Daily bump.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h"
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "filenames.h"
45 #include "output.h"
46 #include "target.h"
47 #include "common/common-target.h"
48 #include "langhooks.h"
49 #include "tree-inline.h"
50 #include "tree-iterator.h"
51 #include "basic-block.h"
52 #include "tree-flow.h"
53 #include "params.h"
54 #include "pointer-set.h"
55 #include "tree-pass.h"
56 #include "langhooks-def.h"
57 #include "diagnostic.h"
58 #include "tree-diagnostic.h"
59 #include "tree-pretty-print.h"
60 #include "cgraph.h"
61 #include "timevar.h"
62 #include "except.h"
63 #include "debug.h"
64 #include "intl.h"
65
66 /* Tree code classes. */
67
68 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
69 #define END_OF_BASE_TREE_CODES tcc_exceptional,
70
71 const enum tree_code_class tree_code_type[] = {
72 #include "all-tree.def"
73 };
74
75 #undef DEFTREECODE
76 #undef END_OF_BASE_TREE_CODES
77
78 /* Table indexed by tree code giving number of expression
79 operands beyond the fixed part of the node structure.
80 Not used for types or decls. */
81
82 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
83 #define END_OF_BASE_TREE_CODES 0,
84
85 const unsigned char tree_code_length[] = {
86 #include "all-tree.def"
87 };
88
89 #undef DEFTREECODE
90 #undef END_OF_BASE_TREE_CODES
91
92 /* Names of tree components.
93 Used for printing out the tree and error messages. */
94 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
95 #define END_OF_BASE_TREE_CODES "@dummy",
96
97 const char *const tree_code_name[] = {
98 #include "all-tree.def"
99 };
100
101 #undef DEFTREECODE
102 #undef END_OF_BASE_TREE_CODES
103
104 /* Each tree code class has an associated string representation.
105 These must correspond to the tree_code_class entries. */
106
107 const char *const tree_code_class_strings[] =
108 {
109 "exceptional",
110 "constant",
111 "type",
112 "declaration",
113 "reference",
114 "comparison",
115 "unary",
116 "binary",
117 "statement",
118 "vl_exp",
119 "expression"
120 };
121
122 /* obstack.[ch] explicitly declined to prototype this. */
123 extern int _obstack_allocated_p (struct obstack *h, void *obj);
124
125 #ifdef GATHER_STATISTICS
126 /* Statistics-gathering stuff. */
127
128 static int tree_code_counts[MAX_TREE_CODES];
129 int tree_node_counts[(int) all_kinds];
130 int tree_node_sizes[(int) all_kinds];
131
132 /* Keep in sync with tree.h:enum tree_node_kind. */
133 static const char * const tree_node_kind_names[] = {
134 "decls",
135 "types",
136 "blocks",
137 "stmts",
138 "refs",
139 "exprs",
140 "constants",
141 "identifiers",
142 "vecs",
143 "binfos",
144 "ssa names",
145 "constructors",
146 "random kinds",
147 "lang_decl kinds",
148 "lang_type kinds",
149 "omp clauses",
150 };
151 #endif /* GATHER_STATISTICS */
152
153 /* Unique id for next decl created. */
154 static GTY(()) int next_decl_uid;
155 /* Unique id for next type created. */
156 static GTY(()) int next_type_uid = 1;
157 /* Unique id for next debug decl created. Use negative numbers,
158 to catch erroneous uses. */
159 static GTY(()) int next_debug_decl_uid;
160
161 /* Since we cannot rehash a type after it is in the table, we have to
162 keep the hash code. */
163
164 struct GTY(()) type_hash {
165 unsigned long hash;
166 tree type;
167 };
168
169 /* Initial size of the hash table (rounded to next prime). */
170 #define TYPE_HASH_INITIAL_SIZE 1000
171
172 /* Now here is the hash table. When recording a type, it is added to
173 the slot whose index is the hash code. Note that the hash table is
174 used for several kinds of types (function types, array types and
175 array index range types, for now). While all these live in the
176 same table, they are completely independent, and the hash code is
177 computed differently for each of these. */
178
179 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
180 htab_t type_hash_table;
181
182 /* Hash table and temporary node for larger integer const values. */
183 static GTY (()) tree int_cst_node;
184 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
185 htab_t int_cst_hash_table;
186
187 /* Hash table for optimization flags and target option flags. Use the same
188 hash table for both sets of options. Nodes for building the current
189 optimization and target option nodes. The assumption is most of the time
190 the options created will already be in the hash table, so we avoid
191 allocating and freeing up a node repeatably. */
192 static GTY (()) tree cl_optimization_node;
193 static GTY (()) tree cl_target_option_node;
194 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
195 htab_t cl_option_hash_table;
196
197 /* General tree->tree mapping structure for use in hash tables. */
198
199
200 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
201 htab_t debug_expr_for_decl;
202
203 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
204 htab_t value_expr_for_decl;
205
206 static GTY ((if_marked ("tree_vec_map_marked_p"), param_is (struct tree_vec_map)))
207 htab_t debug_args_for_decl;
208
209 static GTY ((if_marked ("tree_priority_map_marked_p"),
210 param_is (struct tree_priority_map)))
211 htab_t init_priority_for_decl;
212
213 static void set_type_quals (tree, int);
214 static int type_hash_eq (const void *, const void *);
215 static hashval_t type_hash_hash (const void *);
216 static hashval_t int_cst_hash_hash (const void *);
217 static int int_cst_hash_eq (const void *, const void *);
218 static hashval_t cl_option_hash_hash (const void *);
219 static int cl_option_hash_eq (const void *, const void *);
220 static void print_type_hash_statistics (void);
221 static void print_debug_expr_statistics (void);
222 static void print_value_expr_statistics (void);
223 static int type_hash_marked_p (const void *);
224 static unsigned int type_hash_list (const_tree, hashval_t);
225 static unsigned int attribute_hash_list (const_tree, hashval_t);
226
227 tree global_trees[TI_MAX];
228 tree integer_types[itk_none];
229
230 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
231
232 /* Number of operands for each OpenMP clause. */
233 unsigned const char omp_clause_num_ops[] =
234 {
235 0, /* OMP_CLAUSE_ERROR */
236 1, /* OMP_CLAUSE_PRIVATE */
237 1, /* OMP_CLAUSE_SHARED */
238 1, /* OMP_CLAUSE_FIRSTPRIVATE */
239 2, /* OMP_CLAUSE_LASTPRIVATE */
240 4, /* OMP_CLAUSE_REDUCTION */
241 1, /* OMP_CLAUSE_COPYIN */
242 1, /* OMP_CLAUSE_COPYPRIVATE */
243 1, /* OMP_CLAUSE_IF */
244 1, /* OMP_CLAUSE_NUM_THREADS */
245 1, /* OMP_CLAUSE_SCHEDULE */
246 0, /* OMP_CLAUSE_NOWAIT */
247 0, /* OMP_CLAUSE_ORDERED */
248 0, /* OMP_CLAUSE_DEFAULT */
249 3, /* OMP_CLAUSE_COLLAPSE */
250 0, /* OMP_CLAUSE_UNTIED */
251 1, /* OMP_CLAUSE_FINAL */
252 0 /* OMP_CLAUSE_MERGEABLE */
253 };
254
255 const char * const omp_clause_code_name[] =
256 {
257 "error_clause",
258 "private",
259 "shared",
260 "firstprivate",
261 "lastprivate",
262 "reduction",
263 "copyin",
264 "copyprivate",
265 "if",
266 "num_threads",
267 "schedule",
268 "nowait",
269 "ordered",
270 "default",
271 "collapse",
272 "untied",
273 "final",
274 "mergeable"
275 };
276
277
278 /* Return the tree node structure used by tree code CODE. */
279
280 static inline enum tree_node_structure_enum
281 tree_node_structure_for_code (enum tree_code code)
282 {
283 switch (TREE_CODE_CLASS (code))
284 {
285 case tcc_declaration:
286 {
287 switch (code)
288 {
289 case FIELD_DECL:
290 return TS_FIELD_DECL;
291 case PARM_DECL:
292 return TS_PARM_DECL;
293 case VAR_DECL:
294 return TS_VAR_DECL;
295 case LABEL_DECL:
296 return TS_LABEL_DECL;
297 case RESULT_DECL:
298 return TS_RESULT_DECL;
299 case DEBUG_EXPR_DECL:
300 return TS_DECL_WRTL;
301 case CONST_DECL:
302 return TS_CONST_DECL;
303 case TYPE_DECL:
304 return TS_TYPE_DECL;
305 case FUNCTION_DECL:
306 return TS_FUNCTION_DECL;
307 case TRANSLATION_UNIT_DECL:
308 return TS_TRANSLATION_UNIT_DECL;
309 default:
310 return TS_DECL_NON_COMMON;
311 }
312 }
313 case tcc_type:
314 return TS_TYPE_NON_COMMON;
315 case tcc_reference:
316 case tcc_comparison:
317 case tcc_unary:
318 case tcc_binary:
319 case tcc_expression:
320 case tcc_statement:
321 case tcc_vl_exp:
322 return TS_EXP;
323 default: /* tcc_constant and tcc_exceptional */
324 break;
325 }
326 switch (code)
327 {
328 /* tcc_constant cases. */
329 case INTEGER_CST: return TS_INT_CST;
330 case REAL_CST: return TS_REAL_CST;
331 case FIXED_CST: return TS_FIXED_CST;
332 case COMPLEX_CST: return TS_COMPLEX;
333 case VECTOR_CST: return TS_VECTOR;
334 case STRING_CST: return TS_STRING;
335 /* tcc_exceptional cases. */
336 case ERROR_MARK: return TS_COMMON;
337 case IDENTIFIER_NODE: return TS_IDENTIFIER;
338 case TREE_LIST: return TS_LIST;
339 case TREE_VEC: return TS_VEC;
340 case SSA_NAME: return TS_SSA_NAME;
341 case PLACEHOLDER_EXPR: return TS_COMMON;
342 case STATEMENT_LIST: return TS_STATEMENT_LIST;
343 case BLOCK: return TS_BLOCK;
344 case CONSTRUCTOR: return TS_CONSTRUCTOR;
345 case TREE_BINFO: return TS_BINFO;
346 case OMP_CLAUSE: return TS_OMP_CLAUSE;
347 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
348 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
349
350 default:
351 gcc_unreachable ();
352 }
353 }
354
355
356 /* Initialize tree_contains_struct to describe the hierarchy of tree
357 nodes. */
358
359 static void
360 initialize_tree_contains_struct (void)
361 {
362 unsigned i;
363
364 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
365 {
366 enum tree_code code;
367 enum tree_node_structure_enum ts_code;
368
369 code = (enum tree_code) i;
370 ts_code = tree_node_structure_for_code (code);
371
372 /* Mark the TS structure itself. */
373 tree_contains_struct[code][ts_code] = 1;
374
375 /* Mark all the structures that TS is derived from. */
376 switch (ts_code)
377 {
378 case TS_TYPED:
379 case TS_BLOCK:
380 MARK_TS_BASE (code);
381 break;
382
383 case TS_COMMON:
384 case TS_INT_CST:
385 case TS_REAL_CST:
386 case TS_FIXED_CST:
387 case TS_VECTOR:
388 case TS_STRING:
389 case TS_COMPLEX:
390 case TS_SSA_NAME:
391 case TS_CONSTRUCTOR:
392 case TS_EXP:
393 case TS_STATEMENT_LIST:
394 MARK_TS_TYPED (code);
395 break;
396
397 case TS_IDENTIFIER:
398 case TS_DECL_MINIMAL:
399 case TS_TYPE_COMMON:
400 case TS_LIST:
401 case TS_VEC:
402 case TS_BINFO:
403 case TS_OMP_CLAUSE:
404 case TS_OPTIMIZATION:
405 case TS_TARGET_OPTION:
406 MARK_TS_COMMON (code);
407 break;
408
409 case TS_TYPE_WITH_LANG_SPECIFIC:
410 MARK_TS_TYPE_COMMON (code);
411 break;
412
413 case TS_TYPE_NON_COMMON:
414 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
415 break;
416
417 case TS_DECL_COMMON:
418 MARK_TS_DECL_MINIMAL (code);
419 break;
420
421 case TS_DECL_WRTL:
422 case TS_CONST_DECL:
423 MARK_TS_DECL_COMMON (code);
424 break;
425
426 case TS_DECL_NON_COMMON:
427 MARK_TS_DECL_WITH_VIS (code);
428 break;
429
430 case TS_DECL_WITH_VIS:
431 case TS_PARM_DECL:
432 case TS_LABEL_DECL:
433 case TS_RESULT_DECL:
434 MARK_TS_DECL_WRTL (code);
435 break;
436
437 case TS_FIELD_DECL:
438 MARK_TS_DECL_COMMON (code);
439 break;
440
441 case TS_VAR_DECL:
442 MARK_TS_DECL_WITH_VIS (code);
443 break;
444
445 case TS_TYPE_DECL:
446 case TS_FUNCTION_DECL:
447 MARK_TS_DECL_NON_COMMON (code);
448 break;
449
450 case TS_TRANSLATION_UNIT_DECL:
451 MARK_TS_DECL_COMMON (code);
452 break;
453
454 default:
455 gcc_unreachable ();
456 }
457 }
458
459 /* Basic consistency checks for attributes used in fold. */
460 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
461 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
462 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
463 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
464 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
465 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
466 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
467 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
468 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
469 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
470 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
471 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
472 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
473 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
474 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
475 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
476 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
477 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
478 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
479 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
480 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
481 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
482 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
483 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
484 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
485 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
486 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
487 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
488 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
489 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
490 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
491 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
492 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
493 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
494 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
495 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
496 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
497 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
498 }
499
500
501 /* Init tree.c. */
502
503 void
504 init_ttree (void)
505 {
506 /* Initialize the hash table of types. */
507 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
508 type_hash_eq, 0);
509
510 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
511 tree_decl_map_eq, 0);
512
513 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
514 tree_decl_map_eq, 0);
515 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
516 tree_priority_map_eq, 0);
517
518 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
519 int_cst_hash_eq, NULL);
520
521 int_cst_node = make_node (INTEGER_CST);
522
523 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
524 cl_option_hash_eq, NULL);
525
526 cl_optimization_node = make_node (OPTIMIZATION_NODE);
527 cl_target_option_node = make_node (TARGET_OPTION_NODE);
528
529 /* Initialize the tree_contains_struct array. */
530 initialize_tree_contains_struct ();
531 lang_hooks.init_ts ();
532 }
533
534 \f
535 /* The name of the object as the assembler will see it (but before any
536 translations made by ASM_OUTPUT_LABELREF). Often this is the same
537 as DECL_NAME. It is an IDENTIFIER_NODE. */
538 tree
539 decl_assembler_name (tree decl)
540 {
541 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
542 lang_hooks.set_decl_assembler_name (decl);
543 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
544 }
545
546 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
547
548 bool
549 decl_assembler_name_equal (tree decl, const_tree asmname)
550 {
551 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
552 const char *decl_str;
553 const char *asmname_str;
554 bool test = false;
555
556 if (decl_asmname == asmname)
557 return true;
558
559 decl_str = IDENTIFIER_POINTER (decl_asmname);
560 asmname_str = IDENTIFIER_POINTER (asmname);
561
562
563 /* If the target assembler name was set by the user, things are trickier.
564 We have a leading '*' to begin with. After that, it's arguable what
565 is the correct thing to do with -fleading-underscore. Arguably, we've
566 historically been doing the wrong thing in assemble_alias by always
567 printing the leading underscore. Since we're not changing that, make
568 sure user_label_prefix follows the '*' before matching. */
569 if (decl_str[0] == '*')
570 {
571 size_t ulp_len = strlen (user_label_prefix);
572
573 decl_str ++;
574
575 if (ulp_len == 0)
576 test = true;
577 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
578 decl_str += ulp_len, test=true;
579 else
580 decl_str --;
581 }
582 if (asmname_str[0] == '*')
583 {
584 size_t ulp_len = strlen (user_label_prefix);
585
586 asmname_str ++;
587
588 if (ulp_len == 0)
589 test = true;
590 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
591 asmname_str += ulp_len, test=true;
592 else
593 asmname_str --;
594 }
595
596 if (!test)
597 return false;
598 return strcmp (decl_str, asmname_str) == 0;
599 }
600
601 /* Hash asmnames ignoring the user specified marks. */
602
603 hashval_t
604 decl_assembler_name_hash (const_tree asmname)
605 {
606 if (IDENTIFIER_POINTER (asmname)[0] == '*')
607 {
608 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
609 size_t ulp_len = strlen (user_label_prefix);
610
611 if (ulp_len == 0)
612 ;
613 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
614 decl_str += ulp_len;
615
616 return htab_hash_string (decl_str);
617 }
618
619 return htab_hash_string (IDENTIFIER_POINTER (asmname));
620 }
621
622 /* Compute the number of bytes occupied by a tree with code CODE.
623 This function cannot be used for nodes that have variable sizes,
624 including TREE_VEC, STRING_CST, and CALL_EXPR. */
625 size_t
626 tree_code_size (enum tree_code code)
627 {
628 switch (TREE_CODE_CLASS (code))
629 {
630 case tcc_declaration: /* A decl node */
631 {
632 switch (code)
633 {
634 case FIELD_DECL:
635 return sizeof (struct tree_field_decl);
636 case PARM_DECL:
637 return sizeof (struct tree_parm_decl);
638 case VAR_DECL:
639 return sizeof (struct tree_var_decl);
640 case LABEL_DECL:
641 return sizeof (struct tree_label_decl);
642 case RESULT_DECL:
643 return sizeof (struct tree_result_decl);
644 case CONST_DECL:
645 return sizeof (struct tree_const_decl);
646 case TYPE_DECL:
647 return sizeof (struct tree_type_decl);
648 case FUNCTION_DECL:
649 return sizeof (struct tree_function_decl);
650 case DEBUG_EXPR_DECL:
651 return sizeof (struct tree_decl_with_rtl);
652 default:
653 return sizeof (struct tree_decl_non_common);
654 }
655 }
656
657 case tcc_type: /* a type node */
658 return sizeof (struct tree_type_non_common);
659
660 case tcc_reference: /* a reference */
661 case tcc_expression: /* an expression */
662 case tcc_statement: /* an expression with side effects */
663 case tcc_comparison: /* a comparison expression */
664 case tcc_unary: /* a unary arithmetic expression */
665 case tcc_binary: /* a binary arithmetic expression */
666 return (sizeof (struct tree_exp)
667 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
668
669 case tcc_constant: /* a constant */
670 switch (code)
671 {
672 case INTEGER_CST: return sizeof (struct tree_int_cst);
673 case REAL_CST: return sizeof (struct tree_real_cst);
674 case FIXED_CST: return sizeof (struct tree_fixed_cst);
675 case COMPLEX_CST: return sizeof (struct tree_complex);
676 case VECTOR_CST: return sizeof (struct tree_vector);
677 case STRING_CST: gcc_unreachable ();
678 default:
679 return lang_hooks.tree_size (code);
680 }
681
682 case tcc_exceptional: /* something random, like an identifier. */
683 switch (code)
684 {
685 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
686 case TREE_LIST: return sizeof (struct tree_list);
687
688 case ERROR_MARK:
689 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
690
691 case TREE_VEC:
692 case OMP_CLAUSE: gcc_unreachable ();
693
694 case SSA_NAME: return sizeof (struct tree_ssa_name);
695
696 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
697 case BLOCK: return sizeof (struct tree_block);
698 case CONSTRUCTOR: return sizeof (struct tree_constructor);
699 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
700 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
701
702 default:
703 return lang_hooks.tree_size (code);
704 }
705
706 default:
707 gcc_unreachable ();
708 }
709 }
710
711 /* Compute the number of bytes occupied by NODE. This routine only
712 looks at TREE_CODE, except for those nodes that have variable sizes. */
713 size_t
714 tree_size (const_tree node)
715 {
716 const enum tree_code code = TREE_CODE (node);
717 switch (code)
718 {
719 case TREE_BINFO:
720 return (offsetof (struct tree_binfo, base_binfos)
721 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
722
723 case TREE_VEC:
724 return (sizeof (struct tree_vec)
725 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
726
727 case STRING_CST:
728 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
729
730 case OMP_CLAUSE:
731 return (sizeof (struct tree_omp_clause)
732 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
733 * sizeof (tree));
734
735 default:
736 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
737 return (sizeof (struct tree_exp)
738 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
739 else
740 return tree_code_size (code);
741 }
742 }
743
744 /* Record interesting allocation statistics for a tree node with CODE
745 and LENGTH. */
746
747 static void
748 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
749 size_t length ATTRIBUTE_UNUSED)
750 {
751 #ifdef GATHER_STATISTICS
752 enum tree_code_class type = TREE_CODE_CLASS (code);
753 tree_node_kind kind;
754
755 switch (type)
756 {
757 case tcc_declaration: /* A decl node */
758 kind = d_kind;
759 break;
760
761 case tcc_type: /* a type node */
762 kind = t_kind;
763 break;
764
765 case tcc_statement: /* an expression with side effects */
766 kind = s_kind;
767 break;
768
769 case tcc_reference: /* a reference */
770 kind = r_kind;
771 break;
772
773 case tcc_expression: /* an expression */
774 case tcc_comparison: /* a comparison expression */
775 case tcc_unary: /* a unary arithmetic expression */
776 case tcc_binary: /* a binary arithmetic expression */
777 kind = e_kind;
778 break;
779
780 case tcc_constant: /* a constant */
781 kind = c_kind;
782 break;
783
784 case tcc_exceptional: /* something random, like an identifier. */
785 switch (code)
786 {
787 case IDENTIFIER_NODE:
788 kind = id_kind;
789 break;
790
791 case TREE_VEC:
792 kind = vec_kind;
793 break;
794
795 case TREE_BINFO:
796 kind = binfo_kind;
797 break;
798
799 case SSA_NAME:
800 kind = ssa_name_kind;
801 break;
802
803 case BLOCK:
804 kind = b_kind;
805 break;
806
807 case CONSTRUCTOR:
808 kind = constr_kind;
809 break;
810
811 case OMP_CLAUSE:
812 kind = omp_clause_kind;
813 break;
814
815 default:
816 kind = x_kind;
817 break;
818 }
819 break;
820
821 case tcc_vl_exp:
822 kind = e_kind;
823 break;
824
825 default:
826 gcc_unreachable ();
827 }
828
829 tree_code_counts[(int) code]++;
830 tree_node_counts[(int) kind]++;
831 tree_node_sizes[(int) kind] += length;
832 #endif
833 }
834
835 /* Allocate and return a new UID from the DECL_UID namespace. */
836
837 int
838 allocate_decl_uid (void)
839 {
840 return next_decl_uid++;
841 }
842
843 /* Return a newly allocated node of code CODE. For decl and type
844 nodes, some other fields are initialized. The rest of the node is
845 initialized to zero. This function cannot be used for TREE_VEC or
846 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
847
848 Achoo! I got a code in the node. */
849
850 tree
851 make_node_stat (enum tree_code code MEM_STAT_DECL)
852 {
853 tree t;
854 enum tree_code_class type = TREE_CODE_CLASS (code);
855 size_t length = tree_code_size (code);
856
857 record_node_allocation_statistics (code, length);
858
859 t = ggc_alloc_zone_cleared_tree_node_stat (
860 (code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone,
861 length PASS_MEM_STAT);
862 TREE_SET_CODE (t, code);
863
864 switch (type)
865 {
866 case tcc_statement:
867 TREE_SIDE_EFFECTS (t) = 1;
868 break;
869
870 case tcc_declaration:
871 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
872 {
873 if (code == FUNCTION_DECL)
874 {
875 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
876 DECL_MODE (t) = FUNCTION_MODE;
877 }
878 else
879 DECL_ALIGN (t) = 1;
880 }
881 DECL_SOURCE_LOCATION (t) = input_location;
882 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
883 DECL_UID (t) = --next_debug_decl_uid;
884 else
885 {
886 DECL_UID (t) = allocate_decl_uid ();
887 SET_DECL_PT_UID (t, -1);
888 }
889 if (TREE_CODE (t) == LABEL_DECL)
890 LABEL_DECL_UID (t) = -1;
891
892 break;
893
894 case tcc_type:
895 TYPE_UID (t) = next_type_uid++;
896 TYPE_ALIGN (t) = BITS_PER_UNIT;
897 TYPE_USER_ALIGN (t) = 0;
898 TYPE_MAIN_VARIANT (t) = t;
899 TYPE_CANONICAL (t) = t;
900
901 /* Default to no attributes for type, but let target change that. */
902 TYPE_ATTRIBUTES (t) = NULL_TREE;
903 targetm.set_default_type_attributes (t);
904
905 /* We have not yet computed the alias set for this type. */
906 TYPE_ALIAS_SET (t) = -1;
907 break;
908
909 case tcc_constant:
910 TREE_CONSTANT (t) = 1;
911 break;
912
913 case tcc_expression:
914 switch (code)
915 {
916 case INIT_EXPR:
917 case MODIFY_EXPR:
918 case VA_ARG_EXPR:
919 case PREDECREMENT_EXPR:
920 case PREINCREMENT_EXPR:
921 case POSTDECREMENT_EXPR:
922 case POSTINCREMENT_EXPR:
923 /* All of these have side-effects, no matter what their
924 operands are. */
925 TREE_SIDE_EFFECTS (t) = 1;
926 break;
927
928 default:
929 break;
930 }
931 break;
932
933 default:
934 /* Other classes need no special treatment. */
935 break;
936 }
937
938 return t;
939 }
940 \f
941 /* Return a new node with the same contents as NODE except that its
942 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
943
944 tree
945 copy_node_stat (tree node MEM_STAT_DECL)
946 {
947 tree t;
948 enum tree_code code = TREE_CODE (node);
949 size_t length;
950
951 gcc_assert (code != STATEMENT_LIST);
952
953 length = tree_size (node);
954 record_node_allocation_statistics (code, length);
955 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
956 memcpy (t, node, length);
957
958 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
959 TREE_CHAIN (t) = 0;
960 TREE_ASM_WRITTEN (t) = 0;
961 TREE_VISITED (t) = 0;
962 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
963 *DECL_VAR_ANN_PTR (t) = 0;
964
965 if (TREE_CODE_CLASS (code) == tcc_declaration)
966 {
967 if (code == DEBUG_EXPR_DECL)
968 DECL_UID (t) = --next_debug_decl_uid;
969 else
970 {
971 DECL_UID (t) = allocate_decl_uid ();
972 if (DECL_PT_UID_SET_P (node))
973 SET_DECL_PT_UID (t, DECL_PT_UID (node));
974 }
975 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
976 && DECL_HAS_VALUE_EXPR_P (node))
977 {
978 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
979 DECL_HAS_VALUE_EXPR_P (t) = 1;
980 }
981 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
982 {
983 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
984 DECL_HAS_INIT_PRIORITY_P (t) = 1;
985 }
986 }
987 else if (TREE_CODE_CLASS (code) == tcc_type)
988 {
989 TYPE_UID (t) = next_type_uid++;
990 /* The following is so that the debug code for
991 the copy is different from the original type.
992 The two statements usually duplicate each other
993 (because they clear fields of the same union),
994 but the optimizer should catch that. */
995 TYPE_SYMTAB_POINTER (t) = 0;
996 TYPE_SYMTAB_ADDRESS (t) = 0;
997
998 /* Do not copy the values cache. */
999 if (TYPE_CACHED_VALUES_P(t))
1000 {
1001 TYPE_CACHED_VALUES_P (t) = 0;
1002 TYPE_CACHED_VALUES (t) = NULL_TREE;
1003 }
1004 }
1005
1006 return t;
1007 }
1008
1009 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1010 For example, this can copy a list made of TREE_LIST nodes. */
1011
1012 tree
1013 copy_list (tree list)
1014 {
1015 tree head;
1016 tree prev, next;
1017
1018 if (list == 0)
1019 return 0;
1020
1021 head = prev = copy_node (list);
1022 next = TREE_CHAIN (list);
1023 while (next)
1024 {
1025 TREE_CHAIN (prev) = copy_node (next);
1026 prev = TREE_CHAIN (prev);
1027 next = TREE_CHAIN (next);
1028 }
1029 return head;
1030 }
1031
1032 \f
1033 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1034
1035 tree
1036 build_int_cst (tree type, HOST_WIDE_INT low)
1037 {
1038 /* Support legacy code. */
1039 if (!type)
1040 type = integer_type_node;
1041
1042 return double_int_to_tree (type, shwi_to_double_int (low));
1043 }
1044
1045 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1046
1047 tree
1048 build_int_cst_type (tree type, HOST_WIDE_INT low)
1049 {
1050 gcc_assert (type);
1051
1052 return double_int_to_tree (type, shwi_to_double_int (low));
1053 }
1054
1055 /* Constructs tree in type TYPE from with value given by CST. Signedness
1056 of CST is assumed to be the same as the signedness of TYPE. */
1057
1058 tree
1059 double_int_to_tree (tree type, double_int cst)
1060 {
1061 /* Size types *are* sign extended. */
1062 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1063 || (TREE_CODE (type) == INTEGER_TYPE
1064 && TYPE_IS_SIZETYPE (type)));
1065
1066 cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1067
1068 return build_int_cst_wide (type, cst.low, cst.high);
1069 }
1070
1071 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1072 to be the same as the signedness of TYPE. */
1073
1074 bool
1075 double_int_fits_to_tree_p (const_tree type, double_int cst)
1076 {
1077 /* Size types *are* sign extended. */
1078 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1079 || (TREE_CODE (type) == INTEGER_TYPE
1080 && TYPE_IS_SIZETYPE (type)));
1081
1082 double_int ext
1083 = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1084
1085 return double_int_equal_p (cst, ext);
1086 }
1087
1088 /* We force the double_int CST to the range of the type TYPE by sign or
1089 zero extending it. OVERFLOWABLE indicates if we are interested in
1090 overflow of the value, when >0 we are only interested in signed
1091 overflow, for <0 we are interested in any overflow. OVERFLOWED
1092 indicates whether overflow has already occurred. CONST_OVERFLOWED
1093 indicates whether constant overflow has already occurred. We force
1094 T's value to be within range of T's type (by setting to 0 or 1 all
1095 the bits outside the type's range). We set TREE_OVERFLOWED if,
1096 OVERFLOWED is nonzero,
1097 or OVERFLOWABLE is >0 and signed overflow occurs
1098 or OVERFLOWABLE is <0 and any overflow occurs
1099 We return a new tree node for the extended double_int. The node
1100 is shared if no overflow flags are set. */
1101
1102
1103 tree
1104 force_fit_type_double (tree type, double_int cst, int overflowable,
1105 bool overflowed)
1106 {
1107 bool sign_extended_type;
1108
1109 /* Size types *are* sign extended. */
1110 sign_extended_type = (!TYPE_UNSIGNED (type)
1111 || (TREE_CODE (type) == INTEGER_TYPE
1112 && TYPE_IS_SIZETYPE (type)));
1113
1114 /* If we need to set overflow flags, return a new unshared node. */
1115 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1116 {
1117 if (overflowed
1118 || overflowable < 0
1119 || (overflowable > 0 && sign_extended_type))
1120 {
1121 tree t = make_node (INTEGER_CST);
1122 TREE_INT_CST (t) = double_int_ext (cst, TYPE_PRECISION (type),
1123 !sign_extended_type);
1124 TREE_TYPE (t) = type;
1125 TREE_OVERFLOW (t) = 1;
1126 return t;
1127 }
1128 }
1129
1130 /* Else build a shared node. */
1131 return double_int_to_tree (type, cst);
1132 }
1133
1134 /* These are the hash table functions for the hash table of INTEGER_CST
1135 nodes of a sizetype. */
1136
1137 /* Return the hash code code X, an INTEGER_CST. */
1138
1139 static hashval_t
1140 int_cst_hash_hash (const void *x)
1141 {
1142 const_tree const t = (const_tree) x;
1143
1144 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1145 ^ htab_hash_pointer (TREE_TYPE (t)));
1146 }
1147
1148 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1149 is the same as that given by *Y, which is the same. */
1150
1151 static int
1152 int_cst_hash_eq (const void *x, const void *y)
1153 {
1154 const_tree const xt = (const_tree) x;
1155 const_tree const yt = (const_tree) y;
1156
1157 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1158 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1159 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1160 }
1161
1162 /* Create an INT_CST node of TYPE and value HI:LOW.
1163 The returned node is always shared. For small integers we use a
1164 per-type vector cache, for larger ones we use a single hash table. */
1165
1166 tree
1167 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1168 {
1169 tree t;
1170 int ix = -1;
1171 int limit = 0;
1172
1173 gcc_assert (type);
1174
1175 switch (TREE_CODE (type))
1176 {
1177 case NULLPTR_TYPE:
1178 gcc_assert (hi == 0 && low == 0);
1179 /* Fallthru. */
1180
1181 case POINTER_TYPE:
1182 case REFERENCE_TYPE:
1183 /* Cache NULL pointer. */
1184 if (!hi && !low)
1185 {
1186 limit = 1;
1187 ix = 0;
1188 }
1189 break;
1190
1191 case BOOLEAN_TYPE:
1192 /* Cache false or true. */
1193 limit = 2;
1194 if (!hi && low < 2)
1195 ix = low;
1196 break;
1197
1198 case INTEGER_TYPE:
1199 case OFFSET_TYPE:
1200 if (TYPE_UNSIGNED (type))
1201 {
1202 /* Cache 0..N */
1203 limit = INTEGER_SHARE_LIMIT;
1204 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1205 ix = low;
1206 }
1207 else
1208 {
1209 /* Cache -1..N */
1210 limit = INTEGER_SHARE_LIMIT + 1;
1211 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1212 ix = low + 1;
1213 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1214 ix = 0;
1215 }
1216 break;
1217
1218 case ENUMERAL_TYPE:
1219 break;
1220
1221 default:
1222 gcc_unreachable ();
1223 }
1224
1225 if (ix >= 0)
1226 {
1227 /* Look for it in the type's vector of small shared ints. */
1228 if (!TYPE_CACHED_VALUES_P (type))
1229 {
1230 TYPE_CACHED_VALUES_P (type) = 1;
1231 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1232 }
1233
1234 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1235 if (t)
1236 {
1237 /* Make sure no one is clobbering the shared constant. */
1238 gcc_assert (TREE_TYPE (t) == type);
1239 gcc_assert (TREE_INT_CST_LOW (t) == low);
1240 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1241 }
1242 else
1243 {
1244 /* Create a new shared int. */
1245 t = make_node (INTEGER_CST);
1246
1247 TREE_INT_CST_LOW (t) = low;
1248 TREE_INT_CST_HIGH (t) = hi;
1249 TREE_TYPE (t) = type;
1250
1251 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1252 }
1253 }
1254 else
1255 {
1256 /* Use the cache of larger shared ints. */
1257 void **slot;
1258
1259 TREE_INT_CST_LOW (int_cst_node) = low;
1260 TREE_INT_CST_HIGH (int_cst_node) = hi;
1261 TREE_TYPE (int_cst_node) = type;
1262
1263 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1264 t = (tree) *slot;
1265 if (!t)
1266 {
1267 /* Insert this one into the hash table. */
1268 t = int_cst_node;
1269 *slot = t;
1270 /* Make a new node for next time round. */
1271 int_cst_node = make_node (INTEGER_CST);
1272 }
1273 }
1274
1275 return t;
1276 }
1277
1278 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1279 and the rest are zeros. */
1280
1281 tree
1282 build_low_bits_mask (tree type, unsigned bits)
1283 {
1284 double_int mask;
1285
1286 gcc_assert (bits <= TYPE_PRECISION (type));
1287
1288 if (bits == TYPE_PRECISION (type)
1289 && !TYPE_UNSIGNED (type))
1290 /* Sign extended all-ones mask. */
1291 mask = double_int_minus_one;
1292 else
1293 mask = double_int_mask (bits);
1294
1295 return build_int_cst_wide (type, mask.low, mask.high);
1296 }
1297
1298 /* Checks that X is integer constant that can be expressed in (unsigned)
1299 HOST_WIDE_INT without loss of precision. */
1300
1301 bool
1302 cst_and_fits_in_hwi (const_tree x)
1303 {
1304 if (TREE_CODE (x) != INTEGER_CST)
1305 return false;
1306
1307 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1308 return false;
1309
1310 return (TREE_INT_CST_HIGH (x) == 0
1311 || TREE_INT_CST_HIGH (x) == -1);
1312 }
1313
1314 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1315 are in a list pointed to by VALS. */
1316
1317 tree
1318 build_vector (tree type, tree vals)
1319 {
1320 tree v = make_node (VECTOR_CST);
1321 int over = 0;
1322 tree link;
1323 unsigned cnt = 0;
1324
1325 TREE_VECTOR_CST_ELTS (v) = vals;
1326 TREE_TYPE (v) = type;
1327
1328 /* Iterate through elements and check for overflow. */
1329 for (link = vals; link; link = TREE_CHAIN (link))
1330 {
1331 tree value = TREE_VALUE (link);
1332 cnt++;
1333
1334 /* Don't crash if we get an address constant. */
1335 if (!CONSTANT_CLASS_P (value))
1336 continue;
1337
1338 over |= TREE_OVERFLOW (value);
1339 }
1340
1341 gcc_assert (cnt == TYPE_VECTOR_SUBPARTS (type));
1342
1343 TREE_OVERFLOW (v) = over;
1344 return v;
1345 }
1346
1347 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1348 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1349
1350 tree
1351 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1352 {
1353 tree list = NULL_TREE;
1354 unsigned HOST_WIDE_INT idx;
1355 tree value;
1356
1357 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1358 list = tree_cons (NULL_TREE, value, list);
1359 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1360 list = tree_cons (NULL_TREE,
1361 build_zero_cst (TREE_TYPE (type)), list);
1362 return build_vector (type, nreverse (list));
1363 }
1364
1365 /* Build a vector of type VECTYPE where all the elements are SCs. */
1366 tree
1367 build_vector_from_val (tree vectype, tree sc)
1368 {
1369 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1370 VEC(constructor_elt, gc) *v = NULL;
1371
1372 if (sc == error_mark_node)
1373 return sc;
1374
1375 /* Verify that the vector type is suitable for SC. Note that there
1376 is some inconsistency in the type-system with respect to restrict
1377 qualifications of pointers. Vector types always have a main-variant
1378 element type and the qualification is applied to the vector-type.
1379 So TREE_TYPE (vector-type) does not return a properly qualified
1380 vector element-type. */
1381 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1382 TREE_TYPE (vectype)));
1383
1384 v = VEC_alloc (constructor_elt, gc, nunits);
1385 for (i = 0; i < nunits; ++i)
1386 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1387
1388 if (CONSTANT_CLASS_P (sc))
1389 return build_vector_from_ctor (vectype, v);
1390 else
1391 return build_constructor (vectype, v);
1392 }
1393
1394 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1395 are in the VEC pointed to by VALS. */
1396 tree
1397 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1398 {
1399 tree c = make_node (CONSTRUCTOR);
1400 unsigned int i;
1401 constructor_elt *elt;
1402 bool constant_p = true;
1403
1404 TREE_TYPE (c) = type;
1405 CONSTRUCTOR_ELTS (c) = vals;
1406
1407 FOR_EACH_VEC_ELT (constructor_elt, vals, i, elt)
1408 if (!TREE_CONSTANT (elt->value))
1409 {
1410 constant_p = false;
1411 break;
1412 }
1413
1414 TREE_CONSTANT (c) = constant_p;
1415
1416 return c;
1417 }
1418
1419 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1420 INDEX and VALUE. */
1421 tree
1422 build_constructor_single (tree type, tree index, tree value)
1423 {
1424 VEC(constructor_elt,gc) *v;
1425 constructor_elt *elt;
1426
1427 v = VEC_alloc (constructor_elt, gc, 1);
1428 elt = VEC_quick_push (constructor_elt, v, NULL);
1429 elt->index = index;
1430 elt->value = value;
1431
1432 return build_constructor (type, v);
1433 }
1434
1435
1436 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1437 are in a list pointed to by VALS. */
1438 tree
1439 build_constructor_from_list (tree type, tree vals)
1440 {
1441 tree t;
1442 VEC(constructor_elt,gc) *v = NULL;
1443
1444 if (vals)
1445 {
1446 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1447 for (t = vals; t; t = TREE_CHAIN (t))
1448 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1449 }
1450
1451 return build_constructor (type, v);
1452 }
1453
1454 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1455
1456 tree
1457 build_fixed (tree type, FIXED_VALUE_TYPE f)
1458 {
1459 tree v;
1460 FIXED_VALUE_TYPE *fp;
1461
1462 v = make_node (FIXED_CST);
1463 fp = ggc_alloc_fixed_value ();
1464 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1465
1466 TREE_TYPE (v) = type;
1467 TREE_FIXED_CST_PTR (v) = fp;
1468 return v;
1469 }
1470
1471 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1472
1473 tree
1474 build_real (tree type, REAL_VALUE_TYPE d)
1475 {
1476 tree v;
1477 REAL_VALUE_TYPE *dp;
1478 int overflow = 0;
1479
1480 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1481 Consider doing it via real_convert now. */
1482
1483 v = make_node (REAL_CST);
1484 dp = ggc_alloc_real_value ();
1485 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1486
1487 TREE_TYPE (v) = type;
1488 TREE_REAL_CST_PTR (v) = dp;
1489 TREE_OVERFLOW (v) = overflow;
1490 return v;
1491 }
1492
1493 /* Return a new REAL_CST node whose type is TYPE
1494 and whose value is the integer value of the INTEGER_CST node I. */
1495
1496 REAL_VALUE_TYPE
1497 real_value_from_int_cst (const_tree type, const_tree i)
1498 {
1499 REAL_VALUE_TYPE d;
1500
1501 /* Clear all bits of the real value type so that we can later do
1502 bitwise comparisons to see if two values are the same. */
1503 memset (&d, 0, sizeof d);
1504
1505 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1506 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1507 TYPE_UNSIGNED (TREE_TYPE (i)));
1508 return d;
1509 }
1510
1511 /* Given a tree representing an integer constant I, return a tree
1512 representing the same value as a floating-point constant of type TYPE. */
1513
1514 tree
1515 build_real_from_int_cst (tree type, const_tree i)
1516 {
1517 tree v;
1518 int overflow = TREE_OVERFLOW (i);
1519
1520 v = build_real (type, real_value_from_int_cst (type, i));
1521
1522 TREE_OVERFLOW (v) |= overflow;
1523 return v;
1524 }
1525
1526 /* Return a newly constructed STRING_CST node whose value is
1527 the LEN characters at STR.
1528 Note that for a C string literal, LEN should include the trailing NUL.
1529 The TREE_TYPE is not initialized. */
1530
1531 tree
1532 build_string (int len, const char *str)
1533 {
1534 tree s;
1535 size_t length;
1536
1537 /* Do not waste bytes provided by padding of struct tree_string. */
1538 length = len + offsetof (struct tree_string, str) + 1;
1539
1540 record_node_allocation_statistics (STRING_CST, length);
1541
1542 s = ggc_alloc_tree_node (length);
1543
1544 memset (s, 0, sizeof (struct tree_typed));
1545 TREE_SET_CODE (s, STRING_CST);
1546 TREE_CONSTANT (s) = 1;
1547 TREE_STRING_LENGTH (s) = len;
1548 memcpy (s->string.str, str, len);
1549 s->string.str[len] = '\0';
1550
1551 return s;
1552 }
1553
1554 /* Return a newly constructed COMPLEX_CST node whose value is
1555 specified by the real and imaginary parts REAL and IMAG.
1556 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1557 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1558
1559 tree
1560 build_complex (tree type, tree real, tree imag)
1561 {
1562 tree t = make_node (COMPLEX_CST);
1563
1564 TREE_REALPART (t) = real;
1565 TREE_IMAGPART (t) = imag;
1566 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1567 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1568 return t;
1569 }
1570
1571 /* Return a constant of arithmetic type TYPE which is the
1572 multiplicative identity of the set TYPE. */
1573
1574 tree
1575 build_one_cst (tree type)
1576 {
1577 switch (TREE_CODE (type))
1578 {
1579 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1580 case POINTER_TYPE: case REFERENCE_TYPE:
1581 case OFFSET_TYPE:
1582 return build_int_cst (type, 1);
1583
1584 case REAL_TYPE:
1585 return build_real (type, dconst1);
1586
1587 case FIXED_POINT_TYPE:
1588 /* We can only generate 1 for accum types. */
1589 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1590 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1591
1592 case VECTOR_TYPE:
1593 {
1594 tree scalar = build_one_cst (TREE_TYPE (type));
1595
1596 return build_vector_from_val (type, scalar);
1597 }
1598
1599 case COMPLEX_TYPE:
1600 return build_complex (type,
1601 build_one_cst (TREE_TYPE (type)),
1602 build_zero_cst (TREE_TYPE (type)));
1603
1604 default:
1605 gcc_unreachable ();
1606 }
1607 }
1608
1609 /* Build 0 constant of type TYPE. This is used by constructor folding
1610 and thus the constant should be represented in memory by
1611 zero(es). */
1612
1613 tree
1614 build_zero_cst (tree type)
1615 {
1616 switch (TREE_CODE (type))
1617 {
1618 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1619 case POINTER_TYPE: case REFERENCE_TYPE:
1620 case OFFSET_TYPE:
1621 return build_int_cst (type, 0);
1622
1623 case REAL_TYPE:
1624 return build_real (type, dconst0);
1625
1626 case FIXED_POINT_TYPE:
1627 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1628
1629 case VECTOR_TYPE:
1630 {
1631 tree scalar = build_zero_cst (TREE_TYPE (type));
1632
1633 return build_vector_from_val (type, scalar);
1634 }
1635
1636 case COMPLEX_TYPE:
1637 {
1638 tree zero = build_zero_cst (TREE_TYPE (type));
1639
1640 return build_complex (type, zero, zero);
1641 }
1642
1643 default:
1644 if (!AGGREGATE_TYPE_P (type))
1645 return fold_convert (type, integer_zero_node);
1646 return build_constructor (type, NULL);
1647 }
1648 }
1649
1650
1651 /* Build a BINFO with LEN language slots. */
1652
1653 tree
1654 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1655 {
1656 tree t;
1657 size_t length = (offsetof (struct tree_binfo, base_binfos)
1658 + VEC_embedded_size (tree, base_binfos));
1659
1660 record_node_allocation_statistics (TREE_BINFO, length);
1661
1662 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1663
1664 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1665
1666 TREE_SET_CODE (t, TREE_BINFO);
1667
1668 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1669
1670 return t;
1671 }
1672
1673 /* Create a CASE_LABEL_EXPR tree node and return it. */
1674
1675 tree
1676 build_case_label (tree low_value, tree high_value, tree label_decl)
1677 {
1678 tree t = make_node (CASE_LABEL_EXPR);
1679
1680 TREE_TYPE (t) = void_type_node;
1681 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
1682
1683 CASE_LOW (t) = low_value;
1684 CASE_HIGH (t) = high_value;
1685 CASE_LABEL (t) = label_decl;
1686 CASE_CHAIN (t) = NULL_TREE;
1687
1688 return t;
1689 }
1690
1691 /* Build a newly constructed TREE_VEC node of length LEN. */
1692
1693 tree
1694 make_tree_vec_stat (int len MEM_STAT_DECL)
1695 {
1696 tree t;
1697 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1698
1699 record_node_allocation_statistics (TREE_VEC, length);
1700
1701 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1702
1703 TREE_SET_CODE (t, TREE_VEC);
1704 TREE_VEC_LENGTH (t) = len;
1705
1706 return t;
1707 }
1708 \f
1709 /* Return 1 if EXPR is the integer constant zero or a complex constant
1710 of zero. */
1711
1712 int
1713 integer_zerop (const_tree expr)
1714 {
1715 STRIP_NOPS (expr);
1716
1717 return ((TREE_CODE (expr) == INTEGER_CST
1718 && TREE_INT_CST_LOW (expr) == 0
1719 && TREE_INT_CST_HIGH (expr) == 0)
1720 || (TREE_CODE (expr) == COMPLEX_CST
1721 && integer_zerop (TREE_REALPART (expr))
1722 && integer_zerop (TREE_IMAGPART (expr))));
1723 }
1724
1725 /* Return 1 if EXPR is the integer constant one or the corresponding
1726 complex constant. */
1727
1728 int
1729 integer_onep (const_tree expr)
1730 {
1731 STRIP_NOPS (expr);
1732
1733 return ((TREE_CODE (expr) == INTEGER_CST
1734 && TREE_INT_CST_LOW (expr) == 1
1735 && TREE_INT_CST_HIGH (expr) == 0)
1736 || (TREE_CODE (expr) == COMPLEX_CST
1737 && integer_onep (TREE_REALPART (expr))
1738 && integer_zerop (TREE_IMAGPART (expr))));
1739 }
1740
1741 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1742 it contains. Likewise for the corresponding complex constant. */
1743
1744 int
1745 integer_all_onesp (const_tree expr)
1746 {
1747 int prec;
1748 int uns;
1749
1750 STRIP_NOPS (expr);
1751
1752 if (TREE_CODE (expr) == COMPLEX_CST
1753 && integer_all_onesp (TREE_REALPART (expr))
1754 && integer_zerop (TREE_IMAGPART (expr)))
1755 return 1;
1756
1757 else if (TREE_CODE (expr) != INTEGER_CST)
1758 return 0;
1759
1760 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1761 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1762 && TREE_INT_CST_HIGH (expr) == -1)
1763 return 1;
1764 if (!uns)
1765 return 0;
1766
1767 prec = TYPE_PRECISION (TREE_TYPE (expr));
1768 if (prec >= HOST_BITS_PER_WIDE_INT)
1769 {
1770 HOST_WIDE_INT high_value;
1771 int shift_amount;
1772
1773 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1774
1775 /* Can not handle precisions greater than twice the host int size. */
1776 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1777 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1778 /* Shifting by the host word size is undefined according to the ANSI
1779 standard, so we must handle this as a special case. */
1780 high_value = -1;
1781 else
1782 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1783
1784 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1785 && TREE_INT_CST_HIGH (expr) == high_value);
1786 }
1787 else
1788 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1789 }
1790
1791 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1792 one bit on). */
1793
1794 int
1795 integer_pow2p (const_tree expr)
1796 {
1797 int prec;
1798 HOST_WIDE_INT high, low;
1799
1800 STRIP_NOPS (expr);
1801
1802 if (TREE_CODE (expr) == COMPLEX_CST
1803 && integer_pow2p (TREE_REALPART (expr))
1804 && integer_zerop (TREE_IMAGPART (expr)))
1805 return 1;
1806
1807 if (TREE_CODE (expr) != INTEGER_CST)
1808 return 0;
1809
1810 prec = TYPE_PRECISION (TREE_TYPE (expr));
1811 high = TREE_INT_CST_HIGH (expr);
1812 low = TREE_INT_CST_LOW (expr);
1813
1814 /* First clear all bits that are beyond the type's precision in case
1815 we've been sign extended. */
1816
1817 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1818 ;
1819 else if (prec > HOST_BITS_PER_WIDE_INT)
1820 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1821 else
1822 {
1823 high = 0;
1824 if (prec < HOST_BITS_PER_WIDE_INT)
1825 low &= ~((HOST_WIDE_INT) (-1) << prec);
1826 }
1827
1828 if (high == 0 && low == 0)
1829 return 0;
1830
1831 return ((high == 0 && (low & (low - 1)) == 0)
1832 || (low == 0 && (high & (high - 1)) == 0));
1833 }
1834
1835 /* Return 1 if EXPR is an integer constant other than zero or a
1836 complex constant other than zero. */
1837
1838 int
1839 integer_nonzerop (const_tree expr)
1840 {
1841 STRIP_NOPS (expr);
1842
1843 return ((TREE_CODE (expr) == INTEGER_CST
1844 && (TREE_INT_CST_LOW (expr) != 0
1845 || TREE_INT_CST_HIGH (expr) != 0))
1846 || (TREE_CODE (expr) == COMPLEX_CST
1847 && (integer_nonzerop (TREE_REALPART (expr))
1848 || integer_nonzerop (TREE_IMAGPART (expr)))));
1849 }
1850
1851 /* Return 1 if EXPR is the fixed-point constant zero. */
1852
1853 int
1854 fixed_zerop (const_tree expr)
1855 {
1856 return (TREE_CODE (expr) == FIXED_CST
1857 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1858 }
1859
1860 /* Return the power of two represented by a tree node known to be a
1861 power of two. */
1862
1863 int
1864 tree_log2 (const_tree expr)
1865 {
1866 int prec;
1867 HOST_WIDE_INT high, low;
1868
1869 STRIP_NOPS (expr);
1870
1871 if (TREE_CODE (expr) == COMPLEX_CST)
1872 return tree_log2 (TREE_REALPART (expr));
1873
1874 prec = TYPE_PRECISION (TREE_TYPE (expr));
1875 high = TREE_INT_CST_HIGH (expr);
1876 low = TREE_INT_CST_LOW (expr);
1877
1878 /* First clear all bits that are beyond the type's precision in case
1879 we've been sign extended. */
1880
1881 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1882 ;
1883 else if (prec > HOST_BITS_PER_WIDE_INT)
1884 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1885 else
1886 {
1887 high = 0;
1888 if (prec < HOST_BITS_PER_WIDE_INT)
1889 low &= ~((HOST_WIDE_INT) (-1) << prec);
1890 }
1891
1892 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1893 : exact_log2 (low));
1894 }
1895
1896 /* Similar, but return the largest integer Y such that 2 ** Y is less
1897 than or equal to EXPR. */
1898
1899 int
1900 tree_floor_log2 (const_tree expr)
1901 {
1902 int prec;
1903 HOST_WIDE_INT high, low;
1904
1905 STRIP_NOPS (expr);
1906
1907 if (TREE_CODE (expr) == COMPLEX_CST)
1908 return tree_log2 (TREE_REALPART (expr));
1909
1910 prec = TYPE_PRECISION (TREE_TYPE (expr));
1911 high = TREE_INT_CST_HIGH (expr);
1912 low = TREE_INT_CST_LOW (expr);
1913
1914 /* First clear all bits that are beyond the type's precision in case
1915 we've been sign extended. Ignore if type's precision hasn't been set
1916 since what we are doing is setting it. */
1917
1918 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1919 ;
1920 else if (prec > HOST_BITS_PER_WIDE_INT)
1921 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1922 else
1923 {
1924 high = 0;
1925 if (prec < HOST_BITS_PER_WIDE_INT)
1926 low &= ~((HOST_WIDE_INT) (-1) << prec);
1927 }
1928
1929 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1930 : floor_log2 (low));
1931 }
1932
1933 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1934 decimal float constants, so don't return 1 for them. */
1935
1936 int
1937 real_zerop (const_tree expr)
1938 {
1939 STRIP_NOPS (expr);
1940
1941 return ((TREE_CODE (expr) == REAL_CST
1942 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1943 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1944 || (TREE_CODE (expr) == COMPLEX_CST
1945 && real_zerop (TREE_REALPART (expr))
1946 && real_zerop (TREE_IMAGPART (expr))));
1947 }
1948
1949 /* Return 1 if EXPR is the real constant one in real or complex form.
1950 Trailing zeroes matter for decimal float constants, so don't return
1951 1 for them. */
1952
1953 int
1954 real_onep (const_tree expr)
1955 {
1956 STRIP_NOPS (expr);
1957
1958 return ((TREE_CODE (expr) == REAL_CST
1959 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1960 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1961 || (TREE_CODE (expr) == COMPLEX_CST
1962 && real_onep (TREE_REALPART (expr))
1963 && real_zerop (TREE_IMAGPART (expr))));
1964 }
1965
1966 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1967 for decimal float constants, so don't return 1 for them. */
1968
1969 int
1970 real_twop (const_tree expr)
1971 {
1972 STRIP_NOPS (expr);
1973
1974 return ((TREE_CODE (expr) == REAL_CST
1975 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1976 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1977 || (TREE_CODE (expr) == COMPLEX_CST
1978 && real_twop (TREE_REALPART (expr))
1979 && real_zerop (TREE_IMAGPART (expr))));
1980 }
1981
1982 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1983 matter for decimal float constants, so don't return 1 for them. */
1984
1985 int
1986 real_minus_onep (const_tree expr)
1987 {
1988 STRIP_NOPS (expr);
1989
1990 return ((TREE_CODE (expr) == REAL_CST
1991 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1992 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1993 || (TREE_CODE (expr) == COMPLEX_CST
1994 && real_minus_onep (TREE_REALPART (expr))
1995 && real_zerop (TREE_IMAGPART (expr))));
1996 }
1997
1998 /* Nonzero if EXP is a constant or a cast of a constant. */
1999
2000 int
2001 really_constant_p (const_tree exp)
2002 {
2003 /* This is not quite the same as STRIP_NOPS. It does more. */
2004 while (CONVERT_EXPR_P (exp)
2005 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2006 exp = TREE_OPERAND (exp, 0);
2007 return TREE_CONSTANT (exp);
2008 }
2009 \f
2010 /* Return first list element whose TREE_VALUE is ELEM.
2011 Return 0 if ELEM is not in LIST. */
2012
2013 tree
2014 value_member (tree elem, tree list)
2015 {
2016 while (list)
2017 {
2018 if (elem == TREE_VALUE (list))
2019 return list;
2020 list = TREE_CHAIN (list);
2021 }
2022 return NULL_TREE;
2023 }
2024
2025 /* Return first list element whose TREE_PURPOSE is ELEM.
2026 Return 0 if ELEM is not in LIST. */
2027
2028 tree
2029 purpose_member (const_tree elem, tree list)
2030 {
2031 while (list)
2032 {
2033 if (elem == TREE_PURPOSE (list))
2034 return list;
2035 list = TREE_CHAIN (list);
2036 }
2037 return NULL_TREE;
2038 }
2039
2040 /* Return true if ELEM is in V. */
2041
2042 bool
2043 vec_member (const_tree elem, VEC(tree,gc) *v)
2044 {
2045 unsigned ix;
2046 tree t;
2047 FOR_EACH_VEC_ELT (tree, v, ix, t)
2048 if (elem == t)
2049 return true;
2050 return false;
2051 }
2052
2053 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2054 NULL_TREE. */
2055
2056 tree
2057 chain_index (int idx, tree chain)
2058 {
2059 for (; chain && idx > 0; --idx)
2060 chain = TREE_CHAIN (chain);
2061 return chain;
2062 }
2063
2064 /* Return nonzero if ELEM is part of the chain CHAIN. */
2065
2066 int
2067 chain_member (const_tree elem, const_tree chain)
2068 {
2069 while (chain)
2070 {
2071 if (elem == chain)
2072 return 1;
2073 chain = DECL_CHAIN (chain);
2074 }
2075
2076 return 0;
2077 }
2078
2079 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2080 We expect a null pointer to mark the end of the chain.
2081 This is the Lisp primitive `length'. */
2082
2083 int
2084 list_length (const_tree t)
2085 {
2086 const_tree p = t;
2087 #ifdef ENABLE_TREE_CHECKING
2088 const_tree q = t;
2089 #endif
2090 int len = 0;
2091
2092 while (p)
2093 {
2094 p = TREE_CHAIN (p);
2095 #ifdef ENABLE_TREE_CHECKING
2096 if (len % 2)
2097 q = TREE_CHAIN (q);
2098 gcc_assert (p != q);
2099 #endif
2100 len++;
2101 }
2102
2103 return len;
2104 }
2105
2106 /* Returns the number of FIELD_DECLs in TYPE. */
2107
2108 int
2109 fields_length (const_tree type)
2110 {
2111 tree t = TYPE_FIELDS (type);
2112 int count = 0;
2113
2114 for (; t; t = DECL_CHAIN (t))
2115 if (TREE_CODE (t) == FIELD_DECL)
2116 ++count;
2117
2118 return count;
2119 }
2120
2121 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2122 UNION_TYPE TYPE, or NULL_TREE if none. */
2123
2124 tree
2125 first_field (const_tree type)
2126 {
2127 tree t = TYPE_FIELDS (type);
2128 while (t && TREE_CODE (t) != FIELD_DECL)
2129 t = TREE_CHAIN (t);
2130 return t;
2131 }
2132
2133 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2134 by modifying the last node in chain 1 to point to chain 2.
2135 This is the Lisp primitive `nconc'. */
2136
2137 tree
2138 chainon (tree op1, tree op2)
2139 {
2140 tree t1;
2141
2142 if (!op1)
2143 return op2;
2144 if (!op2)
2145 return op1;
2146
2147 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2148 continue;
2149 TREE_CHAIN (t1) = op2;
2150
2151 #ifdef ENABLE_TREE_CHECKING
2152 {
2153 tree t2;
2154 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2155 gcc_assert (t2 != t1);
2156 }
2157 #endif
2158
2159 return op1;
2160 }
2161
2162 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2163
2164 tree
2165 tree_last (tree chain)
2166 {
2167 tree next;
2168 if (chain)
2169 while ((next = TREE_CHAIN (chain)))
2170 chain = next;
2171 return chain;
2172 }
2173
2174 /* Reverse the order of elements in the chain T,
2175 and return the new head of the chain (old last element). */
2176
2177 tree
2178 nreverse (tree t)
2179 {
2180 tree prev = 0, decl, next;
2181 for (decl = t; decl; decl = next)
2182 {
2183 /* We shouldn't be using this function to reverse BLOCK chains; we
2184 have blocks_nreverse for that. */
2185 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2186 next = TREE_CHAIN (decl);
2187 TREE_CHAIN (decl) = prev;
2188 prev = decl;
2189 }
2190 return prev;
2191 }
2192 \f
2193 /* Return a newly created TREE_LIST node whose
2194 purpose and value fields are PARM and VALUE. */
2195
2196 tree
2197 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2198 {
2199 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2200 TREE_PURPOSE (t) = parm;
2201 TREE_VALUE (t) = value;
2202 return t;
2203 }
2204
2205 /* Build a chain of TREE_LIST nodes from a vector. */
2206
2207 tree
2208 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2209 {
2210 tree ret = NULL_TREE;
2211 tree *pp = &ret;
2212 unsigned int i;
2213 tree t;
2214 FOR_EACH_VEC_ELT (tree, vec, i, t)
2215 {
2216 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2217 pp = &TREE_CHAIN (*pp);
2218 }
2219 return ret;
2220 }
2221
2222 /* Return a newly created TREE_LIST node whose
2223 purpose and value fields are PURPOSE and VALUE
2224 and whose TREE_CHAIN is CHAIN. */
2225
2226 tree
2227 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2228 {
2229 tree node;
2230
2231 node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list)
2232 PASS_MEM_STAT);
2233 memset (node, 0, sizeof (struct tree_common));
2234
2235 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2236
2237 TREE_SET_CODE (node, TREE_LIST);
2238 TREE_CHAIN (node) = chain;
2239 TREE_PURPOSE (node) = purpose;
2240 TREE_VALUE (node) = value;
2241 return node;
2242 }
2243
2244 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2245 trees. */
2246
2247 VEC(tree,gc) *
2248 ctor_to_vec (tree ctor)
2249 {
2250 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2251 unsigned int ix;
2252 tree val;
2253
2254 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2255 VEC_quick_push (tree, vec, val);
2256
2257 return vec;
2258 }
2259 \f
2260 /* Return the size nominally occupied by an object of type TYPE
2261 when it resides in memory. The value is measured in units of bytes,
2262 and its data type is that normally used for type sizes
2263 (which is the first type created by make_signed_type or
2264 make_unsigned_type). */
2265
2266 tree
2267 size_in_bytes (const_tree type)
2268 {
2269 tree t;
2270
2271 if (type == error_mark_node)
2272 return integer_zero_node;
2273
2274 type = TYPE_MAIN_VARIANT (type);
2275 t = TYPE_SIZE_UNIT (type);
2276
2277 if (t == 0)
2278 {
2279 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2280 return size_zero_node;
2281 }
2282
2283 return t;
2284 }
2285
2286 /* Return the size of TYPE (in bytes) as a wide integer
2287 or return -1 if the size can vary or is larger than an integer. */
2288
2289 HOST_WIDE_INT
2290 int_size_in_bytes (const_tree type)
2291 {
2292 tree t;
2293
2294 if (type == error_mark_node)
2295 return 0;
2296
2297 type = TYPE_MAIN_VARIANT (type);
2298 t = TYPE_SIZE_UNIT (type);
2299 if (t == 0
2300 || TREE_CODE (t) != INTEGER_CST
2301 || TREE_INT_CST_HIGH (t) != 0
2302 /* If the result would appear negative, it's too big to represent. */
2303 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2304 return -1;
2305
2306 return TREE_INT_CST_LOW (t);
2307 }
2308
2309 /* Return the maximum size of TYPE (in bytes) as a wide integer
2310 or return -1 if the size can vary or is larger than an integer. */
2311
2312 HOST_WIDE_INT
2313 max_int_size_in_bytes (const_tree type)
2314 {
2315 HOST_WIDE_INT size = -1;
2316 tree size_tree;
2317
2318 /* If this is an array type, check for a possible MAX_SIZE attached. */
2319
2320 if (TREE_CODE (type) == ARRAY_TYPE)
2321 {
2322 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2323
2324 if (size_tree && host_integerp (size_tree, 1))
2325 size = tree_low_cst (size_tree, 1);
2326 }
2327
2328 /* If we still haven't been able to get a size, see if the language
2329 can compute a maximum size. */
2330
2331 if (size == -1)
2332 {
2333 size_tree = lang_hooks.types.max_size (type);
2334
2335 if (size_tree && host_integerp (size_tree, 1))
2336 size = tree_low_cst (size_tree, 1);
2337 }
2338
2339 return size;
2340 }
2341
2342 /* Returns a tree for the size of EXP in bytes. */
2343
2344 tree
2345 tree_expr_size (const_tree exp)
2346 {
2347 if (DECL_P (exp)
2348 && DECL_SIZE_UNIT (exp) != 0)
2349 return DECL_SIZE_UNIT (exp);
2350 else
2351 return size_in_bytes (TREE_TYPE (exp));
2352 }
2353 \f
2354 /* Return the bit position of FIELD, in bits from the start of the record.
2355 This is a tree of type bitsizetype. */
2356
2357 tree
2358 bit_position (const_tree field)
2359 {
2360 return bit_from_pos (DECL_FIELD_OFFSET (field),
2361 DECL_FIELD_BIT_OFFSET (field));
2362 }
2363
2364 /* Likewise, but return as an integer. It must be representable in
2365 that way (since it could be a signed value, we don't have the
2366 option of returning -1 like int_size_in_byte can. */
2367
2368 HOST_WIDE_INT
2369 int_bit_position (const_tree field)
2370 {
2371 return tree_low_cst (bit_position (field), 0);
2372 }
2373 \f
2374 /* Return the byte position of FIELD, in bytes from the start of the record.
2375 This is a tree of type sizetype. */
2376
2377 tree
2378 byte_position (const_tree field)
2379 {
2380 return byte_from_pos (DECL_FIELD_OFFSET (field),
2381 DECL_FIELD_BIT_OFFSET (field));
2382 }
2383
2384 /* Likewise, but return as an integer. It must be representable in
2385 that way (since it could be a signed value, we don't have the
2386 option of returning -1 like int_size_in_byte can. */
2387
2388 HOST_WIDE_INT
2389 int_byte_position (const_tree field)
2390 {
2391 return tree_low_cst (byte_position (field), 0);
2392 }
2393 \f
2394 /* Return the strictest alignment, in bits, that T is known to have. */
2395
2396 unsigned int
2397 expr_align (const_tree t)
2398 {
2399 unsigned int align0, align1;
2400
2401 switch (TREE_CODE (t))
2402 {
2403 CASE_CONVERT: case NON_LVALUE_EXPR:
2404 /* If we have conversions, we know that the alignment of the
2405 object must meet each of the alignments of the types. */
2406 align0 = expr_align (TREE_OPERAND (t, 0));
2407 align1 = TYPE_ALIGN (TREE_TYPE (t));
2408 return MAX (align0, align1);
2409
2410 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2411 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2412 case CLEANUP_POINT_EXPR:
2413 /* These don't change the alignment of an object. */
2414 return expr_align (TREE_OPERAND (t, 0));
2415
2416 case COND_EXPR:
2417 /* The best we can do is say that the alignment is the least aligned
2418 of the two arms. */
2419 align0 = expr_align (TREE_OPERAND (t, 1));
2420 align1 = expr_align (TREE_OPERAND (t, 2));
2421 return MIN (align0, align1);
2422
2423 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2424 meaningfully, it's always 1. */
2425 case LABEL_DECL: case CONST_DECL:
2426 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2427 case FUNCTION_DECL:
2428 gcc_assert (DECL_ALIGN (t) != 0);
2429 return DECL_ALIGN (t);
2430
2431 default:
2432 break;
2433 }
2434
2435 /* Otherwise take the alignment from that of the type. */
2436 return TYPE_ALIGN (TREE_TYPE (t));
2437 }
2438 \f
2439 /* Return, as a tree node, the number of elements for TYPE (which is an
2440 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2441
2442 tree
2443 array_type_nelts (const_tree type)
2444 {
2445 tree index_type, min, max;
2446
2447 /* If they did it with unspecified bounds, then we should have already
2448 given an error about it before we got here. */
2449 if (! TYPE_DOMAIN (type))
2450 return error_mark_node;
2451
2452 index_type = TYPE_DOMAIN (type);
2453 min = TYPE_MIN_VALUE (index_type);
2454 max = TYPE_MAX_VALUE (index_type);
2455
2456 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
2457 if (!max)
2458 return error_mark_node;
2459
2460 return (integer_zerop (min)
2461 ? max
2462 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2463 }
2464 \f
2465 /* If arg is static -- a reference to an object in static storage -- then
2466 return the object. This is not the same as the C meaning of `static'.
2467 If arg isn't static, return NULL. */
2468
2469 tree
2470 staticp (tree arg)
2471 {
2472 switch (TREE_CODE (arg))
2473 {
2474 case FUNCTION_DECL:
2475 /* Nested functions are static, even though taking their address will
2476 involve a trampoline as we unnest the nested function and create
2477 the trampoline on the tree level. */
2478 return arg;
2479
2480 case VAR_DECL:
2481 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2482 && ! DECL_THREAD_LOCAL_P (arg)
2483 && ! DECL_DLLIMPORT_P (arg)
2484 ? arg : NULL);
2485
2486 case CONST_DECL:
2487 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2488 ? arg : NULL);
2489
2490 case CONSTRUCTOR:
2491 return TREE_STATIC (arg) ? arg : NULL;
2492
2493 case LABEL_DECL:
2494 case STRING_CST:
2495 return arg;
2496
2497 case COMPONENT_REF:
2498 /* If the thing being referenced is not a field, then it is
2499 something language specific. */
2500 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2501
2502 /* If we are referencing a bitfield, we can't evaluate an
2503 ADDR_EXPR at compile time and so it isn't a constant. */
2504 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2505 return NULL;
2506
2507 return staticp (TREE_OPERAND (arg, 0));
2508
2509 case BIT_FIELD_REF:
2510 return NULL;
2511
2512 case INDIRECT_REF:
2513 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2514
2515 case ARRAY_REF:
2516 case ARRAY_RANGE_REF:
2517 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2518 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2519 return staticp (TREE_OPERAND (arg, 0));
2520 else
2521 return NULL;
2522
2523 case COMPOUND_LITERAL_EXPR:
2524 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2525
2526 default:
2527 return NULL;
2528 }
2529 }
2530
2531 \f
2532
2533
2534 /* Return whether OP is a DECL whose address is function-invariant. */
2535
2536 bool
2537 decl_address_invariant_p (const_tree op)
2538 {
2539 /* The conditions below are slightly less strict than the one in
2540 staticp. */
2541
2542 switch (TREE_CODE (op))
2543 {
2544 case PARM_DECL:
2545 case RESULT_DECL:
2546 case LABEL_DECL:
2547 case FUNCTION_DECL:
2548 return true;
2549
2550 case VAR_DECL:
2551 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2552 || DECL_THREAD_LOCAL_P (op)
2553 || DECL_CONTEXT (op) == current_function_decl
2554 || decl_function_context (op) == current_function_decl)
2555 return true;
2556 break;
2557
2558 case CONST_DECL:
2559 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2560 || decl_function_context (op) == current_function_decl)
2561 return true;
2562 break;
2563
2564 default:
2565 break;
2566 }
2567
2568 return false;
2569 }
2570
2571 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2572
2573 bool
2574 decl_address_ip_invariant_p (const_tree op)
2575 {
2576 /* The conditions below are slightly less strict than the one in
2577 staticp. */
2578
2579 switch (TREE_CODE (op))
2580 {
2581 case LABEL_DECL:
2582 case FUNCTION_DECL:
2583 case STRING_CST:
2584 return true;
2585
2586 case VAR_DECL:
2587 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2588 && !DECL_DLLIMPORT_P (op))
2589 || DECL_THREAD_LOCAL_P (op))
2590 return true;
2591 break;
2592
2593 case CONST_DECL:
2594 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2595 return true;
2596 break;
2597
2598 default:
2599 break;
2600 }
2601
2602 return false;
2603 }
2604
2605
2606 /* Return true if T is function-invariant (internal function, does
2607 not handle arithmetic; that's handled in skip_simple_arithmetic and
2608 tree_invariant_p). */
2609
2610 static bool tree_invariant_p (tree t);
2611
2612 static bool
2613 tree_invariant_p_1 (tree t)
2614 {
2615 tree op;
2616
2617 if (TREE_CONSTANT (t)
2618 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2619 return true;
2620
2621 switch (TREE_CODE (t))
2622 {
2623 case SAVE_EXPR:
2624 return true;
2625
2626 case ADDR_EXPR:
2627 op = TREE_OPERAND (t, 0);
2628 while (handled_component_p (op))
2629 {
2630 switch (TREE_CODE (op))
2631 {
2632 case ARRAY_REF:
2633 case ARRAY_RANGE_REF:
2634 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2635 || TREE_OPERAND (op, 2) != NULL_TREE
2636 || TREE_OPERAND (op, 3) != NULL_TREE)
2637 return false;
2638 break;
2639
2640 case COMPONENT_REF:
2641 if (TREE_OPERAND (op, 2) != NULL_TREE)
2642 return false;
2643 break;
2644
2645 default:;
2646 }
2647 op = TREE_OPERAND (op, 0);
2648 }
2649
2650 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2651
2652 default:
2653 break;
2654 }
2655
2656 return false;
2657 }
2658
2659 /* Return true if T is function-invariant. */
2660
2661 static bool
2662 tree_invariant_p (tree t)
2663 {
2664 tree inner = skip_simple_arithmetic (t);
2665 return tree_invariant_p_1 (inner);
2666 }
2667
2668 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2669 Do this to any expression which may be used in more than one place,
2670 but must be evaluated only once.
2671
2672 Normally, expand_expr would reevaluate the expression each time.
2673 Calling save_expr produces something that is evaluated and recorded
2674 the first time expand_expr is called on it. Subsequent calls to
2675 expand_expr just reuse the recorded value.
2676
2677 The call to expand_expr that generates code that actually computes
2678 the value is the first call *at compile time*. Subsequent calls
2679 *at compile time* generate code to use the saved value.
2680 This produces correct result provided that *at run time* control
2681 always flows through the insns made by the first expand_expr
2682 before reaching the other places where the save_expr was evaluated.
2683 You, the caller of save_expr, must make sure this is so.
2684
2685 Constants, and certain read-only nodes, are returned with no
2686 SAVE_EXPR because that is safe. Expressions containing placeholders
2687 are not touched; see tree.def for an explanation of what these
2688 are used for. */
2689
2690 tree
2691 save_expr (tree expr)
2692 {
2693 tree t = fold (expr);
2694 tree inner;
2695
2696 /* If the tree evaluates to a constant, then we don't want to hide that
2697 fact (i.e. this allows further folding, and direct checks for constants).
2698 However, a read-only object that has side effects cannot be bypassed.
2699 Since it is no problem to reevaluate literals, we just return the
2700 literal node. */
2701 inner = skip_simple_arithmetic (t);
2702 if (TREE_CODE (inner) == ERROR_MARK)
2703 return inner;
2704
2705 if (tree_invariant_p_1 (inner))
2706 return t;
2707
2708 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2709 it means that the size or offset of some field of an object depends on
2710 the value within another field.
2711
2712 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2713 and some variable since it would then need to be both evaluated once and
2714 evaluated more than once. Front-ends must assure this case cannot
2715 happen by surrounding any such subexpressions in their own SAVE_EXPR
2716 and forcing evaluation at the proper time. */
2717 if (contains_placeholder_p (inner))
2718 return t;
2719
2720 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2721 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2722
2723 /* This expression might be placed ahead of a jump to ensure that the
2724 value was computed on both sides of the jump. So make sure it isn't
2725 eliminated as dead. */
2726 TREE_SIDE_EFFECTS (t) = 1;
2727 return t;
2728 }
2729
2730 /* Look inside EXPR and into any simple arithmetic operations. Return
2731 the innermost non-arithmetic node. */
2732
2733 tree
2734 skip_simple_arithmetic (tree expr)
2735 {
2736 tree inner;
2737
2738 /* We don't care about whether this can be used as an lvalue in this
2739 context. */
2740 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2741 expr = TREE_OPERAND (expr, 0);
2742
2743 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2744 a constant, it will be more efficient to not make another SAVE_EXPR since
2745 it will allow better simplification and GCSE will be able to merge the
2746 computations if they actually occur. */
2747 inner = expr;
2748 while (1)
2749 {
2750 if (UNARY_CLASS_P (inner))
2751 inner = TREE_OPERAND (inner, 0);
2752 else if (BINARY_CLASS_P (inner))
2753 {
2754 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2755 inner = TREE_OPERAND (inner, 0);
2756 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2757 inner = TREE_OPERAND (inner, 1);
2758 else
2759 break;
2760 }
2761 else
2762 break;
2763 }
2764
2765 return inner;
2766 }
2767
2768
2769 /* Return which tree structure is used by T. */
2770
2771 enum tree_node_structure_enum
2772 tree_node_structure (const_tree t)
2773 {
2774 const enum tree_code code = TREE_CODE (t);
2775 return tree_node_structure_for_code (code);
2776 }
2777
2778 /* Set various status flags when building a CALL_EXPR object T. */
2779
2780 static void
2781 process_call_operands (tree t)
2782 {
2783 bool side_effects = TREE_SIDE_EFFECTS (t);
2784 bool read_only = false;
2785 int i = call_expr_flags (t);
2786
2787 /* Calls have side-effects, except those to const or pure functions. */
2788 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2789 side_effects = true;
2790 /* Propagate TREE_READONLY of arguments for const functions. */
2791 if (i & ECF_CONST)
2792 read_only = true;
2793
2794 if (!side_effects || read_only)
2795 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2796 {
2797 tree op = TREE_OPERAND (t, i);
2798 if (op && TREE_SIDE_EFFECTS (op))
2799 side_effects = true;
2800 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2801 read_only = false;
2802 }
2803
2804 TREE_SIDE_EFFECTS (t) = side_effects;
2805 TREE_READONLY (t) = read_only;
2806 }
2807 \f
2808 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
2809 size or offset that depends on a field within a record. */
2810
2811 bool
2812 contains_placeholder_p (const_tree exp)
2813 {
2814 enum tree_code code;
2815
2816 if (!exp)
2817 return 0;
2818
2819 code = TREE_CODE (exp);
2820 if (code == PLACEHOLDER_EXPR)
2821 return 1;
2822
2823 switch (TREE_CODE_CLASS (code))
2824 {
2825 case tcc_reference:
2826 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2827 position computations since they will be converted into a
2828 WITH_RECORD_EXPR involving the reference, which will assume
2829 here will be valid. */
2830 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2831
2832 case tcc_exceptional:
2833 if (code == TREE_LIST)
2834 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2835 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2836 break;
2837
2838 case tcc_unary:
2839 case tcc_binary:
2840 case tcc_comparison:
2841 case tcc_expression:
2842 switch (code)
2843 {
2844 case COMPOUND_EXPR:
2845 /* Ignoring the first operand isn't quite right, but works best. */
2846 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2847
2848 case COND_EXPR:
2849 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2850 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2851 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2852
2853 case SAVE_EXPR:
2854 /* The save_expr function never wraps anything containing
2855 a PLACEHOLDER_EXPR. */
2856 return 0;
2857
2858 default:
2859 break;
2860 }
2861
2862 switch (TREE_CODE_LENGTH (code))
2863 {
2864 case 1:
2865 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2866 case 2:
2867 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2868 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2869 default:
2870 return 0;
2871 }
2872
2873 case tcc_vl_exp:
2874 switch (code)
2875 {
2876 case CALL_EXPR:
2877 {
2878 const_tree arg;
2879 const_call_expr_arg_iterator iter;
2880 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2881 if (CONTAINS_PLACEHOLDER_P (arg))
2882 return 1;
2883 return 0;
2884 }
2885 default:
2886 return 0;
2887 }
2888
2889 default:
2890 return 0;
2891 }
2892 return 0;
2893 }
2894
2895 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
2896 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
2897 field positions. */
2898
2899 static bool
2900 type_contains_placeholder_1 (const_tree type)
2901 {
2902 /* If the size contains a placeholder or the parent type (component type in
2903 the case of arrays) type involves a placeholder, this type does. */
2904 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2905 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2906 || (!POINTER_TYPE_P (type)
2907 && TREE_TYPE (type)
2908 && type_contains_placeholder_p (TREE_TYPE (type))))
2909 return true;
2910
2911 /* Now do type-specific checks. Note that the last part of the check above
2912 greatly limits what we have to do below. */
2913 switch (TREE_CODE (type))
2914 {
2915 case VOID_TYPE:
2916 case COMPLEX_TYPE:
2917 case ENUMERAL_TYPE:
2918 case BOOLEAN_TYPE:
2919 case POINTER_TYPE:
2920 case OFFSET_TYPE:
2921 case REFERENCE_TYPE:
2922 case METHOD_TYPE:
2923 case FUNCTION_TYPE:
2924 case VECTOR_TYPE:
2925 return false;
2926
2927 case INTEGER_TYPE:
2928 case REAL_TYPE:
2929 case FIXED_POINT_TYPE:
2930 /* Here we just check the bounds. */
2931 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2932 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2933
2934 case ARRAY_TYPE:
2935 /* We have already checked the component type above, so just check the
2936 domain type. */
2937 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2938
2939 case RECORD_TYPE:
2940 case UNION_TYPE:
2941 case QUAL_UNION_TYPE:
2942 {
2943 tree field;
2944
2945 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2946 if (TREE_CODE (field) == FIELD_DECL
2947 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2948 || (TREE_CODE (type) == QUAL_UNION_TYPE
2949 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2950 || type_contains_placeholder_p (TREE_TYPE (field))))
2951 return true;
2952
2953 return false;
2954 }
2955
2956 default:
2957 gcc_unreachable ();
2958 }
2959 }
2960
2961 /* Wrapper around above function used to cache its result. */
2962
2963 bool
2964 type_contains_placeholder_p (tree type)
2965 {
2966 bool result;
2967
2968 /* If the contains_placeholder_bits field has been initialized,
2969 then we know the answer. */
2970 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2971 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2972
2973 /* Indicate that we've seen this type node, and the answer is false.
2974 This is what we want to return if we run into recursion via fields. */
2975 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2976
2977 /* Compute the real value. */
2978 result = type_contains_placeholder_1 (type);
2979
2980 /* Store the real value. */
2981 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2982
2983 return result;
2984 }
2985 \f
2986 /* Push tree EXP onto vector QUEUE if it is not already present. */
2987
2988 static void
2989 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2990 {
2991 unsigned int i;
2992 tree iter;
2993
2994 FOR_EACH_VEC_ELT (tree, *queue, i, iter)
2995 if (simple_cst_equal (iter, exp) == 1)
2996 break;
2997
2998 if (!iter)
2999 VEC_safe_push (tree, heap, *queue, exp);
3000 }
3001
3002 /* Given a tree EXP, find all occurences of references to fields
3003 in a PLACEHOLDER_EXPR and place them in vector REFS without
3004 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3005 we assume here that EXP contains only arithmetic expressions
3006 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3007 argument list. */
3008
3009 void
3010 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
3011 {
3012 enum tree_code code = TREE_CODE (exp);
3013 tree inner;
3014 int i;
3015
3016 /* We handle TREE_LIST and COMPONENT_REF separately. */
3017 if (code == TREE_LIST)
3018 {
3019 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3020 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3021 }
3022 else if (code == COMPONENT_REF)
3023 {
3024 for (inner = TREE_OPERAND (exp, 0);
3025 REFERENCE_CLASS_P (inner);
3026 inner = TREE_OPERAND (inner, 0))
3027 ;
3028
3029 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3030 push_without_duplicates (exp, refs);
3031 else
3032 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3033 }
3034 else
3035 switch (TREE_CODE_CLASS (code))
3036 {
3037 case tcc_constant:
3038 break;
3039
3040 case tcc_declaration:
3041 /* Variables allocated to static storage can stay. */
3042 if (!TREE_STATIC (exp))
3043 push_without_duplicates (exp, refs);
3044 break;
3045
3046 case tcc_expression:
3047 /* This is the pattern built in ada/make_aligning_type. */
3048 if (code == ADDR_EXPR
3049 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3050 {
3051 push_without_duplicates (exp, refs);
3052 break;
3053 }
3054
3055 /* Fall through... */
3056
3057 case tcc_exceptional:
3058 case tcc_unary:
3059 case tcc_binary:
3060 case tcc_comparison:
3061 case tcc_reference:
3062 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3063 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3064 break;
3065
3066 case tcc_vl_exp:
3067 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3068 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3069 break;
3070
3071 default:
3072 gcc_unreachable ();
3073 }
3074 }
3075
3076 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3077 return a tree with all occurrences of references to F in a
3078 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3079 CONST_DECLs. Note that we assume here that EXP contains only
3080 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3081 occurring only in their argument list. */
3082
3083 tree
3084 substitute_in_expr (tree exp, tree f, tree r)
3085 {
3086 enum tree_code code = TREE_CODE (exp);
3087 tree op0, op1, op2, op3;
3088 tree new_tree;
3089
3090 /* We handle TREE_LIST and COMPONENT_REF separately. */
3091 if (code == TREE_LIST)
3092 {
3093 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3094 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3095 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3096 return exp;
3097
3098 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3099 }
3100 else if (code == COMPONENT_REF)
3101 {
3102 tree inner;
3103
3104 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3105 and it is the right field, replace it with R. */
3106 for (inner = TREE_OPERAND (exp, 0);
3107 REFERENCE_CLASS_P (inner);
3108 inner = TREE_OPERAND (inner, 0))
3109 ;
3110
3111 /* The field. */
3112 op1 = TREE_OPERAND (exp, 1);
3113
3114 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3115 return r;
3116
3117 /* If this expression hasn't been completed let, leave it alone. */
3118 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3119 return exp;
3120
3121 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3122 if (op0 == TREE_OPERAND (exp, 0))
3123 return exp;
3124
3125 new_tree
3126 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3127 }
3128 else
3129 switch (TREE_CODE_CLASS (code))
3130 {
3131 case tcc_constant:
3132 return exp;
3133
3134 case tcc_declaration:
3135 if (exp == f)
3136 return r;
3137 else
3138 return exp;
3139
3140 case tcc_expression:
3141 if (exp == f)
3142 return r;
3143
3144 /* Fall through... */
3145
3146 case tcc_exceptional:
3147 case tcc_unary:
3148 case tcc_binary:
3149 case tcc_comparison:
3150 case tcc_reference:
3151 switch (TREE_CODE_LENGTH (code))
3152 {
3153 case 0:
3154 return exp;
3155
3156 case 1:
3157 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3158 if (op0 == TREE_OPERAND (exp, 0))
3159 return exp;
3160
3161 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3162 break;
3163
3164 case 2:
3165 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3166 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3167
3168 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3169 return exp;
3170
3171 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3172 break;
3173
3174 case 3:
3175 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3176 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3177 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3178
3179 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3180 && op2 == TREE_OPERAND (exp, 2))
3181 return exp;
3182
3183 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3184 break;
3185
3186 case 4:
3187 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3188 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3189 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3190 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3191
3192 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3193 && op2 == TREE_OPERAND (exp, 2)
3194 && op3 == TREE_OPERAND (exp, 3))
3195 return exp;
3196
3197 new_tree
3198 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3199 break;
3200
3201 default:
3202 gcc_unreachable ();
3203 }
3204 break;
3205
3206 case tcc_vl_exp:
3207 {
3208 int i;
3209
3210 new_tree = NULL_TREE;
3211
3212 /* If we are trying to replace F with a constant, inline back
3213 functions which do nothing else than computing a value from
3214 the arguments they are passed. This makes it possible to
3215 fold partially or entirely the replacement expression. */
3216 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3217 {
3218 tree t = maybe_inline_call_in_expr (exp);
3219 if (t)
3220 return SUBSTITUTE_IN_EXPR (t, f, r);
3221 }
3222
3223 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3224 {
3225 tree op = TREE_OPERAND (exp, i);
3226 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3227 if (new_op != op)
3228 {
3229 if (!new_tree)
3230 new_tree = copy_node (exp);
3231 TREE_OPERAND (new_tree, i) = new_op;
3232 }
3233 }
3234
3235 if (new_tree)
3236 {
3237 new_tree = fold (new_tree);
3238 if (TREE_CODE (new_tree) == CALL_EXPR)
3239 process_call_operands (new_tree);
3240 }
3241 else
3242 return exp;
3243 }
3244 break;
3245
3246 default:
3247 gcc_unreachable ();
3248 }
3249
3250 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3251
3252 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3253 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3254
3255 return new_tree;
3256 }
3257
3258 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3259 for it within OBJ, a tree that is an object or a chain of references. */
3260
3261 tree
3262 substitute_placeholder_in_expr (tree exp, tree obj)
3263 {
3264 enum tree_code code = TREE_CODE (exp);
3265 tree op0, op1, op2, op3;
3266 tree new_tree;
3267
3268 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3269 in the chain of OBJ. */
3270 if (code == PLACEHOLDER_EXPR)
3271 {
3272 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3273 tree elt;
3274
3275 for (elt = obj; elt != 0;
3276 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3277 || TREE_CODE (elt) == COND_EXPR)
3278 ? TREE_OPERAND (elt, 1)
3279 : (REFERENCE_CLASS_P (elt)
3280 || UNARY_CLASS_P (elt)
3281 || BINARY_CLASS_P (elt)
3282 || VL_EXP_CLASS_P (elt)
3283 || EXPRESSION_CLASS_P (elt))
3284 ? TREE_OPERAND (elt, 0) : 0))
3285 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3286 return elt;
3287
3288 for (elt = obj; elt != 0;
3289 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3290 || TREE_CODE (elt) == COND_EXPR)
3291 ? TREE_OPERAND (elt, 1)
3292 : (REFERENCE_CLASS_P (elt)
3293 || UNARY_CLASS_P (elt)
3294 || BINARY_CLASS_P (elt)
3295 || VL_EXP_CLASS_P (elt)
3296 || EXPRESSION_CLASS_P (elt))
3297 ? TREE_OPERAND (elt, 0) : 0))
3298 if (POINTER_TYPE_P (TREE_TYPE (elt))
3299 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3300 == need_type))
3301 return fold_build1 (INDIRECT_REF, need_type, elt);
3302
3303 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3304 survives until RTL generation, there will be an error. */
3305 return exp;
3306 }
3307
3308 /* TREE_LIST is special because we need to look at TREE_VALUE
3309 and TREE_CHAIN, not TREE_OPERANDS. */
3310 else if (code == TREE_LIST)
3311 {
3312 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3313 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3314 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3315 return exp;
3316
3317 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3318 }
3319 else
3320 switch (TREE_CODE_CLASS (code))
3321 {
3322 case tcc_constant:
3323 case tcc_declaration:
3324 return exp;
3325
3326 case tcc_exceptional:
3327 case tcc_unary:
3328 case tcc_binary:
3329 case tcc_comparison:
3330 case tcc_expression:
3331 case tcc_reference:
3332 case tcc_statement:
3333 switch (TREE_CODE_LENGTH (code))
3334 {
3335 case 0:
3336 return exp;
3337
3338 case 1:
3339 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3340 if (op0 == TREE_OPERAND (exp, 0))
3341 return exp;
3342
3343 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3344 break;
3345
3346 case 2:
3347 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3348 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3349
3350 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3351 return exp;
3352
3353 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3354 break;
3355
3356 case 3:
3357 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3358 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3359 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3360
3361 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3362 && op2 == TREE_OPERAND (exp, 2))
3363 return exp;
3364
3365 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3366 break;
3367
3368 case 4:
3369 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3370 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3371 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3372 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3373
3374 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3375 && op2 == TREE_OPERAND (exp, 2)
3376 && op3 == TREE_OPERAND (exp, 3))
3377 return exp;
3378
3379 new_tree
3380 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3381 break;
3382
3383 default:
3384 gcc_unreachable ();
3385 }
3386 break;
3387
3388 case tcc_vl_exp:
3389 {
3390 int i;
3391
3392 new_tree = NULL_TREE;
3393
3394 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3395 {
3396 tree op = TREE_OPERAND (exp, i);
3397 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3398 if (new_op != op)
3399 {
3400 if (!new_tree)
3401 new_tree = copy_node (exp);
3402 TREE_OPERAND (new_tree, i) = new_op;
3403 }
3404 }
3405
3406 if (new_tree)
3407 {
3408 new_tree = fold (new_tree);
3409 if (TREE_CODE (new_tree) == CALL_EXPR)
3410 process_call_operands (new_tree);
3411 }
3412 else
3413 return exp;
3414 }
3415 break;
3416
3417 default:
3418 gcc_unreachable ();
3419 }
3420
3421 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3422
3423 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3424 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3425
3426 return new_tree;
3427 }
3428 \f
3429 /* Stabilize a reference so that we can use it any number of times
3430 without causing its operands to be evaluated more than once.
3431 Returns the stabilized reference. This works by means of save_expr,
3432 so see the caveats in the comments about save_expr.
3433
3434 Also allows conversion expressions whose operands are references.
3435 Any other kind of expression is returned unchanged. */
3436
3437 tree
3438 stabilize_reference (tree ref)
3439 {
3440 tree result;
3441 enum tree_code code = TREE_CODE (ref);
3442
3443 switch (code)
3444 {
3445 case VAR_DECL:
3446 case PARM_DECL:
3447 case RESULT_DECL:
3448 /* No action is needed in this case. */
3449 return ref;
3450
3451 CASE_CONVERT:
3452 case FLOAT_EXPR:
3453 case FIX_TRUNC_EXPR:
3454 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3455 break;
3456
3457 case INDIRECT_REF:
3458 result = build_nt (INDIRECT_REF,
3459 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3460 break;
3461
3462 case COMPONENT_REF:
3463 result = build_nt (COMPONENT_REF,
3464 stabilize_reference (TREE_OPERAND (ref, 0)),
3465 TREE_OPERAND (ref, 1), NULL_TREE);
3466 break;
3467
3468 case BIT_FIELD_REF:
3469 result = build_nt (BIT_FIELD_REF,
3470 stabilize_reference (TREE_OPERAND (ref, 0)),
3471 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3472 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3473 break;
3474
3475 case ARRAY_REF:
3476 result = build_nt (ARRAY_REF,
3477 stabilize_reference (TREE_OPERAND (ref, 0)),
3478 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3479 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3480 break;
3481
3482 case ARRAY_RANGE_REF:
3483 result = build_nt (ARRAY_RANGE_REF,
3484 stabilize_reference (TREE_OPERAND (ref, 0)),
3485 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3486 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3487 break;
3488
3489 case COMPOUND_EXPR:
3490 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3491 it wouldn't be ignored. This matters when dealing with
3492 volatiles. */
3493 return stabilize_reference_1 (ref);
3494
3495 /* If arg isn't a kind of lvalue we recognize, make no change.
3496 Caller should recognize the error for an invalid lvalue. */
3497 default:
3498 return ref;
3499
3500 case ERROR_MARK:
3501 return error_mark_node;
3502 }
3503
3504 TREE_TYPE (result) = TREE_TYPE (ref);
3505 TREE_READONLY (result) = TREE_READONLY (ref);
3506 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3507 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3508
3509 return result;
3510 }
3511
3512 /* Subroutine of stabilize_reference; this is called for subtrees of
3513 references. Any expression with side-effects must be put in a SAVE_EXPR
3514 to ensure that it is only evaluated once.
3515
3516 We don't put SAVE_EXPR nodes around everything, because assigning very
3517 simple expressions to temporaries causes us to miss good opportunities
3518 for optimizations. Among other things, the opportunity to fold in the
3519 addition of a constant into an addressing mode often gets lost, e.g.
3520 "y[i+1] += x;". In general, we take the approach that we should not make
3521 an assignment unless we are forced into it - i.e., that any non-side effect
3522 operator should be allowed, and that cse should take care of coalescing
3523 multiple utterances of the same expression should that prove fruitful. */
3524
3525 tree
3526 stabilize_reference_1 (tree e)
3527 {
3528 tree result;
3529 enum tree_code code = TREE_CODE (e);
3530
3531 /* We cannot ignore const expressions because it might be a reference
3532 to a const array but whose index contains side-effects. But we can
3533 ignore things that are actual constant or that already have been
3534 handled by this function. */
3535
3536 if (tree_invariant_p (e))
3537 return e;
3538
3539 switch (TREE_CODE_CLASS (code))
3540 {
3541 case tcc_exceptional:
3542 case tcc_type:
3543 case tcc_declaration:
3544 case tcc_comparison:
3545 case tcc_statement:
3546 case tcc_expression:
3547 case tcc_reference:
3548 case tcc_vl_exp:
3549 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3550 so that it will only be evaluated once. */
3551 /* The reference (r) and comparison (<) classes could be handled as
3552 below, but it is generally faster to only evaluate them once. */
3553 if (TREE_SIDE_EFFECTS (e))
3554 return save_expr (e);
3555 return e;
3556
3557 case tcc_constant:
3558 /* Constants need no processing. In fact, we should never reach
3559 here. */
3560 return e;
3561
3562 case tcc_binary:
3563 /* Division is slow and tends to be compiled with jumps,
3564 especially the division by powers of 2 that is often
3565 found inside of an array reference. So do it just once. */
3566 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3567 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3568 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3569 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3570 return save_expr (e);
3571 /* Recursively stabilize each operand. */
3572 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3573 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3574 break;
3575
3576 case tcc_unary:
3577 /* Recursively stabilize each operand. */
3578 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3579 break;
3580
3581 default:
3582 gcc_unreachable ();
3583 }
3584
3585 TREE_TYPE (result) = TREE_TYPE (e);
3586 TREE_READONLY (result) = TREE_READONLY (e);
3587 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3588 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3589
3590 return result;
3591 }
3592 \f
3593 /* Low-level constructors for expressions. */
3594
3595 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3596 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3597
3598 void
3599 recompute_tree_invariant_for_addr_expr (tree t)
3600 {
3601 tree node;
3602 bool tc = true, se = false;
3603
3604 /* We started out assuming this address is both invariant and constant, but
3605 does not have side effects. Now go down any handled components and see if
3606 any of them involve offsets that are either non-constant or non-invariant.
3607 Also check for side-effects.
3608
3609 ??? Note that this code makes no attempt to deal with the case where
3610 taking the address of something causes a copy due to misalignment. */
3611
3612 #define UPDATE_FLAGS(NODE) \
3613 do { tree _node = (NODE); \
3614 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3615 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3616
3617 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3618 node = TREE_OPERAND (node, 0))
3619 {
3620 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3621 array reference (probably made temporarily by the G++ front end),
3622 so ignore all the operands. */
3623 if ((TREE_CODE (node) == ARRAY_REF
3624 || TREE_CODE (node) == ARRAY_RANGE_REF)
3625 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3626 {
3627 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3628 if (TREE_OPERAND (node, 2))
3629 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3630 if (TREE_OPERAND (node, 3))
3631 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3632 }
3633 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3634 FIELD_DECL, apparently. The G++ front end can put something else
3635 there, at least temporarily. */
3636 else if (TREE_CODE (node) == COMPONENT_REF
3637 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3638 {
3639 if (TREE_OPERAND (node, 2))
3640 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3641 }
3642 else if (TREE_CODE (node) == BIT_FIELD_REF)
3643 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3644 }
3645
3646 node = lang_hooks.expr_to_decl (node, &tc, &se);
3647
3648 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3649 the address, since &(*a)->b is a form of addition. If it's a constant, the
3650 address is constant too. If it's a decl, its address is constant if the
3651 decl is static. Everything else is not constant and, furthermore,
3652 taking the address of a volatile variable is not volatile. */
3653 if (TREE_CODE (node) == INDIRECT_REF
3654 || TREE_CODE (node) == MEM_REF)
3655 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3656 else if (CONSTANT_CLASS_P (node))
3657 ;
3658 else if (DECL_P (node))
3659 tc &= (staticp (node) != NULL_TREE);
3660 else
3661 {
3662 tc = false;
3663 se |= TREE_SIDE_EFFECTS (node);
3664 }
3665
3666
3667 TREE_CONSTANT (t) = tc;
3668 TREE_SIDE_EFFECTS (t) = se;
3669 #undef UPDATE_FLAGS
3670 }
3671
3672 /* Build an expression of code CODE, data type TYPE, and operands as
3673 specified. Expressions and reference nodes can be created this way.
3674 Constants, decls, types and misc nodes cannot be.
3675
3676 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3677 enough for all extant tree codes. */
3678
3679 tree
3680 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3681 {
3682 tree t;
3683
3684 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3685
3686 t = make_node_stat (code PASS_MEM_STAT);
3687 TREE_TYPE (t) = tt;
3688
3689 return t;
3690 }
3691
3692 tree
3693 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3694 {
3695 int length = sizeof (struct tree_exp);
3696 tree t;
3697
3698 record_node_allocation_statistics (code, length);
3699
3700 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3701
3702 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
3703
3704 memset (t, 0, sizeof (struct tree_common));
3705
3706 TREE_SET_CODE (t, code);
3707
3708 TREE_TYPE (t) = type;
3709 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3710 TREE_OPERAND (t, 0) = node;
3711 TREE_BLOCK (t) = NULL_TREE;
3712 if (node && !TYPE_P (node))
3713 {
3714 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3715 TREE_READONLY (t) = TREE_READONLY (node);
3716 }
3717
3718 if (TREE_CODE_CLASS (code) == tcc_statement)
3719 TREE_SIDE_EFFECTS (t) = 1;
3720 else switch (code)
3721 {
3722 case VA_ARG_EXPR:
3723 /* All of these have side-effects, no matter what their
3724 operands are. */
3725 TREE_SIDE_EFFECTS (t) = 1;
3726 TREE_READONLY (t) = 0;
3727 break;
3728
3729 case INDIRECT_REF:
3730 /* Whether a dereference is readonly has nothing to do with whether
3731 its operand is readonly. */
3732 TREE_READONLY (t) = 0;
3733 break;
3734
3735 case ADDR_EXPR:
3736 if (node)
3737 recompute_tree_invariant_for_addr_expr (t);
3738 break;
3739
3740 default:
3741 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3742 && node && !TYPE_P (node)
3743 && TREE_CONSTANT (node))
3744 TREE_CONSTANT (t) = 1;
3745 if (TREE_CODE_CLASS (code) == tcc_reference
3746 && node && TREE_THIS_VOLATILE (node))
3747 TREE_THIS_VOLATILE (t) = 1;
3748 break;
3749 }
3750
3751 return t;
3752 }
3753
3754 #define PROCESS_ARG(N) \
3755 do { \
3756 TREE_OPERAND (t, N) = arg##N; \
3757 if (arg##N &&!TYPE_P (arg##N)) \
3758 { \
3759 if (TREE_SIDE_EFFECTS (arg##N)) \
3760 side_effects = 1; \
3761 if (!TREE_READONLY (arg##N) \
3762 && !CONSTANT_CLASS_P (arg##N)) \
3763 (void) (read_only = 0); \
3764 if (!TREE_CONSTANT (arg##N)) \
3765 (void) (constant = 0); \
3766 } \
3767 } while (0)
3768
3769 tree
3770 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3771 {
3772 bool constant, read_only, side_effects;
3773 tree t;
3774
3775 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3776
3777 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3778 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3779 /* When sizetype precision doesn't match that of pointers
3780 we need to be able to build explicit extensions or truncations
3781 of the offset argument. */
3782 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3783 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3784 && TREE_CODE (arg1) == INTEGER_CST);
3785
3786 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3787 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3788 && ptrofftype_p (TREE_TYPE (arg1)));
3789
3790 t = make_node_stat (code PASS_MEM_STAT);
3791 TREE_TYPE (t) = tt;
3792
3793 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3794 result based on those same flags for the arguments. But if the
3795 arguments aren't really even `tree' expressions, we shouldn't be trying
3796 to do this. */
3797
3798 /* Expressions without side effects may be constant if their
3799 arguments are as well. */
3800 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3801 || TREE_CODE_CLASS (code) == tcc_binary);
3802 read_only = 1;
3803 side_effects = TREE_SIDE_EFFECTS (t);
3804
3805 PROCESS_ARG(0);
3806 PROCESS_ARG(1);
3807
3808 TREE_READONLY (t) = read_only;
3809 TREE_CONSTANT (t) = constant;
3810 TREE_SIDE_EFFECTS (t) = side_effects;
3811 TREE_THIS_VOLATILE (t)
3812 = (TREE_CODE_CLASS (code) == tcc_reference
3813 && arg0 && TREE_THIS_VOLATILE (arg0));
3814
3815 return t;
3816 }
3817
3818
3819 tree
3820 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3821 tree arg2 MEM_STAT_DECL)
3822 {
3823 bool constant, read_only, side_effects;
3824 tree t;
3825
3826 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3827 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3828
3829 t = make_node_stat (code PASS_MEM_STAT);
3830 TREE_TYPE (t) = tt;
3831
3832 read_only = 1;
3833
3834 /* As a special exception, if COND_EXPR has NULL branches, we
3835 assume that it is a gimple statement and always consider
3836 it to have side effects. */
3837 if (code == COND_EXPR
3838 && tt == void_type_node
3839 && arg1 == NULL_TREE
3840 && arg2 == NULL_TREE)
3841 side_effects = true;
3842 else
3843 side_effects = TREE_SIDE_EFFECTS (t);
3844
3845 PROCESS_ARG(0);
3846 PROCESS_ARG(1);
3847 PROCESS_ARG(2);
3848
3849 if (code == COND_EXPR)
3850 TREE_READONLY (t) = read_only;
3851
3852 TREE_SIDE_EFFECTS (t) = side_effects;
3853 TREE_THIS_VOLATILE (t)
3854 = (TREE_CODE_CLASS (code) == tcc_reference
3855 && arg0 && TREE_THIS_VOLATILE (arg0));
3856
3857 return t;
3858 }
3859
3860 tree
3861 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3862 tree arg2, tree arg3 MEM_STAT_DECL)
3863 {
3864 bool constant, read_only, side_effects;
3865 tree t;
3866
3867 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3868
3869 t = make_node_stat (code PASS_MEM_STAT);
3870 TREE_TYPE (t) = tt;
3871
3872 side_effects = TREE_SIDE_EFFECTS (t);
3873
3874 PROCESS_ARG(0);
3875 PROCESS_ARG(1);
3876 PROCESS_ARG(2);
3877 PROCESS_ARG(3);
3878
3879 TREE_SIDE_EFFECTS (t) = side_effects;
3880 TREE_THIS_VOLATILE (t)
3881 = (TREE_CODE_CLASS (code) == tcc_reference
3882 && arg0 && TREE_THIS_VOLATILE (arg0));
3883
3884 return t;
3885 }
3886
3887 tree
3888 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3889 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3890 {
3891 bool constant, read_only, side_effects;
3892 tree t;
3893
3894 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3895
3896 t = make_node_stat (code PASS_MEM_STAT);
3897 TREE_TYPE (t) = tt;
3898
3899 side_effects = TREE_SIDE_EFFECTS (t);
3900
3901 PROCESS_ARG(0);
3902 PROCESS_ARG(1);
3903 PROCESS_ARG(2);
3904 PROCESS_ARG(3);
3905 PROCESS_ARG(4);
3906
3907 TREE_SIDE_EFFECTS (t) = side_effects;
3908 TREE_THIS_VOLATILE (t)
3909 = (TREE_CODE_CLASS (code) == tcc_reference
3910 && arg0 && TREE_THIS_VOLATILE (arg0));
3911
3912 return t;
3913 }
3914
3915 tree
3916 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3917 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3918 {
3919 bool constant, read_only, side_effects;
3920 tree t;
3921
3922 gcc_assert (code == TARGET_MEM_REF);
3923
3924 t = make_node_stat (code PASS_MEM_STAT);
3925 TREE_TYPE (t) = tt;
3926
3927 side_effects = TREE_SIDE_EFFECTS (t);
3928
3929 PROCESS_ARG(0);
3930 PROCESS_ARG(1);
3931 PROCESS_ARG(2);
3932 PROCESS_ARG(3);
3933 PROCESS_ARG(4);
3934 if (code == TARGET_MEM_REF)
3935 side_effects = 0;
3936 PROCESS_ARG(5);
3937
3938 TREE_SIDE_EFFECTS (t) = side_effects;
3939 TREE_THIS_VOLATILE (t)
3940 = (code == TARGET_MEM_REF
3941 && arg5 && TREE_THIS_VOLATILE (arg5));
3942
3943 return t;
3944 }
3945
3946 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
3947 on the pointer PTR. */
3948
3949 tree
3950 build_simple_mem_ref_loc (location_t loc, tree ptr)
3951 {
3952 HOST_WIDE_INT offset = 0;
3953 tree ptype = TREE_TYPE (ptr);
3954 tree tem;
3955 /* For convenience allow addresses that collapse to a simple base
3956 and offset. */
3957 if (TREE_CODE (ptr) == ADDR_EXPR
3958 && (handled_component_p (TREE_OPERAND (ptr, 0))
3959 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
3960 {
3961 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
3962 gcc_assert (ptr);
3963 ptr = build_fold_addr_expr (ptr);
3964 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
3965 }
3966 tem = build2 (MEM_REF, TREE_TYPE (ptype),
3967 ptr, build_int_cst (ptype, offset));
3968 SET_EXPR_LOCATION (tem, loc);
3969 return tem;
3970 }
3971
3972 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
3973
3974 double_int
3975 mem_ref_offset (const_tree t)
3976 {
3977 tree toff = TREE_OPERAND (t, 1);
3978 return double_int_sext (tree_to_double_int (toff),
3979 TYPE_PRECISION (TREE_TYPE (toff)));
3980 }
3981
3982 /* Return the pointer-type relevant for TBAA purposes from the
3983 gimple memory reference tree T. This is the type to be used for
3984 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
3985
3986 tree
3987 reference_alias_ptr_type (const_tree t)
3988 {
3989 const_tree base = t;
3990 while (handled_component_p (base))
3991 base = TREE_OPERAND (base, 0);
3992 if (TREE_CODE (base) == MEM_REF)
3993 return TREE_TYPE (TREE_OPERAND (base, 1));
3994 else if (TREE_CODE (base) == TARGET_MEM_REF)
3995 return TREE_TYPE (TMR_OFFSET (base));
3996 else
3997 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
3998 }
3999
4000 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4001 offsetted by OFFSET units. */
4002
4003 tree
4004 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4005 {
4006 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4007 build_fold_addr_expr (base),
4008 build_int_cst (ptr_type_node, offset));
4009 tree addr = build1 (ADDR_EXPR, type, ref);
4010 recompute_tree_invariant_for_addr_expr (addr);
4011 return addr;
4012 }
4013
4014 /* Similar except don't specify the TREE_TYPE
4015 and leave the TREE_SIDE_EFFECTS as 0.
4016 It is permissible for arguments to be null,
4017 or even garbage if their values do not matter. */
4018
4019 tree
4020 build_nt (enum tree_code code, ...)
4021 {
4022 tree t;
4023 int length;
4024 int i;
4025 va_list p;
4026
4027 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4028
4029 va_start (p, code);
4030
4031 t = make_node (code);
4032 length = TREE_CODE_LENGTH (code);
4033
4034 for (i = 0; i < length; i++)
4035 TREE_OPERAND (t, i) = va_arg (p, tree);
4036
4037 va_end (p);
4038 return t;
4039 }
4040
4041 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4042 tree VEC. */
4043
4044 tree
4045 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
4046 {
4047 tree ret, t;
4048 unsigned int ix;
4049
4050 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
4051 CALL_EXPR_FN (ret) = fn;
4052 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4053 FOR_EACH_VEC_ELT (tree, args, ix, t)
4054 CALL_EXPR_ARG (ret, ix) = t;
4055 return ret;
4056 }
4057 \f
4058 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4059 We do NOT enter this node in any sort of symbol table.
4060
4061 LOC is the location of the decl.
4062
4063 layout_decl is used to set up the decl's storage layout.
4064 Other slots are initialized to 0 or null pointers. */
4065
4066 tree
4067 build_decl_stat (location_t loc, enum tree_code code, tree name,
4068 tree type MEM_STAT_DECL)
4069 {
4070 tree t;
4071
4072 t = make_node_stat (code PASS_MEM_STAT);
4073 DECL_SOURCE_LOCATION (t) = loc;
4074
4075 /* if (type == error_mark_node)
4076 type = integer_type_node; */
4077 /* That is not done, deliberately, so that having error_mark_node
4078 as the type can suppress useless errors in the use of this variable. */
4079
4080 DECL_NAME (t) = name;
4081 TREE_TYPE (t) = type;
4082
4083 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4084 layout_decl (t, 0);
4085
4086 return t;
4087 }
4088
4089 /* Builds and returns function declaration with NAME and TYPE. */
4090
4091 tree
4092 build_fn_decl (const char *name, tree type)
4093 {
4094 tree id = get_identifier (name);
4095 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4096
4097 DECL_EXTERNAL (decl) = 1;
4098 TREE_PUBLIC (decl) = 1;
4099 DECL_ARTIFICIAL (decl) = 1;
4100 TREE_NOTHROW (decl) = 1;
4101
4102 return decl;
4103 }
4104
4105 VEC(tree,gc) *all_translation_units;
4106
4107 /* Builds a new translation-unit decl with name NAME, queues it in the
4108 global list of translation-unit decls and returns it. */
4109
4110 tree
4111 build_translation_unit_decl (tree name)
4112 {
4113 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4114 name, NULL_TREE);
4115 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4116 VEC_safe_push (tree, gc, all_translation_units, tu);
4117 return tu;
4118 }
4119
4120 \f
4121 /* BLOCK nodes are used to represent the structure of binding contours
4122 and declarations, once those contours have been exited and their contents
4123 compiled. This information is used for outputting debugging info. */
4124
4125 tree
4126 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4127 {
4128 tree block = make_node (BLOCK);
4129
4130 BLOCK_VARS (block) = vars;
4131 BLOCK_SUBBLOCKS (block) = subblocks;
4132 BLOCK_SUPERCONTEXT (block) = supercontext;
4133 BLOCK_CHAIN (block) = chain;
4134 return block;
4135 }
4136
4137 \f
4138 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4139
4140 LOC is the location to use in tree T. */
4141
4142 void
4143 protected_set_expr_location (tree t, location_t loc)
4144 {
4145 if (t && CAN_HAVE_LOCATION_P (t))
4146 SET_EXPR_LOCATION (t, loc);
4147 }
4148 \f
4149 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4150 is ATTRIBUTE. */
4151
4152 tree
4153 build_decl_attribute_variant (tree ddecl, tree attribute)
4154 {
4155 DECL_ATTRIBUTES (ddecl) = attribute;
4156 return ddecl;
4157 }
4158
4159 /* Borrowed from hashtab.c iterative_hash implementation. */
4160 #define mix(a,b,c) \
4161 { \
4162 a -= b; a -= c; a ^= (c>>13); \
4163 b -= c; b -= a; b ^= (a<< 8); \
4164 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4165 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4166 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4167 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4168 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4169 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4170 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4171 }
4172
4173
4174 /* Produce good hash value combining VAL and VAL2. */
4175 hashval_t
4176 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4177 {
4178 /* the golden ratio; an arbitrary value. */
4179 hashval_t a = 0x9e3779b9;
4180
4181 mix (a, val, val2);
4182 return val2;
4183 }
4184
4185 /* Produce good hash value combining VAL and VAL2. */
4186 hashval_t
4187 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4188 {
4189 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4190 return iterative_hash_hashval_t (val, val2);
4191 else
4192 {
4193 hashval_t a = (hashval_t) val;
4194 /* Avoid warnings about shifting of more than the width of the type on
4195 hosts that won't execute this path. */
4196 int zero = 0;
4197 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4198 mix (a, b, val2);
4199 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4200 {
4201 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4202 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4203 mix (a, b, val2);
4204 }
4205 return val2;
4206 }
4207 }
4208
4209 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4210 is ATTRIBUTE and its qualifiers are QUALS.
4211
4212 Record such modified types already made so we don't make duplicates. */
4213
4214 tree
4215 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4216 {
4217 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4218 {
4219 hashval_t hashcode = 0;
4220 tree ntype;
4221 enum tree_code code = TREE_CODE (ttype);
4222
4223 /* Building a distinct copy of a tagged type is inappropriate; it
4224 causes breakage in code that expects there to be a one-to-one
4225 relationship between a struct and its fields.
4226 build_duplicate_type is another solution (as used in
4227 handle_transparent_union_attribute), but that doesn't play well
4228 with the stronger C++ type identity model. */
4229 if (TREE_CODE (ttype) == RECORD_TYPE
4230 || TREE_CODE (ttype) == UNION_TYPE
4231 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4232 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4233 {
4234 warning (OPT_Wattributes,
4235 "ignoring attributes applied to %qT after definition",
4236 TYPE_MAIN_VARIANT (ttype));
4237 return build_qualified_type (ttype, quals);
4238 }
4239
4240 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4241 ntype = build_distinct_type_copy (ttype);
4242
4243 TYPE_ATTRIBUTES (ntype) = attribute;
4244
4245 hashcode = iterative_hash_object (code, hashcode);
4246 if (TREE_TYPE (ntype))
4247 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4248 hashcode);
4249 hashcode = attribute_hash_list (attribute, hashcode);
4250
4251 switch (TREE_CODE (ntype))
4252 {
4253 case FUNCTION_TYPE:
4254 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4255 break;
4256 case ARRAY_TYPE:
4257 if (TYPE_DOMAIN (ntype))
4258 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4259 hashcode);
4260 break;
4261 case INTEGER_TYPE:
4262 hashcode = iterative_hash_object
4263 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4264 hashcode = iterative_hash_object
4265 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4266 break;
4267 case REAL_TYPE:
4268 case FIXED_POINT_TYPE:
4269 {
4270 unsigned int precision = TYPE_PRECISION (ntype);
4271 hashcode = iterative_hash_object (precision, hashcode);
4272 }
4273 break;
4274 default:
4275 break;
4276 }
4277
4278 ntype = type_hash_canon (hashcode, ntype);
4279
4280 /* If the target-dependent attributes make NTYPE different from
4281 its canonical type, we will need to use structural equality
4282 checks for this type. */
4283 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4284 || !comp_type_attributes (ntype, ttype))
4285 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4286 else if (TYPE_CANONICAL (ntype) == ntype)
4287 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4288
4289 ttype = build_qualified_type (ntype, quals);
4290 }
4291 else if (TYPE_QUALS (ttype) != quals)
4292 ttype = build_qualified_type (ttype, quals);
4293
4294 return ttype;
4295 }
4296
4297 /* Compare two attributes for their value identity. Return true if the
4298 attribute values are known to be equal; otherwise return false.
4299 */
4300
4301 static bool
4302 attribute_value_equal (const_tree attr1, const_tree attr2)
4303 {
4304 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4305 return true;
4306
4307 if (TREE_VALUE (attr1) != NULL_TREE
4308 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4309 && TREE_VALUE (attr2) != NULL
4310 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4311 return (simple_cst_list_equal (TREE_VALUE (attr1),
4312 TREE_VALUE (attr2)) == 1);
4313
4314 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
4315 }
4316
4317 /* Return 0 if the attributes for two types are incompatible, 1 if they
4318 are compatible, and 2 if they are nearly compatible (which causes a
4319 warning to be generated). */
4320 int
4321 comp_type_attributes (const_tree type1, const_tree type2)
4322 {
4323 const_tree a1 = TYPE_ATTRIBUTES (type1);
4324 const_tree a2 = TYPE_ATTRIBUTES (type2);
4325 const_tree a;
4326
4327 if (a1 == a2)
4328 return 1;
4329 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
4330 {
4331 const struct attribute_spec *as;
4332 const_tree attr;
4333
4334 as = lookup_attribute_spec (TREE_PURPOSE (a));
4335 if (!as || as->affects_type_identity == false)
4336 continue;
4337
4338 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
4339 if (!attr || !attribute_value_equal (a, attr))
4340 break;
4341 }
4342 if (!a)
4343 {
4344 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
4345 {
4346 const struct attribute_spec *as;
4347
4348 as = lookup_attribute_spec (TREE_PURPOSE (a));
4349 if (!as || as->affects_type_identity == false)
4350 continue;
4351
4352 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
4353 break;
4354 /* We don't need to compare trees again, as we did this
4355 already in first loop. */
4356 }
4357 /* All types - affecting identity - are equal, so
4358 there is no need to call target hook for comparison. */
4359 if (!a)
4360 return 1;
4361 }
4362 /* As some type combinations - like default calling-convention - might
4363 be compatible, we have to call the target hook to get the final result. */
4364 return targetm.comp_type_attributes (type1, type2);
4365 }
4366
4367 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4368 is ATTRIBUTE.
4369
4370 Record such modified types already made so we don't make duplicates. */
4371
4372 tree
4373 build_type_attribute_variant (tree ttype, tree attribute)
4374 {
4375 return build_type_attribute_qual_variant (ttype, attribute,
4376 TYPE_QUALS (ttype));
4377 }
4378
4379
4380 /* Reset the expression *EXPR_P, a size or position.
4381
4382 ??? We could reset all non-constant sizes or positions. But it's cheap
4383 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4384
4385 We need to reset self-referential sizes or positions because they cannot
4386 be gimplified and thus can contain a CALL_EXPR after the gimplification
4387 is finished, which will run afoul of LTO streaming. And they need to be
4388 reset to something essentially dummy but not constant, so as to preserve
4389 the properties of the object they are attached to. */
4390
4391 static inline void
4392 free_lang_data_in_one_sizepos (tree *expr_p)
4393 {
4394 tree expr = *expr_p;
4395 if (CONTAINS_PLACEHOLDER_P (expr))
4396 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4397 }
4398
4399
4400 /* Reset all the fields in a binfo node BINFO. We only keep
4401 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
4402
4403 static void
4404 free_lang_data_in_binfo (tree binfo)
4405 {
4406 unsigned i;
4407 tree t;
4408
4409 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4410
4411 BINFO_VIRTUALS (binfo) = NULL_TREE;
4412 BINFO_BASE_ACCESSES (binfo) = NULL;
4413 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4414 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4415
4416 FOR_EACH_VEC_ELT (tree, BINFO_BASE_BINFOS (binfo), i, t)
4417 free_lang_data_in_binfo (t);
4418 }
4419
4420
4421 /* Reset all language specific information still present in TYPE. */
4422
4423 static void
4424 free_lang_data_in_type (tree type)
4425 {
4426 gcc_assert (TYPE_P (type));
4427
4428 /* Give the FE a chance to remove its own data first. */
4429 lang_hooks.free_lang_data (type);
4430
4431 TREE_LANG_FLAG_0 (type) = 0;
4432 TREE_LANG_FLAG_1 (type) = 0;
4433 TREE_LANG_FLAG_2 (type) = 0;
4434 TREE_LANG_FLAG_3 (type) = 0;
4435 TREE_LANG_FLAG_4 (type) = 0;
4436 TREE_LANG_FLAG_5 (type) = 0;
4437 TREE_LANG_FLAG_6 (type) = 0;
4438
4439 if (TREE_CODE (type) == FUNCTION_TYPE)
4440 {
4441 /* Remove the const and volatile qualifiers from arguments. The
4442 C++ front end removes them, but the C front end does not,
4443 leading to false ODR violation errors when merging two
4444 instances of the same function signature compiled by
4445 different front ends. */
4446 tree p;
4447
4448 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4449 {
4450 tree arg_type = TREE_VALUE (p);
4451
4452 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4453 {
4454 int quals = TYPE_QUALS (arg_type)
4455 & ~TYPE_QUAL_CONST
4456 & ~TYPE_QUAL_VOLATILE;
4457 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4458 free_lang_data_in_type (TREE_VALUE (p));
4459 }
4460 }
4461 }
4462
4463 /* Remove members that are not actually FIELD_DECLs from the field
4464 list of an aggregate. These occur in C++. */
4465 if (RECORD_OR_UNION_TYPE_P (type))
4466 {
4467 tree prev, member;
4468
4469 /* Note that TYPE_FIELDS can be shared across distinct
4470 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4471 to be removed, we cannot set its TREE_CHAIN to NULL.
4472 Otherwise, we would not be able to find all the other fields
4473 in the other instances of this TREE_TYPE.
4474
4475 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4476 prev = NULL_TREE;
4477 member = TYPE_FIELDS (type);
4478 while (member)
4479 {
4480 if (TREE_CODE (member) == FIELD_DECL
4481 || TREE_CODE (member) == TYPE_DECL)
4482 {
4483 if (prev)
4484 TREE_CHAIN (prev) = member;
4485 else
4486 TYPE_FIELDS (type) = member;
4487 prev = member;
4488 }
4489
4490 member = TREE_CHAIN (member);
4491 }
4492
4493 if (prev)
4494 TREE_CHAIN (prev) = NULL_TREE;
4495 else
4496 TYPE_FIELDS (type) = NULL_TREE;
4497
4498 TYPE_METHODS (type) = NULL_TREE;
4499 if (TYPE_BINFO (type))
4500 free_lang_data_in_binfo (TYPE_BINFO (type));
4501 }
4502 else
4503 {
4504 /* For non-aggregate types, clear out the language slot (which
4505 overloads TYPE_BINFO). */
4506 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4507
4508 if (INTEGRAL_TYPE_P (type)
4509 || SCALAR_FLOAT_TYPE_P (type)
4510 || FIXED_POINT_TYPE_P (type))
4511 {
4512 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4513 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4514 }
4515 }
4516
4517 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4518 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4519
4520 if (debug_info_level < DINFO_LEVEL_TERSE
4521 || (TYPE_CONTEXT (type)
4522 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_DECL
4523 && TREE_CODE (TYPE_CONTEXT (type)) != NAMESPACE_DECL))
4524 TYPE_CONTEXT (type) = NULL_TREE;
4525 }
4526
4527
4528 /* Return true if DECL may need an assembler name to be set. */
4529
4530 static inline bool
4531 need_assembler_name_p (tree decl)
4532 {
4533 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4534 if (TREE_CODE (decl) != FUNCTION_DECL
4535 && TREE_CODE (decl) != VAR_DECL)
4536 return false;
4537
4538 /* If DECL already has its assembler name set, it does not need a
4539 new one. */
4540 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4541 || DECL_ASSEMBLER_NAME_SET_P (decl))
4542 return false;
4543
4544 /* Abstract decls do not need an assembler name. */
4545 if (DECL_ABSTRACT (decl))
4546 return false;
4547
4548 /* For VAR_DECLs, only static, public and external symbols need an
4549 assembler name. */
4550 if (TREE_CODE (decl) == VAR_DECL
4551 && !TREE_STATIC (decl)
4552 && !TREE_PUBLIC (decl)
4553 && !DECL_EXTERNAL (decl))
4554 return false;
4555
4556 if (TREE_CODE (decl) == FUNCTION_DECL)
4557 {
4558 /* Do not set assembler name on builtins. Allow RTL expansion to
4559 decide whether to expand inline or via a regular call. */
4560 if (DECL_BUILT_IN (decl)
4561 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4562 return false;
4563
4564 /* Functions represented in the callgraph need an assembler name. */
4565 if (cgraph_get_node (decl) != NULL)
4566 return true;
4567
4568 /* Unused and not public functions don't need an assembler name. */
4569 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4570 return false;
4571 }
4572
4573 return true;
4574 }
4575
4576
4577 /* Reset all language specific information still present in symbol
4578 DECL. */
4579
4580 static void
4581 free_lang_data_in_decl (tree decl)
4582 {
4583 gcc_assert (DECL_P (decl));
4584
4585 /* Give the FE a chance to remove its own data first. */
4586 lang_hooks.free_lang_data (decl);
4587
4588 TREE_LANG_FLAG_0 (decl) = 0;
4589 TREE_LANG_FLAG_1 (decl) = 0;
4590 TREE_LANG_FLAG_2 (decl) = 0;
4591 TREE_LANG_FLAG_3 (decl) = 0;
4592 TREE_LANG_FLAG_4 (decl) = 0;
4593 TREE_LANG_FLAG_5 (decl) = 0;
4594 TREE_LANG_FLAG_6 (decl) = 0;
4595
4596 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4597 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4598 if (TREE_CODE (decl) == FIELD_DECL)
4599 {
4600 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4601 DECL_QUALIFIER (decl) = NULL_TREE;
4602 }
4603
4604 if (TREE_CODE (decl) == FUNCTION_DECL)
4605 {
4606 if (gimple_has_body_p (decl))
4607 {
4608 tree t;
4609
4610 /* If DECL has a gimple body, then the context for its
4611 arguments must be DECL. Otherwise, it doesn't really
4612 matter, as we will not be emitting any code for DECL. In
4613 general, there may be other instances of DECL created by
4614 the front end and since PARM_DECLs are generally shared,
4615 their DECL_CONTEXT changes as the replicas of DECL are
4616 created. The only time where DECL_CONTEXT is important
4617 is for the FUNCTION_DECLs that have a gimple body (since
4618 the PARM_DECL will be used in the function's body). */
4619 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4620 DECL_CONTEXT (t) = decl;
4621 }
4622
4623 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4624 At this point, it is not needed anymore. */
4625 DECL_SAVED_TREE (decl) = NULL_TREE;
4626
4627 /* Clear the abstract origin if it refers to a method. Otherwise
4628 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
4629 origin will not be output correctly. */
4630 if (DECL_ABSTRACT_ORIGIN (decl)
4631 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
4632 && RECORD_OR_UNION_TYPE_P
4633 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
4634 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
4635
4636 /* Sometimes the C++ frontend doesn't manage to transform a temporary
4637 DECL_VINDEX referring to itself into a vtable slot number as it
4638 should. Happens with functions that are copied and then forgotten
4639 about. Just clear it, it won't matter anymore. */
4640 if (DECL_VINDEX (decl) && !host_integerp (DECL_VINDEX (decl), 0))
4641 DECL_VINDEX (decl) = NULL_TREE;
4642 }
4643 else if (TREE_CODE (decl) == VAR_DECL)
4644 {
4645 if ((DECL_EXTERNAL (decl)
4646 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4647 || (decl_function_context (decl) && !TREE_STATIC (decl)))
4648 DECL_INITIAL (decl) = NULL_TREE;
4649 }
4650 else if (TREE_CODE (decl) == TYPE_DECL
4651 || TREE_CODE (decl) == FIELD_DECL)
4652 DECL_INITIAL (decl) = NULL_TREE;
4653 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
4654 && DECL_INITIAL (decl)
4655 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
4656 {
4657 /* Strip builtins from the translation-unit BLOCK. We still have targets
4658 without builtin_decl_explicit support and also builtins are shared
4659 nodes and thus we can't use TREE_CHAIN in multiple lists. */
4660 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
4661 while (*nextp)
4662 {
4663 tree var = *nextp;
4664 if (TREE_CODE (var) == FUNCTION_DECL
4665 && DECL_BUILT_IN (var))
4666 *nextp = TREE_CHAIN (var);
4667 else
4668 nextp = &TREE_CHAIN (var);
4669 }
4670 }
4671 }
4672
4673
4674 /* Data used when collecting DECLs and TYPEs for language data removal. */
4675
4676 struct free_lang_data_d
4677 {
4678 /* Worklist to avoid excessive recursion. */
4679 VEC(tree,heap) *worklist;
4680
4681 /* Set of traversed objects. Used to avoid duplicate visits. */
4682 struct pointer_set_t *pset;
4683
4684 /* Array of symbols to process with free_lang_data_in_decl. */
4685 VEC(tree,heap) *decls;
4686
4687 /* Array of types to process with free_lang_data_in_type. */
4688 VEC(tree,heap) *types;
4689 };
4690
4691
4692 /* Save all language fields needed to generate proper debug information
4693 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4694
4695 static void
4696 save_debug_info_for_decl (tree t)
4697 {
4698 /*struct saved_debug_info_d *sdi;*/
4699
4700 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4701
4702 /* FIXME. Partial implementation for saving debug info removed. */
4703 }
4704
4705
4706 /* Save all language fields needed to generate proper debug information
4707 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4708
4709 static void
4710 save_debug_info_for_type (tree t)
4711 {
4712 /*struct saved_debug_info_d *sdi;*/
4713
4714 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4715
4716 /* FIXME. Partial implementation for saving debug info removed. */
4717 }
4718
4719
4720 /* Add type or decl T to one of the list of tree nodes that need their
4721 language data removed. The lists are held inside FLD. */
4722
4723 static void
4724 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4725 {
4726 if (DECL_P (t))
4727 {
4728 VEC_safe_push (tree, heap, fld->decls, t);
4729 if (debug_info_level > DINFO_LEVEL_TERSE)
4730 save_debug_info_for_decl (t);
4731 }
4732 else if (TYPE_P (t))
4733 {
4734 VEC_safe_push (tree, heap, fld->types, t);
4735 if (debug_info_level > DINFO_LEVEL_TERSE)
4736 save_debug_info_for_type (t);
4737 }
4738 else
4739 gcc_unreachable ();
4740 }
4741
4742 /* Push tree node T into FLD->WORKLIST. */
4743
4744 static inline void
4745 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4746 {
4747 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4748 VEC_safe_push (tree, heap, fld->worklist, (t));
4749 }
4750
4751
4752 /* Operand callback helper for free_lang_data_in_node. *TP is the
4753 subtree operand being considered. */
4754
4755 static tree
4756 find_decls_types_r (tree *tp, int *ws, void *data)
4757 {
4758 tree t = *tp;
4759 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4760
4761 if (TREE_CODE (t) == TREE_LIST)
4762 return NULL_TREE;
4763
4764 /* Language specific nodes will be removed, so there is no need
4765 to gather anything under them. */
4766 if (is_lang_specific (t))
4767 {
4768 *ws = 0;
4769 return NULL_TREE;
4770 }
4771
4772 if (DECL_P (t))
4773 {
4774 /* Note that walk_tree does not traverse every possible field in
4775 decls, so we have to do our own traversals here. */
4776 add_tree_to_fld_list (t, fld);
4777
4778 fld_worklist_push (DECL_NAME (t), fld);
4779 fld_worklist_push (DECL_CONTEXT (t), fld);
4780 fld_worklist_push (DECL_SIZE (t), fld);
4781 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4782
4783 /* We are going to remove everything under DECL_INITIAL for
4784 TYPE_DECLs. No point walking them. */
4785 if (TREE_CODE (t) != TYPE_DECL)
4786 fld_worklist_push (DECL_INITIAL (t), fld);
4787
4788 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4789 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4790
4791 if (TREE_CODE (t) == FUNCTION_DECL)
4792 {
4793 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4794 fld_worklist_push (DECL_RESULT (t), fld);
4795 }
4796 else if (TREE_CODE (t) == TYPE_DECL)
4797 {
4798 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4799 fld_worklist_push (DECL_VINDEX (t), fld);
4800 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
4801 }
4802 else if (TREE_CODE (t) == FIELD_DECL)
4803 {
4804 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4805 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4806 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4807 fld_worklist_push (DECL_FCONTEXT (t), fld);
4808 }
4809 else if (TREE_CODE (t) == VAR_DECL)
4810 {
4811 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4812 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4813 }
4814
4815 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4816 && DECL_HAS_VALUE_EXPR_P (t))
4817 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4818
4819 if (TREE_CODE (t) != FIELD_DECL
4820 && TREE_CODE (t) != TYPE_DECL)
4821 fld_worklist_push (TREE_CHAIN (t), fld);
4822 *ws = 0;
4823 }
4824 else if (TYPE_P (t))
4825 {
4826 /* Note that walk_tree does not traverse every possible field in
4827 types, so we have to do our own traversals here. */
4828 add_tree_to_fld_list (t, fld);
4829
4830 if (!RECORD_OR_UNION_TYPE_P (t))
4831 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4832 fld_worklist_push (TYPE_SIZE (t), fld);
4833 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4834 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4835 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4836 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4837 fld_worklist_push (TYPE_NAME (t), fld);
4838 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
4839 them and thus do not and want not to reach unused pointer types
4840 this way. */
4841 if (!POINTER_TYPE_P (t))
4842 fld_worklist_push (TYPE_MINVAL (t), fld);
4843 if (!RECORD_OR_UNION_TYPE_P (t))
4844 fld_worklist_push (TYPE_MAXVAL (t), fld);
4845 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4846 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
4847 do not and want not to reach unused variants this way. */
4848 fld_worklist_push (TYPE_CONTEXT (t), fld);
4849 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
4850 and want not to reach unused types this way. */
4851
4852 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4853 {
4854 unsigned i;
4855 tree tem;
4856 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4857 i, tem); ++i)
4858 fld_worklist_push (TREE_TYPE (tem), fld);
4859 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4860 if (tem
4861 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4862 && TREE_CODE (tem) == TREE_LIST)
4863 do
4864 {
4865 fld_worklist_push (TREE_VALUE (tem), fld);
4866 tem = TREE_CHAIN (tem);
4867 }
4868 while (tem);
4869 }
4870 if (RECORD_OR_UNION_TYPE_P (t))
4871 {
4872 tree tem;
4873 /* Push all TYPE_FIELDS - there can be interleaving interesting
4874 and non-interesting things. */
4875 tem = TYPE_FIELDS (t);
4876 while (tem)
4877 {
4878 if (TREE_CODE (tem) == FIELD_DECL
4879 || TREE_CODE (tem) == TYPE_DECL)
4880 fld_worklist_push (tem, fld);
4881 tem = TREE_CHAIN (tem);
4882 }
4883 }
4884
4885 fld_worklist_push (TYPE_STUB_DECL (t), fld);
4886 *ws = 0;
4887 }
4888 else if (TREE_CODE (t) == BLOCK)
4889 {
4890 tree tem;
4891 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4892 fld_worklist_push (tem, fld);
4893 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4894 fld_worklist_push (tem, fld);
4895 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4896 }
4897
4898 if (TREE_CODE (t) != IDENTIFIER_NODE
4899 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
4900 fld_worklist_push (TREE_TYPE (t), fld);
4901
4902 return NULL_TREE;
4903 }
4904
4905
4906 /* Find decls and types in T. */
4907
4908 static void
4909 find_decls_types (tree t, struct free_lang_data_d *fld)
4910 {
4911 while (1)
4912 {
4913 if (!pointer_set_contains (fld->pset, t))
4914 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4915 if (VEC_empty (tree, fld->worklist))
4916 break;
4917 t = VEC_pop (tree, fld->worklist);
4918 }
4919 }
4920
4921 /* Translate all the types in LIST with the corresponding runtime
4922 types. */
4923
4924 static tree
4925 get_eh_types_for_runtime (tree list)
4926 {
4927 tree head, prev;
4928
4929 if (list == NULL_TREE)
4930 return NULL_TREE;
4931
4932 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4933 prev = head;
4934 list = TREE_CHAIN (list);
4935 while (list)
4936 {
4937 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4938 TREE_CHAIN (prev) = n;
4939 prev = TREE_CHAIN (prev);
4940 list = TREE_CHAIN (list);
4941 }
4942
4943 return head;
4944 }
4945
4946
4947 /* Find decls and types referenced in EH region R and store them in
4948 FLD->DECLS and FLD->TYPES. */
4949
4950 static void
4951 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4952 {
4953 switch (r->type)
4954 {
4955 case ERT_CLEANUP:
4956 break;
4957
4958 case ERT_TRY:
4959 {
4960 eh_catch c;
4961
4962 /* The types referenced in each catch must first be changed to the
4963 EH types used at runtime. This removes references to FE types
4964 in the region. */
4965 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4966 {
4967 c->type_list = get_eh_types_for_runtime (c->type_list);
4968 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4969 }
4970 }
4971 break;
4972
4973 case ERT_ALLOWED_EXCEPTIONS:
4974 r->u.allowed.type_list
4975 = get_eh_types_for_runtime (r->u.allowed.type_list);
4976 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4977 break;
4978
4979 case ERT_MUST_NOT_THROW:
4980 walk_tree (&r->u.must_not_throw.failure_decl,
4981 find_decls_types_r, fld, fld->pset);
4982 break;
4983 }
4984 }
4985
4986
4987 /* Find decls and types referenced in cgraph node N and store them in
4988 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4989 look for *every* kind of DECL and TYPE node reachable from N,
4990 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4991 NAMESPACE_DECLs, etc). */
4992
4993 static void
4994 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4995 {
4996 basic_block bb;
4997 struct function *fn;
4998 unsigned ix;
4999 tree t;
5000
5001 find_decls_types (n->decl, fld);
5002
5003 if (!gimple_has_body_p (n->decl))
5004 return;
5005
5006 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5007
5008 fn = DECL_STRUCT_FUNCTION (n->decl);
5009
5010 /* Traverse locals. */
5011 FOR_EACH_LOCAL_DECL (fn, ix, t)
5012 find_decls_types (t, fld);
5013
5014 /* Traverse EH regions in FN. */
5015 {
5016 eh_region r;
5017 FOR_ALL_EH_REGION_FN (r, fn)
5018 find_decls_types_in_eh_region (r, fld);
5019 }
5020
5021 /* Traverse every statement in FN. */
5022 FOR_EACH_BB_FN (bb, fn)
5023 {
5024 gimple_stmt_iterator si;
5025 unsigned i;
5026
5027 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5028 {
5029 gimple phi = gsi_stmt (si);
5030
5031 for (i = 0; i < gimple_phi_num_args (phi); i++)
5032 {
5033 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5034 find_decls_types (*arg_p, fld);
5035 }
5036 }
5037
5038 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5039 {
5040 gimple stmt = gsi_stmt (si);
5041
5042 if (is_gimple_call (stmt))
5043 find_decls_types (gimple_call_fntype (stmt), fld);
5044
5045 for (i = 0; i < gimple_num_ops (stmt); i++)
5046 {
5047 tree arg = gimple_op (stmt, i);
5048 find_decls_types (arg, fld);
5049 }
5050 }
5051 }
5052 }
5053
5054
5055 /* Find decls and types referenced in varpool node N and store them in
5056 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5057 look for *every* kind of DECL and TYPE node reachable from N,
5058 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5059 NAMESPACE_DECLs, etc). */
5060
5061 static void
5062 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
5063 {
5064 find_decls_types (v->decl, fld);
5065 }
5066
5067 /* If T needs an assembler name, have one created for it. */
5068
5069 void
5070 assign_assembler_name_if_neeeded (tree t)
5071 {
5072 if (need_assembler_name_p (t))
5073 {
5074 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5075 diagnostics that use input_location to show locus
5076 information. The problem here is that, at this point,
5077 input_location is generally anchored to the end of the file
5078 (since the parser is long gone), so we don't have a good
5079 position to pin it to.
5080
5081 To alleviate this problem, this uses the location of T's
5082 declaration. Examples of this are
5083 testsuite/g++.dg/template/cond2.C and
5084 testsuite/g++.dg/template/pr35240.C. */
5085 location_t saved_location = input_location;
5086 input_location = DECL_SOURCE_LOCATION (t);
5087
5088 decl_assembler_name (t);
5089
5090 input_location = saved_location;
5091 }
5092 }
5093
5094
5095 /* Free language specific information for every operand and expression
5096 in every node of the call graph. This process operates in three stages:
5097
5098 1- Every callgraph node and varpool node is traversed looking for
5099 decls and types embedded in them. This is a more exhaustive
5100 search than that done by find_referenced_vars, because it will
5101 also collect individual fields, decls embedded in types, etc.
5102
5103 2- All the decls found are sent to free_lang_data_in_decl.
5104
5105 3- All the types found are sent to free_lang_data_in_type.
5106
5107 The ordering between decls and types is important because
5108 free_lang_data_in_decl sets assembler names, which includes
5109 mangling. So types cannot be freed up until assembler names have
5110 been set up. */
5111
5112 static void
5113 free_lang_data_in_cgraph (void)
5114 {
5115 struct cgraph_node *n;
5116 struct varpool_node *v;
5117 struct free_lang_data_d fld;
5118 tree t;
5119 unsigned i;
5120 alias_pair *p;
5121
5122 /* Initialize sets and arrays to store referenced decls and types. */
5123 fld.pset = pointer_set_create ();
5124 fld.worklist = NULL;
5125 fld.decls = VEC_alloc (tree, heap, 100);
5126 fld.types = VEC_alloc (tree, heap, 100);
5127
5128 /* Find decls and types in the body of every function in the callgraph. */
5129 for (n = cgraph_nodes; n; n = n->next)
5130 find_decls_types_in_node (n, &fld);
5131
5132 FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p)
5133 find_decls_types (p->decl, &fld);
5134
5135 /* Find decls and types in every varpool symbol. */
5136 for (v = varpool_nodes; v; v = v->next)
5137 find_decls_types_in_var (v, &fld);
5138
5139 /* Set the assembler name on every decl found. We need to do this
5140 now because free_lang_data_in_decl will invalidate data needed
5141 for mangling. This breaks mangling on interdependent decls. */
5142 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5143 assign_assembler_name_if_neeeded (t);
5144
5145 /* Traverse every decl found freeing its language data. */
5146 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5147 free_lang_data_in_decl (t);
5148
5149 /* Traverse every type found freeing its language data. */
5150 FOR_EACH_VEC_ELT (tree, fld.types, i, t)
5151 free_lang_data_in_type (t);
5152
5153 pointer_set_destroy (fld.pset);
5154 VEC_free (tree, heap, fld.worklist);
5155 VEC_free (tree, heap, fld.decls);
5156 VEC_free (tree, heap, fld.types);
5157 }
5158
5159
5160 /* Free resources that are used by FE but are not needed once they are done. */
5161
5162 static unsigned
5163 free_lang_data (void)
5164 {
5165 unsigned i;
5166
5167 /* If we are the LTO frontend we have freed lang-specific data already. */
5168 if (in_lto_p
5169 || !flag_generate_lto)
5170 return 0;
5171
5172 /* Allocate and assign alias sets to the standard integer types
5173 while the slots are still in the way the frontends generated them. */
5174 for (i = 0; i < itk_none; ++i)
5175 if (integer_types[i])
5176 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5177
5178 /* Traverse the IL resetting language specific information for
5179 operands, expressions, etc. */
5180 free_lang_data_in_cgraph ();
5181
5182 /* Create gimple variants for common types. */
5183 ptrdiff_type_node = integer_type_node;
5184 fileptr_type_node = ptr_type_node;
5185
5186 /* Reset some langhooks. Do not reset types_compatible_p, it may
5187 still be used indirectly via the get_alias_set langhook. */
5188 lang_hooks.callgraph.analyze_expr = NULL;
5189 lang_hooks.dwarf_name = lhd_dwarf_name;
5190 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5191 /* We do not want the default decl_assembler_name implementation,
5192 rather if we have fixed everything we want a wrapper around it
5193 asserting that all non-local symbols already got their assembler
5194 name and only produce assembler names for local symbols. Or rather
5195 make sure we never call decl_assembler_name on local symbols and
5196 devise a separate, middle-end private scheme for it. */
5197
5198 /* Reset diagnostic machinery. */
5199 diagnostic_starter (global_dc) = default_tree_diagnostic_starter;
5200 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
5201 diagnostic_format_decoder (global_dc) = default_tree_printer;
5202
5203 return 0;
5204 }
5205
5206
5207 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5208 {
5209 {
5210 SIMPLE_IPA_PASS,
5211 "*free_lang_data", /* name */
5212 NULL, /* gate */
5213 free_lang_data, /* execute */
5214 NULL, /* sub */
5215 NULL, /* next */
5216 0, /* static_pass_number */
5217 TV_IPA_FREE_LANG_DATA, /* tv_id */
5218 0, /* properties_required */
5219 0, /* properties_provided */
5220 0, /* properties_destroyed */
5221 0, /* todo_flags_start */
5222 TODO_ggc_collect /* todo_flags_finish */
5223 }
5224 };
5225
5226 /* The backbone of is_attribute_p(). ATTR_LEN is the string length of
5227 ATTR_NAME. Also used internally by remove_attribute(). */
5228 bool
5229 private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident)
5230 {
5231 size_t ident_len = IDENTIFIER_LENGTH (ident);
5232
5233 if (ident_len == attr_len)
5234 {
5235 if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0)
5236 return true;
5237 }
5238 else if (ident_len == attr_len + 4)
5239 {
5240 /* There is the possibility that ATTR is 'text' and IDENT is
5241 '__text__'. */
5242 const char *p = IDENTIFIER_POINTER (ident);
5243 if (p[0] == '_' && p[1] == '_'
5244 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5245 && strncmp (attr_name, p + 2, attr_len) == 0)
5246 return true;
5247 }
5248
5249 return false;
5250 }
5251
5252 /* The backbone of lookup_attribute(). ATTR_LEN is the string length
5253 of ATTR_NAME, and LIST is not NULL_TREE. */
5254 tree
5255 private_lookup_attribute (const char *attr_name, size_t attr_len, tree list)
5256 {
5257 while (list)
5258 {
5259 size_t ident_len = IDENTIFIER_LENGTH (TREE_PURPOSE (list));
5260
5261 if (ident_len == attr_len)
5262 {
5263 if (strcmp (attr_name, IDENTIFIER_POINTER (TREE_PURPOSE (list))) == 0)
5264 break;
5265 }
5266 /* TODO: If we made sure that attributes were stored in the
5267 canonical form without '__...__' (ie, as in 'text' as opposed
5268 to '__text__') then we could avoid the following case. */
5269 else if (ident_len == attr_len + 4)
5270 {
5271 const char *p = IDENTIFIER_POINTER (TREE_PURPOSE (list));
5272 if (p[0] == '_' && p[1] == '_'
5273 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5274 && strncmp (attr_name, p + 2, attr_len) == 0)
5275 break;
5276 }
5277 list = TREE_CHAIN (list);
5278 }
5279
5280 return list;
5281 }
5282
5283 /* A variant of lookup_attribute() that can be used with an identifier
5284 as the first argument, and where the identifier can be either
5285 'text' or '__text__'.
5286
5287 Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST,
5288 return a pointer to the attribute's list element if the attribute
5289 is part of the list, or NULL_TREE if not found. If the attribute
5290 appears more than once, this only returns the first occurrence; the
5291 TREE_CHAIN of the return value should be passed back in if further
5292 occurrences are wanted. ATTR_IDENTIFIER must be an identifier but
5293 can be in the form 'text' or '__text__'. */
5294 static tree
5295 lookup_ident_attribute (tree attr_identifier, tree list)
5296 {
5297 gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE);
5298
5299 while (list)
5300 {
5301 gcc_checking_assert (TREE_CODE (TREE_PURPOSE (list)) == IDENTIFIER_NODE);
5302
5303 /* Identifiers can be compared directly for equality. */
5304 if (attr_identifier == TREE_PURPOSE (list))
5305 break;
5306
5307 /* If they are not equal, they may still be one in the form
5308 'text' while the other one is in the form '__text__'. TODO:
5309 If we were storing attributes in normalized 'text' form, then
5310 this could all go away and we could take full advantage of
5311 the fact that we're comparing identifiers. :-) */
5312 {
5313 size_t attr_len = IDENTIFIER_LENGTH (attr_identifier);
5314 size_t ident_len = IDENTIFIER_LENGTH (TREE_PURPOSE (list));
5315
5316 if (ident_len == attr_len + 4)
5317 {
5318 const char *p = IDENTIFIER_POINTER (TREE_PURPOSE (list));
5319 const char *q = IDENTIFIER_POINTER (attr_identifier);
5320 if (p[0] == '_' && p[1] == '_'
5321 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5322 && strncmp (q, p + 2, attr_len) == 0)
5323 break;
5324 }
5325 else if (ident_len + 4 == attr_len)
5326 {
5327 const char *p = IDENTIFIER_POINTER (TREE_PURPOSE (list));
5328 const char *q = IDENTIFIER_POINTER (attr_identifier);
5329 if (q[0] == '_' && q[1] == '_'
5330 && q[attr_len - 2] == '_' && q[attr_len - 1] == '_'
5331 && strncmp (q + 2, p, ident_len) == 0)
5332 break;
5333 }
5334 }
5335 list = TREE_CHAIN (list);
5336 }
5337
5338 return list;
5339 }
5340
5341 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5342 modified list. */
5343
5344 tree
5345 remove_attribute (const char *attr_name, tree list)
5346 {
5347 tree *p;
5348 size_t attr_len = strlen (attr_name);
5349
5350 gcc_checking_assert (attr_name[0] != '_');
5351
5352 for (p = &list; *p; )
5353 {
5354 tree l = *p;
5355 /* TODO: If we were storing attributes in normalized form, here
5356 we could use a simple strcmp(). */
5357 if (private_is_attribute_p (attr_name, attr_len, TREE_PURPOSE (l)))
5358 *p = TREE_CHAIN (l);
5359 else
5360 p = &TREE_CHAIN (l);
5361 }
5362
5363 return list;
5364 }
5365
5366 /* Return an attribute list that is the union of a1 and a2. */
5367
5368 tree
5369 merge_attributes (tree a1, tree a2)
5370 {
5371 tree attributes;
5372
5373 /* Either one unset? Take the set one. */
5374
5375 if ((attributes = a1) == 0)
5376 attributes = a2;
5377
5378 /* One that completely contains the other? Take it. */
5379
5380 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5381 {
5382 if (attribute_list_contained (a2, a1))
5383 attributes = a2;
5384 else
5385 {
5386 /* Pick the longest list, and hang on the other list. */
5387
5388 if (list_length (a1) < list_length (a2))
5389 attributes = a2, a2 = a1;
5390
5391 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5392 {
5393 tree a;
5394 for (a = lookup_ident_attribute (TREE_PURPOSE (a2), attributes);
5395 a != NULL_TREE && !attribute_value_equal (a, a2);
5396 a = lookup_ident_attribute (TREE_PURPOSE (a2), TREE_CHAIN (a)))
5397 ;
5398 if (a == NULL_TREE)
5399 {
5400 a1 = copy_node (a2);
5401 TREE_CHAIN (a1) = attributes;
5402 attributes = a1;
5403 }
5404 }
5405 }
5406 }
5407 return attributes;
5408 }
5409
5410 /* Given types T1 and T2, merge their attributes and return
5411 the result. */
5412
5413 tree
5414 merge_type_attributes (tree t1, tree t2)
5415 {
5416 return merge_attributes (TYPE_ATTRIBUTES (t1),
5417 TYPE_ATTRIBUTES (t2));
5418 }
5419
5420 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5421 the result. */
5422
5423 tree
5424 merge_decl_attributes (tree olddecl, tree newdecl)
5425 {
5426 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5427 DECL_ATTRIBUTES (newdecl));
5428 }
5429
5430 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5431
5432 /* Specialization of merge_decl_attributes for various Windows targets.
5433
5434 This handles the following situation:
5435
5436 __declspec (dllimport) int foo;
5437 int foo;
5438
5439 The second instance of `foo' nullifies the dllimport. */
5440
5441 tree
5442 merge_dllimport_decl_attributes (tree old, tree new_tree)
5443 {
5444 tree a;
5445 int delete_dllimport_p = 1;
5446
5447 /* What we need to do here is remove from `old' dllimport if it doesn't
5448 appear in `new'. dllimport behaves like extern: if a declaration is
5449 marked dllimport and a definition appears later, then the object
5450 is not dllimport'd. We also remove a `new' dllimport if the old list
5451 contains dllexport: dllexport always overrides dllimport, regardless
5452 of the order of declaration. */
5453 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5454 delete_dllimport_p = 0;
5455 else if (DECL_DLLIMPORT_P (new_tree)
5456 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5457 {
5458 DECL_DLLIMPORT_P (new_tree) = 0;
5459 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5460 "dllimport ignored", new_tree);
5461 }
5462 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5463 {
5464 /* Warn about overriding a symbol that has already been used, e.g.:
5465 extern int __attribute__ ((dllimport)) foo;
5466 int* bar () {return &foo;}
5467 int foo;
5468 */
5469 if (TREE_USED (old))
5470 {
5471 warning (0, "%q+D redeclared without dllimport attribute "
5472 "after being referenced with dll linkage", new_tree);
5473 /* If we have used a variable's address with dllimport linkage,
5474 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5475 decl may already have had TREE_CONSTANT computed.
5476 We still remove the attribute so that assembler code refers
5477 to '&foo rather than '_imp__foo'. */
5478 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5479 DECL_DLLIMPORT_P (new_tree) = 1;
5480 }
5481
5482 /* Let an inline definition silently override the external reference,
5483 but otherwise warn about attribute inconsistency. */
5484 else if (TREE_CODE (new_tree) == VAR_DECL
5485 || !DECL_DECLARED_INLINE_P (new_tree))
5486 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5487 "previous dllimport ignored", new_tree);
5488 }
5489 else
5490 delete_dllimport_p = 0;
5491
5492 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5493
5494 if (delete_dllimport_p)
5495 a = remove_attribute ("dllimport", a);
5496
5497 return a;
5498 }
5499
5500 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5501 struct attribute_spec.handler. */
5502
5503 tree
5504 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5505 bool *no_add_attrs)
5506 {
5507 tree node = *pnode;
5508 bool is_dllimport;
5509
5510 /* These attributes may apply to structure and union types being created,
5511 but otherwise should pass to the declaration involved. */
5512 if (!DECL_P (node))
5513 {
5514 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5515 | (int) ATTR_FLAG_ARRAY_NEXT))
5516 {
5517 *no_add_attrs = true;
5518 return tree_cons (name, args, NULL_TREE);
5519 }
5520 if (TREE_CODE (node) == RECORD_TYPE
5521 || TREE_CODE (node) == UNION_TYPE)
5522 {
5523 node = TYPE_NAME (node);
5524 if (!node)
5525 return NULL_TREE;
5526 }
5527 else
5528 {
5529 warning (OPT_Wattributes, "%qE attribute ignored",
5530 name);
5531 *no_add_attrs = true;
5532 return NULL_TREE;
5533 }
5534 }
5535
5536 if (TREE_CODE (node) != FUNCTION_DECL
5537 && TREE_CODE (node) != VAR_DECL
5538 && TREE_CODE (node) != TYPE_DECL)
5539 {
5540 *no_add_attrs = true;
5541 warning (OPT_Wattributes, "%qE attribute ignored",
5542 name);
5543 return NULL_TREE;
5544 }
5545
5546 if (TREE_CODE (node) == TYPE_DECL
5547 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5548 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5549 {
5550 *no_add_attrs = true;
5551 warning (OPT_Wattributes, "%qE attribute ignored",
5552 name);
5553 return NULL_TREE;
5554 }
5555
5556 is_dllimport = is_attribute_p ("dllimport", name);
5557
5558 /* Report error on dllimport ambiguities seen now before they cause
5559 any damage. */
5560 if (is_dllimport)
5561 {
5562 /* Honor any target-specific overrides. */
5563 if (!targetm.valid_dllimport_attribute_p (node))
5564 *no_add_attrs = true;
5565
5566 else if (TREE_CODE (node) == FUNCTION_DECL
5567 && DECL_DECLARED_INLINE_P (node))
5568 {
5569 warning (OPT_Wattributes, "inline function %q+D declared as "
5570 " dllimport: attribute ignored", node);
5571 *no_add_attrs = true;
5572 }
5573 /* Like MS, treat definition of dllimported variables and
5574 non-inlined functions on declaration as syntax errors. */
5575 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5576 {
5577 error ("function %q+D definition is marked dllimport", node);
5578 *no_add_attrs = true;
5579 }
5580
5581 else if (TREE_CODE (node) == VAR_DECL)
5582 {
5583 if (DECL_INITIAL (node))
5584 {
5585 error ("variable %q+D definition is marked dllimport",
5586 node);
5587 *no_add_attrs = true;
5588 }
5589
5590 /* `extern' needn't be specified with dllimport.
5591 Specify `extern' now and hope for the best. Sigh. */
5592 DECL_EXTERNAL (node) = 1;
5593 /* Also, implicitly give dllimport'd variables declared within
5594 a function global scope, unless declared static. */
5595 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5596 TREE_PUBLIC (node) = 1;
5597 }
5598
5599 if (*no_add_attrs == false)
5600 DECL_DLLIMPORT_P (node) = 1;
5601 }
5602 else if (TREE_CODE (node) == FUNCTION_DECL
5603 && DECL_DECLARED_INLINE_P (node)
5604 && flag_keep_inline_dllexport)
5605 /* An exported function, even if inline, must be emitted. */
5606 DECL_EXTERNAL (node) = 0;
5607
5608 /* Report error if symbol is not accessible at global scope. */
5609 if (!TREE_PUBLIC (node)
5610 && (TREE_CODE (node) == VAR_DECL
5611 || TREE_CODE (node) == FUNCTION_DECL))
5612 {
5613 error ("external linkage required for symbol %q+D because of "
5614 "%qE attribute", node, name);
5615 *no_add_attrs = true;
5616 }
5617
5618 /* A dllexport'd entity must have default visibility so that other
5619 program units (shared libraries or the main executable) can see
5620 it. A dllimport'd entity must have default visibility so that
5621 the linker knows that undefined references within this program
5622 unit can be resolved by the dynamic linker. */
5623 if (!*no_add_attrs)
5624 {
5625 if (DECL_VISIBILITY_SPECIFIED (node)
5626 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5627 error ("%qE implies default visibility, but %qD has already "
5628 "been declared with a different visibility",
5629 name, node);
5630 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5631 DECL_VISIBILITY_SPECIFIED (node) = 1;
5632 }
5633
5634 return NULL_TREE;
5635 }
5636
5637 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5638 \f
5639 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5640 of the various TYPE_QUAL values. */
5641
5642 static void
5643 set_type_quals (tree type, int type_quals)
5644 {
5645 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5646 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5647 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5648 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5649 }
5650
5651 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5652
5653 bool
5654 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5655 {
5656 return (TYPE_QUALS (cand) == type_quals
5657 && TYPE_NAME (cand) == TYPE_NAME (base)
5658 /* Apparently this is needed for Objective-C. */
5659 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5660 /* Check alignment. */
5661 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5662 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5663 TYPE_ATTRIBUTES (base)));
5664 }
5665
5666 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5667
5668 static bool
5669 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5670 {
5671 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5672 && TYPE_NAME (cand) == TYPE_NAME (base)
5673 /* Apparently this is needed for Objective-C. */
5674 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5675 /* Check alignment. */
5676 && TYPE_ALIGN (cand) == align
5677 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5678 TYPE_ATTRIBUTES (base)));
5679 }
5680
5681 /* Return a version of the TYPE, qualified as indicated by the
5682 TYPE_QUALS, if one exists. If no qualified version exists yet,
5683 return NULL_TREE. */
5684
5685 tree
5686 get_qualified_type (tree type, int type_quals)
5687 {
5688 tree t;
5689
5690 if (TYPE_QUALS (type) == type_quals)
5691 return type;
5692
5693 /* Search the chain of variants to see if there is already one there just
5694 like the one we need to have. If so, use that existing one. We must
5695 preserve the TYPE_NAME, since there is code that depends on this. */
5696 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5697 if (check_qualified_type (t, type, type_quals))
5698 return t;
5699
5700 return NULL_TREE;
5701 }
5702
5703 /* Like get_qualified_type, but creates the type if it does not
5704 exist. This function never returns NULL_TREE. */
5705
5706 tree
5707 build_qualified_type (tree type, int type_quals)
5708 {
5709 tree t;
5710
5711 /* See if we already have the appropriate qualified variant. */
5712 t = get_qualified_type (type, type_quals);
5713
5714 /* If not, build it. */
5715 if (!t)
5716 {
5717 t = build_variant_type_copy (type);
5718 set_type_quals (t, type_quals);
5719
5720 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5721 /* Propagate structural equality. */
5722 SET_TYPE_STRUCTURAL_EQUALITY (t);
5723 else if (TYPE_CANONICAL (type) != type)
5724 /* Build the underlying canonical type, since it is different
5725 from TYPE. */
5726 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5727 type_quals);
5728 else
5729 /* T is its own canonical type. */
5730 TYPE_CANONICAL (t) = t;
5731
5732 }
5733
5734 return t;
5735 }
5736
5737 /* Create a variant of type T with alignment ALIGN. */
5738
5739 tree
5740 build_aligned_type (tree type, unsigned int align)
5741 {
5742 tree t;
5743
5744 if (TYPE_PACKED (type)
5745 || TYPE_ALIGN (type) == align)
5746 return type;
5747
5748 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5749 if (check_aligned_type (t, type, align))
5750 return t;
5751
5752 t = build_variant_type_copy (type);
5753 TYPE_ALIGN (t) = align;
5754
5755 return t;
5756 }
5757
5758 /* Create a new distinct copy of TYPE. The new type is made its own
5759 MAIN_VARIANT. If TYPE requires structural equality checks, the
5760 resulting type requires structural equality checks; otherwise, its
5761 TYPE_CANONICAL points to itself. */
5762
5763 tree
5764 build_distinct_type_copy (tree type)
5765 {
5766 tree t = copy_node (type);
5767
5768 TYPE_POINTER_TO (t) = 0;
5769 TYPE_REFERENCE_TO (t) = 0;
5770
5771 /* Set the canonical type either to a new equivalence class, or
5772 propagate the need for structural equality checks. */
5773 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5774 SET_TYPE_STRUCTURAL_EQUALITY (t);
5775 else
5776 TYPE_CANONICAL (t) = t;
5777
5778 /* Make it its own variant. */
5779 TYPE_MAIN_VARIANT (t) = t;
5780 TYPE_NEXT_VARIANT (t) = 0;
5781
5782 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5783 whose TREE_TYPE is not t. This can also happen in the Ada
5784 frontend when using subtypes. */
5785
5786 return t;
5787 }
5788
5789 /* Create a new variant of TYPE, equivalent but distinct. This is so
5790 the caller can modify it. TYPE_CANONICAL for the return type will
5791 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5792 are considered equal by the language itself (or that both types
5793 require structural equality checks). */
5794
5795 tree
5796 build_variant_type_copy (tree type)
5797 {
5798 tree t, m = TYPE_MAIN_VARIANT (type);
5799
5800 t = build_distinct_type_copy (type);
5801
5802 /* Since we're building a variant, assume that it is a non-semantic
5803 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5804 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5805
5806 /* Add the new type to the chain of variants of TYPE. */
5807 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5808 TYPE_NEXT_VARIANT (m) = t;
5809 TYPE_MAIN_VARIANT (t) = m;
5810
5811 return t;
5812 }
5813 \f
5814 /* Return true if the from tree in both tree maps are equal. */
5815
5816 int
5817 tree_map_base_eq (const void *va, const void *vb)
5818 {
5819 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5820 *const b = (const struct tree_map_base *) vb;
5821 return (a->from == b->from);
5822 }
5823
5824 /* Hash a from tree in a tree_base_map. */
5825
5826 unsigned int
5827 tree_map_base_hash (const void *item)
5828 {
5829 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5830 }
5831
5832 /* Return true if this tree map structure is marked for garbage collection
5833 purposes. We simply return true if the from tree is marked, so that this
5834 structure goes away when the from tree goes away. */
5835
5836 int
5837 tree_map_base_marked_p (const void *p)
5838 {
5839 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5840 }
5841
5842 /* Hash a from tree in a tree_map. */
5843
5844 unsigned int
5845 tree_map_hash (const void *item)
5846 {
5847 return (((const struct tree_map *) item)->hash);
5848 }
5849
5850 /* Hash a from tree in a tree_decl_map. */
5851
5852 unsigned int
5853 tree_decl_map_hash (const void *item)
5854 {
5855 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5856 }
5857
5858 /* Return the initialization priority for DECL. */
5859
5860 priority_type
5861 decl_init_priority_lookup (tree decl)
5862 {
5863 struct tree_priority_map *h;
5864 struct tree_map_base in;
5865
5866 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5867 in.from = decl;
5868 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5869 return h ? h->init : DEFAULT_INIT_PRIORITY;
5870 }
5871
5872 /* Return the finalization priority for DECL. */
5873
5874 priority_type
5875 decl_fini_priority_lookup (tree decl)
5876 {
5877 struct tree_priority_map *h;
5878 struct tree_map_base in;
5879
5880 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5881 in.from = decl;
5882 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5883 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5884 }
5885
5886 /* Return the initialization and finalization priority information for
5887 DECL. If there is no previous priority information, a freshly
5888 allocated structure is returned. */
5889
5890 static struct tree_priority_map *
5891 decl_priority_info (tree decl)
5892 {
5893 struct tree_priority_map in;
5894 struct tree_priority_map *h;
5895 void **loc;
5896
5897 in.base.from = decl;
5898 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5899 h = (struct tree_priority_map *) *loc;
5900 if (!h)
5901 {
5902 h = ggc_alloc_cleared_tree_priority_map ();
5903 *loc = h;
5904 h->base.from = decl;
5905 h->init = DEFAULT_INIT_PRIORITY;
5906 h->fini = DEFAULT_INIT_PRIORITY;
5907 }
5908
5909 return h;
5910 }
5911
5912 /* Set the initialization priority for DECL to PRIORITY. */
5913
5914 void
5915 decl_init_priority_insert (tree decl, priority_type priority)
5916 {
5917 struct tree_priority_map *h;
5918
5919 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5920 if (priority == DEFAULT_INIT_PRIORITY)
5921 return;
5922 h = decl_priority_info (decl);
5923 h->init = priority;
5924 }
5925
5926 /* Set the finalization priority for DECL to PRIORITY. */
5927
5928 void
5929 decl_fini_priority_insert (tree decl, priority_type priority)
5930 {
5931 struct tree_priority_map *h;
5932
5933 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5934 if (priority == DEFAULT_INIT_PRIORITY)
5935 return;
5936 h = decl_priority_info (decl);
5937 h->fini = priority;
5938 }
5939
5940 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5941
5942 static void
5943 print_debug_expr_statistics (void)
5944 {
5945 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5946 (long) htab_size (debug_expr_for_decl),
5947 (long) htab_elements (debug_expr_for_decl),
5948 htab_collisions (debug_expr_for_decl));
5949 }
5950
5951 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5952
5953 static void
5954 print_value_expr_statistics (void)
5955 {
5956 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5957 (long) htab_size (value_expr_for_decl),
5958 (long) htab_elements (value_expr_for_decl),
5959 htab_collisions (value_expr_for_decl));
5960 }
5961
5962 /* Lookup a debug expression for FROM, and return it if we find one. */
5963
5964 tree
5965 decl_debug_expr_lookup (tree from)
5966 {
5967 struct tree_decl_map *h, in;
5968 in.base.from = from;
5969
5970 h = (struct tree_decl_map *)
5971 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
5972 if (h)
5973 return h->to;
5974 return NULL_TREE;
5975 }
5976
5977 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5978
5979 void
5980 decl_debug_expr_insert (tree from, tree to)
5981 {
5982 struct tree_decl_map *h;
5983 void **loc;
5984
5985 h = ggc_alloc_tree_decl_map ();
5986 h->base.from = from;
5987 h->to = to;
5988 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
5989 INSERT);
5990 *(struct tree_decl_map **) loc = h;
5991 }
5992
5993 /* Lookup a value expression for FROM, and return it if we find one. */
5994
5995 tree
5996 decl_value_expr_lookup (tree from)
5997 {
5998 struct tree_decl_map *h, in;
5999 in.base.from = from;
6000
6001 h = (struct tree_decl_map *)
6002 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
6003 if (h)
6004 return h->to;
6005 return NULL_TREE;
6006 }
6007
6008 /* Insert a mapping FROM->TO in the value expression hashtable. */
6009
6010 void
6011 decl_value_expr_insert (tree from, tree to)
6012 {
6013 struct tree_decl_map *h;
6014 void **loc;
6015
6016 h = ggc_alloc_tree_decl_map ();
6017 h->base.from = from;
6018 h->to = to;
6019 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
6020 INSERT);
6021 *(struct tree_decl_map **) loc = h;
6022 }
6023
6024 /* Lookup a vector of debug arguments for FROM, and return it if we
6025 find one. */
6026
6027 VEC(tree, gc) **
6028 decl_debug_args_lookup (tree from)
6029 {
6030 struct tree_vec_map *h, in;
6031
6032 if (!DECL_HAS_DEBUG_ARGS_P (from))
6033 return NULL;
6034 gcc_checking_assert (debug_args_for_decl != NULL);
6035 in.base.from = from;
6036 h = (struct tree_vec_map *)
6037 htab_find_with_hash (debug_args_for_decl, &in, DECL_UID (from));
6038 if (h)
6039 return &h->to;
6040 return NULL;
6041 }
6042
6043 /* Insert a mapping FROM->empty vector of debug arguments in the value
6044 expression hashtable. */
6045
6046 VEC(tree, gc) **
6047 decl_debug_args_insert (tree from)
6048 {
6049 struct tree_vec_map *h;
6050 void **loc;
6051
6052 if (DECL_HAS_DEBUG_ARGS_P (from))
6053 return decl_debug_args_lookup (from);
6054 if (debug_args_for_decl == NULL)
6055 debug_args_for_decl = htab_create_ggc (64, tree_vec_map_hash,
6056 tree_vec_map_eq, 0);
6057 h = ggc_alloc_tree_vec_map ();
6058 h->base.from = from;
6059 h->to = NULL;
6060 loc = htab_find_slot_with_hash (debug_args_for_decl, h, DECL_UID (from),
6061 INSERT);
6062 *(struct tree_vec_map **) loc = h;
6063 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6064 return &h->to;
6065 }
6066
6067 /* Hashing of types so that we don't make duplicates.
6068 The entry point is `type_hash_canon'. */
6069
6070 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6071 with types in the TREE_VALUE slots), by adding the hash codes
6072 of the individual types. */
6073
6074 static unsigned int
6075 type_hash_list (const_tree list, hashval_t hashcode)
6076 {
6077 const_tree tail;
6078
6079 for (tail = list; tail; tail = TREE_CHAIN (tail))
6080 if (TREE_VALUE (tail) != error_mark_node)
6081 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
6082 hashcode);
6083
6084 return hashcode;
6085 }
6086
6087 /* These are the Hashtable callback functions. */
6088
6089 /* Returns true iff the types are equivalent. */
6090
6091 static int
6092 type_hash_eq (const void *va, const void *vb)
6093 {
6094 const struct type_hash *const a = (const struct type_hash *) va,
6095 *const b = (const struct type_hash *) vb;
6096
6097 /* First test the things that are the same for all types. */
6098 if (a->hash != b->hash
6099 || TREE_CODE (a->type) != TREE_CODE (b->type)
6100 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6101 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6102 TYPE_ATTRIBUTES (b->type))
6103 || (TREE_CODE (a->type) != COMPLEX_TYPE
6104 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6105 return 0;
6106
6107 /* Be careful about comparing arrays before and after the element type
6108 has been completed; don't compare TYPE_ALIGN unless both types are
6109 complete. */
6110 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6111 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6112 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6113 return 0;
6114
6115 switch (TREE_CODE (a->type))
6116 {
6117 case VOID_TYPE:
6118 case COMPLEX_TYPE:
6119 case POINTER_TYPE:
6120 case REFERENCE_TYPE:
6121 return 1;
6122
6123 case VECTOR_TYPE:
6124 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6125
6126 case ENUMERAL_TYPE:
6127 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6128 && !(TYPE_VALUES (a->type)
6129 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6130 && TYPE_VALUES (b->type)
6131 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6132 && type_list_equal (TYPE_VALUES (a->type),
6133 TYPE_VALUES (b->type))))
6134 return 0;
6135
6136 /* ... fall through ... */
6137
6138 case INTEGER_TYPE:
6139 case REAL_TYPE:
6140 case BOOLEAN_TYPE:
6141 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6142 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6143 TYPE_MAX_VALUE (b->type)))
6144 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6145 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6146 TYPE_MIN_VALUE (b->type))));
6147
6148 case FIXED_POINT_TYPE:
6149 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6150
6151 case OFFSET_TYPE:
6152 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6153
6154 case METHOD_TYPE:
6155 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6156 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6157 || (TYPE_ARG_TYPES (a->type)
6158 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6159 && TYPE_ARG_TYPES (b->type)
6160 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6161 && type_list_equal (TYPE_ARG_TYPES (a->type),
6162 TYPE_ARG_TYPES (b->type)))))
6163 break;
6164 return 0;
6165 case ARRAY_TYPE:
6166 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6167
6168 case RECORD_TYPE:
6169 case UNION_TYPE:
6170 case QUAL_UNION_TYPE:
6171 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6172 || (TYPE_FIELDS (a->type)
6173 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6174 && TYPE_FIELDS (b->type)
6175 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6176 && type_list_equal (TYPE_FIELDS (a->type),
6177 TYPE_FIELDS (b->type))));
6178
6179 case FUNCTION_TYPE:
6180 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6181 || (TYPE_ARG_TYPES (a->type)
6182 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6183 && TYPE_ARG_TYPES (b->type)
6184 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6185 && type_list_equal (TYPE_ARG_TYPES (a->type),
6186 TYPE_ARG_TYPES (b->type))))
6187 break;
6188 return 0;
6189
6190 default:
6191 return 0;
6192 }
6193
6194 if (lang_hooks.types.type_hash_eq != NULL)
6195 return lang_hooks.types.type_hash_eq (a->type, b->type);
6196
6197 return 1;
6198 }
6199
6200 /* Return the cached hash value. */
6201
6202 static hashval_t
6203 type_hash_hash (const void *item)
6204 {
6205 return ((const struct type_hash *) item)->hash;
6206 }
6207
6208 /* Look in the type hash table for a type isomorphic to TYPE.
6209 If one is found, return it. Otherwise return 0. */
6210
6211 tree
6212 type_hash_lookup (hashval_t hashcode, tree type)
6213 {
6214 struct type_hash *h, in;
6215
6216 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6217 must call that routine before comparing TYPE_ALIGNs. */
6218 layout_type (type);
6219
6220 in.hash = hashcode;
6221 in.type = type;
6222
6223 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6224 hashcode);
6225 if (h)
6226 return h->type;
6227 return NULL_TREE;
6228 }
6229
6230 /* Add an entry to the type-hash-table
6231 for a type TYPE whose hash code is HASHCODE. */
6232
6233 void
6234 type_hash_add (hashval_t hashcode, tree type)
6235 {
6236 struct type_hash *h;
6237 void **loc;
6238
6239 h = ggc_alloc_type_hash ();
6240 h->hash = hashcode;
6241 h->type = type;
6242 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6243 *loc = (void *)h;
6244 }
6245
6246 /* Given TYPE, and HASHCODE its hash code, return the canonical
6247 object for an identical type if one already exists.
6248 Otherwise, return TYPE, and record it as the canonical object.
6249
6250 To use this function, first create a type of the sort you want.
6251 Then compute its hash code from the fields of the type that
6252 make it different from other similar types.
6253 Then call this function and use the value. */
6254
6255 tree
6256 type_hash_canon (unsigned int hashcode, tree type)
6257 {
6258 tree t1;
6259
6260 /* The hash table only contains main variants, so ensure that's what we're
6261 being passed. */
6262 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6263
6264 /* See if the type is in the hash table already. If so, return it.
6265 Otherwise, add the type. */
6266 t1 = type_hash_lookup (hashcode, type);
6267 if (t1 != 0)
6268 {
6269 #ifdef GATHER_STATISTICS
6270 tree_code_counts[(int) TREE_CODE (type)]--;
6271 tree_node_counts[(int) t_kind]--;
6272 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
6273 #endif
6274 return t1;
6275 }
6276 else
6277 {
6278 type_hash_add (hashcode, type);
6279 return type;
6280 }
6281 }
6282
6283 /* See if the data pointed to by the type hash table is marked. We consider
6284 it marked if the type is marked or if a debug type number or symbol
6285 table entry has been made for the type. */
6286
6287 static int
6288 type_hash_marked_p (const void *p)
6289 {
6290 const_tree const type = ((const struct type_hash *) p)->type;
6291
6292 return ggc_marked_p (type);
6293 }
6294
6295 static void
6296 print_type_hash_statistics (void)
6297 {
6298 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6299 (long) htab_size (type_hash_table),
6300 (long) htab_elements (type_hash_table),
6301 htab_collisions (type_hash_table));
6302 }
6303
6304 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6305 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6306 by adding the hash codes of the individual attributes. */
6307
6308 static unsigned int
6309 attribute_hash_list (const_tree list, hashval_t hashcode)
6310 {
6311 const_tree tail;
6312
6313 for (tail = list; tail; tail = TREE_CHAIN (tail))
6314 /* ??? Do we want to add in TREE_VALUE too? */
6315 hashcode = iterative_hash_object
6316 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
6317 return hashcode;
6318 }
6319
6320 /* Given two lists of attributes, return true if list l2 is
6321 equivalent to l1. */
6322
6323 int
6324 attribute_list_equal (const_tree l1, const_tree l2)
6325 {
6326 if (l1 == l2)
6327 return 1;
6328
6329 return attribute_list_contained (l1, l2)
6330 && attribute_list_contained (l2, l1);
6331 }
6332
6333 /* Given two lists of attributes, return true if list L2 is
6334 completely contained within L1. */
6335 /* ??? This would be faster if attribute names were stored in a canonicalized
6336 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6337 must be used to show these elements are equivalent (which they are). */
6338 /* ??? It's not clear that attributes with arguments will always be handled
6339 correctly. */
6340
6341 int
6342 attribute_list_contained (const_tree l1, const_tree l2)
6343 {
6344 const_tree t1, t2;
6345
6346 /* First check the obvious, maybe the lists are identical. */
6347 if (l1 == l2)
6348 return 1;
6349
6350 /* Maybe the lists are similar. */
6351 for (t1 = l1, t2 = l2;
6352 t1 != 0 && t2 != 0
6353 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6354 && TREE_VALUE (t1) == TREE_VALUE (t2);
6355 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6356 ;
6357
6358 /* Maybe the lists are equal. */
6359 if (t1 == 0 && t2 == 0)
6360 return 1;
6361
6362 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6363 {
6364 const_tree attr;
6365 /* This CONST_CAST is okay because lookup_attribute does not
6366 modify its argument and the return value is assigned to a
6367 const_tree. */
6368 for (attr = lookup_ident_attribute (TREE_PURPOSE (t2), CONST_CAST_TREE(l1));
6369 attr != NULL_TREE && !attribute_value_equal (t2, attr);
6370 attr = lookup_ident_attribute (TREE_PURPOSE (t2), TREE_CHAIN (attr)))
6371 ;
6372
6373 if (attr == NULL_TREE)
6374 return 0;
6375 }
6376
6377 return 1;
6378 }
6379
6380 /* Given two lists of types
6381 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6382 return 1 if the lists contain the same types in the same order.
6383 Also, the TREE_PURPOSEs must match. */
6384
6385 int
6386 type_list_equal (const_tree l1, const_tree l2)
6387 {
6388 const_tree t1, t2;
6389
6390 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6391 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6392 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6393 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6394 && (TREE_TYPE (TREE_PURPOSE (t1))
6395 == TREE_TYPE (TREE_PURPOSE (t2))))))
6396 return 0;
6397
6398 return t1 == t2;
6399 }
6400
6401 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6402 given by TYPE. If the argument list accepts variable arguments,
6403 then this function counts only the ordinary arguments. */
6404
6405 int
6406 type_num_arguments (const_tree type)
6407 {
6408 int i = 0;
6409 tree t;
6410
6411 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6412 /* If the function does not take a variable number of arguments,
6413 the last element in the list will have type `void'. */
6414 if (VOID_TYPE_P (TREE_VALUE (t)))
6415 break;
6416 else
6417 ++i;
6418
6419 return i;
6420 }
6421
6422 /* Nonzero if integer constants T1 and T2
6423 represent the same constant value. */
6424
6425 int
6426 tree_int_cst_equal (const_tree t1, const_tree t2)
6427 {
6428 if (t1 == t2)
6429 return 1;
6430
6431 if (t1 == 0 || t2 == 0)
6432 return 0;
6433
6434 if (TREE_CODE (t1) == INTEGER_CST
6435 && TREE_CODE (t2) == INTEGER_CST
6436 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6437 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6438 return 1;
6439
6440 return 0;
6441 }
6442
6443 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6444 The precise way of comparison depends on their data type. */
6445
6446 int
6447 tree_int_cst_lt (const_tree t1, const_tree t2)
6448 {
6449 if (t1 == t2)
6450 return 0;
6451
6452 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6453 {
6454 int t1_sgn = tree_int_cst_sgn (t1);
6455 int t2_sgn = tree_int_cst_sgn (t2);
6456
6457 if (t1_sgn < t2_sgn)
6458 return 1;
6459 else if (t1_sgn > t2_sgn)
6460 return 0;
6461 /* Otherwise, both are non-negative, so we compare them as
6462 unsigned just in case one of them would overflow a signed
6463 type. */
6464 }
6465 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6466 return INT_CST_LT (t1, t2);
6467
6468 return INT_CST_LT_UNSIGNED (t1, t2);
6469 }
6470
6471 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6472
6473 int
6474 tree_int_cst_compare (const_tree t1, const_tree t2)
6475 {
6476 if (tree_int_cst_lt (t1, t2))
6477 return -1;
6478 else if (tree_int_cst_lt (t2, t1))
6479 return 1;
6480 else
6481 return 0;
6482 }
6483
6484 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6485 the host. If POS is zero, the value can be represented in a single
6486 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6487 be represented in a single unsigned HOST_WIDE_INT. */
6488
6489 int
6490 host_integerp (const_tree t, int pos)
6491 {
6492 if (t == NULL_TREE)
6493 return 0;
6494
6495 return (TREE_CODE (t) == INTEGER_CST
6496 && ((TREE_INT_CST_HIGH (t) == 0
6497 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6498 || (! pos && TREE_INT_CST_HIGH (t) == -1
6499 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6500 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6501 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6502 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6503 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6504 }
6505
6506 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6507 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6508 be non-negative. We must be able to satisfy the above conditions. */
6509
6510 HOST_WIDE_INT
6511 tree_low_cst (const_tree t, int pos)
6512 {
6513 gcc_assert (host_integerp (t, pos));
6514 return TREE_INT_CST_LOW (t);
6515 }
6516
6517 /* Return the HOST_WIDE_INT least significant bits of T, a sizetype
6518 kind INTEGER_CST. This makes sure to properly sign-extend the
6519 constant. */
6520
6521 HOST_WIDE_INT
6522 size_low_cst (const_tree t)
6523 {
6524 double_int d = tree_to_double_int (t);
6525 return double_int_sext (d, TYPE_PRECISION (TREE_TYPE (t))).low;
6526 }
6527
6528 /* Return the most significant (sign) bit of T. */
6529
6530 int
6531 tree_int_cst_sign_bit (const_tree t)
6532 {
6533 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
6534 unsigned HOST_WIDE_INT w;
6535
6536 if (bitno < HOST_BITS_PER_WIDE_INT)
6537 w = TREE_INT_CST_LOW (t);
6538 else
6539 {
6540 w = TREE_INT_CST_HIGH (t);
6541 bitno -= HOST_BITS_PER_WIDE_INT;
6542 }
6543
6544 return (w >> bitno) & 1;
6545 }
6546
6547 /* Return an indication of the sign of the integer constant T.
6548 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6549 Note that -1 will never be returned if T's type is unsigned. */
6550
6551 int
6552 tree_int_cst_sgn (const_tree t)
6553 {
6554 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6555 return 0;
6556 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6557 return 1;
6558 else if (TREE_INT_CST_HIGH (t) < 0)
6559 return -1;
6560 else
6561 return 1;
6562 }
6563
6564 /* Return the minimum number of bits needed to represent VALUE in a
6565 signed or unsigned type, UNSIGNEDP says which. */
6566
6567 unsigned int
6568 tree_int_cst_min_precision (tree value, bool unsignedp)
6569 {
6570 int log;
6571
6572 /* If the value is negative, compute its negative minus 1. The latter
6573 adjustment is because the absolute value of the largest negative value
6574 is one larger than the largest positive value. This is equivalent to
6575 a bit-wise negation, so use that operation instead. */
6576
6577 if (tree_int_cst_sgn (value) < 0)
6578 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6579
6580 /* Return the number of bits needed, taking into account the fact
6581 that we need one more bit for a signed than unsigned type. */
6582
6583 if (integer_zerop (value))
6584 log = 0;
6585 else
6586 log = tree_floor_log2 (value);
6587
6588 return log + 1 + !unsignedp;
6589 }
6590
6591 /* Compare two constructor-element-type constants. Return 1 if the lists
6592 are known to be equal; otherwise return 0. */
6593
6594 int
6595 simple_cst_list_equal (const_tree l1, const_tree l2)
6596 {
6597 while (l1 != NULL_TREE && l2 != NULL_TREE)
6598 {
6599 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6600 return 0;
6601
6602 l1 = TREE_CHAIN (l1);
6603 l2 = TREE_CHAIN (l2);
6604 }
6605
6606 return l1 == l2;
6607 }
6608
6609 /* Return truthvalue of whether T1 is the same tree structure as T2.
6610 Return 1 if they are the same.
6611 Return 0 if they are understandably different.
6612 Return -1 if either contains tree structure not understood by
6613 this function. */
6614
6615 int
6616 simple_cst_equal (const_tree t1, const_tree t2)
6617 {
6618 enum tree_code code1, code2;
6619 int cmp;
6620 int i;
6621
6622 if (t1 == t2)
6623 return 1;
6624 if (t1 == 0 || t2 == 0)
6625 return 0;
6626
6627 code1 = TREE_CODE (t1);
6628 code2 = TREE_CODE (t2);
6629
6630 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6631 {
6632 if (CONVERT_EXPR_CODE_P (code2)
6633 || code2 == NON_LVALUE_EXPR)
6634 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6635 else
6636 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6637 }
6638
6639 else if (CONVERT_EXPR_CODE_P (code2)
6640 || code2 == NON_LVALUE_EXPR)
6641 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6642
6643 if (code1 != code2)
6644 return 0;
6645
6646 switch (code1)
6647 {
6648 case INTEGER_CST:
6649 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6650 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6651
6652 case REAL_CST:
6653 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6654
6655 case FIXED_CST:
6656 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6657
6658 case STRING_CST:
6659 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6660 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6661 TREE_STRING_LENGTH (t1)));
6662
6663 case CONSTRUCTOR:
6664 {
6665 unsigned HOST_WIDE_INT idx;
6666 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6667 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6668
6669 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6670 return false;
6671
6672 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6673 /* ??? Should we handle also fields here? */
6674 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6675 VEC_index (constructor_elt, v2, idx)->value))
6676 return false;
6677 return true;
6678 }
6679
6680 case SAVE_EXPR:
6681 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6682
6683 case CALL_EXPR:
6684 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6685 if (cmp <= 0)
6686 return cmp;
6687 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6688 return 0;
6689 {
6690 const_tree arg1, arg2;
6691 const_call_expr_arg_iterator iter1, iter2;
6692 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6693 arg2 = first_const_call_expr_arg (t2, &iter2);
6694 arg1 && arg2;
6695 arg1 = next_const_call_expr_arg (&iter1),
6696 arg2 = next_const_call_expr_arg (&iter2))
6697 {
6698 cmp = simple_cst_equal (arg1, arg2);
6699 if (cmp <= 0)
6700 return cmp;
6701 }
6702 return arg1 == arg2;
6703 }
6704
6705 case TARGET_EXPR:
6706 /* Special case: if either target is an unallocated VAR_DECL,
6707 it means that it's going to be unified with whatever the
6708 TARGET_EXPR is really supposed to initialize, so treat it
6709 as being equivalent to anything. */
6710 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6711 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6712 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6713 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6714 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6715 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6716 cmp = 1;
6717 else
6718 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6719
6720 if (cmp <= 0)
6721 return cmp;
6722
6723 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6724
6725 case WITH_CLEANUP_EXPR:
6726 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6727 if (cmp <= 0)
6728 return cmp;
6729
6730 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6731
6732 case COMPONENT_REF:
6733 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6734 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6735
6736 return 0;
6737
6738 case VAR_DECL:
6739 case PARM_DECL:
6740 case CONST_DECL:
6741 case FUNCTION_DECL:
6742 return 0;
6743
6744 default:
6745 break;
6746 }
6747
6748 /* This general rule works for most tree codes. All exceptions should be
6749 handled above. If this is a language-specific tree code, we can't
6750 trust what might be in the operand, so say we don't know
6751 the situation. */
6752 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6753 return -1;
6754
6755 switch (TREE_CODE_CLASS (code1))
6756 {
6757 case tcc_unary:
6758 case tcc_binary:
6759 case tcc_comparison:
6760 case tcc_expression:
6761 case tcc_reference:
6762 case tcc_statement:
6763 cmp = 1;
6764 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6765 {
6766 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6767 if (cmp <= 0)
6768 return cmp;
6769 }
6770
6771 return cmp;
6772
6773 default:
6774 return -1;
6775 }
6776 }
6777
6778 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6779 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6780 than U, respectively. */
6781
6782 int
6783 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6784 {
6785 if (tree_int_cst_sgn (t) < 0)
6786 return -1;
6787 else if (TREE_INT_CST_HIGH (t) != 0)
6788 return 1;
6789 else if (TREE_INT_CST_LOW (t) == u)
6790 return 0;
6791 else if (TREE_INT_CST_LOW (t) < u)
6792 return -1;
6793 else
6794 return 1;
6795 }
6796
6797 /* Return true if CODE represents an associative tree code. Otherwise
6798 return false. */
6799 bool
6800 associative_tree_code (enum tree_code code)
6801 {
6802 switch (code)
6803 {
6804 case BIT_IOR_EXPR:
6805 case BIT_AND_EXPR:
6806 case BIT_XOR_EXPR:
6807 case PLUS_EXPR:
6808 case MULT_EXPR:
6809 case MIN_EXPR:
6810 case MAX_EXPR:
6811 return true;
6812
6813 default:
6814 break;
6815 }
6816 return false;
6817 }
6818
6819 /* Return true if CODE represents a commutative tree code. Otherwise
6820 return false. */
6821 bool
6822 commutative_tree_code (enum tree_code code)
6823 {
6824 switch (code)
6825 {
6826 case PLUS_EXPR:
6827 case MULT_EXPR:
6828 case MIN_EXPR:
6829 case MAX_EXPR:
6830 case BIT_IOR_EXPR:
6831 case BIT_XOR_EXPR:
6832 case BIT_AND_EXPR:
6833 case NE_EXPR:
6834 case EQ_EXPR:
6835 case UNORDERED_EXPR:
6836 case ORDERED_EXPR:
6837 case UNEQ_EXPR:
6838 case LTGT_EXPR:
6839 case TRUTH_AND_EXPR:
6840 case TRUTH_XOR_EXPR:
6841 case TRUTH_OR_EXPR:
6842 return true;
6843
6844 default:
6845 break;
6846 }
6847 return false;
6848 }
6849
6850 /* Return true if CODE represents a ternary tree code for which the
6851 first two operands are commutative. Otherwise return false. */
6852 bool
6853 commutative_ternary_tree_code (enum tree_code code)
6854 {
6855 switch (code)
6856 {
6857 case WIDEN_MULT_PLUS_EXPR:
6858 case WIDEN_MULT_MINUS_EXPR:
6859 return true;
6860
6861 default:
6862 break;
6863 }
6864 return false;
6865 }
6866
6867 /* Generate a hash value for an expression. This can be used iteratively
6868 by passing a previous result as the VAL argument.
6869
6870 This function is intended to produce the same hash for expressions which
6871 would compare equal using operand_equal_p. */
6872
6873 hashval_t
6874 iterative_hash_expr (const_tree t, hashval_t val)
6875 {
6876 int i;
6877 enum tree_code code;
6878 char tclass;
6879
6880 if (t == NULL_TREE)
6881 return iterative_hash_hashval_t (0, val);
6882
6883 code = TREE_CODE (t);
6884
6885 switch (code)
6886 {
6887 /* Alas, constants aren't shared, so we can't rely on pointer
6888 identity. */
6889 case INTEGER_CST:
6890 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6891 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6892 case REAL_CST:
6893 {
6894 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6895
6896 return iterative_hash_hashval_t (val2, val);
6897 }
6898 case FIXED_CST:
6899 {
6900 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6901
6902 return iterative_hash_hashval_t (val2, val);
6903 }
6904 case STRING_CST:
6905 return iterative_hash (TREE_STRING_POINTER (t),
6906 TREE_STRING_LENGTH (t), val);
6907 case COMPLEX_CST:
6908 val = iterative_hash_expr (TREE_REALPART (t), val);
6909 return iterative_hash_expr (TREE_IMAGPART (t), val);
6910 case VECTOR_CST:
6911 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6912 case SSA_NAME:
6913 /* We can just compare by pointer. */
6914 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6915 case PLACEHOLDER_EXPR:
6916 /* The node itself doesn't matter. */
6917 return val;
6918 case TREE_LIST:
6919 /* A list of expressions, for a CALL_EXPR or as the elements of a
6920 VECTOR_CST. */
6921 for (; t; t = TREE_CHAIN (t))
6922 val = iterative_hash_expr (TREE_VALUE (t), val);
6923 return val;
6924 case CONSTRUCTOR:
6925 {
6926 unsigned HOST_WIDE_INT idx;
6927 tree field, value;
6928 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6929 {
6930 val = iterative_hash_expr (field, val);
6931 val = iterative_hash_expr (value, val);
6932 }
6933 return val;
6934 }
6935 case MEM_REF:
6936 {
6937 /* The type of the second operand is relevant, except for
6938 its top-level qualifiers. */
6939 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
6940
6941 val = iterative_hash_object (TYPE_HASH (type), val);
6942
6943 /* We could use the standard hash computation from this point
6944 on. */
6945 val = iterative_hash_object (code, val);
6946 val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
6947 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6948 return val;
6949 }
6950 case FUNCTION_DECL:
6951 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6952 Otherwise nodes that compare equal according to operand_equal_p might
6953 get different hash codes. However, don't do this for machine specific
6954 or front end builtins, since the function code is overloaded in those
6955 cases. */
6956 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6957 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
6958 {
6959 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
6960 code = TREE_CODE (t);
6961 }
6962 /* FALL THROUGH */
6963 default:
6964 tclass = TREE_CODE_CLASS (code);
6965
6966 if (tclass == tcc_declaration)
6967 {
6968 /* DECL's have a unique ID */
6969 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6970 }
6971 else
6972 {
6973 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6974
6975 val = iterative_hash_object (code, val);
6976
6977 /* Don't hash the type, that can lead to having nodes which
6978 compare equal according to operand_equal_p, but which
6979 have different hash codes. */
6980 if (CONVERT_EXPR_CODE_P (code)
6981 || code == NON_LVALUE_EXPR)
6982 {
6983 /* Make sure to include signness in the hash computation. */
6984 val += TYPE_UNSIGNED (TREE_TYPE (t));
6985 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6986 }
6987
6988 else if (commutative_tree_code (code))
6989 {
6990 /* It's a commutative expression. We want to hash it the same
6991 however it appears. We do this by first hashing both operands
6992 and then rehashing based on the order of their independent
6993 hashes. */
6994 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6995 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6996 hashval_t t;
6997
6998 if (one > two)
6999 t = one, one = two, two = t;
7000
7001 val = iterative_hash_hashval_t (one, val);
7002 val = iterative_hash_hashval_t (two, val);
7003 }
7004 else
7005 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7006 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
7007 }
7008 return val;
7009 }
7010 }
7011
7012 /* Generate a hash value for a pair of expressions. This can be used
7013 iteratively by passing a previous result as the VAL argument.
7014
7015 The same hash value is always returned for a given pair of expressions,
7016 regardless of the order in which they are presented. This is useful in
7017 hashing the operands of commutative functions. */
7018
7019 hashval_t
7020 iterative_hash_exprs_commutative (const_tree t1,
7021 const_tree t2, hashval_t val)
7022 {
7023 hashval_t one = iterative_hash_expr (t1, 0);
7024 hashval_t two = iterative_hash_expr (t2, 0);
7025 hashval_t t;
7026
7027 if (one > two)
7028 t = one, one = two, two = t;
7029 val = iterative_hash_hashval_t (one, val);
7030 val = iterative_hash_hashval_t (two, val);
7031
7032 return val;
7033 }
7034 \f
7035 /* Constructors for pointer, array and function types.
7036 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7037 constructed by language-dependent code, not here.) */
7038
7039 /* Construct, lay out and return the type of pointers to TO_TYPE with
7040 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7041 reference all of memory. If such a type has already been
7042 constructed, reuse it. */
7043
7044 tree
7045 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
7046 bool can_alias_all)
7047 {
7048 tree t;
7049
7050 if (to_type == error_mark_node)
7051 return error_mark_node;
7052
7053 /* If the pointed-to type has the may_alias attribute set, force
7054 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7055 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7056 can_alias_all = true;
7057
7058 /* In some cases, languages will have things that aren't a POINTER_TYPE
7059 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7060 In that case, return that type without regard to the rest of our
7061 operands.
7062
7063 ??? This is a kludge, but consistent with the way this function has
7064 always operated and there doesn't seem to be a good way to avoid this
7065 at the moment. */
7066 if (TYPE_POINTER_TO (to_type) != 0
7067 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7068 return TYPE_POINTER_TO (to_type);
7069
7070 /* First, if we already have a type for pointers to TO_TYPE and it's
7071 the proper mode, use it. */
7072 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7073 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7074 return t;
7075
7076 t = make_node (POINTER_TYPE);
7077
7078 TREE_TYPE (t) = to_type;
7079 SET_TYPE_MODE (t, mode);
7080 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7081 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7082 TYPE_POINTER_TO (to_type) = t;
7083
7084 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7085 SET_TYPE_STRUCTURAL_EQUALITY (t);
7086 else if (TYPE_CANONICAL (to_type) != to_type)
7087 TYPE_CANONICAL (t)
7088 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7089 mode, can_alias_all);
7090
7091 /* Lay out the type. This function has many callers that are concerned
7092 with expression-construction, and this simplifies them all. */
7093 layout_type (t);
7094
7095 return t;
7096 }
7097
7098 /* By default build pointers in ptr_mode. */
7099
7100 tree
7101 build_pointer_type (tree to_type)
7102 {
7103 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7104 : TYPE_ADDR_SPACE (to_type);
7105 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7106 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7107 }
7108
7109 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7110
7111 tree
7112 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
7113 bool can_alias_all)
7114 {
7115 tree t;
7116
7117 if (to_type == error_mark_node)
7118 return error_mark_node;
7119
7120 /* If the pointed-to type has the may_alias attribute set, force
7121 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7122 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7123 can_alias_all = true;
7124
7125 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7126 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7127 In that case, return that type without regard to the rest of our
7128 operands.
7129
7130 ??? This is a kludge, but consistent with the way this function has
7131 always operated and there doesn't seem to be a good way to avoid this
7132 at the moment. */
7133 if (TYPE_REFERENCE_TO (to_type) != 0
7134 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7135 return TYPE_REFERENCE_TO (to_type);
7136
7137 /* First, if we already have a type for pointers to TO_TYPE and it's
7138 the proper mode, use it. */
7139 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7140 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7141 return t;
7142
7143 t = make_node (REFERENCE_TYPE);
7144
7145 TREE_TYPE (t) = to_type;
7146 SET_TYPE_MODE (t, mode);
7147 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7148 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7149 TYPE_REFERENCE_TO (to_type) = t;
7150
7151 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7152 SET_TYPE_STRUCTURAL_EQUALITY (t);
7153 else if (TYPE_CANONICAL (to_type) != to_type)
7154 TYPE_CANONICAL (t)
7155 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7156 mode, can_alias_all);
7157
7158 layout_type (t);
7159
7160 return t;
7161 }
7162
7163
7164 /* Build the node for the type of references-to-TO_TYPE by default
7165 in ptr_mode. */
7166
7167 tree
7168 build_reference_type (tree to_type)
7169 {
7170 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7171 : TYPE_ADDR_SPACE (to_type);
7172 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7173 return build_reference_type_for_mode (to_type, pointer_mode, false);
7174 }
7175
7176 /* Build a type that is compatible with t but has no cv quals anywhere
7177 in its type, thus
7178
7179 const char *const *const * -> char ***. */
7180
7181 tree
7182 build_type_no_quals (tree t)
7183 {
7184 switch (TREE_CODE (t))
7185 {
7186 case POINTER_TYPE:
7187 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7188 TYPE_MODE (t),
7189 TYPE_REF_CAN_ALIAS_ALL (t));
7190 case REFERENCE_TYPE:
7191 return
7192 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7193 TYPE_MODE (t),
7194 TYPE_REF_CAN_ALIAS_ALL (t));
7195 default:
7196 return TYPE_MAIN_VARIANT (t);
7197 }
7198 }
7199
7200 #define MAX_INT_CACHED_PREC \
7201 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7202 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7203
7204 /* Builds a signed or unsigned integer type of precision PRECISION.
7205 Used for C bitfields whose precision does not match that of
7206 built-in target types. */
7207 tree
7208 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7209 int unsignedp)
7210 {
7211 tree itype, ret;
7212
7213 if (unsignedp)
7214 unsignedp = MAX_INT_CACHED_PREC + 1;
7215
7216 if (precision <= MAX_INT_CACHED_PREC)
7217 {
7218 itype = nonstandard_integer_type_cache[precision + unsignedp];
7219 if (itype)
7220 return itype;
7221 }
7222
7223 itype = make_node (INTEGER_TYPE);
7224 TYPE_PRECISION (itype) = precision;
7225
7226 if (unsignedp)
7227 fixup_unsigned_type (itype);
7228 else
7229 fixup_signed_type (itype);
7230
7231 ret = itype;
7232 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7233 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7234 if (precision <= MAX_INT_CACHED_PREC)
7235 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7236
7237 return ret;
7238 }
7239
7240 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7241 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7242 is true, reuse such a type that has already been constructed. */
7243
7244 static tree
7245 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7246 {
7247 tree itype = make_node (INTEGER_TYPE);
7248 hashval_t hashcode = 0;
7249
7250 TREE_TYPE (itype) = type;
7251
7252 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7253 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7254
7255 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7256 SET_TYPE_MODE (itype, TYPE_MODE (type));
7257 TYPE_SIZE (itype) = TYPE_SIZE (type);
7258 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7259 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7260 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7261
7262 if (!shared)
7263 return itype;
7264
7265 if ((TYPE_MIN_VALUE (itype)
7266 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7267 || (TYPE_MAX_VALUE (itype)
7268 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7269 {
7270 /* Since we cannot reliably merge this type, we need to compare it using
7271 structural equality checks. */
7272 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7273 return itype;
7274 }
7275
7276 hashcode = iterative_hash_expr (TYPE_MIN_VALUE (itype), hashcode);
7277 hashcode = iterative_hash_expr (TYPE_MAX_VALUE (itype), hashcode);
7278 hashcode = iterative_hash_hashval_t (TYPE_HASH (type), hashcode);
7279 itype = type_hash_canon (hashcode, itype);
7280
7281 return itype;
7282 }
7283
7284 /* Wrapper around build_range_type_1 with SHARED set to true. */
7285
7286 tree
7287 build_range_type (tree type, tree lowval, tree highval)
7288 {
7289 return build_range_type_1 (type, lowval, highval, true);
7290 }
7291
7292 /* Wrapper around build_range_type_1 with SHARED set to false. */
7293
7294 tree
7295 build_nonshared_range_type (tree type, tree lowval, tree highval)
7296 {
7297 return build_range_type_1 (type, lowval, highval, false);
7298 }
7299
7300 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7301 MAXVAL should be the maximum value in the domain
7302 (one less than the length of the array).
7303
7304 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7305 We don't enforce this limit, that is up to caller (e.g. language front end).
7306 The limit exists because the result is a signed type and we don't handle
7307 sizes that use more than one HOST_WIDE_INT. */
7308
7309 tree
7310 build_index_type (tree maxval)
7311 {
7312 return build_range_type (sizetype, size_zero_node, maxval);
7313 }
7314
7315 /* Return true if the debug information for TYPE, a subtype, should be emitted
7316 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7317 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7318 debug info and doesn't reflect the source code. */
7319
7320 bool
7321 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7322 {
7323 tree base_type = TREE_TYPE (type), low, high;
7324
7325 /* Subrange types have a base type which is an integral type. */
7326 if (!INTEGRAL_TYPE_P (base_type))
7327 return false;
7328
7329 /* Get the real bounds of the subtype. */
7330 if (lang_hooks.types.get_subrange_bounds)
7331 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7332 else
7333 {
7334 low = TYPE_MIN_VALUE (type);
7335 high = TYPE_MAX_VALUE (type);
7336 }
7337
7338 /* If the type and its base type have the same representation and the same
7339 name, then the type is not a subrange but a copy of the base type. */
7340 if ((TREE_CODE (base_type) == INTEGER_TYPE
7341 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7342 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7343 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7344 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7345 {
7346 tree type_name = TYPE_NAME (type);
7347 tree base_type_name = TYPE_NAME (base_type);
7348
7349 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7350 type_name = DECL_NAME (type_name);
7351
7352 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7353 base_type_name = DECL_NAME (base_type_name);
7354
7355 if (type_name == base_type_name)
7356 return false;
7357 }
7358
7359 if (lowval)
7360 *lowval = low;
7361 if (highval)
7362 *highval = high;
7363 return true;
7364 }
7365
7366 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7367 and number of elements specified by the range of values of INDEX_TYPE.
7368 If SHARED is true, reuse such a type that has already been constructed. */
7369
7370 static tree
7371 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7372 {
7373 tree t;
7374
7375 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7376 {
7377 error ("arrays of functions are not meaningful");
7378 elt_type = integer_type_node;
7379 }
7380
7381 t = make_node (ARRAY_TYPE);
7382 TREE_TYPE (t) = elt_type;
7383 TYPE_DOMAIN (t) = index_type;
7384 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7385 layout_type (t);
7386
7387 /* If the element type is incomplete at this point we get marked for
7388 structural equality. Do not record these types in the canonical
7389 type hashtable. */
7390 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7391 return t;
7392
7393 if (shared)
7394 {
7395 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7396 if (index_type)
7397 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7398 t = type_hash_canon (hashcode, t);
7399 }
7400
7401 if (TYPE_CANONICAL (t) == t)
7402 {
7403 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7404 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7405 SET_TYPE_STRUCTURAL_EQUALITY (t);
7406 else if (TYPE_CANONICAL (elt_type) != elt_type
7407 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7408 TYPE_CANONICAL (t)
7409 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7410 index_type
7411 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7412 shared);
7413 }
7414
7415 return t;
7416 }
7417
7418 /* Wrapper around build_array_type_1 with SHARED set to true. */
7419
7420 tree
7421 build_array_type (tree elt_type, tree index_type)
7422 {
7423 return build_array_type_1 (elt_type, index_type, true);
7424 }
7425
7426 /* Wrapper around build_array_type_1 with SHARED set to false. */
7427
7428 tree
7429 build_nonshared_array_type (tree elt_type, tree index_type)
7430 {
7431 return build_array_type_1 (elt_type, index_type, false);
7432 }
7433
7434 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7435 sizetype. */
7436
7437 tree
7438 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7439 {
7440 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7441 }
7442
7443 /* Recursively examines the array elements of TYPE, until a non-array
7444 element type is found. */
7445
7446 tree
7447 strip_array_types (tree type)
7448 {
7449 while (TREE_CODE (type) == ARRAY_TYPE)
7450 type = TREE_TYPE (type);
7451
7452 return type;
7453 }
7454
7455 /* Computes the canonical argument types from the argument type list
7456 ARGTYPES.
7457
7458 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7459 on entry to this function, or if any of the ARGTYPES are
7460 structural.
7461
7462 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7463 true on entry to this function, or if any of the ARGTYPES are
7464 non-canonical.
7465
7466 Returns a canonical argument list, which may be ARGTYPES when the
7467 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7468 true) or would not differ from ARGTYPES. */
7469
7470 static tree
7471 maybe_canonicalize_argtypes(tree argtypes,
7472 bool *any_structural_p,
7473 bool *any_noncanonical_p)
7474 {
7475 tree arg;
7476 bool any_noncanonical_argtypes_p = false;
7477
7478 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7479 {
7480 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7481 /* Fail gracefully by stating that the type is structural. */
7482 *any_structural_p = true;
7483 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7484 *any_structural_p = true;
7485 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7486 || TREE_PURPOSE (arg))
7487 /* If the argument has a default argument, we consider it
7488 non-canonical even though the type itself is canonical.
7489 That way, different variants of function and method types
7490 with default arguments will all point to the variant with
7491 no defaults as their canonical type. */
7492 any_noncanonical_argtypes_p = true;
7493 }
7494
7495 if (*any_structural_p)
7496 return argtypes;
7497
7498 if (any_noncanonical_argtypes_p)
7499 {
7500 /* Build the canonical list of argument types. */
7501 tree canon_argtypes = NULL_TREE;
7502 bool is_void = false;
7503
7504 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7505 {
7506 if (arg == void_list_node)
7507 is_void = true;
7508 else
7509 canon_argtypes = tree_cons (NULL_TREE,
7510 TYPE_CANONICAL (TREE_VALUE (arg)),
7511 canon_argtypes);
7512 }
7513
7514 canon_argtypes = nreverse (canon_argtypes);
7515 if (is_void)
7516 canon_argtypes = chainon (canon_argtypes, void_list_node);
7517
7518 /* There is a non-canonical type. */
7519 *any_noncanonical_p = true;
7520 return canon_argtypes;
7521 }
7522
7523 /* The canonical argument types are the same as ARGTYPES. */
7524 return argtypes;
7525 }
7526
7527 /* Construct, lay out and return
7528 the type of functions returning type VALUE_TYPE
7529 given arguments of types ARG_TYPES.
7530 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7531 are data type nodes for the arguments of the function.
7532 If such a type has already been constructed, reuse it. */
7533
7534 tree
7535 build_function_type (tree value_type, tree arg_types)
7536 {
7537 tree t;
7538 hashval_t hashcode = 0;
7539 bool any_structural_p, any_noncanonical_p;
7540 tree canon_argtypes;
7541
7542 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7543 {
7544 error ("function return type cannot be function");
7545 value_type = integer_type_node;
7546 }
7547
7548 /* Make a node of the sort we want. */
7549 t = make_node (FUNCTION_TYPE);
7550 TREE_TYPE (t) = value_type;
7551 TYPE_ARG_TYPES (t) = arg_types;
7552
7553 /* If we already have such a type, use the old one. */
7554 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7555 hashcode = type_hash_list (arg_types, hashcode);
7556 t = type_hash_canon (hashcode, t);
7557
7558 /* Set up the canonical type. */
7559 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7560 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7561 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7562 &any_structural_p,
7563 &any_noncanonical_p);
7564 if (any_structural_p)
7565 SET_TYPE_STRUCTURAL_EQUALITY (t);
7566 else if (any_noncanonical_p)
7567 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7568 canon_argtypes);
7569
7570 if (!COMPLETE_TYPE_P (t))
7571 layout_type (t);
7572 return t;
7573 }
7574
7575 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP and the
7576 return value if SKIP_RETURN is true. */
7577
7578 static tree
7579 build_function_type_skip_args (tree orig_type, bitmap args_to_skip,
7580 bool skip_return)
7581 {
7582 tree new_type = NULL;
7583 tree args, new_args = NULL, t;
7584 tree new_reversed;
7585 int i = 0;
7586
7587 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7588 args = TREE_CHAIN (args), i++)
7589 if (!args_to_skip || !bitmap_bit_p (args_to_skip, i))
7590 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7591
7592 new_reversed = nreverse (new_args);
7593 if (args)
7594 {
7595 if (new_reversed)
7596 TREE_CHAIN (new_args) = void_list_node;
7597 else
7598 new_reversed = void_list_node;
7599 }
7600
7601 /* Use copy_node to preserve as much as possible from original type
7602 (debug info, attribute lists etc.)
7603 Exception is METHOD_TYPEs must have THIS argument.
7604 When we are asked to remove it, we need to build new FUNCTION_TYPE
7605 instead. */
7606 if (TREE_CODE (orig_type) != METHOD_TYPE
7607 || !args_to_skip
7608 || !bitmap_bit_p (args_to_skip, 0))
7609 {
7610 new_type = build_distinct_type_copy (orig_type);
7611 TYPE_ARG_TYPES (new_type) = new_reversed;
7612 }
7613 else
7614 {
7615 new_type
7616 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7617 new_reversed));
7618 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7619 }
7620
7621 if (skip_return)
7622 TREE_TYPE (new_type) = void_type_node;
7623
7624 /* This is a new type, not a copy of an old type. Need to reassociate
7625 variants. We can handle everything except the main variant lazily. */
7626 t = TYPE_MAIN_VARIANT (orig_type);
7627 if (t != orig_type)
7628 {
7629 t = build_function_type_skip_args (t, args_to_skip, skip_return);
7630 TYPE_MAIN_VARIANT (new_type) = t;
7631 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7632 TYPE_NEXT_VARIANT (t) = new_type;
7633 }
7634 else
7635 {
7636 TYPE_MAIN_VARIANT (new_type) = new_type;
7637 TYPE_NEXT_VARIANT (new_type) = NULL;
7638 }
7639
7640 return new_type;
7641 }
7642
7643 /* Build variant of function decl ORIG_DECL skipping ARGS_TO_SKIP and the
7644 return value if SKIP_RETURN is true.
7645
7646 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7647 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7648 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7649
7650 tree
7651 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip,
7652 bool skip_return)
7653 {
7654 tree new_decl = copy_node (orig_decl);
7655 tree new_type;
7656
7657 new_type = TREE_TYPE (orig_decl);
7658 if (prototype_p (new_type)
7659 || (skip_return && !VOID_TYPE_P (TREE_TYPE (new_type))))
7660 new_type
7661 = build_function_type_skip_args (new_type, args_to_skip, skip_return);
7662 TREE_TYPE (new_decl) = new_type;
7663
7664 /* For declarations setting DECL_VINDEX (i.e. methods)
7665 we expect first argument to be THIS pointer. */
7666 if (args_to_skip && bitmap_bit_p (args_to_skip, 0))
7667 DECL_VINDEX (new_decl) = NULL_TREE;
7668
7669 /* When signature changes, we need to clear builtin info. */
7670 if (DECL_BUILT_IN (new_decl)
7671 && args_to_skip
7672 && !bitmap_empty_p (args_to_skip))
7673 {
7674 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
7675 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
7676 }
7677 return new_decl;
7678 }
7679
7680 /* Build a function type. The RETURN_TYPE is the type returned by the
7681 function. If VAARGS is set, no void_type_node is appended to the
7682 the list. ARGP must be always be terminated be a NULL_TREE. */
7683
7684 static tree
7685 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7686 {
7687 tree t, args, last;
7688
7689 t = va_arg (argp, tree);
7690 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7691 args = tree_cons (NULL_TREE, t, args);
7692
7693 if (vaargs)
7694 {
7695 last = args;
7696 if (args != NULL_TREE)
7697 args = nreverse (args);
7698 gcc_assert (last != void_list_node);
7699 }
7700 else if (args == NULL_TREE)
7701 args = void_list_node;
7702 else
7703 {
7704 last = args;
7705 args = nreverse (args);
7706 TREE_CHAIN (last) = void_list_node;
7707 }
7708 args = build_function_type (return_type, args);
7709
7710 return args;
7711 }
7712
7713 /* Build a function type. The RETURN_TYPE is the type returned by the
7714 function. If additional arguments are provided, they are
7715 additional argument types. The list of argument types must always
7716 be terminated by NULL_TREE. */
7717
7718 tree
7719 build_function_type_list (tree return_type, ...)
7720 {
7721 tree args;
7722 va_list p;
7723
7724 va_start (p, return_type);
7725 args = build_function_type_list_1 (false, return_type, p);
7726 va_end (p);
7727 return args;
7728 }
7729
7730 /* Build a variable argument function type. The RETURN_TYPE is the
7731 type returned by the function. If additional arguments are provided,
7732 they are additional argument types. The list of argument types must
7733 always be terminated by NULL_TREE. */
7734
7735 tree
7736 build_varargs_function_type_list (tree return_type, ...)
7737 {
7738 tree args;
7739 va_list p;
7740
7741 va_start (p, return_type);
7742 args = build_function_type_list_1 (true, return_type, p);
7743 va_end (p);
7744
7745 return args;
7746 }
7747
7748 /* Build a function type. RETURN_TYPE is the type returned by the
7749 function; VAARGS indicates whether the function takes varargs. The
7750 function takes N named arguments, the types of which are provided in
7751 ARG_TYPES. */
7752
7753 static tree
7754 build_function_type_array_1 (bool vaargs, tree return_type, int n,
7755 tree *arg_types)
7756 {
7757 int i;
7758 tree t = vaargs ? NULL_TREE : void_list_node;
7759
7760 for (i = n - 1; i >= 0; i--)
7761 t = tree_cons (NULL_TREE, arg_types[i], t);
7762
7763 return build_function_type (return_type, t);
7764 }
7765
7766 /* Build a function type. RETURN_TYPE is the type returned by the
7767 function. The function takes N named arguments, the types of which
7768 are provided in ARG_TYPES. */
7769
7770 tree
7771 build_function_type_array (tree return_type, int n, tree *arg_types)
7772 {
7773 return build_function_type_array_1 (false, return_type, n, arg_types);
7774 }
7775
7776 /* Build a variable argument function type. RETURN_TYPE is the type
7777 returned by the function. The function takes N named arguments, the
7778 types of which are provided in ARG_TYPES. */
7779
7780 tree
7781 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
7782 {
7783 return build_function_type_array_1 (true, return_type, n, arg_types);
7784 }
7785
7786 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7787 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7788 for the method. An implicit additional parameter (of type
7789 pointer-to-BASETYPE) is added to the ARGTYPES. */
7790
7791 tree
7792 build_method_type_directly (tree basetype,
7793 tree rettype,
7794 tree argtypes)
7795 {
7796 tree t;
7797 tree ptype;
7798 int hashcode = 0;
7799 bool any_structural_p, any_noncanonical_p;
7800 tree canon_argtypes;
7801
7802 /* Make a node of the sort we want. */
7803 t = make_node (METHOD_TYPE);
7804
7805 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7806 TREE_TYPE (t) = rettype;
7807 ptype = build_pointer_type (basetype);
7808
7809 /* The actual arglist for this function includes a "hidden" argument
7810 which is "this". Put it into the list of argument types. */
7811 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7812 TYPE_ARG_TYPES (t) = argtypes;
7813
7814 /* If we already have such a type, use the old one. */
7815 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7816 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7817 hashcode = type_hash_list (argtypes, hashcode);
7818 t = type_hash_canon (hashcode, t);
7819
7820 /* Set up the canonical type. */
7821 any_structural_p
7822 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7823 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7824 any_noncanonical_p
7825 = (TYPE_CANONICAL (basetype) != basetype
7826 || TYPE_CANONICAL (rettype) != rettype);
7827 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7828 &any_structural_p,
7829 &any_noncanonical_p);
7830 if (any_structural_p)
7831 SET_TYPE_STRUCTURAL_EQUALITY (t);
7832 else if (any_noncanonical_p)
7833 TYPE_CANONICAL (t)
7834 = build_method_type_directly (TYPE_CANONICAL (basetype),
7835 TYPE_CANONICAL (rettype),
7836 canon_argtypes);
7837 if (!COMPLETE_TYPE_P (t))
7838 layout_type (t);
7839
7840 return t;
7841 }
7842
7843 /* Construct, lay out and return the type of methods belonging to class
7844 BASETYPE and whose arguments and values are described by TYPE.
7845 If that type exists already, reuse it.
7846 TYPE must be a FUNCTION_TYPE node. */
7847
7848 tree
7849 build_method_type (tree basetype, tree type)
7850 {
7851 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7852
7853 return build_method_type_directly (basetype,
7854 TREE_TYPE (type),
7855 TYPE_ARG_TYPES (type));
7856 }
7857
7858 /* Construct, lay out and return the type of offsets to a value
7859 of type TYPE, within an object of type BASETYPE.
7860 If a suitable offset type exists already, reuse it. */
7861
7862 tree
7863 build_offset_type (tree basetype, tree type)
7864 {
7865 tree t;
7866 hashval_t hashcode = 0;
7867
7868 /* Make a node of the sort we want. */
7869 t = make_node (OFFSET_TYPE);
7870
7871 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7872 TREE_TYPE (t) = type;
7873
7874 /* If we already have such a type, use the old one. */
7875 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7876 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7877 t = type_hash_canon (hashcode, t);
7878
7879 if (!COMPLETE_TYPE_P (t))
7880 layout_type (t);
7881
7882 if (TYPE_CANONICAL (t) == t)
7883 {
7884 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7885 || TYPE_STRUCTURAL_EQUALITY_P (type))
7886 SET_TYPE_STRUCTURAL_EQUALITY (t);
7887 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7888 || TYPE_CANONICAL (type) != type)
7889 TYPE_CANONICAL (t)
7890 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7891 TYPE_CANONICAL (type));
7892 }
7893
7894 return t;
7895 }
7896
7897 /* Create a complex type whose components are COMPONENT_TYPE. */
7898
7899 tree
7900 build_complex_type (tree component_type)
7901 {
7902 tree t;
7903 hashval_t hashcode;
7904
7905 gcc_assert (INTEGRAL_TYPE_P (component_type)
7906 || SCALAR_FLOAT_TYPE_P (component_type)
7907 || FIXED_POINT_TYPE_P (component_type));
7908
7909 /* Make a node of the sort we want. */
7910 t = make_node (COMPLEX_TYPE);
7911
7912 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7913
7914 /* If we already have such a type, use the old one. */
7915 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7916 t = type_hash_canon (hashcode, t);
7917
7918 if (!COMPLETE_TYPE_P (t))
7919 layout_type (t);
7920
7921 if (TYPE_CANONICAL (t) == t)
7922 {
7923 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7924 SET_TYPE_STRUCTURAL_EQUALITY (t);
7925 else if (TYPE_CANONICAL (component_type) != component_type)
7926 TYPE_CANONICAL (t)
7927 = build_complex_type (TYPE_CANONICAL (component_type));
7928 }
7929
7930 /* We need to create a name, since complex is a fundamental type. */
7931 if (! TYPE_NAME (t))
7932 {
7933 const char *name;
7934 if (component_type == char_type_node)
7935 name = "complex char";
7936 else if (component_type == signed_char_type_node)
7937 name = "complex signed char";
7938 else if (component_type == unsigned_char_type_node)
7939 name = "complex unsigned char";
7940 else if (component_type == short_integer_type_node)
7941 name = "complex short int";
7942 else if (component_type == short_unsigned_type_node)
7943 name = "complex short unsigned int";
7944 else if (component_type == integer_type_node)
7945 name = "complex int";
7946 else if (component_type == unsigned_type_node)
7947 name = "complex unsigned int";
7948 else if (component_type == long_integer_type_node)
7949 name = "complex long int";
7950 else if (component_type == long_unsigned_type_node)
7951 name = "complex long unsigned int";
7952 else if (component_type == long_long_integer_type_node)
7953 name = "complex long long int";
7954 else if (component_type == long_long_unsigned_type_node)
7955 name = "complex long long unsigned int";
7956 else
7957 name = 0;
7958
7959 if (name != 0)
7960 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7961 get_identifier (name), t);
7962 }
7963
7964 return build_qualified_type (t, TYPE_QUALS (component_type));
7965 }
7966
7967 /* If TYPE is a real or complex floating-point type and the target
7968 does not directly support arithmetic on TYPE then return the wider
7969 type to be used for arithmetic on TYPE. Otherwise, return
7970 NULL_TREE. */
7971
7972 tree
7973 excess_precision_type (tree type)
7974 {
7975 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7976 {
7977 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7978 switch (TREE_CODE (type))
7979 {
7980 case REAL_TYPE:
7981 switch (flt_eval_method)
7982 {
7983 case 1:
7984 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7985 return double_type_node;
7986 break;
7987 case 2:
7988 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7989 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7990 return long_double_type_node;
7991 break;
7992 default:
7993 gcc_unreachable ();
7994 }
7995 break;
7996 case COMPLEX_TYPE:
7997 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7998 return NULL_TREE;
7999 switch (flt_eval_method)
8000 {
8001 case 1:
8002 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
8003 return complex_double_type_node;
8004 break;
8005 case 2:
8006 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
8007 || (TYPE_MODE (TREE_TYPE (type))
8008 == TYPE_MODE (double_type_node)))
8009 return complex_long_double_type_node;
8010 break;
8011 default:
8012 gcc_unreachable ();
8013 }
8014 break;
8015 default:
8016 break;
8017 }
8018 }
8019 return NULL_TREE;
8020 }
8021 \f
8022 /* Return OP, stripped of any conversions to wider types as much as is safe.
8023 Converting the value back to OP's type makes a value equivalent to OP.
8024
8025 If FOR_TYPE is nonzero, we return a value which, if converted to
8026 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8027
8028 OP must have integer, real or enumeral type. Pointers are not allowed!
8029
8030 There are some cases where the obvious value we could return
8031 would regenerate to OP if converted to OP's type,
8032 but would not extend like OP to wider types.
8033 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8034 For example, if OP is (unsigned short)(signed char)-1,
8035 we avoid returning (signed char)-1 if FOR_TYPE is int,
8036 even though extending that to an unsigned short would regenerate OP,
8037 since the result of extending (signed char)-1 to (int)
8038 is different from (int) OP. */
8039
8040 tree
8041 get_unwidened (tree op, tree for_type)
8042 {
8043 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8044 tree type = TREE_TYPE (op);
8045 unsigned final_prec
8046 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8047 int uns
8048 = (for_type != 0 && for_type != type
8049 && final_prec > TYPE_PRECISION (type)
8050 && TYPE_UNSIGNED (type));
8051 tree win = op;
8052
8053 while (CONVERT_EXPR_P (op))
8054 {
8055 int bitschange;
8056
8057 /* TYPE_PRECISION on vector types has different meaning
8058 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8059 so avoid them here. */
8060 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8061 break;
8062
8063 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8064 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8065
8066 /* Truncations are many-one so cannot be removed.
8067 Unless we are later going to truncate down even farther. */
8068 if (bitschange < 0
8069 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8070 break;
8071
8072 /* See what's inside this conversion. If we decide to strip it,
8073 we will set WIN. */
8074 op = TREE_OPERAND (op, 0);
8075
8076 /* If we have not stripped any zero-extensions (uns is 0),
8077 we can strip any kind of extension.
8078 If we have previously stripped a zero-extension,
8079 only zero-extensions can safely be stripped.
8080 Any extension can be stripped if the bits it would produce
8081 are all going to be discarded later by truncating to FOR_TYPE. */
8082
8083 if (bitschange > 0)
8084 {
8085 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8086 win = op;
8087 /* TYPE_UNSIGNED says whether this is a zero-extension.
8088 Let's avoid computing it if it does not affect WIN
8089 and if UNS will not be needed again. */
8090 if ((uns
8091 || CONVERT_EXPR_P (op))
8092 && TYPE_UNSIGNED (TREE_TYPE (op)))
8093 {
8094 uns = 1;
8095 win = op;
8096 }
8097 }
8098 }
8099
8100 /* If we finally reach a constant see if it fits in for_type and
8101 in that case convert it. */
8102 if (for_type
8103 && TREE_CODE (win) == INTEGER_CST
8104 && TREE_TYPE (win) != for_type
8105 && int_fits_type_p (win, for_type))
8106 win = fold_convert (for_type, win);
8107
8108 return win;
8109 }
8110 \f
8111 /* Return OP or a simpler expression for a narrower value
8112 which can be sign-extended or zero-extended to give back OP.
8113 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8114 or 0 if the value should be sign-extended. */
8115
8116 tree
8117 get_narrower (tree op, int *unsignedp_ptr)
8118 {
8119 int uns = 0;
8120 int first = 1;
8121 tree win = op;
8122 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8123
8124 while (TREE_CODE (op) == NOP_EXPR)
8125 {
8126 int bitschange
8127 = (TYPE_PRECISION (TREE_TYPE (op))
8128 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8129
8130 /* Truncations are many-one so cannot be removed. */
8131 if (bitschange < 0)
8132 break;
8133
8134 /* See what's inside this conversion. If we decide to strip it,
8135 we will set WIN. */
8136
8137 if (bitschange > 0)
8138 {
8139 op = TREE_OPERAND (op, 0);
8140 /* An extension: the outermost one can be stripped,
8141 but remember whether it is zero or sign extension. */
8142 if (first)
8143 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8144 /* Otherwise, if a sign extension has been stripped,
8145 only sign extensions can now be stripped;
8146 if a zero extension has been stripped, only zero-extensions. */
8147 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8148 break;
8149 first = 0;
8150 }
8151 else /* bitschange == 0 */
8152 {
8153 /* A change in nominal type can always be stripped, but we must
8154 preserve the unsignedness. */
8155 if (first)
8156 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8157 first = 0;
8158 op = TREE_OPERAND (op, 0);
8159 /* Keep trying to narrow, but don't assign op to win if it
8160 would turn an integral type into something else. */
8161 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8162 continue;
8163 }
8164
8165 win = op;
8166 }
8167
8168 if (TREE_CODE (op) == COMPONENT_REF
8169 /* Since type_for_size always gives an integer type. */
8170 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8171 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8172 /* Ensure field is laid out already. */
8173 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8174 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
8175 {
8176 unsigned HOST_WIDE_INT innerprec
8177 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
8178 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8179 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8180 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8181
8182 /* We can get this structure field in a narrower type that fits it,
8183 but the resulting extension to its nominal type (a fullword type)
8184 must satisfy the same conditions as for other extensions.
8185
8186 Do this only for fields that are aligned (not bit-fields),
8187 because when bit-field insns will be used there is no
8188 advantage in doing this. */
8189
8190 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8191 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8192 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8193 && type != 0)
8194 {
8195 if (first)
8196 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8197 win = fold_convert (type, op);
8198 }
8199 }
8200
8201 *unsignedp_ptr = uns;
8202 return win;
8203 }
8204 \f
8205 /* Returns true if integer constant C has a value that is permissible
8206 for type TYPE (an INTEGER_TYPE). */
8207
8208 bool
8209 int_fits_type_p (const_tree c, const_tree type)
8210 {
8211 tree type_low_bound, type_high_bound;
8212 bool ok_for_low_bound, ok_for_high_bound, unsc;
8213 double_int dc, dd;
8214
8215 dc = tree_to_double_int (c);
8216 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
8217
8218 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
8219 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
8220 && unsc)
8221 /* So c is an unsigned integer whose type is sizetype and type is not.
8222 sizetype'd integers are sign extended even though they are
8223 unsigned. If the integer value fits in the lower end word of c,
8224 and if the higher end word has all its bits set to 1, that
8225 means the higher end bits are set to 1 only for sign extension.
8226 So let's convert c into an equivalent zero extended unsigned
8227 integer. */
8228 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
8229
8230 retry:
8231 type_low_bound = TYPE_MIN_VALUE (type);
8232 type_high_bound = TYPE_MAX_VALUE (type);
8233
8234 /* If at least one bound of the type is a constant integer, we can check
8235 ourselves and maybe make a decision. If no such decision is possible, but
8236 this type is a subtype, try checking against that. Otherwise, use
8237 double_int_fits_to_tree_p, which checks against the precision.
8238
8239 Compute the status for each possibly constant bound, and return if we see
8240 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8241 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8242 for "constant known to fit". */
8243
8244 /* Check if c >= type_low_bound. */
8245 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8246 {
8247 dd = tree_to_double_int (type_low_bound);
8248 if (TREE_CODE (type) == INTEGER_TYPE
8249 && TYPE_IS_SIZETYPE (type)
8250 && TYPE_UNSIGNED (type))
8251 dd = double_int_zext (dd, TYPE_PRECISION (type));
8252 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
8253 {
8254 int c_neg = (!unsc && double_int_negative_p (dc));
8255 int t_neg = (unsc && double_int_negative_p (dd));
8256
8257 if (c_neg && !t_neg)
8258 return false;
8259 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
8260 return false;
8261 }
8262 else if (double_int_cmp (dc, dd, unsc) < 0)
8263 return false;
8264 ok_for_low_bound = true;
8265 }
8266 else
8267 ok_for_low_bound = false;
8268
8269 /* Check if c <= type_high_bound. */
8270 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8271 {
8272 dd = tree_to_double_int (type_high_bound);
8273 if (TREE_CODE (type) == INTEGER_TYPE
8274 && TYPE_IS_SIZETYPE (type)
8275 && TYPE_UNSIGNED (type))
8276 dd = double_int_zext (dd, TYPE_PRECISION (type));
8277 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8278 {
8279 int c_neg = (!unsc && double_int_negative_p (dc));
8280 int t_neg = (unsc && double_int_negative_p (dd));
8281
8282 if (t_neg && !c_neg)
8283 return false;
8284 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
8285 return false;
8286 }
8287 else if (double_int_cmp (dc, dd, unsc) > 0)
8288 return false;
8289 ok_for_high_bound = true;
8290 }
8291 else
8292 ok_for_high_bound = false;
8293
8294 /* If the constant fits both bounds, the result is known. */
8295 if (ok_for_low_bound && ok_for_high_bound)
8296 return true;
8297
8298 /* Perform some generic filtering which may allow making a decision
8299 even if the bounds are not constant. First, negative integers
8300 never fit in unsigned types, */
8301 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
8302 return false;
8303
8304 /* Second, narrower types always fit in wider ones. */
8305 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8306 return true;
8307
8308 /* Third, unsigned integers with top bit set never fit signed types. */
8309 if (! TYPE_UNSIGNED (type) && unsc)
8310 {
8311 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8312 if (prec < HOST_BITS_PER_WIDE_INT)
8313 {
8314 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8315 return false;
8316 }
8317 else if (((((unsigned HOST_WIDE_INT) 1)
8318 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8319 return false;
8320 }
8321
8322 /* If we haven't been able to decide at this point, there nothing more we
8323 can check ourselves here. Look at the base type if we have one and it
8324 has the same precision. */
8325 if (TREE_CODE (type) == INTEGER_TYPE
8326 && TREE_TYPE (type) != 0
8327 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8328 {
8329 type = TREE_TYPE (type);
8330 goto retry;
8331 }
8332
8333 /* Or to double_int_fits_to_tree_p, if nothing else. */
8334 return double_int_fits_to_tree_p (type, dc);
8335 }
8336
8337 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8338 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8339 represented (assuming two's-complement arithmetic) within the bit
8340 precision of the type are returned instead. */
8341
8342 void
8343 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8344 {
8345 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8346 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8347 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8348 TYPE_UNSIGNED (type));
8349 else
8350 {
8351 if (TYPE_UNSIGNED (type))
8352 mpz_set_ui (min, 0);
8353 else
8354 {
8355 double_int mn;
8356 mn = double_int_mask (TYPE_PRECISION (type) - 1);
8357 mn = double_int_sext (double_int_add (mn, double_int_one),
8358 TYPE_PRECISION (type));
8359 mpz_set_double_int (min, mn, false);
8360 }
8361 }
8362
8363 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8364 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8365 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8366 TYPE_UNSIGNED (type));
8367 else
8368 {
8369 if (TYPE_UNSIGNED (type))
8370 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
8371 true);
8372 else
8373 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
8374 true);
8375 }
8376 }
8377
8378 /* Return true if VAR is an automatic variable defined in function FN. */
8379
8380 bool
8381 auto_var_in_fn_p (const_tree var, const_tree fn)
8382 {
8383 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8384 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8385 || TREE_CODE (var) == PARM_DECL)
8386 && ! TREE_STATIC (var))
8387 || TREE_CODE (var) == LABEL_DECL
8388 || TREE_CODE (var) == RESULT_DECL));
8389 }
8390
8391 /* Subprogram of following function. Called by walk_tree.
8392
8393 Return *TP if it is an automatic variable or parameter of the
8394 function passed in as DATA. */
8395
8396 static tree
8397 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8398 {
8399 tree fn = (tree) data;
8400
8401 if (TYPE_P (*tp))
8402 *walk_subtrees = 0;
8403
8404 else if (DECL_P (*tp)
8405 && auto_var_in_fn_p (*tp, fn))
8406 return *tp;
8407
8408 return NULL_TREE;
8409 }
8410
8411 /* Returns true if T is, contains, or refers to a type with variable
8412 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8413 arguments, but not the return type. If FN is nonzero, only return
8414 true if a modifier of the type or position of FN is a variable or
8415 parameter inside FN.
8416
8417 This concept is more general than that of C99 'variably modified types':
8418 in C99, a struct type is never variably modified because a VLA may not
8419 appear as a structure member. However, in GNU C code like:
8420
8421 struct S { int i[f()]; };
8422
8423 is valid, and other languages may define similar constructs. */
8424
8425 bool
8426 variably_modified_type_p (tree type, tree fn)
8427 {
8428 tree t;
8429
8430 /* Test if T is either variable (if FN is zero) or an expression containing
8431 a variable in FN. */
8432 #define RETURN_TRUE_IF_VAR(T) \
8433 do { tree _t = (T); \
8434 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
8435 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8436 return true; } while (0)
8437
8438 if (type == error_mark_node)
8439 return false;
8440
8441 /* If TYPE itself has variable size, it is variably modified. */
8442 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8443 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8444
8445 switch (TREE_CODE (type))
8446 {
8447 case POINTER_TYPE:
8448 case REFERENCE_TYPE:
8449 case VECTOR_TYPE:
8450 if (variably_modified_type_p (TREE_TYPE (type), fn))
8451 return true;
8452 break;
8453
8454 case FUNCTION_TYPE:
8455 case METHOD_TYPE:
8456 /* If TYPE is a function type, it is variably modified if the
8457 return type is variably modified. */
8458 if (variably_modified_type_p (TREE_TYPE (type), fn))
8459 return true;
8460 break;
8461
8462 case INTEGER_TYPE:
8463 case REAL_TYPE:
8464 case FIXED_POINT_TYPE:
8465 case ENUMERAL_TYPE:
8466 case BOOLEAN_TYPE:
8467 /* Scalar types are variably modified if their end points
8468 aren't constant. */
8469 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8470 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8471 break;
8472
8473 case RECORD_TYPE:
8474 case UNION_TYPE:
8475 case QUAL_UNION_TYPE:
8476 /* We can't see if any of the fields are variably-modified by the
8477 definition we normally use, since that would produce infinite
8478 recursion via pointers. */
8479 /* This is variably modified if some field's type is. */
8480 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8481 if (TREE_CODE (t) == FIELD_DECL)
8482 {
8483 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8484 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8485 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8486
8487 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8488 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8489 }
8490 break;
8491
8492 case ARRAY_TYPE:
8493 /* Do not call ourselves to avoid infinite recursion. This is
8494 variably modified if the element type is. */
8495 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8496 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8497 break;
8498
8499 default:
8500 break;
8501 }
8502
8503 /* The current language may have other cases to check, but in general,
8504 all other types are not variably modified. */
8505 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8506
8507 #undef RETURN_TRUE_IF_VAR
8508 }
8509
8510 /* Given a DECL or TYPE, return the scope in which it was declared, or
8511 NULL_TREE if there is no containing scope. */
8512
8513 tree
8514 get_containing_scope (const_tree t)
8515 {
8516 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8517 }
8518
8519 /* Return the innermost context enclosing DECL that is
8520 a FUNCTION_DECL, or zero if none. */
8521
8522 tree
8523 decl_function_context (const_tree decl)
8524 {
8525 tree context;
8526
8527 if (TREE_CODE (decl) == ERROR_MARK)
8528 return 0;
8529
8530 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8531 where we look up the function at runtime. Such functions always take
8532 a first argument of type 'pointer to real context'.
8533
8534 C++ should really be fixed to use DECL_CONTEXT for the real context,
8535 and use something else for the "virtual context". */
8536 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8537 context
8538 = TYPE_MAIN_VARIANT
8539 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8540 else
8541 context = DECL_CONTEXT (decl);
8542
8543 while (context && TREE_CODE (context) != FUNCTION_DECL)
8544 {
8545 if (TREE_CODE (context) == BLOCK)
8546 context = BLOCK_SUPERCONTEXT (context);
8547 else
8548 context = get_containing_scope (context);
8549 }
8550
8551 return context;
8552 }
8553
8554 /* Return the innermost context enclosing DECL that is
8555 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8556 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8557
8558 tree
8559 decl_type_context (const_tree decl)
8560 {
8561 tree context = DECL_CONTEXT (decl);
8562
8563 while (context)
8564 switch (TREE_CODE (context))
8565 {
8566 case NAMESPACE_DECL:
8567 case TRANSLATION_UNIT_DECL:
8568 return NULL_TREE;
8569
8570 case RECORD_TYPE:
8571 case UNION_TYPE:
8572 case QUAL_UNION_TYPE:
8573 return context;
8574
8575 case TYPE_DECL:
8576 case FUNCTION_DECL:
8577 context = DECL_CONTEXT (context);
8578 break;
8579
8580 case BLOCK:
8581 context = BLOCK_SUPERCONTEXT (context);
8582 break;
8583
8584 default:
8585 gcc_unreachable ();
8586 }
8587
8588 return NULL_TREE;
8589 }
8590
8591 /* CALL is a CALL_EXPR. Return the declaration for the function
8592 called, or NULL_TREE if the called function cannot be
8593 determined. */
8594
8595 tree
8596 get_callee_fndecl (const_tree call)
8597 {
8598 tree addr;
8599
8600 if (call == error_mark_node)
8601 return error_mark_node;
8602
8603 /* It's invalid to call this function with anything but a
8604 CALL_EXPR. */
8605 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8606
8607 /* The first operand to the CALL is the address of the function
8608 called. */
8609 addr = CALL_EXPR_FN (call);
8610
8611 STRIP_NOPS (addr);
8612
8613 /* If this is a readonly function pointer, extract its initial value. */
8614 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8615 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8616 && DECL_INITIAL (addr))
8617 addr = DECL_INITIAL (addr);
8618
8619 /* If the address is just `&f' for some function `f', then we know
8620 that `f' is being called. */
8621 if (TREE_CODE (addr) == ADDR_EXPR
8622 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8623 return TREE_OPERAND (addr, 0);
8624
8625 /* We couldn't figure out what was being called. */
8626 return NULL_TREE;
8627 }
8628
8629 /* Print debugging information about tree nodes generated during the compile,
8630 and any language-specific information. */
8631
8632 void
8633 dump_tree_statistics (void)
8634 {
8635 #ifdef GATHER_STATISTICS
8636 int i;
8637 int total_nodes, total_bytes;
8638 #endif
8639
8640 fprintf (stderr, "\n??? tree nodes created\n\n");
8641 #ifdef GATHER_STATISTICS
8642 fprintf (stderr, "Kind Nodes Bytes\n");
8643 fprintf (stderr, "---------------------------------------\n");
8644 total_nodes = total_bytes = 0;
8645 for (i = 0; i < (int) all_kinds; i++)
8646 {
8647 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8648 tree_node_counts[i], tree_node_sizes[i]);
8649 total_nodes += tree_node_counts[i];
8650 total_bytes += tree_node_sizes[i];
8651 }
8652 fprintf (stderr, "---------------------------------------\n");
8653 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8654 fprintf (stderr, "---------------------------------------\n");
8655 fprintf (stderr, "Code Nodes\n");
8656 fprintf (stderr, "----------------------------\n");
8657 for (i = 0; i < (int) MAX_TREE_CODES; i++)
8658 fprintf (stderr, "%-20s %7d\n", tree_code_name[i], tree_code_counts[i]);
8659 fprintf (stderr, "----------------------------\n");
8660 ssanames_print_statistics ();
8661 phinodes_print_statistics ();
8662 #else
8663 fprintf (stderr, "(No per-node statistics)\n");
8664 #endif
8665 print_type_hash_statistics ();
8666 print_debug_expr_statistics ();
8667 print_value_expr_statistics ();
8668 lang_hooks.print_statistics ();
8669 }
8670 \f
8671 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8672
8673 /* Generate a crc32 of a byte. */
8674
8675 unsigned
8676 crc32_byte (unsigned chksum, char byte)
8677 {
8678 unsigned value = (unsigned) byte << 24;
8679 unsigned ix;
8680
8681 for (ix = 8; ix--; value <<= 1)
8682 {
8683 unsigned feedback;
8684
8685 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8686 chksum <<= 1;
8687 chksum ^= feedback;
8688 }
8689 return chksum;
8690 }
8691
8692
8693 /* Generate a crc32 of a string. */
8694
8695 unsigned
8696 crc32_string (unsigned chksum, const char *string)
8697 {
8698 do
8699 {
8700 chksum = crc32_byte (chksum, *string);
8701 }
8702 while (*string++);
8703 return chksum;
8704 }
8705
8706 /* P is a string that will be used in a symbol. Mask out any characters
8707 that are not valid in that context. */
8708
8709 void
8710 clean_symbol_name (char *p)
8711 {
8712 for (; *p; p++)
8713 if (! (ISALNUM (*p)
8714 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8715 || *p == '$'
8716 #endif
8717 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8718 || *p == '.'
8719 #endif
8720 ))
8721 *p = '_';
8722 }
8723
8724 /* Generate a name for a special-purpose function.
8725 The generated name may need to be unique across the whole link.
8726 Changes to this function may also require corresponding changes to
8727 xstrdup_mask_random.
8728 TYPE is some string to identify the purpose of this function to the
8729 linker or collect2; it must start with an uppercase letter,
8730 one of:
8731 I - for constructors
8732 D - for destructors
8733 N - for C++ anonymous namespaces
8734 F - for DWARF unwind frame information. */
8735
8736 tree
8737 get_file_function_name (const char *type)
8738 {
8739 char *buf;
8740 const char *p;
8741 char *q;
8742
8743 /* If we already have a name we know to be unique, just use that. */
8744 if (first_global_object_name)
8745 p = q = ASTRDUP (first_global_object_name);
8746 /* If the target is handling the constructors/destructors, they
8747 will be local to this file and the name is only necessary for
8748 debugging purposes.
8749 We also assign sub_I and sub_D sufixes to constructors called from
8750 the global static constructors. These are always local. */
8751 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8752 || (strncmp (type, "sub_", 4) == 0
8753 && (type[4] == 'I' || type[4] == 'D')))
8754 {
8755 const char *file = main_input_filename;
8756 if (! file)
8757 file = input_filename;
8758 /* Just use the file's basename, because the full pathname
8759 might be quite long. */
8760 p = q = ASTRDUP (lbasename (file));
8761 }
8762 else
8763 {
8764 /* Otherwise, the name must be unique across the entire link.
8765 We don't have anything that we know to be unique to this translation
8766 unit, so use what we do have and throw in some randomness. */
8767 unsigned len;
8768 const char *name = weak_global_object_name;
8769 const char *file = main_input_filename;
8770
8771 if (! name)
8772 name = "";
8773 if (! file)
8774 file = input_filename;
8775
8776 len = strlen (file);
8777 q = (char *) alloca (9 + 17 + len + 1);
8778 memcpy (q, file, len + 1);
8779
8780 snprintf (q + len, 9 + 17 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
8781 crc32_string (0, name), get_random_seed (false));
8782
8783 p = q;
8784 }
8785
8786 clean_symbol_name (q);
8787 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8788 + strlen (type));
8789
8790 /* Set up the name of the file-level functions we may need.
8791 Use a global object (which is already required to be unique over
8792 the program) rather than the file name (which imposes extra
8793 constraints). */
8794 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8795
8796 return get_identifier (buf);
8797 }
8798 \f
8799 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8800
8801 /* Complain that the tree code of NODE does not match the expected 0
8802 terminated list of trailing codes. The trailing code list can be
8803 empty, for a more vague error message. FILE, LINE, and FUNCTION
8804 are of the caller. */
8805
8806 void
8807 tree_check_failed (const_tree node, const char *file,
8808 int line, const char *function, ...)
8809 {
8810 va_list args;
8811 const char *buffer;
8812 unsigned length = 0;
8813 int code;
8814
8815 va_start (args, function);
8816 while ((code = va_arg (args, int)))
8817 length += 4 + strlen (tree_code_name[code]);
8818 va_end (args);
8819 if (length)
8820 {
8821 char *tmp;
8822 va_start (args, function);
8823 length += strlen ("expected ");
8824 buffer = tmp = (char *) alloca (length);
8825 length = 0;
8826 while ((code = va_arg (args, int)))
8827 {
8828 const char *prefix = length ? " or " : "expected ";
8829
8830 strcpy (tmp + length, prefix);
8831 length += strlen (prefix);
8832 strcpy (tmp + length, tree_code_name[code]);
8833 length += strlen (tree_code_name[code]);
8834 }
8835 va_end (args);
8836 }
8837 else
8838 buffer = "unexpected node";
8839
8840 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8841 buffer, tree_code_name[TREE_CODE (node)],
8842 function, trim_filename (file), line);
8843 }
8844
8845 /* Complain that the tree code of NODE does match the expected 0
8846 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8847 the caller. */
8848
8849 void
8850 tree_not_check_failed (const_tree node, const char *file,
8851 int line, const char *function, ...)
8852 {
8853 va_list args;
8854 char *buffer;
8855 unsigned length = 0;
8856 int code;
8857
8858 va_start (args, function);
8859 while ((code = va_arg (args, int)))
8860 length += 4 + strlen (tree_code_name[code]);
8861 va_end (args);
8862 va_start (args, function);
8863 buffer = (char *) alloca (length);
8864 length = 0;
8865 while ((code = va_arg (args, int)))
8866 {
8867 if (length)
8868 {
8869 strcpy (buffer + length, " or ");
8870 length += 4;
8871 }
8872 strcpy (buffer + length, tree_code_name[code]);
8873 length += strlen (tree_code_name[code]);
8874 }
8875 va_end (args);
8876
8877 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8878 buffer, tree_code_name[TREE_CODE (node)],
8879 function, trim_filename (file), line);
8880 }
8881
8882 /* Similar to tree_check_failed, except that we check for a class of tree
8883 code, given in CL. */
8884
8885 void
8886 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8887 const char *file, int line, const char *function)
8888 {
8889 internal_error
8890 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8891 TREE_CODE_CLASS_STRING (cl),
8892 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8893 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8894 }
8895
8896 /* Similar to tree_check_failed, except that instead of specifying a
8897 dozen codes, use the knowledge that they're all sequential. */
8898
8899 void
8900 tree_range_check_failed (const_tree node, const char *file, int line,
8901 const char *function, enum tree_code c1,
8902 enum tree_code c2)
8903 {
8904 char *buffer;
8905 unsigned length = 0;
8906 unsigned int c;
8907
8908 for (c = c1; c <= c2; ++c)
8909 length += 4 + strlen (tree_code_name[c]);
8910
8911 length += strlen ("expected ");
8912 buffer = (char *) alloca (length);
8913 length = 0;
8914
8915 for (c = c1; c <= c2; ++c)
8916 {
8917 const char *prefix = length ? " or " : "expected ";
8918
8919 strcpy (buffer + length, prefix);
8920 length += strlen (prefix);
8921 strcpy (buffer + length, tree_code_name[c]);
8922 length += strlen (tree_code_name[c]);
8923 }
8924
8925 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8926 buffer, tree_code_name[TREE_CODE (node)],
8927 function, trim_filename (file), line);
8928 }
8929
8930
8931 /* Similar to tree_check_failed, except that we check that a tree does
8932 not have the specified code, given in CL. */
8933
8934 void
8935 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8936 const char *file, int line, const char *function)
8937 {
8938 internal_error
8939 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8940 TREE_CODE_CLASS_STRING (cl),
8941 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8942 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8943 }
8944
8945
8946 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8947
8948 void
8949 omp_clause_check_failed (const_tree node, const char *file, int line,
8950 const char *function, enum omp_clause_code code)
8951 {
8952 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8953 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8954 function, trim_filename (file), line);
8955 }
8956
8957
8958 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8959
8960 void
8961 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8962 const char *function, enum omp_clause_code c1,
8963 enum omp_clause_code c2)
8964 {
8965 char *buffer;
8966 unsigned length = 0;
8967 unsigned int c;
8968
8969 for (c = c1; c <= c2; ++c)
8970 length += 4 + strlen (omp_clause_code_name[c]);
8971
8972 length += strlen ("expected ");
8973 buffer = (char *) alloca (length);
8974 length = 0;
8975
8976 for (c = c1; c <= c2; ++c)
8977 {
8978 const char *prefix = length ? " or " : "expected ";
8979
8980 strcpy (buffer + length, prefix);
8981 length += strlen (prefix);
8982 strcpy (buffer + length, omp_clause_code_name[c]);
8983 length += strlen (omp_clause_code_name[c]);
8984 }
8985
8986 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8987 buffer, omp_clause_code_name[TREE_CODE (node)],
8988 function, trim_filename (file), line);
8989 }
8990
8991
8992 #undef DEFTREESTRUCT
8993 #define DEFTREESTRUCT(VAL, NAME) NAME,
8994
8995 static const char *ts_enum_names[] = {
8996 #include "treestruct.def"
8997 };
8998 #undef DEFTREESTRUCT
8999
9000 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9001
9002 /* Similar to tree_class_check_failed, except that we check for
9003 whether CODE contains the tree structure identified by EN. */
9004
9005 void
9006 tree_contains_struct_check_failed (const_tree node,
9007 const enum tree_node_structure_enum en,
9008 const char *file, int line,
9009 const char *function)
9010 {
9011 internal_error
9012 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9013 TS_ENUM_NAME(en),
9014 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
9015 }
9016
9017
9018 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9019 (dynamically sized) vector. */
9020
9021 void
9022 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9023 const char *function)
9024 {
9025 internal_error
9026 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9027 idx + 1, len, function, trim_filename (file), line);
9028 }
9029
9030 /* Similar to above, except that the check is for the bounds of the operand
9031 vector of an expression node EXP. */
9032
9033 void
9034 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9035 int line, const char *function)
9036 {
9037 int code = TREE_CODE (exp);
9038 internal_error
9039 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9040 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
9041 function, trim_filename (file), line);
9042 }
9043
9044 /* Similar to above, except that the check is for the number of
9045 operands of an OMP_CLAUSE node. */
9046
9047 void
9048 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9049 int line, const char *function)
9050 {
9051 internal_error
9052 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9053 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9054 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9055 trim_filename (file), line);
9056 }
9057 #endif /* ENABLE_TREE_CHECKING */
9058 \f
9059 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9060 and mapped to the machine mode MODE. Initialize its fields and build
9061 the information necessary for debugging output. */
9062
9063 static tree
9064 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
9065 {
9066 tree t;
9067 hashval_t hashcode = 0;
9068
9069 t = make_node (VECTOR_TYPE);
9070 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
9071 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9072 SET_TYPE_MODE (t, mode);
9073
9074 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
9075 SET_TYPE_STRUCTURAL_EQUALITY (t);
9076 else if (TYPE_CANONICAL (innertype) != innertype
9077 || mode != VOIDmode)
9078 TYPE_CANONICAL (t)
9079 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
9080
9081 layout_type (t);
9082
9083 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
9084 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
9085 hashcode = iterative_hash_host_wide_int (mode, hashcode);
9086 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
9087 t = type_hash_canon (hashcode, t);
9088
9089 /* We have built a main variant, based on the main variant of the
9090 inner type. Use it to build the variant we return. */
9091 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9092 && TREE_TYPE (t) != innertype)
9093 return build_type_attribute_qual_variant (t,
9094 TYPE_ATTRIBUTES (innertype),
9095 TYPE_QUALS (innertype));
9096
9097 return t;
9098 }
9099
9100 static tree
9101 make_or_reuse_type (unsigned size, int unsignedp)
9102 {
9103 if (size == INT_TYPE_SIZE)
9104 return unsignedp ? unsigned_type_node : integer_type_node;
9105 if (size == CHAR_TYPE_SIZE)
9106 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9107 if (size == SHORT_TYPE_SIZE)
9108 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9109 if (size == LONG_TYPE_SIZE)
9110 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9111 if (size == LONG_LONG_TYPE_SIZE)
9112 return (unsignedp ? long_long_unsigned_type_node
9113 : long_long_integer_type_node);
9114 if (size == 128 && int128_integer_type_node)
9115 return (unsignedp ? int128_unsigned_type_node
9116 : int128_integer_type_node);
9117
9118 if (unsignedp)
9119 return make_unsigned_type (size);
9120 else
9121 return make_signed_type (size);
9122 }
9123
9124 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9125
9126 static tree
9127 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9128 {
9129 if (satp)
9130 {
9131 if (size == SHORT_FRACT_TYPE_SIZE)
9132 return unsignedp ? sat_unsigned_short_fract_type_node
9133 : sat_short_fract_type_node;
9134 if (size == FRACT_TYPE_SIZE)
9135 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9136 if (size == LONG_FRACT_TYPE_SIZE)
9137 return unsignedp ? sat_unsigned_long_fract_type_node
9138 : sat_long_fract_type_node;
9139 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9140 return unsignedp ? sat_unsigned_long_long_fract_type_node
9141 : sat_long_long_fract_type_node;
9142 }
9143 else
9144 {
9145 if (size == SHORT_FRACT_TYPE_SIZE)
9146 return unsignedp ? unsigned_short_fract_type_node
9147 : short_fract_type_node;
9148 if (size == FRACT_TYPE_SIZE)
9149 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9150 if (size == LONG_FRACT_TYPE_SIZE)
9151 return unsignedp ? unsigned_long_fract_type_node
9152 : long_fract_type_node;
9153 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9154 return unsignedp ? unsigned_long_long_fract_type_node
9155 : long_long_fract_type_node;
9156 }
9157
9158 return make_fract_type (size, unsignedp, satp);
9159 }
9160
9161 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9162
9163 static tree
9164 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9165 {
9166 if (satp)
9167 {
9168 if (size == SHORT_ACCUM_TYPE_SIZE)
9169 return unsignedp ? sat_unsigned_short_accum_type_node
9170 : sat_short_accum_type_node;
9171 if (size == ACCUM_TYPE_SIZE)
9172 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9173 if (size == LONG_ACCUM_TYPE_SIZE)
9174 return unsignedp ? sat_unsigned_long_accum_type_node
9175 : sat_long_accum_type_node;
9176 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9177 return unsignedp ? sat_unsigned_long_long_accum_type_node
9178 : sat_long_long_accum_type_node;
9179 }
9180 else
9181 {
9182 if (size == SHORT_ACCUM_TYPE_SIZE)
9183 return unsignedp ? unsigned_short_accum_type_node
9184 : short_accum_type_node;
9185 if (size == ACCUM_TYPE_SIZE)
9186 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9187 if (size == LONG_ACCUM_TYPE_SIZE)
9188 return unsignedp ? unsigned_long_accum_type_node
9189 : long_accum_type_node;
9190 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9191 return unsignedp ? unsigned_long_long_accum_type_node
9192 : long_long_accum_type_node;
9193 }
9194
9195 return make_accum_type (size, unsignedp, satp);
9196 }
9197
9198 /* Create nodes for all integer types (and error_mark_node) using the sizes
9199 of C datatypes. SIGNED_CHAR specifies whether char is signed,
9200 SHORT_DOUBLE specifies whether double should be of the same precision
9201 as float. */
9202
9203 void
9204 build_common_tree_nodes (bool signed_char, bool short_double)
9205 {
9206 error_mark_node = make_node (ERROR_MARK);
9207 TREE_TYPE (error_mark_node) = error_mark_node;
9208
9209 initialize_sizetypes ();
9210
9211 /* Define both `signed char' and `unsigned char'. */
9212 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9213 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9214 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9215 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9216
9217 /* Define `char', which is like either `signed char' or `unsigned char'
9218 but not the same as either. */
9219 char_type_node
9220 = (signed_char
9221 ? make_signed_type (CHAR_TYPE_SIZE)
9222 : make_unsigned_type (CHAR_TYPE_SIZE));
9223 TYPE_STRING_FLAG (char_type_node) = 1;
9224
9225 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9226 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9227 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9228 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9229 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9230 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9231 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9232 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9233 #if HOST_BITS_PER_WIDE_INT >= 64
9234 /* TODO: This isn't correct, but as logic depends at the moment on
9235 host's instead of target's wide-integer.
9236 If there is a target not supporting TImode, but has an 128-bit
9237 integer-scalar register, this target check needs to be adjusted. */
9238 if (targetm.scalar_mode_supported_p (TImode))
9239 {
9240 int128_integer_type_node = make_signed_type (128);
9241 int128_unsigned_type_node = make_unsigned_type (128);
9242 }
9243 #endif
9244
9245 /* Define a boolean type. This type only represents boolean values but
9246 may be larger than char depending on the value of BOOL_TYPE_SIZE.
9247 Front ends which want to override this size (i.e. Java) can redefine
9248 boolean_type_node before calling build_common_tree_nodes_2. */
9249 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9250 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9251 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9252 TYPE_PRECISION (boolean_type_node) = 1;
9253
9254 /* Define what type to use for size_t. */
9255 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9256 size_type_node = unsigned_type_node;
9257 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9258 size_type_node = long_unsigned_type_node;
9259 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9260 size_type_node = long_long_unsigned_type_node;
9261 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9262 size_type_node = short_unsigned_type_node;
9263 else
9264 gcc_unreachable ();
9265
9266 /* Fill in the rest of the sized types. Reuse existing type nodes
9267 when possible. */
9268 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9269 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9270 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9271 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9272 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9273
9274 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9275 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9276 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9277 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9278 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9279
9280 access_public_node = get_identifier ("public");
9281 access_protected_node = get_identifier ("protected");
9282 access_private_node = get_identifier ("private");
9283
9284 /* Define these next since types below may used them. */
9285 integer_zero_node = build_int_cst (integer_type_node, 0);
9286 integer_one_node = build_int_cst (integer_type_node, 1);
9287 integer_three_node = build_int_cst (integer_type_node, 3);
9288 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9289
9290 size_zero_node = size_int (0);
9291 size_one_node = size_int (1);
9292 bitsize_zero_node = bitsize_int (0);
9293 bitsize_one_node = bitsize_int (1);
9294 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9295
9296 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9297 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9298
9299 void_type_node = make_node (VOID_TYPE);
9300 layout_type (void_type_node);
9301
9302 /* We are not going to have real types in C with less than byte alignment,
9303 so we might as well not have any types that claim to have it. */
9304 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9305 TYPE_USER_ALIGN (void_type_node) = 0;
9306
9307 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9308 layout_type (TREE_TYPE (null_pointer_node));
9309
9310 ptr_type_node = build_pointer_type (void_type_node);
9311 const_ptr_type_node
9312 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9313 fileptr_type_node = ptr_type_node;
9314
9315 float_type_node = make_node (REAL_TYPE);
9316 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9317 layout_type (float_type_node);
9318
9319 double_type_node = make_node (REAL_TYPE);
9320 if (short_double)
9321 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9322 else
9323 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9324 layout_type (double_type_node);
9325
9326 long_double_type_node = make_node (REAL_TYPE);
9327 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9328 layout_type (long_double_type_node);
9329
9330 float_ptr_type_node = build_pointer_type (float_type_node);
9331 double_ptr_type_node = build_pointer_type (double_type_node);
9332 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9333 integer_ptr_type_node = build_pointer_type (integer_type_node);
9334
9335 /* Fixed size integer types. */
9336 uint32_type_node = build_nonstandard_integer_type (32, true);
9337 uint64_type_node = build_nonstandard_integer_type (64, true);
9338
9339 /* Decimal float types. */
9340 dfloat32_type_node = make_node (REAL_TYPE);
9341 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9342 layout_type (dfloat32_type_node);
9343 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9344 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9345
9346 dfloat64_type_node = make_node (REAL_TYPE);
9347 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9348 layout_type (dfloat64_type_node);
9349 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9350 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9351
9352 dfloat128_type_node = make_node (REAL_TYPE);
9353 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9354 layout_type (dfloat128_type_node);
9355 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9356 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9357
9358 complex_integer_type_node = build_complex_type (integer_type_node);
9359 complex_float_type_node = build_complex_type (float_type_node);
9360 complex_double_type_node = build_complex_type (double_type_node);
9361 complex_long_double_type_node = build_complex_type (long_double_type_node);
9362
9363 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9364 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9365 sat_ ## KIND ## _type_node = \
9366 make_sat_signed_ ## KIND ## _type (SIZE); \
9367 sat_unsigned_ ## KIND ## _type_node = \
9368 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9369 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9370 unsigned_ ## KIND ## _type_node = \
9371 make_unsigned_ ## KIND ## _type (SIZE);
9372
9373 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9374 sat_ ## WIDTH ## KIND ## _type_node = \
9375 make_sat_signed_ ## KIND ## _type (SIZE); \
9376 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9377 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9378 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9379 unsigned_ ## WIDTH ## KIND ## _type_node = \
9380 make_unsigned_ ## KIND ## _type (SIZE);
9381
9382 /* Make fixed-point type nodes based on four different widths. */
9383 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9384 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9385 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9386 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9387 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9388
9389 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9390 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9391 NAME ## _type_node = \
9392 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9393 u ## NAME ## _type_node = \
9394 make_or_reuse_unsigned_ ## KIND ## _type \
9395 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9396 sat_ ## NAME ## _type_node = \
9397 make_or_reuse_sat_signed_ ## KIND ## _type \
9398 (GET_MODE_BITSIZE (MODE ## mode)); \
9399 sat_u ## NAME ## _type_node = \
9400 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9401 (GET_MODE_BITSIZE (U ## MODE ## mode));
9402
9403 /* Fixed-point type and mode nodes. */
9404 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9405 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9406 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9407 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9408 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9409 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9410 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9411 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9412 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9413 MAKE_FIXED_MODE_NODE (accum, da, DA)
9414 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9415
9416 {
9417 tree t = targetm.build_builtin_va_list ();
9418
9419 /* Many back-ends define record types without setting TYPE_NAME.
9420 If we copied the record type here, we'd keep the original
9421 record type without a name. This breaks name mangling. So,
9422 don't copy record types and let c_common_nodes_and_builtins()
9423 declare the type to be __builtin_va_list. */
9424 if (TREE_CODE (t) != RECORD_TYPE)
9425 t = build_variant_type_copy (t);
9426
9427 va_list_type_node = t;
9428 }
9429 }
9430
9431 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9432
9433 static void
9434 local_define_builtin (const char *name, tree type, enum built_in_function code,
9435 const char *library_name, int ecf_flags)
9436 {
9437 tree decl;
9438
9439 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9440 library_name, NULL_TREE);
9441 if (ecf_flags & ECF_CONST)
9442 TREE_READONLY (decl) = 1;
9443 if (ecf_flags & ECF_PURE)
9444 DECL_PURE_P (decl) = 1;
9445 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9446 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9447 if (ecf_flags & ECF_NORETURN)
9448 TREE_THIS_VOLATILE (decl) = 1;
9449 if (ecf_flags & ECF_NOTHROW)
9450 TREE_NOTHROW (decl) = 1;
9451 if (ecf_flags & ECF_MALLOC)
9452 DECL_IS_MALLOC (decl) = 1;
9453 if (ecf_flags & ECF_LEAF)
9454 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9455 NULL, DECL_ATTRIBUTES (decl));
9456 if ((ecf_flags & ECF_TM_PURE) && flag_tm)
9457 apply_tm_attr (decl, get_identifier ("transaction_pure"));
9458
9459 set_builtin_decl (code, decl, true);
9460 }
9461
9462 /* Call this function after instantiating all builtins that the language
9463 front end cares about. This will build the rest of the builtins that
9464 are relied upon by the tree optimizers and the middle-end. */
9465
9466 void
9467 build_common_builtin_nodes (void)
9468 {
9469 tree tmp, ftype;
9470 int ecf_flags;
9471
9472 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
9473 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9474 {
9475 ftype = build_function_type_list (ptr_type_node,
9476 ptr_type_node, const_ptr_type_node,
9477 size_type_node, NULL_TREE);
9478
9479 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
9480 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9481 "memcpy", ECF_NOTHROW | ECF_LEAF);
9482 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9483 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9484 "memmove", ECF_NOTHROW | ECF_LEAF);
9485 }
9486
9487 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
9488 {
9489 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9490 const_ptr_type_node, size_type_node,
9491 NULL_TREE);
9492 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9493 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9494 }
9495
9496 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
9497 {
9498 ftype = build_function_type_list (ptr_type_node,
9499 ptr_type_node, integer_type_node,
9500 size_type_node, NULL_TREE);
9501 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9502 "memset", ECF_NOTHROW | ECF_LEAF);
9503 }
9504
9505 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
9506 {
9507 ftype = build_function_type_list (ptr_type_node,
9508 size_type_node, NULL_TREE);
9509 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9510 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9511 }
9512
9513 ftype = build_function_type_list (ptr_type_node, size_type_node,
9514 size_type_node, NULL_TREE);
9515 local_define_builtin ("__builtin_alloca_with_align", ftype,
9516 BUILT_IN_ALLOCA_WITH_ALIGN, "alloca",
9517 ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9518
9519 /* If we're checking the stack, `alloca' can throw. */
9520 if (flag_stack_check)
9521 {
9522 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA)) = 0;
9523 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN)) = 0;
9524 }
9525
9526 ftype = build_function_type_list (void_type_node,
9527 ptr_type_node, ptr_type_node,
9528 ptr_type_node, NULL_TREE);
9529 local_define_builtin ("__builtin_init_trampoline", ftype,
9530 BUILT_IN_INIT_TRAMPOLINE,
9531 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9532 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
9533 BUILT_IN_INIT_HEAP_TRAMPOLINE,
9534 "__builtin_init_heap_trampoline",
9535 ECF_NOTHROW | ECF_LEAF);
9536
9537 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9538 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9539 BUILT_IN_ADJUST_TRAMPOLINE,
9540 "__builtin_adjust_trampoline",
9541 ECF_CONST | ECF_NOTHROW);
9542
9543 ftype = build_function_type_list (void_type_node,
9544 ptr_type_node, ptr_type_node, NULL_TREE);
9545 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9546 BUILT_IN_NONLOCAL_GOTO,
9547 "__builtin_nonlocal_goto",
9548 ECF_NORETURN | ECF_NOTHROW);
9549
9550 ftype = build_function_type_list (void_type_node,
9551 ptr_type_node, ptr_type_node, NULL_TREE);
9552 local_define_builtin ("__builtin_setjmp_setup", ftype,
9553 BUILT_IN_SETJMP_SETUP,
9554 "__builtin_setjmp_setup", ECF_NOTHROW);
9555
9556 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9557 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9558 BUILT_IN_SETJMP_DISPATCHER,
9559 "__builtin_setjmp_dispatcher",
9560 ECF_PURE | ECF_NOTHROW);
9561
9562 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9563 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9564 BUILT_IN_SETJMP_RECEIVER,
9565 "__builtin_setjmp_receiver", ECF_NOTHROW);
9566
9567 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9568 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9569 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9570
9571 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9572 local_define_builtin ("__builtin_stack_restore", ftype,
9573 BUILT_IN_STACK_RESTORE,
9574 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9575
9576 /* If there's a possibility that we might use the ARM EABI, build the
9577 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9578 if (targetm.arm_eabi_unwinder)
9579 {
9580 ftype = build_function_type_list (void_type_node, NULL_TREE);
9581 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9582 BUILT_IN_CXA_END_CLEANUP,
9583 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9584 }
9585
9586 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9587 local_define_builtin ("__builtin_unwind_resume", ftype,
9588 BUILT_IN_UNWIND_RESUME,
9589 ((targetm_common.except_unwind_info (&global_options)
9590 == UI_SJLJ)
9591 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9592 ECF_NORETURN);
9593
9594 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
9595 {
9596 ftype = build_function_type_list (ptr_type_node, integer_type_node,
9597 NULL_TREE);
9598 local_define_builtin ("__builtin_return_address", ftype,
9599 BUILT_IN_RETURN_ADDRESS,
9600 "__builtin_return_address",
9601 ECF_NOTHROW);
9602 }
9603
9604 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
9605 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
9606 {
9607 ftype = build_function_type_list (void_type_node, ptr_type_node,
9608 ptr_type_node, NULL_TREE);
9609 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
9610 local_define_builtin ("__cyg_profile_func_enter", ftype,
9611 BUILT_IN_PROFILE_FUNC_ENTER,
9612 "__cyg_profile_func_enter", 0);
9613 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
9614 local_define_builtin ("__cyg_profile_func_exit", ftype,
9615 BUILT_IN_PROFILE_FUNC_EXIT,
9616 "__cyg_profile_func_exit", 0);
9617 }
9618
9619 /* The exception object and filter values from the runtime. The argument
9620 must be zero before exception lowering, i.e. from the front end. After
9621 exception lowering, it will be the region number for the exception
9622 landing pad. These functions are PURE instead of CONST to prevent
9623 them from being hoisted past the exception edge that will initialize
9624 its value in the landing pad. */
9625 ftype = build_function_type_list (ptr_type_node,
9626 integer_type_node, NULL_TREE);
9627 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
9628 /* Only use TM_PURE if we we have TM language support. */
9629 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
9630 ecf_flags |= ECF_TM_PURE;
9631 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9632 "__builtin_eh_pointer", ecf_flags);
9633
9634 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9635 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
9636 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9637 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9638
9639 ftype = build_function_type_list (void_type_node,
9640 integer_type_node, integer_type_node,
9641 NULL_TREE);
9642 local_define_builtin ("__builtin_eh_copy_values", ftype,
9643 BUILT_IN_EH_COPY_VALUES,
9644 "__builtin_eh_copy_values", ECF_NOTHROW);
9645
9646 /* Complex multiplication and division. These are handled as builtins
9647 rather than optabs because emit_library_call_value doesn't support
9648 complex. Further, we can do slightly better with folding these
9649 beasties if the real and complex parts of the arguments are separate. */
9650 {
9651 int mode;
9652
9653 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9654 {
9655 char mode_name_buf[4], *q;
9656 const char *p;
9657 enum built_in_function mcode, dcode;
9658 tree type, inner_type;
9659 const char *prefix = "__";
9660
9661 if (targetm.libfunc_gnu_prefix)
9662 prefix = "__gnu_";
9663
9664 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9665 if (type == NULL)
9666 continue;
9667 inner_type = TREE_TYPE (type);
9668
9669 ftype = build_function_type_list (type, inner_type, inner_type,
9670 inner_type, inner_type, NULL_TREE);
9671
9672 mcode = ((enum built_in_function)
9673 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9674 dcode = ((enum built_in_function)
9675 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9676
9677 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9678 *q = TOLOWER (*p);
9679 *q = '\0';
9680
9681 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
9682 NULL);
9683 local_define_builtin (built_in_names[mcode], ftype, mcode,
9684 built_in_names[mcode],
9685 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9686
9687 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
9688 NULL);
9689 local_define_builtin (built_in_names[dcode], ftype, dcode,
9690 built_in_names[dcode],
9691 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9692 }
9693 }
9694 }
9695
9696 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9697 better way.
9698
9699 If we requested a pointer to a vector, build up the pointers that
9700 we stripped off while looking for the inner type. Similarly for
9701 return values from functions.
9702
9703 The argument TYPE is the top of the chain, and BOTTOM is the
9704 new type which we will point to. */
9705
9706 tree
9707 reconstruct_complex_type (tree type, tree bottom)
9708 {
9709 tree inner, outer;
9710
9711 if (TREE_CODE (type) == POINTER_TYPE)
9712 {
9713 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9714 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9715 TYPE_REF_CAN_ALIAS_ALL (type));
9716 }
9717 else if (TREE_CODE (type) == REFERENCE_TYPE)
9718 {
9719 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9720 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9721 TYPE_REF_CAN_ALIAS_ALL (type));
9722 }
9723 else if (TREE_CODE (type) == ARRAY_TYPE)
9724 {
9725 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9726 outer = build_array_type (inner, TYPE_DOMAIN (type));
9727 }
9728 else if (TREE_CODE (type) == FUNCTION_TYPE)
9729 {
9730 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9731 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9732 }
9733 else if (TREE_CODE (type) == METHOD_TYPE)
9734 {
9735 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9736 /* The build_method_type_directly() routine prepends 'this' to argument list,
9737 so we must compensate by getting rid of it. */
9738 outer
9739 = build_method_type_directly
9740 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9741 inner,
9742 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9743 }
9744 else if (TREE_CODE (type) == OFFSET_TYPE)
9745 {
9746 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9747 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9748 }
9749 else
9750 return bottom;
9751
9752 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9753 TYPE_QUALS (type));
9754 }
9755
9756 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9757 the inner type. */
9758 tree
9759 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9760 {
9761 int nunits;
9762
9763 switch (GET_MODE_CLASS (mode))
9764 {
9765 case MODE_VECTOR_INT:
9766 case MODE_VECTOR_FLOAT:
9767 case MODE_VECTOR_FRACT:
9768 case MODE_VECTOR_UFRACT:
9769 case MODE_VECTOR_ACCUM:
9770 case MODE_VECTOR_UACCUM:
9771 nunits = GET_MODE_NUNITS (mode);
9772 break;
9773
9774 case MODE_INT:
9775 /* Check that there are no leftover bits. */
9776 gcc_assert (GET_MODE_BITSIZE (mode)
9777 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9778
9779 nunits = GET_MODE_BITSIZE (mode)
9780 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9781 break;
9782
9783 default:
9784 gcc_unreachable ();
9785 }
9786
9787 return make_vector_type (innertype, nunits, mode);
9788 }
9789
9790 /* Similarly, but takes the inner type and number of units, which must be
9791 a power of two. */
9792
9793 tree
9794 build_vector_type (tree innertype, int nunits)
9795 {
9796 return make_vector_type (innertype, nunits, VOIDmode);
9797 }
9798
9799 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
9800
9801 tree
9802 build_opaque_vector_type (tree innertype, int nunits)
9803 {
9804 tree t = make_vector_type (innertype, nunits, VOIDmode);
9805 tree cand;
9806 /* We always build the non-opaque variant before the opaque one,
9807 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
9808 cand = TYPE_NEXT_VARIANT (t);
9809 if (cand
9810 && TYPE_VECTOR_OPAQUE (cand)
9811 && check_qualified_type (cand, t, TYPE_QUALS (t)))
9812 return cand;
9813 /* Othewise build a variant type and make sure to queue it after
9814 the non-opaque type. */
9815 cand = build_distinct_type_copy (t);
9816 TYPE_VECTOR_OPAQUE (cand) = true;
9817 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
9818 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
9819 TYPE_NEXT_VARIANT (t) = cand;
9820 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
9821 return cand;
9822 }
9823
9824
9825 /* Given an initializer INIT, return TRUE if INIT is zero or some
9826 aggregate of zeros. Otherwise return FALSE. */
9827 bool
9828 initializer_zerop (const_tree init)
9829 {
9830 tree elt;
9831
9832 STRIP_NOPS (init);
9833
9834 switch (TREE_CODE (init))
9835 {
9836 case INTEGER_CST:
9837 return integer_zerop (init);
9838
9839 case REAL_CST:
9840 /* ??? Note that this is not correct for C4X float formats. There,
9841 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9842 negative exponent. */
9843 return real_zerop (init)
9844 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9845
9846 case FIXED_CST:
9847 return fixed_zerop (init);
9848
9849 case COMPLEX_CST:
9850 return integer_zerop (init)
9851 || (real_zerop (init)
9852 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9853 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9854
9855 case VECTOR_CST:
9856 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9857 if (!initializer_zerop (TREE_VALUE (elt)))
9858 return false;
9859 return true;
9860
9861 case CONSTRUCTOR:
9862 {
9863 unsigned HOST_WIDE_INT idx;
9864
9865 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9866 if (!initializer_zerop (elt))
9867 return false;
9868 return true;
9869 }
9870
9871 case STRING_CST:
9872 {
9873 int i;
9874
9875 /* We need to loop through all elements to handle cases like
9876 "\0" and "\0foobar". */
9877 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
9878 if (TREE_STRING_POINTER (init)[i] != '\0')
9879 return false;
9880
9881 return true;
9882 }
9883
9884 default:
9885 return false;
9886 }
9887 }
9888
9889 /* Build an empty statement at location LOC. */
9890
9891 tree
9892 build_empty_stmt (location_t loc)
9893 {
9894 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9895 SET_EXPR_LOCATION (t, loc);
9896 return t;
9897 }
9898
9899
9900 /* Build an OpenMP clause with code CODE. LOC is the location of the
9901 clause. */
9902
9903 tree
9904 build_omp_clause (location_t loc, enum omp_clause_code code)
9905 {
9906 tree t;
9907 int size, length;
9908
9909 length = omp_clause_num_ops[code];
9910 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9911
9912 record_node_allocation_statistics (OMP_CLAUSE, size);
9913
9914 t = ggc_alloc_tree_node (size);
9915 memset (t, 0, size);
9916 TREE_SET_CODE (t, OMP_CLAUSE);
9917 OMP_CLAUSE_SET_CODE (t, code);
9918 OMP_CLAUSE_LOCATION (t) = loc;
9919
9920 return t;
9921 }
9922
9923 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9924 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9925 Except for the CODE and operand count field, other storage for the
9926 object is initialized to zeros. */
9927
9928 tree
9929 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9930 {
9931 tree t;
9932 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9933
9934 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9935 gcc_assert (len >= 1);
9936
9937 record_node_allocation_statistics (code, length);
9938
9939 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
9940
9941 TREE_SET_CODE (t, code);
9942
9943 /* Can't use TREE_OPERAND to store the length because if checking is
9944 enabled, it will try to check the length before we store it. :-P */
9945 t->exp.operands[0] = build_int_cst (sizetype, len);
9946
9947 return t;
9948 }
9949
9950 /* Helper function for build_call_* functions; build a CALL_EXPR with
9951 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
9952 the argument slots. */
9953
9954 static tree
9955 build_call_1 (tree return_type, tree fn, int nargs)
9956 {
9957 tree t;
9958
9959 t = build_vl_exp (CALL_EXPR, nargs + 3);
9960 TREE_TYPE (t) = return_type;
9961 CALL_EXPR_FN (t) = fn;
9962 CALL_EXPR_STATIC_CHAIN (t) = NULL;
9963
9964 return t;
9965 }
9966
9967 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9968 FN and a null static chain slot. NARGS is the number of call arguments
9969 which are specified as "..." arguments. */
9970
9971 tree
9972 build_call_nary (tree return_type, tree fn, int nargs, ...)
9973 {
9974 tree ret;
9975 va_list args;
9976 va_start (args, nargs);
9977 ret = build_call_valist (return_type, fn, nargs, args);
9978 va_end (args);
9979 return ret;
9980 }
9981
9982 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9983 FN and a null static chain slot. NARGS is the number of call arguments
9984 which are specified as a va_list ARGS. */
9985
9986 tree
9987 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9988 {
9989 tree t;
9990 int i;
9991
9992 t = build_call_1 (return_type, fn, nargs);
9993 for (i = 0; i < nargs; i++)
9994 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9995 process_call_operands (t);
9996 return t;
9997 }
9998
9999 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10000 FN and a null static chain slot. NARGS is the number of call arguments
10001 which are specified as a tree array ARGS. */
10002
10003 tree
10004 build_call_array_loc (location_t loc, tree return_type, tree fn,
10005 int nargs, const tree *args)
10006 {
10007 tree t;
10008 int i;
10009
10010 t = build_call_1 (return_type, fn, nargs);
10011 for (i = 0; i < nargs; i++)
10012 CALL_EXPR_ARG (t, i) = args[i];
10013 process_call_operands (t);
10014 SET_EXPR_LOCATION (t, loc);
10015 return t;
10016 }
10017
10018 /* Like build_call_array, but takes a VEC. */
10019
10020 tree
10021 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
10022 {
10023 tree ret, t;
10024 unsigned int ix;
10025
10026 ret = build_call_1 (return_type, fn, VEC_length (tree, args));
10027 FOR_EACH_VEC_ELT (tree, args, ix, t)
10028 CALL_EXPR_ARG (ret, ix) = t;
10029 process_call_operands (ret);
10030 return ret;
10031 }
10032
10033
10034 /* Returns true if it is possible to prove that the index of
10035 an array access REF (an ARRAY_REF expression) falls into the
10036 array bounds. */
10037
10038 bool
10039 in_array_bounds_p (tree ref)
10040 {
10041 tree idx = TREE_OPERAND (ref, 1);
10042 tree min, max;
10043
10044 if (TREE_CODE (idx) != INTEGER_CST)
10045 return false;
10046
10047 min = array_ref_low_bound (ref);
10048 max = array_ref_up_bound (ref);
10049 if (!min
10050 || !max
10051 || TREE_CODE (min) != INTEGER_CST
10052 || TREE_CODE (max) != INTEGER_CST)
10053 return false;
10054
10055 if (tree_int_cst_lt (idx, min)
10056 || tree_int_cst_lt (max, idx))
10057 return false;
10058
10059 return true;
10060 }
10061
10062 /* Returns true if it is possible to prove that the range of
10063 an array access REF (an ARRAY_RANGE_REF expression) falls
10064 into the array bounds. */
10065
10066 bool
10067 range_in_array_bounds_p (tree ref)
10068 {
10069 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
10070 tree range_min, range_max, min, max;
10071
10072 range_min = TYPE_MIN_VALUE (domain_type);
10073 range_max = TYPE_MAX_VALUE (domain_type);
10074 if (!range_min
10075 || !range_max
10076 || TREE_CODE (range_min) != INTEGER_CST
10077 || TREE_CODE (range_max) != INTEGER_CST)
10078 return false;
10079
10080 min = array_ref_low_bound (ref);
10081 max = array_ref_up_bound (ref);
10082 if (!min
10083 || !max
10084 || TREE_CODE (min) != INTEGER_CST
10085 || TREE_CODE (max) != INTEGER_CST)
10086 return false;
10087
10088 if (tree_int_cst_lt (range_min, min)
10089 || tree_int_cst_lt (max, range_max))
10090 return false;
10091
10092 return true;
10093 }
10094
10095 /* Return true if T (assumed to be a DECL) must be assigned a memory
10096 location. */
10097
10098 bool
10099 needs_to_live_in_memory (const_tree t)
10100 {
10101 if (TREE_CODE (t) == SSA_NAME)
10102 t = SSA_NAME_VAR (t);
10103
10104 return (TREE_ADDRESSABLE (t)
10105 || is_global_var (t)
10106 || (TREE_CODE (t) == RESULT_DECL
10107 && !DECL_BY_REFERENCE (t)
10108 && aggregate_value_p (t, current_function_decl)));
10109 }
10110
10111 /* Return value of a constant X and sign-extend it. */
10112
10113 HOST_WIDE_INT
10114 int_cst_value (const_tree x)
10115 {
10116 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10117 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
10118
10119 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10120 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10121 || TREE_INT_CST_HIGH (x) == -1);
10122
10123 if (bits < HOST_BITS_PER_WIDE_INT)
10124 {
10125 bool negative = ((val >> (bits - 1)) & 1) != 0;
10126 if (negative)
10127 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
10128 else
10129 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
10130 }
10131
10132 return val;
10133 }
10134
10135 /* Return value of a constant X and sign-extend it. */
10136
10137 HOST_WIDEST_INT
10138 widest_int_cst_value (const_tree x)
10139 {
10140 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10141 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
10142
10143 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
10144 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
10145 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
10146 << HOST_BITS_PER_WIDE_INT);
10147 #else
10148 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10149 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10150 || TREE_INT_CST_HIGH (x) == -1);
10151 #endif
10152
10153 if (bits < HOST_BITS_PER_WIDEST_INT)
10154 {
10155 bool negative = ((val >> (bits - 1)) & 1) != 0;
10156 if (negative)
10157 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
10158 else
10159 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
10160 }
10161
10162 return val;
10163 }
10164
10165 /* If TYPE is an integral type, return an equivalent type which is
10166 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
10167 return TYPE itself. */
10168
10169 tree
10170 signed_or_unsigned_type_for (int unsignedp, tree type)
10171 {
10172 tree t = type;
10173 if (POINTER_TYPE_P (type))
10174 {
10175 /* If the pointer points to the normal address space, use the
10176 size_type_node. Otherwise use an appropriate size for the pointer
10177 based on the named address space it points to. */
10178 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
10179 t = size_type_node;
10180 else
10181 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
10182 }
10183
10184 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
10185 return t;
10186
10187 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
10188 }
10189
10190 /* Returns unsigned variant of TYPE. */
10191
10192 tree
10193 unsigned_type_for (tree type)
10194 {
10195 return signed_or_unsigned_type_for (1, type);
10196 }
10197
10198 /* Returns signed variant of TYPE. */
10199
10200 tree
10201 signed_type_for (tree type)
10202 {
10203 return signed_or_unsigned_type_for (0, type);
10204 }
10205
10206 /* Returns the largest value obtainable by casting something in INNER type to
10207 OUTER type. */
10208
10209 tree
10210 upper_bound_in_type (tree outer, tree inner)
10211 {
10212 double_int high;
10213 unsigned int det = 0;
10214 unsigned oprec = TYPE_PRECISION (outer);
10215 unsigned iprec = TYPE_PRECISION (inner);
10216 unsigned prec;
10217
10218 /* Compute a unique number for every combination. */
10219 det |= (oprec > iprec) ? 4 : 0;
10220 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10221 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10222
10223 /* Determine the exponent to use. */
10224 switch (det)
10225 {
10226 case 0:
10227 case 1:
10228 /* oprec <= iprec, outer: signed, inner: don't care. */
10229 prec = oprec - 1;
10230 break;
10231 case 2:
10232 case 3:
10233 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10234 prec = oprec;
10235 break;
10236 case 4:
10237 /* oprec > iprec, outer: signed, inner: signed. */
10238 prec = iprec - 1;
10239 break;
10240 case 5:
10241 /* oprec > iprec, outer: signed, inner: unsigned. */
10242 prec = iprec;
10243 break;
10244 case 6:
10245 /* oprec > iprec, outer: unsigned, inner: signed. */
10246 prec = oprec;
10247 break;
10248 case 7:
10249 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10250 prec = iprec;
10251 break;
10252 default:
10253 gcc_unreachable ();
10254 }
10255
10256 /* Compute 2^^prec - 1. */
10257 if (prec <= HOST_BITS_PER_WIDE_INT)
10258 {
10259 high.high = 0;
10260 high.low = ((~(unsigned HOST_WIDE_INT) 0)
10261 >> (HOST_BITS_PER_WIDE_INT - prec));
10262 }
10263 else
10264 {
10265 high.high = ((~(unsigned HOST_WIDE_INT) 0)
10266 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
10267 high.low = ~(unsigned HOST_WIDE_INT) 0;
10268 }
10269
10270 return double_int_to_tree (outer, high);
10271 }
10272
10273 /* Returns the smallest value obtainable by casting something in INNER type to
10274 OUTER type. */
10275
10276 tree
10277 lower_bound_in_type (tree outer, tree inner)
10278 {
10279 double_int low;
10280 unsigned oprec = TYPE_PRECISION (outer);
10281 unsigned iprec = TYPE_PRECISION (inner);
10282
10283 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10284 and obtain 0. */
10285 if (TYPE_UNSIGNED (outer)
10286 /* If we are widening something of an unsigned type, OUTER type
10287 contains all values of INNER type. In particular, both INNER
10288 and OUTER types have zero in common. */
10289 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10290 low.low = low.high = 0;
10291 else
10292 {
10293 /* If we are widening a signed type to another signed type, we
10294 want to obtain -2^^(iprec-1). If we are keeping the
10295 precision or narrowing to a signed type, we want to obtain
10296 -2^(oprec-1). */
10297 unsigned prec = oprec > iprec ? iprec : oprec;
10298
10299 if (prec <= HOST_BITS_PER_WIDE_INT)
10300 {
10301 low.high = ~(unsigned HOST_WIDE_INT) 0;
10302 low.low = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
10303 }
10304 else
10305 {
10306 low.high = ((~(unsigned HOST_WIDE_INT) 0)
10307 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10308 low.low = 0;
10309 }
10310 }
10311
10312 return double_int_to_tree (outer, low);
10313 }
10314
10315 /* Return nonzero if two operands that are suitable for PHI nodes are
10316 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10317 SSA_NAME or invariant. Note that this is strictly an optimization.
10318 That is, callers of this function can directly call operand_equal_p
10319 and get the same result, only slower. */
10320
10321 int
10322 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10323 {
10324 if (arg0 == arg1)
10325 return 1;
10326 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10327 return 0;
10328 return operand_equal_p (arg0, arg1, 0);
10329 }
10330
10331 /* Returns number of zeros at the end of binary representation of X.
10332
10333 ??? Use ffs if available? */
10334
10335 tree
10336 num_ending_zeros (const_tree x)
10337 {
10338 unsigned HOST_WIDE_INT fr, nfr;
10339 unsigned num, abits;
10340 tree type = TREE_TYPE (x);
10341
10342 if (TREE_INT_CST_LOW (x) == 0)
10343 {
10344 num = HOST_BITS_PER_WIDE_INT;
10345 fr = TREE_INT_CST_HIGH (x);
10346 }
10347 else
10348 {
10349 num = 0;
10350 fr = TREE_INT_CST_LOW (x);
10351 }
10352
10353 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10354 {
10355 nfr = fr >> abits;
10356 if (nfr << abits == fr)
10357 {
10358 num += abits;
10359 fr = nfr;
10360 }
10361 }
10362
10363 if (num > TYPE_PRECISION (type))
10364 num = TYPE_PRECISION (type);
10365
10366 return build_int_cst_type (type, num);
10367 }
10368
10369
10370 #define WALK_SUBTREE(NODE) \
10371 do \
10372 { \
10373 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10374 if (result) \
10375 return result; \
10376 } \
10377 while (0)
10378
10379 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10380 be walked whenever a type is seen in the tree. Rest of operands and return
10381 value are as for walk_tree. */
10382
10383 static tree
10384 walk_type_fields (tree type, walk_tree_fn func, void *data,
10385 struct pointer_set_t *pset, walk_tree_lh lh)
10386 {
10387 tree result = NULL_TREE;
10388
10389 switch (TREE_CODE (type))
10390 {
10391 case POINTER_TYPE:
10392 case REFERENCE_TYPE:
10393 /* We have to worry about mutually recursive pointers. These can't
10394 be written in C. They can in Ada. It's pathological, but
10395 there's an ACATS test (c38102a) that checks it. Deal with this
10396 by checking if we're pointing to another pointer, that one
10397 points to another pointer, that one does too, and we have no htab.
10398 If so, get a hash table. We check three levels deep to avoid
10399 the cost of the hash table if we don't need one. */
10400 if (POINTER_TYPE_P (TREE_TYPE (type))
10401 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10402 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10403 && !pset)
10404 {
10405 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10406 func, data);
10407 if (result)
10408 return result;
10409
10410 break;
10411 }
10412
10413 /* ... fall through ... */
10414
10415 case COMPLEX_TYPE:
10416 WALK_SUBTREE (TREE_TYPE (type));
10417 break;
10418
10419 case METHOD_TYPE:
10420 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10421
10422 /* Fall through. */
10423
10424 case FUNCTION_TYPE:
10425 WALK_SUBTREE (TREE_TYPE (type));
10426 {
10427 tree arg;
10428
10429 /* We never want to walk into default arguments. */
10430 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10431 WALK_SUBTREE (TREE_VALUE (arg));
10432 }
10433 break;
10434
10435 case ARRAY_TYPE:
10436 /* Don't follow this nodes's type if a pointer for fear that
10437 we'll have infinite recursion. If we have a PSET, then we
10438 need not fear. */
10439 if (pset
10440 || (!POINTER_TYPE_P (TREE_TYPE (type))
10441 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10442 WALK_SUBTREE (TREE_TYPE (type));
10443 WALK_SUBTREE (TYPE_DOMAIN (type));
10444 break;
10445
10446 case OFFSET_TYPE:
10447 WALK_SUBTREE (TREE_TYPE (type));
10448 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10449 break;
10450
10451 default:
10452 break;
10453 }
10454
10455 return NULL_TREE;
10456 }
10457
10458 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10459 called with the DATA and the address of each sub-tree. If FUNC returns a
10460 non-NULL value, the traversal is stopped, and the value returned by FUNC
10461 is returned. If PSET is non-NULL it is used to record the nodes visited,
10462 and to avoid visiting a node more than once. */
10463
10464 tree
10465 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10466 struct pointer_set_t *pset, walk_tree_lh lh)
10467 {
10468 enum tree_code code;
10469 int walk_subtrees;
10470 tree result;
10471
10472 #define WALK_SUBTREE_TAIL(NODE) \
10473 do \
10474 { \
10475 tp = & (NODE); \
10476 goto tail_recurse; \
10477 } \
10478 while (0)
10479
10480 tail_recurse:
10481 /* Skip empty subtrees. */
10482 if (!*tp)
10483 return NULL_TREE;
10484
10485 /* Don't walk the same tree twice, if the user has requested
10486 that we avoid doing so. */
10487 if (pset && pointer_set_insert (pset, *tp))
10488 return NULL_TREE;
10489
10490 /* Call the function. */
10491 walk_subtrees = 1;
10492 result = (*func) (tp, &walk_subtrees, data);
10493
10494 /* If we found something, return it. */
10495 if (result)
10496 return result;
10497
10498 code = TREE_CODE (*tp);
10499
10500 /* Even if we didn't, FUNC may have decided that there was nothing
10501 interesting below this point in the tree. */
10502 if (!walk_subtrees)
10503 {
10504 /* But we still need to check our siblings. */
10505 if (code == TREE_LIST)
10506 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10507 else if (code == OMP_CLAUSE)
10508 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10509 else
10510 return NULL_TREE;
10511 }
10512
10513 if (lh)
10514 {
10515 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10516 if (result || !walk_subtrees)
10517 return result;
10518 }
10519
10520 switch (code)
10521 {
10522 case ERROR_MARK:
10523 case IDENTIFIER_NODE:
10524 case INTEGER_CST:
10525 case REAL_CST:
10526 case FIXED_CST:
10527 case VECTOR_CST:
10528 case STRING_CST:
10529 case BLOCK:
10530 case PLACEHOLDER_EXPR:
10531 case SSA_NAME:
10532 case FIELD_DECL:
10533 case RESULT_DECL:
10534 /* None of these have subtrees other than those already walked
10535 above. */
10536 break;
10537
10538 case TREE_LIST:
10539 WALK_SUBTREE (TREE_VALUE (*tp));
10540 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10541 break;
10542
10543 case TREE_VEC:
10544 {
10545 int len = TREE_VEC_LENGTH (*tp);
10546
10547 if (len == 0)
10548 break;
10549
10550 /* Walk all elements but the first. */
10551 while (--len)
10552 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10553
10554 /* Now walk the first one as a tail call. */
10555 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10556 }
10557
10558 case COMPLEX_CST:
10559 WALK_SUBTREE (TREE_REALPART (*tp));
10560 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10561
10562 case CONSTRUCTOR:
10563 {
10564 unsigned HOST_WIDE_INT idx;
10565 constructor_elt *ce;
10566
10567 for (idx = 0;
10568 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10569 idx++)
10570 WALK_SUBTREE (ce->value);
10571 }
10572 break;
10573
10574 case SAVE_EXPR:
10575 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10576
10577 case BIND_EXPR:
10578 {
10579 tree decl;
10580 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
10581 {
10582 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10583 into declarations that are just mentioned, rather than
10584 declared; they don't really belong to this part of the tree.
10585 And, we can see cycles: the initializer for a declaration
10586 can refer to the declaration itself. */
10587 WALK_SUBTREE (DECL_INITIAL (decl));
10588 WALK_SUBTREE (DECL_SIZE (decl));
10589 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10590 }
10591 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10592 }
10593
10594 case STATEMENT_LIST:
10595 {
10596 tree_stmt_iterator i;
10597 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10598 WALK_SUBTREE (*tsi_stmt_ptr (i));
10599 }
10600 break;
10601
10602 case OMP_CLAUSE:
10603 switch (OMP_CLAUSE_CODE (*tp))
10604 {
10605 case OMP_CLAUSE_PRIVATE:
10606 case OMP_CLAUSE_SHARED:
10607 case OMP_CLAUSE_FIRSTPRIVATE:
10608 case OMP_CLAUSE_COPYIN:
10609 case OMP_CLAUSE_COPYPRIVATE:
10610 case OMP_CLAUSE_FINAL:
10611 case OMP_CLAUSE_IF:
10612 case OMP_CLAUSE_NUM_THREADS:
10613 case OMP_CLAUSE_SCHEDULE:
10614 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10615 /* FALLTHRU */
10616
10617 case OMP_CLAUSE_NOWAIT:
10618 case OMP_CLAUSE_ORDERED:
10619 case OMP_CLAUSE_DEFAULT:
10620 case OMP_CLAUSE_UNTIED:
10621 case OMP_CLAUSE_MERGEABLE:
10622 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10623
10624 case OMP_CLAUSE_LASTPRIVATE:
10625 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10626 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10627 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10628
10629 case OMP_CLAUSE_COLLAPSE:
10630 {
10631 int i;
10632 for (i = 0; i < 3; i++)
10633 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10634 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10635 }
10636
10637 case OMP_CLAUSE_REDUCTION:
10638 {
10639 int i;
10640 for (i = 0; i < 4; i++)
10641 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10642 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10643 }
10644
10645 default:
10646 gcc_unreachable ();
10647 }
10648 break;
10649
10650 case TARGET_EXPR:
10651 {
10652 int i, len;
10653
10654 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10655 But, we only want to walk once. */
10656 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10657 for (i = 0; i < len; ++i)
10658 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10659 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10660 }
10661
10662 case DECL_EXPR:
10663 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10664 defining. We only want to walk into these fields of a type in this
10665 case and not in the general case of a mere reference to the type.
10666
10667 The criterion is as follows: if the field can be an expression, it
10668 must be walked only here. This should be in keeping with the fields
10669 that are directly gimplified in gimplify_type_sizes in order for the
10670 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10671 variable-sized types.
10672
10673 Note that DECLs get walked as part of processing the BIND_EXPR. */
10674 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10675 {
10676 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10677 if (TREE_CODE (*type_p) == ERROR_MARK)
10678 return NULL_TREE;
10679
10680 /* Call the function for the type. See if it returns anything or
10681 doesn't want us to continue. If we are to continue, walk both
10682 the normal fields and those for the declaration case. */
10683 result = (*func) (type_p, &walk_subtrees, data);
10684 if (result || !walk_subtrees)
10685 return result;
10686
10687 /* But do not walk a pointed-to type since it may itself need to
10688 be walked in the declaration case if it isn't anonymous. */
10689 if (!POINTER_TYPE_P (*type_p))
10690 {
10691 result = walk_type_fields (*type_p, func, data, pset, lh);
10692 if (result)
10693 return result;
10694 }
10695
10696 /* If this is a record type, also walk the fields. */
10697 if (RECORD_OR_UNION_TYPE_P (*type_p))
10698 {
10699 tree field;
10700
10701 for (field = TYPE_FIELDS (*type_p); field;
10702 field = DECL_CHAIN (field))
10703 {
10704 /* We'd like to look at the type of the field, but we can
10705 easily get infinite recursion. So assume it's pointed
10706 to elsewhere in the tree. Also, ignore things that
10707 aren't fields. */
10708 if (TREE_CODE (field) != FIELD_DECL)
10709 continue;
10710
10711 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10712 WALK_SUBTREE (DECL_SIZE (field));
10713 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10714 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10715 WALK_SUBTREE (DECL_QUALIFIER (field));
10716 }
10717 }
10718
10719 /* Same for scalar types. */
10720 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10721 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10722 || TREE_CODE (*type_p) == INTEGER_TYPE
10723 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10724 || TREE_CODE (*type_p) == REAL_TYPE)
10725 {
10726 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10727 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10728 }
10729
10730 WALK_SUBTREE (TYPE_SIZE (*type_p));
10731 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10732 }
10733 /* FALLTHRU */
10734
10735 default:
10736 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10737 {
10738 int i, len;
10739
10740 /* Walk over all the sub-trees of this operand. */
10741 len = TREE_OPERAND_LENGTH (*tp);
10742
10743 /* Go through the subtrees. We need to do this in forward order so
10744 that the scope of a FOR_EXPR is handled properly. */
10745 if (len)
10746 {
10747 for (i = 0; i < len - 1; ++i)
10748 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10749 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10750 }
10751 }
10752 /* If this is a type, walk the needed fields in the type. */
10753 else if (TYPE_P (*tp))
10754 return walk_type_fields (*tp, func, data, pset, lh);
10755 break;
10756 }
10757
10758 /* We didn't find what we were looking for. */
10759 return NULL_TREE;
10760
10761 #undef WALK_SUBTREE_TAIL
10762 }
10763 #undef WALK_SUBTREE
10764
10765 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10766
10767 tree
10768 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10769 walk_tree_lh lh)
10770 {
10771 tree result;
10772 struct pointer_set_t *pset;
10773
10774 pset = pointer_set_create ();
10775 result = walk_tree_1 (tp, func, data, pset, lh);
10776 pointer_set_destroy (pset);
10777 return result;
10778 }
10779
10780
10781 tree *
10782 tree_block (tree t)
10783 {
10784 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10785
10786 if (IS_EXPR_CODE_CLASS (c))
10787 return &t->exp.block;
10788 gcc_unreachable ();
10789 return NULL;
10790 }
10791
10792 /* Create a nameless artificial label and put it in the current
10793 function context. The label has a location of LOC. Returns the
10794 newly created label. */
10795
10796 tree
10797 create_artificial_label (location_t loc)
10798 {
10799 tree lab = build_decl (loc,
10800 LABEL_DECL, NULL_TREE, void_type_node);
10801
10802 DECL_ARTIFICIAL (lab) = 1;
10803 DECL_IGNORED_P (lab) = 1;
10804 DECL_CONTEXT (lab) = current_function_decl;
10805 return lab;
10806 }
10807
10808 /* Given a tree, try to return a useful variable name that we can use
10809 to prefix a temporary that is being assigned the value of the tree.
10810 I.E. given <temp> = &A, return A. */
10811
10812 const char *
10813 get_name (tree t)
10814 {
10815 tree stripped_decl;
10816
10817 stripped_decl = t;
10818 STRIP_NOPS (stripped_decl);
10819 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10820 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10821 else
10822 {
10823 switch (TREE_CODE (stripped_decl))
10824 {
10825 case ADDR_EXPR:
10826 return get_name (TREE_OPERAND (stripped_decl, 0));
10827 default:
10828 return NULL;
10829 }
10830 }
10831 }
10832
10833 /* Return true if TYPE has a variable argument list. */
10834
10835 bool
10836 stdarg_p (const_tree fntype)
10837 {
10838 function_args_iterator args_iter;
10839 tree n = NULL_TREE, t;
10840
10841 if (!fntype)
10842 return false;
10843
10844 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10845 {
10846 n = t;
10847 }
10848
10849 return n != NULL_TREE && n != void_type_node;
10850 }
10851
10852 /* Return true if TYPE has a prototype. */
10853
10854 bool
10855 prototype_p (tree fntype)
10856 {
10857 tree t;
10858
10859 gcc_assert (fntype != NULL_TREE);
10860
10861 t = TYPE_ARG_TYPES (fntype);
10862 return (t != NULL_TREE);
10863 }
10864
10865 /* If BLOCK is inlined from an __attribute__((__artificial__))
10866 routine, return pointer to location from where it has been
10867 called. */
10868 location_t *
10869 block_nonartificial_location (tree block)
10870 {
10871 location_t *ret = NULL;
10872
10873 while (block && TREE_CODE (block) == BLOCK
10874 && BLOCK_ABSTRACT_ORIGIN (block))
10875 {
10876 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10877
10878 while (TREE_CODE (ao) == BLOCK
10879 && BLOCK_ABSTRACT_ORIGIN (ao)
10880 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10881 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10882
10883 if (TREE_CODE (ao) == FUNCTION_DECL)
10884 {
10885 /* If AO is an artificial inline, point RET to the
10886 call site locus at which it has been inlined and continue
10887 the loop, in case AO's caller is also an artificial
10888 inline. */
10889 if (DECL_DECLARED_INLINE_P (ao)
10890 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10891 ret = &BLOCK_SOURCE_LOCATION (block);
10892 else
10893 break;
10894 }
10895 else if (TREE_CODE (ao) != BLOCK)
10896 break;
10897
10898 block = BLOCK_SUPERCONTEXT (block);
10899 }
10900 return ret;
10901 }
10902
10903
10904 /* If EXP is inlined from an __attribute__((__artificial__))
10905 function, return the location of the original call expression. */
10906
10907 location_t
10908 tree_nonartificial_location (tree exp)
10909 {
10910 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10911
10912 if (loc)
10913 return *loc;
10914 else
10915 return EXPR_LOCATION (exp);
10916 }
10917
10918
10919 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10920 nodes. */
10921
10922 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10923
10924 static hashval_t
10925 cl_option_hash_hash (const void *x)
10926 {
10927 const_tree const t = (const_tree) x;
10928 const char *p;
10929 size_t i;
10930 size_t len = 0;
10931 hashval_t hash = 0;
10932
10933 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10934 {
10935 p = (const char *)TREE_OPTIMIZATION (t);
10936 len = sizeof (struct cl_optimization);
10937 }
10938
10939 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10940 {
10941 p = (const char *)TREE_TARGET_OPTION (t);
10942 len = sizeof (struct cl_target_option);
10943 }
10944
10945 else
10946 gcc_unreachable ();
10947
10948 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10949 something else. */
10950 for (i = 0; i < len; i++)
10951 if (p[i])
10952 hash = (hash << 4) ^ ((i << 2) | p[i]);
10953
10954 return hash;
10955 }
10956
10957 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10958 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10959 same. */
10960
10961 static int
10962 cl_option_hash_eq (const void *x, const void *y)
10963 {
10964 const_tree const xt = (const_tree) x;
10965 const_tree const yt = (const_tree) y;
10966 const char *xp;
10967 const char *yp;
10968 size_t len;
10969
10970 if (TREE_CODE (xt) != TREE_CODE (yt))
10971 return 0;
10972
10973 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10974 {
10975 xp = (const char *)TREE_OPTIMIZATION (xt);
10976 yp = (const char *)TREE_OPTIMIZATION (yt);
10977 len = sizeof (struct cl_optimization);
10978 }
10979
10980 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10981 {
10982 xp = (const char *)TREE_TARGET_OPTION (xt);
10983 yp = (const char *)TREE_TARGET_OPTION (yt);
10984 len = sizeof (struct cl_target_option);
10985 }
10986
10987 else
10988 gcc_unreachable ();
10989
10990 return (memcmp (xp, yp, len) == 0);
10991 }
10992
10993 /* Build an OPTIMIZATION_NODE based on the current options. */
10994
10995 tree
10996 build_optimization_node (void)
10997 {
10998 tree t;
10999 void **slot;
11000
11001 /* Use the cache of optimization nodes. */
11002
11003 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11004 &global_options);
11005
11006 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
11007 t = (tree) *slot;
11008 if (!t)
11009 {
11010 /* Insert this one into the hash table. */
11011 t = cl_optimization_node;
11012 *slot = t;
11013
11014 /* Make a new node for next time round. */
11015 cl_optimization_node = make_node (OPTIMIZATION_NODE);
11016 }
11017
11018 return t;
11019 }
11020
11021 /* Build a TARGET_OPTION_NODE based on the current options. */
11022
11023 tree
11024 build_target_option_node (void)
11025 {
11026 tree t;
11027 void **slot;
11028
11029 /* Use the cache of optimization nodes. */
11030
11031 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
11032 &global_options);
11033
11034 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
11035 t = (tree) *slot;
11036 if (!t)
11037 {
11038 /* Insert this one into the hash table. */
11039 t = cl_target_option_node;
11040 *slot = t;
11041
11042 /* Make a new node for next time round. */
11043 cl_target_option_node = make_node (TARGET_OPTION_NODE);
11044 }
11045
11046 return t;
11047 }
11048
11049 /* Determine the "ultimate origin" of a block. The block may be an inlined
11050 instance of an inlined instance of a block which is local to an inline
11051 function, so we have to trace all of the way back through the origin chain
11052 to find out what sort of node actually served as the original seed for the
11053 given block. */
11054
11055 tree
11056 block_ultimate_origin (const_tree block)
11057 {
11058 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
11059
11060 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
11061 nodes in the function to point to themselves; ignore that if
11062 we're trying to output the abstract instance of this function. */
11063 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
11064 return NULL_TREE;
11065
11066 if (immediate_origin == NULL_TREE)
11067 return NULL_TREE;
11068 else
11069 {
11070 tree ret_val;
11071 tree lookahead = immediate_origin;
11072
11073 do
11074 {
11075 ret_val = lookahead;
11076 lookahead = (TREE_CODE (ret_val) == BLOCK
11077 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
11078 }
11079 while (lookahead != NULL && lookahead != ret_val);
11080
11081 /* The block's abstract origin chain may not be the *ultimate* origin of
11082 the block. It could lead to a DECL that has an abstract origin set.
11083 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
11084 will give us if it has one). Note that DECL's abstract origins are
11085 supposed to be the most distant ancestor (or so decl_ultimate_origin
11086 claims), so we don't need to loop following the DECL origins. */
11087 if (DECL_P (ret_val))
11088 return DECL_ORIGIN (ret_val);
11089
11090 return ret_val;
11091 }
11092 }
11093
11094 /* Return true if T1 and T2 are equivalent lists. */
11095
11096 bool
11097 list_equal_p (const_tree t1, const_tree t2)
11098 {
11099 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
11100 if (TREE_VALUE (t1) != TREE_VALUE (t2))
11101 return false;
11102 return !t1 && !t2;
11103 }
11104
11105 /* Return true iff conversion in EXP generates no instruction. Mark
11106 it inline so that we fully inline into the stripping functions even
11107 though we have two uses of this function. */
11108
11109 static inline bool
11110 tree_nop_conversion (const_tree exp)
11111 {
11112 tree outer_type, inner_type;
11113
11114 if (!CONVERT_EXPR_P (exp)
11115 && TREE_CODE (exp) != NON_LVALUE_EXPR)
11116 return false;
11117 if (TREE_OPERAND (exp, 0) == error_mark_node)
11118 return false;
11119
11120 outer_type = TREE_TYPE (exp);
11121 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11122
11123 if (!inner_type)
11124 return false;
11125
11126 /* Use precision rather then machine mode when we can, which gives
11127 the correct answer even for submode (bit-field) types. */
11128 if ((INTEGRAL_TYPE_P (outer_type)
11129 || POINTER_TYPE_P (outer_type)
11130 || TREE_CODE (outer_type) == OFFSET_TYPE)
11131 && (INTEGRAL_TYPE_P (inner_type)
11132 || POINTER_TYPE_P (inner_type)
11133 || TREE_CODE (inner_type) == OFFSET_TYPE))
11134 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
11135
11136 /* Otherwise fall back on comparing machine modes (e.g. for
11137 aggregate types, floats). */
11138 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
11139 }
11140
11141 /* Return true iff conversion in EXP generates no instruction. Don't
11142 consider conversions changing the signedness. */
11143
11144 static bool
11145 tree_sign_nop_conversion (const_tree exp)
11146 {
11147 tree outer_type, inner_type;
11148
11149 if (!tree_nop_conversion (exp))
11150 return false;
11151
11152 outer_type = TREE_TYPE (exp);
11153 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11154
11155 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11156 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11157 }
11158
11159 /* Strip conversions from EXP according to tree_nop_conversion and
11160 return the resulting expression. */
11161
11162 tree
11163 tree_strip_nop_conversions (tree exp)
11164 {
11165 while (tree_nop_conversion (exp))
11166 exp = TREE_OPERAND (exp, 0);
11167 return exp;
11168 }
11169
11170 /* Strip conversions from EXP according to tree_sign_nop_conversion
11171 and return the resulting expression. */
11172
11173 tree
11174 tree_strip_sign_nop_conversions (tree exp)
11175 {
11176 while (tree_sign_nop_conversion (exp))
11177 exp = TREE_OPERAND (exp, 0);
11178 return exp;
11179 }
11180
11181 /* Strip out all handled components that produce invariant
11182 offsets. */
11183
11184 const_tree
11185 strip_invariant_refs (const_tree op)
11186 {
11187 while (handled_component_p (op))
11188 {
11189 switch (TREE_CODE (op))
11190 {
11191 case ARRAY_REF:
11192 case ARRAY_RANGE_REF:
11193 if (!is_gimple_constant (TREE_OPERAND (op, 1))
11194 || TREE_OPERAND (op, 2) != NULL_TREE
11195 || TREE_OPERAND (op, 3) != NULL_TREE)
11196 return NULL;
11197 break;
11198
11199 case COMPONENT_REF:
11200 if (TREE_OPERAND (op, 2) != NULL_TREE)
11201 return NULL;
11202 break;
11203
11204 default:;
11205 }
11206 op = TREE_OPERAND (op, 0);
11207 }
11208
11209 return op;
11210 }
11211
11212 static GTY(()) tree gcc_eh_personality_decl;
11213
11214 /* Return the GCC personality function decl. */
11215
11216 tree
11217 lhd_gcc_personality (void)
11218 {
11219 if (!gcc_eh_personality_decl)
11220 gcc_eh_personality_decl = build_personality_function ("gcc");
11221 return gcc_eh_personality_decl;
11222 }
11223
11224 /* Try to find a base info of BINFO that would have its field decl at offset
11225 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
11226 found, return, otherwise return NULL_TREE. */
11227
11228 tree
11229 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
11230 {
11231 tree type = BINFO_TYPE (binfo);
11232
11233 while (true)
11234 {
11235 HOST_WIDE_INT pos, size;
11236 tree fld;
11237 int i;
11238
11239 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (expected_type))
11240 return binfo;
11241 if (offset < 0)
11242 return NULL_TREE;
11243
11244 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
11245 {
11246 if (TREE_CODE (fld) != FIELD_DECL)
11247 continue;
11248
11249 pos = int_bit_position (fld);
11250 size = tree_low_cst (DECL_SIZE (fld), 1);
11251 if (pos <= offset && (pos + size) > offset)
11252 break;
11253 }
11254 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
11255 return NULL_TREE;
11256
11257 if (!DECL_ARTIFICIAL (fld))
11258 {
11259 binfo = TYPE_BINFO (TREE_TYPE (fld));
11260 if (!binfo)
11261 return NULL_TREE;
11262 }
11263 /* Offset 0 indicates the primary base, whose vtable contents are
11264 represented in the binfo for the derived class. */
11265 else if (offset != 0)
11266 {
11267 tree base_binfo, found_binfo = NULL_TREE;
11268 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
11269 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
11270 {
11271 found_binfo = base_binfo;
11272 break;
11273 }
11274 if (!found_binfo)
11275 return NULL_TREE;
11276 binfo = found_binfo;
11277 }
11278
11279 type = TREE_TYPE (fld);
11280 offset -= pos;
11281 }
11282 }
11283
11284 /* Returns true if X is a typedef decl. */
11285
11286 bool
11287 is_typedef_decl (tree x)
11288 {
11289 return (x && TREE_CODE (x) == TYPE_DECL
11290 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
11291 }
11292
11293 /* Returns true iff TYPE is a type variant created for a typedef. */
11294
11295 bool
11296 typedef_variant_p (tree type)
11297 {
11298 return is_typedef_decl (TYPE_NAME (type));
11299 }
11300
11301 /* Warn about a use of an identifier which was marked deprecated. */
11302 void
11303 warn_deprecated_use (tree node, tree attr)
11304 {
11305 const char *msg;
11306
11307 if (node == 0 || !warn_deprecated_decl)
11308 return;
11309
11310 if (!attr)
11311 {
11312 if (DECL_P (node))
11313 attr = DECL_ATTRIBUTES (node);
11314 else if (TYPE_P (node))
11315 {
11316 tree decl = TYPE_STUB_DECL (node);
11317 if (decl)
11318 attr = lookup_attribute ("deprecated",
11319 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
11320 }
11321 }
11322
11323 if (attr)
11324 attr = lookup_attribute ("deprecated", attr);
11325
11326 if (attr)
11327 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
11328 else
11329 msg = NULL;
11330
11331 if (DECL_P (node))
11332 {
11333 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
11334 if (msg)
11335 warning (OPT_Wdeprecated_declarations,
11336 "%qD is deprecated (declared at %s:%d): %s",
11337 node, xloc.file, xloc.line, msg);
11338 else
11339 warning (OPT_Wdeprecated_declarations,
11340 "%qD is deprecated (declared at %s:%d)",
11341 node, xloc.file, xloc.line);
11342 }
11343 else if (TYPE_P (node))
11344 {
11345 tree what = NULL_TREE;
11346 tree decl = TYPE_STUB_DECL (node);
11347
11348 if (TYPE_NAME (node))
11349 {
11350 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
11351 what = TYPE_NAME (node);
11352 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
11353 && DECL_NAME (TYPE_NAME (node)))
11354 what = DECL_NAME (TYPE_NAME (node));
11355 }
11356
11357 if (decl)
11358 {
11359 expanded_location xloc
11360 = expand_location (DECL_SOURCE_LOCATION (decl));
11361 if (what)
11362 {
11363 if (msg)
11364 warning (OPT_Wdeprecated_declarations,
11365 "%qE is deprecated (declared at %s:%d): %s",
11366 what, xloc.file, xloc.line, msg);
11367 else
11368 warning (OPT_Wdeprecated_declarations,
11369 "%qE is deprecated (declared at %s:%d)", what,
11370 xloc.file, xloc.line);
11371 }
11372 else
11373 {
11374 if (msg)
11375 warning (OPT_Wdeprecated_declarations,
11376 "type is deprecated (declared at %s:%d): %s",
11377 xloc.file, xloc.line, msg);
11378 else
11379 warning (OPT_Wdeprecated_declarations,
11380 "type is deprecated (declared at %s:%d)",
11381 xloc.file, xloc.line);
11382 }
11383 }
11384 else
11385 {
11386 if (what)
11387 {
11388 if (msg)
11389 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
11390 what, msg);
11391 else
11392 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
11393 }
11394 else
11395 {
11396 if (msg)
11397 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
11398 msg);
11399 else
11400 warning (OPT_Wdeprecated_declarations, "type is deprecated");
11401 }
11402 }
11403 }
11404 }
11405
11406 #include "gt-tree.h"