re PR middle-end/31710 (ICE in in set_value_range, at tree-vrp.c:278)
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This file contains the low level primitives for operating on tree nodes,
24 including allocation, list operations, interning of identifiers,
25 construction of data type nodes and statement nodes,
26 and construction of type conversion nodes. It also contains
27 tables index by tree code that describe how to take apart
28 nodes of that code.
29
30 It is intended to be language-independent, but occasionally
31 calls language-dependent routines defined (for C) in typecheck.c. */
32
33 #include "config.h"
34 #include "system.h"
35 #include "coretypes.h"
36 #include "tm.h"
37 #include "flags.h"
38 #include "tree.h"
39 #include "real.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
47 #include "target.h"
48 #include "langhooks.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-flow.h"
52 #include "params.h"
53 #include "pointer-set.h"
54
55 /* Each tree code class has an associated string representation.
56 These must correspond to the tree_code_class entries. */
57
58 const char *const tree_code_class_strings[] =
59 {
60 "exceptional",
61 "constant",
62 "type",
63 "declaration",
64 "reference",
65 "comparison",
66 "unary",
67 "binary",
68 "statement",
69 "vl_exp",
70 "expression",
71 "gimple_stmt"
72 };
73
74 /* obstack.[ch] explicitly declined to prototype this. */
75 extern int _obstack_allocated_p (struct obstack *h, void *obj);
76
77 #ifdef GATHER_STATISTICS
78 /* Statistics-gathering stuff. */
79
80 int tree_node_counts[(int) all_kinds];
81 int tree_node_sizes[(int) all_kinds];
82
83 /* Keep in sync with tree.h:enum tree_node_kind. */
84 static const char * const tree_node_kind_names[] = {
85 "decls",
86 "types",
87 "blocks",
88 "stmts",
89 "refs",
90 "exprs",
91 "constants",
92 "identifiers",
93 "perm_tree_lists",
94 "temp_tree_lists",
95 "vecs",
96 "binfos",
97 "phi_nodes",
98 "ssa names",
99 "constructors",
100 "random kinds",
101 "lang_decl kinds",
102 "lang_type kinds",
103 "omp clauses",
104 "gimple statements"
105 };
106 #endif /* GATHER_STATISTICS */
107
108 /* Unique id for next decl created. */
109 static GTY(()) int next_decl_uid;
110 /* Unique id for next type created. */
111 static GTY(()) int next_type_uid = 1;
112
113 /* Since we cannot rehash a type after it is in the table, we have to
114 keep the hash code. */
115
116 struct type_hash GTY(())
117 {
118 unsigned long hash;
119 tree type;
120 };
121
122 /* Initial size of the hash table (rounded to next prime). */
123 #define TYPE_HASH_INITIAL_SIZE 1000
124
125 /* Now here is the hash table. When recording a type, it is added to
126 the slot whose index is the hash code. Note that the hash table is
127 used for several kinds of types (function types, array types and
128 array index range types, for now). While all these live in the
129 same table, they are completely independent, and the hash code is
130 computed differently for each of these. */
131
132 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
133 htab_t type_hash_table;
134
135 /* Hash table and temporary node for larger integer const values. */
136 static GTY (()) tree int_cst_node;
137 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
138 htab_t int_cst_hash_table;
139
140 /* General tree->tree mapping structure for use in hash tables. */
141
142
143 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
144 htab_t debug_expr_for_decl;
145
146 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
147 htab_t value_expr_for_decl;
148
149 static GTY ((if_marked ("tree_priority_map_marked_p"),
150 param_is (struct tree_priority_map)))
151 htab_t init_priority_for_decl;
152
153 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
154 htab_t restrict_base_for_decl;
155
156 static void set_type_quals (tree, int);
157 static int type_hash_eq (const void *, const void *);
158 static hashval_t type_hash_hash (const void *);
159 static hashval_t int_cst_hash_hash (const void *);
160 static int int_cst_hash_eq (const void *, const void *);
161 static void print_type_hash_statistics (void);
162 static void print_debug_expr_statistics (void);
163 static void print_value_expr_statistics (void);
164 static int type_hash_marked_p (const void *);
165 static unsigned int type_hash_list (tree, hashval_t);
166 static unsigned int attribute_hash_list (tree, hashval_t);
167
168 tree global_trees[TI_MAX];
169 tree integer_types[itk_none];
170
171 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
172
173 /* Number of operands for each OpenMP clause. */
174 unsigned const char omp_clause_num_ops[] =
175 {
176 0, /* OMP_CLAUSE_ERROR */
177 1, /* OMP_CLAUSE_PRIVATE */
178 1, /* OMP_CLAUSE_SHARED */
179 1, /* OMP_CLAUSE_FIRSTPRIVATE */
180 1, /* OMP_CLAUSE_LASTPRIVATE */
181 4, /* OMP_CLAUSE_REDUCTION */
182 1, /* OMP_CLAUSE_COPYIN */
183 1, /* OMP_CLAUSE_COPYPRIVATE */
184 1, /* OMP_CLAUSE_IF */
185 1, /* OMP_CLAUSE_NUM_THREADS */
186 1, /* OMP_CLAUSE_SCHEDULE */
187 0, /* OMP_CLAUSE_NOWAIT */
188 0, /* OMP_CLAUSE_ORDERED */
189 0 /* OMP_CLAUSE_DEFAULT */
190 };
191
192 const char * const omp_clause_code_name[] =
193 {
194 "error_clause",
195 "private",
196 "shared",
197 "firstprivate",
198 "lastprivate",
199 "reduction",
200 "copyin",
201 "copyprivate",
202 "if",
203 "num_threads",
204 "schedule",
205 "nowait",
206 "ordered",
207 "default"
208 };
209 \f
210 /* Init tree.c. */
211
212 void
213 init_ttree (void)
214 {
215 /* Initialize the hash table of types. */
216 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
217 type_hash_eq, 0);
218
219 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
220 tree_map_eq, 0);
221
222 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
223 tree_map_eq, 0);
224 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
225 tree_priority_map_eq, 0);
226 restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
227 tree_map_eq, 0);
228
229 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
230 int_cst_hash_eq, NULL);
231
232 int_cst_node = make_node (INTEGER_CST);
233
234 tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
235 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
236 tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
237
238
239 tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
240 tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
241 tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
242 tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
243 tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
244 tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
245 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
246 tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
247 tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
248
249
250 tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
251 tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
252 tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
253 tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
254 tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
255 tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1;
256
257 tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
258 tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
259 tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
260 tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
261 tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
262 tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
263 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
264 tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
265 tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
266 tree_contains_struct[STRUCT_FIELD_TAG][TS_DECL_MINIMAL] = 1;
267 tree_contains_struct[NAME_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
268 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
269 tree_contains_struct[MEMORY_PARTITION_TAG][TS_DECL_MINIMAL] = 1;
270
271 tree_contains_struct[STRUCT_FIELD_TAG][TS_MEMORY_TAG] = 1;
272 tree_contains_struct[NAME_MEMORY_TAG][TS_MEMORY_TAG] = 1;
273 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_MEMORY_TAG] = 1;
274 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_TAG] = 1;
275
276 tree_contains_struct[STRUCT_FIELD_TAG][TS_STRUCT_FIELD_TAG] = 1;
277 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_PARTITION_TAG] = 1;
278
279 tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
280 tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
281 tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
282 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
283
284 tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
285 tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
286 tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
287 tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
288 tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
289 tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
290 tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
291 tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
292
293 lang_hooks.init_ts ();
294 }
295
296 \f
297 /* The name of the object as the assembler will see it (but before any
298 translations made by ASM_OUTPUT_LABELREF). Often this is the same
299 as DECL_NAME. It is an IDENTIFIER_NODE. */
300 tree
301 decl_assembler_name (tree decl)
302 {
303 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
304 lang_hooks.set_decl_assembler_name (decl);
305 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
306 }
307
308 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
309
310 bool
311 decl_assembler_name_equal (tree decl, tree asmname)
312 {
313 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
314
315 if (decl_asmname == asmname)
316 return true;
317
318 /* If the target assembler name was set by the user, things are trickier.
319 We have a leading '*' to begin with. After that, it's arguable what
320 is the correct thing to do with -fleading-underscore. Arguably, we've
321 historically been doing the wrong thing in assemble_alias by always
322 printing the leading underscore. Since we're not changing that, make
323 sure user_label_prefix follows the '*' before matching. */
324 if (IDENTIFIER_POINTER (decl_asmname)[0] == '*')
325 {
326 const char *decl_str = IDENTIFIER_POINTER (decl_asmname) + 1;
327 size_t ulp_len = strlen (user_label_prefix);
328
329 if (ulp_len == 0)
330 ;
331 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
332 decl_str += ulp_len;
333 else
334 return false;
335
336 return strcmp (decl_str, IDENTIFIER_POINTER (asmname)) == 0;
337 }
338
339 return false;
340 }
341
342 /* Compute the number of bytes occupied by a tree with code CODE.
343 This function cannot be used for nodes that have variable sizes,
344 including TREE_VEC, PHI_NODE, STRING_CST, and CALL_EXPR. */
345 size_t
346 tree_code_size (enum tree_code code)
347 {
348 switch (TREE_CODE_CLASS (code))
349 {
350 case tcc_declaration: /* A decl node */
351 {
352 switch (code)
353 {
354 case FIELD_DECL:
355 return sizeof (struct tree_field_decl);
356 case PARM_DECL:
357 return sizeof (struct tree_parm_decl);
358 case VAR_DECL:
359 return sizeof (struct tree_var_decl);
360 case LABEL_DECL:
361 return sizeof (struct tree_label_decl);
362 case RESULT_DECL:
363 return sizeof (struct tree_result_decl);
364 case CONST_DECL:
365 return sizeof (struct tree_const_decl);
366 case TYPE_DECL:
367 return sizeof (struct tree_type_decl);
368 case FUNCTION_DECL:
369 return sizeof (struct tree_function_decl);
370 case NAME_MEMORY_TAG:
371 case SYMBOL_MEMORY_TAG:
372 return sizeof (struct tree_memory_tag);
373 case STRUCT_FIELD_TAG:
374 return sizeof (struct tree_struct_field_tag);
375 case MEMORY_PARTITION_TAG:
376 return sizeof (struct tree_memory_partition_tag);
377 default:
378 return sizeof (struct tree_decl_non_common);
379 }
380 }
381
382 case tcc_type: /* a type node */
383 return sizeof (struct tree_type);
384
385 case tcc_reference: /* a reference */
386 case tcc_expression: /* an expression */
387 case tcc_statement: /* an expression with side effects */
388 case tcc_comparison: /* a comparison expression */
389 case tcc_unary: /* a unary arithmetic expression */
390 case tcc_binary: /* a binary arithmetic expression */
391 return (sizeof (struct tree_exp)
392 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
393
394 case tcc_gimple_stmt:
395 return (sizeof (struct gimple_stmt)
396 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
397
398 case tcc_constant: /* a constant */
399 switch (code)
400 {
401 case INTEGER_CST: return sizeof (struct tree_int_cst);
402 case REAL_CST: return sizeof (struct tree_real_cst);
403 case COMPLEX_CST: return sizeof (struct tree_complex);
404 case VECTOR_CST: return sizeof (struct tree_vector);
405 case STRING_CST: gcc_unreachable ();
406 default:
407 return lang_hooks.tree_size (code);
408 }
409
410 case tcc_exceptional: /* something random, like an identifier. */
411 switch (code)
412 {
413 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
414 case TREE_LIST: return sizeof (struct tree_list);
415
416 case ERROR_MARK:
417 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
418
419 case TREE_VEC:
420 case OMP_CLAUSE:
421 case PHI_NODE: gcc_unreachable ();
422
423 case SSA_NAME: return sizeof (struct tree_ssa_name);
424
425 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
426 case BLOCK: return sizeof (struct tree_block);
427 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
428 case CONSTRUCTOR: return sizeof (struct tree_constructor);
429
430 default:
431 return lang_hooks.tree_size (code);
432 }
433
434 default:
435 gcc_unreachable ();
436 }
437 }
438
439 /* Compute the number of bytes occupied by NODE. This routine only
440 looks at TREE_CODE, except for those nodes that have variable sizes. */
441 size_t
442 tree_size (tree node)
443 {
444 enum tree_code code = TREE_CODE (node);
445 switch (code)
446 {
447 case PHI_NODE:
448 return (sizeof (struct tree_phi_node)
449 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
450
451 case TREE_BINFO:
452 return (offsetof (struct tree_binfo, base_binfos)
453 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
454
455 case TREE_VEC:
456 return (sizeof (struct tree_vec)
457 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
458
459 case STRING_CST:
460 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
461
462 case OMP_CLAUSE:
463 return (sizeof (struct tree_omp_clause)
464 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
465 * sizeof (tree));
466
467 default:
468 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
469 return (sizeof (struct tree_exp)
470 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
471 else
472 return tree_code_size (code);
473 }
474 }
475
476 /* Return a newly allocated node of code CODE. For decl and type
477 nodes, some other fields are initialized. The rest of the node is
478 initialized to zero. This function cannot be used for PHI_NODE,
479 TREE_VEC or OMP_CLAUSE nodes, which is enforced by asserts in
480 tree_code_size.
481
482 Achoo! I got a code in the node. */
483
484 tree
485 make_node_stat (enum tree_code code MEM_STAT_DECL)
486 {
487 tree t;
488 enum tree_code_class type = TREE_CODE_CLASS (code);
489 size_t length = tree_code_size (code);
490 #ifdef GATHER_STATISTICS
491 tree_node_kind kind;
492
493 switch (type)
494 {
495 case tcc_declaration: /* A decl node */
496 kind = d_kind;
497 break;
498
499 case tcc_type: /* a type node */
500 kind = t_kind;
501 break;
502
503 case tcc_statement: /* an expression with side effects */
504 kind = s_kind;
505 break;
506
507 case tcc_reference: /* a reference */
508 kind = r_kind;
509 break;
510
511 case tcc_expression: /* an expression */
512 case tcc_comparison: /* a comparison expression */
513 case tcc_unary: /* a unary arithmetic expression */
514 case tcc_binary: /* a binary arithmetic expression */
515 kind = e_kind;
516 break;
517
518 case tcc_constant: /* a constant */
519 kind = c_kind;
520 break;
521
522 case tcc_gimple_stmt:
523 kind = gimple_stmt_kind;
524 break;
525
526 case tcc_exceptional: /* something random, like an identifier. */
527 switch (code)
528 {
529 case IDENTIFIER_NODE:
530 kind = id_kind;
531 break;
532
533 case TREE_VEC:
534 kind = vec_kind;
535 break;
536
537 case TREE_BINFO:
538 kind = binfo_kind;
539 break;
540
541 case PHI_NODE:
542 kind = phi_kind;
543 break;
544
545 case SSA_NAME:
546 kind = ssa_name_kind;
547 break;
548
549 case BLOCK:
550 kind = b_kind;
551 break;
552
553 case CONSTRUCTOR:
554 kind = constr_kind;
555 break;
556
557 default:
558 kind = x_kind;
559 break;
560 }
561 break;
562
563 default:
564 gcc_unreachable ();
565 }
566
567 tree_node_counts[(int) kind]++;
568 tree_node_sizes[(int) kind] += length;
569 #endif
570
571 if (code == IDENTIFIER_NODE)
572 t = ggc_alloc_zone_pass_stat (length, &tree_id_zone);
573 else
574 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
575
576 memset (t, 0, length);
577
578 TREE_SET_CODE (t, code);
579
580 switch (type)
581 {
582 case tcc_statement:
583 TREE_SIDE_EFFECTS (t) = 1;
584 break;
585
586 case tcc_declaration:
587 if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
588 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
589 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
590 {
591 if (code != FUNCTION_DECL)
592 DECL_ALIGN (t) = 1;
593 DECL_USER_ALIGN (t) = 0;
594 /* We have not yet computed the alias set for this declaration. */
595 DECL_POINTER_ALIAS_SET (t) = -1;
596 }
597 DECL_SOURCE_LOCATION (t) = input_location;
598 DECL_UID (t) = next_decl_uid++;
599
600 break;
601
602 case tcc_type:
603 TYPE_UID (t) = next_type_uid++;
604 TYPE_ALIGN (t) = BITS_PER_UNIT;
605 TYPE_USER_ALIGN (t) = 0;
606 TYPE_MAIN_VARIANT (t) = t;
607 TYPE_CANONICAL (t) = t;
608
609 /* Default to no attributes for type, but let target change that. */
610 TYPE_ATTRIBUTES (t) = NULL_TREE;
611 targetm.set_default_type_attributes (t);
612
613 /* We have not yet computed the alias set for this type. */
614 TYPE_ALIAS_SET (t) = -1;
615 break;
616
617 case tcc_constant:
618 TREE_CONSTANT (t) = 1;
619 TREE_INVARIANT (t) = 1;
620 break;
621
622 case tcc_expression:
623 switch (code)
624 {
625 case INIT_EXPR:
626 case MODIFY_EXPR:
627 case VA_ARG_EXPR:
628 case PREDECREMENT_EXPR:
629 case PREINCREMENT_EXPR:
630 case POSTDECREMENT_EXPR:
631 case POSTINCREMENT_EXPR:
632 /* All of these have side-effects, no matter what their
633 operands are. */
634 TREE_SIDE_EFFECTS (t) = 1;
635 break;
636
637 default:
638 break;
639 }
640 break;
641
642 case tcc_gimple_stmt:
643 switch (code)
644 {
645 case GIMPLE_MODIFY_STMT:
646 TREE_SIDE_EFFECTS (t) = 1;
647 break;
648
649 default:
650 break;
651 }
652
653 default:
654 /* Other classes need no special treatment. */
655 break;
656 }
657
658 return t;
659 }
660 \f
661 /* Return a new node with the same contents as NODE except that its
662 TREE_CHAIN is zero and it has a fresh uid. */
663
664 tree
665 copy_node_stat (tree node MEM_STAT_DECL)
666 {
667 tree t;
668 enum tree_code code = TREE_CODE (node);
669 size_t length;
670
671 gcc_assert (code != STATEMENT_LIST);
672
673 length = tree_size (node);
674 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
675 memcpy (t, node, length);
676
677 if (!GIMPLE_TUPLE_P (node))
678 TREE_CHAIN (t) = 0;
679 TREE_ASM_WRITTEN (t) = 0;
680 TREE_VISITED (t) = 0;
681 t->base.ann = 0;
682
683 if (TREE_CODE_CLASS (code) == tcc_declaration)
684 {
685 DECL_UID (t) = next_decl_uid++;
686 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
687 && DECL_HAS_VALUE_EXPR_P (node))
688 {
689 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
690 DECL_HAS_VALUE_EXPR_P (t) = 1;
691 }
692 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
693 {
694 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
695 DECL_HAS_INIT_PRIORITY_P (t) = 1;
696 }
697 if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
698 {
699 SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
700 DECL_BASED_ON_RESTRICT_P (t) = 1;
701 }
702 }
703 else if (TREE_CODE_CLASS (code) == tcc_type)
704 {
705 TYPE_UID (t) = next_type_uid++;
706 /* The following is so that the debug code for
707 the copy is different from the original type.
708 The two statements usually duplicate each other
709 (because they clear fields of the same union),
710 but the optimizer should catch that. */
711 TYPE_SYMTAB_POINTER (t) = 0;
712 TYPE_SYMTAB_ADDRESS (t) = 0;
713
714 /* Do not copy the values cache. */
715 if (TYPE_CACHED_VALUES_P(t))
716 {
717 TYPE_CACHED_VALUES_P (t) = 0;
718 TYPE_CACHED_VALUES (t) = NULL_TREE;
719 }
720 }
721
722 return t;
723 }
724
725 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
726 For example, this can copy a list made of TREE_LIST nodes. */
727
728 tree
729 copy_list (tree list)
730 {
731 tree head;
732 tree prev, next;
733
734 if (list == 0)
735 return 0;
736
737 head = prev = copy_node (list);
738 next = TREE_CHAIN (list);
739 while (next)
740 {
741 TREE_CHAIN (prev) = copy_node (next);
742 prev = TREE_CHAIN (prev);
743 next = TREE_CHAIN (next);
744 }
745 return head;
746 }
747
748 \f
749 /* Create an INT_CST node with a LOW value sign extended. */
750
751 tree
752 build_int_cst (tree type, HOST_WIDE_INT low)
753 {
754 /* Support legacy code. */
755 if (!type)
756 type = integer_type_node;
757
758 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
759 }
760
761 /* Create an INT_CST node with a LOW value zero extended. */
762
763 tree
764 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
765 {
766 return build_int_cst_wide (type, low, 0);
767 }
768
769 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
770 if it is negative. This function is similar to build_int_cst, but
771 the extra bits outside of the type precision are cleared. Constants
772 with these extra bits may confuse the fold so that it detects overflows
773 even in cases when they do not occur, and in general should be avoided.
774 We cannot however make this a default behavior of build_int_cst without
775 more intrusive changes, since there are parts of gcc that rely on the extra
776 precision of the integer constants. */
777
778 tree
779 build_int_cst_type (tree type, HOST_WIDE_INT low)
780 {
781 unsigned HOST_WIDE_INT low1;
782 HOST_WIDE_INT hi;
783
784 gcc_assert (type);
785
786 fit_double_type (low, low < 0 ? -1 : 0, &low1, &hi, type);
787
788 return build_int_cst_wide (type, low1, hi);
789 }
790
791 /* Create an INT_CST node of TYPE and value HI:LOW. The value is truncated
792 and sign extended according to the value range of TYPE. */
793
794 tree
795 build_int_cst_wide_type (tree type,
796 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high)
797 {
798 fit_double_type (low, high, &low, &high, type);
799 return build_int_cst_wide (type, low, high);
800 }
801
802 /* These are the hash table functions for the hash table of INTEGER_CST
803 nodes of a sizetype. */
804
805 /* Return the hash code code X, an INTEGER_CST. */
806
807 static hashval_t
808 int_cst_hash_hash (const void *x)
809 {
810 tree t = (tree) x;
811
812 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
813 ^ htab_hash_pointer (TREE_TYPE (t)));
814 }
815
816 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
817 is the same as that given by *Y, which is the same. */
818
819 static int
820 int_cst_hash_eq (const void *x, const void *y)
821 {
822 tree xt = (tree) x;
823 tree yt = (tree) y;
824
825 return (TREE_TYPE (xt) == TREE_TYPE (yt)
826 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
827 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
828 }
829
830 /* Create an INT_CST node of TYPE and value HI:LOW.
831 The returned node is always shared. For small integers we use a
832 per-type vector cache, for larger ones we use a single hash table. */
833
834 tree
835 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
836 {
837 tree t;
838 int ix = -1;
839 int limit = 0;
840
841 gcc_assert (type);
842
843 switch (TREE_CODE (type))
844 {
845 case POINTER_TYPE:
846 case REFERENCE_TYPE:
847 /* Cache NULL pointer. */
848 if (!hi && !low)
849 {
850 limit = 1;
851 ix = 0;
852 }
853 break;
854
855 case BOOLEAN_TYPE:
856 /* Cache false or true. */
857 limit = 2;
858 if (!hi && low < 2)
859 ix = low;
860 break;
861
862 case INTEGER_TYPE:
863 case OFFSET_TYPE:
864 if (TYPE_UNSIGNED (type))
865 {
866 /* Cache 0..N */
867 limit = INTEGER_SHARE_LIMIT;
868 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
869 ix = low;
870 }
871 else
872 {
873 /* Cache -1..N */
874 limit = INTEGER_SHARE_LIMIT + 1;
875 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
876 ix = low + 1;
877 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
878 ix = 0;
879 }
880 break;
881
882 case ENUMERAL_TYPE:
883 break;
884
885 default:
886 gcc_unreachable ();
887 }
888
889 if (ix >= 0)
890 {
891 /* Look for it in the type's vector of small shared ints. */
892 if (!TYPE_CACHED_VALUES_P (type))
893 {
894 TYPE_CACHED_VALUES_P (type) = 1;
895 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
896 }
897
898 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
899 if (t)
900 {
901 /* Make sure no one is clobbering the shared constant. */
902 gcc_assert (TREE_TYPE (t) == type);
903 gcc_assert (TREE_INT_CST_LOW (t) == low);
904 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
905 }
906 else
907 {
908 /* Create a new shared int. */
909 t = make_node (INTEGER_CST);
910
911 TREE_INT_CST_LOW (t) = low;
912 TREE_INT_CST_HIGH (t) = hi;
913 TREE_TYPE (t) = type;
914
915 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
916 }
917 }
918 else
919 {
920 /* Use the cache of larger shared ints. */
921 void **slot;
922
923 TREE_INT_CST_LOW (int_cst_node) = low;
924 TREE_INT_CST_HIGH (int_cst_node) = hi;
925 TREE_TYPE (int_cst_node) = type;
926
927 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
928 t = *slot;
929 if (!t)
930 {
931 /* Insert this one into the hash table. */
932 t = int_cst_node;
933 *slot = t;
934 /* Make a new node for next time round. */
935 int_cst_node = make_node (INTEGER_CST);
936 }
937 }
938
939 return t;
940 }
941
942 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
943 and the rest are zeros. */
944
945 tree
946 build_low_bits_mask (tree type, unsigned bits)
947 {
948 unsigned HOST_WIDE_INT low;
949 HOST_WIDE_INT high;
950 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
951
952 gcc_assert (bits <= TYPE_PRECISION (type));
953
954 if (bits == TYPE_PRECISION (type)
955 && !TYPE_UNSIGNED (type))
956 {
957 /* Sign extended all-ones mask. */
958 low = all_ones;
959 high = -1;
960 }
961 else if (bits <= HOST_BITS_PER_WIDE_INT)
962 {
963 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
964 high = 0;
965 }
966 else
967 {
968 bits -= HOST_BITS_PER_WIDE_INT;
969 low = all_ones;
970 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
971 }
972
973 return build_int_cst_wide (type, low, high);
974 }
975
976 /* Checks that X is integer constant that can be expressed in (unsigned)
977 HOST_WIDE_INT without loss of precision. */
978
979 bool
980 cst_and_fits_in_hwi (tree x)
981 {
982 if (TREE_CODE (x) != INTEGER_CST)
983 return false;
984
985 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
986 return false;
987
988 return (TREE_INT_CST_HIGH (x) == 0
989 || TREE_INT_CST_HIGH (x) == -1);
990 }
991
992 /* Return a new VECTOR_CST node whose type is TYPE and whose values
993 are in a list pointed to by VALS. */
994
995 tree
996 build_vector (tree type, tree vals)
997 {
998 tree v = make_node (VECTOR_CST);
999 int over = 0;
1000 tree link;
1001
1002 TREE_VECTOR_CST_ELTS (v) = vals;
1003 TREE_TYPE (v) = type;
1004
1005 /* Iterate through elements and check for overflow. */
1006 for (link = vals; link; link = TREE_CHAIN (link))
1007 {
1008 tree value = TREE_VALUE (link);
1009
1010 /* Don't crash if we get an address constant. */
1011 if (!CONSTANT_CLASS_P (value))
1012 continue;
1013
1014 over |= TREE_OVERFLOW (value);
1015 }
1016
1017 TREE_OVERFLOW (v) = over;
1018 return v;
1019 }
1020
1021 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1022 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1023
1024 tree
1025 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1026 {
1027 tree list = NULL_TREE;
1028 unsigned HOST_WIDE_INT idx;
1029 tree value;
1030
1031 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1032 list = tree_cons (NULL_TREE, value, list);
1033 return build_vector (type, nreverse (list));
1034 }
1035
1036 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1037 are in the VEC pointed to by VALS. */
1038 tree
1039 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1040 {
1041 tree c = make_node (CONSTRUCTOR);
1042 TREE_TYPE (c) = type;
1043 CONSTRUCTOR_ELTS (c) = vals;
1044 return c;
1045 }
1046
1047 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1048 INDEX and VALUE. */
1049 tree
1050 build_constructor_single (tree type, tree index, tree value)
1051 {
1052 VEC(constructor_elt,gc) *v;
1053 constructor_elt *elt;
1054 tree t;
1055
1056 v = VEC_alloc (constructor_elt, gc, 1);
1057 elt = VEC_quick_push (constructor_elt, v, NULL);
1058 elt->index = index;
1059 elt->value = value;
1060
1061 t = build_constructor (type, v);
1062 TREE_CONSTANT (t) = TREE_CONSTANT (value);
1063 return t;
1064 }
1065
1066
1067 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1068 are in a list pointed to by VALS. */
1069 tree
1070 build_constructor_from_list (tree type, tree vals)
1071 {
1072 tree t, val;
1073 VEC(constructor_elt,gc) *v = NULL;
1074 bool constant_p = true;
1075
1076 if (vals)
1077 {
1078 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1079 for (t = vals; t; t = TREE_CHAIN (t))
1080 {
1081 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1082 val = TREE_VALUE (t);
1083 elt->index = TREE_PURPOSE (t);
1084 elt->value = val;
1085 if (!TREE_CONSTANT (val))
1086 constant_p = false;
1087 }
1088 }
1089
1090 t = build_constructor (type, v);
1091 TREE_CONSTANT (t) = constant_p;
1092 return t;
1093 }
1094
1095
1096 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1097
1098 tree
1099 build_real (tree type, REAL_VALUE_TYPE d)
1100 {
1101 tree v;
1102 REAL_VALUE_TYPE *dp;
1103 int overflow = 0;
1104
1105 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1106 Consider doing it via real_convert now. */
1107
1108 v = make_node (REAL_CST);
1109 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
1110 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1111
1112 TREE_TYPE (v) = type;
1113 TREE_REAL_CST_PTR (v) = dp;
1114 TREE_OVERFLOW (v) = overflow;
1115 return v;
1116 }
1117
1118 /* Return a new REAL_CST node whose type is TYPE
1119 and whose value is the integer value of the INTEGER_CST node I. */
1120
1121 REAL_VALUE_TYPE
1122 real_value_from_int_cst (tree type, tree i)
1123 {
1124 REAL_VALUE_TYPE d;
1125
1126 /* Clear all bits of the real value type so that we can later do
1127 bitwise comparisons to see if two values are the same. */
1128 memset (&d, 0, sizeof d);
1129
1130 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1131 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1132 TYPE_UNSIGNED (TREE_TYPE (i)));
1133 return d;
1134 }
1135
1136 /* Given a tree representing an integer constant I, return a tree
1137 representing the same value as a floating-point constant of type TYPE. */
1138
1139 tree
1140 build_real_from_int_cst (tree type, tree i)
1141 {
1142 tree v;
1143 int overflow = TREE_OVERFLOW (i);
1144
1145 v = build_real (type, real_value_from_int_cst (type, i));
1146
1147 TREE_OVERFLOW (v) |= overflow;
1148 return v;
1149 }
1150
1151 /* Return a newly constructed STRING_CST node whose value is
1152 the LEN characters at STR.
1153 The TREE_TYPE is not initialized. */
1154
1155 tree
1156 build_string (int len, const char *str)
1157 {
1158 tree s;
1159 size_t length;
1160
1161 /* Do not waste bytes provided by padding of struct tree_string. */
1162 length = len + offsetof (struct tree_string, str) + 1;
1163
1164 #ifdef GATHER_STATISTICS
1165 tree_node_counts[(int) c_kind]++;
1166 tree_node_sizes[(int) c_kind] += length;
1167 #endif
1168
1169 s = ggc_alloc_tree (length);
1170
1171 memset (s, 0, sizeof (struct tree_common));
1172 TREE_SET_CODE (s, STRING_CST);
1173 TREE_CONSTANT (s) = 1;
1174 TREE_INVARIANT (s) = 1;
1175 TREE_STRING_LENGTH (s) = len;
1176 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
1177 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
1178
1179 return s;
1180 }
1181
1182 /* Return a newly constructed COMPLEX_CST node whose value is
1183 specified by the real and imaginary parts REAL and IMAG.
1184 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1185 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1186
1187 tree
1188 build_complex (tree type, tree real, tree imag)
1189 {
1190 tree t = make_node (COMPLEX_CST);
1191
1192 TREE_REALPART (t) = real;
1193 TREE_IMAGPART (t) = imag;
1194 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1195 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1196 return t;
1197 }
1198
1199 /* Return a constant of arithmetic type TYPE which is the
1200 multiplicative identity of the set TYPE. */
1201
1202 tree
1203 build_one_cst (tree type)
1204 {
1205 switch (TREE_CODE (type))
1206 {
1207 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1208 case POINTER_TYPE: case REFERENCE_TYPE:
1209 case OFFSET_TYPE:
1210 return build_int_cst (type, 1);
1211
1212 case REAL_TYPE:
1213 return build_real (type, dconst1);
1214
1215 case VECTOR_TYPE:
1216 {
1217 tree scalar, cst;
1218 int i;
1219
1220 scalar = build_one_cst (TREE_TYPE (type));
1221
1222 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1223 cst = NULL_TREE;
1224 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1225 cst = tree_cons (NULL_TREE, scalar, cst);
1226
1227 return build_vector (type, cst);
1228 }
1229
1230 case COMPLEX_TYPE:
1231 return build_complex (type,
1232 build_one_cst (TREE_TYPE (type)),
1233 fold_convert (TREE_TYPE (type), integer_zero_node));
1234
1235 default:
1236 gcc_unreachable ();
1237 }
1238 }
1239
1240 /* Build a BINFO with LEN language slots. */
1241
1242 tree
1243 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1244 {
1245 tree t;
1246 size_t length = (offsetof (struct tree_binfo, base_binfos)
1247 + VEC_embedded_size (tree, base_binfos));
1248
1249 #ifdef GATHER_STATISTICS
1250 tree_node_counts[(int) binfo_kind]++;
1251 tree_node_sizes[(int) binfo_kind] += length;
1252 #endif
1253
1254 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1255
1256 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1257
1258 TREE_SET_CODE (t, TREE_BINFO);
1259
1260 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1261
1262 return t;
1263 }
1264
1265
1266 /* Build a newly constructed TREE_VEC node of length LEN. */
1267
1268 tree
1269 make_tree_vec_stat (int len MEM_STAT_DECL)
1270 {
1271 tree t;
1272 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1273
1274 #ifdef GATHER_STATISTICS
1275 tree_node_counts[(int) vec_kind]++;
1276 tree_node_sizes[(int) vec_kind] += length;
1277 #endif
1278
1279 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1280
1281 memset (t, 0, length);
1282
1283 TREE_SET_CODE (t, TREE_VEC);
1284 TREE_VEC_LENGTH (t) = len;
1285
1286 return t;
1287 }
1288 \f
1289 /* Return 1 if EXPR is the integer constant zero or a complex constant
1290 of zero. */
1291
1292 int
1293 integer_zerop (tree expr)
1294 {
1295 STRIP_NOPS (expr);
1296
1297 return ((TREE_CODE (expr) == INTEGER_CST
1298 && TREE_INT_CST_LOW (expr) == 0
1299 && TREE_INT_CST_HIGH (expr) == 0)
1300 || (TREE_CODE (expr) == COMPLEX_CST
1301 && integer_zerop (TREE_REALPART (expr))
1302 && integer_zerop (TREE_IMAGPART (expr))));
1303 }
1304
1305 /* Return 1 if EXPR is the integer constant one or the corresponding
1306 complex constant. */
1307
1308 int
1309 integer_onep (tree expr)
1310 {
1311 STRIP_NOPS (expr);
1312
1313 return ((TREE_CODE (expr) == INTEGER_CST
1314 && TREE_INT_CST_LOW (expr) == 1
1315 && TREE_INT_CST_HIGH (expr) == 0)
1316 || (TREE_CODE (expr) == COMPLEX_CST
1317 && integer_onep (TREE_REALPART (expr))
1318 && integer_zerop (TREE_IMAGPART (expr))));
1319 }
1320
1321 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1322 it contains. Likewise for the corresponding complex constant. */
1323
1324 int
1325 integer_all_onesp (tree expr)
1326 {
1327 int prec;
1328 int uns;
1329
1330 STRIP_NOPS (expr);
1331
1332 if (TREE_CODE (expr) == COMPLEX_CST
1333 && integer_all_onesp (TREE_REALPART (expr))
1334 && integer_zerop (TREE_IMAGPART (expr)))
1335 return 1;
1336
1337 else if (TREE_CODE (expr) != INTEGER_CST)
1338 return 0;
1339
1340 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1341 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1342 && TREE_INT_CST_HIGH (expr) == -1)
1343 return 1;
1344 if (!uns)
1345 return 0;
1346
1347 /* Note that using TYPE_PRECISION here is wrong. We care about the
1348 actual bits, not the (arbitrary) range of the type. */
1349 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1350 if (prec >= HOST_BITS_PER_WIDE_INT)
1351 {
1352 HOST_WIDE_INT high_value;
1353 int shift_amount;
1354
1355 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1356
1357 /* Can not handle precisions greater than twice the host int size. */
1358 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1359 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1360 /* Shifting by the host word size is undefined according to the ANSI
1361 standard, so we must handle this as a special case. */
1362 high_value = -1;
1363 else
1364 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1365
1366 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1367 && TREE_INT_CST_HIGH (expr) == high_value);
1368 }
1369 else
1370 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1371 }
1372
1373 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1374 one bit on). */
1375
1376 int
1377 integer_pow2p (tree expr)
1378 {
1379 int prec;
1380 HOST_WIDE_INT high, low;
1381
1382 STRIP_NOPS (expr);
1383
1384 if (TREE_CODE (expr) == COMPLEX_CST
1385 && integer_pow2p (TREE_REALPART (expr))
1386 && integer_zerop (TREE_IMAGPART (expr)))
1387 return 1;
1388
1389 if (TREE_CODE (expr) != INTEGER_CST)
1390 return 0;
1391
1392 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1393 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1394 high = TREE_INT_CST_HIGH (expr);
1395 low = TREE_INT_CST_LOW (expr);
1396
1397 /* First clear all bits that are beyond the type's precision in case
1398 we've been sign extended. */
1399
1400 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1401 ;
1402 else if (prec > HOST_BITS_PER_WIDE_INT)
1403 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1404 else
1405 {
1406 high = 0;
1407 if (prec < HOST_BITS_PER_WIDE_INT)
1408 low &= ~((HOST_WIDE_INT) (-1) << prec);
1409 }
1410
1411 if (high == 0 && low == 0)
1412 return 0;
1413
1414 return ((high == 0 && (low & (low - 1)) == 0)
1415 || (low == 0 && (high & (high - 1)) == 0));
1416 }
1417
1418 /* Return 1 if EXPR is an integer constant other than zero or a
1419 complex constant other than zero. */
1420
1421 int
1422 integer_nonzerop (tree expr)
1423 {
1424 STRIP_NOPS (expr);
1425
1426 return ((TREE_CODE (expr) == INTEGER_CST
1427 && (TREE_INT_CST_LOW (expr) != 0
1428 || TREE_INT_CST_HIGH (expr) != 0))
1429 || (TREE_CODE (expr) == COMPLEX_CST
1430 && (integer_nonzerop (TREE_REALPART (expr))
1431 || integer_nonzerop (TREE_IMAGPART (expr)))));
1432 }
1433
1434 /* Return the power of two represented by a tree node known to be a
1435 power of two. */
1436
1437 int
1438 tree_log2 (tree expr)
1439 {
1440 int prec;
1441 HOST_WIDE_INT high, low;
1442
1443 STRIP_NOPS (expr);
1444
1445 if (TREE_CODE (expr) == COMPLEX_CST)
1446 return tree_log2 (TREE_REALPART (expr));
1447
1448 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1449 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1450
1451 high = TREE_INT_CST_HIGH (expr);
1452 low = TREE_INT_CST_LOW (expr);
1453
1454 /* First clear all bits that are beyond the type's precision in case
1455 we've been sign extended. */
1456
1457 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1458 ;
1459 else if (prec > HOST_BITS_PER_WIDE_INT)
1460 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1461 else
1462 {
1463 high = 0;
1464 if (prec < HOST_BITS_PER_WIDE_INT)
1465 low &= ~((HOST_WIDE_INT) (-1) << prec);
1466 }
1467
1468 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1469 : exact_log2 (low));
1470 }
1471
1472 /* Similar, but return the largest integer Y such that 2 ** Y is less
1473 than or equal to EXPR. */
1474
1475 int
1476 tree_floor_log2 (tree expr)
1477 {
1478 int prec;
1479 HOST_WIDE_INT high, low;
1480
1481 STRIP_NOPS (expr);
1482
1483 if (TREE_CODE (expr) == COMPLEX_CST)
1484 return tree_log2 (TREE_REALPART (expr));
1485
1486 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1487 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1488
1489 high = TREE_INT_CST_HIGH (expr);
1490 low = TREE_INT_CST_LOW (expr);
1491
1492 /* First clear all bits that are beyond the type's precision in case
1493 we've been sign extended. Ignore if type's precision hasn't been set
1494 since what we are doing is setting it. */
1495
1496 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1497 ;
1498 else if (prec > HOST_BITS_PER_WIDE_INT)
1499 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1500 else
1501 {
1502 high = 0;
1503 if (prec < HOST_BITS_PER_WIDE_INT)
1504 low &= ~((HOST_WIDE_INT) (-1) << prec);
1505 }
1506
1507 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1508 : floor_log2 (low));
1509 }
1510
1511 /* Return 1 if EXPR is the real constant zero. */
1512
1513 int
1514 real_zerop (tree expr)
1515 {
1516 STRIP_NOPS (expr);
1517
1518 return ((TREE_CODE (expr) == REAL_CST
1519 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1520 || (TREE_CODE (expr) == COMPLEX_CST
1521 && real_zerop (TREE_REALPART (expr))
1522 && real_zerop (TREE_IMAGPART (expr))));
1523 }
1524
1525 /* Return 1 if EXPR is the real constant one in real or complex form. */
1526
1527 int
1528 real_onep (tree expr)
1529 {
1530 STRIP_NOPS (expr);
1531
1532 return ((TREE_CODE (expr) == REAL_CST
1533 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1534 || (TREE_CODE (expr) == COMPLEX_CST
1535 && real_onep (TREE_REALPART (expr))
1536 && real_zerop (TREE_IMAGPART (expr))));
1537 }
1538
1539 /* Return 1 if EXPR is the real constant two. */
1540
1541 int
1542 real_twop (tree expr)
1543 {
1544 STRIP_NOPS (expr);
1545
1546 return ((TREE_CODE (expr) == REAL_CST
1547 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1548 || (TREE_CODE (expr) == COMPLEX_CST
1549 && real_twop (TREE_REALPART (expr))
1550 && real_zerop (TREE_IMAGPART (expr))));
1551 }
1552
1553 /* Return 1 if EXPR is the real constant minus one. */
1554
1555 int
1556 real_minus_onep (tree expr)
1557 {
1558 STRIP_NOPS (expr);
1559
1560 return ((TREE_CODE (expr) == REAL_CST
1561 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1562 || (TREE_CODE (expr) == COMPLEX_CST
1563 && real_minus_onep (TREE_REALPART (expr))
1564 && real_zerop (TREE_IMAGPART (expr))));
1565 }
1566
1567 /* Nonzero if EXP is a constant or a cast of a constant. */
1568
1569 int
1570 really_constant_p (tree exp)
1571 {
1572 /* This is not quite the same as STRIP_NOPS. It does more. */
1573 while (TREE_CODE (exp) == NOP_EXPR
1574 || TREE_CODE (exp) == CONVERT_EXPR
1575 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1576 exp = TREE_OPERAND (exp, 0);
1577 return TREE_CONSTANT (exp);
1578 }
1579 \f
1580 /* Return first list element whose TREE_VALUE is ELEM.
1581 Return 0 if ELEM is not in LIST. */
1582
1583 tree
1584 value_member (tree elem, tree list)
1585 {
1586 while (list)
1587 {
1588 if (elem == TREE_VALUE (list))
1589 return list;
1590 list = TREE_CHAIN (list);
1591 }
1592 return NULL_TREE;
1593 }
1594
1595 /* Return first list element whose TREE_PURPOSE is ELEM.
1596 Return 0 if ELEM is not in LIST. */
1597
1598 tree
1599 purpose_member (tree elem, tree list)
1600 {
1601 while (list)
1602 {
1603 if (elem == TREE_PURPOSE (list))
1604 return list;
1605 list = TREE_CHAIN (list);
1606 }
1607 return NULL_TREE;
1608 }
1609
1610 /* Return nonzero if ELEM is part of the chain CHAIN. */
1611
1612 int
1613 chain_member (tree elem, tree chain)
1614 {
1615 while (chain)
1616 {
1617 if (elem == chain)
1618 return 1;
1619 chain = TREE_CHAIN (chain);
1620 }
1621
1622 return 0;
1623 }
1624
1625 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1626 We expect a null pointer to mark the end of the chain.
1627 This is the Lisp primitive `length'. */
1628
1629 int
1630 list_length (tree t)
1631 {
1632 tree p = t;
1633 #ifdef ENABLE_TREE_CHECKING
1634 tree q = t;
1635 #endif
1636 int len = 0;
1637
1638 while (p)
1639 {
1640 p = TREE_CHAIN (p);
1641 #ifdef ENABLE_TREE_CHECKING
1642 if (len % 2)
1643 q = TREE_CHAIN (q);
1644 gcc_assert (p != q);
1645 #endif
1646 len++;
1647 }
1648
1649 return len;
1650 }
1651
1652 /* Returns the number of FIELD_DECLs in TYPE. */
1653
1654 int
1655 fields_length (tree type)
1656 {
1657 tree t = TYPE_FIELDS (type);
1658 int count = 0;
1659
1660 for (; t; t = TREE_CHAIN (t))
1661 if (TREE_CODE (t) == FIELD_DECL)
1662 ++count;
1663
1664 return count;
1665 }
1666
1667 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1668 by modifying the last node in chain 1 to point to chain 2.
1669 This is the Lisp primitive `nconc'. */
1670
1671 tree
1672 chainon (tree op1, tree op2)
1673 {
1674 tree t1;
1675
1676 if (!op1)
1677 return op2;
1678 if (!op2)
1679 return op1;
1680
1681 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1682 continue;
1683 TREE_CHAIN (t1) = op2;
1684
1685 #ifdef ENABLE_TREE_CHECKING
1686 {
1687 tree t2;
1688 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1689 gcc_assert (t2 != t1);
1690 }
1691 #endif
1692
1693 return op1;
1694 }
1695
1696 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1697
1698 tree
1699 tree_last (tree chain)
1700 {
1701 tree next;
1702 if (chain)
1703 while ((next = TREE_CHAIN (chain)))
1704 chain = next;
1705 return chain;
1706 }
1707
1708 /* Reverse the order of elements in the chain T,
1709 and return the new head of the chain (old last element). */
1710
1711 tree
1712 nreverse (tree t)
1713 {
1714 tree prev = 0, decl, next;
1715 for (decl = t; decl; decl = next)
1716 {
1717 next = TREE_CHAIN (decl);
1718 TREE_CHAIN (decl) = prev;
1719 prev = decl;
1720 }
1721 return prev;
1722 }
1723 \f
1724 /* Return a newly created TREE_LIST node whose
1725 purpose and value fields are PARM and VALUE. */
1726
1727 tree
1728 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1729 {
1730 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1731 TREE_PURPOSE (t) = parm;
1732 TREE_VALUE (t) = value;
1733 return t;
1734 }
1735
1736 /* Return a newly created TREE_LIST node whose
1737 purpose and value fields are PURPOSE and VALUE
1738 and whose TREE_CHAIN is CHAIN. */
1739
1740 tree
1741 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1742 {
1743 tree node;
1744
1745 node = ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
1746
1747 memset (node, 0, sizeof (struct tree_common));
1748
1749 #ifdef GATHER_STATISTICS
1750 tree_node_counts[(int) x_kind]++;
1751 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1752 #endif
1753
1754 TREE_SET_CODE (node, TREE_LIST);
1755 TREE_CHAIN (node) = chain;
1756 TREE_PURPOSE (node) = purpose;
1757 TREE_VALUE (node) = value;
1758 return node;
1759 }
1760
1761 \f
1762 /* Return the size nominally occupied by an object of type TYPE
1763 when it resides in memory. The value is measured in units of bytes,
1764 and its data type is that normally used for type sizes
1765 (which is the first type created by make_signed_type or
1766 make_unsigned_type). */
1767
1768 tree
1769 size_in_bytes (tree type)
1770 {
1771 tree t;
1772
1773 if (type == error_mark_node)
1774 return integer_zero_node;
1775
1776 type = TYPE_MAIN_VARIANT (type);
1777 t = TYPE_SIZE_UNIT (type);
1778
1779 if (t == 0)
1780 {
1781 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1782 return size_zero_node;
1783 }
1784
1785 return t;
1786 }
1787
1788 /* Return the size of TYPE (in bytes) as a wide integer
1789 or return -1 if the size can vary or is larger than an integer. */
1790
1791 HOST_WIDE_INT
1792 int_size_in_bytes (tree type)
1793 {
1794 tree t;
1795
1796 if (type == error_mark_node)
1797 return 0;
1798
1799 type = TYPE_MAIN_VARIANT (type);
1800 t = TYPE_SIZE_UNIT (type);
1801 if (t == 0
1802 || TREE_CODE (t) != INTEGER_CST
1803 || TREE_INT_CST_HIGH (t) != 0
1804 /* If the result would appear negative, it's too big to represent. */
1805 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1806 return -1;
1807
1808 return TREE_INT_CST_LOW (t);
1809 }
1810
1811 /* Return the maximum size of TYPE (in bytes) as a wide integer
1812 or return -1 if the size can vary or is larger than an integer. */
1813
1814 HOST_WIDE_INT
1815 max_int_size_in_bytes (tree type)
1816 {
1817 HOST_WIDE_INT size = -1;
1818 tree size_tree;
1819
1820 /* If this is an array type, check for a possible MAX_SIZE attached. */
1821
1822 if (TREE_CODE (type) == ARRAY_TYPE)
1823 {
1824 size_tree = TYPE_ARRAY_MAX_SIZE (type);
1825
1826 if (size_tree && host_integerp (size_tree, 1))
1827 size = tree_low_cst (size_tree, 1);
1828 }
1829
1830 /* If we still haven't been able to get a size, see if the language
1831 can compute a maximum size. */
1832
1833 if (size == -1)
1834 {
1835 size_tree = lang_hooks.types.max_size (type);
1836
1837 if (size_tree && host_integerp (size_tree, 1))
1838 size = tree_low_cst (size_tree, 1);
1839 }
1840
1841 return size;
1842 }
1843 \f
1844 /* Return the bit position of FIELD, in bits from the start of the record.
1845 This is a tree of type bitsizetype. */
1846
1847 tree
1848 bit_position (tree field)
1849 {
1850 return bit_from_pos (DECL_FIELD_OFFSET (field),
1851 DECL_FIELD_BIT_OFFSET (field));
1852 }
1853
1854 /* Likewise, but return as an integer. It must be representable in
1855 that way (since it could be a signed value, we don't have the
1856 option of returning -1 like int_size_in_byte can. */
1857
1858 HOST_WIDE_INT
1859 int_bit_position (tree field)
1860 {
1861 return tree_low_cst (bit_position (field), 0);
1862 }
1863 \f
1864 /* Return the byte position of FIELD, in bytes from the start of the record.
1865 This is a tree of type sizetype. */
1866
1867 tree
1868 byte_position (tree field)
1869 {
1870 return byte_from_pos (DECL_FIELD_OFFSET (field),
1871 DECL_FIELD_BIT_OFFSET (field));
1872 }
1873
1874 /* Likewise, but return as an integer. It must be representable in
1875 that way (since it could be a signed value, we don't have the
1876 option of returning -1 like int_size_in_byte can. */
1877
1878 HOST_WIDE_INT
1879 int_byte_position (tree field)
1880 {
1881 return tree_low_cst (byte_position (field), 0);
1882 }
1883 \f
1884 /* Return the strictest alignment, in bits, that T is known to have. */
1885
1886 unsigned int
1887 expr_align (tree t)
1888 {
1889 unsigned int align0, align1;
1890
1891 switch (TREE_CODE (t))
1892 {
1893 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1894 /* If we have conversions, we know that the alignment of the
1895 object must meet each of the alignments of the types. */
1896 align0 = expr_align (TREE_OPERAND (t, 0));
1897 align1 = TYPE_ALIGN (TREE_TYPE (t));
1898 return MAX (align0, align1);
1899
1900 case GIMPLE_MODIFY_STMT:
1901 /* We should never ask for the alignment of a gimple statement. */
1902 gcc_unreachable ();
1903
1904 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1905 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1906 case CLEANUP_POINT_EXPR:
1907 /* These don't change the alignment of an object. */
1908 return expr_align (TREE_OPERAND (t, 0));
1909
1910 case COND_EXPR:
1911 /* The best we can do is say that the alignment is the least aligned
1912 of the two arms. */
1913 align0 = expr_align (TREE_OPERAND (t, 1));
1914 align1 = expr_align (TREE_OPERAND (t, 2));
1915 return MIN (align0, align1);
1916
1917 case LABEL_DECL: case CONST_DECL:
1918 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1919 if (DECL_ALIGN (t) != 0)
1920 return DECL_ALIGN (t);
1921 break;
1922
1923 case FUNCTION_DECL:
1924 return FUNCTION_BOUNDARY;
1925
1926 default:
1927 break;
1928 }
1929
1930 /* Otherwise take the alignment from that of the type. */
1931 return TYPE_ALIGN (TREE_TYPE (t));
1932 }
1933 \f
1934 /* Return, as a tree node, the number of elements for TYPE (which is an
1935 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1936
1937 tree
1938 array_type_nelts (tree type)
1939 {
1940 tree index_type, min, max;
1941
1942 /* If they did it with unspecified bounds, then we should have already
1943 given an error about it before we got here. */
1944 if (! TYPE_DOMAIN (type))
1945 return error_mark_node;
1946
1947 index_type = TYPE_DOMAIN (type);
1948 min = TYPE_MIN_VALUE (index_type);
1949 max = TYPE_MAX_VALUE (index_type);
1950
1951 return (integer_zerop (min)
1952 ? max
1953 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
1954 }
1955 \f
1956 /* If arg is static -- a reference to an object in static storage -- then
1957 return the object. This is not the same as the C meaning of `static'.
1958 If arg isn't static, return NULL. */
1959
1960 tree
1961 staticp (tree arg)
1962 {
1963 switch (TREE_CODE (arg))
1964 {
1965 case FUNCTION_DECL:
1966 /* Nested functions are static, even though taking their address will
1967 involve a trampoline as we unnest the nested function and create
1968 the trampoline on the tree level. */
1969 return arg;
1970
1971 case VAR_DECL:
1972 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1973 && ! DECL_THREAD_LOCAL_P (arg)
1974 && ! DECL_DLLIMPORT_P (arg)
1975 ? arg : NULL);
1976
1977 case CONST_DECL:
1978 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1979 ? arg : NULL);
1980
1981 case CONSTRUCTOR:
1982 return TREE_STATIC (arg) ? arg : NULL;
1983
1984 case LABEL_DECL:
1985 case STRING_CST:
1986 return arg;
1987
1988 case COMPONENT_REF:
1989 /* If the thing being referenced is not a field, then it is
1990 something language specific. */
1991 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1992 return (*lang_hooks.staticp) (arg);
1993
1994 /* If we are referencing a bitfield, we can't evaluate an
1995 ADDR_EXPR at compile time and so it isn't a constant. */
1996 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1997 return NULL;
1998
1999 return staticp (TREE_OPERAND (arg, 0));
2000
2001 case BIT_FIELD_REF:
2002 return NULL;
2003
2004 case MISALIGNED_INDIRECT_REF:
2005 case ALIGN_INDIRECT_REF:
2006 case INDIRECT_REF:
2007 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2008
2009 case ARRAY_REF:
2010 case ARRAY_RANGE_REF:
2011 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2012 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2013 return staticp (TREE_OPERAND (arg, 0));
2014 else
2015 return false;
2016
2017 default:
2018 if ((unsigned int) TREE_CODE (arg)
2019 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
2020 return lang_hooks.staticp (arg);
2021 else
2022 return NULL;
2023 }
2024 }
2025 \f
2026 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2027 Do this to any expression which may be used in more than one place,
2028 but must be evaluated only once.
2029
2030 Normally, expand_expr would reevaluate the expression each time.
2031 Calling save_expr produces something that is evaluated and recorded
2032 the first time expand_expr is called on it. Subsequent calls to
2033 expand_expr just reuse the recorded value.
2034
2035 The call to expand_expr that generates code that actually computes
2036 the value is the first call *at compile time*. Subsequent calls
2037 *at compile time* generate code to use the saved value.
2038 This produces correct result provided that *at run time* control
2039 always flows through the insns made by the first expand_expr
2040 before reaching the other places where the save_expr was evaluated.
2041 You, the caller of save_expr, must make sure this is so.
2042
2043 Constants, and certain read-only nodes, are returned with no
2044 SAVE_EXPR because that is safe. Expressions containing placeholders
2045 are not touched; see tree.def for an explanation of what these
2046 are used for. */
2047
2048 tree
2049 save_expr (tree expr)
2050 {
2051 tree t = fold (expr);
2052 tree inner;
2053
2054 /* If the tree evaluates to a constant, then we don't want to hide that
2055 fact (i.e. this allows further folding, and direct checks for constants).
2056 However, a read-only object that has side effects cannot be bypassed.
2057 Since it is no problem to reevaluate literals, we just return the
2058 literal node. */
2059 inner = skip_simple_arithmetic (t);
2060
2061 if (TREE_INVARIANT (inner)
2062 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
2063 || TREE_CODE (inner) == SAVE_EXPR
2064 || TREE_CODE (inner) == ERROR_MARK)
2065 return t;
2066
2067 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2068 it means that the size or offset of some field of an object depends on
2069 the value within another field.
2070
2071 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2072 and some variable since it would then need to be both evaluated once and
2073 evaluated more than once. Front-ends must assure this case cannot
2074 happen by surrounding any such subexpressions in their own SAVE_EXPR
2075 and forcing evaluation at the proper time. */
2076 if (contains_placeholder_p (inner))
2077 return t;
2078
2079 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2080
2081 /* This expression might be placed ahead of a jump to ensure that the
2082 value was computed on both sides of the jump. So make sure it isn't
2083 eliminated as dead. */
2084 TREE_SIDE_EFFECTS (t) = 1;
2085 TREE_INVARIANT (t) = 1;
2086 return t;
2087 }
2088
2089 /* Look inside EXPR and into any simple arithmetic operations. Return
2090 the innermost non-arithmetic node. */
2091
2092 tree
2093 skip_simple_arithmetic (tree expr)
2094 {
2095 tree inner;
2096
2097 /* We don't care about whether this can be used as an lvalue in this
2098 context. */
2099 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2100 expr = TREE_OPERAND (expr, 0);
2101
2102 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2103 a constant, it will be more efficient to not make another SAVE_EXPR since
2104 it will allow better simplification and GCSE will be able to merge the
2105 computations if they actually occur. */
2106 inner = expr;
2107 while (1)
2108 {
2109 if (UNARY_CLASS_P (inner))
2110 inner = TREE_OPERAND (inner, 0);
2111 else if (BINARY_CLASS_P (inner))
2112 {
2113 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
2114 inner = TREE_OPERAND (inner, 0);
2115 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
2116 inner = TREE_OPERAND (inner, 1);
2117 else
2118 break;
2119 }
2120 else
2121 break;
2122 }
2123
2124 return inner;
2125 }
2126
2127 /* Return which tree structure is used by T. */
2128
2129 enum tree_node_structure_enum
2130 tree_node_structure (tree t)
2131 {
2132 enum tree_code code = TREE_CODE (t);
2133
2134 switch (TREE_CODE_CLASS (code))
2135 {
2136 case tcc_declaration:
2137 {
2138 switch (code)
2139 {
2140 case FIELD_DECL:
2141 return TS_FIELD_DECL;
2142 case PARM_DECL:
2143 return TS_PARM_DECL;
2144 case VAR_DECL:
2145 return TS_VAR_DECL;
2146 case LABEL_DECL:
2147 return TS_LABEL_DECL;
2148 case RESULT_DECL:
2149 return TS_RESULT_DECL;
2150 case CONST_DECL:
2151 return TS_CONST_DECL;
2152 case TYPE_DECL:
2153 return TS_TYPE_DECL;
2154 case FUNCTION_DECL:
2155 return TS_FUNCTION_DECL;
2156 case SYMBOL_MEMORY_TAG:
2157 case NAME_MEMORY_TAG:
2158 case STRUCT_FIELD_TAG:
2159 case MEMORY_PARTITION_TAG:
2160 return TS_MEMORY_TAG;
2161 default:
2162 return TS_DECL_NON_COMMON;
2163 }
2164 }
2165 case tcc_type:
2166 return TS_TYPE;
2167 case tcc_reference:
2168 case tcc_comparison:
2169 case tcc_unary:
2170 case tcc_binary:
2171 case tcc_expression:
2172 case tcc_statement:
2173 case tcc_vl_exp:
2174 return TS_EXP;
2175 case tcc_gimple_stmt:
2176 return TS_GIMPLE_STATEMENT;
2177 default: /* tcc_constant and tcc_exceptional */
2178 break;
2179 }
2180 switch (code)
2181 {
2182 /* tcc_constant cases. */
2183 case INTEGER_CST: return TS_INT_CST;
2184 case REAL_CST: return TS_REAL_CST;
2185 case COMPLEX_CST: return TS_COMPLEX;
2186 case VECTOR_CST: return TS_VECTOR;
2187 case STRING_CST: return TS_STRING;
2188 /* tcc_exceptional cases. */
2189 /* FIXME tuples: eventually this should be TS_BASE. For now, nothing
2190 returns TS_BASE. */
2191 case ERROR_MARK: return TS_COMMON;
2192 case IDENTIFIER_NODE: return TS_IDENTIFIER;
2193 case TREE_LIST: return TS_LIST;
2194 case TREE_VEC: return TS_VEC;
2195 case PHI_NODE: return TS_PHI_NODE;
2196 case SSA_NAME: return TS_SSA_NAME;
2197 case PLACEHOLDER_EXPR: return TS_COMMON;
2198 case STATEMENT_LIST: return TS_STATEMENT_LIST;
2199 case BLOCK: return TS_BLOCK;
2200 case CONSTRUCTOR: return TS_CONSTRUCTOR;
2201 case TREE_BINFO: return TS_BINFO;
2202 case VALUE_HANDLE: return TS_VALUE_HANDLE;
2203 case OMP_CLAUSE: return TS_OMP_CLAUSE;
2204
2205 default:
2206 gcc_unreachable ();
2207 }
2208 }
2209 \f
2210 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2211 or offset that depends on a field within a record. */
2212
2213 bool
2214 contains_placeholder_p (tree exp)
2215 {
2216 enum tree_code code;
2217
2218 if (!exp)
2219 return 0;
2220
2221 code = TREE_CODE (exp);
2222 if (code == PLACEHOLDER_EXPR)
2223 return 1;
2224
2225 switch (TREE_CODE_CLASS (code))
2226 {
2227 case tcc_reference:
2228 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2229 position computations since they will be converted into a
2230 WITH_RECORD_EXPR involving the reference, which will assume
2231 here will be valid. */
2232 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2233
2234 case tcc_exceptional:
2235 if (code == TREE_LIST)
2236 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2237 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2238 break;
2239
2240 case tcc_unary:
2241 case tcc_binary:
2242 case tcc_comparison:
2243 case tcc_expression:
2244 switch (code)
2245 {
2246 case COMPOUND_EXPR:
2247 /* Ignoring the first operand isn't quite right, but works best. */
2248 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2249
2250 case COND_EXPR:
2251 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2252 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2253 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2254
2255 default:
2256 break;
2257 }
2258
2259 switch (TREE_CODE_LENGTH (code))
2260 {
2261 case 1:
2262 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2263 case 2:
2264 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2265 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2266 default:
2267 return 0;
2268 }
2269
2270 case tcc_vl_exp:
2271 switch (code)
2272 {
2273 case CALL_EXPR:
2274 {
2275 tree arg;
2276 call_expr_arg_iterator iter;
2277 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2278 if (CONTAINS_PLACEHOLDER_P (arg))
2279 return 1;
2280 return 0;
2281 }
2282 default:
2283 return 0;
2284 }
2285
2286 default:
2287 return 0;
2288 }
2289 return 0;
2290 }
2291
2292 /* Return true if any part of the computation of TYPE involves a
2293 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2294 (for QUAL_UNION_TYPE) and field positions. */
2295
2296 static bool
2297 type_contains_placeholder_1 (tree type)
2298 {
2299 /* If the size contains a placeholder or the parent type (component type in
2300 the case of arrays) type involves a placeholder, this type does. */
2301 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2302 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2303 || (TREE_TYPE (type) != 0
2304 && type_contains_placeholder_p (TREE_TYPE (type))))
2305 return true;
2306
2307 /* Now do type-specific checks. Note that the last part of the check above
2308 greatly limits what we have to do below. */
2309 switch (TREE_CODE (type))
2310 {
2311 case VOID_TYPE:
2312 case COMPLEX_TYPE:
2313 case ENUMERAL_TYPE:
2314 case BOOLEAN_TYPE:
2315 case POINTER_TYPE:
2316 case OFFSET_TYPE:
2317 case REFERENCE_TYPE:
2318 case METHOD_TYPE:
2319 case FUNCTION_TYPE:
2320 case VECTOR_TYPE:
2321 return false;
2322
2323 case INTEGER_TYPE:
2324 case REAL_TYPE:
2325 /* Here we just check the bounds. */
2326 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2327 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2328
2329 case ARRAY_TYPE:
2330 /* We're already checked the component type (TREE_TYPE), so just check
2331 the index type. */
2332 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2333
2334 case RECORD_TYPE:
2335 case UNION_TYPE:
2336 case QUAL_UNION_TYPE:
2337 {
2338 tree field;
2339
2340 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2341 if (TREE_CODE (field) == FIELD_DECL
2342 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2343 || (TREE_CODE (type) == QUAL_UNION_TYPE
2344 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2345 || type_contains_placeholder_p (TREE_TYPE (field))))
2346 return true;
2347
2348 return false;
2349 }
2350
2351 default:
2352 gcc_unreachable ();
2353 }
2354 }
2355
2356 bool
2357 type_contains_placeholder_p (tree type)
2358 {
2359 bool result;
2360
2361 /* If the contains_placeholder_bits field has been initialized,
2362 then we know the answer. */
2363 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2364 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2365
2366 /* Indicate that we've seen this type node, and the answer is false.
2367 This is what we want to return if we run into recursion via fields. */
2368 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2369
2370 /* Compute the real value. */
2371 result = type_contains_placeholder_1 (type);
2372
2373 /* Store the real value. */
2374 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2375
2376 return result;
2377 }
2378 \f
2379 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2380 return a tree with all occurrences of references to F in a
2381 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2382 contains only arithmetic expressions or a CALL_EXPR with a
2383 PLACEHOLDER_EXPR occurring only in its arglist. */
2384
2385 tree
2386 substitute_in_expr (tree exp, tree f, tree r)
2387 {
2388 enum tree_code code = TREE_CODE (exp);
2389 tree op0, op1, op2, op3;
2390 tree new;
2391 tree inner;
2392
2393 /* We handle TREE_LIST and COMPONENT_REF separately. */
2394 if (code == TREE_LIST)
2395 {
2396 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2397 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2398 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2399 return exp;
2400
2401 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2402 }
2403 else if (code == COMPONENT_REF)
2404 {
2405 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2406 and it is the right field, replace it with R. */
2407 for (inner = TREE_OPERAND (exp, 0);
2408 REFERENCE_CLASS_P (inner);
2409 inner = TREE_OPERAND (inner, 0))
2410 ;
2411 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2412 && TREE_OPERAND (exp, 1) == f)
2413 return r;
2414
2415 /* If this expression hasn't been completed let, leave it alone. */
2416 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2417 return exp;
2418
2419 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2420 if (op0 == TREE_OPERAND (exp, 0))
2421 return exp;
2422
2423 new = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
2424 op0, TREE_OPERAND (exp, 1), NULL_TREE);
2425 }
2426 else
2427 switch (TREE_CODE_CLASS (code))
2428 {
2429 case tcc_constant:
2430 case tcc_declaration:
2431 return exp;
2432
2433 case tcc_exceptional:
2434 case tcc_unary:
2435 case tcc_binary:
2436 case tcc_comparison:
2437 case tcc_expression:
2438 case tcc_reference:
2439 switch (TREE_CODE_LENGTH (code))
2440 {
2441 case 0:
2442 return exp;
2443
2444 case 1:
2445 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2446 if (op0 == TREE_OPERAND (exp, 0))
2447 return exp;
2448
2449 new = fold_build1 (code, TREE_TYPE (exp), op0);
2450 break;
2451
2452 case 2:
2453 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2454 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2455
2456 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2457 return exp;
2458
2459 new = fold_build2 (code, TREE_TYPE (exp), op0, op1);
2460 break;
2461
2462 case 3:
2463 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2464 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2465 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2466
2467 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2468 && op2 == TREE_OPERAND (exp, 2))
2469 return exp;
2470
2471 new = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2472 break;
2473
2474 case 4:
2475 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2476 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2477 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2478 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
2479
2480 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2481 && op2 == TREE_OPERAND (exp, 2)
2482 && op3 == TREE_OPERAND (exp, 3))
2483 return exp;
2484
2485 new = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2486 break;
2487
2488 default:
2489 gcc_unreachable ();
2490 }
2491 break;
2492
2493 case tcc_vl_exp:
2494 {
2495 tree copy = NULL_TREE;
2496 int i;
2497 int n = TREE_OPERAND_LENGTH (exp);
2498 for (i = 1; i < n; i++)
2499 {
2500 tree op = TREE_OPERAND (exp, i);
2501 tree newop = SUBSTITUTE_IN_EXPR (op, f, r);
2502 if (newop != op)
2503 {
2504 copy = copy_node (exp);
2505 TREE_OPERAND (copy, i) = newop;
2506 }
2507 }
2508 if (copy)
2509 new = fold (copy);
2510 else
2511 return exp;
2512 }
2513
2514 default:
2515 gcc_unreachable ();
2516 }
2517
2518 TREE_READONLY (new) = TREE_READONLY (exp);
2519 return new;
2520 }
2521
2522 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2523 for it within OBJ, a tree that is an object or a chain of references. */
2524
2525 tree
2526 substitute_placeholder_in_expr (tree exp, tree obj)
2527 {
2528 enum tree_code code = TREE_CODE (exp);
2529 tree op0, op1, op2, op3;
2530
2531 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2532 in the chain of OBJ. */
2533 if (code == PLACEHOLDER_EXPR)
2534 {
2535 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2536 tree elt;
2537
2538 for (elt = obj; elt != 0;
2539 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2540 || TREE_CODE (elt) == COND_EXPR)
2541 ? TREE_OPERAND (elt, 1)
2542 : (REFERENCE_CLASS_P (elt)
2543 || UNARY_CLASS_P (elt)
2544 || BINARY_CLASS_P (elt)
2545 || VL_EXP_CLASS_P (elt)
2546 || EXPRESSION_CLASS_P (elt))
2547 ? TREE_OPERAND (elt, 0) : 0))
2548 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2549 return elt;
2550
2551 for (elt = obj; elt != 0;
2552 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2553 || TREE_CODE (elt) == COND_EXPR)
2554 ? TREE_OPERAND (elt, 1)
2555 : (REFERENCE_CLASS_P (elt)
2556 || UNARY_CLASS_P (elt)
2557 || BINARY_CLASS_P (elt)
2558 || VL_EXP_CLASS_P (elt)
2559 || EXPRESSION_CLASS_P (elt))
2560 ? TREE_OPERAND (elt, 0) : 0))
2561 if (POINTER_TYPE_P (TREE_TYPE (elt))
2562 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2563 == need_type))
2564 return fold_build1 (INDIRECT_REF, need_type, elt);
2565
2566 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2567 survives until RTL generation, there will be an error. */
2568 return exp;
2569 }
2570
2571 /* TREE_LIST is special because we need to look at TREE_VALUE
2572 and TREE_CHAIN, not TREE_OPERANDS. */
2573 else if (code == TREE_LIST)
2574 {
2575 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2576 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2577 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2578 return exp;
2579
2580 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2581 }
2582 else
2583 switch (TREE_CODE_CLASS (code))
2584 {
2585 case tcc_constant:
2586 case tcc_declaration:
2587 return exp;
2588
2589 case tcc_exceptional:
2590 case tcc_unary:
2591 case tcc_binary:
2592 case tcc_comparison:
2593 case tcc_expression:
2594 case tcc_reference:
2595 case tcc_statement:
2596 switch (TREE_CODE_LENGTH (code))
2597 {
2598 case 0:
2599 return exp;
2600
2601 case 1:
2602 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2603 if (op0 == TREE_OPERAND (exp, 0))
2604 return exp;
2605 else
2606 return fold_build1 (code, TREE_TYPE (exp), op0);
2607
2608 case 2:
2609 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2610 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2611
2612 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2613 return exp;
2614 else
2615 return fold_build2 (code, TREE_TYPE (exp), op0, op1);
2616
2617 case 3:
2618 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2619 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2620 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2621
2622 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2623 && op2 == TREE_OPERAND (exp, 2))
2624 return exp;
2625 else
2626 return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2627
2628 case 4:
2629 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2630 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2631 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2632 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2633
2634 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2635 && op2 == TREE_OPERAND (exp, 2)
2636 && op3 == TREE_OPERAND (exp, 3))
2637 return exp;
2638 else
2639 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2640
2641 default:
2642 gcc_unreachable ();
2643 }
2644 break;
2645
2646 case tcc_vl_exp:
2647 {
2648 tree copy = NULL_TREE;
2649 int i;
2650 int n = TREE_OPERAND_LENGTH (exp);
2651 for (i = 1; i < n; i++)
2652 {
2653 tree op = TREE_OPERAND (exp, i);
2654 tree newop = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
2655 if (newop != op)
2656 {
2657 if (!copy)
2658 copy = copy_node (exp);
2659 TREE_OPERAND (copy, i) = newop;
2660 }
2661 }
2662 if (copy)
2663 return fold (copy);
2664 else
2665 return exp;
2666 }
2667
2668 default:
2669 gcc_unreachable ();
2670 }
2671 }
2672 \f
2673 /* Stabilize a reference so that we can use it any number of times
2674 without causing its operands to be evaluated more than once.
2675 Returns the stabilized reference. This works by means of save_expr,
2676 so see the caveats in the comments about save_expr.
2677
2678 Also allows conversion expressions whose operands are references.
2679 Any other kind of expression is returned unchanged. */
2680
2681 tree
2682 stabilize_reference (tree ref)
2683 {
2684 tree result;
2685 enum tree_code code = TREE_CODE (ref);
2686
2687 switch (code)
2688 {
2689 case VAR_DECL:
2690 case PARM_DECL:
2691 case RESULT_DECL:
2692 /* No action is needed in this case. */
2693 return ref;
2694
2695 case NOP_EXPR:
2696 case CONVERT_EXPR:
2697 case FLOAT_EXPR:
2698 case FIX_TRUNC_EXPR:
2699 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2700 break;
2701
2702 case INDIRECT_REF:
2703 result = build_nt (INDIRECT_REF,
2704 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2705 break;
2706
2707 case COMPONENT_REF:
2708 result = build_nt (COMPONENT_REF,
2709 stabilize_reference (TREE_OPERAND (ref, 0)),
2710 TREE_OPERAND (ref, 1), NULL_TREE);
2711 break;
2712
2713 case BIT_FIELD_REF:
2714 result = build_nt (BIT_FIELD_REF,
2715 stabilize_reference (TREE_OPERAND (ref, 0)),
2716 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2717 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2718 break;
2719
2720 case ARRAY_REF:
2721 result = build_nt (ARRAY_REF,
2722 stabilize_reference (TREE_OPERAND (ref, 0)),
2723 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2724 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2725 break;
2726
2727 case ARRAY_RANGE_REF:
2728 result = build_nt (ARRAY_RANGE_REF,
2729 stabilize_reference (TREE_OPERAND (ref, 0)),
2730 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2731 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2732 break;
2733
2734 case COMPOUND_EXPR:
2735 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2736 it wouldn't be ignored. This matters when dealing with
2737 volatiles. */
2738 return stabilize_reference_1 (ref);
2739
2740 /* If arg isn't a kind of lvalue we recognize, make no change.
2741 Caller should recognize the error for an invalid lvalue. */
2742 default:
2743 return ref;
2744
2745 case ERROR_MARK:
2746 return error_mark_node;
2747 }
2748
2749 TREE_TYPE (result) = TREE_TYPE (ref);
2750 TREE_READONLY (result) = TREE_READONLY (ref);
2751 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2752 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2753
2754 return result;
2755 }
2756
2757 /* Subroutine of stabilize_reference; this is called for subtrees of
2758 references. Any expression with side-effects must be put in a SAVE_EXPR
2759 to ensure that it is only evaluated once.
2760
2761 We don't put SAVE_EXPR nodes around everything, because assigning very
2762 simple expressions to temporaries causes us to miss good opportunities
2763 for optimizations. Among other things, the opportunity to fold in the
2764 addition of a constant into an addressing mode often gets lost, e.g.
2765 "y[i+1] += x;". In general, we take the approach that we should not make
2766 an assignment unless we are forced into it - i.e., that any non-side effect
2767 operator should be allowed, and that cse should take care of coalescing
2768 multiple utterances of the same expression should that prove fruitful. */
2769
2770 tree
2771 stabilize_reference_1 (tree e)
2772 {
2773 tree result;
2774 enum tree_code code = TREE_CODE (e);
2775
2776 /* We cannot ignore const expressions because it might be a reference
2777 to a const array but whose index contains side-effects. But we can
2778 ignore things that are actual constant or that already have been
2779 handled by this function. */
2780
2781 if (TREE_INVARIANT (e))
2782 return e;
2783
2784 switch (TREE_CODE_CLASS (code))
2785 {
2786 case tcc_exceptional:
2787 case tcc_type:
2788 case tcc_declaration:
2789 case tcc_comparison:
2790 case tcc_statement:
2791 case tcc_expression:
2792 case tcc_reference:
2793 case tcc_vl_exp:
2794 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2795 so that it will only be evaluated once. */
2796 /* The reference (r) and comparison (<) classes could be handled as
2797 below, but it is generally faster to only evaluate them once. */
2798 if (TREE_SIDE_EFFECTS (e))
2799 return save_expr (e);
2800 return e;
2801
2802 case tcc_constant:
2803 /* Constants need no processing. In fact, we should never reach
2804 here. */
2805 return e;
2806
2807 case tcc_binary:
2808 /* Division is slow and tends to be compiled with jumps,
2809 especially the division by powers of 2 that is often
2810 found inside of an array reference. So do it just once. */
2811 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2812 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2813 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2814 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2815 return save_expr (e);
2816 /* Recursively stabilize each operand. */
2817 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2818 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2819 break;
2820
2821 case tcc_unary:
2822 /* Recursively stabilize each operand. */
2823 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2824 break;
2825
2826 default:
2827 gcc_unreachable ();
2828 }
2829
2830 TREE_TYPE (result) = TREE_TYPE (e);
2831 TREE_READONLY (result) = TREE_READONLY (e);
2832 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2833 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2834 TREE_INVARIANT (result) = 1;
2835
2836 return result;
2837 }
2838 \f
2839 /* Low-level constructors for expressions. */
2840
2841 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2842 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2843
2844 void
2845 recompute_tree_invariant_for_addr_expr (tree t)
2846 {
2847 tree node;
2848 bool tc = true, ti = true, se = false;
2849
2850 /* We started out assuming this address is both invariant and constant, but
2851 does not have side effects. Now go down any handled components and see if
2852 any of them involve offsets that are either non-constant or non-invariant.
2853 Also check for side-effects.
2854
2855 ??? Note that this code makes no attempt to deal with the case where
2856 taking the address of something causes a copy due to misalignment. */
2857
2858 #define UPDATE_TITCSE(NODE) \
2859 do { tree _node = (NODE); \
2860 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2861 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2862 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2863
2864 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2865 node = TREE_OPERAND (node, 0))
2866 {
2867 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2868 array reference (probably made temporarily by the G++ front end),
2869 so ignore all the operands. */
2870 if ((TREE_CODE (node) == ARRAY_REF
2871 || TREE_CODE (node) == ARRAY_RANGE_REF)
2872 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2873 {
2874 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2875 if (TREE_OPERAND (node, 2))
2876 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2877 if (TREE_OPERAND (node, 3))
2878 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2879 }
2880 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2881 FIELD_DECL, apparently. The G++ front end can put something else
2882 there, at least temporarily. */
2883 else if (TREE_CODE (node) == COMPONENT_REF
2884 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2885 {
2886 if (TREE_OPERAND (node, 2))
2887 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2888 }
2889 else if (TREE_CODE (node) == BIT_FIELD_REF)
2890 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2891 }
2892
2893 node = lang_hooks.expr_to_decl (node, &tc, &ti, &se);
2894
2895 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2896 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2897 invariant and constant if the decl is static. It's also invariant if it's
2898 a decl in the current function. Taking the address of a volatile variable
2899 is not volatile. If it's a constant, the address is both invariant and
2900 constant. Otherwise it's neither. */
2901 if (TREE_CODE (node) == INDIRECT_REF)
2902 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2903 else if (DECL_P (node))
2904 {
2905 if (staticp (node))
2906 ;
2907 else if (decl_function_context (node) == current_function_decl
2908 /* Addresses of thread-local variables are invariant. */
2909 || (TREE_CODE (node) == VAR_DECL
2910 && DECL_THREAD_LOCAL_P (node)))
2911 tc = false;
2912 else
2913 ti = tc = false;
2914 }
2915 else if (CONSTANT_CLASS_P (node))
2916 ;
2917 else
2918 {
2919 ti = tc = false;
2920 se |= TREE_SIDE_EFFECTS (node);
2921 }
2922
2923 TREE_CONSTANT (t) = tc;
2924 TREE_INVARIANT (t) = ti;
2925 TREE_SIDE_EFFECTS (t) = se;
2926 #undef UPDATE_TITCSE
2927 }
2928
2929 /* Build an expression of code CODE, data type TYPE, and operands as
2930 specified. Expressions and reference nodes can be created this way.
2931 Constants, decls, types and misc nodes cannot be.
2932
2933 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2934 enough for all extant tree codes. */
2935
2936 tree
2937 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2938 {
2939 tree t;
2940
2941 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2942
2943 t = make_node_stat (code PASS_MEM_STAT);
2944 TREE_TYPE (t) = tt;
2945
2946 return t;
2947 }
2948
2949 tree
2950 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2951 {
2952 int length = sizeof (struct tree_exp);
2953 #ifdef GATHER_STATISTICS
2954 tree_node_kind kind;
2955 #endif
2956 tree t;
2957
2958 #ifdef GATHER_STATISTICS
2959 switch (TREE_CODE_CLASS (code))
2960 {
2961 case tcc_statement: /* an expression with side effects */
2962 kind = s_kind;
2963 break;
2964 case tcc_reference: /* a reference */
2965 kind = r_kind;
2966 break;
2967 default:
2968 kind = e_kind;
2969 break;
2970 }
2971
2972 tree_node_counts[(int) kind]++;
2973 tree_node_sizes[(int) kind] += length;
2974 #endif
2975
2976 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2977
2978 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
2979
2980 memset (t, 0, sizeof (struct tree_common));
2981
2982 TREE_SET_CODE (t, code);
2983
2984 TREE_TYPE (t) = type;
2985 #ifdef USE_MAPPED_LOCATION
2986 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2987 #else
2988 SET_EXPR_LOCUS (t, NULL);
2989 #endif
2990 TREE_OPERAND (t, 0) = node;
2991 TREE_BLOCK (t) = NULL_TREE;
2992 if (node && !TYPE_P (node))
2993 {
2994 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2995 TREE_READONLY (t) = TREE_READONLY (node);
2996 }
2997
2998 if (TREE_CODE_CLASS (code) == tcc_statement)
2999 TREE_SIDE_EFFECTS (t) = 1;
3000 else switch (code)
3001 {
3002 case VA_ARG_EXPR:
3003 /* All of these have side-effects, no matter what their
3004 operands are. */
3005 TREE_SIDE_EFFECTS (t) = 1;
3006 TREE_READONLY (t) = 0;
3007 break;
3008
3009 case MISALIGNED_INDIRECT_REF:
3010 case ALIGN_INDIRECT_REF:
3011 case INDIRECT_REF:
3012 /* Whether a dereference is readonly has nothing to do with whether
3013 its operand is readonly. */
3014 TREE_READONLY (t) = 0;
3015 break;
3016
3017 case ADDR_EXPR:
3018 if (node)
3019 recompute_tree_invariant_for_addr_expr (t);
3020 break;
3021
3022 default:
3023 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3024 && node && !TYPE_P (node)
3025 && TREE_CONSTANT (node))
3026 TREE_CONSTANT (t) = 1;
3027 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3028 && node && TREE_INVARIANT (node))
3029 TREE_INVARIANT (t) = 1;
3030 if (TREE_CODE_CLASS (code) == tcc_reference
3031 && node && TREE_THIS_VOLATILE (node))
3032 TREE_THIS_VOLATILE (t) = 1;
3033 break;
3034 }
3035
3036 return t;
3037 }
3038
3039 #define PROCESS_ARG(N) \
3040 do { \
3041 TREE_OPERAND (t, N) = arg##N; \
3042 if (arg##N &&!TYPE_P (arg##N)) \
3043 { \
3044 if (TREE_SIDE_EFFECTS (arg##N)) \
3045 side_effects = 1; \
3046 if (!TREE_READONLY (arg##N)) \
3047 read_only = 0; \
3048 if (!TREE_CONSTANT (arg##N)) \
3049 constant = 0; \
3050 if (!TREE_INVARIANT (arg##N)) \
3051 invariant = 0; \
3052 } \
3053 } while (0)
3054
3055 tree
3056 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3057 {
3058 bool constant, read_only, side_effects, invariant;
3059 tree t;
3060
3061 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3062
3063 #if 1
3064 /* FIXME tuples: Statement's aren't expressions! */
3065 if (code == GIMPLE_MODIFY_STMT)
3066 return build_gimple_modify_stmt_stat (arg0, arg1 PASS_MEM_STAT);
3067 #else
3068 /* Must use build_gimple_modify_stmt to construct GIMPLE_MODIFY_STMTs. */
3069 gcc_assert (code != GIMPLE_MODIFY_STMT);
3070 #endif
3071
3072 t = make_node_stat (code PASS_MEM_STAT);
3073 TREE_TYPE (t) = tt;
3074
3075 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3076 result based on those same flags for the arguments. But if the
3077 arguments aren't really even `tree' expressions, we shouldn't be trying
3078 to do this. */
3079
3080 /* Expressions without side effects may be constant if their
3081 arguments are as well. */
3082 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3083 || TREE_CODE_CLASS (code) == tcc_binary);
3084 read_only = 1;
3085 side_effects = TREE_SIDE_EFFECTS (t);
3086 invariant = constant;
3087
3088 PROCESS_ARG(0);
3089 PROCESS_ARG(1);
3090
3091 TREE_READONLY (t) = read_only;
3092 TREE_CONSTANT (t) = constant;
3093 TREE_INVARIANT (t) = invariant;
3094 TREE_SIDE_EFFECTS (t) = side_effects;
3095 TREE_THIS_VOLATILE (t)
3096 = (TREE_CODE_CLASS (code) == tcc_reference
3097 && arg0 && TREE_THIS_VOLATILE (arg0));
3098
3099 return t;
3100 }
3101
3102
3103 /* Build a GIMPLE_MODIFY_STMT node. This tree code doesn't have a
3104 type, so we can't use build2 (a.k.a. build2_stat). */
3105
3106 tree
3107 build_gimple_modify_stmt_stat (tree arg0, tree arg1 MEM_STAT_DECL)
3108 {
3109 tree t;
3110
3111 t = make_node_stat (GIMPLE_MODIFY_STMT PASS_MEM_STAT);
3112 /* ?? We don't care about setting flags for tuples... */
3113 GIMPLE_STMT_OPERAND (t, 0) = arg0;
3114 GIMPLE_STMT_OPERAND (t, 1) = arg1;
3115 return t;
3116 }
3117
3118 tree
3119 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3120 tree arg2 MEM_STAT_DECL)
3121 {
3122 bool constant, read_only, side_effects, invariant;
3123 tree t;
3124
3125 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3126 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3127
3128 t = make_node_stat (code PASS_MEM_STAT);
3129 TREE_TYPE (t) = tt;
3130
3131 /* As a special exception, if COND_EXPR has NULL branches, we
3132 assume that it is a gimple statement and always consider
3133 it to have side effects. */
3134 if (code == COND_EXPR
3135 && tt == void_type_node
3136 && arg1 == NULL_TREE
3137 && arg2 == NULL_TREE)
3138 side_effects = true;
3139 else
3140 side_effects = TREE_SIDE_EFFECTS (t);
3141
3142 PROCESS_ARG(0);
3143 PROCESS_ARG(1);
3144 PROCESS_ARG(2);
3145
3146 TREE_SIDE_EFFECTS (t) = side_effects;
3147 TREE_THIS_VOLATILE (t)
3148 = (TREE_CODE_CLASS (code) == tcc_reference
3149 && arg0 && TREE_THIS_VOLATILE (arg0));
3150
3151 return t;
3152 }
3153
3154 tree
3155 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3156 tree arg2, tree arg3 MEM_STAT_DECL)
3157 {
3158 bool constant, read_only, side_effects, invariant;
3159 tree t;
3160
3161 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3162
3163 t = make_node_stat (code PASS_MEM_STAT);
3164 TREE_TYPE (t) = tt;
3165
3166 side_effects = TREE_SIDE_EFFECTS (t);
3167
3168 PROCESS_ARG(0);
3169 PROCESS_ARG(1);
3170 PROCESS_ARG(2);
3171 PROCESS_ARG(3);
3172
3173 TREE_SIDE_EFFECTS (t) = side_effects;
3174 TREE_THIS_VOLATILE (t)
3175 = (TREE_CODE_CLASS (code) == tcc_reference
3176 && arg0 && TREE_THIS_VOLATILE (arg0));
3177
3178 return t;
3179 }
3180
3181 tree
3182 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3183 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3184 {
3185 bool constant, read_only, side_effects, invariant;
3186 tree t;
3187
3188 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3189
3190 t = make_node_stat (code PASS_MEM_STAT);
3191 TREE_TYPE (t) = tt;
3192
3193 side_effects = TREE_SIDE_EFFECTS (t);
3194
3195 PROCESS_ARG(0);
3196 PROCESS_ARG(1);
3197 PROCESS_ARG(2);
3198 PROCESS_ARG(3);
3199 PROCESS_ARG(4);
3200
3201 TREE_SIDE_EFFECTS (t) = side_effects;
3202 TREE_THIS_VOLATILE (t)
3203 = (TREE_CODE_CLASS (code) == tcc_reference
3204 && arg0 && TREE_THIS_VOLATILE (arg0));
3205
3206 return t;
3207 }
3208
3209 tree
3210 build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3211 tree arg2, tree arg3, tree arg4, tree arg5,
3212 tree arg6 MEM_STAT_DECL)
3213 {
3214 bool constant, read_only, side_effects, invariant;
3215 tree t;
3216
3217 gcc_assert (code == TARGET_MEM_REF);
3218
3219 t = make_node_stat (code PASS_MEM_STAT);
3220 TREE_TYPE (t) = tt;
3221
3222 side_effects = TREE_SIDE_EFFECTS (t);
3223
3224 PROCESS_ARG(0);
3225 PROCESS_ARG(1);
3226 PROCESS_ARG(2);
3227 PROCESS_ARG(3);
3228 PROCESS_ARG(4);
3229 PROCESS_ARG(5);
3230 PROCESS_ARG(6);
3231
3232 TREE_SIDE_EFFECTS (t) = side_effects;
3233 TREE_THIS_VOLATILE (t) = 0;
3234
3235 return t;
3236 }
3237
3238 /* Similar except don't specify the TREE_TYPE
3239 and leave the TREE_SIDE_EFFECTS as 0.
3240 It is permissible for arguments to be null,
3241 or even garbage if their values do not matter. */
3242
3243 tree
3244 build_nt (enum tree_code code, ...)
3245 {
3246 tree t;
3247 int length;
3248 int i;
3249 va_list p;
3250
3251 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3252
3253 va_start (p, code);
3254
3255 t = make_node (code);
3256 length = TREE_CODE_LENGTH (code);
3257
3258 for (i = 0; i < length; i++)
3259 TREE_OPERAND (t, i) = va_arg (p, tree);
3260
3261 va_end (p);
3262 return t;
3263 }
3264
3265 /* Similar to build_nt, but for creating a CALL_EXPR object with
3266 ARGLIST passed as a list. */
3267
3268 tree
3269 build_nt_call_list (tree fn, tree arglist)
3270 {
3271 tree t;
3272 int i;
3273
3274 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
3275 CALL_EXPR_FN (t) = fn;
3276 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
3277 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
3278 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
3279 return t;
3280 }
3281 \f
3282 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3283 We do NOT enter this node in any sort of symbol table.
3284
3285 layout_decl is used to set up the decl's storage layout.
3286 Other slots are initialized to 0 or null pointers. */
3287
3288 tree
3289 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
3290 {
3291 tree t;
3292
3293 t = make_node_stat (code PASS_MEM_STAT);
3294
3295 /* if (type == error_mark_node)
3296 type = integer_type_node; */
3297 /* That is not done, deliberately, so that having error_mark_node
3298 as the type can suppress useless errors in the use of this variable. */
3299
3300 DECL_NAME (t) = name;
3301 TREE_TYPE (t) = type;
3302
3303 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3304 layout_decl (t, 0);
3305 else if (code == FUNCTION_DECL)
3306 DECL_MODE (t) = FUNCTION_MODE;
3307
3308 return t;
3309 }
3310
3311 /* Builds and returns function declaration with NAME and TYPE. */
3312
3313 tree
3314 build_fn_decl (const char *name, tree type)
3315 {
3316 tree id = get_identifier (name);
3317 tree decl = build_decl (FUNCTION_DECL, id, type);
3318
3319 DECL_EXTERNAL (decl) = 1;
3320 TREE_PUBLIC (decl) = 1;
3321 DECL_ARTIFICIAL (decl) = 1;
3322 TREE_NOTHROW (decl) = 1;
3323
3324 return decl;
3325 }
3326
3327 \f
3328 /* BLOCK nodes are used to represent the structure of binding contours
3329 and declarations, once those contours have been exited and their contents
3330 compiled. This information is used for outputting debugging info. */
3331
3332 tree
3333 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3334 {
3335 tree block = make_node (BLOCK);
3336
3337 BLOCK_VARS (block) = vars;
3338 BLOCK_SUBBLOCKS (block) = subblocks;
3339 BLOCK_SUPERCONTEXT (block) = supercontext;
3340 BLOCK_CHAIN (block) = chain;
3341 return block;
3342 }
3343
3344 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
3345 /* ??? gengtype doesn't handle conditionals */
3346 static GTY(()) source_locus last_annotated_node;
3347 #endif
3348
3349 #ifdef USE_MAPPED_LOCATION
3350
3351 expanded_location
3352 expand_location (source_location loc)
3353 {
3354 expanded_location xloc;
3355 if (loc == 0)
3356 {
3357 xloc.file = NULL;
3358 xloc.line = 0;
3359 xloc.column = 0;
3360 }
3361 else
3362 {
3363 const struct line_map *map = linemap_lookup (&line_table, loc);
3364 xloc.file = map->to_file;
3365 xloc.line = SOURCE_LINE (map, loc);
3366 xloc.column = SOURCE_COLUMN (map, loc);
3367 };
3368 return xloc;
3369 }
3370
3371 #else
3372
3373 /* Record the exact location where an expression or an identifier were
3374 encountered. */
3375
3376 void
3377 annotate_with_file_line (tree node, const char *file, int line)
3378 {
3379 /* Roughly one percent of the calls to this function are to annotate
3380 a node with the same information already attached to that node!
3381 Just return instead of wasting memory. */
3382 if (EXPR_LOCUS (node)
3383 && EXPR_LINENO (node) == line
3384 && (EXPR_FILENAME (node) == file
3385 || !strcmp (EXPR_FILENAME (node), file)))
3386 {
3387 last_annotated_node = EXPR_LOCUS (node);
3388 return;
3389 }
3390
3391 /* In heavily macroized code (such as GCC itself) this single
3392 entry cache can reduce the number of allocations by more
3393 than half. */
3394 if (last_annotated_node
3395 && last_annotated_node->line == line
3396 && (last_annotated_node->file == file
3397 || !strcmp (last_annotated_node->file, file)))
3398 {
3399 SET_EXPR_LOCUS (node, last_annotated_node);
3400 return;
3401 }
3402
3403 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
3404 EXPR_LINENO (node) = line;
3405 EXPR_FILENAME (node) = file;
3406 last_annotated_node = EXPR_LOCUS (node);
3407 }
3408
3409 void
3410 annotate_with_locus (tree node, location_t locus)
3411 {
3412 annotate_with_file_line (node, locus.file, locus.line);
3413 }
3414 #endif
3415 \f
3416 /* Source location accessor functions. */
3417
3418
3419 /* The source location of this expression. Non-tree_exp nodes such as
3420 decls and constants can be shared among multiple locations, so
3421 return nothing. */
3422 location_t
3423 expr_location (tree node)
3424 {
3425 #ifdef USE_MAPPED_LOCATION
3426 if (GIMPLE_STMT_P (node))
3427 return GIMPLE_STMT_LOCUS (node);
3428 return EXPR_P (node) ? node->exp.locus : UNKNOWN_LOCATION;
3429 #else
3430 if (GIMPLE_STMT_P (node))
3431 return EXPR_HAS_LOCATION (node)
3432 ? *GIMPLE_STMT_LOCUS (node) : UNKNOWN_LOCATION;
3433 return EXPR_HAS_LOCATION (node) ? *node->exp.locus : UNKNOWN_LOCATION;
3434 #endif
3435 }
3436
3437 void
3438 set_expr_location (tree node, location_t locus)
3439 {
3440 #ifdef USE_MAPPED_LOCATION
3441 if (GIMPLE_STMT_P (node))
3442 GIMPLE_STMT_LOCUS (node) = locus;
3443 else
3444 EXPR_CHECK (node)->exp.locus = locus;
3445 #else
3446 annotate_with_locus (node, locus);
3447 #endif
3448 }
3449
3450 bool
3451 expr_has_location (tree node)
3452 {
3453 #ifdef USE_MAPPED_LOCATION
3454 return expr_location (node) != UNKNOWN_LOCATION;
3455 #else
3456 return expr_locus (node) != NULL;
3457 #endif
3458 }
3459
3460 #ifdef USE_MAPPED_LOCATION
3461 source_location *
3462 #else
3463 source_locus
3464 #endif
3465 expr_locus (tree node)
3466 {
3467 #ifdef USE_MAPPED_LOCATION
3468 if (GIMPLE_STMT_P (node))
3469 return &GIMPLE_STMT_LOCUS (node);
3470 return EXPR_P (node) ? &node->exp.locus : (location_t *) NULL;
3471 #else
3472 if (GIMPLE_STMT_P (node))
3473 return GIMPLE_STMT_LOCUS (node);
3474 /* ?? The cast below was originally "(location_t *)" in the macro,
3475 but that makes no sense. ?? */
3476 return EXPR_P (node) ? node->exp.locus : (source_locus) NULL;
3477 #endif
3478 }
3479
3480 void
3481 set_expr_locus (tree node,
3482 #ifdef USE_MAPPED_LOCATION
3483 source_location *loc
3484 #else
3485 source_locus loc
3486 #endif
3487 )
3488 {
3489 #ifdef USE_MAPPED_LOCATION
3490 if (loc == NULL)
3491 {
3492 if (GIMPLE_STMT_P (node))
3493 GIMPLE_STMT_LOCUS (node) = UNKNOWN_LOCATION;
3494 else
3495 EXPR_CHECK (node)->exp.locus = UNKNOWN_LOCATION;
3496 }
3497 else
3498 {
3499 if (GIMPLE_STMT_P (node))
3500 GIMPLE_STMT_LOCUS (node) = *loc;
3501 else
3502 EXPR_CHECK (node)->exp.locus = *loc;
3503 }
3504 #else
3505 if (GIMPLE_STMT_P (node))
3506 GIMPLE_STMT_LOCUS (node) = loc;
3507 else
3508 EXPR_CHECK (node)->exp.locus = loc;
3509 #endif
3510 }
3511
3512 const char **
3513 expr_filename (tree node)
3514 {
3515 #ifdef USE_MAPPED_LOCATION
3516 if (GIMPLE_STMT_P (node))
3517 return &LOCATION_FILE (GIMPLE_STMT_LOCUS (node));
3518 return &LOCATION_FILE (EXPR_CHECK (node)->exp.locus);
3519 #else
3520 if (GIMPLE_STMT_P (node))
3521 return &GIMPLE_STMT_LOCUS (node)->file;
3522 return &(EXPR_CHECK (node)->exp.locus->file);
3523 #endif
3524 }
3525
3526 int *
3527 expr_lineno (tree node)
3528 {
3529 #ifdef USE_MAPPED_LOCATION
3530 if (GIMPLE_STMT_P (node))
3531 return &LOCATION_LINE (GIMPLE_STMT_LOCUS (node));
3532 return &LOCATION_LINE (EXPR_CHECK (node)->exp.locus);
3533 #else
3534 if (GIMPLE_STMT_P (node))
3535 return &GIMPLE_STMT_LOCUS (node)->line;
3536 return &EXPR_CHECK (node)->exp.locus->line;
3537 #endif
3538 }
3539 \f
3540 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3541 is ATTRIBUTE. */
3542
3543 tree
3544 build_decl_attribute_variant (tree ddecl, tree attribute)
3545 {
3546 DECL_ATTRIBUTES (ddecl) = attribute;
3547 return ddecl;
3548 }
3549
3550 /* Borrowed from hashtab.c iterative_hash implementation. */
3551 #define mix(a,b,c) \
3552 { \
3553 a -= b; a -= c; a ^= (c>>13); \
3554 b -= c; b -= a; b ^= (a<< 8); \
3555 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3556 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3557 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3558 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3559 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3560 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3561 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3562 }
3563
3564
3565 /* Produce good hash value combining VAL and VAL2. */
3566 static inline hashval_t
3567 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3568 {
3569 /* the golden ratio; an arbitrary value. */
3570 hashval_t a = 0x9e3779b9;
3571
3572 mix (a, val, val2);
3573 return val2;
3574 }
3575
3576 /* Produce good hash value combining PTR and VAL2. */
3577 static inline hashval_t
3578 iterative_hash_pointer (void *ptr, hashval_t val2)
3579 {
3580 if (sizeof (ptr) == sizeof (hashval_t))
3581 return iterative_hash_hashval_t ((size_t) ptr, val2);
3582 else
3583 {
3584 hashval_t a = (hashval_t) (size_t) ptr;
3585 /* Avoid warnings about shifting of more than the width of the type on
3586 hosts that won't execute this path. */
3587 int zero = 0;
3588 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
3589 mix (a, b, val2);
3590 return val2;
3591 }
3592 }
3593
3594 /* Produce good hash value combining VAL and VAL2. */
3595 static inline hashval_t
3596 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3597 {
3598 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3599 return iterative_hash_hashval_t (val, val2);
3600 else
3601 {
3602 hashval_t a = (hashval_t) val;
3603 /* Avoid warnings about shifting of more than the width of the type on
3604 hosts that won't execute this path. */
3605 int zero = 0;
3606 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
3607 mix (a, b, val2);
3608 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
3609 {
3610 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
3611 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
3612 mix (a, b, val2);
3613 }
3614 return val2;
3615 }
3616 }
3617
3618 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3619 is ATTRIBUTE and its qualifiers are QUALS.
3620
3621 Record such modified types already made so we don't make duplicates. */
3622
3623 static tree
3624 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
3625 {
3626 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3627 {
3628 hashval_t hashcode = 0;
3629 tree ntype;
3630 enum tree_code code = TREE_CODE (ttype);
3631
3632 ntype = copy_node (ttype);
3633
3634 TYPE_POINTER_TO (ntype) = 0;
3635 TYPE_REFERENCE_TO (ntype) = 0;
3636 TYPE_ATTRIBUTES (ntype) = attribute;
3637
3638 if (TYPE_STRUCTURAL_EQUALITY_P (ttype))
3639 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
3640 else
3641 TYPE_CANONICAL (ntype)
3642 = build_qualified_type (TYPE_CANONICAL (ttype), quals);
3643
3644 /* Create a new main variant of TYPE. */
3645 TYPE_MAIN_VARIANT (ntype) = ntype;
3646 TYPE_NEXT_VARIANT (ntype) = 0;
3647 set_type_quals (ntype, TYPE_UNQUALIFIED);
3648
3649 hashcode = iterative_hash_object (code, hashcode);
3650 if (TREE_TYPE (ntype))
3651 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3652 hashcode);
3653 hashcode = attribute_hash_list (attribute, hashcode);
3654
3655 switch (TREE_CODE (ntype))
3656 {
3657 case FUNCTION_TYPE:
3658 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3659 break;
3660 case ARRAY_TYPE:
3661 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3662 hashcode);
3663 break;
3664 case INTEGER_TYPE:
3665 hashcode = iterative_hash_object
3666 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3667 hashcode = iterative_hash_object
3668 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3669 break;
3670 case REAL_TYPE:
3671 {
3672 unsigned int precision = TYPE_PRECISION (ntype);
3673 hashcode = iterative_hash_object (precision, hashcode);
3674 }
3675 break;
3676 default:
3677 break;
3678 }
3679
3680 ntype = type_hash_canon (hashcode, ntype);
3681
3682 /* If the target-dependent attributes make NTYPE different from
3683 its canonical type, we will need to use structural equality
3684 checks for this qualified type. */
3685 if (!targetm.comp_type_attributes (ntype, ttype))
3686 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
3687
3688 ttype = build_qualified_type (ntype, quals);
3689 }
3690
3691 return ttype;
3692 }
3693
3694
3695 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3696 is ATTRIBUTE.
3697
3698 Record such modified types already made so we don't make duplicates. */
3699
3700 tree
3701 build_type_attribute_variant (tree ttype, tree attribute)
3702 {
3703 return build_type_attribute_qual_variant (ttype, attribute,
3704 TYPE_QUALS (ttype));
3705 }
3706
3707 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3708 or zero if not.
3709
3710 We try both `text' and `__text__', ATTR may be either one. */
3711 /* ??? It might be a reasonable simplification to require ATTR to be only
3712 `text'. One might then also require attribute lists to be stored in
3713 their canonicalized form. */
3714
3715 static int
3716 is_attribute_with_length_p (const char *attr, int attr_len, tree ident)
3717 {
3718 int ident_len;
3719 const char *p;
3720
3721 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3722 return 0;
3723
3724 p = IDENTIFIER_POINTER (ident);
3725 ident_len = IDENTIFIER_LENGTH (ident);
3726
3727 if (ident_len == attr_len
3728 && strcmp (attr, p) == 0)
3729 return 1;
3730
3731 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3732 if (attr[0] == '_')
3733 {
3734 gcc_assert (attr[1] == '_');
3735 gcc_assert (attr[attr_len - 2] == '_');
3736 gcc_assert (attr[attr_len - 1] == '_');
3737 if (ident_len == attr_len - 4
3738 && strncmp (attr + 2, p, attr_len - 4) == 0)
3739 return 1;
3740 }
3741 else
3742 {
3743 if (ident_len == attr_len + 4
3744 && p[0] == '_' && p[1] == '_'
3745 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3746 && strncmp (attr, p + 2, attr_len) == 0)
3747 return 1;
3748 }
3749
3750 return 0;
3751 }
3752
3753 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3754 or zero if not.
3755
3756 We try both `text' and `__text__', ATTR may be either one. */
3757
3758 int
3759 is_attribute_p (const char *attr, tree ident)
3760 {
3761 return is_attribute_with_length_p (attr, strlen (attr), ident);
3762 }
3763
3764 /* Given an attribute name and a list of attributes, return a pointer to the
3765 attribute's list element if the attribute is part of the list, or NULL_TREE
3766 if not found. If the attribute appears more than once, this only
3767 returns the first occurrence; the TREE_CHAIN of the return value should
3768 be passed back in if further occurrences are wanted. */
3769
3770 tree
3771 lookup_attribute (const char *attr_name, tree list)
3772 {
3773 tree l;
3774 size_t attr_len = strlen (attr_name);
3775
3776 for (l = list; l; l = TREE_CHAIN (l))
3777 {
3778 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3779 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3780 return l;
3781 }
3782
3783 return NULL_TREE;
3784 }
3785
3786 /* Remove any instances of attribute ATTR_NAME in LIST and return the
3787 modified list. */
3788
3789 tree
3790 remove_attribute (const char *attr_name, tree list)
3791 {
3792 tree *p;
3793 size_t attr_len = strlen (attr_name);
3794
3795 for (p = &list; *p; )
3796 {
3797 tree l = *p;
3798 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3799 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3800 *p = TREE_CHAIN (l);
3801 else
3802 p = &TREE_CHAIN (l);
3803 }
3804
3805 return list;
3806 }
3807
3808 /* Return an attribute list that is the union of a1 and a2. */
3809
3810 tree
3811 merge_attributes (tree a1, tree a2)
3812 {
3813 tree attributes;
3814
3815 /* Either one unset? Take the set one. */
3816
3817 if ((attributes = a1) == 0)
3818 attributes = a2;
3819
3820 /* One that completely contains the other? Take it. */
3821
3822 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3823 {
3824 if (attribute_list_contained (a2, a1))
3825 attributes = a2;
3826 else
3827 {
3828 /* Pick the longest list, and hang on the other list. */
3829
3830 if (list_length (a1) < list_length (a2))
3831 attributes = a2, a2 = a1;
3832
3833 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3834 {
3835 tree a;
3836 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3837 attributes);
3838 a != NULL_TREE;
3839 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3840 TREE_CHAIN (a)))
3841 {
3842 if (TREE_VALUE (a) != NULL
3843 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
3844 && TREE_VALUE (a2) != NULL
3845 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
3846 {
3847 if (simple_cst_list_equal (TREE_VALUE (a),
3848 TREE_VALUE (a2)) == 1)
3849 break;
3850 }
3851 else if (simple_cst_equal (TREE_VALUE (a),
3852 TREE_VALUE (a2)) == 1)
3853 break;
3854 }
3855 if (a == NULL_TREE)
3856 {
3857 a1 = copy_node (a2);
3858 TREE_CHAIN (a1) = attributes;
3859 attributes = a1;
3860 }
3861 }
3862 }
3863 }
3864 return attributes;
3865 }
3866
3867 /* Given types T1 and T2, merge their attributes and return
3868 the result. */
3869
3870 tree
3871 merge_type_attributes (tree t1, tree t2)
3872 {
3873 return merge_attributes (TYPE_ATTRIBUTES (t1),
3874 TYPE_ATTRIBUTES (t2));
3875 }
3876
3877 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3878 the result. */
3879
3880 tree
3881 merge_decl_attributes (tree olddecl, tree newdecl)
3882 {
3883 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3884 DECL_ATTRIBUTES (newdecl));
3885 }
3886
3887 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3888
3889 /* Specialization of merge_decl_attributes for various Windows targets.
3890
3891 This handles the following situation:
3892
3893 __declspec (dllimport) int foo;
3894 int foo;
3895
3896 The second instance of `foo' nullifies the dllimport. */
3897
3898 tree
3899 merge_dllimport_decl_attributes (tree old, tree new)
3900 {
3901 tree a;
3902 int delete_dllimport_p = 1;
3903
3904 /* What we need to do here is remove from `old' dllimport if it doesn't
3905 appear in `new'. dllimport behaves like extern: if a declaration is
3906 marked dllimport and a definition appears later, then the object
3907 is not dllimport'd. We also remove a `new' dllimport if the old list
3908 contains dllexport: dllexport always overrides dllimport, regardless
3909 of the order of declaration. */
3910 if (!VAR_OR_FUNCTION_DECL_P (new))
3911 delete_dllimport_p = 0;
3912 else if (DECL_DLLIMPORT_P (new)
3913 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
3914 {
3915 DECL_DLLIMPORT_P (new) = 0;
3916 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
3917 "dllimport ignored", new);
3918 }
3919 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new))
3920 {
3921 /* Warn about overriding a symbol that has already been used. eg:
3922 extern int __attribute__ ((dllimport)) foo;
3923 int* bar () {return &foo;}
3924 int foo;
3925 */
3926 if (TREE_USED (old))
3927 {
3928 warning (0, "%q+D redeclared without dllimport attribute "
3929 "after being referenced with dll linkage", new);
3930 /* If we have used a variable's address with dllimport linkage,
3931 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
3932 decl may already have had TREE_INVARIANT and TREE_CONSTANT
3933 computed.
3934 We still remove the attribute so that assembler code refers
3935 to '&foo rather than '_imp__foo'. */
3936 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
3937 DECL_DLLIMPORT_P (new) = 1;
3938 }
3939
3940 /* Let an inline definition silently override the external reference,
3941 but otherwise warn about attribute inconsistency. */
3942 else if (TREE_CODE (new) == VAR_DECL
3943 || !DECL_DECLARED_INLINE_P (new))
3944 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
3945 "previous dllimport ignored", new);
3946 }
3947 else
3948 delete_dllimport_p = 0;
3949
3950 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new));
3951
3952 if (delete_dllimport_p)
3953 {
3954 tree prev, t;
3955 const size_t attr_len = strlen ("dllimport");
3956
3957 /* Scan the list for dllimport and delete it. */
3958 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3959 {
3960 if (is_attribute_with_length_p ("dllimport", attr_len,
3961 TREE_PURPOSE (t)))
3962 {
3963 if (prev == NULL_TREE)
3964 a = TREE_CHAIN (a);
3965 else
3966 TREE_CHAIN (prev) = TREE_CHAIN (t);
3967 break;
3968 }
3969 }
3970 }
3971
3972 return a;
3973 }
3974
3975 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3976 struct attribute_spec.handler. */
3977
3978 tree
3979 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3980 bool *no_add_attrs)
3981 {
3982 tree node = *pnode;
3983
3984 /* These attributes may apply to structure and union types being created,
3985 but otherwise should pass to the declaration involved. */
3986 if (!DECL_P (node))
3987 {
3988 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3989 | (int) ATTR_FLAG_ARRAY_NEXT))
3990 {
3991 *no_add_attrs = true;
3992 return tree_cons (name, args, NULL_TREE);
3993 }
3994 if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3995 {
3996 warning (OPT_Wattributes, "%qs attribute ignored",
3997 IDENTIFIER_POINTER (name));
3998 *no_add_attrs = true;
3999 }
4000
4001 return NULL_TREE;
4002 }
4003
4004 if (TREE_CODE (node) != FUNCTION_DECL
4005 && TREE_CODE (node) != VAR_DECL)
4006 {
4007 *no_add_attrs = true;
4008 warning (OPT_Wattributes, "%qs attribute ignored",
4009 IDENTIFIER_POINTER (name));
4010 return NULL_TREE;
4011 }
4012
4013 /* Report error on dllimport ambiguities seen now before they cause
4014 any damage. */
4015 else if (is_attribute_p ("dllimport", name))
4016 {
4017 /* Honor any target-specific overrides. */
4018 if (!targetm.valid_dllimport_attribute_p (node))
4019 *no_add_attrs = true;
4020
4021 else if (TREE_CODE (node) == FUNCTION_DECL
4022 && DECL_DECLARED_INLINE_P (node))
4023 {
4024 warning (OPT_Wattributes, "inline function %q+D declared as "
4025 " dllimport: attribute ignored", node);
4026 *no_add_attrs = true;
4027 }
4028 /* Like MS, treat definition of dllimported variables and
4029 non-inlined functions on declaration as syntax errors. */
4030 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
4031 {
4032 error ("function %q+D definition is marked dllimport", node);
4033 *no_add_attrs = true;
4034 }
4035
4036 else if (TREE_CODE (node) == VAR_DECL)
4037 {
4038 if (DECL_INITIAL (node))
4039 {
4040 error ("variable %q+D definition is marked dllimport",
4041 node);
4042 *no_add_attrs = true;
4043 }
4044
4045 /* `extern' needn't be specified with dllimport.
4046 Specify `extern' now and hope for the best. Sigh. */
4047 DECL_EXTERNAL (node) = 1;
4048 /* Also, implicitly give dllimport'd variables declared within
4049 a function global scope, unless declared static. */
4050 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
4051 TREE_PUBLIC (node) = 1;
4052 }
4053
4054 if (*no_add_attrs == false)
4055 DECL_DLLIMPORT_P (node) = 1;
4056 }
4057
4058 /* Report error if symbol is not accessible at global scope. */
4059 if (!TREE_PUBLIC (node)
4060 && (TREE_CODE (node) == VAR_DECL
4061 || TREE_CODE (node) == FUNCTION_DECL))
4062 {
4063 error ("external linkage required for symbol %q+D because of "
4064 "%qs attribute", node, IDENTIFIER_POINTER (name));
4065 *no_add_attrs = true;
4066 }
4067
4068 return NULL_TREE;
4069 }
4070
4071 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
4072 \f
4073 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
4074 of the various TYPE_QUAL values. */
4075
4076 static void
4077 set_type_quals (tree type, int type_quals)
4078 {
4079 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
4080 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
4081 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
4082 }
4083
4084 /* Returns true iff cand is equivalent to base with type_quals. */
4085
4086 bool
4087 check_qualified_type (tree cand, tree base, int type_quals)
4088 {
4089 return (TYPE_QUALS (cand) == type_quals
4090 && TYPE_NAME (cand) == TYPE_NAME (base)
4091 /* Apparently this is needed for Objective-C. */
4092 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
4093 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
4094 TYPE_ATTRIBUTES (base)));
4095 }
4096
4097 /* Return a version of the TYPE, qualified as indicated by the
4098 TYPE_QUALS, if one exists. If no qualified version exists yet,
4099 return NULL_TREE. */
4100
4101 tree
4102 get_qualified_type (tree type, int type_quals)
4103 {
4104 tree t;
4105
4106 if (TYPE_QUALS (type) == type_quals)
4107 return type;
4108
4109 /* Search the chain of variants to see if there is already one there just
4110 like the one we need to have. If so, use that existing one. We must
4111 preserve the TYPE_NAME, since there is code that depends on this. */
4112 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
4113 if (check_qualified_type (t, type, type_quals))
4114 return t;
4115
4116 return NULL_TREE;
4117 }
4118
4119 /* Like get_qualified_type, but creates the type if it does not
4120 exist. This function never returns NULL_TREE. */
4121
4122 tree
4123 build_qualified_type (tree type, int type_quals)
4124 {
4125 tree t;
4126
4127 /* See if we already have the appropriate qualified variant. */
4128 t = get_qualified_type (type, type_quals);
4129
4130 /* If not, build it. */
4131 if (!t)
4132 {
4133 t = build_variant_type_copy (type);
4134 set_type_quals (t, type_quals);
4135
4136 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4137 /* Propagate structural equality. */
4138 SET_TYPE_STRUCTURAL_EQUALITY (t);
4139 else if (TYPE_CANONICAL (type) != type)
4140 /* Build the underlying canonical type, since it is different
4141 from TYPE. */
4142 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
4143 type_quals);
4144 else
4145 /* T is its own canonical type. */
4146 TYPE_CANONICAL (t) = t;
4147
4148 }
4149
4150 return t;
4151 }
4152
4153 /* Create a new distinct copy of TYPE. The new type is made its own
4154 MAIN_VARIANT. If TYPE requires structural equality checks, the
4155 resulting type requires structural equality checks; otherwise, its
4156 TYPE_CANONICAL points to itself. */
4157
4158 tree
4159 build_distinct_type_copy (tree type)
4160 {
4161 tree t = copy_node (type);
4162
4163 TYPE_POINTER_TO (t) = 0;
4164 TYPE_REFERENCE_TO (t) = 0;
4165
4166 /* Set the canonical type either to a new equivalence class, or
4167 propagate the need for structural equality checks. */
4168 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4169 SET_TYPE_STRUCTURAL_EQUALITY (t);
4170 else
4171 TYPE_CANONICAL (t) = t;
4172
4173 /* Make it its own variant. */
4174 TYPE_MAIN_VARIANT (t) = t;
4175 TYPE_NEXT_VARIANT (t) = 0;
4176
4177 /* VRP assumes that TREE_TYPE (TYPE_MIN_VALUE (type)) == type. */
4178 if (INTEGRAL_TYPE_P (t) || SCALAR_FLOAT_TYPE_P (t))
4179 {
4180 if (TYPE_MIN_VALUE (t) != NULL_TREE)
4181 TYPE_MIN_VALUE (t) = fold_convert (t, TYPE_MIN_VALUE (t));
4182 if (TYPE_MAX_VALUE (t) != NULL_TREE)
4183 TYPE_MAX_VALUE (t) = fold_convert (t, TYPE_MAX_VALUE (t));
4184 }
4185
4186 return t;
4187 }
4188
4189 /* Create a new variant of TYPE, equivalent but distinct. This is so
4190 the caller can modify it. TYPE_CANONICAL for the return type will
4191 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
4192 are considered equal by the language itself (or that both types
4193 require structural equality checks). */
4194
4195 tree
4196 build_variant_type_copy (tree type)
4197 {
4198 tree t, m = TYPE_MAIN_VARIANT (type);
4199
4200 t = build_distinct_type_copy (type);
4201
4202 /* Since we're building a variant, assume that it is a non-semantic
4203 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
4204 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
4205
4206 /* Add the new type to the chain of variants of TYPE. */
4207 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
4208 TYPE_NEXT_VARIANT (m) = t;
4209 TYPE_MAIN_VARIANT (t) = m;
4210
4211 return t;
4212 }
4213 \f
4214 /* Return true if the from tree in both tree maps are equal. */
4215
4216 int
4217 tree_map_base_eq (const void *va, const void *vb)
4218 {
4219 const struct tree_map_base *a = va, *b = vb;
4220 return (a->from == b->from);
4221 }
4222
4223 /* Hash a from tree in a tree_map. */
4224
4225 unsigned int
4226 tree_map_base_hash (const void *item)
4227 {
4228 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
4229 }
4230
4231 /* Return true if this tree map structure is marked for garbage collection
4232 purposes. We simply return true if the from tree is marked, so that this
4233 structure goes away when the from tree goes away. */
4234
4235 int
4236 tree_map_base_marked_p (const void *p)
4237 {
4238 return ggc_marked_p (((struct tree_map_base *) p)->from);
4239 }
4240
4241 unsigned int
4242 tree_map_hash (const void *item)
4243 {
4244 return (((const struct tree_map *) item)->hash);
4245 }
4246
4247 /* Return the initialization priority for DECL. */
4248
4249 priority_type
4250 decl_init_priority_lookup (tree decl)
4251 {
4252 struct tree_priority_map *h;
4253 struct tree_map_base in;
4254
4255 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
4256 gcc_assert (TREE_CODE (decl) == VAR_DECL
4257 ? DECL_HAS_INIT_PRIORITY_P (decl)
4258 : DECL_STATIC_CONSTRUCTOR (decl));
4259 in.from = decl;
4260 h = htab_find (init_priority_for_decl, &in);
4261 return h ? h->init : DEFAULT_INIT_PRIORITY;
4262 }
4263
4264 /* Return the finalization priority for DECL. */
4265
4266 priority_type
4267 decl_fini_priority_lookup (tree decl)
4268 {
4269 struct tree_priority_map *h;
4270 struct tree_map_base in;
4271
4272 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
4273 gcc_assert (DECL_STATIC_DESTRUCTOR (decl));
4274 in.from = decl;
4275 h = htab_find (init_priority_for_decl, &in);
4276 return h ? h->fini : DEFAULT_INIT_PRIORITY;
4277 }
4278
4279 /* Return the initialization and finalization priority information for
4280 DECL. If there is no previous priority information, a freshly
4281 allocated structure is returned. */
4282
4283 static struct tree_priority_map *
4284 decl_priority_info (tree decl)
4285 {
4286 struct tree_priority_map in;
4287 struct tree_priority_map *h;
4288 void **loc;
4289
4290 in.base.from = decl;
4291 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
4292 h = *loc;
4293 if (!h)
4294 {
4295 h = GGC_CNEW (struct tree_priority_map);
4296 *loc = h;
4297 h->base.from = decl;
4298 h->init = DEFAULT_INIT_PRIORITY;
4299 h->fini = DEFAULT_INIT_PRIORITY;
4300 }
4301
4302 return h;
4303 }
4304
4305 /* Set the initialization priority for DECL to PRIORITY. */
4306
4307 void
4308 decl_init_priority_insert (tree decl, priority_type priority)
4309 {
4310 struct tree_priority_map *h;
4311
4312 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
4313 h = decl_priority_info (decl);
4314 h->init = priority;
4315 }
4316
4317 /* Set the finalization priority for DECL to PRIORITY. */
4318
4319 void
4320 decl_fini_priority_insert (tree decl, priority_type priority)
4321 {
4322 struct tree_priority_map *h;
4323
4324 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
4325 h = decl_priority_info (decl);
4326 h->fini = priority;
4327 }
4328
4329 /* Look up a restrict qualified base decl for FROM. */
4330
4331 tree
4332 decl_restrict_base_lookup (tree from)
4333 {
4334 struct tree_map *h;
4335 struct tree_map in;
4336
4337 in.base.from = from;
4338 h = htab_find_with_hash (restrict_base_for_decl, &in,
4339 htab_hash_pointer (from));
4340 return h ? h->to : NULL_TREE;
4341 }
4342
4343 /* Record the restrict qualified base TO for FROM. */
4344
4345 void
4346 decl_restrict_base_insert (tree from, tree to)
4347 {
4348 struct tree_map *h;
4349 void **loc;
4350
4351 h = ggc_alloc (sizeof (struct tree_map));
4352 h->hash = htab_hash_pointer (from);
4353 h->base.from = from;
4354 h->to = to;
4355 loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
4356 *(struct tree_map **) loc = h;
4357 }
4358
4359 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
4360
4361 static void
4362 print_debug_expr_statistics (void)
4363 {
4364 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
4365 (long) htab_size (debug_expr_for_decl),
4366 (long) htab_elements (debug_expr_for_decl),
4367 htab_collisions (debug_expr_for_decl));
4368 }
4369
4370 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
4371
4372 static void
4373 print_value_expr_statistics (void)
4374 {
4375 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
4376 (long) htab_size (value_expr_for_decl),
4377 (long) htab_elements (value_expr_for_decl),
4378 htab_collisions (value_expr_for_decl));
4379 }
4380
4381 /* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
4382 don't print anything if the table is empty. */
4383
4384 static void
4385 print_restrict_base_statistics (void)
4386 {
4387 if (htab_elements (restrict_base_for_decl) != 0)
4388 fprintf (stderr,
4389 "RESTRICT_BASE hash: size %ld, %ld elements, %f collisions\n",
4390 (long) htab_size (restrict_base_for_decl),
4391 (long) htab_elements (restrict_base_for_decl),
4392 htab_collisions (restrict_base_for_decl));
4393 }
4394
4395 /* Lookup a debug expression for FROM, and return it if we find one. */
4396
4397 tree
4398 decl_debug_expr_lookup (tree from)
4399 {
4400 struct tree_map *h, in;
4401 in.base.from = from;
4402
4403 h = htab_find_with_hash (debug_expr_for_decl, &in, htab_hash_pointer (from));
4404 if (h)
4405 return h->to;
4406 return NULL_TREE;
4407 }
4408
4409 /* Insert a mapping FROM->TO in the debug expression hashtable. */
4410
4411 void
4412 decl_debug_expr_insert (tree from, tree to)
4413 {
4414 struct tree_map *h;
4415 void **loc;
4416
4417 h = ggc_alloc (sizeof (struct tree_map));
4418 h->hash = htab_hash_pointer (from);
4419 h->base.from = from;
4420 h->to = to;
4421 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
4422 *(struct tree_map **) loc = h;
4423 }
4424
4425 /* Lookup a value expression for FROM, and return it if we find one. */
4426
4427 tree
4428 decl_value_expr_lookup (tree from)
4429 {
4430 struct tree_map *h, in;
4431 in.base.from = from;
4432
4433 h = htab_find_with_hash (value_expr_for_decl, &in, htab_hash_pointer (from));
4434 if (h)
4435 return h->to;
4436 return NULL_TREE;
4437 }
4438
4439 /* Insert a mapping FROM->TO in the value expression hashtable. */
4440
4441 void
4442 decl_value_expr_insert (tree from, tree to)
4443 {
4444 struct tree_map *h;
4445 void **loc;
4446
4447 h = ggc_alloc (sizeof (struct tree_map));
4448 h->hash = htab_hash_pointer (from);
4449 h->base.from = from;
4450 h->to = to;
4451 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
4452 *(struct tree_map **) loc = h;
4453 }
4454
4455 /* Hashing of types so that we don't make duplicates.
4456 The entry point is `type_hash_canon'. */
4457
4458 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
4459 with types in the TREE_VALUE slots), by adding the hash codes
4460 of the individual types. */
4461
4462 unsigned int
4463 type_hash_list (tree list, hashval_t hashcode)
4464 {
4465 tree tail;
4466
4467 for (tail = list; tail; tail = TREE_CHAIN (tail))
4468 if (TREE_VALUE (tail) != error_mark_node)
4469 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
4470 hashcode);
4471
4472 return hashcode;
4473 }
4474
4475 /* These are the Hashtable callback functions. */
4476
4477 /* Returns true iff the types are equivalent. */
4478
4479 static int
4480 type_hash_eq (const void *va, const void *vb)
4481 {
4482 const struct type_hash *a = va, *b = vb;
4483
4484 /* First test the things that are the same for all types. */
4485 if (a->hash != b->hash
4486 || TREE_CODE (a->type) != TREE_CODE (b->type)
4487 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
4488 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
4489 TYPE_ATTRIBUTES (b->type))
4490 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
4491 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
4492 return 0;
4493
4494 switch (TREE_CODE (a->type))
4495 {
4496 case VOID_TYPE:
4497 case COMPLEX_TYPE:
4498 case POINTER_TYPE:
4499 case REFERENCE_TYPE:
4500 return 1;
4501
4502 case VECTOR_TYPE:
4503 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
4504
4505 case ENUMERAL_TYPE:
4506 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
4507 && !(TYPE_VALUES (a->type)
4508 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
4509 && TYPE_VALUES (b->type)
4510 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
4511 && type_list_equal (TYPE_VALUES (a->type),
4512 TYPE_VALUES (b->type))))
4513 return 0;
4514
4515 /* ... fall through ... */
4516
4517 case INTEGER_TYPE:
4518 case REAL_TYPE:
4519 case BOOLEAN_TYPE:
4520 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4521 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4522 TYPE_MAX_VALUE (b->type)))
4523 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4524 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4525 TYPE_MIN_VALUE (b->type))));
4526
4527 case OFFSET_TYPE:
4528 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4529
4530 case METHOD_TYPE:
4531 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4532 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4533 || (TYPE_ARG_TYPES (a->type)
4534 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4535 && TYPE_ARG_TYPES (b->type)
4536 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4537 && type_list_equal (TYPE_ARG_TYPES (a->type),
4538 TYPE_ARG_TYPES (b->type)))));
4539
4540 case ARRAY_TYPE:
4541 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4542
4543 case RECORD_TYPE:
4544 case UNION_TYPE:
4545 case QUAL_UNION_TYPE:
4546 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4547 || (TYPE_FIELDS (a->type)
4548 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4549 && TYPE_FIELDS (b->type)
4550 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4551 && type_list_equal (TYPE_FIELDS (a->type),
4552 TYPE_FIELDS (b->type))));
4553
4554 case FUNCTION_TYPE:
4555 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4556 || (TYPE_ARG_TYPES (a->type)
4557 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4558 && TYPE_ARG_TYPES (b->type)
4559 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4560 && type_list_equal (TYPE_ARG_TYPES (a->type),
4561 TYPE_ARG_TYPES (b->type))));
4562
4563 default:
4564 return 0;
4565 }
4566 }
4567
4568 /* Return the cached hash value. */
4569
4570 static hashval_t
4571 type_hash_hash (const void *item)
4572 {
4573 return ((const struct type_hash *) item)->hash;
4574 }
4575
4576 /* Look in the type hash table for a type isomorphic to TYPE.
4577 If one is found, return it. Otherwise return 0. */
4578
4579 tree
4580 type_hash_lookup (hashval_t hashcode, tree type)
4581 {
4582 struct type_hash *h, in;
4583
4584 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4585 must call that routine before comparing TYPE_ALIGNs. */
4586 layout_type (type);
4587
4588 in.hash = hashcode;
4589 in.type = type;
4590
4591 h = htab_find_with_hash (type_hash_table, &in, hashcode);
4592 if (h)
4593 return h->type;
4594 return NULL_TREE;
4595 }
4596
4597 /* Add an entry to the type-hash-table
4598 for a type TYPE whose hash code is HASHCODE. */
4599
4600 void
4601 type_hash_add (hashval_t hashcode, tree type)
4602 {
4603 struct type_hash *h;
4604 void **loc;
4605
4606 h = ggc_alloc (sizeof (struct type_hash));
4607 h->hash = hashcode;
4608 h->type = type;
4609 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
4610 *(struct type_hash **) loc = h;
4611 }
4612
4613 /* Given TYPE, and HASHCODE its hash code, return the canonical
4614 object for an identical type if one already exists.
4615 Otherwise, return TYPE, and record it as the canonical object.
4616
4617 To use this function, first create a type of the sort you want.
4618 Then compute its hash code from the fields of the type that
4619 make it different from other similar types.
4620 Then call this function and use the value. */
4621
4622 tree
4623 type_hash_canon (unsigned int hashcode, tree type)
4624 {
4625 tree t1;
4626
4627 /* The hash table only contains main variants, so ensure that's what we're
4628 being passed. */
4629 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
4630
4631 if (!lang_hooks.types.hash_types)
4632 return type;
4633
4634 /* See if the type is in the hash table already. If so, return it.
4635 Otherwise, add the type. */
4636 t1 = type_hash_lookup (hashcode, type);
4637 if (t1 != 0)
4638 {
4639 #ifdef GATHER_STATISTICS
4640 tree_node_counts[(int) t_kind]--;
4641 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
4642 #endif
4643 return t1;
4644 }
4645 else
4646 {
4647 type_hash_add (hashcode, type);
4648 return type;
4649 }
4650 }
4651
4652 /* See if the data pointed to by the type hash table is marked. We consider
4653 it marked if the type is marked or if a debug type number or symbol
4654 table entry has been made for the type. This reduces the amount of
4655 debugging output and eliminates that dependency of the debug output on
4656 the number of garbage collections. */
4657
4658 static int
4659 type_hash_marked_p (const void *p)
4660 {
4661 tree type = ((struct type_hash *) p)->type;
4662
4663 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
4664 }
4665
4666 static void
4667 print_type_hash_statistics (void)
4668 {
4669 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
4670 (long) htab_size (type_hash_table),
4671 (long) htab_elements (type_hash_table),
4672 htab_collisions (type_hash_table));
4673 }
4674
4675 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4676 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4677 by adding the hash codes of the individual attributes. */
4678
4679 unsigned int
4680 attribute_hash_list (tree list, hashval_t hashcode)
4681 {
4682 tree tail;
4683
4684 for (tail = list; tail; tail = TREE_CHAIN (tail))
4685 /* ??? Do we want to add in TREE_VALUE too? */
4686 hashcode = iterative_hash_object
4687 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
4688 return hashcode;
4689 }
4690
4691 /* Given two lists of attributes, return true if list l2 is
4692 equivalent to l1. */
4693
4694 int
4695 attribute_list_equal (tree l1, tree l2)
4696 {
4697 return attribute_list_contained (l1, l2)
4698 && attribute_list_contained (l2, l1);
4699 }
4700
4701 /* Given two lists of attributes, return true if list L2 is
4702 completely contained within L1. */
4703 /* ??? This would be faster if attribute names were stored in a canonicalized
4704 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4705 must be used to show these elements are equivalent (which they are). */
4706 /* ??? It's not clear that attributes with arguments will always be handled
4707 correctly. */
4708
4709 int
4710 attribute_list_contained (tree l1, tree l2)
4711 {
4712 tree t1, t2;
4713
4714 /* First check the obvious, maybe the lists are identical. */
4715 if (l1 == l2)
4716 return 1;
4717
4718 /* Maybe the lists are similar. */
4719 for (t1 = l1, t2 = l2;
4720 t1 != 0 && t2 != 0
4721 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4722 && TREE_VALUE (t1) == TREE_VALUE (t2);
4723 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4724
4725 /* Maybe the lists are equal. */
4726 if (t1 == 0 && t2 == 0)
4727 return 1;
4728
4729 for (; t2 != 0; t2 = TREE_CHAIN (t2))
4730 {
4731 tree attr;
4732 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
4733 attr != NULL_TREE;
4734 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4735 TREE_CHAIN (attr)))
4736 {
4737 if (TREE_VALUE (t2) != NULL
4738 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
4739 && TREE_VALUE (attr) != NULL
4740 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
4741 {
4742 if (simple_cst_list_equal (TREE_VALUE (t2),
4743 TREE_VALUE (attr)) == 1)
4744 break;
4745 }
4746 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
4747 break;
4748 }
4749
4750 if (attr == 0)
4751 return 0;
4752 }
4753
4754 return 1;
4755 }
4756
4757 /* Given two lists of types
4758 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4759 return 1 if the lists contain the same types in the same order.
4760 Also, the TREE_PURPOSEs must match. */
4761
4762 int
4763 type_list_equal (tree l1, tree l2)
4764 {
4765 tree t1, t2;
4766
4767 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4768 if (TREE_VALUE (t1) != TREE_VALUE (t2)
4769 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4770 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4771 && (TREE_TYPE (TREE_PURPOSE (t1))
4772 == TREE_TYPE (TREE_PURPOSE (t2))))))
4773 return 0;
4774
4775 return t1 == t2;
4776 }
4777
4778 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
4779 given by TYPE. If the argument list accepts variable arguments,
4780 then this function counts only the ordinary arguments. */
4781
4782 int
4783 type_num_arguments (tree type)
4784 {
4785 int i = 0;
4786 tree t;
4787
4788 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
4789 /* If the function does not take a variable number of arguments,
4790 the last element in the list will have type `void'. */
4791 if (VOID_TYPE_P (TREE_VALUE (t)))
4792 break;
4793 else
4794 ++i;
4795
4796 return i;
4797 }
4798
4799 /* Nonzero if integer constants T1 and T2
4800 represent the same constant value. */
4801
4802 int
4803 tree_int_cst_equal (tree t1, tree t2)
4804 {
4805 if (t1 == t2)
4806 return 1;
4807
4808 if (t1 == 0 || t2 == 0)
4809 return 0;
4810
4811 if (TREE_CODE (t1) == INTEGER_CST
4812 && TREE_CODE (t2) == INTEGER_CST
4813 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4814 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4815 return 1;
4816
4817 return 0;
4818 }
4819
4820 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4821 The precise way of comparison depends on their data type. */
4822
4823 int
4824 tree_int_cst_lt (tree t1, tree t2)
4825 {
4826 if (t1 == t2)
4827 return 0;
4828
4829 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
4830 {
4831 int t1_sgn = tree_int_cst_sgn (t1);
4832 int t2_sgn = tree_int_cst_sgn (t2);
4833
4834 if (t1_sgn < t2_sgn)
4835 return 1;
4836 else if (t1_sgn > t2_sgn)
4837 return 0;
4838 /* Otherwise, both are non-negative, so we compare them as
4839 unsigned just in case one of them would overflow a signed
4840 type. */
4841 }
4842 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
4843 return INT_CST_LT (t1, t2);
4844
4845 return INT_CST_LT_UNSIGNED (t1, t2);
4846 }
4847
4848 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
4849
4850 int
4851 tree_int_cst_compare (tree t1, tree t2)
4852 {
4853 if (tree_int_cst_lt (t1, t2))
4854 return -1;
4855 else if (tree_int_cst_lt (t2, t1))
4856 return 1;
4857 else
4858 return 0;
4859 }
4860
4861 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
4862 the host. If POS is zero, the value can be represented in a single
4863 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
4864 be represented in a single unsigned HOST_WIDE_INT. */
4865
4866 int
4867 host_integerp (tree t, int pos)
4868 {
4869 return (TREE_CODE (t) == INTEGER_CST
4870 && ((TREE_INT_CST_HIGH (t) == 0
4871 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4872 || (! pos && TREE_INT_CST_HIGH (t) == -1
4873 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
4874 && !TYPE_UNSIGNED (TREE_TYPE (t)))
4875 || (pos && TREE_INT_CST_HIGH (t) == 0)));
4876 }
4877
4878 /* Return the HOST_WIDE_INT least significant bits of T if it is an
4879 INTEGER_CST and there is no overflow. POS is nonzero if the result must
4880 be non-negative. We must be able to satisfy the above conditions. */
4881
4882 HOST_WIDE_INT
4883 tree_low_cst (tree t, int pos)
4884 {
4885 gcc_assert (host_integerp (t, pos));
4886 return TREE_INT_CST_LOW (t);
4887 }
4888
4889 /* Return the most significant bit of the integer constant T. */
4890
4891 int
4892 tree_int_cst_msb (tree t)
4893 {
4894 int prec;
4895 HOST_WIDE_INT h;
4896 unsigned HOST_WIDE_INT l;
4897
4898 /* Note that using TYPE_PRECISION here is wrong. We care about the
4899 actual bits, not the (arbitrary) range of the type. */
4900 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
4901 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
4902 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
4903 return (l & 1) == 1;
4904 }
4905
4906 /* Return an indication of the sign of the integer constant T.
4907 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
4908 Note that -1 will never be returned if T's type is unsigned. */
4909
4910 int
4911 tree_int_cst_sgn (tree t)
4912 {
4913 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4914 return 0;
4915 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
4916 return 1;
4917 else if (TREE_INT_CST_HIGH (t) < 0)
4918 return -1;
4919 else
4920 return 1;
4921 }
4922
4923 /* Compare two constructor-element-type constants. Return 1 if the lists
4924 are known to be equal; otherwise return 0. */
4925
4926 int
4927 simple_cst_list_equal (tree l1, tree l2)
4928 {
4929 while (l1 != NULL_TREE && l2 != NULL_TREE)
4930 {
4931 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4932 return 0;
4933
4934 l1 = TREE_CHAIN (l1);
4935 l2 = TREE_CHAIN (l2);
4936 }
4937
4938 return l1 == l2;
4939 }
4940
4941 /* Return truthvalue of whether T1 is the same tree structure as T2.
4942 Return 1 if they are the same.
4943 Return 0 if they are understandably different.
4944 Return -1 if either contains tree structure not understood by
4945 this function. */
4946
4947 int
4948 simple_cst_equal (tree t1, tree t2)
4949 {
4950 enum tree_code code1, code2;
4951 int cmp;
4952 int i;
4953
4954 if (t1 == t2)
4955 return 1;
4956 if (t1 == 0 || t2 == 0)
4957 return 0;
4958
4959 code1 = TREE_CODE (t1);
4960 code2 = TREE_CODE (t2);
4961
4962 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
4963 {
4964 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4965 || code2 == NON_LVALUE_EXPR)
4966 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4967 else
4968 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
4969 }
4970
4971 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4972 || code2 == NON_LVALUE_EXPR)
4973 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
4974
4975 if (code1 != code2)
4976 return 0;
4977
4978 switch (code1)
4979 {
4980 case INTEGER_CST:
4981 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4982 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
4983
4984 case REAL_CST:
4985 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
4986
4987 case STRING_CST:
4988 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
4989 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
4990 TREE_STRING_LENGTH (t1)));
4991
4992 case CONSTRUCTOR:
4993 {
4994 unsigned HOST_WIDE_INT idx;
4995 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
4996 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
4997
4998 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
4999 return false;
5000
5001 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
5002 /* ??? Should we handle also fields here? */
5003 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
5004 VEC_index (constructor_elt, v2, idx)->value))
5005 return false;
5006 return true;
5007 }
5008
5009 case SAVE_EXPR:
5010 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5011
5012 case CALL_EXPR:
5013 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
5014 if (cmp <= 0)
5015 return cmp;
5016 if (call_expr_nargs (t1) != call_expr_nargs (t2))
5017 return 0;
5018 {
5019 tree arg1, arg2;
5020 call_expr_arg_iterator iter1, iter2;
5021 for (arg1 = first_call_expr_arg (t1, &iter1),
5022 arg2 = first_call_expr_arg (t2, &iter2);
5023 arg1 && arg2;
5024 arg1 = next_call_expr_arg (&iter1),
5025 arg2 = next_call_expr_arg (&iter2))
5026 {
5027 cmp = simple_cst_equal (arg1, arg2);
5028 if (cmp <= 0)
5029 return cmp;
5030 }
5031 return arg1 == arg2;
5032 }
5033
5034 case TARGET_EXPR:
5035 /* Special case: if either target is an unallocated VAR_DECL,
5036 it means that it's going to be unified with whatever the
5037 TARGET_EXPR is really supposed to initialize, so treat it
5038 as being equivalent to anything. */
5039 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
5040 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
5041 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
5042 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
5043 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
5044 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
5045 cmp = 1;
5046 else
5047 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5048
5049 if (cmp <= 0)
5050 return cmp;
5051
5052 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
5053
5054 case WITH_CLEANUP_EXPR:
5055 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5056 if (cmp <= 0)
5057 return cmp;
5058
5059 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
5060
5061 case COMPONENT_REF:
5062 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
5063 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5064
5065 return 0;
5066
5067 case VAR_DECL:
5068 case PARM_DECL:
5069 case CONST_DECL:
5070 case FUNCTION_DECL:
5071 return 0;
5072
5073 default:
5074 break;
5075 }
5076
5077 /* This general rule works for most tree codes. All exceptions should be
5078 handled above. If this is a language-specific tree code, we can't
5079 trust what might be in the operand, so say we don't know
5080 the situation. */
5081 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
5082 return -1;
5083
5084 switch (TREE_CODE_CLASS (code1))
5085 {
5086 case tcc_unary:
5087 case tcc_binary:
5088 case tcc_comparison:
5089 case tcc_expression:
5090 case tcc_reference:
5091 case tcc_statement:
5092 cmp = 1;
5093 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
5094 {
5095 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
5096 if (cmp <= 0)
5097 return cmp;
5098 }
5099
5100 return cmp;
5101
5102 default:
5103 return -1;
5104 }
5105 }
5106
5107 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
5108 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
5109 than U, respectively. */
5110
5111 int
5112 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
5113 {
5114 if (tree_int_cst_sgn (t) < 0)
5115 return -1;
5116 else if (TREE_INT_CST_HIGH (t) != 0)
5117 return 1;
5118 else if (TREE_INT_CST_LOW (t) == u)
5119 return 0;
5120 else if (TREE_INT_CST_LOW (t) < u)
5121 return -1;
5122 else
5123 return 1;
5124 }
5125
5126 /* Return true if CODE represents an associative tree code. Otherwise
5127 return false. */
5128 bool
5129 associative_tree_code (enum tree_code code)
5130 {
5131 switch (code)
5132 {
5133 case BIT_IOR_EXPR:
5134 case BIT_AND_EXPR:
5135 case BIT_XOR_EXPR:
5136 case PLUS_EXPR:
5137 case MULT_EXPR:
5138 case MIN_EXPR:
5139 case MAX_EXPR:
5140 return true;
5141
5142 default:
5143 break;
5144 }
5145 return false;
5146 }
5147
5148 /* Return true if CODE represents a commutative tree code. Otherwise
5149 return false. */
5150 bool
5151 commutative_tree_code (enum tree_code code)
5152 {
5153 switch (code)
5154 {
5155 case PLUS_EXPR:
5156 case MULT_EXPR:
5157 case MIN_EXPR:
5158 case MAX_EXPR:
5159 case BIT_IOR_EXPR:
5160 case BIT_XOR_EXPR:
5161 case BIT_AND_EXPR:
5162 case NE_EXPR:
5163 case EQ_EXPR:
5164 case UNORDERED_EXPR:
5165 case ORDERED_EXPR:
5166 case UNEQ_EXPR:
5167 case LTGT_EXPR:
5168 case TRUTH_AND_EXPR:
5169 case TRUTH_XOR_EXPR:
5170 case TRUTH_OR_EXPR:
5171 return true;
5172
5173 default:
5174 break;
5175 }
5176 return false;
5177 }
5178
5179 /* Generate a hash value for an expression. This can be used iteratively
5180 by passing a previous result as the "val" argument.
5181
5182 This function is intended to produce the same hash for expressions which
5183 would compare equal using operand_equal_p. */
5184
5185 hashval_t
5186 iterative_hash_expr (tree t, hashval_t val)
5187 {
5188 int i;
5189 enum tree_code code;
5190 char class;
5191
5192 if (t == NULL_TREE)
5193 return iterative_hash_pointer (t, val);
5194
5195 code = TREE_CODE (t);
5196
5197 switch (code)
5198 {
5199 /* Alas, constants aren't shared, so we can't rely on pointer
5200 identity. */
5201 case INTEGER_CST:
5202 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
5203 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
5204 case REAL_CST:
5205 {
5206 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
5207
5208 return iterative_hash_hashval_t (val2, val);
5209 }
5210 case STRING_CST:
5211 return iterative_hash (TREE_STRING_POINTER (t),
5212 TREE_STRING_LENGTH (t), val);
5213 case COMPLEX_CST:
5214 val = iterative_hash_expr (TREE_REALPART (t), val);
5215 return iterative_hash_expr (TREE_IMAGPART (t), val);
5216 case VECTOR_CST:
5217 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
5218
5219 case SSA_NAME:
5220 case VALUE_HANDLE:
5221 /* we can just compare by pointer. */
5222 return iterative_hash_pointer (t, val);
5223
5224 case TREE_LIST:
5225 /* A list of expressions, for a CALL_EXPR or as the elements of a
5226 VECTOR_CST. */
5227 for (; t; t = TREE_CHAIN (t))
5228 val = iterative_hash_expr (TREE_VALUE (t), val);
5229 return val;
5230 case CONSTRUCTOR:
5231 {
5232 unsigned HOST_WIDE_INT idx;
5233 tree field, value;
5234 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
5235 {
5236 val = iterative_hash_expr (field, val);
5237 val = iterative_hash_expr (value, val);
5238 }
5239 return val;
5240 }
5241 case FUNCTION_DECL:
5242 /* When referring to a built-in FUNCTION_DECL, use the
5243 __builtin__ form. Otherwise nodes that compare equal
5244 according to operand_equal_p might get different
5245 hash codes. */
5246 if (DECL_BUILT_IN (t))
5247 {
5248 val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
5249 val);
5250 return val;
5251 }
5252 /* else FALL THROUGH */
5253 default:
5254 class = TREE_CODE_CLASS (code);
5255
5256 if (class == tcc_declaration)
5257 {
5258 /* DECL's have a unique ID */
5259 val = iterative_hash_host_wide_int (DECL_UID (t), val);
5260 }
5261 else
5262 {
5263 gcc_assert (IS_EXPR_CODE_CLASS (class));
5264
5265 val = iterative_hash_object (code, val);
5266
5267 /* Don't hash the type, that can lead to having nodes which
5268 compare equal according to operand_equal_p, but which
5269 have different hash codes. */
5270 if (code == NOP_EXPR
5271 || code == CONVERT_EXPR
5272 || code == NON_LVALUE_EXPR)
5273 {
5274 /* Make sure to include signness in the hash computation. */
5275 val += TYPE_UNSIGNED (TREE_TYPE (t));
5276 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
5277 }
5278
5279 else if (commutative_tree_code (code))
5280 {
5281 /* It's a commutative expression. We want to hash it the same
5282 however it appears. We do this by first hashing both operands
5283 and then rehashing based on the order of their independent
5284 hashes. */
5285 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
5286 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
5287 hashval_t t;
5288
5289 if (one > two)
5290 t = one, one = two, two = t;
5291
5292 val = iterative_hash_hashval_t (one, val);
5293 val = iterative_hash_hashval_t (two, val);
5294 }
5295 else
5296 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
5297 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
5298 }
5299 return val;
5300 break;
5301 }
5302 }
5303 \f
5304 /* Constructors for pointer, array and function types.
5305 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
5306 constructed by language-dependent code, not here.) */
5307
5308 /* Construct, lay out and return the type of pointers to TO_TYPE with
5309 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
5310 reference all of memory. If such a type has already been
5311 constructed, reuse it. */
5312
5313 tree
5314 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
5315 bool can_alias_all)
5316 {
5317 tree t;
5318
5319 if (to_type == error_mark_node)
5320 return error_mark_node;
5321
5322 /* In some cases, languages will have things that aren't a POINTER_TYPE
5323 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
5324 In that case, return that type without regard to the rest of our
5325 operands.
5326
5327 ??? This is a kludge, but consistent with the way this function has
5328 always operated and there doesn't seem to be a good way to avoid this
5329 at the moment. */
5330 if (TYPE_POINTER_TO (to_type) != 0
5331 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
5332 return TYPE_POINTER_TO (to_type);
5333
5334 /* First, if we already have a type for pointers to TO_TYPE and it's
5335 the proper mode, use it. */
5336 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
5337 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5338 return t;
5339
5340 t = make_node (POINTER_TYPE);
5341
5342 TREE_TYPE (t) = to_type;
5343 TYPE_MODE (t) = mode;
5344 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5345 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
5346 TYPE_POINTER_TO (to_type) = t;
5347
5348 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5349 SET_TYPE_STRUCTURAL_EQUALITY (t);
5350 else if (TYPE_CANONICAL (to_type) != to_type)
5351 TYPE_CANONICAL (t)
5352 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
5353 mode, can_alias_all);
5354
5355 /* Lay out the type. This function has many callers that are concerned
5356 with expression-construction, and this simplifies them all. */
5357 layout_type (t);
5358
5359 return t;
5360 }
5361
5362 /* By default build pointers in ptr_mode. */
5363
5364 tree
5365 build_pointer_type (tree to_type)
5366 {
5367 return build_pointer_type_for_mode (to_type, ptr_mode, false);
5368 }
5369
5370 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
5371
5372 tree
5373 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
5374 bool can_alias_all)
5375 {
5376 tree t;
5377
5378 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
5379 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
5380 In that case, return that type without regard to the rest of our
5381 operands.
5382
5383 ??? This is a kludge, but consistent with the way this function has
5384 always operated and there doesn't seem to be a good way to avoid this
5385 at the moment. */
5386 if (TYPE_REFERENCE_TO (to_type) != 0
5387 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
5388 return TYPE_REFERENCE_TO (to_type);
5389
5390 /* First, if we already have a type for pointers to TO_TYPE and it's
5391 the proper mode, use it. */
5392 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
5393 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5394 return t;
5395
5396 t = make_node (REFERENCE_TYPE);
5397
5398 TREE_TYPE (t) = to_type;
5399 TYPE_MODE (t) = mode;
5400 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5401 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
5402 TYPE_REFERENCE_TO (to_type) = t;
5403
5404 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5405 SET_TYPE_STRUCTURAL_EQUALITY (t);
5406 else if (TYPE_CANONICAL (to_type) != to_type)
5407 TYPE_CANONICAL (t)
5408 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
5409 mode, can_alias_all);
5410
5411 layout_type (t);
5412
5413 return t;
5414 }
5415
5416
5417 /* Build the node for the type of references-to-TO_TYPE by default
5418 in ptr_mode. */
5419
5420 tree
5421 build_reference_type (tree to_type)
5422 {
5423 return build_reference_type_for_mode (to_type, ptr_mode, false);
5424 }
5425
5426 /* Build a type that is compatible with t but has no cv quals anywhere
5427 in its type, thus
5428
5429 const char *const *const * -> char ***. */
5430
5431 tree
5432 build_type_no_quals (tree t)
5433 {
5434 switch (TREE_CODE (t))
5435 {
5436 case POINTER_TYPE:
5437 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5438 TYPE_MODE (t),
5439 TYPE_REF_CAN_ALIAS_ALL (t));
5440 case REFERENCE_TYPE:
5441 return
5442 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5443 TYPE_MODE (t),
5444 TYPE_REF_CAN_ALIAS_ALL (t));
5445 default:
5446 return TYPE_MAIN_VARIANT (t);
5447 }
5448 }
5449
5450 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
5451 MAXVAL should be the maximum value in the domain
5452 (one less than the length of the array).
5453
5454 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
5455 We don't enforce this limit, that is up to caller (e.g. language front end).
5456 The limit exists because the result is a signed type and we don't handle
5457 sizes that use more than one HOST_WIDE_INT. */
5458
5459 tree
5460 build_index_type (tree maxval)
5461 {
5462 tree itype = make_node (INTEGER_TYPE);
5463
5464 TREE_TYPE (itype) = sizetype;
5465 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
5466 TYPE_MIN_VALUE (itype) = size_zero_node;
5467 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
5468 TYPE_MODE (itype) = TYPE_MODE (sizetype);
5469 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
5470 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
5471 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
5472 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
5473
5474 if (host_integerp (maxval, 1))
5475 return type_hash_canon (tree_low_cst (maxval, 1), itype);
5476 else
5477 {
5478 /* Since we cannot hash this type, we need to compare it using
5479 structural equality checks. */
5480 SET_TYPE_STRUCTURAL_EQUALITY (itype);
5481 return itype;
5482 }
5483 }
5484
5485 /* Builds a signed or unsigned integer type of precision PRECISION.
5486 Used for C bitfields whose precision does not match that of
5487 built-in target types. */
5488 tree
5489 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
5490 int unsignedp)
5491 {
5492 tree itype = make_node (INTEGER_TYPE);
5493
5494 TYPE_PRECISION (itype) = precision;
5495
5496 if (unsignedp)
5497 fixup_unsigned_type (itype);
5498 else
5499 fixup_signed_type (itype);
5500
5501 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
5502 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
5503
5504 return itype;
5505 }
5506
5507 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
5508 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
5509 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
5510
5511 tree
5512 build_range_type (tree type, tree lowval, tree highval)
5513 {
5514 tree itype = make_node (INTEGER_TYPE);
5515
5516 TREE_TYPE (itype) = type;
5517 if (type == NULL_TREE)
5518 type = sizetype;
5519
5520 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
5521 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
5522
5523 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
5524 TYPE_MODE (itype) = TYPE_MODE (type);
5525 TYPE_SIZE (itype) = TYPE_SIZE (type);
5526 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
5527 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
5528 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
5529
5530 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
5531 return type_hash_canon (tree_low_cst (highval, 0)
5532 - tree_low_cst (lowval, 0),
5533 itype);
5534 else
5535 return itype;
5536 }
5537
5538 /* Just like build_index_type, but takes lowval and highval instead
5539 of just highval (maxval). */
5540
5541 tree
5542 build_index_2_type (tree lowval, tree highval)
5543 {
5544 return build_range_type (sizetype, lowval, highval);
5545 }
5546
5547 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
5548 and number of elements specified by the range of values of INDEX_TYPE.
5549 If such a type has already been constructed, reuse it. */
5550
5551 tree
5552 build_array_type (tree elt_type, tree index_type)
5553 {
5554 tree t;
5555 hashval_t hashcode = 0;
5556
5557 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
5558 {
5559 error ("arrays of functions are not meaningful");
5560 elt_type = integer_type_node;
5561 }
5562
5563 t = make_node (ARRAY_TYPE);
5564 TREE_TYPE (t) = elt_type;
5565 TYPE_DOMAIN (t) = index_type;
5566
5567 if (index_type == 0)
5568 {
5569 tree save = t;
5570 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5571 t = type_hash_canon (hashcode, t);
5572 if (save == t)
5573 layout_type (t);
5574
5575 if (TYPE_CANONICAL (t) == t)
5576 {
5577 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type))
5578 SET_TYPE_STRUCTURAL_EQUALITY (t);
5579 else if (TYPE_CANONICAL (elt_type) != elt_type)
5580 TYPE_CANONICAL (t)
5581 = build_array_type (TYPE_CANONICAL (elt_type), index_type);
5582 }
5583
5584 return t;
5585 }
5586
5587 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5588 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
5589 t = type_hash_canon (hashcode, t);
5590
5591 if (!COMPLETE_TYPE_P (t))
5592 layout_type (t);
5593
5594 if (TYPE_CANONICAL (t) == t)
5595 {
5596 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
5597 || TYPE_STRUCTURAL_EQUALITY_P (index_type))
5598 SET_TYPE_STRUCTURAL_EQUALITY (t);
5599 else if (TYPE_CANONICAL (elt_type) != elt_type
5600 || TYPE_CANONICAL (index_type) != index_type)
5601 TYPE_CANONICAL (t)
5602 = build_array_type (TYPE_CANONICAL (elt_type),
5603 TYPE_CANONICAL (index_type));
5604 }
5605
5606 return t;
5607 }
5608
5609 /* Return the TYPE of the elements comprising
5610 the innermost dimension of ARRAY. */
5611
5612 tree
5613 get_inner_array_type (tree array)
5614 {
5615 tree type = TREE_TYPE (array);
5616
5617 while (TREE_CODE (type) == ARRAY_TYPE)
5618 type = TREE_TYPE (type);
5619
5620 return type;
5621 }
5622
5623 /* Construct, lay out and return
5624 the type of functions returning type VALUE_TYPE
5625 given arguments of types ARG_TYPES.
5626 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
5627 are data type nodes for the arguments of the function.
5628 If such a type has already been constructed, reuse it. */
5629
5630 tree
5631 build_function_type (tree value_type, tree arg_types)
5632 {
5633 tree t;
5634 hashval_t hashcode = 0;
5635
5636 if (TREE_CODE (value_type) == FUNCTION_TYPE)
5637 {
5638 error ("function return type cannot be function");
5639 value_type = integer_type_node;
5640 }
5641
5642 /* Make a node of the sort we want. */
5643 t = make_node (FUNCTION_TYPE);
5644 TREE_TYPE (t) = value_type;
5645 TYPE_ARG_TYPES (t) = arg_types;
5646
5647 /* We don't have canonicalization of function types, yet. */
5648 SET_TYPE_STRUCTURAL_EQUALITY (t);
5649
5650 /* If we already have such a type, use the old one. */
5651 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
5652 hashcode = type_hash_list (arg_types, hashcode);
5653 t = type_hash_canon (hashcode, t);
5654
5655 if (!COMPLETE_TYPE_P (t))
5656 layout_type (t);
5657 return t;
5658 }
5659
5660 /* Build a function type. The RETURN_TYPE is the type returned by the
5661 function. If additional arguments are provided, they are
5662 additional argument types. The list of argument types must always
5663 be terminated by NULL_TREE. */
5664
5665 tree
5666 build_function_type_list (tree return_type, ...)
5667 {
5668 tree t, args, last;
5669 va_list p;
5670
5671 va_start (p, return_type);
5672
5673 t = va_arg (p, tree);
5674 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
5675 args = tree_cons (NULL_TREE, t, args);
5676
5677 if (args == NULL_TREE)
5678 args = void_list_node;
5679 else
5680 {
5681 last = args;
5682 args = nreverse (args);
5683 TREE_CHAIN (last) = void_list_node;
5684 }
5685 args = build_function_type (return_type, args);
5686
5687 va_end (p);
5688 return args;
5689 }
5690
5691 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
5692 and ARGTYPES (a TREE_LIST) are the return type and arguments types
5693 for the method. An implicit additional parameter (of type
5694 pointer-to-BASETYPE) is added to the ARGTYPES. */
5695
5696 tree
5697 build_method_type_directly (tree basetype,
5698 tree rettype,
5699 tree argtypes)
5700 {
5701 tree t;
5702 tree ptype;
5703 int hashcode = 0;
5704
5705 /* Make a node of the sort we want. */
5706 t = make_node (METHOD_TYPE);
5707
5708 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5709 TREE_TYPE (t) = rettype;
5710 ptype = build_pointer_type (basetype);
5711
5712 /* The actual arglist for this function includes a "hidden" argument
5713 which is "this". Put it into the list of argument types. */
5714 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
5715 TYPE_ARG_TYPES (t) = argtypes;
5716
5717 /* We don't have canonicalization of method types yet. */
5718 SET_TYPE_STRUCTURAL_EQUALITY (t);
5719
5720 /* If we already have such a type, use the old one. */
5721 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5722 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
5723 hashcode = type_hash_list (argtypes, hashcode);
5724 t = type_hash_canon (hashcode, t);
5725
5726 if (!COMPLETE_TYPE_P (t))
5727 layout_type (t);
5728
5729 return t;
5730 }
5731
5732 /* Construct, lay out and return the type of methods belonging to class
5733 BASETYPE and whose arguments and values are described by TYPE.
5734 If that type exists already, reuse it.
5735 TYPE must be a FUNCTION_TYPE node. */
5736
5737 tree
5738 build_method_type (tree basetype, tree type)
5739 {
5740 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
5741
5742 return build_method_type_directly (basetype,
5743 TREE_TYPE (type),
5744 TYPE_ARG_TYPES (type));
5745 }
5746
5747 /* Construct, lay out and return the type of offsets to a value
5748 of type TYPE, within an object of type BASETYPE.
5749 If a suitable offset type exists already, reuse it. */
5750
5751 tree
5752 build_offset_type (tree basetype, tree type)
5753 {
5754 tree t;
5755 hashval_t hashcode = 0;
5756
5757 /* Make a node of the sort we want. */
5758 t = make_node (OFFSET_TYPE);
5759
5760 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5761 TREE_TYPE (t) = type;
5762
5763 /* If we already have such a type, use the old one. */
5764 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5765 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
5766 t = type_hash_canon (hashcode, t);
5767
5768 if (!COMPLETE_TYPE_P (t))
5769 layout_type (t);
5770
5771 if (TYPE_CANONICAL (t) == t)
5772 {
5773 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
5774 || TYPE_STRUCTURAL_EQUALITY_P (type))
5775 SET_TYPE_STRUCTURAL_EQUALITY (t);
5776 else if (TYPE_CANONICAL (basetype) != basetype
5777 || TYPE_CANONICAL (type) != type)
5778 TYPE_CANONICAL (t)
5779 = build_offset_type (TYPE_CANONICAL (basetype),
5780 TYPE_CANONICAL (type));
5781 }
5782
5783 return t;
5784 }
5785
5786 /* Create a complex type whose components are COMPONENT_TYPE. */
5787
5788 tree
5789 build_complex_type (tree component_type)
5790 {
5791 tree t;
5792 hashval_t hashcode;
5793
5794 /* Make a node of the sort we want. */
5795 t = make_node (COMPLEX_TYPE);
5796
5797 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
5798
5799 /* If we already have such a type, use the old one. */
5800 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
5801 t = type_hash_canon (hashcode, t);
5802
5803 if (!COMPLETE_TYPE_P (t))
5804 layout_type (t);
5805
5806 if (TYPE_CANONICAL (t) == t)
5807 {
5808 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
5809 SET_TYPE_STRUCTURAL_EQUALITY (t);
5810 else if (TYPE_CANONICAL (component_type) != component_type)
5811 TYPE_CANONICAL (t)
5812 = build_complex_type (TYPE_CANONICAL (component_type));
5813 }
5814
5815 /* If we are writing Dwarf2 output we need to create a name,
5816 since complex is a fundamental type. */
5817 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
5818 && ! TYPE_NAME (t))
5819 {
5820 const char *name;
5821 if (component_type == char_type_node)
5822 name = "complex char";
5823 else if (component_type == signed_char_type_node)
5824 name = "complex signed char";
5825 else if (component_type == unsigned_char_type_node)
5826 name = "complex unsigned char";
5827 else if (component_type == short_integer_type_node)
5828 name = "complex short int";
5829 else if (component_type == short_unsigned_type_node)
5830 name = "complex short unsigned int";
5831 else if (component_type == integer_type_node)
5832 name = "complex int";
5833 else if (component_type == unsigned_type_node)
5834 name = "complex unsigned int";
5835 else if (component_type == long_integer_type_node)
5836 name = "complex long int";
5837 else if (component_type == long_unsigned_type_node)
5838 name = "complex long unsigned int";
5839 else if (component_type == long_long_integer_type_node)
5840 name = "complex long long int";
5841 else if (component_type == long_long_unsigned_type_node)
5842 name = "complex long long unsigned int";
5843 else
5844 name = 0;
5845
5846 if (name != 0)
5847 TYPE_NAME (t) = build_decl (TYPE_DECL, get_identifier (name), t);
5848 }
5849
5850 return build_qualified_type (t, TYPE_QUALS (component_type));
5851 }
5852 \f
5853 /* Return OP, stripped of any conversions to wider types as much as is safe.
5854 Converting the value back to OP's type makes a value equivalent to OP.
5855
5856 If FOR_TYPE is nonzero, we return a value which, if converted to
5857 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
5858
5859 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
5860 narrowest type that can hold the value, even if they don't exactly fit.
5861 Otherwise, bit-field references are changed to a narrower type
5862 only if they can be fetched directly from memory in that type.
5863
5864 OP must have integer, real or enumeral type. Pointers are not allowed!
5865
5866 There are some cases where the obvious value we could return
5867 would regenerate to OP if converted to OP's type,
5868 but would not extend like OP to wider types.
5869 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
5870 For example, if OP is (unsigned short)(signed char)-1,
5871 we avoid returning (signed char)-1 if FOR_TYPE is int,
5872 even though extending that to an unsigned short would regenerate OP,
5873 since the result of extending (signed char)-1 to (int)
5874 is different from (int) OP. */
5875
5876 tree
5877 get_unwidened (tree op, tree for_type)
5878 {
5879 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
5880 tree type = TREE_TYPE (op);
5881 unsigned final_prec
5882 = TYPE_PRECISION (for_type != 0 ? for_type : type);
5883 int uns
5884 = (for_type != 0 && for_type != type
5885 && final_prec > TYPE_PRECISION (type)
5886 && TYPE_UNSIGNED (type));
5887 tree win = op;
5888
5889 while (TREE_CODE (op) == NOP_EXPR
5890 || TREE_CODE (op) == CONVERT_EXPR)
5891 {
5892 int bitschange;
5893
5894 /* TYPE_PRECISION on vector types has different meaning
5895 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
5896 so avoid them here. */
5897 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
5898 break;
5899
5900 bitschange = TYPE_PRECISION (TREE_TYPE (op))
5901 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
5902
5903 /* Truncations are many-one so cannot be removed.
5904 Unless we are later going to truncate down even farther. */
5905 if (bitschange < 0
5906 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
5907 break;
5908
5909 /* See what's inside this conversion. If we decide to strip it,
5910 we will set WIN. */
5911 op = TREE_OPERAND (op, 0);
5912
5913 /* If we have not stripped any zero-extensions (uns is 0),
5914 we can strip any kind of extension.
5915 If we have previously stripped a zero-extension,
5916 only zero-extensions can safely be stripped.
5917 Any extension can be stripped if the bits it would produce
5918 are all going to be discarded later by truncating to FOR_TYPE. */
5919
5920 if (bitschange > 0)
5921 {
5922 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
5923 win = op;
5924 /* TYPE_UNSIGNED says whether this is a zero-extension.
5925 Let's avoid computing it if it does not affect WIN
5926 and if UNS will not be needed again. */
5927 if ((uns
5928 || TREE_CODE (op) == NOP_EXPR
5929 || TREE_CODE (op) == CONVERT_EXPR)
5930 && TYPE_UNSIGNED (TREE_TYPE (op)))
5931 {
5932 uns = 1;
5933 win = op;
5934 }
5935 }
5936 }
5937
5938 if (TREE_CODE (op) == COMPONENT_REF
5939 /* Since type_for_size always gives an integer type. */
5940 && TREE_CODE (type) != REAL_TYPE
5941 /* Don't crash if field not laid out yet. */
5942 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5943 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5944 {
5945 unsigned int innerprec
5946 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5947 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5948 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5949 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5950
5951 /* We can get this structure field in the narrowest type it fits in.
5952 If FOR_TYPE is 0, do this only for a field that matches the
5953 narrower type exactly and is aligned for it
5954 The resulting extension to its nominal type (a fullword type)
5955 must fit the same conditions as for other extensions. */
5956
5957 if (type != 0
5958 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
5959 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
5960 && (! uns || final_prec <= innerprec || unsignedp))
5961 {
5962 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
5963 TREE_OPERAND (op, 1), NULL_TREE);
5964 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
5965 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
5966 }
5967 }
5968
5969 return win;
5970 }
5971 \f
5972 /* Return OP or a simpler expression for a narrower value
5973 which can be sign-extended or zero-extended to give back OP.
5974 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
5975 or 0 if the value should be sign-extended. */
5976
5977 tree
5978 get_narrower (tree op, int *unsignedp_ptr)
5979 {
5980 int uns = 0;
5981 int first = 1;
5982 tree win = op;
5983 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
5984
5985 while (TREE_CODE (op) == NOP_EXPR)
5986 {
5987 int bitschange
5988 = (TYPE_PRECISION (TREE_TYPE (op))
5989 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
5990
5991 /* Truncations are many-one so cannot be removed. */
5992 if (bitschange < 0)
5993 break;
5994
5995 /* See what's inside this conversion. If we decide to strip it,
5996 we will set WIN. */
5997
5998 if (bitschange > 0)
5999 {
6000 op = TREE_OPERAND (op, 0);
6001 /* An extension: the outermost one can be stripped,
6002 but remember whether it is zero or sign extension. */
6003 if (first)
6004 uns = TYPE_UNSIGNED (TREE_TYPE (op));
6005 /* Otherwise, if a sign extension has been stripped,
6006 only sign extensions can now be stripped;
6007 if a zero extension has been stripped, only zero-extensions. */
6008 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
6009 break;
6010 first = 0;
6011 }
6012 else /* bitschange == 0 */
6013 {
6014 /* A change in nominal type can always be stripped, but we must
6015 preserve the unsignedness. */
6016 if (first)
6017 uns = TYPE_UNSIGNED (TREE_TYPE (op));
6018 first = 0;
6019 op = TREE_OPERAND (op, 0);
6020 /* Keep trying to narrow, but don't assign op to win if it
6021 would turn an integral type into something else. */
6022 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
6023 continue;
6024 }
6025
6026 win = op;
6027 }
6028
6029 if (TREE_CODE (op) == COMPONENT_REF
6030 /* Since type_for_size always gives an integer type. */
6031 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
6032 /* Ensure field is laid out already. */
6033 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
6034 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
6035 {
6036 unsigned HOST_WIDE_INT innerprec
6037 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
6038 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
6039 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
6040 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
6041
6042 /* We can get this structure field in a narrower type that fits it,
6043 but the resulting extension to its nominal type (a fullword type)
6044 must satisfy the same conditions as for other extensions.
6045
6046 Do this only for fields that are aligned (not bit-fields),
6047 because when bit-field insns will be used there is no
6048 advantage in doing this. */
6049
6050 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
6051 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
6052 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
6053 && type != 0)
6054 {
6055 if (first)
6056 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
6057 win = fold_convert (type, op);
6058 }
6059 }
6060
6061 *unsignedp_ptr = uns;
6062 return win;
6063 }
6064 \f
6065 /* Nonzero if integer constant C has a value that is permissible
6066 for type TYPE (an INTEGER_TYPE). */
6067
6068 int
6069 int_fits_type_p (tree c, tree type)
6070 {
6071 tree type_low_bound = TYPE_MIN_VALUE (type);
6072 tree type_high_bound = TYPE_MAX_VALUE (type);
6073 bool ok_for_low_bound, ok_for_high_bound;
6074 unsigned HOST_WIDE_INT low;
6075 HOST_WIDE_INT high;
6076
6077 /* If at least one bound of the type is a constant integer, we can check
6078 ourselves and maybe make a decision. If no such decision is possible, but
6079 this type is a subtype, try checking against that. Otherwise, use
6080 fit_double_type, which checks against the precision.
6081
6082 Compute the status for each possibly constant bound, and return if we see
6083 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
6084 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
6085 for "constant known to fit". */
6086
6087 /* Check if C >= type_low_bound. */
6088 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
6089 {
6090 if (tree_int_cst_lt (c, type_low_bound))
6091 return 0;
6092 ok_for_low_bound = true;
6093 }
6094 else
6095 ok_for_low_bound = false;
6096
6097 /* Check if c <= type_high_bound. */
6098 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
6099 {
6100 if (tree_int_cst_lt (type_high_bound, c))
6101 return 0;
6102 ok_for_high_bound = true;
6103 }
6104 else
6105 ok_for_high_bound = false;
6106
6107 /* If the constant fits both bounds, the result is known. */
6108 if (ok_for_low_bound && ok_for_high_bound)
6109 return 1;
6110
6111 /* Perform some generic filtering which may allow making a decision
6112 even if the bounds are not constant. First, negative integers
6113 never fit in unsigned types, */
6114 if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
6115 return 0;
6116
6117 /* Second, narrower types always fit in wider ones. */
6118 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
6119 return 1;
6120
6121 /* Third, unsigned integers with top bit set never fit signed types. */
6122 if (! TYPE_UNSIGNED (type)
6123 && TYPE_UNSIGNED (TREE_TYPE (c))
6124 && tree_int_cst_msb (c))
6125 return 0;
6126
6127 /* If we haven't been able to decide at this point, there nothing more we
6128 can check ourselves here. Look at the base type if we have one and it
6129 has the same precision. */
6130 if (TREE_CODE (type) == INTEGER_TYPE
6131 && TREE_TYPE (type) != 0
6132 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
6133 return int_fits_type_p (c, TREE_TYPE (type));
6134
6135 /* Or to fit_double_type, if nothing else. */
6136 low = TREE_INT_CST_LOW (c);
6137 high = TREE_INT_CST_HIGH (c);
6138 return !fit_double_type (low, high, &low, &high, type);
6139 }
6140
6141 /* Subprogram of following function. Called by walk_tree.
6142
6143 Return *TP if it is an automatic variable or parameter of the
6144 function passed in as DATA. */
6145
6146 static tree
6147 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
6148 {
6149 tree fn = (tree) data;
6150
6151 if (TYPE_P (*tp))
6152 *walk_subtrees = 0;
6153
6154 else if (DECL_P (*tp)
6155 && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
6156 return *tp;
6157
6158 return NULL_TREE;
6159 }
6160
6161 /* Returns true if T is, contains, or refers to a type with variable
6162 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
6163 arguments, but not the return type. If FN is nonzero, only return
6164 true if a modifier of the type or position of FN is a variable or
6165 parameter inside FN.
6166
6167 This concept is more general than that of C99 'variably modified types':
6168 in C99, a struct type is never variably modified because a VLA may not
6169 appear as a structure member. However, in GNU C code like:
6170
6171 struct S { int i[f()]; };
6172
6173 is valid, and other languages may define similar constructs. */
6174
6175 bool
6176 variably_modified_type_p (tree type, tree fn)
6177 {
6178 tree t;
6179
6180 /* Test if T is either variable (if FN is zero) or an expression containing
6181 a variable in FN. */
6182 #define RETURN_TRUE_IF_VAR(T) \
6183 do { tree _t = (T); \
6184 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
6185 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
6186 return true; } while (0)
6187
6188 if (type == error_mark_node)
6189 return false;
6190
6191 /* If TYPE itself has variable size, it is variably modified. */
6192 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
6193 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
6194
6195 switch (TREE_CODE (type))
6196 {
6197 case POINTER_TYPE:
6198 case REFERENCE_TYPE:
6199 case VECTOR_TYPE:
6200 if (variably_modified_type_p (TREE_TYPE (type), fn))
6201 return true;
6202 break;
6203
6204 case FUNCTION_TYPE:
6205 case METHOD_TYPE:
6206 /* If TYPE is a function type, it is variably modified if the
6207 return type is variably modified. */
6208 if (variably_modified_type_p (TREE_TYPE (type), fn))
6209 return true;
6210 break;
6211
6212 case INTEGER_TYPE:
6213 case REAL_TYPE:
6214 case ENUMERAL_TYPE:
6215 case BOOLEAN_TYPE:
6216 /* Scalar types are variably modified if their end points
6217 aren't constant. */
6218 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
6219 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
6220 break;
6221
6222 case RECORD_TYPE:
6223 case UNION_TYPE:
6224 case QUAL_UNION_TYPE:
6225 /* We can't see if any of the fields are variably-modified by the
6226 definition we normally use, since that would produce infinite
6227 recursion via pointers. */
6228 /* This is variably modified if some field's type is. */
6229 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
6230 if (TREE_CODE (t) == FIELD_DECL)
6231 {
6232 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
6233 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
6234 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
6235
6236 if (TREE_CODE (type) == QUAL_UNION_TYPE)
6237 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
6238 }
6239 break;
6240
6241 case ARRAY_TYPE:
6242 /* Do not call ourselves to avoid infinite recursion. This is
6243 variably modified if the element type is. */
6244 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
6245 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
6246 break;
6247
6248 default:
6249 break;
6250 }
6251
6252 /* The current language may have other cases to check, but in general,
6253 all other types are not variably modified. */
6254 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
6255
6256 #undef RETURN_TRUE_IF_VAR
6257 }
6258
6259 /* Given a DECL or TYPE, return the scope in which it was declared, or
6260 NULL_TREE if there is no containing scope. */
6261
6262 tree
6263 get_containing_scope (tree t)
6264 {
6265 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
6266 }
6267
6268 /* Return the innermost context enclosing DECL that is
6269 a FUNCTION_DECL, or zero if none. */
6270
6271 tree
6272 decl_function_context (tree decl)
6273 {
6274 tree context;
6275
6276 if (TREE_CODE (decl) == ERROR_MARK)
6277 return 0;
6278
6279 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
6280 where we look up the function at runtime. Such functions always take
6281 a first argument of type 'pointer to real context'.
6282
6283 C++ should really be fixed to use DECL_CONTEXT for the real context,
6284 and use something else for the "virtual context". */
6285 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
6286 context
6287 = TYPE_MAIN_VARIANT
6288 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
6289 else
6290 context = DECL_CONTEXT (decl);
6291
6292 while (context && TREE_CODE (context) != FUNCTION_DECL)
6293 {
6294 if (TREE_CODE (context) == BLOCK)
6295 context = BLOCK_SUPERCONTEXT (context);
6296 else
6297 context = get_containing_scope (context);
6298 }
6299
6300 return context;
6301 }
6302
6303 /* Return the innermost context enclosing DECL that is
6304 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
6305 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
6306
6307 tree
6308 decl_type_context (tree decl)
6309 {
6310 tree context = DECL_CONTEXT (decl);
6311
6312 while (context)
6313 switch (TREE_CODE (context))
6314 {
6315 case NAMESPACE_DECL:
6316 case TRANSLATION_UNIT_DECL:
6317 return NULL_TREE;
6318
6319 case RECORD_TYPE:
6320 case UNION_TYPE:
6321 case QUAL_UNION_TYPE:
6322 return context;
6323
6324 case TYPE_DECL:
6325 case FUNCTION_DECL:
6326 context = DECL_CONTEXT (context);
6327 break;
6328
6329 case BLOCK:
6330 context = BLOCK_SUPERCONTEXT (context);
6331 break;
6332
6333 default:
6334 gcc_unreachable ();
6335 }
6336
6337 return NULL_TREE;
6338 }
6339
6340 /* CALL is a CALL_EXPR. Return the declaration for the function
6341 called, or NULL_TREE if the called function cannot be
6342 determined. */
6343
6344 tree
6345 get_callee_fndecl (tree call)
6346 {
6347 tree addr;
6348
6349 if (call == error_mark_node)
6350 return call;
6351
6352 /* It's invalid to call this function with anything but a
6353 CALL_EXPR. */
6354 gcc_assert (TREE_CODE (call) == CALL_EXPR);
6355
6356 /* The first operand to the CALL is the address of the function
6357 called. */
6358 addr = CALL_EXPR_FN (call);
6359
6360 STRIP_NOPS (addr);
6361
6362 /* If this is a readonly function pointer, extract its initial value. */
6363 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
6364 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
6365 && DECL_INITIAL (addr))
6366 addr = DECL_INITIAL (addr);
6367
6368 /* If the address is just `&f' for some function `f', then we know
6369 that `f' is being called. */
6370 if (TREE_CODE (addr) == ADDR_EXPR
6371 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
6372 return TREE_OPERAND (addr, 0);
6373
6374 /* We couldn't figure out what was being called. Maybe the front
6375 end has some idea. */
6376 return lang_hooks.lang_get_callee_fndecl (call);
6377 }
6378
6379 /* Print debugging information about tree nodes generated during the compile,
6380 and any language-specific information. */
6381
6382 void
6383 dump_tree_statistics (void)
6384 {
6385 #ifdef GATHER_STATISTICS
6386 int i;
6387 int total_nodes, total_bytes;
6388 #endif
6389
6390 fprintf (stderr, "\n??? tree nodes created\n\n");
6391 #ifdef GATHER_STATISTICS
6392 fprintf (stderr, "Kind Nodes Bytes\n");
6393 fprintf (stderr, "---------------------------------------\n");
6394 total_nodes = total_bytes = 0;
6395 for (i = 0; i < (int) all_kinds; i++)
6396 {
6397 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
6398 tree_node_counts[i], tree_node_sizes[i]);
6399 total_nodes += tree_node_counts[i];
6400 total_bytes += tree_node_sizes[i];
6401 }
6402 fprintf (stderr, "---------------------------------------\n");
6403 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
6404 fprintf (stderr, "---------------------------------------\n");
6405 ssanames_print_statistics ();
6406 phinodes_print_statistics ();
6407 #else
6408 fprintf (stderr, "(No per-node statistics)\n");
6409 #endif
6410 print_type_hash_statistics ();
6411 print_debug_expr_statistics ();
6412 print_value_expr_statistics ();
6413 print_restrict_base_statistics ();
6414 lang_hooks.print_statistics ();
6415 }
6416 \f
6417 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
6418
6419 /* Generate a crc32 of a string. */
6420
6421 unsigned
6422 crc32_string (unsigned chksum, const char *string)
6423 {
6424 do
6425 {
6426 unsigned value = *string << 24;
6427 unsigned ix;
6428
6429 for (ix = 8; ix--; value <<= 1)
6430 {
6431 unsigned feedback;
6432
6433 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
6434 chksum <<= 1;
6435 chksum ^= feedback;
6436 }
6437 }
6438 while (*string++);
6439 return chksum;
6440 }
6441
6442 /* P is a string that will be used in a symbol. Mask out any characters
6443 that are not valid in that context. */
6444
6445 void
6446 clean_symbol_name (char *p)
6447 {
6448 for (; *p; p++)
6449 if (! (ISALNUM (*p)
6450 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
6451 || *p == '$'
6452 #endif
6453 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
6454 || *p == '.'
6455 #endif
6456 ))
6457 *p = '_';
6458 }
6459
6460 /* Generate a name for a special-purpose function function.
6461 The generated name may need to be unique across the whole link.
6462 TYPE is some string to identify the purpose of this function to the
6463 linker or collect2; it must start with an uppercase letter,
6464 one of:
6465 I - for constructors
6466 D - for destructors
6467 N - for C++ anonymous namespaces
6468 F - for DWARF unwind frame information. */
6469
6470 tree
6471 get_file_function_name (const char *type)
6472 {
6473 char *buf;
6474 const char *p;
6475 char *q;
6476
6477 /* If we already have a name we know to be unique, just use that. */
6478 if (first_global_object_name)
6479 p = first_global_object_name;
6480 /* If the target is handling the constructors/destructors, they
6481 will be local to this file and the name is only necessary for
6482 debugging purposes. */
6483 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
6484 {
6485 const char *file = main_input_filename;
6486 if (! file)
6487 file = input_filename;
6488 /* Just use the file's basename, because the full pathname
6489 might be quite long. */
6490 p = strrchr (file, '/');
6491 if (p)
6492 p++;
6493 else
6494 p = file;
6495 p = q = ASTRDUP (p);
6496 clean_symbol_name (q);
6497 }
6498 else
6499 {
6500 /* Otherwise, the name must be unique across the entire link.
6501 We don't have anything that we know to be unique to this translation
6502 unit, so use what we do have and throw in some randomness. */
6503 unsigned len;
6504 const char *name = weak_global_object_name;
6505 const char *file = main_input_filename;
6506
6507 if (! name)
6508 name = "";
6509 if (! file)
6510 file = input_filename;
6511
6512 len = strlen (file);
6513 q = alloca (9 * 2 + len + 1);
6514 memcpy (q, file, len + 1);
6515 clean_symbol_name (q);
6516
6517 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
6518 crc32_string (0, get_random_seed (false)));
6519
6520 p = q;
6521 }
6522
6523 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
6524
6525 /* Set up the name of the file-level functions we may need.
6526 Use a global object (which is already required to be unique over
6527 the program) rather than the file name (which imposes extra
6528 constraints). */
6529 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
6530
6531 return get_identifier (buf);
6532 }
6533 \f
6534 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
6535
6536 /* Complain that the tree code of NODE does not match the expected 0
6537 terminated list of trailing codes. The trailing code list can be
6538 empty, for a more vague error message. FILE, LINE, and FUNCTION
6539 are of the caller. */
6540
6541 void
6542 tree_check_failed (const tree node, const char *file,
6543 int line, const char *function, ...)
6544 {
6545 va_list args;
6546 char *buffer;
6547 unsigned length = 0;
6548 int code;
6549
6550 va_start (args, function);
6551 while ((code = va_arg (args, int)))
6552 length += 4 + strlen (tree_code_name[code]);
6553 va_end (args);
6554 if (length)
6555 {
6556 va_start (args, function);
6557 length += strlen ("expected ");
6558 buffer = alloca (length);
6559 length = 0;
6560 while ((code = va_arg (args, int)))
6561 {
6562 const char *prefix = length ? " or " : "expected ";
6563
6564 strcpy (buffer + length, prefix);
6565 length += strlen (prefix);
6566 strcpy (buffer + length, tree_code_name[code]);
6567 length += strlen (tree_code_name[code]);
6568 }
6569 va_end (args);
6570 }
6571 else
6572 buffer = (char *)"unexpected node";
6573
6574 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6575 buffer, tree_code_name[TREE_CODE (node)],
6576 function, trim_filename (file), line);
6577 }
6578
6579 /* Complain that the tree code of NODE does match the expected 0
6580 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
6581 the caller. */
6582
6583 void
6584 tree_not_check_failed (const tree node, const char *file,
6585 int line, const char *function, ...)
6586 {
6587 va_list args;
6588 char *buffer;
6589 unsigned length = 0;
6590 int code;
6591
6592 va_start (args, function);
6593 while ((code = va_arg (args, int)))
6594 length += 4 + strlen (tree_code_name[code]);
6595 va_end (args);
6596 va_start (args, function);
6597 buffer = alloca (length);
6598 length = 0;
6599 while ((code = va_arg (args, int)))
6600 {
6601 if (length)
6602 {
6603 strcpy (buffer + length, " or ");
6604 length += 4;
6605 }
6606 strcpy (buffer + length, tree_code_name[code]);
6607 length += strlen (tree_code_name[code]);
6608 }
6609 va_end (args);
6610
6611 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
6612 buffer, tree_code_name[TREE_CODE (node)],
6613 function, trim_filename (file), line);
6614 }
6615
6616 /* Similar to tree_check_failed, except that we check for a class of tree
6617 code, given in CL. */
6618
6619 void
6620 tree_class_check_failed (const tree node, const enum tree_code_class cl,
6621 const char *file, int line, const char *function)
6622 {
6623 internal_error
6624 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
6625 TREE_CODE_CLASS_STRING (cl),
6626 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6627 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6628 }
6629
6630 /* Similar to tree_check_failed, except that instead of specifying a
6631 dozen codes, use the knowledge that they're all sequential. */
6632
6633 void
6634 tree_range_check_failed (const tree node, const char *file, int line,
6635 const char *function, enum tree_code c1,
6636 enum tree_code c2)
6637 {
6638 char *buffer;
6639 unsigned length = 0;
6640 enum tree_code c;
6641
6642 for (c = c1; c <= c2; ++c)
6643 length += 4 + strlen (tree_code_name[c]);
6644
6645 length += strlen ("expected ");
6646 buffer = alloca (length);
6647 length = 0;
6648
6649 for (c = c1; c <= c2; ++c)
6650 {
6651 const char *prefix = length ? " or " : "expected ";
6652
6653 strcpy (buffer + length, prefix);
6654 length += strlen (prefix);
6655 strcpy (buffer + length, tree_code_name[c]);
6656 length += strlen (tree_code_name[c]);
6657 }
6658
6659 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6660 buffer, tree_code_name[TREE_CODE (node)],
6661 function, trim_filename (file), line);
6662 }
6663
6664
6665 /* Similar to tree_check_failed, except that we check that a tree does
6666 not have the specified code, given in CL. */
6667
6668 void
6669 tree_not_class_check_failed (const tree node, const enum tree_code_class cl,
6670 const char *file, int line, const char *function)
6671 {
6672 internal_error
6673 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
6674 TREE_CODE_CLASS_STRING (cl),
6675 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6676 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6677 }
6678
6679
6680 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
6681
6682 void
6683 omp_clause_check_failed (const tree node, const char *file, int line,
6684 const char *function, enum omp_clause_code code)
6685 {
6686 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
6687 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
6688 function, trim_filename (file), line);
6689 }
6690
6691
6692 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
6693
6694 void
6695 omp_clause_range_check_failed (const tree node, const char *file, int line,
6696 const char *function, enum omp_clause_code c1,
6697 enum omp_clause_code c2)
6698 {
6699 char *buffer;
6700 unsigned length = 0;
6701 enum omp_clause_code c;
6702
6703 for (c = c1; c <= c2; ++c)
6704 length += 4 + strlen (omp_clause_code_name[c]);
6705
6706 length += strlen ("expected ");
6707 buffer = alloca (length);
6708 length = 0;
6709
6710 for (c = c1; c <= c2; ++c)
6711 {
6712 const char *prefix = length ? " or " : "expected ";
6713
6714 strcpy (buffer + length, prefix);
6715 length += strlen (prefix);
6716 strcpy (buffer + length, omp_clause_code_name[c]);
6717 length += strlen (omp_clause_code_name[c]);
6718 }
6719
6720 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6721 buffer, omp_clause_code_name[TREE_CODE (node)],
6722 function, trim_filename (file), line);
6723 }
6724
6725
6726 #undef DEFTREESTRUCT
6727 #define DEFTREESTRUCT(VAL, NAME) NAME,
6728
6729 static const char *ts_enum_names[] = {
6730 #include "treestruct.def"
6731 };
6732 #undef DEFTREESTRUCT
6733
6734 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
6735
6736 /* Similar to tree_class_check_failed, except that we check for
6737 whether CODE contains the tree structure identified by EN. */
6738
6739 void
6740 tree_contains_struct_check_failed (const tree node,
6741 const enum tree_node_structure_enum en,
6742 const char *file, int line,
6743 const char *function)
6744 {
6745 internal_error
6746 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
6747 TS_ENUM_NAME(en),
6748 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6749 }
6750
6751
6752 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
6753 (dynamically sized) vector. */
6754
6755 void
6756 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
6757 const char *function)
6758 {
6759 internal_error
6760 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
6761 idx + 1, len, function, trim_filename (file), line);
6762 }
6763
6764 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
6765 (dynamically sized) vector. */
6766
6767 void
6768 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
6769 const char *function)
6770 {
6771 internal_error
6772 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
6773 idx + 1, len, function, trim_filename (file), line);
6774 }
6775
6776 /* Similar to above, except that the check is for the bounds of the operand
6777 vector of an expression node EXP. */
6778
6779 void
6780 tree_operand_check_failed (int idx, tree exp, const char *file,
6781 int line, const char *function)
6782 {
6783 int code = TREE_CODE (exp);
6784 internal_error
6785 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
6786 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
6787 function, trim_filename (file), line);
6788 }
6789
6790 /* Similar to above, except that the check is for the number of
6791 operands of an OMP_CLAUSE node. */
6792
6793 void
6794 omp_clause_operand_check_failed (int idx, tree t, const char *file,
6795 int line, const char *function)
6796 {
6797 internal_error
6798 ("tree check: accessed operand %d of omp_clause %s with %d operands "
6799 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
6800 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
6801 trim_filename (file), line);
6802 }
6803 #endif /* ENABLE_TREE_CHECKING */
6804 \f
6805 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
6806 and mapped to the machine mode MODE. Initialize its fields and build
6807 the information necessary for debugging output. */
6808
6809 static tree
6810 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
6811 {
6812 tree t;
6813 hashval_t hashcode = 0;
6814
6815 /* Build a main variant, based on the main variant of the inner type, then
6816 use it to build the variant we return. */
6817 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
6818 && TYPE_MAIN_VARIANT (innertype) != innertype)
6819 return build_type_attribute_qual_variant (
6820 make_vector_type (TYPE_MAIN_VARIANT (innertype), nunits, mode),
6821 TYPE_ATTRIBUTES (innertype),
6822 TYPE_QUALS (innertype));
6823
6824 t = make_node (VECTOR_TYPE);
6825 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
6826 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
6827 TYPE_MODE (t) = mode;
6828 TYPE_READONLY (t) = TYPE_READONLY (innertype);
6829 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
6830
6831 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
6832 SET_TYPE_STRUCTURAL_EQUALITY (t);
6833 else if (TYPE_CANONICAL (innertype) != innertype
6834 || mode != VOIDmode)
6835 TYPE_CANONICAL (t)
6836 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
6837
6838 layout_type (t);
6839
6840 {
6841 tree index = build_int_cst (NULL_TREE, nunits - 1);
6842 tree array = build_array_type (innertype, build_index_type (index));
6843 tree rt = make_node (RECORD_TYPE);
6844
6845 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
6846 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
6847 layout_type (rt);
6848 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
6849 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
6850 the representation type, and we want to find that die when looking up
6851 the vector type. This is most easily achieved by making the TYPE_UID
6852 numbers equal. */
6853 TYPE_UID (rt) = TYPE_UID (t);
6854 }
6855
6856 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
6857 hashcode = iterative_hash_host_wide_int (mode, hashcode);
6858 hashcode = iterative_hash_object (TYPE_HASH (innertype), hashcode);
6859 return type_hash_canon (hashcode, t);
6860 }
6861
6862 static tree
6863 make_or_reuse_type (unsigned size, int unsignedp)
6864 {
6865 if (size == INT_TYPE_SIZE)
6866 return unsignedp ? unsigned_type_node : integer_type_node;
6867 if (size == CHAR_TYPE_SIZE)
6868 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
6869 if (size == SHORT_TYPE_SIZE)
6870 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
6871 if (size == LONG_TYPE_SIZE)
6872 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
6873 if (size == LONG_LONG_TYPE_SIZE)
6874 return (unsignedp ? long_long_unsigned_type_node
6875 : long_long_integer_type_node);
6876
6877 if (unsignedp)
6878 return make_unsigned_type (size);
6879 else
6880 return make_signed_type (size);
6881 }
6882
6883 /* Create nodes for all integer types (and error_mark_node) using the sizes
6884 of C datatypes. The caller should call set_sizetype soon after calling
6885 this function to select one of the types as sizetype. */
6886
6887 void
6888 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
6889 {
6890 error_mark_node = make_node (ERROR_MARK);
6891 TREE_TYPE (error_mark_node) = error_mark_node;
6892
6893 initialize_sizetypes (signed_sizetype);
6894
6895 /* Define both `signed char' and `unsigned char'. */
6896 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
6897 TYPE_STRING_FLAG (signed_char_type_node) = 1;
6898 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
6899 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
6900
6901 /* Define `char', which is like either `signed char' or `unsigned char'
6902 but not the same as either. */
6903 char_type_node
6904 = (signed_char
6905 ? make_signed_type (CHAR_TYPE_SIZE)
6906 : make_unsigned_type (CHAR_TYPE_SIZE));
6907 TYPE_STRING_FLAG (char_type_node) = 1;
6908
6909 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
6910 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
6911 integer_type_node = make_signed_type (INT_TYPE_SIZE);
6912 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
6913 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
6914 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
6915 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
6916 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
6917
6918 /* Define a boolean type. This type only represents boolean values but
6919 may be larger than char depending on the value of BOOL_TYPE_SIZE.
6920 Front ends which want to override this size (i.e. Java) can redefine
6921 boolean_type_node before calling build_common_tree_nodes_2. */
6922 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
6923 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
6924 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
6925 TYPE_PRECISION (boolean_type_node) = 1;
6926
6927 /* Fill in the rest of the sized types. Reuse existing type nodes
6928 when possible. */
6929 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
6930 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
6931 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
6932 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
6933 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
6934
6935 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
6936 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
6937 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
6938 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
6939 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
6940
6941 access_public_node = get_identifier ("public");
6942 access_protected_node = get_identifier ("protected");
6943 access_private_node = get_identifier ("private");
6944 }
6945
6946 /* Call this function after calling build_common_tree_nodes and set_sizetype.
6947 It will create several other common tree nodes. */
6948
6949 void
6950 build_common_tree_nodes_2 (int short_double)
6951 {
6952 /* Define these next since types below may used them. */
6953 integer_zero_node = build_int_cst (NULL_TREE, 0);
6954 integer_one_node = build_int_cst (NULL_TREE, 1);
6955 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
6956
6957 size_zero_node = size_int (0);
6958 size_one_node = size_int (1);
6959 bitsize_zero_node = bitsize_int (0);
6960 bitsize_one_node = bitsize_int (1);
6961 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
6962
6963 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
6964 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
6965
6966 void_type_node = make_node (VOID_TYPE);
6967 layout_type (void_type_node);
6968
6969 /* We are not going to have real types in C with less than byte alignment,
6970 so we might as well not have any types that claim to have it. */
6971 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
6972 TYPE_USER_ALIGN (void_type_node) = 0;
6973
6974 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
6975 layout_type (TREE_TYPE (null_pointer_node));
6976
6977 ptr_type_node = build_pointer_type (void_type_node);
6978 const_ptr_type_node
6979 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
6980 fileptr_type_node = ptr_type_node;
6981
6982 float_type_node = make_node (REAL_TYPE);
6983 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
6984 layout_type (float_type_node);
6985
6986 double_type_node = make_node (REAL_TYPE);
6987 if (short_double)
6988 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
6989 else
6990 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
6991 layout_type (double_type_node);
6992
6993 long_double_type_node = make_node (REAL_TYPE);
6994 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
6995 layout_type (long_double_type_node);
6996
6997 float_ptr_type_node = build_pointer_type (float_type_node);
6998 double_ptr_type_node = build_pointer_type (double_type_node);
6999 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
7000 integer_ptr_type_node = build_pointer_type (integer_type_node);
7001
7002 /* Fixed size integer types. */
7003 uint32_type_node = build_nonstandard_integer_type (32, true);
7004 uint64_type_node = build_nonstandard_integer_type (64, true);
7005
7006 /* Decimal float types. */
7007 dfloat32_type_node = make_node (REAL_TYPE);
7008 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
7009 layout_type (dfloat32_type_node);
7010 TYPE_MODE (dfloat32_type_node) = SDmode;
7011 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
7012
7013 dfloat64_type_node = make_node (REAL_TYPE);
7014 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
7015 layout_type (dfloat64_type_node);
7016 TYPE_MODE (dfloat64_type_node) = DDmode;
7017 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
7018
7019 dfloat128_type_node = make_node (REAL_TYPE);
7020 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
7021 layout_type (dfloat128_type_node);
7022 TYPE_MODE (dfloat128_type_node) = TDmode;
7023 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
7024
7025 complex_integer_type_node = build_complex_type (integer_type_node);
7026 complex_float_type_node = build_complex_type (float_type_node);
7027 complex_double_type_node = build_complex_type (double_type_node);
7028 complex_long_double_type_node = build_complex_type (long_double_type_node);
7029
7030 {
7031 tree t = targetm.build_builtin_va_list ();
7032
7033 /* Many back-ends define record types without setting TYPE_NAME.
7034 If we copied the record type here, we'd keep the original
7035 record type without a name. This breaks name mangling. So,
7036 don't copy record types and let c_common_nodes_and_builtins()
7037 declare the type to be __builtin_va_list. */
7038 if (TREE_CODE (t) != RECORD_TYPE)
7039 t = build_variant_type_copy (t);
7040
7041 va_list_type_node = t;
7042 }
7043 }
7044
7045 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
7046
7047 static void
7048 local_define_builtin (const char *name, tree type, enum built_in_function code,
7049 const char *library_name, int ecf_flags)
7050 {
7051 tree decl;
7052
7053 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
7054 library_name, NULL_TREE);
7055 if (ecf_flags & ECF_CONST)
7056 TREE_READONLY (decl) = 1;
7057 if (ecf_flags & ECF_PURE)
7058 DECL_IS_PURE (decl) = 1;
7059 if (ecf_flags & ECF_NORETURN)
7060 TREE_THIS_VOLATILE (decl) = 1;
7061 if (ecf_flags & ECF_NOTHROW)
7062 TREE_NOTHROW (decl) = 1;
7063 if (ecf_flags & ECF_MALLOC)
7064 DECL_IS_MALLOC (decl) = 1;
7065
7066 built_in_decls[code] = decl;
7067 implicit_built_in_decls[code] = decl;
7068 }
7069
7070 /* Call this function after instantiating all builtins that the language
7071 front end cares about. This will build the rest of the builtins that
7072 are relied upon by the tree optimizers and the middle-end. */
7073
7074 void
7075 build_common_builtin_nodes (void)
7076 {
7077 tree tmp, ftype;
7078
7079 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
7080 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
7081 {
7082 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7083 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7084 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7085 ftype = build_function_type (ptr_type_node, tmp);
7086
7087 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
7088 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
7089 "memcpy", ECF_NOTHROW);
7090 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
7091 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
7092 "memmove", ECF_NOTHROW);
7093 }
7094
7095 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
7096 {
7097 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7098 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7099 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7100 ftype = build_function_type (integer_type_node, tmp);
7101 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
7102 "memcmp", ECF_PURE | ECF_NOTHROW);
7103 }
7104
7105 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
7106 {
7107 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7108 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
7109 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7110 ftype = build_function_type (ptr_type_node, tmp);
7111 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
7112 "memset", ECF_NOTHROW);
7113 }
7114
7115 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
7116 {
7117 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7118 ftype = build_function_type (ptr_type_node, tmp);
7119 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
7120 "alloca", ECF_NOTHROW | ECF_MALLOC);
7121 }
7122
7123 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7124 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7125 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7126 ftype = build_function_type (void_type_node, tmp);
7127 local_define_builtin ("__builtin_init_trampoline", ftype,
7128 BUILT_IN_INIT_TRAMPOLINE,
7129 "__builtin_init_trampoline", ECF_NOTHROW);
7130
7131 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7132 ftype = build_function_type (ptr_type_node, tmp);
7133 local_define_builtin ("__builtin_adjust_trampoline", ftype,
7134 BUILT_IN_ADJUST_TRAMPOLINE,
7135 "__builtin_adjust_trampoline",
7136 ECF_CONST | ECF_NOTHROW);
7137
7138 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7139 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7140 ftype = build_function_type (void_type_node, tmp);
7141 local_define_builtin ("__builtin_nonlocal_goto", ftype,
7142 BUILT_IN_NONLOCAL_GOTO,
7143 "__builtin_nonlocal_goto",
7144 ECF_NORETURN | ECF_NOTHROW);
7145
7146 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7147 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7148 ftype = build_function_type (void_type_node, tmp);
7149 local_define_builtin ("__builtin_setjmp_setup", ftype,
7150 BUILT_IN_SETJMP_SETUP,
7151 "__builtin_setjmp_setup", ECF_NOTHROW);
7152
7153 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7154 ftype = build_function_type (ptr_type_node, tmp);
7155 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
7156 BUILT_IN_SETJMP_DISPATCHER,
7157 "__builtin_setjmp_dispatcher",
7158 ECF_PURE | ECF_NOTHROW);
7159
7160 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7161 ftype = build_function_type (void_type_node, tmp);
7162 local_define_builtin ("__builtin_setjmp_receiver", ftype,
7163 BUILT_IN_SETJMP_RECEIVER,
7164 "__builtin_setjmp_receiver", ECF_NOTHROW);
7165
7166 ftype = build_function_type (ptr_type_node, void_list_node);
7167 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
7168 "__builtin_stack_save", ECF_NOTHROW);
7169
7170 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7171 ftype = build_function_type (void_type_node, tmp);
7172 local_define_builtin ("__builtin_stack_restore", ftype,
7173 BUILT_IN_STACK_RESTORE,
7174 "__builtin_stack_restore", ECF_NOTHROW);
7175
7176 ftype = build_function_type (void_type_node, void_list_node);
7177 local_define_builtin ("__builtin_profile_func_enter", ftype,
7178 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
7179 local_define_builtin ("__builtin_profile_func_exit", ftype,
7180 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
7181
7182 /* Complex multiplication and division. These are handled as builtins
7183 rather than optabs because emit_library_call_value doesn't support
7184 complex. Further, we can do slightly better with folding these
7185 beasties if the real and complex parts of the arguments are separate. */
7186 {
7187 enum machine_mode mode;
7188
7189 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
7190 {
7191 char mode_name_buf[4], *q;
7192 const char *p;
7193 enum built_in_function mcode, dcode;
7194 tree type, inner_type;
7195
7196 type = lang_hooks.types.type_for_mode (mode, 0);
7197 if (type == NULL)
7198 continue;
7199 inner_type = TREE_TYPE (type);
7200
7201 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
7202 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7203 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7204 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7205 ftype = build_function_type (type, tmp);
7206
7207 mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7208 dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7209
7210 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
7211 *q = TOLOWER (*p);
7212 *q = '\0';
7213
7214 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
7215 local_define_builtin (built_in_names[mcode], ftype, mcode,
7216 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
7217
7218 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
7219 local_define_builtin (built_in_names[dcode], ftype, dcode,
7220 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
7221 }
7222 }
7223 }
7224
7225 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
7226 better way.
7227
7228 If we requested a pointer to a vector, build up the pointers that
7229 we stripped off while looking for the inner type. Similarly for
7230 return values from functions.
7231
7232 The argument TYPE is the top of the chain, and BOTTOM is the
7233 new type which we will point to. */
7234
7235 tree
7236 reconstruct_complex_type (tree type, tree bottom)
7237 {
7238 tree inner, outer;
7239
7240 if (POINTER_TYPE_P (type))
7241 {
7242 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7243 outer = build_pointer_type (inner);
7244 }
7245 else if (TREE_CODE (type) == ARRAY_TYPE)
7246 {
7247 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7248 outer = build_array_type (inner, TYPE_DOMAIN (type));
7249 }
7250 else if (TREE_CODE (type) == FUNCTION_TYPE)
7251 {
7252 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7253 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
7254 }
7255 else if (TREE_CODE (type) == METHOD_TYPE)
7256 {
7257 tree argtypes;
7258 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7259 /* The build_method_type_directly() routine prepends 'this' to argument list,
7260 so we must compensate by getting rid of it. */
7261 argtypes = TYPE_ARG_TYPES (type);
7262 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
7263 inner,
7264 TYPE_ARG_TYPES (type));
7265 TYPE_ARG_TYPES (outer) = argtypes;
7266 }
7267 else
7268 return bottom;
7269
7270 TYPE_READONLY (outer) = TYPE_READONLY (type);
7271 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
7272
7273 return outer;
7274 }
7275
7276 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
7277 the inner type. */
7278 tree
7279 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
7280 {
7281 int nunits;
7282
7283 switch (GET_MODE_CLASS (mode))
7284 {
7285 case MODE_VECTOR_INT:
7286 case MODE_VECTOR_FLOAT:
7287 nunits = GET_MODE_NUNITS (mode);
7288 break;
7289
7290 case MODE_INT:
7291 /* Check that there are no leftover bits. */
7292 gcc_assert (GET_MODE_BITSIZE (mode)
7293 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
7294
7295 nunits = GET_MODE_BITSIZE (mode)
7296 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
7297 break;
7298
7299 default:
7300 gcc_unreachable ();
7301 }
7302
7303 return make_vector_type (innertype, nunits, mode);
7304 }
7305
7306 /* Similarly, but takes the inner type and number of units, which must be
7307 a power of two. */
7308
7309 tree
7310 build_vector_type (tree innertype, int nunits)
7311 {
7312 return make_vector_type (innertype, nunits, VOIDmode);
7313 }
7314
7315
7316 /* Build RESX_EXPR with given REGION_NUMBER. */
7317 tree
7318 build_resx (int region_number)
7319 {
7320 tree t;
7321 t = build1 (RESX_EXPR, void_type_node,
7322 build_int_cst (NULL_TREE, region_number));
7323 return t;
7324 }
7325
7326 /* Given an initializer INIT, return TRUE if INIT is zero or some
7327 aggregate of zeros. Otherwise return FALSE. */
7328 bool
7329 initializer_zerop (tree init)
7330 {
7331 tree elt;
7332
7333 STRIP_NOPS (init);
7334
7335 switch (TREE_CODE (init))
7336 {
7337 case INTEGER_CST:
7338 return integer_zerop (init);
7339
7340 case REAL_CST:
7341 /* ??? Note that this is not correct for C4X float formats. There,
7342 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
7343 negative exponent. */
7344 return real_zerop (init)
7345 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
7346
7347 case COMPLEX_CST:
7348 return integer_zerop (init)
7349 || (real_zerop (init)
7350 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
7351 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
7352
7353 case VECTOR_CST:
7354 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
7355 if (!initializer_zerop (TREE_VALUE (elt)))
7356 return false;
7357 return true;
7358
7359 case CONSTRUCTOR:
7360 {
7361 unsigned HOST_WIDE_INT idx;
7362
7363 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
7364 if (!initializer_zerop (elt))
7365 return false;
7366 return true;
7367 }
7368
7369 default:
7370 return false;
7371 }
7372 }
7373
7374 /* Build an empty statement. */
7375
7376 tree
7377 build_empty_stmt (void)
7378 {
7379 return build1 (NOP_EXPR, void_type_node, size_zero_node);
7380 }
7381
7382
7383 /* Build an OpenMP clause with code CODE. */
7384
7385 tree
7386 build_omp_clause (enum omp_clause_code code)
7387 {
7388 tree t;
7389 int size, length;
7390
7391 length = omp_clause_num_ops[code];
7392 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
7393
7394 t = ggc_alloc (size);
7395 memset (t, 0, size);
7396 TREE_SET_CODE (t, OMP_CLAUSE);
7397 OMP_CLAUSE_SET_CODE (t, code);
7398
7399 #ifdef GATHER_STATISTICS
7400 tree_node_counts[(int) omp_clause_kind]++;
7401 tree_node_sizes[(int) omp_clause_kind] += size;
7402 #endif
7403
7404 return t;
7405 }
7406
7407 /* Set various status flags when building a CALL_EXPR object T. */
7408
7409 static void
7410 process_call_operands (tree t)
7411 {
7412 bool side_effects;
7413
7414 side_effects = TREE_SIDE_EFFECTS (t);
7415 if (!side_effects)
7416 {
7417 int i, n;
7418 n = TREE_OPERAND_LENGTH (t);
7419 for (i = 1; i < n; i++)
7420 {
7421 tree op = TREE_OPERAND (t, i);
7422 if (op && TREE_SIDE_EFFECTS (op))
7423 {
7424 side_effects = 1;
7425 break;
7426 }
7427 }
7428 }
7429 if (!side_effects)
7430 {
7431 int i;
7432
7433 /* Calls have side-effects, except those to const or
7434 pure functions. */
7435 i = call_expr_flags (t);
7436 if (!(i & (ECF_CONST | ECF_PURE)))
7437 side_effects = 1;
7438 }
7439 TREE_SIDE_EFFECTS (t) = side_effects;
7440 }
7441
7442 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
7443 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
7444 Except for the CODE and operand count field, other storage for the
7445 object is initialized to zeros. */
7446
7447 tree
7448 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
7449 {
7450 tree t;
7451 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
7452
7453 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
7454 gcc_assert (len >= 1);
7455
7456 #ifdef GATHER_STATISTICS
7457 tree_node_counts[(int) e_kind]++;
7458 tree_node_sizes[(int) e_kind] += length;
7459 #endif
7460
7461 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
7462
7463 memset (t, 0, length);
7464
7465 TREE_SET_CODE (t, code);
7466
7467 /* Can't use TREE_OPERAND to store the length because if checking is
7468 enabled, it will try to check the length before we store it. :-P */
7469 t->exp.operands[0] = build_int_cst (sizetype, len);
7470
7471 return t;
7472 }
7473
7474
7475 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE
7476 and FN and a null static chain slot. ARGLIST is a TREE_LIST of the
7477 arguments. */
7478
7479 tree
7480 build_call_list (tree return_type, tree fn, tree arglist)
7481 {
7482 tree t;
7483 int i;
7484
7485 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
7486 TREE_TYPE (t) = return_type;
7487 CALL_EXPR_FN (t) = fn;
7488 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7489 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
7490 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
7491 process_call_operands (t);
7492 return t;
7493 }
7494
7495 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7496 FN and a null static chain slot. NARGS is the number of call arguments
7497 which are specified as "..." arguments. */
7498
7499 tree
7500 build_call_nary (tree return_type, tree fn, int nargs, ...)
7501 {
7502 tree ret;
7503 va_list args;
7504 va_start (args, nargs);
7505 ret = build_call_valist (return_type, fn, nargs, args);
7506 va_end (args);
7507 return ret;
7508 }
7509
7510 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7511 FN and a null static chain slot. NARGS is the number of call arguments
7512 which are specified as a va_list ARGS. */
7513
7514 tree
7515 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
7516 {
7517 tree t;
7518 int i;
7519
7520 t = build_vl_exp (CALL_EXPR, nargs + 3);
7521 TREE_TYPE (t) = return_type;
7522 CALL_EXPR_FN (t) = fn;
7523 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7524 for (i = 0; i < nargs; i++)
7525 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
7526 process_call_operands (t);
7527 return t;
7528 }
7529
7530 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7531 FN and a null static chain slot. NARGS is the number of call arguments
7532 which are specified as a tree array ARGS. */
7533
7534 tree
7535 build_call_array (tree return_type, tree fn, int nargs, tree *args)
7536 {
7537 tree t;
7538 int i;
7539
7540 t = build_vl_exp (CALL_EXPR, nargs + 3);
7541 TREE_TYPE (t) = return_type;
7542 CALL_EXPR_FN (t) = fn;
7543 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7544 for (i = 0; i < nargs; i++)
7545 CALL_EXPR_ARG (t, i) = args[i];
7546 process_call_operands (t);
7547 return t;
7548 }
7549
7550
7551 /* Returns true if it is possible to prove that the index of
7552 an array access REF (an ARRAY_REF expression) falls into the
7553 array bounds. */
7554
7555 bool
7556 in_array_bounds_p (tree ref)
7557 {
7558 tree idx = TREE_OPERAND (ref, 1);
7559 tree min, max;
7560
7561 if (TREE_CODE (idx) != INTEGER_CST)
7562 return false;
7563
7564 min = array_ref_low_bound (ref);
7565 max = array_ref_up_bound (ref);
7566 if (!min
7567 || !max
7568 || TREE_CODE (min) != INTEGER_CST
7569 || TREE_CODE (max) != INTEGER_CST)
7570 return false;
7571
7572 if (tree_int_cst_lt (idx, min)
7573 || tree_int_cst_lt (max, idx))
7574 return false;
7575
7576 return true;
7577 }
7578
7579 /* Returns true if it is possible to prove that the range of
7580 an array access REF (an ARRAY_RANGE_REF expression) falls
7581 into the array bounds. */
7582
7583 bool
7584 range_in_array_bounds_p (tree ref)
7585 {
7586 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
7587 tree range_min, range_max, min, max;
7588
7589 range_min = TYPE_MIN_VALUE (domain_type);
7590 range_max = TYPE_MAX_VALUE (domain_type);
7591 if (!range_min
7592 || !range_max
7593 || TREE_CODE (range_min) != INTEGER_CST
7594 || TREE_CODE (range_max) != INTEGER_CST)
7595 return false;
7596
7597 min = array_ref_low_bound (ref);
7598 max = array_ref_up_bound (ref);
7599 if (!min
7600 || !max
7601 || TREE_CODE (min) != INTEGER_CST
7602 || TREE_CODE (max) != INTEGER_CST)
7603 return false;
7604
7605 if (tree_int_cst_lt (range_min, min)
7606 || tree_int_cst_lt (max, range_max))
7607 return false;
7608
7609 return true;
7610 }
7611
7612 /* Return true if T (assumed to be a DECL) must be assigned a memory
7613 location. */
7614
7615 bool
7616 needs_to_live_in_memory (tree t)
7617 {
7618 if (TREE_CODE (t) == SSA_NAME)
7619 t = SSA_NAME_VAR (t);
7620
7621 return (TREE_ADDRESSABLE (t)
7622 || is_global_var (t)
7623 || (TREE_CODE (t) == RESULT_DECL
7624 && aggregate_value_p (t, current_function_decl)));
7625 }
7626
7627 /* There are situations in which a language considers record types
7628 compatible which have different field lists. Decide if two fields
7629 are compatible. It is assumed that the parent records are compatible. */
7630
7631 bool
7632 fields_compatible_p (tree f1, tree f2)
7633 {
7634 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
7635 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
7636 return false;
7637
7638 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
7639 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
7640 return false;
7641
7642 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
7643 return false;
7644
7645 return true;
7646 }
7647
7648 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
7649
7650 tree
7651 find_compatible_field (tree record, tree orig_field)
7652 {
7653 tree f;
7654
7655 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
7656 if (TREE_CODE (f) == FIELD_DECL
7657 && fields_compatible_p (f, orig_field))
7658 return f;
7659
7660 /* ??? Why isn't this on the main fields list? */
7661 f = TYPE_VFIELD (record);
7662 if (f && TREE_CODE (f) == FIELD_DECL
7663 && fields_compatible_p (f, orig_field))
7664 return f;
7665
7666 /* ??? We should abort here, but Java appears to do Bad Things
7667 with inherited fields. */
7668 return orig_field;
7669 }
7670
7671 /* Return value of a constant X. */
7672
7673 HOST_WIDE_INT
7674 int_cst_value (tree x)
7675 {
7676 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
7677 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
7678 bool negative = ((val >> (bits - 1)) & 1) != 0;
7679
7680 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
7681
7682 if (negative)
7683 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
7684 else
7685 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
7686
7687 return val;
7688 }
7689
7690
7691 /* Returns unsigned variant of TYPE. */
7692
7693 tree
7694 unsigned_type_for (tree type)
7695 {
7696 if (POINTER_TYPE_P (type))
7697 return lang_hooks.types.unsigned_type (size_type_node);
7698 return lang_hooks.types.unsigned_type (type);
7699 }
7700
7701 /* Returns signed variant of TYPE. */
7702
7703 tree
7704 signed_type_for (tree type)
7705 {
7706 if (POINTER_TYPE_P (type))
7707 return lang_hooks.types.signed_type (size_type_node);
7708 return lang_hooks.types.signed_type (type);
7709 }
7710
7711 /* Returns the largest value obtainable by casting something in INNER type to
7712 OUTER type. */
7713
7714 tree
7715 upper_bound_in_type (tree outer, tree inner)
7716 {
7717 unsigned HOST_WIDE_INT lo, hi;
7718 unsigned int det = 0;
7719 unsigned oprec = TYPE_PRECISION (outer);
7720 unsigned iprec = TYPE_PRECISION (inner);
7721 unsigned prec;
7722
7723 /* Compute a unique number for every combination. */
7724 det |= (oprec > iprec) ? 4 : 0;
7725 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
7726 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
7727
7728 /* Determine the exponent to use. */
7729 switch (det)
7730 {
7731 case 0:
7732 case 1:
7733 /* oprec <= iprec, outer: signed, inner: don't care. */
7734 prec = oprec - 1;
7735 break;
7736 case 2:
7737 case 3:
7738 /* oprec <= iprec, outer: unsigned, inner: don't care. */
7739 prec = oprec;
7740 break;
7741 case 4:
7742 /* oprec > iprec, outer: signed, inner: signed. */
7743 prec = iprec - 1;
7744 break;
7745 case 5:
7746 /* oprec > iprec, outer: signed, inner: unsigned. */
7747 prec = iprec;
7748 break;
7749 case 6:
7750 /* oprec > iprec, outer: unsigned, inner: signed. */
7751 prec = oprec;
7752 break;
7753 case 7:
7754 /* oprec > iprec, outer: unsigned, inner: unsigned. */
7755 prec = iprec;
7756 break;
7757 default:
7758 gcc_unreachable ();
7759 }
7760
7761 /* Compute 2^^prec - 1. */
7762 if (prec <= HOST_BITS_PER_WIDE_INT)
7763 {
7764 hi = 0;
7765 lo = ((~(unsigned HOST_WIDE_INT) 0)
7766 >> (HOST_BITS_PER_WIDE_INT - prec));
7767 }
7768 else
7769 {
7770 hi = ((~(unsigned HOST_WIDE_INT) 0)
7771 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
7772 lo = ~(unsigned HOST_WIDE_INT) 0;
7773 }
7774
7775 return build_int_cst_wide (outer, lo, hi);
7776 }
7777
7778 /* Returns the smallest value obtainable by casting something in INNER type to
7779 OUTER type. */
7780
7781 tree
7782 lower_bound_in_type (tree outer, tree inner)
7783 {
7784 unsigned HOST_WIDE_INT lo, hi;
7785 unsigned oprec = TYPE_PRECISION (outer);
7786 unsigned iprec = TYPE_PRECISION (inner);
7787
7788 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
7789 and obtain 0. */
7790 if (TYPE_UNSIGNED (outer)
7791 /* If we are widening something of an unsigned type, OUTER type
7792 contains all values of INNER type. In particular, both INNER
7793 and OUTER types have zero in common. */
7794 || (oprec > iprec && TYPE_UNSIGNED (inner)))
7795 lo = hi = 0;
7796 else
7797 {
7798 /* If we are widening a signed type to another signed type, we
7799 want to obtain -2^^(iprec-1). If we are keeping the
7800 precision or narrowing to a signed type, we want to obtain
7801 -2^(oprec-1). */
7802 unsigned prec = oprec > iprec ? iprec : oprec;
7803
7804 if (prec <= HOST_BITS_PER_WIDE_INT)
7805 {
7806 hi = ~(unsigned HOST_WIDE_INT) 0;
7807 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
7808 }
7809 else
7810 {
7811 hi = ((~(unsigned HOST_WIDE_INT) 0)
7812 << (prec - HOST_BITS_PER_WIDE_INT - 1));
7813 lo = 0;
7814 }
7815 }
7816
7817 return build_int_cst_wide (outer, lo, hi);
7818 }
7819
7820 /* Return nonzero if two operands that are suitable for PHI nodes are
7821 necessarily equal. Specifically, both ARG0 and ARG1 must be either
7822 SSA_NAME or invariant. Note that this is strictly an optimization.
7823 That is, callers of this function can directly call operand_equal_p
7824 and get the same result, only slower. */
7825
7826 int
7827 operand_equal_for_phi_arg_p (tree arg0, tree arg1)
7828 {
7829 if (arg0 == arg1)
7830 return 1;
7831 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
7832 return 0;
7833 return operand_equal_p (arg0, arg1, 0);
7834 }
7835
7836 /* Returns number of zeros at the end of binary representation of X.
7837
7838 ??? Use ffs if available? */
7839
7840 tree
7841 num_ending_zeros (tree x)
7842 {
7843 unsigned HOST_WIDE_INT fr, nfr;
7844 unsigned num, abits;
7845 tree type = TREE_TYPE (x);
7846
7847 if (TREE_INT_CST_LOW (x) == 0)
7848 {
7849 num = HOST_BITS_PER_WIDE_INT;
7850 fr = TREE_INT_CST_HIGH (x);
7851 }
7852 else
7853 {
7854 num = 0;
7855 fr = TREE_INT_CST_LOW (x);
7856 }
7857
7858 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
7859 {
7860 nfr = fr >> abits;
7861 if (nfr << abits == fr)
7862 {
7863 num += abits;
7864 fr = nfr;
7865 }
7866 }
7867
7868 if (num > TYPE_PRECISION (type))
7869 num = TYPE_PRECISION (type);
7870
7871 return build_int_cst_type (type, num);
7872 }
7873
7874
7875 #define WALK_SUBTREE(NODE) \
7876 do \
7877 { \
7878 result = walk_tree (&(NODE), func, data, pset); \
7879 if (result) \
7880 return result; \
7881 } \
7882 while (0)
7883
7884 /* This is a subroutine of walk_tree that walks field of TYPE that are to
7885 be walked whenever a type is seen in the tree. Rest of operands and return
7886 value are as for walk_tree. */
7887
7888 static tree
7889 walk_type_fields (tree type, walk_tree_fn func, void *data,
7890 struct pointer_set_t *pset)
7891 {
7892 tree result = NULL_TREE;
7893
7894 switch (TREE_CODE (type))
7895 {
7896 case POINTER_TYPE:
7897 case REFERENCE_TYPE:
7898 /* We have to worry about mutually recursive pointers. These can't
7899 be written in C. They can in Ada. It's pathological, but
7900 there's an ACATS test (c38102a) that checks it. Deal with this
7901 by checking if we're pointing to another pointer, that one
7902 points to another pointer, that one does too, and we have no htab.
7903 If so, get a hash table. We check three levels deep to avoid
7904 the cost of the hash table if we don't need one. */
7905 if (POINTER_TYPE_P (TREE_TYPE (type))
7906 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
7907 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
7908 && !pset)
7909 {
7910 result = walk_tree_without_duplicates (&TREE_TYPE (type),
7911 func, data);
7912 if (result)
7913 return result;
7914
7915 break;
7916 }
7917
7918 /* ... fall through ... */
7919
7920 case COMPLEX_TYPE:
7921 WALK_SUBTREE (TREE_TYPE (type));
7922 break;
7923
7924 case METHOD_TYPE:
7925 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
7926
7927 /* Fall through. */
7928
7929 case FUNCTION_TYPE:
7930 WALK_SUBTREE (TREE_TYPE (type));
7931 {
7932 tree arg;
7933
7934 /* We never want to walk into default arguments. */
7935 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
7936 WALK_SUBTREE (TREE_VALUE (arg));
7937 }
7938 break;
7939
7940 case ARRAY_TYPE:
7941 /* Don't follow this nodes's type if a pointer for fear that
7942 we'll have infinite recursion. If we have a PSET, then we
7943 need not fear. */
7944 if (pset
7945 || (!POINTER_TYPE_P (TREE_TYPE (type))
7946 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
7947 WALK_SUBTREE (TREE_TYPE (type));
7948 WALK_SUBTREE (TYPE_DOMAIN (type));
7949 break;
7950
7951 case OFFSET_TYPE:
7952 WALK_SUBTREE (TREE_TYPE (type));
7953 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
7954 break;
7955
7956 default:
7957 break;
7958 }
7959
7960 return NULL_TREE;
7961 }
7962
7963 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
7964 called with the DATA and the address of each sub-tree. If FUNC returns a
7965 non-NULL value, the traversal is stopped, and the value returned by FUNC
7966 is returned. If PSET is non-NULL it is used to record the nodes visited,
7967 and to avoid visiting a node more than once. */
7968
7969 tree
7970 walk_tree (tree *tp, walk_tree_fn func, void *data, struct pointer_set_t *pset)
7971 {
7972 enum tree_code code;
7973 int walk_subtrees;
7974 tree result;
7975
7976 #define WALK_SUBTREE_TAIL(NODE) \
7977 do \
7978 { \
7979 tp = & (NODE); \
7980 goto tail_recurse; \
7981 } \
7982 while (0)
7983
7984 tail_recurse:
7985 /* Skip empty subtrees. */
7986 if (!*tp)
7987 return NULL_TREE;
7988
7989 /* Don't walk the same tree twice, if the user has requested
7990 that we avoid doing so. */
7991 if (pset && pointer_set_insert (pset, *tp))
7992 return NULL_TREE;
7993
7994 /* Call the function. */
7995 walk_subtrees = 1;
7996 result = (*func) (tp, &walk_subtrees, data);
7997
7998 /* If we found something, return it. */
7999 if (result)
8000 return result;
8001
8002 code = TREE_CODE (*tp);
8003
8004 /* Even if we didn't, FUNC may have decided that there was nothing
8005 interesting below this point in the tree. */
8006 if (!walk_subtrees)
8007 {
8008 /* But we still need to check our siblings. */
8009 if (code == TREE_LIST)
8010 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
8011 else if (code == OMP_CLAUSE)
8012 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8013 else
8014 return NULL_TREE;
8015 }
8016
8017 result = lang_hooks.tree_inlining.walk_subtrees (tp, &walk_subtrees, func,
8018 data, pset);
8019 if (result || !walk_subtrees)
8020 return result;
8021
8022 switch (code)
8023 {
8024 case ERROR_MARK:
8025 case IDENTIFIER_NODE:
8026 case INTEGER_CST:
8027 case REAL_CST:
8028 case VECTOR_CST:
8029 case STRING_CST:
8030 case BLOCK:
8031 case PLACEHOLDER_EXPR:
8032 case SSA_NAME:
8033 case FIELD_DECL:
8034 case RESULT_DECL:
8035 /* None of these have subtrees other than those already walked
8036 above. */
8037 break;
8038
8039 case TREE_LIST:
8040 WALK_SUBTREE (TREE_VALUE (*tp));
8041 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
8042 break;
8043
8044 case TREE_VEC:
8045 {
8046 int len = TREE_VEC_LENGTH (*tp);
8047
8048 if (len == 0)
8049 break;
8050
8051 /* Walk all elements but the first. */
8052 while (--len)
8053 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
8054
8055 /* Now walk the first one as a tail call. */
8056 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
8057 }
8058
8059 case COMPLEX_CST:
8060 WALK_SUBTREE (TREE_REALPART (*tp));
8061 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
8062
8063 case CONSTRUCTOR:
8064 {
8065 unsigned HOST_WIDE_INT idx;
8066 constructor_elt *ce;
8067
8068 for (idx = 0;
8069 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
8070 idx++)
8071 WALK_SUBTREE (ce->value);
8072 }
8073 break;
8074
8075 case SAVE_EXPR:
8076 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
8077
8078 case BIND_EXPR:
8079 {
8080 tree decl;
8081 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
8082 {
8083 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
8084 into declarations that are just mentioned, rather than
8085 declared; they don't really belong to this part of the tree.
8086 And, we can see cycles: the initializer for a declaration
8087 can refer to the declaration itself. */
8088 WALK_SUBTREE (DECL_INITIAL (decl));
8089 WALK_SUBTREE (DECL_SIZE (decl));
8090 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
8091 }
8092 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
8093 }
8094
8095 case STATEMENT_LIST:
8096 {
8097 tree_stmt_iterator i;
8098 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
8099 WALK_SUBTREE (*tsi_stmt_ptr (i));
8100 }
8101 break;
8102
8103 case OMP_CLAUSE:
8104 switch (OMP_CLAUSE_CODE (*tp))
8105 {
8106 case OMP_CLAUSE_PRIVATE:
8107 case OMP_CLAUSE_SHARED:
8108 case OMP_CLAUSE_FIRSTPRIVATE:
8109 case OMP_CLAUSE_LASTPRIVATE:
8110 case OMP_CLAUSE_COPYIN:
8111 case OMP_CLAUSE_COPYPRIVATE:
8112 case OMP_CLAUSE_IF:
8113 case OMP_CLAUSE_NUM_THREADS:
8114 case OMP_CLAUSE_SCHEDULE:
8115 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
8116 /* FALLTHRU */
8117
8118 case OMP_CLAUSE_NOWAIT:
8119 case OMP_CLAUSE_ORDERED:
8120 case OMP_CLAUSE_DEFAULT:
8121 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8122
8123 case OMP_CLAUSE_REDUCTION:
8124 {
8125 int i;
8126 for (i = 0; i < 4; i++)
8127 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
8128 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8129 }
8130
8131 default:
8132 gcc_unreachable ();
8133 }
8134 break;
8135
8136 case TARGET_EXPR:
8137 {
8138 int i, len;
8139
8140 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
8141 But, we only want to walk once. */
8142 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
8143 for (i = 0; i < len; ++i)
8144 WALK_SUBTREE (TREE_OPERAND (*tp, i));
8145 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
8146 }
8147
8148 case DECL_EXPR:
8149 /* If this is a TYPE_DECL, walk into the fields of the type that it's
8150 defining. We only want to walk into these fields of a type in this
8151 case and not in the general case of a mere reference to the type.
8152
8153 The criterion is as follows: if the field can be an expression, it
8154 must be walked only here. This should be in keeping with the fields
8155 that are directly gimplified in gimplify_type_sizes in order for the
8156 mark/copy-if-shared/unmark machinery of the gimplifier to work with
8157 variable-sized types.
8158
8159 Note that DECLs get walked as part of processing the BIND_EXPR. */
8160 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
8161 {
8162 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
8163 if (TREE_CODE (*type_p) == ERROR_MARK)
8164 return NULL_TREE;
8165
8166 /* Call the function for the type. See if it returns anything or
8167 doesn't want us to continue. If we are to continue, walk both
8168 the normal fields and those for the declaration case. */
8169 result = (*func) (type_p, &walk_subtrees, data);
8170 if (result || !walk_subtrees)
8171 return result;
8172
8173 result = walk_type_fields (*type_p, func, data, pset);
8174 if (result)
8175 return result;
8176
8177 /* If this is a record type, also walk the fields. */
8178 if (TREE_CODE (*type_p) == RECORD_TYPE
8179 || TREE_CODE (*type_p) == UNION_TYPE
8180 || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
8181 {
8182 tree field;
8183
8184 for (field = TYPE_FIELDS (*type_p); field;
8185 field = TREE_CHAIN (field))
8186 {
8187 /* We'd like to look at the type of the field, but we can
8188 easily get infinite recursion. So assume it's pointed
8189 to elsewhere in the tree. Also, ignore things that
8190 aren't fields. */
8191 if (TREE_CODE (field) != FIELD_DECL)
8192 continue;
8193
8194 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
8195 WALK_SUBTREE (DECL_SIZE (field));
8196 WALK_SUBTREE (DECL_SIZE_UNIT (field));
8197 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
8198 WALK_SUBTREE (DECL_QUALIFIER (field));
8199 }
8200 }
8201
8202 /* Same for scalar types. */
8203 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
8204 || TREE_CODE (*type_p) == ENUMERAL_TYPE
8205 || TREE_CODE (*type_p) == INTEGER_TYPE
8206 || TREE_CODE (*type_p) == REAL_TYPE)
8207 {
8208 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
8209 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
8210 }
8211
8212 WALK_SUBTREE (TYPE_SIZE (*type_p));
8213 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
8214 }
8215 /* FALLTHRU */
8216
8217 default:
8218 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))
8219 || IS_GIMPLE_STMT_CODE_CLASS (TREE_CODE_CLASS (code)))
8220 {
8221 int i, len;
8222
8223 /* Walk over all the sub-trees of this operand. */
8224 len = TREE_OPERAND_LENGTH (*tp);
8225
8226 /* Go through the subtrees. We need to do this in forward order so
8227 that the scope of a FOR_EXPR is handled properly. */
8228 if (len)
8229 {
8230 for (i = 0; i < len - 1; ++i)
8231 WALK_SUBTREE (GENERIC_TREE_OPERAND (*tp, i));
8232 WALK_SUBTREE_TAIL (GENERIC_TREE_OPERAND (*tp, len - 1));
8233 }
8234 }
8235 /* If this is a type, walk the needed fields in the type. */
8236 else if (TYPE_P (*tp))
8237 return walk_type_fields (*tp, func, data, pset);
8238 break;
8239 }
8240
8241 /* We didn't find what we were looking for. */
8242 return NULL_TREE;
8243
8244 #undef WALK_SUBTREE_TAIL
8245 }
8246 #undef WALK_SUBTREE
8247
8248 /* Like walk_tree, but does not walk duplicate nodes more than once. */
8249
8250 tree
8251 walk_tree_without_duplicates (tree *tp, walk_tree_fn func, void *data)
8252 {
8253 tree result;
8254 struct pointer_set_t *pset;
8255
8256 pset = pointer_set_create ();
8257 result = walk_tree (tp, func, data, pset);
8258 pointer_set_destroy (pset);
8259 return result;
8260 }
8261
8262
8263 /* Return true if STMT is an empty statement or contains nothing but
8264 empty statements. */
8265
8266 bool
8267 empty_body_p (tree stmt)
8268 {
8269 tree_stmt_iterator i;
8270 tree body;
8271
8272 if (IS_EMPTY_STMT (stmt))
8273 return true;
8274 else if (TREE_CODE (stmt) == BIND_EXPR)
8275 body = BIND_EXPR_BODY (stmt);
8276 else if (TREE_CODE (stmt) == STATEMENT_LIST)
8277 body = stmt;
8278 else
8279 return false;
8280
8281 for (i = tsi_start (body); !tsi_end_p (i); tsi_next (&i))
8282 if (!empty_body_p (tsi_stmt (i)))
8283 return false;
8284
8285 return true;
8286 }
8287
8288 tree *
8289 tree_block (tree t)
8290 {
8291 char const c = TREE_CODE_CLASS (TREE_CODE (t));
8292
8293 if (IS_EXPR_CODE_CLASS (c))
8294 return &t->exp.block;
8295 else if (IS_GIMPLE_STMT_CODE_CLASS (c))
8296 return &GIMPLE_STMT_BLOCK (t);
8297 gcc_unreachable ();
8298 return NULL;
8299 }
8300
8301 tree *
8302 generic_tree_operand (tree node, int i)
8303 {
8304 if (GIMPLE_STMT_P (node))
8305 return &GIMPLE_STMT_OPERAND (node, i);
8306 return &TREE_OPERAND (node, i);
8307 }
8308
8309 tree *
8310 generic_tree_type (tree node)
8311 {
8312 if (GIMPLE_STMT_P (node))
8313 return &void_type_node;
8314 return &TREE_TYPE (node);
8315 }
8316
8317 /* Build and return a TREE_LIST of arguments in the CALL_EXPR exp.
8318 FIXME: don't use this function. It exists for compatibility with
8319 the old representation of CALL_EXPRs where a list was used to hold the
8320 arguments. Places that currently extract the arglist from a CALL_EXPR
8321 ought to be rewritten to use the CALL_EXPR itself. */
8322 tree
8323 call_expr_arglist (tree exp)
8324 {
8325 tree arglist = NULL_TREE;
8326 int i;
8327 for (i = call_expr_nargs (exp) - 1; i >= 0; i--)
8328 arglist = tree_cons (NULL_TREE, CALL_EXPR_ARG (exp, i), arglist);
8329 return arglist;
8330 }
8331
8332 #include "gt-tree.h"