type is TYPE
1120 and whose value is the integer value of the INTEGER_CST node I. */
1121
1122 REAL_VALUE_TYPE
1123 real_value_from_int_cst (tree type, tree i)
1124 {
1125 REAL_VALUE_TYPE d;
1126
1127 /* Clear all bits of the real value type so that we can later do
1128 bitwise comparisons to see if two values are the same. */
1129 memset (&d, 0, sizeof d);
1130
1131 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1132 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1133 TYPE_UNSIGNED (TREE_TYPE (i)));
1134 return d;
1135 }
1136
1137 /* Given a tree representing an integer constant I, return a tree
1138 representing the same value as a floating-point constant of type TYPE. */
1139
1140 tree
1141 build_real_from_int_cst (tree type, tree i)
1142 {
1143 tree v;
1144 int overflow = TREE_OVERFLOW (i);
1145
1146 v = build_real (type, real_value_from_int_cst (type, i));
1147
1148 TREE_OVERFLOW (v) |= overflow;
1149 return v;
1150 }
1151
1152 /* Return a newly constructed STRING_CST node whose value is
1153 the LEN characters at STR.
1154 The TREE_TYPE is not initialized. */
1155
1156 tree
1157 build_string (int len, const char *str)
1158 {
1159 tree s;
1160 size_t length;
1161
1162 /* Do not waste bytes provided by padding of struct tree_string. */
1163 length = len + offsetof (struct tree_string, str) + 1;
1164
1165 #ifdef GATHER_STATISTICS
1166 tree_node_counts[(int) c_kind]++;
1167 tree_node_sizes[(int) c_kind] += length;
1168 #endif
1169
1170 s = ggc_alloc_tree (length);
1171
1172 memset (s, 0, sizeof (struct tree_common));
1173 TREE_SET_CODE (s, STRING_CST);
1174 TREE_CONSTANT (s) = 1;
1175 TREE_INVARIANT (s) = 1;
1176 TREE_STRING_LENGTH (s) = len;
1177 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
1178 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
1179
1180 return s;
1181 }
1182
1183 /* Return a newly constructed COMPLEX_CST node whose value is
1184 specified by the real and imaginary parts REAL and IMAG.
1185 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1186 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1187
1188 tree
1189 build_complex (tree type, tree real, tree imag)
1190 {
1191 tree t = make_node (COMPLEX_CST);
1192
1193 TREE_REALPART (t) = real;
1194 TREE_IMAGPART (t) = imag;
1195 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1196 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1197 return t;
1198 }
1199
1200 /* Return a constant of arithmetic type TYPE which is the
1201 multiplicative identity of the set TYPE. */
1202
1203 tree
1204 build_one_cst (tree type)
1205 {
1206 switch (TREE_CODE (type))
1207 {
1208 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1209 case POINTER_TYPE: case REFERENCE_TYPE:
1210 case OFFSET_TYPE:
1211 return build_int_cst (type, 1);
1212
1213 case REAL_TYPE:
1214 return build_real (type, dconst1);
1215
1216 case VECTOR_TYPE:
1217 {
1218 tree scalar, cst;
1219 int i;
1220
1221 scalar = build_one_cst (TREE_TYPE (type));
1222
1223 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1224 cst = NULL_TREE;
1225 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1226 cst = tree_cons (NULL_TREE, scalar, cst);
1227
1228 return build_vector (type, cst);
1229 }
1230
1231 case COMPLEX_TYPE:
1232 return build_complex (type,
1233 build_one_cst (TREE_TYPE (type)),
1234 fold_convert (TREE_TYPE (type), integer_zero_node));
1235
1236 default:
1237 gcc_unreachable ();
1238 }
1239 }
1240
1241 /* Build a BINFO with LEN language slots. */
1242
1243 tree
1244 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1245 {
1246 tree t;
1247 size_t length = (offsetof (struct tree_binfo, base_binfos)
1248 + VEC_embedded_size (tree, base_binfos));
1249
1250 #ifdef GATHER_STATISTICS
1251 tree_node_counts[(int) binfo_kind]++;
1252 tree_node_sizes[(int) binfo_kind] += length;
1253 #endif
1254
1255 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1256
1257 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1258
1259 TREE_SET_CODE (t, TREE_BINFO);
1260
1261 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1262
1263 return t;
1264 }
1265
1266
1267 /* Build a newly constructed TREE_VEC node of length LEN. */
1268
1269 tree
1270 make_tree_vec_stat (int len MEM_STAT_DECL)
1271 {
1272 tree t;
1273 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1274
1275 #ifdef GATHER_STATISTICS
1276 tree_node_counts[(int) vec_kind]++;
1277 tree_node_sizes[(int) vec_kind] += length;
1278 #endif
1279
1280 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1281
1282 memset (t, 0, length);
1283
1284 TREE_SET_CODE (t, TREE_VEC);
1285 TREE_VEC_LENGTH (t) = len;
1286
1287 return t;
1288 }
1289 \f
1290 /* Return 1 if EXPR is the integer constant zero or a complex constant
1291 of zero. */
1292
1293 int
1294 integer_zerop (tree expr)
1295 {
1296 STRIP_NOPS (expr);
1297
1298 return ((TREE_CODE (expr) == INTEGER_CST
1299 && TREE_INT_CST_LOW (expr) == 0
1300 && TREE_INT_CST_HIGH (expr) == 0)
1301 || (TREE_CODE (expr) == COMPLEX_CST
1302 && integer_zerop (TREE_REALPART (expr))
1303 && integer_zerop (TREE_IMAGPART (expr))));
1304 }
1305
1306 /* Return 1 if EXPR is the integer constant one or the corresponding
1307 complex constant. */
1308
1309 int
1310 integer_onep (tree expr)
1311 {
1312 STRIP_NOPS (expr);
1313
1314 return ((TREE_CODE (expr) == INTEGER_CST
1315 && TREE_INT_CST_LOW (expr) == 1
1316 && TREE_INT_CST_HIGH (expr) == 0)
1317 || (TREE_CODE (expr) == COMPLEX_CST
1318 && integer_onep (TREE_REALPART (expr))
1319 && integer_zerop (TREE_IMAGPART (expr))));
1320 }
1321
1322 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1323 it contains. Likewise for the corresponding complex constant. */
1324
1325 int
1326 integer_all_onesp (tree expr)
1327 {
1328 int prec;
1329 int uns;
1330
1331 STRIP_NOPS (expr);
1332
1333 if (TREE_CODE (expr) == COMPLEX_CST
1334 && integer_all_onesp (TREE_REALPART (expr))
1335 && integer_zerop (TREE_IMAGPART (expr)))
1336 return 1;
1337
1338 else if (TREE_CODE (expr) != INTEGER_CST)
1339 return 0;
1340
1341 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1342 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1343 && TREE_INT_CST_HIGH (expr) == -1)
1344 return 1;
1345 if (!uns)
1346 return 0;
1347
1348 /* Note that using TYPE_PRECISION here is wrong. We care about the
1349 actual bits, not the (arbitrary) range of the type. */
1350 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1351 if (prec >= HOST_BITS_PER_WIDE_INT)
1352 {
1353 HOST_WIDE_INT high_value;
1354 int shift_amount;
1355
1356 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1357
1358 /* Can not handle precisions greater than twice the host int size. */
1359 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1360 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1361 /* Shifting by the host word size is undefined according to the ANSI
1362 standard, so we must handle this as a special case. */
1363 high_value = -1;
1364 else
1365 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1366
1367 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1368 && TREE_INT_CST_HIGH (expr) == high_value);
1369 }
1370 else
1371 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1372 }
1373
1374 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1375 one bit on). */
1376
1377 int
1378 integer_pow2p (tree expr)
1379 {
1380 int prec;
1381 HOST_WIDE_INT high, low;
1382
1383 STRIP_NOPS (expr);
1384
1385 if (TREE_CODE (expr) == COMPLEX_CST
1386 && integer_pow2p (TREE_REALPART (expr))
1387 && integer_zerop (TREE_IMAGPART (expr)))
1388 return 1;
1389
1390 if (TREE_CODE (expr) != INTEGER_CST)
1391 return 0;
1392
1393 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1394 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1395 high = TREE_INT_CST_HIGH (expr);
1396 low = TREE_INT_CST_LOW (expr);
1397
1398 /* First clear all bits that are beyond the type's precision in case
1399 we've been sign extended. */
1400
1401 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1402 ;
1403 else if (prec > HOST_BITS_PER_WIDE_INT)
1404 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1405 else
1406 {
1407 high = 0;
1408 if (prec < HOST_BITS_PER_WIDE_INT)
1409 low &= ~((HOST_WIDE_INT) (-1) << prec);
1410 }
1411
1412 if (high == 0 && low == 0)
1413 return 0;
1414
1415 return ((high == 0 && (low & (low - 1)) == 0)
1416 || (low == 0 && (high & (high - 1)) == 0));
1417 }
1418
1419 /* Return 1 if EXPR is an integer constant other than zero or a
1420 complex constant other than zero. */
1421
1422 int
1423 integer_nonzerop (tree expr)
1424 {
1425 STRIP_NOPS (expr);
1426
1427 return ((TREE_CODE (expr) == INTEGER_CST
1428 && (TREE_INT_CST_LOW (expr) != 0
1429 || TREE_INT_CST_HIGH (expr) != 0))
1430 || (TREE_CODE (expr) == COMPLEX_CST
1431 && (integer_nonzerop (TREE_REALPART (expr))
1432 || integer_nonzerop (TREE_IMAGPART (expr)))));
1433 }
1434
1435 /* Return the power of two represented by a tree node known to be a
1436 power of two. */
1437
1438 int
1439 tree_log2 (tree expr)
1440 {
1441 int prec;
1442 HOST_WIDE_INT high, low;
1443
1444 STRIP_NOPS (expr);
1445
1446 if (TREE_CODE (expr) == COMPLEX_CST)
1447 return tree_log2 (TREE_REALPART (expr));
1448
1449 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1450 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1451
1452 high = TREE_INT_CST_HIGH (expr);
1453 low = TREE_INT_CST_LOW (expr);
1454
1455 /* First clear all bits that are beyond the type's precision in case
1456 we've been sign extended. */
1457
1458 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1459 ;
1460 else if (prec > HOST_BITS_PER_WIDE_INT)
1461 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1462 else
1463 {
1464 high = 0;
1465 if (prec < HOST_BITS_PER_WIDE_INT)
1466 low &= ~((HOST_WIDE_INT) (-1) << prec);
1467 }
1468
1469 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1470 : exact_log2 (low));
1471 }
1472
1473 /* Similar, but return the largest integer Y such that 2 ** Y is less
1474 than or equal to EXPR. */
1475
1476 int
1477 tree_floor_log2 (tree expr)
1478 {
1479 int prec;
1480 HOST_WIDE_INT high, low;
1481
1482 STRIP_NOPS (expr);
1483
1484 if (TREE_CODE (expr) == COMPLEX_CST)
1485 return tree_log2 (TREE_REALPART (expr));
1486
1487 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1488 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1489
1490 high = TREE_INT_CST_HIGH (expr);
1491 low = TREE_INT_CST_LOW (expr);
1492
1493 /* First clear all bits that are beyond the type's precision in case
1494 we've been sign extended. Ignore if type's precision hasn't been set
1495 since what we are doing is setting it. */
1496
1497 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1498 ;
1499 else if (prec > HOST_BITS_PER_WIDE_INT)
1500 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1501 else
1502 {
1503 high = 0;
1504 if (prec < HOST_BITS_PER_WIDE_INT)
1505 low &= ~((HOST_WIDE_INT) (-1) << prec);
1506 }
1507
1508 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1509 : floor_log2 (low));
1510 }
1511
1512 /* Return 1 if EXPR is the real constant zero. */
1513
1514 int
1515 real_zerop (tree expr)
1516 {
1517 STRIP_NOPS (expr);
1518
1519 return ((TREE_CODE (expr) == REAL_CST
1520 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1521 || (TREE_CODE (expr) == COMPLEX_CST
1522 && real_zerop (TREE_REALPART (expr))
1523 && real_zerop (TREE_IMAGPART (expr))));
1524 }
1525
1526 /* Return 1 if EXPR is the real constant one in real or complex form. */
1527
1528 int
1529 real_onep (tree expr)
1530 {
1531 STRIP_NOPS (expr);
1532
1533 return ((TREE_CODE (expr) == REAL_CST
1534 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1535 || (TREE_CODE (expr) == COMPLEX_CST
1536 && real_onep (TREE_REALPART (expr))
1537 && real_zerop (TREE_IMAGPART (expr))));
1538 }
1539
1540 /* Return 1 if EXPR is the real constant two. */
1541
1542 int
1543 real_twop (tree expr)
1544 {
1545 STRIP_NOPS (expr);
1546
1547 return ((TREE_CODE (expr) == REAL_CST
1548 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1549 || (TREE_CODE (expr) == COMPLEX_CST
1550 && real_twop (TREE_REALPART (expr))
1551 && real_zerop (TREE_IMAGPART (expr))));
1552 }
1553
1554 /* Return 1 if EXPR is the real constant minus one. */
1555
1556 int
1557 real_minus_onep (tree expr)
1558 {
1559 STRIP_NOPS (expr);
1560
1561 return ((TREE_CODE (expr) == REAL_CST
1562 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1563 || (TREE_CODE (expr) == COMPLEX_CST
1564 && real_minus_onep (TREE_REALPART (expr))
1565 && real_zerop (TREE_IMAGPART (expr))));
1566 }
1567
1568 /* Nonzero if EXP is a constant or a cast of a constant. */
1569
1570 int
1571 really_constant_p (tree exp)
1572 {
1573 /* This is not quite the same as STRIP_NOPS. It does more. */
1574 while (TREE_CODE (exp) == NOP_EXPR
1575 || TREE_CODE (exp) == CONVERT_EXPR
1576 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1577 exp = TREE_OPERAND (exp, 0);
1578 return TREE_CONSTANT (exp);
1579 }
1580 \f
1581 /* Return first list element whose TREE_VALUE is ELEM.
1582 Return 0 if ELEM is not in LIST. */
1583
1584 tree
1585 value_member (tree elem, tree list)
1586 {
1587 while (list)
1588 {
1589 if (elem == TREE_VALUE (list))
1590 return list;
1591 list = TREE_CHAIN (list);
1592 }
1593 return NULL_TREE;
1594 }
1595
1596 /* Return first list element whose TREE_PURPOSE is ELEM.
1597 Return 0 if ELEM is not in LIST. */
1598
1599 tree
1600 purpose_member (tree elem, tree list)
1601 {
1602 while (list)
1603 {
1604 if (elem == TREE_PURPOSE (list))
1605 return list;
1606 list = TREE_CHAIN (list);
1607 }
1608 return NULL_TREE;
1609 }
1610
1611 /* Return nonzero if ELEM is part of the chain CHAIN. */
1612
1613 int
1614 chain_member (tree elem, tree chain)
1615 {
1616 while (chain)
1617 {
1618 if (elem == chain)
1619 return 1;
1620 chain = TREE_CHAIN (chain);
1621 }
1622
1623 return 0;
1624 }
1625
1626 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1627 We expect a null pointer to mark the end of the chain.
1628 This is the Lisp primitive `length'. */
1629
1630 int
1631 list_length (tree t)
1632 {
1633 tree p = t;
1634 #ifdef ENABLE_TREE_CHECKING
1635 tree q = t;
1636 #endif
1637 int len = 0;
1638
1639 while (p)
1640 {
1641 p = TREE_CHAIN (p);
1642 #ifdef ENABLE_TREE_CHECKING
1643 if (len % 2)
1644 q = TREE_CHAIN (q);
1645 gcc_assert (p != q);
1646 #endif
1647 len++;
1648 }
1649
1650 return len;
1651 }
1652
1653 /* Returns the number of FIELD_DECLs in TYPE. */
1654
1655 int
1656 fields_length (tree type)
1657 {
1658 tree t = TYPE_FIELDS (type);
1659 int count = 0;
1660
1661 for (; t; t = TREE_CHAIN (t))
1662 if (TREE_CODE (t) == FIELD_DECL)
1663 ++count;
1664
1665 return count;
1666 }
1667
1668 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1669 by modifying the last node in chain 1 to point to chain 2.
1670 This is the Lisp primitive `nconc'. */
1671
1672 tree
1673 chainon (tree op1, tree op2)
1674 {
1675 tree t1;
1676
1677 if (!op1)
1678 return op2;
1679 if (!op2)
1680 return op1;
1681
1682 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1683 continue;
1684 TREE_CHAIN (t1) = op2;
1685
1686 #ifdef ENABLE_TREE_CHECKING
1687 {
1688 tree t2;
1689 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1690 gcc_assert (t2 != t1);
1691 }
1692 #endif
1693
1694 return op1;
1695 }
1696
1697 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1698
1699 tree
1700 tree_last (tree chain)
1701 {
1702 tree next;
1703 if (chain)
1704 while ((next = TREE_CHAIN (chain)))
1705 chain = next;
1706 return chain;
1707 }
1708
1709 /* Reverse the order of elements in the chain T,
1710 and return the new head of the chain (old last element). */
1711
1712 tree
1713 nreverse (tree t)
1714 {
1715 tree prev = 0, decl, next;
1716 for (decl = t; decl; decl = next)
1717 {
1718 next = TREE_CHAIN (decl);
1719 TREE_CHAIN (decl) = prev;
1720 prev = decl;
1721 }
1722 return prev;
1723 }
1724 \f
1725 /* Return a newly created TREE_LIST node whose
1726 purpose and value fields are PARM and VALUE. */
1727
1728 tree
1729 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1730 {
1731 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1732 TREE_PURPOSE (t) = parm;
1733 TREE_VALUE (t) = value;
1734 return t;
1735 }
1736
1737 /* Return a newly created TREE_LIST node whose
1738 purpose and value fields are PURPOSE and VALUE
1739 and whose TREE_CHAIN is CHAIN. */
1740
1741 tree
1742 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1743 {
1744 tree node;
1745
1746 node = ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
1747
1748 memset (node, 0, sizeof (struct tree_common));
1749
1750 #ifdef GATHER_STATISTICS
1751 tree_node_counts[(int) x_kind]++;
1752 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1753 #endif
1754
1755 TREE_SET_CODE (node, TREE_LIST);
1756 TREE_CHAIN (node) = chain;
1757 TREE_PURPOSE (node) = purpose;
1758 TREE_VALUE (node) = value;
1759 return node;
1760 }
1761
1762 \f
1763 /* Return the size nominally occupied by an object of type TYPE
1764 when it resides in memory. The value is measured in units of bytes,
1765 and its data type is that normally used for type sizes
1766 (which is the first type created by make_signed_type or
1767 make_unsigned_type). */
1768
1769 tree
1770 size_in_bytes (tree type)
1771 {
1772 tree t;
1773
1774 if (type == error_mark_node)
1775 return integer_zero_node;
1776
1777 type = TYPE_MAIN_VARIANT (type);
1778 t = TYPE_SIZE_UNIT (type);
1779
1780 if (t == 0)
1781 {
1782 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1783 return size_zero_node;
1784 }
1785
1786 return t;
1787 }
1788
1789 /* Return the size of TYPE (in bytes) as a wide integer
1790 or return -1 if the size can vary or is larger than an integer. */
1791
1792 HOST_WIDE_INT
1793 int_size_in_bytes (tree type)
1794 {
1795 tree t;
1796
1797 if (type == error_mark_node)
1798 return 0;
1799
1800 type = TYPE_MAIN_VARIANT (type);
1801 t = TYPE_SIZE_UNIT (type);
1802 if (t == 0
1803 || TREE_CODE (t) != INTEGER_CST
1804 || TREE_INT_CST_HIGH (t) != 0
1805 /* If the result would appear negative, it's too big to represent. */
1806 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1807 return -1;
1808
1809 return TREE_INT_CST_LOW (t);
1810 }
1811
1812 /* Return the maximum size of TYPE (in bytes) as a wide integer
1813 or return -1 if the size can vary or is larger than an integer. */
1814
1815 HOST_WIDE_INT
1816 max_int_size_in_bytes (tree type)
1817 {
1818 HOST_WIDE_INT size = -1;
1819 tree size_tree;
1820
1821 /* If this is an array type, check for a possible MAX_SIZE attached. */
1822
1823 if (TREE_CODE (type) == ARRAY_TYPE)
1824 {
1825 size_tree = TYPE_ARRAY_MAX_SIZE (type);
1826
1827 if (size_tree && host_integerp (size_tree, 1))
1828 size = tree_low_cst (size_tree, 1);
1829 }
1830
1831 /* If we still haven't been able to get a size, see if the language
1832 can compute a maximum size. */
1833
1834 if (size == -1)
1835 {
1836 size_tree = lang_hooks.types.max_size (type);
1837
1838 if (size_tree && host_integerp (size_tree, 1))
1839 size = tree_low_cst (size_tree, 1);
1840 }
1841
1842 return size;
1843 }
1844 \f
1845 /* Return the bit position of FIELD, in bits from the start of the record.
1846 This is a tree of type bitsizetype. */
1847
1848 tree
1849 bit_position (tree field)
1850 {
1851 return bit_from_pos (DECL_FIELD_OFFSET (field),
1852 DECL_FIELD_BIT_OFFSET (field));
1853 }
1854
1855 /* Likewise, but return as an integer. It must be representable in
1856 that way (since it could be a signed value, we don't have the
1857 option of returning -1 like int_size_in_byte can. */
1858
1859 HOST_WIDE_INT
1860 int_bit_position (tree field)
1861 {
1862 return tree_low_cst (bit_position (field), 0);
1863 }
1864 \f
1865 /* Return the byte position of FIELD, in bytes from the start of the record.
1866 This is a tree of type sizetype. */
1867
1868 tree
1869 byte_position (tree field)
1870 {
1871 return byte_from_pos (DECL_FIELD_OFFSET (field),
1872 DECL_FIELD_BIT_OFFSET (field));
1873 }
1874
1875 /* Likewise, but return as an integer. It must be representable in
1876 that way (since it could be a signed value, we don't have the
1877 option of returning -1 like int_size_in_byte can. */
1878
1879 HOST_WIDE_INT
1880 int_byte_position (tree field)
1881 {
1882 return tree_low_cst (byte_position (field), 0);
1883 }
1884 \f
1885 /* Return the strictest alignment, in bits, that T is known to have. */
1886
1887 unsigned int
1888 expr_align (tree t)
1889 {
1890 unsigned int align0, align1;
1891
1892 switch (TREE_CODE (t))
1893 {
1894 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1895 /* If we have conversions, we know that the alignment of the
1896 object must meet each of the alignments of the types. */
1897 align0 = expr_align (TREE_OPERAND (t, 0));
1898 align1 = TYPE_ALIGN (TREE_TYPE (t));
1899 return MAX (align0, align1);
1900
1901 case MODIFY_EXPR:
1902 /* FIXME tuples: It is unclear to me if this function, which
1903 is only called from ADA, is called on gimple or non gimple
1904 trees. Let's assume it's from gimple trees unless we hit
1905 this abort. */
1906 gcc_unreachable ();
1907
1908 case SAVE_EXPR: case COMPOUND_EXPR: case GIMPLE_MODIFY_STMT:
1909 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1910 case CLEANUP_POINT_EXPR:
1911 /* These don't change the alignment of an object. */
1912 return expr_align (TREE_OPERAND (t, 0));
1913
1914 case COND_EXPR:
1915 /* The best we can do is say that the alignment is the least aligned
1916 of the two arms. */
1917 align0 = expr_align (TREE_OPERAND (t, 1));
1918 align1 = expr_align (TREE_OPERAND (t, 2));
1919 return MIN (align0, align1);
1920
1921 case LABEL_DECL: case CONST_DECL:
1922 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1923 if (DECL_ALIGN (t) != 0)
1924 return DECL_ALIGN (t);
1925 break;
1926
1927 case FUNCTION_DECL:
1928 return FUNCTION_BOUNDARY;
1929
1930 default:
1931 break;
1932 }
1933
1934 /* Otherwise take the alignment from that of the type. */
1935 return TYPE_ALIGN (TREE_TYPE (t));
1936 }
1937 \f
1938 /* Return, as a tree node, the number of elements for TYPE (which is an
1939 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1940
1941 tree
1942 array_type_nelts (tree type)
1943 {
1944 tree index_type, min, max;
1945
1946 /* If they did it with unspecified bounds, then we should have already
1947 given an error about it before we got here. */
1948 if (! TYPE_DOMAIN (type))
1949 return error_mark_node;
1950
1951 index_type = TYPE_DOMAIN (type);
1952 min = TYPE_MIN_VALUE (index_type);
1953 max = TYPE_MAX_VALUE (index_type);
1954
1955 return (integer_zerop (min)
1956 ? max
1957 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
1958 }
1959 \f
1960 /* If arg is static -- a reference to an object in static storage -- then
1961 return the object. This is not the same as the C meaning of `static'.
1962 If arg isn't static, return NULL. */
1963
1964 tree
1965 staticp (tree arg)
1966 {
1967 switch (TREE_CODE (arg))
1968 {
1969 case FUNCTION_DECL:
1970 /* Nested functions are static, even though taking their address will
1971 involve a trampoline as we unnest the nested function and create
1972 the trampoline on the tree level. */
1973 return arg;
1974
1975 case VAR_DECL:
1976 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1977 && ! DECL_THREAD_LOCAL_P (arg)
1978 && ! DECL_DLLIMPORT_P (arg)
1979 ? arg : NULL);
1980
1981 case CONST_DECL:
1982 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1983 ? arg : NULL);
1984
1985 case CONSTRUCTOR:
1986 return TREE_STATIC (arg) ? arg : NULL;
1987
1988 case LABEL_DECL:
1989 case STRING_CST:
1990 return arg;
1991
1992 case COMPONENT_REF:
1993 /* If the thing being referenced is not a field, then it is
1994 something language specific. */
1995 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1996 return (*lang_hooks.staticp) (arg);
1997
1998 /* If we are referencing a bitfield, we can't evaluate an
1999 ADDR_EXPR at compile time and so it isn't a constant. */
2000 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2001 return NULL;
2002
2003 return staticp (TREE_OPERAND (arg, 0));
2004
2005 case BIT_FIELD_REF:
2006 return NULL;
2007
2008 case MISALIGNED_INDIRECT_REF:
2009 case ALIGN_INDIRECT_REF:
2010 case INDIRECT_REF:
2011 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2012
2013 case ARRAY_REF:
2014 case ARRAY_RANGE_REF:
2015 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2016 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2017 return staticp (TREE_OPERAND (arg, 0));
2018 else
2019 return false;
2020
2021 default:
2022 if ((unsigned int) TREE_CODE (arg)
2023 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
2024 return lang_hooks.staticp (arg);
2025 else
2026 return NULL;
2027 }
2028 }
2029 \f
2030 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2031 Do this to any expression which may be used in more than one place,
2032 but must be evaluated only once.
2033
2034 Normally, expand_expr would reevaluate the expression each time.
2035 Calling save_expr produces something that is evaluated and recorded
2036 the first time expand_expr is called on it. Subsequent calls to
2037 expand_expr just reuse the recorded value.
2038
2039 The call to expand_expr that generates code that actually computes
2040 the value is the first call *at compile time*. Subsequent calls
2041 *at compile time* generate code to use the saved value.
2042 This produces correct result provided that *at run time* control
2043 always flows through the insns made by the first expand_expr
2044 before reaching the other places where the save_expr was evaluated.
2045 You, the caller of save_expr, must make sure this is so.
2046
2047 Constants, and certain read-only nodes, are returned with no
2048 SAVE_EXPR because that is safe. Expressions containing placeholders
2049 are not touched; see tree.def for an explanation of what these
2050 are used for. */
2051
2052 tree
2053 save_expr (tree expr)
2054 {
2055 tree t = fold (expr);
2056 tree inner;
2057
2058 /* If the tree evaluates to a constant, then we don't want to hide that
2059 fact (i.e. this allows further folding, and direct checks for constants).
2060 However, a read-only object that has side effects cannot be bypassed.
2061 Since it is no problem to reevaluate literals, we just return the
2062 literal node. */
2063 inner = skip_simple_arithmetic (t);
2064
2065 if (TREE_INVARIANT (inner)
2066 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
2067 || TREE_CODE (inner) == SAVE_EXPR
2068 || TREE_CODE (inner) == ERROR_MARK)
2069 return t;
2070
2071 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2072 it means that the size or offset of some field of an object depends on
2073 the value within another field.
2074
2075 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2076 and some variable since it would then need to be both evaluated once and
2077 evaluated more than once. Front-ends must assure this case cannot
2078 happen by surrounding any such subexpressions in their own SAVE_EXPR
2079 and forcing evaluation at the proper time. */
2080 if (contains_placeholder_p (inner))
2081 return t;
2082
2083 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2084
2085 /* This expression might be placed ahead of a jump to ensure that the
2086 value was computed on both sides of the jump. So make sure it isn't
2087 eliminated as dead. */
2088 TREE_SIDE_EFFECTS (t) = 1;
2089 TREE_INVARIANT (t) = 1;
2090 return t;
2091 }
2092
2093 /* Look inside EXPR and into any simple arithmetic operations. Return
2094 the innermost non-arithmetic node. */
2095
2096 tree
2097 skip_simple_arithmetic (tree expr)
2098 {
2099 tree inner;
2100
2101 /* We don't care about whether this can be used as an lvalue in this
2102 context. */
2103 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2104 expr = TREE_OPERAND (expr, 0);
2105
2106 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2107 a constant, it will be more efficient to not make another SAVE_EXPR since
2108 it will allow better simplification and GCSE will be able to merge the
2109 computations if they actually occur. */
2110 inner = expr;
2111 while (1)
2112 {
2113 if (UNARY_CLASS_P (inner))
2114 inner = TREE_OPERAND (inner, 0);
2115 else if (BINARY_CLASS_P (inner))
2116 {
2117 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
2118 inner = TREE_OPERAND (inner, 0);
2119 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
2120 inner = TREE_OPERAND (inner, 1);
2121 else
2122 break;
2123 }
2124 else
2125 break;
2126 }
2127
2128 return inner;
2129 }
2130
2131 /* Return which tree structure is used by T. */
2132
2133 enum tree_node_structure_enum
2134 tree_node_structure (tree t)
2135 {
2136 enum tree_code code = TREE_CODE (t);
2137
2138 switch (TREE_CODE_CLASS (code))
2139 {
2140 case tcc_declaration:
2141 {
2142 switch (code)
2143 {
2144 case FIELD_DECL:
2145 return TS_FIELD_DECL;
2146 case PARM_DECL:
2147 return TS_PARM_DECL;
2148 case VAR_DECL:
2149 return TS_VAR_DECL;
2150 case LABEL_DECL:
2151 return TS_LABEL_DECL;
2152 case RESULT_DECL:
2153 return TS_RESULT_DECL;
2154 case CONST_DECL:
2155 return TS_CONST_DECL;
2156 case TYPE_DECL:
2157 return TS_TYPE_DECL;
2158 case FUNCTION_DECL:
2159 return TS_FUNCTION_DECL;
2160 case SYMBOL_MEMORY_TAG:
2161 case NAME_MEMORY_TAG:
2162 case STRUCT_FIELD_TAG:
2163 case MEMORY_PARTITION_TAG:
2164 return TS_MEMORY_TAG;
2165 default:
2166 return TS_DECL_NON_COMMON;
2167 }
2168 }
2169 case tcc_type:
2170 return TS_TYPE;
2171 case tcc_reference:
2172 case tcc_comparison:
2173 case tcc_unary:
2174 case tcc_binary:
2175 case tcc_expression:
2176 case tcc_statement:
2177 return TS_EXP;
2178 case tcc_gimple_stmt:
2179 return TS_GIMPLE_STATEMENT;
2180 default: /* tcc_constant and tcc_exceptional */
2181 break;
2182 }
2183 switch (code)
2184 {
2185 /* tcc_constant cases. */
2186 case INTEGER_CST: return TS_INT_CST;
2187 case REAL_CST: return TS_REAL_CST;
2188 case COMPLEX_CST: return TS_COMPLEX;
2189 case VECTOR_CST: return TS_VECTOR;
2190 case STRING_CST: return TS_STRING;
2191 /* tcc_exceptional cases. */
2192 /* FIXME tuples: eventually this should be TS_BASE. For now, nothing
2193 returns TS_BASE. */
2194 case ERROR_MARK: return TS_COMMON;
2195 case IDENTIFIER_NODE: return TS_IDENTIFIER;
2196 case TREE_LIST: return TS_LIST;
2197 case TREE_VEC: return TS_VEC;
2198 case PHI_NODE: return TS_PHI_NODE;
2199 case SSA_NAME: return TS_SSA_NAME;
2200 case PLACEHOLDER_EXPR: return TS_COMMON;
2201 case STATEMENT_LIST: return TS_STATEMENT_LIST;
2202 case BLOCK: return TS_BLOCK;
2203 case CONSTRUCTOR: return TS_CONSTRUCTOR;
2204 case TREE_BINFO: return TS_BINFO;
2205 case VALUE_HANDLE: return TS_VALUE_HANDLE;
2206 case OMP_CLAUSE: return TS_OMP_CLAUSE;
2207
2208 default:
2209 gcc_unreachable ();
2210 }
2211 }
2212 \f
2213 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2214 or offset that depends on a field within a record. */
2215
2216 bool
2217 contains_placeholder_p (tree exp)
2218 {
2219 enum tree_code code;
2220
2221 if (!exp)
2222 return 0;
2223
2224 code = TREE_CODE (exp);
2225 if (code == PLACEHOLDER_EXPR)
2226 return 1;
2227
2228 switch (TREE_CODE_CLASS (code))
2229 {
2230 case tcc_reference:
2231 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2232 position computations since they will be converted into a
2233 WITH_RECORD_EXPR involving the reference, which will assume
2234 here will be valid. */
2235 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2236
2237 case tcc_exceptional:
2238 if (code == TREE_LIST)
2239 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2240 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2241 break;
2242
2243 case tcc_unary:
2244 case tcc_binary:
2245 case tcc_comparison:
2246 case tcc_expression:
2247 switch (code)
2248 {
2249 case COMPOUND_EXPR:
2250 /* Ignoring the first operand isn't quite right, but works best. */
2251 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2252
2253 case COND_EXPR:
2254 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2255 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2256 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2257
2258 case CALL_EXPR:
2259 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2260
2261 default:
2262 break;
2263 }
2264
2265 switch (TREE_CODE_LENGTH (code))
2266 {
2267 case 1:
2268 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2269 case 2:
2270 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2271 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2272 default:
2273 return 0;
2274 }
2275
2276 default:
2277 return 0;
2278 }
2279 return 0;
2280 }
2281
2282 /* Return true if any part of the computation of TYPE involves a
2283 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2284 (for QUAL_UNION_TYPE) and field positions. */
2285
2286 static bool
2287 type_contains_placeholder_1 (tree type)
2288 {
2289 /* If the size contains a placeholder or the parent type (component type in
2290 the case of arrays) type involves a placeholder, this type does. */
2291 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2292 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2293 || (TREE_TYPE (type) != 0
2294 && type_contains_placeholder_p (TREE_TYPE (type))))
2295 return true;
2296
2297 /* Now do type-specific checks. Note that the last part of the check above
2298 greatly limits what we have to do below. */
2299 switch (TREE_CODE (type))
2300 {
2301 case VOID_TYPE:
2302 case COMPLEX_TYPE:
2303 case ENUMERAL_TYPE:
2304 case BOOLEAN_TYPE:
2305 case POINTER_TYPE:
2306 case OFFSET_TYPE:
2307 case REFERENCE_TYPE:
2308 case METHOD_TYPE:
2309 case FUNCTION_TYPE:
2310 case VECTOR_TYPE:
2311 return false;
2312
2313 case INTEGER_TYPE:
2314 case REAL_TYPE:
2315 /* Here we just check the bounds. */
2316 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2317 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2318
2319 case ARRAY_TYPE:
2320 /* We're already checked the component type (TREE_TYPE), so just check
2321 the index type. */
2322 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2323
2324 case RECORD_TYPE:
2325 case UNION_TYPE:
2326 case QUAL_UNION_TYPE:
2327 {
2328 tree field;
2329
2330 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2331 if (TREE_CODE (field) == FIELD_DECL
2332 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2333 || (TREE_CODE (type) == QUAL_UNION_TYPE
2334 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2335 || type_contains_placeholder_p (TREE_TYPE (field))))
2336 return true;
2337
2338 return false;
2339 }
2340
2341 default:
2342 gcc_unreachable ();
2343 }
2344 }
2345
2346 bool
2347 type_contains_placeholder_p (tree type)
2348 {
2349 bool result;
2350
2351 /* If the contains_placeholder_bits field has been initialized,
2352 then we know the answer. */
2353 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2354 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2355
2356 /* Indicate that we've seen this type node, and the answer is false.
2357 This is what we want to return if we run into recursion via fields. */
2358 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2359
2360 /* Compute the real value. */
2361 result = type_contains_placeholder_1 (type);
2362
2363 /* Store the real value. */
2364 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2365
2366 return result;
2367 }
2368 \f
2369 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2370 return a tree with all occurrences of references to F in a
2371 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2372 contains only arithmetic expressions or a CALL_EXPR with a
2373 PLACEHOLDER_EXPR occurring only in its arglist. */
2374
2375 tree
2376 substitute_in_expr (tree exp, tree f, tree r)
2377 {
2378 enum tree_code code = TREE_CODE (exp);
2379 tree op0, op1, op2, op3;
2380 tree new;
2381 tree inner;
2382
2383 /* We handle TREE_LIST and COMPONENT_REF separately. */
2384 if (code == TREE_LIST)
2385 {
2386 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2387 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2388 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2389 return exp;
2390
2391 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2392 }
2393 else if (code == COMPONENT_REF)
2394 {
2395 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2396 and it is the right field, replace it with R. */
2397 for (inner = TREE_OPERAND (exp, 0);
2398 REFERENCE_CLASS_P (inner);
2399 inner = TREE_OPERAND (inner, 0))
2400 ;
2401 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2402 && TREE_OPERAND (exp, 1) == f)
2403 return r;
2404
2405 /* If this expression hasn't been completed let, leave it alone. */
2406 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2407 return exp;
2408
2409 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2410 if (op0 == TREE_OPERAND (exp, 0))
2411 return exp;
2412
2413 new = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
2414 op0, TREE_OPERAND (exp, 1), NULL_TREE);
2415 }
2416 else
2417 switch (TREE_CODE_CLASS (code))
2418 {
2419 case tcc_constant:
2420 case tcc_declaration:
2421 return exp;
2422
2423 case tcc_exceptional:
2424 case tcc_unary:
2425 case tcc_binary:
2426 case tcc_comparison:
2427 case tcc_expression:
2428 case tcc_reference:
2429 switch (TREE_CODE_LENGTH (code))
2430 {
2431 case 0:
2432 return exp;
2433
2434 case 1:
2435 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2436 if (op0 == TREE_OPERAND (exp, 0))
2437 return exp;
2438
2439 new = fold_build1 (code, TREE_TYPE (exp), op0);
2440 break;
2441
2442 case 2:
2443 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2444 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2445
2446 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2447 return exp;
2448
2449 new = fold_build2 (code, TREE_TYPE (exp), op0, op1);
2450 break;
2451
2452 case 3:
2453 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2454 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2455 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2456
2457 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2458 && op2 == TREE_OPERAND (exp, 2))
2459 return exp;
2460
2461 new = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2462 break;
2463
2464 case 4:
2465 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2466 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2467 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2468 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
2469
2470 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2471 && op2 == TREE_OPERAND (exp, 2)
2472 && op3 == TREE_OPERAND (exp, 3))
2473 return exp;
2474
2475 new = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2476 break;
2477
2478 default:
2479 gcc_unreachable ();
2480 }
2481 break;
2482
2483 default:
2484 gcc_unreachable ();
2485 }
2486
2487 TREE_READONLY (new) = TREE_READONLY (exp);
2488 return new;
2489 }
2490
2491 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2492 for it within OBJ, a tree that is an object or a chain of references. */
2493
2494 tree
2495 substitute_placeholder_in_expr (tree exp, tree obj)
2496 {
2497 enum tree_code code = TREE_CODE (exp);
2498 tree op0, op1, op2, op3;
2499
2500 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2501 in the chain of OBJ. */
2502 if (code == PLACEHOLDER_EXPR)
2503 {
2504 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2505 tree elt;
2506
2507 for (elt = obj; elt != 0;
2508 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2509 || TREE_CODE (elt) == COND_EXPR)
2510 ? TREE_OPERAND (elt, 1)
2511 : (REFERENCE_CLASS_P (elt)
2512 || UNARY_CLASS_P (elt)
2513 || BINARY_CLASS_P (elt)
2514 || EXPRESSION_CLASS_P (elt))
2515 ? TREE_OPERAND (elt, 0) : 0))
2516 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2517 return elt;
2518
2519 for (elt = obj; elt != 0;
2520 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2521 || TREE_CODE (elt) == COND_EXPR)
2522 ? TREE_OPERAND (elt, 1)
2523 : (REFERENCE_CLASS_P (elt)
2524 || UNARY_CLASS_P (elt)
2525 || BINARY_CLASS_P (elt)
2526 || EXPRESSION_CLASS_P (elt))
2527 ? TREE_OPERAND (elt, 0) : 0))
2528 if (POINTER_TYPE_P (TREE_TYPE (elt))
2529 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2530 == need_type))
2531 return fold_build1 (INDIRECT_REF, need_type, elt);
2532
2533 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2534 survives until RTL generation, there will be an error. */
2535 return exp;
2536 }
2537
2538 /* TREE_LIST is special because we need to look at TREE_VALUE
2539 and TREE_CHAIN, not TREE_OPERANDS. */
2540 else if (code == TREE_LIST)
2541 {
2542 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2543 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2544 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2545 return exp;
2546
2547 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2548 }
2549 else
2550 switch (TREE_CODE_CLASS (code))
2551 {
2552 case tcc_constant:
2553 case tcc_declaration:
2554 return exp;
2555
2556 case tcc_exceptional:
2557 case tcc_unary:
2558 case tcc_binary:
2559 case tcc_comparison:
2560 case tcc_expression:
2561 case tcc_reference:
2562 case tcc_statement:
2563 switch (TREE_CODE_LENGTH (code))
2564 {
2565 case 0:
2566 return exp;
2567
2568 case 1:
2569 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2570 if (op0 == TREE_OPERAND (exp, 0))
2571 return exp;
2572 else
2573 return fold_build1 (code, TREE_TYPE (exp), op0);
2574
2575 case 2:
2576 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2577 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2578
2579 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2580 return exp;
2581 else
2582 return fold_build2 (code, TREE_TYPE (exp), op0, op1);
2583
2584 case 3:
2585 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2586 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2587 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2588
2589 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2590 && op2 == TREE_OPERAND (exp, 2))
2591 return exp;
2592 else
2593 return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2594
2595 case 4:
2596 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2597 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2598 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2599 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2600
2601 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2602 && op2 == TREE_OPERAND (exp, 2)
2603 && op3 == TREE_OPERAND (exp, 3))
2604 return exp;
2605 else
2606 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2607
2608 default:
2609 gcc_unreachable ();
2610 }
2611 break;
2612
2613 default:
2614 gcc_unreachable ();
2615 }
2616 }
2617 \f
2618 /* Stabilize a reference so that we can use it any number of times
2619 without causing its operands to be evaluated more than once.
2620 Returns the stabilized reference. This works by means of save_expr,
2621 so see the caveats in the comments about save_expr.
2622
2623 Also allows conversion expressions whose operands are references.
2624 Any other kind of expression is returned unchanged. */
2625
2626 tree
2627 stabilize_reference (tree ref)
2628 {
2629 tree result;
2630 enum tree_code code = TREE_CODE (ref);
2631
2632 switch (code)
2633 {
2634 case VAR_DECL:
2635 case PARM_DECL:
2636 case RESULT_DECL:
2637 /* No action is needed in this case. */
2638 return ref;
2639
2640 case NOP_EXPR:
2641 case CONVERT_EXPR:
2642 case FLOAT_EXPR:
2643 case FIX_TRUNC_EXPR:
2644 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2645 break;
2646
2647 case INDIRECT_REF:
2648 result = build_nt (INDIRECT_REF,
2649 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2650 break;
2651
2652 case COMPONENT_REF:
2653 result = build_nt (COMPONENT_REF,
2654 stabilize_reference (TREE_OPERAND (ref, 0)),
2655 TREE_OPERAND (ref, 1), NULL_TREE);
2656 break;
2657
2658 case BIT_FIELD_REF:
2659 result = build_nt (BIT_FIELD_REF,
2660 stabilize_reference (TREE_OPERAND (ref, 0)),
2661 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2662 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2663 break;
2664
2665 case ARRAY_REF:
2666 result = build_nt (ARRAY_REF,
2667 stabilize_reference (TREE_OPERAND (ref, 0)),
2668 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2669 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2670 break;
2671
2672 case ARRAY_RANGE_REF:
2673 result = build_nt (ARRAY_RANGE_REF,
2674 stabilize_reference (TREE_OPERAND (ref, 0)),
2675 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2676 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2677 break;
2678
2679 case COMPOUND_EXPR:
2680 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2681 it wouldn't be ignored. This matters when dealing with
2682 volatiles. */
2683 return stabilize_reference_1 (ref);
2684
2685 /* If arg isn't a kind of lvalue we recognize, make no change.
2686 Caller should recognize the error for an invalid lvalue. */
2687 default:
2688 return ref;
2689
2690 case ERROR_MARK:
2691 return error_mark_node;
2692 }
2693
2694 TREE_TYPE (result) = TREE_TYPE (ref);
2695 TREE_READONLY (result) = TREE_READONLY (ref);
2696 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2697 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2698
2699 return result;
2700 }
2701
2702 /* Subroutine of stabilize_reference; this is called for subtrees of
2703 references. Any expression with side-effects must be put in a SAVE_EXPR
2704 to ensure that it is only evaluated once.
2705
2706 We don't put SAVE_EXPR nodes around everything, because assigning very
2707 simple expressions to temporaries causes us to miss good opportunities
2708 for optimizations. Among other things, the opportunity to fold in the
2709 addition of a constant into an addressing mode often gets lost, e.g.
2710 "y[i+1] += x;". In general, we take the approach that we should not make
2711 an assignment unless we are forced into it - i.e., that any non-side effect
2712 operator should be allowed, and that cse should take care of coalescing
2713 multiple utterances of the same expression should that prove fruitful. */
2714
2715 tree
2716 stabilize_reference_1 (tree e)
2717 {
2718 tree result;
2719 enum tree_code code = TREE_CODE (e);
2720
2721 /* We cannot ignore const expressions because it might be a reference
2722 to a const array but whose index contains side-effects. But we can
2723 ignore things that are actual constant or that already have been
2724 handled by this function. */
2725
2726 if (TREE_INVARIANT (e))
2727 return e;
2728
2729 switch (TREE_CODE_CLASS (code))
2730 {
2731 case tcc_exceptional:
2732 case tcc_type:
2733 case tcc_declaration:
2734 case tcc_comparison:
2735 case tcc_statement:
2736 case tcc_expression:
2737 case tcc_reference:
2738 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2739 so that it will only be evaluated once. */
2740 /* The reference (r) and comparison (<) classes could be handled as
2741 below, but it is generally faster to only evaluate them once. */
2742 if (TREE_SIDE_EFFECTS (e))
2743 return save_expr (e);
2744 return e;
2745
2746 case tcc_constant:
2747 /* Constants need no processing. In fact, we should never reach
2748 here. */
2749 return e;
2750
2751 case tcc_binary:
2752 /* Division is slow and tends to be compiled with jumps,
2753 especially the division by powers of 2 that is often
2754 found inside of an array reference. So do it just once. */
2755 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2756 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2757 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2758 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2759 return save_expr (e);
2760 /* Recursively stabilize each operand. */
2761 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2762 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2763 break;
2764
2765 case tcc_unary:
2766 /* Recursively stabilize each operand. */
2767 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2768 break;
2769
2770 default:
2771 gcc_unreachable ();
2772 }
2773
2774 TREE_TYPE (result) = TREE_TYPE (e);
2775 TREE_READONLY (result) = TREE_READONLY (e);
2776 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2777 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2778 TREE_INVARIANT (result) = 1;
2779
2780 return result;
2781 }
2782 \f
2783 /* Low-level constructors for expressions. */
2784
2785 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2786 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2787
2788 void
2789 recompute_tree_invariant_for_addr_expr (tree t)
2790 {
2791 tree node;
2792 bool tc = true, ti = true, se = false;
2793
2794 /* We started out assuming this address is both invariant and constant, but
2795 does not have side effects. Now go down any handled components and see if
2796 any of them involve offsets that are either non-constant or non-invariant.
2797 Also check for side-effects.
2798
2799 ??? Note that this code makes no attempt to deal with the case where
2800 taking the address of something causes a copy due to misalignment. */
2801
2802 #define UPDATE_TITCSE(NODE) \
2803 do { tree _node = (NODE); \
2804 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2805 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2806 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2807
2808 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2809 node = TREE_OPERAND (node, 0))
2810 {
2811 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2812 array reference (probably made temporarily by the G++ front end),
2813 so ignore all the operands. */
2814 if ((TREE_CODE (node) == ARRAY_REF
2815 || TREE_CODE (node) == ARRAY_RANGE_REF)
2816 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2817 {
2818 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2819 if (TREE_OPERAND (node, 2))
2820 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2821 if (TREE_OPERAND (node, 3))
2822 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2823 }
2824 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2825 FIELD_DECL, apparently. The G++ front end can put something else
2826 there, at least temporarily. */
2827 else if (TREE_CODE (node) == COMPONENT_REF
2828 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2829 {
2830 if (TREE_OPERAND (node, 2))
2831 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2832 }
2833 else if (TREE_CODE (node) == BIT_FIELD_REF)
2834 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2835 }
2836
2837 node = lang_hooks.expr_to_decl (node, &tc, &ti, &se);
2838
2839 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2840 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2841 invariant and constant if the decl is static. It's also invariant if it's
2842 a decl in the current function. Taking the address of a volatile variable
2843 is not volatile. If it's a constant, the address is both invariant and
2844 constant. Otherwise it's neither. */
2845 if (TREE_CODE (node) == INDIRECT_REF)
2846 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2847 else if (DECL_P (node))
2848 {
2849 if (staticp (node))
2850 ;
2851 else if (decl_function_context (node) == current_function_decl
2852 /* Addresses of thread-local variables are invariant. */
2853 || (TREE_CODE (node) == VAR_DECL
2854 && DECL_THREAD_LOCAL_P (node)))
2855 tc = false;
2856 else
2857 ti = tc = false;
2858 }
2859 else if (CONSTANT_CLASS_P (node))
2860 ;
2861 else
2862 {
2863 ti = tc = false;
2864 se |= TREE_SIDE_EFFECTS (node);
2865 }
2866
2867 TREE_CONSTANT (t) = tc;
2868 TREE_INVARIANT (t) = ti;
2869 TREE_SIDE_EFFECTS (t) = se;
2870 #undef UPDATE_TITCSE
2871 }
2872
2873 /* Build an expression of code CODE, data type TYPE, and operands as
2874 specified. Expressions and reference nodes can be created this way.
2875 Constants, decls, types and misc nodes cannot be.
2876
2877 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2878 enough for all extant tree codes. */
2879
2880 tree
2881 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2882 {
2883 tree t;
2884
2885 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2886
2887 t = make_node_stat (code PASS_MEM_STAT);
2888 TREE_TYPE (t) = tt;
2889
2890 return t;
2891 }
2892
2893 tree
2894 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2895 {
2896 int length = sizeof (struct tree_exp);
2897 #ifdef GATHER_STATISTICS
2898 tree_node_kind kind;
2899 #endif
2900 tree t;
2901
2902 #ifdef GATHER_STATISTICS
2903 switch (TREE_CODE_CLASS (code))
2904 {
2905 case tcc_statement: /* an expression with side effects */
2906 kind = s_kind;
2907 break;
2908 case tcc_reference: /* a reference */
2909 kind = r_kind;
2910 break;
2911 default:
2912 kind = e_kind;
2913 break;
2914 }
2915
2916 tree_node_counts[(int) kind]++;
2917 tree_node_sizes[(int) kind] += length;
2918 #endif
2919
2920 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2921
2922 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
2923
2924 memset (t, 0, sizeof (struct tree_common));
2925
2926 TREE_SET_CODE (t, code);
2927
2928 TREE_TYPE (t) = type;
2929 #ifdef USE_MAPPED_LOCATION
2930 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2931 #else
2932 SET_EXPR_LOCUS (t, NULL);
2933 #endif
2934 TREE_COMPLEXITY (t) = 0;
2935 TREE_OPERAND (t, 0) = node;
2936 TREE_BLOCK (t) = NULL_TREE;
2937 if (node && !TYPE_P (node))
2938 {
2939 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2940 TREE_READONLY (t) = TREE_READONLY (node);
2941 }
2942
2943 if (TREE_CODE_CLASS (code) == tcc_statement)
2944 TREE_SIDE_EFFECTS (t) = 1;
2945 else switch (code)
2946 {
2947 case VA_ARG_EXPR:
2948 /* All of these have side-effects, no matter what their
2949 operands are. */
2950 TREE_SIDE_EFFECTS (t) = 1;
2951 TREE_READONLY (t) = 0;
2952 break;
2953
2954 case MISALIGNED_INDIRECT_REF:
2955 case ALIGN_INDIRECT_REF:
2956 case INDIRECT_REF:
2957 /* Whether a dereference is readonly has nothing to do with whether
2958 its operand is readonly. */
2959 TREE_READONLY (t) = 0;
2960 break;
2961
2962 case ADDR_EXPR:
2963 if (node)
2964 recompute_tree_invariant_for_addr_expr (t);
2965 break;
2966
2967 default:
2968 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
2969 && node && !TYPE_P (node)
2970 && TREE_CONSTANT (node))
2971 TREE_CONSTANT (t) = 1;
2972 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
2973 && node && TREE_INVARIANT (node))
2974 TREE_INVARIANT (t) = 1;
2975 if (TREE_CODE_CLASS (code) == tcc_reference
2976 && node && TREE_THIS_VOLATILE (node))
2977 TREE_THIS_VOLATILE (t) = 1;
2978 break;
2979 }
2980
2981 return t;
2982 }
2983
2984 #define PROCESS_ARG(N) \
2985 do { \
2986 TREE_OPERAND (t, N) = arg##N; \
2987 if (arg##N &&!TYPE_P (arg##N)) \
2988 { \
2989 if (TREE_SIDE_EFFECTS (arg##N)) \
2990 side_effects = 1; \
2991 if (!TREE_READONLY (arg##N)) \
2992 read_only = 0; \
2993 if (!TREE_CONSTANT (arg##N)) \
2994 constant = 0; \
2995 if (!TREE_INVARIANT (arg##N)) \
2996 invariant = 0; \
2997 } \
2998 } while (0)
2999
3000 tree
3001 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3002 {
3003 bool constant, read_only, side_effects, invariant;
3004 tree t;
3005
3006 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3007
3008 if (code == MODIFY_EXPR && cfun && cfun->gimplified)
3009 {
3010 /* We should be talking GIMPLE_MODIFY_STMT by now. */
3011 gcc_unreachable ();
3012 }
3013
3014 /* FIXME tuples: For now let's be lazy; later we must rewrite all
3015 build2 calls to build2_gimple calls. */
3016 if (TREE_CODE_CLASS (code) == tcc_gimple_stmt)
3017 return build2_gimple (code, arg0, arg1);
3018
3019 t = make_node_stat (code PASS_MEM_STAT);
3020 TREE_TYPE (t) = tt;
3021
3022 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3023 result based on those same flags for the arguments. But if the
3024 arguments aren't really even `tree' expressions, we shouldn't be trying
3025 to do this. */
3026
3027 /* Expressions without side effects may be constant if their
3028 arguments are as well. */
3029 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3030 || TREE_CODE_CLASS (code) == tcc_binary);
3031 read_only = 1;
3032 side_effects = TREE_SIDE_EFFECTS (t);
3033 invariant = constant;
3034
3035 PROCESS_ARG(0);
3036 PROCESS_ARG(1);
3037
3038 TREE_READONLY (t) = read_only;
3039 TREE_CONSTANT (t) = constant;
3040 TREE_INVARIANT (t) = invariant;
3041 TREE_SIDE_EFFECTS (t) = side_effects;
3042 TREE_THIS_VOLATILE (t)
3043 = (TREE_CODE_CLASS (code) == tcc_reference
3044 && arg0 && TREE_THIS_VOLATILE (arg0));
3045
3046 return t;
3047 }
3048
3049
3050 /* Similar as build2_stat, but for GIMPLE tuples. For convenience's sake,
3051 arguments and return type are trees. */
3052
3053 tree
3054 build2_gimple_stat (enum tree_code code, tree arg0, tree arg1 MEM_STAT_DECL)
3055 {
3056 bool side_effects;
3057 tree t;
3058
3059 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3060
3061 t = make_node_stat (code PASS_MEM_STAT);
3062
3063 side_effects = TREE_SIDE_EFFECTS (t);
3064
3065 /* ?? We don't care about setting flags for tuples... */
3066 GIMPLE_STMT_OPERAND (t, 0) = arg0;
3067 GIMPLE_STMT_OPERAND (t, 1) = arg1;
3068
3069 /* ...except perhaps side_effects and volatility. ?? */
3070 TREE_SIDE_EFFECTS (t) = side_effects;
3071 TREE_THIS_VOLATILE (t) = (TREE_CODE_CLASS (code) == tcc_reference
3072 && arg0 && TREE_THIS_VOLATILE (arg0));
3073
3074
3075 return t;
3076 }
3077
3078 tree
3079 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3080 tree arg2 MEM_STAT_DECL)
3081 {
3082 bool constant, read_only, side_effects, invariant;
3083 tree t;
3084
3085 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3086
3087 t = make_node_stat (code PASS_MEM_STAT);
3088 TREE_TYPE (t) = tt;
3089
3090 side_effects = TREE_SIDE_EFFECTS (t);
3091
3092 PROCESS_ARG(0);
3093 PROCESS_ARG(1);
3094 PROCESS_ARG(2);
3095
3096 if (code == CALL_EXPR && !side_effects)
3097 {
3098 tree node;
3099 int i;
3100
3101 /* Calls have side-effects, except those to const or
3102 pure functions. */
3103 i = call_expr_flags (t);
3104 if (!(i & (ECF_CONST | ECF_PURE)))
3105 side_effects = 1;
3106
3107 /* And even those have side-effects if their arguments do. */
3108 else for (node = arg1; node; node = TREE_CHAIN (node))
3109 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
3110 {
3111 side_effects = 1;
3112 break;
3113 }
3114 }
3115
3116 TREE_SIDE_EFFECTS (t) = side_effects;
3117 TREE_THIS_VOLATILE (t)
3118 = (TREE_CODE_CLASS (code) == tcc_reference
3119 && arg0 && TREE_THIS_VOLATILE (arg0));
3120
3121 return t;
3122 }
3123
3124 tree
3125 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3126 tree arg2, tree arg3 MEM_STAT_DECL)
3127 {
3128 bool constant, read_only, side_effects, invariant;
3129 tree t;
3130
3131 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3132
3133 t = make_node_stat (code PASS_MEM_STAT);
3134 TREE_TYPE (t) = tt;
3135
3136 side_effects = TREE_SIDE_EFFECTS (t);
3137
3138 PROCESS_ARG(0);
3139 PROCESS_ARG(1);
3140 PROCESS_ARG(2);
3141 PROCESS_ARG(3);
3142
3143 TREE_SIDE_EFFECTS (t) = side_effects;
3144 TREE_THIS_VOLATILE (t)
3145 = (TREE_CODE_CLASS (code) == tcc_reference
3146 && arg0 && TREE_THIS_VOLATILE (arg0));
3147
3148 return t;
3149 }
3150
3151 tree
3152 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3153 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3154 {
3155 bool constant, read_only, side_effects, invariant;
3156 tree t;
3157
3158 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3159
3160 t = make_node_stat (code PASS_MEM_STAT);
3161 TREE_TYPE (t) = tt;
3162
3163 side_effects = TREE_SIDE_EFFECTS (t);
3164
3165 PROCESS_ARG(0);
3166 PROCESS_ARG(1);
3167 PROCESS_ARG(2);
3168 PROCESS_ARG(3);
3169 PROCESS_ARG(4);
3170
3171 TREE_SIDE_EFFECTS (t) = side_effects;
3172 TREE_THIS_VOLATILE (t)
3173 = (TREE_CODE_CLASS (code) == tcc_reference
3174 && arg0 && TREE_THIS_VOLATILE (arg0));
3175
3176 return t;
3177 }
3178
3179 tree
3180 build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3181 tree arg2, tree arg3, tree arg4, tree arg5,
3182 tree arg6 MEM_STAT_DECL)
3183 {
3184 bool constant, read_only, side_effects, invariant;
3185 tree t;
3186
3187 gcc_assert (code == TARGET_MEM_REF);
3188
3189 t = make_node_stat (code PASS_MEM_STAT);
3190 TREE_TYPE (t) = tt;
3191
3192 side_effects = TREE_SIDE_EFFECTS (t);
3193
3194 PROCESS_ARG(0);
3195 PROCESS_ARG(1);
3196 PROCESS_ARG(2);
3197 PROCESS_ARG(3);
3198 PROCESS_ARG(4);
3199 PROCESS_ARG(5);
3200 PROCESS_ARG(6);
3201
3202 TREE_SIDE_EFFECTS (t) = side_effects;
3203 TREE_THIS_VOLATILE (t) = 0;
3204
3205 return t;
3206 }
3207
3208 /* Similar except don't specify the TREE_TYPE
3209 and leave the TREE_SIDE_EFFECTS as 0.
3210 It is permissible for arguments to be null,
3211 or even garbage if their values do not matter. */
3212
3213 tree
3214 build_nt (enum tree_code code, ...)
3215 {
3216 tree t;
3217 int length;
3218 int i;
3219 va_list p;
3220
3221 va_start (p, code);
3222
3223 t = make_node (code);
3224 length = TREE_CODE_LENGTH (code);
3225
3226 for (i = 0; i < length; i++)
3227 TREE_OPERAND (t, i) = va_arg (p, tree);
3228
3229 va_end (p);
3230 return t;
3231 }
3232 \f
3233 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3234 We do NOT enter this node in any sort of symbol table.
3235
3236 layout_decl is used to set up the decl's storage layout.
3237 Other slots are initialized to 0 or null pointers. */
3238
3239 tree
3240 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
3241 {
3242 tree t;
3243
3244 t = make_node_stat (code PASS_MEM_STAT);
3245
3246 /* if (type == error_mark_node)
3247 type = integer_type_node; */
3248 /* That is not done, deliberately, so that having error_mark_node
3249 as the type can suppress useless errors in the use of this variable. */
3250
3251 DECL_NAME (t) = name;
3252 TREE_TYPE (t) = type;
3253
3254 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3255 layout_decl (t, 0);
3256 else if (code == FUNCTION_DECL)
3257 DECL_MODE (t) = FUNCTION_MODE;
3258
3259 return t;
3260 }
3261
3262 /* Builds and returns function declaration with NAME and TYPE. */
3263
3264 tree
3265 build_fn_decl (const char *name, tree type)
3266 {
3267 tree id = get_identifier (name);
3268 tree decl = build_decl (FUNCTION_DECL, id, type);
3269
3270 DECL_EXTERNAL (decl) = 1;
3271 TREE_PUBLIC (decl) = 1;
3272 DECL_ARTIFICIAL (decl) = 1;
3273 TREE_NOTHROW (decl) = 1;
3274
3275 return decl;
3276 }
3277
3278 \f
3279 /* BLOCK nodes are used to represent the structure of binding contours
3280 and declarations, once those contours have been exited and their contents
3281 compiled. This information is used for outputting debugging info. */
3282
3283 tree
3284 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3285 {
3286 tree block = make_node (BLOCK);
3287
3288 BLOCK_VARS (block) = vars;
3289 BLOCK_SUBBLOCKS (block) = subblocks;
3290 BLOCK_SUPERCONTEXT (block) = supercontext;
3291 BLOCK_CHAIN (block) = chain;
3292 return block;
3293 }
3294
3295 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
3296 /* ??? gengtype doesn't handle conditionals */
3297 static GTY(()) source_locus last_annotated_node;
3298 #endif
3299
3300 #ifdef USE_MAPPED_LOCATION
3301
3302 expanded_location
3303 expand_location (source_location loc)
3304 {
3305 expanded_location xloc;
3306 if (loc == 0)
3307 {
3308 xloc.file = NULL;
3309 xloc.line = 0;
3310 xloc.column = 0;
3311 }
3312 else
3313 {
3314 const struct line_map *map = linemap_lookup (&line_table, loc);
3315 xloc.file = map->to_file;
3316 xloc.line = SOURCE_LINE (map, loc);
3317 xloc.column = SOURCE_COLUMN (map, loc);
3318 };
3319 return xloc;
3320 }
3321
3322 #else
3323
3324 /* Record the exact location where an expression or an identifier were
3325 encountered. */
3326
3327 void
3328 annotate_with_file_line (tree node, const char *file, int line)
3329 {
3330 /* Roughly one percent of the calls to this function are to annotate
3331 a node with the same information already attached to that node!
3332 Just return instead of wasting memory. */
3333 if (EXPR_LOCUS (node)
3334 && EXPR_LINENO (node) == line
3335 && (EXPR_FILENAME (node) == file
3336 || !strcmp (EXPR_FILENAME (node), file)))
3337 {
3338 last_annotated_node = EXPR_LOCUS (node);
3339 return;
3340 }
3341
3342 /* In heavily macroized code (such as GCC itself) this single
3343 entry cache can reduce the number of allocations by more
3344 than half. */
3345 if (last_annotated_node
3346 && last_annotated_node->line == line
3347 && (last_annotated_node->file == file
3348 || !strcmp (last_annotated_node->file, file)))
3349 {
3350 SET_EXPR_LOCUS (node, last_annotated_node);
3351 return;
3352 }
3353
3354 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
3355 EXPR_LINENO (node) = line;
3356 EXPR_FILENAME (node) = file;
3357 last_annotated_node = EXPR_LOCUS (node);
3358 }
3359
3360 void
3361 annotate_with_locus (tree node, location_t locus)
3362 {
3363 annotate_with_file_line (node, locus.file, locus.line);
3364 }
3365 #endif
3366 \f
3367 /* Source location accessor functions. */
3368
3369
3370 /* The source location of this expression. Non-tree_exp nodes such as
3371 decls and constants can be shared among multiple locations, so
3372 return nothing. */
3373 location_t
3374 expr_location (tree node)
3375 {
3376 #ifdef USE_MAPPED_LOCATION
3377 if (GIMPLE_STMT_P (node))
3378 return GIMPLE_STMT_LOCUS (node);
3379 return EXPR_P (node) ? node->exp.locus : UNKNOWN_LOCATION;
3380 #else
3381 if (GIMPLE_STMT_P (node))
3382 return EXPR_HAS_LOCATION (node)
3383 ? *GIMPLE_STMT_LOCUS (node) : UNKNOWN_LOCATION;
3384 return EXPR_HAS_LOCATION (node) ? *node->exp.locus : UNKNOWN_LOCATION;
3385 #endif
3386 }
3387
3388 void
3389 set_expr_location (tree node, location_t locus)
3390 {
3391 #ifdef USE_MAPPED_LOCATION
3392 if (GIMPLE_STMT_P (node))
3393 GIMPLE_STMT_LOCUS (node) = locus;
3394 else
3395 EXPR_CHECK (node)->exp.locus = locus;
3396 #else
3397 annotate_with_locus (node, locus);
3398 #endif
3399 }
3400
3401 bool
3402 expr_has_location (tree node)
3403 {
3404 #ifdef USE_MAPPED_LOCATION
3405 return expr_location (node) != UNKNOWN_LOCATION;
3406 #else
3407 return expr_locus (node) != NULL;
3408 #endif
3409 }
3410
3411 #ifdef USE_MAPPED_LOCATION
3412 source_location *
3413 #else
3414 source_locus
3415 #endif
3416 expr_locus (tree node)
3417 {
3418 #ifdef USE_MAPPED_LOCATION
3419 if (GIMPLE_STMT_P (node))
3420 return &GIMPLE_STMT_LOCUS (node);
3421 return EXPR_P (node) ? &node->exp.locus : (location_t *) NULL;
3422 #else
3423 if (GIMPLE_STMT_P (node))
3424 return GIMPLE_STMT_LOCUS (node);
3425 /* ?? The cast below was originally "(location_t *)" in the macro,
3426 but that makes no sense. ?? */
3427 return EXPR_P (node) ? node->exp.locus : (source_locus) NULL;
3428 #endif
3429 }
3430
3431 void
3432 set_expr_locus (tree node,
3433 #ifdef USE_MAPPED_LOCATION
3434 source_location *loc
3435 #else
3436 source_locus loc
3437 #endif
3438 )
3439 {
3440 #ifdef USE_MAPPED_LOCATION
3441 if (loc == NULL)
3442 {
3443 if (GIMPLE_STMT_P (node))
3444 GIMPLE_STMT_LOCUS (node) = UNKNOWN_LOCATION;
3445 else
3446 EXPR_CHECK (node)->exp.locus = UNKNOWN_LOCATION;
3447 }
3448 else
3449 {
3450 if (GIMPLE_STMT_P (node))
3451 GIMPLE_STMT_LOCUS (node) = *loc;
3452 else
3453 EXPR_CHECK (node)->exp.locus = *loc;
3454 }
3455 #else
3456 if (GIMPLE_STMT_P (node))
3457 GIMPLE_STMT_LOCUS (node) = loc;
3458 else
3459 EXPR_CHECK (node)->exp.locus = loc;
3460 #endif
3461 }
3462
3463 const char **
3464 expr_filename (tree node)
3465 {
3466 #ifdef USE_MAPPED_LOCATION
3467 if (GIMPLE_STMT_P (node))
3468 return &LOCATION_FILE (GIMPLE_STMT_LOCUS (node));
3469 return &LOCATION_FILE (EXPR_CHECK (node)->exp.locus);
3470 #else
3471 if (GIMPLE_STMT_P (node))
3472 return &GIMPLE_STMT_LOCUS (node)->file;
3473 return &(EXPR_CHECK (node)->exp.locus->file);
3474 #endif
3475 }
3476
3477 int *
3478 expr_lineno (tree node)
3479 {
3480 #ifdef USE_MAPPED_LOCATION
3481 if (GIMPLE_STMT_P (node))
3482 return &LOCATION_LINE (GIMPLE_STMT_LOCUS (node));
3483 return &LOCATION_LINE (EXPR_CHECK (node)->exp.locus);
3484 #else
3485 if (GIMPLE_STMT_P (node))
3486 return &GIMPLE_STMT_LOCUS (node)->line;
3487 return &EXPR_CHECK (node)->exp.locus->line;
3488 #endif
3489 }
3490 \f
3491 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3492 is ATTRIBUTE. */
3493
3494 tree
3495 build_decl_attribute_variant (tree ddecl, tree attribute)
3496 {
3497 DECL_ATTRIBUTES (ddecl) = attribute;
3498 return ddecl;
3499 }
3500
3501 /* Borrowed from hashtab.c iterative_hash implementation. */
3502 #define mix(a,b,c) \
3503 { \
3504 a -= b; a -= c; a ^= (c>>13); \
3505 b -= c; b -= a; b ^= (a<< 8); \
3506 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3507 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3508 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3509 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3510 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3511 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3512 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3513 }
3514
3515
3516 /* Produce good hash value combining VAL and VAL2. */
3517 static inline hashval_t
3518 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3519 {
3520 /* the golden ratio; an arbitrary value. */
3521 hashval_t a = 0x9e3779b9;
3522
3523 mix (a, val, val2);
3524 return val2;
3525 }
3526
3527 /* Produce good hash value combining PTR and VAL2. */
3528 static inline hashval_t
3529 iterative_hash_pointer (void *ptr, hashval_t val2)
3530 {
3531 if (sizeof (ptr) == sizeof (hashval_t))
3532 return iterative_hash_hashval_t ((size_t) ptr, val2);
3533 else
3534 {
3535 hashval_t a = (hashval_t) (size_t) ptr;
3536 /* Avoid warnings about shifting of more than the width of the type on
3537 hosts that won't execute this path. */
3538 int zero = 0;
3539 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
3540 mix (a, b, val2);
3541 return val2;
3542 }
3543 }
3544
3545 /* Produce good hash value combining VAL and VAL2. */
3546 static inline hashval_t
3547 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3548 {
3549 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3550 return iterative_hash_hashval_t (val, val2);
3551 else
3552 {
3553 hashval_t a = (hashval_t) val;
3554 /* Avoid warnings about shifting of more than the width of the type on
3555 hosts that won't execute this path. */
3556 int zero = 0;
3557 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
3558 mix (a, b, val2);
3559 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
3560 {
3561 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
3562 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
3563 mix (a, b, val2);
3564 }
3565 return val2;
3566 }
3567 }
3568
3569 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3570 is ATTRIBUTE and its qualifiers are QUALS.
3571
3572 Record such modified types already made so we don't make duplicates. */
3573
3574 static tree
3575 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
3576 {
3577 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3578 {
3579 hashval_t hashcode = 0;
3580 tree ntype;
3581 enum tree_code code = TREE_CODE (ttype);
3582
3583 ntype = copy_node (ttype);
3584
3585 TYPE_POINTER_TO (ntype) = 0;
3586 TYPE_REFERENCE_TO (ntype) = 0;
3587 TYPE_ATTRIBUTES (ntype) = attribute;
3588
3589 if (TYPE_STRUCTURAL_EQUALITY_P (ttype))
3590 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
3591 else
3592 TYPE_CANONICAL (ntype)
3593 = build_qualified_type (TYPE_CANONICAL (ttype), quals);
3594
3595 /* Create a new main variant of TYPE. */
3596 TYPE_MAIN_VARIANT (ntype) = ntype;
3597 TYPE_NEXT_VARIANT (ntype) = 0;
3598 set_type_quals (ntype, TYPE_UNQUALIFIED);
3599
3600 hashcode = iterative_hash_object (code, hashcode);
3601 if (TREE_TYPE (ntype))
3602 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3603 hashcode);
3604 hashcode = attribute_hash_list (attribute, hashcode);
3605
3606 switch (TREE_CODE (ntype))
3607 {
3608 case FUNCTION_TYPE:
3609 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3610 break;
3611 case ARRAY_TYPE:
3612 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3613 hashcode);
3614 break;
3615 case INTEGER_TYPE:
3616 hashcode = iterative_hash_object
3617 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3618 hashcode = iterative_hash_object
3619 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3620 break;
3621 case REAL_TYPE:
3622 {
3623 unsigned int precision = TYPE_PRECISION (ntype);
3624 hashcode = iterative_hash_object (precision, hashcode);
3625 }
3626 break;
3627 default:
3628 break;
3629 }
3630
3631 ntype = type_hash_canon (hashcode, ntype);
3632
3633 /* If the target-dependent attributes make NTYPE different from
3634 its canonical type, we will need to use structural equality
3635 checks for this qualified type. */
3636 if (!targetm.comp_type_attributes (ntype, ttype))
3637 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
3638
3639 ttype = build_qualified_type (ntype, quals);
3640 }
3641
3642 return ttype;
3643 }
3644
3645
3646 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3647 is ATTRIBUTE.
3648
3649 Record such modified types already made so we don't make duplicates. */
3650
3651 tree
3652 build_type_attribute_variant (tree ttype, tree attribute)
3653 {
3654 return build_type_attribute_qual_variant (ttype, attribute,
3655 TYPE_QUALS (ttype));
3656 }
3657
3658 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3659 or zero if not.
3660
3661 We try both `text' and `__text__', ATTR may be either one. */
3662 /* ??? It might be a reasonable simplification to require ATTR to be only
3663 `text'. One might then also require attribute lists to be stored in
3664 their canonicalized form. */
3665
3666 static int
3667 is_attribute_with_length_p (const char *attr, int attr_len, tree ident)
3668 {
3669 int ident_len;
3670 const char *p;
3671
3672 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3673 return 0;
3674
3675 p = IDENTIFIER_POINTER (ident);
3676 ident_len = IDENTIFIER_LENGTH (ident);
3677
3678 if (ident_len == attr_len
3679 && strcmp (attr, p) == 0)
3680 return 1;
3681
3682 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3683 if (attr[0] == '_')
3684 {
3685 gcc_assert (attr[1] == '_');
3686 gcc_assert (attr[attr_len - 2] == '_');
3687 gcc_assert (attr[attr_len - 1] == '_');
3688 if (ident_len == attr_len - 4
3689 && strncmp (attr + 2, p, attr_len - 4) == 0)
3690 return 1;
3691 }
3692 else
3693 {
3694 if (ident_len == attr_len + 4
3695 && p[0] == '_' && p[1] == '_'
3696 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3697 && strncmp (attr, p + 2, attr_len) == 0)
3698 return 1;
3699 }
3700
3701 return 0;
3702 }
3703
3704 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3705 or zero if not.
3706
3707 We try both `text' and `__text__', ATTR may be either one. */
3708
3709 int
3710 is_attribute_p (const char *attr, tree ident)
3711 {
3712 return is_attribute_with_length_p (attr, strlen (attr), ident);
3713 }
3714
3715 /* Given an attribute name and a list of attributes, return a pointer to the
3716 attribute's list element if the attribute is part of the list, or NULL_TREE
3717 if not found. If the attribute appears more than once, this only
3718 returns the first occurrence; the TREE_CHAIN of the return value should
3719 be passed back in if further occurrences are wanted. */
3720
3721 tree
3722 lookup_attribute (const char *attr_name, tree list)
3723 {
3724 tree l;
3725 size_t attr_len = strlen (attr_name);
3726
3727 for (l = list; l; l = TREE_CHAIN (l))
3728 {
3729 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3730 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3731 return l;
3732 }
3733
3734 return NULL_TREE;
3735 }
3736
3737 /* Remove any instances of attribute ATTR_NAME in LIST and return the
3738 modified list. */
3739
3740 tree
3741 remove_attribute (const char *attr_name, tree list)
3742 {
3743 tree *p;
3744 size_t attr_len = strlen (attr_name);
3745
3746 for (p = &list; *p; )
3747 {
3748 tree l = *p;
3749 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3750 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3751 *p = TREE_CHAIN (l);
3752 else
3753 p = &TREE_CHAIN (l);
3754 }
3755
3756 return list;
3757 }
3758
3759 /* Return an attribute list that is the union of a1 and a2. */
3760
3761 tree
3762 merge_attributes (tree a1, tree a2)
3763 {
3764 tree attributes;
3765
3766 /* Either one unset? Take the set one. */
3767
3768 if ((attributes = a1) == 0)
3769 attributes = a2;
3770
3771 /* One that completely contains the other? Take it. */
3772
3773 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3774 {
3775 if (attribute_list_contained (a2, a1))
3776 attributes = a2;
3777 else
3778 {
3779 /* Pick the longest list, and hang on the other list. */
3780
3781 if (list_length (a1) < list_length (a2))
3782 attributes = a2, a2 = a1;
3783
3784 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3785 {
3786 tree a;
3787 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3788 attributes);
3789 a != NULL_TREE;
3790 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3791 TREE_CHAIN (a)))
3792 {
3793 if (TREE_VALUE (a) != NULL
3794 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
3795 && TREE_VALUE (a2) != NULL
3796 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
3797 {
3798 if (simple_cst_list_equal (TREE_VALUE (a),
3799 TREE_VALUE (a2)) == 1)
3800 break;
3801 }
3802 else if (simple_cst_equal (TREE_VALUE (a),
3803 TREE_VALUE (a2)) == 1)
3804 break;
3805 }
3806 if (a == NULL_TREE)
3807 {
3808 a1 = copy_node (a2);
3809 TREE_CHAIN (a1) = attributes;
3810 attributes = a1;
3811 }
3812 }
3813 }
3814 }
3815 return attributes;
3816 }
3817
3818 /* Given types T1 and T2, merge their attributes and return
3819 the result. */
3820
3821 tree
3822 merge_type_attributes (tree t1, tree t2)
3823 {
3824 return merge_attributes (TYPE_ATTRIBUTES (t1),
3825 TYPE_ATTRIBUTES (t2));
3826 }
3827
3828 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3829 the result. */
3830
3831 tree
3832 merge_decl_attributes (tree olddecl, tree newdecl)
3833 {
3834 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3835 DECL_ATTRIBUTES (newdecl));
3836 }
3837
3838 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3839
3840 /* Specialization of merge_decl_attributes for various Windows targets.
3841
3842 This handles the following situation:
3843
3844 __declspec (dllimport) int foo;
3845 int foo;
3846
3847 The second instance of `foo' nullifies the dllimport. */
3848
3849 tree
3850 merge_dllimport_decl_attributes (tree old, tree new)
3851 {
3852 tree a;
3853 int delete_dllimport_p = 1;
3854
3855 /* What we need to do here is remove from `old' dllimport if it doesn't
3856 appear in `new'. dllimport behaves like extern: if a declaration is
3857 marked dllimport and a definition appears later, then the object
3858 is not dllimport'd. We also remove a `new' dllimport if the old list
3859 contains dllexport: dllexport always overrides dllimport, regardless
3860 of the order of declaration. */
3861 if (!VAR_OR_FUNCTION_DECL_P (new))
3862 delete_dllimport_p = 0;
3863 else if (DECL_DLLIMPORT_P (new)
3864 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
3865 {
3866 DECL_DLLIMPORT_P (new) = 0;
3867 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
3868 "dllimport ignored", new);
3869 }
3870 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new))
3871 {
3872 /* Warn about overriding a symbol that has already been used. eg:
3873 extern int __attribute__ ((dllimport)) foo;
3874 int* bar () {return &foo;}
3875 int foo;
3876 */
3877 if (TREE_USED (old))
3878 {
3879 warning (0, "%q+D redeclared without dllimport attribute "
3880 "after being referenced with dll linkage", new);
3881 /* If we have used a variable's address with dllimport linkage,
3882 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
3883 decl may already have had TREE_INVARIANT and TREE_CONSTANT
3884 computed.
3885 We still remove the attribute so that assembler code refers
3886 to '&foo rather than '_imp__foo'. */
3887 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
3888 DECL_DLLIMPORT_P (new) = 1;
3889 }
3890
3891 /* Let an inline definition silently override the external reference,
3892 but otherwise warn about attribute inconsistency. */
3893 else if (TREE_CODE (new) == VAR_DECL
3894 || !DECL_DECLARED_INLINE_P (new))
3895 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
3896 "previous dllimport ignored", new);
3897 }
3898 else
3899 delete_dllimport_p = 0;
3900
3901 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new));
3902
3903 if (delete_dllimport_p)
3904 {
3905 tree prev, t;
3906 const size_t attr_len = strlen ("dllimport");
3907
3908 /* Scan the list for dllimport and delete it. */
3909 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3910 {
3911 if (is_attribute_with_length_p ("dllimport", attr_len,
3912 TREE_PURPOSE (t)))
3913 {
3914 if (prev == NULL_TREE)
3915 a = TREE_CHAIN (a);
3916 else
3917 TREE_CHAIN (prev) = TREE_CHAIN (t);
3918 break;
3919 }
3920 }
3921 }
3922
3923 return a;
3924 }
3925
3926 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3927 struct attribute_spec.handler. */
3928
3929 tree
3930 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3931 bool *no_add_attrs)
3932 {
3933 tree node = *pnode;
3934
3935 /* These attributes may apply to structure and union types being created,
3936 but otherwise should pass to the declaration involved. */
3937 if (!DECL_P (node))
3938 {
3939 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3940 | (int) ATTR_FLAG_ARRAY_NEXT))
3941 {
3942 *no_add_attrs = true;
3943 return tree_cons (name, args, NULL_TREE);
3944 }
3945 if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3946 {
3947 warning (OPT_Wattributes, "%qs attribute ignored",
3948 IDENTIFIER_POINTER (name));
3949 *no_add_attrs = true;
3950 }
3951
3952 return NULL_TREE;
3953 }
3954
3955 if (TREE_CODE (node) != FUNCTION_DECL
3956 && TREE_CODE (node) != VAR_DECL)
3957 {
3958 *no_add_attrs = true;
3959 warning (OPT_Wattributes, "%qs attribute ignored",
3960 IDENTIFIER_POINTER (name));
3961 return NULL_TREE;
3962 }
3963
3964 /* Report error on dllimport ambiguities seen now before they cause
3965 any damage. */
3966 else if (is_attribute_p ("dllimport", name))
3967 {
3968 /* Honor any target-specific overrides. */
3969 if (!targetm.valid_dllimport_attribute_p (node))
3970 *no_add_attrs = true;
3971
3972 else if (TREE_CODE (node) == FUNCTION_DECL
3973 && DECL_DECLARED_INLINE_P (node))
3974 {
3975 warning (OPT_Wattributes, "inline function %q+D declared as "
3976 " dllimport: attribute ignored", node);
3977 *no_add_attrs = true;
3978 }
3979 /* Like MS, treat definition of dllimported variables and
3980 non-inlined functions on declaration as syntax errors. */
3981 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
3982 {
3983 error ("function %q+D definition is marked dllimport", node);
3984 *no_add_attrs = true;
3985 }
3986
3987 else if (TREE_CODE (node) == VAR_DECL)
3988 {
3989 if (DECL_INITIAL (node))
3990 {
3991 error ("variable %q+D definition is marked dllimport",
3992 node);
3993 *no_add_attrs = true;
3994 }
3995
3996 /* `extern' needn't be specified with dllimport.
3997 Specify `extern' now and hope for the best. Sigh. */
3998 DECL_EXTERNAL (node) = 1;
3999 /* Also, implicitly give dllimport'd variables declared within
4000 a function global scope, unless declared static. */
4001 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
4002 TREE_PUBLIC (node) = 1;
4003 }
4004
4005 if (*no_add_attrs == false)
4006 DECL_DLLIMPORT_P (node) = 1;
4007 }
4008
4009 /* Report error if symbol is not accessible at global scope. */
4010 if (!TREE_PUBLIC (node)
4011 && (TREE_CODE (node) == VAR_DECL
4012 || TREE_CODE (node) == FUNCTION_DECL))
4013 {
4014 error ("external linkage required for symbol %q+D because of "
4015 "%qs attribute", node, IDENTIFIER_POINTER (name));
4016 *no_add_attrs = true;
4017 }
4018
4019 return NULL_TREE;
4020 }
4021
4022 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
4023 \f
4024 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
4025 of the various TYPE_QUAL values. */
4026
4027 static void
4028 set_type_quals (tree type, int type_quals)
4029 {
4030 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
4031 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
4032 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
4033 }
4034
4035 /* Returns true iff cand is equivalent to base with type_quals. */
4036
4037 bool
4038 check_qualified_type (tree cand, tree base, int type_quals)
4039 {
4040 return (TYPE_QUALS (cand) == type_quals
4041 && TYPE_NAME (cand) == TYPE_NAME (base)
4042 /* Apparently this is needed for Objective-C. */
4043 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
4044 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
4045 TYPE_ATTRIBUTES (base)));
4046 }
4047
4048 /* Return a version of the TYPE, qualified as indicated by the
4049 TYPE_QUALS, if one exists. If no qualified version exists yet,
4050 return NULL_TREE. */
4051
4052 tree
4053 get_qualified_type (tree type, int type_quals)
4054 {
4055 tree t;
4056
4057 if (TYPE_QUALS (type) == type_quals)
4058 return type;
4059
4060 /* Search the chain of variants to see if there is already one there just
4061 like the one we need to have. If so, use that existing one. We must
4062 preserve the TYPE_NAME, since there is code that depends on this. */
4063 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
4064 if (check_qualified_type (t, type, type_quals))
4065 return t;
4066
4067 return NULL_TREE;
4068 }
4069
4070 /* Like get_qualified_type, but creates the type if it does not
4071 exist. This function never returns NULL_TREE. */
4072
4073 tree
4074 build_qualified_type (tree type, int type_quals)
4075 {
4076 tree t;
4077
4078 /* See if we already have the appropriate qualified variant. */
4079 t = get_qualified_type (type, type_quals);
4080
4081 /* If not, build it. */
4082 if (!t)
4083 {
4084 t = build_variant_type_copy (type);
4085 set_type_quals (t, type_quals);
4086
4087 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4088 /* Propagate structural equality. */
4089 SET_TYPE_STRUCTURAL_EQUALITY (t);
4090 else if (TYPE_CANONICAL (type) != type)
4091 /* Build the underlying canonical type, since it is different
4092 from TYPE. */
4093 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
4094 type_quals);
4095 else
4096 /* T is its own canonical type. */
4097 TYPE_CANONICAL (t) = t;
4098
4099 }
4100
4101 return t;
4102 }
4103
4104 /* Create a new distinct copy of TYPE. The new type is made its own
4105 MAIN_VARIANT. If TYPE requires structural equality checks, the
4106 resulting type requires structural equality checks; otherwise, its
4107 TYPE_CANONICAL points to itself. */
4108
4109 tree
4110 build_distinct_type_copy (tree type)
4111 {
4112 tree t = copy_node (type);
4113
4114 TYPE_POINTER_TO (t) = 0;
4115 TYPE_REFERENCE_TO (t) = 0;
4116
4117 /* Set the canonical type either to a new equivalence class, or
4118 propagate the need for structural equality checks. */
4119 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4120 SET_TYPE_STRUCTURAL_EQUALITY (t);
4121 else
4122 TYPE_CANONICAL (t) = t;
4123
4124 /* Make it its own variant. */
4125 TYPE_MAIN_VARIANT (t) = t;
4126 TYPE_NEXT_VARIANT (t) = 0;
4127
4128 return t;
4129 }
4130
4131 /* Create a new variant of TYPE, equivalent but distinct. This is so
4132 the caller can modify it. TYPE_CANONICAL for the return type will
4133 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
4134 are considered equal by the language itself (or that both types
4135 require structural equality checks). */
4136
4137 tree
4138 build_variant_type_copy (tree type)
4139 {
4140 tree t, m = TYPE_MAIN_VARIANT (type);
4141
4142 t = build_distinct_type_copy (type);
4143
4144 /* Since we're building a variant, assume that it is a non-semantic
4145 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
4146 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
4147
4148 /* Add the new type to the chain of variants of TYPE. */
4149 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
4150 TYPE_NEXT_VARIANT (m) = t;
4151 TYPE_MAIN_VARIANT (t) = m;
4152
4153 return t;
4154 }
4155 \f
4156 /* Return true if the from tree in both tree maps are equal. */
4157
4158 int
4159 tree_map_eq (const void *va, const void *vb)
4160 {
4161 const struct tree_map *a = va, *b = vb;
4162 return (a->from == b->from);
4163 }
4164
4165 /* Hash a from tree in a tree_map. */
4166
4167 unsigned int
4168 tree_map_hash (const void *item)
4169 {
4170 return (((const struct tree_map *) item)->hash);
4171 }
4172
4173 /* Return true if this tree map structure is marked for garbage collection
4174 purposes. We simply return true if the from tree is marked, so that this
4175 structure goes away when the from tree goes away. */
4176
4177 int
4178 tree_map_marked_p (const void *p)
4179 {
4180 tree from = ((struct tree_map *) p)->from;
4181
4182 return ggc_marked_p (from);
4183 }
4184
4185 /* Return true if the trees in the tree_int_map *'s VA and VB are equal. */
4186
4187 static int
4188 tree_int_map_eq (const void *va, const void *vb)
4189 {
4190 const struct tree_int_map *a = va, *b = vb;
4191 return (a->from == b->from);
4192 }
4193
4194 /* Hash a from tree in the tree_int_map * ITEM. */
4195
4196 static unsigned int
4197 tree_int_map_hash (const void *item)
4198 {
4199 return htab_hash_pointer (((const struct tree_int_map *)item)->from);
4200 }
4201
4202 /* Return true if this tree int map structure is marked for garbage collection
4203 purposes. We simply return true if the from tree_int_map *P's from tree is marked, so that this
4204 structure goes away when the from tree goes away. */
4205
4206 static int
4207 tree_int_map_marked_p (const void *p)
4208 {
4209 tree from = ((struct tree_int_map *) p)->from;
4210
4211 return ggc_marked_p (from);
4212 }
4213 /* Lookup an init priority for FROM, and return it if we find one. */
4214
4215 unsigned short
4216 decl_init_priority_lookup (tree from)
4217 {
4218 struct tree_int_map *h, in;
4219 in.from = from;
4220
4221 h = htab_find_with_hash (init_priority_for_decl,
4222 &in, htab_hash_pointer (from));
4223 if (h)
4224 return h->to;
4225 return 0;
4226 }
4227
4228 /* Insert a mapping FROM->TO in the init priority hashtable. */
4229
4230 void
4231 decl_init_priority_insert (tree from, unsigned short to)
4232 {
4233 struct tree_int_map *h;
4234 void **loc;
4235
4236 h = ggc_alloc (sizeof (struct tree_int_map));
4237 h->from = from;
4238 h->to = to;
4239 loc = htab_find_slot_with_hash (init_priority_for_decl, h,
4240 htab_hash_pointer (from), INSERT);
4241 *(struct tree_int_map **) loc = h;
4242 }
4243
4244 /* Look up a restrict qualified base decl for FROM. */
4245
4246 tree
4247 decl_restrict_base_lookup (tree from)
4248 {
4249 struct tree_map *h;
4250 struct tree_map in;
4251
4252 in.from = from;
4253 h = htab_find_with_hash (restrict_base_for_decl, &in,
4254 htab_hash_pointer (from));
4255 return h ? h->to : NULL_TREE;
4256 }
4257
4258 /* Record the restrict qualified base TO for FROM. */
4259
4260 void
4261 decl_restrict_base_insert (tree from, tree to)
4262 {
4263 struct tree_map *h;
4264 void **loc;
4265
4266 h = ggc_alloc (sizeof (struct tree_map));
4267 h->hash = htab_hash_pointer (from);
4268 h->from = from;
4269 h->to = to;
4270 loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
4271 *(struct tree_map **) loc = h;
4272 }
4273
4274 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
4275
4276 static void
4277 print_debug_expr_statistics (void)
4278 {
4279 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
4280 (long) htab_size (debug_expr_for_decl),
4281 (long) htab_elements (debug_expr_for_decl),
4282 htab_collisions (debug_expr_for_decl));
4283 }
4284
4285 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
4286
4287 static void
4288 print_value_expr_statistics (void)
4289 {
4290 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
4291 (long) htab_size (value_expr_for_decl),
4292 (long) htab_elements (value_expr_for_decl),
4293 htab_collisions (value_expr_for_decl));
4294 }
4295
4296 /* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
4297 don't print anything if the table is empty. */
4298
4299 static void
4300 print_restrict_base_statistics (void)
4301 {
4302 if (htab_elements (restrict_base_for_decl) != 0)
4303 fprintf (stderr,
4304 "RESTRICT_BASE hash: size %ld, %ld elements, %f collisions\n",
4305 (long) htab_size (restrict_base_for_decl),
4306 (long) htab_elements (restrict_base_for_decl),
4307 htab_collisions (restrict_base_for_decl));
4308 }
4309
4310 /* Lookup a debug expression for FROM, and return it if we find one. */
4311
4312 tree
4313 decl_debug_expr_lookup (tree from)
4314 {
4315 struct tree_map *h, in;
4316 in.from = from;
4317
4318 h = htab_find_with_hash (debug_expr_for_decl, &in, htab_hash_pointer (from));
4319 if (h)
4320 return h->to;
4321 return NULL_TREE;
4322 }
4323
4324 /* Insert a mapping FROM->TO in the debug expression hashtable. */
4325
4326 void
4327 decl_debug_expr_insert (tree from, tree to)
4328 {
4329 struct tree_map *h;
4330 void **loc;
4331
4332 h = ggc_alloc (sizeof (struct tree_map));
4333 h->hash = htab_hash_pointer (from);
4334 h->from = from;
4335 h->to = to;
4336 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
4337 *(struct tree_map **) loc = h;
4338 }
4339
4340 /* Lookup a value expression for FROM, and return it if we find one. */
4341
4342 tree
4343 decl_value_expr_lookup (tree from)
4344 {
4345 struct tree_map *h, in;
4346 in.from = from;
4347
4348 h = htab_find_with_hash (value_expr_for_decl, &in, htab_hash_pointer (from));
4349 if (h)
4350 return h->to;
4351 return NULL_TREE;
4352 }
4353
4354 /* Insert a mapping FROM->TO in the value expression hashtable. */
4355
4356 void
4357 decl_value_expr_insert (tree from, tree to)
4358 {
4359 struct tree_map *h;
4360 void **loc;
4361
4362 h = ggc_alloc (sizeof (struct tree_map));
4363 h->hash = htab_hash_pointer (from);
4364 h->from = from;
4365 h->to = to;
4366 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
4367 *(struct tree_map **) loc = h;
4368 }
4369
4370 /* Hashing of types so that we don't make duplicates.
4371 The entry point is `type_hash_canon'. */
4372
4373 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
4374 with types in the TREE_VALUE slots), by adding the hash codes
4375 of the individual types. */
4376
4377 unsigned int
4378 type_hash_list (tree list, hashval_t hashcode)
4379 {
4380 tree tail;
4381
4382 for (tail = list; tail; tail = TREE_CHAIN (tail))
4383 if (TREE_VALUE (tail) != error_mark_node)
4384 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
4385 hashcode);
4386
4387 return hashcode;
4388 }
4389
4390 /* These are the Hashtable callback functions. */
4391
4392 /* Returns true iff the types are equivalent. */
4393
4394 static int
4395 type_hash_eq (const void *va, const void *vb)
4396 {
4397 const struct type_hash *a = va, *b = vb;
4398
4399 /* First test the things that are the same for all types. */
4400 if (a->hash != b->hash
4401 || TREE_CODE (a->type) != TREE_CODE (b->type)
4402 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
4403 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
4404 TYPE_ATTRIBUTES (b->type))
4405 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
4406 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
4407 return 0;
4408
4409 switch (TREE_CODE (a->type))
4410 {
4411 case VOID_TYPE:
4412 case COMPLEX_TYPE:
4413 case POINTER_TYPE:
4414 case REFERENCE_TYPE:
4415 return 1;
4416
4417 case VECTOR_TYPE:
4418 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
4419
4420 case ENUMERAL_TYPE:
4421 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
4422 && !(TYPE_VALUES (a->type)
4423 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
4424 && TYPE_VALUES (b->type)
4425 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
4426 && type_list_equal (TYPE_VALUES (a->type),
4427 TYPE_VALUES (b->type))))
4428 return 0;
4429
4430 /* ... fall through ... */
4431
4432 case INTEGER_TYPE:
4433 case REAL_TYPE:
4434 case BOOLEAN_TYPE:
4435 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4436 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4437 TYPE_MAX_VALUE (b->type)))
4438 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4439 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4440 TYPE_MIN_VALUE (b->type))));
4441
4442 case OFFSET_TYPE:
4443 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4444
4445 case METHOD_TYPE:
4446 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4447 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4448 || (TYPE_ARG_TYPES (a->type)
4449 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4450 && TYPE_ARG_TYPES (b->type)
4451 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4452 && type_list_equal (TYPE_ARG_TYPES (a->type),
4453 TYPE_ARG_TYPES (b->type)))));
4454
4455 case ARRAY_TYPE:
4456 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4457
4458 case RECORD_TYPE:
4459 case UNION_TYPE:
4460 case QUAL_UNION_TYPE:
4461 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4462 || (TYPE_FIELDS (a->type)
4463 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4464 && TYPE_FIELDS (b->type)
4465 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4466 && type_list_equal (TYPE_FIELDS (a->type),
4467 TYPE_FIELDS (b->type))));
4468
4469 case FUNCTION_TYPE:
4470 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4471 || (TYPE_ARG_TYPES (a->type)
4472 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4473 && TYPE_ARG_TYPES (b->type)
4474 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4475 && type_list_equal (TYPE_ARG_TYPES (a->type),
4476 TYPE_ARG_TYPES (b->type))));
4477
4478 default:
4479 return 0;
4480 }
4481 }
4482
4483 /* Return the cached hash value. */
4484
4485 static hashval_t
4486 type_hash_hash (const void *item)
4487 {
4488 return ((const struct type_hash *) item)->hash;
4489 }
4490
4491 /* Look in the type hash table for a type isomorphic to TYPE.
4492 If one is found, return it. Otherwise return 0. */
4493
4494 tree
4495 type_hash_lookup (hashval_t hashcode, tree type)
4496 {
4497 struct type_hash *h, in;
4498
4499 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4500 must call that routine before comparing TYPE_ALIGNs. */
4501 layout_type (type);
4502
4503 in.hash = hashcode;
4504 in.type = type;
4505
4506 h = htab_find_with_hash (type_hash_table, &in, hashcode);
4507 if (h)
4508 return h->type;
4509 return NULL_TREE;
4510 }
4511
4512 /* Add an entry to the type-hash-table
4513 for a type TYPE whose hash code is HASHCODE. */
4514
4515 void
4516 type_hash_add (hashval_t hashcode, tree type)
4517 {
4518 struct type_hash *h;
4519 void **loc;
4520
4521 h = ggc_alloc (sizeof (struct type_hash));
4522 h->hash = hashcode;
4523 h->type = type;
4524 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
4525 *(struct type_hash **) loc = h;
4526 }
4527
4528 /* Given TYPE, and HASHCODE its hash code, return the canonical
4529 object for an identical type if one already exists.
4530 Otherwise, return TYPE, and record it as the canonical object.
4531
4532 To use this function, first create a type of the sort you want.
4533 Then compute its hash code from the fields of the type that
4534 make it different from other similar types.
4535 Then call this function and use the value. */
4536
4537 tree
4538 type_hash_canon (unsigned int hashcode, tree type)
4539 {
4540 tree t1;
4541
4542 /* The hash table only contains main variants, so ensure that's what we're
4543 being passed. */
4544 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
4545
4546 if (!lang_hooks.types.hash_types)
4547 return type;
4548
4549 /* See if the type is in the hash table already. If so, return it.
4550 Otherwise, add the type. */
4551 t1 = type_hash_lookup (hashcode, type);
4552 if (t1 != 0)
4553 {
4554 #ifdef GATHER_STATISTICS
4555 tree_node_counts[(int) t_kind]--;
4556 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
4557 #endif
4558 return t1;
4559 }
4560 else
4561 {
4562 type_hash_add (hashcode, type);
4563 return type;
4564 }
4565 }
4566
4567 /* See if the data pointed to by the type hash table is marked. We consider
4568 it marked if the type is marked or if a debug type number or symbol
4569 table entry has been made for the type. This reduces the amount of
4570 debugging output and eliminates that dependency of the debug output on
4571 the number of garbage collections. */
4572
4573 static int
4574 type_hash_marked_p (const void *p)
4575 {
4576 tree type = ((struct type_hash *) p)->type;
4577
4578 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
4579 }
4580
4581 static void
4582 print_type_hash_statistics (void)
4583 {
4584 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
4585 (long) htab_size (type_hash_table),
4586 (long) htab_elements (type_hash_table),
4587 htab_collisions (type_hash_table));
4588 }
4589
4590 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4591 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4592 by adding the hash codes of the individual attributes. */
4593
4594 unsigned int
4595 attribute_hash_list (tree list, hashval_t hashcode)
4596 {
4597 tree tail;
4598
4599 for (tail = list; tail; tail = TREE_CHAIN (tail))
4600 /* ??? Do we want to add in TREE_VALUE too? */
4601 hashcode = iterative_hash_object
4602 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
4603 return hashcode;
4604 }
4605
4606 /* Given two lists of attributes, return true if list l2 is
4607 equivalent to l1. */
4608
4609 int
4610 attribute_list_equal (tree l1, tree l2)
4611 {
4612 return attribute_list_contained (l1, l2)
4613 && attribute_list_contained (l2, l1);
4614 }
4615
4616 /* Given two lists of attributes, return true if list L2 is
4617 completely contained within L1. */
4618 /* ??? This would be faster if attribute names were stored in a canonicalized
4619 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4620 must be used to show these elements are equivalent (which they are). */
4621 /* ??? It's not clear that attributes with arguments will always be handled
4622 correctly. */
4623
4624 int
4625 attribute_list_contained (tree l1, tree l2)
4626 {
4627 tree t1, t2;
4628
4629 /* First check the obvious, maybe the lists are identical. */
4630 if (l1 == l2)
4631 return 1;
4632
4633 /* Maybe the lists are similar. */
4634 for (t1 = l1, t2 = l2;
4635 t1 != 0 && t2 != 0
4636 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4637 && TREE_VALUE (t1) == TREE_VALUE (t2);
4638 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4639
4640 /* Maybe the lists are equal. */
4641 if (t1 == 0 && t2 == 0)
4642 return 1;
4643
4644 for (; t2 != 0; t2 = TREE_CHAIN (t2))
4645 {
4646 tree attr;
4647 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
4648 attr != NULL_TREE;
4649 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4650 TREE_CHAIN (attr)))
4651 {
4652 if (TREE_VALUE (t2) != NULL
4653 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
4654 && TREE_VALUE (attr) != NULL
4655 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
4656 {
4657 if (simple_cst_list_equal (TREE_VALUE (t2),
4658 TREE_VALUE (attr)) == 1)
4659 break;
4660 }
4661 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
4662 break;
4663 }
4664
4665 if (attr == 0)
4666 return 0;
4667 }
4668
4669 return 1;
4670 }
4671
4672 /* Given two lists of types
4673 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4674 return 1 if the lists contain the same types in the same order.
4675 Also, the TREE_PURPOSEs must match. */
4676
4677 int
4678 type_list_equal (tree l1, tree l2)
4679 {
4680 tree t1, t2;
4681
4682 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4683 if (TREE_VALUE (t1) != TREE_VALUE (t2)
4684 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4685 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4686 && (TREE_TYPE (TREE_PURPOSE (t1))
4687 == TREE_TYPE (TREE_PURPOSE (t2))))))
4688 return 0;
4689
4690 return t1 == t2;
4691 }
4692
4693 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
4694 given by TYPE. If the argument list accepts variable arguments,
4695 then this function counts only the ordinary arguments. */
4696
4697 int
4698 type_num_arguments (tree type)
4699 {
4700 int i = 0;
4701 tree t;
4702
4703 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
4704 /* If the function does not take a variable number of arguments,
4705 the last element in the list will have type `void'. */
4706 if (VOID_TYPE_P (TREE_VALUE (t)))
4707 break;
4708 else
4709 ++i;
4710
4711 return i;
4712 }
4713
4714 /* Nonzero if integer constants T1 and T2
4715 represent the same constant value. */
4716
4717 int
4718 tree_int_cst_equal (tree t1, tree t2)
4719 {
4720 if (t1 == t2)
4721 return 1;
4722
4723 if (t1 == 0 || t2 == 0)
4724 return 0;
4725
4726 if (TREE_CODE (t1) == INTEGER_CST
4727 && TREE_CODE (t2) == INTEGER_CST
4728 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4729 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4730 return 1;
4731
4732 return 0;
4733 }
4734
4735 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4736 The precise way of comparison depends on their data type. */
4737
4738 int
4739 tree_int_cst_lt (tree t1, tree t2)
4740 {
4741 if (t1 == t2)
4742 return 0;
4743
4744 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
4745 {
4746 int t1_sgn = tree_int_cst_sgn (t1);
4747 int t2_sgn = tree_int_cst_sgn (t2);
4748
4749 if (t1_sgn < t2_sgn)
4750 return 1;
4751 else if (t1_sgn > t2_sgn)
4752 return 0;
4753 /* Otherwise, both are non-negative, so we compare them as
4754 unsigned just in case one of them would overflow a signed
4755 type. */
4756 }
4757 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
4758 return INT_CST_LT (t1, t2);
4759
4760 return INT_CST_LT_UNSIGNED (t1, t2);
4761 }
4762
4763 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
4764
4765 int
4766 tree_int_cst_compare (tree t1, tree t2)
4767 {
4768 if (tree_int_cst_lt (t1, t2))
4769 return -1;
4770 else if (tree_int_cst_lt (t2, t1))
4771 return 1;
4772 else
4773 return 0;
4774 }
4775
4776 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
4777 the host. If POS is zero, the value can be represented in a single
4778 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
4779 be represented in a single unsigned HOST_WIDE_INT. */
4780
4781 int
4782 host_integerp (tree t, int pos)
4783 {
4784 return (TREE_CODE (t) == INTEGER_CST
4785 && ((TREE_INT_CST_HIGH (t) == 0
4786 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4787 || (! pos && TREE_INT_CST_HIGH (t) == -1
4788 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
4789 && !TYPE_UNSIGNED (TREE_TYPE (t)))
4790 || (pos && TREE_INT_CST_HIGH (t) == 0)));
4791 }
4792
4793 /* Return the HOST_WIDE_INT least significant bits of T if it is an
4794 INTEGER_CST and there is no overflow. POS is nonzero if the result must
4795 be non-negative. We must be able to satisfy the above conditions. */
4796
4797 HOST_WIDE_INT
4798 tree_low_cst (tree t, int pos)
4799 {
4800 gcc_assert (host_integerp (t, pos));
4801 return TREE_INT_CST_LOW (t);
4802 }
4803
4804 /* Return the most significant bit of the integer constant T. */
4805
4806 int
4807 tree_int_cst_msb (tree t)
4808 {
4809 int prec;
4810 HOST_WIDE_INT h;
4811 unsigned HOST_WIDE_INT l;
4812
4813 /* Note that using TYPE_PRECISION here is wrong. We care about the
4814 actual bits, not the (arbitrary) range of the type. */
4815 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
4816 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
4817 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
4818 return (l & 1) == 1;
4819 }
4820
4821 /* Return an indication of the sign of the integer constant T.
4822 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
4823 Note that -1 will never be returned if T's type is unsigned. */
4824
4825 int
4826 tree_int_cst_sgn (tree t)
4827 {
4828 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4829 return 0;
4830 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
4831 return 1;
4832 else if (TREE_INT_CST_HIGH (t) < 0)
4833 return -1;
4834 else
4835 return 1;
4836 }
4837
4838 /* Compare two constructor-element-type constants. Return 1 if the lists
4839 are known to be equal; otherwise return 0. */
4840
4841 int
4842 simple_cst_list_equal (tree l1, tree l2)
4843 {
4844 while (l1 != NULL_TREE && l2 != NULL_TREE)
4845 {
4846 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4847 return 0;
4848
4849 l1 = TREE_CHAIN (l1);
4850 l2 = TREE_CHAIN (l2);
4851 }
4852
4853 return l1 == l2;
4854 }
4855
4856 /* Return truthvalue of whether T1 is the same tree structure as T2.
4857 Return 1 if they are the same.
4858 Return 0 if they are understandably different.
4859 Return -1 if either contains tree structure not understood by
4860 this function. */
4861
4862 int
4863 simple_cst_equal (tree t1, tree t2)
4864 {
4865 enum tree_code code1, code2;
4866 int cmp;
4867 int i;
4868
4869 if (t1 == t2)
4870 return 1;
4871 if (t1 == 0 || t2 == 0)
4872 return 0;
4873
4874 code1 = TREE_CODE (t1);
4875 code2 = TREE_CODE (t2);
4876
4877 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
4878 {
4879 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4880 || code2 == NON_LVALUE_EXPR)
4881 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4882 else
4883 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
4884 }
4885
4886 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4887 || code2 == NON_LVALUE_EXPR)
4888 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
4889
4890 if (code1 != code2)
4891 return 0;
4892
4893 switch (code1)
4894 {
4895 case INTEGER_CST:
4896 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4897 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
4898
4899 case REAL_CST:
4900 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
4901
4902 case STRING_CST:
4903 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
4904 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
4905 TREE_STRING_LENGTH (t1)));
4906
4907 case CONSTRUCTOR:
4908 {
4909 unsigned HOST_WIDE_INT idx;
4910 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
4911 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
4912
4913 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
4914 return false;
4915
4916 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
4917 /* ??? Should we handle also fields here? */
4918 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
4919 VEC_index (constructor_elt, v2, idx)->value))
4920 return false;
4921 return true;
4922 }
4923
4924 case SAVE_EXPR:
4925 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4926
4927 case CALL_EXPR:
4928 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4929 if (cmp <= 0)
4930 return cmp;
4931 return
4932 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4933
4934 case TARGET_EXPR:
4935 /* Special case: if either target is an unallocated VAR_DECL,
4936 it means that it's going to be unified with whatever the
4937 TARGET_EXPR is really supposed to initialize, so treat it
4938 as being equivalent to anything. */
4939 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
4940 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
4941 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
4942 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
4943 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
4944 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
4945 cmp = 1;
4946 else
4947 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4948
4949 if (cmp <= 0)
4950 return cmp;
4951
4952 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4953
4954 case WITH_CLEANUP_EXPR:
4955 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4956 if (cmp <= 0)
4957 return cmp;
4958
4959 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
4960
4961 case COMPONENT_REF:
4962 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
4963 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4964
4965 return 0;
4966
4967 case VAR_DECL:
4968 case PARM_DECL:
4969 case CONST_DECL:
4970 case FUNCTION_DECL:
4971 return 0;
4972
4973 default:
4974 break;
4975 }
4976
4977 /* This general rule works for most tree codes. All exceptions should be
4978 handled above. If this is a language-specific tree code, we can't
4979 trust what might be in the operand, so say we don't know
4980 the situation. */
4981 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4982 return -1;
4983
4984 switch (TREE_CODE_CLASS (code1))
4985 {
4986 case tcc_unary:
4987 case tcc_binary:
4988 case tcc_comparison:
4989 case tcc_expression:
4990 case tcc_reference:
4991 case tcc_statement:
4992 cmp = 1;
4993 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
4994 {
4995 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4996 if (cmp <= 0)
4997 return cmp;
4998 }
4999
5000 return cmp;
5001
5002 default:
5003 return -1;
5004 }
5005 }
5006
5007 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
5008 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
5009 than U, respectively. */
5010
5011 int
5012 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
5013 {
5014 if (tree_int_cst_sgn (t) < 0)
5015 return -1;
5016 else if (TREE_INT_CST_HIGH (t) != 0)
5017 return 1;
5018 else if (TREE_INT_CST_LOW (t) == u)
5019 return 0;
5020 else if (TREE_INT_CST_LOW (t) < u)
5021 return -1;
5022 else
5023 return 1;
5024 }
5025
5026 /* Return true if CODE represents an associative tree code. Otherwise
5027 return false. */
5028 bool
5029 associative_tree_code (enum tree_code code)
5030 {
5031 switch (code)
5032 {
5033 case BIT_IOR_EXPR:
5034 case BIT_AND_EXPR:
5035 case BIT_XOR_EXPR:
5036 case PLUS_EXPR:
5037 case MULT_EXPR:
5038 case MIN_EXPR:
5039 case MAX_EXPR:
5040 return true;
5041
5042 default:
5043 break;
5044 }
5045 return false;
5046 }
5047
5048 /* Return true if CODE represents a commutative tree code. Otherwise
5049 return false. */
5050 bool
5051 commutative_tree_code (enum tree_code code)
5052 {
5053 switch (code)
5054 {
5055 case PLUS_EXPR:
5056 case MULT_EXPR:
5057 case MIN_EXPR:
5058 case MAX_EXPR:
5059 case BIT_IOR_EXPR:
5060 case BIT_XOR_EXPR:
5061 case BIT_AND_EXPR:
5062 case NE_EXPR:
5063 case EQ_EXPR:
5064 case UNORDERED_EXPR:
5065 case ORDERED_EXPR:
5066 case UNEQ_EXPR:
5067 case LTGT_EXPR:
5068 case TRUTH_AND_EXPR:
5069 case TRUTH_XOR_EXPR:
5070 case TRUTH_OR_EXPR:
5071 return true;
5072
5073 default:
5074 break;
5075 }
5076 return false;
5077 }
5078
5079 /* Generate a hash value for an expression. This can be used iteratively
5080 by passing a previous result as the "val" argument.
5081
5082 This function is intended to produce the same hash for expressions which
5083 would compare equal using operand_equal_p. */
5084
5085 hashval_t
5086 iterative_hash_expr (tree t, hashval_t val)
5087 {
5088 int i;
5089 enum tree_code code;
5090 char class;
5091
5092 if (t == NULL_TREE)
5093 return iterative_hash_pointer (t, val);
5094
5095 code = TREE_CODE (t);
5096
5097 switch (code)
5098 {
5099 /* Alas, constants aren't shared, so we can't rely on pointer
5100 identity. */
5101 case INTEGER_CST:
5102 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
5103 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
5104 case REAL_CST:
5105 {
5106 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
5107
5108 return iterative_hash_hashval_t (val2, val);
5109 }
5110 case STRING_CST:
5111 return iterative_hash (TREE_STRING_POINTER (t),
5112 TREE_STRING_LENGTH (t), val);
5113 case COMPLEX_CST:
5114 val = iterative_hash_expr (TREE_REALPART (t), val);
5115 return iterative_hash_expr (TREE_IMAGPART (t), val);
5116 case VECTOR_CST:
5117 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
5118
5119 case SSA_NAME:
5120 case VALUE_HANDLE:
5121 /* we can just compare by pointer. */
5122 return iterative_hash_pointer (t, val);
5123
5124 case TREE_LIST:
5125 /* A list of expressions, for a CALL_EXPR or as the elements of a
5126 VECTOR_CST. */
5127 for (; t; t = TREE_CHAIN (t))
5128 val = iterative_hash_expr (TREE_VALUE (t), val);
5129 return val;
5130 case CONSTRUCTOR:
5131 {
5132 unsigned HOST_WIDE_INT idx;
5133 tree field, value;
5134 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
5135 {
5136 val = iterative_hash_expr (field, val);
5137 val = iterative_hash_expr (value, val);
5138 }
5139 return val;
5140 }
5141 case FUNCTION_DECL:
5142 /* When referring to a built-in FUNCTION_DECL, use the
5143 __builtin__ form. Otherwise nodes that compare equal
5144 according to operand_equal_p might get different
5145 hash codes. */
5146 if (DECL_BUILT_IN (t))
5147 {
5148 val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
5149 val);
5150 return val;
5151 }
5152 /* else FALL THROUGH */
5153 default:
5154 class = TREE_CODE_CLASS (code);
5155
5156 if (class == tcc_declaration)
5157 {
5158 /* DECL's have a unique ID */
5159 val = iterative_hash_host_wide_int (DECL_UID (t), val);
5160 }
5161 else
5162 {
5163 gcc_assert (IS_EXPR_CODE_CLASS (class));
5164
5165 val = iterative_hash_object (code, val);
5166
5167 /* Don't hash the type, that can lead to having nodes which
5168 compare equal according to operand_equal_p, but which
5169 have different hash codes. */
5170 if (code == NOP_EXPR
5171 || code == CONVERT_EXPR
5172 || code == NON_LVALUE_EXPR)
5173 {
5174 /* Make sure to include signness in the hash computation. */
5175 val += TYPE_UNSIGNED (TREE_TYPE (t));
5176 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
5177 }
5178
5179 else if (commutative_tree_code (code))
5180 {
5181 /* It's a commutative expression. We want to hash it the same
5182 however it appears. We do this by first hashing both operands
5183 and then rehashing based on the order of their independent
5184 hashes. */
5185 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
5186 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
5187 hashval_t t;
5188
5189 if (one > two)
5190 t = one, one = two, two = t;
5191
5192 val = iterative_hash_hashval_t (one, val);
5193 val = iterative_hash_hashval_t (two, val);
5194 }
5195 else
5196 for (i = TREE_CODE_LENGTH (code) - 1; i >= 0; --i)
5197 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
5198 }
5199 return val;
5200 break;
5201 }
5202 }
5203 \f
5204 /* Constructors for pointer, array and function types.
5205 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
5206 constructed by language-dependent code, not here.) */
5207
5208 /* Construct, lay out and return the type of pointers to TO_TYPE with
5209 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
5210 reference all of memory. If such a type has already been
5211 constructed, reuse it. */
5212
5213 tree
5214 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
5215 bool can_alias_all)
5216 {
5217 tree t;
5218
5219 if (to_type == error_mark_node)
5220 return error_mark_node;
5221
5222 /* In some cases, languages will have things that aren't a POINTER_TYPE
5223 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
5224 In that case, return that type without regard to the rest of our
5225 operands.
5226
5227 ??? This is a kludge, but consistent with the way this function has
5228 always operated and there doesn't seem to be a good way to avoid this
5229 at the moment. */
5230 if (TYPE_POINTER_TO (to_type) != 0
5231 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
5232 return TYPE_POINTER_TO (to_type);
5233
5234 /* First, if we already have a type for pointers to TO_TYPE and it's
5235 the proper mode, use it. */
5236 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
5237 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5238 return t;
5239
5240 t = make_node (POINTER_TYPE);
5241
5242 TREE_TYPE (t) = to_type;
5243 TYPE_MODE (t) = mode;
5244 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5245 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
5246 TYPE_POINTER_TO (to_type) = t;
5247
5248 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5249 SET_TYPE_STRUCTURAL_EQUALITY (t);
5250 else if (TYPE_CANONICAL (to_type) != to_type)
5251 TYPE_CANONICAL (t)
5252 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
5253 mode, can_alias_all);
5254
5255 /* Lay out the type. This function has many callers that are concerned
5256 with expression-construction, and this simplifies them all. */
5257 layout_type (t);
5258
5259 return t;
5260 }
5261
5262 /* By default build pointers in ptr_mode. */
5263
5264 tree
5265 build_pointer_type (tree to_type)
5266 {
5267 return build_pointer_type_for_mode (to_type, ptr_mode, false);
5268 }
5269
5270 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
5271
5272 tree
5273 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
5274 bool can_alias_all)
5275 {
5276 tree t;
5277
5278 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
5279 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
5280 In that case, return that type without regard to the rest of our
5281 operands.
5282
5283 ??? This is a kludge, but consistent with the way this function has
5284 always operated and there doesn't seem to be a good way to avoid this
5285 at the moment. */
5286 if (TYPE_REFERENCE_TO (to_type) != 0
5287 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
5288 return TYPE_REFERENCE_TO (to_type);
5289
5290 /* First, if we already have a type for pointers to TO_TYPE and it's
5291 the proper mode, use it. */
5292 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
5293 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5294 return t;
5295
5296 t = make_node (REFERENCE_TYPE);
5297
5298 TREE_TYPE (t) = to_type;
5299 TYPE_MODE (t) = mode;
5300 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5301 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
5302 TYPE_REFERENCE_TO (to_type) = t;
5303
5304 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5305 SET_TYPE_STRUCTURAL_EQUALITY (t);
5306 else if (TYPE_CANONICAL (to_type) != to_type)
5307 TYPE_CANONICAL (t)
5308 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
5309 mode, can_alias_all);
5310
5311 layout_type (t);
5312
5313 return t;
5314 }
5315
5316
5317 /* Build the node for the type of references-to-TO_TYPE by default
5318 in ptr_mode. */
5319
5320 tree
5321 build_reference_type (tree to_type)
5322 {
5323 return build_reference_type_for_mode (to_type, ptr_mode, false);
5324 }
5325
5326 /* Build a type that is compatible with t but has no cv quals anywhere
5327 in its type, thus
5328
5329 const char *const *const * -> char ***. */
5330
5331 tree
5332 build_type_no_quals (tree t)
5333 {
5334 switch (TREE_CODE (t))
5335 {
5336 case POINTER_TYPE:
5337 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5338 TYPE_MODE (t),
5339 TYPE_REF_CAN_ALIAS_ALL (t));
5340 case REFERENCE_TYPE:
5341 return
5342 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5343 TYPE_MODE (t),
5344 TYPE_REF_CAN_ALIAS_ALL (t));
5345 default:
5346 return TYPE_MAIN_VARIANT (t);
5347 }
5348 }
5349
5350 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
5351 MAXVAL should be the maximum value in the domain
5352 (one less than the length of the array).
5353
5354 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
5355 We don't enforce this limit, that is up to caller (e.g. language front end).
5356 The limit exists because the result is a signed type and we don't handle
5357 sizes that use more than one HOST_WIDE_INT. */
5358
5359 tree
5360 build_index_type (tree maxval)
5361 {
5362 tree itype = make_node (INTEGER_TYPE);
5363
5364 TREE_TYPE (itype) = sizetype;
5365 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
5366 TYPE_MIN_VALUE (itype) = size_zero_node;
5367 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
5368 TYPE_MODE (itype) = TYPE_MODE (sizetype);
5369 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
5370 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
5371 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
5372 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
5373
5374 if (host_integerp (maxval, 1))
5375 return type_hash_canon (tree_low_cst (maxval, 1), itype);
5376 else
5377 {
5378 /* Since we cannot hash this type, we need to compare it using
5379 structural equality checks. */
5380 SET_TYPE_STRUCTURAL_EQUALITY (itype);
5381 return itype;
5382 }
5383 }
5384
5385 /* Builds a signed or unsigned integer type of precision PRECISION.
5386 Used for C bitfields whose precision does not match that of
5387 built-in target types. */
5388 tree
5389 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
5390 int unsignedp)
5391 {
5392 tree itype = make_node (INTEGER_TYPE);
5393
5394 TYPE_PRECISION (itype) = precision;
5395
5396 if (unsignedp)
5397 fixup_unsigned_type (itype);
5398 else
5399 fixup_signed_type (itype);
5400
5401 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
5402 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
5403
5404 return itype;
5405 }
5406
5407 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
5408 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
5409 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
5410
5411 tree
5412 build_range_type (tree type, tree lowval, tree highval)
5413 {
5414 tree itype = make_node (INTEGER_TYPE);
5415
5416 TREE_TYPE (itype) = type;
5417 if (type == NULL_TREE)
5418 type = sizetype;
5419
5420 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
5421 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
5422
5423 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
5424 TYPE_MODE (itype) = TYPE_MODE (type);
5425 TYPE_SIZE (itype) = TYPE_SIZE (type);
5426 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
5427 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
5428 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
5429
5430 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
5431 return type_hash_canon (tree_low_cst (highval, 0)
5432 - tree_low_cst (lowval, 0),
5433 itype);
5434 else
5435 return itype;
5436 }
5437
5438 /* Just like build_index_type, but takes lowval and highval instead
5439 of just highval (maxval). */
5440
5441 tree
5442 build_index_2_type (tree lowval, tree highval)
5443 {
5444 return build_range_type (sizetype, lowval, highval);
5445 }
5446
5447 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
5448 and number of elements specified by the range of values of INDEX_TYPE.
5449 If such a type has already been constructed, reuse it. */
5450
5451 tree
5452 build_array_type (tree elt_type, tree index_type)
5453 {
5454 tree t;
5455 hashval_t hashcode = 0;
5456
5457 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
5458 {
5459 error ("arrays of functions are not meaningful");
5460 elt_type = integer_type_node;
5461 }
5462
5463 t = make_node (ARRAY_TYPE);
5464 TREE_TYPE (t) = elt_type;
5465 TYPE_DOMAIN (t) = index_type;
5466
5467 if (index_type == 0)
5468 {
5469 tree save = t;
5470 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5471 t = type_hash_canon (hashcode, t);
5472 if (save == t)
5473 layout_type (t);
5474
5475 if (TYPE_CANONICAL (t) == t)
5476 {
5477 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type))
5478 SET_TYPE_STRUCTURAL_EQUALITY (t);
5479 else if (TYPE_CANONICAL (elt_type) != elt_type)
5480 TYPE_CANONICAL (t)
5481 = build_array_type (TYPE_CANONICAL (elt_type), index_type);
5482 }
5483
5484 return t;
5485 }
5486
5487 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5488 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
5489 t = type_hash_canon (hashcode, t);
5490
5491 if (!COMPLETE_TYPE_P (t))
5492 layout_type (t);
5493
5494 if (TYPE_CANONICAL (t) == t)
5495 {
5496 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
5497 || TYPE_STRUCTURAL_EQUALITY_P (index_type))
5498 SET_TYPE_STRUCTURAL_EQUALITY (t);
5499 else if (TYPE_CANONICAL (elt_type) != elt_type
5500 || TYPE_CANONICAL (index_type) != index_type)
5501 TYPE_CANONICAL (t)
5502 = build_array_type (TYPE_CANONICAL (elt_type),
5503 TYPE_CANONICAL (index_type));
5504 }
5505
5506 return t;
5507 }
5508
5509 /* Return the TYPE of the elements comprising
5510 the innermost dimension of ARRAY. */
5511
5512 tree
5513 get_inner_array_type (tree array)
5514 {
5515 tree type = TREE_TYPE (array);
5516
5517 while (TREE_CODE (type) == ARRAY_TYPE)
5518 type = TREE_TYPE (type);
5519
5520 return type;
5521 }
5522
5523 /* Construct, lay out and return
5524 the type of functions returning type VALUE_TYPE
5525 given arguments of types ARG_TYPES.
5526 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
5527 are data type nodes for the arguments of the function.
5528 If such a type has already been constructed, reuse it. */
5529
5530 tree
5531 build_function_type (tree value_type, tree arg_types)
5532 {
5533 tree t;
5534 hashval_t hashcode = 0;
5535
5536 if (TREE_CODE (value_type) == FUNCTION_TYPE)
5537 {
5538 error ("function return type cannot be function");
5539 value_type = integer_type_node;
5540 }
5541
5542 /* Make a node of the sort we want. */
5543 t = make_node (FUNCTION_TYPE);
5544 TREE_TYPE (t) = value_type;
5545 TYPE_ARG_TYPES (t) = arg_types;
5546
5547 /* We don't have canonicalization of function types, yet. */
5548 SET_TYPE_STRUCTURAL_EQUALITY (t);
5549
5550 /* If we already have such a type, use the old one. */
5551 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
5552 hashcode = type_hash_list (arg_types, hashcode);
5553 t = type_hash_canon (hashcode, t);
5554
5555 if (!COMPLETE_TYPE_P (t))
5556 layout_type (t);
5557 return t;
5558 }
5559
5560 /* Build a function type. The RETURN_TYPE is the type returned by the
5561 function. If additional arguments are provided, they are
5562 additional argument types. The list of argument types must always
5563 be terminated by NULL_TREE. */
5564
5565 tree
5566 build_function_type_list (tree return_type, ...)
5567 {
5568 tree t, args, last;
5569 va_list p;
5570
5571 va_start (p, return_type);
5572
5573 t = va_arg (p, tree);
5574 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
5575 args = tree_cons (NULL_TREE, t, args);
5576
5577 if (args == NULL_TREE)
5578 args = void_list_node;
5579 else
5580 {
5581 last = args;
5582 args = nreverse (args);
5583 TREE_CHAIN (last) = void_list_node;
5584 }
5585 args = build_function_type (return_type, args);
5586
5587 va_end (p);
5588 return args;
5589 }
5590
5591 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
5592 and ARGTYPES (a TREE_LIST) are the return type and arguments types
5593 for the method. An implicit additional parameter (of type
5594 pointer-to-BASETYPE) is added to the ARGTYPES. */
5595
5596 tree
5597 build_method_type_directly (tree basetype,
5598 tree rettype,
5599 tree argtypes)
5600 {
5601 tree t;
5602 tree ptype;
5603 int hashcode = 0;
5604
5605 /* Make a node of the sort we want. */
5606 t = make_node (METHOD_TYPE);
5607
5608 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5609 TREE_TYPE (t) = rettype;
5610 ptype = build_pointer_type (basetype);
5611
5612 /* The actual arglist for this function includes a "hidden" argument
5613 which is "this". Put it into the list of argument types. */
5614 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
5615 TYPE_ARG_TYPES (t) = argtypes;
5616
5617 /* We don't have canonicalization of method types yet. */
5618 SET_TYPE_STRUCTURAL_EQUALITY (t);
5619
5620 /* If we already have such a type, use the old one. */
5621 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5622 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
5623 hashcode = type_hash_list (argtypes, hashcode);
5624 t = type_hash_canon (hashcode, t);
5625
5626 if (!COMPLETE_TYPE_P (t))
5627 layout_type (t);
5628
5629 return t;
5630 }
5631
5632 /* Construct, lay out and return the type of methods belonging to class
5633 BASETYPE and whose arguments and values are described by TYPE.
5634 If that type exists already, reuse it.
5635 TYPE must be a FUNCTION_TYPE node. */
5636
5637 tree
5638 build_method_type (tree basetype, tree type)
5639 {
5640 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
5641
5642 return build_method_type_directly (basetype,
5643 TREE_TYPE (type),
5644 TYPE_ARG_TYPES (type));
5645 }
5646
5647 /* Construct, lay out and return the type of offsets to a value
5648 of type TYPE, within an object of type BASETYPE.
5649 If a suitable offset type exists already, reuse it. */
5650
5651 tree
5652 build_offset_type (tree basetype, tree type)
5653 {
5654 tree t;
5655 hashval_t hashcode = 0;
5656
5657 /* Make a node of the sort we want. */
5658 t = make_node (OFFSET_TYPE);
5659
5660 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5661 TREE_TYPE (t) = type;
5662
5663 /* If we already have such a type, use the old one. */
5664 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5665 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
5666 t = type_hash_canon (hashcode, t);
5667
5668 if (!COMPLETE_TYPE_P (t))
5669 layout_type (t);
5670
5671 if (TYPE_CANONICAL (t) == t)
5672 {
5673 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
5674 || TYPE_STRUCTURAL_EQUALITY_P (type))
5675 SET_TYPE_STRUCTURAL_EQUALITY (t);
5676 else if (TYPE_CANONICAL (basetype) != basetype
5677 || TYPE_CANONICAL (type) != type)
5678 TYPE_CANONICAL (t)
5679 = build_offset_type (TYPE_CANONICAL (basetype),
5680 TYPE_CANONICAL (type));
5681 }
5682
5683 return t;
5684 }
5685
5686 /* Create a complex type whose components are COMPONENT_TYPE. */
5687
5688 tree
5689 build_complex_type (tree component_type)
5690 {
5691 tree t;
5692 hashval_t hashcode;
5693
5694 /* Make a node of the sort we want. */
5695 t = make_node (COMPLEX_TYPE);
5696
5697 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
5698
5699 /* If we already have such a type, use the old one. */
5700 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
5701 t = type_hash_canon (hashcode, t);
5702
5703 if (!COMPLETE_TYPE_P (t))
5704 layout_type (t);
5705
5706 if (TYPE_CANONICAL (t) == t)
5707 {
5708 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
5709 SET_TYPE_STRUCTURAL_EQUALITY (t);
5710 else if (TYPE_CANONICAL (component_type) != component_type)
5711 TYPE_CANONICAL (t)
5712 = build_complex_type (TYPE_CANONICAL (component_type));
5713 }
5714
5715 /* If we are writing Dwarf2 output we need to create a name,
5716 since complex is a fundamental type. */
5717 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
5718 && ! TYPE_NAME (t))
5719 {
5720 const char *name;
5721 if (component_type == char_type_node)
5722 name = "complex char";
5723 else if (component_type == signed_char_type_node)
5724 name = "complex signed char";
5725 else if (component_type == unsigned_char_type_node)
5726 name = "complex unsigned char";
5727 else if (component_type == short_integer_type_node)
5728 name = "complex short int";
5729 else if (component_type == short_unsigned_type_node)
5730 name = "complex short unsigned int";
5731 else if (component_type == integer_type_node)
5732 name = "complex int";
5733 else if (component_type == unsigned_type_node)
5734 name = "complex unsigned int";
5735 else if (component_type == long_integer_type_node)
5736 name = "complex long int";
5737 else if (component_type == long_unsigned_type_node)
5738 name = "complex long unsigned int";
5739 else if (component_type == long_long_integer_type_node)
5740 name = "complex long long int";
5741 else if (component_type == long_long_unsigned_type_node)
5742 name = "complex long long unsigned int";
5743 else
5744 name = 0;
5745
5746 if (name != 0)
5747 TYPE_NAME (t) = get_identifier (name);
5748 }
5749
5750 return build_qualified_type (t, TYPE_QUALS (component_type));
5751 }
5752 \f
5753 /* Return OP, stripped of any conversions to wider types as much as is safe.
5754 Converting the value back to OP's type makes a value equivalent to OP.
5755
5756 If FOR_TYPE is nonzero, we return a value which, if converted to
5757 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
5758
5759 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
5760 narrowest type that can hold the value, even if they don't exactly fit.
5761 Otherwise, bit-field references are changed to a narrower type
5762 only if they can be fetched directly from memory in that type.
5763
5764 OP must have integer, real or enumeral type. Pointers are not allowed!
5765
5766 There are some cases where the obvious value we could return
5767 would regenerate to OP if converted to OP's type,
5768 but would not extend like OP to wider types.
5769 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
5770 For example, if OP is (unsigned short)(signed char)-1,
5771 we avoid returning (signed char)-1 if FOR_TYPE is int,
5772 even though extending that to an unsigned short would regenerate OP,
5773 since the result of extending (signed char)-1 to (int)
5774 is different from (int) OP. */
5775
5776 tree
5777 get_unwidened (tree op, tree for_type)
5778 {
5779 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
5780 tree type = TREE_TYPE (op);
5781 unsigned final_prec
5782 = TYPE_PRECISION (for_type != 0 ? for_type : type);
5783 int uns
5784 = (for_type != 0 && for_type != type
5785 && final_prec > TYPE_PRECISION (type)
5786 && TYPE_UNSIGNED (type));
5787 tree win = op;
5788
5789 while (TREE_CODE (op) == NOP_EXPR
5790 || TREE_CODE (op) == CONVERT_EXPR)
5791 {
5792 int bitschange;
5793
5794 /* TYPE_PRECISION on vector types has different meaning
5795 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
5796 so avoid them here. */
5797 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
5798 break;
5799
5800 bitschange = TYPE_PRECISION (TREE_TYPE (op))
5801 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
5802
5803 /* Truncations are many-one so cannot be removed.
5804 Unless we are later going to truncate down even farther. */
5805 if (bitschange < 0
5806 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
5807 break;
5808
5809 /* See what's inside this conversion. If we decide to strip it,
5810 we will set WIN. */
5811 op = TREE_OPERAND (op, 0);
5812
5813 /* If we have not stripped any zero-extensions (uns is 0),
5814 we can strip any kind of extension.
5815 If we have previously stripped a zero-extension,
5816 only zero-extensions can safely be stripped.
5817 Any extension can be stripped if the bits it would produce
5818 are all going to be discarded later by truncating to FOR_TYPE. */
5819
5820 if (bitschange > 0)
5821 {
5822 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
5823 win = op;
5824 /* TYPE_UNSIGNED says whether this is a zero-extension.
5825 Let's avoid computing it if it does not affect WIN
5826 and if UNS will not be needed again. */
5827 if ((uns
5828 || TREE_CODE (op) == NOP_EXPR
5829 || TREE_CODE (op) == CONVERT_EXPR)
5830 && TYPE_UNSIGNED (TREE_TYPE (op)))
5831 {
5832 uns = 1;
5833 win = op;
5834 }
5835 }
5836 }
5837
5838 if (TREE_CODE (op) == COMPONENT_REF
5839 /* Since type_for_size always gives an integer type. */
5840 && TREE_CODE (type) != REAL_TYPE
5841 /* Don't crash if field not laid out yet. */
5842 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5843 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5844 {
5845 unsigned int innerprec
5846 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5847 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5848 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5849 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5850
5851 /* We can get this structure field in the narrowest type it fits in.
5852 If FOR_TYPE is 0, do this only for a field that matches the
5853 narrower type exactly and is aligned for it
5854 The resulting extension to its nominal type (a fullword type)
5855 must fit the same conditions as for other extensions. */
5856
5857 if (type != 0
5858 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
5859 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
5860 && (! uns || final_prec <= innerprec || unsignedp))
5861 {
5862 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
5863 TREE_OPERAND (op, 1), NULL_TREE);
5864 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
5865 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
5866 }
5867 }
5868
5869 return win;
5870 }
5871 \f
5872 /* Return OP or a simpler expression for a narrower value
5873 which can be sign-extended or zero-extended to give back OP.
5874 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
5875 or 0 if the value should be sign-extended. */
5876
5877 tree
5878 get_narrower (tree op, int *unsignedp_ptr)
5879 {
5880 int uns = 0;
5881 int first = 1;
5882 tree win = op;
5883 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
5884
5885 while (TREE_CODE (op) == NOP_EXPR)
5886 {
5887 int bitschange
5888 = (TYPE_PRECISION (TREE_TYPE (op))
5889 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
5890
5891 /* Truncations are many-one so cannot be removed. */
5892 if (bitschange < 0)
5893 break;
5894
5895 /* See what's inside this conversion. If we decide to strip it,
5896 we will set WIN. */
5897
5898 if (bitschange > 0)
5899 {
5900 op = TREE_OPERAND (op, 0);
5901 /* An extension: the outermost one can be stripped,
5902 but remember whether it is zero or sign extension. */
5903 if (first)
5904 uns = TYPE_UNSIGNED (TREE_TYPE (op));
5905 /* Otherwise, if a sign extension has been stripped,
5906 only sign extensions can now be stripped;
5907 if a zero extension has been stripped, only zero-extensions. */
5908 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
5909 break;
5910 first = 0;
5911 }
5912 else /* bitschange == 0 */
5913 {
5914 /* A change in nominal type can always be stripped, but we must
5915 preserve the unsignedness. */
5916 if (first)
5917 uns = TYPE_UNSIGNED (TREE_TYPE (op));
5918 first = 0;
5919 op = TREE_OPERAND (op, 0);
5920 /* Keep trying to narrow, but don't assign op to win if it
5921 would turn an integral type into something else. */
5922 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
5923 continue;
5924 }
5925
5926 win = op;
5927 }
5928
5929 if (TREE_CODE (op) == COMPONENT_REF
5930 /* Since type_for_size always gives an integer type. */
5931 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
5932 /* Ensure field is laid out already. */
5933 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5934 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5935 {
5936 unsigned HOST_WIDE_INT innerprec
5937 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5938 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5939 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5940 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5941
5942 /* We can get this structure field in a narrower type that fits it,
5943 but the resulting extension to its nominal type (a fullword type)
5944 must satisfy the same conditions as for other extensions.
5945
5946 Do this only for fields that are aligned (not bit-fields),
5947 because when bit-field insns will be used there is no
5948 advantage in doing this. */
5949
5950 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
5951 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
5952 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
5953 && type != 0)
5954 {
5955 if (first)
5956 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
5957 win = fold_convert (type, op);
5958 }
5959 }
5960
5961 *unsignedp_ptr = uns;
5962 return win;
5963 }
5964 \f
5965 /* Nonzero if integer constant C has a value that is permissible
5966 for type TYPE (an INTEGER_TYPE). */
5967
5968 int
5969 int_fits_type_p (tree c, tree type)
5970 {
5971 tree type_low_bound = TYPE_MIN_VALUE (type);
5972 tree type_high_bound = TYPE_MAX_VALUE (type);
5973 bool ok_for_low_bound, ok_for_high_bound;
5974 unsigned HOST_WIDE_INT low;
5975 HOST_WIDE_INT high;
5976
5977 /* If at least one bound of the type is a constant integer, we can check
5978 ourselves and maybe make a decision. If no such decision is possible, but
5979 this type is a subtype, try checking against that. Otherwise, use
5980 fit_double_type, which checks against the precision.
5981
5982 Compute the status for each possibly constant bound, and return if we see
5983 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
5984 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
5985 for "constant known to fit". */
5986
5987 /* Check if C >= type_low_bound. */
5988 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
5989 {
5990 if (tree_int_cst_lt (c, type_low_bound))
5991 return 0;
5992 ok_for_low_bound = true;
5993 }
5994 else
5995 ok_for_low_bound = false;
5996
5997 /* Check if c <= type_high_bound. */
5998 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
5999 {
6000 if (tree_int_cst_lt (type_high_bound, c))
6001 return 0;
6002 ok_for_high_bound = true;
6003 }
6004 else
6005 ok_for_high_bound = false;
6006
6007 /* If the constant fits both bounds, the result is known. */
6008 if (ok_for_low_bound && ok_for_high_bound)
6009 return 1;
6010
6011 /* Perform some generic filtering which may allow making a decision
6012 even if the bounds are not constant. First, negative integers
6013 never fit in unsigned types, */
6014 if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
6015 return 0;
6016
6017 /* Second, narrower types always fit in wider ones. */
6018 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
6019 return 1;
6020
6021 /* Third, unsigned integers with top bit set never fit signed types. */
6022 if (! TYPE_UNSIGNED (type)
6023 && TYPE_UNSIGNED (TREE_TYPE (c))
6024 && tree_int_cst_msb (c))
6025 return 0;
6026
6027 /* If we haven't been able to decide at this point, there nothing more we
6028 can check ourselves here. Look at the base type if we have one and it
6029 has the same precision. */
6030 if (TREE_CODE (type) == INTEGER_TYPE
6031 && TREE_TYPE (type) != 0
6032 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
6033 return int_fits_type_p (c, TREE_TYPE (type));
6034
6035 /* Or to fit_double_type, if nothing else. */
6036 low = TREE_INT_CST_LOW (c);
6037 high = TREE_INT_CST_HIGH (c);
6038 return !fit_double_type (low, high, &low, &high, type);
6039 }
6040
6041 /* Subprogram of following function. Called by walk_tree.
6042
6043 Return *TP if it is an automatic variable or parameter of the
6044 function passed in as DATA. */
6045
6046 static tree
6047 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
6048 {
6049 tree fn = (tree) data;
6050
6051 if (TYPE_P (*tp))
6052 *walk_subtrees = 0;
6053
6054 else if (DECL_P (*tp)
6055 && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
6056 return *tp;
6057
6058 return NULL_TREE;
6059 }
6060
6061 /* Returns true if T is, contains, or refers to a type with variable
6062 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
6063 arguments, but not the return type. If FN is nonzero, only return
6064 true if a modifier of the type or position of FN is a variable or
6065 parameter inside FN.
6066
6067 This concept is more general than that of C99 'variably modified types':
6068 in C99, a struct type is never variably modified because a VLA may not
6069 appear as a structure member. However, in GNU C code like:
6070
6071 struct S { int i[f()]; };
6072
6073 is valid, and other languages may define similar constructs. */
6074
6075 bool
6076 variably_modified_type_p (tree type, tree fn)
6077 {
6078 tree t;
6079
6080 /* Test if T is either variable (if FN is zero) or an expression containing
6081 a variable in FN. */
6082 #define RETURN_TRUE_IF_VAR(T) \
6083 do { tree _t = (T); \
6084 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
6085 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
6086 return true; } while (0)
6087
6088 if (type == error_mark_node)
6089 return false;
6090
6091 /* If TYPE itself has variable size, it is variably modified. */
6092 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
6093 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
6094
6095 switch (TREE_CODE (type))
6096 {
6097 case POINTER_TYPE:
6098 case REFERENCE_TYPE:
6099 case VECTOR_TYPE:
6100 if (variably_modified_type_p (TREE_TYPE (type), fn))
6101 return true;
6102 break;
6103
6104 case FUNCTION_TYPE:
6105 case METHOD_TYPE:
6106 /* If TYPE is a function type, it is variably modified if the
6107 return type is variably modified. */
6108 if (variably_modified_type_p (TREE_TYPE (type), fn))
6109 return true;
6110 break;
6111
6112 case INTEGER_TYPE:
6113 case REAL_TYPE:
6114 case ENUMERAL_TYPE:
6115 case BOOLEAN_TYPE:
6116 /* Scalar types are variably modified if their end points
6117 aren't constant. */
6118 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
6119 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
6120 break;
6121
6122 case RECORD_TYPE:
6123 case UNION_TYPE:
6124 case QUAL_UNION_TYPE:
6125 /* We can't see if any of the fields are variably-modified by the
6126 definition we normally use, since that would produce infinite
6127 recursion via pointers. */
6128 /* This is variably modified if some field's type is. */
6129 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
6130 if (TREE_CODE (t) == FIELD_DECL)
6131 {
6132 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
6133 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
6134 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
6135
6136 if (TREE_CODE (type) == QUAL_UNION_TYPE)
6137 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
6138 }
6139 break;
6140
6141 case ARRAY_TYPE:
6142 /* Do not call ourselves to avoid infinite recursion. This is
6143 variably modified if the element type is. */
6144 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
6145 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
6146 break;
6147
6148 default:
6149 break;
6150 }
6151
6152 /* The current language may have other cases to check, but in general,
6153 all other types are not variably modified. */
6154 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
6155
6156 #undef RETURN_TRUE_IF_VAR
6157 }
6158
6159 /* Given a DECL or TYPE, return the scope in which it was declared, or
6160 NULL_TREE if there is no containing scope. */
6161
6162 tree
6163 get_containing_scope (tree t)
6164 {
6165 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
6166 }
6167
6168 /* Return the innermost context enclosing DECL that is
6169 a FUNCTION_DECL, or zero if none. */
6170
6171 tree
6172 decl_function_context (tree decl)
6173 {
6174 tree context;
6175
6176 if (TREE_CODE (decl) == ERROR_MARK)
6177 return 0;
6178
6179 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
6180 where we look up the function at runtime. Such functions always take
6181 a first argument of type 'pointer to real context'.
6182
6183 C++ should really be fixed to use DECL_CONTEXT for the real context,
6184 and use something else for the "virtual context". */
6185 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
6186 context
6187 = TYPE_MAIN_VARIANT
6188 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
6189 else
6190 context = DECL_CONTEXT (decl);
6191
6192 while (context && TREE_CODE (context) != FUNCTION_DECL)
6193 {
6194 if (TREE_CODE (context) == BLOCK)
6195 context = BLOCK_SUPERCONTEXT (context);
6196 else
6197 context = get_containing_scope (context);
6198 }
6199
6200 return context;
6201 }
6202
6203 /* Return the innermost context enclosing DECL that is
6204 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
6205 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
6206
6207 tree
6208 decl_type_context (tree decl)
6209 {
6210 tree context = DECL_CONTEXT (decl);
6211
6212 while (context)
6213 switch (TREE_CODE (context))
6214 {
6215 case NAMESPACE_DECL:
6216 case TRANSLATION_UNIT_DECL:
6217 return NULL_TREE;
6218
6219 case RECORD_TYPE:
6220 case UNION_TYPE:
6221 case QUAL_UNION_TYPE:
6222 return context;
6223
6224 case TYPE_DECL:
6225 case FUNCTION_DECL:
6226 context = DECL_CONTEXT (context);
6227 break;
6228
6229 case BLOCK:
6230 context = BLOCK_SUPERCONTEXT (context);
6231 break;
6232
6233 default:
6234 gcc_unreachable ();
6235 }
6236
6237 return NULL_TREE;
6238 }
6239
6240 /* CALL is a CALL_EXPR. Return the declaration for the function
6241 called, or NULL_TREE if the called function cannot be
6242 determined. */
6243
6244 tree
6245 get_callee_fndecl (tree call)
6246 {
6247 tree addr;
6248
6249 if (call == error_mark_node)
6250 return call;
6251
6252 /* It's invalid to call this function with anything but a
6253 CALL_EXPR. */
6254 gcc_assert (TREE_CODE (call) == CALL_EXPR);
6255
6256 /* The first operand to the CALL is the address of the function
6257 called. */
6258 addr = TREE_OPERAND (call, 0);
6259
6260 STRIP_NOPS (addr);
6261
6262 /* If this is a readonly function pointer, extract its initial value. */
6263 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
6264 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
6265 && DECL_INITIAL (addr))
6266 addr = DECL_INITIAL (addr);
6267
6268 /* If the address is just `&f' for some function `f', then we know
6269 that `f' is being called. */
6270 if (TREE_CODE (addr) == ADDR_EXPR
6271 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
6272 return TREE_OPERAND (addr, 0);
6273
6274 /* We couldn't figure out what was being called. Maybe the front
6275 end has some idea. */
6276 return lang_hooks.lang_get_callee_fndecl (call);
6277 }
6278
6279 /* Print debugging information about tree nodes generated during the compile,
6280 and any language-specific information. */
6281
6282 void
6283 dump_tree_statistics (void)
6284 {
6285 #ifdef GATHER_STATISTICS
6286 int i;
6287 int total_nodes, total_bytes;
6288 #endif
6289
6290 fprintf (stderr, "\n??? tree nodes created\n\n");
6291 #ifdef GATHER_STATISTICS
6292 fprintf (stderr, "Kind Nodes Bytes\n");
6293 fprintf (stderr, "---------------------------------------\n");
6294 total_nodes = total_bytes = 0;
6295 for (i = 0; i < (int) all_kinds; i++)
6296 {
6297 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
6298 tree_node_counts[i], tree_node_sizes[i]);
6299 total_nodes += tree_node_counts[i];
6300 total_bytes += tree_node_sizes[i];
6301 }
6302 fprintf (stderr, "---------------------------------------\n");
6303 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
6304 fprintf (stderr, "---------------------------------------\n");
6305 ssanames_print_statistics ();
6306 phinodes_print_statistics ();
6307 #else
6308 fprintf (stderr, "(No per-node statistics)\n");
6309 #endif
6310 print_type_hash_statistics ();
6311 print_debug_expr_statistics ();
6312 print_value_expr_statistics ();
6313 print_restrict_base_statistics ();
6314 lang_hooks.print_statistics ();
6315 }
6316 \f
6317 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
6318
6319 /* Generate a crc32 of a string. */
6320
6321 unsigned
6322 crc32_string (unsigned chksum, const char *string)
6323 {
6324 do
6325 {
6326 unsigned value = *string << 24;
6327 unsigned ix;
6328
6329 for (ix = 8; ix--; value <<= 1)
6330 {
6331 unsigned feedback;
6332
6333 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
6334 chksum <<= 1;
6335 chksum ^= feedback;
6336 }
6337 }
6338 while (*string++);
6339 return chksum;
6340 }
6341
6342 /* P is a string that will be used in a symbol. Mask out any characters
6343 that are not valid in that context. */
6344
6345 void
6346 clean_symbol_name (char *p)
6347 {
6348 for (; *p; p++)
6349 if (! (ISALNUM (*p)
6350 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
6351 || *p == '$'
6352 #endif
6353 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
6354 || *p == '.'
6355 #endif
6356 ))
6357 *p = '_';
6358 }
6359
6360 /* Generate a name for a special-purpose function function.
6361 The generated name may need to be unique across the whole link.
6362 TYPE is some string to identify the purpose of this function to the
6363 linker or collect2; it must start with an uppercase letter,
6364 one of:
6365 I - for constructors
6366 D - for destructors
6367 N - for C++ anonymous namespaces
6368 F - for DWARF unwind frame information. */
6369
6370 tree
6371 get_file_function_name (const char *type)
6372 {
6373 char *buf;
6374 const char *p;
6375 char *q;
6376
6377 /* If we already have a name we know to be unique, just use that. */
6378 if (first_global_object_name)
6379 p = first_global_object_name;
6380 /* If the target is handling the constructors/destructors, they
6381 will be local to this file and the name is only necessary for
6382 debugging purposes. */
6383 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
6384 {
6385 const char *file = main_input_filename;
6386 if (! file)
6387 file = input_filename;
6388 /* Just use the file's basename, because the full pathname
6389 might be quite long. */
6390 p = strrchr (file, '/');
6391 if (p)
6392 p++;
6393 else
6394 p = file;
6395 p = q = ASTRDUP (p);
6396 clean_symbol_name (q);
6397 }
6398 else
6399 {
6400 /* Otherwise, the name must be unique across the entire link.
6401 We don't have anything that we know to be unique to this translation
6402 unit, so use what we do have and throw in some randomness. */
6403 unsigned len;
6404 const char *name = weak_global_object_name;
6405 const char *file = main_input_filename;
6406
6407 if (! name)
6408 name = "";
6409 if (! file)
6410 file = input_filename;
6411
6412 len = strlen (file);
6413 q = alloca (9 * 2 + len + 1);
6414 memcpy (q, file, len + 1);
6415 clean_symbol_name (q);
6416
6417 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
6418 crc32_string (0, flag_random_seed));
6419
6420 p = q;
6421 }
6422
6423 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
6424
6425 /* Set up the name of the file-level functions we may need.
6426 Use a global object (which is already required to be unique over
6427 the program) rather than the file name (which imposes extra
6428 constraints). */
6429 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
6430
6431 return get_identifier (buf);
6432 }
6433 \f
6434 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
6435
6436 /* Complain that the tree code of NODE does not match the expected 0
6437 terminated list of trailing codes. The trailing code list can be
6438 empty, for a more vague error message. FILE, LINE, and FUNCTION
6439 are of the caller. */
6440
6441 void
6442 tree_check_failed (const tree node, const char *file,
6443 int line, const char *function, ...)
6444 {
6445 va_list args;
6446 char *buffer;
6447 unsigned length = 0;
6448 int code;
6449
6450 va_start (args, function);
6451 while ((code = va_arg (args, int)))
6452 length += 4 + strlen (tree_code_name[code]);
6453 va_end (args);
6454 if (length)
6455 {
6456 va_start (args, function);
6457 length += strlen ("expected ");
6458 buffer = alloca (length);
6459 length = 0;
6460 while ((code = va_arg (args, int)))
6461 {
6462 const char *prefix = length ? " or " : "expected ";
6463
6464 strcpy (buffer + length, prefix);
6465 length += strlen (prefix);
6466 strcpy (buffer + length, tree_code_name[code]);
6467 length += strlen (tree_code_name[code]);
6468 }
6469 va_end (args);
6470 }
6471 else
6472 buffer = (char *)"unexpected node";
6473
6474 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6475 buffer, tree_code_name[TREE_CODE (node)],
6476 function, trim_filename (file), line);
6477 }
6478
6479 /* Complain that the tree code of NODE does match the expected 0
6480 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
6481 the caller. */
6482
6483 void
6484 tree_not_check_failed (const tree node, const char *file,
6485 int line, const char *function, ...)
6486 {
6487 va_list args;
6488 char *buffer;
6489 unsigned length = 0;
6490 int code;
6491
6492 va_start (args, function);
6493 while ((code = va_arg (args, int)))
6494 length += 4 + strlen (tree_code_name[code]);
6495 va_end (args);
6496 va_start (args, function);
6497 buffer = alloca (length);
6498 length = 0;
6499 while ((code = va_arg (args, int)))
6500 {
6501 if (length)
6502 {
6503 strcpy (buffer + length, " or ");
6504 length += 4;
6505 }
6506 strcpy (buffer + length, tree_code_name[code]);
6507 length += strlen (tree_code_name[code]);
6508 }
6509 va_end (args);
6510
6511 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
6512 buffer, tree_code_name[TREE_CODE (node)],
6513 function, trim_filename (file), line);
6514 }
6515
6516 /* Similar to tree_check_failed, except that we check for a class of tree
6517 code, given in CL. */
6518
6519 void
6520 tree_class_check_failed (const tree node, const enum tree_code_class cl,
6521 const char *file, int line, const char *function)
6522 {
6523 internal_error
6524 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
6525 TREE_CODE_CLASS_STRING (cl),
6526 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6527 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6528 }
6529
6530 /* Similar to tree_check_failed, except that instead of specifying a
6531 dozen codes, use the knowledge that they're all sequential. */
6532
6533 void
6534 tree_range_check_failed (const tree node, const char *file, int line,
6535 const char *function, enum tree_code c1,
6536 enum tree_code c2)
6537 {
6538 char *buffer;
6539 unsigned length = 0;
6540 enum tree_code c;
6541
6542 for (c = c1; c <= c2; ++c)
6543 length += 4 + strlen (tree_code_name[c]);
6544
6545 length += strlen ("expected ");
6546 buffer = alloca (length);
6547 length = 0;
6548
6549 for (c = c1; c <= c2; ++c)
6550 {
6551 const char *prefix = length ? " or " : "expected ";
6552
6553 strcpy (buffer + length, prefix);
6554 length += strlen (prefix);
6555 strcpy (buffer + length, tree_code_name[c]);
6556 length += strlen (tree_code_name[c]);
6557 }
6558
6559 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6560 buffer, tree_code_name[TREE_CODE (node)],
6561 function, trim_filename (file), line);
6562 }
6563
6564
6565 /* Similar to tree_check_failed, except that we check that a tree does
6566 not have the specified code, given in CL. */
6567
6568 void
6569 tree_not_class_check_failed (const tree node, const enum tree_code_class cl,
6570 const char *file, int line, const char *function)
6571 {
6572 internal_error
6573 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
6574 TREE_CODE_CLASS_STRING (cl),
6575 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6576 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6577 }
6578
6579
6580 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
6581
6582 void
6583 omp_clause_check_failed (const tree node, const char *file, int line,
6584 const char *function, enum omp_clause_code code)
6585 {
6586 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
6587 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
6588 function, trim_filename (file), line);
6589 }
6590
6591
6592 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
6593
6594 void
6595 omp_clause_range_check_failed (const tree node, const char *file, int line,
6596 const char *function, enum omp_clause_code c1,
6597 enum omp_clause_code c2)
6598 {
6599 char *buffer;
6600 unsigned length = 0;
6601 enum omp_clause_code c;
6602
6603 for (c = c1; c <= c2; ++c)
6604 length += 4 + strlen (omp_clause_code_name[c]);
6605
6606 length += strlen ("expected ");
6607 buffer = alloca (length);
6608 length = 0;
6609
6610 for (c = c1; c <= c2; ++c)
6611 {
6612 const char *prefix = length ? " or " : "expected ";
6613
6614 strcpy (buffer + length, prefix);
6615 length += strlen (prefix);
6616 strcpy (buffer + length, omp_clause_code_name[c]);
6617 length += strlen (omp_clause_code_name[c]);
6618 }
6619
6620 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6621 buffer, omp_clause_code_name[TREE_CODE (node)],
6622 function, trim_filename (file), line);
6623 }
6624
6625
6626 #undef DEFTREESTRUCT
6627 #define DEFTREESTRUCT(VAL, NAME) NAME,
6628
6629 static const char *ts_enum_names[] = {
6630 #include "treestruct.def"
6631 };
6632 #undef DEFTREESTRUCT
6633
6634 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
6635
6636 /* Similar to tree_class_check_failed, except that we check for
6637 whether CODE contains the tree structure identified by EN. */
6638
6639 void
6640 tree_contains_struct_check_failed (const tree node,
6641 const enum tree_node_structure_enum en,
6642 const char *file, int line,
6643 const char *function)
6644 {
6645 internal_error
6646 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
6647 TS_ENUM_NAME(en),
6648 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6649 }
6650
6651
6652 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
6653 (dynamically sized) vector. */
6654
6655 void
6656 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
6657 const char *function)
6658 {
6659 internal_error
6660 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
6661 idx + 1, len, function, trim_filename (file), line);
6662 }
6663
6664 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
6665 (dynamically sized) vector. */
6666
6667 void
6668 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
6669 const char *function)
6670 {
6671 internal_error
6672 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
6673 idx + 1, len, function, trim_filename (file), line);
6674 }
6675
6676 /* Similar to above, except that the check is for the bounds of the operand
6677 vector of an expression node. */
6678
6679 void
6680 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
6681 int line, const char *function)
6682 {
6683 internal_error
6684 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
6685 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
6686 function, trim_filename (file), line);
6687 }
6688
6689 /* Similar to above, except that the check is for the number of
6690 operands of an OMP_CLAUSE node. */
6691
6692 void
6693 omp_clause_operand_check_failed (int idx, tree t, const char *file,
6694 int line, const char *function)
6695 {
6696 internal_error
6697 ("tree check: accessed operand %d of omp_clause %s with %d operands "
6698 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
6699 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
6700 trim_filename (file), line);
6701 }
6702 #endif /* ENABLE_TREE_CHECKING */
6703 \f
6704 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
6705 and mapped to the machine mode MODE. Initialize its fields and build
6706 the information necessary for debugging output. */
6707
6708 static tree
6709 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
6710 {
6711 tree t;
6712 hashval_t hashcode = 0;
6713
6714 /* Build a main variant, based on the main variant of the inner type, then
6715 use it to build the variant we return. */
6716 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
6717 && TYPE_MAIN_VARIANT (innertype) != innertype)
6718 return build_type_attribute_qual_variant (
6719 make_vector_type (TYPE_MAIN_VARIANT (innertype), nunits, mode),
6720 TYPE_ATTRIBUTES (innertype),
6721 TYPE_QUALS (innertype));
6722
6723 t = make_node (VECTOR_TYPE);
6724 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
6725 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
6726 TYPE_MODE (t) = mode;
6727 TYPE_READONLY (t) = TYPE_READONLY (innertype);
6728 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
6729
6730 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
6731 SET_TYPE_STRUCTURAL_EQUALITY (t);
6732 else if (TYPE_CANONICAL (innertype) != innertype
6733 || mode != VOIDmode)
6734 TYPE_CANONICAL (t)
6735 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
6736
6737 layout_type (t);
6738
6739 {
6740 tree index = build_int_cst (NULL_TREE, nunits - 1);
6741 tree array = build_array_type (innertype, build_index_type (index));
6742 tree rt = make_node (RECORD_TYPE);
6743
6744 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
6745 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
6746 layout_type (rt);
6747 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
6748 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
6749 the representation type, and we want to find that die when looking up
6750 the vector type. This is most easily achieved by making the TYPE_UID
6751 numbers equal. */
6752 TYPE_UID (rt) = TYPE_UID (t);
6753 }
6754
6755 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
6756 hashcode = iterative_hash_host_wide_int (mode, hashcode);
6757 hashcode = iterative_hash_object (TYPE_HASH (innertype), hashcode);
6758 return type_hash_canon (hashcode, t);
6759 }
6760
6761 static tree
6762 make_or_reuse_type (unsigned size, int unsignedp)
6763 {
6764 if (size == INT_TYPE_SIZE)
6765 return unsignedp ? unsigned_type_node : integer_type_node;
6766 if (size == CHAR_TYPE_SIZE)
6767 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
6768 if (size == SHORT_TYPE_SIZE)
6769 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
6770 if (size == LONG_TYPE_SIZE)
6771 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
6772 if (size == LONG_LONG_TYPE_SIZE)
6773 return (unsignedp ? long_long_unsigned_type_node
6774 : long_long_integer_type_node);
6775
6776 if (unsignedp)
6777 return make_unsigned_type (size);
6778 else
6779 return make_signed_type (size);
6780 }
6781
6782 /* Create nodes for all integer types (and error_mark_node) using the sizes
6783 of C datatypes. The caller should call set_sizetype soon after calling
6784 this function to select one of the types as sizetype. */
6785
6786 void
6787 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
6788 {
6789 error_mark_node = make_node (ERROR_MARK);
6790 TREE_TYPE (error_mark_node) = error_mark_node;
6791
6792 initialize_sizetypes (signed_sizetype);
6793
6794 /* Define both `signed char' and `unsigned char'. */
6795 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
6796 TYPE_STRING_FLAG (signed_char_type_node) = 1;
6797 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
6798 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
6799
6800 /* Define `char', which is like either `signed char' or `unsigned char'
6801 but not the same as either. */
6802 char_type_node
6803 = (signed_char
6804 ? make_signed_type (CHAR_TYPE_SIZE)
6805 : make_unsigned_type (CHAR_TYPE_SIZE));
6806 TYPE_STRING_FLAG (char_type_node) = 1;
6807
6808 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
6809 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
6810 integer_type_node = make_signed_type (INT_TYPE_SIZE);
6811 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
6812 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
6813 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
6814 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
6815 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
6816
6817 /* Define a boolean type. This type only represents boolean values but
6818 may be larger than char depending on the value of BOOL_TYPE_SIZE.
6819 Front ends which want to override this size (i.e. Java) can redefine
6820 boolean_type_node before calling build_common_tree_nodes_2. */
6821 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
6822 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
6823 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
6824 TYPE_PRECISION (boolean_type_node) = 1;
6825
6826 /* Fill in the rest of the sized types. Reuse existing type nodes
6827 when possible. */
6828 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
6829 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
6830 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
6831 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
6832 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
6833
6834 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
6835 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
6836 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
6837 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
6838 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
6839
6840 access_public_node = get_identifier ("public");
6841 access_protected_node = get_identifier ("protected");
6842 access_private_node = get_identifier ("private");
6843 }
6844
6845 /* Call this function after calling build_common_tree_nodes and set_sizetype.
6846 It will create several other common tree nodes. */
6847
6848 void
6849 build_common_tree_nodes_2 (int short_double)
6850 {
6851 /* Define these next since types below may used them. */
6852 integer_zero_node = build_int_cst (NULL_TREE, 0);
6853 integer_one_node = build_int_cst (NULL_TREE, 1);
6854 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
6855
6856 size_zero_node = size_int (0);
6857 size_one_node = size_int (1);
6858 bitsize_zero_node = bitsize_int (0);
6859 bitsize_one_node = bitsize_int (1);
6860 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
6861
6862 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
6863 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
6864
6865 void_type_node = make_node (VOID_TYPE);
6866 layout_type (void_type_node);
6867
6868 /* We are not going to have real types in C with less than byte alignment,
6869 so we might as well not have any types that claim to have it. */
6870 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
6871 TYPE_USER_ALIGN (void_type_node) = 0;
6872
6873 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
6874 layout_type (TREE_TYPE (null_pointer_node));
6875
6876 ptr_type_node = build_pointer_type (void_type_node);
6877 const_ptr_type_node
6878 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
6879 fileptr_type_node = ptr_type_node;
6880
6881 float_type_node = make_node (REAL_TYPE);
6882 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
6883 layout_type (float_type_node);
6884
6885 double_type_node = make_node (REAL_TYPE);
6886 if (short_double)
6887 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
6888 else
6889 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
6890 layout_type (double_type_node);
6891
6892 long_double_type_node = make_node (REAL_TYPE);
6893 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
6894 layout_type (long_double_type_node);
6895
6896 float_ptr_type_node = build_pointer_type (float_type_node);
6897 double_ptr_type_node = build_pointer_type (double_type_node);
6898 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
6899 integer_ptr_type_node = build_pointer_type (integer_type_node);
6900
6901 /* Fixed size integer types. */
6902 uint32_type_node = build_nonstandard_integer_type (32, true);
6903 uint64_type_node = build_nonstandard_integer_type (64, true);
6904
6905 /* Decimal float types. */
6906 dfloat32_type_node = make_node (REAL_TYPE);
6907 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
6908 layout_type (dfloat32_type_node);
6909 TYPE_MODE (dfloat32_type_node) = SDmode;
6910 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
6911
6912 dfloat64_type_node = make_node (REAL_TYPE);
6913 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
6914 layout_type (dfloat64_type_node);
6915 TYPE_MODE (dfloat64_type_node) = DDmode;
6916 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
6917
6918 dfloat128_type_node = make_node (REAL_TYPE);
6919 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
6920 layout_type (dfloat128_type_node);
6921 TYPE_MODE (dfloat128_type_node) = TDmode;
6922 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
6923
6924 complex_integer_type_node = make_node (COMPLEX_TYPE);
6925 TREE_TYPE (complex_integer_type_node) = integer_type_node;
6926 layout_type (complex_integer_type_node);
6927
6928 complex_float_type_node = make_node (COMPLEX_TYPE);
6929 TREE_TYPE (complex_float_type_node) = float_type_node;
6930 layout_type (complex_float_type_node);
6931
6932 complex_double_type_node = make_node (COMPLEX_TYPE);
6933 TREE_TYPE (complex_double_type_node) = double_type_node;
6934 layout_type (complex_double_type_node);
6935
6936 complex_long_double_type_node = make_node (COMPLEX_TYPE);
6937 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
6938 layout_type (complex_long_double_type_node);
6939
6940 {
6941 tree t = targetm.build_builtin_va_list ();
6942
6943 /* Many back-ends define record types without setting TYPE_NAME.
6944 If we copied the record type here, we'd keep the original
6945 record type without a name. This breaks name mangling. So,
6946 don't copy record types and let c_common_nodes_and_builtins()
6947 declare the type to be __builtin_va_list. */
6948 if (TREE_CODE (t) != RECORD_TYPE)
6949 t = build_variant_type_copy (t);
6950
6951 va_list_type_node = t;
6952 }
6953 }
6954
6955 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
6956
6957 static void
6958 local_define_builtin (const char *name, tree type, enum built_in_function code,
6959 const char *library_name, int ecf_flags)
6960 {
6961 tree decl;
6962
6963 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
6964 library_name, NULL_TREE);
6965 if (ecf_flags & ECF_CONST)
6966 TREE_READONLY (decl) = 1;
6967 if (ecf_flags & ECF_PURE)
6968 DECL_IS_PURE (decl) = 1;
6969 if (ecf_flags & ECF_NORETURN)
6970 TREE_THIS_VOLATILE (decl) = 1;
6971 if (ecf_flags & ECF_NOTHROW)
6972 TREE_NOTHROW (decl) = 1;
6973 if (ecf_flags & ECF_MALLOC)
6974 DECL_IS_MALLOC (decl) = 1;
6975
6976 built_in_decls[code] = decl;
6977 implicit_built_in_decls[code] = decl;
6978 }
6979
6980 /* Call this function after instantiating all builtins that the language
6981 front end cares about. This will build the rest of the builtins that
6982 are relied upon by the tree optimizers and the middle-end. */
6983
6984 void
6985 build_common_builtin_nodes (void)
6986 {
6987 tree tmp, ftype;
6988
6989 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
6990 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
6991 {
6992 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6993 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6994 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6995 ftype = build_function_type (ptr_type_node, tmp);
6996
6997 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
6998 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
6999 "memcpy", ECF_NOTHROW);
7000 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
7001 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
7002 "memmove", ECF_NOTHROW);
7003 }
7004
7005 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
7006 {
7007 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7008 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7009 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7010 ftype = build_function_type (integer_type_node, tmp);
7011 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
7012 "memcmp", ECF_PURE | ECF_NOTHROW);
7013 }
7014
7015 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
7016 {
7017 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7018 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
7019 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7020 ftype = build_function_type (ptr_type_node, tmp);
7021 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
7022 "memset", ECF_NOTHROW);
7023 }
7024
7025 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
7026 {
7027 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7028 ftype = build_function_type (ptr_type_node, tmp);
7029 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
7030 "alloca", ECF_NOTHROW | ECF_MALLOC);
7031 }
7032
7033 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7034 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7035 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7036 ftype = build_function_type (void_type_node, tmp);
7037 local_define_builtin ("__builtin_init_trampoline", ftype,
7038 BUILT_IN_INIT_TRAMPOLINE,
7039 "__builtin_init_trampoline", ECF_NOTHROW);
7040
7041 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7042 ftype = build_function_type (ptr_type_node, tmp);
7043 local_define_builtin ("__builtin_adjust_trampoline", ftype,
7044 BUILT_IN_ADJUST_TRAMPOLINE,
7045 "__builtin_adjust_trampoline",
7046 ECF_CONST | ECF_NOTHROW);
7047
7048 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7049 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7050 ftype = build_function_type (void_type_node, tmp);
7051 local_define_builtin ("__builtin_nonlocal_goto", ftype,
7052 BUILT_IN_NONLOCAL_GOTO,
7053 "__builtin_nonlocal_goto",
7054 ECF_NORETURN | ECF_NOTHROW);
7055
7056 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7057 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7058 ftype = build_function_type (void_type_node, tmp);
7059 local_define_builtin ("__builtin_setjmp_setup", ftype,
7060 BUILT_IN_SETJMP_SETUP,
7061 "__builtin_setjmp_setup", ECF_NOTHROW);
7062
7063 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7064 ftype = build_function_type (ptr_type_node, tmp);
7065 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
7066 BUILT_IN_SETJMP_DISPATCHER,
7067 "__builtin_setjmp_dispatcher",
7068 ECF_PURE | ECF_NOTHROW);
7069
7070 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7071 ftype = build_function_type (void_type_node, tmp);
7072 local_define_builtin ("__builtin_setjmp_receiver", ftype,
7073 BUILT_IN_SETJMP_RECEIVER,
7074 "__builtin_setjmp_receiver", ECF_NOTHROW);
7075
7076 ftype = build_function_type (ptr_type_node, void_list_node);
7077 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
7078 "__builtin_stack_save", ECF_NOTHROW);
7079
7080 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7081 ftype = build_function_type (void_type_node, tmp);
7082 local_define_builtin ("__builtin_stack_restore", ftype,
7083 BUILT_IN_STACK_RESTORE,
7084 "__builtin_stack_restore", ECF_NOTHROW);
7085
7086 ftype = build_function_type (void_type_node, void_list_node);
7087 local_define_builtin ("__builtin_profile_func_enter", ftype,
7088 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
7089 local_define_builtin ("__builtin_profile_func_exit", ftype,
7090 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
7091
7092 /* Complex multiplication and division. These are handled as builtins
7093 rather than optabs because emit_library_call_value doesn't support
7094 complex. Further, we can do slightly better with folding these
7095 beasties if the real and complex parts of the arguments are separate. */
7096 {
7097 enum machine_mode mode;
7098
7099 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
7100 {
7101 char mode_name_buf[4], *q;
7102 const char *p;
7103 enum built_in_function mcode, dcode;
7104 tree type, inner_type;
7105
7106 type = lang_hooks.types.type_for_mode (mode, 0);
7107 if (type == NULL)
7108 continue;
7109 inner_type = TREE_TYPE (type);
7110
7111 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
7112 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7113 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7114 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7115 ftype = build_function_type (type, tmp);
7116
7117 mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7118 dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7119
7120 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
7121 *q = TOLOWER (*p);
7122 *q = '\0';
7123
7124 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
7125 local_define_builtin (built_in_names[mcode], ftype, mcode,
7126 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
7127
7128 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
7129 local_define_builtin (built_in_names[dcode], ftype, dcode,
7130 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
7131 }
7132 }
7133 }
7134
7135 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
7136 better way.
7137
7138 If we requested a pointer to a vector, build up the pointers that
7139 we stripped off while looking for the inner type. Similarly for
7140 return values from functions.
7141
7142 The argument TYPE is the top of the chain, and BOTTOM is the
7143 new type which we will point to. */
7144
7145 tree
7146 reconstruct_complex_type (tree type, tree bottom)
7147 {
7148 tree inner, outer;
7149
7150 if (POINTER_TYPE_P (type))
7151 {
7152 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7153 outer = build_pointer_type (inner);
7154 }
7155 else if (TREE_CODE (type) == ARRAY_TYPE)
7156 {
7157 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7158 outer = build_array_type (inner, TYPE_DOMAIN (type));
7159 }
7160 else if (TREE_CODE (type) == FUNCTION_TYPE)
7161 {
7162 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7163 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
7164 }
7165 else if (TREE_CODE (type) == METHOD_TYPE)
7166 {
7167 tree argtypes;
7168 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7169 /* The build_method_type_directly() routine prepends 'this' to argument list,
7170 so we must compensate by getting rid of it. */
7171 argtypes = TYPE_ARG_TYPES (type);
7172 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
7173 inner,
7174 TYPE_ARG_TYPES (type));
7175 TYPE_ARG_TYPES (outer) = argtypes;
7176 }
7177 else
7178 return bottom;
7179
7180 TYPE_READONLY (outer) = TYPE_READONLY (type);
7181 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
7182
7183 return outer;
7184 }
7185
7186 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
7187 the inner type. */
7188 tree
7189 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
7190 {
7191 int nunits;
7192
7193 switch (GET_MODE_CLASS (mode))
7194 {
7195 case MODE_VECTOR_INT:
7196 case MODE_VECTOR_FLOAT:
7197 nunits = GET_MODE_NUNITS (mode);
7198 break;
7199
7200 case MODE_INT:
7201 /* Check that there are no leftover bits. */
7202 gcc_assert (GET_MODE_BITSIZE (mode)
7203 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
7204
7205 nunits = GET_MODE_BITSIZE (mode)
7206 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
7207 break;
7208
7209 default:
7210 gcc_unreachable ();
7211 }
7212
7213 return make_vector_type (innertype, nunits, mode);
7214 }
7215
7216 /* Similarly, but takes the inner type and number of units, which must be
7217 a power of two. */
7218
7219 tree
7220 build_vector_type (tree innertype, int nunits)
7221 {
7222 return make_vector_type (innertype, nunits, VOIDmode);
7223 }
7224
7225
7226 /* Build RESX_EXPR with given REGION_NUMBER. */
7227 tree
7228 build_resx (int region_number)
7229 {
7230 tree t;
7231 t = build1 (RESX_EXPR, void_type_node,
7232 build_int_cst (NULL_TREE, region_number));
7233 return t;
7234 }
7235
7236 /* Given an initializer INIT, return TRUE if INIT is zero or some
7237 aggregate of zeros. Otherwise return FALSE. */
7238 bool
7239 initializer_zerop (tree init)
7240 {
7241 tree elt;
7242
7243 STRIP_NOPS (init);
7244
7245 switch (TREE_CODE (init))
7246 {
7247 case INTEGER_CST:
7248 return integer_zerop (init);
7249
7250 case REAL_CST:
7251 /* ??? Note that this is not correct for C4X float formats. There,
7252 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
7253 negative exponent. */
7254 return real_zerop (init)
7255 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
7256
7257 case COMPLEX_CST:
7258 return integer_zerop (init)
7259 || (real_zerop (init)
7260 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
7261 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
7262
7263 case VECTOR_CST:
7264 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
7265 if (!initializer_zerop (TREE_VALUE (elt)))
7266 return false;
7267 return true;
7268
7269 case CONSTRUCTOR:
7270 {
7271 unsigned HOST_WIDE_INT idx;
7272
7273 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
7274 if (!initializer_zerop (elt))
7275 return false;
7276 return true;
7277 }
7278
7279 default:
7280 return false;
7281 }
7282 }
7283
7284 /* Build an empty statement. */
7285
7286 tree
7287 build_empty_stmt (void)
7288 {
7289 return build1 (NOP_EXPR, void_type_node, size_zero_node);
7290 }
7291
7292
7293 /* Build an OpenMP clause with code CODE. */
7294
7295 tree
7296 build_omp_clause (enum omp_clause_code code)
7297 {
7298 tree t;
7299 int size, length;
7300
7301 length = omp_clause_num_ops[code];
7302 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
7303
7304 t = ggc_alloc (size);
7305 memset (t, 0, size);
7306 TREE_SET_CODE (t, OMP_CLAUSE);
7307 OMP_CLAUSE_SET_CODE (t, code);
7308
7309 #ifdef GATHER_STATISTICS
7310 tree_node_counts[(int) omp_clause_kind]++;
7311 tree_node_sizes[(int) omp_clause_kind] += size;
7312 #endif
7313
7314 return t;
7315 }
7316
7317
7318 /* Returns true if it is possible to prove that the index of
7319 an array access REF (an ARRAY_REF expression) falls into the
7320 array bounds. */
7321
7322 bool
7323 in_array_bounds_p (tree ref)
7324 {
7325 tree idx = TREE_OPERAND (ref, 1);
7326 tree min, max;
7327
7328 if (TREE_CODE (idx) != INTEGER_CST)
7329 return false;
7330
7331 min = array_ref_low_bound (ref);
7332 max = array_ref_up_bound (ref);
7333 if (!min
7334 || !max
7335 || TREE_CODE (min) != INTEGER_CST
7336 || TREE_CODE (max) != INTEGER_CST)
7337 return false;
7338
7339 if (tree_int_cst_lt (idx, min)
7340 || tree_int_cst_lt (max, idx))
7341 return false;
7342
7343 return true;
7344 }
7345
7346 /* Returns true if it is possible to prove that the range of
7347 an array access REF (an ARRAY_RANGE_REF expression) falls
7348 into the array bounds. */
7349
7350 bool
7351 range_in_array_bounds_p (tree ref)
7352 {
7353 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
7354 tree range_min, range_max, min, max;
7355
7356 range_min = TYPE_MIN_VALUE (domain_type);
7357 range_max = TYPE_MAX_VALUE (domain_type);
7358 if (!range_min
7359 || !range_max
7360 || TREE_CODE (range_min) != INTEGER_CST
7361 || TREE_CODE (range_max) != INTEGER_CST)
7362 return false;
7363
7364 min = array_ref_low_bound (ref);
7365 max = array_ref_up_bound (ref);
7366 if (!min
7367 || !max
7368 || TREE_CODE (min) != INTEGER_CST
7369 || TREE_CODE (max) != INTEGER_CST)
7370 return false;
7371
7372 if (tree_int_cst_lt (range_min, min)
7373 || tree_int_cst_lt (max, range_max))
7374 return false;
7375
7376 return true;
7377 }
7378
7379 /* Return true if T (assumed to be a DECL) is a global variable. */
7380
7381 bool
7382 is_global_var (tree t)
7383 {
7384 if (MTAG_P (t))
7385 return (TREE_STATIC (t) || MTAG_GLOBAL (t));
7386 else
7387 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
7388 }
7389
7390 /* Return true if T (assumed to be a DECL) must be assigned a memory
7391 location. */
7392
7393 bool
7394 needs_to_live_in_memory (tree t)
7395 {
7396 if (TREE_CODE (t) == SSA_NAME)
7397 t = SSA_NAME_VAR (t);
7398
7399 return (TREE_ADDRESSABLE (t)
7400 || is_global_var (t)
7401 || (TREE_CODE (t) == RESULT_DECL
7402 && aggregate_value_p (t, current_function_decl)));
7403 }
7404
7405 /* There are situations in which a language considers record types
7406 compatible which have different field lists. Decide if two fields
7407 are compatible. It is assumed that the parent records are compatible. */
7408
7409 bool
7410 fields_compatible_p (tree f1, tree f2)
7411 {
7412 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
7413 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
7414 return false;
7415
7416 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
7417 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
7418 return false;
7419
7420 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
7421 return false;
7422
7423 return true;
7424 }
7425
7426 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
7427
7428 tree
7429 find_compatible_field (tree record, tree orig_field)
7430 {
7431 tree f;
7432
7433 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
7434 if (TREE_CODE (f) == FIELD_DECL
7435 && fields_compatible_p (f, orig_field))
7436 return f;
7437
7438 /* ??? Why isn't this on the main fields list? */
7439 f = TYPE_VFIELD (record);
7440 if (f && TREE_CODE (f) == FIELD_DECL
7441 && fields_compatible_p (f, orig_field))
7442 return f;
7443
7444 /* ??? We should abort here, but Java appears to do Bad Things
7445 with inherited fields. */
7446 return orig_field;
7447 }
7448
7449 /* Return value of a constant X. */
7450
7451 HOST_WIDE_INT
7452 int_cst_value (tree x)
7453 {
7454 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
7455 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
7456 bool negative = ((val >> (bits - 1)) & 1) != 0;
7457
7458 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
7459
7460 if (negative)
7461 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
7462 else
7463 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
7464
7465 return val;
7466 }
7467
7468 /* Returns the greatest common divisor of A and B, which must be
7469 INTEGER_CSTs. */
7470
7471 tree
7472 tree_fold_gcd (tree a, tree b)
7473 {
7474 tree a_mod_b;
7475 tree type = TREE_TYPE (a);
7476
7477 gcc_assert (TREE_CODE (a) == INTEGER_CST);
7478 gcc_assert (TREE_CODE (b) == INTEGER_CST);
7479
7480 if (integer_zerop (a))
7481 return b;
7482
7483 if (integer_zerop (b))
7484 return a;
7485
7486 if (tree_int_cst_sgn (a) == -1)
7487 a = fold_build2 (MULT_EXPR, type, a,
7488 build_int_cst (type, -1));
7489
7490 if (tree_int_cst_sgn (b) == -1)
7491 b = fold_build2 (MULT_EXPR, type, b,
7492 build_int_cst (type, -1));
7493
7494 while (1)
7495 {
7496 a_mod_b = fold_build2 (FLOOR_MOD_EXPR, type, a, b);
7497
7498 if (!TREE_INT_CST_LOW (a_mod_b)
7499 && !TREE_INT_CST_HIGH (a_mod_b))
7500 return b;
7501
7502 a = b;
7503 b = a_mod_b;
7504 }
7505 }
7506
7507 /* Returns unsigned variant of TYPE. */
7508
7509 tree
7510 unsigned_type_for (tree type)
7511 {
7512 if (POINTER_TYPE_P (type))
7513 return lang_hooks.types.unsigned_type (size_type_node);
7514 return lang_hooks.types.unsigned_type (type);
7515 }
7516
7517 /* Returns signed variant of TYPE. */
7518
7519 tree
7520 signed_type_for (tree type)
7521 {
7522 if (POINTER_TYPE_P (type))
7523 return lang_hooks.types.signed_type (size_type_node);
7524 return lang_hooks.types.signed_type (type);
7525 }
7526
7527 /* Returns the largest value obtainable by casting something in INNER type to
7528 OUTER type. */
7529
7530 tree
7531 upper_bound_in_type (tree outer, tree inner)
7532 {
7533 unsigned HOST_WIDE_INT lo, hi;
7534 unsigned int det = 0;
7535 unsigned oprec = TYPE_PRECISION (outer);
7536 unsigned iprec = TYPE_PRECISION (inner);
7537 unsigned prec;
7538
7539 /* Compute a unique number for every combination. */
7540 det |= (oprec > iprec) ? 4 : 0;
7541 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
7542 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
7543
7544 /* Determine the exponent to use. */
7545 switch (det)
7546 {
7547 case 0:
7548 case 1:
7549 /* oprec <= iprec, outer: signed, inner: don't care. */
7550 prec = oprec - 1;
7551 break;
7552 case 2:
7553 case 3:
7554 /* oprec <= iprec, outer: unsigned, inner: don't care. */
7555 prec = oprec;
7556 break;
7557 case 4:
7558 /* oprec > iprec, outer: signed, inner: signed. */
7559 prec = iprec - 1;
7560 break;
7561 case 5:
7562 /* oprec > iprec, outer: signed, inner: unsigned. */
7563 prec = iprec;
7564 break;
7565 case 6:
7566 /* oprec > iprec, outer: unsigned, inner: signed. */
7567 prec = oprec;
7568 break;
7569 case 7:
7570 /* oprec > iprec, outer: unsigned, inner: unsigned. */
7571 prec = iprec;
7572 break;
7573 default:
7574 gcc_unreachable ();
7575 }
7576
7577 /* Compute 2^^prec - 1. */
7578 if (prec <= HOST_BITS_PER_WIDE_INT)
7579 {
7580 hi = 0;
7581 lo = ((~(unsigned HOST_WIDE_INT) 0)
7582 >> (HOST_BITS_PER_WIDE_INT - prec));
7583 }
7584 else
7585 {
7586 hi = ((~(unsigned HOST_WIDE_INT) 0)
7587 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
7588 lo = ~(unsigned HOST_WIDE_INT) 0;
7589 }
7590
7591 return build_int_cst_wide (outer, lo, hi);
7592 }
7593
7594 /* Returns the smallest value obtainable by casting something in INNER type to
7595 OUTER type. */
7596
7597 tree
7598 lower_bound_in_type (tree outer, tree inner)
7599 {
7600 unsigned HOST_WIDE_INT lo, hi;
7601 unsigned oprec = TYPE_PRECISION (outer);
7602 unsigned iprec = TYPE_PRECISION (inner);
7603
7604 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
7605 and obtain 0. */
7606 if (TYPE_UNSIGNED (outer)
7607 /* If we are widening something of an unsigned type, OUTER type
7608 contains all values of INNER type. In particular, both INNER
7609 and OUTER types have zero in common. */
7610 || (oprec > iprec && TYPE_UNSIGNED (inner)))
7611 lo = hi = 0;
7612 else
7613 {
7614 /* If we are widening a signed type to another signed type, we
7615 want to obtain -2^^(iprec-1). If we are keeping the
7616 precision or narrowing to a signed type, we want to obtain
7617 -2^(oprec-1). */
7618 unsigned prec = oprec > iprec ? iprec : oprec;
7619
7620 if (prec <= HOST_BITS_PER_WIDE_INT)
7621 {
7622 hi = ~(unsigned HOST_WIDE_INT) 0;
7623 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
7624 }
7625 else
7626 {
7627 hi = ((~(unsigned HOST_WIDE_INT) 0)
7628 << (prec - HOST_BITS_PER_WIDE_INT - 1));
7629 lo = 0;
7630 }
7631 }
7632
7633 return build_int_cst_wide (outer, lo, hi);
7634 }
7635
7636 /* Return nonzero if two operands that are suitable for PHI nodes are
7637 necessarily equal. Specifically, both ARG0 and ARG1 must be either
7638 SSA_NAME or invariant. Note that this is strictly an optimization.
7639 That is, callers of this function can directly call operand_equal_p
7640 and get the same result, only slower. */
7641
7642 int
7643 operand_equal_for_phi_arg_p (tree arg0, tree arg1)
7644 {
7645 if (arg0 == arg1)
7646 return 1;
7647 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
7648 return 0;
7649 return operand_equal_p (arg0, arg1, 0);
7650 }
7651
7652 /* Returns number of zeros at the end of binary representation of X.
7653
7654 ??? Use ffs if available? */
7655
7656 tree
7657 num_ending_zeros (tree x)
7658 {
7659 unsigned HOST_WIDE_INT fr, nfr;
7660 unsigned num, abits;
7661 tree type = TREE_TYPE (x);
7662
7663 if (TREE_INT_CST_LOW (x) == 0)
7664 {
7665 num = HOST_BITS_PER_WIDE_INT;
7666 fr = TREE_INT_CST_HIGH (x);
7667 }
7668 else
7669 {
7670 num = 0;
7671 fr = TREE_INT_CST_LOW (x);
7672 }
7673
7674 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
7675 {
7676 nfr = fr >> abits;
7677 if (nfr << abits == fr)
7678 {
7679 num += abits;
7680 fr = nfr;
7681 }
7682 }
7683
7684 if (num > TYPE_PRECISION (type))
7685 num = TYPE_PRECISION (type);
7686
7687 return build_int_cst_type (type, num);
7688 }
7689
7690
7691 #define WALK_SUBTREE(NODE) \
7692 do \
7693 { \
7694 result = walk_tree (&(NODE), func, data, pset); \
7695 if (result) \
7696 return result; \
7697 } \
7698 while (0)
7699
7700 /* This is a subroutine of walk_tree that walks field of TYPE that are to
7701 be walked whenever a type is seen in the tree. Rest of operands and return
7702 value are as for walk_tree. */
7703
7704 static tree
7705 walk_type_fields (tree type, walk_tree_fn func, void *data,
7706 struct pointer_set_t *pset)
7707 {
7708 tree result = NULL_TREE;
7709
7710 switch (TREE_CODE (type))
7711 {
7712 case POINTER_TYPE:
7713 case REFERENCE_TYPE:
7714 /* We have to worry about mutually recursive pointers. These can't
7715 be written in C. They can in Ada. It's pathological, but
7716 there's an ACATS test (c38102a) that checks it. Deal with this
7717 by checking if we're pointing to another pointer, that one
7718 points to another pointer, that one does too, and we have no htab.
7719 If so, get a hash table. We check three levels deep to avoid
7720 the cost of the hash table if we don't need one. */
7721 if (POINTER_TYPE_P (TREE_TYPE (type))
7722 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
7723 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
7724 && !pset)
7725 {
7726 result = walk_tree_without_duplicates (&TREE_TYPE (type),
7727 func, data);
7728 if (result)
7729 return result;
7730
7731 break;
7732 }
7733
7734 /* ... fall through ... */
7735
7736 case COMPLEX_TYPE:
7737 WALK_SUBTREE (TREE_TYPE (type));
7738 break;
7739
7740 case METHOD_TYPE:
7741 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
7742
7743 /* Fall through. */
7744
7745 case FUNCTION_TYPE:
7746 WALK_SUBTREE (TREE_TYPE (type));
7747 {
7748 tree arg;
7749
7750 /* We never want to walk into default arguments. */
7751 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
7752 WALK_SUBTREE (TREE_VALUE (arg));
7753 }
7754 break;
7755
7756 case ARRAY_TYPE:
7757 /* Don't follow this nodes's type if a pointer for fear that we'll
7758 have infinite recursion. Those types are uninteresting anyway. */
7759 if (!POINTER_TYPE_P (TREE_TYPE (type))
7760 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE)
7761 WALK_SUBTREE (TREE_TYPE (type));
7762 WALK_SUBTREE (TYPE_DOMAIN (type));
7763 break;
7764
7765 case OFFSET_TYPE:
7766 WALK_SUBTREE (TREE_TYPE (type));
7767 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
7768 break;
7769
7770 default:
7771 break;
7772 }
7773
7774 return NULL_TREE;
7775 }
7776
7777 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
7778 called with the DATA and the address of each sub-tree. If FUNC returns a
7779 non-NULL value, the traversal is stopped, and the value returned by FUNC
7780 is returned. If PSET is non-NULL it is used to record the nodes visited,
7781 and to avoid visiting a node more than once. */
7782
7783 tree
7784 walk_tree (tree *tp, walk_tree_fn func, void *data, struct pointer_set_t *pset)
7785 {
7786 enum tree_code code;
7787 int walk_subtrees;
7788 tree result;
7789
7790 #define WALK_SUBTREE_TAIL(NODE) \
7791 do \
7792 { \
7793 tp = & (NODE); \
7794 goto tail_recurse; \
7795 } \
7796 while (0)
7797
7798 tail_recurse:
7799 /* Skip empty subtrees. */
7800 if (!*tp)
7801 return NULL_TREE;
7802
7803 /* Don't walk the same tree twice, if the user has requested
7804 that we avoid doing so. */
7805 if (pset && pointer_set_insert (pset, *tp))
7806 return NULL_TREE;
7807
7808 /* Call the function. */
7809 walk_subtrees = 1;
7810 result = (*func) (tp, &walk_subtrees, data);
7811
7812 /* If we found something, return it. */
7813 if (result)
7814 return result;
7815
7816 code = TREE_CODE (*tp);
7817
7818 /* Even if we didn't, FUNC may have decided that there was nothing
7819 interesting below this point in the tree. */
7820 if (!walk_subtrees)
7821 {
7822 /* But we still need to check our siblings. */
7823 if (code == TREE_LIST)
7824 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7825 else if (code == OMP_CLAUSE)
7826 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7827 else
7828 return NULL_TREE;
7829 }
7830
7831 result = lang_hooks.tree_inlining.walk_subtrees (tp, &walk_subtrees, func,
7832 data, pset);
7833 if (result || !walk_subtrees)
7834 return result;
7835
7836 switch (code)
7837 {
7838 case ERROR_MARK:
7839 case IDENTIFIER_NODE:
7840 case INTEGER_CST:
7841 case REAL_CST:
7842 case VECTOR_CST:
7843 case STRING_CST:
7844 case BLOCK:
7845 case PLACEHOLDER_EXPR:
7846 case SSA_NAME:
7847 case FIELD_DECL:
7848 case RESULT_DECL:
7849 /* None of these have subtrees other than those already walked
7850 above. */
7851 break;
7852
7853 case TREE_LIST:
7854 WALK_SUBTREE (TREE_VALUE (*tp));
7855 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7856 break;
7857
7858 case TREE_VEC:
7859 {
7860 int len = TREE_VEC_LENGTH (*tp);
7861
7862 if (len == 0)
7863 break;
7864
7865 /* Walk all elements but the first. */
7866 while (--len)
7867 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
7868
7869 /* Now walk the first one as a tail call. */
7870 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
7871 }
7872
7873 case COMPLEX_CST:
7874 WALK_SUBTREE (TREE_REALPART (*tp));
7875 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
7876
7877 case CONSTRUCTOR:
7878 {
7879 unsigned HOST_WIDE_INT idx;
7880 constructor_elt *ce;
7881
7882 for (idx = 0;
7883 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
7884 idx++)
7885 WALK_SUBTREE (ce->value);
7886 }
7887 break;
7888
7889 case SAVE_EXPR:
7890 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
7891
7892 case BIND_EXPR:
7893 {
7894 tree decl;
7895 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
7896 {
7897 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
7898 into declarations that are just mentioned, rather than
7899 declared; they don't really belong to this part of the tree.
7900 And, we can see cycles: the initializer for a declaration
7901 can refer to the declaration itself. */
7902 WALK_SUBTREE (DECL_INITIAL (decl));
7903 WALK_SUBTREE (DECL_SIZE (decl));
7904 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
7905 }
7906 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
7907 }
7908
7909 case STATEMENT_LIST:
7910 {
7911 tree_stmt_iterator i;
7912 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
7913 WALK_SUBTREE (*tsi_stmt_ptr (i));
7914 }
7915 break;
7916
7917 case OMP_CLAUSE:
7918 switch (OMP_CLAUSE_CODE (*tp))
7919 {
7920 case OMP_CLAUSE_PRIVATE:
7921 case OMP_CLAUSE_SHARED:
7922 case OMP_CLAUSE_FIRSTPRIVATE:
7923 case OMP_CLAUSE_LASTPRIVATE:
7924 case OMP_CLAUSE_COPYIN:
7925 case OMP_CLAUSE_COPYPRIVATE:
7926 case OMP_CLAUSE_IF:
7927 case OMP_CLAUSE_NUM_THREADS:
7928 case OMP_CLAUSE_SCHEDULE:
7929 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
7930 /* FALLTHRU */
7931
7932 case OMP_CLAUSE_NOWAIT:
7933 case OMP_CLAUSE_ORDERED:
7934 case OMP_CLAUSE_DEFAULT:
7935 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7936
7937 case OMP_CLAUSE_REDUCTION:
7938 {
7939 int i;
7940 for (i = 0; i < 4; i++)
7941 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
7942 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7943 }
7944
7945 default:
7946 gcc_unreachable ();
7947 }
7948 break;
7949
7950 case TARGET_EXPR:
7951 {
7952 int i, len;
7953
7954 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
7955 But, we only want to walk once. */
7956 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
7957 for (i = 0; i < len; ++i)
7958 WALK_SUBTREE (TREE_OPERAND (*tp, i));
7959 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
7960 }
7961
7962 case DECL_EXPR:
7963 /* If this is a TYPE_DECL, walk into the fields of the type that it's
7964 defining. We only want to walk into these fields of a type in this
7965 case and not in the general case of a mere reference to the type.
7966
7967 The criterion is as follows: if the field can be an expression, it
7968 must be walked only here. This should be in keeping with the fields
7969 that are directly gimplified in gimplify_type_sizes in order for the
7970 mark/copy-if-shared/unmark machinery of the gimplifier to work with
7971 variable-sized types.
7972
7973 Note that DECLs get walked as part of processing the BIND_EXPR. */
7974 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
7975 {
7976 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
7977 if (TREE_CODE (*type_p) == ERROR_MARK)
7978 return NULL_TREE;
7979
7980 /* Call the function for the type. See if it returns anything or
7981 doesn't want us to continue. If we are to continue, walk both
7982 the normal fields and those for the declaration case. */
7983 result = (*func) (type_p, &walk_subtrees, data);
7984 if (result || !walk_subtrees)
7985 return result;
7986
7987 result = walk_type_fields (*type_p, func, data, pset);
7988 if (result)
7989 return result;
7990
7991 /* If this is a record type, also walk the fields. */
7992 if (TREE_CODE (*type_p) == RECORD_TYPE
7993 || TREE_CODE (*type_p) == UNION_TYPE
7994 || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
7995 {
7996 tree field;
7997
7998 for (field = TYPE_FIELDS (*type_p); field;
7999 field = TREE_CHAIN (field))
8000 {
8001 /* We'd like to look at the type of the field, but we can
8002 easily get infinite recursion. So assume it's pointed
8003 to elsewhere in the tree. Also, ignore things that
8004 aren't fields. */
8005 if (TREE_CODE (field) != FIELD_DECL)
8006 continue;
8007
8008 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
8009 WALK_SUBTREE (DECL_SIZE (field));
8010 WALK_SUBTREE (DECL_SIZE_UNIT (field));
8011 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
8012 WALK_SUBTREE (DECL_QUALIFIER (field));
8013 }
8014 }
8015
8016 /* Same for scalar types. */
8017 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
8018 || TREE_CODE (*type_p) == ENUMERAL_TYPE
8019 || TREE_CODE (*type_p) == INTEGER_TYPE
8020 || TREE_CODE (*type_p) == REAL_TYPE)
8021 {
8022 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
8023 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
8024 }
8025
8026 WALK_SUBTREE (TYPE_SIZE (*type_p));
8027 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
8028 }
8029 /* FALLTHRU */
8030
8031 default:
8032 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))
8033 || IS_GIMPLE_STMT_CODE_CLASS (TREE_CODE_CLASS (code)))
8034 {
8035 int i, len;
8036
8037 /* Walk over all the sub-trees of this operand. */
8038 len = TREE_CODE_LENGTH (code);
8039
8040 /* Go through the subtrees. We need to do this in forward order so
8041 that the scope of a FOR_EXPR is handled properly. */
8042 if (len)
8043 {
8044 for (i = 0; i < len - 1; ++i)
8045 WALK_SUBTREE (GENERIC_TREE_OPERAND (*tp, i));
8046 WALK_SUBTREE_TAIL (GENERIC_TREE_OPERAND (*tp, len - 1));
8047 }
8048 }
8049 /* If this is a type, walk the needed fields in the type. */
8050 else if (TYPE_P (*tp))
8051 return walk_type_fields (*tp, func, data, pset);
8052 break;
8053 }
8054
8055 /* We didn't find what we were looking for. */
8056 return NULL_TREE;
8057
8058 #undef WALK_SUBTREE_TAIL
8059 }
8060 #undef WALK_SUBTREE
8061
8062 /* Like walk_tree, but does not walk duplicate nodes more than once. */
8063
8064 tree
8065 walk_tree_without_duplicates (tree *tp, walk_tree_fn func, void *data)
8066 {
8067 tree result;
8068 struct pointer_set_t *pset;
8069
8070 pset = pointer_set_create ();
8071 result = walk_tree (tp, func, data, pset);
8072 pointer_set_destroy (pset);
8073 return result;
8074 }
8075
8076
8077 /* Return true if STMT is an empty statement or contains nothing but
8078 empty statements. */
8079
8080 bool
8081 empty_body_p (tree stmt)
8082 {
8083 tree_stmt_iterator i;
8084 tree body;
8085
8086 if (IS_EMPTY_STMT (stmt))
8087 return true;
8088 else if (TREE_CODE (stmt) == BIND_EXPR)
8089 body = BIND_EXPR_BODY (stmt);
8090 else if (TREE_CODE (stmt) == STATEMENT_LIST)
8091 body = stmt;
8092 else
8093 return false;
8094
8095 for (i = tsi_start (body); !tsi_end_p (i); tsi_next (&i))
8096 if (!empty_body_p (tsi_stmt (i)))
8097 return false;
8098
8099 return true;
8100 }
8101
8102 tree *
8103 tree_block (tree t)
8104 {
8105 char const c = TREE_CODE_CLASS (TREE_CODE (t));
8106
8107 if (IS_EXPR_CODE_CLASS (c))
8108 return &t->exp.block;
8109 else if (IS_GIMPLE_STMT_CODE_CLASS (c))
8110 return &GIMPLE_STMT_BLOCK (t);
8111 gcc_unreachable ();
8112 return NULL;
8113 }
8114
8115 tree *
8116 generic_tree_operand (tree node, int i)
8117 {
8118 if (GIMPLE_STMT_P (node))
8119 return &GIMPLE_STMT_OPERAND (node, i);
8120 return &TREE_OPERAND (node, i);
8121 }
8122
8123 tree *
8124 generic_tree_type (tree node)
8125 {
8126 if (GIMPLE_STMT_P (node))
8127 return &void_type_node;
8128 return &TREE_TYPE (node);
8129 }
8130
8131 #include "gt-tree.h"